FM TRANSMITTER FOR TWO METERS

this month

• cw signal processor 17
• antenna stress analysis 23
• series-tuned pi networks 42
• phase-locked loop experiments 58
IT'S CONTEST TIME...and

THE ALPHA SEVENTY IS CONTEST BRED

Whether you work contests or hate 'em, the ruggedness and thoughtful design that place the ALPHA SEVENTY in a class by itself for serious contest operation will make it the pride and joy of your station, too. Going first class means...

- MAXIMUM LEGAL POWER YOU CAN TAKE FOR GRANTED...SSB, CW, RTTY or SSTV, the commercial-rated ALPHA SEVENTY handles it cool and easy...
- SIX-SECOND BAND CHANGING...Just set to the numbers and start talking. No more fumbling with tune-up while the DX gets away.
- WHISPER-QUIET OPERATION so you'll never again need "cans" to copy a weak one through blower noise...and your signal won't sound like you're operating in a boiler room.
- UNCOMPROMISING, FULL-BORE PERFORMANCE AT YOUR FINGERTIPS...With state-of-the-art engineering "best" doesn't mean "biggest and heaviest." This rugged desktop beauty proves that conclusively!

See the new standard of excellence at any of these outstanding dealers today (or write or phone for an illustrated brochure):

WEST - AMRAD SUPPLY, 1025 Harrison St., Oakland, Calif. 94607
TECH-WEST (K6SVT), 1362 Via Rancho Pkwy., Escondido, Calif. 92029

MOUNTAIN - CW ELECTRONICS, 1401 Blake St., Denver, Colo. 80202

MIDWEST - AMATEUR ELECTRONIC SUPPLY, 4828 W. Fond du Lac, Milwaukee, Wisc. 53216
ELECTRONIC DISTRIBUTORS, INC., 1960 Peck St., Muskegon, Mich. 49441

EAST - HARRISON RADIO, 2265 Route 110, Farmingdale, N.Y. 11735
and 8 Barclay St., New York City.

SOUTH - AMATEUR SALES AND SERVICE, P.O. Box 11302, Raleigh, N.C. 27604
BRANDON ELECTRONICS, 528A E. Brandon Blvd., Brandon, Fla. 33511
DOUGLAS ELECTRONICS, 1118 S. Staples, Corpus Christi, Tex. 78404

EHRHORN TECHNOLOGICAL OPERATIONS, INC.
Brooksville, Florida 33512 Phone (904) 796-8400
IF YOU'VE EVER USED A REPEATER,

If you haven't already received a copy of our NEW 1971 Catalog of Precision Quartz Crystals & Electronics for the Communications Industry, SEND FOR YOUR COPY TODAY!

Somewhere along the line, in virtually every ham repeater in the world, you’ll find a couple of Sentry crystals.

Repeater owners and FM “old-timers” don’t take chances with frequency—they can’t afford to. A lot of repeater users depend on a receiver to be on frequency, rock stable...in the dead of winter or the middle of July. The repeater crowd took a tip from the commercial “pros” a long time ago—and went the Sentry Route.

That’s one of the reasons you can depend on your local repeater to be there (precisely there) when you’re ready to use it. FM'ers use the repeater output as a frequency standard. And for accuracy, crystals by Sentry are THE standard.

IF YOU WANT THE BEST, SPECIFY SENTRY CRYSTALS.

YOU’VE USED A SENTRY CRYSTAL

SENTRY MANUFACTURING COMPANY
Crystal Park, Chickasha, Oklahoma 73018

PHONE: (405) 224-6780
TWX-910-830-6425

More Details? CHECK-OFF Page 126 october 1971 1
Superb Kenwood quality, unsurpassed performance, value you'll find hard to believe, proven reliability of both vacuum tube and solid state technology.

The Kenwood TS-577 is a hand-drilled 5SR analog CW transceiver for amateur operators. It features a built-in VOX, crystal calibrator, noise blanker, receiver incremental tuning, 7 kHz frequency readout, and CW filter. It is available in its price range.

FREQUENCY RANGE:
- 80 meter band: 3.5 - 4.1 MHz
- 40 meter band: 7.0 - 7.6 MHz
- 20 meter band: 14.0 - 14.6 MHz
- 15 meter band: 21.0 - 21.6 MHz
- 10 meter band: 28.0 - 28.6 MHz
- 28.5 - 29.1 MHz
- 29.1 - 29.7 MHz

MODES: LSB, USB, CW

INPUT POWER:
- 500 watts PEP
- 300 watts CW nominal

SENSITIVITY:
- 3.5 - 21.6 MHz band: 0.5 μV S/N 10 dB
- 28.0 - 29.7 MHz band: 1.5 μV S/N 10 dB and less than 100 cps frequency drift

SELECTIVITY:
- SSB more than 2.4 KC (at 6 dB)
- CW more than 0.5 KC (at 6 dB)

AUDIO OUTPUT:
- More than 1 watt without distortion

TUBE & SOLID STATE COMPONENTS:
- 10 Tubes, 1 IC, 37 Transistors, 4 FET, 52 Diodes

PRICE: $398.00

ACCESSORIES:
- Power Supply with built-in speaker $105.00
- External VOX $35.00
- CW Filter $35.00

THE R-599

The R-599 Solid State Receiver: 1.8 to 29.7 MHz (amateur bands) • 0.5 microvolt sensitivity nominal • Dial readout to ½ kHz • Special detectors for SSB, AM, and FM • Transceive operation with T-599 • Built-in 100 kc and 25 kc crystal calibrator and 500 cycle CW filter • 2 and 6 meter coverage with optional accessory self-contained converters • Adjustable threshold squelch $295.00 • R-599 speaker $14.50 • CC-29 2 meter converter $29.50 • CC-69 6 meter converter $29.50

THE T-599

The T-599 Transmitter: Clear, stable, selectable sideband, AM and CW • 4-way VFO flexibility plus Receiver Incremental Tuning (RIT) when used with the R-599 • Amplified ALC • Built-in VOX • Full metering, including cathode current, plate voltage, ALC and relative Power Output • Built-in CW sidetone monitor and semi-automatic break-in CW • Built-in power supply • Maximum TVI protection • Employs only 3 vacuum tubes • The price... $345.00

All Kenwood prices are subject to an import surtax.
October, 1971
volume 4, number 10

staff
James R. Fisk, W1DTY
director
Nicholas D. Skeer, K1PSR
vhf editor
J. Jay O'Brien, W6GDO
fm editor
Alfred Wilson, W6NIF
James A. Harvey, WA6IAG
associate editors
Jean Frey
art director
Wayne T. Pierce, K3SUK
cover
T. H. Tenney, Jr. W1NLB
publisher
Hilda M. Wetherbee
advertising manager

offices
Greenville, New Hampshire 03048
Telephone: 603-878-1441

ham radio magazine is
published monthly by
Communications Technology Inc.
Greenville, New Hampshire 03048

Subscription rates, world wide:
one year, $6.00, three years, $12.00.
Second class postage
paid at Greenville, N. H. 03048
and at additional mailing offices.

Foreign subscription agents:
United Kingdom:
Radio Society of Great Britain.
35 Doughty Street, London WC1, England.

All European countries:
Eskil Persson, SM5CJP.
Frutunagrand 1, 19400 Upplands Vasby, Sweden.

African continent:
Holland Radio, 143 Greenway.
Greenside, Johannesburg,
Republic of South Africa

Copyright 1971 by
Communications Technology, Inc.
Title registered at U. S. Patent Office.
Printed by Wellesley Press, Inc.
Wellesley, Massachusetts 02181, U. S. A.

ham radio is available to the blind
and physically handicapped on magnetic tape
from Science for the Blind.
221 Rock Hill Road, Bala Cynwyd,
Pennsylvania 19440.
Microfilm copies of current
and back issues are available
from University Microfilms,
Ann Arbor, Michigan 48103.

Postmaster: Please send form 3579 to
ham radio magazine, Greenville,
New Hampshire 03048

contents
8 vhf fm transmitter
Robert D. Shriner, WA0UZO
Robert C. Heptig, K0PHF
Earl A. Gill, W6OED

14 direct-reading capacitance meter
for electrolytics
Herbert R. Schoenbach, W9DJZ

17 cw signal processor
Donald E. Hildreth, W6NWR

23 stress analysis of antenna systems
Eugene B. Fuller, W2FZJ

33 RTTY monitor scope
Anthony Sperduti, WB2MPZ

36 resistor performance at high frequencies
McGhee A. Ellis, K1ORV

40 multiband inverted-vee antenna
Harold R. Austin, Jr., W2KTW

42 series-tuned pi networks
Frank N. Van Zant, W2EGH

49 power in reflected waves
Hubert Woods

55 swr bridge
Gregory P. Widin, WB2ZSH

58 experiments with phase-locked loops
Edward M. Noll, W3FOJ

4 a second look 64 ham notebook
126 advertisers index 78 new products
58 circuits and techniques 6 publisher's log
70 comments 126 reader service
115 flea market

october 1971
Semiconductor microwave power devices — diodes that use drift time to generate large amounts of rf power — are finding their way into more and more commercial microwave equipment. Although these devices were predicted theoretically nearly fifteen years ago, it wasn’t until 1963 that a practical solid-state power-generating device was actually built.

The Gunn diode or bulk-effect device is a simple chunk of n-type gallium arsenide that generates microwave power directly when a voltage is placed across it. When a constant voltage is applied to the semiconductor material the current through it fluctuates at an extremely rapid rate, although somewhat randomly. If the slice of semiconductor is less than about 0.005-inch thick the current no longer fluctuates randomly, but rises and falls in a cyclic way, generating microwave power.

The bulk-effect device is inherently broadband and frequency output is determined by the circuit in which it is used. Present maximum power output in the CW mode is 1 watt at 5000 MHz and pulse powers of 2000 watts at this frequency have been obtained in the lab.

Avalanche diodes are another source of microwave power. These diodes operate in two basic modes: Impatt and trapatt. Impatt (for IMPact Avalanche Transit Time) oscillators use the negative resistance that results from a combination of internal secondary emission and bunched current carriers that drift through the solid-state material and deliver rf power by causing external circuit current which is 180° out of phase with the applied voltage.

In the Trapatt mode (for TRApped Plasma Avalanche Triggered Transit) the diode operates in the Impatt mode at some high microwave frequency and the desired output is taken at a subharmonic of the Impatt frequency. Trapatt diodes can deliver 10 watts CW at 1000 MHz with about 60% efficiency. The much less efficient Impatt diodes operate at about 10% efficiency, but at much higher frequencies — up to 150 GHz.

Although the cost of off-the-shelf devices is still fairly high, some enterprising engineers have discovered that the simple rectifier diodes in your amateur gear may be uhf Trapatt oscillators in disguise. They found that ordinary Fairchild FD-300 rectifier diodes yielded 68-watt pulses at 630 MHz! Out of 100 FD-300s purchased for the experiment, 83 oscillated with greater than 35-watts average output. When three diodes were mounted in parallel they provided repeatable 395-watt pulses at 570 MHz; efficiency was a surprising 75%.

The Fairchild FD-333 rectifier, which has higher capacitance and greater breakdown voltage than the FD-300, has been made to generate a respectable 152-watt peak power at 630 MHz, so it’s doubtful that these are isolated cases. There must be many other common silicon rectifiers that perform as well or better as microwave generators. If you are already using commercial microwave diodes in your uhf equipment, or have found other low-cost rectifiers that yield useful amounts of uhf power, I would like to hear about it.

Jim Fisk, W1DTY
editor
SPECIFICATIONS
- Frequency Range: 10 kHz to 30.0 MHz
- Modes of Operation: USB, LSB, CW, RTTY, AM, ISB
- Frequency Readout: Complete to 100 Hz on six NIXIE tubes
- Frequency Selection: 10 MHz, 1 MHz, 0.1 MHz switch selected; 0 to 0.1 MHz continuously variable
- Frequency Stability: Drift does not exceed 150 Hz in any 15 minute period with a temperature change of 7° C per hour over a range of 0° to 40° C
- Sensitivity: Less than 0.5 microvolt for 10 dB SINAD at 2.4 kHz SSB mode; Less than 1.0 microvolt for 10 dB SINAD at 6 kHz AM mode
- Image Rejection: Greater than 70 dB relative to 1 microvolt
- Blocking: Greater than 100 dB relative to 1 microvolt
- Cross Modulation: Greater than 90 dB relative to 1 microvolt
- Intermodulation: Greater than 80 dB relative to 1 microvolt
- Opposite Sideband Suppression: Greater than 60 dB at 500 Hz into the opposite sideband
- I.F. Bandwidth: 6 kHz, 2.4 kHz, 1.2 kHz, 0.4 kHz; Selectivity: 0 kHz
- I.F. Outputs: 50 millivolts into 50 ohms at 1st I.F.; 50 kHz; 2nd I.F. 5.05 MHz
- Audio Output: 50 millivolts into 50 ohms at 1st I.F.; 50 kHz; 2nd I.F. 5.05 MHz
- Automatic Gain Control: Audio Output rises less than 3 dB for RF input change of 1 microvolt to 100 millivolts; Attack time 100 microseconds; Release time 750 milliseconds (Slow AGC), 25 milliseconds (Fast AGC)
- Antenna Input Impedance: 10 kHz to 500 kHz, 1000 ohms; 500 kHz to 30 MHz, 50 ohms
- Audio Output: 3 watts at 5% maximum distortion into 3.2 ohm load; 1 volt into 600 ohm output line; 3.2 ohm unbalanced and two 600 ohm balanced outputs; ISB output is one of the two 600 ohm balanced outputs
- Audio Hum and Noise: Greater than 60 dB below rated output
- BFO: Derived from standard clock or variable over a ± 3 kHz range from front panel
- Power Requirements: 115/230 volts ± 10% single phase 50-60 Hz; 12 or 24 VDC supply optional
- Dimensions: 5.25 in. H x 19 in. W x 15 in. D
- Weight: 17 lbs (7.7 kg)

Available November... see your Dealer

R. L. DRAKE COMPANY
540 RICHARD ST., MIAMISBURG, OHIO 45342
Who won the Signal/One-Alpha 70 package and the many other fine prizes in *ham radio*’s 1971 Sweepstakes? This question has been asked rather frequently of late since many readers failed to see the announcement of the top-prize winners in “A Second Look” in our August issue.

prize winners

Here are the complete results of the Sweepstakes:

grand prize winner
Signal/One CX-7
Alpha 70 Linear by ETO
Mr. John F. Longley, W2ANB

second prize winners

- two-Meter solid-state transceivers
 - W2CNB
 - W4YPC
 - WB8DUO

third prize winners

- W0EAD
- W5POA
- WN1MRY
- WN10NM
- K80SR
- W7HJR
- W7HJY
- K7ZVA
- WA5PMY
- WA0TRF
- W1PEX
- K9TTE
- WA7GUV
- WA0NEH
- W4ICL
- WN5YBM
- W9UCI
- W0EZE
- WN5ZGC
- WB4OEX
- K5FRI
- K9WTT
- WA4AUC
- WN4PF
- WB4LOY
- WA4YTK
- W2WKL
- W4BRE
- W4FES
- WA4FIG
- W4ZSK
- K40G
- WA0QJK
- WN1KOB
- K7HNV
- W2ESH
- K0GZW
- K0ARK
- WN8HP0
- WA8VSJ
- WA8SX0
- WA8PY
- WA8ZJL
- WN4Y0G
- W6DZK
- WN6OBJ
- K6BOY
- W6JN
- WN6L Jensen
- WA8ZJL
- WA6MGT

On behalf of all of us here at *ham radio*, we want to thank the many thousands of you who entered for your participation. Our only regret is that everyone could not be a winner — maybe you’ll be the lucky one next time. Let’s hope so.

We are quite proud of this issue of *ham radio*. A check of our advertising index will show more advertisers in this issue than have appeared in any issue of any amateur magazine during 1971 (and probably for a good while before that). Although this is the result of a lot of hard work by our staff, it is also very much a credit to you, our reader. Your support of our advertisers has made *ham radio* a good investment for them. Keep up the good work!

Skip Tenney, W1NLB
Publisher
HEAVY DUTY, PRECISION FIT, FOUR SECTION TELESCOPIC ANTENNA TUNABLE SEPARATELY FOR COMBINED SIX AND TWO METER OPERATION. EXTENDS TO 44". COLLAPSES TO 22".

Model HF-2: Antenna supplied with 4'-24 base to fit any standard antenna mount. $9.90

Model HF-62: Supplied with automotive eight ball base for fender or cowling mounting. Includes 60" RG-58-U and connectors. $11.95

TOPS IN ROOFTOPS
140-500 MHz—UHF/VHF Antenna
Low profile, roof top with factory attached cable—installs from outside without disturbing car header. 17-7 PH stainless radiating element—field trimmed for frequencies between 140 and 500 MHz. Complete with 15' RG-58-U coaxial cable. Model UHT-1 $7.75

TRUNK LIP MOUNT
140-500 MHz—UHF/VHF
Easy to install on side or rear of trunk lip. No holes to drill or coax to trim. 17-7 PH stainless steel radiating element. Chart included for 140-500 MHz coverage. Complete with 17' RG-58-U and PL-259. Model THF $12.95

NEW! 2 METER POWER GAIN
143-149 MHz
3.4 dB gain—% wavelength
Power rating: 200 watts FM

Get the experience of solid communications, extended range and full quieting with the Hustler BBL models. Optimized gain performance with lowest SWR and the superior mechanical construction will give you the extra advantage. Both models supplied operational, ready for easy installation.

Model BBL-144: Mounts on any flat surface in 3/4" hole—easy installation on roof, (without pulling cars' header), deck or fender—complete with adjustable taper ground stainless steel radiator, stainless steel spring. Overall height approximately 47", 17' RG-58-U coax with PL-259 connector. $27.70

Model BBLT-144: Same as BBL-144 with Hustler trunk lip mount for no holes to drill installation on side or rear of trunk lip. Heavy duty mount assures "stay-put" operation, positive RF ground for lowest SWR and completely hidden cable. $34.70

World leader in Antenna Mounts—send for Catalog today!

NEW-TRONICS CORP.
15800 COMMERCE PARK DRIVE
BROOK PARK, OHIO 44142

World Wide Export, Roburn Agencies, Inc., 349 W. 14th St., New York, N.Y. 10014, Cable Address: Roburnage-New York

More Details? CHECK-OFF Page 126
Although interest in two-meter fm has been increasing at an explosive rate, there have been few practical circuits published for high-performance vhf-fm transmitters. The solid state fm transmitter described in this article is designed for operation from 12-volt dc power supplies, provides 2-watts rf output and has excellent audio quality. Best of all, it may be duplicated easily and at low cost.

The advent of surplus Sonobouy transmitters,* and the ingenuity of some enterprising amateurs who discovered how easily they could be put on 2 meters, have resulted in a high quality 2-meter fm transmitter that is ideal for use in an fm base station, mobile unit or walkie-talkie. The 2-watt rf output has been more than adequate for working our repeater from 35 miles away using nothing but a ¼-wave ground-plane antenna.

The original Sonobouy transmitter consists of two 4 x 12-inch printed-circuit boards (shown in photo) and is quite large and cumbersome. We decided to see what could be done about civilizing this

*Surplus Sonobouy transmitters are $14.95 postpaid from Monks Electronics, 313 Old Farms Road, Simsbury, Connecticut 06070.
brute and reducing its size with a minimum of work and cost.

The audio section was the first to go; it simply had too many parts for the job it had to do. We decided to replace it with a simple two-stage circuit that had about the right amount of gain for 5-kHz deviation (see fig. 1). The new audio section uses an inexpensive field-effect input transistor (Q1) plus one of the transistors from the original Sonobouy audio board (Q2). With this circuit, deviation is controlled quite effectively by potentiometer R1. (Additional deviation may be obtained by increasing the value of C5 to 10 μF.)

The original Sonobouy rf board appeared to use a normal amount of components and worked very well. However, the oscillator wasn't very stable after lowering the frequency from 20 to 18 MHz, so we used a new oscillator circuit that was based on proven designs. The new oscillator circuit is very stable and requires no adjustments or peaking—simply install a crystal.

The new 3 x 6-inch printed-circuit board shown in the photographs accommodates both the rf section and the audio section. This layout is the result of considerable parts shifting and several earlier boards; however, signal quality actually exceeds the quality of the original. This transmitter, which we call the Sonobaby, has proven so popular that a parts list was developed that would allow amateurs not having access to a Sonobouy to build one from scratch.*

*An etched and drilled epoxy circuit board can be purchased for $7.50 from Sonobaby, Post Office Box 92, Pueblo, Colorado 81002. A complete parts list, plus changeover information from the original Sonobouy transmitter and tuneup procedure is included with each board.

A semiconductor package for the Sonobaby vhf fm transmitter is available at a special price from Circuit Specialists. The transmitter package, consisting of Q1, HEP802, Q2, HEP50, Q3 and Q4, HEP730, Q5, HEP719, Q6, HEP75, CR1, MV2101, and CR2, HEP104, is priced at $9.05. A semiconductor package for the power supply, consisting of Q1, HEP624, CR-CR4, HEP175, and CR5, HEP605, is $5.00 postpaid. Order from Circuit Specialists Company, Box 3047, Scottsdale, Arizona 85257.

A complete kit of parts for the Sonobaby, including circuit board and all components (less power supply) is priced at $47.50 complete, plus shipping, from HAL Devices, Post Office Box 365H, Urbana, Illinois 61801. This parts kit includes an rf detector and 1-mA meter for use in tuneup.
In the circuit in fig. 1 a field-effect transistor, Q1, is used as an audio preamplifier. Transistor Q2 further amplifies the audio signal and passes it on to the varactor diode, CR1. The capacitance of CR1 changes with the audio signal, varying the frequency of the crystal-controlled oscillator, Q3. The zener diode, CR2, regulates the voltage to the audio amplifier and provides constant bias to the varactor.

The tank circuit of the 18-MHz crystal-controlled oscillator stage is tuned to 73 MHz; transistor Q4 doubles this signal to 146 MHz. Transistor Q5 drives the power amplifier, Q6, to 2 watts output on 2 meters.
C19, C22, C24, C27, C28, C30, C32
390 pF Disc
(Sprague 5GA-T39)

0.05 µF Disc
(Centralab DD503)

15 pF npo Disc
(Sprague 10TCC-Q15)

52 pF Disc

MV 2101 varactor
(Motorola) or Eastron VC2101

9.1 V zener
(Motorola HEP104)

Crystal, order from International
Crystal Company for Westinghouse
Air Brake, Carry Phone II 20TS-1
Transmitter; specify operating fre-
cquency and commercial Standard

L1 15 μH choke
(J. W. Miller 9310-40)

L2, L12 10 μH choke
(J. W. Miller 9310-36)

L3 5 turns no. 16, 15/16” ID tapped
at 1 1/2 turns

L4, L5, L14 1.5 μH
(J. W. Miller 9310-16)

L6, L9 4.7 μH
(J. W. Miller 9310-28)

L7 3 turns no. 16, 15/16” ID

L8 7 turns no. 22, closewound on
3/16” plastic rod

L10 7 1/2 turns no. 22, closewound on
3/16” plastic rod

L11 5 turns no. 22 on 3/16” plastic
rod, 5/16” long

L13 4 turns no. 16

L16, L17 12 turns no. 22, closewound on
3/16” plastic rod

L18 5 turns no. 16, 5/16” ID

parts; this prevents excess heat from
damaging them. Tag each of the semi-
conductors so you know what they are,
and put them on a shelf out of the way as
they should be the last parts you install
on the new board.

For greater efficiency and power out-
put rewind the coils as noted in the parts
list. If you carefully examine the exis-
ting Sonobouy coils you will find that sev-
eral of the original coils have the correct
number of turns if they are moved to
another location.

The coils wound on plastic rod stock
are most easily made by first drilling two
holes in the plastic rod the correct dis-
tance apart. The coils are then wound,
passing the ends of the wire through the
holes.

After all the components have been
installed on the new printed-circuit board
inspect it thoroughly for bad solder joints
and short circuits before applying power.
Connect some sort of indicating dummy
load across the output (a wattmeter or a
number-47 bulb), put a 500-mA meter in
the 12-volt supply line and apply power.
If you made no mistakes the unit will
draw approximately 20 mA untuned; if it
goes up in smoke you didn’t inspect it
carefully enough after installing the parts
on the new circuit board.

tune up

When the transmitter has passed the
first smoke test you can proceed with the
tuning. First, tune C15 for maximum

construction

To build the Sonobaby from the origi-
nal Sonobouy, simply remove the com-
ponents from the original circuit boards
and install them on the new Sonobaby
circuit board. A few small parts must be
purchased; notably the field-effect tran-
sistor and the 9.1-volt zener diode. It’s
a good idea to unsolder the transistors and
the varactor before removing the other

Foil side of the printed-circuit board for
the Sonobaby vhf-fm transmitter.
current through the 500-mA meter. Then, with a wavemeter (or grid-dipper in the diode position) tuned to 73 MHz and coupled to L3, adjust C15 maximum indication.

To put the Sonobaby on the air, connect a crystal or ceramic microphone to the input and adjust R1 for the best

fig. 2. Power supply for the vhf-fm transmitter. Transformer T1 is a 12.6-volt filament transformer rated at 1 amp. Dpdt relay, K1, has 100-ohm coil.

The remainder of the alignment procedure is very straightforward: tune C20, C26, C31 and C33 in sequence for maximum rf output. Keep a check on the transistors during tuneup to make sure they don't get too hot. It is normal for them to be warm to the touch; if you can fry eggs on them, shut the power off then let them cool off before proceeding.

Capacitor C9 can be adjusted to put you precisely on frequency. If you have difficulty getting on frequency the value of C10 can be varied or the bias voltage set up by R9 and R19 can be changed.

For best operation the bias voltage should be from +4 to +6 volts.

For the final step, couple an indicating wavemeter to the output and retune all capacitors for maximum indication. Check the second harmonic (292 MHz) to make sure it is well suppressed; if it is not touch up the tuning capacitors.

In the interest of good amateur practice (and conserving electricity) the value of R18 can be increased to as much as 1000 ohms for reduced power output. WÁQUOZ, who happens to live close to the repeater, has operated a Sonobaby with the final transistor removed and the antenna connected to L16. The circuit only draws 50mA, and output power, too

sounding audio. To observe the audio signal connect an oscilloscope to the collector of Q2.

transistor substitution

The bias resistors and capacitors shown in the schematic are correct for transistors salvaged from a Sonobouy transmitter. However, any substitution of transistors will likely require bias adjustments on that particular circuit.

Bias adjustment is very easy with a resistor substitution box. The procedure is simple: start at the crystal oscillator stage and adjust the bias resistors until the oscillator is putting out the desired signal; then move one stage at a time toward the final, adjusting each for maximum output.

After each change in capacitor value check for spurious and harmonic outputs. In some cases you may notice that a capacitor can be completely removed from the circuit for increased power output. Use extreme care — all capacitors in the circuit have a job to do; removing one is asking for trouble.

For example, if the 52-pF capacitor from the base of the final transistor to ground is removed, a wattmeter will indicate a decided increase in power

12 October 1971
output. However, a careful analysis of the output signal will show that the power is all in spurious signals and harmonics. In this case I would recommend that this capacitor be changed to 30 or 40 pF and the output analyzed again.

power supply

The regulated power supply in fig. 2 has proven to be very satisfactory for operation of the Sonobaby and a solid-state whf-fm receiver. The parts are not at all critical — use whatever you have on hand. The transformer should be rated at about 1 ampere; the 13-volt zener diode can be taken from the audio board of the original Sonobouy transmitter. The transistor, Q1, should be rated at 5 or 10 watts. A dpdt relay with a coil resistance of about 100 ohms completes the system.

conclusion

The Sonobaby can be used as a miniature base station or it can be built into a walkie-talkie. There are many compact vhf-fm receivers on the market which are sold as police monitors; they can be coupled with the Sonobaby fm transmitter to provide a complete vhf-fm transmitter, and you can be on the air enjoying the benefits of 2-meter fm.

ham radio

"You say you're snowbound in a blizzard about twenty miles north of Notrees, Montana? Well, listen, I hate to interrupt, but..."
direct-reading capacitance meter for electrolytics

This simple adapter turns your vtvm or vom into a direct-reading capacitance meter for electrolytic capacitors up to 1000 μF.

Some years ago I converted some transistor testers to give me direct readout of beta on the resistance scale of a vtvm or vom. This was a real time saver at home and on the job and provided accurate readings over two decades without any switching. Since then I have been looking for a way to read voltages on the resistance scale. Imagine being able to read from 1 to 100 volts on the same scale with reasonable accuracy! Although I haven’t found a way to do that it became apparent that capacitance could be read this way.

The required capacitance scale is the same as the standard resistance scale. My other capacitance meters (I’ve had two) cover values between 10 and 1000 μF and could not be modified to do so. The adapter I built for measuring large values of capacitance is quite simple (see fig. 1).

Fig. 2 shows a version for volt-ohmmeters which works well and is for those of you who don’t own a vtvm.

construction

If you have a vtvm use the circuit of fig. 1. Volt-ohmmeters won’t be as accurate since they load the circuit more and are not quite linear on ac. A 5000-ohm-per-volt ac meter is all right; a 1000-ohm-per-volt meter is usable but not accurate. In any case, the most critical part is the capacitor you use for a standard (C_S in the diagrams). Use a good quality 5% or better tantalum capacitor, even if you have to buy it.

The value of C_S must be equal to, or a decade multiple of, the exact mid-scale ohms reading. This corresponds to half-scale reading on any dc scale. The value you select will determine what center scale reading represents in microfarads. There’s nothing wrong with making it a two-range unit if you wish. I used a 100 μF standard since my vtvm reads 10 at mid-scale; with this setup I can read capacitor values from 10 to 1000 μF very well.

The transformer can be a small filament type. Use as low a voltage (between 2 and 6 volts) as you can to match a 2-, 3-, or 5-volt ac range on your meter. The resistance of the calibration pot should be selected experimentally for your particular meter. You should easily be able to set full scale with it. The calibrate switch is used only on the vtvm version since the vom version will read full scale whenever the test (CX) terminals are open.

The remaining parts may or may not be necessary; let me explain their purpose and you can decide. C1 is a blocking capacitor. Most vtvm’s have one built in, in which case you don’t need it. Some would read correctly without it; one of mine does. C2 is an rf bypass; it is needed mostly on sensitive meters or if you are near a broadcast station or have your transmitter on.

The diode CR1 can be any small silicon diode or rectifier. It insures that dc voltage will build up across the test
capacitor. It is not absolutely necessary because the normal rectifier action of electrolytic capacitors will do this to some extent. Readings are almost identical with or without the diode, but including it might make you feel better. At low voltages most electrolytics start to act like non-polarized devices; if you intentionally reverse polarity you get nearly the same reading.

I won't tell you how to put these parts in a box. There are enough good tips on construction practices in other articles — just go to it.

operation

Here are some tips on using this gadget. Remember to set and connect your meter as an ac voltmeter on about a 3-volt range. Do not set to a resistance or ohmmeter position. But when you make your capacitance measurements read the capacitance value on the resistance (ohms) scale.

Check your full-scale calibration often if your line voltage fluctuates. If you use a 6-volt transformer tap do not test capacitors with less than a 10-volt rating. If you use a 3-volt tap you can safely test capacitors rated at 6 volts.

You will find that many electrolytics read almost double their marked value when new. This is normal as capacitor tolerances are commonly plus 90%, minus 10%. High-voltage units may not read correctly unless they have been formed by operating them at their normal voltage for some time prior to testing.

Check unknown capacitors for shorts and leakage before trying to determine their capacitance. You will find leakage as low as 10,000 ohms does not affect accuracy much. You will want to check various known-value capacitors to be sure your adapter is working properly and to build up confidence in it. Even I was skeptical at first.

reference

Standard's New
High Flying "826"

Standard Communications, the world’s largest manufacturer of VHF marine equipment, has developed a professional quality VHF/FM 2 meter transceiver especially for amateur use. The “826” is so compact that it makes mobile installations practical in almost any airplane, boat or car, and it becomes fully portable with Standard’s battery pack. When used in conjunction with the AC power accessory, it also makes an ideal, low cost base station unit. Enjoy the fun of amateur radio communication wherever you go for just $339.95.
high-performance cw processor for communications receivers

Frequency modulating the telegraphy signals in your receiver provides an interesting and profitable addition to conventional receiver design.

There's no doubt that a properly designed cw receiver—of the current basic design—leaves little to be desired in terms of plucking out weak signals, providing the feel of the band, and allowing the character of the other man's transmitter to come through. But what about those times when impulse noise is heavy and you would like to have compression without distortion? The technique described here is something a brass-pounder can add to his present receiver to become a discriminating man! The system operates on received signals to give them the same character they would have if they had been tone frequency modulated. Detection is set up to demodulate an fm signal. In this way the advantages of an fm system are obtained without the necessity of transmitting fm.

When impulse noise is present the results of fm are well known. And when tuning across the band looking for small signals—or just general tuning—it's a relief to be able to tune across a strong signal without having it take off the top of your head. Finally, it is nice to have a choice, and the unit shown here makes it possible to quickly choose between three modes of operation:

1. Conventional bfo
2. Fm with bfo
3. Fm with fixed tone

To simplify the description a unique detection system will be shown; then the idea will be integrated into a conventional communications receiver.

basic theory

Consider a conventional receiver (bfo turned off) tuned to a cw signal blasting out a series of di-di-di-dahs. The signal can be heard going on and off, but there is no audio beat note until the bfo is turned on. Now, instead of turning on a bfo, suppose that a different method is used to provide the audio tone.

A block diagram of this different approach is shown in fig. 1. In this system the received signal is frequency modulated just like an rf carrier would be in a transmitter. Fig. 2 expands the frequency modulator block to give you an idea of how fm is accomplished. This is the same basic technique used by Armstrong in the 1930s, and is often used to produce narrow band fm.

The incoming signal is split into two channels. One of the channels is fed through a double-sideband suppressed-
carrier device, phase shifted 90 degrees, and added to the other channel. The relative signal strength in each channel determines the degree of modulation.

The 90-degree phase shift could be placed in either channel — but not both. If no phase shift were present the system would simply supply amplitude modulation. In either case the detected tone is identical with what is fed into the modulating port of the double-sideband suppressed-carrier circuit.

the circuit

To a radio amateur the sound of a receiver like fig. 1 is almost as sterile as a code-practice oscillator, so let’s bear with a little more complication to get the feel back. The arrangement shown in fig. 3 provides the three modes of operation and may be easily added to an existing receiver.

When the modulator is excited by the receiver’s normal bfo, the feel is back! Then, for maximum quiet and/or very weak signals, the modulator can be switched to the input to the audio oscillator input. Fig. 4 shows a schematic of the complete system.

At this point you may note that a considerable amount of energy is left in the carrier with sideband information some 6 dB down. To reduce that problem a final system should multiply the frequency of the signal before running it through the discriminator.

frequency multiplier

Conventional frequency multipliers tend to block small-signal inputs. To avoid that problem sufficient gain is used ahead of the multiplier to get the noise background up to at least 10 millivolts at the input to the multiplier. A fullwave rectifier circuit with forward bias on the diodes reduces diode dead space to enable frequency multiplication to start with very small signals. (If you have worked with nbfm you are well aware that frequency multiplication will increase the modulation index, thus improving threshold signal detection.) Although more multiplication than is shown here would be beneficial for an optimum system you could obtain an improvement of only 2 or 3 dB at best.

discriminator

I chose a Travis discriminator circuit because it does not require a special transformer — a problem in this case because of the odd frequency. (A Travis discriminator could be thought of as a “push-pull staggered” slope detector.) With careful construction and adjustment of the balance potentiometer a-m rejection is reasonably good.

The easiest discriminator tuning procedure is as follows (refer to fig. 4): Energize the system with a strong, steady carrier at the center i-f frequency. Peak L1 while looking at the rectified dc voltage at diode CR1. Note the peak voltage; then tune L1 to raise the circuit frequency until the voltage is one-half of peak. Repeat the same procedure (opposite polarity) with L2 while looking at the voltage at diode CR2 but offset this.
resonant circuit to the low side of peak voltage.

Assuming an i-f selectivity such as that recommended under receiver requirements is used the discriminator will be primarily to hold shielding requirements to a reasonable level. It should be pointed out that the second harmonic of the i-f is in the broadcast band, so care should be taken to prevent pick-up from the local broadcast station. Normal point-to-point wiring is completely adequate for this circuit.

receiver requirements

While this system will function when used with a receiver without good i-f skirt selectivity the performance would be disappointing. To work well this system should be coupled to a receiver with a good crystal or mechanical filter. Present indications are that an i-f bandwidth of 200 to 400 Hz, with skirts only twice that wide 60-dB down, will give excellent performance.

fig. 2. Basic phase modulation system. The rf input signals to the summing circuit should be approximately equal when full audio modulation is present.

fig. 3. Signal processor is easily added to an existing receiver to provide new as well as conventional modes of cw reception.

circuitry shown in fig. 4 will easily drive an audio power stage if speaker operation is desired.

All of the circuits used in this system are rather conservative, with minimum use of LC elements. This was done primarily to hold shielding requirements to a reasonable level. It should be pointed out that the second harmonic of the i-f is in the broadcast band, so care should be taken to prevent pick-up from the local broadcast station. Normal point-to-point wiring is completely adequate for this circuit.

receiver requirements

While this system will function when used with a receiver without good i-f skirt selectivity the performance would be disappointing. To work well this system should be coupled to a receiver with a good crystal or mechanical filter. Present indications are that an i-f bandwidth of 200 to 400 Hz, with skirts only twice that wide 60-dB down, will give excellent performance.
It is important to note that the coupling point should be right after the crystal filter (which is usually right after the mixer). This prevents the bfo oscillator signal from getting into the input of the frequency modulator.

summary
Aside from the improved results obtained with this system in the presence of impulse noise, it is quite a treat to my tired old ears to be able to tune across the band, hearing weak signals and at the same time, not having my ear drums drilled out when that kilowatt down the street comes on.

Although the system shown in fig. 4 will not outperform a conventional bfo/product detector when low background
noise is present there is hope with future extensions of the basic idea.

The next step, of course, is to replace the discriminator with a phase-locked loop. Once this is done, a narrow-band audio filter may be used with more advantage than is gained when filters are placed after a conventional a-m or fm detector.

This frequency-modulated cw reception has proven interesting to me, but it is relatively complex, and the system with the phase-locked loop will be even more so. (I am aware that there are easier ways to phase modulate a signal but I want two separate channels—I have plans there too!)

This article has stopped with the basic idea. With enough interest there will be more to come. The phone operators have had interesting new modulation methods to play with; isn’t it about time the brass pounders had a new toy?
How to measure very high frequencies at very low cost:

Combine the new Heathkit IB-102 Scaler and IB-101 Counter and get 175 MHz capability for less than $300!

The Heathkit IB-101: 15 MHz for just 199.95!* An accurate, low cost counter for dozens of applications. Delivers instant, reliable counting from 1 Hz to over 15 MHz with 5-digit cold-cathode readout tubes. Computer-type integrated circuitry eliminates blinking readout...provides a rock-stable divider chain that never needs adjustment. Hz/kHz switch and overrange indicator give the IB-101’s 5-digit readout the same capability as an 8-digit counter. Set the range switch to kHz and read out to the nearest kHz ... push the switch to the Hz position and read down to the last Hz. Overrange and Hz/kHz indicators light up to give correct range and error-free measurement...make an 8-digit measurement to over 15 MHz in seconds. The exclusive Heath-design dual gate, diode-protected MOSFET input circuit provides proper triggering over a wide range of input levels...without adjustment or input attenuators. Input Z is 1 megohm shunted by less than 20 pF to minimize loading. A special low drift, temperature compensated 1 MHz crystal oscillator provides a highly stable time base. Other features include all solid-state circuitry using 26 ICs, 8 transistors and 6 diodes...combination carrying handle/tilt stand...BNC input with cable supplied...easy 6 hour assembly. Shipping weight: 7 lbs.

Extend the range of virtually any frequency counter to 175 MHz for only $99.95!* The new Heathkit IB-102, in combination with the IB-101 or virtually any other existing counter, gives you fast, accurate, reliable measurement capability into the VHF region for less than $100. The IB-102 will divide input frequencies from 2 MHz to 175 MHz with the scaled output fed to any compatible counter with a 1 megohm input. Front panel switch-selection of 10:1 or 100:1 scaling ratios...resolution down to 10 Hz with a counter having 1 second time base. For use with frequencies within the range of the counter being used, a 1:1 switch position provides straight-through counting without scaling. The exclusive Heath input circuit triggers at extremely low signal levels, increasing versatility greatly. At 100 MHz, for example, only 50 mV maximum is needed to trigger. The front panel Test switch gives a quick, easy method of checking input level. Other features include all solid-state IC/Transistor design...handy tilt stand/carrying handle and easy 5 hour design. Get into VHF measurement the easy, inexpensive Heath way...with the new IB-102. Shipping weight: 7 lbs.

HEATH COMPANY, Dept. 122-10 Benton Harbor, Michigan 49022

Enclosed is $ plus shipping.

Please send FREE Heathkit Catalog.

Name

Address

City State Zip

Mail order prices; F.O.B. factory. Prices & specifications subject to change without notice.

AM-255
the application of stress analysis to antenna systems

Understanding the mechanical design of antennas and supporting structures

Most amateurs at one time or another have wished to extend a mast a few feet higher or make a beam with longer elements. The question is, "How high or how long can one safely go?" The calculations involved in arriving at the answer to this question are relatively simple, and a good feeling for the problem may be had with little "stress or strain" on the part of the interested ham.

basic data

The problem simply involves comparison and matching of material strength with maximum anticipated load. Two equations are used to develop the comparison:

\[M_L = F \times D \quad \text{and} \quad M_R = f \times S \]

where \(M_L \) = bending moment developed by loading force (lb)
\(M_R \) = restraining moment developed by loaded structure (lb)
\(F \) = force of the load (lb)
\(D \) = distance from the effective point of application of \(F \) to the fulcrum (in.)
\(f \) = strength of the material being used (lb/in.²)
\(I \) = moment of inertia of the cross section about its neutral axis (in.⁴)
\(C \) = distance from the neutral axis to the extreme fiber (in.)
\(S \) = section modulus (in.³) = \(I/C \)

Some of these terms may not be too familiar and their calculation even less so. However, the table and chart makers of America have provided numerous graphic aids that do almost everything short of coming up with the final answer.
bending moment

Since the problem revolves about the "bending moment" concept, let's consider first what bending moment means and how it's computed. A bending moment is the product of a force and its distance to the point under consideration, where the force is the component perpendicular to a line drawn from the point of application to the point under consideration.

example 1: In fig. 1 the bending moment at point A is:

\[M_A = F \times D \]
\[= 50 \text{ lb} \times 10 \text{ ft.} \]
\[= 500 \text{ ft-lb.} \]

This might represent the bending moment caused by a small antenna, with a 50-lb wind load, mounted on a mast that extends 10 feet above its last support, or the tension in a wire antenna supported by the mast.

The question now arises, "Fine, but where did the wind-load value come from?" This again is relatively easy to calculate; or if you're lucky, the job may have been done already by the manufacturer of your antenna or tower. The calculation goes like this:

\[F_{WL} = A_e \times P_W \]
where \(F_{WL} \) = wind load force
\(A_e \) = effective area on which the wind is acting
\(P_W \) = wind pressure

Further explanation of \(A_e \) and \(P_W \) are as follows. The effective area is that of a flat plate which, if substituted for the object of interest, would accumulate the same total force. It is recommended that anyone working on this problem consult a handbook such as Reference 1 to obtain multiplication factors for different cross sections and wind-load values for different wind velocities. These values are summarized in table 1, and an example of their use follows.

<table>
<thead>
<tr>
<th>wind velocity (mph)</th>
<th>pressure on flat surface (lb/ft²)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>.42</td>
</tr>
<tr>
<td>20</td>
<td>1.7</td>
</tr>
<tr>
<td>30</td>
<td>3.8</td>
</tr>
<tr>
<td>40</td>
<td>6.7</td>
</tr>
<tr>
<td>50</td>
<td>10.5</td>
</tr>
<tr>
<td>60</td>
<td>15.1</td>
</tr>
<tr>
<td>70</td>
<td>20.6</td>
</tr>
<tr>
<td>80</td>
<td>26.8</td>
</tr>
<tr>
<td>90</td>
<td>34.0</td>
</tr>
<tr>
<td>100</td>
<td>42.0</td>
</tr>
</tbody>
</table>

table 1. Summary of parameters used in bending-moment analysis examples.

The question now arises, "Fine, but where did the wind-load value come from?" This again is relatively easy to calculate; or if you're lucky, the job may have been done already by the manufacturer of your antenna or tower. The calculation goes like this:

\[F_{WL} = A_e \times P_W \]

where \(F_{WL} \) = wind load force
\(A_e \) = effective area on which the wind is acting
\(P_W \) = wind pressure

Further explanation of \(A_e \) and \(P_W \) are as follows. The effective area is that of a flat plate which, if substituted for the object of interest, would accumulate the same total force. It is recommended that anyone working on this problem consult a handbook such as Reference 1 to obtain multiplication factors for different cross sections and wind-load values for different wind velocities. These values are summarized in table 1, and an example of their use follows.

fig. 2. Typical beam antenna used in the wind-loading example. Boom is 2 in. dia. x 26 ft; elements are 1 in. dia. x 36 ft.
example 2 Find the wind load on a 3-element 20-meter beam (see fig. 2).

\[A_{e2} = 2 \text{ in.} \times \frac{1 \text{ ft.}}{12 \text{ in.}} \times 26 \text{ ft} \times .6 = 2.6 \text{ ft}^2 \]

\[A_{e1} = 3 \times 1 \text{ in.} \times \frac{1 \text{ ft.}}{12 \text{ in.}} \times 36 \text{ ft} \times .6 = 5.4 \text{ ft}^2 \]

\[A_{e_{\text{max}}} = \sqrt{A_{e1}^2 + A_{e2}^2} = \sqrt{36} = 6 \text{ ft}^2 \]

Using 20 lb/ft2 wind load,

\[F_{WL} = 6 \text{ ft}^2 \times 20 \text{ lb/ft}^2 = 120 \text{ lb} \]

restraining moment

Now we'll examine the restraining moment, which is the force with which the support structure resists being bent by the loading forces. The equation for this moment, as given above, is:

\[M_R = \frac{fxL}{C} = fxS \]

The determination of the values to use in this equation has again been made easier by charts and tables available in many structural and mechanical handbooks. Some of the most common values are shown in tables 2 and 3 and fig. 3.

<table>
<thead>
<tr>
<th>Cross Section</th>
<th>lb/ft</th>
<th>I</th>
<th>S</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{4}$</td>
<td>0.031 wall</td>
<td>0.054</td>
<td>0.001</td>
<td>0.005</td>
</tr>
<tr>
<td>$\frac{1}{4}$</td>
<td>0.062</td>
<td>0.101</td>
<td>0.002</td>
<td>0.008</td>
</tr>
<tr>
<td>$\frac{1}{4}$</td>
<td>0.125</td>
<td>0.173</td>
<td>0.003</td>
<td>0.012</td>
</tr>
<tr>
<td>$\frac{1}{4}$</td>
<td>0.125</td>
<td>0.159</td>
<td>0.008</td>
<td>0.021</td>
</tr>
<tr>
<td>$\frac{1}{4}$</td>
<td>0.288</td>
<td>0.012</td>
<td>0.033</td>
<td>0.375</td>
</tr>
<tr>
<td>$\frac{1}{4}$</td>
<td>0.216</td>
<td>0.020</td>
<td>0.041</td>
<td>0.500</td>
</tr>
<tr>
<td>$\frac{1}{4}$</td>
<td>0.405</td>
<td>0.034</td>
<td>0.067</td>
<td>0.500</td>
</tr>
<tr>
<td>$\frac{1}{4}$</td>
<td>0.125</td>
<td>0.274</td>
<td>0.041</td>
<td>0.071</td>
</tr>
<tr>
<td>$\frac{1}{4}$</td>
<td>0.125</td>
<td>0.520</td>
<td>0.071</td>
<td>0.113</td>
</tr>
<tr>
<td>$\frac{1}{4}$</td>
<td>0.250</td>
<td>0.332</td>
<td>0.073</td>
<td>0.097</td>
</tr>
<tr>
<td>$\frac{1}{4}$</td>
<td>0.125</td>
<td>0.635</td>
<td>0.129</td>
<td>0.172</td>
</tr>
<tr>
<td>$\frac{1}{4}$</td>
<td>0.250</td>
<td>0.447</td>
<td>0.179</td>
<td>0.179</td>
</tr>
<tr>
<td>$\frac{1}{4}$</td>
<td>0.125</td>
<td>0.865</td>
<td>0.325</td>
<td>0.325</td>
</tr>
<tr>
<td>$\frac{1}{4}$</td>
<td>1.616</td>
<td>0.537</td>
<td>0.537</td>
<td>1.000</td>
</tr>
<tr>
<td>$\frac{1}{4}$</td>
<td>1.328</td>
<td>1.169</td>
<td>0.779</td>
<td>1.500</td>
</tr>
<tr>
<td>$\frac{1}{4}$</td>
<td>2.540</td>
<td>2.059</td>
<td>1.373</td>
<td>1.500</td>
</tr>
<tr>
<td>$\frac{1}{4}$</td>
<td>1.790</td>
<td>2.859</td>
<td>1.429</td>
<td>2.000</td>
</tr>
<tr>
<td>$\frac{1}{4}$</td>
<td>3.463</td>
<td>5.200</td>
<td>2.600</td>
<td>2.000</td>
</tr>
</tbody>
</table>

I = moment of inertia (in.4)
S = section modulus (in.3)
C = distance from the neutral axis to the extreme fiber (in.)

and assume a heavy-duty mast of 2-in. O. D. X. 1/4-in. wall steel tubing. From fig. 4,

\[
F_a = \text{antenna wind load} \\
F_m = \text{mast wind load} \\
D = \text{height of mast} \\
d = \text{mast diameter}
\]

The effect of mast wind loading is evenly distributed along the mast; therefore this force may be considered to act at a point half-way up the mast.

Maximum allowable bending moment:

\[
M = f \times S
\]

\[
f = 40,000 \, \text{lb/ft}^2 \quad \text{(from table 2)}
\]

\[
S = 0.537 \, \text{in.}^3 \quad \text{(from table 3)}
\]

Antenna wind load:

\[
F_a = 6 \, \text{ft}^2 \times 20 \, \frac{\text{lb}}{\text{ft}^2} = 120 \, \text{lb}
\]

Mast wind load:

\[
F_m = D \times d \times 0.6 \times 20 \, \frac{\text{lb}}{\text{ft}^2} = D \times 0.167 \times 0.6 \times 20 = 2D
\]

Total bending moment:

\[
M_{total} = F_a \times D + F_m \times \frac{D}{2}
\]

\[
= 120 \, \text{lb} \times D + 2D \times \frac{D}{2} = 120D + D^2 \, (\text{ft} \cdot \text{lb})
\]

Maximum allowable mast height:

Setting the maximum allowable bending moment equal to the total bending moment, we can now solve for the maximum allowable mast height.

\[
1,800 = 120D + D^2
\]

\[
D^2 + 120D - 1,800 = 0
\]
Using the general solution for a quadratic equation,

\[b \pm \sqrt{b^2 - 4ac} \]
\[2a \]

supported at the center and designed to withstand 70-mph wind loading. Since the element is supported at the middle, we need consider only a half element (fig. 5).

![Diagram of a beam element](image)

fig. 5. Parameters for a typical beam element designed to withstand 70-mph wind loads.

where

\[a = 1 \]
\[b = 120 \]
\[c = -1,800 \]

we have

\[D = \frac{-120 \pm \sqrt{120^2 - 4 \times 1 \times (-1,800)}}{2} \]
\[= \frac{-120 \pm 147}{2} = \frac{27}{2} \]
\[= 13.5 \text{ ft maximum} \]

A safety factor to suit the taste of the designer may now be applied to come up with the final height. If it is desired to allow for contingencies such as ice loading or inferior materials, the more conservative approach would be to use values in the initial calculations to account for them and not try to lump them all into a magic safety factor.

Use the safety factor to account for contingencies you have not thought of yet! If such an idea should appeal to you, be sure to consider also the allowable bending moment for your tower (should be available from manufacturer) and the added load on your rotator (15 ft of 2-in. diameter 1/4-in. wall steel tubing will weigh about 70 lb).

example 4 Next let's look at the design of a beam element, say a 20-meter element

Section 3: 1/2-in. diameter, 0.031-in. wall

\[M = S \times f \]
\[= 0.005 \text{ in.}^3 \times 35,000 \text{ lb/in.}^2 \]
\[= 175 \text{ in.-lb x } \frac{1}{12 \text{ in.}} \]
\[= 14.6 \text{ ft-lb allowable} \]

wind loading per linear foot

\[= 0.5 \text{ in.} \times \frac{\text{ft}}{12 \text{ in.}} \times 0.6 \times 20 \text{ lb/ft}^2 \]
\[= 0.5 \frac{\text{lb}}{\text{ft}} \]

weight per linear foot

\[= 0.054 \frac{\text{lb}}{\text{ft}} \]

total load per linear foot

\[= 0.554 \frac{\text{lb}}{\text{ft}} \]

If section 3 is 7 feet long:

\[F_3 = 7 \text{ ft} \times 0.554 \frac{\text{lb}}{\text{ft}} \]
\[= 3.87 \text{ lb} \]

\[M_{33} = D_{33} \times F_3 \]
\[= 3.5 \text{ ft} \times 3.87 \text{ lb} \]
\[= 13.5 \text{ ft-lb loaded} \]

This is a safe loading when compared to the calculated allowable load of 14.6 ft-lb.
Section 2: \(\frac{3}{8} \)-in. diameter, 0.062-in. wall

\[
M = S \times f
= 0.021 \text{ in.}^3 \times 35,000 \frac{\text{lb}}{\text{in.}^2}
= 735 \text{ in.-lb} \times \frac{\text{ft}}{12 \text{ in.}}
\]

Total moment at 2-3 = 61.2 ft-lb allowable

wind loading per linear foot
\[
= 0.75 \text{ in.} \times \frac{\text{ft}}{12 \text{ in.}} \times 0.6 \times 20 \frac{\text{lb}}{\text{ft}^2}
= 0.68 \frac{\text{lb}}{\text{ft}}
\]

weight per linear foot
\[
= 0.159 \frac{\text{lb}}{\text{ft}}
\]

total load per linear foot
\[
= 0.909 \frac{\text{lb}}{\text{ft}}
\]

If section 2 is 6 feet long:

\[
F_2 = 6 \text{ ft} \times 0.909 \frac{\text{lb}}{\text{ft}}
= 5.45 \text{ lb}
\]

\[
M_{22} = F_2 \times D_{22}
= 5.45 \text{ lb} \times 3.0 \text{ ft} = 16.4 \text{ ft-lb}
\]

\[
M_{23} = F_3 \times D_{23}
= 3.87 \text{ lb} \times (6 + 3.5) \text{ ft} \cdot 36.8 \text{ ft-lb}
\]

Total moment at 1-2 = 53.2 ft-lb

This is a safe loading when compared to the calculated allowable load of 61.2 ft-lb.

Section 1: 1-in. diameter, 0.062-in. wall

\[
M = S \times f
= 0.041 \text{ in.}^3 \times 35,000 \frac{\text{lb}}{\text{in.}^2}
= 1440 \text{ in.-lb} \times \frac{\text{ft}}{12 \text{ in.}}
= 120 \text{ ft-lb allowable}
\]

wind loading per linear foot
\[
= 1 \text{ in.} \times \frac{\text{ft}}{12 \text{ in.}} \times 0.6 \times 20 \frac{\text{lb}}{\text{ft}^2}
= 1.0 \frac{\text{lb}}{\text{ft}}
\]

total load per linear foot
\[
= 1.216 \frac{\text{lb}}{\text{ft}}
\]

If section 1 is 5 feet long:

\[
F_1 = 1.216 \frac{\text{lb}}{\text{ft}} \times 5 \text{ ft}
= 6.08 \text{ lb}
\]

\[
M_{11} = F_1 \times D_{11}
= 6.08 \text{ lb} \times 2.5 \text{ ft} = 15.2 \text{ ft-lb}
\]

\[
M_{12} = F_2 \times D_{12}
= 5.45 \text{ lb} \times (5 + 3.0) \text{ ft} = 43.6 \text{ ft-lb}
\]

\[
M_{13} = F_3 \times D_{13}
= 3.87 \text{ lb} \times (5 + 6 + 3.5) \text{ ft} = 56.0 \text{ ft-lb}
\]

Total moment at center of element = 114.8 ft-lb

This is a safe loading when compared to the calculated allowable load of 120 ft-lb.

From these calculations the general method may be seen for solving this type of problem. It should be noted that the size of tubing used for each section was arrived at by trial and error; i.e., picking a size, calculating the allowable moment and loaded moment for a reasonable length, until a good and reasonable combination was obtained.

If it’s desired to account for possible ice loading, simply increase the element diameter for the wind loading calculation and compute the weight of the ice and add it to the weight of the tubing (Weight of ice = 62.5 \(\frac{\text{lb}}{\text{ft}^3} \times 0.9 = 56.2 \frac{\text{lb}}{\text{ft}^3} \)).

If you wish to design a self-supporting vertical antenna, the same technique is also used. In this case, however, the weight causes compressive stress rather than bending moments and in most cases may be neglected.

example 5 As another example, therefore, let us look at the design of a 20-meter self-supporting vertical, 18 feet high, allowing for 70 mph wind and 1/4 in. of radial ice. Fig. 6 illustrates the parameters.
Section 3: 5/8-in. diameter, 0.125-in. wall, (plus ¼ in. of ice)

\[M = S \times f \]
\[= 0.012 \text{ in.}^3 \times 35,000 \frac{\text{lb}}{\text{in}^2} \]
\[= 420 \text{ in.-lb} \times \frac{\text{ft}}{12 \text{ in.}} \]
\[= 35 \text{ ft-lb allowable} \]

Given the procedure for finding the wind load with 1/4 inch of ice on section 3 of the example shown in fig. 6, I’ll leave as an exercise the calculation of moments for the other two elements. Assume the following: section 2: 3/4-in. diameter, 0.125-in. wall, 5 ft long section 1: 1-in. diameter, 0.125-in. wall, 5 feet long.

If your calculations are correct, you should obtain a value of 177.5 ft-lb at the base, which is a safe load compared to the calculated allowable of 195 ft-lb.

compressive stress

Assume 1-in. diameter elements with 1/4-in. ice load and 18 feet high:

\[C = \frac{W}{A} \]

where

- \(C \) = compressive stress
- \(W \) = total weight
- \(A \) = cross section area of restraining material

weight of tubing

\[= 0.405 \frac{\text{lb}}{\text{ft}} \times 18 \text{ ft} \]
\[= 7.3 \text{ lb} \]

weight of ice

\[= \pi (r_2^2 - r_1^2) \text{ in.}^2 \times \frac{\text{ft}^2}{144 \text{ in.}^2} \times 18 \text{ ft} \times 56.2 \frac{\text{lb}}{\text{ft}^3} \]
\[= \frac{3.14 (0.75^2 - 0.50^2)}{144} \times 18 \times 56.2 \]
\[= 6.9 \text{ lb} \]

total weight

\[= 7.3 \text{ lb} + 6.9 \text{ lb} \]
\[= 14.2 \text{ lb} \]

\[A = \pi (r_2^2 - r_1^2) \text{ in.}^2 \]
\[= \frac{3.14 (0.75^2 - 0.375^2)}{144} \]
\[= 0.344 \text{ in.}^2 \]

\[C = \frac{W}{A} \]
\[= \frac{14.2 \text{ lb}}{0.344 \text{ in.}^2} \]
\[= 41.3 \text{ lb/in.}^2 \]
This is negligible when compared to the strength of aluminum at 35,000 lb/in.\(^2\).

From this example we observe two important characteristics. First, the additional wind area caused by ice loading results in the requirement for heavier construction than the beam element of example 4 despite its being supported vertically instead of horizontally. Second, the compressive stress in the vertical element, even with ice loading, is quite negligible.

If you would like to design a husky beam element, you might try designing for 70 mph wind with simultaneous 1/4 in. of ice!

guying

Another problem for many hams is determining the proper size cables to use for guying an antenna support structure. A simplified approach will be taken to this problem, which should allow adequate safety.

To deal with this problem it’s necessary to understand the concept of resolving a force into components. The reader is urged to refer to almost any high school physics book to review this technique.

Let’s now consider the problem of guying a 65-foot tower that’s supporting the antenna in example 2. See fig. 7.

example 6 Force of wind on tower:
area of one face = 2 (1 in. x 12 in.) = 24 in.\(^2\)

\[\frac{1}{4}\text{ in.} \times (12\text{ in.} + 16\text{ in.}) = 7 \text{ in.}^2\]

Total = 31 in.\(^2\)

fig. 7. The guying problem for a 65-ft. tower supporting a typical 3-element beam. In A, tower elements are 1 in. dia. with ¼ in. bracing. B and C illustrate text description of wind load on top guys. D is geometry for calculating force on the top guy.

effective area of one face (cylindrical surfaces)

\[= .6 \times 31 \text{ in.}^2\]

\[= 18.6 \text{ in.}^2\]

effective wind area of open latticed triangular tower with wind applied perpendicular to a face = 18.6 in.\(^2\) x 2

\[= 37.2 \text{ in.}^2 \times \frac{144 \text{ ft}^2}{144 \text{ fn.}^2}\]

effective total wind area per linear foot of tower = \(\frac{.258 \text{ ft}^2}{\text{ft}}\)

Tower wind load per linear foot

\[= \frac{.258 \text{ ft}^2}{\text{ft}} \times 20 \frac{\text{lb}}{\text{ft}^2}\]

\[= 5.16 \frac{\text{lb}}{\text{ft}}\]

The top set of guys will have to take all of the wind force above that set of guys plus the antenna, and about half the force between the top and middle set of guys (fig. 7B).
wind load of antenna (from example 2) = 120 lb

wind load of tower = $5.16 \text{ lb/ft} \times 15 \text{ ft} = 78 \text{ lb}$

total wind force = 198 lb

Component of force in the top front guy (see fig. 7C):

$$F_1 = \frac{198 \text{ lb}}{\sin 30^\circ} = \frac{198 \text{ lb}}{0.50} = 396 \text{ lb}$$

Added to this would be about 100 lb of force from tightening up the guy, or a total of just about 500 lb of tension. Therefore, using 1/8 in. aircraft cable with a breaking strength of 2100 lb would offer a comfortable safety margin. The strain on the lower guys would be somewhat less: the calculation is left as an exercise for the reader.

When selecting guying cable, careful attention should be paid to the load rating. There are many different types of 1/8 in. cable — some flexible stainless steel, some flexible winching cables with fiber core, less-flexible 5- or 7-strand galvanized, and of course the single strand type — all with different load ratings. Also, a given cable will have many ratings depending on the service; i.e., breaking strength, yield strength, and working strength. And for that matter, the working strength will vary depending on the intended use; e.g., winch service rating would be lower than that for guying service. Suffice to say — check with your supplier and be sure of what you’re buying.

These are the basics. If you’ve been guessing up to now, you might try some calculations to see how safe you are. If you’ve been putting off a project because of fear of disaster, perhaps you can try it now (with a little less fear)!

reference

ham radio
THE GALAXY 550A
MORE POWER, MORE FLEXIBILITY FOR THE
Fixed Station...

GT-550A Transceiver
Order No. 855 Ham Net $495.00
The GT-550A is the best transceiver on the market for the money. Bar none. Costs just $495.00 and delivers 550 watts of power. Operating either fixed station or mobile, this transceiver is guaranteed to have a top frequency stability after warm-up. We're so proud of the stability we include a graph with each GT-550A showing the purchaser how stable his radio was when it went through final check. 550 watts SSB; 360 watts CW; sensitivity better than .5 uv for 10db S+N/N; stable -45db carrier suppression; 25 KHz calibrator and vox option; no frequency jump when you switch sidebands.

RF550A contains high accuracy watt meter; calibrated in 400 and 4,000 watt scales; switch for forward or selected power; switch to select 5 antennas or dummy load. Order No. 857 Ham Net $75.00

RV550A is a solid state VFO. Function switch selects the remote unit to control Receive-Transceive-Transmit frequency independently. Order No. 856 Ham Net $95.00

SC550A Speaker Console with headphone jack. Order No. 858 Ham Net $29.95

AC400 Power Supply is heavy duty solid state to operate GT-550A at full power, on SSB or CW, and with switch selection of 115/230 VAC, 50/60 Hz input voltages. Order No. 801 Ham Net $99.95

Hy-Gain's Super Thunderbird TH6DXX
- "Hy-Q" Traps • Up to 9.5db forward gain • 25db front-to-back ratio • SWR less than 1.5:1 on all bands • Takes maximum legal power • 24-foot boom. Order No. 389

Hy-Gain's 18 AVT/WD
- Wide band performance, 80 through 10 meters • Three Hy-Q traps • Top loading coil • True 1/4 wave resonance on all bands • SWR of 2:1 or less at band edges. Order No. 386

Hy-Gain's Thunderbird TH3Mk3 (not shown)
- "Hy-Q" traps • Up to 8db forward gain • 25 front-to-back ratio • Takes maximum legal power. Order No. 388

Hy-Gain's 400 Rotator/Indicator
- Handles large beams and stacked arrays with ease — up to 10 times the mechanical and braking capability of any rotator on the market. Order No. 400

Harrison Radio Corp.
8 Barclay St.
New York City. New York 10007

20 Smith St.
E. Farmingdale, LI New York 11735

More Details? CHECK-OFF Page 126
This solid-state RTTY monitor scope was designed specifically as a companion to the ST-6 terminal unit.

In the past amateurs who turned to RTTY usually used a vacuum-tube type terminal unit such as the TTL/2 or the circuit designed by W2PAT. Now the trend is toward the high performance solid-state ST-5 or ST-6 designed by W6FFC. When I decided to go solid state I decided to go all the way and include a monitor scope that was based on solid-state components.

Although the oscilloscope circuit shown in fig. 1 is designed primarily for use with the ST-5 or ST-6 it can be used with any RTTY terminal unit as long as the vertical and horizontal amplifiers are not over-driven.

The amplifier circuits are quite simple. In the vertical amplifier an emitter-follower input stage (Q1) provides high input impedance. The CRT driver stage (Q3) is rated at 250 volts. Vertical gain is controlled by the 5000-ohm pot (R9) in the emitter circuit of the driver stage.

The horizontal amplifier circuit is identical to the vertical lineup. Note in fig. 1 that even-numbered components are part of the horizontal amplifier chain; components in the vertical amplifier are designated by odd numbers. The gain of
fig. 1. Solid-state RTTY monitor scope is designed for the ST-6 RTTY terminal unit.

The amplifier system is more than adequate to fill the screen of a 3-inch CRT. The filters used in the Mainline ST-5 and ST-6 terminal units result in a very poor oscilloscope display since there is voltage on the mark toroid when a space signal is present, and vice versa. When the ST-6 is used on 850 shift the scope display looks like two bananas; on 170 shift the display looks like two fat footballs.

For example, when tuned to mark there is still vertical deflection voltage which opens up the horizontal trace. The higher the vertical voltage, of course, the more oval the display. This problem is inherent in simple single-tuned channel filters and not at all bad as far as the terminal unit is concerned. To clean up the monitor scope traces W6FFC recommended a high-Q tuned circuit at the input to the scope; this is shown in fig. 1.

fig. 2. Printed-circuit board layout for the RTTY monitor scope.
Toroid L1 is tuned to 2125 Hz; L2 is tuned to 2975 Hz with S1 open. Close S1 and pad the 0.022 µF capacitor to tune L2 to 2295 Hz. These simple circuits are tuned so that maximum deflection of the scope trace coincides with maximum deflection of the ST-6 tuning meter.

construction

The RTTY monitor oscilloscope circuitry is built on two 3 x 6-inch printed-circuit boards. Circuit-board layout is shown in fig. 2. If you look at the boards carefully you will see that I have drilled two holes through the amplifier board so the centering controls (R14 and R15) on the power-supply board can be easily adjusted.

If you want, these controls could be located on the front panel, although they seldom require attention after the circuit has been initially set up. I put the focus control (R21) and intensity control (R22) on the front panel of my unit.

The power transformer I used for the 12-volt supply is the same as that used in the ST-5 and ST-6. However, use a separate transformer for the monitor scope; don't try to make the terminal-unit transformer do double duty.

For potentiometers R15 and R16 I used Ohmite type RV6NAV that I obtained surplus. You can use the Mallory MTC254L1 instead, but be careful because the whole potentiometer frame will be hot to the tune of 500 volts.

summary

This monitor scope is a nice companion to the Mainline ST-6 RTTY terminal unit. At my station I included it in the same cabinet as the ST-6. Performance is excellent, and the scope traces are clean and easy to read.

references

WCI
P.O. Box 17, Schaumburg, Ill. 60172

faultless
RTTY
The world's first fully automatic Phase-Locked Loop RTTY terminal unit. Now includes DIGITAL SIGNAL PROCESSOR (signal regenerator and parity check)

• Copies shifts from 100 to 1000 Hz automatically
• Auto-track for drifting signals
• Enters "mark-hold" when signal fades
• Input tone range switchable to operate with SSB transceiver audio
• Autostart and selective call available

NEW OPTIONS:
Electronic Speed Converter - lets any 100 wpm machine print 60, 75 or other lower speed signals
Electronic Selective Call - solid state "stunt box" ASCII and crypto options also available

Write today for detailed specifications
Also see our tone burst encoders for reliable repeater access.

... IN THE DOG HOUSE?"
MOVE IN
WITH DESIGN INDUSTRIES
WIFE-APPROVED
COMMUNICATIONS DESK
AND CONSOLES

... would YOU believe ... SOME hams are permitted into the house ... perhaps even the living room when their station includes a Design Industries Communications Desk or Console?

DESIGN INDUSTRIES, INC.
P.O. Box 19406
Dept. H
Dallas, Texas 75219
(214-528-0150)

Sidewalk Sale and Swapfest
First Saturday of each month
2929 North Haskell, Dallas, Texas 75204

october 1971
resistor performance at high frequencies

A comparison of the high-frequency response of solid carbon-composition and metal-film resistors

Most amateurs are aware of what happens to a capacitor as the operating frequency is increased—it becomes series resonant at the frequency where its internal inductance resonates with its capacitance. However, many amateurs may not realize that carbon resistors, as well as metal-film types, show resistive and reactive changes as the frequency is varied from dc to vhf.

Since resistors are the most common components used in electronic equipment it is helpful to know as much as possible about this so-called passive element. You may find that those resistors are not nearly as “passive” as you may think—under the right circumstances they may even exhibit a rather capricious nature.

In this article I will discuss the high-frequency characteristics of resistors. I will not cover wirewound types because of their high inherent inductance, even “non-inductive” types.

Before looking at high-frequency resistor performance we should briefly re-

view the construction of both composition and metal-film types and the general characteristics of each. The composition resistor consists of a mixture of resistive material and a dielectric binder that is molded into a cylindrical shape. Metal-film resistors are composed of a resistive film deposited on, or inside, an insulating ceramic cylinder.

These two resistor types differ from each other in size, resistance range, cost, power dissipation and general characteristics. One type may be better than the other for particular purposes but neither type has all the best characteristics. Therefore, resistor choice depends upon the circuit requirements, the environment in which it must operate and many other factors.

composition resistors

Generally speaking, solid composition resistors have poorer stability since their resistance is a function of body temperature, circuit voltage, moisture content and previous history.

The high-frequency characteristics of composition resistors are good, but not quite as good as film types. Composition resistors generate a noise voltage when current flows through them; this is inherent in the construction of the resistor and is much greater than in any other type. Therefore, composition types are not recommended for circuits handling low-level signals.

The reliability of composition resistors is good since they seldom open up unless badly overloaded; however, they do change value by several percent with changing operating conditions. For example, they should not be used in voltage dividers where accuracy and voltage...
stability is required. Also, they shouldn’t be used where a long-term permanent resistance change of ±10 percent or more cannot be tolerated.

In addition, composition resistors should be derated 50 percent* to increase life and stability in moderate temperatures, and even more than this for operation in high ambient temperatures.

In addition, composition resistors should be derated 50 percent* to increase life and stability in moderate temperatures, and even more than this for operation in high ambient temperatures.

The metal-film resistor should also be protected to reduce the possibility of physical damage. The temperature coefficient of resistance is extremely low (that is, the resistance change with change in operating temperature).

metal-film resistors

Metal film type resistors generate considerably less noise voltage than composition types since the conducting paths are more homogeneous. Stability is high, environmental changes have little effect, and they have high reliability. Also, the combined effects of climate and operation will not change initial resistance by more than about 3 percent under normal operating extremes.

The maximum full-power operating temperature of metal-film resistors may be allowed to reach 70 to 100 degrees C. Skin effects are negligible since the entire resistance path is made up of a surface film. However, exposure to moisture may seriously affect resistance if the element is not well protected by its casing.

A resistor that can be assumed to exhibit only resistance at low frequencies develops inductance and shunt capacitance as frequency is increased. See fig. 1 for a simplified equivalent circuit of an ordinary resistor at high frequencies. In a well constructed composition or film resistor the inductance is due solely to the connecting leads.

Shunt capacitance is due to the capacitance between end caps (or the lead terminations) and the shunt capacitances formed by the conducting particles which are held in contact by the dielectric binder. The solid composition resistor naturally has a greater number of such contacts than the film type resistor.

high-frequency operation

resistance/reactance measurements

I have made a series of measurements on a set of good quality carbon composi-

*A ½-watt resistor should be used to dissipate ¼-watt maximum.
tion resistors and an equal number of quality metal-film types,* having values of 100, 1000, 10k and 100k ohms.

A Boonton RX Meter, model 250A, was used for the measurements. This is a wide frequency range impedance meter that is designed to give an accurate reading of the equivalent parallel resistance and parallel reactance of two-terminal networks or components. Two within the specified tolerances (±5% for the composition types and ±2% for the metal-film resistors).

Graphs of resistance and capacitance versus frequency for the four resistor values are shown in figs. 2 and 3. It can be seen that the resistance of the higher resistance units decreases at higher frequencies, with the metal-film types appearing to be slightly better performers.

![Graph of resistance and capacitance](image)

fig. 3. Shunt capacitance of carbon-composition resistors changes much more with increasing frequency than the shunt capacitance of metal-film types.

calibrated dials, labeled R and C, are used to balance a bridge.

The equivalent parallel resistance is then read from the R dial. The positive or negative resonating capacitance of the resistor (± pF) is indicated by the C dial.

high-frequency characteristics

All resistor leads were clipped to the same length (3/8 inch) before making any measurements. The first measurement was for dc resistance—all resistors were

![Realistic equivalent circuit](image)

fig. 4. Realistic equivalent circuit of a resistor at high frequencies actually looks like an RC network.

This drop-off in resistance with frequency was first discovered by Boella and is called the "Boella effect." Howe† suggested a transmission-line theory to describe this behavior, and this is generally considered correct.

At high frequencies the resistor looks like a network of resistances and capacitances according to Howe, so the resistance reduction with increasing frequency is due mainly to the shunting effect of distributed capacitance in the resistor (see fig. 4).

For the best high-frequency performance the controlling conditions are geometry (size and shape of the resistor) and minimum dielectric losses. It has

* The composition resistors were Allen-Bradley type CB, ¼ watt, 5% tolerance. The metal-film resistors were Corning Glass type C4, ¼ watt, 2% tolerance.

†The composition resistors were Allen-Bradley type CB, ¼ watt, 5% tolerance. The metal-film resistors were Corning Glass type C4, ¼ watt, 2% tolerance.
been proven that the smaller the diameter of the resistor (minimum cross-sectional area), the better will be its high-frequency response, all other things being equal.

The small-diameter resistor will have fewer contacts to contribute capacitance than a larger unit. Generally the terminals and lead terminations will also be smaller and therefore contribute less capacitance. The dielectric losses are kept low by a good choice of base material. If binders are used their total mass should be kept to a minimum.

total impedance

The total impedance of a resistor with shunt capacitance appears to be a more meaningful indicator of resistor performance at high frequencies than the basic ac resistance measurement.* A comparison of the curves in fig. 5 indicates that very little difference exists between the two types of resistors at high frequencies if the basis of comparison is total impedance alone.

*The total impedance of the resistor is

\[
Z = \frac{R_p X_p}{\sqrt{R_p^2 + X_p^2}}
\]

where \(R_p\) is the equivalent parallel resistance and \(X_p\) is the equivalent parallel reactance (see fig. 2). \(X_p\) may be calculated for each test frequency using the standard reactance formula, \(X = 1/2\pi f C\). The value of \(C\) is found in fig. 3.

physical size possible consistent with good design practice, e.g., if a 1/8-watt resistor will do the job safely, use it rather than a 1/4-watt or larger value.

The resistor leads and interconnecting wires should be as short as feasible and resistor placement should be chosen with care. Resistor capacitance to ground, for example, may greatly increase shunt capacitance and accentuate high-frequency roll-off.

references

1. G. W. O. Howe, *Wireless Engineer*, 12, 291 (1935); 12, 413 (1935); 17, 471 (1940).
modified inverted-V antenna

This modified inverted-V antenna provides complete multiband operation from 40 through 10 meters. Many amateurs I have worked have expressed interest in my rather unconventional multiband antenna. I call it a modified inverted-V because it began as an inverted-V for 40 meters. However, it has been modified considerably and now provides good performance on all bands from 40 through 10 meters.

For those amateurs who are already using an inverted-V antenna, this design may give them some ideas for covering other bands. For the amateur with limited space this antenna offers good efficiency with minimum size.

The multiband inverted-V antenna shown in fig. 1 offers many advantages, including small physical size, relatively low height, broadband response with low swr and requires no traps or tuning devices. In addition, it appears to be nearly omnidirectional.

The vswr curves plotted in fig. 2 were measured with a Knight P2 swr bridge. As you can see, the antenna is cut for phone.
portions of the amateur bands. Although my modified inverted-V has the dimensions given in fig. 1, at other locations it will probably be necessary to trim each of the sections to resonate at the desired frequency.

On 20 meters, where the antenna appears as a more conventional inverted-V it was noted that decreasing the angle between the elements raised the resonant frequency.

On 40 meters it was noted that the horizontal part of the elements must be 180° away from the higher-frequency elements. Also of importance is the fact that the vertical support provides more of a twist than a transposition.

With this antenna I have obtained optimum loading on all bands with my TR-4 transceiver. In the future I hope to devise a way of including a 75-meter antenna within the limited space I have available.
series-tuned
pi networks

An output
tuning network
that increases
the upper
frequency limit
of many
power-amplifier
circuits

One of the problems confronting the rf power amplifier designer in the upper hf and the lower vhf range from 20 to 150 MHz has been the achievement of tank-circuit constants that provide normal operating Q and decent power transfer. For years the bandswitched pi-network has been the accepted tank circuit for most amateur multiband rf power amplifiers. Unfortunately, this has precluded some otherwise excellent inexpensive rf power amplifier tubes from use above 15 meters because the tube plate output capacitance, added to the minimum capacitance of the input tuning capacitor and other stray circuit capacitance, has made it impossible to achieve a reasonable operating tank circuit Q.

When high-C, low-L tanks are tried with these tubes the results are generally unsatisfactory due to high circulating currents in the tank inductor which result in heating and loss of efficiency.

Attempts have been made to overcome this deficiency by eliminating the pi-network input tuning capacitor; to tune the tank the inductance is adjusted by a moveable slug or shorted turn. Usually this results in complicated or unwieldy mechanical assemblies that are limited to single-band amplifiers, and power losses are inherent in the slug or short-circuit turn. For example, one of the problems that detracted from the use of parallel 813s in bandswitched pi-network amplifiers was that of obtaining reasonable operating Q on 10, 15 and occasionally, 20 meters. Reasonable Q was particularly unattainable on 10 meters due to the high plate output capacitance of two 813s in parallel (28 pF). Therefore, use of two 813s on ten meters was virtually restricted to push-pull, plug-in coil, link-coupled amplifiers or to single-band configurations. The single 2E26, or two 6146s, on two meters is normally restricted to compromise LC tank circuits which use link output coupling. Since the

Frank N. Van Zant, W2EGH, 101 Somers Place North, Moorestown, New Jersey 08057

fig. 1. Basic pi network. Component values are discussed in text.
link has to be series tuned the transmitter ends up with as many tuning controls as a pi-network, but without its advantages.

tank circuit design

The operating Q of most plate tank circuits is chosen in the range of 10 to 20. In the pi-network the operating Q is a function of tube plate resistance and capacitance at the input to the network. Varying either of these parameters affects the component values of the pi-network.

A careful review of the reference material will reveal that to maintain a fixed value of operating Q as plate voltage and current (and therefore plate resistance) are changed, the values of C and L must be changed. For a given plate voltage/current ratio the Q will vary directly as the tank capacitance; ie, doubling tank capacitance doubles the Q.

For a given value of Q the input tuning capacitor in a pi-network can be larger with a low plate voltage/current ratio than with a high plate voltage/current ratio.

To achieve an operating Q of 12 in a pi-network with a plate voltage/current ratio of 5 (1500 volts at 300 mA or 2000 volts at 400 mA), the reactance of the input tuning capacitor is expressed by

\[X_C = \frac{R_p}{Q} \]

where \(R_p \) is the tube plate resistance and is equal approximately to \(E_p/21p \). For the case of the amplifier operating at 1500 volts and 300 mA with a Q of 12 the input tuning capacitor should exhibit 208 ohms capacitive reactance. This represents a 27.3-pF capacitor at 28 MHz. The other pi-network values may be determined from the formulas given in the ARRL Handbook.\(^3\) For this case the reactance of the output capacitor is 36.2 ohms (157 pF at 28 MHz). The required inductance is 1.31 \(\mu \)H at 28 MHz (230 ohms inductive reactance).

fig. 2. Series-tuned pi network that is electrically equivalent to the circuit in fig. 1.

The pi-network has the basic form shown in fig. 1 with the output load \(R_L \) in parallel with the loading capacitor \(X_{C2} \). The reactance values are those given above. This basic circuit arrangement can be converted into the series-tuned configuration in fig. 2 by finding the equivalent series impedance of the two output components:

\[Z_S = \frac{R_L X_{C2}}{R_L + X_{C2}} \]

For the circuit constants in fig. 1, the equivalent series impedance is 17.1 \(\cdot j23.7 \) ohms.

At the resonant frequency the network looks like a pure resistance at the
input terminals R_{in}. Although this matches the plate resistance of a typical pair of 813s it is impossible to use this circuit on 10 meters because the tube output capacitance and stray circuit capacitance are greater than the minimum value of C1. This is the limiting factor in tank circuit Q at the highest frequency of operation.

It becomes extremely important to arrive at a circuit configuration and operating voltage/current ratio that will allow acceptable Q on ten meters. Fig. 3 presents an estimate of total pi-network input circuit capacitance in two actual parallel 813 amplifiers. As can be deduced from the data, on 10 meters the tank circuit of the bandswitched amplifier will probably get hot enough to boil water.

series pi-network

Since capacitive reactance cancels a like amount of inductive reactance in a series combination of C and L, a method of varying L in a circuit is suggested. If the inductive reactance of L has a certain value, and a capacitive reactance of some smaller value is placed in series with it, the inductance of L will be effectively reduced. If the capacitive reactance is variable, then L can be varied just as effectively as if it were a roller inductor or tapped coil.

If the input tuning capacitor of the pi-network (C1) is insulated from ground and placed in series with the inductor the minimum capacitance limitation is virtually eliminated, reducing the total fixed capacitance to no more than 40 pF (see fig. 4).

If the reactances to the right of the dotted line in fig. 4B are added together (since they are in series) the total series impedance is $17.1 + j140$. Thus the circuit of fig. 4 may be simplified to the form shown in fig. 5. This parallel resonant circuit is exactly the same result you would obtain if you reduced the standard pi-network to its most simple equivalent form.

At resonance the input resistance to the parallel tuned circuit is

$$R_{in} = \frac{X^2}{R_S} = \frac{(140)^2}{17.1} = 1145 \text{ ohms}$$

Tank circuit Q, from eq. 1, is 17.85. An impedance match can be obtained by increasing the value of the tank coil fig. 4A) to 1.76 μH and decreasing the series tuning capacitor to 50 pF. The network is matched to the load by increasing C2 to
The equivalent series impedance of R_L and C_2 is $7.85\text{-}j18.2$ ohms. Total reactance to the right of the dotted line is still $+j140$. However, R_s is now 7.85 ohms, so the input resistance, from eq. 2 is

$$R_{in} = \frac{(140)^2}{7.85} = 2500 \text{ ohms}$$

The operating Q is 17.85; this value is perfectly acceptable.

In cases where there is enough tube output capacitance plus nominal stray capacitance to equate to the normal input tuning capacitor in a regular pi network the series-tuned configuration warrants prime consideration as an efficient tuning scheme. The series-tuned pi-network has the same number of components as a regular pi-network, and they all have reasonable, attainable values.

There is actually better harmonic attenuation with the series-pi than with the regular pi for a given situation due to the lower shunt reactance to ground on the output side of the network. The network will match a broad range of load resistances for a given Q and plate resistance.

If a Q of 20 is considered the top acceptable limit, the maximum fixed tube output plus nominal stray capacitance for a given plate resistance that can be accommodated with the series-pi network is given in table 1.

Table 1. Maximum tube output capacitance and stray capacitance (C_a) that can be accommodated by the series-pi network for a Q of 20.

<table>
<thead>
<tr>
<th>Rp (ohms)</th>
<th>Xca (ohms)</th>
<th>Rp Xca (ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>114</td>
<td>114</td>
</tr>
<tr>
<td>2000</td>
<td>57</td>
<td>57</td>
</tr>
<tr>
<td>2500</td>
<td>45.5</td>
<td>45.5</td>
</tr>
<tr>
<td>3000</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>3500</td>
<td>29.2</td>
<td>29.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rp (ohms)</th>
<th>Xca (ohms)</th>
<th>Rp Xca (ohms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500</td>
<td>5</td>
<td>144 MHz</td>
</tr>
<tr>
<td>3000</td>
<td>7.4</td>
<td>144 MHz</td>
</tr>
<tr>
<td>3500</td>
<td>6.3</td>
<td>144 MHz</td>
</tr>
</tbody>
</table>

Bandswitching

Most of the input capacitance in a normal tank circuit, other than tube output capacitance, is a result of long leads associated with bandswitch circuitry. The preceding network analysis was based on the absence of bandswitch circuitry at the input to the network thereby keeping stray capacitance to an absolute minimum.

You can build a bandswitching amplifier with the series-tuned pi-network if you place the switch on the output side of the network as shown in fig. 7. Since there are no particular restrictions on the input tuning capacitance on 40 and 80 meters, a standard pi-network is used on those bands. The lead from the tube plates through the coupling capacitor to the switch adds only a few pF to the stray capacitance and can be virtually ignored.

Additional inductors are switched into the circuit for 15 and 20 meters. The photograph shows the installation of the 10/15-meter inductor. A section of the 20-meter coil can be seen in the lower right-hand corner of the photo.

Alternate Series-Pi

For even greater reductions in stray capacitance the series tuning capacitor is placed between the inductor and the load as shown in fig. 8. With this arrangement the stray capacitance is on the output side of the network where it becomes a
very small fraction of the total shunt capacitance to ground. The results with the series-tuned tank were well worth the 30 minutes it took to move the coil and re-solder a few connections.

To verify the alternate approach, a two-meter 2E26 transmitter was altered to the series-tuned pi-network configuration in Fig. 8. The plate output capacitance of a single 2E26 is 7 pF, exactly the magnitude of tank capacitance required for a Q of 12 with a plate voltage of 300 and plate current of 75 mA.

The original two-meter tank circuit was a push-pull arrangement with a series-tuned link-coupled output. Fig. 9A shows the original circuit; the photograph shows the original circuit in operation with a vtvm indicating relative rf voltage across a 50-ohm dummy load.

The same circuit components were reconnected into the arrangement of Fig. 8. Fig. 9B illustrates the improvement in efficiency as demonstrated by the relative output rf voltage reading. Every attempt was made to keep all test conditions with the exception of the tank circuit the same for both measurements.

In addition to the improved efficiency of the series-tuned tank circuit there were other advantages. Tuning was much smoother than the original, and there were no rf feedback problems when the tank circuit was slightly off resonance.

design procedure
The following step-by-step procedure will help you design a series-tuned pi network for your own particular requirements. Steps 1 through 4 will indicate whether the series pi is a practical solution to your design problem.

1. Determine tube operating conditions to achieve the lowest possible tube plate resistance consistent with power input requirements

\[
R_p = \frac{E_p}{2I_p}
\]

2. Determine the following step-by-step procedure will help you design a series-tuned pi network for your own particular requirements. Steps 1 through 4 will indicate whether the series pi is a practical solution to your design problem.

1. Determine tube operating conditions to achieve the lowest possible tube plate resistance consistent with power input requirements

\[
R_p = \frac{E_p}{2I_p}
\]
2. Determine total fixed input capacitance to the network by adding tube output capacitance to approximately 15 pF stray capacitance

\[C_{\text{in}} = C_{\text{tube}} + C_{\text{stray}} \]

3. Convert \(C_{\text{in}} \) to its equivalent reactance

\[X_c = \frac{1}{2\pi f C_{\text{in}}} \]

4. Compute \(Q \)

\[Q = \frac{R_p}{X_c} \]

If \(Q \) is not less than 20, re-examine plate resistance \(R_p \) and attempt to find a new set of operating conditions to arrive at a lower value.

5. \(X_c \) is equal to \(X_{L}^{-} \), that part of \(X_L \) remaining after the reactance of both the series tuning capacitor \((X_{cb}) \) and equivalent series loading capacitor \((X_{cs}) \) are subtracted from the total inductive reactance

\[X_c = X_{L}^{-} \]

6. Compute the required series output load resistance \(R_s \)

\[R_s = \frac{(X_{L}^{-})^2}{R_p} \]

7. Knowing \(R_s \), the corresponding \(X_{cs} \) portion of the series equivalent load impedance can be selected from fig. 10. This graph is calculated for only a 50-ohm antenna at 28 MHz.

8. Select a reasonable value for the series tuning capacitor \(C_B \) and calcu-
fig. 10. Graph for converting pi network parallel impedance to equivalent series impedance. (Capacitor C2 in parallel with 50-ohm load at 28 MHz.)

late its reactance using the formula in step 3.

A value of around 100 ohms for X_{CB} is suggested since this results in about 57 pF at 28 MHz for C_B. This is a reasonable midrange value for a tuning capacitor that will cover 10 through 20 meters.

9. Determine X_L by adding the absolute values of $X_{L'}$, X_{CB} and X_{CS} (ignore the plus/minus j factors).

$$X_L = X_{L'} + X_{CB} + X_{CS}$$

10. Calculate the value of the tank inductor from the reactance value determined in step 9

$$L = \frac{X_L}{2\pi f}$$

11. Determine the value of the output loading capacitor which results in the equivalent series impedance found in step 7.

$$X_{C2} = \frac{R_S^2 + X_s^2}{X_S}$$

The capacitance value of C_2 is calculated with the reactance formula given in step 3.

This completes the design of the series-tuned pi-network. Double check all calculations.

summary

The results of using series-tuned pi-networks has been very gratifying. Tuning and loading with the series circuit is no different than with a standard pi-network. Dial settings for tuning capacitance, inductance and loading capacitance for a resistive 50-ohm load are right on the calculated optimum values.

The series-tuned pi-network should permit the use of inexpensive power tubes in bandswitched linear cathode-driven grounded-grid amplifiers. The problem of plotting a set of design curves for the series tuned pi-network (similar to the pi-network charts in the ARRL Amateur's Handbook) will be left to an industrious engineering student with access to a digital computer.

references

Discussions of reflected waves on radio-frequency transmission lines sometimes present the concept that energy in these waves is absorbed by the transmitter; this would adversely affect the operation of the output tuned circuit, or the output tube, or both, by generating heat therein. Of course, if this concept were correct, the result would be the transfer of less rf energy from the transmitter to the load at the far end of the line, usually an antenna. The loss of energy in such case would depend on the magnitude of the reflected wave in relation to that of the forward or incident wave (the SWR) and on the proportion of energy in the reflected wave that is absorbed by the transmitter.

As to the proportion of the energy in the reflected wave that is absorbed by the transmitter, opinion varies. Some say that this proportion may range as widely as that of the forward wave at the load end, all the way from zero to 100%, depending on the degree of match between the impedance of the output tuned circuit and the input impedance of the line.

If this match is good, the absorption would be large according to this concept, and nearly all of the energy of the reflected wave would be absorbed. This seems to be a strange situation because the adjustment of the transmitter output circuit is to make the match to the line as good as possible for best forward transfer, whereby most of the energy in the reflected wave would then be absorbed and wasted! (It should be remembered of course that adjustments at the transmitter have no effect on the SWR near the load; this is determined solely by the degree of match between the line and the load.)
absorption concept

It may be useful to examine this concept of energy absorption at the transmitter to see whether it stands up under such examination, and to see if there is an acceptable alternative to it. (Hereafter I will refer to this as the absorption concept.) To do this, it will be necessary to consider specific transmission lines and impedance-matching devices such as tuned circuits or their equivalents.

At first we will consider these as idealized circuit elements with no inherent losses, and later consider actual circuit elements with their small but unavoidable losses, to see what effect if any these losses may have on our conclusions. This will make it much easier to discuss the main issue: The possibly much larger losses that may result from high swr if the absorption concept is correct.

First, let us see whether the absorption concept leads to results that are found in practice. Consider fig. 1. There we have a transmitter with a power output of 1 kW with a tuned output circuit capable of being tuned to resonance and of providing a good impedance match between the plate resistance of the tube and the input impedance Z_i of the parallel-conductor open transmission line. This line, which is specified to have a characteristic impedance Z_0 of 400 ohms, feeds the end of a half-wave antenna so there are standing waves on the line because of a large mis-match between the line and the antenna feed point.

The swr could be very high, well above 10, but we will assume that it has the reasonable value of 9. Because of these standing waves the line input impedance Z_i, as seen by the transmitter, may depart considerably from the nominal value of 400 ohms, depending on the electrical length of the line; it may be larger or smaller and it may exhibit reactance as well as resistance. Whatever this line input impedance may be we will specify quite reasonably that the transmitter output circuit provides a good match for it. Thus, according to the absorption concept the transmitter absorbs nearly all the energy in the reflected wave. This, calculated as usual, turns out to be represented by a power of 640 watts!

Many amateurs, including myself, have successfully operated amateur transmitters using similar feed lines which were, in all essential respects, equivalent to the arrangement shown in fig. 1 without the slightest evidence that anything approaching 64% of the energy going into the transmission line was being returned to the transmitter, appearing as heat in the tuned circuit or tube or both. If even a fraction of that energy was coming back into the transmitter it would have been immediately evident to a knowledgeable amateur that something was very wrong.

Some amateurs have experienced overheating in amplifier tuned circuits or tubes; this can easily happen if the tuned circuits are not properly designed or built, and particularly if the coupling between the tuned circuit and the line is not sufficient to bring the loaded Q of the circuit down to the proper value, usually about 12. With insufficient coupling the circulating current in the tank circuit can rise to a high value and may damage the inductor or other parts. However, as such, this is not the fault of the high swr.

If the absorption concept were correct these parallel-conductor open lines with their high swr would give incessant trouble. In fact, these same open transmission lines are very efficient in spite of their high swr. Thus, the absorption concept is not confirmed by qualified experience.
power factor

Now consider fig. 2. This arrangement uses the same transmitter on the same frequency but with output circuits adjusted or modified to match a short 50-ohm coaxial cable which is connected to the input of an impedance-matching device. This device accurately matches the 50-ohm cable to whatever may be the input impedance \(Z_2 \) of the same open-wire transmission line as used before with the same swr of 9. (\(Z_2 \) may not equal \(Z_1 \) because the transmission line is not necessarily the same electrical length.)

The transmitter cannot now absorb any energy that may exist in the reflected wave in the open transmission line for there is no reflected wave in the 50-ohm cable connected to the transmitter since the 50-ohm line is perfectly matched at both ends.

Where does any such energy, if it exists, appear? It cannot disappear. Are we to believe that it must appear as heat in the impedance-matching device? That would be doing the designers and constructors of such devices a grave injustice because it is readily feasible to design and build such devices having a very much smaller loss than seems to be implied in our example.

The small residual loss in matching between lines can be reduced nearly to zero by using a suitable tuning stub or in some cases a quarter-wave linear transformer, in place of a network with lumped constants. We cannot reasonably believe that any considerable proportion of the calculated power in the reflected wave on the open-wire line is resulting in the dissipation of heat in our matching device. Then where is it?

The simple answer is that it never existed, and therefore, there is no problem of power loss or dissipation of heat to be solved. The only real power in the transmission line (barring the previously mentioned small inherent losses) is that which results in the dissipation of energy in the load. That is equal to the difference between the indicated values for forward and reflected power.

It is usually understood that the forward wave and the corresponding reflected wave are each made up of two associated waves, one of current and the other of voltage. The usual discussion proceeds to show how the forward voltage wave adds to and subtracts from the reflected voltage wave, taking phase as well as magnitude into account, to form a voltage standing wave.

Where does any such energy, if it exists, appear? It cannot disappear. Are we to believe that it must appear as heat in the impedance-matching device? That would be doing the designers and constructors of such devices a grave injustice because it is readily feasible to design and build such devices having a very much smaller loss than seems to be implied in our example.

The small residual loss in matching between lines can be reduced nearly to zero by using a suitable tuning stub or in some cases a quarter-wave linear transformer, in place of a network with lumped constants. We cannot reasonably believe that any considerable proportion of the calculated power in the reflected wave on the open-wire line is resulting in the dissipation of heat in our matching device. Then where is it?

The simple answer is that it never existed, and therefore, there is no problem of power loss or dissipation of heat to be solved. The only real power in the transmission line (barring the previously mentioned small inherent losses) is that which results in the dissipation of energy in the load. That is equal to the difference between the indicated values for forward and reflected power.

Similarly, it is shown how the forward and reflected current wave interact in the same fashion to form a current standing wave. What is not always made clear is that the two resultant standing waves (one of voltage and the other of current) have a phase difference of 90°. The importance of this fact becomes clear when it is recalled that in an ac circuit power is equal to voltage times current times the power factor:

\[P = EI \times \text{power factor} \]

Power factor is the cosine of the phase angle and the cosine of 90° is zero. Therefore, the power in standing waves along a transmission line is zero.

In the case of a lossless line (either shorted or open at the load end or ending in a pure reactance) reflection is complete. The two standing waves constitute the entirety of electric waves on the line. That is, the only current in the line is that in the standing wave of current and the only voltage on the line is that of the standing wave of voltage. As a result of the phase angle of 90° between the two powers in the line of zero.

The usual directional rf wattmeters do not take power factor into account; in the case of our lossless line with complete
reflection, the rf wattmeter will indicate equal forward and reflected "power," their difference being zero. An analogous situation exists if we connect an ideal (lossless) capacitor to an ac source. An ac voltmeter across the capacitor will indicate volts and an ac ammeter in series will indicate amperes, but there is no energy dissipation in the capacitor, and therefore, no power in the connections to it. The phase angle between the voltage and current waves in a capacitor is 90° so the power factor is zero.

Next consider a lossless transmission line terminated in a load that is purely resistive and equal to the characteristic impedance of the line. Under these conditions there is no reflection, no standing waves, and all the energy into the line appears as energy into the load. The power factor for the line in this case is 1.0. That is, the current and voltage waves coming from the transmitter to the load are in phase.

Another termination for our lossless line is one having a resistance differing from the characteristic impedance of the line or having some resistance and some reactance. such cases there will be some reflection but some energy will be dissipated in the load. The analysis of this situation is somewhat more complex but will be facilitated by considering that a part of the total line current is assignable to the standing wave of current and that a part of the voltage on the line is likewise assignable to the standing wave of voltage. These portions of the total line current and voltage are 90° out of phase as in the previously described cases and therefore do not represent power. The remaining current and voltage are in phase and represent real power which results in dissipation of energy in the load. Thus, the only power in the line is that which flows from the transmitter toward the load.

The line as a whole will have a power factor at the input end of just the value needed to satisfy the relation

\[
\text{power factor} = \cos \theta
\]

where the angle \(\theta \) is the phase angle between the total line current and total line voltage measured at that point. This same statement holds even if the line has some losses. The only power in the transmission line at its input end is that power which accounts for line losses as well as for energy dissipated in the load.

Conclusion

The concept of reflected "power" is a useful fiction to help us visualize the formation and nature of standing waves, but it can get us into trouble if taken too literally. If you insist on considering the reflected wave as real power then you must adopt another fiction, namely that when it gets back to the transmitter it is completely re-reflected toward the load. (The alternative is the absorption concept which I hope by now has been given a decent burial.) Complete re-reflection of power at the input end is impossible to accept since the necessary conditions of impedance mismatch are not present. This is perhaps an example of one untruth, or even two, never being enough!

Although open transmission lines were used in the previous discussion, exactly the same arguments apply to systems using coaxial lines and result in exactly the same conclusion: Power in a transmission line flows in one direction, from transmitter toward the load.

References

We'll give you a 15 day trial on either or both the 600R and 600T. If you are dissatisfied with them in any way, you can return them to the Swan factory and we'll refund your money immediately, with no questions asked.

This is an unusual offer, but the 600R and 600T are such unusual products that we feel you should have the opportunity to try them in your own shack at no risk, to convince yourself that the 600R and 600T are the finest amateur receiver and transmitter values you can own. You can order the units separately or as a pair, with or without accessories...any way you wish.

600R RECEIVER
SSB-CW-AM and FSK superheterodyne receiver. Covers 10 through 80 meters. $395

600R CUSTOM
With I.F. noise blanker, and IC audio filter factory installed. $495

600T TRANSMITTER
SSB-CW-AM self-contained transmitter with 600 watts P.E.P. input, 500 watts CW, 150 watts AM, and 100 watts continuous AFSK. Provides full coverage from 10 through 80 meters. $535

600S STANDARD SPEAKER
With tone switch and headphone jack. $18

600SP DELUXE SPEAKER
Includes Swan phone patch, tone switch, and headphone jack. $59

CW FILTER with 600 cycle bandwidth $22

AM FILTER with 6 kc bandwidth $29

Offer requires payment in advance for units desired. 15 day trial period begins upon your receipt of the units. If during the 15 day period you are dissatisfied with any of the units you ordered, return them to the factory, freight prepaid, and we will mail you a refund check for the full price of the units. Dealer participation in this program is optional. Offer expires December 31, 1971.

Send for your 1972 Swan Catalog.
now... read everybody in the group REGARDLESS OF SIGNAL.

New Ten-Tec Signalizer loudspeaker system

Equalizes all incoming signals to a comfortable volume. Cleans and sharpens voice. Makes all reception easier on any rig. Although most modern receivers have a measure of AGC, the Signalizer has a far greater range without the "pumping" effect. Jacks into any receiver/transceiver headphone outlet. The Ten-Tec Signalizer is the first communication speaker breakthrough in 40 years! Compact, efficient and reliable. Try it. And forget the strain of up-and-down receiving.

- Operates with all communication receivers/transceivers.
- Improves signal and noise quality for Amateur Radio, Emergency Services, Control Tower, Citizens' Band, etc.
- Constant output within 3dB with input variations up to 46dB.
- Fast attack (1-2 milliseconds) for minimum transient distortion.
- Can be driven by headphone output or 4, 8, or 16 ohm speaker line. A resistor is supplied to load the speaker line, if necessary.

Range and quality of Signalizer

GRAPH

ORDER FROM YOUR DISTRIBUTOR TODAY, OR DIRECT:

Please send the following. Check or money order enclosed.

- Model S-20 Signalizer $39.95
- Model S-30 Signalizer w/ CW filter $49.95
- Model FR-4 CW filter, variable selectivity. (see fig. 2) $17.95

Satisfaction guaranteed or money back. Tennessee residents add 3% sales tax.

Name

Address

City State Zip

54 October 1971
swr bridge

An in-line directional bridge for monitoring standing wave ratio

Although there are many swr indicator circuits and construction techniques, most are unnecessarily complicated. The one described here is simple and easy to make, requiring no special hardware. In addition it provides, on one meter, simultaneous indications of both forward and reflected voltage, leaving both hands free to adjust transmitter controls.

operation

The indicator (fig. 1) is somewhat more intricate than most, but its advantages outweigh its complications.* Its operation is based on the use of a zero-center dc microammeter. The diodes are connected to give opposing polarities, unlike most circuits, so that FWD gives an indication to one side of the meter; REF to the other. When the switch is in FWD or REF position, operation is the same as with other bridges. In the center position, the voltages are combined in a resistive divider, and the meter gives an indication of the relative predominance of either forward or reflected voltage. Be sure to connect the switch so that forward voltage will be read in the same direction as the switch when it is turned to FWD.

construction

The pickup line is the result of a search for an easy-to-make, effective, and small unit. It has been described before. It uses the inner conductor of a piece of RG 58/U or RG 11/U. The pickup line is constructed as shown in fig. 2. Tin the edges of the hole in the braid to prevent shorting to resistor R_T, then slip the inner part of the coax inside the braid. Solder the ends of the

fig. 1. Schematic of bridge and indicator. Resistor R_T is equal to the value in ohms of the load impedance (see text).

*This design is similar to the “Monimatch” directional coupler, which uses a capacitance-resistance bridge. The value of the terminating resistor, R_T, is critical and must be determined experimentally to obtain good bridge balance (null). The adjustment procedure and method of determining R_T in reference 1 should be followed before attempting to operate the instrument. Editor.
braid to pieces of stiff wire, which go to the connectors for the transmitter and transmission line. Next the diodes and resistor R_T are soldered to the ends and center, respectively, of the pickup inner conductor.

The pickup line and diodes were built in a shielded box, which connects in the transmission line between transmitter and antenna, or between transmitter and antenna tuner. The diodes I used were Hoffman type 1N261, but the general-purpose 1N34A will do. A shielded two-conductor line was run to the indicator unit, which was built in an un shielded bakelite minibox. This box did not seem to pick up any stray rf. The shielded line need not be rf-type cable, since it carries only dc. The entire unit could be built in one box to eliminate a separate box and cable.

An ordinary 0-50 dc microammeter was tried and worked in the combined circuit without the switch. This would eliminate both the switch and a zero-center meter.

The bridge seems to have adequate sensitivity. Construction is straightforward and uncomplicated. Best of all, using it is as simple as tuning for maximum on the meter.

references
Whether you select the portable 30L-1 or the fixed-station 30S-1, you’re assured of having the kind of signal Collins is famous for.

Both these great PA’s feature highest quality workmanship, appearance and performance. Proven circuitry design and quality construction techniques can mean years of trouble-free operation.

The 30L-1 provides 1000 watts PEP on SSB and 1000 watts average on CW. The 30S-1 provides full legal power input for SSB, CW, RTTY, slow-scan TV, and data.

Either unit can be driven by Collins 32S-3 transmitter, the KWM-2 transceiver, or most 70-100 watt exciters.

Whichever linear you choose, you’ll be making a sound investment – a “Collins sound” investment.
experiments with phase-locked loops

Do you like to experiment? To improvise? You can start now with these little magic boxes, phase-locked-loop integrated circuits. I covered the fundamentals in last month's column; now you can get involved with some practical circuits.

no tuned circuit

Can you conceive of a tunable receiver without a single resonant circuit. Take a look at fig. 1. All of the signals are fed into the magic box in one lump. The signal that is demodulated is the one with its carrier phase-locked to the voltage-controlled oscillator of the integrated circuit. You pick the station you wish to receive by changing the frequency of the oscillator. Even this oscillator does not have a resonant circuit because its frequency is determined by resistor-capacitor time constants.

The oscillator is stable if adequate carrier signal is applied to the phase-comparator, fig. 2. The output of the vco IC is supplied to a solid-state audio module with an output rating of 1 watt; loudspeaker is a 4-inch pm unit. More than adequate volume level is obtained when using a good antenna system.

At this point in my experiments the unit has been used on the a-m broadcast band, the 160-, 80- and 40-meter amateur bands and the 31- and 49-meter short-wave broadcast bands. Vco tuning capacitor values and quadrature capacitor values are given in fig. 1.

Two variables, a 140 pF and a 20 pF, are mounted on the breadboard. The smaller capacitor is used for bandspread tuning. Two binding posts are included for convenience in changing the fixed-value capacitor associated with vco tuning. For operation on the broadcast band and 160 meters a 365- or 400-pF variable is appropriate. When using the values shown complete broadcast band
A basic phase-lock am demodulation scheme is shown in fig. 2. Basic phase-lock am demodulation scheme.

fig. 2. Basic phase-lock am demodulation scheme.

In the PLL system, the phase-locked loop (PLL) device is suitable only for AM demodulation, not CW or sideband. However, it can be used as a practical FM detector. A simple circuit, as shown in figs. 1 and 3, is suitable for AM demodulation, not CW or sideband. The PLL device, which is used in the demodulation process, is a simple resonant transformer at the input. It improves selectivity and blocks out any overpowering local, as shown in fig. 3. The low-impedance primary link matches a low-impedance antenna system. The secondary is resonant and is connected to the ic input by a low-value capacitor, C7. This capacitor prevents the low-impedance ic input from loading down the resonant circuit, insuring greater selectivity. A double-tuned input transformer would offer even greater selectivity.

When using a short random-length antenna, a simple tuner such as the simple T-network in fig. 4 will deliver more signal. It is inserted between the receiver input and the antenna system.

More sensitivity. An amplifier ahead of the receiver (fet, bipolar or ic) will increase the sensitivity. However, the signal delivered to the PLL should not exceed 0.5 volts rms. Next month I will discuss my experiences with an amplifier.

Preset frequency operation. The PLL system lends itself to preset operation for particular stations on the broadcast band, WWV reception, net frequencies, etc. You need only use a switching arrangement and preadjusted trimmer capacitors as shown in fig. 5. You can then very quickly switch off the tunable position to one or more preset receive positions.

Idiosyncrosies. Everything is not ideal. Sufficient signal must be delivered to the input. Under weak signal conditions there is a swishing sound which results from the difference frequency between carrier and vco when there is an unstable lock.

There is also a hand-capacitance effect. This results from non-grounded capacitive tuning of the vco. Use a vernier dial and insulated shaft on the fine-tuning variable. The phase-locked loop ic also lends itself to frequency change by voltage change, especially for fine-tuning. This may eliminate hand-capacitance effects. Suitable circuits will be discussed next month.

At higher frequencies input resonant circuits and tuning influence the vco frequency. It appears that the ideal arrangement would have an untuned amplifier just ahead of the ic input. Perhaps a better plan would be to use an isolating no-gain stage at this position and precede it with a tunable gain amplifier.

The PLL device, in figs. 1 and 3, is suitable only for AM demodulation, not CW or sideband. However, it can be used as a practical FM detector. A simple circuit, as shown in figs. 1 and 3, is suitable only for AM demodulation, not CW or sideband. The PLL device, which is used in the demodulation process, is a simple resonant transformer at the input. It improves selectivity and blocks out any overpowering local, as shown in fig. 3. The low-impedance primary link matches a low-impedance antenna system. The secondary is resonant and is connected to the ic input by a low-value capacitor, C7. This capacitor prevents the low-impedance ic input from loading down the resonant circuit, insuring greater selectivity. A double-tuned input transformer would offer even greater selectivity.

When using a short random-length antenna, a simple tuner such as the simple T-network in fig. 4 will deliver more signal. It is inserted between the receiver input and the antenna system.

More sensitivity. An amplifier ahead of the receiver (fet, bipolar or ic) will increase the sensitivity. However, the signal delivered to the PLL should not exceed 0.5 volts rms. Next month I will discuss my experiences with an amplifier.

Preset frequency operation. The PLL system lends itself to preset operation for particular stations on the broadcast band, WWV reception, net frequencies, etc. You need only use a switching arrangement and preadjusted trimmer capacitors as shown in fig. 5. You can then very quickly switch off the tunable position to one or more preset receive positions.

Idiosyncrosies. Everything is not ideal. Sufficient signal must be delivered to the input. Under weak signal conditions there is a swishing sound which results from the difference frequency between carrier and vco when there is an unstable lock.

There is also a hand-capacitance effect. This results from non-grounded capacitive tuning of the vco. Use a vernier dial and insulated shaft on the fine-tuning variable. The phase-locked loop ic also lends itself to frequency change by voltage change, especially for fine-tuning. This may eliminate hand-capacitance effects. Suitable circuits will be discussed next month.

At higher frequencies input resonant circuits and tuning influence the vco frequency. It appears that the ideal arrangement would have an untuned amplifier just ahead of the ic input. Perhaps a better plan would be to use an isolating no-gain stage at this position and precede it with a tunable gain amplifier.

The PLL device, in figs. 1 and 3, is suitable only for AM demodulation, not CW or sideband. However, it can be used as a practical FM detector. A simple circuit, as shown in figs. 1 and 3, is suitable only for AM demodulation, not CW or sideband. The PLL device, which is used in the demodulation process, is a simple resonant transformer at the input. It improves selectivity and blocks out any overpowering local, as shown in fig. 3. The low-impedance primary link matches a low-impedance antenna system. The secondary is resonant and is connected to the ic input by a low-value capacitor, C7. This capacitor prevents the low-impedance ic input from loading down the resonant circuit, insuring greater selectivity. A double-tuned input transformer would offer even greater selectivity.

When using a short random-length antenna, a simple tuner such as the simple T-network in fig. 4 will deliver more signal. It is inserted between the receiver input and the antenna system.

More sensitivity. An amplifier ahead of the receiver (fet, bipolar or ic) will increase the sensitivity. However, the signal delivered to the PLL should not exceed 0.5 volts rms. Next month I will discuss my experiences with an amplifier.

Preset frequency operation. The PLL system lends itself to preset operation for particular stations on the broadcast band, WWV reception, net frequencies, etc. You need only use a switching arrangement and preadjusted trimmer capacitors as shown in fig. 5. You can then very quickly switch off the tunable position to one or more preset receive positions.

Idiosyncrosies. Everything is not ideal. Sufficient signal must be delivered to the input. Under weak signal conditions there is a swishing sound which results from the difference frequency between carrier and vco when there is an unstable lock.

There is also a hand-capacitance effect. This results from non-grounded capacitive tuning of the vco. Use a vernier dial and insulated shaft on the fine-tuning variable. The phase-locked loop ic also lends itself to frequency change by voltage change, especially for fine-tuning. This may eliminate hand-capacitance effects. Suitable circuits will be discussed next month.

At higher frequencies input resonant circuits and tuning influence the vco frequency. It appears that the ideal arrangement would have an untuned amplifier just ahead of the ic input. Perhaps a better plan would be to use an isolating no-gain stage at this position and precede it with a tunable gain amplifier.

The PLL device, in figs. 1 and 3, is suitable only for AM demodulation, not CW or sideband. However, it can be used as a practical FM detector. A simple circuit, as shown in figs. 1 and 3, is suitable only for AM demodulation, not CW or sideband. The PLL device, which is used in the demodulation process, is a simple resonant transformer at the input. It improves selectivity and blocks out any overpowering local, as shown in fig. 3. The low-impedance primary link matches a low-impedance antenna system. The secondary is resonant and is connected to the ic input by a low-value capacitor, C7. This capacitor prevents the low-impedance ic input from loading down the resonant circuit, insuring greater selectivity. A double-tuned input transformer would offer even greater selectivity.

When using a short random-length antenna, a simple tuner such as the simple T-network in fig. 4 will deliver more signal. It is inserted between the receiver input and the antenna system.

More sensitivity. An amplifier ahead of the receiver (fet, bipolar or ic) will increase the sensitivity. However, the signal delivered to the PLL should not exceed 0.5 volts rms. Next month I will discuss my experiences with an amplifier.

Preset frequency operation. The PLL system lends itself to preset operation for particular stations on the broadcast band, WWV reception, net frequencies, etc. You need only use a switching arrangement and preadjusted trimmer capacitors as shown in fig. 5. You can then very quickly switch off the tunable position to one or more preset receive positions.

Idiosyncrosies. Everything is not ideal. Sufficient signal must be delivered to the input. Under weak signal conditions there is a swishing sound which results from the difference frequency between carrier and vco when there is an unstable lock.

There is also a hand-capacitance effect. This results from non-grounded capacitive tuning of the vco. Use a vernier dial and insulated shaft on the fine-tuning variable. The phase-locked loop ic also lends itself to frequency change by voltage change, especially for fine-tuning. This may eliminate hand-capacitance effects. Suitable circuits will be discussed next month.

At higher frequencies input resonant circuits and tuning influence the vco frequency. It appears that the ideal arrangement would have an untuned amplifier just ahead of the ic input. Perhaps a better plan would be to use an isolating no-gain stage at this position and precede it with a tunable gain amplifier.

The PLL device, in figs. 1 and 3, is suitable only for AM demodulation, not CW or sideband. However, it can be used as a practical FM detector. A simple circuit, as shown in figs. 1 and 3, is suitable only for AM demodulation, not CW or sideband. The PLL device, which is used in the demodulation process, is a simple resonant transformer at the input. It improves selectivity and blocks out any overpowering local, as shown in fig. 3. The low-impedance primary link matches a low-impedance antenna system. The secondary is resonant and is connected to the ic input by a low-value capacitor, C7. This capacitor prevents the low-impedance ic input from loading down the resonant circuit, insuring greater selectivity. A double-tuned input transformer would offer even greater selectivity.

When using a short random-length antenna, a simple tuner such as the simple T-network in fig. 4 will deliver more signal. It is inserted between the receiver input and the antenna system.

More sensitivity. An amplifier ahead of the receiver (fet, bipolar or ic) will increase the sensitivity. However, the signal delivered to the PLL should not exceed 0.5 volts rms. Next month I will discuss my experiences with an amplifier.

Preset frequency operation. The PLL system lends itself to preset operation for particular stations on the broadcast band, WWV reception, net frequencies, etc. You need only use a switching arrangement and preadjusted trimmer capacitors as shown in fig. 5. You can then very quickly switch off the tunable position to one or more preset receive positions.

Idiosyncrosies. Everything is not ideal. Sufficient signal must be delivered to the input. Under weak signal conditions there is a swishing sound which results from the difference frequency between carrier and vco when there is an unstable lock.

There is also a hand-capacitance effect. This results from non-grounded capacitive tuning of the vco. Use a vernier dial and insulated shaft on the fine-tuning variable. The phase-locked loop ic also lends itself to frequency change by voltage change, especially for fine-tuning. This may eliminate hand-capacitance effects. Suitable circuits will be discussed next month.

At higher frequencies input resonant circuits and tuning influence the vco frequency. It appears that the ideal arrangement would have an untuned amplifier just ahead of the ic input. Perhaps a better plan would be to use an isolating no-gain stage at this position and precede it with a tunable gain amplifier.

The PLL device, in figs. 1 and 3, is suitable only for AM demodulation, not CW or sideband. However, it can be used as a practical FM detector. A simple
switching arrangement would permit selection of either a-m or fm, making it ideal for 6- and 2-meter operation.

theory of operation

Important considerations in setting up the external circuit for the PLL synchronous a-m detector are the selection of the vco tuning capacitance and choosing appropriate values for the two RC combinations that establish the proper 90° phase relationship between the incoming carrier and the vco.

A very simple formula permits you to select a suitable value for the vco tuning capacitor:

\[
\text{vco capacitor (pF)} = 300 / \text{frequency in MHz}
\]

Values should be calculated for minimum and maximum frequency you want to cover. For example, if the receiver is to tune between 1 and 2 MHz, the minimum and maximum capacitance values would be 150 pF (for 2 MHz) and 300 pF (for 1 MHz). A 125-pF fixed capacitor and 200-pF variable would provide band coverage plus a little bit of overlap at each end.

A net 90° phase shift is obtained by connecting two RC combinations in cascade. Each contributes a 45° shift. The phase shift of 45° is obtained at the frequency where the resistance and reactance are equal.

\[
\text{RC} = \frac{1}{2\pi f}
\]

In the actual calculation the frequency, \(f_0 \), is selected as the median frequency between the two desired frequency extremes. In our example this frequency would be 1.414 MHz or:

\[
f_0 = f_H f_L = X 1 - 1.414
\]

Where \(f_H \) and \(f_L \) are the high and low frequencies respectively.

If a resistor value of 2000 ohms is selected, the value of the associated capacitor must be:

\[
C = \frac{1}{2\pi f_0} = 56 \text{ pF}
\]

Vco locking takes place over a considerable angular range; specifications are 90° ±30°. Therefore, it stays in lock between the high- and low-frequency tuning limits provided these limits are not spread too far from the median frequency. This means that the phase-shift of each RC combination should not be greater than ±15°. At these extremes the phase angle values would be 60° (45 + 15) and 30° (45 - 15). From a natural function table it can be seen that the tangents of 30° and 60° are 0.577 and 1.732 respectively. In practical applications this means that the reactance of the capacitor at the highest frequency should not be less than 0.577R, and the reactance at the lowest frequency should not be higher than 1.732R.

In our example, then, reactance at 2 MHz should not be less than 1154 ohms.
At 1 MHz, the reactance should not exceed 3465 ohms (1.732 x 2000). Calculations for 1 and 2 MHz show that 56 pF exhibits 2843 ohms reactance at 1 MHz and 1422 ohms reactance at 2 MHz. These values are well within the angular locking requirements.

switching and linear amplification

A linear amplification system with efficiency as high as 90% has been developed by Brian Attwood of Mullard of England. This is indeed a startling figure when you consider the difficulty in obtaining 50% efficiency with conventional class-AB linear amplifiers.

The Attwood technique can be used with conventional amplitude-modulated rf signals but is especially adaptable to suppressed carrier and sideband modulation modes. Experimental work was done with solid-state devices but the idea is just as appropriate for vacuum-tube applications and perhaps even more so for hybrid combinations of semiconductors and vacuum tubes.

In the Attwood process the modulated signal is initially formed at low power levels in a conventional manner. The block diagram in fig. 6 shows the functional plan for a sideband transmitter. It includes the usual carrier generator and

![Diagram of Attwood high-efficiency switching modulator](image)

fig. 6. Basic arrangement for the Attwood high-efficiency switching modulator.

The phase-locked loop IC at the bottom center replaces the entire i-f/discriminator section outlined in black on the receiver chassis to the right. The unit at the left was built in the Signetics applications lab to demonstrate the reduction in size when a PLL is used in an fm tuner.
follow-up sideband modulator and mixer; the modulated signal at the transmit frequency is applied to a pulse-width modulator.

Two switching stages perform an additional modulation function. First there is a switching frequency generator which operates at a frequency a number of times higher than the transmit frequency. For good results this generator should be five times carrier frequency or higher although the system will function with the switching frequency only twice the carrier frequency. The switched modulation system produces an output that has the duration of its pulses varying with the modulating information.

A simplified drawing of a pulse-width modulation process is shown in fig. 7. As the modulated rf wave varies with modulation the pulse-width modulator generates a train of high-frequency pulses, with pulse width varying with modulation.

As an example, consider the single-tone modulation of a lower-sideband transmitter with a carrier frequency at 3.9 MHz. Under this condition a single rf wave with a frequency of 3.899 MHz (3.9 MHz minus 1000 Hz) is generated. As the 3.899 MHz rf wave goes through its cycle the pulse-width modulator produces a series of pulses. When the rf wave is on its positive crest the width of the output pulse is greater than the pulse that represents its negative trough. In fact, the width of the pulse varies in accordance with the instantaneous amplitude of the rf wave on each side of its zero axis. Of course, if there were voice modulation there would be complex pulse duration changes which would follow the amplitude gyrations of speech.

Note that pulse output has constant amplitude. All the desired information is in the form of pulse duration changes. The succeeding amplifier can then be made to operate at high efficiency because it can be designed to function as a high-powered pulse amplifier; pulse levels can swing between cut-off and saturation limits. The switched nature of the information conserves average power and results in greater power-handling capability and efficiency.

In an amateur transmitter it is conceivable that all stages prior to the final are solid-state; the final would be a high-powered vacuum-tube amplifier. This stage might use high-power television sweep tubes which are designed primarily for pulse and nonsinusoidal power amplification.

More power output could be obtained than is now possible using the same tube types as class-AB linears (common practice in many ham transmitters). The technique might lend itself to the design of mobile equipment with high output light-weight and minimum power demand.

After the pulses are amplified they are not transmitted; the signal is converted back to the form it had before it was introduced to the pulse-width modulator. This can be done with a suitable resonant system since resonant circuits have energy-storing ability and function as effective integrators. Thus, the pulse information is stretched out and converted to sinusoidal form.

The output circuit, of course, must be designed to remove and attenuate any switching frequency components which are on a higher frequency than the transmit frequency. It is conceivable that a suitable multisection pi-network output system would do a satisfactory job. Perhaps an m-derived addition may be necessary to thoroughly notch out the switching frequency.
Because of the requirement for the high switching frequency this modulation mode is currently most suitable for low-frequency operation. However, vhf possibilities exist when you consider that low-cost ics are now available with switching rates up to 500 MHz or so.

![fig. 8. Dual-fet balanced modulator.](image)

dual-fet balanced modulators

A dual field-effect transistor consists of two fets with identical characteristics mounted in the same case. Such units are designed mainly for use in differential amplifiers, but they are also ideal for balanced modulator and demodulator circuits. Devices are available which function up to several hundred megahertz.

An effective circuit that I have operated on 80 through 10 meters using plug-in coils is shown in **fig. 8**. In this circuit the paralleled gates of the Siliconix 2N5912 dual fet are supplied with carrier from a crystal oscillator. The drains are connected in push-pull to obtain carrier cancellation. Removal of the crystal from the oscillator permits use of a stable vfo. Output level is correct for driving a low-power vacuum-tube linear amplifier using a 6AK5, 6BA6, etc.

The modulating signal is applied to a push-pull source circuit. In my pegboard output winding permitted a balanced feed system. A capacitor across the secondary (C10) is used to control the high-frequency audio roll-off.

The average audio module may supply more audio than is necessary. If this is the case a loading resistor (R4) of 12-ohms or higher (depending upon how much the audio amplitude must be cut back) can be connected directly across the output of the module. The microphone gain control is connected between the mike terminals and the audio module input.

Carrier balance is handled by capacitors C5 and C6. The trimmer capacitor is adjusted for minimum carrier output; carrier suppression is excellent. No carrier reduction control was included in the source circuit although some additional suppression may be possible. However, if the dual fets are really identical it should not be necessary.

ham radio
32S-3 audio

The two audio amplifier stages in the Collins 32S-3 exciter run full-blast, inasmuch as the mic gain control follows them. With high microphone levels the second audio stage is overdriven and adds distortion; this can be verified by placing a voltmeter between V1B pin 6 and ground. This distortion may be reduced by allowing slightly higher mic gain settings, and adding desirable degenerative feedback in the audio stages to reduce the level at which the second audio stage operates.

Collins Service Bulletin No. 2 (dated 21 September 1967) says, “disconnect and discard the bus wire connected between tube socket XV1, pin 8, and switch S8C, pin 2. Replace the bus wire with a new 680-ohm resistor, Rl.” R1 is ½ watt. This change was incorporated in the fifth edition of the book.

Collins Service Bulletin No. 2 was revised on 13 October 1967, making a number of changes. After tests, I restored the 1-megohm resistor R101 in the first audio stage, V1A, rather than use the 100k resistor. Many of the changes already were incorporated in my equipment, which is covered by the third edition of the instruction book (dated 15 September 1964).

My attention was called to another change to increase degenerative feedback. The third edition of the instruction book shows a 20-µF capacitor, C183, between pins 10 and 11 of switch S9F and ground. This capacitor bypasses the second audio cathode resistor, R4. It did not appear in the fifth edition of the book; Collins recommended that it be disconnected. The capacitor is located conveniently behind the words freq control on the upper left of the front panel so the change can be made without removing the set.

If there still is excessive audio gain Collins has recommended a ½- or a 1-megohm resistor between pins 1 and 6 of the audio stages, V1. This is between the two plates. I tried it using a Vector test socket under the tube, and found that it is desirable, resulting in excellent audio quality after removing the capacitor mentioned above. The level in the second audio stage was reduced to a distortionless level and the mic gain was at a reasonable half-scale position. I had been using the Electro Voice 676 dynamic cardioid microphone, with 10-dB roll off.

Bill Conklin, K6KA

narrow-shift RTTY reception with Heath SB receivers

To receive 170-Hz narrow-shift RTTY signals with the Heathkit SB-100, SB-101, SB-300 or SB-301 using the optional 400-Hz filter, the bfo crystal must be 3393.19 kHz. In the SB-series receivers the lower-sideband crystal is 3393.6 kHz; the frequency may be lowered to
3393.19 kHz by placing a small capacitor from the grid of the oscillator tube to ground. This shunt capacitor must be chosen so that both the mark and space tones have equal amplitude; 20 pF worked satisfactorily in several sets tried here.

In the SB-300 and SB-301 receivers the 3393.6-kHz crystal must be placed in the upper-sideband crystal socket so it will be selected when the 400-Hz filter is switched in.

Robert Clark, K9HVW

dynamic transistor tester

If you already have an oscilloscope on your workbench here is a simple dynamic transistor tester which will measure both in- and out-of-circuit transistors. Total cost of the device is less than $5. In addition, this tester will check diodes, although it cannot be used with mosfets, junction fets or uhf varistors and diodes.

In the circuit in fig. 1 a small ac voltage is fed to the transistor junction. This alternately forward and reverse biases the junction. With the oscilloscope test leads open-circuited a horizontal trace is displayed; when the test leads are shorted a vertical trace is shown. A good transistor junction, either emitter-to-base or base-to-collector, when connected between the two test leads, will show a sharp-cornered trace as shown in fig. 2D. A rounded corner (fig. 2E) indicates leakage current. Junction resistance shows up as a sloping vertical trace (fig. 2F).

To calibrate the oscilloscope, switch the horizontal sweep to external, plug in the test leads, and with the leads open-circuited, adjust the horizontal control for approximately 2/3 scale deflection. Now short-circuit the test leads and adjust the vertical control for approximately 2/3 scale deflection. The equipment is now ready for testing.

Power transistors require more test current—this is provided by closing switch S1. Most in-circuit transistors will indicate some resistance such as shown in fig. 3B or 3C. This transistor tester will not check an in-circuit transistor when the impedance across the junction is extremely low.

Vern Epp, VE7ABK
radio-controlled morse sounder

The circuit shown in fig. 4 provides operation of a Morse telegraph sounder off the air. There are many amateurs who are also Morse operators and would like to hear the music of a telegraph sounder again. With this circuit the relay picks up with the reception of a signal.

The first half of the 6SN7 is connected as a diode rectifier. The incoming audio signal is rectified to bias off the second half of the 6SN7, which is a clamp tube. When the tube is clamped off, current flow stops, and the voltage at pin 5 of the VR105 increases, igniting the VR tube and causing the relay to close. If more audio gain is desired a one-stage amplifier could be inserted between the receiver and the first half of the 6SN7 although this should not usually be necessary.

For proper operation, current flow through the relay should be measured between the relay coil and ground. The value of R4 may have to be reduced to approximately 40k for snappier sounder operation. Capacitor C1 may be increased to 0.1 μF if desired. Total current drain from a 250 to 300-volt receiver power supply is about 50 mA.

Jack Proefrock, K6EQ

nylon guy rope

Most amateurs who have experimented with antennas realize the problems generated when steel guy wires are used in close proximity to the antenna they support. SWR and pattern distortions are just the beginning.

After a recent residence move I decided that the only location on the property suitable for a tower was the roof. This meant that guying would be essential. In an effort to bypass the usual interference problems I considered two possible remedies. One was the use of strain insulators to break up the guy wires into non-resonant lengths. I ruled this out for several reasons: time involved, added potential weak links and the increased cost.

The second consideration was the use of nylon rope. I finally decided on a rope with a working strength of 148 pounds (in excess of 750 pounds test). My 24-foot aluminum tower went up from its tilt-over base without a hitch. However, when it was time to begin tightening the nylon guy ropes, the first hint of trouble appeared. We couldn't tighten each leg enough; the nylon, especially the end knots, was stretching.

With hopes of rectifying the situation, we switched from knotted ends to split bolts. This helped, but not as much as I would have liked. Even so, I decided to give it a trial run. I kept the installation status quo for the entire winter and found that nylon was every bit as strong as first anticipated, and held in winds gusting over 90 mph. The nylon guys showed little, if any, signs of weathering; the split bolted ends were still secure.

After the tower was up a short time I discovered that strength was not the only criteria to consider. Although the tower guys held safely in high winds, stretching became more and more evident. The tower and array often swayed violently as
Send for new 71½ catalog!
All equipment over $45.00 is checked out on our test benches.

All new... just arrived!

KAAR DT-76 Mobile Radio

RF power output, 120 watts, 8-frequency capability. 148-174 MHz. Brand new, in factory-sealed cartons. Includes all accessories. Each $345.

In quantities of ten (10).......................... each $300.

(6 Frequency Deck....................... $39.)

150-170 MHz Mobile Units

General Electric Progress Line

14" case, complete accessories, fully narrow banded.

Ma/E33 - 6/12 volt, 30 watts,
vibrator power supply $138.

Same as above (RX wide band).............. $118.

Motorola 450-470 MHz

T44-A6 or A6A $28.

Available only with accessories.

Motorola T44AAV - 450-470 MHz 6/12 volt,
15 to 18 watt,
complete accessories $48.

With private line minus reeds $78.

R.C.A. CMC60 B 6/12 volt, 60 watts, 150-170 MHz receiver has vibrator, transmitter, dynamotor power supply, with accessories............................. $68.

CMCT 30-12 volt, 30 watt, 146-172 MHz transistorized power supply, fully narrow band with accessories .. $168.

CMCT 60, 12 volt, 60 watt, 148-174 MHz transistorized power supply, fully narrow band with accessories $208.

RCA ovens new, 12 v. & 6/12 volt. $3.

Mikes for Super Carphones. Made in Japan for RCA, reconditioned, $3.00; new, $4.00.

Decoders, Secode 2805 with call heads $18.

Gregory Electronics Corp.
The FM Used Equipment People
249 Route 46, Saddle Brook, N. J. 07662
Phone (201) 489-9000

Dept. H
if suspended by six huge rubber bands. This generated a lot of unpleasant noise and may have weakened the base mount. Needless to say, this sort of installation was unacceptable.

As is often the case, the eventual cure was a compromise. Nylon rope was used for the top set of guys, while steel was chosen for the lower supports. This arrangement reduces noise and provides acceptable strength with minimum guy-to-antenna interaction.

Morrie S. Goldman, WA9RAQ

drill guide

While building various projects I occasionally find it necessary to accurately drill a hole in the center of a ¼-inch volume-control shaft. I first obtain a short length of soft-iron stock, 1-inch square or smaller, depending on what is available; then I drill a hole through the iron with a small drill (7/64-inch or 6-32 tap drill). This can be done with a hand drill.

Using this small hole as a pilot hole, I drill halfway through the metal with a ⅛-inch drill. This completes the drilling jig. To use the jig, insert the ⅛-inch shaft into the larger hole and drill through the smaller. Centering accuracy is quite good with this technique and it does not require any elaborate tools.

This method is suitable for drilling other size shafts as well. Simply choose the correct size drills for each of the holes.

Felix W. Mullings, W5BVF

improving linear amplifier performance

In a recent article it was noted that unsatisfactory performance of transistorized equipment could often be traced to poorly regulated power supplies. This is also true of linear amplifiers. The point was very much stressed when ssb first became popular but is often overlooked by the new generation of amateurs. My experiences in performing a simple test for linearity and observing the increase in power output that resulted from improving power supply regulation may be instructive.

My linear, the Heath HA-10, had a single 8-μF capacitor in the power supply. Rf output is normally monitored with a Heath HO-10 Monitor Scope. When I keyed the exciter with a succession of dots at about 40 wpm it was obvious from the scope display that there was an enormous variation in output within a single dot, following an approximately sinusoidal pattern. It illustrated precisely the conditions described years ago in *GE Ham News*.

The correction was simply to add 20 μF of filtering capacitance (there is plenty of room in the spacious old HA-10 linear). The result was that both long and short keyed pulses were nearly flat on the monitor scope. Furthermore, there was a substantial increase in average power output. I suspect that improving the dynamic performance of a linear amplifier's power supply will be an economic way of increasing power for many amateurs.

references

Guy Black, W4PSJ

Copies of this article are available from the author for 10 cents and a self-addressed stamped legal-size envelope. editor.
THE GALAXY 550A
MORE POWER, MORE FLEXIBILITY FOR THE
Fixed Station...

GT-550A Transceiver
Order No. 855 Ham Net $495.00
The GT-550A is the best transceiver on the market for the money. Bar none. Costs just $495.00
and delivers 550 watts of power. Operating either fixed station or mobile, this transceiver is
guaranteed to have a top frequency stability after warm-up. We're so proud of the stability we
include a graph with each GT-550A showing the purchaser how stable his radio was when it
went through final check. 550 watts SSB; 360 watts CW; sensitivity better than .5 uv for 10db
S+N/N; stable—45db carrier suppression; 25 KHz calibrator and vox option; no frequency jump
when you switch sidebands.

RF550A contains high accuracy watt meter; calibrated in 400 and 4,000 watt scales; switch
for forward or selected power; switch to select 5 antennas or dummy load. Order No. 857
Ham Net $75.00

RV550A is a solid state VFO. Function switch selects the remote unit to control Receive-
Transceive-Transmit frequency independently. Order No. 856 Ham Net $95.00

SC550A Speaker Console with headphone jack. AC400 power supply will mount inside.
Order No. 858 Ham Net $29.95

AC400 Power Supply is heavy duty solid state to operate GT-550A at full power, on SSB or
CW, and with switch selection of 115/230 VAC, 50/60 Hz input voltages. Order No. 801 Ham
Net $99.95

Hy-Gain's Super Thunderbird TH6DXX
• “Hy-Q” Traps • Up to 9.5db forward gain • 25db front-to-
back ratio • SWR less than 1.5:1 on all bands • Takes maxi-
mum legal power • 24-foot boom. Order No. 389
Ham Net $179.95

Hy-Gain's 18 AVT/WB
• Wide band performance, 80 through 10 meters • Three Hy-Q
traps • Top loading coil • True 1/4 wave resonance on all
bands • SWR of 2:1 or less at band edges. Order No. 386
Ham Net $59.95

Hy-Gain's Thunderbird TH3Mk3 (not shown)
• “Hy-Q” traps • Up to 8db forward gain • 25 front-to-back ratio
• Takes maximum legal power. Order No. 388 Ham Net $144.95

Hy-Gain's 400 Rotator/Indicator
• Handles large beams and stacked arrays with ease—up to 10 times
the mechanical and braking capability of any rotator on the market.
Order No. 400 Ham Net $189.95

MADISON ELECTRONICS SUPPLY
1508 McKinney Avenue / Houston, Texas 77002 / 713–224-2668 or 224-2669

More Details? CHECK—OFF Page 126

october 1971 hp 69
collinear antenna

Dear HR:
I doubt that WB6KGF is getting 14-dB gain from the 4-element 144-MHz co-linear described in the May, 1971 issue. A single 5/8-wave section gives 3-dB gain over a ground plane; theoretically, two sections provide 6-dB gain, and four sections yield 9 dB — if current is equal in all sections. When fed at the bottom, top sections have less current. I would guess that 7-dB gain would be a more realistic figure.

William I. Orr, W6SAI
San Carlos, California

Robert A. Dahlquist, WB6KGF
Kingsburg, California

gain would be as low as 7 dB — don’t forget, mutual coupling between elements plus the low-loss characteristics of the copper-tubing elements would reduce any current imbalance caused by feeding the antenna at the end as opposed to the center.

The antenna system is highly resonant with circulating currents far exceeding the input rf current. Unfortunately, since the antenna described in the article is in Viet Nam, it is not available for further tests with input power held constant.

old-time radio

Dear HR:
K4NW’s excellent article, “Those Were the Days,” brought back memories of the good times I used to have with ham radio. I have had a transmitter of some sort on the air since May, 1913, starting out with a Ford spark coil powered by Columbia 6 dry cells, obtained from the telephone company when they installed new ones. I will never forget the thrill that came with my first contact — it was only seven miles away, but what a thrill!

My first receiving crystal was home-made. I used a teaspoon for mounting; the holder was a piece of pure lead about the size of a large pea. The crystal itself was made by melting flower of sulphur until it formed a crystal. Believe it or not,
it worked very well at the time.

In the early 1920s I built one-, three- and five-tube receiving sets, as well as a visual scope. For the scope I used an old Baldwin speaker unit, mounting it on the bottom of a tin can with lead weights. A toy balloon was stretched across the top of the can; a teaspoon of mercury was put in the center of the balloon. With a light bulb shining on the mercury, and a mirror arranged so the reflection from the mercury pool was projected onto a ground-glass screen, I could obtain good pictures of waveforms.

Charles M. A. Shade, W5NKA
Giddings, Texas

two-meter converter

Dear HR:

I want to thank you for the WB2EGZ article in the February issue of ham radio. I have done a lot of playing with solid-state converters over the past several years, and I had what I thought were good designs. They worked well, provided good gain, and had good noise figures, usually around 2.5 dB.

I have now built several converters using the WB2EGZ design and they all perform very well. The converters were easy to duplicate, which speaks well for the basic design. In fact, the WB2EGZ article has created more talk on two meters around this part of the country than anything since the launch of OSCAR V. I have not had a chance to measure the noise figure accurately, but the five converters I have checked exhibited noise figures from 2.5 to 3.0 dB.

Although I have never had much luck with printed circuits on two meters the WB2EGZ design works very well. I did have to add a shield between the input and output of each of the rf stages; this cured the self oscillation.

I also modified the oscillator circuit (fig. 1); a number of amateurs wanted to use their existing converter crystals to keep construction cost down. This circuit is simple to duplicate, is very stable, and has a lot of output as a frequency tripler. You will notice that there is no resistor in the emitter circuit of Q2—only a .001 capacitor. The emitter junction is used as a varactor, a trick used in some of the Parks converters. I have used this basic oscillator circuit for several years because it is simple and easy to build.

The transistor lineup in my converter has an RCA 40673 at the input, a 3N140 in the second stage and a 3N141 mixer. The transistors in the oscillator and tripler can be any good pnp devices. I have used a number of different transistors including the 2N3284, TI X 10, and M124; nearly anything seems to work.

John C. Fox, W6LER
Minneapolis, Minnesota

[Diagram of oscillator circuit]

<table>
<thead>
<tr>
<th>I-f</th>
<th>14 MHz</th>
<th>28 MHz</th>
<th>30 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y1</td>
<td>43.333 MHz</td>
<td>38.666 MHz</td>
<td>37.833 MHz</td>
</tr>
<tr>
<td>L1</td>
<td>11 turns no. 28 on 3/16" form</td>
<td>12 turns no. 28 on 3/16" form</td>
<td>12 turns no. 28 on 3/16" form</td>
</tr>
<tr>
<td>L2</td>
<td>6 turns no. 16, 1-turn spacing, airwound, 1/4" 1D</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
rf interference

Dear HR:

When selecting the transistor radio as an i-f for the converter used as a noise locator (*QST*, June, 1966), it will prevent birdies if a trf instead of a superheterodyne receiver is chosen. However, be sure that the trf set has an unused broadcast frequency available on it without interference.

The *QST* converter has no connection between the oscillator and the mixer in the high-frequency range. Tests with a signal generator resulted in adding a coupling capacitor for some bands in order to obtain adequate sensitivity. Also, the whip antenna was too small. A bamboo pole, wound loosely with wire, with a long lead to a plug, provided sensitivity comparable to the home receiver. In a few cases, a wire coil used as a loop antenna, even on the fm band, could be used for determining the direction of the noise.

Bill Nelson, WA6FOG, emphasizes the need to shift to a higher frequency as the noise is approached, thus limiting its area. On the 7- and 3.5-MHz bands, the noise may be heard for a mile or two, but this can happen even on 28 MHz if the noise source is high and in line of sight. As the receiving frequency is increased when the noise is louder, there may be a substantial reduction in noise range, permitting accurate noise location. Some noises, however, may be heard in a relatively narrow frequency range. Fluorescent lights are likely to have a high-frequency cutoff around 7.5 to 8 MHz. It is helpful to have a general-coverage noise locator because of the possible frequency limitations of the noise.

On the upper high-frequency bands there may be standing waves so it is necessary to walk beyond the point of minimum noise to determine whether there is another peak further along — possibly a stronger one! Reduction of the rf gain may help particularly where the agc cannot be disabled. Beware of increased noise levels near power poles having a ground wire; this just adds antenna length to the noise-locator receiver.

It is well to have a sledge-hammer, or at least a large rock, with which to "thump" a power pole in the noisy area. Usually, the pole "thumped" will cause the noise to break up (and sometimes to come on, or go off), but movement sometimes travels down the wires to an adjacent troublesome pole. Thick poles don't respond to this treatment, but frequently it is possible to make a guy wire swing sufficiently to produce the necessary movement of a pole to affect the radio interference.

New electric lines appear to be worse than old ones. Here, this has resulted from installation where the nuts were left loose all over a pole! Sometimes, a noisy pole again becomes noisy a half-year later. One capacitor bank on a pole near my home has created noise three different times.

One swimming-pool pump motor put out noise for a hundred feet. It was reported to the owner. Within about two weeks, it failed completely and was replaced.

The Navy purchased shield boxes for fluorescent lights; in addition to line filters and metal shields, the light passed through a conducting-glass cover. They were very effective, even in a radio receiving location underground.

Bill Conklin, K6KA
La Canada, California

vhf fm receiver

Dear HR:

In the September issue there was a 2-meter fm receiver project that really took my fancy. I built it, and it worked so well I wanted to tell you how pleased I am with the finished receiver.

Since I used printed-circuit boards I only had to worry about collecting the necessary parts, and alignment. Collecting parts was the hardest part of the whole project — I enlisted the help of everyone I know. Most of the parts were not too difficult, but the Sprague integrated circuit and i-f cans were tough. I also had
THE GALAXY 550A
MORE POWER, MORE FLEXIBILITY FOR THE Fixed Station...

GT-550A Transceiver
Order No. 855 Ham Net $495.00
The GT-550A is the best transceiver on the market for the money. Bar none. Costs just $495.00 and delivers 550 watts of power. Operating either fixed station or mobile, this transceiver is guaranteed to have a top frequency stability after warm-up. We’re so proud of the stability we include a graph with each GT-550A showing the purchaser how stable his radio was when it went through final check. 550 watts SSB; 360 watts CW; sensitivity better than .5 uv for 10db S+N/N; stable—45db carrier suppression; 25 KHz calibrator and vox option; no frequency jump when you switch sidebands.

RF550A contains high accuracy watt meter; calibrated in 400 and 4.000 watt scales; switch for forward or selected power; switch to select 5 antennas or dummy load. Order No. 857 Ham Net $75.00

RV550A is a solid state VFO. Function switch selects the remote unit to control Receive-Transceive-Transmit frequency independently. Order No. 856 Ham Net $95.00

SC550A Speaker Console with headphone jack. AC400 power supply will mount inside. Order No. 858 Ham Net $29.95

AC400 Power Supply is heavy duty solid state to operate GT-550A at full power, on SSB or CW, and with switch selection of 115/230 VAC, 50/60 Hz input voltages. Order No. 801 Ham Net $99.95

Hy-Gain’s Super Thunderbird TH6DXX
• "Hy-Q” Traps • Up to 9.5db forward gain • 25db front-to-back ratio • SWR less than 1.5:1 on all bands • Takes maximum legal power • 24-foot boom. Order No. 389 Ham Net $179.95

Hy-Gain’s 18 AVT/WB
• Wide band performance, 80 through 10 meters • Three Hy-Q traps • Top loading coil • True 1/4 wave resonance on all bands • SWR of 2:1 or less at band edges. Order No. 386 Ham Net $59.95

Hy-Gain’s Thunderbird TH3Mk3 (not shown)
• "Hy-Q” traps • Up to 8db forward gain • 25 front-to-back ratio • Takes maximum legal power. Order No. 388 Ham Net $144.95

Hy-Gain’s 400 Rotator/Indicator
• Handles large beams and stacked arrays with ease—up to 10 times the mechanical and braking capability of any rotator on the market. Order No. 400 Ham Net $189.95

HENRY RADIO, INC.
Box 64398
11240 W. Olympic Blvd.
Los Angeles, California 90064
213-477-6701 or 272-0861

931 N. Euclid Avenue
Anaheim, California 92801
714-772-9200

211 North Main
Butler, Missouri 64730
816-679-3127

More Details? CHECK-OFF Page 126
some difficulty finding shields for the handwound coils. I finally spent a dollar and ordered six inexpensive i-f cans from a dealer on the East coast; after discarding the goodies inside, the cans worked fine for coil shields.

The i-f transformers specified in the original article were too expensive for me. The author now advises the use of Calectro D1823 i-f transformers. These work fine and cost less than one dollar each. The Sprague integrated circuit was the most elusive rascal I have ever hunted, but I finally found one.

The sensitivity of the receiver really surprised me – 0.3 µV for full quieting. If you decide to build this receiver I hope you have as much fun as I did. It is a very worthwhile project, and one that will be in constant use.

Larry Pepple, WA9RRZ
Fort Wayne, Indiana

audio filters

Dear HR:

That simple audio filter described by W4NVK in the October issue of ham radio really works. I put one together out of the junk box, about 0.3 µF across the 88-mH toroid, and it entirely cuts out the QRN. Tuning was very sharp – I estimate about 100 Hz wide; so sharp, in fact, that I had to tune with the receiver pitch control. There is about 10 dB reduction in volume, which is not too bad.

I put it together with no solder, just jumpers, and it about floored me when I kicked it into the circuit. I worked a novice on 80 meters with no problem – when I turned the filter off he disappeared into the QRN.

I don’t get excited very easily, but this filter really works. My SX-101A and 500-Hz filter with bridged-T notch are sick next to it. I added a 1000-ohm pot across the filter to adjust the amount of filtering – at zero resistance the filter is shunted out, with maximum resistance you get full filtering.

Duane Schnur, WB8EEJ
Caro, Michigan 48723

1296-MHz moonbounce

Dear HR:

I am using two Motorola 1N5150 varactor diodes to produce 10 watts output on 1296 MHz; this will be used to drive a pair of 3CX100A5s to 100 watts into a circularly symmetric feed on my 28-foot dish. Hopefully I will be able to work G3LTF and W2NFA via moonbounce during March.

Peter, G3LTF, has sent me a preamp which has a measured noise figure of 5.3 dB and has been used to receive his own echoes on his 15-foot dish. The preamp will be mounted at the feed point with the converter in the shack. I have some 1-5/8” Andrews heliax which will be used on the transmitting side, and as my dish is more accurately constructed than Peter’s I should be able to hear him between 6 and 10 dB above the noise. My own echoes should be 2 to 3 dB weaker as he is running four 3CX100A5s and inferior cable.

I hope that some modifications to my dish will be made and the dish remounted by late February or early March. The polar mount will enable accurate tracking automatically any time the moon is above the horizon.

I also have plans for 32 18-foot long crossed Swan yagis mounted 15-feet apart in both planes and phased for vertical, horizontal, clockwise or counter-clockwise circular polarization. This will be polar mounted on another tower that I hope to have operational by the end of this year.

My ultimate aim is to provide moonbounce antenna capability on 144, 432 and 1296 MHz to any interested vhf group or individuals in Australia at no charge to foster international goodwill and promote moonbouncing to many who would otherwise be unable to partake of this fascinating aspect of amateur radio.

Ray Naughton, VK3ATN
Birchip, Australia
NEW G&G CATALOG! MILITARY ELECTRONICS!

24 PAGES, crammed with Gov’t Surplus Electronic Gear - the Biggest Bargains in America. Special Holiday Offer for the military man. Send 25¢ for your copy - Refund with your first order.

R48/ TRC-8 UHF FM RECEIVER 230 to 250 Mc, Variable tuning, one band, 115/230 V 60 cy. Complete with speaker, phone jack, squelch circuit 2-1/2" meter for circuit testing includes 15 tubes: B/4, G7T, 9002, S4U, 866, VR-150, 6N7, 6SN7, D157. Size 20 x 19 x 16". Weight 27 lbs. NEW...

$44.50

TV-10 UHF TRANSVERTER 28 V DC Made by Aircraft Radio Corp, Couples UHF Antenna to VHF transmitter and VHF receiver. Uses 6 tubes 4/5763 and 2/601. Includes 8 crystals ranging from 233.8 Mc to 257.8 Mc. Size: 11x4-1/2x4-5/8". Wt 5-1/2 lb. LIKE NEW, with tubes and crystals...

$9.95

R-20 RECEIVER Made by Aircraft Radio Corp, works on 28 V, includes 4 tubes: 2/12A6, 12AX7, 12A7. Size: 6-1/2x4-1/2x4-5/8"...

LIKE NEW...

$7.50

HANDMIKE Rugged, heavy-duty cast handmike with press-to-talk switch. Equipped with 4-pole card & phone jack...

NEW, boxed...

Each $1.88 2 for $3.25

2" DC VOLTMETER
Mounts in 2-1/8" hole, Flange diameter 2-5/8"...

Two scales: 0-15 and 0-600. Calibrated for use on steel panel. Standard brand...

NEW, boxed...

Each $1.75 2 for $3.00

BC-733 RECEIVER Receives radio signals being transmitted by US satellite on approx. 108 Mc, AM, crystal-controlled on 6 preset freqs. In 108.3 to 110.3 Mc range. Operates on 12/24 V DC & 220 VDC 80 Mc. Complete with 10 tubes, Can be converted to FM Receiver...

80 to 108 Mc. Exc. Used...

$5.95

BC-732A Control box for above, NEW...

1.75

T-41 / APS - 18 TRANSMITTER ANTENNA UNI designed for 115 V 900 to 1400 cps. Tubes Included are two 15E and one 15A. Complete with shock mounts and blower motor, 7x8x18", NEW...

$8.95

BC-223AX TRANSMITTER 25 Watt, CW, MCW, Voice, Crystal control on 4 pre-selected channels, range 2000 to 5200 Kc by use of 3 plug-in units, Included, Complete.

BRAND NEW...

$27.50

APH-I FM TRANSMITTER 400-450 Mc. Freq. modulated by moving coil transducer. Easily converted for radio control or 70 cms. Complete with 14 tubes, dyn.

BRAND NEW...

$9.95

$27.50

TG-58 TELEGRAPH SET for code communications or code practice. Portable, with hinged lid. Two or more units operate up to 75 miles a-p. Bell call system. 1000 yard holler, key, headpiece, canvas case, book.

Size 5-1/2x5x1-20"...

NEW...

$8.95

TELEPHONE TYPE RELAY Made by J.H. Bunnell, has adjustable sensitivity. 150 ohm call, NEW...

$3.45

AN/ APR - 4 Y FM & AM RECEIVER "FB" for Satellite Tracking!

High precision lab instrument, for monitoring and measuring frequency and relative signal strength. 38 to 4000 Mc. $5 to 5 kHz tuning range. Includes 110 to 240 VAC. Built-in power supply. Original circuit diagram included. Check out. PERFECT, LIKE NEW...

$88.50

All tuning units available for above. P.U.K.

BC-645 TRANSMITTER 15 tubes, 455 to 500 Mc. Easily adapted for 2 way voice or code on NOS. Mobile, Television Experimental, and Citizens Band. With tubes, less power supply...

$16.95

TRANSMITTER has 4 tubes: WE-316A, 2-66E, 777. RECEIVER has 11 tubes: 2-935, 4-717, 2-766, 3-777. RECEIVER, with 100 Megacycle clock...

$11.95

SPECIAL PACKAGE OFFER: BC-645 Transmitter, Dynamic and all accessories, including mounting, UHF Antenna Assemblies, control box, complete set of connectors and plugs.

Brand New...

$26.95

HEADSET Low impedance. With large chomel ear cushions. 4-pole card and plug. Reg. $11.95, Special Price...

$2.95

High impedance adaptor for above...

$6.95

SCR-274-N, ARC-5 COMMAND SET HQ!

FIRL Ringer RECEIVERS. Complete with Tube...

Type...

Exp.

Less...

Price...

190 - 550 Kc BC-455...

16.95...

$23.50...

27.50...

6 - 9.1 Mc BC-435...

22.50...

7.50...

1.5 - 3 Mc BC-22...

19.50...

21.00...

6 - 5.3 Mc BC-457...

8.95...

16.95...

5.3 - 7 Mc BC-458...

8.95...

11.95...

TM-3A4 CODE KEYER, self-contained, automatic, reproduces code practice signals from paper tape. 5 to 12 WPM. Bulb-in speaker. Brand new with tech manual, make up reel and AC line cord...

$24.50

Cable tape for above P.U.K.

BC-1206-C RECEIVER Aircraft Beacon Receiver 200 to 400 Kc. Operates from 24 VDC 1.5A. Continuous tuning, vol control, on-off switch and phone jack. Very sensitive. Complete with tubes. LIKE NEW...

BRAND NEW...

$12.50

BC-604 FM TRANSMITTER 20 to 27.9 Mc. Output approx 30 watts. 10 crystal controlled channels. Complete with tubes. LIKE NEW...

$12.50

ARC-RTA Modern G5-5 Receiver 190 - 550 Kc...

$10.95

ARC-R22 540 to 100 Mc Receiver...

$18.95

4-8/ 2 AR-2 Receiver 234-258 KHz, 11 tubes...

$8.95

BC-605 INTERPHONE AMPLIFIER, NEW $3.45 EXC. USED...

$1.95

TELEPHONE HANDSET, W.E. type...

LIKE NEW...

$2.95

SCR-522 TRANSMITTER-RECEIVER, with tubes, LIKE NEW...

$32.50

AM-300/AIC PUSH PULL AMPLIFIER 4-tube PP power amplifier with dynamotor, works on 28 VDC. Automatic gain control...

Wt shg 15 lb. LIKE NEW...

$3.95

DUAL AMPLIFIER has two input circuits each feeding a single 6SN7GT twin triode amplifier. Complete with 115V 60 cy. power supply using 6X5GT rectifiers...

$5.95

AM-26/AIC PHASE INVERTER AMP. 4-tube pushpull power amplifier. Carbon mic input, hi-lo imp. output. Works on 24VDC. Easily converted to handy 9-watt amplifier, Complete with tubes and dynamotor...

LIKE NEW...

$5.95

WILLARD 2-WAY STAIR BATTERY Rated at 20 Amp-Hours. Model 20-2. Rechargeable. Compact nonspill construction, Lightweight polyester-reinforced container, 3x4x5 1/2". Shipped dry, use standard electrolyte. Shipping Weight 3 lb. NEW, each...

$2.79

$5.95

G&G RADIO ELECTRONICS COMPANY

45-47 Warren St. (2nd Fl) New York, N.Y. 10007 Ph. 212-267-4605

October 1971
Up to 10 Times the mechanical and braking capability of any rotator on the market!

- Handles large beams and stacked arrays with ease
- Delivers over 4,000 IN/LBS of starting and rotating torque
- Gear train protected by husky cast aluminum housing
- Solenoid operator brake adjusted to slip at 5,000 IN/LBS to prevent damage
- Extra heavy duty machined steel gears for maximum strength
- Handsome control unit features sweep pointer over choice of three great circle maps or compass rose
- Select desired position and rotator's logic circuit brings into desired position
- Capacitor start for high torque
- Operates off 110VAC 60 cycle power source
- No blind spots—moves 380°
- Antenna automatically moves to position when control is activated
- Heavy duty mast clamp takes up to 3” O.D. mast
- Mounts to standard tower plate with min. of 10” tower leg spacing
- Mounting kits available for poles or small towers
- Universal tower mount available
- Temperature range—30° F to 120° F
- Permanently lubricated
- Requires one 5 wire cable
- Cable available from Hy-Gain 412

Buy a 400 ROTO-BRAKE from the best distributor under the sun—the one who stocks Hy-Gain!

Model No. 400
Suggested retail price $189.95

ELECTRONICS DISTRIBUTORS, INC.
1960 Peck Street / Muskegon, Michigan 49441 / 616-726-3196
The most powerful signals under the sun!

THE GALAXY 550A
MORE POWER, MORE FLEXIBILITY FOR THE Fixed Station...

GT-550A Transceiver
Order No. 855 Ham Net $495.00

The GT-550A is the best transceiver on the market for the money. Bar none. Costs just $495.00 and delivers 550 watts of power. Operating either fixed station or mobile, this transceiver is guaranteed to have a top frequency stability after warm-up. We’re so proud of the stability we include a graph with each GT-550A showing the purchaser how stable his radio was when it went through final check. 550 watts SSB; 360 watts CW; sensitivity better than .5 uv for 10db S+N/N; stable - 45db carrier suppression; 25 KHz calibrator and vox option; no frequency jump when you switch sidebands.

RF550A contains high accuracy watt meter; calibrated in 400 and 4,000 watt scales; switch for forward or selected power; switch to select 5 antennas or dummy load. Order No. 857 Ham Net $75.00

RV550A is a solid state VFO. Function switch selects the remote unit to control Receive-Transmit frequency independently. Order No. 856 Ham Net $95.00

SC550A Speaker Console with headphone jack. AC400 power supply will mount inside. Order No. 858 Ham Net $29.95

AC400 Power Supply is heavy duty solid state to operate GT-550A at full power, on SSB or CW, and with switch selection of 115/230 VAC. 50/60 Hz input voltages. Order No. 801 Ham Net $99.95

Hy-Gain’s Super Thunderbird TH6DXX
• “Hy-Q” Traps • Up to 9.5db forward gain • 25db front-to-back ratio • SWR less than 1.5:1 on all bands • Takes maximum legal power • 24-foot boom. Order No. 389 Ham Net $179.95

Hy-Gain’s 18 AVT/WB
• Wide band performance, 80 through 10 meters • Three Hy-Q traps • Top loading coil • True 1/4 wave resonance on all bands • SWR of 2:1 or less at band edges. Order No. 386 Ham Net $59.95

Hy-Gain’s Thunderbird TH3Mk3 (not shown)
• “Hy-Q” traps • Up to 8db forward gain • 25 front-to-back ratio • Takes maximum legal power. Order No. 388 Ham Net $144.95

Hy-Gain’s 400 Rotator/Indicator
• Handles large beams and stacked arrays with ease - up to 10 times the mechanical and braking capability of any rotator on the market. Order No. 400 Ham Net $189.95

AMRAD SUPPLY, INC.
1025 Harrison St./Oakland, California 94607

More Details? CHECK-OFF Page 126
vhf fm transceiver

The new Tempo/fmv from Henry Radio is setting new highs in performance and value. The solid-state two-meter transmitter features 12-watts rf output with spurious signals more than 60-dB down. Frequency deviation is adjustable from 5 to 15 kHz. The dual-conversion receiver has 0.6 µV sensitivity for 20-dB quieting (0.3 µV usable threshold). Selectivity at full quieting is ±6 kHz at -6 dB and ±15 kHz at 170 dB. Receiver audio power output is 1 watt.

The Tempo/fmv provides eight-channel coverage. Power supply requirements are 12 to 15 Vdc at 2 amps; the unit weighs 4.5 pounds. Extra features of this fm transceiver include a build-in metering test socket, an operation/maintenance manual and an optional test-set accessory. The built-in test socket can be used with a sensitive microam-

meter to monitor all stages including the discriminator. The large instruction manual covers complete checkout and alignment of the transceiver. The optional test set mates with the built-in test socket and includes a sensitive microammeter.

The Tempo/fmv two-meter fm transceiver is priced at $249 including microphone from Henry Radio, 11240 West Olympic Boulevard, Los Angeles, California 90064. The optional test-set accessory is priced at $29. For more information use check-off on page 126.

gem-quad antennas

The fiberglass quad antennas from Gem-Quad in Canada offer a number of interesting design features, including light weight, a cone-shaped design that maintains critical measurements under severe weather conditions, non-corrosive construction, single 52-ohm feedline on all bands, low swr, and nylon tension tubes at the corners of the quad to eliminate sharp angles in the wire, thus assuring longer antenna life. Gem-Quads come in two-, three- and four-element arrangements for use on 10, 15 and 20 meters. Forward gain for the 2-element quad is reported to be 8 dB on DX signals; with an optional third element (which may be easily installed with no conversion) gain is increased to about 8.9 dB. Front-to-back ratio of the 2-element model is 25 dB; for 3 elements, front-to-back is 30 dB.

The Gem-Quad antenna is designed for optimum performance and can easily be rotated by an ordinary tv rotator. When properly assembled, the Gem-Quad is capable of withstanding winds up to 100 mph. The 2-element quad is $107.00 complete; 3-element quad, $167.00; and 4-element quad, $227.00 complete. A third of fourth element, if purchased separately, is priced at $60.00. For more information write to Structural Glass Limited, 20 Burnett Avenue, Winnipeg 16, Manitoba, Canada, or use check-off on page 126.
Bassett vacuum trap
Antenna Systems

Complete packaged Multi-Band Antenna Systems employing the famous Bassett Sealed Resonators and a special Balun. Air has been evacuated from both and replaced with pure helium at one atmosphere.

Highly efficient system packages including all hardware, insulation, coax cable, and copperweld elements assembled at the factory. Complete installation instructions included.

Multi-frequency models available for all amateur bands and for commercial use, point to point, ground to air, military and government.

MODEL DGA-4075

A complete system package for primary use in the 40 and 75 meter bands at power levels up to 4KW-PEP with secondary operation in other bands at reduced power levels.

MODEL DGA-4075 - $59.50

MODEL DGA-204075

A complete system package for primary use in the 20, 40, and 75 meter bands at power levels up to 4KW-PEP with secondary operation in other bands at reduced power levels.

MODEL DGA-204075 - $79.50

CONTACT YOUR DISTRIBUTOR OR WRITE FOR DATA

Savoy Electronics, Inc.
P.O. Box 7127 - Fort Lauderdale, Florida - 33304
Tel: 305-666-8416 or 305-947-1191

More Details? CHECK-OFF Page 126

October 1971
ROBOT MODEL 70 MONITOR... $495
ROBOT MODEL 80 CAMERA... $465
25mm, f/1.9 lens.................... $ 30
25mm, f/1.4 lens............. $ 40
25mm, f/1.4 Macro lens....... $ 60

AMATEUR ELECTRONIC SUPPLY
4828 West Fond du Lac Ave. Milwaukee, Wisc. 53216
Phone (414) 442-4200
HOURS: Mon & Fri 9-9; Tues, Wed & Thurs 9-5:30; Sat 9-3

To: AMATEUR ELECTRONIC SUPPLY
4828 West Fond du Lac Avenue
Milwaukee, Wisconsin 53216
I am interested in the following new equipment:

I have the following to trade: (what's your deal?)

Ship me the following New Equipment.

□ I enclose $________; I will pay balance (if any)
□ COD (20% deposit) □ Revolving Charge Plan

Name
Address
City
State Zip

Send Reconditioned Equipment Bulletin

AMATEUR ELECTRONIC SUPPLY

432-MHz converter

The new Janel 432-MHz converter provides many design features for the 432-MHz operator, including noise figure of 5.5 dB, any 4-MHz band from 420 to 470 MHz, 35-dB gain (adjustable) and image rejection (with 28-MHz i-f of 40 dB; i-f rejection is 95 dB). The new high performance converter uses all silicon and mosfet transistors, high-Q air-line tuned circuits for low loss and built-in zener-regulated power supply for extreme frequency stability; the built-in power supply may be used for 117 Vac or 12 Vdc operation.

The converter circuit uses five npn bipolar silicon transistors plus one mosfet. The rf amplifier uses a 40235 in a common-emitter configuration with a broadband input circuit to tune out input reactance. Two silver-plated stripline output circuits provide maximum selectivity and image rejection. The local oscillator chain begins with a crystal in the 100-MHz region, thus reducing the number of multipliers and spurious responses.

A 40235 oscillator excites two 40235 doublers to obtain injection to the base of the 40235 grounded-emitter mixer. The output of the mixer is capacitively coupled to the three-stage mosfet i-f amplifier that provides zero-to 27-dB i-f gain by adjustment of a control on the front panel.

I-f output frequencies available off the shelf are 26-30 MHz, 28-32 MHz and 50-54 MHz. One-year guarantee. $64.95 from Janel Laboratories, Post Office Box 112, Succasunna, New Jersey 07876. For more information use check-off on page 126.
Neat... Compact... Versatile!

Ray Grenier, K9KHW, Mail Order Sales Manager at AMATEUR ELECTRONIC SUPPLY, says:

"Operating all bands (160 thru 2 Meters) is a real pleasure with my DRAKE 4 LINE setup. You, too, can eliminate all of that extra gear and mess usually needed for that much frequency coverage. Let me help you go the same route... all the way, as I have done - or just one unit at a time.

Visit our store or write me at AMATEUR ELECTRONIC SUPPLY for the best Trade or No-Trade Deal on new DRAKE equipment. You will be surprised how little per month it would cost you to own new DRAKE equipment when you use our convenient Revolving Charge Plan.

Remember, too! When trading with AMATEUR ELECTRONIC SUPPLY you can use our STAY-ON-THE-AIR PLAN, which means you can keep your trade-ins until your new equipment arrives. - Lose no operating time! CU on the air!"
solid-state QRP projects

QRP operation is rapidly becoming one of the more popular facets of amateur radio, largely because it means a return to homemade equipment and economical operation. This new book by Ed Noll, W3FQJ, covers a variety of solid-state transmitting gear, with power ratings from less than 100 milliwatts up to about 20 watts. A variety of solid-state crystal oscillators and vfos are included as well as multistage cw transmitters. There are also a-m and single-sideband circuits.

The emphasis in this book is on solid state with circuits using bipolar transistors, field-effect transistors and integrated circuits. Also included are an introduction to practical solid-state circuit theory, QRP test gear and simple antennas for QRP operation.

128 pages, softbound. Published by Howard W. Sams & Co., Inc. $4.25 from Comtec Books, Box 592, Amherst, New Hampshire 03048.

RTTY control terminal

The new WCI phase-locked-loop detector-type RTTY demodulator converts the audio-frequency shift tones from a communications receiver to dc pulse data that operates a teleprinter. This demodulator has the unusual ability to track the input audio signal frequencies automatically if they change frequency due to transmitter or receiver drift. In addition, this unit will automatically copy any shift from 100 to 1000 Hz. Also included in the detection circuitry is an automatic threshold computer.

If the input signal is degraded past a preset level (due to a fading or a very poor signal-to-noise ratio) an automatic noise squelch circuit places the unit in mark hold to hold the selector-magnet armature closed to prevent the machine from printing unwanted erroneous characters.

The RCT-2D RTTY control terminal uses all solid-state circuitry with plug-in printed-circuit boards. Each printed-cir-
SAVE MONEY

Subscribers to HAM RADIO save a lot of money.

One year subscribers get a 33% discount from newsstand prices.

Three year subscribers get a whopping 55% discount from newsstand prices.

DON'T BE LEFT OUT!

Join the 34,000 others who are already taking advantage of these great savings.

HAM RADIO • Greenville, N. H. 03048

☐ ONE YEAR ... $6.00
☐ THREE YEARS ... $12.00

☐ Bill me later
☐ Check or Money Order enclosed — get an extra issue free

Name..

Address..

City.. State........................... Zip.......................
THE BEST 2 METER CONVERTER

Model 407
$42.95 ppd.

144-146 MHz in. 28-30 MHz out
or 146-148 MHz with a second crystal available for $5.95 each

A full description of this fantastic converter would fill this page, but you can take our word for it (or those of thousands of satisfied users) that it's the best. The reason is simple — we use three RCA dual-gate MOSFETs, one bipolar, and 3 diodes in the best circuit ever. Still not convinced? Then send for our free catalog and get the full description, plus photos and even the schematic.

Can't wait? Then send us a postal money order for $42.95 and we'll rush the 407 out to you.

NOTE: The Model 407 is also available in any frequency combination up to 450 MHz (some at higher prices) as listed in our catalog.

VANGUARD LABS
Dept. R, 196-23 Jamaica Ave., Hollis, N.Y. 11423

high-frequency receiver

The new Galaxy FFR-230/6 receiver is completely solid state and crystal controlled for operation on any six channels in the 2- to 18-MHz range. Front panel controls are provided for channel selection, mode—usb and lsb (2.1 kHz bandwidth) and cw (1.5 kHz bandwidth), clarifier (ssb), bfo, af and rf gain. Features include rack mounting, internal speaker and 117-Vac power supply, external muting and audio (4 ohms and 600 ohms), modular construction and plug-in circuit boards for changing frequency. Priced at $950.00. Optional filter bandwidths are available.

For more information on the new Galaxy FFR-230/6 receiver, use check-off on page 126 or write to Galaxy Electronics, Subsidiary of Hy-Gain Electronics Corporation, Route 3, Lincoln, Nebraska 68505.
THE GALAXY 550A
MORE POWER, MORE FLEXIBILITY FOR THE
Fixed Station...

GT-550A Transceiver
Order No. 855 Ham Net $495.00

The GT-550A is the best transceiver on the market for the money. Bar none. Costs just $495.00 and delivers 550 watts of power. Operating either fixed station or mobile, this transceiver is guaranteed to have a top frequency stability after warm-up. We're so proud of the stability we include a graph with each GT-550A showing the purchaser how stable his radio was when it went through final check. 550 watts SSB; 360 watts CW; sensitivity better than .5 uv for 10db S+N/N; stable -- 45db carrier suppression; 25 KHz calibrator and vox option; no frequency jump when you switch sidebands.

RF550A contains high accuracy watt meter; calibrated in 400 and 4,000 watt scales; switch for forward or selected power; switch to select 5 antennas or dummy load. Order No. 857 Ham Net $75.00

RV550A is a solid state VFO. Function switch selects the remote unit to control Receive-Transceive-Transmit frequency independently. Order No. 856 Ham Net $95.00

SC550A Speaker Console with headphone jack. AC400 power supply will mount inside. Order No. 858 Ham Net $29.95

AC400 Power Supply is heavy duty solid state to operate GT-550A at full power, on SSB or CW, and with switch selection of 115/230 VAC, 50/60 Hz input voltages. Order No. 801 Ham Net $99.95

Hy-Gain's Super Thunderbird TH6DXX
• "Hy-Q" Traps • Up to 9.5db forward gain • 25db front-to-back ratio • SWR less than 1.5:1 on all bands • Takes maximum legal power • 24-foot boom. Order No. 389 Ham Net $179.95

Hy-Gain's 18 AVT/WB
• Wide band performance, 80 through 10 meters • Three Hy-Q traps • Top loading coil • True 1/4 wave resonance on all bands • SWR of 2:1 or less at band edges. Order No. 386 Ham Net $99.95

Hy-Gain's Thunderbird TH3Mk3 (not shown)
• "Hy-Q" traps • Up to 8db forward gain • 25 front-to-back ratio • Takes maximum legal power. Order No. 388 Ham Net $144.95

Hy-Gain's 400 Rotator/Indicator
• Handles large beams and stacked arrays with ease — up to 10 times the mechanical and braking capability of any rotator on the market. Order No. 400 Ham Net $189.95

DOUGLAS ELECTRONICS
1118 South Staples / Corpus Christi, Texas 78404 / 512—883-5103
KOJO AUDIO FILTERS FOR SSB AND CW
The KOJO audio filters can greatly improve reception on all receivers, even the most sophisticated receivers. Large amounts of high-frequency hiss, background noise and sideband backshot can be removed.

The SSB filter is of a low pass configuration, designed with a sharp cutoff to provide a rejection of better than 30 decibels at all ham band frequencies above approximately 3500 Hz. The filter is specifically designed to be placed in a low-impedance line for earphones or speaker.

The CW filter has a spot frequency of 780 Hz and a passband of 1100 Hz with a reference level, 40 decibels below the signal level at the design frequency. The peak of the passband is 100 Hz wide at the -3 decibel reference points.

KOJO filters are made up of top grade coils and components and are available in easy to assemble kit form with simplified instructions, or in a deluxe model. The deluxe model is completely built up and ready for use and is enclosed in a Gray cabinet with convenient IN-OUT switch.

Try a KOJO and see what you can hear now and could not clearly hear before.

KOJO FILTERS
CW Filter Kit $ 7.95 Deluxe CW Filter $15.95
SSB Filter Kit $11.95 Deluxe SSB Filter $19.95
All filters shipped postpaid. Arizona residents add 4% sales tax.

THE J. LYNCH CO.
P. O. Box 7774, Phoenix, Arizona 85011

144/432-MHz transverter
The new Braun TTV-1270 solid-state transverter seems like the ideal way to become operational on 432 MHz. The TTV-1270 was developed specifically for mobile, portable and field-day operation, although it is also suitable for low-power fixed-station operation on 432 MHz.

To put the TTV-1270 on the air simply connect it between a 2-meter a-m, fm or cw transceiver and a 432-MHz antenna. No antenna switching is required; a 12-volt dc power supply is needed only for receive. Input frequency range is 144 to 146 MHz; output range is 432 to 438 MHz.
INTEGRATED CIRCUITS
FACTORY FRESH — NO REJECTS
W/SPEC. SHEETS
FAIRCHILD — PHILCO — RCA
MOTOROLA — NATIONAL
NEW LOW PRICES
RTL or TTL LOGIC

UL 900 Buffer 80¢ 10/5.50
UL 914 Gate 80¢ 10/5.50
UL 923 JK Flip-flop $1.50 10/8.50
MC 790P Dual JK Flip-flop $2.00 10/18.95
MC 890P Dual JK Flip-flop $2.00 10/18.95
MC 769P Hex Inverter $1.00 ea. 10/9.25
MC 724P Quad 2 Input Gate
MC 799P Dual Buffer
MC 780P Decade $3.00
MC 767P Quad Latch 3.00
MC 9760P Decade 5.00
ONE EACH OF 3 ABOVE $10.50

7400 Quad 2 Input NAND Gate 65¢ 10/5.95
7404 Hex Inverter 65¢ 10/5.95
7441A Decimal Decoder/Driver $3.50 10/29.95
NEW! 7447 7 Segment Decoder/Driver $3.10 each 10/27.95
7473 Dual JK Flip-flop $1.30 10/10.95
7475 Quad Latch $2.00 10/19.95
7490 Decade Counter $2.40 10/19.95
709 Op Amp $1.75 10/16.50
741 Op Amp $2.70 10/25.00
CA 3035 Linear Amplifier $2.25 10/21.95
LM 309K 5V Regulator $3.75 10/34.95
14 Pin Dual Inline socket terminals 25¢ 10/2.25
16 Pin Dual Inline socket terminals 30¢ 10/2.75

NEW NATIONAL Long Life Nixie tubes NL 940S-0-9 with two decimal points $4.50 ea. 10/42.95
Japanese Readout will replace 5750 tube $2.95 each 10/27.50
SOCKET for NL 940S 50¢ each
100 KC CRYSTAL NEW $3.95

88 MH TORIODS 10/3.00

TRANSFORMERS
Pri 115V 50 cec Sec. 6.3V 1t 20 amp 12 lbs $3.95 each
Pri 117V 60 cec Sec. 850V 1t — 310 MA 6.3V ct — 18 Amp
6.3V ct — 5.5 Amp
20V — 2.8 Amp 23 lbs. $5.95 each

COOLING FAN BLOWER 4 pole 110V 60 cyc motor with 1 bladed nylon fan. Very quiet, about 50 CFM 3½” x 3½” x 3½”. Sh. wt. 3 lbs. $2.25 each

CAPACITORS
1000 MFD 15V 25¢ ea 10/$2.00
50 MFD 15V 20¢ ea 10/$1.50

R & R ELECTRONICS
311 EAST SOUTH ST.
INDIANAPOLIS, IND. 46225

$5.00 minimum order.
Please add sufficient postage.

the all "NEW"
CRYSTAL CALIBRATOR
FROM

- 100 - 50 - 25 KC MARKERS
- ZERO BEAT TO WWV
- USES NEW 100 KC CRYSTALS (included in all units)
- GLASS EPOXY BOARDS
- VERY COMPACT 2” x 3” x ½”
- 3.5 V. OPERATION

$12.95 KIT
with
100 KC CRYSTAL

Wired and zeroed to WWV $15.95

ARN-30 108-135 mc tunable receivers. High frequency version of the famous command receivers. Listen to local airport frequency or convert to 2 meters. Like New with schematic and operating instructions. 12 lbs. $14.95

Western Union facsimile machines, send and receive pictures and memes. Works on 115 v 60 cycles. Shipped with auto-start, auto-phase pos-to-pos, conversion instructions. 20 lbs. $19.95

Telfax paper for above facsimile.
2¢ each 1000 for $12.95

More Details? CHECK-OFF Page 126

october 1971 HP 87
ALL SOLID-STATE
SSB TRANSCEIVER —

$195.00 . .

- Complete single-band SSB transceiver 4 to 5 watts, PEP output 15, 20, 40, or 75 mtrs.
- VXO tuning up to 100 KHz or 2 fixed freq.
- Suitable for dry battery operation.
- Light weight, small size makes excellent portable - boat, aircraft, field or mobile.
- Contains 15 transistors, 1 MOSFET, 2 darlington amps., 1 I.C. and 17 diodes. Four-pole filter.
- Some options available to customer requirements.
- Furnished with spare switching and final amp. transistors, dummy load and extra plug.

JUSTIN, INC.
2663 NORTH LEE AVENUE
SOUTH EL MONTE, CALIF. 91733

GET YOUR NEW
ISSUES NOW!
Over 285,000 QTHs in
the U.S. edition $8.95
Over 165,000 QTHs in
the DX edition $6.95
NEW EDITION EVERY:
MARCH 1 - SEPT. 1
JUNE 1 - DEC. 1

These valuable EXTRA features included in both editions!
- QSL Managers Around the World!
- Census of Radio Amateurs throughout the world!
- Radio Amateurs' License Class!
- World Prefix Map!
- International Radio Amateur Prefixes
See your favorite dealer or order direct (add 25¢ for mailing in U.S., Possessions & Canada. Elsewhere add 50¢).

transistor substitution handbook

Although bipolar transistors are noted for their low failure rate occasionally they do have to be replaced. As long as the specific type number required is available replacement of the transistor is no problem because a duplicate of the original should be used whenever possible. All too often, however, an exact replacement cannot be obtained without considerable delay. Furthermore, the great variety of transistor types make it difficult to determine which transistor can be substituted for the original.

The new 11th edition of "Transistor Substitution Handbook" is possible be-
The Galaxy 550A
More Power, More Flexibility for the Fixed Station...

GT-550A Transceiver
Order No. 855 Ham Net $495.00
The GT-550A is the best transceiver on the market for the money. Bar none. Costs just $495.00 and delivers 550 watts of power. Operating either fixed station or mobile, this transceiver is guaranteed to have a top frequency stability after warm-up. We're so proud of the stability we include a graph with each GT-550A showing the purchaser how stable his radio was when it went through final check. 550 watts SSB; 360 watts CW; sensitivity better than .5 uv for 10db S+N/N; stable—45db carrier suppression; 25 KHz calibrator and vox option; no frequency jump when you switch sidebands.

RF550A contains high accuracy watt meter; calibrated in 400 and 4,000 watt scales; switch for forward or selected power; switch to select 5 antennas or dummy load. Order No. 857 Ham Net $75.00

RV550A is a solid state VFO. Function switch selects the remote unit to control Receive-Transceive-Transmit frequency independently. Order No. 856 Ham Net $95.00

SC550A Speaker Console with headphone jack. AC400 power supply will mount inside. Order No. 858 Ham Net $29.95

AC400 Power Supply is heavy duty solid state to operate GT-550A at full power, on SSB or CW, and with switch selection of 115/230 VAC, 50/60 Hz Input voltages. Order No. 801 Ham Net $99.95

Hy-Gain's Super Thunderbird TH6DXX
- "Hy-Q" Traps • Up to 9.5db forward gain • 25db front-to-back ratio • SWR less than 1.5:1 on all bands • Takes maximum legal power • 24-foot boom. Order No. 389 Ham Net $179.95

Hy-Gain's 18 AVT/WB
- Wide band performance, 80 through 10 meters • Three Hy-Q traps • Top loading coil • True 1/4 wave resonance on all bands • SWR of 2:1 or less at band edges. Order No. 386 Ham Net $59.95

Hy-Gain's Thunderbird TH3Mk3 (not shown)
- "Hy-Q" traps • Up to 8db forward gain • 25 front-to-back ratio • Takes maximum legal power. Order No. 388 Ham Net $144.95

Hy-Gain's 400 Rotator/Indicator
- Handles large beams and stacked arrays with ease—up to 10 times the mechanical and braking capability of any rotator on the market. Order No. 400 Ham Net $189.95
cause of the ability of modern-day electronic computers to handle a large quantity of information in a relatively short length of time. The computer selected the substitutes listed in this handbook in much the same manner that an individual would select a transistor replacement. The electrical and physical parameters shown in the manufacturer’s published specifications for each bipolar transistor were given to the computer, and then each transistor was compared with all the others. Over one billion data comparisons were made in the preparation of this book.

The transistors which matched within given limits are listed as substitutions. A second section contains additional information on general purpose replacement transistors: the manufacturer, the polarity (npn or pnp), the material (germanium or silicon), and the recommended applications. The information in this handbook can be used by anyone concerned with transistor replacement—be it in amateur, industrial, commercial, or home-entertainment equipment. 160 pages, soft-bound. $2.25 from Comtec Book Division, Box 592, Amherst, New Hampshire 03031.

marine radiotelephone

For shipboard and shore applications RF Communications has produced a marine single-sideband radiotelephone incorporating the latest electronic advances and compatible with all existing and future marine stations. The new RF-201M series includes compatible a-m, speech clarifier, squelch, balanced audio and complementary accessories including remote controls, 1-kW amplifier, antenna couplers and power supplies. The unit is
BARRY PAY CASH for your unused equipment, tubes, components, semiconductors, etc. Send your list today for a fast cash offer.

512 BROADWAY NEW YORK, NEW YORK 10012 212-WA-5-7000

BEATHKIT Mod 10W-14 Lab Scope Sensitivity: 50 mV/cm-DC thru 8 mHz. Excellent.....$150.00

GONSET SIDEWINDER Model 900A 2 mtr SSB transceiver with AG and DC p.s.............$285.00

DELTA ELECTRONICS' Operating Impedance Bridge. Model 01R-1 measures in circuit operating impedance. .5 to 5 mHz. Handles through 5 kW. Ideal for use in adjusting directional antennas.............$295.00

TRANSCO deluxe Coaxial Switch. SP4T NEW. Original Cost over $70. 50 ohm. Sealed......$17.50

SOMMERKAMP/IAESU transmitter and receiver. Models #FL100B and FR100B. Both pieces like new. For both.........$440.00

RCA Type WO-91B scope. Wide band (4.5 mHz.) or hi sens. (1.5 mHz.)..........$85.00

EICO Model HF-60 Hi-Fi power amp. Excellent..................$49.50

GLOBAR Type LX high current non-inductive resistors. 600 ohms..$6.56

DRAKE RF WATTMETERS read forward or refl. power in watts. W-4 (1.8-54 mHz). . . .$61.95

WV-4 (200-200 mHz)$73.50

OHMITE R & PLATE CHoke. #2-7. 85 uH at 1000 mA..................$90.60

AMBERTRAN XFRMR. Pri. 115/230 Sec: 3kV at .62 kVA. Net Wt: 55 lbs.$29.95

JOHNSON VARIABLE CAPACITORS Quality miniature capacitors. All are Type M-single section 160-102 1.5--5.0pF...$1.25

160-104 1.8--8.7pF...$1.30

160-107 2.3--14.2pF...$1.35

160-110 2.7--19.6pF...$1.40

FINEST QUALITY HOOK-UP WIRE. 20 or 22 gauge. White with standard color tracers. Give size and length when ordering 1000 ft.$8.50 100 ft.$1.50

NEED A TUBE?

BARRY ELECTRONICS HAS OVER A MILLION OF THEM IN STOCK INCLUDING NO LONGER MANUFACTURED AND ANTIQUE TYPES IN ADDITION TO THE LATEST XMITTING, RECEIVING AND INDUSTRIAL TYPES. SEND YOUR LIST OF NEEDED COMPONENTS AND TUBES FOR A FAST, FAIR QUOTATION.

BARRY

512 Broadway NY, NY 10012

ELECTRONICS

212-WA-5-7000

More Details? CHECK-OFF Page 126

october 1971 91
FIRE & BURGLAR ALARMS
1971 Handbook & Catalog
Save Hundreds of Dollars
Professional equipment from famous manufacturers. Easy step by step illustrated instructions, no special tools required. Save up to 75%. This handbook is a must for every homeowner and businessman. Just $1 cash, check or M.O.
Write WIJFT
ALARM COMPONENT DISTRIBUTORS
33 NEW HAVEN AVE., DEPT. HR
MILFORD, CONN. 06460

NEED CRYSTALS?
We can supply crystals from 2KHz to 80 MHz in many types of holders.

SPECIALS
Color TV crystal (3578, 545KHz) wire leads $1.60 4 for $5.00
100 KHz frequency standard crystal (HC 13/U) 2.50
1000 KHz frequency standard (HC6/U) 4.50
Any CB crystal, trans. or rec. (except synthesizers) 2.50
Any amateur band crystal in FT-243 holders (except 80-160 meters) 1.50 4 for $5.00
80 meter crystals or FT-243 holders 2.50

Special Quantity Prices to Jobbers and Dealers.
ORDER DIRECT
2400H Crystal Drive
Fort Myers, Florida 33901

ANTENNA MATCHING TRANSFORMERS
- 50 ohm co-ax to 50 ohm balanced load (for doublets & inverted vee's) $14.95
- 50 ohm co-ax to 75 ohm balanced load (for doublets and quads) $14.95
- 50 ohm co-ax to 75, 120, and 140 ohm load (for single feed three band quad) $18.95
- Other impedance ratios available on request
All units are rated at full legal power and shipped post paid. Calif. residents add 5% sales tax.

H & H ENGINEERING
P. O. Box 68, La Mirada, Calif. 90638

Offered in six basic models with up to 60 channels for ship and shore applications.

This two-in-one radio eliminates the need for a separate a-m radio by providing the equivalent talk power of 75 watts when operating in its compatible a-m mode. The rated ssb output power of the RF-201M is 150 watts PEP, more than enough to provide highly dependable long-range ssb communications. Transistor circuitry is used in all but the power amplifier section to provide ultrahigh reliability with efficiency to keep power source drain low. Literature, further information and full specifications are available from National Sales, RF Communications, Inc., a subsidiary of Harris-Intertype Corporation, 1680 University Avenue, Rochester, New York 14610, or use check-off on page 126.

73 vertical, beam and triangle antennas

This new book by Edward M. Noll, W3FQJ, describes 73 individual vertical and beam antennas, beginning with simple construction and progressing to more complex arrangements. All you need are telescoping masts, wires, insulators, tubing, ingenuity and a desire to experiment. Each antenna described in this book was constructed by the author without assistance.

Antenna types range from simple dipoles, through verticals and yagis, to quad and triangle beams, and the topics are arranged in a sequential manner. The necessary mathematics are included but no extensive knowledge is required to build the antennas described. Simple test instruments are shown which will enable you to optimize the designs and obtain maximum antenna performance. Many of these antennas compete with, and some surpass, the performance of commercial beams.

160 pages, softbound. Published by Howard W. Sams & Co., Inc. $4.95 from Comtec Books, Box 592, Amherst, New Hampshire 03048.
The Galaxy 550A Total System

GT-550A Transceiver
The GT-550A is the best transceiver on the market for the money. Bar none. Costs just $495.00 and delivers 550 watts of power. Operating either fixed station or mobile, this transceiver is guaranteed to have a top frequency stability after warm-up. We're so proud of the stability we include a graph with each GT-550A showing the purchaser how stable his radio was when it went through final check. 550 watts SSB; 360 watts CW; sensitivity better than .5 uv for 10db S+N/N; stable—45db carrier suppression; 25 KHz calibrator and vox option; no frequency jump when you switch sidebands. Order No. 855 Ham Net $495.00

RF550A contains high accuracy watt meter, calibrated in 400 and 4,000 watt scales; switch for forward or selected power; switch to select 5 antennas or dummy load. Order No. 857 Ham Net $75.00

RV550A is a solid state VFO. Function switch selects the remote unit to control Receive-Transceive-Transmit frequency independently. Order No. 856 Ham Net $95.00

SC550A Speaker Console with headphone jack. Order No. 858 Ham Net $29.95

AC400 Power Supply is heavy duty solid state to operate GT-550A at full power, on SSB or CW, and with switch selection of 115/230 VAC, 50/60 Hz input voltages. Order No. 801 Ham Net $99.95

The FM-210 2 Meter Transceiver
Capability...That's what you purchase from Hy-Gain/Galaxy. Top performance from the first mass produced 2 meter transceiver. Fixed or mobile, the FM-210 will provide maximum pleasure with minimum investment. There's a full 10 watts. And all American made, too! No parts problems and backed by Hy-Gain's famous Customer Service!

The PA-210 2 Meter 35 Watt Mobile Amplifier
This all new ruggedized solid state two meter mobile amplifier provides 35 watts output to greatly increase your communication range. The PA-210 is a must for areas where no repeater is available. The PA-210 is designed as a companion for the FM-210. (When used as a system, the AC-210 power booster is not required.) A unique circuit protects the output transistor from voltage spikes and surges. All change-over relay functions are internal and controlled by FM-210 circuitry through a connecting cable.

ELECTRONICS CENTER, INC.
107 Third Avenue North / Minneapolis, Minnesota 55401 / 612-338-5881
Standard's SR-C826M Transceiver

- 12 Channels (4 supplied)
- 10 watt power output
- Hot MOSFET receiver front end
- Low drain—all silicon semiconductors
- Full 6 month warranty

Complete, ready-to-go! Connect power and antenna and you're on the air! Only $339.95

SPECIAL CLOSEOUT: Standard SR-C806MA
Earlier version of above, with very similar specs and same 6 month warranty...just discontinued. Was $335.00; while they last only $265.00.

Send QSL or circle number for detailed brochure

ERICKSON COMMUNICATIONS
4657 North Ravenswood Avenue
Chicago, Ill. 60640 (312) 334-3200
a division of Carl E. Erickson Co

A compact new receiver, the model STR-1 standard-time receiver, is now available from Caringella Electronics. The STR-1 receives continuous standard-time and standard-frequency broadcasts from WWV on 5, 10, and 15 MHz. Optional coverage is also available for Canadian standard-time broadcasts from CHU on 7.335 and 14.670 MHz.

Ideal for a number of applications, the receiver can be used by industrial labs, radio and television stations, two-way radio service centers, radio amateurs, astronomers, boating and sports car enthusiasts, as well as others interested in accurate time or frequency.

Operation is simplified; only the volume control with on-off switch and the channel selector are found on the front panel. You simply turn on the receiver and select the frequency with the strongest signal; no need to hunt for the signal since each channel is crystal controlled. A choice of three frequencies assures 24-hour reception anywhere in the United States.

Sensitivity is 0.25 µV for 10 dB signal-plus-noise to noise. Dual-gate mosfets are used in the front end to achieve high sensitivity, low noise and good agc characteristics.

Ten transistors, two silicon diodes, one germanium diode and one zener diode are used in the circuit. The STR-1 operates from and ac line or from an internal 12-volt battery.

The STR-1 receiver is available in kit...
SAROC • JANUARY 6-9, 1972

WHAT'S HIS RATE OF FREQUENCY?

FREQUENCY! ARE YOU KIDDING?
HE SPENDS ALL HIS TIME WITH THAT NUTTY RADIO!!

5TH NATIONAL FM CONFERENCE
GROUP FLIGHT VACATION PLAN FROM CHICAGO
ST. LOUIS • OMAHA • KANSAS CITY • DENVER

FABULOUS FLAMINGO MAIN SHOWROOM WITH
JACK JONES AND MYRON COHEN

SAROC ADVANCE REGISTRATION
$9.00

WITH MIDNIGHT SHOW
TWO DRINKS
$14.50

OR WITH DINNER SHOW
$17.50

HAM RADIO MAGAZINE — SAROC HAPPY HOUR — THURSDAY
SWAN ELECTRONICS — SAROC SOCIAL HOUR — FRIDAY
HY-GAIN/GALAXY — COCKTAIL PARTY — SATURDAY

CALLING ALL HAMS!
SAROC 7TH NATIONAL CONVENTION
JAN. 6 TO 9 • 1972
LAS VEGAS, NEVADA

FLAMINGO • HOTEL CONVENTION CENTER
SAROC, Flamingo Hotel Room rate $12.00
plus tax, single or double occupancy. Mail
to Flamingo Hotel, Las Vegas.
SAROC, advance registration $14.50 per per-
son, regular registration at the door, Flam-
ingo Hotel Late Show, Sunday Breakfast,
Cocktail Parties, Seminars and Meetings.
Mail to SAROC.

SAROC sponsored by Southern Nevada ARC,
Inc., Box 73, Boulder City, Nevada 89005.

VISIT THE FLAMINGO’S NEW SPEAKEASY RESTAURANT & SALOON
Las Vegas’ most unique dining spot

More Details? CHECK-OFF Page 126
This is not a book for everyone. This famous handbook is primarily designed for the practicing engineer, but it also contains much information of great value to the technically serious amateur.

The first edition of this extremely useful reference work was developed in 1942 by the English subsidiary of International Telephone and Telegraph Corporation as a 60-page brochure. Since that time, the demand for the first four volumes has resulted in the distribution of over 350,000 copies. The book serves as basic need, in one volume, of complete and comprehensive reference material including tables, formulas, standards, and circuit information.

This latest edition of REFERENCE DATA FOR RADIO ENGINEERS is the result of five years revision and compilation by an extremely diverse group of practicing engineers, professors, and industry and government experts. In addition to new data on all of the basic phases of radio and electronics, the 45 chapters contain material on seven subject areas not covered by the fourth edition, including microminiature electronics, space communication, navigation aids, reliability and life testing, international telecommunication recommendations, switching networks and traffic concepts, and quantum electronics. This text is reinforced by literally hundreds of charts, nomographs, diagrams, curves, tables and illustrations.

1196 pages 6-1/2 x 9-9/16
$20.00 postpaid
order from
comtec
BOX 592 AMHERST, N. H. 03031

New power-type Fail-Safe gas-filled surge voltage protector tubes have been developed by Siemens to protect circuits and equipment against lightning, power surges and other transients. Fail-safe is a term used to describe the protector's ability to provide a permanent short when it is subjected to extraneous current exceeding its discharge capability. By shorting, the SVP prevents the transient from destroying equipment. Additional parts, such as special holders or heat-sensitive components, are not required.

In addition to being inherently fail-safe, the Siemens S8-C350 tube has an ultrafast response time with a DC striking voltage of 200-400 volts, insulation resistance greater than 10^{10} ohm, 20,000 amps rated discharge capability and capacitance less than 3 pF. At extremely high surge currents of up to 50,000 amps, the SVPs still remain operative. Typical applications are protection of communication lines, power lines, power supplies and instruments. For more information use check-off on page 126 or write to Siemens Corporation, 186 Wood Avenue South, Iselin, New Jersey 08830 and request product bulletin SCD-1170-S100.

96 october 1971 More Details? CHECK-OFF Page 126
The most powerful signals under the sun!

THE GALAXY 550A
MORE POWER, MORE FLEXIBILITY FOR THE
Fixed Station...

GT-550A Transceiver
Order No. 855 Ham Net $495.00
The GT-550A is the best transceiver on the market for the money. Bar none. Costs just $495.00 and delivers 550 watts of power. Operating either fixed station or mobile, this transceiver is guaranteed to have a top frequency stability after warm-up. We're so proud of the stability we include a graph with each GT-550A showing the purchaser how stable his radio was when it went through final check. 550 watts SSB; 360 watts CW; sensitivity better than .5 uv for 10db S+N/N; stable - 45db carrier suppression; 25 KHz calibrator and vox option; no frequency jump when you switch sidebands.

RF550A contains high accuracy watt meter; calibrated in 400 and 4,000 watt scales; switch for forward or selected power; switch to select 5 antennas or dummy load. Order No. 857 Ham Net $75.00

RV550A is a solid state VFO. Function switch selects the remote unit to control Receive-Transceive-Transmit frequency independently. Order No. 856 Ham Net $95.00

SC550A Speaker Console with headphone jack. AC400 power supply will mount inside. Order No. 858 Ham Net $29.95

AC400 Power Supply is heavy duty solid state to operate GT-550A at full power, on SSB or CW, and with switch selection of 115/230 VAC, 50/60 Hz input voltages. Order No. 801 Ham Net $99.95

Hy-Gain's Super Thunderbird TH6DXX
• "Hy-Q" Traps • Up to 9.5db forward gain • 25db front-to-back ratio • SWR less than 1.5:1 on all bands • Takes maximum legal power • 24-foot boom. Order No. 389 Ham Net $179.95

Hy-Gain's 18 AVT/WB
• Wide band performance, 80 through 10 meters • Three Hy-Q traps • Top loading coil • True 1/4 wave resonance on all bands • SWR of 2:1 or less at band edges. Order No. 386 Ham Net $59.95

Hy-Gain's Thunderbird TH3Mk3 (not shown)
• "Hy-Q" traps • Up to 8db forward gain • 25 front-to-back ratio • Takes maximum legal power. Order No. 388 Ham Net $144.95

Hy-Gain's 400 Rotator/Indicator
• Handles large beams and stacked arrays with ease — up to 10 times the mechanical and braking capability of any rotator on the market. Order No. 400 Ham Net $189.95

GRAHAM ELECTRONICS SUPPLY, INC.
133 S. Pennsylvania St. / Indianapolis, Indiana 46204 / 317-634-8486

More Details? CHECK-OFF Page 126
new motorola hep devices

A total of 167 new solid-state devices have been added to Motorola's HEP semiconductor line, expanding the selection to 470 devices. The 1971 HEP introductions cover the full range of devices including light-emitting diodes (LEDs), phototransistors, standard TTL and complex function TTL integrated circuits, high threshold logic (HTL) ICs, diode-transistor logic (DTL) ICs. In addition, high-speed emitter coupled logic (ECL) and linear devices have been added.

The diode end of the line has been expanded to include uhf hot-carrier diodes and voltage-variable capacitance tuning diodes, as well as 5- and 10-watt zener diodes. Other standard silicon transistors have also been added.

For more information use check-off on page 126 or write to Motorola Semiconductor Products Division, Post Office Box 20912, Phoenix, Arizona 85036.

toroid tank-circuit kit

The new toroid tank-circuit kit available from Redline Electronics contains all the parts required to build a highly efficient, compact pi-network inductor. Three basic circuit designs are provided with each kit; you can use the design that
E & E guides hams through radio's mysteries.

Highly popular Editors and Engineers books from Sams give amateurs everything they need to know about radio operation and technology. They're authoritative, clear and easy to follow. You'll want them for your library.

Famous E & E RADIO HANDBOOK—18th Edition
By William I. Orr, W6SAI
The completely updated electronics industry standard for engineers, technicians and advanced amateurs. Shows how to design and build all types of radiocommunications equipment. Includes ssb design and equipment, RTTY circuits, latest semiconductor circuits, IF's, special circuits. No. 24020—$13.50

SINGLE SIDEBAND: THEORY & PRACTICE
By Harry D. Hooton, W6YTH
A basic text, covering origin of ssb, derivation of signals, sideband selection, ssb generators, carrier-suppression techniques, carrier generators, speech amplifiers and filters, balanced mixers and converters, low-power ssb transmitters, linear r-f power amplifiers, much more. 388 pgs., hard cover. No. 24014—$6.95

SEMI CONDUCTOR AMATEUR PROJECTS
By Louis M. Dezettel, W5REZ
For the ham who still takes pride in using his hands and head, here are projects for 16 useful, money-saving accessories, using easy-to-build semiconductor circuitry. Units are for measuring equipment, adding power and convenience, converters, etc. No. 24025—$4.95

AMATEUR RADIO INCENTIVE LICENSING STUDY GUIDE
By Robert M. Brown, K2ZSQ and Tom Kneitel, K2AES
Invaluable aid for the amateur license applicant. Clear, fully detailed, complete. No. 24004—$3.25

73 DIPOLE AND LONG-WIRE ANTENNAS
By Edward M. Noll, W3FQJ
Detailed construction data for 73 different types of wire antennas. Appendices describe construction of noise bridges, line tuners, data on measuring resonant frequency, velocity factor, and SWR. No. 24006—$4.50

73 VERTICAL, BEAM, AND TRIANGLE ANTENNAS
By Edward M. Noll, W3FQJ
Design and construction of 73 different antennas used by amateurs, each built and air-tested by the author. Also construction of noise bridges and transmission-line tuners, measurement methods. No. 24021—$4.95

ELECTRONICS FOR THE AMATEUR
By Louis M. Dezettel, W5REZ
Covers radio-wave propagation as it applies to amateur band frequencies, reception and transmission pertaining to ham equipment, and the special field of antennas and how to feed them. Gives you everything needed to pass the theory sections of the FCC exams. No. 24022—$7.95

RADIO AMATEUR'S F-M REPEATER HANDBOOK
By Ken W. Sessions, Jr., K6MVH
The definitive work on amateur f-m repeaters. Includes: Preparing and obtaining sites for repeaters; How to build a repeater; Repeater applications; an f-m repeater directory. No. 24008—$6.95

AMATEUR TESTS AND MEASUREMENTS
By Louis M. Dezettel, W5REZ
Shows how to accomplish virtually all performance tests on amateur transmitters, receivers and antennas . . . and how to make required adjustments. No. 24007—$5.50

HAM AND CB ANTENNA DIMENSION CHARTS
By Edward M. Noll, W3FQJ
Tabulates dimension data in feet and inches for all popular antenna configurations. With them, an antenna can be dimensioned for a specific frequency range according to license class and mode of operation. No. 24023—$1.95

order today from comtec BOOKS

More Details? CHECK-OFF Page 126
Many thousands of you have become very familiar with the various Radio Society of Great Britain books and handbooks, but very few of you are familiar with their excellent magazine, Radio Communication.

This is the oldest and most widely read British amateur radio magazine. Published monthly it provides complete coverage including such popular features as: Technical Topics, a monthly survey of the latest ideas and circuits, Four Meters and Down, a rundown of the latest in VHF and UHF and much more.

It includes numerous technical and construction articles in addition to a complete rundown on the month's events in amateur radio. Surely a most interesting addition to your amateur radio activities.

We can now offer this fine magazine to you along with the other advantages of membership in the RSGB (such as use of their outgoing QSL Bureau) for $9.60 a year.

book division

comtec

Box 592 • Amherst, New Hampshire 03031

best fits your requirements for power and physical size.

Design A is capable of handling 2 kW PEP; however, it should not be used if 1 kW continuous key-down operation is contemplated. Design B is electrically similar to Design A. However, it has an outboard 20-meter coil to reduce excessive core heating. This configuration will handle key-down inputs of 1 kW for prolonged periods.

Design C is capable of handling the greatest power (3 kW PEP) and is the most efficient design. An outboard coil is used for 10, 15 and 20 meters. The toroid is used on only 80 or 40.

All circuits are designed to be used with tubes which operate at voltages between 3,000 and 1,800 Vdc at peak current up to 1 ampere. For higher voltages and lower currents tap positions will require adjustment.

The no. 115 2-kW toroid kit contains a special 2-inch toroid core, end spacers, Teflon sleeve and wire plus complete instructions; $16.95 from Redline Electronics, 3498 East Fulton Street, Columbus, Ohio 43227. Also available are a bifilar filament choke with 30-amp rating, catalog no. 421, priced at $7.95; and 1.5-amp plate rf choke (2.5 to 55 MHz), catalog no. 417, priced at $6.95.

base-station control extension

The new XR-4 remote extension from Alpha Electronics is designed to enhance the efficiency and convenience of your
THE GALAXY 550A
MORE POWER, MORE FLEXIBILITY FOR THE
Fixed Station...

GT-550A Transceiver
Order No. 855 Ham Net $495.00
The GT-550A is the best transceiver on the market for the money. Bar none. Costs just $495.00 and delivers 550 watts of power. Operating either fixed station or mobile, this transceiver is guaranteed to have a top frequency stability after warm-up. We're so proud of the stability we include a graph with each GT-550A showing the purchaser how stable his radio was when it went through final check. 550 watts SSB; 360 watts CW; sensitivity better than .5 uv for 10db S-N/N; stable -45db carrier suppression; 25 KHz calibrator and vox option; no frequency jump when you switch sidebands.

RF550A contains high accuracy watt meter; calibrated in 400 and 4,000 watt scales; switch for forward or selected power; switch to select 5 antennas or dummy load. Order No. 857 Ham Net $75.00

RV550A is a solid state VFO. Function switch selects the remote unit to control Receive-Transmit frequency independently. Order No. 856 Ham Net $95.00

SC550A Speaker Console with headphone jack. AC400 power supply will mount inside. Order No. 858 Ham Net $29.95

AC400 Power Supply is heavy duty solid state to operate GT-550A at full power, on SSB or CW, and with switch selection of 115/230 VAC, 50/60 Hz input voltages. Order No. 801 Ham Net $99.95

Hy-Gain's Super Thunderbird TH6DXX
- "Hy-Q" Traps Up to 9.5db forward gain 25db front-to-back ratio SWR less than 1.5:1 on all bands Takes maximum legal power 24-foot boom. Order No. 389 Ham Net $179.95

Hy-Gain's 18 AVT/WB
- Wide band performance. 80 through 10 meters Three Hy-Q traps Top loading coil True 1/4 wave resonance on all bands SWR of 2:1 or less at band edges. Order No. 386 Ham Net $59.95

Hy-Gain's Thunderbird TH3Mk3 (not shown)
- "Hy-Q" traps Up to 8db forward gain 25 front-to-back ratio Takes maximum legal power. Order No. 388 Ham Net $144.95

Hy-Gain's 400 Rotator/Indicator
- Handles large beams and stacked arrays with ease—up to 10 times the mechanical and braking capability of any rotator on the market. Order No. 400 Ham Net $189.95

ARROW ELECTRONICS, INC.
900 Broad Hollow Rd. 207-02 Northern Blvd.
Farmingdale, LI New York 11735 Bayside, New York 11361

More Details? CHECK-OFF Page 126
repeater system. The unit features center button push-to-talk handset, a choice of colors, automatic monitor of the tone function, transmit indicator light and volume control. In addition, the XR-4 control extension is available with several options, including intercom system, multifrequency switching, handset volume control and choice of microphone types.

Of special interest is the provision that makes it possible to use the unit (with an add-on module) as a fully amplified remote on a telephone line. The XR-4 may be easily connected into any base station or dc remote through an 8-conductor cable. Cable length is limited only by line loss and receiver or remote amplifier output power; distances greater than 300 feet are often achievable.

The XR-4 base-station control extension is priced at $89.50 from Alpha Electronic Services, Inc., 8431 Monroe Avenue, Stanton, California 90680. For more information use check-off on page 126.

high-density plugboards

Vector Electronic Company has just announced a new high-density Plugboard series for mounting DIPs and discrete components. The Plugboards are made from glass epoxy or phenolic and are punched with an overall grid of .042-inch diameter holes located on 0.1-inch
HAVE YOU EVER SEEN
VHF COMMUNICATIONS?

Not too many U. S. Amateurs are familiar with the World's outstanding VHF-UHF magazine.

Published quarterly in West Germany this English Language magazine has become well renowned as the authority in the field. Each issue contains a number of state-of-the-art projects such as converters, transmitters and receivers. Many of these projects are available in kit form from the publisher making their construction even easier.

1 Year (four issues) only $3.50
Sample copy just 50¢

All subscriptions cover the current calendar year. February, May, August, November

VHF COMMUNICATIONS
BOX 283
FORESTDALE, MASS. 02644
A New Magazine?

Not really. New in the U.S.A. perhaps, but very well known in Great Britain and now being offered to you here.

RADIO CONSTRUCTOR is almost exclusively construction material. Clearly written, concise articles give you full details on:

- Audio Construction Projects
- Receiver Construction Projects
- Transmitter Construction Projects
- Test Equipment Projects
- Radio Control Projects
... and much more

Try a subscription to this interesting magazine, we are sure that you will not be disappointed.

ONE YEAR SUBSCRIPTION — $6.50

Write
RADIO CONSTRUCTOR
Greenville, N. H. 03048

Name ...
Address ..
City .. State
Zip ..

centers. The boards will accommodate any component with lead spacing on 0.1-inch multiples. As a result, integrated circuit packages or sockets may be mounted in any required density. Discrete components or hardware items such as test jacks and clips may be located anywhere on the board without fear of interfering with any pre-etched circuitry.

The new boards are offered with a choice of etched nickle and gold-plated contacts, Elco Varicons or Vector edge pins. Along with the Plugboards Vector is also supplying mating receptacles with a choice of solder-eye termination or square posts for wrapped wire connections.

The company also makes a full line of other accessories for the cards including rack-mounted cages and module cases for housing the boards, IC sockets, and various types of terminals which will fit the boards. Pricing of the new Plugboards ranges from $6.00 to $8.00, depending upon the type of board. For more information, use check-off on page 126, or write to the Vector Electronic Company, 12460 Gladstone Avenue, Sylmar, California 91342.

Crystal CW Filter

The latest addition to the crystal-filter line offered by Spectrum International is the new KVG XL10M, a ten-pole 500-Hz CW filter with superb skirt selectivity. Near-Gaussian response to -6 dB eliminates ringing; built-in matching transformers eliminate the need for external inductors.

The center frequency of the new crystal filter is 9.0 MHz; bandwidth at -6 dB is 500 Hz. Shape factor (6:60 dB) is 2. Insertion loss of the XL10M is 10 dB maximum; ultimate rejection is 80 dB minimum. The XL10M is priced at $59.95 from Spectrum International, Post Office Box 87, Topsfield, Massachusetts 01983. For more information on the XL10M as well as other crystal filters and crystal discriminators, use check-off on page 126.
The Galaxy 550A Total System

GT-550A Transceiver
The GT-550A is the best transceiver on the market for the money. Bar none. Costs just $495.00 and delivers 550 watts of power. Operating either fixed station or mobile, this transceiver is guaranteed to have a top frequency stability after warm-up. We're so proud of the stability we include a graph with each GT-550A showing the purchaser how stable his radio was when it went through final check. 550 watts SSB; 360 watts CW; sensitivity better than .5 uv for 10db S-N/N; stable—45db carrier suppression; 25 KHz calibrator and vox option; no frequency jump when you switch sidebands. Order No. 855 Ham Net $495.00

RF550A contains high accuracy watt meter; calibrated in 400 and 4,000 watt scales; switch for forward or selected power; switch to select 5 antennas or dummy load. Order No. 857 Ham Net $75.00

RV550A is a solid state VFO. Function switch selects the remote unit to control Receive-Transceive-Transmit frequency independently. Order No. 856 Ham Net $95.00

SC550A Speaker Console with headphone jack. AC400 power supply will mount inside. Order No. 858 Ham Net $29.95

AC400 Power Supply is heavy duty solid state to operate GT-550A at full power, on SSB or CW, and with switch selection of 115/230 VAC, 50/60 Hz input voltages. Order No. 801 Ham Net $99.95

The FM-210 2 Meter Transceiver
Capability...That's what you purchase from Hy-Gain/Galaxy. Top performance from the first mass produced 2 meter transceiver. Fixed or mobile, the FM-210 will provide maximum pleasure with minimum investment. There's a full 10 watts. And all American made, too! No parts problems and backed by Hy-Gain's famous Customer Service!

The PA-210 2 Meter 35 Watt Mobile Amplifier
This all new ruggedized solid state two meter mobile amplifier provides 35 watts output to greatly increase your communication range. The PA-210 is a must for areas where no repeater is available. The PA-210 is designed as a companion for the FM-210. (When used as a system, the AC-210 power booster is not required.) A unique circuit protects the output transistor from voltage spikes and surges. All change-over relay functions are internal and controlled by FM-210 circuitry through a connecting cable.

HAM SHACK AT TEL-APPLIANCE CENTER, INC.
1966 Hillview St. / Sarasota, Florida 33579 / 813—955-7161
NEW!
1971 EDITIONS
Popular
HOWARD SAM'S
Handbooks

TRANSISTOR SUBSTITUTION HANDBOOK
(11th Edition)
by the Howard W. Sams Engineering Staff. This
updated guide lists over 100,000 substitutions.
Tells how and when to use substitute transis-
tors. Also includes manufacturers recommend-
dations for using popular replacement transistor
lines. Computer-compiled for accuracy. 160
pages; 5½ x 8½; softbound.
$2.25 Postpaid

TUBE SUBSTITUTION HANDBOOK
(14th Edition)
by Howard W. Sams Engineering Staff. The
most complete, up-to-date DIRECT tube substi-
tution guide available, including more than
12,000 substitutions for all types of receiving
tubes and picture tubes. Instructions accompa-
nying each section guide the reader in
making proper tube substitutions and explain
how to cross-reference between sections for
other substitutes. 96 pages; 5½ x 8½; softbound.
$1.75 Postpaid

Order these useful books today
from
book division
comtec
Box 592 • Amherst, New Hampshire 03031

break-in cw system

The new QSK MK II is a station
control system that permits you to hear
other stations between your transmitted
dots and dashes at speeds up to 60 wpm.
The unit can be used with virtually
any exciter/power-amplifier and receiver
combination to provide high-speed
antenna switching, exciter keying and
receiver isolation. The QSK MK II will
operate on all bands with no adjustment;
the unit has been proven in traffic,
contest and DX work.

The 8-transistor, 9-diode timing and
sequencing circuit assures cold switching
of the vacuum relay (5-kW rating). The
unit features negligible losses and includes
a built-in 117-Vac power supply. $119.95
from your dealer, or write to Dynamic
Technology International, Inc., 8 Fellow-
ship Road, Cherry Hill, New Jersey
08034. For more information use check-
off on page 126.

communications receiver

The new Drake model DSR-1 receiver
is a commercial grade communications
receiver employing the most up-to-date
solid-state devices and circuitry offering
continuous coverage from 10 kHz to 30
MHz. The received frequency is indicated
by six Nixie tubes to 100 Hz. All fre-
quency injections are controlled by a
phase-locked digital synthesizer which
allows incremental frequency selection in
10, 1 and 0.1 MHz steps. The remaining
zero to 0.1 MHz is continuously adjust-
able from the front panel by a highly
stable variable oscillator. Modular con-
struction on easily accessible printed-
circuit boards is used throughout.

The large use of dual-gate mosfet
AEC antennas are value engineered for maximum performance per dollar. Send for free fact sheets. Order direct or see your nearest dealer. Custom arrays quoted.

YAGIS—6 and 2 METERS
6M - 4 elem. on 11.5 ft. boom
6MY - $21.95
2M - 6 elem. on 7.5 ft. boom
2MY - $14.95
Stack - 2 and 4 bay 2M
2 bay 6M

COLINEARS—2 METERS
3 elem. mobile
2CLA $15.95 (3/8 in. x 24)
w/ball and spring $23.90
5 elem. base station (illus.) w/gnd radials $29.90

5/8 WAVELENGTH VERTICALS—2 METERS
2MM mobile - $14.95 ; 2MMa mobile deluxe
w/spring - $19.95 ; 2MB base station w/gnd. radials - $18.95
Specify UHF bulkhead mount 5/8 in. or 3/8 in. adjustable headspace mount w/20 ft. RG-58 and PL259

QSK Mk II

... for the ULTIMATE in CW OPERATION

The QSK Mk II is a station control system that will permit you to hear other stations between your transmitted dots and dashes at speeds up to 60 wpm ... full break-in cw!

* Provides high speed antenna switching, exciter keying and receiver isolation
* All band operation—no adjustments, simple installation, fully assembled
* Will not cause TVI, cross modulation or receiver desensitization
* Use with virtually any exciter/PA and transceiver combination
* Proven in traffic, contest and DX work.
Changes ordinary QSO’s into a mode that is as effective as a telephone conversation!

8 transistor 9 diode printed timing and sequencing circuit assures cold switching of vacuum relay. 5 kw rating. Negligible losses. 110 vac internal power supply. 4 x 5 x 6 inch metal enclosure. UHF and phono connectors. See your dealer or factory direct. Allow two weeks for shipping. N.J. residents add 5% tax.

$119.95 Post Paid U.S.A.

DYNAMIC TECHNOLOGY INTERNATIONAL, INC.
8 FELLOWSHIP ROAD, CHERRY HILL, N.J. 08034

More Details? CHECK-OFF Page 126
NOW!
IS THE TIME
to get a binder
for your 1971 issues

Don't lose them . . .
Don't let them get
dog-eared & dirty

Only $3.95 each
or
3 for $10.00

 Also Bound Volumes for
1969 & 1970 $14.95 each

HAM RADIO MAGAZINE
GREENVILLE, N. H. 03048

transistors in the DSR-1 contributes to
the receiver's superior intermodulation,
avc, wide dynamic range and overload
performance. The front panel controls
allow the operator to select frequency,
a-m or ssb product detector, i-f band-
width, af gain, bfo pitch, fast or slow avc,
manual rf gain and the highly effective
Drake series-gate noise blanker. Isb (independent
sideband) is a built-in feature of
the DSR-1. Separate i-f crystal filter, i-f
amplifier and audio output circuits allow
two simultaneous communication chan-
nels to be used on one frequency assign-
ment, doubling the information receiving
capacity.

Consideration in the design of the
Drake DSR-1 has been given to special
customer requirements. Accessories and
space have been reserved in the DSR-1 so
that performance and operating modes to
fill special customer needs can be accom-
modated. For more information use
check-off on page 126, or write to the
R. L. Drake Company, 540 Richard
Street, Miamisburg, Ohio 45342.

high-voltage
solid-state rectifiers

You can now replace a large selection
of high-voltage mercury and vacuum tube
rectifiers with Semtech's solid-state sili-
con-rectifier stacks. Designed to last the
Station Console puts you in COMPLETE CONTROL

Model C-4 Amateur Net $299.95

Puts complete station control at operator's fingertips...

- 24 hour digital clock—lighted, shows correct time to the second
- Solid state resettable timer flashes light at identification intervals
- Station power control with eight 120 VAC and two 240 VAC receptacles, front panel controlled heavy duty power contractor
- Equipment control switch for changing exciters, rcvs., etc.
- Directional RF wattmeter with 200 or 2000 W full scale
- Built-in rotor control for Ham-M
- Electronic phone patch gives const. xmt input, works PTT, meets phone co. requirements
- Remote motor-driven coax switch selects from 5 antennas

Dimens: 10½” W x 5½” H x 12¼” D. Wt. 24 lbs.

Available at your local distributor.

R. L. DRAKE COMPANY
540 Richard Street
Miamisburg, Ohio 45342

FOR THE MAN WHO TAKES CW SERIOUSLY.

model KB-1 • $265 net

FOR YOU, ONLY THE BEST WILL DO. YOUR TRAFFIC, YOUR QSO'S MUST BE PERFECT. THIS IS THE KEYER WHICH WILL DO IT FOR YOU. PERFECT LETTERS AND SPACES, ALL AUTOMATICALLY. 12-72 WPM. KEYS POSITIVE OR NEGATIVE LOADS. BUILT-IN MONITOR OSC/AMP FOR SPEAKER. WEIGHT CONTROL TO SUIT YOUR PREFERENCE. ONE-YEAR PICKERING WARRANTY.

READ THE QST WRITEUP ON THE KB-1 IN THE AUGUST, 1970 ISSUE. THEN SEND FOR OUR ILLUSTRATED BROCHURE ON THE KB-1.

TO ORDER, SEE YOUR AMATEUR EQUIPMENT DEALER, OR ORDER DIRECT FROM FACTORY. YOU MAY USE YOUR MASTERCHARGE OR BANKAMERICAN. SIMPLY GIVE US YOUR ACCOUNT NUMBER.

YOUR CW SENDING DESERVES THE BEST ORDER YOUR KB-1 NOW!

PICKERING RADIO CO.
Post Office Box 244
Portsmouth, R.I. 02871

More Details? CHECK—OFF Page 126
ANNOUNCING A NEW DIGITAL KEYER

Featuring, squeeze keying, dot-dash, memories, transistor and relay output, variable pitch keying monitor built with in spkr, regulated power supplies, 5 transistors, lifetime guaranteed cabinet and a warranty that is unequalled. Logic board and power supply monitor board can be purchased separately. Send brochures for.

DIGITAL TILT

4700 4.2 input NAND... 35 7410 3-3 input NAND... 35
4702 4-2 input NOR... 35 7420 2-4 input NAND... 35
4704 Hex Inverter... 39 7440 2-4 input Buffer... 35
4711 BCD-to-Decimal Decoder... 2.00
4742 BCD-to-Decimal Decoder... 1.72
4747 BCD-to-7-Segment Decoder... 1.72
4751 2-5 decoder... 35 7408 3-input AND-OR-INVERT... 35
4754 4-2 decoder... 35 7409 4-input AND-OR-INVERT... 35
4772 JK MS Flip Flop... 50 7475 Quad Latch... 1.35
7493 Dual JK Flip Flop... 70 7476 Dual JK Flip Flop... 80
7490 Dual Flip Flop... 75 7477 Dual JK Flip Flop... 75
7493 4-Bit Binary Counter... 2.00
7495 8-Bit I.3 Flip Shift Register... 1.50

IN DUAL-IN-LINE PACKAGES

5000 2-4 input NAND... 35 7421 3-3 input NAND... 35
5002 4-2 input NOR... 35 7422 2-4 input NAND... 35
5004 Hex Inverter... 39 7442 2-4 input Buffer... 35
5041 BCD-to-Decimal Decoder/Driver... 1.72
5042 BCD-to-Decimal Decoder/Driver... 1.72
5051 2-5 decoder... 35 7408 3-input AND-OR-INVERT... 35
5072 JK MS Flip Flop... 50 7475 Quad Latch... 1.35
7493 Dual JK Flip Flop... 70 7476 Dual JK Flip Flop... 80
7490 Dual Flip Flop... 75 7477 Dual JK Flip Flop... 75
7493 4-Bit Binary Counter... 2.00
7495 8-Bit I.3 Flip Shift Register... 1.50

DIAGNOSTIC

230 2-4 input NAND... 35 6750 3-3 input NAND... 35
930 Hex Inverter... 39 9464 4-2 input NAND... 35
962 3-3 input NAND... 35 9093 Dual JK Flip Flop... 37
945 RSJK Clock Flip Flop... 50

LINEAR IC

7412 6-OP AMP... 132 7486 OP AMP... 6.87
7414 6-OP AMP... 6.87 7485 OP AMP... 6.87

For more details, check-off page 126.

PORTABLE VHF-FM RADIO

Aerotron, Inc. has announced the first of a series of shirt-pocket size, hand-held, two-way vhf-fm radio equipment. The new Aerotron "600" series is compact, durable and easily serviced. The unit features separate audio for noisy environments, and is available in the frequency range of 146 to 174 MHz. Test jacks make possible all important

CONNECTICUT HAMS

The Roger S. Miner

SURPLUS ELECTRONICS COMPANY

246 NAUGATUCK AVENUE — MILFORD, CONNECTICUT 06460
RSGB Books keep you up to date!

Radio Communication Handbook
Here is amateur radio's most complete handbook — the one that sets the standards for all the others. Twenty Chapters covering all phases of radio communications.

832 pages — hardbound — $12.95

RADIO DATA REFERENCE BOOK
by G. R. Jessop, G6JP
Here in a 148 page book is one of the most complete compilations of radio and electronic charts, nomographs, formulas and design data available anywhere. Here is a book that will probably pay for itself the first time you use it. Whether you design, build or operate, this volume definitely belongs very close to your workbench or operating table.

Only $3.00

RSGB VHF — UHF MANUAL
G. R. Jessop, G6JP
New! 1971 Edition. Probably the most comprehensive work of its kind ever produced. Included is simple material for the beginner in VHF and advanced material to satisfy the most experienced and critical reader. A wide range of information is included covering such topics as propagation, tuned circuits, mobile equipment, single sideband antennas, more information than ever before. Previous editions of this book have set a high standard in this field for a long time and this edition is sure to be no exception.

Just $5.95

AMATEUR RADIO CIRCUITS BOOK
by G. R. Jessop, G6JP
Have you ever spent half an hour or so going through all kinds of handbooks and magazines looking for a good basic amplifier or oscillator to put into that new design of yours? In this well organized collection you will find several examples (using both semiconductors and vacuum tubes) of each type of circuit you might need. All of this is offered in a rugged little book which has a spiral binding permitting it to lie flat while being used.

Just $2.50

AMATEUR RADIO TECHNIQUES
by J. Pat Hawker, G3VA
Do you have the time to review all the dozens of amateur and commercial magazines which are brought out each month to collect the best of their many good new ideas. Here it has already been done for you in this very complete collection of material taken from a number of periodicals. It is presented in a most useful and well organized manner. Chapter headings include Semi-conductors, Receivers, Transmitters, Oscillators, Antennas, Power Supplies and Test Equipment.

Only $3.75

Order these fine books from

comtec
Box 592 • Amherst, New Hampshire 03031

More Details? CHECK-OFF Page 126

October 1971
A NEW TRANSMATCH - MODEL UT-1

A New Universal Transmatch from the ANTEC COMPANY

- **80 thru 10**, including all WARC
- **2200, PEP, SWR 1.1, any frequency**
- **provides 50-70 OHM reactance load**
- **fully guaranteed, made in U.S.A.**

Write for details to:

ANTEC COMPANY, INC.
67 Briarcliffe Road, Buffalo, New York 14225
Tel: (716) 837-1480

Solid state RTTY terminal unit Model FS-1A. Completely wired and tested. Built on a 5" x 6" printed circuit board we use top quality components throughout. This hot solid state unit features a 5002 input tuned filters (standard mark and space freq. 2125, 2975 Hz or 2125, 2295 Hz specify shift when ordering) reversing switch output for scope monitoring, and drives selector magnet directly. Power requirements 12 VDC @ 65 MA. Factory warranty and repair service on all models and kits Model FS-1A wired and tested $39.95 Power supply for above Model PS-1A Solid State regulated 12V @ 1A. $14.95 Teletype Paper for Model 15 & 19, 3 copy rolls. Box of 12 rolls $5.00 Teletype Tape 7/8" wide. Box 6 rolls $3.00 Computer Tape 1/2", Magnetic Tape $1.25 per roll Nickel-Cad battery 1.4V @ 7.5 Amp Hr. $2.75

SEND FOR OUR LATEST CATALOGUE

BOB-FRANK ELECTRONICS
407 RITTER ROAD
HARRISBURG, PA. 17109

universal transmatch

The UT-1 Transmatch announced by the Antec Company is designed to operate from 80 through 10 meters, providing an SWR of 1:1 at any frequency. Power handling capability of this new antenna tuner is 2,000 watts PEP. With a UT-1 in the transmission line, harmonics from your transmitter are suppressed an additional 25 dB; the average signal-to-noise ratio of your receiver is improved by 5 dB because of the additional tuning at the front end.

The UT-1 is easily switched from one band to another, and will provide a 50- or 70-ohm resistive load to your transmitter at any frequency from 80 through 10. The UT-1 can be used with any type transmission line, coaxial or balanced, and is guaranteed for one year. Priced at $94.95 from Antec Company, 67 Briarcliffe Road, Buffalo, New York, 14225, or use check-off on page 126.
Get your slow-scan amateur TV

from Chuck, W8UCG/WOG

ELECTRONIC DISTRIBUTORS, INC.
Midwest's Largest Communications Dealer for Over 32 Years
1960 PECK ST. • TEL. 616-726-3196 • MUSKEGON, MICH. 49441

For optimum voice power and clarity

COMDEL
beverly airport
beverly, mass.

MODEL CSP-11
PRICE $120

Simply connect the Comdel CSP-11 between your audio source and equipment and get instant voice clarity with a 10 dB increase in talk power. Unlike conventional speech clippers the CSP-11 tailors the audio bandwidth and introduces no harmonic distortion. It is equally effective in Audio AM, FM and SSB systems. For further information call or write.
HAL DEVICES

HAL TOUCHCORDER II KIT $55.00

Complete parts kit, excluding keyboard, for the W4UX CW code-typers. All circuitry on one 3 x 6" G10 glass PC board. Plug-in IC sockets. Optional contest ID available, $35.00. Watch for announcement of the new HAL code-typers, both Morse and RTTY.

HAL ARRIL FM TRANSMITTER KIT

Drilled, plated, glass epoxy HAL PC boards. 2N5913 final transistor. RF detector with 0-1 ma. meter added. All parts, and the RF detector and meter only $55.00 + shipping. Cabinet and crystals excluded. Board only $7.50. Write for details.

HAL SSTV SCAN CONVERTER

Parts kit for the W3EFG circuit allowing use of fast scan vidicon camera for SSTV. Drilled, plated, glass epoxy PC boards. All parts including power supply $55.00 + shipping. Write for details.

DOUBLE BALANCED MODULATOR KIT

For the DBM in March 1970 Ham Radio 7/B x 2" drilled G10 glass PC board. 4 HP 2800 hot carrier diodes matched by HAL. 2 Indiana General CF 102-01 toroids. Wire and instructions included. $6.50 + shipping.

HAL MAINLINE ST-5 RTTY TU

ST-5 kit now includes drilled G10 glass boards, custom Thordarson transformer, meter and metering components. Boards accept both round and DIP 709 IC's. $50.00. Boards only $6.00. Shipping extra.

HAL MAINLINE AK-1 AFSK OSC

HAL now offers a parts kit for the AK-1 AFSK osc. Drilled G10 glass PC board plugs into 12 pin edge connector for compatibility with the HAL ST-6, or for ease of use alone. Requires 12vdc. $27.50. Board only $4.00. Shipping extra.

HAL MAINLINE AK-1 AFSK OSC

HAL ID-1 REPEATER IDENTIFIER

TTL logic. Power line frequency counter for 3 minute or less timing and control. Easily reprogrammable diode ROM uses only 27 diodes (depending on call) to send DE "any call". Low impedance audio with volume and tone control. All circuitry including PS on small G10 glass PC board. Write for full details. . $75.00 Wired.

ORDERING INFORMATION

Catalog, including photos, of all items 24¢ postage. Please add 75¢ on parts orders, $2.00 on larger kits. Shipping via UPS when possible. Give a street address.

HAL DEVICES, Box 365H Urbana, IL 61801
Phone 217-359-7373

HAL MAINLINE ST-6 RTTY TU

Complete parts kit for the W6FFC ST-6 now includes all parts except cabinet. Only 7 HAL circuit boards (drilled G10 glass) for all features. Plug-in IC sockets. Custom transformer by Thorndason for both supplies, 115/230V, 50-60Hz. $135.00 kit. Screened table or rack cabinet $26.00. Boards and manual $16.50. Shipping extra. Wired units available. Write for full details.
4CX250B New pair $24, 6907 New pair $20. 4CX250 R like new pair $20, 10-000A like new pair $55. Guaranteed. WA9SPA, 5223 S. Luna, Chicago, Ill. 60638.

COLLINS KWM-2, 316F2, W/NB and Waters Q-Mult. $700.00, 62 S-1 $550.00, 32 B-5 $250.00, 30 L-1 $350.00. SP600 JX-17 $285.00, Bruce Bouvier, 2609 Finlawd Avenue, Pennsauken, N. J. 08109. 609-662-6575.

THE RADIO ASSOCIATION OF ERIE, PA, announces their Annual Hamfest on Saturday, October 9, 1971 at Sara Coyne Restaurant, 44 Peninsula Road (on the Peninsula) from 6:00 p.m. to 7 p.m. (eat at 7:00 p.m.) Buffet style dinner, $4.50 donation per person. Prizes, Guest Speakers, Awards. For full details or advance reservations contact George Dickey, KJ3FL at the Radio Association of Erie, Inc. Post Office Box 844, Erie, Pennsylvania 16512.

TELETYPE PICTURES FOR SALE. Vol. 1 $1.00. Vol. 2 $2.00. Vol. 3 $1.50. All for $4.00. Perforated tapes available. 200 different pictures, WDGDV-B, 2210-30th Street, Rock Island, Illinois 61201.

THE ANNUAL TEXOMA HAMARAMA will be held again this year at Lake Texoma Lodge, Kingston, Oklahoma on October 29, 30 and 31st. Technical talks, demonstrations and special interest meetings. Booths are available at no cost to vendors providing they are registered at the Lodge. Reservations for accommodations should be sent directly to The Lake Texoma Lodge, Kingston, Oklahoma 73439. All Pre-registrations are $2.00 and should be sent to Texoma Hamarama, P. O. Box 246, Kingston, Oklahoma 73439, before October 25th.

TELETYPE #28 LXR4 reperforator-transmitter "as is" $100; checked out $175. Includes two 3-speed gearshifts. Alltronics-Hamford Co., Box 19, Boston, Mass. 02101. 617-742-0048.

THE FOUNDATION FOR AMATEUR RADIO, Inc., an organization consisting of 25 amateur radio clubs all located in the greater Washington, DC, metropolitan area, will hold its annual HAMFEST on Sunday, October 24, 1971 from 10 AM to 5 PM at the Gaithersburg Fairgrounds in nearby Gaithersburg, Maryland just off Interstate 75.

WORLD QSL BUREAU — see ad page 123.

MOUNTING BRACKETS for switches, potentiometers, etc. 6 for $1.00. Retelkex, Box 7119, San Diego, California 92107.

TUBES 7289 (3CX100A5) ceramic replacement for 2C39 — $3 each or $30 dozen. W4SOD, Box 73, Folly Beach, S. C. 29439.

EXCLUSIVELY HAM TELETYPE — 19th year, RTTY reader, news, DX, VHF, classified ads. Sample 30¢. $3.00 per year. Box 837, Royal Oak, Michigan 48066.

SURPLUS MILITARY RADIOS, Electronics, Radar Parts, tons of material for the ham, free catalogue available. Sabre Industries, 1370 Sargent Ave., Winnipeg 21, Manitoba, Canada.

SALE: SIGNAL GENERATOR GR804C, 8-330 MHz, 5 bands plus spare, microvolt attenuator. CW, AM $125. Frequency counter. Berkeley 554S. 100 Kc. 5 column neon reader. $100. Perfor board pre-scaler to extend range to 10 MHz $25. Mico pantograph engraving machine with chest of 7 fonts $150. Vanguard Labs. 196-23 Jamaica Avenue, Hollis, N. Y. 11423.

MECHANICAL FILTERS: 455 kHz. 2.1 kHz $18.95. 300 Hz $22.95. J. A. Fredericks, 311 South 13th Avenue, Yakima, Washington 98902.

VIRGIN ISLANDS TRANSMITTING AND LISTENING SOCIETY (VITALS) will conduct a mini-expedition during the period 9-17 October to PBJ/FS7/VP on working MM as well on 20-15-10 CW/SSB. QSL via Command Communications, Box 2574, St. Thomas, VI 00801. Principals are: KV4BV, KV4EY, KV4FR and other possibles.

TORIODS 44 and 88 mhy. Unpotted. 5 for $1.50 ppc. W. Weinschenker, Box 353, Irwin, Pa. 15642.

TELL YOUR FRIENDS about Ham Radio Magazine.
Semiconductors
- HEP • FAIRCHILD • RCA • MOTOROLA • NATIONAL

POPULAR IC's

<table>
<thead>
<tr>
<th>IC</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC1550G</td>
<td>$1.80</td>
</tr>
<tr>
<td>CA3020A</td>
<td>$1.77</td>
</tr>
<tr>
<td>CA3020</td>
<td>$3.07</td>
</tr>
<tr>
<td>CA3020A</td>
<td>$3.92</td>
</tr>
<tr>
<td>MC1306P</td>
<td>$2.10</td>
</tr>
<tr>
<td>MC1305P</td>
<td>$1.70</td>
</tr>
</tbody>
</table>

NEW ADDITION

<table>
<thead>
<tr>
<th>IC</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPF102</td>
<td>$1.00</td>
</tr>
<tr>
<td>MPF105/2N5459</td>
<td>$0.96</td>
</tr>
<tr>
<td>MPF107/2N5486</td>
<td>$1.26</td>
</tr>
<tr>
<td>MPF121</td>
<td>$0.85</td>
</tr>
<tr>
<td>3N140</td>
<td>$1.95</td>
</tr>
<tr>
<td>3N141</td>
<td>$1.86</td>
</tr>
<tr>
<td>MFE 3007</td>
<td>$1.98</td>
</tr>
</tbody>
</table>

DIGITAL READOUT

At a price everyone can afford

- Operates from 5 VDC
- Operates directly from TTL
- Will last up to 250,000 hours

NEW ADDITION

PLESSEY IC'S

<table>
<thead>
<tr>
<th>IC</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL610 RF Amp</td>
<td>$5.65</td>
</tr>
<tr>
<td>SL611 IF Amp</td>
<td>$5.65</td>
</tr>
<tr>
<td>SL612 IF Amp</td>
<td>$5.65</td>
</tr>
<tr>
<td>SL615 IF Amp</td>
<td>$5.65</td>
</tr>
<tr>
<td>SL620 Voice operated</td>
<td>$8.30</td>
</tr>
<tr>
<td>AGC device</td>
<td>$8.30</td>
</tr>
<tr>
<td>AGC generator for</td>
<td>$8.30</td>
</tr>
<tr>
<td>SSB receivers</td>
<td>$8.30</td>
</tr>
<tr>
<td>SL63 Audio Amp</td>
<td>$5.53</td>
</tr>
<tr>
<td>SL640 Double Bal. Mod</td>
<td>$10.88</td>
</tr>
<tr>
<td>SL641 SSB Rcvr mixer</td>
<td>$10.88</td>
</tr>
</tbody>
</table>

MC1496 Balanced modulator $3.25

CIRCUIT SPECIALISTS CO.

Box 3047, Scottsdale, AZ 85257
FACTORY AUTHORIZED
HEP-CIRCUIT-STIK DISTRIBUTOR

ACCESSORIES
Noise Blanker, 100 KHz Calibrator, MS-4 Speaker, AL-4 Loop Antenna for 15-1.5 MHz, Transceive Adaptor (T-4XB), DC Power Cord, Crystals.

Solid-State-Programable COMMUNICATIONS RECEIVER

The SPR-4 outperforms the best tube receiver, and has all advantages of solid state design...low power consumption, high stability and reliability.

Model SPR-4 $549.95
Amateur Net

PROGRAMABLE for any interest... SWL, Ham, lab. BC, marine, etc. • Only FETs in signal path • Linear VFO with 1 kHz readout • Covers 150-500 kHz plus any 23 ranges (500 kHz wide) • 500-30 MHz • 10 ranges furnished, others $5.00 each • Coverage easily changed • 3 band-widths: 0.4, 2.4 and 4.8 kHz for CW, SSB and AM • Built-in spkr • Notch filter • 115 or 220 VAC, or 12 VDC • Dimens: 10¾" W x 5½” H x 12¾” D, Wt. 14 lbs.

Available at your local distributor.

R. L. DRAKE COMPANY 540 Richard Street Miamisburg, Ohio 45342

More Details? CHECK-OFF Page 126
MOTOROLA MECL IC'S

MC301G — 5 Input Or/Not Gate $1.50
MC302G — RS Flip Flop (Buffered Outputs) PPD
MC306G — 3 Input Or/Not Gate $1.50
MC307G — 3 Input Or/Not Gate PPD
MC310G — Dual 2 Input Nor Gate $1.50
MC311G — Dual 2 Input Nor Gate PPD

Motorola Differential Amplifier MD1132F Reg. $48.50 $2.00 PPD

Serve Motor, 115/115 VAC, 60 Cycles. No load speed. 1500 RPM. 2" H x 1 1/8" Diam. Brand New. $6.50 PPD

Veeder Root Counters, 4 Digit Front Panel Reset, 115 VAC $4.50 PPD

10 Turn Potentiometers, 3/8" Diam. 250K Ohm $3.50 PPD

CP Clare Reed Relays, CRE 1001 or CRE 1002 $3.50 PPD

Alan Bradley G Pots, 12K Ohm $4.00

Vector Turrets 9 Pin Min., 2 Ring w/components 10/$1.25 PPD

Haydon Timer Motors, 1 RPH, 115 VAC, 3/8" Shaft 2/$1.25 PPD

R F TOROIDS

TOROID ASSORTMENT FOR THE SERIOUS BUILDER — 20 CORES — Only $3.50 PPD.

COLOR CODE

1-C Core
50KHz-5MHz
5-E Core
500KHz-30MHz Red
1-TH Core
2MHz-40MHz White
2-QI Core 10MHz-90MHz Black
1-Q2 Core 10MHz-90MHz Yellow
9-SF Core
1-Misc Core

WE BOUGHT THOUSANDS TO BRING YOU THIS BUY!!!

COPPER CLAD LAMINATES

G10 EPOXY GLASS 1 oz. Copper 1 Side

Pkg. Quant. 3/64" 1/16" 3/32" 1/8"
1 9x12" $1.50 $2.50 $3.50 $5.00
2 6x9" " " "
4 4 1/2 x6" " " " "
6 3 x4 1/2" " " " "

This item postage prepaid.

Every order unconditionally guaranteed.

TRJ RIO Electronics
2614 Lake Shore Dr. LeCroisee, Wis 54601
EXCITING NEW PRODUCTS

MEMORY-MATIC 500 KEYER
Today's newest and most advanced keyer. 500 bit memory allows 40 characters to be stored for automatic calling, contest operation, etc. Instantly store any message. Complete with near-full and overload alarm. Indispensable for the serious contest or traffic operator. Also includes all features of the Space-Matic 21 listed below.

$198.50 wired & tested

SPACEMATIC 21 KEYER

$89.50 wired & tested

ELECTRONIC FEATHER TOUCH KEY
A dramatic new concept. This completely solid-state design detects the mere touch of your finger and eliminates forever such mechanical problems as contact bounce, proper adjustments and dirty contacts. Compact size properly weighted to prevent "walking."

Only $19.95 wired & tested

$22.95 with SPDT switch (required with Memory Matic 500 Keyer)

FREQUENCY MARKER STANDARD
Modern design using latest IC's gives marker signals at 5, 10, 25, 50, 100, 200 or 400 kHz intervals. Complete with highly accurate 400 kHz crystal. Engineered to eliminate unwanted markers. Low power consumption battery operated circuit with high, 3.8 volt P-P, output. Simple front panel calibration. Handsome styled metal cabinet.

$32.95 complete

$22.95 wired & tested; $19.95 kit

Less cabinet, switch, & battery holder

All items sold with 5-year guarantee. Send for free brochures

DATA ENGINEERING INCORPORATED
BOX 1245 • SPRINGFIELD, VIRGINIA 22151

SAROC 7th NATIONAL CONVENTION
JANUARY 6 TO 9 • 1972
FLAMINGO CONVENTION CENTER
LAS VEGAS, NEVADA

SAROC, Flamingo Hotel Room rate $12.00 plus tax, single or double occupancy. Mail to Flamingo Hotel, Las Vegas.

SAROC, advance registration $14.50 per person, regular registration at the door. Flamingo Hotel Late Show, Sunday Breakfast, Cocktail Parties, Seminars and Meetings. Mail to SAROC.

SAROC, sponsored by Southern Nevada ARC, Inc., Box 73, Boulder City, Nevada 89005.

HILTON
LAS VEGAS, NEVADA

118 october 1971

More Details? CHECK-OFF Page 126
WANTED. USED sell G R. year. Box 44065, 391, S. the heart of the Midwest, etc7 Samples
HOOSIER ELECTRONICS Your ham headquarters in
guaranteed, Shure. All
Drake. Hy
Glass arms
LOOKING FOR FULL-TIME America Courses, there are Bandlt
condx. Want Yaesu FRDX,
tronics arch KW SWR Warranty Guaranteed. Madison Electronics. 1508 TriEx.
61 SWAP:
WWV THE
THE
FUNDATION Combiner Adder.
YOUR AD belongs here too. Commercial ads 25¢
COMPANY writes for

FAIR RADIO SALES
P. O. Box 1105 - LIMA, OHIO - 45802

NOW in the USA
KW ELECTRONICS LIMITED
10 Peru St., Plattsburg, N.Y. 12901

FAIR RADIO SALES
P. O. Box 1105 - LIMA, OHIO - 45802

NEW 2M PREAMPLIFIER 12 vdc powered
27 db gain (approximately) noise figure 2.5 will bring most receivers to .1 µv sensitivity
without appreciable noise.
Metal case. ONLY $17.95 ppd.
CRAWFORD ELECTRONICS 302 West Main, Genoa, IL 61035

VARACTORS and VVC's for Amateur Radio Service in Voltage Controlled Oscillators, AFC, remote tuning, variable filters ... try the NEW WAY to TUNE.
write for data sheets
EASTRON CORP.
25 Locust St., Haverhill, MA 01830

NEW SSB MINIATURE CRYSTAL FILTERS—Made U.S.A.
Write us about your crystal filter needs
Model WF-4 Model WF-B
No. Crystals Center Freq. 9.0 MHz 9.0 MHz
Band Width at 6db 2.5 kHz 2.5 kHz
60db/3db Shape 2.0 (45/6) 1.8 max
Ultimate Rejection 45 db 100 db min.
In/Out Termination 120 Ω 140 Ω
PRICE $26.95 $26.95
Matching Crystals USB (9998.5 kHz) or LSB (9001.5 kHz) $2.75 each

WHEATLANDS ELECTRONICS P. O. BOX 343 ARKANSAS CITY KANSAS 67005

A complete line of world famous British equipment Transceivers: separates, and auxiliaries: 160-10M
KW ELECTRONICS

F.M. MOTOROLA GOVERNMENT SURPLUS

R-394 RECEIVER 152-172 MC $14.95 $22.50
T-278 TRANSMITTER 152-172 MC 18.95 24.95
R-257 RECEIVER 25-50 MC 19.95
T-208 TRANSMITTER 25-50 MC 29.95
CY-938 CABINET 7.95 9.95
C-847 CONTROL BOX 8.95 12.95

Send For Our BIG CATALOG No. 71

NEW HAM MAGAZINE: Interested in public service, humanitarian actions and international friendship? Sample issue free. Worldradio, 2509 Donner Way, Sacramento, Calif. 95818, WB6AHU.

THE FOUNDATION FOR AMATEUR RADIO, INC., an organization consisting of 27 amateur radio clubs all located in the greater Washington, DC, metropolitan area, will hold its annual HAMFEST on Sunday, 24 October 1971 from 10 a.m. until 5 p.m. at the Gaithersburg Fairgrounds in nearby Gaithersburg, Maryland just off Interstate 75.

WWY TONE TO LOGIC decoder. Includes two PC boards, construction data, educational project $2. K6BH, 1639 Bowling Lane, San Jose, Ca. 95118.

YOUR AD belongs here too. Commercial ads 25¢ per word. Non-commercial ads 10¢ per word. Commercial advertisers write for special discounts for standing ads not changed each month.

QSLS. SECOND TO NONE. Same day service. Samples 25¢ Ray. K7HLR, Box 331, Clearfield, Utah 84015.

WANTED, USED 811R RCVR any cond. Trade or sell G.R. 1001 Sig. Generator. W0HAQ, RR1, Box 391, Le Claire, Iowa 52753.

SELLING, SEEKING, swapping Ham Gear. Hi-Fi, etc? Subscribe to Electronic Peddler, $1.00 per year. Box 44065, Cincinnati, Ohio 45244.

HOOSIER ELECTRONICS Your ham headquarters in the heart of the Midwest where only the finest amateur equipment is sold. Authorized dealers for Drake, Hy-Gain, Regency, Ten-Tec, Galaxy, and Shure. All equipment new and fully guaranteed. Write today for our low quote and try our personal friendly Hoosier Electronics Service. Dept. G, R R 25. Box 403, Terre Haute, Indiana 47802.

VVC Jennings UCS-375 and UCSL-750 $25 each, guaranteed, with spin knob, counter and limit stops. Swann 350-C wanted, will swap clean Hunter Bandit 2500-G. For sale 6 el. 20 el. 200 el. fiber glass antennas with extra braiding. W6YO, J. W. Wen- glare, 1416-7th Avenue, Delano, Calif. 93215.

LOOKING FOR FULL-TIME EMPLOYMENT If you're a self-starter able to sell excellent Electronic Courses, there are jobs available throughout America and Canada. Write to Bill Weish (W6DBB), 234 S. Orchard, Burbank, CA 91506.

SWAP: NIKORMAT ETN. 55mm 1.2 Lens, 250mm Zoom Tele., 28mm Wide Angle. Strobe, case. Mint condition. Want Yaesu FDX, & FLDX 400's. WBBFUG, 616-548-7587.

"DON AND BOB" new guaranteed goodies. Monarch KW SWR line Bridge 8.88 plus 1/2M postage/ handling; Amphenol PL259, SQ239 3.95/10; Ham-Motor 99.00: TR44 59.95: PB HKP17D11, D13 24-4V 4PDT Relay 1.95 ea.; Westinghouse Fullwave Bridge 300A/200V 29.95; Raytheon 6LQ6/6JE6C 3.50; #14 Antenna Wire 1.95/C: Coax: RG6A/U 10/ft; RG22B/U 20/ft; RG63/10/ft; RG213 15.00/5; QM 250F new discontinued tubes; Industrial Surplus List; Quote Drake, Galaxy, HyGain, Mosley, TriEx, 2 Meter Transceivers. Tempo Kenwood dealer. Prices Collect, Mastercharge, BankAmericard. Warranty Guaranteed. Madison Electronics, 1508 McKinney, Houston, Texas 77002 (713) 224-2668.

NEW HAM MAGAZINE: Interested in public service, humanitarian actions and international friendship? Sample issue free. Worldradio, 2509 Donner Way, Sacramento, Calif. 95818, WB6AHU.

THE FOUNDATION FOR AMATEUR RADIO, INC., an organization consisting of 27 amateur radio clubs all located in the greater Washington, DC, metropolitan area, will hold its annual HAMFEST on Sunday, 24 October 1971 from 10 a.m. until 5 p.m. at the Gaithersburg Fairgrounds in nearby Gaithersburg, Maryland just off Interstate 75.

WWY TONE TO LOGIC decoder. Includes two PC boards, construction data, educational project $2. K6BH, 1639 Bowling Lane, San Jose, Ca. 95118.

YOUR AD belongs here too. Commercial ads 25¢ per word. Non-commercial ads 10¢ per word. Commercial advertisers write for special discounts for standing ads not changed each month.

More Details? CHECK-OFF Page 126

october 1971
AT LAST
THE DYCOMM 10-10
LAND MOBILE

An American made FM Transceiver
For the amateur who needs quality communications
But at a price below the imports

- 10 independent Receive-Transmit Channels
 .34, .82, .88, .94 Transmit — .76, .82, .88, .94 Receive supplied
- Full 20-30 watt output
- Frequency stability .001% —20° to +60°C
- .3μV sensitivity for 20 db quieting
- All solid state
- Control Head 2” x 5” x 6” — Main Unit 2” x 10” x 11”
 Cabling supplied for trunk or other location mount
- FCC type accepted Receiver-Transmitter design

DYCOMM MINI FM BOOSTERS
JUST INSERT BETWEEN YOUR ANTENNA AND TRANSCEIVER,
ADD 12-14 VOLTS AND QSO
ALL WITH AUTOMATIC RF SWITCHING

101-500C "FM BOOSTER"
4-12W input for
12-30W Max output.
Size: 3” x 4” x 4” Price $59.95

101-500D "BLOCK BOOSTER"
8-15W input for
20-55W Max output.
Size: 3” x 4” x 6” Only $89.95

101-500E "BRICK BOOSTER"
1-3.5W input for
10-30W Max output.
Typically 20W out for 2W in.
Low introductory price only $69.95

10-0 100 WATT FINAL
8-10W input for
100W output.
Just $185.00

WRITE TODAY FOR PRICE AND FULL DETAILS ON
THESE DYCOMM PRODUCTS!
NOW!

DYCOMM

SNIFF-IT

Lets you smell RF with your present multimeter. Gives you relative readings from BC to UHF (1mW to 250W).

Just place SNIFF-IT near the RF source. Where it stops is where the trouble is. To tune for maximum power just tune for maximum reading.

ONLY $5.00 Postpaid
Guaranteed to work or your money back

YOU CAN COUNT ON DYCOMM

With the exciting new PSU-13 Frequency Divider/
Prescaler you can extend the range of many
Frequency Counters to 240 MHz or more!

The DYCOMM Model PSU-13 is a high-sensitivity digital VHF frequency divider/prescaler with a divide-by-ten scaling factor. The PSU-13 operates over a minimum frequency range of 10-240 MHz. Inherently sensitive, the PSU-13 will properly operate throughout its frequency range with input levels under 500 millivolts, and is guaranteed to operate at 180 MHz with an input level of 100 millivolts.

Complete with self-contained 110 VAC 60 HZ power supply, the PSU-13 weighs less than 1½" lbs. Attractively finished in modern flat black with white lettering and power cord, the PSU-13 is a natural complement for any existing frequency counter or communications equipment.

JUST $89.95

DYNAMIC COMMUNICATIONS INC.
948 AVENUE E RIVIERA BEACH, FLORIDA 33404
305-844-1323
Let Bill Orr, one of amateur radio's most gifted writers, assist you in improving your station and in answering your questions.

Latest 2nd Edition

ALL ABOUT CUBICAL QUAD ANTENNAS

Only $3.95

VHF HANDBOOK

by William I. Orr, W6SAI; and Herbert Johnson, W6QKI

Complete Handbook devoted to the Very High Frequency spectrum. Covers generation, propagation and reception of VHF signals; modes of VHF propagation including "beyond-ionosphere" and moon-echo transmissions; VHF circuitry; receiver design and construction. Also: VHF transmitter design and construction with powers of 2 watts to 1-kw; test equipment; noise figures; noise generators; Long Yagi parasitic arrays; new 3-band VHF beam for 50-144 MHz.

Just $3.95

NOVICE AND TECHNICIAN HANDBOOK

by William Orr, W6SAI; and Donald Stoner, W6TNS

This clear, easy-to-understand book for the newcomer tells you how to obtain your amateur radio license and get on the air. Covers the story of amateur radio; the quick way to learn the code: step-by-step assembly of inexpensive receivers and transmitters; kit building; sure-fire antennas — and much more! Written in nontechnical language so you can understand it.

152 pages — *$3.95*

1971 4th Edition

BEAM ANTENNA HANDBOOK

For many years the "Bestseller" on beam antennas, this handbook covers all areas of the subject, both theory and practice. This new fourth edition has been updated to insure that the reader has the very latest information available. It includes many special features such as: Correct dimensions — 6 thru 40 meters; Are 40 meter compact beams worth the effort?; Exclusive 25 year bibliography of important beam antenna articles. Whether you plan to build or buy — DX or rag chew — you need this book.

Just $4.95

New 2nd Edition

BETTER SHORTWAVE RECEPTION

by William I. Orr, W6SAI; and Stuart D. Cowan, W2LX

Enjoy the exciting hobby of shortwave listening — this clear, interesting handbook tells you how. Listen to the world news as it breaks direct from Moscow, London, Peking, and other world capitals. Eavesdrop on aircraft, ships at sea, police nets, radio amateurs, and more. Facts about satellites and signals from outer space. How to get the best receiver "buy", how to put up an efficient antenna, where to listen, what to look for.

Just $3.95

S-9 SIGNALS

by William I. Orr, W6SAI

Efficient, low-cost wire antennas for amateurs. Save money, enjoy maximum performance! Contains many simple inexpensive designs for bands 80 through 2 meters. A wealth of good new ideas to improve your signal, and more helpful information per dollar than any book published!

48 pages — *$1.95*

Order now from

comtec BOOKS

BOX 592 AMHERST, NEW HAMPSHIRE 03031

More Details? CHECK-OFF Page 126
Model PT is Supplied Complete with Built-in Power Supply, Transfer Relay, Connecting Cables, Wired and Tested.

Divisions of AEROTRON, INCORPORATED
P.O. Box 6527, Raleigh, North Carolina 27608

TOROIDs — Teletype
Lowest prices anywhere!
88 mly TOROIDs 40/$10, P.d., U.S.A. (5/$2.00)
MACHINES — SUPPLIES — GEARS — TAPE

Write for free literature

WE ACKNOWLEDGE WITH GRATITUDE THESE AND OTHER GENEROUS COMMENTS FROM OUR CUSTOMERS

June 29, 1971 "...I just can’t help but do a little bragging about your towers. I’ve had more compliments on my tower installation, (A56w/HB(18 sq/ft), which concerns your fine tower. I’ve sold three different towers for TV antenna installations. I also influenced several fellow hams to purchase your tower. I’m convinced it’s the greatest on the market and I try to sell it at every opportunity I get . . .”

Robert Eyster, Jr. (K5BGI), Vienna, Oh.

March 6, 1971 "... That A48w/HB(14 sq/ft) is a great tower. It was carrying a full load comprised of stacked 4 element 20 meter, 3 element 15 meter and 3 element 10 meter beams when wind gusts last winter were 60-70 mph. There was only the slightest vibration in the tower. I have a feeling that your 80 mph rating is conservative! Congratulations on putting out such a good product . . .”

Kenneth D. Crimm (K5FBH/4), Sweet Briar, Va.

June 22, 1971 "... I already own a Heights tower which I bought about 5 years ago and erected at my Michigan vacation home. It’s a 44’ telescoping tower with the manual fold-over option. I’ve never been more satisfied with any commercially made amateur product (except perhaps my Collins gear). That’s why I’d like to buy Heights again . . .”

Robert D. Hart (WB2IHA), Norwood, N. J.

March 1, 1971 "... I purchased one of your towers (A48w/HB(11 sq/ft) 2 years ago and I’m extremely happy with it. Because of new antenna plans I wish to convert this to a fold-over model and add additional sections . . .”

Gary Woodhouse (WA2FCA), Leucitown, N. Y.

October 12, 1970 "... regarding the delivery of the special tower construction that I had you fabricate to my specifications. I first of all, wish to say that I am extremely pleased with your performance. As a matter of fact, I am amazed that in this day and age a manufacturer can deliver a product that is so complete and so well designed that it has surpassed my fondest hopes . . .”

John J. Dwyer, Northbrook, Ill.

Thanks from Drake Dimitry, Pres. and the Heights Organization.

HEIGHTS MFG. COMPANY
Almont Heights Industrial Park
4516 North Van Dyke, Almont, Mich. 48003
BRAND NEW FREQ-SHIFT TTY MONITOR

Navy OCT-3: FM Receiver type, freq. range 1 to 26 MHz in 4 bands, cont. tuning. Crystal calib. Reads up to 1500 Hz deviation on built-in VTM. Cost $1100.00 each! In original box, with instruct. book & cord, fob Mariposa, California. . . . $49.50

REDUCED RADIO-RECEIVER PRICES!

Start a Christmas Lay-Away if you wish . . . we will hold them. Every receiver aligned, grtd 99% perfect, and clean. SP-600-JX, double-conversion 540 kHz continuous to 54 MHz, plus crystal control if you wish for your 6 most-favorite stations. In cabinet, $299.50. Less cabinet but with top & bottom covers, $275.00. R900/URR, triple-conversion, 500 KHz to 32 MHz with precision digital tuning and crystal zero-beat and corrector each 100 KHz . . . only $595.00. R90A/URR adds the sharper CW selectivity of mechanical filters, only $795.00.

BRAND-NEW SOLID-STATE SCOPE BARGAINS:

We are now the Distributor for Leader instr. QUALITY-CONTROLLED imports. Warranty is 2 years on parts, 6 mos on labor. We pay the shipping to your door at advertised prices! Here they are:

LBO-301: 3" Portable, triggered, with both vertical & horiz. accurately calibrated. DC-7 MHz pass. 3½ mv rms sensit. Swps 0.2 usec & up. 5/8" x 1/2" x 1/4" 14 lbs. $344.50

LBO-501: 5" triggered, both vert. & horiz. accurately calibrated. DC-10 MHz 7 mv rms sensit. Swps 0.2 usec & up. 11/4" x 9/16" x 1/2" 20 lbs. $339.50

LBO-538: 5" Vectorscope, DC-10 MHz. Hybrid solid-state & tubes. FET's eliminate display bounce from line transients. Clear Vector Pattern display. 11/4" x 1" x 17/" 30 lbs. 779 m-

10X Probes for above: LPB-10X, each 15.90

20-LB NAVY PORTABLE 4 MHz SCOPE AN/USSM-32: 10 Hz to 4 MHz ±2 db. Line 11/4" 50-400 Hz. 3WP1 CRT tube with rectangular mask & graticule. Sensit. 40 mv rms/cm & up, and includes calibrator. 350 nsec video delay line. Input 1 meg, 26 pf. Sweep triggered by signal 3/4 usec/cm & up. 5 choices Z-axis Markers for exact calib. With schem. dwg & op. instruct. Good used at cost if desired, grtd not over $50.) 129.50

—TEKT® & HEWLETT-PACKARD SCOPE BARGAINS:

Ask for our Catalog Category #24!

We have Digital Counters, Aeronautical Test Sets, Audio Test Sets, Oscillators, V/VMs, Precision Meters, Pulse Generators, Signal Generators, Differential Voltmeters, Regulated Power Supplies, Wattmeters, etc. with separate Catalogs for each Category . . . so please ask for your needs by the type of equipment you need! THANKS!

WE ALSO BUY! WHAT DO YOU HAVE?

R. E. GOODHEART CO. INC.

Box 1220-HR, Beverly Hills, Calif. 90213

Phone: Area Code 213, Office 727-5707

signal/one

CX-7A

New "A" model Now Available

Still $2195 — Great New Reliability

Phone/write Don Payne, K4ID

for a trade on your gear

PAYNE RADIO

Box 525 Springfield, Tennessee
days (615)384-5573 • nights (615)384-5643

WE PAY HIGHEST PRICES FOR ELECTRON TUBES AND SEMICONDUCTORS

H & L ASSOCIATES

ELIZABETHPORT INDUSTRIAL PARK

ELIZABETH, NEW JERSEY 07206

(201) 351-4200

WE PAY CASH FOR TUBES

Lewis Paul Electronics, Inc.

303 West Crescent Avenue

Allendale, New Jersey 07401

TELL YOUR FRIENDS ABOUT HAM RADIO

NEW! 1C KEYER

Only $77.50 PPD USA

- Self completing dots and dashes.
- Dot memory for easy keying.
- Precision feather-touch key built-in.
- Sidetone oscillator and speaker built-in.
- Relay output keys 300-V @ 100-ma.
- Keyed time base. Instant start.
- 5-50 wpm. Perfect dot-dash ratio.
- Send QSL or postcard for free brochure.
USED TEST EQUIPMENT

All checked and operating unless otherwise noted, FOB Monroe. Money back (less shipping) if not satisfied.

Alden 419 Precision Graphic Rec. 485
Beckman 5500- Univ. counter-100kHz 125
Fluke Monotronics 207-1 Precision VLF Receiver-Comparator transistorized ... 640
GR720A-Freq. Mtr. 10-300mHz 72
GR821A-Twin-Imp. Bridge 235
GR1419K-Prec. Decade Capacitor 120
GR1432M-Prec. Decade Resistor 75
GR1603A-Z-Y bridge 175
EG&G-Millimike 707-Lab scope to 1000mHz 525
HP175A-50mHz scope-main frame only 450
HP330C-Distortion Anal. 20h2-20kHz 285
HP415B-VSWR indicator/amplifier 115
HP525A-10-100mHz plug-in for above 85
HP525B-100-220mHz plug-in for above 95
HP526B-Time interval plug-in for above 45
Meas 82-20Hz-200kHz. 80kHz-50mHz stand sig gen 275
NE Eng 14-20C-10mHz freq counter (as is less time standard) 180
NE Eng 14-20C-complete, checked 295
NE Eng 14-20C-W/plug-in to 100mHz 355
NE Eng 14-21C-10-100mHz conv for abv 85
NE Eng 14-22C-100-220mHz for abv 95
NE Eng 14-24C-Time interval conv for abv 45
Polarad R microwave rcvr (plug-ins avail) 275
Servo Corp. Servoscope 1100 C tester 280
Tektronix 513D-20mHz scope 275
TS810-U Scope calibrator 72
URM25E-10kHz. 50mHz stand sig gen 195
URM26-3-400mHz stand sig. gen. 225
USM50-22mHz time base scope 145
USM105A-Mil version 14-22C-100-220mHz 525
URM26-3-400mHz stand sig gen 195
USM50-22mHz time base scope 145
USM105A-Mil version 14-22C-100-220mHz 525

(Send SASE for complete list)

GRAY Electronics
P. O. Box 941 Monroe, MI 48161
Specializing in used test equipment

FREQUENCY STANDARD

Only $32.50
(less batteries)
POSTPAID USA

- Precision crystal
- Fully guaranteed
- Markers at 100, 50, 25, 10 or 5 kHz selected by front panel switch.
- Zero adjust sets to WWV. Exclusive circuit suppresses unwanted markers.
- Compact rugged design. Attractive, completely self contained.
- Send for free brochure.

PALOMAR ENGINEERS
Box 455, Escondido, CA 92025

FELL IN AGAIN-LUCKY BUYS. YOU SAVE.

CRYSTALS

100 KC. Fits HC6/U socket, 1 1/2" high.
4 for $15.00; each $4.00
CB receiver, channel 2,4,6 or 17. HC6/U holders.
6 for $3.25; each 49¢
Sockets for HC6/U Crystals
Ceramic 25/$2.25; 10/$1.00
Black bakelite 40/$2.50; 15/$1.00
UG21/U, N type cable male, 4/$1.50; ea. 39¢
UG27/U, N rt. angle 4/$1.50; ea. 39¢
GREMAR, #655, BNC cable male, takes RG-174/U co-ax cable. 4/$1.50; ea. 39¢
RG-174/U, sub-miniature co-ax cable, stranded inner conductor. Ideal mike cable.
6 ft.$5.50; 23 ft.$4.75; ea.$1.00; 50 ft.$7.75; ea.$2.00

MICROPHONES & HEADSETS

Hi-impedance dynamic, with push-to-talk switch, 12", 3 conductor, shielded, curly cord. Made for HALLICRAFTERS.
4 for $21.50; ea. $5.75
Dynamic, white plastic, 1 1/2" x 3" x 1/4" ft. cord, with universal plug.
5 $9.25; ea. $2.00
CRYSTAL, with switch, (not push-to-talk), 6 ft.
cord.
10/$9.00; 4/$3.75; ea.$1.00
Magnetic headphones. 2200 ohm, DC resistance.
With headband, 4 ft. cord, with standard phone plug.
4 for $7.50; ea.$1.95
6883 tubes (12v. filament 6146)
4 for $10.50; ea.$2.75

BC ELECTRONICS — BEN COHN
MAILING ADDRESS: c/o
1249 W. Rosedale Ave., Chicago, Illinois 60625
Store address: 5696 N. Ridge Ave., Chicago, III.
60626. Hours: Wed. 11 a.m. to 2:30 p.m.; Sat.
10:00 a.m. to 2:30 p.m. Other times by appoint-
ment. 312-334-4463 & 784-4426
... for literature, in a hurry —
we'll rush your name to the companies
whose names you "check-off"

INDEX

ATV—Drake
Aerotron—Meshna
Amron—Morse
Alpha—Motorola
Amateur—Palmer
Electronic—Pennwood
American—Pickering
Crystal—R & R
—Center (Minn)
Amidon—R F
—Electronic
Amrad—Radio
—Electronic
Antic—Callbook
—Electronic
Antenna—Calendar
—Distributors
Arizona—Radio
—Estes
Arrow—Construc
Electronic—Galaxy
Arrow Sales—Redline
BC—SAROC
—Goodheart
Baker &—Savoy
Winnay—SemTech
Barry—Siemens
Gregory—Standard
Bob-Frank—Standard
Bob's—Standard
HAL—Swan
Bristol—Surplus
C.F.P.—Ham Shack
Caringella—Glass
—Ham Shack
Circuit—Tri-Rio
Specialists—Van
Collins—Weinschenker
—Harrison
—Ten-Tec
—Tri-Rio
—International
—Jan
—Janel
—Justin
—Klystr
—L A
—Lewispa
—Lynch
—M B
—Madison

October 1971
Please use before November 30, 1971
Tear off and mail to
HAM RADIO MAGAZINE — "check-off"
Greenville, N. H. 03048

NAME...

CALL..

STREET..

CITY..

STATE..

ZIP..

126 October 1971
WANTED!
CLEAN DRAKE GEAR
HAVE GEAR WILL TRADE

REWARD:

$210.00 FOR YOUR 2B ON A NEW R4B @ $475.00
$250.00 FOR YOUR R4 ON A NEW R4B @ $475.00
$275.00 FOR YOUR R4A ON A NEW R4B @ $475.00
$300.00 FOR YOUR T4X ON A NEW T4XB @ $495.00
$400.00 FOR YOUR TR4 ON A NEW TR4 @ $599.00

NOISE BLANKER FOR TR4 $100.00

* MUST BE CLEAN, IN GOOD OPERATING CONDITION WITH MANUALS

COLLECT YOUR REWARD FROM

"WEST COAST'S FASTEST GROWING AMATEUR RADIO DISTRIBUTOR"
"WE SELL ONLY THE BEST"

Electronix Sales
23044 S. CRENSHAW BLVD., TORRANCE, CALIF. 90505
Phone: (213) 534-4456 or (213) 534-4402
HOME of LA AMATEUR RADIO SALES
INTERNATIONAL EX CRYSTAL & EX KITS
OSCILLATOR • RF MIXER • RF AMPLIFIER • POWER AMPLIFIER

1. MXX-1 TRANSISTOR RF MIXER
A single tuned circuit intended for signal conversion in the 3 to 170 MHz range. Harmonics of the OX oscillator are used for injection in the 60 to 170 MHz range. Lo Kit 3 to 20 MHz, Hi Kit 20 to 170 MHz (Specify when ordering)..........................$3.50

2. SAX-1 TRANSISTOR RF AMP
A small signal amplifier to drive MXX-1 mixer. Single tuned input and link output. Lo Kit 3 to 20 MHz, Hi Kit 20 to 170 MHz (Specify when ordering)..........................$3.50

3. PAX-1 TRANSISTOR RF POWER AMP
A single tuned output amplifier designed to follow the OX oscillator. Outputs up to 200 mw, depending on the frequency and voltage. Amplifier can be amplitude modulated. Frequency 3,000 to 30,000 KHz..............................$3.75

4. BAX-1 BROADBAND AMP
General purpose unit which may be used as a tuned or untuned amplifier in RF and audio applications 20 Hz to 150 MHz. Provides 6 to 30 db gain. Ideal for SWL, Experimenter or Amateur..........................$3.75

5. OX OSCILLATOR
Crystal controlled transistor type. Lo Kit 3,000 to 19,999 KHz, Hi Kit 20,000 to 60,000 KHz. (Specify when ordering)..........................$2.95

6. TYPE EX CRYSTAL
Available from 3,000 to 60,000 KHz. Supplied only in HC 6/U holder. Calibration is ± 0.2% when operated in International OX circuit or its equivalent. (Specify frequency)..........................$3.95

WRITE FOR CATALOG.

INTERNATIONAL MFG. CO., INC.
10 NO. LEE • OKLAHOMA CITY, OKLA 73102

for the experimenter!

INTERNATIONAL EX CRYSTAL MFG. CO., INC.

INTERNATIONAL EX CRYSTAL MFG. CO., INC.

10 NO. LEE • OKLAHOMA CITY, OKLA 73102

for the commercial user

INTERNATIONAL PRECISION RADIO CRYSTALS

International Crystals are available from 70 KHz to 160 MHz in a wide variety of holders. Crystals for use in military equipment can be supplied to meet specifications MIL-C-3008E.

CRYSTAL TYPES:
(GP) for “General Purpose” applications
(CS) for “Commercial Standard”
(HA) for “High Accuracy” close temperature tolerance requirements.
The Henry Family of Fine Amplifiers Grows and Grows

There has never been an amateur linear amplifier like the new 2K ULTRA. Small and lightweight, yet rugged and reliable... all that the name implies. The ULTRA is destined to establish the standard for comparison for the 70's as the earlier Henry 2K series did in the 60's. It offers all of the fine quality, engineering and construction of its big brother, the 2K-4, condensed into a miniature powerhouse of radio frequency energy.

SPECIFICATIONS:
- Maximum legal amateur input in all modes: 2KW PEP SSB, 1 KW CW- FSK
- Continuous duty performance
- Frequency range: 3.5 to 30 MHz
- Tube Complement: Two Eimac 8873 tubes, conductively cooled grounded grid triodes
- Power requirements: 115/230 VAC, 50/60Hz
- Drive power required: 50 to 100 watts
- ALC Circuit: prevents overdrive from today's high power exciters and boosts average talk power.
- Output impedance: 52 ohms
- Harmonic and other spurious emissions: Second Harmonic: -50 db.
- Third Order Distortion: -35 db at full power output.
- Noise level: -40 db or better below one tone carrier at 1 KW.

The price: $845.00

*Amateur Bands

Henry Radio

2K-ULTRA

True to its heritage, the 2K-4 is destined for a future of even greater achievements than its predecessor 2K's. Its rugged construction guarantees a long life of reliable performance. The 2K-4's heavy-duty components allows it to loaf along even at full legal power. You can spend more for an amateur linear, but you can't buy better. The 2K-4, the big signal amplifier... floor console or desk model: $795.00

3K-A

MILITARY/COMMERCIAL LINEAR AMPLIFIER

Henry Radio is proud to introduce the new, high quality 3K-A linear amplifier for commercial and military users.

The 3K-A employs two rugged Eimac 3-500Z grounded grid triodes for superior linearity and provides a conservative three kilowatts PEP input on SSB with efficiencies in the range of 60%. This results in PEP output in excess of 2000 watts. In addition, the 3K-A provides a heavy duty power supply capable of furnishing 2000 watts of continuous duty input for either RTTY or CW with 1200 watts output. Price: $995.00

3K-A MILITARY/COMMERCIAL LINEAR AMPLIFIER

Henry Radio is proud to introduce the new, high quality 3K-A linear amplifier for commercial and military users.

The 3K-A employs two rugged Eimac 3-500Z grounded grid triodes for superior linearity and provides a conservative three kilowatts PEP input on SSB with efficiencies in the range of 60%. This results in PEP output in excess of 2000 watts. In addition, the 3K-A provides a heavy duty power supply capable of furnishing 2000 watts of continuous duty input for either RTTY or CW with 1200 watts output. Price: $995.00

11240 W. Olympic Blvd., Los Angeles, Calif. 90064 213/477-6701
931 N. Euclid, Anaheim, Calif. 92801 714/772-9200
Butler, Missouri 64730 816/678-3127

AVAILABLE AT SELECT DEALERS THROUGHOUT THE UNITED STATES
EIMAC's new 8122W family of premium, second generation tubes are directly interchangeable with earlier equivalents in most FM, linear or modulated equipments.

These rugged, long life power tetrodes combine high screen dissipation and excellent thermal stability in a heavy duty structure which gives you improved performance in demanding communication circuits.

EIMAC's new design features rigid precision-wound gold plated molybdenum wire grids. The result is a direct-replacement tube with higher screen overload capability and greater resistance to shock and vibration. The EIMAC 8122W family is ideal for applications where you have experienced problems under environmental or electrical stress.

EIMAC's unique 8122W electron-gun structure is available in four anode configurations: Axial air flow cooling (8122W), Transverse air flow cooling (8121W), coolerless (8072W) and conduction cooled (8828W). Special heat sink coolers are also available upon request.

EIMAC's Application Engineering Section stands ready to assist you in designing these exceptional tubes in new equipments. Contact EIMAC Division of Varian, 301 Industrial Way, San Carlos, California 94070, or your nearest Varian/EIMAC Electron Tube and Device Group Sales Office.
from Audio to Zener
the newest word
in the FM Vocabulary is
TRANSCAN™
15 Big Watts Out Minimum with Automatic Signal Seeking Receiver

Program it to perform your way at home or on the road. Push button control enables our radio to conduct an automatic signal search on any combination, or all, of eight channels. Fascinating read out lights detail the search. At reception of a signal... Transcan locks on and listens to the entire transmission. Carrier delay waits momentarily for return signal... if none comes, Transcan automatically resumes signal search.

Push the button for your choice of eight powerful, 15 watt transmitter channels and the receiver is automatically programmed to the corresponding receive channel so that you are all set for the return word.

And it is the last word in radio. Be first with the word... Transcan. At your favorite Amateur Radio Distributor... now!
Get the word... Transcan!

It's backed by all these goodies for performance:
6 integrated circuits, 21 diodes (23 in base unit),
33 silicon transistors including 2 BET RF power,
2 FETS, 1 unijunction and 28 bipolar. You get
handsome, walnut, wood-grain vinyl laminated
steel cabinet and no-glare, black face panel with
harmonizing, soft gold esthetics and speaker
grill finish.
New! HR-2A
2 Meter FM Transceiver
$229

50% more power at same low price!

American made by Americans at lower than import prices. And its performance is genuine Yankee . . . superior. Eyeball the top quality specs . . . then ask for a demonstration by your Distributor! You'll like what you see and hear . . . and so will those listening.

HR-2S (Base Transcan) HR-2MS (Mobile Transcan) HR-2A

Receiver—double conversion, superhetrondyne

- Frequency Range: 144-148 MHz
- Sensitivity: 0.35μV (nom.) 20 dB quieting
- Selectivity: 6 DB Down ± 16 KHz - 50 DB Down ± 32 KHz
- Image Rejection: 45 DB
- Spurious Rejection: 60 DB
- Modulation Acceptance: ± 15 KHz
- Audio Output: 5 Watts Maximum
- New FET Mixer for Superior Intermodulation Rejection
- All Electronic Noise Compensated
- I.F. Frequencies: 10.7 MHz & 455 KHz (ceramic filter)
- Channels: 8 crystal controlled
- Scan Rate: 15 channels per sec.
- Transmitter—uses phase modulation, built-in SWR load mismatch circuitry
- Frequency Range: 144-148 MHz
- Power Output: 15 Watts Minimum @ 117 V AC, 60 CPS
- Power Band width: New FET Mixer for Superior Intermodulation Rejection
- Harmonic & Spurious Emissions: 55 DB, or more, below carrier
- Modulation: Phase, with automatic deviation limiting
- Deviation: Automatic Limiting, internally adjustable from 0-15 KHz
- Mike Pre-Amp: FET input with internal level control
- Microphone (supplied): Plug-in, hand held, high Z ceramic
- Channels: 8 crystal controlled
- Size: 13" x 9" x 8 ½"
- Power Drain: 117 V AC
- Receive (Sq.): .2 A
- Receive (Max.): .3 A
- Transmit: .7 A
- General—All prices include factory installed T & R crystals for 146.94 MHz and PTT mike
- Size: 10" x 4" x 8 ½"
- Power Drain: 13.6 V DC
- Receive (Sq.): 380 MA
- Receive (Max.): 800 MA
- Transmit: 2.9 A
- ELECTRONICS, INC.
7900 Pendleton Pike • Indianapolis, Indiana 46226