This amazing pocket sized radio represents the year's biggest breakthrough in 2-meter communications. Other units that are larger, heavier and are similarly priced can offer only 6 channels. The SYNCOM'S price includes the battery pack, charger, and a telescoping antenna. But, far more important is the 800 channels offered by the S1.

The optional touch tone pad shown in the illustration adds greatly to its convenience and we have available a 30 watt solid state power amplifier designed to give the SYNCOM S-1 the flexibility of operating as a mobile and base station as well.

SPECIFICATIONS
- Frequency Coverage: 144 to 148 MHz
- Channel Spacing: Every 5 KHz
- Power Requirements: 9.6 VDC
- Current Drain: 17 ma-standby 400 ma-transmit
- Batteries: Ni-cad battery pack included
- Antenna Impedance: 50 ohms
- Dimensions: 40 mm x 62 mm x 165 mm (1.6" x 2.5" x 6.5")
- RF Output: Better than 5 watts
- Sensitivity: Better than .5 microvolts

SUPPLIED ACCESSORIES
- Telescoping whip antenna, ni-cad battery pack, charger.

OPTIONAL ACCESSORIES
- Touch tone pad, tone burst generator, CTCSS chips, Rubber flex antenna

Price... $349.00 (or with touch tone pad... $399.00)

Tempo also offers a complete line of solid state power amplifiers, pocket receivers, the FMH-2, 5 & 42 portables, the VHF/ONE PLUS mobile transceiver, and the FMT-2 & FMT-42 remote control mobile transceivers. All available from Tempo dealers throughout the U.S.

Call or write for full information.

Henry Radio
11240 W. Olympic Blvd., Los Angeles, Calif. 90064 213/477-6701
931 N. Euclid, Anaheim, Calif. 92801 714/772-9200
Butler, Missouri 64730 816/679-3127

Prices subject to change without notice
For The
"Professional"
Amateur.

The RACAL RA6772. In use by Military and Government organizations the world over, this outstanding receiver is now available to the serious amateur operator.

Superb performance on the entire amateur band as well as all other bands. Frequency range of 15kHz to 30MHz with tuning increments in 10Hz steps. The RA6772 synthesized LF/MF/HF communications receiver, direct from the manufacturer. Call or write for details on this exceptionally fine equipment.

RACAL
COMMUNICATIONS, INC.

5 Research Place, Rockville, Maryland 20850 • (301) 948-4420 • Telex 898-456 • Cable RACAL USA
This NEW MFJ Versa Tuner II . . .

has SWR and dual range wattmeter, antenna switch, efficient airwound inductor, built in balun. Up to 300 watts RF output. Matches everything from 1.8 thru 30 MHz: dipoles, inverted vees, random wires, verticals, mobile whips, beams, balanced lines, coax lines.

NEW, IMPROVED MFJ-941B HAS . . .
- More inductance for wider matching range
- More flexible antenna switch
- More sensitive meter for SWR measurements down to 5 watts output

$89.95

Transmitter matching capacitor. 208 pf. 1000 volt spacing.

Sets power range, 300 and 30 watts. Pull for SWR.

Efficient airwound inductor gives more watts out and less losses.

Antenna matching capacitor. 208 pf. 1000 volt spacing.

Only MFJ gives you this MFJ-941B Versa Tuner II with all these features at this price:
- A SWR and dual range wattmeter (300 and 30 watts full scale) lets you measure RF power output for simplified tuning.
- An antenna switch lets you select 2 coax lines direct or thru tuner, random wire/balanced line, and tuner bypass for dummy load.
- A new efficient airwound inductor (12 positions) gives you less losses than a tapped toroid for more watts out.
- A 1:4 balun for balanced lines. 1000 volt capacitor spacing. Mounting brackets for mobile installations (not shown).

With the NEW MFJ Versa Tuner II you can run your full transceiver power output — up to 300 watts RF output — and match your transmitter to any feedline from 160 thru 10 Meters whether you have coax cable, balanced line, or random wire.

You can tune out the SWR on your dipole, inverted vee, random wire, vertical, mobile whip, beam, quad, or whatever you have. You can even operate all bands with just one existing antenna. No need to put up separate antennas for each band.

Increase the usable bandwidth of your mobile whip by tuning out the SWR from inside your car. Works great with all solid state rigs (like the Attracts) and with all tube type rigs. It travels well too, its ultra compact size 8x2x6 inches fits easily in a small corner of your suitcase.

This beautiful little tuner is housed in a deluxe eggshell white Ten-Tec enclosure with walnut grain sides.

SO-239 coax connectors are provided for transmitter input and coax fed antennas.

Quality five way binding posts are used for the balanced line inputs (2), random wire input (1), and ground (1).

NEW 300 WATT MFJ VERSA TUNER II'S: SELECT FEATURES YOU NEED.

NEW MFJ-945 HAS SWR AND DUAL RANGE WATTMETER.

$79.95

Same as MFJ-941B but less 6 position antenna switch.

NEW MFJ-944 HAS 6 POSITION ANTENNA SWITCH ON FRONT PANEL.

$79.95

Same as MFJ-941B but less SWR/Wattmeter.

ULTRA COMPACT 200 WATT VERSA TUNERS FOR ALL YOUR NEEDS.

MFJ-901 VERSA TUNER MATCHES ANYTHING, 1.8 THRU 30 MHz.

$59.95

Efficient 12 position air inductor for more watts out. Matches dipoles, vees, random wires, verticals, mobile whips, beams, balanced lines, coax. 200 watts RF, 1:4 balun, 5x2x6 in.

MFJ-900 ECONO TUNER MATCHES COAX LINES/RANDOM WIRES.

$49.95

Same as MFJ-901 but less balun for balanced lines. Tunes coax lines and random lines.

MFJ-160110 RANDOM WIRE TUNER FOR LONG WIRES.

$39.95

1.8 thru 30 MHz. Up to 200 watts RF output. Matches high and low impedances. 12 position inductor. SO-239 connectors. 2x3x1 inches. Matches 25 to 200 ohms at 1.8 MHz. Does not tune coaxes lines.

For Orders Call toll-free 800-647-1800

Order any product from MFJ and try it. If not delighted, return within 30 days for a prompt refund (less shipping).

Order today. Money back if not delighted. One year unconditional guarantee. Add $2.00 shipping/handling.

For technical information, order/repair status, in Mississippi, outside continental USA, call 601-323-5869.

Order By Mail or Call TOLL FREE 800-647-1800 and Charge It On VISA "MFJ ENTERPRISES"

P. O. BOX 494
MISSISSIPPI STATE, MISSISSIPPI 39762

2 october 1978

More Details? CHECK — OFF Page 142
October 1978

Volume 11, number 10

T. H. Tenney, Jr., W1NLB
Publisher

James R. Fisk, W1HR
Editor-in-Chief

Editorial Staff

Martin Hart, WB1CHQ
Administrative Editor

Charles J. Carroll, K1XX
Patricia A. Hayes, WA1WPM
Alfred Wilson, WN8IF
Assistant Editors

Thomas F. McMullen, Jr., W1SL
Joseph J. Schroeder, W9UVV
Associate Editors

Publishing Staff

C. Edward Buffington, WB1AMU
Assistant Publisher

Fred D. Miller, Jr., WA1USO
Advertising Manager

James H. Gray, W1XU
Assistant Advertising Manager

Susan Shorrock
Circulation Manager

Ham Radio Magazine

is published monthly by
Communications Technology, Inc.
Greenville, New Hampshire 03048
Telephone: 603-678-1411

Subscription Rates

United States: one year, $12.00
Two years, $22.00; three years, $30.00
Canada: one year, $14.00
Two years, $26.00; three years, $38.00
Europe, Japan, Africa:
Via Air Forwarding Service
One year, $25.00
North America, South America, Australia:
And Asia (Except Japan):
Via Surface Mail
One year, $18.00

Foreign Subscription Agents

Foreign subscription agents are listed on page 117

Microfilm copies are available from
University Microfilms, International
Ann Arbor, Michigan 48106
Order publication number 3076

Cassette tapes of selected articles
from Ham Radio are available to the blind
and physically handicapped
From Recorded Periodicals
919 Walnut Street, 8th Floor
Philadelphia, Pennsylvania 19107

Copyright 1978 by
Communications Technology, Inc.
Title registered at U.S. Patent Office
Second-class postage
paid at Greenville, N.H., 03048
and at additional mailing offices
Publication number 233340

Contents

10 high-frequency communications receiver
Norman J. Foot, WA9HUV

26 low-noise 432-MHz preamplifier
Albert J. Ward, WB5LUA

30 tracking calculations for superhet receivers
Courtney Hall, WA5SNZ

34 CW signal processor
William B. Jones, W7KGZ

38 low-noise 30-MHz preamp
James R. Fisk, W1HR

42 1296-MHz local oscillator
Paul C. Wade, WA2ZZF

51 evaluating oscillator sidebands
Ulrich L. Rohde, DJ2LR

60 synthesized high-frequency local-oscillator system
Raymond C. Petit, W7GHN

68 reciprocating detector
Stirling M. Olberg, W1SNN

74. RTTY demodulator
John M. Loughmiller, KB9AT

80 high-sensitivity preamp for frequency counters
Paul R. Kranz, W1CFI

84 twin-diode microwave mixer
James L. Dietrich, WA8RDX

89 two-meter preamplifier
Herbert L. Bresnick, W821FV

4 a second look

142 advertisers index

120 coming events

117 flea market

132 ham mart

94 ham notebook

142 letters

98 new products

8 presstop

142 reader service

105 stolen equipment

October 1978
Our society is a very mobile one, and with the recently lowered air fares, more people than ever before are traveling by air. It's only natural for the vhf-fm operator, with his portable fm rig, to question the possibility of using his equipment on commercial flights.

It is popularly believed that all you have to do is obtain the captain's permission to operate; surely your little two-watt fm rig is not going to cause any interference with the high-powered radio equipment used on board the aircraft. However, this is not the case — according to the Federal Air Regulations, approval must be obtained from the air carrier (airline) and not the pilot in command. However, once approved by the air carrier, the permission of the captain in command must also be obtained to operate equipment aboard a particular flight.

Shortly after World War II, portable Japanese fm broadcast receivers appeared on the market, and passengers started using them aboard commercial flights. At the same time, aircraft navigation radios started doing strange things, and it didn't take long to determine that the interference was being caused by rf radiation from the portable fm receivers. The aircraft radios literally went wild, and at least two aircraft accidents were attributed to interference of this type.

When it was determined that this interference was present, the FAA promulgated new regulations, paragraph 91.19 of the Federal Air Regulations. This paragraph states that no electronic device may be operated aboard a commercial airliner except heart pacemakers, voice recorders, hearing aids, calculators, electric shavers and electric watches, unless the device has been approved by the air carrier or operator. The regulation further states that the captain of the aircraft does not have the authority to authorize such operation.

Consider, for a moment, what might happen if such operation were allowed. Suppose you have been operating all across the country, and your plane is about to land. A passenger with a briefcase telephone sitting across from you has been watching you operate. About 10 minutes before landing, he decides to call his wife. Unfortunately, his radio telephone transmits right in the middle of the glide slope spectrum. As soon as his transmitter is keyed, the glide slope indicator cross pointer goes up or down, and the autopilot follows it. That could be disastrous.

As an airliner flies across the country, the pilot changes frequency every 5 minutes or so. If several fm operators are on the same flight, only one can talk at a time, so some may decide to switch to other frequencies. When you figure out all of the i-f and carrier frequencies of the aircraft radios, plus the amateur gear, plus all the possible mixing products, you can appreciate the magnitude of the problem.

A few years ago a well known vhf-fm operator prevailed upon an airline to test his Motorola HT in one of their aircraft so he could operate during a flight he planned to take. After months of correspondence and personal meetings with airline communications people (many of whom were amateurs), the airline agreed to run the necessary tests. On the appointed day the aircraft was removed from line operation and the test began; it took three hours and four men to complete. The HT caused no interference, and the amateur received a letter authorizing the operation of that HT on that particular trip in only that type of aircraft. It's easy to understand why the airlines, who are trying to cut costs, are not enthusiastic about testing an individual's vhf-fm equipment.

Many fm operators continue to ask the captain's permission to operate, and he may give it, not realizing the possible bind he is putting himself in; he could have his license suspended or he could be fired. Don't put him in that position, and don't subject yourself and other passengers to a situation which could be hazardous to all on board.

Remember, you may not cause any interference during the trip, but the ILS glide slope receiver is used only during the last few minutes of flight, so interference may not be noticed until it's too late!

Jim Fisk, W1HR
editor-in-chief
Dear HR:

I feel that the article by W7RXV (Ham Radio, April, 1978, page 32) deserves a rebuttal. First, I doubt the accuracy of Fruitman's measurements on the coax. As a practicing antenna engineer, I have made rather precise measurements of the loss of both RG-58 and RG-8. The numbers that have repeated themselves time and again are very close to 2.0 dB/30 meters for RG-58 at 20 MHz and 1.0 dB at 4 MHz. Thus, for a 20-meter run, Fruitman should have measured 20 per cent (versus his claimed 58 per cent) transmission loss at 20 MHz. The other numbers are off by a proportionate percentage.

More serious, however, is Fruitman's apparent disregard of measurement and use techniques between coaxial cable and balanced-wire line. When he says "the zip cord came down and the RG-58 went up," one must be a bit suspicious that the two different types of transmission cable were fed from the same connector. Moreover, one must then ask if he used the same measurement technique for both coax and twinlead without the use of baluns. Had he made the blunder of not using the twinlead properly, the errors he reports would be expected. The loss is not in the twinlead, but in the VSWR mismatch.

I have used lamp (zip) cord on the lower bands with reasonable results. Of course, you can't go out and buy just any old zip cord and hook it up without going through a bit of investigation. The impedance of zip cord varies from about 70 ohms (for the light duty wire) to about 30 ohms for the super-heavy duty cord. Loss is a bit better than the normal 75-ohm twinlead.

Jim Weir, WB6BHI
VP Engineering
Radio Systems Technology
Grass Valley, California

51J product detector

Dear HR:

I would like to thank Bill Orr, W6SAI, for the fine article in the February, 1978, issue of Ham Radio which showed how to add a product detector to a Collins 51J receiver. I made this modification to my receiver and am very pleased with the change. However, I did run into a problem which evidently did not crop up when Mr. Orr made his conversions. I found that when I turned up my audio gain, the receiver immediately started motor-boating. Investigation revealed it was not motor-boating, but was hash pick up from the filter unit of the power supply. I tried replacing the plug-in type filter capacitor, but this did not cure the problem. I finally had to add a 10-µF filter capacitor at the junction of the screen and plate resistors.

Frisco Roberts, K5CE
Corpus Christi, Texas

phased antenna

Dear HR:

After looking at some of the beams (especially 40 meters) I came up with a cheaper way to get a signal to the West Coast, especially at night. The idea was copied from some of the other antennas — it's very easy to make. It uses half-wave dipoles in phase, and gives a nice bi-directional antenna. Taking in the velocity factor of RG-8, which is 0.66, I took 492 x 0.66 and divided that by the frequency 7.250 MHz = 44' 9" for my phasing lines, one for each dipole.

I use a minimum of 1/8-wavelength spacing (16' 1"). I found very little difference between 1/4-wave and 1/8-wave spacing. I've checked it with several stations and, with a friend to compare signal reports with, I ran 500 W PEP while he ran the full 2 kw PEP. I averaged 2 to 3 S-units more than he did all the time. This same thing was tried on 75, and I got the same results. The stations on the West Coast gave me the best signal report. I hope this works as well for others as it has for me.

Jerry Thacker
Francisco, Indiana

pi networks

Dear HR:

The article by Irv Hoff, W6FFC, in the June, 1978, issue of Ham Radio on pi network design was well done and fulfilled a need for those interested in building equipment. However I'd like to point out one minor discrepancy in an otherwise excellent article that may cause some confusion. On page 63, Irv points out that an rf choke should be used at the antenna output of any pi or pi-L network. All well and good, but nowhere in the article does the author indicate how this rf choke should be connected. Perhaps it is implicit in the text, but I think that a simple addition to fig. 3 showing how to connect the choke would be appropriate. The rf choke should be strapped between the antenna output connector and ground. The choke is essential in such a circuit in series with the network output!

A. Wilson, W6NIF
Encinitas, California
Escape the rat race...try 440MHz FM!

2 METERS IS GREAT! THAT'S WHY EVERYBODY IS ON THE BAND (SO IT SEEMS), AND YOU WILL HEAR THE POPULAR KENWOOD TR-7400A AND TS-700SP TRANSCEIVERS ON ALL THE REPEATERS AND SIMPLEX FREQUENCIES. BUT SOMETIMES YOU WISH THE BAND WERE NOT SO POPULATED... SO YOU COULD GET A WORD IN EDGEWISE... OR MONITOR A RELATIVELY QUIET CHANNEL FOR A FRIEND OR TWO... OR HEAR SIGNALS WITH LESS NOISE... OR USE A SOPHISTICATED REPEATER OR REMOTE BASE WITH BETTER COVERAGE. 440 MHz IS THE ANSWER. IT WILL SURPRISE YOU. IT WILL PENETRATE BUILDINGS WHERE 2 METERS WON'T, AND OFTEN YOU CAN EVEN WORK OUT FROM UNDERGROUND GARAGES... WHERE 2 METERS IS DEAD!

BEST OF ALL, IT'S EASY TO GET ON 440 MHz (70 CM)... WITH A KENWOOD TR-8300 TRANSCEIVER. HIGH QUALITY IS CRITICALLY IMPORTANT ON UHF BANDS, AND THE TR-8300 IS JUST WHAT YOU NEED TO MEET ALL TECHNICAL REQUIREMENTS. IT FEATURES:

- 10 watts RF output (switchable to 1 watt)
- 23 crystal-controlled channels (3 supplied)
- 445.0-450.0 MHz transmit range
- 442.0-447.0 MHz receive range
- Transmitter and receiver adjustable over any 5-MHz segment from 440 to 450 MHz
- 5-section helical resonator and 2-pole crystal filter in IF to reject intermod
- SWR protection in final amplifier
- Excessive-voltage and reverse-polarity protection circuits
- 0.5 μV for 20 dB quieting sensitivity
- Better than —60 dB spurious radiation
- 20 KHz (—6 dB), 40 KHz (—70 dB) selectivity
- Monitor switch that lets you check modulation and frequency "netting"
- Call CH switch that activates optional CTCSS (subaudible tone) function
- Large S meter

Move up to 440 MHz today... with a Kenwood TR-8300... for more reliable communications!

TRIO-KENWOOD COMMUNICATIONS INC.
1111 WEST WALNUT/COMPTON, CA 90220
BALLOON MOBILE AMATEUR RADIO provided the Double Eagle II with vital communications as the 112-foot high balloon became the first free-air craft to cross the Atlantic. The balloonists, operating as W50CP on 14325 kHz, maintained contact with their ground crew in Bedford, Massachusetts, using at Atlas transceiver.

Though None of The Three balloonists were themselves Amateurs, there were Amateurs (including W50CP) in the Eagle II's ground support crew. The Atlas had been taken along for compact, lightweight backup communications, and when the crew found themselves without other communications halfway through their trip, their emergency use of Amateur frequencies under paragraph 1381 of the International Radio Regulations was not inappropriate.

Another Adventurer, Naomi Uemura, KGIQFW, was in Washington in late August for a press conference and a celebration of his accomplishment: reaching the North Pole solo. With much of the trip's communications burden carried by Amateur Radio, lots of good PR should result.

THE FCC'S BAN ON 10-METER LINEARs came an important step closer to being challenged when the AARL filed, in late August, a Petition for Review of the controversial decision in the United States Court of Appeals, District of Columbia Circuit. This in effect gives the League 45 days in which to prepare a brief on the matter, and, with the League Executive Committee meeting at mid month, the final decision on just how far they'll carry the matter should be made then.

Amateur Use Of ASCII for RTTY is the sole subject of the Notice of Inquiry and further Notice of Proposed Rule Making on the "Bandwidth Docket" — 20777. The NPRM will propose adding ASCII to the permitted emissions for Amateurs, while the NOI will ask what specific standards should go into the new rules. Comment Due Date on this Notice of Inquiry and NPRM is November 15, with Reply Comments due December 16.

The FCC-Amateur Media Meeting proposed for this month will probably be devoted to Amateur exams — content, study guides, exam administration both in and out of the FCC, and the like. Dates are available at Gettysburg, but it could be further delayed if a 10th Notice of Inquiry on WARC 79 requires a meeting of the Advisory Committee on Amateur Radio, which could be held at the same time.

A SIGNIFICANT ANTENNA VICTORY has been achieved by K6QQL. The pro-Amateur Radio decision in this case, rendered by the Federal District Court, prohibits the city of Placentia, California, from limiting K6QQL's antenna to 25 feet. By Its Decision, that court directly contradicted the California State Court's decision that Cerritos, California, had the right (in the N6QQ case) to limit an Amateur's antenna height. Thus it appears that the Supreme Court, which declined to rule last spring on the N6QQ decision, will again become involved in the battle, as there are now contradictory decisions that must be resolved in the same area of law.

Another Antenna Battle appears to have been won in Farmington, Michigan, a Detroit suburb. Despite strong objections from home owners, the Farmington Heights Planning Commission has come out in favor of tripling the permitted height of radio towers from the present 25 to 75 feet. In a new ordinance sent to the city council, the planning commission proposed increasing the maximum to 75 feet, but with the proviso that the tower height could be no more than half the width of the lot.

1979 ARRL DX CONTEST, having been reduced by the Board of Directors to one weekend per mode, will be held in March with the first weekend for phone and the third for CW. Preference for February dates from large numbers of U.S. stations has been strong, citing building low-band noise from spring storms as a major problem. But, an informal poll of overseas participants indicated a preference for March dates.

DURING TORRENTIAL RAINS that brought death and destruction to south and central parts of Texas, Amateurs served a vital communications role. Nearby Amateurs received first word of the disaster at 6:00 AM on August 2, when K5RZD called into San Antonio via repeater to ask for helicopter evacuation of flood survivors from Medina. At about the same time, the U.S. Weather Service was calling EC WA5RNW asking for Amateur communications help. Until the waters started to recede late in the weekend, an estimated 100 Amateurs worked around the clock providing much needed communications for rescue workers and survivors. In addition to providing disaster communications, a number of Amateurs monitored flood gauges throughout the affected countries to provide Weather Service Chief Hydrologist George Kush with vital data for predicting which areas were threatened and needed to be evacuated.

THE FIFTH 2-METER "WAS" has been earned by K9SS thanks to K9SS and his Idaho operation.

ANYONE DESIRING CATV cable and/or connectors per the Woods article in September, ham radio, should send a self-addressed, stamped envelope to Box 7111, Phoenix, Arizona 85011.
A Blend of Art and Amplifier

There are certain times when amplifiers transcend their function and approach the status of art. An amplifier as a reliable source of power is fundamental, an amplifier as an artful precision instrument is unique.

The DTR-2000L achieves this uncommon standard by employing the most powerful final tube legally permitted in the amateur service. The world famous Eimac 8877. Then, following through with features such as a vacuum impregnated power transformer, continuous duty power supply, hi-lo power switching, pressurized forced air cooling, harmonic suppression far exceeding FCC specifications, dual meters for monitoring plate voltage and current.

We are confident you'll agree that the DTR-2000L is an exciting blend of art and amplifier. Now available at DenTron dealers throughout the world.

- Covers 160-15 meters & most MARS freqs.
- Continuous 1KW input CW, SSTV, RTTY, 2KW PEP SSB
- Built-in adjustable ALC
- Easily changed 117V or 230V AC, 50-60 Hz
- FCC TYPE ACCEPTED
- DTR-2000L suggested price $1099.50

DenTron®
Radio Co.
2100 Enterprise Parkway
Twinsburg, Ohio 44087
(216) 425-3173
The high-frequency communications receiver described here includes a unique digital interface that provides it with unusual capability. The receiver covers selected portions of the high-frequency spectrum between 1.8 and 30 MHz with the aid of a frequency synthesizer that is an integral part of the digital display. Coverage includes all of the amateur bands, two bands which include WWV, several of the international short-wave broadcast bands, and most of the CB band. Coverage is not limited to these bands. In fact, the basic scheme is such that the receiver can be set up to cover the entire range from 1.8 to 30 MHz.

development

This unusual receiver was developed strictly as a hobby over a period of about a year. The object was to design and build a high-performance breadboard model that could be controlled from the front panel through a digital interface. In many respects, the result represents a radical departure from conventional receiver design. Once the basic scheme was conceived, it was only a matter of building up the

By Norman J. Foot, WA9HUV, 293 East Madison Avenue, Elmhurst, Illinois 60126
various functional blocks, integrating them, connecting the interface, and checking out the entire system. At first blush this seemed easy, but assuredly it was not.

It is difficult to describe all of the details of the programmable receiver in one magazine article. Therefore, this article will include a general description of the overall scheme with the aid of functional block diagrams, so that a clear understanding of the basic idea will be gained. An overall wiring diagram of the frequency counter is not included, but special emphasis will be given to the circuits associated with the frequency synthesizer. Other circuits that will be described are those considered to be unique, such as logic control and the high-frequency oscillator.

general description

To simplify the development process, the decision was made to divide the receiver into physical subassemblies or modules, each including circuitry that logically belongs together. Each individual module was fitted with BNC connectors for rf and i-f interconnections, and 14 pin DIP sockets were used for logic and power. While this modularized approach added considerably to physical size and circuit complexity, it provided a way to easily and quickly remove modules to facilitate debugging, modifications, and repair. Pertinent test points were included on each module. Extender cables were used to operate the receiver with one or two modules removed from the main frame.

The modules are mounted on a pair of 28 x 43 x 5 cm (11 x 17 x 2 inch) aluminum chassis, each equipped with a standard 13.3-cm (5-1/4-inch) high relay rack panel. The lower deck houses the circuits that function to select and display the frequency to which the receiver is tuned, and to convert incoming signals to 32 MHz. The upper deck contains the final mixer and all of the 1650 kHz i-f, mode select, detection, and audio circuitry. These two decks are referred to as the 32-MHz and the 1650-kHz decks.

Now that the design has been confirmed by the working breadboard model, it should be a relatively simple matter to physically reconfigure the receiver to fit into a single, standard-size enclosure. No printed-circuit layouts have yet been prepared. All of the digital circuits were assembled by hand using pieces of perforated epoxy fiberglass with a hole matrix on 2.5-mm (0.1-inch) centers, such as Vector 169P84. Component parts were hand wired and soldered using a combination of wire wrap technique and no. 26 (0.4 mm) tinned copper wire insulated with Teflon sleeveing.

A major challenge for those wishing to reproduce this receiver is to reduce the counter and other IC boards to printed circuits. The counter board alone includes 27 integrated circuits of which six are LED displays. The total IC count is 71. There are a total of 13 DIP sockets used for power, and three sets of 8 DIP switches. In addition, there are 34 transistors including series pass regulators in the power supplies, and 44 diodes including switching and power supply rectifiers and zener regulators.

The overall gain of the receiver from antenna to product detector output is approximately 122 dB when all controls are set for maximum. Overall sensitivity is 0.2 μV for 10 dB S/N ratio, which is more than adequate for most high-frequency requirements.

The front panel of the 32-MHz deck has a threedigit thumbwheel for band and band segment selection, a vfo knob for tuning 100-kHz band segments, and a six-digit seven-segment LED display which indicates the antenna frequency to within ±100 Hz. The accuracy of the readout is based on a 1.0 MHz crystal clock which is zero beat with WWV. There is also a unique antenna trimmer, an rf gain control, pilot light, and power switch.

The 1650-kHz deck includes a mode switch which
fig. 1. Simplified block diagram of the digitally programmable high-frequency communications receiver, showing the modular construction. The receiver features up conversion to 32 MHz, a frequency synthesizer, and diode-switched front-end and mixer circuits.
fig. 2. Simplified block diagram of the frequency synthesizer and display circuits used in the high-frequency communications receiver.
allows selection of a-m, USB, LSB, CW, or fm; agc release switch, S-meter, audio gain control, i-f gain control, pilot light, power switch, and a small loud speaker. Each deck includes its own regulated power supply.

Both the band-select thumbwheel switches and the mode switch output TTL compatible binary codes. The bandswitch thumbwheels provide a cer-

basic receiver design

The ground rules for high performance in a general-coverage receiver were elegantly described by Wayne Ryder, W6URH, in his recent *ham radio* article. He discusses the design criteria for general coverage, and gives illustrations of up-conversion schemes designed to minimize interference from the various radio services.

![Diagram of receiver circuit](image)

fig. 3. Ramp generator used to control the high-frequency oscillator. The tuning ramp is derived from a 566 function generator and a pair of 74191 up/down counters which drive an 8-bit digital/analog converter. All DIP packages are shown as viewed from the bottom.

tain amount of redundancy, since the TENS, UNITS, and TENTHS MHz displays always agree with the decimal numbers programmed into the thumbwheel windows. This verifies that the receiver has indeed responded correctly to the command. If an invalid command is entered, such as 1.5 MHz, for example, the audio output and display are gated off until such time as a valid command is programmed.

The programmable receiver described here is also designed for general coverage, although the model I built covers selected portions of the high-frequency spectrum. It is a double-conversion system with the first i-f above and the second i-f below the tuning range. The choice of 32 MHz as the first i-f places the first local oscillator (fho) between 33.8 and 61.9 MHz; therefore, the image band is between 65.8 and
High-frequency oscillator module. The band-select signals are connected through the DIP socket.

93.9 MHz. Although this choice may not be optimum in terms of possible interference from local TV or FM stations, the tuned front-end RF circuitry provides sufficient image rejection so that this kind of problem has not been encountered, even though I live near a major metropolitan area.

To adequately describe the programmable nature of this receiver, it is first necessary to explain the block diagram shown in Fig. 1. The front end includes an RF amplifier and first mixer. The RF input signal is up-converted to the first IF, which has a pass-band covering 31.9 to 32 MHz. The HFO signal is derived from the frequency synthesizer and operates from 33.8 to 61.9 MHz. The VFO for the second converter tunes continuously between 30350 and 30250 kHz to down-convert the 32-MHz signals to 1650 kHz.

The digital readout uses six seven-segment LED displays. The three left-hand digits respond to a counter driven by the HFO; the three right-hand digits are driven by the VFO. Programmable counters are used so the display corresponds to the antenna frequency rather than either the VFO or the HFO. The TENS, UNITS, and TENTHS of MHz are selected by the setting of the thumbwheel. The TENS, UNITS, and TENTHS of kHz digits read from 0.00 to 99.9 as the VFO knob is turned clockwise across its range. Thus, the thumbwheel serves as the bandswitch while the VFO knob bandspreads 100-kHz band segments.

The first conversion scheme is described analytically as follows:

\[f_{\text{HFO}} = f_i + 32000 \]

where \(f_i \) is the signal frequency at the low end of a 100-kHz band segment. For example, if the receiver is tuned to 1800 kHz, the HFO will be phase-locked to 1800 + 32000 = 33800 kHz. The HFO setting for the 28.0 MHz band segment would be 60000 kHz.

The second converter down-converts the 32000 to 31900 kHz i-f band to 1650 kHz. This requires a VFO that tunes from 30350 to 30250 kHz, in that order, so that an up-converted signal that falls within the 32-MHz passband will be down-converted to 1650 kHz, depending on the setting of the VFO. Therefore, the overall conversion scheme is:

\[f_s(\text{low end}) = f_{\text{HFO}} - 1650 - 30350 \]
\[f_s(\text{high end}) = f_{\text{HFO}} - 1650 - 30250 \]

For example, if the digits set into the thumbwheels

![fig. 4. Schematic diagram of the diode-switched RF amplifier. Band selection is accomplished by providing forward current to the 1N914 diodes to short circuit portions of the inductor to ground. Similar arrangements are used in the mixer and high-frequency oscillator.](image)
are 141, the hfo frequency is 46100 kHz and the vfo tunes from 14100 to 14200 kHz.

Special care was given to the design of the vfo since it is free running and operates at a relatively high frequency. The design goal was for less than ±2 kHz drift during the first ten minutes of warmup, and less than ±100 Hz thereafter. Short-time drift and phase jitter were reduced to negligible values by careful bypassing and post regulation of the power supply.

A series of experiments were performed which were aimed at synthesizing the vfo, to provide it with 10-Hz steps in conjunction with a front-panel tuning knob. However, the approach using continuously variable vfo tuning was selected because of its infinite resolution which gives the operator that "smooth" feel. The ten-turn potentiometer used for vfo tuning gives more than adequate resolution, and allows ssb signals to be tuned in quickly and easily. One turn of the vfo knob represents 10 kHz of tuning range. The RIT control was added primarily for use in net operation.

The i-f circuits following the second mixer are fairly conventional, with the possible exception of the AM3705 analog multiplexers, which are used for mode switching. Changing modes is accomplished with a front-panel switch that outputs 3-bit binary words to drive the multiplexers located at appropriate places in the receiver. These multiplexers perform such functions as bypassing the ssb filter when operating a-m, selecting the upper or lower sideband bfo crystal, and inserting the narrow CW crystal filter into the rf chain in the CW mode. While the switching functions are illustrated on the block diagram by conventional switch symbols, all switching is actually done by binary control from the panel.

The i-f amplifier is a Motorola MC1590G which drives MC1596G product detector. This combination is ideal because it allows a single product detector to be used for a-m, ssb, and fm. The 1590 provides more than 60 dB of agc. In this receiver the agc range is extended by using delayed agc on both the rf and i-f preamplifier stages, the longest delay being associated with the rf stage.

The agc voltage is tapped off the agc amplifier and fed to an op amp; the op amp drives both the delayed agc circuits as well as the S-meter. This approach provides a simple way of using a 0-1 mA meter as the S-meter. Calibration of the S-meter was accomplished by inserting a Kay attenuator in the i-f circuit, feeding a signal to the antenna, and recording the deflection of the S-meter for various attenuation values. Full scale is adjusted by a potentiometer on the op-amp output, while zero is set by removing the antenna and adjusting the agc gain control associated with the MC1590.

A GE PA-237 integrated circuit is used as the audio amplifier; this drives a small speaker behind the panel of the 1650 kHz deck. This is an optional feature which admittedly was added for esthetic purposes to balance the front panel arrangement. Generally the output of the product detector is used to directly drive a stereo amplifier, although the built-in speaker allows the receiver to be used independently.

That part of the overall functional block diagram (fig. 1) which is inside the dotted lines belongs to the 32-MHz deck. It is primarily involved with the counters and display, the hfo and vfo, and the digital inter-
face. The balance of this article will concentrate primarily on the details of these circuits, which collectively are the heart of the frequency synthesizer.

function of the counter

The counter plays an important role in controlling the hfo frequency, and it also provides the outputs to drive the display. Fig. 2 is a block diagram which illustrates the basic scheme, but for clarity some of the functional circuits have been omitted. For example, DIP switches mounted on the counter board are used to program the TENS, UNITS, and TENTHS MHz counters. Only one set of these switches is shown in fig. 2. Logic inputs such as GATE, LOAD, and RESET circuits have been omitted. An excellent article by WB2DFA, which appeared in ham radio\(^2\), illustrates many of the counter, logic, display, and time base generator circuits, some of which are used in this programmable receiver. Wiring diagrams of some of the more sophisticated up/down programmable counters will be described later. An article by Phillip Rand, W1DBM, in QST\(^3\) is recommended if you want a better understanding of these circuits.

For the receiver described here to work properly, it is necessary that the hfo be phase locked to harmonics of 100 kHz derived from the 1.0 MHz clock. It is absolutely essential that the hfo be locked to the correct harmonic or line number. This is automatically accomplished by means of a ramp which tunes the hfo to within a few kHz of the correct spectral line. By definition, the hfo is part of a frequency synthesizer that has the capability to output any one of 281 MHz.

fig. 6. Digital band selector circuit provides binary commands for coil switching in the rf amplifier, mixer, and high-frequency oscillator. To maintain circuit tracking, the same voltage ramp is used to tune all three circuits.
Table 1. Low band edge high-frequency oscillator (hfo) frequencies.

<table>
<thead>
<tr>
<th>input signal frequency (MHz)</th>
<th>hfo frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.00</td>
<td>61.00</td>
</tr>
<tr>
<td>27.00</td>
<td>59.00</td>
</tr>
<tr>
<td>21.00</td>
<td>53.00</td>
</tr>
<tr>
<td>15.00</td>
<td>47.00</td>
</tr>
<tr>
<td>14.00</td>
<td>46.00</td>
</tr>
<tr>
<td>9.00</td>
<td>41.00</td>
</tr>
<tr>
<td>7.00</td>
<td>39.00</td>
</tr>
<tr>
<td>3.00</td>
<td>35.00</td>
</tr>
<tr>
<td>1.8</td>
<td>33.80</td>
</tr>
</tbody>
</table>

frequencies between 33.8 and 61.9 MHz. Specifically, these are 33.8, 33.9, 34.0, ..., 61.7, 61.8, and 61.9 MHz. In the breadboard receiver I built, 91 of these outputs are available, corresponding to a total frequency coverage of 9200 kHz. It is not difficult to modify the system to include additional bands or to change existing bands to cover other frequency ranges.

Not possible for the hfo to lock to any 100 kHz line other than the correct one. A momentary interruption of power, or any other condition that unlocks the hfo, causes a repeat of the phase lock action.

Front end tuning

A schematic diagram of the rf amplifier is shown in fig. 4. The rf coils are wired in series with 1N914s...
Fig. 8. Functional block diagram of the phase-locked loop used in the receiver. The hfo provides one of two signals to the phase detector; the other input from the spectrum generator provides 100-kHz signals throughout the hfo tuning range. Loop bandwidth is about 10 kHz.

located at coil junctions which provide short circuits to ground. A particular band is selected by providing forward current to one of the diodes by band-select logic circuits which will be described. The rf circuit is typical of the mixer and the hfo, each having similar band selecting diodes. The ramp which tunes the hfo is also used to tune the rf and mixer coils.

hfo tuning and control

Since the hfo operates at a much higher frequency than the rf and mixer stages, rather than using separate coils for each band, a single coil wound with no. 14 (1.6 mm) tinned wire is used as shown in Fig. 5. The inductance is self-supporting except for a polyethylene foam strip which is glued to one side of the coil with epoxy cement to make it rigid. The switching diodes are soldered to the coil at appropriate locations. Because of the inductance of the diode leads and the manner they are dressed away from the hfo coil, the correct diode locations are found by cut and try at first, those corresponding to the highest frequency bands being most critical. Each tap is adjusted so that lock up occurs with a ramp voltage of approximately 4.0 volts at a frequency corresponding to the low end of the particular band. Table 1 lists the low end hfo frequencies corresponding to each of the 1.0 MHz bands in the receiver.

Start by dialing 28 MHz, and adjust the inductance of L1 until the hfo locks up at 60000 kHz with approximately 4.0 volts of ramp. Next, with 27 MHz programmed, adjust the position of the 27 MHz diode on L2 until lock up occurs with about 4 volts of ramp. Repeat this process, proceeding toward the 160-meter band. An auxiliary counter can be used to con-
firm that the hfo locks up at the proper frequencies. If the hfo counters are properly programmed, the digital readout will agree with the thumbwheel numbers.

programming the counters

The TENS and UNITS MHz hfo counters are programmable. Two sets of DIP switches mounted on the back of the counter board contain the programming switches. Four of these switches are used to program each hfo counter stage.

Each counter can be programmed to initiate its count at any number from zero through 9. This is a means of advancing each digit to agree with the corresponding antenna frequency digit. If the heterodyne scheme described here is used, the TENS MHz counter should be programmed to 0111 (7) and the UNITS MHz stage for 1000 (8). The TENTHS MHz stage is hard wired to 0000 (zero).

The TENS kHz vfo counter is programmed for 0101 (5) while the UNITS and TENTHS kHz stages are hard wired for zero. In some heterodyne schemes, such as one which uses a 455 kHz i-f, the UNITS kHz stage should also be programmable.

band-select logic

The traditional way to change bands and select signals is by means of mechanical devices such as multi-wafer switches and ganged variable capacitors, although some CB and 2-meter receivers have employed frequency synthesizers for channel selection. More recently, high-frequency receivers have come on the market which use frequency synthesizers and digital displays. These are relatively expensive, but ultimately most high-frequency receivers will be manufactured this way.

Equipment for CB and 2 meters covers relatively narrow frequency bands. For example, a 40-channel

fig 10. Parametric phase detector developed by WA9HUV. The circuit uses a pair of fast complementary switching transistors to provide the required phase inversion without transformers. The gain of the 741 op amp is set at about 15 dB.
CB receiver covers a frequency band having a high to low frequency ratio of about 1.6 per cent. By comparison, the high-frequency portion of this programmable receiver covers 33 per cent of the high-frequency band between 1.8 and 30 MHz. The technique of band changing through front panel thumb-wheel switches, together with band-selecting diodes, allows a wide range of frequencies to be covered with relative ease.

The binary commands not only perform the rf, mixer, and oscillator coil switching function, but they program the comparators as well. A pair of SN74141 BCD to decimal decoder drivers and three SN74128 current drivers are used to provide TENS and UNITS MHz band-switching logic signals. The circuit of fig. 6 shows how this is done. Note that the TENS 74141 provides a MHz logic output of 0, 10, or 20. The UNITS MHz 74141 provides a logic signal output corresponding to any number between zero and nine. The 74128s are current sources which are wired so that any one of 12 possible sets of coil selections can be made, although only ten of these are used.

To select 80 meters, for example, 03 is dialed. This provides BCD logic signals which turn on the 03 driver. The current supplied from this driver forward biases the appropriate 1N914 hfo diode, thus selecting the hfo coil corresponding to the 3.0 to 4.0 MHz band. Assuming 3500 kHz (035) is programmed, the ramp tunes the hfo until its frequency reaches 35500 kHz where it becomes phase locked. The vfo now tunes the band segment, 3500 to 3600 kHz.

The same 74128 logic signals are used indirectly to select the 3.0 to 4.0 MHz rf and mixer coils. SN7408 quad two-input AND gates driven from the 74128s supply current to the front end coil diodes to reduce fan out loading on the 74128s, as shown in fig. 7.

Note that the rf and mixer coils are tuned with the same ramp that tunes the hfo. This is how the rf and hfo circuits are made to track; details will be given later.

phase-locked loop

Having developed a way to coarse tune the hfo, the task of phase locking the hfo to the correct harmonic of 100 kHz becomes a relatively simple matter. Fig. 8 is a block diagram which illustrates a second-order phase-locked loop such as the one employed here. The hfo, which is part of the closed loop, provides one of two signals for the phase detector. The other input to the phase detector is external to the loop and includes a spectrum of signals spaced 100 kHz apart. This spectrum extends across the hfo frequency range from 33.8 to 61.9 MHz.

The bandwidth of the closed phase-locked loop is limited to about 10 kHz so that there can never be an ambiguity between line selection. The loop can recognize only one line at a time, in spite of the fact that there are at least 281 individual sine-wave signals fed into the phase detector from the spectrum generator. Since it is not necessary to provide a way for selecting individual spectral lines, the spectrum generator, illustrated in fig. 9, is quite simple and consists of only a single transistor and a few discrete components.

The crystal clock and decade divider are part of the time-base generator. The 2N3563 transistor serves as a very fast switch which provides very narrow (16 ns) pulses to the phase detector. These narrow impulses include fairly uniform distribution of individual sine-wave signals extending from 100 kHz to well above 60 MHz. R-C coupling circuitry is arranged to reject most of the unneeded signals below 33 MHz; pulse shaping and parasitic capacitance causes the amplitudes of these signals to roll off rapidly above 60 MHz. It is necessary to shield the spectrum generator to prevent these signals from getting into the front end of the receiver. Otherwise, they will appear as markers at each end of each band segment.

phase detector

A survey of the various types of PLL ICs available to perform the phase detection function was disapp-
Table 2. Tuning voltage for the front end and high-frequency oscillator.

<table>
<thead>
<tr>
<th>Input Frequency (kHz)</th>
<th>Tuning Voltage (volts)</th>
<th>HFO Frequency (MHz)</th>
<th>Tuning Voltage (volts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7000</td>
<td>4.00</td>
<td>39.0</td>
<td>4.00</td>
</tr>
<tr>
<td>7100</td>
<td>4.51</td>
<td>39.1</td>
<td>4.25</td>
</tr>
<tr>
<td>7200</td>
<td>5.09</td>
<td>39.2</td>
<td>4.53</td>
</tr>
<tr>
<td>7300</td>
<td>5.75</td>
<td>39.3</td>
<td>4.85</td>
</tr>
<tr>
<td>7400</td>
<td>6.47</td>
<td>39.4</td>
<td>5.20</td>
</tr>
<tr>
<td>7500</td>
<td>7.29</td>
<td>39.5</td>
<td>5.60</td>
</tr>
<tr>
<td>7600</td>
<td>8.11</td>
<td>39.6</td>
<td>6.00</td>
</tr>
<tr>
<td>7700</td>
<td>9.14</td>
<td>39.7</td>
<td>6.50</td>
</tr>
<tr>
<td>7800</td>
<td>10.16</td>
<td>39.8</td>
<td>7.00</td>
</tr>
<tr>
<td>7900</td>
<td>11.40</td>
<td>39.9</td>
<td>7.60</td>
</tr>
<tr>
<td>21000</td>
<td>4.00</td>
<td>53.0</td>
<td>4.00</td>
</tr>
<tr>
<td>21100</td>
<td>4.16</td>
<td>53.1</td>
<td>4.20</td>
</tr>
<tr>
<td>21200</td>
<td>4.32</td>
<td>53.2</td>
<td>4.40</td>
</tr>
<tr>
<td>21300</td>
<td>4.50</td>
<td>53.3</td>
<td>4.64</td>
</tr>
<tr>
<td>21400</td>
<td>4.65</td>
<td>53.4</td>
<td>4.82</td>
</tr>
<tr>
<td>21500</td>
<td>4.86</td>
<td>53.5</td>
<td>5.09</td>
</tr>
<tr>
<td>21600</td>
<td>5.08</td>
<td>53.6</td>
<td>5.36</td>
</tr>
<tr>
<td>21700</td>
<td>5.30</td>
<td>53.7</td>
<td>5.64</td>
</tr>
<tr>
<td>21800</td>
<td>5.55</td>
<td>53.8</td>
<td>5.95</td>
</tr>
<tr>
<td>21900</td>
<td>5.80</td>
<td>53.9</td>
<td>6.27</td>
</tr>
</tbody>
</table>

Pointing in terms of the requirements imposed by the programmable receiver. In many cases frequency response was the limiting factor — in others the cost was too high. Some earlier PLL chips that might have had promise were no longer available; more recent types are not only expensive, but also require considerable peripheral circuitry. I decided to settle for a homebrew design.

The phase detector used for the phase-locked loop is an original circuit which I developed. It uses a pair of fast complementary switching transistors which perform the required phase inversion without the need for transformers. This makes the circuit simple and very broadband as well. The circuit is shown in fig. 10. The complementary transistors would normally produce zero output, since the transistors are complementary and one output is 180° out of phase with the other. However, the hfo signal, which has a relatively large peak-to-peak amplitude, modulates the transistor collectors. If the relative phase of the hfo is other than 90° relative to the reference signal, one of the outputs tends to be suppressed while the other is enhanced. For this reason, the phase detector is referred to as a parametric phase detector. The hfo is the element that controls the amplitudes of the other two signals. The amount of unbalance depends on the relative phase of the hfo signal and the reference signal. When that angle is 90°, the outputs are equal and cancel.

The input to the Schottky diode acts as a common summing junction for the three signals: the zero reference, the 180° reference, and the hfo. If the output of the detector is plotted as a function of the phase angle, a discriminator type of curve results. Note that the phase detector curve sits on top of a pedestal which results from rectification of the relatively large hfo signal. This is unimportant since it is compensated for by the offset potentiometer associated with the op amp at the phase detector output. Furthermore, the offset adjustment allows the voltage for the tuning varactors to be set to the proper value for the low end of each hfo band.

When the hfo is not locked the output of the phase...
detector is a sine wave at a frequency equal to the difference between the reference signal and the hfo. Lock up occurs almost instantaneously and is difficult to see on an oscilloscope.

The gain of the op amp is set to about 15 dB. If the phase-locked loop has a tendency to oscillate, the gain of this stage can be reduced by lowering the value of the 220k feedback resistor. It is not recommended that any of the other component values in the phase detector be changed.

spurious signals

In spite of care in shielding the spectrum generator, it was necessary to shield the rf section of the receiver carefully and to apply bypassing capacitors rather extensively at each terminal of the DIP power connector and at the BCD inputs to reduce these signals to levels below the ambient antenna noise.

Spurious signals which were much more difficult to control resulted from products of the hfo and vfo. Even though these signals are applied to separate mixers and are not intended to be associated, both the hfo and vfo signals are converted to TTL compatible levels in the counter where intermixing and harmonic generation results. These spurs can be classified as follows:

\[
M(vfo) - N(hfo) = 1650 \text{ kHz}
\]

The strongest spur occurs where \(M = 2\) and \(N = 1\) at 27025 kHz. A smaller spur occurs at 14330 kHz where \(M = 3\) and \(N = 2\); a relatively weak spur was found at 7012.5 kHz where \(M = 4\) and \(N = 3\).

The ideal way to eliminate these spurious signals is to install a bandpass filter between the first mixer output and the second mixer input. This filter should cover a band from 31.9 to 32.0 MHz and should have sharp skirts. Some excellent filter design articles are included in the list of references.4.5

antenna trimmer

The circuits associated with the antenna trimmer bear little resemblance to conventional antenna trimming circuits. However it is a very effective technique which has the added advantage that tracking between the hfo and the rf circuits is accomplished at the same time.

The voltage ramp that tunes the hfo is also fed to the rf and mixer tuning varactors. A front panel potentiometer control serves as the antenna trimmer. It operates in conjunction with the circuit described in fig. 11 which includes a pair of op amps.6

The way in which the antenna trimmer works is best illustrated by an example. First, set the thumbwheels to select 7.0 MHz (070). The ramp voltage corresponding to the low end of each band is approximately 4.0 volts, which is the value required to phase lock the hfo to 39000 kHz. As can be seen in table 2, as the hfo is incremented from 39000 to 39900 kHz (which tunes the receiver from 7000 to 7900 kHz), its tuning voltage increases from 4.0 to 7.6 volts. Based on the sizes of the varicaps used and the total circuit capacitance, the rf and mixer varicaps require a tuning voltage range of 4.0 to 11.4 volts to tune from 7000 to 7900 kHz. Thus, the change in ramp voltage for the front end must be amplified by the op amp by a factor of 2.055 to achieve tracking with the hfo.

The situation is different in the 21000-21900 kHz band where the hfo tuning ramp varies from 4.0 to 6.27 volts. However, the rf and mixer circuits only need a variation of 4.0 to 5.8 volts. Therefore, for the amateur 15-meter band, the ramp slope must be amplified by a factor of 0.7929. The antenna trimmer control automatically makes this gain adjustment when it is adjusted for resonance or maximum signal strength. The 5k pedal control is set to provide 4.0
the 7485s is connected to pin 5 of the 191s. The EQUALS output which stops the ramp is high only when all of the 12 counter bits agree with the bits programmed, including the hard wired HUNDREDTHS MHz bits.

Since the counters operate in two modes, namely COUNT and DISPLAY, the bits are changing during the COUNT mode, causing the comparators to output fluctuating logic data. To overcome this problem, both of the cascaded comparator outputs are modified to provide suitable output logic signals. These relatively simple circuits are shown in fig. 12. Because of the requirement to filter these control signals, there is a finite delay between comparator coincidence and application of the logic commands. This sets an upper limit to the ramp sweep rate because some overshoot of the hfo frequency results. If the sweep rate is too fast, overshoot will be sufficient to change the comparator output signals before the sweep circuit is stopped, which means that the sweep lock circuit will keep oscillating and lock up will never occur.

A total ramp sweep interval of about two to four seconds is satisfactory. Only when changing bands is there any noticeable delay in hfo lock up. When incrementing the thumbwheel switches from one band segment to another, there is no noticeable delay.

There is a trivial problem that is related to the TENS MHz counter. Whenever either an 8 or 9 MHz is programmed, the TENS MHz counter and corresponding display advances one extra digit because the corresponding TENS MHz digit advances. To avoid this problem, the simple logic circuit shown in fig. 13 is used. This circuit prevents the TENS MHz counter

![Graph](https://example.com/graph.png)

Graph: Resistance of a forward-biased 1N914 diode at 1 kHz, as measured with a GenRad 1650B impedance bridge. Diode resistance is important because it affects the Q of the tuned circuits used in the receiver.
from advancing whenever the UNITS hfo digit is a one or a zero. When dialing 27.0 MHz, for example, the hfo frequency is 59 MHz, but when 28 MHz is dialed, the hfo advances to 60 MHz. This change in the most significant digit from 5 to 6 would normally advance the display from 27 to 38. The logic circuit of fig. 13 solves this problem.

switching diodes

As previously explained, 1N914 diodes are used for front end and hfo coil switching. This approach was found to be both simple and effective. It should be recognized, however, that the forward resistance of the diode has a tendency to reduce the Q of the tuned circuits. To minimize this effect, the L/C ratio of the front-end coils has been made as large as possible. Fig. 14 shows the diode resistance as a function of forward current. Note that the resistance drops to about 6 ohms at a current of 40 mA, and any further increase in current has a small effect on resistance. Some simple calculations show that with a circuit capacitance of 20 pF at 28 MHz, if the loaded circuit Q is 50 without the diode, it drops to 23 with the diode; this both increases the rf bandwidth and reduces gain. It was found that Q and gain could be increased to acceptable levels if parallel-connected diode pairs were used with the 10-meter coils.

The effect of the switching diodes is less pronounced on the lower bands (it is practically negligible at 1.8 MHz). It is possible to control front-end gain so that it is nearly the same on all bands by adjusting the currents in the diodes.

mode-select circuitry

The circuit of the ssb mode-select circuit is shown in fig. 15. This is typical of each of the analog multiplexing circuits operated from the front-panel mode switch. While only five outputs are used, the switch has 8-pole capability.

summary

The development of this programmable receiver was a much more formidable task than I originally envisioned. The receiver as it exists presently represents a first phase effort, and much yet remains to be done in terms of refinement. The basic idea has been proven to be sound, however, and the result is a high performance breadboard receiver of advanced design.

It is hoped this article will provide other experimenters with new ideas and incentives to try their hand at something radically new. Additional circuit details can be made available to those hearty experimenters who are interested in duplicating this receiver in part or as a whole. Please send me a self-addressed, stamped envelope for further details. Readers' suggestions and constructive criticism are welcomed.

references

super low-noise
432-MHz preamplifier

Construction of a low-noise bipolar transistor preamplifier which offers 0.8 dB noise figure with 15 dB gain

The heart of any successful moonbounce (EME) system is the low-noise preamplifier which precedes the receiving converter. On 144 MHz, an overall system noise figure of less than 1.0 dB seldom increases receiver sensitivity significantly because of the high sky noise temperatures of 300° to 400° K. On 432 MHz, however, sky noise temperatures of 10° to 20° K are possible; this means that decreasing the overall system noise figure below 1 dB significantly improves receiver sensitivity.

Until recently the popular Fujitsu FJ203 and the Fairchild FMT4575 bipolar transistors have yielded the lowest noise figures at 432 MHz — typically 1.25 dB. The Texas Instruments MS2110, although not as well known, also produces noise figures as low as 1.1 dB at this frequency. Shigeru Sando, JH1BRY, introduced an excellent 432-MHz preamplifier using NEC's V244 GaAs fet which opened the eyes of many moonbouncers. With its impressive 0.6-0.7 dB noise figure, it beat everything else at the noise-figure contests. However, its cost of $120 makes it a luxury for most amateurs.

Recently NEC introduced a new bipolar device, the NE64580, which is rated at 0.8 dB noise figure at 500 MHz. At $92 each, it appeared to be a mighty competitor to the V244. Even better, the people at NEC came out with the NE64535 at a cost of only $17 in single quantities; it is rated at 1.6 dB noise figure at 2 GHz with an fT of 8.5 GHz. At 500 MHz, the NE64535 has a rated noise figure of 0.8 dB.

The NE64535 uses the same chip as the NE64580 but is mounted in a less expensive hermetically sealed Micro-X package. This article discusses the design of a 432-MHz preamplifier that uses this

*The device is manufactured by the Nippon Electric Company (NEC) in Japan and is being marketed by California Eastern Laboratories (CELI). Post Office Box 915, One Edwards Court, Burlingame, California 94010. Cost is $17 each in quantities of 1-9, decreasing to $15 each for quantities of 10-99.

By Al Ward, WB5LUA, RR2, Box 65A, McKinney, Texas 75069
device to obtain measured noise figures as low as 0.8 dB. The original design was based on the more expensive NE64580, but identical results have been achieved using the NE64535.

At the 1977 convention of the Central States VHF Society in Kansas City, Missouri, this preamplifier measured only 0.1 dB higher noise figure than the V244 GaAs fet entered by K2UYH; all other bipolar entries had approximately 0.3 to 0.4 dB higher noise figures. At 432 MHz, this decrease in noise figure over other bipolar devices results in a significant increase in receiver sensitivity.

Since I was intrigued by the fact that Shigeru Sando was able to use a parallel tuned circuit on the input to his V244 preamplifier and still achieve a low noise figure, I decided to try something similar. I wanted to obtain a low-loss match for minimum noise figure and still achieve adequate selectivity so I wouldn’t require an external cavity.

The final design uses a parallel tuned circuit with capacitive coupling on the input (fig. 1). To minimize circuit losses I used a low-loss microstrip line rather than a lumped inductor. Resistive loading is used on the output and will be discussed later. I am presently using this preamplifier without an external cavity and have experienced no problems with intermodulation. Since the preamplifier is capacitively coupled at the input, greater rejection of unwanted signals will occur below 432 MHz. When the preamplifier is adjusted for minimum noise figure at 432 MHz, 10 dB of rejection is typically obtained at 200 MHz, 26 dB at 100 MHz, and 40 dB at 50 MHz. In all but the worst rf environments this should be adequate.

At my location, for example, a broadband FJ203 preamplifier cannot be used without a cavity, whereas the NE645 preamplifier has given no problems at all (my location is within 15-20 km of fm and TV transmitting antennas). If external filtering is required, a cavity filter with 0.2 dB loss described by Joe Reiser would increase the noise figure to only 1.0 to 1.2 dB, which is still a worthwhile improvement.

design

Lacking any sort of tables describing the optimum source impedance required for minimum noise figure, I initially designed the input circuit for maximum gain using the published parameters for the device. The input circuit was then optimized for lowest noise figure with a Hewlett-Packard HP-342A automatic noise figure meter. The resultant circuit uses a microstrip line with a characteristic impedance of 70 ohms.

An attempt was made to tune the output circuit to increase selectivity, but, as expected, completely stable operation was not obtained. As with most microwave bipolar transistors operated in this frequency range, maximum available gain is so high that oscillations are common. Stable operation of this device was finally achieved with resistive loading. However, the selection of the 100-ohm collector resistor was not arbitrary: in addition to stabilizing the preamplifier, it also serves to provide a better match to the post-amplifier. Resultant output vswr of this preamplifier should be less than 2.0:1. When using a post-amplifier with a variable match at the input, no problems have been incurred in obtaining stable operation.

While optimizing noise figure, I required some method of varying the dc bias conditions to determine their effect on noise figure. The bias circuit I used allows optimization of both V_{CE} and I_C for minimum noise figure by varying resistors R2 and R5. This method uses both voltage feedback and a constant base current source to ensure dc stability. The data sheet for the NE64535 specifies $V_{CE} = 8.0$ volts at $I_C = 7.0$ mA. It was found experimentally that minimum noise figure at 432 MHz occurs at a V_{CE}
6.0 volts with I_C approximately 4.5 mA. The new operating conditions decreased noise figure by about 0.2 dB. Although not as critical as the input match, the dc operating conditions can also be optimized for lowest noise figure at a particular operating frequency.

Zener diode CR2 was incorporated mainly to protect the collector-emitter junction, since the device has a maximum V_{CE} rating of only 12 volts. Not only does it protect the device as you optimize bias conditions, but it also protects the transistor from transients that may be present on the 12-volt supply line.

For maximum effectiveness, the preamplifier should be mounted at the antenna. With RFC1 installed in the circuit, $+12$ volts can be conveniently run up the receive coax. At my station I use separate preamplifiers for EME and tropo operation feeding a common mixer, so I needed a convenient method of switching between preamplifiers. Since good mechanical coaxial relays are expensive, I devised the combination bias tee/switch arrangement shown in fig. 2. The switching elements are inexpensive, readily available PIN diodes.

When the PIN diodes are forward biased with 50 mA of current, their insertion loss is slightly less than 1.25 dB at 432 MHz. With no bias applied, the isolation between ports is 16 dB. Isolation is defined as the insertion loss to the off port. Since $+12$ volts is switched between preamplifiers at the same time that the control bias is transferred, tuning interactions between the EME and tropo preamplifiers are kept to a minimum.

The isolation can be improved by applying reverse bias to the PIN diode in the off port leg. The reverse bias decreases the diode capacitance, thereby increasing the isolation to the off port. The amount of reverse bias that can be applied is limited by the reverse breakdown voltage specified for the diode. Since a dual polarity power supply is not available at my station, I chose not to reverse bias the PIN diode. There are many versions of the PIN diode switch that could be used to increase isolation — but they are beyond the scope of this article.

The usefulness of the PIN diode switch can be extended to switching various local oscillators that supply injection to a broadband double-balanced mixer for multiband operation. As shown in table 1 the combination bias tee/PIN diode switch arrangement performs even better at lower frequencies. The PIN diode used here is a Microwave Associates MA47110 available for 99 cents in small quantities.

Table 1. PIN diode switch performance on three vhf amateur bands.

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Insertion Loss</th>
<th>Isolation</th>
</tr>
</thead>
<tbody>
<tr>
<td>144 MHz</td>
<td>0.25 dB</td>
<td>22 dB</td>
</tr>
<tr>
<td>220 MHz</td>
<td>0.60 dB</td>
<td>20 dB</td>
</tr>
<tr>
<td>432 MHz</td>
<td>1.20 dB</td>
<td>16 dB</td>
</tr>
</tbody>
</table>

construction

The preamplifier is built in a 108 × 57 × 38 mm (4-1/4 × 2-1/4 × 1-1/2 inch) Minibox, which is both inexpensive and readily available. The rf circuitry is mounted on the inside while all the bias components are mounted on the top of the minibox (figs. 3 and 4). This allows greater isolation between the rf and dc components than if all components were mounted inside the enclosure.

The microstrip line, 15 mm (0.6 inch) wide and 53 mm (2.1 inches) long is mounted approximately 5 mm (0.2 inch) above the chassis. The corners are rounded off to a radius of 1.5 mm (1/16 inch) to minimize the discontinuities at the end of the microstrip line. The 0.001-μF feedthrough capacitor is used as a

fig. 2. Combination bias tee/PIN diode switch used to operate separate preamplifiers for 432-MHz EME and tropo. The PIN diodes (CR1 and CR2) are Microwave Associates type MA47110.

fig. 3. Layout of the rf components in the low-noise 432-MHz preamplifier. The input network is formed by C1, C2, and L1; the output network consists of R1 and C3. Bias circuitry is installed on the outside of the Minibox enclosure (see fig. 4).
support for one end of the microstrip line; the opposite end is soldered to the Johanson variable capacitor, C2. The input matching capacitor, C1, is soldered directly between the input connector and capacitor C2. An SMA-type connector is used on the input. Its small size and low loss make it a must for low-noise operation. A less expensive BNC type connector is used on the output.

To facilitate direct grounding of the two emitter leads, I used two solder lugs bolted to the chassis to serve as tie points. The lugs are cut off so they stand up from the chassis about 3 mm (0.1 inch). This allows enough area to conveniently solder the emitter leads. Keep the emitter leads on the device full length.

The leads on C3 and R1 must be as short, and as far away from the input circuitry, as possible to reduce any chance of feedback. If the preamplifier is built according to the layout in fig. 3 no shield will be required between the input and output circuitry.

When using a Minibox as an rf enclosure, be sure to scrape off any paint or any other nonconductive film that may be on the areas where the two halves of the enclosure meet. This is best done before assembly has been started, and is necessary to achieve a good rf-tight enclosure. Be sure to use all four screws supplied with the Minibox.

operation

Connect the output of the preamplifier to the post-amplifier or converter with a short section of 50-ohm coaxial cable. Terminate the input with 50 ohms. With +12 volts powering the preamplifier, the total current drain should be 5 to 6 mA for lowest noise. The actual collector current will be about 1 mA less than the total current due to the current being drawn by resistors R3 and R4 in the bias circuit. At the rated 5-6 mA of current, V_{CE} will be 5-6 volts. Since the actual collector current drawn from the power supply is a function of the dc current gain (h_{FE}) of the device, the value of R2 may have to be adjusted slightly to achieve the desired amount of collector current. To date, all of the devices tested have achieved similar operating parameters and lowest noise figure without any modifications to the bias network shown in fig. 1.

Optimizing the input network for lowest noise figure is most easily done with an automatic noise-figure meter, but precise tuning can still be achieved by using a weak-signal source or a simple noise generator. Start with C1 at about half capacitance and then minimize noise figure with C2. Increase C1 slightly and then repeak C2 for minimum noise figure. Do not increase the capacitance of C1 past the point where minimum noise figure occurs. Overcoupling with C1 broadens the frequency response of the preamplifier with no improvement in noise figure. Finally, peak the post-amplifier stage into the preamplifier for minimum noise figure.

All devices I have tested so far have yielded noise figures between 0.8 and 1.0 dB; associated gain at minimum noise figure varies from 14 to 16 dB. With the added selectivity and lower noise figure obtainable with this device, this preamplifier should make for a significant improvement in the reception of EME signals as compared with other bipolar devices presently on the market. It also does a good job of challenging users of GaAs fets at noise-figure measuring contests! After nine months of operating 432-MHz EME with this preamplifier, I am convinced that it has made a worthwhile improvement in the reception of weak signals.

references

Superheterodyne receivers which have ganged tuned capacitors for simultaneous tuning of the local oscillator and signal frequency circuits require a special design approach. When such circuits are correctly designed and adjusted, they are said to "track," meaning that each resonant circuit is correctly tuned for any frequency setting of the receiver's tuning dial. Errors in tracking, if large enough, cause loss of receiver sensitivity.

The following method of calculating component values for superhet tuning circuits is not new, but I've tried to reduce the procedure to its essentials. Interested readers who want to pursue the topic should review reference 1, which lists other works on the subject.

the problem

Fig. 1 illustrates what is to be accomplished. As the tuning capacitor is rotated, the receiver's input circuits must tune from the lowest signal frequency, f_1, to the highest signal frequency, f_2. At the same time, the local oscillator (LO) must tune to a frequency which is always equal to the signal frequency plus the intermediate frequency, the i-f being a constant fixed frequency. Although circuits can be designed so the LO frequency is lower than the rf or signal frequency, the method described here requires that the LO be higher than signal frequency.*

Fig. 2 shows the component arrangements for the signal and oscillator tuning circuits. In the signal circuit, C_T represents the distributed capacitance of the coil, plus the minimum capacitance of the variable tuning capacitor, plus any fixed capacitance necessary to adjust the circuit. Capacitance C_G is the variable capacitance of one gang of the tuning capacitor used for the signal frequency. $C_{G_{max}}$ is the difference between minimum and maximum values of the variable capacitor. If a variable capacitor section can be adjusted from a minimum value of 10 pF to a maximum value of 365 pF, for example, then $C_{G_{max}}$ for that capacitor is 355 pF.

Capacitor C_{TL} in the oscillator circuit represents the distributed capacitance of the oscillator coil; its value is found by measuring the self-resonant frequency of the coil with a grid-dip meter; then, knowing the inductance, the capacitance may be calculated. In many cases, however, C_{TL} will be so small, compared to the other circuit capacitances, that it may be neglected. C_p is called the padder capacitor; C_{TC} represents the minimum capacitance of the oscillator section of the tuning capacitor plus any capacitance needed for correct adjustment; C_{Go} is the variable capacitance of the oscillator gang on the tuning capacitor. $C_{G_{omax}}$, used in the equations, is the difference between minimum and maximum values of C_{Go}. It is not required that the oscillator section of the ganged tuning capacitor have the same capacitance as the rf sections, but, for the equations here, its percentage of maximum capacitance vs. angle of shaft rotation should be the same as for the rf sections. In other words, the rotor plates of the capacitor should all have the same shape.

design equations

Units for the following equations are microhenries for inductance, MHz for frequency, and picofarads

*To reduce problems with spurious signals, the local oscillator should be above the signal frequency. Editor.

By Courtney Hall, WA5SNZ, 7716 La Verdura Drive, Dallas, Texas 75248
for capacitance. Equations are listed in the order in which they must be solved, so that values needed for a particular equation will have already been determined. It is first necessary to define the signal and i-f frequencies, then make a few preliminary calculations regarding their relationships. Also, the difference between minimum and maximum values of the tuning capacitor sections must be determined; this is best done with an accurate capacitance meter or bridge. I am hesitant to accept vendor’s ratings, especially when buying variable capacitors on the surplus market.

\[
\begin{align*}
 f_1 &= \text{minimum signal frequency} \\
 f_2 &= \text{maximum signal frequency} \\
 f_i &= \text{intermediate frequency (i-f)} \\
 A &= \frac{f_2}{f_i} \\
 B &= \frac{f_2 + f_i}{f_1 + f_i} \\
 C_{G_{\text{max}}} &= C_{\text{max}} - C_{\text{min}} \\
 C_{G_{\text{omax}}} &= C_{\text{omax}} - C_{\text{omin}} \end{align*}
\]

Values of components for the signal tuning circuit may be calculated as follows:

\[
C_T = \frac{C_{G_{\text{max}}}}{A^2 - 1} \text{ pF}
\]

\[
L = \frac{25330}{C_T f_i^2} \text{ } \mu\text{H}
\]

For the oscillator circuit, there are two methods of calculation; one is for arithmetical-mean tracking, and the other is for geometrical-mean tracking. Arithmetical-mean tracking is probably best if the receiver tunes a relatively narrow range of frequencies, while geometrical-mean tracking should be used if the receiver tuning range is large, such as \(f_2/f_1 = 3\). Again, some preliminary tracking calculations are needed. For arithmetical-mean tracking, calculate:

\[
A = \frac{f_2}{f_i} \\
B = \frac{f_2 + f_i}{f_1 + f_i} \\
A^2 = \left(\frac{f_2}{f_i}\right)^2 \\
B^2 = \left(\frac{f_2 + f_i}{f_1 + f_i}\right)^2 \\
C_{P_{\text{max}}} = C_{\text{Gomax}} - C_{\text{min}} \\
C_{T_{\text{cmax}}} = \frac{C_{\text{Gomax}}}{r B^2 - 1} \\
C_{P_{\text{min}}} = C_{P_{\text{max}}} - C_{T_{\text{cmax}}} \\
C_T = (C_{P_{\text{min}}} + C_{T_{\text{f}}}) \text{ pF} \\
L_0 = \frac{25330 C_{\text{P_{min}}} C_{P_{\text{max}}}}{C_{T_{\text{cmax}}} C_T r (f_2 + f_i)^2} \text{ } \mu\text{H}
\]

example

A receiver is wanted which will tune from 2.5 to 3.5 MHz, and the i-f is to be 0.455 MHz. To add a little safety factor, it is decided to make the tuning range 50 kHz wider on each end.

\[
\begin{align*}
 f_1 &= 2.45 \text{ MHz} \\
 f_2 &= 3.55 \text{ MHz} \\
 f_i &= 0.455 \text{ MHz} \\
 A &= \frac{3.55}{2.45} = 1.449 \\
 A^2 &= 2.1 \\
 B &= \frac{3.55 + 0.455}{2.45 + 0.455} = 1.3787 \\
 B^2 &= 1.9
\end{align*}
\]

A three-gang variable capacitor is available, and each section is measured to have a range of 10 to 365 pF. Therefore

\[C_{G_{\text{max}}} = 365 - 10 = 355 \text{ pF}\]
table 1. Results of calculations to prove validity of the design approach (see figs. 3 and 4).

<table>
<thead>
<tr>
<th>C_G (pF)</th>
<th>f_{osc} (MHz)</th>
<th>f_{osc-0.455} (MHz)</th>
<th>f_{sig} (MHz)</th>
<th>error (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4.0050</td>
<td>3.5500</td>
<td>3.5500</td>
<td>0</td>
</tr>
<tr>
<td>45</td>
<td>3.7812</td>
<td>3.3262</td>
<td>3.3257</td>
<td>500</td>
</tr>
<tr>
<td>90</td>
<td>3.5946</td>
<td>3.1396</td>
<td>3.1382</td>
<td>400</td>
</tr>
<tr>
<td>180</td>
<td>3.2994</td>
<td>2.8444</td>
<td>2.8443</td>
<td>100</td>
</tr>
<tr>
<td>270</td>
<td>3.0746</td>
<td>2.6196</td>
<td>2.6195</td>
<td>100</td>
</tr>
<tr>
<td>355</td>
<td>2.9054</td>
<td>2.4504</td>
<td>2.4497</td>
<td>700</td>
</tr>
</tbody>
</table>

The rf or signal section components may now be calculated:

\[C_T = \frac{355}{2.1 - 1} = 322.73 \text{ pF} \]

\[L = \frac{25330}{322.72 (3.55)^2} = 6.228 \mu\text{H} \]

For proper alignment, and to allow for tuning out stray circuit reactance, the inductor should be slug-tuned, and \(C_T \) should have an adjustable component. Remember also that the calculated value of \(C_T \) includes the minimum capacitance of the variable tuning capacitor. With these things in mind, the rf tuning circuit could be designed as shown in fig. 3. The 10-pF minimum capacitance of the tuning capacitor, plus the 43-pF setting of the trimmer, plus the 270-pF fixed capacitor add up to the calculated value for \(C_T \) of 323 pF. Distributed capacitance of the coil has been ignored, but its value can be no more than a few pF and can be easily compensated for by slight adjustment of the trimmer during alignment.

Arithmetical-mean tracking is chosen for the oscillator circuit because of the modest tuning range.

\[\tau = \frac{2.1 (3 + 1.449)}{1.9 (3 + 1.3787)} = 1.0787 \]

\[C_{P,\text{max}} = \frac{355}{1.0787 - 1} = 4510.8 \text{ pF} \]

\[C_{Tc,\text{max}} = \frac{355}{1.0787 (1.9) - 1} = 338.2 \text{ pF} \]

\[C_{P,\text{min}} = 4510.8 - 338.2 = 4172.6 \text{ pF} \]

Ignoring the distributed capacitance of the oscillator coil gives the following:

Using these calculated values, the actual oscillator tuning circuit could be set up as shown in fig. 4.

That takes care of the paper design, but is it correct? To find out, I used the calculated values of the capacitors and inductors, then chose several discrete values for \(C_G \) and \(C_{G0} \), the sections of the variable capacitor, and calculated the resonant frequencies of the rf and LO circuits for each value. Table 1 shows the results.

For perfect tracking, each oscillator frequency minus 0.455 MHz should exactly equal the corresponding signal frequency. The errors are so small that they can be attributed to rounding off calculations in each step of the procedure; therefore, the overall method appears valid.

remarks

No allowances are made for effects of coupling the resonant circuits to other circuit components, which will certainly have some impact. If the range of the adjustable components does not allow proper alignment and tracking, then the values of some components may have to be slightly changed. The small distributed capacitance \((C_{TL}) \) of the oscillator coil, which was ignored, causes slight errors in the calculated values of the oscillator padder, \(C_p \), and trimmer, \(C_{Tc} \), but \(C_p \) is so large that the error is negligible there, and \(C_{Tc} \) may be adjusted to compensate for the error.

Information on correct superheterodyne alignment techniques is available to amateurs elsewhere, but the design equations presented here have, in my opinion, been too long absent from contemporary amateur literature.

references

In 1977 Norm North, WAI3DR, was assigned to Thule, Greenland. With him went his Heath HW-7, a dipole antenna, and a goal...work all 50 states!
Norm failed! But what he did accomplish in three months' time, with his HW-7 and the call OX5AE, is nothing short of amazing! Worked: 41 states, 30 countries, including a FY4 in Beo Hizophonte, Brazil, and First Place, High-Band CW Greenland, in the '77 ARRL International DX Competition! Quite a record!

In Norm's words: "I honestly believe that I could have worked all states and perhaps DXCC if I had stayed in the Arctic a bit longer. This is quite a tribute to that little rig..."

We'd agree, and we bet Norm would have done even better if he had been using a new Heath HW-8! Why? Because our engineers felt they could give you a much finer QRP rig than the HW-7. One with better sensitivity, lower hum and noise figures, an HF gain control, sharper preselector, switchable selectivity, more bands to operate, and even a bit more power!

They succeeded in a big way! And the result of their efforts is a truly superb CW transceiver for the QRP operator that costs just $129.95 ... the Heathkit HW-8!

Why don't you take up the challenge? Build an HW-8 kit, then join the growing ranks of outstanding QRP operators, like Norm, who are proving you really can work the World on a couple of watts!

Price is mail order. F.O.B. Benton Harbor, MI. Prices and specifications subject to change without notice.

Catalogs also available at the 50 Heathkit Electronic Centers coast-to-coast (units of Schlumberger Products Corp.) where Heathkit products are displayed, sold, and serviced. Retail prices on some products may be slightly higher. See your phone book white pages.

FREE Heathkit Catalog

Heathkit Schlumberger

Gentlemen, please send me my free Heathkit Catalog. I am not on your mailing list.

Name ____________________________
Address ____________________________
City ______ State ______
AM-375A Zip ______
Almost from the very beginning of ham radio, there has been interference. With varying degrees of success, numerous devices have been designed to combat this problem. Modern technology has provided us with such things as narrow-bandwidth crystal filters, active audio filters, Q-multipliers, and acoustically resonant transducers, to name just a few.

There is another method of providing interference rejection for the CW operator, though it has been largely ignored except by a scant few. This involves the use of narrow-bandwidth, integrated-circuit tone decoders, or as shown in this article, the LM567.

The LM567 is a phase-locked-loop tone decoder which can be made to respond to a tone anywhere from less than 1 Hz to approximately 500 kHz. For my use, the range is adjustable from roughly 500 Hz to 1100 Hz. The bandwidth has been set to about 50 Hz either side of the center frequency. In other words, if the LM567 is set to a center frequency of 750 Hz, it will respond to any signal from 700 Hz to 800 Hz and ignore virtually all others.

circuit description

A CW signal from the phone jack of a receiver is fed to the 8-ohm winding of T1 (see fig. 1). This transformer presents a low-impedance termination for the receiver audio stage, as well as providing a voltage step-up for the input of the LM567. The two 1N34A germanium diodes across the secondary limit the audio voltage to near the optimum value for the tone decoder. The three resistors and the capacitor connected to pins five and six determine the frequency range over which tones can be decoded. When a tone of the proper frequency is present at the input terminals, the output (pin 8) goes to ground and causes the LED to light.

The waveform at the output of the LM567 is sometimes a little ragged, and, for that reason, it is fed through one half of a 7413 Schmitt trigger. This stage transforms the output waveform to a square wave with very fast rise and fall times and also performs the inversion necessary for the following stage.

It wasn’t until a prototype was constructed that a problem became known. The output of the tone decoder stays low for a few milliseconds after the input signal stops. The net result is to increase the “weight” of the keyed signal. That is, it decreases the spacing between code elements. To counteract this problem, a 1000-ohm resistor was connected between the output of the LM567 and the input of the 7413. Also, there is a 3.3 µF capacitor from the input of the 7413 to ground. This combination delays

By William B. Jones, W7KZ, 5319 Northeast 109th Street, Vancouver, Washington 98665
the switching time of the 7413 after the tone decoder goes low. The end result is to restore normal weight to the keyed signal. The values specified were experimentally derived and may be adjusted to suit individual tastes. The third stage is the familiar NE555 timer, wired as a keyed audio oscillator.

In operation, a CW signal is tuned in on the receiver and the frequency control of the CW PROCESSOR is varied until the LED begins to blink in unison with the incoming signal. This indicates that the LM567 is tuned to the proper frequency and is decoding the CW being presented to it. Activating S1 will replace the live audio with the tone generated by the 555.

It takes approximately 10 to 15 millivolts of audio from the receiver to activate the tone decoder. This corresponds to a rather weak signal (S3 to S4 would be a fair guess) in most receivers. Obviously then, the CW PROCESSOR is quite sensitive and does not take a “block-buster” signal to make it work.

From time to time, you will encounter signals that shift frequency, fade into the noise, or become obliterated by stronger adjacent signals. As these situations occur, the CW PROCESSOR will stop responding to the signal, with the resultant loss of audio. The circuit shown in fig. 2 was added to automatically switch the output from the receiver back to the headphones, after an adjustable delay.

Once again, the NE555 timer is pressed into service, this time as a monostable multivibrator. The addition of a single PNP transistor transforms the circuit into a negative recovery monostable.1 If this circuit is incorporated into the CW PROCESSOR, S1 will be replaced by the contacts on K1.

It should be pointed out that if a relay with a 5- or 6-volt coil is unavailable, it is quite permissible to substitute one with a 12-volt coil and operate the second NE555 from the 12-volt supply line. The circuit performance is identical in either case. Of course, the additional NE555 is not absolutely necessary to the performance of the CW PROCESSOR, but it does add a considerable amount of operator convenience. Whether it is included or not is entirely up to the individual builder.

construction

Because everything is operating at audio frequencies, layout and construction are definitely not critical. My version was constructed on a printed circuit board with hole spacings adjusted to suit the size of components on hand. Alternatively, perfboard and hardwired connections could be used with equally reliable results.

On the subject of parts and pieces, note that all of the necessary parts to build your own version of the CW PROCESSOR are listed in the Radio Shack catalog. Reasonable amounts of latitude may be taken.

fig. 1. Schematic diagram of the signal processor. The 567 is a phase-locked loop which is configured to respond to tones from 500 to 1100 Hz. The Schmitt trigger reduces the weighting effect caused by the output of the PLL remaining low after removal of the audio signal. Since the processor requires a +5 volts, a simple 3-terminal regulator can be used to power the unit from a 12-volt line.

fig. 2. For periods when you experience loss of signal, this circuit will automatically switch back to live receiver audio after a suitable delay. If a relay with a 5-volt coil is not available, the circuit can also be powered from +12 volts.
the CW PROCESSOR was operated with no enclosure at all and no problems were encountered. This would suggest the possibility of using a nonmetallic box instead of the more common aluminum cabinet.

summary

The CW PROCESSOR is not a cure-all for all QRM problems; it does have its limitations. For example, the 100-Hz bandwidth talked about earlier is valid only for signals not exceeding approximately 300 millivolts at the input of the LM567. As is sometimes the case, you will be trying to copy an S5 signal with the CW PROCESSOR and an S9 signal only 200 Hz away will disrupt reception. Also, if you are trying to copy a heavily weighted CW signal, the CW PROCESSOR will aggravate the situation unless an absolute minimum of signal is presented to the input.

All things considered, however, using the CW PROCESSOR has been pure joy. Operator fatigue is greatly reduced by not having to listen to all of the garbage normally associated with ham band signals. It is amazing how well this device snatches a barely readable signal out of the noise and transforms it into the kilowatt-next-door category. Build one for yourself and see what a difference it makes at your station.

reference

birdie suppression in the Swan 160X

The Swan 160X is a 400-watt PEP input transceiver for 160 meters. Unfortunately, it is no longer made. During its lifetime, there was little interest in the 160-meter band. Now, that interest is growing, the 160X is a prized piece of equipment for the “top band” enthusiast. A few 160Xs are available second hand, but they are quickly snapped up and do not stay on the dealer’s shelves for any length of time.

A minor problem with the 160X is a birdie or crossover product which falls in the passband of the receiver. It can be heard as a carrier, or heterodyne, at about 1834 kHz. Though not particularly loud, it can be very annoying when you’re looking for a weak DX signal.

An investigation of the mixing technique in the 160X shows that the spurious signal is a result of unwanted mixer products from the VFO and the carrier oscillator, O3. At spurious frequency of 1834 kHz, the carrier oscillator is at 5.500 MHz and the VFO is at 7.333 MHz. The third-order product of these two frequencies is:

\[\text{Birdie} = 3f_2 - 2f_1 \]

where,

\[f_1 = 7.333 \text{ MHz} \]
\[f_2 = 5.500 \text{ MHz} \]

or,

\[16.500 - 14.666 = 1.834 \text{ MHz} \]

The birdie may be reduced to an amplitude by placing a trap tuned to 14.666 MHz in the output lead of the VFO. This is easy to accomplish since the output signal from the VFO appears at the accessory socket (J6) located on the rear apron of the 160X. It is merely necessary to break the lead in the plug and insert a small trap as shown in fig. 1. The trap can be made up of very small components and mounted directly to the pins of the plug, which should always be in place when an auxiliary VFO is not used. (Since, to my knowledge, an auxiliary VFO was never built for the 160X, this is a moot point!)

If a compression-type capacitor is used, the trap is easily adjusted by tuning the transceiver to 1834 kHz and adjusting the capacitor for minimum birdie response in the receiver.

Bill Orr, W6SAI
Remember when...

...People wore highbutton shoes
...Eisenhower was President
...Hardly anyone operated on 220 MHz

Times have changed

TPL Communications has kept up with the changes and now offers to the many 220 MHz operators a wide variety of amplifiers.

220 MHz

<table>
<thead>
<tr>
<th>Model</th>
<th>Power In</th>
<th>Power Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>*401</td>
<td>5 to 15W</td>
<td>30 to 45W</td>
</tr>
<tr>
<td>401B</td>
<td>1 to 4W</td>
<td>30 to 45W</td>
</tr>
<tr>
<td>*801</td>
<td>5 to 15W</td>
<td>60 to 90W</td>
</tr>
<tr>
<td>801B</td>
<td>1 to 4W</td>
<td>60 to 90W</td>
</tr>
<tr>
<td>*801C</td>
<td>15 to 30W</td>
<td>60 to 90W</td>
</tr>
<tr>
<td>*1301</td>
<td>5 to 15W</td>
<td>90 to 130W</td>
</tr>
<tr>
<td>*1301C</td>
<td>15 to 30W</td>
<td>90 to 130W</td>
</tr>
</tbody>
</table>

* These models may be ordered with a repeater option

See these and other fine TPL amplifiers at your dealer listed below.

Action Radio
Ave. Pinero 1271
Caparra Terrace, PR 00920
(809) 782-2126

Amateur Radio Supply
6213 13th Ave. South
Seattle, WA 98108
(206) 767-3222

Amateur Electronic Supply
4928 W. Fond du Lac Ave.
Milwaukee, WI 53216
(414) 442-4200

Amateur Radio Center
2805 N.E. Second Ave.
Miami, FL 33137
(305) 574-8383

Adirondack Radio Supply
185 W. Main St.
Amsterdam, NY 12010
(518) 842-8350

Britt's 2-Way Radio Service
2508 N. Atlanta Road
Smyrna, GA 30080
(404) 432-8006 (local)
(800) 241-9961 (toll free)

C.W. Electronic Sales Co.
1401 Blake St.
Denver, CO 80202
(303) 893-5525

EISC
11395 Elkin St.
Whitney, MD 20902
(301) 946-1088

Erickson Communications
5935 Milwaukee St.
Chicago, IL 60644
(312) 631-5818

Ham-Buerger
66 N. York Rd.
Willow Grove, PA 19090
(215) 659-5900

Ham Radio Center
8340 Olive Blvd.
St. Louis, MO 63132
(314) 953-6600 (local)
(800) 325-5636 (toll free)

Ham Radio Outlet
2620 W. La Palma
Anaheim, CA 92801
(714) 761-3033
999 Howard Ave.
Burlingame, CA 94010
(415) 342-5757

Ham Radio Outlet
5375 Kearney Villa Rd.
San Diego, CA 92123
(714) 560-4900
13754 Victory Blvd.
Van Nuys, CA 91401
(213) 988-2212

He.M.E.c.
217 W. Gutierrez St.
Santa Barbara, CA 93101
(805) 963-3765

Honolulu Electronics
819 Keeaumoku St.
Honolulu, HI 96814
(808) 949-5564

Long's Electronics
2608 7th Ave. South
Birmingham, AL 35233
(800) 292-8668 (local toll free)
(800) 833-3410 (out of state toll free)

Madison Electronics Supply
1508 McKinney
Houston, TX 77002
(713) 658-0268 (local)
(713) 497-5683 (nights)

N & G Distributing
4545 NW 7th St.
Miami, FL 33125
(305) 443-6119

See these and other fine TPL amplifiers at your dealer listed below.
A low-noise preamplifier which may be used to improve 10-meter receiver sensitivity, improve OSCAR communications, or extend Gunnplexer range

The apparent sensitivity of many communications receivers seems to fall off above about 25 MHz because of the lower levels of external galactic and external noise at these frequencies. When the 10-meter band is wide open, this isn't particularly noticeable, but when propagation conditions are marginal additional sensitivity makes a big difference in DX performance.

A receiver which has an adequate noise figure on 20 and 15 meters may be marginal on ten; also, front-end circuits which have been optimized for the lower amateur bands don't always work as well as they should at 28 MHz. This is especially true with vacuum-tube rf amplifiers. Since 10 meters is open perhaps three years during the 11-year sunspot cycle, and then for only a few hours each day, it is understandable why the designers don't pay more attention to 10-meter performance.

If you operate on the vhf-uhf bands and use your receiver as a tunable i-f, noise figure is extremely important because it affects the noise performance of your vhf/uhf converter. Satellite communications can also be improved by better receiver sensitivity, and if you operate on 10 GHz with a Gunnplexer, you

By James R. Fisk, W1HR, *ham radio*, Greenville, New Hampshire 03048
bias circuit design

One factor which is often overlooked in vhf circuit design is the dc bias network. At low frequencies an emitter resistor is often used to provide negative current feedback for dc stability. In low-noise vhf applications, however (and this includes 28 MHz), the emitter bypass capacitor which is an efficient rf bypass at the design frequency often introduces low frequency instability. Furthermore, any series emitter impedance, no matter how small, results in a degradation of noise figure and gain. Therefore, vhf circuits which are designed for lowest noise or maximum gain require that the emitter lead be grounded as close as possible to the transistor package to keep emitter series feedback to an absolute minimum.

The transistor variable which has the most effect on dc stability is collector current. If you study the transistor’s parameters, you’ll find that gain and noise figure are the most sensitive to changes in bias, and both are stronger functions of collector current than of collector-emitter voltage, \(V_{CE} \).

fig. 2. Dc bias circuit for vhf/uhf applications stabilizes collector current with voltage feedback through resistor \(R_B \) and maintains constant base current with \(R_{B1} \) and \(R_{B2} \). A design example is given in the text.

can double your effective range by lowering your system noise figure by 6 dB.

30-MHz preamp

The 30-MHz i-f preamplifier shown in fig. 1 is based on a design by engineers at Microwave Associates using low-noise npn silicon planer transistors.* These transistors exhibit excellent noise figure vs current characteristics, which results in extremely low noise figure and wide dynamic range. The circuit provides 19 dB gain with a noise figure of about 1.1 dB; compression of 1 dB occurs at an output of \(-7\) dBm. The 3-dB bandwidth of the preamplifier is 10 MHz, and the input is designed to match the 200-ohm source impedance of the Gunnplexer mixer diode. Circuits for matching the preamp to 50 ohms are discussed later in this article.

The noise figure of the Schottky mixer diode in the Gunnplexer is specified at 12 dB maximum, but many units are better than this. With careful design, proper impedance matching, and the use of an i-f preamplifier with a 1.0 to 1.5 dB noise figure, some users have reported system noise figures well below 10 dB. This represents a significant increase in reliable communications range.

* Microwave Associates transistors are available from G. R. Whitehouse, Newbury Drive, Amherst, New Hampshire 03031.

fig. 1. Low-noise preamplifier has a noise figure of 1.1 dB at 30 MHz and 3 dB bandwidth of 10 MHz. Gain is 19 dB. Total current drain with a +10 volt supply is 13 mA. All resistors are 1/4 watt carbon; bypass capacitors are 50-volt ceramics.

fig. 3. Suggested circuit for matching the low-noise preamplifier stage to 50 ohms.

偏压电路设计

一个常被忽视的高频电路设计因素是直流偏压网络。在低频情况下，通常使用发射极电阻来提供负的电流反馈以确保直流稳定性。在低噪声高频应用中，特别是28 MHz，用于在设计频率处提供RF旁路的发射极电容会引入低频不稳定。此外，任何串联发射极阻抗，无论多么小，都会导致噪声因子和增益的退化。因此，对于最低噪声或最大增益的高频电路，要求发射极引脚要尽可能靠近晶体管封装，以保持发射极串联反馈的绝对最小值。

晶体管变量中对直流稳定性影响最大的是集电极电流。如果你研究晶体管的参数，你会发现增益和噪声因子是最敏感于变化的，而且两者都是集电极电流而不是集电极-发射极电压\(V_{CE} \)的更强函数。

图2. 直流偏压电路对高频/超高频应用稳定集电极电流，通过电阻\(R_B \)提供电压反馈，并保持基极电流恒定，通过\(R_{B1} \)和\(R_{B2} \)。设计示例见本文。

可以将你的有效范围加倍，通过降低系统噪声因子6 dB。

30-MHz预放大器

图1中所示的30-MHz中频放大器基于Microwave Associates工程师使用低噪声NPN硅平面晶体管设计。这些晶体管在电流特性上表现出出色的噪声因子，因此获得了极低的噪声因子和宽动态范围。电路提供了19dB的增益以及大约1.1dB的噪声因子；1dB的压缩发生在输出\(-7\)dBm。该放大器的3-dB带宽为10 MHz，输入设计用于匹配Gunnplexer混频器二极管的200欧姆源阻抗。匹配预放大器到50欧姆的电路在本文中稍后讨论。

Gunnplexer中的施密特混频器二极管的噪声因子规格为12 dB最大值，但许多型号实际上要好得多。通过精心设计、合适的阻抗匹配以及使用具有1.0到1.5 dB噪声因子的中频预放大器，一些用户报告说系统的噪声因子可以低到10 dB以下。这代表了可靠的通信范围的显著增加。

*Microwave Associates晶体管可从G. R. Whitehouse，纽伯里驱动，阿默斯特，新罕布什尔州03031购买。

图1. 低噪声预放大器在30 MHz时具有1.1 dB的噪声因子和3 MHz的带宽。增益为19 dB。用10伏特供电的总电流消耗为13 mA。所有电阻均为1/4瓦特碳；旁路电容为50伏特陶瓷。
and a constant base current source from resistors R_{BI} and R_{B2}. Not shown are the rf chokes which must be placed in series with the base and collector (RFC1 and RFC2 in fig. 1).

The design equations for this bias circuit are given in fig. 2. First determine the available supply voltage V_{CC}, select the desired transistor operating point (V_{CE} and I_C), and check the transistor data sheet for dc forward gain h_{FE}. If h_{FE} data is unavailable, assume $h_{FE} = 50$; this is a fair assumption for many vhf/uhf transistors. To ensure a constant base current source, the voltage V_{BB} is set at approximately three times the base-emitter voltage, V_{BE}, or about 2 volts for silicon transistors ($V_{BE} = 0.7$ volt). The current through R_{B2} is set at five times the base current I_B. Since $I_B = I_C/h_{FE}$, the current through R_{B2} is $5I_C/h_{FE}$. The current flowing through R_{B1} is the sum of the current through R_{B2} plus base current or $6I_C/h_{FE}$.

The noise-figure curve at 30 MHz for the Microwave Associates 42001-509 transistor shows a rather broad minimum centered around $I_C = 3$ mA; h_{FE} is about 90. With a 10-volt dc power supply, V_{CE} is selected to be 6 volts. Using the design equations of fig. 2 yields the following bias resistor values: $R_B = 39k$, $R_{B2} = 12k$; $R_{BI} = 20k$; and $R_C = 1250$ ohms. The 30-MHz preamplifier in fig. 1 uses the nearest standard resistance values.

In the output emitter follower stage dc stabilization is provided by current feedback produced by the 470-ohm emitter resistor; the input impedance of this stage is approximately 50 ohms. The emitter follower is used to drive a 50-ohm coaxial cable to the first i-f stage or front end rf amplifier. If the preamplifier is located very close to the 28-30 MHz rf stage, the emitter follower may be omitted.

input matching

Another important consideration in low-noise amplifier circuits is the design of the input matching circuit. For the 42001-509 transistor the input impedance for optimum noise figure is $100 + j37$ ohms at 30 MHz. The input pi network (C1, L1, C2 in fig. 1) transforms this to the 200-ohm source impedance of the Gunnplexer mixer diode. The output of the first stage is matched to the approximately 50-ohm input of Q2 with C3, C4, C5, and L2.

If you wish to use this preamplifier in a 50-ohm system you can either modify the input matching circuit or use a 4:1 rf transformer. A suggested 50-ohm
input circuit is illustrated in fig. 3. Construction of a simple 4:1 rf transformer which will match 200 ohms to 50 ohms is shown in fig. 4.

construction and test

Fig. 5 shows a full-size, printed-circuit layout for the low-noise 30-MHz preamplifier; the component placement is shown in fig. 6. Note that the rf choke in the base circuit of Q1 (RFC1) is mounted on the foil side of the board; this is to prevent unwanted coupling to RFC2, which is located nearby. When winding the toroid coils, be sure to spread the windings evenly over the circumference of the form.

With slight modification the circuit board will accommodate the 50-ohm matching circuit of fig. 3. L1 and C2 are soldered to the same circuit pads as L1 and C2 in the 200-ohm matching circuit. C1 replaces the 1000-pF blocking capacitor; however, it may be necessary to drill new holes because of the wider spacing of the tabs on the variable capacitor.

![Diagram](image)

fig. 7. Minimum loss pad which may be used to match 200 ohms to 50 ohms. Pad loss of 11.5 dB must be considered when making noise or gain measurements.

Since most rf signal generators and noise-figure meters are designed for a 50-ohm system, and the preamplifier is designed to match 200 ohms, you must take a 4:1 impedance transformation at the input when tuning the preamp. You can use the 4:1 rf transformer if you wish, or the minimum loss pad* shown in fig. 7. This pad has approximately 11.5 dB loss, which must be considered when making gain or noise measurements.

For best operation the preamplifier should be adjusted for minimum noise figure, but this is not possible if you don't have access to noise-measuring equipment. Tuning the preamplifier for maximum gain will degrade noise figure slightly, but noise performance will still be better than that available with most 28-MHz receivers or 30-MHz i-f strips.

*A minimum loss pad is a resistance pad which will provide an impedance match between unequal terminations with the smallest possible attenuation.

references

1. James Fisk, W1DTY, "Receiver Noise Figure, Sensitivity, and Dynamic Range — What the Numbers Mean," ham radio, October, 1975, page 8.
clean local-oscillator chain
for 1296 MHz

An easy-to-build LO for 1296 MHz which can be optimized without a spectrum analyzer. Outputs are also available for 220 and 432 MHz.

Development of a local-oscillator chain for 1296 MHz which can be tuned up without a spectrum analyzer, yet has an acceptably clean spectrum, has been a long-time goal. I have built several LO chains which required the use of a spectrum analyzer and several hours of trimming to tune; when they quit in the midst of a contest, there was no recourse. This article describes a 1296-MHz LO chain which can be tuned up in a few minutes with minimal test equipment, including a tripler which needs no tuning. The spectrum analyzer photographs were taken after tuning was completed; it was not used during the tuneup procedure.

What is an “acceptably clean spectrum?” Very simply, it is one which produces no birdies in the operating band. More quantitatively, the following criteria are arbitrarily defined:

1. No spurious (not harmonically related) outputs
2. Undesired harmonics of oscillator suppressed more than 40 dB
3. Undesired harmonics of oscillator well separated (spacing more than 5% of output frequency)
4. No harmonics near the i-f band
5. Low noise content

Now examine fig. 1A, the local-oscillator spectrum of a typical 432-MHz converter with a fairly low frequency oscillator, followed by two single-tuned transistor triplers. This converter has enough birdies so the band never sounds dead!

The causes of the poor spectrum of fig. 1A are insufficient selectivity, excessive multiplication factor, and inefficient multipliers. Increasing the oscillator frequency spaces the harmonics and eases the selectivity, or filtering, problem. However, a single transistor is still an inefficient multiplier; it would much rather amplify than multiply, so the output always has a strong fundamental component. A tripler also has a strong second harmonic component. One solution is the use of idlers, but they make tuning very critical and usually add a tendency to parametric oscillations. Diode multipliers have the same problems, but with added loss (transistor multipliers often have gain).

A more effective solution is the use of natural multiplying circuits. A push-push doubler was described several years ago.1,2 This basic circuit was incorporated into both doubler stages of a 432-MHz local-oscillator chain; the resultant spectrum shown in fig. 1B. This system has worked beautifully for more than two years.

Recently, a push-pull tripler was added to the out-

By Paul C. Wade, WA2ZZF, 153 Woods Road, Somerville, New Jersey 08876
fig. 1. Spectrum analyzer display of the local oscillator chain for a typical 432-MHz converter, A, showing the large number of undesired spurs. Other displays show the output spectrum of the local-oscillator chain described in this article. (Measurements made with Ailtech 727 spectrum analyzer at 10 dB per division.)

A. Local-oscillator spectrum of a typical 432-MHz converter, after tuning for cleanest output with a spectrum analyzer. Horizontal scale: 100 MHz per division.

B. Output from the low-frequency multiplier chain described in this article. Output at 384 MHz is approximately 20 mW. Horizontal scale: 100 MHz per division.

C. 1152-MHz output from the frequency tripler for use as a local oscillator on 1296 MHz. Output is approximately 0.5 mW. Horizontal scale: 200 MHz per division.

D. Display of the 1152-MHz output showing the noise spectrum. Horizontal scale: 1 MHz per division. Contribution from spectrum analyzer is probably significant.

E. Spectrum of output available from J1 is easily filtered for use as a local oscillator for 220-MHz equipment. Horizontal scale: 100 MHz per division.
put to build a 1296-MHz local oscillator. The push-pull tripler had been a stumbling block because the outputs, as well as the inputs, be 180° out of phase; the push-push doubler requires phase reversal only at the input, which is easily provided by a trifilar wound transformer or a balun. If an untuned transformer was used at the output, it would be a broadband amplifier rather than

fig. 2. Schematic diagram of the 1152-MHz local-oscillator chain. Outputs are available for use on 432 MHz (cable A) and 220 MHz (J1). Cable A is short piece of semi-rigid coax. Components marked with an asterisk may be critical or may need adjustment for optimum performance. Printed-circuit boards are shown in figs. 3 and 4.
a tripler. The brainstorm which made this work was to use a rat-race coupler at the output. As used in this circuit, two input signals which are 180° out-of-phase at the resonant frequency combine at the output port, while other phases and frequencies combine in the terminating resistor. The rat-race is not critical so no tuning is required.

The frequency tripler is followed by a printed-circuit filter made up of quarter-wavelength stubs; the output spectrum is shown in fig. 1C. For detailed descriptions of the rat-race and printed-circuit filter, see Howe’s excellent book, Stripline Circuit Design.³ Fig. 1D shows the noise spectrum of the 1152-MHz output — none is evident down to the noise floor of the analyzer (on this non-optimum range for this measurement); fig. 1E is the output of the first doubler, at J1, for use as a 220 MHz local oscillator, or for connection to a frequency counter.

The major objection to push-push doublers and push-pull triplers is that two transistors are required. However, prices for usable vhf/uhf transistors have dropped to the point that they are available in the 15 cents to $1 range. As an alternative, several matched transistors on the same chips can be bought as an integrated circuit. The single CA3049T used for both doublers costs $1.13 from a local dealer. While the prices of semiconductors have been steadily decreasing, prices for capacitors and coil forms, needed for idlers and filters in conventional multipliers, have increased.

Construction is straightforward and requires no machining; all frequency-determining elements
above grid-dipper range are printed. Printed-circuit layouts are shown in fig. 3 and 4. Component placement may be seen in the photographs. Transistors Q3 and Q4 have their leads bent outward along the printed lines about 0.1 inch (2.5mm) below the case (the fourth lead, case, is cut off flush so the case is not connected) as shown in the close-up photograph.

The trickiest part in building the LO chain is winding transformers T1, T2, and T3. T1 and T2 consist of four trifilar turns on a large ferrite bead such as a Ferronics 11-090-J ($\mu = 900$) as shown in fig. 5. All windings are wound at the same time for a total of 12 turns. The four turns are counted from the inside — not the outside. Also shown in fig. 5 are the transformer connections and how they are installed in the circuit. Construction of transformer T3 is similar except it consists of 3 trifilar turns on a Ferronics 21-030-K ferrite bead ($\mu = 125$). Transformer T2 is installed on the copper foil side of the board to minimize lead length. Cable A in fig. 2 is not installed yet; a temporary jack is installed instead.

Tuneup is also straightforward. Monitoring the power at J1, tune L1 and the trimmer capacitor across L2 for maximum output. Check the frequency with a frequency counter, wavemeter, or grid-dipper. It may be necessary to reduce the value of C2 for maximum output with different crystals. Roughly 0.1 milliwatt is available from J1 with the small link.

Stripline filter for the low-noise amplifier. The bolts through the board ensure an adequate ground connection at the end of the quarter-wavelength filters.

Next, terminate J1 with 50 ohms and monitor the output at L5 through the 120 pF capacitor (cable A not yet installed). Adjust C3, C4, C5, and L2 trimmer for maximum output (approximately 20 mW). If convenient, check frequency — if not, note capacitor
rotor settings in the photographs. Of the three units I have built, the only one which did not proceed smoothly to this point had a defective IC section.

Now either proceed to the tripler or (optional) go back and fine tune the doublers. Small adjustments to the coupling capacitors tapped off L1 and L2, to the output of the voltage regulator (vary the 330-ohm resistor), and to all previous tuning points may help.

Finally, install cable A. Approximately 0.5 mW (−3 dBm) should be available at J2. If the output is low, varying the voltage on Q3 and Q4 (set by CR3) may help. If the output is still low, wrap a small square of aluminum foil over the bare end of a Q-tip and poke around the stripline circuitry while monitoring the output; if it is working normally, nothing should produce a significant increase in output. However, if a balanced mixer with variable dc bias is used, local oscillator powers as low as −10 dBm will probably not significantly degrade the noise figure, if the mixer bias is set at the LO level to be used. This combination was the lowest noise-figure 1296-MHz converter measured at the 1977 Eastern VHF/ UHF Conference.

The printed stripline (technically microstrip) elements, the rat-race and filter, were chosen partly for their non-critical nature. They have moderate inherent bandwidth, so the output frequency could be shifted ±5% with no changes. Conversely, the dimensions are not too critical. For example, the characteristic impedance of the rat-race is approximately 66 ohms vs the design value of 70 ohms because it was laid out using standard printed-circuit tape. For greater frequency changes, it is primarily the length of the lines, rather than the width, which changes. If major changes are contemplated, further research is suggested.

This local-oscillator chain, together with a simple balanced mixer, provides a relatively easy way to listen on 1296 MHz; a varactor tripler would complete a basic station. Since there are no critical adjustments, it can be confidently built with moderate test equipment and skill, yet it has the stability and spectral purity required for an advanced station. Portions of the chain are usable for 220 and 432 MHz as they stand; the addition of a doubler to 2304 MHz is contemplated.

references
1. C. Andren, "Low-Cost 100- to 200-MHz Doubler has 5 dB Gain, 1% Distortion," Electronic Design, 1 September, 1970, page 84.

ham radio
LET US QUOTE YOUR SPECIFIC NEEDS FROM OUR $2,000,000.00 AMATEUR GEAR INVENTORY.

<table>
<thead>
<tr>
<th>Brand</th>
<th>Model</th>
<th>List Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEA</td>
<td>AD-1 Autodialer</td>
<td>129.95</td>
</tr>
<tr>
<td>AEA</td>
<td>List</td>
<td></td>
</tr>
<tr>
<td>TEMPO</td>
<td>List</td>
<td></td>
</tr>
<tr>
<td>R. L. DRAKE</td>
<td>TR7/DR7</td>
<td>1295.00</td>
</tr>
<tr>
<td>R. L. DRAKE</td>
<td>TR7/DR7</td>
<td>1295.00</td>
</tr>
<tr>
<td>MIDLAND</td>
<td>List</td>
<td></td>
</tr>
<tr>
<td>MIDLAND</td>
<td>List</td>
<td></td>
</tr>
<tr>
<td>KENWOOD</td>
<td>List</td>
<td></td>
</tr>
<tr>
<td>KENWOOD</td>
<td>List</td>
<td></td>
</tr>
<tr>
<td>TEMPO</td>
<td>List</td>
<td></td>
</tr>
<tr>
<td>VIBROPLEX</td>
<td>List</td>
<td></td>
</tr>
<tr>
<td>WILSON</td>
<td>List</td>
<td></td>
</tr>
<tr>
<td>YAESU</td>
<td>List</td>
<td></td>
</tr>
<tr>
<td>NPC</td>
<td>List</td>
<td></td>
</tr>
<tr>
<td>NPC</td>
<td>List</td>
<td></td>
</tr>
<tr>
<td>ROHN TOWERS</td>
<td>List</td>
<td></td>
</tr>
<tr>
<td>R. L. DRAKE</td>
<td>List</td>
<td></td>
</tr>
<tr>
<td>SWAN</td>
<td>List</td>
<td></td>
</tr>
</tbody>
</table>

ANTENNAS • ROTORS • TOWERS

<table>
<thead>
<tr>
<th>Brand</th>
<th>Model</th>
<th>List Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUSHCRAFT</td>
<td>HD73</td>
<td>179.95</td>
</tr>
<tr>
<td>CUSHCRAFT</td>
<td>U-100</td>
<td>69.95</td>
</tr>
<tr>
<td>CUSHCRAFT</td>
<td>TH80DX</td>
<td>296.95</td>
</tr>
<tr>
<td>CUSHCRAFT</td>
<td>TH3MK III</td>
<td>219.95</td>
</tr>
<tr>
<td>CUSHCRAFT</td>
<td>TH5JR</td>
<td>144.50</td>
</tr>
<tr>
<td>CUSHCRAFT</td>
<td>HY QUAD</td>
<td>229.95</td>
</tr>
<tr>
<td>CUSHCRAFT</td>
<td>HY QUAD</td>
<td>229.95</td>
</tr>
<tr>
<td>HY-GAIN</td>
<td>List</td>
<td></td>
</tr>
<tr>
<td>HUSTLER</td>
<td>List</td>
<td></td>
</tr>
<tr>
<td>MORGAIN</td>
<td>List</td>
<td></td>
</tr>
<tr>
<td>MOSLEY</td>
<td>List</td>
<td></td>
</tr>
<tr>
<td>ROHN TOWERS</td>
<td>List</td>
<td></td>
</tr>
<tr>
<td>WILSON</td>
<td>List</td>
<td></td>
</tr>
<tr>
<td>ALLIANCE</td>
<td>HD73</td>
<td>179.95</td>
</tr>
<tr>
<td>ALLIANCE</td>
<td>U-100</td>
<td>69.95</td>
</tr>
<tr>
<td>ALLIANCE</td>
<td>TH80DX</td>
<td>296.95</td>
</tr>
<tr>
<td>ALLIANCE</td>
<td>TH3MK III</td>
<td>219.95</td>
</tr>
<tr>
<td>ALLIANCE</td>
<td>TH5JR</td>
<td>144.50</td>
</tr>
<tr>
<td>ALLIANCE</td>
<td>HY QUAD</td>
<td>229.95</td>
</tr>
<tr>
<td>ALLIANCE</td>
<td>HY QUAD</td>
<td>229.95</td>
</tr>
</tbody>
</table>

Give us a try before you buy • Call Jim Titus Toll Free and ask him to quote your requirements from this ad

FREE UPS SHIPPING ON PREPAID ORDERS

TOLL FREE QUOTES 800-523-8998

a Division of TREVOSE ELECTRONICS, INC/ 4033 Brownsville Road, Trevose, PA 19047

More Details? CHECK — OFF Page 142
WHERE THE HAM IS KING FOR OVER 30 YEARS

PICK YOUR OWN PACKAGE

KENWOOD
KENWOOD
YAESU

TS-520S
160-10M TRANSCEIVER
$739.00

TS-820S
160-10M TRANSCEIVER
$1098.00

FT-101E
160-10M TRANSCEIVER
$799.00

BUY ANY ONE OF THE ABOVE RIGS AT PRICE SHOWN AND SELECT ANY ONE OF THE FOLLOWING FOR $5.00

ALLIANCE
DENTRON
BIRD

HD-73 ROTOR
HEAVY DUTY, DUAL SPEED
Value $154.95

160-10AT Tuner
Value $129.50

Model 43 Meter
Value $125.00

FREE UPS SHIPPING ON PREPAID ORDERS
TOLL FREE QUOTES 800-523-8998

a Division of TREVOSE ELECTRONICS, INC/4033 Brownsville Road, Trevose, PA 19047

More Details? CHECK OFF Page 142
WHERE THE HAM IS KING FOR OVER 30 YEARS

- PICK YOUR OWN PACKAGE -

MIDLAND
13-510 FM TRANSCEIVER
25 WATTS / 800 CHANNELS
$399

KENWOOD
TR-7400A FM TRANSCEIVER
25 WATTS / 800 CHANNELS
$399

ICOM
IC-245 FM TRANSCEIVER
WITH SINGLE SIDEBAND
$689.95

BUY ANY ONE OF THE ABOVE RIGS AT PRICE SHOWN AND SELECT ANY ONE OF THE FOLLOWING FOR $5.00

DRAKE
1525 EM TOUCH TONE® ENCODER MICROPHONE
Value $49.95

CES
MODEL 300 ACOUSTICAL PAD
Value $49.95

SEI
SPS-8 POWER SUPPLY
Value $79.95

a Division of TREVOSE ELECTRONICS, INC/ 4033 Brownsville Road, Trevose, PA 19047

FREE UPS SHIPPING ON PREPAID ORDERS

TOLL FREE QUOTES 800-523-8998

More Details? CHECK — OFF Page 142
evaluating
noise sideband performance
in oscillators

Receiver local oscillators produce noise sidebands which degrade receiver performance — how good is the oscillator in your receiver? Here are some ways to find out.

All oscillators produce noise sidebands which can degrade the performance of the equipment in which the oscillator is used. In receivers, noisy local-oscillator stages produce reciprocal mixing products which cause blocking.\(^1\)\(^2\) For oscillators used in high-frequency or VHF/UHF equipment, it's sufficient to measure the noise sideband performance in dB/Hz between 500 Hz and 100 kHz from the carrier; a way of doing this is described in this article. Also discussed is a method for determining local-oscillator noise sideband levels by measuring the receiver's blocking performance.

Fig. 1 shows the test setup recommended by the National Bureau of Standards for measuring noise sideband performance between 500 Hz and 100 kHz from the oscillator carrier.* A signal generator with extremely high spectral purity such as a crystal oscillator is used as a reference oscillator for a high-level, double-balanced mixer. The output of the oscillator under test is fed into the rf port of the mixer through a variable attenuator. The output of the double-balanced mixer is then connected to a waveform analyzer.

A simplified block diagram of a waveform analyzer is shown in fig. 2. The signal to be analyzed is mixed

*For a small modulation index, as in a hard-limiting oscillator there is no difference between fm and a-m noise.

By Ulrich L. Rohde, DJ2LR, 52 Hillcrest Drive, Upper Saddle River, New Jersey 07458
fig. 1. Test setups recommended by NBS for measuring fm noise (phase fluctuations) and a-m noise (amplitude fluctuations). For a low modulation index, as is the case of a hard-limiting oscillator, there is no difference between a-m and fm noise.

With a tunable local oscillator and the i-f output is applied to a narrow bandpass filter. In operation the frequency of the VFO is adjusted so the desired component of the input waveform is equal to the center frequency of the selective filter. Thus the component to be measured is fixed to a predetermined frequency; other frequency components in the input waveform are rejected by the narrow bandpass filter. Fig. 3 shows the filter transfer curve of the Rohde & Schwartz FAT3 waveform analyzer which has an i-f at 80 kHz; the bandwidth is 4 Hz at the 3 dB points.

To calibrate the test setup, the wave analyzer is set to full sensitivity, where zero equals 10 mV and -80 dB equals 1 mV. The oscillator to be analyzed is then set to a frequency 30 kHz from the crystal oscillator, and the variable attenuator is adjusted so that the double-balanced mixer output gives a full-scale reading equivalent to 10 mV.

If an instrument with high dynamic range and a linear dB scale is used, the attenuator can remain in the same position during the entire test procedure. Where limited dynamic range is available, the attenuator is set so at full sensitivity the instrument will indicate 1 µV on a quasi-linear meter, and the logarithmic display will be simulated later by taking readings from the attenuator.

Now connect a frequency counter to the oscillator, and change the frequency either 1 kHz up or down from the original setting, which was offset 30 kHz from the crystal oscillator. Then reconnect the signal generator to the double-balanced mixer. The waveform analyzer, which typically has three or four bandwidths available, is set at 100-Hz bandwidth. Assume that the logarithmic display on the analyzer indicated -60 dB when the original frequency was selected. This means that, in a 100-Hz bandwidth, the noise sideband voltage is 60 dB below the carrier. Since the noise sidebands are expressed in dB per 1 Hz (dB/Hz), a 20 dB correction factor must be added to the measured 60 dB because of the 100-Hz bandwidth; in this case the noise sideband performance is 80 dB/Hz.

Practical experience indicates that an oscillator which exhibits 80 dB/Hz noise performance is not very good, so the crystal oscillator can be considered much better and its noise contribution may be neglected.

sideband noise evaluator

Commercial waveform analyzers with a built-in, double-balanced mixer, linear logarithmic displays, and wide choice of bandwidths are extremely expensive — as much as $30,000, — so few are in amateur hands. However, you can build an instrument with similar performance for less than $300 if you’re willing to give up certain features:

1. Choice of multiple bandwidth
2. Extremely linear logarithmic scale
3. Small i-f bandwidth

The resulting instrument, which I call the Sideband Noise Evaluator, is no longer in the class of the waveform analyzer which permits measurements from a few Hz to 60 kHz or more, but it’s ideal for measuring the noise sideband performance of oscillators.

A block diagram of the device is shown in fig. 4. The local oscillator must deliver +17 dBm drive and

fig. 2. Simplified block diagram of a waveform analyzer. The frequency of the VFO is adjusted so the desired component of the input signal is mixed to the center frequency of the narrow bandwidth filter where it is amplified and measured.
the mixer must accept any frequency combination
between 70 kHz and 200 MHz. This frequency range
is sufficient to evaluate most oscillators used in radio
communications systems.

circuit description

A feedback amplifier is used as a wideband termi-
nation for the mixer and as a low-noise preamplifier.
It also compensates for losses of the following crystal
filter. While any i-f between 1 MHz and 10 MHz can
be used for which suitably selective filters can be pur-
based on the use of 125-Hz wide filters built by Sher-
wood Engineering.*

Two high-gain wideband amplifiers boost the sig-
nal by about 80 dB and feed a second crystal filter. A
post-amplifier is used to compensate for the second
filter losses; a detection circuit drives an operational
amplifier which in turn drives a meter and the agc in-
put for the wideband amplifiers.

Two wideband amplifiers are used in the circuit, so
there is more than 120 dB of agc range available.
Thus, the instrument should provide at least 100 dB
dynamic range with the 125-Hz bandwidth filters. If
you consider a sensitivity of 5 μV relative to 1 volt
emf, this results in 120 dB/Hz resolution.

Resolution could be increased 10 dB by using an i-f
filter 1 kHz to 2 kHz wide, but it would not be possi-
ble to make noise measurements closer than 4 kHz
from the carrier. Therefore, the user must decide
whether more than 120 dB dynamic range is
required, or if it's more important to measure noise
close to the carrier. In my opinion, close-in noise is
very important because of the number of CW sta-
tions which can be heard when receiver selectivity is
set to 500 Hz; that's why I used the narrow 125-Hz
filters.

A complete schematic for the Sideband Noise
Evaluator is shown in fig. 5. The Mini-Circuit Labora-
itories† SRA3H was found to be the ideal choice for
the input mixer; a 2N5109 CATV transistor with volt-
age and current feedback both amplifies and pro-
vides proper termination to the mixer’s i-f port. The
5.695-MHz filters from Sherwood Engineering are
designed for 50-ohm input and output impedance;
the Mini-Circuit transformers provide correct circuit matching.

The Motorola MC1590s which are used in the wideband amplifier are the perfect choice for this
application.* The gain of the stages is set by resistors
R7 and R10, as discussed in the Motorola data sheet.

The Texas Instruments 733 wideband amplifier IC
compensates for the losses of the second narrow-
band filter. The three diodes at the output of the 733
act as a voltage doubler and provide suitable time
constants and thresholds to feed an LM301 opera-
tional amplifier. The 50-μA meter is shunted with 470
ohms to limit the reading to 45 μA; for a full-scale
reading this resistance value must be increased
slightly. The two 10k resistors equalize agc distribu-
tion to the MC1590 ICs.

After this circuit was built, I found two problems
with the Sherwood filters. First, the center frequency
was off by 47 Hz; relative to a 6-dB bandwidth of 125
Hz, the discrepancy expressed in per cent is unreas-

*Sherwood Engineering, Inc., Dept. A, 1268 South Ogden Street, Denver,
Colorado 80210.

†Mini-Circuits Laboratory, 2625 East 14th Street, Brooklyn, New York
11235.
onably high. Second, the insertion loss of the Sherwood filters was substantially higher than expected. When this was discovered, the 2N5109 preamplifier circuit between the double-balanced mixer and the first filter was redesigned. The circuit of the new amplifier is somewhat more complex (see fig. 6) and costs an additional $5, but has nearly 20 dB gain. The gain of the circuit can be adjusted by changing the value of the unbypassed 50-ohm resistor in the emitter circuit of the first 2N5109.

Unfortunately, the circuit board in fig. 7 was designed for the single 2N5109 preamplifier (fig. 5), but it shouldn’t be too difficult to lay out a new PC board if you wish to use the improved preamplifier. This may be worthwhile because the improved pre-amp expands the instrument’s dynamic range by almost 20 dB due to a substantial decrease in noise figure.

calibration

The Sideband Noise Evaluator requires no adjustments! It should be possible for amateurs who build this test setup to use it immediately without difficulty. Fig. 8 is a graph of output readings as a function of the rf input voltage (measured with a +12.0 volt power supply). While the scale is not as linear as that available with a commercial waveform analyzer, the curve permits adequate resolution for most noise sideband measurements.

If the two-stage preamplifier is used, however,
fig. 6. Improved input preamplifier for the Sideband Noise Evaluator which has nearly 20 dB gain. Gain can be adjusted by changing the unbypassed 50-ohm resistor in the emitter of the first 2N5109.

Recalibration is necessary because of the higher gain. I recommend changing resistor R15 across the meter (fig. 5) to compensate for the increased sensitivity of the instrument with the improved preamp.

Crystal oscillators

To obtain full use of the Sideband Noise Evaluator, I suggest you build a set of crystal oscillators. Fundamental-frequency crystals can be purchased that operate between 400 kHz and 30 MHz in what is frequently called the parallel-resonant mode (which should more accurately be called the inductive mode). Fig. 9 shows a suitable low-noise crystal oscillator circuit with a wideband postamplifier that delivers the required +17 dBm output level or slightly more. Any inductive-mode crystal between 400 kHz and 30 MHz can be plugged into this circuit and give useful output without any adjustments.

The frequency range between 30 MHz and 100 MHz can be covered by a crystal oscillator which uses either a third- or fifth-overtone crystal. However, the oscillators must be tuned. Various overtone

fig. 7. Printed-circuit layout (above) and component placement diagram (below) for the Sideband Noise Evaluator. Note that this artwork is approximately 67% of full size — a full-size PC layout is available from *Ham Radio* upon receipt of a self-addressed, stamped envelope.
oscillator circuits have been described in the literature, but the authors have not discussed either short-term stability or sideband noise performance. Probably the worst and noisiest of all oscillator circuits places the crystal between the transistor base and ground (fig. 10). The reason for the high noise contribution is that this circuit severely degrades the Q of the crystal. The noise sideband performance is partially dependent on the circuit but is determined primarily by the Q of the resonator: an LC circuit, a high-Q cavity, or a quartz crystal, and the latter has the highest Q of all known resonators.

Fig. 11 shows a crystal oscillator circuit that can be used for third- and fifth-overtone crystals in the frequency range from 30 to 100 MHz, and delivers +17 dBm to the double-balanced mixer. This circuit combines the best possible noise performance with high output power and excellent stability.4

The noise performance of the crystal oscillator circuits of figs. 9 and 11 is better than 120 dB/Hz at 1 kHz from the carrier, and 150 dB/Hz or more at 20 kHz from the carrier. Because of their excellent noise performance, these circuits can be used as local oscillators without degrading receiver performance; very few oscillators and practically no frequency synthesizers achieve their low-noise sideband levels.

measuring your receiver’s oscillator sideband noise

The easiest way to measure the noise sideband performance of the local oscillator in your receiver is to measure the “blocking” or reciprocal mixing. First, accurately calibrate the receiver’s S-meter between S1 and S9 + 40 dB using a signal generator and an accurate attenuator (a suitable band is 14 MHz). For the signal generator I recommend a crystal oscillator which uses a 14-MHz crystal.

Tune the receiver to the frequency of the signal generator and increase the input to the receiver so the S-meter reads S9 + 40 dB. Move the tuning dial 10 kHz and note the S-meter reading; more than likely it will be S6. Assuming S9 is 100 µV emf (50 µV terminated), and each S-unit is exactly 6 dB, then S6 is approximately 6 dB. S9 + 40 dB is 5 mV, so the difference between the two signals, for all practical purposes, is 60 dB. Since the measurement will probably be made with a 2.7 to 3 kHz ssb filter in the receiver, the conversion factor from 3 kHz to 1 Hz is about 35 dB (10 log BWHz). Therefore, the noise sideband performance of the internal oscillator is 95 dB/Hz.

To fully utilize the low intermodulation capabilities available with high-level, double-balanced mixers in...
fig. 10. Popular crystal oscillator circuit that is very noisy because the Q of the crystal is severely degraded. This circuit is not recommended for any application.

Modern communications receivers, the noise sideband performance must be at least 120 dB/Hz at 10 kHz from the carrier. To meet this criterion, the noise sideband performance of the receiver LO in the above example must be improved by 25 dB. I recommend that every designer of high-frequency microwave receivers or local oscillators build a Sideband Noise Evaluator to ensure noise performance of at least 120 dB/Hz at 10 kHz from the carrier.\(^5\)

fig. 11. Ultra low-noise crystal oscillator circuit which can be used with third- and fifth-overtone crystals in the frequency range from 30 to 100 MHz. Output is +17 dBm.

References
The age of tone control has come to Amateur Radio. What better way to utilize our ever diminishing resource of frequency spectrum? Sub-audible tone control allows several repeaters to share the same channel with minimal geographic separation. It allows protection from intermod and interference for repeaters, remote base stations, and autopatches. It even allows silent monitoring of our crowded simplex channels.

We make the most reliable and complete line of tone products available. All are totally immune to RF, use plug-in, field replaceable, frequency determining elements for low cost and the most accurate and stable frequency control possible. Our impeccable 1 day delivery is unmatched in the industry and you are protected by a full 1 year warranty when our products are returned to the factory for repair. Isn't it time for you to get into the New Age of tone control?
TS-1 Sub-Audible Encoder-Decoder • Microminiature in size, 1.25" x 2.0" x .65" • Encodes and decodes simultaneously • $59.95 complete with K-1 element.

TS-1JR Sub-Audible Encoder-Decoder • Microminiature version of the TS-1 measuring just 1.0" x 1.25" x .65", for handheld units • $79.95 complete with K-1 element.

ME-3 Sub-Audible Encoder • Microminiature in size, measures .45" x .11" x .6" • Instant start-up • $29.95 complete with K-1 element.

TE-8 Eight-Tone Sub-Audible Encoder • Measures 2.6" x 2.0" x .7" • Frequency selection made by either a pull to ground or to supply • $99.95 with 8 K-1 elements.

PE-2 Two-Tone Sequential Encoder for paging • Two call unit • Measures 1.25" x 2.0" x .65" • $49.95 with 2 K-1 elements.

SD-1 Two-Tone Sequential Decoder • Frequency range is 268.5-2109.4 Hz • Measures 1.2" x 1.67" x .65" • Momentary output for horn relay, latched output for call light and receiver muting built-in • $59.95 with 2 K-2 elements.

TE-12 Twelve-Tone Sub-Audible or Burst-Tone Encoder • Frequency range is 67.0-263.0 Hz sub-audible or 1650-4200 Hz burst-tone • Measures 4.25" x 2.5" x 1.5" • $79.95 with 12 K-1 elements.

ST-1 Burst-Tone Encoder • Measures .95" x .5" x .5" plus K-1 measurements • Frequency range is 1650-4200 Hz • $29.95 with K-1 element.

COMMUNICATIONS SPECIALISTS
426 W. Taft Ave., Orange, CA 92667
(714) 998-3021
frequency synthesized local-oscillator system

for the high-frequency amateur bands

Design of a versatile frequency synthesizer system for high-frequency use which features exceptional spectral purity, 10-Hz resolution, and low power-consumption

This article is the first of a series which will describe a complete phase-locked local-oscillator system for amateur equipment with a single-conversion, 9-MHz i-f. The system offers performance which will meet the requirements of the advanced communication techniques of the 1980s — techniques which require frequency accuracy, stability, and calibration typically 100 times better than the best commercial equipment being sold today in the amateur market. This article describes the basic VFO synthesizer. Future articles will describe the phase-locked, 9-MHz BFO system, a universal phase-locked up-converter permitting operation on all bands, 160 through 10 meters, and a variety of “acrobatic” tuning methods possible only with frequency synthesizers.

frequency synthesizer accuracy

With routine care, a home builder can put together a frequency standard which will hold to 1 part in 10⁷ under room-temperature conditions. I believe that

By Raymond C. Petit, W7GHM, Post Office Box 51, Oak Harbor, Washington 98277
every amateur station should have such a standard. Our rigs today usually have several free-tuning oscillators, each one subject to calibration errors, drift, and other inaccuracies, and the usual use of the standard is to ensure that these inaccuracies are held within acceptable limits.

Most operators are satisfied if they are within a few hundred hertz. The typical digital readout which is used in place of a VFO dial resolves the frequency only to the nearest 100 Hz. Thus, even if the counter timebase and all the oscillators not being measured are perfectly on frequency, a ±50 Hz uncertainty remains. To gain the very real 20-dB signal-to-noise level improvement possible with coherent CW and similar methods of radio communications now in development, the total frequency error must be held within 1 or 2 Hz.

The only workable method of achieving this precision in a variable-frequency system is to phase-lock every oscillator to the frequency standard. With this arrangement, proper setting of the standard automatically imparts the same accuracy to every other oscillator.

The phase-locked frequency synthesizer is well established in the vhf-fm business, where its agility saves buying hundreds of crystals. When the channel spacing is 10 kHz and the width of the output frequency band is only a few per cent of its center frequency, the synthesizer is easy to build. The requirements for a high-frequency synthesizer, however, are an entirely different story. Outputs must cover a wide range and 10 or 100 Hz "channel spacing" is required, but switching speed must still be very fast. Spurious outputs must be exceptionally low to prevent degrading the performance of wide-dynamic-range receiver designs. In addition, the synthesizer must be, like a VFO, easy to tune. Before going into the details of a practical circuit which meets these requirements, I'd like to discuss one problem which plagues most synthesizer designs.

synthesizer noise

All oscillators generate noise in addition to the desired signal. Such noise is usually classified into three categories: harmonics, nonharmonic discrete spurs, and phase noise. Harmonics are the easiest to eliminate. In applications where good harmonic suppression is required, a bandpass or lowpass filter at the output is usually sufficient.

Nonharmonic spurs (parasitics) in oscillators are extraneous, unstable outputs at unpredictable frequencies. These are stopped by proper bypassing, shielding, and filtering in the design and construction of the circuit. In synthesizers there are several additional sources of spurs: digital counter noise, mixer intermodulation products, feedthrough of an intermediate oscillator’s signal to the output, modulation of a VCO by tiny amounts of the loop reference signal from the phase detector -- these all serve to tremendously complicate designs. The presence of spurs in a receiver synthesizer’s output produces birdies and the appearance of phantom signals in the i-f passband; the effect is very similar to that of inadequate image suppression.

An ideal oscillator would concentrate all its output energy at just one frequency, the desired carrier frequency. Real oscillators behave as if they were modulated by a broadband hissing noise. The result is that the oscillator’s output energy is not perfectly concentrated at the carrier, but is smeared out above and below the carrier for many tens of kilohertz. The power level of this sideband noise typically diminishes in direct proportion to its frequency offset from the carrier.

If you had a super-selective bandpass filter with a
Construction of the frequency synthesizer showing the data input switches (right) and output (top left). The 1 MHz TTL reference signal is connected to the circuitry through the coaxial cable.

1-Hz passband and used this filter to measure the levels of this noise compared to the carrier, you would find that a well-designed vhf oscillator would produce sideband noise about 80 dB below the carrier for a frequency 100 Hz separated from the carrier, 100 dB below at 1 kHz, and 120 dB at 10 kHz. The total power level of uniformly distributed noise which reaches the detector of a receiver is directly proportional to the i-f bandwidth. Thus, if instead of a 1-Hz filter you used a 2-kHz filter, the noise reading would be two thousand times, or 33 dB, worse: only 88 dB down at 10 kHz offset.

It has been known for many years that oscillators produce this phase noise, but until recently oscillator noise was among the least of the designer’s worries. The bad effects of this noise were nothing compared to the effects of mixer intermodulation and front-end overload! But today the situation has reversed. During the past few years we have seen spectacular improvements in the design of receiver front ends combined with an increasing interest in frequency synthesizers. But a phase-locked synthesizer requires a voltage-tuned oscillator, and to replace a variable capacitor with a varactor diode instantly increases the oscillator noise level by as much as 20 dB. So now instead of a −88 dB noise level 10 kHz from the carrier, you have only −68 dB.

What does this mean in terms of performance? Assume you have a state-of-the-art i-f filter for ssb which guarantees suppression of at least 120 dB for signals 10 kHz away from the center. Theoretically you could listen to a 1 microvolt DX station without interference from a carrier 10 kHz away which was 100 dB stronger, or 100 millivolts. But instead, the 68 dB noise from the oscillator can mix with a carrier only 70 dB stronger 10 kHz away and produce a hissing noise which would mask the weak DX signal. This effect is called reciprocal mixing, and if a synthesizer signal is not free of noise, it can negate all the high-performance features of the high-intercept mixer and super i-f filters.

Fortunately, there is a way to improve the noise performance of a wide-tuning range VCO, and this method also gives us a synthesizer which can switch fast between frequencies while having very fine narrow channel spacing.

VFO synthesizer

Two versions of the synthesizer can be built on the same circuit board. The first, or A version, covers 5 to 6 MHz in 100-Hz steps. It provides coverage of the 80 and 20 meter bands when used with a single-conversion i-f at 9 MHz. Version B covers a 500-kHz range in 10 Hz steps. It forms the basis for a three-loop local-oscillator system which covers all bands, 160 through 10 meters, with the same 9-MHz i-f. You can build an A-version synthesizer and convert it later to version B simply by adding 3 components and changing the VCO coil. Table 1 gives specifications for the two versions.

Fig. 1 is a block diagram of the version B synthesizer. The design features low power consumption, very high spectral purity, fast switching, and rf output suitable for driving a diode double-balanced mixer. The VCO covers 110-160 MHz in 1-kHz steps, operating in a loop having a 1-kHz reference frequency. The VCO signal is divided by 100 to yield an output from 1100 to 1600 kHz in 10 Hz steps; phase noise performance is 40 dB better than the VCO, and frequency switching seems instantaneous to the ear. A novel feature is the use of the divide-by-100/101

Table 1. Specifications for the hf frequency synthesizers. Figures for phase noise are minimums; typical measured values are approximately 10 dB better.

<table>
<thead>
<tr>
<th></th>
<th>version A</th>
<th>version B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output frequency range</td>
<td>5.0-6.0 MHz</td>
<td>1.1-1.6 MHz</td>
</tr>
<tr>
<td>Resolution</td>
<td>100 Hz steps</td>
<td>10 Hz steps</td>
</tr>
<tr>
<td>Output level</td>
<td>+10 dBm</td>
<td>+10 dBm</td>
</tr>
<tr>
<td>Suppression of nonharmonic discrete spurs</td>
<td>70 dB</td>
<td>80 dB</td>
</tr>
<tr>
<td>Phase noise, below carrier in 1-Hz bandwidth, for stated offsets from carrier</td>
<td>80 dB, 100 Hz</td>
<td>90 dB, 100 Hz</td>
</tr>
<tr>
<td>100 dB, 1 kHz</td>
<td>110 dB, 1 kHz</td>
<td></td>
</tr>
<tr>
<td>120 dB, 10 kHz</td>
<td>130 dB, 10 kHz</td>
<td></td>
</tr>
<tr>
<td>Switching speed</td>
<td>30 ms</td>
<td>30 ms</td>
</tr>
<tr>
<td>Data input requirement</td>
<td>Parallel BCD, 10 volt CMOS levels, 4 digits for version A, 5 digits for version B.</td>
<td></td>
</tr>
<tr>
<td>Reference requirements</td>
<td>1-MHz sine or square wave, at least 1 volts p-p; input impedance of reference input approximately 50 pF to ground.</td>
<td></td>
</tr>
<tr>
<td>Power</td>
<td>12 volts dc, approximately 75 mA.</td>
<td></td>
</tr>
</tbody>
</table>
fig. 2. Schematic diagram of a frequency synthesizer that provides outputs from 1.1 to 1.6 MHz in 10 Hz steps. Total power consumption is only 75 mA. All resistors are 1/4 watt carbon film or composition; all polarized capacitors are dipped tantalum; non-polarized capacitors are ceramics. A kit of parts is available from the author.*

CR1 Dual varactor diode (Motorola MV104)
L1 6 turns no. 22 (0.6 mm), 3 mm (1/8) ID, tapped at 2 turns
RFC 6 turns no. 28 (0.3 mm) on F754-1-06 ferrite bead
S1-S5 Miniature BCD 10-position rotary switches

T1 Broadband rf transformer (Mini-Circuits Lab T16-1)

*A complete kit of parts for this synthesizer including the double-sided PC board, data input switches, and enclosure is available for $210 from Petit Logic Systems, Post Office Box 51, Oak Harbor, Washington 98277.
jumpers to cause the synthesizer to deliver output connected directly to pin 64 october 1978

The most significant digit of the N counter is a 4-bit binary counter instead of a decimal counter. Thus, the maximum count available is 1599 instead of 999. The offset adder, U11, is programmed by jumpers to cause the synthesizer to deliver output frequencies which correspond in an appropriate way to the settings of S1.

To build a version-A synthesizer, the inductance of the VCO coil is increased to resonate with the varactor at 55 MHz; U2 is omitted, and the base of Q3 is connected directly to pin 8 of U1; U11 is omitted; and U12 preset is set to binary 5, and S1 is omitted. S2 then becomes the 100 kHz digit, S3 the 10 kHz digit, and so on.

assembly and checkout

If a fault develops in a PLL system, it is often difficult to locate because many faults all exhibit one symptom, the loop goes out of lock. By assembling the system one section at a time and then checking that section before continuing assembly, trouble spots can be quickly located. Here is the procedure I use:

1. **VCO and divide-by-100.** Assemble the circuits starting at TP1, going through Q1, Q2, Q3, U1, U2, and U3. Take a potentiometer of any convenient value from 1k to 500k and connect the slider to TP1, one end to ground, and the other end to the 12-volt supply. With this you will be able to manually set the VCO control voltage to any value over its entire range. Apply power and check for at least 9 volts dc at the drain of Q1 and 5 volts at pin 5 of U1 and pin 14 of U2. Check for a TTL-level signal at a frequency below 20 MHz at TP2. Check for a TTL signal below 2 MHz at TP3, holding TP4 at ground. Connect a 51-ohm resistor across the output terminals and check for an approximately 2-volt p-p squarewave across this resistor. Leave TP4 grounded.

Suppose the M counter is now set to 01. The prescaler goes through 1500 complete divides as before, except that the first divide is by 101 instead of 100. The result is that the N counter output to the phase detector represents not 150,000 cycles of the VCO output, but 150,001 cycles. Thus for any setting S given to the M counter, the first S prescaler divides are by 101, and the remainder are by 100.

The most significant digit of the N counter is a 4-bit binary counter instead of a decimal counter. Thus, the maximum count available is 1599 instead of 999. The offset adder, U11, is programmed by jumpers to cause the synthesizer to deliver output frequencies which correspond in an appropriate way to the settings of S1.

To build a version-A synthesizer, the inductance of the VCO coil is increased to resonate with the varactor at 55 MHz; U2 is omitted, and the base of Q3 is connected directly to pin 8 of U1; U11 is omitted; and U12 preset is set to binary 5, and S1 is omitted. S2 then becomes the 100 kHz digit, S3 the 10 kHz digit, and so on.

assembly and checkout

If a fault develops in a PLL system, it is often difficult to locate because many faults all exhibit one symptom, the loop goes out of lock. By assembling the system one section at a time and then checking that section before continuing assembly, trouble spots can be quickly located. Here is the procedure I use:

1. **VCO and divide-by-100.** Assemble the circuits starting at TP1, going through Q1, Q2, Q3, U1, U2, and U3. Take a potentiometer of any convenient value from 1k to 500k and connect the slider to TP1, one end to ground, and the other end to the 12-volt supply. With this you will be able to manually set the VCO control voltage to any value over its entire range. Apply power and check for at least 9 volts dc at the drain of Q1 and 5 volts at pin 5 of U1 and pin 14 of U2. Check for a TTL-level signal at a frequency below 20 MHz at TP2. Check for a TTL signal below 2 MHz at TP3, holding TP4 at ground. Connect a 51-ohm resistor across the output terminals and check for an approximately 2-volt p-p squarewave across this resistor. Leave TP4 grounded.

The following discussion assumes that the synthesizer under construction is the 1.1 to 1.6 MHz version. Set the control voltage to 2 volts and adjust L1 by slightly compressing or stretching the coil until the output frequency is 1.1 MHz. Then bring up the control voltage to 10 volts and check that the output frequency is approximately 1.6 MHz. (If you don’t have a frequency counter, a standard a-m broadcast radio will work.) If the frequency isn’t quite 1.6 MHz, stretch the coil slightly.

If you are building the 5-6 MHz version, set the control voltage to about 6 volts and adjust the coil L1 until the output frequency is 5.5 MHz.

2. **100/101.** Assemble the circuits U4 through U7, including the resistor network leading to TP9. Apply power and check for 5 volts at pin 5 of U4 and pin 14 of U5 and U6. Connect TP9 to 12 volts. Observe a signal at TP5 which is identical to that at TP2. Check for the same signal inverted at TP6. Observe an ECL-level signal at TP7 which has the same frequency as the signal at TP3 except that it is at the lower logic level for one-tenth of the time and at the higher for nine-tenths of the time. Measure the signal at TP8. Then remove the connection from the power supply to TP9 and ground TP9; this should cause the frequency at TP8 to go down by 1 per cent.
3. Programmable counter. Assemble all the circuits of U10 through U16, the BCD switches, and the jumper-wire programming for U11. Apply power and check for at least 10 volts on pin 14 of U10, pin 5 of U11, and pins 16 of U12 through U16. Set the control voltage for 6 volts and set the data input switches to values representing the center of the synthesizer frequency range. TP10 should show an extremely narrow negative pulse at a frequency of approximately 1 kHz. Adjust the control voltage over its entire range and check that this pulse signal frequency rises and drops smoothly with your adjustments, not making sudden jumps or disappearing. With a scope connected to TP9, change the settings of S4 and S5 and observe a 1-kHz negative pulse, the width of which is proportional to the settings from 00 to 99.

4. Reference divider and phase detector. Assemble the circuits of U8 and U9, including the loop filter except for the 27k resistor and the two diodes CR2 and CR3. Apply power and check for at least 10 volts at pins 16 of U8 and U9. Connect the output of a 1-MHz frequency standard to the reference input terminal. Observe a 1-kHz pulse waveform at TP11. With S1 through S5 at the mid-frequency setting, observe the voltage at TP12 while varying the control voltage. When the control voltage is above some critical value, the TP12 voltage should be near zero, and vice versa. As you move the potentiometer back and forth over this critical value, the TP12 signal should abruptly jump from near zero volts to near the positive supply voltage and back.

5. Closing the loop. Remove the potentiometer from TP1. Solder in the 27k resistor and the diodes CR2 and CR3. Apply power and observe the voltage at TP12 with a VTVM or scope using a 10-megohm probe. The voltage should be at an intermediate value. Touch the VCO components with your finger and observe the voltage rise slightly. The output frequency of the synthesizer should now correspond exactly to the settings of S1 through S5, allowing for possible inaccuracies between the counter timebase and the reference oscillator used for the synthesizer.

Remove the ground from TP4. When making large frequency changes, the output of the synthesizer will be interrupted for perhaps 0.1 second. Remove the signal from the reference oscillator and the synthesizer output should disappear and remain off until the reference oscillator is reconnected. When making frequency changes of 1 kHz or less, the output is not interrupted at all. The disable function insures that, if, for any reason, the synthesizer is not locked and stable, it will have no output.

Bottom view of the double-sided PC board used for the high-frequency synthesizer.
DSI Instruments Inc.

Performance You Can Count On

MODEL 3550W
$149.95
INCLUDES TCXO : 1 PPM

MODEL 3600A
$199.95
INCLUDES OVEN TIMEBASE : .5 PPM

MODEL 3240HH
$119.95
BATT. OPERATED

The 3600A, 3550W and 3240HH Frequency Counters represent a significant new advancement, utilizing the latest LSI Design ... which reflects DSI's ongoing dedication to excellence in instrumentation, for the professional service technician and amateur radio operator. Before you buy a DSI instrument you know that the specification is. We publish complete and meaningful specifications which state accuracy over temperature and sensitivity at frequencies you need. And we guarantee those specifications in writing. JOIN THE RANKS OF THOUSANDS OF SATISFIED CUSTOMERS. PLACE YOUR ORDER TODAY AND BE THE ONE ON FREQUENCY.

DSI — GUARANTEED SPECIFICATIONS — MADE IN U.S.A.

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency Range</th>
<th>Accuracy Over Temperature</th>
<th>#150MHZ</th>
<th>#250MHZ</th>
<th>#500MHZ</th>
<th>Number Of Readouts</th>
<th>Size Of Readouts</th>
<th>Power Requirements</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>3600A</td>
<td>50HZ-600MHZ</td>
<td>5PPM</td>
<td>10MV</td>
<td>10MV</td>
<td>50MV</td>
<td>8</td>
<td>5 inch</td>
<td>115VAC</td>
<td>2 1/2" x 8" x 5 1/2"</td>
</tr>
<tr>
<td>3550W</td>
<td>50HZ-550MHZ</td>
<td>1PPM</td>
<td>25MV</td>
<td>25MV</td>
<td>75MV</td>
<td>8</td>
<td>5 inch</td>
<td>115VAC</td>
<td>2 1/2" x 8" x 5 1/2"</td>
</tr>
<tr>
<td>3240HH</td>
<td>2MHZ-250MHZ</td>
<td>3PPM</td>
<td>100MV</td>
<td>100MV</td>
<td>NA</td>
<td>7</td>
<td>4 inch</td>
<td>4AA Batt</td>
<td>5" x 3" x 2"</td>
</tr>
</tbody>
</table>

ALL UNITS ARE FACTORY ASSEMBLED, TESTED AND CARRY A FULL 1 YEAR WARRANTY.

See Your Dealer
OR
Call Toll Free (800) 854-2049 DSI Instruments, Inc.
California Residents, Call Collect (714) 565-8402

VISA • MC • AMERICAN EXPRESS • CHECK • MONEY ORDER • COD
7914 Ronson Road, No. G, San Diego, CA 92111

NO EXTRA COSTS

FREE Shipping anywhere in U.S.A.
& Canada. All other countries. Add $10.00
Strongest warranty in the counter field.
ONE YEAR Parts and Labor
Satisfaction Guaranteed
MODEL C1000 10Hz to 1GHz

$399.95

- **AUTO ZERO BLANKING**
- **AUTO DECIMAL POINT**

Accuracy... that's the operational key to this rugged advanced design Model C1000 1GHz frequency counter... a significant achievement from DSI. That's because you get... 2PPM 0° to 40°C proportional oven time base... .1 PPM resolution from 10Hz to 1GHz... Selectable .1 & 1 sec. time base and 50 ohms or 1 meg ohm input impedance... Built-in battery charging circuit with a Rapid or Trickle Charge Selector... Color keyed high quality push button operation... All combined in a rugged black anodized (.125" thick) aluminum cabinet. The model C-1000 reflects DSI's ongoing dedication to excellence in instrumentation for the professional service technician, engineer, or the communication industry.

MODEL C700 50Hz to 700MHz

$299.95

- **AUTO ZERO BLANKING**
- **AUTO DECIMAL POINT**

ALL NEW! ALL UNPARALLELED DSI QUALITY! The model C 700 700 MHz frequency counter features... 2PPM 0° to 40°C proportional oven time base... .25db preamplifier with a 60db adjustable attenuator... x10 & x100 audio scaler which yields .01 Hz resolution from 10Hz to 100KHz equivalent to 10 sec. & 1 sec. Gate Time... Build-in 250p8 preamplifier with a 60dB adjustable attenuator... Made in battery charger with a rapid or trickle charge selector... Combined in a rugged (.125" thick) aluminum cabinet makes the C700 ideal for the communication industry and professional service technician.

3600A OWNERS: Up date your 3600A frequency counter to a C 700 includes, new back board, 2PPM proportional oven, 25db preamplifier, rugged .125" thick aluminum cabinet, order 3600A-700. Unit must be returned to DSI factory for modification.

DSI — GUARANTEED SPECIFICATIONS — FACTORY ASSEMBLED — MADE IN USA

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency Range</th>
<th>Proportional Oven Accuracy Over Temperature</th>
<th>50Hz To 75MHz</th>
<th>75MHz To 500MHz</th>
<th>500MHz To 1GHz</th>
<th>Number Of Digits</th>
<th>Size Of Digits</th>
<th>Power Requirements</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>C700</td>
<td>50Hz to 700MHz</td>
<td>.2PPM 0° to 40°C</td>
<td>50MV</td>
<td>NA</td>
<td>8</td>
<td>5 Inch</td>
<td>115 VAC-BATT</td>
<td>3"H x 8"W x 6"D</td>
<td></td>
</tr>
<tr>
<td>C1000</td>
<td>10Hz to 1GHz</td>
<td>.1PPM 0° to 40°C</td>
<td>1MV</td>
<td>>50MV</td>
<td>9</td>
<td>5 Inch</td>
<td>115 VAC-BATT</td>
<td>4"H x 10"W x 7/8"D</td>
<td></td>
</tr>
</tbody>
</table>

All Units Are Factory Assembled, Tested And Carry A Full 5 Year Limited Warranty

- **NO EXTRA COSTS**
- FREE Shipping anywhere in U.S.A. & Canada. All other countries, Add 10%.

Strongest warranty in the counter field. Satisfaction Guaranteed.

See Your Dealer

OR

Call Toll Free (800) 854-2049 DSI Instruments, Inc.
California Residents, Call Collect (714) 565-8402
VISA • MC • AMERICAN EXPRESS • CHECK • MONEY ORDER • COD
7914 Ronson Road, No. G, San Diego, CA 92111

Model C 700

3600A-700 Factory update (3600A only)
Includes Labor & Re-Calibration **$299.95**

Model C 1000

$399.95

Opt. 01 1.3 GHZ (C1000 only) **$ 99.95**
Opt. 02 .05 PPM 10MHz Double Oven
0° to 50°C Time Base (C1000 only) **$129.95**

Opt. 03 20 Hr. rechargeable Battery Pack **$ 9.95**
Ant. 210 Telescopic Ant./BNC Adapter **$ 9.95**
second generation reciprocating detector

An updated version of the reciprocating detector, which can be used in solid-state receivers with high-frequency i-f strips

During the past three years I've had many requests for revisions to the reciprocating detector circuit to use it at high frequencies. Here's an updated IC design that can be used at frequencies up to 20 MHz.

background

Early attempts to directly use the RD above 5 MHz required very careful circuit layout to reduce or eliminate inter-circuit coupling, and to maintain the correct phase relationship required in the feedback loop. Also, the detector portion operated as a half-wave rectifier. A current-regulating source had to be adjusted to cause the signal diode to operate at a level just below conduction, so that at frequencies above 5 MHz the diode and its circuitry ceased to perform uniformly. Result — a badly distorted detected signal.

Despite the distortion, in some cases the circuit performed well enough for signal identification. But much was to be desired. A cure for individual cases was to adjust the bias level for the current-source diode until it just conducted on noise. In most cases, with a tube receiver that produced i-f signals to the RD input exceeding the saturation level of the complete circuit, a clipped response occurred. Single sideband signals then became unmanageable because of widely varying signal levels that couldn't be controlled by the agc systems in older tube receivers.

The original circuit was designed to be used in receivers such as the Collins 51S1 and Drake R4A, which have highly selective dual or adjustable filters in the receiver i-f passband. In the 51S1 receiver the i-f output was fed to the RD through a cathode follower; the maximum output level could not exceed 3 volts. The application using the Drake R4A employed enough attenuation through the coupling to the original product detector output transformer to preclude saturation.

An updated design, which uses ICs, allows the RD to be incorporated into more modern receivers. Models of the new circuit have been made for 10.7, 16, and 20 MHz. Test models were constructed using point-to-point wiring. Later models used PC boards.

circuit description

The circuit consists of two amplifier chips, IC1, and IC2 (fig. 1). These are monolithic wideband amplifiers with frequency response between 10 kHz and 20 MHz. These chips are 10-lead devices in TO-5 cans. A third rf amplifier, IC3 is a balanced differential amplifier using an internal constant-current source, which eliminates the original problem caused by Stirling Olberg, W1SNN, 19 Loretta Road, Waltham, Massachusetts 02154
by the biased half-wave rectifier. This amplifier operates from 0-100 MHz. This wideband response allows the circuit to work in the same manner as the original current source for the detector and as the reciprocating switch. These two functions are improvements over the old circuit. The dynamic range improvement alone is worth the effort.

Tracing the signal through the circuit, we see that a capacitive input circuit couples the rf signal into IC3 input. The capacitive coupling isolates any direct current that might be superimposed on the rf signal from the if output circuit. The input signal is then applied to a phase-shift network, then to one set of inputs of IC1 and IC2. These three inputs are then provided with a signal path that's essentially in series with the reference signal, or beat frequency similar to a conventional product detector.

The reference frequency is generated by filtering a portion of the received signal through a narrowband crystal filter, FL1. The push-pull output of this filter

fig. 1. Schematic of the reciprocating detector MKII using wideband-amplifier ICs, (A). Also shown are an alternative power scheme for receivers using a high-voltage dc supply, (B), a test setup for adjusting the filter, (C), and a schematic for a 10.7-MHz ssb filter, (D).
The filter used in an RD is not a complicated device. It has a shape factor similar to that of the old variable crystal filters. It's not a wide passband filter because it's used to select the beat-frequency signal.

On a Micro Metals T50-2 toroid core wind 14 turns of 0.2 mm (no. 32) enameled wire. Secure the wire so it won't become loose. Use tape or nylon string. Make sure the coil leads are at least 30 mm (1-1/2 inches) long and are scraped clean of insulation. Next, fold a 30-cm (12-inch) length of the same type wire in half. Twist this pair of wires until you have at least eight twists per 25 mm, or 8 twists per inch. (This is called a bifilar pair.)

Now, using the bifilar pair, wind on the same form a three-turn winding and secure it. This coil should be wound in the area not used by the previous winding, but it isn't important that it be exactly placed or spaced in this area. Next clean off each of the wire ends; then, with an ohmmeter, identify each coil separately. They will be used to complete the connections identified in the filter drawings as C, C’, D, and D’.

After each winding has been identified, the ends opposite each can be connected to provide the center-tapped winding signified as C’ and D in fig. 1. This toroid will contain three coils. Now, on a second core of the same type, wind two eight-turn windings of the bifilar pair and scrape the four ends. Again, with an ohmmeter, identify each coil. These ends can be designated A, A’, B, and B’.

Mount each coil on the PC board as shown (fig. 2). If you’re not using the board, mount the coils about 30 mm (1-1/2 inches) apart. Don’t tighten the coils yet. Next, mount the crystal between each toroid, then wind a single turn of 0.2 mm (no. 32) enameled wire on each toroid, terminating one end of each coil on a crystal terminal or the switch, whichever the case may be. The other two coil ends should be connected together.

If your receiver has selectable sideband filters, a single crystal will be required. If not, then wire it as shown in the filter diagram (fig. 1) and include all three crystals. In this case, a selector switch must be used at the filter location. If this is the case, connect the link ends from the two coils to the appropriate switch contacts. Reed switches can be used and provide excellent low-loss control.

The filter components are for 10.7 MHz but will work at 9 MHz with different crystals. The compo-
ponents can be juggled to work around that frequency range. Lower frequencies will, of course, have a higher inductance value.

The crystals can be purchased from any of the manufacturers currently advertising in most of the amateur magazines. It’s best to use fundamental-frequency crystals mounted in an HC6/U holder, with wire leads to make soldering easy. This doesn’t preclude other types of holders or pin-mounted crystals; however, some of the alignment procedures will be a little more difficult, particularly if pressure-type holders are used.

checkout and test

Connect a signal generator and scope or rf voltmeter through terminating resistor R as shown in the test setup. Set the indicator to a high sensitivity and the signal generator to a high output level. Carefully tune the signal generator across 10.7 MHz. An indication with a very sharp upswing in level will occur when passing through crystal resonance. Carefully adjust the signal generator to the peak of the upswing. Then, with an insulated screwdriver, adjust the 9-35 pF capacitors for future increase. The scope sensitivity and the signal-generator output level will have to be reduced as the resonance of each coil is reached. Frequent readjustment of the signal generator will be required to keep it centered at crystal resonance. As the adjustments proceed you’ll notice that the sharp increase at the crystal frequency will become easier to adjust.

If a three-crystal unit is to be constructed, make these adjustments at the passband center or with the a-m crystal in the circuit. The other two crystal frequencies are as sharp as that of the a-m resonant frequency and will be within the inductor resonant frequency.

To use the RD in the ssb mode with a single i-f passband filter, it won’t be necessary to offset tune the receiver. Simply use it as you normally would. It’s like having a crystal controlled bfo — simply switch in the appropriate crystal.

RD construction

The reciprocating detector is simplicity itself to construct. Attention to component placement is similar to that of any high-frequency device. The filter leads can be connected, after filter adjustment, to those points shown (fig. 1) that are alphabetically marked. Use leads as short as possible.

A slight tweaking of the filter might be required after it’s installed in the receiver. Use care as to the length of the lead to the RD rf input. This is a two-way street: if the lead is too long, external pickup can cause interference to the hf i-f stages; if the lead is

fig. 3. Component placements for the reciprocating detector circuit board.

shielded and too long, it can detune the i-f stage to which it is connected. So a short signal path is required, or an emitter or source follower will be required to reduce these effects.

The choice of how the audio is routed is up to you. It can be connected as shown in the references or used with an external amplifier. Since the output level is in the 100-millivolt level, it can easily drive an external amplifier.

power supply

Power requirements for the new RD are further simplified. The older unit required a dual balanced supply source, but this unit requires a single 12-volt supply at 40 milliamperes. The RD supply can be taken from the receiver supply filter output if it’s 12 volts. Or you can use a higher-voltage supply, such as found in a tube reciver, if you use the alternative supply scheme shown in fig. 1.

I will be pleased to hear from anyone who has used the RD and will communicate with all who write. Please include a self-addressed, stamped envelope with your letter.

reference

bibliography

The TS-520S, the most popular Amateur Radio transceiver in the world

...provides a foundation for an expanding series of accessories designed to please any ham... from Novice to Amateur Extra.

TS-520S

The TS-520S transceiver provides full transmit and receive coverage of all Amateur bands from 160 through 10 meters. It also receives 15.0 (WWV) to 15.5 MHz and another 500-kHz range of your choice in the auxiliary band position. With the optional DG-5, you have a large digital frequency readout when transmitting and receiving, and the DG-5 also doubles as a 40-MHz frequency counter. The TS-520S includes a built-in AC power supply, and, with the addition of the optional DS-1A DC-DC converter, it can function as a mobile rig. It features a very effective noise blanker, RIT, eight-pole crystal filter, 25-kHz calibrator, front-panel carrier level control, semi-break-in CW with sidetone, built-in speaker, heater switch, 20-dB RF attenuator and easy phone-patch connection. RF input power is 200 W PEP on SSB and 160 W DC on CW. Carrier suppression is better than $-40\,\text{dB}$ and sideband suppression is better than $-50\,\text{dB}$. Spurious radiation is less than $-40\,\text{dB}$. Receiver sensitivity is 0.25 μV for 10 dB (S+N)/N. Selectivity is 2.4 kHz at $-6\,\text{dB}$ and $4.4\,\text{kHz}$ at $-60\,\text{dB}$, and, with the optional CW-520 CW filter, is 0.5 kHz at $-6\,\text{dB}$ and $1.5\,\text{kHz}$ at $-60\,\text{dB}$.

See your local Authorized Kenwood Dealer for more information, and a super deal!

A great station...at an affordable price! The TS-520S with its companion accessories... including two new units. The AT-200 antenna tuner provides a versatile tool in any station. The other is the TV-502S, Kenwood's 2 meter transverter for SSB and CW operation from 144 to 146 MHz.
Kenwood's finest 2-meter rig...
all modes for all occasions

STILL THE SAME FINE, TIME PROVEN RIG. BUT
NOW WITH THE SIMPLE ADDITION OF A PLUG-IN CRYSTAL,
THE TS-700SP WILL BE ABLE TO UTILIZE THE NEW
REPEATER SUB-BAND (144.5 to 145.5 MHz)
STILL FEATURES ALL OF THE FINE ATTRIBUTES OF THE
TS-700S: A DIGITAL FREQUENCY DISPLAY, RECEIVER
PRE-AMP, VOX, SEMI-BREAK IN, AND CW SIDETONE. OF
COURSE, IT'S ALL MODE, 144-148 MHZ, VFO
CONTROLLED... AND KENWOOD QUALITY THROUGHOUT.

TS-700SP

Features: 4 MHz band coverage (144 to 148 MHz)
- Automatic repeater offset capability on all FCC
 authorized repeater subbands including 144.5 -
 145.5 MHz - Simply dial receive frequency and
 radio does the rest.... simplex, repeater, or reverse.
Same features on any of 11 crystal positions-Transmit/Receive capability on 44 channels with 11
 crystals - Operates all modes: SSB (upper and
 lower), FM, AM and CW - Digital readout with
 "Kenwood Blue" digits - Receiver pre-amp - Built-in
 VOX - Semi break-in on CW - CW sidetone - All
 solid-state - AC and DC capability. 10 watts RF output
 on SSB, FM, CW - 3 watts on AM - 1 watt FM
 low-power switch - 0.25 mV for 10 dB (S+N)/N
 SSB/CW sensitivity - 0.4 mV for 20 dB quieting
 FM sensitivity.

10 watts RF output on SSB, FM, CW - 3 watts on
AM - 1 watt FM low-power switch - 0.25 mV for 10
dB (S+N)/N SSB/CW sensitivity - 0.4 mV for 20 dB
quieting FM sensitivity.

The TS-700SP shown with
the matching VFO-700S
and SP-70. Also shown is
Kenwood's new MC-30
noise cancelling hand held
microphone, HS-4
headphone set and the
MC-50 dynamic
microphone.

TRIO-KENWOOD COMMUNICATIONS INC.
1111 WEST WALNUT/COMPTON, CA 90220
Continuing in the digiratt series, the PLL\(^2\) demodulator uses dual phase-locked loops to help eliminate loss of signal due to fading.

Phase-lock loop terminal units have been around in various forms for several years. As a means of receiving RTTY signals inexpensively, they are certainly worth considering. The one common drawback to PLL terminal units is that they decode only half the available information present in the RTTY signal. Many comments have been made by amateurs over the years that this fact really isn’t a drawback at all, because there are only two possible states that the RTTY signals can be in at any one time and the absence of one condition indicates the existence of the other.

There is, however, an occurrence known as selective fading which can completely eliminate one half of the RTTY signal while leaving the other intact. If you happen to be tuned to the particular tone which fades out, you’ll find your printer ceasing to operate until the tone returns.

PLL terminal units have several good points. Among these are:

1. They will follow a drifting signal until it leaves their passband.
2. Since they are inherently frequency selective, they do not require passive input filters.
3. They are not expensive.

It follows then that if a means could be found to use PLL circuits to decode both RTTY signals (mark and space), the overall usefulness of the terminal unit would be improved.

The original Digiratt PLL terminal was an attempt to design a low-cost vhf terminal unit and AFSK generator. I received letters from all over the world which led me to believe that there is a large amount of interest in a simple means of decoding RTTY signals. The Digiratt PLL\(^2\) is the direct result of those letters and is presented here as one possible approach to the need for such a unit.

The Digiratt PLL\(^2\) is composed of two identical tone demodulators, using the 567 phased-lock loop.

By John Loughmiller, KB9AT, Route 1, Box 480C, Borden, Indiana 47106
A two-stage active filter is included, and may be switched into the circuit ahead of the PLL inputs in order to detect low-level signals. Additionally, a very novel logic circuit, which has the capability to regenerate missing information during selective fading, follows the PLL portion of the terminal unit.

circuit description

The description of the PLL circuits themselves can be found in the original Digiratt article; this unit uses the same decoder circuitry. Decoder A (see fig. 1) is tuned to the mark frequency of 2125 Hz, with decoder B tuned to the space frequency (2295 Hz). The A decoder capture frequency is slewed low and the B decoder slewed high so that there exists an area from approximately 2190 Hz to 2220 Hz where neither PLL will conduct. The exact procedure for accomplishing this operation will be covered in the alignment section.

SELCOMP is a name the author has given to the logic responsible for the SELECTive fading COMPensation which is part of the Digiratt PLL. The schematic diagram is shown in fig. 2. In order to understand its operation, two separate conditions will be explained, normal full-signal operation and operation under "no space" conditions.

Normal. A low-going mark signal is buffered by U5A and then sets the RS latch, U6. The output from the latch causes the multiplexer, U8, to select its pin 5 input. The mark signal then appears at the base of Q1, the selector magnet driver circuit. A subsequent low-going space signal will reset the RS latch, causing the multiplexer to select the pin 6 input. Since the space input from the decoder is a low true signal, it is inverted by U4. Therefore, the output from the multiplexer will be low for mark and high for space. Also, the complement signal from the multiplexer can be used to provide for normal and inverted signals.

No Space. Now, assume that space data is lost. When this occurs, the RS latch will never reset and the magnet driver will receive only mark data. If mark data is lost, the selector magnet is driven by space data because the RS latch is never set and therefore

fig. 1. Schematic diagram of the 567 phase-locked loop used as a demodulator. In this case, two 567s are used; the first will demodulate the space signals while the second is for the mark frequency.

fig. 2. Under normal conditions, the multiplexer switches between the mark and space signals. If either signal is lost, the logic will continue to use the remaining signal as the drive for the selector magnets. The Q and Q̅ outputs from U8 allow you to use either normal or inverted data. The 100 Vdc for the selector magnets comes from the power supply shown in fig. 5.

fig. 3. Schematic diagram of the 2-stage active filter. Using an LM3900, this filter provides 23-dB gain, with a designed center frequency of 2210 Hz. All resistors are 1/4 watt, 1 per cent tolerance. C1 and C2 are polystyrene capacitors.
the multiplexer always looks at the incoming inverted space data. Because of this logic scheme, selective fading is greatly minimized. There is one condition which the logic will not correct, and that is a selective fade during a 22 ms character element. In other words, if a single bit is lost there is very little any simple system such as SELCOMP will do for the problem.

Fortunately, such rapid selective fading is relatively rare. A much more common occurrence is printer noise or external impulse type noise, which your receiver's noise blanker will generally handle.

The active filter, as shown in fig. 3, is a two-stage device with a gain of approximately 23 dB and a Q of 25. The center frequency is 2210 Hz. For the reader who wishes to design his own filter, the formulas are included in the appendix.

Unfortunately, the use of an active filter, and its added performance, is offset due to the rather large additional cost of 1 per cent resistors.

The back-to-back diodes, across the audio input, are required to prevent front-end overloads. These diodes should be used if the active filter is not built. In that case, the diodes are connected across the common feed point.

construction

Construction of the PLL2 is straightforward, with
the entire circuit mounted on a single printed circuit board. A copy of the printed circuit board and its parts placement are shown in fig. 4. The cabinet, which housed the prototype, measured 15 × 29 × 9 cm (5-7/8 × 11-3/8 × 3-1/2 inches). Use shielded audio cable from the input connectors to the circuit board. For difficult RFI problems, you can apply 0.01-μF capacitors at the Vcc pin of each IC.

alignment

The Digiratt PLL² should be aligned as follows:

1. Apply a 2125 Hz, 1-volt, p-p sinewave into the audio input of the unit.
2. Adjust the decoder A until the mark-indicating LED illuminates.
3. Change the audio input to 2295 Hz and repeat the procedure for decoder B.
4. Reset the audio source for 2190 Hz and adjust decoder A until the mark LED goes out.
5. Reset the source for 2125 Hz and verify that the mark LED illuminates.
6. Again reset the source to 2190 Hz and verify that the mark LED goes out.

When the above conditions can be met, the mark portion of the circuit is aligned.

Decoder B is adjusted in the same manner, using 2220 and 2295 Hz. If you now sweep the frequency from 2050 to 2350 Hz, the mark LED should illuminate at 2125 Hz, remaining on until 2190 Hz. At 2220 Hz the space LED should light until you reach 2295 Hz. Between 2190 and 2220 Hz, neither LED should be on.

summary

The Digiratt PLL² is not the ultimate terminal unit, however the builder can expect very satisfactory results from it in all but the most adverse conditions. The following persons have been most helpful to me over the past year or so during which I have been designing the various Digiratt projects: Don Smith, W9EPT; Bernie Holtman, W4GO; and Gus Bezy, K9FUI.

appendix

Design equations for a two-stage, bandpass filter using an LM3900 Norton amplifier.

\[R1, R4, and R6 = \frac{25}{6.283 \times F_c \times C_1} \]

where \(F_c \) = center frequency in Hertz

\[C_1 \] = chosen value in Farads

\[R2 = R1 \times 1.5306 \]

\[R3 = R2 \]

\[R5 = 621.34 \]

\[R7 = 3R1 \]

\[R8 = \frac{R1 \times R7}{R1 + R7} \]

\[C1, C2 \] = Any convenient value

These equations will yield a two-stage filter with a gain of 23 dB and a Q of 25. Use 1 per cent resistors.

references

In the foreground is the RY generator board (Ham Radio, January, 1978). From left to right, Prototype PLL twin decoders and Sel-comp logic, low voltage supply, 100 VDC, 100 mA loop supply is on the extreme right.
there's a world of difference
in TEN-TEC's all-new
hf transceiver—

OMNI
OMNI—THE ALL-INCLUSIVE. Because OMNI has it all. Designed to give you every advantage, every capability, whatever your operating specialty. Designed to give you new conveniences and new levels of performance. Designed to give you the world of Amateur Radio with a world of difference—the OMNI world of unique features. An unusual combination not found in any other.

FUNCTIONAL STYLING. The "look" you requested. "Clamshell" aluminum case clad in textured black vinyl. Complementary nonreflective warm dark metal front panel. Extruded satin aluminum trim bezel and tilt bail. Convenient controls. Fully shielded. And everything in a larger, easier-to-use size: 5½"h x 14¼"w x 14¼"d.

TOTA LLY SOLID-STATE. Sharing the TEN-TEC heritage of solid-state design leadership with its companion transceivers, the highly successful 540/544. OMNI has all the advantages of proven solid-state technology—reliability, long life, cool performance, better stability.

8-BANDS. The world now and in the future. OMNI covers 160, 80, 40, 20, 15, and 10 meters now (crystals included for all present Amateur bands, 1.8-30 MHz). And it has convertible 10 MHz and "AUX" band positions for the future.

BROADBAND DESIGN. Permits changing bands without tune-up, without danger of out-of-resonance damage to the final stage.

ANALOG OR DIGITAL READOUTS. OMNI-A features an analog dial with 1 kHz dial markings. OMNI-D has 0.43" LED readouts with the 5 most significant in red and the 6th in green to show 100 Hz increments.

BUILT-IN VOX AND PTT. Smooth VOX action with 3 easy-to-adjust front panel controls. PTT control is available at both front and rear panel jacks, an external microphone switch may be used.

BUILT-IN SQUELCH. Unusual in an HF rig, but handy for tuning or monitoring for a net or sked.

BUILT-IN 4-POSITION CW/SSB FILTER. 150 Hz bandwidth with 3 selectable skirt contours for optimum CW reception.

8-POLE CRYSTAL FILTER. 2.4 kHz bandwidth, 1.8 shape factor.

SEPARATE MODE SWITCH. Permits using all filters in any mode.

2-SPEED BREAK-IN. Switch to "fast" or "slow" receiver muting to accommodate any band condition or mobile operating.

2-RANGE OFFSET TUNING. Switch-select the ±5 kHz range for off-frequency DX work or the ±0.5 kHz range for fine tuning.

OPTIMIZED RECEIVER SENSITIVITY. Ranges from 2 uV on 160 m to 0.3 uV on 10 m (10 dB S/N) to achieve ideal balance between dynamic range and sensitivity.

GREATER DYNAMIC RANGE. Typically exceeds 90 dB to reduce possible overload from nearby stations. Also includes switchable 18 dB PIN diode attenuator for additional overload prevention.

WWW RECEPTION. On the 10 MHz band switch position.

FRONT PANEL CONTROL OF LINEAR/ANTENNA BAND-SWITCHING. Auxiliary bandswitch terminals on back panel for simultaneous control of external relays or circuits with the OMNI bandswitch.

BUILT-IN PHONE PATCH JACKS. Provide interface to speaker and microphone audio signals for phone patch connection.

BUILT-IN "TIMED" CRYSTAL CALIBRATOR. In the OMNI-A a pulsed 25 kHz calibrator desensitizes the receiver and provides an automatic 5 to 10 second "on" time for easy, two-hand dial switch adjustment.

BUILT-IN ZERO BEAT SWITCH. Permits placing your transmitted signal exactly on the listening frequencies of CW stations.

BUILT-IN SWR BRIDGE. The "S" meter electronically switches to read SWR every time you transmit to provide a continuous antenna check.

FRONT PANEL MICROPHONE AND PHONE JACKS.

ADJUSTABLE AUTOMATIC LEVEL CONTROL. For setting output power level from low power to full output, for retaining low distortion at desired drive power to linear amplifier.

SEPARATE RECEIVING ANTENNA CAPABILITY. Rear panel switch and jack connect receiving section to common antenna or separate receiving antenna. Also acts as receiving antenna by-pass when used with instant break-in linear amplifiers.

BUILT-IN ADJUSTABLE SIDETONE. Variable pitch and volume.

DUAL COMPRESSION-LOADED SPEAKERS. Larger sound output, lower distortion, no external speaker needed.

POWER INPUT. 200 watts when used with 50 ohm load. Proven, conservatively-rated, solid-state final amplifier design with full warranty for first year and pro-rata warranty for 5 additional years. 100% DUTY CYCLE. Ideal for RTTY, SSTV, or sustained hard usage.

PLUG-IN CIRCUIT BOARDS. For fast, easy field service.

POWER. Basic 12 VDC operation for convenient mobile use; external supply required for 117 VAC operation.

OPTIONAL ACCESSORIES. As all-inclusive as OMNI is, there are a few options: Model 645 Keyer, 243 Remote VFO, 248 Noise Blanker, 252M Power Supply.

Model 545 OMNI-A $899 Model 546 OMNI-D $1069

Experience the world of difference of OMNI, see your TEN-TEC dealer or write for details.

OMNI—THE ALL-INCLUSIVE. Because OMNI has it all. Designed to give you every advantage, every capability, whatever your operating specialty. Designed to give you new conveniences and new levels of performance. Designed to give you the world of Amateur Radio with a world of difference—the OMNI world of unique features. An unusual combination not found in any other.

FUNCTIONAL STYLING. The "look" you requested. "Clamshell" aluminum case clad in textured black vinyl. Complementary nonreflective warm dark metal front panel. Extruded satin aluminum trim bezel and tilt bail. Convenient controls. Fully shielded. And everything in a larger, easier-to-use size: 5½"h x 14¼"w x 14¼"d.

TOTA LLY SOLID-STATE. Sharing the TEN-TEC heritage of solid-state design leadership with its companion transceivers, the highly successful 540/544. OMNI has all the advantages of proven solid-state technology—reliability, long life, cool performance, better stability.

8-BANDS. The world now and in the future. OMNI covers 160, 80, 40, 20, 15, and 10 meters now (crystals included for all present Amateur bands, 1.8-30 MHz). And it has convertible 10 MHz and "AUX" band positions for the future.

BROADBAND DESIGN. Permits changing bands without tune-up, without danger of out-of-resonance damage to the final stage.

ANALOG OR DIGITAL READOUTS. OMNI-A features an analog dial with 1 kHz dial markings. OMNI-D has 0.43" LED readouts with the 5 most significant in red and the 6th in green to show 100 Hz increments.

BUILT-IN VOX AND PTT. Smooth VOX action with 3 easy-to-adjust front panel controls. PTT control is available at both front and rear panel jacks, an external microphone switch may be used.

BUILT-IN SQUELCH. Unusual in an HF rig, but handy for tuning or monitoring for a net or sked.

BUILT-IN 4-POSITION CW/SSB FILTER. 150 Hz bandwidth with 3 selectable skirt contours for optimum CW reception.

8-POLE CRYSTAL FILTER. 2.4 kHz bandwidth, 1.8 shape factor.

SEPARATE MODE SWITCH. Permits using all filters in any mode.

2-SPEED BREAK-IN. Switch to "fast" or "slow" receiver muting to accommodate any band condition or mobile operating.

2-RANGE OFFSET TUNING. Switch-select the ±5 kHz range for off-frequency DX work or the ±0.5 kHz range for fine tuning.

OPTIMIZED RECEIVER SENSITIVITY. Ranges from 2 uV on 160 m to 0.3 uV on 10 m (10 dB S/N) to achieve ideal balance between dynamic range and sensitivity.

GREATER DYNAMIC RANGE. Typically exceeds 90 dB to reduce possible overload from nearby stations. Also includes switchable 18 dB PIN diode attenuator for additional overload prevention.

WWW RECEPTION. On the 10 MHz band switch position.

FRONT PANEL CONTROL OF LINEAR/ANTENNA BAND-SWITCHING. Auxiliary bandswitch terminals on back panel for simultaneous control of external relays or circuits with the OMNI bandswitch.

BUILT-IN PHONE PATCH JACKS. Provide interface to speaker and microphone audio signals for phone patch connection.

BUILT-IN "TIMED" CRYSTAL CALIBRATOR. In the OMNI-A a pulsed 25 kHz calibrator desensitizes the receiver and provides an automatic 5 to 10 second "on" time for easy, two-hand dial switch adjustment.

BUILT-IN ZERO BEAT SWITCH. Permits placing your transmitted signal exactly on the listening frequencies of CW stations.

BUILT-IN SWR BRIDGE. The "S" meter electronically switches to read SWR every time you transmit to provide a continuous antenna check.

FRONT PANEL MICROPHONE AND PHONE JACKS.

ADJUSTABLE AUTOMATIC LEVEL CONTROL. For setting output power level from low power to full output, for retaining low distortion at desired drive power to linear amplifier.

SEPARATE RECEIVING ANTENNA CAPABILITY. Rear panel switch and jack connect receiving section to common antenna or separate receiving antenna. Also acts as receiving antenna by-pass when used with instant break-in linear amplifiers.

BUILT-IN ADJUSTABLE SIDETONE. Variable pitch and volume.

DUAL COMPRESSION-LOADED SPEAKERS. Larger sound output, lower distortion, no external speaker needed.

POWER INPUT. 200 watts when used with 50 ohm load. Proven, conservatively-rated, solid-state final amplifier design with full warranty for first year and pro-rata warranty for 5 additional years. 100% DUTY CYCLE. Ideal for RTTY, SSTV, or sustained hard usage.

PLUG-IN CIRCUIT BOARDS. For fast, easy field service.

POWER. Basic 12 VDC operation for convenient mobile use; external supply required for 117 VAC operation.

OPTIONAL ACCESSORIES. As all-inclusive as OMNI is, there are a few options: Model 645 Keyer, 243 Remote VFO, 248 Noise Blanker, 252M Power Supply.

Model 545 OMNI-A $899 Model 546 OMNI-D $1069

Experience the world of difference of OMNI, see your TEN-TEC dealer or write for details.
Frequency counter design has been greatly simplified since the introduction of the Intersil 7207/7208 and the recent 7216/26 integrated circuits. Several designs have appeared in *ham radio* which make use of the 7207/7208 chip set with simple preamplifiers. Since a frequency counter's performance is largely limited by the preamplifier used to condition its input signal, this stage should receive significant attention during the design phase.

Such a preamplifier should have high input impedance, much like that of an oscilloscope vertical amplifier. It should also have enough sensitivity to permit the use of a X10 oscilloscope probe for minimum circuit loading, even at high frequencies. The preamplifier should be able to handle large input signals without overload, necessitating some form of input attenuator. Since the 7208 is a 5-MHz counter, the preamplifier should have a 50-MHz bandwidth for use with a prescaler. For proper counting of low-frequency signals with slow rise and fall times, the preamplifier should make use of a Schmitt trigger with hysteresis to prevent multiple triggering. A lowpass filter is also useful for counting noisy low-frequency signals.

preamplifier design

One method of achieving the high input impedance is to use an fet input stage followed by a broadband integrated circuit amplifier for high sensitivity.

By Paul Kranz, W1CFI, Mettacomett Path, Harvard, Massachusetts 01451
fig. 1. Schematic diagram of the high-sensitivity 0-50 MHz preamp and vhf prescaler. Input sensitivity ranges from less than 5 mV at 1 MHz to about 21 mV rms at 50 MHz. Note that the 733 uses the 14-pin DIP package. The filter (S2) is used to ensure accurate counting while measuring noisy low-frequency signals.

Overloading of the fet input stage can be prevented by a diode limiter and an attenuator. Since there are a variety of TTL integrated circuits available with Schmitt trigger inputs, one of these devices can provide the hysteresis and also the TTL signal conditioning. With the Schmitt trigger operating correctly, enough gain can be added ahead of it to provide sensitivity into the low-millivolt region.

The circuit that resulted from this approach appears in fig. 1. I've also included the vhf preamplifier and prescaler discussed by K4JIU.

The hysteresis and TTL signal conditioning are provided by a 74S132, which has a worst-case hysteresis of 0.8 volts. Therefore, I needed a preceding voltage gain of at least 100 to attain a sensitivity of a few millivolts. A 733 broadband amplifier seemed to be just
the device, since it will provide a voltage gain of 400 to approximately 40 MHz.

During the breadboard testing, I found that the 733 would break into oscillation whenever I connected an X10 oscilloscope probe to its output. I was able to eliminate the problem by connecting a small resistor in series with the probe, thus reducing the capacitive probe loading on the 733 output. For this same reason, it seemed like a good precautionary measure to include some resistance between the 733 output and the 74S132 input. I chose R11 to be as large as possible and yet provide for proper sinking of the 74S132 input current by the 733 output under worst-case conditions.

The fet buffer amplifier, composed of Q1, Q2, and Q3, has the high-input resistance and low-input capacitance necessary for an oscilloscope-type input. In this stage, Q2 is a current source which offers several important benefits. First, it provides a high-source impedance for Q1 so that its voltage gain is nearly unity. Second, it serves as an active current sink to pull down the base of Q3 on negative-going half cycles of the input signal. Lastly, it provides a measure of temperature compensation so that the maximum signal swing is available over a wide range of operating temperatures.

A significant reduction in the input capacitance of an fet preamplifier can be obtained by driving the input transistor’s drain in phase with the input signal. This technique, implemented by C3 and R4, virtually eliminates the drain to gate capacitance of Q1, thus reducing its input capacitance by as much as 5 pF.

I spent most of my design time on the components in the gate circuit of Q1. These components control input capacitance, input resistance, overload characteristics, and lowpass filtering. At low frequencies, and for small signal amplitudes, the input circuit consists of only R1. The gate bias current is supplied by CR1, CR2, and R2. As the low-frequency input signal increases in amplitude, CR1 and CR2 begin to conduct and form a 100-to-1 voltage divider between R1 and R2, thus limiting the Q1 gate voltage. Lowpass filtering is provided by R1 and C2, which have a 16-kHz corner frequency. With high-frequency input signals, C1 compensates for the input capacitance of the Q1 gate components and keeps the voltage gain of the stage roughly constant. The price paid for this is the unavoidable lowering of the input impedance of the preamplifier as frequency increases. The R1-R2 attenuator rapidly loses effectiveness as the input frequency increases above 1 MHz. Again, this is due to the shunting effect of C1. An input attenuator, R3 and S1, solves this problem so that it is possible to connect as much as 60 volts rms directly to the counter input at 5 MHz and still obtain correct counting of the input signal. Without this attenuator, the preamplifier would saturate at 3 volts rms input at frequencies above 10 MHz.

construction

A printed circuit layout and component assembly appear in figs. 2 and 3. The two-sided printed circuit board contains the high-frequency preamplifier as well as the 500-MHz prescaler. Short conductor lengths and liberal use of bypass capacitors have kept the circuit stable and free of oscillations in the four preamplifiers which have been assembled.

The attenuator switch and filter switch are designed for printed circuit board mounting and may be diffic-
maximum input signal for proper counting (attenuator off) as a function of frequency. The maximum low-frequency input of 140 volts rms is limited by the 1/4-watt dissipation of R1. At high frequencies, the input buffer will overload when the Q1 gate voltage reaches 10 to 15 volts pk-to-pk. Counting errors will occur when this level is exceeded. The input attenuator, to a point, helps relieve the overloading. However, as 50 MHz is approached, the input impedance due to C1 is only slightly greater than 100 ohms. The maximum input at 50 MHz would therefore be approximately 9 volts rms.

conclusions

This preamplifier, in conjunction with the K4JIU counter, performs admirably as an inexpensive laboratory frequency counter. The input impedance and sensitivity of the preamplifier worked out in practice to be as the design predicted and certainly adequate for most measurements. However, one thing did surprise me, the effect of input capacitance in lowering the input impedance at high frequencies. Although the preamplifier's input impedance is no worse than the typical input impedance of an oscilloscope, it still presents a very low impedance at 50 MHz.

references

twin-diode mixer — a new microwave mixer

A new microwave mixer using two diodes and half-wavelength lines yields an approximately 6 dB noise figure.

This article describes a new microwave mixer, unique in that it has few parts and does not require boards or complicated metalwork. You can build it in a minimum of time, and with confidence of having a good mixer when you’re done. The 1296-MHz model to be described has a 6.4 dB noise figure including a 1.2 dB i-f noise figure. Other features include the following:

1. A very low local-oscillator power requirement of –3 dBm
2. The local oscillator frequency is half that normally used
3. No dc return is necessary
4. There is no tuning
5. There is high isolation between all ports

mixer theory

A diagram of the ideal mixer is shown in fig. 1. The ideal filters pass currents only at the rf or i-f frequency, with the switch toggled at the normal LO frequency, $f_{rf} - f_{lf}$. Thus, energy from an rf source is converted to the i-f and delivered to a load at the i-f port. There is no energy lost in the mixer, and the receiver’s noise figure is that of the i-f.

In a real mixer, the switch takes the form of a diode which is turned on and off by the local oscillator. However, the diode is never a perfect open or short circuit, and as such will absorb some energy. Losses also occur in the circuitry surrounding the diode; the total loss depends in a complicated way upon the mixer circuit, the pump level, and, to a lesser extent, the diode itself. All high-performance mixers attempt to achieve the conditions of the ideal case shown in fig. 1.

Mixer performance can be characterized by the following equations:

$$T_{ssb} = (L_c - 1) T_0$$ \hspace{1cm} (1)
$$T_{dsb} = (L_c - 2) T_0$$ \hspace{1cm} (2)
$$L_c = \frac{r_f P_m}{r_f P_{out}}$$ \hspace{1cm} (3)

By Jim Dietrich, WAØRDX, Post Office Box 208, Mulvane, Kansas 67110
Fig. 1. Diagram of the ideal mixer operating at 1296 MHz. The switch will toggle at a 1268-MHz rate, causing the 1296-MHz input to be converted to 28 MHz.

where

\[T_{ssb} \text{ is the ssb mixer noise temperature} \]
\[T_0 \text{ is the physical temperature of the mixer in degrees Kelvin.} \]
\[T_{dsb} \text{ is the double sideband mixer noise temperature.} \]

Note that eq. 3 requires an input signal at the i-f frequency to directly measure conversion loss. The loss going the other direction is generally different. The loss of a dsb mixer is never less than 2, since i-f energy is equally converted to signal and image frequencies. However, as shown by eq. 2, the noise figure is not limited to 3 dB.

Eq. 2 is complicated by the problem of measuring the dsb mixer noise figure. The equivalent ssb noise performance in terms of the indicated noise figure is

\[F_{ssb} = 2F_m - 1 \] (4)

where

\[F_m \text{ is the measured noise figure.} \]

For example, if the meter indicates 4 dB for a dsb mixer, the ssb noise figure is actually 6 dB, not the 7 dB obtained by simply adding 3 dB to the indicated noise figure.* This common mistake introduces substantial error for low noise figures. For each type mixer, ssb system noise temperature is given by the following:

Component mounting configuration at the rf and LO ports.

fig. 2. Schematic diagram of the twin-diode mixer. The half-wavelength lines are 5 mm (3/16 inch) wide and mounted 1.5 mm (1/16 inch) above the ground plane. Ensure that the line on the right is connected to the ground plane, while the one on the left remains open. Since the local-oscillator frequency is approximately one-half that of the input rf, the grounded half-wavelength line will look like an open circuit to the LO port and also like a low impedance to the rf port. L1 is 3 cm (1 inch) no. 28 AWG (0.3 mm) wire; L2 is 15 turns no. 32 AWG (0.2 mm) wire wound to a diameter of 1.5 mm (1/16 inch).

Using eq. 4 produces a noise figure of 6 dB \[\text{I} \text{lo}_{10}(2.5 - 1) \].

*With \(F_m \) equal to 4 dB, converting to a ratio will yield 2.5 \[\text{I} \text{lo}_{10}(2) \]. Using this number in eq. 4 produces a noise figure of 6 dB \[\text{I} \text{lo}_{10}(2 \times 2.5 - 1) \].
fig. 3. Test setup for the mixer conversion loss and isolation measurements. All ports are terminated in 50 ohms.

cent, so line lengths as well as component values are not critical.

mixer evaluation

The mixer was tested by measuring the noise figure and also by measuring the actual conversion loss. The results were in good agreement. The conversion loss test setup is shown in fig. 3. The input level was -30 dBm ± 0.1 dB at 28 MHz. This level was used because more signal causes undesired higher-order products in the output, and less signal is difficult to accurately measure. The LO level is -3 dBm, which was found to be optimum both in the conversion loss and noise figure measurements. The spectrum analyzer was calibrated for absolute level at 1296 MHz so that the overall accuracy of the conversion loss measurement is ±0.5 dB.

Fig. 4 shows the output as observed on the analyzer. All LO harmonics are 37 dB down (-40 dBm) from the input at 634 MHz. The desired signal and its primary image are both 6 dB (-36 dBm) below the 28-MHz input level. Other responses are down enough that they can be neglected.

As can be seen, the device is indeed a double-sideband mixer, so that ssb receiver noise temperature is found from the following:

\[
T_e = (L_c - 2) T_0 + L_c T_{i-f} = 2(297K) + 4(92K) = 962K
\]

where

\[L_c = \text{the conversion loss} \quad 6 \text{ dB} = 4 \]
\[T_0 = \text{the mixer operating temperature} \quad 297K \]
\[T_{i-f} = a \quad 1.2 \text{ dB i-f noise figure} \quad 92K \]

The single sideband noise figure is

\[F_{ssb} = 1 + T_e / 290 = 6.4 \text{ dB} \]

Addition of a good input filter should lower the conversion loss to 3 to 4 dB and thus give an overall noise figure of 5 dB or less. However, care must be taken to keep filter losses low or else this improvement will not be obtained. In view of the fact that the mixer, as described, is probably better than most in use today, I haven't taken time to build a filter.

summary

In this article I have presented a new mixer configuration for use at 1296 MHz. The circuit can be used at higher microwave frequencies by simply scaling the half-wavelength lines. The device exceeds the performance of most available doubly balanced mixers by producing a 6.4 dB noise figure, nearly 40 dB isolation between all ports, and an LO requirement of only -3 dBm. In addition, the LO frequency is one-half that normally required, a most attractive feature.

A brief review of mixer theory, including noise performance, was presented to give a better understanding of twin-diode mixer operation. The noise relationships can be used to properly characterize receiver system performance using the twin-diode mixer or any other ssb or dsb mixer.

ham radio
International Crystal Manufacturing Co., Inc. guarantees every crystal against defective materials and workmanship for an unlimited time, when used in equipment for which they were specifically made.

CRYSTAL TYPES

(GP) for "General Purpose" applications
(CS) for "Commercial" equipment
(HA) for "High Accuracy" close temperature tolerance requirements

International Crystals are available from 70 KHz to 160 MHz in a wide variety of holders.

WRITE FOR INFORMATION
YOU ASKED FOR IT
YOU GOT IT
DSI
QUIK-KIT®

550 MHZ COUNTER KIT
Performance You Can Count On

DSI OFFERS THE BEST OF TWO WORLDS...
An unprecedented DSI VALUE... in a high quality, LSI Design, 550 MHZ frequency counter kit. And, because it's a DSI innovation, you know it obsoletes any competitive makes, both in price & performance. The basic 550 MHZ counter & time base are factory assembled, tested and burned-in. The problems of bad LEDS, IC's, capacitors, are a thing of the past with DSI QUIK-KIT®. But you can take pride in assembling the power supply, PC mounted selector switch, input connectors, and the final mechanical assembly of your 550 MHZ counter, into its' handsome cabinet. GO WITH THE LEADER... BUY A DSI FREQUENCY COUNTER KIT. SAVE TIME & MONEY AND BE ASSURED IT WILL WORK THE FIRST TIME.

SPECIFICATIONS
Time Base TCXO 1PPM 65° to 85°F
Frequency Range 50HZ to 550MHZ
Resolution 1HZ to 55MHZ, 10HZ to 550MHZ
Gate Time 1 second - 1/10 second
Sensitivity 25MV 150 & 250MHZ
Display Eight 1/2-inch LEDS
Input Two SO239 Connectors
Power 6C-Size Batt., 15HR, or 8.2VDC to 14.5VDC
Current 150 Ma standby 300 Ma operational

3550 KIT INCLUDES
• Pre-assembled, tested counter board
• Case, power supply, connectors, hardware
• Built-in prescaler & preamp
• Gate Light - Automatic Zero Blanking
• Automatic Decimal Point
• One to two hours assembly time
• One Year Warranty on all parts
• All new parts - not factory seconds or surplus

3550 Kit .. $99.95
T-101 Telescopic Antenna 3.95
AC-9 Battery Eliminator 7.95
Cigarette Lighter DC Adapter 2.95

TERMS: Orders to U.S. and Canada, add 5% to maximum of $10.00 per order for shipping, handling and insurance. To all other countries, add 10% of total order. California Residents add 6% State Sales Tax.

SEE YOUR LOCAL DEALER
OR
CALL TOLL FREE (800) 854-2049
California Residents, Call Collect (714) 565-8402
DSI INSTRUMENTS, INC.
7914 Ronson Road No. G, San Diego, CA 92111
two-meter preamplifier for handitalkies

A simple, two-meter, one-transistor preamp is used to overcome the lack of receiver sensitivity.

Does your 2-meter HT suffer from the lack of receiver sensitivity? A simple single transistor preamp can do wonders, especially if you use an external power amplifier while operating near the repeater fringes. One problem that frequently arises is that they can hear you, but you can’t hear them!

I have a Regency HRT-2 hand-held, which I also use mobile with a Heath HA-201 10-watt amplifier located in the trunk. After a few months of operation, I became annoyed at the received signal dropout and static near the fringe of the repeater coverage. My friends all told me my transmitted signal was excellent — full quieting into the repeaters; I tried a 1/4-wavelength whip in the center of my car roof, and finally a 5/8-wavelength whip, but to no avail. The noise and breakup persisted.

The HRT-2 has a receiver sensitivity of 0.7 \(\mu \text{V} \) for 20 dB of quieting, quite adequate in the city and compatible with the 2-watt output of the transmitter. However, as a mobile unit with 10 watts of output capability, the 0.7 \(\mu \text{V} \) sensitivity leaves much to be desired. A preamplifier seemed to be the solution.

simple preamplifier

There are a variety of circuits available for two meter-preamplifiers, but I wanted to keep it simple, low cost, and fairly compact, so it would fit inside the case if possible. Also, I felt it would be desirable to increase the receiver sensitivity from 0.7 \(\mu \text{V} \) to about 0.1 or 0.2 \(\mu \text{V} \), typical of most high-quality mobile radios; this meant a gain of about 17 dB. Another requirement was that it be broadband, so that tuning for each repeater would not be necessary. The last requirement was that it have the capability of being switched into the circuit during receive and switched out during transmit without the need for relays.

By Herbert L. Bresnick, WB2IFV, 16 Creekside Drive, Honeoye Falls, New York 14472
A search through the literature revealed that all of these requirements would be tough to meet in one circuit. However, a simple and inexpensive wideband rf amplifier was found which met most of the original objectives (fig. 1). Two transistors were used in the original circuit, but in my case only one was used with a gain of 14 dB. Although tuned circuits are recommended for improved selectivity, the amplifier was built up as a broadband unit to see how it would work. When externally connected to the HT the results were excellent. Clean reception was now possible with all the local repeaters, including two that previously were extremely noisy, and there was no evidence of overloading from undesired signals.

construction

The next problem was how to wire it into the HT. After a quick look inside the case, it appeared to be a major task to dismantle the entire set. And the thought of upsetting the rf circuits or breaking other connections was disgruntling.

A search for solid-state switching circuits did not reveal any that would be compact enough to fit inside the case. Suddenly, it occurred to me that the
answer was inside the Heath power amplifier. It already contained a solid-state TR switching network, a quite clever one at that. I decided to place the preamp within the power amplifier, since all the required connections were right there.

The Heath 10-watt power amplifier is a single, rf-switched transistor. The amplifier is automatically coupled to the circuit as soon as one watt of signal appears at the input. A pair of switching diodes then conduct, routing the signal to the transistor. When the HT is switched to receive, the diodes no longer conduct, and the received signal is passed through two 1/4-wave transformers to the receiver. A pair of switching diodes at the junction of the two transformers provide a short circuit to ground during transmission, preventing any rf feedback.

To connect the preamplifier, it was merely necessary to break the center connection between the two 1/4-wave transmission lines, insert the preamp, and add another pair of switching diodes to the input of the preamp, leaving the existing pair at the output. The revised circuit is shown in fig. 2. The additional diodes were obtained from Heath, and are 1N4149 or equivalent. The 12-volt supply for the preamplifier was obtained from a convenient tie point in the HA-201. The preamp was mounted by its own leads, as close as possible to the coiled transmission cables, with connecting leads kept as short as possible. Mounting did not seem to be critical. However, I would recommend using plastic tape or other insulating material between the preamp and the case to prevent accidental shorting.

results

The results have been gratifying. Received signals are now clear and free from static and breakup at distances over 40 kilometers (25 miles) from the repeater sites. A slight readjustment of the HA-201 power amplifier was necessary to compensate for the capacitance effects of the added circuit, but there is no evidence of power loss with a wattmeter connected before and after the modification.

This solution may not work everywhere, particularly if there are strong nearby signals. If this should be a problem on some repeater frequencies, it may be possible to add a switch to short out the preamp when it is not needed. A little experimentation before modification of the HA-201 will probably determine the best arrangement for your own location.

references

1. Randall Rhea, WB4KSS. "General Purpose Wideband RF Amplifier," ham radio, April, 1975, page 58.
Incredible, that's the word people are using to describe the CF50 frequency counter. Why? Simple, the CF50 is an achievement in design; exceptionally low in cost, compact, easy to use and unmatched in performance and reliability.

Features of the CF50 include: easy pushbutton operation, fully automatic decimal point positioning, quality shielded metal case, and dependable LSI circuitry. Full eight digit readout allows resolution to 1 Hz at 65 mHz, 10 Hz at 650 mHz, and the decimal point is always correct. Input protection to 50 volts insures against accidental burnout or overload. And, the best feature of all is the easy assembly. Clear, step by step instructions guide you to a finished unit you can rely on.

Use the order blank below or call us direct and order yours today!

CT-50, 60 mHz Counter Kit $89.95
CT-50 WT, 60 mHz counter, wired, tested $159.95
CT-600, 600 mHz prescaler option for CT-50, add $29.95

ACCESSORIES
DC probe, direct input, general purpose type $12.95
High impedance probe, does not load circuit $15.95
Low pass probe, used when measuring audio $15.95
High pass probe, reduces low freq pickup $15.95
VHF flexible rubber antenna, BNC connector $12.95
Color burst adapter, for calibration, high accuracy typically 0.001 ppm accuracy, stability $14.95

SPECIFICATIONS
Frequency range: 5 Hz to 65 mHz, 600 mHz with CT-600
Resolution: 10 Hz @ 0.1 sec gate, 1 Hz @ 1 sec gate
Readout: 8 digit, 0.4" high LED, direct readout in mHz
Accuracy: adjustable to 0.5 ppm
Stability: 2.0 ppm over 10" to 40° C, temperature compensated
Input: BNC, 1 megohm/20 pf direct, 50 ohm with CT-600
Overload: 50VAC maximum, all modes
Sensitivity: less than 25 mv to 65 mHz, 50-150 mv to 600 mHz
Power: 110 VAC 5 Watts or 12 VDC @ 400 ma
Size: 6" x 4" x 2", high quality aluminum case, 2 lbs
ICS: 13 units, all socketed
CT-600: 600 mHz prescaler option, fits inside CT-50
CB-1: Color burst adapter, use with color TV for extreme accuracy and stability, typically 0.001 ppm

Ramsey Electronics
Box 4072 716-271-6487
Rochester, NY 14610

Quantity
Description
Price

| Shipping, handling, insurance | $5.00 |
| N.Y. state residents, add tax |

| Total |

| Name: |
| Address: |
| City | State | Zip |

Incredible...

ramsey electronics
P.O. Box 4072 Rochester NY 14610
(716) 271-6487
NEW

Frequency Counter

$89.95

utilizes new MOS-LSI circuitry

You've requested it, and now it's here! The CT-50 frequency counter kit has more features than counters selling for twice the price. Measuring frequency is now as easy as pushing a button, the CT-50 will automatically place the decimal point in all modes, giving you quick, reliable readings. Want to use the CT-50 mobile? No problem, it runs as well on 12 V dc as it does on 110 V ac. Want super accuracy? The CT-50 uses the popular TV color burst freq. of 3.579545 MHz for time base. Tap off a color TV with our adapter and get ultra accuracy — .001 ppm! The CT-50 offers professional quality at the unheard of price of $89.95.

Order yours today!

CT-50, 60 MHz counter kit .. $89.95
CT-50 WT, 60 MHz counter, wired and tested 159.95
CT-600, 600 MHz prescaler option for CT-50, add 29.95

CLOCK KIT
6 digit 12/24 hour

Want a clock that looks good enough for your living room? Forget the competitor's kludges and try one of our! Features: jumbo 4" digits, polaroid lens filter, extruded aluminum case available in 5 colors, quality PC boards and super instructions. All parts are included, no extras required. One to two hour assembly time. Colors: silver, gold, black, bronze, blue (specify).

Clock kit, DC-5 .. $22.95
Alarm clock, DC-6, 12 hr only 24.95
Mobile clock, DC-7 ... 26.95
Clock kit with 10 min ID timer, DC-10 25.95
Assembled and tested clocks available, add $10.00

CHEAP CLOCK KIT $8.95

PC Board: Does not include board

- 6 digit 4" LED display
- 12 or 24 format

DIODES: 1K2.5 A................................... 5/$1.00
10KV.1.. 10/$1.00
10N144A type.. 50/$2.00

600 MHz PRESCALER

Extend the range of your counter to 600 MHz. Works with all counters. Less than 160 mv sensitivity. Specify 70 or 1100. Wired, tested, PS-18 .. $59.95
Kit, PS-18 .. $44.95

VIDEO TERMINAL KIT $149.95

A compact, 3" x 3" 10 PIN PC card that requires only an ASCII compatible alphanumeric display. Runs from 1 to 600 MHz. Easy to assemble and wired, has 9-pin D connector. The D connector pin assignments are built into the card. Kit comes with a complete set of instructions and detailed test procedures. Colors: silver, black, bronze, blue (specify).

600 MHz kit .. $22.95
70 MHz kit ... 24.95
30 watt Power Amp

The famous RE class C power amp now available mail order! Power: 20 watts out, 1 watt in. 1 to 3 band input, incredible value. Complete with all parts, instructions and details on R.F. relay. Case not included.

Complete Kit, PA-1 .. $27.95

CALANDAR ALARM CLOCK

Has every feature you could ever ask for! Kit includes everything except case, clock movement, 110 volt timer, and instructions. Colors: silver, black, bronze, blue (specify).

Complete Kit, less case, DC-9 $34.95

MINI-KITS

TONE DECODER KIT
A complete tone decoder on a single PC Board. Features: 400-5000 Hz adjustable frequency range, true digital readout, 5 positions for 1000 Hz, 10000 Hz, 5000 Hz, 1000 Hz, 100 Hz. Complete Kit .. $9.45
Complete Kit, BN-9 $4.95

FM WIRELESS MIKE KIT
Transmit up to 300' to any FM broadcast radio, uses any type of mike. Runs on 3 to 9 V. Type FM-2 has added sensitive mike preamp.

FM-1 .. $2.95
FM-2 .. $4.95

COLOR ORGAN/MUSIC LIGHTS
See music come alive! 3 different lights flicker with music or voice. One light for lights, one for the mix-and-match and one for the highs. Each channel individual output, and drives up to 300 watts. Great for parties, band music, night clubs and more.

Complete Kit, ML-1 $7.95

LED BLINKY KIT
A great attention getter which alternately flashes 2 Jumbo LEDs. Use for name badges, buttons, or warning type panel lights. Runs on 2 or 3 volts.

Complete Kit .. $2.95

POWER SUPPLY KIT

Complete triple regulated power supply kit epimgraphics 110 volts at 200 mA and 15 volts at 1 Amp. 50 mA limit regulation good filtering and small size. Kit is transformerless; requires 9.8 volts at 1 Amp and 15 to 30 V.C.

Complete Kit, PS-11T .. $6.95

SIREN KIT
Produces upward and downward whoosh characteric of police siren. 6 watts audio output, runs on 3 to 9 volts, uses 4-8 ohm speaker.

Complete Kit .. $2.95

DECADE COUNTER PARIS

Inclued: 7200A, 7474, 7474, LED readout, current limit resistors, and instructions on an easy to build low cost frequency counter.

Kit of parts, DCU-1 .. $3.50

More Details? CHECK — OFF Page 142

October 1978
general coverage using the Collins 75S receiver

A recent article in QST1 detailed a relatively simple and inexpensive method for extending the frequency coverage of the 75S-1. However, this particular method did not allow for proper operation of the receiver, especially with regard to transceive operation, since the correct tuned circuits for the preselector, rf, amplifier, and crystal oscillator circuitry are not necessarily selected. The method I’ve employed for some months does allow for split or transceive operation, is somewhat more flexible, and requires only a slight modification to the receiver.

An aluminum bracket is drilled to accept two crystal sockets and a miniature spdt switch. One socket accepts HC-17/U, and the other, HC-6/U crystals. The bracket is secured to the left side rail over the existing crystal sockets. The dimensions of the bracket allow its right side to rest on the tops of the crystals in sockets 1, 2, and 3E, providing more rigidity.

The switch is mounted with the handle pointing left/right for instant recognition of NORMAL or GENERAL COVERAGE. Two solder lugs are attached under the socket nearest the switch for coax braid connections. The coax lead that normally goes from V3B, pin 2, to the arm of S1A, was broken at the V3 side and passed through the hole near the front panel to the new switch. A new piece of coax is run from the switch to V3B. The rest of the wiring is done with hookup wire. Attachment to the common point of the sockets may be made at crystal socket 3E.

With the switch in the NORMAL position, the 75S-1 operates with the standard compliment of crystals. In the GENERAL COVERAGE position, a properly chosen crystal may be inserted and with the band switch selecting the proper frequency range, operation outside the amateur bands (or extended 10-meter coverage, for instance) is accomplished. The band-switch position is especially important when operating the receiver in transceive with the 32S series transmitters. A similar modification could be made to the transmitter, although this has not as yet been attempted.

Paul Pagel, N1FB

new product detector for the R-4C

As mentioned in a previous article,1 the product detector in the Drake R-4B and R-4C leaves room for improvement. The present design allows the audio to leak back into the last i-f stage, from where it is detected, causing the AGC to vary at an audio rate. To correct this error we developed a reasonably simple product detector which eliminated the problems. Unfortunately, as stated in the article, the main disadvantage

months does allow for split or transceive operation, is somewhat more flexible, and requires only a slight modification to the receiver.

An aluminum bracket is drilled to accept two crystal sockets and a miniature spdt switch. One socket accepts HC-17/U, and the other, HC-6/U crystals. The bracket is secured to the left side rail over the existing crystal sockets. The dimensions of the bracket allow its right side to rest on the tops of the crystals in sockets 1, 2, and 3E, providing more rigidity.

The switch is mounted with the handle pointing left/right for instant recognition of NORMAL or GENERAL COVERAGE. Two solder lugs are attached under the socket nearest the switch for coax braid connections. The coax lead that normally goes from V3B, pin 2, to the arm of S1A, was broken at the V3 side and passed through the hole near the front panel to the new switch. A new piece of coax is run from the switch to V3B. The rest of the wiring is done with hookup wire. Attachment to the common point of the sockets may be made at crystal socket 3E.

With the switch in the NORMAL position, the 75S-1 operates with the standard compliment of crystals. In the GENERAL COVERAGE position, a properly chosen crystal may be inserted and with the band switch selecting the proper frequency range, operation outside the amateur bands (or extended 10-meter coverage, for instance) is accomplished. The band-switch position is especially important when operating the receiver in transceive with the 32S series transmitters. A similar modification could be made to the transmitter, although this has not as yet been attempted.

Paul Pagel, N1FB

reference

new product detector for the R-4C

As mentioned in a previous article,1 the product detector in the Drake R-4B and R-4C leaves room for improvement. The present design allows the audio to leak back into the last i-f stage, from where it is detected, causing the AGC to vary at an audio rate. To correct this error we developed a reasonably simple product detector which eliminated the problems. Unfortunately, as stated in the article, the main disadvantage

of the MC1496 was the high number of external components.

In recent correspondence with Howard Sartori, W5DA, he suggested another device which has also proved suitable as a product detector, the TL442 from Texas Instruments. As seen in fig. 1, the
circuit is extremely simple, yet provides essentially the same performance as the MC1496.*

To begin installation, it is first necessary to remove Drake parts CR2, CR3, C83, C84, and R60. Next, the wires connecting the output of T11 and the printed circuit board are removed. The 0.01 µF coupling capacitor to be installed should connect between the transformer pins and the IC socket. There shouldn’t be any connections on the circuit board for either the BFO of i-f inputs. Completing the installation only requires that the IC, socket, and associated components be mounted on a small piece of 100-mil Vector board and mounted in the same location as the MC1496 version. All other connections can be made according to fig. 1.

Audio output is slightly higher than a stock R-4C. The combination of R61 and the original 0.05 µF capacitor provide the proper high-frequency rolloff. In this configuration, and also in the original, the product detector will accept a 20 dB increase in signal level before it overloads.

As an addendum, several people have reported an audio oscillation problem after incorporating the 0.0015 µF capacitor referred to in the original article. We’ve found that this can be cured by inserting a 4700-ohm resistor in series with the added capacitor and also connecting a 0.01 µF capacitor across the headphone jack.

reference

Bob Sherwood, WB8JGP
George Heidelman, KB8RH
Sherwood Engineering

preprogramming the Kenwood TR7500

A Kenwood TR7500 was recently obtained for mobile usage, and has proven excellent for that purpose. It became apparent, however, that dialing up the commonly used frequencies could be, for this operator at least, hazardous while driving because of the need to watch the frequency read-out dial while changing channels.

Users of the TR7500 should be aware that the transceiver has forty-four preprogrammed channels — all ARRL band-plan frequencies between 146 and 148 MHz, including all repeaters, and simplex frequencies. However, the transceiver also offers six blank channels, which are designed to be user programmed, by use of a diode matrix, for frequencies not included in the preprogrammed sequence. These frequencies must be on standard 30 kHz centers. Complete instructions for programming these additional channels, are in the transceiver operating manual.

The thought occurred to me that regular channels could also be programmed into the blank channels, rather than having to dial them out in the regular sequence. A review of the circuit and the programming instructions lead to a simple exercise in binary numbering, and a complete programming table was worked out. With this information, the six blank channels were quickly programmed.

The plan has worked out very nicely. The six channels are programmed for three repeaters, and three simplex frequencies, which completely handles local driving requirements. While driving, a quick glance identifies which of the six channels the radio is set on, with subsequent changes made by feel. Of course, any of the other regular channels is immediately available, simply by dialing up the appropriate channel in the normal manner.

Table 1 shows the complete diode programming instruction for all channels from 146.16 MHz to 147.99 MHz. Note that the columns are headed by descriptors P1 through P6, as used in the diode programming instructions of the operating manual.

Bob Locher, W9KNI

| Table 1. Diode programming information for the TR7500. |
frequency	P1	P2	P3	P4	P5	P6
146.16	0	0	0	0	0	0
146.19	1	0	0	0	0	0
146.22	0	1	0	0	0	0
146.25	0	0	1	0	0	0
146.28	0	0	1	0	0	0
146.31	0	0	1	0	0	0
146.34	0	1	0	0	0	0
146.37	0	1	0	0	0	0
146.40	0	0	1	0	0	0
146.43	0	1	0	0	0	0
146.46	0	1	0	0	0	0
146.49	0	1	0	0	0	0
146.52	0	1	0	0	0	0
146.55	0	1	0	0	0	0
146.58	0	1	0	0	0	0
146.61	0	1	0	0	0	0
146.64	0	1	0	0	0	0
146.67	0	1	0	0	0	0
146.70	0	1	0	0	0	0
146.73	0	1	0	0	0	0
146.76	0	1	0	0	0	0
146.79	0	1	0	0	0	0
146.82	0	1	0	0	0	0
146.85	0	1	0	0	0	0
146.88	0	1	0	0	0	0
146.91	0	1	0	0	0	0
146.94	0	1	0	0	0	0
146.97	0	1	0	0	0	0
147.00	0	1	0	0	0	0
147.03	0	1	0	0	0	0
147.06	0	1	0	0	0	0
147.09	0	1	0	0	0	0
147.12	0	1	0	0	0	0
147.15	0	1	0	0	0	0
147.18	0	1	0	0	0	0
147.21	0	1	0	0	0	0
147.24	0	1	0	0	0	0
147.27	0	1	0	0	0	0
147.30	0	1	0	0	0	0
147.33	0	1	0	0	0	0
147.36	0	1	0	0	0	0
147.39	0	1	0	0	0	0
147.42	0	1	0	0	0	0
147.45	0	1	0	0	0	0
147.48	0	1	0	0	0	0
147.51	0	1	0	0	0	0
147.54	0	1	0	0	0	0
147.57	0	1	0	0	0	0
147.60	0	1	0	0	0	0
147.63	0	1	0	0	0	0
147.66	0	1	0	0	0	0
147.69	0	1	0	0	0	0
147.72	0	1	0	0	0	0
147.75	0	1	0	0	0	0
147.78	0	1	0	0	0	0
147.81	0	1	0	0	0	0
147.84	0	1	0	0	0	0
147.87	0	1	0	0	0	0
147.90	0	1	0	0	0	0
147.93	0	1	0	0	0	0
147.96	0	1	0	0	0	0
147.99	0	1	0	0	0	0

october 1978
WE KNOW YOU WANT
THE VERY BEST!

In a market already over crowded by others, all making claim to being "THE BEST," we know we had to be better. *COMMUNICATOR I our 6 channel, 3 watt handheld, and COMMUNICATOR II our 800 channel synthesized 25 watt mobile offer all the features of the "BEST" — and a few extra, including our one year warranty and a toll free 800 number answered by other hams who speak your language.

PACE COMMUNICATOR — THE VERY BEST!

NEW CoaxProbe* NEW
Coaxial RF Probe for Frequency Counters and Oscilloscopes That Lets You Monitor Your Transmitted Signal Directly From the Coax Line.

Only $9.95
plus $.50 postage

FINALLY! A RF PROBE that lets you connect into your coax cable for frequency measurements and modulation waveform checks directly from the transmitter.

JUST CONNECT THE CoaxProbe* into your transmission line and plug the output into the frequency counter or oscilloscope. Insertion loss is less than .2 db so you can leave it in while you operate.

A NECESSITY IN ANY WELL-ORGANIZED HAM SHACK, the CoaxProbe* eliminates "rerry-rigging" and hassles when tapping into the coax line is desired.

A SPECIAL METHOD OF SAMPLING keeps output relatively constant with a wide variation of power. Power output of 8 watts gives .31v out, while 800 watts will give 1.8v out. (rms 3-30 mhz.) 2000 watts PEP rating too!

PRODUCTS GROUP PATHCOM INC. 24105 SOUTH FRAMPTON • HARBOR CITY, CA 90710

*Radios Communicator
AMATEUR PRODUCTS GROUP PATHCOM INC. 24105 SOUTH FRAMPTON • HARBOR CITY, CA 90710

WORLD PREFIX MAP — Full color, 40° x 28°, shows prefixes on each country . . . DX zones, time zones, cities, cross referenced tables.

$1.25

$1.25

RADIO AMATEURS MAP OF NORTH AMERICA! Full color, 30° x 25° — includes Central America and the Caribbean to the equator, showing call areas, zone boundaries, prefixes and time zones, FCC frequency chart, plus useful information on each of the 50 United States and other Countries.

$1.25

WORLD ATLAS — Only atlas compiled for radio amateurs. Packed with world-wide information — includes 11 maps, in 4 colors with zone boundaries and country prefixes on each map. Also includes a polar plot of the world's radio spectrum Unique. Complete set of maps of the world, 8½" x 12".

$2.50

Complete reference library of maps — set of 4 as listed above.

$3.75

See your favorite dealer or order direct.
NEW! EXCITING! BREAKTHROUGH!
YAESU FT 901DM Transceiver & Accessories

FT 901DM $1,459.00
Speaker/Patch 74.00
CW Filter 45.00
FV-901 VFO 415.00

CALL FOR QUOTES ON:
YAESU KENWOOD
FT901 DM TS820S
FT625 TS520S
FT225 TR7400A
ALDA, AMCOMM, ETO ALPHA TEMPO VHF ONE PLUS

ETO — ALPHA
Buy The Best First!
Full Power + C.C.S. Ratings.
76A $1,395.00
76PA 1,695.00
374A 1,795.00
78 2,395.00

TERMS: All prices FOB Houston. Prices subject to change without notice. All items Guaranteed. Some items subject to prior sale. Send letterhead for Amateur dealers price list. Texas residents add 5% tax. Please add postage estimate.
Drake R-7 receiver

The new Drake R-7 receiver is presently in the design and prototype stage, with first shipments scheduled for early 1979. Preliminary specifications are listed in table 1. The receiver is 100 per cent solid state, fully synthesized with a permeability tuned oscillator (PTO) for smooth tuning. It has continuous tuning from 0-30 MHz, and offers both a digital readout and an analog dial.

As with the Drake TR-7 transceiver, the R-7 receiver features up-conversion to a first i-f at 48 MHz; a special high-level, double-balanced mixer provides a high intercept point and strong signal handling characteristics. The receiver uses a full set of bandpass “window filters” that operate from 30 MHz, through VLF, to zero MHz. This permits performance in the MF/LF/VLF range that is very similar to that in the high-frequency range. As a result, external VLF preselectors or converters are not required.

The bandswitch selects various groups of window filters and determines the frequency limits of each range. Any 500-kHz segment within these limits is selected by simply depressing the UP or DOWN pushbuttons until the desired segment is reached. Tuning within the segment is accomplished by the PTO, which is connected to the main tuning knob.

A 10-dB, pushbutton-selected preamp can be activated on all ranges above 1.5 MHz. This preamp improves the overall sensitivity from approximately 0.5 μV to approximately 0.2 μV. As with any rf amplifier, however, its use lowers the intercept point by approximately the same amount as its gain. Therefore, preamp use should be limited to weak signal environments for best overall front-end performance.

The second i-f of the R-7 operates at 5645 kHz, and the selectable 8-pole crystal filters operate in this range. A choice of 300 Hz, 500 Hz, 1800 Hz, and 4.0 kHz filters are available, in addition to the 2.3-kHz ssb filter. Any of these filters may be selected from the front panel with a 5-position switch. It should be noted that the MODE switch operates independently of these filters, and can select either a special new synchro-phase a-m detector, or the product detector. Excellent international a-m shortwave and broadcast band reception can be realized with the low-distortion synchro-phase a-m detector.

The third i-f operates at 50-kHz and features a tunable i-f notch filter for heterodyne rejection. The notch depth is approximately 40 dB.

Extremely flexible selectivity combinations may be realized by the proper choice of an 8-pole crystal filter, notch adjustment, and positioning of the passband tuner, which is also employed in the R-7 receiver. The passband tuner is full range and enables the operator to properly set the passband position, in relation to the selectivity filter, for any mode continuously from RTTY to CW or any sideband. Various positions of agc, from OFF to SLOW, are also available from the front panel.

table 1. Preliminary specifications for the new Drake R-7 communications receiver.

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency coverage</td>
<td>0-30 MHz with DR-7 digital readout general coverage board; 0.5 MHz</td>
</tr>
<tr>
<td></td>
<td>0.5-2.0, 2.5-3.0, 3.5-4.0, 4.5-5.0, 7.0-7.5, 14.0-14.5, 21.0-21.5, 28.5-29.0 MHz without Aux-7 (Aux-7 adds any eight 500-kHz segments from 0 to 30 MHz)</td>
</tr>
<tr>
<td>Frequency stability</td>
<td>Less than 100 Hz drift after warmup</td>
</tr>
<tr>
<td>Readout accuracy</td>
<td>Analog dial: better than ±1 kHz when calibrated to nearest marker</td>
</tr>
<tr>
<td></td>
<td>Digital: 15 ppm ± 100 Hz</td>
</tr>
<tr>
<td>Sensitivity (500 kHz - 30 MHz)</td>
<td>0.5 μV or less for 10 dB (S + N)/N on ssb and CW; 0.2 μV or less with preamp turned on</td>
</tr>
<tr>
<td></td>
<td>2.0 μV or less for 10 dB (S + N)/N on a-m (30% modulation); 1.0 μV or less with preamp turned on</td>
</tr>
<tr>
<td></td>
<td>(Preamp not operational below 1.5 MHz)</td>
</tr>
<tr>
<td></td>
<td>2.0 μV or less for 10 dB (S + N)/N on ssb and CW; 1.0 μV or less for 10 dB (S + N)/N on a-m</td>
</tr>
<tr>
<td>Selectivity</td>
<td>Same as TR-7 (ultimate selectivity greater than 90 dB)</td>
</tr>
<tr>
<td>Agc</td>
<td>Same as TR-7</td>
</tr>
<tr>
<td>Intermodulation</td>
<td>Intercept point at +20 dBm, minimum; two-tone dynamic range, 95 dB</td>
</tr>
<tr>
<td>Image and i-f rejection</td>
<td>Greater than 80 dB</td>
</tr>
<tr>
<td>Audio output</td>
<td>2.5 watts with less than 10% TGD into 4-ohm load</td>
</tr>
<tr>
<td>Power supply</td>
<td>110/220 Vac 50/60 Hz or 11-16 Vdc</td>
</tr>
<tr>
<td>Dimensions</td>
<td>Same as TR-7</td>
</tr>
</tbody>
</table>

98 october 1978

More Details? CHECK — OFF Page 142
The R-7 will transceive with the Drake TR-7, and these functions are pushbutton controlled. The R-7 also has a unique antenna switch/toroidal splitter so that both the R-7 and the TR-7 may be used on the same antenna for simultaneous dual receive. This will be a boon to DXers who wish to monitor an out-of-band DXpedition and the in-band pile-up at the same time. The antenna selector also permits alternate antennas to be used on the receiver and a main antenna on the transceiver, or vice versa. The alternate antenna may also be split between the two units.

The receiver features receiver incremental tuning (RIT), so that the receiver frequency may be varied independently of the transmit frequency when operated in transceive with the TR-7. As with the TR-7, the digital readout in the R-7 may be used as an external counter to 150 MHz.

The receiver's built-in power supply operates from either 12 Vdc or 120/240 Vac. The styling, color, and size of the R-7 matches that of the TR-7, and either the internal speaker or an external MS-7 speaker may be used. Further information and prices will be available from the R.L. Drake Co. by the end of 1978.

Racal RA6700 receiver

The Racal RA6700 is a fully synthesized, tunable, solid-state communications receiver designed for all modes of reception over the frequency range of 15 kHz to 30 MHz. The internal synthesizer provides single-knob frequency control that allows rapid tuning across the complete frequency range with the feel and smoothness of a VFO, while retaining the accuracy and stability of the int...

Antenna Baluns

- **1 Kw CW, 3 Kw PEP input.** For dipoles, inverted Vees, beams, quads. Dependable. Takes temporary overloads in stride. Specify 1:1 or 4:1 ratio. **Model 1K $22.50**

- **2 Kw CW, 6 Kw PEP input.** Far more rugged than any other balun made for amateur use. Specify 1:1 or 4:1 ratio. **Model 2K $42.50**

- **2 Kw CW, 6 Kw PEP input.** Our heavy duty balun with mounting bracket for 2" mast or boom. Specify 1:1 or 4:1 ratio. **Beam Balun $47.50**

Only Palomar Baluns Have All These Features

- RF toroidal core for highest efficiency.
- Teflon insulated wire.
- Stainless steel hardware. Won’t rust.
- Epoxy filled case. Waterproof.
- Wideband 1.7 to 30 MHz.
- White case to reflect the sun.
- Lightning protection built in.

Free brochure sent on request

How many lightweight baluns have you burned out already? Install the balun that will stay up there working year after year.

To order, add $2 shipping/handling. California residents add sales tax.
Look for This Display at the Finest Radio Dealers everywhere and discover why present AD-1 owners are so proud of their new Auto Dialers.

- UP TO 18 TELEPHONE or control numbers retrieved with a one or two key punch.
- AUTOMATIC RE-DIAL of last number manually dialed.
- SAFE AUTOPATCH CALLS even in heavy traffic.
- 10 NUMBER RAM easily programmed in moments from the keypad.
- OPTIONAL PLUG-IN 8 NUMBER PROM custom-programmed by factory is available for $4.95. A Prom Order Card is packed with each AD-1.
- PROGRAMMABLE TONE-LENGTH AND DURATION ensures accessing virtually any repeater having strict timing requirements. Ask any veteran autopatch user and he will tell you that this feature is an absolute must!
- EASY INTERFACING with virtually any amateur transceiver using the coil cord provided.
- CRYSTAL CONTROLLED TIMEBASE assures high stability over a wide temperature range.
- MADE IN U.S.A.

All these features and more are possible thanks to the exclusive AEA 197701 MOS Microcomputer Chip. (OEM inquiries invited).

ternal frequency standard. In addition, the operator can select either a 100- or 10-Hz tuning rate, with the separate MHz control knob, permitting rapid changes from one end of the frequency range to the other.

The RA6772 incorporates the very latest techniques in mixer and signal path refinements to produce improved dynamic range and to reduce intermodulation products, reciprocal mixing, cross modulation, blocking, and spurious responses to a degree that exceeds the capabilities of any other general-purpose receiver currently in production. The basic receiver will accommodate six i-f filters; two may be asymmetrical ssb filters with either 3- or 6-kHz nominal bandwidths. Provisions are also available for additional filters if the standard 300-Hz, 3-kHz, and 8-kHz filters are not adequate. During CW reception, the internal BFO provides ±3 kHz tuning range.

The receiver is ruggedly constructed to permit operation under extreme conditions. Yet the internal layout permits easy access for servicing, all components being accessible without the use of extension leads or adapters. The rear panel contains all input and output connectors, with many internal connections making possible the use of the receiver as the basis for a more sophisticated receiver system.

To enhance receiver versatility and flexibility for communications, surveillance, and direction-finding applications, a number of options and variations are available. In addition to the normal modes of reception provided in the basic RA6772, additional units can be added within the receiver to permit reception of ISB and FSK signals, along with AFC operation. When configured for teletype, one or two machines may be directly connected to the receiver without the need for external power supplies.

The RA6700 receiver series is well suited for single- or multiple-receiver systems, with numerous options and configurations possible. As an ex-
ample, the RA6774 can be controlled by a computer, or, as in the case of the RA6780, by either local or remote manual control. For additional information, contact RACAL Communications, Inc., 5 Research Place, Rockville, Maryland 20850.

Sherwood Engineering crystal filters

Sherwood Engineering has recently expanded still further its already extensive line of high-performance crystal filters. To complement their filters for the Drake R4C, they’ve now added a 2.1-kHz a-m filter (CF-2.1K/8AM) which plugs directly into a normal a-m filter socket. This 8-pole ladder filter, which can be used to replace the normal 4- or 6-kHz filters, exhibits a -6 dB bandwidth of 2.1 kHz and is 3.6 kHz wide at the -60 dB point.

To help you take advantage of the extensive filter capability that can be obtained by using the full line of Drake-type filters, Sherwood Engineering is now offering a custom-made, dual function switch for the front panel of the R4C. This switch, which replaces the present AGC switch, makes it possible to switch each filter from the front panel. In addition, the new concentrically mounted AGC switch provides five AGC positions, instead of the original four (off, fast, medium, and slow). This offers the operator the option of incorporating an additional AGC speed for greater time-constant flexibility. The switch itself does not replace the Sherwood Engineering relay kits, but is offered as an alternative to the normal toggle switches.

In addition to filters for the Drake R4C, Sherwood Engineering is also manufacturing the CF-350/8, a 350-Hz CW filter for use with the TR4, TR4C, or the TR4Cw. This 8-pole filter has a shape factor of 2.43:1 (as compared with the 4:1 factor for the normal 500-Hz filter supplied in the TR4Cw), yet it is easily installed in many TR4s in less than two hours.
NEW - IMPROVED*

Model 1500 - Binaural Synthesizer-Filter with Tone-Tag
Uses 8 D's Cells - Less Batteries $196.00 p.d., U.S.
Model 1501 - Requires your 12 to 15 volt DC input, 100 ma.
nom. (internal regulation) $189.00 p.d., U.S.
Wall Transformer 115V AC supply rated at 12 volts, 350 ma.
for use with Model 1501 or ... $4.95

* A new balanced bipolar Tone-Tag modulator system replaces diode modulators of Models 1100 and 700

GET BETTER THAN 100-HZ EFFECTIVE SELECTIVITY ON CW, A SELECTABLE NOISE BANDWIDTH OF LESS THAN 150-HZ PLUS PERIPHERAL HEARING IN BINAURAL SOUND . . . ALL WITHOUT LISTENING THROUGH THE TINKLING ROAR OF A NARROW-BAND FILTER OR FUSILLING WITH SELECTIVE SQUELCH SYSTEMS . . . EXPERIENCE THE BINAURAL FUNCTION ON SIDE BAND VOICE . . . Just connect to your receiver's headphone or speaker jack and plug in two 8 Ohm speakers arranged stereo fashion . . . additional jack provided at lower power to protect your stereo headset.

See HR magazine articles on Nos, 75 and Nov, '76 . . . Ask for our note on listening with binaural and Tone-Tag systems

HILDRETH ENGINEERING BOX 60003 SUNNYVALE CA 94088

HAND HOLDING? . . . LET

DATA SIGNAL put rings on your fingers . . .

with our SUB-MINIATURE ENCODERS

The world's smallest hand-held goes hand-in-hand with the world's smallest, lightest and least expensive T-T Pads.

MODEL SME - Smallest available Touch Tone Encoder. Thin, only .05" thick, keyboard mounts directly to front of hand-held portable, while sub-miniature tone module fits inside. This keyboard allows use of battery chargers. Price $29.00, with your choice of keyboards. SME (less keyboard) $24.00

DTM

or,

SME

Touch Tone is a registered trade name of AT&T.

...And Bells on Your Toes

with our AUTOPATCH - Ready to go!

A Complete Autopatch facility that requires only a repeater and a telephone line. Features include single-digit access/disconnect, direct dialing from mobile or hand-held radios, adjustable amplifiers for transceiver and telephone audio, and tone-burst transponder for acknowledgement of patch disconnect.

RAP-200 P. C. Card $199.50
RAP-200R Rack Mount $249.50

Be sure to ask about our new keyers and CW memory for CW buffs.

DATA SIGNAL, INC.
2403 COMMERCIAL LANE ALBANY, GEORGIA 31707
912-883-4703

For the TR4Cw, installation can be accomplished in less than five minutes.

Other new products include 350-Hz CW filters for both the Kenwood TS-820 (CK-350/8) and the Signal One (CS-350/8). Each is a custom-made, 8-pole ladder filter which exhibits a 6/50-dB shape factor of 2.43:1. Both are direct replacement filters which can be installed in minutes. The CS-350/8 has a lower insertion loss, in many cases, than the hard-to-find deluxe factory CW filter.

For the CW operator who wants the best, Sherwood Engineering has developed a 125-Hz CW filter for the new Drake TR-7. This filter is excellent for the high selectivity demanded during DX and contest work. The new filter will mount directly on the TR-7 filter board. Or, for the person with both Drake CW filters already installed, a plug-in filter board can be obtained to add the additional flexibility afforded by incorporating all filters.

For complete details and price information on all products, contact Sherwood Engineering, 1268 South Ogden Street, Denver, Colorado 80210.

Alliance heavy-duty rotator

The HD-73 Heavy-Duty rotator, combining wind- and ice-resistant features plus two-speed rotational control never before incorporated into a unit of its size and performance, is offered by the Alliance Manufacturing Company Inc., of Alliance, Ohio.

Designed especially for the serious amateur who wishes to increase his capability with in-tower or mast-mounting option, the HD-73 features a unique dual-speed control with one five-position switch. It provides a one-minute-per-revolution speed for
rotating over an extended arc, and a slower speed permitting pinpoint adjustments for the best signal on receive and transmit.

Improved automatic brake action not only simplifies positioning, but also reduces risk of antenna damage by sudden stops that impose high inertial stress on antenna, tower, and rotator.

Designed to move antennas with a maximum of 1 square meter (10.7 square feet) of load capacity, the HD-73 develops a wind-load bending moment capable of withstanding the most severe prevailing wind conditions. Icing, another weather hazard for rotators, is overcome by the heaviest hardened-steel pitch-gear teeth of any rotator in its size and price range. The consistently high performance of the unit in all weather conditions is enhanced by a factory-installed lubricant that withstands temperature ranges of +49 to -29°C (+120 to -20°F).

The HD-73's 20-volt ac, capacitor-operated, split-phase, reversible motor and its transformer are doubly protected by fuse and thermal protectors against shorts, possible connection error, and prolonged operation. No voltage on the motor or leads exceeds Underwriters Laboratory safety limits.

The meter, a dc, D'Arsonval, taut-band type, is calibrated in bold S-W-N-E-S lettering as well as with a degree-graduated scale for full 360° position recording. The voltage supply for meter indication is solid-state regulated to assure accuracy regardless of wide line-voltage or load variation. The bar switch permits dual-speed rotor control with utmost accuracy and fingertip ease.

The power required is 117 volts ac, 60 hertz. The mast mounting size range is 35 mm (1-3/8 inch) to 63 mm (2-1/2 inch) O.D.; it requires a six-conductor cable. Total shipping weight of the rotator with two pairs of brackets and control box is 7.7 kg (17 lbs).
A compact new 1-watt, 2-meter handheld amateur fm transceiver is now available from Standard Communications Corp. of Carson, California. This transceiver, designated C-118, is approximately the height and width of a dollar bill, and permits the user to transmit up 600 kHz, down 600 kHz, or receive and transmit on the same frequency with just one crystal. This provides 18-channel capability with only six crystals.

The C-118 also incorporates a built-in capacitor microphone and LED status lights for CHANNEL BUSY and TRANSMIT. Also included at no additional charge is a BNC connector with flexible antenna, provisions for an external dc power supply, and earphone. It has a frequency range of 144-148 MHz and comes equipped with one crystal for operation on 146.94 simplex and 146.34/94 MHz.
To obtain a free copy of the C-118 data sheet, write Standard Communications Corp., P. O. Box 92151, Los Angeles, California 90009.

500-watt rf transformer

Palomar Engineers has a new broadband rf transformer. It matches vertical and mobile antennas to 50-ohm coaxial cable. Impedance values of 8, 12.5, 16, 22, 32, and 50 ohms can be selected by a convenient switch.

The transformer is mounted in a die-cast aluminum case 10 × 12 × 5 mm (4 × 5 × 2 inches) fitted with UHF (SO-239) connectors. The rf ferrite toroid core is wound with teflon-insulated wire and is rated at 500 watts in continuous commercial service. Operating frequency range is 1-30 MHz (1-10 MHz below 20 ohms).

Price is $35 plus $2 for shipping in the United States and Canada. For a free descriptive brochure, write to Palomar Engineers, Post Office Box 455, Escondido, California 92025.

Stolen Equipment

STOLEN: June 30, 1978, Rochester, NY from K2DHA. 2-meter transceiver, KDK model FM144-105XII, Serial #5670. Scanner adapter attached to above. Amateur Wholesale Electronics, FMSC-1, no serial #. Amateur Wholesale Electronics Touch Tone Pad, Model FMTP-1. It tendered for trade, sale, or service, please notify: K2DHA, A. C. Peed, L66 Monterey Road, Rochester 14618 or Brighton Police Dept., 2300 Eithwood Ave., Rochester, N.Y. 14618.

Cushcraft is the VHF-UHF Antenna Company.

Cushcraft's Quad Arrays for 144, 220, and 432 MHz use four matched 11-element Cushcraft Yagis and are the ultimate in high-performance Yagi arrays. These arrays have been specially engineered for maximum forward gain, high front-to-back ratio, and broad frequency response. All antennas provide a low VSWR match to 50-ohm coaxial feedline.

Cushcraft precision engineered VHF/UHF Yagi beams have become the standard of comparison worldwide for SSB and CW operation on 6 meters through 432 MHz. Built by skilled craftsmen from the best available materials, these beams represent that rare combination of high electrical performance, rugged construction, and durability.
DRAKE OWNERS

Please note that our Las Vegas Repair facility is being closed in early September to allow staff personnel to return to our main plant in Ohio to help meet the fantastic demand for the TR-7 and other exciting new Drake products.

The need for a western factory service center has been reduced in recent months as our western dealers have expanded their service capabilities.

R. L. Drake Co.
540 Richard Street
Miamisburg, Ohio 45342
Phone 513-866-2421
Telex 288-017

CURTIS 8043 retires with honors

but look at our NEW STARS!

8044; Keyen-On-A-Chip (Model 8043) ... $14.95
*8044; Jensen 75kHz gen pur scope ... 59.95
*8044-3; IC, PCB, Socket, Manual ... 49.95
*8044-4; Semi-K ... 59.95
*8045; Morse Keyboard-On-A-Chip IC ... 59.95
*8045-1; IC, PCB, FFO, sockets, Manual ... 89.95
*8047; Message Memory-On-A-Chip IC ... 39.95
*8047-1; IC, PCB, RAM, sockets, Manual ... 69.95

Orders are normally shipped in 48 hours.
BE PREPARED FOR CYCLE 21
GET HY-GAIN’S NEW LONG-JOHNS
"THE STACKABLES"

With sunspot cycle 21 now in the upswing, you should be prepared for the DX available on the 3 top HF bands, if not, our new “Long-Johns” are for you. The new 5 element “Long-John” monobanders are ideal for the serious DX'er. Each utilizes Hy-Gain’s unique Beta-match for optimum power transfer. Also each antenna uses taper-swaged tubing for minimum wind load and maximum strength. For maximum durability each “Long-John” uses Hy-Gain’s rugged boom-to-mast clamp.

5 Element Maximum Performance Monoband Beams
for 10, 15, and 20 meters

Specifications:

<table>
<thead>
<tr>
<th>Order Number</th>
<th>Model Number</th>
<th>Gain 11.6 dB</th>
<th>Front-to-back ratio 20 dB minimum</th>
<th>SWR at resonance Less than 1.5:1</th>
<th>Impedance 50 ohms</th>
<th>Power rating Maximum Legal</th>
<th>VSWR Bandwidth 400 KHz</th>
<th>Longest Element 36½"</th>
<th>Boom Length 34'</th>
<th>Boom Diameter 2"</th>
<th>Turning Radius 25'</th>
<th>Surface Area 9.0 sq. ft.</th>
<th>Wind Load at 80 mph 230 lbs.</th>
<th>Maximum Wind Survival 80 mph</th>
<th>Mast Dia Accepted 1¼" to 2½"</th>
</tr>
</thead>
<tbody>
<tr>
<td>377</td>
<td>205BA</td>
<td>115BA</td>
<td>12.0 dB</td>
<td>20 dB minimum</td>
<td>Less than 1.5:1</td>
<td>50 ohms</td>
<td>Maximum Legal</td>
<td>500 KHz</td>
<td>36½"</td>
<td>34'</td>
<td>2"</td>
<td>24½"</td>
<td>6.5 sq. ft.</td>
<td>100 lbs.</td>
<td>1¼" to 2½"</td>
</tr>
<tr>
<td>375</td>
<td>105BA</td>
<td>205BA</td>
<td>12.0 dB</td>
<td>20 dB minimum</td>
<td>Less than 1.5:1</td>
<td>50 ohms</td>
<td>Maximum Legal</td>
<td>500 KHz</td>
<td>26"</td>
<td>25'</td>
<td>2"</td>
<td>24½"</td>
<td>5.2 sq. ft.</td>
<td>100 lbs.</td>
<td>1¼" to 2½"</td>
</tr>
<tr>
<td>376</td>
<td>115BA</td>
<td>105BA</td>
<td>12.0 dB</td>
<td>20 dB minimum</td>
<td>Less than 1.5:1</td>
<td>50 ohms</td>
<td>Maximum Legal</td>
<td>500 KHz</td>
<td>26"</td>
<td>25'</td>
<td>2"</td>
<td>24½"</td>
<td>5.2 sq. ft.</td>
<td>100 lbs.</td>
<td>1¼" to 2½"</td>
</tr>
</tbody>
</table>

HY-GAIN ELECTRONICS
8601 Northeast Hwy 6
Lincoln, Nebraska 68505
(402) 467-5321 telex: 48-4324
Dozens of Distributors offer you a selection of YAESU products. Some might even quote you a slightly lower price. But—no one can serve you better than Clegg when you choose any item from YAESU's extensive product line. Because:

1. We have YAESU products in stock.
2. We know YAESU products inside and out.
3. We service all YAESU products.

If you are considering upgrading your station with a new YAESU FT901—or an FT225RD—or an FT301—or merely a YAESU clock—call us TOLL FREE today.

YAESU and Clegg guarantee your satisfaction with the product and with the service.

Call Clegg TOLL FREE 1-(800)-233-0250, for YAESU or any other requirement for your station.

Kantronics 8040-B Receiver

It weighs about as much as a loaf of bread!

The Kantronics 8040-B CW receiver measures 3"x5"x7"(HWD) and runs on two 9 volt transistor batteries. It's small enough to fit in your briefcase, light enough to take on a hiking trip and sensitive enough to pick up signals at a microvolt.

Now you can copy code from 3.650 to 3.750 MHz on 80 meters and 7.050 to 7.150 MHz on 40 meters almost anywhere you have room for a pad and pencil! A simple dipole brings in armchair copy on both bands.

Check with your dealer about the 8040-B, or order direct from our address below.

KANTRONICS

If you expect to invest in a new ham antenna in the next 90 days, invest 15¢ postage to get Antenna Specialists’ brand new, complete ham catalog today.

FREE decal just for fun!

Name ____________________________
Address ____________________________
City ___________________ State __ Zip __

The antenna specialists co.
RTTY Can Be Easy!

Have You Wondered . . .
What Owning a RTTY Station Would be Like?

Have You Thought . . .
About Finding Out but Didn’t Know Who to Ask?

ASK THE GUYS AT HAL!

Our sales and service staff will be happy to assist you in your choice of RTTY equipment, answer questions about RTTY, and provide assistance if problems do arise. In addition, all HAL amateur RTTY equipment manuals can be purchased for $10.00 each for an advance look (applicable to future purchase of that unit).

Answers to common RTTY questions are featured in the center fold of our new amateur radio catalog. Such questions as “What do I need?”, “How do I hook it up?”, and “What frequencies do I use?” are discussed. Technical points concerning RTTY pulses, FSK and AFSK, and high-tones vs low-tones are covered.

Write today for HAL'S new catalog and RTTY guide and discover how much fun RTTY can be.

HAL COMMUNICATIONS CORP.
Box 365
Urbana, Illinois 61801
217-367-7373

For our European customers, see HAL equipment at:
Richard & Co., Hanover
H. C. Internicola, Bostrome
Pietonik Systems, Hanover, Sweden
Radio Shack of London.
CRYSTAL FILTERS and DISCRIMINATORS

9.0 MHz FILTERS

XC9-A 2.5 kHz SSB TX $35.20
XC9-D 2.4 kHz SSB RX/TX $47.75

Export

XC9-B 3.75 kHz AM $51.40
XC9-C 5.0 kHz AM $51.40

Inquiries

XC9-D 12.0 kHz NBFM $51.40
XC9-E 0.5 kHz CW (4 pole) $35.95

Xi Filters

XC9-F 0.5 kHz CW (8 pole) $63.95

9.0 MHz CRYSTALS (Hc25/u)

XC900 9000.0 kHz Carrier $4.15
XC901 8998.5 kHz USB $4.15
XC902 9001.5 kHz LSB $4.15
XC903 8999.0 kHz BFO $1.50

AM Filters

XC904 5.0 kHz AM $51.40
XC905 12.0 kHz NBFM $51.40

VHF and UHF FILTERS

ELIMINATE IMD "BIRDIES" 432 MHz PSf432 $539.95
FROM YOUR RECEIVER. 1296 MHz PSf1296 $39.95
CLEAN UP YOUR TRANS- 1691 MHz PSf1691 $52.45
MITTER

Shipping $3.50

432 MHz SSB TRANSVERTERS

Use your HF Transceiver on the 432 MHz band with the addition of the KVG432 linear Transverter. The MM432 operates on all modes: SSB, CW, AM, AM. It contains both the linear transmit up-converter and the receive down-converter. An internal PIN diode T/R switch connects to your Transceiver T/R line. The MM432 is FT10 and similar HF rig compatible. Add the 70/MM48 MULTIBEAM and operate direct into OSCARS 7 & 8.

Write for application note.

Specifications:

Output Power 10 W PEP
Drive, 10 Meters 10 W max
Receiver N.F. 35 db typ
Receiver gain 30 db typ
Prime Power 12 V D.C.

Shipping: $3.50

MM432-28 $575.50
MM1432-28 $197.50

ANTENNAS (FOB CONCORD, VIA UPS)

144-148 MHz J-SLOTS

8 OVER 6 HORIZONTAL POL. +123 dbd D8/2M $45.95
8 OVER 8 VERTICAL POL. +8 TWIST KYM/2M $47.65

420-450 MHz MULTIBEAMS

48 EL. GAIN +15.7 dbd 70/MM48 $49.95
88 EL. GAIN +18.5 dbd 70/MM88 $73.50

UHF LOOP YAGIS

26 LOOPS GAIN +20 dbi 1000-1748 MHz $56.95
1600-1750 MHz $63.95

Send $30 (2 stamps for full details of KVG crystal products and all your VHF & UHF equipment requirements.

Pre-Selector Filters Amplifiers

Varactor Triplers Crystal Filters SSB Transverters

Descale Pre-Scalers Frequency Meters FM Transverters

Antennas Oscillator Crystals VHF Converters

UHF Converters

Delmar Supply Co.

New Low Price!

2 Meter Portable

G.E. MASTR PR 36

132-150 MHz - 5 Watts

ALL SOLID STATE

with Ni-Cad Battery

Reg.

$228

NOW $188.

Vehicular Charger 4EP63A (sold only with unit) $25.
A.C. Charger (subject to availability) $25.
Speaker/Mike Type EM36 $15.

WHERE THE HAM IS KING

SERVICE FOR OVER 30 YEARS

DEALERS WANTED

Hamtronics, Inc. is a stocking distributor for all major lines of Radio Communications Equipment, parts and accessories.

If you are presently in the electronics sales and service business, and have experienced difficulty in maintaining proper inventory to serve your customers or if you are contemplating going into your own business, we may be able to solve your problem with our large inventory.

For more information fill in coupon below and mail today with your letterhead or Tax Exempt Number.

INTERNATIONAL, INC.

4033 BROWNSVILLE ROAD, TREVOSA, PA 19047

Business Name ________________________________
Street __
City, State ___________________ Zip ____________
Telephone No. ____________________________
Tax Exempt No. _____________________________
Name, Title ________________________________

More Details? CHECK -- OFF Page 142
Don’t let its small size, and light weight fool you ... the Atlas 210x/215x is a top notch performer, with all the power and performance that you find in rigs twice as big, and costing twice as much. And none of the others have as many superior features as our little Giant Killer, regardless of their size.

- All solid state design.
- 200 watts pep.
- No transmitter tuning.
- 5 band coverage.

(210x covers 10-80 meters, 215x covers 15-160 meters).

- Plug-in circuit boards.
- Superior selectivity, with exclusive 8 pole crystal ladder filter.
- Exceptional immunity to strong signal overload and cross modulation.
- Slips in and out of special mobile mounting bracket or ac console in seconds, with connections for dc power input, antenna jack, and mic jack made automatically.

For complete details on the Giant Killer see your Atlas dealer or drop us a card and we'll mail you a brochure with dealer list.

ATLAS RADIO INC.
417 Via Del Monte Oceanside, CA 92054
Phone (714) 433-1983
Special Customer Service Direct Line (714) 433-9591

Made in U.S.A.
ALL-MODE VHF amplifiers

115V/230VAC OPERATION
FOR BASE STATION & REPEATER USE

FAN KIT

- No Power Supply Needed
- AM-FM-CW SSB-RTTY
- 60dB Harmonics
- 60dB Spurious
- Heavy Duty Design
- Illuminated Panel Meter
- Internal T/R Switch
- Fully Protected
- +13V/3A Accessory Socket
- U.S. Manufactured

FCC Type Accepted Models also available, Parts 89,91,93.

CRF POWER LABS, INC.
11013-118th Place N.E. • Kirkland, Washington 98033 • Telephone (206) 822-1221 • TELEX No. 52 1042

DIPOLE ANTENNA CONNECTOR

BUDWIG MFG. C0. PO Box 479, gunmen, CA 92066

K-ENTERPRISES

Frequency Counters
Prescalers
Marker & Peak
Generators

Power Supplies
Amplifiers
Standards

Write for Free Catalog
Box 410 (Pump Sta. R8) • Fairland, OK 74343

Barry Electronics...
Your One Source for Amateur Radio Gear

FEATURING: ANTENNA SPECIALISTS

Yes, we have

ATLAS
E-Z WAY
ROHN

BIRD
HY-GAIN
STANDARD

COLLINS
ICOM
SWAN

CUSHCRAFT
KDK
TRI-EX

DENTRON
KLM
WILSON

DRAKE
MOSLEY
YAESU

EMAC
NEWTRONICS

BARRY ELECTRONICS
512 BROADWAY
NEW YORK, N. Y. 10012

(212) 925-7000

More Details? CHECK — OFF Page 142

SWR Power Meters

COMBINATION SWR/FIELD STRENGTH METER
Measures SWR up to 3:1, or higher. Meter has sensitive movement and easy-reading two-color scale. 5% accuracy. 52 ohms impedance. SO-239 female coaxial connectors. 6" high x 2" wide x 2¾" deep. Model SWR-A 814.95

MINI SWR METER
Small size makes this the perfect mobile or portable meter. Sensitive meter with easy-to-read two-color scale. Metal case 1-5/8" x 2-1/8" x 2-1/8". Model SWR-B 812.95

POWER/SWR/F.S. METER
Measures SWR and power on 0-10 and 0-100 watt ranges. Good up to 225 MHz for SWR function, up to 148 MHz for power functions. Accuracy: 5% on SWR, 10% on power functions. 2" x 4¾" x 2¾", Model SWR-C 826.95

DUAL METER SWR BRIDGE
Shows output power and reflected power simultaneously. Can be used as reference power meter. Wide scale, easy-to-read meter faces. Dual meters make antenna tuner adjustments a snap. Good through 175 MHz. May be left in-line up to 2,000 watts. Model SWR-D 829.95

Call (213) 376-5887 to order COD or with VISA or M/C

Card
Exp. date
Name
Street
City
State
Zip

Models desired:

$5 shipping per order. Calif. res. add tax. Checks or MO enclosed.
SST T-1 RANDOM WIRE ANTENNA TUNER

All band operation (160-10 meters) with any random length of wire. 200 watt output power capability—will work with virtually any transceiver. Ideal for portable or home operation. Great for apartments and hotel rooms—simply run a wire inside, out a window, or anyplace available. Efficient toroid inductor for small size. 4-1/4" x 2-3/8" x 3", and negligible loss. Built-in neon tune-up indicator. SO-239 connector. Attractive bronze finished enclosure.

only $29.95

THE ORIGINAL Random Wire Antenna Tuner... in use by amateurs for 6 years.

SST T-2 ULTRA TUNER

Tunes out SWR on any coax fed antenna as well as random wires. Works great on all bands (80-10 meters) with any transceiver running up to 200 watts power output.

Increases usable bandwidth of any antenna. Tunes out SWR on mobile whips from inside your car.

Uses efficient toroid inductor and specially made capacitors for small size: 5-1/4" x 2-1/4" x 2-1/2". Rugged, yet compact. Negligible line loss. Attractive bronze finished enclosure. SO-239 coax connectors are used for transmitter input and coax fed antennas. Convenient binding posts are provided for random wire and ground connections.

only $39.95

SST T-3
Mobile Impedance Transformer

Matches 52 ohm coax to the lower impedance of a mobile whip or vertical. 12-position switch with taps spread between 3 and 52 ohms. Broadband from 1-30 MHz. Will work with virtually any transceiver—300 watt output power capability. SO-239 connectors. Toroid inductor for small size: 2-3/4" x 2" x 2-1/4". Attractive bronze finish.

only $19.95

SST A-1 VHF Amplifier Kit

1 watt input gives you 15 watts output across the entire 2 meter band without re-tuning. This easy-to-build kit (approx. 1/2 hr. assembly) includes everything you need for a complete amplifier. All top quality components. Compatible with all 1-3 watt 2-meter transceivers. Short and open protected—not damaged by high SWR.

Kit includes:
- Etched and drilled G-10 epoxy solder plated board.
- Heat sink and mounting hardware. All components—including pre-wound coils.
- Top quality TRW RF power transistor.
- Complete assembly instruction with details on a carrier operated T/R switch.

only $29.95 $49.95 wire and tested

master charge VISA

GUARANTEE

All SST products are guaranteed for 1 year. In addition, they may be returned within 10 days for a full refund (less shipping) if you are not satisfied for any reason. Please add $2 for shipping and handling. Calif. residents, please add sales tax. COD orders OK by phone.

ELECTRONICS
P.O. BOX 1 LAWNDALE, CALIF. 90260 (213) 376-5887

More Details? CHECK—OFF Page 142
ATTENTION KENWOOD & YAESU OWNERS!!!

the W6TOG*

RECEIVER MODIFICATION KIT

- INCREASES SELECTIVITY
 TS-520 KIT $27.50
- IMPROVES SENSITIVITY
 TS-520S KIT 32.50
- LOWERS INTERNAL NOISE
 TS-820 & 820S KIT 34.50
- COMBATS BLOCKING FROM LOCAL SIGNAL
 FT-101 SERIES KIT 32.50
- IMPROVES NOISE BLANKER OPERATION
 FT-101 SERIES KIT 34.50

EXPLICIT INSTRUCTIONS MAKE MODIFICATION A CINCH
* WELL KNOWN DXer with OVER 300 COUNTRIES CONFIRMED.

Order from
S-F AMATEUR RADIO SERVICES
4384 KEYSTONE AVE., CULVER CITY, CA. 90023
(213) 837-4870

IT'S MAGIC—IT'S "MAGICOM"
PROCESSOR MODIFICATION KIT

IMPROVES AUDIO PUNCH • IMPROVES PROCESSED SPEECH QUALITY

Converts TS-820 speech processor from RF compressor to RF clipper

The "MAGICOM" RF processor module provides up to 6dB increase in output with smooth, clean, non-distorted audio and more penetration for those pile ups. Price $27.50

ENDORSED BY W6TOG AND BIG GUN DXers WORLD WIDE

SATISFACTION GUARANTEED OR MONEY REFUNDED
All prices postpaid - In Calif. add 6% sales tax - Mastercharge & Visa accepted

NEW! VIP-100 Option provides ±10 kHz from desired frequency.

146 - 148 MHz

ONLY $9.95

ALL 2-METER FM CHANNELS

- SINGLE KNOB CHANNEL SELECTION
- DIRECT FREQUENCY READOUT
- SIMPLE, EASY INSTALLATION
- LOW COST
- INSTALLS IN PLACE OF ORIGINAL SWITCH

NOW! Only $24.95

VIP-42 kit $29.95
VIP-600 option - $3.50
VIP-15 option - $3.50

NOW! Only $24.95

VIP-42 kit $29.95
VIP-600 option - $3.50
VIP-15 option - $3.50

V655 605

COMING! New 2-meter FM Communication for W6TOG and 15-90

HIGHEST QUALITY

MADE IN ALUMINUM

☆ TELESCOPING (CRANK UP)
☆ GUYED
☆ TILT OVER MODELS

QUALITY MADE

Excellent for

HAM COMMUNICATIONS

MANY MODELS MFG.

Towers to 100 feet. Specials designed & made. See dealer or send for free catalog.

ALUMA TOWER CO.

BOX 28066HR
VERO BEACH, FLA. 32960

PHONE (905) 567-3423

JAN CRYSTALS HOLD THE FREQUENCY

- CB
- CB standard
- 2 meter
- Scanners
- Amateur Bands
- Micro processor crystals

easy to charge

Send 10$ for our latest catalog. Write or phone for more details.

2400 Crystal Drive
Ft. Myers, Florida 33901
all phones (813) 936-2397

2400 Crystal Drive
Ft. Myers, Florida 33901
all phones (813) 936-2397
The revolutionary Swan 100 MX: 100% new, 100% solid state, 100% portable from home station to mobile!

Introducing a superb “get up and go” transceiver, superbly designed for 100% mobility and control, as only new Swan space-age technology could do it!

100% solid state 100 MX: the compact HF unit you can take seriously — anywhere you choose to operate.

At home, set into Swan's unique new style-coordinated station, with matching antenna tuner and power supply.

Or on the road — it’s easy to relocate 100 MX. Instantly. Just two simple connections on the back panel: snap out, snap in... and run!

100% improved audio quality: home or mobile, transmit or receive. 100 MX electronics cut through SSB sound barriers — producing a natural clarity reported comparable to AM!

Your most-wanted extras, 100% built-in: like noise blanker and VOX. Like a preselector to optimize signals. Like a real RF GAIN control, and CW sidetone.

Swan includes the RIT control (±1.5 kHz) you'd like too. Plus, for stability, a permability tuned oscillator with 1Kc readout.

A powerful package, delivering a minimum 100 watts PEP output on all bands, 10-80 meters.

Setting a 100% new state of art: 100 MX and our matched-station units. Ready for check out today at your Swan dealer, the first major breakthrough in Swan's new program dedicated to changing the face — and performance — of ham equipment 100%...inside and out!

Swan 100 MX: **$849.95**

Matching Power Supply PSU-5: **$179.95**

Matching Antenna Tuner ST-3: **$169.95**

Available only through authorized Swan dealers.

[Please rush full specs on Swan's all-new 100 MX home/mobile transceiver.]

<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>City</td>
<td>State</td>
</tr>
</tbody>
</table>

HAM 1078

Swan Electronics
A member of the Cubic Corporation family of companies

305 Airport Road, Oceanside, CA 92054
(714) 757-7525

Swan's continuing commitment to product improvement may affect specifications and prices without notice.
SINGLE SUPPLY.

MC3301P HOUSE #
4 OP AMPS IN ONE PACKAGE USES SINGLE SUPPLY, (14 to 28VDC); INTERNALLY COMPENSATED. SIMILAR TO MC3401, BUT HIGHER GAIN. 49¢

MC1437P DUAL 709 OP AMP
HIGH GAIN LOO P GAIN, LOW NOISE, 14 PIN DIP
3/1.00

MPF131 N-CHANNEL DUAL GATE MOSFET

DESIGNED FOR AMPLIFIER AND MIXER APPLICATIONS TO 200 MHz. PLASTIC CASE, UNITS ARE HOUSE NUMBERED WITH SPEC.
50¢

1N4148 DIODES
LEADS ARE TARNISHED BUT CLEAN UP EASILY. THE BOSS SAYS "DUMP 'EM..." SO CHECK THIS PRICE!
50/1.00

IL-1 OPTO ISOLATORS
BY LITRONIX 6 PIN DIP STANDARD PINOUT LED-TRANSDUCER COMBINATION.
50¢
WHILE THEY LAST

MC1351P FM-IF AMP AND Discriminator
USED IN FM & TV SOUND 5 CIRCUITS. REQUIRE MINIMUM EXTERNAL COMPONENTS; 14 PIN DIP DIRECT REPLACEMENT FOR PCIe 6800, ECG 748 AND MANY OTHERS; HOUSE # WITH SPEC
50¢

MC1468R POSITIVE VOLTAGE REGULATOR
% AMP COMPLETE SPECIFICATIONS AND APPLICATIONS SHOW HOW TO BUILD FIXED OR VARIABLE POWER SUPPLIES FROM 3 TO 30VDC. DRIVER EXTERNAL SERIES PASS FOR CURRENT TO 20 AMP.
1.25 EA.
10/1.00

HOUSE #

FANTASTIC SOUND EFFECTS CHIP
AVAILABLE ONLY FROM BULLET!
THIS 2B PIN MARYN CONTAINS A LOW FREQUENCY OSCILLATOR, VCO NOISE OSCILLATOR, ONE SHOT, MIXER AND ENVELOPE CONTROL WITH 8 PAGE MANUAL. 5 TO 20VDC
3.95

INCANDESCENT PANEL LAMP
WITH TINNED MALL YOUR CHOICE OF RED, GREEN, YELLOW, WHITE 12-24VDC
15¢

CAPACITORS
2200 MFD @ 16 VDC RADIAL
3/1.00

500 MFD @ 35VDC
5/1.00

2200 MFD @ 25VDC
7/1.00

1 MFD @ 20VDC DISC CERAMIC
15/1.00

POWER SUPPLY METERS
Quality 3 3/4" meters for the PS10, 0.15VDC & 725 OP AMP Low Noise House to 30VDC
NO SFL

LIT132 ANODE READOUT

TUNABLE FM TRANSMITTER SAW-MOUNTED, INCL. 1 KHZ STEP, 300K-34 MHz, 200K Hz STEP, 5 kHz STEP. ADJUSTABLE IN 5 Mhz STEPS between 300K and 34 MHz.

ULTRASONIC RECEIVER KIT 06-02

ULTRASONIC RECEIVER KIT 06-02

TOTAL SECURITY COMPONENTS INCL. DIP TRANSISTORS, TUNABLE CRYSTAL FILTERS, SAMPLING CIRCUITS, PERIOD MEASUREMENT, etc. FOR USE IN ANY ULTRASONIC APPLICATIONS.

LED'S JUMBO: RED 5/89
GREEN 4/89
MEDIUM RED 15 MINI:
GREEN 16 RED 10
YELLOW 16
1.5V 10-30 ma

WIRELAM ALARMD KIT
A fun EASY TO ASSEMBLE THAT EMITS AN EAR PIERCING 10 watt dual tone scream. Resembles European protest signs. Great for alarms or for fun. Operates from 6-V12VDC at 1 IP using 12VDC (8 ohm speaker). Over five thousand have been sold. All parts including PC board are pre-cut and pre-drilled. ORDER KB-02

2.50

NO C.O.D.'S
SEND CHECK M.O. OR CHARGE CARD NO.
PHONE ORDERS ACCEPTED ON VISA AND MASTERCHARGE ONLY.

WAVE PROTECTION KIT

OVERVOLTAGE PROTECTION KIT

6.95

PROVIDES QUICK PROTECTION FOR YOUR EXPENSIVE EQUIPMENT.

2A 5-30 Volts. This is a 3A 500VDC (500 volt) circuit breaker and replaces the output protection equipment. Should be used in units that are fused. Directly connects to the PS-15 or PS-14 All electronics are supplied. Dipped and plated PC board. ORDER 3D-11

42.95

UPS SHIPMENT PAX

WATCH FOR IT!
Coming next month, a special kit for HAMS!

MINI GRANDFATHER CLOCK

COMPLETE ELECTRONICS

39.95

COMPLETE ELECTRONICS INCLUDING TRANSPONDER & SPEAKER, DOLLY AND PLATED PC BOARD INCL. 0.15VDC

BEAUTIFUL SOLID WALNUT

CUSTOM CASE FOR ABOVE KIT. ORDER 95" WIDE

19.95

MK-03A CLOCK/TIMER KIT

FEATURES 24 HOUR Zulu time and up to 24 hours of elapsed time on an external 8 digit LED readout. Perfect independent operation of both functions. Clock has presettable alarm with 10 minute, 1 hour, 1 day and 7 days recall. Hold, and count functions. Full noise and overvoltage protection. 24 hour only. Readout, alarms and timer can be turned off without disturbing the clock or timer. Timebase includes 0.15 second accuracy. Combines the many options and mounting considerations the clock and timer are not included. Switches are standard types. Will fit inside standard aircraft instrument case.

9-14VDC

28.95

MORE DETAILS? CHECK-OFF PAGE 142
Flea Market

RATES Non-commercial ads 10¢ per word; commercial ads 60¢ per word both payable in advance. No cash discounts or agency commissions allowed.

HANFESTA, Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing). Repeat insertions of hamfest ads pay the non-commercial rate.

COPY No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

DEADLINE 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N.H. 03048.

Mobile Ignition Shielding provides more range with no noise. Available in many other suppression accessories. Literature, Estes Engineering, 930 Marine Dr., Port Angeles, WA 98362.

Happy Birthday! Now ten years fighting TVI. The R50 low pass filter. For brochure write: Taylor Communications Manufacturing Company, Box 126, Agincourt, Ontario, Canada M1S 3R4.

UNLIMITED VHF/UHF EQUIPMENT is at Radios Unlimited. From transverters to specialized transceivers, from mobile whips to E-3 Arrays. Plus all accessories. Authorized dealers top manufacturers. (Also all your needs from 160 to 10) RUN in, write or phone — Radios Unlimited, 1760 Eastern Avenue, Somerset, New Jersey 08873, 201-489-4909 — Hours 1 to 8 Mon-Fri; 10 to 6 Sat.

Electronic Equipment Hotline is a new classified advertising newsletter for buying and selling professional, industrial, and surplus electronic equipment. Subscriptions $6/year, ads 50¢/word. Prepublication offer: $1 off subscriptions and 20¢ off all ads postmarked by October 1, 1978. Electronic Equipment Hotline, P.O. Box 4768, Panorama City, CA 91402.

Canadian Advertisements

Buy-Sell-Trade. Send $1.00 for catalog. Give name, address and call letters. Complete stock of major brands new and reconditioned equipment. Call for best deals. We buy Collins, Drake, Swan, etc. SSB & FM. Associated Radio, 60121, Overland Park, KS 66214. 913-381-5900.

Porta Pak the accessory that makes your mobile really portable. $97.50 and $85.00. Dealer inquires invited. P.O. Box 67, Somers, Wisc. 53171.

Free Catalog of new merchandise. Resistors, capacitors, ICs, semiconductors, and more. Send to: Key Electronics, Box 3506H, Scenicelady, New York 12033.

MOTOROLA HT220, HT200, and Pageboy service and modifications performed at reasonable rates. WA4FRV (804) 320-2410, even after hours.

Authorized Dealer for DenTron, KLM, Larsen, Bearcat, etc., Big Catalog 201-902-1685 Narwed Electronics, 61 Bellot Road, Ringwood, N.J. 07456.

Teletypewriter Parts Wanted: for all machines manufactured by: Killenschmidt Corp., Teletele Corp. and Mite. Any quantity, tops. Used or for parts, please send word. Phil Richard, W4LNW, Rt. 6, Box 110392, Brookville, PA 15312.

QSL Card: 5$00.00, 400 illustrations, sample. Bowman Printing, Dept. HR, 743 Harvard, St. Louis, Mo. 63130.

Homebrewers: Stamp brings component list. CPO Surplus, Box 389, Braintree, Mass. 02184.

Electronic Bargains, Closeouts, Surplus! Parts, equipment, stereo, industrial, educational. Amazing values! Fascinating items available only on order. P.O. Box 376, Brookville, Pa. 15312.

Teletype equipment for beginners and experienced operators. RTTY machines, parts, supplies. Beginner's special: 15 Printer and demodulator $139.00.

Antennas, more range. Do it yourself. E-M-E (formerly The Measurement Shop) has used/conditioned (new) equipment. 50501. (51 5) 5764-5900. Atlantic Surplus Sales, 3730 Nautilus Ave., Brooklyn, NY 11224. Tel: (212) 372-0349.

The "CadiLac" of QSL's! Samples: $1.00 (Refundable) — W5YI, Box 762, Plattsburgh, N.Y. 12901. Surplus Wanted.

Teletypewriter Parts, gears, manuals, supplies, tools, toroids. EASE list. Typetronics, Box 9873, Ft. Lauderdale, FL 33310. NUTT Parts buy, late machines.

Exclusively Ham Teletype 24th year, RTTY Journal, articles, news, DX, VHF, classified ads. Sample 35¢. $3.50 per year. 1155 Arden Drive, Encinitas, Calif. 92024.

Manuals for most ham gear made 1973/1979. Send only 25¢ in for list of manuals, postpaid, hi. Inc., Box H864, Council Bluffs, Iowa 51501.

QSL forwarding service — 30 cards per dollar. Write: QSL Express, 30 Lockwood Lane, West Chester, PA 19360.

Receive Parts Lists regularly for $4yr. Surplus Parts, P.O. Box 2037, Norfolk, Va. 23509.

Want Up-To-Date Information? Radio-Hobbylet Newsletter Issued every 3 months. $5.00 per year. W5YI, Box 1171-D, Garland, Texas 75040.

EZ deals are the best! Try me and see for Yaesu, Drake, KLM, Swan, Cushcraft, DenTron, VHF Eng, ICOM, CDE, Hustler, Wiltron and more. Gall, see or write WBE2, Bob Smith Electronics Research, F3, Hwy 169 & 7, Fort Dodge, Ia. 50501. (515) 576-3886.

The Measurement Shop has used/reconditioned test equipment at available prices; catalog 2. West 22nd St., Baltimore, Md. 21218.

WANTED: Collins 515 Cabinet. W7UUV, Box 406, Glenview, Ill. 60025.

Amateur Microprocessor Experiments: 10 Micr + 20 ppm Colcwid crystals. 1 ppmryr. 32 pF, Cg 6 pF, $4.25 ea. postpaid. Savoy Electronics, Inc., P.O. Box 9727, FL 33310. Tel: (305) 563-1833.

Authorized Distributor for Antennas, Microwave Modules, WR Products' new tandem reflector, 19 element, 432 MHz Yagi — Radio Clinic — N2MB (formerly W8DT) 212-327-4952.

430-450 MHz

UHF Power Module

430-450 MHz Factory New, leading manufacturer. 200 Milliwatts input to 430-450 MHz will get 12 Watts output. Input Voltage is 13.5 Volts DC. No tuned circuits required. Hook-up supplied and all units tested before shipped. $10.00 ea. ppd.

Highest Quality E. F. Johnson Trimmer Caps. Hard-to-find P.C. board mount. 5-11 mmid. $1.00 each, 90c each; 10 for $7.50 ppd.

In-Line Fuseholder — Complete with 5 Amp fuse. 50¢ ea. ppd.

XTL Socket — Standard HC-6 style — 10¢ ea. ppd.

Vertical Mount Trimmer Pots — All highest quality. No junk. 100 — 1000 — 2000 — 5000 10K — 20K — 25K 50K — 250K — 500K Ohms. All have thumb screw adjust. Your choice 5 for $1.00 ppd.

Transformer — 115 VAC Primary. 12 Volt AC 200 mA Secondary. PC board type. $1.00 ea. ppd.

MiniLEDs — Factory New — Color red. — 15¢ ea. ppd.

Germanium Diodes — 1N34A. Factory New — full leads. — 12¢ ea. ppd.

1N914-1N4148 Type diodes — full leads. 10¢ ea. or 100 for $8.00

Screw—BUD — 5000 mfd. @ 40 volt electrolytic cap. factory new and complete w/all hardware. — 40¢ ea. ppd.

800 Volt PIM 2 300 mfd. $5.00 ea. ppd.

SO239 Coax Fittings — PL259 Coax Fittings — $50 ea. ppd.

Transformer: 115V AC Primary. Secondary 17-0-17V @ 7 Amps. We tested and find good for 10 Amps intermittent duty. Ideal for 2RM rigs! $8.00 ea. ppd.

All Items PPD USA

Send Stamp for List of Bargains

PA Residents Add 8% Sales Tax

Fone 412-863-7006

More Details? CHECK — OFF Page 142
SLEP SPECIALS
RADIO SPECIALS
RECEIVERS, TRANSMITTERS
R-390/URR Receiver, tunes 500 kHz thru 35.1 MHz, digital radio filters, 12 volt, 115V/60 Hz, $945.00
R-39A/URR Receiver, tunes 500 kHz thru 35.1 MHz, digital tuning, mechanical filters, 12 volt, 115V/60 Hz, $955.00
R-39V/URR VLF Receiver, tunes 15 kHz thru 1500 kHz, 12 volt, 115V/60 Hz, $965.00
HARMARKUHNS SP-600UX Receiver, tunes 500 kHz thru 54 MHz, digital radio filters, 12 volt, 115V/60 Hz, $985.00
R-388/URR Receiver, digital tuning, mechanical filters, 12 volt, 115V/60 Hz, $995.00
R-260/URR Receiver, tunes 500 kHz thru 35 MHz, digital tuning, 12 volt, 115V/60 Hz, $1005.00
URR-13 Receiver, tuneable UHF, 225-400 MHz, Used, $1015.00

TEST EQUIPMENT
COLLINS 47F-2 VOR/ILS Signal Generator, 105.3-139 MHz, 325 kHz, 10V output, Calibrators, $1050.00
COLLINS 47F-2 VOR/ILS Signal Generator, 105.3-139 MHz, 325 kHz, 10V output, $1060.00
COLLINS 47F-2 VOR/ILS Signal Generator, 105.3-139 MHz, 325 kHz, 10V output, $1070.00
COLLINS 47F-2 VOR/ILS Signal Generator, 105.3-139 MHz, 325 kHz, 10V output, $1080.00

DATA
1970 HAY-NE bonding reference furnished at the request of the Department of Justice.

NEW FROM GLB
A complete line of QUality 50 thru 450 MHz TRANSMITTER AND RECEIVER KITS. Only two boards for a complete receiver. 4 pole crystal filter is standard. Use with our CHANNELIZER or your crystals. Priced from $69.95. Matching transmitter strips. Easy construction, clean spectrum, TWO WATTS output, unsurpassed audio quality and built in TONE PAD INTERFACE. Priced from $29.95.

SYNTHESIZER KITS from 50 to 450 MHz. Prices start at $119.95. Now available in KIT FORM - GLB Model 200 MINI-SIZER. Fits any HT. Only 3.5 mA current drain. Kit price $159.95 Wired and tested. $239.95 Send for FREE 16 page catalog. We welcome Mastercard or Visa

GLB ELECTRONICS
1952 Clinton St., Buffalo, N.Y. 14206

THIS IS IT
MODEL 4431 THRULINE
RF DIRECTIONAL WATTMETER with VARIABLE RF SIGNAL SAMPLER - BUILT IN
IN STOCK FOR PROMPT DELIVERY
AUTHORIZED DISTRIBUTOR

WEBSTER ASSOCIATES
115 BELLEMARNE ROCHESTER, N.Y. 48063
CALL TOLL FREE 800 - 521-2333
IN MICHIGAN 313 - 375-0420

More Details/ CHECK OFF Page 142
The world’s most popular 2 meter amateur hand-helds now are even better!!

with the miniature-sized

Wilson

2.5 watt MARK II and 4.0 watt MARK IV amateur hand-helds

Wilson hand-helds have been known world-wide for exceptional quality and durable performance. That’s why they have been the best selling units for years.

Now the American made Mark Series of miniature sized 2 meter hand-helds offers the same dependability and operation, but in an easier to use, more comfortable to carry size ... fits conveniently in the palm of your hand. Like its size, the price is also the smallest on the market.

To obtain complete specifications on the Mark II and Mark IV, along with Wilson’s other fine products, see your local dealer or write for our Free Amateur Buyer’s Guide.

Illustrated with optional Chomarics or Digitran Touch Pad.

SPECIFICATIONS

- Range: 144-148 MHz
- 6 Channel Operation
- Individual Trimmers on TX and RX Xtxls
- Rugged Lexan® outer case
- Current Drain: RX 15 mA
 TX - Mark II: 500 mA
 TX - Mark IV: 900 mA
- 12 KHz Ceramic Filter and
 10.7 Monolithic Filter incl.
- Spurious and Harmonics: more than 50 dB below carrier
- BNC Antenna Connector
- .3 Microvolt Sensitivity for 20 dB Quieting
- Uses special rechargeable Ni-Cad Battery Pack
- Rubber Duck and one pair Xtxls 52/52 included
- Weight: 19 oz., including batteries
- Size: 6” x 1.770” x 2.440”
- Popular accessories available

Illustrated is Wilson’s BC-2 Desk Top Battery Charger shown charging the Mark Series Unit or the BC-4 Battery Pack only.

Consumer Products Division

Wilson Electronics Corp.

4288 South Polaris Avenue • P. O. Box 19000 • Las Vegas, Nevada 89119
Telephone (702) 739-1931 • TELEX 684-522

More Details? CHECK—OFF Page 142
8068 SOFTWARE — Learn and practice copying CW and transmit using your microcomputer. Full program documentation plus source and object listings for $6.00. TRANSCHEER, P.O. Box 194, Northfield, N. J. 07205.

QO QSO QSO for the greatest thrill in ham radio, join the 40 to 60 WPM code operators. Learn to use that high speed read-out you already have in your head! High Speed Code Record and Keyboard Touch Typing Course, $3.95 postpaid USA. Introductory offer. Com-Viz Publications, Box 215, Sherman, Ill. 62884.

TELETYPE EQUIPMENT AND PARTS Model 33 KSR and many parts for sale cheap. Lee Zantesson WA6FPO, (213)792-8900.

COLLINS'S FILTERS, $45.00 EACH. F456D-3 and F455D-0. Latter enhanced to 75-4.4 receiver. Certified check or money order. Ken Hager W7KQG, Rt. 1, Box 186, Burton, WA 98231.

CERTIFICATE for proven two-way radio contacts with Amateurs in all ten USA call areas. Award suitable for frame and proven accomplishments sealed on request. SASE brings TAD data sheet from W8LS, 2814 Empire, Burbank, Ill. 60610.

OLD TELEPHONE WANTED, Handled upright or with (without) all. Also old spring suspended Mike & old Key. DellPopWell/W. Peiper, P.O. Box 326, D-7850 Wisselang 11.

RTTY — N5-1A PLL Demodulator W7T $265.95 p'd. Parts kit including board $199.95 p'd. SASE for info. Nat Stinnette Electronics, Tavares, FL 32778.

$100 FINDER'S FEE FOR YOU (even if finder is seller) for lead to item made by J. D. Duck Co. If you buy, $50 for lead to a crowd of glass telegraph battery if buy. Dr. A. E. Richmond, 7609 SW 4th Ave., Portland, OR 97219.

CALL PINS 3 lines 1-1/4 to 3-1/4 $1.55 each. Call First Name and Club. Columbia and red street or blue with white letter. (Catalog) Arnold Linnzer, 2041 Linden Street, Ridgewood, N. J. 0227.

I WOULD LIKE TO TRADE my Western Data Systems 5600 used computer for an SSB xmr, SSB xcvr, or 2-meter FM xcvr. W8WIDJ, P.O. Box 234, Mt. Shasta, CA 96067.

HAM RADIO MAGAZINES — Vol 1 No 1 through (complete set) in HB binders — Mint! $225 or trade for railroad brass. Steve Hyett, 1440 Royal St. George, Naperville, Ill. 60540.

Comeing Events

MASSACHUSETTS: Hampden County Radio Association's annual Ham and Electronic Equipment auction, Friday, October 6, Feeding Hills Congregational Church, Feeding Hills. Door opens 7PM — Auction 8PM. For info Larry Soltz, W1BCJH, (413)567-6707.

MARYLAND: The Foundation for Amateur Radio's annual Hamfest, Gaithersburg Fairgrounds, Gaithersburg, Sunday, October 8. Fees market, food, exhibits, ladies and children's programs. Picnic grounds and free parking. Fee $2.00, flea market space $5.00 each, commercial $15.00 each. Pre-registration required by Thursday, October 5. For info Ron Lavin, W2GUB, 802 Greenview Court, Reisterstown, MD 21116. (410)833-1816.

Sooner or later almost all ordinary ham antennas are going to become victims of bad weather.

But Shakespeare's brand new line of two meter and HF antennas is anything but ordinary. We're new to the ham market, but we've been making marine and military antennas for 26 years. And those 26 years have taught us how to make a ham antenna that'll take just about anything Mother Nature can dish out.

Look at our 5705 omnidirectional VHF base antenna, for example. Its radiating elements are non-ferrous brass and copper, the finest practical material available for conductivity and corrosion resistance. Surrounding the radiating elements and electrical components is a tough, flexible fiberglass shield. A shield that gives the antenna the strength to withstand winds in excess of 120 miles-per-hour.

The fiberglass keeps out rain, sleet and snow too. So the antenna's radiation pattern won't change, no matter how bad the weather.

And you don't have to worry about radials breaking off, because the 5705 doesn't have any. But it does have seven vertically polarized and phased 1/2 wave elements, stacked in colinear array.

And you can get optional style 5709 reflector that blocks out unwanted coverage in one direction and gives you an additional gain in the opposite direction.

And here's another important piece of information: the 5705 is pre-tuned at our factory to operate in all environments. So you will never have to have it re-tuned.

Our full ham antenna line is featured in our new catalog: The Complete Works of Shakespeare. And the catalog is yours. For free. All you have to do is ask for it.

Just drop us a line at Shakespeare, Electronics and Fiberglass Division, Department C, Post Office Box 246, Columbia, South Carolina 29202.

Or call National Sales Manager John Hughes, WA4EAU or (803) 779-5800.
BIG REGENCY FM CLOSEOUT!

Don't pass up the Savings!

HR-28 2m FM Xcvr 15w. 12ch w/ 94 crystals. mic & mt. (Reg. $229)...
CLOSEOUT $139.00

HR-312 2m FM Xcvr 30w. 12ch T/R w/ 94 crystals. mic & mt. (Reg. $299)...
CLOSEOUT $169.00

HR-6 6m FM Xcvr 25w. 12 ch T/R w/52.525. mic & mt. (Reg. $239)...
CLOSEOUT $149.00

HR-220 220 MHz FM Xcvr 12 ch T/R w/223.5. mic & mt. (Reg. $239)...
CLOSEOUT $149.00

HR-440 440 MHz FM Xcvr 10w. 12 ch w/ 466.0... (Reg. $349)...
CLOSEOUT $129.00

AR-2 2m FM Power Amplifier. 13.8vdc - 9 A. max. 50 power gain. 10 to 25 watt input for 32 to 80 W output. (Reg. $119)...
CLOSEOUT $119.00

HRT-2 Basic 2m FM Hand-Held Xcvr. 2w or 1w. 5 ch w/ 94 crystals. Whip antenna. No other accessories. (Reg. $179)...
CLOSEOUT $199.00

HRT-2 Deluxe. As above, but includes Nicad Battery. Charger, Flexible Antenna. External Microphone. Earphone. Case and DC Cord with plug. (Reg. $266)...
CLOSEOUT $195.00

NEW JERSEY: Knight Raiders VHF Club Auction & Flea Market, St. Joseph's Church, East Rutherford, Saturday, October 14. Doors open at 9:00. Free admission. Selling flea market tables — $1.00 or $1.50. Half in. 146.50 and 146.65/145.25. For info: Bob Kovaleski, (0147) 7113 or Bob Czerwinski (01791-6651). Evenings only.

INDIANA: Marshall County ARC's 3rd annual Swap and Shop Hamfest, the Armony, 11th and West Madison Sts., Plymouth, October 29, 7:00 to 4:00. Donation $2.00. Free tables. For info and res. tables: Melvin Mahler, P.O. Box 151, Plymouth, IN 46563.

MISSISSIPPI: Gulf Coast Ham Swap Fest, Sunday, October 22, International Plaza, west end of Biloxi/Ocean Springs bridge, Highway 90, Biloxi. Donation $1.00. Tables $2.00. Talk-in 145.133 and 146.52. For info, advance tickets and tables: Inir L. Kelly, K5YN, 116 Willsburg Blvd., Biloxi, MS 39531. (901) 374-3304.

MISSOURI: Mo-Kan Council of ARC's ARRL Convention, Hilton Airport Plaza Inn, Kansas City, October 13, 14, and 15. Exhibits, Ladies' program, luncheon, fashion show, Saturday night banquet (12.00 per person). Pre-registration $3.00. Check to Mo-Kan Council of ARCs, P.O. Box 704, Kansas City, MO 64141.

NEW YORK: Radio Club of Greater Syracuse 14th annual Hamfest, New York State Fairgrounds, Arts and Home Center, Syracuse, Saturday, October 7, 8AM to 5PM. Talk-in 90-30 - 3191. Exhibits, indoor/outdoor flea market, ladies programs. Tickets before October 1 — $1.50. $2.00 gate. Under 12 free. Overnight and trailer parking available. For info R.A.G.S., P.O. Box 86, Liverpool, N.Y. 13088.

ONTARIO: London Amateur Radio Club will hold its 10th annual RSO Convention October 13th, 14th and 15th at the Downtown Holiday Inn, London, Ontario. A Friday night Octoberfest-style Eyeball is FREE to all registrants and their spouses. Events and programs for the weekend will include antenna testing, DXing, CW-FM-RTTY-ATS-SBV discussions, technical topics, computers and AMSAT. R.S.O. — CARF — CRRL forums, and DC discussion. Saturday night banquet, prizes, and dancing to the big band sounds. Sunday flea market, and much, much more. Talk-in (W5RSJC 75 ecb, 3775 kHz, 2-minute) 145.126 (VE8LAC). For more information write London Amateur Radio Club, Inc. Attention: Convention Tickets, P.O. Box 82, Station B, London, Ontario N6A 4V3.

NEW YORK: The annual United States Air Force Military Affiliate Radio System (USAF MAR) Regional One Convention will be held in Albany, New York on October 13-15, 1978. For more information write Convention Committee, P.O. Box 704, Saratoga, New York, 12862.

NEW JERSEY: Livingston ARC Annual Flea Market, Saturday, October 14, 1978 from 10AM until 4PM at the Fairfield United Methodist Church, corner of Plymouth and Horsepen Road, near Route 80. Henderson 5, and 24 miles from route 46. Registration $4 per car space, buyers and lookers free. For more information, write LARC, 116 Orton Road, W. Caldwell, N.J. or call (201) 226-7843.

ISLAND DX AWARD: Sponsored by Radio Amateurs residing on Whidbey Island, the IDA Award is available to all Radio Amateurs and SWLs of the world who can make some frequency related callsign confirmations from 50, 100, 150, or 162 (maximum possible) islands including Whidbey Island. Special band and mode endorsements are added features of this attractive award certificate, since not all islands are qualified contacts, each Amateur should have the IDA special listing and a copy of the rules. As an added incentive, a special IDA wall plaque will be awarded to the first Radio Amateur who confirms the maximum possible number of recognized islands. Please send large business-size SAEC to Bill Gosney, W8BTFK, 2685 North 1st East, Whidbey Island, Oak Harbor, Washington 98277. Foreign amateurs please include 5 Frs.

JAMBOREE ON THE AIR: annual gathering of Scouts, former Scouts and interested hams on the Amateur Radio bands reaches a milestone in October — it's twenty-first birthday! The Jamboree on the Air will be held over the weekend of 21 and 22 October starting at 0010 L0C time on Sunday, October 21, 1978 and terminating 2359 L0C time on Sunday, October 22, 1978. However, effective time is 0000 GMT to 2359 GMT 21 October as the operating schedule, including Friday evening, if desired. Frequencies suggested: Phone: 3940, 7190, 23940, 21390, 23690, 27000 kHz, CW: 20540, 7030, 14070, 21140, 28000 kHz; SSTV; normal SSTV frequencies. The World Scout Bureau plans to operate from a special station aboard the 15,000 ton Royal Yacht Britannia of Commodore Switzerland, and will operate the callsign HB9SPO. They plan to operate on all bands simultaneously and all modes including SSTV, RTTY, and OSCAR. For more information, write Harry A. Harchar, W2GDN/K2BASA, Boy Scouts of America, North Brunswick, N.J. 08902, telephone (201) 2249-6000.

TOWER POWER by CRISSIANO

Tristano isn't just a trade name... it's a man called Lou, and he's been designing towers for has all his life... the pioneer, That's why Tristano towers are so well known. And because he knows hams, he engineers quality at prices you can afford. From Tristano to TOCO LEE, TOWER POWER is the path toward a stronger signal.

WRITE RIGHT NOW FOR FULL SPECS and dealer nearest you. PROMPT DELIVERY.

TRISTANO TOWER
Division of Palmer Industries, Inc.
100 N. 5th St., P.O. Box 115
Hanford, CA 93230 / Ph. (209) 582-9016

ALDELCO ELECTRONICS COMPANY

- RF DEVICES

2N2337G 3W 4000 MHz... 5.5 50... 2N690 14W 175 MHz... 4.0
2N3866 1W 4000 MHz... 99... 2N691 15W 175 MHz... 8.45
2N3867 1W 4000 MHz... 4.5... 2N692 15W 175 MHz... 8.45
2N5590 10W 175 MHz... 7.70... 2N693 15W 175 MHz... 12.30
2N5591 12W 175 MHz... 6.30... 2N694 25W 175 MHz... 16.30

- ALD-1158 12W 200 MHz. 21717, Has 8/12 Heat Sink. Stud. Similar to 252117. Fits Standards. Only $12.30

- DUAL DIGITAL or 24 HOUR CLOCK HISTORY NOW WITH A NEW WALNUT WOOD GRAIN CABINET. Model ALD-15-5. Six Big 0.5 Displays. Only $29.95 12 or 24 Hour Operation. Each Clock controlled separately. Free Feature Tune for Test — Easy assembly for your choice. Only $29.95

- ALD-1518 Replaces SD1172 17W. 254550 RF Transistor 10 Watts 175 MHz... $5.95

- TUNABLE AMATEUR TV CONVERTER. Receive Fast Scan TV in the 420 MHz Band with any TV Set. Low noise high gain Amplifier stage with Varactor Tuned input and output. Built in 110 Vac Supply. Two Tone Control & Regie Cabinet measures 17" x 4 1/4" x 4 1/8". Factory wired & Tested. 2 Year Guarantee Only $49.95

- Adjustable Power Supply Kits. 500 mA to 15 Watts. 12 to 20 Volts. Only $17.95 Power Supply Kits of Parts. 5 Watts 6 Amp. Only $17.95 (add $1.00 per Power Supply Kit)

Aldelco, 2281 Hollywood Blvd., Hollywood, CA 90028

More Details? CHECK — OFF Page 142
YOUR BEST BUY IN KITS

6 GOOD REASONS

(1) 100% COMPLETE KIT, (2) EASY ASSEMBLY, (3) COMPLETELY ENCLOSED IN METAL CABINET, (4) IC SOCKETS USED THROUGHOUT FOR EASY TTL REPLACEMENT (5) EASY ON YOUR POCKET BOOK. ASK ABOUT (6) NO EXPENSIVE CHIPS TO REPLACE (EXAMPLE: IF YOU LOSE A DECODER, LOAD OR DRIVER IN A HAL-TRONIX COUNTER, THE AVERAGE COST OF REPLACEMENT OF THE LOW-COST TTL IS LESS THAN $1.00 EXCLUDING THE PRE-SCALE CHIP. IN SOME OF THE NEWER COUNTERS NOW BEING MARKETED BY MY COMPETITOR THEY ARE USING THE EXOTIC SINGLE CHIP AND WOULD COST YOU CLOSE TO $30.00 TO REPLACE). THIS IS SOMETHING YOU SHOULD CONSIDER.

ANALOG-DIGITAL KIT 139.50

DESIGNED BY HAL-TRONIX AND MIKE GOLDEN OF R.E.T.S. ELECTRONICS SCHOOL OF DETROIT.

FOR THE RADIO AMATEUR, STUDENT, EXPERIMENTER OR DESIGNER. SPECIFICATIONS: OUTPUT Voltages: +5V, +12V, +12V, CURRENT: 750mA. 5% Regulation at 500mA. 2%, Short-circuit limited at 1.0 amp. Thermal overload protection. Power requirements: 117VAC, 60Hz, 20 Watts. Function Generator: Frequency range 1KHz to 100 KHz in 5 bands. Amplitude adjustable from 0 to 10 VPP. DC offset adjustable from 0 to ±10V. Waveform: sine, square, triangular. TTL Clock: 0 to 2.0 MHz. Internal, 200 mV rise and fall time. Frequency determined by Function Generator. Output impedance: 1.2K ohm.

NEW FROM HAL-TRONIX

FIRST TIME OFFER

ALARM CLOCK KIT for home, camper, RV, or field-day use. Operates on 12-volt AC or DC, and has its own 60Hz time base on the board. Complete with all electronic components and two pre-drilled PC boards. Board size: 4" x 3". Complete with speaker and switches. If operated on DC, there is nothing more to buy.

PRICED AT $16.95

$2.50 for clock case advertised below.

6-DIGIT CLOCK

12/24 HOUR

COMPLETE KIT CONSISTING OF 2 PC G/0 PRE DRILLED PC BOARDS, 1 CLOCK CHIP, 6 PIN 309 READOUTS, 15 TRANSISTORS, 3 CAPS, 9 RESISTORS, 5 DIODES, 3 PUSH BUTTON SWITCHES, POWER TRANSFORMER AND ALUMINUM CASE. INCL. DON'T BE FOOLED BY PARTIAL KITS WHERE YOU HAVE TO BUY EVERYTHING EXCEPT YOUR PLUGS.

PRICED AT $12.95

CLOCK CASE Available and will fit any one of the above clocks

Regular Price $6.50
But Only $4.50 when bought with clock

60-HZ TIME BASE

CRYSTAL TIME BASE KIT, WILL ENABLE MOST ALL DIGITAL CLOCKS TO OPERATE FROM 12 VAC LOW PRO FILE UNIT. EASY 3. WIRE HOOKUP, 2.0PPM, ADJUSTABLE. COST ONLY $4.95 EACH OR 2 FOR $9.00 OR ONLY $1.50 WITH CLOCK PURCHASE.

10-MHZ CRYSTALS

HI-SPEED CRYSTALS DESIGNED FOR FREQUENCY CONTROL AND ELECTRONIC COMPONENTS PUMPING FACTOR 50PPM, MEETS OR EXCEEDS MIL-C-7930 SPEC. MADE ESPECIALLY FOR HAL-TRONIX.

PRICE: $5.95 OR 2 FOR $10.00

WATCH FOR FUTURE ANNOUNCEMENTS OF NEW HAL-TRONIX KITS ON THE WAY:

- POCKET-SIZE FREQUENCY COUNTERS
- CAPACITANCE METERS
- FUNCTION GENERATOR

DISTRIBUTOR FOR A P PRODUCTS, INCORPORATED

FREQUENCY COUNTERS

BY POPULAR DEMAND — we are continuing to offer with any purchase of $99 or more from ad or flyer, a Fairchild clock module FCS-8100A (suggested retail price $20).

Look at these Summer Specials

COMPLETE KITS: CONSISTING OF EVERY ESSENTIAL PART NEEDED TO MAKE YOUR COUNTER COMPLETE. HAL-800A 7-DIGIT COUNTER WITH FREQUENCY RANGE OF ZERO TO 1000 MHZ. FEATURES TWO INPUTS: ONE FOR LOW FREQUENCY AND ONE FOR HIGH FREQUENCY. AUTOMATIC ZERO SUPPRESSION. TIME BASE IS 1,0 SEC OR 1 SEC GATE WITH OPTIONAL 10 SEC GATE AVAILABLE. ACCURACY ±0.001%. UTILIZES 10 MHZ CRYSTAL 5 PPM.

COMPLETE KIT $124.00 $119.00

HAL-300A 7-DIGIT COUNTER WITH FREQUENCY RANGE OF ZERO TO 300 MHZ. FEATURES TWO INPUTS: ONE FOR LOW FREQUENCY AND ONE FOR HIGH FREQUENCY. AUTOMATIC ZERO SUPPRESSION. TIME BASE IS 1/10 SEC OR 1/10 SEC GATE WITH OPTIONAL 10 SEC GATE AVAILABLE. ACCURACY ±0.001%. UTILIZES 10 MHZ CRYSTAL 5 PPM.

COMPLETE KIT $124.00 $119.00

ATTENTION RADIO CLUBS

For club or group projects, request FREE information about our DISCOUNTS on any of the HAL-TRONIX kits. Discounts range from 10-25%, depending upon the quantity needed. We are experienced in supplying kits in volume quantities to schools, laboratories, clubs, and common-interest groups. Nobody beats HAL-TRONIX quality and price. Just try us and see for yourself.

NEW FROM HAL-TRONIX

DELUXE 12-BUTTON TOUCH TONE ENCODER KIT utilizing the new IBM 7208 chip. Provides both VISUAL AND AURAL indications. Comes with its own two tone anodized aluminum cabinet. Measures only 20 x 6.5. Complete with Touch Tone pad, board, crystal, chip and all necessary components to finish the kit.

PRICED AT $29.95

For those who wish to mount the encoder in a hand held unit, the PC board measures only 5/8" x 1 1/4". This small kit with PC board, crystal, chip and components.

PRICE AT $11.95

PRE-SCALER KITS

HAL 300 PRE $19.95
(Pre-drilled G/0 board and all components)

HAL 300 A/PRE $24.95
(Same as above but with preamplifier)

HAL 600 PRE $34.95
(Pre-drilled G/0 board and all components)

HAL 600 A/PRE $39.95
(Same as above but with preamplifier)

SPECIAL — due to OVERSTOCK (while they last!!)

FAIRCHILD FND-70
can be used as a preamplifier. Can replace FND-359 and many others. Same range. QTY. PRICE EACH

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>$4.00</td>
</tr>
<tr>
<td>500</td>
<td>$3.50</td>
</tr>
<tr>
<td>1000</td>
<td>$3.00</td>
</tr>
</tbody>
</table>

HAL-TRONIX

PO BOX 1101, SOUTHGATE, MI 48195

PHONE (313) 285-1782

SHIPPING INFORMATION

ORDERS OVER $15.00 WILL BE SHIPPED POSTPAID EXCEPT ON ITEMS WHERE ADDITIONAL CHARGES ARE REQUESTED. ORDERS LESS THAN $15.00 PLEASE INCLUDE ADDITIONAL $1.00 FOR HANDLING AND MAILING CHARGES. SEND SASE FOR FREE FLYER.
Pile-Up Tested!

Model HF5V-II - Automatic bandswitching 80-10 meters.
Model HF4V-II - Automatic bandswitching 40-10 meters.
Model HF3V - Automatic bandswitching 80-20 meters.
Model HF4V-S - Automatic bandswitching 80-10 meters.
Model HF4V-S - Automatic bandswitching 40-10 meters.

Model TBR - 160 Meter band resonator unit.

The most choice in vertical antennas from

Butternut Electronics Co.

Route 1, LK. Crystal, MN 56055

Phone: (507) 947-3126

At your dealer or factory direct...

Free Info!

The only thing you need to know about Quartz Crystals is:

1-405-224-6780

- Best Delivery plus Emergency Service with Guaranteed Delivery
- Highest Quality with gold MIL-C-3098 Process
- Ask for Sentry Technology Manual

And, order Toll Free 1-800-654-8850
WE'RE CELEBRATING - WITH SUPER DEALS FOR YOU!

THOMAS COMMUNICATIONS

"OVER 50 BRANDS IN STOCK"
- KENWOOD • YAESU • KDK • DENTRON • WILSON • MFJ • SWAN • DRAKE • LARSEN
- TEMPO • KLM • BEARCAT • B & W • ARRL PUBLICATIONS • MOSLEY • REGENCY • ASTATIC
- CUSHCRAFT • MICROLOG • HAM KEY • CDE • PIPO • ICOM • TEN TEC • PANASONIC
- DAYBURN INSULATORS • BIRD • AMECO • HUSTLER • CALL BOOK • SAXTON • ALLIANCE

★ COMPLETE RADIO SERVICE SHOP ★
- FAST EFFICIENT SERVICE — WE REPAIR ALL BRANDS —
- ALL WORK GUARANTEED — AMATEUR EXTRA / FIRST CLASS LICENSES —
- SEND US YOUR DEFECTIVE EQUIPMENT U.P.S. COLLECT —
- FREE SHIPPING BOTH WAYS IF WORK IS DONE —
- MOST REPAIRS DONE AND SHIPPED WITHIN 7 DAYS —
★ OUR FINE REPUTATION SPEAKS FOR ITSELF ★

"YOU SHIP IT — WE FIX IT"

★ NEW AND USED EQUIPMENT — "Get on our used equipment mailing list" —
★ TRADES WELCOME — "The best allowances anywhere" — "We buy good used SSB gear" —
★ FREE CATALOG — "Prices of all major manufacturers" —
★ SAME DAY U.P.S. SHIPPING — "Just a phone call away" —

Telephone Orders
203-667-0811
Call Today!

Call or write for your super quote today!

THOMAS COMMUNICATIONS - "Near ARRL Headquarters"
95 KITTS LANE, NEWINGTON, CONNECTICUT 06111
OPEN MON.-FRI. 10-6 • THURS. 10-8 P.M. • SAT. 10-4
EASY DIRECTIONS: Rt. 15 South — 2 blocks past McDonald's (Berlin Turnpike)
Ham it up for $4.50.

Amateur crystals 143.99 - 148.01 only for this trim price (and it’s postpaid). Florida residents add 4% sales tax. Send frequencies, make and model when ordering. Our price includes most gear on our free Parts List. For equipment not listed, we’ll provide prices on request and slice up something special. Master Charge & BankAmericard telephone orders accepted. No C.O.D.’s.

Savoy Electronics Inc.
P.O. Box 5727, Fort Lauderdale, Florida 33310
305/563-1333
Manufacturers of Quality Quartz Crystals Since 1937

WHERE THE HAM IS KING SERVICE FOR OVER 30 YEARS

OCTOBER’S SPECIAL OF THE MONTH KENWOOD

Kenwood’s TS-700SP Deluxe All-Mode Two-Meter Solid-State Transceiver now covers the new repeater sub-band.

SPECIFICATIONS:
FREQUENCY RANGE: 144-148 MHz
MODES: USB/LSB, FM, AM, CW
INPUT POWER: 13 VDC or 115 VAC
FUNCTIONS: PTT, VOX, Semi-Breakin CW with Sidetone
POWER OUT: 10 Watts RF on SSB, FM, CW
3 Watts AM
1 Watt FM — Low Power Switch
RECEIVER: 0.25 MV for 10 dB (S/N) in SSB/CW
0.4MV for 20 dB Quietin FM

LIST PRICE: $729.00
YOUR SPECIAL DEAL...
BUY A TS-700SP AND GET A BIRD MODEL 43 WATTMETER FREE

A DIVISION OF TREVOS ELECTRONICS

HAMTRONICS, INC.
4033 BROWNSVILLE ROAD, TREVOSE, PA. 19047
CALL TOLL FREE FOR QUOTES 800-523-8998

FT-227 “MEMORIZER” OWNERS: SCANNER KIT

- Selectable sweep width (up to full band)
- Scans only the portion of band you select
- Scans at the rate of 200 kHz per second
- Switch modification on mike allows you to scan past, or lock on, any occupied frequency
- Complete kit with detailed instructions
- Installs inside rig; no obtrusive external connections
- Rig can easily be returned to original condition whenever desired
- Scans to preset limits and reverses
- Automatic bypass of locked frequency in 3-1/2 seconds unless you press lock-on switch

Kit $34.95 preassembled and tested $54.00
add $1.50 postage and handling
Also available: Scanners for your IC-22s:
$29.95 kit; $39.95 assembled

DEALER INQUIRIES INVITED

AED ELECTRONICS
750 LUCERNE RD., SUITE 120
MONTREAL, QUEBEC, CANADA H3R 2H6
TEL. 514-737-7293

More Details? CHECK-OFF Page 142
At Your Service . . .

IF YOU'RE INTO COMPUTERS, THIS IS THE BEST PART

Econoran® memories are known throughout the industry for reliability and the ability to mate with all S-100 busa mainframes... and they're the boards to use in your computer. We offer fully static design, full buffering, high speed/power parts, intelligent mechanical design, and an enviable reputation for quality.

These boards are available in 3 forms: unkit (with sockets and bypass caps pre-soldered in place), assembled and tested, and qualified under the Certified Systems Components program. USC boards are available as well, guaranteed to run at 4 MHz, burn-in for 200 hours, and serial numbered. We exchange-and-repair the board if failure occurs within one year of invoice date.

OUR CURRENT BEST SELLER:

16K ECONORAM IV™

$279 unkit Assembled $314, USC $414.

Current under 2000 mA; manual write protect for 4K blocks; use with or without phantom lines and provision for 2 unused qualifications.

OUR TOP OF THE LINE:

24K ECONORAM VII™

$445 unkit Assembled $485, USC $605.

A full feature dense memory with current under 2000 mA. Configuration as two 4K and two 8K blocks, with independent write protect for each block; use with or without phantom lines; and provision for two unused qualifications.

TRTTY for ALL Systems

RTTY for ALL Systems

ELECTROCOM® “SERIES 400” FREQUENCY SHIFT CONVERTERS

Professionally engineered for outstanding performance, stability, and reliability, the Electrocom® Models 400 and 402 add new dimensions of compatibility between radio and teletypewriter systems. Manufactured to the highest quality standards—an Electrocom tradition for nearly two decades—these units are ideal for military, governmental, commercial, civil defense and amateur applications.

The Model 400's front panel digital knobs accurately selects shifts up to 1000 Hz., while two such knobs on the Model 402 independently set the mark and space frequencies. Both models also boast any tone pair between 1000 and 3000 Hz. Optimum performance with FSK or AF SK systems is assured by matched filters, precision linear detectors, baud rate selector, bias compensation, and semi-diversity circuitry. Operation is enhanced by a CRT monitor, auto-start with solid-state motor switching, antsape, markhold, EIA/MIL output voltages, and a constant current loop supply. In addition, variable options are available including rack mounting and polar current output.

Write or call us for complete product details and specifications. Learn why Electrocom® “400” Converters are designed not only for today's communication environment, but ultimately to fulfill RTTY requirements for years to come.

YOUR MARK II & MARK IV HEADQUARTERS!

BENCH POWER SUPPLY 5 to 30 VDC ADJUSTABLE

Newest state-of-the-art IC regulator chips provide outstanding features at low cost.

RTTY for ALL Systems

facsimile

Copy Satellite, Photos, Weather Maps, PRESS!
The Fax Are Clear — on our full size (18 1/2" wide) recorders. These commercial-military units now available at surplus prices. Learn how to copy with our FREE Fax Guide.
Tel. (212) 372-9349
Atlantic surplus sales
3730 Nautillus
Brooklyn, N.Y. 11224

Military Surplus Wanted
Space buys more and pays more. Highest prices ever on U.S. Military surplus, especially on Collins equipment or parts. We pay freight. Call collect now for our high offer. 201-446-8787
Space electronics co. div. of military electronics corp.
35 Ruta Court, Hackensack, N.J. 07601

SYNTHESIZERS

We have the worlds largest selection of synthesizers for receivers, transmitters and transceivers. For complete details see our 1/3 page ad in the April 1976 issue of this magazine or call or write for additional information. Phone orders accepted between 9 AM and 4 PM EDT. (212) 468-2720

Vanguard labs
196-23 Jamaica avenue
Hollis, N.Y. 11423

RTTY for ALL Systems

Godbout

$279 unkit Assembled $314, USC $414.

Current under 2000 mA; manual write protect for 4K blocks; use with or without phantom lines; and provision for two unused qualifications.

OUR TOP OF THE LINE:

24K ECONORAM VII™

$445 unkit Assembled $485, USC $605.

A full feature dense memory with current under 2000 mA. Configuration as two 4K and two 8K blocks, with independent write protect for each block; use with or without phantom lines; and provision for two unused qualifications.

Godbout

Bench power supply

5 to 30 VDC adjustable

Newest state-of-the-art IC regulator chips provide outstanding features at low cost.

Godbout

Bench power supply

5 to 30 VDC adjustable

Newest state-of-the-art IC regulator chips provide outstanding features at low cost.
Lightweight Headphones

HFC-91

ProCom 1 & 2 Electret

Mobile Microphones

C-120 Headphone

Special Headsets

C-1320 Headphone

C-1210 Headphone

C-610 Headphone

PC-100 Headphone

Headphone Jack Box

Mobile Microphones

CB-73

HTC-2

Make Model

Xmit Freq.

Rec. Freq.

More Details? CHECK—OFF Page 142

READ RF WATTS DIRECTLY! (Specify Type N or SO239 connector) 0.45 - 2300 MHz, 10,000 Watts 5%, low insertion VSWR 1.05. Unusual economy and flexibility. Buy only the elements covering your present frequency and power needs, add extra ranges later if your requirements expand.

Don't Miss The N.E. ARRL CONVENTION
At the Beautiful Sheraton Boxborough
GIANT FLEA MARKET!

Name__________________________

Call__________________________

Address_______________________

City_________________________

State______ Zip__________

Order:__________________________

□ Check enclosed □ Visa □ Master Charge □ American Express

Credit card #_____________________

Card expiration date______________

Signature_______________________

SEND FOR FREE CATALOG!

Radio Electronics
209-H Mystic Avenue
Medford, Mass. 02155
(617) 395-8280

Master Charge • Visa • American Express

Minimum $3.00 shipping & handling for ALL orders.

Prices FOB Medford Mass. (Mass. residents add 5% sales tax)
SSB OPS! Win the Battle against ORM!

What can you do when two single sideband signals overlap? Attend present, not much in most older sets. If you are correctly tuned to one signal, and an adjacent one comes on, the high or low frequency components will be within your passband and while you are not able to "read" him you will surely know he is there.

Many of the newer receivers seek to solve this overlap problem by providing continuously variable IF bandwidth or passband shifting — both difficult to adapt to existing designs. So, you can solve your problem by buying a new set! Not a pleasant prospect at today's prices.

A simple, less expensive, but effective alternative is to supplement the existing SSB filter in your try-and-tested present rig with our high-quality, 1800 Hz, 8-pole unit. Incorporating our dual diode switch board is easy and permits the addition (now or in the future) of a second, sharply CW filter. Selection of the standard or sharp filters (SSB or CW) is achieved by flipping a single miniature toggle switch which can usually be mounted in an existing hole.

Our complete line of filters is listed below. All units are $50 each as indicated. Prices are likely to rise. Better buy now.

VISA & MASTER CHARGE ACCEPTED

DIODE SWITCHING BOARDS permit easy mounting (without drilling) of up to two crystal filters of any type in addition to those for which the manufacturer provides space. These boards will accommodate any of the filters listed and other types planned. If not, and for the future. To avoid error, when ordering, specify filter number desired as well as its width which is to be used. Complete instructions, SPECIFY Set with which board is to be used, $15 with purchase of any filter, $20 without filter. Arimat Pad, US & Canada, Overseas add $1.

10 mv @ 150 MHz

The New Model CTR-2A Series Counters are designed and built to the highest standards to fulfill the needs of commercial communications, engineering labs and serious experimenter. With an accuracy of ±0.0005% (oven option) the CTR-2A can handle the most critical measurements and is about half the cost of other commercial counters. If you need a reliable counter at an affordable price, the CTR-2A is the answer.

- Built-in Pre-Amp 10 mv @ 150 MHz
- 8 Digit, 3" LED Display
- High Stability TCXO Time Base
- Built-in VHF-UHF Precalcer
- Automatic DP Placement
- TCXO Std. ± 2 ppm

500 MHz Kit CTR-2A-500K $249.95
500 MHz Assembled CTR-2A-500A 349.95
1 GHz Kit CTR-2A-1000K 549.95
1 GHz Assembled CTR-2A-1000A

OPTIONS
02) Oven Crystal $49.95
05) 10 sec. Time Base $ 5.00
03) 43" LED 10.00
06) Period 15.00
04) 12 V-DC 10.00
07) Handle 19.00

FREE DELIVERY

VISA & MASTER CHARGE accepted

NEW MODEL 500 MHz COUNTERS

ALIGNMENT
Alignment and check out your transmitter or receiver by our FCC licensed technician. Xmitters checked for harmonics, chirp etc. Fast service and professional work. Only $15 plus shipping. Send radio with check in reusable carton (insured) or $1 extra for new carton to:

Wolverine Radio
P.O. Box 426
Portage, Michigan 49081
You’re just a few digits away from name brand radio equipment - AT DISCOUNT PRICES!

You're just a few digits away from name brand radio equipment - AT DISCOUNT PRICES!

CALL TOLL FREE

1-800-228-4097
Communications Center
443 N 48th Street
Lincoln, Nebraska 68504
In Nebraska Call (402) 466-8402

1-800-634-6227
Communications Center West
1072 N. Rancho Drive
Las Vegas, Nevada 89106
In Nevada Call (702) 647-3114

YAESU DENTRON TAYLOR E.T.O. ALPHA
KENWOOD HY-GAIN SWAN VHF ENGINEERING
DRAKE MOSLEY TEMPO BERK-TEK CABLE
ICOM CUSHCRAFT TEN-TEC CONSOLIDATED TOWER
STANDARD WILSON MIDLAND SAY
EDGECOM HUSTLER CDE SHURE
KDK LARSEN AUTEK TELEX

plus many more

1-800-228-4097 CALL TOLL FREE FOR ANTENNAS 1-800-634-6227

HY-GAIN TH6 DXX CUSHCRAFT HUSTLER
MOSLEY TH3MK III ATB-34 WILSON
CUSHCRAFT CLASSIC 33 ARX-2 SYSTEM 1
HUSTLER CLASSIC 36 A-147-20T SYSTEM 2
TA-33 66.144A

TH3MK III 18 AVT/WB

Specials on CDE Rotors
Ham III - $125.00
Taitwister - $225.00

LOOK! LOOK!

HOURS: Monday - Friday 8 a.m. - Midnight
Saturday 8 a.m. - 8 p.m.
Sunday Noon - 8 p.m.

SAME DAY SHIPPING ON MOST ITEMS

We carry all major lines of antennas at DISCOUNT PRICES

call for quotes: 1-800-228-4097

More Details? CHECK—OFF Page 142
<table>
<thead>
<tr>
<th>State</th>
<th>City/Location</th>
<th>Address</th>
<th>Phone</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
<td>HAM RADIO OUTLET</td>
<td>999 HOWARD AVENUE BURLINGAME, CA 94010</td>
<td>415-342-5757</td>
<td>Visit our stores in Van Nuys and Anaheim.</td>
</tr>
<tr>
<td></td>
<td>QUEMENT ELECTRONICS</td>
<td>1000 S. BASCOM AVENUE SAN JOSE, CA 95128</td>
<td>408-998-5900</td>
<td>Serving the world’s Radio Amateurs since 1933.</td>
</tr>
<tr>
<td>Arizona</td>
<td>HAM SHACK</td>
<td>4506 A NORTH 16TH STREET PHOENIX, AZ 85016</td>
<td>602-279-HAMS</td>
<td>Serving all amateurs from beginner to expert.</td>
</tr>
<tr>
<td></td>
<td>KRYDER ELECTRONICS</td>
<td>5520 NORTH 7TH AVENUE NORTH 7TH AVE. SHOPPING CTR. PHOENIX, AZ 85013</td>
<td>602-249-3739</td>
<td>We service what we sell.</td>
</tr>
<tr>
<td></td>
<td>POWER COMMUNICATIONS</td>
<td>6012 NORTH 27th AVE. PHOENIX, AZ 85017</td>
<td>602-242-6030</td>
<td>Arizona’s #1 Ham Store, Kenwood, Drake, ICOM & more.</td>
</tr>
<tr>
<td></td>
<td>QSA 599 AMATEUR RADIO CENTER</td>
<td>11 SOUTH MORRIS STREET MESA, AZ 85020</td>
<td>602-833-8051</td>
<td>Eimac Distributor, New & Used Equipment, Parts - Surplus too!</td>
</tr>
<tr>
<td>California</td>
<td>C & A ELECTRONIC ENTERPRISES</td>
<td>22010 S. WILMINGTON AVE.</td>
<td></td>
<td>Not the Biggest, but the Best — since 1962.</td>
</tr>
<tr>
<td></td>
<td>HAM RADIO OUTLET</td>
<td>1590 US HIGHWAY 19 SO. CLEARWATER, FL 33516</td>
<td>813-535-1416</td>
<td>West coast’s only dealer; Drake, Icom, Cushcraft, Hustler.</td>
</tr>
<tr>
<td></td>
<td>AUREUS ELECTRONICS, INC.</td>
<td>1415 N. EAGLE STREET NAPERVILLE, IL 60540</td>
<td>1-312-631-5181</td>
<td>"Amateur Excellence"</td>
</tr>
<tr>
<td></td>
<td>TOWER ELECTRONICS CORP.</td>
<td>24001 ALICIA PARKWAY MISSION VIEJO, CA 92675</td>
<td>714-768-5900</td>
<td>Authorized Yaesu Sales & Service. Mail orders welcome.</td>
</tr>
<tr>
<td></td>
<td>MILE-HI COMMUNICATIONS, INC.</td>
<td>1970 SOUTH NAVAJO DENVER, CO 80223</td>
<td>303-936-7108</td>
<td>Rocky Mountain’s newest ham store. Lee Tingle KpLT.</td>
</tr>
<tr>
<td></td>
<td>AUDIOTRONICS INC.</td>
<td>18 ISAAC STREET NORWALK, CT 06850</td>
<td>203-838-4877</td>
<td>The Northeast’s fastest growing Ham Dept. dedicated to service.</td>
</tr>
<tr>
<td></td>
<td>AGL ELECTRONICS, INC.</td>
<td>1800-B DREW ST. CLEARWATER, FL 33515</td>
<td>813-461-HAMS</td>
<td>West Coast’s only full service Amateur Radio Store.</td>
</tr>
<tr>
<td></td>
<td>AMATEUR RADIO CENTER, INC.</td>
<td>2805 N.E. 2ND AVENUE MIAMI, FL 33137</td>
<td>305-573-8383</td>
<td>The place for great dependable names in Ham Radio.</td>
</tr>
<tr>
<td></td>
<td>MARC’S CENTRAL EQUIPMENT CO., INC.</td>
<td>18451 W. DIXIE HIGHWAY NORTH MIAMI BEACH, FL 33160</td>
<td>305-932-1818</td>
<td>See Marc, WD4AAS, for complete Amateur Sales & Service.</td>
</tr>
<tr>
<td></td>
<td>BOB SMITH ELECTRONICS</td>
<td>RFD #3, HIGHWAY 169 and 7 FT. DODGE, IA 50501</td>
<td>515-576-3866</td>
<td>For an EZ deal.</td>
</tr>
<tr>
<td></td>
<td>ASSOCIATED RADIO</td>
<td>8012 CONSER P. O. B. 4327 OVERLAND PARK, KS 66204</td>
<td>913-381-5901</td>
<td>Amateur Radio’s Top Dealer. Buy — Sell — Trade</td>
</tr>
</tbody>
</table>
Amateur Radio Dealer

Kentucky

COHOON AMATEUR SUPPLY
HIGHWAY 475
TRENTON, KY 42286
502-886-4535
Yaesu, Ten-Tec, Tempo, DenTron. Our service is the BEST.

Maryland

THE COMM CENTER, INC.
9624 FT. MEADE ROAD
LAUREL PLAZA RT. 198
LAUREL, MD 20810
301-792-0600
R.L. Drake, Ten-Tec, Icom, Wilson, Tempo, DenTron, Mosley, Cushcraft

PROFESSIONAL ELECTRONICS CO., INC.
1710 JOAN AVENUE
BALTIMORE, MD 21234
301-661-2123
A professional place for amateurs. Service-sales-design.

Massachusetts

TEL-COM, INC.
675 GREAT RD. RT. 119
LITTLETON, MA 01460
617-486-3040
The Ham Store of New England you can rely on.

TUFTS RADIO ELECTRONICS
209 MYSTIC AVENUE
MEDFORD, MA 02155
617-395-8280
New England’s friendliest ham store.

Michigan

ELECTRONIC DISTRIBUTORS
1960 PECK STREET
MUSKEGON, MI 49441
616-726-3196
Dealer for all major amateur radio product lines.

RADIO SUPPLY & ENGINEERING
1207 WEST 14 MILE ROAD
CLAWSON, MI 48017
313-435-5660
10001 Chalmers, Detroit, MI 48213, 313-371-9050.

Minnesota

PAL ELECTRONICS INC.
3452 FREMONT AVE. NORTH
MINNEAPOLIS, MN 55412
612-521-4662
The Midwest’s Fastest Growing Ham Dealer.

Missouri

HAM RADIO CENTER, INC.
8340-42 OLIVE BLVD.
ST. LOUIS, MO 63132
800-325-3636
For Best Price and Fast Delivery Call toll free 1-800-325-3636

MIDCOM ELECTRONICS, INC.
2506 SO. BRENTWOOD BLVD.
ST. LOUIS, MO 63144
314-961-9990
At Midcom you can try before you buy!

Nebraska

COMMUNICATIONS CENTER, INC.
443 NORTH 48 ST.
LINCOLN, NE 68504
800-228-4097
Kenwood, Yaesu, Drake and more at discount prices.

Nevada

COMMUNICATIONS CENTER WEST
1072 RANCHO DRIVE
LAS VEGAS, NV 89106
800-634-6227
Kenwood, Yaesu, Drake and more at discount prices.

New Hampshire

EVANS RADIO, INC.
BOX 893, RT. 3A BOW JUNCTION
CONCORD, NH 03301
603-224-9961
Icom, DenTron & Yaesu dealer. We service what we sell.

New Jersey

ATKINSON & SMITH, INC.
17 LEWIS ST.
EATONTOWN, NJ 07724
201-542-2447
Ham supplies since “55”.

METUCHEN RADIO
216 MAIN STREET
METUCHEN, NJ 08840
201-494-8350
New and Used Ham Equipment W2AET “T” Bruno

RADIOS UNLIMITED
1760 EASTON AVENUE
SOMERSET, NJ 08873
201-469-4599
New Jersey’s newest complete Amateur Radio center

THE BARGAIN BROTHERS
216 SCOTCH ROAD
GLEN ROC SHOPPING CTR.
WEST TRENTON, NJ 08628
609-881-2050
A million parts - lowest prices anywhere. Call us!

New Mexico

ELECTRONIC MODULE
601 N. TURNER
HOBBS, NM 88240
505-397-3012
Yaesu, Kenwood, Swan, DenTron, Tempo, Atlas, Wilson, Cushcraft

New York

ADIRONDACK RADIO SUPPLY, INC.
185 W. MAIN STREET
AMSTERDAM, NY 12010
518-842-8350
Yaesu dealer for the Northeast.

GRAND CENTRAL RADIO
124 EAST 44 STREET
NEW YORK, NY 10017
212-682-3869
Drake, Atlas, Ten-Tec, Midland, Hy-Gain, Mosley in stock

HAM-BONE RADIO
3206 ERIE BLVD. EAST
SYRACUSE, NY 13214
315-446-2266
We deal, we trade, all major brands!

RADIOS WORLD
ONEIDA COUNTY AIRPORT
TERMINAL BLDG.
ORISKANY, NY 13424
315-337-2622
New & Used ham equipment, See Warren K2IXN or Bob WA2MSH.
Ohio

HAMTRONICS, DIV. OF
TREVOSE ELECTRONICS
4033 BROWNSVILLE ROAD
TREVISE, PA 19047
215-357-1400
Same Location for 30 Years.
Call Toll Free 800-523-8998.

Tennessee

GERMANTOWN AMATEUR SUPPLY
3203 SUMMER AVE.
MEMPHIS, TN 38112
800-238-6168
No monkey business. Call
Toll Free.

Texas

AGL ELECTRONICS
3068 FOREST LANE, SUITE 309
DALLAS, TX 75234
214-241-6414 (within Texas)
Out-of-State, Call our toll-free
number 800-527-7418.

Kansas

HARDIN ELECTRONICS
5635 E. ROSEDALE
FT. WORTH, TX 76112
817-461-9761
Your Full Line Authorized
Yaesu Dealer.

Factory Programmed
Memory IDer KITS

MODEL 11764
- semi-auto. MCW IDer
- adjustable audio level
- programmable code speed, tone and repeat
- interval
- 1.7" x 3" PC P. $29.95/kid

MODEL 97710
- manual CW IDer
- programmable code speed
- 10x upon
- request ideal for contesting or repeater
- messages
- 1.5" x 2.2" PC. $24.95/kid

MODEL 11765
- beacon CW IDer
- programmable code speed
- great for
- 1750-meter band
- 1.3" x 2" PC.
- $19.95/kid

(Additional pre-programmed memory elements available)

*Include 53 cpg/hmg, 55 foreign. CA res. add
6% tax. CODs accepted. Send check or M0, allow
3 weeks for personal
checks. Write for addi-
tional information.
Phone (408) 294-8383

Oregon

PORTLAND RADIO SUPPLY CO.
1234 S.W. STARK STREET
PORTLAND, OREGON 97205
503-228-8647
Second location, 1133 S. Riverside
Avenue, Medford, OR 97501.

Pennsylvania

ARTCO ELECTRONICS
302 WYOMING AVENUE
KINGSTON, PA 18704
717-288-8585
The largest variety of semicon-
ductors in Northeastern Pennsylvania

Electronic Exchange
136 N. MAINE STREET
SOUDERTON, PA 18964
215-723-1200
Demonstrations, Sales, Service
New/Used Amateur Radio Equip.

Ohio

“HAM” BUERGER, INC.
68 N. YORK ROAD
WILLOW GROVE, PA 19090
215-659-5900
Delaware Valley’s Fastest Growing
Amateur Radio Store

Wisconsin

AMATEUR ELECTRONIC SUPPLY, INC.
4828 WEST FOND du LAC AVENUE
MILWAUKEE, WI 53216
414-444-4200
Open Mon & Fri 9-9, Tues, Weds,
Thurs, 9-5:30, Sat, 9-3.

“HAM” RADIO SUPPLY CO.
6213 13TH AVENUE SOUTH
SEATTLE, WA 98108
206-767-3222
First in Ham Radio in Washington
Northwest Bird Distributor
NEW FM/CW EXCITER KITS
BUILD UP YOUR OWN GEAR FOR MODULAR STATIONS, repeaters, & CONTROL LINKS
• Rated for Continuous Duty • Professional Sounding Audio • Built-in Testing Aids

T50 Six Channel, 2W Exciter Kit for 2M, 6M, or 220 MHz $49.95

FAMOUS HAMTRONICS PREARMS
let you hear the weak ones!
Great for OSCAR, 550, FM, ATV. Over 10,000 in use throughout the world on all types of receivers.
P9 Kit $12.95
P14 Wired $24.95
Deluxe vhf model for applications where space permits.
- Covers any 4 MHz band - 12 Vdc
- Ideal for OSCAR, Diode protection, 20dB gain
MODEL RANGE
P9-LO 26-88 MHz
P9-HI 88-172 MHz
P14-220 172-230 MHz
P14 Wired Give exact band

PB Kit $10.95
P16 Wired $21.95
- Covers any 4 MHz band - 12 Vdc
- 20 dB gain - 1/2 x 1-3/8 inches.
MODEL RANGE
PB-LO 20-83 MHz
PB-HI 83-190 MHz
PB-220 220-230 MHz
P16 Wired Give exact band

PI5 Kit $18.95
PI5 Wired $34.95
- Covers any 6 MHz band in UHF range of 380-520 MHz
- 20 dB gain - Low noise

YOU ASKED-HERE THEY ARE! VHF Linear PA's
- Use as Linear or Class C PA's • For XV-2 Xyng Converters, T50 Exciters, or any 2W Exciter
LPA 2-15 Kit $59.95
- 15W out (linear) or 20W (class C) • Solid State T/R Switching • Models for 6M, 2M, or 220 MHz
LPA 2-45 Kit $109.95
- 45W out (linear) or 50W (class C) • Models for 6M or 2M
LPA 8-45 Kit $89.95
For 2M, 8-10W in, 45W out

LPA 2-45 Kit $109.95
- 45W out (linear) or 50W (class C) • Models for 6M or 2M
LPA 8-45 Kit $89.95
For 2M, 8-10W in, 45W out

NEW VHF&UHF Converter Kits
let you receive OSCAR signals and other exciting SSB, CW, & FM activity on your present HF receiver.
-either one
-ONLY $34.95
Including crystal!

VHF/UHF FM RCVR KITS
- NEW GENERATION RECEIVERS
- MORE SENSITIVE • MORE SELECTIVE (70 or 100dB)
- COMMERCIAL GRADE DESIGN
- EASY TO ALIGN WITH BUILT-IN TEST CKTS
- LOWER OVERALL COST THAN EVER BEFORE

R70 4-channel VHF Receiver Kit for 2M, 6M, 10M, 220 MHz, or com" bands................. $59.95
Optional xtal filter for 100 dB adj gain 10.00

R90 UHF Receiver Kit for any 2 MHz segment of 380-520 MHz band................. $89.95

NEW 1978 CATALOG
NEW JUNE 1978 CAT, IS YOURS FOR THE ASKING?

IT'S EASY TO ORDER!
• CALL OR WRITE NOW FOR FREE CATALOG OR TO PLACE ORDER!
• PHONE 716-663-9254. (Answering service evenings and weekends for your convenience. Personal service 9-5 eastern time.)
• Use credit card, c.o.d., check, m.o.
• Add $2.00 shipping & handling.

IN CANADA, send to Cometix 5605 Westlake Ave Montreal, Que H4W 2H3 or phone 514-482-2640.
Add 35% to cover duty, tax, and exchange rate.

hamtronics, inc.
182-K Belmont Rd; Rochester, NY 14612
We’re Proud of Our Flock!

ALL MODELS AND TABLE 1 ELEMENTS IN STOCK.
WE ALSO CARRY OTHER BIRD PRODUCTS...WRITE!

NEW PRICE $125.00

AUTHORIZED BIRD DISTRIBUTOR — DEALER INQUIRIES INVITED.

We are also Dealers for:

KLM electronics

All prepaid & credit card orders shipped no charge in U.S.
Sales tax 4% to Virginia residents only.
Specialists in handling foreign orders.

ELECTRONIC EQUIPMENT BANK, INC.
516 MILL STREET, VIENNA, VA 22180
CALL 703-938-3511

JOIN THE COSMIC QUEST!

- Subscribe now to COSMIC SEARCH and share the provocative articles and latest news about mankind's most exciting venture, the search for intelligent life in space. Get COSMIC SEARCH starting with its first issue, out December 1.
- COSMIC SEARCH is for everyone who has ever wondered about life in the universe.
- Featured in the first issues of COSMIC SEARCH are articles by RONALD BRACEWELL, JOCELYN BELL BURNELL, ARTHUR C. CLARKE, NORMAN COUSINS, FRANK D. DRAKE, CARL SAGAN, WALTER SULLIVAN, and many other world-famous persons.
- Will communication be by radio, gravity waves or neutrino beams? Are there cosmic languages? Do long transmission times make us cosmic archeologists? These and many other questions are discussed in COSMIC SEARCH in a popular, authoritative manner.
- Exclusive interviews with noted researchers, book reviews, and an extensive book list for further reading are regular features of COSMIC SEARCH.

COSMIC SEARCH, Radio Observatory, P.O. Box 293, Delaware, Ohio 43015. Tel. 614-363-1597

Single copies $2.50 ($15 a year). Subscription rate: $12 for 1 year, $22 for 2 years.

Special pre-publication rate $10 for 1 year, $18 for 2 years. Special prepaid pre-publication rate $8 for 1 year, $15 for 2 years.

Enter my subscription to COSMIC SEARCH, Box 293, Delaware, Ohio 43015. At special pre-publication rate: $10 for 1 year □ $18 for 2 years □ and bill me later. At special prepaid pre-publication rate: $8 for 1 year □ $15 for 2 years □ Check or Money Order enclosed □ Mastercharge □ Visa (BankAmericaCard)

Account # MC Interbank # Exp. Date
Name
Address
City State Zip

More Details? CHECK-OFF Page 142
<table>
<thead>
<tr>
<th>DIODES/ZENERS</th>
<th>SOCKETS/BRIDGES</th>
<th>TRANSISTORS, LEDS, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1N914 100v 10mA</td>
<td>8-pin pcb .20 ww .35</td>
<td>2N2222 NPN (2N222 Plastic, 10)</td>
</tr>
<tr>
<td>1N4005 600v 1A .08</td>
<td>14-pin pcb .20 ww .40</td>
<td>2N2907 PNP</td>
</tr>
<tr>
<td>1N4007 100v 1A</td>
<td>16-pin pcb .20 ww .40</td>
<td>2N3906 NPN (Plastic - Unmarked)</td>
</tr>
<tr>
<td>1N4148 75v 10mA</td>
<td>18-pin pcb .25 ww .75</td>
<td>2N3904 NPN (Plastic - Unmarked)</td>
</tr>
<tr>
<td>1N4733 5.1v 1W Zener</td>
<td>22-pin pcb .35 ww .95</td>
<td>2N3054 NPN</td>
</tr>
<tr>
<td>1N753A 6.2v 500mW Zener</td>
<td>28-pin pcb .45 ww 1.25</td>
<td>2N3655 NPN 15A 60v</td>
</tr>
<tr>
<td>1N753A 10v</td>
<td>40-pin pcb .50 ww 1.25</td>
<td>2N5175 NPN Daringer</td>
</tr>
<tr>
<td>1N759A 12A</td>
<td>Molex pins .01 To-3 Sockets .25</td>
<td>LED Green, Red, Clear, Yellow</td>
</tr>
<tr>
<td>1N5243 14</td>
<td>2 Amp Bridge 100-ppr .95</td>
<td>D.L. 747 7 seg b/g/b High com-ansode</td>
</tr>
<tr>
<td>1N5248B 14v</td>
<td>25 Amp Bridge 200-ppr 1.95</td>
<td>MAN72 7 seg com-ansode (Red)</td>
</tr>
<tr>
<td>1N5248B .25</td>
<td></td>
<td>MAN3610 7 seg com-ansode (Orange)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C MOS</th>
<th>T TL</th>
</tr>
</thead>
<tbody>
<tr>
<td>4000 .15</td>
<td>7400 .10</td>
</tr>
<tr>
<td>4001 .15</td>
<td>7401 .15</td>
</tr>
<tr>
<td>4002 .20</td>
<td>7402 .15</td>
</tr>
<tr>
<td>4004 3.95</td>
<td>7403 .15</td>
</tr>
<tr>
<td>4006 9.15</td>
<td>7404 .10</td>
</tr>
<tr>
<td>4007 .20</td>
<td>7405 .25</td>
</tr>
<tr>
<td>4008 .75</td>
<td>7406 .25</td>
</tr>
<tr>
<td>4009 .35</td>
<td>7407 .55</td>
</tr>
<tr>
<td>4010 .35</td>
<td>7408 .15</td>
</tr>
<tr>
<td>4011 .20</td>
<td>7409 .15</td>
</tr>
<tr>
<td>4012 .10</td>
<td>7410 .10</td>
</tr>
<tr>
<td>4013 .40</td>
<td>7411 .25</td>
</tr>
<tr>
<td>4014 .75</td>
<td>7412 .25</td>
</tr>
<tr>
<td>4015 .75</td>
<td>7413 .25</td>
</tr>
<tr>
<td>4016 .35</td>
<td>7414 .75</td>
</tr>
<tr>
<td>4017 .75</td>
<td>7415 .25</td>
</tr>
<tr>
<td>4018 .75</td>
<td>7416 .40</td>
</tr>
<tr>
<td>4019 .35</td>
<td>7417 .20</td>
</tr>
<tr>
<td>4020 .85</td>
<td>7418 .26</td>
</tr>
<tr>
<td>4021 .75</td>
<td>7419 .25</td>
</tr>
<tr>
<td>4022 .75</td>
<td>7420 .25</td>
</tr>
<tr>
<td>4023 .20</td>
<td>7421 .35</td>
</tr>
<tr>
<td>4024 .75</td>
<td>7422 .35</td>
</tr>
<tr>
<td>4025 .20</td>
<td>7423 .20</td>
</tr>
<tr>
<td>4026 1.95</td>
<td>7424 .25</td>
</tr>
<tr>
<td>4027 .35</td>
<td>7425 .90</td>
</tr>
<tr>
<td>4028 .75</td>
<td>7426 .45</td>
</tr>
<tr>
<td>4030 .35</td>
<td>7427 .45</td>
</tr>
<tr>
<td>4033 1.50</td>
<td>7430 .15</td>
</tr>
<tr>
<td>4034 2.45</td>
<td>7431 .45</td>
</tr>
<tr>
<td>4035 .75</td>
<td>7432 .70</td>
</tr>
<tr>
<td>4040 .75</td>
<td>7433 .70</td>
</tr>
<tr>
<td>4041 .69</td>
<td>7434 .45</td>
</tr>
<tr>
<td>4042 .65</td>
<td>7435 .45</td>
</tr>
<tr>
<td>4043 .50</td>
<td>7436 .20</td>
</tr>
<tr>
<td>4045 .65</td>
<td>7437 .20</td>
</tr>
<tr>
<td>4046 1.50</td>
<td>7438 .25</td>
</tr>
<tr>
<td>4049 .45</td>
<td>7439 .40</td>
</tr>
<tr>
<td>4050 .45</td>
<td>7440 .40</td>
</tr>
<tr>
<td>4056 .55</td>
<td>7442 .40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MICRO'S, RAMS, CPU'S, E-PROMS</th>
<th>INTEGRATED CIRCUITS UNLIMITED</th>
</tr>
</thead>
<tbody>
<tr>
<td>8038</td>
<td>MCT2 .95</td>
</tr>
<tr>
<td>LM201</td>
<td>LINEARS, REGULATORS, etc.</td>
</tr>
<tr>
<td>LM201</td>
<td>LM320T5 1.65</td>
</tr>
<tr>
<td>LM301</td>
<td>LM340K15 1.25</td>
</tr>
<tr>
<td>LM308 (Mini)</td>
<td>LM340K18 1.25</td>
</tr>
<tr>
<td>LM309H</td>
<td>LM340K12 1.25</td>
</tr>
<tr>
<td>LM309K (340K-585)</td>
<td>LM709 (8,14 PIN), 25</td>
</tr>
<tr>
<td>LM310</td>
<td>LM711 .45</td>
</tr>
<tr>
<td>LM311D (Mini)</td>
<td>LM737 .50</td>
</tr>
<tr>
<td>LM318 (Mini)</td>
<td>LM738 .65</td>
</tr>
<tr>
<td>LM320K5/3901B.L5</td>
<td>LM745.51</td>
</tr>
<tr>
<td>LM320K12</td>
<td>LM745.52</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPECIAL DISCOUNTS</th>
<th>Total Order Deduct</th>
</tr>
</thead>
<tbody>
<tr>
<td>$35 - $99</td>
<td>10%</td>
</tr>
<tr>
<td>$100 - $300</td>
<td>15%</td>
</tr>
<tr>
<td>$301 - $1000</td>
<td>20%</td>
</tr>
</tbody>
</table>

INTEGRATED CIRCUITS UNLIMITED
One Good Turn Deserves Another...
LET US INTRODUCE YOU to the

aldo 103

Super Compact
250 watts SSB/CW
Super Stable
3 1/4" H x 9" W x 12 1/2" D
8.25 lbs

For Only $495 you get all these plus:
Receiver Sensitivity 0.5 mV for 10 dB S+N/N and 3 watts minimum audio output — ideal for mobile — and a drain of only 5.5 watts — including meter and dial lamps.

ACCESSORIES:
- Microphone $14.95
- Mobile Mount $3.95
- Noise Blanker $39.95
- Calibrator $19.95
- Portable AC Supply $84.95
- Heavy-Duty AC Supply $149.95

COMMUNICATIONS SPECIALISTS SERVING HAMS SINCE 1939 —

ELECTRONIC DISTRIBUTORS, INC.
1806 BEIDLER ST. MUSKEGON, MICHIGAN 49441
TELEPHONE (616) 726-3196 TELEX 22-8411

THE RADIO AMATEUR ANTENNA HANDBOOK

by William L. Orr, W6SAL and
Stuart D. Cowan, W2LX

Z-80 MICROCOMPUTER HANDBOOK

by William Barden, Jr.

LOG BOOK

New from HRCB

203 DYNAMIC ELECTRONIC CIRCUITS

by Frank Tedeschi and Raymond McIntyre

ALL BAND TRAP ANTENNAS!

Pretuned - Completely Assembled - Only one neat small antenna for up to 6 bands! Excellent for congested housing areas - apartments - light - strong - almost invisible!

For all makes & models of amateur transceivers - transmitters - guaranteed for 2000 watts SSB 1000 watts CW for novice and all class amateurs!

For all that you can do with the mini kit - everything you need to know - everything you can do with a mini kit.

WESTERN ELECTRONICS

Dept. AR-10
Kearney, Nebraska 68847

NEW USE EASY ORDER FORM ON OPPOSITE PAGE

Z-80 MICROCOMPUTER HANDBOOK

by William Barden, Jr.

LOG BOOK

New from HRCB

203 DYNAMIC ELECTRONIC CIRCUITS

by Frank Tedeschi and Raymond McIntyre

ALL BAND TRAP ANTENNAS!

Pretuned - Completely Assembled - Only one neat small antenna for up to 6 bands! Excellent for congested housing areas - apartments - light - strong - almost invisible!

For all makes & models of amateur transceivers - transmitters - guaranteed for 2000 watts SSB 1000 watts CW for novice and all class amateurs!

For all that you can do with the mini kit - everything you need to know - everything you can do with a mini kit.

WESTERN ELECTRONICS

Dept. AR-10
Kearney, Nebraska 68847
values from HRCB:

PRICES SLASHED!

<table>
<thead>
<tr>
<th>AR-HB</th>
<th>1978 ARRL Handbook</th>
<th>$4.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>RP-AH</td>
<td>Radio Amateur Antenna Handbook</td>
<td>$6.95</td>
</tr>
<tr>
<td>T-1068</td>
<td>303 Dynamic Electronic Circuits</td>
<td>$6.95</td>
</tr>
<tr>
<td>21500</td>
<td>Z-80 Microcomputer Handbook</td>
<td>$8.95</td>
</tr>
<tr>
<td>HR-RA</td>
<td>Radio Angels</td>
<td>$4.50</td>
</tr>
<tr>
<td>HR-LB</td>
<td>Log Book from HRCB</td>
<td>$1.50</td>
</tr>
</tbody>
</table>

The ARRL 1978 AMATEUR RADIO HANDBOOK

Ham Radio's Communications Bookstore has just acquired a limited number of the current 1978 ARRL Radio Amateur Handbooks at an unbelievably low price — and we are able to pass along a GIANT savings to you! But, you must act now while they last at this fantastic price. This is your chance to latch onto the most popular and complete Handbook ever printed for the Radio Amateur. In addition to extensive technical coverage, this 664-page volume offers loads of theory, construction and reference information which will be extremely valuable and practical for years to come. 664 pages...©1977.

Softbound $4.95

At this low price all sales must be final.

LIMITED QUANTITIES • ORDER NOW

Send to: Ham Radio's Communications Bookstore, Greenville, NH 03048

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Check or Money Order Enclosed</td>
<td>VISA</td>
<td>Master Charge</td>
</tr>
<tr>
<td>T-1060</td>
<td>Order</td>
<td>Acct.</td>
</tr>
<tr>
<td>Total books checked</td>
<td>Name</td>
<td>Address</td>
</tr>
<tr>
<td>Net cost</td>
<td>plus $1.00 for shipping = TOTAL</td>
<td>City</td>
</tr>
</tbody>
</table>

CALL TOLL FREE

800-258-5353
Because K6SSS loves DX, his neighbors sent him on a little expedition.

One neighbor sued him for interfering with Lawrence Welk. Another filed a complaint about that “monstrosity” in his backyard—a tribander at 40 feet.

7,781 tangled with the law

The K6SSS case is an example of what can happen to you these days. No matter where you live. It is hypothetical. But real lawsuits are being fought right now by people like K50VC, W2LTP, WB7NOM, W8NRM and W6UFJ/N6QQ to name a few. Last year nearly 8,000 unsuspecting hams and CBers ran afoul of the law. Sure they’re taking their fight to court—but they’re losing! Never mind that they’ve got building permits for their towers. Or that the FCC says their rigs are “clean.” Judges are ruling against them. The alarming part is that every suit lost makes it that much easier to nail the next guy. Prosecuting attorneys love to cite recent adverse decisions during a trial.

Legal ammunition available

The tragedy is that suits are being lost that could have been won. But TVI/RFI and tower cases fall into a little-known area of the law. Unless your lawyer is a specialist, he could spend hundreds of hours researching court decisions. And still not be sure he’s put together the strongest defense possible. It’s expensive (expect to spend an average $4,000 to $8,000 if you’re sued). And risky. Which is why we formed the non-profit Personal Communications Foundation.* To provide your lawyer with legal ammunition.

Who we are

We’re a handful of ham lawyers, professors and judges (all volunteers) who wanted to help before it’s too late. We’re putting together the first research library of personal communications and zoning law. And having briefs written by the best legal brains. It’s all available to your lawyer. For 10¢ a page. We can’t guarantee you’ll win. We can’t try the case for you. But if you or your lawyer contacts us, we’ll sure make sure you get a fighting chance.

Give us a fighting chance

To be even more successful in future battles, we’re building an arsenal of weapons to use in court. For example, we’re commissioning a study by real estate experts on the effect of a backyard tower on neighborhood property values. The pricetag is a stiff $11,000. But without the study, more cases will be lost. And more dangerous precedents will be set.

We are winning. But it takes money to keep fighting. You can help us fight by sending a check. The ARRL did. Think of us as your insurance policy against a lawsuit. All checks are 100% tax-deductible.

Please act today. We’ve already got a late start.

*Non-profit Cal. membership corp. #788-085

Kenneth S. Widlitz, WA6PPZ, President
Personal Communications Foundation*
Suite 1504
10960 Wilshire Blvd.
Los Angeles, CA 90024 (213) 478-1749

I want to give you a fighting chance. Enclosed is my 100% tax-deductible membership application.

☐ Life member $250 ☐ Contributing member $100
☐ Full member $25 ☐ Associate member $10

All members receive our free legal kit and newsletter.

name: ___________________________ call: ___________________________

address: ___________________________

city: __________________ state: ___________ zip: ___________

PCF Personal Communications Foundation
Defending the rights of hams

(space donated by the publisher)
HANDY LOGGING AREA
One Hole Panel Mount
Handy Logging Area
Spinner Handle Available
Case: 2x4": shaft ¼"x3"

Model TC-2: Skirt 2-1/8";
Knob 1-5/8"
Model TC-3: Skirt 3";
Knob 2-3/8"

R. H. BAUMAN SALES
P.O. Box 122, Itasca, Ill. 60143

IMPORTANT NEWS FROM YAESU
This is to advise that early Yaesu advertisements for the NEW FT-225RD were incorrect, in that they tend to indicate that the memory unit was included in the price whereas in fact it is an option. We apologize for this error, and hope this has caused our valued customers no inconvenience.

VY 73,
Yaesu Electronics

MOVING?
KEEP HAM RADIO COMING...
If possible let us know four to six weeks before you move and we will make sure your HAM RADIO Magazine arrives on schedule. Just remove the mailing label from this magazine and affix below. Then complete your new address (or any other corrections) in the space provided and we'll take care of the rest.

Allow 4-6 weeks for correction.

Thanks for helping us to serve you better.

Here's my new address:

Call
State
City

AFFIX LABEL HERE

25 Amp regulated power supply with fold back current limiting, over voltage and transient protection. Also, output voltage and current meters

You might find a cheaper power supply, but you can't find one as well built with top quality components. Other power supplies with lighter weight transformers and components are not match for the VHF engineering PS-25M. It is rated at 20 amps continuous duty (not 10 amps). This power means extra dependability and versatility when you need it.

FEATURES
- Over-voltage protection crowbar
- Electrostatic shield for added transient surge protection
- A foldback output limiter operates for loads outside of the operating range
- Isolation from ground. The circuit is isolated from the case and ground
- 115/220 volt input — 50/60 cycle
- Units are factory wired for 110 volt AC, 50/60 cycle power. A simple jumper will reconfigure the input for 220 volt AC, 50/60 cycles
- Temperature range operating 0 to +55 C
- Black anodized aluminum heatsink

SPECIFICATIONS
- Voltage Output: adjustable between 11-15V
- Load Regulation: 2% from no load to 20 amps
- Current Output: 50amps intermittent (60% duty cycle)
- Ripple: 50 mV at 20 amps
- Weight: 25 pounds
- Size: 12¾" x 6¾" x 7¾"

The competition
Weighs about 10 lbs.
less than the PS-25M
($12.63 per lb.) $139.00

PS-25M — 21 lb. 6 oz.
Wired & Tested . . . $179.95
($8.42 per lb.)
Kit ($7.25 per lb.) . $164.95

Prices and specifications subject to change without notice. / Export prices slightly higher.
Advertisers

check-off

... for literature, in a hurry — we'll rush your name to the companies whose names you "check-off"

Place your check mark in the space between name and number. Ex: Ham Radio 123

INDEX

ABC 106
AED 126
Aldaco 126
Alliance 93
Alumina 114
Ana. Elect. Supply 114
Antenna Spec. 010
Atlantic Supplies 654
Atlas 196
Bairn 107
Bauman 723
Bullet 116
Butternut 325
Cal Crystal 729
Clegg 027
Coax Probe 726
Communications Center 534
Comm. Spec. 300
Cosmic Search 575
Crystal Banking 575
Curtis Electro 034
Cushcraft 035
D.S.I. 655
Dames Comm. 551
Danes, Ted 324
Data Signal 324
David Elect. 332
DenTron 259
Drake T,E.O. 127
Electrosonic 663
Elec. Dist. 044
Elec. Equip. Bank 299
Elco 657
GLB 592
Godbout 647
Gray 095
Gregory 701
Group III 701
Gull 635
Hal 085
Hal-Tronix 254
H.B. C. 150
H. R. Magazine 025
Hamtronics, NY 246
Hamtronics, PA 713
Harper Stanley 713
Heath 090
Henry 082
Hildreth 283
Hy Gain 096

Icom 065
Integ. Circuits 518
Int. Crystal 066
Jam 067
Jones 655
K Enterprises 075
Kantronics 605
Kemble 075
Larsen 078
Long's 486
Luner 577
Lyle 373
M.F.J. 396
Madison 093
Partridge 430
Pathcom 075
Personal Comm. 705
RF Power Labs 600
Radio 726
Callbook 100
Radio World 373
S.A.R. 640
Savoy 105
Securicon 461
Sentry 600
Shawood 430
Slep 232
Space 107
Spectronics 191
Standard 109
Swami 179
T.P.L. 240
Tec-Tronic 118
Tuff's 321
V.F.P. 584
Vanguard Labs 716
Vatan 043
Webster 423
Weinschenker 122
Whitehouse 378
Wilton 123
Wolverine Radio 731
Wren 702
Yaesu 127

*Please contact this advertiser directly.

Limit 15 inquiries per request.

October, 1978

Please use before November 30, 1978

 Tear-off and mail to HAM RADIO MAGAZINE — "check-off"
Greenville, N.H. 03048

NAME ...

CALL ...

STREET ...

CITY ...

STATE ZIP

U.S. Callbook $14.95
Foreign Callbook 13.95

Order from your favorite electronics dealer or direct from the publisher. All direct orders add $1.50 for shipping. Illinois residents add 5% Sales Tax.

There's nothing like it!

RADIO AMATEUR Callbook

Respected worldwide as the only complete authority for radio amateur QSL and QTH information.

The U.S. Callbook has over 300,000 W & K listings. It lists calls, license classes, names and addresses plus the many valuable back-up charts and references you come to expect from the Callbook.

Specialize in DX? Then you're looking for the Foreign Callbook with almost 300,000 calls, names and addresses of amateurs outside of the USA.

U.S. Callbook $14.95
Foreign Callbook 13.95

HAM RADIO MAGAZINE INDEX

ABC Communications 106
AED Electronics 126
Advanced Electronics 126
Aldaco 126
Alliance Mfg. Company 81
Aluma Tower Co. 114
Amateur Electronic Supply 82
Antenna Specialists 82
Atlantic Surplus Sales 82
Atlas Radio 82
Barry Electronics 82
R.H. Bauman Sales Co. 82
Budwig Mfg. Co. 82
Bullet 116
Butternut Electronics 82
Cal Crystal Lab. Inc. 82
Clegg 108
Coax Probe Co. 82
Communications Center 82
Communications Specialists 82
Cosmic Search 82
Crystal Banking Service 82
Curtis Electronic Devices 82
Cuthberta 101, 103, 105
D.S.I. Instruments 82
Dames Communications Systems 82
Dames, Ted 82
Data Signal, Inc. 82
Davis Electronics 82
DenTron Radio Company 82
Drake Co., R.J. 82
Ehrorn Technological Operations 82
Electrocraft Industries 82
Electronic Distributors 82
Electronic Equipment Bank 82
Fox-Tango Corporation 82
GLB 82
Goodland Electronics 82
Gray Electronics 82
Gregory Electronics 82
Group III Sales Company 82
Gulf Electronics 82
Hal Communications Corp. 82
Haltronix 82
Ham Radio's Communications Bookstore 82
Ham Radio Magazine 82
Hamtronics, Inc., Rochester, NY 82
Hamtronics, Inc., Treasure, PA 82
Harper-Stanley Co. 82
Hearth Company 82
Henry Radio Co. 82
Hiredt Engineering 82
Hy Gain Electronics 82
Icom 82
Integrated Circuits Unlimited 82
International Crystal 82
Jameco Electronics 82
Jan Crystals 82
Jones, Martin P. & B Assoc. 82
K Enterprises 82
Kantronics, Inc. 82
Kerstonic Communications, Inc. 7, 72
Larsen Antennas 82
Long A Radio 82
Lunar Electronics 82
Lyle Products 82
M.F.J. Enterprises 82
Madison Electronic Supply 82
Palenstar Electronics 82
Partridge (HRJ) Electronics 82
Patcom, Inc. 82
Personal Communications Foundation 82
RF Power Labs 82
Racial Communications, Inc. 82
Radio Amateur Callbook 96, 142
Radio World 82
Ramsey Electronics 92, 93
S.F. Amateur Radio Service 82
SST Electronics 112, 113
Savoy Electronics 82
Securicon 82
Sentry Manufacturing 82
Shakespeare Antennas 82
Sherwood Engineering 82
Slep Electronics 82
Sleeve Electronics 82
Spectronics 126, 126, 126, 124
Spectrum International 110
Swan Electronics 82
T.P.L. Communications 37
Tec-Tronic 76, 76
Thomas Communications 82
Tidax Tower 82
Tuf's Radio Electronics 82
VHF Engineering, Div. of Brownian 82
Valley Instrument Products 82
Vanguard Labs 82
Varian, Electron Division 82
Webster Associates 82
Weinschenker 82
Western Electronics 82
Whitehouse, G. R. & Co. 82
Wilson Electronics 82
Wolflash Radio Supply 82
Wren Company 82
Yaesu Electronics Corp.
When you buy an ALPHA linear amplifier you make a long term investment in dependable power and operating pleasure.

You can take your ALPHA for granted — it will go on delivering that big, clean, maximum-legal-power signal no matter how tough the contest or how long the SSTV or RTTY QSO's.

We strive constantly to make every ALPHA even better. If we can't improve it, we don't change it.

DURABILITY? You get TWO YEARS of factory warranty protection with your new ALPHA . . . other manufacturers give you 90 days.

CONVENIENCE? Every ALPHA is self-contained, compact, and smooth-tuning. All 76A - 374A - 78 models can be shipped via economical, door-to-door UPS.

VERSATILITY? The new ALPHA 374A delivers full legal power (in any mode) on all amateur HF bands WITHOUT TUNE-UP and with excellent efficiency. (On 160M you peak the output manually; new FCC rules permit easy owner modification to restore full 10M capability, too.)

The ALPHA 78 combines the best of everything: full instant CW break-in (QSK) and NO-TUNE-UP bandchange! And of course all ALPHAs substantially exceed every applicable FCC requirement.

For detailed literature and fast delivery of your new ALPHA, contact your dealer or ETO direct. While you're at it, ask for a free copy of our brief guide, "Everything You Always Wanted to Know About (Comparing) Linears . . . But Didn't Know Whom to Ask."

ALPHA — Sure you can buy a cheaper linear . . . But is that really what you want?

Ehrhorn Technological Operations, Inc.
P.O. Box 708 · Canon City, Colorado 81212 · (303) 275-1613
Longs Suggest You Try SWAN Call Toll Free 1-800-633-3410
IN ALABAMA CALL 1-800-292-8668 9:00 AM TIL 5:30 PM CST

SWAN TB3HA 3 element tri-band beam
The heavy duty TB3HA features: Gain 8dB • Front to back 20-22 dB • Boom length 16' • Longest element 28'2" • Wind surface area 4 sq. ft. • 10-15-20 meters.
199.95 list price. Call for quote.

SWAN TB4HA 4 element tri-band beam
All four elements active on all three bands. The heavy duty TB4HA features: • Gain 9dB • Front to back 24-26 dB • Boom length 24' • Longest element 28 ft. 10 in. • Wind surface area 6 sq. ft. • 10-15-20 meters.
259.95 list price. Call for quote.

SWAN WM-3000 precision PEAK/RMS wattmeter
Read forward or reflected power with maximum accuracy from 3.5 to 30 MHz. RMS readings available with the flick of a switch. Four scales from 0 to 2000 watts. Requires 117V AC power source.
87.95 Call for yours today.

SWAN HFM-200 SWR & power meter
Frequency 1.8-30 MHz. Two power ranges: 0-20 and 0-200 watts. VSWR 1.1-3:1. For mobile installation, directional coupler may be located separate from main indicator. Meter is lighted for night use.
49.95 Call for yours today.

SWAN WM-2000 in-line wattmeter
Frequency 3.5 to 30 MHz. 3 scales: 0-200, 1000 and 2000 watts. VSWR scale permits reading from 1:1 to 3:1. Uses two SO-239 connectors.
64.95 Call for yours today.

Long's Electronics
MAIL ORDERS: P.O. BOX 11347 BIRMINGHAM, AL 35202 • STREET ADDRESS: 2608 7TH AVENUE SOUTH BIRMINGHAM, ALABAMA 35203

Remember, you can Call Toll Free: 1-800-633-3410 in the U.S.A. or call 1-800-292-8668 in Alabama for our low price quote. Store hours: 9:00 AM til 5:30 PM, Monday thru Friday.
FRG-7 COMMUNICATIONS RECEIVER

SYNTHESIZED
ALL SOLID STATE
HI-PERFORMANCE GENERAL COVERAGE RECEIVER
AND QTR-24 WORLD CLOCK

The Model FRG-7 is a precision-built communications receiver with continuous coverage (500 kHz to 29.99 MHz) featuring:

- Drift Canceling Circuit
- RF Attenuator
- Noise Suppression Circuit
- 5 kHz Direct Dial Readout
- Ceramic IF Filters
- AC-DC or Internal Battery
- Hi Sensitivity
- Excellent Stability
- USB/LSB/AM/CW
- Triple Conversion

Completely Solid State Circuitry for Stable Trouble-Free Operation ■ Built-in Front Mounted Speaker ■ RF Attenuator for Reception of Local or High Powered Stations ■ Outstanding Frequency Stability through the use of Drift Cancellation Circuit (Wadley Loop) ■ Recording Output Jack provides Constant Output Level Regardless of Audio Volume Control Settings ■ 3-Position Audio Range Selector
1. Normal (Broad) 2. Narrow (Hi & Low Cut Off) 3. Low (Hi Cut Off) ■ Excellent IF Receiver for VHF/UHF Converters.

YAESU ELECTRONICS CORP., 15954 Downey Ave., Paramount, CA 90723 ● (213) 633-4007
YAESU ELECTRONICS Eastern Service Ctr., 9812 Princeton-Glendale Rd., Cincinnati, OH 45246

The radio.
EIMAC's new Pyrogrid can run hotter so your transmitter can run better.

No easier way to generate 50 kW for AM, FM, and VHF-TV service. The pyrolytic graphite grid in EIMAC's newest tough tetrode, the 4CX40,000G, has triple the screen dissipation of earlier tetrodes. Which means:

1. A previous limiting factor in tetrode design, screen dissipation, is virtually eliminated.
2. Primary grid emission is eliminated.
3. Secondary grid emission is eliminated, improving linearity.
4. Hot and cold spacing between grids remains constant, allowing closer spacing between elements and improved performance.

High gain, better reliability.

EIMAC's Pyrogrid 4CX40,000G tetrode can follow a solid state driver, allowing a smaller, more efficient transmitter.

The stability of pyrolytic graphite assures better tube reliability. Available today for tomorrow's single tube transmitters. For complete information about the tough new EIMAC tetrode for tomorrow's AM, FM broadcast and VHF-TV linear amplifiers, contact Varian, EIMAC Division, 301 Industrial Way, San Carlos, CA 94070. Telephone (415) 592-1221. Or any of the more than 30 Varian Electron Device Group Sales Offices throughout the world.
Share the Heathkit experience with your kids!

Send for the big new

HEATHKIT
CATALOG

You'll find nearly 400 fun-filled kit building experiences both you and your family can enjoy. There's ham gear, color TV's, stereo components, digital clocks, test instruments, treasure finders, computers, peripherals, and MORE—all with easy, step-by-step instruction manuals. Share the Heath experience—it'll make your whole relationship...a lot more special!

Yes, send me my personal copy of the newest Heathkit Catalog. I am not currently on your mailing list.

Heath Company, Dept. 122-460, Benton Harbor, MI 49022

NAME
ADDRESS
CITY
STATE ZIP

Ham Radio PC-129

Start a worthwhile family hobby today!
enjoy the world’s leading electronic kit catalog...

FREE THE ALL-NEW HEATHKIT CATALOG
Nearly 400 build-it-yourself kits that the entire family can enjoy
Send for your free copy today!