

IT'S A FACT ...HENRY RADIO STILL PRODUCES THE BROADEST LINE OF SUPERIOR QUALITY AMPLIFIERS IN THE WORLD. WHETHER FOR AMATEUR RADIO, COMMERCIAL OR MILITARY USE, WE OFFER A CHOICE OF FIELD PROVEN STATE-OF-THE-ART UNITS TO FIT THE REQUIREMENTS AND BUDGETS OF THE MOST DISCRIMINATING USER.

J/he 1KD-5 ..the newest member of the tamous Herry Radio family of fine ts class. The $1 \mathrm{KD}-5$ was designed for the emateur who wants the quallty and dependablilty of the $2 K D-5$ and $2 K-4$, who may prefer the smaller size, lighter weight and lower price and $\mathbf{w h o}$ will settle for a little less power. But make no mistake, the 1KD-5 is no slouch. Its 1200 watt PEP Input (700 watt PEP nominal output) along with its superb operating characteristics will still punch out clean powerful signais...signals you'll be proud of. Compare its specifications, its features and its fine components and we're sure you will agree that the $\mathbf{1 K D}-5$ is a superb value at only $\mathbf{\$ 6 9 5}$.
J/he 2KD - 5 We have been suggesting that you look inside any amplifiler before you buy it. We hope that you will. If you "Ilft the lld" on a $2 \mathrm{KD}-5$ you will see only the highest quality, heavy duty components and careful workmanship....attributes that promise a long ilte of continous operation in any mode at full legal power. The $2 \mathrm{KD}-5$ is a 2000 watt PEP Input (1200 watt PEP nominal output) RF linear amplifier, covering the 80, 40, 20, and 15 meter amateur bands. It operates with two Eimac $3-500 Z$ glass envelope triodes and a PI-L plate circuit with a rotary silver plated tank coll. Price $\$ 945$.

And don't forget the rest of the Henry family of amateur amplifiers...the Tempo $\mathbf{2 0 0 2}$ high power VHF amplifier and the broad line of top quality solid state amplifiers. Henry Radio also offers the 3K-A and 4 K-Uitra superb high power H.F. amplifiers and a broad line of commercial FCC type accepted amplifiers for two way FM communications covering the range to $\mathbf{5 0 0} \mathbf{~ M H z}$.

MEW TOLL FREE ORDER MUMBER: (800) 421-6831
For all states except Calitornia
Calif. residents please call coliect on our regular numbers. SEivict
11240 W. Olympic BIvd., Los Angeles, Calif. 90064 213/477.6701
931 N. Euclid, Anaheim, Calif. 92801
Butler, Missouri 64730
714/772.9200 816/679.3127

fact: ARMCHAIR COPY begins here!

The NEW Model 444D
 For: High/Low Impedance SSB/FM

The Model 444D incorporates all the tried-and-proven features that made Shure's Model 444 the recognized "standard" fixedstation microphone among serious amateurs. The 444D retains the Shure-designed, super-rugged CONTROLLED MAGNETIC ${ }^{\text {® }}$ microphone element that lets you come across with "armchair copy"! Its unmatched performance characteristics include a tailored response for maximum voice intelligibility, PLUS...

DUAL IMPEDANCE-(150 ohms) Low \& High. Impedance selector switch located on bottom of base.

FREE NAMEPLATE IMPRINTED WITH YOUR CALL LETTERS-Personalized nameplate with your station call letters.

ALL-NEW WIRING GUIDE-Provides user instructions for wiring the microphone to major manufacturers' ham equipment.

IMPROVED CONTROL BAR-Shure Million-Cycle push-to-talk (PTT) improved fingertip action actuates microphone and an external relay or control circuit.

VOX/NORMAL SWITCH-Defeats PTT switch, for VOX equipment requiring continuously "on" microphone. Located conveniently on bottom of base.

PROFESSIONAL BLACK FINISH-Sturdy, high impact ARMO-DUR ${ }^{*}$ base and microphone case is metalized for RF shielding. It is comfortable to the touch in any temperature or humidity, and will not rust or deteriorate.

CONVENIENT INSTALLATION
-The coiled cable leads and push-to-talk switch are arranged to permit immediate hookup to transmitters with either isolated or grounded switching.

Personalized call letter nameplate

Intelligibility \&
Reliability

NEW MFJ Multi-Sensor SWR/Peak Wattmeters MFJ-825 lets you monitor SWR, Peak/Average power, for HF, VHF, QRP rigs. Plug in up to 3 sensors of your choice. Connect and operate up to 3 rigs simultaneously. Switch selects rig to monitor.

This NEW MFJ-825 Deluxe Power Sentry is MFJ's exclusive Multi-Sensor SWR/Peak Wattmeter - With one unit you can monitor SWR, peak, average power for HF, VHF, or QRP rigs.

Secret is plug-in sensors. Plug in up to 3 sen sors of your choice (HF, VHF, or QRP, see below). Connect and operate up to 3 rigs simultaneously. Front panel switch selects rig to monitor.

Comes with one sensor of your choice. Use sensors remote or mount in cabinet.

Read forward and reffected power on separate meters. 2 ranges. 2% meter movements.

Read SWR from 1:1 to 6:1. Has SWR sensitivity control, lighted meters, battery check.

Black, etched front panel, rugged metal cabinet. $6.3 / 4 \times 5.3 / 8 \times 5.3 / 4 \mathrm{in}$. 9 V battery or 110 VAC with optional AC adapter, \$7.95.

MFJ-820 POWER SENTRY, \$69.95. Same as MFJ-825 but less peak function, only one meter,

plug in one sensor at a time.
Comes with one sensor of your choice (see specs below). Use remote or mount in cabinet. Monitor forward/reflected average power, 2 ranges. SWR 1:1 to $6: 1.2 \%$ meter movement.

Has range/mode, reflected/for-
ward power switches, SWR sensitivity control. Lighted meter (req. 12 V). Black, etched panel, metal cabinet. $3.7 / 8 \times 5.3 / 8 \times 4.1 / 2 \mathrm{in}$.

PLUG-IN SENSORS: \$29.95 ea.

Plug up to three in MFJ-825, one in MFJ-820 MFJ-830 HF SENSOR. 1.8 to $30 \mathrm{MHz} .200 / 2000$ watts, forward, $20 / 200$ watts reflected, full scale. 5 watt SWR sensitivity. Accuracy, $\pm 5 \%$.

MFJ-831 VHF SENSOR. 50 to 175 MHz .20 and 200 watts full scale forward and reflected power. 5 watt SWR sensitivity. Accu., $\pm 7.5 \%$. Multi-Sensor SWR/Peak Wattmeter monltors HF, VHF, QRP rigs.

${ }^{\text {s } 1199^{s i}}$

MFJ-832 QRP HF SENSOR. 1.8 to 30 MHz 2 and 20 watts full scale forward and reflected power. 500 MW SWR sensitivity. Accu., $\pm 7.5 \%$.

MFJ. 833 HI-PWR VHF SENSOR. Same as MFJ. 831 but 200/2000 W fwd. 20/200 W ref.

Alum. cabinet. SO-239. $2.1 / 2 \times 2.5 / 8 \times 2.1 / 4 \mathrm{in}$.
Order from MFJ and try It. If not delighted, return within 30 days for refund (less shipping).

One year unconditional guarantee.
Order yours today. Call toll free 800-647-1800. Charge VISA, MC. Or mail check, money order. Add $\$ 4.00$ each for shipping and handling.

CALL TOLL FREE . . . 800-647-1800

 Call 601-323-5869 for technical information, or der/repair status. Also call 601-323.5869 outside continental USA and in Mississippi.
MFJ ENTERPRISES, INC.

BOX 494, MISSISSIPPI STATE, MS 39762

MFJ Tunable SSB/CW Filter

Instantly zero in SSB/CW signals with tunable peak, notch, lowpass filter.

Peak, notch or lowpass signals, zero in with freq. control, adjust bandwidth for minimum QRM. Double tuned for extra steep skirts.
Linear freq. control tunes 300 to 3000 Hz . Output is constant as bandwidth is varied flat to 40 Hz . Tight notch to $70 \mathrm{db} .5 \times 2 \times 6 \mathrm{in}$.

Hear off frequency calls with simulated stereo. Plugs in phone jack. 2 watts out. 110VAC or 9.18 VDC . One year unconditional quarantee Try it. If not delighted, return within 30 days for refund (less shipping).

Order your MFJ-751 today. Call toll free $\mathbf{8 0 0 - 6 4 7 - 1 8 0 0}$. Charge VISA, MC. Or mail check, money order for $\$ 59.95$ plus $\$ 3.00$ shipping.
CALL TOLL FREE ... 800.647-1800 For technical information, order/repair status, in Miss., outside continental USA, call 601-323-5869.

MFJ ENTERPRISES, NNG
 BOX 494, MISSISSIPPI STATE, MS 39762

NEW MFJ VERSALOAD MFJ KW DUMMY LOAD

 Lets you tune up fast into $\mathbf{5 0}$ ohm resistive load. Extend life of finals. Reduce QRM. Includes transformer oil. 1 KW CW, 2 KW PEP for 10 minutes. Low VSWR to 400 MHZ.

New MFJ-250 VERSALOAD kilowatt dummy load lets you tune up fast. Extends life of transmitter finals. Reduces on-the-air QRM.

Run 1 KW CW or 2 KW PEP for 10 minutes, $1 / 2$ KW CW or 1 KW PEP for 20 minutes. Continuous duty with 200 watts CW or 400 watts PEP. Complete with derating curve.

Quality 50 ohm non-inductive resistor.
Oil cooled. Includes high quality, industrial grade transformer oil (contains NO PCB).

Low VSWR to $\mathbf{4 0 0} \mathrm{MHZ}$: Under $1.2: 1,0.30$ MHZ. 1.5:1, 30.300 MHZ. 2:1, 300.400 MHZ.

Ideal for testing HF and VHF transmitters.
$\mathbf{S 0 - 2 3 9}$ coax connector. Vented for safety. Removable vent cap. Has carrying handle. 7-1/2 inches high, 6-5/8 inches diameter.

Includes high quality transformer oil.

 Low V8WR to 400 MHZ. 1 KW CW, 2 KW PEP.
$\$ 29^{95}$

Order from MFJ and try it - no obligation. If not delighted, return it within 30 days for refund (less shipping). One year unconditional guarantee.

Order today. Call toll tree 800-647-1800. Charge VISA, MC or mail check, money order for $\$ 29.95$ plus $\$ 4.00$ shipping for MFJ-250.

Don't wait, tune up fast and save those finals and reduce on-the-air QRM, order today.
CALL TOLL FREE . . . 800-647-1800
Call 601-323-5869 for technical information, order/repair status. Also call 601-323-5869 outside continental USA and in Mississippi.
MFJ ENTERPRISES, INC.
BOX 494, MISSISSIPPI STATE, MS 39762

ham radio magazine

AUGUST 1980

volume 13, number 8
T. H. Tenney, Jr. W1NLB publisher and
acting editor editorial staff Martin Hent, WBICHO administrative editor
Robert Schneider, N6MR assistant editor Alfred Wilson, W6NiF technical editor
Thomas F. McMullen. Jet., WISL Joseph J. Schroeder, WgJuV associate editors
W.E. Scarborough. Jr KA1DXO graphic production manager Catherine M. Umphress production assistant cover
publishing staff
J. Craig Clark, Jr., N1ACH assistant publisher advertising manager Susan Shorrock circulation manager

contents

12 theory and application of light-emitting diodes Ken Powell, WB6AFT
20 measuring signal strength Carleton F. Maylott, W2 YE
24 tone alert monitor
Harry F. Wetzel, W4KRT
30 integrated circuit function generator Frank C. Getz, N3FG
34 simplified semiconductor curve tracing Fred Brown, W6HPH
38 digital logic probe Raymond S. Isenson, N6UE
45 challenge for microwave-antenna designers D. Howard Phillips, W6FOO

50 cascade intercept point calculations for communications receivers Brian P. Gross, WA7TDB
54 diode frequency divider
Henry S. Keen, W5TRS
56 accurate and practical AFSK generator
Garry A. Boldenow, KפSFU
61 notes on the Eimac 5CX1500A power pentode Arthur Res, K9XI
64 160-meter base-loaded vertical antenna Ed Mariner, W6XM

66 digital capacitance meter Marion D. Kitchens, K4GOK

94 advertisers index	80 new products
87 flea market	4 observations and
92 ham mart	8 comments
74 ham notebook	84 presstop
6 letters	94

Living things change and ham radio is no exception. Since the passing of Editor-In-Chief Jim Fisk, I have been asked to take over his editorial page, at least during this difficult transition period. His is not an easy act to follow. Jim was close to the pulse of Amateur Radio, its problems, and the direction in which it's going. Jim did a superb job, and certainly all active Amateurs benefited by Jim's "second look."
My job is to try to carry on the precedent set by Jim in illuminating issues that affect Amateur operating, technology advances, and the future. I'm not as close to the immediate issues of Amateur Radio as Jim was, but that's going to change. I'll have to educate myself so that I can carry on ham radio's editorial page in the established tradition. l ask the support of readers in bearing with me.

I'd like to introduce in observations and comments some contributions by Amateurs who have something constructive to say. This material will reflect your ideas, problems, and what to do about them. If your contribution is positive, it could end up as a guest editorial. Here are some ideas:
Much has been published on FCC proposed rule making affecting Amateurs. If such PRM would have an impact on your sphere of interest, we'd like to hear about it. Give us the pros and cons from your point of view. If your contribution is in the best interest of Amateur Radio, we'll print it in observations and comments.

Do you have a club? We'd like to know about the problems you may have encountered in running a ham club so that others may benefit. What about a club paper? How do you run yours?

Say you're a contest operator. What can be done about the selfish attitudes of those who interrupt contest operation?
You've run across a new adaptation of current IC technology. Let's hear about it. Can it be adapted to Amateur Radio?

You don't like the restrictions on satellite communications. Why not? Do you have a better solution?

What about slow-scan TV and interference by SSB operation? The upper end of the 20 -meter band is a good example. Is time-sharing the answer?

These are just a few ideas that come to mind. Others are welcome from our readers and will certainly be considered.

The object of this column is to present ideas and comments from our readers that will provide a positive thrust forward for other Amateurs. Reader contributions will be supplemented by editorial comment on current issues and their relationship to Amateur Radio. The idea behind this column is to present an image of what our readers think. Let's hear from you.

Alf Wilson, W6NIF technical editor

ICOM AMERICA, INCORPORATED
2112116 th Avenue N.E., Bellevue WA 98OO4, (2O6) 454-8155
3331 Iowerwood Dr., Suite 307, Dallas, TX 75234, (214) 62O-2780

speech processors

Dear HR:
I read with interest the letter by Walter Schreuer of Maximilian Associates and the reply by Wes Stewart concerning his split-band speech processor. Since I have done some comparative on-the-air testing of the two designs, I think that my findings will be of interest.

For my tests, I used three different speech processors: a Vomax, a NTWS split-band, and a quasi-logarithmic audio clipper. All three units were connected to a switching system that allowed instantaneous switching of the various units between the transmitter and microphone. The units were adjusted to provide the transmitter with an equal amount of drive measured by observing the metered ALC level.
Various tests were run with some of the local fellows on 10 meters as well as with DX stations on several bands. At the beginning of the contact, I explained the test I was about to run and asked the operator to note his preference, which unit he thought sounded the best, as well as which provided the most signal "punch." First, a transmission was made with no audio processing to be used by the receiving station as a reference. The three speech processing units were designated \mathbf{A}, \mathbf{B}, and \mathbf{C}, and the stations were not told which was which until the test sequence was completed.

A test run was made by using unit A, then unit \mathbf{B}, then unit \mathbf{C}; in between testing the units 1 switched back to a "No Processing" mode for comparison. By keeping a record of these tests, I found that approximately 90 per cent of the stations preferred the N7WS design split-band processor. Operators who preferred the N7WS design said that although there was as much - or slightly more - than average power output with the

Vomax, the N7WS design sounded "crisper." Monitoring my signal with a separate receiver, it sounded to me as though the Vomax suffered from a highly restricted audio bandwidth, with the most notable point being the lack of low frequencies.
I've heard others on the air using the Vomax, and it seems that, while some operators sound excellent, others suffer from the same problem I observed during my tests. This leads me to conclude that the microphone audio response and/or timbre of the operator's voice will determine the audio quality when using the Vomax. (I should point out that only one Vomax unit was available for these tests; I would have liked to have been able to obtain another unit to see if it had the same characteristics.) The quasi-logarithmic processor, while contributing punch to the signal, did not fare well during these tests when compared with the other units because of its high percentage of distortion.

I make no claim that these tests were scientific or definitive; they were conducted only to satisfy my personal curiosity.

Gale A. Steward, K3ND Quakertown, Pennsylvania

speed of light

Dear HR:

I would like to comment on the paper published in January, 1980 issue by Harold Tolles, W7ITB, regarding the speed of light. The measurement of the speed of light is a difficult task to accomplish, at best, to the precision quoted today. It should be noted that the speed of light has been given to at least six places since before 1930, i.e., 2.99796 $\times 10^{8}$ meters per second (m / s). This value has, so to speak, converged to $2.997924580 \times 10^{8} \mathrm{~m} / \mathrm{s}$ as recommended by the Committee on Data
for Science and Technology, and the International Council of Scientific Unions (CODATA-ICSU) in 1973. The principal improvement in the knowledge of the speed of light has been the reduction in the measurement uncertainty from $4000 \mathrm{~m} / \mathrm{s}$ in 1929, to $1000 \mathrm{~m} / \mathrm{s}$ in 1951 , to $100 \mathrm{~m} / \mathrm{s}$ in 1963 , to $1.2 \mathrm{~m} / \mathrm{s}$ in 1973 . Surely four parts per billion is adequate for ham radio work!

It should be noted that these speeds are in vacuum. When light propagates through any material (e.g., air), its speed is reduced by a factor of one over the material's index of refraction. The index of refraction of air, for example, is dependent on the temperature, pressure, and frequency of the EM radiation on a "point-by-point" basis (for most rf work, electron density distribution in the atmosphere plays a significant role), from which one can (reasonably) infer that the speed of an EM wave varies over the path of propagation. Finally, I suggest that we and Mr. Tolles not despair about c and simply use $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$, which is good to 0.07 per cent; this value is adequate for all Amateur Radio requirements.

> R. Barry Johnson, W4MLM Rancho La Costa, California

receiver dynamic range

Dear HR:

WB6CTW is to be complimented for his fine article on measuring receiver dynamic range in the November, 1979, ham radio. His technique makes it possible for the average Amateur to make meaningful measurements with homebrew equipment. WD6FMG, N6ST, and I have been using Hewlett-Packard signal generators to perform similar measurements. Based on our experiences, I would like to offer several comments on this subject.

1. The measurement of dynamic range for either third-order intermodulation (undesired mixing of two in-
terfering signals) or gain compression (overload by one interfering signal) is not particularly sensitive to the exact difference in the frequencies of the signals. Any difference between 20 and 100 kHz can be used. If the signals are too close together, i-f skirt rejection or local oscillator noise sidebands confuse the measurements; if they are too far apart, the rf preselector attenuates one or both of the signals.
2. Various receivers will show somewhat different results if tested on different bands. Just the same, if all of the receivers in Table 1 of the article were tested on 40 instead of 20 meters, the ranking would probably be similar. Therefore, the cost of the crystals for the two oscillators could be saved by using some Novice band crystals from the junk box.
3. When performing the two-tone test, misleading measurements may be obtained with some receivers if the AGC is allowed to reduce the of gain. The intermodulation signals should be kept weak enough that the S meter barely moves. In some receivers, the stage that generates the intermodulation is a mixer or second amplifier stage that follows a stage with AGC. As the level of the two interfering signals is increased to the point that the intermodulation product appears out of the noise, passes through the i-f filter, and reaches the detector, the AGC will reduce the of gain. Less signal reaches the intermod generating stage, and less intermod is produced than would be the case if the AGC were disabled. AGC, of course, also decreases receiver sensitivity.

The dynamic range of a receiver is the difference between the weakest signals it can detect, and the largest signals it can handle simultaneously. Unfortunately, different values for dynamic range will be measured depending on the definition of a "weak" signal. Some of the companies that publish dynamic range performance
seem to use creative specsmanship. In one case, the measured value of dynamic range is much better if the sensitivity and intermodulation are compared for a weak signal of S-6 than for a weak signal of S-1. Can you guess which value is the published value?
4. The article suggests that gain compression can be tested with only one signal. This procedure will often give false and inflated results. It is much better to tune the receiver to a weak signal; then adjust the amplitude of a second signal on a different frequency until reception of the first signal is impaired.

For example, a while ago we checked the performance of a popular synthesized 2-meter handheld transceiver. This rig was claimed to have 80 dB rejection 30 kHz away. The signal level for full quieting was measured. Next the receiver was tuned 30 kHz away. Then the amplitude of the signal generator was increased by approximately 80 dB , at which point the receiver was again fully quieted. From this test, one might suppose that the dynamic range was 80 dB .

The receiver was next tested using two signal generators. The first one was tuned to the receiver frequency, frequency modulated with a 1 kHz tone, and adjusted in amplitude until full quieting was achieved. The second signal generator was tuned 30 kHz away and increased in amplitude until the 1 kHz modulation of the first signal became noisy. The difference in the two signal strengths was only $56 \mathrm{~dB} . \ldots$ a lot less than the 80 dB measured the first way!
5. Based on testing one of each model, the TS-520S is much improved over the TS-520 and even slightly better than the TS-820. Owners or prospective owners of the TS-520S should perform their own measurements before they panic.

Paul A. Zander, AA6PZ
Los Altos, California

presstop

A LAW PROHIBITING "INTERFERENCE by Radio Transmitter" has been enacted by the Township of Winslow, New Jersey, in the aftermath of TVI/RFI problems experienced by a local Amateur, WB2SZK. Just over a year ago a neighbor complained of TVI plus interference to his stereo, electronic organ, and intercom. Stubs cured the TVI problem, but filters were only partially effective on the other equipment. WB2SZK, after urging the neighbor to seek manufacturer's help with the remaining problems, was summoned to court in November for violation of a township nuisance ordinance and ordered to stay off the air for 30 days pending FCC inspection. When he refused, he was fined $\$ 250$ and costs.

The FCC's Inspection in early December gave WB2SZK a clean bill of health, and the complainants were so advised. On December 19 the township then adopted a new ordinance, Chapter $50-10.2$, that makes it unlawful to transmit any radio signal that "...causes or creates electrical, visual or audible interference.." or "...annoys, disturbs or endangers the comfort, repose, health, peace, safety or general well being of others within the township." Any interference with "...receiving sets, musical instruments, phonographs or other machine..." is included under the ordinance's omnibus coverage.

WB2SZK Was Again Summoned for hearing, this time under the new ordinance, in February. On his request the FCC submitted a 1977 Public Notice citing federal pre-emption of the control of radio transmissions to township officials, but to no avail. His attorney was able to obtain an interim injunction from the New Jersey Superior Court halting prosecution under the new ordinance, but at a May 2 hearing the Superior Court judge upheld the township ordinance on the grounds that there is no specific federal pre-emption of control of radio communications-it's only implied.

Since This Decision Contradicts previous decisions on the pre-emption question, it sets a dangerous precedent and must be challenged. Over $\$ 1000$ (including $\$ 500$ from the Mt. Airy Pack Rats) has already been spent, and the necessary appeal in Federal Court will cost much more. Contribution checks made out to Harry B. Stein, W3CL, with the notation "Randy Bynum Defense Fund" can go to 2087 Parkdale, Glenside, Pennsylvania 19038.

A NEW COMMUNICATIONS ACT REWRITE bill, S-2827, has been introduced in the Senate by the Senate Communications Subcommittee. Combining the better and less controversial ideas of the previous rewrite proposals (S-611 and S-622), the new bill includes the 10 -year license term, authorizes the FCC to require TVI rejection standards for TV receivers, and-most im-portant-gives the FCC authority to delegate license examination authority to nonemployees.

The Full Text of S-2827 appears in the June 13 issue of the Congressional Record. Because of the very pro-Amateur-Radio aspects of this revised bill, Amateurs are again urged to write their Senators and Representatives as well as the Subcommittee Chairman, Sen. Ernest F. Hollings (D., South Carolina), and minority leader, Sen. Barry Goldwater. A complete list of the Senate Committee members who are directly concerned with S-2827 appears in the May, 1980, QST editorial. Some Washington observers believe that, with public support, S-2827 has a good chance of being passed by Congress this year.

SSTV AND FACSIMILE WOULD BE permitted on all Amateur voice frequencies above 3775 kHz , under a Notice of Proposed Rule Making adopted by the Commission June 3. Personal Radio Docket 80-252 proposes dropping the present subband restrictions on SSTV, meaning that Generals as well as Advanced and Extra class licensees would be able to use that mode on 80 through 15 meters. Facsimile would be permitted on the same frequencies thus opened to SSTV. 160 was not included in the NPRM at this time, as that band is still shared with Loran, Amateur Radio being a secondary user through 1981. Under the proposed rules change, bandwidth for either mode would be limited to SSB bandwidths below 50 MHz , and to AM bandwidths above.

Comment Due Date is September 22, with Reply Comments due October 22.
FCC'S NEW EXAMS SCORED AN "A" with the first group of applicants who took them recently. According to instructors from several parts of the country, their students rated the new FCC efforts well written, unambiguous, and closely related to the new FCC study guides. They also liked the practical emphasis on operating procedures in the Technician/Generalclass exams with more technical subjects covered in the higher class tests. Congratulations to Jay Jackson, AF40, and the other FCC staff members who are responsible for the new exams.

HAM RADIO'S NEW TECHNICAL Editor is Alf Wilson, W6NIF. Alf is no stranger to ham radio, having been Jim Fisk's technical right-hand man since the magazine's early days. He will be working on ham radio through the summer to help ensure its continued technical accuracy while the search for a permanent editor continues. Prior to his retirement several years ago, Alf was a Technical Publications Specialist for General Dynamics in San Diego.

Move over imports, here's the new TEN-TEC

the notable change in hf transceivers

All new, all nine hf bands and only $\$ 849$!

DELTA - the symbol of change-the name of a great new TEN-TEC transceiver A transceiver for changing times, with new features, performance, styling, size and value TOTAL SOLID-STATE. By the world's most experienced manufacturer of hf solid-state amateur radio equipment.
ALL 9 HF BANDS. First new transceiver since WARC $160 \cdot 10$ Meters including the three new hf bands ($10,18 \& 24.5 \mathrm{MHz}$). Ready to go except for plug-in crystals for 18 and 24.5 MHz segments (available when bands open for use) SUPER RECEIVER. New, low noise double conversion design, with $0.3 \mu \mathrm{~V}$ sensitivity for $10 \mathrm{~dB} \mathrm{~S}+\mathrm{N} / \mathrm{N}$.
HIGH DYNAMIC RANGE. 85 dB minimum to reduce overload possibility. Built-in, switchable, 20 dB attenuator for extreme situations. SUPER SELECTIVITY. 8-pole monolithic SSB filter with 2.4 kHz bandwidth. 2.5 shape factor at $6 / 60 \mathrm{~dB}$ points. And optional 200 Hz and 500 Hz 6 -pole crystal ladder filters. Eight pole and 6 -pole filters cascade for 14 poles of near ultimate skirt selectivity Plus 4 stages of active audio filtering. To sharpen that i-f response curve to just 150 Hz bandwidth. 4-position selectivity switch.
BUILT-IN NOTCH FILTER. Standard equipment. Variable, 200 Hz to 3.5 kHz , with notch depth down to -50 dB . Wipes out interfering carriers or CW
OFFSET TUNING. Moves receiver frequency up to $\pm 1 \mathrm{kHz}$ to tune receiver separately from transmitter
"HANG" AGC. For smoother, clearer, receiver operation. OPTIONAL NOISE BLANKER. For that noisy location, mobile or fixed. WWV RECEPTION. Ready at 10 MHz "S"/SWR METER. To read received signal
strength and transmitted standing wave ratio Electronically switched.
SEPARATE RECEIVER ANTENNA JACK. For use with separate receiving antenna, linear amplifier with full break-in (QSK) or transverters

FRONT PANEL HEADPHONE AND

MICROPHONE JACKS. Convenient
DIGITAL READOUT. Six $0.3^{\prime \prime}$ red LEDs
BROADBAND DESIGN. For easy operation. Instant band change-no tuneup of receiver or final amplifier From the pioneer. TEN-TEC
SUPER TRANSMITTER. Solid-state all the way Stable, reliable, easy to use.
200 WATTS INPUT. On all bands including 10 meters (with 50 ohm load). High SWR does not automatically limit you to a few watts output. Proven, conservatively rated final amplifier with solid-state devices warranted fully for the first year, and pro-rata for five more years.
100% DUTY CYCLE. All modes, with confidence 20 minutes max key-down time. Brought to you by the leader in solid-state finals. TEN-TEC
QSK - INSTANT BREAK-IN. Full and fast. to make CW a real conversation.
BUILT-IN VOX AND PTT. Smooth, set-andforget VOX action plus PTT control VOX is separate from keying circuits.
ADJUSTABLE THRESHOLD ALC \& DRIVE. From low level to full output with ALC control. Maximum power without distortion. LED indicator
ADJUSTABLE SIDETONE. Both volume and pitch, for pleasant monitoring of CW. SUPER STABILITY. Permeability tuned VFO with less than 15 Hz change per F^{n} change over 40° range after 30 min warmup-and
less than 10 Hz change for 20 Volt AC line change with TEN-TEC power supply. VERNIER TUNING. 18 kHz per revolution. typical.
SUPER AUDIO. A TEN-TEC trademark. Low IM and HD distortion (less than 2\%) Built-in speaker.
SUPER STYLING. The ' 80 s look with neat, functional layout. "Panelized" grouping of controls nicely human engineered for logical use New. smaller size that goes anywhere. fixed or mobile ($4 \% / \mathrm{h} \times 11^{1 / 8} \mathrm{w} \times 15^{\prime \prime} \mathrm{d}$) Warm, dark front panel. Easy-to-read contrasting nomenclature Black "clam-shell" aluminum case. Tilt bail
MODULAR/MASS-TERMINATION CONSTRUCTION. Individual circuit boards with plug-in harnesses for easy removal if necessary. Boards are mailable.
FULL ACCESSORY LINE. All the options: Model 282200 Hz CW filter \$50; Model 285 500 Hz CW Filter $\$ 45$; Model 280 Power Supply $\$ 139$. Model 645 Dual Paddle Keyer $\$ 85$. Model 670 Single Paddle Keyer $\$ 34.50$; Model 247 Antenna Tuner $\$ 69$; Model 234/214 Speech Processor \& Condenser Microphone \$163: Model 215 PC Ceramic Microphone $\$ 34.50$. Model 283 Remote VFO. Model 287 Mobile Mount, and Model 289 Noise Blanker available soon

Experience The Notable Change In HF Transceivers, Experience DELTA. See your TEN-TEC dealer or write for full details.

Food for thought.

Our new Universal Tone Encoder lends it's versatility to all tastes. The menu includes all CTCSS, as well as Burst Tones, Touch Tones, and Test Tones. No counter or test equipment required to set frequency-just dial it in. While traveling, use it on your Amateur transceiver to access tone operated systems, or in your service van to check out your customers repeaters; also, as a piece of test equipment to modulate your Service Monitor or signal generator. It can even operate off an internal nine volt battery, and is available for one day delivery, backed by our one year warranty.

- All tones in Group A and Group B are included.
- Output level flat to within 1.5 db over entire range selected.
- Separate level adjust pots and output connections for each tone Group.
- Immune to RF
- Powered by $6-30 \mathrm{vdc}$, unregulated at 8 ma .
- Low impedance, low distortion, adjustable sinewave output, 5 v peak-to-peak.
- Instant start-up.
- Off position for no tone output.
- Reverse polarity protection built-in.

Group A

67.0 XZ	91.5 ZZ	118.82 B	156.75 A
71.9 XA	94.8 ZA	123.03 Z	162.25 B
74.4 WA	97.4 ZB	127.33 A	167.96 Z
77.0 XB	100.01 Z	131.83 B	173.86 A
79.7 SP	103.51 A	136.54 Z	179.96 B
82.5 YZ	107.21 B	141.34 A	186.27 Z
85.4 YA	110.92 Z	146.24 B	192.87 A
88.5 YB	114.82 A	151.45 Z	203.5 M 1

- Frequency accuracy, $\pm .1 \mathrm{~Hz}$ maximum $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Frequencies to 250 Hz available on special order
- Continuous tone

Group B

TEST-TONES:	TOUCH-TONES:	BURST TONES:				
600	697	1209	1600	1850	2150	2400
1000	770	1336	1650	1900	2200	2450
1500	852	1477	1700	1950	2250	2500
2175	941	1633	1750	2000	2300	2550
2805			1800	2100	2350	

- Frequency accuracy, $\pm 1 \mathrm{~Hz}$ maximum $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Tone length approximately 300 ms . May be lengthened, shortened or eliminated by changing value of resistor

Wired and tested: $\$ 79.95$

COMMUNICATIONS SPECIALISTS

light-emitting diodes:

 theory and application
A digest of LEDs how they work and how they're used in many of today's electronic circuits. Also included is a simple logic probe for testing digital circuits

Learning the theory of the electronic devices we use can be greatly enhanced by putting the theory to work with a weekend construction project. This is just what we have in this article: some basics, a few applications, and a very easy construction project. A few hours invested should yield a good understanding of light-emitting diodes (LEDs) and a unique logic probe that fits well with today's technology.
Initially these LED devices were too expensive for the Amateur or experimenter, but their wide acceptance and availability now make them a workable addition to our hobby. As Amateurs continue their transition from vacuum tubes, through transistors and into integrated circuits, the LED will become more valuable as an indicator, display, or active component.

For practical applications we can think of the LED indicator, or the individual segments of a LED display, as being the same as any other diode; much like the power diodes used as rectifiers, or the small-signal diodes used as detectors. As with any diode, we must operate within the parameters of the device as specified by the manufacturer. Under these conditions the LED will function well.

To illustrate the relationship between a silicon diode and a LED, I've shown both devices under similar conditions in fig. 1. Both are forward biased, and the current through each is limited by the series resistor, R1. The voltage drop across the silicon diode, or its threshold voltage, is approximately 0.6 volt. If the value of R1 is changed, the current through the diode will vary, but the voltage across the diode will remain fairly constant. In effect, the diode will act as a voltage regulator. The diode could be used as a shunt regulator in the same manner as a voltage-regulator tube found in many receivers and VFOs of the past. In semiconductor circuits, one or more of these diodes are often used as regulators and clamps, making good use of this threshold action.

The same conditions exist for the LED except that the threshold voltage is higher, usually about 1.6 volts for the red LEDs. As with the silicon diode, varying the series resistor will vary the current through the LED and thus its intensity, but the voltage drop across the LED will remain fairly constant at 1.6 volts.

From fig. 1 it can be seen that all we must do to activate a LED is apply forward bias and limit the current to a safe value, as specified by the device manufacturer. As shown in fig. 1, a simple application of Ohm's law is all that's needed to use the LED as an indicator. An understanding of the basic principles of the diode will enable you to get started in the applications of LEDs.

Fig. 2 illustrates the parameters of a typical red LED. As shown, 100 per cent of the rated intensity is achieved with 1.6 volts at 0.020 ampere. These parameters were used to calculate the series-resistor value in fig. 1. The threshold voltage for colors other than red vary from this norm. Typical values are, for amber devices, approximately 2.0 volts. For green units threshold approaches 4.0 volt level.

These numbers are adequate approximations for general use and will provide a starting point for unknown surplus units. The amber and green LEDs generally require more current than the red LEDs to achieve equal intensity. However, our eyes are very understanding in this area, and the current through the diode can vary over a formidable range without a profound effect on the indicator's appearance.

By Ken Powell, WB6AFT, 6949 Lenwood Way, San Jose, California 95120

applications

We tend to think of LEDs as low-voltage devices primarily associated with transistors or integrated circuits. However, with suitable current-limiting resistors, these devices will function equally well in higher-voltage circuits. The type 4403, for example, has an isolation voltage rating between the leads and case of 300 volts. This rating allows the device to serve as an indicator in moderately high voltage circuits.

Complete logic-probe board ready for assembly.

A logic probe for testing digital circuits. A few parts and as many pleasant hours at the workbench produced this useful and handsome piece of test gear.

Voltage monitor. Fig. 3 illustrates this principle by the use of a LED to monitor the power-supply voltage in a tube-type receiver. The calculations required to determine the value of the series resistor is shown;

fig. 1. Silicon diode and LED under similar operating conditions: each is forward biased, and current through each device is controlled by series resistor R1. Threshold voltage across the silicon diode is about 0.6 volt, whereas that across the LED is somewhat higher, usually about 1.6 volts (for red LEDs). Simple application of Ohm's law determines device operating parameters.
note that this application is no different than the basic circuit discussed in fig. 1. From this application it can be seen that we're not limited to low-voltage or solid-state circuitry in the use of LED devices. With higher voltage applications, the series-resistor value becomes greater along with increased power requirements; but the physical size is still within reason, and the looks are more in keeping with today's technology.

The majority of LED applications encountered are in dc circuits, but these devices aren't limited to dc and make excellent indicators for ac if some precautions are taken in their application. One of the parameters not yet discussed is the reverse-voltage specification. The reverse breakdown voltage of LEDs is

fig. 2. Intensity of a typical red LED as a function of threshold voltage and forward current. One-hundred per cent of rated intensity occurs with 1.6 volts at 20 mA . These data were used to calculate the series resistor, R1, in fig. 1.

fig. 3. A voltage monitor that can be used, for example, in a power supply of moderate voltage. Calculations for series-resistor values are shown.
generally low, so particular attention must be paid to this specification. The reverse breakdown voltage for the type 4403 is typically 3 volts, meaning that the reverse bias voltage must be kept below this level.

Filament-circuit monitor. In fig. 4 an LED is used to monitor a filament circuit, and a diode is placed inversely in parallel with the LED to limit the reverse voltage applied to the LED to approximately 0.6 volt, or the threshold of the silicon diode. This diode will protect the LED during negative excursions of the filament voltage. As in the previous circuits, the limit-ing-resistor value is calculated with Ohm's law as shown in fig. 4A, but the power must be calculated as in fig. 4B, since the current flow will be greater on the negative half cycles when shunt diode CR1 is conducting. That is because of the difference in LED threshold voltage and that of the silicon diode. In this case, the difference in power is minimal but should be taken into account, particularly with higher source voltages and higher threshold LED devices, such as amber and green units. The reverse-voltage parameter is an important factor and must be kept in mind when thinking about LED applications.
Color transistions. Another type LED, the MV-5491, is illustrated in fig. 5. This unit is actually

fig. 4. Using an LED to monitor a filament circuit. The limiting-resistor value is calculated as in (A), but the power dissipation must be calculated as shown in (B).
two LED junctions in a single package placed inversely in parallel. One of the parallel diodes is red; the other is green. As with the LEDs discussed earlier, the threshold voltages of the two diodes are different, so a bit more thought is required in their application.

With the MV-5491, the color can be changed by reversing the voltage applied to the diode pair; and with the application of an ac voltage, an alternating color that approximates yellow can be obtained. This device can achieve four states: red, green, amber, and off.

In fig. 5A the red diode is conducting and the limiting resistor, calculated for a specification of 1.65 volts at 0.20 ampere, controls the current through

fig. 5. Example of a dual-diode LeD, type MV-5491. This device is actually two LED junctions in single package placed inversely in parallel, Sketches (A), (B), and (C) show, respectively, how the LED colors are generated. (A) shows the diode pair in a red configuration; (B) shows green. With the application of an ac voltage and the use of a compensating diode, as seen in sketch (C), an amber color can be generated.
the diode. In fig. 5B, the green diode is in conduction, and the limiting resistor has been chosen to provide 3.0 volts at 0.020 ampere. Because of the difference in the specifications of the red and green diodes, external components must be used to provide compensation. Fig. 5C illustrates this compensation in the form of a silicon diode that will shunt the 100 -ohm resistor when the green LED is conducting. Reversing the polarity of the input voltage will reverse bias the silicon diode, placing an effective 170ohm resistance in series with the red LED. In this manner the correct voltage and current can be furnished to the dissimilar LED junction.

LED drivers. So far in the discussion all the LED applications have been of the static type. To make these units dynamic, or to turn them on and off with signals, a switching device must be added in series with the LED to control the current flow. In fig. 6 a transistor switches the LED on and off with a signal or logic level to be monitored. In fig. 6A the voltage across each element of the circuit is shown with the transistor in conduction and the LED indicator lighted. The calculation for the current-limiting resistor is the same as in previous illustrations except for the added voltage drop of the transistor, usually on the order of 0.2 volt. As in previous illustrations, 1.6 volts appears across the LED and 3.2 volts across the limiting resistor. In fig. 6B the circuit is shown with the transistor cut off and the LED indicator extinguished. In fig. 6C a similar circuit is depicted for use with a negative power supply.

fig. 6. Dynamic application of LEDs. A transistor controls current flow; that is, a switching device is used. (A) shows the transistor conducting (LED illuminated); (B) shows the transistor cut off (LED extinguished). In (C) a circuit is shown for use with a negative power supply. In these applications the device is called an "LED driver."

Integrated circuits lend themselves well to driving LED devices, and six LEDs can be controlled from a single IC package. The SN7406 and SN7407 are well suited for this application. The 7406 is a hex-inverter with each of its output circuits rated at 0.040 ampere and 30 volts. As shown in fig. 7, the 7406 will cause the LED to conduct when conditioned with a high, or positive, input. The 7407 is the same basic package but is a noninverting circuit, so a high input will yield a non-conducting, or high output, extinguishing the LED.

In applications requiring more than one LED indicator, the 7406 and 7407 form a very compact and costeffective circuit. They are useful for adding monitors to keyboards and for data bus applications. The calculations for the current-limiting resistors in this application are identical to those discussed earlier. Just about any open-collector TTL IC will work well as an indicator driver; and for practical applications, the LED current can be limited to 0.010 ampere to

fig. 7. In this example of LED drivers using ICs, as many as six LEDs can be controlled from a single IC package. (A) and (B) show, respectively, drivers with inverting and noninverting inputs.
reduce current use. This will yield adequate light output in virtually all situations.
Driving a dual LED, such as the MV-5491, is a bit more complex. But the result of the LED changing color with changes in the signal is more dramatic and can be accomplished with ICs. Fig. 8 shows a driver circuit for dual LEDs using one mini-dip, type SN75452, and one section of a SN7404 inverter.
The calculations for resistor values are the same as those in previous illustrations, but the power requirements are a bit more. With the driver input low, the input to IC1A is high and its output is low. In this state 4.8 volts will be dissipated across the 220 -ohm resistor, placing the green cathode (GC) at 0.2 volt. IC1B, with its low input, will have a high or nonconducting output. This action will allow the green diode to be forward biased, and 1.8 volts will be dissipated across the 100 -ohm resistor. When the circuit input goes high, IC1A and IC1B outputs will change state, and 4.8 volts will be dissipated across the $100-\mathrm{ohm}$ resistor. The red diode will go into conduction, and 3.15 volts will be dissipated across the 220 -ohm resistor. Rapid transitions of the input signal will alternate the red and green LEDs and form a somewhat amber indication.
The dual-LED indicator makes a very nice display. The ability to display a number of states with a single

fig. 8. A dual LED driver using the type SN75452 IC. Calculations for the resistor values are the same, but the power requirements are a bit higher.

fig. 9. Application of the LED as an optical coupler. In this case the LED has been packaged with its light output focused onto a photo transistor. In this configuration the device can provide a signal path while providing electrical isolation of more than $\mathbf{2 5 0 0}$ volts.
indicator is very useful, particularly in digital applications such as circuit monitoring. The IC driver circuitry could be replaced with discrete transistors if desired, and no doubt many applications for this unique device will be implemented by Amateurs and experimenters. As with many other devices, these units were expensive when first developed but are readily available at low cost today. The MV-5491 is packaged in the standard $\mathrm{T}-13 / 4$ package and uses the same mounting hardware as most LEDs.

the optical coupler

All of the LEDs previously discussed have been indicator types, so now is a good time to take a break and look at another LED device known as the optical coupler. The coupler uses the LED for a much different purpose - that of isolation. This device can provide a signal path while furnishing electrical isolation in excess of 2500 volts. Again it is the basic LED with virtually the same parameters as those of the LED indicator. However, in the coupler configuration the LED has been packaged with its light output focused on the sensitive surface of a photo transistor (fig. 9). In this manner, the current flow through the LED will provide base bias for the transistor through an optical path within the package, providing signal coupling while maintaining physical isolation.

While I've not seen these devices used extensively in Amateur gear, I have used them in keyer circuits to

fig. 10. Use of the LED optical coupler in an Amateur keyer. Device isolates the IC keyer from the transmitter, removing grid-block keying voltage, which is sometimes rather high, from the keyer paddies.
isolate the keyer from the transmitter. They are a very effective device in this application and remove the grid-block keying voltage, which is sometimes at a fairly high potential, from the paddles. This application is depicted in fig. 10. The optical coupler, or opto-isolator as it is also called, is used extensively in medical and data-processing equipment. I think that, as Amateurs become more aware of the unique properties of this device, many new and worthwhile applications will ensue.

The coupler in fig. 10, type H11D1, is packaged in a six-pin mini-dip, so it lends itself well to today's construction techniques. Keep this device in mind for both safety and noise reduction applications.

fig. 11. A contactiess keyer, or "optical paddle," using an LED optical interrupter. The optical interrupter is similar to the optical coupler, except that the light path from the diode to the photo transistor can be interrupted with a shutter or other mechanical device.

optical interrupter

Another interesting device in the LED family is the optical interrupter. Its construction is similar to that of the optical coupler, except that the light from the diode to the photo transistor is accessible, meaning that the light path can be broken or interrupted with a shutter blade or other mechanical device. When this action occurs, the output transistor will be cut off, which allows an easy mechanical interface to electronic circuitry. I've not seen this device used to any great extent in Amateur applications, but I think a contactless keyer would be a good item to begin with. I've shown one in fig. 11 and hope to build a device such as this in the near future. The ease with which it will interface digital logic makes it a natural.

fig. 12. Example of a shaft encoder using the optical interrupter. No electrical contacts in the encoder mean increased reliability and low maintenance. BCD outputs are shown for each encoder shutter. A neat way to encode your antenna rotator for digital readout!

shaft encoder

Another application comes to mind and seems quite reasonable, since the once-plentiful selsyns are rather difficult to find these days. This application is a position indicator or shaft encoder. Using digital techniques, you could easily get sixteen discrete positions with only four optical interrupters. Adding another interrupter would double the resolution; this could be carried out to any degree desired.

By arranging the shutters and interrupters in a for-

mat such as shown in fig. 12, you would obtain a four-wire BCD output. This could be carried out to an eight-digit arrangement and applied to the input of a micro processor if you really wanted sophistication and had an extra eight-bit port on your micro. This would yield 256 discrete outputs or positions.
Put a device like this under your antenna rotator or weather vane and you would have a real winner! The same scheme could be used for 180 -degree capacitors and multi-turn inductors for remote tuning. This low current, contactless device could form the basis for some interesting, reliable equipment.

LED displays

The seven-segment display is probably the most widely used LED display available today. This popularity has made the price right for the Amateur. The display can be thought of as seven individual LEDs placed in a single easy-to-use package and arranged to provide a numeric output. Each individual element or segment has parameters that are similar to those of the diodes discussed earlier. These devices are available in a common-anode configuration, which is generally used for applications involving a positive power supply and the common-cathode configuration usually associated with negative supply designs. Fig. 13 illustrates both types and the physical relationship of the individual diodes as viewed from the front or display side.

This illustration shows how the characters are formed by forward biasing the individual diodes, or segments, in a prescribed manner. The character

fig. 13. Examples of seven-segment LEDs designed for positive power supplies (common anode) and negative supplies (common cathode). The characters are formed by forward biasing the individual diodes, or segments, in a prescribed manner. These displays have decimal points (DP). Units are available with left-hand, right-hand, both, or no decimal point. Colors are red, green, and yellow (amber).

fig. 14. Integrated displays have an IC built into the package. The IC provides decoding, storage, and a display driver. Cost, however, is five to ten times that of the seven-segment type on the surplus market. Device is a dot matrix type and accepts a four-wire BCD input. Others are available with bar-type LEDs such as used in the seven-segment displays.
" 0 " would be formed by forward biasing the elements labeled " a " through " f." The displays used for this illustration have decimal points (dp), and units are available with left-hand, right-hand, both, and no decimal point. As with the other LEDs discussed, seven-segment displays are available in red, green, and yellow; as with the indicator units, voltage and current parameters vary accordingly.

A number of physical sizes and package configurations are available, and the price is often less than a dollar per digit on the surplus market. The units used in the illustrations are configured in a 14 -pin DIP package and furnish a character height of 0.3 inch $(7.6 \mathrm{~mm})$. This seems to be an adequate size for most projects, and bezels are readily available to give your project a finished look.

the integrated display

The integrated display unit is a display much like the seven-segment LED, with the addition of an IC built into the display package. The IC provides decoding, storage, and display driver - all within the display package, and requires no more space than the seven-segment display. All these functions being performed by the display unit make it much simpler to use and reduces component count considerably. As can be expected, there's a hitch: the cost of the display is five to ten times that of the seven-segment type on the surplus market. This sounds very high indeed, but in figuring the total expense of the compo-

PC BOARDS, PARTS. ANO KITS ARE AVAILABLE FROM:
J. OSWALD 1436 GERHAROT AVE; SAN JOSE, CA 95125 COMPLETE KIT IS\$12.50 PPD.(AT TIME OF PUBLICATION)
fig. 15. Schematic diagram of a logic probe that can be built in a few hours with readily available components. Logic probe output indicator yields three discrete states according to input signal or level. Power is borrowed from the circuit under test.
nents required to do the functions of the integrated display, it's often cost effective, particularly when space is at a premium.

The integrated display illustated in fig. 14 is a dot matrix type and accepts a four-wire BCD input. Other integrated displays are available with bar-type LEDs such as used in the seven-segment display. Various types of logic configurations are available such as counters, latches, and hexidecimal decoders. These devices interface TTL logic very well and can make the design and construction of counters and similar devices relatively easy.

logic probe

The logic probe is a good application of the theory discussed earlier and makes an ideal instrument for digital testing. It can be constructed in a few hours using readily available components. The output indicator of the logic probe yields three discrete states according to the input signal or level. The probe borrows power from the circuit under test and is designed to function with the popular TTL logic families.

The circuit of the logic probe is shown in fig. 15 and is a variation of the dual LED circuit in fig. 8. When power is applied to the probe through the power leads, and the tip or input is touched to a low level or ground, $\mathbf{Q 1}$ is cut off. This condition will cause Q 2 to conduct since the base is positive with respect to the emitter. With $\mathbf{Q 1}$ cut off and $\mathbf{Q 2}$ conducting, the green diode of the dual LED will be forward biased, yielding a green output from the LED. Touching the probe tip to a high level will cause Q1 and O 2 to complement, and the red diode will be forward biased, yielding a red output from the LED. An

fig. 16. Full-size foil pattern for the logic probe.

fig. 17. Logic-probe component layout.
alternating signal will cause alternating conduction of the red and green diodes and will yield an indication approximating amber. In this manner both static and dynamic signals can be traced with the logic probe.

Printed circuit construction is used for the logic 'probe, and a full-size foil pattern is shown in fig. 16. After etching and drilling the PC board, the components are mounted as shown in the component-side view, fig. 17. Fig. 18 is a sketch of the probe assembly. I used the components from an Eico demodulator probe for construction, but any plastic or plexiglass tubing with approximately $1 / 2$-inch ($13-\mathrm{mm}$) ID will suffice. The end caps can be cemented in place after the PC board is slipped into the tubing, and your logic probe should be ready to go to work.

fig. 18. The logic probe. Any plastic tubing about $1 / 2$ inch (13 mm) ID will suffice for the probe container.

summary

I've enjoyed building and using the logic probe and certainly found LED devices to be interesting and a very useful addition to equipment designs. As stated earlier, they are no more complex than any other diode and can be a lot more fun to use. The digital revolution is rapidly gaining acceptance in the world of Amateur Radio, and the logic probe and associated LED theory will help you to accept and enjoy the benefits we will all gain from this new technology.

bibliography

[^0]ham radio

KITTY INVITES YOU to come in and see BARRY'S complete line of handheld transceivers.

FT-207R

ICOM

IC-2A

S-1, 2, 5

NICE FOR TRAVELLING . . .

FT-707
Our lines include:

AEA	DRAKE	MURCH
ALLIANCE	ETO	ROBOT
ANTENNA	EIMAC	ROHN
SPECIALISTS	E-Z WAY	SHURE
ASTRON	HUSTLER	STANDARD
B\& W	HY-GAIN	SWAN
BIRD	ICOM	TEMPO
COLLINS	KDK	TRI-EX
COMMUNICATIONS	KLM	YAESU
SPECIALSTS	KANTRONICS	VHF ENGINEERING
CUSHCRAFT	MFJ	AND MORE...
DSI	MIRAGE	
DENTRON	MOSLEY	

BUSINESSMEN: Ask about BARRY'S line of business-band equipment. We've got it!

Amateur Radio License Classes:
 Wednesday \& Thursday: 7-9 pm Saturday 10 am-Noon

The Export Experts Invite Overseas orders

\(\left|\begin{array}{c}AQUISE
HABLA
ESPANOL\end{array}\right| \quad\) - We Ship Worldwide
BARRY ELECTRONICS

512 BROADWAY, NEW YORK, N.Y. 10012 TELEPHONE (212) 925-7000

signal-strength

Receiver S-meter readings are no guarantee of true signal strength here's how to quantify this controversial subject

Amateur radio transmitters require many measurements, most of which are obtainable from one or more internal or external meters. Some meters have two or more scales, which are selected by switches. Readings may include grid current, plate current, high voltage, relative power, SWR, forward power, reflected power, and ALC level. Other readings may be taken with rf ammeters, if voltmeters, frequency meters, and impedance bridges. Also, field-strength indicators may be used to adjust the dimensions of fixed or mobile antennas. These indicators are basically short-range portable receivers with loop or whip antennas and meters with arbitrary uniform scales. They are often called field-strength meters despite their inability to receive and measure distant radio signals.
Amateur radio receivers, unlike transmitters, have only one meter and no meter switch. Transceivers also have only one meter, but a switch provides two
or more transmitter readings and a receiver S-meter reading. An S -meter gives relative values of signal strength on a uniform 0 to 9 scale, followed by a dB scale. It reflects the last $i-f$ stage level of all signals by responding to the average agc voltage, and is not related to af gain. Readings are based on maximum of gain and peaked tuning of an antenna or preselector circuit.

S-meter problems

In general, S-meter readings depend on three variables: signal field intensity, antenna characteristics, and receiver gain. Unfortunately, readings bear no fixed relationship to antenna voltage, as receiver gain varies with various makes, models, units, frequency bands, and parts of bands. Also, there is no accepted standard of input voltage for S 9 readings, so various manufacturers have chosen signal-generator outputs of 25,50 , or 100 microvolts for calibration at a specified frequency. Hammarlund Superpro receivers for military use were made to read $\mathbf{S 9}$ with 50 microvolts input at 3.5 MHz , and modern receivers are not very different.

A typical receiver has a one-milliampere meter in a bridge network containing a potentiometer, which balances no-signal plate or cathode current during zero adjustment. Superpro receivers had a 200microampere meter with an adjustable $1000-\mathrm{ohm}$ shunt for sensitivity adjustment, and also had an AVC amplifier preceding the AVC rectifier. Modern receivers usually avoid these features. Zero and sensitivity adjustments often vary with time.

Although S-meter scales are uniform, S-units are

By Carleton F. Maylott, W2YE, 279 Cadman Drive, Williamsville, New York 14221.
not. One manufacturer states that a change of one S -number on the meter indicates a change in signal strength of approximately two to one (6 dB). Another manufacturer states that each S-unit indicates a 3-dB increase in signal strength. Both statements are thus questionable. An instruction book for a Collins receiver defined neither S 9 input nor S -meter steps, but a calibration showed 50 microvolts and steps of about 1.4, or 2 to 1 in voltage ratio, or 3-6 dB , on the 80 -meter band.
Since S-meter readings can be either optimistic or pessimistic, and give only qualitative information at best, it follows that quantitative readings would be more desirable. Field intensity, often called field strength, is the only true measure of signal strength. Broadcast-station operators often use field-intensity measuring equipment because they must submit field intensity data to the Federal Communications Commission. This data shows the extent of service areas and interference areas for other stations using the same frequencies.

field-intensity meters

Despite the vagaries of S-meters, Amateurs have avoided using field-intensity meters because of their cost and complexity, and also because Amateurs have no service area and interference area limits. Unlike broadcasters, Amateurs can enhance their service areas by changing frequency, power, and time of operation. Likewise, Amateurs can avoid interference by changing the same variables.
A field-intensity meter is basically a combination of a local oscillator or signal generator of known output, an attenuator, a portable receiver containing an output meter, and a loop or whip antenna of known effective height or length. Another antenna can be used if it is calibrated by comparison with the loop antenna. It follows that, with certain additional equipment, an ordinary receiver can serve as the major component of a field-intensity measuring set. ${ }^{1}$

High accuracy is unnecessary in field-intensity measurements of distant radio stations. Propagation conditions, such as fading, vary considerably with time. A receiving station may intercept ground waves, sky waves, or a variable combination of both, which results in multipath interference. Sky-wave fields can be measured with a horizontal antenna, regardless of whether horizontal or vertical polarization is used at the transmitter, since practically equal amounts of both types of polarization are present in the incident ionospheric field.

Radio waves are travelling electric and magnetic fields that are perpendicular to each other and to the direction of propagation. Both fields convey equal power at a distance from their source, so either field
may be considered as a measure of total radiation. It is customary to measure the electric field component, which may be horizontally or vertically polarized, according to the direction of that field. Measurements of field intensity are usually expressed in units of rms microvolts or millivolts per meter at some point, which are really potential gradients.

When a radio wave strikes an antenna, it induces a voltage equal to the product of the field intensity and the effective height or length of the antenna. Thus, if the antenna voltage and effective height or length are known, the field intensity is given by the quotient of their values. Algebraically, since

$$
\begin{equation*}
V=E H \text { or } E L, E=V / H \text { or } V / L \tag{1}
\end{equation*}
$$

Therefore, the measurement of field intensity depends primarily on the measurement of a small, variable antenna voltage. This is usually done by substituting a measurable and attenuated local signal in place of the real signal and noting the attenuation for equal output from a receiver. Another, less used, method compares the voltage induced into the antenna by the desired signal field with that from a standard local field. In general, an incoming signal is measured by comparing it with a known calibration signal. ${ }^{2}$

Any kind of signal can be measured with the aid of a receiver. An S-meter will serve as a comparison output meter, as it responds to a-m or fm carrier levels of single-tone SSB modulation and shows about one-half maximum output for CW signals. Audio gain and output are of interest during tune up and zero beating the real and artificial signals for frequency match, but are otherwise irrelevant.

If the real and artificial signals are equal and the antenna characteristics are known, it should be easy to determine field intensity. In principle, a calibrated signal generator is a substitute for the antenna and its output is adjusted to give the same output-meter reading as the real signal. But it is hard to design an attenuator that is accurate at high radio frequencies. This problem was avoided over fifty years ago by putting an attenuator before the i-f amplifier in a special set, which included a local oscillator and calibrating means. The theory and operation of such a set was covered in an IRE paper and will not be discussed. ${ }^{3}$

effective height

The effective height of the receiving antenna must be known to complete a field-intensity measurement. A loop antenna is a standard of comparison because its effective height can be calculated. The relation is as follows. ${ }^{4}$

$$
\begin{equation*}
H=2 \pi A N / \lambda=2.0944 \times 10^{-5} f A N \text { meters } \tag{2}
\end{equation*}
$$

COMPLETE KITS: CONSISTING OF EVERY ESSENTIAL PART NEEDED TO MAKE YOUR COUNTER COMPLETE. HAL-600A 7-DIGIT COUNTER WITH FREQUENCY RANGE OF ZERO TO 600 MHz . FEATURES TWO INPUTS: ONE FOR LOW FREQUENCY AND ONE FOR HIGH FREOUENCY: AUTOMATIC ZERO SUPPRESSION TIME BASE IS 1.0 SEC OR , 1 SEC GATE WITH OPTIONAL 10 SEC GATE AVAILABLE ACCURACY $\pm 001 \%$. UIILIZES $10 \cdot \mathrm{MHz}$ HAL-300A 7-DIGIT COUNTER (SIMILAR TO 600A) WITH FREOUENCY RANGE OF 0 300 MHz .

COMPLETE KIT $\mathbf{\$ 1 0 9}$
HAL-50A 8-DIGIT COUNTER WITH FREOUENCY RANGE OF ZERO TO 50 MHz OR BETTER. AUTOMATIC DECIMAL POINT. ZERO SUPPRESSION UPON DEMAND. FEATURES TWO INAUTOMATIC DECIMAL POINI, ZERO SUPPRESSION UPON DEMAND. FEATURES TWO INPUIS: ONE FOR LOW FREOUENCY MNPUT, AND ONE ON PANEL FORISIONS HAVE ALREADY NEEN MADE 1.0 SEC AND 1 SEC TIME GATES. ACCURACY $\pm .001 \%$. UTIEIZES $10-\mathrm{MHz}$ CRYSTAL 5 PPM \quad COMPLETE KIT $\$ 109$

FREE: HAL-79 CLOCK KIT PLUS AN INLINE RF PROBE WITH PURCHASE OF ANY FREQUENCY COUNTER

PRE-SCALER KITS
HAL 300 PRE (Pre-drilled G-10 board and all components) $\$ 14.95$ HAL 300 A/PRE HAL 600 PRE (Same as above but with preamp). Pre-drilled G-10 board and all components) $\$ 24.95$
$\$ 29.95$
$\$ 39.95$ (Same 10 board and all componen HAL-1 GHz PRESCALER, vHF \& UHF INPUT \& OUTPUT, DIVIDES BY 1000. OPERATES ON A SINGLE 5 VOLT SUPPLY

PREBUILT \& TESTED $\$ 79.95$

TOUCH TONE DECODER KIT

HIGHLY STABLE DECODER KIT. COMESWITH 2 SIDED. PLATED THRU AND SOLDER FLOWED G-10 PC BOARD, 7-567's, 2-7402. AND ALL ELECTRONIC COMPONENTS. BOARD MEASURES $3-1 / 2 \times 5 \cdot 1 / 2$ INCHES. HAS 12 LINES OUT. ONLY $\$ 39.95$
DELUXE 12-BUTTON TOUCHTONE ENCODER KIT UTILIZING THE NEW ICM 7206 CHIP. PROVIDES BOTH VISUAL AND AUDIO INDICATIONS! COMES WITH ITS OWN TWO-TONE ANODIZED ALUMINUM CABINET. MEASURES ONLY $2.3 / 4^{\prime \prime} \times 3.3 / 4^{\prime \prime}$ COMPLETE WITH TOUCH-TONE PAD, BOARD. CRYSTAL. CHIP AND ALL NECESSARY COMPONENTS TO FINISH THE KIT

PRICED AT $\mathbf{\$ 2 9 . 9 5}$
FOR THOSE WHO WISH TO MOUNT THE ENCODER IN A HAND-HELD UNIT. THE PC BOARD MEASURES ONLY $9 / 16^{\prime \prime} \times 1.3 / 4^{\prime \prime}$. THIS PARTIAL KIT WITH PC BOARD, CRYSTAL, CHIP AND COMPONENTS.

PRICED AT $\$ 14.95$
ACCUKEYER (KIT) THIS ACCUKEYER IS A REVISED VERSION OF THE VERY POPULAR WB4VVF ACCUKEYER ORIGINALLY DESCRIBED BY JAMES GARRETT, IN OST MAGAZINE AND THE 1975 RADIO AMATEUR'S HANDBOOK

METHOD
ACCUKEYER - MEMORY OPTION KIT PROVIDES A SIMPLE, LOW COST METHOD OF ADDING MEMORY CAPABILITY TO THE WB4VVF ACCUKEYER. WHILE DESIGNED FOR DIRECT ATTACHMENT TO THE ABOVE ACCUKEYER, IT CAN ALSO BE ATTACHED TO ANY STANDARD ACCUKEYER BOARD WITH LITTLE DIFFICULTY.

PRE-AMPLIFIER

HAL-PA-19 WIDE BAND PRE-AMPLIFIER, $2 \cdot 200 \mathrm{MHz}$ BANDWIDTH (-3 dB POINTS), 19 dB GAIN. FULLY ASSEMBLED AND TESTED $\$ 8.95$

CLOCK KIT - HAL 79 FOUR-DIGIT SPECIAL - $\mathbf{5 7 . 9 5}$. OPERATES ON 12-VOLT AC (NOT SUPPLIED). PROVISIONS FOR DC AND ALARM OPERATION

6-DIGIT CLOCK • $12 / 24$ HOUR

COMPLETE KIT CONSISTING OF 2 PC G-10 PRE-DRILLED PC BOARDS, 1 CLOCK CHIP, 6 FND COMM. CATH, READOUTS, 13 TRANS, 3 CAPS, 9 RESISTORS, 5 DIODES, 3 PUSHBUTTON SWITCHES. POWER TRANSFORMER AND INSTRUCTIONS. DON'T BE FOOLED BY PARTIAL KITS WHERE YOU HAVE TO BUY EVERYTHING EXTRA. PRICED AT $\mathbf{\$ 1 2 . 9 5}$ CLOCK CASE AVAILABLE AND WILL FIT ANY ONE OF THE ABOVE CLOCKS. REGULAR PRICE $\quad \$ 6.50$ BUT ONLY $\$ 4.50$ WHEN BOUGHT WITH CLOCK.
SIX-DIGIT ALARM CLOCK KIT FOR HOME, CAMPER, RV, OR FIELD-DAY USE OPERATES ON 12-VOLT AC OR DC, AND HAS ITS OWN $60-\mathrm{Hz}$ TIME BASE ON THE BOARD. COM PLETE WITH ALL ELECTRONIC COMPONENTS AND TWO-PIECE, PRE-DRILLED PC BOARDS BOARD SIZE $4^{\prime \prime} \times 3^{\prime \prime}$, COMPLETE WITH SPEAKER AND SWITCHES IF OPERATED ON DC THERE IS NOTHING MORE TO BUY.

PRICED AT $\$ 16.95$
-TWELVE-VOLT AC LINE CORD FOR THOSE WHO WISH TO OPERATE THE CLOCK FROM 110-VOLT AC.
SHIPPING INFORMATION - ORDERS OVER $\$ 15.00$ WILL BE SHIPPED POSTPAID EXCEPT ON ITEMS WHERE ADDITIONAL CHARGES ARE REOUESTED. ON ORDERS LESS EXCEPT ON ITEMS WHERE ADDITIONAL CHARGES ARE REOUESTED. ON ORDERS LESS
THAN $\$ 15.00$ PLEASE INCLUDE ADDITIONAL $\$ 1.00$ FOR HANDLING AND MAILING THAN $\$ 15.00$ PLEASE INCLUDE ADDI
CHARGES SEND SASE FOR FREE FLYER.

> NOW AN ALUMA TOWER

HAROLD C. NOWLAND W 8 ZXH

DISTRIBUTOR
$\mathrm{H}_{\text {al. } \text { Tronix } \mathrm{t}}$
P. O. BOX 1101 SOUTHGATE, MICH. 48195 PHONE (313) 285-1782

Low Noise GaAs FET - D432

$0.5 \mathrm{dBnF} / 18 \mathrm{~dB}$ Gain

This GaAs FET won the West Coast V.H.F. Convention (May 1980.) It has been used in low noise applications from 144 MHz to 4200 MHz , and offers outstanding performance for the low price of $\$ 25.00$ each.

DEXCEL, Inc.
2285C Martin Avenue, Santa Clara, California 95050 Phone: (408) 727-0692

tone alert monitor

Design and construction

 of a tone call system for Radio Amateurs interested in
emergency communications

Recently it has been emphasized many times that the need for Amateur Radio communications in disaster situations is very real and necessary. Many groups of Amateurs and clubs have spent money for equipment and much time in drills and practices to make themselves ready for emergency communications.

One problem that continually bothers Amateur operators who are striving to maintain their proficiency is the need to monitor one or more radio communications links. Such monitoring is necessary so that a central agent can quickly "call up" operators who can provide communications for disaster services. Many Amateur operators would be more willing to monitor for the call up if it were not for the task of listening to a party line such as a 2-meter repeater, national calling frequency on 2 meters, or other busy radio frequencies.

alert monitor

This problem of requiring an individual to monitor for an alert, either real or during practice, has inspired the design of an Alert Monitor that will alert each station without the operator having to listen to the party line chatter associated with most frequencies. The Alert Monitor is also handy for those using a receiver in a busy household or in an automobile, where a busy repeater sometimes can be annoying. The monitor can be used with almost any receiver capable of passing normal audio-frequency informa-
tion. It is not recommended for SSB transceivers that can't hold tight frequency stability.

This Alert Monitor also can alert groups of stations simultaneously (Group Call), or it can alert one station at a time. The Alert Monitor operates with standard Touch-Tone* audio. It uses two digits for normal operation and a long, single digit for the GroupCall feature.

circuit description

Fig. 1 shows the schematic. The audio is applied to the Alert Monitor through the audio-input jack and a 2.2 k resistor. Audio amplitude is limited by two 1N914 back-to-back connected diodes. A 5 k pot adjusts the audio input level, which is coupled to the tone decoder ICs by $4.7-\mu \mathrm{F}$ capacitors. U-1/U-2 decode the high and low tones for the first TouchTone digit, and U-3/U-4 decode the tones for the second digit. The resistor and capacitor at the output of each decoder IC provide a delay between the time that the decoder IC senses a tone and the time that the NOR gate will respond. This prevents falsing on other audio that may be present in the decoder.

When the first digit has been received, a logic high is applied to U7A pin 1 for 2.5 seconds through timer IC U6. A logic high must be applied to U7A pin 2 during this 2.5 second period for the Alert Monitor to operate. Therefore, the second digit must be received within 2.5 seconds of the first for a valid call. This sequence ultimately sets U10B and causes Q 1 to conduct. This, in turn, causes relay K1 to transfer the audio to the audio-output jack. In this condition, the audio signal is connected to the speaker, and the receiver can be monitored for the "Alert Call."

For continuous receiver audio monitoring, the monitor switch can be connected to the monitor positions and the communications receiver can then be used normally without the Alert Monitor defeating the receiver audio.

The Group Call feature works by the sending station (encoder) transmitting the second digit of the
*Touch-Tone is a registered trademark of the American Telephone and Telegraph Company.

By H.F. Wetzel, W4KRT, Route 2, Box 167-C, Berryville, Virginia 22611

Control box of the prototype Alert Monitor.
two digits for 6 seconds or longer. In this mode, U-1/ U-2 don't respond. The signal path now appears in the form of a pulse at U8A pin 6 and will, after 6 seconds, produce a logic high at U10A pin 3. If, in fact, the second tone is still being received, it will cause a logic high to be applied to U10A pin 2. This action will enable the Group Call Detector to produce a logic high, which will eminate from U10A pin 5 . This high is applied to U5D pin 12. U5D is a NOR gate; and from this point on, the operation is the same as when two digits were received.

Whenever U10B is set, either by receiving the correct two tones or the Group Call tone for 6 seconds minimum, three reactions take place:

1. The audio is applied to an external speaker as described earlier.
2. A call indicator is illuminated. This is an LED mounted on the front panel.

Alert Monitor built on PC board, shown here ready for alignment and testing.
3. The Alert Monitor oscillator is triggered for 4 seconds, producing a two-tone "twee-dell" audible signal from the Alert Monitor.

The reason for the visual call indicator is in case a call has been received while the operator is out of hearing range. Upon returning, if the call indicator is illuminated, the operator knows that an alert tone has been received, even though the receiver may be squelched or silent at that particular time.

To put the Alert monitor back into the alert mode, press the RESET push-button to reset U10A and B and to extinguish the call indicator LED. It will also disable the audio path through K1 contacts. This action will again silence the receiver speaker until the next proper alert tone is detected.

Complete prototype Alert Monitor showing perf-board construction, power supply, speakers, and minibox enclosure.

power requirements

Power requirement for this unit is from $8-20 \mathrm{Vdc}$ at approximately 150 mA . This makes the unit adaptable for mobile operation, and the low current drain should not present any problems so far as leaving the receiver and the Alert Monitor on while away from the automobile. The prototype was built to include a dc power supply which also houses the Alert Monitor speaker as well as a speaker for receiver audio. A power supply is shown in fig. 2.

construction

The original Alert Monitor was constructed on a fiberglass perf board using wire-wrap sockets. All discrete components except variable potentiometers, the relay, and the capacitors associated with U12, were mounted on $14-$ pin header plugs. Fig. 3 shows the wiring of the discrete components to the ICs.

No special construction practices were observed, except that all $V_{C C}$ connections for the ICs were carried back to the power source at U12 pin 2. Each IC

fig. 1. Alert Monitor schematic. Circuit operates with standard Touch-Tone audio. Two digits are used for normal operation and a long, single digit for Group Call. Original circuit was constructed on a fiberglass perf board using wire-wrap sockets, but a PC board is now available (see text).
also had its power ground returned to the central ground input point at the case of U12 to reduce transients on "daisychained" power leads, which could cause unstable operation.

Bypass capacitors across the plus and minus power connections of the ICs may be added if necessary. No heatsink was provided for the LM309K (U12). At the low-current level required for the unit, it was found to be unnecessary. The 5.0k trim-pots used for frequency adjustment and input-level adjustment are all multi-turn potentiometers. These are necessary, especially for the frequency-adjusting pots, for the vernier action needed to "tune" the LM567s to their correct frequency.

Should you not wish to use the wire-wrap method of construction, a PC board is available.* The board is single-sided and requires very few jumpers. I prefer this method of single-sided PC board because it's

[^1]much easier to use or copy. All component parts used for both prototypes (perf board or PC board) were purchased from Jameco Electronics. ${ }^{\dagger}$ Of course, parts from other suppliers are acceptable, but this attempt at standardization should help the builder. The only part I did not get from Jameco was the relay. It was purchased from Radio Shack, and the part number for this item is 275-215.

alignment

Several methods for alignment of the tone decoder section are available. The fixed-value resistor connected to pin 5 of each LM567 in series with the 5.0k variable resistor and the $0.1-\mu \mathrm{F}$ capacitor connected to pin 6 are the frequency-control elements for each single-tone detector (LM567). A good-grade Mylar capacitor should be used in this circuit to prevent frequency drift with temperature or internal leakage. If an oscilloscope is available, it can be connected to

[^2]pin 8 of the tone decoder IC to be aligned. An audio signal of the correct frequency is applied to the audio input by connecting the Alert Monitor to the receiver with which it's to be used. Then a Touch-Tone signal is transmitted in the normal fashion from a transmitter.

alignment procedures

The procedures described should, of course, be done with a dummy load connected to the transmitter to avoid interference:

method 1

1. Set the audio level at the receiver for the normal listening volume.
2. Set the audio-input-level control at midrange.
3. Adjust the 5 k frequency-control pot until a logic low appears at pin 8 of the first decoder IC under test.
4. Reduce the audio level by the 5 k level pot in increasing amounts while adjusting the frequency-control pot to maintain the logic low output until no further sensitivity can be obtained for the IC under test.
5. Increase the audio level by the 5 k level pot, with the oscilloscope moved to the next IC.
6. Adjust this IC in a like manner to the next TouchTone frequency being received.
As an alternative method, the LED connected to the tone decoder IC, pin 8, may be used to indicate that the tone decoder has received the correct tone at a sufficient level. As the LM567 detects (or locks onto) the input tone, the LED will light. (Make sure of

fig. 2. A power supply for the Alert Monitor.

fig. 3. Discrete-component wiring to the ICs. The resistor connected to pin 5 of the tone decoder IC in series with the 5-k pot and 0.1 cap connected to pin 6 are the frequencydetermining elements for each single-tone detector. A good-grade Mylar cap should be used in this circuit to prevent frequency drift with temperature.
correct polarity for the LED). When no further refinement of frequency can be made by the frequencycontrol pot, you'll notice that the IC will oscillate between a logic high and low. If you're using the LED method for alignment, the LED will start to dim at this point. The LEDs and the associated 270 -ohm resistor may be eliminated for each tone decoder on the PC board if not used as an alignment indicator. This will not affect the performance of the circuit.
Each Touch-Tone digit consists of two audio frequencies. Therefore, two decoder ICs are necessary for each digit being decoded. Through experimentation I've found that 11 k will allow centering the variable pot for the lowest frequency tone, and 2.4 k will allow adjustment at the highest frequency. Exact calculation of the time constants for the RC combinations can be found in the data sheets provided by the

NOTE,FREOUENCY DETERMINING RESISTOR-SEE TEXT

fig. 4. Above, component placement on PC board. Below, Alert Monitor PC board, foil side.
table 1. Relationship between frequencies produced by the various Touch-Tones.

digit	high tone $\mathbf{(k H z)}$	Iow tone $\mathbf{(k H z)}$
7	1209	697
2	1336	697
3	1477	697
4	1209	770
5	1336	770
6	1477	770
7	1209	852
8	1336	852
9	1477	852
0	1209	941
0	1336	941
$\#$	1477	941

manufacturer. See table 1 for the frequencies produced by various touch tones.

acknowledgments

I'd like to thank all of my Amateur friends who gave suggestions and encouragement for this project. In particular, I'd like to thank KA4GCF, Bob, for his help with the manuscript; WB4HID, Harry, for his help with construction tips; Don Bungard for his help with the PC board; and KA4HOP, Janie, my XYL, for her many hours of assistance in testing the Alert Monitor and for her typing work.

bibliography

Berlin, Howard M., "Homebrew Touch-Tone Encoder," ham radio, August, 1977, pages 41-43.

Connors, John F., "Three-Digit Touch-Tone Decoder for Selective Calling," ham radio, December, 1974, pages 37-41.

De Laune, Jon, W7FBB, "Digital Touch-Tone Encoder for VHF FM, ham radio, April, 1975, page 28.

Hejhall, Roy C., K7QWR, "Solid-State Mobile Touch-Tone Circuit," ham radio, March, 1973, pages 50-53.

Heptig, Robert, KøPHF, "Multifunction Touch-Tone Decoder," ham radio, October, 1973, pages 14-17.

Hood, Joseph M., "Converting Slim-Line Touch-Tone Handset, " ham radio, June 1975, pages 23-25.

McDavid, Larry, W6FUB, "Universal Tone Encoder for VHF FM," ham radio, July, 1975, pages 16-21.

Lowenstein, AI, K7YAM, "Handheld Touch-Tone," ham radio, September, 1975, pages 44-46.

Shreve, Pat, W8GRG, "Subaudible Tone Encoders and Decoders," ham radio, July, 1978, pages 26-33.

Stahley, David M., "Tone Encoder and Secondary Frequency Oscillator," ham radio, the ham notebook, June, 1969, pages 66-67.

Digital Linear MOS Data Book, Signetics, Menlo Park, California 94025
ham radio

The newest rig in Kenwood colors. Providing 15 memories, offset recall, scan, touch-tone ${ }^{\star}, 25$ watts output and a priority feature. The touch-tone ${ }^{\star}$ pad is built-infor easy frequency selection or autopatch use, and the memories not only recall frequency, but the offset as well! Available soon. Call for quote.

For both mobile or base operations (with an external supply), here's the answer to your VHF dreams. Dual VFO's, RIT, five memories and scan, FM, SSB, and CW, plus 100 Hz resolution on the dial, make operating the TR-9000 both simple and exciting. OSCAR anyone? The retail price of $\$ 499.00$ is great enough, but call for quote!

Not the first, but the best. Quality, with 1.5 watts output, full digital synthesis with visible LCD frequency display. The reputation that this rig is gaining is testimony enough to say here's the HT you've been dreaming about. $\mathbf{\$ 3 9 5 . 0 0}$ retail price, but call for quote!

Electronics Supply, Inc.

integrated circuit function generator

A function generator based on the Exar XR-2206 which features multiple waveforms over the range 10 to 100 kHz

If you are a builder, experimenter, or just like to maintain your own equipment, I am sure you appreciate the value of a good signal source. Ideally, the perfect signal source should be able to provide whatever frequency, amplitude, waveform, and impedance level required for the job at hand. But, unfortunately, like most things in life, we must compromise a little. The classical signal source was either an audio generator or an if generator. At best, it produced a sine wave and, in the case of the audio generator, perhaps a squarewave. In recent years, a third entry has appeared on the scene. It is called a function generator and is distinguished primarily by its ability to produce a variety of waveforms (functions) through the audio and sometimes low rf frequency ranges. Its repertoire usually includes the sine, square, triangle, and perhaps saw-tooth or pulse output waveforms. The spectral purity of a particular waveform is usually not quite as good as that from a comparably priced generator that is designed to produce only one waveform, but is usually more than adequate for general purpose use.

Internal view of the function generator showing perf-board.

Until recently, high cost has relegated the function generator to the laboratory, but now several new integrated circuits have made it possible for the Amateur to construct his own for a very modest investment. The function generator described in this article uses the XR-2206 integrated circuit manufactured by Exar. This IC can supply a sine wave, triangular wave, square wave, and a 50 per cent duty cycle positive pulse and has the options of a-m and FSK modulation. The frequency can be varied from about 1 Hz to above 100 kHz and the output waveform, although not lab quality, is suitable for most Amateur applications. The manufacturer states that the sinusoidal distortion is less than three per cent over the

fig. 1. Complete schematic diagram of the function generator based on the Exar XR-2206 integrated circuit.
entire frequency range; this isn't bad considering the versatility and circuit simplicity.
I added a suitable power supply and power amplifier to the basic XR-2206 and came up with a very handy addition to my home workshop. The power amplifier increases the amplitude range, lowers the output impedance, and provides a means of introducing an adjustable dc offset level to the basic waveforms.

circuit description

The oscillator circuit is lifted almost entirely from Exar's application data on the XR-2206. I elected not to incorporate the a-m and FSK inputs, although they
would be simple to include. R13 controls the frequency and is panel mounted. R9, R10, and R11 are all trimpots mounted on the circuit board. R10 adjusts sine wave distortion. R11 controls sine wave symmetry, and R9 is adjusted to eliminate any residual dc component in the sine and triangular waveforms. With the components shown in the schematic (see fig. 1), the frequency can be varied from about 10 Hz at the low end to slightly over 100 kHz at the high end in four overlapping ranges, each with a $100-$ to- 1 ratio. S3 selects the frequency range and S2 selects the waveform. R17 is the amplitude control; it is panel mounted and controls the signal level fed to the LM318 operational amplifier which in turn drives
the power amplifier stage. R26, R27, and C14 provide negative feedback around the entire amplifier section, as well as frequency compensation. R14 and S4 provide an adjustable dc component for the output waveform. R24 brings the output impedance up to the vicinity of 50 ohms. The power supply uses two three-terminal regulators and although the positive and negative voltages do not track, it has proven quite satisfactory.

construction

I built my generator in a small aluminum box with most of the circuit, with the exception of some of the larger power supply components, mounted on perfboard. U3 and U4 use the cabinet as a heatsink and the two output transistors are equipped with small push-on heatsinks.

adjustment

Initial adjustment consists of setting R9, R10, and R11 to their optimum settings. Switch S4 to the off position and select the sine wave. Be sure that the amplitude control (R17) is set so that the output waveform is not clipped when viewed on an oscilloscope. Alternately, adjust R10 and R11 for the least sine wave distortion and best symmetry. Adjust R9 to eliminate any dc component and repeat the process until no further improvement can be seen. A distortion analyzer would be helpful for these steps if one is available, but the "eyeball" technique gives fairly good results. Make these adjustments at a frequency of about 10 kHz .

operation

Operation is fairly straightforward with the exception that the square wave will have a slight dc component with S4 in the off position. This is easily eliminated by switching on S4 and adjusting R14 to eliminate the offset. The waveforms deteriorate slightly around 100 kHz , but are still useful.

For the modest investment in time and material, this little generator has proven to be a very handy addition to my shop. I'm sure that some readers may have suggestions for improvements and modifications, and I would be most interested in hearing from them.

I would like to thank Mr. Ralph Flagel for his help with the photographs.

references

[^3]ham radio

STOP RF SPILLOVER!

You may be losing up to half the available output from your vertical gain antenna because of RF spillover. The amazing AEA Isopole with unique decoupling design, virtually eliminates RF spillover and can help you multiply your power in all directions on the horizon relative to an ideal half-wave dipole, or end-fed non-decoupled "gain" antennas. Get the Facts.
We'll send you a design for an RF spillover tester and a copy of our booklet: Facts about Proper VHF Vertical Antenna Design simply for contacting Advanced Electronic Applications, Inc., P.O. Box 2160 , Lynnwood, WA 98036. Call 206/775-7373.

A $\sqrt{5}$ Brings you the

Even vas wa print clearly with a HAL ST-6000 Demodulator $\$ 659.00$

Demodulator.

Pulling in weak or distorted signals with a HAL Demodulator is no problem. Even if the band is crowded. With high-gain, wide-bandwidth limiters and extremely linear active detector circuits, both the ST-6000 and ST-5000 Demodulators convert RTTY tones into strong, readable signals that display bright and clear. Tones necessary for transmitting RTTY are conveniently generated and receive filters and transmit tones are accurately set and matched to assure on-the-money transceive operation. Both the ST-6000 \& ST-5000 offer these features: Internal Loop Supply • Internal AFSK Generator with CW ID Tone • Internal Tuning Indicator \bullet Autostart Motor Control • Line/Local Loop Control •TTY Machine Compatibility • RS-232 type DATA Interface - "High" or "Low" Tones - 120/240, $50 / 60 \mathrm{~Hz}$ Power • Normal/ Reverse Switch $\bullet 170$ and 850 Shift - Active Discriminator \bullet Metal Cabinets for RF Shielding. Special Features of the ST-6000: Mark-Hold • Antispace • Automatic Threshold Control (ATC) • Decision Threshold Hysteresis (DTH) • Keyboard Operated Switch (KOS) • MIL-188 and CMOS Data Interface • Oscilloscope Tuning Indicator \bullet Crystal Controlled AFSK Tones • Active Input Bandpass Filter \bullet Pre-Limiter AGC - Three Shifts (170-425-850) Write or give us a call. We'll be glad to send you our new RTTY catalog.	

semiconductor curve tracing simplified

When used with a good scope, this versatile circuit provides a wealth of information about any unknown semiconductor

Most experimenters have accumulated a vast assortment of semiconductors, many unmarked, undecipherable, or otherwise of unknown characteristics. An ohmmeter can provide some information about them, such as which transistors are PNP and which are NPN; it can also distinguish silicon from germanium, and establish diode polarity. But to really gain detailed information requires a curve tracer and scope. A curve tracer will reveal nearly all low-frequency transistor parameters such as current gain, breakdown voltages, and input-output impedances. It will also identify, at a glance, zeners, tunnel diodes, and other specialized semiconductors, and give much valuable information about their operating characteristics.

A laboratory-type curve tracer usually injects a staircase waveform of current into the base of the unknown transistor, then displays a complete family of collector current waveforms on the screen. ${ }^{1}$ This is an ideal arrangement, but not exactly simple. The curve tracer described here displays only one curve at a time; to look at an entire family requires the turning of a knob. I consider this a small price to pay for simplicity. It also has the advantage of providing a

By Fred Brown, W6HPH, 1169 Los Corderos, Lake San Marcos, California 92069

fig. 1. Simplified diagram of the curve tracer.
continuously adjustable base current, which permits the display of any collector curve, rather than only discrete values. It's sometimes nice to be able to see "between" those discrete curves.

theory

Fig. 1 is a simplified diagram of the curve tracer. The clamped ac supply swings the collector voltage from zero to a peak value determined by the potentiometer setting. This voltage is also applied to the scope horizontal input. Vertical deflection is provided by sampling current through the 10 -ohm resistor in series with the emitter. The result is a trace of collector current vs collector voltage. The small voltage drop across the 10 -ohm resistor does not significantly affect collector-to-emitter voltage; the error is only $1 / 10$ volt for 10 mA of collector current. The 10 -ohm value permits current readings to 100 microamperes per cm when the vertical gain is turned up to 1 mV per cm.

If greater sensitivity is desired, a 100 -ohm resistor could be used, at the expense of a tenfold increase in error. The error in $V_{C E}$ can be avoided by using a scope with completely independent horizontal and vertical inputs or by tolerating a downward deflection for increasing current. But since most scopes have one terminal common to both inputs (ground), and give a positive deflection upwards, the circuit was designed for this type of scope.

The clamped ac voltage for the collector is created by the simple circuit of fig. 2A. This voltage is positive throughout the cycle (fig. 2B) except for the

fig. 2. The simple circuit shown at A will produce the clamped ac waveform shown at B.
brief interval, T_{c}, when the diode is conducting. During this interval, the waveform swings slightly negative by an amount equal to the diode barrier potential, about 0.7 volt.

If the transformer and diode were perfect, the charge time, T_{c}, for the capacitor would be zero, and the output would be a pure sine wave. But since they are not, the waveform dwells at approximately -0.7 volt for the time it takes to charge the capacitor. In my unit a very small transformer was used, which resulted in a T_{c} of about 3 milliseconds; with a larger transformer it would be less. The dwell time results in a bright spot at the beginning of the trace - not really a disadvantage since it makes the origin easy to

fig. 3. Schematic of the tracer. The power transformer can be a Stancor P8181 or an Allied PS8415.
identify. The spot can be made brighter by omitting C2 in fig. 3.

the circuit

The complete circuit is seen in fig. 3. A small "one-tube" power transformer of the type used on early uhf TV converters, boosters, and other onetube devices is used for the two power supplies. The "plate" winding is used for the clamped ac supply, and the 6.3 Vac "filament" winding is used for the constant-current base supply. The latter uses a fullwave voltage doubler and is regulated to a constant 12.6 volts by zener diode CR1. A voltage of 12.6 rather than 12.0 volts is used because of the 0.6 -volt base-to-emitter voltage drop in a silicon transistor. Since this drop is about 0.2 volt for germanium transistors, base currents will be about 4 per cent higher than indicated when measuring germaniums.

Collector characteristic curve of a 2 N 498 with base current of $9 \mu \mathrm{~A}$. Scales are $20 \mathrm{~V} / \mathrm{cm}$ horizontally and 1 $\mathrm{mA} / \mathrm{cm}$ vertically. Notice the negative resistance effect in the avalanche breakdown part of the curve at about 120 collector volts.

Collector characteristic curve of a 2N2369A with $8 \mu \mathrm{~A}$ of base current. Scales are $2 \mathrm{~V} / \mathrm{cm}$ horizontally and 1 $\mathrm{mA} / \mathrm{cm}$ vertically.

Sharp breakdown characteristic of a 1N1527 zener diode at approximately 20 volts. Scales are $5 \mathrm{v} / \mathrm{cm}$ horizontally and $1 \mathrm{~mA} / \mathrm{cm}$ vertically.

Reverse characteristic of a 1 N 914 showing avalanche breakdown at - 90 volts. Scales are $20 \mathrm{~V} / \mathrm{cm}$ horizontally and $1 \mathrm{~mA} / \mathrm{cm}$ vertically.

Switch S3 provides three ranges for the base current adjustment pot, R2. The maximum currents, 10 $\mu \mathrm{A}, 100 \mu \mathrm{~A}$, and 1 mA , are determined by resistors R3, R4, and R5. These resistance values ideally should be close tolerance, 5 per cent or better, to ensure the precise values of maximum base currents indicated on S3. The scale of R2 is calibrated 0-1.0 in divisions of $1 / 10$ to indicate the fraction of base current shown on S 3 . For instance, if S 3 is set to $10 \mu \mathrm{~A}$, and R 2 is at 0.4 , base current would be $4 \mu \mathrm{~A}$.

Switches S1 and S2 are polarity-reversing switches to accommodate either PNP or NPN transistors. You might wonder why these two switches are not combined into one 4 -pole switch. The use of two separate switches makes possible the testing of deple-tion-mode fets with no further increase in complexi-
ty. For instance, an N -channel fet is tested by placing S1 in the NPN position and S2 in the PNP position. The fet source, gate, and drain are connected to the curve tracer emitter, base, and collector terminals, respectively. The result is a positive drain supply and a negative gate voltage; the latter adjustable by R2. Negative gate voltage can be measured with a VTVM connected between gate and source, or base to ground terminals on the tracer.
For the $I_{b}=0$ position of S 3 , the base is grounded. Switch S3 also provides a fifth position in which the base is left floating, which is handy for checking $B V_{C E O}$ and $I_{\text {CEO }}$.

construction

This unit was built into a $2 \times 4 \times 6$ inch $(51 \times$
$102 \times 152 \mathrm{~mm})$ chassis without much crowding of components; parts placement isn't critical.

A variety of transistor sockets can be wired in parallel to accommodate the various transistor basing arrangements in common use. It's also recommended that alligator clips on short leads be included for those diodes and transistors that will not fit into conventional sockets. These three leads should preferably be of different colors and clearly labeled E, B, and \mathbf{C}.

Wirewound pots are recommended for R1 and R2. Both these controls have hand-drawn scales. The scale of R1 indicates collector (or anode) voltage in peak volts; the range is zero to roughly 200 volts peak.

operation

For best results the tracer should be used with a laboratory-type scope that has accurately calibrated vertical and horizontal deflection. I use a HewlettPackard 130B, which works beautifully in this application.

Nearly all work is done with vertical gain set at 10 mV per cm ; the scope then reads 1 mA per cm vertically. Horizontal sensitivity, however, ranges all the way from 0.1 volt per cm to at times as much as 50 volts per cm.

Since the curve tracer operates at 60 Hz , it will tell you nothing about the frequency limitations of your transistors. To determine high frequency performance, an rf transistor tester is recommended. ${ }^{2}$.

The current-limiting resistors in series with the base make transistor damage unlikely. However, damage is possible if R1 is run too high. When testing an unknown device, it's wise to start with R1 set near minimum and keep an eye on the scope screen as the control is gradually advanced.

At times you'll notice that part of the characteristic curve drifts upwards. This is usually due to heating of the device under test. It doesn't normally occur unless the amount of heat generated is a significant fraction of the maximum device dissipation. It's particularly apparent with germanium transistors because of their considerable temperature sensitivity.

You'll also notice the characteristic curve occasionally takes the form of a very elongated loop rather than a single trace. This is because of what is called "temperature hysteresis" and is caused by cyclical heating of the transistor junction during collector voltage peaks. ${ }^{3}$.

references

1. D. Wright, "Transistor Curve Tracer," ham radio, July, 1973, page 52. Also short circuits, ham radio, April, 1974, page 63.
2. F. Brown, "An rf Transistor Tester," CQ, April, 1975, page 35.
3. John Mulvey, Semiconductor Device Measurements, Tektronix, Inc.
ham radio

9.0 MHz FILTERS				
XF9-A	2.5 kHz	SSB TX	\$50.60	
XFF9-B	2.4 kHz	SSB RXITX	\$68.60	
XF9-C	3.75 kHz	AM	\$73.70	Export
XF9-D	5.0 kHz	AM	\$73.70	
XF9-E	12.0 kHz	NBFM	\$73.70	Inquiries
XF9-M	0.5 kHz	CW (4 pole)	\$51.55	
XF9-NB	0.5 kHz	CW (8 pole)	\$91.35	Invited
9.0 MHz CRYSTALS (Hc25/u)				
XF900	9000.0 kHz	Carrier	\$5.95	Shipping
XF901	8998.5 kHz	USB	\$5.95	
XF902	9001.5 kHz	LSB	\$5.95	\$1.75
XF903	8999.0 kHz	BFO	\$5.95	
F-05	Hc25/u So	ket Chassis	. 50	per filter
F-06	Hc25/u So	ket P.C. Board	. 50	

The low cost, easy way to operate on the 432 MHz and 1296 MHz bands. For OSCAR 7 . mode B, drive the MMv432 family varactor tripler with your 2 meter transmitter. The wideband varactor triplers cover the full $2 \mathrm{M} / 432$ band without retuning
NO power supply required for varactor triplers; efficiency approximately 50%. Three models available at 432 , two at 1296 .

Model	Max Drive
MMv432	30 W
MMv432M	50 W
MMv432H	70 W
MMv1296	20 W
MMv1296H	35 W
MMv1265 ATV	
MMv1265H ATV	

RECEIVE CONVERTERS

STANDARD I.F. 10M. POWER 12 V D.C.
I.F. OPTIONS 6M \& 2M AVAILABLE. N. F. 2.8 dB typ.
N. F. 3.8 dB typ.
Ch2 or Ch3 If
N. F. 8.5 dB typ.

MMc 439/ATV
MMC 439/AT
MMC1296
MMc 1280/ATV
MODELS FOR ALL BANDS 50 MHz THRU 1296 MHz . LOW NOISE OPTIONS AT 432 MHz . Shipping $\$ 2.50$
$\$ 54.95$
$\$ 69.95$
$\mathbf{\$ 6 9 . 9 5}$
$\mathbf{\$ 6 9 . 9 5}$
$\$ 69.95$
$\$ 89.95$
$\$ 89.95$
$\mathbf{\$ 9 9}$

ANTENNAS (FOB CONCORD, VIA UPS)
144-148 MHz J.SLOTS
8 OVER 8 HORIZONTAL POL. $+12.3 \mathrm{dBd} \quad$ D8/2M $\$ 55.95$ 8 BY 8 VERTICAL POL. D8/2M-VERT. $\$ 65.60$

48 EL . GAI	+15.7 dBd 70/MBM48	\$69.95
88 EL . GAI	+18.5 dBd 70/MBM88	\$99.95
UHF LOOP YAGIS		
26 LOOPS	GAIN + 20 dBi	
$1250-1340 \mathrm{MHz}$	1296-LY	\$49.75
$1650-1750 \mathrm{MHz}$	1691-LY	\$54.75

Amplifiers Crystal Filters
Frequency Fiters Oscquency Filters
Oscillator Crystals Oscillator Crystals

SSB Transverters FM Transverters VHF Converters UHF Converters

Spectrum International, Inc. Post Office Box 1084
rd, Mass. 01742, USA

digital logic probe

A discussion and several designs for TTL and CMOS logic probes, featuring short pulse type memories

When electronic equipment consisted primarily of analog circuitry, most maintenance and troubleshooting could be handled with a simple volt-ohmmeter and some common sense. The VOM was the one instrument that could always be found on the bench of any ham or electronic experimenter. In addition to being generally useful, the VOM had much going for it. It was relatively small and easily handled. It was generally affordable even by Radio Amateurs of very modest means. Although it wasn't a precision instrument, if one knew how to use it, very good results could be obtained. By and large, it is still a most useful tool, but it's one whose relative importance has considerably diminished.
Complementing the VOM today, as the general purpose test instrument of digital circuitry, is the logic probe. Like the VOM, the logic probe is easy to handle, convenient, inexpensive, and, when used intelligently, capable of furnishing the needed troubleshooting information.
There isn't much to a logic probe. It is simply a device that will indicate the "state" of an accessible point in a digital circuit. Using some sort of quick response display, like an LED for example, the probe will indicate whether the voltage at the test point is high, low, or, perhaps, alternating. Does every ham and electronic experimenter need one now? Well, that's pretty much for the individual to decide, a decision to be based on what other equipment is around the shack and whether he does his own maintenance or pays someone else to do it.

There is no getting around the fact that each new piece of electronic gear hitting the market contains more digital circuitry than did its predecessor. Not too long ago the digital circuitry in the typical ham shack might have been limited to that in the electronic keyer or, if there was a new and expensive oscilloscope, in the trigger circuit of the horizontal sweep. Today, digital circuitry is the heart of the fully synthesized, VFO, of frequency counters, modern capacitance meters, fashionable readouts and displays, to name a few places, and it's becoming ever more commonplace.

For troubleshooting these digital circuits, it is pretty tough to find better instrumentation than the simple logic probe. Coupling that observation with the fact that a generally adequate logic probe can be quickly and easily assembled at a cost of anywhere between a few quarters and a few dollars, depending upon the status of your "junk" box, it's hard to justify not having one around the shop bench or shack. Just how elegant or sophisticated a probe is needed for any given shack is easily determined and, using one or more of the following circuit ideas, built.

If all of the digital circuitry currently in your shack operates on +5 Vdc and you have no particular interest in detecting very short pulses ($10 \mu \mathrm{~s}$ or less) occurring at very low frequencies, then the very simplest of TTL (transistor transistor logic) probes should suffice. If your equipment is all in the 5 -volt category, but there is a reasonable chance that you'll be looking for fleeting pulses, troubleshooting the triggered sweep of a modern oscilloscope is a prime example, then the logic probe should be slightly more elegant. The probe will still be based on a TTL integrated circuit, but some technique for capturing those elusive pulses need be added.

Some of the newest frequency synthesizers and frequency counters are built around LSI, or largescale integrated circuits. Many of these are made up of mosfet rather than bipolar transistors. They may be operating on any voltage between about +4 and

By Raymond S. Isenson, N6UE, 4168 Glenview Drive, Santa Maria, California 93454

View of the digital logic probe showing the mounting and connections within the pill bottle.
+15 Vdc . A logic probe suitable for working on these circuits must be able to cope with the entire span of voltages. Such a probe is going to entail more than the basic probe discussed above. If the capability to detect very short pulses or noise spikes is desired, it will be still more elegant. However, it will be only slightly more complex. In fact, a probe capable of handling the full spectrum is so simple and little more complex than the simplest one that the only reasons for building the lesser one is that it's all you need for the foreseeable future, every part needed for it is in hand, and you have time to build it right now! Well, this very simple probe, the circuit of which is shown in fig. 1, has done yeoman service for me over five years and has on only the fewest of occasions been inadequate to a task at hand. It's not to be sold short.

simple logic probe

I previously pointed out that a logic probe is simply
a device that will indicate the "state" of an accessible point in a digital circuit. Thus, the probe must have some sort of a readout, and its readout should be unambiguous. The probe ought to be convenient to use, and it must not upset or influence the circuit being observed. Fig. 2 is a circuit diagram for a very simple logic probe. It should be adequate for most purposes, just as long as its use is limited to 5 -Vdc circuits. With a minor exception, it's the circuit of a kit that was widely available a few years ago.

Isolation between the logic probe and the circuit under test is provided by the 10 k resistor in the base of Q1, which can be any NPN switching transistor with a low-current beta equal to or greater than about 50 . A 2 N 2222 would be just fine. All of the logic and the display drive is provided by an inexpensive 7404 hex inverter. The two LEDs make up the readout. LED A is turned on when the probe sees a high, LED B a low. If the test point has an alternating voltage, the two LEDs will blink alternately or appear to be both on depending upon the pulse frequency. Power to operate the probe is taken from the circuit under test. As each inverter of the 7404 can source about 15 to 20 mA , there's adequate current to drive the LEDs to a reasonable brightness. The current limiting resistors protect the 7404 and the LEDs. The whole thing is assembled in a salvaged plastic pill bottle or the like.

If the two LEDs are of different colors this logic probe, exactly as described, could be satisfactory. However, if only LEDs of the same color are available, the resultant readout might be something less than desirable. The logic probe is small, hand-held, and is frequently used to probe densely packed circuitry. It isn't advisable to let one's eyes stray too far from the tip of the probe if the risk of accidentally shorting a couple of pins together is to be avoided. This means that it is most advantageous if the readout is such as to permit reading "out of the corner of the eye." A distinctive difference in the readout for high or low is most desirable. An elegant and inexpensive way of accomplishing this is shown in the

fig. 1. Schematic diagram of a simple logic probe for use with strictly $\mathbf{5}$-volt circuitry.
circuit of fig. 1. MAN $3 A$ or MAN $3 M$ LED readouts, or their equivalents, are available for as little as $\$ 1.00$ (or less) on the surplus market. One of these devices coupled to the output of the SN7404 hex inverter, as shown in fig. 1, makes for a most ingenious little display. A high at the probe tip causes the hex inverter to drive the numeric display so that a 1 appears. A low at the probe tip results in a O being displayed. If there is a pulsating signal at the test point you will see a P.

I did not originate this circuit; it is merely one of several that were available as inexpensive kits over the past several years. The output transistors of the hex inverter source the current to drive the LED segments. As this circuit uses no current-limiting transistors between the 7404 and the display, a short in the latter will likely destroy the inverter. That's the primary weakness of an otherwise very clever circuit.

The MAN 3A was used because it was available. A common-anode display could be used with, of course, appropriate interchange of connections. The significant point is that the output transistor is capable of sinking up to 30 mA , so that you can use either a common-cathode or common-anode display. This is not true, as will be discusses later, if the TTL device is replaced with an MOS device. Referring again to the probe shown in fig. 1, the two leads are connected to the V_{CC} and ground of the circuit under test, and the probe is held against the test point. Fig. 3 shows the printed circuit board layout as seen from the foil side. The overall size of the board is tailored to fit snuggly into the pill bottle so it may be necessary to make some slight changes to the printed-circuit board layout to fit any given plastic bottle.

pulse memory

When the instrumentation target is a very fleeting positive going pulse, such as in the previously suggested example of the trigger circuit of a modern oscilloscope, or if you are trying to ferret out some suspect random noise pulses in that new desk top computer, the logic probe must see and retain the high long enough to produce a visible signal on the

fig. 2. Schematic of the basic logic probe which used single LEDs to indicate either a high or low logic level. A cyclic signal will cause the LEDs to flash or both appear to be on due to the repetition rate.

fig. 3. Etching pattern and parts placement diagram for the simple TTL logic probe.

LED display. An acceptable way of accomplishing this pulse "stretching" is through recourse to a oneshot multivibrator as a memory circuit. A very short incoming pulse, too short to be seen directly on the LED, is fed by the input amplifier of the probe to the input of the one shot, triggering it on. The output of the multivibrator is placed in parallel with one of the normal outputs of the hex inverter. The pulse duration at the output of the multivibrator is tailored by the time constants of the circuit so as to ensure a visible signal. Where the logic probe is to be used only on $\mathrm{a}+5 \mathrm{Vdc}$ supply, and if there is an SN74121 in the junk box, a possible probe circuit is shown in fig. 4. The length of the output pulse duration needed to yield an acceptable display can be determined experimentally by varying R1, C1, or both.

versatile logic probe

An alternative short term memory uses the ubiquitous 555 timer. The connections for the 555 as a pulse stretcher is shown with a CMOS rather than a TTL hex inverter. Nevertheless, it can be used with the latter in exactly the same way. This, the most flexible and elegant logic probe, is presented in fig. 5. It can be used with any logic circuitry operating between approximately 4 and 15 Vdc . This means the logic probe can be used for RTL, DTL, TTL, or CMOS; in fact, for about any existing digital circuitry except for $\mathrm{I}^{2} \mathrm{~L}$. On the lower side, the voltage limitation is the efficiency of the LED display. With prime LEDs, it might be possible to work down to about 3 volts. On the high side, the limitation is the upper
limit on $V_{D D}$ for the 4049 CMOS hex inverting buffer used as the logic chip and display driver. If a Fairchild F4049 is used, VDD could safely go as high as 18 Vdc without damaging the probe. At any rate, it is most unlikely that the user will be confronted by voltages exceeding the range of 4.5 to about 13.8 volts so any 4049 will be acceptable and almost any surplus common-anode, seven-segment readout will work satisfactorily.

Being aware that the 74C04 and CD4069 CMOS hex inverters are pin compatible with the TTL 7404, one might well ask why go to the trouble of redesigning the circuit. Why not just replace the 7404 of the previously described logic probe with its CMOS counterpart and let the circuit go at that? There are two reasons why this cannot be done. The first has to do with the nature of the output mosfet of the CMOS chip, the second with the current limitation of the LED display.

In discussing the logic probe built around an SN7404 TTL hex inverter, note was made that the output transistors could each source about 15 mA or sink 30 mA . This permits the designer to select either a common-anode or common-cathode seven-segment LED display with the full confidence that there will be adequate current for safe direct drive of the LEDs. The 74C04 or 4069, on the other hand, are specified as being able to sink or source considerably less than 1 mA for $+5 \mathrm{Vdc} \mathrm{V}_{\mathrm{DD}}$ operation and 1.5 to 2 mA for 15 -volt operation. The chip might be used with a common-cathode display, but the light intensity would be low. Used with a common-anode display, the CMOS output stage would quickly fail if it were forced to sink enough current for the LED to be acceptably visible, a function of the voltage applied to the common anode of the display and the size of the current-limiting resistors.

The problem is circumvented by turning to the CMOS 4049, a hex inverting buffer. These CMOS buffers provide both the necessary logic for the probe and a high current output capable of safely driving the LED load. It is not, however, as flexible as the TTL 7404. The CMOS buffer will typically sink about 5 mA with a $V_{D D}$ of 5 volts and about 20 mA for a $15 \mathrm{~V} V_{D D}$. Under the same operating voltages, it will source only 1 to 3 mA . Thus, the TTL design option of using either a common-anode or a common-cathode configured display is closed; only a common-anode device can be used. How this is done is shown in the circuit in fig. 5.

The other major concern when designing the logic probe for this very wide range of operating voltages is the current limitations of the LEDs themselves. The generally useful current range of most LEDs is about 2 or 3 to 1 . That is, starting with no current through
the LED, current is gradually increased until first, the light output is barely adequate to be seen in a lighted room and then second until the LED fails. The current at failure will be about 2 to 3 times that at "visible." By the way, this isn't offered as a "scientific truth," but rather as an observation based on experience and generally supported by pertinent specification sheets. O 2 and ZD1 in fig. 5 provide a voltage regulator whose output is applied to the common anode of the display. As the applied voltage at the $V_{D D}$ lead of the probe is varied between +5 and +15 volts, the voltage at the output of the regulator varies between 4.4 and 6.2 Vdc . In the path between the output of the regulator and ground there is the 1 N 914 , across which there will be about a 0.6 -volt drop, the LED itself, which will account for a drop of 1.7 volts, and the current-limiting resistor which must make up the rest of the drop. The variation in voltage across the resistor, for the 4.4 to 6.2 -volt swing, will thus be 2.1 to 3.9 volts, considerably less than $2: 1$ range. The LED current will be limited to the same range, one that is quite safe.

Three 1 N914 diodes are shown between the 4049 and the LED readout in fig. 5. These diodes perform several functions so, unlike the diodes in fig. 1, cannot be replaced by slightly larger current-limiting resistors. This probe is designed to be used with operating voltages as high as 15 volts. Under this condition, and when the output of the buffer is in the high state, the output will approach 15 volts. Meanwhile, because of the voltage regulator, the anodes of the LEDs are close to 5 volts. The 1N914s protect the LEDs from what otherwise would be about a 10volt reverse voltage, some 4 to 7 volts more than the maximum permitted according to the manufacturer's specifications. A second function of the diodes, or at least two of them, is to isolate the output mosfets of

fig. 4. Diagram of the TTL probe with a short pulse memory. The monostable is used to capture any short-duration pulses for display on the LED display.

fig. 5. Schematic of the CMOS type logic probe with a short pulse memory. A 555 timer is used as the memory element; a common-anode display must be used in this version.
the inverter buffers from each other. Either of two inverters may go low to turn on segment E of the LED while the other is high. The diode isolation permits this to occur without risk to the 4049.

Unused inputs of CMOS ICs are never allowed to float. They are tied high, low, or to a used input. In the design of the circuit of fig. 5 the inverters were simply paralleled as necessary so that no inputs were allowed to float.

Just as the pulse stretcher for the TTL-based logic probe design could have been a 74121, this CMOS-based design could as well be a CD4047A monostable/astable multivibrator. The 555 timer was used because it's smaller and was available; it is also less expensive. There's nothing unusual about the employment of the 555; the one-shot configuration is right out of the book for a negative going trigger input and a one-shot stretched output. The output pulse length is given as 1.1 RC where the RC applies to the resistor between $V_{D D}$ and pins 6 and 7 and the capacitor between this point and ground. The component values shown on the schematic were found, experimentally, to give a pulse that was just long enough to barely flash the Litronix readout. For test purposes, 0.25 -microsecond pulses were generated at a pulse frequency of one pulse per second. Readout visibility was very acceptable. The test circuit is described briefly at the end of this article.

Obviously, the readability of the output for a stretched pulse can be enhanced simply by increasing the RC time constant in the 555 timer circuit. In designing the probe, however, the duration of the stretched pulse was deliberately kept to the useful
minimum; the probe readout differentiates between short pulses or noise pulses at low frequency reoccurrence rates and low frequency "clocking" phenomenon.

With a low-frequency, alternating state signal at the probe point (10 Hz or less), the readout will alternate between 1 and o. At a higher frequency and in particular where the duty cycle is between 20 and 80 per cent, the eye of the observer is fooled into seeing a steady P. For very short positive-going pulses at low-frequency rates, the display is a brief P followed by an extended o. At higher frequencies, the display takes the form of a fairly bright O with a dim staff to form the P.

None of the described logic probes will indicate the presence of a brief negative-going pulse. This is a design limitation accepted because I have never found need for that capability and because providing for it does cause some additional circuit complication. If the added capability is required, it can be achieved by modifying the CMOS logic probe as follows. Replace the 555 timer with a 556 dual timer. Isolate the two paralleled hex inverters. Connect the input of one of these inverters to the collector of Q1 and its output to the input of the added timer. Connect the output of the added timer to the input of the other freed inverter and its subsequent output to the cathode of an additional 1N914. The anode of the 1N914 connects to the anode of the existing 1N914 in the circuit coupled to the three LED segments that

NOTE J-DENOTES JUMPER

fig. 6. Printed circuit board layout and the parts placement diagram for the CMOS logic probe.
make up the switched element of the o. In the presence of an occasional negative-going pulse, the display should be a 1 changing to a P when each pulse appears. The passive components associated with each half of the 556 should be the same as those shown for the probe in fig. 5.

Having decided upon the circuit to be implemented, the next step is to collect the pill bottle to be used as the case. This is an important step because the size and shape of the pill bottle will determine the size and layout of the circuit. Fig. 6 shows the circuit board layout of the CMOS logic probe described in detail above. It will be useful if your pill bottle will - take a $11 / 4 \times 21 / 2$-inch $(3.0 \times 6.0-\mathrm{cm})$ board.

Printed circuit board techniques were used for both probes shown in this article only because it was convenient to do so. Wire wrap techniques or even point-to-point wiring on sockets mounted in perf board would be just as good. The logic probe is fundamentally a low-frequency device. It would be difficult to find a poor construction technique as long as the workmanship is good!

fig. 7. Pulse generator to test the short pulse memory capability of the logic probes.

Test of the completed circuit for all but the pulse stretching feature is easily accomplished. Connect the $V_{D D}$ and $V_{\text {SS }}$ or $V_{C C}$ and ground wires, depending upon your choice of CMOS or TTL, to an appropriate power source. If everything is working properly the readout will display a o. Touch the probe to the positive voltage terminal of the power supply and the o should change to 1 . The circuit shown in fig. 7 will test the pulse capture feature if one has been included. Pulse length of the output pulse of the 74121 is approximately $1400 \cdot \mathrm{C} 1$ seconds. If C1 is 180 pF , the pulse at the test point would be $1400 \cdot 180 \cdot 10^{-12}$ second or approximately 0.25 microsecond.

The logic probe is a very practical instrument to have around the shop or shack. If you don't have one and can squeeze out an evening, try one of the circuits presented here. It won't be long before you begin to wonder how you ever managed to get along without it!
ham radio

Aye!
Larsen's clan of Kū1rod ${ }^{\circ}$ Antennas deliver top performance and value!

Performance and value are built into every Larsen Antenna because of craftsmanship that accepts no compromise.

Making mobile antennas, mounts and accessories is Larsen's only business. All of the company's research, engineering and production efforts are directed to making the best antennas money can buy. The end result is the exclusive Külrod by Larsen. A Külrod antenna delivers maximum radiation efficiency instead of losing power to heat.

Larsen's antenna clan includes low band, high band, quarter wave, VHF, UHF, mobile, fixed base and Kūlduckies for hand-helds. And Larsen offers every type of permanent and temporary vehicle mount - including a magnetic model that's a real grabber.

So whatever band you operate on, if your antenna is a Larsen you'll HEAR the difference!

Larsen Antennos

PO. Box 1686
Vancouver, WA 98668
Phone: (206) 573-2722

In Canada, write to: Canadian Larsen Electronics, Ltd. 283 E. 11th Ave.. Unit 101 Vancouver, B.C. V5T 2C4 Phone: (604) 872-8517

[^4] Külduckie is a Trademark of Larsen Electronics, Inc.

FIRST WEEKEND AFTER LABOR DAY WA9ORC/R
SPONSORED BY THE CHICAGO FM CLUB,

$$
\begin{aligned}
& \text { LARGEST EVER } \\
& \text { sOMETHING FOR ALL! }
\end{aligned}
$$

HUGE MANUFACTURER DISPLAY BLDG.
FLEA MARKETINDOORS AND OUTDOORS
SPACE FOR ALLIBRING TABLE AND CHAIRS SEMINARS and TECHNICAL TALKS

LADIES PROGRAMS and PRIZES

THOUSANDS OF DOLLARS WORTH OF DOOR PRIZES!

free paring and Overnight Camping TICKETS GOOD FOR BOTH DAYS

\$3.00 AT GATE-\$2.00 ADVANCED ADVANCED TICKETS SEND $\# 10$ S.A.S.E. AND $\$ 2.00$ FOR EACH TO BOX 1532 EVANSTON, ILL. 60204 (312) 278-3976

challenge for microwave-antenna designers

New ideas are needed for low-cost, efficient microwave antennas for satellite TV reception

Attention antenna-design enthusiasts: Will you be the person who develops a novel idea for low-cost antennas for satellite TV reception? There's a real challenge waiting to be met, and this challenge is a prime opportunity for Amateur Radio operators to make a significant contribution to an important new and growing segment of space-communications technology. Conventional parabolic-reflector antennas are too costly - new ideas are needed to reduce the cost of antennas with $40-50 \mathrm{~dB}$ gain at 4 GHz .

TV receive-only terminals

There is a TV technological revolution underway, and the advanced hobbyists who are a part of that revolution have been searching for a gallium arsenide fet low-noise amplifier or a low-cost 12 -foot (3.7meter) parabolic reflector antenna for a home TV receiver terminal. Many hobbyists have succeeded in obtaining enough gain and a decent signal from a backyard antenna aimed at one of a dozen - soon to be more - satellites transmitting from above the equator. 1 .

These installations are called TV receive-only terminals, or home TVROs. Home TVROs are already the province of skilled and dedicated experimenters. The number of private terminals in operation is difficult to determine since very few are licensed, but some estimates are as high as 1000.2
Video programming on domestic satellites currently offers a great deal in the way of quality entertainment and information, and it will get even better in the future. Satellite distribution of these TV programs to private and shared receiver terminals allows anyone in this country to participate in a new and entertaining form of communications. Technical sessions at WESCON by J.C. Bacon, ${ }^{1}$ J. Kinik, ${ }^{2}$ H.P. Shuch, ${ }^{3}$ and H.T. Howard ${ }^{4}$ form the basis for much of the information in this article.

FCC deregulation

Much is happening in Washington to help give people these new opportunities. ${ }^{1}$ Bills in both the Senate and House to rewrite the 1934 Communications Act have been introduced, deregulation trends are underway at the FCC, and the Executive Branch has initiated several actions to expedite these efforts.
The Justice Department has responded to the FCC in favor of deregulation of receive-only earth stations stating that the language of the 1934 Communications Act, which created the FCC, authorized regulation of transmitting devices - not receive only. 1
The Federal Communications Commission decided on October 18, 1979, to drop its licensing requirements for satellite receiving stations. 5 The action eliminates the requirement that persons constructing a receiving antenna have it coordinated to eliminate interference. It also ends a requirement that they

By D. H. Phillips, W6FOO, 1345 Arizona Avenue, Milpitas, California 95035

fig. 1. Billboard parabolic reflector construction for lowcost TVRO antenna.
obtain a construction permit and ultimately a license to operate the receiving station.

Those who want licenses, to obtain government protection from interference with the signals they receive, will still be able to apply, the commission said. But it also said the licensing will be entirely optional. The FCC said it took the action to eliminate the costs of the licensing process for builders of receiving stations and to end delays involved in obtaining a license.
FCC Chairman Charles D. Ferris noted that, while operators of unlicensed stations will not be protected from interference, this can normally be eliminated by relocating the station slightly, which is usually less costly than obtaining a license. ${ }^{5}$ Operators of receiving stations will still have to obtain permission from the operators of the sending satellites to receive their transmissions. ${ }^{5}$

fig. 2. Sandpile parabolic reflector construction for low-cost TVRO antenna.

low-cost novel

designs are needed

In January, 1977, the FCC ruling allowing the use of 4.5 -meter diameter antennas for TV receive-only earth terminals created a strong need for low-cost antennas in the 4.5 to 6 meter size range for the first time. ${ }^{2}$
Two suppliers, Scientific Atlanta and AnixterMark, have invested in tooling to stamp out panels to the correct curvature on a mass production basis. ${ }^{2}$ Another supplier, United States Tower Company, has combined a fiberglass reflector with an aluminum

fig. 3. Typical TV receive-only (TVRO) terminal for receiving signals from geosynchronous communications satellites. Problem: Design a low-cost antenna of good structural integrity and adequate rf performance.
backup structure to realize a more cost-effective design. The nominal current price levels for the lowestcost designs offered by the commercial suppliers are $\$ 1500$ for 3 -meter diameter, $\$ 4000$ for 4 -meter diameter, and $\$ 6000$ for 5 -meter diameter antennas. ${ }^{2}$ These antenna costs must be reduced, through novel antenna designs, so that the total cost of a complete TVRO terminal can be kept low enough to be afforded by nearly everyone.

satellite TV signals

The technological revolution which makes possible the distribution of television programming via satellite is based on receiving DOMSAT (Domestic Communications Satellite) signals. ${ }^{3}$ The downlink band used by most North American DOMSATs is 500 MHz
wide, and for a given antenna polarization there will be present up to twelve video carriers spaced 40 MHz apart. These signals are of extremely low amplitude, and this complicates the design of TVRO antennas.

It has been shown that, for the illumination contours typical of most North American DOMSATs, ${ }^{3}$ an optimum private-terminal antenna will exhibit on the order of +41 dBi gain.* Given the signal power (EIRP) and path loss numbers listed in table 1, the signal level available to the low-noise amplifier will be on the order of -90 dBm .

technical requirements

The dominant requirement for private TVRO antennas is low cost, while of course retaining reasonable structural integrity and adequate if performance. These three considerations establish the baseline for a set of requirements, but the process of arriving at a set of such requirements is one which is more practical than scientific - thereby creating a challenging opportunity for ham radio operators and experimenters who can make a significant contribution to an important new and growing segment of space-communications technology.

A low-cost design must not require high-cost fabrication methods, tooling, or labor. It should also have a minimum weight and volume to keep costs down, and it should be designed with ease of installation in mind to avoid expensive hoisting equipment. Total installation time should be kept to a minimum. An additional requirement is that the design should be amenable to kit construction techniques. These goals, if met, can be combined with gallium arsenide
table 1. Typical DOMSAT signal characteristics (from reference 3).

video carrier	
channels	24
adjacent channel spacing	40 MHz
orthogonal channel spacing	20 MHz
frequency band	$3.7-4.2 \mathrm{MHz}$
peak deviation	10.25 MHz
maximum video frequency	4.2 MHz
pre-emphasis curve	$\mathrm{CCIR} \mathrm{405-1}$
\quad audio subcarrier	
frequency	6.8 MHz
peak deviation	75 kHz
maximum audio frequency	15 kHz
pre-emphasis time constant	$75 \mu \mathrm{Sec}$
composite	
ElRP	+65 dBm
path loss	-196 dB
99% power bandwidth	36 MHz
received spectral density	$-206 \mathrm{dBm} / \mathrm{Hz}$

table 2. Technical performance goals for 3.7-4.2 MHz TVRO antenna.

	required minimum	desired
antenna gain	40 dBi	45 dBi
rfefficiency	45%	55%
wind survival	75 mph	$75-100 \mathrm{mph}$

integrated circuit technology ${ }^{6}$ to develop a superior TVRO terminal.

new design ideas?

The optimum low-cost TVRO antenna has yet to be designed and developed. This is an active area of research, and some new ideas are beginning to emerge. One idea, shown in fig. 1, requires only lowcost materials and requires no expensive metal shaping. A second idea is illustrated in fig. 2. This clever design is based on an idea by John, K6EJF, who suggested using spray-on material of the type often used for coating swimming pools. The template can be made of plywood and a guide-pin or rod can be driven into the sandpile for attachment to the template.

New microwave antenna designs and discoveries are bursting forth at a rapid rate. An example of this is the discovery that the snow sled saucers sold as kids' toys exhibit 22 dB of gain at S band! ${ }^{4} \mathrm{~A}$ similar antenna was constructed from a child's 25 -inch ($64-$ cm) snow sled saucer and a feed horn was made from a one-pound coffee can. The saucer is not a true parabola but is close enough to give $15+\mathrm{dB}$ of gain at $2 \mathrm{GHz} .{ }^{7}$

Will you be the person who develops a new idea for low-cost antennas for satellite TV reception? I'd like to hear from you if you have a clever idea for the construction of a new low-cost antenna. Your information may be useful during the preparation of a subsequent article on the subject of TVRO terminals. Write to Dr. D.H. Phillips, 1345 Arizona Avenue, Milpitas, California 95035.

references

1. J.C. Bacon, "Those Great Repeaters in the Sky," WESCON Session 25, September, 1979.
2. J. Kinik, "Antennas and Feeds for Domestic Satellite TV Reception," Wescon Session 25, September, 1979.
3. H.P. Shuch, "A Low-Cost Modular Receiver for domsat Video, Wescon Session 25, September, 1979.
4. H.T. Howard, "The Inexpensive, Private TVRO Terminal - A simple design with a Complex Impact," WESCON Session 25, September, 1979.
5. "A Ruling on Satellite Receiving Stations," San Francisco Chronicle, October 19, 1979.
6. D.H. Phillips, "GaAs Integrated Circuits for Military/Space Applications," Military Electronics/Counter-measures, Vol. V, No. 3, March, 1979.
7. J. Barber and J. Kieberg, "You Can Watch Those Secret TV Channels," 73, August, 1979, pages 32-43.
*Gain referred to an isotropic source. Editor.

Top-Notch.

VBT, notch, IF shift, wide dynamic range

TS-830S

Now most Amateurs can afford a high-performance SSB/CW transceiver with every conceivable operating feature built in for $\mathbf{1 6 0}$ through $\mathbf{1 0}$ meters (including the three new bands). The TS-830S combines a high dynamic range with variable bandwidth tuning (VBT), IF shift, and an IF notch filter, as well as very sharp filters in the $455-\mathrm{kHz}$ second IF. Its optional VFO-230 remote digital VFO provides five memories.

TS-830S FEATURES:

- 160-10 meters, including three new bands

Covers all Amateur bands from 1.8 to 29.7 MHz (LSB, USB, and CW), including the new 10,18 , and $24-\mathrm{MHz}$ bands. Receives WWV on 10 MHz .

- Wide receiver dynamic range

Junction FETs (with optimum IMD characteristics and low noise figure) in the balanced mixer, a MOSFET RF amplifier operating at low level for improved dynamic range (high amplification level not needed because of low noise in mixer), dual resonator for each band, and advanced overall receiver design result in excellent dynamic range.

- Variable bandwidth tuning (VBT)

Continuously varies the IF filter passband width to reduce interference. VBT and IF shift can be controlled independently for optimum interference rejection in any condition.

- IF notch filter

Tunable high-Q active circuit in $455-\mathrm{kHz}$ second IF, for sharp, deep notch characteristics.

- IF shift

Shifts IF passband toward higher or lower frequencies (away from interfering signals) while tuned receiver frequency remains unchanged.

- Various IF filter options

Either a $500-\mathrm{Hz}$ (YK-88C) or $270-\mathrm{Hz}$ (YK-88CN) CW filter may be installed in the $8.83-\mathrm{MHz}$ first IF, and a very sharp $500-\mathrm{Hz}$ (YG-455C) or $250-\mathrm{Hz}$ (YG455 CN) CW filter is available for the $455-\mathrm{kHz}$ second IF.

- Built-in digital display

Six-digit large fluorescent tube display, backed up by an analog dial. Reads actual receive and transmit frequency on all modes and all bands. Display Hold (DH) switch.

- Adjustable noise-blanker level Built-in noise blanker eliminates pulse-type (such as ignition) noise Front-panel threshold level control.
-6146B final with RF NFB
Two 6146B's in the final amplifier provide 220 W PEP (SSB)/180 W DC (CW) input on all bands. RF negative feedback provides optimum IMD characteristics for high-quality transmission.

- More flexibility with optional digital VFO

VFO-230 operates in $20-\mathrm{Hz}$ steps and includes five memories. Also allows split-frequency operation. Built-in digital display. Covers about 100 kHz above and below each $500 \cdot \mathrm{kHz}$ band.

Built-In RF speech processor

For added audio punch and increased talk power in DX pileups.

RIT/XIT

Receiver incremental tuning (RIT) shifts only the receiver frequency, to tune in stations slightly off frequency. Transmitter incremental tuning (XIT) shifts only the transmitter frequency.

- SSB monitor circuit

Monitors IF stage while transmitting, to determine audio quality and effect of speech processor.
Ask your Authorized Kenwood Dealer about the many operating features offered by the TS-830S... at a very reasonable price!
NOTE: Price, specifications subject to change without notice and obligation.

MATCHING ACCESSORIES FOR FIXED-STATION OPERATION:

- SP-230 external speaker - YG-455C $(500-\mathrm{Hz})$ and
with selectable audio filters
- VFO-230 external digital VFO with $20-\mathrm{Hz}$ steps, five memories, digital display
- AT-230 antenna tuner/

SWR and power meter

- MC-50 desk microphone

Other accessories not shown:

- TL-922A linear amplifier
- SM-220 Station Monitor
- PC-1 phone patch

YG-455C $(500-\mathrm{Hz})$ and
YG-455CN $(250-\mathrm{Hz}) \mathrm{CW}$ filters for $455-\mathrm{kHz}$ IF

- YK-88C $(500-\mathrm{Hz})$ and YK-88CN $(270-\mathrm{Hz}) \mathrm{CW}$ filters for $8.83-\mathrm{MHz}$ IF - HC-10 digital world clock
- HS-5 and HS-4 headphones
- MC-30S and MC-35S noise-cancelling hand microphones

New 2-meter direction.

A compact transceiver with FM/SSB/CW plus.

TR-9000

Kenwood's done it again! Now, it's the exciting TR-9000 2-meter all-mode transceiver...complete with a host of new features. Combining the convenience of FM with long-distance SSB and CW in a very compact, very affordable package, the TR-9000 is the answer for any serious Amateur Operator! Versatile? You bet! Because of its compactness, the TR-9000 is ideal for mobile installation. Add on its fixedstation accessories and it becomes the obvious choice for your ham shack!
TR-9000 FEATURES:

- FM, USB, LSB, and CW all popular modes
- Compact size only $611 / 16$ inches wide X 2 21/32 inches high $\times 97 / 32$ inches deep
- Digital dual VFOs with selectable tuning steps of $100 \mathrm{~Hz}, 5 \mathrm{kHz}$, and 10 kHz , convenient for each mode of operation
- Digital frequency display ...five, four or three digits, depending on selected tuning step
- Extended frequency coverage 148.9999 MHz
- Five memories

M1-M4 for simplex or $\pm 600 \mathrm{kHz}$ repeater offset
M5 for nonstandard offset (memorizes transmit and receive frequency independently)

- Scan of entire band automatic busy stop and free scan
- SSB/CW search sweeps over selectable $9.9-\mathrm{kHz}$ bandwidth segments, for easy monitoring
- UP/DOWN microphone (standard) "beep" sounds with each frequency step
- Noise blanker eliminates pulse-type noise on SSB and CW
- Low-noise, dual-gate MOSFET and two-stage monolithic crystal filter for improved receiver front-end characteristics
- RIT (receiver incremental tuning) for SSB and CW effective even on memory channels
- RF gain control
- CW sidetone
- Automatic selection of AGC time constant with MODE switch (slow for SSB and fast for CW)
- Improved power module for reliable and stable linear RF output
Selectable power outputs. $10 \mathrm{~W}(\mathrm{HI}) / 1 \mathrm{~W}$ (LOW)
- Mobile mounting bracket easy to mount. with quick-release levers
- LED indicators ON AIR, BUSY, and VFO
- Accessory terminals on rear panel KEY. BACKUP DC, STBY, EXT SP, DC, TONE INPUT, and ANT
See your Authorized Kenwood Dealer now for details on the TR-9000 the new direction in 2-meter all-mode transceivers!

NOTE: Price, specifications subject to change without notice and obligation.

MATCHING ACCESSORIES FOR FIXED-STATION

OPERATION:

- PS-20 power supply
- SP-120 external speaker
- BO-9 System Base ... with power switch, SEND/ RECEIVE switch for CW operation, backup power supply for memory retention (BC-1 backup power adaptor may also be used for this application), and headphone jack

calculating the cascade intercept point of communications

 receiversNew equations for calculating

a receiver's cascade intercept point
\section*{are a powerful design tool}

On today's heavily used Amateur bands which have many extremely strong signals, receivers with high dynamic range are required. Many articles have treated the considerations and problems of designing a hign dynamic range receiver from the circuitry point of view, but a systematic approach to receiver design seems to be lacking.

receiver system design

The best way to approach a receiver design problem is with a block diagram. By identifying the various functional blocks in a receiver, the critical parameters for dynamic range (input intercept point, noise figure, and bandwidth) can be predicted for the overall receiver.

Dynamic range may be defined as

$$
\begin{equation*}
D R=\frac{2}{3}\left(I P_{i 3}-M D S\right) \tag{1}
\end{equation*}
$$

where $D R=$ spurious-free dynamic range, dB
$I P_{i 3}=$ third-order input intercept point, dBm
$M D S=$ minimum detectable signal (noise floor), dBm

For a system at room temperature the minimum detectable signal is

$$
\begin{equation*}
M D S=-174 \mathrm{dBm}+N F_{t}+10 \log B W_{n} \tag{2}
\end{equation*}
$$

where $N F_{t}=$ overall system noise figure, dB
$B W_{n}=$ system noise bandwidth, Hz
Note that the system noise bandwidth is usually well approximated by the $3-\mathrm{dB}$ bandwidth of the narrowest filter in the system. The total (or cascade) noise figure of a system is

$$
\begin{gather*}
F_{t}=F_{1}+\frac{F_{2}-1}{G_{1}}+\frac{F_{3}-1}{G_{2} G_{1}}+ \tag{3}\\
N F=10 \log F_{t} \tag{4}
\end{gather*}
$$

The minimum discernible signal can be calculated from the last three equations, but some method is needed to predict the system's input intercept.

By Brian P. Gross, WA7TDB, 2900 East Aurora Avenue, No. 146, Boulder, Colorado 80303

Gain	+10 dB	-7 dB	+20 dB
$\mathrm{IP}_{\mathrm{o3}}$	+20 dBm	+20 dBm	+50 dBm

fig. 1. Simple converter used to illustrate cascade IMD equations. Note that although only two nodes are specified, there are two other nodes (on either side of the mixer) that could be used for intercept point calculations.

cascade intercept point

To obtain the intercept point for a system, the intercept points of the various functional blocks will be combined in such a way as to predict the input or output intercept of a system.

There are two ways of approaching the cascade intercept point equations. The first is to assume the intermodulation products are coherent; when the products are coherent their voltages wil add in phase. The second approach is to assume the intermodulation products are non-coherent; in this case their voltages will combine as a sum of squares.

The assumption of coherence will always result in the lower predicted intercept point and for most Amateur applications is the preferred approach. There are situations, however, where the assumption of non-coherence is reasonable; the most obvious situation is a microwave system where phase shifts between system elements may place the products out of phase.

coherent summation

The equation for coherent summation* is

$$
\begin{align*}
& I P_{t}=\frac{20}{n-1} \log \left(10 \frac{-(n-1) I P_{1}}{20}\right. \\
& \left.\quad+10^{\frac{-(n-1) I P_{2}}{20}}+\ldots\right)^{-1} \tag{5}
\end{align*}
$$

where $n \quad$ is the order of the intermod (2 for second order, 3 for third order, etc.), and
$I P_{m}$ is the reflected intercept lof the appropriate order) of the m th element

All the intercepts of the various system elements must be reflected to a single node. The example in fig. 1 will help clarify this.

First a table must be drawn up (table 1) that contains the reflected intercept points. Note that input intercept plus gain equals output intercept $\left(I P_{i}+G=I P_{o}\right)$.

Substituting the information in table 1 into eq. 5, the input intercept (node A) turns out to be $I P_{i t}=+9.14 \mathrm{dBm}$. The output intercept (node B) is $I P_{o t}=+32.14 \mathrm{dBm}$.
table 1. Table of reflected intercept points for the system of
fig. 1. This listing not only gives the intercept information,
but also pinpoints the weakest elements in a system, in this
case element 1.

element

1	reflected intercept point	
1	node A	node B
2	+10 dBm	+33 dBm
3	+17 dBm	+40 dBm
	+27 dBm	+50 dBm

non-coherent summation

For the case of non-coherent summation the cascade intercept point equation is

$$
\begin{align*}
I P_{t} & =\frac{10}{n-1} \log \left(10 \frac{-(n-1) I P_{1}}{10}\right. \\
& \left.+10^{\frac{-(n-1) I P_{2}}{10}}+\ldots\right)^{-1} \tag{6}
\end{align*}
$$

If non-coherent summation was assumed for the system of fig. 1, the input intercept becomes

fig. 2. Block diagram of a receiving converter built by the author with performance data for each of the elements in the system. When a dash is used in place of data, it indicates no contribution from that particular system element.

ANTENNA COMPONENTS

$75,100,130,150,300$, or $1,000 \mathrm{ft}$. rolls	
Antenna Wire, stranded \#15 copperweld $75,100,130,150,200$, or 300 ft . rolls	6 ft .
Antenna wire, stranded \#16 copperweld. $75,100,130,150,200$, or 300 ft . rolls	05 ft .
Van Gorden HI-Q Baluns, 1:1 or $4: 1$	10.95 ea.
Unadilla/Reyco, W2AU Baluns, 1:1 or	14.95 ea.
Van Gorden HI-Q center insulators	5.95 ea.
Ceramic' "Dogbone" end insulators,	98
Van Gorden plastic end insulators, pair	95
Nylon guy rope, 450 lb . test, 100	49
Unadilla/Reyco W2VS Traps, KW-10 thru KW-40	21.95 pr .
Belden 8214 RG-8U type foam coax \qquad $50,60,75,100$, and 125 ft . roils	0 ft .
Belden 8219 RG-58 A/U foam coax....................... $50,60,75,100,125,200,300$	2 ft
erk-Tex 6211 RG-8X foam coax., Ultraflexible $50,60,75,100,125,200,300$, and 500 ft . rolls	6 ft .
Amphenol 83-1SP PI-259 connectors.	75 ea.
Amphenol UG-175/U adapters (RG-58)	25 ea.
Amphenol UG-176/U adapters (RG-8X, RG-59)	25 ea.
Amphenol PL-258, straight adapter	1.07

ALSO IN STOCK

Larsen Mobile Antennas - Hustler Mobile Antennas - Palomar Engineers - Centurion International Rubber Duck Antennas

WRITE FOR A FREE COPY OF OUR CATALOG
MASTER CHARGE

All items F.O.B. Lincoln, $\$ 1.00$ minimum shipping. Prices subject to change without notice. Nebraska residents please add 3% tax
$I P_{i t}=+9.91 \mathrm{dBm}$ and the output intercept becomes $I P_{o t}=+32.91 \mathrm{dBm}$. In this simple example the results from eq. 5 and eq. 6 are nearly identical. In general, however, as the system becomes more complicated, the difference between the two will be much larger.

receiving converter

The block diagram of fig. 2 represents a receiving converter I built. It provides a convenient example system for comparing the predicted and measured parameters. Using the data in fig. 2, a table of reflected intercept points can be drawn up (table 2); by using the formula for coherent summation (eq. 5) the resultant input intercept can be calculated, and from eq. 4, the system noise figure can be calculated.
table 2. Calculated intercept point for the receiving circuit shown in fig. 2. Measured intercept point is shown in parentheses for comparison and shows good agreement.

	reflected intercept point	
element	$\mathbf{I P _ { i 2 }}$	$\mathbf{I \mathbf { P } _ { \mathbf { i 3 } }}$
2	+64.35 dBm	+34.35 Bm
5	+52.90 dBm	+20.65 dBm
6	-	+19.90 dBm
8	-	+13.90 dBm
$I P_{\mathrm{it}}$	+50.84 dBm	+12.22 dBm
	$(+54.0 \mathrm{dBm})$	$(+13.0 \mathrm{dBm})$

Using eq. 4 the predicted system noise figure is 7.1 dB; dynamic range can now be predicted. If a $500-\mathrm{Hz}$ filter were placed after the system shown in fig. 2, then the MDS $=-139.91 \mathrm{dBm}$ and the dynamic range would be 101.42 dB .

Two-tone and noise figure tests were run on the system of fig. 2 which resulted in measured $I P_{i 2}=+54.0 \mathrm{dBm}, I P_{i 3}=+13.0 \mathrm{dBm}$, and $N F_{t}=6.9 \mathrm{~dB}$. These tests show excellent agreement with the predicted data.

conclusion

The cascade intercept point equations, when used in coombination with the cascade noise figure equation, provide a powerful tool for rf system design. Derivations of eq. 5 and eq. 6 will be sent to interested readers upon receipt of a self-addressed, stamped envelope. With these equations a receiver designer can predict a system's characteristics without investing in any hardware.

acknowledgments

My thanks to Rich Phillips of ARGOSystems (formerly of ESL, Inc.) for initially pointing out the utility of these equations. My thanks also to Wes Hayward, W7ZOI, for kindling my interest in receiver design.
ham radio

ATTENTION IC-2A OWNERS: IC-2A TONEDECKS ARE HEREI

CUSTOM DESIGNED TO FIT WITH NO TROUBLE!

IT'S HERE NOW!

The question used to be, "When is Icom coming out with a hand-held?"...Now that it's become one of the hottest two meter rigs around, the big question now is, "When will a subaudible tone option be available for my IC-2A?" The answer is: Spectronics has it now!

FULLY TUNABLE!

We are proud to be first in offering you a fully tunable miniature sub-audible tone deck specifically designed to fit the Icom IC2A hand-held transceiver. If you own one of the other synthesized hand helds. you'll be delighted to know that you can put it in your unit as well.

QUALITY TO LAST!

This unit is manufactured by Transcom, Inc., to their exacting standards. and is guaranteed to be stable to within $\pm 1 \mathrm{~Hz}$, after proper tuning. All units are pre-set to your specified tone, and require no further adjustment for freqency.

PHONE: (312) 848-6777

diode frequency divider

Using diodes as voltage-variable capacitors to produce a sine wave at one-half the input frequency

The use of diodes as frequency multipliers, and particularly as doublers, has been well known for a good many years. Such applications are covered quite well in a recent ARRL publication ${ }^{1}$ and provide many ideas to the Amateur builder and experimenter. However, one application for diodes that I don't recall finding in an Amateur publication is their use in a frequency divider, with what is practically the same circuit

Consider fig. 1A, which is a standard full-wave rectifier. It is familiar to just about every ham as is the output waveform, fig. 1B. The fundamental frequency has been cancelled by the full-wave circuit, and a quite respectable frequency doubler is the result.

frequency-divider circuit

Now let's change the circuit slightly to that of fig. 2. We will feed a signal of frequency f through a blocking capacitor to the diodes, reversing the direction taken when the circuit was a rectifier. There is another difference, as well, as the clamping action of the diodes builds up a bias voltage across the blocking capacitor, and the diodes are operating in their nonconducting range. Furthermore, the centertapped transformer has become a center-tapped tank circuit by the addition of a capacitor that tunes the circuit to $f / 2$, one-half the input frequency.

Operating in their nonconducting range, the diodes present only their junction capacitance to the circuit and are now regarded as capacitors. Even though both diodes may be of the same type and rating, their junction capacitances will not be identical, so a voltage will build up on one end of the tank circuit. The voltage on the other end will be of opposite polarity, increasing the reverse voltage on that diode, further increasing any differences in the capacitances. When the next input pulse appears, the polarity of the voltages on the tank circuit will have reversed due to the flywheel effect of the tuned tank. Thus, successive input pulses will affect alternate ends of the tank, resulting in a signal of half the input frequency. Input power transfer will probably

By Henry S. Keen, W5TRS, Fox, Arkansas 72051

fig. 1. Standard full-wave rectifier (A) and the typical output waveform it produces (B).
be improved if some form of input matching network is used.

The power limitations of this circuit are a function of the diode characteristics, such as junction capacitance, leakage, and peak inverse voltage. Of course, power varactors are available at several bucks a throw, which would probably be more predictable in their operation; but silicon diodes out of your junk box may be pressed into service for a tryout.

suggested applications

A frequency divider such as this should offer a quick means of giving 160 meters a whirl, using the 80 -meter rig, and without the necessity of building a separate new transmitter! My first use of the circuit involved a pair of top-hat diodes to reduce a $910-\mathrm{kHz}$

fig. 2. The diode frequency divider. A signal, f, is applied through a blocking capacitor, which reverses the signal direction. The center-tapped transformer is now a centertapped tank circuit with the addition of a variable capacitor. Circuit delivers a good sine wave with good efficiency.
oscillator signal to 455 kHz in experiments with DSB reception. Unless the diodes are badly mismatched, it works right off. The value of resistor R of fig. 2 should be quite high, as we are interested only in biasing the diodes into the non-conductive region. With a good pair of diodes, resistances up to 100 k would seem a reasonable figure.

This circuit delivers a good sine-wave signal with good efficiency, as there is little in the circuit to dissipate input power when the diodes function as volt-age-variable capacitors.

reference

[^5]ham radio

- COMMERCIAL BAND TYPE (151-159 MHZ) IS ALSO AVAILABLE.
- CREDIT CARDS/MONEY ORDER OR ANY COMMERCIAL GUARANTEED CHECK...U.P.S. COD

ACE COMMUNICATIONS, INC. 2832-D Walnut Avenue, Tustin, California 92680 Phone (714)544-8281

FAST SCAN ATV

WHY GET ON FAST SCAN ATV?

- You can send broadcast quality video of home movies, video tapes, computer games, etc, at a cost that is less than sloscan.
- Really improves public service communications for parades, RACES, CAP searches, weather watch, etc.
- $D X$ is about the same as 2 meter simplex -' 15 to 100 miles. ALL IN ONE BOX

TC-1 Transmitter/Converter Plug in camera, ant., mic, and TV and you are on the air. Contains AC supply, T/R sw, 4 Modules below \$ 399 ppd PUT YOUR OWN SYSTEM TOGETHER

PACKAGE SPECIAL all four modules \$ 225 ppd

TXA5 ATV Exciter contains video modulator and x tal on 434 or 439.25 mHz . All modules wired and tested \$84 ppd PA5 10 Watt Linear matches exciter for good color and sound. This and all modules run on 13.8 vdc........... $\$ 79$ ppd TVC-1B Downconverter tunes 420 to 450 mHz . Outputs TV ch 2 or 3. Contains low noise MRF901 preamp. . . $\$ 49.50$ ppd FMA5 Audio Subcarrier adds standard TV sound to the picture $\$ 25$ ppd
SEND FOR OUR CATALOG, WE HAVE IT ALL
Modules for the builder, complete units for the operator, antennas, color cameras, repeaters, preamps, linears, video ider and clock, video monitors, computer interface, and more. 19 years in ATV.
Credit card orders call (213) 447-4565. Check, Money Order or Credit Card by mail.

an accurate and practical

AFSK generator

Putting the Exar XR-2206C IC to work in a circuit for RTTY enthusiasts

It's no secret that Amateur RTTY is enjoying a huge rate of growth and energy. Much of this interest can be directly traced to the newer video display type of TTY terminal and its quiet fascination. This same upsurge has caused many old-time RTTYers to dust off the mechanical machine and join in. Regardless of the type of terminal used, electronic or mechanical, the operator must provide the tone demodulation and FSK generator between his terminal and the radio gear. Most high-frequency stations use an AFSK audio input to an SSB transmitter, thus creating a need for a good AFSK generator. A great many circuits have been developed to fulfill this need, both simple and complex.
To fulfill my, need for an AFSK generator, I looked over what had been designed and found either the 555 IC type oscillator or the crystal-controlled system. The former is not known for best stability with time and/or temperature, and the latter sometimes deserves a Nobel prize for complexity and would not fit the space requirements in my new converter.

Some time ago a data sheet came across my desk on a function generator in one IC package, made by Exar.* If that data sheet was to be believed, my answer was in the XR-2206C. After thoroughly testing the final circuit (fig. 1), I believe this AFSK generator is the most accurate and simply practical circuit possible considering stability, space requirements, and cost.

the XR-2206C IC

The device is a function generator designed for instrumentation and communications use. It will

[^6]operate from a single supply range of 10-26 volts, or a split supply of ± 5 to ± 13 volts. Its stability is excellent; drift rate is $20 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. It produces very-low-distortion sine, square, triangular, ramp, or pulse waveforms. And it's ready made for FSK operation with a built-in switch to select between two timing resistors for two-frequency output. In this FSK operation, the output is phase-continuous during frequency transitions, so distortion never results during switching (a common source of trouble for many of the simpler circuits).

AFSK generator

Fig. 1 shows the simplicity of the AFSK generator. It has six trimpots (four for setting frequency and two for IC controls). Supply voltage indicated is ± 12 volts. This was the supply in use for my converter, and it was borrowed to operate the AFSK generator as well.

Sinewave output from the XR-2206C is selected by connecting the 200 -ohm resistor between pins 13 and 14. If this resistor is removed, the output becomes triangular.) Pin 1 is used to set overall gain in this circuit by trimpot R5. The dc offset of an internal amplifier is set by trimpot R 6 at pin 3 . The $1-\mu \mathrm{F}$ tantalum capacitor bypasses an internal reference voltage at pin 10 . The value isn't critical, but a tantalum type is definitely needed here.

stability considerations

The IC data sheet indicated that, for optimum temperature stability, the timing resistors should be as close as possible to 10 k . The timing-capacitor value is then adjusted to yield the desired output frequency.

Working through Exar's formulas, a capacitor value of just less than $0.05 \mu \mathrm{~F}$ is required, so I connected two $0.022-\mu \mathrm{F}$ caps in parallel; the result turned out to be just right.

By Garry A. Boldenow, K0SFU, Route 2, Box 153, Peabody, Kansas 66866

fig. 1. Schematic diagram of the AFSK generator. Circuit is built around the XR-2206C, which is a functiongenerator IC designed for instrumentation and communications use. This device has excellent frequency stability and low-distortion output. The circuit features optional CW IDENT circuit. Values of timing capacitors are critical; they must be polystyrene for maximum stability.

The timing-capacitor combination is connected to pins 5 and 6. These caps must be polystyrene for best stability. Do not use disc or Mylar caps in this application.

The timing-resistor networks connect to pins 7 and 8 , with pin 7 being the F_{1} frequency and pin 8 the F_{2} frequency. We'll designate F_{1} as mark (2125 Hz) and F_{2} as space (2295 or 2975 Hz). Two resistors are selected by S 2 for either $170-\mathrm{Hz}$ or $850-\mathrm{Hz}$ shifts. Obviously, if only 170 Hz shift is needed, delete the unnecessary components.

CW IDENT

I desired a CW IDENT feature, so I added Q 3 and Q4. When the ID key input is pulled to ground or nearly so, R4 and 180-k resistor are in parallel with the $2125-\mathrm{Hz}$ timing resistors, which shifts the output frequency upward 100 Hz for identification. Again, if this feature isn't needed, simply delete this little circuit.

Frequencies F_{1} and F_{2} (mark and space) are switched by the input at pin 9 . If the level at pin 9 is greater than about 2 volts, F_{1} is selected; if the level is less than about 1 volt, F_{2} is selected.

input level translator

01 and $\mathbf{0 2}$ act as an input level translator and
switch for either RS-232C or mechanical keyboard inputs. This feature allows the generator to be used by the computer world as well as by traditional equipment. S1 is opened for RS-232C input signals, which will switch between +10 and -10 volts. A keyboard should be wired as shown to +12 volts (or the A + level being used), and S1 is closed. This action applies -12 volts through the 1.2 k resistor to the keyboard, which applies 24 volts at 20 mA across the keyboard contacts. A high level at the DATA INPUT will cause F_{1} to be selected; a low level (or ground) will cause F_{2} to be output.

construction

Construction of the AFSK generator can be by any method convenient to the builder. Layout is anything but critical. Leave room to trim the fixed timing resistors from pins 7 and 8 if necessary.

tune up

Tuning the generator will require a frequency counter and oscilloscope. Frequency setting could be done by applying the output through a known accurate tone demodulator and tuning for maximum output levels, but a counter sets frequency precisely. A scope will be needed to adjust for minimum distortion and best waveform.

Spring into summer with these sizzling titles.

ELECTRONIC COMMUNICATION (4th Edition)

by Robert L. Shrader

This popular volume presents, as simply as possible, the practical basic theory of radio and electronics. In wide use as a college and technical school text. Electronic Communication is based on the latest sample ques tions from FCC Commercial Operator License Exams and Amateur Exams, rearranged into a more effective teaching and learning order. The author also provides checkup quizzes every few pages to greatly reinforce learning. Its bold face type and multiple diagrams make it a pleasure to read. With careful, independent home study, this book will enable you to pass any FCC Amateur. Commercial Radiotelephone or Telegraph license exam including the radar and broadcast endorsements. 783 pages. © 1980. \square MH-57138

Hardbound $\$ 19.50$

80 METER DXING

by John Devoldere, ON4UN

Going for 5 Band DXCC or just looking for a new DX challenge? This is positively the last word on working 80 meter DX. The author combines his many years of 80 meter operating experience with that of others to produce chapters on propagation, antenna systems, station equipment and international operating practices peculiar to $80-$ all in a handy scrapbook format. What are the best times to be on? What's the best antenna? You'll find answers to these and many more 80 meter questions. 80 pages. (c) 1978. \square HR-80M

Softbound $\$ 4.50$

AMATEUR SINGLE SIDEBAND
 Originally by The Collins Radio Company

Ham Radio in cooperation with The Collins Radio Group has reprinted what many consider "the bible on Amateur single sideband". This softbound edition features an introduction to SSB, nature of SSB signals, exciters, RF linear amplifiers, SSB receivers, tests and measurements, and what comprises an Amateur SSB station. Absolutely THE finest publication available on SSB. 143 pages. (c) 1977.
\square HR-SSB
Softbound \$4.95

PRACTICAL ANTENNAS

From the folks at SCELBI, PRACTICAL ANTENNAS is not quite like any of the other ham antenna books. Written by a knowledgeable DX'er, this new book is chock-full of helpful hints and suggestions on the how-to's of putting up a super antenna system. Chapters include information on design and construction of practical Yagis, quads and wire type antennas. Inside you'll also find a complete bibliography of antenna articles from the popular amateur publications. Charts and tables are designed to eliminate all those tricky calculations. And, SCELBI has included a list of computer generated beam headings from major population centers to all the countries of the world. A new format, large easy-to-read text and durable vinyl cover make PRACTICAL ANTENNAS a "must" for every amateur library. (c) 1979. \square SC-PA

$\$ 9.95$

HAM RADIO'S BOOKSTORE GREENVILLE, NH 03048

Begin tuning by opening S1 and setting all trimpots to mid range.

1. Open the ID KEY input, if used. Apply a positivelevel (+10 or +12 volts) to the DATA INPUT point, then apply voltage power to the circuit. There should be some kind of waveform at pin 2 or at the output side of the $0.1-\mu \mathrm{F}$ coupling capacitor.
2. Initially, adjust R5 and R6 for best waveform. With a 12 -volt supply, the output level will be around 5 volts p -p.
3. Next, adjust R1 throughout its range to determine if 2125 Hz can be set with the values as shown. If not, center R1 and trim the 10 k fixed series resistor for about 2125 Hz ; then readjust R1. If the 10 k resistor value must be shifted by more than 5 per cent, trim the timing capacitors with other values. Try to keep the $2125-\mathrm{Hz}$ resistors as close to 10 k as possible. Once the mark frequency has been set, do not readjust R1 for any other frequency.
4. If the CW IDENT circuit has been added, ground the ID KEY input. Adjust R4 for 2225 Hz , trimming the 180k fixed resistor as required.
5. Next, either ground the DATA INPUT point or apply a negative voltage level.
6. Set S2 to the $170-\mathrm{Hz}$ shift side and adjust R2 for 2295 Hz .
7. Trim the 10 k fixed resistor with a 150 k resistor to begin with, and trim from there.
8. Repeat the procedure with S 2 in the $850-\mathrm{Hz}$ position, adjusting R3 and trimming the 6.8 k resistor as needed.
9. After all four frequencies have been initially adjusted, let the generator run for an hour or so, then carefully reset each frequency. A drift of only $\pm 2 \mathrm{~Hz}$ can be expected over a long-term period and over a wide temperature swing.
10. Carefully look at the output waveform and adjust R5 and R6 for the most perfect and smooth sine waveform possible. Set gain trimpot R5 for just less than maximum perfect waveform level.

closing remarks

Considering the space this generator consumes inside a typical RTTY converter cabinet, and the fact that its stability is better than 0.2 per cent over a wide temperature and time range (if 1 per cent resistor and 2.5 per cent polystyrene capacitors are used), this circuit offers much in terms of simplicity and accuracy.
ham radio

QUALTYTHAT SPEAKS FORITSELF!

Hustler fixed station two meter gain antennas.

Hustler is the choice of those who know quality. Because we're known for precision engineering and electronic expertise.

Only the finest materials are used to make a Hustler amateur antenna. And each model is the result of years of design excellence. From easy and precise assembly to outstanding long-range transmitting and receiving, Hustler quality speaks for itself. See your dealer and find out why!

inc
3275 North B. Ave., Kissimmee, Florida 32741

Clearly the choice of
those who know quality.

G7-144

NEW fROM CLB

A complete line of QUALITY 50 thru 450 MHz TRANSMITTER AND RECEIVER KITS. Only two boards for a complete receiver. 4 pole crystal filter is standard. Use with our CHAN. NELIZER or your crystals. Priced from \$69.95. Matching transmitter strips. Easy construction, clean spectrum, TWO WATTS output, unsurpassed audio quality and built in TONE PAD INTERFACE. Priced from \$29.95.

SYNTHESIZER KITS from 50 to 450 MHz . Prices start at $\$ 119.95$.
Now available in KIT FORM GLB Model 200 MINI-SIZER.

Fits any HT. Only 3.5 mA current drain. Kit price $\$ 159.95$ Wired and tested. \$239.95
Send for FREE 16 page catalog. We welcome Mastercharge or VISA

1952 Clinton St., Buffalo, N. Y. 14206

S-LINE OWNERS
 ENHANCE YOUR INVESTMENT with
 TUBESTERS ${ }^{\text {TM }}$
 Plug-in, solid state tube replacements
 - S-line performance-solid state!
 - Heat dissipation reduced 60\% - Goodbye hard-to-find tubes - Unlimited equipment life

TUBESTERS cost less than two tubes, and are guaranteed for so long as you own your S-line.

SKYTEC
Box 535
Talmage, CA 95481

Write or phone for specs and prices. (707) 462-6882

FACSIMILE

COPY SATELLITE PHOTOS, WEATHER MAPS, PRESS
The Faxs Are Clear - on our full size (18-1/2" wide) recorders. Free Fax Guide.

TELETYPE

RTTY MACHINES, PARTS, SUPPLIES
ATLANTIC SURPLUS SALES 121213720349
3730 NAUTILUS AVE BROOKLYN. N.Y 11224

notes on the
 EIMAC 5CX1500A power pentode

Some operating tips on the use of this tube in ham gear

Ask any experienced ham to list the tubes most likely to be used in a linear amplifier in the Amateur service, and chances are that the 5CX1500A won't be mentioned.

And, small wonder. In this day of zero bias, highmu triodes, the 5CX1500A doesn't really seem to be the ideal tube for ham use. It's expensive (about $\$ 500$); its socket is expensive and, in this day of single-power-supply-tubes the 5CX1500 requires three power supplies plus filament voltage.

the case for the 5CX1500A

So, why even consider it here? For two reasons. First, at least one manufacturer of high-power linear amplifiers, Tempo, uses this tube in their Model 4 K . The typical 4K owner may not know enough about his final for his own peace of mind. Second, this tube is rather common in the broadcast service, and some of these tubes, with reduced emission, have become available at reasonable prices at swapfests and such.* It is for these reasons that this article is presented.

background

The 5CX1500A was designed by EIMAC about a dozen years ago at the request of an American manufacturer of fm transmitters for the $88-108 \mathrm{MHz}$ broadcast band. The need was for a final amplifier or driver tube that would operate in the 2-3 kW power range, Class B or C service, with good stability and ruggedness, a reasonable life expectancy (about 8000 hours in continuous commercial service [CCS]

[^7]and high efficiency. The original 5CX1500 was the result.

There are some problems, of course. The '1500A is a beam-power pentode, and because of its parameters, which were dictated by the specifications listed above, the tube is very difficult to construct. As a result, EIMAC is still the only manufacturer of the tube in the world. Couple this with the fact that every major manufacturer of broadcast fm transmitters in this country uses the 5CX1500A in all their transmitters designed for this power level, and you can guess the rest. The tube is not always readily available. As of this writing, however, that situation has not existed for some months.

early tube problems

Several years ago the assembly line for the 5CX1500A was moved from EIMAC's main plant in California to a new facility in Salt Lake City, Utah. Shortly thereafter, problems arose. Tube life in the field began to drop, particularly in rf driver service, but later in all fm broadcast service. Tubes began to lose emission to the point where they had to be replaced after about $3000-4000$ hours. EIMAC and the broadcast equipment manufacturers began to research the problems, and two differing causes began to emerge. There was one comon denominator: the filament was being "poisoned" by gas.*

First it was discovered that the tube, especially when used in of driver service (CCS), was being loaded much too lightly. This action resulted in high rf circulating currents in the tube, particularly across the aluminum oxide insulating ring between the suppressor ring and the anode. As a result undue heating occurred, which caused minute cracking of the ring. These cracks are not visible to the naked eye, except through the use of the special dye applied to the ring.
Second, investigators found that, on tubes made between mid-1975 and early 1979, the metal alloy used in the construction of the screen grid emitted

[^8]By Arthur Reis, K9XI, 8510 Sunset, Wonder Lake, lllinois 60097
excessive levels of carbon-monoxide gas, which is lethal to your typical 5CX1500A cathode. EIMAC corrected that problem early in 1979, and tubes manufactured after that date show no ill effects from that quarter.

operating tips

Now, in practical terms, what does this all mean to present and potential users of the 5CX1500A? Here are some tips on its operation that might help.

1. Load the tube as heavily as possible, consistent with the ability of your power supply to deliver the extra current. If your plate impedance is over 6000 ohms, it's too high! Reduce this impedance as much as possible by decreasing plate voltage and increasing current to reduce circulating rf currents in the tube.
2. If your tube is beginning to go "soft," determine if the problem is loss of cathode emission. To do this, record your present current drain on all tube elements that show current, and compare them to your observations when the tube was "fresh." If all currents are down, then the problem is low cathode emission caused by poisoning (contamination). These currents must be determined with drive power applied. Dc values alone will tell you nothing, since at radio frequencies the peak current drawn by the cathode may be 2-3 amperes. It's the inability of the cathode to deliver that amount of current that causes the tube to be considered "soft," no matter what the dc values may be.
3. Do not try to increase the cathode voltage above 5.1 volts to increase emission. For every $1 / 4$ volt the filament is increased over its specified value, expect your tube life to drop in half (i.e., 5-1/4 volts, 4000 hours on an original 8000 -hour tube; $5-1 / 2$ volts, 2000 hours, etc.). Remember, this is a "carburized" thoriated tungsten filament. At the present state of the art, if the filament opens up, it can't be rebuilt.
4. If the tube is too "soft" to live with but seems to be OK otherwise (no short circuits), it can be rebuilt for about half the cost of a new tube. If indeed the cathode has been contaminated as determined in 2. above, you can ship it to Econco Broadcast Service, 1302 Commerce Avenue, Woodland, California, 95695. Unlike the process used in rebuilding other tube types, rebuilding the 5CX1500A doesn't usually require replacement of its grids. Instead, as EIMAC informs me, a process called "recarburization" is used. The tube seal is broken and a gas with a high carbon content, such as methane, is admitted. The gas-loaded tube is then fired in an oven, or its filament run at 120 percent voltage for a few seconds, during which time a new carbon coating is deposited
onto the cathode. The tube time is then re-evacuated and resealed. Generally, if the tube has no other problems, the renewability rate is in the $80-90$ percent range. If your tube loses here, you pay nothing more than shipping charges one way. By the way, this rebuilding process can be done more than once, thereby increasing the life of the tube in your rig.
5. If your 5CX1500A develops a short circuit, it will generally be from cathode to control grid. That's a pretty safe statement, considering the fact that the control grid is located a mere four mils from the cathode (the grid wire mesh is one mil thicker than that!). As the tube ages, the cathode can get brittle, and a strand from the filament may break away and fall across the grid.

Don't dismiss the idea of burning out the short in this case. I've heard of this happening several times, and a car battery is ideal for the purpose. If the short does not disappear, you'll have to admit that, with a little polishing and a walnut base, the tube makes a nice looking award for "Ham of the Year" at your local radio club. (This is particularly true of tubes manufactured before 1980, which are silver plated. EIMAC has changed the outer plating of the tube to nickel for cost reasons. There is no noticeable electrical effect on the tube.)

summary

The 5CX1500A tube may not be the best of all possible worlds for linear amplification in the Amateur service. However, for those who want a stable, very conservative amplifier for up to, say, 225 MHz , or for those who already are using this tube in such an amplifier, I hope this article has shed some new light on a tube that few Amateurs seem to know much about. The interested reader is referred, for further information, to "The Care and Feeding of Power Grid Tubes," by EIMAC. Data sheets for the 5CX1500A are also available from EIMAC.*

acknowledgments

My thanks to Ken Atkinson at EIMAC/Salt Lake City, Ed Numerych at EIMAC/Chicago, Dave Gilden, formerly of CECO, Ray Shurtz at ECONCO, and Bill Hoyt, Lou Pifer, and Bob Gorjance at Harris Corporation, for their help in providing information for this article.

reference

[^9][^10] 94070.
ham radio

Low Cost...High Performance

DIGITAL MULTIMETER
600 mHz COUNTER

s90.95

 WIREDLow cost, high performance, that's the DM-700. Unlike some of the hobby grade DMMs available, the DM-700 offers protessional quality performance and appearance at a hobbyist price. It teatures 26 different ranges and 5 functions, all arranged in a convenient, easy to use format. Measurements are displayed on a large $31 / 2 \mathrm{digit}, 1 / 2$ inch high LED display, with automatic decimal placement, automatic polarity, and overrange indication. You can depend upon the DM-700, state-ot-the-art components such as a precision laser trimmed resistor array, semiconductor band gap reference, and reliable LSI circuitry insure lab quality performance for years to come. Basic DC volts and ohms accuracy is 0.1%, and you can measure voltage all the way from $100 \mu \mathrm{v}$ to 1000 volts, current from 0.1μ a to 2.0 amps and resistance from 0.1 ohms to 20 megohms. Overload protection is inherent in the design of the DM-700, 1250 volts, AC or DC on all ranges, making it virtually goot proot. Power is supplied by four 'C' size cells, making the DM-700 portable, and, as options, a nicad battery pack and AC adapter are available. The DM-700 features a handsome, jet black, rugged ABS case with convenient retractable tilt bail. All factory wired units are covered by a one year limited warranty and kits have a 90 day parts warranty.
Order a DM-700, examine it for 10 days, and if you're not satisifed in every way, return it in original form for a prompt refund.

Specilications

DC and AC volts:
Resistance:
input protection:
$0.1 \mu \mathrm{~A}$ to 20 Amps, 5 ranges
input impedance:
Display:
Accuracy:
Power:
Size:
Weigh:
0.1 to to 20 megohms, 6 ranges

1250 volts AC/DC all ranges fuse protected for overcurrent
10 megohms. DC/AC volts
$31 / 2$ digits, 0.5 inch LED
0.1% basic DC volts
$4^{\circ} \mathrm{C}$ ' cells. optional nicad pack. or AC adapter
$6^{\prime \prime} \mathrm{W} \times 3^{\prime \prime} \mathrm{H} \times 6^{\prime \prime} \mathrm{D}$
2 lbs with batteries

Prices

DM. 700 kit form
79.95

AC adaptericharger
4.95
1995

Nicad pack with AC adaptericharger 19.95
Probe kit.

The CT-70 breaks the price barrier on lab quality frequency counters No longer do you have to settle for a kit. halt-kit or poor performance, the CT-70 is completely wired and tested, features professional quality construction and specifications. plus is covered by a one year warranty Power for the CT-70 is provided by four 'AA' size batteries or 12 volts, $A C$ or DC, available as options are a nicad battery pack. and AC adapter. Three selectable frequency ranges, each with its own pre-amp, enable you to make accurate measurements from less than 10 Hz to greater than 600 mHz . All switches are conveniently located on the front panel for ease of operation. and a single input jack eliminates the need to change cables as different ranges are selected. Accurate readings are insured by the use of a large 0.4 inch seven digit LED display, a 1.0 ppm TCXO time base and a handy LED gate light indicator.

The CT-70 is the answer to all your measurement needs, in the field, in the lab, or in the ham shack. Order yours today examine it for 10 days, if you're not completely satisfied, return the unit for a prompt and courteous refund

Specifications

Frequency range Sensitivity

Stability
Display
Input protection
input impedance
Power
Gate
Gecimal point
Size
Weight

10 Hz to over 600 mHz
less than 25 mv to 150 mHz
less than 150 mv to 600 mHz
$10 \mathrm{ppm}, 20-40^{\circ} \mathrm{C}, 005 \mathrm{ppm} / \mathrm{C}^{2} \mathrm{TCXO}$ crystal time base
7 digits. LED. 04 inch herght
50 VAC to $60 \mathrm{mHz}, 10 \mathrm{VAC}$ to 600 mHz
1 megohm, 6 and 60 mHz ranges 50 ohms.
600 mHz range
4 'AA' cells. 12 V AC /DC
0.1 sec and 1.0 sec LED gate light

Automatic. all ranges
$5^{\prime \prime} \mathrm{W} \times 11^{1 / 2} \mathrm{H} \times 5 y_{2}^{\prime \prime} \mathrm{D}$
1 lo with batteries

Prices

CT-70 wired + tested . $\$ 99.95$
CT-70 kit form + lested
CT-70 kit form.
AC adapter

TERMS: Satiafaction guaranterd or
money refunded, COD, add S1.50. Min-
1 imum order 56.00 , orders under 310.00 , add 3.75 . Add 5% for postaga, 1 insurance, handing, oyersea.

base-loaded vertical antenna for 160 meters

No room for a 160-meter beam?
Try this
vertical antenna
which can be easily made from readily available materials

Much has been written and discussed on the best antenna for 160 meters. The most popular solution seems to be to tie the ends of an 80 -meter antenna together and feed the system on 160 meters with an antenna matching network. Some Amateurs string up an inverted L antenna. Both work fine for local contacts, but if you really want to work across the country, the vertical antenna is best.

the case for a

vertical antenna

Several 160 -meter enthusiasts use phased vertical antennas. Their signals are outstanding all year around compared with signals from other antennas. For those who don't have room for a beam, the toploaded vertical is the next best. The loading coil should be wound with no. 10 AWG (2.6 mm) wire. It requires a long coil and an extended tube for adjustments. I tried such an antenna, but the assembly swayed back and forth like a pendulum, and the nylon guys would not remain tight enough to hold it. After the coil broke off, I experimented with a baseloaded vertical.

base-loaded vertical

I was surprised that my signals seemed to be equally good, but not before some testing of the wire size used on the base coil. My vertical uses a 32 -foot (9.8 -meter) length of aluminum irrigation tubing, which is 2 inches (50 mm) in diameter. (It cost $\$ 20.00$.) The tube was set on a beer bottle for an insulator and guyed with nylon rope. This assembly was backed up by burying a 6 -foot (1.8 -meter) length of 4×4 lumber into the ground and using insulators and wood blocks to secure the tube to it (fig. 1).

To resonate the tube to 160 meters, a series capacitor and coil were first tried. However, I was told it would be better to just use the coil. First tried was a wire coil, but later a coil made from $3 / 16$-inch ($5-\mathrm{mm}$) diameter copper tubing was substituted, and the signal increased by 1 dB .

coil construction

The inductance was wound with $3 / 16$-inch ($5-\mathrm{mm}$) diameter copper tubing which cost $\$ 9.75$ for a 50 foot (15.25 -meter) coil. I used a 4 -inch (102 -mm) diameter pipe as a mandrel and wound a coil of forty turns.

Next three pieces of plastic were cut 1 inch (25.4 mm) wide and $1 / 4$ inch (6.5 mm) thick for the length of the coil. Holes were drilled in these strips with a drill just over $3 / 16$ inch (5 mm), so that the copper would slide through it easily. The first hole was $1 / 4$ inch $(6.5 \mathrm{~mm})$ from the end.

The holes were cut with a drill sharpened like a sheet metal drill so that it did not shatter as it came through the plastic. A small hole could have been drilled, then a large drill put through half way on each side. That takes patience. Once the pieces are snaked onto the coil and spaced, they are treated with coil dope. The coil was rugged enough to be mounted on insulators and put into a wooden dog house at the base of the antenna.

By Ed Marriner, W6XM, 528 Colima Street, La Jolla, California 92037

fig. 1. Construction details of a base-loaded vertical antenna for $\mathbf{1 6 0}$ meters. Antenna performs as well as a top-loaded affair and is much more stable and easier to construct. Use as many radials as possible in the ground system.

tune up

Antenna tuning was accomplished by leaving the feeder off and grid dipping the coil with it all in place. The coil was then tapped for resonance at 1820 kHz . Wide copper straps can be formed around the $3 / 16$ inch $(5-\mathrm{mm})$ copper and soldered once the proper place is found. The next step is to vary the tap for the 50 -ohm feeder from the bottom of the coil for minimum SWR. Mine came out at the fourth turn up from the bottom. (This will depend on your ground system.) I used an 8 -foot (2 -meter) rod driven into the ground at the antenna base and four or five radials of various lengths pushed into the grass. None are over 30 feet (9 meters) long, but make them as long as you can and use as many as possible. The more the better on 160 meters.*

performance

We have a daytime 160 -meter net here in California, and records are kept of signal strengths up and down the coast. At 11 AM Sunday mornings Santa Barbara checks in with signal reports. I can say this antenna receives and sends equally as well as my old top-loaded affair. I've worked the East Coast with it and am pleased to report that it is more stable and easier to construct. All in all, it seems like the best answer to many 160 -meter antenna problems - if you can't have a phased array.
*Or on any frequency. Editor.
ham radio

WANTED FOR CASH

490-T Ant. Tuning Unit (Also known as CU1658 and CU1669)

618-T Transceiver
(Also known as MRC95, ARC94, ARC102, or VC102)

Highest price paid for these units. Parts purchased. Phone Ted, W2KUW collect. We will trade for new amateur gear. GRC106, ARC105, ARC112, ARC114, ARC115, ARC116, and some aircraft units also required.

DCO, INC.

10 Schuyler Avenue Call Toll Free 800-526-1270

No. Arlington, N. J. 07032
(201) 998.4246

Evenings (201) 998-6475

digital capacitance meter

Amateurs who build or service electronic equipment sooner or later encounter the situation where replacing a capacitor with a "larger" one produces the wrong results: power supply ripple worsens or the time constant of a timing circuit decreases when it should increase. Highpass or lowpass audio might have their actual 3-dB rolloff points at 200 Hz instead of the intended $300-\mathrm{Hz}$ point. Such differences often occur because the actual value of the capacitor used is different from its marked value. The best performance of narrow bandpass filters and notch filters is obtained when matched capacitors of exactly the same value are used. There are many good " 100 -for-a-dollar" capacitor buys available, but they often included unmarked or house-numbered units. Those $25-c e n t, 68-\mu \mathrm{F}$ capacitors I bought at a hamfest were actually $6.8 \mu \mathrm{~F}$ - the reason, no doubt, they were only 25 cents!

Capacitors are among the most common components used in electronics. Most users assume that the value marked on the capacitor is its actual value; specifications simply guarantee a minimum value. Most electrolytics, for example, are specified to be within +80 to -20 per cent of their indicated value. There are a few that are within ± 10 per cent of their marked value; some small capacitors are available with 1 per cent and 5 per cent tolerances. The true value of a capacitor is not important in some cases, such as audio bypass applications, while in other applications the capacitance must be accurately known to produce the desired results.

The digital-capacitor meter presented in this article was built to preclude the type of problems described above. It measures capacitors from $0.001 \mu \mathrm{~F}$ to 999 $\mu \mathrm{F}$ in six ranges, with accuracy of about 1 per cent. The three-digit display has the decimal point correctly positioned as the ranges are switched. The circuit uses low-cost components which are readily available. It requires no difficult adjustments for reliable operation and is easy to duplicate with the printed circuit board layout shown. The meter requires about 100 mA from a 5 -volt regulated source, so it lends itself to battery operation if desired. The circuit includes a flashing overflow indicator.

circuit description

The circuit is based upon a digital counter that counts a reference oscillator. The input to the counter is gated by the C_{x} monostable which has its period determined by the capacitor to be measured.

By Marion D. Kitchens, K4GOK, 7100 Mercury Avenue, Haymarket, Virginia 22069

Construction of the short lead adapter.

An interior view showing arrangement of the display, circuit board, power supply, and range switch. This was a prototype circuit board which has its overflow circuit mounted below the main board.

Digi Cap

Two different meters showing suggested range switch labeling for right-hand decimal displays per the text (on top) and left-hand decimal displays. The unit with the small display (top) was used to develop the circuit. The bottom unit was built by WA4RVN to verify the circuit reproducibility and performance consistency.

Closeup view of the point-topoint wired power supply. The 7805 voltage regulator is snugged beneath the $1000-\mu \mathrm{F}$ filter. Yes, the capacitor was measured before use. Would you believe $998 \mu \mathrm{~F}$?

fig. 1. Functional block diagram of the digital capacitance meter. The meter is based upon the 14553 counter. The other ICs provide the necessary gating for the oscillators and display functions.

The functional block diagram is shown in fig. 1. About twice a second, the sample rate oscillator triggers the C_{x} monostable circuit. This monostable output is inverted and applied to the counter control gate. The duration of this control gate input is directly dependent upon the value of the capacitor being measured. If the reference oscillator input to the 14533 IC counter is at the proper frequency, the resulting display will indicate the value of the capacitor. One half of a 556 dual timer serves as the sample rate oscillator, while another 556 dual timer is used as the C_{x} monostable and reference oscillator.

The 14553 counter chip contains all the circuitry to count and multiplex three digits. It has built-in latch and reset functions and an input control gate. The counter chip's BCD output is applied to a single seven-segment decoder which drives the multiplexed LED displays. The required latch and reset functions are provided by another 556 dual timer with each of its sections operating in the monostable mode. The latch signal is applied to the 14553 at the end of the input gate enable period to store and display the accumulated count. Immediately thereafter the reset signal is applied. The 14553 holds the outputs for the displays, even though the internal counters have been reset, until the latch signal is again low. The latch signal goes low only after the capacitor value has been measured ag=in. This produces a constant or steady display theic does not flicker or count up to the final value.

The circuit timing diagram is shown in fig. 2. The overflow signal from the 14553 is applied to one half of a 556 dual timer to provide an overflow indication. The timer is run as a monostable to produce a flashing LED overflow indicator. Fig. 1 shows wave forms at significant locations and indicates the direction of information flow in the circuit. The complete schematic diagram is shown in fig. 3.

Construction is uncomplicated when using the printed circuit board. Fig. 4 shows the location of components on the board, while fig. 5 shows the circuit board foil pattern. Careful examination of fig. 4 will reveal the location of the numbered and lettered points to be wired to the display and the range switch. These points are shown on the schematic for easy reference. Switch wiring is shown in fig. 6. Points \mathbf{X}, Y, and \mathbf{Z} are not used.

The circuit uses a common-anode multiplexed display. The seven 82 -ohm resistors near the 7446 decoder are the recommended value for displays that require around 10 mA per segment. The suggested value for displays rated at 5 mA per segment is 150 ohms. These values can be varied to achieve the desired display brightness. One unit was built without the seven current limiting resistors (to achieve the maximum brightness) and has worked without any LED burnout problems.

None of the circuit component values are critical, but best performance can be obtained with a good quality capacitor, preferably plastic, for the reference oscillator. This particular capacitor is the $0.001-\mu \mathrm{F}$ capacitor located near the 100 k pot and connected to pins 2 and 6 of U2. Q1 is used to boost the currenthandling capability of the C_{x} monostable (U2) and should have low capacitance and a power rating of $1 / 2$ to 1 watt. A 2 N 3906 will work with good results. Transistors Q1, Q4, Q5, and Q6 are PNP transistors, while Q2, Q3, and Q7 are NPN transistors; 2N3906s and 2 N3904s can be used, respectively. 04, 05, and 06 should be installed so that their emitters go to the 5 -volt land, bases go to the 1 kilohm resistors, and their collectors to the anodes of the display. The overflow LED is connected with its anode to point \mathbf{F} on the circuit board and the cathode to ground.

A well-regulated, 5 -volt power supply capable of 100 to 150 mA is required. Fig. $\mathbf{7}$ shows a schematic for a suitable supply. Point-to-point wiring on a insulated board is an easy way to build the supply.

Care should be taken to keep the wiring between Q1, the range switch, and the C_{x} input jacks as short as possible and away from the $60-\mathrm{Hz}$ ac line.

fig. 2. Timing diagram of signals in the capacitance meter.

fig. 3. Complete schematic diagram of the digital capacitance meter. Suggested types for the transistors are given in the text. The current requirement of the meter is approximately 100 mA , small enough that a battery supply can be used for field use.

checkout and calibration

The circuit board should be completed and all wiring connected to the display, overflow indicator, and range switch before starting checkout. Make sure that the power supply is delivering 5 volts and is properly connected to the circuit board. At power turn on, the display should light and the overflow indicator should flash once. The display should show 000 or 001 with no connection at the C_{x} input. With a short across the C_{x} input, the display should show a number, say 433, and the overflow indicator will flash
continuously. This number should not change when the range switch is moved to other positions. The display should show a number of 000 to 002 with the range switch in position 1 (see fig. 6) and no connection at the C_{x} input. An unsteady count ranging from 000 to about 060 indicates that the meter is picking up stray 60 Hz . If this happens, try redressing or rerouting the wiring between the circuit board, range switch, and C_{x} input jacks. K4ZKU found that reversing the ac line cord at the wall outlet would help with such a situation. A simple test of U5, the display, and

fig. 4. Parts placement diagram for the printed circuit board.
the wiring between can be made by temporarily grounding pin 3 of U5; the display should show 888.

The unit must be calibrated before use. Capacitors of known value are required. Surplus computer and audio boards are a good source for precision capacitors. I found 1 per cent capacitors from 0.001 to 2.5 $\mu \mathrm{F}$ at local hamfests. The meter should be allowed to warm up for about 20 minutes before calibration. If precision measurements in the 10 s and 100 s of microfarads ranges are not required, the 2000- and 200 -ohm pots at positions 5 and 6 of the range switch can be replaced with 1000 - and 100 -ohm fixed resistors. To calibrate the meter, connect a $0.1-$ to $0.3-\mu \mathrm{F}$

fig. 5. Foil layout pattern for the digital capacitance meter.
capacitor of known value, and with the range switch in position 3, adjust the 100 -kilohm reference oscillator pot on the circuit board so that the display indicates the correct capacitor value. This calibrates the $100 \mathrm{k}-\mathrm{pF}$ range (switch position 3) as well as the 10 k pF (position 2) and $1-\mu \mathrm{F}$ (position 4) ranges. The 1 k pF is range calibrated by the 1 -megohm pot at switch position 1 ; the $10-\mu \mathrm{F}$ and $100-\mu \mathrm{F}$ ranges are calibrated by the 2000 - and 200 -ohm pots at positions 5 and 6 .

using the meter

Operation of the meter is simple. Observing proper polarity, connect the capacitor to be measured, select the largest range that does not cause an overflow, and read the capacitor value shown on the display. Table 1 shows examples of how the display indicates various capacitor values for each of the range switch positions. The first three ranges measure in thousands of pF and the last three ranges measure in $\mu \mathrm{F}$. The decimal point is properly positioned. Note that if a $22-\mu \mathrm{F}$ capacitor is being meas-

fig. 6. Switch connections for the range switch of the capacitance meter. The points specified are connected to the appropriate location on the circuit board (see fig. 4).
ured the range switch should be in position 5 and the display will show 22.0. A $0.047-\mu \mathrm{F}$ capacitor is 47 k pF , and it will be measured with the range switch in position 2. The display will show 47.0. Labeling the first three positions of the range switch as kpF (or nF for nanoFarads if preferred), and the last three positions as $\mu \mathrm{F}$ will make the meter very easy to read.

An open capacitor will cause a 000 to 001 to be displayed. A shorted capacitor will cause the overflow indicator to flash and the display to indicate a fixed number that is independent of the range switch position.

Lead lengths should be kept short when measuring small value capacitors. The photographs show a plug-in device made from banana plugs, a small piece of copper clad board, and sheet brass.

conclusion

The digital capacitor meter has been a fun project

fig. 7. Schematic diagram of a small power supply suitable for home station use of the capacitance meter.
-to build and it has been a time- (and agony-) saver around the ham shack. I hope that others who enjoy building and experimenting will find it to be the same. I will offer film negatives (or positives) so that builders can make their own circuit boards. Correspondence regarding the meter will be answered if an SASE is included.
table 1. Switch positions for various measurement ranges showing display and associated capacitance value. In switch position 1, a display of 1.50 indicates a capacitance of $0.015 \mu \mathrm{~F}(1500 \mathrm{pF})$, a reading of $\mathbf{2 . 2 0}$ indicates a capacitance of $0.002 \mu \mathrm{~F}(2200 \mathrm{pF})$, etc.

switch position	display	capacitance	range
1	1.00	0.001	$1000 \mathrm{pF}(1 \mathrm{nF})$
2	10.00	0.010	$10 \mathrm{k} \mathrm{pF}(10 \mathrm{nF})$
3	100.00	0.100	$100 \mathrm{kpF}(100 \mathrm{nF})$
4	1.00	1.000	$1 \mu \mathrm{~F}$
5	10.00	10.000	$10 \mu \mathrm{~F}$
6	100.00	100.000	$100 \mu \mathrm{~F}$

acknowledgments

Several hams have been of great assistance in developing the digital capacitor meter, in particular WA4RVN, K4ZKU, and W4PVA. K4ZKU provided valuable information on driving the display to full brightness, and W4PVA helped with the information on the 14553 counter chip without which the project could not have been undertaken. WA4RVN built his meter according to this article to verify the construction and checkout notes.
ham radio

*DIODE SWITCHING BOARDS available to permit 1,2 or more filters than those for which manufacturer provides room. SPECIFY make and model. Single-filter type: \$12 Airmail postpaid Dual-filter type: \$21 Airmail postpaid Fiorida residents add 4% (sales tax) (FOREIGN ADD $\$ 3$ per filter) BROCHURE ON REQUEST Dealer Inquiries Weicomed

VISA

New Improved Adhesive Mount for the 2 Meter Avanti Mobile Antenna.

Mounts on glass no holes!

- Receives and transmits through glass.
- Superior performance equivalent to $5 / 8$ wave.
- Superior radiation full Omni-Directional.

It's easy to install - No holes to drill, no magnet to scratch the paint, no clamps. Uses an especially developed silicone adhesive that secures antenna to window. The capacity coupling box is simply attached with a special adhesive tape to inside of window. Worried about crimping or corroding coaxial cables? It's all inside and out of sight.
Models also available

for $\mathbf{2 2 0} \mathbf{~ M H z}$ and $\mathbf{4 5 0} \mathbf{~ M H z}$.

See Avanti's other new mobile and
base antennas. Write for new catalog today
Send 50 C for handling and postage Send 50C for handling and postage.

avanti antennas

Avanti Research and Development, Inc.
340 Stewart Ave., Addison, IL 60101 (312) 628-9350 In Canada: Lenbrook Ind., Scarborough, Ontario MIH IH5

"Sumimer Book Sale"

world time calculator NEW!

Here's a very handy operating aid for your ham shack. To use it, you locate your local time, move the dial to your local time zone and voila - you know the time anywhere around the world. Besides determining time, you get a full explanation of many confusing terms such as: mean solar time, ephemeris time, atomic time, and more. Indispensable aid for both the contester and DX'er. (c) 1980.
\square VG-TC
$\$ 2.95$

SAVE TIME \& MONEY!

RADIO FREQUENCY INTERFERENCE

 by ARRLFinally! A new book that heips you understand RFI. Here's a convenient, practical source that details everything from good neighbor relations to simple technical cures for RFI. Six complete chapters take you from RFI definition to good workable solutions. The final section is an FCC reprint that presents a step-by-step procedure to identify, localize and resolve specific radio-TV interference problems, 64 pages. (C) 1978
$\square A R-F I$
Softbound $\$ 3.00$

OWNER REPAIR OF RADIO EQUIPMENT

 by Frank Glass K6RO"The successtul repair of any device results in restoring its operation at least to the level it had just before it quit. " With this basic concept in mind, author Frank Glass gives you step by step instructions on how to repair all kinds of electronic equipment. Fourteen chapters cover every aspect of repair procedure from component use and tailure and how to read schematic diagrams to a most important subject, safety. This book is a must for the amateur new to servicing his own equipment. 85 pages. © 1979.
$\square R O-O R$
Softbound $\mathbf{\$ 7 . 9 5}$

1980 34th EDITION WORLD RADIO \& TV HANDBOOK

The worid's only complete reference guide to international radio and television. This 1980 edition has complete information on each station including address, trequency and scheduling. Much additional information such as solar activity and World Time Table is included. Unquestionably the leading book of this type. 554 pages. ©(1980.
\square WR-TV
Softbound $\$ 14.95$

THE ARRL ANTENNA ANTHOLOGY

by the ARRL staff

This brand new book pulls together a wide selection of antenna articles from OST. Written for Amateurs of all levels and interests. Included are phased arrays, verticals, Yagi's...even the VHF Quagi! Detailed instructions and full illustrations make this a really useful book for any Amateur. 152 pages. © 1979
\square AR-AA
Softbound $\$ 4.00$

FM and REPEATERS

for THE RADIO AMATEUR

by the ARRL staff
This completely new and updated edition gives you the latest in FM echnology and design theory. Highlights include microprocessor control circuitry, and a Phase Lock Loop 2 meter transceiver. Fhis mobile oper ator's favorite now has more to offer. If you're into FM and repeaters or just want to learn more, we have the book you're looking for. 176 pages. © 1978.
\square AR-FM
Softbound $\mathbf{\$ 5 . 0 0}$

ARRL CODE KIT

A good practice kit for upgrading your Novice or Technician license Two 60 minute cassettes with 30 minutes each at speeds of 5, 7-1/2. 10 and 13 wpm. Also you'll receive an instruction booklet containing hints and suggestions on methods for mastering code. \square AR-CK

RADIOS THAT WORK FOR FREE

by K. F. Edwards

It's not often that you can get something for nothing in this worid, but this book will tell you how to come as close to it as possible. "Radios that Work for Free" tells you how to build several circuits, each of which will provide you with music, news and entertainment while using only the intercepted power of the station itself. The parts used are inexpensive, or if you are a good scrounger and salvage expert, you'll find most of the parts for free, just as the signals are. Descriptions are amazingly complete, You are led through some of the mystery areas of radio such as antennas, grounds, coils, capacitors, earphones.
schematic diagrams, and how to plan, layout, and wire your projects. More than just a trip into nostaigia, the book is a lesson in basic radio principles and techniques - and you can dance to the results. 137 pages. © 1977
\square HO-RWF
Spiralbound $\mathbf{\$ 5 . 0 0}$

PRACTICAL ANTENNAS

From the folks at SCELBI, PRACTICAL ANTENNAS is not quite like any of the other ham antenna books. Written by a knowledgeable DX' er this new book is chock-full of helpful hints and suggestions on the how-to's of putting up a super antenna system. Chapters include information on design and construction of practical Yagis, quads and wire type antennas. Inside you'll also find a complete bibliography of anten na articles from the popular amateur publications. Charts and tables are designed to eliminate all those tricky calculations. And SCEL BI has included a list of computer generated beam headings from major popuincluded a list of computer generated beam headings from major popu lation centers to all the countries of the worid. A new format, large easy-to-read text and durable vinyl cover make
a "must" for every amateur library. © 1979 .
a "must" "
\square SC-PA

GUIDE TO RTTY FREQUENCIES

by Oliver P. Ferrell
Radioteletype to many hams and SWL's is an exotic, complicated form of electronic communication. The author is a well known expert in this interesting field and brings to you a wealth of knowiedge and practical experience. First he covers the basics of RTIT identification codes and equipment. Once you've mastered the basics, he gives you a complete rundown on how to receive and understand what you'll be seeing. And - there are over 60 pages of worldwide station listings. For your convenience, listings are made by frequency with station location and service. (c) 1980,96 pages.
\square GL-RF
Softbound $\mathbf{\$ 8 . 9 5}$

ANTENNA BOOKS by Bill Orr, W6SAI

THE RADIO AMATEUR ANTENNA HANDBOOK

by William I. Orr, W6SAI and Stuart Cowan, W2LX
If you are pondering what new antennas to put up, we recommend you read this very popular book. It contains lots of well illustrated construction projects for vertical, long wire, and HF/VHF beam antennas. But, you'll also get information not usually tound in antenna books. There is an honest judgment of antenna gain figures, information on the best and worst antenna locations and heights, a long look at the quad vs. the yagi antenna, information on baluns and how to use them, and some new information on the increasingly popular Sloper and Delta Loop antennas. The text is based on proven data plus practical, on-the-air experience. We don't expect you'll agree with everything Orr and Cowan have to say, but we are convinced that The Radio Amateur Antenna Handbook will make a valuable and often consulted addition to any Ham's library. 190 pages. ©1978. \square RP-AH

Softbound $\$ 6.95$

ALL ABOUT CUBICAL QUAD ANTENNAS

The cubical quad antenna is considered by many to be the best DX antenna because of its simple, lightweight design and high performance. In Bill Orr's latest edition of this well known book, you'll find quad designs for everything from the single element to the multi-element monster quad, plus a new, higher gain expanded quad ($\mathrm{X}-\mathrm{Q}$) design. There's a wealth of supplementary data on construction, feeding, tuning, and mounting quad antennas. It's the most comprehensive single edition on the cubical quad available. 112 pages. © 1977.
\square RP-CO
Softbound $\mathbf{\$ 4 . 7 5}$

SIMPLE LOW-COST WIRE ANTENNAS

Learn how to build simple, economical wire antennas. Even if you don't know a feedline from a feed-through, W6SAl will get you on the air with an effective low-cost wire antenna. And, apartment dwellers take note! Fool your landlord and your neighbors with some of the "invisible" antennas found here. For the old-timer as well as the beginner, it's a clearly written, well diagramed, and even humorous antenna book. 192 pages. (c) 1972. $\square \mathbf{R P}$ - WA

Softbound \$6.95

BEAM ANTENNA HANDBOOK

Here's recommended reading for anyone thinking about putting up a yagi beam this year. It answers a lot of commonly asked questions like: What is the best element spacing? Can different yagi antennas be stacked without losing performance? Do monoband beams outperform tribanders? Lots of construction projects, diagrams, and photos make reading a pleasurable and informative experience. 198 pages. (c) 1977. \square RP-BA

Softbound \$5.95

THE WORKS. ALL FOUR BOOKS \$22.60 VALUE - JUST \$18.95 $\square \mathrm{RP}$-0L FOUR BOOKS \$18.95

KANTRONICS THEORY CASSETTE

Here's a new, easy way to study theory for your Novice, General, Advanced or Extra class exam. Designed for folks on the run. All you have to do is drop in the cassette at home, work, or in the car and listen to an interviewstyle tape covering Novice, General, Advanced or Extra class theory. A great way to reinforce other study methods.
\square KT-NT Novice Class Theory Cassette
$\square K T-G T$ General Class Theory Cassette
\square KT-AT Advanced Class Theory Cassette
$\square K T$-ET Extra Class Theory Cassette

One tape $\$ 4.95$
Two tapes $\$ 8.95$
One tape \$4.95
One tape \$4.95

GOING SAILING WITH AMATEUR RADIO

Are you into sailing? Then you need Going Salling - an extremely helpfut book, especially for the boating and yachting enthusiast who wants to incorporate Amateur Radio in his ship's gear. Whether it is just for fun or safety measures, bringing Amateur Radio aboard makes a lot of sense. Next time you're headed for sea, take Amateur Radio and a copy of this great new book for long-range radio communications. 64 pages. (c) 1978 DHR-GS

Softbound \$3.95

SHORTWAVE PROPAGATION HANDBOOK

Edited by George Jacobs, W3ASK, and
Theodore J. Cohen, N4XX
For many hams, both new and old, radio wave propagation is still a mystery. Realizing this, the authors went about the task of preparing a simpli fied text that could be understood by hams, swl's and engineers alike. Stress has been given to simplified explanations and charts. The authors also detall a simplified method of do-it-yourself propagation forecasting. To assist your forecasting efforts, the book contains a complete listing of the 12 month smoothed sunspot numbers since 1749. Join those who know how to predict when the bands will open to speciitic areas of the world. © 1979.
$\square \mathrm{CO}-\mathrm{PH}$

ARRL 0 \& A SERIES

Each book is full of sample questions that cover just about every aspect of the FCC Amateur exam series. These handy study guides are a must for the soon-to-be or ready-to-upgrade Amateur. Convenient pocket size lets you take your study guide with you everywhere. Softbound.
\square AR-OA Novice © 1979
$\$ 2.00$
\square AR-TG Technician, General © 1979
$\$ 2.50$
\square AR-AE Advanced, Extra ©1979
$\$ 3.00$

RSGB AMATEUR RADIO OPERATING MANUAL

Edited by R. J. Eckersley

Compiled by the RSGB, this exciting new book covers just about every facet of Amateur Radio. Starting with a precise description of the Amateur Service worldwide, the Amateur Radio Operaling Manual leads the Amateur through the steps to setting up a station correctly, how to operate properly, DX. contests, satellites, RTTY and Slow Scan Television. You also get 5 big appendixes jam-packed with more information; callsigns in use, maps. OXCC country list, time zones and international callsign assignments. 190 pages. © 1979.
\square RS-OM
Softbound $\mathbf{\$ 9 . 9 5}$

GENERAL CLASS AMATEUR LICENSE STUDY GUIDE

by Phill Anderson, WIXI

This book was written in simple laymen's language with uncomplicated explanations and examples used to present electronic radio concepts and ideas. Throughout each chapter, questions and answers are used to strengthen your understanding of the terms and concepts presented. This book also covers several methods that can be used to improve code recep tion skills. The final chapter is a sample FCC exam which the author feels he would ask if he were to give the FCC exam. 160 pages. (c) 1979
$\square 21617$
Softbound $\mathbf{\$ 6 . 5 0}$

IN A HURRY? ORDER
 TOLL FREE
 1.800-258-5353

a fresh look at linear tuning

Most Amateurs expect the benefits of a linear-spaced tuning dial when they purchase new equipment. The expression "linear tuning" refers to the ability to rotate the tuning dial or knob, knowing that a certain number of kilohertz will be traversed with each turn of the knob, say 25 or 50 kilohertz. Amateurs expect to find this feature in professionally designed equipment, but rarely is it found in home-built Amateur gear. Why does this situation exist, and what can the Amateur who perfers to build his own do about it? Let's take a look at how commercial manufacturers handle the problem.

fig. 1. Characteristics of sLC, SLW, and SLF variable capacitors showing capacitance as a function of angle of rotation in typical cases, together with approximate plate shapes. (From Radio Engineers' Handbook by F.E. Terman, McGraw-Hill, Inc., 1943.)

Frequency change requires that we square the product of inductance, L, and capacitance, C, to effect a $2: 1$ frequency change. For example, the product of LC is approximately 520 for 40 meters. The product of LC amounts to about 2080 at 3.5 MHz . Since it would be mechanically unwieldy to alter both inductance and capacitance, the accepted method is to vary either the capacitance or inductance in a typical circuit. (The foregoing remarks apply to high-frequency circuitry in this discussion.)

Most manufacturers handle this situation by limiting the excursion of their oscillator circuit to, say, 500 kHz and by using a VFO coil with windings spaced nonlinearly. A tuning slug moves into the coil form and causes an inductance change. Collins refers to this method as "permeability tuning." It's a good system; unfortunately it's not suitable for easy duplication by the home builder. Another method would be to use capacitor plates with special shaping. This also poses a problem for the home builder.

variable-capacitor plate shapes

Fortunately there's a way of "making it" without having a large machine shop at your disposal. The solution to the problem came to me while watching my wife making some designs on a quilt with a mix-andmatch pattern.

A look at most transmitting capacitors shows that they use half-round plates in the rotor section, whereas most capacitors for broadcast reception use different shapes. The first shape is called straight-line capacitance (SLC), while the second is
called midline, or straight-line frequency (SLF). See fig. 1. In short, a variable capacitor with the proper arrangement of SLC and SLF plates

fig. 2. Comparison of rotor plates in the popular "Command" transmitter. A shows approximate shape of an SLC plate; B an SLF plate.
should satisfy the need for truly linear tuning.*

modifying transmitting variable capacitors

Some variable capacitors, which use aluminum plates spaced with washers or metal spacers, can be modified easily in the rotor section to accomplish this objective. In my case, I removed half-round plates from the middle capacitor in a Command transmitter and re-installed them on the rotor shaft of the master oscillator tuning capacitor, which had been altered by lifting out several of the SLF rotor plates.
With the correct amount of fixed L and C , linear tuning will result. If you're willing to settle for a limited frequency excursion, exceptionally high accuracy can be achieved. The

[^11]calibration chart (table 1) shows this to the last hertz. Note that this is not a one-of-a-kind experiment. Equally satisfying results have been accomplished in a half-dozen instances. There's no reason why this technique can't be applied to other ranges, such as the popular $5.0-5.5 \mathrm{MHz}$ range used in many VFOs.

My original intentions were satisfied, as shown by a $3.5-3.6-\mathrm{MHz}$ curve. However, high-accuracy linear readout continued throughout at least a $200-\mathrm{kHz}$ span between $3.45-3.65 \mathrm{MHz}$. All of the above was achieved without trimming or bending of the master-oscillator variable capacitor plates; thus it's fair to say that similar results could be obtained by any careful experimenter or builder.

Neil Johnson, W2OLU

solid-state amplifier switching

Forget about carrier-operated relay (COR) circuits and other mechanical antenna and power switching arrangements by going solid-state. This diode-switching circuit provides maintenance-free, reliable switching
without fuss or bother. Best of all, it's simple.

Simply use two quarter-wavelength sections of RG-174/U coax and appropriate diodes (fig. 1). The 1N4148 diodes are adequate for moderate power levels commonly used on 2-meter f-m.

David D. Holtz, WB2HTH

fig. 1. Solid-state switch for 2 -meter f - m. Circuit was adapted from an article appearing in the April, 1973, issue of ham radio.

de-icing the quad

Probably more quad antennas have come to grief because of ice than from all other reasons combined. At least that seems to have been my experience. It seems that something may be lacking in our planning. A simple means of de-icing the quad should be a real boon to those who usually have a couple such examples of nature's contempt for us each winter.

The quad driven element is usually fed at bottom center through coaxial line. If, for the driven element, we use a wire having a higher resistance at dc than at if, such as galvanized electric fence wire or smaller size copperweld, $60-\mathrm{Hz}$ power, fed through the coaxial line should provide enough heat to prevent the formation of ice, or if it has already formed, to melt it. After all, ice usually forms at temperatures quite close to freezing, and this idea wouldn't require a temperature increase of more than a few degrees to thwart Jack Frost.

The average quad has at least two elements, and it wouldn't do to leave the parasitic elements out in the cold. By going to the top of the quad, opposite the feed point, one finds a volt-
age node. A capacitor of suitable power-handling capability may be inserted here without affecting array performance. A value of 0.01 or 0.02 $\mu \mathrm{F}$ should be enough capacitance. The same thing can be done with the reflector (and the director if you have more than two elements). A pair of wires that connect all the elements in series for dc, running parallel to the boom, should permit you to apply
enough current through the coaxial line to keep the ice away. An ordinary filament transformer should supply enough power for most applications.

The diamond configuration might be preferable for this application, as more support would be provided for the capacitors and connecting wires; the square configuration makes a clearer illustration (fig. 1).

Henry S. Keen, W5TRS

fig. 1. Power applied to a quad from an ordinary filament transformer will generate enough heat to prevent ice formation, or if already formed, to melt it. The capacitors are inserted at the voltage nodes of the elements, and don't affect array performance.

dM9
 electronics

1900 MHz to 2500 MHz DOWN CONVERTER
This receiver is tunable over a range of 1900 to 2500 mc and is intended for amateur radio use. The local oscillator is voltage controlled (i.e.) making the i-f range approximately 54 to 88 mc (Channels 2 to 7).
PC BOARD WITH CHIP CAPACITORS 13 . $\$ 44.99$
PC BOARD WITH ALL PARTS FOR ASSEMBLY . $\$ 79.99$
PC BOARD ASSEMBLED AND TESTED . $\$ 120.00$
POWER SUPPLY KIT . $\$ 44.99$
POWER SUPPLY ASSEMBLED AND TESTED . $\$ 69.99$
YAGI ANTENNA 4' LONG APPROX. 20 TO 23 dB GAIN . $\$ 59.99$
YAGI ANTENNA 4' WITH TYPE (N, BNC, SMA Connector) . $\$ 64.99$
2300 MHz DOWN CONVERTER
Includes converter mounted in antenna, power supply, antenna, 75' and 3' RG59 cable with connectors,
75 to 300 ohm adapter, Plus 90 DAY WARRANTY
\$299.99
OPTION \#1 MRF902 in front end. (7 dB noise figure) . $\$ 349.99$
OPTION \#2 2N6603 in front end. (5 dB noise figure). $\$ 400.00$
2300 MHz DOWN CONVERTER ONLY
10 dB Noise Figure 23 dB gain in box with N conn. Input F conn. Output. $\$ 149.99$
7 dB Noise Figure 23 dB gain in box with N conn. Input F conn. Output. $\$ 169.99$
5 dB Noise Figure 23 dB gain in box with SMA conn. Input F conn. Output . $\$ 189.99$
DATA IS INCLUDED WITH KITS OR MAY BE PURCHASED SEPARATELY . $\$ 15.00$
Shipping and Handling Cost:
Receiver Kits add $\$ 1.50$, Power Supply add $\$ 2.00$, Antenna add $\$ 5.00$, Option $1 / 2$ add $\$ 3.00$, For complete system add \$7.50.
Replacement Parts:

MRF901	$\$ 5.00$	MBD101	$\$ 2.00$
MRF902	$\$ 10.00$.001 chip caps	$\$ 2.00$
2N6603	$\$ 12.00$	PC Board only	$\$ 25.00$ with data

3.7 to 4.2 Gc SATELLITE DOWN CONVERTER

TERMS:

WE REGRET WE NO LONGER ACCEPT BANK CARDS.
PLEASE SEND POSTAL MONEY ORDER, CERTIFIED CHECK, CASHIER'S CHECK OR MONEY ORDER. PRICES SUBJECT TO CHANGE WITHOUT NOTICE. WE CHARGE 15\% FOR RESTOCKING ON ANY ORDER.

ALL CHECKS AND MONEY ORDERS IN US FUNDS ONLY.
ALL ORDERS SENT FIRST CLASS OR UPS.
ALL PARTS PRIME AND GUARANTEED.
WE WILL ACCEPT COD ORDERS FOR \$25.00 OR OVER, ADD \$1.50 FOR COD CHARGE.
PLEASE INCLUDE $\$ 1.50$ MINIMUM FOR SHIPPING OR CALL FOR CHARGES.
(602) 242-3037

WE ALSO ARE LOOKING FOR NEW AND USED TUBES,

WE ALSO SWAP OR TRADE.
FOR CATALOG SEE JANUARY, 1980, 73 Magazine, 10 Pages.

ATLAS CRYSTAL FILTERS FOR ATLAS HAM GEAR
5.52-2.718
5.595-2.718/U
5.595-500/4/CW
5.595-2.7LSB
5.595-2.7USB
5.645-2.718
9.OUSB/CW

YOUR CHOICE $\mathbf{\$ 2 4 . 9 5}$

The RF Line

NPN SILICON RF POWER TRANSISTORS

NPN SILICON RF POWER TRANSISTOR

 mercial and amateur radio equipment to 30 MHz .- Specified 12.5 Volt, 30 MHz Characteristics Output Power $=80$ Watts
Minimum Gain = 12 dB
Efficiency $=50 \%$

designed for power amplifier applications in industrial, commerical and amateur radio equipment to 30 MHz .
- Specified 12.5 Volt, 30 MHz Characteristics -

Output Power $=80$ Watts
Minimum Gain $=12 \mathrm{~dB}$
Efficiency $=50 \%$

- Capable of Withstanding 30:1 Load VSWR @ Rated Pout and VCC

NPN SILICON RF POWER TRANSISTOR

designed primarily for use in large-signal output amplifier stages. Intended for use in Citizen-Band communications equipment operating at 27 MHz . High breakdown voltages allow a high percentage of up-modulation in AM circuits.

- Specified $12.5 \mathrm{~V}, 27 \mathrm{MHz}$ Characteristics -

> Power Output $=4.0$ Watts
> Power Gain $=10 \mathrm{~dB}$ Minimum
> Efficiency $=65 \%$ Typicat

NPN SILICON RF POWER TRANSISTOR

designed primarily for use in single sideband linear amplifier
 output applicaions in citizens band and other communications equipment operating to 30 MHz .

- Characterized for Single Sideband and Large-Signal Amplifier Applications Utilizing Low-Level Modulation.
- Specified $13.6 \mathrm{~V}, 30 \mathrm{MHz}$ Characteristics -

Output Power $=12 \mathrm{~W}$ (PEP)
Minimum Efficiency $=\mathbf{4 0 \%}$ (SSB)
Output Power $=4.0 \mathrm{~W}$ (CW)
Minimum Efficiency $=50 \%$ (CW)
Minimum Power Gain $=10 \mathrm{~dB}($ PEP \& CW)

- Common Collector Characterization

-2
$\$ 46.45$
440 to 470 MC

UHF POWER AMPLIFIER MODULE

designed for 12.5 volt UHF power amplifier applications in industrial and commercial FM equipment operating from 400 to 512 MHz .

- Specified 12.5 Volt, UHF Characteristics Output Power $=13$ Watts Minimum Gain $=19.4 \mathrm{~dB}$ Harmonics $=40 \mathrm{~dB}$
- 50Ω Input/Output Impedance
- Guaranteed Stability and Ruggedness
- Gain Control Pin for Manual or Automatic Output Level Control
- Thin Film Hybrid Construction Gives Consistent Performance and Reliability

Tektronix Test Equipment

${ }^{8}$	Wideband High Ga in Plug in
	Disal trace Plug in
N	Sampl ing plug in
	Hrans Gai in Differential Comparator Plug in
Tu-2	Test Load plug in for 530/540/550 ma in frames
1 A2	Wideband Dual Trace Plug in
151	Sampling Unit with 3s00s Risetime of to 1 GH
${ }_{3}$	
3536	Duad trace sampling
714	Dual froce sompling in to ${ }^{\text {a }}$
A	Sampling meep plus
310	Spectrum Andilyzer 1 to 30 mz Plug
So	Amp
5	sweep plua in
${ }_{5} 518$	Wideband High Ga in plug
${ }^{53 / 548}$	wideband high Lia in plug
53/5ac	Qual race plug in
53/540	High gain oc oifferential Piug in
53/546	Wideband of Ditferential Plu
53/541	fast Rise high ga in Pls
84	Test Piug in For 580/58] Main fra
	Souare wave Generator
${ }^{\text {RM122 }}$	
123	coupled preampl fier
127	Power Supply for 2 Plug in's
13	Current probe amplitier
184	time Mark Generator
R240	Program Control unit
280	gger countdow
455	Partable Dual Trace 50NHZ sco
465	Portable Dual 1 Trace 100142 Scope
${ }_{503}$	Oc to 450kh2 Scope Rack mount
335	ic to 15m2 scope Rack moun
${ }^{543}$	octo 3 met scope
561	oc to lown Scope Rack Mount
3614	DC to 1042\% Scope Rack Mount

Scopes with Plug-ins

```
567 Digital Reddout Scope with a GR1A Digital Unit
    and a 3SJOual trace DC to 1GRI Sampling PIug in
            and a 3r77A Sweep piug In.
                    561A DC to jOMHZ Scopewith a 3576 Dual Trace OC to . Nack Mount (%)
```



```
                    581 DC to BDNHZ Scope with a 82 Dual Trace High Gain Plug In 650.00
```


Tubes

2 E 26	\$ 5.00	$4 \mathrm{C} \times 350 \mathrm{FJ}$	\$116.00	6140w	12.00
3-5002	102.00	$4 \mathrm{CX1000} \mathrm{~A}$	300.00	6159	10.60
3-10002	268.00	$4 \mathrm{C} \times 1500 \mathrm{~B}$	350.00	616)	75.00
3828/8664	5.00	4 Cx 35000 A	750.00	6293	28.50
3×250043	150.00	4 4 27	50.00	6360	6.95
4-65A	45.00	$4 \times 150 \mathrm{~A}$	41.00	6907	40.00
4-125A	58.50	4×1500	52.00	6939	14.75
4-250A	68.50	4×1506	74.00	7360	12.00
4.400 A	11.00	572B/T160L	39.00	7984	10.40
4-1000a	184.00	$6 \mathrm{LF6}$	5.00	8072	49.00
5-500A	145.00	6 L06	5.00	8106	2.00
4 Ck 250 B	65.00	811 A	12.95	8156	7.85
$4 \mathrm{C} \times 250 \mathrm{f} / \mathrm{s}$	55.00	813	29.00	8226	127.70
$4 \mathrm{C} \times 250 \mathrm{k}$	113.00	5894/A	42.00	8295/PL172	328.00
$4 \mathrm{C} \times 250 \mathrm{R}$	92.00	6146	5.00	${ }^{\text {A } 458}$	25.75
$4 \mathrm{C} \times 300 \mathrm{~A}$	147.00	6146 A	5.00	$85600 / \mathrm{AS}$	50.00
$4 \mathrm{C} \times 350 \mathrm{a}$	107.00	61466/8298A	7.00	8908	9.00
				8950	9.00

ARRA

2416 3614-60 3614-60

 4684-20C$6684-20 F$

Variable Attenuator

Variable Attenuator 0 to 60 dB Variable Attenuator 18 to 26.5 GHz Variable Attenuator 0 to 180 dB Variable Attenuator 0 to 180 dB

General Microwave

Directional Coupler 2 to 4 GHz 20 dB Type N

Hewlett Packard

H487B	100 ohms Neg Thermistor Mount (NEW)
H487B	100 ohms Neg Thermistor Mount (USED)
477B	200 ohms Neg Thermistor Mount (USED)
$\times 487 \mathrm{~A}$	100 ohms Neg. Thermistor Mount (USED)
X487B	100 ohms Neg. Thermistor Mount (USED)
J468A	100 ohms Neg thermistor Mount (USED)
478A	200 ohms Neg Thermistor Mount (USED)
8478A	200 ohms Balanced Neg. Thermistor Mount (USED)
J382	5.85 to 8.2 GHz Variable Attenuator 0 to 50 dB
X382A	8.2 to 12.4 GHz Variable Attenuator $0_{\text {m }}$ to 50 dB
X885A	8.2 to 12.4 GHz Phase Shifter $+/-360^{\circ}$
394A	1 to 2 GHz Variable Attenuator 6 to 120dB
NK292A	Waveguide Adapter
K422A	18 to 26.5 GHz Crystal Detector
K375A	18 to 26.5 GHz Variable Attenuator
8436A	Bandpass Filter 8 to 12.4 GHz
B439A	2 GHz Notch Filter
8471A	RF Detector
342A	VHF Noise Source
X347A	8.2 to 12.4 GHz Noise Source
H532A	7.05 to 10 GHz Frequency Meter
G532A	3.95 to 5.85 GHz Frequency Meter
J532A	5.85 to 8.2 GHz Frequency Meter
809A	Carriage with a 444A Slotted Line Untuned Detector Prob and 8098 Coaxial Slotted Section 2.6 to 18 GHz
809B	Carriage with a 442 B Broadband Probe 2.6 to 12.4 GHz and a $\times 810 \mathrm{~B}$ Slotted Section
809B	Carriage with a $\mathrm{X810B}$ Slotted Section and a PRD 250A Detector Mount 2.4 to 12.4 GHz

Merrimac

AU-25A/	
AU-26A/	801115 Variable Attenuator
801162 Variable Attenuator	

Microlab/FXR

Y410A	Frequency Meter 12400-18000 MC
N414A	Frequency Meter 3950-11000 MC
X638S	Horn $8.2-12.46 \mathrm{GHz}$
601-B18	X to N Adapter 8.2-12.4 GHz
Y6100	Coupler
Narda	
3095/	22909 Directional Coupler 7 to 12.4 GHz 10dB Type N
4013C-10/	22540A Directional Coupler 2 to 4 GHz 10db Type SMA
4014-10/	22538 Directional Coupler 3.85 to 8 GHz 10 dB Type SMA
4014C-6/	22876 Directional Coupler 3.85 to 8 GHz 6 dB Type SMA
4015C-10/	22539 Directional Coupler 7.4 to 12 GHz 10dB Type SMA
4015C-30/	23105 Directional Coupler 7 to 12.4 GHz 30 dB Type SMA
3044-20	Directional Coupler 4 to 8 GHz 20 dB Type N
3040-20	Direcitonal Coupler 240 to 500 MC 20dB Type N
3041-20	Directional Coupler 500 to 1000 MC 20 dB Type N
3043-20/	22006 Directional Coupler 1.7 to 4 GHz 20 dB Type N
3003-10/	22011 Directional Coupler 2 to 4 GHz 10 dB Type N
3003-30/	22012 Directional Coupler 2 to 4 GHz 30 dB Type N
3042-20	Directional Coupler 950 to 2 GHz 20 dB Type N
3043-30/	22007 Directional Coupler 1.7 to 3.5 GHz 30 dB Type N
22574	Directional Coupler 2 to 4 GHz 10 dB Type N
3033	Coaxial Hybrid 2 to 4 GHz 3 dB Type N
3032	Coaxial Hybrid 950 to 2 GHz 3 dB Type N
784/	22380 Variable Attenuator 1 to 90 dB 2 to 2.5 GHz Type SMA
22377	Waveguide to Type N Adapter
720-6	Fixed Attenuator 8.2 to 14.4 GHz 6 dB
3503	Waveguide

PRD

U101	12.4 to 18 GHz Variable Attenuator 0 to 60 dB
$\times 101$	8.2 to 12.4 GHz Variable Attenuator 0 to 60 dB
C101	Variable Attenuator 0 to 60 dB
205A/367	Slotted Line with Type N Adapter
1958	8.2 to 12.4 GHz Variable Attenuator 0 to 50 dB
185BS1	7.05 to 10 GHz Variable Attenuator 0 to 40 dB
196C	8.2 to 12.4 GHz Variable Attenuator 0 to 45 dB
170B	3.95 to 5.85 GHz Variable Attenuator 0 to 45 dB
588 A	Frequency Meter 5.3 to 6.7 GHz
140A, C, D, E	Fixed Attenuators
109], 1	Fixed Attenuators
WEINSCHEL ENG	2692 Variable Attenuator +30 to 60 dB

MEMORY
$\$ 50.00$ 75.00 100.00 100.00 100.00
75.00
150.00
100.00
100.00
100.00
150.00
150.00
150.00
175.00
175.00
250.00
250.00
250.00
250.00
650.00
250.00
300.00
75.00
75.00
50.00
100.00
250.00
300.00
300.00
300.00
300.00
100.00 100.00

$$
\begin{array}{r}
250.00 \\
350.00 \\
60.00 \\
35.00 \\
75.00
\end{array}
$$

2708
$2716 / 2516$
$2114 / 9114$
$2114 L 2$
2114 L 3
4027
$4060 / 2107$
$4050 / 9050$
$2111 A-2 / 8111$
$2112 A-2$
$2115 A L-2$
$6104-3 / 4104$
$7141-2$
MCM6641L20
9131

C.P.U.'s ECT.

DESCRIPTION

$1 \mathrm{~K} \times 8$ EPROM

$2 K \times 8$ EPROM 5Volt Single Supply
$1 \mathrm{~K} \times 4$ Static RAM 450 ns
$1 \mathrm{~K} \times 4$ Static RAM 250 ns
$1 \mathrm{~K} \times 4$ Static RAM 350 ns $4 \mathrm{~K} \times 1$ Dynamic RAM $4 K \times 1$ Dynamic RAM $4 K \times 1$ Dynamic RAM 256×4 Static RAM 256×4 Static RAM
$1 \mathrm{~K} \times 1$ Static RAM 55 $4 K \times 1$ Static RAM 320ns $4 K \times 1$ Static RAM 200 ns $4 \mathrm{~K} \times 2$ Static RAM 200ns $1 K \times 1$ Static RAM 300 ns

$\begin{aligned} & \text { MC6800L } \\ & \text { MCM6810AP } \end{aligned}$	Microprocessor 128×8 Static RAM 450ns
MCM68A1OP	128×8 Static RAM 360ns
MCM68B10P	128. $\times 8$ Static RAM 250 ns
MC6820P	PIA
MC6820L	PIA
MC6821P	PIA
MC68B21P	PIA
MCM6830L7	Mikbug
MC6840P	PTM
MC6845P	CRT Controller
MC6845L	CRT Controller
MC6850	ACIA
MC6850P	ACIA
MC6852P	SSDA
MC6852L	SSDA
MC6854P	ADLC
MC6860CJCS	0-600 BPS Modem
MC6862L	2400 BPS Modem
MK3850N-3	F8 Microprocessor
MK3852P	F8 Memory Interface
MK3852N	F8 Memory Interface
MK3854N	F8 Direct Memory Access
8008-1	Microprocessor
8080A	Microprocessor
280CPU	Microprocessor
6520	PIA
6530	Support For 6500 series
2650	Microprocessor
TMS 1000NL	Four Bit Microprocessor
TMS 4024NC	9×64 Digital Storage Buffer (FIFO)
TMS6011NC	UART
MC14411	Bit Rate Generator
AY5-40070	Four Digit Counter/Display Drivers
AY5-9200	Repertory Dialler
AY5-9100	Push Button Telephone Diallers
AY5-2376	Keyboard Encoder
AY3-8500	TV Game Chip
TR1402A	UART
PR14728	UART
PT1482B	UART
8257	DMA Controller
8251	Cormunication Interface
8228	System Controller \& Bus Driver
8212	8 Bit Input/Output Port
MC14410CP	2 of 8 Tone Encoder
MC14412	Low Speed Modem
MC14408	Binary to Phone Pulse Converter
MC14409	Binary to Phone Pulse Converter
MC1488L	RS232 Driver
MC1489L	RS232 Receiver
MC1405L	A/D Converter Subsystem
MC1406L	6 Bit D/A Converter
MC1408/6/7/8	8 Bit D/A Converter
MC1330P	Low Level Video Detector
MC1349/50	Video IF Amplifier
MC1733L	LM733 OP Amplifier
LM565	Phase Lock Loop

smaller thumbwheel switch

A new line of subminiature, digital thumbwheel switches is now available from Unimax Switch Corporation, a subsidiary of the Unimax Group, Inc. Designated as "Series S2D," a single, rear-mounted switch (with up to sixteen positions) will require a panel cutout only 0.748 inch $(19 \mathrm{~mm})$ high by 0.670 inch (17 mm) wide! This size reduction for this type of switch will greatly simplify the job of laying out crowded control panels of modern electronic equipment.

In addition to their small size, the new switches offer all the "traditional" benefits found in Unimax standard digital thumbwheel switches. These include the unique degree of freedom in mounting - any Series S2D switch can be mounted either from the front or the rear of the panel simply by using different sets of end plates (in both instances, end plates fit either the left or right side, which translates into smaller inventories and simplified assembly).

Like standard Unimax digital thumbwheel switches, the new Series S2D units offer Unimax's "No-Hardware" feature - meaning that a wide vari-
ety of switching assemblies can be made by simply snapping together standard switch bodies, dividers, blank bodies, and end plates. Other Series S2D features include a high degree of reliability due to the fact that each switch consists of only five components, and has a life of $1,000,000$ operations.
The new Series offers as standard the nine most widely used output codes; other codes can be supplied on request. Standard output codes include Single-Pole Decimal, 10-Position; 10-Position BCD, Complement only; 10-Position BCD only; 10-Position BCD with Complements; SinglePole, 16-Position, Binary; and Single Pole, Repeating. For more information contact Unimax Switch Corporation, Ives Road, Wallingford, Connecticut 06492 .

CompuClock

CompuClock from Comtronics, Inc., is a free-standing, non-interruptible digital clock, delivering time and date on software command. Time is also visually displayed, and the date appears with the push of a button.

Time and date are delivered on software command to an RS232C computer port as a serial string of 21 ASCII characters. For example:

$$
\begin{gathered}
\text { 03:17:16 PM [SP], 01-31-80 [CR] } \\
\text { [LF] }
\end{gathered}
$$

where [SP], [CR] and [LF] refer to the ASCII codes for space, carriage return and line feed. This output can be supplied to any format desired.

CompuClock has a backup power supply and maintains the time and date precisely in the event of power failure. The visual display goes out to save the battery, but time can be
maintained for up to two weeks until power is restored.

For more information write Comtronics, Inc., 105 N.W. 43rd Street, Boca Raton, Florida 33431, or phone Chuck Staples at (305) 392-8700.

Keithley hand-held DMM

Keithley Instruments announces its first hand-held digital multimeter (DMM). The $31 / 2$ digit Model 130, with a large LCD display is intended to be a technician's tool. Priced at only $\$ 99$, it is a basic instrument, designed to meet the needs of the field service technician. It is easy to use, straightforward, and rugged.

Keithley has gained considerable market share with the complete line of bench digital multimeters that it has brought out in the past two years. The addition of the Model 130 rounds out that line.

A survey conducted by Keithley found that most service technicians prefer rotary switches and liquidcrystal displays (LCD). They also want a hand-held model that is convenient in a bench situation, so the display is the same size, 0.6 inch, as the displays on Keithley's bench instruments.

In addition, the simplicity of construction makes the Model 130 the most rugged hand-held DMM on the market. For more information write Keithley Instruments, Inc., 28775 Aurora Road, Cleveland, Ohio 44139.

mini-mount antennas

A complete line of eight lowpriced miniature antennas, featuring the new Mini-Mag Mount and MiniMount, are now available from Antenna Incorporated.

Designed to fill the need for lowcost business communications antennas, six of the miniature antennas cover the 5 -dB-gain uhf band and two cover the $1 / 4$-wavelength 136 512 MHz band. The $136-512 \mathrm{MHz}$ Model 42013 1/4-wave Mini-Mag magnet-mount antenna is priced at $\$ 21.25$. The mount has a 2 -inch diameter magnet and stands 1-1/4 inches high with the whip adapter; overall length with $136-\mathrm{MHz}$ antenna whip is 20 inches. The electrically equivalent Model 42008 Mini-Mount is priced at $\$ 11.81$. The Mini-Mount is adaptable for installation in either a 3/4-inch or 3/8-inch hole (although the installer must have access to the
underside of the roof in order to use the $3 / 8$ inch mount). It also stands $1-1 / 4$ inches with whip adapter and 20 inches with 136 MHz antenna whip.

The $3 / 8-1 / 4$ inch Mini-Mount is also available on 450 MHz skirt antennas at a price of $\$ 30.00$ in these frequency ranges: $406-420 \mathrm{MHz}$ (Model 43128); $420-435 \mathrm{MHz}$ (Model 43228); $435-450 \mathrm{MHz}$ (Model 43328); $450-470 \mathrm{MHz}$ (Model 43428); 470-490 MHz (Model 43528); 490-512 MHz (Model 43628).

The 3/8-3/4 inch Mini-Mounts come with 17 feet of RG-58/U coaxial cable and PL-259 in-line connectors, as does the 42013 Mini Magnet Mount.

For more information on the new miniature line, and other Antenna Incorporated antennas, write Randall J. Friedberg, Antenna Incorporated, 26301 Richmond Road, Cleveland, Ohio 44146, or phone (216) 464-7075.

When it comes to AMATEUR RADIO QSL's...

ONLY BOOK!
US or DX Listings
zallbooks

Here they are! The latest editions. Worldfamous Radio Amateur Callbooks, the most respected and complete listing of radio amateurs. Lists calls, license classes, address information. Loaded with special features such as call changes, prefixes of the world, standard time charts, world-wide QSL bureaus and more. The new 1980 Radio Amateur Callbooks are available now. The U.S. Edition features over 400,000 listings, over 120,000 changes from last year. The Foreign Edition, over 315,000 listings, over 90,000 call changes. Place your order now.

	Each	Shipping	Total
\square US Callbook	$\$ 16.95$	$\$ 1.75$	$\$ 18.70$
\square Foreign Callbook	$\$ 15.95$	$\$ 1.75$	$\$ 17.70$

Order both books at the same time for $\$ 3465$. includes shipping
Order from your favorite electronics dealer or direct from the publisher. All direct orders add $\$ 1.75$ for shipping Illinois residents add 5\% Sales Tax

SPECIAL LIMITED OFFER!

 Amateur Radio Emblem Patch only $\$ 2.50$ postpaidPegasus on blue field, red lettering. 3 " wide x $3^{\text {" high. Great on jackets and caps. Sorry. no }}$ call letters.

ORDER TODAY!

GROTH-Type COUNTS \& DISPLAYS YOUR TURNS

- 99.99 Turns
- One Hole

Panel Mount

- Handy Logging Area

Spinner Handle Available Case: $2 \times 4^{\prime \prime}$; shaft $1 / 4^{\prime \prime} \times 3^{\prime \prime}$

TC2 $\$ 10.00{ }^{\text {Model TC2: Skirt 2-1/8". }}$
 TC3 \$11.00
 Spinner Handle
 Model TC3: Skirt $3^{\prime \prime}$ Knob 2-3/8'
 Puces $\$ 1.50$
 R. H. BAUMAN SALES
 P.O. Box 122, Itasca, III. 60143

FREE $\underset{\text { fLYER }}{\text { BOOK }}$

Whether you're interested in Amateur Radio, Electronics, Radio Astronomy, Old-Time Radio, VHF, SSB or just novels that involve Amateur Radio - you'll find a large selection of these books and more! Vast inventory of over 200 titles. Send your name and address to:

HAM RADIO'S BOOKSTORE

 Greenville, NH 03048We'll send you our most current book flyer and add your name to our bookstore list.

generators, phase-locked loops, universal appliance timers, as precise clock sources, and many others.

All of the electronic components required to perform the experiments are included with the program. The Heathkit ET-3300 Laboratory Breadboard is a recommended option.

The EE-103 IC Timers course is one of four Electronic Technology Series self-instructional programs. They are designed to provide detailed knowledge for engineers, technicians, and other technical people. Other programs in the series include Operational Amplifiers (EE-101, \$39.95), Active Filters (EE-102, \$29.95), and PhaseLocked Loops (EE-104, \$49.95).

For more information on the EE-103 IC Timers Self-Instruction Program - priced at $\$ 39.95$ mailorder FOB Benton Harbor, Michigan - send for a free catalog containing more than four hundred other useful electronic kits. Write Heath Company, Dept. 350-230, Benton Harbor, Michigan 49022, or pick up a copy at the nearest Heathkit Electronic Center (units of Veritechnology Products Corporation).

Heath Company is a subsidiary of Zenith Radio Corporation.

hand-held digital multimeter

The new Fluke Model 8024A, "The Investigator," $31 / 2$-digit digital multimeter detects logic states, finds loose connections, shorts, hot spots, and peaks (and holds them). Convenient visual and audio indications have also been added.

The 8024A provides all of the ranges, functions, and features of its highly successful predecessor, the Fluke 8020A, plus the ability to detect logic state changes from +0.8 volts (" 0 ") to +2.5 volts (" 1 ") at pulse rates (TTL) up to 20 kHz . An audio indication and arrows on the LCD display indicate "up" and "down", " 1 " or " 0 ".

A peak and hold feature allows the
user to concentrate on taking a reading when working on a sensitive or hazardous circuit then view the reading on the LCD display. This feature is provided for ac/dc volts and ac/dc current and provides a short term memory, also useful in capturing the peak value of a transient signal such as motor starting currents. It also provides the capability of detecting intermittent open circuits in connections or cables, sounding an audible signal as well as providing the visual display.

The 8024A will also read directly in Celsius degrees the output of any type " K " thermocouple, over a range of -20 C to 1265 C . This feature will be important to anyone servicing process control and air conditioning systems, detecting heat rise in electrical motors, and system or circuit components. Whenever it becomes necessary to measure temperature in operating systems or hardware, the 8024 A provides an early and economical solution to these types of problems.

For additional information, write Frank Partin, at John Fluke Mfg. Co., P.O. Box 43210, Mountlake Terrace, Washington 98043, or phone (206) 774-2322.

Antenna Baluns

1 Kw CW, 3 Kw PEP input. For dipoles, inverted Vees, beams, quads.
Dependable. Takes temporary overloads in stride.
Specify 1:1 or $\mathbf{4 : 1}$ ratio.
Model 1K \$32.50

2 Kw CW, 6 Kw PEP input. Far more rugged than any other balun made for amateur use.
Specify 1:1 or $\mathbf{4 : 1}$ ratio.

Model 2K \$42.50

2 Kw CW, 6 Kw PEP input. Our heavy duty balun with mounting bracket for 2"' mast or boom.
Specify 1:1 or $4: 1$ ratio.
Beam Balun \$47.50

Only Palomar Baluns Have All These Features

- RF toroidal core for highest efficiency.
- Teflon insulated wire.
- Stainless steel hardware. Won't rust.
- Epoxy filled case. Waterproof.
- Wideband 1.7 to 30 MHz .
- White case to reflect the sun.
- Lightning protection built in.

Free brochure sent on request
How many lightweight baluns have you burned out already? Install the balun that will stay up there working year after year.

To order, add $\$ 3$ shipping/handling. California residents add sales tax.
nuse caly vish
Palomar Engineers
Box 455, Escondido, CA. 92025 • Phone: [714] 747-3343

Bind 'em and Find 'em

Keep those valuable issues of both Ham Radio and HORIZONS like new. Prevent smears, tears and dog ears. Bind 'em together and enjoy for years to come. You'll be happy you did!

HAM RADIO BINDERS

Beautiful buckram binders complete with date labels. Available in our new large size to accommodate HAM RADIO'S hefty issues \square HR-BDL

Each Just \$6.95, 3 for $\$ \mathbf{1 7 . 9 5}$

HAM RADIO MAGAZINE FILES

Your collection of HAM RADIO Magazines is a valuable resource. Here's a brand new, inexpensive way to store them. These sturdy cardboard magazine files keep them clean, neat and up front where you can use them for quick and easy reference.
\square HR-HRMF
\$1.95 each, 3/\$4.95
HAM RADIO HORIZONS BINDERS
Handsome washable binders complete with date labels.
\square HR-HRDL
Each Just $\mathbf{\$ 6 . 9 5}$, $\mathbf{3}$ for $\mathbf{\$ 1 7 . 9 5}$

HORIZONS MAGAZINE FILES

Your collection of Ham Radio HORIZONS is a valuable resource. Here's a brand new, inexpensive way to store them. These sturdy cardboard magazine files keep them clean, neat and up front where you can use them for quick and easy reference.
\square HR-HRHF
\$1.95 each, 3/\$4.95 ORDER TODAY
Ham Radio's Bookstore greaville, new hampshine o3048 OR CALL TOLL FREE 1 (800) 258-5353
\square HR-BDL $\mathbf{5 6 . 9 5}$ ea.
\square CASH
HR-HRDL $3 / \$ 17.95$
\square Charge
Exp. Card Number
\square HR-HRMF \$1.95 ea. \square HR-HRHF $3 / \mathbf{5 4 . 9 5}$
\square VISA
Exp. Card Number

Name
Address
City
ty State \qquad Zip

IRON POWDER and FERRITE PRODUCTS AMID家 isociates

 Fast, Reliable Service Since 1963Small Orders Welcome
Free 'Tech-Data' Flyer

Toroidal Cores, Shielding Beads, Shielded Coil Forms Ferrite Rods, Pot Cores, Baluns, Etc.

12033 OTSEGO STREET, NORTH HOLLYWOOD, CALIFORNIA 91607

HAM BCAN II

The only full-band scanner with one channel of memory for the following rigs: KENWOOD 7625, 7600, 7400A: KDK 2015R, 2016A: CLEGG FM-28, MIDLAND 13-510: HEATHKIT HW-2036; Others coming soon.

- Adds one channel of memory to any above rig
- Selectable scan range - up to 4 MHz (- by position of radio's MHz switch)
- Scan rate $200 \mathrm{kHz} / \mathrm{sec}$. in 10 kHz steps (-3 -second pause on all active channels)
- Mike-mounted switch provides 3 functions: start/stop. remote frequency incrementing, and transmit interiock while actively scanning
- Scanner mounts inside radio - no external box
- Assembled, tested, and guaranteed - specity type of radio Ask about our TM- 1 timer module, our TC-2 sub-audible tone encoder, and our Ham Scan I tor the Yaesu FT227R
Technical Glinic
P.O. BOX 636

STERLING HTS. MI 48078
Phone Orders Call: [313] 286-4836

Larsen improved magnetic mount

Larsen Electronics, Inc., of Vancouver, Washington, has improved their Magnetic Mount design to give it even stronger holding power and reduce even further the chance of scratching the vehicle finish.

Larsen's super-strength magnetic assembly has been engineered to closer tolerances for more holding power per square inch. Every magnetic mount leaves the Larsen factory fully "charged" to maximum flux density.

In addition, the Larsen Magnetic Mount has a new boot of resilient Nordel that will not crack or harden, even with long-term exposure to weather and sunlight. This rubberlike boot also minimizes the possibility of scratching the finish of the vehicle to which it is attached.

Also, the capacitive coupling shield on the underside of the mount has been beefed up to make it less subject to accidental puncture stress.

For more information, write Larsen Electronics, Inc., P.O. Box 1686, Vancouver, Washington 98668.

confirmation mailers

Here's a neat package that will help you get a return QSL (confirmation of QSO) from those overburdened contest stations or DX operators.

Called Confirmation Mailers (CMs), the mailer is a double postal card, printed on both sides, and arranged so that you (the sender) can fill in the information needed to confirm a contact, from both your station and the guy at the other end. All the recipient needs to do is confirm that the QSO information is correct (date, time, band, report, etc.), and mail half of the card back to you.

The double card can be folded and taped or stapled so you can enclose return postage stamps or IRCs to further induce the other station to confirm the contact.

CMs are priced at $\$ 5.50$ for 30 , and are available from Robert Zittnan, K9UJA, P.O. Box 94973, Schaumburg, Illinois 60193.

STEP UP TOTELREX Professionally Engineered Antenna Systems Single transmission line "TRI-BAND ${ }^{\circ}$ ARRAY"

 on the air comparison ... this array continues to outperform all competition and has for two decades. Here's why

Telrex uses a unique trap design employing 20 HiQ 7500 V ceramic condensers per antenna. Telrex uses 3 opti-mum-spaced, optimum-tuned reflectors to provide maximum gain and true F / B Tri-band performance.

For technical data and prices on complete Telrex line, write for Catalog PL 7

Amateur Radio

Just getting started? This book is ideal for you. It will help you get your first license. Or if you already have your ticket, the book will serve as your handy station manual. Written by Bill Lowry, W1VV, it includes a brief description of major activities, equipment and procedures to help the new ham decide where to begin, what equipment to buy initially, and how to make contacts with other hams after the station is assembled. Most importantly, this book tells the beginner how to study for the test, and presents the facts that must be learned in order to pass the written part of the exam. It includes complete FCC rules and official study guide for all license classes. Also included is a colorful call-area wall map.

Just $\$ 6.95$

- Amateur Radio Poster. Add this beautiful poster to your amateur radio station. Rich-in-color lithograph is produced from artwork shown on Amateur Radio book. Suitable for framing. Just \$3.50

Practical Antennas for the Radio Amateur

Brand new antenna book in a new easy-to-read format with bi diagrams. You've never seen an antenna book quite like this! Writte by well-known author, Robert Myers, W1XT, it tells you how t choose, use and build your antenna system. Here's what you get: Hor to build practical beams, quads and wire antennas . . . Compute generated beam headings to every known country in the world . . Charts and tables to eliminate tricky calculations ... Practical idea for the newcomer . . OSCAR antennas ... Complete bibliography c magazine articles on antennas . . . Antenna safety ... Trick antenna for portable work. . Tips on how to keep your antenna up. Durab vinyl cover.

Only $\$ 9.9$

Ham Radio's Bookstore

Greenville, NH 03048
\square Amateur RadioPoster
\square Practical Antennas

Name
Street \qquad
City \qquad State \qquad Zip \qquad
Please enclose proper amount for books plus $\$ 1.00$ shipping or credit card information.

flog
 4 需回回

RATES Non－commercial ads $10 ¢$ per word；commercial ads 60¢ per word both payable in advance．No cash discounts or agency commissions allowed．

HAMFESTS Sponsored by non－profit organizations receive one free Flea Market ad（subject to our editing）．Repeat inser－ tions of hamfest ads pay the non－ commercial rate．

COPY No special layout or ar－ rangements available．Material should be typewritten or clearly printed（not all capitals）and must include full name and address．We reserve the right to reject un－ suitable copy．Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made．Liability for correctness of material limited to cor－ rected ad in next available issue．
DEADLINE 15th of second preceding month．

SEND MATERIAL TO：Flea Market，Ham Radio，Greenville，N．H． 03048.

OMNI AB SERIES with 217，218，248，243， 6 months old， $\$ 899$ ．SB－221 new，$\$ 500$ ．，SE－634 $\$ 125$ ．，or will trade any of above for Collins gear KWM－2，S－Ilne，30－L1，acces－ sories，etc．John，N1JM，（315）699－3268．

MOBILE HF ANTENNA $3.2-30 \mathrm{MHz}$ inclusive， 750 watts PEP，center loaded，tuned from the base，eliminating coil changing or removing from mount．Less than 1.5 to 1 VSWR thru entire coverage．$\$ 129.95$ ea．plus shipping． Contact your local dealer，if none in your area order direct．Anteck，Inc．，Route One，Hansen，Idaho 83334. （208）423－4100．Master Chg．，and VISA accepted．Dealer and factory rep．inquiries invited．

WANTED：Eimac SK－710 socket for 4CX300．R．Guerin， 24 High Range Rd．，Londonderry，NH 03053．（603）432－ 7305.

VERY In－ter－est－ing！Next 3 Issues \＄1．＂The Ham Trader＂， Wheaton，IL 60187.

NEW，Exciting Amateur Operators＇Picture Yearbook， sponsored by the Firsf United Pentecostal Church，Inc． Send call sign，address，photo，and $\$ 20$ to Lee Kent， WDOFFZ，P．O．Box 236，Maiden，MO 63863．You will receive one copy of the book for each $\mathbf{\$ 2 0}$ ．Tell everyone．

Foreign Subscription Agents for Ham Radio Magazine

Ham Radio Auatria F．Bastl Heuptpiatz 5 A．2700 Wiener Noustadt Austria	Ham Redlo Holland MRL Ectronics Postbus 88 NL－2204 Deift Molland
Ham Redio Belgium Stereohouse Brustolsesteenweg 418 E－9218 Gent Belgium	Ham Radlo Italy G．Vutpetti P．O．Box 37 －22003 Centu Italy
Ham Radio Canada Box 400，Goderich Onterlo，Censide N7A 4C7	Ham Radlo Switzeriand
Ham Radlo Europe Box 444 S－19404 Upplanda Vasby Sweden	
Hem Radio Frence 8m Electronic 20 bis，Ave dop Clarions F－60000 Auxerte France	Hem Rado UK os，HETOW Mlddetex HA3 BHS England
Ham Redio Germany Karin Uabor Postisch 2454 D．7850 Loerrach Weat Germany	Hollend Redio 143 Greenway Greeneide，Johannesburg Fepubilic of South Africe

BUY，SELL，TRADE new and used amateur radio and computer equipment．Monthly publication．Lifetime subscription $\$ 5.00$ ．Send to Nuts \＆Volts，Box 111－F， Placentia，California 92670.

FOR SALE：SATELLITE TV 3．7－4．2 GHz down converter 70 MHz l－f PCB with parts provision for on board local oscillator，$\$ 75.00$ ．Birkill 4 GHz LNA PCB bipolar or gas－ fet，$\$ 15$ ．Both for $\$ 25.00$－SASE to Norman Gillasple， 2225 Sharon Rd．， 224 Menlo Park，CA 94025.
WANTED：Radio Frequency Amplifier AM 494／GR．Any condition，with or without tubes－Top Dollar．K8MKJ， 6128 Lodi Lane，Saline，MI 48176.

SPECIAL SALE：Alliance HD－73 Heavy Duty Rotor $\$ 99.99$ plus $\$ 3.00$ shipping Continental USA．MC and Visa ac－ cepted．Scanner World，USA．，10－H New Scotland Ave．， Albany，NY 12208．518－436－9606．
RECONDITIONED TEST EQUIPMENT for sale．Catalog \＄．50．Walter， 2697 Nickel，San Pablo，CA 94806.

10－40 MHz SYNTHESIZER provides continuous coverage 1－31 MHz in 100 Hertz steps with your $9-\mathrm{MHz}$ L．f．PCB，kit， or wired．SASE for data sheet．Petit Logic Systems，P．O． Box 51，Oak Harbor，WA 98277.

WANTED：Early Hallicrafter receivers，transmitter， accessories，parts，manuals for my collection．Special Interest in silver colored panel recelvers and ones with ＂airplane＂dials．Also need＂ultra Skyrider＂ SX －10， ＂Skyrider Commercial＂SX－12 and others．Chuck Dachis， WD5EOG， 4500 Russell，Austin，TX 78745.
RADIO BROADCAST TECHNICIANS：Voice of America has opportunities in Washington，D．C．for qualified Radio Broadcast Technicians．These positions require a comprehensive background in the recording，mainte－ nance，studio and field areas．Salary range：\＄10．59－\＄14．87 per hour depending on qualifications．U．S．citizenship required．Submit standard Federal application form， SF．171，to International Communication Agency，MGT／ PDE（1－78）Washington，D．C．20547．An Equal Oppor－ tunity Employer．

WANTED：EICO \＃720 or \＃723 xmtr，Hallicrafters HT40 xmtr and HA5 vfo．J．Titus，Box 242，Blacksburg，VA 24060 （703）952－2684．

CB TO 10 METER PROFESSIONALS：Your rig or buy ours－AM／SSB／CW．Certified Communications， 4138 So．Ferris，Fremont，Michigan 49412；（616）924－4561．

MOTOROLA ALL SOLID－STATE MOTRAN RADIOS． Model X43LSN－2170，four frequency，transmit 150 MC （30W），receive 450 MC ．Will operate in Ham Bands．No modification required．Large stock available．$\$ 150.00$ each．Omni Communications．Call（312）852－0738．
QSL＇S：No stock designs！Your art or ours；photos， originals， 504 for samples \＆details（refundable）．Certi－ fied Communications， 4138 So．Ferris，Fremont， Michigan 49412.

HAM RADIO REPAIR，alignment．Prompt，expert， reasonable．＂Grid＂Gridley，W4GJO，Route 2，Box 138E， Rising Fawn，GA 30738.
TRANSMITTER TECHNICIANS：Voice of America has opportunities for qualified technicians at VOA stations near Delano，California，and Greenville，North Carolina． Duties include operations／maintenance of high power shortwave transmitters and related facilities on shift basis．Minimum qualifications：3－years chief broadcast engineer 5 to 50 KW ，or 3 －years supervisor of opera－ tlons／maintenance high power military transmitting plant，or equivalent．U．S．citizenship required．Starting salary $\$ 18,760$ ．Submit standard Federal application form，SF－171，to International Communication Agency， MGT／PDE（1－78）Washington，D．C．20547．An Equal Opportunlty Employer．
MICROWAVE TV downconverters，preamps，parabolic dish antennas，remote tuning．Covers 2000 MHz band． Write for Information．LAB－TRONICS，Box 171，Rogers， MN 55374.

NEED HELP for your Novice or General ticket？Recorded audio－visual theory instruction．No electronic back－ ground requlred．Free information．Amateur License， P．O．Box 6015，Norfolk，VA 23508.

RTTY：Solid state automatic CQer．Board with PROM programmed your call $\mathbf{\$ 2 1 . 5 0}$ ppd．Wired／tested $\$ 29.50$ ppd．SASE for Info．Nat Stinnette Electronics，Tavares， FL 32778.
ATLAS OWNERS OD6－C and 350XL Digital Dial／Frequen－ cy Counters．$\$ 175.00$＋Shipping（Calif．add tax）．Mical Devices，Box 343，Vista，CA 92083.

ANTIQUE（PRE－1950）TELEVIGION SETS WANTED．WII pay top dollar for unusual or preWWII sets，Arnold Chase， 9 Rushleigh Road，West Hartford，Connecticut Chase， 9 Rushleigh
08117 （203） $521-5280$.

10 wats in .75 w Wats out 2 Meter FM or SSB Amplifier Complete Kit Model 875-K
See article in Sept. 79 QST pgs. 11-16
COMMUNICATION CONCEPTS,INC. 2648 North Aragon Ave.
MASTER Dayton. Ohio 45420 CHARGE
Phone: (513) 296-1411

UHF Kits Also Available Send For FREE Data Sheet
 thumb-wheel dial - Accuracy . 00001% at all trequencies - Internal trequency modulation from 0 to over 100 kHz at a 1 kHz rate - Spurs and noise at least 60 dB below carrier - RF output adjustable from 50 to 500 mv across 50 ohms - Operates on 12 vdc (G) $1 / 2 \mathrm{amp}$ • Price $\$ 299.95$ plus shipping

In stock for immediate shipping. Overnight delivery available at extra cost. Phone: (212) 468-2720.

MANUALS for most ham gear 1937/1970. Send 25e for "Manual Catalog." H.I., Inc., Box H864, Council Bluffs, lowa 51502.

SOLAR CELLS . $4 \mathrm{v}, 4^{*}$ diameter, 2 amps . $\$ 8.75,10$ for $\$ 85.00$ plus shipping. Kenneth Foster, 1742 Dowd, St. Louis, MO 63136. (314) 522-6667.

MOBILE IGNITION SHIELDING provides more range with no noise. Available most engines. Many other suppression accessories. Literature, Estes Engineering, 930 Marine Dr., Port Angeles, WA 98362.
TEST EQUIPMENT: Tektronix 1 L20 spectrum analyzer, 1 to $4200 \mathrm{MHz} \$ 1,000.00$. AIL precision test receiver $\$ 300.00$ (used for extremely accurate noise figure measurements). AIL automatic noise meter $\$ 200.00$. Hewlett-Packard noise source, 1 to $500 \mathrm{MHz} \$ 80.00$. K3AP, Parkhurst Drive, Salisbury, MD 21801. (301) 742.7333.

BUY-SELL-TRADE. Send $\$ 1.00$ for catalog. Give name address and call letters. Complete stock of major brands new and reconditioned amateur radio equipment. Call for best deals. We buy Collins, Drake, Swan, etc. Associated Radio, 8012 Conser, Overland Park, KS 66204. (913) 381.5900.

WANTED: A GR 1606AB rt impedance bridge or HP $250 \mathrm{~A} / \mathrm{B}$ RX meter. Please describe condition and price. WOVDJ, 250 Ogden St., Denver, Colorado 80218.

CWISSB FILTERS: IC audio install in any radio, sharp CW, stagger tuned SSB - $\$ 15, \$ 32$. SASE info: W8CBR, 80 W . Mennonite, Aurora, OH 44202.

FREE HAMICOMPUTER NEWSLETTER: Send selfaddressed stamped envelope for your copy. W5YI; P.O. Box \#10101; Dallas, Texas 75207
TO SELL: Mirage B1016 2-meter linear amplifier with pre amp, like new - \$195. Yorx AM-FM stereo 8-track, good condition, $\$ 75$. Radio Shack variable DC supply, good condition, \$15. ADC equalizer, new condition, \$55. Yaesu CPU-2500R 2 meter mobile, like new - $\$ 300$. Optex photostat machine, $\mathbf{\$ 1 0 0}$. Mitchell Rakoff, 643398 th St. Rego Park, NY 11374. Phone: (212) 830-0097.
ICOM INTERNATIONAL USER'S CLUB. Details SASE N8RT, Pohorence, 9600 Kickapoo Pass, Streetsboro, Ohio 44240.

THE MOR-GAIN HD DIPOLES are most advanced, highest performance mult-band HF dipole antennas available. Patented design provides length one-half of conventional dipoles. 50 ohm feed on all bands, no tuner or balun required. Can be installed as inverted VEE. Thousands in use world wide. 22 models available including two models engineered for optimum performance for the novice bands. The Mor-Gain HD dipoles N/T series are the only commercial antennas specifically designed to meet the operational requirements of the novice license. Our 1 -year warranty is backed by nearly 20 years of HD dipole production experience. Write or call today for our 5 -page brochure. (913) 682-3142. MorGain, P.O. Box 329H, Leavenworth, KS 66048.

WANTED: Hallicrafters SX88 Band Selector Drive Belt (Made like timing belt) K9EY, P.O. Box 1225, Bloomington, Indiana 47402.
DX, YOU BET! THE DX BULLETIN - Best weekly DX info in the world. For FREE sample copy, send business-size SASE to: The DX Bulletin, 306 Vernon Avenue, Vernon, Connecticut 06066 .

WANTED: Microwave Dish 6 feet or larger. Willis, W9FGJ, 402 E. Cole St., DuQuoin, II. 62832. (618) 542 2274.

STOP LOOKING for a good deal on amateur radio equipment - you've found it here - at your amateur radio headquarters in the heart of the Midwest. Now more than ever where you buy is as important as what you buy. We are factory-authorized dealers for Kenwood, Drake, Yaesu, Collins, Wilson, Ten-Tec, ICOM, DenTron, MFJ, Tempo, Regency, Hy-Gain, Mosley, Alpha, CushCraft, Swan and many more. Write or call us today for our low quote and try our personal and friendly Hoosier Service. HOOSIER ELECTRONICS, P.O. Box 2001, Terre Haute, Indiana 47802. (812) 238-1456.

SATELLITE TV RECEPTION: 36 -page "How-To" book. Complete reprint of Bob Cooper's 7 -article series from Radio Electronios magazine. $\$ 6$ postpaid, U.S. and Canada. All others add $\$ 3$ postage. N.Y.S. residents add 48c sales tax. Satellite TV Reception, Box C, Radio Electronics, 45 E. 17th Street, New York, N.Y. 10003.

MACROTRONICS M800-M80 RTTY SYSTEM for TSR80 microcomputer. Hardware and software tapes for CW, RTTY, and ASCII. Manual and bulletins. $\$ 130.00$. Write: A. W. Hubbard, 5705 Junonia-S.P. V., Ft. Myers, FL 33908.

HW-2036A WITH MICODER II and QST digital readout. $\$ 205.00$. WD4GRI, 1907 Lodgepole, N. Augusta, SC 29841. (803) $279-6513$.

NEGATIVES MADE FOR PC BOARDS from magazine articles (up to $5^{\prime \prime}$ by 7°). Send page and $\$ 6.00$ or write: Graham Johnson Studio, 2 Spruce Terrace, Portiand, CT 06480.

Coming Events

NEW YORK: HAM-O-RAMA ' 80 on September 12th and 13th at the Erie County Fairgrounds in Hamburg. Exhibits, tech programs, prizes, flea market. Plenty of free parking, free RV hookups. Advance tickets $\$ 3$ contact Ron Brodowski, KC2P, 260 Hilltop Drive, Elma, NY 14059. (716) 652-6754.

RADIO EXPO " 80 " Lake County fair grounds, Rt. 45 \& 120. Sept. $6 \& 7$ - advanced tickets $\$ 2.00, \$ 3.00$ at gate. Write: Radio Expo Tickets, P.O. Box 1532, Evanston, IL 60204. Exhibitor information call (312) BST-EXPO.

ILLINOIS: Fox River Radio League Hamtest, Sunday, August 24th, Kane County Fairgrounds, St. Charies. Free outside flea market - inside display area. Table discounts available. Contact Gary Senesac, KA9ADP, 926 Britta Lane, Batavia, IL 60510 . Tickets: $\$ 1.50$ advance; $\$ 2$ at gate. Contact Jerry Frieders, W9ZGP, 1501 Molitor Rd. Aurora, IL 60505. Talk-in on 146.94.

OHIO: The Way International of New Knoxville Ohio annual Rock Of Ages festival on August 10-16. Christian Music Festival on $3.930,7.230,14.330$, and 146.52 MHz Commemorative "ROA 1980" QSL's will be sent to those stations worked.

NEW JERSEY: The Englewood Amateur Radio Association's 21st annual QSO party from 2000 UTC Saturday. August 16 to 0700 UTC Sunday, August 17 and from 1300 UTC Sunday, August 17 to 0200 UTC Monday, August 18. Phone and CW are considered same contest. A station may be contacted once on each band - phone and CW are considered separate bands. New Jersey stations may work other New Jersey stations. General call is "CQ New Jersey" or "CQ NJ". Suggested frequencies are: 1810, 3535, 3900, 7035, 7135, 7235, 14035, 14280, 21100, $21355,28100,28610,50-50.5$ and $144-146$. Suggest phone activity on even hours; 15 meters on odd hours (1500 to 2100 UTC); 160 meters at 0500 UTC. Exchange consists of QSO number, RST and QTH (ARRL section or country). Logs, showing UTC date and time, band, and emission, must be received no later than September 13, 1980, at: Englewood ARA, Inc., PO Box 528, Englewood, NJ 07631 with "10 SASE enclosed.

NEW JERSEY: Sussex County Amateur Radio Club's second annual hamfest at Sussex County Farm and Horse Show grounds on Plains Rd. off Rte. 206 in Augusta, NJ. Indoor and outdoor flea market. Outdoor sellers at door: \$5 or \$4 preregistered. Indoor sellers: \$6 at door or $\$ 5$ preregistered. $\$ 1$ door prize ticket. Free admission. For info and preregistration: Sussex Co. A.R.C., P.O. Box 11, Newton, NJ 07860 or Ed Woznicki, AC2A. (201) 852-3268. Talk-in on $147.90 / 30$ and 146.52 simplex.

RHODE ISLAND: East Bay Amateur Wireless Association's QSO Party. Two periods: August $161700-0500$ August 17, and August 17 1300-0100 August 18. Stations work other R.I. stations and the rest of the world. Same band may be worked once per band and mode. Frequencies: CW: 1810, 3550, 3710, 7050, 7110, 14050, 21050, 21110, 28050, 28110. Phone: 3900, 7260, 14300, 21360, $28600,50.110,144.2$. Use of FM simplex is encouraged. (NO REPEATERS). Logging: must show: date, time (GMT), call, exchange, band and mode. Deadline: SASE and logs by September 15.

OHIO: Warren A.R.S. Hamfest, August 17, 1980 at the Trumbull Branch, Kent State University. Huge flea market, tech forums, DX programs, dealer displays, XYL activities. QSL W.A.R.A., P.O. Box 809, Warren, Ohio 44482.

FINDLAY HAMFEST: The 38th Annual Findlay Hamfest greets you on Sept. 7th with a fine new indoor/outdoor location, The Hancock Recreational Center, just east of 1.75 exit 161, on the north edge of Findlay, 40 miles south of Toledo. Main Prizes: a TS-120s W/supply, two TR2400^{\prime} 's, and an AT-120 matcher. Tickets $\$ 2.00$ advance and $\$ 2.50$ at the door. Reserve your tables early: $\$ 2.50$ per $1 / 2$. Open Saturday 17:00 till 22:00 for forums and setup, Sunday at $05: 00$. Join the over 6000 people attending Findlay Hamfest this year and spend your bucks on the best! For tickets, info, and reservations send S.A.S.E. to P.O. Box 587 , Findlay, Ohio 45840.

TEXAS: Golden Spread Hamfest and convention on the evening of August 1 and all day August 2 and 3 at the Student Activities Center of West Texas State University, Canyon, Texas. Commercial displays, Swapfest, ARES program, Station operation demonstration, guided tours, bingo, Navy and Army MARS meetings, ARRL forum, Tech sessions and many door prizes. Preregistration is $\$ 5.00$. At the door: $\$ 6.00$. Sponsored by the Panhandle Amateur Radio Club of Amarillo, Texas. Talk-in on 146.07/.67, 147.99/39, and 146.52.

Announcing the Heathkir VY-7401 2-mefer Mil Digital Scanning Transceiver

More features that make the VF-7401 the 2-meter rig that belongs in your shack and vehicle

No more searching through repeater guides while mobiling in unfamiliar territory - your new Heathkit VF-7401 will find the active channels for you. It will even alert you to band openings. You're going to enjoy building your VF 7401 .. and you're going to love using it. The VF-7401, the ultimate 2 -meter rig....from the more than 200 Hams at Heath.

- Adjustable, 15 -watt (nominal), solidstate, narrow-band FM Transceiver. Fully synthesized digital circuitry provides full-band coverage without need for added crystals.
- All-new, state-of-the-art circuits provide the exciting, exclusive features of 1 MHz band width scanning, and Scan Lock/Latch capability on 2-meters.
- A receiver hotter than Heath's HW-2036A teatures dual-gate MOSFET front-end to minimize overload and adjacentchannel interference.
- "Power-up" on a pre-programmed frequency of your own choice, such as your favorite repeater.
- Convenient detachable mike using 4 -pin connector.
- Power to the Micoder II Microphone (if used) eliminates need for a battery,
- Sturdy SO-239 rear-panel antenna jack.
- Chassis-mounted power and external speaker plugs.
- Improved synthesizer, eliminating need for panel mounted sync lock light.
- Tuning for Power Amplifier and output power level adjustment is accessible without removing case.
- Capability of mobile or base operation (with Model VFA-7401-1 AC Power Supply-13.8 V at 4A nominal, transmit).

MINIATURE AUTOMATIC MORSE CODE RADIO STATION IDENTIFIER MODEL - 97813

REDUCED 40\%, NOW \$59.95
COMPLIES WITH NEW FCC RULES, PARTS 89, 91, 93, 95 MULTI-MODE OPERATION: MANUAL, SEMI-AUTO AND AUTO.
MANUAL MODE - A pushbutton switch triggers the identifier which keys the transmitter tor the duration of the ID. cycle.
SEMI-AUTO MODE - The PTT line activates the ID'er it the repeat interval time has elapsed and keeps the transmitter keyed throughout the duration of the 10 cycle
AUTO MODE - The identifier will key the transmitter and 10 every time the repeat interval time has elapsed.

- CONNECTS DIRECTLY TO MICROPHONE AND PTT INPUTS OF MOST TRANSMITTERS. MINIATURE SIZE MAKES IT FEASIBLE TO MOUNT INSIDE THE TRANSMITIER.
- PROGRAMMABLE CODE SPEED, TONE, AND REPEAT TIME
- adjustable code audio level
- PREPROGRAMMED MEMORY ELEMENTS -

254 OR (510 BIT) (OPTIONAL)

- SIZE - 1 X 4 INCHES
- INCLUDES SWITCHES, WIRING AND INSTRUCTION MANUAL.
MODEL 97813 - NOW ONLY $\$ 59.95$ assembled \& tested
MODEL 11765 - Beacon CW ID'er with programmable code speed - great for 1750 meter band - 254 bit memory 510 bit optional • 1.3×2.0 PCB - LIST PRICE $\$ 24.95 / \mathrm{kit}$.
$\$ 34.95 /$ assembied \$34.95/assembled
All orders must be prepaid or C.O.D. allow four weeks deivery CA. res. add sales tax Additional preprogrammed
memory eiements available. Include $\$ 3.00 \mathrm{shpg} / \mathrm{hdig}$ on all orders. One year wartanty.

Securitron Co.

P.O. Box 32145 •San Jose, Ca. 95152

Phone (408) 294-8383

Digitrex Electronics

Portable 600 MHz

Frequency Counter $\mathbf{0}^{1600 \mathrm{MAZ}}$ Rang
 - 1 KHz or 100 Hz Resolution - Assemtiod and Tested © $\mathbf{\$ 6 9 . 9 5}$

Cigitrex Electronics | Michingan 48073 | 3136519247 |
| :--- | :--- |

NOT A SUBSCRIBER?

Use the handy card between pages 92 \& 93 .

PENNSYLVANIA: Butler County Amateur Radio Association's hamfest on Sept. 7 in the Butler Farm Show Grounds at Roe Airport. Free parking, \$1.00 donation admission. Overnight camping welcome. Handicap parking available. Food and refreshments. Many prizes including Kenwood TS-520 SE Transceiver, specials and others. For more info: Dan Metrick, WA3GDS, 130 Rieger Rd., Butler, PA 16001. (412) 283-1719.

MAINE: The Sandy River Amateur Radio Club will hold a Hamfest/Flea Market on Saturday and Sunday, August 16th and 17th, 1980, at the Farmington Fair Grounds, Farmington, Maine. Admission will be $\$ 1.00$. No charge for tailgating. Commercial dealers welcome. Door prizes both days and a raffle on Sunday at 1:00 P.M. Free camping available from Friday starting at 5:00 P.M. until Sunday afternoon. Refreshments and snacks during the days and a lobster or chicken dinner late Saturday afternoon. Talk in on 146.37/97 and 146.52. For information and map, send S.A.S.E. to Charles Stenger W1HTG, Box 111, East Dixfield, Maine 04227.

VIRGINIA STATE ARRL CONVENTION: The Fifth Annual Tidewater Hamfest and ARRL Virginia State Convention will be in the great new Virginia Beach, Virginia Arts and Conference Center, October 4 and 5, 1980. ARRL, Traffic, DX Forums, XYL free bingo and lounge. Admission $\$ 3.50$. Advance admission ticket drawing for Kenwood FM transceiver. Flea market spaces $\$ 3.00$ day. Ticket and information - TRC, P.O. Box 7101, Portsmouth. Virginia 23707 SASE.

NEW JERSEY: The Ramapo Mountain Amateur Radio Club will hold its annual flea market on Saturday, August 16. 1980, at the American Legion Hall, Oak Street. Oakland, New Jersey. Indoor tables are $\$ 5.00$ and tailgating is $\$ 3.00$. No admission fee for buyers. Refreshments will be available on premises. Talk in on 147.49/146.49 WR2AHD or 146.52 simplex. Call Bud Hauser WA2JUO at 201-797-8471 or 791-0589 for advance reservations and information.

THE ANNUAL LAPORTE COUNTY HAMFEST will be held rain or shine, Sunday, Aug. 24, 1980, at the County Fairgrounds on Highway 2, west of LaPorte, Indiana (50 miles S.E. of Chicago). Paved flea market area outdoors. Indoor tables $\$ 1.00$ each. Overnight trailer hookups available on site for early birds. Advance tickets $\$ 2.00$ with SASE to P.O. Box 30, LaPorte, IN 46350.
OHIO: The 44th annual Cincinnati Hamfest will be September 21. Location: Stricker's Grove on State Rte. 128 in Ross, Ohio. Exhibits and booths, prizes, flea market, entertainment and a sensational and thrilling air show by The Hawks. Admission and registration: $\$ 4.00$ in advance. For information, contact W8ALW, WABSTX, or K8CKI.
INDIANA: 10th annual Lafayette Hamfest will be Sunday, August 17 at the Tippecanoe County Fairgrounds in Lafayette, 18 th St. at Teal Rd. Flea Market set-ups can be made anytime after 1800 hours Saturday. Pre-registramade anytime after 1800 hours Saturday. Pre-registra-
tion and grand prizes will be ICOM IC-2A Synthesized 2 M Hand-held with Tone Pads and Chargers. Also B\&W AC-DC portable TV and others. Refreshments available. Cost: $\$ 2.50$ each by mail in advance to qualify for preregistration prize or at the gate. Mail orders: Send SASE with check or money order to K9KRE, J. B. Van Sickle, R. R. \#1, Box 63, West Point, IN 47992. Talk-ins on 146.73 repeater and 146.94 simplex. Call in station is W9REG.

NEW YORK: Seaway Valley Hamfest at Louisville, N.Y. in the Louisville Municipal Arena on September 7. Turn south off Rt. 37 near Rt. 131 and Louisville School. Host Club: Massena Amateur Radio Club. Registration and Flea Market: 9:00 A.M. Activities: Flea Market, door prizes, raffles, auction, ladies program, children's activities and others. Registration and door prizes: $\$ 2.50$ Adv. sales: $\$ 2.00$. Children under 12 free. Ticket Manager: Lois Ierlan, WA2RXQ, 725 Proctor Ave., Ogdensburg, NY 13669.

WEST VIRGINIA: Cedar Lakes Hamfest on August 10 at the Cedar Lakes FFA-FHA Conference Center, Ripley, WV. Flea Market, Forums, Demonstrations, Prize Drawings, Ladies and Children Activities. Cafeteria on grounds. 9 A.M. to 4 P.M. Talk-In on 146.52l.52 and 146.071.67. Advanced tickets $\$ 2.00-3$ for $\$ 5.00 . \$ 2.50$ at the door. Bob Morris, WABCTO, 308 Edgewood Circle, Ripley, WV 25271.

WASHINGTON: Radio Club of Tacoma's 14th annual "Hamfair" will be on August 23rd and 24th at Pacific Lutheran University, Tacoma, Wash. Door prizes, flea market, banquet, exhibits, and much more. Contact Joe Winter, 819 N . Mullen, Tacoma, WA 98406. Talk-in on 88/28.

NEW JERSEY: Gloucester Co. A.R.C.'s second annual hamfest on August 24 from 8 to 3 at the Gloucester County College, Tanyard Rd., Sewell. Tailgaters set up at 7:00. Indoor and outdoor spaces available. Food and prizes. Tickets $\$ 2.00$ in advance, $\$ 2.50$ at the door. Dealers and tailgaters $\$ 5.00$. Talk-in on . 52 and .78 .18 . For info and tickets, contact Bob Grimmer, KN2QWO, 229 William Ave., Barrington, NJ 08007.

INDIANA: Crooked Lake's 22nd annual hamfest and F.M picnic. Door prizes, large electronic flea market, overnight camping (small fee), bar-b-q, and big exhibition hall. Tickets: $\$ 2.00$ by donation. Talk-in on 147.81/.21 and 146.52. August 3. Presented by the Steuben County Radio Amateurs.

DELAWARE: Fifth annual New Delmarva Hamfest on August 17th at Gloryland Park, Bear, Del. Admission: $\$ 2.00$ in advance, $\$ 2.50$ at the gate. Tailgating. $\$ 2.50$. Tables under pavilion, $\$ 4.00$. Prizes, food, etc. Talk-in on .52 and .131 .73 . For more info, send SASE to Stephen Momot, K3HBP, 14 Balsam Rd., Wilmington, DE 19804.

ALABAMA: North Alabama Hamfest on August 17 at the Von Braun Civic Center in Huntsville, AI. Free admission. Prizes, exhibits, forums, flea market, ladies activities, and tours of the Alabama Space and Rocket Center. Hamfest supper on Satuday night. Camping sites with hookups available on a first-come, first-serve basis. Flea market tables available for $\$ 3.00$. Talk in on 3.965 and .34/.94. Write: NAHA, P.O. Box 423, Huntsville, AL 35804.

KENTUCKY: Bluegrass Amateur Radio Club's annual Central Kentucky Hamfest on August 10 at the Fasig. Tipton Sales Paddock, Newtown Pike, Lexington, Ky Grand prizes, hourly door prizes, manufacturer's ex hibits, indoorloutdoor flea market, forums and guest speakers. More info: SASE Edward B. Bono, WA4ONE, 2077 Dogwood Dr., Lexington, KY 40504.

FLORIDA: Jacksonville hamfest and ARRL Florida State Convention on August 2nd and 3rd at the Orange Park Kennel Club. Intersection of 1-295 and U.S. Highway 17. Interesting programs and forums, with exhibits and displays. Special hotel rates available. Advanced registration: $\$ 3.00, \$ 3.50$ at door. Jacksonville Hamfest, 1249 Cape Charles Ave., Atlantic Beach, FL 32233. Swap tables: $\$ 5.00$. Order from Andy Burton, WAATUB, 5101 Younis Rd., Jacksonville, FL 32218.
ILLINOIS: Rockford Amateur Radio Association's hamfest and A.R.R.L. Convention on August 31 at the Grand Exhibition Hall, Winnebago County Fairgrounds, Pecatonica, IL. Speakers, seminars, presentations, contests, commercial dealers, and more. More info: James L. Ambruoso, Hamfest Chairman, Rockford Amateur Radio Assoc., 3712 Huffman BIvd., Rockford, IL 61103.

CALIFORNIA: The Antelope Valley A.R.C.'s DXpedition to Alpine County on August 16 and 17. All bands, modes and county hunter nets used. Operated under K6OX. All QSO via K6GXO, sase necessary. Plans may change due to weather or availability of gas. More info: K6OX, Box 1221, Lancaster, CA 93534.
OHIO: DX-Pedition to the Center of the World will be operated by the Warren Amateur Radio Club, from 1300 GMT August 2, to 2000 GMT August 3. Freqs. are 28.625, $21.360,14.285,7.235,3.900 \mathrm{MHz}$ SSB. Also 21.125 for CW fans. QSL for a beautiful certificate with a large SASE to WBVTD, Box 809, Warren, OH 44482.
ILLINOIS: Hamfester's Radio Club's 46th annual hamfest on August 10 at Santa Fe Park, 91 st and Wolf Rd.. Willow Springs, III. More info: Les Taylor, WB9ZPP, Hamfest Chairman, 8960 W. 105th St., Palos Hills, IL 60465.

VERMONT: Burlington Amateur Radio Club's International Hamfest on August 9th and 10th at the Old Lantern Campgrounds 14 miles south of Burlington. Flea Market. Commercial exhibitors, traditional Can-am tug-of war and door prizes. Admission: $\$ 4.00$. For more information, contact Hap Preston, WiVSA, Box 312. Burlington, VT 05402. Talk-in on .34/.94, W1KOO/RPT.

CONNECTICUT: Super Scarafest " 80 " at the North Haven Ramada Inn at Exit \#12 of 1.91 in North Haven, CT. Held on August 16 \& 17. Exhibits, giant flea market, and on Sunday, an all day auction. Prizes all day both days. Grand prizes will include a solid state low band transceiver, synthesized two meter handie-talkie, microcomputer, 600 MHz frequency counter, and over 60 others. Call Jeff Wayne, W1YLV at (203) 281.6038 between 9 A.M. and 9 P.M., E.S.T. for more details.
ILLINOIS: Illiana Repeater System, Inc. Amateur Radio Club's 11th annual hamfest will be August 30 and 31 at the Georgetown, Illinois fairgrounds. Advanced donations are $\$ 1.50$ for adults and $\$ 2.00$ at the gate. Children 14 and under are free. Flea markets, commercial exhibitors, RTTY setups, antique wireless Assn. display, homebrew builders contest, USAF MARS station and other interests. Meals and refreshments served. Overnight camping available. For more into or advanced tickets send SASE to Illiana Repeater System, inc., P.O. Box G, Catlin, IL 61817.

OHIO: Union County Amateur Radio Club's Hamfest 80 on August 23 and 24 at the Fairgrounds in Marysville, Ohio. Talk-in on .52 or use club repeater 147.99/39. Door prizes. Huge swap area, and plenty of good food. For more info: U.C.A.R.S., 13613 US 36, Marysville, OH 43040.

FALL TUNE UP TIME

Check-Tune your rig for maximum power use B \& W

 Dummyload-Wattmeter

Model 334A
Freq. Range: DC-300 MHz VSWR: Less than 1.3:1
Power Range: Up to 1000 watts

Model 374

Freq. Range: DC-300 MHz VSWR: Less than 1.3:1 Power Range: Up to 1500 watts

Model 333

Medium Power Model
Freq. Range: DC-300 MHz
VSWR: Less than 1.3:1
Power Range: Up to 250 watts

Barker \& Williamson, Inc. 10 Canal Street, Bristol, Pa. 19007

YAESU FT-207R OWNERS AUTOMATIC SCAN MODULE

15 minutes to install; scan restarts when carrier drops off; busy switch controls automatic scan on-off; includes module and instructions.
Model AS-1.
$\$ 25.00$
ENGINEERING CONSULTING
P. O. BOX 94355

RICHMOND, B. C. V6Y2A8, CANADA

NEW ELECTRONIC PARTS

> Brand name, first line components. Stocked in depth. 24 hour delivery. Low prices and money back guarantee on all products we carry. STAMP bRINGS CATALOG
Daytapro Electronics. Inc. 3029 N WILSHIRE LN, ARLINGTON HTS, ILL 60004 PHONE 312-870-0555

I PAY CASH

for your military surplus electronics If you have or know of availability: TT-98 TT-76 Teletypewriter phone me collect
Dave - (213) 760-1000

- HEAVY DUTY • HIGH QUALITY • RUGGED • RELIABLE •

SPECIAL FEATURES

- SOLID STATE ELECTRONICALLY REGULATED
- FOLD-BACK CURRENT LIMITING Protects Power Supply from excessive current \& continuous shorted output.
- CROWBAR OVER VOLTAGE PROTECtIon on Models RS-7A RS-12A, RS-20A, RS-35A, RS-20M \& RS-35M
- MAINTAIN REGULATION \& LOW RIPPLE at low line input Voltage.
- HEAVY DUTY HEAT SINK - CHASSIS MOUNT FUSE
- three conductor power cord
- ONE YEAR WARRANTY - MADE IN U.S.A.
- VOLT \& AMP METER ON MODELS RS-20M \& RS-35M

PERFORMANCE SPECIFICATIONS

- INPUT VOLTAGE 105 - 125 VAC
- OUTPUT VOLTAGE: 13.8 VDC ± 0.05 volts (Internally Adjustable: $11-15 \mathrm{VDC}$)
- RIPPLE Less than $5 m v$ peak to peak (full load \& low line)
- REGULATION +05 volts no load to full load \& low line to high line Price
- Regulafion 05 voits no load to full load \& low line to hign line Price

ASTRON 20 AMP REGULATED POWER SUPPLY Model RS-20M 16 Amps continuous
20 Amps ICS*
$5^{\circ}(\mathrm{H}) \times 9^{*}(\mathrm{~W}) \times 10.5^{\circ}(\mathrm{D})$
Price
$\$ 117.95$
Other popular POWER SUPPLIES alizo available: (Same features and specitications as above)

Model	Continuous Duty (amps)	ICS (amps)	Size (in.) H \times W \times D	Shipping Wt. (lbs.)	Price
RS-35M	25	35	$5 \times 11 \times 11$	29	$\$ 167.95$
RS-35A	25	35	$5 \times 11 \times 11$	29	$\$ 149.95$
RS-20A	16	20	$5 \times 9 \times 101 / 2$	20	$\$ 99.95$
RS-12A	9	12	$41 / 2 \times 8 \times 9$	13	$\$ 74.95$
RS-7A	5	7	$33 \times 61 / 2 \times 9$	8	$\$ 54.95$
RS-4A	3	4	$33 \times 61 / 2 \times 9$	5	$\$ 39.95$

${ }^{\top}$ ICS - Intermittent Communication Service (50% Duty Cycle) If not available at your local dealer, please contact us directly.

Inside View - RS-12A

1971 South Ritchey Street Santa Ana. CA 92705
(714) 835-0682

Arizona

POWER COMMUNICATIONS

 CORPORATION6012 N. 27TH AVE.
PHOENIX, AZ 85017
602-242-6030 or 242-8990
Arizona's \#1 "Ham" Store. Yaesu,
Kenwood, Icom and more.

California

C \& A ELECTRONIC ENTERPRISES 2210 S. WILMINGTON AVE.
SUITE 105
CARSON, CA 90745
213-834.5868
Not The Biggest, But The Best -
Since 1962.

JUN'S ELECTRONICS

11656 W. PICO BLVD.
LOS ANGELES, CA 90064
213-477-1824 Trades 714-463-1886 San Diego
The Home of the One Year Warranty - Parts at Cost - Full Service.

QUEMENT ELECTRONICS

1000 SO. BASCOM AVENUE
SAN JOSE, CA 95128
408-998-5900
Serving the world's Radio
Amateurs since 1933.

SHAVER RADIO, INC.
1378 S. BASCOM AVENUE
SAN JOSE, CA 95128
408-998-1103
Atlas, Kenwood, Yaesu, KDK, Icom, Tempo, Wilson, Ten-Tec, VHF Engineering.

Connecticut

HATRY ELECTRONICS

500 LEDYARD ST. (SOUTH)
HARTFORD, CT 06114 203-527-1881
Connecticut's Oldest Ham Radio Dealer.

THOMAS COMMUNICATIONS
95 KITTS LANE
NEWINGTON, CT 06111
203-667.0811
Authorized dealer for Kenwood,
Yaesu, Drake, Icom, etc. CALL US!

Delaware

DELAWARE AMATEUR SUPPLY 71 MEADOW ROAD
NEW CASTLE, DE 19720 302-328-7728
ICOM, Ten-Tec, Swan, DenTron, Tempo, Yaesu, Azden, and more. One mile off l-95, no sales tax.

Florida

AGL ELECTRONICS, INC.
1898 DREW STREET
CLEARWATER, FL 33515
813-461-HAMS
West Coast's only full service
Amateur Radio Store.
AMATEUR RADIO CENTER, INC. 2805 N.E. 2ND AVENUE MIAMI, FL 33137
305-573.8383
The place for great dependable names in Ham Radio.

RAY'S AMATEUR RADIO

1590 US HIGHWAY 19 SO.
CLEARWATER, FL 33516
813-535-1416
Atlas, B\&W, Bird, Cushcraft, DenTron, Drake, Hustler, Hy-Gain, Icom, K.D.K., Kenwood, MFJ, Rohn, Swan, Ten-Tec, Wilson.

Illinois

AUREUS ELECTRONICS, INC.
1415 N. EAGLE STREET
NAPERVILLE, IL 60540
312-420-8629
"Amateur Excellence"

ERICKSON COMMUNICATIONS, INC.
5456 N. MILWAUKEE AVE.
CHICAGO, IL 60630
Chicago - 312-631-5181
Outside llinois - 800-621-5802
Hours: 9:30-5:30 Mon, Tu, Wed \& Fri.; 9:30-9:00 Thurs; 9:00-3:00 Sat.

Kansas

ASSOCIATED RADIO

8012 CONSER, P. O. BOX 4327
OVERLAND PARK, KS 66204 913-381-5900
America's No. 1 Real Amateur Radio Store. Trade - Sell - Buy.

Maryland

THE COMM CENTER, INC.
LAUREL PLAZA, RT. 198
LAUREL, MD 20810
800-638-4486
Kenwood, Drake, Icom, Ten-Tec,
Tempo, DenTron, Swan

> \& Apple Computers.

Massachusetts

TEL.COM, INC.
675 GREAT ROAD, RT. 119
LITTLETON, MA 01460

617-486-3040

The Ham Store of New England You Can Rely On.

TUFTS RADIO ELECTRONICS

206 MYSTIC AVENUE
MEDFORD, MA 02155
617-391-3200
New England's friendliest ham store.

Minnesota

PAL ELECTRONICS INC. 3452 FREMONT AVE. NO. MINNEAPOLIS, MN 55412 612.521-4662

Midwest's Fastest Growing Ham Store, Where Service Counts.

New Hampshire

EVANS RADIO, INC.
BOX 893, RT. 3A BOW JUNCTION CONCORD, NH 03301
603-224-9961
Icom, DenTron \& Yaesu dealer.
We service what we sell.

Imateur Radio Dealer

New Jersey

RADIOS UNLIMITED
P. O. BOX 347

1760 EASTON AVENUE
SOMERSET, NJ 08873
201-469-4599
New Jersey's Fastest Growing Amateur Radio Center.

ROUTE ELECTRONICS 46
225 ROUTE 46 WEST TOTOWA, NJ 07512 201-256-8555
Drake, Swan, DenTron, Hy-Gain, Cushcraft, Hustler, Larsen, Etc.

WITTIE ELECTRONICS

384 LAKEVIEW AVENUE CLIFTON, NJ 07011
(201) 546-3000

Same location for 63 years. Full-line authorized Drake dealer. We stock most popular brands of Antennas and Towers.

New Mexico

PECOS VALLEY

AMATEUR RADIO SUPPLY
115 W. WALNUT ST.
ROSWELL, NM 88201
505-623-7388
Your DX, Contest, and Antenna Headquarters featuring A.E.A., Hy-Gain, Azden, Butternut, and Most Major Brands.

New York

GRAND CENTRAL RADIO

124 EAST 44 STREET NEW YORK, NY 10017 212-599-2630
Drake, Kenwood, Yaesu, Atlas, Ten-Tec, Midland, DenTron, Hy-Gain, Mosley in stock.

HAM-BONE RADIO

3206 ERIE BLVD. EAST
SYRACUSE, NY 13214
$315-446-2266$
We deal, we trade, all major brands! 2-way service shop on premises!

HARRISON RADIO CORP.
20 SMITH STREET
FARMINGDALE, NY 11735
516-293-7990
"Ham Headquarters USA" since 1925.
Call toll free 800-645-9187.

RADIO WORLD

ONEIDA COUNTY AIRPORT
TERMINAL BLDG.
ORISKANY, NY 13424
Toll Free 800-448-7914

$$
\text { NY } \quad 315-337-2622
$$

Res. 315-337-0203
New \& Used Ham Equipment.
See Warren K2IXN or Bob WA2MSH.

Ohio

UNIVERSAL AMATEUR RADIO, INC. 1280 AIDA DRIVE
COLUMBUS (REYNOLDSBURG) OH 43068
614-866-4267
Complete Amateur Radio Sales and Service. All major brands - spacious store near I-270.

Pennsylvania

HAMTRONICS, DIV. OF
TREVOSE ELECTRONICS
4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215-357-1400
Same Location for 30 Years.

LaRUE ELECTRONICS

1112 GRANDVIEW STREET SCRANTON, PENNSYLVANIA 18509 717-343-2124
ICOM, Bird, Cushcraft, CDE, Ham-Keys, VHF Engineering,
Antenna Specialists.

SPECIALTY COMMUNICATIONS
2523 PEACH STREET
ERIE, PA 16502
814-455.7674
Service, Parts, \& Experience
For Your Atlas Radio.

TELL YOUR FRIENDS	
ham	
ralo	
1 year subscription	$\$ 15.00$
HAM RAD greenvili	MAGAZINE NH 03048

TheBest Got Better

MODEL 4381 RF POWER ANALYST
This new generation
RF Wattmeter with nine-mode
system versatility reads.
IN STOCK QUICK DELIVERY authorize Ditil distributor

associates
115 BELLARMINE
ROCHESTER, MI 48063
CALL TOLL FREE
800-521-2333
IN MICHIGAN 313-375-0420

Advertisers \mathbf{V} check-off

... for literature, in a hurry - we'll rush your name to the companies whose names you "check-off"

Place your check mark in the space petween name and number. Ex: Ham Radio 234

Ace Comm. __ 850	Henry ._. 062
AEA _ _ 677	Hustler _-... 171
Alaska Microwave __ 826	Icom*
Aluma _ 589	Int. Crystal __. 066
Amidon ___ 005	Jameco __ 333
Antenna Inc. __ 686	Jones __ 626
Astron _-_ 734	Kantronics *
Atlantic Surplus *	Keithley __ 837
Avanti __ 775	Kenwood*
Barker _ 015	Larsen __ 078
Barry*	MFJ _ . 082
Bauman ._- 017	MHz Elec. _ـ 415
Bital _ _ 817	Madison __ 431
Budwig __ 233	Microcraft __ 774
Cal Crystal __ 709	P.C. Elec. __ 766
Comm. Concepts _ 797	Palomar Eng. *
Comm. Spec. __ 330	Callbook__ 100
Comtronics Inc. ___ 852	Radio Expo *
DCO __ 324	Radio World *
Dave*	Ramsey ___ 442
Davtapro ___ 455	Securitron__ 461
Dexcel __ 851	Shure _ 771
Digitrex __ 823	Skytec __ 704
E. T. O. -	Spec. Int. _ 108
Elec. Research Virginia *	Tech. Clinic__ 845
Eng. Consulting*	Telrex*
Fox-Tango __ 657	Ter-Tec*
Fluke __ 049	Unimax Switch ___ 841
G \& C Comm. _ 754	Vanguard __ 716
GLB _ 555	Varian __ 043
$\mathrm{Hal}_{\ldots} \ldots 057$	Webster Assoc. \qquad 423
Hal-Tronix _ 254	Western Elec."
H. R, Bookstore \qquad 150 Horizons *	Yaesu__ 127
H. R. Magazine *	Zitnan *
Heath ___ 060	

*Please contact this advertiser directly Limit 15 inquiries per request.

August, 1980

Please use before September 30, 1980

Tear off and mail to
 HAM RADIO MAGAZINE - "check off'
 Greenville, N. H. 03048

NAME.
CALL

STREET

CITY

STATE

AU-GUSTO

ALPHA 76, 374, 78 in Stock...... Call
Cushcraft "boomer" 69.95
OMNI-J2 Meter Antenna 39.95
Bird 43 and slugs, UPS paid in USA stock Microwave Modules, Less 10% off list
stock
Telrex TB5EM, in stock 425.00
Telrex TB6EM 540.00
Complete Line Monobanders. . . . stock
New Telrex TB5ES, 2KW
Pep version. 315.00
Robot 800 Keyboard 699.00
Bencher Paddles, Standard 39.95
Bencher Paddles, Chrome 49.95
Vibroplex Paddles and bugs. . . . stock
Lunar 6M-2M-220 In-line Preamps stock
Janel QSA-5 41.95
HAM-X Tailtwister Rotor 239.00
HAM-4 Rotor. 169.00
Cetron or GE 572B 32.00/ea
GE, AMPEREX, Raytheon 6146B . 9.95
Motorola HEP170 0.29
Mallory 2.5A/1000 PIV Epoxy diode 0.19
Sprague 100MFD/450VDC Cap... 2.00
Aerovox 1000PF/500V Feedthru Cap1.95
Adel Nibbling Tool 8.45

Technical books: Ameco, ARRL, Sams,
TAB, Rider, Radio Pub., Callbook,
Cowan, WRTVH, etc. Call
New Belden 9405 (2\#16) (6\#18) 8 wire
Rotor cable, heavy duty for
long runs 0.38/ft
84488 wire Rotor Cable........ . . . $24 / \mathrm{ft}$
9888Double Shield RG8 Foam . 0.56/ft
8214 RG8 Foam 0.32/ft
8237 RG8 Regular. 0.28/ft
8267 RG213. 0.36/ft
9251 RG8 A/U 0.42/ft
Belden \#8000 14GA
Stranded Antenna wire 0.10/ft.
Amphenol Silverplate PL259 (831SP)
1.00

Berktex RG8X 52 OHM, KW . . . 0.19/ft.

> Need a schematic?
> We've got'em - $\$ 2.00$

ICOM IC 2A HANDHELD
W/TTP, battery pack, Rubber Duck and charger $\$ 229.00$

Looking for antique parts? Write specific need to W5GJ.

THIS MONTH'S SPECIALS:
New IC720, AC - Call
New ICOM, IC251A - 2M $\$ 599.00$ IC55ID - 6M-100W \$599.00 IC551 \$399.00
Kenwood TS-180S/DFC - SSB
Call for quote
Bearcat 250, 220............... 299.00
Bearcat 300. 399.00

MASTER CHARGE • VISA

All prices fob Houston except where indicated. Prices subject to change without notice, all items guaranteed. Some items subject prior sale. Texas residents add 6\% tax. Please add postage estimate. $\$ 1.00$ minimum.

Electronics Supply, Inc.
1508 McKinney • Houston, Texas 77002 713/658-0268

Advertisers ${ }^{\mathrm{N}} \mathrm{N}$ deX
Ace Communications inc. 55
Advanced Electronics Applications 32
Alaska Microwave Labs 88
Aluma Tower Company 93
Amidon Associates 84
Astron Corporation 91
Attantic Surplus Sales 60
Avanti Research \& Development 71
Barker \& Williamson, Inc. 91
Barry Electronics 19
Bauman, R. H. Sales Company 82
Bilal Company 84
Budwig Mtg. Company 60
Cal Crystal Lab, Inc 65
Communication Concepts, Inc 88
Communications Specialists 10. 11
DCO, Inc 65
Dave. 91
Daytapro Electronics 91
Dexcel 23
Digitrex Electronics90
Ghrhorn Technological Operation 60
Electronic Research Corp. of Virginia 96
Engineering Consulting Services 91
ox-Tango Corp 71
G \& C Communications 52
GLB Electronics 60
Hal Communications Corp 33
Hal-Tronix 22
Ham Radio's Bookstore
$52,58,71,72,73,82,84,86,88,90,95,96$
Ham Radio Horizons. 32
Ham Radio Magazine 88
Heath Company 89
Henry Radio Stores Cover 1
Hustler, inc. 60
lcom America, Inc.5
International Crystal Mfg. Co. 95
Jameco Electronics 59
Jones, Marlin P. \& Associates 87
. 82
Trio-Kenwood Communications, In 48, 49
Larsen Antennas 43
MFJ Enterprises 2
MHz Electronics 76, 77, 78, 79
Madison Electronics Supply 29.9
Microcraft Corporation 85, 96
P C Electronics 55
Palomar Engineers 83
Radio Amateur Callbook 81
Radio Expo 44
Radio World 85
Ramsey Electronics 63
Securitron 90
Shure Brothers Inc. 1
Skyter 60
Spectronics53
Spectrum Internationa 37
Technical Clinic 84
Telrex Laboratories 85
Ten-Tec 9
Vanguard Labs 88
Varian, Eimac Division Cover IV
Webster Associates 93
Western Electronics 96
Yaesu Electronics Corp Cover III

1980 HANDBOOK

STEP INTO THE 80'S WITH THE LATEST HANDBOOK FROM THE EDITORS AT ARRL

NEW LOW PRICE!! WAS $\$ 10$, NOW JUST $\$ 7^{95}$

Full of exciting new features for the 80 's, NOW is the time to order your copy of the 1980 ARRL "RADIO AMATEUR'S HANDBOOK." Internationally recognized and universally consulted, every Amateur should have the latest edition. The new HANDBOOK covers virtually all of the state-of-the-art developments in electronics theory and design. Novices will find it to be an indispensable study guide, while the more advanced Amateur will enjoy building the many new projects.
\square Order AR-HB80
Softbound $\mathbf{\$ 7 . 9 5}$
\square Order AR-BB80
Hardbound $\$ 15.75$

HAM RADIO'S BOOKSTORE

GREENVILLE, N. H. 03048
(800) 258-5353

INTERNATIONAL CRYSTAL MANUFACTURING CO., INC.
10 N. Lee, Oklahoma City, Oklahoma 73102, 405-236-3741

ERC Promises Up To The Minute State-Of-The-Art Design and Performance

Four Simultaneous Filters in One for Unparalleled QRM Free Reception (SSB \& CW) \star Plus a Special Patented CW Processor *

The brand new SL-56 Audio Active Filter supercedes our SL-55 in both concept and performance. Consolidation of many components has allowed us to make 13 operational amplifiers (compared to 6 in the SL-55) into a filter guaranteed to out perform any other at a cost only slightly higher than the SL-55. The features of the SL-56 are so advanced from its predecessor that calling it the SL-55A is not justified. Unlike other filters that simply offer a choice of one or two filter types at a time (notch, bandpass, etc.) SL56 provides what is really needed - the simultaneous action of a 6 pole 200 Hz fixed highpass filter and a 6 pole 1600 Hz fixed lowpass filter with a 60 dB notch which is tunable over the $200-1600 \mathrm{~Hz}$ range. This 3 filter combination is unbeatable for the ultimate in QRM free SSB reception. Adjacent channel QRM is eliminated on the high and low sides at the same time and does not introduce any hollowness to the desired signal. On CW the SL-56 is a dream. The lowpass, highpass and notch filters are engaged along with the tunable bandpass filter ($400-1600 \mathrm{~Hz}$) providing the needed aetion of 4 simultaneous filter types. The bandpass may be made as narrow as 14 Hz (3dB). Additionally, a special patented circuit follows the filter sections which allows only the peaked signal to "gate itself" through to the speaker or headphones (8 -2000 OHMS). Receiver noise, ring and other signals are rejected. This is not a regenerator, but a modern new concept in CW reception. The SL-56 connects in series with the receiver speaker output and drives any speaker or headphones with one watt of audio power. Requires 115 VAC. Easily converted to 12 VDC operation. Coal black cabinet and wrinkle gray panel.

Warranted One Full Year Fully RFI Proof Fully Wired and Tested Available Now \$79.00 Postpaid in the USA and Canada

Virginia Residents Add 4\% Sales Tax Attention SL-55 Owners: The Circuit Board of the SL-56 is Completely Compatable with the SL-55 Chassis. Our Retrofit Kit is Available at $\$ 40.00$ Postpaid.

Electronic Research Corp. of Virginia

P. O. Box 2394 • Virginia Beach, Virginia 23452 - Telephone: (804) 463-2669

© AFFORDABLE CW KEYBOARD

Transmits perfect Morse Code * Built-in 16 . character buffer * Internal speaker and sidetone * Reed relay output eliminates keying problems * All solid state circuits and sockets for reliability * Speed range 5-35 WPM.

ALL BAND TRAP ANIENINAS!

PRETUNED - COMPLETELY ASSEMBLED ONLY ONE NEAT SMALL ANTENNA FOR GESTED HOUSING AREAS APARTMENTS LIGHT - STRONG - ALMOST INVISIBLE!

FOR ALL MAKES \& MODELS OF AMATEUR TRANSCEIVERS TRANSMITTERS GUARANTEED FOR 2000 WATTS SSB ALL CLASS AMATEURS!

COMPLETE AS SHOWN with 90 ft . RG58U-52 ohm feedine, and PL259 connector, insulators, 30 if 300 lb . test dacron end supports, center connector with buitt in lightning arrester and static discharge molded, sealed, weatherproof, resonant traps $1^{\prime \prime} \times 6^{\prime \prime}$-you just switch to band desired for excellent worldwide operation - transmitting and recieving! Low SWR over all bands including 8Q/75-Tuners usually NOT NEEDED! Can be used as inverted V^{\prime} - slopers - in attics, on building tops or narrow lots - on 160 meters toor (Instructions Incl The ONLY AN
80-40-20-15-10-6 Meter … 104 ft . long - with 90 ft . of RG58U - connector - Model 998BU $\$ 69.95$ SEND FULL PRICE FOR POSTPAID INSURED. DEL. IN USA. (Canada is $\$ 5.00$ extra for postage - clericalcustoms etc.)or order using VISA - MASTER CHARGE - CARD - AMER. EXPRESS. Give number and ex. date. Ph 1-308-236-5333 9AM - 6PM week days. We ship in $2-3$ days. ALL PRICES WILL INCREASE SAVE - ORDER NOWI All antennas guaranteed for 1 year. 10 day money back trial if returned in new conditiont Made in USA. FREE INFO. AVAILABLE ONLY FROM

WESTERN ELECTRONICS Dept.AR-8
Kearney, Nebraska, 68847

1980

US Radio Amateur Callbook

To keep track of all the changes in callsigns, you ought to have a copy of the 1980 Callbook on your operating table. It's been a best seller for years because of features like these: - Bold face calls, names, and addresses of every licensed ham in the US • ARRL countries list • QSL managers list • International Postal info - Standard time charts • and more.
Keep up to date. You can't afford to be without the very latest Callbook.
\square CB-US
Softbound \$16.95

The Foreign Callbook

DXing is a real joy, but it's even better when you get back QSI. cards from the countries you've worked. The most important tool in getting those cards is to have a copy of the $\mathbf{1 9 8 0}$ Foreign Callbook on your operating table. Stations are listed by country, call, name and address in bold, easy-to-read type. CB-F Softbound $\$ 15.95$ Please include $\$ 1.75$ additional shipping for each Callbook ordered.

HAM RADIO'S BOOKSTORE

GREENVILLE, N. H. 03048
(800) 258-5353

DOUBLE YOUR PLEASURE

Versatility Plus . . . Work Both 2 and $3 / 4$ Meters With Yaesu's New FT-720R

The FT-720R series is a compact VHF/UHF mobile transceiver that harnesses the incredible power of the microprocessor to bring you top-operating flexibility. Start with the FT-720R Control Head, then add either the 10 watt FT-720RU 440 MHz or 25 watt FT-720RVH 2 meter RF Deck. You can clamp the Control and RF Deck together or use an optional remote cable to hide the RF Deck. The best news is still to come! By using the optional S-72 Switching Box and two remote cables, you can use a single Control Head for operation with both the 440 MHz and 2 meter decks, giving you a high-performance two band FM station for your car or home. Compare the features below, then ask your dealer for a demonstration of the fabulous FT-720R series. . . another winner from the performance leader . . . Yaesu.

- Four simplex/repeater memory channels, plus receive-only memory channel.
- Scanning controls on microphone with search for busy or clear channel.
- Optional 32 tone CTCSS module for accessing private repeaters.
- Colorful, easy-to-read LED power output/S meter.
Built-in 1800 Hz tone generator.

Priority channel with search-back feature.

- Pause feature that holds, then restarts scan, on busy or clear channels.
Digital display of last four digits of operating frequency.
- Single Control Head may be used for operation on both 440 MHz and 2 meters via optional switching box and remote cables.
- Extremely compact size, light weight.

FT-720RVH Specifications
$144.00-147.99 \mathrm{MHz}$ 10 kHz
25 watts
.32 uV for 20 dB
quieting
$\pm 6 \mathrm{kHz}$ (-6dB)
$\pm 12 \mathrm{kHz}(-60 \mathrm{~dB})$

Frequency Coverage Synthesizer Steps

Power Output Sensitivity

FT-720RU
$440.00-449.975 \mathrm{MHz}$
25 kHz
10 watts
0.5 uV for 20 dB
quieting
$\pm 12 \mathrm{kHz}$ (-6dB)
$\pm 24 \mathrm{kHz}(-60 \mathrm{~dB})$

YAESU

The radio.

YAESU ELECTRONICS CORP., 6851 Walthall Way, Paramount, CA 90723 - (213) 633-4007 YAESU ELECTRONICS Eastern Service Ctr.,9812 Princeton-Giendale Rd.,Cincinnati,OH 45246

Eighteen Continental superpower transmitters use EIMAC megawatt tetrodes for long life and reliability.

On the air now.
Continental Electronic's new superpower broadcast transmitters are on the air at four overseas sites providing extended coverage and 24 hour operation.

These rugged transmitters provide a fully modulated carrier output of one or two megawatts.
Each transmitter bay employs one EIMAC X-2159/8974 tetrode as a carrier tube and a second X-2159/ 8974 as a peak tube. An EIMAC
4CW25,000A serves as a driver and three $4 \mathrm{CW} 25,000 \mathrm{As}$ are used in a cathode follower class-A modulator stage.

Fourteen transmitters are now in service and four more will follow shortly. This speaks well for Continental's transmitters design and for their choice of long life EIMAC power tubes.

[^0]: Jacobson, Loren, WA8ELA, "LED Tuning Indicator for RTTY," ham radio, March, 1980, pages 50-53.
 Powell, K.E., WB6AFT, "Novel LeD Circuits," ham radio, April, 1977, pages 60-63.

[^1]: *Order boards from MJW Boards, Route 2, Box 167-C, Berryville, Virginia 22611.

[^2]: \dagger^{\dagger} Jameco Electronics, 1021 Howard Avenue, San Carlos, California 94070.

[^3]: 1. XR-2206 Data Sheet, Exar Integrated Systems, Inc., 750 Palomar Avenue, Sunnyvale, California 94086.
 2. William Orr, W6SAI, Radio Handbook, 20th edition, page 31.35, Editors and Engineers, Indianapolis, 1975.
[^4]: ${ }^{6}$ Külrod is a Registered Trademark of Larsen Electronics. Inc

[^5]: 1. Hayward and DeMaw, Solid State Design for the Radio Amateur. Chapter 3, ARRL. Newington, Connecticut.
[^6]: *R-Ohm Corporation, Exar Integrated Systems, P.O. Box 4455, Irvine, California 92664.

[^7]: *Another source of these and other high-power tubes is your local fm broadcast or TV station. The tubes are replaced after a specified number of operating hours and in many cases have a lot of life in them, especially when used in the Amateur service. Contact your local station and talk to the engineer in charge. Editor.

[^8]: *An interesting sidelight on the problem of contamination of thoriated tungsten filaments by gas is discussed in reference 1 . Editor.

[^9]: 1. Alf Wilson, W6NIF, "Rejuvenating Transmitting Tubes with ThoriatedTungsten Filaments," ham radio, August, 1978, page 80.
[^10]: -EIMAC division of Varian, 301 Industrial Way, San Carlos, California

[^11]: *Still another shape for variable-capacitor plates is called straight-line wavelength (SLW) in which the plates are shaped so that, when used to tune an inductance to resonance, the wavelength at resonance is a linear function of the angle of rotation. Practical capacitors use intermediate characteristics or a combination of these basic types (see fig. 2). Editor.

