

- The first and most thoroughly field tested hand-held synthesized radio available. 800 channels in the palm of your hand.
- Simple to operate. (You don't need a degree in computer programming)
- Heavy duty battery pack allows more operating time between charges.
- External microphone capability
- The lowest price ever... $\$ 299.00$
- The S-1T (With touch tone pad installed)...\$339.00

The Tempo line also features a fine line of extremely compact UHF and VHF pocket receivers. They're low priced,
dependable, and available with CTCSS and 2-tone decoders.
The Tempo FMT-2 \& FMT-42 (UHF) provides excellent mobile communications and features a remote control head for hideaway mounting.
The Tempo FMH-42 (UHF) and the NEW FMH-12 and FMH-15 (VHF) micro hand held transceivers provide 6 channel capability, dependability plus many worthwhile features at a low price. FCC type accepted models also available.
Please call or write for complete information. Also available from Tempo dealers throughout the U.S. and abroad.

TOLL FREE ORDER MUMBER: 18001 421-6631
TOLL FREE OROER MUMBER: IEA

SUPPLIED ACCESSORIES

Telescoping whip antenna, ni-cad battery pack, charger.
OPTIONAL ACCESSORIES
12 Button touch tone pad (not installed): $\$ 39$ - 16 Button touch tone pad (not installed): \$48 - Tone burst generator: \$29.95 - CTCSS sub-audible tone control: $\$ 29.95$ - Rubber flex antenna: $\$ 8$ - Leather $\$ 29.95$ - Rubber fiex antenna: $\$ 8$ - Leather
holster: $\$ 16 \bullet$ Cigarette lighter plug mobile charging unit: \$6. Matching 30 watt output 13.8 VCD power amplifier (S30): $\$ 89$ - Matching 80 watt output power amplifier (S80): \$149

The Tempo S - 2

Tempo is first again. This time with a superior quality synthesized 220 MHz hand held transceiver. With an S-2 in your car or pocket you can use 220 MHz repeaters throughout the U.S. It offers all the advanced engineering, premium quality components and exciting features of the S-1. The S-2 offers 1000 channels in an extremely lightweight but rugged case.
If you're not on 220 this is the perfect way to get started. With the addition of the S25 (25W output) or S-75 (75W output) Tempo solid state amplifier it becomes a powerful mobile or base station. If you have a 220 MHz rig, the $\mathrm{S}-2$ will add tremendous versatility. Its low price includes an external microphone capability, heavy duty ni-cad battery pack, charger, and telescoping whip antenna. Price... $\$ 349.00$

With touch tone pad... $\$ 399.00$
TEMPO VHF \& UHF SOLID STATE POWER AMPLIFIERS
Boost your signal. . . give it the range and clarity of a high powered base station. VHF ($\mathbf{1 3 5}$ to $175 \mathbf{~ M H z}$)

Drive Power	Output	Model No.	Price
2W	130W	130 AO 2	
10W	130W	130 A 10	\$189
30W	130W	130A30	\$199
2W	80W	80A02	\$169
10W	80W	80A10	\$149
30W	80W	80A30	\$159
2W	50W	50402	\$129
2W	30W	30A02	\$ 89

UHF (400 to 512 MHz) models, lower power and FCC type accepted models also available.

Swan's Sticeess Story:
 100MX Power House The Field-Proven Rig the Whole World's Talking About.

235 Watt PEP and CW on ALL Bands

Price? You won't believe it! Just ask your dealer.

All solid state quality American construction, with epoxy glass boards to withstand the rugged mobile environment.

Look-to Swan for Quality Accessories . . . a ha-Service

NEW MFJ DELUXE Versa Tuner II

 $\$ 129.95$ buys you one of the world's finest 300 watt antenna tuners with features that only MFJ offers, like . . . dummy load, SWR, forward, reflected power meter, antenna switch, balun. Matches everything from 1.8 thru 30 MHz : coax, random wires, balanced lines.

This is MFJ's best Versa Tuner II. And one of the world's finest 300 watt (RF output) tuners. The MFJ. 949 Deluxe Versa Tuner II gives you a combination of quality. performance. and features that others can't touch at this price or any price.

PERFORMANCE: You can run your full transceiver power output - up to 300 watts RF out put - and match your transmitter to any feedline from 1.8 thru 30 MHz whether you have coax. balanced line or random wire.
FEATURES: A 200 watt 50 ohm dummy load lets you tune up for maximum performance.

A sensitive meter lets you read SWR with only 5 watts and both forward and reflected power in two ranges (300 and 30 watts).

A flexible antenna switch lets you select 2 coax lines direct or thru tuner, random wire or balanced line and dummy load.

A large efficient airwound inductor 3 inches in diameter gives you plenty of matching range and less losses for more watts out.

1:4 balun. 1000 volt capacitors. S0. 239 coax connectors. Binding post for balanced line, random wire, ground. $10 \times 3 \times 7$ inches.

QUALITY: Every single unit is tested for performance and inspected for quality. Solid American construction, quality components.

The MFJ. 949 carries a full one year uncondi tional guarantee.
Order from MFJ and try it - no obligation. If not delighted, return it within 30 days for a re

MFJ's Best Versa Tuner II . . . Solid American Quality

fund (less shipping).
To order, simply call us toll tree 800-647-1800 and charge it on your VISA or Master Charge or mail us a check or money order for $\$ 129.95$ plus $\$ 4.00$ for shipping/handling.

Don't wait any longer to tune out that SWR and enjoy solid OSO's. Order your Deluxe Versa Tuner II at no obligation, today

CALL TOLL FREE ... 800-647-1800

Call 601-323-5869 for technical information, order/repair status. Also call 601-323-5869 outside continental USA and in Mississippi.

MFJ ENTERPRISES, INC. BOX 494, MISSISSIPPI STATE, MS 39762

NEW MFJ Deluxe Keyer has Speed Readout

 Socket for external Curtis memory, random code generator, keyboard. Uses Curtis 8044 IC. Gives you dot-dash memories, weight, speed, volume, tone controls, speaker. Sends iambic, automatic, semi-automatic, manual. Reliable solid state keying, RF proof.

Speed Readout Meter lets you read to 50 WPM.
Socket for Curtis memory, random code generator, keyboard.

The new MFJ. 408 Deluxe Electronic Keyer II is based on the proven Curtis 8044 IC keyer chip. Speed readout meter lets you read sending speed to 50 WPM. Socket (optional cable with plug. $\$ 3.00$) lets you use external Curtis memory, random code generator, keyboard (available from Curtis Electro Devices)

Sends iambic, automatic, semi-automatic, manual. Use squeeze, single lever or straight key.
lambic operation with squeeze key. Dot-dash insertion. Semi-automatic "bug" operation provides automatic dots and manual dashes.

Dot-dash memory, self-completing dots and dashes, jam-proof spacing, instant start. RF proof.

Ultra-reliable solid-state keying: grid block, cathode, solid state transmitters ($-300 \mathrm{~V}, 10 \mathrm{ma}$. max $_{1}+300$ V, 100 ma . max).

All controls are on front panel: speed, weight, tone volume, function switch. Smooth linear speed control. 8 to 50 WPM.

Weight control adjusts dot-dash space ratio; makes your signal distinctive to penetrate QRM.
Tone control. Room filling volume. Built-in speaker. Ideal for classroom teaching.

Function switch selects off, on, semi-automatic/manual, tune. Tune keys transmitter for tuning.
Completely portable. Operates up to a year on
4 C -cells. 2.5 mm phone jack for external power (6 to 9 VDC). Optional AC adapter $\$ 7.95$.
Eggshell white, walnut sides. $8 \times 2 \times 6$ inches
Stereo phone jack for key, phono jack outputs. OPTIONAL BENCHER IAMBIC PADDLE. Dot and dash pad-

dies have fully adjustable tension and spacing. Heavy base with non-slip rubber feet eliminates "walking." \$39.95.
Order from MFJ and try it - no obligation. If not delighted, return it within 30 days for refund (less shipping). One year unconditional guarantee.
Order today. Call toll free 800-647-1800. Charge VISA, MC or mail check, money order for $\$ 79.95$ plus $\$ 3.00$ shipping for MFJ- 408 keyer and/or $\$ 39.95$ plus $\$ 3.00$ shipping for Bencher paddle.
CALL TOLL FBEE . . . 800-647-1800 For technical information, order/repair status, in Miss., outside continental USA, call 601-323-5869.

[^0]
ham radio magazine

contents

12 low-cost satellite tracking computer Richard A. Cleis, WB6POU

18 transmission line transformers
George M. W. Badger, W6TC

30 microphones and simple speech processing
George A. Wilson, W10LP

36 logarithmic detector for sweep generators
Richard M. Moroney, W1ERW

40 75-meter log periodic antenna
George E. Smith, W4AEO
Paul A. Scholz, W6PYK

46 surplus bandpass cavity filters
William Tucker, W4FXE

50 RTTY tuning indicator
Loren F. Jacobsen, WAgELA

54 capacitance meter
Thomas Varmecky, WA3CPH

58 novel product detector for double sideband signals
H. F. Priebe, Jr., K4UD

4 a second look	6 letters
94	advertisers index
81	presstop
81	flea market
76	94 reader service
64 ham mart notebook	70 short circuits

Just as we were about to go to press with this issue, the FCC adopted rules permitting the use of ASCII (American Standard Code for Information Interchange) on the Amateur bands; at press time the FCC had not yet set a date when Amateur ASCII transmissions would be permitted, but early March was suggested, so it's quite likely that you will hear some ASCII signals on the ham bands by the time you receive this issue of the magazine. If you don't have a terminal unit, however, you probably won't be able to tell any difference from the Baudot code used until now for Amateur RTTY! ASCII is more versatile than Baudot, and is capable of handling $21 / 2$ times more individual characters (or unified commands), so it's much more powerful; it will be especially popular with Amateurs who are also computer hobbyists and wish to link their computers and exchange programs over the air.

For those readers who are not familiar with ASCII, it is a standard code used extensively in digital data transmission, and is commonly used when computers "talk" to each other. RTTY and computer enthusiasts have been trying for some time to obtain ASCII authorization for use not only in conventional communications, but also for exchanging digital data, computer control of repeaters and remote stations, and even for exchanging digitized voice and video on the highfrequency bands.

The new FCC rules permit the use of ASCII transmissions (carrier-shift keying, F1) on the same frequencies presently authorized for RTTY between 3500 kHz and 21.25 MHz at a maximum rate of 300 baud. On the RTTY frequencies between 28 and 220 MHz transmission rates up to 1200 baud may be used with carrier-shift keying (F1), AFSK (F2), or amplitude tone-modulated keying (A2); above 420 MHz these modes may be used with rates up to 19.6 kilobaud.

There is also considerable interest in packet radio, a digital mode used since 1978 by Canadian Amateurs on the $220-\mathrm{MHz}$ band. Packet radio is basically a time-shared use of the same frequency channel that results in a tremendous savings of spectrum. Look at it this way: it might take you 20 seconds to type a line on your terminal - and only a few thousandths of a second for the computer to process that line and enter it into storage. If the line is not transmitted character by character as you typed it but is sent as a short, high-speed burst at the end of each line, you have packet radio.

At the keying rates permitted on 80 through 15 meters, the typical transmission time for a oneline packet would be something less than 2 seconds, a 10:1 savings over the time required to enter the line into the terminal in the first place. Therefore, up to 10 different stations could communicate on the same packet channel; the significantly higher keying rates permitted at vhf would permit 100 stations or more on the same frequency! You'll be hearing a lot more about packet radio in the months ahead, but in the meantime you may want to read VE2BEN's excellent "Introduction to Packet Radio" which appeared in the June, 1979, issue of ham radio.

FM...SSB...CW\%.. Tom Does it All

ICOM IC-260A

Enjoy VHF mobile at its best. Sideband, FM or CW, the ICOM IC-260A does it all. The ICOM IC-260A contains all the features a mobile operator would want in a compact 2 meter mobile package with FM SSB, CW operation. Features customers ask for most including:
$\square 3$ memories built in (quick access to your favorite frequencies).
\square Memory scan - automatically stops on an active frequency programmed in the memories
\square Programmable band scan - scan the whole band, or any portion of it you desire (adjustable scanning speed).
\square Squelch on SSB, the 260A will automatically and silently scan the SSB portion of the band seeking out the SSB activity on 2.
$\square 600 \mathrm{kc}$ repeater offset built in. Easy repeater operation on the FM portion of the band.
\square Variable repeater split - with the 2 built in VFOs, it's possible to work the odd splits plus accommodare furure repeater band plan changes.
\square Multimode operation - USB, LSB, CW, and FM. Great for getting into OSCAR, plus enjoying SSB rag chewing as well as repeater operation (including the new subband).
\square With optional $117 / 12 \mathrm{~V}$ supply, the 260A makes a fiexible functional bose for SSB/OSCAR/FM operation
The RF amplifier and first mixer circuits using FE1s, and other circuits provide excellent Cross Modulation and Intermodulation characteristics. The IC-260A has excellent sensitivity demanded especially for mobile operation, high stability, and with Crystal Filters having high shape factors, exceptional selectivity.

The transmitter uses a balanced mixer in a single conversion system, a band-pass filter and a highperformance low-pass filter. This system provides distortion-free signals with a minimum spurious radiation level.

ICOM AMERICA, INCORPORATED
Sales Service Centers located at:

2112 116th Avenue NE Bellevue, W/A 98004
Phone (206) 454-8155

3331 Towerwood Dr., Suite 307 Dallas, TX 75234
Phone (214) 620-2780

ICOM INFORMATION SERVICE

2112 116th Ave, N.E.
Bellevue, WA 98004
Please send me: \square IC-260A specifications sheet: \square full color ICOM Product Line Catalog: \square List of Aurhorized ICOM Dealers.

NAME \qquad CALL

ADDRESS
CTY \qquad STATE \qquad $21 P$

Hellschreiber

Dear HR:

The December issue of ham radio describes the Hellschreiber typing keyboard machine, and the article mentioned that the shortest pulses are 8.16 ms , producing a speed of 122.5 baud and a minimum bandwidth of 61 Hz .

Unfortunately for the system, the abrupt rise and fall times involved are quite broad. A similar system that has been on 14140 kHz from the Hsinhua News Agency in Peking for years (but now possibly removed at the request of the Intruder Match), is more like 3 or 4 kHz wide at a distance 6241 miles; it was hard to live with. There continue to be other signals here in the mornings on 3577 , 3595 , and 3845 kHz just before the 80 -meter band closes to China.
The system I heard during WW2 was used by German fighter aircraft in interception, and directed from ground by this equipment. That was not so bad because vhf was used, and at some distance in frequency from other communications circuits. I think that it is a mistake to encourage the use of this system of 14 emission, which is not authorized by FCC Regulations, Section 97.61, except on frequencies of 51.1 MHz and higher.

My tape of the Hsinhua transmissions was printed by G5XB, who
thought that it was difficult for Chinese to read, and shows what would be expected when there may be as many as thirty or so strokes in one character. Obviously, that requires rather good facsimile definition or it might not be possible to read.

E. H. Conklin, K6KA
 La Canada, California

Dear HR:

The December issue of your magazine arrived this morning and as usual I sat down to skim it - saving the serious stuff for later.

I was surprised at the Hellschreiber article. You see, I have one of these machines, sitting above the rafters of the shack, waiting until someone came up with the other one.

That last remark is deliberate: It relates to the time of WWII when I was working with the Signal Service Section of the Signal Corps in Liege, Belgium. We were located in rear of the 15th Army; they were sending back captured German equipment to our depot, and we had no orders how to process it. We were very busy reworking our own equipment. I was acting as senior officer in charge of salvage and incoming equipment.

Among the items coming in on the rail cars was this type of equipment. I intercepted three of these Hellschreibers and shipped two home complete and one in parts less the case. Luckily, the case size just fit the maximum package size that could be shipped home. I was also depot security officer, and as such knew what could be shipped and what couldn't. Numerous articles were shipped at my personal expense to the Signal Corps Laboratories at Fort Monmouth, where I had spent several weeks in 1942.
Thanks to the poor work of the Army mail, and over-emphasis on what could, and could not, be received within a country still at war, only one of the Hellschreibers arrived at my father's home address. The other and the parts were not re-
ceived, but I did receive some papers telling me that it was illegal to ship this stuff (our orders stated that souvenirs could be shipped only if certain papers were put on the outside of the package).

To say I was disgusted and angry is to put it mildly, but having only one Hellschreiber and no spare parts, I simply put it away until I could find use for it. I arrived home in December, 1945, and with a new wife and setting up a home and finding work, it was forgotten for many months.

Therefore, there is at least another of these machines in the United States. It will be marked inside with my call W6DKZ. The parts were not identified, as I thought no one would be interested in them. I am still looking for the missing machine, and would like to get in contact with anyone who might be saving it, as I intended it for a museum. If it turns up, I'll try out the two between some friends here in Santa Clara Valley.

The Hellschreiber machines are all that the writer says they are, although I did not know they would work well through QRM. They were made to work on wire lines as simplex or duplex, with isolating coils, and since they employ a tone and amplifier, they don't interfere with speech on the lines.

Henry B. Plant, W6DKZ San Jose, California

Apparently the German Wehrmacht was not alone in their use of the Hellschreiber system during World War II. Ed King, WA8PFB, of Louisburg, West Virginia, reports that he has a U.S. Signal Corps BC-918B which has a similar ink pad and worm gear mechanism for "writing" on paper tape, but a photo-cell is used for the input. Ed's BC-918B has a 20 pin plug so it's part of a larger system, but Ed has been unable to locate the matching unit, or even to find a technical manual. Does anyone have any more technical details on this equipment or any ideas how it was used, or know where there might be a technical manual?

W1HR

with aHAL
 ST-6000 Demodulator \$659.00

Demodulator.

Both the ST-6000 \& ST-5000 offer these features:
Internal Loop Supply • Internal AFSK Generator with CWID Tone • Internal Tuning Indicator \bullet Autostart Motor Control • Line/Local Loop Control • TTY Machine Compatibility • RS-232 type DATA Interface • "High" or "Low" Tones - 120/240, 50/60 Hz Power • Normal/ . Reverse Switch • 170 and 850 Shift - Active Discriminator • Metal Cabinets for RF Shielding.
Special Features of the ST-6000: Mark-Hold • Antispace • Automatic Threshold Control (ATC) • Decision Threshold Hysteresis (DTH) • Keyboard Operated Switch (KOS) • MIL-188 and CMOS Data Interface • Optional Oscilloscope Tuning Indicator \bullet Crystal Controlled AFSK Tones • Active Input Bandpass Filter • Pre-Limiter AGC - Three Shifts (170-425-850)

[^1]
prestoop

RULES PERMITTING ASCII for U.S. Amateurs were adopted at an FCC Agenda meeting in late January, with its use on Amateur bands likely as soon as early March. In adopting the third Report and Order on Docket 20777, the Commission specified that Amateur ASCII transmissions must conform to ANSI Standard X3.4-1968, with F1 (only) used on frequencies presently authorized for RTTY use between 3.5 and 21.25 MHz at a maximum rate of 300 baud; on RTTY frequencies between 28 and $225 \mathrm{MHz}, \mathrm{F} 1, \mathrm{~F} 2$, and A2 may be used, at a transmission rate up to 1200 baud; and above $420 \mathrm{MHz}, \mathrm{F} 1, \mathrm{~F} 2$, and A2 are all permitted, with a baud rate up to 19.6 kilobaud.

Under The New Rule Section $97.69(\mathrm{~b})$, ASCII will be permitted not only for conventional communications but also for such purposes as computer-to-computer communications, computer controls of repeaters and other Amateur stations, and packet communications. No changes were made in present bandwidth limitations, however, and further action on Docket 20777 appears unlikely at this time.

RULES FOR AN AMATEUR RADIO SATELLITE Service have been proposed by the Commission as a Notice of Proposed Rule Making on Docket 19852, which dates back to 1973. Under the NPRM a new Subpart H would be added to Part 97 to cover the new Amateur Satellite Service (AMSS), which would be open to all Amateurs subject to the restrictions of their licenses. "Space Operations," defined as "Space-to-Earth Amateur Radio Communications from a station which is beyond...a major portion of the Earth's atmosphere," would be limited to those Amateurs holding Extra Class licenses, however.

Other Provisions of the proposed AMSS rules would require capability for immediate shutdown of an Amateur station operating in space, but would permit stations in space to operate as repeaters and to operate without I.D. Bands proposed for the new AMSS are $7.0-7.1,14.0-14.25,21.0-21.45,28.0-29.7,144-146,435-438$, and $24000-24050 \mathrm{MHz}$. Detailed requirements for international coordination and registration are also included in the NPRM.

PHOTOCOPIES ARE NOW ADEQUATE substitutes for an Amateur's original license. The rules change, which was okayed by the FCC in early December, became effective December 21.
"NO PERMIT" RECIPROCAL operation by U.S. Amateurs in Canada and Canadian Amateurs in the U.S. went into effect on January 21st. The Department of Communications agreed with the FCC to make the rules relaxation effective on that date, so Amateurs of either country can operate as freely across the border as they do at home.

Novices And Techs will be able to operate under the new rules, but they'll be limited to the operating privileges they enjoy with their license class when operating in the United States.

RULES PROTECTING FCC MONITORING stations were announced in early January in a Report and Order on General Docket 78365 . Amateurs received considerable leeway in making their own determinations as to whether their operations would be likely to disrupt the monitoring stations, though a new section, 97.41(d), was added to the Amateur rules.

Specifically, The New Rules simply "advise" applicants for Amateur station licenses to "give consideration" to the possibility of such interference, and "suggest" prior consultation with the Commission "if the proposed station will be located within one mile" of the FCC's monitoring facilities.

Monitoring Stations to be protected are located at Allegan, Michigan; Anchorage; Belfast, Maine; Douglas, Arizona; Grand Island, Nebraska; Kingsville, Texas; Laurel, Maryland; Livermore, California; Powder Springs, Georgia; Sabana Seca, Puerto Rico; and Waipahu, Hawaii.

NOAA WEATHER BROADCASTS may not be picked up from VHF stations and rebroadcast over local or even by an individual Amateur station, despite some lingering confusion over this point of law. FCC rules - 97.61 (c) - specifically prohibit the retransmission of any broadcast picked up outside the allocated Amateur sub-bands. This ban also applies to other broadcast material such as WWV's time and propagation reports.

The Use of Autopatches for dialing local weather reports is not, despite recent published reports, illegal. Since these weather reports are not originated as "broadcasts," their transmission by Amateur stations is not a violation of the FCC rules.

75-METER BROADCAST STATIONS planned by the Canadian Broadcasting Corporation may be on the air by June, 1981; the 250 kW transmitters will be used in CBC's arctic service with two stations planned for New Brunswick. Amateurs in the Northeast United States will be most susceptible to interference, but it is not expected to be severe.

W6GO, JAY O'BRIEN, was the one ACAR member we found we slighted in last month's list of contributors to Amateur Radio's success at WARC. His call was typoed as W6GD.
Sorry, Jay!

THE OLYMPIC EDGE

During the XIII Olympic Winter Games in Lake Placid, New York, a complete amateur radio network communicates to the world emergency and personal messages for participants in the games.

HF transceivers used by the Winter Olympic Radio Amateur Network (WORAN) at Olympic Village are Ten-Tec OMNI models loaned by Ten-Tec, Inc., Sevierville, TN 37862.

The OMNI all-HF-band coverage and 100% duty cycle offers SSB, CW, RTTY, TELETYPE, and SSTV capability directly from the Olympic Village. The elaborate network, staffed by nearly 200 amateur radio operators, is one of the most extensive in recent amateur radio history.

Ten-Tec is proud to help in this exciting amateur radio venture.

A fresh idea!

Our new crop of tone equipment is the freshest thing growing in the encoder/decoder field today. All tones are instantly programmable by setting a dip switch; no counter is required. Frequency accuracy is an astonishing $\pm .1 \mathrm{~Hz}$ over all temperature extremes. Multiple tone frequency operation is a snap since the dip switch may be remoted. Our SS- 32 encode only model is programmed for all 32 CTCSS tones or all test tones, touch-tones and burst-tones. And, of course, there's no need to mention our 1 day delivery and

TS-32 Encoder-Decoder

- Size: $1.25^{\prime \prime} \times 2.0^{\prime \prime}$ x $.40^{\prime \prime}$
- High-pass tone filter included that may be muted
- Meets all new RS-220-A specifications
- Available in all 32 EIA standard CTCSS tones

SS-32 Encoder

- Size: . $9^{\prime \prime}$ x $1.3^{\prime \prime}$ x $.40^{\prime \prime}$
- Available with either Group A or Group B tones

Frequencies Available:

Group A						
67.0 XZ	91.5 ZZ	118.8	2 B	156.7	5 A	
71.9 XA	94.8	ZA	123.0	3 Z	162.2	5 B
74.4 WA	97.4 ZB	127.3	3 A	167.9	6 Z	
77.0 XB	100.0	1 Z	131.8	3 B	173.86 A	
79.7 SP	103.5	1 A	136.5	4 Z	179.9	6 B
82.5 YZ	107.2 B	141.3 AA	186.2 Z			
85.4 YA	110.92 Z	146.24 B	192.8	7 A		
88.5 YB	114.8	2 A	151.4	5 Z	203.5 M 1	

- Frequency accuracy, $\pm .1 \mathrm{~Hz}$ maximum $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Frequencies to 250 Hz available on special order
- Continuous tone

Group B

TEST-TONES:	TOUCH-TONES:	BURST-TONES:				
600	697	1209	1600	1850	2150	2400
1000	770	1336	1650	1900	2200	2450
1500	852	1477	1700	1950	2250	2500
2175	941	1633	1750	2000	2300	2550
2805		1800	2100	2350		

- Frequency accuracy, $\pm 1 \mathrm{~Hz}$ maximum $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Tone length approximately 300 ms . May be lengthened, shortened or eliminated by changing value of resistor
Wired and tested: TS-32 \$59.95, SS-32 \$29.95

satellite computer for under \$150

The Hewlett-Packard HP-29C

 is put to work for OSCAR enthusiasts in computing orbital geometryThe availability of card-reading calculators, such as the Hewlett-Packard 67 and SR-52, has made it possible for satellite users to track OSCAR without so much as using a pencil and paper. Fine programs for both machines have been written and published, ${ }^{1}$ but there's one pitfall associated with the two systems - cost. For those who bought one of the $\$ 400$ gems for purposes other than satellite tracking, keying in the appropriate OSCAR program is certainly worth the effort. However, it's not likely that an Amateur Radio operator will spend that much money on a calculator for just satellite tracking, since an entire ground station needn't cost more than a few hundred dollars.

the calculator

A more realistically priced programmable calculator that can serve the OSCAR community as well as the geosynchronous-satellite enthusiasts is the Hew-lett-Packard Model HP-29C. Although the HP-29C doesn't have the luxury of a card reader, it does have continuous-memory capability, which, in my opinion, matches and in some instances outweighs the virtues of those card-readers that are dumbfounded when power is interrupted. The HP-29C may be purchased at college bookstores for as little as $\$ 135-$ a modest sum compared with the price of automatic keyers that send CO and little else! Even if purchased only for OSCAR purposes, the HP-29C's price is worth considering when you realize its full potential as an SWR calculator, dipole-length computer, or grocery-bill adder. Truly it's a good investment.

the program

Developing an OSCAR program that fits within the 98 -step memory limit of the HP-29C demanded a

By Richard Cleis, WB6POU, 438 South Havenside Avenue, Newbury Park, California 91320
fig. 1. Pertinent to the program is the coor-dinate-conversion feature of the HP-29C calculator. When solving a right triangle, given h and A, the P-R key yields a and b. Con-
 versely, given a and b, the R-P key yields h and A.
process far removed from the popular memory-gobbling Napier's Rule formulas of expensive calculators. My method requires no discrete trigonometric functions, but depends on the HP-29C's ability to perform rectangular-to-polar coordinate conversions and the reverse operation. The program does the following:

1. Calculates azimuth and elevation to satellite
2. Calculates slant range
3. Runs in real time
4. Displays real time
5. Can be set backward or forward any number of minutes
6. Can be set backward or forward any number of orbits
7. Can be set to start at any time
8. Works for any ground-station location
9. Uses only 11 seconds per calculation
10. Calculator can be turned off without losing track of OSCAR's position
11. Program can be used to find azimuth, elevation, and slant range to a prescribed synchronous satellite

The polar-rectangular ($\mathrm{P}-\mathrm{R}$) conversion key of the HP-29C is valuable because it yields the length of two sides of a right triangle when given the hypotenuse and the angle included in the hypotenuse and one side. The rectangular-polar (R-P) key does the operation in reverse (see fig. 1). Nearly every aspect of the program uses these two functions.

finding the rectangular coordinates of OSCAR

One portion of the program determines the movement of the satellite by incrementing the number of degrees that the satellite travels in its approximate circular orbit. Assume OSCAR travels arc distance T degrees from an arbitrary point as shown in fig. 2. After the program recalls T and the radius r, of the orbit, values s and d are calculated with the P-R func-
tion. Recalling the inclination of the satellite, and performing a P-R conversion in conjunction with s, yields z and v. The next portion of the program finds angle A and distance e through an R-P operation on v and d.

During the period that OSCAR takes to travel arc distance T, the earth will have rotated beneath the satellite. The x and y axes have thus rotated counterclockwise, as shown by the dotted line. The angle of rotation, R, is added to angle A, obtaining the system shown in fig. 3. Performing a $P-R$ conversion on e and the new angle, $A+R$ yields y and x, while z remains as calculated earlier.

What's been accomplished during the previous calculations is the assignment of the satellite to a threedimensional rectangular coordinate system. When the position of the tracking station is assigned to its rectangular coordinates on the same system as that of the satellite, the relative rectangular position of the satellite is determined by subtracting the corresponding x, y, and z values (fig. 4).

finding azimuth, elevation, and slant range

After the subtraction operations, the new x, y, and z values are used to set up the final coordinate system (fig. 5). Length g and angle B are calculated by converting z and x to their polar equivalents. The complement of the tracking station's latitude is then added to B, since we want to know the azimuth and elevation according to the earth's surface at the station rather than with reference to the x / y plane parallel to the equator. Next, a P-R conversion is performed on g and $B+(90$-latitude) to obtain t and u.

fig. 2. Geometry for determining satellite movement in its orbit. Values s and d are calculated with the calculator P-R function.

fig. 3. Accounting for earth rotation after the satellite has traveled arc distance T.

Azimuth is derived by an R-P operation on the u and the y value calculated earlier. Since distance v is also found during the previous step, elevation and slant range can be derived by performing an R-P conversion on t and v.

preparing the program

The first time the calculator is to be used for tracking a satellite, the program must be keyed in. Twelve data registers have to be filled. Since the HP-29C remembers when it's turned off, only half of the memories must be entered again so long as the station location is not altered. Registers 1 and 2 will change daily because they're the reference orbits' equatorial times and crossings respectively.
Four other registers (.1, .2, .3, and. 3) must be changed when you want to track a satellite other than the one for which the calculator is set up. In other words, if OSCAR 8's progression, inclination angle, orbit radius, and arc rate are stored in the data registers, they must be changed to represent OSCAR 7's parameters.

tracking a satellite

Suppose the calculator is set for tracking OSCAR 7 and you want to work it on December 20. The first step is to look up the reference node data for that date. Turn on your HP-29C, punch in the time in H.MS format. Store the data in register 1. Next key in the longitude. Store it in register 2.

You must now guess the number of orbits that will pass before acquisition will occur. If you think three orbits will suffice, 3 should be entered and GSB 1 depressed (see program, fig. 6). The calculator will then display the time at which the satellite crosses the equator after three passes beyond the reference node.

Press the $\mathbf{x}-\mathbf{y}$ key to display the crossing longitude relative to the station. If the crossing is 15 degrees east of the station, the displayed result is -15 , since the difference between station longitude and satellite longitude decreases on successive orbits.
If the node is 15 degrees west of the station, +15 will be displayed, because successive nodes are further away from the station.

You must guess with the GSB-1 function until you find an appropriate node that will produce an orbit likely to pass through the station window. Nodes between -45 and +25 are likely candidates for stations with a latitude near that of Los Angeles.

If you want to begin tracking the satellite from a nodal point, wait until the calculated crossing time arrives, then push GSB 2. The HP-29C does about 10 seconds of number crunching, then displays the time for about a second, displays the slant range for a second, displays the azimuth for a second, displays the elevation for a second, then repeats the cycle until 1 minute is used up. During each minute, the time is incremented, so that the calculator is tracking in real time.

The ascending nodes of OSCAR 7 are often too far south for North-American stations to see, and they may occur during the middle of the window for southern Florida stations. Also, the descending passes aren't visible until the satellite travels up the back side of the earth - a 40 -minute wait.

Getting to the point, few operators will desire to begin tracking the satellite from the time it crosses the equator. The program is equipped with solutions to this problem.

notes on calculator subroutines

Two subroutines permit the track to be started at

fig. 4. The relative rectangular position of the satellite is determined by subtracting the corresponding x, y, and z values.

fig. 5. Geometry for determining final coordinates of the satellite (azimuth, elevation, and slant range).
any time and enable the time of acquisition to be easily found. Keying in any number of minutes and pressing GSB 3 will advance the time to the prescribed value. If a negative number is used the time will be back-tracked. This subroutine is similar to GSB 2; so

User Instruetions

after GSB 3 is called, the time will be altered, then the program will run in real time as if GSB 2 had been used.
The other time-altering subroutine is GSB 4: By entering any time in H.MS format, then pressing GSB 4, the program will begin tracking at the prescribed time.
To enhance your search for the acquisition time, the satellite elevation will be displayed as a negative number if it's below the horizon. If you make a guess that produces an elevation of, say, -45 degrees, then you can immediately assume that many minutes must be added. If an elevation of -3 degrees is discovered, then acquisition is only a few minutes away.
To realize the usefulness of the features offered in this program, it must be stressed that the program is time based. The only register that changes is the time register, so the calculator may be turned off at any time during any subroutine without losing track of the satellite's position. If the calculator is turned off, turning it on and pressing GSB 2 will start it tracking at the time it was last calculating. The other subroutines will also function as if the calculator were never turned off.
It's also important to note that the subroutine GSB 1 is independent of the number of times that any other subroutines are used. In other words, whatever

fig. 6. User instructions for the satellite-tracking program using the HP-29C calculator.

with exclusive Dual-Speed Control!

For antennas up to 10.7 sq . ft . of wind load area. Mast support bracket design permits easy centering and offers a positive drive no-slip option. Automatic brake action cushions stops to reduce inertia stresses. Unique control unit features DUAL-SPEED rotation with one five-position switch. SPECIFICATIONS: Max. wind load bending moment-10,000 in.-Ibs. (side-thrust overturning); Starting torque -400 in . Ibs.; Hardened steel drive gears; Bearings $-100-3 / 8^{\prime \prime}$ diameter (hardened); Meter - D'Arsonval, taut band (backlighted). There's much, much more - so get the whole story!

the calculator is doing (on or off), if a number, n, is keyed in and GSB 1 is depressed, the time and longitude of the nth node before or after the reference node will be calculated. Analogous independence rules can be applied to the other subroutines.

program versatility

Suppose the satellite's fourth orbit after the reference node has just been tracked, and the time is 0300 . You want to work the following pass, so you can choose one of three alternatives:

1. Enter $\mathbf{5}$ then GSB 1

2. Enter $\mathbf{1 0 0}$ then GSB $\mathbf{3}$

3. Enter $\mathbf{4 . 4 0}$ then GSB 4

The first choice calculates the node of the next orbit. From that point you may start looking for the acquisition time with the other subroutines. The second choice adds 100 minutes to the time; an orbit lasts about 100 minutes, so the program is positioned somewhere near the window of the following orbit. From inside the window, it's easy to find the acquisition time. The third choice is almost exactly the same as the second, except you must mentally add the 1 hour, 40 -minute orbit period to the time (0300).

synchronous satellites

Finding azimuth, elevation, and slant range of a synchronous satellite requires entering a zero, the difference between the satellite and station longitudes, then the radius of a synchronous orbit. After pressing GSB 5, the calculator will display the time of the last satellite orbit (meaningless for this purpose), then it will display slant range, elevation, and azimuth in that order.

credibility

The methods used in this program should work for any near-circular orbit and any ground-station location. I've successfully used the program for OSCAR 7 and OSCAR 8 on ascending and descending passes. Although I've never worked with the Russian satellites, I feel confident that the program will work as well for them.

reference

1. Thomas Prewitt, W9IJ, "Track Oscar in Real Time," 73, November, 1977, page 64.
bibliography
Thompson, Jr., Peter, "A General Technique for Satellite Tracking," QST, November, 1975, page 29.
Burke, Art, W6UIX, "Track Oscar with Your SR-52," 73, November, 1977. page 58.
ham radio

Drake R7 Synthesized General Coverage Receiver

Full 0-30 MHz coverage, with no gaps or range crystals required. Continuous tuning from vif thru hf. State of the art a-m, ssb, RTTY, and cw. Transceives with Drake TR7.

* Complete transceive/separate functions for use with TR7.
\star Multi-function antenna selector/50 ohm splitter for dual receive with the TR7.
- 100% solid state broadband design, synthesized with PTO.
- Covers range 0 to 30 MHz . Both digital and analog readout.
- Special front-end circuitry with high level mixer and 48 MHz 1st i-f.
- Complete front-end bandpass filters operate from hf thru vif.
- 10 dB pushbutton-controlled broadband preamp for ranges above 1.5 MHz .
- Various front panel switch-selected optional selectivity filters.
- Low distortion "synchro-phase" a-m detector improves international SW.
- Tunable i-f notch filter reduces heterodyne interference.
- Full electronic passband tuning system.
- Digital readout may be used as a 150 MHz counter.
- Built-in power supply: 100, 120, 200, 240 V -ac, or 13.8 V -dc.
- Built-in speaker, or external Drake MS7 speaker may be used.
- Built-in 25 kHz calibrator for calibration of analog dial.
- Low level audio output for tape recorder.
- Select up to eight crystal-controlled fixed channels. (With Aux7).
- Optional Drake NB7A Noise Blanker available.

Accessories available for use with Drake R7:

- MS7 Speaker • SL300 Cw Filter, 300 Hz • SL500 Cw Filter, 500 Hz • SL1800 Ssb/RTTY Filter, 1800 Hz • SL6000 A-m Filter, 6.0 kHz • SL400 A-m Filter, 4.0 $\mathrm{kHz} \bullet$ NB7A Noise Blanker • Aux7 Range Program/Fixed-Frequency Board - R7/TR7 Interface Cable Kit • R7 Service/Schematic Book.

Drake 7-Line Accessories

Drake L7
Continuous Duty 160-10 Meters
2kW Linear Amplifier

Temperature controlled for "key-down" operation covers any WARC expanded or new hf amateur bands, MARS, etc.

- 2 kW PEP, 1 kW cw , RTTY, SSTV full rated continuous duty - Covers 160-10* meter amateur band, plus future hf band WARC expansions and MARS, embassy, government, etc. - The Drake L7 includes a pair of rugged Eimac 3-500 Z triodes. • Accurate built-in rf wattmeter. - Temperature controlled two speed high volume fan. - Adjustable exciter agc feedback. - By-pass switching. \bullet Bandpass tuned input circuitry. $\bullet 120 / 240 \mathrm{~V}$ ac, $50 / 60 \mathrm{~Hz}$.

2 kW Matching Network

Manages rf radiation by impedance match to antenna, measurement of rf power and VSWR, reduction of harmonic radiation, and antenna selection.

- 160 thru 10 meters frequency coverage - plus MARS, future expansions, etc. - Matches antennas fed with coax, balanced line, or random wire. (Use Drake Balun for balanced line.)
- Antenna by-pass switching also selects various antennas.
- Extra harmonic reduction to help fight TVI - "pi-network" low-pass filter type circuitry is a Drake exclusive. • Accurate rf wattmeter/VSWR bridge. - 2000 watts PEP, 1000 watts average. Continuous duty.
Ask about the 250W Drake MN7 and Drake B1000 Balun

new class of coaxial-line transformers

Coreless 4:1 and 1:1

 balun transformers are described with a systematic design procedure for making your own -
Part 2 of a two-part series

Part 1 of this article reviewed the theory of transmission-line transformers and baluns, as well as problems with magnetic cores such as arcing, distortion, and harmonics. A simple balun that doesn't depend on magnetic materials was described. A new class of coaxial transmission-line transformers based on the same principles as the coreless balun was introduced. Also described were two specific transformer designs with experimental performance data.

In this article I will describe additional 4:1 and 1:1 balun transformers, including one for vhf. Impedance, VSWR, and balance data on these specific designs and on commercially available balun transformers are compared. I have included data on baluns working into various loads, with information on how to build and modify balun transformers. A systematic design procedure, evolved during the development of these transformers, is summarized.

how to make
 coreless baluns

While the balanced-to-balanced 4:1 transformers described in Part 1 are interesting, more useful configurations are 50 -ohm unbalanced to 12.5 -ohm balanced, and 50 -ohm unbalanced to 200 -ohm balanced, balun transformers. These were made in two stages using coreless baluns together with the bal-anced-to-balanced coreless transformers of figs. 5 and 6 described in Part 1.

The first step in making these balun transformers was to arrive at an optimum 50 -ohm $1: 1$ balun design. I tried many lengths of coax and many configurations before choosing the design shown in fig. 1. A length of RG141/U* Teflon coaxial transmission line longer than 127 cm (50 inches) was used. A dummy length of line 127 cm (50 inches) long was soldered to the outer conductor of the Teflon coax 127 cm (50 inches) from the end as shown in fig. 1.

How to add a simple compensating winding to the W1JR balun to provide superior balance. Thanks to W6ZO for building the balun and suggesting the easy modification. Low reactance adjustable load shown is connected with $1.27-\mathrm{cm}$ (0.5 -inch) copper strap for match and balance measurements.
*Available from Radiokit, Box 429, Hollis, New Hampshire 03049. RG-142B/U (Belden 83242-100) may also be used.

fig. 1. 50 -ohm unbalanced to 50 -ohm balanced coaxial balun. From the common point (system ground) to the output terminals, coax line A and compensating line B are each 127 cm (50 inches). The lines were wound into a seven-turn random-wound coil of 11.5 cm (4.5 inch) nominal diameter. For clarity, only three turns are shown. Performance data are shown in table 1.

The resulting 254 cm (100 inches) of line was then random wound into a nominal $11.5-\mathrm{cm}(4.5-\mathrm{inch})$ diameter seven-turn coil. Fig. 1, for clarity, shows only three turns of coaxial line. The dummy length of line used for the compensating winding was made with RG-58A/U. The advantage of using small coax is that the balun is compact and results in a convenient configuration for mounting on beam antennas. Performance is shown in table 1. Note the excellent balance data. Balance was determined by measuring the if voltage with respect to the common point (ground) at each of the output terminals when terminated with a floating matched load. The difference between the readings taken at each frequency was divided by the sum of the readings expressed as a percentage. The rf voltage was measured with an HP model 410C if voltmeter.

Rather than use coax for the compensating winding, to save money and space I decided to try a length of hookup wire. I tried some surplus no. 12 (2.1-mm) Teflon insulated wire. Hookup wire instead of coax for the compensating winding results in an excellent design. The balun is shown in the photo. A balun made this way was compared with one made entirely of coax. The two designs used for this comparison were optimized for the low bands. Data taken on these designs are shown in table 2. This table compares the use of Teflon coated no. 12 (2.1mm) wire with coax for the compensating winding. VSWR performance of the Teflon wire version was at
least equal to that of the all-coax balun, and the balance was actually better.

The balun design optimized for the 80 through 10 meter bands (table 1) was made with $127-\mathrm{cm}$ ($50-$ inch) lines. The balun designs optimized for the 160 through 20 meter bands (table 2) were made with $254-\mathrm{cm}(100-$ inch $)$ lines.

vhf balun

A vhf version of the coreless 1:1 balun is shown in fig. 2. The balun has a nominal diameter of 5.8 cm (2.25 inches). The length of coax from the output to the common point is 45.7 cm (18 inches). An equal length of coax line is used for the dummy. The lengths of RG-58A/U were wound into a five-turn coil. Table 3 shows the performance of this balun.

two-stage balun transformers

After the 50 to 12.5 ohm and 50 to 200 ohm balanced-to-balanced transformers (Part 1) and the 50 -ohm unbalanced to 50 -ohm balanced balun (see fig. 1) were optimized, I combined them into twostage 50 to 12.5 ohm and 50 to 200 ohm unbalanced-to-balanced configurations. These two-stage transformers are shown in figs. $\mathbf{3}$ and 4. Tables $\mathbf{4}$ and $\mathbf{5}$ show performance data.

The first stage converts from 50 -ohm unbalanced

Compact broadband 1:1 balun. The only materials used are a short length of RG-141/U and insulated hookup wire. The balun provides excellent match, balance, and several kW reserve power-handling capability.

fig. 2. Vhf version of the coreless balun. Length of each line from the common point to the output terminals is 45.7 cm (18 inches). The lengths of RG-58A/U were wound into a five-turn coil of about $5.8 \mathrm{~cm}(2.25$ inches) diameter. For clarity, only one turn is shown. The center conductor of the compensating coax line winding may be left floating or shorted to the outer conductor at both ends. Performance data are shown in table 3.
to 50 -ohm balanced; the second stage converts from 50 -ohm balanced to 12.5 -ohm or 200 -ohm balanced loads. Note that the bandwidth of these two-stage balun transformers is somewhat less than that of the individual stages.
When the two stages are coiled together into one compact bundle of coax, the way in which connections are made between the two stages is important. Note the lead crossover between the first and second stage (fig. 4). Performance was significantly better when the leads between stages were cross-connected because of the magnitude and direction of rf current flow over the coaxial-line outer conductors. The leads between the two stages must be short. The length of grounding wire, $\mathbf{A B}$, was not critical.

a 50/12.5-ohm unbalanced-to-unbalanced transformer

A transformer particularly useful for matching lowimpedance unbalanced loads, such as a mobile whip or short ground plane antenna, is shown in fig. 5. Note that this configuration differs from the designs described earlier because the line lengths aren't random wound into a common coil and, therefore, aren't coupled together. Because of the unbalance-to-unbalance connection, both ends of the outer conductors of line CD are grounded. Thus, line CD,
if coiled with and therefore coupled to coil AB, would act like a shorted turn, reducing the commonmode impedance of coil AB. Both ends of line CD are at the same potential so no isolation impedance is required. Thus the line may be positioned in any convenient way that doesn't couple to coil AB. The line is shown folded in the drawing to minimize coupling. The line may be twisted and taped to the incoming 50 -ohm line. Line CD must be the same length as line AB so that the two rf paths are equal, thus preserving the phase relationship. Lines $A B$ and $C D$ are each 127 cm (50 inches) long and are made of two paralleled lengths of RG-58A/U.

Performance data on the $50 / 12.5$-ohm unbalance/ unbalance transformer is shown in table 6. The VSWR data show the harmful effect of the shorted turn when CD is coiled and coupled to AB. The VSWR curve could be centered to improve the match at the low end by adding length to lines $\mathbf{A B}$ and $C D$ by the design techniques described later.

efficiency and power

The power-handling capability and efficiency of these new transformers made with RG-58/U coaxial cable were analyzed in Part 1. The 4:1 baluns shown in figs. 5 and 6 of Part 1 and fig. 5 of Part 2 can handle 1 kW at 30 MHz . This is twice the rating of RG-

fig. 3. This 50 -ohm unbalanced to 12.5 -ohm balanced balun transformer is a two-stage design combining the transformer of fig. 5 (Part 1) with the balun of fig. 1. Performance data are shown in table 4.

fig. 4. This 50 -ohm unbalanced to $\mathbf{2 0 0}$-ohm balanced balun transformer is a two-stage design combining the transformer of fig. 6 (Part 1) with the balun of fig. 1. Performance data including balance are shown in table 5 .

58A/U cable because the line pairs are connected in series or parallel.

In the case of the coreless 1:1 baluns, all of the power is transmitted through a single coax. Therefore, for high-power applications, the 1:1 baluns must be made with RG-8/U or RG-141/U transmission line. RG-141/U is the same size as RG-58A/U but it's about four times as expensive. The dielectric used in this coax is Teflon; therefore, the baluns can handle about 5 kW at 30 MHz . Using RG-141/U or RG-142B/U results in a rugged balun of reasonable size. From my experience, these compact baluns made with Teflon coax are virtually indestructible in Amateur use.

Efficiency of the Teflon coax balun shown in the photo was tested by the method described in Part 1.
table 1. Performance of the 50 -ohm balun shown in fig. 1. Balance expressed as a percentage is shown. This design was optimized for 80 through 10 meters.

\mathbf{F}_{0} $(\mathbf{M H z})$	\mathbf{Z} (ohms)	θ degrees	VsWR	balance (per cent)
3.5	48	16	1.33	2.8
4.0	49	14	1.28	2.1
7.0	50	10	1.19	1.3
14.0	50	8	1.15	2.5
21.0	51	8	1.15	4.2
28.0	52	9	1.18	1.3
30.0	53	9	1.18	1.3

Efficiency was better than 95 per cent over the useful bandwidth shown in table 2.

comparison with commercial products

Just how good are these balun transformers regarding match and balance? The best way to answer this question is to compare them with popular, commercially available products. The devices described here were compared with a commercial ferrite rod core 1:1 balun and a commercial toroid-wound 1:4 balun transformer. Performance comparisons are summarized in tables 7 and 8. Table 7 shows the comparison between the commercial 1:1 ferrite-core balun and the corless balun of fig. 1. Table 8 compares the performance of the commercial 1:4 toroid balun transformer with the two-stage $50 / 200$ ohm balun transformer shown in fig. 4. On the average, the VSWR and balance are

fig. 5. This $50 / 12.5$-ohm unbalanced-to-unbalanced transformer consists of two $127-\mathrm{cm}$ (50 -inch) parallel pairs of RG-58A/U coaxial cable connected in series at the input and in parallel at the output. Line CD must be the same length as line $A B$ and should not be coupled to $A B$. Data comparing the coupled and uncoupled cases are shown in table 6.
table 2. Comparison of two baluns optimized for the low bands. Balun A was made entirely of coax as shown in fig. 1 but with $\mathbf{2 5 4}$-cm (100 -inch) lines. Balun B is identical except for the dummy compensation line, which was made with an equivalent length of insulated no. $12(2.1-\mathrm{mm})$ wire. These baluns are optimized for the low bands, so performance is good on 160 meters and poor on 10 meters.

$\mathbf{F}_{\mathbf{0}}$	\mathbf{Z} (ohms)	balun A (degrees)	VSWR	balance (per cent)	Z (ohms)	θ (degrees)	VSWR	balance (per cent)
1.8	53	10	1.20	3.8	51	6	1.11	1.90
2.0	53	9	1.18	4.7	51	5	1.09	1.40
3.5	53	4	1.10	4.5	51	2	1.04	.68
4.0	53	3	1.08	4.5	51	1	1.03	.67
7.0	53	0	1.06	5.1	49	1	1.05	2.00
14.0	53	1	1.02	6.1	46	5	1.13	4.00

better for the devices described here than for the commercial balun transformers tested. I evaluated only two commercial balun products, which were selected at random.

balun performance
 with varying loads

All the test data were taken with terminations for which the balun transformers were designed. In the real world, balun transformers are connected to antennas. Antennas are rarely ideally matched; as operating frequency is changed across the band, both resistive and reactive components of the antenna impedance change. It is therefore important to understand the influence of the balun when terminated with other than the characteristic impedance of the line and balun.
I tested the coreless balun of fig. 1 and a commercial 1:1 balun at 3.5 and 14 MHz with loads varying from 16 to 150 ohms. These measurements are sum-

fig. 6. Compensating winding added to W1JR balun ${ }^{2}$ for improved performance. A length of no. $16(1.3-\mathrm{mm})$ Teflon insulated wire equal to the coax line, wound and connected as shown, improves balance and VSWR of the uncompensated balun.
marized in table 9. Impedance magnitude, phase angle, and calculated VSWR of the loads are listed. Measurements taken through the balun of fig. 1 and the commerical balun are also recorded. Both resistive and reacitve components of the impedance looking through the baluns varied widely from the data taken on the loads alone. In general, however, the resulting VSWR was not significantly altered.
table 3. Performance of the vhf balun shown in fig. 2.

$\mathbf{F}_{\mathbf{0}}$	\mathbf{Z} (ohms)	θ (degrees)	VSWR
21	60	10	1.29
28	60	5	1.22
30	60	15	1.22
50	53	-1	1.06
56	52	-1	1.05
70	48	3	1.07
80	49	6	1.11
90	50	8	1.15
100	54	12	1.25

balun rf distortion measurements

Saturation effects in magnetic-core materials in balun transformers may contribute to nonlinearity and cause generation of harmonics with attendant TVI problems. However, to my knowledge, this problem has not been addressed in the literature and no measurements have been made to lend experimental validity to these concerns. For this reason a popular commercially available rod magnetic core 1:1 balun was measured for nonlinearity at a power level of 2 kW PEP.
The two-tone test method ${ }^{1}$ offers a convenient means for measuring harmonic distortion. It's the method commonly used for determining the linearity of power tubes and solid-state devices. If two if signals are linearly combined and are equal in amplitude, the resultant envelope varies periodically from zero to maximum. When a two-tone if signal is passed through a nonlinear device, many new signals are produced, including harmonics and products
resulting from harmonics and the original signals. Products that fall near the original signals in frequency are known as odd-order products (3rd, 5th, 7th, 9 th, 11 th). The measurement of the amplitude of these products with respect to the amplitude of one of the original signals is an excellent method for evaluating the harmonic distortion products generated by a nonlinear device.
The two-tone method was used to measure the harmonic distortion contribution of the commercial ferrite balun. In this experiment, the two if signal sources were 2000 Hz apart at 2.001 and 2.003 MHz . The signals were combined and amplified to 2 kW PEP and fed through the balun to the load. The distortion products were measured with a modified HP310A Wave Analyzer. Power output at the 50 ohm load was measured with an HP3400A rms VoltMeter. Table 10 summarizes the results of the measurements. Note the 3rd-order distortion product increased from 43 to 39 dB below one of the two original signals, a $4-\mathrm{dB}$ deterioration. Under the set of power-amplifier operating conditions chosen, the 5th- and 7th-order products decreased, and the 9th-
table 4. Performance characteristics of the two-stage $50 / 12.5$-ohm transformer of fig. 3 consisting of the balun of fig. 1 combined with the $4: 1$ transformer of fig. 5 (Part 1).

$\mathbf{F}_{\mathbf{0}}$ $(\mathbf{M H z})$	\mathbf{Z} (ohms)	θ (degrees)	VSWR	balance (per cent)
3.5	53	22	1.49	3.5
4.0	53	20	1.44	2.7
7.0	56	9	1.21	2.1
14.0	55	-1	1.10	3.3
21.0	47	-1	1.07	0.0
28.0	45	10	1.23	4.3
30.0	47	12	1.25	6.5

order distortion product again increased.
It's clear from these measurements that you can't assume that a magnetic-core device, such as a ferrite core balun, is perfectly linear at all power levels. Unless flux density is held below the saturation threshold for the core material used, magnetic-core baluns and transformers can affect the linearity of your equipment and may cause TVI through the generation of harmonics.

W1JR balun improvement

Joe Reisert, W1JR, made an excellent contribution to the state of the art in his article, "Simple and Efficient Broadband Balun," in the September, 1978, issue of ham radio. ${ }^{2}$ An improvement in the balance of the W1JR balun can be made by the very simple addition of a length of insulated hookup wire wound on the toroid as a continuation of the coax winding.

[^2] radio, page 28.

fig. 7. Phase inverter based on the same principles as the coreless balun. This useful coaxial line component changes the phase of an rignal applied at the 50 -ohm input terminal by 180°; the phase reversal is produced by the cross connections between the two coaxial lines at A-B. Connections at A-B are isolated from ground by the self-resonance of the coiled coax lines. Construction, dimensions, and connections are the same as the coreless balun shown in fig. 1. From the common point C (system ground) to the output terminals, coax lines A and B are each 127 cm (50 inches) long. The lines are wound into a seven-turn random wound coil of 11.5 cm ($41 / 2$ inches) nominal diameter. For clarity, only one turn is shown. Performance data is shown in table 12.

See fig. 6 and the photo. The length of the compensating winding must, of course, be equal to the coax length. This modification was made at the suggestion of Ray Rinaudo, W6ZO. * It's based on the principles described in Part 1, showing how the length of coiled coaxial line of fig. 2 (Part 1) is evolved into the compensated balun of fig. $\mathbf{3}$ (Part 1).
Data showing VSWR and inherent balance of the compensated and uncompensated baluns are shown in table 11.. The balance measurement was made by terminating the balun with 50 ohms, driving at the frequencies shown, and measuring the voltage with respect to ground (enclosure) at each of the output terminals. Note the very significant variations in balance shown for the uncompensated balun, compared with the reasonably good inherent balance shown in the right-hand column. Balance is defined
table 5. Performance characteristics of the two-stage $50 / 200$-ohm transformer of fig. 4 consisting of the balun of fig. 1 combined with the $4: 1$ transformer of fig. 6 (Part 1).

$\mathbf{F}_{\mathbf{0}}$ $(\mathbf{M H z}$)	\mathbf{Z} (ohms)	θ (degrees)	VsWR	balance (per cent)
3.5	60	25	1.63	1.3
4.0	60	25	1.63	0.6
7.0	60	3	1.21	0.6
14.0	48	0	1.04	0.6
21.0	51	10	1.19	0.0
28.0	60	2	1.20	3.3
30.0	60	-1	1.20	3.3

table 6. Performance of 50/12.5-ohm unbalanced-to-unbalanced transformer of fig. 5. The two right-hand columns compare VSWR of coupled and uncoupled configurations as explained in the text. VSWR on the 80 -meter band can be improved by increasing the length of the coax lines as explained in the design procedure.

$\mathbf{F}_{\mathbf{0}}$ (MHz)	\mathbf{Z} (ohms)	θ (degrees)	VSWR (uncoupled)	VSWR (coupled)
3.5	49	20	1.4	1.6
4.0	50	19	1.4	1.6
7.0	54	14	1.3	1.5
14.0	58	11	1.3	1.5
21.0	61	6	1.2	1.6
28.0	55	4	1.1	1.4
30.0	53	4	1.1	1.4

as the difference between the if voltage readings at each of the two output terminals to ground (enclosure) divided by the sum of the two readings, expressed as a percentage.

Fig. 7 shows how to build a useful component for reversing the phase of an if signal in a coaxial line. This phase inverter is useful for coaxial-fed W8JK antennas and other close-spaced phased arrays. The phase reversal takes place at the cross connection of two coax lines at terminals \mathbf{A} and B. Terminals \mathbf{A} and B are isolated from ground by the self-resonance principles described last month (fig. 3) and in fig. 12. Terminals \mathbf{A} and \mathbf{B} are not shorted by the grounded common connection between the coax outer conductors at C because of the high impedance over the outer conductors of the coiled coax lines. Of course, 180-degree phase shift can be accomplished in coax with a half-wavelength line; phase shift by this method, however, depends on frequency. The simple device shown in fig. 7 inverts phase by 180 degrees independent of frequency; it inverts rf phase by exactly 180 degrees, with respect to equivalent length of coaxial cable, over a very broad band of frequencies. Measured broadband VSWR performance of the phase inverter is shown in table 12.

Phase inverters optimized for other frequency ranges may be designed according to the systematic
design procedure for balun transformers detailed at the conclusion of this article.

summary of results

Of the various coreless if devices made during the project, eleven are described in Parts 1 and 2 of this article. For convenience, they are summarized in Table 13, which correlates the construction of each device with measured performance data.

The transformers described in this article were, for the most part, designed with a combination of intuition and practical experience with coax baluns. However, as the project evolved, I gathered information that can be organized into a systematic design procedure. For example, N6AIG suggested a method of analysis starting with diagramming all of the possible ways to connect the ends of two or more coaxial cables.

fig. 8. Various connections for pairs of coaxial lines. Polarity is arbitrarily assigned to the terminals, and the resulting polarity of the center conductors with respect to the outer conductors is indicated.

The diagram of fig. 8 shows most of the connections possible with a pair of lines, and fig. 9 shows some of the combinations for four lines. Similar diagrams can, of course, be drawn for any number of lines. Polarities are then assigned to the network terminals.

Next, assign polarities to each of the coax center conductors with respect to the outer conductors. Ex-
table 7. Performance of the 50 -ohm coreless balun shown in fig. 1 compared with a commercial ferrite-core balun. VSWR was calculated from the impedance magnitude and phase data and is referred to $\mathbf{5 0} \mathbf{0 h m s}$.

		coreless ba				ite-core c	nerci	alun
$\begin{gathered} \mathrm{F}_{0} \\ (\mathrm{MHz}) \end{gathered}$	$\begin{gathered} \text { Z } \\ \text { (ohms) } \end{gathered}$	(degrees)	VSWR	balance (per cent)	$\begin{gathered} 2 \\ \text { (ohms) } \end{gathered}$	$\begin{gathered} \theta \\ \text { (degrees) } \end{gathered}$	VSWR	balance (per cent)
3.5	48	16	1.33	2.8	49	11	1.21	11.8
4.0	49	14	1.28	2.1	49	9	1.17	12.0
7.0	50	10	1.19	1.3	50	9	1.17	11.6
14.0	50	8	1.15	2.5	55	11	1.24	7.9
21.0	51	8	1.15	4.2	63	12	1.37	1.4
28.0	52	9	1.18	1.3	72	5	1.46	3.9
30.0	53	9	1.18	1.3	75	8	1.54	1.6

table 8. Performance characteristics of a popular commercial 1:4 toroid balun transformer compared with the two-stage $\mathbf{5 0} \mathbf{/ 2 0 0}$-ohm balun transformer of fig. 4.

coreless balun transformer				
$\mathbf{F}_{\mathbf{0}}$ (MHz)	\mathbf{Z} (ohms)	θ (degrees)	VsWR	balance (per cent)
3.5	60	25	1.63	1.3
7.0	60	3	1.21	0.6
14.0	48	0	1.04	0.6
21.0	51	10	1.19	0.0
30.0	60	-1	1.20	3.3

amples of these assignments are shown in figs. 8 and 9 .

Now make a table similar to table 14. This table will be an aid in analyzing each of the possible endconnection combinations. Construct the table by choosing the input and output connections you want for your application, taking into account balance/unbalance and impedance. Show these connections in columns 1 and 2.

Next, determine whether there is a polarity match. The input connection must be compatible with the output connection. This is determined by inspecting the polarities assigned to the inner conductors. For example, A cannot be matched with \mathbf{B} in fig. 8 because A has one + and one - center conductor polarity, whereas B has two + polarities. A and D are compatible because both have + and polarities. Indicate whether there is a polarity match in column 3.

Whether the connection is balanced or unbalanced can be determined by inspection; this information is entered in columns 4 and 5 . For example, A is balanced and \mathbf{B} is unbalanced. An unbalanced connection can be converted to a balanced connection

commercial toroid balun transformer \mathbf{Z}			
θ		balance	
(ohms)	(degrees)	VSWR	(per cent)
53	6	1.12	1.8
53	8	1.16	2.5
54	16	1.34	12.0
57	27	1.66	18.0
69	44	2.53	21.0

by the addition of one or more compensating lines. For example, unbalanced connection F or fig. 8 may be converted to a balanced configuration by connecting the outside conductor of a dummy length of coax to the positive terminal. Wind the coax as a continuation of the line connected to the negative terminal.

Part 1 explained how the compensating winding creates balanced terminals by showing how the isolated terminals of fig. 2 (Part 1) evolve into the balanced terminals of fig. 3 (Part 1).

Input and output impedances of transformers made with 50 -ohm lines are shown in table 14, columns 6 and 7. For example, for connections A-D (third line in table 14, the input impedance is 25 ohms, because two 50 -ohm lines are connected in parallel at the input. The output impedance is 100 ohms, because the two 50 -ohm lines connected in series at the output are properly terminated with 100 ohms.

The transformation ratio (column 8) is simply determined from columns 6 and 7. If the transformer in this case had been made with 75 -ohm line, the input impedance would be 37.5 ohms , and the output
table 9. This table compares the performance of the corless balun of fig. 1 with that of a typical $1: 1$ commercial ferrite core balun with varying loads. VSWR is calculated with respect to 50 ohms from the impedance magnitude and phase-angle data.

load				coreless balun			commercial ferrite balun		
$\begin{gathered} F_{0} \\ (\mathbf{M H z}) \end{gathered}$	R (ohms)	$\begin{gathered} \theta \\ \text { (degrees) } \end{gathered}$	VSWR	R (ohms)	$\begin{gathered} \theta \\ \text { (degrees) } \end{gathered}$	VSWR	R (ohms)	$\begin{gathered} \theta \\ \text { (degrees) } \end{gathered}$	VSWR
3.5	16.0	7	3.1	22.0	34	2.9	17	25	3.2
3.5	20.0	4	2.5	25.0	28	2.4	22	20	2.5
3.5	25.0	3	2.0	28.5	25	2.1	26	18	2.1
3.5	33.0	2	1.5	37.0	21	1.6	35	15	1.6
3.5	50.0	1	1.0	54.0	20	1.3	51	13	1.3
3.5	75.0	0	1.5	77.0	20	1.8	75	14	1.6
3.5	100.0	0	2.0	98.0	25	2.0	97	25	2.3
3.5	125.0	- 1	2.5	127.0	24	2.9	122	18	2.6
3.5	150.0	-1	3.0	140.0	31	3.4	144	20	3.1
14.0	16.5	22	3.3	53.0	60	3.7	33	60	4.1
14.0	21.0	20	2.6	54.0	48	2.6	36	51	3.0
14.0	25.0	18	2.2	54.0	34	1.9	38	46	2.6
14.0	32.0	14	1.7	57.0	30	1.8	43	35	2.0
14.0	51.0	7	1.1	56.0	2	1.1	61	15	1.4
14.0	75.0	5	1.5	62.0	-20	1.5	80	0	1.6
14.0	100.0	3	2.0	62.0	-36	2.0	100	-13	2.1
14.0	125.0	1	2.5	65.0	-46	2.6	117	-21	2.6
14.0	150.0	1	3.0	66.0	- 50	2.9	126	-26	2.9

table 10. Summary of the distortion contribution of a typical commercial ferrite core balun at 2 kW PEP. The linearity of a high-power linear amplifier was measured with and without the balun connected between the amplifier and the load.

| | odd order products | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | 3rd | 5th | 7th | 9th | 11th |
| distortion products,
 amplifier without balun (dB) | 43 | 43 | 52 | 63 | 60 |
| distortion products,
 amplifier with balun (dB) | 39 | 48 | 56 | 60 | 60 |

impedance would be 150 ohms. Incidentally, the transformer of this example (A-D, table 14) is the same configuration as that shown in fig. 4 of Part 1 excèpt that input and output connections are reversed. All the possible connections are not listed in table 14, as indicated by the dashed lines. Completing the list of possible combinations is left as a challenge to the reader.

The next step is to determine how the lines are to be coiled and to determine the coupling between the coils. Draw a schematic diagram similar to fig. 1 of Part 1. A sample drawing of the example A-D in table 14 is shown in fig. 10. For analysis, assign an arbitrary input if voltage of 100 volts. In this case, the input is balanced, so a balanced input voltage of ± 50 volts is assigned. A total of 100 volts is applied to each line, so the output voltage is 200 volts (± 100 volts with respect to ground). Note that 50 volts appears along the outside conductor across the length of each of the lines.

Determine the magnitude and polarity of the voltage along the outer conductors by tracing the applied voltage. Current will tend to flow over the outside of the outer conductors in the direction shown by the arrows. Sufficient impedance must be provided to prevent shorting the applied voltage. Another example of this technique for analysis is shown in the schematic of the unbalanced-to-unbalanced $50 / 200$-ohm transformer of fig. 11.

The required common-mode impedance is provided by coiling the coaxial lines. The lines of fig. 10

©

fig. 9. Some of the many possible connections for four coaxial lines. Polarity of the network terminals as well as the polarity of the coax center conductors is shown.
may be coiled together (closely coupled), because the voltage across the two lines is the same. The direction of current flow dictates that the lines must be coiled together as shown in fig. 4 of Part 1. If the lines are coiled in opposite directions so that the current flow, as indicated by the arrows, is in the same direction, the coils will have positive mutual coupling and maximum common-mode impedance (input/ output isolation). This is the reason the lines are coiled together into a continuous winding as shown, for example, in fig. 4 of Part 1.
table 11. Comparison of W1JR Balun ${ }^{2}$ with and without compensating winding. Additional winding of insulated hookup wire on the toroid shown in the photograph and the drawing (fig. 6B) substantially improves balance as shown below. Because of lead length, load VSWR is high at 14 MHz and above. See load data below.

	load			W1JR balun, 2 uncompensated				W1JR balun, ${ }^{2}$ compensated			
$\begin{gathered} \mathrm{F}_{0} \\ (\mathbf{M H z}) \end{gathered}$	$\begin{gathered} Z \\ \text { (ohms) } \end{gathered}$	$\begin{gathered} \theta \\ \text { (degrees) } \end{gathered}$	VSWR	$\begin{gathered} Z \\ \text { (ohms) } \end{gathered}$	θ (degrees)	VSWR	balance (percent)	Z (ohms)	θ (degrees)	VSWR	balance (per cent)
1.8	49	1	1.03	48	1	1.05	99.0	49	7	1.13	1.5
3.5	49	2	1.04	49	4	1.08	93.0	50	6	1.11	1.5
4.0	49	3	1.06	49	4	1.08	92.0	50	7	1.13	1.5
7.0	49	5	1.09	51	8	1.15	71.0	52	8	1.16	0.0
14.0	49	10	1.19	63	11	1.35	3.7	61	8	1.28	0.0
21.0	50	15	1.30	76	4	1.35	38.0	68	0	1.36	7.1
28.0	52	19	1.41	79	- 12	1.66	47.0	51	- 11	1.21	15.0
30.0	52	21	1.46	67	- 17	1.53	48.0	36	-1	1.39	39.0

Depending on the choice of the many input/output configurations partially listed in figs. 8 and 9, the coaxial lines may or may not have current flow similar to that in example A-D. In some configurations, the direction of current flow on two lines is the same, in which case the lines must be wound together in the same direction. In other configurations, the voltage drops are not the same, so the coils should not be tightly coupled. The configuration shown in fig. 11 is an example. In a number of unbalanced-to-unbalanced configurations, the voltage drop in one or more of the lines is zero (zero current flow). These lines should not be coupled with lines having voltage drop, because lines with zero voltage drop act like shorted turns. The unbalanced-to-unbalanced transformer of fig. 5 is an example of this.

The outer conductor of coax CD (fig. 5) has the same potential at both ends. It should not, therefore, be coupled to the coiled length $A B$. The effect of trying to couple incompatible coils together is shown in the two right-hand columns of data in table 6.

fig. 10. Schematic of the example A-D table 13 and fig. 4 of Part 1. A balanced input voltage of 100 volts (± 50 volts) is assigned for analysis. 50 volts appears across the outer conductor along the length of each line, causing current to flow in the direction of the arrows. Enough impedance must be provided along the outside of the lines to prevent shorting the applied voltage.

Fig. 9 shows some of the many possible input and output connections for a group of four coax lines. Terminal and coax center-conductor polarities are indicated in the same format as in fig. 8. A number of the four-line connections are shown in table 15 to serve as examples. Transformers consisting of any number of lines may be analyzed in this way. The highest transformation ratio depends on the number of coax lines. Table 14 shows that two lines can achieve a transformation of four, and table 15 shows that four lines can achieve transformation ratios up to sixteen. The highest transformation ratio available is equal to the square of the number of lines. ${ }^{3}$ The length of all lines should be the same, to preserve phase relationships.

The final step in the design procedure is to determine the optimum length of coax line and the number of turns in the coil. If the coil has too few turns, performance will be poor at low frequencies; if it has too many turns, performance will be poor at high frequencies. As an example, in the balun described in

fig. 11. Another example similar to fig. 10 showing how to analyze a transformer configuration for direction and magnitude of voltage drops over the outside conductors of the coax lines. Lines AB and CD should be wound together in parallel and in the same direction for positive mutual coupling, like coiled line AB in fig. 5. Lines EF and GH should be wound together in opposite directions for the same reason.
fig. 1, each RG-58A/U line is 127 cm (50 inches) long. The lines were random wound into a $11.5-\mathrm{cm}$ (4.5-inch) nominal diameter coil. VSWR performance over the useful frequency range is shown in table 1. Note the increase in VSWR at the ends of the frequency range and compare this with fig. 12.

Fig. 12 shows the impedance across the output terminals of the balun of fig. 1 plotted as a function of frequency. When the balun is open circuited; that is, when the center conductor at the output is disconnected from the dummy coaxial line, the selfimpedance of the coax coiled outer conductor can be measured. The vector impedance meter was connected from point \mathbf{A} to point \mathbf{B} (fig. 12), and the impedance magnitude was measured between 1 and 70 MHz . Note that the impedance from \mathbf{A} to \mathbf{B} is always greater than 50 ohms, the line surge impedance, over the useful frequency range of the balun (table 1).

When designing a balun or transformer to your needs, make the coil self-resonant frequency approximately equal to the average of the upper and lower frequency limits of the band of interest. For example, if you want to design a transformer to cover 3.5-30 MHz , the open-circuited coil self-resonant frequency should be about 16 MHz . If you want your balun/ transformer to be optimum for 160,80 , and 40 me-
table 12. Broadband VSWR performance of the 50 -ohm to 50 ohm coax phase inverter shown in fig. 7.

\mathbf{F}_{0} $(\mathbf{M H z})$	\mathbf{Z} (ohms)	θ (degrees)	VSWR
3.5	54	16	1.34
4.0	54	14	1.30
7.0	57	4	1.16
14.0	53	-3	1.08
21.0	48	-2	1.06
28.0	46	4	1.11
30.0	46	7	1.16

Table 13. Tabular summary of the baiun transformers built and measured by W6TC.

input/output impedance ohms	ratio
$50 / 12.5$	$4: 1$
$50 / 200$	$1: 4$
$50 / 200$	$1: 4$
$50 / 50$	$1: 1$
$50 / 50$	$1: 1$
$50 / 50$	$1: 1$
$50 / 50$	$1: 1$
$50 / 12.5$	$4: 1$
$50 / 200$	$1: 4$
$50 / 12.5$	$4: 1$
$50 / 50$	$1: 1$
	(inverted)

input/output balance	bandwidth MHz	construction
balanced/balanced	$1.8-30$	fig. 5, part 1
balanced/balanced	$3.5-30$	fig. 6, part 1
balanced/balanced	$1.8-14$	fig. 6, part 1
unbalanced/balanced	$3.5-30$	fig. 1, part 2
unbalanced/balanced	$1.8-14$	fig. 1, part 2
unbalanced/balanced	$1.8-14$	fig. 1, part 2
unbalanced/balanced	$21-100$	fig. 2, part 2
unbalanced/balanced	$3.5-30$	fig. 3, part 2
unbalanced/balanced	$3.5-30$	fig. 4, part 2
unbalanced/unbalanced	$7.0-30$	fig. 5, part 2
unbalanced/unbalanced	$3.5-30$	fig. 7, part 2

measured data
table 1, part 1
table 2A, part 1
table $2 B$, part 1
table 1, part 2
table 2A, part 2
table 2B, part 2
table 3, part 2
table 4, part 2
table 5, part 2
table 6, part 2
table 12, part 2
3. Make certain the polarities of the input and output connections match (column 3, tables 14 and 15).
4. Check input and output balance by inspection (columns 4 and 5).
5. Check input and output impedance by inspection (column 6 and 7).
6. Determine transformation ratio (column 8).
7. Draw a schematic diagram similar to that in figs. 10 and 11 for analysis.
8. Assign an input voltage, such as 100 volts.
9. Determine the polarity and magnitude of voltage across the length of the lines.
10. Determine the direction of current flow over the outer conductors of the lines.
11. Determine which lines must be coiled, if they can be coiled together, and the sense of the mutual coupling.
12. Select the length of line, coil diameter, and number of turns using a grid-dip meter to resonate the coil near the average between the upper and lower frequencies of the band of interest.
13. Make certain that the if paths through all coax lines are equal, to preserve phase.
2. Assign polarities.
table 14. This table is a partial list of the coax connections shown in fig. 8 . It is used as an aid in analyzing the connections.

column							
1 connection (in)	2 connection (out)	3 polarity (match)	4 balance (in)	5 balance (out)	```6 impedance in (ohms)```	```7 impedance out (ohms)```	8 transformation ratio (in/out)
A	B	no					
A	C	no					
A	D	yes	balanced	balanced	25	100	1:4
B	C	yes	unbalanced	unbalanced	25	100	1:4
B	D	no					
-	-	-					
-	-	-					
-	-	-					

table 15．This table shows some of the connections for four coax lines shown in fig．9．The impedances listed in columns $\mathbf{6}$ and 7 assume the use of $\mathbf{5 0}-\mathrm{ohm}$ lines．

column							
$\stackrel{1}{\text { connection }}$	$\stackrel{2}{\text { connection }}$	$\stackrel{3}{\text { polarity }}$	$\begin{gathered} 4 \\ \text { balance } \end{gathered}$	$\begin{gathered} 5 \\ \text { balance } \end{gathered}$	$\begin{gathered} 6 \\ \text { impedance } \end{gathered}$	$\begin{gathered} 7 \\ \text { impedance } \end{gathered}$	$\begin{gathered} 8 \\ \text { transformation } \end{gathered}$
					（in） （ohms）	（out） （ohms）	（ratio） （in／out）
		（mat					
A	B	no					
B	C	no					
A	D	yes	balanced	balanced	50	200.0	1：4
F	B	yes	unbalanced	unbalanced	200	12.5	16：1
E	C	yes	balanced	balanced	200	50.0	4：1
B	C	no					
三	三	三					

advantages of coreless

 balun transformersThe advantages of this new class of broadband coaxial line transformers over magnetic－core trans－ formers are as follows：

1．They are inexpensive．
2．They are linear；there are no materials in the sys－ tem that can saturate．

3．They use readily available materials：only coax and hookup wire．

4．They are lightweight and compact．

fig．12．Impedance from point A to point B of open－circuited balun．Impedance at $A B$ is greater than 50 ohms，the line surge impedance over the useful frequency range of the balun．

5．They are weatherproof because of the materials； an enclosure is not required．

6．They have low VSWR．
7．They are inherently balanced．
8．They have high power－handling capability limited only by the coaxial line chosen．When made with Teflon coax，they are virtually indestructible in Amateur service．

9．There are no closely spaced or tightly twisted enameled wires and no ferrite or powdered iron core materials that can result in arcing．

conclusion

The purpose of this article is to show how high－ performance balun transformers can be built free of the disadvantages of magnetic core materials．I hope I＇ve presented enough data on this new class of devices for you to be able to reproduce one or more of the designs described here，or to design one of your own to meet your requirements．My goal has been to provide enough information for others to be able to reproduce these useful balun transformers， even though they may not have access to fine in－ struments such as the Hewlett Packard vector im－ pedance bridge，if voltmeter，or programmable cal－ culator．

acknowledgment

I am indebted to the EIMAC gang（the laboratory staff at EIMAC）and the staff at CTC for counsel，con－ stant encouragement，and after－hours use of their laboratory facilities．

[^3]ham radio

considerations regarding microphones and simple speech processing

A look at simple homemade microphones
 and speech processors

This article describes a microphone stand that can be built easily and that's much more convenient to use than the typical commercial unit. Also described are simple preamplifier and clipper circuits that can be added to a phone station between microphone and transmitter.

improved desk microphone

In spite of all the equipment manufactured for sale to Amateurs, many desirable items still can't be readily purchased. Many times these items are simple to build, and many times the item needed is a simplified version of what's commercially available. In any case, it's seldom that the scratch-built item isn't a big cost saver.

In the case that prompted this article, the audio gain in my low-band rig was marginal. Close talking in a moderate voice into a standard crystal microphone was required for full SSB output. This condition may not be unusual based on my own experience and that of others I've talked to. Additionally, standard microphone stands have always left a lot to be desired, to my way of thinking. First, they're

[^4]seldom adjustable in height; second, they must be placed off to the side if you want to take notes or fill in your log while talking. One of my friends claims the best he can do is get his nose up to the bottom of the microphone; in my case, I have to bend over to speak into a microphone mounted on a typical commercial stand. The solution to this problem is a boom-type microphone stand.
The mechanical end of this kind of project is wide open with respect to cost and complexity. If you have the shop equipment, the boom stand can be a major project for tools such as a lathe and drill press. It's largely a matter of the materials and tools you have and your personal taste.*

My original stand was made from junk-box parts and some pieces of birch dowel.' It looks a bit "Tinker-Toyish," but it serves the purpose very well. The second design, which is shown in the diagram, requires no unusual tools and works better than the original.

building the microphone stand

The base is made from two or more layers of 6.5$\mathrm{mm}(1 / 4-\mathrm{inch})$ tempered Masonite (fig. 1). The base should be at least 153 mm (6 inches) in diameter and may be weighted if a heavy microphone is used. The upright section is a "plumber's delight" made from readily available plumbing fittings. The boom is a piece of Greenfield flexible tubing, which is available at electrical supply houses. This type of tubing is smooth and flexible. To stiffen it, use a piece of aluminum clothes line wire inside of it.

Top left, panel view of the two stage preamplifier/clipper described in the text. The on-off switch is at the left, the LED pilot light is in the center, and the gain control is on the right. The gain setting in the preamplifier controls the amount of clipping, while the gain setting in the transmitter sets the maximum modulation (or audio drive) level. Preamplifier gain will decrease as the battery voltage decreases making it necessary to readjust the gain control. The control in the transmitter should require readjustments only after major tuning changes. Top right, preamplifier circuit built on a perfboard and contained inside a mini box. The circuit is loose-mounted by wrapping it in foam plastic (under the box cover in the picture). The plastic insulates it from terminals and connections, which are part of the box itself, and provides all the mechanical strength needed. The on-off switch is separate from the gain control so that the preamplifier can be turned on and off without changing the gain setting. Input-output connectors can be varied to suit the needs of any transmitter/microphone combination. Bottom left, the first boom microphone built by the author. This type of construction led to a very useful microphone but requires more tools to build than the design in the text. The boom arms and upright section are constructed from birch dowels. This approach doesn't provide the audio and radio-frequency shielding that all-metal construction does. However, it's cost effective, since the parts were all from the junkbox. Bottom right, the microphone design described in the text. It is made of readily available materials easily assembled in the home workshop. If you lack the tools to make a round base, use a square or six-sided base, which will work just as well. This design provides allmetal shielding of the microphone element and that part of the cable inside the stand. The Greenfield flexible tubing is stiffened with an internal piece of aluminum clothesline wire. This approach provides the ultimate in adjustability and convenience.

pilot light circuit

The LED pilot light in the two-stage circuit is of special interest. If the circuit is left on when not using the rig, the battery will last only a few days, depending on how new it is. Having learned the hard way, I realized that a pilot light with minimum power requirement was needed. Several power-saving tech-
niques were rejected before a friend suggested connecting the pilot light in series with the amplifier. Neat! A pilot light that actually causes a slight decrease in the current drain! It's not too bright, but it's adequate for the purpose. If used with the singlestage preamplifier circuit, it may be necessary to add a resistor* to ground after the LED. This will cause
more current to follow through the LED - at least 2 mA is required for most LEDs.)
Another solution to the power problem is an external source powered from the ac line. If the preamplifier is. to be built into the rig there's little problem, even if it is a tube rig. In the latter case, a voltage source, such as the well by-passed cathode bias on an amplifier stage, can be used. The circuit will operate over a range of at least 7-15 volts. External supplies intended for calculators and similar devices can be used, or a miniature regulated supply can be built into the amplifier.

fig. 1. Mechanical layout of the desk microphone described in the text. The construction shown is for guidance only. Most builders will substitute materials on hand and their own techniques of fastening things together. A push-to-talk switch can be mounted on the base if desired.

adapting the

Electret cartridge

If an Electret microphone is used, it can be easily adapted to the boom using a short piece of $22-\mathrm{mm}$ (7/8-inch) birch dowel. Drill the dowel to fit the tubing outside diameter (16 mm , or $5 / 8$ inch) but do not

[^5]go quite all the way through. Turn the dowel around and drill through from the other end with a $12.5-\mathrm{mm}$ ($1 / 2$-inch) diameter drill. Slip in a piece of screening from the $16-\mathrm{mm}(5 / 8-\mathrm{inch})$ end. Sand the dowel, round the edges to suit yourself, and slip the dowel over the end of the Greenfield tubing. Use a piece of $77 \times 128 \mathrm{~mm}(3 \times 5$ inch) card stock to "snug" the fit if necessary.

Slip the microphone into the end of the Greenfield tubing and make it snug with a layer or two of cloth, sponge rubber, or plastic foam. Make the connections before putting the microphone element into place. Don't neglect a ground connection to tubing at the microphone end!
I've received many on-the-air compliments on the Electret microphone, which compensate for its low output and the power requirement for its internal amplifier.

Other microphone elements can be adapted in a similar manner or with a little ingenuity. For example, the top of a plastic bottle can be cut off and used to house a larger microphone element. If your workmanship isn't the greatest, a "blast shield" can be purchased (Olson Radio has them). A shield of this type will cover the whole microphone housing and make things look quite professional.

plumbing details

The Greenfield tubing and pipe fittings can be soldered together using a propane torch, standard plumbing flux, and solder. Details of the plumbing lash-up are left to you, since the availability of junkbox material may determine your approach. The stand in the photos has a $128-\mathrm{mm}$ (5 -inch) length of $25.5-\mathrm{mm}$ (1 -inch) copper pipe with a reducing fitting to hold the Greenfield tubing. A $25.5-\mathrm{mm}$ (1 -inch) copper pipe threaded adapter was used to mount the pipe flange at the bottom.
All told, including a Radio Shack Electret microphone element, the microphone cost less than $\$ 10.00$. Most of the cost was in the plumbing fittings. Not a bad price for an extra convenient microphone!

Unlike mikes, most commercially available speech processing equipment is complex and expensive. Many hams need speech processing for two reasons: a) lack of audio gain in the transmitter, and b) a need to limit the audio level to prevent overmodulation and consequent wide bandwidths. In the first case, we're short-changing ourselves by not using the transmitter's full capability. In the second case, we're causing inconvenience to others by splattering outside our allowed bandwidth. In fact, we're operating illegally in this case. Both of these problems can be resolved by building an outboard solid-state speech processor - or buying one.

simple microphone amplifier

If lack of gain and/or power for an Electret microphone is your problem, the single-stage bipolar transistor amplifier shown in fig. 2 can be used. The cirguit includes a regulated voltage source for an Electret microphone. The zener regulator output is for the microphone's internal amplifier. It reduces the 9 -volt battery voltage to about 4 volts, a nominal supply voltage that will satisfy most microphones. Check your microphone and use an appropriate zener if the supply voltage should be higher or lower.

Typical Electret microphone circuit. Output impedances vary but are typically in the order of 1 kilohm. Disc ceramic capacitors tend to short out rf that may be picked up. This type of microphone is inexpensive and provides excellent speech quality. The fet amplifier is built in.

After pricing zeners for the 4-6 volt range, I bought a blister pack full for less than $\$ 2.00$ and found four usable diodes among them. A test circuit can be made by connecting the diode in series with the 2.2kilohm resistor specified in fig. 2, a voltmeter, and the 9 -volt battery. Check the diode in both directions. It will read about 0.6 volt in one direction and the zener voltage (if less than 9 volts) in the other direction. Mark the diode polarity on the diode if it was not marked as received.
The transistor amplifier circuit shown is very

fig. 2. Simple amplifier for use with low-output microphones. A regulated supply for an Electret microphone is included. All resistors $1 / 4$ watt. Transistor is 2 N 2925 or equivalent. Capacitors are disc ceramic except where polarity is marked; these are electrolytics. This circuit is not recommended for microphones with impedances higher than 50,000 ohms. The output is intended to match transmitters with high-impedance microphone inputs.
tolerant of the transistor used. Most any medium- or high-gain ($h_{f e}=100-300$) NPN transistor should do the trick. The 2N2925 is typical of this type and is usually in plentiful supply.
The circuit can be built on a small piece of perfboard. The 9 -volt battery and circuit were wrapped in plastic foam to keep them from rattling about and were tucked into the minibox without rigid mounting. The capacitors across the microphone, and at all leads entering or leaving the minibox enclosure, were intended to minimize if entering the circuit and causing problems.

two-stage speech processor -

If you're looking for some gain and would like full audio drive without splattering, the circuit of fig. 3 is your answer. This circuit includes two stages of gain, a diode clipper circuit, and an RC filter that reduces

fig. 3. Two-stage amplifier/clipper circuit. A regulated supply for an Electret microphone is included. All resistors $1 / 4$ watt. Transistors are 2 N 2925 or equivalent. Capacitors are disc ceramic except where polarity is marked; these are electrolytics. Diodes are 1N4149/1N914. Input-output impedances are similar to those of the single-stage amplifier of fig. 2.

ELECTRONIC TECHNICIANS

Join The Leader In Satellite Navigations and Spread Spectrum Communication.

Magnavox Advanced Products has exciting career opportunities for Research and Development Electronic Technicians at all levels of experience ranging from entry level to Senior Engineering Associate. Trade school, military school, amateur radio or equivalent industry experience required.
Selected applicants will participate in the design and development of electronic circuits for state-of-the-art communications and radio navigation systems. The positions offer challenging learning experiences and excellent promotional opportunities with a rapidly growing electronic development company. Some of the specific discipline areas include the following:

RF TECHNICIANS

Will be responsible for the design, breadboard, and check-out of RF circuits from VLF to L-Band using networks analyzers, spectrum analyzers, synthesized frequency generators, counters, noise figure power meters and otherinstruments. Circuits to be designed include RF amplifiers, mixers, modulators, synthesizers, IF ampliflers, filters, demodulators and many other communications circuits

ANALOG TECHNICIANS

Will be responsible for the design, breadboard and check-out of analog signal processing circuits using the latest oscilloscopes, function generators, digital voltmeters and many other instruments. Circuits to be designed include balanced phase detectors, analog multipliers, active filters, threshold detectors, A to D and D to A converters, phase locked loops, delay locked loops and other baseboard circuits.

POWER SUPPLY TECHNICIAN

Will be responsible for the design, breadboard and check-out of high efficiency switching power supplies for communications and navigations equipment. The power supplies will provide low to medium power levels for military and sophisticated commercial sets having battery or AC power sources for land, sea, air and space applications.
If you have interest and experience in one or more of the above areas, call collect during business hours to Richard Navarro at:

```
PROFESSIONAL PLACEMENT Dept. HR 3-80
2829 Maricopa Street
Torrance, CA 90503
(213) 328-0770
```

An Equal Opportunity Employer M/F
 Advanced Products Division
the distortion introduced by the clipper circuit. It also includes a voltage source for an Electret microphone and a novel pilot-light circuit (described later). This circuit has enough gain to allow the signal to be clipped or flat-topped by the back-to-back diodes. They set a peak-to-peak audio voltage level of 0.6 volt maximum that can't be exceeded by a loud voice or high gain settings in the preamplifier. Because the diodes fix the output level, the transmitter gain control can be used to set a relatively fixed drive level that won't cause splatter.

The diode clipping distorts audio quality by introducing harmonics of the voice frequencies. These harmonics are reduced by the RC filter that follows the diodes. This circuit is far from a cure-all, however, and this clipper-filter circuit must be classified as a rudimentary speech processor.

gain control

The potentiometer in the two-stage amplifier is a gain control and will set the amount of gain ahead of the diode clipper. If set high, the gain will be great. The diodes will clip a great deal, and the ambient background noise will modulate the rig with ease. This setting will also introduce more audio distortion. The peak output level is set by the diodes, and the transmitter modulation level is set by the gain control in the transmitter. Once this control is set for any tune-up condition, the transmitter peak drive level will not be exceeded, even under close-talking conditions.

Some experimentation will be necessary. It will be necessary to readjust the transmitter gain control when major changes in transmitter tuning'are made. (This adjustment has to be made even without a speech processor.) In my opinion, a simple processor of the sort shown can be very useful but shouldn't be overworked to the point that your listeners complain about distorted voice quality and the dishes clattering in the kitchen.

On-the-air results with these circuits have been gratifying. Their results-to-simplicity ratio is high!
ham radio

FACTORY DIRECT SALE!! Wilson Electronics

MARK II
Save $\$ 105.90$
MARK IV
Save $\$ 112.90$

- At greatly reduced prices.
- Mark II and IV accessories.
- Introducing the new Mobile Amplifier Charger.
- Battery and Five free Xtal pairs of your choice with radio.

Mobile Amplifier Charger and Amplifier Specifications

WMH 440TT
WMH 480TT
WA 440
WA 480
WA 2080

Mobile Amplifier Charger	$1-6$	4	40	5.0
Mobile Amplifier Charger	$1-6$	4	85	15.6
Broad Band Amplifier	$1-6$	4	40	4.8
Broad Band Amplifier	$1-6$	4	85	15.5
Broad Band Amplifier	$10-25$	20	90	11.0

MOBILE AMPLIFIER FEATURES

- 5-watt audio amplifier for external speaker.
- Automatic fast/trickle charge.
- Front panel Touch-Tone* Pad which allows generation of DTMF tones.
- Over and under mounting bracket for under dash, floor mounting or base station use.
- A Key-locking feature for security
- Mobile antenna connect.

Signature

logarithmic detector with a post-injection marker generator

A specialized piece of test equipment that provides accurate frequency markers for crystal-filter alignment

The best way to align a crystal filter is to drive it with a swept signal generator that provides horizontal input to a scope, then detect the filter output and display it vertically. The detector should be logarithmic; that is, linear in $d B$. And it's helpful if accurate frequency markers are available on the display. This article describes such a box, which I suppose is properly called a "logarithmic detector with post-injection marker generator." That title seems a little long, so 1 call it the target for my sweeper.

This is a specialized piece of test gear, so many hams wouldn't consider building it; how many times does one align a crystal filter? The fact is, though, there isn't much in this thing in the way of parts, and it's easy to get running. I'd call it a "longweekender" project, and it sure is fun to play with.

detector speed

and dynamic range

In any logarithmic detector there's a tradeoff between speed and dynamic range. Take a peek ahead
at fig. 5 , which shows our box giving a nice account of itself between -60 and -10 dBM . That data alone doesn't guarantee the performance we need because the data in fig. 5 is static; it doesn't show how long the detector takes to settle down when the input level is changed. To see why this is important, consider a typical test situation. We're running our sweeper at 30 Hz (to get a flicker-free display) and our filter is working great. On the display there's a single hill or blip having a width of, say, one-fifth of the screen lour sweep width is five filter bandwidths).

The scope vertical signal has a bandwidth of at least 150 Hz , probably more if our filter response has steep sides; figure it out yourself. This means that, if the displayed response is to have any meaningful relationship to the filter response, the detector must be fast, very fast as logarithmic detectors go. To get this speed we have to give up range; the $50-\mathrm{dB}$ range of fig. 5 is poor in comparison with the $100-\mathrm{dB}$ range available in instruments that can take their time about producing a reading.

performance test

Perhaps the best way to specify the performance of the target is to describe the simple test I apply whenever I use it. Required are a signal generator capable of being 50 per cent modulated at 400 Hz , a calibrated step attenuator, and a dc-coupled scope. (You don't have a dc-coupled scope? Neither do I, but I do have an electronic switch that chops up an

By Dick Moroney, W1ERW, 50 Jagger Hill Road, Sanford, Maine 04073

fig. 1. Schematic of the front end showing the input pad, preamplifier, and power divider. The two outputs deliver *about 100 mV rms. Output circuit is designed to prevent interaction. The output resistors aren't critical; 330-ohm units could be used.
input to give the same effect; alternatively, you can connect a dc voltmeter along with the scope, although this is not as dramatic.)

Now, the peak-to-trough ratio of the envelope of a 50 per cent amplitude-modulated signal is exactly three; that is, the instantaneous power changes 10 dB over a modulation cycle. Hook up the stuff (using the scope internal sweep) and see what you see. The \log of a sine wave isn't that much different from a sine wave, so you'll see a "sort of" sine wave of 400 Hz . Note the peak-to-peak size of the display and the average height.

Now crank in $10-\mathrm{dB}$ attenuation. The shape of the display should be unchanged, because the instantaneous power is still varying 10 dB . The height of the display should have dropped exactly 10 dB ; namely, the peak-to-peak size! Run this test over a range of input levels and frequencies.

I find the box works very well from $1-10 \mathrm{MHz}$ and from -10 dBm input to -60 dBm (unmodulated value). At the bottom end of input levels, the display shrinks vertically, indicating loss of linearity, whereas at the highest levels, it first balloons then collapses because of saturation. The bandwidth is well above 400 Hz , because, if it weren't, the displayed waves would "lean" from vertical symmetry. I wish more of my test junk had such a simple "alive-and-well" test.

circuit description

Fig. 1 shows the front end. It's important, of course, that the target present a constant load to the filter. The feedback amplifier is designed for 50 -ohm input, and a $6-\mathrm{dB}$ pad makes extra sure.

Levels for operation are arbitrary. I chose - 10 dBm as the maximum input because that's about what any old signal generator will produce. The amplifier was chosen so that, at this input level, the two outputs are about 100 mV rms , which is the maximum input level for the following devices.

The 300 -ohm resistors keep the two outputs from interacting. All values in all diagrams are the ones I used, mostly because of the Mt. Everest principle (they were there). Obviously, 330 ohms would do as well, and the same goes for many other places where 1 used values available in 5 per cent tolerance.

Log detector. Fig. 2 shows the logarithmic detector, which uses the agc output from an LM373. The LM373 is connected in the a-m mode precisely as recommended by the manufacturer, with the exception of the $1-\mu \mathrm{F}$ capacitor at pin 1 . Normally, a much higher value is used to prevent the agc from following audio; we want the agc to follow dudio.

I experimented to find the smallest usable value for this cap; with lower values the agc loop is fast

fig. 2. Log detector circuit. The 1- $\mu \mathrm{F}$ capacitor at pin 1 of the LM373 determines respond speed. Useful bandwidth is about $\mathbf{1} \mathbf{~ k H z}$.

fig. 3. Post-injection marker generator. An LM373 is used in the product-detector mode with BFO input from an external source or crystal oscillator.
enough to lock onto noise and oscillate. This item determines the speed of the whole works. Adding 4 $\mu \mathrm{F}$ in parallel here gives a perceptible effect at 400 Hz , so l expect the useful bandwidth is about 1 kHz .

The tuned circuit at pin 9 could have been eliminated. I set up a bandswitch with circuits at 1.25-, 4.8 -, and 10.6 MHz (where I had filters in the works), but I found little difference when I switched to an unconnected position left in reverse. A loss of about 6 dB occurred at the low end, and that's it. Of course, there's a huge difference if I switch to the wrong filter.
At about 100 mV rms input, the agc system loses control and the output soars; this is easily spotted and reminds you to cut down the input.level.
Op amp U1A is an isolator. I took care to match its two resistors (by using a couple of 1 per cent resistors of the same value) to keep its output very close to the input for reasons discussed later.
Op amp U1B permits adjustment of the output range (my voltmeter has a 3 -volt scale, so I selected the range shown on the right of fig. 5), and also accepts a "birdie" input from the marker generator. Each op amp has a $10-\mathrm{pF}$ feedback cap to roll off unwanted high frequencies. The units of figs. 1 and 2 are complete in themselves; the marker (discussed next) is optional.

marker generator

Fig. 3 shows the marker generator. A second LM373 operates in the product-detector mode with BFO input from an onboard crystal oscillator. The agc line of this LM373 is driven by the output of U1A (fig. 2) at precisely the level being used on the other

LM373. This keeps the marker size independent of where it falls on the filter response curve - just a frill, but the line was available, so why not?
U1C provides a heavy lowpass filter to keep the marker narrow. I selected the $0.0039-\mu \mathrm{F}$ cap by trial to give a width of about 300 Hz , my personal preference. U1D allows adjustment of the marker height by the 200 -kilohm pot. Mine is adjusted for 1 volt p-p, or about 20 dB , which is another item of choice.
I never use markers and filter at the same time; I prefer to precalibrate the horizontal scale, then get the markers out of the way. It used to be țhat, with a rig like this, one would want several crystal markers available. But nowadays, with counters easy to come by, it seems simpler to connect an external generator and move it around while reading its positron from a counter.
I did opt for one internal marker, which is handy for making sure I'm connecting the correct tuned circuit (S1 does both). Switch S2 selects internal, ex-

fig. 4. Crystal-oscillator schematic. Circuit is from W2YM. The 1N914 generates "grid-leak" bias.

fig. 5. Log detector response showing linearity over its $50-\mathrm{dB}$ range. The absolute level is temperature dependent; relative levels are not (see text).
ternal, or no marker; and, in the internal case, it powers the crystal oscillator, fig. 4. This is just the good old W2YM circuit using a diode to generate "grid-leak" bias.

BFO injecton-level is far from critical. The levels shown are what I use, but 10 dB up or 20 dB down from there should be fine. One nice thing about the LM373 is the low level required; this allows a good, solid termination for the external generator without requiring excessive drive. As I mentioned, the marker output goes to U1B for combining with the logarithmic level.

detector response

Fig. 5 shows the linearity of this gadget over its limited range. The absolute level in fig. 5 is temperature dependent; that is, the curve might go up or down a few tenths of a volt between a cold start and temperature stabilization. The relative levels are not temperature dependent; 10 dB is 0.5 volt hot or cold. All this means is that, if you want to use the target as a "dBm meter," say to measure the output of an oscillator, you must be sure it's warmed up and calibrated. For filter responses you can jump in cold.

concluding remarks

Speaking of secondary uses for the target, note that you don't have to connect a scope to the output. I plugged in a 2000 -ohm headset in series with a $0.1-\mu \mathrm{F}$ blocking cap and used the thing in the external marker mode as a direct-conversion receiver to listen for chirp on the main rig. Worked fine!

I had a small circuit board for the crystal oscillator, having made up a batch of them long ago. I mounted the rest of this thing on a 6×6 inch ($153 \times 153 \mathrm{~mm}$) single-side board, which had room for a second LM3900. Each IC was bypassed at B+ as at pin 3 of the LM373s.
ham radio

COMPLETE KITS: CONSISTING OF EVERY ESSENTIAL PART NEEDED TO MAKE YOUR COUNTER COMPLETE. HAL-600A 7-DIGIT COUNTER WITH FREOUENCY RANGE OF ZERO TO 600 MHZ . FEATURES TWO INPUTS: ONE FOR LOW FREQUENCY AND ONE FOR HIGH FREQUENCY; AUTOMATIC ZERO SUPPRESSION. TIME BASE IS 1.0 SEC OR I SEC GATE WITH OPTIONAL 10 SEC GATE AVAILABLE. ACCURACY $\pm .001 \%$, UTILIZES $10-\mathrm{MHz}$ CRYSTAL 5 PPM. COMPLETE KIT $\$ 129$
HAL-300A 7-DIGIT COUNTER (SIMILAR TO 600A) WITH FREQUENCY RANGE OF 0 300 MHz .

COMPLETE KIT $\mathbf{\$ 1 0 9}$
HAL-50A 8-DIGIT COUNTER WITH FREQUENCY RANGE OF ZERO TO 50 MHz OR BETTER. AUTOMATIC DECIMAL POINT, ZERO SUPPRESSION UPON DEMAND. FEATURES TWO INPUTS: ONE FOR LOW FREQUENCY INPUT, AND ONE ON PANEL FOR USE WITH ANY INTERNALLY MOUNTED HALTRONIX PRE-SCALER FOR WHICH PROVISIONS HAVE ALREADY BEEN MADE 1.0 SEC AND 1 SEC TIME GATES. ACCURACY $\pm 001 \%$.
COMPLETE KIT $\$ 109$
FREE: HAL-79 CLOCK KIT PLUS AN INLINE RF PROBE WITH PURCHASE OF ANY FREQUENCY COUNTER.

PRE-SCALER KITS

(Pre-drilled G-10 board and all components) (Same as above but with preamp). (Pre-drilled G-10 board and all components) $\$ 29.95$

HAL- 1 GHz PRESCALER, vHF $\&$ UHF InPut $\&$ outPUT, DIVIDES BY 1000. OPERATES ON A SINGLE SVOLT SUPPLY. PREBUILT \& TESTED $\$ 79.95$

TOUCH TONE DECODER KIT

HIGHLY STABLE DECODER KIT COMESWITH2SIDED. PLATED THRU AND SOLDER FLOWED G-10 PC BOARD, 7-567's, 2-7402. AND ALL ELECTRONIC COMPONENTS. BOARD MEASURES $3-1 / 2 \times 5 \cdot 1 / 2$ INCHES. HAS 12 LINES OUT ONLY $\$ 39.95$
DELUXE 12-BUTTON TOUCHTONE ENCODER KIT UTILIZING THE NEW ICM 7206 CHIP. PROVIDES BOTH VISUAL AND AUDIO INDICATIONS! COMES WITH ITS OWN TWO-TONE ANODIZED ALUMINUM CABINET MEASURES ONLY $2-3 / 4^{\prime \prime} \times 3-3 / 4^{\prime \prime}$.COMPLETE WITH TOUCH-TONE PAD, BOARD, CRYSTAL, CHIP AND ALL NECESSARY COMPO.
PRICED AT $\mathbf{\$ 2 9 . 9 5}$ PRICED AT $\mathbf{\$ 2 9 . 9 5}$ FOR THOSE WHO WISH TO MOUNI THE ENCORTIAL KIT WITH PC BOARD CRYSTAL CHIP AND COMPONENTS.
PRICED AT $\mathbf{\$ 1 4 . 9 5}$
ACCUKEYER (KIT) THIS ACCUKEYER IS A REVISED VERSION OF THE VERY POPULAR WBAVVF ACCUKEYER ORIGINALLY DESCRIBED BY JAMES GARRETI, IN OST MAGAZINE AND THE 1975 RADIO AMATEUR'S HANDBOOK.
$\$ 16.95$
ACCUKEYER - MEMORY OPTION KIT PROVIDES A SIMPLE, LOW COST METHOD DIRECT ATTACHMENT TO THE ABOVE ACCUKEYER. IT CAN ALSO BE ATTACHED TO ANY STANDARD ACCUKEYER BOARD WITH LITTLE DIFFICULTY

PRE-AMPLIFIER

HAL-PA-19 WIDE BAND PRE-AMPLIFIER, $2 \cdot 200 \mathrm{MHz}$ BANDWIDTH (-3 dB POINTS), 19 dB GAIN.

FULLY ASSEMBLED AND TESTED $\mathbf{\$ 8 . 9 5}$
CLOCK KIT - HAL 79 FOUR-DIGIT SPECIAL - \$7.95. OPERATES ON 12-VOLT AC (NOT SUPPLIED). PROVISIONS FOR DC AND alarm operation

6-DIGIT CLOCK • $\mathbf{1 2 / 2 4}$ HOUR

COMPLETE KIT CONSISTING OF 2 PC G-10 PRE-DRILLED PC BOARDS, 1 CLOCK CHIP. 6 FND 359 READOUTS, 13 TRANSISTORS. 3 CAPS, 9 RESISTORS, 5 DIODES, 3 PUSHFND 359 READOUTS, BUTTON SWITCHES, POWER TRANSFORMER AND INSTRUCTIONS DON'T BE FOOLED BY PARTIAL KITS WHERE YOU HAVE TO BUY EVERYTHING EXTRA PRICED AT $\mathbf{\$ 1 2 . 9 5}$ CLOCK CASE AVAILABLE AND WILL FIT ANY ONE OF THE ABOVE CLOCKS REGULAR PRICE $\quad \$ 6.50$ BUT ONLY $\$ 4.50$ WHEN BOUGHT WITH CLOCK.
SIX-DIGIT ALARM CLOCK KIT FOR HOME, CAMPER, RV, OR FIELD-DAY USE OPERATES ON 12-VOLT AC OR DC, AND HAS ITS OWN 60-Hz TIME BASE ON THE BOARD. COMPLETE WITH ALL ELECTRONIC COMPONENTS AND TWO-PIECE, PRE-DRILLED PC BOARDS. BOARD SIZE $4^{\prime \prime} \times 3^{\prime \prime}$ COMPLETE WITH SPEAKER AND SWITCHES. IF OPERATED ON DC, THERE IS NOTHING MORE TO BUY. PRICED AT $\mathbf{\$ 1 6 . 9 5}$ -TWELVE-VOLT AC LINE CORD FOR THOSE WHO WISH TO OPERATE THE CLOCK FROM 110-VOLT AC.
$\$ 2.50$
SHIPPING INFORMATION - ORDERS OVER $\$ 15.00$ WILL BE SHIPPED POSTPAID EXCEPT ON ITEMS WHERE ADDITIONAL CHARGES ARE REOUESTED ON ORDERS LESS THAN $\$ 15.00$ PLEASE INCLUDE ADDITIONAL $\$ 1.00$ FOR HANDLING AND MAILING CHARGES. SEND SASE FOR FREE FLYER

log-periodic fixed-wire beams for 75-meter DX

LP antenna with excellent characteristics and performance

This article describes log-periodic antennas made of wire elements, fixed in position, for the 75 -meter Amateur band. It includes test results based on contacts between W4AEO in South Carolina and an Amateur in New Zealand, ZL1BKD. During the test period (late 1975 through early 1976), performance of the 75 -meter LP, in various configurations, was compared with that of other antennas including dipoles, delta loops, slopers, and verticals.

background

I first became interested in 75 -meter DX while talking to Colin, ZL1BKD. Colin had read some of my articles on LP beams ${ }^{1-5}$ and asked if I'd tested one on 75 meters. Most of the referenced articles

The 75 -meter LP beam antenna described here requires a considerable amount of real estate as well as many high supports. The minimum area required for the 75 -meter antenna suggested by W6PYK (3-element LP plus director) is about 0.3 acre (1500 square meters, or 16,131 square feet). This doesn't include space for running supporting lines between antenna elements and trees, which requires another 988 square meters (10,620 square feet). Thus the antenna isn't practical for Amateurs limited to small city lots. Editor
describe the construction of LPs for 10, 15, and 20 meters, giving test results. In one or two of the articles I'd furnished dimensions for a 5 -element monoband LP for 75 meters of the log-periodic dipole (LPD) type, but it was never tested. (The dimensions for the 75 -meter LPD were merely scaled up from one that worked well on 40 meters.)

As a result of my on-the-air talks with ZL1BKD and an exchange of correspondence, we agreed to conduct a test program involving a 75 -meter LP and several popular Amateur antennas.

reference antenna

The antenna used as a reference in the tests was a log periodic consisting of five elements about 18 meters (60 feet) high. This antenna was modified several times during the tests. It was used as an LP Yagi, then as a 5 -element Yagi. Test data in the form of operating-log sheets are provided to show on-theair results (table 1).

environmental test conditions

I'm fortunate to have enough space to erect several 75 -meter antennas at the same time. Pine trees abound for supports, with heights of up to 21 meters (70 feet). But my location in South Carolina' is subject to severe thunderstorms. Lightning took its toll in the summer of 1976: two test antennas were destroyed.
I have also found that vertical antennas don't perform well at this location. I believe this is because of poor ground conductivity in my area, ${ }^{14}$ limited clearance between verticals and trees, ${ }^{15}$ and an extremely high noise level.

overseas tests

Between July, 1975, and March, 1976, ZL1BKD and I compared over a dozen different antennas with

By George E. Smith, W4AEO, in collaboration with Paul A. Scholz, W6PYK. Mr. Smith's address is 1816 Brevard Place, Camden, South Carolina 29020. Mr. Scholz's address is 12731 Jimeno Avenue, Grenada Hills, California 91344
the 75 -meter LP, which was aimed west from my location. Comparision antennas included:

1. Three 75 -meter halfwave dipoles at 15,18 , and 23 meters (50,60 , and 75 feet) above ground

2. Three 75-meter delta loops

3. Several 75 -meter slopers and phased slopers using various beam configurations
4. Two quarter-wave 75 -meter verticals with various numbers of buried radials
5. One half-wavelength 75 -meter vertical suspended from a balloon, voltage fed at the bottom with an antenna tuner
6. Two 75 -meter half waves in phase (collinear horizontal dipoles) at 23 meters (75 feet) high, oriented broadside to New Zealand
7. One 2-wavelength 75 -meter horizontal quad element up 23 meters (75 feet). One lobe was toward New Zealand
8. A two-element, 75 -meter bobtail curtain (two phased quarter-wavelength vertical radiators with one-half wavelength spacing). An inverted groundplane was used. Antenna height was about 21 meters (70 feet). The pattern was bidirectional, broadside to New Zealand
9. One 75 -meter long-wire antenna (229 meters, or 750 feet long) mounted on tree tops at about 18 meters (60 feet) high. The main lobe was oriented west.
10. A Shakespeare (commercial marine) vertical antenna, center loaded, 7 meters (24 feet) long covering the $4-\mathrm{MHz}$ marine band. The antenna was tuned to 3808 kHz and mounted at 12 meters (40 feet). Four one-quarter-wavelength sloping radials were used.

a note on delta loops

Delta loops for 75 meters were popular during the time of these tests and were used by several 75meter DXers. Of the three delta loops used in the tests, two were arranged with the horizontal section at the top and with the apex pointed toward ground (delta loops 2 and 3 , table 1). The third delta loop (delta loop 1, table 1) was in the opposite configuration: apex up and horizontal section about 3 meters (10 feet) above ground.

Two deltas were first fed at bottom or center (horizontal polarization), then changed to corner feed (vertical polarization). The latter configuration was best for the U. S. - VK/ZL path.

fig. 1. Data showing day-to-day differences between the LP and the quarter-wave vertical used at W4AEO during the test period (August, 1975, through November, 1975.) These data were compiled by W6PYK from reports by ZL1BKD.

Anyone considering a quad or delta loop for 75 or 40 meters is urged to read reference 16 , in which the author describes his tests of deltas and quads and shows lobes, radiation angles, and other data. (A reprint of this article appears in reference 17.) Another source appears in the April, 1976, issue of ham radio. 18

test results

Overseas tests began in July, 1975. A condensed reproduction of my log (table 1) shows representative data taken while running tests with ZL1BKD. The vertical, delta loops, and quad were first compared directly with the 5 -element LP at about 18 meters (60 feet) above ground, aimed west. Note from table 1 that the quad, erected in October, 1975, and delta loop 3, erected in November, 1975, were mounted over a pond.
The LP, LP-Yagi, and Yagi under test were the only true unidirectional antennas used during the test period. Also note that the LP had been modified several times - it was used as an LP-Yagi for a time, then later modified as a 5-element Yagi.

test note

My first 75-meter LP was completed on August 1, 1975. I made contact with New Zealand stations the following morning. Reports indicated that the LP was at least 10 dB better than the dipole or quarterwave vertical antenna.

Colin, ZL1BKD, later added an external dB meter to his receiver, which gave more accurate readings. This method was used during the tests between August 21, 1975, and March, 1976, when the tests were completed. Contacts were made several times per week during this period.

Tests were run on 75 meters near 3808 kHz for U.S. and ZL stations, with 350 watts PEP. IVK stations operate split frequency and are received between $3690-3700 \mathrm{kHz}$.)

During some days there was little if any propaga-
tion, so no tests were run because of low signal strength. Little fading was noticed during the test periods. If there was any, it was quite slow in contrast to that on the higher-frequency bands. Signal buildup occurred just before sunrise, usually 5-10 dB. Then a gradual signal-strength decay occurred for about 30 minutes to an hour until the DX signals faded into the noise. We repeated the antenna tests at different times during the 1000-1200 GMT opening.

The unidirectional beams. From reports furnished by ZL1BKD during the 75 -meter tests (table 1), the LP and LP-Yagi beams showed a $10-15 \mathrm{~dB}$ increase over the other antennas tested. This doesn't mean that the 75 -meter beams had a $10-15-\mathrm{dB}$ gain. Theoretically, a truncated LP of the type tested, using only three to five elements and a boom length of only 0.35 wavelength, would probably have no more gain than 5 dB over a dipole at the same height. Increasing elements to 9 or 10, and increasing boom length to about 1.3 wavelength, would probably result in a gain of about 10 dB . But the boom length would be about 103 meters (337 feet), which is impractical for most Amateurs.

I believe that the reported differences, $10-15 \mathrm{~dB}$ in favor of the unidirectional LP beams, were caused by
the inefficiency of the other antennas tested possibly by power wasted in lobes in undesired directions.

Comparative reports on reception at W4AEO were about the same. However, a high noise level plus heavy interference at times made direct comparison difficult on some days. (World noise charts show that ZLs and VKs generally experience much less noise than I do in my area.)

During high noise conditions I used several Beverage receiving antennas, which helped to improve reception. I am now erecting several Beverage antennas for 160,75 , and 40 meters. They are of the twowire type with direction-reversing capability.

More on the delta loops. Table 1 shows that the quarter-wave vertical and delta loop 1 (apex up; horizontal portion near ground) were used for most test comparisons during which data were taken. Delta loop 2 (horizontal section up; apex toward ground) was tested only a few times, as it made a poorer showing than delta loop 1. Delta loop 2 was supported at about 23 meters (75 feet) over a pond. I used a 183 -meter (600 -foot) length of RG-8/U cable to feed this antenna. Here are some additional interesting observations.
table 1. Condensed log of W4AEO showing representative data on antenna tests with ZL1BKD during the latter half of 1975 and early 1976. Delta loop 1: apex up; delta loop 2: apex down; delta loop 3: apex down. Readings taken by ZL1BKD.

date (1975)	time (GMT)	remarks	$\begin{aligned} & \text { LP or LP } \\ & \text { Yagi } \end{aligned}$	quarterwavelength vertical	delta loop 1	delta loop $2^{(1)}$	twowavelength quad ${ }^{(2)}$	delta loop ${ }^{(3)}$
July		First contacts with ZL1BKD using half-wavelength dipole at 15 meters (50 feet) high						
2 Aug		ZL1BKD reports LP $\approx 10 \mathrm{~dB}$ better than dipole or vertical						
2 Aug later		ZL1BKD and $\mathrm{ZL2BT}$ report LP now $\approx 15 \mathrm{~dB}$ better than dipole or vertical						
21 Aug*		dipole S8	+ 10-15 dB	S8 S	S9-S9 + 10 dB			
25 Aug			+ 10-15 dB	S8 S	S9-S9 + 10 dB			
6 Sept			$+12 \mathrm{~dB}$	S8 S	S9+5dB			
1 Oct		poor						
2 Oct			S9 (ref)	- 4 dB	$-2 \mathrm{~dB}$	$-10 \mathrm{~dB}$		
8 Oct	1030		$+18 \mathrm{~dB}$		+ 4 dB		$+6 \mathrm{~dB}$	
80 ct	1200		+ 26 dB	$-8 \mathrm{~dB}$	$-6 \mathrm{~dB}$		$-10 \mathrm{~dB}$	
11 Oct	1115	all sigs. down						
9 Nov		reworked LP	30 dB	15 dB	18 dB		12 dB	
19 Nov	1038		24 dB	8 dB	10 dB		4 dB	21 dB
31 Dec	1115		26 dB	21 dB			6-8 dB	
(1976)								
6 Jan	1125		6 dB	$0 \quad 0$	0 (ref)			4 dB
24 Jan	2120		30 dB	S9				20 dB

Notes: (1) Erected 24 Sept., 1975
(2) Erected 8 Oct., 1975 (3) Erected 29 Nov., 1975] These antennas were erected over a pond $1 / 10$ mile from shack
*ZL1BKD improved method of taking readings, which was used for remainder of tests.

1. Delta loop 3 (horizontal part up; apex down) was erected over a swimming pool. The transmis-sion-line length to this antenna was 76 meters (250 feet) of RG-8/U cable.
2. Delta loops 1 and 2 were tried using both endfeed and center-feed for vertical and horizontal polarization respectively. The latter was best for short distances; the former was best for DX. Delta loop 3 was used with vertical polarization only. (The ZL reports shown for the delta loops were for vertical polarization.)
3. Each delta loop had the same length of wire, .which was cut by formula to resonate at 3800 kHz . However, I noted that, with vertical polarization, the antenna resonant frequency decreased to 3700 kHz . The following table shows SWR readings taken for the delta loops when fed for vertical polarization:

standing wave ratio			
$\mathbf{f (M H z)}$	DL 1	DL 2	DL 3
3.5	2.8	2.2	2.7
3.6	2.4	2.8	3.0
3.7	2.0	2.3	2.9
3.8	1.2	2.0	2.0
3.9	1.05	1.07	1.05
4.0	1.8	1.1	1.5

notes on the

vertical antenna

The quarter-wave vertical used in most of the tests was a 19 -meter (61.5 -foot) length of wire suspended by a nylon line between two high pine trees. The vertical was fed from a 61 -meter (200 -foot) length of RG-8/U coax cable buried in the ground. Ten radials were used originally; the number was later increased to thirty.

Another vertical antenna, consisting of a halfwavelength wire suspended from a balloon, was tested several times for comparison with the quarterwavelength vertical. Little improvement was noted:

the beam antennas

The original $75-\mathrm{m}$ LP beam first erected for the tests was a 4-element LP with one parasitic director in front. This antenna was later modified to an LPYagi using one parasitic director, three driven (LP) elements, and a parasitic reflector. Little difference was noted between these two configurations. Later the LP-Yagi was converted to a Yagi using only one driven element. (This beam was soon destroyed by lightning.)

The last beam used during the test was the Yagi. When comparing it with the quarter-wave vertical, the difference between the Yagi and the vertical was less than that in the previous reports covering the LP

fig. 2. The 75 meter LP design suggested by W6PYK, which is for 3808 kHz . Taper factor, $\tau,=0.94$; spacing factor, $\sigma,=0.175$.
or LP-Yagi. It's possible that the Yagi gain could have been improved by carefully adjusting the element lengths and spacing, since a Yagi is critical of adjustment. As the Yagi was destroyed by lightning, tests were not completed.

analysis of test results

The beam antennas gave surprisingly consistent day-to-day reports. Average reports were 05 , $\mathrm{S} 9+10 \mathrm{~dB}$ average, with low readings about S9. At times readings peaked to $59+25 \mathrm{~dB}$. These were about the same reports given on the same day to other Eastern U.S. stations running the legal powerinput limit, but using only an inverted V or dipole antenna. I therefore feel that the beams did a fair job (especially at a height of 18 meters, or 60 feet). The average report on the beams was about 10 dB better than most of the conventional antennas tested at the same time at my location. I used a coaxial switch for antenna selection, so the readings taken during the tests were made within a second.

Table 1 shows differences among the same three antennas on different days. I believe that this is probably because of the differences in the vertical radiation patterns. Fig. 1 was compiled by W6PYK from the data taken by ZL1BKD to illustrate the day-to-day difference of the LP antenna and the quarter-wave vertical. The data were taken between August and mid November, 1975. Note that the LP, the LP-Yagi,

fig. 3. Plan view of the 3-element LP plus director for $3808 \mathbf{k H z}$ (design suggested by W6PYK).
and the Yagi were the only true unidirectional beams tested.

Observations:

1. The delta loops (fed at corner's vertically polarized) have bidirectional lobes [plus the smaller highangle center lobe (90 degrees), straight up]. Thus more than 50 per cent of the radiation is lost in unused lobe(s). Ref. 16, Fig. 10; Ref. 17, Fig. 7; or Ref. 18, Fig. 3.
2. The two-wavelength horizontal quad has four equal-spaced lobes, with only one pointing southwest.
3. The quarter- and half-wavelength verticals are omnidirectional and have maximum radiation at low angles. This may be a doubtful advantage if the antenna is located in a high-absorption environment. Interference from manmade noise was very evident.

a 3-element fixed wire beam LP for 75 meters

The 75-meter Yagi under test was destroyed by lightning in June of 1976 . I wanted to replace it with another LP giving more gain, if possible. So Paul, W6PYK, suggested a 3-element, wide-spaced, truncated LP designed with a higher taper factor, τ, and spacing factor, σ. Using only three elements would limit the boom length so that it would fit into the available space previously used for the 5-element antenna.

W6PYK had observed a number of the ZL1BKD/ W4AEO tests. As he is also interested in antenna
design, we became acquainted on 75 meters. We also had a great deal of correspondence, comparing notes. W6PYK made a number of excellent suggestions during this period.

Paul describes his QTH as a typical California residential lot. He does not have space for a 75-meter beam, but was using a unique 40/75 roof-mounted vertical of his own design (which is quite effective considering its size - see ham radio, September, 1979, page 44) for working the ZLs and VKs. I agreed to construct and test some of his LP designs. He has written a number of papers on antennas, his latest being "L/P Antenna Design," which appeared in ham radio, December, 1979, page 34.

Paul furnished complete dimensions for the 3-element LP: element lengths and spacing (fig. 2)
table 2. Standing-wave ratio as a function of frequency for the beam antennas used in the test.

standing-wave ratio				
frequency	3-element LP	3-element LP	5-element	5-element
(MHz)	$(\tau 0.94, \sigma 0.175)^{*}$	plus director*	LP	Yagit
3.5	1.35	1.35	1.1	2.9
3.6	1.3	1.2	1.25	2.4
3.7	1.2	1.1	1.1	2.0
3.8	1.1	1.1	1.07	1.4
3.9	1.1	1.05	1.15	1.2
4.0	1.5	1.6	1.15	2.0

[^6]designed to $\tau=0.94$ and $\sigma=0.175$. This design gives an overall array length (boom length) of 28.3 meters (93.0 feet). Paul advised that this configuration should provide good gain for the space available.

Note that the element lengths are slightly longer than those given by the formulas. Paul suggested this to allow for ground effect, since the height of the beam above ground would be limited to about 18.3 meters (60 feet), or less than a quarter wavelength. This was evidently correct from the SWR data (table 2), which was taken after the beam was completed. A plan view of the beam, (fig. 3), shows method of support - several trees.

During the tests on this new 75 -meter beam, the only other antenna available at the time for comparison, was a dipole sloper. The other 75 -meter antennas outlined above had been dismantled to make room for several beams needed for 20 -meters. Bob Tanner, ZL2BT, reported on this new LP, the best tested to date.

acknowledgment

I especially thank W6PYK for his suggestions on LPs, Beverages, and other antennas. A number have already been tested and several more are still to be tried. I also thank Colin, ZL1BKD, for his many hours of test reports.

references

1. George E. Smith, W4AEO, "Three-Band Log Periodic," harn radio, September, 1972, page 28.
2. George E. Smith, W4AEO, "Log Periodic Antenna for 14, 21, and 28 MHz ," ham radio, May, 1973, page 16.
3. George E. Smith, W4AEO, "Log Periodic Antenna for 14, 21, and 28 MHz, " ham radio, August, 1973, page 18.
4. George E. Smith, W4AEO, "Log Periodic Antennas, Vertical Monopole, 3.5 and 7.0 MHz ," ham radio, September, 1973, page 44.
5. George E. Smith, W4AEO, "Log Periodic Beam for 15 and 20 Meters," ham radio, May, 1974, page 6.
6. George E. Smith, W4AEO, "Feed System for Log Periodic Antennas," ham radio, October, 1974, page 30.
7. George E. Smith, W4AEO, "Graphical Design Method for Log Periodic Antennas," ham radio, May, 1975, page 14.
8. Stan Whiteman, 5B4AO/W1MDZ, "Log Periodic Antennas," "Comments," ham radio, March, 1974, page 54.
9. Tom Morrison, WB5IZN, "Log Periodic Antennas," '"Comments," ham radio, May, 1974, page 66.
10. George E. Smith, W4AEO, "Mono-Band Log-Periodic Antennas, part 1," 73 , August, 1973, page 21.
11. George E. Smith, W4AEO, 'Mono-Band Log-Periodic Antennas, part 2," 73, September, 1973, page 37.
12. George E. Smith, W4AEO, "Yes, I've Built Sixteen Log Periodic Antennas!" 73 , March, 1975, page 97.
13. George E. Smith, W4AEO, "Quad Log-Periodic Fixed-Beam Antennas for 40 and 20 Meters," QST, April, 1977, page 24.
14. Ground Conductivity Maps, FCC Publication, dated February, 1954.
15. Edmund A. Laport, Radio Antenna Engineering, McGraw-Hill, New York, 1952. Fig. 3.13.
16. L. V. Mayhead, G3AZC, "Loop Aerial Close to Ground," Radio Communications, May, 1974, (British ham magazine).
17. Bill Orr, W6SAI, "Antennas: Quads and Deita Loops," CQ, August, 1975, page 36.
18. Barry Kirkwood, ZL1BN, "Corner-Fed Loop Antenna for Low-Frequency DX," ham radio, April, 1976, page 30.
ham radio

more conversions of surplus cavity bandpass filters

Follow-up
 to a previous article in ham radio adapting surplus filters for 220 and 440 MHz

In an earlier issue of ham radio, ${ }^{1} \mid$ described the procedure for converting surplus cavity bandpass filters for operation in the 2 -meter band. These filters are dual-resonant cavities, gold plated for high conductivity, and are available at low cost in the surplus market.*
The previous article thoroughly covered the theory and application of these cavity bandpass filters; therefore, I suggest that you refer to that issue. I'm sure that copies are available.

For convenience, the filters used in the 417/GRC receiver and the frequency ranges covered are:

filter	frequency (MHz)	filter	frequency (MHz)
F-238/U	$50.0-58.5$	F-196/U	$184-205$
F-239/U	$58.5-67.0$	F-197/U	$205-226$
F-240/U	$67.0-76.0$	F-199/U	$224-254$
F-241/U	$75.0-84.0$	F200/U	$254-284$
F-242/U	$84.0-92.5$	F201/U	$284-314$
F-192/U	$100.0-121.0$	F202/U	$314-344$
F-193/U	$121.0-142.0$	F203/U	$344-374$
F-194/U	$142.0-163.0$	F204/U	$374-404$
F-195/U	$163.0-184.0$	F-236/U	$550-600$

For conversion to the $220-225 \mathrm{MHz}$ band, I selected the F-195/U and the F-196/U filter assemblies; both are lower in frequency than the desired band. Likewise, I selected a lower-frequency filter for the $420-450 \mathrm{MHz}$ band: the F-202/U. The advantage of selecting the lower-frequency filters for conversion was discussed in reference 1 .

[^7]By William Tucker, W4FXE, 1965 South Ocean Drive, 15 G, Hallandale, Florida 33009

conversion procedure

for $\mathbf{2 2 0 ~ M H z}$

The F-195/U and F-196/U filters can be converted to the $220-\mathrm{MHz}$ band by making the following modifications: remove the rear hex nuts from the dualcavity assembly and carefully slide out the stationary portion of the cavity and the cylindrical housing.
The stationary portion of the cavity consists of the fixed center conductor, the fixed capacitance cup, and the pickup loops. The fixed capacitance cup provides fixed capacitance with respect to the cavity housing and is also the stator of the variable capacitor provided by the movable plunger capacitor cup Yfig. 1).

To increase frequency the size of the fixed capacitance cup must be reduced by trimming as indicated by the dotted line in fig. 1, thus reducing the fixed capacitance to the cylindrical cavity wall. To increase frequency to the $200-230 \mathrm{MHz}$ range, cut off no more than $7 \mathrm{~mm}(9 / 32$ inch) on the $\mathrm{F}-195 / \mathrm{U}$ and no more than 5 mm ($3 / 16 \mathrm{inch}$) on the $\mathrm{F}-196 / \mathrm{U}$. If a slightly higher range is desired, for example $210-240 \mathrm{MHz}$, file off an additional amount until the desired range is obtained. A hacksaw or any convenient method can be used. Be sure to remove all burrs for a smooth finish.

Modify one section of the cavity assembly at a time and check with a grid-dip meter at its terminal. About a $12.5-\mathrm{mm}(1 / 2$-inch) loop at the terminal, coupled to the grid-dip meter, should provide a sharp dip at resonance. When the desired frequency is obtained, duplicate the other half of the assembly.

The dual-cavity assemblies can be separated electrically into two individual-bandpass, single-section cavities by removing the connecting jumper and providing two additional terminals using a small BNC type connector.

If two individual series-resonant "suck-out" cavity traps are desired, simply remove the jumper and its pickup loops. You'll then have two single-terminal traps.

fig. 1. Modifications to the F-195/U and F-196/U filters for 220-225 MHz. The fixed capacitance cup must be trimmed as shown to increase frequency.

fig. 2. Modifications to the F-202/U filter for $420-450 \mathrm{MHz}$. Reverse A and B and push forward fixed capacitance cup A as shown.

conversion procedure for $\mathbf{4 4 0} \mathbf{~ M H z}$

The F-202/U filter assembly can be converted to the $440-\mathrm{MHz}$ band in the following manner. Slide out the stationary portion as previously indicated and refer to fig. 2 "before" and "after." To increase frequency to the $400-530 \mathrm{MHz}$ range, the fixed-capacitor size must be reduced and the movable section size increased by reversing the \mathbf{A} and \mathbf{B} capacitance cups as shown. Note that the small cup, A, is pushed forward 1.5 mm ($1 / 16$ inch) by loosening the allen set screw in the backstop and pushing it forward.

The frequency range can now be checked by any convenient method such as a transmitter or receiver or a signal generator. You can also use your 2-meter transceiver in the low-power position by feeding the output into either terminal of the dual cavity through a germanium diode to obtain a good third harmonic. You can then read the output as you tune through resonance with a dc microammeter in series with a similar diode at the other terminal of the cavity assembly. Instructions for obtaining two individual bandpass or band reject (suck-out) cavities are the same as previously described.

All the cavities listed for the $417 /$ GRC receiver probably can be converted for use on other frequencies as required. The methods described in this and the preceding article ${ }^{1}$ serve as a guide; all that's required is a little patience and some simple test equipment.

reference

[^8]ham radio

TS-120S...A big litte rig.

(MC-35 MIKE OPTIONAL

It's a compact, up to 200 watts PEP input, all solid-state HF transceiver with such standard features as built-in digital readout, IF shift, new PLL technology and requires no tuning!

Exciting and perfect for car or ham shack use! But, there's more to say about the TS-120S! This unique all solid-state $\mathrm{HF}, \mathrm{SSB} / \mathrm{CW}$ transceiver produces a hefty signal and also offers a lot of other great features in a very attractive, compact package.

FEATURES:

- All solid state with wideband RF amplifier stages. No final dipping or loading, no transmit drive peaking, and no receive preselector tuning! Just dial your frequency and operate!
- Five bands, plus WWV. Transmits and receives on $80 / 75,40,20,15$. and all of 10 meters \ldots and receives WWV on 15 MHz .
- 200 watts PEP (160 watts DC) input on 80.15 meters, 160 watts PEP (140 watts DC) input on 10 meters. LSB. USB, and CW.

100 Hz resolution. Six digits. Special green fluorescent tubes eliminate viewing fatigue. Analog subdial, too, for backup display

- IF shift (passband tuning), to remove adjacent-frequency interference and sideband splatter
- Advanced PLL circuit, which eliminates need for heterodyne crystal element for each band. PLL lock frequency, CAL marker signal, and counter clock circuit use single reference frequency crystal. Simplifies circuitry, improves overall stability. Also improves transmit and receive spurious characteristics.
- Attractive, compact design. Measures only $31 / 2^{\prime \prime}$ high X $91 / 4^{\prime \prime}$ wide X $13^{1 / 2} 2^{\prime \prime}$ long, and weighs only 4.9 $\mathrm{kg}(11.7 \mathrm{lbs}$). A perfect size for convenient mobile operation and rugged enough for either
mobile or portable use. Also has all the desired features for optimum ham-shack operation at home.
- Noise blanker. You'll wonder where the ignition noise went.
- Operates with PS. 30 base-station power supply, which turns on and off remotely with TS-120S power switch.

See the big little TS-120S rig and match. ing accessories (VFO- 120 remote VFO. SP-120 external speaker, PS 30 AC power supply, MB 100 mobile mount ing bracket. AT-120 antenna tuner and YK-88C CW Filter) at your nearest Authorized Kenwood Dealer!

TS-180S wih DFG

Digital Frequency Control* a Kenwood innovation for maximum HF operating enjoyment!
 - Single conversion system with highly advanced

Kenwood's TS-180S with DFC is an all solidstate HF tranceiver designed for the DXer, the contest operator, and all other Amateurs who enjoy the 160 through 10 -meter bands. The following features prove, beyond doubt, that the TS-180S is the classiest rig available!

- Digital Frequency Control (DFC), including four memories and manual scanning. Memories are usable in transmit and/or receive modes. Memory-shift paddle switches allow any of the memory frequencies to be tuned in 20 Hz steps up or down. slow or fast, with recall of the original stored frequency. It's al most like having four remote VFOs!
- All solid-state ...including the final No dipping or loading. Just dial up the frequency. peak the drive, and operate!
- High power... 200 W PEP/ 160 W DC input on 160-15 meters, and 160 W PEP/ 140 W DC on 10 meters (entire band provided). Also covers more than 50 kHz above and below each band (MARS, WARC, etc.), and receives WWV on 10 MHz .
- Improved dynamic range
- Adaptable to all three proposed (WARC) bands.

PLL circuit, using only one crystal with improved stability and spurious characteristics.

- Built-in microprocessor-controlled large digital display. Shows actual VFO frequency and difference between VFO and "M1" memory frequency. Blinking decimal points indicate "out of band." Monoscale dial, too.
- IF shift ... Kenwood's famous passband tuning that reduces QRM.
- Selectable wide and narrow CW bandwidth on receive (500 Hz CW filter is optional).
- Automatic selection of upper and lower sideband (SSB NORM/SSB REV switch).
- Tunable noise blanker (adjustable noise sampling frequency).
- RF AGC ("RGC"), which activates automati cally to prevent overload from strong, local signals.
- AGC (selectable fast/slow/off)
- Dual RIT (VFO and memory/fix).
- Three operating modes ...SSB. CW, and FSK
- Improved RF speech processor.
- Dual SSB filter (optional), with very steep shape factor to reduce out of passband noise on receive and to improve operation of RF speech processor on transmit.
- 13.8 VDC operation.
- Also available is the TS-180S without DFC, which still shows VFO frequency and difference between VFO and "hold" frequencies on the digital display.
- Full line of matching accessories, including PS 30 base-station power supply. SP- 180 external speaker with selectable audio filters, VFO 180 remote VFO. AT- 180 antenna tuner/ SWR and power meter, DF 180 digital frequency control. YK 88 CW filter. and YK. 88 SSB filter

All of these advanced features can be yours... and at an attractive price! Visit your local Authorized Kenwood Dealer and inquire about the exciting TS.180S with DFC!

LED tuning indicator for RTTY

A novel circuit that takes the guesswork out of tuning RTTY stations

This project was started after I built a modified ST-4 radioteletype (RTTY) demodulator to interface between my EICO 753 transceiver and my model 28 page printer. Since RTTY operation permits only a very small tuning error, and my EICO often drifts freely, my oscilloscope was in constant use to monitor the cross-loop pattern. This pattern shows any drift immediately before the printer starts to garble and therefore was essential for keeping the receiver on frequency.

tuning indicator

It wasn't long before I decided that running my scope just for tuning was a waste of power. It uses 285 watts. Also, the scope's fan is almost as noisy as the teletypewriter. What was needed was something small with low power consumption to provide the tuning indication. This article describes the circuit I used to replace the scope for observing the crossloop pattern. The display uses two bar graphs, each having seventeen LEDs. The right graph (see photos) shows, bottom to top, the segment \mathbf{A} to \mathbf{B} for mark. The left graph shows, from bottom to top, the segment A to C for space. See fig. 1.

As shown in fig. 1, each loop crosses each segment once. The points where the segments are crossed is directly related to how well the station is tuned in. This circuit samples these points and displays their relative positions on the bar graphs. This circuit also requires that the oscilloscope display of the demodulator output be loops - not straight lines.

configuration

The circuit is connected as shown in fig. 2. The inputs are connected to the same points in the demodulator where an oscilloscope would be connected. U1D, an LM3900N, a unity-gain inverter. (One amplifier in one of the LM3900N quad amps is not used.) 04 reduces the +12 volts from the demodulator to 6.1 volts to supply the circuit. This voltage is a compromise between LED intensity, system performance, and a desire to reduce power consumption. In the setup shown (fig. 2), two identical circuits are used: one for the mark input and the other for the space input.

sample-and-hold circuit

Fig. 3 consists of input buffer amplifier U1A, a zero-crossing detector, U 1 B and Q 1 , and a sample-and-hold circuit, $\mathrm{O} 2, \mathrm{Q} 3$, and U1C. When the input signal goes positive through the zero-voltage point, a low-going pulse at $\mathbf{Q 1}$ collector turns on $\mathbf{Q 2}$ for 5 to 20 microseconds. The voltage on 02 emitter, which comes from the second sample-and-hold circuit, is stored in C4. O 3 acts as a buffer between C4 and U1C.

By Loren Jacobson, WA0ELA, Rural Route 1, Box 60, Lennox, South Dakota 57039

Top left: A properly tuned-in mark and space signal with the accompanying bar graph indications. Top right: A properly tuned-in mark signal with the accompanying bar graph indications. Bottom left: The four intensified points on the oscilloscope display indicate where sampling is being accomplished. Both sample pulses were coupled to the Z axis on the oscilloscope to help clarify the sampling points in these photos. Bottom right: A slightly mistuned signal and resulting bar-graph display.
table 1. Parts list for the tuning indicator.

	ity	description		tity	description
2	C1	$0.02-\mu \mathrm{F}, 100 \mathrm{~V}$ disc	2	R5	180k
4	C2, C3	$0.01-\mu \mathrm{F}, 25 \mathrm{~V}$ disc	2	R6	2.2 M
2	C4	$0.002-\mu \mathrm{F}, 1000 \mathrm{~V}$ disc	2	R7	1M
1	C5	$50-\mu \mathrm{F}, 25 \mathrm{~V}$ electrolytic	4	R8,R16	25k pot
1	C6	$0.1-\mu \mathrm{F}, 25 \mathrm{~V}$ disc	2	R9	330k
2	CR1	silicon diode	2	R10	1 k
34	CR2-CR18	LED	2	R11	2.2 k
1	CR19	6.8 V zener, 1 W	2	R12	10k pot
2	Q1	2N2222 or equivalent	1	R20	10k
2	02	general-purpose PNP	64	R21-R35,	
2	Q3	MPF102, RS276-2035 or equivalent		R37-R53	470k
1	Q4	MPS U01 or equivalent	4	R36,R54	4.7k
2	R1	500 k pot	2	U1A-U1D	LM3900N quad op amp
8	R2,R13,R15		32	U3-U18	LM741CN op amp
	R17,R18	100k	1		integrated circuit perfboard $114 \times 152 \mathrm{~mm}$
4	R3,R14	560k			($41 / 2^{\prime \prime} \times 6^{\prime \prime}$)
3	R4, R19	1.8 M resistors are $1 / 4$ watt			RS276-1394 or equivalent

fig. 2

fig. 3
fig. 1. Cross-loop pattern.
fig. 2. Configuration of the complete tuning unit.
fig. 3. Sample-and-hold circuit.
fig. 4. Bar-graph circuit.

bar-graph circuit

Fig. 4 consists of a group of LM741CN comparators that light the appropriate LED, depending on the value of the input voltage at $\mathrm{V}_{\text {in }}$. Each 741 has a different reference voltage on pin 2, obtained from voltage divider R21-R36. The sampled voltage is on pin 3. The output of pin 6 of any 741 will depend on the relationship of the reference voltage to the input voltage. When two adjacent 741s have a different out-
put, the LED between them will light. In this way only one LED will be illuminated for any level of input voltage.

construction

A parts list for the tuning indicator is shown in table 1. Neither circuit layout nor components were critical in the unit I built. Point-to-point wiring was used throughout. Half-watt resistors may be substi-

The completed project.
tuted if space permits. The power supply voltage can be changed to adjust for LED brightness. Using smaller resistors in series with the LEDs will make possible a lower supply voltage. On my unit, at 5 volts, the upper and lower LEDs could not be lit by adjusting R16 and R12. Using different values of R54 and R36 or adjusting U1C gain will compensate for insufficient or excessive voltage swing from U1C. Using only thirteen or fewer LEDs in each bar graph will still provide a good display if cost is a factor.

adjustments

An oscilloscope is needed in adjusting and troubleshooting the circuit. Adjust R1 so that U1A puts out a maximum voltage swing with little distortion. Adjust R8 for a symmetrical square-wave output of U1B at maximum input signal. A compromise adjustment may be needed to get a square wave at low input-signal conditions. If Q1 doesn't go low enough, increase either C3 or R9 until Q1 produces a lowgoing pulse of 5 to 20 microseconds. R12 is the display amplitude control, while R16 is the display position control. Note that R12 also affects the display position.
The displayed pattern on the LED is of sufficient quality to tune in an RTTY station by observing the LEDs alone. Another possible use for the circuit is to interface the LEDs with a computer and have the computer tune the receiver.

bibliography

Fredriksen, T.M., et al, The LM3900 - A New Current-Difference Quad of \pm Input Amplifiers, National Semiconductor Application Note AN-72, September, 1972.
Hoff, Irvin M., W6FFC, "The Mainline ST-3 RTTY Demodulator and the ST-4 for 170 Hz Shift," QST, April, 1970, page 11.
ham radio

KENWOOD TS-120S

MADISON ELECTRONICS SUPPLY, INC.

1508 McKINNEY • HOUSTON, TEXAS 77002
713/658-0268

LEAVE A MESSAGE \& WE'LL CALL YOU BACK!

2 Meter Portable

G.E. MASTR PR 36
$132-150 \mathrm{MHz}$ - 5 Watts ALL SOLID STATE with Ni-Cad Battery

Vehicular Charger 4EP63A (sold only with unit)
\$25.

GREGORY ELECTRONICS CORP.

245 Rt. 46, Saddle Brook. N.J. 07662 Phone: (201) 489-9000

improvements to the simplified capacitance meter

Repackaging and improved circuitry make a cap meter published previously even better

I've always been suspicious of capacitance meters. They were difficult to read accurately, had extraneous readings, and were nearly useless below 100 pF . But the meter described by WA5SNZ1 is different. After building the meter, I found that it was easy to read and it measured to 0.5 pF . All those unmarked caps, variable caps, and even my homemade bypass caps could be measured easily. It was fun to put a variable cap on the meter, swing the cap from end-to-end, and watch the meter read from minimum to maximum value. WA5SNZ's cap meter is as easy to use as an ohmmeter.
After discovering what a remarkable meter it was, I designed a packaging scheme so that the meter could be built as a club project. The packaging worked out so well I decided to pass it on to those interested in building this valuable piece of test equipment.

fig. 1. Capacitance meter schematic. All components mount on a single PC board except for the power supply and test terminals.

By Tom Varmecky, WA3CPH, 859 Goucher Street, Johnstown, Pennsylvania 15905

construction

The cap meter schematic is shown in fig. 1. All components mount on a single circuit board (fig. 2) except for the power supply and test terminals. The cap meter was built into a box measuring 134×76 $\times 149 \mathrm{~mm}(5-1 / 4 \times 3 \times 5-7 / 8$ inches), available from Radio Shack (catalog no. 270-253).

Wiring the switch on my prototype unit presented the biggest problem. There were just too many parts
directly to the circuit board so that the unit can be checked out before it's mounted in the box. A bench power supply is used.

The front panel (fig. 3) was drilled and labeled. The power supply was then built into the box. An LED indicates when power is on.

The meter was removed after tests and mounted onto the front panel. The circuit board was then placed over the meter. The switch was extended through

fig. 2. Component layout for the cap meter, above. Foil side of PC board, below.
hanging from it. So I mounted the switch directly to the circuit board with small lengths of bare wire. I attached the wires to the switch first, fed the wires through the holes in the board, and then soldered the switch to the boards. Be very careful to orient the switch correctly, as it's easy to get it out of place by one position. The switch is mounted on the copper side of the board opposite the components. Holes were provided in the board for mounting the meter
the front panel and bolted on (photo). A small length of bare wire was soldered to the + unknown terminal then soldered to the board hole marked (?). The ground-side test terminal was connected to both the circuit board and box to prevent ground loops.

modifications to

the original unit

The switch I used had six positions (it's available

fig. 3. Layout of the cap meter front panel.
from Radio Shack). Rather than leave one switch position blank, I added a $0-50 \mathrm{pF}$ range. On this range, meter readings are divided by two, which is useful when testing small vhf and uhf components.
The 500 -ohm, zero-adjust pots on the original unit were difficult to set, so they were changed to 50 -ohm pots, which made adjustments easier. I used a $100-$ ohm pot for the $0-50 \mathrm{pF}$ range. I used a 5 -volt regulated power supply (fig. 1) rather than the original supply, which was 6 volts. No effect was noted on meter operation.

calibration

Calibration is the same as for the original unit. Set each range to zero with its respective pot. Then place a $0.001-\mu \mathrm{F}$, 5 per cent or better capacitor across the unknown terminals. Set the calibration pot so that the meter reads full scale on the $0.001-\mu \mathrm{F}$ range. Calibration is then complete.

operation

The easiest method of operation is to place a test

Underside of chassis showing component layout in the modified version of the simplified cap meter.
lead in the ground side test terminal and clip it to the unknown capacitor. Then touch the other side of the capacitor to the plus test terminal (photo). In this

Cap meter with an unknown fixed cap connected to test terminals.
way, transient capacitances are minimized and readings are most accurate. Always start on a high range and work down until the best reading is obtained. With variable caps, clip the ground lead onto the cap

A variable capacitor connected to the cap meter.
shaft and touch the other side to the plus test terminal. Vary the cap from minimum to maximum while reading the meter.

reference

[^9]ham radio

Solderless saves time like you wouldn't believe. Our Proto-Board ${ }^{\text {® }}$ solderless breadboards put everything you need to get your circuit up and running on an aluminum backplane that lets you work at frequencies from DC to half a GigaHertz. Three Proto-Board ${ }^{\text {n }}$ models feature built-in regulated power
supplies-and one of them's a build-it-yourself kit!

CSC solderless breadboards save energy, too. Especially yours. Because circuit building becomes a simple plug-and-chug process, straight from an idea to a working circuit.

There are 9 Proto-Boards ${ }^{2}$ in all, manufacturer's suggested U.S. resale

70 Fulton Terrace, New Haven, CT 06509 (203) 624-3103, TWX 710-465-1227 OTHER OFFICES: San Francisco: (415) 421-8872, TWX 910-372-7992 Europe: CSC UK LTD. Phone Saffron-Walden 0799-21682, TLX 817477

auto-product detection of double-sideband

Novel system for DSB detection

 which automatically generates the correct reinserted-carrier frequencyThe detection of carrierless signals requires very careful control of the transmitter and receiver oscillator frequencies. Mobile communication equipment has the added problems associated with mechanical stability, widely varying supply voltage, and even Doppler shift, which is more troublesome at higher frequencies. Automatic means of correcting to the reinserted carrier frequency in voice single-sideband suppressed carrier systems have met with limited success. 1 In terms of power, a suppressed-carrier double sideband (DSB) transmission offers a highly efficient means of communication, and with DSB you know that the carrier should be halfway between the two sidebands. ${ }^{2}$

double-sideband carrierless detection

The carrier frequency for a pair of sidebands is one half their sum; to derive the carrier, it is necessary to select its twice-frequency component from the sec-ond-order products obtained from a nonlinear ampli-
fier (detector). The relationship of the second-order products to an amplitude-modulated signal with carrier is shown in the appendix.

The block diagram, fig. 1, shows the essentials of a system for generating the reinserted carrier to a double-balanced modulator. The carrierless DSB input signal is centered around the typical receiver i-f frequency, 455 kHz , and is applied to two groups of circuits: a nonlinear amplifier or detector, and a balanced modulator or product detector. The nonlinear amplifier is followed by a filter to select the desired sideband-sum component. The waveforms of signals at these points are shown in fig. 2.

The input signal at point \mathbf{A} is shown at the top of

fig. 1. Block diagram of the double-sideband no-carrier demodulation system or auto product detector. Waveforms at points A and B are shown in fig. 2; a schematic diagram of the system is presented in fig. 3.

By H. F. Priebe, Jr., K4UD, 5040 Wickford Way, Dunwoody, Georgia 30338

fig. 2 (the time-domain display is the familiar twotone signal used for testing SSB transmitters). The output of the nonlinear amplifier following the tuned circuit is shown at the bottom. This signal is a 100 per cent modulated amplitude-modulated 910 kHz carrier with sidebands at twice the input sideband frequencies. The 910 kHz i-f amplifier and crystal filter supply additional selectivity to reduce the amplitude of the sidebands and thus reduce the resultant equivalent modulation percentage. The remaining sidebands or modulation is reduced by the squaring circuit in fig. 1 which provides an output square wave at twice the carrier frequency. This $2 f_{c}$ signal is divided by two in the binary counter stage and supplied as the demodulating carrier to the balanced modulator product detector.

Detection of signals with carrier is similar because the level of the demodulating carrier has several times the amplitude of the original. Reversing the phase of the $910-\mathrm{kHz}$ signal is equivalent to shifting

fig. 2. Auto product detector waveforms as displayed in the time domain (oscilloscope) and frequency domain (spectrum analyzer). Signal at point A (fig. 1) is similar to a twotone SSB test signal; signal at point B has 910 kHz carrier.

Left: Top, the auto product detector built by K4UD and used with a Collins R-390A receiver. Directly beneath is a bottom view of the auto product detector showing the twice-carrier frequency amplifier circuit. Above: Top view of the auto product detector with shield covers removed. The power supply is to the left, and balanced modulator with squaring circuit and binary counter are in the center. The BFO for SSB reception is at the right. Directly beneath is rear view of the unit. The twice-carrier circuits are located in the center along the bottom; the knob on the left is a BFO calibration adjustment.
the phase of the carrier by 90 degrees; therefore, a simple phase-reversing switch permits copying amplitude or phase-modulated signals.

circuit diagram

The schematic of the carrierless double-sideband detector is shown in fig. 3. The nonlinear input amplifier is based on a dual-gate MOSFET with a double-tuned circuit load. A three-stage tuned amplifier with a crystal filter provides selectivity to reduce the amplitude of the second harmonics of the input sidebands; this ensures that an amplitude squaring circuit will extract the sideband sum component. The amount of selectivity required is related to the squaring circuit sensitivity and the lowest frequency sideband separation.

For voice signals with a low frequency component of a few hundred hertz the 910 kHz i-f is approximately 1.5 kHz wide; this permits a tolerance to signal instability of approximately 1000 Hz .

The balanced modulator (product detector) uses a MC1496L IC; the type 5596A is similar but the pin-out is different. A diode and transformer balanced modulator could also be used, of course. All three were tested in the circuit and performed about the same.

The BFO operates at 910 kHz and uses the familiar Colpitts circuit; its output is divided by two as was done with the derived carrier for DSB detection.

conclusion

The double-sideband no-carrier detector provides auto product detection of double-sideband signals with or without a carrier. There is no reinserted car-
rier oscillator - the reconstructed carrier is derived automatically from the two sidebands of the incoming signal. This makes receiver tuning of no-carrier DSB signals as easy and simple as tuning in a-m signals.

The detector is compatible with a-m and provides exalted-carrier a-m detection with none of the disadvantages of carrier oscillator control. The detection of phase-modulated signals is accomplished with a switch position that alters the phase of reconstructed carrier.

A BFO is included so that SSB signals can also be detected. Thus, the described circuit can demodulate all the popular modulation modes as well.

fig. 3. Schematic diagram of the auto product detector for DSB and a-m; an optional BFO is provided for the detection of SSB signals. Inductors L1, L2, and L3 are $\mathbf{2 9 0 - 6 5 0} \mu \mathrm{H}$ (J . W. Miller 9057). Transformer T1 is a 455-kHz i-f transformer; T2 is a tube-type $455-k H z i-f$ transformer with turns removed.

references

1. O.G. Villard, Jr., "Sideband-Operated Automatic Frequency Control for Reception of Suppressed-Carrier SSB Voice Signals," IEEE Transactions on Communications Technology, October, 1971.
2. W.K. Squires and E. Bedrosian, "The Computation of Single-Sideband Peak Power," Proceedings of the IRE, January, 1960.

appendix

The output of the nonlinear amplifier stage is analyzed from the curvature of the transfer characteristic as expressed in terms of a power series.* Such a curvature is characteristic of rectifiers and detectors. When the input e_{g} is made up of two sine waves E_{a} and E_{b} :

$$
\begin{equation*}
e_{g}=E_{a} \sin \omega_{a} t+E_{b} \sin \omega_{b} t \tag{1}
\end{equation*}
$$

The second-order components are:

$$
\begin{aligned}
& \quad e_{g}^{2}=\frac{E_{a}^{2}+E_{b}^{2}}{2}-\frac{E_{a}^{2}}{2} \cos 2 \omega_{a} t \\
& \quad-\frac{E_{b}^{2}}{2} \cos 2 \omega_{b} t \\
& +E_{a} E_{b} \cos \left(\omega_{a}+\omega_{b}\right) t \\
& +E_{a} E_{b} \cos \left(\omega_{a}-\omega_{b}\right) t
\end{aligned}
$$

With a filter circuit tuned to twice the i-f, the dc term $\frac{E_{a}^{2}+E_{b}^{2}}{2}$ is of no concern to this mode of operation, nor is the difference term, $E_{a} E_{b} \cos \left(\omega_{a}-\omega_{b}\right) t$. The important components are then:
$e_{g}^{2} \equiv E_{a} E_{b} \cos \left(\omega_{a}+\omega_{b}\right) t$
$\frac{E_{a}^{2}}{2}$

$$
\cos 2 \omega_{a} t
$$

$-\frac{E_{b}^{2}}{2} \cos 2 \omega_{b} t$
let $\omega_{a}+\omega_{b}=2 \omega_{c}, \quad \omega_{a}=\omega_{c}+p, \quad \omega_{b}=\omega_{c}-p, \quad E_{a}=E_{b}=E$ then $e_{g}^{2}=E^{2} \cos \left(2 \omega_{c}\right) t$

$$
\begin{aligned}
& -\frac{E^{2}}{2} \cos 2\left(\omega_{c}+p\right) t \\
& -\frac{E^{2}}{2} \cos 2\left(\omega_{c}-p\right) t
\end{aligned}
$$

And, for an amplitude modulated wave: \dagger

$$
y=A_{o} \cos \omega_{o} t-\text { carrier }
$$

$$
\begin{aligned}
& +\frac{a_{m}}{2} \cos \left(\omega_{o}+p_{m}\right) t-\text { upper sideband } \\
& +\frac{a_{m}}{2} \cos \left(\omega_{o}-p_{m}\right) t-\text { lower sideband }
\end{aligned}
$$

where $p_{m}=$ the angular frequency of the modulating signal

$$
a_{m}=\text { degree of modulation }
$$

$$
a_{m}=A_{o} \text { for } 100 \text { per cent modulation }
$$

Therefore, the output of the two-times i-f filter is a 100 per cent modulated a-m signal with a modulating frequency of twice the original.
-F.E. Terman, Electronic and Radio Engineering. McGraw-Hill, New York, 1955, page 332
1Reference Data for Radio Engineers, 3rd edition, Federal Telephone and Radio Corporation, New York, 1953, page 276.

ANTENNA COMPONENTS
Antenna wire, stranded \#14 copperweld................ \$. 06 ft
Antenna Wire, stranded \#15 copperweld 055 ft
Antenna wire, stranded \#16 copperweld. 05 ft
Van Gorden HI-Q Baluns, 1:1 or 4:1 9.95 ea
Unadilla/Reyco, W2AU Baluns, 1:1 or 4:1 14.95 ea
Van Gorden HI-Q center insulators 4.95 ea
Unadilla/Reyco, W2AU center insulators 9.75 ea
Ceramic "Dogbone" end insulators, pair 98
Unadilla/Reyco plastic end insulators, pair 3.50
Nylon guy rope, 450 lb . test, 100^{\prime} roll 3.49
Poly guy rope, 275 lb . test, 100^{\prime} roll. 3.00
Unadilla/Reyco W2VS Traps, KW-10 thru KW-40 21.95 pr.
Belden 8214 RG-8U type foam coax........................ 28 ft .
Belden 8219 RG-58 A/U foam coax. 11 ft .
Berk-Tex 6211 RG-8X foam coax., Ultraflexible......... 15 ft .
Amphenol 83-1SP PL-259 silver plated connectors 75 ea.
Amphenol UG-175/U adapters (RG-58) 25 ea.
Amphenol UG-176/U adapters (RG-8X, RG-59) 25 ea
Amphenol PL-258, straight adapter 1.07

LARSEN MOBILE ANTENNAS

Larsen Mount LM-150 2 mtr. whip and coil................... . 21.65
LM-MM magnetic mount 13.29
LM-TLM trunk lid mount . 12.77
New Motorola type mount, NMO-150 2 mtr , whip and coil . 23.22
NMO-MM magnetic mount . 14.91
NMO-TLM trunk lid mount 15.98

Other Larsen Models Available
Complete Palomar Engineers Line Available
Centurion International Rubber Duck Antennas in Stock WRITE FOR A FREE COPY OF OUR CATALOG

All items F.O.B. Lincoln, $\$ 1.00$ minimum shipping. Prices subject to change without notice. Nebraska residents please add 3% tax.

FAST SCAN ATV

WHY GET ON FAST SCAN ATV?

- You can send broadcast quality video of home movies, video tapes, computer games, etc, at a cost that is less than sloscan.
- Really improves public service communications for parades, RACES, CAP searches, weather watch, etc.
- DX is about the same as 2 meter simplex - 15 to 100 miles.

ALL IN ONE BOX

TC-1 Transmitter/Conv
Plug in camera, ant, mic and you are on the air \$399 ppd

HITACHI HV-62 TV CAMERA
High performance closed circuit camera just right for atv, with lens

PUT YOUR OWN SYSTEM TOGETHER

TVC-1B CONVERTER tunes 420 mhz down to ch 2 or $3 . . \$ 49.50$ ppd TXA5 EXCITER \$69 ppd PA5 10 WATT LINEAR . . \$79 ppd FMA5 Audio Subcarrier . $\mathbf{\$ 2 4 . 5 0}$ ppd

SEND FOR OUR CATALOG, WE HAVE IT ALL Modules for the builder, complete units for the operator, antennas, color cameras, repeaters, preamps, linears, video ider and clock, and more. 19 years in ATV.

Call 213-447-4565 5-6 pm ur time

P.C. ELECTRONICS

April 25, 26, 27, 1980

Hara Arena and Exhibition Center Dayton, Ohio

Meet your amateur radio friends from all over the world at the internationally famous Dayton HAMVENTION.

Banquet speaker Saturday evening will be Senator Barry M. Goldwater, K7UGA. Seating will be limited so please make reservations early.

If you have registered within the last 3 years you will receive a brochure in late February. If not write Box 44, Dayton, OH 45401.

Nominations are requested for Radio Amateur of the Year and Special Achievement Awards. Nomination forms are available from Awards Chairman, Box 44, Dayton, OH 45401.

For special motel rates and reservations write to Hamvention Housing, 1980 Winters Tower, Dayton, OH 45423. NO RESERVATIONS WILL BE ACCEPTED BY TELEPHONE.
All other inquiries write Box 44, Dayton, OH 45401 or phone (513) 296-1165-5-10 P.M. EST.

Rates for ALL 3 Days:

Admission: $\$ 5$ in advance, $\$ 6$ at door.
Flea Market Space: $\$ 11$ in advance, $\$ 13$ at gate.
Banquet: \$12 in advance, \$14 at door.
Make checks payable to Dayton HAMVENTION, Box 333, Dayton, OH 45405.

Bring your family and enjoy a great weekend in Dayton.
Sponsored by the Dayton Amateur Radio Association, Inc.

$$
\text { More Details? CHECK_OFF Page } 94
$$

improving the Drake R-4C product detector

The single-ended diode product detector used by Drake is typical of the type designed into many presentday receivers. Its simplicity and small number of parts make it a good performer in the Drake R-4C receiver.
However, the 1N270 diode used in this circuit creates large harmonic currents because of its nonlinear nature. This harmonic energy is generated by the BFO and appears as a constant hissing sound in the audio output. It's not noticeable on fairly strong signals but can become annoying if you're listening to a weak signal.

Some time ago I replaced the PN diodes in another receiver with hotcarrier diodes and noted an improvement in performance. Hot-carrier diodes differ from the usual PN diodes in that they switch very fast and don't suffer from the charge storage effect of the junction diode, which creates the high order of harmonics appearing in the audio output.

I replaced the 1 N 270 diodes in my R-4C with Hewlett-Packard HP5082/ 2800 hot-carrier diodes (fig. 1). The results were quite pleasing. Although the hiss was not completely eliminated, it was significantly reduced. The audio output level also increased.

A word of caution in replacing the 1 N270 diodes: They're difficult to remove from the PC board because they are on the bottom of the board,
which is mounted in a vertical position with other parts around it. A little extra care and a small pencil-type soldering iron should do it. Before re-

fig. 1. Diodes CR2, CR3 in the Drake R-4 receiver were replaced with H-P 5802/2800 hot-carrier diodes to reduce product-detector noise.
placing, note the polarity of the removed diodes.
The HP5082/2800 diodes are very small and have a glass body. They crack easily if the leads are pulled too thightly through the holes in the PC board.

If the HP5082/2800 diodes are difficult to obtain, a suitable replacement is the Sylvania ECG519.

Bernard White, W3CVS

sealing coaxial connectors

Unfortunately, few Amateurs take the necessary precautions to safeguard coaxial cables from water contamination. This is especially true where connections are made to antennas. Often the braid and center conductors are simply fanned out,
and no sealant is applied to impede water entry.

Dipole installations are often the worst. The old trick of looping the coax over the center insulator and taping it to provide a strain relief is a good one. However, unless the cable end is carefully sealed before connection to the dipole, water will enter the line, be drawn uphill around the loop by capillary action, and eventually contaminate the entire length of line.

Damage to the line by contamination is permanent. Even when the cable is dried out, the internal corrosion will impede effective shielding, change the characteristic impedance, and increase power losses. Because the braid can act like a metal sponge, putting a liberal application of electrical tape at the line end is about as effective as taping a rope but leaving the end exposed: Moisture will still enter the open end, and capillary action will do the rest.

Frequently, Amateurs attempt to seal line ends with silicone rubber sealants. Two problems exist here. The first is that nearly no adhesion exists between the vinyl or PVC jacket and the silicone rubber. The second problem is that, during curing, the silicone rubber compound releases highly corrosive acid vapors, which can devastate the conductive surfaces of connectors, leading to other problems. The following suggested methods are applicable to the majority of installations and can save you both coax cable and rf.

Before matching coaxial connectors for exterior use, apply a liberal amount of silicone grease, such as Dow Corning DC-4 or General Cement Z-5, to the interior of the connectors to reduce moisture contamination. Any silicone grease which oozes out of the connectors will prevent adhesion of tape or other sealant and should be washed away with a solvent. Aerosol spray solvents that leave no lubricating residue are appropriate for this purpose.

The female SO-239 connector is not waterproof. Care should be taken
to seal the rear of the connector. Quick-setting epoxy provides a watertight seal.
Where the cable end attaches directly to an antenna, an effective means of sealing the end is to use epoxy. As shown in fig. 1, a plastic pipe cap or plastic chair-leg tip can be used as a form to hold the epoxy as it cures. It can then be left in place. The braid should be expanded so that it's loose enough for the epoxy to flow around all the conductors. After

fig. 1. Recommended method for sealing a coaxial cable that connects directly to an antenna. The plastic form holds the epoxy until it cures.
pouring in the epoxy, work the coax around in the pipe cap to promote complete saturation of the braid by the epoxy.
Where a coaxial connector, such as the PL-259, is used to terminate the cable, it's common to attempt to seal it with plastic electrical tape. Depending on the method used, this can be quite effective. However, as often as not, in several days the tape will pull around on the connector as it adjusts its tension. Often this leaves the connector partially exposed to water, a fact not discovered until later when the cable is contaminated with water and some malfunction necessitates antenna service.
The problem can be easily avoided. Behind the connector, wrap enough plastic tape to build up the diameter of the cable gradually to the point where the connector is attached (fig. 2). Then, an overwrap of two or three layers of tape covering the entire area can be applied easily, with no wrinkles. This overwrap should be applied tightly, but without stretching the
tape, especially during the last several turns. This prevents tension from tearing loose the tape end. Where the connection is to be suspended vertically, the last layer of overwrap

fig. 2. Sealing coax connectors using PVC tape. Proper tape application avoids water contamination (see text).
should be started from the bottom. In this way water running over the surface will run over the tape laps, just as rain runs over shingles on a roof.

Robert Wheaton, W5XW

modifications for the K4JIU frequency counter

A number of people who have built the counter I described in the February, 1978, issue of ham radio have experienced problems on the 50 - and $500-\mathrm{MHz}$ ranges. The problem goes something like this: On the $5-\mathrm{MHz}$ range the counter will usually count to around 7 MHz . Intersil guarantees only 5 MHz for the ICM7208, but typical performance is much better. However, on the $50-\mathrm{MHz}$ and $500-\mathrm{MHz}$ ranges, the counter is found to perform only to around 28 MHz and 280 MHz respectively.

The problem is not in the prescalers! Most of the counters I've seen and have had the opportunity to test don't have this problem; after some discussion with the Intersil applications and engineering people, there's a simple solution that l've tried, and it works well.

The problem is that the 74196 prescaler puts out a signal having a 20 per cent duty cycle. When inverted by half of the 75452 this becomes an 80 per cent duty cycle. The ICM7208 counter chip, unlike TTL devices, performs best when presented with a 50 per cent duty cycle.

Now for the solution. The Q_{C} output of the 74196 runs at the same frequency as the O_{D} output but has a duty cycle much closer to 50 per cent. Therefore, the circuit trace going to pin 12 of the 74196 should be disconnected from pin 12 and reconnected to pin 2 . This requires that the trace to the D data input be switched to the C data input; i.e., disconnect the trace from pin 11 and run it to pin 3. Concerning the last change, rather than disconnecting pin 11, simply jumper it to pin 3 . The explanation for this is simple and obvious to anyone familiar with the operation of the 74196.

Much to my embarrassment I also learned that, of all the counters I've tested, the $50-\mathrm{MHz}$ front end sensitivity is about 50 mV or less, flat to 65 MHz . Apparently my own unit has some marginal transistors.
I wish to thank the many hams who have written or called to tell me of their successes. I greatly appreciate the feedback, pro or con. The change described above has been incorporated into the artwork, and the next batch of boards, which I hope to have by the end of May, will have this change.

John H. Bordelon, K4JIU

Collins 32S PA disable jacks

The rear chassis lip of Collins 32S transmitters provides two phono jacks labeled P.A. DISABLE. These jacks disable the final amplifier screen supply and have +275 volts available on the inner conductors during transmit. To avoid equipment damage or operator injury by an incorrectly inserted cable, I inserted phono plugs filled with silicone sealant into each phono jack. Plastic-sleeve-covered plugs, such as Radio Shack 274-451, might be used instead.
With the jacks so covered, no accidental contact will occur. This idea may also be used for all other unused phono jacks for similar protection.

Paul Pagel, N1FB

the Ulimate 1:1 BALUN

- Lets your antenna radiate-not your coax
- Helps fight TVI-no ferrite core to saturate or reradiate
- Rated 5 KW peak-accepts substantial mismatch at legal limit
- DC grounded-helps protect against lightning
- Silver plated hook-up braid; Custom molded case
- Amphenol* connector; Rubber ring to stop water leakage

Model ZA-1 $\quad 3.5-30 \mathrm{mHz} \quad \mathbf{\$ 1 5 . 9 5}$
Model ZA-2
optimized $14-30 \mathrm{mHz}$ includes hardware for $2^{\prime \prime}$ boom
$\$ 17.95$

Available at selected dealers, add \$2.00 postage and handling in U.S.A
WRITE FOR LITERATURE

333 West Lake Street, Dept A Chicago, Illinois 60606 (312) 263-1808

MILITARY SURPLUS WANTED
 Highest prices ever on recent U.S. Military sur

 plus, especially on Collins equipment or parts. We pay freight. Call collect for high offer. (201) 440 8787. 35 Ruta Court. S. Hackensack. N.J. 07606SPACE ELECTRONICS CO.

FACSIMILE

COPY SATELLITE PHOTOS
WEATHER MAPS, PRESSI
The Faxs Are Clear - on our full size (18-1/2" wide) recorders. Free Fax Guide.

TELETYPE

RTTY MACHINES, PARTS, SUPPLIES ATLANTIC SURPLUS SALES 121213720349 3730 NAUTILUS AVE BROOKLYN NY 11224

\star TELESCOPING (CRANK UP)
\star GUYED (STACK-UP) \star TILT-OVER MODELS
Easy to install. Low Prices.
Crank-ups to 100 ft .
EXCELIENT FOR
HAM COMMUNICATIONS

SPECIAL
Four Section 50 FL . Van Mounted Crank-Up Aluma Tower

ALUMA TOWER CO. Box 2806HR
VERO BEACH. FLA. 32960 VERO BEACH, FLA. 32950
PHONE (305) 567.3423 PHONE (305) 567-34

Seven* new finger talkers

from CURTIS

* EK-480; C-MOS Deluxe Keyer $\$ 134.95$
* EK-480M; Above plus speedmeter 149.95
* 1-480; InstructoMate 124.95
* M-480; MemoryMate 124.95
* IM-480; Instructo-MemoryMate 179.95
* KB-480; Morse KeyboardMate 199.95
* KB-4800: Morse Keyboard 349.95

8044; Keyer-On-A-Chip (Replaces 8043) 14.95
Apr '75 HR, Fab' 76 0ST, Radio Hdbk 75, ARRL Hdbk $77-79$
8044-3: IC, PCB. Socket. Manual 24.95
8044-4: Semi-Kit .. 54.95
8045; Morse Keyboard-On-A-Chip IC 59.95
8045-1: IC, PCB, FIFO. Sockets, Manual 89.95
8045-2; Semi-Kit .. 159.95
8046; Instructokeyer-On-A-Chip IC 49.95
8046-1: Seml-KIt ... 79.95
8047; Message Memory-On-A-Chip IC 39.95
8047-1: IC, PCB, RAM, Sockets, Manual 69.95 fadd $\$ 1.75$ on above for postage and handilingl
IK-440A; Instructokeyer (Mar '76 OST)
224.95

Curtis Electro Devices, Inc.

Low Cost...High Performance

DIGITAL MULTIMETER

Low cost, high performance, that's the DM-700. Unlike some of the hobby grade DMMs available, the DM-700 offers professional quality performance and appearance at a hobbyist price. It features 26 different ranges and 5 functions, all arranged in a convenient, easy to use format. Measurements are displayed on a large $31 / 2$ digit, $1 / 2$ inch high LED display, with automatic decimal placement, automatic polarity, and overrange indication. You can depend upon the DM-700, state-ot-the-art components such as a precision laser trimmed resistor array, semiconductor band gap reference, and reliable LSI circuitry insure lab quality performance for years to come Basic DC volts and ohms accuracy is 0.1%, and you can measure voltage all the way from $100 \mu \mathrm{v}$ to 1000 volts, current from 0.1μ a to 2.0 amps and resistance from 0.1 ohms to 20 megohms. Overload protection is inherent in the design of the DM-700, 1250 voits, AC or DC on all ranges, making it virtually goot proot. Power is supplied by four 'C' size cells, making the DM-700 portable. and, as options, a nicad battery pack and AC adapter are available. The DM-700 teatures a handsome. jet black, rugged ABS case with convenient retractable tilt bail. All factory wired units are covered by a one year limited warranty and kits have a 90 day parts warranty.
Order a DM-700, examine it for 10 days, and if you're not satisifed in every way, return it in original form for a prompt refund.

Specifications

DC and AC volts $\quad 100 \mu \mathrm{~V}$ to 1000 Volts. 5 ranges
$D C$ and $A C$ current. $0.1 \mu \mathrm{~A}$ to 2.0 Amps .5 ranges
Resistance $\quad 0.192$ to 20 megonms, 6 ranges
Input protection: $\quad 1250$ volts AC/DC all ranges fuse protected for overcurrent
Input impedance: $\quad 10$ megohms. DC/AC volts
Display:
Accuracy
Power
$31 / 2$ digits, 0.5 inch LED
0.1% basic DC volts
$4^{\circ} \mathrm{C}$ ' cells, optional nicad pack, or AC adapter
Size:
$6^{\prime \prime} W \times 3^{\prime \prime} H \times 6^{\prime \prime} D$
Weight:
Prices
DM-700 wired + tested . $\$ 99.95$
DM-700 kit form . 79.95
DM-700 kit form
 4.95

Nicad pack with AC adapter/charger 19.95
Probekit.

600 mHz COUNTER

The CT-70 breaks the price barrier on lab quality frequency counters. No longer do you have to settle for a kit, half-kit or poor performance, the CT-70 is completely wired and tested, features professional quality construction and specifications, plus is covered by a one year warranty. Power for the CT-70 is provided by four 'AA' size batteries or 12 volts. AC or DC, available as options are a nicad battery pack, and AC adapter. Three selectable frequency ranges, each with its own pre-amp, enable you to make accurate measurements from less than 10 Hz to greater than 600 mHz . All switches are conveniently located on the front panel for ease of operation, and a single input jack eliminates the need to change cables as different ranges are selected. Accurate readings are insured by the use of a large 0.4 inch seven digit LED display, a 1.0 ppm TCXO time base and a handy LED gate light indicator.
The CT-70 is the answer to all your measurement needs, in the field, in the lab, or in the ham shack. Order yours today, examine it for 10 days, if you're not completely satisfied, return the unit for a prompt and courteous refund.

Specifications

Frequency range: Sensitivity:
Stability:
Display:
Input protection:
input impedance

Power:

Gate:
Decimal point:
Size:
Weight:

10 Hz to over 600 mHz
less than 25 mv to 150 mHz less than 150 mv to 600 mHz $1.0 \mathrm{ppm}, 20-40^{\circ} \mathrm{C} ; 0.05 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ TCXO crystal time base
7 digits, LED, 0.4 inch height
50 VAC to $60 \mathrm{mHz}, 10 \mathrm{VAC}$ to 600 mHz $1 \mathrm{megohm}, 6$ and 60 mHz ranges 50 ohms. 600 mHz range
4 ' AA ' cells, $12 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$
0.1 sec and 1.0 sec LED gate light

Automatic, all ranges
$5^{\prime \prime} \mathrm{W} \times 1 / 2^{\prime \prime} \mathrm{H} \times 51 / 2^{\prime \prime} \mathrm{D}$
1 lb with batteries

Prices

CT-70 wired + tested . $\$ 99.95$
CT-70 kit form. 75.95
AC adapter. 4.95

Nicad pack with AC adapter/charger. 14.95
Telescopic whip antenna, BNC plug....................... 7.95
Tilt bail assembly

microminiature encoder

Communications Specialists introduces the SS-32 Microminiature Tone Encoder, which produces either subaudible or burst-tone frequencies.

This encoder measures 0.9 by 1.3 by 0.40 inches and adapts to all mobile units and most portables. It operates on any dc voltage from 6 to 30 volts and may be ordered in either the audible or sub-audible configuration.

The SS-32 is completely field programmable using a dip switch to produce any one of the thirty-two standard EIA sub-audible frequencies or any one of thirty-two audible frequencies which include touch-tones, burst tones, and test tones such as $600,1000,1500,2175$, and 2805 Hz . No counter or other test equipment is required to set frequencies.

The output is a low-impedance, low-distortion adjustable sine wave, 5 volts peak-to-peak. In the sub-audible version, the frequency accuracy is $\pm 0.1 \mathrm{~Hz}$ maximum from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and the accuracy of the audible tone output is $\pm 1 \mathrm{~Hz}$.

A remote-mounted rotary switch may be purchased to allow selection of any of the tones within either group. Reverse polarity protection is built-in and all connections to the board are made with color-coded wires supplied with each unit.

A full one-year warranty is provided for factory repair. Price of the SS-32 is \$29.95, wired, tested, and with complete instructions.

For more information, write Communications Specialists, 426 West Taft Avenue, Orange, California 92667.

model 299 talking

counter

Ten-Tec's Model 299 Talking Counter is a self-contained frequency counter, speech synthesizer, and audio amplifier/speaker system which enhances operating convenience and pleasure for the blind ham operating on the high-frequency bands. It can be used with any highfrequency transceiver, analog or digital, or with any vhf transceiver with an appropriate prescaler. Also, it can be used with any signal generator below 22 MHz as a test instrument. When used with Ten-Tec transceivers employing $9 \mathrm{MHz} \mathrm{i-f} ,\mathrm{special} \mathrm{built-}$ in presets allow proper readout of the operating frequency, even though the counter is reading VFO output.

Some operating features are:

1) Synthesized speech readout of any ff voltage applied to the input between 1 MHz and 22 MHz . This includes the 10 -meter band on Ten-Tec transceivers since the VFO operates below 22 MHz .
2) Choice of MHz and kHz format, or only kHz portion for a quick-repeat cycle.
3) Choice of one-time or repeat cycling.
4) Counts to four places after decimal (100 Hz). When used with analog transceivers, Model 299 increases readout accuracy.
5) Self-contained audio amplifier and speaker. No need to tap into transceiver audio system.
6) Only connection required to the transceiver is for the VFO output signal.
7) Runs on 12 Vdc .

Model 299 Talking Counter user price is $\$ 290.00$. For more information, write Ten-Tec, Inc., Sevierville, Tennessee 37862.

Plexiglas cabinets

Debco Electronics introduces a line of Plexiglas cabinets ideal for LED digital devices. All units feature a clear-
red chassis which serves as a filter lens to improve readability. Two sizes are available: Cab-I, measuring $3 \times$ $61 / 4 \times 51 / 2$ inches, and Cab-II measuring $21 / 2$ by 5 by 4 inches.

Both types have a sloped front and friction feet, and are available with black, white, or clear covers. Cabinets are available factory direct. Cab-I costs $\$ 9.95$, Cab-II \$8.95.
For more information, contact Debco Electronics, P.O. Box 9169, Cincinnati, Ohio 45209.

AEA MorseMatic keyer

A computerized electronic keyer is now available that combines virtually all the features of all the other keyers in the marketplace, at a price that is affordable for any true CW enthusiast.

The AEA MorseMatic uses two custom, state-of-the-art micro-computer chips to perform functions that were previously only a CW operator's fantasy.

The MorseMatic can be tailored to the user's needs. Features considered to be great by some users (such as dot and dash memory) are disliked by others. For the first time, the MorseMatic makes a keyer available that will appeal to all users because it can be tailored exactly to each operator's desires with a sixteen-button keypad.
For serious contest enthusiasts, the MorseMatic offers the most flexible automatic serial-number generator on the market.

For serious vhf DXers, the MorseMatic offers the exclusive automaticbeacon mode for precise moonbounce, scatter, or tropospheric DX scheduling. To use the beacon mode, instruct the MorseMatic how long to transmit any selected message and how long to pause before the message is automatically transmitted again. The computers will automatically set the message code speed to fit the desired transmit window. The beacon mode can also be used for contest operating and for vhf beacon transmissions.

The MorseMatic keyer is the first to offer "soft-partitioning" of the memory, unlike the "hard partitioning" in all other keyers. Soft-partitioning means no wasted memory space. All of the memory can be allotted to one message location, or it can be divided up into as many as ten locations. The memory can be loaded in automatic mode for perfect message formatting, or it can be loaded in the real-time mode for individualizing a message. Memory can also be loaded in auto-matie-keyer mode (any dot and dash ratio) or in semi-auto (bug) mode. Any message can be played back with any selected dot and dash ratio. Hence, the user can send a sloppily loaded bug-mode message back with perfect 3 to 1 dash to dot ratio. Conversely, a perfectly loaded 3 to 1 dash to dot ratio message can be replayed later with as much as an 8 to 1 dash to dot ratio (sounding like a bug).

Automatic transmit-tune mode. The MorseMatic can be used to key the transmitter for tuning purposes. The operator need only hit any keypad button or the key paddle to defeat the tune mode.

Editing a memory loading mistake is a snap with the MorseMatic. If you are near the end of loading a message into memory and a mistake is made, it only takes seconds to erase the mistake and then continue with an errorfree message.

All this, plus the world's best Morse trainer, is included in the basic price of the MorseMatic. It is the only trainer that will automatically increase the speed of the practice characters so that your brain is "fooled" into thinking it is still copying the starting speed. No more need to keep buying practice tapes as you start memorizing old ones, or as you progress in speed. The MorseMatic will take you from 2 to 99 WPM. MorseMatic and Soft-Partitioning are trademarks of AEA.
Introductory Amateur net price is $\$ 199.95$. Write Advanced Electronics Applications, P.O. Box 2160, Lynnwood, Washington 98036.

R-X Noise Bridge

All Palomar Engineers products are made in U.S.A. Since 1965, manufacturers of Amateur Radio equipment only.

- Learn the truth about your antenna.
- Find its resonant frequency.
- Adjust it to your operating frequency quickly and easily.

If there is one place in your station where you cannot risk uncertain results it is in your antenna.

The Palomar Engineers R-X Noise Bridge tells you if your antenna is resonant or not and, if it is not, whether it is too long or too short. All this in one measurement reading. And it works just as well with ham-band-only receivers as with general coverage equipment because it gives perfect null readings even when the antenna is not resonant. It gives resistance and reactance readings on dipoles, inverted Vees, quads, beams multiband trap dipoles and verticals. No station is complete without this up-to-date instrument.
Why work in the dark? Your SWR meter or your resistance noise bridge tells you only half the story. Get the instrument that really works, the Palomar Engineers R-X Noise Bridge. Use it to check your antennas from 1 to 100 MHz . And use it in your shack to adjust resonant frequencies of both series and parallel tuned circuits. Works better than a dip meter and costs a lot less. Send for our free brochure.

The price is $\$ 49.95$ in the U.S. and Canada. Add $\$ 3.00$ shipping/handling. California residents add sales tax.

Fully guaranteed by the originator of the R-X Noise Bridge. ORDER YOURS NOW!

Palomar Engineers
Box 455, Escondido, CA. 92025 • Phone: [714] 747-3343

short circuits

rotator starting capacitors

In the September, 1979, issue of ham radio (page 92), K6WX describes a technique for guarding against failure in the.electrolytic starting capacitor of the Ham-M rotator. His circuit, above, shows how to build a non-polarized rotator starting capacitor using electrolytics and steering diodes. This scheme protects the capacitors from being subjected to eventually destructive reverse polarities.

broadband baluns

STEP	KEY ENTAY	KEY CODE	COMMENTS	
001	LBL. A	312511	ENTER \| Z	
	1	01		
	R/S	84		
	\uparrow	41		
	5	05		
	0	00		
	\div	81		
	STO 1	3301		
	2	02		
010	R/S	84	ENTER ANGO	
	STO 2	3302		
	RCL 1	3401		
	$\mathrm{PR}+\mathrm{P}$	3172		
	STO 1	3301	Re Z	
	$\mathrm{h} x \leftrightarrow y$	3552		
	STO 2	3302	IMAG Z	
	RCL 1	3401		
	1	01		
	-	51	$\operatorname{Re}\left(z_{L} / z_{0}-1\right)$	
020	STO 3	3303		
	RCL. 1	3401		
	1	01		
	$+$	61	$\operatorname{Re}\left(z_{L} / z_{0}+1\right)$	
	RCL 2	34.02		
	h $\mathrm{x} \leftrightarrow \mathrm{y}$	3552		
	g R \rightarrow P	3572		
	STO 4	3304		
	RCL. 2	3402		
	RCL 3	3403		
030	$\mathrm{BR} \rightarrow \mathrm{P}$	3272		
	RCL, 4	3404		
	\pm	81	$\|r\|$	
	STO 1	3501		
	1	01		
	$+$	61	$1+\|r\|$	
	RCL 1	3401		
	1	01		
	$-$	51	$1-\|r\|$	
	CHS	42		
040	$\stackrel{1}{4}$	81	DISPLAY	
	R/S	84		
	1	01		
	To To A	2211		

This HP-67 program for calculating VSWR for a given load impedance, Z_{L}, should have appeared in the appendix of W6TC's article on page 18, February, 1980, ham radio.

CRYSTALS \& KITS/OSCILLATORS • RF MIXERS • RF AMPLIFIER • POWER AMPLIFIER

OF-1 OSCILLATOR

Resistor/capacitor circuit provides osc over a range of freq with the desired crystal. 2 to $22 \mathrm{MHz}, \mathrm{OF}-1$ LO, Cat. No. 03t108, 18 to $60 \mathrm{MHz}, \mathrm{OF}-1 \mathrm{H}$ Cat. No. 035109.
Specity when ordering.
$\$ 4.93$ ea.

PAX-1 TRANSISTOR RF POWER AMP
A single tuned output amplifier designed to follow the OX oscillator. Outputs up to 200 mw , depending on frequency and voltage. Amplifier can be amplitude modulated 3 to 30 MHz , Cat. No. 035104.
Specify when ordering.
$\$ 6.67$ ea.

SAX-1 TRANSISTOR RF AMP

A small signal amplifier to drive the MXX-1 Mixer, Single tuned input and link output. 3 to 20 MHz , Lo Kit, Cat. No. 03512. 20 to 170 MHz, Hi Kit, Cat. No. 035103.
Specity when ordering.

BAX-1 BROADBAND AMP
General purpose amplifier which may be used as a tuned or untuned unit in RF and audio applications. 20 Hz to 150 MHz with 6 to 30 db gain. Cat. No. 035107.
Specify when ordering.
$\$ 6.67$ ea.

.02\% Calibration Tolerance
EXPERIMENTER CRYSTALS (HC 6/U Holder)
Cat. No. Specifications
$031080 \cdot 3$ to 20 MHz - For use in OX OSC Lo $\$ 6.88$ ea.
$031081^{*} 20$ to 60 MHz - For use in OX OSC Hi $\$ 6.88$ ea. $031300^{*} 3$ to 20 MHz - For use in OF-1L OSC $\$ 5.74$ ea. $031310{ }^{*} 20$ to 60 MHz - For use in OF-1H OSC $\$ 5.74 \mathrm{ea}$.
"Specity when ordering

Shipping and postage (inside U.S.. Canada and Mexico only) will be prepaid by International Prices quoted for U.S., Canada and Mexico orders only. Orders for shipment to other countries will be quoted on request. Address orders to: MS Dept., P.O. Box 34297. Oklahoma City, Oklahoma 73132

INTERNATIONAL CRYSTAL MFG. CO., INC. 10 North Lee Oklahoma City. Okla. 73102

θ

SPECTRONICS, inc.
1009 Garfield St., Oak Park, Illinois • 60304 (312) 848-6777

OUR BEST-SELLING MULTI-BAND!

(MDrigin)
 AS LOW AS

- One half the length of conventional halt-wave dipoles
- Multi-band. Multi-trequency
- Maximum efficiency - no traps, loading colls. or stubs
- Fully assembled and pre-funed - no measuring, no cutting
- All weather rated - 1 KW AM. 25 KW CW or PEP SSB
- Proven pertormance - more than 10.000 have been defivered - Permit use of the full capabilities of today s 5 -band xcurs - One feedine for operation on all bands

40-10HD/A 40/20/15/10 Mtrs (36) $\$ 73.75$
80-40HD/A 80/40 Mtr bands (69) 77.25
75/40HD/A 75/40 Mtr bands (66) 73.75 75-10HD/A 75/40/20/15/10 Mtr (66) 89.95
80-10HD/A 80/40/20/15/10 Mtr (69) 94.95

Please add $\$ 2.50$ each for shipping
Ploase add $\$ 2.00$ each for shipping unless otherwise noted.
(Continental U.S.A.)

PANASONIC "COMMAND" SERIES

RF-2200

RF 2900
RF 2900 OIGITAL AM/FM SW trom 3.2 to 30 MHz 5 digit LED display
reads all bands
Double
 sultry FMAFC \& wider narrow bandwidth control Fast/Slow tuning Built in AM ant Tel scoping whip tor AW SW BFO pitch control tor SSBICW And much
much more tor the orice Plus $\$ 2.50$ Shipping

RF- 4000 DIGITAL AMIFM SW coverage fiom 161031 MHz - Full digital readout on all bands * 5 digil thuorescent readout - Premax double superheterodyne - Fast/siow lun. ing - AFC on FM. Narrow wide selectivity switch for AM/SW - BPO Pitch contiol - Cathbration control - ANL switch tor AM : FEI RF circuit - RF Gain controi - inc ants for FM \& SW and more
IMPROVE YOUR AECEPTION WITH AECEPTION WITH AN ANECO ALL
BAND PREAMP!
-6.160 Meters

- 20 + dB Gain
- Low Price

MODEL PLF. 2 Improves weak signals as well as image and spurious rejechion of mosi receivers Direct switching to rec or preamp includes Dwr sudd 117 VAC, wired \& tesled 849.95

2 METER ANTENNAS at BARGAIN PRICES!!

4bintatm 3 db GAIN MAGNETIC MOUNT

 NEW! onlymodet 1287 $W_{1} 2.5150$

An economical alternative to drilling a hole. A magnetic antenna by a name you can trust at a low, low price.

Model 286 Same but trunk lid. $\$ 15.95$

NEW from FINCO

2.8 dbd GAIN BASE ANTENNA

ONLY

Model A2-GP
Wt. 2 lbs.
At last! An inexpensive, omni directional, 144-148 MHz, $1 / 2$ wave antenna. Fits $11 / 4$ " mast, 50 ohm imp. A good antenna at a very affordable price.

FROM

avanti antennas

ON GLASS MOBILE ANTENNAS

Modern technology lets you mount a mobile antenna right on the window. Ideal for tough installations. 3 models available

AH151.3G 144-174 MHz, 3 db gn. . . . $\$ 33.95$
AH220.3G $220 \mathrm{MHz}, 3 \mathrm{db} \mathrm{gn}33 .95$
AH450.5G 406-512 MHz, $5 \mathrm{db} \mathrm{gn}36 .95$

CoaxProbe*

Coaxial RF Probe for Frequency Counters and Oscilloscopes That Lets You Monitor Your Transmitted Signal Directly From the Coax Line.

"" 59.95
plus 1.00 postage

FINALLY! A RF PROBE that lets you connect into your coax cable for frequency measurements and modulation waveform checks directly from the transmitter.
JUST CONNECT THE CoaxProbe* into your transmission line and plug the output into the frequency counter or oscilloscope. Insertion loss is less than .2db so you can leave it in while you operate.
A NECESSITY IN ANY WELL-ORGANIZED HAM SHACK, the CoaxProbe* eliminates "jerry-rigging" and hassles when tapping into the coax line is desired.
A SPECIAL METHOD OF SAMPLING keeps output relatively constant with a wide variation of power. Power output of 8 watts gives .31 v out, while 800 watts will give 1.8 v out. (rms $3-30 \mathrm{mhz}$.) 2000 watts PEP rating too!
-Trademark of Eagle Electronics

USE IT ON 2 METER RIGS TO ADJUST FREQUENCY. The CoaxProbe* has a range of 1.8 to 150 mhz .
MONITOR YOUR MODULATION WAVEFORM. With an oscilloscope of proper bandwidth, you can check your modulation for flat-topping, etc. Ideal for adjusting the speech processor.
NOW YOU CAN MONITOR SIGNALS when connected to the dummy load, eliminating unnecessary on-the-air radiation.
AVAILABLE FOR THE FIRST TIME TO AMATEURS. Try it for 10 days. If not satisfied, send it back for refund (minus shipping charges).
Order today from:

Eagle Electronics
 Box 426 C, Portage, MI 49081 Michigan Res. Add 4\% Sales Tax

 DATA CODER 5
${ }^{5} 39^{00}$ JUST LOOK AT THESE FEATURES:

- Tough "Mobile Environment" Microphone
- Positive-Action Tactile Keys
- High-Impedance Ceramic or 500 -ohm Dynamic Cartridge
- Adjustable Tone Balance and Output
- "Posel
- For Vehicle or Hand-held Portable Use
- Complete . . . Not a Kit . . $\$ 39.00$
-Touch-Tone is a registered trade name of AT\&T

IT1
DATA SIGNAL, INC.
2403 COMMERCE LANE
ALBANY, GEORGIA 31707
Tel. 912-883-4703

Repeater Jammers Running You Ragged?

Here's a portable direction finder that REALLY works-on AM, FM, pulsed signals and random noise! Unique left-right DF allows you to take accurate (up to 2°) and fast bearings, even on short bursts. Its 3 dB antenna gain and $.06 \mu \mathrm{~V}$ typical DF sensitivity allow this crystalcontrolled unit to hear and positively track a weak signal at very long ranges-while the built-in RF gain control with 120 dB range permits positive DF to within a few feet of the transmitter. It has no 180° ambiguity and the antenna can be rotated for horizontal polarization.

The DF is battery-powered, can be used with accessory antennas, and is $12 / 24 \mathrm{~V}$ for use in vehicles or aircraft. It is available in the $140-150 \mathrm{MHz}$ VHF band and/or $220-230 \mathrm{MHz}$ UHF band. This DF has been successful in locating malicious interference sources, as well as hidden transmitters in "T-hunts", ELTs, and noise sources in RFI situations.

Price for the single band unit is $\$ 195$, for the VHF/UHF dual band unit is $\$ 235$, plus crystals. Write or call for information and free brochure.

L-TRONICS

5546 Cathedral Oaks Road
W6GUX
(Attention Ham Dept.)
Santa Barbara, CA 93111

fact: the sound of the professionals belongs in

 amateur radioExperienced operators recognize that the audio quality of the transmitter is limited by the quality of the input from the microphone. On the air, there's no mistaking the crisp, intelligible messages from Shure microphones.

Shure microphones have been the overwhelming choice of professional communications users all over the world for over 30 years. And, many of the milestone improvements developed for the demanding professionals are found on Shure microphones for amateur radio. Described below are just some of the Shure-developed advances that have eliminated many field maintenance costs common to amateur radio microphones.
ARMO-DUR ${ }^{\text {© }}$ Case: Lightweight, immune to oil, grease, fumes, salt spray, sun, rust, and corrosion. Prevents RF burn!
"Million Cycle" leaf switch: Just one of the crucial wear points Shure-tested to insure reliability and extraordinary durability. TRIPLE-FLEX ${ }^{\star}$ Cable: Provides three or four time longer flex life than previously available cords on hand-held microphones. CONTROLLED MAGNETIC ${ }^{*}$ or Dynamic Transducer: The exclusive Shure-designed super-rugged transducers that give excellent voice intelligiblity and super reliability. To improve your on-air intelligibility we suggest the following Shure Microphones for amateur radio applications:

	Mobile Application	Fixed Station Application
	$\begin{aligned} & 414 A^{*} \\ & 407 A^{*} \\ & 577 A^{*} \end{aligned}$	444* 526 T Series II
CM	$\begin{aligned} & 414 \mathrm{~B}^{*} \\ & 507 \mathrm{~B}^{*} \\ & 577 \mathrm{~B}^{*} \end{aligned}$	450 526T Series II

*General recommendation: Consult equipment instruction manual for correct microphone impedance. **Noise-canceling.

SHURE Hand-Held Mobile Mics

Omnidirectional Mics (Models 407A, 407B, 507B)
Small, easy-to-handle design, with rugged Dynamic or CONTROLLED MAG NETIC ${ }^{6}$ transducers for excellent voice intelligibility. Hum-shielded and insulated against shock. Model 507B Dynamic version features extended low and high frequency response. especially suitable for mobile FM transmitters. Modular construction simplifies field service.

Compact Mini Mics (Models 414A, 414B) ideal for miniaturized or portable communications systems, or where dashboard space is limited. The 414 Series CONTROLLED MAGNETIC* microphones are about half the size and weight of conventional microphonesyet they are rugged units, recommended for critical outdoor or indoor applications

SHURE
Fixed Station Mics.

ble 30

PRETUNED - COMPLETELY ASSEMBLED ONLY ONE NEAT SMALL ANTENNA FOR UP TO 6 BANDS! EXCELLENT FOR CON GESTED HOUSING AREAS - APARTMENTS LIGHT - STRONG - ALMOST INVISIBLEI

FOR ALL MAKES \& MODELS OF AMATEUR TRANSCEIVERS - TRANSMITTERS GUARANTEED FOR 2000 WATTS SSB ALL CLASS AMATEURS

COMPLETE AS SHOWN with 90 ft . RG5BU-52 ohm feedline, and PL 259 connector, insulators, 30 ft . 300 lb . test dacron end supports, center connector with buift in lighning arrester and static discharge molded, sealed, weatherproof, resonant traps $1^{\prime \prime} \times 6^{\prime \prime}-$ you Just switch to band desired for excellent worldwide operation - transmitting and recieving! WT. LESS THAN 5 LBS.

160-80-40-20-15-10 bands 4 trap --169 ft. with 90 ft . RG58U - connector - Model 1060BU . . $\$ 99.95$ 80-40-20-15-10- bands 4 trap - 91 ft with 90 ft . RG58U coax - connector - Model 1080BU. . . $\$ 95.96$ 40-20-15-10 bands 4 trap -45 ft . with 90 ft . RG58U coax - connector - Model 1040BU ... $\$ 92.95$ 20-15-10 bands 4 trap … 23 ft . with 90 ft . RG58U coax - connector - Model 1002BU $\$ 89.96$ SEND FULL PRICE FOR POST PAID INSURED DEL. IN USA. (Canada is \$5.00 extra for postage: lerical-customs - etc.) or order using VISA Bank Americard - MASTER CHARCF - AMER. EX PRESS. Give number and ex. date. Ph I- SAVE - ORDER NOWI All antennas guaranteed for 1 year. 10 day money back trial if returned in new condition! Made in USA. FREE INFO. AVAILABIE ONLY FROM.

KLAUS
 QUALITY AMATEUR RADIO EQUIPMENT \& ACCESSORIES

KENWOOD

TS 520 S
HF TRANSCEIVER

TS 600
MULTIMODE 6-M TRANSCEIVER

TS 820 S HF TRANSCEIVER
. . . call or write for the KLAUS price . . .
YAESU

FT-901 D
HF TRANSCEIVER

FT-227 R 2-METER FM TRANSCEIVER . . . call or write for the KLAUS price . . .

CUSHCRAFT

We have a complete stock of Cushcraft antennas - too many to mention in detail, so ask about our 2 -meter line of verticals and beams for special low, low prices.

8400 N. Pioneer Parkway, Peoria, IL 61614 Phone 309-691-4840
Tim Daily, Amateur Equipment Sales Manager

YOU'VE SEEN THE MAGAZINE ARTICLES
Here's what you can expect from the DX ENGINEERING

RF Speech Processor

```
- 6 db INCREASE IN AVERAGE POWER
- MAINTAINS VOICE QUALITY
- IMPROVES INTELLIGIBILITY
- NO CABLES OR BENCH SPACE REQUIRED
- EXCELLENT FOR PHONE PATCH
- NO ADDITIONAL ADJUST-
MENTS - MIKE GAIN ADJUSTS CLIPPING LEVEL
- UNIQUE PLUG-IN UNIT - NO MODIFICATIONS REQUIRED
```


This is RF Envelope Clippingthe feature being used in new and military use.

Models Now Available Collins 32S, KWM-2 $\$ 98.50$ ea. Drake TR-3, TR-4, TR-6, TR-4C,
T-4, T-4X, T-4XB, T-4XC $\$ 128.50$ ea.
Postpaid- Calif. Residents add 6\% Tax

Watch for other models later!

DX Engineering

1050 East Walnut, Pasadena, Calif. 91106

NEW FROM GLB

A complete line of QUALITY 50 thru 450 MHz TRANSMITTER AND RECEIVER KITS. Only two boards for a complete receiver. 4 pole crystal filter is standard. Use with our CHANNELIZER or your crystals. Priced from $\$ 69.95$. Matching transmitter strips. Easy construction, clean spectrum, TWO WATTS output, unsurpassed audio quality and built in TONE PAD INTERFACE. Priced from \$29.95.
SYNTHESIZER KITS from 50 to 450 MHz . Prices start at $\$ 119.95$.

Now available in KIT FORM GLB Model 200 MINI-SIZER.

Fits any HT. Only 3.5 mA current drain. Kit price $\$ 159.95$ Wired and tested. \$239.95
Send for FREE 16 page catalog. We welcome Mastercharge or VISA

GLBELECTRONICS
 1952 Clinton St., Buffalo, N. Y. 14206

NEC/CEL's world-famous 4GHz GasFETs and NE64535 silicon bipolar transistors are offered at reduced prices to qualified experimenters and hams.

GasFETs: NE24483 1.5dB NF/13.0dB GNF at 4GHz NE38883 1.3dB NF/13.0dB GNF at 4GHz $\$ 35.00$ each $\$ 50.00$ each
 Bipolar: NE64535 10.5dB MAG at 4 GHz
 $\$ 13.00$ each

Immediate delivery. Contact California Eastern Laboratories, Inc., or the CEL sales office nearest you.

NEC microwave semiconductors

California Eastern Laboratories, Inc.
Exclusive sales agent for Nippon Electric Co., Ltd. Microwave Semiconductor Products. U.S.A. \square Canada \square Europe
Headquarters and Warehouse-California Eastern Laboratories, Inc., 3005 Democracy Way, Santa Clara, CA 95050, (408) 988-3500 • Eastern Office-California Eastern Laboratories, Inc., 3 New England Executive Park, Burlington, MA 01803, (617) 272-2300 • Southwest OfficeCalifornia Eastern Laboratories, Inc., 4236 North Brown Avenue, Scottsdale, AZ 85251, (602) 945-1381•Southern California Offices-California Eastern Laboratories, Inc., 2182 Dupont Drive, Suite \#24, Irvine, CA 92715, (714) 752-1665; California Eastern Laboratories, Inc., 2659 Townsgate Road, Suite 101-6, Westlake Village, CA 91361, (213) 991-4436 • European Sales OHices--California Eastern Laboratories, UK., 2 Clarence Road, Windsor, Berks SL4 5AD. England, 075-35-56891; California Eastern Laboratories, France, 34-36, rue des Fusilles, 94400Vitry sur Seine, France, 681-61-70.

Ham Radio's guide to help you find your loca

Arizona

KRYDER ELECTRONICS

5520 NORTH 7TH AVENUE NORTH 7TH AVE. SHOPPING CTR. PHOENIX, AZ 85013
602-249-3739
Your Complete Amateur Radio Store.
POWER COMMUNICATIONS
6012 N. 27 AVE.
PHOENIX, ARIZONA 85017
602-242-6030
Arizona's \#1 "Ham" Store. Yaesu, Kenwood, Drake, Icom and more.

California

C \& A ELECTRONIC ENTERPRISES 22010 S. WILMINGTON AVE SUITE 105, P. O. BOX 5232
CARSON, CA 90745
800-421-2258
213-834-5868 - Calif. Res.
Not The Biggest, But The Best -
Since 1962.
JUN'S ELECTRONICS
11656 W. PICO BLVD.
LOS ANGELES, CA 90064
213-477-1824 Trades 714-463-1886 San Diego The Home of the One Year Warranty - Parts at Cost - Full Service.

QUEMENT ELECTRONICS
1000 SO. BASCOM AVENUE
SAN JOSE, CA 95128
408.998.5900

Serving the world's Radio
Amateurs since 1933.
SHAVER RADIO, INC.
1378 S. BASCOM AVENUE
SAN JOSE, CA 95128
408-998-1103
Atlas, Kenwood, Yaesu, KDK, Icom, Tempo, Wilson, Ten-Tec,
VHF Engineering.

TELE-COM

15460 UNION AVE.
SAN JOSE, CA 95124
408-377-4479

Connecticut

THOMAS COMMUNICATIONS
95 KITTS LANE
NEWINGTON, CT 06111
800-243.7765 - 203.667-0811
Call us toll free.

Delaware

DELAWARE AMATEUR SUPPLY 71 MEADOW ROAD NEW CASTLE, DE 19720 302.328-7728

ICOM, Ten-Tec, Swan, DenTron, Wilson, Tempo, KDK, and more. One mile off 1-95, no sales tax.

Florida

AGL ELECTRONICS, INC.
1898 DREW ST.
CLEARWATER, FL 33515
813-461-HAMS
West Coast's only full service Amateur Radio Store.

AMATEUR RADIO CENTER, INC. 2805 N.E. 2ND AVENUE
MIAMI, FL 33137
305.573-8383

The place for great dependable names in Ham Radio.

RAY'S AMATEUR RADIO

1590 US HIGHWAY 19 SO.
CLEARWATER, FL 33516

813.535-1416

Atlas, B\&W, Bird, Cushcraft, DenTron, Drake, Hustler, Hy-Gain, Icom, K.D.K., Kenwood, MFJ, Rohn, Swan, Ten-Tec, Wilson.

SUNRISE AMATEUR RADIO

1351 STATE RD. 84
FT. LAUDERDALE, FL 33315 (305) 761.7676
"Best Prices in Country.
Try us, we'll prove it.'"

Illinois

AUREUS ELECTRONICS, INC.
1415 N. EAGLE STREET
NAPERVILLE, IL 60540
312-420-8629
"Amateur Excellence"
ERICKSON COMMUNICATIONS, INC.
5456 N. MILWAUKEE AVE.
CHICAGO, IL 60630
Chicago-312-631-5181
Outside Illinois - 800-621-5802
Hours: 9:30-5:30 Mon, Tu, Wed \&
Fri.; 9:30-9:00 Thurs; 9:00-3:00 Sat.

SPECTRONICS, INC.
1009 GARFIELD STREET
OAK PARK, IL 60304 312-848-6777
One of America's Largest Amateur \& SWL Stores.

Indiana

KRYDER ELECTRONICS

GEORGETOWN NORTH
SHOPPING CENTER
2810 MAPLECREST RD.
FORT WAYNE, IN 46815
219-484-4946
Your Complete Amateur Radio Store. 10-9 T, TH, F; 10-5 W, SAT.

Iowa

BOB SMITH ELECTRONICS
RFD \#3, HIGHWAY 169 \& 7
FORT DODGE, IA 50501
515-576-3886
800-247-2476/1793
lowa: 800-362-2371
For an EZ deal.

Kansas

ASSOCIATED RADIO
8012 CONSER, P. O. BOX 4327
OVERLAND PARK, KS 66204 913-381-5901
America's No. 1 Real Amateur Radio Store. Trade - Sell - Buy.

Maryland

THE COMM CENTER, INC.
9624 FT. MEADE ROAD
LAUREL PLAZA, RT. 198
LAUREL, MD 20810
800-638-4486
Kenwood, R. L. Drake, Ten-Tec,
Icom, Swan, DenTron \& Apple Computers.

Massachusetts

TUFTS RADIO ELECTRONICS
206 MYSTIC AVENUE
MEDFORD, MA 02155
617-395-8280
New England's friendliest
ham store.

Michigan

RSE HAM SHACK

1207 W. 14 MILE CLAWSON, MI 48017
313-435-5660
Complete Amateur Supplies.

Minnesota

PAL ELECTRONICS INC. 3452 FREMONT AVE. NO. MINNEAPOLIS, MN 55412 612-521-4662
Midwest's Fastest Growing Ham Store, Where Service Counts.

Nebraska

COMMUNICATIONS CENTER, INC. 443 NORTH 48TH ST. LINCOLN, NE 68504 800-228-4097
Lowest Prices in the USA
on Ham Equipment.

New Hampshire

EVANS RADIO, INC.
BOX 893, RT. 3A BOW JUNCTION CONCORD, NH 03301
603-224-9961
Icom, DenTron \& Yaesu dealer.
We service what we sell.

New Jersey

ATKINSON \& SMITH, INC.
17 LEWIS ST.
EATONTOWN, NJ 07724
201-542-2447
Ham supplies since " 55 ".
BARGAIN BROTHERS ELECTRONICS 216 SCOTCH ROAD
GLEN ROC SHOPPING CTR. WEST TRENTON, NJ 06828 609-883-2050
A million parts - lowest prices anywhere. Call us!

METUCHEN RADIO

216 MAIN STREET
METUCHEN, NJ 08840
201-494.8350
New and Used Ham Equipment WA2AET "T" Bruno

RADIOS UNLIMITED
P. O. BOX 347

1760 EASTON AVENUE
SOMERSET, NJ 08873
201-469-4599
New Jersey's Fastest Growing
Amateur Radio Center.
ROUTE ELECTRONICS 46
225 ROUTE 46 WEST
TOTOWA, NJ 07512
201-256-8555
Drake, Swan; DenTron, Hy-Gain, Cushcraft, Hustler, Larsen, Etc.

WITTIE ELECTRONICS

384 LAKEVIEW AVENUE
CLIFTON, NJ 07011
(201) 772-2222

Same location for 62 years.
Full line authorized Drake dealer.

New York

HAM-BONE RADIO
3206 ERIE BLVD. EAST
SYRACUSE, NY 13214
315-446-2266
We deal, we trade, all major brands! 2-way service shop on premises!

HARRISON RADIO CORP.
20 SMITH STREET
FARMINGDALE, NY 11735
516-293-7990
"Ham Headquarters USA" since 1925.
Call toll free 800-645-9187.

RADIO WORLD

ONEIDA COUNTY AIRPORT
TERMINAL BLDG.
ORISKANY, NY 13424
Toll Free 800-448-7914
NY
Res. $\left\{\begin{array}{l}315-337-2622 \\ 315-337-0203\end{array}\right.$

New \& Used Ham Equipment.
See Warren K2IXN or Bob WA2MSH.

Ohio

AMATEUR RADIO

SALES \& SERVICE INC.
2187 E. LIVINGSTON AVE.
COLUMBUS, OH 43209
614-236-1625
Antennas and Towers for All Services.

UNIVERSAL AMATEUR RADIO, INC. 1280 AIDA DRIVE
COLUMBUS (REYNOLDSBURG)
OH 43068
614.866-4267

Complete Amateur Radio Sales and Service. All major brands - spacious store near 1-270.

Oklahoma

KRYDER ELECTRONICS

5826 N.W. 50TH
MacARTHUR SQ. SHOPPING CTR.
OKLAHOMA CITY, OK 73122
405-789-1951
Your Complete Amateur Radio Store

Pennsylvania

HAMTRONICS, DIV. OF
TREVOSE ELECTRONICS
4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215-357-1400
Same Location for 30 Years.
Call Toll Free 800-523-8998.

LaRUE ELECTRONICS

1112 GRANDVIEW STREET
SCRANTON, PENNSYLVANIA 18509
717-343-2124
ICOM, Bird, Cushcraft, CDE,
Ham-Keys, VHF Engineering.
Antenna Specialists.

South Dakota

BURGHARDT

AMATEUR RADIO CENTER, INC. P. O. BOX 73

WATERTOWN, SD 57201
605.886.7314
"America's Most Reliable
Amateur Radio Dealer'.

Texas

HARDIN ELECTRONICS

5635 E. ROSEDALE
FT. WORTH, TX 76112
817-461-9761
Your Full Line Authorized Yaesu Dealer.

Barry Electronics

. . . Your One Source For Amateur Radio Gear In Stock - The fabulous DRAKE TR-7 Transceiver

Barry is your Drake Distributor in New York City

YAESU - The New
FT-707 WAYFARER
Compact 80-10 transceiver

Your ticket to the NEW 10, 18, and 24 MHz Amateur Bands - ready to go when they are. - Solid State - Continuous Coverage • Fully Synthesized • Digital Frequency Display \bullet Passband Tuning $\bullet 200$ Watts

We have:

- ANTENNAS FOR HF \& UHF
- ROTORS
- TOWERS
- REPEATERS
- MICROPHONES
- KEYS \& KEYERS
- TUBES and much, more

ASTRON - 35-Watt Amplifiers In Stock!

JUST CALL OR

	ROHN
KDK	SHURE
KLM	STANDARD
MFJ	SWAN
MIRAGE	TEMPO
MOSLEY	TEN-TEC
MURCH	TRI-EX
NEWTRONICS	VHF
ROBOT	ENGINEER

Ask about our Amateur Radio License Classes - Novice thru Extra! The Export Experts Invite Overseas orders - We Ship Worldwide BARRY ELECTRONICS
 512 BROADWAY, NEW YORK, N.Y. 10012 TELEPHONE (212) 925-7000

REPEATER AUTOPATCH

Offer your club COMPLETE emergency communications
Commercial quality, gold plated contacts, plug in, epoxy glass PC boards. 12 volt DC or 115 volt AC operation - Power supply included. Four digit access - Single digit releases - field programmable. Hybrid network - No switching required. FCC certified telephone line coupler. Auxiliary "In Use" contacts supplied. Land line "call-in" signalling control contacts provided. Price complete $\$ 498+\$ 3$ shipping \& handling. Master Charge, Bank money order, or certified check acceptable.

Accessories: CES-300 powered tone pad - $\$ 59$ BUS-COM Soft-touch ${ }^{\ominus}$ telephone powered mike/pad element - $\$ 34.95$.

MONROE ELECTRONICS, INC 410 Housel Ave., Lyndonville, N.Y. 14098

NEW ELECTRONIC PARTS
Brand name, first line components. Stocked in depth 24 hour delivery. Low prices and money back guarantee on all products we carry

STAMP BRINGS CATALOG

Daytapro Electronics. Inc.
3029 N WILSHIRE LN. ARLINGTON HTS, ILL 60004 PHONE 312-870-0555

S-LINE OWNERS
 ENHANCE YOUR INVESTMENT

 with
TUBESTERS ${ }^{\text {™ }}$

Plug-in, solid state tube replacements

- S-line performance-solid state!
- Heat dissipation reduced 60\%
- Goodbye hard-to-find tubes - Unlimited equipment life

TUBESTERS cost less than two tubes, and are guaranteed for so long as you own your S-line.

SKYTEC

Box 535
Talmage, CA 95481

Write or phone for specs and prices.
(707) 462-6882

SEEKING NEW CHALLENGES IN 1980?

X-BAND MICROWAVE BUILDING BLOCKS

GUNN SOURCE
FREO. $=10.5 \mathrm{GH}$. POWER OUT: 10 mw nom. BIAS $=+8 \mathrm{VDC}$
G.S.-1 . . \$53.10 ea.

VIDEO DETECTOR OET. BNO. $=10.5 \mathrm{GH} \pm 25 \mathrm{mh}$ TANG. SENS: -50 DBM MIN. BIAS $=20 \mu \mathrm{a}$.
V.D.-1. . . \$39.10 ea.

FILTER-MIXER STOP BND: $16-24 \mathrm{GH}$. INS. LOSS = 2 DB MAX BIAS $=25 \mu$ a nom. VSWR: 1.5:1 MAX; F.M.-1 . . $\$ 44.70$ ea.

IMPATT SOURCE FREQ: $10.5-10.55 \mathrm{GH}$. PWR. OUT: $50 \pm 20 \mathrm{mw}$. BIAS $=90 \mathrm{~V}$ nom, I.S.-1 . . . \$52.10 ea.

HORN ANTENNA FREO. $=8.12 \mathrm{GH}$. GAIN $=18 \mathrm{DB}$. VSWR $=1.3: 1$
H.A.-1 . . $\$ 15.90$

PAROB. ANT.
FRED.: $10-10.6 \mathrm{GH}$. GAINS: 34 DB SIZE $=2^{\prime}{ }^{\prime}$ dia. POLAR: EPLANE P.A.-1 . . $\$ 456.00$

E.B.A. MICROWAVE

> CS-6800 P.O. BOX A123 COSTA MESA, CA 92627
Check, Money Order, Visa or MasterCharge Acceptable

Order Your Collins KWM-380 NOW! and receive FREE

(+ old pricing, deposit only required)

1) Noise Blanker - $\$ 195.00$
2) or 2 Filters, your choice - $\$ 96.00$ ea.
3) or Blower Kit - \$195.00

Get on with the Best!

Electronics Supply, Inc.
1508 McKinney - Houston, Texas 77002 - (713) 658-0268

MT-61B
Features:

WIND LOADING			
Tower	Heigh	$\mathrm{Sq} . \mathrm{Ft}$.	
ST. 77 B	69	18	Square
	53	$\frac{18}{18}$	Footage
MT-618	61	12	Based on
TT.45B	${ }_{45}^{37}$	$\frac{18}{12}$	Wind

Wilson Systems uses a new high strength carbon steel tube manufactured especially for Wilson Systems. It is 25% stronger than conventional pipe or tubing. The tubing size used is: $2^{\prime \prime} \& 3^{1 / 2 \prime \prime} .095 ; 41 / 2^{\prime \prime} \& 6^{\prime \prime}-125,8^{\prime \prime}$ $\therefore .134$. All tubing is hot dip galvanized. Top section is $2^{\prime \prime}$ O.D. for proper rotor and antenna mounting.
The TT-45B and MT-61B come complete with house bracket and hinged base plate for against-house mounting. For totally freestanding installation, use either of the tilt-over bases shown below.
The ST-77B can not be mounted against the house and must be used with the tilt-over base FB-77B or RB-77B shown below.

All three towers above are able to handle large arrays of up to 20 sq . ft. at 80 mph WHEN GUYED with one set of 4 -point Guys at the top of the $31 / 2$ " section. Guying Kits are available at the following prices: GK-45B-\$59.95; GK-61B-\$79.95; GK-77B-\$99.95. When using the Guy System with RB Series Rotating Base, an additional thrust bearing at the top is required. The WTB-1 is available for $\$ 49.95$.

TILT-OVER BASES FOR TOWERS

FIXED BASE

The FB Series was designed to provide an economical method of moving the tower away from the house. It will support the tower in a completely free-standing vertical position, while also having the capabilities of tilting the tower over to provide an easy access to the antenna. The rotor mounts at the top of the tower in the conventional manner, and will not rotate the complete tower.
FB-45B. . . 112 lbs. . . $\$ 154.95$
FB-61B. . . 169 lbs.. . . 214.95
FB-77B. . . 250 lbs.. . . 299.95

ROTATING BASE

The RB Series was designed for the Amateur who wants the added convenience of being able to work on the rotor from the ground position. This series of bases will give that ease plus rotate the complete tower and antenna system by the use of a heavy duty thrust bearing at the base of the tower mounting position, while still being able to tilt the tower over when desiring to make changes on the antenna system.
RB-45B. . . 144 lbs.. . $\$ 219.95$
RB-61B. . . 229 lbs.. . . 299.95
RB-77B. . . 300 lbs 449.95
 one-man task with the Wilson bases. (Shown above is the RB-61B. Rotor is not included.)

TO:

ALL AMATEURS

 FROM: WILSON SYSTEMS, INC.I would like to take this opportunity to thank you for your support during the last six months. The response was much greater than anticipated and as a result, we fell behind in our shipping. We now have shipping under control and increased production, all of which contribute to the in-stock situation of almost all the products that we offer. Your kindness and patience at that time was appreciated by everyone at Wilson Systems.

With each product that we manufacture, we include a "Product Evaluation Sheet." This enables us to understand what you like and dislike about our products and services. We appreciate the ideas and comments that you have returned to us on these sheets and have instituted some of the changes suggested. So please continue to send them in.

I'm sure you've noticed the way prices have been creeping land in some cases leaping) upward. We don't like to raise the prices any more than you like to see them go up, but have you seen the price of steel or aluminum lately?

Not all the price increases are directly related to increased materials costs. Sometimes it is the result of an upgrade to a better product. That is the case with the towers. I am very enthusiastic about the new " B " model towers. Did you take a look at the new specifications? Notice the features that have been changed: thickness of tubing, type of tubing used, and the wind loading. The wind load capability has increased dramatically. Oh yes, they've increased in price-but so has the quality! And did you notice the new tower? That's a 77', freestanding, rotatable tower that will safely handle 12 sq. ft. of antenna at 77' (or 18 sq. ft. at 72') in a 50 mph wind. All of this for less than $\$ 1,400$, including the rotating base!

I would also like to mention that this month we are announcing a new antenna product. We are offering you an adapter kit for the SY-36 and SY-33 to add 40-meter operation. This kit, the 33-6 MK, will add 200kc of 40-meter operation to your tribander. It will work only with the SY-33 and SY-36.

We look forward to serving you with almost all products now in stock.
Yours truly,
JIM WILSON
Wilson Systems, Inc.
P.S. Remember, most items are now in stock and ready for shipment.

WILSON SYSTEMS, INC. - 4286 S. Polaris
Las Vegas, NV 89103 - (702) 739-7401
FACTORY DIRECT
ORDER BLANK
WILSON SYSTEMS TOWERS

WILSON SYSTEMS ANTENNAS			Shipping	Price
	Model	Description		
	SY36	6 Ele. Tribander for 10, 15, 20 Mtrs.	UPS	199.95
	SY33	3 Ele. Tribander for 10, 15, 20 Mtrs.	UPS	149.95
	$33-6$ MK	40 Mtr. Mod Kit for SY33 \& SY36	UPS	49.95
	WV-1A	Trap Vertical for 10, 15, 20, 40 Mtrs.	UPS	49.95
	GR-1	Ground Radials for WV-1A	UPS	12.95
	M-520A	5 Elements on 20 Mtrs.	TRUCK	229.95
	M-420A	4 Elements on 20 Mtrs.	UPS	159.95
	M-515A	5 Elements on 15 Mtrs.	UPS	129.95
	M-415A	4 Elements on 15 Mtrs.	UPS	84.95
	M-510A	5 Elements on 10 Mtrs.	UPS	84.95
	M-410A	4 Elements on 10 Mtrs.	UPS	69.95
		ACCESSORIES		
	HD-73	Alliance Heavy Duty Rotor	UPS	109.95
	RC-8C	8/C Rotor Cable	UPS	$12 / \mathrm{ft}$.
	RG-8U	RG-8U Foam-Ultra Flexible Coaxial Cable. 38 strand center conductor, 11 guage	UPS	$21 / \mathrm{ft}$.

NOTE:

On Coaxial and Rotor Cable, minimum order is 100^{\prime} and 50° multiples. Prices and specifications subject to change without notice. Ninety 1901 Day Limited Warranty - All Products FOB Las Vegas, Nevada Ninety 1901 Day Limi

Qty.	Model	Description	Shipping	Price
	TT-458	Freestanding 45' Tubular Tower	TRUCK	314.95
	RB-458	Rotating Base for TT-458 w/tilt over feature	TRUCK	219.95
	FB-45B	Fixed Base for TT-45 B w/tilt over feature	TRUCK	154.95
	MT 618	Freestanding 61' Tubular Tower	TRUCK	549.95
	RB-61B	Rotating Base for MT-61B w/tilt over feature	TRUCK	299.95
	FB-61B	Fixed Base for MT-61B w/tilt over feature	TRUCK	214.95
	ST-778	Freestanding 77' Tubular Tower	TRUCK	949.95
	RB-778	Rotating Base for ST-77B w/tilt over feature	TRUCK	449.95
	F B-778	Fixed Base for ST-778 w/tilt over feature	TRUCK	299.95
	GK-45B	Guying Kit for TT-45B	UPS	59.95
	GK.61B	Guying Kit for MT-618	UPS	79.95
	GK-77B	Guying Kit for ST-778	UPS	99.95
	WTB-1	Thrust Bearing for Top of Tower	UPS	49.95
Prices Effective March 1-31, $1980 \quad$ Nevada Residents add 31/2 \% Sales TaxShip C.O.D. \square Check enclosed \square Charge to VISA \square MasterCharge \square				
Card No. \qquad Expires				
Bank No.				
Name Phone				
Street				
City		- State Zip		

WILSON SYSTEMS INC. MULTI-BAND ANTENNAS

A trap loaded antenna that performs like a monobander! That's the characteristic of this six element three band beam. Through the use of wide spacing and interlacing of elements, the following is possible: three active elements on 20 , three active elements on 15 and four active elements on 10 meters. No need to run separate coax feed lines for each band, as the bandswitching is automatically made via the High-Q Wilson traps. Designed to handle the maximum legal power, the traps are capped at each end to provide a weather-proof seal against rain and dust. The special High-Q traps are the strongest available in the industry today.

Band MHz 14-21-28	Boom (O.D. \times Length) . . $2^{\prime \prime} \times 24^{\prime} 2 \%^{\prime \prime}$	Wind Loading @ 80 mph . . 215 lbs .
Maximum power input Legal Limit	No. of Elements. 6	Maximum wind survival . . . 100 mph
Gain (dBd). Up to 9 dB	Longest Element $28^{\prime} 212^{\prime \prime}$	Feed method Coaxial Balun
VSWR@ resonance . . 1.3:1	Turning Radius 18'6 ${ }^{\prime \prime}$.	Matching Method Beta
Impedance. 50 ohm	Maximum mast diameter . $2^{\prime \prime}$	Assembled weight (approx) . 53 lbs .
F/B Ratio 20 dB or better	Surface area 8.6 sq. ft.	Shipping weight (approx) . . 62 lbs.

M1ADD 40 METERS TO YOUR TRI-BAND WITH THE NEW 33-6 MK
 - IN STOCK -

Now you can have the capabilities of 40 -meter operation on the System 36 and System 33 . Using the same type high quality traps, the 40 -meter addition will offer 200HKZ of bondwidth at less than 2:1 SWR. The new $33-6 \mathrm{MK}$ will fit your present SY36 or SY33, and using the same single feed line.

Capable of handling the Legal Limit, the "SYSTEM 33 " is the finest compact tri-bander available to the amateur. Designed and produced by one of the world's largest antenna manufacturers, the traditional quality of workmanship and materials excells with the "SYSTEM 33 ". New boomtoelement mount consists of two $1 / 8^{\prime \prime}$ thick formed aluminum plates that will provide more clamping and holding strength to prevent element misalignment. Superior clamping power is obtained with the use of a rugged $1 / 4^{\prime \prime}$ thick aluminum plate for boom to mast mounting. The use of large diameter High-Q traps in the "SYSTEM 33" makes it a high performing tri-bander and at a very economical price. A complete step-by-step illustrated instruction manual guides you to easy assembly and the lightweight antenna makes installation of the "SYSTEM 33" quick and simple.
Band MHz
Maximum p
VSWA at res
Impedance
F/B Ratio
SPECIFICATIONS

> Boom (O.D. \times length) No. of elements Longest elemen Turning radius.
Maximum mast diameter Maximum mace area

WILLSON
SYSTEMS, INC
Las Vegas, Nevada 89103
$2^{\prime \prime} \times 14^{\prime} 4^{\prime \prime}$
3
$27^{\prime \prime} 4^{\prime \prime}$
$15^{\prime} 9^{\prime \prime}$
$2^{\prime \prime} 0 . \mathrm{D}$.
$5.7 \mathrm{sq} \mathrm{ft}^{2}$
Wind loading at $80 \mathrm{mph} \ldots . \ldots 11 \mathrm{lbs}$.
Assembled weight (approx) $\ldots 37 \mathrm{lbs}$.
Shipping weight (approx) $\ldots 42 \mathrm{lbs}$.
Direct 52 ohm feed - no balun required
Maximum wind survival $\ldots . . .100 \mathrm{mph}$

ORDER FACTORY DIRECT

 1-800-634-6898WV-1A

4 BAND TRAP VERTICAL (10-40 METERS)

No bandswitching necessary with this vertical. An excellent low cost DX antenna with an electrical quarter wavelength on each band and low angle radiation. Advanced design provides low SWR and exceptionally flat response across the full width of each band.
Featured is the Wilson large diameter High-Q traps which will maintain resonant points with varying temperatures and humidity.

Easily assembled, the WV-1A is supplied with a base mount bracket to attach to vent pipe or to a mast driven in the ground.

Note:

Radials are required for peak operation. (See GR-1 below)

SPECIFICATIONS

- 19 ' total height
- Self supporting - no guys required
- Weight - 14 lbs.
- Input impedance: 50Ω
- Powerhandling capability: Legal Limit
- Two High-Q traps with large diameter coils
- Low angle radiation
- Omnidirectional
performance
- Taper swaged aluminum tubing
- Automatic bandswitching
- Mast bracket furnished
- SWR: 1.1:1 or less on all bands

GR-1

The GR-1 is the complete ground radial kit for the WV. 1A. It consists of: 150 ' of $7 / 14$ stranded copper wire and heavy duty egg insulators, instructions. The GR-1 will increase the efficiency of the GR-1 by providing the correct counterpoise.

flea market四回

RATES Non-commercial ads 10¢ per word; commercial ads 60c per word both payable in advance. No cash discounts or agency commissions allowed.

HAMFESTS Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing). Repeat insertions of hamfest ads pay the noncommercial rate.

COPY No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

DEADLINE 15 th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N.H. 03048.

QSL's . NO STOCK DESIGNS! "SCRATCH" - Your Art or Ours - Photos - 616-924-4561 - SASE samples Certified Communications, 4138 S. Ferris, Fremont, M 49412.

CB TO 10 CONVERSION PROFESSIONALS - Your rig or buy ours - CW/SSB/AM - 616-924-4561, Certified Communications, 4138 S. Ferris, Fremont, MI 49412.

MOBILE HF ANTENNA 3.2 .30 MHz inclusive, 750 watts PEP, center loaded, tuned from the base, eliminating coil changing or removing from mount. Less than 1.5 to 1 VSWR thru entire coverage. $\$ 129.95$ ea. plus shipping Contact your local dealer, if none in your area order direct. Anteck, Inc., Route One, Hansen, Idaho 83334 (208) 423-4100. Master Chg., and VISA accepted. Dealer and factory rep. inquiries invited.

WRITE OFF some of your amateur radio expenses! This proven HAM TAX SAVINGS booklet is itself tax-deduct ible and is guaranteed to save you many times its price Applies to 1979 taxes, and the information can be used again every year you have ham-related expenses in the future. Perfectly legai, not a "gimmick". Only \$3.95. R Day, 27131 Indian Peak Rd., Rancho, Palos Verdes, CA 90274.

Foreign Subscription Agents for Ham Radio Magazine

Ham Radio Austria F. Bast! Hauptplatz 5 A. 2700 Wiener Neustadt Austria	Ham Radio Holland MRL Ectronics Postbus 88 NL. 2204 Deift Holland
Harn Radio Belgium Stereohouse Brusselsesteenweg 416 B. 9218 Gent Belgium	Ham Radio Italy G Vulpetti PO. Box 37 122063 Cantu
Ham Radio Canada Box 400, Goderich Ontario, Canada N7A 4C7 Ham Radio 5	
Ham Radio Europe Box 444 S. 19404 Uppiands Vasby Sweden	Postfach 2454 D. 7850 Loerrach West Germany
Ham Radio France SM Electronic 20 bis, Ave des Clarions F.89000 Auxerre France	Ham Radio UK P. Box 63 , Harrow Middlesex HA3 6HS England
Ham Radio Germany Karin Ueber Postach 2454 D. 7850 Loerrach West Germany	Holland Radio 143 Greenway Greenside, Johannesturg Repubic of South Atrica

West Germany
Greenside, Johannesburg
Aepubic of South Atrica

VERY in-ter-est-ing! Next 3 issues $\$ 1$. "The Ham Trader" Wheaton, IL 60187

RADIO EXPO " 80 " Lake County fair grounds, Rt. $45 \&$ 120. Sept. 6 \& 7 - advanced tickets $\$ 2.00, \$ 3.00$ at gate. Write: Radio Expo Tickets, P.O. Box 1532, Evanston, IL 60204. Exhibitor information call (312) BST-EXPO.

MOBILE IGNITION SHIELDING provides more range with no noise. Available most engines. Many other suppression accessories. Literature, Estes Engineering. 930 Marine Dr., Port Angeles, WA 98362.

WANTED: Hilltop property near Pollock Pines, California. WA6COA, 4 Ajax Place, Berkeley, CA 94708

BUY-SELL.TRADE. Send $\$ 1.00$ for catalog. Give name address and call letters. Complete stock of major brands new and reconditioned amateur radio equipment. Call for best deals. We buy Collins, Drake, Swan, etc. Associated Radio, 8012 Conser, Overland Park, KS 66204. (913) 381-5900.

QSLs - \$2.70 per hundred (minimum order, 1000) and up. 32 two-color designs. Send $30 \mathrm{c} /$ stamps for catalog. Satisfaction guaranteed or money back. Since 1934. VP5QED Press, Box 1523, Boca Raton, FL 33432.

RTTY - Solid state CQer board with PROM programmed your call. Coming soon. Send nameladdress for future announcements. Nat Stinnette Electronics, Tavares, FL 32778.

RECONDITIONED TEST EQUIPMENT for sale. Catalog \$.50. Walter, 2697 Nickel, San Pablo, CA 94806

THE MOR-GAIN HD DIPOLES are most advanced, highest performance multi-band HF dipole antennas available. Patented design provides length one-half of conventional dipoles. 50 ohm feed on all bands, no tuner or balun required. Can be installed as inverted VEE. Thousands in use world wide. 22 models available including two models engineered for optimum performance for the novice bands. The Mor-Gain HD dipoles N/T series are the only commercial antennas specifically designed to meet the operational requirements of the novice license. Our 1-year warranty is backed by nearly 20 years of HD dipole production experience. Write or call today for our 5-page brochure. (913) 682-3142. MorGain, P.O. Box 329H, Leavenworth, KS 66048.
 pieces for the builder. U.S. only. Star-Tronics, Box 683, McMinnville, OR 97128.

WANTED: Magnetic Video Corp. Copycorder. Halliburton Briefcase. Larry Kleber, K9LKA, Belvidere, IIlinois 61008.

WANTED: Motorola KXN 1024 and KXN 1052 Channel elements. WA6COA, 4 Alax Place, Berkeley, CA 94708.

ONLY MY FRIEND'S recent physical disability makes this top-grade equipment available; purchased new, still in as-new condition, complete with manuals/cables. Bill had literally a store full of items, $\$ 10$ to $\$ 100$ range; too costly to advertise the list, so tell me what you need. I want to move them now. Anyone having a difficult time learning code and operating CW? These like-new visual decoders and electronic typewriter keyboard: Pickering 230-D Morse Decoder, \$1500; Pickering KB-1 Electronic Keyboard keyer, \$140; Atronics CR-101 Code Reader, \$65; manuals/instructions. Collins: 51S1F, \$2050; 55G1, \$325; 30L1, \$995; 32S3A/516F2, \$1775; 312B4, \$425; all Round Emblem, immaculate w/manuals. Two Hy-Gain HT-18, 10-80 meter vertical antennas, \$195 each (phasing harness available); Two Murch Ultimate Transmatch UT. 2000A, \$125 each; DenTron 3000A antenna tuner, \$230; KLM Multi-2700 144 MHz transceiver, \$575; KLM PA 10 140BL linear amplifier, \$175; Vista 120v.a.c./13.8v.d.c. power supply for above, $\$ 136$; excellent condition w/manuals. Ralph E. Thomas, W2UK, 9 Emmons Avenue, Farmingdale, N.J. 07727 ; telephone (201) 938-5623.

WANTED: Heathkit SB-10 SSB Adapter for Apache Transmitter. Working Condition. Larry Eichhorn, 1449 Joseph St., Saginaw, Mich. 48603.

QSL CARDS 500/\$10. 400 illustrations, sample. Bowman Printing, Dept. HR, 743 Harvard, St. Louis, MO 63130.

HARDLINE: Wanted in approximately 300 foot piece, $1 / 2$ " or $7 / 8^{\prime \prime}$ size. Contact: Mr. G. Holmes, c/o G.F.W., Box 501, Sault Ste. Marie, Michigan 49783

ANTENNA FARM on six acres redwood forest, Santa Cruz mountains, 45 minutes to San Jose, CA. Quiet DX ocation, three-phase power, $125-\mathrm{ft}$ Blaw Knox self. supporting tower with 40 M and 20 M rotary beams. Crank-up with TH6DXX. Many 150-ft redwoods for wires. 1925 square feet in house and garage, 960 in nearby shop and ham shack, all seven years old. Private well, 10,000 gallon storage. $1 / 2$-mile paved private road. Top three acres fenced. Good DX location all directions, 7^{*} horizon to SW. \$300,000 by owner, W6MUR, terms. Write callbook QTH or call (408) 336-8800.

PEAK RERDING

 WRTT METER WM-2000A reads power in 200, 1000, 2000 watt ranges. 3.5-30 MHz . Reads average or PEP power output. Includes expanded VSWR scale.

IN-LINE WATT METER
WM-2000 reads power in 200, 1000,2000 watts. $3.5-30 \mathrm{MHz}$. Incl. expanded VSWR scale.

MOBILE WATT METER

HFM-200 with remote direc tional coupler reading 20 or 200 watts. $3.5-30 \mathrm{MHz}$. Illuminated, with VSWR scale.

SWR BRIDGE SWR $1 A$ with dual reading meters. 1000 watts RF. $3.5-150 \mathrm{MHz}$. Reads relative power output.
 authorized dealers.

A division of Cubic Communications, Inc.
305 Airport Rd. • Oceanside, Ca. 92054 (714) 757-7525

KENWOOD TS-700S, Mint, \$600. HEATH HR 1680 Ham Band Receiver, excellent, \$175, SB640 Speaker, \$25 F9FT, $\$ 40$. Cushcraft A147-22, 2 m beam, $\$ 40.75 \mathrm{ft} 50 \mathrm{ohm}$ hardline, $\$ 20$. CO AR40, Rotor, $\$ 30$. Offers Considered. AI Barnett, WO4SHO, P.O. Box 198, Indian Head, MD 20640. 301.743-3511 - Evenings.

SATELLITE TELEVISION - movies, sports, etc. Build or buy your own earth station. Send $\$ 3.00$ for information. Satellite Television, Box 140, RD \#3, Oxford, NY 13830.

FOR SALE: Reconditioned 33 ASR - Teletype. New York Teleprinter Service, 1 Burrow Road, East Northport, NY 11731. 516-499-3048. M-15 Parts.

HAM RADIO REPAIR, alignment. Prompt, expert, reasonable. "Grid" Gridley, W4GJO, Route 2, Box 138B, Rising Fawn, GA 30738.

WANTED: No. 19 Mark II or III Transceiver. State condition, price in letter. V. Grogan, WD8SEF, P.O. Box 382, West Salem, Ohio 44287.
RTTY AFSK Modulator PC board. See Feb. 79 Ham Radio. Drilled $\$ 5.00$; with parts, $\$ 25$. F. E. Hinkle, 12412 Mossy Bark, Austin, TX 78750.

SELL: Drake SW4-A $\$ 190.00$, Moonbounce 160 element collinear $\$ 490.00$, Details, List, write John Allen Bowling Green, MO 63334.

THE MEASUREMENT SHOP has used/reconditioned test equipment at sensible prices; catalog. 2 West 22nd St., Baltimore, MD 21218.

THE 11TH ANNUAL FM B***** ${ }^{*}$ will be held on the Friday night of the Dayton Harmvention, April 25, 1980 at the convention center, Main and Fifth Streets. Parking in adjacent City garage. Admission is free to all. Sandwiches, snacks and C.O.D. bar available. Live entertainment provided for a super social evening. Don't miss it... Awards include a new synthesized HT. For further information contact the Miami Valley FM Assn., P.O. Box 263, Dayton, Ohio 45401.

WANTED AFSAV-133D \& AN/FRA-86 Demods TD-687 Demux, AFSAV-129A Selector \& AFSAV-39C Rekeyer. C. T. Huth, 146 Schonhardt, Tiffin, OH 44883.

REPLACE RUSTED ANTENNA BOLTS with stainless steel. Small quantities, free catalog. Elwick, Dept. 370, 230 Woods Lane, Somerdale, N.J. 08083.

RTTY FOR SALE: 28ASR table-top compact (1); 28KSR single-speed (2), w/gearshift (1); M28 ROTR single-speed (2), w/gearshift (3); M28 LXD stand-alone TD (10); 28KSR compact w/gearshift (1); 28RO w/gearshift (2); 34ASR (1); M28 keyboard typing repert single-speed (2); M28 triple LXD (2); M28-under-dome typing repert single-speed (1), w/gearshift (2); friction-feed mod kits NEW (3); 2-shaft reperf for 28ASR (2); 60-75-100 wpm gearshifts for 28KSR, RO NEW (5); M28 motorized paper winders (10); self-contained answerbacks (3); 35KSR (1); 35ASR (1); 33ASR TWX (1); gears and parts available for all machines. Send SASE for full list and prices. Lawrence R. Pfleger, K9WJB, 2600 S. 14th Street, St. Cloud, MN 56301.

DX, YOU BET! THE DX BULLETIN - Best weekly DX info in the world. For FREE sample copy, send business-size SASE to: The DX Bulletin, 306 Vernon Avenue, Vernon, Connecticut 06066 .

NORTH AMERICAN DX REPORT - free sample SASE to Suites R2-R3, 615 S. Frederick Ave., Gaithersburg. MD 20760 - Phone (301) 840-1987.

CW FILTERS: Active audio 8 -pole, install in any radio, selectable bandwidth, \$15-\$32. SASE info W8CBR, 80 W . Mennonite, Aurora, OH 44202.

STOP LOOKING for a good deal on amateur radio equipment - you've found it here - at your amateur radio headquarters in the heart of the Midwest. Now more than ever where you buy is as important as what you buy. We are factory-authorized dealers for Kenwood, Drake, Yaesu, Collins, Wilson, Ten-Tec, Atlas, ICOM, DenTron, MFJ, Tempo, Regency, Hy-Gain, Mosley, Alpha, CushCraft, Swan and many more. Write or call us today for our low quote and try our personal and friendly Hoosier Service. HOOSIER ELECTRONICS, P.O. Box 2001, Terre Haute, Indiana 47802. (812) 238-1456.

MOTOROLA ALL SOLID STATE MOTRAN RADIOS. Model X43LSN-2170, four frequency, transmit 150 MC (30W), receive 450 MC. Will operate in Ham Bands. No modification required. Large stock available. $\$ 150.00$ each. Omni Communications. Call (312) 852-0738.
KENWOOD INTERNATIONAL USER'S CLUB is now operational. SASE for details. N8RT, Pohorence, 9600 Kickapoo Pass, Streetsboro, OH 44240.

ATLAS OWNERS DD6-C and 350XL Digital Dial/Frequency Counters. $\$ 175.00+$ Shipping (Calif. add tax). Mical Devices, Box 343, Vista, CA 92083.

HA-2 HORIZONTAL/VERTICAL 2 METER ANTENNA

the HA-2 is a low profile hall wove, hortzontally polarized omnidirectional 2 meter antenna. At though the HA-2 was designed for moblle operation, It will work well as a fixed or portable antenna and its small size provides the traveling ham with an antenna that can easily be packed in a briefcase. the HA-2 comes complete whth RG/58, which is fed through the center of the mast section, Pl-259 RF connector and $3 / 824$ stud base. A rain gutter mount is recommended for mobile opera.
 o provide more versatility for the HA-2, a vertical change over option mount has been

Specifications
Gain
VSWR
Banawiath Impedance Power Element Size Mast Length Base polarization, complete change can be made in minutes requiring only a screw drmet.
1.92 dBI
$1.5: 1$
4 MHz
50 Ohms
150 watts dc input
10 inches square
2.0 feet
$3 / 8^{\prime \prime} \times 24$
$\$ 39.95$ postage paid
Pat. Pending $\boldsymbol{2 8 8 5 4 8}$
F.C.C. - Certifed
F.C.C. - Certifed

Send check or money order to:
SEM CON Inc. BOX 2751 ,
Palos Verdes, CA 9027
'Vertical change over mount $\$ 5.95$.

SL-56 AUDIO ACTIVE FILTER

$\$ 79.00$
ppd
USA \&
Canada

FOUR FILTERS IN ONE at The same time

Call, Write or SEE
Another ISSUE for Details
ELECTRONICS RESEARCH CORP, OF VIRGINIA P. O. BOX 2394

VIRGINIA BEACH, VIRGINIA 23452
TELEPHONE (BO4) 453-2649

CALL
 Coming Events

 TOLL FREEFor the best deal on
-AEA -Ameco -Apple -ASP - Belden -Bencher -Bird $\bullet C D E$-CES ©Cushcraft \bullet Daiwa ©DenTron ©Drake - Hy-Gain elcom eKLM \bullet Kenwood eLarsen eMFJ \bullet Midand ©Mosley eNPC - Newtronics © Nye -Palomar - Regency ©Shure eSwan -Standard \bullet Tempo \bullet Ten-Tec -Tonna •Transcom •Wilson -Yaesu

NEW for 1980! Apple Computers.

get Erickson's price!
RTTY interface available Larsen Mag Mounts.. CLOSEOUT! 20 \% off on any Larsen mag mount antenna in stock!
SUPER SPECIAL...
A few sets of Kenwood
Twins...while ther last, \$799!

CALL TOLL FREE (outside Illinois only)
(800) 621-5802

Hours
9:30-5:30 Mon., Tues., Wed. \& Fri 9:30-9:00 Thursday
9:00-3:00 Saturday

IOWA: 3900 Club Sooland Repeater Association's 4th annual Hamboree, Saturday, March 29, The Oasis, Sioux City Airport. Entertainment, fiea market, CW contest, Novice meeting, 3900 Club quarterly meeting, tech. programs. Flea market tables (reserved) $\$ 2.00$. Contact At Smith, W@PEX, 3529 Douglas, Sioux City, IA 51103. Advance registration including banquet $\mathbf{\$ 6 . 7 5}$. At door $\$ 7.75$. Hamboree only (no dinner) $\$ 2.00$. For advance tickets and motel reservations: Loren Barbee, WBOYOW. 1518 W. 30th, Sioux City, IA 51103. Talk in on . 371.97.

MISSOURI: The Missouri Valley Amateur Radio Club, Inc. proudly announces its second annual Pony Express Days from the original stables in St. Joseph, April 5 and 6. Operating time 1000 CST to 1900 CST both days. Anyone making contact with the club station will receive the Pony Express Award. Send legal-size SASE along with personal QSL card to: Missouri Valley ARC, 401 North 12 th Street, St. Joseph, MO 64501. Certificate will be stamped with original seal of the Pony Express. Operat ing frequencies will be 28.575 and 10 kc 's from the bot tom of the General phone band on the other bands - 15 through 75 . CW bands will be $28.150,21.150$ and 7.125 Listen for WONH from the home of the Pony Express.

TEXAS: Midiand Amateur Radio Club's annual swaptest, Saturday, March 15, noon to 7 p.m., Sunday, March 16 starting at $8 \mathrm{a} . \mathrm{m}$, at the Midiand County Exhibit Building. Midland. Door prizes. For pre-registration send $\$ 4.50$ to Midland Amateur Radio Club, Box 4401, Midland TX 79701. \$5.00 at door. Talk in on 146.16/146.76.

NEW YORK: Southern Tier Amateur Radio Club's 21st annual Hamfest, Saturday, May 3. NEW LOCATION: Owego Treadway Inn, Rte. 17, Exit 65, Owego. Flea market, tech. talks Buffet dinner tickets and general ad mission $\$ 8.00$. Re ervatioos ceceived after April 20 will be held at door. Admission only, $\$ 2.00$. STARC has use of all public rooms of Treadway for that day, all on ground level. For hotel accommodations at the Treadway contact: Debbie Chambers, 607-687-4500. For in formation, ticket reservations contact: STARC, PO Box 11, Endicott, NY 13760.

OHIO: Toledo Mobile Radio Association's 25th annual Auction and Hamfest, March 23, 8 a.m. 5 p.m., Lucan County Rec. Center, Key St., Maumee. For information, reservations, table space, write: T.M.R.A. Box 24 Temperance, MI 48182. Talk in on 146.52 simplex; in formation 147.87/27.

MICHIGAN: 19th annual "Michigan Crossroads' Hamfest, Saturday, March 15, Marshall High School, Marshall. Sponsored by Southern Michigan ARS, Cal houn County Repeater Assoc., and Amateurs of Marshal Schools. Doors open at 7 a.m. for exhibitors, 8 a.m. for general public. Door prizes and prizes for those check ing in with Talk-in station. Forums, displays, and specia programs for ladies. Free parking, unloading help, food service. Admission at door $\$ 2.00$, advanced sale, $\$ 1.50$. Table space, $\mathbf{\$} .50 / \mathrm{ft}$. reserved til 10 a.m. For information, table reservations contact: SMARS, Box 934, Battle Creek, MI 49016. Talk in on: 146.52, 146.07-67.

FLORIDA: Playground Amateur Radio Club's 10th Anniversary Swaptest, Saturday, March 22 \& Sunday, March 23, 8 a.m. - 4 p.m. each day, Okaloosa County Shrine Fairgrounds, Fort Walton Beach.

ILLINOIS: Kishwaukee Radio Club \& DeKalb County Amateur Repeater Club's 22nd annual indoor/outdoor hamfest, Sunday, May 4, 8 a.m. to 3 p.m., Notre Dame School (3 miles south of DeKalb between hwy. 23 and South 1st St. on Curler Rd.) Tickets, \$1.50 advance, \$2.00 at door. Indoor tables available. Own table, set-up free. For tickets \& directions SASE to: Howard, WA9TXW, Box 349, Sycamore, IL 60178.

FLORIDA: Treasure Coast Hamfest, Vero Beach Community Center, Vero Beach. Talk in 146.13/73 - 146.04 64 - 222.34/223.94. For info: P.O. Box 3088, Vero Beach FL 32960.

WISCONSIN: Tri County ARC Hamfest, March 16, Jefferson County Fair Grounds, Jefferson. (Formerly at White water). Advance tickets $\$ 1.50$, reserve tables, $\$ 2.00$ advance, 6 ft . space $\$ 1.00$. Send SASE to: Glenn Eisenbrandt, WA9VYL, 711 East St., Fort Atkinson, WI 53538.

MARYLAND: The Baltimore Amateur Radio Club's all new Greater Baltimore Hamboree and Computerfest. Sunday, March 30. New Location: Maryland State Fair grounds, Timonium. Special events, lectures, demon strations, food service. Door prizes plus grand drawing. Lots of space for tailgate sales, dealers, commerical exhibits. Admission $\$ 3.00$, tables $\$ 5.00$. For more info tickets, space reservations, contact: Joseph Lochte Jr. 2136 Pine Valley Drive, Timonium, MD 21093. Talk in on BARC repeaters, 146.07/67, 146.34/94.

BUY THE BEST!

Whether your SSB rig is old or new, there is no easier of essentially less expensive way to significantly upgrade its essentially less expensive way to significantly upgrade its TANGO filters are made of specially-treated high-0 quartz crystals, affording excellent shape lactors and ultimate rejection exceeding 80 dB They are custom made for drop-in installation matching pertectly, both physically and elecinstaliation. matching pertectily. both physically and elecin the future) the addition of a variety of switch-selectable filters affording superior variable bandwidth without the need buy an expensive new model. It you want the best for less: you'll buy FOX-TANGO Just tell us the bandwidth(s) desired or your make and model

NOTES
250 Hz Filters Very sharp, Ideal for DX and contest work, yet not too narrow for ordinary operations.
b) 400 and 500 Hz Filters. Slightly narrower than 6 -pole or less usually available as options: and superior 8 . pole type.
600 Hz Filters for ' 101 are 6 -pole. $\$ 45$ each
2. a) 1.8 kHz Filters Intended to supplement (or supplant) standard SSB filters whose bandwidth is about 33% greater. Useful in overcoming ORM
2.1 kHz Filters. Provide signiticant improvement over standard units, even of same bandwidth, because of superior 8 -pole characteristics
c) 2.4 kHz Fitters. Superior replacements for standard units having less than 8 poles
6 kHz Filters Essential for optimum reception of short-wave broadcasts, CB, etc.
3. Filter Prices include Airmail Postpaid to U.S. Canada Mexico. Elsewhere, add $\$ 3$ per filter
4. For FT-560/570/401/401B and FT-200/Tempo
5. Filter marked with star ($*$) is a new 455 kHz 2nd if unit or superior R-520S SSB. Similar in quality to Collins unit below. Introductory price: $\$ 125$ each
6. GUF-1. Replaces present 1st IF unit for CW and SSB. Shape factor 1.5 . ultimate rejection $100 \mathrm{~dB}+$. Original unit, 4.7 and 65 dB . Specity desired bandwidth: 6 or 8 kHz $\$ 65$ each.
7. GUF-2. Filter plus relays, etc. on PC board. Easy installation. Automatically replaces broad ist IF unit during W. Specity desired bandwidth: 600 or 800 Hz . Use with or without GUF-1. \$90, each
8. 56H125 Filter. Sharpest CW filter available (2nd IF) ront-panel selected, plugs into rear apron of set Special: \$90 each
9. GUD. Converts existing product detector to superior double-balanced type. Wired and tested mini-board. easy installation. $\$ 30$ each
0 Special plug-in unit equals or exceeds specifications of $\$ 400+$ Coliins $\times 4550200$ Special: $\$ 125$ each
1 FT-10120 has no AM mode: for 901 only

DIODE SWITCHING BOARDS (DSB)
Permit inboard mounting of one, two (or more) filters than those for which the manulacturer provides room; all switchselectable using existing front-panel switches in some cases Available for all Yaesu and Kenwood equipment listed excep FT-401 series and tube-type sets. Specify Make, Model and Filter to be used on DSB.
Single-filter type: $\$ 12$ Airmail postpaid woridwide.
Dual-filter type: $\quad \$ 21$ Airmail postpaid worldwide.

Order with confidence. Money back if
not satisfied. VISA/MC welcomed.
Florida residents add 4\% (sales tax)

FOX-TANGO CORP.

Box 15944H, West Palm Beach, FL 33406

When it comes to
AMATEUR RADIO QSL's...

ONLY BOOK!

US or DX Listings
ㅃalllbooks NOW READY!

Here they are! The latest editions. Worldfamous Radio Amateur Callbooks, the most respected and complete listing of radio amateurs. Lists calls, license classes, address information. Loaded with special features such as call changes, prefixes of the world, standard time charts, world-wide OSL bureaus and more. The new 1980 Radio Amateur Callbooks are available now. The U.S. Edition features over 400,000 listings, over 120,000 changes from last year. The Foreign Edition, over 315,000 listings, over 90,000 call changes. Place your order now.

	Each	Shipping	Total
\square USCalibook	$\$ 16.95$	$\$ 1.75$	$\$ 18.70$
Foreign Cailbook	$\$ 15.95$	$\$ 1.75$	$\$ 17.70$

Order both books at the same time for $\$ 34.65$, includes shipping

Order from your favorite eiectronics dealer or direct from the publisher All direct orders add $\$ 175$ for shipping illinois residents add 5\% Sales Tax

SPECIAL LIMITED OFFER! Amateur Radio Emblem Patch only $\$ 2.50$ postpaid

Pegasus on blue field, red lettering. $3^{\prime \prime}$ wide x $3^{\prime \prime}$ high. Great on jackets and caps. Sorry, no call letters.

ORDER TODAY!

NEW JERSEY: Chestnut Ridge Radio Club's Ham Radio and Computer Flea Market will be held March 29, 1980. Location: Education Building, Saddle River Reformed Church, East Saddle River Road at Weiss Road (new site) in Upper Saddle River, New Jersey. Tables $\$ 5.00$. Tail gating $\$ 3.00$. No admission fee. Hot dogs, soda. Contact: Jack Meagher, W2EHD, (201) $768-8360$ or Neil Abitablio, WA2EZN, (201) 768-3575.

MICHIGAN: ARRL Great Lakes Division Convention \& Harnfest, March 28 \& 29, sponsored by the Muskegon Area Amateur Radio Council, Muskegon Community College, Muskegon. Free parking. Dining/cafeteria service. Special events, Wouff Hong initiation, ladies program. Saturday tickets, \$2.50 - also purchase Swap \& Shop space on 29th. For additional information write: MAARC, Box 691, Muskegon, MI 49443, or call Clarke Cooper, K8BP, Club President, at 616-865-6198.
TENNESSEE: Tennessee Council of ARC's 10th annual QSO party, Saturday, March 22, 2100Z to 0500Z March 23 Sunday, March $231400 z$ to $2200 z$. Tennessee stations give RST and county. Out of state send RST and state, province, district or country. Same station may be worked on different bands, modes or counties. Frequencies: CW - 50 kcs approximately from bottom. Phone 3980, 7280, 14280, 21380, 28580. Novices within their bands. Phone stations call CW TN QSO Party, CW call CQ TN only. Plaque to Tennessee top scorer. Tennessee mobile and portable and out-of-state score. Certificates with results to every station sending in log with at least 15 contacts. Mailing deadline: May 1. Send business size SASE with log to: Dave Goggio, 1419 Favell, Memphis, TN 38116.

YL Int'I SSBers, Inc. QSO Party 1980. CW 0001 GMT March 29-2359 GMT March 30. Frequencies: 3665, 7070, 14070, 21070, 28070. Phone 0001 GMT April 29 - 2359 GMT April 20. Frequencies: 3925, 7290, 14333, 21373 28673. Exchange name, RST, SSBer number, country state, partner's call. Awards: Extraordinary certificates issued to highest individual score, DXIWK teams, YLOM teams and highest score in single operator category Regular certificates to highest state and country win ners. Logs: Date, GMT, RST, SSBer number, partner's call, mode, band and rest period. Members desiring to enter DXWK team category send request to: Lyle F Shaw, 52340 Tallyho Drive, South Bend, IN 46635. Please avoid nets on 14313 and 14336.5.
B.A.R.T.G. Spring RTTY Contest 1980, 0200 GMT Satur day, March 22 to 0200 GMT Monday, March 24. Bands $3.5,7.0,14.0,21.0$ and 28.0 MHz . The same station may be contacted on different bands. Logs to contain date time GMT, callsign of station worked, RST and message number sent. Send contest or check log to: Ted Double, G8CDW, 89, Linden Gardens, Enfield, Middlesex, England, EN 1 4DX.

WISCONSIN QSO Party 2100Z March 29 to 0300Z March 31. Suggested frequencies: CW -60 kHz up from band edge. Phone-3990, 7290, 14290, 21390, 28590 and 20 kHz up from bottom of novice bands. Logs must show: date, band, mode, time (GMT), call, report and score. All entries postmarked before May 1, 1980. Send results to Wisconsin QSO Party, clo West Allis RAC, PO Box 1072 , Milwaukee, WI 53201.

MOSLEY TA 33, 56 ft . steel tower all hardware, proppitch motor - sell all or part. Tom Johnson, N6BP, 2212 Louise Ave., Ceres, CA 95307. (209) 537-0373.

YOUR AD SHOULD BE HERE TOO CALL 800-258-5353

SYNTHESIZED SIGNAL GENERATOR

- Covers 100 to 179.999 MHz in 1 kHz steps with thumb-wheel dial - Accuracy . 00001% at all Irequencies - Internal frequency modulation from 0 to over 100 kHz at a 1 kHz rate - Spurs and noise at least 60 dB below carrier - RF output adjustable from 50 to 500 mv across 50 ohms - Operates on 12 vdc (a) $1 / 2 \mathrm{amp}$ • Price $\$ 299.95$ plus shipping

In stock for immediate shipping. Overnight delivery available at extra cost. Phone: (212) 468-2720

VANGUARD LABS
 196-23 Jamacia Ave. Hollis, NY 11423

RF DIRECTIONAL WATTMETER with VARIABLE RF
SIGNAL SAMPLER - BUILT IN
IN STOCK FOR PROMPT DELIVERY
AUTHORIZED DISTRIBUTOR

associates
115 BELLARMINE
ROCHESTER, MI 48063
CALL TOLL FREE
800 - 521-2333
IN MICHIGAN 313 - 375-0420

I PAY CASH

for your military surplus electronics If you have or know of availability

TT-98 TT-76 Teletypewriter phone me collect Dave - (213) 760-1000

142-163 Mhz BANDPASS

F-194/U BANDPASS

FILTER - gold-plated twin

 funed cavity designed for the 142 to 163 Mhz range. Has tuning controls and type N connections. Size: $61 / 4 \times 21 / 2 \times 111 / 2^{\prime \prime}$. $6 \mathrm{lbs} . \mathrm{sh}$. wt. Unused \$17.95 We have similar filters (listed below) which can be converted to amateur usage according to conversions by W4FXE (2/80 and 4/80 Ham Radio) used, \$12.95 unused, \$15.95: F-192/U or F-193/U. used only, conversion to 2 -meters. F-195/U (163-184 Mhz) or F-196/U (185-205 Mhz). conversion to 220-225 Mhz.F-202/U ($314-344 \mathrm{Mhz}$), conversion to $420-450 \mathrm{Mhz}$. All Prices F. O. B. Lima, Ohio. Please Allow for Shipping Use your VISA or MASTERCHARGE Card. Write for our Big FREE CATALOG. Address Dept. HR - Phone 419/227-6573

SIGNAL GENERATORS

RECONDITIONED AND LAB CALIBRATED

AN/URM-25, 10 KHZ THRU $50 \mathrm{MHZ}, \mathrm{AM} / \mathrm{CW}$ MODULATION 400 \& 1 KHZ , RF OUTPUT $0-2 \mathrm{~V}$ OR 0-. 1 V PRECISION 50 OHM STOP ATTENUATOR
$\$ 285.00$
TS-497/URR, 10 KHZ THRU 50 MHZ AM/CW 0-100,000 MV, 2 THRU 400 MHZ , MILITARY VERSION OF MEASUREMENTS MODEL 80
225.00

TS-510A/U RANGE 10 MHZ THRU 420 MHZ OUTPUT VOLTAGE .5V TO 1V, MODULATION 400, 1000 HZ BUILT-IN CALIBRATOR, AM, CW PULSE
385.00

SG-12/U, RANGE 20 MHZ THRU 100 MHZ IN 5 RANGES, BUILT-IN FM MODULATION, CALIBRATED OUTPUT METER AND DEVIATION. CRYSTAL MARKERS
185.00

SG-3/U RANGE 50 THRU 400 MHZ IN 3 BANDS, RF OUTPUT . 1 V , VARIABLE 50 OHM ATTENUATOR, FM DEVIATION 0-150 KHZ IN 3 RANGES. 385.00

SG-24/TRM-3 SWEEP SIGNAL GENERATOR, RANGE 15 THRU $400 \mathrm{MHZ}, \mathrm{FM}, \mathrm{AM}, \mathrm{CW}$ OUTPUT, FM DEVIATION, BUILT-IN OSCILLOSCOPES FOR OBSERVING WAVEFORMS CRYSTAL MARKERS 265.00 MILITARY SG-13/U VOR/ILS, RANGE 108-135.9 MHZ and 329.3 TO 335 MHZ OUTPUT SIGNALS INCLUDE VOR, LOC, GLIDESLOPE AND 1000 CPS, OPERATES FROM $115 \mathrm{~V} ., 60 \mathrm{HZ}$. GENERATOR SAME AS COLLINS 479T-2 245.00
TS-621/URM-52 RANGE 3.8 THRU 7 GHZ , SAME AS HP618B, CW, PULSE, FM, SQUARE WAVE 285.00

TS-403/URM-61 RANGE 1800 THRU 4000 MHZ, FM, CW, PULSE, SQUARE WAVE, MILITARY VERSION OF HP616A . . . 285.00 TS-418/URM-49, RANGE 400 THRU 1000 MHZ, AM, CW OR PULSE 145.00 TS-419/URM-64, RANGE 900 THRU 2100 MHZ, CW OR PULSE EMISSION 165.00 SG-66/ARM-5, VOR GENERATOR RANGE 108 THRU 132 MHZ, MILITARY VERSION ARC H-14A
285.00

SATISFACTION GUARANTEED OR MONEY REFUNDED. SEND CHECK, M. C. OR VISA. FOB OTTO, N. C. . PHONE BILL SLEP (704) 524-7519.
ELEP ELECTRONICE ANOCO
P.O. BOX 100, HWY. 441, DEPT. HR1 OTTO, NORTH CAROLINA 28763

STEP UP TO TELREX
Professionally Engineered Antenna Systems
Single transmission line "TRI-BAND" ARRAY"

For technical data and prices on complete Telrex line, write for Catalog PL-7.
TV and Communications Antennas Since 1921
Têrex

ASTRON POWER SUPPLIES

- HEAVY DUTY • HIGH QUALITY • RUGGED • RELIABLE •

SPECIAL FEATURES

- SOLID STATE ELECTRONICALLY REGULATED
- FOLD-BACK CURRENT LIMITING Protects Power Supply from excessive current \& continuous shorted output
- CROWbar over voltage protection on Models rs-7a. RS-12A, RS-20A. RS-35A, RS-20M \& RS-35M
- MAINTAIN REGULATION \& LOW RIPPLE at low line input Voltage
- HEAVY DUTY HEAT SINK • CHASSIS MOUNT FUSE
- THREE CONDUCTOR POWER CORD
- ONE YEAR WARRANTY • MADE IN U.S.A
- VOLT \& AMP METER ON MODELS RS-20M \& RS-35M

PERFORMANCE SPECIFICATIONS

- INPUT VOLTAGE 105 - 125 VAC
- OUTPUT VOLTAGE: 13.8 VDC ± 0.05 volts
(Internally Adjustable: 11-15 VDC)
- RIPPLE: Less than 5 mv peak to peak (full load \& low line)
- REGULATION: ± 05 volts no load to full load \& low line to high line

ASTRON 20 AMP REGULATED POWER SUPPLY Model RS-20M

16 Amps continuous
20 Amps ICS*
$5^{\prime \prime}(H) \times 9^{*}(W) \times 10.5^{\circ}(\mathrm{D})$
Shipping Weight 20 lbs .
Price
. $\$ 117.95$
Other popular POWER SUPPLIES also available: (Same teatures and specifications as above)

Model	Continuous Duty (amps)	ICS (amps)	Size (in.) H \times W \times D	Shipping Wt. (lbs.)	Price
RS-35M	25	35	$5 \times 11 \times 11$	29	$\$ 167.95$
RS-35A	25	35	$5 \times 11 \times 11$	29	$\$ 149.95$
RS-20A	16	20	$5 \times 9 \times 101 / 2$	20	$\$ 99.95$
RS-12A	9	12	$41 / 2 \times 8 \times 9$	13	$\$ 74.95$
RS-7A	5	7	$31 / 4 \times 61 / 2 \times 9$	8	$\$ 54.95$
RS-4A	3	4	$33 \times 61 / 2 \times 9$	5	$\$ 39.95$

*ICS - Intermittent Communication Service (50\% Duty Cycle) If not available at your local dealer, please contact us directly.

CORPORATION
1971 South Ritchey Street Santa Ana, CA 92705 (714) 835-0682

Alaska Microwave Labs
4335 E. 5th Ave.
Anchorage, Alaska 99504

TRANSISTORS		
MRF 901	FT 4.5 GHZ	$\$ 3.00$
BFR 90	FT 5.0 GHZ	$\$ 3.00$
NEC 02137	FT 4.5 GHZ	$\$ 3.25$
NEC 64535	FT 8.5 GHZ	$\$ 19.00$

NF 2.0 DB MAG 15 DB at 2.0 GHZ
NO WARRANTEE ON SEMICONDUCTORS

HOT CARRIER DIODES

MBD 101
UHF-MICROWAVE
\$ 1.50
ND 4131
GHZ NF-5.75 DB
. 20

CHIP CAPACITORS
$10,47,100,1000 \mathrm{Pf}$
$\$.50$
TEFLON CIRCUIT BOARD

Approx. $3.5^{\prime \prime} \times 5.0^{\prime \prime} \times .010$
Approx. $3.5^{\prime \prime} \times 5.0^{\prime \prime} \times .032$
FEED-THRU CAPACITORS
$\mathbf{5 0 0} \mathbf{P f}$

DUAL-GATE MOSFET
RCA 40673

ALL ORDERS ARE POST PAID

NEW! Φ sotron Antennas THE ULTIMATE SPACESAVER

80 Meters	or	40 Meters
$41 / 2 \mathrm{ft}$.	Length	3 ft.
8 lbs.	Weight	4 Ibs.
110 kHz	B.W.	250 kHz
50Ω coax	Feed	50Ω coax
54.95	Price	44.95

Needs no radials or matching devices! B.W. is within 2:1 S.W.R. Excellent for all amateur uses. Call or write:

BILAL COMPANY

Star Route

Florissant, Colo. 80816
Phone: (303) 687-3219
F.E.T. included

Telemetry Communications \& Instrumentation, Corp.
Our all-new TVRO Satellite Receiver. Look for our ad in March
For FREE information \& data sheet, call or write
TCI Corp. 411 N. Buchanan Circle \#3
Pacheco. CA 94553
(415) 676-6102

there's nothing like it at any price MORSE PAK-B S350 ${ }^{\circ 0}$

 with all the receive features of MORSE PAK-A, it also is a complete MORSE KBD

Features include:

1. Speed set from KBD 5 to 80 wpm
2. Defeatable side tone
3. 40 key full travel KBD
4. 16 character transmit buffer
5. Displays received and transmitted text
6. Same excellent MORSE PAK-A receiver and demodulator
7. Relay keyed output for complete compatibility
8. Unbelievable price $\mathbf{\$ 3 5 0}$

604 MARCELLA PL. NE MOPSE PAK ALBUQUERQUE, NM 87123 505/293-3553

* Yaesu FT-101B Owners Report
* A desk that grows
* UHF = Ultra High Frustration
* Chaser for a double shot of DX
* Q \& A, Bill Orr and more!

Try a subscription to HORIZONS
9 issues for $\$ 5.97$

GREENVILLE, NH 03048

WANTED FOR CASH

490-T Ant. Tuning Unit (Also known as CU1658 and CU1669)

618-T Transceiver
(Also known as MRC95. ARC94, ARC 102. or VC102)

Highest price paid for these units. Parts purchased. Phone Ted, W2KUW collect. We will trade for new amateur gear. GRC106, ARC105, ARC112, ARC114, ARC115, ARC116, and some aircraft units also required.

DCO, INC.

10 Schuyler Avenue Call Toll Free
800-526-1270

No. Arlington, N. J. 07032 (201) $998-4246$

Evenings (201) 998-6475

RESETTABLE TO EXACT FREQ. - BASE TUNED WITH LOG

 ANTECK, INC.B Hansen, Idaho 83334 208-423-4100

The Model MT-1 Mobile Antenna, GENERAL COVERAGE, 3.2 to 30 MHz , including the new WARC bands. 750 WATTS. CENTER LOADED for high efficiency. EXACT RESONANCE. 50 OHMS. FULL OUTPUT from Solid State Finals. Base tuned with logging scale and correlation chart for ease of resetting. Max. length 116 inches at $3.2,92.5$ inches at 30 MHz . Fits any STD. MOUNT, $3 / 8 \times$ 24 THREAD.
SEE AT YOUR LOCAL DEALER OR ORDER DIRECT. 129.95 and 7.00 UPS Shipping. Dealer and Factory Rep. inquiries invited.

Stocking Dealers Quement Electronics	Ferris Radio Hazel Park, Michigan
San Jose, California	H-R Electronics
Radio Place	Muskegon, Michigan
Sacramento, California	Amateur Radio Supply Co. Seattie, Washington
Ross Distributing Preston, Idaho	Conley Radio
Omar Electronics Durand, Michigan	Commercial Dealers Magnus Communications
Burghardt Amateur Center Watertown, So. Dakota	Chicago, Illinois
Radio World Oriskany, New York	Northern Radio Redmond, Washington
Associated Radio Comm. Overland Park, Kansas	EMEC Hallandale, Florida
C.W. Electronic Sales Denver, Colorado	Foreign Dealers Tokyo-Hy-Power Labs Tokyo, Japan
Purchase Radio Ann Arbor, Michigan	Dollard Electronics Lid. Vancouver, B.C. Canada
Delmar Electronics Long Island, New York	Canadian Comm. Co. West Hill, Ontario Canada
TelCom San Jose, California	Ham Radio Frankfurt, Germany

FULL•POWER, QUALITY ham antenna parts

Featuring Yaesu, Icom, Drake, Ten-Tec, Swan, DenTron, Midland, KDK, MFJ, Microwave Module, Tempo, Astron, KLM, Hy-Gain, Mosley, Larsen, Cushcraft, Hustler, Mini Products, Bird, DSI, Mirage, Vibroplex, Bencher, Info-Tech, Universal Towers, Callbook, ARRL, Astatic, Shure. We service everything we sell! Write or call for quote. You Won't be Disappointed. We are just a few minutes off the NYS Thruway (1-90) Exit 32

July 26 thru August 8, 1980
Our 21st year of successful teaching
Boost your Ham Skills on the Blue Ridge
"A Vacation with a Purpose"
Two weeks saturation learning program in Amateur Radio:

- Novice to Ceneral
- General or Technician to Advanced
- Advanced to Amateur Extra

Expert Instruction starting at vour level. Code and Theory in depth along with Friendly Amateurs, Who Care About You.
C. L. PETERS, K4DNJ, Director

Oak Hill Academy Amateur Radio Session Mouth of Wilson, Virginia 24363

Name
Address
City/State/Zip

10 Watts In -75 Watts Out
2 Meter FM or SSB Amplifier
Complete Kit Model 875-K $\quad \mathbf{5 9 9 . 9 5}$
See article in Sept. 79 QST pgs. 11-16
COMMUNICATION CONCEPTS.INC. 2648 North Aragon Ave.

Dayton. Ohio 45420 Phone: (513) 294-8425

UHF Kits Also Available Send For FREE Data Sheet

* YAESU FT-207R OWNERS * AUTOMATIC SCAN MODULE

15 minutes to install; scan restarts when carrier drops off; busy switch controls automatic scan on-off; includes module and instructions. Model AS-1. Send $\$ 25.00$ to ENGINEERING CONSULTING, P.O. Box 94355, Richmond, B.C. V6Y2A8, Canada

GEM-QUAD FIBRE-GLASS
ANTENNA FOR 10, 15, and 20 METERS

WINNER OF MANITOBA DESIGN INSTITUTE
AWARD OF EXCELLENCE
Buy two elements now - a third and fourth may be added later with little effort.
Enjoy up to 8 db forward gain on $D X$, with a 25 db back to front ratio and excellent side discrimination.
Get maximum structural strength with low weight, using our "Tridetic" arms. Please inquire directly to:

gem quad products lid.

Box 53

Transcona Manitoba Canada R2C 275
Tel. (204) 866-3338

PPD U.S.A. LESS BATTERIES

- 84-meter transceiver which covers 3500 to 3600 kHz is for the old timer.
- NOVICES should order the 80 -meter unit which covers 3685 to 3755 kHz .
- CW operation with VFO control.
- Output power approximately $1 / 2$ watt.
- Expect up to 1000 mile range when used with a half-wave dipole.
- Adjustable RF output impedance.
- Low distortion sidetone oscillator
doubles as a code practice oscillator.
- Direct conversion receiver.
- RF amplifier and sharp audio filter.
- Receiver independent tuning.
- Long life operation from 9 self-contained 1.5 volt carbon-zinc D cells.
- Size 9 " wide by 5 " high by 8 " deep.
- Instruction manual included.

Accessories required but not included, are 8 ohm stereo phones, telegraph key, a good antenna such as a half-wave dipole, and a dc voltmeter.

MANUAL AVAILABLE SEP. $\$ 2.00$ R.I. RESIDENTS ADD 6% SALES TAX

MEDO
9 Canonicus Avenue Newport. Rhode Island

Now, upgrade faster!

Here's 21 easy ways. Satisfaction guaranteed or return in 10 days for full refund! theory for beginners. A two-tape set covering General theory with WØXI (set \$8.95).
New! Advanced theory covered in interviews with KøRW, an Extra-class.

Novice General Advanced New! Now study for your Extra exam with help from KøRW.

Extra

NoVice-an h. w. sams book written in easy. to-understand style for beginners. \$3.95
 General. Just published! Get the latest information for your FCC exam. $\mathbf{5 6 . 5 0}$

10,15 or 20 WPM (specify). simulated on-the-air contacts with simulated exams $-7 \frac{1}{2}, 10,13,15$ WPM.	- Morse - QSO
Another hour of simulated contacts to bring	\square QSO 2
An hour of ososostyle contacts at 13 WPM with simulated exam for self-testing.	\square QSO13
mulated ex	
WPM for Extra	
other hour oxX, high.speed, contacts at	
h wider	-Super 5
On-the-air-style copy generated to "enhanced specifications with spacing for $71 / 2$ to 15 WPM .	0
gnals, short words and prosigns	
at 22,33 and 40 WPM for recognition copy.	
Randomly-generated characters, numbers	-Random I
13 and 15 WPM - no memorizing	-Random II

NOVICe \quad Novice Combo includes manual and Super 5 , OSO and Novice Theory tapes - 514.95 Ceneral Combo includes manual, oso-2 tape and 2-tape General Theory - $\mathbf{S 1 9 . 9 5}$
Generala success kit includes oscillator, key, your choice of manual and two tapes - 529.95 Success Speed Speed Kit includes oscillator, key and

Yes, I want to upgrade faster!
© Name Address
City \qquad - Master Charge \quad Visa o Check Card no. \qquad Signature \qquad Expiration date Please include $\$ 1$ shipping/handling for each tape and $\$ 2$ for combination orders.

1GHz For Only \$139.95

Compare these features and you will buy DSI

5500/ 5510 STANDARD FEATURES

\author{

- 5510-50 Hz to 1 GHz
 - $5500-50 \mathrm{~Hz}$ to 512 MHz
 - Made in U.S.A.
}
- 8 Digits not 6 or 7

With the introduction of the 5510 DSI has filled a long standing void in the frequency counter market place. You now have the choice of selecting a 512 MHz model 5500 for around a $\$ 100$ or for only $\$ 30.00$ more you can buy an 8 digit 1 GHz counter model 5510 . With this 1 GHz capability the new world of 960 MHz is immediately available to you. Both the 5500 and 5510 are available with a rechargable battery pack which includes the AC adapter and battery charger for one low price. Whether you select the 5500 or the 5510 you will receive the best price to quality features ratio in the industry, no wonder $D S I$ has become one of the world's largest manufacturers of high quality frequency counter instrumentation.

9 DIGITS 1.2 GHz FOR ONLY \$199.95

- 5612-50Hz to 1.2 GHz
- $5600-50 \mathrm{~Hz}$ to 512 MHz
- External 10 MHz imputs \& outputs
- 10MHz .2PPM 10우웅 ${ }^{\circ}$ C Preportional oven
- 9 large $1 / 2$ inch LED Readouts
- . $\mathbf{1 H z}$ Resolution to $\mathbf{5 0 M H z}$

Abstract

Why buy a 5600A or 5612 kit? Because 95% of the assembly is completed by DSI and you are only one hour away from solving all those difficult bench problems, from setting the frequency of an audio signal to within $1 / 10$ of a Hz , to checking the frequency of a 960 MHz mobile radio. Whether you are servicing a VTR, trouble shooting a PLL circuit, the 5600A/5612 is the right counter with accuracy that will meet any FCC land mobile, broadcast, or telecommunications requirements. On the bench or in the field the 5600A/5612 will do the job you need. The 5600/5612 includes a self contained battery holder providing instant portability or DSI offers a 10 hour rechargeable battery pack option. In addition DSI offers and audio multiplier which allows you to resolve a $1 / 1000$ of a Hz . The $5600 \mathrm{~A} / 5612$ is perfect for communications. TV servicing, industrial testing or meeting your QSO on the correct frequency every time.

LARGE LCD READOUTS-PRECISION LASER TRIMMED RESISTOR NETWORKS

- AC TRUE RMS to $\mathbf{1 0 0 0} \mathbf{~ - ~ 2 0 0 m v , ~ 2 v , ~ 2 0 v , ~ 2 0 0 v , ~ 1 0 0 0 v ~}$
- DC VOLTAGE to $\mathbf{1 0 0 0 v}$ - 200mv, 2v, 20v, 200v, 1000v
- DC CURRENT to 2 amps - 200ma, 2ma, 20ma, 200ma, 2a
- RESISTANCE to 20 megohms - 200, 2k, 20k, $2 \mathrm{meg}, 20 \mathrm{meg}$
- AUTOMATIC POLARITY INDICATOR

FOR INFORMATION - DEALER LOCATION - ORDERS - OEM
CALL 800-854-2049 CALIFORNIA RESIDENTS CALL 800-542-6253

Model	Price	Frequency Range Typ	Accuracy Over Temperature	Senaitivity Typ			$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Readouts } \end{gathered}$	Power Requirements	H ${ }_{\text {Size }}^{\text {W }}$ D
				${ }_{100 \mathrm{~Hz}-25 \mathrm{MHz}}^{@}$	$50-250 \mathrm{MHz}$	$250-450 \mathrm{MHz}$			
5600A-Kit	\$169.95	$50 \mathrm{~Hz}-550 \mathrm{MHz}$	Proportional Oven 2 PPM $10^{\circ}-40^{\circ} \mathrm{C}$	$5 \cdot 10 \mathrm{mv}$	5-10mv	$5-50 \mathrm{mv}$	9	-115 VAC or 8.2-14.5 VDC	$314^{\prime \prime} \times 912^{\prime \prime} \times 9$
5600A-Wired	\$199.95								
5612 Kit	\$199.95	$50 \mathrm{~Hz}-1.2 \mathrm{GHz}$	Proportional Oven 2 PPM $10^{\circ}-40^{\circ} \mathrm{C}$	5-10mv	5-10mv	5-50mv	9	-115 VAC or 8.2-14.5 VDC	$31 / 4^{\prime \prime} \times 91 / 2^{\prime \prime} \times 9^{\prime \prime}$
5612 Wired	\$239.95								
5500 Wired	\$109.95	$50 \mathrm{~Hz}-512 \mathrm{MHz}$	$\begin{gathered} \text { TCXO } \\ 1 \text { PPM } 17^{\circ}-40^{\circ} \mathrm{C} \end{gathered}$	$10-25 \mathrm{mv}$	$10-15 \mathrm{mv}$	15-50mv	8	115 VAC or 8.2-14.5 VDC or NICAD PAK	$11 / 2^{\prime \prime} \times 5^{\prime \prime} \times 5 \%^{\prime \prime}$
5510 Wired	\$139.95	$50 \mathrm{~Hz}-1 \mathrm{GHz}$							

Factory wired units carry 1 year limited warranty kits carry a 90 day limited warranty.
Prices and/or specifications subject to change without notice or obligation.
5510 Wired

139.95

5500 Wired
 109.95

5510/BAC Wired 164.95
5500/BAC Wired 134.95
T600 BNC ANT (all models) 7.95
AC-9 AC Adapter(all models) 7.95
LC 5000
169.95

INTERNAL BAT. ONLY AC-9 NOT REQUIRED.

DSI INSTRUMENTS, INC.

 9550 Chesapeake Drive San Diego, California 92123(714) 565-8402

TERMS: MC - VISA - $\mathrm{AE}-\mathrm{CHECK}-\mathrm{M} . \mathrm{O}-\mathrm{COD}$ in U.S. Funds. Please add 10% to a maximum of $\$ 10.00$ for shipping, handling and insurance. Orders outside of USA \& Canada, please add $\$ 20.00$ additional to cover air shipment. California residents add 6\%Sales Tax
5612 Kit 199.95
5612 Wired 239.95
5600A Kit 169.95
5600A Wired 199.95
BA56 Rechargable 10 Hr . Bat. Pack 29.95
AM-56 Audio Multiplier
.001 Hz Resolution 34.95

DSI CONTINUES TO DO IT

Best Price to Quality Features Ratio FACTORY WIRED 500 MHz or $1 \mathrm{GHz} \cdot 8$ Digits 1 PPM • TCXO

40955500 WIRED
50 Hz to 512 MHz
5510 WIRED
$139^{95} 50 \mathrm{~Hz}$ to 1 GHz

10 MHz OVEN TIME BASE 500 MHz or 1.2 GHz

189 95
 5600 KIT

50 Hz to 512 MHz
199^{95}
5612 KIT
50 Hz to 1.2 GHz

TRUE RMS - 3 1/2 Digits - DMM - .1\% Basic Accuracy

16995

FACTORY

 WIRED
Adverlisers check-off

. . . for literature, in a hurry - we'll rush your name to the companies whose names you "check-off"

Place your check mark in the space petween name and number. Ex: Ham Radio 234
index

AEA _ 677
Alaska Microwave __ 826
Alliance _ 700
Aluma __ 589
Anteck _ 733
Astron _ 734
Atlantic Surplus *
Barry ${ }^{\text {- }}$
Bencher _ 629
Bilal _ 817
Budwig __ 233
California Lab. \qquad 827 Comm. Concepts \qquad 797
Continental Spec. _ 348
Creative Elec. 751
Curtis Electro _ 034
DCO _ 324
DSI _ 656
DX Eng. $\quad 222$
Data Signal __ 270
Dave *
Daytapro __ 455
Dayton Hamvention _ 223
Debco Elec._ 828
Digitrex __ 823
Drake *
EBA Microwave __ 818
Eagle *
E. T. O. ${ }^{\text {- }}$
Elec. Research Virginia *
Eng. Consulting *
Erickson Comm. *
Fair Radio 048
Fox-Tango __ 657
G \& C Comm. 754
GLB 552
Gem Quad *
Gilfer Assoc.*
Gregory *
Hal *
Hal-Tronix 254
HORIZONS *
Henry 062
Hildreth __ 283

- Please contact this advertiser directly. Limit 15 inquiries per request.

March, 1980
Please use before April 30, 1980

Tear off and mail to
HAM RADIO MAGAZINE - "check off"
Greenville, N. H. 03048
NAME

	CALL
STREET	
CITY	

STATE.
ZIP.

NOW, LIST THE EQUIPMENT YOU WANT IN THE SPACES PROVIDED BELOW, CUT OUT THIS AD, AND SEND IT TO US WITH YOUR NAME, ADDRESS AND TELEPHONE NUMBER. WE WILL WRITE \square OR CALL \square (CHECK ONE) YOU BACK AS SOON AS POSSIBLE WITH THE MADISON QUOTE.
(HINT: DON'T GO BELOW OUR COST).
WE HAVE AN IN-DEPTH STOCK AND LARGE INVENTORY OF MAJOR LINES AND ACCESSORIES.

TERMS: ALL PRICES FOB HOUSTON PRICES SUBJECT TO CHANGE WITHOUT NOTICE. ALL ITEMS GUARANTEED. SOME ITEMS SUBJECT TO PRIOR SALE SEND LETTERHEAD FOR AMATEUR DEALER'S PRICE LIST. TEXAS RESIDENTS ADD 6\% TAX PLEASE ADD POSTAGE ESTIMATE

MADISON ELECTRONICS SUPPLY, INC.

1508-D McKINNEY HOUSTON, TEXAS 77002 713/658-0268 NITES 713/497-5683

Advertisers ${ }^{\mathrm{N}} \mathrm{N}$ dex

Alaska Microwave Labs88
Alliance Mfg. Co. 16
Aluma Tower CAstron CorporationAtlantic Surplus SalesBarry ElectronicsBilal CompanyBudwig Mfg. Co.California Eastern Laboratories
Communication Concepts, IncCommunications SpecialistsContinental SpecialtiesCreative ElectronicsCurtis Electro Devices.DCO, Inc..
DSI Instruments, Inc9090
8888
6666
DX Engineer
Data Signal, Inc
Dave.
Daytapro Electronics
Dayton Hamvention
Digitrex Electronics.
Drake Co., R. L.
EBA Microwave
Eagle Electronics
Ehrhorn Technological Operations
Electronic Research Corp. of Virginia
Engineering Consulting Services.
Erickson Communications
Fair Radio Sales.
Fox-Tango Corp.
G\&C Communications
GLB Electronics
Gem Quad Products
Gilfer Associates, Inc.
Gregory Electronics
Hal Communications Corp..
Hal-Tronix
Ham Radio HORIZONS
Henry Radio Stores
Hildreth Engineering.
Hustler, Inc. .
icom.
International Crystal Mfg. Co..
Jameco Electronics
Jan Crystals.
Jones, Marlin P. \&t Associates
Kantronics .
Trio-Kenwood Communications, Inc............................ 91
Klaus Radio, Inc
L-Tronics
Long's Electronics
MFJ Enterprises.
Madison Electronic Supply 53, 79, 94
Magnavox .
Microcraft Corp.
Microwave Filter, Inc.
Monroe Electronics.
Morse Pak-A, Inc.
Oak Hill Academy Amateur Radio Session
P.C. Electronics
Palomar Engineers
Pipo Communications
Radio Amateur Callbook
Radio World.
Ramsey Electronics
Sem Con, Inc.
Shure Brothers, Inc.
Skytec
Slep Electronics Company
Space Electronics
Spectronics
Spectrum International
Swan Electronics

edco

Ten-Tec.
Webster Associates
Western Electronics
Wilson Electronics
74
Wilson Systems, Inc. 80, 81, 82
Yaesu Electronics Corp. Cover III
York Electronics

Call
 Toll Free $1 \cdot 800 \cdot 633 \cdot 3410$
 IN ALABAMA CALL 1-800-292-8668 9 AM TIL 5:30 PM CST. MONDAY THRU FRIDAY

A digital clock with a 24 hour alarm system that lets you set the alarm for either AM or PM only once. The alarm can be set for 10 min . intervals. With illuminated leaf type numerals and percision synchronous motor.
19.00

Llat. Call for quote.

All the information you need on QSL cards, postal regs and complete listing of all licensed amateur operators.
1980 US Callbook 16.95
1980 DX Callbook
15.95

HYGAIN 287 Hy-bander magnetic mount foldover antenna Unique foldover design makes it the ideal antenna for mounting on hatchback cars. 5/8 wave provides low angle radiation for max. gain. Adjusts thru a 180 degree arc and holds its position at speeds up to 120 mph . Less than $1.4: 1$ VSWR, $144-148 \mathrm{MHz}$, power rated to $150 \mathrm{~W}, 3$ dB gain, DC grounded. 19.95 Call today.

CDICOM

ICOM IC-255A 25 watt 2m FM transcelver
A microprocessor controlled, compact unit wittı a 5 channel memory, memory scan, adjustable scanning speed, auto stop and programmable memory. Dual built-in VFOs, works $\pm 600 \mathrm{KHz}$ offset repeater operation, tuning in 15 KHz or 5 KHz steps, and 25 W high or 1 W low. 143.800-148.200 MHz.

Attention minicomputer owners! PANASONIC RQ-413AS ACI battery deluxe cassette recorder The RQ-413AS can be interfaced with your minicomputer to solve your data storage problems. Featuring monitor output (8 ohms) for input to the computer, auxillary input, and remtote start/stop for computer control. Has cue and review controls, one-touch recording, digital tape counter, and LED record/battery indicator. Also features continuous tone control, built-in condenser mic, mic jack, auto-stop mechanism and pause control. Complete with AC cord.

KENWOOD PC-1 phone patch
A matching phone patch for Kenwood equipment. It features NULL control, RX gain control, TX gain control and a VU meter. It connects between a transceiver and a phoneline.
59.95 Call today.

KENWOOD MC-50 dynamic desk mic
The MC-50 has dual impedance 500 ohms or 50 K ohms impedance. Compatible with all Kenwood equipment.
45.00 Call today.

DRAKE TV-3300-LP

low pass filter

Low pass filters, properly attached to transmitters attenuate all harmonics falling in any TV channel or the FM band. 1000 W max. below 30 MHz . Attenuation better than 80 dB above 41 MHz .
26.60 Call today.

The introduction of the "WAYFARER" by Yaesu is the beginning of a new era in compact solid state transceivers. The FT-707 "WAYFARER" offers you a full 100 watts output on 80-10 meters and operates SSB, CW, and AM modes. Don't let the small size fool you! Though it is not much larger than a book, this is a full-featured transceiver which is ideally suited for your home station or as a traveling companion for mobile or portable operation.
The receiver offers sensitivity of $.25 \mathrm{uV} / 10 \mathrm{~dB} \mathrm{SN}$ as well as a degree of selectivity previously unavailable in a package this small. The "WAYFARER" comes equipped with 16 poles of IF filtering, variable bandwidth and optional crystal filters for 600 Hz or 350 Hz . Just look at these additional features:

FT-707 with Standard Features

- Fast/slow AGC selection
- Advanced noise blanker
- Built-in calibrator
- WWV/JJY Band
- Bright Digital Readout
- Fixed crystal position
- 2 auxiliary bands for future expansion
- Unique multi-color bar metering-monitors signal strength, power output, and ALC voltage.

FT-707 with Optional FV-707DM

\& Scanning Microphone

- Choice of 2 rates of scan
- Remote scanning from microphone
- Scans in 10 cycle steps
- Synthesized VFO
- Selection of receiver/transmitter functions from either front panel or external VFO
- "DMS" (Digital Memory Shift)

Impressive as the "WAYFARER" is its versatility can be greatly increased by the addition of the FV-707DM (optional). The FV-707DM, though only one inch high, allows the storage of 13 discrete frequencies and with the use of "DMS" (Digital Memory Shift) each memory can be band-spread 500 KHz . These 500 KHz bands may be remotely scanned from the microphone at the very smooth rate of 10 Hz steps.

The FT-707 "WAYFARER" is a truly unique rig. See it today at your authorized Yaesu Dealer.

EIMACs $3-5007$ is first choice for Henry's 1KD. 5 linear amplifier.

Complete data available.

For more information on the 1KD-5 amplifier write to Henry

Radio, 11240 West Olympic Boulevard, Los Angeles, CA 90064. And for a data sheet on the $3-500 \mathrm{Z}$ and more informationon EIMAC power grid tubes, write to Varian, EIMAC Division, 301 Industrial Way, San Carlos, CA 94070. Telephone (415) 592-1221. Or contact the more than 30 Varian Electron Device Group Sales Offices throughout the world.

Reliable, high-mu power triode.

In 1965 Henry Radio knew all about EIMACs reliable power grid

[^0]: MFI ENTERPRINES, ING.
 B0X 494, MISSISSIPPI STATE, MS 39762

[^1]: Write or give us a call. We'll be glad to send you our new RTTY catalog.

 BALHAL COMMUNICATIONS CORP.
 Box 365
 Urbana, Illinois 61801
 217.367.7373

 For our European customers, contact: Richter \& Co. D3000 Hannover $1 \bullet$ I.E.C. Interelco, 6816 Bissone/Lugano \bullet Radio Shack Ltd., London NW6 3AY • Erik Torpdahi Telecom, DK 3660 Stenlose Denmark

[^2]: *Also proposed by K 4 KJ and discussed in the February, 1980, issue of ham

[^3]: Note：The HP－67 program for calculating VSWR that should have appeared in the appendix of part 1 of W6TC＇s article（February，1980，ham radio）can be found on page 70 of this issue．

 ## references

 1．Care and Feeding of Power Grid Tubes，Elmac Division of Varian，San Carlos，California， 1967.
 2．Joe Reisert，W1JR，＂Simple and Efficient Broadband Balun，＂ham radio，Septermber，1978，page 12.
 3．Ruthroff，＂Some Broad－Band Transformers，＂Proceedings of the IRE， August，1959，pages 1337－1342

[^4]: *Metal is recommended for audio and radio-frequency shielding.

[^5]: *Try resistors in the $2-5$ kilohm ($1 / 4$-watt) range. The lower the resistance, the brighter the LED will be.

[^6]: *The 3-element LP and LP plus director were the last LPs tested. Design suggested by W6PYK using $\tau=0.94$ and $\sigma=0.175$. This beam was tested after the tests covered by Table 1, which used the previous 4 -and 5 -element LPs. The improved 3element LP was the one Bob Tanner, ZL2BT, reported the best tested here to date.
 +Note that the Yagi is much sharper than the LPs.

[^7]: *Fair Radio Sales Co., Inc., P.O. Box 1105, Lima, Ohio 45802.

[^8]: 1. William Tucker, W4FXE, "How to Modify Surplus Cavity Filters for Operation on 144 MHz, " ham radio, February, 1980, page 42.
[^9]: 1. Courtney Hall, WA5SNZ, "Simplified Capacitance Meter," ham radio, November, 1978, page 78.
