

This amazing pocket sized radio represents the year's biggest breakthrough in 2-meter communications. Other units that are larger, heavier and are similarly priced can offer only 6 channels. The SYNCOM'S price includes the battery pack, charger, and a telescoping antenna. But, far more important is the 800 channels offered by the $S 1$.

The optional touch tone pad shown in the illustration adds greatly to its convenience and we have available a 30 watt solid state power amplifier designed to give the SYNCOM S-1 the
flexibility of operating as a mobile and base station as well.

SPECIFICATIONS
Frequency Coverage Channel Spacing:

144 to 148 MHz
Receive every 5 kHz transmit simplex or $\pm 600 \mathrm{kHz}$
Power Requirements: 9.6 VDC
Current Drain:
Batteries:
Antenna Impedance:
Dimensions:
RF Output:
Sensitivity:

17 ma -standby 400 ma -transmit Ni-cad battery pack included 50 ohms
$40 \mathrm{~mm} \times 62 \mathrm{~mm} \times 165 \mathrm{~mm}\left(1.6^{\prime \prime} \times 2.5^{\prime \prime} \times 6.5^{\prime \prime}\right)$ Better than 1.5 watts
Better than .5 microvolts

SUPPLIED ACCESSORIES
Telescoping whip antenna, ni-cad battery pack, charger. OPTIONAL ACCESSORIES
Touch tone pad, tone burst generator, CTCSS sub-audible tone chips Rubber flex antenna.
Price . . \$349.00 (or with touch tone pad . . 8399.00)
Tempo also offers a complete line of sotid state power amplifiers, pocket receivers, the FMH-2, 5 \& 42 portables, the VHF/ONE PLUS mobile transceiver, and the FMT- 2 \& FMT-42 remote control mobile transceiver. All available from Tempo dealers throughout the U.S. Call or write for full information.

The revolutionary Swan 100 MX: 100% new, 100% solid state, 100% portable from home station to mobile!

Introducing a superb "get up and go" transceiver, superbly designed for 100% mobility and control, as only new Swan space-age technology could do it!
$\mathbf{1 0 0 \%}$ solid state $\mathbf{1 0 0 ~ M X : ~ t h e ~}$ compact HF unit you can take seriously - anywhere you choose to operate.

At home, set into Swan's unique new style-coordinated station, with matching antenna tuner and power supply.

Or on the road - it's easy to relocate 100 MX. Instantly. Just two simple connections on the back panel: snap out, snap in... and run!
100% improved audio quality: home or mobile, transmit or receive. 100 MX electronics cut through SSB sound barriers -
producing a natural clarity reported comparable to AM!
Your most-wanted extras, 100% built-in: like noise blanker and VOX. Like a preselector to optimize signals. Like a real RF GAIN control, and CW sidetone.

Swan includes the RIT control ($\pm 1.5 \mathrm{kHz}$) you'd like too. Plus, for stability, a permability tuned oscillator with 1 Kc readout.

A powerful package, delivering a minimum 100 watts PEP output on all bands, $10-80$ meters.

Setting a 100% new state of art: 100 MX and our matched-station units. Ready for check out today at your Swan dealer, the first major breakthrough in Swan's new program dedicated to changing the face - and performance - of ham equipment $100 \% \ldots$ inside and out!

a member of the Cubic Corporation family of companies
305 Airport Road, Oceanside, CA 92054 (714) 757-7525

Swan's continuing commitment to product improvement may affect specifications and prices without notice

This NEW MFJ Versa Tuner II

has SWR and dual range wattmeter, antenna switch, efficient airwound inductor, built in balun. Up to 300 watts RF output. Matches everything from 1.8 thru 30 MHz : dipoles, inverted vees, random wires, verticals, mobile whips, beams, balanced lines, coax lines. MFJ LOWER PRICES! NEW, IMPRovED MFI.9418 HAS...

Only MFJ gives you this MFJ-941B Versa Tuner II with all these features at this price: A SWR and dual range wattmeter (300 and 30 watts full scale) lets you measure RF power output for simplified tuning.

An antenna switch lets you select 2 coax lines direct or thru tuner, random wire/balanced line, and tuner bypass for dummy load.

A new efficient airwound inductor (12 positions) gives you less losses than a tapped toroid for more watts out.

A 1:4 balun for balanced lines. 1000 volt capacitor spacing. Mounting brackets for mobile installations (not shown).

With the NEW MFJ Versa Tuner II you can run your full transceiver power output - up to 300 watts RF power output - and match your

ANTENNA SWITCH lets you select 2 coax lines direct or thru tuner, wire/balanced line, dummy load.
transmitter to any feedline from 160 thru 10 Meters whether you have coax cable, balanced line, or random wire.

You can tune out the SWR on your dipole, inverted vee, random wire, vertical, mobile whip, beam, quad, or whatever you have.

You can even operate all bands with just
one existing antenna. No need to put up separate antennas for each band.

Increase the usable bandwidth of your mobile whip by tuning out the SWR from inside your car. Works great with all solid state rigs (like the Atlas) and with all tube type rigs.

It travels well, too. Its ultra compact size $8 \times 2 \times 6$ inches fits easily in a small corner of your suitcase.

This beautiful little tuner is housed in a deluxe eggshell white Ten-Tec enclosure with walnut grain sides.

S0-239 coax connectors are provided for transmitter input and coax fed antennas. Quality five way binding posts are used for the balanced line inputs (2), random wire input (1), and ground (1).

NEW 300 WATT MFJ VERSA TUNER II'S: SELECT FEATURES YOU NEED.

NEW MFJ-945 HAS SWR AND DUAL RANGE WATTMETER. NEW LOWER PRICE
s6995

Same as MFL-9418 but less 5 position antenna switch.

NEW MFJ. 944 HAS 6 POSITION ANTENNA SWITCH ON FRONT PANEL.
$\$ 8095 \ldots \ldots \ldots$ NEW LOWER PRICE

Same as MFJ-9418 but less SWR/Wattmeter.

NEW MFJ- 943 MATCHES ALMOST ANYTHING FROM 1.8 THRU 30 MHz .

ULTA GOMPACT 20 MATT VERSA TUNERS FOR ALL YOUR NEEDS.

MFJ-901 VERSA TUNER MATCHES ANYTHING, 1.8 THRU 30 MHz . NEW LOWER PRICE.

Efficient 12 position air inductor
for more watts out. Matches dipoles, vees, random wires, verticals, mobile whips, beams, balanced lines, coax. 200 watts RF, $1: 4$ balun, $5 \times 2 \times 6$ in.

MFJ-900 ECONO TUNER MATCHES COAX LINES/RANDOM WIRES. NEW LOWER PRICE $\$ 2095$

MFJ-16010 RANDOM WIRE TUNER FOR LONG WIRES. NEW LOWER PRICE

, 30
1.8 thru 30 MHz . Up to 200

Same as MFJ. 901 but less balun for balanced lines. Tunes coax lines and random lines.

ham radio

 JANUARY 1979volume 12, number 1
T. H. Tenney, Jr., W1NLB publisher James R. Fisk, WiHR editor-in-chief
editorial staff
Martin Hanft WB1CHO administrative editor
Charles J. Carroll, K1XX Patricia A. Haw WA1WPM Alfred Wilson, WENIF assistant editors
Thomas F. McMullen, Jr., W1SL Joseph J. Schroeder, W9JUV associate editors

Wayne T. Pierce, K3SUK cove
publishing staff C. Edward Buffington, WBIAML assistant publisher
Fred D. Moller, Jr., WA1USO advertising manager
James H. Gray, W1XU assistant advertising manager James R. Wales art director Susan Shorrock circulation manager
ham radio magazine is published monthly by ommunications Technology, inc 'elephone: 603.878-144 Address all editorial and advertising carrespondence to
subscription rates United States: one year, $\$ 15.00$ two years, $\$ 26.00$; three vears, $\$ 35.00$ Canada: one year. $\$ 18.00$
$\$ 32.00$; three years, $\$ 44.00$ Europe, Japan, Africa ivia Air Europe, Japan, Africa (via Air
Forwarding Servicel one year, $\$ 25.00$ Other Countries (via Surface Maill: one year, $\$ 18.00$
All subscription orders payable in United States funds, please
foreign subscription agents
Foreign subscription agents ar listed on page 101

contents

10 two-meter synthesizer
R. B. Fanning, K4VB

Gary Grantland, WA4GJT
20 measuring fm deviation
Raymond Isenson, N6UE
26 10-GHz Gunnplexer transceiver
James R. Fisk, W1HR
46 fast and quiet transmit/receive relay
Nicholas Lefor, W1DB
50 adjustable 5-ampere
power supply
James S. Robbins, N1.JR
56 Ham-III digital readout
N. Douglas Grant, K10G

62 anodizing aluminum
David W. Hembling, VE7DKR
70 CMOS keyer
Urs Hadorn, HB9ABO
76 digital techniques:
basic rules and gates
Leonard Anderson

4	a second look	110
ham mart		
118	advertisers index	80
ham notebook		
104	coming events	6 letters
76	digital techniques	8 presstop
101	flea market	118 reader service

As the editor I would like to think that our articles have more effect on you, the reader, than anything else; if not the most immediate effect, certainly the longest lasting. To be completely realistic, however, the one department which has the greatest impact on readers is circulation. If your issue is mangled by the Postal Service, or is late in arriving, or doesn't come at all, little time is wasted in letting our Circulation Manager know about it! I would hope that our response is just as immediate.

In the magazine business the word "fulfillment" is used to describe the internal business procedures which ensure that you get your mailed copy each and every month of your paid subscription. All magazines use a computer for this task, and we're no different. In the past all subscription orders were keypunched here in Greenville, and the punched cards were sent on to a computer house in Boston which filed the information on magnetic tape in zip code order. That two-step procedure has worked well for a number of years, but the growth of ham radio and the introduction of our sister publication, Ham Radio Horizons, has begun to strain the system. To both reduce errors and improve service to our subscribers, we recently contracted with a professional magazine circulation fulfillment service to do the entire task. That means that the subscription information must be transferred from one computer to another.

If this were a perfect world the changeover would go without a hitch, but Murphy's Law being what it is, there almost certainly will be some mistakes and garbled digits. We have instituted every safeguard we have available, but when you are faced with the humongous task of transferring nearly 50,000 names, callsigns, addresses, and subscription expiration dates, a few errors are inevitable. As the old saying goes, "Computers are not perfect - they're only as smart as the data given to them!"

We have been laying the groundwork for this changeover for several months, so we don't foresee any major problems. However, if your address label is garbled in the data transfer, please write to Ham Radio, Subscription Fulfillment Service, Post Office Box 711, Whitinsville, Massachusetts 01588. A correction will be made just as quickly as possible.

Although all subscription renewals, changes of address, and the like are to be mailed directly to our fulfilment service in Whitinsville, all correspondence to our editors or advertising department must be sent to our offices in Greenville. In the past, when readers have written to us about a subscription matter, they have often taken that opportunity to pose a question to our staff, or to comment on one of our previous articles. Such comments and questions are immensely useful as we plan future material for the magazine, but in the future such questions and comments should be separated from subscription matter and mailed directly to Greenville. Otherwise our staff won't have the benefit of your suggestions.

If you have an occasion to write to our fulfillment service in Whitinsville, please be patient (for fastest service, be sure to include the mailing label). Just remember that the computer does its work several weeks before the magazine goes into the mail, so there is considerable lead time involved (up to six weeks). This presents a problem for us, too, because we won't know a mistake has been made until you tell us about it, and we won't be certain the problem has been corrected until the computer prints the address labels for the next issue. However, with patience and understanding from you, our readers, the task will go much more smoothly. Thank you for your help.

Jim Fisk, W1HR editor-in-chief

IC-20L
VHF 10 watt Linear Amplifier

OSCAR the easy way!
 WITH ICOM'S TRANSPORTABLE SIDEBANDS SIDE BY SIDE

The excitement and pride of operating through the OSCAR series of satellites is now totally transportable with ICOM's new IC-202S and IC-402. These are the world's only SSB portables, they both operate USB and LSB, and together they form an efficient, compact ground station that makes OSCAR communications much less complicated and much more fun.

Your OSCAR station can be quickly set up in any suitable location, and your two SSB portables will perform in tandem. Just use the $\mathbf{2 0 2 S}$ as the uplink (transceiver) for OSCAR VIII, mode " J " and as the downlink (receiver) for OSCAR VII, mode "B"; and tune the $\mathbf{4 0 2}$ to the complimentary channels. * Space Age radio has never been simpler.

Get into the excietment of satellite communications with the IC-202S and the IC-402, ICOM's high quality transportable sidebands.
*Crystals for this configuration are optional at extra cost.

All ICOM radios significantly exceed FCC specifications limiting spurious emissions.

Specifications are subject to change without notice.

Specifications:	IC-202S	IC-402
Frequency Coverage	144.146 MHz	$430-4352 \mathrm{MHz}$ in any four 200 KHz bands
Antenna Impedance:	50 ohms	50 ohms
Power Supply:	$13.8 V \mathrm{DC}$ negative ground	138 VVDC negative ground
Current Drain		
Tx	A31, approx 540 ma	A3., approx 670 ma
Rx	Approx 90 ma with no signal	Approx 100 ma with no signal
Site:	$183 \mathrm{~mm}(\mathrm{~h}) \times 61 \mathrm{~mm}(\mathrm{w}) \times 162 \mathrm{~mm}(\mathrm{~d})$	$183 \mathrm{~mm}(\mathrm{~h}) \times 61 \mathrm{~mm}(\mathrm{w}) \times 162 \mathrm{~mm}(\mathrm{~d})$
Weight:	2.0 Kg including batteries	$2.0 \mathrm{Kg}$
RF Output Power:	A3N, 3W PEP; Al. 3W	A3.), 3W PEP; Al, 3W
Carrier Suppression:	Better than 40 dB	Better than 40 dB
Opp Sideband Suppression	Better than $40 \mathrm{~dB} / 1 \mathrm{KHz}$	Better than $40 \mathrm{~dB} / 1 \mathrm{KHz}$
Spurious Radiation:	Better than -60 dB	Better than -60 dB
Microphone lmpedance:	600 ohms	600 ohms
Receiver Type:	Single Superheterodyne	Double Supetheterodyne
Intermediate Frequencies:	10.7 MHz	576578 MHz , 1st LF 1074 MHz 2nd I.F
Recelver Sensitivity:	0.5 uv at 10 dB SINAD	0.5 uv at 10 dB SINAD
Spurious Sensitivity	Better than -60 dB	Better than -60 dB
Selectivity:	$=1.2 \mathrm{KHz}$ or better at -6 dB	$\pm 12 \mathrm{KHz}$ or better at -6 dB
	$\pm 2.4 \mathrm{KHz}$ or better at -60 dB	$\pm 2.4 \mathrm{KHz}$ or better at -60 dB
Audio Output:	More than 1W	More than IW
Audio Output Impedance	8 ohms	8 ohms

ICOM WEST, INC.
Suite 3
13256 Northrup Way Bellevue. Wash 98005 (206) 747-9020

ICOM EAST, INC.
Suite 307
3331 Towerwood Drive Dallas. Texas 75234 (214) 620-2780

ICOM CANADA
7087 Victoria Drive Vancouver B. C. V5P 3Y9 Canada
(604) 321-1833

bandspreading techniques

Dear HR:

The suggestions by Robert Heider, WOEJO, on a different form of standard capacitor ('Bandspreading Techniques," February 1977) are deserving of some comment.

The technique of using a guard for accurate calibration is a good one, but it must be used with care. The following points apply:

1. Careful examination of the referenced article's fig. 6 will show the variable insulated from the case and thus guarded if the case ground is used.
2. Guard circuits must be used with bridges designed for that purpose (see, for example, Electronic Measurement by Terman and Pettit, McGraw-Hill, 1953, pages 102, 103).
3. Guard circuits used with "ordinary" bridges, Q Meters, etc., will simply include the coaxial cable capacitance. In this case it would be better to use two coax cables, one on each capacitor terminal, in order to halve the stray capacitance. Cables should remain in place for resonating with small values of C, since they contribute around 10 to 20 pF shunt.

Any sort of coax at high frequencies (about 1 MHz or above) will begin to show transmission line effects. A couple of feet of coax at 30 MHz will change calibration at the
low end of the C range, compared with measurements made at 3 MHz . The series inductance addition was implied when the article suggested "heavy wire and short lengths."
It's surprising that even pros and old timers forget inductance of connection. Small inductance of leads makes the original noise bridge wideband. The largest stray inductance in the Hart bridge is the potentiometer arm connection, physically variable due to mechanical rotation. The arm is effectively balanced to ground on both sides of the bridge into the vhf region.

Leonard H. Anderson
Sun Valley, California

Dear HR:

After reading the September issue of ham radio, I feel the urge to write. That one issue paid for the whole year's subscription! The article by WTVK on CATV cable fittings was a godsend to me - l've had twelve 1/2-inch-cable to SO-239 fittings on order for five months, at $\$ 7.50$ each. I called them up and said send my money back.
The article by K1XX of your staff gave me the "big answer" for matching 75 -ohm hardline. Thanks guys!
By the way, when preparing hardline for use with fittings that terminate in a type N female, you must file the end of the center conductor into a round-nosed bullet shape, because the square end will spread and break the female pin on the cable side of the fitting. When buying male type- N connectors, be advised that the Amphenol \#82-61 is a 50 -ohm connector, and the center pin will break the female pin in a 70 -ohm hardline fitting. For the 70 -ohm connector the Amphenol part number is

82-84, and, apparently they are not a stock item, at least around here. The foregoing tips cost me $\$ 22.50$ to learn. Pass the word, and save others some money.

Thanks again for a great magazine, and if you would like some hardline, look me up. I've got a bunch!

Don Ryan, WB4NND
Virginia Beach, Virginia

high resolution hf synthesizer

Dear HR:

The article in the August issue, "High-Frequency Resolution for an HF Synthesizer," describes a principle which is used in the Collins $651 S 1$ receiver for which Collins Radio has a patent. While this system is apparently very attractive at first glance, it has the following disadvantages:

1. Because of the frequency selection, a large number of birdies are present if filtering is inadequate.
2. The theoretical high-speed locking is degraded because of the algebraic logic. This slows down the synthesizer so much that it can't be used efficiently for search operation. In the 651S1 receiver Collins engineers used an out-of-lock detector which mutes the receiver for virtually all tuning.

Finally, I would like to point out that my company holds the patent for the combination up/down counter with optical shaft encoder which was suggested for frequency synthesizer control (patent 97780, issued July 13, 1962).

Ulich L. Rohde, DJ2LR
Rohde \& Schwarz Sales Company
Fairfield, New Jersey

Instant recall.

Kenwood's TR-7600 with optional RM-76 Microprocessor Control Unit offers a new dimension in channel memory and scanning capability.

....and, it's a combination that's hard to beat if you're looking for optimum versatility in a 2 -meter FM transceiver. Together, the TR-7600 and RM-76 offer you the following:

TR-7600 (only)

- Memory channel... with simplex or repeater (plus or minus 600 kHz transmitter offset) operation.
- Mode switch for operating simplex or for switching the transmit frequency up or down... or for switching the transmitter to the frequency you have stored in the TR-7600's memory (while the receiver remains on the frequency you have selected with the dual knobs).
- Select any 2 -meter frequency.
- Even without the optional RM-76, the TR-7600 gives you full $4-\mathrm{MHz}$ coverage ($144.000-147.995 \mathrm{MHz}$) on 2 meters; 800 channels; dual concentric knobs for fast frequency change (100 kHz and $10-\mathrm{kHz}$ steps); $5-\mathrm{kHz}$ offset switch, and MHz selector switch ...for desired band (144, 145, 146́, or 147 MHz).
- Digital frequency display (large, bright, orange LEDS).
- UNLOCK indicator...an LED that indicates transceiver protection when the frequency selector switches are improperly positioned or the PLL has malfunctioned.
- 10 watts RF output (switchable to 1 watt low power).

TR-7600 WITH RM-76

- Store frequencies in six memories.
- Scan all memory channels.
- Automatically scan up the band in 5 kHz steps.
- Manually scan up or down in $5-\mathrm{kHz}$ steps.
- Set lower and upper scan frequency limits.
- Reset scan to 144 MHz
- Stop scan (with HOLD button).
- Cancel scan (for transmitting).
- Scan for busy or open channel.
- Select repeater mode (simplex plus transmit frequency offset. minus offset, or one memory transmit frequency).
- Select transmit offset $(\pm 000 \mathrm{kHz})=1 \mathrm{MHz}$).
- Operate on MARS (143.95 MHz simplex only).

- Display indicates frequency (even while scanning) and functions (such as autoscan, lower scan frequency limit, upper scan limit, error, and call channel). See the exciting new TR-7000 and optional RM70 now at any Authorized KENWOOD Dealer!

TRIO-KENWOOD COMMUNICATIONS INC. 1111 WEST WALNUT / COMPTON, CA 90220

presstop

RUSSIA'S "RS" SATELLITES ARE UP and operating after a successful late October launch. Simultaneous beacon signals at about 29.400 MHz have been copied from both satellites. The uplink is $145.88-145.92 \mathrm{MHz}$ with a $29.36-29.40 \mathrm{MHz}$ output. The orbit of the RS satellites is considerably higher than that of any of the OSCARs, about 1050 miles. This should increase range $300-400$ miles, with passes about three or four minutes longer than those of OSCAR 7. The orbital period is just over 120 minutes and its equatorial inclination about 83°, resulting in an orbit-to-orbit increment of just over 30°. Saturdays and Sundays will be the only days open for general use, with Wednesdays "educational days" and the rest of the week for scientific work. There is suspicion that RS's general use and educational days are Moscow time which is three hours ahead of GMT.

Daily RS News Bulletins, first in Russian (phone and CW) and then in English (CW only), are being sent on 7040 kHz at 0900 Z by satellite command station RS3A. Radio Moscow broadcasts RS satellite news in English on 7165 kHz at 0130 Z Sunday (Saturday evening, U.S. time).

REVELATIONS THAT AMATEUR RADIO was a principal communications tool of the People's Temple have heightened Amateur sensitivity to abuses of the bands. FBI agents, concerned about possible violent aftermaths of the carnage in Guyana, have been talking to a number of Amateurs who had worked or monitored Temple stations. The FBI would like tapes or transcripts of any communications from those stations. Any Amateur able to provide such information should contact the nearest FBI office.

NO HARMFUL NONTHERMAL EFFECTS were found to result from low-level microwave radiation by researchers reporting their results to the recent Symposium on Electromagnetic Fields in Biological Systems in Ottawa, Canada. More than a third of the 60 papers presented were on the effects of microwave radiation on various physiological systems, and not one of them reported finding any adverse effects other than heating from low-level radiation.

RF INTERFERENCE NEAR THE FCC'S monitoring stations is the subject of a new Notice of Proposed Rule Making, General Docket 78-365. In this proposal, the FCC suggests that radio operators in proximity to an FCC monitoring station consider what effect their operations may have on that station, and that they should consult with the monitoring station about their operations. The Notice would not require such consultation, however, but may indicate plans for more stringent future regulations such as those proposed below. Comment due date for the NPRM is January 22.

A Radio Quiet Area that now includes large areas of Virginia and West Virginia should also be applicable to Amateur Service and Class A CB operations, the Commission proposed in SS Docket 78-352. The area in question surrounds the National Radio Astronomy Obseratory and the Naval Research Laboratory at Green Bank and Sugar Grove, West Virginia, within $39^{\circ} 15^{\prime}$ and $37^{\circ} 30^{\prime}$ north latitude and $78^{\circ} 30^{\prime}$ and $80^{\circ} 30^{\prime}$ west longitude. Only repeater operations would be affected, with operators required to consult with the director. Comments on this NPRM are due by February 1.

Relaxation of CW Requirements for handicapped Amateur Radio applicants (FCC General Docket $78-250$) seems to have brought more negative than positive response from the handicapped.

Comment Due Date on the docket has been extended to March 30 at the request of the Disabled American Veterans.

MORE ENCOURAGEMENT FOR AMATEUR RADIO comes from Geneva, following completion of a month-long WARC Special Preparatory meeting. The Amateur Service was well received by the 750 or so delegates (about 40 of them Amateurs), who represented 85 nations as well as dozens of recognized organizations, including the IARU. The meeting did not address such specifics as proposed frequency bands, but rather was directed toward broad topics such as needs, contributions, and the like. The results of the meeting - over 100 assorted documents - consisted of various recommendations and "conclusions."

For The HF And VHF Bands, the preferred parts of the spectrum for various types of Amateur operations were discussed, along with the desirability of exclusive Amateur allocations. The prospects of sharing with services such as radio location, which could provide additional frequencies for Amateurs with little or no significant interference, were also considered.

That Such Topics were discussed and adopted in this formative period without opposition is an encouraging sign that Amateur Radio will do well at next year's conference. It also indicates that the preparatory efforts made throughout the Amateur Radio world over the past few years are starting to pay off.

ARRL WILL CHALLENGE the FCC's linear amplifier ban in a formal court suit, the League's executive committee agreed at its mid-November meeting in Newington.

SAM HARRIS, KP4DJN/W1FZJ, passed away Saturday, November 4, at Arecibo, Puerto Rico. Among Sam's many accomplishments were the first Amateur Radio moonbounce contact (with KH6UK) and the first practical parametric amplifier. Sam was VHF editor for QST from 1960 through 1967, and served in the same capacity for CQ from 1955 to 1960.

The best buy on the market today!

PS15C

PS25M Whe eneinecring HIGH QUALITY POWER SUPPLIES

15,25 and 30 amp regulated power supplies with fold back current limiting, over voltage and transient protection. Also, output voltage and current meters.
You might find a cheaper power supply, but you can't find one as well built with top quality components. Other power supplies with lighter weight transformers and components are no match for the VHF Engineering power supplies.
$115 / 230$ volt input - 50/60 cycle - Overvoltage protection - Fold back output limiter - Isolation from ground. The circuit is isolated from the case and ground. - Load regulation: 2% from no load to full load - Output voltage: adjustable 11 to 15 volts - Ripple: 50 mV at rated current - Temperature range: operating 0 to $+55 \mathrm{C} \bullet$ Black anodized aluminum heatsink.
PS 15C 10 Amps cont. 15 Amps intermit. (50% duty cycle) $11 / 2 \mathrm{lbs}$. $\$ 124.95$ PS 25C PS 25M 20 Amps cont. 25 Amps intermit. (50\% duty cycle) 20\% lbs. \$179.95 PS 301225 Amps cont. 30 Amps intermit. (50\% duty cycle) 25 Ibs. $\mathbf{\$ 2 4 9 . 9 5}$

AVAILABLE AT THESE DEALERS:

CALIFORNIA

C \& A Electronic Enterprises, Carson, CA 90745, Ph. 213-834-5868 Tele Com Electronics, San Jose, CA 95121, Ph. 408-274-4479 Zackit Corporation, Vallejo, CA 94590, 707-644-6676

COLORADO

A.E.S. Communications, Wes Com. Colorado Springs, CO 80909,

Ph. 303-475-7050

FLORIDA

Amateur Electronic Supply, Orlando, FL 32803, Ph. 305-894-3238
N \& G Distributing, Miami, FL 33126, Ph. 305-592-9685
VHF/JAX, Orange Park, FL 32073, Ph. 904-264-7176

GEORGIA

Creative Electronics, Marietta, GA 30065, Ph. 800-241-4574

ILLINOIS

Klaus Radio, Peoria, IL 61614, Ph. 309-691.4840
Spectronics, Oak Park, IL 60304, Ph. 312.848-6777
IOWA
Bob Smith Electronics, Fort Dodge, IA 50501, Ph. 515-576-3886 MASSACHUSETTS
Tufts Radio Electronics, Medford, MA 02155, Ph. 617-395-8280 MICHIGAN
Adams Distributing, Detroit, MI 48228, Ph. 313-584-4640
The Ham Shack, Kentwood, MI 49508, Ph. 616-531-1976
MINNESOTA
PAL Electronics, Minneapolis, MN 55412, Ph. 612.521.4662
MISSOURI
Alpha Electronic Labs, Columbia, MO 65201, Ph. 314-449-1362

NEBRASKA

Communications Center, Lincoln, NE 68504, Ph. 402-466-3733

NEVADA

Communications Center West, Las Vegas, NV 89106, Ph. 702-647-3114

NEW YORK

Barry Electronics, Now York, NY 10012, Ph. 212-925-7000
Delmar Electronics, W. Babylon, LI, NY 11704, Ph. 516-420-1234
VHF Communications, Jamestown, NY 14701, Ph. 716-664-6345

OHIO

Universal Amateur Radio, Reynoldsburg, OH 43068, Ph. 614-866-4267

OK LAHOMA

Derrick Electronics, Broken Arrow, OK 74012, Ph. 918-251-9923
PENNSYLVANIA
LaRue Electronics, Scranton, PA 18509, Ph. 717-343-2124
SOUTH DAKOTA
Burghardt Amateur Center, Watertown, SD 57201, Ph. 605-886-7314

TEXAS

AGL Electronics, Dallas, TX 75234, Ph. 214 -241-6414
Madison Electronics Supply. Houston, TX 77002, Ph. 713-658-0268 VIRGINIA
Radio Communications, Roanoke, VA 24016, Ph. 703-342-8513 WASHINGTON
A-B-C Communications, Seattle, WA 98155, Ph. 206-364-8300 WISCONSIN
Amateur Electronic Supply, Milwaukee, WI 53216, Ph. 414-442-4200 CANADA
Bytown Marine Ltd., Ottawa, Ontario, Can. K2H 7V1, Ph. 613-820-6910
Traeger Distributors, Richmond, BC, Can. V6X 2A7, Ph. 604-278-1541

800-channel

2-meter synthesizer

A 400-channel

2-meter synthesizer featuring single-board construction, $15-\mathrm{kHz}$ splits, and multiple output frequencies

Back in 1975, after operating a converted Motorola 80D for several years, I decided to move up to a more versatile rig that I could synthesize and also use mobile. I looked at the available commercial rigs and synthesizers, every construction article I could locate, and talked to fellow hams who had gone this route. I found several rigs I liked, but no synthesizers; so, I decided to buy a rig (an HW202) and build a synthesizer. My first impulse was to build one that had appeared in a magazine construction article. I studied the circuit and started trying to locate parts, becoming quickly discouraged. After talking with a local ham who built a synthesizer from the same article, I was further discouraged.

At this point, I decided to design and build from
scratch. Having found several rigs that I liked, I felt the synthesizer should be universal enough that I could simply reprogram the i-f offset and output frequency for another rig. In addition I wanted only one crystal oscillator, since that would reduce the stability problems and eliminate spurious outputs associated with mixers. I also wanted the entire synthesizer on one board; parts had to be inexpensive and easy to get. The end product was called the " 400 PRO" (400 channels receive, 400 channels transmit with Programmable Receive Offset).

circuit description

The crystal oscillator, as shown in fig. 1, determines the overall frequency stability of the synthesizer. The crystal is a $1-\mathrm{MHz}$, parallel resonant cut for 32-pF load capacitance. For temperature stability, the crystal tolerance should be no more than . 003 per cent from -23.5 to 66 degrees $C\left(-10\right.$ to $\left.150^{\circ} \mathrm{F}\right)$. U5 is a 7400 TTL NAND gate used as the oscillator.

U2, U3, and U4 divide the $1-\mathrm{MHz}$ frequency by 600 , producing a $1.666-\mathrm{kHz}$ reference for the phase detector. The phase detector is made up of $U 1, \cup 24$, and U25. These three ICs were chosen over the more popular MC4044 phase detector strictly for a cost savings of about $\$ 1.50$.

By Bob Fanning, K4VB and Gary Grantland, WA4GJT. Mr. Fannings's address is 1332 Four Mile Post Road, Huntsville, Alabama 35802. Mr. Grantland's residence is RFD 2, Somerville, Alabama 35670.

The next portion of the circuit description may be a little more difficult to understand. There are two counter chains and a two-modulus prescaler which make up the dividers necessary to divide the VCO output frequency down to 1.666 kHz (see fig. 2). U19, U20, and U21 make up the two-modulus prescaler. This circuit is arranged to divide the VCO fre-
vided for the counter inputs, which remain the same in transmit and receive. The i-f program counter can be programmed to divide by 1200 to 1599 , which corresponds to minus 16.0 to plus 23.9 MHz in $100-$ kHz steps. See table 1 for some standard i-f programming information and table 2 for developing any i-f program.
table 1. Connections for the i-f offset dividers for standard receiver offsets.

Receiver Offset	A	B	c	D	E	F	G	H	J	K	\mathbf{X}
$+5.5 \mathrm{MHz}$	HT	LT	LT	HT	0	HT	LT	LT	0	0	HT
$-5.5 \mathrm{MHz}$	1	0	0	HT	0	HT	LT	LT	0	0	LT
$+8.0 \mathrm{MHz}$	HT	LT	0	1	0	HT	0	0	0	0	HT
$-8.0 \mathrm{MHz}$	HT	0	0	HT	LT	HT	0	0	0	0	LT
$+10.7 \mathrm{MHz}$	HT	LT	0	1	0	1	LT	LT	0	LT	HT
$-10.7 \mathrm{MHz}$	HT	0	LT	1	0	HT	LT	0	0	LT	LT
$+12 \mathrm{MHz}$	HT	LT	0	HT	LT	HT	0	0	0	0	HT
$-12 \mathrm{MHz}$	HT	0	0	1	0	HT	0	0	0	0	LT
$+13.1 \mathrm{MHz}$	HT	LT	LT	HT	LT	HT	LT	0	0	0	HT
$-13.1 \mathrm{MHz}$	HT	0	0	HT	0	1	LT	0	LT	0	LT
$-11.7 \mathrm{MHz}$	HT	0	0	1	0	HT	LT	0	0	LT	LT

quency by 10 or 11 , depending on the dc level at pin 11 of U6. The output of the two-modulus prescaler is fed to both counter chains.

The channel select divider, U11, U12, and U13, is programmed to divide by 400 plus the thumbwheel switch setting. If a frequency of 146.94 MHz is selected on the thumbwheel switches (6.94 is selected since all channels are in the $140-\mathrm{MHz}$ band), the channel select divider divides by 400 plus 694 , which equals 1094. This method is used so that it is impossible to select a frequency out of the 144 to 148 MHz range. When in the transmit mode, the i-f program divider, U16, U17, and U18, is always programmed to divide by 1360 . When in the receive mode, the i-f frequency of the receiver being used is subtracted or added to 1360 . For example, if the receiver has an i-f

The output of U16, a negative-going 20 ns pulse, is lengthened to about 50 nS by U 10 . The subsequent output of U10 is inverted and buffered by U6 and used to load the counter chains with the jam inputs when the i-f program counter counts down to zero. The remainder of U6, which is connected as an RS latch, has a high output when the channel select divider counts down to zero, and a low output when the i-f program divider counts down to zero. When the output, pin 11, is low, the two-modulus prescaler divides by eleven; when pin 11 is high, the prescaler divides by ten.

Assume that the receive frequency is 146.94 MHz and the receiver has an i-f frequency of 10.7 MHz , with low-side injection. The i-f program divider would be set at $1360-107=1253$. The channel se-
table 2. Example of programming for the i if offset counters. The BCD 800 and 400 are preprogrammed.

program terminal number	none	none	B	A	\mathbf{E}	\mathbf{D}	F	C	J	H	K	G
terminal BCD value	800	400	200	100	80	40	20	10	8	4	2	1
transmit value 1360	1	1	0	1	0	1	1	0	0	0	0	0
receive value 1467	1	1	1	0	0	1	1	0	0	1	1	1
your program	$+5 V$	$+5 V$	LT	HT	GND	$+5 V$	$+5 V$	GND	GND	LT	LT	LT

frequency of 10.7 MHz , high side injection, then 107 would be added to the 1360 when in the receive mode. This is done by programming the i-f program counter to the HT and LT buss on the printed circuit board. The HT buss is high, or a logic 1, when in transmit; it is low, or a logic 0 , when in the receive mode. The LT buss is just the opposite of the HT buss. A ground buss and a +5 volt buss are also pro-
lect divider would be set at $400+694=1094$. The outputs of U6 load both counter chains and set the prescaler to divide by eleven. After 1094 counts, the prescaler is set to divide by ten; the prescaler is reset to divide by eleven after $1253-1094=159$ counts. Therefore, the prescaler divides by eleven 1094 times and divides by ten 159 times. The frequency input to prescaler required to receive 146.94 MHz would be

fig. 2. Diagram of the counter portion of the synthesizer. U11, U12, and U13 make up the channel select dividers, dividing by 400 plus the frequency selected. For example, $400+625=1052$ for 146.52 MHz . The i-f program dividers, U16, U17, and U18, are normally programmed to divide by 1360 when in the transmit mode. When receiving, the dividers are programmed by jumpers to change the divide number according to the receiver i-f offset used.
$\left(146.94 \times 10^{6}-10.7 \times 10^{6}\right) / 6=22.7066 \times 10^{6}$. Divided by $11 \cdot(1094)+10 \cdot(159)=1.66666 \times$ 10^{3}, or the same as the output of the reference frequency divider.

These two signals, when compared by the phase detector, generate an error voltage which controls

CR1. CR1, C18, and L1 make up the VCO tank circuit. The capacitance of CR1 can be varied from 30 to 80 pF , depending on the bias voltage. L1 is adjustable from 0.5 to 1 uH . L1 and C18 are adjusted to center the VCO frequency. Before adjusting L1 and C18, the i-f program counter chain should be pro-

fig. 3. Parts placement diagram for the circuit board of the two-meter synthesizer. The jumpers for the output and i - f offset frequencies are explained in the tables.
the VCO. There are two outputs from the phase detector which drive pins 3 and 5 of U22. If no error voltage is generated, the level at pin 7 of U22 is 4 Vdc. If an error voltage is present, negative or positive pulses will be present at pin 7 of U22. The remainder of U22 is a four-pole, lowpass filter. At the output of the filter, the $1.666-\mathrm{kHz}$ signal is 85 dB below the input.

The dc voltage from the filter biases the varactor,
grammed for the i-f frequency of the receiver and the channel select divider should be set to 146.00 MHz . For receivers with low-side injection, adjust L1 in transmit and C18 in receive mode for minimum ac voltage at pin 7 of U22. This can be done with an oscilloscope or ac voltmeter. Adjust L1 in receive and C18 in transmit for receivers with high-side injection. This adjustment is not critical and will affect only the frequency deviation of the VCO. Terminal X
is strapped to HT or LT and adds C 18 to the tank circuit when X is high. Q 2 and U14 buffer the VCO and drive the two-modulus prescaler and U15, a dual J-K flip-flop which may be programmed to divide by two, three, or four. The output is buffered by U14 to drive the transmitter and receiver crystal oscillators.
The PTT input should be grounded during transmit. This turns Q 3 off. Q3 is buffered by U9 and provides the HT and LT levels to drive the thumbwheels used for transmit and receive. This provides any split or simplex operation on any set of thumbwheels.

assembly

Assembly of the printed circuit board is straightforward and requires no special tools or techniques (it does require good grounding, however). Boards are available from the author* and will be by far the easiest route to go. If you prefer to lay out your own circuit board, care should be taken in the placement of components and traces to prevent the introduction of VCO whine and switching transients onto the signal lines. It is strongly recommended that a double-sided printed circuit board by used, as this is largely the secret to success in the virtual elimination of VCO shielding, the use of only one board, and the absence of "trash" on the output signal. Vector-type boards should not be used, because of the difficulty in attaining the high degree of shielding necessary. The very first 400 PRO built was on vector board. It was tough to get the output clean and it required two boards, one for the VCO and another for the rest of the synthesizer. It was also necessary to cover the entire VCO with a metal can and place a third copperclad board between the two main boards, with everything securely grounded.
table 3. Connection to U15, the output divider, for different transmitter/receiver multiplication factors.

receiver multiplier	transmitter multiplier	jumpers
6	6	M-S, M-L
6	12	M-L, P-S, V-GND, R-HT
6	18	M-L, N-S, V-P, T-HT
6	24	M-L, N-S, T-HT
12	6	M-S, P-N, V-GND, R-LT
12	12	L-P, N-S, V-GND
12	18	U-L, V-N, P-S, R-HT
12	24	U-L, P-S, R-HT
18	6	M-S, L-N, V-P, R-HT
18	12	L-P, U-S, V-N, R-LT
18	18	L-N, V-P, N-S
24	6	M-S, L-N, T-LT
24	12	L-N, U-S, R-LT
24	24	L-N,P-S

Component placement and sizes should be kept as near as possible to those shown in the component placement drawing (fig. 3). All parts used, with the exception of the VCO coil and cover and copper pipes over C18 and C20, are available from most parts houses advertising in this magazine. For best re-

In this view you can see the i-f transformer can, which is used to shield the varactor and coil. Also notice that the board mounting technique provides four secure grounds.
sults, IC sockets should not be used. However, if they are used, a good quality socket is a must. Firstrun ICs should be used if at all possible, as problems can be encountered with "discount house" ICs. As a general rule, most discount houses will quickly replace any bad IC. Nevertheless, replacement of bad ICs is little compensation, in many cases, for the misery encountered in finding them in a circuit.

A suitable source for the VCO coil and cover is the $6.5-\mathrm{mm}$ ($1 / 4$-inch), four-terminal transformer used in the i-f of commercial fm receivers. Strip off the existing coil and wind 17 turns (close wound) of number $32(0.2-\mathrm{mm})$ AWG enamel wire, terminating on two of the four terminals. (See fig. 3 for the correct terminals.) The MV-2209 varactor should be connected to the other two terminals, and both the coil and varactor should be covered with Q-dope and then placed back in the can. The can mounting tabs should be soldered to the ground point on the printed circuit board. If the VCO coil slug is not tight, the VCO will become sensitive to mechanical shock. If this occurs, the output of the VCO will sound just like a microphonic tube on both transmit and receive. The solution to this problem is fairly simple: after final VCO adjustment, apply a drop of candle wax or

[^0]similar material onto the slug. Remember, if you should later change to a rig that has a different i-f offset, the VCO may require a touchup. Don't lock the slug down too tightly.

The covers over C18 and C20 were made from $9.5-\mathrm{mm}$ ($3 / 8$ inch) copper tubing cut in $12.5-\mathrm{mm}$ (1/2-inch) lengths and soldered to the shield side of the printed circuit board. Care should be taken to prevent the inside of the copper tube from shorting

fig. 4. Lowpass filter that can be used on the output of the synthesizer.
the capacitor to ground. A piece of thin Mylar or Teflon sheet wrapped on the inside of the tubing will serve as a spacer. The Mylar used in drafting departments for taping printed circuit board masters is excellent for this purpose. The tubing should be quickly soldered in place using a hot iron. A thin strip of copper 1 mm (0.03 inch) thick should be soldered in place on the component side between Q2, Q4, and U6, U10 as shown in fig. 3 . This $5 \mathrm{~cm} \times 1.3 \mathrm{~cm}(2$ $\times 0.5$ inch) shield is sometimes needed to prevent VCO whine. Since it is cheap and easy to install, one should be used as a preventive measure.

The enclosure shown in the photos was handmade from $1.5-\mathrm{mm}$ (0.062 -inch) aluminum sheet and painted with enamel paint. The lettering was applied using a Leroy lettering set with black India ink. Presstype, dry-transfer decals will also work quite well. The lettered surface should be protected with a clear Krylon spray.

The enclosure shown in the photographs has no means of ventilation. Ventilation is recommended to reduce heat build-up, thus improving frequency stability. The unit shown was accidentally left on inside a closed vehicle on a $38^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right)$ day with no ill effects, except for the fact that the cover became hot enough to burn your hand.

Most importantly, the box used should be one with good rf integrity. This usually means all metal with good metal-to-metal contact between pieces. Plastic panels should not be used, nor should metal boxes with vinyl contact coating. The Radio Shack box $270-254$ is the most suitable commercially available one I found. It costs about $\$ 5.00$ and has only one shortcoming: The front panel is thin-gauge aluminum which is a little too flimsy and thin for Digitran 2300 -series thumbwheels. This problem can be corrected by gluing strips of aluminum behind the front
panel and on each side of the thumbwheel switches to act as shims.

The printed circuit board should be mounted at all four corners with a good solid ground connection to the box. Make sure that your spacers do not extend beyond the copper pads provided on the circuit side of the printed circuit board, as this can cause portions of the circuit to short to ground.

The printed circuit board should be positioned such that the transmit and receive outputs are just below the rf output connections on back of the box. Lowpass filters should be used between the printed circuit board and rf output connectors (see fig. 4 for values). If lowpass filters are not used, short pieces of buss wire (2.5 mm [1 inch] or less) should be used.

The 3-ohm, 3-watt resistor (R1) should be connected directly to the LM309K input pin and clamped against the rear panel for mechanical strength and heat transfer. C2 and C3 should be connected to the LM309K terminals and grounded to a lug under one of the 309 K mounting screws (C2 and C3 should be ceramic). The +12 volt input should enter the box through a $0.01-\mu \mathrm{F}$ feedthrough capacitor.

If needed, the PTT line can enter through a feedthrough capacitor. However, no situation has been encountered where an RCA phono jack with a $0.1-\mu \mathrm{F}$ capacitor to ground would not suffice. All rf output connectors are RCA phono-type, but any good quality if connector with a good ground connection will work well.

The thumbwheel switches used are the Digitran 2300 -series. Any thumbwheel or rotary switch providing BCD output can be used. Lever-type thumbwheels were not used for fear of unintentional frequency changes caused by the microphone cord. Rotary switches were not used because the larger front panel required was not desirable.

programming the synthesizer

Jumper wires should be used to connect terminals
fig. 5. To use the synthesizer on repeaters that are on $15-\mathrm{kHz}$ splits, the time base is shifted in frequency by the additional capacitor, $C_{\text {ofs }}$. This capacitor generates a time base error that shifts the output frequency the necessary $15 \mathbf{k H z}$.

A through K to the HT, LT, +5 volts, or GND buss to program the synthesizer to match the i-f frequency of your receiver. Terminal X should be connected to HT for receivers that use high-side injection, and connected to LT for receivers that use low-side injection. Table 1 lists several i-f frequencies and the
proper connections for programming. Receivers with i-f frequencies, other than those listed in table 1, can be programmed using the following example. Table 2 lists the BCD values that correspond to terminals A through K. The left-hand column lists the transmit and receive values that should be programmed. The transmit value is always 1360 . The receive value is determined by the receiver i-f frequency. If the receiver i-f frequency is 10.7 MHz
duced, as required, by the addition of series resistance at the point of interface. Any additional interfacing components should be as close to the interfacing point (usually the crystal socket) as possible. Optimum results are obtained if connections are soldered at the interface point. Satisfactory results should be obtained by plugging into an unused crystal socket. If this method is used, insure that all mechanical connections are solid.

fig. 6. Output of the synthesizer as seen on the display of a spectrum analyzer. At left, the horizontal scale is $2 \mathrm{MHz} / \mathrm{division}$, while the vertical is 10 dB /division; right, the horizontal scale calibration has been shifted to $200 \mathrm{kHz} / \mathrm{division}$.
with high-side injection, 107 should be added to 1360 for the receive value. The 800 and 400 values are prewired on the printed circuit board and do not have to be programmed. In the transmit frequency row, write the BCD value which equals 1360 . In the receive row, write the $B C D$ equivalent of the receive value. Under the receive row, write HT for all values which are 0 in transmit and 1 in receive. Write +5 volts for all values which are 1 in transmit and 1 in receive. Write GND for all values which are 0 in transmit and receive. These are the values which should be programmed to terminals A through K.

Output divider program is given in table 3. Transmit and receive divider should be the same as the crystal multiplier for your transceiver. Output divider programming terminals L through V are the square pads located at either end of U14 and U15.

interfacing

A proper interface between the 400 PRO and your transceiver is a must for satisfactory performance. With the 400 PRO, the transceiver's oscillator (transmit and receive) must operate as a buffer amplifier instead of an oscillator. The drive level at the transceiver must be the same as if a crystal were still being used. Drive level from the 400 PRO is in most cases higher than that of a crystal. It should be re-

With some transceivers, one side of the crystal is switched with the channel selector while the other side is connected to ground through a trimmer capacitor. Interfacing with this type of transceiver is best accomplished by adding a solid chassis ground to which the 400 PRO ground (shield side of coax) should be connected. The center conductor is then connected to the switched side of the crystal socket (through the proper interfacing components).

The basic requirement for operation is adequate drive at the appropriate frequency, which need not necessarily be exactly the same as the crystal it replaces. For example, if your receiver requires a 48 MHz crystal (as does the HW202), it will work quite well with a $24-\mathrm{MHz}$ signal. The oscillator will then act as a doubler. Other transceivers require a 15 MHz crystal, which is multiplied by nine. These oscillators will operate with a $23-\mathrm{MHz}$ input multiplied by six.

The 400 PRO, as wired in this article, will work the entire two-meter band. Few transceivers are broad enough to allow full power output or maximum sensitivity across the entire band. Don't be alarmed if a couple of MHz is your limit. This problem is very pronounced with commercial-band radios such as Motorola and GE.
When interfaced properly, the transceiver will
work just the same with the 400 PRO as with a crystal. If it does not, it is either not interfaced properly or other problems exist. The most common other problem is rf leakage into the 400 PRO. The symptoms of if leakage are distorted or low frequency audio on transmit. This distortion may come and go when the equipment is moved. In some cases, movement of the microphone, if or audio cables, nearby objects, or even people can cause the intermittent distortion. In severe cases, the movement of one's hand near the equipment can cause distortion. The most common cause is poor or missing ground connections. Signals can also be coupled in via either the transmitter, receiver, PTT, or the +12 volt line. Any problems entering on the +12 volt or PTT line can be eliminated by the use of feedthrough capacitors. Coupling through the transmitter or receiver lines can be eliminated by the addition of a lowpass filter inside the 400 PRO. In extreme cases, an additional lowpass filter may be required at the transmitter end of the coaxial cable. The filter can be the same as in the 400 PRO and should be mounted inside the transceiver at the point of entry; ground it well. If filtering is done after interfacing, recheck the drive levels.

The 400 PRO can be used in one crystal position, with crystals used in others. With this set-up, the 400 PRO should be turned off any time the transceiver is used in a crystal mode. Failure to do so can result in spurious output in the transmit mode and unwanted birdies in the receive mode.

Interconnecting cables between the 400 PRO and your transceiver should be a good quality 50 -ohm coax; the miniature RG-174 works very well. Never use audio cable, shielded or unshielded. Good grounding is an absolute must. Short interconnecting cables are obviously best, but several 400 PRO's are now being used with trunk-mounted, com-mercial-band equipment. (I use one with a Motrac U43MHT.) Miniature coax is used between the dashmounted 400 PRO and the trunk-mounted radio. One potential problem with commercial-band radios is high resistance in the tensile cord push-to-talk line. This manifests itself in the inability to switch the 400 PRO from receive to transmit. The problem can be corrected by either replacing the microphone cord or reducing the resistance such that Q 3 will switch when the PTT button is pressed.

direct fm

Most transmitters are phase modulated instead of true fm. However, for those that are true fm, the 400 PRO will not simply plug into the crystal socket and function. The phase lock action of the 400 PRO will not allow the output frequency to be shifted. To solve this problem, the VCO in the 400 PRO must be
direct-fm modulated. This is accomplished by applying audio from the transceiver directly to the 400 PRO VCO. Fm produced in this manner is of superior quality. The 400 PRO can be frequency modulated when used with either fm or pm rigs.

$5-\mathrm{kHz}$ offset

The 400 PRO was not designed for $5-\mathrm{kHz}$ output steps. A very simple modification, however, can be made that will provide $5-\mathrm{kHz}$ output increments. This is accomplished by the addition of a toggleswitch selectable capacitor (see fig. 5) which will alter the divide ratios. The change will result in an error of $34 \mathrm{~Hz} / \mathrm{MHz}$ at the two-meter output frequency. For example, if the 400 PRO is set up for no error at 146.005 MHz , the transceiver will exhibit a $67-\mathrm{Hz}$ error at each end of the band (144.000 to 147.995). When not in the $5-\mathrm{kHz}$ mode, the 400 PRO will operate normally and will have no error caused by this modification.

The off-set capacitor shown in fig. 5 can be mounted on the printed circuit board or at the toggle switch. Interconnecting cabling (RG-174) should be kept as short as is practical (15 cm [6 inches] or less).

The easiest method found for initial setup is to calculate the required transmit frequency, with and without +5 kHz off-set. With the off-set selected, adjust C 20 for the required frequency. Switch back to the normal position and pull the frequency back down as required with $\mathrm{C}_{\text {ofs }}$. You may have to repeat this procedure a couple of times. The transmit mode was chosen for initial setup because of the calculation - no i-f off-set is involved.

After the 400 PRO is interfaced to your rig and working properly, the same adjustment procedure can be used while monitoring your transmitter output frequency with a frequency counter. Once properly adjusted in the transmit mode, the receive frequency is automatically set and will require no further adjustment.

conclusion

Although many 400 PROs have been built and used with a variety of rigs, additional interfacing information is always welcome. If you encounter any unusual interfacing problerns to which you find a solution, it would be greatly appreciated if you would jot down the details and mail them to me. By the same token, if you encounter problems you cannot solve, I will be glad to try to help you. The following information must be furnished: transmit and receive crystal formulas, multiplier arrangement, and a schematic. If you are going to have a problem with the 400 PRO, it will most likely be in interfacing it to your rig.
ham radio

THE

Not only is the big move to switch to the Wilson Mark Series of Mini-Hand-Held Radios, but now the switch is on the Mark!

Wilson Electronics, known for setting the pace in 2m FM Hand-Helds, goes one step beyond!

AT NO EXTRA CHARGE: all Mark Series Radios now will include a switch for you to control the power of operation. This will enable you to use the high power when needed, then later switch to low power to conserve battery drain for extended operation.

IN ADDITION: all Mark Series Radios now have an LED Battery Condition Indicator conveniently mounted on the top plate. A quick peek will reassure you of a charged battery in the radio.

Wilson hând-helds have been known world-wide for exceptional quality and durable performance. That's why they have been the best selling units for years.
Now the Mark Series of miniature sized 2-meter hand-helds offers the same dependability and operation, but in an easier to use, more comfortable to carry size . . . fits conveniently in the palm of your hand.
The small compact size battery pack makes it possible to carry one or more extra packs in your pocket for super extended operation time. No more worry about loose cells shorting out in your pocket, and the economical price makes the extra packs a must.

Conveniently located on top of the radio are the controls for volume, squelch, accessory speaker mike connector, 6 channel switch, BNC antenna connector and LED battery condition indicator.

- NOW SWITCHABLE MARK II: $\simeq 1$ \& 2.5 watts MARK IV:~ 1 \& 4.0 watts

SPECIFICATIONS

- Range: $144-148 \mathrm{MHz}$
- 6 Channel Operation
- Individual Trimmers on TX and RX Xtals
- Rugged Lexan@ outer case
- Current Drain: RX 15 mA

TX - Mark II: 500 mA
 TX - Mark IV: 900 mA

- 12 KHz Ceramic Filter and $\mathbf{1 0 . 7}$ Monolithic Filter included.
- 10.7 MHz and 455 IKz IF
- Spurious and Harmonics: more than 50 dB below carrier
- BNC Antenna Connector
- . 3 Microvolt Sensitivity for 20 dB Quieting
- Uses special rechargeable Ni-Cad Battery Pack
- Rubber Duck and one pair Xtals 52/52 included
- Weight: 19 oz , including batteries
- Size: $6^{\prime \prime} \times 1.770^{\prime \prime} \times \mathbf{2 . 4 4 0 "}$
- Popular accessories available: Wall Charger, Mobile Charger, Desk Charger, Leather Case,

Illustrated is Wilson's BC-2 Desk Top Battery Charger shown charging the Mark Series Unit or the BC-4 Battery Pack only.

Optional Touch Tone ${ }^{\text {™ }}$ Pad available

To obtain complete specifications on the Mark II and Mark IV, along with Wilson's other fine products, see your local dealer or write for our Free Amateur Buyer's Guide.

optimizing and measuring fm deviation

Louder isn't necessarily better in an fm transmitter intelligent use of the deviation control will produce maximum talk power per watt

In fm radio transmission, the louder the modulating signal into the microphone the greater the variation of the carrier from its center, or resting, frequency. Generally this also means a stronger audio signal at the detector of a properly tuned fm receiver. The amount of the plus or minus frequency swing is called deviation. Deviation is talk power, and that's good most of the time but not always.

There are three conditions under which increased deviation is not to the user's advantage. First, FCC Regulation Part 97.65 limits the deviation to $\pm 3 \mathrm{kHz}$ on frequencies below 29.0 MHz and between 50.1 and 52.5 MHz . Deviation is limited to $\pm 20 \mathrm{kHz}$ for all other authorized Amateur Radio frequencies. Continued violation of the regulation could result in zero talk power. Get the message?

Second, particularly in the 2-meter band, interference between stations operating on different frequencies is minimized if the portions of the frequency spectrum used by each of the stations don't overlap. This is shown graphically in fig. 1. The amateur community long ago recognized the potential for a problem and used some of its better thinking to find ways for avoiding the interference. The solution is best seen in the band plans for 2 -meter repeater operation, where the generally used frequencies are 10 kHz apart, corresponding approximately to a $\pm 5 \mathrm{kHz}$ deviation limit.

The decision to self-impose a $5-\mathrm{kHz}$ deviation limit when the FCC was offering up almost four times that much wasn't entirely magnanimous. (Required band-

By Ray Isenson, N6UE, 4168 Glenview Drive, Santa Maria, California 93454
width is approximately $2 \times$ deviation + maximum modulating frequency. Thus, for a $3-\mathrm{kHz}$ modulating frequency, and FCC permitted maximum deviation, the required bandwidth would be $\frac{40-3}{2}=18.5$ $k H z$.) This becomes evident in an examination of the third condition, under which it's to the user's advantage to limit the deviation.

modulation index

In fm radio transmission, the total power radiated is independent of the modulation. When the carrier is modulated (deviated), power is transferred from the carrier to the intelligence sidebands. The amount of power that's transferred depends on the modulatingsignal amplitude and something called the modulation index (MI). We noted previously that the achieved deviation varies with the modulating-signal amplitude. The modulation index is the ratio of the frequency deviation to the modulating-signal frequency.
For example, if a transmitter deviates 5 kHz with a modulating signal of 2 kHz , at some amplitude the modulation index would be $5 / 2=2.5$. The relationship between the relative amount of power in the carrier and sidebands and the modulation index is shown in fig. 2. It's evident that the maximum amount of power is transferred to the sidebands when the modulation index is approximately 2.4 ; that is,

$$
\begin{equation*}
M I=\frac{D e v}{F_{m}}=2.4 \tag{1}
\end{equation*}
$$

audio bandwidth

Students of audio-frequency phenomena know that, although the full spectrum of human speech is between approximately 100 and 8000 Hz , only a small fraction of that range is normally used. If everything below 1000 Hz is filtered, comprehension is not affected, but the result is a mechanical, unnatural

fig. 1. With center frequencies 10 kHz apart, two fm stations will still experience some mutual interference if each modulates to $4.5-\mathrm{kHz}$ deviation with a $1.5-\mathrm{kHz}$ tone.

fig. 2. Relative amplitude of the rf power remaining in the carrier as a function of modulation index.
sound. If frequencies above 1000 Hz are filtered, the result is a varying amplitude mumble that's almost devoid of intelligence. As more and more of the frequencies above 1 kHz are permitted to pass, comprehension increases rapidly until about 1800 or 2000 Hz is reached. Comprehension then increases less rapidly until, by 3000 Hz , almost nothing is added to comprehensibility by increasing bandwidth. If eq. 1 is examined in light of this:

$$
\begin{align*}
M I & =\frac{D e v}{\overline{F_{m}}}=2.4 \\
D e v & =F_{m} \times 2.4=(1 \mathrm{kHz} \text { to } 2 \mathrm{kHz}) \times 2.4 \tag{2}\\
& =2.4 \mathrm{kHz} \text { to } 4.8 \mathrm{kHz}
\end{align*}
$$

Thus, the most effective way to use the rf power and obtain maximum readability is to hold the achieved deviation between about 2.5 and 4.5 kHz ; the lower number for bass-voiced males, the higher number for tenors and sopranos. Thus it's possible at one and the same time to keep the FCC and fellow hams happy - or, at least, off your back - and to make efficient use of the if power from the transmitter. Adjusting the transmitter to achieve the desired and maximum deviation isn't difficult. It consists solely of tweaking a couple of potentiometers while making a few measurements.

audio gain and deviation controls

Typically, the signal from the microphone is accoupled to a one- or two-stage audio amplifier; then to a clipper and filter, then to a deviation-level control stage, and finally to the modulator. Most, but not all, transmitters have a means of gain adjustment in the audio amplifier stage. All fm transmitters should have a potentiometer for controlling deviation-level set, or, maximum deviation. Really good matching of the microphone, the user's speech characteristics, and the transmitter can be accomplished only when both
controls are present. If only a deviation-level set control is available a useful degree of optimization is still possible, although the user may have to experiment with different microphones to get the best match.

an analogy

To visualize the interaction between audio gain control and deviation level set, it's convenient to use
for a simple, inexpensive deviation meter is described later.

Two representative audio input circuits are shown in fig. 3. One consists of discrete components; the other, an integrated circuit. The oscilloscope is connected to point \mathbf{A}, and audio gain is varied with the setting of R1. Excite the microphone with a steady tone in a normal speaking voice. This can be done,

for example, by saying "fo-o-o-ore," as on a golf course, while varying R1 until the audio peaks are barely flattened as seen on the scope. Even in the absence of an audio-gain control this is a good check. If it's necessary to holler into the microphone to get limiting, a new mike may be in order.

simple deviation meter

A minimal deviation meter consists of a suitable radio receiver and a calibrated, peak-reading voltmeter. The accompanying photograph shows such a device. It consists of the metering circuit shown in fig. 4 and a commercial scanner. Most of the circuit is mounted on a $25.4 \times 38 \mathrm{~mm}$ ($1 \times 1.5 \mathrm{inch}$) printed circuit board fitted into the scanner. Voltage is taken from the scanner power supply. The only modification to the scanner is the removal of a capacitor, as described later. The scanner function is not affected. Contained in the meter housing are the two switches, the calibration pot, and the smoothing capacitor. The exact layout of the printed circuit board depends on the transformer and the meterinput pot used, so it's not shown here. The layout isn't at all critical. Any fm receiver capable of precise
tuning to the carrier frequency of the transmitter to be tested can be used. In many cases, no modification to the receiver need be made. At most, as discussed later, it may be necessary to lift, temporarily, one end of a capacitor to use the receiver.

component selection

None of the voltmeter component values are critical. The diagram represents what I had in my junk box. I salvaged the diodes from surplus computer boards. Those selected had the lowest reverse current (cataloged, not measured). If you don't have a 100-microampere meter, the 50-microampere VU meter, 5E3705, currently offered by Polypaks for just over $\$ 1$, is most acceptable. Transformer T1 was salvaged from a junked, transistorized a-m broadcast receiver. Anything with a 1 k - 10k input impedance and with a transformation of two to three times that impedance in the center-tapped secondary will do. If all else fails, and your junk box is as barren as Mother Hubbard's cupboard, a Triad A31X, Stancor TA31, or Allied interstage 6T14PC would be ideal.

Referring to fig. 4, C 1 is an input coupling capacitor for U1. Any value between 10 and 100 microfarads will do for capacitor C 4 ; its function is to stabilize the voltage across CR3. The $40 \mu \mathrm{~F}$ capacitor (C3), shunting pot R5, and the meter provide meter damping. The optimum value of C3 depends on the internal resistance of the meter and the magnitude of the calibration resistance. I tried several values between 10 and 200 microfarads before deciding that, for my setup, the 40-microfarad capacitor was adequate. The meter movement was damped but not to the point of being sluggish. It's a matter of personal preference.

precalibration notes

Before discussing meter calibration, I should comment on a possible need for temporary modification of the receiver. To reduce the consequences of thermally induced noise in the a-f amplifiers, it's customary to use frequency pre-emphasis and de-emphasis. The fm transmitter emphasizes the higher audio frequencies by shaping the amplifier-response curve. The receiver uses a de-emphasis circuit following the discriminator or detector to re-establish balanced levels.

To measure deviation the signal must be picked off ahead of the de-emphasis circuit. When discrete components are used, as in the circuit of fig. 3A, the deviation meter can be connected at point \mathbf{A} with no circuit change.

If the receiver uses an IC for the detector, it will be necessary to defeat temporarily the de-emphasis circuit by lifting the ground side of a capacitor. If the IC

fig. 4. Schematic of a simple deviation meter discussed in the text. Component values are not critical.
is a type CA3065, MC1358, $\mu \mathrm{A} 3065$, ULN2165, C6063P, or SK3072, lift the ground side of the capacitor connected to pin 7 and connect the meter at pin 14. If it is a type CA2111A, MC1357P, C6062P, or SK3135, lift the ground side of the capacitor connected at pin 14 and pick up the signal on pin 1 . For other chips consult the manufacturer's data or perhaps the receiver circuit diagram. Look for a capacitor in the range 0.005-0.1 microfarad from a pin to ground and not by-passing a resistor. I removed the 0.005 -microfarad capacitor from the de-emphasis circuit in my Pace scanner and found that it made so little difference in the audio quality that it was never replaced.

meter calibration

Having ensured the readings will be free of de-emphasis effects, meter calibration is straightforward. The easiest way to do this is to use a digitally synthesized transmitter as a signal source.

First, disconnect the transmitting antenna and connect a suitable dummy load. Tune the transmitter and the receiver to be used with the deviation meter to the same frequency. Close the transmit switch with no modulation present and measure the dc voltage at the discriminator or detector output. Be sure to use a dc-coupled oscilloscope or a high-impedance voltmeter. If both rigs are tuned to frequency and the discriminator is properly balanced, there will be zero volts out. If some other voltage is sensed, find out why and correct it before proceding.

Next, shift the transmitter frequency up 5 kHz by using the PLUS 5 KHZ switch on the transmitter. Read and note the voltage at the discriminator output. It will be on the order of 1 volt. Now, leave the 5 KHZ switch alone but decrease the transmitter frequency 10 kHz . Voltage at the discriminator should be of the same magnitude but of opposite polarity to that previously measured. That is, if it was +1 volt, it

fig. 5. Typical fm discriminator using discrete components. The deviation meter can be connected at point A with no circuit changes. For circuits using ICs, see text.
should now be -1 volt. If necessary, retrim the discriminator until positive and negative frequency offsets yield the same voltage amplitude at the discriminator output. Having achieved that, the receiver is known to be balanced, and the detector output for $\pm 5 \mathrm{kHz}$ is known.
A decision is now in order. What is the desired fullscale reading for your deviation meter, and over what range is it to be linear? In the prototype unit I opted for, a $10-\mathrm{kHz}$ full scale was necessary to have the desired 5 kHz at center scale. I chose, rather arbitrarily , to make the meter linear up to 7.5 kHz to allow for some padding beyond the region of primary interest. You may want to use some other numbers. Changes from the following procedure to yield numbers of your choice should be obvious.

meter linearity

Assuming the $7.5-\mathrm{kHz}$ linear range is acceptable, set the output of an audio-frequency generator so that its peak-to-peak value is three times the previously measured $5-\mathrm{kHz}$ deviation output voltage. (Note that for $10-\mathrm{kHz}$ linearity, the $\mathrm{p}-\mathrm{p}$ reading should be four times the reading previously measured.)

The frequency isn't critical. If nothing else is available, use a $60-\mathrm{Hz}$ signal. A $1000-3000 \mathrm{~Hz}$ signal is preferred. Feed the signal to the deviation-meter input while observing the output waveform (pin 6 of the LM380) on your oscilloscope. Adjust the potentiometer connecting pins 2 and 3 of the IC for maximum signal output without limiting or other distortion. This establishes meter linearity.

Decrease the injected-signal amplitude until it's twice the $5-\mathrm{kHz}$ deviation voltage. Again, this is peak-to-peak voltage. Adjust the meter series pot until the needle points where desired (center scale on the prototype). The deviation meter is now calibrated and can be used to set the deviation-limit level of the transmitter being adjusted.
calibration using a frequency counter
In the absence of a digitally synthesized transmitter, the deviation meter can be calibrated using an audio signal generator and a frequency counter. The technique involved derives from further application of eq. 1. At a modulation index of 2.4 there's no power in the carrier, all of it having been transferred to the sidebands. For a deviation of 5 kHz , a modulating frequency of 2080 Hz is necessary to get an MI of 2.4. $(5000 / 2080=2.4)$.

Set up a transmitter and the receiver to be used with the deviation meter on a common frequency, as before. This time, however, adjust the discriminator very slightly so that a dc voltage is measured in the presence of unmodulated rf. Now inject the $2080-\mathrm{Hz}$ signal into the audio input of the transmitter. It can be audio coupled through the microphone or directly coupled, whichever is convenient. Increase the injected-signal amplitude from a very low level while observing the dc voltage at the discriminator output. This voltage will drop to zero when the injected-signal amplitude corresponds to a $5-\mathrm{kHz}$ deviation. Holding the amplitude constant, drop the frequency to about 1000 Hz and tweak the series pot used for calibrating the meter until the latter indicates 5 kHz . Check pin 6 of the LM380 to make sure that the sine wave at that point isn't distorted. If it is, adjust the pot across pins 2 and 3 of that chip to remove the distortion, and readjust the meter calibrating resistor as necessary.

setting deviation

Excite the microphone with any loud, high-frequency tone - a loud sustained whistle is adequate. Adjust the deviation level control so that the deviation meter reads no more than 5 kHz . Talking into the microphone in normal tones should yield an average deviation of 2.5 kHz to 3.5 or 4 kHz - again depending on individual voice pitch. If it's much less than this, and if the rig has an audio gain control, try increasing the gain slightly. Recall, however, that the gain control was previously set at the upper level of the amplifier's linear range. Therefore a tradeoff between amplitude and amplitude linearity will have to be made.

If a TOUCH TONETM pad is used, the high tone group should cause a deviation meter reading of 4 4.5 kHz ; for the low tone group, it should be about 3 kHz .

You've now properly set the average and maximum deviation on your fm transmitter. Stand by to pride yourself on the fact that your rig is giving you maximum talk power per watt input, and that you're one of the good guys when it comes to bandwidth conservation.
ham radio

Super Terminals with Hidden Features

For our Overseas customers:
see HAL equipment at:
Richter \& Co.; Hannover
I.E.C. Interrelco; Bissone

10-GHz Gunnplexer transceivers

 and practiceDiscussion of the various aspects of Gunnplexer transceiver construction and operation, including two practical transceiver designs

frontiers of Amateur Radio; thanks to the Gunnplexer transceiver module offered by Microwave Associates, it's now easier than ever to put together a practical station for amateur operation on the $10-\mathrm{GHz}$ band. Only a few years ago a "simple" microwave setup required a rack-full of equipment and friends in the industry who could provide hard-to-find parts. With the Gunnplexer, an entire microwave system can now be held in one hand. It can be easily backpacked to the highest mountain tops, and it can be operated from a single 12 -volt battery.

As you receive it, the Gunnplexer module is not a complete transceiver; to put it on the air you need a dc power supply, a simple speech amplifier, and an fm receiver. You can put together a working system in one evening. To build a complete transceiver like that described in this article will take a little longer.

what is a gunnplexer?

The heart of the Gunnplexer is the Gunn diode oscillator, named after the IBM engineer who invented it in 1963, John Gunn. While measuring the resis-

By James R. Fisk, W1HR, ham radio, Greenville, New Hampshire 03048
tance of gallium arsenide (GaAs), Gunn found that when the voltage across a thin wafer of the material was increased above a certain point, the current fluctuated at microwave frequencies. The mechanism which caused this was a mystery at first, but Gunn suspected a negative resistance due to electron movements within the gallium arsenide. This eventually proved to be the case (a detailed description of the Gunn diode phenomenon is contained in reference 1).
When a Gunn diode is placed in a resonant microwave cavity, small amounts of power can be obtained at the desired frequency. The cavity can be tuned mechanically, or a voltage-variable capacitor (varactor) may be used to change the resonant frequency of the cavity. The Gunnplexer (fig. 1) uses both a mechanical tuning screw and a varactor diode; frequency modulation is obtained by placing a small modulating voltage across the varactor. Power is coupled out of the cavity through an iris. The size of the iris must be determined experimentally for the best compromise between maximum power output and isolation from changes in diode impedance and load.

In the Gunnplexer the Gunn oscillator provides both the transmit power and the local-oscillator injection for the mixer diode. The ferrite circulator couples a small amount of energy into the low-noise Schottky mixer diode and isolates the transmit and receive functions. Since the Gunn oscillator functions as both the transmitter and receive local oscillator, the i-f receiver at each end of the communications link must be tuned to the same frequency, and the frequencies of the Gunn oscillators at each end of the link must be separated by the i-f.

Microwave Associates $\mathbf{1 0 - G H z}$ Gunnplexer.

fig. 1. Cutaway view of the Microwave Associates Gunnplexer. The Gunn diode is mounted in a resonant cavity which is tuned by a tuning screw (coarse tuning) and a varactor (fine tuning). Microwave energy is coupled out of the cavity through an iris. The ferrite-rod circulator couples a small amount of rf energy into the Schottky mixer diode; the circulator also isolates the transmit and receive functions and allows full-duplex operation.

Confused? Take a look at fig. 2. Here Gunnplexer 1 is tuned to the center of the $10-\mathrm{GHz}$ amateur band at 10250 MHz . If a $30-\mathrm{MHz}$ i-f receiver is used, Gunnplexer 2 must be tuned either 30 MHz higher or lower than Gunnplexer 1. Assume it's tuned 30 MHz higher at 10280 MHz ; its signal will mix with the $10250-\mathrm{MHz}$ LO in Gunnplexer 1 to provide an output to the receiver at 30 MHz . Conversely, the $10250-\mathrm{MHz}$ transmit signal from Gunnplexer 1 will mix with the $10280-\mathrm{MHz}$ LO in Gunnplexer 2 to provide an output at 30 MHz .

gunnplexer communications range

One of the first and most asked questions about Gunnplexers is, what is their maximum range? Since most microwave communications systems are based on line-of-sight transmission, it's a relatively easy matter to determine the effective communications range of any Gunnplexer system. When the distance between the two stations is known, path loss in dB is given by:

$$
\begin{aligned}
& 92.5 \mathrm{~dB}+20 \log f(\mathrm{GHz})+20 \log D \text { (kilometers) } \\
& 96.6 \mathrm{~dB}+20 \log f(\mathrm{GHz})+20 \log D \text { (miles) }
\end{aligned}
$$

where f is the operating frequency and D is the distance between transmitting sites. Note that each time the frequency is doubled, the path loss increases by 6 dB . This is shown graphically in fig. 3, which shows the path loss vs distance for each of the amateur bands above 1000 MHz . At 10250 MHz , the center of the $10-\mathrm{GHz}$ amateur band, the path loss equation can be simplified to:
$112.7+20 \log D$ (kilometers)
$116.8+20 \log D$ (miles)

In other words, the path loss over a distance of 1 km is 112.7 dB ; it increases 6 dB each time the path length is doubled. The objective is to build enough gain and sensitivity into the microwave system to overcome the loss over the desired path. This is a function of transmitter power, antenna gain, receiver sensitivity (noise figure), and receiver bandwidth, but it's not as complicated as it sounds because all these factors can be easily translated into dB.
The graph of fig. 4 has been designed to simplify the calculation of communications range at 10250 MHz and is normalized to a power output of 15 mW , receiver bandwidth of $200 \mathrm{kHz}, 12-\mathrm{dB}$ noise figure, and $17-\mathrm{dB}$ gain antennas at each end of the link. This is what I consider a minimal Gunnplexer system. The horizontal line labelled THRESHOLD is the beginning of reception of intelligible speech and allows no margin for fading due to rainfall, multipath propagation, or other environmental effects. With the minimal Gunnplexer system, threshold occurs at a distance of about 127 kiliometers (76 miles). Since a carrier-tonoise ratio of $8-10 \mathrm{~dB}$ is recommended for reliable communications, about one-third this distance could be used for successful communications.
There are four major things which can be done to increase range: use higher transmitter power, reduce receiver bandwidth, improve receiver sensitivity, or increase antenna gain. The effects of power output and receiver bandwidth are shown in the chart on fig. 4. Each improvement in system performance adds the stated number of dB to the carrier-to-noise ratio. A $40-\mathrm{mW}$ Gunnplexer with a receiver bandwidth of 25 kHz , for example, improves the carrier-to-noise ratio by $13.3 \mathrm{~dB}(4.3 \mathrm{~dB}$ for 40 mW transmitter power, plus 9.0 dB for reduced bandwidth). This

fig. 3. Path loss vs distance for each of the six amateur microwave bands. Note that path loss increases 6 dB each time the frequency or path length is doubled. Loss over a $61.7-\mathrm{km}$ path at 1215 MHz , for example, is 130 dB ; at twice the frequency (2430 MHz) the loss is 6 dB greater; at 8 times the frequency, near the 10 GHz band. loss is more than 18 dB greater. This graph assumes line of sight with no obstructions of any kind.
the path loss is 146.7 dB . The other item which is fixed is the thermal noise floor, at - 144 dBm , which is set by the laws of nature and determines the ultimate sensitivity of the receiver. ${ }^{2}$
Beginning at the transmitting end of the link, we have 15 mW power output ($+\mathbf{1 1 . 8} \mathbf{d B m}$). To this is added the $17-\mathrm{dB}$ gain of the antenna. When the path loss is subtracted, the signal level at the receiving site is -117.9 dBm . The $17-\mathrm{dB}$-gain receiving antenna
fig. 2. Gunnplexer operation. Since the same oscillator is used as both a transmitter and local oscillator for the mixer, the i-f at each end of the link must be at the same frequency, and the Gunn oscillator frequencies must be separated by the i-f. In the example shown here, Gunnplexer 1 is tuned to $10250 \mathbf{M H z} ; 30$ MHz receivers are used, so Gunnplexer 2 at the other end of the link must be tuned either exactly $30 \mathbf{M H z}$ higher or lower (to 10280 or 10220 MHz).

system would provide a carrier-to-noise ratio of 8 dB at a line-of-sight distance of 233 kilometers (145 miles).
When calculating the communications range of a microwave system, all the gain and loss components of the system must be considered, as shown in fig. 5. Here a distance of 50 km (30 miles) is assumed, so
increases the signal to -100.9 dBm . From this must be subtracted the $12-\mathrm{dB}$ noise figure and the $200-\mathrm{kHz}$ bandwidth factor (23 dB), for a signal level of -135.9 dBm . The difference between this and the thermal noise floor at -144 dBm is the carrier-to-noise ratio. For this link, +8.1 dB .

The easiest way to improve range is to use a higher

fig. 4. Carrier-to-noise ratio vs distance for two $15-\mathrm{mW}$ Gunnplexers at 10250 MHz , equipped with 17-dB-gain horn antennas; receiver noise figure is assumed to be 12 dB with $200 \mathbf{k H z}$ bandwidth. The THRESHOLD line is the beginning of the reception of intelligence. At a distance of $127 \mathrm{~km}(76$ miles) the carrier is at the noise level or threshold; at a distance of about 40 km (25 miles) the carrier-to-noise ratio is 10 dB , the minimum signal level recommended for reliable voice communications. Range can be lengthened by increasing transmit power, decreasing bandwidth, or adding antenna gain (see text). Improvements in dB for increased output and narrower bandwidth are shown.
gain antenna. Unlike the lower frequencies, where antenna gain is hard to come by, on the microwave bands it's relatively easy. A 24 -inch ($61-\mathrm{cm}$) parabolic reflector, for example, yields 32 dBi gain. If used at only one end of the system shown in fig. 5, this would have the effect of increasing the range to
tem which phase locks the Gunn oscillator to a crys-tal-controlled reference oscillator. The cost of a phase-locked system is somewhat less than that of a commercial parabolic reflector, but system gain is only on the order of $12-13 \mathrm{~dB}$ when compared with a system with $200-\mathrm{kHz}$ receiving bandwidth. On the other hand, a phase-locked system permits the use of CW, which provides reliable communications with lower carrier-to-noise ratios than voice, so there may be the equivalent of an additional 4-5 dB gain available.

For greater range you can also increase transmitter output or improve receiver noise figure, but both are expensive and limited to a certain extent by the present state of the art.

gunnplexer performance

The Gunnplexer performance measurements discussed here were made by B. Chambers, G8AGN, of the Department of Electronic and Electrical Engineering at the University of Sheffield, England, who is also a member of the Microwave Committee of the Radio Society of Great Britain. Front-end performance was not measured because, in practice, receiver sensitivity and noise figure are highly dependent on the operator's choice of i-f strip and the degree of matching between the mixer diode and the i-f preamplifier. Therefore G8AGN made measurements only to check the performance of the Gunn oscillator.
When a variable voltage was connected to the Gunn diode, it was found that rf power was produced with an applied voltage as low as 5 volts. Most of the tests, however, were accomplished with +10

fig. 5. Example of a path-loss calculation at 10250 MHz . With two $15-\mathrm{mW}$ Gunnplexers equipped with 17-dB gain antennas, and $12-\mathrm{dB}$ noise figure in $200-\mathrm{kHz}$ bandwidth, the carrier-to-noise ratio at 50 km is 8.1 dB .
nearly 2000 km (1200 miles) for the same 8.1 dB carrier-to-noise level! That's obviously well beyond line-of-sight for any two earth-based locations. One disadvantage of high antenna gain is antenna alignment; the 4 -degree beamwidth of a 24 -inch dish leaves little room for error when pointing the antenna at another station.

You can also increase range by reducing the bandwidth of your receiving system, but because of the thermal drift of the Gunnplexer, this requires a sys-

Transmitter power, 15 mW	+11.8 dBm	+11.8 dBm
Add transmitter antenna gain	+17.0 dBi	+28.8 dBm
Subtract path loss	+146.7 dB	-117.9 dBm
Add receiver antenna gain	+17.0 dBi	-100.9 dBm
Subtract receiver noise figure	-12.0 dB	-112.9 dBm
Subtract 200 kHz bandwidth factor	-23.0 dB	-135.9 dBm
Thermal noise floor		-144.0 dBm
	Carrier-to-noise ratio:	+8.1 dB

volts applied to the Gunn diode and +4 volts bias on the varactor diode.

Using a Systron-Donner model 6057 frequency counter with an upper frequency limit of 18 GHz , G8AGN found that the Gunn oscillator drifted down in frequency by about 3 MHz during the initial onehour warm-up period. A further frequency check 15

fig. 6. Typical variation of Gunnplexer output power as the frequency is tuned mechanically through the $10-\mathrm{GHz}$ amateur band, as measured by G8AGN. At all frequencies the output was well above the rated 25 mW .
minutes later showed that the oscillator was drifting down in frequency by about 28 kHz per minute. This rate of drift is quite acceptable in practice unless a narrow-band system is being used and there is no provision for AFC.

The mechanical tuning range of the oscillator was checked next and found to extend from 9641 MHz up to 10764 MHz . The if power output over this frequency range was measured with a Marconi model 6460 power meter with a coaxial head, buffered by a fixed $20-\mathrm{dB}$ pad. This was preceded by a coax-towaveguide transition and slide-screw tuner which was adjusted before each reading to ensure that the oscillator was delivering power into a matched load. Fig. 6 shows the variation of if output power over the frequency range from $10.0-10.5 \mathrm{GHz}$. Rf power measurements at the extremities of the tuning range showed 39 mW at 9641 MHz and 24 mW at 10764 MHz.

For a given setting of the mechanical tuning screw, the frequency of the Gunn oscillator may be tuned electrically by changing the voltage applied to either the Gunn diode or the varactor. Varying the voltage of the Gunn diode over the range from +5 to +11 volts produced a frequency change of 13.3 MHz about a preset value of 10250 MHz . This represents approximately 2.2 MHz per volt for frequency pushing and is well within the quoted specification.

With the Gunn diode held at +10 volts, the varactor bias was varied from +1 to +12 volts and measurements were made of both frequency and rf power output. Although up to +20 volts bias may be used on the varactor, measurements were made only to +12 volts because this is the maximum voltage usually available for portable operation. Fig. 7 shows the
result of these measurements. It can be seen that the maximum electronic tuning range was approximately 100 MHz , and that over this range the rf power output varied by about 3.5 dB .

The final set of Gunnplexer measurements made by G8AGN were concerned with the frequency-pulling performance of the Gunn oscillator. To make these measurements, the Gunnplexer was set up to deliver power to a load consisting of an adjustable short circuit; therefore, by varying the axial position of the short-circuit plane within the waveguide, a wide range of load impedances would be seen by the oscillator. For an axial variation of the short-circuit plane of 20 mm (0.8 inch), corresponding to a distance just greater than $\lambda_{2} / 2$ at 10250 MHz , the total frequency variation was found to be 12 MHz .

The result of this test suggested that the ferrite circulator should be "transparent" enough for the Gunnplexer to be frequency locked using a cavity wavemeter, and this, in fact, proved to be the case. A TE_{011} mode transmission-type cavity wavemeter with a quoted Q factor of 8000 was available. This was simply bolted to the Gunnplexer assembly - the resulting separation between the wavemeter and the coupling iris to the Gunn oscillator being about 6.5 cm (2.6 inches). The wavemeter cavity had provision for attaching a waveguide diode holder, and this was

fig. 7. Frequency variation and measured power output with changes in varactor bias, as measured by G8AGN. Power output varies less than 3.5 dB over the nearly $100-\mathrm{MHz}$ tuning range.
used in conjunction with a sensitive milliammeter to detect when the cavity was tuned near resonance.

With a little practice, G8AGN found that it was possible to hold the frequency of the Gunn oscillator to within 1 kHz for periods of minutes at a time. In view of this, it seems probable that the Gunnplexer could also be injection locked using a crystal controlled source, although this was not tried.

power supply

The first requirement for a Gunnplexer system is a regulated +10 volt power supply. Unfortunately, there aren't any readily available, high-current, threeterminal IC regulators with a 10 -volt output (the Lambda LAS1510 meets these requirements, but is difficult to purchase in small quantities).* The answer is the Fairchild $\mu \mathrm{A} 78 \mathrm{MG} 4$-terminal regulator, which requires only two external resistors to set the regulated output voltage (see fig. 8), This regulator will provide in excess of 500 mA output, so it's adequate for most Gunnplexer systems.

For precise voltage adjustments, I have included a miniature 500 -ohm pot between the two 4700 -ohm resistors; this allows the output voltage to be set within a few millivolts of +10 volts. If you're not this fussy, you can connect the IC's control terminal (pin 4) directly to the junction of two 4700 -ohm resistors - the output voltage should be within 5 per cent of the required 10 volts. This is probably close enough for most applications.

In many circuits using the $\mu \mathrm{A} 78 \mathrm{MG}$ regulator the bypass capacitors may not be required. However, for stable operation of the regulator IC over all voltage and current input ranges, bypassing is recommended by the manufacturer ($0.33 \mu \mathrm{~F}$ at the input and $0.1 \mu \mathrm{~F}$ at the output). The input bypass is necessary if the regulator is located far from the filter capacitor in the power supply; bypassing the output improves the transient response of the regulator.

tuning range

The frequency of the Gunnplexer is controlled by

fig. 8. Regulated Gunnplexer power supply can be adjusted to exactly +10 volts; with proper heatsinking, this circuit will provide current in excess of 500 mA . The $0.33-\mu \mathrm{F}$ capacitor at the input and $0.1 \mu \mathrm{~F}$ at the output improve circuit performance.

fig. 9. Simple +10 volt regulator using readily available parts, designed by W1SL, will supply up to 1 ampere. The 723 regulator is available from Radio Shack (part number 276-1740) as is the 2N3055 transistor (Radio Shack 276-1634).
the voltage on the built-in tuning varactor, the setting of the mechanical tuning screw, and the supply voltage to the Gunn diode. Unless otherwise specified, the Gunnplexer is mechanically tuned to 10250 MHz at the factory with 10.0 volts on the Gunn diode and 4.0 volts across the varactor. The output frequency of the Gunnplexer can be adjusted ± 100 MHz with the tuning screw, but I don't recommend touching the mechanical tuner unless you have access to a microwave frequency counter; you will find it difficult to accurately retune the unit to 10250, the center of most amateur activity on this band.

The Gunnplexer can also be electronically tuned by varying the voltage across the varactor from 1 to 20 volts; this is the preferred method, and a tuning range of 60 MHz is guaranteed. Electronic tuning range varies from unit to unit, but data is furnished with each Gunnplexer so you can easily estimate frequency output vs varactor voltage. Many units have an electronic tuning range of 100 MHz or more, so it's not necessary to touch the mechanical tuning screw for most amateur applications.

Shown in fig. 10 is a plot of frequency output vs varactor tuning voltage for a $40-\mathrm{mW}$ Gunnplexer that 1 am using at my station. The tuning curve is quite nonlinear, with the greatest frequency change -50 MHz - occurring as the varactor voltage is increased from 1 volt to 4 volts. An increase from 4 volts to 10 volts moves the output frequency up 40 MHz , and a change from 10 volts to 20 volts increases the output frequency 46 MHz . The total frequency change is 136 MHz . The tuning range of other Gunnplexers won't exactly follow this curve, but it gives you an idea of what you can expect.

The varactor also provides a way of frequency modulating the unit. If a small modulating voltage is

[^1]impressed on the varactor bias, the frequency will be varied at an audio (or video) rate. Because of the wide electronic tuning range, the required modulation voltage is very small; 10 mV or so for 75 kHz deviation, or less than 1 mV for 5 kHz deviation. However, don't plan on using narrowband deviation unless you have a crystal-controlled, phase-locked system for stabilizing the Gunnplexer frequency.
The output frequency also varies with changes in the Gunn diode supply voltage - 15 MHz per volt maximum - but this isn't recommended as a tuning method. In addition, the power output and efficiency of the Gunnplexer has been optimized for a 10.0 -volt supply, and you don't want to risk damaging the expensive Gunn diode.

fig. 10. Output frequency vs varactor bias for a $40-\mathrm{mW}$ Gunnplexer used by W1HR. The tuning range of other Gunnplexers won't exactly follow this curve, but can be estimated from the date furnished by Microwave Associates with each Gunnplexer.

In portable systems designed to operate from +12 volts, it's convenient to set the maximum varactor voltage at the +10 -volt Gunn diode supply. This provides more than enough tuning range if you use a 30 MHz i-f system. Amateurs in Europe usually transmit voice on 10250 MHz and receive on 10280 or 10220; in the United States many stations have standardized 10250 for transmitting and 10280 for receiving (for full duplex operation one station transmits on 10250 and the other transmits on 10280).
If you use fm broadcast receivers at each end of the link with a 10 -volt varactor supply, you may not be able to obtain sufficient tuning range to cover the required 100 MHz . However, if you use an auxiliary varactor supply that will provide up to 20 volts, you should have no difficulty obtaining the required range. In many cases the nominal 12 volts available

fig. 11. If a multi-turn potentiometer is unavailable, varactor bias can be controlled by one of the methods shown here. The resolution of the circuit at (A) is about four times better than with a 10 -turn pot; the circuit at (B) has somewhat less resolution but is less expensive.
from an automobile battery will be sufficient. If you use an ac-powered dc supply for the varactor, however, be sure it's well regulated and filtered. Any ripple on the supply line will result in hum modulation.

varactor bias control

Since small changes in varactor bias have a large effect on the output frequency, a multi-turn potentiometer should be used for the tuning control (with a conventional 270° pot, the frequency can change 300 kHz or more for each 1 degree rotation of the pot's shaft). Sometimes you can find precision 10 -turn pots on the surplus market, but, if not, there are several alternatives. One is to use a single-turn pot with a reduction unit like the Jackson Brothers $6: 1$ planetary drive. This may not be completely satisfactory, however, because resolution may be limited by man-

fig. 12. Two simple speech amplifiers which are suitable for use with Gunnplexers. The two-transistor circuit at (B) includes limited filtering for shaping audio bandwidth.

Minimal Gunnplexer system used by W1HR includes a $\mathbf{1 0}$-volt IC voltage regulator, simple speech amplifier, and tone oscillator. A phono connector on the bottom of the chassis is provided for the $\mathbf{f m}$ receiver. A $\mathbf{1 0}$-turn precision potentiometer found on the surplus market is used for frequency control.
ufacturing tolerances in the potentiometer's resistance element.

Two other possibilities for varactor control are shown in fig. 11. The system in fig. 11A uses one dual potentiometer for coarse adjustments and a single-turn pot for fine tuning. Resolution of this sys-
tem is about four times better than with a 10 -turn pot and is suitable for the most demanding requirements. The bias control arrangement in fig. 11B does not provide as much resolution but is more economical. A disadvantage is that the resolution of the fine adjustment varies, and depends upon the setting of
the coarse control; when the coarse potentiometer is in the center of its range, resolution approximates that of a 10 -turn pot.

speech amplifiers

Because of the high sensitivity of the varactor, a very small modulation voltage (on the order of 10 mV $\mathrm{p}-\mathrm{p}$) is required to obtain $75-\mathrm{kHz}$ deviation for wideband frequency modulation of the Gunnplexer; this greatly simplifies the design of a suitable speech

fig. 13. Speech amplifier circuit designed by G8AGN for Gunnplexer operation uses a low-cost 741 op amp and offers high input impedance.
amplifier. In its simplest form, the Gunnplexer speech amplifier requires only one transistor, as shown in fig. 12A. In this circuit the MPF102 fet exhibits high input impedance for a crystal, ceramic, or dynamic microphone, and provides more than enough voltage gain for full $75-\mathrm{kHz}$ deviation at 10.25 GHz . Deviation is adjusted with the 10 k potentiometer in the drain circuit.
The two-transistor speech amplifier in fig. 12B has an input impedance of about 20 kilohms and includes filtering to limit the speech bandwidth. For those who prefer to use ICs the circuit in fig. 13 is recom-

fig. 14. Two-transistor speech amplifier for Gunnplexers features high input impedance, good gain, clipping for improved audio punch, and a lowpass filter for limited audio bandwidth.
mended. This 741 speech amplifier was designed by G8AGN/G8CZO for use with a Gunn diode transmitter. ${ }^{3}$

In any frequency-modulation system the speech amplifier should, in addition to providing audio gain, include some form of speech processing to limit dynamic range so the audio signal doesn't exceed the maximum frequency deviation. This can be done with audio compression or by using a simple diode clipper to limit the audio peaks. The two-stage speech amplifier shown in fig. 14 includes a clipper and lowpass RC filter (47 k resistor and $0.02-\mu \mathrm{F}$ capacitor) to reduce the harmonics produced by clipping. I used 2N2022 transistors in this circuit because I had them in my junk box, but most high-gain NPN transistors should work. If you wish, the same diode clipper and RC filter can be added to the circuits of figs. 12 and 13.

For most effective fm communications, the speech system should include a system for limiting bandwidth to $300-3000 \mathrm{~Hz}$, and de-emphasis to correct the speech frequency characteristic. A circuit which

fig. 15. High-performance fm speech amplifier uses heavy feedback for reduced audio distortion. It also includes an audio clipper, $300-3000 \mathrm{~Hz}$ active audio filter, and de-emphasis stage. Both input and output controls are provided. Circuit board for this circuit is shown in fig. 22.
has a complete speech amplifier, clipper, active filter, and de-emphasis stage is shown in fig. 15.4 The first two stages use heavy feedback to reduce distortion and improve frequency response. These stages are followed by a double-diode clipper and a two-stage active filter that has a $500-3000 \mathrm{~Hz}$ passband. The last stage provides de-emphasis. This amplifier gives an output of 100 mV for an input of 2 mV across 300 ohms; both input and output controls are provided. I have used this amplifier with good success at one end of a wideband Gunnplexer link.

tone oscillator

When lining up two Gunnplexer systems, particularly if you're using high-gain parabolic reflectors, it's helpful to continuously tone modulate your transmitter. There are several ways to generate an audio tone, but for minimum parts count I prefer the circuit of fig. 16, which uses a 555 timer IC. Total current drain with a 10 -volt supply is only 10 mA . The $1-\mathrm{kHz}$ squarewave output swings from ground to +10 volts; this is reduced to manageable levels for Gunnplexer use with the series 100 k resistor and 200 -ohm pot. The 10 k resistor and $0.1-\mu \mathrm{F}$ capacitor form a lowpass filter; in some applications the filter may not be required.
If you have a memory keyer, it can be plugged into the key jack and used to send your call sign, a series of vees, or your location. If you wish to send only your call sign, you might consider the automatic CW ID unit manufactured by Autocode.* Although this unit was designed for automatically sending CW identification for RTTY or vhf-fm transmissions, it is ideal for Gunnplexer systems.

i-f receiver

Although a $30-\mathrm{MHz}$ i-f receiver is recommended if you want to work reliably over long distances, to get started with a Gunnplexer system many amateurs

fig. 16. A $1000-\mathrm{Hz}$ tone oscillator is very helpful when setting up a Gunnplexer link. It can also be used for MCW under weak-signal conditions.
have used low-cost fm broadcast receivers tuned around 100 MHz . One popular unit is the Audiovox fm converter; this receiver sells for less than $\$ 20$, can be completely converted to Gunnplexer use in one evening, and is a good compromise unit for getting started on 10 GHz with Gunnplexers. Complete conversion information is available from G. R. Whitehouse \& Company. \dagger The main disadvantage of an fm broadcast receiver is i-f feedthrough. For best results

fig. 17. Method of mounting the DJ700 fm receiver with spacers and a long 6-32 (M3.5) screw. Similar mounting arrangements are used at the four corners of the fm receiver PC board.
you must pick a frequency that is clear of local fm broadcasters. If you take this system mountain-topping, your problems with i-f feedthrough will increase dramatically, but it is still a good way to get started. Also, it's a simple matter to add a better receiver to your system later - no other parts of the set-up will have to be changed.
Another low-cost approach to the i-f receiver can be found in the used two-way equipment market. Many of the fire, police, and public-service fm receivers built 10 or more years ago can now be purchased for a few dollars. The receiver you want for Gunnplexer use was originally designed to tune from 30 to 50 MHz and is built for wideband fm . Many of the newer fm receivers for this band are for narrowband fm , so they are not suitable for Gunnplexer use. A number of companies marketed solid-state receivers of this type in the 1960s, including Lafayette, Radio Shack, and Regency. Some had provisions for crystal control; this, if you can find one, is the type most suited to Gunnplexer communications. Price for a receiver of this type is typically around \$5; most users have switched to more portable narrow-band receivers with scanners, so the older, tunable receivers have practically no commercial value.

[^2]tG. R. Whitehouse stocks 15-, 25-, and $40-\mathrm{mW}$ Gunnplexers; his address is Newbury Drive, Amherst, New Hampshire 03031.

fig. 18. Gunnplexer AFC system designed by DJ700 for use with his $30-\mathrm{MHz} \mathrm{fm}$ receiver. Circuit may be adapted to other $\mathbf{f m}$ receivers by changing the ratio of resistors R1 and R2. It may be desirable in some cases to replace R3 with a trimmer pot. In the center position of switch $S 1$, the AFC is turned off, the two outer positions provide positive- and negative-going AFC voltage with increasing frequency (see text).

The choice of 30 MHz for the i-f receiver means that you can set up your Gunnplexer on 10250 MHz and tune in stations either 30 MHz above or below your center frequency. Many Gunnplexers don't have sufficient electronic tuning range to handle an i-f at 100 MHz with only +10 volts of varactor bias. If you have $a+20$ volt bias supply available, many Gunnplexers will tune the required 100 MHz , but that precludes most portable operation unless you provide additional batteries for the bias supply. For reasons mentioned previously, I don't recommend touching the mechanical tuning screw.

I have used both tunable and crystal-controlled 30MHz i-f receivers in Gunnplexer links, and the difference is like night and day. Tunable receivers are fine if you're interested . iy in working over short distances, but if you 1 dant to communicate farther than you can shout, you have to use a crystal-controlled i-f receiver. Remember that the local oscillator for your receiver is the Gunn oscillator at the other station; for communications, the receivers at both ends of the link must be tuned to exactly the same frequency. Even at 30 MHz , a tunable receiver that is off frequency by only 1 per cent will be completely out of the passband of a wideband fm signal.

Automatic Frequency Control (AFC) is helpful when you first turn on your Gunnplexer, but if both stations are operating in essentially the same environment, I've found that frequency drift during warm-up is slow enough that it's an easy matter to keep the other station tuned in. Once the two Gunnplexers have reached thermal equilibrium, they'll sit on frequency for hours at a time.

The receiver I'm using in my Gunnplexer station was described by DJ700. 5 In addition to being crys-
tal controlled, it has built-in provisions for a tuning meter and signal strength meter; both are extremely useful in setting up Gunnplexer links over marginal paths. Also, the output from the discriminator is available for AFC purposes. If you're interested in serious microwave communications, I highly recommend this receiver.

As supplied, the DJ700 receiver is built into a tinplated enclosure with no mounting tabs. If you wish, small L-shaped brackets could be soldered to the enclosure, or the receiver could be clamped into place. In my Gunnplexer transceiver I mounted the DJ700 receiver with spacers and long screws; this seems to be more rugged than brackets or clamps, and, since the transceiver is designed for portable use, I wanted something that would stand up to unintentional abuse (see fig. 17).

If you purchase a DJ700 i-f receiver, the only problem you may have is obtaining knobs to fit the potentiometer shafts. The diameter of these shafts is 4 mm - too large for $1 / 8$ inch shafts, and too small for $1 / 4$ inch! The best solution is to purchase knobs for $1 / 8$ inch shafts and drill them out with a no. 22 or 4 mm drill. You can also wind tape around the shafts to build them up to $1 / 4$ inch, but the knob will tend to feel sloppy and will probably be eccentric.

automatic frequency control

After a Gunnplexer is initially turned on, its output frequency drifts rapidly as the unit warms up. The typical drift rate is about 300 kHz per degree Celsius, and since the Gunnplexer temperature may go up 10 degrees per minute after it's first turned on, total frequency drift is 3 MHz or more. As the unit reaches thermal equilibrium, however ${ }^{\text {f }}$ frequency drift slows, and, if the unit is shielded from wind currents, the output frequency is quite stable. If the Gunnplexers at opposite ends of a wideband fm communications link ($\Delta f=200 \mathrm{kHz}$) are in similar environments, they can be used for voice communications over long periods of time without any frequency adjustments.

fig. 19. Receiver passband showing upward frequency drift of Gunnplexers operating above (A) and below (B) a Gunnplexer with AFC. To maintain the received signal in the center of the passband requires AFC with positive sense in (A) and negative sense in (B).
fig. 20. Circuit for a Gunnplexer transceiver without a built-in i-f receiver. In the original model, this circuit was built on perf board. Resistor R1 is adjusted for the desired tone level; R2 is set for a 1-volt drop.

(After an initial warmup of 30 minutes, two enclosed Gunnplexers in my shop remained on channel for more than a day.)

For closer frequency control you can either preheat the Gunnplexer (or use a proportional temperature control system as I suggested in an earlier article ${ }^{1}$) or use automatic frequency control (AFC). Gunnplexer temperature control would probably be a good choice for use at a base station, but because of
can be used with other fm receivers by simply changing the values of resistors R1 and R2. In some cases the circuit will work as shown, but others will require more (or less) gain - which is set by the ratio of R1 to R2. The only other adjustment is R3, which should be set for a voltage drop of 1 volt.

In the center position of switch S1 the AFC is turned off; the two outer positions provide positive- and negative-going AFC voltage with increasing frequen-
fig. 21. Complete Gunnplexer transceiver featuring high-performance speech amplifier with clipping and de-emphasis, crystal-controlled $\mathbf{3 0}-\mathrm{MHz}$ receiver, and low-noise preamplifier. A circuit board for the speech amplifier, tone oscillator, AFC system, and regulated power supply is shown in fig. $\mathbf{2 2}$.

the huge current drain of any heating system, AFC is better for portable use. In an AFC system any deviation in the average value of the i-f from the center frequency of the discriminator in the receiver will produce a dc voltage determined by the direction of the frequency deviation. This dc voltage is applied to the varactor in the Gunnplexer to bring it back on frequency. Note that the use of AFC must be limited to one end of a Gunnplexer link; the other end is allowed to run free.

In many cases, the AFC voltages for the Gunnplexer can be obtained from the i-f receiver. The AFC system shown in fig. 18 was designed by DJ700 for use with his $30-\mathrm{MHz}$ receiver. 5 This same basic circuit
cy. Which is chosen depends upon whether the frequency of the Gunnplexer with AFC is above or below the free-running Gunnplexer without AFC. Assume the Gunnplexer with AFC is set to 10250 MHz (see fig. 19). If the free-running Gunnplexer is at 10280 MHz and drifting higher, the incoming signal is moving upward through the receiver passband. Therefore, a positive AFC voltage is required to shift the $10250-\mathrm{MHz}$ LO up to recenter the $10280-\mathrm{MHz}$ signal on the middle of the passband. If the free-running Gunnplexer drifts downward, the opposite occurs. In either case, however, the sense of the AFC voltage is the same (positive) as the necessary frequency shift.

Now consider what happens if the free-running

Wideband $\mathbf{3 0 - M H z ~ f m}$ receiver designed by DJ700 for use with Gunnplexer systems (described in the August, 1978. issue of ham radio). At the left is the mosfet input stage, followed by the SO42P crystal-controlled local oscillator and mixer, TDA1047 i-f strip, and TAA611 audio power amplifier. The two controls are for squelch and audio gain.

Gunnplexer is below the one with AFC at 10220 MHz . If it is drifting higher, the incoming signal is moving down through the receiver passband, and a negative AFC voltage is required to move the $10250-\mathrm{MHz}$ LO down to shift the $10220-\mathrm{MHz}$ signal to the center of the passband. Therefore, if the frequency of the Gunnplexer with AFC is above that of the free-running Gunnplexer, the sense of the AFC voltage is opposite (negative) to the necessary frequency shift.
Obviously, the sense of the AFC voltage is extremely important. If the AFC sense is incorrect, it tends to chase the received signal out of the passband. In fig. 19B, for example, if positive AFC is used, upward drift toward 10221 MHz will reduce the AFC voltage, moving the LO toward 10249 MHz the wrong direction! If the AFC has the wrong sense, you'll find it almost impossible to tune in the signal; in many cases the LO will actually oscillate back and forth across the receiver passband several times per second. If you've built a Gunnplexer system with AFC and have experienced this problem, now you know what caused it.

gunnplexer transceivers

To build a complete Gunnplexer transceiver, all you have to do is combine some of the previous circuits and build them into a single enclosure. Two examples are shown in the accompanying photo-
graphs. The first, which I call the "minimal" Gunnplexer system, is built into a $125 \times 100 \times 75 \mathrm{~mm}$ ($5 \times 4 \times 3$ inch) Minibox and doesn't include the receiver (a phono jack is provided so it can be used with a variety of external receivers). The other transceiver, which is built into a $225 \times 150 \times 125 \mathrm{~mm}$ ($9 \times 6 \times 5$ inch) aluminum utility box, includes a builtin $30-\mathrm{MHz}$ receiver with a low-noise preamp and speaker.
The circuit of the minimal Gunnplexer transceiver is shown in fig. 20. Basically, it consists of the twotransistor speech amplifier (fig. 14), $1000-\mathrm{Hz}$ tone oscillator (fig. 16), and regulated dc power supply. Note that the lowpass filter at the output of the tone oscillator is combined into the speech amplifier. No receiver was included because at the time I built this transceiver I was still undecided about a receiver and wanted to try several options. Since it was built it has been used successfully with a variety of i-f receivers at $30 \mathrm{MHz}, 100 \mathrm{MHz}$, and, more recently, 111 MHz (the New England spot for retuned fm broadcast receivers).
The Gunnplexer transceiver shown in fig. 21 might be called the "deluxe" model. In addition to the builtin $30-\mathrm{MHz}$ receiver and low-noise preamp 6 , it features the high-performance speech amplifier with clipping, audio shaping, and de-emphasis (fig. 15),

$10-\mathrm{GHz}$ Gunnplexer system setup by the W1FC group on Pack Monadnock in New Hampshire during the September vhf/uhf contest. Two-way communications were established with Gunnplexer-equipped stations in Maine. New Hampshire, and Vermont.
fig. 22. Component layout for the printed-circuit board for the Gunnplexer transceiver. At the top of the board is the speech amplifier with clipping and de-emphasis. Below, right to left, are the 555 tone oscillator, 741 AFC amplifier, and 78GU1 voltage regulator. (Note that the 78GU1 is mounted on the foil side of the board.) In the speech amplifier, pot R1 sets the microphone gain; pot R2 is used to set maximum deviation. Pot R3 sets the tone voltage level into the speech amplifier; R4 is the +10 volt adjust, and R5 is set for +1 volt at TP1. The capacitors in the audio amplifier are tantalum types.*

an AFC system, tone oscillator, and regulated power supply. To save space and improve reliability, these circuits are built on a printed-circuit board (fig. 22). For improved heatsinking of the 78GU1 voltage regulator, this IC is mounted on the foil side of the circuit
inch) thick, is mounted in the bottom of the enclosure and tapped for a 1/4-20 screw. This is the standard thread for camera tripods sold in the United States.

When setting up this transceiver, first set the 500-
fig. 23. Full-size printedcircuit layout for the Gunnplexer speech amplifier, tone oscillator, AFC amplifier, and voltage regulator. Component layout is shown in fig. 22.
${ }^{*}$ Complete parts kits, including PC board, are available from G. R. Whitehouse, 10 Newbury Drive, Amherst, New Hampshire 03031.

board. In addition, an aluminum mounting spacer is used to conduct heat to the chassis. The result is a very cool-running voltage regulator, even with 500 mA of output current. In the transceiver this circuit board is mounted on the rear wall of the utility box. A $100 \times 100 \mathrm{~mm}(4 \times 4 \mathrm{inch})$ aluminum plate, $6 \mathrm{~mm}(1 / 4$
ohm voltage adjust potentiometer, R4, for +10.0 volts at the Gunn diode, then adjust R5 for 1.0 volt at test point 1 (TP1). The tone output level adjustment, R3, is set for the same deviation as the microphone; this and the other audio adjustments are discussed later.

Head-on view of the Gunnplexer showing the mixer diode, left, and ferrite circulator (black cylinder to right). The small screw which protrudes through the top of the waveguide is used to adjust mixer injection.

One feature of the transceiver which is not shown on the schematic should be mentioned: a small relay to turn off the speaker during voice transmissions. When communicating with a Gunnplexer system, the receiver detects both the signal from the distant station and the local transmitted signal. In addition to being annoying, this is sometimes the cause of unwanted howls and squeals because of audio feedback. To solve this problem, some builders have installed a spdt switch to transfer the audio output to a 4.7-ohm resistor. In my transceiver I installed a miniature spdt relay which is operated by the PTT switch on the microphone (most 12 -volt relays work quite

Microwave Associates $\mathbf{1 0 - G H z}$ Gunnplexer and $\mathbf{1 7}-\mathrm{dB}$ horn antenna. Receiver section is housed in waveguide section machined from large block of metal. This improves thermal stability of the unit.
well on +10 volts). The speaker circuit isn't affected when the tone oscillator is used for CW, so I have a built-in CW sidetone system.

waveguide flange layout

If you wish to mount your Gunnplexer inside an aluminum Minibox, you must match the waveguide and mounting screws to a cutout in the enclosure. There are feedthrough waveguide flanges on the market, but they're expensive and seldom make their way into the surplus market. The only alternative is to carefully lay out the mounting holes for the UG39/U waveguide flange and then hand file a cutout to match the interior dimensions of the waveguide. This is difficult if you don't have access to a waveguide handbook because the screw holes are not at the corners of a square, as you might suppose, but are slightly offset as shown in fig. 24. This is done intentionally so it is impossible for a technician to cross polarize sections of waveguide.

To locate the mounting holes for the UG-39/U flange, prick punch the center and use a compass to swing an arc with a radius of 15.5 mm (0.61 inch) as shown in fig. 24B. Now use a carpenter's or machinist's square to draw two vertical lines which are tangent to the arc (fig. 24C). Using the same center point, swing another arc with a radius of 16.3 $\mathrm{mm}(0.64 \mathrm{inch})$ and use the square to draw two horizontal lines (fig. 24D). The screw mounting holes are located at the intersections of the straight lines. To check their location, swing an arc with a radius of 22.5 mm (0.884 inch$)$; it should cross the center point of each of the hole locations (fig. 24E). When you are satisfied that the mounting holes are correctly located, drill the holes with a number $18(4.3 \mathrm{~mm})$ drill for the $8-32$ mounting screws. Temporarily mount the Gunnplexer to make sure the holes mate with the tapped holes in the Gunnplexer flange.

After the screw holes have been located you can make the rectangular cutout for the waveguide. This cutout measures exactly 0.4 to 0.9 inch and is centered on the same point as the mounting holes. After scribing the outline with a square, I found the best approach was to drill out the center point with an 8 $\mathrm{mm}(5 / 16 \mathrm{inch})$ drill. This provides clearance for an Adel nibbling tool.

A word of warning: don't try to make the finished cutout with the nibbler; you're sure to botch the job. Use the nibbler only to make the rough cutout within about $1 \mathrm{~mm}(1 / 32 \mathrm{inch})$ of the finished edge. Then carefully hand file the edges of the opening so they match the waveguide.

Temporarily install the Gunnplexer to check progress, but carefully wipe off the metal filings first so
they don't get into the Gunnplexer. And don't leave the Gunnplexer in place while you're filing the opening - that's an open invitation to disaster!

setup and test

The easiest way to set up a Gunnplexer system is to get together with a friend and set up your $10-\mathrm{GHz}$ stations at the same time. With two Gunnplexers
pine lumber in front of the Gunnplexer reduces signal strength by 10 or 12 dB . Once you have reduced signal strength to manageable levels, you can make the necessary adjustments. First set one Gunnplexer up with +10 volts on the Gunn diode and +4 volts on the varactor; unless tuned specially by the manufacturer, the operating frequency will be close to 10250 MHz . Now tune the other Gunnplexer to a frequency

fig. 24. How to lay out the chassis to match a UG-39/U waveguide flange (used on all Microwave Associates Gunnplexers). Note that the flange holes are not symmetrical. Step-by-step instructions are given in the text.
running on the bench, it takes only a few minutes to adjust the speech amplifier and tone oscillator for best performance. Tests and adjustment of an AFC system take longer, but most work can be done in one evening.

The only problem you're apt to encounter with two Gunnplexers in the same workshop is high signal strength - if you have an S-meter, you can be sure it will be against the pin, regardless of the direction you point your Gunnplexers. However, wood makes an excellent microwave absorber, as does the conductive black plastic foam which is often used to protect CMOS integrated circuits. A small section of black foam placed across the waveguide will reduce the radiated signal by 30 dB or more; a section of 2×4
below the first where you hear the carrier, and carefully adjust the varactor bias for a zero reading on the carrier meter (if your receiver doesn't have a zeroing meter, adjust for maximum signal strength). Make a note of the varactor voltage; this Gunnplexer will now be tuned to 10220 MHz if a $30-\mathrm{MHz}$ i-f is being used.

Now tune the second Gunnplexer above the first until you hear the carrier and carefully center the carrier in the passband of the receiver. Make a note of the varactor voltage (Gunnplexer tuned to 10280 MHz with a $30-\mathrm{MHz} \mathrm{i}-\mathrm{f}$). If you wish, you can now set the varactor voltage on this; Gunnplexer to +4 volts and make similar measurements on the other unit. If you use a turns-counting dial on the varactor bias
potentiometer, it's helpful when mountain-topping to know which dial settings correspond to the operating frequencies of 10220,10250 , and 10280 MHz .

Now tune the Gunnplexers to one another and carefully center the carriers. Plug in your microphone and increase the speech gain control. You will note that the received audio signal will have excellent fidelity at a certain setting of the gain control, but, as gain is increased beyond that point, the signal becomes distorted. Back down the gain control to a setting slightly below that which causes audible distortion.
If you wish to measure the actual deviation of your signal, you can use the Bessel function relationship to determine the audio input frequencies at which the fm carrier will completely disappear; this technique is discussed in most of the popular vhf-fm books. Table 1 lists the audio frequencies for carrier nulls at several popular deviations (use $75-\mathrm{kHz}$ deviation for wideband fm receivers); it is not practical to use carrier nulls beyond the third.
In most cases it's not necessary to make an actual deviation measurement; reliable fm microwave communications can be obtained by a simple adjustment of the speech gain control for no audible distortion. Once the speech gain had been adjusted, turn on the tone oscillator and adjust the tone signal level for a signal strength approximately the same as for voice. If you have both input and output controls in your speech amplifier, set the output control for full deviation or minimum audio distortion with the microphone gain control set at about one-half full gain this will leave plenty of leeway for microphones with higher or lower output. Set the tone oscillator level as before.

If you don't have a friend with a Gunnplexer, you can use the Boor .ng system shown in fig. 25, which was origine ed by the San Bernadino Microwave Society. All you need is an X-band crystal mixer and a 1 to 2 mW local-oscillator source at 30 MHz (if you're using a $30-\mathrm{MHz}$ i-f receiver). When setting up the mixer, be sure to provide a dc return (rf choke) for the mixer diode. Place the mixer 100 meters (300 feet) or so from the Gunnplexer. The transmitted signal from the Gunnplexer will mix with the $30-\mathrm{MHz}$
table 1. Audio frequencies which will produce a carrier null for various amounts of frequency deviation (use $75 \mathbf{k H z}$ deviation for wideband $f \mathrm{~m}$ receivers).

| $\begin{array}{c}\text { modulation } \\ \text { frequency }\end{array}$ | 1st null | | |
| :---: | :---: | :---: | :---: | \(\left.\begin{array}{ccc}deviation produced

2nd null\end{array}\right]\) 3rd null

fig. 25. Boomerang system devised by the San Bernadino Microwave Society for testing microwave systems. It requires only an X-band diode mixer and 1 to 2 mW at 30 MHz . The mixer should be placed 100 meters or so from the Gunnplexer to eliminate i - f feedthrough; if the X-band mixer is too close to the Gunnplexer, radiation from the $30-\mathrm{MHz}$ signal source will completely block the i-f receiver.

LO, be re-radiated, and picked up by the Gunnplexer receiver. With this system you can make all the adjustments discussed previously.

When using the Boomerang system don't place the X-band mixer too close to the Gunnplexer. If it is too close, primary $30-\mathrm{MHz}$ radiation from the LO will feed directly through to the i-i receiver. You can tell very quickly if this is happening because the receiver will be completely blocked.

radiation hazard

Although 20 mW isn't usually considered to be very much if power, in the Gunnplexer it's concentrated at the small, open end of the waveguide, so power density is about 6.2 mW per square cm (up to $19 \mathrm{~mW} / \mathrm{cm}^{2}$ for higher-powered Gunnplexers). This is considerably above OSHA's $10 \mathrm{~mW} / \mathrm{cm}^{2}$ safety limit. Fortunately, of power density falls off to safe levels with a few feet (2 meters), but remember that your eyes are especially susceptible to damage from if radiation - never look into the open end of a Gunnplexer while it's operating.

references

[^3]ham radio

ACOMPLEIGHOMEBREW CUNNPIEXERSTAIION FOR LESS THAN S210

CUNNPLEXER ${ }^{\text {m }}$ TRANSCEIVER "FRONT END"

Amateur microwave communications is fascinating and challenging . . . and now available to virtually anyone at a remarkably low cost! Applications include full duplex talking across town, controlling repeaters, sending and receiving television and data. They also include contesting, DXing and just plain talking. WHITEHOUSE offers the entire GUNNPLEXER line and all necessary support systems. Here are a few features of the Gunnplexer:

- low cost
- electronically tunable
- high sensitivity
- integrated assembly

Single
Unit

s11995

MA 87140 - 1
(includes one 10 GHz . 10 mW Transceiver and Antenna)

- high reliability
- low operating voltage

${ }_{\text {PAIR }} \mathbf{\$ 1 9 9 9 5}$
 MA 87141-1

(includes two 10 GHz , 10 mW Transceivers and Antennas)

FREE INTRODUCTORY GUNNPLEXER BOOKLET AVAILABLE UPON REQUEST

GUNNPLEXER ${ }^{\text {TM }}$ RECEIVER BOARD KIT

- just what you need to get your Gunnplexer on the air
- easy assembly with state-of the-art ICs
- features American
components
- ports for "S" and zero meters
- AFC output for support board at right
- prompt delivery

One of the Gunnplexer essentials - Order yours today!

Introductory Price
Regularly \$8995
$\$ 79.95$ Model GR-1
RUSH ORDER? CALL (603) 673-7724

VISA/MASTER CHARGE ORDERS WELCOMED
Prices subject to change without notice. Please add $\$ 2.00$ per order for shipping and handling.

GUNNPLEXER ${ }^{\text {TM }}$
AFC/POWER SUPPLY/ MODULATOR KIT

- as leatured in JANUARY 1979 HAM RADIO
- AFC tor full track receiving
- Gunnplexer power regulator circuits
- tone oscillator tor easy tuning
- modulator featuring full clipping
- all on a small PC board

Complete Kit
\$5495
Model GS-1

COMPLETE GUNNPLEXER ${ }^{\text {TM }}$ TRANSCEIVER PACKAGE
1 Gunnplexer
MA 87140-1
$\$ 119.95$
1 Receiver Board Kit
GR-1
$\$ 69.95$
1 AFC/Power
Supply/Modulator Kit
GS-1
$\$ 54.95$
SAVE 15\%

Regular Price	Packaged Priced
$\$ 24485$	$\$ 20995$

(Offer valid through April 30, 1979)

YOUR EXCLUSIVE DEALER FOR MICROWAVE ASSOCIATES PRODUCTS

Our Name Says Everything

285

- 6dB Gain
- 5/8 Wave Colinear Array
- Ground Independent
- Low Angle Radiation
- Power Rated to 150 watts
- DC Grounded -96" overall

39.95

Amateur Net.

290

- 5 dB Gain
- $1 / 2$ Wave Colinear Array
- Low Angle Radiation
- Power rated to 250 watts
- 72" overall

24.95
 Amateur Net.

VSWR

Dept. HR 2-1
8601 Northeast Highway 6 • Lincoln. Nebraska 68505 U.S.A. Telephone: (402) 467-5321 telex: Hygain Lcn a 48-4324
EUROPE: 22, rue de la Légion-d'Honneur
93200 Saint-Denis - France
Téléphone: 820.98 .46 telex: Telcodi 630013

Our Name Says Everything

Hy-Bander VHF Mobile

 Antennas combine broad bandwidth with high efficiency. $5 / 8$ wave design provides low angle radiation for maximum gain. The exclusive Hy-Gain ratchet foldover will adjust through a $180{ }^{\circ}$ arc. The ratchet will hold its whip position even at 150 mph . Hy-Gain's highpowered ceramic magnet grips the vehicle's surface at speeds up to 120 mph . Hy-Gain's use of a fiberglass printed circuit loading coil insures incredible tuning accuracy for low VSWR. PC board technology provides up to 50\% more surface area for improved conductivity.
19.95 Magnetic 15. 5.95 Trunk Lip
 Model 286

for fast CW break-in

quieting amplifiers

Eliminate the clank and clatter of antenna transfer relays by using this fast and quiet T/R relay

Observations made over a period of years indicate the majority of amateurs still cling to the push-to-talk method of operating their linear amplifiers during CW and voice operation. Continued use (or abuse) of push-to-talk operation can be blamed, in a large part, for the loud clacking noise generated by transfer (exciter/final) relays installed in most linear amplifiers. In an otherwise quiet ham shack, this loud and rapid clacking can become very annoying during both CW and phone operation.

The T/R relay unit described in this article, and linear amplifier modification, will go a long way in

fig. 1. Full-scale drawing of the interconnections between the T/R relay unit, amplifier, and antennas. The four phono connectors, mounted on the small Minibox, are used for the connections to the receiver and control circuits.

By Nick Lefor, W1DB, 2A Knollwood Acres, Storrs, Connecticut 06268
reducing the noise generated by the linear amplifier transfer relay; it will also provide fast CW breakin and vox operation.
Basically, the T / R relay unit and system is a free adaptation of the ideas suggested by Dick Frey, K4XU. 1 The T/R relay unit consists of permanently connecting the operating antenna to the linear amplifier if output connector through a UHF T connector. As seen in fig. 1, the T/R relay unit acts as the interconnection between the exciter/amplifier, receiver, and antenna. When the amplifier is being used, the STANDBY/OPERATE switch, having been rewired, holds in the amplifier's internal transfer relay, with the T / R unit controlling the operating bias. During exciter-only operation, placing the switch in STANDBY will bypass the of around the amplifier.

construction

The T/R relay unit consists of a small, aluminum utility box, approximately $7.6 \times 7.6 \times 5.1 \mathrm{~cm}(3 \times$ 3×2 inches [Radio Shack 270-235]), UHF and phono connectors, and a miniature dpdt 12 Vdc relay [Radio Shack 275-206]. The miniature relay is wired between the connectors using no. $22(0.6 \mathrm{~mm})$ AWG wire. In addition, it's supported by small urethane pads which also serve as sound absorbers.

operation

When K2 (see fig. 2A) is operated by the exciter/ transceiver auxiliary T/R contacts, K2A transfers the receiver's antenna input from the antenna to ground. K2B shorts the amplifier cutoff bias resistor (R2, fig. 2B) to ground, thereby placing the proper operating bias on the amplifier tube. The 1 N914 diodes are installed for receiver input protection. The 1N4006 diode, installed across relay coil K2, is used for transient switching protection. This diode has a tendency to delay the release time of K2, however this delay is not noticeable, even at high keying speeds. The modifications, as outlined, are for a TENTEC "Triton IV" transceiver and a DenTron "MLA-1200" linear amplifier. However the principles can be applied to other linear amplifier-receiver/ transceiver combinations.

results

Although the response time (T / R switching) and quieting does not approach that outlined by Dick Frey's article, the results have been quite satisfactory - and less expensive. Fast CW break-in at the $1-\mathrm{kW}$ input level has been retained, with no transients present on either transmitting or receiving. A gratifying improvement is the absence of the noise gen-

fig. 2. Schematic diagram of the T / R relay and modifications to the DenTron MLA-1200 amplifier. The wiring within the Minibox containing the double-pole, double-throw is at (A). In (B), the MLA- 1200 has been modified to provide remote switching of the amplifier's bias. Additional components have been installed to prevent rf from getting into the bias line.
erated by the amplifier transfer relay. Note that this system of break-in can be applied only to receiver/ exciter combinations and transceivers having a separate receiver antenna input.

I wish to acknowledge the helpful suggestions of Milt Hirsch, W1AUB.

references

[^4]

A small signal amplifier to drive the MXX-1 Mixer. Single tuned input and link output. 3 to 20 MHz , Lo Kit, Cat. No. 03512. 20
to $170 \mathrm{MHz}, \mathrm{Hi}$ Kit,
Cat. No. 035103.
Specify when ordering.
$\$ 5.50$ ea.
\qquad which may be used as a tuned or untuned unit in RF and audio applications. 20 Hz to 150 MHz with 6 to 30 db gain. Cat. No. 035107.

Specity when ordering.
BAX-1
BROADBAND AMP

OVER 50 BRANDS IN STOCK

- KENWOOD • SWAN • KDK • DENTRON •
- MOSLEY • WILSON • YAESU • DRAKE •
- LARSEN • BENCHER • KLM • BEARCAT • \& SAME DAY UPS SHIPPING
- B \& W • DATONG • ICOM • PANASONIC •
- ARRL PUBLICATIONS • ALLIANCE • BIRD • \quad COMPLETE RADIO SERVICE SHOP
- CUSHCRAFT • TRAC • MICROLOG • CDE •
- HAM KEY•MFJ•DAYBURN INSULATORS •
- DSI • SAXTON • TENTEC • REGENCY •
- HUSTLER • ASTATIC • PIPO • AMCOMM •
- AMECO • CALL BOOK • FINCO • TEMPO •
^ NEW AND USED EQUIPMENT
"Get on our used equipment mailing list"
^ TRADES WELCOME
"The best allowances anywhere"
"We buy good used SSB gear"
\star FREE CATALOG
"Prices of all major manufacturers"
* SAME DAY U.P.S. SHIPPING
"Just a phone call away"
- Fast Efficient Service - We Repair All Brands • All Work Guaranteed • Amateur Extra/First Class Licenses - Send Us Your Defective Equipment U.P.S. Collect - Free Shipping Both Ways If Work Is Done - Most Repairs Done \& Shipped Within 7 Days
\star OUR FINE REPUTATION SPEAKS FOR ITSELF * "YOU SHIP IT - WE FIX IT"

Call or write for your super quote today!

OPEN MON.-FRI. 10-6 • THURS. 10-8 P.M. • SAT. 10-4

[^5]Connecticut Residents Call: 203-667-0811

95 Kitts Lane
Newington, Conn. 06111
"Near ARRL Headquarters"

adjustable-voltage 5-ampere power supply

High output current, adjustable voltage, and a low parts count highlight the benefits possible with the Fairchild $\mu \mathrm{A} 78 / 79$ hybrid voltage regulators

Fairchild has recently introduced its $\mu \mathrm{A} 78 \mathrm{HGC}$ (positive) and $\mu \mathrm{A} 79 \mathrm{HGC}$ (negative) "hybrid" voltage regulators, which should find wide application among amateurs. These regulators are capable of supplying current in excess of 5 amperes over a 5 to 24 volt output range (-24 to -2.2 volts for the negative regulator). Load and line regulation is better than 1 per cent. The hybrid nature of these regulators is the result of mating a low-current voltage regulator IC, a Darlington series pass transistor, and two shortcircuit detection transistors in one 4 -pin TO-3 package. A block diagram of the device is shown in fig. 1. The output voltage is set by two external resistors. This design greatly simplifies the construction of relatively high-current power supplies.

The cost of the device is competitive with that of the discrete components. The parts count is a mere eight, including power transformer, rectifier, and filter capacitor, and the numerous possible applications include solid-state power amplifiers, vhf rigs, large digital projects, repeater supplies, audio equipment, and variable bench supplies.
table 1. Characteristics of the Fairchild hybrid.

voltage regulators	
Input Voltage Maximum	40 volts
Output Current	5 amps
Minimum Input-Output Differential	3 volts
Maximum Input-Output Differential	25 volts
Line Regulation	1 per cent $V_{\text {out }}$
Load Regulation	1 per cent $V_{\text {out }}$
Control Pin Voltage	$4.8-5.2$ volts
Short Circuit Current Limit	7 amps

Table 1 summarizes the electrical characteristics of this device family, which also includes three fixedoutput devices with otherwise identical specifications: $\mu \mathrm{A} 78 \mathrm{H} 05 \mathrm{C}$ (5 volts), $\mu \mathrm{A} 78 \mathrm{H} 12 \mathrm{C}$ (12 volts), and $\mu \mathrm{A} 78 \mathrm{H} 15 \mathrm{C}$ (15 volts). The fixed-output regulators come in a standard 2-pin TO-3 case and include internal voltage-set resistors.
All of these regulators have thermal overload protection against excessive dissipation or current drain, along with internal short-circuit protection to limit current output. Safe area protection is provided for

By James S. Robbins, Esq., N1JR, c/o Horovitz, Gordon, and Robbins, 6 Beacon Street, Boston, Massachusetts 02108
the output transistors. When a short circuit is seen by the regulator, the rise in internal temperature puts it into thermal overload, shutting down the device for as long as the current demand generates excessive heat. The short circuit current limit is 7 amperes.
The basic positive regulator circuit (78 HGC) is shown in fig. 2. R1 and R2 may be determined by the simple equations shown with the circuit. The nominal reference voltage on the control terminal is 5.0 volts (4.8 to 5.2 volts). To produce the recommended 1.0 mA current flow in the control string would require making $R 2=5 k$ ohms. With $R 2=5 k$ ohms, the output voltage becomes $V_{\text {out }}=[(R 1+$ $R 2$)/R2] \cdot control voltage (where R1 and R2 are in k ohms). For example, if the supply is to provide 13.8
fig. 1. Block diagram of the $\mu \mathrm{A} 78 \mathrm{HG}$ adjustable output voltage regulator manufactured by Fairchild.

volts and $\mathrm{R} 2=5 \mathrm{k}$ ohms, then R 1 must equal 8.8 k ohms. Precise setting would require trim pots.
As with virtually all such regulators, input and output capacitors should be used to improve transient response and to prevent oscillation of the regulator under certain feedback conditions. These capacitors also provide rf-field protection. Tantalum capacitors are preferred, but good quality ceramic discs may be used. Mounting should be as close to the device as possible.
The four-pin base diagrams (top view) for the regulators are shown in fig. 3. Note that the pin-outs for the two devices are different. The case is electrically isolated from the internal circuitry in the four-pin adjustable devices, but is the common in the fixedoutput regulators.
Mounting may be accomplished with or without a socket. I have used a modified TO-3 socket by

fig. 2. Typical circuit configuration to provide an adjustable output voltage. As discussed in the text, the resistor values are selected for approximately 1 mA of current flow in the divider and also to provide a control voltage input of 5 volts.
removing the center (collector) pin and drilling two additional holes for pins 2 and 3 . Mounting R1 and R2 directly at the regulator will significantly improve the load regulation of the device.
This series of regulators is rated for 50 watts of internal power dissipation at a case temperature of $25^{\circ} \mathrm{C}$. Increased case temperature, of course, reduces this rating. A graph of maximum power dissipation versus case temperature is shown in fig. 4.
To achieve rated performance, attention must be paid to both heatsinking and input voltage, which are interrelated. Under normal operation the regulator will see some input voltages greater than that demanded as its output. The minimum input-output differential should be approximately 3 volts for proper regulation. The greater the difference between the input to the regulator and its output, the greater the dissipation required by the device (actually, by its internal pass transistors). By tailoring the input voltage to the output voltage, heatsinking requirements are reduced, i.e., less heat must be dissipated in normal operation. To draw 5 amps from the regulator would set a maximum limit on the input-output differential of 10 volts. A lower differential reduces the heat to

fig. 3. Pinout diagrams for the positive and negative voltage regulators (78 HGC and 79 HGC , respectively).

FREQUENCY COUNTERS

6 GOOD REASONS FOR BUYING A HAL-TRONIX FREQUENCY COUNTER
(1) 100% COMPLETE KIT, (2) EASY ASSEMBLY, (3) COM. PLETELY ENCLOSED IN METAL CABINET, (4) IC SOCKETS USED THROUGHOUT FOR EASY TTL REPLACEMENT (5) EASY ON YOUR POCKET BOOK. AND (6) NO EXPENSIVE CHIPS TO REPLACE (EXAMPLE - IF YOU LOSE A DECODER. LATCH OR DRIVER IN A HAL-TRONIX COUNTER. THE AVERAGE COST OF REPLACEMENT OF THE LOW-COST TTLS IS LESS THAN \$1.00 EXCLUDING THE PRE-SCALE CHIP. IN SOME OF THE NEWER COUNTERS NOW BEING MARKETED BY MY COMPETITION, THEY ARE USING THE EXOTIC SINGLE CHIP AND
WOULD COST YOU CLOSE TO $\$ 30.00$ TO REPLACE). THIS IS SOMETHING YOU SHOULD CONSIDER.

COMPLETE KITS: CONSISTING OF EVERY ESSENTIAL PART NEEDED TO MAKE YOUR COUNTER COM. PLETE, HAL-600A 7-DIGIT COUNTER WITH FREQUENCY RANGE OF ZERO TO 600 MHz . FEATURES TWO INPUTS: ONE FOR LOW FREQUENCY AND ONE FOR HIGH FREQUENCY: AUTOMATIC ZERO SUPPRESSION. TIME BASE IS 1 O SEC OR . 1 SEC GATE WITH OPTIONAL 10 SEC GATE AVAILABLE ACCURACY \pm 001%, UTILIZES $10 \cdot \mathrm{MHz}$ CRYS TAL 5 PPM

COMPLETE KIT $\$ 129$

HAL-300A 7-DIGIT COUNTER WITH FREQUENCY RANGE OF ZERO TO 300 MHz . FEATURES TWO INPUTS: ONE FOR LOW FREQUENCY AND ONE FOR HIGH FREQUENCY: AUTOMATIC ZERO SUP. PRESSION. TIME BASE IS 1.0 SEC OR I SEC GATE WITH OPTIONAL 10 SEC GATE AVAILABLE ACCURACY $\pm 001 \%$. UTILIZES 10 . MHz CRYSTAL 5 PPM
COMPLETE KIT
\$109

HAL-50A 8-DIGIT COUNTER WITH FREOUENCY RANGE OF ZERO TO 50 MHz OR BETTER AUTOMATIC DECIMAL POINT, ZERO SUPPRESSION UPON DEMAND. FEATURES TWO INPUTS: ONE FOR LOW FRE. QUENCY INPUT. AND ONE ON PANEL FOR USE WITH ANY INTERNALLY MOUNTED HALTRONIX PRE-SCALER FOR WHICH PROVISIONS HAVE ALREADY BEEN MADE 1.0 SEC AND 1 SEC TIME GATES. ACCURACY $\pm .001 \%$. UTILIZES $10-\mathrm{MHz}$ CRYSTAL 5 PPM
COMPLETE KIT $\$ 109$

ATTENTION RADIO CLUBS
For club or group projects. request FREE information about out DISCOUNTS on any of the HAL-TRONIX kits Discounts range from $10-25 \%$, depending upon the quantity needed
We are experienced in supplying kits in volume quantities to schools, laboratories. clubs. and common-interest groups Nobody beats HAL- TRONIX quality and price Just try us and see tor yourselt

NEWW

FROM

HAL.TRONIX

dELUXE 12-BUTTON TCUCHTONE ENCODER KIT utilizing the new ICM 7206 chip Provides both VISUAL AND AUDIO indications' Comes with its own two-tone anodized aluminum cabi own Measures only $21 / 4 \times 31 / \mathrm{m}^{\prime \prime}$ Com net Measures only 21 e x xele with Touch Tone pad board preve will chip and all necessary compo nents to tinish the kit $\$ 29.95$
PRICED AT PRICED AT
$\$ 29.95$ For those who wish to mount the encoder in a hand held unit, the PC board meas ures ony $9 / 16^{-1} \times 11 / 4^{-}$This partial k with PC Doard, crystal, chip and com PRICED AT

PRE-SCALER KITS

 HAL 300 PRE $\$ 19.95$ (Pre-drilled G10 board and all components)HAL 300 A/PRE $\$ \mathbf{\$ 2 4 . 9 5}$ (Same as above but with preamp) HAL 600 PRE $\$ 34.95$ (Pre-drilled 610 board and all components)
HAL 600 A/PRE $\$ 39.95$ (Same as above but with preamp)

SPECIAL - due to OVERSTOCK (while they last!)

 FAIRCHILD FND. 70common cathode readouts (can replace FND-359 . . same pin-out)

Oty.	Price each	Amount
10	40 c	$\$ 4.00$
100	35 c	35.00
500	30 c	150.00
1000	25 c	250.00

"HAL
HAROID C NOWIAND W8ZXH

HAL-TRONIX
 PO BOX 1101, SOUTHGATE, MI 48195 PHONE (313) 285-1782

SHIPPING INFORMATION

ORDERS OVER $\$ 1500$ WILL BE SHIPPED POSTPAID EXCEPT ON ITEMS WHEAE ADDITIONAL CHARGES ARE REDUESTED ON ORDEAS LESS THAN $\$ 15.00$ PLEASE INCLUDE ADDITIONAL S1.00 FOR ANA VISA AND MASIER CHAREACCEPEND SAS FOR FREE FLYER VISA AND MASTER CHARGE ACCEPIED

fig. 4. Graph of the maximum power dissipation for different case temperatures.
be dissipated. For example, a 13.8 -volt supply drawing 5 amps and fed by a 24 -volt input would require heatsinking sufficient to dissipate approximately 50 watts in normal use. This same supply fed by an 18volt input must accommodate only slightly over 20 watts.
Many transformers may be easily modified to adjust their output voltage. Generally, the secondaries of these low-voltage transformers are on the outside and are readily reached after the laminations are removed. A count of the secondary turns will yield the voltage-turn ratio, making it a simple matter to remove (or, for that matter, add) the necessary turns. What you are looking for finally is an output voltage (after rectification and filtering) that, with full load, is only slightly above the 3 -volt minimum inputoutput differential.
Heatsinking must keep the junction temperature below $125^{\circ} \mathrm{C}$ to meet specifications. Typically, a sink with a thermal resistance of approximately $1.5^{\circ} \mathrm{C} /$ watt would be adequate. Proper mounting, along with the use of a good thermal compound, is required.
This series of hybrid regulators from Fairchild offers a significant reduction in the parts count and complexity of power supplies. Its substantial curent capacity, along with regulation quality and device protection, make it an economical solution to a wide variety of amateur power-supply applications. The zener diode is increasingly being moved out of the power supply business as integrated regulators become more diverse. These Fairchild regulators are one more step in that evolution.
ham radio

THIE DAWN NIM

The age of tone control has come to Amateur Radio. What better way to utilize our ever diminishing resource of frequency spectrum? Sub-audible tone control allows several repeaters to share the same channel with minimal geographic separation. It allows protection from intermod and interference for repeaters, remote base stations, and autopatches. It even allows silent monitoring of our crowded simplex channels.

We make the most reliable and complete line of tone products available. All are totally immune to RF, use plug-in, field replaceable, frequency determining elements for low cost and the most accurate and stable frequency control possible. Our impeccable 1 day delivery is unmatched in the industry and you are protected by a full 1 year warranty when our products are returned to the factory for repair. Isn't it time for you to get into the New Age of tone control?

TS-1 Sub-Audible Encoder-Decoder - Microminiature in size, $1.25^{\prime \prime} \times 2.0^{\circ} \times .65^{\prime \prime}$ • Encodes and decodes simultaneously • $\$ 59.95$ complete with K-1 element.
TS-1JR Sub-Audible Encoder-Decoder - Microminiature version of the TS-1 measuring just $1.0^{*} \times 1.25^{\prime \prime} \times .65^{\prime \prime}$, for handheld units - $\$ 79.95$ complete with K-1 element.
ME-3 Sub-Audible Encoder • Microminiature in size, measures $.45^{\circ} \times 1.1^{\prime} \times .6^{\prime \prime}$ • Instant start-up • \$29.95 complete with K - 1 element.
TE-8 Eight-Tone Sub-Audible Encoder - Measures $2.6^{*} \mathrm{x}$ $2.0^{\circ} \times .7^{-} \cdot$ Frequency selection made by either a pull to ground or to supply - $\$ 69.95$ with 8 K-1 elements.
PE-2 Two-Tone Sequential Encoder for paging - Two call unit - Measures $1.25^{\prime \prime} \times 2.0^{\circ} \times .65^{\prime \prime}$ - $\$ 49.95$ with 2 K -2 elements.

SD-1 Two-Tone Sequential Decoder - Frequency range is $268.5-2109.4 \mathrm{~Hz}$ • Measures $1.2^{\prime \prime} \times 1.67^{\prime \prime} \times .65^{\prime \prime}$ • Momentary output for horn relay, latched output for call light and receiver muting built-in - $\$ 59.95$ with 2 K -2 elements.
TE-12 Twelve-Tone Sub-Audible or Burst-Tone Encoder Frequency range is $67.0-263.0 \mathrm{~Hz}$ sub-audible or $1650-4200 \mathrm{~Hz}$ burst-tone • Measures $4.25^{\prime \prime} \times 2.5^{\prime \prime} \times 1.5^{\prime \prime}$ • $\$ 79.95$ with $12 \mathrm{~K}-1$ elements.
ST-1 Burst-Tone Encoder - Measures $.95^{\prime \prime} \times .5^{\prime \prime} \times .5^{\circ}$ plus K-1 measurements • Frequency range is $1650-4200 \mathrm{~Hz}$ \$29.95 with K-1 element.

VISA
426 West Taft Avenue, Orange, CA 92667
(800) 854-0547, California residents use: (714) 998-3021

digital readout

Add a digital readout to the Ham-M rotator series by incorporating this simple but accurate analog-to-digital converter

It appears that Amateur Radio has gone digital. The signs of change are all around the shack. First came the digital IC keyer, which later had a digital memory added. Digital frequency readout was once a luxury; now, it's a standard feature of most new transceivers. Every shack, of course, now sports a digital clock built from a $\$ 3$ clock IC. With the exception of the keyer, all the "digital" applications are merely conversions of analog data to digital readout. Since this trend is likely to continue, it's worth looking into.

Electronic analog-to-digital conversion can be accomplished using several different techniques.* These include parallel (or "flash") tracking, successive approximation, or single- and dual-ramp conver-

[^6]ters. The flash converter is often used in extremely high-speed applications. Successive approximation is a general-purpose, medium-speed approach, while the dual-ramp or dual-slope is suited to low-speed applications. Integrated circuits are now available at reasonable cost to perform each of these conversions. In choosing a converter, you must consider several aspects: speed, accuracy, resolution, and output format. The actual analog signal being converted must also be considered. Is it a voltage or a current? Perhaps the best way to illustrate the reasoning behind a data-conversion project is by example.

The largest analog indicator in my shack is the meter on my HAM-3 control box, an obvious choice for digital readout. First, consider the A-D converter. Speed is not essential. Conversion times of a few hundred milliseconds are acceptable, so a dual-slope converter is adequate. The accuracy of this system is likely to be limited by the linearity of the Ham-3 indicator system, since most converter products are within 0.1 per cent accuracy. The Ham- 3 indicator has an accuracy of about 5 degrees. ${ }^{1}$ Resolution is a term describing the number of discrete values that can be recognized, in the same way that digital frequency readouts have resolution limitations. It seems foolish to have rotator readouts to tenths of a degree. A resolution of 1 part in 360 is adequate.

Since converter manufacturers produce both binary- and BCD-output devices, output format must be chosen. In this application, since the readout is a seven-segment visual display, the BCD output is the

By Doug Grant, K1DG, 20 Oak Street, Winchester, Massachusetts 01890
best choice. If you wanted to control the station from the shack computer (no doubt many hams are already considering this), a binary output would be better since computers tend to think in straight binary.

The Analog Devices AD2020, a 3-digit BCD output A-D converter, fits the requirements. It is a low-cost, low-speed, 3 -digit BCD output converter widely used
usable 0-360 millivolt range. In addition, this divider must have a high enough input impedance that it doesn't load down the pot. At mid scale, the pot represents a source impedance of 250 ohms, decreasing to zero at either extreme of its travel. The resistive divider shown in fig. 2, 100 k -ohms and 2.49 k -ohms, will not cause loading problems. In addition, the 100 meg-ohm input impedance of the AD2020 will not cause errors due to loading effects

fig. 1. Schematic diagram of the original Ham-3 control circuit. The metering circuit has been redrawn for clarity. Note that the zener reference is floating; the bottom end is not grounded.
in digital panel-meter applications. It is an excellent choice for the HAM-3 digital display because it requires a minimum of external components; the readout is in millivolts. If a $0-359$ millivolt signal representing the antenna heading is generated, the IC receives a convenient scale requiring no special conditioning.

signal conditioning

First, consider the original indicator circuit. Referring to fig. 1, the 13 -volt zener reference is applied directly across the 500 -ohm slide wire potentiometer inside the rotator. The wiper of the pot is connected through a 10 k -ohm fixed resistor, the 5 k -ohm calibration pot, and the meter to the plus side of the 13 volts. The current flowing through the meter is 1 mA at full scale, representing full clockwise rotation. When the rotator is moved to the full counterclockwise position, no current flows. Unfortunately, CDE chose to return the wiper of the indicator pot through the "ground" line, which also carries the ac for the brake and motor circuits. This causes problems with the digital display that aren't apparent when only the original analog meter is used. More on this later.
If you consider the voltage at the wiper of the pot with respect to the minus side of the regulated 13 volt supply, it varies linearly from 0 volts at full clockwise to 13 volts at full counterclockwise. A resistive voltage divider must be used to reduce this to a
on the equivalent source impedance of the voltage divider.

circuit description

Now that the required signal conditioning has been accomplished, support for the AD2020 chip must be examined. Very little additional circuitry is required. The displays can be any common-anode LEDs. Liquid crystals can be used, at the added expense of some additional circuitry. Personally, I like the LEDs, since they are more visible under the cowl of the control-box cover. Driver transistors for the LEDs can be any pnp transistor capable of delivering about 100 mA . The AD2020 is designed to mate with the Fairchild 9374 decoder/driver chip. This chip differs from the commonly used 7447 in that it has on-board current limiting and requires no resistors. Also, the displays for numbers greater than BCD 9 are different. When used as a pair, the decoding provides EEE for positive overload and --- for negative overload. If a 7447 is used, the - sign decodes as a C. The blanking inputs use different logic on each of these chips, so use caution is you substitute. Cur-rent-limiting resistors of 330 ohms should also be used with the 7447. The integrating capacitor is shown on the AD2020 data sheet at $0.27 \mu \mathrm{~F}$. I used $0.1 \mu \mathrm{~F}$ with good success, so this value doesn't appear too critical.

Power for the readout circuit is derived from avail-
able voltages in the control box (see fig. 3). Since the services of the indicator lamp are no longer required, it can be removed. Once the lamp is removed, the instrument transformer in the control box is capable of furnishing the approximately 150 mA required by the digital readout circuit. A separate regulator, such as the LM309 or a 7805-type, is used.

calibration and antenna positions

In order to keep the circuit simple, the readout is based on a south-centered scale. This way, one rotation extreme represents 0 degrees and the other represents 360 degrees. In a north-centered system, full clockwide represents 180 degrees, midscale is

fig. 2. Diagram of the digital readout system. The 5 -volt common line is not chassis grounded; it is tied to the bottom of the zener reference. C2, across the input of the A-D converter, is used to prevent the ac voltage developed across the cable resistance from producing an erroneous readout.

This regulator is supplied from the half-wave rectified and filtered dc from the transformer, tapped off points 11 and 13 on the power supply board of the Ham-3. Point 13 is treated as the "ground" for this supply. A heat sink must be used on the regulator, or separate regulators should be used for display power and for power to the AD2020 chip.

Consturction of the circuit is not terribly critical. I built the prototype on perforated board cut to fit behind the original meter bezel. A scrap of rubylith was used as a red filter to conceal the other components on the board and to yield a nice-looking front panel.

360 degrees or 0 degrees, and full counterclockwise represents 180 degrees again. This presents a more complex problem. A 180 -millivolt offset must now be switched in and out, requiring a comparator, relay, and reference supply. In my opinion, the headaches of trimming such a circuit outweigh the hassle of climbing the tower to turn the beam 180 degrees inside the rotator. In addition, changing the stop to north from south has another hidden advantage. In general, propagation follows a clockwise route. This means that conditions tend to favor Europe, then Africa, swinging south through the Americas, on into the Pacific, and finally to Japan. In the original
configuration, having the stop at south made you swing your beam almost a complete revolution in order to follow the propagation as the peak passes due south.

When you change antenna position, first turn the rotator full counterclockwise. Then turn the antenna north with enough feedline slack to allow a full clockwide rotation. Finally, reverse the connections to terminals 3 and 7 on the back of the control box. This is done to provide a full-scale voltage at full clockwise rotation. As originally configured by CDE, full clockwise provides full-scale current and zero voltage at the wiper of the pot relative to pin 7.

Calibration of the circuit is fairly simple. The original CALIBRATE button on the control box now serves no function. First apply power to the unit with the rotor in the full counterclockwise position. After a few minutes' warmup, adjust the zero pot, R5, for a reading of 000 . Now rotate the antenna full clockwise. Then adjust the voltage divider trimpot, R2, for a reading of 360 . The readout is now fully calibrated.

When I first installed the readout in my Ham-3, the display was rock stable until the brake release switch was pressed. As fig. 4 shows, a large amount of brake and motor ac current flows through the common ground connection, causing the display to jump wildly. The problem was solved by placing C2, a $100-\mu \mathrm{F}$ electrolytic capacitor, across the inputs to the AD2020. This capacitance represents a low impedance to 60 Hz ac and reduces the effects of the ground currents to less than 1 count. In some cases, rf bypassing might also be required. A .001$\mu \mathrm{F}$ ceramic capacitor should provide adequate rf filtering.

summary

Before long, dozens of other analog functions around the ham shack will be converted to digital, either for readout or for computer control. The same considerations discussed in this article will arise in

fig. 3. Wiring diagram of the modified indicator circuit. Wires on pins 3 and 7 of the terminal strip have been reversed, causing the readout to increase as the antenna is turned in a clockwise direction.
any situation requiring analog-to-digital conversion. As converter ICs become increasingly available to the amateur, an understanding of the underlying principles will become important.

Consider the following scenario. The station digital clock indicates 0000 UTC, signaling the station computer that the contest has begun. The receiver

fig. 4. Equivalent circuit diagram of the control box used to illustrate the ac ground loop problem. The ac current flowing through the cable resistance causes a large ac voltage to be added to the direction indicating voltage at pin 1. Filtering across the 2.49 k resistor is more effective, since a capacitor across terminals 1 and 7 is effectively shorted out when the pot reaches either extreme of its travel.
tuning algorithm is initiated, applying voltage through a digital-to-analog converter to a varactor in the receiver vfo. A signal is found, and the program jumps to the identification routine, including the Morse code translator. The station is identified and found to be calling CO TEST. A quick check through memory shows that the station is not a duplicate. Elsewhere in memory, the correct beam heading is found. The rotator position is read in from its analog-to-digital converter, and the computer determines in which direction to begin turning the antenna. At the correct heading, signal strength is read from another A-to-D, and the RST for the exahonge is computed. The keyer speed is adjusted and the computer now calls the other station. When the OSO is completed, the computer logs the contact and the sequence repeats. With an advanced system like this, a contest operator can relax and watch the football game on TV while his station operates itself and prepares a printed, duplicated \log within minutes of the end of the contest.

references

[^7]ham radio

By popular demand.

TS-520S and DG-5 DIGITAL FREQUENCY DISPLAY

It's an ideal choice for anyone looking towards owning a highly reliable, highly efficient amateur radio transceiver. Full coverage, 160 through 10 meters...digital readout with optional DG-5...effective noise blanker and audio processor...RF input power: 200 watts PEP on SSB, 160 watts DC on CW. The TS-520S transceiver provides full transmit and receive coverage of all Amateur bands from 160 through 10 meters. It also receives 15.0 (WWV) to 15.5 MHz and another $500-\mathrm{kHz}$ range of your choice in the
auxiliary band position. With the optional DG-5, you have a large digital frequency readout when transmitting and receiving, and the DG-5 also doubles as a $40-\mathrm{MHz}$ frequency counter. The TS-520S includes a built-in AC power supply, and, with the addition of the optional DS-1A DC-DC converter, it can function as a mobile rig. It features a very effective noise blanker, RIT, eight-pole crystal filter, $25-\mathrm{kHz}$ calibrator, front-panel carrier level control, semi-break-in CW with side-tone, built-in speaker, heater
switch, $20-\mathrm{dB}$ RF attenuator and easy phone-patch connection. RF input power is 200 W PEP on SSB and 160 W DC on CW. Carrier suppression is better than -40 dB and sideband suppression is better than -50 dB . Spurious radiation is less than -40 dB . Receiver sensitivity is $0.25 \mu \mathrm{~V}$ for 10 dB $(\mathrm{S}+\mathrm{N}) / \mathrm{N}$. Selectivity is 2.4 kHz at $-6 \mathrm{~dB} / 4.4 \mathrm{kHz}$ at -60 dB and, with the optional CW-520 CW filter, is 0.5 kHz at $-6 \mathrm{~dB} / 1.5 \mathrm{kHz}$ at -60 dB . See your Authorized Kenwood Dealer now for complete information!

Covers the range.

Kenwood's TS-700SP...
 a time proven rig that now covers the new repeater subband (144.5 to 145.5 MHz).

TS-700SP features all of the fine attributes of the TS-700S: A digital frequency display, receiver preamp, VOX, semi-break-in, and CW sidetone. Of course, it's all mode, $144-148 \mathrm{MHz}$, VFO controlled... and Kenwood quality throughout.

FEATURES:

- 4 MHz band coverage (144 to 148 MHz).
- Automatic repeater offset capability on all FCC authorized repeater subbands, including $144.5-145.5 \mathrm{MHz}$.
- Simply dial receive frequency and radio does the rest ...simplex.
repeater, or reverse. Same features on any of 11 crystal positions.
- Transmit/receive capability on 44 channels with 11 crystals.
- Operates all modes: SSB (upper and lower), FM, AM and CW.
- 3 watts on AM
- Digital readout with "Kenwood Blue" digits.
- Receiver preamp.
- Built-in VOX
- Semi-break-in on CW.
- CW sidetone.
- All solid-state.
- AC and DC capability.
- 10 watts RF output on SSB, FM, CW
- 1 watt FM low-power switch.
- $0.25 \mu \mathrm{~V}$ for $10 \mathrm{~dB}(\mathrm{~S}+\mathrm{N}) \mathrm{N}$ SSB/CW sensitivity.
- $0.4 \mu \mathrm{~V}$ for 20 dB quieting FM sensitivity.

Get all the details and see the TS-700SP now at your nearest Authorized Kenwood Dealer!

anodizing aluminum

amateur workshop

Complex chemical processes for treating aluminum are translated into simple procedures for your home lab

Aluminum is used in many construction projects. But how do you decide on which type of aluminum to use? If you're interested in making panels, chassis, or boxes to house equipment, there's a right way to process the metal for durability and appearance. This article gives some pointers on how to process aluminum by anodizing, a chemical process that can be used in your workshop. Also included is information on how to apply colored dye to aluminum parts using simple procedures.

Aluminum is one of the most abundant elements on earth, forming about 8 per cent of the earth's crust. It's relatively inexpensive, easily machined and worked, lightweight yet strong, and an excellent electrical conductor. Its disadvantage, when uncontrolled, is its pronounced affinity for oxygen: a process called corrosion.

Aluminum oxidizes rapidly. Its natural surface breaks down, causing it to be unsuitable for applications where a long-term stable surface is needed. In ordinary atmospheric environments, even when few pollutants are present, alloyed aluminum surfaces oxidize within moments. The oxide is invisible to the naked eye; even the apparently bare surface of a recently machined aluminum part is immediately coated upon contact with atmospheric oxygen.

controlling oxidation

The formation of surface aluminum oxide can be controlled by anodizing. An electrochemical process is used to form the crystalline structure known as gamma aluminum oxide $\left(\gamma \cdot \mathrm{Al}_{2} \mathrm{O}_{3}\right)$ in an electrolytic cell, with the item to be anodized becoming the anode in the cell. The nature of the anodized metal has particularly significant physical characteristics:

1. Extreme hardness, approaching that of diamond
2. Electrical nonconductivity
3. Extreme porosity on a molecular scale

The gamma aluminum oxide film is closely related structurally to other oxides of aluminum, such as those used in manufacturing synthetic grinding wheels, and commonly substituted for natural corundum. Synthetic sapphires and rubies are, in fact, oxides of aluminum. Even though several different compounds are designated aluminum oxide $\left(\mathrm{A1}_{2} \mathrm{O}_{3}\right)$, the crystal lattice structure takes on many quite

By David W. Hembling, VE7DKR, 3476 Overlander Drive, Kamloops, B.C., Canada, V2B 6X5
peculiar variations, hence the designation of the anodic film as the gamma aluminum oxide.

Aluminum oxide coatings, or films, vary greatly from transparent to opaque, depending on film thickness and also on the alloying elements present in the aluminum alloy used. The film thickness is controllable, and can be from one to twenty microns.* The fact that the film thus generated is molecularly bonded to the aluminum and has a porosity that can be dyed makes an anodized film the most durable and useful of all possible finishes for this metal.

The porous surface of the gamma oxide film, whether dyed or left clear, is easily converted by immersion in boiling water to the closed, or sealed, crystalline state of the monohydrate of aluminum oxide, known as boehmite, designated $\mathrm{A1}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ (or more correctly A 100 H). Boehmite has a large volume/area ratio of aluminum; therefore, the volume of anodized film is increased to close the pores, or seal the film. The conversion of the simpler gamma aluminum oxide to the boehmite structure makes the anodized surface unstainable, the dye unleachable, and the item so treated remains permanently dyed in the chosen color.

the anodizing process

Aluminum is anodized by immersing it in an aqueous electrolytic solution in which the aluminum item to be anodized becomes the anode (positive pole). A direct current is passed to it from the cathode (negative pole). Oxygen released from the water combines with surface aluminum molecules to form aluminum oxide; the crystalline lattice is of the gamma form. Although the acid electrolyte is not used in the oxide-forming reaction, it influences the characteristics of the formed film.

Two common methods of electrolytically producing an anodic film on aluminum offer different properties in the formed anodic film. The two methods use different acids in the electrolyte, chromic or sulphuric. These methods are discussed at length below.

alodizing

An alternative method of protecting aluminum is called alodizing. This method provides no color

[^8]choice and results in only about a 3-micron (3×10^{-3} mm or 1.2×10^{-4} inch) film thickness. This process is a chemical-dip treatment, which produces an electrically conductive coating, usually of a smutty, mus-tard-like color. After buffing, alodizing does offer a degree of protection to the otherwise easily corrodible metal. An unbuffed alodized finish accepts primer and finish painting.

anodizing by the chromic-acid process

The chromic-acid process is not suitable for aluminum alloys that contain more than 5 per cent copper, but it is fine for all other aluminum alloys. The chromic-acid process is especially recommended for anodizing assembly parts, particularly where inadequate flushing and rinsing of trapped sulphuric acid could lead to later problems. The films generated by the chromic-acid process are thinner than those obtained with the sulphuric-acid process, but despite their relative thinness, they are durable and offer a highly stable protective coating - from a corrosion standpoint especially.
The thinness of chromic-acid coatings is sometimes of value in manufacturing procedures, especially where ultra-close fits are involved and where matching is to be within sub-mill tolerances. The U.S. government specification MIL-A-8625A (December 14, 1954), which calls for 250 -hour saltspray resistance, authorizes the chromic-acid process for all aluminum alloys except those bearing more than 5 per cent copper. Although the chromic-acidgenerated anodized finish is much harder than the untreated metal itself, only limited abrasion resistance is afforded by this process because of the extreme thinness of the film. Also, with the sul-phuric-acid anodizing process, a greater porosity occurs, with increased dye take-up in the thicker coating.

For the purposes of the average amateur requiring the anodized film characteristics of hardness, durability, and acceptance of dyes, the sulphuric-acid process is preferable.
Three practical references, ${ }^{1-3}$ supply details on the chromic-acid process for those rare applications where an amateur may need it.

aluminum alloys for effective anodizing

As mentioned, the qualities of the anodic film produced are affected significantly by the presence of other metals alloyed with the aluminum. Depending on the intended use of the aluminum, cost and availability may dictate which aluminum alloy is used, rather than the precise and sometimes subtle differences between the various alloys. The chemical differences between the various aluminum alloys can

Scanning electron micrograph ($\times 12,000$), showing anomaly in anodic film probably caused by a carbon speck or other alloying constituent. Surface appears extremely smooth and lustrous, even under optical microscope inspection. Note that, even at $12,000 \times$ magnification, molecular scale porosity can't be seen. Porosity is important in dye takeup of anodized parts. (Photo courtesy Dept. of Metallurgical Engineering, University of British Columbia, Vancouver, B.C.)
usually be found in the handbooks of large industrial suppliers of nonferrous metals.

In its purest form, aluminum is very soft and quite ductile. For most purposes, however, greater strength and hardness are required; thus high-purity aluminum is seldom used. Greater strength is achieved in two ways. Usually, the pure metal is alloyed with other metal elements, such as manganese, copper, silicon, iron, and magnesium. In addition, the alloy may be heat treated to give it even greater strength. The designation \mathbf{T} plus a number after the 4-digit alloy number indicates a heat-treated alloy.

Aluminum of high purity, when anodized by the sulphuric-acid process, yields a completely colorless anodic film. This film can be left clear and sealed off, or dyed and then sealed off. The paler colors are more readily dyed into the anodic films generated on the surface of pure, nonalloyed aluminum. The more alloying impurities present, the greater the tendency toward a pale-green or pale-brown cast to the un-
dyed anodic film. This is seldom a problem, unless matching of the various parts of a structure made from different alloys is desired.

When pale dyes are to be used, the original alloy must be considered, and the acid concentration as well as current density should be controlled for a thick film formation; e.g., 15-20 microns or about 1.5 $\times 10^{-2} \mathrm{~mm}\left(6 \times 10^{-4}\right.$ inch), thus permitting greater dye take-up. The more concentrated the acid electrolyte solution, the softer and more porous the anodic film.

Experimentation is often required to achieve the required anodic film properties of a particular dye. A sample scrap piece of the alloy to be used can be processed in a trial run, thereby assuring more predictable results.

Of course, more predictable results can be obtained when alloys of known composition are used. Some alloys are better candidates for taking an anodic finish than others. For example, the wellknown Alcan 6061 T4 and 6061 T6 take an excellent anodic finish. The finish will reflect absolutely and exactly the smoothness or roughness of the final machining operation.

Anodizing makes no noticeable difference to the texture of the aluminum. To see the finish (except for the color), even the strongest optical microscopes are useless. As discussed earlier, the scale being dealt with here is molecular; the transmission electron microscope is required to reveal the anodic film texture. Even with a scanning electron microscope (SEM) the porosity is invisible.

the sulphuric-acid process

First of all, aluminum anodizing should not be done indoors unless special ventilating equipment can be installed. Ideally, the anodizing workshop should be outdoors with plenty of air circulation; the ideal outdoor workshop is a home carport or garage with all doors open. If something approaching a chemistry laboratory fume hood with a spark-free extractor fan can be placed over the anodizing tank to exhaust the gaseous hydrogen emitted at the cathode, indoor anodizing may be possible. Remember that electrolytic dissociation breaks water down into two atoms of hydrogen for each atom of oxygen. Oxygen reacting at the aluminum-anode surface - allowing aluminum-oxide formation - causes the liberation of hydrogen gas at the cathode. This gas is emitted with a small amount of acid vapor from the electrolyte and is best vented outdoors, where it will be rendered harmless by mixing with air.

safety precautions

Small anodizing jobs in the home workshop can be

Some people have called the Atlas RX-110 a stroke of genius. But it didn't take much genius to design it. just a lot of common sense. Newcomers to amateur radio like to begin by monitoring amateur activity so they want an inexpensive receiver Many old-timers like to have an extra receiver for their living room or bedroom so they don't have to stay in the shack or car waiting for band openings.
But with the recent popularity of the transceiver concept. the economical receiver simply disappeared. Now Atlas reintroduces a low price receiver: The RX-110 tor \$229

DON 'T LET THAT LOW PRICE DECEIVE YOU! It's really a high performance amateur band receiver.
It's all solid-state and provides coverage of 80 . 40.20 , and 15 meters, and 28 to 29 MHz of the 10 meter band. It's fully self-contained with its own AC supply and built-in speaker, and can operate on 12 to 14 VDC . The RX- 110 is really a hot performer, with exceptionally high sensitivity, selectivity, and dynamic range.

But the RX- 110 story doesn't end here. There's more!

Transmit module $\$ 159$.

This is where our new concept makes even more sense (and saves you thousands of "cents"). Since many stages in a receiver are also required in a transmitter (VFO, IF Systems, Crystal Filter, Carrier Oscillator, BandPass Filters, and Diode Ring Mixer), we provided a connection on the back of the RX-110 so the TX-110 Transmitter Module can utilize
these common stages, eliminating the cost and labor of duplicating these steps. But there is absolutely no compromise on performance with this new concept

Simply connect the TX-110 Transmit Module to the RX-110 Receiver and you have a complete 5 band CW-SSB transceiver!

- Provides CW and SSB communications on 10, 15, 20, 40, and 80 meters with a choice of two power levels.
- The TX-110-L runs 15 watts input on 20, 40, and 80 meters, 10 watts input on 10 and 15 meters
- The TX-110-H runs 200 watts input on 20, 40, and 80 meters: 150 watts on 15 and 100 watts on 10 meters.
- Semi-break-in CW with sidetone monitoring is a standard feature.
- PTT (Press-to-Talk) operation on SSB. Lower sideband on 40 and 80 meters. Upper sideband on 10, 15. and 20 meters.
- TX-110-L 15 watt module runs on AC supply in RX-110. so it is completely self-contained, including speaker. Simply connect antenna, and key or mike.
- TX-110-H requires additional AC supply to supply high current for 200 watt amplifier (Model PS-110)
- 200 watt amplifier may be added to TX-110-L at a later date, thus converting it to a TX-110-H.
- The RX-110, TX-110-L, and TX-110-H will all run directly from a 12 to 14 volt DC battery supply for mobile or portable operation. When the two units are mechanically joined (brackets supplied with TX-110), the transceiver slides into a plug-in mobile mount. Model MM-110

SUGGESTED RESALE PRICES:	
RX-110	$\$ 229$.
TX-110-L	$\$ 159$
TX-110-H	$\$ 249$
PS-110	$\$ 89$.

MADE IN U.S.A.
done safely. The degree of hazard is similar to that of quick-charging an automobile lead-acid storage battery. The acid concentrations are roughly the same and the amount of discharged gaseous hydrogen is similar,

The major hazards are the effects of acid on skin or eye tissue and the risk of a spark's igniting hydrogen gas. Both hazards are avoidable. The golden rule of mixing acid is always pour concentrated acid into the water - and slowly! This allows the heat of the chemical reaction between the water and acid to be absorbed by the larger volume of water. If a sudden expansion of the smaller amount of acid should occur due to the rapid temperature increase that occurs on contact, it is water that is present in quantity, rather than the more dangerous acid. Once the $15-25$ per cent solution of sulphuric acid is mixed, it then becomes the working electrolyte, in which the anodizing process takes place. After evaporation has occurred the tank can be topped-up safely by carefully pouring more water into the dilute solution.
When mixing acid, immersing an item to be anodized, or removing it, wear protective clothing such as an apron made from a heavy fabric (canvas or rubber).

Use large rubber gloves to protect the hands and wrists, and acid-proof safety goggles over the eyes. Even a tiny splash of only a few milliliters of acid can cause serious damage to the eyes. If appropriate precautions are taken and the working area is clear and safe, the degree of risk is minimized. As with other procedures, human error, misjudgement, and carelessness (including too much speed) are most dangerous. Keep a pail of water handy!

the anodizing tank

The anodizing tank must be large enough to accommodate the lead cathode (which takes up very little space) and the largest article to be anodized. (If nothing larger than a thimble is to be anodized, the tank could be a plastic coffee cup, and the process could be done indoors with minimal ventilation.) Most of the items anodized in my setup were small seldom larger than a dinner plate. The tank can be any container that's nonconducting and impervious to dilute sulphuric acid. A plastic pail, a hard rubber vessel, a glass tank (such as may be salvaged from a large lead-acid storage cell) or even a heavy plastic kitchen dish pan can be used.
The cathode must be constructed of lead. If the tank is a polyethylene or hard-rubber pail, round or square, the cathode can be easily fitted from a sheet of plumber's lead. Cut a $1-3 \mathrm{~mm}(0.04-0.1 \mathrm{in}$.) sheet of lead so it can be rolled into a liner in the shape of an open-ended cylinder that can be placed inside the

Scanning electron micrograph photo $(\times 16,000)$. Although porosity isn't visible, the crystalline texture of the gamma aluminum oxide can be seen. The surface appears lustrous and smooth and is highly reflective. (Photo courtesy Dept. of Metallurgical Engineering. University of British Columbia, Vancouver, B.C.)
walls of the pail. A cathode termination can be made from a $20-30 \mathrm{~mm}$ ($0.8-1 \mathrm{in}$.) wide strip of the same lead sheet, soldered to the upper edge of the cylindrical cathode, and extended up to the top of the tank. At that point, clear of acid contact, the lead can be soldered to a flexible length of 3.3 or 2.6 mm (no. 8 or 10) copper wire for connection to the negative terminal of the anodizing power supply. The size of the cathode, in surface area, must be at least equal to the area of the surface being anodized. The cathode in my tank covers the interior walls of the pail (20 liters, or 5-1/2 gallons) and extends the full depth of the acid contained in it when about two-thirds full. The bottom of the pail remains uncovered by the cathode so that some items being anodized may be set on the nonconducting tank bottom. The tank bottom could also be covered with lead, offering a larger surface-area cathode, but it would then be difficult to avoid contact with the bottom.

The electrolytic-tank anode pole is formed by using only aluminum, including aluminum screws, bolts, or other connectors, except for parts which no acid will contact. The item to be anodized can be fastened either by friction fit or by aluminum

How does the cost of the Drake system really compare to
alternative methods of getting on $144-220-440 \mathrm{MHz}$ fm?
A First of all, there is no direct comparison possible, because the Model 1346 Drake UV-3 is the only rig in the world offering $144-220-440 \mathrm{MHz} \mathrm{fm}$ in a single box -and it is fully synthesized on each band.

[^9]But wait-even at those higher competitive prices you'd still be missing these features included in the UV-3:

1. Full synthesis on all three bands
2. Extra diode-programmable fixed channels on each band
3. Priority scan feature on each band
4. Everything in a single box!

For your homework, then, ponder the following-at a suggested amateur net of $\$ 795.00$, the Model 1346 Drake UV-3 (144-220-440) is, to say the least, an incredible value. It gives you a real reason to trade UP!

540 Richard St., Miamisburg, Ohio 45342
Phone: (513) 866-2421 - Telex: 288-017
Prices and specifications subject to change without notice or obligation.
fasteners to an aluminum rod or strip and hung into the central area of the tank. A wooden slat or two across the tank top serves as a stabilizer for the central anode fixtures. Connection by aluminum fasteners to the item to be anodized should be made on some part of the item where it won't matter. The point of contact - where the anode connection is made - obscures a small area that remains unanodized.

acid concentration

The sulphuric-acid electrolyte used for anodizing should be between 15 and 25 per cent concentration by weight. The table below shows appropriate quantities of concentrated sulphuric acid for dilutions between 15 and 25 per cent by weight.

acid dilution (per cent)	concentration per liter (quart) of water
15	$173 \mathrm{ml}(5.9 \mathrm{oz})$
18	$212 \mathrm{ml}(7.2 \mathrm{oz})$
20	$240 \mathrm{ml}(8.2 \mathrm{oz})$
25	$310 \mathrm{ml}(10.5 \mathrm{oz})$

The plastic containers of sulphuric acid sold by automotive parts stores for filling new automobile storage batteries make an excellent source of acid for anodizing. Simply mixing the acid with water in a $1: 1$ ratio makes a good dilution for a working anodizing solution.

Minor impurities that occur in drinking water, mainly small concentrations of minerals and alkali, will have little effect on the anodizing results. The other metals in the aluminum alloy appear to play a more important role in determining the undyed color of the anodic film. If the water is especially alkaline, the resultant acid concentration obtained by the table may give lower actual concentrations due to neutralization.

power supply

The power-supply capacity that will be needed is determined by the size of the aluminum items to be anodized. The current density required in the sulphu-ric-acid process averages 1.5 amperes per decimeter ${ }^{2}$ (3.4 inch 2) of surface area of the item to be anodized. However, the current density will vary in relation to several factors:

1. Acid concentration
2. Voltage potential between anode and cathode
3. Electrolyte temperature

The voltage potential is not critical, although the softer and more porous films are generated at the higher voltages and current densities. Any voltage between 6 and 20 volts will generate an anodic film, but 16-18 volts appears to be optimum when working
with electrolyte temperatures between 18 and 22 C (66-72 F). The power supply must be able to produce full-wave direct current, not necessarily filtered, of 18 volts and 30-50 amperes for periods of about an hour without overheating.

Ordinarily the voltage is preset. Current flow will then be determined by acid concentration, temperature, and the surface area of the item to be anodized. A voltmeter and ammeter are helpful. Current flow does not decrease with anodic film buildup as in the chromic acid process.

operating conditions

Anodizing can be done with the electrolyte at a number of different temperatures.
When the electrolyte is started at room temperature ($\approx 20 \mathrm{C}$, or 68 F), after several hours of anodizing a rise in electrolyte temperature can occur. This increase varies with the size of the items being anodized and the current flow through the electrolyte. As the temperature rises, the anodic film will be softer and more porous - which makes for better dye takeup - but the film will have a reduced hardness. The tank can be left to cool at this point. Sometimes the rise in electrolyte temperature is acceptable, especially when extreme hardness is not necessary and when the dark-colored dyes, such as black or deep blue, are being used.

If accelerated electrolyte cooling is required (seldom necessary in most amateur setups), the cathode could be constructed of lead tubing, with a suitable coolant pumped through it, thus permitting the electrolyte temperature to be thermostatically controlled.

Anodic-film porosity is controlled by acid concentration, current flow, and voltage, all of which are interrelated. Film thickness, however, is controlled by the length of time of film generation. Some experimentation will demonstrate more exact times and there is some latitude in this variable; but generally two categories of time length apply: if the anodic film is not to be dyed, about $15-25$ minutes is usually ample. If the film is to be dyed, however, and especially with the dyes requiring a high degree of film takeup, periods in the range of 45-60 minutes should be used. Different alloys will require different times, even when all other variables are held constant, including voltage, current density, electrolyte temperature, and electrolyte concentration.

sealing

The anodic film generated in the electrolyte is gamma aluminum oxide. The molecular porosity of this oxide and its extreme hardness are desired characteristics. If the surface is not to be dyed, however, it will offer greater permanence to its uniform colora-
tion if it is converted to the nonporous boehmite. This conversion is easily made by immersing the rinsed and clean anodized item in boiling water for about 20 minutes.
If the anodic film has been dyed, the sealing process of simple immersion in boiling water can cause dye leaching. To avoid this, chemicals are added to the sealing solution, usually a low concentration of nickel acetate in water held at $95-98 \mathrm{C}(203-208 \mathrm{~F})$. The sealant chemical may vary depending on the dye. I've never required an antileaching agent, since a small amount of leaching has been tolerable.

dyeing

Commercial procedures for the uniform dyeing of anodized aluminum can be complex and expensive. One of the most critical factors is the pH of the dye solutions and sealant solutions.

The purpose of anodizing an aluminum surface, aside from increased durability and hardness, is to produce a porosity that will allow dye to penetrate. As mentioned, however, the porosity formed from the anodizing process is on a molecular scale. Unlike dyes used for cloth, where absorption of dye is an easy matter because of the large pores in the fabric, dyes capable of takeup by an anodized surface must have molecular constituents small enough to fit into the pores in the film surface. Many ordinary dyes that permanently stain ordinary fabrics have no effect whatsoever on the more subtle porosity of anodic films. For this reason, special dyes have been developed.
In North America, two large suppliers of commercial dyes and supplies for the anodizing industry are Sandoz* and the Allied Chemical and Dye Corporation. t Chemical dyes available from them come in about 50 different colors. If a more limited selection of dyes can be accepted, some ordinary, inexpensive fabric dyes sold in drugstores will prove satisfactory for anodic film takeup if a few special measures are taken. Wool dyes must be selected, rather than those only for cotton or other fibers. The pH must be controlled and the concentration must be higher. Usually about 25 grams/liter ($0.9 \mathrm{oz} . / \mathrm{qt}$.) of the solute, with the addition of about $1 \mathrm{ml} /$ liter $(0.03$ oz./qt.) of acetic acid (vinegar), will yield reasonable coloring results. Certain dyes, because of their large molecular size, will be unusable. However, after experimentation, you may find that many different

[^10]dye colors can be used at a fraction of the price of commercial anodizing dyes. The golds and blues tend to be most effective, some without the addition of acetic acid.

For the most effective dye takeup by a well-generated anodic film, heating the dye solution to $55-75 \mathrm{C}$ (131-167 F) is required. The dye takeup won't increase after about 10-15 minutes immersion in the heated dye. Different dyes take up at different temperatures; experiment to find the optimum values.

Very dark black anodic dye will probably have to be purchased from one of the commercial dye sources or from an anodizing shop. Commercial anodizing dyes are extremely powerful, so only a small amount will be required.

After repeated use the dye will become gradually acidic from acid leaching out of the anodized surfaces, even though these surfaces have been carefully rinsed. At this stage the pH of the dye solution must be restored by adding small amounts of alkali, usually lye solution. If the inexpensive drugstore fabric dyes are used, an alternative to fussy pH control is to replace the acidic dye with a fresh mix of new dye, a practice that has been acceptable in my experience.

summary

Anodizing aluminum is an exact science. For the amateur in the home workshop it may be an art that requires much experimentation before you develop consistent results. But anodizing offers many advantages over other protective coatings and yields a permanent and stable finish for aluminum.

references

1. George E. Best, "Chromic Acid Anodizing of Aluminum," Mutual Chemical Division, Allied Chemical and Dye Corporation, Baltimore, Maryland.
2. M. A. Heine and M. J. Pryor, "Passivation of Aluminum by Chromate Solutions," Journal of the Electrochemical Society, 1967, volume 114, pages 1001-1006.
3. G. B. Hogaboom and N. Hall, "Anodizing Aluminum," Metal Finishing: 22nd Annual Guidebook Directory, Finishing Publications, Inc., Westwood, New Jersey, 1954, pages 415-420.

bibliography

Evans, Ulick R., "Anodic Protection," The Corrosion and Oxidation of Metals: First Supplementary Volume, St. Martin's Press, New York, N.Y., 1968, pages 104-116.

Hoar, T. P. and Yahalom, J., "The Initiation of Pores in Anodic Oxide Films Formed on Aluminum in Acid Solutions," Journal of the Electrochemical Society, 1963, volume 110, pages 614-621.

Kidder, Robert A., "Passivating Aluminum Alloys," 73, September, 1965, pages 74-80.
"The Coloring of Anodized Aluminum," Pamphlet 4-245/73, Sandoz Colors and Chemicals Company.
ham radio

simple CMOS keyer

Build this
 simple, low-cost CMOS keyer for inclusion in any

 battery-powered equipmentThe construction of this keyer is a result of an effort to reduce the overall weight of my "Mountain Day" contest transceiver. The circuit was developed from a proven RTL design. Although it does not offer "squeeze keying" or dot/dash storage, it fits the needs of the beginner as well as of the high-speed brass pounder.

The dash/dot ratio remains exactly $3: 1$ over the whole speed range. After each dot or dash, a pause of exactly one dot length is inserted. When both dot and dash contacts are closed, dashes are sent. With a 9 -volt power supply, keying current is about 2 mA . When the keyer is not being operated, only about 10 nA is drawn from the supply; you may therefore connect the battery at all times and forget about the ON/OFF switch. The keying transistor switches positive voltages to ground. Changes in supply voltage have no appreciable effect on the speed. When the circuit is mounted and adequately shielded, it is not susceptible to rf pickup - even without rf chokes and bypass capacitors.

circuit description

The schematic diagram shown in fig. 1 is divided into two main parts, the time base and dot/dash generator. The time base, a stable RC oscillator is com-
posed of gates U1A, U2A, and U1B, plus the associated components. Dot flip-flop U3A, dash flipflop U3B, and the summing gate U2C form the dot/ dash generator. In the quiescent state, these are the logic levels: logic 1 on pin 9 of U2D (due to the AND gate formed by R5, R6, CR1, and CR2) and both flipflops reset, providing a 1 on pin 10 of U2D. U2A and U2B form the control flip-flop for the oscillator, which is blocked by the zero from pin 3 of U2B. After a short closure of either the dot or dash contact, U2B

Complete keyer including battery, paddle, and speed control.
enables the RC oscillator. (Time t_{0} on the timing diagram, fig. 2).

The first half cycle of the oscillator places a 0 on pin 2 of U2B, thus keeping the oscillation even when the keyer lever is released. The rising edge of the first clock pulse clocks U3A to the SET state. If it was the dash contact that caused the start of the time base, a 1 from U1C would release the J input of U3B, allowing this flip-flop to be triggered by the rising edge of

By Urs Hadorn, HB9ABO, Im Riedtli 1, CH8154, Oberglatt, Switzerland

fig. 1. Schematic diagram of the simple CMOS keyer. The speed control, R2, should have a reverse, log taper. The keyer will work with any battery supply between 3 and 15 volts. External connections are denoted by the circled terminals.

U3A's output. In case of a dot contact closure, U3B remains reset because the zero on its J input prevents it from toggling.

The outputs of the flip-flops are summed by U2C,
state. When U3A toggles back to the RESET state, the dot or dash is terminated. At this time (for dots t_{1}; for dashes, t_{2}) the clock signal is a one, maintaining oscillation for another half clock period. At this

fig. 2. Timing diagram showing the levels within the keyer during the generation of a dash.
and via the inverters drive the keying transistor. The keying signal is fed back via U2D and U1E to the control flip-flop. As long as a dot or dash is being sent, this flip-flop maintains the oscillator in the operating
time $\left(\mathrm{t}_{3}\right)$ the voltage at terminal 1 is $1.5 \mathrm{~V}_{\text {batt }}$ which via U1A places a zero on U2A, thereby preventing the control flip-flop from reacting to premature trigger signals. After another half dot length, the voltage

fig. 3. The diagram of the original keying circuit in the TenTec Argonaut is shown in A. To handle the saturation voltage of semiconductor keyers, the circuit was changed to the configuration shown in B. The value of the zener diode can be between 4 and 8 volts.
at terminal 1 of C has discharged to almost 0 volts. This level is transferred by U1A, as a logic 1 to the control flip-flop, which, while maintaining state, can now be triggered again by signals from the keying contacts. After this pause of one dot length, $\left(t_{2}-t_{4}\right)$, the circuit is again in the quiescent state and ready for another dot or dash.

transmitter connections

Due to its small size, the keyer circuit can easily be built into virtually any transmitter or transceiver. However a word must be said concerning the keying circuit involved. The voltage to be keyed must be positive with respect to ground. It must not exceed the voltage blocking capabilities of the keying transistor and the keyed current must be within the limits of this transistor. The keying circuit should support keying by semiconductors; with a voltage drop of up to 1 volt across the KEY terminals, the circuit must still operate properly. With a TenTec Argonaut, this was not the case, although a minor modification according to fig. 3 solved the problem.

Transmitters with a negative-keying voltage must be modified to have a positive keying voltage. Compatibility with straight keys or relay keyers is, of course, not impaired by such a modification. Fig. 4

fig. 4. Diagram of the keying circuit of an HW101 that has been modified for this keyer. Other than R7, R8, R9, and Q1, all other components are from the original circuit.
shows the modification of a Heath HW101 as a representative of the tube transmitter family. Here are some general hints for this kind of modification: the voltage divider, R7, R8, and R9, must be set up to accept a current in the range of 0.5 to 10 mA . The internal resistance of the positive and negative sources must be taken into account when the values of the resistors are determined. With the key open, the voltage at the base of Q 1 may not exceed V_{EB} maximum (4 to 8 volts, depending on Q1). With the key down, the voltage between R7 and R8 (base of Q1 not yet connected) should be substantially more negative than the 0.7 volts needed to completely drive Q 1 into saturation.

Paddle mechanism used by the author with his MountainDay transceiver. Microswitches are used as the contacts.

Although the original purpose of this keyer circuit was incorporation into small transceivers, nothing prevents you from using it as an external electronic key. The use of a reed relay or an opto coupler in the output circuit would render the keyer more versatile (at the expense, however, of considerably higher power consumption).

construction

Circuit layout is not critical. An example of a printed circuit board layout is shown in fig. 5^{*}. Be careful to use a polyester (or equivalent) timing capacitor. The leakage current of tantalum and aluminum electrolytic capacitors is not compatible with the high-impedance CMOS logic. In the most commonly used speed range, R2 has a value of between 3 and 30 kohms. A potentiometer with a negative logarithmic characteristic would therefore be ideal. A standard $100-\mathrm{k}$ logarithmic pot may be used instead, but the turning direction for an increase in speed would be counter-clockwise. If you insist on clockwise direction, a 100-k linear pot will do the job even if speed adjustment isn't best.

[^11]
fig. 5. Printed circuit board layout of the simple CMOS keyer, with the parts placement diagram shown below. The two dashed lines indicate jumpers that must be installed.

the paddle

An example of a lightweight portable paddle is shown in the photograph. The unit is connected to the transceiver by a 3-pin DIN plug whose shell is screwed to the socket in the rig. The brass lever measures $60 \times 3 \times 5 \mathrm{~mm}(2-3 / 8 \times 1 / 8 \times 3 / 16$ inches) and is centered by the buttons of two micro switches. It is fixed to the bottom plate at the pivoting point. The lateral movement is limited by two small aluminum blocks whose distance from the lever is adjusted to allow the lever to move just slightly beyond the switching points. Although there might be more elaborate solutions to this problem, the unit has worked nicely for over a year.

Further ideas for a portable keyer paddle can be found in ref. 3 and 4, the latter being more promising according to the rule the simpler the better.

references

[^12]
What a Combination!

Whether you're looking for a complete "TR-7 System," a TVI Filter, an Antenna Tuner or the famous Drake C-Line-If Drake makes it-Clegg has it! Our prices are competitive; our service is the best; our TOLL FREE LINE makes it easy for you.

Call us today, using our new departmentalized telephone system, for all of your Drake needs. CLEGG and DRAKE guarantee you'll be satisfied!
ORDERS \& QUOTES: TOLL FREE 1-800-233-0250 SERVICE DEPARTMENT: TOLL FREE 1-800-233-0337 ENGINEERING, PURCHASING, ADMINISTRATION AND ACCOUNTING: 1-717-299-7221

DSI CONHUNIGATIONS SERIES $1.3 \mathrm{CHz}-1 \mathrm{CHz}-700 \mathrm{WHz}$

MODEL C1000 $\mathbf{1 0 H z}$ to 1 GHz

- INCLUDES BATTERY PACK
- AUTO ZERO BLANKING $\$ 499^{95}$
- AUTO DECIMAL POINT
- 10MHz TIME BASE

Accuracy . . . that's the operational key to this rugged advanced design Model C1000 1 GHz frequency counter . . . a significant achievement from DSI. That's because you get . 1 PPM 0° to $40^{\circ} \mathrm{C}$ proportional oven time base . . Built in 25DB preamplifier with a 60DB adjustable attenuator $\times 10 \& \times 100$ audio scaler which yields .01 Hz resolution from 10 Hz to 10 KHz equivalent to $10 \mathrm{sec} . \& 100 \mathrm{sec}$. Gate Time Selectable 1 \& 1 sec . time base and 50 ohms or 1 meg ohm input impedance . . . Built-in battery charging circuit with a Rapid or Trickle Charge Selector ... Color keyed high quality push button operation . . All combined in a rugged black anodized ($.125^{\prime \prime}$ thick) aluminum cabinet. The model $\mathrm{C}-1000$ reflects DSI's on going dedication to excellence in instrumentation for the professional service technician, engineer, or the communication industry.

MODEL C700 50 Hz to 700 MHz
 - INCLUDES BATTERY PACK
 - AUTO ZERO BLANKING
 ${ }^{5} 369^{55}$
 - AUTO DECIMAL POINT
 - 10MHz TIME BASE

ALL NEWI AII UNPARALLELED DSI QUALITY! The model C 700700 MHz frequency counter features 2 PPM 0° to $40^{\circ} \mathrm{C}$ proportional oven time base. .25 db preamplifier with a 60db adjustable attenuator. Built in battery charger with a rapid or trickle charge selector . . . Combined in a rugged ($.125^{\prime \prime}$ thick) aluminum cabinet makes the C700 ideal for the communication industry and professional service technician.

3600A OWNERS: Up date your 3600A frequency counter to a C 700 includes, new back board, .2PPM proportional oven, 25 db preamplifier, rugged $.125^{\prime \prime}$ thick aluminum cabinet, order 3600A-700. Unit must be returned to DSI factory for modification.

DSI - GUARANTEED SPECIFICATIONS - FACTORY ASSEMBLED - MADE IN USA

Model	Frequency Range	Proportional Oven Accuracy Over Temperature	50 Hz $\mathbf{T o}$ 75 MHz	75 MHz $\mathbf{T o}$ 500 MHz	500 MHz To $\mathbf{1 G H z}$	Number Of Digits	Size Of Digits	Power Requirements	Size

- All Units Are Factory Assembled, Tested And Carry A Full 5 Year Limited Warranty -

> | Model C 700 | $\$ 369.95$ |
| :--- | :--- |

FREE

© Strongest warranty in the counter field. Satisfaction Guaranteed.

3600A-700 Factory Update (3600A only)
Includes Labor \& Re-Calibration

\$199.95

Model C 1000
\$499.95

FOR MORE INFORMATION

Call Toll Free: (800) 854-2049 DSI INSTRUMENTS, INC.

Opt. 011.3 GHz (C1000 only)
\$ 99.95
Opt. 02.05 PPM 10 MHz Double Oven 0° to $50^{\circ} \mathrm{C}$ Time Base (C1000 only) \$129.95

ARE YOU ON FREQUENCY?

MODEL 3600A .5PPM $17^{\circ}-37^{\circ} \mathrm{C}$ s19995
 - AUTO ZERO BLANKING
 - AUTO DECIMAL POINT
 - INCLUDES ANTENNA

SAVE SHOP COSTS WHEN ADJUSTING XTALS MEET YOUR QSO ON FREQUENCY EVERY TIME

The 3600A and 3550W Frequency Counters represent a significant new advancement, utilizing the latest LSI Design
which reflects DSI's ongoing dedication to excellence in instrumentation, for the professional service technician and amateur radio operator. Before you buy a DSI instrument you know what the specifications are. We publish complete and meaningful specifications which state accuracy over temperature and sensitivity at frequencies you need. And we guarantee those specifications in writing.

MODEL 3550W TCXO

- INCLUDES INTERNAL BATTERY HOLDER
- SAME AS 3600A LESS OVEN
- SEE SPECIFICATIONS BELOW

MODEL 3700 .2PPM $0^{\circ}-40^{\circ} \mathrm{C}$ $\$ 269^{95}$
 - AUTO ZERO BLANKING
 - AUTO DECIMAL POINT
 - INCLUDES ANTENNA

PORTABLE! TAKE IT TO THE MOUNTAINS OR USE IT MOBILE - TAKE IT WITH YOU ON FIELD DAY

ALL NEW! ALL UNPARALLELED DSI QUALITY! The model 3700700 MHz frequency counter features . . . 2 PPM 0° to $40^{\circ} \mathrm{C}$ proportional oven time base . . . Built in battery trickle charger less batteries ... Combined in a rugged (.125" thick) aluminum cabinet makes the 3700 ideal for the communications industry, professional service technicians, and sophisticated amateur radio operators.

3600A OWNERS: Update your 3600A frequency counter to a 3700 includes 2 PPM proportional oven, rugged .125" thick aluminum cabinet, order 3600-A - 3700. Unit must be returned to DSI factory for modification.

DSI - GUARANTEED SPECIFICATIONS - MADE IN USA

Model	Frequency Range	Accuracy Over Temperature	$146 \mathrm{MHz}$	220 MHz	450 MHz	Number of Readouts	Size of Readouts	Power Requirements	Size
3700	$50 \mathrm{~Hz}-700 \mathrm{MHz}$	Proportional Oven 2 PPM $0^{\circ}-40^{\circ} \mathrm{C}$	10MV	10MV	50 MV	8	. 5 Inch	$\begin{gathered} 115 \text { VAC or } \\ 8.2-14.5 \mathrm{VDC} \end{gathered}$	$3^{\prime \prime} \mathrm{H} \times 8^{\prime \prime} \mathrm{W} \times 6^{\prime \prime} \mathrm{D}$
3600A	$50 \mathrm{~Hz}-600 \mathrm{MHz}$	Oven $5 \text { PPM } 17^{\circ}-37^{\circ} \mathrm{C}$	10MV	10MV	50MV	8	5 Inch	$\begin{gathered} 115 \mathrm{VAC} \text { or } \\ 8.2-14.5 \mathrm{VDC} \end{gathered}$	$21^{\prime \prime} \mathrm{H} \times 8^{\prime \prime} \mathrm{W} \times 5^{\prime \prime} \mathrm{D}$
3550W	$50 \mathrm{~Hz}-550 \mathrm{MHz}$	1 PPM $65^{\circ}-85^{\circ} \mathrm{F}$	25MV	25MV	75MV	8	5 Inch	$\begin{gathered} 115 \text { VAC or } \\ 8.2-14.5 \mathrm{VDC} \end{gathered}$	$21^{\prime \prime} \mathrm{H} \times 8^{\prime \prime} \mathrm{W} \times 5^{\prime \prime} \mathrm{D}$

- ALL UNITS ARE FACTORY ASSEMBLED, TESTED AND CARRY A FULL 1 YEAR WARRANTY -
- NO EXTRA COSTS •

FREE Shipping anywhere in U.S.A. and Canada. All other countries, add 10%.
Strongest warranty in the counter field. : Satisfaction Guaranteed.

See Your Dealer or
Call Toll Free: (800) 854-2049 DSI INSTRUMENTS, INC.
California Residents, Call Collect: (714) 565-8402
VISA - MC - AMERICAN EXPRESS - CHECK - MONEY ORDER • COD
7914 RONSON ROAD, \#G, SAN DIEGO, CA 92111

Model 3700
\$269.95
3600A - 3700 Factory Update (3600A Only) Includes Labor \& Re-Calibration
$\$ 99.95$

Model 3600A
$\$ 199.95$
Model 3550W
$\$ 149.95$
Option 03 20-Hr. Rechargeable
Battery Pack

digital techniques basic rules and gates

Digital circuits are a useful and fascinating part of today's electronics. Devices and their applications have increased by such a proportion that an amateur who is not employed in the electronics industry may be confused by the jargon surrounding the technology. This series of articles will present the basics and, it's hoped, give you än insight into practical applications.

We are familiar with linear or "analog" circuitry, but what is a digital circuit? It is simply a decisionmaking device based on two voltage levels per input. The output also has two voltage levels. A two-valued input and output is called binary.

Digital circuitry (or, digital logic) is made from simple building blocks which obey specific logical rules. Interconnection of many simple blocks is possible, whether on a circuit board or a single chip of silicon. Modern technology allows an almost unlimited combination on a single chip, spawning hundreds of different digital devices. Despite their complexity of function, all digital devices are made from the basic blocks.
Several digital families exist. Differences are internal and have an effect on interfacing. The two largest

By Leonard Anderson, 10048 Lanark Street, Sun Valley, California 91352
families will be described: TYL or Transistor-Tran-sistor-Logic, the bipolar family branch, and CMOS or Complementary-MOS, the fet branch. Interconnection between families is possible within certain rules.

logic level reference

Binary levels must be defined. A low level is near ground. A high level is close to the supply voltage. Some fet digital devices have more than one supply, so these refer the high level to the " V_{cc} " supply. The high level is assumed more positive, relative to ground or common.
Logic levels may be positive or negative. Positive logic is most common and retained throughout this series. Levels have different descriptions, so it might be well to memorize the following:

$$
\begin{aligned}
& \text { Low }=0=\text { near-ground }=\operatorname{logic} 0=\text { false } \\
& \text { High }=1=\text { positive }=\operatorname{logic~} 1=\text { true }
\end{aligned}
$$

Low, high, 0 , and 1 are the most common terms. True and false may apply to devices with double outputs, one being an inverted level of the other.

A few data sheets refer to negative logic. This is generally taken as just a voltage reversal, although low and high are still the same.

basic building block

This is the gate, the fundamental decision maker. Each gate may have any number of inputs, but only one output. The six basic gates are shown in fig. 1 along with an inverter. The latter has only one input and is used mainly for level inversion.

Input states, for a specific output, will determine the type of gate. Note the small tables of 1s and Os for each gate. These are truth tables and tell the most about a particular function. Truth tables exist for circuits and all device types; some are time dependent.

The AND gate output will be a 1 when both A and B inputs are 1. All inputs of a multiple-input gate would have to be 1 for a 1 output. The OR gate output will be 1 when any input is a 1 ; output is 0 only
when all inputs are 0 . Exclusive-OR gates have only two inputs; a 1 on either input will produce a 1 output. But a 1 on both inputs will output a 0 .

NOT, NAND and NOR

Compare the truth tables of the AND and NAND, OR and NOR, and the Exclusive gates of fig. 1. Each pair, of the three types, will have opposite output states. All six types are needed for design flexibility, but the NAND, NOR and Exclusive-NOR may be confusing.

Digital technology uses the term "not" when a desired signal is low; i.e., it is not high. A line named SIGNAL would be considered active (desired) when high. Renaming it SIGNAL with the overbar means it is active when low. The name $\overline{\text { SIGNAL }}$ is pronounced "signal not" or "signal bar," and either form is used.

A NAND gate output is active low. Its name comes from "not-AND." A NOR gate output is active low; its name is "not-OR." Similarly, an Exclusive-NOR is active low.

Symbol shape and little circles describe the type. Shape denotes general function while the circle or "inversion bubble" indicates an active low input or output. The bubble isn't always shown on spec sheets, so check for a device pin, name overbar, or the truth table.

The uses of NAND and NOR gates may not be apparent, so let's examine some simple gate arrays. The function of the array in fig. 2 is to provide a high output when the inputs from either A and B or C and D are high. For ease of illustration, C and D are kept low. Intermediate AND output states E and F may not be used but are good for following an array function.

the ubiquitous NAND

The array in fig. 3 performs the same function as

fig. 1. Schematic symbols and truth tables for six basic gates, AND, NAND, OR, NOR, Ex-OR, and Ex-NOR, and the inverter.
fig. 2. Conventional AND/ OR gates can be combined to produce the desired outputs. In this example, a 1 output will be present when A and B, or C and D are both 1 s .

the one in fig. 2, even though all gates are NANDs. The equivalent $O R$ function has bubble inputs, matching the active low NAND outputs. If this is confusing, go back to fig. 1 and check the state conditions of NAND input versus output. Intermediate states E and F are useful here.

NAND gates can be used for any equivalent ANDOR array cascade. Most TTL gate arrays are built up entirely of NANDs and came about through early alltransistor logic circuits. Economy in earlier days dictated a minimum number of discrete devices and resulted in inverted outputs. Designers found that all-NAND gate array cascades worked just as well as older diode gates. The first integrated circuit gates used equivalent NAND structures.

NANDs are now so numerous that an unofficial "NAND RULE" is used to analyze and design gate arrays.

THE NAND RULE: Any low input will cause a high output state; A / l inputs must be high to cause a low output state.

NAND gates used for an AND function will have active high inputs, just like an AND. The equivalent OR function requires active low inputs. Direct equivalents are shown in fig. 4. Fig. 4B is the same as an AND, while fig. 4A is the same as an OR. Inverters take care of necessary input and output state changes.

Fig. 5 is a simple array which produces a high output when either A and B are high or \bar{C} input is low. Note that the overbar indicates \vec{C} is active low. If conventional AND-OR gates were used, you would have C with an active high. This array shows an interesting input control condition.

Holding \bar{C} low will prevent both A and B from affecting the output. Inputs A and B could then be in any state combination and the output truth table would indicate them as don't care states. Since they cannot affect the output, you don't care what states
fig. 3. In this example, the AND/OR gates of fig. 2 have been replaced by NANDs and NORs. Even with the change, a 1 will be present at the output for the same input conditions.
they are in. An " X " on the truth table indicates the don't care condition.
When low, the \bar{C} input can be considered an inhibit for A and B . Conversely, it could be an enable input when high. Many multifunction devices have inhibit and enable inputs. A word of caution: Inhibit and enable controls may be active high or low; check the device spec sheet for bubbles and overbars.

TTL and CMOS families

TTL is the most common family. It was pioneered by Texas Instruments, and wide industry acceptance prompted all major semiconductor manufacturers to "second source" (make the same product under license) most or all devices in the original family. Their popularity resulted in other IC makers' designing their own TTL devices; TI "second sources" many of these.
TTL is sometimes referred to as the $54 / 74$ Series, after TI's original numbering scheme. TI now uses an

fig. 4. In A, since the NAND gate can be represented by an OR gate with inverters or the input, the complete OR function can be duplicated by using a NAND gate with an inverter in each input. B shows the AND equivalent by using a NAND gate with an inverter on the output.

SN prefix, while other makers have different prefixes. The " 54 " or " 74 " number identifies the device. A 7400 package is a quadruple two-input NAND gate, regardless of source. Many parts lists omit prefixes, since second source devices have identical characteristics.

A " $54^{\prime \prime}$ part is military temperature grade, -55° to $+125^{\circ}$. A " $74^{\prime \prime}$ part is commercial or industrial grade, with an operating range of 0° to $+70^{\circ} \mathrm{C}$. There is a slight difference in operating characteristics, but this would rarely affect amateur equipment.
CMOS is the most common fet family and is ideal for low-power applications. Where TTL has internal bipolar transistors, CMOS has N-type and P-type MOSFETs in complementary arrangements. The MOSFETS are insulated-gate types with extremely high input impedance.
fig. 5. The C input, in this case, can be used as a circuit inhibit. If low, the output will always be high, regardless of the A or B inputs. When C is high, then the output will be enabled and will respond to the other inputs.

RCA developed CMOS and uses a 4000 Series numbering system with a CA prefix. CMOS is also second-sourced, but part numbers for equivalents vary; cross-reference tables are required for most second sources.
CMOS military temperature is the same as TTL, but CMOS industrial-grade temperature is -40° to $+85^{\circ} \mathrm{C}$. CMOS is also more lenient in power-supply voltage. TTL requires +5 volts ± 5 per cent, while CMOS supply voltages can vary from 3 to 15 volts! One pays a price for such tolerances; the same device will be slower at lower voltages.

RCA also introduced " B " series CMOS (suffix to number) as an improved version of their original " A " series. The B series incorporates output buffers for driving lower loads and is characterized at $5-10$, and 15 -volt supplies. All new designs are in the B series.

The next article in this series will take a detailed look inside the devices to point up differences between TTL and CMOS.
ham radio

ANTECK, Inc.

Phone (208) 324-3400
BOX 543
JEROME, IDAHO 83338

Introducing

THE MODEL MT-1 MOBILE ANTENNA. TUNES 3.5 to 30 MHZ INCLUSIVE. 750 WATTS P.E.P. FOR HAM BANDS, C.A.P. MILITARY, MARS, AND CB. CENTER LOADED FOR HIGH EFFICIENCY. ENABLES EXACT RESONANCE TO WANTED FREQUENCY. ALLOWS FULL OUTPUT FROM NEW SOLID STATE TRANSCEIVER FINALS. NO WORRY ABOUT REDUCED OUTPUT FROM SHUT DOWN CIRCUITS. ATTRACTIVE BLUE AND GRAY FINISH, STURDY, SOLID CONSTRUCTION, UNAFFECTED BY MOISTURE AND THE ELEMENTS. TUNED FROM THE BASE TO ELIMINATE BEND OVER OR REMOVAL FROM ANTENNA MOUNT FOR FREQUENCY CHANGE. ELIMINATES TROUBLESOME QUICK CONNECTORS.

JOIN THE MOBILE ACTIVITY DURING THE UPSWING OF CYCLE 21 WITH A MOBILE ANTENNA THAT PROVIDES EASE OF OPERATION AND THE UTMOST IN EFFICIENCY.

RV users: inquire about our RV extension masts - adjustable, 8 to 24 feet.

Features:
 STAINLESS STEEL WHIP
 FIBERGLASS LOADING COIL

BASE TUNED
LOGGING SCALE

- RESETTABLE TO EXACT FREQUENCY
- POSITIVE TUNING LOCK
- HEAT TREATED BERYLLIUM COPPER CONTACTS
- NO COILS TO CHANGE
- CORRELATION CHART FROM LOGGING SCALE TO FREQUENCY FURNISHED
- MODULAR CONSTRUCTION FOR EASY ROAD HAZARD REPAIR AND SERVICE
- 90 DAY WARRANTY - FACTORY SERVICE
- NO TUNERS OR IMPEDANCE TRANSFORMERS REQUIRED
- LESS THAN 1.8 TO 1 VSWR ANY FREQUENCY WITHIN THE HAM BANDS, 80 THRU 10

Maximum length - $\mathbf{1 1 6}$ inches - at $\mathbf{3 . 5} \mathbf{~ M H z}$
Minimum length $\mathbf{- 9 2 . 5}$ inches - at 30 MHz
Patents applied for.
Not an import, manufactured entirely in the U.S.A.
PRICE - \$119.95
Contact your local dealer or order below

dual-impedance headphones

The switching arrangement is shown in this view of the dual-impedance headphones. Photo by WD9CXG.

Dual impedance ! zadphones offer versatility, convenience, and private listening pleasure. With different types of receivers available on the market today, it is not unrealistic to have a ham-bands-only and a gan-eral-coverage receiver in the shack.
fig. 1. The schematic diagram in (A) shows the connections between the switches and audio transformer. T1 is a Calectro D1-724, having a $\mathbf{1 2 0 0}$-ohm, center-tapped primary with an 8 -ohm secondary. The switches can be ordinary miniature double-pole, double-throw switches. The small plastic throw bar is shown in (B). This bar can be shaped to fit any particular pair of headphones.

In some instances, especially with older military equipment and newer ham gear, different impedances will exist at the headphone jack. This being the case, in order to have private listening, two headphones with different impedances were required (one for each rig). Thus, the need for a single pair of dual-impedance headphones.

Taking into account that the main source of audio was the amateur receiver (Kenwood TS-820), monaural 8-ohm headphones were purchased. The desire to listen to a military general coverage receiver meant switching headphones to provide the 600ohm load specified in the manual.

It was not totally unrealistic to employ one pair of phones and change the impedance as desired. This was

PLASTIC THROW BAR
accomplished by placing a 600-to-8 ohm audio transformer in the line, switching it out for the 8 -ohm load. If the components are carefully chosen (for size) they will all fit neatly into the housing of one of the phones, eliminating any external boxes. To prevent possible trouble, two doublepole, double-throw miniature toggle switches were used to completely isolate the transformer from the line.

A plastic bar was used to throw both switches at the same time. Shaped into a design of your own choosing and drilled for clearance of the bats on the switches, a drop of epoxy will hold the "throw bar" in place. Before final insertion of the bar onto the switch bats, make sure both switches are thrown in the same direction.

Jim DiSpirito, AB9Q

HW-2036 antenna socket

The antenna socket on the rear of the Heath HW-2036 2-meter transceiver is directly in line with a trace on the final amplifier printed circuit board. This line, which connects pin 10 on the relay and pin 2 on the plug P301, carries 13.8 volts. When using a phono plug with the long center pin, this pin will touch the board, shorting the 13.8 volts to ground. It's best to use either the RCA or Motorola style plug, since they have a shorter center pin. The phono plug/ PL-259 adapter sold by Radio Shack also has the long center pin, requiring that part of it be cut off to prevent it from contacting the circuit board. However, if you wish to take the time to disassemble the transceiver, a small piece of electrical tape can be placed over the trace to prevent accidental contact.

Jim Conner, W3HCE

improved tuning on 160 meters with the T-4X transmitters

When using either a T-4XB or T-4XC transmitter below 1850 kHz, a true dip could never be obtained and loading was difficult, even when using a 50 -ohm dummy load. Through discussions with other Drake owners, I found that this frustrating problem was shared by other T-4X-series transmitter owners. Being curious about this strange behaviour, we called Drake only to find that their low-end cutoff frequency is 1840 kHz . With this news, we decided to optimize the output network for the $1800-1850 \mathrm{kHz}$ band, since that's all we have in New England. The modifications are almost trivial, requiring only two capacitors in the output network and a third for the driver tank circuit, but the results are excellent. The transmitter can be loaded and controlled on the low end of 160 just the same as on any other band.

As shown in fig. 3, the modification to the output network requires

fig. 2. Schematic diagram of the changes made to the pi network to enable it to cover the low end of 160 meters. The numbers in parentheses refer to the components in the T4XC. The first designation is for the T4XB.
the addition of a capacitor on each side of the pi network. The part numbers in parentheses apply to the $\mathrm{T}-4 \mathrm{XC}$; the others, to the T-4XB. Using the pictorials provided in the Drake manual, locate S 4 H and C 65 (C86). Add a $120-\mathrm{pF}, 2000$-volt capacitor in parallel with C65 (C86). Next, locate C67 (C89), an $865-\mathrm{pF}$ capacitor on S4G, and add a $680-\mathrm{pF}$ capacitor in parallel.
In addition to the output pi network, the driver tank circuit also required padding, since the driver control had to be rotated fully counterclockwise. This modification is depicted in fig. 4. A $36-\mathrm{pF}$ capacitor was connected in parallel with C39 (C54), located on the rear of S4F.

With the implementation of these simple and inexpensive modifications, our Drake transmitters will load very nicely in the 1800-1840 kHz region, with the driver control showing a nice peak rather than being fully against the stop.

Steven E. Holzman, W1IBI John D. Adamson, W1HZH

fig. 3. Changes made to the driver network for low end coverage of $\mathbf{1 6 0}$ meters.

SLEP ELECTRONICS Is NOw SHIPPING ... DRAKE DRAKE
 DRAKE

TR-7IDR-7 TRANSCEIVER 160-10 METERS

JV-3 TRANSCEIVER 144, 220, 440

TR-7/DR-7 DIGITAL TRANSCEIVER
PS-7 POWER SUPPLY
195.00

MS-7 SPEAKER.
33.00

RV-7 REMOTE VFO
195.00

FA. 7 FAN
25.00

AUX-7 RANGE PROGRAM BOARD
SL-300, SL-500. SL-1800, SL-6000 FILTERS
7077 DYNAMIC DESK MIKE TR-7 WITH PLUG.
WH-7 HR RF WATTMETER $1.8-54 \mathrm{MHz} 2 \mathrm{~kW}$
DL-1000 DRY DUMMY LOAD 52.00

MN-7 ANTENNA MATCH BOX 250 W 89.00
39.95

MN-2700 ANTENNA MATCH BOX 2 KW
165.00

L-4B LINEAR AMPLIFIER

- 4 -4C RECEIVER
995.00
699.00

AC-4POWER SUPELY
699.00

AC-4 POWER SUPPLY
15.00

MS-4 SPEAKER
33.00

UV-3 TRANSEEIVER $144-220-440$ ….................................. 795.00
PS-3 AC SUPPLY UV-3
TV-3300LP LOW PASS FILTER
1525EM ENCODER MICROPHONE
6JB6 Final Tubes DRAKE MATCHED PER TUBE EA. 6.50
COMPLETE STATION PACKAGE PRICES QUOTED OR TOP TRADES GIVEN IF YOU HAVE CLEAN DRAKE OR COLLINS USED EQUIPMENT.
WRITE OR PHONE BILL SLEP (704) 524-7519 AND BUY YOUR NEW U. S. A. MADE EOUIPMENT TODAY FROM A DRAKE DEALER OF 25 YEARS. EXPORT, APO, FPO INQUIRIES ARE INVITED.

Into Tech G Geren New M-200: ThIMODE COSVERTIER

Converts

MORSE, RTTY
\& ASCII to
video.

This advanced model in the M-200 Series extends the horizons of capability and performance:

- Morse Reception:

6-60 wpm with automatic speed \& wordspace

- RTTY Reception:

4 speeds, 3 shifts, unshift on space select, automatic threshold select. auxiliary baudot loop output, tuning meter, auto. speed readout

- ASCII Reception:

110 Baud with built-in T U

- Video Outputs:

32 character line $\times 16$ line video with scrolling
72 character line $\times 16$ line video with scrolling

- Special Feature:

ASCII, Loop or RS232 output on all modes
M-200E (32) S500.00
M-200E (72) $\$ 525.00$

Order direct or from these dealers:

Advanced Electronics 1349 W. King Street Cocoa, Florida 32922 305-631-1190

Cohoon Amateur Supply Highway 475
Trenton, Kentucky 42286
Dialta Amateur Radio Supply 212 48th Street
Rapid City, S. Dakota 57701
Emona Electronics
661 George Street
Sidney N.S.W. Australia

Germantown Amateur Supply
3202 Summer Avenue
Memphis, Tennessee 38112
800-238-6168
Ham Radio Center
8342 Olive Blvd.
St. Louis, Missouri 63132
800-325-3636
N \& G Distributors
7285 N.W. 12th St
Miami, Florida 33126
305-592-9685

Rickles Electronics 2800 W. Meighan Blvd. Gadsden, Alabama 35904 205-547-2534

Universal Amateur Radio 1280 Aida Drive
Reynoldsburg. Ohio 43068 614-866-4267

PanaCom
P.O. Box 76093

Caracas 107 Venezuela

There's a new, eighth OSCAR satellite in orbit, and the AMSAT team helped put it there!
Your help is needed for future satellites. Join AMSAT and support the new, advanced Phase III series of OSCAR's, engineered to provide communications over transcontinental distances for hours at a time.
Send $\$ 10$ membership dues to AMSAT, P.O. Box 27, Washington, D. C. 20044. Life membership is available for a tax-deductible donation of $\$ 100$ or more, payable in quarterly installments if you wish.
Phase III satellite solar cells may be sponsored for \$10 each, and we'll send you a certificate specifying the cells you are sponsoring.
For a tax-deductible contribution of \$1,000 or more, we'll even inscribe your name on a plaque to be placed in orbit aboard the Phase III spacecraft for posterity, and we'll send you a replica honoring your contribution.
Dues and contributions may be charged to VISA or Master Charge. Phone us at (202) 488-8649.

$$
\begin{array}{ll}
\text { AMSAT-OSCAR } 6 & \text { Oct. 15, 1972 } \\
\text { AMSAT-OSCAR } 7 & \text { Nov. 15,1974 } \\
\text { AMSAT-OSCAR } 8 & \text { Mar. } 5,1978
\end{array}
$$

AMSAT

Radio Amateur Satellite Corporation
p.o. box 27, WASHington, d.c. 20044

Ideal for ground or roof mounts. Modular, portable, extremely rugged. - One man assembly and installation - Light weight

- High quality aluminum alloy
- High stability

Finally here are strong, sturdy antenna towers that are simple to assemble, light weight, strong and can be used on your roof top, or packed up and used in the field.
Available in three models: $11^{1 / 2} 2^{\prime}, 18^{\prime}$ and

25'. The $11 \frac{1}{2}$ foot model has base and one tower module; the 18 foot has two tower modules; and the 25 foot model contains three tower modules.
We also handle the TET line of HB 9 Series, Yagis and Swiss Quads.

Exclusive U.S. distributors for

KEN PRO ROTATORS

KR 400-Designed for 360° rotation. Rated to support up to 200 kg or 440 lbs . Read out tolerance ± 5 degree maximum. Waterproof terminal block in rotators.

KR 500-Designed for 180° rotation. Brake holds up to $2000 \mathrm{~kg} / \mathrm{cm}$ ($1750 \mathrm{lbs} / \mathrm{inch}$) torque.

KR 600-Designed for 360° rotation. Brake holds up to $4000 \mathrm{~kg} / \mathrm{cm}$ ($3470 \mathrm{lbs} /$ inch) torque.

KR 2000-Designed for 360° rotation. Brake holds up to $10,000 \mathrm{~kg} / \mathrm{cm}(8680 \mathrm{lbs} / \mathrm{inch})$ torque.

We also stock the complete line of Lunar Amplifiers and Pre Amplifiers.

M \& M RF DISTRIBUTORS

SCR 1000 Repeater of Your Dreams!

2M \& 220 MHz - 450 MHz Soon

FCC TYPE ACCEPTANCE FOR COMMERCIAL SERVICES - NOW PENDING!

Available With Features You've Only Dreamed About!

Like -

- Full Autopatch, with or without Reverse patch and "Landline" or Radio Remote Control of the Repeater.
- Radio and/or Landline Touch-Tone* Remote Control of such repeater functions as HI/LO Power; Patch Inhibit/Reset; Switch ID Tracks; Repeater ON/OFF; PLON/OFF, etc.
- 65Wt. Transmitter!
- "PL"-CTCSS; HI/LO Pwr.; Multi-Freq.; Up to 4 different IDs; Automatic switching to "Emergency Power ID" when on battery pwr.
- Ultra-sharp 10 Pole Xtal Filter, Xmtr. Xtal oven - for the "ultimate" in stability.
- Timeout-Timer Reset Tone Annunciator.
- And many other "custom-designed" options per your request - such as auxiliary receivers, radio links, etc. Please Inquire.
- Along with a c - nlete line of Repeater System Accessories ... such as -
- The Finest Duplexers, Cavities, Cabinets from 7" to 7', Antennas, "Hardline", Cables, etc.

The SCR1000 - simply the finest repeater available on the market - absolutely Top Quality throughout . . . and often compared to (lesser featured) units selling for 2.3 times the price! This is a 30 Wt . unit, with a very sensitive \& selective receiver. Included is a built-in AC Supply, NEW Expanded Memory CW IDer, full metering and lighted status indicators/control push-buttons, crystals, local mic, etc....

- Join the thousands of very pleased Spec Comm customers world-wide knowledgeable Amateur Radio groups, Commercial 2X Radio users, Military \& Government Agencies, Red Cross, Universities, etc.
- So, make your dream a reality . . . Call or write Spec Comm today! Give us all of your repeater system requirements - whether modest . . . or "Super Deluxe", and let us send you a quote.
- The Spec Comm Repeater System . . . a sound, long-term investment - for those who demand the finest!
-Registered Trade Mark of A.T.\&T

> A Full Line of SCR1000 Repeater Boards \& Complete SubAssemblies Are Also Available: Inquire.

Call or write today and get the details!
Export Orders - Contact Shere in our International Department.

SAVE $\$ 25.00$

Model 8100
 Frequency Counter Kit
 - Range: $\mathbf{2 0 H z}$ to $\mathbf{1 0 0 M H z}$
 - High Sensitivity
 - Resolution to 0.1 Hz

Now you can forget about price/performance trade-offs when you select a frequency counter. In Sabtronics' Model 8100 kit you get all the characteristics of superior performance at a low, affordable price.
This frequency counter, employing LSI technology, has the performance and input characteristics you demand: guaranteed frequency range of 20 Hz to 100 MHz (10 Hz to 120 MHz typical); selectable hi/lo impedance; superior sensitivity; selectable resolution and selectable attenuation. Plus an accurate time base with excellent stability.
An 8-digit LED display features gate activity indicator, leading zero suppression and overflow indicator. You would expect to find all these features only on high-priced instruments - or from Sabtronics' advanced digital technology.

BRIEF SPECIFICATONS:

- Frequency Range: 20 Hz to 100 MHz guaranteed. $(10 \mathrm{~Hz}$ to 120 MHz typical) • Sensitivity: 15 mV RMS, 20 Hz to $50 \mathrm{MHz}(10 \mathrm{mV}$ typical): 25 mV RMS, 50 MHz to 100 MHz (20 mV typical)
- Selectable Impedance: $1 \mathrm{M} \Omega / 25 \mathrm{pF}$ or 50Ω. Attenuation: X 1 . X10 or X100 • Accuracy: $\pm 1 \mathrm{~Hz}$ plus time base accuracy • Aging Rate: $\pm 5 \mathrm{ppm} / \mathrm{yr}$. Temperature Stability: $\pm 10 \mathrm{ppm}, 0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ - Resolution: $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ selectable - Display: 8 -digit LED, overflow indicator, gate activity indicator - Overload Protection
- Power Requirement: 9-15 VDC @ 330mA

Model 2000, 3½ Digit DMM Kit

The amazing Sabtronics 2000 is the choice of both professionals and hobbyists. It's the only portable/bench DMM that offers so much performance for such an astonishing low price.
You get basic DCV accuracy of $0.1 \% \pm 1$ digit; 5 functior.s giving 28 ranges; readings to ± 1999 with 100% overrange; overrange indication; input overload protection; automatic polarity; and automatic zeroing
The all-solid-state Model 2000 incorporates a single LSI circuit and high-quality components. Our clear, step-by-step manual simplifies assembly. Complete kit includes a rugged high-impact case ideal for both test-bench and field use.

BRIEF SPECIFICATIONS:

- DC volts in 5 ranges: $100 \mu \mathrm{~V}$ to 1 kV . AC volts in 5 ranges: 100 $\mu \mathrm{V}$ to $1 \mathrm{kV} \cdot \mathrm{DC}$ current in 6 ranges: 100 nA to $2 \mathrm{~A} \cdot \mathrm{AC}$ current in 6 ranges: 100 nA to 2 A - Resistance: 0.1Ω to $20 \mathrm{M} \Omega$ in 6 ranges - AC frequency response: 40 Hz to 50 kHz • Display: $0.36^{\prime \prime}$ (9.1mm) 7-segment LED • Input Impedance: 10M ${ }^{\text {• Size: }} 8^{\prime \prime} \mathrm{W} \times$ $6.5^{\prime \prime} \mathrm{D} \times 3^{\prime \prime} \mathrm{H}(203 \times 165 \times 76 \mathrm{~mm}) \cdot$ Power requirement: 4.5-6.5 VDC-4 "C" cells (not included).

Special Offer! Save \$25.00*

If you order both the frequency counter and DMM kits now, you pay only \$144.90 including shipping and handling. You save $\$ 25.00$ off the combined regular low price of $\$ 169.90$. Order both kits now. This special offer good for a limited time only.
*Special offer good in USA only.

Making performance affordable.

13426 Floyd Circle - Dallas. Texas 75243 Telephone 214/783-0994

STEP UP TOTELREX Professionally Engineered Antenna Systems

Single transmission line "TRI-BAND ${ }^{\circ}$ ARRAY"

For technical data and prices on complete Teirex line, write for Catalog PL-7.
TV and Communications Antennas Since 1921

CURTIS LSI's help you

speak

 MORSE\star 8044; Keyer-On-A-Chip* (Replaces 8043). \$14.95 Apr '75 HR, Feb '76 0ST, Radio Hdbk '75, Apr Hdbk '77.78

* 8044-3; IC,PCB,Socket,Manual. 24.95
* 8044-4; Semi-Kit 54.95
* 8045; Morse Keyboard-On-A-Chip IC . . . 59.95
* 8045-1; IC,PCB,FIFO,Sockets,Manual . . 89.95
* 8045-2; Semi-Kit 159.95
* 8046; Instructokeyer-On-A-Chip IC 49.95
* 8046-1; Semi-Kit 79.95
\star 8047; Message Memory-On-A-Chip IC . . 39.95
\star 8047-1; IC,PCB,RAM,Sockets,Manual. . 69.95 (add $\$ 1.75$ on above for postage and handing)
EK-430; CMOS Keyer* (Feb '76 0ST) 124.95
IK-440A; Instructokeyer* (Mar '76 0ST) 224.95
"now with dash memory as standard
System 4000 Ham Computer (see Jan '78 055) (write)

Curtis Electro Devices, Inc. Dept. H
 (415) $964-3136$
 V/S4 Box 4090, Mountain View, CA 94040

NEW

FROM GLB

A complete line of QUALITY 50 thru 450 MHz TRANSMITTER AND RECEIVER KITS. Only two boards for a complete receiver. 4 pole crystal filter is standard. Use with our CHAN. NELIZER or your crystals. Priced from $\$ 69.95$. Matching transmitter strips. Easy construction, clean spectrum, TWO WATTS output, unsurpassed audio quality and built in TONE PAD INTERFACE. Priced from \$29.95.

SYNTHESIZER KITS from 50 to 450 MHz . Prices start at \$119.95.
Now available in KIT FORM GLB Model 200 MINI-SIZER.
Fits any HT. Only 3.5 mA current drain. Kit price $\$ 159.95$ Wired and tested. \$239.95
Send for FREE 16 page catalog.
We welcome Mastercharge or VISA

HEATHKIT Amateur Radio Gear... with the quality that measures up!

Hand-Held 2-Meter
Transceiver with
a full 2 watts power

Totally Broad banded, All SolidState CW/SSB SB-104A Transceiver

Heathkit Amateur Radio equipment has long been the favorite of Hams the world over because it provides the performance, specifications, dependability and long-term reliability that Hamsare looking for. It should. It's designed by Hams, for Hams. For more than 25 years, Heath has been making fine Amateur Radio equipment. It's no surprise that Hams have come to expect Heath's experience and knowledge to translate into some of the finest equipment around.
For instance, our new VF-2031 2-meter Transceiver. It's portable, practical and it gets you on two with a clean, clear signal that really gets out! It has a minimum 2 watts out, separate speaker and microphone for outstanding audio quality, eight crystal-controlled channels and 600 kHz offset for a total of 8 receive and 24 transmit channels for real 2 -meter versatility. A complete list of options includes auto-patch and tone
FRH: Heankuit HEATHKIT CATALOG Send for yours today!
Read about our entire line of Amateur Radio Equipment including linears. 2 -meter amps, antennas, mikes, wattmeters and more! If coupon is missing. write Heath Company, Dept. 122-490, Benton Harbor. Mi 49022.

- Prices are mail order net F.O.B. Benton Harbor. Michigan. Prices and specifications are subject to change without notice.

encoders, external mike and holster-style leather carrying case. And at just $\$ 189.95^{*}$ in kit form, we don't think you'll find a better all-around hand-held!
Then there's our world-famous SB-104A, a superior SSB/CW transceiver, the "heart" of any first-class station. Totally broadbanded, all solid-state, with TRUE digital readout - it's THE transceiver for the serious Amateur. And now, with it's completely re-engineered front-end receiver board and transmitter IF, which are supplied factory assembled and tested, you can get on the air faster and better! For just \$699.95; and a few evenings of kitbuilding, you'll have a rig that compares with equipment costing hundreds of dollars more! And, of course, there's a full line of accessories to add convenience and versatility to your SB-104A station.

There's more for the Hiam at Heath.

HEATH	Heath Company, Dept. 122-490,
Schlumberger	Benton Harbor. MI 49022

Please send me my FREE Heathkit Catalog. I am not currently receiving your catalogs.

Name

Address

City__State

AM-384
Zip

VLF Converter

All Palomar Engineers products are made in U.S.A. Since 1965, manufacturers of Amateur Radio Equipment only.

Regency Scanner
BRINGS
YOU THE NEWS WHILEITS HAPPENING

10 channels covering all 5 bands. AC/DC operation.
SAVE *40 \$89995

1,000's OF CRYSTALS

- H25C Case Scanner Monitor
-10.7 Amateur Ham
-2 Meter, CB, Standard
1 to 9
10 to $49 \quad 50$ and UP
$\$ 3.70$
*3.00
$\$ 2.50$
CRYSTAL BANKING SERVICE P.O.BOX 683

LYNNFIELD, MASS. 01940

FT-227 "'MEMORIZER" OWNERS: SCANNER KIT

- Selectable sweep width (up to full band)
- Scans only the portion of band you select
- Scans at the rate of 200 kHz per second
- Switch modification on mike allows you to scan past, or lock on, any occupied frequency
- Complete kit with detailed instructions
- Installs inside rig; no obtrusive external connections
- Rig can easily be returned to original condition whenever desired
- Scans to preset limits and reverses
- Automatic bypass of locked frequency in $3-1 / 2$ seconds unless you press lock-on switch
Kit $\mathbf{\$ 3 4 . 9 5}$ preassembled and tested $\mathbf{\$ 5 4 . 0 0}$
add $\$ 1.50$ postage and handling
IC-22S Scanner Kits also available
Kit $\mathbf{\$ 3 4 . 9 5}$; $\mathbf{\$ 5 4 . 0 0}$ assembled. add $\$ 1.50$ postage and handling
dealer inquiries invited
AED
ELECTRONICS
750 LUCERNE RD., SUITE 120 MONTREAL, QUEBEC, CANADA H3R 2H6

TEL. 514-737-7293

Palomar Engineers

Box 455, Escondido, CA. 92025 • Phone: [714] 747-3343
Explore the interesting world of VLF. Order your converter today! Send check or money order to:

EXPERIENCE. There's no substitute for it. And TEN-TEC has it. More experience in solid-state HF technology than any other amateur radio manufacturer. Because TEN-TEC produced the first all solid-state HF transceiver for amateur radio. So, it stands to reason that the latest generations (the 540/544 models) benefit the most from that experience - in features, reliability. and operating ease. They are the "voices of experience."

TAKE MECHANICAL DESIGN. Experience tells us: make it rugged. So, like all fine solid-state devices such as computers and good test equipment, the 540/544 transceivers have their strength built into the chassis - the case is merely a cover. Ruggedness is carried over into the circuit boards as well. Component leads are "clinched," not just inserted, to give additional strength and to prevent annoying intermittents.

TAKE PHYSICAL APPEARANCE. Experience tells us: keep it simple. WWII is over, so is its technology, so why should your transceiver look like war surplus? The 540/544 transceivers look like tomorrow - small because technology makes it possible - few controls for the same reason. And they're elegantly handsome with black cases and brushed aluminum front panels.

TAKE ELECTRICAL DESIGN. Experience tells us: push the state-of-the-art. Example: we pioneered high power solidstate design for HF amateur radio gear. The advantages are numerous: efficient, small size, no lethal voltages, less heat, longer life, greater reliability. Example: broadband design. The advantages: easier operation for everyone, rag-chewers, DX chasers, even net operators. No out of reasonance danger, no need for a dummy load to prevent tune-up QRM, no boring, time-consuming "tune-up" procedures. Another example: computer aid. In circuit design, in manufacturing, for speed and optimization. Example: computer compensating oscillator drift to achieve rock-like stability.
TAKE SERVICING. Experience tells us: make it easy, for everyone. So the 540/544 transceivers have modular design with plug-in circuit boards. And trouble-shooting (if it's ever needed) can be done by you with ordinary test equipment. (Of course, Ten-Tec service people are ready to help).

TAKE OPERATING CONVENIENCE. Experience tells us: everyone wants it. Examples; high sensitivity with low internal noise makes the 540/544 transceivers great for DX, especially during poor band conditions. Full break-in on CW turns conventional QSOs into interesting conversations. Preselectable ALC gives automatic level control at various input powers ($40-200$ watts) plus optimized input power for linear amplifiers. "Semi-hard" keying effectively penetrates pileups, QRM, and QRN, yet is highly articulate and pleasant to copy. Pulsed calibrators are easy to identify. VOX that eliminates "anti-VOX" by triggering on a tone present in your voice but not in the transceiver speaker. (There are even more conveniences in the following "features" list.)

FEATURES - • Instant Band Change (no xmtr. tune-up) - Covers 3.5 to 30 MHz (plus One-Sixty with option) • 200 Watts Input - all bands - Receiver Sensitivity 0.3 uV • VFO changes less than 15 Hz per F° after 30 min . warm-up $\bullet 8$-pole Crystal IF Filter • Direct Readouts - choose LED digital model or 1 kHz dial model • Optional 150 Hz CW filter - Optional Noise Blanker • Offset Tuning • WWV at 10 \& 15 MHz - Separate Receive Capability • Automatic Sideband Selection, Reversible - Sidetone Level and Pitch control - Pre-Setable ALC - 100% Duty Cycle - S Meter and SWR Bridge - LED indicators for ALC and OFFSET • Modular Plug-In Circuit Boards - Broad Accessory Line

544 Digital - \$869 540 Non-Digital ~ \$699

Give your voice the Ten-Tec "Voice of Experience" treatment. See the 540/544 transceivers at your Ten-Tec dealer or write for full details.

THE VOICE OF EXPERIENCE

S-f Amateur Radio Services (213) 837-4870
 4384 KEYSTONE AVE., CULVER CITY, CA. 90230

the W6TOG*
 RECEIVER MODIFICATION KITS

INCREASE SELECTIVITY • IMPROVE SENSITIVITY LOWER INTERNAL NOISE
IMPROVE NOISE BLANKER OPERATION
COMBAT BLOCKING FROM LOCAL SIGNALS

TS-520 KIT	\$27.50	FT-101 SERIES KIT	\$32.50
TS-520S KIT	32.50	FR-101 SERIES KIT	34.50

EXPLICIT INSTRUCTIONS MAKE MODIFICATION A CINCH

*

IT'S MAGIC... IT’S "MAGICOM"
PROCESSOR MODIFICATION KIT IMPROVES AUDIO PUNCH IMPROVES PROCESSED SPEECH QUALITY Converts TS-820 / 820 s speech processor from RF compressor to RF clipper $\$ 27.50$
RF speech processor for TS-520 / 520S $\$ 42.50$
The "MAGICOM" RF processor module provides up to 6 dB increase in output with smooth, clean, non-distorted audio and more penetration for those pile-ups.
ENDORSED BY W6TOG AND BIG GUN DXers WORLD WIDE

米

the W6TOG* INTERNAL ELECTRONIC KEYER

FOR ALL AMATEUR TRANSMITTERS OR TRANSCEIVERS USING GRID BLOCK KEYING

- No holes mounting with TS-820 Series
- Mounting options for TS-520, TS-520S, FT-101 Series, TR4 Series, T4X Series, T-599 Series and 32 S Series.
- C-MOS DESIGN -- Dot and dash memory - full iambic or manual operation.
- Simple installation

THE S-F REJEKTOR FILTER

 AN INTEGRATED CIRCUIT ACTIVE BANDPASS FILTERFOR PROCESSED RECEIVER AUDIO

- Separate active filter elements for CW and SSB audio output stage
- 8 ohm input and output impedance
- Headphone jack for convenience
- ON CW: from 500 hz to 100 hz , variable
- ON SSB: 2 Khz fixed bandwidth
- Rejects unwanted signal better than 60 dB
- Designed for today's transceivers or yesterday's older equipment $\$ 49.50$
* WELL KNOWN DXer WITH OVER 300 COUNTRIES CONFIRMED. All prices postpaid - in Calif. add 6\% sales tax - Mastercharge \& Visa accepted

SATISFACTION GUARANTEED OR MONEY REFUNDED

YOU ASKED FOR IT

 YOU GOT IT DSI
QUIK-KIT®

550 MHZ COUNTER KIT

 Performance You Can Count On

OPERATES ON

- Batt 6-C Size -DC 8.2 To 14.5 VDC - AC Batt. Eliminator

$\$ 99.95$

MODEL 3550 KIT

DSI OFFERS THE BEST OF TWO WORLDS . . .

An unprecendented DSI VALUE in a high quality, LSI Design, 550 MHZ frequency counter kit. And, because it's a DSI innovation, you know it obsoletes any competitive makes, both in price \& performance. The basic 550 MHZ counter \& time base are factory assembled, tested and burned-in. The problems of bad LEDS, IC's, capacitors, are a thing of the past with DSI QUIK-KIT®. But you can take pride in assembling the power supply, PC mounted selector switch, input connectors, and the final mechanical assembly of your 550 MHZ counter, into its' handsome cabinet. GO WITH THE LEADER . . . BUY A DSI FREQUENCY COUNTER KIT. SAVE TIME \& MONEY AND BE ASSURED IT WILL WORK THE FIRST TIME.

SEE YOUR LOCAL DEALER OR
CALL TOLL FREE (800) 854-2049 Californa Residents, Gall Collect (714) 565-8402 DSI INSTRUMENTS, INC.
7914 Ronson Road No. G. San Diego, CA 92111

SPECIFICATIONS

Time Base TCXO 1PPM 65° to $85^{\circ} \mathrm{F}$
Frequency Range 50 HZ to 550 MHZ
Resolution 1 HZ to $55 \mathrm{MHZ}, 10 \mathrm{HZ}$ to 550 MHZ
Gate Time 1 second $-1 / 10$ second
Sensitivity 25 MV 150 \& 250 MHZ 75 MV 550 MHZ
Display Eight $1 / 2$-inch LEDS
Input Two SO239 Connectors
Power 6C-Size Batt., 15HR, or 8.2 VDC to 14.5 VDC
Current 150 Ma standby 300 Ma operational

3550 KIT INCLUDES

- Pre-assembled, tested counter board
-Case, power supply, connectors, hardware
- Built-in prescaler \& preamp
- Gate Light - Automatic Zero Blanking
- Automatic Decimal Point
- One to two hours assembly time
- One Year Warranty on all parts
- All new parts - not factory seconds or surplus

3550 Kit . $\$ 99.95$
T-101 Telescopic Antenna. 3.95
AC-9 Battery Eliminator 7.95
Cigarette Lighter DC Adapter 2.95
TERMS: Orders to U.S and Canada, add $5 \$$ to maximum of $\$ 10.00$ per order
for shipping, handing and insurance. To all other countries, add 15% of total order. California Residents add 6% State Sales Tax.

NEW - NEW - NEW from DATA SIGNAL

TOUCH TONE ${ }^{\circledR}$ MICROPHONE DataCoder 5

JUST LOOK AT THESE FEATURES:

- Tough "Mobile Environment" Microphone
- Positive-Action Tactile Keys
- High-Impedance Ceramic or 500 -ohm Dynamic Cartridge
- Adjustable Tone Balance and Output Level
- "Positive Hold. Easy Lift" Hanger
- For Vehicle or Hand-held Portable Use
- Complete . . . Not a Kit . . . $\$ 39.00$

MINIATURE ENCODERS DTM

MODEL DTM - Completely self-contained miniature encoder for hand-held portables. Only $5 / 16^{\prime \prime}$ thick. Three wire connection. Automatic PTT keying optional. With your choice of keyboards. Price DTM - $\$ 39.00$, DTM-PTT . $\$ 49.00$.

SUB-MINIATURE ENCODERS

MODEL SME - Smallest available Touch Tone Encoder. Thin only $.05^{\prime \prime}$ thick, keyboard mounts directly to front of handheld portable, while sub-miniature tone module fits inside. This keyboard allows use of battery chargers. Price $\$ 29.00$, with your choice of keyboards. SME (less keyboard) $\$ 24.00$
Touch-Tone is a registered trade name of AT\&T

DATA SIGNAL, INC.

2403 COMMERCE LANE
ALBANY, GEORGIA 31707, 912-883-4703
Be sure to ask about our new keyers and CW memory for CW buffs.
The New Model CTR-2A Series Counters are designed and built to the highest standards to fulfill the needs of commercial communications, engineering labs and serious experimentors. With an accuracy of $+.00005 \%$ (oven option) the CTR-2A can handie the most critical measurements and is about half the cost of other commercial counters.
If you need a reliable counter at an affordable price, the CTR-2A is the answer.

- Built-in Pre-Amp $10 \mathrm{mv} @ 150 \mathrm{MHz}$ - Period Measurement (Optional)
- 8 Digit .3" LED Display
- High Stability TCXO Time Base
- Input Diode Protected
- 12V-DC Operation (Optional)
- Built-in VHF-UHF Prescaler
- Oven Controlled Crystal (Optional) $\pm .5 \mathrm{ppm}$
- Automatic Dp Placement
- Selectible Gate Times - 1 \& 1 sec .

DAVIS ELECTRONICS 636 Sheridan Dr., Tona., N.Y. 14150 716/874.5848

MADISON

ELECTRONICS SUPPLY, INC. 1508-D MCKINNEY - HOUSTON, TEXAS 77002 713/658-0268

KENWOOD - TR7600A

Beat the high cost of Deluxe 2 meter operation

Remote Controller (option)

- Stores - Scans
- Reads Out Frequency
(CALL FOR QUOTE)

M MICROWRVE MOOULES LTO

MML 144/100, 100 WATT 144 MHz LINEAR POWER AMPLIFIER

- 80 Watts Minimum Output
- Fully Protected Against Poor Load VSWR, Overheating and Excessive or Reverse Supply Rails
- Equipped with RF VOX and Manual Override
- Supplied with Power Lead and All Connectors

> CALL FOR FAST QUOTES SPECIAL ORDERS WELCOME

TERMS All prices FOB Houston. Prices subject to change without notice All items Guaranteed Some items subject to prior sale Send letterthead tor Amateur dealers price list Texas residents add 6% tax Please add postage estimate
W5GJ, W5MBB K5AAD, NSJJ, W5IMJ, AG5K, WDSEDE, K5ZD, WD5ABA, WA5TGU, WD5BDX. WB5AYF, K5AC. K58GB
Have A Nice Day' ${ }^{\circ}$
DLA

WINTER WONDERS

OMNI.J \& heavy duty magnet mount complete $\$ 49.95$ TRIEX W-51 FT Self Support Tower (Reg \$825.00) Your Cost (FO.B. California) $\$ 725.00$
Tonna F9FT Antennas 144/16el $\$ 79.95$
RIW 432/19el $\$ 59.95$
KLITZING VHF-UHF Amplifiers
2 M 10W in - 100 W OUt
$\$ 198.00$
432 10W in - 50 W Out
$\$ 198.00$
Stock
$\$ 329.00$
$\$ 415.00$
$\$ 89.50$
$\$ 49.95$
Stock
$\$ 49.95$
$\$ 189.95$
$\$ 41.95$
$\$ 249.00$
Stock
$\$ 27.95$
$\$ 24.95$
$\$ 0.29$ ea.
S0. 19 ea.
$\$ 1.95$
$\$ 7.95$
GE 6146B or 8950 .
Radio Pub. Callbook. Cowan many others
Call
NEW BELDEN $9405(2 \| 16)(6 \| 18) 8$ wire Rotor Cable. heavy duty for long runs
\$0.26/ft.
8448. Std 8 -wire Rotor

9888, double shield RG8 Foam
8214. RG8 Foam
8237. RG-8
8267. RG- 213

Amphonol Silver Plate PL259
TIMES $1 /{ }^{\prime \prime}$ Foam Hardline $\mathbf{\$ 0 . 6 0 / f t}$ $7 / 8$ Hardline $\$ 1.50 / \mathrm{ft}$.
s0.16/ft.
\$0.39/ft.
\$0.25/ft.
\$0.21/ft.
\$0.25/ft.
S0.59

BERKTEK RG 8×52 Connectors $\$ 25.00$ ea
\$0.16/ft.
Consolidated HD. 18 Ga Galv Tower. 10 Sec
Robot "Slow Scan" Now in Stock
$\$ 29.95$

Teletower-self support $55 \mathrm{ft} / \mathrm{w}$ breakover $\$ 109.95$
THIS MONTH'S SPECIAL
ICOM IC280 - \$395.00 DENTRON GLA1000 Amplifier - $\$ 319.00$

16 ELEMENTS - F9FT - 144 MHz

$144 / 146 \mathrm{MHz}$ 50 ohms length 6.4 m . The 'Tonna' You've been
hearing about
SWR $1.2: 1$
Wt. 4.4 kg .
Horiz./Vert.
attenuation 60 dB
erture $2 \times 16^{\circ}(-3 \mathrm{~dB})$
ture $2 \times 17^{\circ}(-3 \mathrm{~dB})$
$\$ 79.95$
9 Element 144-146
$\$ 39.95$
4 Element 144-146
$\$ 32.95$

MADISON
ELECTRONICS SUPPLY, INC. 1508-D McKINNEY - HOUSTON, TEXAS 77002

HEATH CW Ops

250 \＆ 400 Hz 8 －pole xtal filters
 WIN YOUR BATTLE AGAINST QRM GET THE BEST AND SAVE

ontr 555
 AIRMAIL POSTPAID OVERSEAS ADD $\$ 3$

＂Fantastic！＂is the word K2TK uses in summarizing the performance of the new Fox－Tango 8－pole 250 Hz CW crystal lattice filter in comparison with that of his standard 4 －pole Heath unit．＂Remarkably free from ringing．．．exceptional ultimate rejection．．．superior shape factor．．．easy installation．．．＂are other quotes from his enthusiastic report．While grati－ fying，his remarks come as no surprise－they merely echo those of hun－ dreds of satisfied Yaesu and Kenwood purchasers of Fox－Tango filters who have decided to up－grade their present sets instead of purchasing new ones at today＇s inflated prices．
Fox－Tango filters are designed to match the mounting holes in the most popular Heath rigs like the HW－101，SB－301，etc．，exactly．For the others，the drilling of a few small holes will pose no problem for Hieath owners who have＂built their own＂．K2TK mounted his new 250 Hz unit in the space reserved for an AM filter in his SB300 thus making use of existing front panel controls for selecting either of his two CW filters．For those whose models lack this facility，it will be easy to improvise mechan－ ical or electromagnetic switching arrangements if dual filters are desired． Of course，for those satisfied with one filter，installation usually consists of tightening two nuts and soldering two connections．
Our complete line of filters is listed below．Note that we offer both 250 and 400 Hz bandwidths for Heath rigs．Although the latter appears to be the same as the standard Heath CW filter，the difference in 8 －pole per－ formance has to be heard to be believed．The 400 Hz unit is ideal for rou－ tine CW operation even though it lacks the needle－sharp response（and critical tuning requirements）of the 250 Hz filter．
All units are $\$ 55$ except as indicated．Order with confidence－satisfac－ tion is guaranteed．

	Rig	Filter No. YF	Used for	Center Freq．kHz．	No．of Poles	Band Width	Notes
$\frac{\mathscr{B}}{\underset{\sim}{x}}$	宮宕	31H250 31H500 31F600 31H1． 8 31H2．4 31F6． 0	$\begin{aligned} & \text { CW } \\ & \text { CW } \\ & \text { CW } \\ & \text { SSB } \\ & \text { SSB } \\ & \text { AM } \end{aligned}$	$\begin{aligned} & 3179.3 \\ & 3179.3 \\ & 3179.3 \\ & 3180 \\ & 3180 \\ & 3180 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 6 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 250 \mathrm{~Hz} \\ & 500 \mathrm{~Hz} \\ & 600 \mathrm{~Hz} \\ & 1.8 \mathrm{kHz} \\ & 2.4 \mathrm{kHz} \\ & 6.0 \mathrm{kHz} \end{aligned}$	Sharp unit for DX and contest work Use instead of standard 600 Hz unit Same as standard XF－30C unit，\＄45 For narrow SSB to reduce QRM SubstituteforXF－30A（6 pole）in early units Same as standard XF－308 unit．\＄45
$\begin{aligned} & \overrightarrow{3} \\ & \underset{\sim}{w} \\ & \underset{\sim}{2} \end{aligned}$		$\begin{aligned} & 89 \mathrm{H} 250 \\ & 89 \mathrm{H} 500 \\ & 90 \mathrm{H} 1.8 \\ & 90 \mathrm{H} 2.4 \end{aligned}$	$\begin{aligned} & \text { CW } \\ & \text { CW } \\ & \text { SSB } \\ & \text { SSB } \end{aligned}$	$\begin{aligned} & 8999.3 \\ & 8999.3 \\ & 9000 \\ & 9000 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	$\left\lvert\, \begin{aligned} & 250 \mathrm{~Hz} \\ & 500 \mathrm{~Hz} \\ & 1.8 \mathrm{kHz} \\ & 2.4 \mathrm{kHz} \end{aligned}\right.$	Sharp unit for DX and contest work Use instead of standard 600 Hz unit For narrow SSB to reduce ORM For use in speech processor
	立 $\overline{6}$	$\begin{aligned} & 89 \mathrm{H} 250 \\ & 89 \mathrm{H} 500 \end{aligned}$	$\begin{aligned} & \mathrm{CW} \\ & \mathrm{CW} \end{aligned}$	$\begin{aligned} & 8988.3 \\ & 8988.3 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 250 \mathrm{~Hz} \\ & 500 \mathrm{~Hz} \end{aligned}$	Sharp unit for DX and contest work Use instead of standard 600 Hz unit
¢ 0		$\begin{aligned} & 33 \mathrm{H} 250 \\ & 33 \mathrm{H} 400 \\ & 33 \mathrm{H} 1.8 \end{aligned}$	CW CW SSB	$\begin{aligned} & 3395 \\ & 3395 \\ & 3395 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 250 \mathrm{~Hz} \\ & 400 \mathrm{~Hz} \\ & 1.8 \mathrm{kHz} \end{aligned}$	Sharp unit for DX and contest work Use instead of standard 500 Hz unit For narrow SSB to reduce ORM
$\underset{\underset{x}{\mathbf{x}}}{ }$	¢ ¢ $\stackrel{y}{5}$	88 H 250 88 H 400 88H1． 8	$\begin{aligned} & \mathrm{CW} \\ & \mathrm{CW} \\ & \mathrm{SSB} \end{aligned}$	$\begin{aligned} & 8830.7 \\ & 8830.7 \\ & 8830.0 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	$\left\lvert\, \begin{aligned} & 250 \mathrm{~Hz} \\ & 400 \mathrm{~Hz} \\ & 1.8 \mathrm{kHz} \end{aligned}\right.$	Sharp unit for DX and contest work Use instead of standard 500 Hz unit For natrow SSB to reduce ORM
$\begin{aligned} & \text { 픞 } \\ & \underset{\sim}{\mathbf{m}} \end{aligned}$		$\begin{aligned} & 33 \mathrm{H} 250 \\ & 33 \mathrm{H} 400 \end{aligned}$	CW	$\begin{array}{r} 3395.4 \\ 3395.4 \end{array}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\left\|\begin{array}{l} 250 \mathrm{kHz} \\ 400 \mathrm{kHz} \end{array}\right\|$	Sharp unit for DX and contest work Use instead of standard Heath CW fiters

To avoid error due to similarity of some filter numbers，specify desired unit completely when ordering．Include make and model of set，filter number，and center frequency
Diode Switching Boards permit easy mounting（without drilling）of up to two crystal filters of any type in addition to those for which the manufacturer provides space． These boards will accommodate any of the filters listed except Heath．Specify make of set with which board is to be used．$\$ 20$ airmail postpaid．

VISA and Master Charge accepted．

FOX－TANEO CORP．
Box 15944，W．Palm Beach，FL 33406

The CT.50 is a versatie and precision requency counter which wil measure Integration. CMOS circuitry and solid state display technology have enabled this counter to match pertormance found in units selling for over three times as much. Low power consumption (typically $300-400 \mathrm{ma}$) makes the CT- 50 ideal for portable battery operation. Features of the CT-50 include large 8 digit LED display. RF shielded all metal case, easy pushbutton operation, automatic decimal point. fully socketed IC chips and input protection to 50 volts to insure against accidental burnout or overload. And, the best feature of all is the easy assembly Clear. step by step instructions guide you to a finished unit you can rely on Order your today!

CT. $50,60 \mathrm{mHz}$ counter kit
CT. $50 \mathrm{WT}, 60 \mathrm{mHz}$ counter, wired and tested
CT. $600,600 \mathrm{mHz}$ scaler option add

CAR
 CLOCK

The UN-KIT, only 5 solder connections
Heres a super looking rugged and accurate auto clock which is a snap to build and install Clock movement is completely assembled-you only soidet 3 wires and 2 switches. takes about 15 minutes' Display is bright green with automatic brightness control photocell-assures you of a highly readable display, day or might Comes in a satin finish anodized aluminum case which can be attached 5 ditterent ways using 2 sided tape Choice of silver, black or gold case (specity)
DC- $3 \mathrm{kit}, 12$ hour forma
DC- 3 wred and tested

$\$ 22.95$

110 V AC adapter

Under dash

 car clock
122 tiful plastic clock in a beau- teatures. 6

tumbo RED case features 6 wire hookup display blanks with ignition, and super wire hookup. display blanks wit igntion, and super display to ambient light level DC-1 1 clock with mtg bracket $\$ 27.95$ DM- 1 dimmer adapter 2.50

PRESCALER

Extend the range of your
counter to 600 mHz Works with any counter includes ? transistor pre amp to give super sens. typically 20 mv at 150 mHz Specity +10 or +100 ratic PS-1B, 600 mHz prescaler PS-18K. 600 mHz orescaler kit

OP-AMP SPECIAL

741 mini dip
12/\$2.00
B1-FET mini dip. 741 type
10/52.00

VIDEO TERMINAL

A completely self-contained, stand alone video terminal card Requires only an ASCII keyboard and TV set to become a complete terminal unit. Two units available, common features are single $5 V$ supply. XTAL controlled sync and baud rates (to 960), complete computer and keyboard control of cursor Parity error control and display Accepts and generates serial ASCII plus paraller keyboard input The 3216 is 32 char by 16 lines. 2 pages with memory
dump teature The 6416 is 64 char by 16 lines, with dump feature. The 6416 is 64 char by 16 lines, wim scroiling. upper and lower case (optional) and has
RS-232 and 20 ma loop interfaces on board. Kits RS-232 and 20 ma loop interfaces on board Kits
include sockets and complete documentation. include sockets and complete documentation RE 3216, terminal card
$\$ 149.95$ RE 6416, terminal card 189.95 Lower Case option, 6416 only $\quad 13.95$ Power Supply Kit 14.95

Video/RF Modulator, VD-1
14.95
6.95

Assembled, tested units, add

60.00

CALENDAR ALARM CLOCK

The clock mats got t all 6.5° LEDS 12 . 24 hout snooze, 24 hour alarm. 4 year calendar, battery backup. and lots more The super 7001 chip is used Size $5 \times 4 \times 2$ inches
Complete kit. less case (not available) DC-9
$\$ 34.95$

30 Watt 2 mtr PWR AMP

Simple Class C power amp features 8 times power gain. 1 W in for 8 out. 2 in for 15 out, 4 W in for 30 out Max output of 35 W incredible value. complete with all parts, less case and T-R relay
PA-1. 30 W pwt amp kit
TR-1, RF sensed T-R relay kit

Ramsey's famous MINI-KITS

FM WIRELESS MIKE KIT
Transmits up to 300°
to any FM broadcast
to any
tadio uses any type of tadio. uses any type of
mike Runs on 3 to 9 V Type FM- 2 has added sen sitive mike preamp stage
FM. 1 kut $\$ 2.95 \quad$ FM. 2 kit $\$ 4.95$
COLOR ORGAN/MUSIC LIGHTS See music come alive' 3 ditterent lights llicker with music One light
tor lows one tor the mid range and Tor lows one for the mid range and
one tor the highs Each channel one tor the highs Each channel individually aduustable and dives up to 300W Great for parties band music. nite clubs and more
Complete kit ML-
$\$ 7.95$

LED BLINKY KIT

A great attention getter which atter nately tiashes 2 jumbo LEDS Use
tor name badges buttons warning panel lights anything' Runs on 3 to 15 volts

WHISPER LIGHT KIT An interesting kit. small mike picks up sounds and converts them to brighter the light Completely seitcontaned includes mike runs on
$110 V A C$ controls up to 300 110 VAC c controls up to 300 watts
Complete kt WL-1.
$\mathbf{\$ 6 . 9 5}$

SUPER SLEUTH A super sensitive am-
pitier which will pick
 up a pin drop at 15 teet Great tor monitoring baby stoom or as general purpose ampitier Full 2
Wims output puns on 6 to 15 volts W rms output. runs on 61
uses 8.45 ohm speaket
Complete kit BN. 9
POWER SUPPLY KIT Complete triple regu: lated power su
vides vanable
 Amp Excellent load regula good titering and small size Less good trantoring and smarir requies 63 V io 1 A and 24 VCT
Complete kil. PS 3LT $\mathbf{3 6 . 9 5}$

SIREN KIT

Produces upward and downward wail characteristic of a poice siren 5 W peak audiooutput funs on 3 is volts. uses 3 -45 othm speaker

TIMETRAC

FIRST TIME OFFER

RELAX AND LET TIMETRAC DO YOUR REMEMBERING. TIMETRAC helps manage your busy schedule, increases your efficiency. Every home and office needs TIMETRAC
TIMETRAC - THE CLOCK
THAT REMEMBERS
This is the exciting. all new time-minder that combines space age technology with every day practicality in remembers and reminds you of everything that you might forget. with precision and pertormance its vacuum wimp precision and performance ins vacuum fluorescent display provides readability from a distance (the largest display on the marke today) You controu the
the microcomputer controlled appointment clock

A NEW SOLUTION FOR SOME

 OLD PROBLEMSYour spouse will never be upset with you for missing a birthday
Your business associates will be pleased when you're never late for appointments. Your doctor will be confident that you are taking your medication at the time prescribed
FOR THE BUSY EXECUTIVE Controis length of business meetings. Reminds you 10 minutes ahead of time to prepare for meeting and gives you time to clear your desk. Reminder of wite's birthday Reminder to catch plane for important business trip.
FOR THE HOMEMAKER
Reminder to take meat out of freezer tor dinner kitchen timer. Reminder of ternis dates and hait dresser appointments.

FOR THE MOTHER

Time children's phone calls, homework music practice. Wake children for school FOR THE SENIOR CITIZEN Medication reminder. Reminder of grandchildren's birthdays, doctor appointments. Easy-to-read large display. A wonderful gitt for Mom and Dad

Regular Price $\$ 79.95$ Introductory Offer By Hal-Tronix only ${ }^{5} 69 .{ }^{95}$

FOR THE STUDENT

Timer for chemistry lab, bio lab. Timer for solving probiems or preparation for exams
FOR THE GOURMET COOK Alarms to tell you when to start next step in meal preparation. By programming the timet alarm, you'll know just when each course of an elaborate meal must be prepared so everything will be ready at the same time Helps you keep track of recipe timing.

FOR THE SALESMAN

Stores up to 30 future appointments - easy to see at the louch of a key when next appointment is scheduled
FOR THE PHOTOGRAPHER
Timer for photographic development chain Can insert red digital display filter to avoid damaging tilm

FOR THE ATTORNEY

Records client's tume charges, meetings. phone calls. research. Timet with builf-in pause capability provides accurate way of timing speech presentations.

FOR THE SECRETARY

the secrelary's best triend. Remembers to remind the boss of key appointments. Times length of phone calls
timetrac features

- Sleek modern styling to complement any home or office decor
Tells the time.
- Tells the date and year
- Up-timer to 60 minutes, 59 seconds with pause.
- Alarm to ring at the same time. everyday.
- Daily appointment sets appointments for the next 23 hours, 59 minutes.
- Future appointments up to one year
- Dimmer switch for display
- Memory will hold up to 30 appointments.
- Lithium power cell to retain memory during power outage
- Appointments entered out of chronological order will be stored in chronological order
- Coion flashes once each second
- A.M./P.M. indicator
- Plugs into any wall outlet.
- Easy to read vacuum fluorescent display.
- Extremely accurate quartz crystal clock

THE TIMETRAC COMPUTER APPOINTMENT ALARM.
Etticient. Remarkable.
Ask your salesman for a demonstration.

TIMETRAC SOLD AND DISTRIBUTED
BY HAL-TRONIX.
DEALERS WELCOME

SEND $15 ¢$ STAMP OR S.A.S.E. FOR INFORMATION AND FLYER ON OTHER HAL-TRONIX PRODUCTS.
TO PHONE ORDER IN 1-313-285-1782.
VISA AND MASTER CHARGE ACCEPTED.

Repeater Jammers Running You Ragged?

Here's a portable direction finder that REALLY works-on AM, FM, pulsed signals and random noise! Unique left-right DF allows you to take accurate (up to 2°) and fast bearings, even on short bursts. Its 3 dB antenna gain and $.06 \mu \mathrm{~V}$ typical DF sensitivity allow this crystalcontrolled unit to hear and positively track a weak signal at very long ranges-while the built-in RF gain control with 120 dB range permits positive DF to within a few feet of the transmitter. It has no 180° ambiguity and the antenna can be rotated for horizontal polarization.

The DF is battery-powered, can be used with accessory antennas, and is $12 / 24 \mathrm{~V}$ for use in vehicles or aircraft. It is available in the $140-150 \mathrm{MHz}$ VHF band and/or 220.230 MHz UHF band. This DF has been successful in locating malicious interference sources, as well as hidden transmitters in "T-hunts", ELTs, and noise sources in RFI situations.

Price for the single band unit is $\$ 170$, for the VHF/UHF dual band unit is $\$ 205$, plus crystals. Write or call for information and free brochure.

L.TRONICS

5546 Cathedral Oaks Road
(Attention Ham Dept.)
Santa Barbara, CA 93111

GENERATOR
for FM

- Inexpensive multi tone encoder
- Compatible with PL-CG-QC
- Low distortion sinewave
- Input 8-18 VDC unregulated
- Rugged, plastic encased with
 leads

Price $\$ 19.95$

- Adjustable frequency ($98-250 \mathrm{~Hz}$), Lower available

Freq. set at factory $\$ 5.00$ extra
Calit, res. add 6π
Send for more info

Sate ofthe ant

k．v．G．
CRYSTAL FILTERS and DISCRIMINATORS
9.0 MHz FILTERS

OSCAR－J FILTERS

Suppress 2 m Tx Third Harmonics．Low 2 m loss （ 0.5 dB typ．）．High loss at 435 MHz （ $30 / 40 \mathrm{~dB}$ ）．
MMI200－5 30 dB min．atten．
$\$ 29.95$ Mwifiol－ 70 dB min．atten．
$\$ 39.95$

RECEIVE CONVERTERS

MODELS FOR ALL BANDS 50 MHz THRU 1296 MHz ．LOW NOISE OP． TIONS AT 432 MHz

STANDARD I．F． 10 M ．I．F．OPTIONS 6 M \＆ 2 M AVAILABLE POWER 12V DC

BUILD YOUR DREAM

 ANTENNAWE SUPPLY THE MATERIALS， YロU HAVE THE FUN AND SAVE UP TO 50%
＊6061－t6 dRawn aluminum tubing ＊aircraft grade plated hardware ＊high strengit fiberglass spreaders ＊Stainless steel element clamps
－COMPLETE ANTENNA PACKAGES AVAILABLE
－CALL ロR WRITE FDR FREE INFORMATION

GL ENTERPRISES RロUTE 1 BOX 10 G BROWNSVILLE，WIS． 53006，PH［414］583－4001

JANUARY＇S SPECIALS OF THE MONTH

ICOM＇s New IC－280 See page 5 of Dec．HR for com－ plete details on this exciting new 2 meter mobile radio． YOUR SPECIAL！Buy an IC－280 at $\$ 480.00$ and receive an $\$ 80.00$ credit toward another purchase！Sorry，no trades．

KENWOOD＇s TR－7400A You＇ve heard this rig on your local repeater amidst such mutterings as＂It＇s got every－
 thing＂＇．This fully synthesized 2 meter FM transceiver operates on 800 channels from $144-148 \mathrm{MHz}$ with an RF output of 25 watts！ YOUR SPECIAL！Buy a TR－7400A at $\$ 449.00$ and receive a 1525 EM Drake encoder microphone at no charge（ $\$ 50.00$ value）．

$\begin{aligned} & \text { CALL TOLL FREE } \\ & \text { FOR QUOTES }\end{aligned} 0-50$

fleq Market

RATES Non-commercial ads 10Φ per word; commercial ads 609 per word both payable in advance. No cash discounts or agency commissions allowed.
HAMFESTS Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing). Repeat insertions of hamfest ads pay the noncommercial rate.

COPY No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue

DEADLINE 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N.H. 03048.

MICROWAVE POWER METER Sperry 66A1, similar to Hewlett-Packard 431B. Good operating condition, \$75.00. Gary Gleicher, K2ZSZ, 241-20 Northern Blvd., Douglaston, N. Y. 11363 (212) 423-1906 evenings.

CANADIANS: $1,000,000$ surptus electronic parts. Hundreds of fantastic bargains! Good deals on Yaesu \& icom. Free catalog. ETCO-HA, 183G Hymus Bivd., Pointe Claire, Quebec H9R 1 E9.
FREQUENCY ALLOCATION CHART. See how the entire radio spectrum is used. 2 kHz to 200 GHz . Send $\$ 3.00$ Collins Chart Co., Box 935, Coronado, CA 92118.

PORTA PAK the accessory that makes your mobile really portable. $\$ 67.50$ and $\$ 88.00$. Dealer inquires invited. P.O. Box 67, Somers, Wisc. 53171.
SOLAR PANELS: 10×20 inches on $1 / 8$-inch fiberglass, covered with potting compound. 32 cells, 12 volts - 500 mA. Cosmetic rejects, electrically perfect. 10 units only. $\$ 90$ ea. J. Zubrecky, $116091 / 2$ Friar St., N. Hollywood 91606.

STAR-TRONICS monthly picture flyer is full of parts and pieces for the builder. Cheap. Quality. U.S. only. StarTronics, Box 683, McMinnville, OR 97128.

Foreign Subscription Agents for Ham Radio Magazine	
Ham araionesa	Han amotomed
	coin
	, intioun
Hectay	man fat smm
	cod
	comat
Heamaiosearan	

MOTOROLA HT220, HT200, and Pageboy service and modifications performed at reasonable rates. WA4FRV (804) $320-4439$, evenings.

51J3 GOOD CONDX. \$275.00 - W6RQZ 1330 Curtis, Berkeley, CA 94702.

SPECIALS - Triband beams: Wilson System $1 \$ 198$, System 2 \$159, System 3 \$130; Cushcraft ATB-34 \$187 2 m Handhelds: Wilson Mark II \$205, Mark IV \$229; Tempo S1 write. MFJ 15% off list. A\&A Autodialer $\$ 78$. Hustler antennas, Telex headsets, Taylor antennas in stock. Tower specials: Write for flyer. EGE, 2410 Drexel, Woodbridge, VA 22192 (703) 494-7949

MOBILE IGNITION SHIELDING provides more range with no noise. Available most engines. Many other suppression accessories. Literature, Estes Engineering, 930 Marine Dr., Port Angeles, WA 93862.
FOR SALE OR TRADE Excellent Kenwood TS520 transceiver and MC50 Mic. for good Atlas 210X or 215X with Atlas ac supply. George Konnick, Apt. C-5, 1750 West Main Street, Riverhead, New York 11901

RECONDITIONED TEST EQUIPMENT for sale. Catalog \$.50. Walter, 2697 Nickel, San Pablo, Ca. 94806.
HAM STATION EQUIPMENT plus test equipment. Send SASE to Len, W1ZTL, 22 Abbott Rd., Waltham, MA 02154.
VERY in-ter-est-ing! Next 3 issues \$1. "The Ham Trader", Sycamore, IL 60178.

HAMS requesting our famous "SHOOT THE BULL" QSL card, send yours \& SASE - K4NBN, Box 23413, Jacksonvilie, FL 32217.

OSL CARDS 500/\$10. 400 illustrations, sample. Bowman Printing, Dept. HR, 743 Harvard, St. Louls, MO 63130.
FOR SALE: Heath 1680 Receiver. $\$ 150.00$. I ship. Richard Nendick, Star Route 2809, Winnemucca, Nevada 89445.

ELECTRONIC BARGAINS, CLOSEOUTS, SURPLUS! Parts, equipment, stereo, industrial, educational. Amazing values! Fascinating items unavailable in stores or catalogs anywhere. Unusual FREE catalog. ETCO-012, Box 762, Plattsburgh, N.Y. 12901. SURPLUS WANTED.
75 A 4 with $2.5,1.5, .5$ and .2 kHz filters and various modifjcations $\$ 400$; CE100V fair condition, $\$ 195$; CE100V with factory 160 meters $\$ 300$; General Radio $916-\mathrm{A}$ rf impedance bridge $\$ 150$; Nems-Clark 108 -E rf phase monitor - (803) 237-9212 or 5115 Parker, Pawleys Island, S.C. 29585.

TELETYPE EQUIPMENT for beginners and experienced operators. RTTY machines, parts, supplies. Beginner's special: Model 15 Printer and demodulator $\$ 139.00$. Dozen black ribbons $\$ 6.50$; case 40 rolls $11 / 16$ perf. tape \$17.50 FOB. Atlantic Surplus Sales, 3730 Nautilus Ave., Brooklyn, N. Y. 11224. Tel: (212) 372-0349.

HEATH SB-620 PANALYZER \$120, Precision E400 signal generator \$85, Sencore CA-122 color analyzer \$40, RCA $7^{\prime \prime}$ scope $\$ 30$, Triplet tube tester $\$ 20$. K6KZT, 2255 Alexander, Los Osos, CA 93402.

MANUALS for most ham gear made 1937/1970. Send only $25 ¢$ coin for list of manuals, postpaid. HI, Inc., Box H864, Council Bluffs, lowa 51501.

NEED TECK MANUAL for Wave Analyzer, Model 161A, Sirra Electronic Corp., Mento Park, CA. Send reply to Charles Scholten, 1313 Marshall Street, Manitowoc, WI 54220.

POSI-CHECK: study guide and self-test to aid in passing FCC exams. Same multiple choice, flip sheet, question and diagram form as FCC exams: IBM sheets for selftesting; keyed answers with explanations. Expertly devised to cover the last material released by FCC for current exams. Same day service. First class mailing prepaid USA. Check or money order with order. Novice class, $\$ 4.95$; General, $\$ 5.95$; Advanced, $\$ 5.95$; Extra Class, \$6.15. Posi-Check, P.O. Box 3564 H , Urbandale Station, Des Moines, lowa 50322.

WANTED - Swan 510x Crystal Oscillator. Ned Wilde, W7DMH, Box 808, Arco, Idaho 83213. (208) 527-3037.

EZ deals are the best! Try me and see for Yaesu, Drake, KLM, Swan, Cusheraft, DenTron, VHF Eng., ICOM, CDE, Hustler, Wilson and more. Call, see or write WOEZ, Bob Smith Electronics, RFD 3, Hwy 169 \& 7, Fort Dodge, IA 50501 . (515) 576-3886.

FERRITE BEADS: w/specification and application sheet • 12 $\$ 1.00$. Assorted PC pols - 10/\$1.00. Miniature mica trimmers, 3-40 pF. - $5 / \$ 1.00$. Postpaid. Includes latest catalog. Stamp for catalog alone. CPO Surplus, Box 189, Braintree, MA 02184.

THE MEASUREMENT SHOP has used/reconditioned test equipment at sensible prices; catalog. 2 West 22nd St., Baltimore, MD 21218.

14 Pin DIP extender cable. $36^{\prime \prime}$ long with MOLDED plug each end. Highest quality
$\$ 2.00$ ea.
6 for $\$ 10.00$
Molded bridge rectifier. 100 volt PIV @ 2 amps. 45c ea. or 5 for $\$ 2.00 \mathrm{ppd}$.

Photocell - first quality plastic encapsulated. Dark resistance 100 megohm; Lite resistance 150 ohms. 20c ea. 6 for $\$ 1.00 \mathrm{ppd}$.
Single RCA type jack. High
quality factory new. 15 c ea.
8 for $\$ 1.00$

7 segment display FND type. Cosmetic rejects. Common anode .5 high. Real nice.

75 c each

Jumbo LEDS. . 2 inch diameter. ColorRed. Prime factory units. Not seconds or retests.

20c ea. ppd.
4PDT Relay, 12 VDC coil, Potter Brumlield, 5 amp contacts, factory new of course, a beauty. Also available with 24 VDC coil.
$\$ 1.90$ ea. ppd.
Vertical Mount Trimmer Pots - All highest quality. No junk. 100-1000 - 20005000 - 10K - 20K - 25K . 50 K - 250 K - 500 K Ohms. All have thumbscrew adjust. Your choice 5 for $\$ 1.00 \mathrm{ppd}$.

Highest Quality E. F. Johnson Trimmer Caps. Hard-tofind P.C. board mount. 5-11 mmfd. No junk. 90c each; 10 for $\$ 7.50$ ppd.

1000 volt PIV 2 amp diodes .10 ea.
88 mHy unpotted toroids $\quad 5$ for $\$ 3.50$
S0239 Coax Fittings 50c ea.
PL259 Coax Fittings 50.

Transformer: 115V AC Primary, Secondary 17-0-17V @ 7 Amps. We tested and find good for 10 Amps intermittent duty. Ideal for 2 M rigs! $\$ 8.00$ ea. ppd.

ALLITEMS PPD USA
 SEND STAMP FOR LIST OF BARGAINS PA RESIDENTS ADD 6% SALES TAX FONE 412-863-7006

2m Linear Amplifiers \& Regulated Power Supplies

SPA-100 Combination 75 w 2 m Linear Amplifier and 14A Power Supply. Use as a self-contained, 110 V Base amp or separate 14A DC supply.
AMPLIFIER SECTION: For 2 m FM or SSB. All Solid State, Strip Line construction. 15 w input, 70.80 w output. 25 w maximum drive FM. 20w PEP SSB. 100\% Duty Cycle. VSWR protected. No Tuning POWER SUPPLY SECTION: Adjustable, $3-14 \mathrm{VDC}$, 10A continous, 14A limit. Voltage and current meters. Overvoltage and short protected

$$
\begin{aligned}
& \text { SPA-100 (} 5 \cdot 15 \mathrm{w} \text { input) } \ldots . . . \begin{array}{r}
\$ 299.00 \\
\text { SPA-101 (1-5w input) } \ldots . . . \\
329.00
\end{array}
\end{aligned}
$$

SMA-100 2 m Mobile Linear Amplifier. 13.6 VDC Solid State, Strip Line construction. FM or SSB 5.15 w input, 75.80 w output. 25 watts maximum drive FM, 20w PEP SSB. 100\% Duty cycle. VSWR protected. No tuning. LED indicator. $4^{\prime \prime} \mathrm{w} \times 9^{\prime \prime} \mathrm{d}$.

> SMA-100 (5-15w input) SMA-101 (1-5w input) $\frac{1799.00}{} 179.00$

Power supplies designed for precise regulation. IC regulator. Automatic current limiting, overvoltage and short protection. 115VAC input/13.6VDC output. Metered models are variable $3-14 \mathrm{VDC}$. Available with 10, 20, or 30 AMP CONTINUOUS rating.

| SPS-10M 10A Metered supply ... | $\mathbf{\$ 1 0 5 . 0 0}$ |
| :--- | ---: | ---: |
| SPS-10 10A (unmetered)..... | 84.00 |
| SPS-20M 20A Metered supply | 139.00 |
| SPS-20 20A (unmetered) | 119.00 |
| SPS-30M 30A Metered supply | 157.00 |
| SPS-30 (unmetered) | 135.00 |

SPS. 30 (unmetered)
135.00

VISA ${ }^{*}$

AMATEUR ELECTRONIC SUPPLY® 4828 West Fond du Lac Avenue Milwaukee, Wisconsin 53216 Phone (414) 442-4200
CALL TOLL FREE:
(800) 558-0411 Nationwide In Wisconsin: (800) 242-5195 Branch Stores in:

Wickliffe, Ohio \& Orlando, Florida

CLUB CALL PINS 3 lines $11 / 4 \times 31 / 4 \$ 1.55$ each. Call, first name and club. Colors - black, blue or red with white letters. (Catalog) Arnold Linzner, 2041 Linden Street, Ridgewood, N. Y. 11227.

AUTHORIZED DISTRIBUTOR F9FT Antennas, Microwave Modules, RIW Products' new tandem reflector, 19 element, 432 MHz Yagi - Radio Clinic - N2MB (formerly WA2BIT) 212-327-4952.

MICROWAVE low-noise TWT preamplifiers for satellite/amateur bands: $2.0-4.0 \mathrm{GHz}$ passband; $25-30 \mathrm{~dB}$ gain; 110 volt 60 Hz power, TNC connectors; used units tested okay but sold as-is: $\$ 200$ plus $\$ 4$ shipping. M . Mursec, 5511 West Jerelyn, Milwaukee WI 53219.
TEST EQUIPMENT CATALOG listing used Tektronix, HP and GR equipment at bargain prices. PTI, Box 8699 , White Bear Lake, MN 55110 . Price $\$ 1.00$ refundable with first order.

TWO-METERS: TS-700SP with warranty, $\$ 525$. KLM160BL, $\$ 150$. Two 11 -element beams with feed lines, $\$ 40$. K2POF, Dick Corp, Clifton Park Road, Mechanicville, New York 12118 (518) 664-7597.
BILD DER WISSENSCHAFT. Swap or sell. Have all copies from number one to present of this fantastic German scientific magazine. All in exemplary condition. Sengel, 8181 Turin Road, Rome, N. Y. 13440.
STOP LOOKING for a good deal on amateur radio equipment - you've found it here - at your amateur radio headquarters in the heart of the Midwest. We may not have a toll free number but we'll save you more in the long run! We are factory-authorized dealers for Kenwood, Drake, Yaesu, Collins, Wilson, Ten-Tec, Atlas, ICOM, DenTron, MFJ, Tempo, Regency, Hy-Gain, Mosley, Alpha, CushCraft, Swan, and many more. Write or call us today for low quote and try our personal and friendly Hoosier service. HOOSIER ELECTRONICS, P.O. Box 2001, Terre Haute, Indiana 47802. (812) 238-1456.

COLLINS KWS1 \$600; Hallicrafters SX101A, $\mathbf{\$ 1 0 0}$, excellent condition, W6ULZ, (213) 347-3058.

BUY-SELL-TRADE: Send $\$ 1.00$ for catalog. Give name, address and call letters. Complete stock of major brands new and reconditioned amateur radio equipment. Call for best deals. We buy Collins, Drake, Swan, etc. Associated Radio, 8012 Conser, Overiand Park, KS 66204 (913) 381 -5900.

WANTED - Radio transcription discs. Any size or speed. Larry, W7FIZ. Box 724, Redmond, Washington 98052.

TUNGSTEN CARBIDE CIRCUIT BOARD DRILLS. 12 assorted sizes for $\$ 3.95 \mathrm{ppd}$. L. R. Design, Box 41, McMinnville, OR 97128.
ELECTRONIC EQUIPMENT HOTLINE is a classified advertising newsletter for professional, industrial, and surplus electronic equipment. Subscriptions \$6/year, ads 50 e/word. P.O. Box 4768, Dept HH. Panorama City* CA 91412.
REPLACE RUSTED ANTENNA BOLTS with stainiess steel. Small quantities, Free catalog. Elwick, Dept. 313, 230 Woods Lane. Somerdale, N. J. 08083.
FREE CATALOGS: P.C. boards from your artwork or favorite magazine. Also parts and kits. Hauck Electronics, 1928 Fairacres Ave., Pgh., PA 15216.

DESK TOP CONSOLES, ultimate operating convenience. Free brochure. Thompson Electronics, P.O. Box 363, Westfield, IN 46074.
LAB TEST EQUIPMENT, bargain prices. SASE for flyer. TDL Electronics, Box 9674 , Kansas City, MO 64134.

HEWLETT PACKARD 10 to $525 \mathrm{MHz}, 8654 \mathrm{~B}$ AM/FM signal generator - 10 to $525 \mathrm{MHz} 5303 \mathrm{~B} / 5400 \mathrm{~A}$ frequency counter with battery pack - Motorola S-1323A deviation meter. All manuals. Sell as package - $\$ 5200$ value, all like new - asking $\$ 4000$. Robert Walker (216) 835-0494. 1625 Dover Center Rd., Westlake, Ohio 44145.

SB303 HEATH All Mode Receiver. Mint with matching speaker $\$ 250.00$. F. P. Pursell, 22 Fairlane Harbor, Vero Beach, FL 32960. (305) 569-0917.

RTTY - NS-1A PLL Demodulator W/T \$26.95; kit \$19.95; board only $\$ 4.95$. Bandpass active filter $2125 / 2295 \mathrm{~Hz}$ kit $\$ 11.95$, W/T \$16.95. All postpaid. SASE for info. Nat Stinnette Electronics, Tavares, FL 32778.

SIGNALONE CX-F OWNERS! Please help a young guy in Sweden find a CX-F Speaker. Will pay good price. Also interested in any other Signal/One CX-F equipment. Hard to find anything in Europe. Send letter to: Peter Laur, SM3HUA, P.O. Box 3005, Z-87100 - Hernosand, Sweden.

DRAKE TR-3 STATION, mint, ac, dc, $\$ 400$ Paul Wallis, Box 922, Guerneville, California 95440 (707) 869-0578.

THIS IS IT
Bing

MODEL 4431 THRULINE ${ }^{*}$
RF DIRECTIONAL WATTMETER with VARIABLE RF
SIGNAL SAMPLER - BUILT IN
IN STOCK FOR PROMPT DELIVERY
AUTHORIZED DISTRIBUTOR
Webster
associates
115 BELLARMINE
ROCHESTER, MI 48063
CALL TOLL FREE
800 - 521-2333
IN MICHIGAN $313-375-0420$

GERMAN DEALER

I'm looking for a wholesaler or manufacturer of transceivers and of all other accessories for Amateur Radio and CB. If you are interested in direct export to Germany, please send us your proposal.
I am also interested in taking charge of an outlet, for example a dealership carrying your items, if possible with your participation.

> Amateur- und CB-Funk
> Ortenberger Str. 58, P.O.B. 2226
> D 7600 Offenburg. West Germany
> Karl Rauchalles, DF 9 UK

BE GOOD TO YOURSELF through R-UN. Reward yourself with a new accessory or antenna or a new band or a second rig or new first-string replacement rig Here's R-UN's partial reward-yourself list. Accessory keyer (), tuner (), amp (), other (), Antenna: mobile (), fixed vertical (), tower (), other (), A second rig: mobile (), GRP (), hernia special (), A new band: 2 meters () higher (), to duh moon (), Solid state HF for your ARS (). We can help you select from top amateur equipmen brands. And will even mail along a "Thank You" card from U to U. (Or anyone else.) Don't just leave to North Pole Nick (or the Bunny) again. R-UN in or lingle the telephone bells now to Radios UNlimited, 1760 Easton Avenue, P.O. Box 347, Somerset, New Jersey 08873 (201) 469-4599.

OWNER REPAIR OF AMATEUR RADIO EQUIPMENT $\$ 795$ postpaid. K6RQ, 14910 LG Blvd., Losgatos, CA 95030.

TECH MANUALS for Govt. surplus gear - $\mathbf{\$ 6 . 5 0}$ each SP-600JX, URM-25D, OS-8AJU, TS-173/UR. Thousands more available. Send 504 (coin) for 22 -page list. W3IHD, 7218 Roanne Drive, Washington, DC 20021.

Coming Events

RADIO EXPO '79 September 15 th and 16 th , 1979, Lake County Fair Grounds, Routes 120 and 45, Grays Lake, Illinois. Manufacturers' displays, flea market, seminars. ladies programs. Advance tickets $\$ 2.00$. Write EXPO, P.O. Box 305, Maywood, IL 60153. Exhibitors inquiries: EXPO Hotline (312) 345-2525

SOUTH BEND, INDIANA Hamtest Swap \& Shop, January 7, 1979, first Sunday after New Years Day at New Century Center downtown by river on U.S. 31 Oneway North across from St. Joseph Bank Building. Half acre in one large room at ground level. Tables $\$ 3$ each. Food service. autornobile museum and Art Center in same building. Four lane highways to door from all directions. Talk-in Freq: $146.52-52,13-73,34.94 ; 147.99-39,93-33,84-24$ 69-09.

ROCHESTER Hamfest \& NY State ARRL Convention, May 25-27. Add your name to mailing list. Send QSL to Rochester Hamfest, Box 1388, Rochester, NY 14603 Phone (716) 424-1100.

WASHINGTON: Pacific Northwest Hamfest, July 148 15. HAM Inc., Box 78442, Seattle, WA 98178

RICHMOND, VIRGINIA FROSTFEST.II, January 14, 1978, Bon Air Community Center. Sponsored by the Richmond Amateur Telecommunications Society, Talk-in $28-88$, $34.94,52$ simplex. Technical symposium, drawing, home brewers contest - 2 divisions, over 18 and under. Framed certificate to winner with the most Original Idea, Best Mechanical and Best Electrical Construction. FCC exams will be administered starting at 10:00 AM. To take exam, mail Form 610 at least tive days prior to Fest to ad dress below. Commercial exhibitors by invitation only write for details. Indoor Flea Market with one table $\$ 2.50$ Outdoor Frost Bite tail gate $\$ 1.00$. Admission $\$ 2.50$ children under 2 free. Richmond Amateur Telecommunications Society, P.O. Box 1070, Richmond, VA 23208.

WISCONSIN: The 7th Annual Midwinter Swaptest will be held on Saturday, January 20, starting at 8:00 AM, at the Waukesha County Expo Center, Waukesha. Food, beer and prizes. Directions: 1.94 to Waukesha Co. F, south to FI, west to Expo. Admission: $\$ 1.50$ advanced, $\$ 2.50$ al the door. Reserved tables $\$ 3.00$ (until January 12). SASE Please. Write: WARAC, P.O. Box 1072, Milwaukee. Wisconsin 53201 .

MICHIGAN: Southtield High School Amateur Radio Club 14th annual Swap \& Shop, Sunday, January 21, 1979 Southfield High School, Southfield, Michigan at 10 Mile \& Lasher. Admission $\$ 2.00$. For information SASE to Mr. Robert Younkers, 24675 Lasher Road, Southfield, Michigan 48034 or call (313) 354-8210.

THE 1979 ANNUAL CONFERENCE of the New Zealand Association of Radio Transmitters, (Inc.) will be held at Upper Hutt, New Zealand, between June 1st and 4th 1979. This is the major social and chin-wag event in the New Zealand Radio Amateur's calendar. Overseas visitors to New Zealand are welcome to attend this conference. Registration forms are avallable from the Secretary, 1979 Conference Committee, P.O. Box 40-212. Upper Hutt, New Zealand

FLORIDA: Dade Radio Club's 19th Annual Tropical Hamboree and ARRL South Florida Convention, January 27 and 28, Miami. Flagler Dog Track Auditorium. Exhibits, flea market, technical/group sessions. Free parkinglovernight space for RVs on grounds. Pre-registration \$3, Door \$4. For information/reservations: DRC Hamboree, P.O. Box 350045 , Riverside, Maimi, FL 33135 or Evelyn Gauzens, W4WYR, Hamboree Chairman, 2780 NW Third St., Miami, FL 33125. (305) 642-4139.

GREAT LAKES
AMATEUR SUPPLY COMPANY

SPACE PROBLEMS?

HUSTEER

SOLVES
EM!

JUST LOOK AT WHAT YOU GETI

- Lowswr <1.6. 1 at bandedges
- LIGHTWEIGHT ONLY 15 POUNDS
- OUICK, EASY ASSEMBLY
- 50-0hm coax feeo. any length
- TAKES 1 kW RF
- COVERS 10, 15. 20840 meter bands (75 CAN BE ADDED)
- ONLY $21^{\prime} 5^{\prime \prime}$ LONG
- 11/4" heavy. wall aluminum
- grouno or roof mount
- STAINLESS STEEL HARDWARE
- rugged mounting bracket
- SLIM TRIM GOOD LOOKING
- WORKS AS GOOD AS It LOOKS

Call or write for your best deal on this and other fine HUSTLER antenna products.

Tom Reed, wABURR
NOTE NEW ADDRESS
1663 SIXTH STREET
MUSKEGON, MI 49441
(616) 722-2416

MODEL
4-BTV
15 POUNDS

OPPOKTUNITY!

A leading Eastern antenna manufacturer has a management level engineering opportunity. Appilcants should have new product development experience in commerclal, government and amateur, moblie and base station antennas. Send your resume to: Box 0 Greenville, N. H. 03048

R-853/URR AM-FM BROADCAST RECEIVER

Made by Jetronic. Slide-Rule tuning: $6^{\prime \prime} \times 9^{\prime \prime}$ Speaker, and nine Tubes. Walnut-Finished pressboard con struction; 115 VAC 60 Hz or 220 VDC
 $121 / 4 \times 16 \times 8^{\prime \prime} ;$ Sh Wt. 15 lbs. Used, Reparable ... \$19.95
SPECIAL! 1978 ARRL Radio Amateur's Handbook
$\$ 4.50$
All Prices F 0.8 Lima, Ohio. Please Allow for Shipping
Use your VISA or Mastercharge caros
Write for our big 36 page catalog
Address Dept. HR - Phone 419/227-6573
FAHR RADAO SALES
1016 E. EUREKA - BOX 1105 - IIMA, OHIO $\cdot 45802$

All band operation ($160-10$ meters) with any random length of wire. 200 watt output power capability-will work with virtually any transceiver. Ideal for portable or home operation. Great for apartments and hotel rooms-simply run a wire inside, out a window, or anyplace available. Efficient toroid inductor for small size: $41 / 4^{\prime \prime} \times 2.3 / 8^{\prime \prime} \times 3^{\prime \prime}$, and negligible loss. Built-in neon tune-up indicator. SO-239 connector. Attractive bronze finished enclosure.

only $\$ 29.95$

The Original Random Wire Antenna Tuncr in use by amatenrs for 7 vears.

SST T-2 ULTRA TUNER

Tunes out SWR on any coax fed antenna as well as random wires. Works great on all bands ($80-10$ meters) with any transceiver running up to 200 watts power output.
Increases usable bandwidth of any antenna. Tunes out SWR on mobile whips from inside your car.
Uses efficient tapped inductor and specially made capacitors for small size: $5-1 / 4^{\prime \prime} \times 2 \cdot 1 / 4^{\prime \prime} \times 2 \cdot 1 / 2^{\prime \prime}$. Rugged, yet compact. Negligible line loss. Attractive bronze finished enclosure. SO239 coax connectors are used for transmitter input and coax fed antennas. Convenient binding posts are provided for random wire and ground connections.

only
 $\$ 19.95$

SST T-3

Mobile Impedance Transformer

Matches 52 ohm coax to the lower impedance of a mobile whip or vertical. 12 -position switch with taps spread between 3 and 52 ohms. Broadband from 1.30 Mhz . Will work with virtually any transceiver- 300 watt output power capability. SO- 239 connectors. Toroid inductor for small size: $2 \cdot 3 / 4^{\prime \prime} \times 2^{\prime \prime} \times 2-1 / 4^{\prime \prime}$. Attractive bronze finish.

GUARANTEE
VISA
All SST products are guaranteed for 1 year. In addition, they may be returned within 10 days for a full refund (less shipping) if you are not satisfied for any reason. Please add $\$ 2$ for shipping and handling. Calif. residents, please add sales tax. COD orders OK by phone.

SST T-4 ULTRA TUNER DELUXE

Matches any coax fed antenna or random wire. Works with any transceiver. Great for mobile, portable, or home operation. Antenna switch selects between two coax fed antennas, random wire, or tuner bypass. Attractive bronze finished enclosure with exclusive SST Styling. Compact size: $9^{\prime \prime} \times 2-1 / 2^{\prime \prime} \times 5^{\prime \prime}$.

Features:

- 300 watts output capability.
- All bands---1.8-30 MHz.
- SWR meter built in.
- Antenna switch on back panel.
- Efficient tapped inductor.
- 208 pf 1000 v . capacitors for flexible, reliable operation.
NEW
only $\$ 69.95$
Available now from your SST dealer or order direct by mail or phone.

The Popular CUA 64-12 by Heights

Light, permanently beautiful ALUMINUM towers
the most important FEATURE OF YOUR ANTENNA is Putting IT UP WHERE it can do WHAT YOU EXPECT. reliable dX SIGNALS EARLIEST IN and Last out.

ALUMINUM

Complete Telescoping and Fold-Over
Series Available
Self-Supporting
Easy to Assemble and Erect

All towers mounted on hinged bases

And now, with motorized options, you can crank it up or down, or fold it over, from the operating position in the house
Write for 12 page brochure giving dozens of combinations of height, weight and wind load

Please include 30 c (stamps or coins) for postage and handling when requesting our free literature.

ALSO TOWERS FOR WINDMILLS

HEIGHTS

mANUFACTURING co.
In Almont Heights Industrial Park Almont, Michigan 48003

NEW CoaxProbe*
 Coaxial RF Probe for Frequency Counters and Oscilloscopes That Lets You Monitor Your Transmitted Signal Directly From the Coax Line.

. 512.95
plus .50 postage

FINALLY! A RF PROBE that lets you connect Into your coax cable for frequency measurements and modulation waveform checks directly from the transmitter.
JUST CONNECT THE CoaxProbe* into your transmission line and plug the output into the frequency counter or oscilloscope. Insertion loss is less than .2db so you can leave it in while you operate.

A NECESSITY IN ANY WELL-ORGANIZED

 HAM SHACK, the CoaxProbe* eliminates "jerry-rigging"" and hassles when tapping into the coax line is desired.A SPECIAL METHOD OF SAMPLING keeps output relatively constant with a wide variation of power. Power output of 8 watts gives .31 v out, while 800 watts will give 1.8 v out. (rms $3-30 \mathrm{mhz}$.) 2000 watts PEP rating too!
*Trademark of CoaxProbe Co. for it sampling device. (E) 1978 by CoaxProbe Co

USE IT ON 2 METER RIGS TO ADJUST FREQUENCY. The CoaxProbe* has a range of 1.8 to 150 mhz .
MONITOR YOUR MODULATION WAVEFORM. With an oscilloscope of proper bandwidth, you can check your modulation for flat-topping, etc. Ideal for adjusting the speech processor.
NOW YOU CAN MONITOR SIGNALS when connected to the dummy load, eliminating unnecessary on-the-air radiation.
AVAILABLE FOR THE FIRST TIME TO AMATEURS. Try it for 10 days. If not satisfied, send it back for refund (minus shipping charges).
Order today from:

CoaxProbe Co.

P.0. Box 426, Portage, MI 49081

Michigan Res. Add 4\% Sales Tax

TEST EQUIPMENT

All equipment listed is operational and unconditionally guaranteed Money back it not satisfied. Prices listed are FOB Monroe
Boonton 190A Q mtr 20.260 MHz Q 51200
GR1001A Stand sig gen 5 kHz
50 MHz calib atin.
HP170A(USM140) 30 mHz scope with
reghoriz, dual trace vert plugs
Tek 565 Dual beam 10 mHz scope
less plug ins (3 series) $\ldots \ldots \mathrm{MH}$
URM25 Stand Sig Gen 10 kHz 50 Mz calibattn
Weinschel 70 Prec RF attn DC
$1 \mathrm{gHz} 0.60 \mathrm{db}, 1 \mathrm{db}$ steps 4 W

SWNTHESLIERS

We have the worlds largest selection of synthesizers for receivers, transmitters and transceivers. For complete details see our $1 / 3$ page ad in the April 1976 issue of this magazine or call or write for additional information. Phone orders accepted between 9 AM and 4 PM EDT. (212) 468-2720

VANGUARD LABS
196-23 JAMAICA AVENUE HOLLIS, N. Y. 11423

M P Marlin P Jones s Assoc. PO box 9023
 J \boldsymbol{A}
 Riviera Beach, Florida (305) ${ }^{334040} 888-8236$

-Fla. residents ada 48 sales tax *MC is VISA accepted, please include expiration date and signature as on card. - Add $\$ 1.00$ for order under $\$ 10.00$. -Canada \& Foreign orders please add suffi-
cent postage.
. USA orders please add 58 postage.

RTTY for ALL Systems

Professionally engineered for outstanding performance. stability, and reliability, the Electrocom* Models 400 and 402 add new dimensions of compatibility between radio and teletypewriter systems. Manufactured to highest quality standards-an Electrocom tradition for nearly two decades-these units are ideal for military, government, commercial, civil defense and amateur applications. The Model 400 front panel digital knob accurately selects shifts up to 1000 Hz ., while two such knobs on the Model 402 independently set the mark and space frequencies. Both models may also be preset with any tone pair between 1000 and 3200 Hz .

Optimum performance with FSK or AFSK
systems is assured by matched filters, precision linear detectors, baud rate selector. bias compensation, and semi-diversity circuitry. Operation is enhanced by a CRT monitor, autostart with solid-state motor switching. antispace, markhold, EIA/MIL output voltages, and a constant current loop supply. In addition, various options are available including rack mounting and polar current output

Write or call us for complete product details and specifications Learn why Electrocom* " 400 " Converters are designed not only for today's communication environment, but ultimately to fulfill RTTY requirements for years to come.

PCtrocmm INDUSTRIES

1105 N. IRONWOOD DRIVE, SOUTH BEND, INDIANA 46615 Telephone: (219) 232-2743

TUBES FOR YAESU RIGS

These excellent Japanese-made Fox-Tango brand tubes match Yaesu rigs so perfectly that neutralization adjustment is rarely required. Our tubes are noted for their high output and long life. Quantities limited. Get a selected set while they last. Satisfaction guaranteed.

SET A
2-6JC6C's
1-12BY7A $\quad \$ 25$
for FT-101/277 series FL-101, FT-200/250 (Tempo I)
Postage paid U.S. and Canada. Others add $\$ 2$ per set, airmail. New York residents add sales tax. Master Charge and VISA accepted

SET B

2-6KD6C's
${ }^{\text {s }} 30$
1-6GK6A
for FT-DX400, 560, 570
FT-400, 401 series; FT-501

FT ACCESSORIES

DIVISION OF FOX TANGO CORPORATION
BOX 274, BRONX, N. Y. 10463

Many of our best engineers read this magazine every month.

That's because a lot of our engineers at GE Mobile Radio are amateur operatorsjust like you. And that's why we're in this magazine-looking for more "hams" who'd like to put their engineering know-how to work on our equipment.

We're involved in the total spectrum of land mobile communications technology -including small signal and power RF circuits, custom monolithic ICs thick-film hybrid circuit design and process technology, frequency synthesis and the application of microprocessors to land mobile communications, to name a few.

We have openings for EEs with experience in RF hardware design and in control/signaling hardware and software . . . and for MEs with a background in electronic product packaging. The best candidates will also be self-starters who can hold their own in a technical discussion. Engineers who enjoy designing communication equipment and can separate their hamming interest from their professional work.

We have top-notch lab facilities, interesting assignments, and some of the best people in the business. We can also provide choice living in progressive Lynchburg (just the right size at 70,000), or among Virginia's beautiful rolling hills where there's plenty of room for your own "antenna farm."

Want more details? Send your resume along with salary requirements to: Professional Relations, Dept. 98-N, General Electric, Mountain View Road, Lynchburg, Va. 24502.

GENERAL (3) ELECTRIC

An Equal Opportunity Employer, M/F

Alaska

RELIABLE ELECTRONICS
3306 COPE STREET
ANCHORAGE, AK 99503
907-279-5100
Kenwood, Yaesu, DenTron, Wilson, Atlas, ICOM, Rohn, Tri-Ex.

Arizona

HAM SHACK

4506 A NORTH 16TH STREET
PHOENIX, AZ 85016
602-279-HAMS
Serving all amateurs from beginner to expert.

KRYDER ELECTRONICS
5520 NORTH 7TH AVENUE
NORTH 7TH AVE. SHOPPING CTR. PHOENIX, AZ 85013 602-249-3739
Your Complete Amateur Radio Store.

POWER COMMUNICATIONS
6012 NORTH 27th AVE.
PHOENIX, AZ 85017
602-242-6030
Arizona's \#1 Ham Store.
Kenwood, Drake, ICOM \& more.

California

HAM RADIO OUTLET
999 HOWARD AVENUE
BURLINGAME, CA 94010
415-342-5757
Visit our stores in Van Nuys and Anaheim.

QUEMENT ELECTRONICS
1000 SO. BASCOM AVENUE
SAN JOSE, CA 95128
408-998-5900
Serving the world's Radio Amateurs since 1933.

SHAVER RADIO
3550 LOCHINVAR AVE. SANTA CLARA, CA 95051 408-247-4220
Atlas, Kenwood, Yaesu, KDK, Icom, Tempo, Wilson, Ten•Tec.

Florida

AGL ELECTRONICS, INC.
1800-B DREW ST.
CLEARWATER, FL 33515
813-461-HAMS
West Coast's only full service
Amateur Radio Store.
AMATEUR RADIO CENTER, INC.
2805 N.E. 2ND AVENUE
MIAMI, FL 33137
305-573-8383
The place for great dependable names in Ham Radio.

MARC'S

CENTRAL EQUIPMENT CO., INC. 18451 W. DIXIE HIGHWAY NORTH MIAMI BEACH, FL 33160 305-932-1818
See Marc, WD4AAS, for complete Amateur Sales \& Service.
RAY'S AMATEUR RADIO
1590 US HIGHWAY 19 SO.
CLEARWATER, FL 33516
813-535-1416
West coast's only dealer: Drake, Icom, Cushcraft, Hustler.

Illinois

AUREUS ELECTRONICS, INC.
1415 N. EAGLE STREET
NAPERVILLE, IL 60540
312-420-8629
"Amateur Excellence"
ERICKSON COMMUNICATIONS, INC.
5456 N. MILWAUKEE AVE.
CHICAGO, IL 60630
312-631-5181
Hours: 9:30-9:00 Mon. \& Thurs.;
9:30-5:30 Tu, Wed, Fri; 9:00-3:00 Sat.
SPECTRONICS, INC.
1009 GARFIELD STREET
OAK PARK, IL 60304
312-848-6777
Chicagoland's Amateur Radio leader.

Indiana

KRYDER ELECTRONICS

GEORGETOWN NORTH
SHOPPING CENTER
2810 MAPLECREST RD.
FORT WAYNE, IN 46815
219-484.4946
Your Complete Amateur Radio Store. 10-9 T, TH, F; 10-5 W, SAT.

lowa

BOB SMITH ELECTRONICS
RFD \#3, HIGHWAY 169 and 7
FT. DODGE, IA 50501
515-576-3886
For an EZ deal.

KanSas
ASSOCIATED RADIO
8012 CONSER P. O. B. 4327
OVERLAND PARK, KS 66204
913-381-5901
Amateur Radio's Top Dealer.
Buy - Sell - Trade

Massachusetts

TEL-COM, INC.
675 GREAT RD. RT. 119
LITTLETON, MA 01460
617-486-3040
The Ham Store of New England you can rely on.

TUFTS RADIO ELECTRONICS
209 MYSTIC AVENUE
MEDFORD, MA 02155
617-395-8280
New England's friendliest ham store.

Michigan

ELECTRONIC DISTRIBUTORS
1960 PECK STREET
MUSKEGON, MI 49441
616-726-3196
Dealer for all major amateur radio product lines.

RADIO SUPPLY \& ENGINEERING
1207 WEST 14 MILE ROAD
CLAWSON, MI 48017
313-435-5660
10001 Chalmers, Detroit, MI
48213, 313-371-9050.

Missouri

HAM RADIO CENTER, INC.
8340-42 OLIVE BLVD.
ST. LOUIS, MO 63132
800-325-3636
For Best Price and Fast Delivery
Call toll free 1-800-325-3636

Amateur Radio Dealer

Nebraska

COMMUNICATIONS CENTER, INC.
443 NORTH 48 ST.
LINCOLN, NE 68504
800-228-4097
Kenwood, Yaesu, Drake and more at discount prices.

Nevada

COMMUNICATIONS CENTER WEST
1072 RANCHO DRIVE
LAS VEGAS, NV 89106
800-634-6227
Kenwood, Yaesu, Drake and more at discount prices.

New Hampshire

EVANS RADIO, INC.
BOX 893, RT. 3A BOW JUNCTION CONCORD, NH 03301
603-224-9961
Icom, DenTron \& Yaesu dealer.
We service what we sell.

New Jersey

ATKINSON \& SMITH, INC.

17 LEWIS ST.
EATONTOWN, NJ 07724
201-542-2447
Ham supplies since " 55 ".

METUCHEN RADIO

216 MAIN STREET
METUCHEN, NJ 08840
201-494.8350
New and Used Ham Equipment WA2AET "T" Bruno

RADIOS UNLIMITED

1760 EASTON AVENUE
SOMERSET, NJ 08873
201-469-4599
New Jersey's newest complete Amateur Radio center

THE BARGAIN BROTHERS

216 SCOTCH ROAD
GLEN ROC SHOPPING CTR.
WEST TRENTON, NJ 06828 609-883-2050
A million parts - lowest prices anywhere. Call us!

New York

AM-COM ELECTRONICS INC.
RT. 5
NORTH UTICA SHOPPING CTR.
UTICA, NY 13502
315-732-3656
The Mohawk Valley's Newest \& Largest Electronics Supermarket.

GRAND CENTRAL RADIO
124 EAST 44 STREET
NEW YORK, NY 10017
212-682-3869
Drake, Atlas, Ten-Tec, Midland, Hy-Gain, Mosley in stock

HAM-BONE RADIO

3206 ERIE BLVD. EAST
SYRACUSE, NY 13214
315-446-2266
We deal, we trade, all major brands!

RADIO WORLD

ONEIDA COUNTY AIRPORT
TERMINAL BLDG.
ORISKANY, NY 13424
Toll Free 800-448-7914
NY $\left\{\begin{array}{l}315 \cdot 337-2622\end{array}\right.$
Res. 315-337-0203

Ohio

AMATEUR RADIO

SALES \& SERVICE INC.
2187 E. LIVINGSTON AVE.
COLUMBUS, OH 43209
614-236-1625
Antennas for all services.

Oklahoma

RADIO STORE, INC.
2102 SOUTHWEST 59th ST.
(AT 59th \& S. PENNSYLVANIA)
OKLAHOMA CITY, OK 73119 405-682-2929
New and used equipment -
parts and supply.

Pennsylvania

ARTCO ELECTRONICS

302 WYOMING AVENUE
KINGSTON, PA 18704
717-288-8585
The largest variety of semiconductors in Northeastern Pennsylvania

ELECTRONIC EXCHANGE

136 N. MAIN STREET
SOUDERTON, PA 18964
215.723-1200

Demonstrations, Sales, Service New/Used Amateur Radio Equip.
"HAM" BUERGER, INC.
68 N. YORK ROAD
WILLOW GROVE, PA 19090
215.659-5900

Delaware Valley's Fastest Growing Amateur Radio Store

HAMTRONICS, DIV. OF TREVOSE ELECTRONICS
4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215-357-1400
Same Location for 30 Years.
Call Toll Free 800-523-8998.

Tennessee

GERMANTOWN AMATEUR SUPPLY
3203 SUMMER AVE.
MEMPHIS, TN 38112
800-238-6168
No monkey business. Call
Toll Free.

Texas

AGL ELECTRONICS

3068 FOREST LANE, SUITE 309
DALLAS, TX 75234
214-241-6414 (within Texas)
Out-of-State, Call our toll-free
number 800-527-7418.

HARDIN ELECTRONICS

5635 E.. ROSEDALE
FT. WORTH, TX 76112
817-461.9761
Your Full Line Authorized Yaesu Dealer.

TRACY'S ELECTRONIC MODULE
5691 WEST CREEK DRIVE
FORT WORTH, TX 76133
817-292-3371
We Handle and Service
All Major Lines.
$\$ 4.95$
AMPAEHOL
$\$ 4.95$

SADI TYPE
115 VAC Con
Completely silver plated
Gold over silver
contacts
100 watt RF rating e 2.5 GHz

MOBILE ALARM

DEALERS \& O.E.M.'S
we can supply large quantities at super prices. We will buy
your excess: Either way you benifit! So call or write today for quotation or an for.

ITS EASY TO ORDER!

ser Visa, Master Charge; Check; M.O.; C.O.D Allow for shipping - excess quickly refunded minhimia order of shoo please Prices god through cover month

Featuring Yaesu, Icom, Drake, Atlas, Ten-Tec, Swan, DenTron, Pace, Palomar, AIda, Midland, Wilson, KDK, MFJ, Microwave Module, Standard, Tempo, Astron, KLM, Hy-Gain, Mosley, Larsen, Cushcraft, Hustler, Mini Products, Universal and Tristao Towers. We service everything we sell! Write or call for quote. You Won't be Disappointed.

We are just a few minutes off the NYS Thruway (1-90) Exit 32

our little boxes replace a lot of cable!

- select any of five antennas at the turn of a knob, with just one feedline and a control cable to the remote switching unit -
- saves coax, simplifies station layout .
- handles 4 kw p.e.p.
- other models to nine positions.
- full one -year warranty.
model sw -5 heavy duty -
REMOTE CONTROLLED ANTENNA SWITCH - $\$ 135 \infty$ plus $\$ 3$ shipping - order direct or write for brochure -

- PCB - PCB - PCB - $\mathrm{PCB}-\mathrm{PCB}$ - PCB -

Duns \#01-048-6066

Cash plus shipping paid for clean late model Motorola GE, RCA mobiles. Base Stations. Accessories. We also sell used and reconditioned equipment For further information contact

Jesse La Flour
The Communications Center 1629 Wyoming
El Pasco, Texas 79902
(915) 545-1133

Call tor cash quotation 16 years of fair dealing

Model 1500 - Binaural Synthesizer-Filter with Tone-Tog
Uses 8 "D" Cells - Less Potteries Uses 8 " ${ }^{\text {" Cells - Less Batteries }} \quad \$ 86.00 \mathrm{ppd}, \mathrm{U} .5$

Model 1501 - Requires your 12 to 15 volt DC input, 100 ma . nom. (intemal regulation)
\$89,00 ppd, U.S.
Wall Transformer 115 V AC supply rated of 12 volts, 350 mo . for use with Model 1501 or ... $\$ 4.95$

* A new balanced bipolar Tone-Tog modulator system replaces diode modulators of Models 1100 and 700

GET BETTER THAN 100 HZ EFFECTIVE SELECTIVITY ON CW, A SELECTABLE NOISE BANDWIDTH OF LESS THAN 150 HZ PLUS PERIPHERAL HEARING IN BINAURAL SOUND . . ALL WITHOUT LISTENING THROUGH THE TINKLING ROAR OF A NARROW -BAND FILTER OR FUSSING WITH SELECTIVE SQUELCH SYSTEMS. . . EXPERIENCE THE BINAUR AL FUNCIION ON SIDE BAND VOICE . . . Just connect to your receiver's headphone or speaker jock and plug in two 8 Ohm speakers arranged stereo fashion . . . additional jack provided at lower power to protect your stereo headset.

See HR magazine articles on Nov. ${ }^{\prime} 75$ and Nov, '76 . . . Ask for our note an listening with binaural and Tone-Tog systems
HILDRETH ENGINEERING BOX 60003 SUNNYVALE CA 94088

\qquad City \qquad State Zip
Please include $\$ 1.00$ shipping charge (plus $\$ 1.75$ when ordering Callbook).

have barrels of fun WITHOUT DRAINING YOU DRY ! WHY PAY FOR USELESS FRILLS?

GET AN EXCELLENT BASIC DESIGNED REPEATER WITH DEPENDABLE PERFORMANCE!
LET US HELP YOU WITH YOUR REPEATER PROJECT COMPLETE AVAILABLE STOCK NOW FROM
"CREATIVE ELECTRONICS"
AUTHORIZED DEALERS FOR: VHF ENGINEERING ano their cömpeit stock ALSO AVAILABLE COMPLETE LINE IN HAMTRONICS WACOM. PHELPS DODGE AND NEW ACCESSORY ITEMS OF OUR OWN FOR REPEATERS

creatius slzctranicı p,a, Gax 7054 ma, ant $\begin{aligned} & \text { mata, geargia } \\ & 30065\end{aligned}$
phans (404) 971-2122 800.241-4547 toll fre outsiot of georcia

WE ACCEPT

FREE CATALOG

HARD-TO-FIND PRECISION TOOLS

 Lists more than 3000 items: pliers, fweerers, wire equipment, tool kits and cases. Also includes ten pages of useful "Tool Tips" to aid in tool selection.(T) JENSEN TOOLS \& ALLOYS yo sourt press omine - tempe az 8sat

MILITARY

SURPLUS WANTED Space buys more and pays more. High est prices ever on U.S. Military sur plus. especially on Collins equipment or parts. We pay freight, Call collect now for our high offer. 201 440-8787 SPACE ELECTRONICS CO.
div of Military Electronics Corp 35 Ruta Court. S. Hackensack, N.J. 07606

D\&V RADIO PARTS

Vartable \& taimer capacitors-rf chokes-
AIH NOUND COILS-TOROIDS-FEED THRU'STUBULAR THIMMERS-KNOHS-WIRE-COUFLIMGStransmatch components.
No mininum order-low cost sh1 pping. First class stamp for complete flyer. 12805 A . SARLE, FREELAND, MICHIGAN 48623

TEMPO S-1 SYNCOM			TWO-METER TRANSCEIVER POCKET-SIZED • FULLY SYNTHESIZED • HAND-HELD		
We also have - ANTENNAS FOR HF \& UHF - ROTORS - TOWERS - REPEATERS - MICROPHONES - KEYS \& KEYERS - TUBES and much, much more			WE STOCK	ESE FAMOU	NAME BRANDS
		Yes, we have	AEA	DRAKE	ROBOT ROHN
	GREETINGS	EIMAC Tubes \& Chimneys,	ANTENNA	EIMAC	RTANDARD
	JUST CALL OR	and YAESU	SPECIALISTS	HY-GAIN ICOM	SWAN
	WRITE FOR THE	Replacement	B\&W	KDK	TRI-EX
	BARR P PRICE; BETTER STIL.	Tubes in stock! Repair lab	CIRD	$\stackrel{\text { KLM }}{ }$	VHF
	BETTER STILI... STOP IN!!	on premises.	CUSHCRAFT	MIRAGE MOSLEY	WILSON YAESU
			DENTRON	NEWTRONICS	

QUARTZ CRYSTALS

"IN A HURRY"
SINCE 1970
CRYSTALS AVAILABLE FOR:

- CB - Synthesizers
- Amateur - HF, VHF, UHF
- Industrial
- Scanner
- Marine - LB \& VHF
- Conversion Crystals
- Special Attention to R \& D.
- "Micro-processor Types.

DISCOUNTS AVAILABLE TO DEALERS \& MANUFACTURERS

CALL "BONNIE" FOR PRICES \& DELIVERY
VISA \& MASTER CHARGE

CAL CRYSTAL LAB, INC.
1142 N. Gilbert Street Anaheim, CA 92801 (714) 991-1580

GEM-QUAD FIBRE-GLASS ANTENNA FOR 10,15 , and 20 METERS
Two Elements $\$ 139.00$
Extra Elements $\$ 99.00$
Price is F.O.B. Transcona
INCLUDES U.S. Customs
Duty
KIT COMPLETE WITH

WINNER OF MANITOBA DESIGN INSTITUTE
AWARD OF EXCELLENCE
Buy two elements now - a third and fourth may be added later with little effort.
Enjoy up to 8 db forward gain on DX, with a 25 db back to front ratio and excellent side discrimination.
Get maximum structural strength with low weight, using our "Tridetic" arms. Please inquire directly to:

GEM QUAD PRODUCTS LTD.

Box 53

Transcona Manitoba Canada R2C 2 Z5
Tel. (204) 866-3338

CUSHCRAFT IS THE VHF-UHF ANTENNA COMPANY.

Cushcraft precision engineered VHF/UHF Yagi beams have become the standard of comparision the world over for SSB and CW operation on 6 meters through 432 MHz . Built by skilled craftsmen from the best available materials, these beams represent that rare combination of high electrical performance, rugged construction, and durability.

Quad Artay

Cushcraft's Quad Arrays for 144, 220. and 432 MHz use four matched 11 -element Cushcratt Yagis and are the ultimate in a high-performance Yagi array. These arrays have been carefully engineered for maximum forward gain, high front-to-back ratio, and broad frequency response. All antennas provide a low VSWR match to 50 -ohm coaxial feedline

20 Element DX Array
Cushcratt's wide variety of VHF/UHF Beams includes an antenna for every amateut activity above 50 MHz . whether local ragchewing or long-haul over-thehonizon DX. All models have been carefully optimizeci for maximum forward gain with high front-to-back ratio the heavy wall bright hard-drawn aluminum boorns and elements are combined with heavy formed aluminum brackets and plated mounting harcware for long operating life and survival in severe weather

UPS SHIPPABLE
In Stock With Dealers World Wide P.O. Box 4680, Manchester, N. H. 03108

The U. S. Callbook has nearly 350,000 W \& K listings. It lists calls, license classes, names and addresses plus the many valuable back-up charts and references you come to expect from the Callbook.

Specialize in DX? Then you're looking for the Foreign Callbook with almost 285,000 calls, names and addresses of amateurs outside of the USA.

U.S. Callbook \$15.95

Foreign Callbook \$14.95
(Plus Shipping)

Order from your favorite electronics dealer or direct from the publisher. All direct orders add $\mathbf{\$ 1 . 7 5}$ for shipping. Illinols residents add 5% Sales Tax.

ALL BAND TRAP ANITENXAS!

PRETUNED - COMPLETLY ASSEMBLED . 5 FOR ALL MAKES \& MODELS OF AMATEUR ONLY ONE NEAT SMALL ANTENNA FOR TRANSRECEIVERS - TRANSMITTERS UP TO 6 BANDSI EXCELLENT FOR CON - GUARANTEED FOR 2000 WATTS SSB GESTED HOUSING AREAS - APARTMENTS 1000 WATTS CW. FOR NOVICE AND ALL LIGHT - STRONG - ALMOST INVISIBLEI CLASS AMATEURSI
COMPLETE AS SHOWN with 90 ft . RG58U-52 ohm feedline, and PL259 connector, insulators, 30 ft 300 lb . test dacron end supports, center connector with bult in lighning arrester and static discharge molded, sealed, weatherproof, resonant traps $1^{\prime \prime} \times 6^{\prime \prime}$-you just switch to band desired for excellent woridwide operation - transmiting and recievingl WT. LESS THAN 5 LBS
160-80-40-20-15-10 bands 2 trap-149 ft with 90 ft . RG58U - connector - Model 777 FBU . . $\$ 54.95$ B0-40-20-15-10 bands 2 trap -102 ft , with 90 ft . RG58U - connector - Model 998BU .. $\$ 49.95$ 40-20-15-10 bands 2 trap … 54 ft . with 90 ft . RG58U coax - connector - Model 1001BU . . $\$ 48.95$ 20-15-10 bands 2 trap -26 ft . with 90 ft RG58U coax - connector - Model 1007BU $\$ 47.95$ SEND FULL PRICE FOR POST PAID INSURED DEL. IN USA. Canada is \$5.OO extra for postage -
 PRICES MAY INCREASE SO - ORDER NOW AND SAVEI All antennas guaranteed for 1 year. Money back trial ! Made in USA FREE INFO. AVAILABLE ONLY FROM

WESTERN ELECTRONICS
Dept. AR- 1
Kearney, Nebraska, 68847

THE PERFECT COUPLE! - HMR's REPEATER \& CONTROLLER

HMR now offers a full line of repeaters for every band and versatile companion controllers which were developed to meet every amateur and commercial application. Customer acceptance and in field reliability has been so good that we now give a full two year wartanty on all our amateur products. Write us and we will be glad to send you all the details.

HMR COMMUNICATIONS, INC., ARD, WEST NEWTON, PA 15089

Ham Gear

Collins 312B4, Sta Cntl, rd, exc $\$ 250$ Collins 31285, Vio Console, exc $\$ 550$
Collins 31285, Vio Console, exc
Collins 32S3, Transmitter, rnd, exc $\$ 550$ Collins 75S3C, rad, exc $\$ 850$

$\$ 1250$ Collins 180S1, antenna tuner $\$ 295$ Collins 32S2, ham xmtr, vy gd $\$ 450$ Collins 30L1, vy gd $\$ 595$ Collins 516 F 2 , power supply | $\$ 175$ |
| :--- |

Collins 516F2, power supply
Collins R-390A revrs, overhauled exc cond
Collins 51S1, 2-30 MHz rcvr call for quote

Collins R-388/51J3 receiver, vy gd Special $\$ 425$ Hammarlund SP-600JX, rcvr 5395
$\$ 195$
Collins CP-1 Crystal Pack $\begin{array}{r}5195 \\ \\ \hline\end{array}$
Racal 6217E, $.5-30 \mathrm{MHz}$ receiver $\$ 1350$ Collins 30S1 Linear, wing, excellent $\$ 1695$ Collins 32 S3 ham transmitter, vy gd $\$ 650$
Test Gear
HP-202H 54-216 MHz AM/FM sig gen
HP-608D 10-420 MHz sig gen
$\$ 695$
HP-608D 10-420 MHz sig gen
Tek 564 storage 'scope, w/plug ins
Tek $54530-M \mathrm{~Hz}$ 'scope $\$ 695$
$\$ 395$
Tek 531A 'scope, exc
$\$ 350$
Tek 453 portable scope, exc
$\$ 1295$
Tek 851 digital tester new, w/access call for quote
We stock Amateur and Professional equipment from manufacturers such as Collins, Hewlett-Packard, etc.

All equipment sold checked and realigned
Write for free catalog.

All the best for the New Year!

201-998-4256

10 SCHUYLER AVENUE

NORTH ARLINGTON, N. J. 07032

R-4C SSB!
 $\left.\right|_{1} ^{\operatorname{lom}}$

Improve the early stage selectivity of your Drake R-4C while adding 8 additional poles (total 16) with an internally mounted, switchable set of first-IF crystal filters. Reduce QRM, leakage, overload. Ideal for DX and contest work. Overail shape factor better than 1.4. Maximum 3 kirt selectivity with maximum inteligibiinty. Total bandwidth with CFF2.1K/o: 2100 Hz at $6 \mathrm{~dB}, 2900 \mathrm{~Hz}$ at -60 dB . Modest variable bandwidth. Other bandwidths available. Filter set can be mounted in receiver and relay switched with our kirs which start at CF 600/6 and 4 fiter switching options can include our CF- $600 / 6$ and/or existing $8-\mathrm{kHz}$ first-IF filter, all internally CF-2.1K/8 pair is $\$ 12000$ per set. Money back it not satis CF-2. 1 /8 pair is $\$ 120.00$ per ser. Money back-1 mot sais fied. Add $\$ 3$ shipping per order; $\$ 6$ overseas air. Dealer in

Sherwood Engineering Inc.
1268 South Ogden St.
Denver, Colo. 80210
(303) 722-2257

VISA
ANTENNAS FOR ALL BANDS:

The complete receiver audio active filter YOU CAN DO IT SIMULTANEOUSLY with both NOTCH and BANDPASS filters.

NOTCH FILTER
CONTINUOUSLY VARIABLE $300-1400 \mathrm{HZ}$.

NOTCH OEPTH FIXED AT NO LESS THAN 30 DB.

INDEPENDENT OF BANDPASS CONTROLS.

MAY BE CENTERED FROM 200 - 1400 HZ .

WARRANTY ONE YEAR

SL-55

Audio Active Filter

Both filters are cascaded with a fixed lowpass filter (18 dB /octave rolloff above 1400 Hz) for optimum SSB filtering. ($3.5 \times 5.5 \times 7.5$ inches)

BANDPASS FILTER
CONTINUOUSLY VARIABLE $200-1400 \mathrm{HZ}$.

CENTER FREqUENCY CONTINUOUSLY VARIABLE FROM 200 - 1400 Hz .

CHANNEL WIDTH CONTINUOUSLY VARIABLE FROM 14 TO MORE THAN 1400 $\mathrm{HZ} \sim 3 \mathrm{DB}$.

CONTAINS 115 VAC POWER SUPPLY. REQUIRES LOW IMPEDANCE ($4-16$ OHM) AUDIO DRIVE FROM ANY RECEIVER. CONNECTS IN SERIES WITH AUDIO OUTPUT LINE AND WILL DRIVE SPEAKER OR HEADPHONES. AUDIO OUTPUT POWER ONE WATT. WE WILL MODIFY TO 240 VAC FOR FOREIGN USE FOR $\$ 1.00$ ADDITIONAL. FRONT PANEL BYPASS SWITCH RESTORES AUDIO PATH TO ITS ORIGINAL CONFIGURATION.

NET: $\$ 72.50 \quad$ Collins gray cabinet and dark gray wrinkle panel
postpaid in the USA and Conada Virgino revidents odd 4% vales tar

ERC INTRODUCES A BRAND NEW CONCEPT IN THE MEASUREMENT OF VSWR AND POWER ACCEPTED BY THE LOAD

REQUIRES 115 VAC AT LESS THAN $1 / 16$ AMP.

COLLINS GRAY CABINET. WRINKLE PANEL - BRIGHT RED LED DIGITS (.33"). DECIMAL POINT IS THE PILOT LIGHT.

ANTENNA PROJECTS

THE MODEL SL-65: (20-2000 WATTS) AND THE MODEL SL-65A* (0.2 - 20 WATTS DIGITAL VSWR AND NET POWER INDICATORS PROVIDE INSTANTANEOUS AND CONTINUOUS DISPLAYS OF VSWR AND NET POWER ACTUALLY ACCEPTED BY THE ANTENNA. THERE ARE NO BUTTONS TO PUSH OR CALIBRATION SETTINGS. EITHER MEASUREMENT IS DISPLAYED WITHOUT DIGITAL READOUT FLICKER THE INSTANT RF HITS THE COAX FOR VIRTUALLY ANY TYPE OF MODULATION - - EVEN SSB AND CW GREATER THAN 10 WPM. THERE IS NOTHING LIKE IT AVAILABLE ANYWHERE ELSE. CHECK THE PERFORMANCE SPECIFICATIONS BELOW.

WARRANTY
ONE YEAR
NET POWER INDICATOR
VSWR INDICATOR ONE TO AN ACCURACY OF . 1 FOR VALUES FROM 1.0 AND 2.2. ACCURACY IS TO . 2 FOR VALUES FROM 2.3 TO 3.4 AND TO . 3 FROM 3.4 TO 4.0 . FROM 4.1 TO 6.2 THE INDICATION MEANS THAT VSWR IS VERY HIGH.
-FOR VSWR VALUES NEAR 1.0, THE POWER RANGE FOR A VALID READING IS 20 - 2000 WATTS OUTPUT. FOR HIGHER VALUES THE UPPER POWER LIMIT FOR A FLICKER FREE VALID READING IS SOMEWHAT LESS (35 1000 WATTS FOR VSWR AT 2.0).

- DIVIDE the above power levels BY 100 TO OBTAIN THE PERFORMANCE OF THE SL-65A QRP MODEL.

SURFACE POSTPAID IN US 5 CANADA PRICE: $\$ 189.50$. VIRGINIA RESIDENTS ADO 43 SALES TAX. TEL. (804) 463-2669 BOOKLET AVAILABLE AT $\$ 2.00$ REDEEMABLE TOWARD PURCHASE. \#PATENT PENDING

- the power displayed is the detected PEAK OF THE PEP FOR ANY MODULATION. THIS IS THE POWER THAT THE TRANSMITTER IS"TALKED" UP TO.DISPLAY DECAY TIME IS ABOUT ONE SECOND.
- THE POWER DISPLAYED IS THAT WHICH IS ACCEPTED BY THE ANTENNA (FORWARD LESS REFLECTED).
- power is displayed on the same two DIGITS AS VSWR IN TWO AUTORANGED SCALES. 20 TO 500 WATTS AND 500 TO 2000 WATTS. TRIPOVER AT THE 500 WATT LEVEL IS AUTOMATIC EX: A READING OF 1.2 COULD MEAN 120 OR 1200 WATTS. YOU MUST KNOW WHICH RANGE YOU ARE IN.
- accuracr is to 10 WATTS IN THE LOWER RANGE AND 100 WATTS IN THE UPPER RANGE DIVIDE POWER SPECS BY 100 FOR SL-65A.

ELECTRONIC RESEARCH CORP. OF VIRGINIA P. O. BOX 2394

VIRGINIA BEACH, VIRGINIA 23452

Adverlisers check-off

for literature, in a hurry - we'll rush your name to the companies whose names you "check-off"

Place your check mark in the space petween name and number. Ex: Ham Radio 234

INDEX

AED __ 710	Hildreth _ 283
Aluma - 589	Hy-Gain 064
Am. Elec. Supply ${ }^{\text {- }}$	Icom __ 065
Amateur Und CB Funk *	Info-Tech __ 351
Amidon _- 005	Integ. Circuits - 518
Amsat *	Int. Crystal _ 066
Anteck __ 733	Jameco __ 333
Antenna Mart _ 009	Jan -_ 067
Atas 198	Jensen __ 293
Barry ${ }^{\text {- }}$	Jones -_ 626
Budwig __ 233	Kenwood *
Bullet _- 328	LTronics - 576
Cal Crystal _ 709	Long's _ 468
Clegg _ 027	Lunar - 577
CoaxProbe __ 726	Lvie __ 373
Communications	MFJ 082
Center - 534	Madison -
Comm. Spec. - 330	Milo 736
Creative Elec. - 751	Oak Hill Acad. A.R.S. -
Crystal Banking __ 573	Opportunity*
Curtis Electro _- 034	Palornar Eng. *
Cushcratt ${ }^{\text {- }}$	Callbook 100
D\&V Radio *	Radio Worid -
DCO __ 324	Ramsey _- 442
DSI _ 656	S.F. A. R. S. __ 640
Dames Comm. 551	SST _- 375
Data Signal _ 270	Sabtronics *
Davis Elec. _ 332	Sherwood __ 435
Drake*	Slep _ 232
E.T.O. ${ }^{\text {a }}$	Space _- 107
Electrocom _ 663	Spec. Comm. 366
Elec. Research Virginia *	Spec. Int. __ 108
Excel Circuits - 535	Swan _ 111
FT Accessories _ 646	TPL $\quad 240$
Fair Radio __ 048	Tee/Ax _ 615
Fox-Tango __ 657	Telrex _ 377
GLB _- 552	Ten-Tec *
GL Enterprises *	The Communication
G.E. -	Center *
Gray _-_ 055	Thomas Comm. - 730
Great Lakes ___ 732	Tropical Hamboree *
Gregory *	VHF Eng. _ 121
Group III __ 701	Van Gorden Eng. __ 737
Gull _- 635	Vanguard Labs __ 716
Hal ${ }^{-}$	Varian _- 043
HMR - 735	Webster
Hal- Tronix - 254	Assoc. $\quad 423$
H. R. Magazine _ 150	Weinschenker _ 122
H. R. P. G. 150	Western *
Hamtronics, PA *	Whitehouse *
Heath O60	Wilson __ 123
Heights *	Yaesu __ 127
Henry __ 062	

- Please contact this advertiser directly. Limit 15 inquiries per request.

January, 1979
Please use before February 28, 1979
Tear off and mail to
HAM RADIO MAGAZINE - "check off"
NAME.
CALL
Street
CITY
state.

sure you can buy a cheaper linear ... But is that really what you want?

You can buy a so-called "maximum legal power" linear for quite a bit less than the price of an ALPHA. What makes the ALPHA worth more . . . or the other model less?
TALK TO AN ALPHA OWNER - Notice how scarce used ALPHA's are? Owners are rarely willing to part with them. and will be delighted to tell you why.
CHECK ETO's TWO.YEAR (limited) WARRANTY - Others give you 90 days. But EIGHT TIMES as much protection is only part of the ALPHA warranty story: there's also a clear message about durability.
NO ALPHA 76/374/77D OWNER HAS EVER BURNED UP A POWER TRANS. FORMER, despite our No Time Limit (NTL). full power key down rating. Maybe it's because our '76A transformer is nearly TWICE the size

ALPHA/VOMAX can boost the "talk power" of any rig up to ten times or more. The new SBP. 4 split band speech processor uses the only system more effective than it clip. ping - AND distortion is extremely low so your voice sounds natural. Under tough conditions VOMAX can help as much as most linears. Combine VOMAX with a good linear and WOW! It's simple to install and operate with any rig.
of those in competitive desk-top amplifiers and is cooled by ETO's full-cabinet, ducted-air system to boot.
LOOK INSIDE AN ALPHA - the difference in quality and ruggedness is conspicuous. Big coils . . . axial-flow ceramic triodes thoroughly cooled by a centrifugal blower yet ETO's new acoustic-isolation blower system makes the ALPHA 76A series now even quieter than ever before. EFFICIENCY, versatility, ease of operation, resale value the story of ALPHA superiority goes on. Before you decide on a new linear, get all the details from your dealer or ETO direct. And ask for our free guide. "Everything You Always Wanted to Know About (Comparing) Linears . But Didn't Know Whom to Ask." Finally, do talk to an ALPHA owner . . . look for him on top of the nearest pile-up.

Long's choices for 药要 CW enthusiasts. 1-800-633-3410

VIBROPLEX "The Original"

Can be slowed to 10 WPM or less or geared to a high rate of speed keeping high quality signal. Deluxe model-polished chrome w/ieweled movement \& grey base 59.95
49.95 standard. Call tor yours today.

VIBROPLEX vibro-keyer

An electronic transmitting unit with large size contacts main frame, super finished parts, red finger and thumb pieces smooth trunion lever, adjsutable. Deluxe finish 58.50. Standard finish $\mathbf{4 6 . 5 0}$ Call for yours today.
 lambic keyer paddle
Has adj. contact point spacing, wide tension adjustmen, self adjusting needle bearings, silver contact points, precision components, and a heavy black base. non skid feet. Model BY-2 polished chrome base 49.95 .
39.95 Call for yours today.

MFJ-720 Deluxe
Super Filter
Has selectable band width. 8 pole active IC filter, sharp selectivity, auto noise limiter, plugs in phone jack, two watts for speaker, and 80 Hz BW , no ringing. 44.95 Call for yours today.

HAM KEY HK-1
The HK-1 is a useful addition to any station. Base is cast iron with black finish. Dot and dash paddles have adjustable tension and spacing. Non-slip rubber feet prevent "walking"
29.95 Call for yours today.

NYE VIKING

SSK-1-K keyer
Features: - Long, form-fitting paddles w/adj. spring tension and contact spacing - Extra-large gold pited. silver contacts - Audio oscillator \& speaker Speed control - Polarity switch.
98.00 list price. Call for quote.

MFJ 721 Super selector CW/SSB filter
Has 80 Hz BW, steep SSB skirts, noise limiting. 2 watts for the speaker, select your bandwidth, and has an 8 pole active IC filter.
59.95 Call for yours today.

114-320-003 key
Key is constructed on a die-cast base. The hardware is nickel-plated. Has smooth adj. bearings and coin silver contacts. Black finished base, switch and Navy knob.
10.60 Call for yours today.

MAIL ORDERS: PO. BOX 11347 BIRMINGHAM, AL 35202 - STREET ADDRESS. 28087 TH AVENUE SOUTH BIRMINGHAM. ALABAMA 35233
Remember, you can Call Toll Free: 1-800-633-3410 in the U.S.A. or call 1-800-292-8668 in Alabama for our low price quote. Store hours: 9:00 AM til 5:30 PM, Monday thru Friday.

20250 DIGITAL READOUT

1 MODE. SSB. CW. AM. FM
 SOLID STATE
 PLUG IN MODULE

NEW ON 2 FROM YAESU

A compact versatile transceiver for the dedicated two-meter DXer, the optional memory and twenty-five watt output puts the FT-225RD far ahead. See it at your dealer's today, or write for our full line catalog.

SPECIFICATIONS:

General

Frequency Range: $144-145 \mathrm{MHz}, 145-146 \mathrm{MHz}, 146-147 \mathrm{MHz}$, $147-148 \mathrm{MHz}$
Frequency Readout: Digital readout to 100 Hz , analog display resolution better than 1 KHz .
Modes of Operation: LSB, USB, CW, AM, FM
Frequency Stability: Within $\mathbf{1 0 0 ~ H z}$ during any $\mathbf{3 0}$ minute period after warmup. Not more than 20 Hz with 10% line voltage variation. Intermediate Frequencies: 1st $\mathrm{IF}=10.7 \mathrm{MHz}$; 2nd $\mathrm{IF}=455 \mathrm{KHz}$. Antenna Impedance: $\mathbf{5 0}$ ohms unbalanced
Repeater Split: 600 KHz installed, any split up to 1 MHz with optional crystal.
PowerRequirements: AC 100/110/117/200/234 Volts DC 13.8 Volts, negative ground

Power Consumption: AC Receive 30 VA Transmit 160 VA at full output DC Receive 1.2 Amps Transmit 6.5 Amps
Size: $280 \mathrm{~mm}(\mathrm{~W}) \times 125 \mathrm{~mm}(\mathrm{H}) \times 315 \mathrm{~mm}(\mathrm{D})$
Weight: Approximately 9 kg

Receiver

Sensitivity: SSB/CW 0.3 uV for 10 dB S/N
FM 0.35 uV for 20 dB QS AM 1.0 uV for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$
Selectivity: SSB/CW/AM 2.3 KHz at 6 dB down 4.1 KHz at 60 dB down

FM 12 KHz at 6 dB down 28 KHz at 60 dB down
Image Response: Better than - 60 dB
Spurious Response: Better than 1 UV at antenna

YAESU
The radio.

August 5, 1978

EIMAC 8973 tetrodes helped bring fusion power a step closer at Princeton.

Project PLT—a significant achievement

On August 5, 1978 scientists at Princeton University Plasma Physics Laboratory succeeded in heating a form of hydrogen to more than 60 million degrees Celsius and produced the highest temperature ever achieved in a TOKAMAK device-four times the temperature of the interior of the sun, thus bringing fusion power a step closer for mankind.
major research facility involved in the Department of Energy's program to develop practical fusion power. The 8973 is a regular production tube designed for high power switching and control by EIMAC division of Varian.

For information

Contact Varian, EIMAC Division, 301 Industrial Way, San Carlos, California 94070. Telephone (415) 592-1221. Or any of the more than 30 Varian Electron Device Group Sales Offices throughout the world.

EIMAC tetrodes for switching and regulating.

Four EIMAC super-power 8973 (X-2170) tetrodes were used to control and protect the four sensitive neutral beam sources in this scientific achievement. The next experiment in this series (PDX) will also utilize EIMAC 8973 tetrodes to control the neutral beam sources. The EIMAC 8973 is also being used at Oak Ridge National

[^0]: - Double-sided, plated-through, G10 printed circuit boards with complete instructions ($\$ 18.75$), completely assembled and tested boards ($\$ 89.00$), and coil assembly with MV2209 ($\$ 3.50$) are available from G\&F Electronics, P.O. Box 4151. Huntsville, Alabama 35802.

[^1]: -Shortly after this article was written, Fairchild Semiconductor announced the $\mu \mathrm{A} 78 \mathrm{COO}$ series of 3 -terminal voltage regulators which have rated output current greater than 500 mA . A 10 -volt regulator, the $\mu \mathrm{A} 78 \mathrm{C} 10 \mathrm{C}$, is included in the series.

[^2]: *Autocode, 8116 Glider Avenue, Dept. H, Los Angeles, California 90045.

[^3]: 1. James R. Fisk, W1HR, "Solid-State Microwave RF Generators," ham radio, April, 1977, page 10.
 2. James R. Fisk, W1DTY, "Receiver Sensitivity, Noise Figure, and Dynamic Range - What the Numbers Mean," ham radio, October, 1975, page 8.
 3. Dain Evans, G3RPE, and C. Suckling, G3WDG, "A Simple $10-\mathrm{GHz}$ Receiver with Transmitter Option," Radio Communications (England), June, 1978, page 492.
 4. R. S. Hewes, G3TDR, and George R. Jessop, G6JP, NBFM Manual, Radio Society of Great Britain, London, 1974, page 3.14.
 5. Klaus H. Hirschelmann, DJ70O, " 10 GHz Transceiver for Amateur Microwave Communications," ham radio, August, 1978, page 10.
 6. James R. Fisk, W1HR, "Low-Noise $30-\mathrm{MHz}$ Preamplifier," ham radio, October, 1978, page 38.
[^4]: 1. Dick Frey, K4XU, "How to Modify Linear Amplifiers for Full Break-In Operation," ham radio, April, 1978, page 38.
 ham radio
[^5]: EASY DIRECTIONS: Rt. 15 South $\mathbf{- 2}$ blocks past McDonald's (Berlin Turnpike)

[^6]: *For detailed discussions of conversion techniques an excellent text, Analog-Digital Conversion Notes, is available from Analog Devices Incorporated, Norwood, Massachusetts, for $\$ 5.95$.

[^7]: 1. Richard Klinman, W3RJ, "How to Update Your Ham-3 rotator," $C Q$, June, 1978, page 34.
[^8]: *To get an idea of the magnitude of the dimensions involved, the following conversions are given:

 $$
 \begin{aligned}
 1 \text { micron }= & 10^{-6} \text { meter }\left(3.94 \times 10^{-5} \text { inch }\right) \\
 1 \text { Angstrom }= & 10^{-1} \text { millimicron or } \\
 & 10^{-7} \mathrm{~mm}\left(3.9 \times 10^{-9} \text { inch }\right) \\
 25.4 \text { microns }= & 2.54\left(10^{-2}\right) \mathrm{mm}\left(10^{-3} \text { inch }\right) \\
 1 \text { micron }= & 10^{4} \text { Angstroms }
 \end{aligned}
 $$

[^9]: B
 The nearest comparison would be to add the suggested list prices of three separate units of competitive fm rigs presently available. It would work out approximately as follows (and you would end up with three separate units to power):

 $$
 \begin{aligned}
 & 2 \text { Meters (Synthesized to } 5 \mathrm{kHz} \text {) \$ } 449.00 \\
 & 220 \mathbf{M H z} \text { (Synthesized to } 5 \mathrm{kHz} \text {) } 449.95 \\
 & 440 \mathbf{~ M H z} \text { (} 23 \text { channels, crystal) } 349.00 \\
 & \text { Crystals (Assuming } 20 \text { per } 440 \mathrm{MHz} \text { radio) } \quad 120.00 \\
 & \text { Total competitive price } \$ 1367.95
 \end{aligned}
 $$

[^10]: *Canada: Sandoz Colors and Chemicals, Box 385, Dorval, Quebec H9R 4P5. U.S.A.: Sandoz, Inc., 608 5th Avenue, New York, New York 10020.
 tallied Chemical and Dye Corporation, Industrial Division, 1348 Block Street, Baltimore, Maryland 21231.

[^11]: *An etched, drilled, and plated printed circuit board is available (air-mailed to the USA and Canada) from the author for 10 sFr (USA $\$ 5.00$).

[^12]: 1. Richard P. Halverson, W0ZHN and Ronald A. Stordahl, KøUXQ, "An Integrated-Circuit Electronic Keyer," QST, April, 1968, page 22. 2. "CMOS Oscillators," National Semiconductor Application Note AN-118, National Semiconductor Corporation, Santa Clara, California, 1977.
 2. Gene Hinkle, WA5KPG, "Ideas for a Portable Keyer Paddle," ham radio, February, 1977, page 52.
 3. Vidi la Grange, ZS6AL, "Simple Paddle for Electronic Keyers," ham radio, April, 1978, page 28.
 ham radio
