

Historically, Amateur Radio operators have made important contributions to the art and science of communications. Once again Amateur Radio assumes leadership in advanced communications technology. You have the privilege of being one of the first to include a Narrow Band Voice Modulation (NBVM) system In your station. The VBC Model 3000 is the system that you have been hearing about for a year and have read about recently in QST and the 1979 ARRL Handbook. It is the world's first such system.

The VBC Model 3000 provides full audio level compression and expansion... complete intelligibility in only 1300 Hz bandwidth. It permits you to take full advantage of other stations' RF speech clippers and processors... similar to the amplitude compression and expansion used for many years in telephone and satellite communications.
The Model 3000 is for mobile and fixed station use and requires no modifications to your existing equipment. It is completely self contained, including its own audio amplifier. The unit automatically switches into transmit mode when microphone is keyed or voice operation is used. It connects just after the microphone on transmit and just prior to the speaker on receive. In addition to its basic
function of operating in a narrow bandwidth, the Model 3000 also increases the performance of your station in the following ways:

- Reduces adjacent channel interference
- Increases signal to noise ratio
- Increases communications range

Some of its outstanding features include:

- High quality narrow band speech
- Self contained transmit/receive adapter
- Built in audio amplifier
- 5 active filters with a total of 52 poles
- Rugged dependable hybrid IC technology
- Low power consumption

Receive only features, such as sharp voice and CW filtering and amplitude expansion, provide improved reception without requiring a unit at the transmitting station.
For the more advanced experimenter the Model 3000 is available in a circuit board configuration for building into your present transceiver.
Henry Radio is ready to offer technical assistance and advice on the use and servicing of the Model 3000 and will help introduce new owners to others operating NBVM units. Get in on the ground floor... order yours now.
Price: VBC Model $3000 \$ 349.00$
Circuit board configuration $\$ 275.00$
For more detailed information please call or write. The Model 3000 will be available from most Tempo dealers throughout the U.S. and abroad.

NEW MFJ-981 3 KW Versa Tuner IV

 For $\$ 199.95$ you can run up to 3 KW PEP and match everything from 1.8 thru 30 MHz : coax, balanced lines, random wires. Built-in balun, SWR, dual-range forward and reflected power meter.

The NEW MFJ.981 3 KW Versa Tuner IV lets you run up to 3 KW PEP and match any feedline continuously from 1.8 to 30 MHz ; coax, balanced line or randorn wire.

This gives you maximum power transfer to your antenna for solid QSO's and attenuates har monics to reduce TVI and out-of-band emission.

An accurate meter gives SWR, forward, reflect ed power in 2 ranges (2000 and 200 watts).

A new all metal, low profile cabinet gives you RFI protection, rigid construction, and sleek styling.

Black finish. Rich anodized aluminum front panel. $5 \times 14 \times 14$ inches. A tlip down wire stand tilts tuner for easy viewing.
Efficient, encapsulated 4:1 ferrite balun. 500 $\mathrm{pt}, 6000$ volt capacitors, 18 position dual inductor. 17 amp, 3000 volt ceramic rotary switch. 2% meter. S0-239 coax connectors, ceramic feedthru for random wire and balanced line. Binding post for ground.
Every single unit is tested for performance and inspected for quality. Solid American construction,

> FREE MFJ LOGBOOK . . . Just ask your MFJ dealer to demonstrate these 3 KW Versa Tuner IVs. Logbook quantities are limited.
199^{95}
quality components. Full one year limited warranty. For your nearest MFJ dealer, call toll-free $800.647-1800$. Stop by your dealer. Compare it feature for feature with other tuners. Compare its value, its quality and its performance.

After a truly side by side comparison, you'll be convinced that its value, quality and features make it a truly outstanding value,
Why not visit your dealer today and see the NEW MFJ. 9813 KW Versa Tuner IV? If no dealer is available order direct from MFJ.

MFJ-982 3 KW VERSA TUNER IV has balun, 7 position antenna switch. Matches everything: coax, balanced lines, random wires continuously from 1.8 to $\mathbf{3 0} \mathbf{~ M H z}$.

Flexible 7 position antenna switch lets you select 1 coax thru tuner and 2 coax thru tuner or direct, or random wire and balanced line.

Up to $\mathbf{3} \mathbf{K W}$ PEP. Match any feedline from 1.8 to 30 MHz : coax, random wire, balanced line. Gives maximum power transfer. Harmonic attenuation reduces TVI, out of band emissions.
Black metal cabinet, anodized aluminum front panel. Flip down wire stand. $5 \times 14 \times 14$ in

Encapsulated 4:1 ferrite balun. $500 \mathrm{pf}, 6000$ volt capacitors, 18 position dual inductor, 17 amp

- 7 position

antenna switch

- 4:1 ferrite balun for balanced
 lines
ceramic switches. S0-239 coax connectors, ceramic feedthru for random wire, balanced line. binding post for ground.

Made in USA. One year limited warranty.
See it at your nearest dealer. If no dealer is available order direct from MFJ.

If you already have a SWR/wattmeter, the MFJ. 982 is for you.

MFJ-980 3 KW VERSA TUNER IV has built-in balun for balanced lines. Matches coax, balanced lines, random wires, 1.8 to $\mathbf{3 0} \mathbf{~ M H z}$.

Up to 3 KW PEP. Match any feedline from 1.8 to 30 MHz : coax, random wire, balanced line. Heavy duty encapsulated $4: 1$ ferrite balun.

Gives maximum power transfer. Harmonic attenuation reduces TVI, out of band emissions.

Black metal cabinet, anodized aluminum front danel. Flip down wire stand. $5 \times 14 \times 14$ in.

500 pf, 6000 volt cap., 18 position dual induc-

- Encapsulated 4:1 ferrite balun for balanced lines

tor, 17 amp ceramic switches.

Made in USA. One year limited warranty
See it at your nearest dealer. If no dealer is available order direct from MFJ.

Tuner IV.

FOR YOUR NEAREST DEALER OR FOR ORDERS

CALL TOLLFRE 800-647-1800

Order any product from MFJ and try it. If not delighted, return within 30 days for a prompt refund (less shipping).
Order today. Money back if not delighted. One year limited warranty. Add $\mathbf{\$ 8 . 0 0}$ shipping/handling. For technical Information, order/repair status, In Mississippl, outside continental USA, call 601-323-5869. Order By Mail or Call TOLL FREE 800-647-1800 and Charge It On MFJ ENTERPRISES, INC.

ham radio

contents

12 40-meter receiver M.A. Chapman, K6SDX

23 CW operator's PAL Carleton F. Maylott, W2YE
26 calculator-aided propagation predictions Henry G. Elwell, N4UH
32 deluxe memory keyer
Robert C. Cheek, W3VT
46 bandpass filter for RTTY
Nathan H. Stinnette. W4AYV
48 audio amplifier for the R-4C
J. Robert Sherwood, WB0JGP

George B. Heidelman, K8RRH
50 the verti-loop
Herbert L. Bresnick, WB2IFV
56 interesting solutions to the jammer problem Nuryev Sidelbandsk, UX3PU
62 variable-frequency audio filter Lewis T. Fitch, W4VRV
66 tranceive and split operation with the TR-4/R-4B combination William P. Winter, Jr., WB8JCQ
74 high-performance $432-\mathrm{MHz}$ converter Charles H. Robinson, N9KD
80 impedance measurements using an SWR bridge Benjamin J. Lowe, K4OF
86 digital techniques:
flip-flop interrial structure
Leonard H. Anderson

4 a second look 92 ham notebook
118 advertisers index 6 letters
108 coming events 8 presstop
86 digital techniques 118 reader service
103 flea market 50 weekender
112 ham mart

It's spring and hamfest time again. It seems that no matter where you look, you'll see an announcement for yet another convention, radio auction, hamfest, or fm talk-in, and the Dayton Hamvention in Dayton, Ohio, which is billed as the original hamvention, is one of the biggest of the year. Scheduled for the last weekend of April, the Dayton Hamvention draws upon the large amateur population of the Midwest and has provided the model for many successful Amateur Radio conventions around the country. Several years ago, in fact, a contingent of Japanese amateurs came over to take a look at the Hamvention and its management, then returned to Japan where they staged a very popular and successful ham convention in the shadow of Mount Fujiyama.

Growing by leaps and bounds in recent years, more than 19,000 hams were in attendance last year, and even more are expected in 1979! But even with this huge influx of Amateur Radio enthusiasts, everything runs smoothly, and this year, as always, the Dayton Hamvention Committee has gone all out to ensure a lively, interesting weekend for all. Bright and early Friday, April 27th, the Amateur Radio manufacturers and distributors will start setting up their exhibits. At high noon the exhibition doors will be opened to the public - the exhibit hall will remain open until 8:30 PM, so you'll have plenty of time to browse through the many commercial exhibits. And, if this year's exhibit area is anything like those in the past, you can bet some major new Amateur Radio products will be unveiled by the manufacturers.

When the lights go out in the exhibit hall on Friday evening, they'll come on in other parts of town with banquets or gatherings scheduled for the QCWA and Old Old Timers as well as groups interested in DX, slow-scan TV, and fm repeaters (the well-known FM Bash). By early Saturday morning things will really be humming around Hara Arena, weekend home of the Hamvention, as vendors and traders from miles around start setting up shop for the famous Dayton Flea Market. Like other parts of the Hamvention, the flea market grows every year, and now takes up more than 10 acres of real estate behind the main convention hall. Whether you're interested in good used ham gear, replacement parts, vacuum tubes, new components, or antique radios, chances are good that the item you want will be for sale - your problem is to locate it among the thousands of items on display.

At 9:00 AM Saturday morning the first of many forums will be kicked off with sessions devoted to antennas, microwave techniques, space communications, microprocessors, and code proficiency. Between 1130 and 1300 there will be meetings for the DXers and Oscar enthusiasts. After lunch the emphasis will be on contests, QRP rigs, ATV, fm repeaters, vhf/uhf, and moonbounce. The traditional Saturday-night cocktail hour and banquet begins at 7:00 PM.

Early Sunday morning, just about sunrise, the Flea Market will open for another day's business; a few hours later the exhibition hall will open once again and the ARRL Forum will get under way. If you've never been to a major ham convention, the ARRL Forum offers you a chance to ask the ARRL's officers and directors questions about League affairs. The FCC Forum scheduled for Sunday afternoon gives you a similar opportunity to ask questions of FCC staff members from Washington. Both the ARRL and FCC Forums are among the most popular get-togethers at any convention, so be sure you arrive early to get a good seat.

In addition to the various sessions and forums, there will be technical and group meetings for ARPSC, OSSB, and MARS. Other special groups attending the Hamvention are the Buckeye Belles, Mid-Cars, Ten-Ten, Firebirds, Young Ladies Radio League, and others. If past performance and the 1979 schedule are any indication, this year's Dayton Hamvention will be another great show.

For amateurs who arrive in trailers and campers, parking will be permitted only in specially designated areas (no campers or travel trailers will be permitted to park in the Arena lot, including the flea market area). For those who stay in the downtown hotels, free bus service will be provided out to the Hamvention. A large allotment of rooms has been set aside for the Hamvention by the local hotels and motels; all room requests should be directed to the Accommodations Committee so that rooms can be alloted within the available supply. For more information, and a Hamvention brochure, write to the Dayton Hamvention, Post Office Box 44, Dayton, Ohio 45401.

If you've never been to the Dayton Hamvention, but have considered it, this is the year to go. If you've been before, you already know what I'm talking about. See you there!

Optimum Performance Optimum Value/IC-211

2 meter Multi-Mode 4 MHz Transceiver

-Full 4 MHz • Operates new subband •Two VFO's built in - Single knob frequency selection - Variable offset - Remote programming with compatable RM2 microprocessor - Two speed optical chopper dial - Computer input port . LSI circuitry$117 v$ AC built in Variable power output $\cdot 100 \mathrm{~Hz} \& 5 \mathrm{KHz}, 144-146 / 5 \mathrm{KHz}, 146-148$ -SSB \& CW, 144-148 / FM, 144-148 : IF noise blanker •Front panel discriminator SWR meter • VOX on SSB with adjustable gain level and delay • CW sideband monitor - Semibreak-in CW
"The IC-211 is a very fine piece of electronic equipment. It is every bit what I expected, and more."

John, K2UFA
"Very fine receiver, and easy to operate, even with so much on it. Nice!"

Alex, WD4DGF
"Fantastic rig! ICOM line recommended by dealer, but rigs sold themselves!!"

Jerry, WB9QKV
"The IC-211 outperforms anything I've used... Regal quality throughout. .. exceptional cosmetic design and compact ruggedness. Truly a masterpiece of engineering inside and out."

Steve, WD9FRP
"I only buy the best."
Frank, WB4WUY
"An excellent rig. Both my wife (WB9BFY) and myself are very pleased with it."

Neal, WB9ZCU
"An exceptional piece of equipment. Very versatile."

Bernie, WB2FBP
"The one that probably best illustrates our point -that your Amateur Radio dollar buys a lot more these days-is the ICOMIC-211... The key word in any description of the IC-211 is versatility."

QST Magazine,
"Product Review",
Dec. 1978

All ICOM radios significantly exceed FCC specifications limiting spurious emissions.
Specifications are subject to change without notice.

 $15 \mathrm{KHzat}-60 \mathrm{~dB}$

Dear HR:

I've just finished reading the article on phase-locked loop demodulators in the September issue, and noticed a couple of minor errors which l'd like to comment on. In the discussion of capture and lock range, the PLL is referred to as a positive feedback system. That is not correct, as a PLL uses negative feedback (like any other closed-loop system) to reduce the error to a minimum. In this case, it is the phase error between the reference (the frequency you want to track) and the controlled variable (the VCO frequency) which is reduced by developing a signal proportional to their difference.

Another gremlin showed up in the caption for Fig. 4 and the accompanying text, where the acquisition beat note is described as sinusoidal. It is not sinusoidal, as an examination of photographs of that signal will show. It can't be a sinusoid, because a sinusoid doesn't have a dc component. As the author points out, the output of the phase detector and low-pass filter has to have a dc component which will drive the VCO toward the reference. The most common phase detector in PLL systems is a multiplier which multiplies the input signal by a squarewave from the VCO. The multiplier produces a positive halfwave rectified output when the inputs are 90 degrees out of phase, and a negative half wave rectified output when the inputs are 180 degrees out of phase. The acquisition beat note consists of a series of these rectified sine waves which
increase in period as the difference frequency decreases. The low-pass filter acts as an integrator which reduces the ripple and provides an average dc voltage which drives the VCO toward the reference. The PLL will lock when the signals are the same frequency and differ in phase by 90 degrees, which is the point where the phase detector and lowpass filter has zero dc output.

Academic nitpicking aside, I was pleased to see a nonmathematical discussion of amateur applications for the PLL. The PLL offers the possibility of some improvement in threshold sensitivity over conventional discriminators, due to its lower noise bandwidth. The noise bandwidth of the PLL is determined by the lowpass filter (approximately 3-5 kHz for an fm speech demodulator). A conventional discriminator must contend with the noise from the full i-f bandwidth. Since the i-f bandwidth for amateur fm is usually 14 kHz (and the noise bandwidth is even higher), the threshold sensitivity of a PLL demodulator should be several dB better than a conventional discriminator. I plan to run some experiments in the near future to determine the actual improvement in practice, and hope to see more discussion of this subject in ham radio.

John J. Murphy, K6JLF Post Office Box 1875 Ridgecrest, California 93555

pi network design Dear HR:

A small short circuit in my article on "Pi Network Design" (March, 1978 issue) has surfaced courtesy of correspondence with Robert F. White, W6PY. Three values at the top left-hand column on page 37
should be:

$$
X_{c}^{\prime}=-608.64 \quad C_{c}^{\prime}=36.572 p F
$$

In the second paragraph following the tabulation, total $C_{m}=222.59$ $p F$. Total mid-point capacitance, due to improper calculation of the first (prime-valued) section, is off by exactly 5 pF .

Upon checking my original notes, I found there were two calculations for the dual-section pi network; I inadvertently used the wrong set. The equations are correct; only the calculated values are in error. W6PY found the error with his TI-59 calculator program.

Leonard Anderson Sun Valley, California

data package for the programmable hf receiver

Dear HR:

Because of the large response I received to my programmable highfrequency receiver, which appeared in the October, 1978, issue of ham radio, I have put together a limited number of data packages as a help to prospective builders. These data packages include over 40 pages of circuit and wiring diagrams, mechanical diagrams, and other data; the cost is $\$ 9.75$ per set, to cover costs of printing and mailing. The data package is intended as an aid in duplicating the receiver or using the same basic scheme to build a receiver to suit your readers' own needs. Printed-circuit layouts are not included, but the mechanical and wiring cliagrams will be helpful in cir-cuit-board development.

Norman J. Foot, WA9HUV
293 East Madison Avenue
Elmhurst, Illinois 60126

Instant recall. (and with 10 or 25 watts of power)

Kenwood offers you a choice. The TR-7600 (10-watt) or TR-7625 (25-watt) with optional RM-76 Microprocessor Control Unit.

TR-7600 and TR-7625 ... one of them is sure to fit the needs of today's Amateur Operator who's looking for optimum versatility in a 2 -meter FM transceiver. And, when either rig is combined with the RM-76, a whole new dimension unfolds in channel memory and scanning capability. Here's what you get:

TR-7600 AND TR-7625 (ONLY)

- Memory channel... with simplex or repeater (+600 kHz transmitter offset) operation.
- Mode switch for operating simplex or for switching the transmit frequency up or down or for switching the transmitter to the frequency you have stored in the TR-7600 or TR-7625's memory (while the receiver remains on the frequency you've selected).
- Digital frequency display (large, bright, orange LEDs).
- Dual concentric knobs for fast, easy selection of any 2 -meter frequency, in $100 \cdot \mathrm{kHz}$ and $10 \cdot \mathrm{kHz}$ steps.
- Full $4 \cdot \mathrm{MHz}$ coverage ($144.000-147.995$) on 2-meters; 800 channels: 5 kHz offset switch, and MHz selector switch...for desired band ($144,145,146$, or 147 MHz).
- UNLOCK indicator... an LED that indicates transceiver protection when the frequency selector switches are improperly positioned or the PLL is not locked.

TR-7600 AND TR-7625 WITH RM-76

- Store frequencies in six memories (simplex/repeater).
- Scan all memory channels.
- Automatically scan up the band in 5 kHz steps.
- Manually scan up or down in $5-\mathrm{kHz}$ steps (or fast tune).
- Set lower and upper scan frequency limits.
- Clear scan (for transmitting).
- Stop scan (with HOLD button).
- Scan for busy or open channel.
- Select repeater mode (simplex, transmit frequency offset ($\pm 600 \mathrm{kHz}$ or $\pm 1 \mathrm{MHz}$). or one memory transmit frequency).
- Operates on 143.95 MHz simplex (MARS)
- Adaptable to all MARS frequencies.
- Display indicates frequency (even while scanning) and functions (such as autoscan, lower scan frequency limit, upper scan limit, and error, i.e. transmitting out of band).
See the exciting TR.7600, TR.7625 and RM. 76 now at any Authorized KENWOOD Dealer!

LICENSE FEE REFUNDS came a step closer to reality with Commission adoption of a first Report and Order on its fee refund inquiry, General Docket 78-316. Only fees above $\$ 20$ are to be refunded in this first phase, which will begin in April or May, after the necessary fee refund applications and instruction packets can be printed and distributed.

Commission Staff Work has already begun on Phase II of the refund program, which will cover fees of $\$ 20$ or less. A Notice of Inquiry on Phase II is supposed to be ready for Commission action in 90 days.

AMATEURS WHOSE LICENSES EXPIRE now have five years instead of one in which to renew them without retaking the exam, the FCC decided at its February 27 th meeting. The extended grace period applies only to the operator's license, however; station licenses can be renewed up to one year after they expire, so any Amateur who waits more than a year after expiration to renew will receive a new callsign appropriate for his license class from the group that is currently being issued.

Code Exam Credit, which could formerly be "redeemed" only at the Field office at which the test had been taken, can now be used at any Commission Field Office.

Five Pending Petitions for Rule Making were also dismissed at the meeting. Four of them had asked for reestablishment of rules permitting Extras to select their own callsigns, while the other (RM-2360) had asked that stations operating on RTTY be permitted to identify by RTTY instead of CW as now required.

FCC's INVESTIGATION of licensing irregularities in the Indianapolis area, which began in mid-1976, is still in progress. A number of central Indiana Amateurs have received letters from the Commission asking them to explain questionable aspects of their licenses or calls.

AMATEUR TRANSMISSIONS of emergency information cannot be rebroadcast by commercial broadcast stations, the Commissioners decided on February 14th. Acting on a petition (RM-2830) filed by the National Association of Broadcasters, the Commissioners agreed to further consider whether CB emergency transmissions should be rebroadcast for public use.

ADDING A "PORTABLE" DESIGNATOR to a callsign has reportedly brought warnings to some Amateurs from FCC field engineers, but if so it's a misunderstanding of the rules. The rules change only eliminated the necessity for indicating portable or mobile status but did not prohibit the practice, which is required by some contest rules. Any Amateur cited or warned for signing portable should pursue the matter with the nearest FCC Field Office, or, if necessary, Washington.

220 MHZ OPERATORS now have a new certificate to shoot for, the " 100 CCXX Award" just announced by 220 Notes. Required are $220-\mathrm{MHz}$ contacts with 100 different stations. For an application for the award, which resembles similar 220 MHz incentives offered by the Northrup ARC and the 220 Club of San Diego, write WB9SNZ.

8 -BAND WAS has been achieved by K5CM, with - oddly enough - the last holes being on 10 and 40 meters. After finishing up a 2 -meter WAS last summer, and already having WAS on 6, Connie realized that he was within striking distance of becoming the first Amateur to earn the WAS award on eight bands. He began working on it in earnest in mid October, and within three months had all 50 cards for 160 in hand and only a few strays on other bands remaining to be cleaned up.

A NEW 2-METER DX RECORD was set February 13, when SV1DM made contact with ZS6DN in Pretoria at 18102 over a 7117 km path. It didn't stand long, however, as SV1AB (on the north side of Athens) worked ZS6DN just three days later - February 16 - at about the same time to extend it another 10 km .

2 -Meter DX is also heating up in the Americas - KP4ES, KP4Q, and KP4AAN all worked Argentina on 2 -meter FM, February 19th. Prior KP4-LU contacts had all been SSB or CW.
AN "AMATEUR RADIO OPERATORS ONLY" chain letter seems to be spreading. Most copies seem to be going to DXers, and come from overseas Amateurs.

As Money Is Requested, this letter is strictly illegal under U.S. law. U.S. Amateurs are advised to ignore it.

KH \emptyset CALLSIGNS WILL soon be showing up, as Northern Marianas Amateurs come under FCC jurisdiction. The Commission has decided to "grandfather" those who'd received their Amateur licenses from the former Trust Territory government into FCC licenses, though three KG6s who'd received their licenses as reciprocals must now reapply for an FCC reciprocal permit. Present Northern Marianas stations will be given their choice of keeping their present KG6 or stateside (if any) calls or receiving a new KHø.

Novice, QRP, 200 w, deluxe - good, better, best \$299, \$369, \$399, \$699, \$869, \$899, \$1069. TEN-TEC has them all. A choice of seven HF transceiver models - a choice of power levels - a choice of operating features (and accessories) for beginner or old timer. Best of all, there's a wide choice of prices to fit every amateur budget.

TEN-TEC "OMNI" TRANSCEIVERS - REALLY CHOICE.

Top of the line. Deluxe in every respect. Deserving of a place in the finest of operating positions. All solid-state 100% duty cycle 200-watt final amp.; 8-bands ($160-10 \mathrm{~m}$ plus convertible 10 MHz and "Aux" band positions); broadband design for no tune-up; built-in VOX and PTT: built-in Squelch; 4-position CW-SSB filter and 8-pole crystal filter with separate mode switch to permit using all filters in all modes; 2 -speed break-in; 2-range offset tuning; optimized sensitivity from $2 \mu \mathrm{~V}$ on 160 m to $0.3 \mu \mathrm{~V}$ on 10 m ; greater dynamic range (typically better than 90 dB) plus PIN diode switched 18 dB attenuator; WWV at 10 MHz ; front panel control of linear/antenna bandswitching; phone patch jacks; "timed" crystal calibrator (on "A" model only); zero-beat switch; SWR bridge; adjustable ALC and sidetone; dual speakers; plug-in boards; "clamshell" aluminum case with black vinyl covering plus warm dark metal front panel; full shielding, optimum size for convenient operation: $53 / 4^{\prime \prime} \mathrm{h} \times 14 \frac{1}{4}{ }^{\prime \prime} w \times 14^{\prime \prime} \mathrm{d}$. Model 545 OMNI-A with analog dial, only $\$ 899$; Model 546 OMNI-D with six $0.43^{\prime \prime}$ LED digital readouts, $\$ 1069$. Model 645 keyer, $\$ 85$, Model 243 Remote VFO, \$139, Model 248 Noise Blanker, \$49, Model 252MO AC Power Supply, \$119.

TEN-TEC "ARGONAUT" TRANSCEIVER-QRP CHOICE. The challenge and excitement of working the world on 5 watts. And every feature you need: all solid-state; 5 bands ($80-10 \mathrm{~m}$); full amateur band coverage SSB/CW; sensitivity less than 0.5 $\mu \mathrm{V}$; offset tuning; 4 -pole IF crystal filter, 2.5 kHz bandwidth; analog dial; vernier tuning; automatic sideband selection; built-in speaker; 5 -watt input to broadband push-pull final amplifier; PTT; full CW break-in; adjustable sidetone volume and pitch; built-in SWR bridge; TVI filter; plug-in boards; small and light weight enough to go anywhere ($41 / 2^{\prime \prime} \mathrm{h} \times 13^{\prime \prime} w \times 7^{\prime \prime} \mathrm{d}$ and 6 lbs .). World beating price, too: Model 509 only $\$ 369$; Model 210 AC Power Supply just $\$ 34$.

TEN-TEC 540/544 TRANSCEIVERS-POWER CHOICE.
200 watts from the bottom of 80 m to the top of 10 m - SSB or CW. No compromise from the leader in solid-state HF technology. Instant band change without tune-up; sensitivity $0.3 \mu \mathrm{~V}$; offset tuning; 8-pole crystal-lattice filter; WWV at $10 \& 15 \mathrm{MHz}$; push-pull solid-state final amp.; 100\% duty cycle; adjustable ALC with LED indicator; built-in SWR bridge; PTT; full CW break-in; adjustable sidetone pitch and vol.; zero-beat switch in Model 544. Choose the value leading Model 540 with analog dial and built-in 25 kHz pulsed calibrator for just $\$ 699$ or the Model 544 with six $0.43^{\prime \prime}$ LED digital readouts for $\$ 869$. Model 240160 M converter, \$110; Model 262M AC Power Supply with VOX, \$145; Model 252M AC supply only, $\$ 119$

TEN-TEC CW TRANSCEIVERS-BUDGET CHOICE.

The "Century 21" series. Unique. Modern technology with old-fashioned value. Fine performance, reliability, and simplicity of operation, all at low cost. Win raves from novices and confirmed brass pounders alike. All solid-state; 5 bands (80-10 m) full amateur band coverage; receive CW and SSB , transmit CW ; sensitivity $1 \mu \mathrm{~V}$ or less; offset tuning; 3-position selectivity ($2.5 \mathrm{kHz}, 1 \mathrm{kHz}, 500 \mathrm{~Hz}$); 70 w input to push-pull Class C final amp.; broadbanded for no tune-up or resonating; full break-in; adjustable side-tone level; built-in AC power supply. Choose Model 570 with analog dial for only $\$ 299$; Model 574 has a 5 LED digital readouts for only $\$ 399$.

The choice is all yours when you choose TEN-TEC HF transceivers; see your nearest dealer or write for full details.

WIDEST CHOCE IN HF

 TRANSCEIVERS: TEN-TEC

THIE DAWANIC

The age of tone control has come to Amateur Radio. What better way to utilize our ever diminishing resource of frequency spectrum? Sub-audible tone control allows several repeaters to share the same channel with minimal geographic separation. It allows protection from intermod and interference for repeaters, remote base stations, and autopatches. It even allows silent monitoring of our crowded simplex channels.

We make the most reliable and complete line of tone products available. All are totally immune to RF, use plug-in, field replaceable, frequency determining elements for low cost and the most accurate and stable frequency control possible. Our impeccable 1 day delivery is unmatched in the industry and you are protected by a full 1 year warranty when our products are returned to the factory for repair. Isn't it time for you to get into the New Age of tone control?

TS-1 Sub-Audible Encoder-Decoder - Microminiature in size, $1.25^{\circ} \times 2.0^{\circ} \times .65^{*}$ - Encodes and decodes simultaneously $\$ 59.95$ complete with K - element.
TS-1JR Sub-Audible Encoder-Decoder - Microminiature version of the TS-1 measuring just $1.00^{\circ} \times 1.25^{\circ} \times .65^{\prime \prime}$, for handheld units - $\$ 79.95$ complete with K -1 element.
ME-3 Sub-Audible Encoder • Microminiature in size, measures $.45^{\circ} \times 1.1^{11} \times .6^{\circ} \cdot$ Instant start-up $\boldsymbol{\$ 2 9 . 9 5}$ complete with K - 1 element.
TE-8 Eight-Tone Sub-Audible Encoder • Measures $2.6^{*} \times$ $2.0^{\circ} \times .7^{*}$ - Frequency selection made by either a puil to ground or to supply - $\$ 69.95$ with 8 K -1 elements.
PE-2 Two-Tone Sequential Encoder for paging - Two call unit - Measures $1.25^{\circ} \times 2.0^{\circ} \times .65^{\circ} \cdot \$ 49.95$ with 2 K -2 elements.

SD-1 Two-Tone Sequential Decoder - Frequency range is $268.5-2109.4 \mathrm{~Hz} \cdot$ Measures $1.2^{\prime} \times 1.67^{\prime \prime} \times .65^{\prime \prime} \cdot$ Momentary output for horn relay, latched output for call light and receiver muting built-in - $\$ 59.95$ with 2 K -2 elements.
TE-12 Twelve-Tone Sub-Audible or Burst-Tone Encoder • Frequency range is $67.0-263.0 \mathrm{~Hz}$ sub-audible or $1650-4200 \mathrm{~Hz}$ burst-tone - Measures $4.25^{\circ} \times 2.5^{\prime \prime} \times 1.5^{\prime \prime} \cdot \$ 79.95$ with 12 K - 1 elements.
ST-1 Burst-Tone Encoder •Measures $95^{*} \times .5^{5} \times .5^{\circ}$ plus $\mathrm{K}-1$ measurements - Frequency range is $1650-4200 \mathrm{~Hz}$ $\$ 29.95$ with K -1 element.

COMMUNICATIONS SPECIALISTS

426 West Taft Avenue, Orange, CA 92667
(800) 854-0547, California residents use: (714) 998-3021

40-meter receiver

for home construction

A project for those
wishing to build their own high-performance superhet it features double conversion, all-variable-diode tuning, and digital frequency readout

This article describes an easily duplicated 40 -meter receiver project. The design minimizes the use of "bells and whistles" and emphasizes performance. A variety of add-on features can be incorporated in the design.

Most Amateurs have at one time or another expressed interest in building their own receiver; however, most receiver projects fail. The reasons are usually ascribed to lack of parts, time, interest, or know-how. Many receiver projects fail simply because the builder tries for too much accessory performance before the basic receiver system is operating. That is, many hours may be spent attempting to incorporate certain special-purpose features such as a fast attack agc in a detector long before the $i-f$ and oscillator sections are operating. The builder usually loses enthusiasm for the project by being engrossed too long in the details of getting some basic function to operate in some superhuman fashion. My recommendation is to concentrate on getting the basic system operating at least to the point where signals are heard; then real improvements and add-on features will keep the inertia of the project moving along to completion.

By M. A. Chapman, K6SDX, 935 Elmview Drive, Encinitas, California 92024

Some receiver construction projects can fail because the builder wants long-imagined, ultra-high performance and operating flexibility. To have "everything" in a receiver is impractical. A more rational approach is to think "reasonably." Compromise the first time, learn to get the basic functional blocks operating correctly, then add on the bells and incorporate your own whistles.

some ideas

Fig. 1 illustrates the functional blocks found in a superheterodyne ssb and CW receiver. One can argue the need for an if stage; however, to reach out and snag the really tough signals and minimize spurious mixer products, the rf stage is preferable.
The biggest single problem with the superhet are image signals also available to the i-f stage. The use of moderate Q values in the rf and mixer tuned circuits can minimize these image effects. In some operating areas, where the image signal strength is many orders of magnitude greater than the principal tuned signal, tuned traps in the antenna feedline can reduce the image-signal amplitude to acceptable levels.
The conversion of the desired signal frequency to an intermediate frequency is the responsibility of the first mixer. Mixers are nonlinear devices, which approach a power-law transfer function; because of this nonlinearity they also send along other spurious products available from the antenna to the i-f amplifiers. These products are usually second- and thirdorder signals but represent other noise and image sources with which your receiver must contend.
The audio stage. Audio detection normally occurs in the second mixer. The beat oscillator provides an injected carrier for the amplified i-f signal to beat or heterodyne, resulting in a detected audio signal. The signal at the second mixer output contains, in addition to the desired audio, a wide spectrum of mixersignal components. Most of these are in the if range and are easily bypassed to dc ground. Some audio harmonic products exist and usually represent

fig. 1. Block diagram of an ssb superhet receiver.

fig. 2. Summary of receiver audio bandwidth requirements for Amateur ssb and CW communications.
receiver background noise. Other noise sources are white noise from the antenna, which has an instantaneous frequency component equal to or near the audio signals of interest, and, active-device thermal noise from the receiver front end. When we speak of signal-to-noise ratio, we are usually referring to the amplitude ratio between a detected signal of say, 1 $\mu \mathrm{V}$, with the receiver input grounded or shorted. Many commercial manufacturers also perform this test in an rf-free screened room, where discrete sources can't penetrate the chassis and only the receiver internal noise is actually measured.

Restricting bandwidth. We may improve our system signal-to-noise ratio by restricting the bandwidth of detection to the smallest possible interval that will support communications. In the reception of a CW signal we're accustomed to a tone between 800 and 1000 Hz ; one could visualize a system that has only a $200-\mathrm{Hz}$ bandpass. Many superior receiving systems have a CW bandpass on the order of 100 Hz , centered near 900 Hz . The signal-to-noise ratios are extremely good, since only a random number of noise products fall within this bandwidth. For ssb communications, we need only a bandwidth wide enough to pass the voice consonants. Amateur receiving systems exist that employ filters limiting the audio bandwidth to approximately 1000 Hz . Various audio communications tests have shown that the average person requires audible communications bandwidths of $1500-2000 \mathrm{~Hz}$. These ideas are illustrated in fig. 2.

If the useful audio bandwidth requirements for ssb communications are limited to 2 kHz the i-f bandpass need not exceed this interval; however, using LCtuned circuits in the i-f or rf sections to achieve a
sharp-skirted $2-\mathrm{kHz}$ bandpass would require almost superhuman effort. The value of bandpass can be satisfied using crystal or mechanical filters that have extremely sharp passbands, so that infringing adjacent signals don't spill into the interval of interest.

High-frequency thermal noise in the receiver frontend active devices is normally outside the filter cutoff; however, noise originating in the detector and audio frequency sections should be considered. Most RC cutoff techniques are suitable for a-m and fm broadcast reception but don't provide sufficient attenuation of undesirable audio components for ssb and CW reception. A variety of active low, high, and bandpass circuits exist for audio processing, and most readers are at least tentatively aware of their implementation in a receiver. The ARRL Handbook illustrates several audio-processing designs that will provide good post-detector audio processing for optimizing ssb and CW reception.

design

We'll start with fig. 3, a block diagram of a 40 meter superheterodyne with all-variable-diode tuning and digital-frequency readout. There's no real difference in the diagrams of figs. 1 and 3 - only some minor digital equipment, which allows $100-\mathrm{Hz}$ tunedfrequency determination. The i-f has two separate frequencies, hence dual conversion - a desirable feature for high gain and narrow-bandpass tuning.
by a summation of signals from each of the principal oscillator sections and displayed using a five-decade LED arrangement.

Referring to fig. 4, signal preselection and initial receiver gain are achieved in the of and first mixer stages, a major role in performance. We should have a good understanding of these circuits. The if tuned circuit consisting of L1, C1, and VVC1 are parallel connected to 01 gate 1 . This is a parallel-tuned circuit. The $0.001 \mu \mathrm{~F}$ capacitor in parallel with the 620 k resistor puts the bottom end of L1 at ac ground, as does the $0.05-\mu \mathrm{F}$ capacitor on the VVC1 cathode. With a little arithmetic it's easy to see that L1 is also series resonant near 1.5 MHz , the i-f.

Parallel-tuned circuit L1, C1, VVC1 provides a high impedance to incoming signals at 7 MHz and a low impedance to signals outside the effective bandwidth.

The parallel-tuned circuit is frequency selective by providing maximum signal voltage to Q 1 gate at the frequency of interest and a minimum voltage at frequencies outside the bandwidth. A similar tuned circuit L1, C2, VVC2, is on the input of O 2 gate 1 . Var-iable-capacitance diodes VVC1 and VVC2 are ganged for peaking the incoming of signal.

The series-tuned circuits in L1 and L2 act as image shunts for signals originating at the input. The shunting action occurs because of the low impedance to ground offered by the $1.5-\mathrm{MHz}$ series-tuned circuit.

fig. 3. Block diagram of the $\mathbf{4 0}$-meter receiver.

Front end. The if and first mixer tuned circuits are ganged independently from the HFO control voltage for improved signal peaking. Heterodyne oscillators are crystal controlled for stability. Over-all system bandpass shaping is achieved with a Collins mechanical filter in the second i-f. Tuning accuracy is derived

Q1 drain circuit is a simple inductive load ac coupled to Q 2 input. O 2 drain load is the primary of the first i-f transformer, T 1 . In both cases, the drain circuits represent reasonably high ac impedances for good voltage gain. Care in the selection of the Q 1 drain inductor is important, because stray winding capacitance
can have the opposite effect, i.e., shunting the output signal to ac ground.

Fig. 4 illustrates the Q1 and Q1 mosfet gate bias voltages, which are set for near optimum gain even though O 2 is acting as a mixer amplifier. Because Q1 and O2 gate currents are small, we can use high volt-
and adequate system gain is available for all but a few very exotic types whose attenuation characteristics exceed 30 dB . Nominal attenuation for the Collins unit is $\approx 10 \mathrm{~dB}$. The selection of 1.9 kHz for bandpass shaping represents a compromise between CW and ssb signal reception. Superior ssb reception

fig. 4. Rf amplifier and first-mixer schematic.
age-dividing resistance values for these circuits and minimize tuned circuit loading.

It may appear strange at first that the rf and first mixer are gate biased at the same point. Readers familiar with the principle of active device power-law mixing, where device biasing is set near the optimum nonlinear portion of the transfer curve, will realize the dual-gate mosfet acting as a cascode arrangement performs a modulation of the drain-circuit current for mixing, rather than a true nonlinear power-law mix. The mosfet can be biased for nonlinear mixing as well, and this is accomplished in the familiar circuit for 06, the second mixer (see fig. 6).

Second i-f, detector, and BFO. Fig. 5 illustrates the i-f scheme for the second frequency conversion. The first i-f amplifier is a high-gain IC, U1, which provides about 28 dB signal gain. I-f transformers on the input and output preselect the desired signal and attenuate undesired heterodyne first mixer components. Q6, the second mixer, provides little actual system gain; the drain circuit load, T3, is the second i-f transformer. T3 includes a simple ceramic filter in the secondary for initial band shaping. This filter is inadequate for any serious ssb or CW use. The principal i-f amplification and detection occurs in U2, shown in fig. 6.

Preselected $455-\mathrm{kHz}$ signals are ac coupled from T2 and internally amplified before presentation to a highly selective Collins mechanical filter for i-f bandpass shaping. I have used a Collins $1.9-\mathrm{kHz}$ filter here; however, a variety of similar filters can be used,
is accomplished with this filter; however, only good CW reception is possible.

Following the bandpass amplification section of U 2 is a product detector agc feedback stage. Detected audio is RC filtered on the output to decouple if components before audio amplification. The agc feedback circuit is not connected in this design but may be incorporated as an option.
Oscillator circuits. The oscillators are shown in figs. 5, 6, and 7. Each of those oscillator circuits is a simple Colpitts arrangement followed by a fet bipolar isolation and shaper stage. The fet buffer minimizes oscillator loading and the effects of frequency distortion from the CE shaper stage. The high frequency oscillator (HFO) is tuned using a variable-capacitance diode, VVC3. The tuning voltage ($V_{F V}$) provides the range of reverse bias necessary for tuning the HFO for proper heterodyne-frequency conversion in the first mixer stage.

Audio amplifier and power supply. Detected audio amplification and dc power generation are shown in figs. 8 and 9. Fig. 9 also includes the scheme for deriving the V_{FV} voltage and a method of band spreading the HFO frequency for $\approx 20 \mathrm{kHz}$ / revolution of the front panel tuning control potentiometer.

Digital counter.Fig. 10 is the schematic of the digital counter. The clock from which the entire accuracy of our system depends is derived from the 10 MHz crystal oscillator, Q 1 , and multi-decade divided

Underchassis view of the 40 -meter receiver.
by U1, U2, and U3. The combination of division in U1, U2, and U3 is 10^{6}, which provides a $10-\mathrm{Hz}$ clock pulse. The $Q B$ and $Q C$ strobes are used for gate and transfer timing. U4 may be thought of as a ring counter, which further divides our $10-\mathrm{Hz}$ clock into four equal time periods shown on the gate timing diagram, fig. 11. U5 is an AND gate to control the count periods. U6 is a large, multiple three-input AND device used to select a discrete period. The oscillator input counts and guides the signal in serial sequence through to the LED display.

We can best visualize how the digital counter works by remembering that the actual tuned frequency is a summation of the various rf stage oscillator outputs. That is, if we take a typical case, the oscillators can be summed to provide our actual
tuned frequency, as in the following example:

```
HFO: 5.650.0 MHz
LO: }\quad1.045.0\textrm{MHz
BFO: 0.456.0 MHz
SUM: 7.151.0 MHz (display)
```

Our counter works exactly as shown above. It takes each oscillator pulse train and looks at it for 100 ms , transferring the gated pulse train through the final gate, U7, in sequence. If we examine, for instance, the high-frequency oscillator at some nominal case, say 5.65 MHz , we see that there are $5,650,000$ counts in one second. But since we have a gate window for the HFO of only 100 ms , then only 565,000 counts are seen by $U 7$ in any one count cycle period. The same is true of the local oscillator and BFO counts. The total number of counts is proportional to the period established by the clock timing interval, and gated as shown in the timing diagram of fig. 11. The count cycle periods shown in fig. 11 are derived from the ring counter AND circuits of U4 and U5. Each complete count cycle is 250 ms wide and has four separate parts:

1. Part 1 is count oscillator 1
2. Part 2 is count oscillator 2
3. Part 3 is count oscillator 3
4. Part 4 is transfer and display

Each of these periods is sequential so that only a serial stream of counts is seen and passed by U7. U8 serves only to delete the unwanted decade before passing the train into the LED display. U8 may be deleted for six-decade presentation if the LED selected has sufficient speed.

The transfer and clear signals are derived during the fourth time periods of our count cycle and are strobed for delayed timing by the $Q B$ and $Q C$ pulses so that there is adequate internal ripple and settling time before updating the display.

fig. 5. I-f detector and BFO schematic.

fig. 6. Local oscillator and second-mixer schematic.

U9 through U13 serve as a five-decade count, latch (transfer), and LED display. Notice that a standby switch controls the ± 5 volt bus to the LED display. The purpose here is to provide power dissipation limit control but not to interrupt the continued operation of the oscillators. This will avoid the thermal shock that receiver on-off cycling would effect and minimize oscillator drift.

construction and
 device selection

Construction of the rf section is on one PC-board assembly.* The digital circuits are divided between two boards, the gate segments and the LED display. There's probably an ideal assembly sequence; however, being practical, one never has all the parts available at the initial starting point and we must compromise by building up various sections of the system. Any of the subfunctional blocks on a PC board can be built and tested, or the entire board assembly can be constructed and initially aligned. \dagger

The chassis assembly shown in the photographs should in no way represent an optimum or the only way to do it; however, your chassis approach should include effective shielding if birdie and image rejection is to be achieved. An rf shield around the gate and low-frequency clock circuitry is necessary to isolate the large $10-\mathrm{Hz}$ pulse from being coupled to the audio or causing harmonic interference to the if stages.

There's no magic in device selection. With a little

[^0][^1]common sense, each of the discrete devices can be replaced with an alternative that is from a similar family type.

Consider Q1, Q2, and Q3; these are RCA 40841 dual-gate mosfet devices, and there are similar devices within the RCA family and other manufacturers' lines. The key items when considering substitution here is to become familiar with the transconductance characteristics with respect to gate 1 and gate 2 to source biasing and quiescent drain current. Most of the RCA family devices have very similar biasing. Alternatives such as the 40671 and 3 N 187 are almost identical in operation. Care in the substitution of units such as the Motorola MFE3006, 007, and 008 types is required, because the gate 2-to-source transconductance curve differs. There are a number of mosfet enhancement types available. You should avoid these in this arrangement because of the difficulty in obtaining sufficient reverse bias to properly operate the tuned circuit VVCs.

The 2N4401 device was standardized as the workhorse NPN. This is a general-purpose and switching unit having moderate beta at low collector currents. Any unit having an $F_{b}\left(\frac{f_{T}}{\bar{\beta}}\right)$ greater than 6.25 MHz , or with similar ratings, can be used here. One needs only to put a small $5 k$; pot in place of the present collector base feedback resistor and adjust the pot until collector saturation occurs, with the output amplitude and frequency as shown in the diagrams. For determining the alternative device feedback resistance value, remove the pot, measure its value, and use the closest standard resistor available.

The N-channel fet, $2 N 5458$, is a general-purpose, medium-frequency device. Any reasonably similar type may be used by placing a pot in place of the source-feedback resistance and adjusting it until the output amplitudes coincide with those shown in the
diagrams. Remove the pot and install a fixed resistor with a value close to that measured on the pot. The output signal should also be examined for obvious harmonic distortion if substitutes are used, because poor mixer gain and increased receiver noise could result.

There are many VVC units that can be used provided they have similar +4 volt ratings and reasonable tuning ratios greater than two. Substitute VVCs should not be self-resonant near these operating frequen-
degeneration, since many CMOS equivalent units are inoperable above 5 MHz in the +5 volt V_{DD} condition. Type LM374 may be used in place of the LM373 by including a 1 k resistor between pin 9 and V_{CC} on U2. The LM703LH may be used to replace the LM703H provided the ac decoupling cap on pin 5 is moved to pin 7.

alignment and test

Before alignment or assembly of the rf section to

fig. 7. High-frequency-oscillator schematic.
cies. Alternative ICs to those shown exist in manufacturers' data books by various part numbers; however, the TI74490 is proprietary at the time of this writing. It is my understanding that other manufacturers expect to have equivalent devices on the mar-
the chassis, power should be applied and a verification made of the dc voltage levels and oscillator levels in the quiescent state. Incorrect dc-voltage levels are a sure indication of probable malfunction! The dc values for all significant voltage points are shown in

ket soon (i.e., Motorola, National, and Fairchild). Type 74L, 74LS, and 74H units may be used for all or any of the gate circuit elements with slight increases or decreases in current requirements for this assembly. There are CMOS replacements for the low-frequency portions of the gate circuitry; however, their use should be examined carefully to avoid frequency
the schematics. These values were obtained using a high-impedance VOM and a nominal +15 volt $V_{C C}$ voltage. Type 7815 regulators will provide outputs of ± 5 per cent of nominal and may have a mild effect on the expected dc levels; but any circuit having dc values ± 10 per cent from those indicated should be closely scrutinized.

test sequence

1. $A C$ couple a $50-\mathrm{mV}$ peak-to-peak $1-\mathrm{kHz}$ signal through a $0.01-\mu \mathrm{F}$ capacitor to U3 pin 7. With power applied, a 2 -volt P-P signal should be apparent on pin 12 with a 10 -ohm resistive load substituted for a speaker load. (All signals are referenced to ground.)
2. Adjust the BFO level on $U 2$ pin 6 for $\approx 50 \mathrm{mV}$ P-P. Adjust the i-f gain control for 4.0 volts on U2 pin 1.
put where a $455-\mathrm{kHz}$ signal appears and T1, T2, and T3 adjusted for maximum.
3. The HFO $V_{F V}$ fine band-edge voltage levels should be set as shown in the schematic. With the tuning potentiometer set at the indicated levels, or using an external supply, apply ≈ 11 volts to VVC3 cathode. With $V_{C C}$ applied, adjust L 3 slug until a $5.65-\mathrm{MHz}$ signal is available on O 2 gate 2. Adjust the source swamping resistor (30 k) for the output amplitude shown in fig. 7. Traverse the tuning range and alter-

fig. 9. Power-supply schematic.

Ac couple a $10-\mathrm{mV}, 455-\mathrm{kHz}$ rf signal (unmodulated) through a $0.01-\mu \mathrm{F}$ to U 2 pin 2. Adjust the $455-\mathrm{kHz}$ if signal for 1 kHz detected audio on U2 pin 7 . The amplitude of the detected audio should be 60 mV P-P; detuned noise should be $\approx 5 \mathrm{mV}$ P-P. A verification of i-f gain control should be made by varying the voltage on $U 2$ pin 1 from ≈ 3.9 to 4.5 volts. Maximum gain should occur at ≈ 4.0 volts.
3. Ac couple a $455-\mathrm{kHz}$ rf signal of 10 mV into T 3 pin 3. Peak T3 for maximum detected audio at U2 pin 7 .
4. Ac couple a $1.5-\mathrm{MHz}$ rf signal of $100 \mu \mathrm{~V}$ into T 1 pin 2 and peak T1, T2, and T3 for maximum. Detected audio signal on U2 pin 7 should be approximately 200 mV P-P. The signal may also be monitored on U2 in-
nate the bandset switch so that the output signal frequency is 5.498 MHz at the low end and 5.802 MHz at the high end of the HFO. Monitoring should occur at Q2 gate 2 .
6. Ac couple a 7.15 MHz signal of $100 \mu \mathrm{~V}$ into Q 2 gate 1 and monitor the audio output while adjusting the HFO for detector conversion. After obtaining detected audio from U2 or U3, with the HFO set for conversion of $7.15-\mathrm{MHz}$ signals, repeak $\mathrm{T} 1, \mathrm{~T} 2$, and T3 for maximum. Monitoring the rf envelope on U2 pin 2 may provide an easier point for verification of optimum alignment.
7. Ac couple a $30-\mu \mathrm{V}$ signal of 7.15 MHz into Q 1 gate

1. Adjust the HFO frequency for a maximum $455-\mathrm{kHz}$
envelope. Adjust the if tuning pot for maximumdetected audio or if envelope. Inject a $5-\mu \mathrm{V}$ signal into the antenna input, and peak L1 and L2 for maximum detected signal; then go back through all tuning elements and peak for maximum. The peak detected if envelope at U 2 , for a $1-\mu \mathrm{V}$ input of 7.15 MHz , should be 60 mV P-P $(\approx 95 \mathrm{~dB})$.
as shown in fig. 11; however, scope monitoring of the logic pins should indicate that a pulse exists.
2. Inject a $1-\mathrm{MHz}$ ff signal of 100 mV into oscillator no. 3 input, and monitor U7 pin 12 and U8 for oscillator clock train output occurring at regular $250-\mathrm{ms}$ intervals. If the display board is available, temporarily

fig. 10. Digital-counter and display schematic.
3. Final alignment should occur after the rf and digital boards have been installed on the chassis, because the effects of stray capacitance will shift all of the oscillators and rf-tuned circuits slightly. This final alignment should occur with rf input signals in the order of $3 \mu \mathrm{~V}$.

digital-circuit testing

1. Apply power to the gate control board and monitor the frequency of the quiescent states of the logic circuits, as shown in fig. 10. It may not be possible to verify the various timing pulses relative to each other
jumper the latch and clear lines. A display of 1.000.0 should result. Inverted latch and clear lines, or unconnected inputs to the display, will result in LED garbage, or an output of 0.000 .0 . On occasion, when power is first applied to the display, a residual numerical value will appear. In normal operation the next count cycle coming up (250 ms later) should clear the erroneous display.
2. The $10-\mathrm{MHz}$ clock should be trimmed for the closest possible accuracy by zero beating against WWV at 10 MHz , using a separate receiver and a simple link coupling around the clock oscillator.

hints and kinks

Accuracy in a digital system is defined as time base accuracy ± 1 digit. This accuracy must include aging and temperature stability. The digital-counter accuracy will then be as accurate as the basic $10-\mathrm{MHz}$ clock oscillator. All crystal oscillators have both longand short-term drifts due either to aging, temperature, or circuit-component changes. The display accuracy then will drift with the crystal-oscillator drift.

Without temperature compensation you can expect to have drifts in the order of $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ plus additional aging drifts of perhaps $10 \mathrm{ppm} /$ year. The net result is that faith in the absolute accuracy of the LSD of this counter is wasted. It might impress visitors, but without constant recalibration of the $10-$ MHz oscillators against WWV or other prime standard at regular intervals, the LSD is only a guess. The actual consistent counter display accuracy is to the closest kilohertz over any significant period of time. This could be improved to $\pm 200 \mathrm{~Hz} \pm 1$ digit by using TCO (temperature-compensated oscillator) techniques.

Selection of the BFO crystals can be made by measuring the bandpass mechanical filter for the upper and lower $20-\mathrm{dB}$ points. The BFO crystal frequency should coincide with these measured values within -50 Hz . Most suppliers will furnish the filter with this information, marked either on the filter or with the shipping data package, for a small fee. Significant errors in the BFO frequency will degrade ssb detection.

In the local oscillator and BFO circuits, the amplitude of the output signals from the isolation and CE shaper will vary with different crystal types. Excessive CE saturation will cause a $10-\mathrm{Hz}$ clock pulse to be coupled into the V_{CC} line and will result in pinging of the detected audio. Conversely, low outputs will not stimulate the gate levels required for proper counting.

The suggested cure is to temporarily install a $5 k$

fig. 11. Digital-counter timing diagram.
pot in the 2 N 4401 collector to V_{CC} load position. Adjust each of these until the amplitude of the output signal is just high enough to stimulate the gate input but will not keep the collector circuit in saturation for a period that allows the $10-\mathrm{Hz}$ signal to load the $V_{C C}$ line. The schematic illustrates the peak-to-peak signal levels I found achieved these goals.

A $100-\mathrm{kHz}$ clock oscillating crystal may be used as a substitute for the $10-\mathrm{MHz}$ unit in fig. 11 by deleting the second divide-by-100 (74490) stage. Some adjustment in the oscillator bias values may be required, and counter accuracy will be limited by your ability to trim the oscillator frequency properly.

improvement suggestions

The following are areas of individual user improvement:

1. RF gain. Wide dynamic range is necessary to meet the demands of the Amateur-band receiving environment. Signal levels vary from parts of a microvolt to perhaps a millivolt - a three-decade range. The front end of this receiver is optimized for maximum transconductance (gain). Strong signals $>100 \mu \mathrm{~V}$ will cause channel saturation in the rf- and first-mixer stages. Two easily implemented methods of controlled if gain are available to the builder:
a. source current limiting: use a $2 k$ pot in the source lead instead of a 300 -ohm resistor.
b. gate-2 control: lift the gate from the board and add a bypassed flying lead to a 0-5 Vdc voltage.
2. Agc. Positive agc voltage is available on U 2 pin 8 , proportional to detected audio. The quiescent value, $\sim 4.0 \mathrm{Vdc}$, is very close to the i-f gain maximum value. As the audio level from the U 2 audio mixer stage increases, this agc voltage may be fed through a 1-k resistor to U 2 pin 1.

Agc voltage may be fed through a 1-k resistor to U2 pin 1. The i-f gain circuit must be open or disconnected for the agc feedback system to operate.
3. Variable bandwidths. The addition of a diode switch and other Collins-type filters will allow optimization for both CW and ssb reception.
4. HFO stiffness. Thermal -- physical isolation of U5 will improve $V_{F V}$ regulation and drift/ ${ }^{\circ} \mathrm{C}$ rate; transient - increased beta characteristics for Q 12 will aid in improved ripple rejection for both the HFO and general receiver operation.
5. Images. A simple series-tuned $1.5-\mathrm{MHz}$ shunt in the antenna input will improve the image rejection by 20 dB . Provisions are on the PC board for the installation of the components.
ham radio

Full Features and Superior Performance ST-6000 RTTY DEMODULATOR

Select Rx \& Tx Shifts Accurately Tuned Rx Filters

Why not have the best?
The HAL ST-6000 Demodulator offers outstanding performance, versatility, and ease of
operation. The Receive Demodulator features multiple-pole active filters available for "high" or "low" tones.
These filters are frequency-matched to the transmit tone crystals for true transceive operation. Input
bandpass filters, discriminator filters, and post-detection filters are carefully designed and tested for optimum weak-signal recovery. The ST 6000 has an internal loop power supply, 2 loop keyers, RS-232, MIL-188C, and CMOS data I/O, and rear panel connections to data and control circuits for connection to UART and computer devices.
Use it with the HAL DS. 3000 KSR for the best in RTTY performance.
$\mathbf{\$ 5 9 5 . 0 0}$
Write today for HAL's latest RTTY catalog.

CW operator's PAL

An accessory for CW operators that reduces difficulties with interference, noise, and fading

Described in this article is a multifunction magic box, called a Pal, which I designed to relieve some of the operating problems faced by CW operators. Some of those problems are outlined below. The $P a /$ is based upon old, well-known techniques; it is novel primarily because it merges - and modernizes - past solutions to these problems:

1. Many Amateurs endure listening to CW signals but enjoy listening to telegraph sounders. Most Amateurs own or can obtain sounders, which are now obsolete, and old-timers usually retain a nostalgic interest in telegraphy.
2. Received signals vary in pitch, due to frequency drift at the transmitter or receiver, which requires frequent readjustment of the receiver's BFO. Chirps due to poor transmitter power-supply regulation, or jumps due to sudden line voltage changes, can also cause problems for the CW operator.
3. Received signals vary in volume due to fading and due to variable propagation conditions; sometimes gain changes at the transmitter or receiver can occur during warm-up periods. Changing audio volume forces the receiving operator to frequently readjust the gain control to maintain normal volume.
4. Received signals often include annoying interference from adjacent frequencies, even with very selective receivers.
5. Received signals incur variable background noise due to a combination of atmospheric, static, and
manmade electrical noise; noise limiters help but don't eliminate all noise.
6. Transmitter operators are said to have poor "fists" when they send imperfect code characters with straight or semi-automatic keys. Poor sending can often be attributed to inability to monitor a transmitter not equipped with sidetone output.
7. Many Amateurs don't own a code-practice set. Such a set is more than a means of learning and teaching code; it permits high-speed, off-the-air sending practice and proper adjustment of a semiautomatic key.

circuit description

In the Pal (fig. 1), a rectifier-filter circuit is used to actuate a telegraph sounder; a tone oscillator-amplifier is used to provide a code-practice set. Both circuits are used to improve CW reception and transmission. The input voltage to drive the Pa is derived from either the receiver (J 1) or a voltage picked off the transmitter (J2).

The external power supply may be a 12 -volt storage battery, eight dry cells in series, a regulated 12volt power supply (such as Radio Shack's no. 22124), or a homemade unregulated power supply which delivers $12-15$ volts at about 1 ampere. An internal 9 -volt transistor radio battery of moderate size will suffice for code practice.

An ac-connected power supply should have a switch and an indicator lamp - either a small $120-$ volt type across the switched line or a 6.3 -volt, 0.15 ampere pilot lamp in series with a $40-50$ ohm, 2 -watt resistor across the 12 -volt output. Lamp types 40 (screw base) and 47 (bayonet base) are suitable.

construction

Nothing in this circuit is critical. The circuits may be breadboarded and simply placed in a box. A $5 \times$ 5×7 inch ($12 \times 12 \times 18 \mathrm{~cm}$) metal box is recommended because it will easily house all the parts except for the sounder (on top) and the key.

By Carleton F. Maylott, W2YE, 279 Cadman Drive. Williamsville, New York 14221

fig. 1. Schematic diagram of the CW operator's Pal. Q1 is preferred and relay K1 (Radio Shack 275-004) is optional because $\mathbf{Q 1}$ is more sensitive; it needs less input and perhaps no step-up transformer if fed directly from a highimpedance phone jack instead of a voice-coil input. Relay K1 can be used to operate a 4 -ohm sounder 11.5 Volts, 375 $\mathrm{mA})$ by replacing the latter in the given circuit, setting R9 to 500 ohms lor using a 560 -ohm, 1-watt fixed resistor), and putting K1 contacts in series with the sounder and a large dry cell or a $\mathbf{2 7}$-ohm 10 -watt resistor in the 12 -volt line. Transistor $\mathbf{Q 2}$ is an NPN low-power device.

sounder operation

Any telegraph sounder with 20 to 400 ohms resistance is usable, but the power supply voltage must be dropped with a series resistance. For example, if a 20 -ohm sounder operates at 3 volts and 0.15 ampere, the necessary 9 -volt drop requires 60 ohms resistance at 1.35 watt, so a 56 -ohm, 2-watt resistor will do. Obviously, if various sounders are to be used, an adjustable resistor or rheostat must be used; a common $12 \frac{1}{2}$-watt, 100 - or 500 -ohm rheostat is a good choice.

A communications receiver usually delivers only a fraction of a volt to a 4-8 ohm loudspeaker. The CWdc converter must have a higher ac input voltage to deliver about 0.8 volt to a switching transistor or 5 volts to a sensitive relay. The dc output voltage of a full-wave bridge rectifier is, theoretically, 90 per cent of the input ac voltage. Under these conditions, it is necessary to use a step-up transformer unless the output from a high-impedance phone jack is suffi-
cient. The step-up transformer can be made from a filament or output transformer used backwards and shunted across the voice coil of the speaker.

A switch in series with the voice coil will disable the loudspeaker while the Pal is in use, thus avoiding confusion between CW tones and sounder clicks. Before disabling the loudspeaker, advance the receiver gain control to a point somewhat beyond the triggering level. A lower level invites drop-out during fading, and a higher level invites atmospheric static and manmade noise, which seldom affects the sounder under normal operating conditions.

The pitch and volume of the original CW note are of little importance during sounder operation; in fact, the note may be much higher or lower than desired during normal CW operation. Since pitch is now unimportant, you may zero-beat or drop the frequency of an undesired signal so that only the desired signal passes efficiently through the receiver-to-converter transformer. If a phone signal happens to be received, the sounder will faithfully click on voice peaks; no harm is done, and the effect is rather amusing.

tone-oscillator operation

A center-off switch (to avoid needless energy loss) is used to replace the sounder with a tone oscillator, amplifier, and loudspeaker. The converter circuit is unchanged and the operating procedure is much the same. The pitch of the new CW tone is fixed by the circuit constants; the volume is fixed after a preliminary setting of the gain control. Pitch and volume are now unrelated to receiver output; they should never need readjustment regardless of fading, interference, or noise.

During tuneup, there are two tones because there are two loudspeakers with different inputs. Thereafter, confusion between the fixed and variable tones may be avoided by opening the receiver loudspeaker disabling switch.

transmitter operation

The sidetone for transmitter monitoring is produced in much the same way as in the CW-to-CW conversion just described. A separate half-wave rectifier is connected to a voltage divider shunted across the transmitter output. The half-wave rectifier and the bridge rectifier share a common output and their back-to-back polarity connection avoids interaction unless both inputs are active. Fortunately, transmitter and receiver functions do not occur simultaneously, hence the Pal can serve both functions at the same time without changing connections. Thus, both plugs can remain in both jacks (phono and coaxial) regardless of the choice or number of functions desired.

It is easy to obtain the rf voltage needed for the half-wave rectifier input; a typical transmitter which delivers 200 watts to a 50 -ohm load also delivers 2 amperes at 100 volts. Even a 50 -watt transmitter can deliver 50 volts, of which only a small fraction is required. The proper voltage divider step-down ratio is, therefore, rather large. It is determined easily by experiment but not by calculation. It is useless to know that a half-wave rectifier, in the absence of voltage drop, has a dc output voltage which is 45 per cent of the ac input voltage. Variables include transmitter power, voltage divider resistance, rectifier load, rectifier voltage drop, and rectifier circuitry.
Under these conditions, you can connect the transmitter to a dummy antenna and gradually raise the tap on the voltage divider until the desired dc voltage appears across the relay coil or the switching transistor base-to-emitter input. The dc voltage should not exceed 6 volts or 1 volt, respectively 1 .
The voltage divider should be located in or near the transmitter, if possible, to minimize any effect on the VSWR. The divider might be housed in a can, like a filter, in series with a line from the transmitter to the Pal. In any case, a short jumper made from RG-8/U or RG-58/U coaxial cable may be provided with PL-259 plugs for attachment to SO-239 jacks at both ends. The transmitter antenna jack may be provided with a T -adapter which has one male and two female outlets (amphenol M-358), one of which will accommodate the jumper.

code-practice operation

There are at least three possible ways of keying the Pal as a code-practice oscillator. The key may be connected across the normally open relay contacts or the collector-to-emitter leads of the switching transistor. If you wish, a small battery may be placed in series with the key to the phone jack used for normal receiver connection, making sure that the plug tip is positive.
A third way of keying the practice oscillator replaces the external 12 -volt power supply with an internal 9 -volt transistor battery in series with a key jack, thus providing greater portability.

conclusion

There you have it, a multifunction magic CW box, which is a Pal to me; other amateurs should be able to obtain similar results. I wish to thank W2SSJ and his correspondents, W9KSR and W9YZE, for their suggestions on CW-to-telegraph converters.

reference

1. Lew McCoy, "An RF Actuated CW Monitor," QST, November, 1968, page 39, or The Radio Amateur's Handbook, 1971, page 183.
ham radio

COMPLETE KITS: CONSISTING OF EVERY ESSENTIAL PART NEEDED TO MAKE YOUR COUNTER COMPLETE. HAL-600A 7-DIGIT COUNTER WITH FREQUENCY RANGE OF ZERO TO 600 MHZ . FEATURES TWO INPUTS: FREQUENCY RANGE OF ZERO TO 600 MHZ . FEATURES TWO INPUTS ONE FOR LOW FREQUENCY AND ONE FOR HIGH FREQUENCY; AUTO MATIC OERIONAL 10 SEC GATE AVAILABLE ACCURACY $+001 \%$ UTILIZES $10-\mathrm{MHZ}$ CRYSTAL 5 PPM.
COMPLETE KIT
$\$ 129$
HAL-300A 7.DIGIT COUNTER WITH FREQUENCY RANGE OF ZERO TO 300 MHZ . FEATURES TWO INPUTS: ONE FOR LOW FREQUENCY AND ONE FOR HIGH FREQUENCY; AUTOMATIC ZERO SUPPRESSION. TIME BASE IS 1.0 SEC OR 1 SEC GATE WITH OPTIONAL 10 SEC GATE AVAILABLE ACCURACY $\pm .001 \%$, UTILIZES $10-\mathrm{MHz}$ CRYSTAL 5 PPM.
COMPLETE KIT
$\$ 109$
HAL-50A 8-DIGIT COUNTER WITH FREQUENCY RANGE OF ZERO TO 50 MHZ OR BETTER. AUTOMATIC DECIMAL POINT, ZERO SUPPRESSION UPON DEMAND. FEATURES TWO INPUTS: ONE FOR LOW FREQUENCY INPUT, AND ONE ON PANEL FOR USE WITH ANY INTERNALLY MOUNTED HALTRONIX PRE-SCALER FOR WHICH PROVISIONS HAVE ALREADY BEEN MADE, 1.0 SEC AND 1 SEC TIME GATES. ACCURACY AL. 001%. UTILIZES $10-M H z$ CRYSTAL 5 PPM.
COMPLETE KIT.
$\$ 109$
PRE-SCALER KITS

HAL 600 A/PRE . (Same as above but with preamp)
TOUCH TONE DECODER KIT
HIGHLY STABLE DECODER KIT. COMES WITH 2 SIDED, PLATED THRU AND SOLDER FLOWED G. 10 PC BOARD, $7.567 / \mathrm{s}, 2.7402$. AND ALL ELEC. TRONIC COMPONENTS. BOARD MEASURES $3.1 / 2 \times 5 \cdot 1 / 2$ INCHES. HAS 12 LINES OUT. ONLY $\$ 39.95$
DELUXE 12 -BUTTON TOUCHTONE ENCODER KIT utilizing the new ICM 7206 chip. Provides both VISUAL AND AUDIO indications! Comes with its own two-tone anodized aluminum cabinet. Measures only $2.3 / 4^{\circ} \times 3-3 / 4^{*}$ Complete with Touch-Tone pad, board, crystal, chip and all necessary com ponents to finish the kit.
PRICED AT
$\$ 29.95$
For those who wish to mount the encoder in a hand-held unit, the PC board measures only $9 / 16^{\circ} \times 1-3 / 4^{*}$. This partial kit with PC board, crystal, chip and components.
PRICED AT
\$14.95
ACCUKEYER (KIT) THIS ACCUKEYER IS A REVISED VERSION OF THE VERY POPULAR WB4VVF ACCUKEYER ORIGINALLY DESCRIBED BY JAMES GARRETT, IN QST MAGAZINE AND THE 1975 RADIO AMATEUR'S ACCUKEYER - MEMORY OPTION KIT THIS ACCUKEYER MEMORY KIT PROVIDES A SIMPLE, LOW COST METHOD OF ADDING MEMORY CAPAPROVIDES A SIMPLE, LOW COST METHOD OF ADDING MEMORY CAPA-
BILITY TO THE WB4VVF ACCUKEYER. WHILE DESIGNED FOR DIRECT BILITY TO THE WB4VVF ACCUKEYER. WHILE DESIGNED FE ATTACHED TO ANY STANDARD ACCUKEYER BOARD WITH LITTLE DIFFICULTY.
$\$ 16.95$

6-DIGIT CLOCK • 12/24 HOUR

COMPLETE KIT CONSISTING OF 2 PC G-10 PRE-DRILLED PC BOARDS, 1 CLOCK CHIP, 6 FND 359 READOUTS, 13 TRANSISTORS, 3 CAPS, 9 RESIS TORS, 5 DIODES, 3 PUSH-BUTTON SWITCHES, POWER TRANSFORMER AND INSTRUCTIONS.
DON'T BE FOOLED BY PARTIAL KITS WHERE YOU HAVE TO BUY EVERY. THING EXTRA.
PRICED AT .. $\$ 12.95$
CLOCK CASE Available and will fit any one of the above clocks. Regular Price... $\$ 6.50$ But Only $\$ 4.50$ when bought with clock.
SIX-DIGIT ALARM CLOCK KIT for home, camper, RV, or field-day use. Operates on $12 \cdot$ volt $A C$ or DC, and has its own $60-\mathrm{Hz}$ time base on the board Complete with all electronic components and two-piece, pre-drilled PC boards. Board size $4^{-} \times 3^{*}$. Complete with speaker and switches. If operated on DC, there is nothing more to buy."
PRICED AT
Twelve-volt AC line cord for those who wish to operate the clock from 110 volt $A C$
$\$ 2.50$
SHIPPING INFORMATION
ORDERS OVER $\$ 15.00$ WILL BE SHIPPED POSTPAID EXCEPT ON ITEMS WHERE ADDITIONAL CHARGES ARE REQUESTED. ON ORDERS LESS THAN $\$ 1500$ PLEASE INCLUDE ADDITIONAL $\$ 1.00$ FOR HANDLING AND MAILING CHARGES. SEND SASE FOR FREE FLYER.

HAROLD C. NOWLAND W8ZXH

Hal.Tronix P. O. BOX 1101 SOUTHGATE, MICH. 48195 PHONE (313) 285-1782

calculator-aided propagation predictions

An automated approach to propagation predictions by using a programmable calculator and published ionospheric predictions

Those people who use high-frequency propagation predictions know them to be accurate. Commercial interests use the predictions as part of the normal course of business. DX contest operators use them, among other things, to determine band openings into high-density population areas to establish a high contact per hour ratio before skip lengthens into the rest of their country. DXCC operators use them to determine at what time and on what band a specific long-haul station will be coming through so as not to waste time when no path is possible.

Propagation predictions became practical after World War II through the work of the Central Radio Propagation Laboratory of the National Bureau of Standards. In 1947, Newell Atwood, W3KTR, published an article ${ }^{1}$ describing a method whereby CRPL propagation prediction overlay charts were moved over a basic world map, showing what areas of the world were open from a home station for any band and time of day. That information was issued by CRPL three months in advance and proved very useful, as well as accurate.

Much has been written over the years on the subject. At least one magazine ${ }^{2}$ devoted a complete issue to the subject, while another ${ }^{3}$ devoted a monthly article for many months to prediction techniques and their results. Finally the ultimate was reached in 1971 when Telecommunications Research
and Engineering Report 13 was issued by the United States Department of Commerce. ${ }^{4}$ The report consists of four volumes on ionospheric predictions covering all frequencies, time of day, and day of the year, and by interpolation, for any solar activity with a Zurich sunspot number from 10 to 160 .

The use of these predictions is explained in Volume 1, but a detailed description was published by Jerry Hall, K1PLP. ${ }^{5}$ Every Amateur interested in DX should have a copy of these four volumes in his library. The use of these predictions is tedious and time consuming, but well worth the effort. First, let me sell you on their importance by illustrating how you can use the prediction techniques to get that long-haul DXpedition when others can't. Then I will explain how I've streamlined the use of them, and made it more fun by use of an SR52 computing calculator with the PC100A printer.

The programs discussed in this article are directly related to the TI-58/59, newer models of the SR52/SR56; by use of the equations and flow charts, they are applicable to the HP- 25 and similar calculators. The PC100A printer is a desirable luxury, but is not necessary to the functioning of these programs.

Back in December, 1975, the Northern California DX Foundation sponsored a DXpedition to CR9AK in Macao, a country I needed. Macao is a long way from New Jersey; since I work from 8:15 AM to 5 PM, I had to know when I could expect to work him - to increase the possibility of being there when his signals were coming through.

The sunspot cycle had not reached bottom in 1975, but it was pretty low, around a Zurich sunspot number of 30 . Under those conditions, when could CR9AK be workable in New Jersey, and on what band? A propagation prediction using Report 13 was performed (see fig. 1) and, much to my dismay, there was no opening above 13.8 MHz via the short path. Happily, though, there were two openings via long path, one at 2400 GMT (2400Z) with an MUF of

By Henry G. Elwell, N4UH, Box 20G, Route 2, Cleveland, North Carolina 27013

14.4 MHz and a second one from 1100 Z to almost 1600 Z with an MUF peaking to 21.7 MHz .

Unfortunately, that particular week of the DXpedition found the ionosphere very unsettled and nothing was heard on either opening the first three days of the DXpedition; the beam was pointed long path, while I listened on 20 -meter CW. Little was heard from anyplace that week. On the fourth day, a very weak pileup was heard around 14025 kHz ; it had to be CR9AK. When you are desperate you have to try, so a short call was given after the pileup stood by; he came back to me with a "surprised to hear East Coast." We exchanged signal reports, I was 459, and back to the faint (in New Jersey) pileup he went. Although CR9AK made amost 4000 contacts in 71 countries, few of them were with the East Coast. My working him was part luck, but also planning, as finding him would have been hit and miss without the prediction.

In April, 1976, Bill Rindone, WB7ABK, in cooperation with the NCDX Foundation, visited Christmas Island in the Indian Ocean, operating as VK9XX. Christmas Island is 3700 km farther from New Jersey than Macao. In addition, the Zurich sunspot number was lower than it had been in December - so low that I used 10 to allow me to use Report 13, Volume 2 directly. Again, when should I listen for him and on what band? A propagation prediction was made, (see fig. 2) and I had several choices, both short and long path on 20 meters. I'll take the short path anytime I can, as the distance is about 18,300 vs 26,000 km (9900 vs 14,000 miles) for the short and long paths respectively to Christmas Island. With a TH6DXX antenna at 15.2 meters (50 feet), the signal makes quite a few hops at even $18,300 \mathrm{~km}(9900$ miles).

From fig. 2, you can see that the opening at $2400 Z$ is sharply peaked. I have not been very successful with that type of opening and concentrated on the

fig. 1. Propagation prediction for the long and short paths to Macao. The prediction showed that for December, 1975, there was no 20 -meter short-path opening. However, the long path was open, even as high as 15 meters.

fig. 2. A similar propagation prediction for the path from New Jersey to Christmas Island in April of 1976.
opening at 1200Z. This worked out quite well - I got VK9XX shortly after the band opened on 20 -meter ssb before the pack became aware of him. I left for work only 20 minutes after my normal departure time.
I know that many top DXers rely only on their experience, patience, and operating skill to snag elusive DX. But, when it comes to a DXpedition, you know he's going to be continually working. So, why not take advantage of all the miracles of modern science to get him!
Propagation predictions using Report 13 and reference 5 are easy to do, but they take a long time. You must first draw on transparent paper a great circle route between your home and the desired DX location and then establish an ionospheric control area distance at both ends of the great circle. The great circle is then over-layed on the MUF (Zero) F_{2} map for the solar activity level, month and time desired, and the MUFs at the two recorded locations. The process is repeated using the MUF (4000) F_{2}.

The F_{2} MUF is then determined by means of a chart relating the (zero) and (4000) MUFs, which tends to decrease the MUF for all distances greater than 4000 kilometers. Next, the process is repeated for the MUF (2000) E, as some propagation may be by the E layer as well as the F_{2} layer. Actually, the $\operatorname{MUF}^{-}(2000) \mathrm{E}$ exercise is mainly for distances less than 2500 kilometers. By cranking the numbers and filling in the recommended work sheets, you arrive at an MUF for every two hours during the day. A plot such as fig. 1 or $\mathbf{2}$ can then be drawn and analyzed. However, if the Zurich sunspot number is not 10,110 , or 160 , which are Volumes 2, 3, and 4, the whole thing must be repeated and an interpolation made for the desired sunspot number. It's easy, it's all explained, but it is tedious. I'm sure the dogwork inhibits many from using the technique. Let me repeat: it's well worth it to give you a competitive advantage against the big guns.

Hang in there, though, if you're lazy like me. Pare the work to the bone. Being hams, we are highly op-

LATITUDE	2.0	PRT
LONGITUDE	-1.0	FRT

NAUTICAL MILES 72.2 FPT BEARING 34.1 FET
 KILOMETERS
 1969.9
 PRT

fig. 3. Example of the printout for the great-circle distance (both in nautical miles and kilometers) and bearing to the desired DX station.
timistic when it comes to band openings. Why not ignore the MUF (Zero) F_{2}, which tends to decrease the MUF anyhow, forget the MUF (2000) E, unless you're looking for short haul, and record only the lower MUF of the two control areas, since that's the one you are going to use anyhow? That saves a lot of work. Unfortunately, you still have to go through the interpolation procedure until the Zurich sunspot number hits 110, when you can use Volume 3 directly. That won't last long though, as the number will go either up or down.

making the prediction

The first thing you need for the prediction is the great circle distance (in kilometers) between your home station and DX location. Report 13 shows you how to do it graphically, but why not use the calculator? Other sources of theory include the articles by Marquart ${ }^{6}$ and Hall 7 . If you have a Hewlett-Packard HP-55, Chester Brent, WB4GVE, has the program all worked out for you 8 .

The program for the SR52 provides the beam heading and distance in nautical and statute miles, as well as kilometers. (The kilometer value is automatically stored in memory 98 of the SR-52, a storage location not cleared except by removal of power.) The program is contained on a magnetic card, requiring only the insertion of the DX latitude and longitude, which are also printed out on the PC100A for reference purposes. The home location is part of the program, although a second location may be manually inserted. The equations for D, distance in nautical miles, and H, heading in degrees, are:
$D=60 \cos ^{-1}\left[\sin L_{1} \sin L_{2}+\cos L_{1} \cos L_{2} \cos \left(\lambda_{2}-\lambda_{1}\right)\right]$

$$
H=\cos ^{-1} \quad \frac{\sin L_{2}-\sin L_{1} \cos (D / 60)}{\sin (D / 60) \cos L_{1}}
$$

where
L_{1} and λ_{1} are your respective latitude and longitude

[^2]and
L_{2} and λ_{2} are the respective latitude and longitude of the other station

When the problem is solved, bearing from true north, distance in nautical miles, and distance in kilometers are displayed and automatically printed on the PC100A tape. In addition, by pushing a button, statute miles may be displayed. Fig. 3 shows the printout obtained.

Since 200 of the 222 storage locations were used for the bearing and distance program,* another program is required for the prediction. The prediction program, also on a magnetic card, is inserted in the SR-52 without de-energizing the unit; it is necessary to retain the kilometer value stored in memory location 98. The program is then actuated and the PC100A prints out the number of hops required for the path, the reference hop length, and the ionosphere control area distance (see fig. 4). These equations are very simple:

Number of hops $=$ Great circle distance $/ 4000$,

but increased to the next higher integer; i.e., if the answer is 3.3 hops, increase it to 4 hops.

The flow chart shown in fig. 5 indicates the steps taken by the calculator to arrive at a whole integer for the number of hops.

> Reference hop length $=$ Great circle distance $/$ number of hops Ionospheric control area distance $=$ Reference hop length $/ 2$

At this point the smoothed sunspot number is placed into the computer, because from now until 1990, we are going to have to interpolate. There are two buttons to be pushed on the SR-52 while extracting the data from prediction volumes. One will be called Label A for MUFs at the home location, and one Label B for MUFs at the DX location. Open two volumes to the same month, 2400 Z and MUF (4000) F_{2}. The two volumes cover the sunspot numbers which are to be used for interpolation to the desired sunspot number.

The great-circle overlay is placed on the lower sunspot number chart first, carefully aligning the equator and the vertical line reference. I use a Greenwich meridien vertical line as well as a vertical line on the right border of the charts. The MUF under the home control area point is determined, inserted in the key-

NO. HOPS	FRT	
HOP LENGTH	0	FRT
CONT. AREA DIST. ET:		

fig. 4. Printout of the hop length, number of hops, and control area distance as computed by the calculator.
board, and Label A pushed. The MUF under the DX control area point is next determined, inserted into the keyboard, and Label B pushed. The printer will print out the lesser of the two numbers, since the lower MUF is the controlling one for the path. A little time may be saved during this procedure. If the MUF at the DX location is higher than that of the home location, it will be discarded by your calculator. Therefore, rather than inserting that data into the keyboard, just push Label B and it will use Label A data which shows on the computer display.

Next, the great circle overlay is placed on the higher sunspot number chart and the above procedure repeated. The printer tape will now display MUFs for the lower and higher sunspot numbers. I have found it helpful to print these two numbers to verify that the interpolated number which follows appears correct. If a printer is not used, the numbers can be recorded from the display.

The program for this calculation is quite simple and may be performed on any hand calculator that has "If Pos" and "If Flag" features. I wanted to use the same labels for the minimum solar activity and the average solar activity (or the maximum activity). Label A is used for the home location MUF, and Label B is used for the distant location MUF. For any given solar activity we want to save for interpolation use the lower MUF for the high and low sunspot values.

Fig. 6 is the flow chart for the calculation. Check it out with actual numbers. From Volume 2 (SSN of 10) the MUF is 18 MHz at the home control point and goes into the calculator as MUF A, from the same volume, 25 MHz at the distant control point, and goes into the calculator as MUF B. The difference is $18-25=-7$, a negative number. Since it is not "If Pos," it goes to a flag check. Since the test for flag is

fig. 5. Flow chart for use with the Tl-series calculators to determine the number of hops. Hewlett-Packard calculators with the INT function cen perform this entire program in five keystrokes.

fig. 6. Flow chart to determine and store the lesser MUF value at the home or DX location. This information is needed to interpolate the MUF for the current sunspot number.
the first time through, none exists, and the proper MUF for SSN 10 is 18 MHz . The value is displayed and stored in memory. At the same time, two flags are set to prevent using this path for the MUF determination at SSN of 110.

Transferring to the SSN 110 chart, the MUF at the home location is 23 MHz and 36 MHz at the distant location. Again the "If Pos" check reveals a negative number and the calculator drops to "If Flag 1." Since that flag has been set, the value of 23 MHz is displayed and stored for interpolation purposes. If MUF A had been higher than MUF B, the calculator would have branched to "If Flag 0 " with similar results.

To get the final interpolated answer for the hour used, press the Label D button. When that button is pushed, the calculator solves the equation:

$$
M U F=M U F_{10}+0.01\left(M U F_{110}-M U F_{10}\right)\left(R_{12}-10\right)
$$

where
R_{12} is the current sunspot number
MUF 10 and MUF 110 are the MUFs
at the low and high sunspot numbers.
When the sunspot numbers exceed 110, Volumes 3 and 4 will have to be used, and the program changed to use:
$M U F=M U F_{110}+10.02\left(M U F_{160}-M U F_{110}\right)\left(R_{12}-110\right)$

Either of the interpolation equations can be programmed in your calculator or done by hand. With the programmable calculator, it is necessary only to recall MUF 10 and MUF $_{110}$ from memory and wait for the answers. It is at this point that the two flags have to be rese so thet the program can start over for the next time increment.

If a printer is not used, the information is recorded from the calculator's register. When finished, you will have twelve points to plot for a 24 -hour period, and the printout will be as shown in fig. 7. Plot them on graph paper using a suitable scale for the frequency to give a presentation such as shown in fig. 1 or 2. You will now have a 24 -hour short-path MUF presentation to your desired DX location. Altogether the procedure has taken 10 to 15 minutes.

Don't stop at this point, however; also compute the long paths. Some of them are rather exciting. Don't be confused by the referral in Volume 1 to short and long paths. When they say short path, they mean a short distance, like Washington, DC, to Ottawa, Canada. A long path to them is Washington, DC, to Berne, Switzerland.
The long-path computation is treated just like the short path computation, but with different numbers and control area points. Since you already know the short-path distance, subtract it from $40,000 \mathrm{~km}$ to determine the long path distance. For our purposes, $40,000 \mathrm{~km}$ is sufficient for the world circumference.

Now when using the program, the calculator will give long path information to establish the ionospheric control area distance. The long path great circle route and the new control area must be put on the transparent overlay. Before repeating the prediction procedure, it will be necessary to reinsert the sunspot number as that information was cleared from memory when the program was activated. The "clear memory" operation is automatically accomplished when the prediction program is actuated to eliminate stored information from being carried over from the bearing/distant program.

Repeating the prediction exercise will give twelve new points to plot on your graph for the long path.

SUNPOT NUMBER

\%].		PRT	S日.		FRT
MUF	TIME		MUF	TIME	
E. 0	0	Prt	19.0	12	Pre
-1.0		Fr	i4:		FET
19, 8		Prt	1-4		FPT
198	2	Pre	1: 2	14	FET
17:0		FET	14.9		Pri
1%		PRT	i 1.8		PET
10.0	4	PET	10.0	16	PRT
18.0		PRT	B. 2		FET
E. 6		PET	ife 6		Pri
11.0	6	PRT	B. 0	18	PRT
15.0		PeT	19.8		FRT
11.8		PET	192		PRT
10. 5	8	PRT	10.0	20	PET
14.2		FRT	13.5		FRT
11.2		PRT	10.7		PRT
10. 1	10	PET	10.0	22	PRT
13.5		PRT	19.8		PRT
10.8		PET	10. 8		PRT

fig. 7. Calculator printout for the MUFs during two-hour time increments.

Now, you have a complete picture and can establish your strategy and working hours to snag that elusive DX. Sure, you're still going to fight the pileups at times, but you will be there waiting for him with the beam pointed in the correct clirection, and get him before many of the other guys wake up to his presence. Or, you'll be listening at a time and on a band which is most favorable to you.

references

[^3][^4]
More than 15,000 Hams are on the air with the ATLAS 210x!

200 Watts • 5 Bands • All Solid State $31 / 2 " \times 91 / 2 " \times 91 / 2 " \cdot 7$ Pounds

It's a Proven Winner!

- HF SSB/CW Transceiver
\sim No transmitter tuning
\checkmark Plug-in circuit boards
\checkmark Super selectivity with exclusive 8 pole crystal ladder filter
\checkmark Exceptional immunity to strong signal overload and cross modulation
r Slips in and out of special mobile mounting bracket or AC console in seconds

For complete details see your Atlas dealer, or drop us a card and we'll mail you a brochure with dealer list.

Don't let its fingertip size fool you. The Atlas 210x transceiver has all the power and performance that you find in rigs twice as big and costing twice as much.
And with 15,000 hams on the air, you know you're getting a proven winner.
Model 210x or 215x Transceiver
(With noise blanker installed add \$45)
Plug-in Mobile Kit
\$ 55
Portable AC Supply 110/220V $\mathbf{\$ 1 0 5}$
AC Console 110/220V $\mathbf{\$ 1 5 5}$
(With VOX and semi-CW installed add \$55)
10XB Crystal Osc. less crystals
\$ 65

417 Via Del Monte, Oceanside, CA 92054
Phone (714) 433-1983

with 3072-bit capacity

deluxe memory keyer

A memory keyer with the right characteristics offers many advantages in contests, net-control operations, and DX chasing. It can relieve an operator of much of the routine repetitive sending, generally reducing fatigue and providing time for efficient log keeping, checking for duplicate contacts, and occasionally taking a sip of coffee, even during rapid-fire contest exchanges.

The Accu-Keyer, ${ }^{1}$ as originally described in QST, was a nonmemory keyer with many desirable features. These included self-completing dots and dashes, next-dot and next-dash memories, iambic operation, and optional automatic character spacing (ACS). Later, WB4VVF and W4YUU described the companion Accu-Memory, ${ }^{2}$ which, when used along with the Accu-Keyer, permitted storage of up to 2048 bits (about 200 CW characters) keyed in from the keyer. These could be read out as four individually selectable messages of up to 512 bits each, or as one or more longer continuous messages.*
-The term bit is used throughout as the element of information contained in a dot or a space in a CW character. A bit interval is the time duration of a single dot or space. A dash is three bits long, the standard space between characters is three bits, and a normal word space interval is seven bits long.

[^5]I built a modified version of the Accu-Keyer with the Accu-Memory, incorporating those modifications I thought desirable. My own experience with it, and the comments and questions of others, indicated that further improvements and enhancements could be made. I have now gone through the redesigning and building process five times, with the memory keyer described in this article the final result.

The memory capacity of this keyer is 3072 bits, in six selectable, 512 -bit segments or in longer segments up to the full capacity of the memory. The entire system, except for the power supply and the display LEDs, is contained on two circuit boards measuring 80 by 150 mm (approximately $3-1 / 8$ by 6 inches). ICs are used throughout, except for the output, which employs a keying transistor. When the memory is being loaded, the IC clock is synchronized to manipulator movement. Readout from memory may be automatically interrupted at any time by manual keying. A choice of keyer output circuitry to accommodate either grid-block keying or positive-line keying is provided for in the circuitboard layout. A cable-connected, remote-control unit is used for manual start, stop, and message selection functions. It can be conveniently placed on the operating table to be played with the left hand like the buttons on an accordion while the right hand makes log entries and operates the keyer paddle for station calls, nonstandard message insertions, and so on.

system description

A functional block diagram of the complete system is shown in fig. 1. Those who wish to follow the ex-

Rear view of the six-message memory keyer showing the driver-monitor board; an adequate heatsink must be used on the 5 -volt regulator.

planations in detail should also refer to the schematics of the two main boards, figs. 2 and 3 for the keyer-driver-monitor and memory boards, respectively. This explanation assumes a knowledge of the specific IC characteristics and truth tables given in IC data manuals.

Keyer. The keyer proper (included in fig. 2) is basically the well-known Accu-Keyer, with all of the original features retained. Keyer operation was explained in the original article ${ }^{1}$ and will not be repeated here, except for those portions of the circuit that have been changed.

The original clock pulse generator, made up of discrete transistors, has been replaced by an NE555 IC clock located on the memory board. As will be explained later, the clock output approximates a square wave rather than sharp pulses. This characteristic is used to greatly reduce the error rate in manual keying when the ACS feature is in use.

The ACS circuitry inserts precision, three-bit spaces between characters, correcting premature timing of one character following another in the manipulation of the keyer lever. Without ACS, this shows up as a shortening of the proper three-bit character interval. For example, $D E$ may sound almost like B if the E is keyed too quickly after the D.

However, the original ACS feature is difficult to use at higher speeds without errors, which show up as unintentional extra spaces. This happens because lever manipulation must not only be fast, but must actually slightly lead, or at least never lag behind, in the formation of characters in which a dot is followed by a dash, such as an A. Those of us who grew up with the bug or semi-automatic key tend not to lead while keying, but to insert our own approximately correct one-bit interval between the dot and the dash in the formation of such characters. But, if the dash lever is tapped just a fraction of a bit space too late, an A becomes $E T$ in the original keyer when ACS is in use. This occurs because the outpin at pin 6 of U5A (see fig. 2) is always low during the one-bit space following a completed dot or dash, and then always goes high for the next one-bit interval. It is this high transition that transfers a waiting dash or dot from the next-dash or next-dot memory, U1A, U1B, or U2C, U2D, as seen through the iambic gates, to the present dash or dot memory, U3A or U3B, starting the output of the dash or dot. If the lever is tapped even very slightly late, this transition is missed and two additional bit spaces are inserted.

U8 in the keyer has been added to provide some

fig. 1. Functional block diagram of the memory-keyer system. Details of the keyer block are not shown; these are given in reference 1.
tolerance for slight manual timing delays in the keying of dashes following dots as described above. The approximate square wave from the clock is high at pin 1 of U for the first half of the bit interval after pin 6 of U5 goes high. If neither a dash nor a dot has already been called for, pin 8 of U6 will also be high. If the dash paddle is tapped during this half-bit period, U1D, pin 11, will go low. This low, inverted by U8B, will cause U8A, pin 6, to go low because all four inputs are high. The low will set U3A, pin 6, high and start the dash, although a little late. However, even though the interval between the dot and the dash may be lengthened by as much as half a bit and the dash correspondingly shortened by this amount, the result is almost undetectable to the ear and is far better than the three-bit interval that otherwise occurs, causing a completely erroneous character to be formed. Also, since data as it exists at the end of the bit interval is what is recorded into memory in the loading process, the correct one-bit interval be-
tween the dot and the dash is restored when the message is sent from memory.

The keying of a dash following a dot after the half-bit tolerance interval provided by $U 8$ results in the insertion of the normal three-bit character interval, retaining the desirable features of automatic character spacing. At the beginning of the third-bit interval during a character space, pin 6 of U5A again goes low when the clock pulse starts. The RC filter at pin 1 of U8 delays the clock pulse slightly so that pin 6 of U5A has time to go low before the clock, as seen by U8A, goes high. This prevents a shortened dash from prematurely appearing if the dash lever has by that time been tapped for the next character.

By adding another IC equivalent to U8, it would be possible to provide the same tolerance for manual keying of a dot or dots following a dash. However, nearly all the tendency for errors at high speed is the result of the very short and critical interval for the keying of a dash following a dot. Since the available
interval is inherently much longer going the other way, the extra complication would not be worthwhile.
Clock. The clock, as shown in fig. 4, is the heart of the keyer and the memory. Both require a clock signal which is at zero level in the quiescent state, remains at zero for the duration of the first bit interval after the clock is called for, and then provides a steeply rising positive pulse or square wave at the beginning of each bit interval thereafter. With the control scheme adopted, the combination of the NE555 timer and an inverter provides the necessary characteristics, including the square wave required for the ACS error-reducing circuit in the keyer.

Pin 4 of U1, which is normally used as the control input in NE555 applications, is maintained high at all times, keeping pin 3 normally high, with the clock output being low. When pin 11 of U3B is low, calling for the clock to be off, the timing capacitor is essentially discharged through CR1. Pin 3 of U1 remains high and the output of U2 stays low. When the clock is called for by either the keyer or the memory, pin 11 of U3B goes high and the timing capacitor begins to charge at close to a linear rate. The output from the inverter remains low during this process. When the charge reaches $2 / 3$ of V_{cc} (the supply voltage), pin 3 of U1 goes low, forcing the inverter high, marking the end of the first bit interval. Thereafter, the charge on the timing capacitor oscillates between $1 / 3$ and $2 / 3$ of $V_{c c}$, and the output at U 2 goes high at the end of each subsequent bit interval until pin 11 of U3 again goes low, stopping the clock.

CR1 and CR4 permit independent discharge of the timing capacitor for clock synchronizing purposes, as will be explained later.
Memory system (load mode). The basic memory loading system of the Accu-Memory ${ }^{2}$ is essentially retained. In the load mode, with a message address manually selected, the clock control line from the keyer goes low at the moment keying begins and pin 11 of U3B (see fig. 3) goes high, starting the master clock. At the same time U6B, pin 1, goes low, causing a pulse at pin 13 of U6. This puise is passed along by U5B and then appears at pin 5 of U6A, from where it is applied to pin 3 of U7, the end-of-message detector. This pulse at pin 3 performs an AND function with the data at pin 2 of U7, setting the output at U7 pins 1 and 11 to zero, whereupon pin 8 of U3C will go high and pin 12 of U2B low, keeping pin 11 of U3B high. The high at U3C pin 8 also enables slave clock control U3A. Pins 9 and 10 of U3C are both high only when $U 7$ is at a count of nine. Thus, even though the clock control line from the keyer may go high, U7 will keep the clock running until it counts nine consecutive pulses at its pin 14 from slave clock U5A, pin 5,
without being reset by the pulses at pin 3 coincident with data at pin 2 .

At the end of the first bit interval, the leading edge of the master clock pulse transfers the data at the D input of the 7474, U8A, pin 12 to U8A pin 9. Halfway through the second bit interval, the trailing edge of the first master clock pulse, having been inverted by U3A and applied to pin 10 of U5A and U6A, causes positive pulses at both Q outputs. The write inhibit, provided by gate U3D, is removed by the pulse from pin 5 of U6A, and the first-bit data is recorded into the memory. The pulse from U5A is somewhat longer in duration. Its negative-going trailing edge, occurring later, advances the address register by one, and at the same time the positive-going $\overline{\mathrm{Q}}$ output at pin 12 of U5A causes pin 4 of U5B to pulse low, clearing the buffer, U8A, to zero. At the same time, pin 13 of U5B pulses high, and its subsequent trailing edge causes another positive pulse at pin 5 of U6A, again removing the write inhibit and recording the previously mentioned zero from U8A in the second memory address. All of this takes place during the latter part of the second-bit interval.

At the end of the second-bit interval, the loading process is repeated for the second data bit, and the zero previously stored in the second address is changed to whatever the contents of the data buffer may be for the second bit. If there is a pause in keying, the end-of-message counter U7 will stop the master clock when it counts nine consecutive bits without being reset by pulses from U6A along with the data. The ninth bit will be changed to a one if keying is resumed, and the pause, no matter how long, becomes a word space (slightly lengthened to eight bits) when the message is read out in the send mode. However, if the message has really ended and no additional data is loaded, the zero remains in the ninth bit position, and in the send mode U 7 will stop the clock at that point.

The master clock free runs during the word intervals in the load mode, and it is necessary to synchronize the clock to the paddle movements during loading so that shortened dots and dashes do not appear, as they would if the paddle were tapped to start a new word just before a clock pulse was about to occur. Synchronization is accomplished by U6B, U4A, and U2C. When the paddle is tapped during loading, the clock control line from the keyer goes low, calling for the clock (which normally is already running). This low, applied through CR5 to pin 1 of U6B, causes the $\overline{\mathrm{Q}}$ output (pin 4) of U 6 to pulse low. This pulse forces the output of U4A high and U2C low. The timing capacitor is momentarily discharged. through CR2 by this pulse and then allowed to charge normally, ensuring full bit intervals for the

fig. 2. Schematic of keyer-driver-monitor board and display. All resistors are $1 / 4$-watt. Capacitors with polarity indication are upright electrolytic, 15 -volt minimum rating; all others are disc ceramic, $\mathbf{2 5 - v o l t}$ minimum rating unless otherwise specified. The diodes are small signal silicon, switching diodes, 1N4148 or equivalent. Dotted lines indicate connections to external switches and controls. Small circles with labels, except +5 V to ICs, indicate similarly labeled points on the board or power supply. In the output circuit for negative grid-block keying, Q1 may be a 2 N 4888 or any high-voltage audio, switching, or rf silicon pnp transistor with a $\mathrm{V}_{\text {CEO }}$ rating adequate for the open-circuit voltage to be keyed. The unit pictured uses a Japanese type 2SA510 (RCA SK3025 is also a recommended equivalent). For positive-line keying, an equivalent npn transistor is used at Q1.
first bit and subsequent initial bits of manual sending.
In the load mode, the load/send switch grounds pin 12 of U13, preventing any output of random or previously stored data in the memory from reaching the output data line. While loading is progressing, only the new data from the keyer can key the transmitter.

Address register and manual addressing system. The address register consists of U9, U10, and U11A for the lowest nine binary address bits (512 of the 1024 positions on each memory chip). The tenth address bit, determined by U11B, becomes the least significant message address bit. Thus, U11B divides each 1024 -bit memory chip into two 512 -bit message segments, selected by making the output from pin 9 either a zero or a one. U8B, U15A, and U15B constitute a shift register or ring counter which activates one memory chip at a time for loading or readout by placing pin 13 of the selected chip low, while maintaining pins 13 on the other two chips high.

The entire address register is controlled by the manual addressing system, consisting of U12, U13A, and U14. When a message button is pushed (assuming the clock is not running) pin 6 of U13 goes high, setting U9, U10, and U11A to zero. Pin 9 of U11 is set either low or high, depending upon the message selection, and the Q output of one of the three flip-flops in the ring counter is set low to address the desired memory chip. The other two Q outputs in the ring counter are simultaneously set high. Whenever a manual message selection is made, the display bit counter is simultaneously reset to zero by U16A.

Since memory-chip selection is made by setting one of the Q outputs in the ring counter low, the $\overline{\mathrm{O}}$ outputs of U15A and U15B are used as the central significant bit and the most significant bit, respectively, of the message address. When both these 0 outputs are high ($\overline{\mathrm{Q}}$ outputs both low), the memory chip that is activated by a low from the Q output of U8B is in use, and the message address is either 000 or 001 binary (decimal 0 or 1), depending upon the

Q output at $\mathrm{U11B}$. The other binary message addresses are 010, 011, 100, and 101 (decimal 2, 3, 4, and 5). Since it is better in operation to have the six messages numbered 1 to 6 rather than 0 to 5 , U4C and U16B, C, D were configured to convert 000 binary to 110 binary, leaving the other binary indications unchanged. Thus, message 0 becomes message 6 for all selection, display, and operating purposes. The entire addressing system is a continuous counter, so that a message as long as the entire 3072-bit memory capacity can be started at any selected beginning address and loaded continuously in memory, with automatic transition through the consecutive message segments back to the starting address.

Send Mode. Before a selector button is pushed, the clock is stopped by a low at pin 11 of U3. This low also inhibits U13B, blocking the continuous output that would otherwise appear if the address register happens to be stopped at a memory address where a high exists. When a selector button is pushed, the high at U13, pin 6, which resets the sit address
register to zero, is inverted by U2D, simultaneously causing a low at pin 1 of U6B. The resulting pulse at U6, Pin 13, triggers U5B which in turn causes a pulse at pin 5 of U6A.

A high always exists at memory bit address 000 when a message segment is loaded. This high is applied to pin 2 of U7, and the pulse from U6A is applied to pin 3. The AND function at these two points resets U 7 to zero, unblocking the memory output and starting the clock. The high at pin 11 of U3B also causes U13A to return to low, even if the message selector switch is kept closed, removing the reset on the address register. Slave clocks U5A and U6A are enabled through U3A when U7 resets. U5A advances the address as described for the load mode. During each bit interval, a pulse from U6A is applied to U7, resetting U7 whenever data appears at pin 2 of U7. Unless the stop button is pushed, sending from memory continues until U7 counts the nine consecutive bits with zero data which mark the end of the message.

Automatic Stop. A message readout in progress

fig. 3. Schematic of memory board. See fig. 2 for explanation of component designations and external connection symbols. All diodes are small signal silicon switching diodes, 1N4148 or equivalent. START, STOP, and message selector switches are all momentary push-button type.
can be interrupted by manual sending. At the first tap of the paddle, the clock control line from the keyer will go low, forcing U4B pin 10 high. This high, applied through CR4 to U7, forces a nine count, instantly turning control of the master clock over to the keyer and stopping the input to pin 10 of slave clock U5A. Meanwhile, the low on the keyer clock control line causes U6B, pin 4, to pulse low. This pulse causes U4A to pulse high (provided pin 5 is low) and U2C to pulse low, synchronizing the master clock to the first bit of manual sending. The forced nine count at $U 7$ causes $U 3 C$ to go low and U2B to go high, but the $10-\mu \mathrm{F}$ capacitor at pin 5 of $U 4$ keeps that pin momentarily low, allowing the synchronizing pulse to pass. Thereafter, the capacitor charges, U4A stays low and U2C high, and the clock is under normal control of the keyer.

Power Supply. The system requires 700 to 800 milliamperes at 5 volts. A schematic of an adequate 5-volt, 1-ampere supply using an LM309K regulator is shown in fig. 5. Based upon its specifications, the TTL 5-volt, 1-ampere regulated supply kit offered by Jameco should be equally suitable.

construction

Assembly of the circuit boards* (figs. 6, 7, and 8) offers no unusual problems, but the usual cautions apply - use a low-wattage iron and small diameter $60-40$ solder; be sparing of solder, but cover the eyelets completely; above all, make sure there are no unintentional solder bridges between IC socket terminals or between adjacent separate conductors in the vicinity of component terminals.
The use of IC sockets or Molex pins is recom-

fig. 4. Diagram of the basic clock circuit and clock control logic.

mended in preference to soldering the ICs directly to the boards. There is a big difference, however, among IC sockets, so be sure to use the compact, slender type rather than any of the more bulky types, as the latter may cover up a few of the component or jumper eyelet holes adjacent to the ICs. The digital display LEDs are intended to be soldered directly to the display board. If you prefer to use sockets, the unused socket pins must be clipped off to permit their mounting in the holes provided.

Some of the wire jumpers on the memory board must be routed around the IC sockets. Mount the sockets first, and then install the jumpers before mounting the other components. All jumpers are installed on the component sides of the boards. The short, isolated, straight jumpers can be made of bare wire to save space, but obviously the longer ones and those which cross over uninsulated jumpers or come close to other component leads should be of insulated wire.

For interconnections between the boards and leads to be connected to external switches and controls, use small-gauge flexible (stranded) wire to prevent strain on the circuit board eyelet terminals. In making the main board-to-board interconnections, lay the two boards side by side, foil sides down, with the top edges adjacent to each other about 4 cm (1-1/2 inches) apart. Recheck this spacing each time you cut a new lead to be sure its length is sufficient to permit the leads to corne over the top edges of the boards when they are finally installed.

All connections to the main boards are made with leads inserted from the component side. In the case of the display board, however, all connections are inserted into the eyelets and soldered from the foil side, with the excess wire clipped off flush on the component side. In this way, the leads do not interfere with the mounting of the LEDs against the transparent, colored plastic strip that covers the inside of

[^6]the front-panel cut-outs. The use of color-coded wire will permit the seven leads for each seven-segment LED and the one +5 volt lead to be twisted together before final soldering, providing a much neater job
than the mess that will result if each of the twentyeight wires is run separately between the keyerdriver board and the display.

After assembly and interconnection, the two main
fig. 6. Circuit pattern of keyer-driver-monitor board (A), and component placement for negative grid-block keying (B). Fig. 6 (C) shows alternative component placement for positive-line keying.

circuit boards are mounted to each other with foil sides facing, separated by $9-\mathrm{mm}$ (3/8-inch) cylindrical spacers at each corner. This assembly is mounted to the bottom of the cabinet with four L brackets, one on each side of the bottom corners of the board assembly. This makes a very solid unit, easily accessible for replacement of ICs. The board assembly is mounted on the right-hand side of the cabinet to make room for the power supply at the left rear.

The only precaution worth mentioning in connection with the power supply is to use an adequate heatsink with the LM309K regulator, which is mounted on the rear panel outside the enclosure. The regulator output terminal, projecting inside, will serve as the +5 volt source terminal for the leads to the main boards and the +5 volt lead to the stop switch. Note that both sides of the ac line cord should be bypassed to ground near the point at which it enters the cabinet.

fig. 7. Memory-board circuit pattern (above) and component placement (beiow). For clarity, several jumpers were omitted from the parts placement diagram. These can be added to the board by connecting the jumper between the lettered designators.

fig. 8. Display-board pattern (abovel and LED placement (below). The display LEDs may be SLA-1 or any of several equivalent $8-\mathrm{mm}(0.3$-inch) common-anode displays with 14 pin DIP pin spacing and the same pin-out configuration for the seven segments. Decimal points are not used and their pin-out locations are not important.

RF shielding of all external leads to the main boards and the use of an all-metal cabinet are absolutely necessary. The leads to the remote-control box (which also must be a metal box) should consist of a shielded cable (11 conductors plus shield are needed) with the shield grounded both in the box and in the main cabinet. The keyer-paddle leads should also be shielded. A two-conductor shielded cable, with the shield used as the ground lead, will be satisfactory.

One last precaution - be sure to insert the correct ICs in the correct locations with the positioning notches in the proper direction, and then recheck each one before applying power. This is very obvious, but l've ruined a few ICs myself by being a bit careless on this point.

initial tests

After assembly and wiring are completed and checked, set the tune/send switch and the mode switch to send, all controls at about two-thirds scale, and apply power by turning on the ac switch. If some gibberish comes out of the monitor, it is a good sign. Pushing the STOP button should stop the output. Check that the output terminal of the regulator is +5 volts. Each display LED should show some digit at this point, although the actual indication is not important.

Next, check the clock, keyer, and monitor for proper operation as follows: Alternately ground the dot and dash inputs to the keyer. Continuous dots and then continuous dashes should be heard from the monitor. Grounding both inputs simultaneously should produce alternating dots and dashes. Switching the tune switch to TUNE should produce a continuous tone. Return it to normal. Now set the mode switch to LOAD and press each message selector button in turn. Bit count indication should be 000 and message numbers 1 through 6 should be displayed in sequence as the associated buttons are pushed. Pushing the START button should cause the bit address to advance by ten bits and then stop.*

Again selecting message 1, ground the dot input to the keyer, causing it to send continuous dots. The bit indication should advance as these dots are loaded into memory and after bit 511 the message address should change to 2000 . Continue loading dots part way into message 6, stop the keyer by ungrounding the dot input, set the mode switch to SEND and again select message 1. The entire series of dots should play back on the monitor without errors or omissions, and it should be possible to stop the playback at any point by pushing the STOP button or by momentarily grounding the dot or dash input of the keyer. Next, in the LOAD mode, again select message 1. While holding the STOP button down, push the START button down once and release it to get a bit count of 001. (Because of contact bounce it may be necessary to try several times to get just a one-bit advance when the button is pushed.) Load continuous dots from 1 001, again part way into message 6 . In the SEND mode, select message 1 and this time push the START button to start playback. Again, the whole series of dots should play back smoothly. These two tests will indicate whether all memory cells in this address range of the memory ICs are okay. Perform similar tests by loading dots beginning at addresses 6000 and 6001 , continuing into message 1 in each case, to check the remaining range of memory addresses.

using the keyer-memory

The memory may be loaded with a message starting at any selected message address. Simply switch to the LOAD mode, select the message number, and start keying. When the message is completed, another may be begun at a different message address until all beginning addresses are used. (If a

[^7]message is too long to fit into a 512-bit memory space, it will continue into the next message address.) In the SEND mode, pushing the message selector button for a particular message will instantly start transmission of that message from memory. In contest work, a CO SS or CO DX can be loaded as message 1, with several different replies (different reports, etc.) as the next few messages, and $R T U$ $Q R Z$. . . etc. as message 6. For contests in which the exchange requires a variable element such as a QSO serial number, load the standard information up to the point where the variable element must be inserted. Then, holding the stop button down, advance the memory two or three bits by pushing the start button. Continue loading the subsequent standard information. In the SEND mode the memory will stop at the point where variable information is required. After this is keyed manually, the rest of the standard message will continue when the START button is pushed. This technique can also be used to load a request for a repeat after a standard number transmission, both in the same message address, to be used in case you miss the number sent back to you.

If you are going to call a station on a schedule, you may wish to send his call sign more times than provided in the usual 3×3 calling format. To do this from the memory, load his call just once at the message starting address and pause until the bit indication stops advancing. Then continue with $D E$, your own call several times and $A R$. In the SEND mode, hold the message selector button down continuously instead of pressing and releasing it. The called station's call sign will be repeated as long as you hold the button down. When you release it, the rest of the message will continue to conclusion. (You can send long CQs this way too, but they're not recommended!) If you want to reduce the number of times your own call is signed, simply manually send $A R$ or K at the appropriate point to stop the memory.

To call the same station often, as in a DX pileup, switch to the LOAD mode, select a message segment, and proceed to make your first call. Then, in the SEND mode, press the selector button and the memory will do all the subsequent repetitive calling for you. The above are only a few of the possibilities. Once you have gained some familiarity with the unit's capabilities, many other operating applications will suggest themselves.

references

1. James M. Garrett, WB4VVF, "The WB4VVF Accu-Keyer," OST, August, 1973, page 19.
2. James M. Garrett, WB4VVF, and D. A. Contini, W4YUU, "The AccuMemory," QST, August, 1975, page 11.
ham radio

DRAKE R-4C FILTERS AND ACCESSORIES
Spectacularly improve the performance of this excellent time-tested receiver popular worldwide with the most successful DXers and Contesters, by adding our highest quality 8 -pole filters and accessories. Compare our specifications and prices with those of others and you'll buy FOX-TANGo.
YF56H8.0 (GUF-1). Broad first IF Filler. Superior 8-pole type (Shape fac tor 1.5 , ultmate rejection $>100 \mathrm{~dB}$) replaces original unit (Shape factor 4.7 ultimate rejection 65dB). Used in CW/SSB modes. Drop-in replacement of original unit - only two soldered connections. Recommended for use in conjunction with GUF-2. With complete instructions. GUF-1 $\$ 65$ plus $\$ 3$ local air mait: \$5 overseas
YF56H800 (GUF-2). Narrow first IF Filter. (Shape factor as low as 2.0 , uiti mate rejection >100dB.) Both GUF-1 and GUF-2 improve dynamic range. re duce intermod due to overloading of second mixer, reduce QRM, etc. GUF- 2 in cludes a relay kit and all paris needed to provide automatic selection of GUF-1 or GUF-2 depending upon the position of the Mode Switch, thus retaining phone capabilities lost it GUF-2 (CW) is used alone. Complete step-by-step in structions simplify installation. GUF-2, iricluding relays and parts: $\$ 90$ plus $\$ 3$ local airmail. \$5 overseas

YF56H125. Sharp 125Hz 8 pole. second IF Filter. (Shape factor as low as 2.0, ultimate rejection $>100 \mathrm{~dB}$.) Sharpest CW tilter available. See Specs in Table. If you can't get it with this fitter, you can't get it - period! Puts selec livity where it counts in the AGC loop. Eliminates loss of RX gain due to ORN oulside of passband. commonly noted with audio filters - yet works wefl with them. Simple installation; plugs into accessory socket on back of the set. \$100 plus $\$ 3$ local airmail, $\$ 5$ overseas
GUD Product Detector Kit. All parts and instructions needed to convert the existing detector to a double-balanced type to provide better isolation between nput and output. Overcomes distortion in audio output and AGC attack. In cludes compact PCB with active DBM SN16913, relay switch, and accessory components. Detailed instructions, diagrams and photographs simplify installation. GUD Kit $\$ 45$ plus $\$ 3$ local airmail', $\$ 5$ overseas

OIODE SWITCHING BOARDS
DUAL (2 FILTER) TYPE FOR ALL YAESU AND KENWOOD LISTED. Specify make and model - $\$ 21.00$ airmail positpaid. SINGLE (1 FILTER) TYPE FOR FT/FR-101 ONLY - $\$ 12.00$ airmail postpaid
To avoid error due to similarity of some filter numbers, specify desired unit completely when ordering. Include make and modet of set. tilter number desired, and center trequency.
dealer inauiries welcomed - visa and master charge accepted FLORIDA RESIDENTS ADD 4\% (SALES TAX

FOX-TANCD CORP.

Box 15944, W. Palm Beach, FL 33406 See other at page 117

16 ELEMENTS - F9FT - 144 MHz

Side lobe attenuation - Superb
Horizontal aperture $2 \times 16^{\circ}$ (-3 dB)
Vertical aperture $2 \times 17^{\circ}(-3 \mathrm{~dB})$

$\$ 79.95$

9 Element 144-146
$\$ 39.95$
4 Element 144-146 $\$ 32.95$

MADISON
ELECTRONICS SUPPLY, INC.
1508 McKINNEY - HOUSTON, TEXAS 77002 713/658-0268

CUSHCRAFT ANTENNAS

TENTEC OMNI-D

GLA-1000

CPU 2500 R/K

OVER 50 BRANDS IN STOCK

- KENWOOD • SWAN • KDK • DENTRON •
- MOSLEY • WILSON • YAESU • DRAKE •
- LARSEN - BENCHER • PIPO • BEARCAT •
- B \& W • DATONG • ICOM • PANASONIC •
- ARRL PUBLICATIONS • ALLIANCE • MFJ•
- CUSHCRAFT • TRAC • MICROLOG • CDE •
- FINCO - DSI - DAYBURN INSULATORS •
- BIRD • ASTATIC • HAM KEY • REGENCY •
- HUSTLER • SAXTON • TEN TEC • AMECO •
- AMCOMM • CALL BOOK • KLM - TEMPO •
- ATLAS • ALDA • COVERCRAFT • HY-GAIN •
- J.W. MILLER • MURCH - PFENTONE •
- SHURE - TAB BOOKS • SAMS BOOKS •
- ROHN • BUTTERNUT • Plus Many More! •
* NEW AND USED EQUIPMENT
"Get on our used equipment mailing list"
* TRADES WELCOME
"The best allowances anywhere"
"We buy good used SSB gear"
\star FREE CATALOG
"Prices of all major manufacturers"
* SA.ME DAY U.P.S. SHIPPING
"Just a phone call away"
* COMPLETE RADIO SERVICE SHOP
"Mail Order Repair Service"
- Fast Efficient Service - We Repair All Brands
- All Work Guaranteed - Amateur Extra/First Class Licenses - Send Us Your Defective Equipment U.P.S. Collect - Please Include Manual and Power Supply
- Free Shipping Both Ways If Work Is Done
- Most Repairs Done and Shipped Within 7 Days

OPEN MON.-FRI. 10-6 • THURS. 10-8 P.M. - SAT. 10-4
EASY DIRECTIONS: Rt. $\mathbf{1 5}$ South $\mathbf{- 2}$ blocks past McDonald's
(Berlin Turnpike)

A Look at

New Equipment - All new equipment on display is operating for actual "on the air" QSO's. We really know our gear!

Used Equipment - We recondition and guarantee all our used equipment. We make sure it satisfies you!

Service Shop - You've probably heard of our fine service reputation - using Cushman CE4B signal generators, Hewlett Packard oscilloscopes, Bird wattmeters - we fix it right!

Inventory Warehouse - Our large volume assures you the best prices!

And Our Service Is Even Better! Give Us a Call and See For Yourself!

 1-800-243-7765
 fromas COMMUNICATIONS

active bandpass filter

Construction details for an active bandpass filter which will help eliminate interference and provide improved RTTY copy

This active bandpass filter was designed to work ahead of the NS-1A PLL Demodulator, ${ }^{1}$ but it will provide improved copy when used ahead of any RTTY terminal unit. The filter is connected between the audio output of a receiver and the input of the terminal unit.

A bandpass filter is just what the name implies. It will pass only a specified band of frequencies, attenuating all frequencies above and below the specified limits. The objective is to make this attenuation as high as possible, passirig nothing other than the desired signals. Without complex circuits, this is not always possible. Simpler filters, like the one described here, will always pass some unwanted frequencies, attenuated enough, however, that they are of no consequence.

For RTTY, we want to pass the standard narrowshift tones, 2125 and 2295 Hz . For this $170-\mathrm{Hz}$ shift the bandpass should be about 200 Hz wide, centered on 2210 Hz .

circuit description

As can be seen from fig. 1, the filter consists of two separate, two-section filters using cascade-connected operational amplifiers. It uses only one IC, the LM3900, which contains four so-called "Norton" amplifiers. These op-amps will do almost anything the standard op-amp will do. The principal advantage is that the LM3900 requires only a single power supply. Also, the LM3900 differences the input currents, whereas the conventional-type op-amp differences the voltages. The noninverting input function has been made possible by using what is called a current mirror circuit.
Several formulas are used to determine the required values of the resistors and capacitors. The

By Nat Stinnette, W4AYV, 890 Virginia Avenue, Tavares, Elorida 32778

fig. 1. Schematic diagram of the active bandpass filter. The center frequency is $2210 \mathbf{H z}$, with a - $\mathbf{3} \mathbf{~ d B}$ bandwidth of approximately 160 Hz . A single LM3900 Norton op-amp is used for the filter.
nearest standard values of 5 per cent resistors are shown in the diagram. The capacitors can be 10 per cent tolerance. R2 sets the Q of the circuit (and also the gain) and works out to be 12.5 kilohms for a Q of 11 , or a -3 dB bandpass of 200 Hz centered on 2210 Hz . When both filters are connected together, however, the increased Q makes the bandpass too narrow. The value of 24 kilohms was chosen by trial and error to give the best passband.

fig. 2. A circuit board foil pattern for the active bandpass filter is shown above. The filter can also be built on a small piece of perforated board using 5 per cent resistors and Mylar capacitors.* The bottom illustration is the parts placement diagram for the circuit board.

The complete filter, with standard resistor values, actually gives a -3 dB passband of 160 Hz , or a Q of 14. This may seem a little narrow for $170-\mathrm{Hz}$ shift, but on-the-air tests have shown this not to be the case. The bandpass can be easily widened by changing R2 or by stagger-tuning one filter 50 Hz below and the other 50 Hz above the center frequency. The filter turns out to be about 800 Hz wide at the -20 dB points. There is no insertion loss; in fact, there is a small gain.

alignment and connection

Before connecting the jumper between the two filters, separately tune each filter to 2210 Hz . This can be done by injecting a $2210-\mathrm{Hz}$ signal and adjusting R3 for peak output as shown on a VTVM or highimpedance ac voltmeter. The jumper is then connected between the sections. Another method of tuning the filters, though not as accurate, is to tune in a strong RTTY signal with the filter in the line and adjust R3 on each filter for peak output or best copy.

The transformer is used to step up the input from the receiver speaker output to more closely match the input impedance of the filter. If the output impedance of your receiver is at least 500 ohms, the transformer will not be needed.

A good way to check the performance of the complete filter is to have some means of switching it in and out of the circuit. You will find that the filter will sometimes be the difference between copy and nocopy. High-impedance headphones (2000 ohms) connected across the output will enable you to hear the difference.
*A complete kit of parts and wired/tested units are available from the author. See Flea Market ads.

reference

1. Nat Stinnette, "Update of the Phase-Locked Loop RTTY Demodulator," ham radio, August, 1976, page 16.
ham radio

new audio amplifier

for the Drake R-4C

A new audio amplifier for the Drake R-4C, suitable for direct substitution in all R-4C versions

Improvements in the Drake R-4C receiver, up to now, have been confined mainly to the i-f and detector systems. $1,2,3$ One remaining area which needs improvement is the audio strip, which suffers from buzz and higher-than-desirable distortion; it also dissipates 7 to 10 watts of heat near the PTO. The audio amplifier, diagramed in fig. 1, eliminates these problems. While intended as an R-4C retrofit, this circuit performs so well that we also recommend it for other communications uses.

Our circuit is designed around National Semiconductor's LM383T, which, with the R-4C low-voltage supply, can deliver in excess of 2 watts into a 4 -ohm load. The LM383 and associated components* can be mounted on a copper-clad board $3.8 \mathrm{~cm}(11 / 2$ inches) square, or another appropriate small heatsink (for a $\mathrm{V}_{\text {cc }}$ of 16 volts or less). It should be installed just behind the front-panel phone jack, between the passband-tuning capacitor and long i-f shield on which the Sherwood CF-600/6 may be mounted. This location provides access to the speaker lead and detected signal at the audio gain pot. It also keeps the circuit away from power transformer hum fields in the chassis.

circuit precautions

The secret of making the LM383 an uncondition-

[^8]ally stable audio amplifier (suitable for field installation in various layout configurations) is our output stabilization network. Proper stabilization is accomplished by connecting a $1.0-\mu \mathrm{F}$ monolithic ceramic capacitor (such as Sprague 5CZ5U105X0050C5) with $19-\mathrm{mm}(3 / 4$-inch) leads directly between pins three and four of the LM383. Use of a lower-value capacitor with significantly longer or shorter leads will virtually guarantee oscillation problems. Tantalum or aluminum electrolytics cannot be substituted for the monolithic capacitor.

Other circuit values have been chosen to tailor the audio response for greatest communications intelligibility. As in the original R-4C circuit, low frequencies are rolled off at one end of the needed spectrum; high-frequency shaping is similar to that of our suggested modification. 1 The feedback network has been chosen to provide nearly 40 dB of power-supply ripple rejection, minimizing the need for abnormal amounts of filtering. Gain at 1 kHz is 40 dB.

component selection

As with any high-gain amplifier, feedback and hum loops between the input and output should be avoided. Return all signal and power leads to pin 3, except for $V_{c c}$ bypass, which should be returned to the IC tab with a solder lug.

To reduce component size, the $0.22-\mu \mathrm{F}$ and $10-\mu \mathrm{F}$ capacitors can be 16 -volt (or greater) tantalums. The $200-\mu \mathrm{F}$ electrolytic at pin 2 can have a 3 -volt rating. The $300-\mu \mathrm{F}$ output capacitor should have a minimum rating equal to $V_{c c}$ (20 volts maximum). Sixteen volts is adequate for the R-4C. As mentioned above, a small heatsink is used for a $V_{c c}$ less than 16 volts; above 16 volts a large heatsink. Never exceed a V_{cc} of 20 volts.

installation

To disable the existing amplifier, lift the output
By J. Robert Sherwood, WB0JGP, and George B. Heidelman, K8RRH, Sherwood Engineering, Incorporated, 1268 South Ogden Street, Denver, Colorado 80210
transistor's collector lead at its solder lug. Also, remove its base or emitter wire, and/or disconnect one end of the driver's 100 -ohm collector resistor. Connect the new amplifier's output to the phone jack terminal with the sleeved wire from the audio output transformer, and bypass with a $0.01-\mu \mathrm{F}$ capacitor. This secondary is still used to provide the needed step-up for anti-vox system.

The only ground return should be a short, thick, insulated wire, run from pin 3 directly to the cablebraid terminal of the audio gain pot (rear section of

fig. 1. Schematic diagram of the new audio amplifier for the R-4C, based upon the LM383T audio amplifier IC. Resistors are $1 / 4$ watt. As pointed out in the text, all ground returns must be made through the connection to pin three to eliminate hum and feedback problems. The $1-\mu \mathrm{F}$ monolithic ceramic capacitor must have $19-\mathrm{mm}$ ($3 / 4-\mathrm{inch}$) leads (see text).
the dual control.) Do not allow the board or heatsink to touch any other part of the receiver ground. Next, add a small wire between the audio gain-control braid terminal and a close chassis ground. Disconnect the existing wire from the gain pot center wiper terminal, and connect the new amplifier input to this lug. Connect V_{cc} to the original audio-strip printed circuit board terminal with the blue wire from the audio-output transformer primary.

references

[^9]ham radio DREAM

WE SUPPLY THE MATERIALS YOU HAVE THE FUN

Tell us what you need Ask us about our custom antenna packages

6061-T6 DRAWN
ALUMINUM TUBING
AIRCRAFT* GRADE PLATED HARDWARE

HIGH* STRENGTH FIBERGLASS SPREADERS

STAINLESS* STEEL ELEMENT CLAMPS

CALL OR WRITE FOR FREE INFORMATION

GL ENTERPRIGES ROUTE 1, Box 10 BROWNSVILLE, wIS. 53006, PH [414] 583-4001

7PL
1/4 KILOWATT LINEAR AMPLIFIER
TPL proudly presents the first true power $1 / 4 \mathrm{KW}$ SSB/AM, FM or CW solid state 2 meter linear amplifier A remote control plug allows you to operate with the amplifier ON or OFF, or in SSB/AM, FM or CW from the dashboard.

The 2002 utilizes the latest state of the art engineering including microstrip circuitry and modular construction. The three final transistors combine to produce 250 W when driven by 15 W or more at 13.8 VDC .

POWER INPUT
5-20W Carrier FM or CW 20W PEP maximum SSB or AM

POWER OUTPUT: 200-250W carrier FM or CW 300W PEP SSB or AM

FREQUENCY RANGE: 144 to $148 \mathrm{MHz}{ }^{*}$

* will operate with slight degradation at $142 \quad 150 \mathrm{MHz}$

HARMONIC ATTENTUATION All Harmonics Attenuated 60 dB or Greater

CURRENT DRAIN: FM-40 Amps (a) 250W SSB-30 Amps @ 300W PEP

DUTY CYCLE: FM 50\% @ 150W 33\% @ 250W SSB 60\% @ 150W 50\% @ 250w

Model 2002 \$499.00
can be ordered for repeater application for additional information contact

1324 W. 135TH ST., GARDENA, CA 90247 (213) 538-9814 Export EMEC Inc, 2350 South 30th Avenue. Hallandale, Florida 33009

the verti-loop a folded whip antenna for vhf mobile operation

Do you want a simple, inexpensive way to improve your 2-meter mobile performance in the fringe areas? How about a $3 / 4$-wavelength vertical on your car roof? The concept sounds mind boggling - but what if it were only 1 meter (3 feet) long? Sound interesting? Try building one of these verti-loops, a name coined for a $3 / 4$-wavelength vertical ground plane compressed to less than $1 / 2$-wavelength long by folding the bottom section into a horizontal loop. The advantage is $2-3 \mathrm{~dB}$ gain over the $1 / 4$-wavelength whip, and it still lets you keep the car in the garage. It's an easy weekend project and should cost less than $\$ 3.00$ if you already have a roof-mounted antenna or an old discarded mag-mount CB whip. The results will be well worth the effort.

theory

Most vhf mobile operators know that a $1 / 4$ wavelength whip is ideally located in the center of an unobstructed car roof. A compromise, because of physical size, is to use a $5 / 8$-wavelength gain antenna on the trunk lid, where, because of obstructions on most cars, the 2.3 dB of potential gain is usually lost; results may even be inferior to those of the smaller roof-mounted whip.

A $3 / 4$-wavelength ground-plane antenna is resonant, therefore nonreactive, and has a high-current feedpoint. The length of such an antenna may be calculated as half the length of a $3 / 2$-wavelength dipole ${ }^{1}$:

$$
\begin{equation*}
L=\frac{149.95(N-0.05)}{f} \tag{1}
\end{equation*}
$$

where L is the $3 / 2$-wavelength dipole length in meters, N is the number of half wavelengths on the

By Herb Bresnick, WB2IFV, 16 Creekside Drive, Honeoye Falls, New York 14472
antenna (3), and f is the frequency in $\mathrm{MHz}(146)$.

$$
\begin{aligned}
L & =\frac{149.95(2.95)}{146} \\
& =3.03 \text { meters (} 119.3 \text { inches) }
\end{aligned}
$$

The vertical length would be half of this, or 1.52 meters (59.6 inches). The antenna impedance would be half of the $3 / 2$-wavelength antenna impedance (105 ohms), or 52.5 ohms.

design

To shorten the $3 / 4$-wavelength vertical to a reasonable size, it was divided into $1 / 4$ - and $1 / 2$-wavelength sections, and the $1 / 4$-wavelength section was folded into a loop. The result was the upside-down "halo" antenna depicted in fig. 1. The top section was shortened slightly to 91 cm (36 inches), and the bottom section was lengthened slightly to $61 \mathrm{~cm}(24$ inches) for convenient fabrication sizes. When folded into a loop, the bottom section results in a $19-\mathrm{cm}$ (7.5-inch) diameter.

construction

The antenna was constructed very simply using a $2.4 \mathrm{~mm} \times 91 \mathrm{~cm}(3 / 32 \times 36 \mathrm{inch})$ stainless-steel welding rod (available at any welding supply shop) as the $1 / 2$-wavelength section, and an ordinary tv uhf loop (available from Sears) as the folded $1 / 4$-wavelength section.
To one end of a $5-\mathrm{cm}$ (2-inch) section of plastic tubing (PVC works fine), a threaded stainless steel nut, which matched the threaded end of my rooftop $1 / 4$-wavelength antenna, was epoxied. A piece of wood dowel (or plastic filler) was cemented into the other end of the tube and was drilled for a snug fit for

Close-up of the $3 / 4$-wavelength mobile vertical antenna. It resembles an "upside-down" halo.

fig. 1. Design of the verti-loop antenna. Antenna is a $1 / 4$ wavelength vertical divided into $1 / 4$ - and $1 / 2$-wavelength sections; the $1 / 4$-wavelength section is folded into a loop. Total extended length is $3 / 4$ wavelength on 2 meters. Antenna mounts on your car roof with a plastic base made of PVC tubing.
the stainless rod. A little epoxy will keep it from loosening (fig. 2).

The Sears loop comes with hinged terminals, which were left on to permit fine tuning the antenna. One wire terminal was simply pulled out of its hinge, leaving a spring opening through which the stainless rod was forced. It makes for a snug fit, but permits sliding the loop down to where the rod joins the plastic tube.

The other wire terminal on the loop was cut off (leaving the hinge) and the wire remaining was passed through a small hole drilled in the side of the PVC tube just above the nut, where it was com-

fig. 2. Details of the mounting base. An ordinary tv uhf loop was used for the $1 / 4$-wavelength section. or you can use stainless-steel wire.
pressed by the threaded roof stud when the antenna was screwed on.

The antenna rod should be insulated from the stud except through the loop connection. The design can be modified easily to fit other base mounts or for new installations using a PL259 coax fitting, or even to a

View of the antenna at car-top level.
discarded CB magnetic mount if you don't want to drill a hole into your car roof.

results

With the transmitter on an unused frequency and a SWR meter attached, the loop position was moved on its hinges for minimum SWR. It's not a critical adjustment if the dimensions are followed. I obtained 1.1 to 1.0 SWR with the loop about 2.5 cm (1 inch) from the car roof with the first try. The hinges are stiff enough to maintain the loop position even when

GREGORY ELECTRONICS The FM Used Equipment People.

Save

 s20

Motorola Motrac

U43HHT-1100E, 12 volts, $150-170 \mathrm{MHz}, 40$ watts, Single Frequency, Fully Narrow Band, with accessories.

NOW
>278 \$2258.

Author's antenna is a full-fledgad $1 / 4$-wavelength vertical but fits under garage opening without dismantling. The stainless-steel radiator bends easily to $\mathbf{3 0 - 4 0}$ degrees from vertical.
driving over bumpy roads. I've built three of these antennas at a cost of $\$ 2.00-\$ 3.00$ each. All have resonated with practically no adjustment.

Actual dB measurements on the antenna have not been made; however, tests indicate a marked improvement over the $1 / 4$-wavelength whip. One repeater that was barely readable is now almost full quieting into my receiver. Reports from friends are that noise on my signal (from a portable HT in the car) was all but gone and no evidence of mobile flutter occurred.

Best of all the car still fits into my garage, and, although the top of the antenna does hit the entrance, the stainless-steel rod is flexible enough to recover from a 30 - or 40 -degree bend. The antenna has a somewhat futuristic look to it - at least it looks different from your good buddy's 11-meter job!
reference

[^10]ham radio
See what just some of the many satisfied Hams say about the Wilson Antennas.

Wilson Electronics announces a factory authorized rebate program. Here's how it works:

Purchase a TT. 45 and a System Three at the same time and Wilson will give you a factory 5% rebate from the price you paid for the package. You can use this to pay for the concrete to install it, or buy the XYL a little something to keep her happy! Or . . . we will give you, at no charge, a M-27, the best 7 element, 2M beam available today! The choice is yours to make!
Just send Wilson the receipt of your purchase from your dealer, showing your cost, and let us know what you want - 5\% cash, or a M-27. But hurry! This offer starts April 1, expires midnight, April 30, 1979, and receipt must be mailed before June 1, 1979.
Don't wait! See your nearest dealer to take advantage of this great Give•A•Way!

SPECIFICATIONS

TT- 45 TOWER

- Maximum height, 45^{\prime}
- 800 lbs. winch with padlock feature
- 2800 lb . raising cable
- Totally freestanding with proper base
- Total weight, 189 lbs.

Recommended accessories: RBRF-10, SBRF-10, CBRF-10.
The TT-45 is a freestanding tower. Ideal for installations where guys cannot be used. If the tower is not being supported against the house, the proper base fixture accessory must be selected.

SY-3 TRI-BAND ANTENNA			
Band MHz	14-21-28	Turning radius	15 $2^{\prime \prime}$ O
Maximum power input	Legal limit	Maximum mast diameter.	$2^{\prime \prime} 0$
Gain (dBd) .	8 dB	Surface area	q. 1
VSWR at resonance	131	Wind loading © 80 mph .	. 114 lbs
Impedance	50 othes	Assembled weight (approx)	37 lbs
F/B Ratio	20 dB	Shipping weight (approx)	42 lbs
Boom (O.D \times length)	$2^{\prime \prime} \times 14^{\prime \prime} 4^{\prime \prime}$	Direct 52 ohm feed or balun	
No. of elements		Maximum wind survival	.100 mph
Longest element $\ldots . . .27^{\prime} 4^{\prime \prime}$			
M.27-7 ELEMENT 2M BEAM			
Band MHz	144.148 MHz	Beam width te 3 dB pr	27 degrees
Gain	11 dB	Turning radius	37.13
VSWR	121	Mast diameter (O.D.)	
Impedance	50 ohms	Surface area	44 sa, 17 .
Boom (O.D. x lenath)	$1^{\prime \prime} \times 64{ }^{\prime \prime}$	Wind loading @ 80 mph	55 lbs
Number of elements	7	Shipping weight (approx)	6.5 lbs
Longest element	$40^{\prime \prime}$	Assembled weight (approx)) 3.5 lbs

DSI Super Meter Transistor Tester - VOM

 Diode Protected•Fused•Gold Plated Selector Switch

SPECIFICATIONS

Measurement	Measurement Ranges	Accuracy
DCV	$\begin{aligned} & 0-.1 V-.5 V-2.5 V \\ & 10 \mathrm{~V}-50 \mathrm{~V}-250 \mathrm{~V}-1000 \mathrm{~V} \end{aligned}$	$\pm 3 \% \mathrm{fs}$
ACV	$\begin{aligned} & 0-10 \mathrm{~V}-50 \mathrm{~V}-250 \mathrm{~V} \text { - } \\ & 1000 \mathrm{~V} \quad 30 \mathrm{~Hz} \text { to } 30 \mathrm{kHz} \end{aligned}$	$\pm 4 \%$ fs
DCA	$\begin{aligned} & 0-50 \mu \mathrm{~A}-2.5 \mathrm{ma}-25 \mathrm{ma} \\ & -.25 A \end{aligned}$	$\pm 3 \% \mathrm{fs}$
Ω	$\begin{aligned} & .2 \text { to } 20 \mathrm{~m} \Omega \\ & \text { Range } \times 1 \times 10 \times 1 \mathrm{k} \times 10 \mathrm{k} \end{aligned}$	$\pm 3 \%$ arc
dB	$+10 \mathrm{db} \sim+22 \mathrm{db}$ for 10VAC	$\pm 4 \% \mathrm{fs}$
ICEO	$\begin{aligned} & 0-150 \mu \mathrm{~A} \times 1 \mathrm{k} \quad 0-15 \mathrm{ma} \\ & \times 10 \quad 0-150 \mathrm{~m} \times 1 \end{aligned}$	$\pm 3 \%$ arc
HFE	$0-1000 @ \times 10 \frac{\mathrm{Ic}}{\mathrm{ln}}$	$\pm 3 \%$ arc

Every YF-370 is factory assembled, tested, and includes diode protected meter movement with a fused input and an extra fuse. The switch assembly has double wiping gold plated contacts to assure years of trouble-free service. At this low price buy two...one for the car and one for the shop.

CALL TODAY TOLL FREE: $(800-854-2049)$ Calif. Res. CALL (800-542-6253) TO ORDER OR RECEIVE MORE INFORMATION ON DSI'S FULL PRODUCT LINE OF FREQUENCY COUNTERS RANGING FROM 10 HZ TO 1.3GHZ.
TERMS: MC - VISA - AE - Check - M.O. - COD in U.S. Funds. Orders outside of USA \& Canada, please add $\$ 5.00$ additional to cover air shipment. California residents add 6% Sales Tax

DSI INSTRUMENTS, INC.

7924 Ronson Road, Dept. G, San Diego, CA 92111

DSI COMMUNICATIONS SERIES 1.3 CHz 1 GHz - 700WHz

DSI C1000 1 GHz Fraquency Counter

 117111110°

MODEL C1000 $\mathbf{1 0 H z}$ to 1 GHz

- INCLUDES BATTERY PACK

\$49995

- AUTO ZERO BLANKING
- AUTO DECIMAL POINT
- 10MHz TIME BASE

Accuracy . . that's the operational key to this rugged advanced design Model C1000 1GHz frequency counter a significant achievement from DSI. That's because you get
. 1 PPM 0° to $40^{\circ} \mathrm{C}$ proportional oven time base ... Built in 25DB preamplifier with a 60DB adjustable attenuator $\times 10$ \& $\times 100$ audio scaler which yields .01 Hz resolution from 10 Hz to 10 KHz equivalent to $10 \mathrm{sec} . \& 100 \mathrm{sec}$. Gate Time Selectable $.1 \& 1 \mathrm{sec}$. time base and 50 ohms or 1 meg ohm input impedance . . . Built-in battery charging circuit with a Rapid or Trickle Charge Selector ... Color keyed high quality push button operation . . All combined in a rugged black anodized ($.125^{\prime \prime}$ thick) aluminum cabinet. The model C-1000 reflects DSI's on going dedication to excellence in instrumentation for the professional service technician, engineer, or the communication industry.

MODEL C700 50 Hz to 700 MHz

- INCLUDES BATTERY PACK

\$36995

- AUTO ZERO BLANKING
- AUTO DECIMAL POINT
- 10 MHz TIME BASE

ALL NEW! AlI UNPARALLELED DSI QUALITY! The model C 700700 MHz frequency counter features 2 PPM 0° to $40^{\circ} \mathrm{C}$ proportional oven time base ... 25 db preamplifier with a 60db adjustable attenuator. Built in battery charger with a rapid or trickle charge selector . .. Combined in a rugged ($.125^{\prime \prime}$ thick) aluminum cabinet makes the C700 ideal for the communication industry and professional service technician.

3600A OWNERS: Up date your 3600A frequency counter to a C 700 includes, new back board, .2PPM proportional oven, 25 db preamplifier, rugged $.125^{\prime \prime}$ thick aluminum cabinet, order 3600A-700. Unit must be returned to DSI factory for modification.

DSI - GUARANTEED SPECIFICATIONS - FACTORY ASSEMBLED - MADE IN USA

Model	Frequency Range	Proportional Oven Accuracy Over Temperature	50 Hz $\mathbf{T o}$ 75 MHz	75 MHz To 500 MHz	500 MHz To 1 GHz	Number Of Digits	Size Of Digits	Power Requirements	Size

- All Units Are Factory Assembled, Tested And Carry A Full 5 Year Limited Warranty -

Model C 700
\$369.95

> 3600A-700 Factory Update (3600A only) Includes Labor \& Re-Calibration $\$ 199.95$

Model C 1000
\$499.95
Opt. 011.3 GHz (C1000 only)
\$ 99.95
Opt. 02 . 05 PPM 10 MHz Double Oven
0° to $50^{\circ} \mathrm{C}$ Time Base (C1000 only) $\mathbf{\$ 1 2 9 . 9 5}$
Ant. 210 Telescopic Ant./BNC Adapter $\$ 11.95$

the jammer problem:

 some interesting solutions
The incidence of jammers is increasing here's an interesting approach to the problem

In this paper we use the basic ideas of the scientific method in solving some interesting problems. It is important to have a clear understanding of, and agreement on, the nature of observation, cause and effect, hypotheses and testing of these hypotheses.

Science begins with observation. The scientific worker uses his mind to imagine how something might be constructed or how a problem may be solved. He knows that only by examining his observations can he determine if his imaginings correlate with the real world.

statement of the problem

The locale is a large city in the United States. In this city many Radio Amateurs abound. The problem we are about to address (and solve using the scientific method) concerns specific specimens. These specimens are Radio Amateurs (and others who are not legitimate Radio Amateurs) who persist in jamming the 2-meter repeater stations in this city. These specimens particularly delight in causing a disruption in
radio communications over the repeater links by using various schemes.

The problem is to locate these specimens using three scientific methods: mathematical methods, methods from theoretical physics, and methods from experimental physics.

mathematical methods

Several mathematical methods are available to us to ferret out the offending 2 -meter jammer. The mathematical methods we shall enumerate are easily seen to be applicable, with obvious formal modifications, to similar situations in other parts of the globe. As with other branches of knowledge to which mathematical techniques have been applied in recent years, the mathematical techniques of ferreting out 2-meter ham jammers has a singularly unifying effect on the most diverse branches of the exact sciences.

Hilbert, or axiomatic method

We place the culprit in an imaginary cage, which we have previously defined in time and space by using established techniques. We then introduce the following logic system:

Axiom 1. The class of jammers in the cage is nonvoid.

Axiom 2. If there is a jammer in the city, there is a jammer in the cage.
Rules of procedure. If p is a theorem, and p implies q is a theorem, then q is a theorem.
Theorem 1. There is a jammer in the cage.
Conclusion. Approach the cage with caution. Lift the jammer gently out of the cage, shave his beard, cut his mike cord, and put him in a playpen.

By Nuryev Sidelbandsk, UX3PU

method of inverse geometry

We place a spherical cage in the city, enter it, and lock the cage. We then perform a geometric inversion with respect to the cage. The jammer is then inside the cage and we are outside.

Conclusion. We proceed as in the method of Hilbert, above, except in this case we call in federal troops with Zen guns, who quickly dispose of the specimen. We then donate his equipment to a worthy organization.

method of projective geometry

Without loss of generality, we may regard the city as a plane. We project the plane into a line, then we project the line into an interior point of the cage that contains the jammer. We then perform a geometric involution of catharsis, which in turn projects the jammer into the city jail (without bail).

Bolanzo-Weierstrass method

In this method we bisect the plane by a line running north-south. The jammer is either in the east portion or in the west portion; let us assume he is in the west portion. We bisect this line with another line running east-west. The culprit is either in the north portion or the south portion. Let us suppose he is in the north portion.

We continue this process indefinitely, constructing a sufficiently strong force about the chosen portion

at each step. As the volume of the chosen portion approaches zero, the jammer is ultimately surrounded by a fence of arbitrarily small perimeter. The specimen (jammer, if you will) is thus a victim of the confusion syndrome. He begins to believe he has, at last, become rational. It is now relatively easy to approach the jammer. We place a cowbell into the jammer's left hand and into his right hand we place a telegraph key, which is connected to a code-practice oscillator. it is now a very critical moment for the jammer. He begins to send messages to himself with the cowbell and answers himself with the telegraph key. We realize that the messages make no sense because the jammer is not comfortable with the Morse code.

Conclusion. To reduce the confusion factor in the jammer's mind, we gently tap him on the head with a small mallet. As we manipulate the mallet (which we do using the Morse code), the jammer begins to get the message, to wit: "Jamming is a no-no. Jamming is a no-no. Jamming is a no-no." I shall leave as an exercise for the student the decision as to how long we subject the jammer to this action.

Cauchy, or function-theoretical, method

In this mathematical method we consider a jammer-valued function, $f(z)$, where z is nondimensional but critical to resolving the problem.

Let there be a function, $f(z)$, and let S be the cage

[^11]enclosing the jammer. Consider the integral
\[

$$
\begin{equation*}
\frac{1}{2 \pi 1} \quad 0 \int \frac{f(z)}{z-s} d z \tag{1}
\end{equation*}
$$

\]

where C is the boundary of the plane of encounter. Its value, after appropriate manipulation of eq. 1, is

that of $f(S)$. Therefore, we have a culprit in the cage. We then dispose of him appropriately. In this case we ignore his stupid mouthings on the repeater but send a male nurse armed with ten-dozen Popsicles. The nurse plies the jammer with Popsicles until the jammer decides to throw up (a very effective prob-lem-solving method).

methods from

theoretical physics

We now examine some theoretical methods for dealing with the 2 -meter jammer. These methods have not been proved in practice but offer some interesting food for thought for the theoretician.

Dirac method

We observe that jammers are known to use wild methods to attract attention. Therefore these jam-

mers must be considered wild men. But, according to the scientific method, we must temper our observations with caution. Perhaps the jammer in question is not really wild but is somewhat tame with a rather limited mentality. Perhaps he needs help. Why punish him if, indeed, he's not really responsible for his actions? The author has a proven formula which, if applied to these situations, will produce good results in many cases. For those interested I shall be happy to furnish the method and appropriate action. Please send a self-addressed, stamped envelope for an immediate reply.

methods from experimental physics

Using the methods from experimental physics, we are able to deal positively with the problem of 2 meter jammers. It should be noted that these methods are also valid for other inconsiderate jammers in the other Amateur bands.

thermodynamic method

We construct a semipermeable membrane, permeable to everything except jammers, and sweep it across the plane of interest (i.e., the city in question). We also add a pot of hot water to the apparatus. As the semipermeable membrane is swept across the city, it picks up the jammers. The jammers are enmeshed in the membrane and, having nothing else to do, immediately start brewing coffee. We immediately detect the aroma of brewing coffee, descend on the culprits, and capture them in a loony net. We then enlist the aid of local authorities to dispose of the problem.

magnetomatic method

In implementing this technique we plant a large bed of popcorn arranged in an ellipse, whose major axis lies along the direction of the horizontal component of the earth's magnetic field. At one focus of this ellipse we place a cage (with strong iron bars). We then distribute over the plane in question large quantities of magnetized spinach (spinacia oleracea), which has high ferric content.

The magnetized spinach is eaten by various denizens of the locality, which are in turn eaten by the 2meter jammers. The jammers, having partaken of commodious amounts of popcorn, are then oriented parallel to the earth's magnetic field. This causes a beam of jammers to be focused onto the cage. Since the jammers are full of our specialized popcorn and, by indirect ingestion, magnetized spinach, it is an easy matter to zap the jammers. The benefit of this method is that we can dispose of the culprits in large numbers.
ham radio

A dual HF wattmeter at a great low price!

Reads both forward and reflected power at the same time!
Keep tabs on your transmitter with this handy new dual HF wattmeter. It measures both forward and reflected power for frequencies between 1.8 and 30 MHz ($160,80,40,20,15$ and 10 meters). It measures transmitter output up to 200/2000 watts in the forward direction and $50 / 500$ watts reflected. Two front panel meters monitor forward and reflected power and one switches to give you a direct reading of SWR from $1: 1$ to $3: 1$. A factory assembled and calibrated sensor gives the HM-2140 far better accuracy and reliability than other kit-type meters. In fact, full scale accuracy in the 200/2000 watt forward ranges is $\pm 5 \%$, and $\pm 7.5 \%$ on reflected ranges. The front panel
forward power meter can be switched to read PEP or average power. Operation on a single 9 -volt battery or optional AC adapter makes the HM-2140 convenient and versatile. At $\$ 69.95$, and with just a few hours of enjoyable kitbuilding. you'll have a wattmeter that can be a real aid to your station!

See us at the Dayton Hamvention, April 27-29.
Price is mail order net F.O.B. Benton Harbor, Michigan. Prices and specifications subject to change without notice.

Theres More for the Ham at Heath!

Mail coupon at right for your

Heathkit Catalog!

Read about nearly 400 electronic kits you can build yourself for fun. for satisfaction and for savings!

[^12]

TS-1203... A big litite rig.

It's a compact, up to 200 watts PEP input,

 all solid-state HF transceiver with such standard features as built-in digital readout, IF shift, new PLL technology and requires no tuning!Exciting and perfect for car or ham shack use! But, there's more to say about the TS-120S! This unique all solid-state $\mathrm{HF}, \mathrm{SSB} / \mathrm{CW}$ transceiver produces a hefty signal and also offers a lot of other great features in a very attractive, compact package.

FEATURES:

- All solid-state with wideband RF amplifier stages. No final dipping or loading, no transmit drive peaking. and no receive preselector tuning! Just dial your frequency and operate!
- Five bands, plus WWV. Transmits and receives on $80 / 75,40,20,15$, and all of 10 meters ... and receives WWV on 15 MHz .
- 200 watts PEP (160 watts DC) input on 80-15 meters, 160 watts PEP (140 watts DC) input on 10 meters. LSB, USB, and CW.
- Digital frequency display (standard) $100 \cdot \mathrm{~Hz}$ resolution. Six digits. Special
green fluorescent tubes eliminate viewing fatigue. Analog subdial, too, for backup display.
- IF shift (passband tuning), to remove adjacent frequency interference and sideband splatter.
- Advanced PLL circuit, which eliminates need for heterodyne crystal element for each band. PLL lock frequency, CAL marker signal, and counter clock circuit use single ref. erence frequency crystal. Simplifies circuitry, improves overall stability. Also improves transmit and receive spurious characteristics.
- Attractive, compact design. Measures only $31 / 2^{\prime \prime}$ high $\times 91 / 4^{\prime \prime}$ wide $\times 131 / 2^{\prime \prime}$ long, and weighs only 4.9 kg (11.7 lbs.). A perfect size for conve nient mobile operation and rug ged enough for either mobile or portable use Also has all the desired features for optimum ham-shack operation at home.
- Noise blanker. You'll wonder where the ignition noise went.
See the big little TS 120S rig and matching accessories (VFO- 120 remote VFO, SP 120 external speaker, PS 30 AC power supply, MB-100 mobile mounting bracket, AT-120 antenna tuner and YK-88C CW Filter) at your nearest Authorized Kenwood Dealer!

STILL AVAILABLE KENWOOD TS-520S

The DXer's Choice.

Kenwood's TS-820S has everything the Amateur Operator could want in a quality rig.

Time proven over thousands of hours of operating time, the Kenwood TS-820S has become the preferred rig for those individuals interested in high reliability. And, the TS-820S has every feature any Amateur could want for operating enjoyment, on any band, from 160 through all of 10 meters ... plus an RF speech processor in the transmitter, IF shift and sharp filters in the receiver. All combine to give optimum performance under all conditions.
You can always tell who's running a TS 820 S. Its superb quality stands out from all the other rigs on the band... and when the QRM gets heavy the TS 820S's adjustable RF speech processor,
utilizing a $455-\mathrm{kHz}$ circuit to provide quick-time-constant com pression, will get the message through. RF negative feedback is applied from the final to the driver to improve linearity, and third-order products are at least -35 dB . Harmonic spurious emissions are less than 40 dB and other spurs are less than .60 dB .
RF input power is 200 W PEP on SSB, 160 W DC on CW, and 100 W DC on FSK. Receiver sensitivity is better than $0.25 \mu \mathrm{~V}$ for $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$.
The TS.820S from Kenwood! See it today at your nearest Authorized Kenwood Dealer.

TRIO-KENWOOD COMMUNICATIONS INC.
1111 WEST WALNUT / COMPTON. CA 90220

variable-frequency audio filter

Here is a tunable, inexpensive, two-IC audio filter that plugs into the receiver phone jack. It will drive headphones or a low-impedance speaker up to two watts if necessary. It operates from a single power supply that requires no regulation, thus it could be easily incorporated into some of the direct-conversion receivers used in ORP rigs. 1,2 It will also add to the selectivity of any receiver that lacks a sharp CW filter. Used with an ssb receiver, the tunability of the filter allows you to eliminate an unwanted signal by using the high or low skirt of the ssb filter and then peak the desired signal at whatever frequency results.
The circuit is that of the state-variable filter, ${ }^{3}$ using three op amps (fig. 1). The LM324 IC used in this design has four op amps on the same chip, so the extra amplifiers don't add much to the cost or wiring
selected as a compromise between sharpness and ringing. Circuit Q comes out to 15 . While no ringing is noticed, the noise definitely takes on the pitch of the frequency selected. The value of this resistor may be changed to suit your needs without altering the tuning range. The LM380 was added to the filter circuit to drive hi-fi headphones or a loudspeaker directly; the filter will drive almost anything that the receiver will drive.
With the values shown, the tuning range is from $800 \mathrm{~Hz}-2 \mathrm{kHz}$. Voltage gain is close to unity overall, so the receiver gain control sets the signal level.

audio-frequency characteristics

The frequency-controlling network is designed to operate with a dual 1-megohm pot. In one model that was built, a dual linear-action slide pot was used and

complexity. Two identical integrator circuits control the frequency response, so only a two-section ganged pot is necessary for frequency selection. The Q or sharpness, of the filter is controlled by a single resistor. The 3.3-megohm value shown in fig. 1 was

By Lew Fitch, W4VRV, 109 Robin Street, Clemson, South Carolina 29631
its action was very pleasing. Two single slide pots could probably be mechanically linked to give the same effect. The extra resistors connected in series and parallel with the ganged pots give audio bandspread by allowing the full resistance change of the ganged pots to alter the frequency over less than two octaves. They also make tracking of the ganged pots less critical. If a pot with a logarithmic taper is used,

In this model of the variable-frequency audio filter, a dual, slide action linear potentiometer has been used. Because of the high current drain, the 9 -volt battery will have to be replaced with an ac supply for permanent installation.
it should be connected for the most linear frequency variation.

If you want to design for a different frequency range, or use a different value of dual pot, the filter peak frequency is given by $f=1 / 2 \pi R C$. Plugging in the maximum and minimum resistance values will give the frequency extremes. For example, in fig. 1 when the 1 -meg pot is at a maximum, total resistance between pins 1 and 6 is 220k in series with 560 k , paralleled by 1 meg . This is 578 k ohms, and gives 812 Hz in the formula. When the $1-\mathrm{meg}$ pot is at zero resistance, the 560 k resistor is shorted and the resistance in the formula is 220k. This gives 2192 Hz . These values are all for capacitors of 330 pF .

The circuit draws about 11 mA at 12 volts with no signal. This current increases to about 35 mA for fairly loud signals. It would be possible to operate the filter from a 9 -volt transistor battery, but not for long periods of time. The feedback loops in the circuit and the 47k divider resistors stabilize the operating point of the integrators at half the supply voltage, so regulation isn't necessary.

This filter is not the solution to all interference problems, but it will allow you to selectively boost one frequency 10 dB more than another only 200 Hz away. That can make the difference between a useful contact and a marginal one.

references

1. Jay Rusgrove, W1VD, "A 20-Meter High-Performance Direct-Conversion Receiver," QST, April 1978.
2. "A Direct Conversion Kilogram," The ARRL Handbook, 1977.
3. Howard Berlin, W3HB, "The State-Variable Filter," QST, April 1978.
ham radio

HD-73 HEAVY-DUTY

 ROTATOR
with exclusive Dual-Speed Control!

For antennas up to 10.7 sq . ft . of wind load area. Mast support bracket design permits easy centering and offers a positive drive no-slip option. Automatic brake action cushions stops to reduce inertia stresses. Unique control unit features DUAL-SPEED rotation with one five-position switch. SPECIFICATIONS: Max. wind load bending moment- 10,000 in. Ibs. (side-thrust overturning); Starting torque - 400 in . lbs.; Hardened steel drive gears; Bearings - $100-3 / 8^{\prime \prime}$ diameter (hardened); Meter - D'Arsonval, taut band (backlighted). There's much, much more - so get the whole story!

Mail this coupon for complete details!
YFI \square Send me complete details on the HD.73! Give me the name of my nearest dealer!

NAME
ADDRESS
CITY
STATE
ZIP

The ALLIANCE Manufacturing Co. Inc., Alliance, Ohio 44601 a north american philips company

Meker of the temous Antennas Rotator ... Allisence Tenne-Rotore..."TV. Bether Color aentert";

maximum strength. No external bracing is
required. Weatherproof end caps are
provided.

SPECIFICATIONS

Model		ATB-34
Gain	20 meters	7.5 dBd
	15 meters	75 dBd
	10 meters	75 dBd
Front-to-back ratio		
	20 meters	30 dB
	15 meters	22 dB
	10 meters	18 dB
3dB Beamwidth		$\sim 62^{\circ}$
Normal Input impedence		50 Q,
Power Handling		2000 watts PEP
Boom length		$18^{\prime}(5.5 \mathrm{~m})$
Longest Element		$32^{\prime \prime} 8^{\prime \prime}$ (9.95m)
Turning radius		$18^{\prime} 9^{\prime \prime}(5.7 \mathrm{~m})$
Wind area		$5.4 \mathrm{t}^{2}\left(0.5 \mathrm{~m}^{2}\right)$
Weight (assembled)		$42 \mathrm{lbs}(19.1 \mathrm{~kg})$
Maximum mast $O D$		$2.5{ }^{\prime \prime}$ (6.3 cm)

split-frequency operation

This article describes how I increased the versatility of my Drake TR-4 transceiver for split-frequency operation using a Drake $R-4 B$ receiver as an external VFO.

I purchased a used R-4B receiver, and the thought kept passing through my mind that it would sure help if I could use it to control the TR-4 transmit frequency (as in the R-4 TX-4 combination).

analysis

The Drake R-4 receiver and the TR-4 use different i ifs; therefore there's no direct interface as with the TX-4. After studying the circuit diagrams, it occurred to me that it should be very easy to duplicate the control circuit of the Drake RV-4 remote VFO and
make use of only the VFO portion of the R-4B to control the TR-4.

The control circuit described was built and minor modifications were made to the R-4B to interface with the TR-4. The R-4B can be used as a separate receiver, then switched to remote VFO operation.

Circuit modifications don't interfere with R-4B normal operation. The added components can be removed in a few minutes at resale time to restore the receiver to its original condition.

The main problem in the project is the fact that there's a $45-\mathrm{kHz}$ difference in VFO operating frequency between the TR-4 and R-4B. This is apparently because of the $50-\mathrm{kHz}$ second i-f of the R-4B. There's no reason why the VFO frequency can't be decreased 45 kHz to match the TR-4 VFO output; then the crystals in the premixer oscillator can be changed to oscillate 45 kHz higher to compensate for the VFO downward shift. I breadboarded the circuits to test the idea and everything worked as planned.

control circuit

I duplicated the control circuit of the RV-4 (fig. 1) and mounted it in a small rninibox. This minibox sits on top or alongside the TR-4 to interface the R-4B. Only two critical items are in the control circuit. One is peaking coil L1 at the grid of V 1 (12AU7); it must match the coax cable from the VFO to the 12AU7 grids.

The diagram in my manual didn't give a value for L1 so I experimented a bit. I reclaimed a vhf coil form from some surplus gear and wound 70 turns of no. 30 $(0.25 \mathrm{~mm}$) enamel wire on the $6.5-\mathrm{mm}$ ($1 / 4$-inch) slugtuned form. Too few or too many turns would not peak the $5-\mathrm{MHz}$ signal, so the number of turns must be adjusted. A scope is a great aid in tuning L2.

The other critical item is the four-position special switch, A1. After tracing the functions of the Drake switch, I discovered that a standard four-position, five-pole switch would do the job. These parts could be ordered from Drake, but I used all junkbox parts.

By William P. Winter, Jr., WB8JCQ, O'Higgins 3168 Buenos Aires, Argentina

with innovative system engineering that offers you a number of "first in the world" features.

The Drake 7 -line system:

Drake TR-7: The first amateur transceiver in the world to offer full general coverage $(0-30 \mathrm{MHz})$ reception capability, 1.8 to 30 MHz transmission capability, and synthesized "up-conversion" design techniques. It's ready now for future band expansions, MARS, and other services.

Drake R-7: The first amateur receiver in the world to combine full general coverage $(0-30 \mathrm{MHz})$ reception and synthesized "up-conversion" design techniques, with transceive capability, full passband tuning, notch filter and dual receive antenna circuitry.

The Drake UV-3 system:

Drake UV-3: The first amateur fm transceiver in the world to offer 3 fully synthesized bands ($144-220-440 \mathrm{MHz}$) in a single transceiver, and bandswitched from the front panel. A remote mounting kit. PS-3 matching ac supply and 1525EM pushbutton microphone round out the system.

The 1-mH rf choke from TR1 collector is from an old TV set. Any coil will work as long as it has a good number of turns. Transistor TR1 turns the VFO B + on and off through the if choke and the coax line going to the R-4B receiver.

control switching

Position 1, separate receive. The 330 -kilohm resistor in fig. 1 is connected through S1D to $B+$, turning TR1 on, causing its collector to saturate. Thus TR1 collector goes low, pulling the $10-\mathrm{Vdc} \mathrm{B}+$

TR-1 off, thus allowing the VFO $B+$ to rise to normal. This allows the VFO in the R-4B to operate on transceive.

Position 4, transmit. During transmit only, the 330kilohm resistor is connected to ground through S1C and pin 3 of the Jones plug to the transmit cathode. TR1 is cut off allowing the VFO $B+$ to rise, enabling the R-4B VFO. During receive, the transmit cathode goes high, turning on TR1, which pulls the VFO B + down so that the R-4B VFO can't operate.

line to the R-4B VFO toward zero, which turns the VFO off. The slide switch on the side of the R-4B must be forward to disconnect the control unit, thus defeating the above action. The VFO output is now sent to V8 (premixer) cathode. The R-4B operates normally.

Position 2, receive. The 330 -kilohm resistor is connected through S1D and S1E to pin 5 of the Jones plug. This is receive cathode ground. During receive TR1 base goes low, cutting it off, and the $B+$ to the VFO goes high, which allows the VFO in the R-4B to operate during receive only. During transmit the receive cathode goes high, turning the R-4B VFO off. Note that the slide switch on the side of the R-4B must be toward the rear to switch the VFO output from V8 mixer to the control unit.

Position 3, transceive. The 330 -kilohm resistor is connected through S1D and S1E to ground, turning

The 12AU7 is a cathode follower with both sections in parallel. It functions as an impedance transformer giving a low impedance output to feed the TR-4. At the same time, the 12AU7 acts as a switch to disconnect the signal from the remote VFO. The cathode is switched high or low at the appropriate time according to the switch position and the TR-4 transmit-receive relay.

control-circuit layout

Nothing is critical about the control-circuit layout, since it is primarily composed of dc switching lines. However, some attention should be paid to the rf components related to the 12AU7 grid. Leads should be short, and accepted rf-wiring practice should be used.

Transistor TR1 can be any silicon npn device with a voltage rating of about 40 volts. The coax cable from the R-4B to the control unit, and the cables

fig. 2. Before and after mods to the Drake R-4B receiver.
from the control unit to the Jones plug, should be as short as possible. Caution: Do not insert or remove the Jones plug in the TR-4 while the rig is on; otherwise the TR-4 transistors may be damaged.

R-4B modifications

Of the five modifications described, only the first two are needed to make the $\mathrm{R}-4 \mathrm{~B}$ receiver function as a remote VFO. Modifications 3 through 5 are optional. The modifications to be described involve:

1. Changing the value of power resistor R85
2. Changing the position of three wires on S 4
3. Adding four components to switch the neon VFO indicator lamp
4. Changing the VFO dial
5. Changing the crystals and adding padding capacitors if desired

Fig. 2 shows the R-4E circuit before and after modification.

Modification 1. Provide VFO output from the fixedchannel crystal jack on the side of the R-4B by following these steps:

1. Lift C59 from S4A. Bend C59 so that it doesn't touch anything. Leave it there for restoration at resale time.
2. Locate the jumper that comes from the fixedchannel crystal jack to S4B. Lift the connection from S4B and solder it to the lug on S4A where C59 was removed.
3. Locate the wire that comes from V8 pin 7. Lift if from S4A middle lug.
4. Lift VFO output coax center conductor from S4A and move it to S4A middle lug (vacated in step 3 above).
5. Place a small $0.001-\mu \mathrm{F}$ ceramic capacitor in series with the wire removed in 3 above. Solder the other lead of the capacitor to S4A where the coax formerly was connected. This blocks the $10-\mathrm{Vdc}$ control voltage, which we will place on the VFO output line, from reaching V8.

We have now modified S 4 to provide the following switchings: Forward: regular R-4B receive mode. Back: VFO output to crystal jack, receiver disabled. The fixed-frequency crystal socket is now the VFO output jack. A length of RG-59 carries the R-4B VFO signal from this jack to the control box. I soldered the pins of a defunct crystal to the ends of the coax so I could plug the coax into the crystal socket.

Modification 2. Dc switching of the R-4B VFO is accomplished from the control unit by placing an if choke from the 10 -volt VFO $\mathrm{B}+$ line to the if output line from the VFO. A convenient spot is between the two solder tabs on the circuit board just behind the audio gain control. I used a $68-\mu \mathrm{H}$ choke from my junk box. The value isn't critical as long as it presents a high reactance at 5 MHz . Check that resistor R85 can handle the additional dissipation when the $10-$ volt line is shorted to ground by the control box. R85 must drop the entire 150 volts from the +150 -volt line. The control unit now enables the TR-4 to turn the R-4B VFO on and off in the same manner as in the remote RV-4 VFO.

Modification 3. Switching the neon VFO indicator lamp is optional but enhances operating convenience. I purchased a surplus $12-\mathrm{Vdc}, 10-\mathrm{mA}$ miniature relay and mounted it on a long bolt, which 1 installed where the audio output transformer is mounted. Your mounting will depend on what relay you have available. (See the comments on relay selection.) The following steps are necessary for this modification:

1. Connect the relay coil from the +10 volt line to ground.
2. Place a 470 -kilohm resistor from the normally open contact (normally open with coil energized) to the -80 volt line. A convenient spot is the solder tab that has a white wire with a green stripe (on my R$4 \mathrm{~B})$. This is the negative lead of C91, which is the $8-\mu \mathrm{F}, 150$-volt filter of the -80 volt line. It's located on a small vertical board behind the notch-depth control, which is mounted on the right-side panel.
3. Locate the board containing Q10. It's mounted below the VFO and just behind the front panel. Connect the other relay contact to the junction of R139 (68k) and D15 anode.

The relay functions as follows. When the TR-4 control box is set to inhibit a signal from R-4B VFO, the +10 Vdc line goes low (3 volts or lower). This action de-energizes the relay just installed, connect-
ing negative cutoff bias to transistor Q10, which causes NE2 to be extinguished.
4. R85, 4.7-kilohm, 5 watts, should be changed to a 3.5 -kilohm, 10 -watt resistor if you use a $10-\mathrm{mA}$ relay as I did. Extreme care should be used here. With the original 4.7 -kilohm resistor, the additional current drain caused the normal $10-\mathrm{Vdc}$ regulated voltage to drop below the zener regulation point. Reducing the value of R85 allows an additional 10 mA of current to be drawn, and the zener will still regulate at 10 Vdc . Do not operate the VFO with the lower resistance value without the relay coil connected, as the additional current will probably blow the $250-\mathrm{mW}$, 10 -volt zener mounted inside the VFO enclosure. Easy does it!
If you use a relay with a coil other than $10 \mathrm{~mA}, 12$ Vdc, adjust the value of R85 accordingly or perhaps provide a separate supply to drive the relay by a transistor. An alternative method would be to put a preregulator on the line (12 to 15 volts) with a zener of enough power-handling capability to do the job.

Modification 4. If you wish dial calibration on the R $4 B$ identical to that on the TR-4, it will be necessary to order a TR-4 dial from Drake. (The price in June of 1978 was $\$ 2.00$, plus $\$ 1.00$ handling, plus postage.) It's installed in the following manner:

1. Remove all front-panel knobs (some slip on; others have a set screw).
2. Remove nut on the function selector switch.
3. Remove four screws at corners of the front panel. Be careful to catch the fiber spacers behind the panel (they're hard to find when they fall and roll across the floor).
4. Remove the two screws holding the metal shield over the neon bulb. Be extremely careful not to bend the neon-bulb leads, because then break very easily; many standard replacement neon bulbs will not fit. I had to cut a hole in the shield to allow the end of the bulb to stick out.
5. Very carefully remove the front panel without unduly bending the neon-bulb leads. Lay aside the clear Plexiglas sheet with the red line. Do not lose the pressure washer. Note how it came off so it can be replaced in the same way.
6. Remove two screws holding the pilot light shield mounted behind the panel.
7. Remove the two C -rings from the VFO shaft. You'll need a C-ring tool; it can be purchased in auto parts shops. Be careful! The C-rings are tight and are hard to remove. (I broke my tool and had to use a wheel puller to remove the first C -ring). The second C -ring wasn't so tight. Important: Note the position of these C-rings so they can be replaced in the exact spot.
8. Locate, identify, (make a drawing), and remove the three leads coming out of the VFO.
9. Remove the three nuts holding the VFO in place. Lift and remove the VFO assembly from the R-4B.
10. Turn the VFO shaft to find the final stop. Noting exactly where it was positioned (pencil mark),

fig. 3. Construction of the crystal paddler, which plugs into the R-4B receiver crystal socket.
remove the dial by removing the large C -ring. Place the TR-4 dial in the same position.
11. Reassemble, following the steps above in reverse order.

Modification 5. To track the VFO for TR-4 use and separate receiver use, I ordered new crystals that are 45 kHz higher in frequency than the originals. For the 20 -meter band to tune backward, as in the TR-4, I substituted a crystal frequency (14.645 MHz), which is added, rather than subtracted, to the VFO output to obtain the proper injection frequency.
This, by the way, is the same crystal needed for 80 meters. Therefore, by installing an appropriate jumper and one other change, the same crystal can be used for both 20 -and 80 -meter operation.
To keep expenses down I ordered only three crystals (my cost locally was $\$ 20.00$ for the three crystals): one for 80 meters, which doubles for 20 meters; one for 15 meters, and one to receive WWV on 15 MHz . Thus I've covered my needs at the present. For the same crystal to be used for both 80 and 20 meters, the following steps are required:

1. Find C53 (68 pF) in parallel with R47 (1.5 kilohms). This network is the collector load for Q 1 at 25.1 MHz . Lift these two components from S5F and dress them

[^13]out of the way so they don't touch anything but are handy for replacement at resale time.
2. Place a jumper from $\mathrm{C} 55(68 \mathrm{pF})$ to the switch tab vacated above. Solder the connections.
3. Place an insulated jumper wire from the $14.6-\mathrm{MHz}$ crystal jack to the $25.1-\mathrm{MHz}$ jack. (The $25.1-\mathrm{MHz}$ crystal will no longer be used.) Put it away so it will be handy at restoration time.* The jumper should be placed in the holes toward the front panel. The new crystal, 16.645 MHz , can now be plugged into the $14.1-\mathrm{MHz}$ jack. Eighty-meter operation is as normal; 20 -meter operation now tunes backward, as in the TR-4.

crystal padding

I found it necessary to put a trimmer in series with the new crystals to trim the R-4B receive frequency to exactly the same dial calibration as when using the R-4B as a remote VFO. I used a $12-\mathrm{pF}$ ceramic cap in parallel with a small $5-25 \mathrm{pF}$ variable, which I removed from some surplus equipment (see fig. 3). The cap is smaller than the standard-size trimmer and will fit between the solder tabs of a standard-size crystal socket. The capacitors are in series with one lead of a crystal socket adapter, which is plugged into the main crystal socket.

dial calibration

Dial calibration is as follows:

1. Calibrate the TR-4 dial as usual, using the TR-4 internal crystal calibrator.
2. Switch the control unit to receive from external VFO. Calibrate the external VFO dial (R-4B dial) in the same manner as the TR-4.
3. Switch the control unit to separate receive (don't forget to throw the slide switch for separate receive). The R-4B should now operate normally. Adjust the trimmer mounted below the new crystal to zero beat.

summing up

Now you can receive a station on the R-4B and then switch immediately to transceive on the same frequency by simply selecting transceive on the control box and moving the slide switch on the side of the R-4B. You're now transmitting with R-4B VFO control. It's a good idea to check the dial calibration from time to time to make sure that everything is still calibrated, otherwise you'll have a small frequency offset when switching to transmit from the R-4B.
You have greatly increased the versatility of the TR-4/R-4B combination, and, if your experience is like mine, you'll also have greatly increased your operating pleasure.
ham radio

Introducing Kantronics' Field Day Morse Code/teletype reader and code speed display:

Kantronics' Field Day Morse Code/teletype reader and code-speed display reads code signals right off the air. Its powerful microcomputer system picks out signals, computes their speed, and reads even sloppy copy up to 80 words per minute!

1. Flys through the air with the greatest of ease.

Field Day is simple to use. You plug it into your station receiver just as you would a set of headphones.

Code and teletype conversations are converted from dots and dashes to standard alphanumeric text. The text advances across 10 big half-inch displays, and lab tests show that even the fastest CW is easily readable.

Field Day displays incoming or outgoing code speeds for you at the touch of a button. An accurate code speed-sampling program shows the speed right on the front panel. Everything is enclosed in a single, lightweight package that's small enough to fit in with the rest of your station.

2. Pay a little, get a lot.

In addition to a highly superior code-reading program and unique "on-board" speed display, Field

Day has the specifications that make it a truly great code reader.

Modes: CW, RTTY and speed display Speed Range: 3-80 WPM. RTTY Speeds: $60,67,75$ and 100 baudot. Code Dispiay: 10 aiphanumeric displays. special Characters: AS, AR, SK, BT, I? (,), comma, period, colon, semicolon, "understood," "attention," and "error." Filtering: Active, 750 Hz center, 200 Hz bandwidth. Input impedance: 1,000 ohms. Power Requirements: 117 VaC , 20 watts.
Dimensions: HWD $3.44^{\prime \prime}$ by $8.50^{\prime \prime}$ by $9.25^{\prime \prime}$. Warranty:
limited, one year parts and labor. Price: s 449.95 Shipments after 3/1/79.

3. C'mon, take a test drive.

Check with these Authorzed Kantronics dealers for more information on the Field Day Morse
Code/teletype reader and code-speed display:
Associated Radio/Kansas City, Barry/New York,
Bill's/Carbondale, IL, Brodie/Moore, OK
Burghardt/Watertown, SD, Burstein-Applebee/Kansas
City, Cohoon/Trenton, KY and Austintown, OH, Fontana Electronics/Fontana, CA, H-E-P/Aurora, CO,
Hirsch/Williamsvilie, NY, Long's/Birmingham,
madison/Houston, Midicom/St. Louis, omar/Durand, MI,
omaha Racio center/Omaha, oueen city / Cincinnati,
Radio world/Oriskany, NY, spectronics/Oak Park, IL,
Tracy/Fort worth.

K KANTRONICS

The Lightweight champs.
(913) 842 -7745

1202 East 23 rd street
Lawrence, Kansas 66044

Our Smart Machine reads sloppy copy.

COMPACT ENCLOSURE. In inches. FIELD DAY is only 3.44 high by 8.50 wide by 9.25 deep!

SPEED DISPLAY Special program computes received and transmitted code speeds.

RTTY COPY.
Control functions in back for copying all the standard baudot speeds.

ON-BOARD CODE DISPLAY. No need to tote around a TV set to copy code.

Get your antenna high enough with a TRIEX tower and bring the world to you.

Receive signals which you have never heard before.

Send your call to other HAMS who have never heard you.
A TBIEX tower will give you listening power...calling power...and stay-up power that means durability.

Durability comes from TRI-EX's 25 years of building quarity towers. These years of experience combined with the latest engineering knowledge and materials are used to design and build towers which stay up under the antenna loads and wind speeds specified. Atter manufac ture our steel towers are hot dipped in motten inc (gavanizing). All exposed steel is covered inside and out - including the inside of tubing.

Our aluminum towers are selfresistant to corrosion. TRL-EX TOWERS makes them all: GUYED TOWERS, CRANK-UP TOWERS, FREE STANDING TOWERS, STACKED TOWERS.
And we will install a tower on your site, upon request.
Call or wite TRLEX now for information on the right
HRIEX tower for you. We will send you our complete list of prices, delivery dates, installation information and pame of your nearest dealer. Call TOLL FREE.

Call our Now Number 1-800-528-6050, Extension 1025

In Arizona, dial: 1-800-352-0458, Extension 1025

high-performance 432-MHz converter

Complete construction details for a $432-435 \mathrm{MHz}$ receiving converter that is easy to build and tune up

The $432-\mathrm{MHz}$ receiving converter described here is the result of several month's work. As anyone who has attempted to build solid-state uhf gear knows, layout and construction technique is vital, not only to coming up with a good basic design, but also to building a converter that works properly.
Now that economically priced solid-state equipment and devices are available for use above 432 MHz , the cost of building uhf equipment has been reduced considerably. This converter uses three transistors (six if you build the oscillator chain for copying Oscar 8). Three Texas Instruments dualgate 3CT225A mosfet transistors are used in the converter (90 cents each in small quantities). The 3CT225A transistors are rated at 900 MHz with a $4-\mathrm{dB}$ noise factor; at 432 MHz with 12 Vdc drain voltage and 4 volts on gate 2 , gain will be about 22 dB with a noise factor of 2 dB or less. These transistors, and the stripline tuned circuits, makes this a very good converter for weak-signal reception.

Two versions of the converter were built using coils in the tuned circuits, but the results were far below that achieved with striplines. A local-oscillator chain was not built on the converter board because the $404-\mathrm{MHz}$ injection frequency was coupled from the oscillator chain in my $432-\mathrm{MHz}$ transmitting converter. However, a diagram of an easy-to-build oscillator chain will also be described. I use it with the converter to copy Oscar 8 Mode J.

layout and construction

Component arrangement, component spacing, and wiring have been optimized for best results, based on several earlier versions. The spacing between the tuned circuits in the amplifier and mixer

Top view of the $432-435 \mathrm{MHz}$ converter showing placement of the enclosures with the tuned lines. Input is to the left, output to the right. Transformer T1 is in the shield can near the output connector.

By C. H. Robinson, N9KD, 89 Nottingham Road, Springfield, Illinois 62074
was laid out to provide satisfactory interstage coupling without the use of capacitors.

The circuit boards I used are glass epoxy. The oscillator board has foil on one side; the converter board has copper on both sides. Anyone can make the circuit boards, even if he has never etched boards before. Start by cutting the boards to size; clean the boards with steel wool and paint the copper. I used Rustoleum gray primer in a spray can - it protects the copper while in the etching solution, and it is easy to remove when you scribe the lines. After the painted boards have dried, using the pattern, trace out the lines; since there are no curved lines, scribing is very easy.

Use a small jeweler's screwdriver to scribe the lines. You can paint a spare piece of circuit board and practice getting the lines the right width; about $1 / 16$ inch (1.5 mm) is best. Put the scribed boards in etching solution and agitate once in a while to speed up the etching process. After all the necessary copper has been etched off, thoroughly clean the boards with soap and water using steel wool. A final cleaning with abrasive household cleanser is recommended to remove any last traces of the etchant solution.

tuned-circuit construction

The enclosures for the striplines are made from brass strips 0.065 inch (1.5 mm) thick, $3 / 4$ inch (19 mm) wide, and 12 inches (30 cm) long. These strips

Finished components for one of the tuned stripline circuits. The button mica capacitor is soldered to the bottom of the line; the piston capacitor is inserted in the top and soldered in place (see text).
and the $1 / 4$-inch (6.5 mm) brass tubes can be purchased in many hobby shops. The dimensions for the second if and the mixer stages are 1-1/4 \times $2-1 / 4 \times 3 / 4$ inches ($32 \times 57 \times 19 \mathrm{~mm}$); the first if stage is $2-1 / 4 \times 3 / 4 \times 3 / 4$ inches $(57 \times 19 \times 19$ $\mathrm{mm})$. These are inside dimensions, so, when bending, allow for the bend angle. One way is to mark off the first bend, bend in a vise, then mark the second bend, and so on. One side must be longer than the other so it laps and can be soldered. The spacing between the tuned lines is $1 / 4$ inch 6.5

C20-C24 $1.5-10 \mathrm{pF}$ ceramic piston capacitors (Centralab 829-10)
T1 Hamtronics 7807 coil form and shield. L1 is 22 turns no. $26(0.4 \mathrm{~mm})$ close-wound; L2 is 4 turns no. $26(0.4 \mathrm{~mm})$ on bottom of L1
fig. 1. Schematic diagram of the high-performance converter for $\mathbf{4 3 2 - 4 3 5} \mathbf{~ M H z}$; companion local-oscillator chain is shown in fig. 2. Capacitors marked with FT are button mica feedthrough types; capacitors marked with T are tantalum; all other capacitors are disc ceramic. $\mathbf{Z 1}, \mathbf{Z 2}$, and $\mathbf{Z 3}$ designate the stripline circuits.
mm) and $1 / 4$ inch (6.5 mm) from the side of the enclosure.

The tubes for the tuned lines are 2-1/8 inches (54 mm) long; this allows $1 / 8$ inch (3 mm) clearance between the end of the tube and the enclosure where the trimmer is mounted. Solder tin the inside of the tube about $1 / 2$ inch (13 mm) down. Remove the wire pigtail from the trimmer, and insert the trimmer in the tube; you may have to apply heat with the soldering iron to get it in. About $1 / 8$ inch (3 mm) of the

Top view of the converter with the enclosure covers removed to show the placement of the tuned lines. Note the holes in the board for mounting the transistors.
trimmer should protrude beyond the tube. Apply heat to the tube and sweat solder the trimmer in place.

Two of the tuned lines have dc blocking capacitors mounted at the ends; these are mounted like the trimmers, but the tubes will be shorter by the thickness of the capacitor. Form the piece of wire that

Construction of the $404-\mathrm{MHz}$ local-oscillator chain. Printedcircuit layout is shown in fig. 4.
connects the tuned lines to the PC board, but do not solder yet; this will be done later when the tuned lines are placed in the enclosures.

mounting and components

If you don't have a $404-\mathrm{MHz}$ oscillator chain for injection, build the oscillator chain first. I built the oscillator board one circuit at a time, drilling the holes for the components as I went, testing each stage before starting the next. The schematics and photographs show all the details. After the oscillator board is complete and tested, lay it aside and start construction on the converter board.

Wiring the converter is straightforward; if you study the photographs and schematic you should have no problems. However, there's one precaution: Since the converter board has copper foil on both sides, the foil around the component holes on top of the board must be cleared to prevent shorts. To do this use a $1 / 8$-inch ($3-\mathrm{mm}$) drill and flatten the angle of the point so it will cut the copper from around the top hole but not touch the copper on the bottom of

L1 6 turns no. $16(1.3-\mathrm{mm})$ wire, $1 / 4$-inch $(6.5-\mathrm{mm})$ diameter, $3 / 4$ inch (19 mm) long, tapped at one turn
L2 3 turns no. $16(1.3-\mathrm{mm})$ wire, $1 / 4$-inch $(6.5-\mathrm{mm})$ diameter, $3 / 4$ inch (19 mm) long, tapped at $1-1 / 2$ turns
L3 1 turn no. $16(1.3-\mathrm{mm})$ wire, $1 / 4$-inch $(6.5-\mathrm{mm})$ diameter, with $1 / 2$-inch ($13-\mathrm{mm}$) leads
fig. 2. $404-\mathrm{MHz}$ local-oscillator chain for the $432-435 \mathrm{MHz}$ converter. Capacitors marked with FT are feedthrough types; except for the electrolytic (C15), all other capacitors are disc ceramic.

Two kinds of experts appreciate Rockwell-Collins equipment: People who buy it, and people who sell it.

Every Rockwell-Collins Distributor is a real pro at answering questions and solving problems.

He'll show you how to operate specific equipment, discuss peripheral gear, check everything out when you get it, even help with installation. And he'll be there to support your needs for years to come.

Orlando - *Amateur Electrenic Supply

GEORGIA

Atlanta - * *ACK Radio Supply
HAWAII
Honolulu - • *Honolulu Electronics
ILLINOIS
Peoria - *Klaus Radio Inc.
INDIANA
Terre Haute - * *Hoosier Electronics, Inc.

KANSAS

Overland Park --• Associated Radio Communications Inc.

Miami Springs - . . *Argon

CALIFORNIA

Anaheim - "Ham Radio Outlet
Anaheim - *Henry
Radio Co.. Inc.
Burlingame - * *Ham Radio Outlet
Los Angeles - . . *Henry Radio Co., Inc.
San Jose - *Quement Electronics colorado
Denver -
-C. W. Electronic Sales Co.
FLORIDA
Miami - *Amateur Radio Center, Inc.
 Int'I Service Corp.
MINNESOTA
Minneapolis -

* Electronic Center, Inc.
MISSISSIPPI
Jackson - * 'Coker Electronic Service
MISSOURI
Butler - *Henry Radio Company
St. Louis - . * Ham Radio Center
St. Louis - • - Midcom Electronics Inc.

Get in touch with the distributor in your area. (And ask for a copy of the RockwellCollins Amateur Equipment Catalog.)
Or contact Collins Telecommunications Products Division, Rockwell International, Cedar Rapids, Iowa 52406.
Telephone 319/395-4493.

Electronics Co.

T

New York - * "Barry Electronics Corp. Valley Stream *Harrison Radio Company
NORTH CAROLINA
Otto - * • 'Slep Electronics Company
OHIO
Cleveland - *Amateur Electronic Supply
Columbus - - Central Communications

OKLAHOMA

Ponca City -

- Starks Avionics
\& Communications Service
OREGON
Portland - . - Portland Radio Supply Co.
PENNSYLVANIA
Drexel Hill -
*Kass Electronic
Distributors
Tevose - * * Hamtronics
TEXAS
Dallas - . . -Electronic
Center, Inc.
Garland - " ' Teco, Inc.
Houston - . . "Madison Electronics Supply

WASHINGTON

Seattle -
\cdots ABC Communications
Spokane -
\cdots *HCJ Electronics
Tacoma -
${ }^{*} \mathrm{C}$ \& G Electronic Company
WISCONSIN
Milwaukee -
. . -Amateur Electronic
Supply

- Dealer only
- SERVICE AGENCY ONLY
.. DEALERS /SERVICE AGENCIES

fig. 3. Full-size printed-circuit layout for the $432-435 \mathrm{MHz}$ converter. Component placement for the converter is shown in the photograph. Transistor mounting holes marked A, B, and C are $5 / 16$ inch (8 mm) diameter.
the board. Use an emery wheel to shape the drill bit for this task.

After the mixer wiring has been completed, connect the output of the oscillator to gate 2 of Q 3 in the converter board with small coax cable; apply 12 Vdc and common to both boards. You should be able to receive the third harmonic of a two-meter transmitter that tuned to 144 MHz , or a weak-signal source if you have one. There are two excellent articles on weak-signal generators in past issues of ham radio. 1,2 When the mixer is working properly, proceed with the other two stages - testing as you complete each one.

You may be able to build the converter without using the $10-\mu \mathrm{F}$ tantalum capacitors, but they do

tune up

If a commercial signal generator is available, use it; if not, use a weak-signal source. You may find that the test signal will leak into the converter from places other than the antenna! Take the weak signal outside, as far away from the antenna as possible, or until you can't pick up the signal with the antenna disconnected. With the antenna connected you should receive the weak signal at S-5 or better. You can now peak everything up for optimum performance.

With my weak-signal source about 100 meters from the antenna I receive it at S-9 using a Kenwood TS-520. After the circuits have been tuned for maxi-
fig. 4. Printed-circuit layout for the $404-\mathrm{MHz}$ local-oscillator chain. Component mounting and shield placement is shown in the photograph.

much to stabilize the circuits so they are well worth the extra cost. You may have noticed that on the schematic diagram ferrite beads are shown on gate 2 of each if stage; the photograph shows only one on the first stage - my error, use the bead to improve stability.
mum signal, tune away from the signal and check the noise level as indicated on the receiver's S-meter. The objective is to obtain the greatest signal-tonoise ratio. You can also adjust the converter for lowest noise figure if you have equipment for noise figure measurements. 3,4

Component placement on the converter board (see fig.3). In this view the input is to the left, output to the right. Designated capacitors are mounted on the bottom of the " board. Small coax cable near C17 couples $404-\mathrm{MHz}$ injection to the converter.

When using this converter with a TS-520 transceiver and no $28-\mathrm{MHz}$ preamp, I have consistently maintained schedules on 432 MHz with stations over 100 miles (160 km) away, with reports ranging from S-4 to 20 dB over S-9 depending upon conditions. During band openings many stations have been heard 700-800 miles (1100-1300 km) out with Smeter readings over S-9. I have also used this converter to copy Oscar 8 and hear the spacecraft signals around S-6 without any special antennas. I

Component placement on the circuit board for the $404-\mathrm{MHz}$ local-oscillator chain.
have built several $432-\mathrm{MHz}$ converters from handbooks, magazine articles, and commercial kits, but this converter tops them all.

references

1. James Brannin, K6JC, "A Stable Small-Signal Source for 432 MHz ," ham radio, March, 1970, page 58.
2. Bruce Clark, K6JYO, "A Stable Variable Output Weak-Signal Source," ham radio. September, 1971, page 36.
3. Louis Anciaux, WB6NMT, "Accurate Noise-Figure Measurements for VHF," ham radio, June, 1972, page 36.
4. Robert Stein, W6NBI, "Automatic Noise-Figure Measurements," ham radio, August, 1978, page 40.

NEW FROM LUNAR Modular A Erectable Towers

- Ideal for ground or roof mounts
- One man can assemble and erect
- Lightweight
- High quality aluminum alloy
- High stability
- Modular and portable
- Extremely rugged

LUNAR'S NEW MODEL 2M 10-150 LINEARIZED
 AMP
Now ready and being shipped. We held off on announcing it until it was right...
Ready now. Order today from your Lunar dealer.

These unique antenna towers can be installed on the ground or roof. Since they're easily transported and site erected, they're a natural for field and portable operations.
Constructed of sturdy aluminum alloy, they're sturdy enough to handle large size HF beams and

EME arrays as well. Also available with optional stainless steel hardware for harsh environments.
Base is approximately $60^{\prime \prime}$ high and weighs 28 pounds. Tower sections are $72^{\prime \prime}$ high and weigh 21 pounds.
armo

2785 KURTZ STREET • SUITE 10 SAN DIEGO, CA 92110•(714) 299-9740

impedance measurements

using an swr meter

The simple swr meter and a handheld calculator can be used to measure complex relationships involving impedance in tuned circuits

An SWR measurement can indicate when an if source is properly matched to a load, but often it's desirable to know the actual impedance values for the load. Once these values are determined, it's then possible to design matching circuits or transformers to translate the load impedance to the desired impedance.

For example, as more solid-state broadband transmitters come into use, a matched load impedance becomes more desirable. While the high SWR of an antenna may not damage transistors rated to withstand that SWR, the output power may be reduced because of an improper load impedance. The lack of tuning and load adjustments prohibits rematching the load impedance to the final output stage for the rated transmitter performance.

Another example of the requirement for knowing the load impedance can be seen for a typical installation with an antenna cut for the 75-meter phone band, but with an occasional trip down in frequency to check into an 80-meter CW net. When an antenna tuner isn't available it's possible to construct a matching circuit so the transmitter still sees a load

fig. 1. System for measuring characteristic impedances other than 50 ohms. The transformer can be a lumped-constant element, broadband transformer, or a transmission line such as a quarter-wavelength of 75 -ohm coaxial cable at the frequency of interest.
impedance within its rated SWR, even though the actual antenna SWR is somewhat higher. Knowing the actual impedance values of the 75 -meter antenna while using it at 80 meters will yield a starting point for construction of such a circuit.

measurement procedure

Many instruments are available to measure impedance values, but only a few fortunate Amateurs have them. An instrument that is available, or at least not too expensive or difficult to construct, is an SWR meter.

Once the SWR of an impedance is known, half the battle is over. If the reflection coefficient electrical angle, θ, is known, the impedance can be quickly determined by using a Smith chart. (This is discussed later.)

Information that's available is the SWR based on a characteristic impedance, Z_{01}, of 50 ohms. This means the source, usually a transmitter, looks like a 50 -ohm source, and the SWR meter has a 50 -ohm characteristic impedance. However, the use of a Smith chart isn't the only method of determining an impedance when the SWR and the reflection coefficient electrical angle are known. The impedance can be calculated outright by knowing the SWR, the reflection coefficient electrical angle, and the characteristic impedance of the measuring system. ${ }^{1}$

If another SWR measurement could be made with a different characteristic-impedance-measurement system, Z_{02}, the same impedance values would be found. Of course a different SWR reading would exist, as well as a different reflection coefficient electrical angle. But the impedance values of the load will not have changed.

Since the impedance is constant for the two measurements, the equations relating SWR, Z_{01}, and θ, are set equal to each other, yielding:

$$
\begin{gather*}
\left(\tan \theta_{1}\right)\left(\tan \theta_{2}\right)=\frac{\left[\left(\frac{Z_{02}}{Z_{01}}\right)\right]\left(s w r_{1}\right)-s w r_{2}}{\left[\left(\frac{Z_{02}}{Z_{01}}\right)\right]\left(s w r_{2}\right)-s w r_{1}} \tag{1}\\
\frac{\tan \theta_{1}}{\tan \theta_{2}}=\frac{\left(\frac{Z_{02}}{Z_{01}} \cdot s w r_{1} \cdot s w r_{2}\right)-1}{\left(s w r_{1} \cdot s w r_{2}\right)-\frac{Z_{02}}{Z_{01}}} \tag{2}
\end{gather*}
$$

The SWR is a measured value, and Z_{01} is known
By Ben Lowe, K4QF, Hytop Star Route, Box 66B, Scottsboro, Alabama 35768
from the characteristic impedance of the test equipment.
This means that a second characteristic-impe-dance-SWR-measurement system must be devised. Such a system is easily obtainable by using the existing 50 -ohm source and an SWR meter and transforming this impedance to some other impedance, as shown in fig. 1. The transformer can be a lumpedelement, broadband transformer ${ }^{2,3}$ or a transmis-sion-line-type, such as a quarter-wavelength of 75 ohm coax at the frequency of interest. (This quarterwavelength transformer results in a characteristic impedance of 112.5 ohms.)

The procedure is as follows. It's simpler to perform than to describe. Using the 50 -ohm system, measure and record the SWR of an unknown impedance. This measurement yields $s w r_{1}$ and $Z_{01}=50 \mathrm{ohms}$. Then connect the transformer at the output, or antenna side, of the SWR meter. Connect the unknown load
fig. 2. Impedance test circuit.

to the output port of the transformer. Again, measure the SWR. This measurement yields $s w r_{2}$ and Z_{02}. These four values, swr $, Z_{01}, \operatorname{swr}_{2}$ and Z_{02}, are substituted in eqs. 1 and $\mathbf{2 ,}$, resulting in two equations and two unknowns. The two unknowns are $\tan \theta_{1}$, and $\tan \theta_{2}$, where θ_{1} and θ_{2}, are the reflection-coefficient electrical angles.
Unfortunately, more than one solution exists, giving more than one value for $\tan \theta_{1}$, and $\tan \theta_{2}$. But the resulting impedance calculations yield the same reactance magnitude using either values; whether the reactance is inductive or capacitive can't be determined directly. Another test must be conducted to make this determination; such tests are described later.

From the measurements, all the information necessary to calculate the actual impedance has been found. Substituting $\operatorname{swr_{1}} \tan \theta_{1}$, and Z_{01} into eq. 3 gives the impedance. Likewise, substituting swr_{2}, tan θ_{2}, and Z_{01} into eq. 4 gives the same impedance:

$$
\begin{equation*}
Z=Z_{01}\left[\frac{1-j\left(s w r_{1}\right) \tan \theta_{1}}{s w r_{1}-j \tan \theta_{1}}\right] \tag{3}
\end{equation*}
$$

or

$$
\begin{equation*}
Z=Z_{02}\left[\frac{1-j\left(s \operatorname{sir}_{2}\right) \tan \theta_{2}}{s w r_{2}-j \tan \theta_{2}}\right] \tag{4}
\end{equation*}
$$

test results and example

To test this procedure, I constructed a test load using an 82 -ohm resistor in series with a 47 -pF capacitor. A randomly selected piece of 75 -ohm cable was
found to look like a quarter wavelength at 40.5 MHz . At this frequency the resistor and capacitor look like 82 -j83.6 ohms (fig. 2).
The reactance of the $47-\mathrm{pF}$ capacitor is found from:

$$
\begin{aligned}
X_{C}=\frac{1}{2 \pi \tilde{f}_{C}} & =\frac{1}{2 \pi\left(40.5 \times 10^{6}\right)\left(47 \times 10^{-12}\right)} \\
& =-j 83.6
\end{aligned}
$$

The one-quarter wavelength of 75 -ohm coax transforms the 50 -ohm source impedance to 112.5 ohms:

$$
\begin{equation*}
\frac{Z_{L}^{2}}{Z_{1}}=Z 2=\frac{(75)^{2}}{50}=112.50 \mathrm{hms} \tag{5}
\end{equation*}
$$

Now the two SWR measurements are made. Using the $50-\mathrm{ohm}$ system ($Z_{01}=50 \mathrm{ohms}$), swr_{I} of the capacitor and resistor in series is measured as 4:1. The quarter-wavelength, 75 -ohm transformer is inserted between the SWR meter and the unknown impedance, and another SWR reading, $s w r_{2}$, is measured as 2.5:1; Z_{02} is 112.5 ohms . These values are now substituted into eqs. 1 and 2 to determine the values of $\tan \theta_{1}$ and $\tan \theta_{2}$. Note that calculating the values of θ_{1} and θ_{2} isn't necessary unless the reflection coefficient electrical angle is desired; only the $\tan \theta_{1}$ and θ_{2} values are needed. These calculations yield:

$$
\begin{gather*}
\left(\tan \theta_{1}\right)\left(\tan \theta_{2}\right)=\frac{\left(\frac{112.5}{50}\right)(4)-2.5}{\left(\frac{112.5}{50}\right)(2.5)-4}=4 \tag{6}\\
\frac{\tan \theta_{1}}{\tan \theta_{2}}=\frac{\left(\frac{112.5}{50} \cdot 4 \cdot 2.5\right)-1}{(4 \cdot 2.5)-\frac{112.5}{50}}=2.77 \tag{7}
\end{gather*}
$$

Eq. 7 yields: $\tan \theta_{1}=2.77 \tan \theta_{2}$. Substituting into eq. 6 yields:

$$
\begin{aligned}
2.77 \tan ^{2} \theta_{2} & =4 \\
\tan \theta_{2} & = \pm 1.2
\end{aligned}
$$

Solving for $\tan \theta_{1}$ by substituting the value of \tan θ_{2} into eq. 7 yields:

$$
\tan \theta_{1}=2.77(\pm 1.2)= \pm 3.32
$$

The positive value for $\tan \theta_{1}, Z_{01}$, and swr_{1} are now substituted into eq. 3 to give Z, the unknown impedance:

$$
\begin{gathered}
Z=50\left[\frac{1-j(4)(3.32)}{4-j 3.32}\right] \\
=50\left[2.56 L-46^{\circ}\right] \\
Z=50[1.78-j 1.84]=89-j 92.1
\end{gathered}
$$

This gives the resistance as 89 ohms and the
capacitive reactance as $-j 92.1$ ohms, resulting in a capacitor value at 40.5 MHz of:

$$
C=\frac{1}{2 \pi f x_{c}}=\frac{1}{2 \pi\left(40.5 \times 10^{6}\right)(92.1)}=42.7 p F
$$

The measured circuit is then:

This compares favorably with the component values used in the circuit of fig. 2.

Two pertinent factors should be noted here. The values for $Z_{02}, s w r_{2}$, and $\tan \theta_{2}$ could just as easily have been substituted into eq. 4 to obtain the same impedance. The negative values for $\tan \theta$ could have been used, giving a positive value for the impedance reactive component. Often, observation of the circuit can indicate the proper sign of the reactive component. If this isn't possible a second measurement can be made at another frequency, and the direction of change for the reactive component can be observed. For instance, a higher frequency should yield a lower capacitive reactance. If the reactance is inductive, the higher frequency should yield a higher value of reactance.

Another method of determining the sign of the reactance would be to insert a known reactance value in series with the measured impedance and make another measurement. For the example given above, an inductor of approximately +j 92 ohms at $40.5 \mathrm{MHz}(0.36 \mu \mathrm{H})$ would cancel the - $j 92$ ohm reactance, leaving only a real component of 80 ohms. If the reactance happened to be positive in the first place, the second measurement would yield:

Actually, a second calculation isn't necessary, since it can quickly be seen that $89+\mathrm{j} 0$ would yield a much lower SWR than $89+j 184$.

theory

The derivation of this concept fallows directly by equating eqs. 3 and 4. This is reproduced here for reference:
$Z=Z_{01}\left[\frac{1-j\left(s w r_{1}\right) \tan \theta_{1}}{s w r_{1}-j \tan \theta_{1}}\right]=$

$$
Z_{02}\left[\frac{1-j\left(s w r_{2}\right) \tan \theta_{2}}{s w r_{2}-j \tan \theta_{2}}\right]
$$

$\left(1-j \operatorname{sw} r_{1} \tan \theta_{1}\right)\left(s w r_{2}-j \tan \theta_{2}\right)=$

$$
\frac{Z_{02}}{Z_{01}}\left(1-j \operatorname{swr_{2}} \tan \theta_{2}\right)\left(s w r_{1}-j \tan \theta_{1}\right)
$$

Equating the real and imaginary terms yields:
(A) $s w r_{2}-s w r_{1} \tan \theta_{1} \tan \theta_{2}=$

$$
\frac{Z_{02}}{Z_{01}}\left(s w r_{1}-s w r_{2} \tan \theta_{1} \tan \theta_{2}\right)
$$

(B) $s w r_{1} s w r_{2} \tan \theta_{1}+\tan \theta_{2}=$

$$
\frac{Z_{02}}{Z_{01}}\left(\tan \theta_{1}+s w r_{1} s w r_{2} \tan \theta_{2}\right)
$$

From A,

$$
\begin{gathered}
{\left[\left(\frac{Z_{02}}{Z_{01}} \cdot s w r_{2}\right)-s w r_{1}\right] \tan \theta_{1} \tan \theta_{2}=} \\
\left(\frac{Z_{02}}{Z_{01}} \cdot s w r_{1}\right)-s w r_{2} \\
\tan \theta_{1} \tan \theta_{2}=\frac{\left[\left(\frac{Z_{02}}{Z_{01}}\right)\left(s w r_{1}\right)\right]-s w r_{2}}{\left[\left(\frac{Z_{02}}{Z_{01}}\right)\left(s w r_{2}\right)\right]-s w r_{1}}
\end{gathered}
$$

From B,

$$
\begin{gathered}
\tan \theta_{1}\left[\left(s w r_{1} \cdot s w r_{2}\right)-\left(\frac{Z_{02}}{Z_{01}}\right)\right]= \\
\tan \theta_{2}\left[\left(\frac{Z_{02}}{Z_{01}} \cdot s w r_{1} \bullet s w r_{2}\right)-1\right] \\
\frac{\tan \theta_{1}}{\tan \theta_{2}}=\frac{\left[\left(\frac{Z_{02}}{Z_{01}}\right)\left(s w r_{1}\right)\left(s w r_{2}\right)\right]-1}{\left[\left(s w r_{1}\right)\left(s w r_{2}\right)\right]-\frac{Z_{02}}{Z_{01}}}
\end{gathered}
$$

Exactly what transpires can readily be seen by looking at the Smith chart shown in fig. 3. The first SWR measurement, $s w r_{1}=4$, yields a reflection coefficient, ρ_{1}, of 0.6 . The electrical angle of the reflection coefficient, θ_{1}, is found from tan $\theta_{1}= \pm 3.32$. Therefore, $\theta_{1}= \pm 73.2^{\circ}$. Using only the positive value and knowing that the total distance around the Smith chart is 180°, one-half wavelength, the ratio of 73.2° to 180° gives a reflection coefficient at 0.203λ. This is shown as Z_{1} and corresponds to the normalized impedance of 1.78 - j1.84 for the 50-ohm measurement system. When the 112.5 -ohm system is employed, $s w r_{2}$ (2.5) results in a value of $\rho_{2}=0.43$. The reflection coefficient electrical angle, θ_{2}, is 50.2°, found from $\tan \theta_{2}=1.2$. For this system the reflection coefficient in wave-lengths is 0.14λ. These values are also plotted on the Smith chart, but it must be remembered that the center of the chart represents 112.5 ohms $+j 0$. This normalized impe-

fig. 3. Test results shown on a Smith chart for the example described in the text.
dance is $0.79-\mathrm{j} 0.82$ and is shown as Z_{2}. Actually, both impedances, Z_{1} and Z_{2}, are equal; only the characteristic impedance of the measurement system is different.

One other point should be mentioned. Suppose the load is actually $82-j 83.6$, but a matching circuit is designed to match the source impedance to the measured value of $89-j 91.1$. How suitable is this? A new reflection coefficient must be determined from:

$$
\begin{gather*}
\Gamma=\rho \angle \theta=\frac{Z-Z_{0}}{Z+Z_{0}} \tag{8}\\
\text { where } Z_{0}=82-j 83.6, Z=89-j 92.1
\end{gather*}
$$

Making these substitutions yields a reflection coefficient of $\rho=0.045$, which results in an SWR of 1.09:1.

conclusion

While there are many methods of measuring impedance, the procedure described is straightforward and requires only one simple instrument, the SWR meter. Also, since so many handheld calculators are available, the calculations using the measured values can be accomplished very quickly. Other means of calculating can be employed, although more time is required. The results are acceptable for most practical applications.

references

1. Reference Data for Radio Engineers, International Telephone and Telegraph Co., 4th edition, page 587.
2. Ben Lowe, K4VOW, "A 15-Watt Output Solid-State Linear Amplifier for 3.5 to 30 MHz, " OST. December 1971, page 11 .
3. The Radio Amateur's Handbook, ARRL, Newington, Connecticut, April 1975, page 581.
ham radio by K.v.G.

CRYSTAL FILTERS and DISCRIMINATORS
9.0 MHz FILTERS

VHF and UHF FILTERS
ELIMINATE IMD "BIRDIES" 144 MHz PSf144
$\$ 79.95$ FROM YOUR RECEIVER. 432 MHz PSf432
$\$ 43.95$ CLEAN UP YOUR TRANS. ATV PS 1438 -ATV $\$ 79.95$ MITTER OUTPUT. Shipping $\$ 3.50 \quad 1296 \mathrm{MHz}$ PSf1296 $\$ 43.95$

OSCAR-J FILTERS

Suppress 2 m Tx Third Harmonics. Low 2 m loss (0.5 dB typ.). High loss at $435 \mathrm{MHz}(30 / 40 \mathrm{~dB})$.
MMf200-5
30 dB min. atten. $\$ 29.95$
MMf200-7 40 dB min. atten. $\$ 39.95$
Shipping $\$ 2.50$

LINEAR AMPLIFIERS

COMPATIBLE WITH OUR LOW POWER TRANSVERTERS. 10W DRIVE, 50 ? IN/OUT EDL432, 50W (ILLUS.) $\$ 144.95$ EDL432P. INCL. POWER SUPPLY/CABINET
 UPS Shipping at Cost

432 MHz SSB TRANSVERTERS

Use your HF Transceiver on the 432 MHz band with the addition of the MM1432 linear Transverter. The MML432 operates on all modes; SSB, CW, AM, FM. It contains BOTH the linear transmit up-converter and the receive down-converter. An internal PIN diode T/R connects to your Trans-
ceiver T/R line. The MMt 432 is FT101 and similar HF rig compatible. Add ceiver T / R line. The MML432 is FT101 and similar HF rig compatible. Add
the $70 / \mathrm{MBM} 48$ MULTIBEAM and operate direct into OSCARS 7 \& 8 . the $70 / \mathrm{MBM} 48$ MULTIBEAM
Write for application note.

Specifications

Dutput Power Drive, 10 Meters Receiver N.F.

10 W PEP Receiver gain $1 / 2 W$ max Prime Power 30 dB typ Shipping: $\$ 3.50$ MMt432-28S $M M+432.50$
$M M+438 . A T Y$ MMt432.144
$\$ 309.95$
$\$ 310.00$

| $\$ 365.00$ |
| :--- | ---: |

Send 30c (2 stamps) for full details of KVG crystal products and all your VHF \& UHF equipment requirements.
Pre-Selector Filters Amplifiers
$\begin{array}{ll}\text { Varactor Triplers } & \text { Crystal Filters } \\ \text { Decade Pre-Scalers } & \text { Frequency Fillers }\end{array}$
$\begin{array}{ll}\text { Decade Pre-Scalers } & \begin{array}{l}\text { Frequency Filters } \\ \text { Oscillator Crystats }\end{array} \\ \text { Antennas }\end{array}$
Oscillator Crystals
SSB Transverters
SSB Transverters FM Transverters
VHF Converters UHF Converters

Spectrum International, Inc. Post Office Box 1084 Concord, Mass. 01742, USA

RF Transformer

- New! Broadband antenna matching.
- Convenient switch selection of impedance taps.
- For verticals and mobile whip antennas.
- Taps at $8,12.5,16,22,32$ and 50 ohms.
- Full 500 watt capability. No time limit.

Here is the answer to the matching problem for vertical antennas and mobile whips. A broadband transformer that really works. Plenty of taps to match your 50 ohm transmitter to any short vertical.
And with no tuning or other adjustment. The 500 Watt RF Transformer is completely broadbanded $1-30 \mathrm{MHz}(1-10 \mathrm{MHz}$ below 20 ohms). So when you change frequency within a band you need only retune the antenna loading coil to resonance; not fiddle with a matching network.
Also, more power goes into your antenna. The 500 Watt RF Transformer is more efficient that a matching network or tuner - less than 1 db loss.
As always, when you buy Palomar Engineers you get the best; large ferrite toroid core, teflon insulated wire, rugged ceramic switch, heavy die cast aluminum case, full 500 watt CW capability.
Free descriptive brochure on request.
Improve your mobile operation. Simplify your tuneup. Get better results with the new Palomar Engineers 500 Watt RF Transformer.
Order yours now! Price $\$ 35.00$ plus $\mathbf{\$ 2}$ shipping/handling U.S. \& Canada. Calif. residents add sales tax.

Palomar Engineers

Box 455, Escondido, CA. 92025 • Phone: [714] 747-3343

THIS IS IT

 Bina

MODEL 4431 THRULINE
RF DIRECTIONAL WATTMETER with VARIABLE RF
SIGNAL SAMPLER - BUILT IN
IN STOCK FOR PROMPT DELIVERY
aUthorized distributor
Weoster
associates
115 BELLARMINE ROCHESTER, MI 48063 CALL TOLL FREE 800 - 521-2333

IN MICHIGAN 313-375-0420

Don't depend on your anten mounted on top for additional cooling.

AVAILABLE ONLY AT THESE AUTHORIZED DEALERS

CALIFORNIA

C \& A Electronic Enterprises, Carson, CA 90745, Ph. 213-834-6868 Tele Com Electronics, San Jose, CA 95121, Ph. 408-274-4479 Zackit Corporation, Vallejo, CA 94590, 707-644-6676

COLORADO

A.E.S. Communications, Wes-Com, Colorado Springs, CO 80909, Ph. 303-475-7050

FLORIDA

Amateur Electronic Supply, Orlando, FL 32803, Ph. 305-894-3238
N \& G Distributing, Miami, FL 33126, Ph. 305-592-9685
VHF/JAX, Orange Park, FL 32073, Ph. 904-264-7176
GEORGIA
Creative Electronics, Marietta, GA 30065, Ph. 404-971-2122
ILLINOIS
Klaus Radio, Peoria, IL 61614, Ph. $309691-4840$
Spectronics, Oak Park, IL 60304, Ph. 312-848-6777
IOWA
Bob Smith Electronics, Fort Dodge, IA 50501, Ph. 515-576-3886 MASSACHUSETTS
Tufts Radio Electronics, Medford, MA 02155, Ph. 617-395 8280 MICHIGAN
Adarns Distributing, Detroit, M1 48228, Ph. 313-584-4640
The Ham Shack, Kentwood, MI 49508, Ph. 616-531-1976
MINNESOTA
PAL Electronics, Minneapolis, MN 55412, Ph. 612-521.4662 MISSOURI
Alpha Electronic Labs, Columbia, MO 65201, Ph. 314-449-1362 NEBRASKA
Communications Center, LincoIn. NE 68504, Ph. 402-466-3733

NEVADA

Communications Center West, Las Vegas, NV 89106, Ph. 702-647-3114 NEW YORK
Barry Electronics, New York, NY 10012, Ph. 212-925-7000
Delmar Electronics, W. Babylon, LI, NY 11704, Ph. 516-420-1234
VHF Communications, Jamestown, NY 14701, Ph. 716-664-6345

OHIO

Universal Amateur Radio, Reynoldsburg, (Columbus) Ohio 43068
Ph. 614-866-4267
OKLAHOMA
Derrick Electronics, Broken Arrow, OK 74012, Ph. 918-251-9923

PENNSYLVANIA

LaRue Electronics, Scranton, PA 18509, Ph. 717-343-2124
SOUTH DAKOTA
Burghardt Arnateur Center, Watertown, SD 57201, Ph. 605-886-7314 TEXAS
AGL Electronics, Dallas, TX 75234, Ph. 214-241-6414
Madison Electronics Supply, Houston, TX 77002, Ph. 713-658-0268
VIRGINIA
Radio Communications, Roanoke, VA 24016, Ph. 703-342-8513
WASHINGTON
A•B-C Communications, Seattle, WA 98155, Ph. 206-364-8300
WISCONSIN
Amateur Electronic Supply, Milwaukee, WI 53216, Ph. 414-442-4200

CANADA

Bytown Marine Ltd., Ottawa, Ontario, Can. K2H 7V1, Ph. 613-820-6910
Traeger Distributors, Richmond, BC, Can. V6X 2A7, Ph. 604-278-1541

DIGITAL TECHNIQUES
 \checkmark

flip-flop internal structure

Previous parts of this series have shown the three basic flip-flops, the latch, and clocked flip-flops JK and D. Only the RS latch has been examined for timing. Timing is crucial in proper operation of $J K$ and D flip-flops, so it's worthwhile to examine some typical internal structures for timing relationships.

Fig. 1 shows a NAND-gate equivalent of a masterslave flip-flop with waveforms and " 1 and 0 " state notation. The master-slave term comes from using one latch (G3 and G4) to control the other latch (G7 and G8). State feedback makes each latch dependent on the other. The 1 and 0 notation is useful for scratchpad state analysis, and the state is that of each gate after the clock edge has passed.

JK flip-flops are commonly found in master-slave form, and fig. 1 has both J and K control inputs held high for a divide-by-two function. A negative clock edge will change output state, so the symbol would use an inversion bubble at the clock pin.

Initial conditions assume all inputs high and Q low. Master latch G3, G4 could be in either state but is chosen with G3 initially high. All gate states are stable in the left-hand 1 and 0 notation.

The first negative clock forces G 1 high. G 5 then goes low since both inputs are high (the NAND $R U L E$) and forces G7 (Q output) high which, in turn, makes GB ($\overline{\mathrm{O}}$ output) low. Waveform arrows show the sequential state change. The other four gates remain in the same state as long as the clock is low.

Returning the clock high doesn't affect output but
By Leonard H. Anderson, 10048 Lanark Street, Sun Valley, California 91352
will set up conditions for the next negative clock edge. G2 goes low and forces intermediate latch G3 and G4 to change state. G5 returns to a high, and output latches G7 and G8 remain stable (both G5 and G6 are now high).

fig. 1. Master-slave flip-flop with J and K inputs held high.

A second negative clock will make G2 high. G6 now goes low and flips the output latch. Q output changes state. Returning the clock high will flip the intermediate latch and set up conditions for another output state change.
An important thing to note is that both clock edges affect internal states and that each edge causes a sequence of four gate state changes with attendant delays. A high clock level must persist long enough to set up conditions for an output change. A low clock level must persist for a time sufficient to ripplethrough state changes to toggle the output. Each time will limit maximum clock frequency.

changing control inputs

Fig. 2 has the same circuit but input K is held low and only J is changed. Initial conditions have Q low and J low. Since K is low, G2 will always remain high. Note that if both J and K were held low, there would be no output change at all since input gates G 1 and G 2 would be held high constantly. The intermediate latch has G3 low.
The first low clock does nothing. Returning it high has no effect either, since J is held low. When J goes high with the clock high, the intermediate latch flips from the low state of G1. G6 goes high and the flipflop is set up for an output change.

fig. 2. Master-slave flip-flop with K held low and J input switched.

fig. 3. Type-D flip-flop.

The second low clock, while J is held high, will return G 1 high and make G 5 low. The output latch flips and Q goes high, matching the J input state. Again, four gate delays are required for both set-up and hold.

Once Q has toggled high, neither J nor the clock will have any effect. Why? The answer lies in state feedback from $\mathrm{G}(\mathrm{Q})$ to G 1 input. The low G 8 state will inhibit any inputs from changing G1 (the NAND RULE again).

Holding J low and changing only K will result in similar action, except that Q will eventually go low and remain in that state. Try this out on some scratchpaper.

type D flip-flop

A NAND gate equivalent is given in fig. 3. This version changes output on a positive clock edge. Gates G1 through G4 are "almost" latches with an AND symbol shape; their action is best observed by following input changes.

Initial state has Q high and D low. With both D input and clock low, G2 through G4 are held high. G1 is held low by state feedback from G4. Output latch

G5, G6 remains stable since all inputs (from G2 and G3) are high.

The first high clock will force G3 low; its other input from G4 is also high. G3 then forces G6 (Q) high to flip the output latch. Clock return to low will change only G3, as does a second clock input. G3 stays high on a low clock.

Changing D input high while the clock is low will force G4 low, which, in turn, forces G1 high. Input gates are now set up to change the output. A third positive edge clock will make G2 low and flip the output latch to a Q high state. As long as D remains high, further clocks will not change Q .

Returning D low while the clock is low will force G4 high, then G1 low to finish a setup. The cross connections of G1, G2, and G3, G4 appear to make two latches. These, plus G4 to G1 connection, make one large latch, not two, with G1 and G4 acting as inhibits for G2 and G3.

This structure is faster than the master-slave JK. Setup requires only two gate delays, output change only three.

direct set and reset

A direct set or reset will override the clock and any
control inputs. The master-slave JK may be modified by increasing the latch gate inputs from two to three. A SET (active low) is connected to both G3 and G7. A RESET (again, active low) is connected to both G4 and G8.

The D flip-flop is also modifiable for active-low set or reset but is more complex. A RESET is made to G2, G4, and G6, a SET made to only G1 and G5. The number of gate inputs must be increased for either.

Actual devices may have direct set and reset (sometimes called preset and clear, respectively) either active low or active high. Check for inversion bubbles. Some dual devices have either or both common. Check the spec sheet. In any situation an unused set or reset must be made inoperative. An unused active low should be tied high; unused active high tied low.
Removing a set or reset will restore a JK or D to normal clocked operation. Some time is required for this restoration, similar to setup and hold times. The spec sheet for a particular device should be checked for this and proper time alloted in circuit operation.

The next part of this series will go into interfacing analog signals and present one-shots.
ham radio

NEW - NEW - NEW from DATA SIGNAL
TOUCH TONE ${ }^{\circledR}$ MICROPHONE DataCoder 5

JUST LOOK AT THESE FEATURES:

* Tough "Mobile Environment" Microphone
- Positive.Action Tactile Keys
- High-Impedance Ceramic or 500 ohm Dynamic Cartridge
- Adjustable Tone Balance and Output Level
- "Positive Hold. Easy Lift" Hanger
- For Vehicle or Hand-held Portable Use
- Complete . Not a Kit . . . $\$ 39.00$

MINIATURE ENCODERS DTM

曲

MODEL DTM - Completely self-contained miniature encoder for hand held portables. Only $5 / 16^{\circ}$ thick. Three wire connection. Automatic PTT keying optional With your chaice of 12. or 16 -digit Digitran keyboard.

Price DTM - $\$ 39.00$, DTM-PTT - $\$ 49.00$

SUB-MINIATURE ENCODERS

MODEL SME-1: Smallest available crystal.controlled Touch. Tone encoder, only $0.2^{\prime \prime h} \times 0.5^{\prime \prime} \mathrm{w} \times 1.8^{\prime \prime} \mathrm{d}$. Complete with all connecting wires, mounts inside portable. MODEL SME-2: Only $1^{\text {" }}$ square, mounts directly to pins on 12 or 16 -digit Digitran keyboards. Price of either unit $\$ 29.00$ with choice of keyboards. SME-1 or SME-2 encoder only (less keyboard) $\$ 24.00$.

THERE IS A DIFFYRENCE IN QUARTZ CRYSTALS

For more than a quarter century, International Crystal Mfg. Co., Inc. has earned a reputation for design and capability in manufacturing and marketing precision electronic products.

The market for International crystals is world wide. With a full range of types and frequencies available, International is a major supplier to the commercial and industrial crystal market.

International's leadership in crystal design and production is synonymous with quality quartz crystals from 70 KHz to 160 MHz . Accurately controlled calibration and a long list of tests are made on the finished crystal prior to shipment.

That is why we guarantee International crystals against defects, material and workmanship for an unlimited time when used in equipment for which they were specifically made.

Orders may be placed by Phone: 405/236-3741 • TELEX: 071-347 • CABLE: Incrystal • TWX: 910-831-3177 • Mail: International Crystal Mfg. Co., Inc., 10 North Lee, Oklahoma City, Oklahoma 73102.

Write for information.

INTERNATIONAL CRYSTAL MFG. CO., INC.
10 North Lee, Oklahoma City, Oklahoma 73102

Now from J. W. Miller

四四 DAIWA Corporation Communications Essentials

SWR \& Power Meters

 Models CN-720 and CN-620Simultaneous direct reading SWR. Forward Power and Reflected Power
Frequency Range: $1.8-150 \mathrm{MHz}$ SWR Detection Sensitivity: 5 Watts Min Power: 3 Ranges (FWD 20/200/1000 Watts) (REF 4/40/200 Watts) Input/Output Impedance: 50 Ohm Dimensions: $180 \times 120 \times 130 \mathrm{~mm}$; $7 \times 4.75 \times 5$ in. $165 \times 75 \times 97 \mathrm{~mm}$. $6.5 \times 3 \times 4$ in.

RF Speech Processor Model RF-440

Increases talk power with splatter free operation. RF clipping assures low distortion. Simply install between microphone and transmitter.
Talk Power: Better than 6 dB Clipping Threshold: Less than 2 mV at 1 KHz Bandwidth: 2200 Hz at 6 dB down
Frequency Response: $300-3000 \mathrm{~Hz}$ at 12 dB down Distortion: Less than 3% at $1 \mathrm{KHz}, 20 \mathrm{~dB}$ clipping Output Level: More than 50 mV at 1 KHz Power Requirement: $115 \mathrm{VAC}, 60 \mathrm{~Hz}, 1.4 \mathrm{~W}$: or $13.5 \mathrm{VDC}, 55 \mathrm{~mA}$
Dimensions: $150 \times 70 \times 150 \mathrm{~mm}, 6 \times 2.5 \times 6 \mathrm{in}$.

Coaxial Switches

2 Position/Model CS-201
4 Position/Model CS-401
Professionally engineered cavity
Construction: High Isolation
Power Rating: 2.5 kW PEP, 1 kW CW
Impedance: 50 Ohm
Insertion Loss: less than 2 dB
VSWR: 1:1.2
Maximum Frequency 500 MHz
Isolation: Better than 60 dB at 300 MHz ;
better than 45 dB at 450 MHz adjacent terminal
Connectors: SO-239
Exclusive USA agent for these units; inquiries invited.

Write for literature.

J. W. Miller Division BELL INDUSTRIES

19070 REYES AVE PO BOX 5825 COMPTON, CALIFORNIA 90224

SYNTHESIZERS

We have the worlds largest selection of synthesizers for receivers, transmitters and transceivers. For complete details see our $1 / 3$ page ad in the April 1976 issue of this magazine or call or write for additional information. Phone orders accepted between 9 AM and 4 PM EDT. (212) 468-2720

VANGUARD LABS 196-23 JAMAICA AVENUE HOLLIS, N. Y. 11423

> REPEATER AUTOPATCH
> Offer your club COMPLETE emergency communications

Commercial quality, gold plated contacts, plug in, epoxy glass PC boards. 12 volt DC or 115 volt AC operation - Power supply included. Four digit access - Single digit releases - field programmable. Hybrid network - No switching required. FCC certified telephone line coupler. Auxiliary "In Use" contacts supplied. Land line "call-in" signalling control contacts provided. Price complete $\$ 498+\$ 3$ shipping \& handling. Master Charge. Bank money order, or certified check acceptable.

Accessories: CES-300 powered tone
pad - $\$ 59$ BUS-COM Soft-touch ${ }^{8}$ telephone powered mike/pad element - $\$ 34.95$.

MONROE ELECTRONICS, INC.
410 Housel Ave., Lyndonville, N.Y. 14098

The CT-50 is a versatile and precision frequency counter which will measure
frequencies to 60 mHz and up to 600 mHz with the CT-600 option. Large Scale Integration. CMOS circuitry and solid state display technology have enabled this counter to match performance found in units selling for over three times as much. Low power consumption (typically $300-400 \mathrm{ma}$) makes the CT- 50 ideal for portable battery operation Features of the CT-50 include large 8 digit LED display. RF shielded all metal case, easy pushbutton operation, automatic decimal point, fully socketed IC chips and input protection to 50 volts to insure against accidental burnout or overioad. And. the best feature of all is the easy assembly Clear, step by step instructions guide you to a finished unit you can rely on

```
Order your today? Order your today!
CT. 50 WT. 60 mHz counter, wired and tested
CT-600 600 mHz scaler option add
```

CT. 50.60 mHz counter kit \quad \$89.95
$\$ 89.95$
159.95
CB-1. Color TV calibrator-stabilizer

OP-AMP SPECIAL

41 mini dip
12/\$2.00
B1-FET mini dip 741 type
$10 / \$ 2.00$

VIDEO TERMINAL

A completely self-contained, stand alone video terminal card Requires only an ASCII keyboard and TV set to become a complete terminal unit. Two units available, common teatures are: single 5 V supply. XTAL controlled sync and baud rates (to 9600) complete computer and keyboard control of cursor Parity error control and display Accepts and generates serial ASCII plus parallel keyboard input. The 3216 is 32 char by 16 lines. 2 pages with memory dump teature. The 6416 is 64 char. by 16 lines, with scrolling, upper and lower case (optionai) and has include sockets and complete documentation RE 3216, terminal card $\$ 149.95$ RE 6416. terminal card $\quad 189.95$ $\begin{array}{lr}\text { Lower Case option, } 6416 \text { only } & 13.95\end{array}$ Power Supply Kit
Video RF Modulator, VD-1 6.95 Assembled, tested units, add $\quad 60.00$

CALENDAR ALARM CLOCK

The clock that s got it all 6-5" LEDs 1224 hour nooze a and outs more The super 7001 chip battery Size $5 \times 4 \times 2$ inches
Complete kit less case (not available)
$\$ 34.95$

30 Watt 2 mtr PWR AMP

Simple Class C power amp features 8 times power gain in in or 8 out. 2 in for 15 out. 4 W in for 30 out Max output of 35 W incredible value, complete with all parts. less case and T-R relay
PA.1, 30 W pwr amp kit
$\mathbf{\$ 2 2 . 9 5}$
TR-1. RF sensed T-R relay kit
6.95

Ramsey's famous MINI-KITS

FM WIRELESS MIKE KIT Transmits up to 300 to any FM broadcast radio uses any type of
mike Runs on 3109 ta Type $\mathrm{KM} \cdot 2$ has added ser sitive mike preamp stage
FM. 1 kit $\mathbf{\$ 2 . 9 5}$
FM. 2 kit $\mathbf{5 4 . 9 5}$

COLOR ORGAN/MUSIC, LIGHTS
Sce musce come aive 3 differen lights ticker with music One light tor lowssone tor the mid-range and One tor the highs Each channel
individually adqustabie and drives up to 300 W Great tor patties band music. nite clubs and more
Complete kit ML-1 $\quad \mathbf{\$ 7 . 9 5}$

LED BLINKY KIT

A great attention getter which aler nately liashes 2 jumbo LEDs Use panel lights. anything' Runs on 3 to 15 volts

Incredible Price

SPECIFICATIONS:

Fiequency range 6 Hz to 65 mHz .600 mHz with CT-600 Resolution to Hz in 0.1 sec gate. 1 Hz ta 1 sec gate Readout 8 digit $04^{\prime \prime}$ high LED direct readout in mH z Accuracy adjustable to 0.5 ppm
Stability 20 ppm over 10 to $40^{\circ} \mathrm{C}$. temperature
nput BNC 1 megohm 20 pt direct 50 ohm with CT-60 Overioad SOVAC maximum ail modes
Sensitivity less than 25 mv to $65 \mathrm{mHz} \quad 50-150 \mathrm{mv}$ to 600
Power 110 VAC 5 Watts or 12 VDC of 400 ma
Size $6^{\prime \prime} \times 4^{\prime \prime} \times 2^{\prime \prime}$. high quality aluminum case. 2 lbs ICS 13 units all socketed

CAR

The UN-KIT, only
connections
Here's a super looking rugged and accurate aut clock which is a snap to build and install Clock movement is completely assembied-you oniy sordet Display is bright green with automatic brightness control photocell-assures you of a highly readable display day or night Comes in a satin timish an ditferent ways using 2 sided tape Choice of silver black or gold case (specity)
DC. 3 kit 12 hour format

DC- 3 wired and tested
$\$ 22.95$
10V AC adapter
$\$ 29.95$
$\$ 5.95$

Under dash

 car clock1224 hour clock in a beau-

umbo RED LEDS high accuracy (1 min mo) easy 3 wire hookup display blanks with ignition and supe display to ambient light level
DM 1 dimmer adapter

PRESCALER

Extend the range of your with any counter includes 2
transistor pre-amp to give super sens. typically 20 mv at 150 mHz Specity -10 or $=100$ ratio PS.18. 600 mHz prescaler
PS.1BK. 600 mHz drescaler kit

external frequency programmer

The beauty of the IC-22S is that it offers precise frequency selection by programming with low-cost silicon diodes, rather than crystals with trimmers. This advantage though becomes overshadowed when channel selections need to be changed; out comes the soldering iron to redo the diode matrix. To solve this problem, I built an external programmer containing eight switches, eight diodes, and a zero-center microammeter for discriminator output readings.
The internal speaker was disconnected from the external speaker jack and reconnected directly to the audio output. The discriminator output was then connected to the external speaker jack. The eight diode/ cathode connections and the 9 -volt common pad of channel 22 on the

External frequency programmer enclosed in a Ten-Tec style box. The connections to the transceiver are made via nine-conductor ribbon cable.
matrix board were connected to the nine pins of the accessory socket via a nine-conductor ribbon cable (see fig. 1).

The external programmer was built in a Ten-Tec cabinet. The discriminator meter was connected via a shielded cable and miniplug. Nineconductor ribbon cable was used to
connect the programmer to the accessory plug.
With the programmer, any frequency can be selected at the flip of a switch and at a considerable savings over the cost of a fully programmable 2-meter rig.

Hugh Pearl, WB9VWM

using the IC-22S below 146 MHz

As it turns out, the IC-22S is not restricted to 146.01 MHz and above. The IC-22S is, in fact, usable without modification from 145.350 MHz through 147.990 MHz . That's an additional 44 free channels! These additional channels do accommodate some of the new repeater frequencies as well as five Oscar frequencies. By keying the push-to-talk line you can also enjoy the excitement of Oscar 7 and Oscar 8.

fig. 1. Diagram of the connections to the diode matrix board and switch connections for the external frequency programmer. The discriminator meter is connected to the rewired external speaker jack.
table 1. Diode programming matrix for frequencies below 146 MHz .
diode insert positions

diode insert positions																			
frequency	total	128	64	32	16	8	4	2	1	frequency	total	128	64	32	16	8	4	2	1
MHz	N	D7	D6	D5	D4	D3	D2	D1	D0	M Hz	N	D7	D6	D5	D4	D3	D2	D1	D0
145.350	64		*							145.680	86		-		*		-	-	
145.365	65		*						*	145.695	87		*		-		-	*	-
145.380	66		*					*		145.710	88		-		-	*			
145.395	67		-					*	*	145.725	89		-		-	*			-
145.410	68		-				-			145.740	90		-		-	*		-	
145.425	69		-				*		*	145.755	91		-		-	*		-	*
145.440	70		-				-	*		145.770	92		*		*	*	-		
145.455	71		-				-	*	*	145.785	93		*		*	-	-		-
145.470	72		-			-				145.800	94		*		-	*	-	-	
145.485	73		*			-			*	145.815	95		*		*	-	-	*	-
145.500	74		-			*		*		145.830	96		*	-					
145.515	75		*			*		*	*	145.845	97		*	*					-
145.530	76		*			-	*			145.860	98		*	-				-	
145.545	77		*			-	*		*	145.875	99		*	*				*	-
145.560	78		*			-	*	*		145.890	100		*	*			*		
145.575	79		*			*	*	*	*	145.905	101		-	*			*		*
145.590	80		*		*					145.920	102		*	*			*	*	
145.605	81		*		*				-	145.935	103		*	*			*	-	-
145.620	82		*		*			*		145.950	104		-	*					
145.635	83		*		*			*	*	145.965	105		-	-					*
145.650	84		*		*		*			145.980	106		-	-				-	
145.665	85		*		*		*		*	145.995	107		*	-				-	-

The programming of the IC-22S diode matrix is governed by the equation:
> programmed number $(N)=$
> $\frac{\text { desired frequency }-144.39}{.015}$

The resulting number must be an integer (no fractional part). The decimal number computed from the equation is then translated into a binary number and programmed accordingly into the diode matrix. For convenience, table 1 presents the
additional frequencies and the corresponding diode positions in a format similar to that in the instruction manual. The simplex-offset switch functions the same as for other frequencies below 147 MHz .

Steven Holzman, W1IBI

75S () CW sidetone

The CW sidetone provided by my 32S-1 transmitter is of sufficient amplitude to give an adequate monitoring level while using headphones. Even when low-impedance headphones (stereo types with the sections paralleled) were used, no prob-
lems were encountered here.
In an attempt to increase the sidetone level while using a speaker, the value of R99 (2.2 meg ohms) was altered. This change proved insufficient, and, if carried too far, vox operation on ssb was hampered. The best balance between speaker, head-
fig. 2. Sidetone modification for the $\mathbf{7 5 S}$ () series receivers. In this case, the level of the sidetone is controlled by the AF GAIN, providing a better balance between signal and sidetone levels. The heavy line indicates the added shielded cable.

phones, overall receiver volume, and CW sidetone level was obtained in the following manner.

Remove the two wires connected to the SIDETONE jack on the receiver rear lip, solder them together, and insulate. Using a piece of shielded wire (RG-174/U in my case), connect one end to the SIDETONE jack and the other end to the center (wiper) terminal of the AF GAIN control. The cable should be neatly routed around the chassis following the path of the existent harness. Refer to fig. 2 for the complete wiring changes. The result is a sufficient sidetone level for both speaker and phones.

Paul Pagel, N1FB

SSTT-4
 ILTRASTENER DELEXE

T'LTR.ITIXER DEL.t'XE Matchesanv antennacoux fed or random wifc on all bands (160-10 incters). Tunc out the SWR on vour antenm for more cfficient uperation of any rig. Home, mabile, portable-ouly $9^{-} \times 2 \frac{1}{4} \times \overline{5}^{*}$ • 300 wat RF оиiput cupabilits - SWR mefer with 2-color salc - Antenna Switeh selogts between two coux fed antennus, random wirc, or tuncr bypane * Efficicnt Airwound indaetor - 208 pf. 1000 Y Capacitors - Attractive bronze finished cuclosure
onily \$ \$64.95
SSTT-2 ULTRA TUNER
Tuncs out SWR on
 watts RE Forsor Rugged, yet compact $51 / \mathbf{4}^{-} \times 219^{-}$ $\times 21 / 2^{*}$ only $\$ 37.95$

SSTT-3 MOBILE IMPEDANCE TRANSFORMER
Matchen 59 ohm coox to the lower impedance of a mobile whip. Tups between 3 und 50
ohms. $3-30$ MIIz.
300 watts sutput. $254^{-} \times 2^{-} \times 2 / 4$
only\$19.95

SST'T-1 RANDCM WIRE ANTENNA TUNER

All bancls ($160-10$
m.) with any wire

200W ontput *
Any transeciser -
Home or purtable

- Xeon tunc-up
indicator.
only \$29.95
GST DL-I KARLJ DEMMY LOAD. IOOWW PEE
$15: 11-225$ MIIz Sealed $3-1 / \mathrm{N}^{-} \times+-3 / \mathrm{N}$
only 直17.95
SNT CL-1 24 HR. CLOCK. Gitunt red LED nemerale Menth anel dav abos at push of buttom. Bcautiful for your tisk. 1100 IC°

only \$22.95

SST B-1 BALEN for balaned linct. 3001 w
only \$5.00
Call (213) 376-5NS7 to order C.O.b.. VTSA. or Master Charge.

Te Orilem

Send a check or monex order-or use vour MC © ir Visi. Ved 83 shippong and handing. Gullf. rest. dents, add sales tax

Guarantec: III SST prolacts ure unconditionally knarantect for 1 scar In abtlition, they mas be returneat within 10 dass for a full refond (leos Shiping) if wom are not satisfied for unv reason

KLM 144.148-13 ld $\quad \$ 5995$
OMNIJ \& heavy duty magnet mount complete
TRIEX W-51 FT self-support towet (Reg $\$ 8251$
Your cost (FOB Californıa) $\quad 72500$
Tonna F9FT Antennas $144 / 16 \mathrm{el} \quad 79.95$
RIW 43219 el
Klitzing VHF UHF Amplitiers
2 M 10W in - 100W Out
19800
432 10W in - 50 W Out 19800
Bird 43 and slugs. UPS paid in USA stock
Microwave Modules 432-28S $\quad 329.95$
Deluxe Amp 432.100 W output 398.00
Teirex TB5EM. in stock $\quad 415.00$
NEW Palomar Engr Transceiver Preamp

8950
Bencher Paddies - $\$ 3995$ Chrome ETO 76 Amplifiers 49.95
unar 2 M Amp $10-80 \mathrm{w} /$ Preamp.
UPS paid USA
49.95

Janel QSA. 5
198.00
48.95
$-\quad 4195$

CDE Ham-3 - \$12995. Ham-X - \$20995
NEW Ham 4 . 157.50
VHF Engrs blue line amps stock
Cetron 572B 2950
Motorola HEP $170 \quad 0.29$
Mallory 2.5A/1000 PIV Epoxy Diode . 0.19 Aerovox 1000PF/500V Feed thru $\quad 1.95$
GE6146B or 8950 79
Technical Books. Ameco. ARRL. Sams
Tab Rider Radıo Pub Callbook.
Cowan etc
NEW Belden 9405 (2\#16)6 $6 \# 18$) 8 wire rotor cable. heavy duty for long runs. per it
8448 std 8 wire rotor. per ft 0.16

9888 double shield RG8 Foam per ft .

8214 RG8 Foam	025
8237 RG8	0.21
8267 RG213	025
Amphenol Silver Plate PL259	059
Times ' 2 ' Foam Hardine $\mathbf{\$ 0 . 6 5}$	
Connectors, ea	1500
7/8* Hardine \$1 50/ft	
Connectors, ea	2500
Berktek RG8X. 52 onm. KW. per It	016
Consolidated HD. 18 Ga Galv Tow 10 section	2995
Robot "Slow Scan Now in Stock	Call
Alliance HD73 Rotor	10995
Teletow'r-self support.	
$55 \mathrm{ft/w}$ breakover	49900
$40 \mathrm{ft/w}$ breakover	34900

THIS MONTH'S SPECIALS:

Icom IC280 - \$395.00
Dentron GLA 1000 Amp. - \$319.00
Bearcat 250 - \$299.00

All prices tob Houston except where indicated Prices subject to change without notice all tems guaranteed Some trems subject pror sale send letterhead for Dealer price list Texas residents add 6°. tax Please add postage estimate $\$ 100$ minimum

MADISON
ELECTRONICS SUPPLY, INC.
1508 McKINNEY
HOUSTON, TEXAS 77002
713/658-0268

RTTY for ALL Systems

Professionally engineered for outstanding performance, stability, and reliability, the Electrocom * Models 400 and 402 add new dimensions of compatibility between radio and teletypewriter systems. Manufactured to highest quality standards-an Electrocom tradition for nearly two decades-these units are ideal for military, government, commercial, civil defense and amateur applications The Model 400 front panel digital knob accurately selects shifts up to 1000 Hz , while two such knobs on the Model 402 independently set the mark and space frequencies. Both models may also be preset with any tone pair between 1000 and 3200 Hz

Optimum performance with FSK or AFSK
systems is assured by matched filters, precision linear detectors, baud rate selector bias compensation, and semi-diversity circuitry. Operation is enhanced by a CRT monitor, autostart with solid-state motor switching, antispace, markhold, EIA/MIL output voltages, and a constant current loop supply. In addition, various options are available including rack mounting and polar current output.

Write or call us for complete product de tails and specifications. Learn why Electrocom* " 400 " Converters are designed not only for today's communication environment, but ultimately to fultill RTTY requirements for years to come

BRMRKSMBROUKA YMA DSOUND BARTRMR - NSDID AND OUI!

The revolutionary Swan 100 MX: 100% new, 100% solid state, 100% portable from home station to mobile!

Introducing a superb "get up and go" transceiver, superbly designed for 100% mobility and control, as only new Swan space-age technology could do it!
100% solid state 100 MX : the compact HF unit you can take seriously - anywhere you choose to operate.

At home, set into Swan's unique new style-coordinated station, with matching antenna tuner and power supply.

Or on the road - it's easy to relocate 100 MX. Instantly. Just two simple connections on the back panel: snap out, snap in and run!
100% improved audio quality: home or mobile, transmit or receive. 100 MX electronics cut through SSB sound barriers -
producing a natural clarity reported comparable to AM!

Your most-wanted extras, 100% built-in: like noise blanker and VOX. Like a preselector to optimize signals. Like a real RF GAIN control, and CW sidetone.

Swan includes the RIT control ($\pm 1.5 \mathrm{kHz}$) you'd like too. Plus, for stability, a permability tuned oscillator with 1 Kc readout.

A powerful package, delivering a minimum 100 watts PEP output on all bands, 10-80 meters.

Setting a 100% new state of art: 100 MX and our matched-station units. Ready for check out today at your Swan dealer, the first major breakthrough in Swan's new program dedicated to changing the face - and performance - of ham equipment 100%... inside and out!

a member of the Cubic Cotporatoun tamdy of companies
305 Airport Road, Oceanside. CA 92054 (714) 757-7525

Swans sontinuing contintilictit formaturt impowement mav affect specoftiatooncatid prices without notice

Heavy Duty Power Supplies from AGTRON High Quality • Rugged • Rellable

SPECIAL FEATURES

- SOLID STATE ELECTRONICALLY REGULATED
- FOLD-BACK CURRENT LIMITING Protects Power Supply from excessive current \& continuous shorted output
- CROWBAR OVER VOLTAGE PROTECTION on Models RS-7A. RS-12A. RS-20A. \& RS-35A
- MAINTAIN REGULATION \& LOW RIPPLE at low line input Voltage
- HEAVY DUTY HEAT SINK - CHASSIS MOUNT FUSE
- THREE CONDUCTOR POWER CORD
- ONE YEAR WARRANTY • MADE IN U.S.A.

PERFORMANCE SPECIFICATIONS

- INPUT VOLTAGE: 105-125 VAC
- OUTPUT VOLTAGE: $13.8 \mathrm{VDC} \pm 0.05$ volts
(Internally Adjustable: $11-15 \mathrm{VDC}$
- RIPPLE: Less than $5 m v$ peak to peak (full load $\&$ low line)
- REGULATION: ± 05 volts no load to full load $\&$ low line to high line

ASTRON 12 AMP REGULATED POWER SUPPLY Model RS-12A
9 Amps continuous
12 Amps ICS*
$4^{\prime \prime}(H) \times 8^{\prime \prime}(W) \times 9^{\prime \prime}(D)$
Shipping Weight 13 lbs
Price.

Other popular POWER SUPPLIES also available: (Same teatures and specifications as above)

Model	Continuous Duty (amps)	ICS (amps)	Size (in.) $\mathbf{H} \times \mathbf{W} \times \mathbf{D}$	Shipping Wt. (Ibs.)	Price
RS-35A	25	35	$5 \times 11 \times 11$	29	$\$ 136.95$
RS-20A	16	20	$5 \times 9 \times 101 / 2$	20	$\$ 94.95$
RS-7A	5	7	$31 / 4 \times 6 \times 71 / 2$	$71 / 2$	$\$ 49.95$
RS-4A	3	4	$31 / 4 \times 6 \times 71 / 2$	5	$\$ 39.95$

${ }^{\circ}$ ICs - intermittent Communication Service (50% Duty Cycie)
If not available at your local dealer, please contact us directly.

Inside View - RS-12A

STEP UP TOTELREX

WITH A

TELREX "BALUN" FED-"INVERTED-VEE" KIT THE IDEAL HI-PERFORMANCE

INEXPENSIVE AND PRACTICAL TO INSTALL LOW-FREQUENCY MONO OR MULTIPLE BAND, 52 OHM ANTENNA SYSTEM

Telrex "Monarch" (Trapped) I.V. Kit Duo-Band / 4 KWP I.V. Kit $\$ 63.50$ Post Paid Continental U.S.

Optimum, full-size doublet performance, independent of ground conditions! "BalancedPattern", low radiation angle, high signal to noise, and signal to performance ratio! Minimal support costs, (existing tower, house, tree). A technician can resonate a Telrex "Inverted•Vee" to frequency within the hour! Minimal S/W/R is possible if installed and resonated to frequency as directed! Pattern primarily low-angle, Omnidirectional, approx. 6 DB null at ends! Costly, lossy, antenna tuners not required! Complete simplified installation and resonating to frequency instructions supplied with each kit.

For technical data and prices on complete
Telrex line, write for Catalog PL 7 (HRH)

Model 8100
 Frequency Counter Kit
 - Range: $\mathbf{2 0 H z}$ to $\mathbf{1 0 0 M H z}$
 - High Sensitivity
 - Resolution to 0.1 Hz

mancer w coment

BRIEF SPECIFICATONS:

- Frequency Range: 20 Hz to 100 MHz guaranteed. $(10 \mathrm{~Hz}$ to 120 MHz typical) - Sensitivity: 15 mV RMS, 20 Hz to $50 \mathrm{MHz}(10 \mathrm{mV}$ typical); 25 mV RMS, 50 MHz to 100 MHz (20 mV typical) - Selectable Impedance: $1 \mathrm{M} \Omega / 25 \mathrm{pF}$ or 50Ω - Attenuation: X1, X 10 or X 100 - Accuracy: $\pm 1 \mathrm{~Hz}$ plus time base accuracy - Aging Rate: $\pm 5 \mathrm{ppm} / \mathrm{yr}$. - Temperature Stability: $\pm 10 \mathrm{ppm}, 0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ - Resolution: $0.1 \mathrm{~Hz}, 1 \mathrm{~Hz}, 10 \mathrm{~Hz}$ selectable \cdot Display: 8 -digit LED, overflow indicator, gate activity indicator - Overload Protection -Power Requirement: 9-15 VDC (a) 330mA

Now you can forget about price/performance trade-offs when you select a frequency counter. In Sabtronics' Model 8100 kit you get all the characteristics of superior performance at a low. affordable price.
This frequency counter, employing LSI technology, has the performance and input characteristics you demand: guaranteed frequency range of 20 Hz to 100 MHz (10 Hz to 120 MHz typical); selectable hi/lo impedance; superior sensitivity; selectable resolution and selectable attenuation. Plus an accurate time base with excellent stability.
An 8-digit LED display features gate activity indicator, leading zero suppression and overflow indicator. You would expect to find all these features only on high-priced instruments - or from Sabtronics' advanced digital technology.

Model 2000, 3½ Digit DMM Kit

- 5 Functions, 28 Ranges
- Basic DCV Accuracy: $0.1 \% \pm 1$ Digit

The amazing Sabtronics 2000 is the choice of both professionals and hobbyists. It's the only portable/bench DMM that offers so much performance for such an astonishing low price.
You get basic DCV accuracy of $0.1 \% \pm 1$ digit; 5 functions giving 28 ranges; readings to ± 1999 with 100% overrange; overrange indication; input overload protection; automatic polarity; and automatic zeroing.
The all-solid-state Model 2000 incorporates a single LSI circuit and high-quality components. Our clear, step-by-step manual simplifies assembly. Complete kit includes a rugged high-impact case ideal for both test-bench and field use.

BRIEF SPECIFICATIONS:

- DC volts in 5 ranges: $100 \mu \mathrm{~V}$ to 1 kV - AC volts in 5 ranges: 100 $\mu \mathrm{V}$ to $1 \mathrm{kV} \cdot \mathrm{DC}$ current in 6 ranges: 100 nA to $2 \mathrm{~A} \cdot \mathrm{AC}$ current in 6 ranges: 100 nA to 2 A . Resistance: 0.1Ω to $20 \mathrm{M} \Omega$ in 6 ranges - AC frequency response: 40 Hz to 50 kHz - Display: $0.36^{\prime \prime}$ (9.1 mm) 7 -segment LED - Input Impedance: $10 \mathrm{M} \Omega$ • Size: $8^{\prime \prime} \mathrm{W} \times$ $6.5^{\prime \prime} \mathrm{D} \times 3^{\prime \prime} \mathrm{H}(203 \times 165 \times 76 \mathrm{~mm})$. Power requirement: 4.5-6.5 VDC. 4 " C " cells (not included).

By Popular Demand! SPECIAL OFFER extended through April 30, 1979.

SEE YOU AT DAYTON!

Special Offer! Save \$25.00*

If you order both the frequency counter and DMM kits now, you pay only \$144.90 including shipping and handling. You save $\$ 25.00$ off the combined regular low price of $\$ 169.90$. Order both kits now. This special offer good for a limited time only.

- Special offer good in USA only.

Making performance affordable.

13426 Floyd Circle. Dallas, Texas 75243
Telephone 214/7日3-0994
Telephone 214/783-0994

Sabtronics International Inc. 13426 Floyd Circle Dallas Tx 75243			HR-4
Yes, I want to take advantage of your special $\$ 25.00$-off offer.* Please send \qquad Model $\mathbf{8 1 0 0}$ and Model 2000 kit(s) tor only $\$ 144.90$ total including shipping and handling			
Please send	Model 8100 Frequency Counter kit(s) Shipping and handling	$\begin{aligned} & \text { (a) } \$ 89.95 \text { ea } \\ & \$ 5.00 \text { unit } \end{aligned}$	$\begin{aligned} & \$ \\ & \$ \end{aligned}$
Please send	Model 2000 DMM kit(s) Shipping and handling	$\begin{aligned} & \text { (a) } \$ 69.95 \text { ea } \\ & \text { \$ } 5.00 \text { unit }^{*} \end{aligned}$	$\begin{aligned} & \$ \\ & \$ \end{aligned}$
	Texas residents add sales tax Total enclosed		\$
Check	Order Charge my Master Charge Acc. No	Visa	
Name			
Address			
City	State	Zip.	
*USA only. CANADA: \$6.50. FOREIGN: \$19.00 AIRMAIL.			

NEW FROM GLB

A complete line of QUALITY 50 thru 450 MHz TRANSMITTER AND RECEIVER KITS. Only two boards for a complete receiver. 4 pole crystal filter is standard. Use with our CHANNELIZER or your crystals. Priced from \$69.95. Matching transmitter strips. Easy construction, clean spectrum, TWO WATTS output, unsurpassed audio quality and built in TONE PAD INTERFACE. Priced from \$29.95.
SYNTHESIZER KITS from 50 to 450 MHz . Prices start at $\$ 119.95$.

Now available in KIT FORM GLB Model 200 MINI-SIZER.
Fits any HT. Only 3.5 mA current drain. Kit price $\$ 159.95$ Wired and tested. \$239.95
Send for FREE 16 page catalog. We welcome Mastercharge or VISA

GLBELECTRONICS
 1952 Clinton St., Buffalo, N. Y. 14206

QUARTZ CRYSTALS

CRYSTALS AVAILABLE FOR:

- CB - Synthesizers
- Amateur - HF, VHF, UHF
- Industrial
- Scanner
- Marine - LB \& VHF
- Conversion Crystals
- Special Attention to R \& D.
- Micro-processor Types.

DISCOUNTS AVAILABLE TO DEALERS \& MANUFACTURERS

CALL "BONNIE" FOR
PRICES \& DELIVERY
visa \& master charge

CAL CRYSTAL LAB, INC. 1142 N. Gilbert Street Anaheim, CA 92801 (714) 991-1580

MICROWAVE MODULES LTD.

432 Mhz Linear Transverter

UP YOUR FREQUENCY!

- EXTRA RANGE (434-436 Mhz) for Satellite operation.
- 10 Watts RMS output power.
- Simple Frequency Range Selection Using Toggle Switches.
- Highly Stable Regulator Controlled Crystal Oscillator Stages
- 30 dB Receiver Gain.
- Better than 3.0dB Noise Figure.
- Antenna Changeover Achieved by Low Loss Pin Diode Switch.
- 50 Mhz and 144 Mhz I.F.'s Available. to work at 432 Mhz ! !

144 Mhz Linear Transverter Join the Fun on 2 Meter Sideband - using your 28Mhz Transceiver.

- 10 WATTS RMS OUTPUT POWER
- 30dB RECEIVER GAIN
- BETTER THAN 2.5dB NOISE FIGURE
- 50 Mhz I.F. AVAILABLE

432 Mhz LINEAR AMPLIFIER ALL 100 WATTS OUTPUT

- 100\% DUTY CYCLE RATED OVERHEATING, REVERSE POLARITY
including Shipping

- RFVOX
- 10dB MINIMUM GAIN

FULLY PROTECTED VSWR,
MML432/100—PRICE: \$449.95

E
ALL MICROWAVE MODULES PRODUCTS ARE GUARANTEED FOR 1 YEAR. IN ADDITION, THEY MAY BE RETURNED WITHIN 10 DAYS FOR A FULL REFUND IF YOU ARE NOT SATISFIED FOR ANY REASON

TEXAS RF DISTRIBUTORS IS THE EXCLUSIVE IMPORTER OF MICROWAVE MODULES PRODUCTS, AND WE SUPPLY A COAST-TO-COAST DEALER NETWORK. WRITE OR PHONE FOR DETAILS OF THESE PRODUCTS AND THE OTHER VHF AND UHF MICROWAVE MODULES PRODUCTS WHICH WE STOCK.

TEXAS RF DISTRIBUTORS, INC.

JOE WA5HNK
CARL-W5UPR

Need a 3rd hand?

Now when you need your circuit board Here It Is!

PANAVISE*
ELECTRONICS VISE positioned just a bit differently, it's a snap with the ELECTRONICS VISE! Tilt, turn and rotate your PC board to any position and keep it there. Movement and placement angles controlled by a single variable-pressure star knob on the base. This multi-purpose vise teatures a black oxide finished head reducing glare and eye fatigue.

Neoprene jaws with molded grooves to firmly grip PC boards.
After you discover the convenience of ELECTRONICS VISE - you'll wonder how you ever lived without it. indeed. a 3rd hand.

SEND FOR FREE HARD-TO-FIND ELECTRONIC'S PARTS CATALOG

Include 2 First Class Postage stamps and we'll rush you the most complete source for hard-tofind parts.

Or call (603) 673-7724

Le Uhitchousse + CO.

10 NEWBURY DRIVE, AMHERST, NH 03031

ARE YOU HAVING CONTROL PROBLEMS ??

Help solve them with one of "Creative Electronics"
Repeater Control and Timer Boards or Tone Pad Decoder Board !
RCT 101 - REPEATER CONTROL \& TIMER

- PROGRAMMABLE ANALOG TONE DECODERS
- CONTROL LOGIC
- ADJUSTABLE TIME LIMIT
- ADJUSTABLE DELAYED DROP OUT

COMPLETE KIT \$ 59.95

- OPERATES ON FROM 8-20 VOLTS D.C

ASSEMBLED UNIT \$79.95
TPD 204-TONE PAD DECODER

- 8 ANALOG TYPE FILTER TONE DECODERS
-FULL 4×4 MATRIX
- INDIVIDUAL TTL LOGIC OUTPUT FOR EACH TONE
- INDIVIDUAL TTL LOGIC OUTPUT FOR EACH DIGIT
- TTL BCD OUTPUT FOR DIGITS 0-9 INCLUDING STROBE
- SEVEN SEGMENT DISPLAY OF BCD OUTPUT

PRICES SUBJECT TO CHAMEE
GA. RESIDENTS ADD 3 STAX SHIPPIMG EITRA
COMPLETE KIT \$ 109.95
ASSEMBLED UNIT \$ 139.95

"creatius slsetranica"
\mathscr{F} O BOX 7054
MAMFEGYA GEORGIA 30065
PHO.VE 404971.2122 oulbide ga. 800241.4547 WE ACCEPT

Regency Scanner

 BRINGS YOU THE NEWS WHILE ITS HAPPENING

10 channels covering
all 5 bands. AC/DC operation.

SAVE ${ }^{40} \$ 8995$ LIST-s129.95

1,000's OF CRYSTALS

- H25C Case Scanner Monitor -10.7 Amateur Ham -2 Meter, CB, Standard
1 to 9
10 to 49
50 and UP
$\$ 3.70$
$\$ 3.00$
$\$ 2.50$

CRYSTAL BANKING SERVICE P. 0. B0X 683
 LYNNFIELD, MASS. 01940

TEST EQUIPMENT

All equipment listed is operational and unconditionally guaranteed Money back if not satisfied. Prices listed are FOB Monroe
Boonton 190A Q mtr $20 \cdot 260 \mathrm{MHz}$ Q 5.1200
GR1001A Stand sig gen 5 kHz
50 MHz calib attn
HP170A(USM140) 30 mHz Scope with reg horiz, dual trace vert plugs
Tek 565 Dual beam 10 mHz scope
less plug-ins (3 series).
less plug ins (3 series)
URM25 Stand Sig Gen $10 \mathrm{kHz} \cdot 50 \mathrm{MHz}$ calib attn
Weinschel 70 Prec RF attn DC 1 gHz 0.60 db , 1 db steps 4 w

Lists outdated. Write specifying test equipment needs. Quick response assured
GRAY Electronics
P.O.Box 941, Monroe, Mich. 48161 Specializing in used test equipment.

"RUBBER DUCKIES"
 FROM

9 \& Communications
A MUST FOR 2-METER HAND HELDS
P Model
Description
GC-1 5/16" Knurled Stud Fits
Icom, Motorola and many
others
$\$ 650$
GC-2 BNC Connector \$ 998
GC-3 TNC - Connector for
Wilson 1405
$\$ 13.98$
GC-4 PL-259 Connector \$ 650
GC-5 Type F Connector fits
Wison 1402 and Tempo . \$ 9.50 Equipment made in USA by OEM MFRS Send to
GC-2 G \& C COMMUNICATIONS
730 Cottonwood, Lincoln, NE 68510 Add $\$ 100$ for handing and shipping. (Dealer and OEM RFO's Welcome)

Get every

exciting issue, every month, and save dollars, too.

News! New ideas! Excitement! It's happening every day in electronics, the most exciting, fastest-growing field in the world. So make sure you get every ideapacked issue of the world's best electronics magazine - Radio - Electronics. You get projects to build, test reports on new equipment, servicing tips, com-
puter technology, and more. You find all the news, all the features, and you find them first in RadioElectronics. Plus, you get specialized columns in every issue: Computer Corner, Hi-Fi Lab Test Reports by Len Feldman, Jack Darr's Service Clinic, Hobby Corner, and the State-of-Solid-State, all written by experts, the outstanding authorities in the field.

Don't miss a single issue. Have Radio-Electronics delivered to your door, every month. Subscribe to RadioElectronics today, and be assured of getting your
copy of each issue before it runs out on the newsstands. Save money too. When you choose one of the subscription offers listed on the coupon below you can save up to $\$ 14.50$ off the newsstand price of Radio-Electronics. You save time, you save money, and you get the most interesting, most exciting and authoritative reporting of electronics news you'll find in any magazine. Pick the plan you like best, and use the coupon right now to make sure you get all of the best-every issue of Radio-Electronics-every month.

Mail to: Radio-Electronics SUBSCRIPTION DEPT., P.O. BOX 2520, BOULDER, COLO. 80322
Save almost $1 / 2$ off the newsstand. Indicate the offer you prefer:

1 Year-12 issues ONLY \$7.77
(Save $\$ 7.23$ on newsstand or $\$ 2.21$ off basic subscription price.)
$\square \mathbf{2}$ Years-24 issues ONLY \$15.50
(Save $\$ 14.50$ on newsstand or $\$ 3.50$ off basic subscription price.)

Extra Shipping: Canada $\$ 3.00$ per year, all other countries $\$ 5.00$ per year.

STEP UP TOTELREX Professionally Engineered Antenna Systems Single transmission line "TRI-BAND ${ }^{\circ}$ ARRAY"

flea market *面回

RATES Non-commercial ads $10 \mathbb{d}$ per word; commercial ads 60థ per word both payable in advance. No cash discounts or agency commissions allowed.

HAMFESTS Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing). Repeat insertions of hamfest ads pay the noncommercial rate.
COPY No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.
DEADLINE 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N.H. 03048.

TRI-EX W. 67 TOWER, motorized extension from 22 ft . (nested) to 67 feet. Also Drake remote antenna selector, Ham III rotator and Wilson 10/15 meter beam. Sell only complete package for $\$ 1995.00$ or write and ask for details on complete QTH. Write: F. Moller, Cathedral Rd. Rindge, N. H. 03461.
VERY in-ter-est-ing! Next 3 issues $\$ 1$. "The Ham Trader" Sycamore, IL 60178.

QUALITY NEW COMPONENTS: $1 / 4$ and $1 / 2$ watt carbon film resistors; electrolytic, mylar, tantalum, disc capacitors; trimpots; miscellaneous other items including chassis and enclosures. Enclose 154 stamp for catalogue. Midnight Engineering Group, P.O. Box 349, Galesburg, IL 61401.
STAR-TRONICS monthly picture flyer is full of parts and pleces for the bullaer. Cheap. Quality. U.S. Only, StarTronics, Box 683, McMinnville, OR 97128.

WANTED: Used Hy-Quad, also Ham II. All response answered. Frank 12552 West Mississippi Ave., Lakewood, CO 80228.

Foreign Subscription Agents for Ham Radio Magazine	
Ampasioustio	Hap miont
	Nolind
	mama
	Hation

6 METER KW STATION. Drake TR6, Excellent, Raytrack KW Amp Excellent, 26-60 Universal Foldover Tower 130° RG 17U Cable. Mast rotor and cable. $\$ 2000.00$ Firm. (316) 686-6288. 9229 Lincoln Ct., Wichita, KS 67207.

MOBILE IGNITION SHIELDING provides more range with no noise. Available most engines. Many other suppression accessories. Literature, Estes Engineering, 930 Marine Dr., Port Angeles, WA 93862.
2M REPEATER - New Spectrum Communications SCR. $1000 /$ PL. Purchased as back-up station. $\$ 1,000$. Also, Cushoraft 8-pole antenna system, 12 dB off-set -9 dB Omni add \$125. Anytime. WA2CEB. Dennis. (716) 648-4450.

RECONDITIONED TEST EQUIPMENT for sale. Catalog \$.50. Walter, 2697 Nickel, San Pablo, Ca. 94806.
ADDS 980 CRT - less than 50 hrs run time, all manuals - graphics - editing, etc. Also KIM I (\$75) and HT220 synthesizer kit (\$50). Make offer or will consider trades. Dave WA4IWA, 944 Hazel Court, Lilburn, GA 30247. (404) 972-6459 (after 6 PM).

SST ANTENNA TUNERS - your best buy. SST Electronics, Box 1, Lawndale, CA 90260.
ROHN TOWERS - Buy wholesale direct from distributor. 20 G sections $\$ 28.82$ each, 25 G sections $\$ 37.62$ each, 45G sections $\$ 57.20$ each - 100 foot tower kit complete \$646.02-40 foot free standing BX tower \$179.45-48 foot 25G foldover, freight paid $\$ 565.00$ - Hill Radio, 2503 G.E. Road. Bloomington, IL 61701, (309) 663-2141.
QSL CARDS 500/\$10. 400 illustrations, sample. Bowman Printing, Dept. HR, 743 Harvard, St. Louis, MO 63130.

WWVB RECEIVER. The Elemek Model LXK receiver receives the 60 kHz WWVB signal and provides the folJowing oufputs: 60 kHz and 100 kHz , phase locked to WWVB carrier, and the demodulated WWVB time code. Send for brochure describing the receiver to Elemek, Inc., 6500 Joy Rd., East Syracuse, N.Y. 13057.
ELECTRONIC BARGAINS, CLOSEOUTS, SURPLUS! Parts, equipment, stereo, industrial, educational. Amazing values! Fascinating items unavailable in stores or catalogs anywhere. Unusual FREE catalog. ETCO-012, Box 762, Plattsburgh, N.Y. 12901. SURPLUS WANTED.

WANTED: Hilltop property near Pollock Pines, California. WA6COA, 4 Ajax Place, Berkeley, CA 94708.
FOR SALE: One G.E. Master Pro in outdoor cabinet with duplexer. B. M. Ellison, III, 222 Bramblewood, Summerville, SC 29483.

REPLACE RUSTED ANTENNA bolts with stainless steel. Small quantities, free catalog. Elwick, Dept. 324, 230 Woods Lane, Somerdale, N.J. 08083
EZ deals are the best! Try me and see for Yaesu, Drake, KLM, Swan, Cushcraft, DenTron, VHF Eng., ICOM, CDE, Hustler, Wilson and more. Call, see or write WOEZ, Bob Smith Electronics, AFD 3, Hwy 169 \& 7, Fort Dodge, IA 50501. (515) 576-3886.

TEFLON CIRCUIT BOARD, double-sided 1 oz. copper Approximately $3.5^{\prime \prime} \times 5^{\prime \prime} .01$ (thick) $\$ 5.00$ ea., .032 (thick) $\$ 6.00$ ea postage paid. Master Charge, VISA, or check. S. S. Enterprises, 4335 e. 5th Anchorage, AK 99504. (907) 333-7367.

RTTY PARTS AND MACHINES: Model 28RO's, KSR's, ASR's, typing reperfs, TD's. Gears - all machines. Underdome reperf for 28ASR, single-speed, \$285.00 PP Auto CR-LF non-overline kit for M28, \$12.75 PP. M28 stand-alone TD, single-speed, $\$ 170.00$ PP. Model 15 covers, gears, etc. 14 T0, $\$ 50.00$ PP. M14 keyboard typing reperf, $\$ 95.00$ PP. Much more. Send SASE for complete list machines and parts. Lawrence R. Pfleger, K9WJB, 1715 E. McPherson St., Kirksville, MO 63501.

DRAKE 2B RECEIVER and matching speaker. Good condition - $\$ 125.00$. Drake TV 1000 low pass filter. $\$ 10.00$. Heath Kit tone patch $\$ 25.00$. SBE 3 transceiver mint condition $\$ 150.00$. Leon Fry WB6JTR, 23961 st Street, New. port Beach, CA 96223. (714)642-3573.

RM•300 RTTY Modem, the complete TU and AFSK generator on one board. This modem featured Sept '78 Ham Radio. Complete documentation $\$ 2.00$. RM-300 Modem or RP-400 Power Supply board just $\$ 21.25$. Complete RM-300 or RP-400 kit less PROM \$71.25. PROM programmed with your call $\$ 7.00$. WA6DNR Eclipse Communications, 5 Westwood Drive, San Rafael, CA 94901.

FERRITE BEADS: w/specification and application sheet $12 / \$ 1.00$. Assorted PC pots - 10/\$1.00. Miniature mica trimmers, $3-40 \mathrm{pF}$. $5 / \$ 1.00$. Postpaid. Includes latest catalog. Stamp for catalog alone. CPO Surplus, Box 189, Braintree, MA 02184.

WANTED: Motorola KXN 1024 and KXN 1052 channel elements. WAGCOA, 4 Ajax Place, Berkeley, CA 94708.

14 Pin DIP extender cable. $36^{\prime \prime}$ long with MOLDED plug each end. Highest quality
$\$ 2.00$ ea.
6 for $\$ 10.00$
Molded bridge rectifier. 100
volt PIV @ 2 amps. 45 c ea. or
5 for $\$ 2.00 \mathrm{ppd}$.
Photocell -- first quality plastic encapsulated. Dark resistance 100 megohm; Lite resistance 150 ohms. 20c ea. 6 for $\$ 1.00 \mathrm{ppd}$.

Single RCA type jack. High
quality factory new.
quality factory new. 15 c ea.
8 for $\$ 1.00$
7 segment display FND type. Cosmetic rejects. Common anode . 5 high. Real nice.

75c each
Jumbo LEDS. . 2 inch diameter. ColorRed. Prime tactory units. Not seconds or retests.

20c ea. ppd.
4PDT Relay, 12 VDC coil, Potter Brumfield, 5 amp contacts, factory new of course, a beauty. Also available with 24 VDC coil. $\$ 1.90$ ea. ppd.

Vertical Mount Trimmer Pots - All highest quality. No junk. 100-1000-2000 5000 - 10K - 20K - 25K 50 K - 250 K - 500 K Ohms. All have thumbscrew adjust. Your choice 5 for $\$ 1.00$ ppd.

Highest Quality E. F. Johnson Trimmer Caps. Hard-tofind P.C. board mount. .5-11 mmid. No junk. 90c each; 10 for $\$ 7.50 \mathrm{ppd}$.

SUPER-BUY - 5000 mid. @
 ces new and complete w/all hardware.
$\$ 1.35$ ea. ppd.

Just arrived - thousands of ICs. Removed from sockets on new P.C. boards. All marked with standard numbers and in the 7400 series. Examples of nos. are 7486-7495-7496 etc. Chance of a lifetime. Sorry no choice of numbers. We mixed them up. $\quad 50$ for $\$ 7.50 \mathrm{ppd}$. 100 tor $\$ 12.50 \mathrm{ppd}$.

Transformer: 115V AC Primary, Secondary 17-0.17V@7Amps. We tested and find good for 10 Amps intermittent duty. ldeal for 2 M rigs! $\$ 8.00 \mathrm{ea}$. ppd.

ALL ITEMS PPD USA SEND STAMP FOR LIST OF BARGAINS PA RESIDENTS ADD 6\% SALES TAX FONE 412-863-7006

The U. S. Callbook has nearly 350,000 W \& K listings. It lists calls, license classes, names and addresses plus the many valuable back-up charts and references you come to expect from the Callbook.

Specialize in DX? Then you're looking for the Foreign Callbook with al:nost 285,000 calls, names and addresses of amateurs outside of the USA.

U.S. Callbook $\$ 15.95$

Foreign Callbook \$14.95
(Plus Shipping)

Order from your favorite electronIcs dealer or direct from the publisher. All direct orders add $\mathbf{\$ 1 . 7 5}$ for shipping. llilinois residents add 5% Sales Tax.

MOBILE HF ANTENNA, 3.5-30 MHz inclusive, 750 watts PEP, center loaded coil, tuned from the base, eliminating coil changing or removing from mount. Less than 1.5 to 1 VSWR on all ham bands. $\$ 119.95$ each - contact your local deaier or order from Anteck. Inc., Box 543 , Jerome, Idaho 83338. (208) 324-3400. Master Charge and VISA cards accepted. Dealer inquiries invited.
TELETYPE EQUIPMENT for beginners and experienced operators. RTTY machines, parts, supplies. Beginner's special: Model 15 Printer and demodulator $\$ 139.00$. Dozen black ribbons $\$ 6.50$; case 40 rolls 11/16 perf. tape $\$ 17.50$ FOB. Atlantic Surplus Sales, 3730 Nautilus Ave., Brooklyn, N. Y. 11224. Tel: (212) 372-0349.

FOR SALE OR TRADE - like new in original cartons. 1 HAL-RVD- 1005 visual display unit: 1 HAL-ST- 6 RTTY Terminal Unit (with AK-1 AFSK-OSC); 1 HAL-RKB-2010 Key Board with 128 key extended memory key strokes Dual Mode for CW; 1 MD. 12 Modified Page Printer - Automatic Carriage Return; 1 Oscilloscope for Tuning: 1 Complete set of technical manuals. All for good video tape recorder outfit - Zeb Deville K5ISY - Box 4007, Alexandria, LA 71301. (318) 640-0234.

RTTY - Bandpass active filter $2125 / 2295 \mathrm{~Hz}$. Kit $\$ 11.95$, WIT \$16.95 ppd SASE for info. Nat Stinnette Electronics, Tavares. FL 32778.

RTTY AFSK Modulator PC board. See Feb. 79 Ham Radio. Drilled $\$ 5.00$. F.E. Hinkle, 12412 Mossy Bark. Austin, TX 78750

FREQUENCY ALLOCATION CHART. See how the entire radio spectrum is used 2 kHz to 200 GHz . Send $\$ 3.00$. Collins Chart Co., Box 935, Coronado, CA 92118.

REPEATERS - Factory Built VHF Engineering. 4 uht, 1 with PL. Two in unopened boxes. $1220 \mathrm{MHz}, 2 \mathrm{~K}$ takes all. WA6COA, 4 Ajax, Berkeley, CA 94708
THE MEASUREMENT SHOP has used/reconditioned test equipment at sensible prices; catalog. 2 West 22 nd St., Baltimore, MD 21218.

WANTED - Instructor Ham Radio N.Y.S. Co-ed Children's Sleep-Away Camp. Write: Camp Kinder Ring. 45 East 33rd Street. New York, N. Y. 10016.

HAMS requesting our famous "SHOOT THE BULL" QSL Card, send yours \& SASE K4NBN, Box 23413 , Jacksonville, FL 32217.

MANUALS for most ham gear 1937/1970. Send $25 ¢$ for "Manual Catalog." HI, Inc., Box H864, Council Bluffs, Iowa 51502.

AUTHORIZED DISTRIBUTOR F9FT Antennas, Microwave Modules. RIW Products' new tandem reflector, 19 element, 432 MHz Yagi - Radio Clinic - N2MB (former(y WA2BIT) 212-327-4952.

WANTED: 2 sets, TG5A Army field telegraph, Paul Amber, 3807 Crooks Rd., Royal Oak, MI 48073

CLUB CALL PINS 3 lines $1 / 4 \times 31 / 4 \$ 1.55$ each. Call, first name and club. Colors - black, blue or red with white letters. (Catalog) Arnold Linzner, 2041 Linden Street, Ridgewood, N. Y, 11227.

ICOM 211 Mint Condition. $\$ 700$. W4DGA (703) 273-8278.
SELL - Boonton 202D Signal Generator, Reconditioned, $\$ 50$ plus transp. W6LGQ, 34 Laurel Ave., Petaluma, CA 94952.

PORTA PAK - Make your FM mobile a self-contained portable. Models in stock for most popular makes. 4.5 amp hr model $\$ 67.50 .9 \mathrm{amp} \mathrm{hr} \$ 88.00$ Charger included, shipping extra. PO. Box 67, Somers, WI 53171.

WANTED - Radio transcription discs. Any size or speed. Larry, W7FIZ. Box 724, Redmond, Washington 98052
TECH MANUALS for Govt. surplus gear - $\$ 6.50$ each: SP-600JX, URM-25D, OS-8A/U, TS-173/UR. Thousands more available. Send 50 (coin) tor 22 -page list. W3IHD. 7218 Roanne Drive, Washington, DC 20021

TEST EQUIPMENT CATALOG listing used Tektronix. HP and GR equipment at bargain prices. PTI, Box 8699 , White Bear Lake, MN 55110. Price $\$ 1.00$ refundable with first order.
STOP LOOKING for a good deal on amateur radio equip. ment - you've found it here - at your amateur radio headquarters in the heart of the Midwest. We may not have a toll tree number but we'll save you more in the long run! We are factory-authorized dealers for Kenwood, Drake, Yaesu, Collins, Wilson, Ten-Tec, Atlas, ICOM, Dentron, MFJ, Tempo, Regency, Hy-Gain, Mosley, Alpha, GushGraft, Swan, and many more. Write or call us today for low quote and try our personal and Iriendly Hoosier service. HOOSIER ELECTRONICS, P.O. Box 2001, Terre Haute, Indiana 47802. (812) 238-1456.

CURTIS LSI's help you

speak MORSE

\star 8044; Keyer-On-A-Chip* (Replaces 8043). \$14.95 Apr '75 HR, Feb '76 0ST, Radio Hobk '75, Apr Hobk '77.78

* 8044-3; IC,PCB,Socket,Manual. 24.95
* 8044-4; Semi-Kit 54.95
* 8045; Morse Keyboard-On-A-Chip IC . . . 59.95
* 8045-1; IC, PCB,FIFO,Sockets,Manual . . 89.95
* 8045-2; Semi-Kit
159.95
\star 8046; Instructokeyer-On-A-Chip IC 49.95
* 8046-1; Semi-Kit 79.95
* 8047;.Message Memory-On-A-Chip IC . . 39.95
* 8047-1; IC,PCB,RAM,Sockets,Manual . . 69.95
(add $\$ 1.75$ on above for postage and handling)
EK-430; CMOS Keyer* (Feb '76 0ST) 124.35 IK-440A; Instructokeyer* (Mar 76 0ST) 224.95
-now with dash memery as standard
System 4000 Ham Computer (see Jan '78 ust) (write)

You can build a befter organ than you can buy!

A magnificent Schober Electronic Organ

What a marvelous way to put your specia talents to work' With our Schober Electronic Organ Kits and your skill, you can build yourself some very special satisfaction, and a lifetime of great music!

Schober Organs are literally far superior to comparably-priced ready-made units. You could actually pay twice as much and get no better organ and miss the fun of assembling it yourself. A PC board at a time, component by component, you'll assemble your own king of instruments. And when youre done, you ll wish there was more to do. And there is for then, Schober will help you learn to play, even if you ve never played a note betore!

Schober Organ Kits range from $\$ 650$ to $\$ 2850$, and you can purchase in sections to spread costs out or have two-year time payments

Just send the coupon for the fascinating Schober color catalog (or enclose $\$ 1$ for a record that lets you hear as well as see Schober quality.)

1-800-228-4097 Communications Center 443 N 48th Street Lincoln, Nebraska 68504 In Nebraska Call (402)466-8402

Antenna Sale!
HY-GAIN

TH60XX	Super Thunderbird	$\begin{aligned} & \text { Regular } \\ & \$ 299.95 \end{aligned}$	$\begin{aligned} & \text { Special } \\ & \$ 239.95 \end{aligned}$	18H	Hy-Tower 80-10M	
TH3MK 3	$3 \mathrm{el} .10 \cdot 15-20 \mathrm{M}$ beam	229.95	179.95	18A	B 80-10	rap vertic
TH3JR	3 el . 10-15-20M beam	149.95	129.95	14A	B 40-10	rap vertic
Hy-Quad	2 el . 10-15-20M Quad	229.95	179.95	12A	20-10	rap Vertic
205BA	5 el . "Long John" 20 M beam	289.95	229.95	14R	Roof	unting kit
155BA	5 el . "Long John" 15 M beam	169.95	139.95	58D	80.10	rap doubl
105BA	5 et ;'"Long John'" 10 M beam	119.95	99.95	28 D	$80-40 \mathrm{M}$	rap doubl
204BA	4 el . 20M beam	219.95	179.95	66B	6 el .6	eam
204MK5	5 el . conversion kit	99.95	79.95	203	3 el . 2	eam
153BA	3 el .15 M beam	79.95	69.95	205	5 el .	退
103BA	3 el . 10M beam	54.95	44.95	208	8 el .2	eam
402BA	2 el .40 M beam	209.95	169.95	214	14 el .	beam
BN-86	Balun for beam antennas	15.95	15.95	LA. 1	Deluxe	htning a
TH2MK 3	2 el . 10.15-20M beam	149.95	119.95			
		MOSLEY			Regular	Special
	Classic 33	3 el . 10, 15, 20 Mtr . beam			304.75	209.95
	Classic 36	$6 \mathrm{el} .10,15,20 \mathrm{Mtr}$. beam			392.75	269.95
	TA. 33	$3 \mathrm{el} .10,15,20 \mathrm{Mtr}$. beam			264.00	189.95
	TA-36	$6 \mathrm{el} .10,15,20 \mathrm{Mtr}$. beam			392.75	269.95
	TA-33 Jr.	$3 \mathrm{el} .10,15,20 \mathrm{Mtr}$. beam			197.00	149.95
	TA.40KR	40 Mtr . Add On			119.95	89.95

CUSHCRAFT

HUSTLER

3-TBA	3 ele; 10, 15, 20 Mtr. beam	259.95	189.95
4-BTV	10.40 Mtr. Vertical	99.95	79.95
5-BTV	10.80 Mtr. Vertical	134.95	99.95
RM-75	75 Meter Resonator	16.95	14.50
RM-75S	75 Meter Super Resonator	31.95	27.50
G6-144B	2 Mtr . Base Colinear	79.95	59.95
G7-144	2 Mtr. Base Colinear	119.95	89.95
WI LSON			
System One	5 ele. 10, 15, 20, Mtr. Beam	274.95	229.95
System Two	4 ele. 10, 15, 20 Mtr . Beam	219.95	179.95
System Three	3 ele. 10, 15, 20 Mtr . Beam	179.95	149.95
WV. 1	10-40 Mtr. Vertical	79.95	69.95

ROTORS

Hamlll $\$ 125.00$ T2X Tailtwister $\$ 199.95$ Alliance HD $73 \$ 109.95$ Call for prices on rotor cable, Coax, Towers, and Accessories. All prices do not include shipping.
18HT Wecarry all majorbrands of ham radios
Banxameaicaad AT DISCOUNT PRICES
Yaesu - Kenwood - Drake - ICOM-Dentron -Ten-Tec - Swan - Tempo - Midland - E.T.O. - Wilson

BUY-SELL-TRADE: Send $\$ 1.00$ for catalog. Give name, address and call letters. Complete stock of major brands new and reconditioned amateur radio equipment. Call for best deals. We buy Collins, Drake, Swan, etc. Associated Radio, 8012 Conser, Overland Park, KS 66204 (913) $381-5900$

DESK TOP CONSOLES, ultimate operating convenience. Free brochure. Thompson Electronics, P.O. Box 363, Westfield, IN 46074

Coming Events

ILLINOIS: 13th Annual Rock River Radio Club hamfest Sunday, April 22, Lee County $4 \cdot \mathrm{H}$ Center, South of Dixon. Advance, $\$ 1.50$; Gate, $\$ 2.00$. Indoor facilities, camping area, free coffee \& donuts $7: 30$ to $8: 30$ AM. Food available, prizes. Talk-in 146.52 simplex or WR9ADG Repeater 146.37-146.97. Advance tickets: RRRC Hamfest, Chuck Randall, W9LDU, 1414 Ann Ave., Dixon, IL 61021

NEW YORK STATE QSO party, sponsored by the University of Buffalo Amateur Radio Club, WA2NPQ, from 1700 Z May 6 to 0500Z May 7 and 1200-2359Z May 7. Stations may be contacted once on phone and once on CW on each band. NY stations may work each other. Mobiles/portables changing counties may be reworked. Exchange consists of report, serial number starting with 001, and QTH (counties for NY, state/province for others). Suggested frequencies: CW. 181035607060 14602160 28060; Phone, 390072751428521375 28550; Novice, 3725712521125 28125. Score one point per QSO times the number of multipliers: states, provinces, countries and NY counties for NY stations: and NY counties for others (maximum of 62). This is the first time NY stations may include counties in the multiplier total. Number the first contact for each new multiplier. A check sheet is required for stations making more than 100 contacts. Awards. Logs must be received by June 16 to qualify and entrants desiring results please send \#10 SASE. Please also include your name, address and county (if NY). Send all entries to Michael Bergman, WD2AJS. 45 Swartson Ct.. Albany. NY 12209
RADIO EXPO '79 September 15 th and 16 th , 1979, Lake County Fair Grounds, Routes 120 and 45, Grays Lake, Illinois. Manulacturers' displays, flea market, seminars, ladies programs. Advance tickets $\$ 2.00$. Write EXPO, P.O. Box 305, Maywood, IL 60153. Exhibitors inquiries. EXPO Hotline (312) 345-2525

FLORIDA: The Daytona Beach Amateur Radio Associa tion's First Hamfest, May 12 and 13, Holiday Inn Surt side. Daytona Beach. Advance registration: $\$ 3.00$ per family, $\$ 3.50$ at door. Indoor, air-conditioned facilities "Drive-on" ocean beach, nearby Bellair Shopping Plaza For into: David Rusler, WA4ZTT, 1725 Hope Drive, Or mond Beach, FL 32074, (904) 672.9536.

WASHINGTON: Pacific Northwest Hamtest, July 14 \& 15, HAM Inc., Box 78442, Seattle, WA 98178.

NEW YORK: MARAC - ICHN convention, May 4, 5, 6, 1979 in Albany, New York, and hosted by Russ Sawyer, W2UJ; Bruce Jacobs, K2QK; Clift Miller, N2FN and Jerome Walsh, WA2LSU. The purpose of the convention is to meet club members face-to-face and to raise funds for donation to a national charity. For information, write: Jerry Walsh, WA2LSU, R.F.D. 11, P.O. Box 197B, Hudson, New York 12534

SHIP ISLAND! The Magnolia DX Group with the support of the Mississippi Coas A.R.A. plans to operate WN5IJZ from Ship Island during the 1979 CQWW.WPX Contest. This is the first ever operation from Ship Island, 12 miles south of Gulfport, Mississippi in the Gulf of Mexico, and the home of historic Fort Massachusetts. Operation will be multi-single on 80 through 10 meters. Commemorative QSL to all stations worked. Manager N5FG/WB5HVY, Floyd Gerald, 4706 Washington Avenue, Gulfport, Mississippi 39501. S.A.S.E. please!
ROCHESTER Hamfest \& NY State ARRL Convention, May 25-27. Add your name to mailing list. Send QSL to Rochester Hamfest, Box 1388, Rochester, NY 14603. Phone (716) 424-1100.

INDIANA: Hamtest! Indiana's friendilest and largest hamfest. Wabash County Amateur Radio Club's 11th annual hamtest will be held Sunday, May 13, 1979, rain or shine, at the Wabash County $4 \cdot \mathrm{H}$ Fairgrounds in Wabash. Large flea market (no set-up charge), technical forums, bingo, free overnight camping. plenty of free parking, good food at reasonable prices. Only one ticket to buy. Donation is $\$ 2.50$ for advance tickets $-\$ 3.00$ at the gate. Children under 12 years old free. For more information or advance tickets, write: Dave Nagel, WD9BDZ, 555 Valley Brook Ln., Wabash, IN 46992 S.A.S.E. Required

FAST SCAN ATV

ALL YOU NEED IN ONE BOX

Show the shack, home movies, computer games, etc Connect to the ant. terminals of any TV set, add a good 450 antenna, a camera, and you are there .

- 10 Watts peak Rf output. Specify 434.0 or 439.25 MHz Subcarrie
- pick-up. 8 MHz bandwidth, high resolution necessary for com puter alphanumerics and color.
Tuneable converter covers 420 to 450 . (Covers $\mathrm{CH} 2,3$) - Contains AC to 12 VDC regulated 3 AMP power supply - Only $\$ 399.00$ direct mail. Check, Money Order. VISA Send S.A.S.E. for catalog of ATV Modules and PC Boards

HITACHI HV-62U TV CAMERA
\$239 ppd.

- Better than 500 line resolution. 7 watts on 117 VAC .
- Small $4 \times 25 / 8 \times 8$ inches. Can run on $12 \mathrm{vdc} @ 230 \mathrm{ma}$. - 10,000: 1 automatic light compensation. Lens included. Send SASE for catalog of ATV and UHF products VISA or

P.C. ELECTRONICS
 Maryann
 WB6YSS
 2522 PAXSON
 Tom

July 28 thru August 10, 1979
Have trouble finding time to study for Upgrading?

Do it on your vacation at the
OAK HILL ACADEMY
AMATEUR RADIO SESSION
20 years of successful teaching
Two weeks of intensive code and theory starting at your level.

Classes from Novice thru Amateur Extra

- Expert instructors
- Friendly surroundings
- Excellent Accommodations
C. L. PETERS, K4DNJ, Director

Oak Hill Academy Amateur Radio Session Mouth of Wilson, Virginia 24363
Name
Call
Address
City/State/Zip

CALL TOLL FREE

 For the best deal on

 For the best deal on}

- AEA • Ameco • ASP • Atlas
- Belden - Bencher - Bird
- CDE - CIR • CES - Cushcraft
- DenTron - Drake • Hy-Gain
- Icom • KLM • Kenwood
- Larsen - MFJ • Midland
- Mosley • NPC • Newtronics
- Nye - Palomar - Regency
- Shure - Swan • Standard
- Tempo - Ten-Tec - Tonna
- Transcom - Wilson - Yaesu

NEAR CHICAGO?
COME IN AND SEE US!

Tim WB8SBL and Mike WN9ANF serving you!

CALL TOLL FREE FOR THE ERICKSON PRICE! Outside Illinois: (800) 621.5802

Hours:
9:30-5:30 Mon., Tues., Wed. \& Fri. 9:30-9:00 Thursday
9:00-3:00 Saturday

ERICKSON

COMMUNICATIONS. INC. 5456 N MILWAUKEE AVE CHICAGO. IL 60630 (312) 631 -5181

ILLINOIS: Kishwaukee Radio Club and DeKalb Co Amateur Repeater Club's 21 st annual indoor/outdoor hamtest, Sunday, May 6, 8:00 AM to 3:00 PM, Notre Dame School, Gurler Road, DeKalb. Tickets $\$ 1.50$ ad vance, $\$ 2.00$ door. Indoor tables available, own tables free, outdoor setup free. Talk-in 146.13173 and 94 simplex. For info: SASE to Howard WA9TXW, P.O. Box 349, Sycamore, IL 60178.
ILLINOIS: The Moultrie Amateur Radio Klub's 18th annual hamfest, April 22, Mouttrie County $4 \cdot \mathrm{H}$ Center Fairgrounds, Cadwell Road, Mattoon. Indoor/outdoor flea market. Talk-in 146.94 and $146.055 / .655$. For info M.A.R.K., Box 327, Mattoon, IL 61938 .

INDIANA: The Cass County Amateur Radio Club's sec ond annual hamfest. Sunday, May 6, from 7:00 AM to 4:00 PM, at the 4.H Fairgrounds. Rain or Shine. Go North to Logansport on Highway 25, turn right at road 100, follow QSY signs. Advance tickets $\$ 1.50, \$ 2.00$ at gate. Outside setup free, undercover $\$ 1.00$. Bring your own tables. Free overnight camping, plenty of refreshments Talk-in: 146.52 and Logansport Repeater: 147.78-18 Write to: K9DVL Dave Rothermel, RR 4, Box 146 G, Logansport, IN 46947.

CALIFORNIA: The 37th Annual Fresno hamtest, May 11.13, Sheraton Inn, Clinton and Hiway 99. Technical taiks, swap tables, flea market, transmitter hunt on 2 meters (146.52), QLF contest, exhibits, prizes. Prime rib banquet. Registration with eligibility for pre-registration prize, $\$ 17.00$ betore April $27, \$ 19.00$ and no pre-reg prize after that date. Talk-in on 146.34/146.94. For info: Fresno Amateur Radio Club, P.O. Box 783, Dept. HF, Fresno, CA 93712

KENTUCKY HAM-O.RAMA - Sunday, May 20, at Boone County Fairgrounds, Burlington, Kentucky, 10 miles South 1.75 of Cincinnati, Ohio. Major and hourly door prizes included with $\$ 3.00$ gate ticket. Info: N.K.A.R.C. Box 31, Ft. Mitchell, KY 41017

MASSACHUSETTS: South Shore Repeater Association's 4th annual Ham Auction, Saturday, April 21. Central Junior High School, Broad Street, Weymouth. 12 Noon. Doors open 9 AM. Club share 10%, refreshments, door prizes, For info: South Shore Repeater Assn., Town Hall Annex, 402 Essex St. Weymouth, MA 02188.

MASSACHUSETTS: Central Mass. Amateur Radio Association's auction and flea market, April 27, 7:30 PM Doors open 6:00 PM. Main South American Legion Post 341, Main Street at Webster Square, Worcester. Auction rates - 15% to CMARA. Flea Market tables $\$ 5.00$. Door prizes, raffles, refreshments. Talk-in 146.37-146.97 and 52 direct. For info: Rene Brodeur, WA1LEA (617) 753-7480 and Dave Penttila, K1COW, (617) 885-4995

MASSACHUSETTS: The Wellesley Amateur Radio Socie ty's annual auction, Saturday, April 7, 11:00 AM (doors open 10:00 AM), Wellesley High School Cateteria, Rich Street, Wellesley. Talk-in on 96/36, 63/03, 04/64 and 52 Contact: Kevin P. Kelly, WA1YHV, 7 Lawnwood Place, Chariestown, MA 02129.

MASSACHUSETTS: The Hampden County Radio Association's annual fiea market, Friday, May 4, Feeding Hills Congregational Church, intersection of Routes 57 and 187 , west of Springfield. $\$ 2.00$ per table, no admis sion fee. Doors open 7:00 PM. Refreshments available. For info: Andy Bouchard, WB1BZW - (413) 786-2301.

MICHIGAN: South Eastern Michigan Amateur Radio Association's 21st annual hamtest. April 8, 8:00 AM to 3:00 PM EST, South Lake High School, 21900 E. Nine Mile Road at Mack Avenue, St. Clair Shores. For info: SEMARA, Mark C. Wilke, WDBRDA, 171 Merriweather Rd., Grosse Pointe Farms, MI 48236.

MICHIGAN: The Wexaukee ARA's 19th annual Swap and Shop, Saturday, May 19. 9:00 AM - 4:00 PM, National Guard Armory, 415 Haynes St., Cadillac. Tickets $\$ 2.00$, free parking. Talk-in on 146-37/97. Info from WD8RZL

MISSISSIPPI: The Jackson Amateur Radio Club's annual hamfest. April 21 and 22, Manhattan Academy gymnasium, 5055 Manhattan Rd., Jackson. For info: JARC, Box 8371 , Jackson, MS 39204 or call MS. Sideband Net daily, 3987.5, 2345 GMT

MISSOURI: Central Missouri Radio Association's fourth annual hamfest, April 7, Cosmo Recreation Center, 1507 Business Loop 70 West, Columbia. FCC exams, forums, ladies' programs, flea market, prizes. Open for exhibitors April 6, 7-9 PM, April 7, 6:30 AM. Reserved commercial space, $\$ 15.00$ per table. For info write: C.M.R.A., P.O. Box 283, Columbia, Missouri 65201.

MISSOURI: The P.H.D. Amateur Radio Association's tenth annual harnfest, Saturday and Sunday, April 21, 22, Kansas City Trade Mart, Kansas City Downtown Airport, free parking. Display booth space, $\$ 15.00$ single, $\$ 25.00$ double. 11:00 AM to 5:30 PM Saturday. 10:00 AM to 5:00 PM Sunday. Set up beginning 9:00 AM Saturday. PHD ARA, P.O. Box 11, Liberty, MO 64068.

MODEL 97812

PREPROGRAMMED MEMORY ID'ers MODEL 97812 - multi-mode MCW ID'er • adjustable audio level - programmable code speed, tone \& repeat interval - manual, auto \& semi-auto modes - for repeater, base or mobil operation * $1.8^{*} \times 3.6^{*}$ PCB. $\$ 44.95 / \mathrm{kit}$. $\$ 64.95 /$ assembled

MODEL 11764 - continuous MCW iD'er with PTT control - adjustable audio level - programmable code speed, tone \& repeat interval $1.7^{*} \times 3^{\prime \prime}$ PCB. $\$ 34.95 / \mathrm{kit}^{*}, \$ 49.95 /$ assembled ${ }^{*}$
MODEL 97710 - manual CW ID'er • programmable code speed • ID's upon request * ideal or contesting or low band CQ's ${ }^{-1.5^{*}} \times 2.2^{*}$ PCB. $\$ 29.95 /$ kit *, $\$ 39.95 /$ assembled ${ }^{*}$
MODEL 11765 - beacon CW ID'er - programmable code speed - great for 1750 meter band . $1.3^{\circ} \times 2^{\circ}$ PCB. $\$ 24.95 / \mathrm{kit}^{*}$ \$34.95/assembled*
[254 bit memory, standard on above 1D'ers 510 bit memory version on Models 97812E \& 97710E $\$ 15.00$ additional Additional pre-programmed memory ele. ments available Commercial ID'ers avalable]
MODEL 12751 - field programmable auto MCW ID'er * 110 bit memory * closeout on remaining stock. $\$ 29.95 / \mathrm{kit}^{*}$ - only.
'Include $\$ 3 \mathrm{shpg} / \mathrm{hdig}$, $\$ 5$ foreign. CA res. add 6% tax. CODs accepted. Send check or MO, allow 3 weeks on personal checks. Write for additional information.

Securitron Co.

Phone (408) 294.8383	San Jose, Ca 95154

DAMES COMMUNICATION SYSTEMS

Ham Gear	
Collins 51J4, general coverage receiver	\$5
Collins 516 F2 power supply, new, in box	S27
Collins KWM2A transceiver, exc. rnd.	\$1375
Collins 75A4 ham receiver, vy good	\$425
Collins 31284, Sta Cntl, rd, exc	\$250
Collins 31285, Vfo Console, exc	\$550
Collins 75S3C, rnd, exc	\$1250
Collins 180S1, antenna tuner	\$295
Collins 30L1, vy gd	\$595
Collins 516F2, power supply	\$175
Collins R-390A rcvrs, overhauled exc cond	
	or quote
Collins 5181, 2-30 MHz revt	Special
Hammarlund SP-600JX, revt	$\$ 395$
Collins CP-1 Crystal Pack	\$195
Racal 6217E, .5-30 MHz receiver	\$1350
Collins $32 \mathrm{S3}$ ham transmitter, vy gd	\$650
Harrison 0-20 volt/ 1.5 amplab pwr supplies, ea.	a. $\$ 45$
Johnson 2kw Matchbox w/swr meter	\$195
Test Gear	
HP-302A wave analyzer	\$375
Boonton Radio 225A sig. gen., 10-500 MHz	\$495
HP-200CD wide-range oscilloscope	\$150
Measurements Model $80,2-400 \mathrm{MHz}$	\$295
Measurements Model 658 signal generator	\$295
HP-202H 54-216 MHz AM/FM sig gen	S69
HP-608D 10-420 MHz sig gen	\$550
Tek 564 storage 'scope, w/plug ins	\$695
Tek $54530-\mathrm{MHz}$ 'scope	\$395
Tek 531A 'scope, exc	\$350
Tek 851 digital tester new, w/access call for quele	

All equipment sold checked and realigned
Write for free catalog.
201-998-4256
10 SCHUYLER AVENUE
NORTH ARLINGTON, N. J. 07032

The latest in micro-computer books that people waited in line to buy!

TV Typewriter Cookbook
By D. Lancaster
Covers tvt terms, principles, configurations, memories, system design, cursor \& update circuitry \& techniques, hard copy, color graphics, keyboards \& encoders. 256 pgs. \#21313... \$9.95

Getting Acquainted with Microcomputers

By L. Frenzel
Explains basic concepts, definitions, organization, architecture, operation, software, programming \& personal computing. With experiments for self-education. 288 pgs . \#21486 . . \$8.95

2-80 Microcomputer Handbook

 By W. Barden, Jt.All about the Zilog Z-80, a very sophisticated microprocessor: its hardware, its software, and microcomputers built around it. 304 pgs . \#21500 . . \$8.95

The Cheap Video Cookbook
By D. Lancaster
A complete guide to super-low-cost alphanumeric \& graphic microprocessor-based video displays, with construction details on a seven IC circuit-\& much more! 256 pgs. \#21524 ... \$5.95

Design of Active Filters, with Experiments By H. Berlin
An intro to the theory. design \& use of active filter circuits using the 741 op -amp chip-and no complex math. Many experiments, examples. 240 pgs. \#21539 ... \$7.95

8080/8085 Software Design

By C. Titus, P. Rony, D. Larsen \& J. Titus
Offers basic \& advanced instructions for assembly language programming. Covers mathematical manipulations, number-base conversions, decoders, arrays, etc. 336 pgs . \#21541... \$9.50

Design of OP-AMP Circuits, with Experiments By H. Berlin
The fundamentals of operational amplifier devices (e.g., 741 \& 3900) in linear amps, differentiators, filters \& nonlinear amps. 35 experiments. 224 pgs. \#21537... \$7.95

Design of Phase Locked Loop Circuits, with Experiments By H. Berlin
Details the design of the basic PLL circuits, detector, phase comparator \& voltagecontrolled oscillator circuits. 15 experiments. 256 pgs. \#21545 ... \$8.95

555 Timer Applications Sourcebook, with Experiments

By H. Berlin
Deals with the many uses of the 555 timer "chip"-for timing, signal generation, voltage regulation, control, sequencing. 15 experiments. 160 pgs. \#21538 ... $\$ 5.95$

TTL Cookbook

By D. Lancaster
Explains what transistor-transistor logic is. how it works \& how to use it-for a digital counter \& display system, electronic stopwatch, digital tachometer, voltmeter, etc. 336 pgs. \#21035 . . \$9.50

CMOS Cookbook By D. Lancaster
What CMOS is, how it works. \& how to power. use, test \& interface it, etc. With minicatalog of over 100 devices. 416 pgs. \#21398 . . $\$ 10.50$

AVAILABLE FOR THE FIRST TIME BY MAIL!

NO RISK OFFER!
YOURS TO EXAMINE AT NO RISK FOR 15 DAYS

Clip Out-Mail Today!

YES - Please send me the book(s) indicated below. If I'm not completely satisfied, I may return any or all within 15 days of receipt for full credit or refund. Add sales tax where applicable.

$\square 21313$	$\square 21539$	$\square 21538$
$\square 21486$	$\square 21541$	$\square 21035$
$\square 21500$	$\square 21537$	$\square 21398$
$\square 21524$	$\square 21545$	

\square I have checked 3 or more titites and deducted my 10% savings.

Howard W. Sams \& Co., Inc.
4300 W. 62nd St.
Indianapolis, IN 46206
Prices subject to change 6 months after issue date

CAREER OPPORTUNITY

We are a leading manufacturer of automated material handling systems, and presently have openings for technicians and field service engineers having a good working knowledge of electronics and mechanics. Will be working with servo control, guidance systems and microprocessors. Good benefits and more. Call (312) 272-2300 or write to
BARRETT ELECTRONICS CORP.

630 Dundee Road
Northbrook, Illinois 60062
Attn: Wally Mitchell WA9EQP

SIGNAL GENERATORS

RECONDITIONED AND LAB CALIBRATED

AN/URM-25, 10 KHZ THRU $50 \mathrm{MHZ}, \mathrm{AM} / \mathrm{CW}$ MODULATION 400 \& 1 KHZ, RF OUTPUT $0-2 \mathrm{~V}$ OR 0-. 1 V PRECISION 50 OHM STOP ATTENUATOR
$\$ 285.00$
TS-497/URR, 10 KHZ THRU 50 MHZ . AM/CW 0-100,000 MV, 2 THRU 400 MHZ , MILITARY VERSION OF MEASUREMENTS MODEL 80
225.00

TS-510A/U RANGE 10 MHZ THRU 420 MHZ OUTPUT VOLTAGE 5 V to 1 V , MODULATION 400, 1000 HZ BUILT-IN CALIBRATOR, AM, CW, PULSE
425.00

SG-12/U, RANGE 20 MHZ THRU 100 MHZ IN 5 RANGES. BUILT-IN FM MODULATION, CALIBRATED OUTPUT METER AND DEVIATION. CRYSTAL MARKERS
185.00

SG-3/U RANGE 50 THRU 400 MHZ IN 3 BANDS, RF OUTPUT IV, VARIABLE 50 OHM ATTENUATOR, FM DEVIATION $0-150 \mathrm{KHZ} \mathrm{IN}$ 3 RANGES
385.00

SG-24/TRM-3 SWEEP SIGNAL GENERATOR, RANGE 15 THRU $400 \mathrm{MHZ}, \mathrm{FM}, \mathrm{AM}, \mathrm{CW}$ OUTPUT, FM DEVIATION, BUILT-IN OSCILLOSCOPES FOR OBSERVING WAVEFORMS. CRYSTAL MARKERS
265.00

COLLINS 479T-2 VOR/ILS, RANGE 108-135.9 MHZ AND 329.3 TO 335 MHZ OUTPUT SIGNALS INCLUDE VOR, LOC, GLIDESLOPE AND 1000 CPS, OPERATES FROM 28 VDC AIRCRAFT OR BENCH POWER SUPPLY
225.00

TS-621/URM-52 RANGE 3.8 THRU 7 GHZ, SAME AS HP618B, CW, PULSE, FM, SQUARE WAVE.
285.00

TS-403/URM-61 RANGE 1800 THRU 4000 MHZ, FM, CW, PULSE, SQUARE WAVE, MILITARY VERSION OF HP616A ... 285.00 TS-418/URM-49, RANGE 400 THRU 1000 MHZ AM, CW OR PULSE.
145.00

TS-419/URM-64, RANGE 900 THRU 2100 MHZ CW OR PULSE EMISSION 165.00 SG-66/ARM-5, VOR GENERATOR RANGE 108 THRU 132 MHZ , MILITARY VERSION ARC H-14A
285.00

SATISFACTION GUARANTEED OR MONEY REFUNDED. SEND CHECK, M. C. OR VISA FOB OTTO. N. C. PHONE BILL SLEP (704) 524-7519.
ELEP ELECTRONICE ANCO
P.O. BOX 100, HWY. 441, DEPT. HR OTTO, NORTH CAROLINA 28763

NEW ENGLAND: The Hosstraders Net will hold its Sixth Annual Tailgate Swapfest, Saturday, May 12, at the Deerfield, New Hampshire, Fairgrounds (covered buildings in case of rain). Admission: one dollar, no percentage or commission, commercial dealers weicome at same rate. Excess revenues benefit Boston Burns Unit of Shriners' Hospital for Crippled Children. Last year we donated $\$ 1140.50$. Talk-in . 52 and 146.40-147.00. Questions about New England's biggest flea market? SASE to Joe DeMaso K1RQG, Star Route Box 56, Bucksport, ME 04416 , or Norm Blake, WA1IVB, P.O. Box 32, Cornish, ME 04020.

NORTH CAROLINA: The Raleigh Amateur Radio Society's 7th annual hamfest, April 22, 9:00 AM, Crabtree Valley Mall, US 70 West, Raleigh. $\$ 3.00$ admission. Many prizes. First prize: Kenwood TS520S or ICOM 211 and others. Covered flea market, nearby motels and restaurants, hospitality room Saturday night. Talk-in Saturday and Sunday, WR4ACF (146.04/146.64) and WR4AOE ($146.28 / 146.88$). For info: RARS Hamfest, P.O. Box 17124, Raleigh, NC 27609.

NORTH CAROLINA: The Durham F.M. Association's annual Durhamfest, Saturday and Sunday, May 19 and 20 , South Square Mall, Durham. Prizes, exhibits, programs. Shopping malls for XYLs. Sunday, ladies's bingo. Free tailgating spaces, covered llea market. $\$ 3.00$ general ticket. Vendors and dealers included. Harmonics and unlicensed XYL's free. Power available. Talk-in 147.825-225. 146.34-.94, 222.34-3.94. For info: DFMA Box 8651, Durham, NC 27707.

OHIO: F.M. B* ${ }^{*} \mathrm{~S}^{*} \mathrm{H}$, Dayton, April 27, 1979, Friday night of DAYTON HAMVENTION. Social evening for hams and friends, 8 PM til midnight, Dayton Convention Center, Main at Fifth Street. Admission free. Sandwiches, snacks and C.O.D, bar available. TV personality Rob Reider, WA8GFF, and his group will present a super show and there will be drawings for many fabulous prizes including a complete Drake UV-3 with 144, 220 and 440 MHz synthesized modules, power supply, encoder mike and antenna. For further information contact: Miami Valley F,M. Assn., P.O. Box 263, Dayton, Ohio 45401.

OHIO: The Dayton Amateur Radio Association's Hamvention, April 27, 28 and 29, Dayton Hara Arena and Exhibition Center. Prizes, contests, banquets. "Radio Amateur of the Year" award. Flea market hours: Saturday -6 AM to 5 PM. Sunday -6 AM to 4 PM. Own tables. Space: $\$ 10.00$ ea. advance, $\$ 12.00$ ea. door. Maximum four spaces. For additional information, reserva tions, accommodations: Dayton Hamvention, P.O. Box 44. Dayton, OH 45401. (513) 293-0459.

PENNSYLVANIA: Fifth Annual Northwest PA hamfest, Saturday, June 9, 1979, Crawford County Fairgrounds. Meadville, PA. Note date change. Gates open at 8:00 AM Bring your own tables, $\$ 2.00 \mathrm{in} ; \$ 1.00$ out to display. $\$ 2.00$ admission. Hourly door prizes, refreshments, corm mercial displays welcome. Talk-in 04/64, 81/21, 63/03 Details C.A.S. PO. Box 653, Meadville, PA 16335 Attention: Hamfest Committee.

PENNSYLVANIA: The Annual Reading Radio Club hamfest, Sunday, May 27, 9:00 AM, Hamburg Field House, Hamburg. Door prizes, food, tailgate sales dealer space available, rain or shine. Talk-in on 31/91 and 146.52. For info: Reading Radio Club, P.O. Box 124 , Reading. PA 19603.

PENNSYLVANIA: The Penn Wireless Association's Tradefest '79, Aprit 1, 8:00 AM. (7:00 AM for setup) National Guard Armory, Southampton Road and Roosevelt Blvd., Philadelphia. Display space $\$ 3.00$ ea. in cludes one chance towards prizes.

PENNSYLVANIA: The Warminster Amateur Radio Club's Fifth Annual Ham-Mart Flea Market and Auction, Sun day, May 6, 9:00 AM - 4:00 PM, William Tennent Interme diate High School, Street Road (Route 132) Warminster, Bucks County. Registration: $\$ 1.00$ per car (includes one door prize ticket). Tailgating: $\$ 2.00$ add. Indoor tables: $\$ 3.00$ ea Talk-in on $146.16 / 76$ and 146.52 MHz . For info Horace Carter, K3KT, 38 Hickory Lane, Doylestown, PA 18901. (215) 345-6816.

PUERTO RICO: The Radio Club de Puerto Rico's annua convention and hamfest, April 28 and 29, Condado Holiday Inn Hotel, San Juan. For details: GPO, Box 693, San Juan, PR 00936.

WASHINGTON: The Skagit Amateur Radio Club's 27th annual convention. April 20, 21 and 22, Bryant Grange Center near Seattle. For info: Norman G. Ray, Program Chairman, 14005 - 132nd Avenue N.E., Kirkland, WA 98033.

WISCONSIN: 3-F Amateur Radio Club's annual Swaplest, Saturday, May 5, 8 AM to 3 PM, Neenah Labo Temple, 157 South Greenbay Rd., Neenah. Large park ing, indoor swap areas, free auction. Refreshments available. Tickets: $\$ 1.50$ advance, $\$ 2.00$ door; tables $\$ 1.50$ advance, $\$ 2.00$ door. Reservations to: Mark Michel W9OP, 339 Naymut St., Menasha, WI 54952.

MIIO AssOcIATIES
BOX 2323 • INDIANAPOLIS. INDIANA 46206

ITS EASY TO ORDER

Use Visa; Master Charge; Check; M.O.; C.0.D Allow for shipping excess quickly refunded Minimum order of $\$ 5,00$ please!
Indiana residents add 45 tax
Prices good through cover month

The time has come for all amateurs to unite on sight. We must know each other as do other fraternal We must know each other as do other fraternal on any occasion is a true mark of fraternal brotherhood Group III, (WB2 LCK, KB2DX and KB2DZ) designed this 10 karat gold ring to portray our great and proud raternity. This exquisite ring is made exclusively for you by fosten's (world famous for their quality achievement rings) with your call letters prominently displayed For detailed information and reusable ring sizer. Write: Group III Sales Co. Dept. 35 P.O. Box 259

QTY. C MOS	
4000	. 15
4001.15	
$4002-20$	
40043.95	
$4006 \quad .95$	
$4007-20$	
$4008 \quad .75$	
$4009 \quad .35$	
$4010-.35$	
$4011 \quad .20$	
$4012-20$	
$4013 \quad 40$	
$4014 \quad .75$	
$4015 \quad .75$	
$4016-.35$	
$4017-.75$	
$4018-75$	
$4019 \quad .35$	
$4020 \quad .85$	
$4021-75$	
4022.75	
$4023-20$	
$4024-75$	
$4025 \quad .20$	
$4026 \quad 1.95$	
$4027 \quad .35$	
$4028 \quad .75$	
$4029 \quad 1.15$	
4030	. 30
4033	1.50
4034	2.45
4035	. 75
4037	1.80
4040	75
4041	. 69
4042	. 65
4043	. 50
4044	. 65
4046	1.25
4048	. 95
4049	. 45
4050	. 45
4052	. 75
4053	. 75
4066	. 55
4069/74C04	. 35
4071	. 25
4081	. 30
4082	. 30
4507	. 95
4511	. 95
4512	1.10
4515	2.95
4519	. 85
4522	1.10
4526	. 95
4528	1.10
4529	. 95
MC 14409	14.50
MC 14419	4.85
74C151	1.50

INTEGRATED CIRCUITS UNLIMITED
7889 Clairemont Mesa Blvd., San Diego, California 92111 24 Hour Toll Free Phone 1-800-854-2:11
(714) 278-4394 California Residents 1-800-542-6239 CABLE ADDRESS ICUSD

CUSTOMEF NAME

STREET ADDRESS city \qquad STATE \qquad ZIP PHONE \qquad Charge card \# aE visa \qquad EXP. DATE
c.O.D. \qquad will CALL \qquad UPS \qquad POST \qquad NET 10th OF THE MONTH \qquad PO \qquad $\$ 35$ - $\$ 99$ $\$ 100$-\$300 \$301-\$1000

Alaska
RELIABLE ELECTRONICS
3306 COPE STREETICS
ANCHORAGE, AK 99503
907-279-5100
Kenwoo, Yaesu, DenTron, Wilson,
Atlas, ICOM, Rohn, Tri-Ex.

Arizona

HAM SHACK

4506-A NORTH 16TH STREET
PHOENIX, AZ 85016
602-279-HAMS
Serving all amateurs from beginner to expert. Classes, sales \& service.
KRYDER ELECTRONICS 5520 NORTH 7TH AVENUE NORTH 7TH AVE. SHOPPING CTR. PHOENIX, AZ 85013
602-249.3739
Your Complete Amateur Radio Store.

California

C \& A ELECTRONIC ENTERPRISES 22010 S. WILMINGTON AVE.
SUITE 105
P. O. BOX 5232

CARSON, CA 90745
800-421-2258
213-834-5868. Calif. Res.
Not The Biggest, But The Best -
Since 1962.
JUN'S ELECTRONICS
11656 W. PICO BLVD.
LOS ANGELES, CA 90064
213-477-1824 Trades
714-282-8682 San Diego
The Home of the One Year
Warranty - Full Service.

SHAVER RADIO

3550 LOCHINVAR AVE.
SANTA CLARA, CA 95051
408-247-4220
Atlas, Kenwood, Yaesu, KDK, Icom, Tempo, Wilson, Ten-Tec.

Connecticut

THOMAS COMMUNICATIONS
95 KITTS LANE
NEWINGTON, CT 06111
800.243-7765

203-667-0811
Call us toll free. See our full page ad in this issue.

Delaware

DELAWARE AMATEUR SUPPLY
71 MEADOW ROAD
NEW CASTLE, DE 19720
302-328-7728
Delaware's largest stock of amateur radio equipment \& accessories.

Florida

AGL ELECTRONICS, INC.
1800-B DREW ST.
CLEARWATER, FL 33515
813.461-HAMS

West Coast's only full service
Amateur Radio Store.
AMATEUR RADIO CENTER, INC.
2805 N.E. 2ND AVENUE
MIAMI, FL 33137
305-573.8383
The place for great dependable names in Ham Radio.

RAY'S AMATEUR RADIO
1590 US HIGHWAY 19 SO.
CLEARWATER, FL 33516
813-535-1416
West coast's only dealer:
Drake, Icom, Cushcraft, Hustler.

Illinois

AUREUS ELECTRONICS, INC.
1415 N. EAGLE STREET
NAPERVILLE, IL 60540
312-420-8629
"Amateur Excellence"
ERICKSON COMMUNICATIONS, INC.
5456 N. MILWAUKEE AVE.
CHICAGO, IL 60630
Chicago - 312.631-5181
Illinois - 800-972-5841
Outside Illinois - 800-621-5802
Hours: 9:30-5:30 Mon, Tu, Wed \&
Fri.; 9:30-9:00 Thurs; 9:00-3:00 Sat.
SPECTRONICS, INC.
1009 GARFIELD STREET
OAK PARK, IL 60304
312.848-6777

One of America's Largest
Amateur \& SWL Stores.

Indiana

KRYDER ELECTRONICS
GEORGETOWN NORTH
SHOPPING CENTER
2810 MAPLECREST RD.
FORT WAYNE, IN 46815
219-484-4946
Your Complete Amateur Radio Store. 10.9 T, TH, F; 10.5 W , SAT.

Kansas

REVCOM ELECTRONICS

6247 N. HYDRAULIC
WICHITA, KS 67219
316.744-1083

New - Used HF, VHF, \& Microwave Gear. Manufacturing \& Sales.

Maryland

THE COMM CENTER, INC.
9624 FT. MEADE ROAD
LAUREI. PLAZA, RT. 198
LAUREL., MD 20810
800.638.4486
R. L. Drake, Ten-Tec, ICOM, Wilson,

Tempo, DenTron, Mosley, Cushcraft.

Massachusetts

TEL-COM, INC.
675 GREAT RD. RT. 119
LITTLETON, MA 01460
617-486-3040
The Ham Store of New England you can rely on.

TUFTS RADIO ELECTRONICS

209 MYSTIC AVENUE
MEDFORD, MA 02155
617-395-8280
New England's friendliest ham store.

Michigan

ELECTRONIC DISTRIBUTORS

1960 PECK STREET
MUSKEGON, MI 49441
616-726-3196
Dealer for all major amateur radio product lines.

Amateur Radio Dealer

Minnesota

PAL ELECTRONICS INC. 3452 FREMONT AVE. NO. MINNEAPOLIS, MN 55412 612.521.4662
Midwest's Fastest Growing Ham Store, Where Service Counts.

Missouri

HAM RADIO CENTER, INC.
$8340-42$ OLIVE BLVD.
ST. LOUIS, MO 63132
800.325-3636

For Best Price and Fast Delivery
Call toll free 1-800-325-3636

Nebraska

COMMUNICATIONS CENTER, INC. 443 NORTH 48TH ST.
LINCOLN, NE 68504
800-228-4097
Lowest Prices in the USA
on Ham Equipment.

Nevada

COMMUNICATIONS CENTER WEST 1072 RANCHO DRIVE
LAS VEGAS, NV 89106
800-634-6227
Kenwood, Yaesu, Drake and more at discount prices.

New Hampshire

EVANS RADIO, INC.
BOX 893, RT. 3A BOW JUNCTION CONCORD, NH 03301
603-224-9961
icom, DenTron \& Yaesu dealer.
We service what we sell.

New Jersey

ATKINSON \& SMITH, INC.
17 LEWIS ST.
EATONTOWN, NJ 07724
201-542-2447
Ham supplies since " 55 ".

BARGAIN BROTHERS ELECTRONICS

 216 SCOTCH ROADGLEN ROC SHOPPING CTR.
WEST TRENTON, NJ 06828 609-883-2050
A million parts - lowest prices anywhere. Call us!

METUCHEN RADIO
216 MAIN STREET
METUCHEN, NJ 08840
201-494.8350
New and Used Ham Equipment WA2AET "T" Bruno

RADIOS UNLIMITED
P. O. BOX 347

1760 EASTON AVENUE
SOMERSET, NJ 08873
201-469.4599
New Jersey's Fastest Growing
Amateur Radio Center.

New York

AM-COM ELECTRONICS INC.
RT. 5
NORTH UTICA SHOPPING CTR.
UTICA, NY 13502
315.732.3656

The Mohawk Valley's Newest \&
Largest Electronics Supermarket.

GRAND CENTRAL RADIO
124 EAST 44 STREET
NEW YORK, NY 10017
212-682.3869
Drake, Atlas, Ten-Tec, Midland,
Hy-Gain, Mosley in stock

HAM-BONE RADIO
3206 ERIE BLVD. EAST
SYRACUSE, NY 13214
315-446.2266
We deal, we trade, all major brands!

RADIO WORLD
ONEIDA COUNTY AIRPORT
TERMINAL BLDG.
ORISKANY, NY 13424
Toll Free $800 \cdot 448$-7914
NY (315-337-2622
Res. $\quad 315-337-0203$
New \& Used Ham Equipment.
See Warren K2IXN or Bob WA2MSH.

Ohio

AMATEUR RADIO

SALES \& SERVICE INC.
2187 E. LIVINGSTON AVE.
COLUMBUS, OH 43209
614-236-1625
Antennas and Towers for All Services.

Oklahoma

KRYDER ELECTRONICS
5826 N.W. 50TH
MacARTHUR SQ. SHOPPING CTR.
OKLAHOMA CITY, OK 73122
405-789-1951
Your Complete Amateur Radio Store

Pennsylvania

ELECTRONIC EXCHANGE

136 N. MAIN STREET
SOUDERTON, PA 18964
215-723-1200
Demonstrations, Sales, Service New/Used Amateur Radio Equip.
"HAM" BUERGER, INC.
68 N. YORK ROAD
WILLOW GROVE, PA 19090
215-659-5900
Delaware Valley's Fastest Growing
Amateur Radio Store
HAMTRONICS, DIV. OF
TREVOSE ELECTRONICS
4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215.357-1400

Same I_ocation for 30 Years.
Call Toll Free 800-523-8998.

LaRUE ELECTRONICS

1112 GRANDVIEW STREET
SCRANTON, PENNSYLVANIA 18509
717.343-2124

ICOM, Bird, Cushcraft, CDE,
Ham-Keys, VHF Engineering,
Antenna Specialists.

South Dakota

BURGHARDT

AMATEUR RADIO CENTER, INC.
P. O. BOX 73

WATERTOWN, SD 57201
605-886-7314
"America's Most Reliable
Amateur Radio Dealer' ${ }^{\prime}$.

Texas

AGL ELECTRONICS

3068 FOREST LANE, SUITE 309
DALLAS, TX 75234
214.241-6414 (within Texas)

Out-of-State, Call our toll-free number 800-527-7418.

HARDIN ELECTRONICS

5635 E. ROSEDALE
FT. WORTH, TX 76112
817-461-9761
Your Full Line Authorized
Yaesu Dealer.

NEW CoaxProbe*
 Coaxial RF Probe for Frequency Counters and Oscilloscopes That Lets You Monitor Your Transmitted Signal Directly From the Coax Line.

${ }^{\text {onn }} \mathbf{~} \mathbf{S 1 2 . 9 5}$
 plus .50 postage

FINALLY! A RF PROBE that lets you connect Into your coax cable for frequency measurements and modulation waveform checks directly from the transmitter.
JUST CONNECT THE CoaxProbe* into your transmission line and plug the output into the frequency counter or oscilloscope. Insertion loss is less than . 2 db so you can leave it in while you operate.
A NECESSITY IN ANY WELL-ORGANIZED HAM SHACK, the CoaxProbe* eliminates "jerry-rigging", and hassles when tapping into the coax line is desired.
A SPECIAL METHOD OF SAMPLING keeps output relatively constant with a wide variation of power. Power output of 8 watts gives .31 v out, while 800 watts will give 1.8 v out. (rms 3-30 mhz.) 2000 watts PEP rating too!

- Trademark of CoaxProbe Co. for it sampling device. (G) 1978 by CoaxProbe Co.

USE IT ON 2 METER RIGS TO ADJUST FREQUENCY. The CoaxProbe* has a range of 1.8 to 150 mhz .

MONITOR YOUR MODULATION

WAVEFORM. With an oscilloscope of proper bandwidth, you can check your modulation for flat-topping, etc. Ideal for adjusting the speech processor.
NOW YOU CAN MONITOR SIGNALS when connected to the dummy load, eliminating unnecessary on-the-air radiation.
AVAILABLE FOR THE FIRST TIME TO AMATEURS. Try it for 10 days. If not satisfied, send it back for refund (minus shipping charges).
Order today from:

CoaxProbe Co.

P.O. Box 426, Portage, MI 49081 Michigan Res. Add 4\% Sales Tax

8-POLE 350-H2 FILTER FOR SIGNAL/ONE TRANSCEIVERS $\$ 120.00$
Finally! Superior 8-Pole CW Selectivity for Drake TR-4, TR-4C, TR-4 Cw

At Last! Superior 8-Pole CW Selectivity for Kenwood TS-820

600 Hz 6-Pole First-IF Filter for Drake R-4C

125 Hz 8-Pole Second-IF Filter for Drake R-4C

CWV Operators! gitterations:
 These crystal filters are for you!

All filters contain specially-treated high-Q crystals. Sherwood Engineering Inc. 1268 South Ogden St. Denver, Colo. 80210 (303) 722-2257 Money back if not satisfied Add $\$ 3$ per order shipping: $\$ 6$ overseas air
Dealer Inquiries Welcome
vish

Featuring Yaesu, Icom, Drake, Atlas, Ten-Tec, Swan, DenTron, Pace, Palomar, Alda, Midland, Wilson, KDK, MFJ, Microwave Module, Standard, Tempo, Astron, KLM, Hy-Gain, Mosley, Larsen, Cushcraft, Hustler, Mini Products, Universal and Tristao Towers. We service everything we sell! Write or call for quote. You Won't be Disappointed.

We are just a few minutes off the NYS Thruway (1-90) Exit 32

VOICE BAND EQUALIZER

clean crisp audio
Xmit audio passband equalizer - gives punch without distortion - best
on dx, yl's, problem voices -
lo, mid, hi, ranges adj +12 db made in usa - performance guaranteed specify rig, mike plug or universal P.O. Box 144, Hannacroix, N.Y. 12089

The Electronic Farm

Duns \#01-048-6066

Cash plus shipping paid for clean late model Motorola GE, RCA mobiles Base Stations, Accessories. We also sell used and reconditioned equipment.
For further information contact: Jesse La Fleur
The Communications Center 1629 Wyoming
El Paso, Texas 79902 (915) 545-1133

Call for cash quotation $\quad 16$ years of tair dealing
 nology, low cost avionics and test equipment offered in kit form. Product
| line includes audio panel, aircraft band two-channel transceiver, digital chronometer, navigation and communications test equipment, bench power supply, and more. Shoot us the coupon
| for details.
Name
Address
City
(916)
$l^{(972-2203}$
Radio Systems Technology, Inc.
RR 5, GRASS VALLEY, CA 95945

DIGITAL READOUT

for your HAM II or III
Kit MM-1 includes key components necessary to make conversion described in article by K1DG, Ham Radio, January 1979, p. 54.
$\begin{array}{ll}\text { - AD } 2020 & \text { - } 10 \text {-turn pot } 5 \mathrm{~K} \\ \text { - F9374 } & \text { - } 10 \text {-turn pot } 1 \mathrm{~K}\end{array}$
Allow three weeks for delivery. Send check or M.O. for \$28.95.

> SUNSET ELECTRONICS 44 SUNSET DRIVE
> FRAMINGHAM, MA 01701

TOP QUALITY MOBILE ANTENNAS

from 9 G C Communication:

- Staintess Steel Radiator
- Heavy Nickel-Chrome Plated Brass Base and Fittings
- Mounts Come with 17^{*} RG58AU and PL-259 Connectors.
- Compatible with Motorola TAD and TAE Mounts.
Wiers ordering suffox it indicates ompuete antenna assembly with riunk wot mountimg
BM-2700 - $27-31 \mathrm{MHZ}$, wave base-loaded 200 watt rating Covers 10 meters or CB Great mobile antenna for converted CB iigs $49^{\prime \prime}$ at lowest frequency and is approximately $42^{\prime \prime}$ when cut tor len meters Complete with trunk lid thount assembly \$29.95 BM-MATH - Extra whip (Cut one for 10 and one for CB) ... $\mathbf{\$ 5 . 0 0}$ BM-4700T Same assembly except for $47-54 \mathrm{MHZ}$..... $\$ 29.95$ BM-5800T $-144-174 \mathrm{MHZ}$, wave gain antenna 200 watt rating Complete \$29.95 BM-MAT 58 or BM-MAT 22 matching coils (these coils with whips allow same mounting assembly to be used on different bandsi \$14.95 BM-5822 $-220-225 \mathrm{MHZ}$) wave gain antenna \$ 29.95 Note: Deduct \$4.00 from "T" price for "M" assemblies
Addifional Information On Other Antenna Models Available G \& C Communications Dept. HH, 730 Cottonwood Lincoln. NE 68510

D\&V RADIO PARTS

IARIABLE \& THIMMEH CAPACITORS-AF CHOKES-
AIH WOUND COILS-TOROIDS-FEED THRU'STUBULAA TRIMMERS-KNOBS-NIRE-COUFLINGS THANSNATCH COMPONENTS.
No minimum order-low cost shipping. F1rst class stamp for complete flyer.
2805 n . SARLE, PREELAND, MICHIGAN 48623

SURPLUS WANTED
 Space buys more and pays more High-

 est prices ever on U.S. Military surplus, especially on Collins equipment or parts. We pay freight Call collect now SPACE ELECTRONICS COSPACE ELECTRONICS CO.
35 Ruta Court, S. Hackensack, N.J. 07606

ERC PROMISES UP TO THE MINUTE STATE-OF-THE-ART DESIGN AND PERFORMANCE WE'VE DONE IT FOR 1979

FOUR SIMULTANEOUS FILTERS IN ONE FOR UNPARALLELED QRM FREE RECEPTION (SSB \& CW) *PLUS A SPECIAL PATENTED CW PROCESSOR*

THE BRAND NEW SL-56 AUDIO ACTIVE FILTER SUPERCEDES OUR SL-55 IN BOTH CONCEPT AND PERFORMANCE, CONSOL IDATION OF MANY COMPONENTS HAS ALLOWED US TO MAKE 16 OPERATIONAL AMPLIFIERS (COMPARED TO 6 IN THE SL-55) INTO A FILTER GUARANTEED TO OUT PERFORM ANY OTHER AT A COST ONLY SLIGHTLY HIGHER THAN THE SL-55. THE FEATURES OF THE SL-56 ARE 50 ADVANCED FROM ITS PREDECESSOR THAT CALLING IT THE SL-55A IS NOT JUSTIFIED. UNLIKE OTHER FILTERS THAT SIMPLY OFFER A CHOICE OF ONE OR TWO FILTER TYPES AT A TIME (NOTCH, BANDPASS, ETC.) SL-56 PROVIDES WHAT IS REALLY NEEDED ... THE SIMULTANEOUS ACTION OF A 6 POLE 200 Hz FIXED HIGHPASS FILTER AND A 6 POLE 1600 Hz FIXED LOWPASS FILTER WITH A 60 dB NOTCH WHICH IS TUNABLE OVER THE $200-1600 \mathrm{~Hz}$ RANGE. THIS 3 FILTER CONBINATION IS UNBEATABLE FOR THE ULTIMATE IN QRM FREE SSB RECEPTION. ADJACENT CHANNEL QRM IS ELIMINATED ON THE HIGH AND LOW SIDES AT THE SAME TIME AND DOES NOT INTRODUCE ANY HOLLOWNESS TO THE DESIRED SIGNAL. ON CW THE SL-56 IS A DREAM. THE LOWPASS, HIGHPASS AND NOTCH FILTERS ARE ENGAGED ALONG WITH THE TUNABLE BANDPASS FILTER ($400-1600 \mathrm{~Hz}$) PROVIDING THE NEEDED ACTION OF 4 SIMULTANEOUS FILTER TYPES. THE BANDPASS MAY BE MADE AS NARROW AS 14 Hz (3dB). ADOITIONALLY, A SPECIAL PATENTED CIRCUIT FOLLOWS THE FILTER SECTIONS WHICH ALLOWS ONLY THE PEAKED SIGNAL TO "GATE ITSELF" THROUGH TO THE SPEAKER OR HEADPHONES (4-2000 OHMS). RECEIVER NOISE, RING AND OTHER SIGNALS ARE REJECTED. THIS IS NOT A REGENERATOR, BUT A MODERN NEW CONCEPT IN CW RECEPTION. THE SL-56 CONNECTS IN SERIES WITH THE RECEIVER SPEAKER OUTPUT AND DRTVES ANY SPEAKER OR HEADPHONES WITH ONE WATT OF AUDIO POWER. REQUIRES 115 VAC. EASILY CONVERTED TO 12 VDC OPERATION. COLLINS GRAY CABINET AND WRINKLE GRAY PANEL.

WARRANTED ONE YEAR FULLY RFI PROOF FULLY WIRED AND TESTED AVAILABLE NOW $\$ 75.00$ POSTPAID IN THE USA AND CANADA.

ATTN SL-55 OWNERS: THE CIRCUIT BOARD OF THE SL-56 IS COMPLETELY COMPATIBLE WITH THE SL-55 CHASSIS. OUR RETROFIT KIT IS AVAILABLE AT $\$ 35.00$ POSTPAID.

ERC INTRODUCES A BRAND NEW CONCE PT IN THE MEASUREMENT OF VSWR AND POWER ACCEPTED BY THE LOAD

REQUIRES 115 VAC AT LESS THAN 1/16 AMP.

COLLINS GRAY CABINET WRINKLE PANEL - BRIGHT RED LED DIGITS (. $33^{\prime \prime}$). DECIMAL POINT IS THE PILOT LIGHT.

TWO SO-239 COAX CONNECTORS ARE AT THE REAR PANEL.

OIMENSIONS $3.5 \times 5.5 \times 7.5$ INCHES.

WEIGHT IS 2 POUNDS.

$1.8 .30 \mathrm{MHz}_{\mathrm{Z}}$

THE MODEL SL-65* (20-2000 WATTS) AND THE QRP MODEL SL-65A* ($0.2-20$ WATTS) DIGITALLY INDICATE ANTENNA VSWR UNDER ANY TRANSMISSION MODE -. SSB, CW, RTTY, AM EtC. THERE IS NO CALIBRATION REQUIRED AND NO CROSSED METER NEEDLES TO INTERPRET. SIMPLY LOOK AT THE READOUT AND THAT IS THE VSUR. SPEAKING NORMALLY INTO A SSB TRANSMITTER MIC. INSTANTLY CAUSES THE VSWR TO BE DISPLAYED THROUGHOUT YOUR ENTIRE TRANSMISSION, REVERSING THE POSITION OF A FRONT PANEL TOGGLE SWITCH AND THE DISPLAY INDICATES THE NET POWER (FORWARD LESS REFLECTED) THAT IS ACCEPTED BY THE ANTENNA. THE PEAK OF THE NET PEP IS DETECTED ANO DISPLAYED WITHOUT FLICKER FOR ANY MODULATION TYPE, DISPLAY UPDATE IS CONSTANT YET FLICKER fREE AS YOU MAY CHANGE THE POWER ACCORDING TO YOUR VOICE. THERE IS NOTHING LIKE THIS QUALITY INSTRUMENT AVAILABLE ANYWHERE ELSE. IT IS THE ONLY YSWR-NET POWER INDICATOR THAT LETS YOU KNOW THE STATE OF YOUR ANTENNAS AND TRANSMITTED POWER AT ALL TIMES WHILE TRANSMITTING. EITHER MODEL IS A SOPHISTICATED DEVICE CONTAINING FOUR CIRCUIT BOARDS AND THIRTEEN INTEGRATED circuits.

SL-65
 VSWR INDICATOR

- TWO DIGIT DISPLAY SHOWS VSWR TO AN ACCURACY OF . 1 FOR VALUES FROM 1.0 AND 2.2. ACCURACY IS TO . 2 FOR VALUES FROM 2.3 TO 3.4 AND TO . 3 FROM 3.4 TO 4.0 . FROM 4.1 TO 6.2 THE INDICATION MEANS THAT VSWR IS VERY HIGH.
- for vsir values near 1.0, the POWER RANGE FOR A VALID READING IS 20 - 2000 WATTS OUTPUT. FOR hIGHER VALUES THE UPPER POWER LIMIT FOR A FLICKER FREE VALID READING IS SOMEWHAT LESS (35 1000 WATTS FOR VSWR AT 2.0).
- oivide the above power levels

BY 100 TO OBTAIN THE PERFORMANCE
OF THE SL-65A QRP MODEL.
PRICE: $\$ 189.50$ POSTPAID IN USA \& CANADA. VA. RESIDENTS ADD 4% SALES TAX.

BOOKLET AVAILABLE AT \$2.00 REDEEMABLE TO WARD PURCHASE. - PATENT PENDING.

ELECTRONIC RESEARCH CORP. OF VIRGINIA
P. O. BOX 2394

VIRGINIA BEACH, VIRGINIA 23452
TELEPHONE (804) 463-2669

WANTED FOR CASH

490-T Ant. Tuning Unit (Also known as CU1658 and CU1669)

618-T Transceiver
(Also known as MRC95, ARC94, ARC102, or VC 102)

Highest price paid for these units. Parts purchased. Phone Ted, W2KUW collect. We will trade for new amateur gear. GRC106, ARC105, ARC112 and some aircraft units also required.
25%
We stand on our long term offer to pay 5% more
than any other bonafide offer.

DCO, INC.

10 Schuyler Avenue
(201) $998-4246$

No. Arlington, N.J. 07032 Evenings (201) 998-6475

TR7400A "KENWOOD" OWNERS: SCANNER KIT

- Instalis completely inside rig. No obtrusive external connections - Scans the complete band or only the portion you seiect on the MH 2 switch of your rig (e.g. 144.148 or $146-148 \mathrm{MHz}$) . Scan frequency is displayed on digital readout - Two miniature loggle switches supplied with kit (scanner on-off, scan-lock may be mounted externally or on the top or bottom cover of the in * in the scanner OFF mode the TR-7400A behaves normally trequency, pauses for a preset time ($3-30$ seconds) and then
the requency, pauses
resumes scanning. This means you can eavesdrop all over the resumes scanning. This means you can eavesdrop all over the
band without lifting a finger. When you hear something interesting you tlip the switch to the lock mode and the rig is ready to transmit - Scans at the rate of 50 kHz per second - Complete with detailed instructions (even for the beginner) Introductory OHer
KIT \$39.95
Preassembled $\$ 59.95$
add $\$ 1.50$ postage and handling

FT-227 "MEMORIZER" OWNERS: SCANNER KIT

- Selectable sweep width (up to full band) - Scans only the portion of band you select - Scans at the tate of 200 kHz pet second - Switch modification on mike allows you to scan past of ond - Swilch modification on mike allows you to scan past, or lock on, any occupied Irequency - Compleie kit with detailed intions - Rig can easity be returned to original condition whenever desired - Scans to preset limits and reverses - Automatic bydesired of locked trequency in $3-1 / 2$ seconds unless you press pack-on switch - You can eavesdrop all over the band withou lifting a finger.

KIT \$34.95

Preassembled and tested $\mathbf{5 5 4 . 0 0}$ add $\$ 1.50$ postage and handling

IC-22S SCANNER KITS
also available
Kit $\$ 34.95$; $\$ 54.00$ Assembled add $\$ 1.50$ postage and handling

AED ELECTRONICS

750 LUCERNE RD., SUITE 120, MONTREAL, QUEBEC, CANADA H3R 2H6 TEL. 514.737.7293

FULL•POWER, QUALITY HAM ANTENNA PARTS

AT YOUR DEALER

- BALUMS TRAPS.IMSULATORS
- qUAD PARTS - AMTEMMA KITS
- BOOM/MAST MOUMTS-WIRE
- CABLE COMMECTORS

Write for futl catalog
[Enclose 30c Stamps]
TV Finine unailla/Reco ovision [ore: HR FCom

TOUCH－TONE ${ }^{\circ}$ DECODER MODULE

MODEL DTMF－ 8 $4.5^{\prime \prime} \times 6.5^{\prime \prime}$
－Excellent building block for amateur control systems
－Hybrid active filters throughout．No PLL＇s！
－ 40 db dynamic range No gain adj．necessary
－Min． 20 db twist allowable
－Std．AT\＆T tones
－Decodes all 8 touch－tone frequencies
－ 8 open collector outputs supplied to interface with any logic system
－ 10 K Ohm transformer isolated input stage
－11－15 VDC operation
ONLY
\＄179．95 post paid CA Res．Add 6\％Sales Tax

specification sheet
Abletronics
8131 FOOTHILL BLVD． CUCAMONGA，CA 91730 714／981－3473

ALL BAND TRAP ANIENNAS！

PRETUNED－COMPLETLY ASSEMBLED－ ONLY ONE NEAT SMALL ANTENNA FOR UP TO 6 BANDSI EXCELLENT FOR CON－ $\boldsymbol{\square}$ GESTED HOUSING AREAS－APARTMENTS

FOR ALL MAKES \＆MODELS OF AMATEUR TRANSRECEIVERS－TRANSMITTERS－ GUARANTEED FOR 2000 WATTS SSB CLASS AMATEURSI
COMPLETE AS SHOWN with 90 ft ．RG58U－52 ohm feediline，and PL 259 connector，insulators， 30 ft 300 b ．test dacron end supports，center connector with built in lighning arrester and static discharge－ molded，sealed，weatherproof，resonant traps $1^{\prime \prime} \times 6^{\prime \prime}$－you just switch to band desired for excellent woridwide moided，seaied，weation－transmitting and reclevingl WT．LESS THAN 5 LBS．
160－80－40－20－15－10 bands 2 trap－－149 ft with 90 ft ．RG58U－connector－Model 777BU ．．$\$ 59.95$ 80－40－20－15－10 bands 2 trap－ 102 ft ．with 90 ft ．RG58U－connector－Model 998BU ．．$\$ 54.95$ 40－20－15－10 bands 2 trap $\cdots 54 \mathrm{ft}$ ．with 90 ft ．RG58U coax－connector－Model 1001BU ．．$\$ 53.95$ 20－15－10，bands 2 trap $=26 \mathrm{ft}$ ．with 90 ft ．RG58U coax－connector－Model 1007BU ．．．$\$ 52.95$ SEND FULL PRICE FOR POST PAID INSURED DEL．IN USA．（Canada is \＄5．00 extra for postage： clerical－customs－etc．）or order using VISA Bank Americard－MASTER CHARGE．AMER．EX PRESS，Give number and ex．date．PhDER NOW AND SAVE1 All antennas guaranteed for 1 year．Mioney PRICES MAY INCREASE SO－ORDER NOW AND SAVEI AII
back trial I Made in USA．FREE INFO．AVAILABLE ONLY FROM

$$
\text { WESTERN ELECTRONICS Dept. AR-4 Kearney, Nebraska, } 68847
$$

CRYSTAL FILTERS

The Heart of your Set Get the BEST for Less！

ONLY $\$ 5-500$

YAESU－KENWOOD－HEATH－and now DRAKE（R－4C）！

FOX－TANGO continues to expand its quality－line of 8 －pole fiters，made up entirely of specially－freared，high Cocrystais Custom－mace for each set with uitimate rejection of over 80 dB and superior shape factors，these filters are unavailable from other sources．Onily FOX－TANGO gives owners of the most popular brands of ham gear a choice of drop－in filters closer to their needs than the limited nump bet of 6 －pole（or less）units oftered as extra－cost options by most manutacturers In addition，for the Yaesu and Kenwood lines we manufacturer designed Diode Switching Boards which permit inboard mounting of up to two hifers more than those for which the Hz ）CW filter，and／or a narrow（ 1800 Hz ）SSB in addition to the regularly supplied SSB filter－all switch selectable．This provides superior variable bandwidth selection without the need for buying an expensive new model to provide it in these intlationary times，if is sound economics to uD－grade your present set FOX－TANGO makes it easy－and relatively inexpensive．Order with contidence satistaction is guaranteed on a money－Dack basis incidentally even our current line of titers will fit many other brands of home－brew rigs．Check the specitications or write us about custom－buil units tor most rigs．（COMING：YF $455 \mathrm{~F} 250-250 \mathrm{~Hz}$ CW for $75 \mathrm{~S}-3 \mathrm{~B} / \mathrm{C}$ －order yours now for fastest delivery）

FOX－TANGO CRYSTAL FILTER SPECIFICATIONS										
		FILTER NO YF．	$\begin{aligned} & \text { USED } \\ & \text { FOR } \end{aligned}$	$\begin{gathered} \text { CENTEA } \\ \text { FREOUENCY } \\ \mathrm{kHz} \end{gathered}$	BANDWIDTH－Hz		$\begin{aligned} & \text { INSERTION } \\ & \text { LOSS } \\ & d B \end{aligned}$	$\begin{gathered} \text { TERMINAL } \\ 2 \\ (\mathrm{~N}-0 \mathrm{~T}) \\ \Omega / \mathrm{pF} \end{gathered}$	$\begin{aligned} & \text { CASE } \\ & \text { SIZE } \\ & \text { SEE } \\ & \text { BELOW } \end{aligned}$	SEENOTE
					$-6 \mathrm{~dB}$	$-60 \mathrm{~dB}$				
$\vec{M}$$\underset{y}{4}$$>$	흔	$\begin{aligned} & 31 \mathrm{H} 250 \\ & 31 \mathrm{H} 500 \\ & 31 \mathrm{H1} 8 \\ & 31 \mathrm{H} 24 \\ & 31 \mathrm{H} 6.0 \end{aligned}$	$\begin{gathered} \mathrm{CW} \cdot \mathrm{~N} \\ \mathrm{CW} \\ \text { SSB-N } \\ \text { SSB-F } \\ \text { AM } \end{gathered}$	$\begin{gathered} 3179.3 \\ 31793 \\ 3180 \\ 3180 \\ 3180 \end{gathered}$	$\begin{array}{\|r\|} \hline 250 \\ 500 \\ \pm 50 \\ 1800 \\ \hline 2400 \\ \pm 100 \\ 6000 \\ \pm 500 \\ \hline \end{array}$	$\begin{aligned} & \quad<750 \\ & <1200 \\ & <3500 \\ & <4200 \\ & <11 k \end{aligned}$	$\begin{aligned} & <9 \\ & <7 \\ & <6 \\ & <6 \\ & <6 \end{aligned}$	$\begin{aligned} & 500 \Omega \\ & 500 \Omega \\ & 500 \Omega \\ & 500 \Omega \\ & 500 \Omega \end{aligned}$	$\begin{aligned} & \hline A \\ & A \\ & B \\ & B \\ & A \end{aligned}$	$\begin{gathered} 1 \\ 2 \\ 3 \\ 3.6 \\ 4.6 \end{gathered}$
	$\stackrel{\stackrel{\rightharpoonup}{5}}{\stackrel{\rightharpoonup}{4}}$	$\begin{aligned} & 91 \mathrm{H} 250 \\ & 91 \mathrm{H} 500 \\ & 90 \mathrm{H} 18 \\ & 90 \mathrm{H} 24 \end{aligned}$	CW－N CW SSB－N SSB－F	$\begin{gathered} 8999.3 \\ 89993 \\ 9000 \\ 9000 \end{gathered}$	$\begin{array}{\|r\|} \hline 250 \\ 500 \\ \pm 50 \\ 1800 \\ \pm 50 \\ 2400 \\ \pm 100 \\ \hline \end{array}$	$\begin{aligned} & <750 \\ & <1400 \\ & <3500 \\ & <4200 \end{aligned}$	$\begin{aligned} & <10 \\ & <8 \\ & <6 \\ & <6 \end{aligned}$	$\begin{aligned} & 500 \Omega \\ & 5000 \\ & 5000 \\ & 5000 \end{aligned}$	C C C C	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 6 \end{aligned}$
	市	$\begin{aligned} & 89 \mathrm{H} 250 \\ & 89 \mathrm{H} 500 \end{aligned}$	$\underset{\mathrm{CW} \cdot N}{\mathrm{CW}}$	$\begin{aligned} & 8988.3 \\ & 8988.3 \end{aligned}$	$\begin{aligned} & 250 \pm 50 \\ & 500 \pm 50 \end{aligned}$	$\begin{aligned} & <750 \\ & <1400 \end{aligned}$	$\begin{aligned} & <10 \\ & <8 \end{aligned}$	$\begin{aligned} & 5000 \\ & 5000 \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$
	$\begin{aligned} & \text { 료영 } \\ & \text { in mix } \end{aligned}$	$\begin{aligned} & 33 \mathrm{H} 250 \\ & 33 \mathrm{H} 400 \\ & 33 \mathrm{HI} 8 \end{aligned}$	CW•N CW SSB－N	$\begin{aligned} & 3395 \\ & 3395 \\ & 3395 \end{aligned}$	$\begin{array}{\|r} 250 \pm 50 \\ 400 \pm 50 \\ 1800 \pm 100 \end{array}$	$\begin{array}{r} <750 \\ <1200 \\ <3500 \end{array}$	$\begin{aligned} & <9 \\ & <8 \\ & <6 \end{aligned}$	$\begin{aligned} & 4.7 \mathrm{~K} / 33 \mathrm{pF} \\ & 47 \mathrm{~K} / 33 \mathrm{pF} \\ & 4.7 \mathrm{~K} / 33 \mathrm{pF} \end{aligned}$	$\begin{aligned} & B \\ & B \\ & B \end{aligned}$	1 7 3
	a ¢ jn	$\begin{aligned} & 88 \mathrm{H} 250 \\ & 88 \mathrm{H} 400 \\ & 88 \mathrm{HI} 8 \end{aligned}$	$\begin{aligned} & \mathrm{CW} \cdot \mathrm{~N} \\ & \mathrm{CW} \\ & \mathrm{SSB} \cdot \mathrm{~N} \end{aligned}$	8830.7 8830.7 8830	$\begin{array}{r\|} \hline 250 \\ 400 \\ \hline 1800 \\ \hline 180 \\ \hline \end{array}$	$\begin{aligned} & <750 \\ & <1400 \\ & <3500 \end{aligned}$	$\begin{aligned} & <10 \\ & <9 \\ & <6 \end{aligned}$	$\begin{aligned} & 470 / 5 \mathrm{pF} \\ & 470 / 5 \mathrm{pF} \\ & 470 / 5 \mathrm{pF} \end{aligned}$	$\begin{aligned} & \hline D \\ & 0 \\ & 0 \end{aligned}$	1 7 3
エ		$\begin{aligned} & 33 \mathrm{H} 250 \\ & 33 \mathrm{H} 400 \\ & 33 \mathrm{H} 2.1 \end{aligned}$	$\begin{aligned} & \mathrm{CW} \cdot \mathrm{~N} \\ & \mathrm{CW} \\ & \mathrm{SSB} \end{aligned}$	$\begin{gathered} 3395.4 \\ 3395.4 \\ 3395 \end{gathered}$	$\begin{aligned} 250 & \pm 50 \\ 400 & \pm 50 \\ 2100 & \pm 100 \end{aligned}$	$\begin{array}{r} <750 \\ <1200 \\ <3500 \end{array}$	$\begin{aligned} & <9 \\ & <8 \\ & <6 \end{aligned}$	$\begin{aligned} & 2 \mathrm{Kg} \\ & 2 \mathrm{Kg} \\ & 2 \mathrm{Kg} \end{aligned}$	E E	1 8 9
訔	U	56 H 80 56 H 800 56 H 125	$\begin{gathered} \mathrm{CW} / \mathrm{SSB} \\ \mathrm{CW} \\ \mathrm{CW} \cdot \mathrm{~N} \end{gathered}$	$\begin{gathered} 5645 \pm 150 \\ 5645 \pm 150 \\ 5695 \end{gathered}$	$\begin{gathered} 8000 \pm 500 \\ 800 \pm 100 \\ 125 \pm 50 \end{gathered}$	$\begin{aligned} & <13 K \\ & <1800 \\ & <350 \end{aligned}$	$\begin{aligned} & <3 \\ & <5 \\ & <13 \end{aligned}$	$\begin{aligned} & \hline 5000 \\ & 5009 \\ & 500 \end{aligned}$	$\begin{aligned} & \mathrm{F} \\ & \mathrm{C} \\ & \mathrm{G} \end{aligned}$	$\begin{array}{cc} 10,11 \\ 10,12 \\ 10 \end{array}$
S	All fiters，except Drake，are $\$ 55$ each For Drake prices，see ad page 43 Prices include armail postpaid to U S Canada and Mexico．For overseas airmal，add $\$ 3$									

CASE SIZES

CASE SIZES	NOTES	
A $45 \times 23 \times 28$	1．SharD CW Filter for DX and Contest work	7 Use instead of optional 500 Hz （6 poie）unit
B $50 \times 25 \times 25$	2 Use instead of optional 600 Hz （6 pole）unit	8 Use instead of optional 400 Hz （ 4 pole）unit
C $40 \times 20 \times 21$	3 For narrow SSB to reduce ORM	9 Superior teplacement for standard SS8 unit
D $50 \times 18 \times 18$	4 Use instead of XF－30A（6 pole）in early units	10 For detarled description and prices see ad page 43
E $\quad 57 \times 24 \times 25$	5 Superior to XF－30B（6 poie）AM unit	11 Also known as GUF－1
F $57 \times 24 \times 18$	6 Used in G3LLL RF Speech Processors	12 Also known as Guf－2S
G $57 \times 24 \times 21$		

VISA \＆MASTER CHARGE Accepted
Dealer Inquiries Welcomed
Florida residents add 4%（sales tax）
See our other ad page 43 this issue

Adverifisers check-off

. . for literature, in a hurry - we'll rush your name to the companies whose names you "check-off"

Place your check mark in the space petween name and number. Ex: Ham Radio 234

INDEX

AED 710	Kantronics *
Abletronics 770	Kenwood *
Alliance 700	Long's 468
Aluma $\quad 589$	Lunar - 577
Antek 733	MFJ 082
Astron $\quad 734$	Madison *
Atlas 198	Microwave Filter 637
Barrett *	J. W. Miller 745
Barry ${ }^{\text {- }}$	Milo 736
Bauman 017	Monroe 715
Budwig - 233	Oak Hill Acad. A.R.S. *
Bullet 328	P.C. Elec. 766
Cal Crystal _ 709	Palomar Eng. *
CoaxProbe __ 726	Port. Comm. Sup. 769
Communications	Callbook 100
Center - 534	Radio Elec. 767
Comm, Research 753	Radio Sys. Tech. 422
Comm. Spec. 330	Radio World *
Creative Elec. - 751	Ramsey 442
Crystal Banking $\quad 573$	Rockwell Collins 258
Curtis Electro 034	S.F A. R. S $\quad 640$
Cusheraft*	SST 375
D\&V Radio *	Sabtronics *
DCO 324	Howard W. Sams 104
DSI 656	Schober Organ 762
Dames Comm. 551	Securitron 461
Data Signal _ 270	Sherwood 435
Drake *	Slep 232
E.T.O. *	Space 107
Electrocom _ 663	Spec. Int - 108
Electronic Farm *	Sunset Elec. 768
Elec. Research Virginia *	Swan 111
Erickson *	TPL 240
Fox-Tango 657	Telrex_377
G \& C Comm. 754	Ten-Tec*
GLB 552	Texas RF Distr. 763
GL Enterprises*	The Communication
Giffer - 207	Center *
Gray 055	Thomas Comm. 730
Gregory * $\text { Group ill } 701$	Tri-Ex_116
Gull $\overline{635}$	VHF Eng. 121
Hal -	Van Gorden _ 737
Hal Tronix 254	Vanguard Labs _ 716
H. R. B. 150	Varian_043
Heath 060	Webster
Henry 062	Assoc. 423
Hy-Gain 064	Western *
Icom ${ }^{\text {* }}$	Whitehouse*
Integ. Circuits 518	Willcomp 764
Int. Crystal 066	Wilson 123
Jameco 333	Yaesu _ 127
Jan \qquad 067	Faesu - 127

-Please contact this advertiser directly. Limit 15 inquiries per request.

April, 1979
Please use before May 31, 1979

Tear off and mail to
HAM RADIO MAGAZINE - "check off"
Greenville, N. H. 03048
NAME.

CALL
STREET

CITY .
STATE.

MADISON APRIL SHOWERS

NOW, LIST THE EQUIPMENT YOU WANT IN THE SPACES PROVIDED BELOW, CUT OUT THIS AD, AND SEND IT TO US WITH YOUR NAME, ADDRESS AND TELEPHONE NUMBER. WE WILL WRITE OR CALL \square (CHECK ONE) YOU BACK AS SOON AS POSSIble with the madison QUOTE.
(HINT: DON'T GO BELOW OUR COST).
WE HAVE AN IN-DEPTH STOCK AND LARGE INVENTORY OF MAJOR LINES AND ACCESSORIES

TERMS: ALL PRICES FOB HOUSTON PRICES SUBJECT TO CHANGE WITHOUT NOTICE ALL ITEMS GUARANTEED SOME ITEMS SUBJECT TO PRIOR SALE SEND LETTERHEAD FOR AMATEUR DEALER'S PRICE LIST. TEXAS RESIDENTS ADD 6\% TAX. PLEASE ADD POSTAGE ESTIMATE.
MADISON ELECTRONICS SUPPLY, INC.

1508-D McKINNEY HOUSTON, TEXAS 77002 713/658-0268 NITES 713/497-5683

Advertisers ${ }^{\mathrm{N}} \mathrm{N}$ dex

AED Electronics
 116

Abletronics.
Alliance Mfg . Compamy
Aluma Tower Co.
Antek, Inc.
Astron Corporation.
Atlas Radio
Barrett Electronics
Barry Electronics
R.H. Baurnan Sales Co

Budwig Mig. Co.
Bullet
Cal Crystal Lab, Inc
Communications Center
Communication Research, Inc.
Communications Specialists.
Creative Electronics
Crystal Banking Service
Curtis Electro Devices.
Cushcraft
G V Radio Parts
DCO, Inc.
DSI Instruments.
Dames Communications Systems
Data Signal, tnc.
Drake Co., R.L.
Ehrhorn Technological Operations
Electrocom Industries.
The Electronic Farm .
Erickson Communications
Fox-Tango Corp.
G C Communications.
GLB
GL. Enterprises
Gilfer Associates
Gray Electronics
Gregory Electronics
Group III Sales Company
Guil Electronics.
Hal Communications Corp.
Hal-Tronix
Ham Radio's Bookstore
Heath Company.
Henry Radio Stores
Hy-Gain Electronics
lcom.
Integrated Circuits Unlimited
International Crystal
Jameco Electronics
Jan Crystals.
Jones, Marlin P. G Assoc.
Kantronics
Trio-Kenwood Communications, Inc. 7.60,6
Long's Electronics
Lunar Electronics
MFJ Enterprises
Madison Electronic Supply 43, 52, 94
Microwave Filter, Inc.,
Milo Associates
Milo Associates
Monroe Electronics, Inc.
Oak Hill Acaderny Amateur Radio Session
P.C. Electronics

Palomar Engineers
Portable Communications Supply
Radio Amateur Callbook
Radio Electronics
Radio Systems Technology, Inc
Radio World
Ramsey Electronics
Rockwell International, Collins Division
S.F Amateur Radio Service

SST Electronics.
Sabtronics International, Inc
Howard W. Sams \& Co. Inc
Schober Organ Corp.
Securitron
Sherwood Engineering
Slep Electronics
Space Electronics
Spectrum International
Sunset Electronics
Swan Electronics .
TPL Communications
Telrex Laboratories . .
Texas RF Distributors
The Communication Center
Thomas Communications
Tri-Ex Tower Corporation
VHF Engineering, Div, of Brownian
Van Gorden Engineering
Vanguard Labs

Webster Associates
Western Electronics
Whitehouse, G.R. G Co,
Willcomp, Inc.
Wilson Electronics
Yaesu Electronics Corp. 96
98 31 31
90 102 98
114

WHY WISH YOU'D BOUCHT ALPHA?

ISEOMFHINGELEE"JUSAG GOOD?"

New ALPHA owners often tell us, "I wish l'd saved my time and money and bought an ALPHA in the first place." Why not benefit from their experiences? Compare first!

TRY TO GET ANY OTHER MANUFACTURER TO TELL YOU - IN WRITING - THAT IT'S SAFE TO OPERATE HIS DESK TOP LINEAR AT A FULL D-C KILOWATT . . . SAY FOR 24 HOURS KEY-DOWN. OR, ASK HIM FOR A FULL YEAR WRITTEN WARRANTY. LOTS OF LUCK!

YOUR NEW ALPHA WILL HAPPILY AND COOLY RUN THAT KILOWATT KEY-DOWN . . . FOR 24 DAYS IF YOU WISH. AND YOU'LL BE PROTECTED BY ETO'S UNMATCHED WARRANTY FOR TWO YEARS. WE PUT IT IN WRITING ALL THE TIME. IT'S THE WAY WE BUILD AND WARRANT EVERY ALPHA!

The new ALPHA's are the best we've ever built. Nothing else even approaches an ALPHA's combination of power, convenience, quality, and owner protection. The ETOIALPHA two year limited warranty offers you eight times as much protection as the industrystandard 90 day warranty.

The new ALPHA $374 A$ adds NO-TUNE-UP operation to all the other traditional ALPHA qualities and capabilities. You can hop instantly from one HF band to another, with full maximum legal power and with little or no amplifier tune-up at all! (If new amateur bands are added, you can manually adjust your ALPHA to work them, too.)

In 1974 the original ALPHA 374 set a standard of high power convenience that has remained unmatched since. Despite its small size, not even one '374 owner ever burned out a power transformer. Impressive? The new '374A has an even huskier power supply. And it has ETO's ducted-air system with acoustically-isolated centrifugal blower to insure cool, whisper-quiet operation.

Before you get serious about any other brand of linear. compare its convenience and quality. its transformer heft. its cooling system efficiency and noise level - and its warranty - with the ALPHA's. Be sure to ask around about its reputation.

Call or write for detailed literature and thoroughly check out all the great new ALPHA's ... so you don't make a mistake.

EHRHORN TECHNOLOGICAL OPERATIONS, INC
BOX 708, CAÑON CITY, CO 81212 (303) 275-1613

MoBile Values FROM LONG'S 1-800-633-3410

KENWOOD TR-7625 25 watt 2m transceiver
Featuring memory channel, mode switch for simplex or switching transmit freq up or down, full 4 MHz coverage. 800 channels. 5 kHz offset switch. MHz selector switch. LED, unlock indicator 425.00 Call for quote

ICOM IC-211 2m transceiver

- 144 to 148 MHz coverage - Modes SSB. CW FM • LSI synthesizer PLL - 4-digit LED readout - Puise-type noise blanker - VOX w/adjustable gain - SWR bridge - CW monitor - Automatic power control - AC/DC power supplies - Antenna impedance 50 ohms unbalanced - TX output: 10W PEP 899.00 Call tor quote.

YAESU

CPU-2500RK

2m FM transceiver

800 PLL channels, auto scan over entire 2 m band. 4 memories. tone burst, $3 / 25$ watts, fixed $\pm 600 \mathrm{KHz}$ programmable offsets, 13.8 VDC at 8 amps continuous. Comes with keyboard mic for remote input, scanning control, aux. repeater split. and 2 tone input for auto patch or control link.
585.00 Call tor quote

TUCH COM 1215
encoding mic
500 ohm low impedance mic, needing no battery or modification to use with the ICOM 22S, 245, 211, 215, and 280 .
49.00 Call for yours today!

YAESU FT-227RA
The "Memorizer" transceiver
One knob channel selection for 800 channels. frequency $144-148 \mathrm{MHz}, 4$ digit LED readout, fully synthesized frequency control. selectable 10 watt $\mathrm{H}_{1} / 1$ watt Low output. 4 memories, touch control on mic for scanning. scan selectable for clear or busy channels
399.00 Call tor quote

CUSHCRAFT AMS-147
FM mobile 2 m mag mount antenna
A wave length antenna with 3 dBi gain. low SWR operation over 146-148 MHz FM band Move center treq $=15 \mathrm{MHz}$ Matched to 50 ohms. Built in connector takes PL-259
34.95 Call for yours today

KENWOOD TS-700SP all mode 2 m transceiver
Covers the entire 2 meter band The eatures are SSB CW FM. AM and sem: break-in CW Also side tone monitor digital treq readout, recerver preamp and 600 KHz repeater offset op (144.5 $145.5 \mathrm{~Hz}) 10$ watts RF output. AC/DC pow supply
799.00 Call for quote

ICOM IC-280 remotable 2m FM mobile
Frequency $14390-14811 \mathrm{MHz}$ * Power 10 watts Hi, 1 watt adj Low - Power requirements 138 VDC at 25 amps . Main PLL control head may be detached and remotely mounted - With microprocessor, stores 3 trequencies \bullet Easy to read LED's
480.00 Call for quote

nsis

MAIL ORDERS. PO BOX 11347 BIRMINGHAM. AL 35202 - STREET ADDRESS 28087 TH AVENUE SOUTH BIRMINGHAM. ALABAMA 35233
Remember, you can Call Toll Free: 1-800-633-3410 in the U.S.A. or call 1-800-292-8668 in Alabama for our low price quote. Store hours: 9:00 AM til 5:30 PM, Monday thru Friday.

ALL NEW
 FT-101ZD
 HIGH-PERFORMANCE HF TRANSCEIVER

Today's technology, backed by a proud tradition, is yours to enjoy in the all-new FT-101ZD transceiver from YAESU. A host of new features are teamed with the FT-101 heritage to bring you a top-dollar value. See your dealer today for a "hands on" demonstration of the performance-packed FT-101ZD.

TRANSMITTER

PA Input Power:
180 watts DC
Carrier Suppression:
Better than 40 dB
Unwanted Sideband Suppression:
Better than 40 dB @ $1000 \mathrm{~Hz}, 14 \mathrm{MHz}$
Spurious Radiation:
Better than 40 dB below rated output Third Order Distortion Products:
Better than - 31 dB
Transmitter Frequency Response:
$300-2700 \mathrm{~Hz}(-6 \mathrm{~dB})$
Stability:
Less than 300 Hz in first 30 minutes after 10 min . warmup: less than 100 Hz after 30 minutes over any 30 min . period
Negative Feedback: $6 \mathrm{~dB} @ 14 \mathrm{MHz}$ Antenna Output Impedance:
50-75 ohms, unbalanced

SPECIFICATIONS

GENERAL
Frequency Coverage:
Amateur bands from $1.8-29.9 \mathrm{MHz}$, plus
WWV/JJY (receive only)
Operating Modes:
LSB, USB, CW
Power Requirements:
100/110/117/200/220/234 volts AC,
$50 / 60 \mathrm{~Hz} ; 13.5$ volts DC (with optional DC-DC converter)
Power Consumption:
AC 117V: 75 VA receive (65 VA HEATER OFF) 285 VA transmit; DC 13.5V: 5.5 amps receive (1.1 amps HEATER OFF), 21 amps transmit Size:
$345(\mathrm{~W}) \times 157(\mathrm{H}) \times 326(\mathrm{D}) \mathrm{mm}$
Weight:
Approximately 15 kg .
COMPATIBLE WITH

RECEIVER

Sensitivity:
0.25 uV for S/N 10 dB

Selectivity:
2.4 KHz at 6 dB down, 4.0 KHz at 60 dB down (1.66 shape factor); Continuously variable between 300 and $2400 \mathrm{~Hz}(-6 \mathrm{~dB}$); CW (with optional CW filter installed): 600 Hz at 6 dB down, 1.2 KHz at 60 dB down ($2: 1$ shape factor) Image Rejection:
Better than 60 dB (160-15 meters); Better than 50 dB (10 meters)
IF Rejection:
Better than $70 \mathrm{~dB}(160,80,20-10 \mathrm{~m})$; Better than $60 \mathrm{~dB}(40 \mathrm{~m})$
Audio Output Impedance:
4-16 ohms
Audio Output Power:
3 watts @10\% THD (into 4 ohms)

Price And Specifications Subject To Change Without Notice Or Obligation

Two EIMAC 3-500Zs provide the punch in Kenwood's new amplifier.

Kenwood chooses EIMAC for trouble-free service.

The new heavy-duty Kenwood TL-922A linear amplifier provides 2 kW PEP input for SSB service and 1 kW input for CW, RTTY, and SSTV operation.

Kenwood chose two EIMAC 3-500Z high-mu triodes to do the job. With a total of 1000 watts anode dissipation, the two $3-500 \mathrm{Zs}$ coast along to provide troublefree, long-life service.

What's your

 pleasure?DX chasing? Traffic nets? RTTY? Rag chewing? SSTV? The EIMAC 3-500Z provides the power when you need it, with ample safety margin. Value wise amateurs always look for the EIMAC power tube for reliability. And equipment manufacturers, such as Kenwood, choose EIMAC for leadership in power tube technology.

For more information

Send for the EIMAC Quick Reference catalog covering the complete line of EIMAC products and for the 3-500 Z Data Sheet. Learn why the important manufacturers of communication equipment choose EIMAC. Varian, EIMAC Division, 301 Industrial Way, San Carlos, California 94070. Telephone (415) 592-1221. Or contact any of the more than 30 Varian Electron Device Group Sales Offices throughout the world.

Save almost $1 / 2$ off the newsstand on RADIO-ELECTRONICS, the magazine which keeps you up-to-date with the newest ideas and innovations in electronics. (If you already are a subscriber, do a friend a favor and pass this subscription card along to him.)

check offer preferred

1 Year-12 issues ONLY $\$ 7.77$
(Save $\$ 7.23$ on newsstand or $\$ 2.21$ off basic sub. price)Payment enclosedBill Me
Check here if this is a new subscription

Name

Company Name (If applicable)
Address
City \qquad State \qquad Zip important
Extra Postage: Canada $\$ 3.00$ HAM RADIO MAGAZINE per year, all other countries $\$ 5.00$ per year.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 597 BOULDER, COLORADO
POSTAGE WILL BE PAID BY ADDRESSEE

Radio-Electronics.

SUBSCRIPTION SERVICE
P.O. Box 2520

BOULDER, COLORADO 80321

For new ideas in electronics read RadioElectronics

[^0]: *PC boards for the receiver are available at nominal cost from the author. Send a self-addressed, stamped envelope for prices.

[^1]: tA copy of the printed circuit board layouts and parts placement diagrams can be obtained by sending a self-addressed, stamped envelope to ham radio, Greenville, New Hampshire 03048.

[^2]: * User instructions and complete coding forms may be obtained from ham radio by sending a self-addressed, stamped envelope

[^3]: 1. Newell A. Atwood, W3KTR, "Predicting Amateur Conditions," $Q S T$, April, 1947, page 21.
 2. Propagation Special, CQ, November, 1969.
 3. Victor R. Frank, WB6KAP, "Ionospheric Propagation," ham radio, July, 1968 through August, 1969.
 4. Ionospheric Predictions:

 Volume 1, The Estimation of Maximum Usable Frequencies from World Maps of MUF (Zero) F_{2}, MUF (4000) F_{2}, and MUF (2000) E, stock number 03000318, price $\$ 0.30$.

 Volume 2. Maximum Usable Frequencies MUF (Zero) F_{2}, MUF (4000) F_{2}, and MUF (2000) E for a Period of Minimum Solar Activity, $\mathrm{R}_{12}=10$, stock number 03000319, $\$ 3.00$.
 Volume 3, Maximum Usable Frequencies MUF (Zero) F_{2}, MUF (4000) F_{2}, and MUF (2000) E for a Period of Minimum Solar Activity, $\mathrm{R}_{12}=110$, stack number 03000320, \$3.00.

[^4]: Volume 4, Maximum Usable Frequencies MUF (Zero) F_{2}, MUF (4000) F_{2}, and MUF (2000) E, for a Period of Minimum Solar Activity, $R_{12}=160$, stock number 03000321, \$3.00.
 Write to the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.
 5. Jerry Hall, K1PLP, "High Frequency Estimations for the Radio Amateur,' OST, March, 1972, page 14.
 6. W.E. Marquart, W9CKT, "Calculations for Antenna Orientation," QST, July, 1945, page 46.
 7. Jerry Hall, K1PLP, "Bearing and Distance Calculations by Sleight of Hand," QST, August, 1973, page 24.
 8. Chester H. Brent, WB6GVE, "Aim Your Beam Right," 73, June, 1976, page 122.

[^5]: By Robert C. Cheek, W3VT, c/o Ebara-Infilco Co., Ltd., 1-1-1 Hitotsubashi, Chiyoda-ku, Tokyo 100, Japan

[^6]: * A complete set of circuit boards can be obtained from G. R. Whitehouse, For more information on the circuit boards and other components, write to G. R. Whitehouse and Company, Newbury Drive, Amherst, New Hampshire 03031.

[^7]: -This may seem contrary to the previous statements that U7 stops the clock after counting nine bits with zero data. Actually the START button causes the address register to advance by one bit at the start of the firs، bit interval as the count at U 7 goes from 9 to 0 . U7 then counts nine additional bits and stops the clock.

[^8]: *A parts kit will be available from G. R. Whitehouse, Newbury Drive, Amherst, New Hampshire 03031.

[^9]: 1. R. Sherwood, WBØJGP, G. Heidelman, K8RRH. "Present-Day Receivers - Some Problems and Cures," ham radio, December, 1977. page 10 .
 2. R. Sherwood, WB0JGP, G. Heidelman, K8RRH, "New Product Detector for the R-4C," ham radio, (ham notebook), October, 1978, page 94.
 3. R. Sherwood, WB0JGP, G. Heidelman, K8RRH, "New Product Detector for the R-4C," ham radio, (short circuits), February, 1979, page 94.
[^10]: 1. The ARRL Antenna Book, 12 th edition, 1970, page 33
[^11]: "The jammer is not comfortable with the Morse code."

[^12]: If coupon is missing. write Heath Company. Dept. 122-520 Benton Harbor. Michigan 49022

[^13]: *The steps in these modifications should be kept in a file with your equipment literature. Appropriate annotations to the steps will come in handy when you decide to restore your radio for resale. Editor.

