JANUARY 1976

- 50-MHz frequency counter 18
- microprocessors 36
- wideband linear amplifier 42
- 432-MHz Yagi 46
- audio power ICs 64

synthesized two-meter FM transceiver
Henry Radio has the amplifier you want

Never before has one company manufactured such a broad line of amateur amplifiers, both vacuum tube and solid state, for HF, VHF and UHF; fixed station and mobile; low power and high power. Take your pick from 20 models...the world's finest line of amateur amplifiers.

2K-4... THE "WORKHORSE"
The 2K-4 linear amplifier offers engineering, construction and features second to none, and at a price that makes it the best amplifier value ever offered to the amateur. Constructed with a ruggedness guaranteed to provide a long life of reliable service, its heavy duty components allow it to loaf along even at full legal power. If you want to put that strong clear signal on the air that you've probably heard from other 2K users, now is the time. Move up to the 2K-4. Floor console or desk model...$995.00

3K-A COMMERCIAL/MILITARY AMPLIFIER
A high quality linear amplifier designed for commercial and military uses. The 3K-A employs two rugged Eimac 3-500Z grounded grid triodes for superior linearity and provides a conservative three kilowatts PEP input on SSB with efficiencies in the range of 60%. This results in PEP output in excess of 2000 watts. In addition, the 3K-A provides a heavy duty power supply capable of furnishing 2000 watts of continuous duty input for either RTTY or CW with 1200 watts output. Price...$1250.00

4K-ULTRA
The 4K-ULTRA is specifically designed for the most demanding commercial and military operation for SSB, CW, FSK or AM. The amplifier features general coverage operation from 3.0 to 30 MHz. Using the magnificent new Eimac 8877 grounded grid triodes, vacuum tune and load condensers, and a vacuum antenna relay, the 4K-ULTRA represents the last word in rugged, reliable linear high power RF amplification. 100 watts drive delivers 4000 watts PEP input. This amplifier can be supplied modified for operation on frequencies up to about 100MHz. Price...$2950.00

TEMPO T-2000 LINEAR AMPLIFIER
The brand new T-2000 linear is the perfect companion for the Tempo ONE. It is compact, reliable, and priced right. Uses two Eimac 8873 grounded grid triodes cooled through a large heat sink. The T-2000 offers a full 2 KW PEP input for SSB operation and provides amateur band coverage from 80–10 meters. Provides a built-in solid state power supply, built-in antenna relay, a relative RF power indicator, and built-in quality to match much more expensive amplifiers. $795.00

K-2000 LINEAR AMPLIFIER
The new K-2000 is the perfect companion for Kenwood's TS-520...matched for style and circuitry. The same specifications as the T-2000...$795.00

TEMPO 6N2
The Tempo 6N2 brings the same high standards of performance and reliability to the 6 meter and 2 meter bands. Using a pair of advanced design Eimac 8874 tubes, it provides 2,000 watts PEP input on SSB or 1,000 watts input on FM or CW. The 6N2 is complete in one compact cabinet with a self-contained solid state power supply, built-in blower and RF relative power indicator. Price...$795

TEMPO 2002
The same fine specs and features as the 6N2, but for 2 meter operation only...$695.00

TEMPO 2006
Like the 2002, but for 6 meter operation. ...$695.00

TEMPO VHF/UHF AMPLIFIERS
Solid state power amplifiers for use in most land mobile applications. Increases the range, clarity, reliability and speed of two-way communications. FCC type accepted also.

please call or write for complete information.

Henry Radio

11240 W. Olympic Blvd., Los Angeles, Calif. 90064 213/477-6701
931 N. Euclid, Anaheim, Calif. 92801 714/772-9200
Butler, Missouri 64730 816/679-3127
Now you can afford the best!
Free-standing or guyed, Tri-Ex Towers stress quality.
All towers are hot dipped galvanized after fabrication for longer life. Each series is specifically engineered to HAM operator requirements.

W Series
An aerodynamic tower designed to hold 9 square feet in a 50 mph wind. Six models at different heights.

MW Series
Self-supporting when attached at first section — will hold normal Tri-Band beam. Six models.

LM Series
A 'W' brace motorized tower. Holds large antenna loads up to 70 feet high. Super buy.

TM Series
Features tubular construction for really big antenna loads. Up to 100 feet. Free-standing, with motors to raise and lower.

THD Series

Start with Top-of-the-Line Tri-Ex Towers. At basic prices. Write today, for your best buy.

TOWER CORPORATION
7182 Rasmussen Ave.
Visalia, Calif. 93277

January 1976

More Details? CHECK-OFF Page 102
ME-3 microminiature tone encoder

Compatible with all sub-audible tone systems such as: Private Line, Channel Guard, Quiet Channel, etc.

- Powered by 6-16vdc, unregulated
- Microminiature in size to fit inside all mobile units and most portable units
- Field replaceable, plug-in, frequency determining elements
- Excellent frequency accuracy and temperature stability
- Output level adjustment potentiometer
- Low distortion sinewave output
- Available in all EIA tone frequencies, 67.0 Hz-203.5 Hz
- Complete immunity to RF
- Reverse polarity protection built-in

$29.95 each

Wired and tested, complete with K-1 element

communications specialists
P. O. BOX 153
BREA, CALIFORNIA 92621
(714) 998-3021

K-1 FIELD REPLACEABLE, PLUG-IN, FREQUENCY DETERMINING ELEMENTS
$3.00 each
contents

10 synthesized two-meter fm transceiver
Robert W. Wilmarth, W1CMR
William R. Wade, K1IIZ

18 50-MHz frequency counter
James W. Pollock, WB2DFA

24 antenna and tower restrictions
Harry R. Hyder, W7IV

28 diode detectors
Henry D. Olson, W6GXN

36 microprocessors
David G. Larsen, WB4HYJ
Peter R. Rorny
Jonathan A. Titus

42 wideband linear amplifier
J. A. Koehler, VE5FP

46 high gain yagi for 432 MHz
Kenneth E. Holladay, K6HCP

50 remote repeater control
Robert C. Heptig, K9PHF
Robert D. Shiner, WABUZO

54 basic troubleshooting
Michael James

60 RAM keyer update
Howard M. Berlin, K3NEZ

64 audio-power integrated circuits
Edward M. Noll, W3FQJ

4 a second look

102 advertisers index

64 circuits and techniques

68 comments

91 flea market

97 ham mart
a second look
by Jim Fisk

Although this new, larger edition of *ham radio* may seem like a nuisance if your shelves are designed for the old size, I think you’ll soon discover that the advantages of the larger format far outweigh the slight inconvenience of storage problems. For one thing, the larger page size allows us to present larger schematics, so there will be less segmented drawings than there have been in the past. If you’re building a project or tracing out a circuit diagram, switching from one page to another as you go through a schematic can be annoying, and often leads to wiring errors. The larger page size also means that the photographs will be larger, so you will be able to more clearly see how the author layed out his original circuit.

However the graphical advantages of the larger page size are small potatoes when compared to the big bonus of the larger format: more available space for technical and construction articles. This 104-page issue, for example, contains as much reading material as any two of our previous issues — the more than 50 pages of technical articles in this issue, if scaled down to the old size, would fill nearly 90 pages. This not only means that we’ve got to work twice as hard to keep *ham radio* filled with the kind of articles you want to read, it also means that we can provide more basic construction articles and tutorial material that we didn’t have room for in the old format. While we will continue to publish the latest technical developments in amateur radio, the increase in editorial space will allow us to broaden our horizons to include features which will appeal to a wider audience. Some of those new features are included in this issue — others will be added in the months ahead.

One of those new features is repair bench, a monthly column devoted to troubleshooting your own equipment. We have had many requests for such a column but until now, because of the nearly weekly changes in modern communications technology, there simply wasn’t room in the magazine. The first few repair bench columns will be geared to basic troubleshooting techniques, while future columns will attack such subjects as receivers, transmitters, sbx equipment, vhf fm, RTTY, logic systems, slow-scan television and much more. The column won’t be written by one person, but by different authors who have proven expertise on the topic covered by a particular column. Although I have several authors already lined up, I’m looking for others with troubleshooting experience who would be interested in writing some columns. If you have suggestions for topics, or would like to contribute, please drop me a line.

The circuits and techniques column which we have published irregularly for the past several years will once again become a monthly feature beginning with this issue. Circuits and techniques will also take on a different look in the coming months as we use it as a vehicle for presenting new circuits, technical developments and construction techniques which come to our attention. If you develop a simple circuit for a special task, are using a well-known circuit in an unusual application, or run across an interesting circuit or technique in a foreign publication, we’d like to hear about it.

The popular ham notebook column which we’ve been publishing since 1968 will continue to be a monthly feature, as will the microprocessor column which we introduced last month. We’re also looking for amateur-oriented construction projects which are built around microprocessor chips.

We have several other new features being developed which will be published in the coming months. One of these will be the weekender, a simple project that can be built in a few hours time over one weekend. A unique feature of the weekender is that we will arrange to have all components and a circuit board available from one easy-to-reach commercial source. The first of the weekender projects is scheduled for publication in the February issue, and we’re busily rounding up future weekender candidates from our authors. If you have a project which you think might qualify as a weekender, we will be glad to consider it for publication. Suggestions for future weekender projects are also welcome — we may be able to place your idea in the hands of an author who can come up with a finished product.

Our editorial staff is very excited about the many possibilities of the new, larger size, and we’re looking forward to making *ham radio* bigger and better than ever before. Your comments and suggestions are always welcome.

Jim Fisk, W1DTY
editor-in-chief
The First Base Hit!

The 450MHz-FM game now has one on base! ICOM is on with the first 440-450 radio built specifically for base operation, the IC-31. You're going to be hearing a lot from this promising young newcomer following in the footsteps of that popular veteran, the IC-30A mobile unit.

Impressively built for 26 channels and 10 watts output, this unit is the perfect teammate of the IC-30A, which has proven itself to be the biggest 450 winner on the road. With the S.W.R. bridge built right into the front panel and a forward mounted 9-pin socket, the new IC-31 base unit provides the flexibility necessary to good UHF operation, and its compact size and styling match the other ICOM base radios.

If you want the number one team, bring it on home with the IC-31. Tryouts are being held at your ICOM dealer now.

Frequency Range
- Channels: 440-450MHz
- Power Output: 26

Power Output
- Hi 10 Watts, variable to 1 Watt
- .4 microvolts for 20DB quieting
- .3 microvolts for 12DB SINAD

Sensitivity
- 15KHz with 5KHz deviation
- 111x230x260 (dim. in MM)
- 7.2 kilos

Bandwidth (Transmitted)

Size

Weight

Distributed by:

ICOM WEST, INC.
Suite 3
13256 Northrup Way
Bellevue, Wash. 98005
(206) 747-9020

ICOM EAST, INC.
Suite 307
3331 Towerwood Drive
Dallas, Texas 75234
(214) 620-2780

More Details? CHECK-OFF Page 102
A look through this issue will quickly show that ham radio magazine is at a significant turning point in its eight year history. This is by far the biggest magazine we've ever published. Not only are the pages larger, but it also has far more editorial matter, more columns, more color and yes, even more ads than ever before.

This change is typical of what's happening throughout Amateur Radio. The whole hobby appears to be at a turning point which will lead to many changes over the next few years which could well make today's Amateur world seem quite unfamiliar.

When we started only eight years ago VHF fm was unknown to most Amateurs. Slow-scan TV was in its very infancy. Almost no Amateur gear was solid-state at the time, while digital concepts and integrated circuits were virtually unheard of in amateur work.

Now we suddenly find ourselves at a new starting point as digital techniques are coming at us in a rush led by the exciting new microprocessor chips which are scheduled to change much of our daily world as they take charge of your kitchen, automobile and workplace. It goes without saying that their effect over the next few years on even a relatively simple Amateur station will be significant.

Arriving almost simultaneously with the birth of ham radio magazine were the long awaited rules outlining Incentive Licensing, which have provided the basic framework of the Amateur licensing structure for the past seven years.

Again during the past year the Amateur community has had an excellent opportunity to debate at length another major step in our regulatory history commonly known as Restructuring. At this writing it appears that within the next few months these new ideas will become reality, but possibly in a very different form than originally proposed just a year ago, but definitely including the much discussed no-code license. The concept of Reregulation has also been introduced by Commission officials and should further influence regulations by which we must conduct ourselves.

The Amateur Radio business community has also seen many changes. Your all time high acceptance of Amateur products is permitting many exciting and useful new products to be offered which would have been out of the question just a few years ago. Attention to our advertising pages in the months ahead will show many outstanding surprises waiting for you.

Both ham radio magazine and hr report will be right there in the middle of these many exciting new developments and will bring them to you step by step as they unfold. We'll be doing our best to show you what is happening and just what can be done to insure that both you and Amateur Radio realize maximum benefit from these many changes.

Skip Tenney, W1NLB publisher
Memo from Drake

One of our observers wrote the other day that we do some rather curious things from time to time here at Drake. For example, he said, we seem to have a penchant for putting wattmeters in almost everything.

On thinking that over, it is true that the W-4 is a fine device for up to 2 kW from 1.8 thru 54 MHz. The WV-4 covers 20 to 200 MHz and we do have W-4 type units in the MN-4 and MN-2000 antenna matching units. We also have one in the C-4 Station Console, and a 3 kW meter in the L-4B Amplifier.

Our friend went on to say since we have put so many wattmeters in various things, we had probably even put one in the coffee pot here at the plant. Now obviously that carried the whole thing a bit too far — after all, we had enough trouble getting one into the water cooler!

When R-F power needs to be measured consider one of the products from the good guys at Drake

R. L. DRAKE COMPANY

See us at SAROC in Las Vegas
JOHN JOHNSTON REPLACED Prose Walker as chairman of the World Administrative Radio Conference Amateur Radio working group at the group’s December meeting in Washington. Prose had been a prime mover in getting this very important activity organized and going, and despite his retirement from the FCC in July had headed up its September meeting during the ARRL national convention in Reston and seemed likely to continue with it on a consultant basis with the FCC. However, the staffing and budget crunch in the Amateur and Citizens Division brought on by the CB landslide workload put a crimp into those plans so Division Chief John Johnston will be taking it over.

Though Prose’s Expertise will certainly be missed, John is expected to carry the WARC preparation effort ahead with minimal interruption. Under Prose’s direction the basic organization had been firmly established and the various task force chairmen and their groups moving along nicely, so the transition should be a relatively painless one.

900 MHz AMATEUR BAND is receiving consideration both in and out of the FCC. The recent opening of 115 MHz of spectrum in that region to commercial two-way users will accelerate technical development in that frequency range, and Amateur Radio (and/or possibly Class E CB) has at least a chance to pick up a portion of the remainder.

Amateur Space And Satellite Communications would find a new band in the 900 MHz region particularly valuable—it’s high enough to get away from a lot of noise and low enough that atmospheric absorption is not a problem. The possibility has already been explored in WARC meetings and a proposal for such a band will probably become a WARC group recommendation.

Oscar 7 is being seriously affected by users putting signals much stronger than needed into it on Mode B. Overloading is causing excessive battery discharge and may be responsible for mode switching and shutdowns. Area coordinators and others are asked to watch for signals causing ‘pumping,’ report calls of offenders to W3HUC c/o AMSAT and advise those nearby of their abuses.

Demonstrating Mode B Sensitivity, W6GC made over 20 contacts in one week running 500 mW to a dipole antenna! Bud’s QSos included Hawaii and Maryland.

REPEATER CROSSBANDING, DOCKET 20113, has been approved and became effective December 15. Report and order will permit unlimited crossband operation of repeaters in the authorized repeater subbands, covers several related topics.

Definition Of “Automatic Retransmission” has been added to the rules, characterizes an “automatic retransmission” as one initiated by a received signal. Automatic retransmission is restricted to repeaters, auxiliary links or remotely controlled stations such as a remote base which has an auxiliary link station as a part of its system. In the latter case, the remote base is limited to retransmitting the signals of its auxiliary link station only.

PAPERWORK FOR REPEATERS and other remotely-controlled Amateur stations will be simplified greatly by an FCC action adopted in November. As of December 1, technical showings will no longer be a required part of the license application for such a station and technical information will be required only as part of the permanent station log. Repeater license applicants, for example, need only specify that their proposed station will be remotely controlled. System block diagrams, control details and the like need not accompany the application but must be entered in the permanent station log. Similarly, repeater-control stations will not even need to specify what repeater they intend to become a control station for—that’s entered in their control station log and the log of the repeater they control.

Net Result of this important change is to speed up license processing greatly since technical evaluation will no longer be a part of the license granting procedure.

Note That All Information previously required as part of the FCC file record is still required in the permanent log. Repeater license applications, for example, are still required part of the licence application for such a station and technical information will be a required part of the permanent station log. System block diagrams, control details and the like need not accompany the application but must be entered in the permanent station log. Similarly, repeater-control stations will not even need to specify what repeater they intend to become a control station for—that’s entered in their control station log and the log of the repeater they control.

Prohibition Against Portable Or Mobile operation of a remotely controlled station in Part 97.88e has also been deleted. However, during portable or mobile operation a positive control system is still required and the usual requirements for ID, logging and notification must still be observed. Note too that the prohibition against portable or mobile operation of auxiliary link stations has not been relaxed.

REPEATER AND CLUB STATION TRUSTEES should be aware that group organization plans and constitutions are being checked by FCC legal people to be sure funding of group Amateur stations is not in violation of Part 97.112. All new applications are checked as a matter of course, and files on old licenses are sometimes pulled for review on a random basis. Groups whose fund raising systems seem to ask money for operation or use of the station are very likely to be cautioned.

BICENTENNIAL PREFIX LIST in last month’s Prestop had a typo which should be corrected. WN1-WN0 can use AK1-AK0—not AG1-AG0 as shown. Use of the alternate bicentennial prefixes is entirely optional, but remember that they don’t go into effect until 0500Z January 1, 1976, and are good until January 1, 1977.

ALL IRCs IN CIRCULATION will be honored for first class overseas postage regardless of date of issue through the end of 1976, according to latest post office info. After that all earlier IRCs will be void and only latest issue will be valid.

CANADA GOES AFTER IGNITION NOISE with a new Radio Interference Regulation that takes effect next September 1. The new regulation will severely limit the permissible radiation from any spark ignition engine, includes autos, chain saws and snow mobiles, with the one exception of aircraft engines. The regulation will eventually be extended to include other RFI sources such as power tools and high voltage transmission lines.
American Ham Spirit, you either have it; or you don’t.

The hams at Dentron have it. That’s why we pack so much excitement into the products we build.

If you’re an excited ham who loves to operate all bands, why not complete your station with the 160 meter Top Bander™? 160 meters is only a step away from 80 with this remarkable 160 meter transverter. Designed to bring simple, low cost 160 meter capability to any amateur station equipped for 80 meter CW, SSB, or AM operation. Just “plug in and play” and you’re on 160 meters with 100 watts transmit power and a super sensitive receiver.

And coupled with the 160AT Skymaster™, tuning your present antenna or long wire is a snap.

There is only one Super Tuner™ and only one Super Super Tuner™. Excited Dentron customers around the world have discovered why the Super Tuner™ and Super Super Tuner™ are the only antenna tuners on the market that will match EVERYTHING between 180 and 10 meters, whether it be balanced line, coax cable, random or long wire.

For the ham on the go the 80-10 Skymaster™ offers portability for tuning that random or long wire antenna. With Dentron Skymatcher™ you don’t have to miss out on the fun of ham radio if you live in a motel or condominium.

It’s Finally here! The Dentron Dual, In-line Watt meter. If you’re a perfectionist as we are, you have certain requirements for your station. Naturally you’ll want to monitor both forward and reflected wattage simultaneously. Tired of constant switching and guesswork? Upgrade!

- Reverse scale 0-200 watts
- Forward scale 0-200 and 0-2000 RF Watts
- Meter accuracy ±5%
- Frequency coverage — 1.7 through 30mcs.

Dentron manufactures antennas because our customers deserve better performance. There have been too many compromise antennas for too long. We know how much time the average antenna takes to assemble, that’s why we do the work before we ship to you. What a Dentron antenna DOES NOT include is 2 large plastic bags of parts, 5 pages of instructions and many hours of assembly.

With the Skymaster™, Skyclaw™, Mobile Topbander™, all band doublet and new Trim-Tenna™ 20 meter beam, you’ll be proud of their fine appearance and performance and thrilled with the few minutes it takes to assemble them.

CATCH THE EXCITEMENT FROM DENTRON . . .

All Dentron products are made in the USA.

From Dentron Radio or your Favorite Dealer.

More Details? CHECK-OFF Page 102
This article describes a two-meter fm transceiver containing a 400-channel frequency synthesizer. The transceiver is designed to operate from a 12-volt dc source. By using heterodyne techniques rather than frequency multiplication, only one frequency at a time is generated by the synthesizer, which is used for both transmit and receive modes. Lock-up problems are avoided by eliminating the need to generate the offsets in the synthesizer. With the heterodyne scheme, the synthesizer changes frequency directly in 10-kHz increments, which greatly simplifies its design; you need only dial in the desired transmit frequency along with the desired receive mode. The receiver offset, ±600 kHz for repeater or zero kHz for simplex operation, is generated by a separate crystal-controlled oscillator. An interesting feature of the transceiver is that the modulation is applied directly to the synthesizer, which results in excellent-quality audio with simple circuitry.

general description

Fig. 1 shows the functional elements. The synthesizer tunes from 12.01 to 16 MHz in 10-kHz steps. Modulation is applied directly to the voltage-controlled oscillator (VCO) control line from a clipper preamp. In the receive mode, the clipper preamp is disabled by switching the B+ line. The VCO output is buffered after which the signal is split and fed to two double-balanced mixers.

By Robert W. Wilmarch, W1CMR, and William R. Wade, K1IJZ, Roberts Road, Wellesley, Massachusetts 02181
fig. 1. Block diagram of the synthesized 2-meter fm transceiver.

one in the transmit line; the other in the receive line. In both cases the synthesizer signals are fed into the local oscillator (LO) ports of the mixers.

In the transmit mode a signal at 131.99 MHz is added to the synthesizer signal so that the resultant signal covers 144 to 148 MHz. The front-panel controls are marked to indicate the transmit frequency. The mixer output is fed into a driver amplifier where the signal level is raised to about 2 watts. This signal in turn drives a 15 to 20 watt power amplifier. In the receive mode the transmit heterodyne oscillator and mixer stage are disabled through the B+ line. Voltage is left on the driver and power amplifier stages since these stages are run in class C and consume negligible power without drive.

On receive, the synthesizer signal is mixed with one of three crystal-controlled frequencies depending on the desired operating mode. The resulting sum frequency is the LO frequency required to heterodyne the receive frequency to the (nominal) 10.7 MHz intermediate frequency. This i-f signal is fed through a crystal filter which determines receiver selectivity. The circuits following the filter are conventional. In the transmit mode only the audio amplifier is disabled, again through the B+ line. Two small relays are used. One switches the antenna from receive to transmit. The other, in the B+ line, turns various circuits on and off as described above. A double-pole, double-throw relay may be used for switching.

synthesizer

The synthesizer generates frequencies between 12.01 and 16.00 MHz in 10-kHz steps. During transmit this output is heterodyned with a 131.99-MHz signal to produce transmit frequencies between 144.00 and 147.99 MHz. On receive, the required LO frequency is obtained by heterodyning the synthesizer output with either 121.29 MHz for simplex operation, 121.89 MHz for normal repeater operation, or 120.69 MHz for reverse repeater operation. Because of the heterodyning scheme, this synthesizer is simplicity itself. It requires none of the 1-count detectors, out-of-lock detectors, or count offset circuits of synthesizers used in multiplier service.1

Above 7 MHz the programmable divider chain of SN74192s swallows a count due to propagation delays. This action causes a 1 count (10 kHz) offset in the synthesizer output frequency from that to which the divider is set. This offset is compensated in the heterodyne process to yield the correct transmit or LO frequency with respect to dial setting at the mixer output.
The programmable divider, fig. 2, is unique in that the \(\div 12 \) through \(\div 15 \) functions are obtained from a single decade counter chip. This bit of magic is accomplished by using the last 74192 as a downcounter, which is preset to a 12, 13, 14, or 15. The decade limitation on the 74192 holds only in an upcount mode. The other two counters are presettable from 0 to 9, and the string of three 74192s divides the VCO frequency by a number between 1201 and 1600 with the programmed inputs set between 1200 and 1599.

The phase detector and filter, fig. 3, are straight from the MC4044 data sheet with an extra capacitor on the filter output to help suppress the 10-kHz ripple on the VCO control line. Adjustment of the 10k pot in the filter is accomplished by listening to the VCO on a receiver, tuning 10 kHz off to find a VCO sideband and tweaking the pot for minimum sideband signal.

The VCO, fig. 4, is an LC oscillator using the MC1648 as the active element. This circuit proved superior in performance to any of the available multivibrator type VCOs. Watch out for the MV1401! It’s an expensive ($9) wide-range varicap, and again it proved superior to the less-expensive diodes. A glance at the synthesizer schematics shows that the phase detector, reference oscillator, programmable divider, and VCO each has its own LM309 5-volt regulator. A regulator is mandatory in phase-locked loops to decouple the circuits from each other. Any modification of this decoupling scheme should be avoided. Usual RC and LC decoupling techniques do not compare with the use of three-terminal regulator ICs.
The programmable divider is constructed on double-sided board with the wiring side at ground and the component side at +5 volts. The \(V_{cc} \) pins of the IC sockets are bent out and soldered directly to the 5-volt side, while the ground leads are brought through the boards and soldered directly to the foil. This approach provides a low impedance \(V_{cc} \) line, which prevents possible erratic synthesizer behavior.

The reference oscillator, fig. 5, is a 1-MHz crystal oscillator followed by two decade dividers to yield the 10-kHz reference frequency. The synthesizer output is buffered as shown in fig. 6. A single-tuned output circuit provides a flat response over the full 4-MHz range. A double-tuned output stage will suffice if the transceiver is set up to operate over a 2-MHz range. In this case the MHz switch may be replaced with a single-pole, single-throw switch.

From the VCO buffer amplifier the signal is split and fed to two separate mixer stages. These stages, (fig. 7), are identical except for minor differences in the tuned circuits. In each case, the stage is used to add the synthesizer output to that of a heterodyne oscillator. In one case the sum frequency is the transmit frequency, while in the other it is the receive LO frequency. Double-balanced mixers are used because they happened to be available, Suitable mixers may be built or purchased for about $7.00 new and perhaps for considerably less on the surplus market. A mixer stage using a dual gate 40673 mosfet was tried with apparently satisfactory results; however, the suppression of the other mixing product was not verified. Other approaches should work equally well.

Care was taken to provide 50-ohm terminators to each mixer port. The synthesizer buffer is fed into the LO port, and with the coupling arrangement shown, the buffer provides an LO signal of +7 dBm. The heterodyne oscillator signals were adjusted by varying the position of the output links so that the power at the mixer was near zero dBm. These adjustments did not appear to be critical. By using an in-line layout for the mixers, no instabilities were encountered.

The receive mixer stage is powered at all times, while the transmit mixer stage and its heterodyne oscillator are powered only during transmit, which is necessary to prevent a receiver birdie in the simplex mode.

modulator

The first attempts at modulating the transmitter were along conventional lines; the modulating voltage was applied to a tuning diode in the transmit heterodyne oscillator crystal circuit. While this method worked, the audio quality left something to be desired. After a number of attempts to improve matters, this approach was abandoned in favor of directly modulating the VCO in the synthesizer. The results were indeed gratifying, with reports of excellent audio quality. Full deviation is
obtained with only a few millivolts of modulation super-imposed on the VCO line. This signal level is many times below that required to disturb the phase-locked-loop stability.

The clipper preamp, (fig. 8) is a modification of a circuit originally designed to modulate a tuning diode. Where several volts of modulation were required. Since only millivolts are now required, the output stage was changed to a simple emitter follower, eliminating several components.

heterodyne oscillators

The heterodyne oscillators are shown in figs. 9 and 10. The circuits differ only in the number of crystals and the addition of a zener regulator in the transmit oscillator. Overtone crystals in the 40-MHz range are used. The second stages are conventional triplers using a mosfet to minimize oscillator loading. Tripler stage output is through a one-turn link.

During tuneup, remember that a final frequency is the sum of the synthesizer frequency and that of the heterodyne oscillator. The reference oscillator should be adjusted first, then the transmit heterodyne oscillator, to produce the desired output transmit frequency. A frequency counter is recommended for this procedure. The receive heterodyne oscillator crystals should be adjusted by tweaking their series capacitors for best received audio.

receiver front end

The receiver front end (fig. 11) is similar to a circuit described in 1968. Only minor changes were made in the rf and mixer stages. The original fets were replaced with 40673s, and the mixer output matches a crystal filter. Gate-protected fets eliminate the need for diodes at the antenna. With gate protection no special precautions are necessary in handling these transistors; however, the 3N128 is not protected and care must be exercised. The mixer output impedance is determined primarily by the resistor across the output tank and is chosen to match the crystal filter.

The front end and i-f stages show a direct connection to the crystal filter. This is fine if the physical layout is close and there is no dc return in the filter. If a dc return is present, a blocking capacitor must be used to prevent...
The receive mixer stage is amplified and applied to the 40673 front-end mixer through a 5-pF coupling capacitor. Signal level should be about 1.5 volts.

i-f subsystem and audio

The receiver is a single-conversion device. While single conversion has certain advantages, the trick is to recover sufficient audio in narrowband FM service. The RCA CA3089E linear integrated circuit is a complete FM i-f subsystem (fig. 12). While this IC was designed for wide-band use, it's possible to realize 290 millivolts of recovered audio for +5-kHz deviation, which is ample to drive the audio stage to full output. The squelch control operates smoothly with this device and doesn't have the annoying pop-out characteristics as in some circuits. A tuning or signal-strength meter may be used with the circuit. However, it was decided not to include this feature. Instead, pin 13 is used as a test point for receiver front-end tuneup.

The Q of the quadrature coil across pins 9 and 10...
determines, to a great degree, the level of recovered audio. The RCA test results were for a Q of 120. Using an available core, a value of 220 was measured, which resulted in somewhat more recovered audio. This value of Q, however, was reduced to a value consistent with the sensitivity of the audio amplifier by simply padding the coil with a suitable resistor. The effect is to greatly reduce the sensitivity of the circuit to temperature changes. Stability of this stage may be checked by looking at pin 9 with an oscilloscope. If the circuit is oscillating, a square wave will be seen.

A 2N3819 junction fet matches the crystal filter to the CA3089E. Because of the very high input impedance of this transistor, the filter load resistor from gate to ground is chosen according to the requirements of the filter. Stage gain isn’t critical and need not be more than necessary to overcome the filter insertion loss. Any audio stage with sufficient sensitivity may be used. The MFC9020 is a 2-watt amplifier requiring only 200 millivolts of drive.

Receive heterodyne oscillator.
The rf driver amplifier, fig. 13, is conventional and is driven directly from the transmit mixer stage. Output is about 2 watts and the circuit will match a 50-ohm load. If 2 watts is sufficient, the output chain may be terminated at this point. For additional power, an amplifier such as the VHF Engineering unit shown in the photo provides output in the 15 to 20-watt range.

construction

Standard copper-clad board and point-to-point wiring are used. A minimum of tools are required and the difficulty of making printed boards is avoided. An advantage of the modular approach is that a circuit can be completed, tested, and set aside until the overall unit is ready for assembly. All interconnecting lines use small coaxial cable where length is not critical, which permits flexibility of the final layout. Rotary wafer switches were chosen for the frequency select controls. While significant space saving can be achieved by using BCD-coded thumbwheel switches, a rotary format affords a definite ease of operation.

This transceiver has given trouble-free operation for about a year with excellent signal reports. While heterodyning, digital-frequency synthesizers, and synthesizer modulation are all well-known processes, the combination of these features offers an attractive approach to those who like to try something different.

references

7. RCA Application Note ICAN-6257.
six digit
50-MHz
frequency counter

A frequency counter has several advantages over a frequency standard. Instead of listening and tuning for crystal-oscillator harmonics on a receiver, a counter can provide a direct readout in frequency from the signal being measured. An instrument such as this can be a very valuable asset for the amateur who likes to build his own variable-frequency oscillators, transmitters, and receivers. With this frequency counter I was able to align a homemade crystal filter for an ssb rig, using the counter to pinpoint the exact location of the filter passband. When the counter is used with signal generators, precision alignment of amateur equipment is a snap.

The frequency counter described here and shown schematically in fig. 1 is designed for use in the hf spectrum to 50 MHz, with a signal at the input having an amplitude of about 50 mV rms. The digital readout displays the frequency in kHz with resolution to the nearest 100 Hz. Construction cost of the counter is about $50 including the power supply and cabinet. The cost will be lower if the ICs are in your goodie bin. Printed circuit boards are not available for this project. The entire counter, with the exception of the power supply, was built on perfboard — the kind with holes on a 0.1-inch (2.5mm) grid.

The heart of the counter is a crystal-controlled oscillator. This 1-MHz source is a free-running multivibrator made up of two NAND gates (U1A and U1B) with a crystal as the frequency determining element. The 220-ohm resistors bias the gates in a class-A amplifier condition so that the oscillator is self starting and sustaining. The remaining two gates in the quad NAND package are used as buffers to isolate the oscillator from the loading effects of the IC stages that follow. U1D provides a buffered 1-MHz output to a BNC jack on the rear panel of the counter. The 1-MHz output is a very close approximation of a square wave, rich in harmonics, and provides a means of checking the oscillator with WWV. It also can be used for checking out the counter itself. If the 1-MHz output is coupled to the input jack, the counter will display 1000.0 kHz. The trimmer capacitor in series with the crystal is used in the zero beating process.

The frequency counter performs by sampling the input signal for a finite period of time. For example, if we were to couple a 1-MHz signal to a chain of decade counter stages for exactly one second, then 1 million pulses will have been counted. If the sampling time is reduced two orders of magnitude to 0.01 second, then the counter will register 10,000 pulses. Thus if 10,000 pulses are counted for each 1 MHz, the least-significant digit on the counter would represent 100 Hz. It’s easy to see the importance of having a device that will perform the function of gating the unknown frequency with great precision.

The time-base divider chain is composed of four cascaded decade counters (U2-U5) followed by a flip-flop.
(U7) that divides the crystal oscillator down to a frequency of 50 Hz. The flip-flop has two oppositely phased outputs, 50 Hz and 50 Hz. The 50 Hz output is 180 degrees out of phase with the 50 Hz output. Each output is a symmetrical square wave that is logic 1 for 10 milliseconds, and logic zero for 10 milliseconds, for a total time period of 20 milliseconds. The output from flip-flop U7 controls the input gate (U8B). U8B will only pass the amplified input signal from the unknown source when the mat pin 4 of U8B is logic 1. Thus U8B gates the unknown frequency for 10 milliseconds.

The decade counters in the time-base divider chain are connected in a divide-by-5, divide-by-2 configuration. The output frequency of each decade counter is 1/10 the frequency of the input. The output of each decade counter is a symmetrical square wave. The schematic of fig. 2 shows in detail how the decade counter functions when connected in this fashion.

Display strobe logic

The display strobe logic (U6, U7, U8) synthesizes the timing sequence for sampling the input frequency, resetting the decade counter bank before each sampling period, and strobing the LED displays once for each completed sampling period. The timing diagram, fig. 3, illustrates the relationship between these signals. "F" is derived from the output of U8C, pin 8. The total time period for F is 20 milliseconds, which is determined by flip-flop U7, as discussed earlier. The duty cycle of F is determined by gating the B, C, D, and E signals together. You'll note that F is high for 11 milliseconds and low for 9 milliseconds, and that the displays are blanked out.
displays seem to be on continuously. Since the counter
ter when tuning across the band. The counter will
gets an update 50 times per second, the counter will
follow rapid changes in frequency, such as those encoun-
tered by the decade counter bank. The LED displays are
blanked out during the count-up cycle; otherwise, the
displays would show a blur of 8s from the fast count rate. When the sampling has been completed, the input
gate is opened, and the decade counter bank no longer
receives pulses from the input buffer. At this point in
time F goes low; Q3 is switched into saturation, and the
LED displays indicate the results accumulated during the
sampling period. This process is repeated 50 times per
second. Because of the persistence of the human eye, the
displays seem to be on continuously. Since the counter
gets an update 50 times per second, the counter will
follow rapid changes in frequency, such as those encoun-
tered when tuning across the band. The counter will
update changes in frequency with no apparent time lag.

decade counter bank

The decade counter stages (U9-U14) are cascaded in a
manner that allows them to function as a system for
counting a series stream of pulses. U9 is the most
important link in the counter chain and is an SN74196, a
high-speed device capable of performance in the 50-MHz
region. The SN7490 decade counters are rated at 15
MHz. Therefore, the frequency range is very dependent
upon the input buffer and the SN74196. Since U9 will
operate at 50 MHz, the frequency propagated to the
next stage will be, at most, 5 MHz. Each succeeding
stage will receive decreasing orders of magnitude of the
frequency presented to U9.

The SN7490s are connected in a divide-by-2, divide-
by-5 format for use in the decade counter bank. Pin 14
is used as the clock input, and the output of the first
flip-flop (pin 12) is connected to pin 1 to drive the
divide-by-5 portion. The counting function is performed
in the binary coded decimal format. Pin 3 is used as the
reset input for initializing the decade counters to the
0000 state. A logic 1 at this input will reset the SN7490.
When pin 3 is logic 0, the SN7490 advances into each
succeeding count state as dictated by the clocking signal
at pin 14.

The SN74196, on the other hand, is nothing more
than a super-fast SN7490 and operates in much the same
manner. The subtle differences are in the pin configura-
tion and the resetting scheme. Unlike the SN7490, the
\(V_{CC} \) and ground pins on the SN74196 are 14 and 7
respectively; on the SN7490, they are 5 and 10 respect-
ively. Pin 13 on SN74196 is the reset input; a logic 0 as
this input will jam the counter into the 0000 state. The
counter can only advance when pin 13 is logic 1. This
one criterion is opposite that of the SN7490. NAND
gate U8A solves this dilemma by providing oppositely
phased reset signals for U9 and the remaining counters in
the decade counter bank.

decoder bank

U15 through U20 are BCD-to-seven-segment-decoder
ICs. These SN7446s translate the BCD information from
their respective decade counters to form digits in the
seven-segment format. The SN7446s feature leading-zero
blanking, which is employed to eliminate any ambiguity
caused by one or more zeros preceding the most-
significant digit. For example, a frequency of 00142.7
kHz is more recognizable when presented as 142.7 kHz.
Blanking out the unnecessary zeros makes the display
much easier to read. Special logic is designed into the
SN7446 to provide this feature. The ripple blanking
logic looks for a logic 0 from the ripple blanking output
(RBO) from the next most-significant digit. This condi-
tion occurs when the next most-significant digit above
that one is also a zero. The ripple blanking signal propa-
gates from the most-significant digit to the least-
significant digit desired in the zero blanking scheme.

If you refer to fig. 1, you'll notice that the ripple
blanking originates from U20 (the most-significant digit)
and is passed down the line to U17. The ripple blanking
output (RBO) appears at pin 4 of U20 and is fed to the
ripple blanking input (RBI), pin 5 of U19, and so on.

![Logic circuitry for the 50-MHz frequency counter is built on a section of perf-board. Voltage regulator ICs are mounted on aluminum panel which is sandwiched above the perf board on standoffs.](image)

![fig. 2. The type SN7490 connected as a symmetrical divide-by-10 counter.](image)
Pin 5 of U20 is grounded since the ripple blanking process originates at U20. The ripple blanking feature can be disabled by simply connecting pin 5 on U20 to +Vcc 2. Pin 5 (RB1) on U15 and U16 are tied to +Vcc; therefore, with no signal present at the input gate the counter will display only the least two significant digits as zeros.

Unlike the other ICs in the project, the SN7446s are enclosed in a 16-lead dual inline package. Pin 16 is the +Vcc input and pin 8 is ground. The output pins, 9 to 14, are open-collector outputs capable of sinking 20 mA per segment on each segment is slightly more than 1.6 volts. This property alone makes it virtually impossible to check out junction continuity and performance with multi-meters equipped with an ohms-scale voltage source of 1.5 volts. The best way to check out the LED displays is to use a 4.5- to 5-volt supply with a series current-limiting resistor of 220 ohms. If purchase of MAN-1s from one of the surplus dealers is contemplated, this setup will prove valuable in judging display performance on a segment-by-segment basis. The displays will appear to be a little dimmer in the finished counter because, as pointed out earlier, the average dc current through the segments is 8.75 mA.

The MAN-1s are common-anode displays. Common-anode displays can only be used with decoder ICs like the SN7446 because of the polarity of the open-collector outputs. Common cathode displays will not work in this project. The MAN-1 display has its segments partitioned into three groups. It is necessary to tie all three common elements together (pins 3, 9 and 14) to get all of the segments to light up on command. Litronix Data Lite 707 and the Opcoa SLA-1 are excellent substitutes.

input buffer-counter preamp

The input buffer stage is designed to amplify low-level signals to the amplitude necessary to drive TTL logic circuitry. The transistors chosen for this two-stage amplifier are the HEP 709s by Motorola. The gain-bandwidth product of these devices is 600 MHz, which makes them well suited for this application. Their low saturation voltage (Vcesat) is on the order of 0.3 volt, low enough to ensure a logic 0 at the input of a TTL device.

Resistor R1 acts as a buffer between the transmission line input and the base circuit of Q1 so that the incoming signal is not clipped or loaded down by the base-emitter junction of Q1. The parallel combinations of C1-C2 and C4-C5 provide coupling from several kHz through the vhf region. Ceramic capacitors become somewhat lossy and inductive at high frequencies, so silver-mica capacitors (C2 and C5) are used to provide additional coupling at the high-frequency end of the counter range.

Diode CR1 is a high-speed switch that protects Q1 from negative-going peaks appearing at the base-emitter junction. Resistor R4 matches the collector circuit of Q1 to the base circuit of Q2, and also contributes to overall amplifier stability. C3 is a 10 pF silver-mica capacitor that compensates for the base-to-emitter capacitance of Q2.

To keep stray capacitance to a minimum, short coupling at the high-frequency end of the counter range.

led displays

The LED displays used in this project are equivalent to the famous MAN-1. The pinout configuration and schematic are shown in fig. 4. The forward-bias threshold on each segment is slightly more than 1.6 volts. This property alone makes it virtually impossible to check out junction continuity and performance with multi-meters equipped with an ohms-scale voltage source of 1.5 volts. The best way to check out the LED displays is to use a 4.5- to 5-volt supply with a series current-limiting resistor of 220 ohms. If purchase of MAN-1s from some of the surplus dealers is contemplated, this setup will prove valuable in judging display performance on a segment-by-segment basis. The displays will appear to be a little dimmer in the finished counter because, as

fig. 4. Pinout connections and schematic of the MAN-1 LED display.

fig. 3. Timing diagram showing display strobe logic, reset, and input gating.

fig. 2. Timing diagram showing display strobe logic, reset, and input gating.
ponent lead lengths are of prime importance. The braid of the coax cable should be soldered as close as possible to Q1's emitter to prevent ground-loop problems. Printed-circuit boards with the customary ground planes are not necessary if the layout is as neat and compact as possible. The amplifier should be near U8 since the collector of Q2 drives pins 12 and 13 of U8.

Input amplitude voltmeter

Since digital logic has a threshold with respect to triggering levels, a means of monitoring the input signal level is necessary to ensure that the counter chain is receiving enough drive to operate reliably. Insufficient drive level can cause triggering errors, in which case the counter counts only a few pulses that happen to break the threshold level.

This circuit consists of an fet voltmeter equipped with an rf probe. The meter is calibrated to read 5 volts peak-to-peak or 1.78 volts rms full scale. The 25k trim-pot in series with the 0-50 microammeter is used to calibrate the circuit. The 1k trimpot provides an electrical zero adjust. Calibration can be done with any high-frequency source of known amplitude. The 1-MHz output at pin 11 of U1 has an amplitude of about 3.6 volts peak-to-peak, which can be used if no other calibrated source is available. Before beginning the calibration, the meter should be both mechanically and electrically zero adjusted. The zero adjust on the front panel of the meter should be checked before you apply supply voltage to the fet voltmeter circuit.

Power supply

The power supply, fig. 5, is straightforward thanks to the LM309K voltage regulators. Two 5-volt supplies are derived from the 9-volt dc supply. The Vcc1 supply is connected to the Vcc pin of all the ICs except the decoders. The Vcc2 supply powers the decoder ICs and the LED displays only.

The purpose of splitting up the power supply in this fashion is to divide the current demand of the frequency counter so that the regulators operate well below their maximum ratings. The dual power supply also provides excellent decoupling between the decoders, display switching circuitry, and other parts of the counter logic.

Sensitivity measurements

These measurements were made with a Tektronix 191 constant-amplitude rf generator, a Hewlett-Packard audio oscillator, and a Tektronix 7000 series scope. The following results were observed with a sine wave input.

<table>
<thead>
<tr>
<th>Amplitude (mV rms)</th>
<th>Lower cutoff frequency (kHz)</th>
<th>Upper cutoff frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 mV</td>
<td>200</td>
<td>10.20</td>
</tr>
<tr>
<td>10 mV</td>
<td>150</td>
<td>14.00</td>
</tr>
<tr>
<td>15 mV</td>
<td>100</td>
<td>18.15</td>
</tr>
<tr>
<td>20 mV</td>
<td>33</td>
<td>23.00</td>
</tr>
<tr>
<td>50 mV</td>
<td>20</td>
<td>45.70</td>
</tr>
</tbody>
</table>

The counter works well with signal levels up to 1.5 volts rms (4.5 volts p-p). At greater amplitudes, the base-collector junction of Q1 is forward biased during the positive peaks of the input signal thereby degrading its vhf performance.

References

Get into a good thing... get into TV and Audio Electronics and take advantage of the growing need for full and part-time technicians. And do it at your own convenience, in your own home at your own speed with proven NRI training. "Bite-size" texts speed learning and professional help is always available from your NRI instructor. Over a million men have already chosen the NRI way to a better life.

Build color TV, Quad Hi-Fi

No one else gives you so much. You learn by doing with NRI's exclusive "Power-On" training. In our Master TV/Audio Course, you actually build a 25" (diagonal) solid state TV, a solid state quadraphonic audio center complete with four speakers, and useful test instruments like a TV pattern generator, 5" triggered sweep oscilloscope, CMOS digital frequency counter, and transistorized volt ohmmeter. All this, plus our unique Discovery Lab and seven other electronics kits shows why NRI gives you the most in practical bench training.

The Pro's choice for 62 years

NRI is the oldest and most successful school of its kind. A documented national research study shows that over half of the professional TV/Audio technicians have home training, and among them, it's NRI 2 to 1 (survey summary on request). And, it's economical. For what you'd pay for either course from the next leading school, NRI gives you both TV and quad audio training... training on equipment designed to teach!

Send for free catalog

Our big new catalog tells all about the many NRI courses in TV, Audio electronics, CB radio, computer technology, and more. It shows you lesson plans, equipment, career opportunities, the whole NRI story. There's absolutely no obligation and no salesman will ever call. Send now... it could be the turn-on that turns your life around.

Rush the free catalog of my choice (select only one, please). No salesman will call.

NRI Schools
McGraw-Hill Continuing Education Center
330 West Wisconsin Avenue
Washington, D.C. 20007

[Box for courses]

Name
(Please Print)
Age
Street
City/State/Zip

Accredited Member National Home Study Council
antenna and
tower restrictions

A complete discussion of deed restrictions, zoning ordinances and building codes, and how they may affect that new antenna system you want to install

When planning to buy or build a new home an amateur's first thoughts are inevitably of antennas. How many towers, and how tall shall they be? He may remember stories of amateurs who have been faced with lawsuits because of deed restrictions or zoning regulations, but rarely is this an overriding consideration in the choice of a house or lot. Let the wife pick out the house first—he can worry about those things later. This should not be. The dangers to ham operation are real, and unfortunately seem to be getting greater.

No one can assume that he has an inalienable right to do whatever he wishes with his property. Like all of our rights, they are subject to many limitations. If you take the attitude that some vaguely-worded deed restriction or zoning ordinance will be decided in your favor by the courts, you may be right. However, it could still cost you thousands of dollars in legal fees to establish your rights, and unless you are independently wealthy and enjoy litigation, it could by a Pyrrhic victory.

I recently bought a lot and built a house, and in the course of doing this learned a great deal about the subject. Because of various restrictions, I rejected lots that were otherwise very desirable from the standpoints of location and price. Eventually I found a lot that was satisfactory from all standpoints, but it was not easy. This article will describe the nature of the problems you may be faced with, and what you should do to minimize your risk.

Perhaps the best way to describe deed restrictions is to demonstrate how they work: The owner of a tract of land wants to subdivide it into building lots and sell them. If the owner of the tract is also a builder, he wants to sell you a house with the lot. It is naturally his desire to get as high a price as possible for his lots, and it is therefore in his interest to impress you with the desirability of living in his development. He wants to convince you that the area is definitely high-grade, and will, furthermore, remain that way and not deteriorate. He drafts a "Declaration of Restrictions." This document generally describes the type of house, garage, etc., you may erect on the property, the minimum setback, type of fence, and other items. The developer submits his plat and restrictions to the local zoning commission or other cognizant authority, and if they comply with local planning and zoning laws, they are approved and recorded. The deed to your property will probably say "Subject to any restrictions of record" or something similar. The restrictions are now legal.

Anyone who buys property in this subdivision is, in effect, signing a contract to abide by these restrictions, and if he violates them he can be sued by any property owner or group of property owners in the subdivision.

Of course, there is no certainty that you will be sued if you violate the restrictions. But you are certainly subject to lawsuits. If the development is new, the developer himself may sue, since he may feel that the presence of a 70-foot tower makes it more difficult for him to sell his remaining lots. But even after the subdivision is all sold out, at which time the original developer rapidly loses interest in the character of the neighborhood, any property owner can sue if he finds your tower objectionable, and, depending on the exact wording of the restrictions, would probably have a good chance of winning. The result would be a court order for you to remove your tower.

In my search for a lot, I accumulated quite a collection of sets of restrictions. Every one of them, to a greater or lesser degree, implied restrictions on the erection of antennas although the wording varied. In fact, most of them made no mention of antennas as such. These specified in detail what you could put on the property—and an amateur antenna was not one of the permitted things. Typical wording was, "No structure other

Harry R. Hyder, W71V, 9842 North 57th Street, Phoenix, Arizona 85253
than a single-family dwelling . . . garage, swimming pool, etc . . . shall be erected or permitted to remain on this property.

One local amateur was sued by a developer for violation of a restriction like that. He won his case because his tower was mounted on top of his carport, and the court ruled it was part of the house and not a separate structure. Presumably if the tower has been mounted on the ground apart from his house, he might have lost. This victory cost the ham $2500 in legal fees. Some victory.

Other restrictions specify a maximum height above ground or roof level that no structure can exceed; 35 feet (11 meters) above ground level or 3 feet (1 meter) above roof level are common values.

Some restrictions do mention antennas. One actually specifically permitted amateur radio antennas but said that the towers must be of the retractable type and lowered when not in use. One planned community in the Phoenix area bans all outdoor antennas including TV antennas (this community has a master antenna and cable distribution system).

Another common type of restriction states that anything erected on the property must be approved by the “Architectural Committee” of the development.

When considering lots, I always asked the agent whether there were any restrictions on the erection of amateur antennas, and was usually assured that there were none. This frequently turned out to be not quite true. Very rarely, in fact, did the agent have a knowledge of what the restrictions actually said. Ask the agent to get a copy of the restrictions, which he can easily do, and read them yourself. You can get copies yourself as most of the large title insurance companies have this information on file. Alternately, you can get copies at the County Recorder’s office (to be valid, the restrictions must be a matter of record).

All of this sounds pretty discouraging, but there are subdivisions that do not have any restrictions. This is more likely to be true of older areas since it has been only relatively recently that restrictions of this sort have become widespread. There are also many odd pieces of property that have never been part of subdivisions. If you look hard enough, you can find a suitable house or lot that has no restrictions.

In any event, you should have your attorney insert a clause in the sales contract that your money will be returned if any restrictions on the erection of ham antennas are found to exist.

zoning ordinances

Unlike deed restrictions, which are in the nature of private contracts, zoning regulations are a matter of law. Zoning is an attempt by a municipality or county to control the usage of land within its boundaries for the purpose of orderly growth and development. Sections of the incorporated area are designated residential, commercial, industrial, etc., and within these classifications are sub-classifications.

The various types of residential zoning control the number of residences per acre, whether single-family or apartment buildings, maximum height, setback from the street and property line, street and utility easements, and similar matters. Depending on the exact wording, zoning regulations can imply prohibition of the erection of antenna towers, or can expressly forbid them. Some even expressly permit them. The zoning regulations of Scottsdale, Arizona, for example, specifically permit antenna towers up to 70 feet (21 meters).

In contrast, Paradise Valley, a bedroom community adjoining Phoenix, forbids all towers. An amusing sidelight to this is that Paradise Valley’s most distinguished citizen is Senator Barry Goldwater, K7UGA. Senator Goldwater’s home is equipped with two tall towers mounting quite an array of beams, including a very impressive log-periodic.

The Phoenix Zoning Ordinance controls building height, but a paragraph specifically excludes antennas, flagpoles, water towers, etc., from the height restrictions.

In general, amateurs are in less danger from zoning ordinances than from deed restrictions. One reason is the natural slowness of democratic governments to react except in the face of political pressure. Another is the fact that most municipal or county attorney’s offices are very understaffed, and are not anxious to undertake such suits, which do not have the glamour of, say, criminal prosecutions. Nevertheless, city and county attorneys are usually elected officials, and if one of your neighbors objects to your antenna, and he is politically well-connected, you could be in for trouble.

The amateur does have one thing going for him. There seems to be an unofficial legal principle that says what others have done in the past without legal interference, you can do too. If there are a number of amateurs in your city who have towers and have never been threatened with legal action, regardless of the exact wording of the zoning regulations, you are probably on safe ground.
In any event, it is a good idea to become familiar with your local zoning regulations. These can be obtained from your local planning and zoning commission, usually located at city hall or nearby. The complete Phoenix Zoning Ordinance, a sizable book, costs $5.00, and by paying an additional $5.00, you can be placed permanently on the mailing list for changes and additions. Other cities probably have similar arrangements.

building codes

Building codes are designed to protect the health and safety of the citizens of a political division. Antenna towers come into this because an improperly designed or installed tower could collapse and cause damage to life or property. I have personally seen antennas that seemed to stay up by sheer faith, and it seems reasonable that anyone erecting a tower should be able to demonstrate that it will not be a hazard to himself or his neighbors.

Relatively few amateurs apply for building permits for towers. I strongly recommend it. In principle, at least, if you do not get a permit with its attendant inspections, you could be forced to take your tower down. It’s difficult to say just how likely this is to happen as it is highly dependent on your local administration, but it can and has happened. In any event a building permit is a nice piece of insurance against that possibility.

In some localities obtaining a building permit is mere formality. Some areas even have special provisions in their local codes for amateur radio towers. In others it is more difficult. A typical requirement would be a set of plans and stress calculations approved by a registered professional engineer. First find out from your local building inspection department what is required, and then attempt to supply it.

One problem that you may run into is that the personnel in your local inspection department have never been asked to issue a permit for a tower before, and like true bureaucrats, assume that since they have never done it before, it must be illegal. Don’t stop there.

An experience of mine is enlightening. When I was interested in buying a piece of property in a local community, I went to the inspection office and asked the man behind the counter how to apply for a permit for a 50-foot (15-meter) antenna tower. He informed me very positively that such a tower was not permitted and he could not issue me a permit. I then asked him why the local zoning ordinances permitted antenna towers up to 70 feet (21 meters) if they were illegal (I had already checked this). I then showed him the wording of the ordinance, and he confessed that he had never seen that paragraph. He allowed as how he probably could issue a permit, but would have to check with the city engineer about the actual requirements. I did not pursue the matter at that time, and I eventually bought my lot elsewhere, but an amateur friend of mine subsequently received a permit for a 60-foot (18-meter) tower from the same office merely by supplying a set of the tower manufacturer’s plans and specifications.

Don’t stop at the first “No.” Building inspection departments are bound by law and cannot act arbitrarily. If the zoning laws do not prohibit towers and if you can demonstrate that the tower design and installation are sound, they are bound to issue you a permit. The cost is usually about five dollars.

It would be a good idea to read the sections of your local building code dealing with towers. You can do this at the inspection office. If you run into any problems it would be a good idea to request a personal talk with the city or county engineer. They are usually pretty reasonable.

In the city of Phoenix the law requires that the tower stress calculations be checked by a registered professional engineer in the State of Arizona and that he supply a letter saying that he has done this, duly stamped with his seal. I don’t know how widespread this requirement is, but it could mean a fee of $50 or more. In my own case, the tower I was planning to erect had already been approved for a previous applicant. Some areas have approvals for specific makes and models of towers on record; this constitutes a sort of type acceptance. It would be a good idea to find out which types have previously been approved, and if one of these suits your requirements, getting a permit should present no problems.

Another thing to do is to find a local amateur who has successfully obtained a building permit and find out what procedure he followed. When dealing with the law, precedent is highly important.

conclusions

While it may be troublesome and frustrating to run the gauntlet of deed restrictions, zoning ordinances and building permits, it can be done — the most important ingredient is persistence and it is worth it. Amateurs have been ordered by the courts to remove their antennas for violation of all of these, and it gives you a comfortable feeling to know that you are completely protected.
The TS-520 with its companion VFO-520 and SP-520

The TS-520 is the final word in SSB transceivers - the "hottest little rig on the air!" Built-in AC/DC power supply, compact and extremely reliable. The TS-520 is loaded with features - loaded with Kenwood quality.

The TV-502

2m transverter ... puts your TS-520 on the 2 meter band. Solid-state, 144 to 146 MHz. SSB and CW ... priced right.

The R-599D and T-599D

The most complete and versatile solid-state receiver and transmitter combination on the ham bands. Thousands of "Twins" have proven themselves in worldwide daily use. And now we've given them a rich new darker appearance. Shown with the matching S-599D.

The TS-700A

2 meter transceiver ... the best! Operates on SSB (upper & lower), FM, AM and CW. Built-in AC/DC capability. 4 MHz band coverage. 44 channels with 11 crystals.

The QR-666

World listening at its best. New solid-state communications receiver. AM, SSB and CW. The last word in state-of-the-art technology.

Available at select Kenwood dealers throughout the U.S.

TRIO-KENWOOD COMMUNICATIONS INC.
116 East Alondra / Gardena, California 90248
diode detectors

A comparison of the operating characteristics of various diode detectors and how they can be improved through modern circuitry

came a household word. Various types of mineral and man-made crystals such as galena, silicon, perikon (copper pyrites and zincite), molybdenite and carborundum were used. Fig. 1 shows a simple crystal set using one of the crystals of the period. This same circuit could still be used today, but a modern signal diode would be used in place of the crystal and catwhisker.

Galena (lead sulphide), an important lead ore found here and in Europe, was the most popular of the crystals used in the early days of radio because it was the most sensitive. Steel galena, so called because it resembles a piece of broken steel rod, contains a small percentage of silver and, although not quite as sensitive as plain galena, became popular in later years because it was somewhat easier to adjust.

The crystals used as radio detectors were mounted in clips, held in tin-foil cups, floated in mercury, or more commonly, mounted in a small “pill” of a low-melting-point alloy. (Some experimenters who tried to mold their own crystal holders used a too-hot mixture of lead, only to discover that the heat destroyed the sensitivity of the galena.) The catwhisker, a length of fine, stiff wire, was moved about the surface of the crystal until an “active” spot was found. This metal-to-semicon-

From the earliest days of radio the subject that received the most attention of radio amateurs (first unlicensed, and later with amateur calls) was the detector. The antenna-ground system, although it allowed for a good deal of innovation, was generally size-limited by the amateur’s real estate or by the basic laws of physics. Also, antennas are fun to work on only in decent weather; little antenna work is done during the winter months. The transmitter was also straightforward: you simply bought as large a transformer as you could afford. The spark gap and its coupling to the antenna-ground system were relatively simple.

The detector, however, didn’t cost much and could be worked on at any time so thousands of experimenters tinkered away their winter evenings trying to improve their detectors. Eventually they had enough success that the detectors became known as “receivers.” Another nice feature of experimenting with detectors was that you could receive signals at “get a foot in the door” of radio, even if you had no transmitter. All sorts of devices were tried by these early experimenters: flame ionization detectors, coherers, electrolytic detectors, thermoelectric detectors, magnetic hysteresis detectors, crystal detectors and the early Fleming valve (vacuum diode).

Of all the early detectors the crystal type received the most widespread usage and “crystal set” eventually be-

Hank Olson, W6GXX, Post Office Box 339, Menlo Park, California 94025

*Different types of crystals require different catwhiskers. Galena, for example requires a stiff, clean catwhisker with very little pressure. Plated copper is best, with brass and platinum running a close second. If you use a steel galena crystal, however, a German-silver catwhisker is best. For silicon crystals, tungsten catwhiskers are preferred although molybdenum is sometimes used. Chromium or steel are recommended as catwhiskers for carborundum crystals (which also require a bias battery), while many different metals have been used successfully with molybdenite crystals.
ductor interface is similar in many ways to the point-contact diodes of today. A typical galena-catwhisker assembly is shown in fig. 2.

The success of the vacuum tube, first as a diode (Fleming valve) and later as a triode (Deforest Audion) eclipsed the crystal detector commercially after about 1921. Crystal sets continued to be used by experimenters, however, as they still are today. Also, work continued in the laboratory on silicon crystal detectors as power detectors for microwave measurements. This laboratory experimentation was greatly refined and expanded during World War II as engineers tried to solve the microwave radar mixer problem. This concentrated research effort on crystal detectors eventually led to a huge body of knowledge on basic silicon and germanium crystal physics and how various impurities affect the semiconducting properties of these materials.

fig. 2. Commercial galena-catwhisker assembly. These units can still be obtained at some radio distributors.*

Steel galena crystal offered to amateurs in the 1920s.

The high-inverse voltage germanium point-contact diode came directly out of these wartime research efforts, and most of the other semiconductor developments we know today came indirectly from this same research. The twenty-eight volume MIT Radiation Laboratory Series includes one whole volume which describes the semiconductor diode developments for radar usage which occurred during this period.2

Based upon the research done during the war, germanium point-contact diodes became available to industry in the late 1940s. The 1N34 was offered by Sylvania, immediately became popular with experimenters, and started showing up in everything from absorption wave-meters to a-m speech clippers.3

The alloyed-junction silicon and germanium diodes came along in the early 1950s.4,5 The germanium junction diode achieved some degree of popularity as a rectifier (1N91 – 1N93) but is considered obsolete today while the silicon junction diode came into its own both as a signal diode and power rectifier. An example of an early alloy-junction rectifier is the 1N536-1N540 family; the 1N482-1N485 family are typical early alloy-junction signal diodes.

fig. 3. Three diode circuits which use Schottky diodes. Shown in (A) is a typical double-balanced mixer. A single-balanced mixer is shown in (B) while (C) shows a broadband doubler circuit.
While most modern silicon junction rectifiers are still made by the alloy process (1N4001-1N4007, for example), newer silicon junction signal diodes are usually made by the planar epitaxial process (1N4454, for example). If you insist on a germanium junction signal diode, the base-emitter elements of a germanium junction transistor (2N404 or 2N5043) could be used.

There have been many other types of diodes developed since the silicon and germanium types discussed above. Tunnel, PIN, step-recovery, varactor, zener, Virtually all Schottky diodes are silicon types, and their advantage over point-contact types is that their characteristics are closely matched and stable. This stability quality is quite important because it allows the close matching of diode pairs or quads which make it possible to build really good double-balanced mixers. The double-balanced mixer and its related single-balanced mixer and broadband doubler have made an enormous impact on modern vhf, uhf, and microwave systems.

Gunn, IMPATT and TRAPATT are some of these special types, but are not, in general, used as detectors of the common, rectifying type.

One newer type of diode, the Schottky-barrier or hot-carrier diode, has characteristics similar to the point-contact device. Like the point-contact diode, the Schottky diode uses a metal-semiconductor junction; in the Schottky diode, however, the metal is deposited on the semiconductor by sputtering in a vacuum. Examples of the Schottky diode are the Hewlett Packard 5082-2800 and the Motorola MBD501.

Three basic diode circuits which use matched Schottky diodes are shown in fig. 3. Note that the transformers in fig. 3 are usually built with a few turns of wire on ferrite toroids, so the circuits are often useful over a three-decade frequency range (200 kHz to 200 MHz is common).

The forward conduction characteristics presented in fig. 4 will give you an idea how some of the various semiconductor diodes compare. The curves in fig. 4A for galena and perikon are from reference 6, the carborundum curve (fig. 4B) is from reference 7, while the for-
ward characteristics for the 1N270 (fig. 4C) and 1N914 (fig. 4D) were taken from the data sheets of currently manufactured diodes. As can be seen, the forward current characteristic of any diode semiconductor diode is far from linear.

Diode Detectors

An early article by Colebrook exhaustively describes crystal rectifiers and their use as detectors of radio signals. Although the author had only early galena and perikon diodes to work with, his mathematical analysis and conclusions are as fresh today as they were when written in 1925. The basic diode detector shown in fig. 5 is the same as that used in reference 6.

Fig. 5A shows a resistive load while fig. 5B shows the more usual case where there is a capacitor in parallel with the load resistor (this increased detector efficiency). The capacitor should present a low impedance at the carrier frequency (as compared to resistor R), and a high impedance at the modulation frequencies. In the circuit of fig. 1 a 0.002 μF capacitor is placed in parallel with a set of 2000-ohm headphones. At 1 MHz (the center of the broadcast band, for which this crystal set was designed) a 0.002 μF capacitor has about 80 ohms reactance. At 1000 Hz, a typical audio test frequency, the reactance of this same capacitor is nearly 80 kilohms.

The circuit shown in fig. 6 was built to demonstrate how a shunt capacitor increases efficiency, and also to show how several common diode types compare. The 51-ohm resistor at the input simply terminates the amplitude-modulated signal generator. The LM318H IC and associated capacitors and resistors comprise a low-pass filter with a cutoff frequency at 2000 Hz. In this circuit the 2200-ohm resistor, R1, is the detector load and the 510-ohm resistor at the output of U1 is to prevent oscillation of the op amp when using a length of coax to the vtm. The 0.002 μF capacitor can be switched in or out; the results are shown in fig. 7. For higher input signal levels the capacitor increases the output audio voltage level by 8 to 10 dB (enhancement with the 6AL5 vacuum tube diode is even more marked at some input levels).

Note that since the plots of input rf level vs audio output level presented in fig. 7 are on log-log coordinates (since the abscissa and ordinate are both in dB) two straight lines may be drawn on the plots, one representing a linear relation and the other a square-law relation. For large input signals, say above -20 dBm, all the detectors approach a linear slope. It should also be noted that
at input levels below -20 dBm a square-law or larger exponent relationship is usual. The point is that although some diodes are more nearly linear over a larger range of input voltage than others, none of them could remotely be considered as linear detectors at input signal levels below -20 dBm. A 6AL5 detector circuit with capacitor, comes closest, perhaps, to the textbook explanation that “diodes are square-law devices for small signals and linear devices for larger signals.”

In a receiver, operation of the diode detector in its square-law region means that for every 10 dB weaker a signal may be, the output is 20 dB down. This is clearly not a good way to operate. Not only does it waste stage gain, it also degrades the signal-to-noise ratio. To avoid the square-law region most receivers use enough rf and i-f gain to keep the input voltage level to the diode detector up in the region where it behaves linearly. Unless agc is used this usually means that the last i-f amplifier must be a small transmitting tube or other large-signal device if reasonable dynamic range is to be achieved.
Fig. 10. Precision full-wave detector using semiconductor diodes and two operational amplifiers.

linear diode detectors

Few commercial receivers bother with such luxuries as large-signal capability in the last i-f stage — they either rely on agc or accept detector non-linearity. Fortunately, the modern extensive use of ssb on the high-frequency bands has forced receiver manufacturers to use the inherently more linear product detector. The linearity of product detectors, which are essentially mixers with an audio output, is due to the fact that the oscillators which drive them completely control the conduction of the nonlinear devices used as mixers.

The product detector does not make a very satisfactory detector for a-m because the bfo never quite matches the receiver carrier frequency. This results in a beat note being present in the audio output unless a phase-locked loop is used to synchronize the bfo to the received carrier frequency. This phase-locked loop form of a-m detection is shown in fig. 8; with the modern phase-locked loop ICs that are now available the circuit is not unreasonably complex.

Another technique for linearizing an a-m detector involves the use of an operational amplifier. Although this

Fig. 11. Improved version of the full-wave detector provides better linearity than previous circuits.

Fig. 12. Open-loop gain vs frequency of the LM318H operational amplifier IC.
technique has been around for quite some time, it has only recently become practical with the availability of low cost, high-frequency IC op amp. Fig. 9 shows the basic precision diode detector using an op amp. Fig. 10 shows a full-wave version of the detector (from reference 9). The full-wave version has the disadvantage that the delay for positive input signals, which are inverted and amplified two times, is twice that for composite signals. Because of the delay difference, the signals don't subtract in phase, so high-frequency performance suffers. Fig. 11 shows a precision full-wave diode detector, attributed to Dr. Nick Cianos of SRI, that solves the problem.

Diode detectors which use an op amp in the circuit reduce the input voltage at which the transfer curve (input to output relation) becomes non-linear by a factor equal to the open-loop gain of the op amp. Since op amp voltage gains can be more than 100 dB at the lower frequencies this can make a significant difference in detector performance.

The performance curve of a good monolithic IC op amp (National LM318H) is shown in fig. 12. Note that the open-loop gain drops as frequency increases so you can only expect about 24 dB improvement in linearity at 1 MHz. To check this I built the circuit shown in fig. 13. The test results are plotted in fig. 14. The improvement at low input signal level linearity is quite apparent. The principle of op amp/diode detection is used in the National LM372, an IC that combines the functions of i-f amplifier and a-m detector.

summary

The diode detector has been the standard a-m detector almost since radio began. Today we essentially have only two choices of semiconductor material: germanium and silicon. Germanium has lower offset voltage while silicon has the benefit of improved technological processing. A semiconductor diode of either type, used in combination with a modern IC op amp, can greatly improve the linear dynamic range of the detector. When used as an integral part of an IC the silicon diode holds great promise in the future.

references

ham radio
OX OSCILLATOR
Crystal controlled transistor type. 3 to 20 MHz, OX-Lo, Cat. No. 035100. 20 to 60 MHz, OX-Hi, Cat. No. 035101
Specify when ordering.
Price $3.95 ea.

OF-1 OSCILLATOR
Crystal controlled transistor type. 3 to 20 MHz, OF-1, Lo, Cat. No. 035108. 20 to 60 MHz, OF-1, Hi, Cat. No. 035109
Specify when ordering.
Price $3.25 ea.

EX CRYSTALS
(HC 6/U HOLDER)
Cat. No. Specifications
031080 3 to 20 MHz — For use in OX OSC Lo
Specify when ordering $4.95 ea.
031081 20 to 60 MHz — For use in OX OSC Hi
Specify when ordering $4.95 ea.
031300 3 to 20 MHz — For use in OF-1L OSC
Specify when ordering $4.25 ea.
031310 20 to 60 MHz — For use in OF-1H OSC
Specify when ordering $4.25 ea.

MXX-1 TRANSISTOR RF MIXER
A single tuned circuit intended for signal conversion in the 30 to 170 MHz range. Harmonics of the OX or OF-1 oscillator are used for injection in the 60 to 179 MHz range.
3 to 20 MHz, Lo Kit, Cat. No. 035102. 20 to 170 MHz, Hi Kit, Cat. No. 035103
Specify when ordering.
Price $4.50 ea.

PAX-1 TRANSISTOR RF POWER AMP
A single tuned output amplifier designed to follow the OX or OF-1 oscillator. Outputs up to 200 mW depending on frequency and voltage. Amplifier can be amplitude modulated.
3 to 30 MHz, Cat. No. 035104
Specify when ordering.
Price $4.75 ea.

SAX-1 TRANSISTOR RF AMP
A small signal amplifier to drive the MX1-1 Mixer. Signal tuned input and link output.
3 to 20 MHz, Lo Kit, Cat. No. 035102. 20 to 170 MHz, Hi Kit, Cat. No. 035103
Specify when ordering.
Price $4.75 ea.

BAX-1 BROADBAND AMP
General purpose amplifier which may be used as a tuned or untuned unit in RF and audio applications. 20 Hz to 150 MHz with 6 to 30 db gain.
Cat. No. 035107
Specify when ordering
Price $4.75 ea.

Shipping and postage (inside U.S., Canada and Mexico only) will be prepaid by International. Prices quoted for U.S., Canada and Mexico orders only. Orders for shipment to other countries will be quoted on request. Address orders to: M/S Dept., P.O. Box 32497, Oklahoma City, Oklahoma 73132.

ICM
International Crystal Mfg. Co., Inc.
10 North Lee
Oklahoma City, Oklahoma 73102
A discussion of microprocessors and how they fit into the scheme of computers and controllers that exist today

By now, most amateurs are aware of the fact that a revolution is occurring in the electronics industry: microprocessors. If you had held stock in companies that manufacture microprocessors, this fact would have become quite apparent after RCA's misinterpreted announcement several months ago that microprocessors will soon be incorporated into U.S. automobiles. Rather than rehash an electronics revolution after it is over, we believe that it would be fun to jump into the middle of the one that is occurring at this moment and closely observe events that will have a profound influence on electronic measurement, laboratory instrumentation and amateur station control. Therefore, over the next few months this column will be devoted to the subject of microcomputers: what they are, how they operate, and what they can and cannot do for the electronic experimenter, engineer or laboratory scientist.

We shall use microprocessor operation and interfacing as a vehicle to probe more deeply into the detailed concepts and techniques of computer interfacing. Please keep in mind that the microprocessor, when complemented by memory, buffers, and input/output (I/O) devices, is as much a computer as its larger and usually faster rivals, the minicomputers and full-size computers. By learning how to interface a microprocessor, you will simultaneously learn the concepts of how to interface a minicomputer or full size computer. The use of interrupts, device selects, software generated strobes, timing loops, and the like are common to all.

To gain full value from some of our forthcoming columns, it would be beneficial to have an understanding of the basic principles of digital electronics. Some very important terms and concepts that you should master include the following: gate, logic element, counter, gated counter, monostable, enable, disable, inhibit, strobe, decoder, multiplexer, demultiplexer, timer, clock pulse,...

By David G. Larsen, WB4HYJ, Peter R. Rony and Jonathan A. Titus.

Mr. Larsen, Department of Chemistry, and Dr. Rony, Department of Chemical Engineering, are with the Virginia Polytechnic Institute and State University, Blacksburg, Virginia. Mr. Jonathan Titus is President of Tychon Inc., Blacksburg, Virginia.
positive edge, negative edge, flip-flop, latch, bus, Tri-State™, shift register, dynamic RAM, static RAM, ROM, programmable ROM, up/down counter, AND, OR, NAND, NOR, exclusive OR, arithmetic element, and more. Our pair of books on digital electronics, Bug-books I and II. Logic & Memory Experiments Using TTL Integrated Circuits, will bring you to the level of understanding in digital electronics required to interface microcomputers; other digital books, such as the pair marketed by Hewlett-Packard in conjunction with their logic lab, will also help you develop the skills that you will need. Digital electronics is a rapidly expanding field, and new texts and reference manuals are appearing at the rate of one every several weeks.

As we currently envision them, future columns will offer a tutorial on the operation and interfacing of a very popular microprocessor, the Intel 8080 8-bit microprocessor, which can perform simple logic or arithmetic instruction in only 2 μsec and can directly address 65,536 different memory locations, each containing eight bits of data. Originally priced at $360 in quantities of one, you can purchase an 8080 now for about $50 from selected supply sources and its cost will be no more than $5.5 two or three years from today. The 8080 has some important rivals, e.g., the Motorola 6800 and the Fairchild F8, but it is a worthy selection nevertheless. Each microprocessor has its special features. However, the general concepts developed in this column will be applicable to any microcomputer system.

Standing alone, a microprocessor chip can do nothing. It functions only in the context of a microcomputer system, in which appropriate integrated-circuit chips are incorporated to complement the basic function of the microprocessor (μP): to serve as a central processing unit (CPU) in which logic and arithmetic operations and data transfers between register, memory, and the outside world are performed. In some columns, we will need to focus upon a specific microcomputer system. For this purpose, we have chosen a new system that is specially designed to instruct individuals in all of the details of microprocessor operation and interfacing: the Mark 80 microcomputer (fig. 1). This particular system, shown with 4k of solid-state memory and a control panel, is built around the Intel 8080 microprocessor chip. Except for a power supply, it is completely operational. The system is bus structured and has all important inputs and outputs connected to a solderless breadboarding socket, permitting interfacing concepts to be learned, tested, and breadboarded into a digital circuit of your own design.

We would first like to discuss what a microprocessor is and how it fits into the general scheme of computers and controllers that exist today. Eadie, in his book, Introduction to the Basic Computer, has defined the term data processor as "a digital device that processes data. It may be a computer, but in a larger sense it may gather, distribute, digest, analyze, and perform other organization or smoothing operations on data. These operations, then, are not necessarily computational. Data processor is a more inclusive term than computer."²

A microprocessor is a single integrated-circuit chip that contains at least 75 percent of the power of a computer. It usually cannot do anything without the aid of support chips and memory, however, and therefore can be distinguished from a microcomputer, which is a full operational system based upon a microprocessor chip that contains memory, latches, counters, input/output devices, buffers, and a power supply in addition to the microprocessor chip. A microcomputer may be a "black box" with only a single switch: operate/reset. The 8080 microprocessor, a 40-pin LSI chip, is shown in fig. 2. A typical system based upon this chip is shown in fig. 3; the 8080 chip is located on the CPU board on the left.

A microcomputer possesses all of the minimum requirements of a computer. For example:

- It can input and output data, which is usually in the form of digital electronic signals. Common I/O devices include teleprinters, CRT displays, paper

tape readers, floppy disks, magnetic tapes, cassette tapes, laboratory instruments, and process control devices.

It contains an arithmetic/logic unit (ALU) that can perform arithmetic and/or logic operations such as add, subtract, compare, rotate left, rotate right, AND, OR, negation, and exclusive OR.

It contains a minimum amount of “fast” memory such as RAM, ROM, PROM, or core, but usually not cards or paper tape, in which data and program instructions are stored. The data and instructions are stored as 4-bit, 8-bit, 12-bit, or 16-bit words.

It is programmable. The data and program instructions can be arranged in any sequence desired, in contrast to the programmable calculator, in which the precise manner that a keyboard function is executed cannot be changed by the operator.

It is fast, with an ability to execute a simple instruction in ten microseconds or less. All existing microcomputers are digital and TTL compatible, where logic 0 corresponds to ground potential and logic 1 corresponds to +5 volts.

There appears to be some misunderstanding concerning the role of current microprocessors and microcomputers relative to other types of computers. The temptation is great to order a modest microcomputer system and then to surround it with $5000 worth of I/O devices such as floppy disks and line printers. At this point we would like to provide a bit of insight concerning the most likely role of microcomputers. Fig. 4 graphically depicts where microcomputer applications fit today, and table 1, taken from an article by Riley,2 depicts the spectrum of computer-equipment complexity from simple hard-wired systems to high-performance general data processing equipment.

Microprocessor and microcomputer applications fall between relay logic and discrete random logic (gates and flip-flops) on one hand and small minicomputers such as the PDP 8A and the LSI 11 on the other. Microcomputers built from microprocessor chips are not as sophisticated as some of the popular minicomputers and cannot easily perform certain types of data processing problems. They are simply not set up at this time to run

FORTRAN, COBOL, or other high-level computer languages. Those microcomputers that can, in principle, handle high-level languages still suffer in comparison with minicomputers supplied by Digital Equipment Corporation, Hewlett Packard, Data General, Varian, and other manufacturers in the amount of available high-level software.

If you want to solve tomorrow’s problem, you can consider the purchase of a microcomputer system and develop your own high-level software. If you want to solve today’s problem, pay particular attention to software support. Your time is valuable. If you are not careful, software costs can easily equal and exceed the total hardware costs of your data acquisition system.

For the moment, then, it would be more appropriate to call systems built around microprocessor chips microcontrollers or logic processors. They can sequence events in response to decisions upon input data. As the price of individual microprocessor chips drops from several hundred dollars per chip to $10 to $30 per chip, it will be clear that the dominant application for today’s microprocessors will be as sophisticated control elements in instruments and machines of all types. We foresee minicomputer-microcomputer and computer-microcomputer hierarchies in which one to twenty instruments, machines, or devices, each containing its own microcomputer, will all be tied to a single minicomputer or computer.

the anatomy of a microcomputer

The “anatomy” of a typical microcomputer system is shown in fig. 5. This system is based upon the 40-pin 8080 microprocessor chip and possesses all of the minimum requirements for a computer:

- It can input and output data.
- It contains an arithmetic/logic unit (ALU), located within the 8080 chip, that performs arithmetic and logical operations.
It contains "fast" memory.

It is programmable, with the data and program instructions capable of being arranged in any sequence desired.

It is digital.

Fig. 5 shows the important data paths within the microcomputer. In the sub-sections below, we shall dissect this diagram and discuss each of the individual data paths.

<table>
<thead>
<tr>
<th>Memory</th>
<th>Programmable read-only memory</th>
<th>Volatile memory</th>
<th>Read</th>
<th>Write</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory</td>
<td>Any device that can store logic 0 and logic 1 bits in such a manner that a single bit or group of bits can be accessed and retrieved.</td>
<td>A read-only memory that is field programmable by the user.</td>
<td>To transmit data from a semiconductor memory to some other digital electronic device. This term also applies to computers and other types of memory devices.</td>
<td>To transmit data into a semiconductor memory from some other digital electronic device. This term also applies to computers and other types of memory devices.</td>
</tr>
<tr>
<td>Memory cell</td>
<td>A single storage element of memory.</td>
<td>In computers, any memory that can return information only as long as power is applied to the memory. The opposite of nonvolatile memory.</td>
<td>To transmit data from a semiconductor memory to some other digital electronic device. This term also applies to computers and other types of memory devices.</td>
<td>A synonym is store.</td>
</tr>
<tr>
<td>Memory word</td>
<td>A group of bits occupying one storage location in a computer. This group is treated by the computer circuits as an entity, by the control unit as an instruction, and by the arithmetic unit as a quantity. Each bit is stored in a single memory cell.</td>
<td>A semiconductor memory from which digital data can be repeatedly read out, but cannot be written into, as is the case for random access memory.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memory address</td>
<td>The storage location of a memory word.</td>
<td></td>
<td>To transmit data from a semiconductor memory to some other digital electronic device. This term also applies to computers and other types of memory devices.</td>
<td>To transmit data into a semiconductor memory from some other digital electronic device. This term also applies to computers and other types of memory devices.</td>
</tr>
<tr>
<td>Memory data</td>
<td>The memory word occupying a specific storage location in memory, or the memory words collectively located in memory.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The 8080 microprocessor employs 8-bit words that are stored in memory with the aid of a 16-bit memory address bus. With the aid of a quick calculation, you can conclude that there exist $2^{16} = 65,536$ different memory locations which can be accessed by the microprocessor. This access to memory is direct, which means that you don’t have to engage in any special tricks or
digital electronic gimmicks to access any given memory location within the 65,536 possible locations. Forty-pin integrated circuit chips do have their advantages, and this is one of them. The total memory capacity of the 8080 microprocessor is known in the trade as “64k.” This is far more memory than you will ever need for most applications, but it is nice to know that you have such power in reserve.

Data is transferred between the 8080 CPU and the memory over 8-bit input and output buses, both of which are shown in fig. 5. By input we mean “input into the CPU.” The term, “output,” is defined in a similar fashion. Our point of reference is always the CPU. Data leaving the CPU is always considered to be “output data.” Data entering the CPU is always “input data.” Fig. 5 shows that the input and output data is transferred between the accumulator and memory. This is frequently the case, but in a more detailed look at the 8080 chip, you will discover that data stored in memory is transferred to other internal registers within the 8080 chip as well.

The most obvious such register is the instruction register, from which the decoding of the instruction occurs. Other registers, known as general purpose registers are classified by the letters B, C, D, E, H, and L. We regard the accumulator register to be the heart of the entire microcomputer. Arithmetic and logic operations are always performed to or on the eight bits of data present in the accumulator. All input and output data passes through the accumulator with the aid of two computer instructions called IN and OUT.

Between the 8080 CPU and memory there exists a single output line called memory READ/WRITE. When this line is at logic 1, you are able to READ data into the CPU either from memory or from an external device. When this line is at logic 0, you are able to WRITE data from the CPU into memory or an external output device.

As a final point, you can employ any type of “fast” digital electronic memory device, including random access memory (RAM), read-only memory (ROM), and programmable read-only memory (PROM). What do we mean by “fast” memory? Simply that the memory can perform either a read or write operation during a single microcomputer instruction. A typical 8080 microcomputer system operates at a clock rate of 2 MHz and a read or write operation takes only 3.5 microseconds. Thus, RAM, ROM, and PROM all need an access time of about one to two microseconds to allow you to take full advantage of the maximum clock speed. Slower semiconductor memories can be used, but the microcomputer will have to wait while a read or write operation takes place.

data output

The 8-bit output bus between the 8080 CPU and memory also serves as the output data bus to an external output device. When you provide output to an external device, there are several important points to remember:

You must select the specific output device that will receive eight bits of data from the CPU.

You must indicate to this device when output data is available on the output data bus.

The device must capture this output data in a very short period of time, typically 1.5 µs.

The third point is perhaps the most important. Keep in mind that the microcomputer is operating at a clock rate of 2 MHz. Each computer instruction is executed in a very short period of time which ranges from 2 to 9 µs. Thus, accumulator data designated as “output data” to an external device is not available for very long. You must capture it while it is available. We will discuss the techniques that you would employ in a subsequent column; this topic is certainly among the most interesting topics that can be discussed in the field of computer interfacing.

data input

The basic considerations that apply to data output also apply to data input into the CPU from an external input device. Thus:

You must select the specific input device that will transmit eight bits of data to the CPU.

You must indicate to this device when the CPU is ready to acquire the input data.

You must insure that the CPU acquires this data in a very short period of time, typically 1.5 µs.

input/output device addressing

The 16-bit memory address bus is time shared so that it can provide, at certain times, an 8-bit device identification number called a device code. Eight bits of information allow you to decode \(2^8 = 256\) different devices. When used in conjunction with two output function pulses called IN and OUT, the microcomputer system can address 256 different input devices and 256 different output devices. We might point out here that a “device” can be a complex machine such as a teleprinter or cathode-ray tube (CRT) display, or a simple device such as a single integrated-circuit chip. This is another interesting topic for discussion that we will reserve for a subsequent column.
microcomputer interrupt

Not shown in fig. 5 is a single input line to the microcomputer that generates a program interrupt during microcomputer operation. Such an interrupt would be generated by an external device that wishes to transfer data to or from the computer. This particular topic is quite complex, and it will be a number of months before we tackle it in this column.

The above is about the best that we can do to describe the general "anatomy" of a microcomputer in one-thousand words or less. Microcomputers are fascinat-

fig. 5. A typical 8080-based microcomputer system.

ing machines. They are small and relatively inexpensive, so you are less likely to be intimidated by them. They are far simpler than their minicomputer and computer counterparts and can be readily repaired by the simple process of chip substitution. They appear to be the proper answer to your childhood question, after the Erector Set, what?

If you do not wish to stretch out your learning process on microcomputers for twelve months or more, we might indicate that we have just completed Bugbook III entitled Microcomputer Interfacing Experiments Using the Mark 80® and 8080 System. It contains approximately 600 pages of text and experiments on interfacing and programming 8080-based microcomputers.6

references
four-watt wideband linear amplifier

A stable rf amplifier for QRP use or as a driver for higher-power linear amplifiers over the frequency range from 300 kHz to 30 MHz.

There is no problem these days in building high-frequency, transistorized ssb exciters that produce outputs in the milliwatt range. However, there seems to be a dearth of information on how to get these low-level signals up to a more useful level. Articles I've seen in the amateur magazines seem mostly to use one of two extreme methods. One is to make use of the rather exotic high-priced transistors designed especially for linear power amplification; the other is to use some of the newer audio power transistors — usually with great difficulty and often with not very satisfactory results.

features

This linear amplifier uses the widely available and inexpensive (about $7.00) 2N5590 transistor to produce a power output of 4 watts across the high frequency rf range. This power level is suitable for the output of QRP rigs or as a driver for a final amplifier in the hundred-watt range. *

*This amplifier will drive the high-power linear amplifier described by Chalmers ¹ to full output.

J. A. Koehler, VE5FP, 2 Sullivan Street, Saskatchewan, Canada S7H-3G8
The amplifier gain is flat over the high-frequency rf range, being only 3 dB down at 300 kHz and 30 MHz. In fact, the amplifier still produces useful gain at six meters. The exact gain will depend somewhat on the transistor used, but the version I built had a midband gain of 22 dB. This means that full output on the amateur bands up to 15 meters can be obtained with only 25 milliwatts of drive; 40 milliwatts is required at ten meters. The amplifier output may be either shorted or left open indefinitely with no damage even with full drive. The amplifier is also very stable and shows no tendency to oscillate.

circuit

The amplifier schematic is shown in fig. 1. The stability and wide frequency response are achieved by adding considerable negative feedback to an otherwise conventional broadband amplifier. The small inductance in series with the 560-ohm feedback resistance decreases the feedback at the higher frequencies. The exact value is not critical. About 25 turns of number 30 (0.25mm) wire closewound on a 1/4-watt resistor will do very well.

The amplifier operates in the class-A mode, and the transistor has a quiescent power dissipation of 5 watts. A fairly efficient heat sink is required. While commercial heatsinks are good, an acceptable one can be made from three sheets of 0.06-inch (1.5mm) aluminum formed and assembled as shown in fig. 2. After all holes are drilled, they should be deburred so the pieces will make good contact with each other. It's a good idea to put silicone grease or heatsink compound between the pieces before final assembly.

![fig. 1. Rf amplifier schematic. T1, T2 are wound on two-hole balun cores as found in TV-set input circuits. Emitter resistor is made from four 3.3-ohm, 1/4-watt resistors in parallel. All capacitors are 100-volt plastic; rf chokes are 1 or 2 turns through a ferrite bead.](image)

construction

The circuit is built on a piece of single-sided circuit-board material mounted copper side up on the heatsink. A large clearance hole for the transistor is drilled in the center so that the transistor can be mounted directly on the heatsink. It's important to put silicone grease or heatsink compound on the mounting surface of the transistor before assembly. It's also important not to overtighten the transistor mounting nut. Components are mounted between pads of PC material approximately 0.39 x 0.39 inch (1 x 1cm) cemented to the main circuit board. Pad locations may be found by laying out the components you wish to use on the board. The general appearance of the amplifier (before adding components) is shown in fig. 3. The transistor tabs are fragile, so the transistor should be mounted in its final position first and the components soldered to the tabs later. Do not reverse this order or the tabs will be stressed when you tighten the tran-
shown in fig. 4 and the photograph. Using an ohmmeter to identify the wires, one end of one wire is connected to the opposite end of the other wire, which is the center tap of the transformer. The wide frequency response of the amplifier is due to these transformers, and the general method of construction should be followed, although wire size, number of twists and number of turns through the core are not too critical.

Chokes in the main supply line are made by winding one or two turns through any of the widely available ferrite beads. I used one turn through a two-hole bead for each of the chokes. Large values of inductances are not required here since the power-supply line operates at very low impedance.

The input and output transformers are wound on two-hole balun cores as found in TV sets. The ones I used are manufactured by Phillips; their type number is 4322-020-31520. The windings are made by twisting two pieces of number 22 (0.6mm) enamelled wire together about three twists per inch (one twist per cm). This twisted pair is then wound through the core as shown in fig. 4 and the photograph. No tuning is required, so the amplifier is made ready for use merely by adjusting the quiescent current level. First set the 47-ohm trimmer to minimum resistance then connect the 12-volt power supply and adjust the trimmer so that the total amplifier current drain is 0.4 ampere.

At the one-watt output level, the second harmonic measured 30 dB down with respect to the fundamental. I wasn't able to measure the intermodulation distortion with the test equipment I had available. From the measured performance of similar amplifiers, I'd expect it to be about -40 dB. For CW use, the quiescent current may be lowered to reduce wasted power; however, the output harmonic content will increase and the overall gain will decrease.

references
ATLAS' SUCCESS
HAS MANY FACETS

ONE OF THESE IS MODULAR DESIGN:

A The unique modular design of Atlas radio equipment offers many
advantages. The specially designed rear connectors in the Plug-in
Mobile Mount and AC Console enable you to go from fixed operation
to mobile in seconds by simply sliding your Atlas transceiver into the
appropriate mount. All necessary connections to power input, an-
tenna, and mic jack are made immediately. In the AC Console, the
internal speaker is automatically disconnected and the front facing
speaker in the console is turned on. This is the simplest way we know
of to go from fixed to mobile operation or vice versa.

B The RF, IF, and AF circuits are all on easily accessible plug-in
boards, so that service on your Atlas transceiver, when required, is
quick, easy and inexpensive.

C Adding the Atlas Model 10x Crystal Oscillator provides substan-
tially extended frequency coverage for MARS operation. Frequency
coverage with the 10x is: 1700-3000 kHz (Model 215x only),
3000-5200 kHz, 5800-10,000 kHz, 13,900-14,900 kHz,
20,800-21,600 kHz, 27,500-30,000 kHz (Model 210x only). The
10x has vernier frequency control, and plugs into the back of the
Atlas transceiver with cable provided.

D The Atlas Portable AC Supply (Model 200-PS) is ideal to bring
along on those vacations or business trips when you want to operate
from your motel room or cabin. It weighs just 7 lbs., measures
5 ½" x 3 ½" x 6 ½".

ATLAS
RADIO INC.
417 Via Del Monte, Oceanside, CA 92054
Phone (714) 433-1983

E Improve your mobile antenna efficiency substantially by installing
the Atlas MT-1 Mobile Antenna Matching Transformer. This device
was especially designed to provide a better impedance match be-
tween mobile antennas and the new solid state transceivers, in-
cluding of course, the Atlas solid state transceivers. Has broad band
design, 1.8-30 MHz, 500 watt power rating, with choice of 4 impedi-
ance taps for clearly matching the base impedance to 52 ohms.

Don't let the small size (9⅛" x 3⅛" x 9⅛") and light weight (7 lbs.) of
the Atlas 210x and 215x fool you. There is no other transceiver on
the market with as many outstanding features. It is completely solid
state design, totally broadband requiring no transmitter tuning or
loading controls, provides 200 watts P.E.P. input, and offers the uti-
mate in sensitivity, selectivity, and overload immunity.

Model 210x or 215x ... $649.
AC Console 110/220V $139.
Portable AC Supply 110/220V $95.
Plug-in Mobile Mount $44.
10x Osc. less crystals $55.
MT-1 .. $24.

For complete details see your Atlas dealer, or drop
us a card and we'll mail you a brochure with dealer
list.
For years the amateur uhf community has been trying to come up with a reproducible, high-gain Yagi beam for 432 MHz. At one time it was generally agreed among amateurs that the dimensions of a really long uhf Yagi antenna were so critical that it was impossible to build a practical, reproducible, high-gain, multi-element beam, and most uhf operators switched to the less critical co-linear array. Unlike the long-boom Yagi, the co-linear is a low-Q antenna, so none of the dimensions are overly critical and it is easily reproduced for uhf operation.

However, as has been pointed out by Ed Tilton, W1HDQ,1 it is possible to build Yagi antennas for 432 MHz (and other uhf frequencies) if all dimensions are properly scaled. Most experimenters scaled element length and spacing, but failed to scale either the element or boom diameter — this resulted in antennas that exhibited little more gain than a dipole, or worse. W1HDQ's 11-element, 432-MHz Yagi design was the first that proved to be reproducible, and although it uses a wooden boom, large numbers are being used by amateurs on the 432-MHz band. The gain of the Tilton Yagi has consistently measured about 13 dBi (gain over a dipole).

Other successful 432-MHz Yagi designs are those of W0EYE2 and K2RIW.3 W0EYE's 15-element design, which uses a 10-foot (2.9m) metal boom, attracted wide attention, but not everybody who tried to build it was successful. K2RIW's 13-element Yagi, which uses insulated elements (8-foot [2.4m] boom), has been quite popular in the East, and has consistently been shown to provide about 15 dBi gain.

Described here is another long-boom Yagi for 432 MHz which provides about 15 dBi gain. This has been confirmed at antenna measurement contests on both the East and West Coast. This Yagi, which was designed by Mike Staal, W6MYC, and Mel Farrer, K6KBE, of KLM Electronics, is based on successful design techniques.

\textbf{By Ken Holladay, K6HCP, 2140 Jeanie Lane, Gilroy, California 95020}
proven on hf and vhf and uses a broadband driven structure which consists of three elements (fig. 1). This provides a reasonable operating bandwidth and ease in coupling to the 12 directors and one reflector. The broadband structure, in addition to providing optimum coupling to the directors, is the key to reproducibility. Small variations in dimensions can be tolerated without significantly changing the operating characteristics of the antenna.

construction

As is shown in fig. 1, the antenna is based on a 1-inch (25cm) diameter boom, 12-feet (3.7m) long. Each of the elements is 3/8-inch (9.5mm) diameter aluminum tubing, insulated from the boom except for the single mounting screw (this type of element mounting must be used for the dimensions given in fig. 1). The driven elements are cross connected using % inch (6.5mm) wide aluminum strap. The feedpoint impedance is 50 ohms (balanced) and must be connected to a balun using low-inductance copper strap % inch (8mm) wide. To prevent aluminum-to-aluminum and aluminum-to-copper corrosion, all joints should be coated with Penetrox A or equivalent weatherproofing. An acceptable balun can be made as described by K6HCP and WA6GYD in the ARRL Radio Amateur's VHF Manual.

performance

At my station I have two of these antennas mounted side by side, and they have provided the expected results. Los Angeles is about 300 miles (483km) away, over mountainous terrain, and good solid contacts on 432 MHz are a nightly occurrence. Activity on 432 is starting to increase, and I feel confident that this new antenna, which is easy to build, will do a great deal to stimulate growth on this band.

references

fig. 1. Layout of the 16-element Yagi for 432 MHz. Elements are 3/8" (9.5mm) diameter aluminum tubing, insulated from the boom except for the single mounting screw as shown in fig. 2.

*For those readers who do not have the time or material to build their own, this antenna is available from KLM Electronics, 17025 Laurel Road, Morgan Hill, California 95037.
Hy-Gain 270
2-meter antenna
A great mobile that's also a great base.

The same state-of-the-art qualities that make the Hy-Gain 270 antenna a great 2 meter mobile, make it a great 2 meter base.

Hy-Gain design has eliminated hard tuning, high VSWR and poor pattern due to irregular ground plane. The 270's slim mobile configuration makes it ideal for apartment or urban installations where space is at a premium.

Fiberglass 270 develops gain through the use of 2 stacked 5/8 wave radiators with a self-contained 1/4 wave decoupling system. Gain that helps reach distant repeaters.

Since the antenna and feedpoint are sealed in fiberglass, the Hy-Gain 270 delivers top performance year after year without corrosion loss.

Get all the 2 meter base you need, for the price of a 2 meter mobile. The great Hy-Gain 270.

- 6 db gain
- 250 watt rated
- 144-148 MHz
- VSWR less than 1.5:1 at resonance, 6 MHz bandwidth
- 96" high
- Completely factory tuned
- 50 ohm input impedance
- Complete with 18' coax and PL-259

For information on Hy-Gain 2 meter and other amateur products contact your Hy-Gain distributor or write.

Hy-Gain Electronics Corporation: 8601 Northeast Highway Six, Lincoln, NE 68505; 402/464-9151; Telex 48-5424 • Branch Office and Warehouse: 2100 Sepulveda Blvd., #322, Van Nuys, CA 91401; 213/785-4532; Telex 65-1359 • Distributed in Canada by Lectron Radio Sales, Ltd.; 211 Hunter Street West, Peterborough, Ontario
The 280 series.
No-nonsense, no-corrosion 10-80 meter mobile antennas from Hy-Gain.

Now from Hy-Gain, a new concept in tip-changing Ham antennas. The 280 series is designed with no-nonsense, one piece fiberglass masts and tough, one piece baked fiberglass coils. You get maximum power handling capability, minimum heat drift, and no loss to corrosion. Yet, it's lighter than aluminum and just as strong.

All five coils are mandrel wound for absolutely consistent performance, imbedded in fiberglass, then baked to make them impervious to weather. Tough ABS end caps and solid brass coil fittings keep performance in, corrosion out.

Whips are 17-7 ph stainless, the finest antenna steel, and are literally indestructible in normal use.

Nominal 52 ohm impedance on all bands. Any coax length will work. Heavy duty, chrome plated mast and whip fittings. 3/8" x 24 base stud fits all standard mounts.

(A) 60" bumper mount mast Model 276
(B) 36" cowl or deck mount mast Model 277
(C) 10 meter coil/antenna Model 280
(D) 15 meter coil/antenna Model 281
(E) 20 meter coil/antenna Model 282
(F) 40 meter coil/antenna Model 283
(G) 75/80 meter coil/antenna Model 284

Quick disconnect unit Model 531
Fold over adaptor Model 409
Standard stainless spring Model 492
Heavy duty bumper mount Model 415
Flush body mount Model 499
Extra heavy duty stainless spring Model 511

Hy-Gain Electronics Corporation, 8601 Northeast Highway Six, Lincoln, NE 68505; 402/464-9151. Telex 48-6424
Manufacturers and distributors of more than 300 fine broadcast communications products.
telephone controller
for remote repeater operation

Using a modified RTTY autostart circuit to activate a repeater without a telephone

An earlier issue of *Ham Radio* described a telephone controller that could be used to turn any device on and off, such as a repeater.¹ Hopefully you've already read that article, so we won't go into the actual telephone controller; instead we'll show you how to operate the controller without a telephone. Many have asked us how this can be done, so we designed a circuit that will decode a tone and change it to a dc voltage that will allow the controller to be operated without a telephone.

We already had a circuit board that would do this.* This circuit was originally designed for RTTY autostart and by simply retuning it to a chosen audio frequency, we found that it worked perfectly as a tone decoder. The RTTY autostart circuit is shown in fig. 1. All we had to do was omit the relay, bring out the lead from Q2 collector, and route it to the telephone controller junction of U1, pins 14 and R8.² On the original telephone controller you can omit Q1, Q2 and Q3; CR1, CR2 and CR3; R1-R7; C1-C4; and K1. (These parts were used to validate the telephone line only.)

The circuit is a tone decoder that turns transistor Q1 on and off. A tone of your choice is fed into the circuit from your receiver through R1 and decoupling capacitor C1. The tone is decoded by L1, C2. Q1 is a voltage amplifier. The amplified tones are rectified by diodes CR1 and CR2. The resulting dc voltage is fed to the base of Q2. Capacitor C7 requires about two seconds to charge and discharge, resulting in Q2 turning on and off at a rate similar to the ring rate from the telephone, as decoded by the original circuit in the telephone controller. Therefore, assuming the telephone controller circuit has been properly programmed, one would ring three times, hang up, wait twenty seconds, and ring three more times. The same thing would be done with the tone encoder on your mobile or base rig; i.e., push the button three times for one second each (or longer); stop; wait twenty seconds; then push the tone button three more times.

The only thing that will take a little time is tuning the toroid for the audio frequency you desire, which is done with the aid of an oscilloscope or vtvm on the ac volts scale.

Put the plus lead of the scope or vtvm to the gate of Q1. Dc voltage need not be applied to the circuit. Apply your desired tone to the input and open R1 all the way. Adjust C2 for maximum ac volts or peak-to-peak voltage on the oscilloscope. Remember, the better the tuning, the narrower will be the bandpass.

After it's all hooked together, apply a dc voltage between +12 and +24 volts to the decoder board and

*Available from Circuit Board Specialists, 3011 Norwich Avenue, Pueblo, Colorado 81008. RTTY autostart printed circuit board $3.50 each. Complete kit, less power supply (+18 to 24 Vdc) $14.50. (Specify approximate tone frequency.)

By Robert C. Heptig, KØPHF, Robert D. Shriner, WAØUZO

Robert C. Heptig, KØPHF, P.O. Box 969, Pueblo, Colorado 81002. Robert D. Shriner, WAØUZO, 1740 E. 15th St., Pueblo, Colorado 81001.
fig. 1. RTTY autostart circuit, which is used with IC U1, the SN7490 in the original article (reference 1), as a tone decoder. A tone of your choice is fed into the circuit through R1, C1 and is decoded through L1, C2. K1 is a Potter & Brumfield SC-4332.

telephone controller board, then test it as described in reference 1 (with the exception of the validating circuit). Adjust R1 of the decoder board to allow just enough audio to do the job with respect to the amount of deviation of your tones.

tone access

Just for the fun of it we added a tone access for your repeater to the circuit. Simply put the relay back into the circuit of the RTTY autostart as shown in fig. 1 and wire it into your repeater as shown in fig. 2. In this configuration the COR cannot be keyed unless a brief tone is applied to your carrier, which will cause the modified RTTY autostart circuit to provide a ground for your COR; then a spare set of contacts on your COR will maintain ground as long as your carrier is present. By tuning the decoder as a broadband amplifier (increase values of C1 and C3), this circuit could be used for a vox-operated repeater. With a little imagination, you can probably come up with many possibilities for this decoder.

reference
Who the best 2-meter
And saves you
You do!

Heathkit state-of-the art
2-M transceiver with true
digital frequency
synthesizer:
Build it yourself
at an incredibly
low price
...just
$289.95
Unmatchable fea-
ture-packed value.
Just compare: True dig-
ital frequency synthesizer for un-
limited frequency selection with no crystals to buy.
Lever switched frequency selection with digital read-
out - just flip the front panel lever controls to select
any frequency in any 2MHz segment of the 144 to
147.995 MHz operating range. LED status lights to
let you know that the synthesizer is "locked" on the
frequency you dialed and whether the channel is in
use. Automatic offset plus built-in tone encoder so
you can work repeaters. A minimum of 10 watts out-
put and infinite VSWR without failure. A hot receiver
with 0.5 μV sensitivity and Schmitt-
Trigger squelch with a thresh-
old of 0.3 μV or less.
The HW-2026
is also one of the
smallest synthe-
sized rigs available.
And it's easy to
build. There are
just 5 circuit
boards, and alignment
requires only a VTVM. A
frequency counter helps, but
you can do the job with-
out one.

Like we said, when you
want the best, and you want
to save, you want a Heathkit rig.

Kit HW-2026 Transceiver. $289.95
plus shipping
Kit HWA-202-1 Optional AC power supply $32.95
plus shipping

Heath Company, Dept. 122-13 Benton Harbor, MI 49022
builds transceivers? money, too?

Heathkit handheld 2-M transceiver: Outstanding versatility and value at an amazingly low price, just $169.95
(Optional Auto-Patch Encoder shown installed, $39.95)

Because of the unprecedented demand for these great new products, delivery on orders will take up to 6 weeks.

HEATH HOTLINE
To insure the earliest possible delivery call your order in to the Heath 24 Hour Hotline:
616-982-3411

The HW-2021 is a 5-channel transceiver which has a repeater Simplex offset switch for each channel. The kit comes with a crystal which will work 146.94 MHz Simplex and .34-.94 repeater. Output is one watt minimum with 0.005% (or better) stability. And the unit has true FM and a built-in separate microphone for better audio.

A rechargeable nickel-cadmium battery pack and charger are included at no extra cost. An optional Auto-Patch encoder gives you the added versatility of placing telephone calls through repeaters set up for touch tone operation.

Kit HW-2021 Handheld Transceiver . . . $169.95
HWA-2021-2 Carrying case & strap . . . $12.95
Kit HWA-2021-3 Auto-Patch encoder . . . $39.95
HWA-2021-4 Crystal certificate (only one required for each transmit/receive channel) $6.95

FREE The world's largest catalog of electronic kits. Send for your copy today.

HEATH Schlumberger Heath Company, Dept. 122-13 Benton Harbor, MI 49022

Please send me my FREE Heathkit Catalog.

NAME:

ADDRESS:

CITY STATE ZIP

Prices & Specifications Subject to Change Without Notice

AM324
basic troubleshooting

Troubleshooting and equipment repair are two of the toughest problems faced by radio amateurs today. Part of the difficulty is due to the fact that modern ssb equipment is much more complex than the old a-m and CW gear of twenty years ago, but perhaps more important, few amateurs build major pieces of their station equipment anymore so they are probably not as familiar with its circuitry as they should be. When your receiver or transmitter starts giving you trouble, more than likely it will be returned to the factory to be repaired. If the problem isn’t too severe, you may avoid using that function which is affected or overlook it altogether. In some cases you may not even be aware of a problem unless another amateur brings it to your attention (distorted speech, poor sideband suppression or splatter, for example).

Although there may be some equipment repair problems that are best sorted out by the factory, in most cases you can save yourself a lot of time and money by fixing it yourself. Once you send your gear back to the factory, you may have to wait a month or more until you can get back on the air. In addition, you will probably have to pay the factory ten dollars an hour or more for their technician’s time.

Troubleshooting electronic equipment is not difficult, nor does it require a bench full of test equipment. A large selection of test equipment may simplify the task, or allow you to solve a problem more quickly, but 90 per cent of all troubleshooting can be accomplished with a volt-ohmmeter and other simple test equipment you already have on your workbench. In those cases where you need a calibrated signal generator or an oscilloscope, you can often borrow one from your local radio club or from an amateur who lives nearby.

In the coming months this column will be devoted to troubleshooting techniques and how you can use them to fix your own equipment. Although much of the initial discussion will be in general terms that are applicable to practically any electronic equipment, future columns will discuss specific pieces of equipment and unique or unusual circuitry that requires a somewhat different procedure. If you have solved a particularly difficult equipment problem, we would like to hear about it. There may be others who will be helped by your success.

basic troubleshooting

There are three basic troubleshooting techniques which can be used to locate and fix circuit malfunctions: signal tracing, resistance measurements and voltage measurements. In receivers and transmitters the problem area is usually located with signal tracing, then pinpointed with resistance and/or voltage measurements. Although some electronic circuits such as gain-control circuits don’t lend themselves to signal tracing, the majority of receiver and transmitter circuits can be quickly checked with this method. Once you know how to use signal tracing, in fact, you will probably agree that it’s one of the quickest ways to track down a circuit problem.

Basically, signal tracing consists of injecting a signal at the input to a piece of equipment and checking its path through the equipment. If the signal appears at the input to a stage, but not at the output, that stage is the culprit. It may not be the only culprit, but once it’s been fixed, you can locate other problem areas along the signal path.

The signal tracer is essentially a very quiet, high-gain audio amplifier with headphone or speaker output. One commercial version which is available at modest cost is shown in the accompanying photograph. If you wish, you can build a simple high-gain audio amplifier around an op amp IC as shown in fig. 1, and in a pinch you could even use one channel of your stereo system. This is all you need if you’re working with audio systems, but if you’re troubleshooting rf and i-f stages, you will also need a simple demodulator probe such as that shown in fig. 2. The one I use is built into a discarded plastic ballpoint pen. You can also use one of the rf probes which are available for vacuum-tube voltmeters.

In addition to the signal tracer (audio amplifier and rf probe) you will also need a signal injector - a device which has a broadband signal output from audio through vhf. There are several pencil-sized signal injectors on the market for less than ten dollars. Most consist of a simple 1 kHz multivibrator which has high harmonic content well above 30 MHz. The circuit in fig. 3, which uses
inexpensive high-speed switching transistors, can be used for signal tracing through at least 50 MHz. Built on perfboard, this unit is small enough to fit inside the aluminum cases in which expensive cigar are sold (you could also use a plastic pencil holder or toothbrush case).

signal tracing

Whatever kind of signal tracer you decide to use, you'll want to get the most out of it. Many people who already use signal tracers seem to think that signal tracing is limited to localizing trouble in one section of a receiver or transmitter. However, as will be shown later, that's done further on, in the low i-f. If all the rf stages are normal, once you set the band switch all the signals within several-hundred kHz will be heard through the signal tracer. The collectors of the rf amplifier and mixer transistors (plate circuits in vacuum tube receivers) are the points to check with your probe. If you don't get any signal output from the mixer, something in the rf section is dead.

The high i-f processes the output of the first mixer and consists of a bandpass filter, the second mixer and the variable frequency oscillator. If any of the circuits in the high i-f isn't working properly, the signal picked up by your tracer at the output of the second mixer will reflect it. The low i-f includes the selective filter, i-f amplifier amplification and the detectors. You'll need your demodulator probe for the i-f stages, but the quickest test point for the whole section is after either of the detectors. Here you should hear a clear, undistorted audio signal without the probe. The audio section can also be checked without the probe. If the receiver is okay, you should hear a nice strong signal at the output of the last audio stage.

If the receiver isn't working properly, the quickest

Manuals for most amateur equipment manufactured between 1940 and 1965 are available from Hobby Industry, W0JJK, Box H864, Council Bluffs, Iowa 51501. Send self-addressed, stamped envelope for quote.

fig. 2. Demodulator rf and i-f probe for signal tracing. Diode CR1 can be practically any signal diode such as 1N34A, 1N60, 1N67A, etc.

Heathkit IT-12 signal tracer has both visual (eye tube) and audio output. A switchable audio-rf probe is included with the kit, which sells for $32.95.
way to find the bad circuit is to check signal output about halfway through the set. A good point is the output of the second mixer. If the receiver is connected to an antenna the signal you hear should change as you tune the vfo (since the demodulator probe is an a-m detector, ssb signals will be unintelligible). If your re-

ceiver will tune to one of the WWV channels, this makes an excellent test signal, or you can use your signal injector. The pitch of the wideband injector signal, however, will not change as you tune the vfo.

If the signal is okay at the output of the second mixer, you have cleared the front-end circuits of any suspicion and can proceed to the last half of the set — the output of the low i-f amplifier is a good point. If you don't get an output from the second mixer, the low i-f and audio sections are probably okay.

Assume you get nothing at the output of the second mixer. Divide the front end roughly in half and use the tracer and demodulator again. The output of the first mixer is a good check point. If you have the proper signal there, there's something amiss in the bandpass filter, vfo or second mixer. If there's no signal output from the first mixer, the rf amplifier, crystal oscillator or first mixer stage must be at fault.

The last half of the receiver can be attacked with similar logic. If the signal was okay at the second mixer, the next logical dividing point is the output of the detector, which can be checked directly, without the probe. A signal in the tracer means that everything is okay up to there and the trouble is in the audio section. If you don't get a signal, check the output of the other detector. No signal means it has been blocked between the second mixer and the detector — the crystal filter or one of the i-f amplifiers is the problem.

Note that with only two signal tracer checks you have isolated the problem to one small, functional section of the receiver. If the signal is okay at the input to a stage and not at the output, it's obvious the trouble is between those two points. It's a simple matter to check each of the individual stages within a section to pinpoint the offending one.

The divide-and-conquer technique of stage isolation works just as well for other symptoms as it does for a radio that is completely dead. You can hunt noise or hum, for example, tracking down the stage where the trouble first appears. It also works for distortion.

other checks

If the receiver is suffering from poor sensitivity, the problem can be signal traced by the "straight through" method. If reception is poor, the fastest way to determine which amplifier isn't doing its job is to check the gain of each stage by touching the signal-tracer probe to the input and output; if there is little or no increase in signal strength, the amplifier is weak. Although transistor mixer stages usually have some gain, vacuum tube mixers seldom exhibit gain and may often have a small signal loss, so keep this in mind. The filters introduce loss, too, but you can judge if it's too much after you have a little practice.

There are other little tricks of troubleshooting logic that make it easy to find troubles. If your receiver works alright on a-m but not on ssb or CW, for example, the difficulty is probably with the product detector or bfo —

fig. 5. You can check these components with your signal tracer without even unsoldering them from the circuit.
they are the only stages which are not common to a-m. If weak signals sound okay, but strong ones distort, a good suspect is the agc stage which may not be controlling the rf and i-f gain as it should, letting strong signals overload the receiver. Likewise, frequency jumping or drift can usually be traced to the vfo; audio distortion eliminates all but the detector and audio stages; and poor selectivity is usually caused by a bad crystal or mechanical filter.

getting closer

After they’ve pinpointed the stage which is causing the problem, many technicians put away their signal tracer and reach for their voltmeter. However, the signal tracer can still tell you things about the circuit you can’t find out with a voltmeter. In the amplifier circuit of fig. 5, for example, the highlighted coupling and bypass components can be tested right in the circuit without even unsoldering them.

The coupling capacitor, C1, and the interstage transformer, T1, should pass the signal along with very little attenuation. Whether they are large, as in audio stages, or small, between rf or i-f amplifiers, there should be about the same amount of signal on both sides. If there is any attenuation, it should be small. To check, touch the tracer probe to the input side of the component, then to the output side — if the output is much weaker than the input, the part is defective.

The bypass capacitors, C2 and C3, shunt the signal to ground and their values are chosen to short out practically all the signal at the emitter (C2) and at the power supply end of the interstage transformer (C3). The tracer should hear very little signal at either point. If there’s any substantial signal the capacitor isn’t doing its job. Even if the transistor is in good health, bad bypass capacitors at C2 or C3 will seriously degrade the gain of the stage.

Sometimes, when checking stage gain or components, you’ll find that you don’t have sufficient signal strength to determine if a component is doing the job it should. In this case it’s helpful to place the signal injection directly at the input to the stage. This will bring the signal level up to the point where you can make meaningful measurements. You can also use the signal injector to quickly move through the receiver to determine which stage is causing the problem. Simply touch the probe of the signal injector to the input of each stage, starting at the audio output stage, and move back toward the front end, stage by stage. If everything is working properly you will hear the 1 kHz modulation through your receiver’s speaker as you inject signal into each stage.

Finally, you can check the B+ line with your signal tracer for any traces of hum. Power supply filter capacitors are like any other bypass capacitors in that they should shunt all signal voltages to ground (power supply ripple in this case) and leave only pure dc. If one of the filter capacitors is weak, you’ll hear a considerable amount of hum in the signal tracer. If the dc line isn’t properly decoupled you may hear a whistling or hissing sound that is an rf or i-f signal if you could unscramble it. This can usually be traced to a bad bypass (decoupling) capacitor somewhere along the B+ line.

transmitter signal tracing

A modified form of signal tracing is also suitable for tracking down problems in ssb (and a-m) transmitters. In this case the signal injector is connected to the microphone jack and the transmitter is terminated in a dummy load as shown in fig. 6. Except that the position of the stages is reversed (audio front-end, rf output), the functions of the various stages in a modern ssb transmitter are not that much different than those in a superheterodyne receiver.

By using the signal tracer to track through the stages of the transmitter, you can quickly locate a stage which is blocking the signal (use the demodulator probe for the balanced modulator output and all following stages). The rf output from the final amplifier may be a little too much for the detector diode in the probe so don’t connect it directly to the output — placing the probe tip next to the power amplifier compartment should provide enough signal for tracing purposes.

Although the signal tracer won’t track down distortion, poor sideband suppression, or vhf parasitics in the transmitter, it’s useful for quickly isolating a nonfunctioning stage or component. The signal tracer can also be used to eliminate hum and locate bad decoupling capacitors which are causing unwanted rf feedback. Other transmitter troubleshooting techniques will be discussed in a future column.

ham radio
"WILSON GOES MOBILE"

introducing the new WE-224

WE-224; 52/52, SIMPLEX PLUS

SPECIAL FEATURES

1. 24 Channel Operation
2. One channel priority Channel
3. Selectable 1 or 10 Watts Out
4. 10.7 Monolithic Filter Installed
5. 455 KHz Ceramic Filter
6. Numerical Read-out on each Channel
7. Built-in Adjustable "Tone- Burst" Generator
8. Front Panel Tone Encoder Control
9. Accepts Wilson 1402 & 1405SM Xtsals
10. Individual Trimmer Capacitors for both TX/RX
11. Mosfet Front End
12. Helical Resonator
13. High VSWR Protection Circuit
14. Reverse Polarity Protection Circuit
15. NBFM - 15 KHz Channel Separation
16. External Speaker Jack
17. Built-in Speaker
18. Dynamic Microphone Included
19. Mobile Mounting Bracket Included
20. Frequency Range: 144-148
21. Dimensions: 1402SM HAND HELD
 5 WATT TRANSCEIVER
 144-148 MHz

$209.95

WE-224; 52/52, SIMPLEX PLUS

SPECIAL ON EACH RADIO INCLUDES:

1. Antenna
2. Case
3. Batteries

OPTIONAL TOUCH-TONE PAD SHOWN

Can be Modified for MARS or CAP

10 Day Money Back Guarantee

90 Day Warranty

BC-1 NI-CAD BATTERY CHARGER WITH REGULAR AND TRICKLE CHARGE FEATURE

HAND HELD ACCESSORY SPECIALS

DESCRIPTION
BC1 - BATTERY CHARGER $36.95
BP - NI-CAD BATTERY PACK
LC1 - 1402 LEATHER CASE
LC2 - LEATHER CASE FOR 1405, 2202, 4502
SM2 - SPEAKER MIKE
FOR 1402 AND 1405
TE1 - SUB-AUDIBLE TONE ENCODER INSTALLED
XF1 - 10.7 MONOLITHIC FILTER INST.
CRYS: TX OR RX

SPECIAL ORDER

SPECIAL ORDER

January 1976
announces the addition of

220 AND 450

2202 SM
FREQUENCY RANGE 222 - 225 MHz
- 6 Channel Operation
- Individual Trimmers on all TX/RX Crystals
- All Crystals Plug In
- 12 KHz Ceramic Filter
- 10.7 and 455 KC IF
- .3 Microvolt Sensitivity for 20 Db Quieting
- Weight: 1 lb. 14 oz. less Battery
- Battery Indicator
- Size: 8 7/8 x 1 3/4 x 2 7/8
- Switchable 1 & 2.5 Watts Output @ 12 VDC
- 2.5 Watts Minimum Output @ 12 VDC
- Current Drain: RX 14 MA TX 500 MA
- Microswitch Mike Button
- Unbreakable Lexan Case

USES SAME ACCESSORIES AS 1405
INTRODUCTION SPECIAL

$279.95

INCLUDES
1. 2202 SM 3. Battery Pack
2. Antenna 4. Leather Case
5. 223.00 Simplex Installed

4502 SM
FREQUENCY RANGE 442 - 450 MHz
- 6 Channel Operation
- Individual Trimmers on all TX/RX Crystals
- All Crystals Plug In
- 12 KHz Ceramic Filter
- 10.7 and 455 KC IF
- .3 Microvolt Sensitivity for 20 Db Quieting
- Weight: 1 lb. 14 oz. less Battery
- Battery Indicator
- Size: 8 7/8 x 1 3/4 x 2 7/8
- Switchable 1 & 1.8 Watts Output @ 12 VDC
- Current Drain: RX 14 MA TX 500 MA
- Microswitch Mike Button
- Unbreakable Lexan Case

USES SAME ACCESSORIES AS 1405
INTRODUCTION SPECIAL

$299.95

INCLUDES
1. 4502SM 3. Battery Pack
2. Antenna 4. Leather Case
5. 446.00 Simplex Installed

TO: WILSON ELECTRONICS CORP., 4288 S. POLARIS AVE., LAS VEGAS, NEVADA 89103
(702) 739-1931

JANUARY FACTORY DIRECT SALE ORDER BLANK

2202 SM @ $279.95. 4502 SM @ $299.95. WE-224 @ $209.95.
1402 SM @ $199.95. 1405 SM @ $279.95.
BC1 @ $36.95. BP @ $15.00. LC1 @ $14.00. LC2 @ $14.00.
SM2 @ $29.95. TE1 @ $39.95. TTP @ $59.95. XF1 @ $10.00.
TX XTALS @ $4.50 ea. RX XTALS @ $4.50 ea.

EQUIP TRANSCEIVER AS FOLLOWS: XTALS A. B. C. D. E. F.

ENCLOSED IS ___ [CHECK] [MONEY ORDER] [MC] [BAC]

CARD # ___ EXPIRATION DATE ________________________

NAME ___

ADDRESS ___

CITY ___ STATE ______ ZIP ______

SIGNATURE ___

Add $5.00 per Radio for Shipping, Handling; and Crystal Netting.

SALE VALID JANUARY 1 THRU 31, 1976

NEVADA RESIDENTS ADD SALES TAX

january 1976

More Details? CHECK—OFF Page 102
Ram keyer update

Circuit improvements for the random access memory electronic keyer described in a previous issue

This is a followup report on the two-RAM programmable keyer article in the October, 1973, issue of Ham Radio1 and my correction note2 in the December, 1974, issue. Many inquiries have been received concerning possible parts procurement and solutions for faulty keying. This article will enable you to build this keyer with a minimum of frustration.

Printed-circuit board

The majority of inquiries were about the procurement of the printed-circuit board. As indicated in the original article, the board, as well as the kit of parts for the keyer, could be obtained from the indicated address. It now appears that this company is no longer the source for the parts or the printed-circuit board. If you have a lot of time and patience the circuit can be hand wired. In fig. 4 a full sized view of the etched board, from the foil side, is shown for those who would like to build one. The layout of the components and external connections are shown in fig. 5. This board diagram is free from the errors of the original version and incorporates the circuit change as described in reference 2.

Clock circuit

Clock pulses are derived from a NE555 timer connected for astable operation; i.e., as a free-running multivibrator. Using the values of the original article, the maximum theoretical keyer speed will be about 17 wpm.

Redesign of the keyer for higher speeds is easily accomplished by noting fig. 1. The IC manufacturer gives the clock frequency in terms of R_A, R_B, and C as:

$$f(\text{Hz}) = \frac{1.44}{(R_A + 2R_B)C}$$

where $R_A = 1$ kohm, $R_B = 6.8k$ to 56.8k ohms and $C = 6.8 \mu F$. Converting the clock frequency to keying speed,3

$$\text{Speed (wpm)} = 1.2f$$

so that the speed range is expected to be from 2.2 to 17.4 wpm. Fig. 2 shows the values of C and $(R_A + 2R_B)$ for the desired speeds. Using $C = 6.8 \mu F$ the graph shows that the speed varies when the resistance changes from 14.6k to 114.6k ohms. In my case, a 3.3k resistor was used in place of the 6.8k, and a 5 μF capacitor was used. Maximum keying speed was then 32 wpm, and a slight reduction in the duty cycle of the clock pulses (8\%) occurred, which didn’t affect the keyer performance. The 50k pot should have a log rather than a linear taper to permit a linear speed range; otherwise the higher keying speeds will crowd together near the upper portion of the pot rotation.

Random-access memories

The second largest number of inquiries was about the RAM devices. The (Signetics) 25L01B is the low-power (dissipation, pin-for-pin equivalent of the popular 1101 256-bit RAM (National Semiconductor and others). I first used the 25L01B* without any problems. If its price is a little too high for you, you can try the 1101 version as advertised by large discount houses in the amateur literature (about $2.50 each). My experience has been that you get what you pay for. I bought a half dozen of these bargain specials and only one worked correctly. If you expect a cheap bargain, you’ll probably get a cheap device. Caveat emptor.

Faulty keying

Even after incorporating the changes in the correction note,2 some readers still had problems with sending code

*Obtained from Schweber Electronics, 5640 Fisher Lane, Rockville, Maryland 20852 at $6.50 each.

By Howard M. Berlin, K3NEZ, 2 Colony Boulevard, Apt. 123, Wilmington, Delaware 19802

*January 1976
characters. This annoying problem arises from stray rf and spikes generated from the TTL logic. In his article on the Accu-Keyer, WB4VVF discusses some possible cures. It is essential that all external leads be shielded from rf. Use RG-174/U or similar coax from the keyer output to the transmitter. If an external paddle is used, use shielded three-wire cable from the paddle to the keyer. As a further precaution, add 0.1 μF bypass capacitors on the three inputs of the paddle at the input jack. TTL spikes can usually be eliminated by adding 0.01 μF capacitors from each IC chip’s +5 volt pin to ground. In more stubborn cases it may be necessary to place a number of 0.01 to 0.1 μF capacitors around the edge of the printed circuit board (ground) to +5 volt points. I used about eight additional capacitors and have the keyer right next to my kilowatt linear without any trouble in keying.

Another tip on bypassing to cure faulty keying was received from Ken Beck, K3DW. He found that false dash generation occurred due to transient triggering of the master flip-flop in the 7473 IC. To eliminate the transients requires the addition of a disc capacitor bypass (0.02 to 0.05 μF) directly between pins 4 and 11 of this 7473. Similar bypassing of the 7473 that controls the address cycle also helps to prevent unwanted cycle starts caused by transients. Also disc capacitors (0.02 μF) connected from each key lead to chassis (installed right at the key jack) helped to reduce false triggering. In any case, bypassing is necessary to eliminate keying transients.

Another possible cause of faulty keying is in the clock circuit. As mentioned before, the clock is free-running and will continue to run until power is disconnected. Faulty keying may occur if the pulses of the individual Morse code characters are not in synchronization with the rest of the logic. The only way to cure this is to redesign the clock to run only when the desired characters are being sent.

momentary clear switch

A useful addition to this keyer circuit, offered by K3DW, is a momentary switch to clear the memory during either read or write operation, fig. 3. The 6.8-μF timing capacitor for the NE555 clock IC is grounded through a normally closed switch, which is bypassed by a 0.01 μF capacitor. When the clear switch is depressed, a 0.1 μF capacitor discharges into the reset input of the 7473 that controls the address cycle. This ensures that not only will the remainder of the address cycle during which the switch was operated be cleared, but that a new cycle will be started and cleared. In the write mode, complete memory erasure is provided.

transmitter keying and sidetone

A relay output to key the transmitter can be used to replace the 2N4888 keying transistor shown in the original circuit (see fig. 6). The 5-volt reed relay, which is similar to that provided by Electronics Applications Company part no. 1A5AH, provides excellent keying even at speeds above 35 wpm.

An improved keying monitor to replace the 7413 NAND Schmitt trigger is also shown in fig. 6. This

fig. 1. NE555 timer IC connected for astable operation.

fig. 2. Capacitance, C, and resistance, (R_A + R_B), required to obtain desired keying speeds.

fig. 3. Addition of clear switch to clear keyer memory during read or write mode (contributed by K3DW).
fig. 4. Full-size etched circuit board layout. Component placement is shown in fig. 5.

fig. 5. Top view, component side of PC board, with external connections.
circuit uses a NE555 wired as an astable multivibrator similar to a circuit used by WASTRS. If you don’t want the added expense of the 500k pot, a resistor of about 150k ohms should provide a pitch pleasing to the ear, with the components shown.

construction notes

The printed-circuit board must be insulated from the metal cabinet by short standoff insulators. Also, if the keying paddle input jack is not insulated from the chassis, the PC board must be insulated from the cabinet. If you ground the board, insulate the input jack. In either case the keyer output jack should be insulated.

summary

All the troubleshooting concepts mentioned resulted from approximately 170 manhours debugging this keyer after it was assembled. Troubleshooting was done with a four-channel storage oscilloscope and a lot of patience.

fig. 6. Alternative method for keying transmitter using a reed switch, (A). A simple keying monitor is shown in (B).

If you don’t have access to this equipment, this article will be of use to you. You might want to include the additional memories described in reference 5.

*Electronics Applications Co., 2213 Edwards Avenue, South El Monte, California 91733.

references

audio-power integrated circuits

Audio-power ICs are available in the 5-watt and higher ranges for many applications. Some include an integrally designed heatsink as part of the package (fig. 1). These devices are convenient for making inboard or outboard amplifiers when you need some additional audio punch. Most will drive 8- and 16-ohm speakers. For QRP work they can be used as a complete speech amplifier/demodulator for a-m, ssb, and fm. A modulation transformer can be added to match their low-impedance output to the transmitter. At the QRPP level, these ICs can be used as a single-module class-AB or class-B a-m modulator.

The RCA CA3131 and CA3132 (fig. 2) are two audio-power ICs that include preamps, power amplifier, and integral heatsink. The CA3131 has an internal feedback network that maintains an overall gain of approximately 48 dB. The CA3132 has no feedback network but has facilities for connecting one externally, depending on specific application. In this case the external feedback network usually connects between terminals 6 and 16. The package is a 16-pin dual-inline with the four center pins removed.

fig. 1. Sinclair IC-12 audio power IC provides up to 6 watts power output into an 8-ohm load. Voltage gain is about 250; input impedance is 250k.

Power output is 4 watts minimum and is typically 5 watts. Recommended supply voltage is 24 volts dc. The load can be either 8 or 16 ohms, with 8 ohms providing higher output. Zero-signal supply current is only 10 mA — certainly a favorable attribute for solar- and battery-power applications. Inverting and noninverting inputs are included. Output is single-ended; minimum input impedance is 200k but typically 1 megohm.

fig. 2. Pin-out diagram of the RCA CA3131 and CA3132 audio power ICs. The CA3131 has an internal feedback network that maintains overall gain at about 48 dB. The CA3132 has no internal feedback but one can be connected externally (see text).

A complete schematic including external components is shown in fig. 3. The audio signal is applied to the noninverting input, terminal 1, through C2. Input biasing is by R_A and R_B, R_B and C3 filter any ac ripple from the supply voltage line. As mentioned, the input impedance is high; therefore in a practical circuit the input impedance is largely set by the ohmic value of R_A.

Filter capacitor C1, an electrolytic, should be placed as near as possible to terminal 10. C6 sets a 46 dB closed-loop gain point at 200 kHz. C7 ensures equal gain characteristics on positive and negative signal swings. C9 sets the amplifier low-frequency response.

R1 and R2 are a part of the feedback network and need only be inserted when the CA3132 is used. C8 compensates for speaker inductance, with R_D limiting any current surge. Closed-loop gain equals the ratio (R1 + R2)/R1. The low-frequency 3-dB-down point occurs when C5 reactance equals the ohmic value of R1.

fig. 3. Five-watt audio power amplifier based on the RCA CA3131/3132. The 1000 pF capacitor marked with an asterisk is required if the input has an open circuit.
reactance equals the ohmic value of R1. C2 is needed only if the input signal source is from a very high impedance. C3 ensures good power-supply ripple rejection and low-frequency stability. Low-frequency rolloff is also influenced by R4 and C4. Rolloff frequency is that frequency at which reactance equals resistance. C5 is the power supply filter. High-frequency performance is influenced by C6 and C7, with C7 having its greater influence on the negative-swinging excursions. The value shown for C6 ensures low distortion up to 50 kHz. As in the previous schematic, fig. 3, C8 and R3 compensate for loudspeaker inductance, while C9 can be used to limit the bass response. R4 and R5 set the voltage gain:

\[V_G = \frac{R4 + R5}{R4} \]

The value of R5 can be increased to bring up the gain. For example, with a value of 470, the gain is 5000. In this case the input signal need only be 1 millivolt to produce rated output, but distortion is higher and careful layout is important to minimize stray feedback.

![fig. 6. Suggested power supply. The diodes should be rated at 30 PIV, 1 amp. Transformer secondary voltage above 20 volts ac is not recommended.](image)

However, if only a limited increase in gain is desired, the ohmic value of R5 can be increased gradually to meet specific needs and perhaps need not be increased to the point at which instability becomes a problem. If battery operation is not desired, a simple power supply can be built around a filament transformer as in fig. 6. Use a solid-state bridge rectifier, with each diode having a rating of at least 1 ampere and 30 volts PIV. A secondary voltage above 20 volts ac is not recommended.

multimode detector

The Plessey SL624C IC can be used to detect a-m, fm, ssb or CW signals. In ssb and CW reception it functions as a product detector with built-in oscillator. Operation as a quadrature detector recovers fm while a-m signals are demodulated with a synchronous detector. As an a-m detector, the SL624C is capable of rejecting broadband i-f noise as compared to a conventional envelope detector. The SL624C has been designed specifically for use in mobile, hf, and vhf transceivers. With a suitable circuit arrangement it can also be used to demodulate fm broadcast or TV audio signals.

The SL624C IC is shown in fig. 7. At left is an audio amplifier with input at pin 1 and outputs at pins 15 and 16.
16. This amplifier has a gain of 12 dB. Included also is a limiting amplifier with input at pins 3 and 4 and output at pins 6 and 7. This amplifier operates up to 30 MHz and starts limiting with a 100-mV input level. Loop gain is about 70 dB. The limiting amplifier can be operated as a crystal oscillator. Its output is applied to the detector. Note the external crystal and the connection to pins 6 and 7. The sideband signal to be demodulated is applied through a coupling capacitor to pin 8. After passing through the gain control stage, the recovered audio is removed at pin 12 and applied through the 0.1 μF capacitor to the audio amplifier input through pin 1. Audio can be taken at either pin 15 or 16. The signal input requirement is 50 mV maximum, but good performance at a lower audio level can be obtained with an input as low as 5 mV.

In the synchronous detection of an a-m signal, input is applied to the detector through pin 8. Signal is also applied into the limiting amplifier through pin 3. In the limiting amplifier, the carrier is separated from the modulation and is used to generate a demodulating carrier component, which is applied to the detector and used to demodulate the incoming a-m signal. Adequate signal must be applied to permit limiting during modulation troughs to avoid distortion. The input signal should be 5 to 50 mV. An external agc system is recommended for this detection mode.

In fm detection, the signal is applied to the limiting amplifier input at pin 3, then through a phase-shift network to the detector input. Also the quadrature component is applied to the detector input through pins 8 and 9. Note the resonant circuit C1-L1. The detector output is proportional to the relative phase of the two inputs, with the quadrature component (which does not devi-
DATA TONE ENCODERS

SOLID STATE CRYSTAL CONTROL TONE DECODERS

- 12 or 16 Data Tone digits
- Ideal for hand held units
- Choice of 4 keyboard styles
- RF proofed
- Temperature, -20° to 150°F
- CMOS IC Encoder

- Bell System Compatibility
- Easy Installation
- Sub-miniature size
- Crystal Controlled
- Single Tone capability
- Low cost

SELF-CONTAINED KEYBOARD ENCODERS

Complete 12 or 16 digit Data Tone keyboard encoders for mounting directly to side of hand held transceivers. All electronics included within keyboard, nothing to add inside of transceiver. Only 1/4" thick. Ready for easy installation, just add three connections to unit. RF proof. Select keyboard style when ordering.

DM - $49.50

SUB-MINIATURE DATA TONE ENCODER AND KEYBOARD

Data Tone encoder for mounting inside hand held transceivers, keyboard mounts on side of transceiver. P.C. board only 0.8" x 1.2". RF proofed. Assembled and ready for easy installation. Select keyboard style when ordering.

SME - $29.50

DO IT YOURSELF ENCODERS

Now, buy all the major parts - "ala-carte" and build your own Data Tone Encoder. All you need is a Keyboard, Digital Data Tone Encoder, a 1-MHz crystal, and P.C. board. Parts come with complete set of application notes, schematics and instructions.

Keyboard, your choice of keyboard style - $8.50
Digital D.T. Encoder with 1-MHz HC-6 Crystal - $12.50
Digital D.T. Encoder with 1-MHz Slim HC-6 Crystal - $13.50
P.C. board 0.8" x 1.2" - $2.50
All resistors, capacitors, and P.C. board - FREE

AUTOMATIC DATA TONE DIALER

Automatic mobile telephone dialing is now available. By simply pushing a single button you can automatically dial up to six separate 5-digit numbers. All solid-state micro-power COS-MOS design, automatic part operation. Programmable to send telephone number only, access code plus telephone number or telephone number plus an identification number. Low profile dash mount, easy installation. Compatible with most radio equipment. Available for keyboard to manual dialing of numbers. Manual operation provides automatic PTT operation with 1/5 second transmitter hold.

AD-6 - Without keyboard - $99.50
AMD-6 - With keyboard - $119.50

Factory programming of numbers $7.50.

DATA TONE PADS

Standard size 12 and 16 digit Data Tone Pads. Automatic PTT operation with 1/2 second transmitter hold. Self powered via internal 9V battery. Audio and PTT outputs. TTP-1 and TTP-2 also has low volume audio monitor for acoustically coupling to a microphone. Zero quiescent current. Operating temperature -20° to 150°F. RF proofed.

TTP-1 16 digit 3" x 5 1/2" x 1 1/2" - Sh. Wt. 2 Ibs. 59.50
TTP-2 12 digit 3" x 5 1/2" x 1 1/2" - Sh. Wt. 2 Ibs. 59.50

DATA TONE ENCODER TO DIAL PULSE CONVERTER

Convert standard 0-9 Data Tone digits to Bell System compatible dial pulse code. Completely solid state. Includes state-of-the-art phase locked loop anti-faking data tone decoder, large capacity 64-digit memory and solid state pulsing. Starts dialing on first incoming digit. Memory will not become congested due to rapid succession of incoming digits. Cancel and redial function. Digits are decoded and provided for remote control purposes. Available as P.C. board or rack mounting.

DPC-121 - P.C. Board - $195.00
DPC-121R - Rack Mount - $285.00

ANTI-FALSIMING DATA TONE DECODER

Now, a true anti-falsing decoder/receiver. Virtually immune to high noise or audio faking. Twelve or 16 digit capability. Completely solid state, uses latest Phase Locked Loop decoding. Single 5-volt power supply. Heavy duty transistor output. Available as P.C. board or 19" rack.

TDD12-12 12 digit - P.C. $149.95 Rack $219.95
TDD14-14 14 digit - P.C. $149.95 Rack $219.95

REPEATER AUTO PATCH

It's complete - a single digit access/disconnect Auto Patch facility. All you need is a repeater and the phone line. Complete with automatic disconnect, dialing capability, two way audio monitor plus remote control. Works with a rotary dial exchange. Data Signal's DPC-121 dial converter is also required. P.C. board or Rack Mount available.

RAP-2 - PC $99.50 Rack $149.50

DELUXE P.C. KEYER

In either a 5 volt TTL or a 9 volt C-MOS version this new module type IC keyer can be easily adapted to your own custom package or equipment. Versatile controls allow wide character weight variations, speeds from 5 to 900 w.p.m., plus volume and tone control. Solid-state output switching saves power, eliminates all those annoying relay problems and is compatible with both grid block and solid-state circuitry. With its side-tone monitor and 90 day warranty the Data Signal PC Keyer is the one for you.

TTL Keyer Wired $19.95; Kit $14.95
C-MOS Keyer Wired $24.95; Kit $19.95

DELUXE RECEIVER PREAMP

Specially made for both OLD and NEW receivers. The smallest and most powerful single and dual stage preamps available. Bring in the weakest signal with a Data Preamp.

<table>
<thead>
<tr>
<th>FREQUENCY (MHz)</th>
<th>USE</th>
<th>STAGES</th>
<th>GAIN (dB)</th>
<th>NF (dB)</th>
<th>KIT WIRE</th>
<th>WIRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>144 to 148</td>
<td>2 METER</td>
<td>SINGLE</td>
<td>20</td>
<td>25</td>
<td>5.50</td>
<td>$12.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DOUBLE</td>
<td>40</td>
<td>25</td>
<td>$18.50</td>
<td>$24.50</td>
</tr>
<tr>
<td>1 thru 30</td>
<td>HF BROADBAND</td>
<td>19-36</td>
<td>3</td>
<td></td>
<td>$17.95</td>
<td></td>
</tr>
</tbody>
</table>

Others Available.

Order Today — Send for Free New Catalog

DATA SIGNAL INC.

2212 PALMYRA ROAD, ALBANY, GA. 31701, 912-435-1764

January 1976
Dear HR:

WA6UAM's article on "Microstripline Preamplifiers for 1296 MHz,"1 with a few exceptions explained below, is an excellent article. Having worked with stripline for several years, especially in development of the TIROS-ESSA antenna matching circuitry, I can attest to the value of such a practical construction article for the ham. It was also very timely, as more and more amateurs are starting to use stripline techniques to build uhf equipment.

However, in the design section of the article, several unfortunate errors and contradictions appear in the treatment of the S-parameter reflection coefficients and impedances, which are confusing and misleading, even to one who is familiar with S-parameter techniques. The confusion begins in the first paragraph on page 22, where the author states that complex impedances are generally shown in polar form, but can be converted to rectangular form through the use of the Smith chart, as per instructions in the caption of fig. 12. The inference is quite clear that the conversion intended is between the polar and rectangular forms of an equivalent value of impedance. However, it is not impedance which is being converted, and furthermore, the Smith chart cannot perform this type of conversion. Therefore, the inference is incorrect.

The confusion is compounded in the next paragraph, where it is stated that table 1 lists complex impedances in both polar and rectangular forms, while in the table itself both the polar and rectangular forms are stated to be reflection coefficients. This contradiction needs clarification, and the statements emphasize the previous, erroneous inference that the associated values appearing in polar and rectangular form in the table are numerically equivalent, while in fact they are not.

The confusion can be easily cleared up as follows: First, it is evident that the author is randomly interchanging reflection coefficient and impedance, confusing the polar-form reflection coefficient with the polar-form equivalent of the rectangular-form impedance. The two are not the same!

Impedance, \(Z = \frac{E}{I} \), describes the relation between voltage and current in a circuit. Reflection coefficient, \(\rho \), on the other hand, is the relationship between two voltages (the reflected and the incident) in a circuit containing two impedances at a junction, or two currents in the same circuit:

\[
\rho = \frac{E_{\text{reflected}}}{E_{\text{incident}}} = \frac{I_{\text{reflected}}}{I_{\text{incident}}}
\]

Accordingly, to clarify the first paragraph on page 22 of WA6UAM's article, the phrase "complex impedances in polar form . . . " is a misstatement which should be changed to read "complex reflection coefficients are generally shown in polar form, which can be converted to impedance in rectangular notation \((R \pm jX)\) on a Smith chart as indicated in fig. 12" (after the caption of fig. 12 is also corrected).

Second, the complex numbers appearing in polar form in table 1 are reflection coefficients, and the rows containing the polar-form values should be so labelled. Third, the complex numbers appearing in rectangular form in table 1 are the impedances which will give rise to the accompanying value of reflection when terminating a line or source having an impedance of 50 ohms. In other words, taking an example from the second HP-25826E column, the 12.5 + j0.5 value is not the rectangular equivalent of the polar value 0.61 \(\angle 178^\circ \), but is the complex impedance which will yield the complex reflection coefficient \(\rho = 0.61 \angle 178^\circ \) when the impedance 12.5 + j0.5 terminates a 50-ohm line or source. The rows containing complex numbers in the rectangular form should therefore be specifically labelled impedance \(S_{11} \) or \(S_{22} \), as appropriate. Proof that the rectangular-form impedance is not equivalent to the listed polar value is further shown by the fact that the polar equivalent of the impedance 12.5 + j0.5 is actually 12.51 \(\angle 2.29^\circ \), and not 0.61 \(\angle 178^\circ \).

Fourth, as constructed in figs. 9, 10, 11 and 13, the graphs containing the \(S_{11} \) and \(S_{22} \) plots should be labelled impedance, not "reflection coefficient" because the only loci-identifying coordinates in the graphs are the resistance and reactance circles. The S-parameter graphs in the Hewlett-Packard design catalog2 from which the figures in the article were taken contain two sets of coordinates by which the loci may be identified: resistance- and reactance-circle coordinates to identify the loci as impedances, and radial magnitude and angle coordinates to identify the loci as reflection coefficients. Thus the user could use whichever set of coordinates he desired to read the loci as impedances or reflection coefficients.

It is apparent in unravelling all this confusion that a misunderstanding also exists concerning the basic functions of the Smith chart. The function which the Smith chart is really performing in fig. 12 is the conversion from the complex

reflection coefficient in the polar form to the normalized impedance in the rectangular form. The magnitude (radius) and angle \(\theta = 50^\circ \) in fig. 12 define a specific point in reflection-coefficient coordinates of the chart, while normalized impedance is found at this same point where the \(r \) and \(x \) impedance coordinates of 0.6 and 2.0 intersect, respectively. It cannot be emphasized too strongly that the chart is *not* converting impedance in the polar form to its equivalent impedance in the rectangular form.

Polar-to-rectangular conversion of equivalent impedances is relatively simple to calculate using the Pythagorean theorem. However, conversions between reflection coefficient and impedance are more difficult to calculate, hence the Smith chart is used to simplify reflection-to-impedance conversions. As a point of interest, polar-to-rectangular impedance conversions can be performed with an overlay combination of Smith and Carter charts having the same diameters (the Carter chart has impedance coordinates arranged to identify impedance in polar form). With the Smith-Carter overlay the user may enter the Smith chart in rectangular form and the corresponding point on the Carter chart is the polar-form equivalent. As a further point of interest, here is the expression for calculating the conversion from a complex reflection coefficient \(\rho \) to normalized impedance:

\[
\frac{Z}{Z_c} = \frac{R + jX}{1 + \rho - 1 - \rho L \theta} = \frac{1 + \rho \cos \theta + j \rho \sin \theta}{1 - \rho \cos \theta - j \rho \sin \theta}
\]

Going in the opposite direction, to determine the reflection set up by a given complex impedance loading a line of impedance \(Z_c \), we have

\[
\rho = \frac{Z_c}{R + jX} = \frac{R + jX - Z_c}{R + jX + Z_c}
\]
Vanguard now has the world's largest selection of Frequency Synthesizers from $129.95

You'll never have to buy crystals again!

Send no money. We ship order by phone and save time.

AVAILABLE FOR AIRCRAFT, FIRE, POLICE
AND AMATEUR FREQUENCIES

Check these features:

1. Smallest size of any commercially available synthesizer - only 1-3/8" x 3-3/8" x 2-1/4".
2. Excellent spectral purity since no mixers are used.
3. .0005% (5 parts per million) accuracy over the temperature range of -10 to +60 C.
4. Immune from supply line voltage fluctuations when operated from 11 to 16 volts D.C.
5. Up to 8000 channels available from one unit.
6. Frequency selected with thumbwheel switches.
7. Available from 5 MHz to 169.995 MHz with up to 40 MHz tuning range and a choice of 1, 5, or 10 kHz steps instead of 10 kHz steps and add $10.00 for any tuning range over 10 MHz. Maximum tuning range available is 40 MHz but cannot be programmed over 159.995 MHz on transmit or 169.995 MHz on receive (except on special orders) unless the r-f is greater than 10.7 MHz and uses low side injection. Tuning range in all cases must be in decades starting with 0 (i.e., 100, 200, 300...160, 1600). The output frequency can be matched to any crystal formula. Just give us the crystal formula available from your instruction manual and we'll do the rest. We may require a deposit for special orders. Be pick-up orders please call first so we can have your unit ready.

Vanguard frequency synthesizers are custom programmed to your requirements in 1 day from stock units starting as low as $129.95 for transistors and $139.95 for receive synthesizers. Add $20.00 for any synthesizer for 5 kHz steps instead of 10 kHz steps and add $10.00 for any tuning range over 10 MHz. Maximum tuning range available is 40 MHz but cannot be programmed over 159.995 MHz on transmit or 169.995 MHz on receive (except on special orders) unless the r-f is greater than 10.7 MHz and uses low side injection. Tuning range in all cases must be in decades starting with 0 (i.e., 100, 200, 300...160, 1600). The output frequency can be matched to any crystal formula. Just give us the crystal formula available from your instruction manual and we'll do the rest. We may require a deposit for special orders. Be pick-up orders please call first so we can have your unit ready.

Vanguard Labs
Call 212-468-2720 between 9:00 am and 4:00 pm Monday through Friday
196-23 JAMAICA AVE. HOLLIS, N.Y. 11423

R-X Noise Bridge

World Prefix Map - Full color, 40" x 28", shows prefixes on each country, DX zones, time zones, cities, cross referenced tables...
$1.25

Radio Amateurs Reference Library of Maps and Atlas

Radio Amateurs Great Circle Chart of the World - from the center of the United States! Full color, 30" x 25", listing Great Circle bearings in degrees for six major U.S. cities, Boston, Washington, D.C., Miami, Seattle, San Francisco & Los Angeles...
$1.25

Radio Amateurs Map of North America - Full color, 30" x 25" - includes Central America and the Caribbean to the equator, showing call areas, zone boundaries, prefixes and time zones, FCC frequency chart, plus useful information on each of the 50 United States and other countries...
$1.25

World Atlas - Only atlas compiled for radio amateurs. Packed with worldwide information - includes 11 maps, in 4 colors, with zone boundaries and country prefixes on each map. Also includes a polar projection map of the world plus a map of the Antarctica - a complete set of maps of the world. 20 pages, size 8 1/2" x 12"...
$2.50

Complete reference library of maps - set of 4 as listed above...
$3.75

See your favorite dealer or order direct.
Mail orders please include 75¢ per order for postage and handling.

Two additional errors of lesser importance are, first, on page 25 at the beginning of column 2, the shunt equivalent value of the series impedance 40 + j25 ohms should be changed from 34.8 + j55.6 ohms, to read 55.6 + j89 ohms. And second, the NEC VO21 column of table 1, the reactance -j38.5 in the parallel-circuit input impedance should be changed to indicate a positive reactance.

As a final point of interest, in 1953 the American Standards Association (ASA) adopted the Greek letter rho, ρ as the symbol to represent reflection coefficient, and many textbook and periodical publishers, as well as manufacturers of S-parameter measuring instrumentation, conformed. Prior to 1953, ρ was often used to indicate swr, while gamma, Γ and k were used interchangeably to represent reflection. It would be interesting to know why the people at Hewlett-Packard who produce solid-state components continue to use Γ, while those who produce the instruction manuals for their impedance and S-parameter measuring equipment are using ρ.

Walt Maxwell, W2DU
Dayton, New Jersey

W2DU has raised a valid point with regard to the rather loose terminology which I used in my recent article, and I concede that reflection coefficient and impedance are not synonymous, although they are related.

Several readers have questioned my failure to consider the transistor's transfer coefficient in calculating the matching networks. Actually, my simplistic design method, which ignores S_{12} in particular, results in a minute matching error which may be compensated by adjusting the trimmer capacitors at the input and output of the preamplifier.

For the benefit of those readers who have inquired about Rolloett's stability factor, I should mention that K calculates to greater than unity for all transistor/bias combinations presented in the original article so the amplifiers are unconditionally stable. Nevertheless, I caution the builder to treat them as though they were not. That is, do not apply power until the amplifier is properly terminated in an antenna (or dummy load) and a converter.

H. Paul Shuch, WA6UAM
HP-65 oscar tracking program

Dear HR:

A program, written for the Hewlett-Packard HP-65 programmable calculator is available for computing both azimuthal and elevation coordinates for tracking either OSCAR 6 or 7. Once the satellite orbital data and individual station positional coordinates are inputted and stored, the routine will compute az/el antenna pointing coordinates for any number of arbitrary, specified times following the ascending node. Az/el coordinates computed with this routine for both ascending and descending passes agree favorably with the results of a FORTRAN program run on a CDC-3800 computer and with actual observed satellite trajectories. The program can be stored on a single HP-65 magnetic card. Documented copies of the program will be forwarded upon request and receipt of a self-addressed, stamped envelope; if a blank magnetic card is included with the request, a copy of the program itself will be sent.

Earl F. Skelton, WA3THD
Washington, DC

lower telephone rates

Dear HR:

I am sure many of the readers of ham radio have seen the recent ads run by the telephone company depicting the new, low long-distance rates. For the minimum of one minute for 56¢ (at times, even less, depending on the distance) one may call coast to coast. In the evenings, from Sunday to Friday, 8 pm to 11 pm, a one-minute telephone call costs 36¢ or less. For nights and weekends, every night from 11 pm to 8 am and Saturdays and Sundays, the first minute is only 22¢.

It occurs to me that many hams who wish to communicate with another ham anywhere in the U.S., may alert the other party by placing a one-minute call, which would be all the time necessary to convey information as to frequency and a scheduled time. Previously, minimum rates were for 3 minutes and at triple the price. It’s a good point to keep in mind when wishing to get another station on the air.

David Greene, W2IAO
West Orange, New Jersey
versatile audio oscillator

Here's a versatile audio oscillator which can be put to many uses including an audible logic indicator, sidetone oscillator, code-practice oscillator, square-wave signal generator and many others.

In the circuit of fig. 1 transistors Q2 and Q3 are arranged as a basic collector-coupled astable multivibrator; power is taken from the collector of Q1 which acts as a switch for Q2 and Q3. With S1 closed and S2 open, Q1 is cut off and the B1 battery potential is furnished to Q2-Q3 through R1. With both S1 and S2 closed, Q1 is saturated and its collector potential drops to near ground; therefore, no voltage is available for Q2-Q3 and oscillation ceases.

The frequency of oscillation is essentially independent of the B1 supply voltage and is determined by:

\[f = \frac{1}{0.69(C1 \cdot R5 + C2 \cdot R4)} \]

If R4 = R5 and C1 = C2, then the output will be a symmetrical square wave. The frequency of oscillation can be varied by changing the value of either R4 or R5 or both; however, if R4 and R5 are not changed a like amount, output symmetry will be lost. With the circuit values shown, a 100k pot in series with a 20k resistor could be substituted for R5.

The oscillator output is taken from the Q3 collector via C3. The size of C3 has a marked effect on output volume when a low-impedance load, such as a speaker, is used. Values of 2 μF or larger are quite satisfactory for all impedance loads and will furnish ample audio volume. If only high-impedance loads are used such as 2k headphones, a 0.05 μF disc capacitor will provide adequate audio coupling. If a better impedance match and slightly more volume are desired, an audio output transformer may be used (fig. 2).

When used as an automobile headlight reminder (with a negative-ground car) connect the circuit as follows:

Power for the oscillator is derived from the dashboard panel lights, which are turned on simultaneously with either the parking lights or headlights. If the ignition key is turned on, Q1 saturates and disables Q2-Q3; with the ignition off Q1 is cut off and the Q1 collector voltage rises, providing power to Q2-Q3. The audio output may be connected directly to the car radio speaker voice coil high side without affecting car radio operation.

By connecting the oscillator port 1 to the panel lights the oscillator may, if desired, be purposely disabled with...
the ignition off and lights on merely by dimming the dashboard panel lights. Current drain of the oscillator on the car battery is virtually negligible. The oscillator may be permanently wired to and powered from the existing dashboard controls without requiring additional controls or switches.

The entire printed-circuit board can be wrapped with electrical insulating tape and strapped to any convenient location under the dashboard out of sight, or mounted in a small Minibox. For connection to the car’s electrical system, the proper leads can be easily located with a voltmeter or VOM; once located, simply splice in the appropriate oscillator lead, solder, and wrap the joint with electrical tape.

When used as a sidetone oscillator or code practice oscillator, connect as follows:

```
  1  |  2  |
  +---|-----|
 |    |     |
 |    |     |
  3   |   4

KEYED GROUND

KEYED S +
```

In the above configurations, Q1 and R2 may be eliminated, if desired. The entire oscillator may be constructed on a PC board measuring only 1-1/8 by 3/4 inch (29 by 19mm) if TO-92 transistors are used. For TO-5 transistors the board is slightly larger, 1 1/4 by 7/8 inch (32 by 22mm). Height of the board with components is about ½ inch (13mm). Since the circuit is very simple, point-to-point wiring on terminal strips is another alternative if automobile installation is not intended.

Layout of components is not critical, nor is selection of Q1-Q3. Although 2N697s are specified, unmarked npn transistors from surplus

The Transceiver you’d expect in 1980

from the company that revolutionized hf ham radio by giving you the first all-solid-state low and medium power equipment, comes the entirely new TRITON IV, a transceiver that is truly ahead of its time. The forerunner Triton II gave you such operating and technical features as instant transmitter tune, full break-in, excellent SSB quality, superb receiver performance, pulsed crystal calibrator, built-in SWR indicator, a highly selective CW filter and efficient home, portable and mobile operation from non-aging 12 VDC transistors.

Now — the TRITON IV gives you all of these and more. A new push-pull final amplifier with the latest gold metalized, zener protected transistors, operating at 200 input watts on all hf bands 3.5 through 29.7 MHz. Plus a new crystal heterodyne VFO for improved short and long term frequency stability and uniform 1 kHz readout resolution, even on ten meters.

Unsurpassed selectivity is yours with the new eight pole i.f. crystal filter, and improved spurious rejection results from the new IC double balanced mixer.

The benefits of ALC now extend to output powers less than full rating with a front panel threshold control. When driving lines that require less than maximum available power from the TRITON, or when propagation conditions permit reliable contacts at reduced power levels, ALC will hold your output to the desired level.

Many small circuit improvements throughout, taken collectively, add more performance and quality pluses — such things as individual temperature compensated integrated circuit voltage regulators for final bias control and VFO supply. And toroid inductances in the ten and fifteen meter low pass filters, LED indicators for offset tuning and ALC threshold, accessory socket for added flexibility, and sequentially keyed mute, AGC and transmitter circuits for even better shaped and clickless CW.

And to top it all off, the highly desirable case geometry has been maintained, but it has a handsomely new look. Bold lettering on an etched aluminum front panel and textured black sides and top make the TRITON IV look as sharp as it performs.

There is nothing like a TRITON IV for reliability, features, value and just pure fun. And — best of all — you do not have to wait until 1980 to own one.

TRITON IV $699.00

FAST SCAN AMATEUR TELEVISION EQUIPMENT

- SOLID STATE
- BROADCAST QUALITY PERFORMANCE
- FOR TECHNICAL DATA AND PRICING, WRITE TO:

APTRON LABORATORIES BOX 323, BLOOMINGTON, IN 47401
with TELREX Professionally Engineered
"BALANCED-PATTERN" "PERFECT-MATCH" "BEAMED-POWER"

Antenna Systems You Are There!

The design, craftsmanship and technical excellence of Telrex -
Communication Antennas. have made them the standard of
comparison throughout the world! Every Telrex antenna model is
engineered, precision machined, tuned and matched, then calibrated
for easy and correct assembly at
your site for repetition of our
specifications without 'cut and
try' and endless experimentation.

Also: Rotator-Selsyn-Indicator
Systems, Inverted-V-Kits,
"Baluns," 12-Conductor Control Cable

Phone: 201-775-7252

WANTED FOR CASH

ARC-51 Transceiver
ARC-51 Control Box
490-T Ant. Tuning Unit
618 T Transceiver
R1051 or T827

490-T Ant. Tuning Unit
(Also known as CU1658 and CU1660)

Highest price paid for these units.
Parts purchased. Phone Ted, W2KUW collect. We will trade for
new amateur gear. GRC105 and
PRC74 also required. See RR last
issue for other equipment required.

THE TED DAMES CO.
308 Hickory Street
Arlington, N. J. 07002
(201) 998-4246

The TED Dames Co.

VHF FREQUENCY COUNTER

- 5 DIGIT LED DISPLAY
- 10 Hz TO >230 MHZ
- < 200 MV SENSITIVITY
- FACTORY DIRECT SALES
- ASSEMBLED OR KIT

$195.00

KIT PRICE $149.95

WEBER Electronics Elmc crest Terrace, Norwalk, CT 06850

computer boards were used for the
fifteen or so automobile headlight
units I've built so far; all worked as
intended the first time.

For the IC enthusiast, Q1-Q3 can
be individual transistors in an array
such as the CA3018 (TO-5 case) or
the CA3046 (14-pin DIP). However, if ICs
are used, a 1N914 diode will be neces-
sary from the Q1 collector to R3;
otherwise, it may be omitted.

When the oscillator is used as an
audible logic indicator, or audible
logic-state indicator, additional iso-
lolation of the oscillator from the probed
circuit element should be provided to
prevent loading the logic circuit. A
high-impedance input op-amp is ideal
for this application. Fig. 3 shows the
circuit.

The op-amp is configured as a poor-
man's Schmitt trigger; i.e., a fairly
rapid output transition occurs at a
specific preset input voltage level by
omitting the usual feedback resistor
between pins 6 and 2. The op-amp acts
simply as a very-high-input-impedance
inverter with virtually no hysteresis
about the preset transition reference
voltage level appearing at the non-
inverting input, pin 3. This reference
voltage is easily provided by the resis-
tive divider network R8-R9.

Since a TTL-compatible logic probe
was desired, the reference level was set
for +1.6 volts. The zero logic state
maximum voltage for the SN7400
series TTL ICs is about 0.8 volt; the
minimum 1 logic level is about +2.4
volts. The +1.6 volt reference level is
an arbitrary selection between the two
TTL logic levels. When the probe input
voltage is below +1.6 volt the op-amp
output is approximately 10.5 volts,
which saturates Q1 and disables
Q2-Q3; when the probe voltage is
above +1.6 volt, the U1 output is
about 2 volts, which cuts off Q1, and
power is supplied to Q2-Q3. R7 must
be selected to allow cutoff of Q1 when
the U1 output is low, and permit satu-
rations of Q1 when the U1 output is
high.

These are just a few of the possible
applications for this handy and inex-
pensive oscillator; further applications
are left to the ingenuity and imagina-
tion of the reader.

Howard F. Batie, W7BBX
The New Leader in '76!

GTX-1 or GTX-1T
HAND-HELD 2-Meter FM Transceiver

CHECK THESE FEATURES:
- All Metal Case
- American Made
- Accepts standard plug-in crystals
- Features 10.7 MHz crystal filter
- Trimmer caps on TX and RX crystals
- 3.5 watts output
- Battery holder accepts AA regular, alkaline or nicad cells
- Mini Handheld measures 8" high x 2.625" wide x 1.281" deep
- Rubber ducky antenna, Wrist safety-carrying-strap included
- 6 Channels
- Factory-direct to You

Accessories Available:
- Nicad Battery Pack
- Charger for GTX-1 battery pack
- Leather carrying case
- TE III Tone Encoder for auto patch

Use This Handy Order Form

NAME ___________________________ AMATEUR CALL ___________________________

ADDRESS ___________________________ CITY ___________________________ STATE & ZIP ________________

Payment by:
☐ Certified Check/Money Order ☐ Personal Check ☐ C.O.D. Include 20% Down
Note: Orders accompanied by personal checks will require about two weeks to process.
☐ 20% Down Payment Enclosed. Charge Balance To:
☐ BankAmericard # ___________________________ Expires ___________________________
☐ Master Charge # ___________________________ Expires ___________________________
☐ Interbank # ___________________________

(allow 8 weeks delivery)

IN residents add 4% sales tax;
CA residents add 6% sales tax;
All orders shipped post-paid within continental U.S.

Sub-Total: $ ___________________________

TOTAL: $ ___________________________

(allow 8 weeks delivery)

(allow 8 weeks delivery)
two-meter fm transceiver

The new products announcement of Standard’s new Horizon 2, a 12-channel, 25-watt vhf fm transceiver, in the November issue of ham radio contained a typographical error: the correct amateur price is $295.00. Contact your local dealer for further details.

vhf fm power amplifiers

The new M-Tech P50A1 vhf power amplifier is designed specifically for amateurs with low power two-meter fm transceivers or hand-held units - 1 to 3 watts input will deliver 40 to 65 watts output. The P50A1 is designed for operation with a 13.6-volt power supply (8 amps) and is rated for an 85% duty cycle. The unit includes COR switching with an LED indicator and a spurious output filter, and is priced at $139 post-paid.

Other 144-MHz fm power amplifiers in the M-Tech line include the P15A1 (1-3 watts input, 12-25 watts output, 100% duty cycle) which features solid-state switching and is priced at $59; the P50A10C (2-18 watts input, 14-60 watts output, 100% duty cycle), $98; the P100A10 (5-12 watts input, 60-100 watts output, 85% duty cycle), $198; the P100A20 (18-35 watts input, 80-100 watts output, 85% duty cycle), $155; and the P100A5 (2-5 watts input, 40-100 watts output, 85% duty cycle), $198. All amplifiers are vswr protected for any load, include a reverse current protection circuit, use microstrip inductors for stability, and carry a 1-year factory warranty. All amplifiers except the P15A1 feature COR switching with an LED indicator and a spurious output filter.

M-Tech also manufactures two solid-state power amplifiers for the 220-MHz band, the P30A1-220 (1-3 watts input, 30-45 watts output, 85% duty cycle) and the P30A10-220 (2-18 watts input, 12-40 watts output, 100% duty cycle). Both of these units feature COR switching with a LED indicator.

For more information on M-Tech’s Quality Emphasis Line of vhf-fm power amplifiers, write to M-Tech Engineering, Inc., Box C, Springfield, Virginia 22151, or use check-off on page 102.

random-wire antenna tuner

If you like portable operation and want to get on the air with the least amount of trouble, a random-length wire antenna is hard to beat. You’ll need a tuner for the random wire, and SST Electronics has the answer with the SST T-1. The SST T-1 tunes from 80 through 10 meters and handles 200 watts. It matches the low-impedance output of your transmitter and the low-impedance input of your receiver to the high impedance of a random-length wire antenna. Simple and foolproof design features an LC circuit and neon-bulb tune-up indicator. It’s compact, only 3 1/2 by 3/8 inches (7.6 by 1 lxlcm). The unit sells for $24.95 postpaid and is guaranteed for 90 days against defects in parts and workmanship. For more information, write SST Electronics, P. O. Box 1, Lawndale, California 90260, or use check-off on page 102.

power-line monitor

A new compact high-low power-line monitor with a convenient swivel plug for use directly in an ac outlet or through a standard multi-socket cube is now available from RCA. This small inexpensive test instrument is an ideal tool for every amateur’s toolbox and reads from 50 to 150 volts ac (true rms), 50-60 Hz with a plus or minus 5 per cent accuracy. Circular in shape, the new monitor is only two inches in diam-eter and one inch deep (5x2.5cm), and weighs only three ounces (85g).

The RCA WV-548A Hi/Low power line monitor is priced at $9.95. For additional information on RCA Electronic Instruments contact RCA Distributor and Special Products Division, 2000 Clements Bridge Road, Deptford, New Jersey 08096, or use check-off on page 102.

test equipment

The 24-page Tucker Electronics Sales Bulletin lists a wide variety of reconditioned test equipment as well as a dozen different lines of new instruments. Although the bulletin shown above was released in May, new sales bulletins are issued periodically. For your copy, write to Tucker Electronics Company, Post Office Box 1050, Garland, Texas 75040, or use check-off on page 102.

volt-ohm-milliammeter

The Triplett Corporation has introduced an unconventional type of volt-ohm-milliammeter that gives the user an “extra-chance” after misuse...and not a repair bill. This virtually indestructible test instrument has built-in protection against accidental high energy overload, is shock resistant to accidental drops up to a five foot (1.5m) height, is of modular construction so that it can be easily and quickly serviced in the field and has been designed to the most rigid safety standards to prevent any hazard of electrical shock to the user. Triplett has aptly named it the “Extra-Chance” model 60.

The new vorn has no exposed metal parts, providing complete insulation of the instrument itself, special test leads for increased safety and a three-fuse testing system which greatly reduces fire and explosion hazard under misuse conditions. Two 48-inch (1.2m) long safety
test leads are supplied and connect to the control panel by special safety connectors.

A rugged case molded of black, high impact thermoplastic material in combination with a ruggedized suspension meter result in a VOM that is virtually indestructible from accidental drops up to a five-foot (1.5m) height. The meter movement is protected by a diode module; fuses are used for normal overload conditions. A fuse plus two zener diodes are used to protect against high energy fault currents and protect the circuit up to 1000 volts. The meter movement is protected by a diode module; fuses are used for normal overload conditions. A fuse plus two zener diodes are used to protect against high energy fault currents and protect the circuit up to 1000 volts. A separate, sealed battery compartment permits easy external access to batteries and fuses without having to remove other parts of the instrument.

A single range selector switch is used for selecting all 33 ac/dc voltage, ac output, resistance, dc current and decibel ranges from -20 to +52 dB plus the off and test positions. Accuracy on all ac and resistance ranges is ±2 per cent of full scale; ac accuracy is ±3 per cent of full scale. The Triplett model 60 (catalog number 3145) comes complete with a one-year parts and labor warranty, safety test leads, batteries, spare fuses and instruction manual, and sells for $90. For additional information, write to the Triplett Corporation, Department, PR, Bluffton, Ohio 45817, or use check-off on page 102.

seven-segment displays

New high-efficiency solid-state numeric displays, as much as five times brighter than other displays at the same operating current, are now available from Hewlett-Packard. At one-fifth the current, they are equal in brightness to older displays. Their high brightness plus their 0.43 inch (11mm) height makes them ideal for applications in high ambient light conditions. Operating at currents as low as 3 mA, these large displays become practical for use in battery-powered portable instruments. They

Great New Turn On

Howard Microsystems introduces MOCO II, the newest and most efficient Morse Code translator in the state of the art.

MOCO II ushers in a new generation of Morse Code Readers. Its central processing unit is combined with computer programmed firmware totaling more than 8,000 bits of memory, which permit MOCO II to translate standard alpha-numeric Morse Code, even punctuation automatically.

Simply connect MOCO II to the speaker leads and then just turn it on. No knobs, no adjustments. One switch calibration automatically determines and displays sending speed.

MOCO II is not a kit. It's completely assembled and tested, includes integral power supply, parallel ASCII and Baudot outputs for existing display units.

PRICE: $199.00

Available as options are a video display, or a teletype driver with 60 ma. loop supplies.

Display Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Baudot Driver/Interface for TTY</td>
<td>$75.00</td>
</tr>
<tr>
<td>B. Video Character Display with VHF TV Modulator</td>
<td>$325.00</td>
</tr>
<tr>
<td>(Kit)</td>
<td>(Kit)</td>
</tr>
</tbody>
</table>

All orders – add $2.75 shipping/handling

ORDER FROM:
Howard Microsystems, Inc., 6950 France Avenue South, Minneapolis, MN 55435 (612) 925-2474.

More Details? CHECK-OFF Page 102
MORE EXPANSION FROM SCS
Specialty Communications Systems is always seeking new and better answers to communication problems. Our years of experience in the Amateur Radio hobby are combined with design and manufacturing expertise to bring you products of exceptional value. Amplifiers, Antennas, and now “Side Kick”.

SIDE KICK
Portable Range Booster
Extend the range of your hand held transceiver with this combination Amplifier/Battery Unit. Delivers 25 watts to its antenna.

Typical Features:
- Weight: 3.3 lbs.
- Size: 4¾” x 2¾” x 6”
- Price: $199.95
- Coming Soon! Linear Version at $219.95.

NEW — NEW — NEW
28-432 MHz Solid State Transceiver System Modules to be available soon!

Write now or contact nearest dealer. Dealer inquiries invited.

SPECIALTY COMMUNICATIONS SYSTEMS
4519 Narragansett Avenue • San Diego, Calif. 92107
Louis N. Anciaux • WB6NMT
(714) 222-8381

Aha, the SECRET of PC Board success finally revealed. A perfectly balanced lighting tool combining magnification with cool fluorescence. Excellent for fine detail, component assembly, etc. Lens is precision ground and polished. Regularly $70.00. Now, over 30% discount (only $49.00) to all licensed Hams, verified in Callbook. Uses T-9 bulb (not supplied).

Include $3.00 U.S. postage, or $4.00 in Canada. $5.00 elsewhere. California Residents include 6% sales tax. Or send stamped envelope for free brochure of other incandescent or fluorescent lamps suitable for all engineers, architects, students, etc.

Mastercharge and BankAmericard accepted

D-D ENTERPRISES
Dept. A, P. O. Box 7776
San Francisco, CA 94119

10 CHANNEL SCANNER
For All Regency HR series 2, 2A, & 2B, MT-15, MT-25, & AQUAFONE Transceivers
FEATURES:
- Selectable Priority Channel
- 3 Second Delay After Scan Resumes
- 2 Second Delay After Scan Resumes
- 5 Wire Hook-Up Without Major Modification To Radio
- Simple Modification For Selective Channel Bypass
- Optional Digital Channel Display

SPECIAL INTRODUCTORY PRICE $29.95

NET PRICE FOR BOTH $74.25
HR-2B With Both Installed $299.99
6T-HR2-C With Both Installed $11.50

Motorola UHF in Stock — WRITE FOR INFORMATION

Topeka FM Communications
& Electronics
125 Jackson
Topeka, Kansas 66603
913-233-2343

may also be operated in the strobe mode at currents up to 60 milliamperes peak.

The HP models 5082-7650, -7660, and -7670 are red, yellow and green, common-anode, seven-segment displays with left/medium decimal point. LED chips are optically magnified to form evenly-lighted segments. For improved on-off contrast, the bodies of the displays are colored to match the appearance of the unlighted segments.

For more information, contact your local Hewlett-Packard Sales Office, or use check-off on page 102.

fet multimeter

A new pocket fet multimeter offering full vtm ranges and a 10-megohm input, completely protected against overload, is now available from Hickok. Packaged in a rugged, pocket-size case with attached cover the Model 350 provides features which include 1 millivolt resolution on three easy-to-read mirrored scales plus dB and battery condition, high/low ohms ranges, and true autopolyrity with a polarity indicator.

High impedance fet circuitry permits vtm type ranges in this compact unit. Nine voltage ranges of 0.1 to 1000 volts and seven high/low ohms ranges from 100 ohms to 100 megohms center scale make the Model 350 a versatile service tool. One-year service can be expected from the two 9-volt transistor radio batteries. The Model 350 comes complete with two test leads and instruction manual.

For more information, contact Tom Hayden, Instrumentation & Controls Division, Hickok Electrical Instrument Company, 10514 Dupont Avenue, Cleveland, Ohio 44108, or use check-off on page 102.

A new pocket fet multimeter offering full vtm ranges and a 10-megohm input, completely protected against overload, is now available from Hickok. Packaged in a rugged, pocket-size case with attached cover the Model 350 provides features which include 1 millivolt resolution on three easy-to-read mirrored scales plus dB and battery condition, high/low ohms ranges, and true_string polyrity with a polarity indicator.

High impedance fet circuitry permits vtm type ranges in this compact unit. Nine voltage ranges of 0.1 to 1000 volts and seven high/low ohms ranges from 100 ohms to 100 megohms center scale make the Model 350 a versatile service tool. One-year service can be expected from the two 9-volt transistor radio batteries. The Model 350 comes complete with two test leads and instruction manual.

For more information, contact Tom Hayden, Instrumentation & Controls Division, Hickok Electrical Instrument Company, 10514 Dupont Avenue, Cleveland, Ohio 44108, or use check-off on page 102.

For more information, contact Tom Hayden, Instrumentation & Controls Division, Hickok Electrical Instrument Company, 10514 Dupont Avenue, Cleveland, Ohio 44108, or use check-off on page 102.
Now...

SWAN AUTOMATES THE MOBILE ANTENNA.

Add the amateur radio mobile antenna to the list of things successfully automated for our increasing comfort.

The Swan Model 742 Triband Mobile, the only automatic amateur radio antenna, eliminates coil changing, tap adjusting, switch flicking and all the rest of mobile antenna inconvenience.

Now for the first time ever you just sit behind the wheel and change from 20 to 40 to 75 meters while your 742 automatically loads itself for each band—perfectly.

Rated at 500 watts P.E.P., the new antenna is one of a complete line of advanced amateur radio antennas and antenna accessories by Swan. All designed to help you put maximum power where you want it.

Model 742 automatic triband mobile antenna. $79.95.
Only from Swan. Where else?

Dealers throughout the world
or order direct from

SWAN ELECTRONICS
A subsidiary of Cubic Corporation
Home Office:
305 Airport Road • Oceanside, CA 92054
NEW FROM MFJ

SUPER LOGARITHMIC SPEECH PROCESSOR
MODEL LSP-520BX

UP TO 400% MORE RF POWER is yours with this plug-in unit. Simply plug LSP-520BX into the circuit between the microphone and transmitter and your voice suddenly is transformed from a whisper to a DYNAMIC OUTPUT.

Look what happens to the RF Power Output on our NCX-3. It was tuned for normal SSB operation and then left untouched for these "before" and "after" oscilloscograms.

Fig. 1 SSB signal before processing. See the high peaks and the low valleys. Our NCX-3 is putting out only 25 watts average power.

Fig. 2 SSB signal after processing with LSP-520BX. The once weak valleys are now strong peaks. Our NCX-3 now puts out 100 watts of average power.

Three active filters concentrate power on these frequencies that yield maximum intelligence. Adds strength in weak valleys of normal speech patterns. This is accomplished through use of an IC logarithmic amplifier with a fast attack and slow decay for clean audio with minimum distortion.

This unit is practically distortion-free even at 30dB compression! The input to the LSP-520BX is completely filtered and shielded for RF protection.

Size is a mere 2 3/16" x 3 1/2" x 4 1/4". Money back if not delighted and ONE YEAR UNCONDITIONAL GUARANTEE.

Order now or write for FREE brochure.

LSP-520BX
ADD $1.50 SHIPPING & HANDLING

Here's another product from the plentiful MFJ line.

SSB FILTER

This filter, packaged very much like the Speech Processor above, allows you to select the optimum audio bandwidth to drastically improve readability.

SSF-28X, assembled and tested $25.95
Write for free catalog on other equipment.

DEALER INQUIRIES INVITED

601-323-5869

MFJ ENTERPRISES
P. O. BOX 494(H)
MISSISSAUGA, ONTARIO L4Y 4M8

DEALER SUPPORT

CALL SIGNS
AND HAM SHACK

W2CFP

The same sign can display your call in your ham shack and also on your auto when you travel to Festivals. Made of vacuum moulded plastic with embedded magnets, the sign is removed and repositioned in seconds. A 4" x 4" sign as above is only $9.00. Custom designs available. Sizes to 24" x 48". Let us know exactly what you want.

Dealer inquiries invited!

Our regular store hours are:
Tuesday-Friday 11:00-1:00
Saturday 10:00-12:00 noon
1:00-5:00 p.m.
See us at the same address for all your Amateur Radio needs.

CFP DYN-A-VAC
Division of CFP Enterprises
211 NORTH MAIN STREET
HORSEHEADS, NEW YORK 14845

500 MHZ SCALER MODULE

ONLY 1.55 x 1.65 x .4 INCHES
Fits Right Into Existing Equipment.

HIGH SENSITIVITY:
35 mV at 500 MHz.
15 mV at 150 MHz.

INPUT IMPEDANCE: 50 ohms
REQUIRES 12 to 15 VDC at 100 ma. max.

TTL compatible output F/10
OVERLOAD PROTECTED

PS-M Prescaler Module wired & tested.

$99.00 plus $.85 shipping
Calif. residents add 6% sales tax
WRITE FOR DATA ON ENTIRE LINE OF PRESCALERS

LEVY ASSOCIATES
P. O. Box 961 Temple City, CA 91780

80 January 1976

More Details? CHECK—OFF Page 102
The new Low Pass Filter is more than 80 dB down at 41 MHz and above! This is the third harmonic of 20 meters and the second harmonic of 15 meters—it’s also the I.F. frequency for TV! • The popular TV-1000-LP provides for low power operation on 6 meters and thus cannot roll-off below 52 MHz. • Write for the TV-3300-LP curves.

For more information please contact:

R.L. DRAKE COMPANY
540 Richard St., Miamisburg, Ohio 45342 • Phone: (513) 866-2421 • Telex: 288-017

WANT TO TRADE BINDERS?

Got more small sized HAM RADIO Binders than you can use?

Now with our new large sized magazine we’ll trade any extra small sized (6" x 9") binders for our new large sized binders for just $1.00 ($2.00 foreign) per binder shipping and handling.

Send in any extra binders in new, unused condition still in their original shipping carton along with the wires and date labels plus $1.00 per binder. We’ll ship you a brand new large binder for each small one returned.

Hurry though, this offer is valid only through January 31, 1976.

HAM RADIO GREENVILLE, NH 03048

We have a whole wonderful line of unbelievable counters starting at $45.95! Drop us a line or give us a call today.

Hufco Dept. 11, P.O. Box 357 Provo, Utah 84601 (801) 224-3355

THE GRABBERS!

6-DIGIT COUNTERS!

6-Digit Kit 6-Digit Kit
$69.95 $119.95
(30mHz) (250mHz)

The Grabbers!

6-DIGIT COUNTERS!

You spent $200, $300 or $400 to put your VHF rig in the car. Why not spend $15 to keep it there!

PRUITT ENTERPRISES
Box 41H Tonopah, NV 89049
Tel: 702-482-3473

THE TIGER

15% Savings on Gas

A Capacitive Discharge Ignition system absolutely guaranteed NOT to interfere with your radios & equally guaranteed to improve your auto’s operation and gas mileage.

No rewiring necessary. Engine cannot be damaged by improper installation. Either of three models fits any vehicle or stationary engine with 12 volt negative ground, alternator or generator system. Uses standard coil & distributor now on your engine. Dual switch permits motor work or tune-up with any standard test equipment.

Write for free booklet that not only is the BEST description of CDS, but also explains the need for such a system. Current prices assured til July 1, 76.

D-D ENTERPRISES
P. O. Box 7776
San Francisco, CA 94119

U.S. Patent #3410122
• SHUR-LOK will accommodate a unit with overall dimensions including mounting bracket up to 3 1/2" High and from 4 1/2" to 9 1/2" Wide.
• Prevents access to rig’s mounting hardware • No special tools
• Tempered steel no pick Yale lock
• Also great for tape decks
• Satisfaction Guaranteed
• Special pry-proof hardware
• Dealer & Club inquiries invited

U.S. Patent #3410123

WANT TO TRADE BINDERS?

Got more small sized HAM RADIO Binders than you can use?

Now with our new large sized magazine we’ll trade any extra small sized (6" x 9") binders for our new large sized binders for just $1.00 ($2.00 foreign) per binder shipping and handling.

Send in any extra binders in new, unused condition still in their original shipping carton along with the wires and date labels plus $1.00 per binder. We’ll ship you a brand new large binder for each small one returned.

Hurry though, this offer is valid only through January 31, 1976.

HAM RADIO GREENVILLE, NH 03048

We have a whole wonderful line of unbelievable counters starting at $45.95! Drop us a line or give us a call today.

Hufco Dept. 11, P.O. Box 357 Provo, Utah 84601 (801) 224-3355

THE GRABBERS!

6-DIGIT COUNTERS!

6-Digit Kit 6-Digit Kit
$69.95 $119.95
(30mHz) (250mHz)

The Grabbers!

6-DIGIT COUNTERS!

You spent $200, $300 or $400 to put your VHF rig in the car. Why not spend $15 to keep it there!

PRUITT ENTERPRISES
Box 41H Tonopah, NV 89049
Tel: 702-482-3473

THE TIGER

15% Savings on Gas

A Capacitive Discharge Ignition system absolutely guaranteed NOT to interfere with your radios & equally guaranteed to improve your auto’s operation and gas mileage.

No rewiring necessary. Engine cannot be damaged by improper installation. Either of three models fits any vehicle or stationary engine with 12 volt negative ground, alternator or generator system. Uses standard coil & distributor now on your engine. Dual switch permits motor work or tune-up with any standard test equipment.

Write for free booklet that not only is the BEST description of CDS, but also explains the need for such a system. Current prices assured til July 1, 76.

D-D ENTERPRISES
P. O. Box 7776
San Francisco, CA 94119

U.S. Patent #3410122
• SHUR-LOK will accommodate a unit with overall dimensions including mounting bracket up to 3 1/2" High and from 4 1/2" to 9 1/2" Wide.
• Prevents access to rig’s mounting hardware • No special tools
• Tempered steel no pick Yale lock
• Also great for tape decks
• Satisfaction Guaranteed
• Special pry-proof hardware
• Dealer & Club inquiries invited

U.S. Patent #3410123
DIGITAL DATA RECORDER
for
Computer or Teletype Use
Up to 2400 Baud

Uses the industry standard tape saturation method to beat all FSK systems ten to one. No modems or FSK decoders required. Loads 8K of memory in 34 seconds. This recorder enables you to back up your computer by loading and dumping programs and data fast as you go, thus enabling you to get by with less memory. Great for small business bookkeeping. Imagine! A year’s books on one cassette.

Thousands are in use in colleges and businesses all over the country. This new version is ideal for instructional, amateur, hobby and small business use. Ideal for use by servicemen to load test programs. Comes complete with prerecorded 8080 software program used to test the units as they are produced. (Monitor)

COMING NEXT MONTH — IN KIT FORM

* Hexadecimal Keyboard — Load programs direct from keyboards’ 16 keys and verifying display. Does not use Computer I/O.

* I/O for use with Computer Aid or other digital recorders. Variable baud rate selectable on externally located unit by one knob. Can load computer or accept dumps without software. Turnkey Operation. For any 8 bit computer.

* Record/Playback Amplifier

Expanded version of our Computer Aid board for use with your own desk (cassette or reel to reel). Go to 9600 baud on reel to reel. Digital in, digital out, serial format.

* Interested in these? Send your name and address for brochure when released.

(EDUCASSETTE is our registered TradeMark)

Fill out form and send check or money order to:
NATIONAL MULTIPLEX CORPORATION
3474 Rand Avenue, Box 288
South Plainfield, New Jersey 07080

Data Recorder @$149.95
Operating & Technical Manual (Schematics) @$1.00

* New Products, No Charge

Please enclose $2.00 Shipping & Handling
N. J. Residents add 5% Sales Tax

NATIONAL MULTIPLEX CORPORATION
3474 Rand Avenue, Box 288
South Plainfield, New Jersey 07080

January 1976

More Details? CHECK-OFF Page 102
WHY WASTE WATTS?

SWR-1 guards against power loss for $21.95

If you're not pumping out all the power you're paying for, our little SWR-1 combination power meter and SWR bridge will tell you so. You read forward and reflected power simultaneously, up to 1000 watts RF and 1:1 to infinity VSWR at 3.5 to 150 MHz.

Got it all tuned up? Keep it that way with SWR-1. You can leave it right in your antenna circuit.
KLM BROADENS ITS BIG STICK LINE OF HIGH FREQUENCY ANTENNAS

4 ELEMENTS 40 METERS

INTRODUCING THE LONG AWAITED, PRACTICAL SIZED, HIGH PERFORMANCE 40 METER "BIG STICK" DUAL DRIVEN YAGI. NOW YOU CAN HAVE CONSTANT GAIN AND LOW VSWR ACROSS THE 40 METER BAND. DUAL DRIVEN ELEMENTS FOR HIGH EFFICIENCY AND CLEAN PATTERN. LIGHTWEIGHT BUT STRONG MATERIALS INCLUDING KLM EXCLUSIVE EPOXY INSULATOR DESIGN . . .

SPECIFICATIONS

FREQUENCY: 7.0-7.3 MHz
ELEMENTS: 4, LINEAR LOADED
BOOM: 3" DIA. X 42' LONG
TURNING RADIUS: 32'
SHIPPING CONTAINER: WOOD CRATE 12' LONG 125 LBS. TOTAL WEIGHT

GAIN: 7.25 dB/DIPOLE
F/B: 20 dB TYPICAL
FEED IMP.: 200 OHMS BALANCED (50 OHMS WITH OPTIONAL KLM 5:1 BALUN — $13.95)
WEIGHT: 85 LBS.
WIND AREA: 10 SQ. FT.

PRICE $495.00

20 METER 5 ELEMENT

KLM 13.9-14.4-5 $249.95
9.7dB GAIN 30dB F/B

15 METER 6 ELEMENT

KLM 21.0-21.5-6 $224.95
10.5dB GAIN 30dB F/B

WHEN YOU SPEAK OF PERFORMANCE IN ANTENNAS, AMPLIFIERS OR TRANSCEIVERS THE NAME IS:

KLM ELECTRONICS

17025 LAUREL ROAD
MORGAN HILL, CA. 95037
(408) 779-7363

January 1976
What you see is ALL you carry.

520 MHz $860*

Model 1920A

1000 MHz $1055*

Model 1920A-13

1250 MHz $1155*

Model 1920A-14

Fluke's newest portable counters.

- Built-in batteries (optional)
- Sharp 9-digit LED display
- Burst or CW frequency measurements
- Sensitivity to 15 mV
- AGC standard
- Optional resolution multiplier provides 0.001 Hz resolution in 1 sec.

For data out today, dial our toll-free number, 800-426-0361.

*Domestic U.S.A. Price

John Fluke Mfg. Co., Ltd.
P.O. Box 1094, Station D
Buffalo, N.Y. 14210
Phone (716) 842-0311

Phone (716) 842-0311

88 JANUARY 1976
YOUR SUPERMARKET OF AMATEUR VALUES

NOW AVAILABLE!!
1976 BUYERS GUIDE
SEND FOR YOUR FREE COPY NOW.
NO GENERAL MAILING WILL BE MADE

YOU MADE US THE NATION'S FM LEADER . . .
NOW LET US HELP FILL ALL YOUR AMATEUR NEEDS

- PERSONAL, FRIENDLY SERVICE
- PROMPT MAIL & PHONE SERVICE
- LIBERAL TRADE INS
- QUALITY BRANDS

LOTS OF MOTOROLA GOODIES TOO!!

MOTOROLA FANS . . . NEW, SPECIAL GOODIES LIST FREE FOR S.A.S.E.

SEE YOU AT SAROC

SPECTRONICS, INC.
1009 GARFIELD
OAK PARK, IL. 60304
312-848-6778
TELEX 72:8310

HOURS
STORE HOURS:
Mon-Thurs 9:30-6:00, Fri. 9:30-8:00
Sat. 9:30-3:00, Closed Sun. & Holidays.
The popular CUA 64-12 by Heights

Light, permanently beautiful ALUMINUM towers

THE MOST IMPORTANT FEATURE OF YOUR ANTENNA IS PUTTING IT UP WHERE IT CAN DO WHAT YOU EXPECT. RELIABLE DX — SIGNALS EARLIEST IN AND LAST OUT.

ALUMINUM
Complete Telescoping and Fold-Over Series available Self-Supporting Easy to Assemble and Erect All towers mounted on hinged bases

And now, with motorized options, you can crank it up or down, or fold it over, from the operating position in the house.

Write for 12 page brochure giving dozens of combinations of height, weight and wind load.

ALSO TOWERS FOR WINDMILLS HEIGTHS MANUFACTURING CO.
In Almont Heights Industrial Park Almont, Michigan 48003

THIS IS YOUR BIG CHANCE!
BUY $50 WORTH; THEN PICK $50 WORTH FREE!

OTHER ORDERS: $10+ Orders take 5% Discount; $30+ Orders take 10% Discount

TABLE

<table>
<thead>
<tr>
<th>TOWER</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>7400</td>
<td>1.7</td>
<td>1.75</td>
</tr>
<tr>
<td>7402</td>
<td>1.7</td>
<td>1.75</td>
</tr>
<tr>
<td>7403</td>
<td>1.7</td>
<td>1.75</td>
</tr>
<tr>
<td>7404</td>
<td>1.7</td>
<td>1.75</td>
</tr>
<tr>
<td>7405</td>
<td>1.7</td>
<td>1.75</td>
</tr>
<tr>
<td>7406</td>
<td>1.7</td>
<td>1.75</td>
</tr>
<tr>
<td>7407</td>
<td>1.7</td>
<td>1.75</td>
</tr>
<tr>
<td>7408</td>
<td>1.7</td>
<td>1.75</td>
</tr>
<tr>
<td>7409</td>
<td>1.7</td>
<td>1.75</td>
</tr>
<tr>
<td>7410</td>
<td>1.7</td>
<td>1.75</td>
</tr>
<tr>
<td>7411</td>
<td>1.7</td>
<td>1.75</td>
</tr>
<tr>
<td>7412</td>
<td>1.7</td>
<td>1.75</td>
</tr>
<tr>
<td>7413</td>
<td>1.7</td>
<td>1.75</td>
</tr>
<tr>
<td>7414</td>
<td>1.7</td>
<td>1.75</td>
</tr>
<tr>
<td>7415</td>
<td>1.7</td>
<td>1.75</td>
</tr>
<tr>
<td>7416</td>
<td>1.7</td>
<td>1.75</td>
</tr>
<tr>
<td>7417</td>
<td>1.7</td>
<td>1.75</td>
</tr>
<tr>
<td>7418</td>
<td>1.7</td>
<td>1.75</td>
</tr>
<tr>
<td>7419</td>
<td>1.7</td>
<td>1.75</td>
</tr>
<tr>
<td>7420</td>
<td>1.7</td>
<td>1.75</td>
</tr>
<tr>
<td>7421</td>
<td>1.7</td>
<td>1.75</td>
</tr>
<tr>
<td>7422</td>
<td>1.7</td>
<td>1.75</td>
</tr>
<tr>
<td>7423</td>
<td>1.7</td>
<td>1.75</td>
</tr>
<tr>
<td>7424</td>
<td>1.7</td>
<td>1.75</td>
</tr>
<tr>
<td>7425</td>
<td>1.7</td>
<td>1.75</td>
</tr>
<tr>
<td>7426</td>
<td>1.7</td>
<td>1.75</td>
</tr>
<tr>
<td>7427</td>
<td>1.7</td>
<td>1.75</td>
</tr>
</tbody>
</table>

1. Add 50¢ for postage & handling on orders under $10.
2. All items guaranteed.
3. Send SASE for Bargain Flyer.
4. SEND YOUR ORDER ALONG WITH CHECK OR MONEY ORDER TO: WEIRNU, P. O. Box 942, Colton, CA 92324 (Calif. residents include 5% tax).

SSB...CW...FM...80-10...VHF...UHF

PERSONALIZED SERVICE FOR ALL YOUR AMATEUR NEEDS

New Equipment
Transmitters
Receivers
Intercoms
Coax
Preamps
Publications
FM Transceivers
Mobile Antennas
OSCAR Antennas
Coax

SPECTRONICS INC.
1009 GARFIELD STREET
OAK PARK, I1L. 60304
(312) 448-6778

FREE CATALOG
HARD-TO-FIND PRECISION TOOLS
Lists more than 2500 items—pliers, tweezers, wire strippers, vacuum systems, relay boxes, optical equipment, tool kits and cases. Also includes ten pages of useful "Tool Tips" to aid in tool selection.

JENSEN TOOLS
417 N. 44th Street, Phoenix, Ariz. 85019

MILITARY SURPLUS WANTED
Space buys more and pays more. Highest prices ever on U.S. Military surplus, especially on Collins equipment or parts. We pay freight. Call collect now for our high offer. 201-440-6757.

NEW ADDRESS
SPACE ELECTRONICS CO.,
div. of Military Electronics Corp.
35 Ruta Court
S. Hackensack, N. J. 07606

NEW YEAR SPECIAL!
Complimentary issue of THE BIG LIST from Buyers & Sellers. Check off #329.

BUMP & SELLSERS
P.O. Box 73
Kenmore Station
Bostom, Mass. 02215

MORE DETAILS? CHECK-OFF PAGE 102

90 January 1976
THE LARGEST SWAP AND SHOP IN MICHIGAN.
WHY

USE LESS THAN THE BEST?

The Quality designed and built into this M-Tech Amplifier allows us to include our famous ONE YEAR WAR-

RANTY!

MODEL P50AI

Mode: Class C for CW and FM
DC Input: +13.6 V DC @ 8 amps for
rated output
RF Input: 1-3 watts 140-165 MHz
RF Output: 60-90 watts 140-165 MHz
Load Sensitivity: Internally protected for any
VSIR

Connectors: Low loss 500 BNC
COR switching w/LED indicator
Spuriously output filter

Unique Low frequency negative feed-
back circuit

Send SASE for info - add'l models
$139.00 ppd. continental USA

ORDER TODAY FROM:

M-Tech Engineering, Inc.
BOX C, SPRINGFIELD, VA 22151
(703) 354-0573

M-Tech ... The Quality Company

SUB-AUDIBLE GENERATOR

for FM

• Inexpensive multi tone system
• Compatible with PL-

CG - QC
• Low distortion sine-

wave
• Adjustable frequency
55-300 Hz - Lower
available
• Rugged, plastic en-
cased with leads, easy
to mount
• Input 8-18 VDC un-
regulated
• Excellent stability

Price $19.95
Calif. res. add 6%
Freq. set at factory $5.00 extra
Send for more information

GoVT. SURPLUS

ELECTRONIC

EQUIPMENT

CATALOG

New ITEMS . . . New BARGAINS!

FREE UPON REQUEST!

If you haven't received our new Cata-
log, write for free copy today, Address: Dept. HR

FAIR RADIO SALES

1016 E. EURKA • Box 1105 • LIMA, OHIO • 45802

DUPLExER KITS

PROVEN DESIGN, HUNDREDS SOLD IN US,

EUROPE. CONSTRUCTION WELDED ALUMINUM TRIDITE & SILVER PLATED. SEE JAN,

74 QST RECENT EQUIPMENT. ALL PARTS

PROFESSIONAL QUALITY, EVERYTHING SUR-

PLIED. NO SPECIAL TOOLS. RECEIVER &

TRANSMITTER CAN BE USED FOR TUNE UP.

MOD. 62-1 CAVITY 135-165 MHz POWER

250W ISOLATION GREATER THAN 100

dB 600 kHz. INSERTION LOSS 9 dB

MIN. TEMP STABLE OVER WIDE

RANGE PRICE $349.00

MOD. 42-1 4 CAVITY SAME AS 6 CAVITY

EXCEPT ISOLATION GREATER THAN

80 dB 600 kHz INSERTION LOSS 6

dB MAX. PRICE $249.00

NORTH SHORE RF TECHNOLOGY

Exclusive Distributor TUFFS Radio

386 MAIN ST., MEDFORD, MA 02155

617-395-8280

2 METER

CRYSTALS IN STOCK

FOR THESE RADIOS ON

STANDARD ARRl REPATER

FREQUENCIES:

• DRAKE — TR-22

• GENAVE

• ICOM/VHF ENGINEERING

• KEN/WILSON

• REGENCY HR-2A/HR-212

• HEATHKIT HW-202

• REGENCY HR-2B

• S.B.E.

• STANDARD 146/826

• STANDARD HORIZON

Send for tree frequency
list and order blank to:

KENSIO

COMMUNICATIONS INC.

DEPT. 101

BOX 469, QUINCY, MA. 02169

PHONE: (617) 471-6427

SUB-AUDIBLE GENERATOR

for FM

• Inexpensive multi tone system
• Compatible with PL-

CG - QC
• Low distortion sine-

wave
• Adjustable frequency
55-300 Hz - Lower
available
• Rugged, plastic en-
cased with leads, easy
to mount
• Input 8-18 VDC un-
regulated
• Excellent stability

Price $19.95
Calif. res. add 6%
Freq. set at factory $5.00 extra
Send for more information

GoVT. SURPLUS

ELECTRONIC

EQUIPMENT

CATALOG

New ITEMS . . . New BARGAINS!

FREE UPON REQUEST!

If you haven't received our new Cata-
log, write for free copy today, Address: Dept. HR

FAIR RADIO SALES

1016 E. EURKA • Box 1105 • LIMA, OHIO • 45802

DUPLExER KITS

PROVEN DESIGN, HUNDREDS SOLD IN US,

EUROPE. CONSTRUCTION WELDED ALUMINUM TRIDITE & SILVER PLATED. SEE JAN,

74 QST RECENT EQUIPMENT. ALL PARTS

PROFESSIONAL QUALITY, EVERYTHING SUR-

PLIED. NO SPECIAL TOOLS. RECEIVER &

TRANSMITTER CAN BE USED FOR TUNE UP.

MOD. 62-1 CAVITY 135-165 MHz POWER

250W ISOLATION GREATER THAN 100

dB 600 kHz. INSERTION LOSS 9 dB

MIN. TEMP STABLE OVER WIDE

RANGE PRICE $349.00

MOD. 42-1 4 CAVITY SAME AS 6 CAVITY

EXCEPT ISOLATION GREATER THAN

80 dB 600 kHz INSERTION LOSS 6

dB MAX. PRICE $249.00

NORTH SHORE RF TECHNOLOGY

Exclusive Distributor TUFFS Radio

386 MAIN ST., MEDFORD, MA 02155

617-395-8280

2 METER

CRYSTALS IN STOCK

FOR THESE RADIOS ON

STANDARD ARRl REPATER

FREQUENCIES:

• DRAKE — TR-22

• GENAVE

• ICOM/VHF ENGINEERING

• KEN/WILSON

• REGENCY HR-2A/HR-212

• HEATHKIT HW-202

• REGENCY HR-2B

• S.B.E.

• STANDARD 146/826

• STANDARD HORIZON

Send for tree frequency
list and order blank to:

KENSIO

COMMUNICATIONS INC.

DEPT. 101

BOX 469, QUINCY, MA. 02169

PHONE: (617) 471-6427

m. weinschenker

electronic specialties-BOX 353, IRWIN, PA 15642

m. weinschenker

electronic specialties-BOX 353, IRWIN, PA 15642
TO MONITOR RADIO CHANNELS WITHOUT LISTENING

TOUCH-TONE DECODER

HURRY: ONLY 50 UNITS REMAINING!

LOWEST PRICE EVER OFFERED FOR A QUALITY TOUCH-TONE DECODER

MAYNARD ELECTRONICS recently purchased the entire stock of discontinued models of **PLL TOUCH-TONE DECODERS** from a major commercial manufacturer. Our agreement stipulates that the sale of these units will be limited to the amateur radio market. Because the sale price is below the manufacturer's cost, it is necessary to limit sales to five units per ham to prevent commercial speculation.

FEATURES:

- Virtually immune to fading by voice, CTCSS tones, music and noise.
- Includes a CALL LIGHT and BUZZER
- Output for vehicle HORN connection
- Relay UNMUTES SPEAKER when call is received
- Field programmable for UP TO EIGHT DIGIT code sequence
- May be used for MOBILE or FIXED
- Designed for 12 VOLTS DC Pos. or Neg. operation
- Dimensions: 1 1/4 x 3 1/2 x 1 1/2 inches

Units are brand new. Complete satisfaction is guaranteed. If for any reason you are not completely satisfied, just return the undamaged unit within ten days for refund.

MODEL 2000B TOUCH-TONE DECODER AND MANUAL

$75.00

MATING CABLE. MULTI-CONDUCTOR CABLE WITH MOLEX CONNECTOR

$10.00

Please enclose check or money order for the total amount plus $5.00 for shipping and handling. A $10.00 deposit is required on all orders shipped from 810. Bellevue. Include your name, shipping address, zip code and ham call sign. Calif. residents add sales tax.

MAYNARD ELECTRONICS COMPANY

P. O. Box 363, Dept. A • Belmont, Ca. 94002

Phone (415) 592-1553
WANTED WANTED
YOUR CLEAN DRAKE TRADE-INS

WILL ALLOW IN TRADE FOR YOUR DRAKE . . .

TR-3/AC-3/MS-3 $350.00
TR-4/AC-4/MS-4 BELOW S/N 31320 $400.00
TR-4/AC-4/MS-4 ABOVE 31320 $450.00
TR-4C/AC-4/MS-4 $600.00
TR-6/AC-4/MS-4 SIX METER $500.00
TR-4 NOISE BLANKER $50.00
DC-3 OR DC-4 MOBILE P/S $50.00
RV-3, RV-4, RV-4C VFO $65.00
R-4A RECEIVER $200.00
R-4B RECEIVER $300.00
R-4C RECEIVER $425.00
T-4XB TRANSMITTER WITH AC-4 P/S $350.00
T-4XC TRANSMITTER WITH AC-4 P/S $375.00
2B OR 2C RECEIVER $150.00

ABOVE DRAKE Trade-In ALLOWED TOWARD ANY NEW
BOXED LATEST MODEL ATLAS, DRAKE, COLLINS, SWAN
EQUIPMENT. WE PAY SHIPPING ON ALL NEW
MENT TO YOU U.P.S.

PHONE YOUR SPECIFICATIONS ON

APOLLO "SHADOW BOX ENCLOSURES"
are fabricated of heavy, cold rolled steel. The front panels are of
2-guage brushed chrome steel; some models are line screened
and have a red Rocker DPDT switch installed with gold plated
contacts and terminals. Covers are baked on Wrinkle enamel.

All cabinets are completely assembled and supplied with four
rubber feet riveted in. Individually packed in a heavy duty.
corrugated mailer carton.

Chassis C thru M are CRS, nickel-plated over copper for excel-
alent RF conductivity.

PRODUCTION CABINETS TO
YOUR SPECIFICATIONS ON SPE-
CIAL QUOTATION; 250 PIECE MIN-
IMUM. WRITE FOR QUOTATION.

APOLLO PRODUCTS by "Village Twig"

NEW SSB & CW FILTER

The NEW DE-103A CW/SSB
filter virtually eliminates QRM & QRN on both CW &
SSB. Features include 100
Hz CW filters, 1500 Hz SSB
filters, 3 watt audio amp.,
and built in AC supply.
$59.95. Other CW & SSB
filters available.

INCREASE YOUR TALK
POWER 10 TIMES

Our NEW DE-120 compres-
sor easily gives 10 dB or
more of speech compres-
sion without distortion al-
lowing you to cut through
QRM & QRN. Features in-
clude voice tailored re-
sponse for added punch and
solid state switching for
long battery life. Requires
two 9V batteries (Not in-
cluded) $95.95.

NEW POWER SUPPLIES

The NEW DE-110 digital and
linear integrated circuit sup-
ply has outputs of +15 V
at 100 ma., --15 V at
100 ma., and 5 V at 1 A.
$59.95.

One year warranty and 15
day return privilege. Add $2
per order for shipping and
handling. Other equipment
is available. Write for new
catalog.

FOR BETTER SERVICE TO YOU . . .

OPEN EVERY NIGHT UNTIL 9:00 P.M.!
Our way of giving you the very best in service is
longer hours and more equipment.

DRAKE is the newest line to be signed on board.
Whether you're a Novice or an Extra Class a visit to
our store should be a must on your list.

NEW ENGLAND'S HAM HEADQUARTERS
Sells & Services:

TUFTS
RADIO ELECTRONICS
386 MAIN ST.
MEDFORD, MASS. 02155

Our large inventory also includes kits, amateur radio
publications and the largest selection of used equip-
ment in the Boston area.

Our business is devoted entirely to Amateur Radio!

Dynamic Electronics, Inc. P. O. Box 1131 Decatur, AL 35601
UNIVERSAL TOWERS
FREE STANDING ALUMINUM TOWER
10'-13'x 100' Prices from $110.00 (30')
MOST POPULAR
HAM TOWER EVER MADE!
REQUEST NEW CATALOG OF TOWERS & ANTENNAS
Midwest Ham Headquarters
For Over 26 Years
HAMSM! Write For Free Catalog and Wholesale Prices!
ElectronDCRUS, INC.
1960 Peck
Muskegon, MI 49441
Tel: 616-726-3196
TELEX: 22-8411

NEW YEAR SPECIAL!
Complimentary issue of THE BIG LIST from Buyers & Sellers. Check off #329.

do not sell or rent!

UNIVERSAL TOWERS
FREE STANDING ALUMINUM TOWER
10'-13'x 100' Prices from $110.00 (30')
MOST POPULAR
HAM TOWER EVER MADE!
REQUEST NEW CATALOG OF TOWERS & ANTENNAS
Midwest Ham Headquarters
For Over 26 Years
HAMSM! Write For Free Catalog and Wholesale Prices!
ElectronDCRUS, INC.
1960 Peck
Muskegon, MI 49441
Tel: 616-726-3196
TELEX: 22-8411

NEW YEAR SPECIAL!
Complimentary issue of THE BIG LIST from Buyers & Sellers. Check off #329.

UNIVERSAL TOWERS
FREE STANDING ALUMINUM TOWER
10'-13'x 100' Prices from $110.00 (30')
MOST POPULAR
HAM TOWER EVER MADE!
REQUEST NEW CATALOG OF TOWERS & ANTENNAS
Midwest Ham Headquarters
For Over 26 Years
HAMSM! Write For Free Catalog and Wholesale Prices!
ElectronDCRUS, INC.
1960 Peck
Muskegon, MI 49441
Tel: 616-726-3196
TELEX: 22-8411

NEW YEAR SPECIAL!
Complimentary issue of THE BIG LIST from Buyers & Sellers. Check off #329.

UNIVERSAL TOWERS
FREE STANDING ALUMINUM TOWER
10'-13'x 100' Prices from $110.00 (30')
MOST POPULAR
HAM TOWER EVER MADE!
REQUEST NEW CATALOG OF TOWERS & ANTENNAS
Midwest Ham Headquarters
For Over 26 Years
HAMSM! Write For Free Catalog and Wholesale Prices!
ElectronDCRUS, INC.
1960 Peck
Muskegon, MI 49441
Tel: 616-726-3196
TELEX: 22-8411

NEW YEAR SPECIAL!
Complimentary issue of THE BIG LIST from Buyers & Sellers. Check off #329.

UNIVERSAL TOWERS
FREE STANDING ALUMINUM TOWER
10'-13'x 100' Prices from $110.00 (30')
MOST POPULAR
HAM TOWER EVER MADE!
REQUEST NEW CATALOG OF TOWERS & ANTENNAS
Midwest Ham Headquarters
For Over 26 Years
HAMSM! Write For Free Catalog and Wholesale Prices!
ElectronDCRUS, INC.
1960 Peck
Muskegon, MI 49441
Tel: 616-726-3196
TELEX: 22-8411

NEW YEAR SPECIAL!
Complimentary issue of THE BIG LIST from Buyers & Sellers. Check off #329.

UNIVERSAL TOWERS
FREE STANDING ALUMINUM TOWER
10'-13'x 100' Prices from $110.00 (30')
MOST POPULAR
HAM TOWER EVER MADE!
REQUEST NEW CATALOG OF TOWERS & ANTENNAS
Midwest Ham Headquarters
For Over 26 Years
HAMSM! Write For Free Catalog and Wholesale Prices!
ElectronDCRUS, INC.
1960 Peck
Muskegon, MI 49441
Tel: 616-726-3196
TELEX: 22-8411

NEW YEAR SPECIAL!
Complimentary issue of THE BIG LIST from Buyers & Sellers. Check off #329.

UNIVERSAL TOWERS
FREE STANDING ALUMINUM TOWER
10'-13'x 100' Prices from $110.00 (30')
MOST POPULAR
HAM TOWER EVER MADE!
REQUEST NEW CATALOG OF TOWERS & ANTENNAS
Midwest Ham Headquarters
For Over 26 Years
HAMSM! Write For Free Catalog and Wholesale Prices!
ElectronDCRUS, INC.
1960 Peck
Muskegon, MI 49441
Tel: 616-726-3196
TELEX: 22-8411

NEW YEAR SPECIAL!
Complimentary issue of THE BIG LIST from Buyers & Sellers. Check off #329.

UNIVERSAL TOWERS
FREE STANDING ALUMINUM TOWER
10'-13'x 100' Prices from $110.00 (30')
MOST POPULAR
HAM TOWER EVER MADE!
REQUEST NEW CATALOG OF TOWERS & ANTENNAS
Midwest Ham Headquarters
For Over 26 Years
HAMSM! Write For Free Catalog and Wholesale Prices!
ElectronDCRUS, INC.
1960 Peck
Muskegon, MI 49441
Tel: 616-726-3196
TELEX: 22-8411

NEW YEAR SPECIAL!
Complimentary issue of THE BIG LIST from Buyers & Sellers. Check off #329.

UNIVERSAL TOWERS
FREE STANDING ALUMINUM TOWER
10'-13'x 100' Prices from $110.00 (30')
MOST POPULAR
HAM TOWER EVER MADE!
REQUEST NEW CATALOG OF TOWERS & ANTENNAS
Midwest Ham Headquarters
For Over 26 Years
HAMSM! Write For Free Catalog and Wholesale Prices!
ElectronDCRUS, INC.
1960 Peck
Muskegon, MI 49441
Tel: 616-726-3196
TELEX: 22-8411

NEW YEAR SPECIAL!
Complimentary issue of THE BIG LIST from Buyers & Sellers. Check off #329.

UNIVERSAL TOWERS
FREE STANDING ALUMINUM TOWER
10'-13'x 100' Prices from $110.00 (30')
MOST POPULAR
HAM TOWER EVER MADE!
REQUEST NEW CATALOG OF TOWERS & ANTENNAS
Midwest Ham Headquarters
For Over 26 Years
HAMSM! Write For Free Catalog and Wholesale Prices!
ElectronDCRUS, INC.
1960 Peck
Muskegon, MI 49441
Tel: 616-726-3196
TELEX: 22-8411

NEW YEAR SPECIAL!
Complimentary issue of THE BIG LIST from Buyers & Sellers. Check off #329.

UNIVERSAL TOWERS
FREE STANDING ALUMINUM TOWER
10'-13'x 100' Prices from $110.00 (30')
MOST POPULAR
HAM TOWER EVER MADE!
REQUEST NEW CATALOG OF TOWERS & ANTENNAS
Midwest Ham Headquarters
For Over 26 Years
HAMSM! Write For Free Catalog and Wholesale Prices!
ElectronDCRUS, INC.
1960 Peck
Muskegon, MI 49441
Tel: 616-726-3196
TELEX: 22-8411

NEW YEAR SPECIAL!
Complimentary issue of THE BIG LIST from Buyers & Sellers. Check off #329.
The 1976 U. S. Callbook has over 300,000 W & K listings. It has calls, license classes, names and addresses plus the many valuable back-up charts and references you have come to expect from the Callbook.

Specialize in DX? Then you're looking for the new larger than ever 1976 Foreign Callbook with over 225,000 calls, names and addresses of amateurs outside of the USA.

On dealer shelves NOW!

Foreign Radio
Amateur Callbook
DX Listings $12.95
with 3 Service Editions $18.95

INFO-TECH
MODEL 30 MORSE TO VIDEO CONVERTER
CONVERTS RECEIVED MORSE CODE FROM YOUR RECEIVER TO A VIDEO PRINTOUT ON YOUR TV, NO OTHER DEVICES REQUIRED.

FEATURES:
- NO CRITICAL ADJUSTMENTS
- ATTACHES TO ANY CW RECEIVER WITH B.F.O. AND 3 TO 600 OHM AUDIO
- SIMPLE LED TUNING INDICATOR
- UNIQUE P.L.L. FRONT END INPUT FILTER FOR SUPERIOR SELECTIVITY
- AUTOMATIC SPEED AND WEIGHT ADJUSTMENT: TRACKS 8 TO 150 W.P.M.
- SIMPLE CONNECTION TO YOUR TV'S VIDEO AMP FOR EXCELLENT PRINTS
- EASY TO USE
- OPERATIONAL UNITS ONLY
- CASH OR MONEY ORDER

PRICE $299.50 DELIVERED IN CONTINENTAL USA
WRITE FOR BROCHURES
INFO-TECH INC.
P. O. BOX 84
CHESTERFIELD, MISSOURI 63017

NEWSPAPER CLIP
the action and adventure in amateur radio:
WORLD RADIO
—monthly publication—
trial subscription next 2 issues $1
2120 28th St.
Sacramento, CA 95818 — W6AJY

ALDELCO Semiconductor Supermarket
SN7410 Decade Counter 80¢
SN7424 Monostable 55¢
SN7428 8 Stage Binary D Flip Flop 90¢
741 or 7424 14 pin DIP... 25¢ ea.
RF DEVICES
2N3375... 3W 400 MHz $6.50
2N4041... 1W 400 MHz $5.25
2N5550... 10W 175 MHz SPL $6.75
2N6080... 4W 175 MHz $5.40
2N6081... 15W 175 MHz $8.45
2N6082... 35W 175 MHz $10.95
2N6083... 1W 15W 175 MHz $12.30
2N6084... 40W 175 MHz $16.30
FTG01... FET $3.95 ea.
FTG02... FET $3.95 ea.
2A, 100V, Rect., RCA... 10 for 99¢
HEAVY DUTY RECTIFIERS
DO6... 200V, 10A $4.90
DO7... 200V, 25A $5.45
10,000 volt Silicon Rect., ERIE... $2.95
200 volt, 25A Bridge Rectifier... $3.95 for $1.00
1N6272 (replaces 866, 866A, 1N28) $9.80
ZENERS, 400V Type 1N4746 to 1N759 25¢ ea.
ZENERS, 1W 1N4728 to 1N4764 35¢ ea.
We will quote on any quantity. All items postpaid U.S. Domestic 5¢ for R.
ALDELCO, P. O. BOX 341H
LYNBROOK, N. Y. 11563

CASH FOR 2-WAY FM RADIO
MOTOROLA, GE, RCA, ETC., EQUIPMENT
MOBILES, BASES, PORTABLES, MOBILE TELEPHONES, REPEATERS, REMOTE CONTROLS, TONE EQUIPMENT, 2-WAY TEST EQUIPMENT
Operational Units Only
Conversions, Finders Fees
CAL-COM SYSTEMS, INC.
701-51A Kings Row, San Jose, Calif. 95112
Telephone 24 Hours 408/558-4444

MODSET: precision modulation measurements for AM-SSB, 0.2 to 300 MHz, $29.50 (Kit: $19.50)
D. R. CORBIN MFG. CO.
P. O. Box 44, North Bend, Ore. 97459

More Details? CHECK—OFF Page 102
<table>
<thead>
<tr>
<th>State</th>
<th>Dealer Name</th>
<th>Address</th>
<th>Phone</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>California</td>
<td>HENRY RADIO</td>
<td>931 N. EUCLID AVE. ANAHEIM, CA 92801</td>
<td>714-772-9200</td>
<td>The world's largest distributor of Amateur Radio equipment.</td>
</tr>
<tr>
<td></td>
<td>HENRY RADIO CO., INC.</td>
<td>11240 W. OLYMPIC BLVD. LOS ANGELES, CA 90064</td>
<td>213-477-6701</td>
<td>The world's largest distributor of Amateur Radio equipment.</td>
</tr>
<tr>
<td>Colorado</td>
<td>C W ELECTRONIC SALES CO.</td>
<td>1401 BLAKE ST. DENVER, CO 80202</td>
<td>303-573-1386</td>
<td>Rocky Mountain area's complete ham radio distributor.</td>
</tr>
<tr>
<td>Illinois</td>
<td>SPECTRONICS, INC.</td>
<td>1009 GARFIELD STREET OAK PARK, IL 60304</td>
<td>312-848-6778</td>
<td>Chicagoland's Amateur Radio leader.</td>
</tr>
<tr>
<td>Indiana</td>
<td>HOOSIER ELECTRONICS</td>
<td>P. O. BOX 2001 TERRE HAUTE, IN 47802</td>
<td>812-238-1466</td>
<td>Ham Headquarters of the Midwest. Store in Meadow Shopping Center.</td>
</tr>
<tr>
<td>Kansas</td>
<td>AMATEUR RADIO EQUIP. CO., INC.</td>
<td>1203 E. DOUGLAS WICHITA, KS 67211</td>
<td>316-264-9166</td>
<td>Assisting the Amateur since 1949.</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>TUFTS RADIO ELECTRONICS</td>
<td>386 MAIN STREET MEDFORD, MA 02155</td>
<td>617-395-8280</td>
<td>New England's friendliest ham store.</td>
</tr>
<tr>
<td>Michigan</td>
<td>AUDIOLAND</td>
<td>36633 SOUTH GRATIOT MT. CLEMENS, MI 48043</td>
<td>313-791-1400</td>
<td>All major brands, new/used equipment & accessories.</td>
</tr>
<tr>
<td></td>
<td>ELECTRONIC DISTRIBUTORS</td>
<td>1960 PECK STREET MUSKEGON, MI 49441</td>
<td>616-726-3196</td>
<td>Communication specialists for over 37 years.</td>
</tr>
<tr>
<td></td>
<td>RADIO SUPPLY & ENGINEERING</td>
<td>1203 WEST 14 MILE ROAD CLAWSON, MI 48017</td>
<td>313-435-5660</td>
<td>1801 Chalmers, Detroit, MI 48213, 313-371-9050.</td>
</tr>
<tr>
<td>Minnesota</td>
<td>ELECTRONIC CENTER, INC.</td>
<td>127 THIRD AVENUE NORTH MINNEAPOLIS, MN 55401</td>
<td>612-339-5861</td>
<td>ECI is still your best buy.</td>
</tr>
<tr>
<td>Missouri</td>
<td>HAM RADIO CENTER, INC.</td>
<td>8342 OLIVE BLVD. P. O. BOX 28271 ST. LOUIS, MO 63132</td>
<td>800-325-3636</td>
<td>Call toll free.</td>
</tr>
<tr>
<td>Nebraska</td>
<td>COMMUNICATIONS ENGINEERING</td>
<td>4341 N. 61ST LINCOLN, NE 68507</td>
<td>402-464-7571</td>
<td>See us for service and modifications.</td>
</tr>
<tr>
<td>New Jersey</td>
<td>ATKINSON & SMITH, INC.</td>
<td>17 LEWIS ST. EATONTOWN, NJ 07724</td>
<td>201-542-2447</td>
<td>Ham supplies since "55".</td>
</tr>
<tr>
<td>Ohio</td>
<td>UNIVERSAL SERVICE</td>
<td>114 N. THIRD STREET COLUMBUS, OH 43215</td>
<td>614-221-2335</td>
<td>Give U.S. a try when ready to buy.</td>
</tr>
<tr>
<td>Pennsylvania</td>
<td>ARTCO ELECTRONICS</td>
<td>302 WYOMING AVE. KINGSTON, PA 18704</td>
<td>717-288-8585</td>
<td>The largest variety of crystals in N. E. Penn.</td>
</tr>
<tr>
<td></td>
<td>HAMTRONICS, INC.</td>
<td>4033 BROWNSVILLE ROAD TREVOSE, PA 19047</td>
<td>215-357-1400</td>
<td>Same location for 25 years.</td>
</tr>
<tr>
<td>South Dakota</td>
<td>BURGHARDT AMATEUR CENTER</td>
<td>124 FIRST AVE. N.W. P.O. BOX 73 WATERTOWN, SD 57201</td>
<td>605-886-7314</td>
<td>America's most reliable Amateur Radio Dealer — Nationwide!</td>
</tr>
<tr>
<td>Texas</td>
<td>ALTEC COMMUNICATIONS</td>
<td>1800 S. GREEN STREET LONGVIEW, TX 75601</td>
<td>214-757-2831</td>
<td>Specializing in ham equipment for the Ark-La-Tex.</td>
</tr>
<tr>
<td>Virginia</td>
<td>ARCADE ELECTRONICS</td>
<td>7048 COLUMBIA PIKE ANNANDALE, VA 22003</td>
<td>703-256-4610</td>
<td></td>
</tr>
<tr>
<td>Washington</td>
<td>AMATEUR RADIO SUPPLY CO.</td>
<td>6213 13TH AVE. SO. SEATTLE, WA 98108</td>
<td>206-767-3222</td>
<td>Amateur center of the Northwest.</td>
</tr>
</tbody>
</table>
TROPICAL HAMBOREE
Bayfront Park Auditorium
Miami, Florida

January 24-25

MANUFACTURER'S EXHIBITS
GIANT HAMBOREE SWAP SHOP
HAMBOREE PRIZE AWARDS
ARRL GENERAL SESSION (Sunday)

REGISTRATION — $2.00
DADE RADIO CLUB
P.O. BOX 520073, BISCAYNE ANNEX, MIAMI, FLA. 33152

NEW FM XMTR KITS
- 2M, 200 MW FM/CW EXCITER
 - $39.95
- 432-450 MHz TRIPLER/DRIVER
 - $19.95
- 20-25W 2M PA OR 13-15W 432-
 - 450 PA, using new RF power modules
 - $79.95
- CABINET for xcvr or other projects
 - $27.95

SEND SASE FOR CATALOG, INCL. RCVRs,
PREAMS, ETC.

EAB
Announces New Industrial Division

TOUCH-TONE ENCODER

FEATURES:
- Crystal Controlled - Digitally Synthesized Tones.
- Low Current Drain CMOS Logic.
- RFI Immune.
- 16-Button Tactile Feedback Keyboard.
- Will Interface to Transceivers Using Dynamic Microphones with Only Two Wires.
- Provisions for Three Wire Interface Are Provided.
- Gold-Plated Keyboard Contacts Provided for Maximum Reliability.
- Operating Voltage Range 9-18VDC.
- Size: 2.1" x 2.1" x .250" Without Case.
- 2.1" x 2.1" x .312" With Case.
- Touch-Tone Encoder
- Case
- Velcro
- OHIO RESIDENTS ADD 4.5% SALES TAX

SEND CHECK OR MONEY ORDER TO:
The Barber Corporation
P. O. BOX 271
WAYNESVILLE, OHIO 45068
513-897-2926

Send for FREE CATALOG
Please add 40¢ for shipping

CIRCUIT SPECIALISTS CO.
Box 3047, Scottsdale, AZ 85257

CLOSE OUT SPECIAL — $19.95
while they last ppd., USA

ARR-52
SOLID STATE VHF RECEIVER

OVER 400 SOLD
BankAmericard & COD Welcome

Electronic Equipment Bank, Inc.
516 Mill Street, N.E. Virginia, Vienna 22180
(703) 938-3350

TOOLKIT Prescaler Devices and Kits

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>95900</td>
<td>$19.95</td>
</tr>
<tr>
<td>9582</td>
<td>$19.95</td>
</tr>
<tr>
<td>9591</td>
<td>$15.95</td>
</tr>
<tr>
<td>11C06</td>
<td>$21.95</td>
</tr>
</tbody>
</table>

FETs

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPF102</td>
<td>$1.75</td>
</tr>
<tr>
<td>JFET</td>
<td>$1.75</td>
</tr>
<tr>
<td>MPF105/2N5459</td>
<td>$1.75</td>
</tr>
<tr>
<td>JFET</td>
<td>$1.75</td>
</tr>
<tr>
<td>MPF107/2N5486</td>
<td>$1.75</td>
</tr>
<tr>
<td>JFET VHF/UHF</td>
<td>$1.75</td>
</tr>
</tbody>
</table>

F5RS

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>95H90</td>
<td>Black</td>
</tr>
<tr>
<td>95H91</td>
<td>Red</td>
</tr>
</tbody>
</table>

BARGAIN SQUARE

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7400</td>
<td>$1.00</td>
</tr>
<tr>
<td>7490</td>
<td>$1.00</td>
</tr>
<tr>
<td>7475</td>
<td>$1.00</td>
</tr>
<tr>
<td>7474</td>
<td>$1.00</td>
</tr>
<tr>
<td>7533</td>
<td>$1.00</td>
</tr>
<tr>
<td>7424</td>
<td>$1.00</td>
</tr>
<tr>
<td>7427</td>
<td>$1.00</td>
</tr>
<tr>
<td>7474</td>
<td>$1.00</td>
</tr>
</tbody>
</table>

REQUISITE

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>95H90</td>
<td>Black</td>
</tr>
<tr>
<td>95H91</td>
<td>Red</td>
</tr>
</tbody>
</table>

SEND CHECK OR MONEY ORDER TO

The Barber Corporation
P. O. BOX 271
WAYNESVILLE, OHIO 45068
513-897-2926
FM AM-CW-SSB MOBILE/BASE

2 METER AMPLIFIERS

Case Dimensions

A 2-1/2” H x 3-7/8” W x 4” Deep
B 2-1/2” H x 5-1/2” W x 7” Deep
C 2-1/2” H x 5-1/2” W x 11” Deep

<table>
<thead>
<tr>
<th>Model</th>
<th>Drive Power</th>
<th>Output Power</th>
<th>Current Drain</th>
<th>Max. Drive</th>
<th>Case Size</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFA-3-40-HB</td>
<td>3 Watts</td>
<td>40 Watts</td>
<td>4 Amps</td>
<td>5 Watts</td>
<td>B</td>
<td>$129.95</td>
</tr>
<tr>
<td>RFA-3-60-HB</td>
<td>3 Watts</td>
<td>60 Watts</td>
<td>7 Amps</td>
<td>5 Watts</td>
<td>B</td>
<td>159.95</td>
</tr>
<tr>
<td>RFA-3-110-HB</td>
<td>3 Watts</td>
<td>110 Watts</td>
<td>14 Amps</td>
<td>5 Watts</td>
<td>C</td>
<td>199.95</td>
</tr>
<tr>
<td>RFA-3-200-HB</td>
<td>3 Watts</td>
<td>200 Watts</td>
<td>24 Amps</td>
<td>5 Watts</td>
<td>C</td>
<td>349.95</td>
</tr>
<tr>
<td>RFA-10-75-HB</td>
<td>10 Watts</td>
<td>75 Watts</td>
<td>8 Amps</td>
<td>15 Watts</td>
<td>B</td>
<td>129.95</td>
</tr>
<tr>
<td>RFA-10-100-HB</td>
<td>10 Watts</td>
<td>100 Watts</td>
<td>13 Amps</td>
<td>15 Watts</td>
<td>B</td>
<td>189.95</td>
</tr>
<tr>
<td>RFA-10-150-HB</td>
<td>10 Watts</td>
<td>150 Watts</td>
<td>17 Amps</td>
<td>15 Watts</td>
<td>C</td>
<td>239.95</td>
</tr>
<tr>
<td>RFA-25-150-HB</td>
<td>25 Watts</td>
<td>150 Watts</td>
<td>17 Amps</td>
<td>40 Watts</td>
<td>C</td>
<td>249.95</td>
</tr>
<tr>
<td>RFA-25-200-HB</td>
<td>25 Watts</td>
<td>200 Watts</td>
<td>22 Amps</td>
<td>40 Watts</td>
<td>C</td>
<td>299.95</td>
</tr>
<tr>
<td>RFA-1-75-HB</td>
<td>1 Watt</td>
<td>75 Watts</td>
<td>9 Amps</td>
<td>5 Watts</td>
<td>B</td>
<td>179.95</td>
</tr>
<tr>
<td>RFA-1-25-HB</td>
<td>1 Watt</td>
<td>25 Watts</td>
<td>3 Amps</td>
<td>4 Watts</td>
<td>A</td>
<td>99.95</td>
</tr>
</tbody>
</table>

All models will operate with reduced output from as little as one watt drive.
Amplifiers are supplied pre-tuned for band portion in which they are to be used.
Comparable models for 6 and 10 meters are also available.

Dealer and Distributor
Inquiries solicited
NEW TEC DISTRIBUTOR - Order through Barry.
KSLI Keyer $110.00
Triton IV $599.00

Johnson 154-10 or equal. Single section page 3 thru 12 - $63 for kW transmatch. Mitsubishi 1650 $36.00
Johnson 229-202 or equal. 18 MHz variable input $10 to 500F for $39.95 - Johnson 229-203 or equal. 28 MHz variable input to 1000F. Price $100 to 300F for $39.95

Hammarlund Dual Section 320-320 per section $295.00

NPC POWER SUPPLIES
Model 102 115VAC Input - 12 VDC 4 amps max. $250.00
Model 104R regulated 13.6 VDC 4A max. $90.00
Model 108R - 115VAC/13.6VDC 5A max. $125.00

LARGE STOCK!
B & W Miniductors - Air Duct coil stock $2.50 each
Lab - $2.50 each - National Parts
WE HAVE VIBROPLEX IN STOCK!
Deluxe Vibroplex Vibro Keyer Standard $30.75
Vibroplex Vibro Keyer Deluxe $39.95

We’re Fighting Inflation. No Price Rise for ‘76
FOR FREQUENCY STABILITY
Depend on JAN Crystals. Our large stock of quartz crystal materials and components assures Fast Delivery from us!

CRYSTAL SPECIALS
Frequency Standards
100 KHz (HC 13/U) $4.50
1000 KHz (HC 6/U) $4.50
Almost all CB sets, TR or Rec $2.50 (Contact on request)
Amateur Band in FT-243 $4.50
Amateur Band $3.00 (160 meter not available)
For first class mail, add 20¢ per crystal. For Air Mail, add 75¢ (not cashed order)

LEARN RADI CODE
THE EASY WAY!
Based on modern psychological techniques - This course will take you beyond 13 w.p.m. in the Easiest Way Than HALFWAY.

$9.95

Album contains three 12” LP’s
2½ hr. instruction
Available in Cassette also for only $10.95.

EPILOGS []
508 East Washington St., Aledo, IL 61910

Mhz electronics
2534 N. 32ND ST. PHOENIX, AZ 85008 PH. 602-957-0786

Milen 2KW Transmatch
Write Signal Elect. Telegraph Sounder, never used, $19.95

NEW TEC MULTI 5000, synthesized, FM, AM, USB, LSB, adjustable price $995.00
13.6 Volt, 15A, regulated supplies, purchased with above $55.00

Ameco Model PT Preamplifier, wired $96.95
REGENCY R-66 mtr transcr. Brand New - $450.00
DX Engineering Speech Compressor for Collins 325 xmt $98.50 for Collins KWM2 $98.50. For Drake TR-1 $1250.00

TEN-TEC DISTRIBUTOR - Order through Barry.
KSLI Keyer $110.00
Triton IV $599.00

Johnson 154-10 or equal. Single section page 3 thru 12 - $63 for kW transmatch. Mitsubishi 1650 $36.00
Johnson 229-202 or equal. 18 MHz variable input $10 to 500F for $39.95 - Johnson 229-203 or equal. 28 MHz variable input to 1000F. Price $100 to 300F for $39.95

Hammarlund Dual Section 320-320 per section $295.00

NPC POWER SUPPLIES
Model 102 115VAC Input - 12 VDC 4 amps max. $250.00
Model 104R regulated 13.6 VDC 4A max. $90.00
Model 108R - 115VAC/13.6VDC 5A max. $125.00

LARGE STOCK!
B & W Miniductors - Air Duct coil stock $2.50 each
Lab - $2.50 each - National Parts
WE HAVE VIBROPLEX IN STOCK!
Deluxe Vibroplex Vibro Keyer Standard $30.75
Vibroplex Vibro Keyer Deluxe $39.95

We’re Fighting Inflation. No Price Rise for ‘76
FOR FREQUENCY STABILITY
Depend on JAN Crystals. Our large stock of quartz crystal materials and components assures Fast Delivery from us!

CRYSTAL SPECIALS
Frequency Standards
100 KHz (HC 13/U) $4.50
1000 KHz (HC 6/U) $4.50
Almost all CB sets, TR or Rec $2.50 (Contact on request)
Amateur Band in FT-243 $4.50
Amateur Band $3.00 (160 meter not available)
For first class mail, add 20¢ per crystal. For Air Mail, add 75¢ (not cashed order)

LEARN RADI CODE
THE EASY WAY!
Based on modern psychological techniques - This course will take you beyond 13 w.p.m. in the Easiest Way Than HALFWAY.

$9.95

Album contains three 12” LP’s
2½ hr. instruction
Available in Cassette also for only $10.95.
Get twice the keyboard for your money.

The HAL DKB-2010 keyboard does double duty. For the price of an ordinary keyboard, you can send both TTY and CW. At the flick of a switch, send TTY at all standard data rates, or perfect CW at 8-60 wpm. You get complete alphanumeric and punctuation keys, a "DE-call letters" key, even a "QUICK BROWN FOX..." diagnostic key for TTY. In both modes, you have a three-character buffer for bursting ahead (larger buffers available), and in the CW mode you can adjust the dot-to-space (weight) ratio to your liking.

Like all HAL products, the DKB-2010 is built to commercial standards—yet this solid-state unit is available at a price you'll appreciate. It's like getting two keyboards for the price of one.

For all the details, write today. We'll answer you on the double.

HAL Communications Corp., Box 365, 807 E. Green St.
Urbana, Illinois 61801 • Telephone: (217) 367-7373

The HAL RVD-1005 video TTY unit puts all these features in the picture.

Picture the HAL RVD-1005 video TTY unit in your station. And start enjoying silent, trouble-free TTY reception.

The RVD-1005 converts the output of any TU into a clear, easy-to-read TTY video readout. The output signal can be fed to a TV monitor—like the RVD-2110 monitor shown—or, with slight modification, any standard TV receiver. The features speak for themselves. We've included everything the serious amateur requires for TTY receiving at its best.

Best yet, the RVD-1005 is built to commercial standards, yet is priced at a level the amateur TTY enthusiast will find very affordable.

For an in-depth picture, write today for complete information.

HAL Communications Corp., Box 365, 807 E. Green St.
Urbana, Illinois 61801 • Telephone: (217) 367-7373
GRAND OPENING SPECIAL!

MOTOROLA METRUM II

$249.50 (half suggested list!)

Cash and carry price

FEATURES:
- 25 Watts out
- Hot, selective receiver
- 12 channels
- Single crystal R/T
- PL provision built in

SPECIFICATIONS:
- Transmitter Power: 1W/25W
- Receiver Sensitivity: .2uV
- Power Requirement: .3 A receive, 7.5 A transmit (25W)
- Size: 23/4 x 11 x 9 3/4 inches

Optional PL, AC power supply and multiple repeater offset kits available

Mail orders shipped UPS same day on receipt of cashier's check or money order. Mail orders add $10 for handling and shipping.

HOURS: 9:30 - 9 Mon. & Thurs.; 9:30 - 5:30 Tues., Wed. & Fri.; 9 - 3 Sat.

Open more than 50 hours a week to serve you better

5935 North Milwaukee Ave., Chicago, IL 60646
(312) 631-5181

We Service What We Sell

More Details? CHECK-OFF Page 102
Now our best selling high current amateur power supplies are even better.

The PS-25C and PS-15C are well filtered and regulated power supplies. Top quality components insure optimum reliability.

Look at these features:
- Over-voltage protection crowbar.
- Electrostatic shield for added transient surge protection.
- A foldback output limiter operates for loads outside of the operating range.
- Isolation from ground. The circuit is isolated from the case and ground.
- 115/220 volt input — 50/60 cycle.
- Units are factory wired for 110 volt AC, 50/60 cycle power. A simple jumper will reconfigure the input for 220 volt AC, 50/60 cycles.
- Temperature range — operating: 0° to +55° C.
- Black anodized aluminum finish.

PS-15C SPECIFICATIONS

Voltage Output: adjustable between 12-14V
Load Regulation: 2% from no load to 10 amps
Current Output: 15 amps intermittent (50% duty cycle)
10 amps continuous
Ripple: 50 mV at 10 amps
Weight: 11-1/2 pounds
Size: 11-1/4" x 5-1/2" x 4-3/4"

Kit $79.95
Wired and tested $94.95

PS-25C SPECIFICATIONS

Voltage Output: adjustable between 10-15V
Load Regulation: 2% from no load to 20 amps
Current Output: 25 amps intermittent (50% duty cycle)
20 amps continuous
Ripple: 50 mV at 20 amps
Weight: 20-1/2 pounds
Size: 12-1/4" x 6-3/4" x 7-1/2"

Kit $129.95
Wired and tested $149.95
Now, more radio from the radio company.

Are Yaesu’s FT-101’s the finest all-around transceivers in the world? Yes — and now the best is even better. The new FT-101E includes a potent R. F. speech processor. Plus improved, easy-to-use lever switches. A more refined clarifier control for push-button, independent clarifier operation. There’s also a 160 meter crystal included without extra charge.

And all the other features that have made the FT-101 series of transceivers among the world’s most popular are still here: 260 watts SSB PEP. Globe-circling power on CW and AM. 160 to 10 meters range. 0.3uV receiving sensitivity. And one very important feature you never want to forget is the famous Yaesu warranty, strong dealer network and convenient serviceability.

If you’re a serious amateur, you’re always looking for more radio. And the FT-101E is just that. $749* buys you a million bucks worth of enjoyment. See your Yaesu dealer or write for our catalog. Yaesu Musen USA, Inc. 7625 E. Rosecrans, No. 29, Paramount, Calif. 90723.

YAESU

The radio.

*FT-101EE $659.
FT-101EX $599.
State-of-the-art has helped improve the state of the nation for over 40 years.
Varian, EIMAC Division

varian