

tempo...

the first in synthesizec portables gives you the broadest choice at the lowest price

* The only synthesized hand-held offering 5 wati output. (Switchable for 1 or 5 watt operation)
* The same dependability as the time proven S-1 Circuitry that has been proven in more than a million hours of operation.'
* Heavy duty battery pack.
* External microphone capability.
* The S-5's exciting low price...only $\$ 299.00$
* With touch tone pad $\$ 339.00$
specifications
Frequency Coverage: 144 to 148 MHz
Channel Spacing: Receive every 5 kHz , transmit Simplex or $\pm 600 \mathrm{kHz}$
Power Requirements: 9.6 VDC
Current Drain: $\quad 17 \mathrm{ma}$-standby
Antenna impedance: 900 ma -transmit
Dimensions:

Weiaht:
Sensitivity:
50 ohms
40 mm x
170 mm x $16^{\prime \prime} \times 25^{\prime}$
$\times 6.7{ }^{\prime \prime}$)
Better than. 5
microvolts nominal for 20 db

SUPPLIED ACCESSORIES
Telescoping whip antenna, ni-cad battery pack. charger.
OPTIONAL ACCESSORIES
12 Button touch tone pad (not installed):
$\$ 39$ - 16 Button touch tone pad (not installed): \$48 - Tone burst generator:
\$29.95 - CTCSS sub-audible tone control: $\$ 29.95$ - Rubber flex antenna: $\$ 8$ - Leathe holster: \$16 - Cigarette lighter plug mobil charging unit: $\$ 6$ - Matching 30 watt output 13.8 VCD power amplifier (S30): $\$ 89$ - Matching 80 watt output power amplifier (S80): \$149

The Tempo S-2

Tempo is first again. This time with a superior quality synthesized 220 MHz har held transceiver. With an $\mathrm{S}-2$ in your car or pocket you can use 220 MHz repeate throughout the U.S. It offers all the advanced engineering, premium quali components and exciting features of the S-1. The S-2 offers 1000 channels in a extremely lightweight but rugged case.
If you're not on 220 this is the perfect way to get started. With the addition of the: 25 (25W output) or S-75 (75W output) Tempo solid state amplifier it becomes powerful mobile or base station. If you have a 220 MHz rig, the $\mathrm{S}-2$ will ac tremendous versatility. Its low price includes an external microphone capabilit heavy duty ni-cad battery pack, charger, and telescoping whip antenna. Price... $\$ 349.00$
With touch tone pad... $\$ 399.1$
TEMPO VHF \& UHF SOLAD STATE POWER AMPLIFIERS
Boost your signal. . . give it the range and clarity of a high powered base station. VHF ($\mathbf{1 3 5}$ to $175 \mathbf{~ M H z}$)

Drive Power	Output	Model No.	Price
2W	130 W	$130 A 02$	$\$ 209$
10 W	130 W	$130 A 10$	$\$ 189$
30 W	130 W	$130 A 30$	$\$ 199$
2 W	80 W	$80 A 02$	$\$ 169$
10 W	80 W	$80 A 10$	$\$ 149$
30 W	80 W	$80 A 30$	$\$ 159$
2 W	50 W	$50 A 02$	$\$ 129$
2 W	30 W	$30 A 02$	$\$ 89$

UHF ($\mathbf{4 0 0}$ to $\mathbf{5 1 2} \mathbf{~ M H z}$) models, lower power and FCC type accepted models also available.
TOLL FREE ORDER MUMBER: 18001 421-6631

Yesterday you could admire all-band digital tuning in a short wave receiver* Today you can afford it.

RF-4900

Tune in the Panasonic Command Series ${ }^{\text {" }}$ top-of-the-line RF-4900. Everything you want in short wave at a surprisingly affordable price. Like fluorescent all-band readout with a five-digit frequency display. It's so accurate (within 1 kHz , to be exact), you can tune in a station even before it's broadcasting. And with the RF-4900's eight short wave bands, you can choose any broadcast between 1.6 and 31 MHz . That's all short wave bands. That's Panasonic.

And what you see on the outside is just a small part of what Panasonic gives you inside. There's a double superheterodyne system for sharp reception stability and selectivity as well as image rejection. An input-tuned RF amplifier with a 3 -ganged variable tuning capacitor for excellent sensitivity and frequency linearity. Ladder-type ceramic filters to reduce frequency interference. And even an antenna trimmer that changes the front-end capacitance for reception of weak broadcast signals.

To help you control all that sophisticated circuitry, Panasonic's RF-4900 gives you all these sophisticated controls. Like an all-gear-drive
tuning control to prevent "backlash:" Separate wide/narrow bandwidth selectors for crisp reception even in crowded conditions. Adjustable calibration for easy tuning to exact frequencies. A BFO pitch control. RF-gain control for improved reception in strong signal areas. An ANL switch. Even separate bass and treble controls.
And if all that short wave isn't enough. There's more. Like SSB (single sideband) amateur radio. All 40 CB channels. Ship to shore. Even Morse communications. AC/DC operation. And with Panasonic's $4^{\prime \prime}$ full-range speaker, the big sound of AM and FM will really sound big. There's also the Panasonic RF-2900. It has most of the features of the RF-4900, but it costs a lot less.

The Command Series from Panasonic. If you had short wave receivers as good. You wouldn't still be reading: You'd be listening.
Short wave reception will vary with antenna, weather conditions. operator's geographic location and other factors. An outside antenna may be required for maximum short wave reception.

MFJ 941C Versa Tuner II

MFJ-941C $\$ 8495$

Fastest selling MFJ tuner . . . because it has Built-in 4:1 balun for balanced lines. 1000v the most wanted features at the best price. capacitor spacing.
SWR + dual range wattmeter (300 \& 30 Matches everything from $\mathbf{1 6 0 - 1 0}$ meters: watts full scale, forward and reflected dipoles, inverted vees, random wires, vertipower). Sensitive meter measures SWR down to 5 watts output.
More flexible antenna switch selects 2 coax
lines, direct or through tuner, random wire/ sbalanced line, or tuner bypass for dummy load.
12 position efficient airwound inductor for lower losses, more watts out. dipoles, inverted vees, random wires, verticoax lines. coax lines.
Easy to use, anywhere. Measures $8 \times 2 \times 6^{\prime \prime}$, has SO-239 connectors, 5 -way binding posts, finished in eggshell white with walnut-grained sides.
MFJ-945, $\$ 74.95$, like model 941 C but less ant. switch. Optional mobile bracket for either model is $\$ 3$.

MFJ 484 "Grandmaster" Memory Keyer

MFJ-484
$\$ 139^{95}$

Up to twelve 25 character messages plus $100,75,50$ or 25 ch . messages (4096 bits). Repeat any message continuously or with pauses of up to 2 min . LEDs show use. Record, playback, or change messages instantly at touch of a button. Memories are resettable with button or touch of the paddle. Built-in memory saver - 9 V battery takes over when power is lost.
Iambic operation with squeeze key. Dotdash insertion. Optional BENCHER paddle $\$ 42.95+\$ 4$.
Dot-Dash memories, self-completing, jamproof spacing, instant start.

MFJ 410 "Professor Morse" Code Generator/Keyer

Use it to learn, use it to operate. It sends unlimited random code in random groups for practice; never repeats sequences. And when you're on the air, it's a full feature keyer. Vary speed from $5-50 \mathrm{wpm}$; meter readout Vary jpacing; give fast sound to low speed. Alpha or alphanumeric with punctuation. Built-in speaker and phone jack; tone and vol. Ideal for classroom or private use. Full feature keyer includes vol., speed, tone and weight controls, tune switch, dot-dash memories, keys grid block, cathode, solidstate rigs. Optional BENCHER paddle $\$ 42.95+\$ 4$. Operates on 9.18 VDC, two 9 V batteries or 110 VAC with optional adapter $\$ 7.95+\$ 2$. Size $7 \times 2 \times 6$ ". Get "Professor Morse" - you'll never outgrow it.

Panel controls: Speed (8.50 wpm)/Record; Weight/Memories Combined; Tone/Tune: Delay ($0-2 \mathrm{~min}.) /$ Repeat; rotary Vol/On-Off: Memory Select: Message Buttons select desired 25 ch . messages; Memory Reset button.
Ultra reliable solid state keying: grid block. cathode, solid state transmitters ($-300 \mathrm{~V}, 10$ mA max $;+300 \mathrm{~V}, 100 \mathrm{~mA}$ max). Operates 12-15 VDC or 110 VAC with optional adapter, $\$ 7.95+\$ 2$. Size $8 \times 2 \times 6^{\prime \prime}$. MFJ-482, $\$ 99.95$, four 25 or $50+$ two 25 ch . messages; MFJ-481,\$89.95, two 50 ch . messages. Get the best seller keyers-MFJ "Grandmasters."

MFJ Dual Tunable SSB/CW Filter "Signal Enhancer"

MF.7.728 $\$ 844^{95}$
Dual filters give unmatched performance The primary filter lets you peak. notch. low pass or high pass with extra steep skirs Auxiliary filter; 70 dB notch, 40 Hz peak Both filters tune from $\mathbf{3 0 0}$ to $\mathbf{3 0 0 0} \mathbf{~ H z}$ with variable bandwidth from 40 Hz to nearly flat. Constant output as bandwidth is varied: linear frequency control.
Switchable noise limiter for impulse noise.
Simulated stereo sound for CW lets ears and mind reject QRM
Inputs for 2 rigs, switch selectable. Plugs into phone jack. Two watts for speaker. OFF bypasses filter. 9-18 VDC, 300 mA or 110 VAC with optional adapter $\$ 7.95+\$ 2$. 10×2 $\times 6^{\prime \prime}$. MFJ 751, $\mathbf{\$ 5 9 . 9 5}$, similar, primary filter only, less high pass \& noise limiter.

favorite products from the world's leading manufacturer of amateur radio accessories

24 hour, solid-state, blue $0.6^{\prime \prime}$ digits, ID timer sounds every 9 min (also a snooze alarm), regular alarm for skeds or to awaken, power-out/alarm-on indicators, ready to use on $110 \mathrm{VAC}, 50-60 \mathrm{~Hz}, 6 \times 2 \times 3^{\prime \prime}$

KW Dummy Load With Oil

MFJ-250
$\$ 29_{(+54)}^{95}$

Rated at 1 kW CW or 2 kW PEP for 10 min., half that for 20 min ., cont. at 200 W CW, 400 W PEP, non-inductive 50 ohm resistor, quality transformer oil (no PCB), VSWR under $1.2: 1$ to $30 \mathrm{MHz}, 1.5: 1$. $30-300 \mathrm{MHz}, 2: 1,300-400 \mathrm{MHz}$. Coax conn., vent cap., $71 / 2^{\prime \prime} \mathrm{h} \times 65 / 8^{\prime \prime}$ diam.

300 Watt Antenna Tuner

Does it all! Built-in dummy load, SWR. forward and reflected power meter, antenna switch, balun, matches everything from $1.8-30 \mathrm{MHz}$ (coax, random wires, balanced lines), coax conn., binding post, $10 \times 3 \times 7^{\prime \prime}$

For tech. info., order or repair status, or calls outside continental U.S. and inside Miss. call 601-323-5869.

- All MFJ products unconditionally guaranteed for one year (except as noted)
- Products ordered from MFJ are returnable within 30 days for full refund (less shipping)
- Add shipping \& handling charges in amounts shown in parentheses

Write for FREE catalog, over 60 products

ENTERPRISES

INCORPORATED
Box 494; Mississippi State, MS 39762

ham radio magazine

contents

12 super quad for 7 - 28 MHz
Frederick Hauff, W3NZ

18 automatic BOer for RTTY
Nathan H. Stinnette, W4AYV

22 Vagi antenna design: stacking James L. Lawson, W2PV

36 crystal use locator
Phillips Hughes, WA6SWR

38 transmission-line circuit design
H. M. Meyer, Jr., W6GGV

46 simple CW memory
John R. Megirian, K4DHC

50 updating the Heathkit HW-2036 for digital readout and scan
Thomas A. French, WA4BZP

58 the XK2C AFSK generator
Robert W. Lewis, W3HVK
Cassette tapes of selected artifices
rom ham radio are available to the blind and physically handicapped
from Recorded Periodicals filadelphia, Pennsylvania 19107

94 advertisers index
83 flea market
90 ham mart
68 ham notebook
6 letters

4 observation and opinion
8 presstop
94 reader service
46 weekender

A new book has come to our attention, a book interesting enough to merit mention in this column. The name of the book is From Beverages Thru OSCAR - A Bibliography, and the author is Rich Rosen, K2RR, of Littleton, Colorado.

From Beverages Thru OSCAR is not, as the name might imply, a bibliography of reference works dealing with Amateur antennas. It is instead a complete list of every article of interest to the Radio Amateur and professional published over the last 65 years in any of 288 electronics magazines and journals, including $C Q$, ham radio, 73 , and $Q S T$. The 30,000 articles referenced in this text are divided into 92 subject categories, to make locating any given article largely a matter of determining into which category it should fall. Catchy or cute article titles have been simplified and entered into their proper category. The subject categories include such headings as Preamps, Oscillators, Filters, SSB, Lasers, Alternative Power Sources, Receivers, and Antenna Hardware.

The value of such a reference text is immediately obvious. Having access to this bibliography makes it possible to track down that elusive article on signal enhancement, or rotators, or whatever - that article that you're sure you've read in some magazine or other, but you can't quite remember which magazine it was. Or whether you read the article while in the "Fathers' Suite" of the maternity ward waiting for Junior to be born or on the way to his high-school graduation. Or whether the article was in one of your regular subscription magazines or in one you leafed through at a flea market but decided not to buy. Now, with the help of K2RR's bibliography, that long-lost article can be found with a quick look in the appropriate table.
In addition, the bibliography makes it easy for the researcher or homebrewer to find just the information he needs to get started on the project put off so many times for want of a few tips from someone who's already tried. K2RR's index of articles will not, of course, give you the information you're looking for - but it will tell you where to find it, and that's very nearly as good.

Each subject category consists of a list - some of them quite lengthy - of the articles compiled for that particular subject. The most recent articles come first. There are seven columns of information on each page, the first of which identifies the subject area as denoted by a four-digit number. (All of the subjects with their four-digit identifying numbers are listed at the beginning of the book.) The second column gives an "Abbreviated Title or Topic Synopsis," which briefly describes the article. The third column gives (in coded form) the publication in which the article appeared, and the fourth column the year and month of publication. The fifth column gives the page on which the article begins and the sixth gives the author's name (except for articles appearing in any of the four major ham magazines). The last of the seven columns is reserved for miscellaneous information and notes that might be useful for purposes of identification.
All in all, it's an impressive bit of work, one which the author says took him four years and many thousands of hours to produce. That's easy to believe, looking at (and hefting) this 620-page magnum opus. All the information contained in this book has been stored on floppy diskettes (as an alternative to the original IBM punch cards, of which 180 pounds were needed), and the author expects to be able to provide updates with each passing year. If ever there were an example of the value of computer storage, this must be it.

From Beverages Thru OSCAR - A Bibliography is currently available from Rich Rosen, K2RR, at 6043 W. Maplewood Drive, Littleton, Colorado 80123. Rich says that, in addition to the complete volume, he has also made available individual subject chapters for those who would like the benefits of this index but don't need more than a few subject headings.
In our opinion, this is the sort of reference text that many Amateurs will find useful. Our thanks go out to K2RR for having provided the Amateur fraternity with so valuable a tool.

Martin Hanft, WB1CHQ administrative editor

ICOM AMERICA, INCORPORATED
Sales Service Centers located at:
2112 116th Avenue NE Bellevue, WA 98004

3331 Towenwood Dr., Suite 307 Dallas, TX 75234
Phone (214) 620-2780

ICOM INFORMATION SERYICE

2112 116th Ave., N.E. Bellevue, WA 98004

Please send me: \square IC-551 spedifications sheet; \square IC-251A specifications sheet; \square List of Authorized ICOM Dealers.

NAME CAlI

ADDRESS
CITY \qquad STATE \qquad Z1P \qquad

battery charging

Dear HR:
I am writing to you regarding the letter to the Comments column by Robert H. Weibrecht, W6NRM. His comments regarding charging batteries at a low rate are only partly correct. The rest of the story is that the nickel-cadmium battery should be discharged to 1 volt per cell for exercise. This will help to remove the memory induced by continuous charging. Gel batteries, on the other hand, need continuous charging.

> D.L. Carlson
> Burnside, Minnesota

ground systems

Dear HR:
The article "Ground Systems" in your May, 1980, issue was very interesting. It was particularly interesting to know that the inductive reactance of only 9 feet of wire at 4 MHz can be 100 ohms or so, and that the rf resistance of a wire is some seventy times its dc resistance at 14 MHz ! The mention of rf resistance immediately brought to mind Litz wire - three or more strands of insulated wire braided together. I immediately replaced my 12 feet of ground wire with three insulated wires braided together, and it certainly decreases BCI interference! I wonder if anyone has formulas (empirical or otherwise) for the rf resistance of ordinary wire and the rf resistance of Litz wire?

Incidentally, another thing to try if you have BCl problems is to put Amidon FB-801 ferrite beads on the ac or dc power leads just outside or just inside the case of your transceiver. A bead on the "live" side of the mike lead (again, close to where it enters your transceiver or speech processor) may also do some good. Don't put beads on any ground leads!
Keith Wilkinson, ZL2BJR/JG1YCI Tokyo, Japan

selfish attitudes

Dear HR:

The Observations and Comments column in the August, 1980, issue of ham radio asks, "What can be done about the selfish attitudes of those who interrupt contest operation?"
If this were a perfect world with a perfect society, this condition would not take place. However, on the other side of the subject, why should a contest operator come on a frequency in use by others and call " CO TEST" until he either gets control of the frequency or drives the others off?
It is my firm opinion neither group is completely free of guilt. Don't you think some better planning of worldwide contests should take place? Almost each weekend there is a contest, sometimes on both CW and SSB at the same time. Would limiting the contest to a band of frequencies be the answer? Why should the operators who like to rag chew or keep skeds each weekend be punished? Should we stand in the way of the contest operator? There is no easy solution to the problem and until each side sees the other side of the coin nothing will change.

On "What about slow-scan TV and interference by SSB operation?" ।
would say this is a very difficult question to answer at the present time. Until the FCC decides to allow General class operators to use SSTV it is not a good idea what a good approach would be. As 20 meters was the band mentioned in the editorial, I have a suggestion. My thoughts at this time would be to ask the SSTV operators to consider moving from 14.230 MHz to $\pm 14.270 \mathrm{MHz}$ as a calling frequency. This would put then near the General class end, but not too close to give or take QRM from each other.

Paul T. Atkins, K2OZ
Park Ridge, New Jersey

Q system

Dear HR:

I think the " Q system" is a good idea but should be in reverse order; that is Q 1 would be full copy (first class).

Arthur Masthay, W1IUZ
Avon, Connecticut

satisfied reader

Dear HR:

Over the years, ham radio has had an evolution toward more technical dissertations. Although the math was minimized, I couldn't help feeling that things were too heavy to be enjoyable. On the other hand, I had a fear that I was growing old for the technology at 47.
The August, 1980, ham radio seems to return to more readable articles and a few reasonable construction articles. I hope this is a trend and not a maverick edition. For the first time in several years, I read all the articles.

[^0]
UNSURPASSED RTTY NootherRTTY terminal made gives you ALL the features of our new DS3100 ASR:

- TX/RX operation with 3 codes: Baudot RTTY, Morse Code, ASCII RTTY

- Storage buffers for 150 lines of RX storage and 50 lines of TX storage
- The HAL "original" split screen shows both RX and TX buffers or whole screen for RX
- Ten programmable "Here Is" messages can be chained from one to next
- The EAROM allows power-off storage of 2 "Here Is" messages and terminal operating conditions
- Programmable WRU answer-back and selective-call features
- Separate CW identification key for RTTY operations
- Automatic TX/RX control with KOS plus 4 keyboard controlled accessory switches
- Internal real time clock keeps 24 hour time plus date
- Newly developed CW receive circuitry and programs give superior CW reception
- New green, P31 phosphor display screen gives clear, eye-easing viewing
- On-screen status indicators give continuous display of terminal operating conditions
- Word-Wrap-Around prevents splitting of words at end of display line
- Continuous, line, and word modes offer flexibility in editing transmit text
- Attractive streamlined metal cabinet gives effective RFI shielding from transmitters

Here Are More DS3100 ASR Specifications that Give You State-of-the-Art RTTY Operation:
QBF and RY test messages = Loop and RS 232 RTTY I/O = Plus or minus CW key output $=25$ pin EIA modem connector = Half or full duplex = Upper-lower case ASCII = All ASCII control codes * Optional line printer for all codes = Selectable ASCII parity $=110$ to 9600 baud ASCII $=45$ to 100 baud Baudot $=1$ to 175 WPM Morse receive and transmit = UnShift on space for Baudot = SYNC idle for RTTY and Morse $=$ Break key for RTTY = Tune key for Morse = Automatic CR-LF = $120 / 240 \mathrm{v}, 50 / 60 \mathrm{~Hz}$ power $=$ Custom labeled key tops show control operation = Copy receive text into transmit buffer $=T X$ flags allow segmenting of TX buffer $=$ One year warranty
PRICE: \$1995.00

BAI

HAL COMMUNICATIONS CORP.
Box 365
Urbana, Illinois 61801
217-367.7373
For our European Customers Contact
Richter \& Co. D3000 Hannover 1
I.E. C. Interelco. 6816 Bissone/Lugano

Write or give us a call.
We'll be glad to send you our new RTTY catalog.

presstop

FCC'S CW EXAMS WERE CHANGED from the multiple-choice format to "fill in the blank" effective September 28 . At the same time the passing grade on the new 10 -question exam has been reduced from 80% to 70%. Basis for the change was a detailed study of Amateur exam takers made earlier this year, which indicated applicants who were competent at the required code speed would pass the new exam with ease, while those who weren't could rarely guess their way to a passing grade.

Recent Pass Rate Figures for Amateur exams from two FCC Field offices, though a limited sample, are quite interesting. While over two-thirds taking the combined Elements 2 and 3 exam-Technician/General without previous Novice-passed; only 43% of those who already had a Novice license did so. Less than 25% of the Advanced Class applicants made the grade, but a third of those going for Extra in Chicago passed-while a whopping 73% (eight out of 11) Denver Extra Class applicants made it.

Part of These Unusual Results may be due to the introduction of new exams this spring. It's also a common practice to take an exam for "practice," before being fully prepared for it.

COMPUTER DEALERS ACROSS THE COUNTRY WERE HIT recently by a con man operating from suburban Chicago locations. As reported in the September issue of Wayne Green's Microcomputing Industry, a "Thomas Janson" of "CMI, Inc." placed telephone orders with a number of computer supply houses for peripherals and supplies to be shipped C.O.D. Upon delivery the driver was paid by check which eventually bounced, but by the time the sellers had heard the bad news. "Thomas Janson" and "CMI, Inc." were long gone.
"CMI, Inc." First Operated from Riverside and then later Morton Grove, Illinois, and police in either Chicago suburb would be very pleased to hear from anyone with information on it.
10.1 MHZ OPERATION BY TWO CANADIAN Amateurs has been approved by the Department of Communications and should be authorized very soon. In response to a proposal by VE3QB, the DoC has agreed to issue him and VE3DPB VE9 licenses in the experimental services and permit them to operate using very narrow band, low bit rate digital communications anywhere in the $10.1-10.15 \mathrm{MHz}$ future Amateur band. They'11 be experimenting with digital data transmission in the presence of QRM, and are prepared to set up for possible 24-hour-a-day communications using, computer-controlled stations.

Operation On Any Frequency within the $50-\mathrm{kHz}$-wide band will be permitted the two experimenters, as the 5-watt limit on output power is unlikely to cause other band occupants problems. As both stations are in the Ottawa area, propagation between them should not be a factor, but the effects of propagation on other interfering signals should provide useful information on problems of digital data communications on the HF bands...

Their VE9 Experimental 1 icenses, which will be valid for a year, were to be issued around the end of September. Regular Amateur use of 30 meters is not scheduled to begin until January 1, 1982.

NATIONAL AMATEUR RADIO ALLIANCE HAS DISBANDED its membership campaign effective August 30 , and is beginning to refund the $\$ 10$ membership fees collected. A memo accompanying refund money orders explains that while NARA is abandoning all attempts to build a "strong and viable membership," the NARA board wishes to "pursue matters of vital interest to the Amateur fraternity through active lobbying and campaigning," and will remain together.

Questions About Refunds or NARA in general should be sent to Directors Office, NARA, Charlottesville, Virginia 22940 . The Connecticut phone number for NARA has been disconnected, with no forwarding number.

A "SOLAR MAX" HOTLINE, providing ionospheric and solar condition reports via the telephone, has been started as a joint service of NASA and the National Oceanic and Atmospheric Administration. The 24 -hour hotline provides information on sunspots, solar flares, geomagnetic storms, and the impact of the sun's behavior on radio transmissions. The recording can be reached by dialing (301) 344-8129.

A FORMER CONDITIONAL'S FIGHT for "grandfathering" into General was again rejected by the FCC. WB4AZT had lost his General Class privileges in June, 1972, after his Conditional license was cancelled when he refused to take a 13 WPM code test from an FCC examiner. When the FCC decided to grandfather the remaining Conditionals into Generals in July, 1976, however, he began a four-year battle to upgrade his Technician to General.

The Commissioners Refused his request on the grounds that he no longer had a Conditional to upgrade, since it has been cancelled four years previously. He's now exhausted all administrative avenues, and will have to go to court to continue the fight.

ANASTASIO SOMOZA, FORMER NICARAGUAN leader who was assassinated in Paraguay September 17, had been active on the Amateur bands as YN4AS before he was forced into exile last July.

Move over imports, here's the new TEN-TEC

 DEETTA
the notable change in hf transceivers

All new, all nine hf bands and only $\$ 849$!

DELTA - the symbol of change - the name of a great new TEN-TEC fransceiver A transceiver for changing times, with new features, performance, styling, size and value. TOTAL SOLID-STATE. By the world's most experienced manufacturer of hf solid-state amateur radio equipment.
ALL 9 HF BANDS. First new transceiver since WARC. 160-10 Meters including the three new hf bands $(10,18 \& 24.5 \mathrm{MHz})$. Ready to go except for plug-in crystals for 18 and 24.5 MHz segments (available when bands open for use) SUPER RECEIVER. New, low noise double-conversion design, with $0.3 \mu \mathrm{~V}$ sensitivity for $10 \mathrm{~dB} \mathrm{~S}+\mathrm{N} / \mathrm{N}$
HIGH DYNAMIC RANGE. 85 dB minimum to reduce overload possibility. Built-in, switchable, 20 dB attenuator for extreme situations. SUPER SELECTIVITY. 8 -pole monolithic SSB filter with 2.4 kHz bandwidth, 2.5 shape factor at $6 / 60 \mathrm{~dB}$ points. And optional 200 Hz and 500 Hz 6 -pole crystal ladder filters. Eight pole and 6 -pole filters cascade for 14 poles of near ultimate skirt selectivity. Plus 4 stages of active audio filtering To sharpen that i-f response curve to just 150 Hz bandwidth. 4 -position selectivity switch.
BUILT-IN NOTCH FILTER. Standard equipment Variable, 200 Hz to 3.5 kHz with notch depth down to -50 dB . Wipes out interfering camers or CW
OFFSET TUNING. Moves receiver frequency up to $\pm 1 \mathrm{kHz}$ to tune receiver separately from transmitter.
"HANG" AGC. For smoother, clearer, receiver operation.
OPTIONAL NOISE BLANKER. For that noisy location, mobile or fixed.
WWV RECEPTION. Ready at 10 MHz .
" S "/SWR METER. To read received signal
strength and transmitted standing wave ratio Electronically switched
SEPARATE RECEIVER ANTENNA JACK.
For use with separate receiving antenna, linear amplifier with full break-in (QSK) or transverters.
FRONT PANEL HEADPHONE AND
MICROPHONE JACKS. Convenient DIGITAL READOUT. Six $03^{\prime \prime}$ red LEDs. BROADBAND DESIGN. For easy operation. Instant band change-no tuneup of receiver or final amplifier. From the pioneer. TEN-TEC
SUPER TRANSMITTER. Solid-state all the way Stable, reliable, easy to use
200 WATTS INPUT. On all bands including 10 meters (with 50 ohm load). High SWR does not automatically limit you to a few watts output Proven, conservatively rated final amplifier with solid-state devices warranted fully for the first year, and pro-rata for five more years
100% DUTY CYCLE. All modes, with confidence 20 minutes max key-down time, Brought to you by the leader in solid-state finals, TEN-TEC.
QSK - INSTANT BREAK-IN. Full and fast. to make CW a real conversation.
BUILT-IN VOX AND PTT. Smooth, set-andforget VOX action plus PTT control VOX is separate from keying circuits.
ADJUSTABLE THRESHOLD ALC \& DRIVE. From low level to full output with ALC control Maximum power without distortion. LED indicator:
ADJUSTABLE SIDETONE. Both volume and pitch, for pleasant monitoring of CW SUPER STABILITY. Permeability tuned VFO with less than 15 Hz change per F° change over 40° range after 30 min . warmup-and
less than 10 Hz change for 20 Volt AC line change with TEN-TEC power supply.
VERNIER TUNING. 18 kHz per revolution, typical.
SUPER AUDIO. A TEN-TEC trademark. Low IM and HD distortion (less than 2%). Built-in speaker
SUPER STYLING. The 80 s look with neat, functional layout. "Panelized" grouping of controls nicely human engineered for logical use. New, smaller size that goes anywhere, fixed or mobile ($41 / 4^{\prime \prime} \mathrm{h} \times 11 \frac{1}{4} \mathrm{w} \times 15^{\prime \prime} \mathrm{d}$). Warm, dark front panel Easy-to-read contrasting nomenclature Black "clam-shell" aluminum case Tilt bail.
MODULAR/MASS-TERMINATION CONSTRUCTION. Individual circuit boards with plug-in hamesses for easy removal if necessary Boards are mailable
FULL ACCESSORY LINE. All the options: Model 282200 Hz CW filter \$50; Model 285 500 Hz CW Filter $\$ 45$; Model 280 Power Supply' \$139. Model 645 Dual Paddle Keyer $\$ 85$. Model 670 Single Paddle Keyer \$34.50; Model 247 Antenna Tuner $\$ 69$, Model 234/214 Speech Processor \& Condenser Microphone $\$ 163$, Model 215 PC Ceramic Microphone $\$ 34.50$. Model 283 Remote VFO, Model 287 Mobile Mount, and Model 289 Noise Blanker available soon.

Experience The Notable Change In HF Transceivers. Experience DELTA. See your TEN-TEC dealer or write for full details.

A fresh idea!

Our new crop of tone equipment is the freshest thing growing in the encoder/decoder field today. All tones are instantly programmable by setting a dip switch; no counter is required. Frequency accuracy is an astonishing $\pm .1 \mathrm{~Hz}$ over all temperature extremes. Multiple tone frequency operation is a snap since the dip switch may be remoted. Our SS- 32 encode only model is programmed for all 32 CTCSS tones or all test tones, touch-tones and burst-tones. And, of course, there's no need to mention our 1 day delivery and 1 year warranty.

TS-32 Encoder-Decoder

- Size: $1.25^{\prime \prime}$ x $2.0^{\prime \prime}$ x $40^{\prime \prime}$
- High-pass tone filter included that may be muted
- Meets all new RS-220-A specifications
- Available in all 32 EIA standard CTCSS tones

SS-32 Encoder

- Size: . $9^{\prime \prime}$ x $1.3^{\prime \prime}$ x $.40^{\prime \prime}$
- Available with either Group A or Group B tones

Frequencies Available:

Group A				
67.0 XZ	91.5 Z	ZZ	118.8 2B	156.7 5A
71.9 XA	94.8 Z		123.0 3 2 Z	162.2 5B
74.4 WA	97.4 Z		127.3 3A	167.9 6Z
77.0 XB	100.01		131.8 3B	173.8 6A
79.7 SP	103.51		136.54 Z	179.9 6B
82.5 YZ	107.21		141.3 4A	186.2 7Z
85.4 YA	110.92		146.2 4B	192.8 7A
88.5 YB	114.82		151.45 Z	203.5 Ml

- Frequency accuracy, $\pm .1 \mathrm{~Hz}$ maximum $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Frequencies to 250 Hz available on special order
- Continuous tone

Group B						
TEST-TONES:	TOUCH-TONES:	BURST-TONES:				
600	697	1209	1600	1850	2150	2400
1000	770	1336	1650	1900	2200	2450
1500	852	1477	1700	1950	2250	2500
2175	941	1633	1750	2000	2300	2550
2805		1800	2100	2350		

- Frequency accuracy, $\pm 1 \mathrm{~Hz}$ maximum $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Tone length approximately 300 ms . May be lengthened, shortened or eliminated by changing value of resistor

Wired and tested: TS-32 \$59.95, SS-32 \$29.95

super quad for 7-28 MHz

An ambitious project for the fellow

who likes to "roll his own"

My interests in DX and DX contests goes back many years. I often marvel at how the state of the art has progressed. Ordinary dipoles, verticals and long wires on 7 MHz worked satisfactorily in those days, as everybody else was using the same thing. By 1964 many DXers on 7 MHz had "grown" good beams, and it became harder and harder to be a winner in the pileups. To stay competitive, I had to think about drastic changes in the $7-\mathrm{MHz}$ antenna department.

early quad experiments

A quad had always intrigued me, so I started to read books and collect information on this antenna. My quad project began back in 1965 after I acquired two telescoping 50 -foot (15.25 -meter) TV masts and some No. $18(1-\mathrm{mm})$ copper-clad wire. These masts were extended another 5 feet (1.5 meters) using aluminum tubing. They were then erected 19 feet (5.8 meters) apart in my 100 -foot (30.5 -meter) wide back yard. The antenna pointed directly toward Europe.

A 2 -element 40 -meter quad in a diamond shape was supported by these masts. The feed point and reflector tuning point were only 5 feet (1.5 meters) from ground: very convenient for tuning and matching the array. The driven element was fed by a $4: 1$ balun and RG-8/U coax. The quad was adjusted for minimum backward radiation.

A whole new world opened up. I began hearing European signals that were inaudible on a groundplane antenna. However, I felt frustrated when I wanted to work DX in different directions and resorted to the ground plane antenna, which was always a good performer for long-haul DX.

After using the two-element fixed quad for a number of years and collecting stacks of data, I decided to make the antenna rotatable and also higher.

design criteria

In 1970 I arrived at the fundamental design concepts:

1. All elements to be full size.
2. The longest metallic object in the system to be 13 feet (4 meters) maximum.
3. Incorporate concentric quads for $40-20-15-10$ meters.
4. Boomless or very short boom design.
5. Separate feed lines for each quad.
6. Nonmetallic tower (see $\mathbf{2}$ above).
7. Center of quads to be 44 feet (13.4 meters) above ground.
8. One person can raise and lower the array for tuning or repair.
9. Cost to be $\$ 250$ maximum.
10. Use diamond configuration in the design.
11. Keep the 19 -foot (5.8 -meter) spacing from driven element to reflector.
It took a year to complete the design and construction of this project with much redesign along the way, and in July 1972 the array design was fixed.

By Frederick Hauff, W3NZ, 437 South Lewis Road, Royersford, Pennsylvania 19468

From necessity many features of the entire system (tower, rotator, winch) are merely touched upon in this article, major emphasis being on design and construction of the antenna.

construction

Fig. 1 shows the construction of the spreader or spider arms. A list of tubing is given below.

Spreaders. To insert the $1-3 / 8$ inch (34.9 mm) tubing into the $1-1 / 2$-inch $(37.9-\mathrm{mm})$ tubing, both parts must be straight, round and burr-free. The insert must be thoroughly lubricated on the outside; the same goes for the inside diameter of the 1-1/2-inch $(37.9-\mathrm{mm})$ tube. I was able to insert all eight pieces with the help of a rawhide mallet by placing one end of the $1-1 / 2$-inch (37.9 mm) tubing against a tree stump. However, it's advisable to slot the $1-3 / 8$ inch $(34.9 \mathrm{~mm})$ tubing lengthwise for 30 inches (76 cm) with a saber saw, then deburr and insert the slotted end first. The 72 -inch ($183-\mathrm{cm}$) long tubing was polished on one end, lubricated, then driven into the tubing as shown in fig. 1. Make sure the tubing has entered at least 2 inches (5 cm).

Bushings. The insulating bushings are needed to comply with item 2 of the design criteria. The electrical length of the spider arms is 12 feet (3.7 meters) maximum. I turned these bushings on a small bench lathe. Take care to have good concentricity and roundness. For this reason the outside diameter was turned last by pushing the finished inside diameter onto an arbor made of plastic. I used scrap pieces of nylon, Delrin, and PVC. After the bushings were completed they were placed on the respective tubing sections as shown in fig. 1 and held in place with epoxy.

The spreader arm is now ready to be assembled as in fig. 1. Stainless steel hose clamps were used as shown.

List of aluminum tubing. All items listed (Page 14) are 12 -feet (3.7-meters) long 6061-T6 drawn round aluminum tubing. All items must be straight and round! No defects accepted.
The total cost of these items in 1971 was $\$ 105.52$. Three 12 -foot lengths of $1-1 / 8$ OD x 058 inch $(28.4 \times$ 1.5 mm) wall tubing should be added for the optional reinforcement of parts shown in detail 1, fig. 1.

fig. 1. Construction of spreaders for the super quad. Insulating bushings are made from PVC or nylon material. Epoxy cement is used on the bushings. Spreader arms are made from 6061-T6 aluminum tubing.

fig. 2. Details of the insulators, which were made from linen-base phenolic material.

quantity		size
8	$11 / 2 \mathrm{OD} \times .058(38 \times 1.5 \mathrm{~mm})$ wall	$30 \mathrm{lb} .(13.6 \mathrm{~kg})$
3	$1-3 / 8 \mathrm{OD} \times .058(35 \times 1.5 \mathrm{~mm})$ wall	$11 \mathrm{lb} .(5 \mathrm{~kg})$
4	$11 / \mathrm{OD} \times .065(32 \times 1.7 \mathrm{~mm})$ wall	$13 \mathrm{lb} .(6 \mathrm{~kg})$
4	$1-1 / 8 \mathrm{OD} \times .058(28.4 \times 1.5 \mathrm{~mm})$ wall	$11 \mathrm{lb} .(5 \mathrm{~kg})$
3	$7 / 8 \times .058(22 \times 1.5 \mathrm{~mm})$ wall	$6 \mathrm{lb} .(2.7 \mathrm{~kg})$
1	$3 / 40 \mathrm{OD} \times .058(19 \times 1.5 \mathrm{~mm})$ wall	$1.77 \mathrm{lb} .(1.5 \mathrm{~mm})$
		$72.75 \mathrm{lb} .(33 \mathrm{~kg})$

Insulators and brackets. A suitable insulator had to be designed and made to hold the quad wires to the spreader arms. Fig. 2 shows the insulator for the $7-$ MHz quad. The 20 -meter quad insulator clamps onto the $1-1 / 4$-inch (31.9 mm) tubing; the 15 - and $10-$ meter insulators clamp to the $11 / 2$-inch (37.9 mm) tubing. Variation of the insulator size must be made accordingly. The first insulators I made were without the Teflon part. During the first rain storm, if voltage arced from the brass screw to the tubing and burned up the insulators on the high-voltage points of the driven element.
The quads are fed at the lower corner of the driven element, so I also made up some supporting brackets for the coax cables that run down the lower front spreader arm. Fig. 3 shows details for this support.
These insulators and brackets were made in my work shop using a small lathe and drill press. All the insulating supports were clamped onto their respective spreader arms in the precalculated positions. I've omitted dimensions for these locations. To calculate these points is a good mental exercise, and every high-school student should be able to arrive at the correct numbers. Final adjustments can be made after stringing the quad wires.

Boom and associated hardware. The boom is a length of solid PVC measuring 30×3 inches $(76 \times 7.6$ $\mathrm{cm})$. Nylon or Delrin could also be used. Great care must be taken when drilling the eight $3 / 8$ inch 19.5

fig. 4. Spreader-arm-to-boom bracket detail.

$\mathrm{mm})$ through-holes to ensure good angular alignment of the spreader arms. Also, the holes for the upper and lower boom-to-spreader-arm brackets must be about $3 / 4$-inch ($19-\mathrm{mm}$) in front of the horizontal brackets so that the $3 / 8$-inch $(9.5 \mathrm{~mm})$ through-bolts won't interfere with each other. I drilled these holes on a vertical milling machine in a friend's machine shop.

The boom-to-mast plate is $1 / 4$-inch $(6.5-\mathrm{mm})$ thick steel plate. Four \mathbf{U} bolts must be used to clamp the boom to the plate and four \mathbf{U} bolts to clamp the plate to mast. At the beginning, I used only two \mathbf{U} bolts for each, but the first heavy wind gave me the needed education!

Spacing between driven element and reflector is 19 feet (5.8 meters) for the 40 -meter quad (0.136λ). It's not a magic number but it worked well on the fixed quad and it also provided clearance between lower spreader arms and guy wires for the tower.

The theoretical angle from vertical for the spreader arms to point outward is $17^{\circ} 48^{\prime}$. However, some preloading of the tension cords that run from the front to the rear spreader arms near the ends is needed. I chose an angle of 20°, which amounts to 12 inches $(30 \mathrm{~cm})$ at the end of each arm.

Fig. 4 shows the spreader-arm-to-boom bracket. I had all parts ready cut, shaped, and drilled. Then, with a template to assure the correct 20° angle, they were taken to a welder.

After welding, I gave the brackets a few coats of zinc chromate (galvanizing would have been better by far).

These brackets were mounted to the boom with stainless-steel threaded rods, cut to size, and stain-less-steel washers and nuts on each end of the rods.

To conform with items 2 and 6 of the design criteria, I made the tower of wood. It's a foldover tower.

When in a vertical position, it has four guy wires (broken with insulators). The uprights for the 40 -foot (12-meter) fold-over section are straight pieces of 2 x 4 lumber 20 feet (6 meters) long. The tower is 14 inches $(36 \mathrm{~cm})$ square (to the outside of the uprights).

The horizontal braces, which also serve as rungs for climbing the tower, are 1×3 lumber; the diagonals are 1×2 lumber. No. 10 wood screws 1.5 -inch $(38 \mathrm{~mm})$ long and waterproof glue were used in the construction. The hinge pin is a 1 -inch $(25.4-\mathrm{mm})$ diameter stainless-steel rod. Hinge members are aluminum plates $3 / 8$-inch $(9.5-\mathrm{mm})$ thick, which were bolted to the uprights. The tower hinge point is 16 feet (4.8 meters) from ground. A woopden tower section, 16 feet (4.8 meters) high, is permanently bolted to 4 -inch $(10-\mathrm{cm})$ channels, which are embedded in a concrete base. I placed four screw-in anchors equidistant from the center of the foldover section on a 16 -foot (4.9 -meter) radius. Fig. 5 shows the tower and the quad.

The winch, which is used to raise and lower the
fig. 5. Photo showing the homebrew wooden tower and quad ready for erection.
tower, is also home built and uses a 50-tooth, 1° pitch, single-thread worm gear for safety. A 1/2-inch ($25.4-\mathrm{mm}$) diameter reversible 500 rpm electric drill chucked to the tower worm shaft is used to raise and lower the tower.

The rotator also uses worm gears. It's mounted 8 feet (2.4 meters) from ground inside the tower. A 2inch ($51-\mathrm{mm}$) galvanized water pipe is used for the mast. A thrust bearing is located 8 feet (2.4 meters) from the top. The drive shaft from rotor to mast is also 2 -inch ($51-\mathrm{mm}$) galvanized pipe. To conform to my design criteria, it was broken into three sections, which are coupled together with solid PVC couplings as insulators. Again, I want to bring to your attention the enormous stresses that are applied to these parts during strong winds.

assembly

With the tower lowered, resting on a 13-foot (4-

fig. 6. Photo of antenna showing extension ladder, which was used to assemble the elements and feed system.
meter) high A frame, and guyed to right and left for safety, the antenna assembly begins. An extension ladder was used (see fig. 6).

The boom was mounted to the mast, then the four driven-element spreader arms were mounted to the brackets. Use three stainless-steel hose clamps (or more). (To meet item 2 of the design criteria I insulated the arms from the brackets.) I used strips of vinyl between arms and brackets and also under the hose clamps. I used 19 -foot (5.8 -meter) long stress cords attached to the upper vertical spreader arm near the end and also to both horizontal arms. I used small weights on the loose ends. At this time the tower was raised to the vertical position. I rotated the antenna 180 degrees, then lowered it. The other four spreader arms were then clamped to the brackets,
and the stress cords were fastened to the reflector set of spreader arms.

At this point we're ready to attach the quad loops to the insulators. When I first erected the fixed quad, I used the formulas for the loop length from the ARRL Antenna Book:

$$
\begin{align*}
& \text { driven element }(f t)=\frac{1005}{f(M H z)} \\
& \text { reflector }(f t)=\frac{1030}{f(M H z)} \tag{1}
\end{align*}
$$

I found that these numbers were wrong in my case. For my rotary quad I used:

$$
\begin{align*}
& \text { driven element }(f t)=\frac{994}{f(M H z)} \\
& \text { reflector }(f t)=\frac{1019}{f(M H z)} \tag{2}
\end{align*}
$$

The constants 302 and 309 may be substituted into the numerators of eq. 2 for calculating lengths in meters. The lengths, from eq. 2, are 141.5 feet (43.2 meters) for the driven element and 145 feet (44.2 meters) for the reflector.

The reflector is slightly less than 2.5 per cent longer than the driven element, and the adjustment is critical. In any event, the reflector must be tuned for minimum backward radiation. (I was not concerned with SWR while tuning for maximum front-to-back ratio.) All quad loops were fastened to the insulators, which were placed in the calculated positons on the arms.

feed system

The quad is fed by 52 -ohm coax and a 75 -ohm quarter-wave matching transformer. One coax line runs to a relay box at the top of the tower where the desired quad is selected by one of four relays. (The inner conductor of the unused lines is not grounded.) The five-wire control line to the relays was decoupled 13 feet (4 meters) from the relay box by winding three turns of this control line through a 2 -inch (51mm) diameter toroid.

tune up

For tuning the quad I put a sensitive field-strength meter with a 20 -foot (6 -meter) long horizontal pickup dipole 6 feet (2 meters) from ground, about 200 feet (60 meters) from the quad. I pointed the quad toward the field-strength meter and fed a small amount of if at 7050 kHz into the quad to give a full-scale meter reading. I then pointed the back of the quad toward the meter. The reading should drop to about $1 / 50$ th of full scale, which is close to zero. At this point I adjusted the meter reading to about half scale then varied the frequency plus and minus but maintained the same output from the transmitter. Wherever the
minimum reading on the meter occurred I considered to be the maximum performance (maximum front-toback ratio) operating frequency. Record it!

I used the same procedure for the $14-\mathrm{MHz}$ antenna. I cranked the tower down, with the reflector facing the ground, then made precalculated adjustments to the reflector only. (in my case the desired frequencies were 7020 kHz and 14020 kHz).

The 40 -meter elements turned out to be as mentioned before. The 20 -meter driven element is 71 feet (21.7 meters); reflector is 72 feet, 8 inches $(22.2$ meters), and the spacing is 12 feet, 8 inches (3.9 meters).

standing-wave ratio

The SWR of the $7020-\mathrm{kHz}$ quad is near $1: 1$. That of the $14020-\mathrm{kHz}$ quad is $1.5: 1$. The $21-\mathrm{MHz}$ and the $28-$ MHz quads have not been tuned as described. However, the SWR on 21020 kHz was very high and I substituted a gamma match, which improved the SWR. I think that the gamma match is superior to the matching transformer.

I think the spacing is too great for the 21- and 28MHz quads. I wasn't able to obtain the excellent results as with the 7 - and $14-\mathrm{MHz}$ quads. (Remember the spacing of the higher-frequency quads is not proportional to the $7-\mathrm{MHz}$ quad since the boom is a constant.) But once I had the two lower bands working I never took the time to improve the $21-$ and $28-\mathrm{MHz}$ antennas. It's too much fun to sit behind the loudtalking 40-meter antenna!

front-to-back ratio test

After the $7-\mathrm{MHz}$ quad was completed and tuned I placed the back toward the field strength meter again. I shorted the insulated drive-pipe section. Nothing happened to the front-to-back ratio. Then I short circuited the guy-wire insulators and short circuited the guy wires to the drive pipe. Nothing happened to the front-to-back ratio. However, when I short-circuited two spreader arms to the mast, a definite deterioration of front-to-back ratio occurred. This test was only made on 7 MHz to satisfy my curiosity.

performance

Many times I switch from the 40-meter quad to my ground-plane antenna and some signals just turn into a faint scratching sound, whereas they were RST 559 on the quad. It's mind boggling when a European station receives me RST 599, and after I turn the antenna backside toward him, he loses me completely.

I also have a tribander TH6DXX at 74 feet (22.6 meters). I can compare the $14-\mathrm{MHz}$ quad with the

Yagi at the flip of a switch. [The center of the quad is only 44 feet (13 meters) from ground.] On long-haul DX the high Yagi always out performs the quad.* Signals from Europe and Central America improved up to three S units on the quad under wide-open conditions. When band conditions are low, the Yagi takes over. When the 20 -meter band gets wiped out by rain static on the Yagi, I switch to the quad. Lo and behold! no static, only signals.

maintenance

In seven years 1 replaced the loop wires in the 14and $7-\mathrm{MHz}$ quads twice. During an ice storm the reflector wire broke on the $7-\mathrm{MHz}$ loop. The ice loading kinked the $1-1 / 4$-inch ($31.75-\mathrm{mm}$) tubing section of the upper spreader arm. The ice on the wire measured $1 / 2$-inch (13 mm) in diameter, and the tubing was $1-3 / 4$ inches (44.5 mm) from the ice buildup. It required only six hours to put the quad back into operation again, and the nicest part was that I could do it all by myself.

cost-reduction tips

To keep within the $\$ 250$ limit, the use of the junkbox was mandatory. I also visited a few surplus houses where I was able to pick up stainless-steel aircraft cable for $\$.05$ per foot, 18 -inch ($45.7-\mathrm{mm}$) turnbuckles for $\$ 2.00$ each, and worm gears and worms for $\$ 5.00$ per set. I cultivated the friendship of a ma-chine-shop foreman who saved scrap aluminum plates, old steel shafting, and nylon scraps for me. I bartered a case of beer for the welding of the boom-to-spider brackets. Such is the stuff of which hams are made.

Would I do it over again? The answer is yes! However, since making the different tests I would be brave enough to use a heavy-duty commercial 50foot (15-meter) foldover tower. Who is adventurous enough?

This has been a fun project. The greatest reward has been getting into a pileup and having those rare ones come back to me.

acknowledgement

Many thanks to N3RD, who was my critic and coordinator. I appreciate the suggestions of N3ANW. Special thanks go to my dear wife, who was always ready to help with holding and signaling chores. She kept the meals warm on many occasions and never blew her Irish fuse!

reference

1. Wayne Overbeck, N6NB, "Quads vs. Yagis Revisited," ham radio, May, 1979, pages 12-21.
"See Wayne Overbeck's article ${ }^{1}$ on this controversial subject. Editor.

ham radio

automatic CQer for RTTY

An alternative method for sending CQ on your RTTY station

If you're an active RTTYer without tape or memory bank capabilities, you know that it's a chore typing out several lines of $C Q$, especially if you don't get an answer on the first try. Here's a solid-state circuit that will do it automatically for you. It's called the NSco. The board is 4.5×4 inches ($11.4 \times 10.2 \mathrm{~cm}$) and contains only seven ICs. It sends a string of 16 COs without spacing, then DE, your call three times, and finally CR LF: COCOCOCOCOCOCOCOCOCOCOCOCQcococo de w4ayv w4ayv w4ayv Cr lF. It will continue this until the reset switch is turned to the HOLD position.

how it works

Fig. 1 shows the schematic. The oscillator, $\mathbb{U} 1$, is a 555 timer IC set to operate at 45.45 Hz , which is the Baud rate for 60 wpm . This frequency is adjusted by R1. Oscillator output is fed to U2, which is a dual 4bit binary ripple counter. This means that there are two separate sections with separate clock inputs that can count up to, or divide by, 16. Thus a total count of 256 is provided. The outputs are binary-coded four bits, so we can use the various output combinations to drive the binary inputs of the other ICs.
U3 is the COIC. This chip is analogous to a 16 -position rotary single-pole switch. It is advanced one step at a time by the binary codes from U2. In other words, it selects one input from zero to 15 and sends it to the output, just like turning a rotary switch from

0 to 15 . Each of the 16 inputs is wired to either +5 V or ground, depending on the Baudot code for C or Q .
As you know, the Baudot code consists of five bits in various combinations to make the machine print a letter or figure or perform a function. In addition there is one start pulse, which is always low and one stop pulse, which is always high. All these pulses are 22 ms long except the stop pulse, which is 31 ms long. To simplify the circuit l've made the stop pulse two $22-\mathrm{ms}$ pulses. This way, the machine will operate properly and no discernible difference can be noted. So we now have eight pulses in all: one start pulse, five data pulses, and two stop pulses. With these 16 inputs we can hardwire in the letters C and O with necessary start and stop pulses using the Baudot code.

We want the inputs U3 (CO) to be scanned 16 times. This is done by taking off count 256 (16 bits x 16) from the U 2 counter and sending it to U 6 , which is a flip-flop control. This will give 16 COs without spacing. To insert spaces would require more ICs and circuitry, because for each space another eight bits would be needed. The method used here keeps the unit simple.

When the inputs to $U 3$ (CQ) have been scanned 16 times U3 is cut off and switched to the PROM (programmable read-only memory) IC, U4, which contains DE, call letters three times, then CR LF. These data consume almost all of the 32 characters available; and at the end of the data, the PROM is switched off and goes back to CQ. U7 is a multiplexer, which decides which of the PROM or CQ information goes to the final output.

U 4 is programmed permanently with call letters, etc. Since the start and stop pulses are always the same, only the five-bit data are programmed. The PROM outputs are in parallel form; that is, all the fivebit data for the machine appear at the output at the same time. These data must be converted back to serial form for the machine, and this is done with U5.

By Nat Stinnette, W4AYV, 890 Virginia Avenue, Tavares, Florida 32778

This IC is very similar to the 74150 except that it has only eight inputs.

Since the start and stop pulses are always the same, U5 has its first position grounded for the start pulse, and the final seven and eight positions are wired to +5 V for the stop pulses. Now all that's needed from the PROM are the five-bit data. Note there are five 10 k resistors from +5 V to each of the five inputs of U5. These are necessary because some of the PROMs used have open-collector outputs.

Because the PROM outputs are in parallel and connected to U5 multiplexer inputs, PROM IC must run eight times slower to give U 5 time to scan all eight inputs. This is done by taking off the proper count from U2. The PROM used here is described as a $32 \times$ 8 , or organized as 32 words of eight bits each. This can be thought of as a ladder with 32 rungs or "address positions." Each of these address positions has a storage capacity of eight bits. The address positions are advanced one position at a time with the proper binary code from counter U2.

interfacing the CQer

Output from the NS-CO is taken from either pin 1
or pin 2 of U7. Fig. 1 shows output from pin 2. This will give approximately 5 V on mark and OV on space with the transmitter in LSB mode. The two outputs are opposite. When one is high the other is low. As shown, the output on pin 2 is low when reset pins 2 and 12 of U 2 are above ground. This position resets the counter to zero, which stays there until again grounded. The dpdt switch changes the output of U7 pin 2 to pin 1, which is high, so the machine will hold in a mark condition during standby. If your setup is inverted with connection to pin 2, just reverse the two leads going to the dpdt switch.

fig. 2. Alternative keying circuit that can be inserted in series with the loop.

fig. 3. Parts placement on PC board. Note notch on each IC for correct placement on board.

fig. 4. Foil side of the NS-CQ PC board. Boards are available from author (see text).

Most machines have the keyboard in series with the loop supply for local copy, and associated circuitry produces a keying voltage for FSK or AFSK. If your TU has a loop keying transistor, as shown in fig. 2, you can lift the base resistor at the far end and connect the NS-CQ output here. Another method would be to insert another keying circuit, as in fig. 2, in series with the loop. For AFSK, the NS-CQ output can usually replace the normal keying voltage going to your AFSK tone generator. For example, the NS-CQ will drive the Mainline $A K-2$ directly. All these changes can be made with toggle switches.

construction

Construction is straightforward with a PC board.* "Use a low heat soldering iron with small solder, not more than No. 18 (1 mm) in size. Refer to fig. 3 for position of components and jumper wires.

It is strongly recommended that sockets or Molex pins be used for the ICs. This simplifies removal of an IC if necessary. If Molex pins are used, first solder the pins then remove the top tab by bending it over once or twice. CAUTION: It is imperative that each IC be inserted in its socket in the proper way, otherwise it may be destroyed. Each IC has a notch or deep circular indentation on one end as viewed from the top. This notch should line up with that on the parts placement diagram (fig. 3).

After soldering all components, check for solder bridges between pins and between circuit traces that are close together. Connect -5 V and ground to proper terminals. Fig. 4 shows the foil side of the board.

Set R1 to 45.45 Hz with a frequency counter connected to TP. If no counter is available, you can get proper speed by slowly adjusting R1 while observing printout on the machine. Set R1 so that machine runs and prints smoothly.

the PROM

Several different types of PROMS are available. Some come with all outputs high and some with all outputs low. Using a Baudot table, a letter or function is made by changing one output bit at a time from high to low, or from low to high, as required. Special equipment is needed to do this; but simply stated, it consists of pulsing a certain voltage on an output pin for a length of time in the microsecondmillisecond range. Consult the data sheet of the PROM for proper procedure. I've found the following ICs to be the easiest to program: $82 \mathrm{~S} 23,82 \mathrm{~S} 123$, 7577, and 7578.

[^1]ham radio

Kitty's November Suggestions

BARRY'S HAS HAND-HELDS
Yaesu FT-207R
Icom IC-2AT
Tempo S-1, 2, 5
Santec HT-1200
Come to BARRY'S for your YAESU transceivers and receivers.

The outstanding FT-707 or consider the FT-107 or the NEW 9-Band FT-101ZD

See the Yaesu FRG-7000 and the top rated ${ }^{*}$ FRG-7 receivers.
NOVEMBER FEATURES GLA 1000B
MIRAGE 2M amplifiers • MURCH UT 2000B It's Barry's for the Drake TR/DR-7 and R-7 CW Ops - we've got NYE keys and Bencher paddles BARRY'S HAS TUBES LOTS OF TUBES!!!
BARRY now carries the ALPHA 76PA with three 8874 tubes, 2,000W PEP Our lines include:

AEA	DRAKE	MURCH
ALLIANCE	ETO	ROBOT
ASTRRON	EIMAC	SHURE
AVANTI	ENCOMM	STANDARD
B\&W	HUSTEER	SWAN/CUBIC
BIRD	HY-GAIN	TEMPO
COLLINS	ICOM	TRI-EX
COMMUNICATIONS	KLM	VHF ENGINEERING
SPECIALISTS	KANTRONICS	WACOM
CUSHCRAFT	MFJ	YAESU
DSI	MIRAGE	AND MORE...
DENTRON	MOSLEY	Ask us for details.

-

BUSINESSMEN: Ask about BARRY'S line of business-band equipment. We've got it!

Amateur Radio License Classes:
Wednesday \& Thursday: 7-9 pm Saturday 10 am-Noon

The Export Experts Invite Overseas orders

$\left|\begin{array}{c}\text { AQUISE } \\ \text { HABLA }\end{array}\right|$ - We Ship Worldwide
 BARRY ELECTRONICS

512 BROADWAY, NEW YORK, N.Y. 10012
TELEPHONE (212) 925-7000

Yagi antenna design:

stacking

Data for various stacked Yagi configurations

This article describes the use of multiple Yagi antennas arranged into a coherent antenna system. The number of potential arrangements is unlimited, but certain basic configurations deserve detailed analysis because they have attractive properties. To start, I shall limit the discussion to systems where the individual Yagi antennas are all physically identical and aligned for maximum radiation in the same direction. Moreover, to ensure that each Yagi contributes to the overall main radiated wave front in a coherent manner, I shall limit the configurations to those in which the Yagi positions (say, for example, the reflector end of the boom) lie in a plane perpendicular to boom direction. Usually all of the Yagis are coherently excited by the same driver current (magnitude and phase). Using identical Yagis positioned in such a plane helps maintain a uniform radiated pattern over a desired frequency band. The overall system beam pattern can be pointed in azimuth only by mechanically rotating the entire system.*

[^2]The overall system array can be viewed as a largearea aperture illuminated in a quasi-uniform way by the individual Yagi antennas. So long as the individual Yagi antennas are not too far apart (so that illumination is relatively uniform), the system gain should be proportional to the total effective aperture area. The system beam pattern should also show an angular width inversely proportional to the aperture dimension. Thus, in concept, a horizontal array of Yagi antennas (horizontally polarized) should produce a narrow horizontal system beam pattern; similarly, a vertical array of Yagi antennas (horizontally polarized) should produce a narrow vertical system beam pattern.
We must consider the system array over earth or ground; in this case all of the effects mentioned previously ${ }^{1}$ will occur. Recall that ionospheric paths over earth primarily favor low radiation angles (up to say, 20 degrees); moreover, this whole range of antenna radiation angles should be covered to accommodate a continuous earth range as well as different multimode ionospheric paths. We shall see that, by vertically stacking two or more horizontally polarized Yagis over ground, it is possible to improve significantly low-angle performance (over that of a single Yagi antenna over ground) without reducing the azimuthal coverage. This improved result comes about through a suppression of otherwise useless radiation at the higher angles.

By James L. Lawson, W2PV, 2532 Troy Road, Schenectady, New York 12309

stacked Yagi antennas

For Amateur Radio communications relatively wide horizontal or azimuthal coverage is generally desirable, not only to make a given contact less sensitive to critical beam heading but to accommodate the many occasions in which the communication path is somewhat skewed due to ionospheric conditions. Wide azimuthal coverage is especially desirable under contest conditions, where it is advantageous to have the beam simultaneously illuminate the largest desired Amateur population. So a horizontal array of Yagi antennas doesn't appear as desirable as a vertical stack;* therefore I shall not attempt analyses of such horizontal arrays.

Vertically stacked Yagi arrays are now in reasonably wide use. It is interesting to study the theoretical performance of such systems. Before attempting a formal analysis, I will make two obsevations. First, vertical stacking requires a supporting mast. If the stacking separation is large (which we shall find desirable), the large mast must be entirely rotatable and, of course, very rugged mechanically. Such a mast, including its foundation, is a major undertaking.

Two interesting variations of this system are not as formidable. The first variation is a stacked Yagi antenna array offset from a fixed, or guyed, tower. The offset allows simultaneous rotation of the Yagi antennas over a range in azimuth of about 300 degrees; at either end of this range, the antennas are designed to nest around the mast. I use this construction for a stacked $28-\mathrm{MHz}$, 6-element Yagi antenna system on a Rohn 45 guyed mast. It works very well and is cost effective.

The second variation is to use a fixed, or guyed, mast with the top Yagi antenna fully rotatable and a second, lower, Yagi antenna fixed in a preferred direction. This is a particularly interesting variation for contest operation, especially on the lower frequencies where the mast must be very high.

My 7-MHz system is a good example. A full-sized, three-element beam is fully rotatable on top of a 180foot (55-meter) Rohn 45 guyed mast. A second fullsized, three-element beam is fixed at 90 feet (27 meters), which is aimed at Europe. Thus, in the European direction, full stacking is available; in all other directions the top beam can be used alone. Moreover, it is easy to excite both beams and activate two azimuthal directions simultaneously, or it is also possible to switch instantly from one direction to another without losing the normal time to turn the large Yagi antenna.

[^3]I have found the flexibility of this system to be very helpful in many situations.

antenna excitation

My second observation is that, for all types of stacked arrays, I have found it useful to provide a switching system that allows operation of each Yagi independently or both together. When only high-angle radiation is desired, the lower antenna is usually best. For lower angles of radiation, the combined stack is better. It is easy to arrange such a switch using conventional relays and quarter-wave coaxial transformers; a practical system is shown in fig. 1 for two stacked Yagi antennas.

fig. 1. Both, lower, or upper (BLU) switching system. T is a $\lambda / 4$ transformer; 70 -ohm coaxial cable, $\lambda / 4$ electrical length.

The relays may have to be compensated by small shunt capacitors if their series inductance is too large. The relay box should be mounted on the mast about half way between the Yagi antennas. Extension to more than two stacked Yagi antennas is equivalently easy. However, the particular scheme will depend on the way in which power is to be split between all Yagi antennas.

Because of these various excitation techniques, it is desirable to compute not only the properties of a vertically stacked Yagi system, but the properties of the individually excited Yagi antennas.

Two complicating problems arise. First, not only is a single Yagi antenna over ideal ground not the same antenna as in free space, ${ }^{1}$ but it is further changed by all other Yagi antennas as well as their ground images. This is true even if all other Yagi antennas are not driven. To some extent their elements will be parasitically excited by the single driven Yagi antenna.

This means that the computation for a single Yagi must be carefully made to account fully for all the parasites and images in its local field. Second, if only
table 1. Representative good Yagi beams. All elements are cylindrical with radius $p=0.0005260(\lambda)$.

	3-elements $0.25(\lambda)$ boom length		6-elements $0.75(\lambda)$ boom length	
element	length (λ)	boom position (λ)	length (λ)	boom position (λ)
reflector	0.49801	0.000	0.49528	0.000
driven	0.48963	0.150	0.48028	0.150
D1	0.46900	0.300	0.44811	0.300
D2			0.44811	0.450
D3			0.44811	0.600
D4			0.44811	0.750

the top Yagi is rotatable, the performance of the single lower antenna alone will depend on the relative azimuthal orientation of the two antennas. In this case it is instructive to compute three cases: parallel, orthogonal, and antiparallel orientations.

stacking arrangements

Let us now choose some representative horizontally polarized stacking arrangements over flat, ideal, ground and compute their theoretical performance. I shall present computed H -plane patterns over the range of elevation angles of interest.
The E-plane pattern over ideal ground is, of course, zero everywhere. System forward gain at central design frequency is shown (from zero to 20 dBi) as a function of elevation angle (from zero to 60 degrees). The plots show not only how well the overall system performs at the important low angles, but also what may be sacrificed at the higher angles, which are occasionally useful.
Two basic Yagi designs are used. They are the same three-element beam (boom $=0.25 \lambda$) and the same six-element beam (boom $=0.75 \lambda$) shown in table 1 of the previous article. 1 They are reproduced
for convenience in table 1.
I shall start with two stacked, identical beams over ground. In practice, the height of the upper beam will be fixed at the overall mast height. The placement of the lower antenna will be made at some lower position. It is interesting to understand the tradeoffs involved in the height of the lower antenna.

antenna patterns

I shall choose, for illustrative purposes, four different heights, $H U$, for the upper beam (assumed to be the supporting mast height). For each of these cases, three different heights, $H L$, for the lower beam are chosen. All heights are expressed in wavelengths (λ) at the central design frequency.

Tables 2 and 3 show computed results for all these cases. These tables also refer to figs. 2 and 3, which display detailed H -plane patterns for all cases.

Note that each figure has several graphs: one for the combined stacked performance (labeled 1); one for the lower antenna alone (labeled 2); one for the upper antenna alone (labeled 3); and, where applicable, what the lower antenna only would show if no upper antenna were physically present (labeled 4).

In cases 2 and 3, both antennas are physically present, but only one is driven (all nondriven elements act as parasites). I have assumed, in these calculations, that the unused driven elements are sufficiently detuned so that they play no part in overall performance.

An examination of tables 2 and 3, and especially the H -plane patterns of figs. 2 and 3 , reveals a number of interesting and important characteristics of these simple, vertically stacked systems. Table 2 shows the maximum gain and corresponding elevation angle for each case of a stacked pair of 3-element beams. Also shown is the F / B ratio, which we now know varies with the exact element complex current(s), which in turn are influenced by the mutual
table 2. Gain in dBi of a 3-element stack, upper height $H U(\lambda)$ and lower height $L U(\lambda)$.

			both			lower			upper			tower only		
fig. no.	HL	HU	max. gain	angle (degrees)	$\begin{aligned} & F / B \\ & (d B) \end{aligned}$	max. gain	angle (degrees)	$\begin{aligned} & F / B \\ & (\mathrm{~dB}) \end{aligned}$	max. gain	angle (degrees)	$\begin{aligned} & F / B \\ & \text { (dB) } \end{aligned}$	max. gain	angle (degrees)	$\begin{aligned} & \text { F/B } \\ & \text { (dB) } \end{aligned}$
2A	0.30	0.75	14.42	21	24.34	11.48	33	19.72	13.96	19	21.83	11.74	36	19.50
2 B	0.375	0.75	14.50	21	23.84	11.78	33	21.70	13.59	18	23.25	12.38	32	21.76
2C	0.45	0.75	14.55	21	21.81	11.83	34	25.81	12.90	18	26.23	12.96	29	23.06
20	0.60	1.50	15.82	11	32.28	13.69	20	30.21	14.77	10	27.92	13.87	23	31.33
2 E	0.75	1.50	16.56	11	21.14	14.51	16	23.97	15.19	10	22.28	14.07	18	21.21
2 F	0.90	1.50	16.71	11	21.84	14.53	15	20.84	14.89	10	20.91	14.14	16	19.08
2G	0.90	2.25	15.61	8	17.78	14.32	16	20.00	14.30	6	20.21	14.14	16	19.08
2 H	1.125	2.25	16.33	8	19.08	14.32	13	23.06	14.36	6	18.65	14.32	13	25.98
21	1.35	2.25	16.99	7	17.19	14.62	10	17.49	14.77	6	18.23	14.35	11	19.48
2 J	1.00	3.00	15.19	6	20.24	14.19	14	19.28	14.50	5	20.24	14.24	14	20.07
2K	1.50	3.00	16.32	6	18.80	14.38	10	19.84	14.41	5	19.28	14.38	9	19.78
2 L	2.00	3.00	17.11	5	18.79	14.56	7	19.04	14.60	5	18.93	14.46	7	19.86

table 3. Gain in dBi of a 6 -element stack, upper height $H U(\lambda)$ and lower height $L U(\lambda)$.

			both			lower			upper			lower only		
fig. no.	HL	HU	max. gain	angle (degrees)	$\begin{aligned} & \text { F/B } \\ & (\mathrm{dB}) \end{aligned}$	max. gain	angle (degrees)	$\begin{aligned} & \hline F / B \\ & (d B) \end{aligned}$	max. gain	angle (degrees)	$\begin{aligned} & \text { F/B } \\ & \text { (dB) } \end{aligned}$	max. gain	angle (degrees)	$\begin{aligned} & \text { F/B } \\ & \text { (dB) } \end{aligned}$
3A	0.30	0.75	15.22	20	24.23	13.46	44	9.57	15.08	17	23.13	13.40	30	17.14
3B	0.375	0.75	15.61	20	21.00	13.70	43	9.75	14.47	16	19.21	13.97	27	23.57
3 C	0.45	0.75	15.63	19	18.85	13.51	43	8.87	13.45	16	14.10	14.52	25	29.80
3D	0.60	1.50	17.47	11	22.71	15.09	21	21.88	16.43	9	30.72	15.18	21	24.19
3E	0.75	1.50	17.28	11	14.07	15.16	20	18.50	15.74	9	18.11	15.59	18	21.52
3F	0.90	1.50	18.09	11	23.48	15.74	16	36.08	16.06	9	24.17	16.16	15	28.57
3G	0.90	2.25	18.00	8	30.06	15.94	14	26.76	16.73	6	44.62	16.16	15	28.57
3 H	1.125	2.25	18.41	8	28.56	16.39	12	48.07	16.56	6	30.48	16.31	12	34.93
31	1.35	2.25	18.60	7	19.87	16.26	11	22.61	16.36	6	21.58	16.38	10	31.95
3J	1.00	3.00	17.33	6	38.94	16.49	14	33.55	16.62	5	40.44	16.36	14	35.77
3 K	1.50	3.00	18.70	6	32.04	16.61	9	36.88	16.80	5	35.32	16.58	9	38.61
3L	2.00	3.00	19.23	5	25.19	16.79	7	26.65	16.82	5	25.86	16.67	7	40.94

impedances to all other elements. Table 3 shows the equivalent quantities for the stacked pair of 6 -element beams.

Note from these tables that the smaller values of overall antenna mast height, $H U$, do not give as much overall maximum gain as the higher antennas; this gain deficit is more severe for the 6 -element beams than for the 3 -element beams. This is the same general result previously obtained for single antennas over ground; ${ }^{1}$ it results from the same phenomenon; that is, the natural increased free space directivity of the larger Yagi antennas reduces the gain potential at the higher elevation angles required for the lower antennas.

Note also from these tables that the exact placement of the lower Yagi antenna does not markedly influence the stacked maximum gain of the system but usually does significantly affect the angle of the lower antenna radiation. Note also that the excellent free space F / B ratio can be significantly affected by stacking; it is most strongly affected when the stack spacing is small and where the number of (adjacent) parasites is large, for example, especially the first three cases in table 3.

To properly assess all of these stacked Yagi antenna systems, it is necesary to look at the H -plane (elevation angle) patterns shown in figs. 2 and 3 . It is instantly clear that excellent stacked coverage (curve 1) of the crucially important $0-20$ degree elevation angles requires a reasonably high system ($H U=1.0 \lambda$) but not too high ($H U=2.5 \lambda$). Above the first main lobe of radiation the patterns are quite varied; it is helpful to understand the basic reasons for these variations. Fig. 4 shows a simplified sketch of the two Yagi antennas above ground, each one represented on this diagram by a point. The lower antenna is at a height $H L$ (in λ) and the upper one is at a height $H U$ (in λ); also shown are the image antennas below ground at heights of $-H U$ and $-H L$, respectively.

Note that at an elevation angle, θ, the radiation from the lower antenna lags that from the upper antenna by a distance ($H U-H L$) $\cdot \sin \theta$ (also in λ). This phase lag causes the pair of antennas to interfere both constructively and destructively. At certain values of θ, which I shall designate θp, destructive interference will be complete and produce a radiation pattern null. Since the phase lag between the two antennas above ground is identical to that between the two images below ground, the overall radiation will also show these nulls where

$$
\theta_{p}=\sin ^{-1}[(N+1 / 2) /(H U-H L)]
$$

where N can take on integer values starting with zero ($0,1,2, \ldots$).

Now, from fig. 4, note that the radiation from the image pair (which is excited out of phase with the real antenna pair) further lags by a distance ($H U+$ $H L) \cdot \sin \theta$. Thus nulls will also occur in the overall pattern due to ground reflections at values of θ which I shall designate as θ_{G} where:

$$
\begin{equation*}
\theta_{G}=\sin ^{-1}[M /(H U+H L)] \tag{2}
\end{equation*}
$$

where M can assume integral values

$$
(0,1,2, \ldots)
$$

As an example, consider fig. 3L where $H U=3.00 \lambda$ and $H L=2.00 \lambda$. Eqs. 1 and 2 predict that nulls should occur (in the range 0 to 60 degrees shown) as follows:

$$
\begin{aligned}
\theta_{p}= & 30 \text { degrees } \\
\theta_{G}= & 11.5 \text { degrees, } 23.6 \text { degrees } \\
& 36.9 \text { degrees, } 53.1 \text { degrees }
\end{aligned}
$$

While fig. 3L, which shows gain only above 0 dBi , only suggests these minima, the full calculations show them all quite clearly. Moreover, note from fig. 3L that the upper envelope of gain falls off substantially with azimuthal angle; this general result is caused

fig. 2A. Gain of a 3 -element stack. Curve 1 - both, 2 - lower, 3 - upper, 4 - lower only lupper physically absent).

fig. 2B. Gain of a 3-element stack. Curve 1 - both, 2 - lower, 3 - upper, 4 - lower only (upper physcially absent).

fig. 2C. Gain of a 3-element stack. Curve 1 - both, 2 - lower, 3 - upper, 4 - lower only (upper physically absent).

fig. 2D. Gain of a 3 -element stack. Curve 1 - both, 2 - lower, 3 - upper, 4 - lower only lupper physically absent).

fig. 2E. Gain of a 3-element stack. Curve 1 - both, 2 - lower, 3 - upper, 4 - lower only (upper physically absent).

fig. 2F. Gain of a 3-element stack. Curve 1 - both, 2 lower, 3 - upper, 4 - lower only (upper physically absent).

fig. 2G. Gain of a 3 -element stack. Curve 1 - both, 2 - lower, 3 - upper.

fig. 2H. Gain of a 3 -element stack. Curve 1 - both, 2 - lower, 3 - upper, 4 - lower only (upper physically absent).

fig. 21. Gain of a 3-element stack. Curve 1 - both, 2 lower, 3 - upper, 4 - lower only (upper physically absent).

fig. 2J. Gain of a 3 -element stack. Curve 1 - both, 2 - lower, 3 - upper.

fig. 2K. Gain of a 3-element stack. Curve 1 - both, 2 - lower, 3 - upper, 4 - lower only (upper physically absent).

fig. 2L. Gain of a 3-element stack. Curve 1 - both, 2 lower, 3 - upper, 4 - upper only (upper physically absent).

fig. 3A. Gain of a 6 -element stack. Curve 1 - both, 2 - lower, 3 - upper, 4 - lower only (upper physically absent).

fig. 3B. Gain of a 6 -element stack. Curve 1 - both, 2 - lower, 3 - upper, 4 - lower only lupper physically absent).

fig. 3C. Gain of a 6 -element stack. Curve 1 - both, 2 - lower, 3 - upper, 4 - lower only (upper physically absent).

fig. 3D. Gain of a 6 -element stack. Curve 1 - both, 2 - lower, 3 - upper.

fig. 3E. Gain of a 6 -element stack. Curve 1 - both, 2 - lower, 3 - upper, 4 - lower only lupper physically absent).

fig. 3F. Gain of a 6 -element stack. Curve 1 - both, 2 lower, 3 - upper, 4 - lower only (upper physically absent).

- fig. 3G. Gain of a 6 -element stack. Curve 1 - both, 2 - lower, 3 - upper, 4 - lower only (upper physically absent).

fig. 3H. Gain of a 6 -element stack. Curve 1 - both, 2 - lower, 3 - upper, 4 - lower only (upper physically absent).

fig. 31. Gain of a 6 -element stack. Curve 1 - both, 2 lower, 3 - upper, 4 - lower only lupper physically absent).

fig. 3J. Gain of a 6 -element stack. Curve 1 - both, 2 - lower, 3 - upper, 4 - lower only (upper physically absent).

fig. 3 K . Gain of a 6 -element stack. Curve 1 - both, 2 - lower, 3 - upper, 4 - lower only (upper physically absent).

fig. 3L. Gain of a 6 -element stack. Curve 1 - both, 2 lower, 3 - upper, 4 - lower only (upper physically absent).
by the natural free space directivity of the individual Yagi antennas. Note that this effect is much more pronounced for the larger 6 -element Yagi antennas (fig. 3L) than for the smaller 3-element equivalent stack (fig. 2L).

Thus, the overall H -plane pattern is the result of three effects: first, the natural free-space directivity of the individual Yagi antennas; second, the interference effect of the two real antennas; and third, the interference effect of the above ground system with. its image counterpart. All three effects have different angular dependences; it is therefore not surprising that the overall resultant can be quite varied and complex.

For those readers interested in constructing a vertically stacked Yagi antenna array, a careful scrutiny of tables 2 and 3 and especially all of the relevant figures is quite enlightening. It is apparent that there is no single ideal design; nevertheless, there are a number of salient points that are worth noting.

1. A mast height (upper antenna height) of 0.75λ is really not high enough to get very much additional gain from stacking, especially with large Yagi antennas.
2. The higher systems provide better low-angle performance than the lower systems but sacrifice (sometimes needed) high-angle performance. They also provide less gain sacrifice due to ground images for big antennas and through increased antenna spacing provide less spoiling of the inherently good individual Yagi free-space characteristics.
3. The important (lowest) first-lobe gain is only weakly dependent on the placement of the lower antenna. The gain alone would favor $H L$ somewhat above HU/2 (see for example figs. 3G, 3H, and 31); nevertheless, a lower placement (wider element spacing) will result in smaller beam interactions.
4. Mutual coupling or interaction between Yagi antennas tends to spoil the otherwise excellent properties of a single Yagi. This spoiling is most pronounced for low systems where spacings are small, not only to ground but between Yagi antennas (see for example figs. 2A, 2B, and 2C). This spoiling can be easily seen in the altered pattern(s) of the lower beam (curve 2) when the upper beam is physically present and (curve 4) when the upper beam is absent. You can also see the effect that stacking has on the F / B ratios (tables 2 and 3) and also (not shown) the effects on the calculated driving point impedances of both upper and lower Yagi antennas.
5. Interactive effects are also more serious when large Yagi antennas are used. This general result is anticipated and is due to the larger number of adja-
cent parasites; it is illustrated by comparing curves 2 and 4 of figs. 2B and 2C with those of figs. 3B and $3 C$.
6. Any good (reasonably high) stacked array will benefit by the Both, Lower, Upper or BLU switch arrangement (see figs. 3G and $\mathbf{1}$) where at high angles a fill in the performance can be made (usually) using the lower antenna only. Best higher angle fill occurs when the placement of the lower antenna is at or preferably below $\mathrm{HU} / 2$. A good practical height is $\mathrm{HU} / 3$ $>H L>H U / 2$. Note that a good fill obtained in this way slightly compromises maximum gain; however, this compromise is really not very serious.
7. With the BLU switch available it is interesting to compare performances. In all cases, at the very lowest angles, B and U give essentially identical results, that is, the stack is just as good as the upper antenna alone. However, the stack always accepts a broader range of vertical angles in its first lobe (due to its lower average height) and at its peak has more gain than either upper or lower alone. This gain advantage is one to three dB depending on the particular stack. Although this may not seem very impressive, experience demonstrates that the stack does indeed provide a commanding performance advantage over a single Yagi antenna and, coupled with the broader vertical coverage of the first lobe, will be more consistent.
8. A number of excellent stacked arrays can be chosen from these figures. As a good example note fig. 3D. I have operated a stack very much like this on 14 MHz for several years; experience shows this to be a superb performer even without a BLU switch arrangement. Figs. 3E and $3 F$ also look very attractive, but the closer beam spacing results in increased variations in F / B properties and probably would require a BLU switch for best high-angle fill. For a higher stack note the excellent gain performances of figs. 3G through 31. However, for any of these cases, a fill seems desirable by the use of a BLU switch; note that for best fill at some higher angles the upper antenna should be used. For a very high stack fig. 3J provides exceptional stacked gain, and by the additional use of the lower antenna (for fill), it accommodates radiation angles up to nearly 30 degrees. However, at the 30 degree angle the system performance is abysmal, giving essentially zero response for any setting of the BLU switch.

electrically derived fill

I shall now turn briefly to an alternative method of obtaining higher-angle fill, a method that promises to be operationally simple and potentially very effective. Up to this point, I have used identical driver currents
table 4. Performance of stack shown in fig. 3D vs. relative phase angle, ϕ, of lower-to-upper drive current. Gain is in dBi , elevation angle in degrees, F / B in $d B, R$ and X in ohms, and ϕ in degrees.

phase	maximum elevation		impedance		
ϕ	gain	angle	F/B	\mathbf{R}	\mathbf{X}
0	17.47	11	22.71	21.96	-1.22
45	16.95	11	23.53	21.96	-1.09
60	16.47	11	23.80	21.94	-1.05
90	15.00	10	24.45	21.88	-0.99
120	15.81	28	21.46	21.79	-0.98
135	16.43	28	22.41	21.75	-0.99
180	17.26	28	25.33	21.65	-1.07
-45	16.74	11	21.80	21.86	-1.30
-90	14.53	28	37.64	21.73	-1.30
-135	16.69	28	29.43	21.65	-1.20

in both magnitude and phase. Let us now consider what effect is made on (stacked) H-plane patterns if the phase of the drive current in the lower antenna is changed relative to that in the upper antenna. I shall use as a test case the stack of 3D and will change the relative phase angle, ϕ, of the lower antenna drive current with respect to that of the upper antenna drive current. Computation of system performance under these conditions exhibits some remarkable effects. Table 4 shows performance as a function of ϕ (in degrees) for several discrete relative phase angles from zero to 180 degrees, and fig. 5 shows the H plane patterns corresponding to selected values of ϕ.

The H-plane pattern for any positive value of ϕ is nearly identical to the pattern for the same negative value of ϕ; minor differences (which are also evident

fig. 4. Two stacked Yagi antennas; lower at height HL(λ) and upper at height $\mathrm{HU}(\lambda)$.
in table 4) are caused by the detailed way in which all mutual coupling effects take place. It is easy to see from fig. 5 that reversing the phase $(\phi=180$ degrees) results in excellent system performance at higher angles; basically giving maxima where the original H-plane pattern showed minima. At intermediate values of ϕ an intermediate result is obtained where the resulting H-plane pattern is a combination of both the $\phi=0$ degrees (original pattern) and the $\phi=180$ degrees (out-of-phase pattern). Note that this higher angle fill effectively uses the extra gain potential of both Yagi antennas; it is therefore potentially superior to a single Yagi antenna fill and is also quite easy to implement (by switching in to only one of the antenas a coaxial line whose electrical length is $\lambda / 2)$.

fig. 5. Gain of a 6 -element stack, $H L=0.60(\lambda)$ and HU $=1.50(\lambda)$. Curve $A-$ phase, $\phi,=0$ degrees, $B-$ phase, $\phi,=\mathbf{6 0}$ degrees, C - phase, $\phi,=\mathbf{1 2 0}$ degrees. D - phase, $\phi,=180$ degrees.

One can also see clearly from fig. 5 that if ϕ is relatively small little degradation of system performance occurs; this fact potentially allows the stacking of dissimilar Yagi antennas. Nevertheless the use of dissimilar antennas raises questions about how to measure the effective ϕ and certainly increases the complications of controlling ϕ over a reasonable bandwidth of frequencies.

It is important to note that only two values of ϕ are desired. The in-phase case ($\phi=0$ degrees) is best for low-angle performance and the out-of-phase (ϕ $=180$ degrees $)$ is best for higher values of elevation angle. All other values of ϕ give inferior results to either one or the other of these cases.

more than two antenna arrays

Let me now consider the possibility of stacking
table 5. Gain of multi 6-element stacks, lowest at height $H 1(\lambda)$ and next at $H 2(\lambda)$, etc. Gain is in dBi.

H2 H3 H4	all			lowest			top			lowest only		
	max. gain	angle (degrees)	$\begin{aligned} & \hline F / B \\ & (\mathrm{~dB}) \end{aligned}$	max. gain	angle (degrees)	$\begin{aligned} & \hline \text { F/B } \\ & (d B) \end{aligned}$	max. gain	$\begin{aligned} & \text { angle } \\ & \text { degreesl } \end{aligned}$	$\begin{aligned} & \hline F / B \\ & (d B) \\ & \hline \end{aligned}$	max. gain	angle (degrees)	$\begin{aligned} & \hline F / B \\ & \text { (dB) } \end{aligned}$
60.751 .502 .25	19.14	8	14.81	15.22	20	15.58	16.31	6	22.51	15.59	18	21.52
$7 \quad 0.751 .502 .253 .00$	20.23	6	15.92	15.28	23	16.06	16.22	5	21.04	15.59	18	21.52

more than two Yagi antennas. It is obvious that some additional performance improvement should be possible provided the mast height is sufficiently high. As examples I show computations for two different evenly spaced stacks shown in table 5. The first stack shows three of the 6 -element Yagis evenly spaced with a top height of 2.25λ, and the second shows four 6 -element Yagis evenly spaced to a top height of 3.0λ. Figs. 6 and $\mathbf{7}$ show the H -plane patterns for these two systems; they should be compared with figs. 3G and 3J, which are basically equivalent 2-Yagi stacks of comparable mast height. It is at once apparent from fig. 6 that the addition of the third Yagi antenna gives a main lobe gain over fig. 3G of 1.1 dB ; all other characteristics are quite comparable. Likewise, fig. 7 shows that the two additional Yagi antennas give a main lobe gain increase of 1.9 dB over fig. 3J; again, all other characteristics are quite similar.

These examples of vertically stacked Yagi antenna arrays using more than two antennas show that a noticeable gain increase is possible over a 2 -antenna stack; moreover they open up a wide range of high-er-angle fill possibilities. As an example, fig. 7 shows patterns where all four antennas are excited; for fill at higher angles, the lowest antenna (curve 2) and the highest antenna (curve 3) are shown. Note, however, that additional fill situations are possible if two or even three of the original four antennas are excited coherently. Moreover one can also consider feed line phasing(s) for even better fill. Clearly, a host of possibilities exists, but the practical use of all potentially desirable combinations not only requires a complex switching system but a great deal of trouble in determining experimentally the right combination for the prevailing circuit conditions. Surely the additional complexity and expense of these large vertical stacks reaches a point of practical diminishing returns. Nevertheless, how fortunate we are to be able to predict with reasonable confidence the performance of such large systems, without ever having to build one.

I shail conclude this article on stacking by referring again to the basic two-antenna stack shown in fig. 3D. Note that the F / B performance has deteriorated from the excellent free-space performance of the individual Yagi antennas of 48 dB to 22.7 dB . Analogous to the optimization of a single Yagi antenna over ground, ${ }^{1}$ it is possible to optimize the basic Yagi de-
table 6. Specifications for 6 -element beams optimized by slight shifts in boom positions for D1 and D3. All element radii are $0.0005260(\lambda)$.

	optimized for free space		optimized for stack fig. 3D	
	element	boom (λ)	bosition (λ)	length (λ)
reflector	0.49528	0.000	0.49528	boom position (λ)
driven	0.48071	0.150	0.48157	0.000
D1	0.44811	0.2991650	0.44811	0.302948
D2	0.44811	0.450	0.44811	0.450
D3	0.44811	0.599965	0.44811	0.63948
D4	0.44811	0.750	0.44811	0.750

sign for this stacked system. Table 6 shows the optimized parameters of the 6 -element Yagi antenna first for free space and second for the stack of fig. 3D ($H L=0.6 \lambda, H U=1.5 \lambda$. Tables 7 and 8 show the swept-frequency performance of each of these cases close to the design frequency.

The iterative optimization was carried out by adjustments of the boom positions of D1 and D3 to obtain high $F / B(>90 \mathrm{~dB})$ and by a slight adjustment of driven-element length to minimize reactance at the design frequency. Note again that, because of mutual coupling intereactions, the stacked Yagi antenna is not the same Yagi antenna as it would be in free space, nor is it the same Yagi antenna as it would be

fig. 6. Gain of 6-element stack of 3 Yagi antennas. H1 (lowest) $=0.75(\lambda), \mathrm{H} 2$ (middle) $=1.50(\lambda), \mathrm{H} 3$ (highest) $=2.25(\lambda)$. Curve 1 - all, 2 - lowest, 3 - top.
table 7. Free-space performance of optimized 6-element Yagi (specification in table 6).

				driver impedance (ohms)	
frequency	gain (dBi)	F/B (dB)	angle (deg.)	\mathbf{R}	
0.996	10.59	26.59	0	22.42	-6.53
0.998	10.65	32.64	0	22.10	-3.50
1.000	10.70	120.18	0	21.80	-0.42
1.002	10.75	32.69	0	21.51	2.72
1.004	10.79	26.68	0	21.25	5.93

table 8. Performance of (fig. 3D) optimized, stacked 6element Yagi over ground. (Specification in table 6.)

				driver impedance frequency	
	gain (dBi)	F/B (dB)	angle (deg.)		
	(dins)	\mathbf{R}	X		
0.996	17.28	24.90	11	16.76	-6.24
0.998	17.35	30.86	11	16.25	-3.14
1.000	17.42	94.69	11	15.75	0.02
1.002	17.48	30.69	11	15.27	3.23
1.004	17.53	24.57	11	14.82	6.50

singly over ground (compare with table 5 of reference 1).

orthogonal and antiparallel stacked Yagis

Now that an optimized Yagi design has been found, which provides the superlative performance shown in table 8 when the two stacked antennas are parallel to each other, we can ask about performance degradation when the two Yagi antennas are orthogonal to each other and also when they are antiparallel. This question is relevant when a stack is used where the lower antenna is fixed in some direction and the upper antenna is rotatable. Table 9 shows the system performance for the case where both Yagis are supported at the center of the boom.

It is clear that, in principle, optimization can be carried out for only one configuration, and performance will automatically deteriorate somewhat for other geometries. The extent of deterioration will be more severe for stacks with small antenna spacings (both with respect to ground and to each other); that is,

fig. 7. Gain of 6-element stack of 4 Yagi antennas. H1 (lowest) $=0.75(\lambda), \mathrm{H} 2$ (next) $=1.50(\lambda), \mathrm{H} 3$ (next) $=2.25(\lambda), \mathrm{H} 4$ (top) $=3.00(\lambda)$. Curve 1 - all, 2 - lowest, 3-top.
with lower overall mast height. For the stack shown in table 9, it is gratifying to see that the performance for all situations is really quite acceptable.

summary

1. Vertical stacking of two Yagi antennas allows both substantial improvement in low-angle system performance and improved flexibility. This flexibility can be used either to obtain fill at some needed higher angles or to illuminate other azimuthal angles (one of two Yagi antennas rotatable).
2. Mast heights of between one and perhaps 2.5λ can provide excellent 2-Yagi stacked systems.
3. Higher masts favor low-angle radiation and also give smaller mutual interaction effects. However, they also treat the (occasionally useful) higher angles unfavorably.
4. For all vertical stacks, improved performance is available if excitation is switchable to both antennas, B, the lower antenna, L, or the upper antenna U (BLU switch). Switching must be done in a way that preserves phase integrity and keeps the total drive impedance matched to the supply coaxial line. For
table 9. Gain in dBi of a parallel-optimized, stacked 6-element Yagi array showing the alternative configurations.

	both				lower				upper			
configuration	gain (dB)	$\begin{aligned} & F / B \\ & \text { (dB) } \end{aligned}$	R (ohms)	(ohms)	gain (dB)	$\begin{aligned} & F / B \\ & \text { (dB) } \end{aligned}$	R (ohms)	(ohms)	gain (dB)	$\begin{aligned} & F / B \\ & (d B) \end{aligned}$	R (ohms)	(ohms)
parallel	17.42	94.69	15.75	0.02	15.06	30.34	13.66	-0.41	16.40	25.64	15.59	-0.51
orthogonal					15.15	38.09	14.10	-0.80	16.60	20.86	15.87	-0.82
antiparallel					15.03	31.24	13.63	-0.44	16.43	23.88	15.57	-0.54
angle (deg.)	11				21				9			

Sate ofthe ant

Introducing the new 2-pole 9 MHz Crystal Filter.
The XF- 910 crystal filter has been designed for use in modern receiver IF systems using I.C. amplifiers. It is used between the IF amplifier and detector stages to suppress wideband I.C. noise and prevent noise overload of the detector.

The XF910 can also be used in place of ceramic filters and tuned circuits in simple receivers when superior selectivity of the XF9-B is not required, Price $\$ 16.35$ plus shipping.

SPECIFICATION XF				
Center Frequency	9.0 MHz	Ultimate atte	uation	$>40.0 \mathrm{~dB}$
Bandwidth	15.0 kHz	Termination		6000 ohms
Passband Rippl	$<1.0 \mathrm{~dB}$ $<0.5 \mathrm{~dB}$	Mechanical	3.lead	zero pF H. $18 / \mathrm{u}$

1296 MHz EQUIPMENT

Announcing the new 1296 MHz units by Microwave Modules.
$\begin{aligned} & \text { Low Noise RECEIVE Converter } \\ & \text { IOW Noise RECEIVE Preampatier MMK1296-144 }\end{aligned}$
LOW Noise RECEIVE Preamputier
$\begin{aligned} & \text { MMa1296 } \\ & \text { MM1296 }\end{aligned}$
COW Power LINEAR TRANSVERTER MMI $1296 \quad 144$

TRANSVERTERS FOR ATV OSCARS 7, 8 \& PHASE 3

Transverters by Microwave Modules and other manutacturers can convert your existing Low Band rig to operate on the VHF \& UHF bands. Models also available for 2 M to 70 cm and for ATV operators from $\mathrm{Ch} 2 / \mathrm{Ch} 3$ to 70 cms . Each transverter contains both a Tx up-converter and a Rx down-converter Write for details of the largest selection available.
Prices start at $\mathbf{\$ 1 9 9 . 9 5}$ plus $\mathbf{\$ 3 . 5 0}$ shipping.
SPECIFICATIONS:
Output Power
Receiver N.F.
10 W
Receiver Gain
Prime Power
3 dB typ.
30 dB typ.

Attention owners of the original MMT432-28 models: Update your transverter to operate OSCAR $8 \&$ PHASE 3 by adding the 434 to 436 MHz range. Mod kit including full instructions $\$ 26.50$ plus $\$ 1.50$ shipping, etc
ANTENNAS (FOB CONCORD, VIA UPS)
144-148 MHz J-SLOTS
8 OVER 8 HORIZONTALPOL. +12.3 dBd D8/2M $\$ 55.95$

8 BY 8 VERTICAL POL. D8/2M-VERT, $\$ 65.60$ 8 8 8 TWIST

420.450 MHz MULTIBEAMS

For local, DX, OSCAR, and ATV use.

GAIN + $18.5 \mathrm{dBd} 70 / \mathrm{MBM} 88$

50-ohm, Type N Connector
28 LOOPS
GA
$1650-1750 \mathrm{MHz}$
1691-LY

Amplitiers
Crystal Fitters Oscillator Crystals

$\$ 57.75$
\qquad
$\$ 69.95$ 5.95 ment requirements
Vre- Seleciorflers
Varactor Triplers Antennas

 beams.
5. Vertical stacks using 3 or 4 Yagi antennas can display even greater performance, but the stacks must be very high and must use for best results a more complex feed-line switching arrangement.
6. Optimization (very high F / B at one frequency) can be obtained for only one physical configuration at a time. Nevertheless, there are practical examples where an optimized antenna design for a 2 -Yagi stack will still exhibit excellent properties when only the lower antenna or only the upper antenna is excited; moreover, these excellent properties are retained even if the azimuthal directions of the two individual Yagi antennas are parallel, orthogonal or even antiparallel.

reference

1. J.L. Lawson, "Yagi Antenna Design: Ground or Earth Effects," ham radio, October, 1960, page 29.
ham radio

crystal use locator

A computer program for matching crystal frequencies to popular Amateur radios

If you're like I am, you have a box full of crystals. They came from scrapped equipment, 5 -for- $\$ 1.00$ sales that couldn't be passed up, old fm rigs, and abandoned frequencies. I decided that I wanted to find out if the crystals were good for anything in the radios I own. To save a lot of hand calculations I wrote program XLOC. Within XLOC are the crystal formulas for all the radios I own and the frequencies on which these radios can be used. If I type in a crystal frequency, XLOC prints out all the radios in which the crystal is usable and the resulting frequency.

program description

Listing 1 is a sample run of XLOC. After entering the crystal frequency in MHz , XLOC plugs it into the crystal formulas for each radio and checks the result to determine if it's in the specified band for that radio. If one or more of these calculations generates an in-band result, the crystal frequency is printed, followed by pairs of radio descriptions and resulting operating frequencies. If the crystal doesn't produce a valid operating frequency for any of the radios, the message "SORRYI" is printed and XLOC prompts for the next crystal frequency. Entering a 0 in response to the prompt causes $\times L O C$ to terminate.

Internally XLOC is straightforward. It's within Technical Systems Consultants' extended BASIC program for the Model 6800 computer.* Looking at listing 2, lines 30 through 100 establish the possible operating frequency ranges for the radios.

Example. Line 40 establishes the frequency range for band 1 to be 28 MHz to 30 MHz . Seven bands are set up in XLOC. To add a new band, just add statements after line 100 to set up new values in the BS

[^4]and $B E$ arrays. For example, to set up a band from $220-225 \mathrm{MHz}$ as band 8 you'd add the statement
$$
110 B S(8)=220: B E(8)=225
$$

Note that $B S$ and $B E$ are dimensioned at 20 . If you want to handle more than 20 bands total, line 30 would have to be changed.

The other information that must be set up is the radio descriptions, the bands on which they operate, and the crystal formulas. Lines 180 through 520 establish the first two. Each string in array $N \$$ contains a radio description, and the corresponding element in array B contains the number of the band on which it is designed to operate. More radio description/band pairs can be added after line 520. B and $N \$$ are dimensioned at 20; therefore, the DIM statement at line 180 would have to be changed to handle more than twenty radios.

Logic. Line 660 reads the crystal frequency into variable X. Then variable FD is set to zero to indicate that no radio requiring this crystal has yet been found. Variable C is set to 1 to indicate that we are starting with the first radio. This is used as an index for the $N \$$ and B arrays. Lines 700 through 1030 consist of pairs of statements. The first statement is the crystal formula for the radio; the second statement is always a GOSUB 1080.

The subroutine at line 1080 checks to see if the operating frequency ($O P$) that resulted from the calculation in the first statement falls within the desired band. If it does, the radio name and operating frequency are printed. In any case, C is incremented so it points to the information about the next radio. If more radios have been added, then the crystal formulas, each followed by a GOSUB 1080, must be added foilowing line 1030. Each formula should be written using the variable $O P$ as the result and X as the crystal frequency. For example, if a transmitter operates on 32 times the frequency of its crystal, the formula would be written:

$$
O P=32 * X
$$

Finally, if no radio is found that could use the crystal (indicated by FD never getting set to 1) the message "SORRY!" is printed and control is transferred back to the prompt message.
listing 1. Sample run of XLOC program. Enter the crystal frequency in MHz . The output shows if the crystal is in the specified band for the radio of interest.

RUN
Crustal Use Locator
Enter crystal freasency in MHz (or 0 if done)? 11.67267 SDREF!

Eniter erystal freauency in MHz (or 0 if done)? 11.10417 11.10417

GE 766日326-G1 RCUR 447.75012 MHz

Enter crystal freasency ir, MHz (or 0 if done)? 10.93333 10.93333

GE 7668326-G1 RCUR 441.59988 MHz

Enter crustal freauericy in MHz (or 0 if tone)? 11.845 11.845

RCA CMU- 15 FCUK 441.565 MHz

Enter crystal freajency in MHz (or 0 if done)? 12.3194 12.3194

SWAN FM-2X XMTR 147.8328 MHz

WILSON 1402-SM XMTR
147.8328 MHz

FCA CMU-10 XMTR
443.4984 MHz

GE 7669061-G1 XMTR 443.4984 MHz

Enter erystal freauency in MHz (or 0 if done)? 37.2 37.2

GE 2 MTR FCUR 155.835 MHz

Enter cirystal freasency in MHz (or 0 if done)? o

FEALIY
listing 2. XLOC program listing. Seven bands are set up. To add a new band add statements after line 100 to set up new values in the $B S$ and $B E$ arrays. Program will handle 20 Amateur bands; if more are desired, line 30 must be changed.

REAUY
LIST
10 FEM XLOC - Crystal Use Locator SSC 1-90
20 REM Hand start and end values
30 DIM ES (20), BE (20)
$40 \mathrm{BS}(1)=28: \mathrm{BE}(1)=30$
$50 \mathrm{BS}(2)=50: \mathrm{BE}(2)=54$
$60 \mathrm{BS}(3)=2 \mathrm{~B}: \mathrm{FE}(3)=54$
$70 \operatorname{BS}(4)=144: \operatorname{PE}(4)=148$
80 ES $(5)=144: \operatorname{EE}(5)=174$
$90 \mathrm{ES}(6)=438: \operatorname{RE}(6)=450$
100 ES $(7)=420: \mathrm{EE}(7)=470$
160 REM N^{2} is the radio descriftion
170 REM B is the desired band
180 IIIM N\$ (20) F B (20)
$190 \mathrm{~N} \$(1)=$ SWAN FM-2X KCUR'
$200 \mathrm{E}(1)=4$

210 N
$220 \mathrm{~B}(2)=4$
230 N\$(3)='WILSON 1402-SM RCUR*
$240 \mathrm{~B}(3)=4$
250 N\$(4) ${ }^{\circ}$ WILSON 1402-SM XMTK'
$260 \mathrm{~B}(4)=4$
270 N $\$(5)=4$ RCA CMU- 10 RCUR"
$280 \mathrm{~F}(5)=7$
$290 \mathrm{~N} \$(6)={ }^{2} \mathrm{FCA}$ CMU- 10 XMTR*
$300 \quad \mathrm{~B}(6)=6$
310 N $(7)=$ RCA CMU-15 FCUR.
$320 \mathrm{~B}(7)=6$
330 N $\$(8)=$ RCA CMU-15 XMTR"
$340 \mathrm{E}(7)=6$
350 NS $(9)={ }^{\circ} L I N K 2240$ XMTR 2
$360 \quad B(9)=4$
370 N $\$(10)=$ ©LINK 1905 KCUR*
$380 \mathrm{~B}(10)=5$
$390 \mathrm{~N} \$(11)={ }^{\circ} \mathrm{LINK} 2210$ RCVR ${ }^{\circ}$
$400 \mathrm{H}(11)=5$
$410 \mathrm{~N} *(12)=\mathrm{FE} 7669326-\mathrm{G1}$ KCUK'
$420 \mathrm{~F}(12)=6$
$430 \mathrm{Ns}(13)=$ "GE $^{4669061-\mathrm{G1}}$ XMTR"
$440 \mathrm{~B}(13)=6$. 450 MTR RCUR*
$460 \quad B(14)=5$
$470 \mathrm{~N} \$(15)={ }^{\circ} \mathrm{GE} 2 \mathrm{MTR}$ XMTR*
$480 \mathrm{~B}(15)=4$
$480 \mathrm{~B}(15)=4$
$490 \mathrm{~N}(16)=4 \mathrm{GE}$ ET-6-E XMTR*
$500 \mathrm{~B}(16)=2$
$510 \mathrm{~N} \$(17)=$, GE ER-6-E RCUR*
$520 \mathrm{~B}(17)=2$
630 FRINT "Crystal Use Locator"
640 FKINT
650 FKINT "Eriter crystal freanency in MHz (or o if done)";
660 INFUT X
670 IF $X=0$ THEN 1200
680 FU=0
$690 \mathrm{C}=1$
$700 \quad \mathrm{OF}=(\mathrm{X*} 3)+10.7$
710 GOSUK $10 B 0$
720 OF=X*12
720 OF =x* 12
740 OF $=(X * 9)+10.7$
750 GOSUE 1080
750 GOSUE 108
780 GF=X*12
780 OF=($\mathrm{x} * 4$) +3

790 GOSUK 1080
800 OF: $=\times * 36$
810 GOSUE 1080
820 OF $=(x * 36)+15.145$
830 GOSUR 1080
840 of $=x * 36$
850 GOSUR 1080
860 OP $=\mathrm{X} * 48$
870 GOSUE 1080
B130 $\mathrm{OF}=(X * 18)-5$
890 GOSUB 1080
$900 \mathrm{OF}=(\mathrm{X} * 4)-4.943$
910 GOSUB 1080
920 OF= $(X * 36)+48$
930 GOSUB 1080
$940 \mathrm{OF}=\mathrm{X*} 36$
950 GOSUB 1080
$960 \mathrm{OP}=(\mathrm{X*} 4)+7.035$
970 GOSUB 1080
980 0r=x*24
990 GOSUE 1080
$1000 \quad 0 \mathrm{~F}=\mathrm{X} * 24$
10:10 GOSUB 1080
$1020 \quad 0 \mathrm{P}=\mathrm{x}+6$
1030 GOSIJB 1080
1040 IF FD=O THEN FRINT -SORFIY!
1050 FRINT
1050 F'RINT
1070 GOTO 65
0 REM
080 REM Check for match
090 IF OF $\boldsymbol{2}$ EE (E(C)) THEN 1180
100 IF OFCES(E(C)) THEN 1180
1110 IF $F[=1$ THEN 1160
$1120 \mathrm{FD}=1$
1130 FRINT
1.140 FRINT TAB(5): X

1150 FRINT
1160 FRINT N\$(C)

$1180 \mathrm{C}=\mathrm{C}+1$
1190 FETURN
1200 ENII

transmission-line circuit design

Using distributed resonant circuits for VHF/UHF transmission lines equations and design relationships

dedication statement
I would like to dedicate this article to the memory of Jim Fisk, W1HR, since it was due to his encouragement that this extensive task was undertaken.

Resonant transmission-line circuits predominate at frequencies above 50 MHz . The reason is that finite practical lengths of transmission line can be readily used to achieve resonance rather than lumped values of capacitance and inductance in the less-than- 10 pF and low-nH range respectively. This article shows how various transmission-line configurations can be designed into resonant circuits at these higher frequencies.

The spectrum above 50 MHz becomes ever more important as advances in technology permit more extensive exploitation. Low-noise-figure devices, high-er-power devices, greater efficiency, and low cost have yielded hardware today that ten years ago was considered impossible.
Technology advances haven't been limited to devices only. The complex calculations required for rf and other engineering problems have been simplified by programmable scientific calculators such as the Hewlett-Packard HP-67/97 and Texas Instruments

TI-59. These tools permit solution of design problems in hours rather than weeks, with a precision previously considered unrealistic. An interesting by-product of the time saved is that a more thorough tradeoff between design parameters can be achieved, yielding a more efficient final design. More than 15 years ago I addressed this same topic (reference 1), necessarily more crudely. This article provides a fresh approach, using more elegant tools, which results in significantly expanded and new data.

The article is divided into three parts. First I address the governing expressions for calculating resonant transmission-line parameters. Included are data on design relationships such as efficiency, coupling, and resonating capacitance. The second part concerns the geometry of twelve different transmission lines in common use and derives the parameters for resonant-circuit design. The third part gives design examples demonstrating the use of the data provided.

This article is the result of my interest in resonant transmission-line phenomena for over 30 years. Comments, corrections, new formulations, or additional data are welcomed.

calculation of resonant circuits

A description of methods to calculate parameters of resonant transmission-line circuits is provided. After deciding on the physical parameters that fit the chosen configuration, efficiency and coupling are discussed. Graphs and tables are provided.

HP-67/97 programs are detailed using the HP-97 printer capability. Therefore, the tables describing the programs are displayed in HP-97 format. To convert the programs for HP-67 use, refer to the HP-67 Owners Handbook, Appendix E, page 324. The programs contained here are usable on the new HP-41C with the same magnetic cards.
Distributed resonant circuits. Distributed resonant circuits are different from lumped-constant circuits: fixed elements of inductance and capacitance are not required for resonance. Instead, the uniform values of distributed inductance and capacitance per unit length of transmission line are used together with a fixed line length and a capacitance, with the physical configuration determining line impedance, Z_{0}.

Distributed resonant circuits become practical at frequencies of 50 MHz and above because reasonable values of loaded circuit Q can be achieved with realistic geometries. Furthermore, since there are many transmission-line configurations to choose from, space constraints are readily met.

Optimum transmission-line configurations are generally available. Each is chosen to fit within the physi-

fig. 1. Distributed resonant transmission-line configurations discussed in this article.
cal dimensions, materials, and hardware available. To provide maximum flexibility, twelve different configurations are discussed. See fig. 1.

To determine the parameters of a resonant quar-ter-wavelength ($\lambda / 4$) segment of transmission line, the following expression is used:

$$
\begin{equation*}
X_{C}=Z_{0} \tan \beta \ell \tag{1}
\end{equation*}
$$

where $X_{C}=\frac{1}{2 \pi F C}$; capacitive reactance (2) necessary to resonate line section
$F=$ resonant frequency (hertz)
C = capacitance at the unterminated end of the $\lambda / 4$ line (farads)
$\beta \quad=$ electrical degrees per unit length at the resonant frequency $1 \% \mathrm{in}$. or $\%$ cm)
$Z_{0}=$ transmission-line impedance (ohms)
$\ell \quad=$ length of line used (inches or cm)
A coaxial line cross section is shown in fig. 2A, which illustrates the key parameters considered. The ratio of D / d determines line impedance Z_{0}. (This parameter is discussed in detail in a following sec-
table 1. HP-67/97 program for calculating Z_{0}, C, 凤, or F given any three unknowns.

step	$\begin{gathered} \text { HP-97 } \\ \text { key } \end{gathered}$	$\begin{aligned} & \text { HP-97 } \\ & \text { code } \end{aligned}$	step	$\begin{gathered} \text { HP-97 } \\ \text { key } \end{gathered}$	$\begin{aligned} & \text { HP-97 } \\ & \text { code } \end{aligned}$	step	$\begin{gathered} \text { HP-97 } \\ \text { key } \end{gathered}$	$\begin{gathered} \text { HP- } 97 \\ \text { code } \end{gathered}$
			051	RCL7	3607	103	CHS	-22
			052	$x=0$?	16-43	104	\div	-24
001	* L BLA	2111	053	RTN	24	105	STO4	3504
002	STOO	3500	054	x	-35	106	RTN	24
003	3	03	055	Pi	16-24	107	*LBL4	2104
004	0	∞	056	2	02	108	2	02
005	0	∞	057	x	-35	109	4	04
006	$x=y$	-41	058	x	-35	110	0	∞
007	\div	-24	059	11X	52	111	Stos	3509
008		-62	060	STO6	3506	112	* $\angle B L 6$	2106
009	0	∞	061	RTN	24	113	2	02
010	2	02	062	*LBL1	2101	114	ST-9	35-4509
011	5	05	063	RCL5	3605	115	RCL3	3603
012	4	04	064	RCL2	3602	116	RCL4	3604
013	\div	-24	065	\boldsymbol{X}	-35	117	x	-35
014	STO1	3501	066	TAN	43	118	1-X	52
015	PSE	1651	067	1/X	52	119	1	01
016	3	03	068	RCL6	3606	120	3	03
017	6	06	069	x	-35	121		-62
018	0	∞	070	STO3	3503	122	4	04
019	$x=y$	-41	071	P/S	51	123	7	07
020	\div	-24	072	*LBL2	2102	124	5	05
021	STO2	3502	073	RCL6	3606	125	x	-35
022	PSE	1651	074	RCL3	36 03	126	RCL9	3609
023	RCLO	3600	075	\div	-24	127	x	-35
024	EEX	-23	076	TAN-1	1643	128	STOB	3512
025	6	06	077	RCL2	3602	129	RCL5	3605
026	x	-35	078	\div	-24	130	3	03
027	STO7	3507	079	STO5	3505	131	6	06
028	RTN	24	080	R/S	51	132		∞
029	*LBLB	2112	081	*LBL3	2103	133	x	-35
030	STO3	3503	082	RCL2	3602	134	RCL9	3609
031	RTN	24	083	RCL5	3605	135	\div	-24
032	* $\angle B L C$	2113	084	x	-35	136	TAN	43
033	STO4	3504	085	TAN	43	137	RCLB	3612
034	GSB9	2309	086	RCL3	3603	138	$X=Y$	-41
035	RTN	24	087	x	-35	139	-	-45
036	*LBLD	2114	088	STO6	3506	140		-62
037	STO5	3505	089	GSB8	2308	141		∞
038	RTN	24	090	R/S	51	142	1	01
039	*LBLa	211611	091	*LBL8	2108	143	$X \leq Y$?	16-35
040	STOI	3546	092	RCL7	3607	144	GTO6	2206
041	DSP5	-6305	093	x	-35	145	RCL9	3609
042	GSBi	2345	094	Pi	16-24	146	1	01
043	* BL L9	2103	095	2	02	147	1	01
044	RCL4	3604	096	x	-35	148	8	88
045	EEX	-23	097	x	-35	149	1	01
046	1	01	098	1/X	52	150	1	01
047	2	02	099	STO8	3508	151	$x=y$	-41
048	CHS	-22	100	EEX	-23	152	\div	-24
049	x	-35	101	1	01	153	STOO	3500
050	STO8	3508	102	2	02	154	R/S	51

table 2. HP-67/97 program run time for three frequencies.

F	77.70395 MHz	144.03659 MHz	2952.75 MHz
ℓ.	17	13.14	0.4
C	35	10	1.2
Z_{0}	70	70	70
run time	2 min. 10 sec.	3 min. 54 sec.	5 min .45 sec.

fig. 2. Coax line cross section showing key parameters for resonance, (A). Sketch B shows line impedance as a function of this line length.
tion.) Parameter β (eq. 1) is determined from the following relationship:

$$
\begin{equation*}
\beta=\frac{360^{\circ}}{\lambda} \tag{3}
\end{equation*}
$$

where $\lambda \quad=$ wavelength in the same units as line length.
The basic relationship is

$$
\begin{align*}
\lambda & =\frac{3 \times 10^{8}}{F_{H z}} \tag{4}\\
\text { for } \quad \lambda_{i n} & =\frac{11,810}{F_{M H z}}(a i r)^{*} \tag{5}\\
\lambda_{c m} & =\frac{29,999}{F_{M H z}}(a i r)^{*} \tag{6}
\end{align*}
$$

*dielectric constant of air $=1.0006$
Also the general relationship of line impedance versus electrical degrees for a quarter-wave section, shorted at one end, is shown in fig. 2B. Note that this line impedance is totally different from the capacitive load reactance, X_{C}, in eq. $\mathbf{1}$, which resonates the line length.

Computer program. An HP-67/97 program was
written to calculate Z_{0}, C, ℓ, and F, given any three parameters. The program is shown in table 1. Since the solution of eq. 2 for F yields a transcendental function, an approximation convergence solution is used when frequency is requested. The lower limit of this program is 49.21 MHz , where $\lambda=240$ inches, and the program requires a match to 1 per cent to achieve a solution. If lower frequency requirements
table 3. Register contents for HP-67/97 program when calculating Z_{0}, C, l, and F.

STO 0	$F_{\text {MHz }}$
STO 1	$\lambda_{\text {inches }}$
STO 2	$\beta_{0, \text { inch }}$
STO 3	Z_{0}
STO 4	$C_{p F}$
STO 5	$\ell_{\text {inches }}$
STO 6	$X_{\text {Cohms }}$
STO 7	$F_{\text {Hz }}$
STO 8	$C_{\text {farads }}$
$\left\{\begin{array}{ll}\text { STO 9 } \\ \text { STO B }\end{array}\right\}$	transient for loop

are necessary, the values in the program may be changed in steps 108, 109, and 110 (table 1). The maximum wavelength-to-lowest-frequency ratio is 999 inches or 11.82 MHz (eq. 5).

The lower frequency of 49.21 MHz was chosen in this program to minimize the solution time. The higher the frequency away from the beginning trial frequency of 49 MHz , the longer the computing time minutes are involved. (See table 2.)

Table 3 identifies the register contents used in the HP-67/97 program. Table 4 identifies the formulas used for calculation. Table 5 shows how the program is controlled for each desired value. Table 6 shows sample problems entered and the calculated results.
table 4. HP-67/97 formulas for calculating $Z_{0}, ~ \ell, ~ C$, and F.
calculates Z_{0}

$$
\begin{equation*}
Z_{0}=\frac{\tan \beta \ell}{X_{C}} \tag{7}
\end{equation*}
$$

calculates $\ell_{\text {inches }}$

$$
\begin{equation*}
\frac{\tan ^{-1} \beta \ell}{\beta}=\frac{X_{C}}{Z_{0}} \tag{8}
\end{equation*}
$$

calculates $C_{\text {farads }}$ for resonance

$$
\begin{equation*}
C=\frac{1}{2 F \pi Z_{0} \tan \beta \ell} \tag{9}
\end{equation*}
$$

calculates $F_{M H z}{ }^{*}$

$$
\begin{equation*}
\frac{13.475 \lambda_{i n .}}{C_{p F}}=Z_{0} \tan \frac{360^{\circ}}{\lambda_{i n .}} \ell \tag{10}
\end{equation*}
$$

note: $\tan ^{-1}=$ arctan.
-Iteratively solved for a value of λ by trial substitution to an accuracy of 0.01 .

fig. 3. Plot of tangent β Q (degrees) for calculating X_{C} or Z_{0}.

Each of four separate calculations is shown with the repeatability for the same values indicated. Note that when $F_{M H z}$ is requested a small error results of about 4 out of 14,440 in frequency (0.03 per cent). This small error results from the convergence solu-

fig. 4. Plot of X_{C} versus C for the vhf/uhf bands.
table 5. HP-67/97 program control for calculating Z_{0}, C,, and F.

enter $F_{M H z}$	press A	(MHz)
enter Z_{0}	press B	(ohms)
enter $C_{p F}$	press C	(pF)
enter L^{2}	press D	(inches or cm)

Enter any three of the above and calculate the fourth by selecting

1	Z_{o}
2	ℓ
3	$C_{p F}$
4	$F_{M H z}$

and press fa
table 6. Sample problems and results.

	1	2	3	4
$F_{M H z}$	144	144	144	$144.03659^{*} \dagger$
Z_{0}	70	70^{*}	70	70
$C_{p F}$	10	10	10^{*}	10
linches	13.13522^{*}	13.13522	13.13522	13.13522

* calculated value
†loop run time 3 min .54 sec .

fig. 5. Frequency as a function of β in degrees per inch or degrees per cm.
tion discussed previously but is well within acceptable design limits.

Fig. 3 is a plot of the tangent $\beta \ell$ versus degrees for calculating X_{C} or Z_{0} manually. Fig. 4 shows X_{C} in ohms versus C in picofarads for each of the vhf/uhf Amateur bands. Fig. 5 shows β in degrees per inch and degrees per cm versus frequency.

Considerations and useful relationships. An important consideration in resonant circuits is efficiency, which is determined from
efficiency per cent $=\frac{\text { unloaded } Q-\text { loaded } Q}{\text { unloaded } Q} \times 100$
Thus the highest possible unloaded Q is desirable to achieve the best tank-circuit efficiency. Q is generally greater for fully enclosed and shielded transmissionline configurations. Unshielded lines have a low unloaded Q because of radiation losses. Also low values of Z_{0} cause less radiation, so a low value of Z_{0} should be chosen for unshielded lines. For coaxial geometries the highest values of unloaded Q are realized with Z_{0} between 70-85 ohms.

The parameter Q can be estimated by dividing the center resonant frequency of the circuit under consideration by its $3-\mathrm{dB}$ bandwidth (single-section filters or loosely coupled sections). For stripline configurations with dielectric loading, line efficiency is dominated by dielectric constraints (discussed in detail in references 2 and 3).
In most cases it's important to make the transmission lines electrically as long as possible within the n $\lambda / 4$ constraints. This means that the value of capacitance needed to tune the circuit to resonance should be as small as practicable. This value must include the variability of the active/passive device or devices used. If a desired range of frequency is to be tuned, calculate the required capacitance at the higher frequency then multiply by the square of the frequency ratio; that is:

$$
\begin{equation*}
C_{F_{\text {high }}}\left(\frac{\left(F_{\text {high }}\right)^{2}}{\left(F_{\text {low }}\right)^{2}}\right)=\text { ratio } \tag{12}
\end{equation*}
$$

This equation yields the required capacitance range exclusive of device capacitance. If passive and active devices are used, their minimum capacitances should be subtracted from the value calculated to cover the desired bandwidth with a minimum of capacitance. Nominally values of tuning capacitance for input and output circuits should be designed for ± 25 per cent capacitance tuning range from the center design value. For example, if a single 4 CX 250 B coaxial tank circuit is to tune between $144 \mathrm{MHz}-148 \mathrm{MHz}$ with a Z_{0} of 77 ohms and a cavity length of 10 inches, what

fig. 6. Capacitance as a function of parallelplate disc diameter with spacing as a parameter.

is the capacitance tuning range if the minimum tubeoutput capacitance is 4.0 pF ? From eq. 1, the capacitance required is 13.9 pF at 148 MHz . The frequency ratio is:

$$
\frac{(148)^{2}}{(144)^{2}}=1.06
$$

When multiplied by the resonating capacitance, 13.9 pF yields 14.7 pF . Subtracting the minimum tube capacitance of 4.00 pF yields 10.7 pF as the minimum tuning capacitance required for the design conditions given. The ± 25-per cent rule previously suggested provides a more conservative realization (13.5 pF ± 25 per cent).
Tuning capacitor. Construction of the tuning capacitor can be simplified by using parallel plate discs. Fig. 6 shows capacitance versus diameter for paral-lel-plate capacitors with various spacings between discs. In some cases a dielectric can be used, so the capacitance value is then multiplied by the dielectric constant. The basic equation is:

$$
C_{p F}=0.225 \epsilon_{r}\left[\begin{array}{ll}
(N-1) & \frac{A}{T} \tag{13}
\end{array}\right]
$$

where $\epsilon_{T}=$ dielectric constant
$N=$ number of plates
$A=$ area (square inches)
$T=$ spacing (inches)
(For metric dimensions, substitute 0.0885 for 0.225 .)
It's important to note that an appropriate spacing between discs must be chosen based on the voltage involved. Very close spacings should be avoided, even under low-voltage conditions, unless excellent parallelism can be achieved. Under high-voltage conditions (greater than 1000 Vdc), no sharp edges are permitted. All edges must be rounded and smooth to prevent build-up of high electrical fields, which can cause flashover.

Coupling into and out of transmission-line circuits can be made using a direct tap, probe coupling, or loop coupling. This idea is shown in fig. 7 for a single transmission line configuration with the outer conductors not shown. Other techniques are possible but are not discussed.

At resonance θ, the tap point, may be determined if the other parameters are known. In fig. 7A, the equation is:

$$
\begin{equation*}
R=\frac{Z_{0^{2}}}{R_{L}} \sin ^{2} \theta \tag{14}
\end{equation*}
$$

where $R=$ resistance at resonance at θ on the line (ohms).
$Z_{0}=$ transmission-line impedance (ohms).
$\theta=$ electrical degrees from ground.
$R_{L}=$ load resistance (ohms).
If θ is desired with the other values known,

$$
\begin{equation*}
\theta=\sin ^{-1} \sqrt{\frac{R R_{L}}{Z_{\sigma^{2}}^{2}}} \tag{15}
\end{equation*}
$$

In fig. 7B the equation is:

$$
\begin{equation*}
R=Z_{\theta^{2}} \omega C^{2} R_{L} \sin ^{2} \theta \tag{16}
\end{equation*}
$$

which can be solved for C :

$$
\begin{equation*}
C_{\text {farads }}=\sqrt{\frac{R}{Z_{0^{2} \omega^{2} R_{L} \sin ^{2} \theta}}} \tag{17}
\end{equation*}
$$

The loop-coupled case (Fig. 7C) is described by:

$$
\begin{equation*}
R=\frac{\omega^{2} M^{2}}{R_{L}} \cos ^{2} \theta \tag{18}
\end{equation*}
$$

where $M=$ mutual coupling.
Parameter R is normally equal to R_{L} when coupling to external transmission lines. A reasonable value for mutual coupling, M, is between 0.5 and 0.8 , depending on how tightly the loop is coupled to the line. For the loop, X_{L} should be tuned out with a variable capacitor in series with the loop to ground if X_{L} is greater than $R_{L} / 100$. The amount of capacitance required may be calculated from the values of induct-
ance as a function of conductor size given in table 7. These values are for straight lengths of conductor but are useful in determining design values for loops. Note that, for equal lengths of conductor with current flowing in opposite directions, the effective inductance is cancelled.
It's clear from table 7 that the law of diminishing returns prevails when larger-diameter conductors are substituted for smaller sizes to decrease inductance. The inductance is halved from No. 22 to $3 / 16$-inch tubing. The only reason for using a larger loop conductor size is for current-handling capability 12 kW PEP output at 144 MHz requires $3 / 16$-inch copper tubing).
table 7. Conductor size versus straight pigtail sheet inductance.

	inductance	
conductor	$\mathrm{nH} / \mathrm{in}$.	$(\mathrm{nH} / \mathrm{cm})$
$1 / 4$ in. tubing	9.005	(3.55)
3/16 in. tubing	10.446	(4.12)
1/8in. tubing	12.526	(4.93)
AWG 8 wire	12.374	(4.87)
AWG 10 wire	13.564	(5.34)
AWG 12 wire	14.742	(5.70)
AWG 14 wire	15.92	(6.27)
AWG 16 wire	16.89	(6.65)
AWG 18 wire	18.091	(7.12)
AWG 20 wire	19.23	(7.57)
AWG 22 wire	20.387	(8.03)
AWG 24 wire	21.516	(8.47)
AWG 26 wire	22.691	(8.93)
AWG 28 wire	23.832	(9.38)

A further use of table 7 is to calculate lumped resonant circuits at vhf/uhf from the length of conductor and a resonating capacitor. It's reasonably accurate and useful if stray capacitances are considered.

references

1. H.M. Meyer, Jr., W6GGV, "The Design of VHF Tank Circuits," 73, November, 1964.
2. H.A. Wheeler, "Transmission Line Properties of a Stripline Between Parallel Planes," IEEE Professional Group on Microwave Theory and Techniques, Volume MIT 26 No. 11, November, 1978, pages 866-876.
3. H.A. Wheeler, "Transmission Line Properties of a Strip on a Dielectric Sheet on a Plane," IEEE Transactions on Microwave Theory and Techniques, Volume MIT 25, August, 1977, pages 631-647.

bibliography

Bahl, Dr. I.J., "Use Exact Methods for Microstrip Design," Microwaves, December, 1978, pages 61-62.
Gardiol, F.E., "HP-65 Program Computes Microstrip Impedance," Microwaves, December, 1977, pages 186-187.
Murdock, B.K., Handbook of Electronics Design and Analysis Procedures Using Programmable Calculators, Van Nostrand Reinhold, 1979.
ham radio

3
 "WHEN IS ICOM COMING OUT WITH A HAND-HELD?"

ICOM IC-2A SYNTHESIZED 2 METER HAND HELD

FEATURES YOU'VE WANTED

- 800 T/R Channels. Synthesized.
- 1.5 Watt Output High/Low Power Battery Saving Switch to 15 Watt.
- Separate built in Speaker \& Mic. Excellent audio quality.
\square Compact. About the size of a dollar bill.
- Variable size Nicad Power Pack, 3 sizes available to suit your needs. (250 MA standard). Makes the IC2A the most compact on the market.
- ICOM level Receiver Performance-ICOM Quality Receiver in a compact package (.2uv/ 2Odb typical)
- Optional Tone Pad, Desk Charger, Speaker/Mic available.
\square With slip on/slip off Bottom Nicad Pack, you can vary the size from
about 116 mm high to 175 mm high. Easy to carry extra Snap-on packs with you for extended trips.

BACK VIEW $\pm 600 \mathrm{khz}$ offset

TOP VIEW
BNC antenna connector "Rubber Duckie" standard transmit indicator squelch volume control
 10 khz channel selection speaker/mic jack

THE ANSUUR IS: NOW!

simple CW memory

The memory (fig. 1) uses standard TTL ICs and a 2102 1k $\times 1$ bit RAM. Information written into the memory can be read out at a faster or slower rate by merely changing the clock rate. A built-in sidetone generator allows monitoring while writing into memory as well as during readout or when keying the transmitter directly. A relay is used to key the transmitter.
Approximately six seconds of recording time occurs at the fastest clock rate, and about 45 seconds occurs at the slowest rate. Some distortion may occur, however, at the slowest setting. Mid setting

fig. 1. Schematic of the simple CW memory. Circuit may be used with or without a keyer. Although not shown, it's advisable to use bypass caps across supply lines to each IC.

At the risk of overdoing it, I'd like to submit my version of the simple CW memory. I can't lay claim to the design and admit all I did was combine parts that intrigued me the most from several articles. $1,2,3$ The circuit can be used with or without a keyer and can be built in a couple of evenings.

[^5]gives about 30 seconds and should be adequate for most COs or ID signals.
Oscillator. IC1, an NE-555 timer, is used for the clock oscillator and, in turn, drives the three 74934 bit binary counters. These, in turn, provide the 10-bit address codes to the RAM. IC4 is connected to reset at the count of 3 since the C and D outputs are not needed.
Input power. Power is applied to the clock oscillator only during key-down periods. During this time a

FALL FAVORITEG

charge is accumulated in the $10 \mu \mathrm{f}$ capacitor connected to IC1 pin 4. When the key is up, this charge keeps the oscillator running long enough to fill in the normal keying spaces. If you pause or stop momentarily, however, the oscillator shuts down and RAM storage capacity is not wasted.
RAM output. The output data from the RAM drives a transistor that operates the keying relay. The same signal also actuates the sidetone oscillator, another NE-555 timer. An LED indicator shows when the memory is half full. At that point the LED lights and stays lit until the count returns to zero.
Memory. When the unit is first turned on, the memory will store random data and must be cleared. To clear the memory at this time, or when a message is to be rewritten, the READ/WRITE switch is set to WRITE and the RESET/ERASE switch flipped to ERASE. The switch should be held long enough for a complete cycle as shown by the LED. The ERASE switch turns on the clock oscillator and also shunts the normal timing resistor with one of much lower value. This action boosts the frequency to a rate that cycles the system rapidly, and the RAM can be cleared in a couple of seconds.
recording a message
Set the CLOCK RATE control for the time needed. Switch the MEMORY/BYPASS switch to MEMORY and READ/WRITE switch to WRITE. Press the RESET switch momentarily to return the system to zero. Key in the message. Switch to READ and press RESET. The message should play back immediately. Message speed may be adjusted by resetting the clock rate. The message will repeat until interrupted. If it's desired to key the transmitter directly, the memory can be bypassed with the MEMORY/BYPASS switch, which won't disturb data in storage.

hardware

Laying out a PC board for a one-time project such as this was not considered worth the effort. The parts were assembled and wired on a piece perforated board. The keying relay I used was a reed type with 5 -volt coil. Also, the RESET/ERASE functions were combined in a spdt momentary toggle switch with center OFF. I used a small sloping panel cabinet to house the device. Although not shown in fig. 1, it's advisable to sprinkle some bypass capacitors across supply lines to each IC.

references

1. S. H. Phillips, G4EYR, "A Simple Multi-Purpose Memory," Radio Communication, July, 1979.
2. S. Price, G4BWE, "G4BWE CW Memory," Radio Communication, September, 1979.
3. Eric Unruh, WB@RYN, "Poor Man's CW Memory," 73, June, 1979.

11 CO 51 GHz , pre. ATF 417 pre-amp. net MRF 901 UHF transistor, $1 \mathbf{G H z}$

Special \$59.95
Special \$19.95
Special $\$ 3.95$
COMPLETE KITS: CONSISTING OF EVERY ESSENTIAL PART NEEDED TO MAKE YOUR COUNTER COMPLETE. HAL-GOOA 7-DIGIT COUNTER WITH FREOUENCY RANGE OF ZERO TO 600 MHZ . FEATURES TWO INPUTS ONE FOR LOW FREOUENCY AND ONE FOR HIGH FREQUENCY: AUTOMATIC ZERO SUPPRESSION. TIME BASE IS 1.0 SEC OR I SEC GATE WITH OPTIONAL 10 SEC GATE AVAILABLE. ACCURACY $\pm .001 \%$. UTILIZES $10-\mathrm{MHz}$ CRYSTAL 5 PPM COMPLETE KIT $\mathbf{\$ 1 2 9}$
HAL-300A 7-DIGIT COUNTER (SIMILAR TO 600A) WITH FREQUENCY RANGE OF O300 MHz . COMPLETE KIT $\mathbf{\$ 1 0 9}$
HAL-50A 8-DIGIT COUNTER WITH FREQUENCY RANGE OF ZERO TO 50 MHZ OR BETTER. AUTOMATIC DECIMAL POINT, ZERO SUPPRESSION UPON DEMAND. FEATURES TWO INPUTS: ONE FOR LOW FREQUENCY INPUT, AND ONE ON PANEL FOR USE WITH ANY INTERNALLY MOUNTED HALTRONIX PRE-SCALER FOR WHICH PROVISIONS HAVE ALREADY BEEN MADE. 1.0 SEC AND I SEC TIME GATES. ACCURACY $\pm .001 \%$.UTILIZESI $10-\mathrm{MHZ}$ CRYSTAL 5 PPM
FREE: HAL-79 CLOCK KIT PLUS AN INLINE RF PROBE WITH PURCHASE OF ANY FREOUENCY COUNTER

PRE-SCALER KITS

(Pre-drilled G-10 board and all components) (Pre-drilled $G \cdot 10$ board and with preamp).
(Same as abovents)
(Sat with preamp). PUT 1 GHz PRESCALER, VHF \& UHF INPUT \& OUTPUT, DIVIDES BY 1000 . OPERATES ON A SINGLE 5 VOLT SUPPLY

PREBUILT \& TESTED $\mathbf{\$ 7 9 . 9 5}$

TOUCH TONE DECODER KIT

HIGHLY STABLE DECODER KIT. COMESWITH2 SIDED. PLATED THRU AND SOLDER FLOWED G-10 PC BOARD, $7-567$'s, 2-7402. AND ALL ELECTRONIC COMPONENTS. BOARD MEASURES $3-1 / 2 \times 5-1 / 2$ INCHES. HAS 12 LINES OUT, ONLY $\$ 39.95$
DELUXE 12-BUTTON TOUCHTONE ENCODER KIT UTILIZING THE NEW ICM 7206 CHIP. PROVIDES BOTH VISUAL AND AUDIO INDICATIONS! COMES WITH IIS OWN TWO-TONE ANODIZED ALUMINUM CABINET MEASURES ONLY $2-3 / 4^{\prime \prime} \times 3-3 / 4^{\prime \prime}$. COMPLETE WITH TOUCH-TONE PAD, BOARD, CRYSTAL. CHIP AND ALL NECESSARY COMPONENTS TO FINISH THE KIT. PRICED AT $\mathbf{\$ 2 9 . 9 5}$
FOR THOSE WHO WISH TO MOUNT THE ENCODER IN A HAND-HELD UNIT, THE PC BOARD MEASURES ONLY $9 / 16^{\prime \prime} \times 1-3 / 4^{\prime \prime}$. THIS PARTIAL KIT WITH PC BOARD, CRYSTAL, CHIP AND COMPONENTS. PRICED AT $\mathbf{\$ 1 4 . 9 5}$
ACCUKEYER (KIT) THIS ACCUKEYER IS A REVISED VERSION OF THE VERY POPULAR WB4VVF ACCUKEYER ORIGINALLY DESCRIBED BY JAMES GARRETT, IN OST MAGAZINE AND THE 1975 RADIO AMATEUR'S HANDBOOK.
$\$ 16.95$
ACCUKEYER - MEMORY OPTION KIT PROVIDES A SIMPLE, LOW COST METHOD OF ADDING MEMORY CAPABILITY TO THE WBAVVF ACCUKEYER. WHILE DESIGNED FOR DIRECT ATTACHMENT TO THE ABOVE ACCUKEYER, IT CAN ALSO BE ATTACHED TO ANY STANDARD ACCUKEYER BOARD WITH LITTLE DIFFICULTY

PRE-AMPLIFIER
HAL-PA-19 WIDE BAND PRE-AMPLIFIER, $2 \cdot 200 \mathrm{MHz}$ BANDWIDTH (-3dB POINTS), 19 dB GAIN.

FULLY ASSEMBLED AND TESTED $\mathbf{\$ 8 . 9 5}$

CLOCK KIT - HAL 79 FOUR.DIGIT SPECIAL - 57.95. OPERATES ON 12 -VOLT AC (NOT SUPPLIED). PROVISIONS FOR DC AND ALARM OPERATION
6-DIGIT CLOCK • $\mathbf{1 2 / 2 4}$ HOUR
COMPLETE KIT CONSISTING OF 2 PC G-10 PRE-DRILLED PC BOARDS, 1 CLOCK CHIP, 6 FND COMM. CATH. READOUTS, 13 TRANS. 3 CAPS, 9 RESISTORS, 5 DIODES, 3 PUSH. PARTIAL KITS WHERE YOU HAVE TO BUY EVERYTHING EXTRA. PRICED AT $\mathbf{\$ 1 2 . 9 5}$ CLOCK CASE AVAILABLE AND WILL FIT ANY ONE OF THE ABOVE CLOCKS, REGULAR PRICE . . $\$ 6.50$ BUT ONLY $\$ 4.50$ WHEN BOUGHT WITH CLOCK.
SIX-DIGIT ALARM CLOCK KIT FOR HOME, CAMPER, RV, OR FIELD-DAY USE OPERATES ON 12-VOLT AC OR DC, AND HAS ITS OWN $60-\mathrm{Hz}$ TIME BASE ON THE BOARD COM-
PLETE WITH ALL ELECTRONIC COMPONENTS AND TWO-PIECE PRE-DRILLED PC BOARDS BOARD SIZE $4^{\prime \prime} \times 3^{\prime \prime}$ COMPLETE WITH SPEAKER AND SWITCHES IF OPERATED ON DC THERE IS NOTHING MORE TO BUY. * PRICED AT \$16.95
-TWELVE-VOLT AC LINE CORD FOR THOSE WHO WISH TO OPERATE THE CLOCK FROM 110-VOLT AC
$\$ 2.50$
SHIPPING INFORMATION - ORDERS OVER $\$ 20.00$ WILL BE SHIPPED POSTPAID EXCEPT ON ITEMS WHERE ADDITIONAL CHARGES ARE REOUESTED. ON ORDERS LESS THAN $\$ 20.00$ PLEASE INCLUDE ADDITIONAL $\$ 1.50$ FOR HANDLING AND MAILING CHARGES. SEND SASE FOR FREE FLYER.

> DISTRIBUTOR FOR
> Aluma Tower - AP Products
> (We have the new Hobby-Blox System)

VISA
VISA
"HAL"
HAROLD C. NOWLAND W8ZXH

$\mathrm{H}_{\mathrm{Al} . \mathrm{T}_{\text {tonix }}}$
P. O. BOX 1101
SOUTHGATE, MICH. 48195 PHONE (313) 285-1782

© $\operatorname{CBENWOOL}$
 ... pacesetter in amateur radio

TS-8tas

"Top-notch".. VBT, notch, IF shift, wide dynamic range

The TS-830S has every con ceivable operating teature built-in for 160-10 meters (in cluding the three new bands) It combines a high dynamic range with variable bandwidth tuning (VBT). IF shift, and an IF notch filter, as well as very sharp filters in the $455 \cdot \mathrm{kHz}$ second IF Its optional VFO-230 remote digital VFO provides five memories.

TS-830S FEATURES:

- LSB, USB, and CW on 160-10 meters, including the new 10 18, and $24-\mathrm{MHz}$ bands Receives WWV
- Wide receiver dynamic range Junction FETs in the balanced mixer, MOSFET RF amplifier at low level, and dual resonator for each band.
- Variable bandwidth tuning (VBT). Varies IF filter pass band width.
- Notch filter (high-Q active circuit in $455-\mathrm{kHz}$ second IF
- IF shift (passband tuning)
- Built-in digital display (six digits, fluorescent tubes). analog subdial. and display hold (DH) switch.
- Noise-blanker threshold level control
- 6146B final with RF negative feedback. Runs 220 W PEP (SSB)/180 W DC (CW) input on all bands
- Built-in RF speech processor
- Narrow/wide filter selection on CW
- SSB monitor circuit to check transmitted audio quality
- RIT (receiver incremental tuning) and XIT (transmitter incremental tuning).

OPTIONAL ACCESSORIES

- SP-230 external speaker with selectable audio filters
- VFO-230 external digital VFO with $20-\mathrm{Hz}$ steps, five memories, digital display
- AT-230 antenna tuner/SWR and power meter/antenna switch: 160-10 meters. including three new bands
- YG-455C $(500-\mathrm{Hz})$ and YG-455CN $(250-\mathrm{Hz}) \mathrm{CW}$ filters for $455 \cdot \mathrm{kHz}$ IF
- YK-88C $(500-\mathrm{Hz})$ and YK-88CN ($270-\mathrm{Hz}$) CW filters for $8.83-\mathrm{MHz}$ IF (VFOs for TS-830S. TS-130 Series, and TS-120S are compatible with all three series of transceivers.)

TS-13ロs/V

"Small wonder"... processor, N/W switch, IF shift, DFC option

The compact, all solid-state HF SSB/CW mobile or fixed station TS-130 Series transceiver covers 3.5 to 29.7 MHz , including the three new bands.

TS-130 SERIES FEATURES:

- 80-10 meters, including the new 10,18 , and $24-\mathrm{MHz}$ bands. Receives WWV.
- TS-130S runs 200 W PEP/160 W DC input on 80-15 meters and 160 W PEP/140 W DC on 12 and 10 meters. TS-130V runs 25 W PEP/20 W DC input on all bands.
- Built-in speech processor.
- Narrow/wide filter selection on both CW $(500 \mathrm{~Hz}$ or 270 Hz$)$ and SSB (1.8 kHz) with optional filters.

- Automatic selection of sideband mode (LSB on 40 meters and below, and USB on 30 meters and above). SSB REVERSE switch provided.
- Built-in digital display.
- Built-in RF attenuator.
- IF shift (passband tuning).
- Effective noise blanker.

OPTIONAL ACCESSORIES:

- PS-30 base-station power supply.
- YK-88C (500 Hz) and YK-88CN (270 Hz) CW filters.
- YK-88SN (1.8 kHz) narrow SSB filter.
- AT-130 compact antenna tuner (80-10 meters, including three new bands).
- SP-120 external speaker.
- VFO-120 remote VFO.
- MB-100 mobile mounting bracket.
- PS-20 base-station power supply for TS-130V.

Optional DFC-230 Digital Frequency Controller
Frequency control in $20-\mathrm{Hz}$ steps with UP/DOWN microphone (supplied with DFC-230). Four memories and digital display. (Also operates with TS-120 and TS-830S.)

TR-9000

"New 2-meter direction"... compact rig

 with FM/SSB/CW, scan, five memoriesThe TR-9000 combines the convenience of FM with long distance SSB and CW. It is extremely compact . . . perfect for mobile operation. Matching accessories are available for optimum fixed-station operation.

TR-9000 FEATURES:

- FM, USB, LSB, and CW. - Only 6-11/16 inches wide. 2-21/32 inches high. 9-7/32 inches deep.
- Two digital VFOs, with selectable tuning steps of 100 Hz . 5 kHz , and 10 kHz .
- Digital frequency display. Five, four, or three digits, depending on selected tuning step
Covers 143.9000-
148.9999 MHz .
- Band scan ... automatic busy stop and free scan.
- SSB/CW search of selectable $9.9-\mathrm{kHz}$ bandwidth segments.
- Five memories . . four for simplex or $\pm 600 \mathrm{kHz}$ repeater offsets and the fifth for a nonstandard offset (memorizes transmit and receive frequency independently).
- UP/DOWN microphone (standard) for manual band scan.
- Noise blanker for SSB and CW.
- RIT (receiver incremental tuning) for SSB and CW.
- RF gain control.
- CW sidetone.
- Selectable RF power outputs $10 \mathrm{~W}(\mathrm{HI}) / 1 \mathrm{~W}(\mathrm{LO})$.
- Mobile mounting bracket with quick-release levers.
- LED indicators . . . ON AIR BUSY, and VFO.

OPTIONAL ACCESSORIES:

- PS-20 fixed-station power supply.
- SP-120 fixed-station external speaker.
- BO-9 System Base . . . with power switch, SEND/RECEIVE switch (for CW), memorybackup power supply, and headphone jack.

"Hand-shack"...synthesized, big LCD, scan, 10 memories, DTMF (Touch-Tone ${ }^{\circledR}$)

CONVENIENT TOP CONTROLS
The TR-2400 has the most convenient operating features desired in a 2 -meter FM handheld transceiver.

TR-2400 FEATURES:

- Large LCD digital readout. Readable in direct sunlight (virtually no current drain) and in the dark (lamp switch). Shows receive and transmit frequencies and memory channel. "Arrow" indicators show "ON AIR", "MR" (memory recall), "BATT" (battery status), and "LAMP" switch on.
- Keyboard selection of 144.000-147.995 MHz in $5-\mathrm{kHz}$ increments. No "5-UP" switch needed.
- UP/DOWN manual scan in $5-\mathrm{kHz}$ steps from 143.900 to 148.495 MHz .
- 10 memories. Retained with battery backup. "MO" memory may be used to shift transmitter to any frequency for nonstandard-split repeaters.
- Built-in autopatch DTMF (Touch-Tone ${ }^{\text {© }}$) encoder, using all 16 keyboard buttons.
- Automatic memory scan.
- Repeater or simplex operation. Transmit frequency shifts $\pm 600 \mathrm{kHz}$ or to " MO " memory frequency.
- Reverse switch. Transposes receive and transmit frequencies.
- Subtone switch (tone encoder not Kenwood-supplied).
- Two lock switches to prevent accidental frequency change and accidental transmission.
- External PTT microphone and earphone connectors
- Rubberized antenna with BNC connector, NiCd battery pack. AC charger, PTT and mic plugs, handstrap, and earphone included.
- Extended operating time with LCD and overall low-current circuit design. Only draws about 28 mA squelched receive and 500 mA transmit (at 1.5 W RF output)
- High-impact case and zinc die-cast frame.
- Compact and lightweight Only 2-13/16 inches wide. 7-9/16 inches high, and 1-7/8 inches deep. Weighs only 1.62 pounds (including antenna, battery, and hand strap).

OPTIONAL ACCESSORIES:

- ST-1 Base Stand (provides 1.5-hour-quick, trickle, and floating charges, 4 -pin microphone connector, and SO-239 antenna connector)
- BC-5 DC quick charger.
- LH-1 leather case.
- BH-1 belt hook.
- PB-24 extra NiCd battery pack.
- NEW SMC-24 speaker/mic.

for digital readout and scan option

Do thumbwheel switches that can't be seen at night irritate you? Are you frustrated when you know there are more than two repeaters in town and you can't find them? If the answer to these questions is "yes," then hold onto your armchair - you're about to read of a way to upgrade your old HW-2036 to include some of the features of the new Heathkit VF7401 2-meter fm digital scanning transceiver. This project takes the average Amateur two evenings to install and check out, which includes direct replacement of the Micoder ${ }^{T M}$ board and installation of a board to replace the thumbwheel switches. Overall cost of the project shouldn't exceed $\$ 55.00$ (May, 1980), depending on your junk box.

circuit description

All frequency and Touch-Tone* information is entered through the microphone key pad, therefore I'll start the description with the 2036-MB micboard (fig. 1). Radio Shack National Parts has a 24 -conductor microphone cable used on their One-Handler TM CB radio. This cable works just great for passing the required information on to HW-2036 and leaves room for expansion for future projects.

tone generation

Envision the 2036-MB micboard as two separate circuits on one board: one is the tone generator and the other is a BCD frequency generator. TouchTone ${ }^{\text {TM }}$ generation occurs by depressing a keypad digit through which IC3 produces an audio tone at pins 2 and 15 . These tones are coupled to the transmitter audio input. Operating voltage (+5 Vdc) for IC3 is available to the chip on transmit only through the PTT switch.

frequency generation

The BDC frequency information is produced by a key depression in receive-mode only, which causes IC2 to generate five outputs. These are BDC informa-

[^6]
updating the Heathkit HW-2036

tion plus one strobe pulse bit. Binary-coded decimal is a means of counting from 0-9, A-F (table 1). Accompanying the BCD information to the 2036-DB (display board) is a strobe pulse, which indicates to the 2036-DB that a key has been depressed on the $2036-\mathrm{MB}$ keypad. Nestled in this $2036-\mathrm{MB}$ circuit is a NE-555, IC1. This chip produces a train of pulses that are proportional to the strobe pulse being present so many microseconds after key depression.

display board

To follow the path of data on the display board (fig. 2), imagine three separate areas: storage (SN74LS298), display (Fairchild 9368), and BCD-todecimal conversion (IC1,2,3). Keyboard data (BCD A, B, C, D, and strobe) connect to the display board at IC7. The strobe inverts through IC2 then connects to all shift and storage registers (IC4,5,6,7). The storage register produces on its output lines whatever is presented to its input lines at the time of strobe pulse reception. Therefore, by connecting the output of one register to the input of an adjacent register and so on, a digit can be shifted through the registers one at a time with each strobe pulse received.

Surprisingly, the output of these registers is the input to the synthesizer and display drivers. Frequency display is accomplished by feeding the output BCD from IC4,5,6,7 to the 9368 decoder-driver chips. These chips (fig. 3) were used because of ease of adaptation and non-use of dropping resistors on the output lines. Connection is directly to the seven-segment display.

Creation of the $0 / 5-\mathrm{kHz}$ signal is as follows. The $B C D$ units digit is fed to IC3, which is a BCD-to-decimal converter. For every BCD digit input, a directly proportional decimal digit is output. I chose to use the digits from zero to four to indicate $0-\mathrm{kHz}$ shift. A logic 1 on any one output of IC3 is inverted through IC2 and fed directly to IC1, a 5 -input NOR gate. The output of NOR gate IC1 is connected to the HW-2036 synthesizer board at point \mathbf{X}, fig. 2.

Scanning is accomplished by applying a pseudo

By Tom French, WA4BZP, Rt. 2, Suburban Shores, Winter Garden, Florida 32787
strobe pulse from IC4 (fig. 4) through the scan-operate switch to display-board, IC2 pin 13. ICs 1, 2, and 3 on the scan board are binary up-down counters and are arranged to facilitate counting up from 000-999. (O213, located inside the HW-2036 on the receiver board, is tapped for the required signal to stop the scan operation.)

When Q1 (fig. 4) conducts, it forces pins 10 and 7 on IC1 to zero. This action locks the binary counters dead in their tracks. The amount of signal required to lock the scanner is varied by the value of R1, a 90 k resistor. The higher its value, the more signal is required to stop the scanner. You might find that, when scanning, your HW-2036 stops $5-10 \mathrm{kHz}$ before the repeater frequency is reached. This problem can be caused by a very strong signal and a low value for R1. My suggestion is to increase the value of R1 in fig. 4 at 01 base. To re-enable scanning, simply depress the START SCAN button on the microphone.

Remove all knobs and external coverings. Keep the screws in a plastic cup so they won't get lost. The synthesizer lock LED is a tricky item. Be careful when removing the front panel subplate and bezel. Remove and save the thumbwheel switches and mounting screws. You'll need a red or any color plastic lens for the hole covering. Cut it to size with a
hacksaw blade and hold the plastic over the window where the display will go. Mark the four new mounting holes and drill them slowly into the plastic. Trim the edges as closely as possible and install the lens.

I used two 7805 voltage regulators to supply all required power to the display board and microphone board. Two holes must be drilled to accommodate installation of the 7805s. The first hole is beside the speaker just below the synthesizer board and display board (fig. 5).

Now is the tricky part: getting the second hole drilled. Pull the amplifier board a few inches away from the chassis (fig. 6) and drill slowly into the chassis. At this time it's best to install both 7805 voltage regulators as shown, remembering to use some silicone grease.

Reinstall the amplifier board then remove the microphone cable at both ends. It will be replaced by a 12 -to-24-conductor cable. Place some type of insulation over the speaker connections and side magnet, preferably PVC electical tape. This process helps keep the snug-fitting 2036-DB from short circuits. Use 6-32 $\times 2-1 / 4$ inch ($\mathrm{M} 3 / 5 \times 57 \mathrm{~mm}$) countersunk mounting screw for the front hole, which will also hold the scan board, and a $6-32 \times 1-1 / 4$ inch (M $3 / 5 \times$ 31.7 mm) screw for the 2036-DB rear hole.

fig. 1. Micboard ($2036-\mathrm{MB}$) schematic. This board replaces the original Heathkit HW-2036 MicoderTM board in your microphone. Circuit consists of a tone generator and a BCD frequency generator.

fig. 2. Display board (2036-DB). This board is positioned in the transceiver in the space previously occupied by the thumbwheel switches. The circuit provides storage, display, and BCD-to-decimal conversion.

micboard (2036-MB)

Remove all the parts from your microphone. Leave the microphone element and PTT switch within the plastic housing. Clean the terminal strip of all solder and wire debris. Install the one 2.2 k resistor to one side of the microphone element (fig. 7) and the other end to +5 Vdc on TRANSMIT. Remove all the old keypad pin sockets from your old micboard and reinstall on the 2036-MB.

Install all chips on the component side of the board. Pins 8,8,1 of the MC14410, 14419, and NE-555 respectively connect to the ground plane. Note that the $.01 \mu \mathrm{~F}$ and $.047 \mu \mathrm{~F}$ caps are electrolytic; observe polarity.

Parts that go on the underside of the board are the $1-\mathrm{MHz}$ crystal and a $.01-\mu \mathrm{F}$ disc clock capacitor.

The next step is to cable the microphone, trying to follow some kind of plan on signal-to-color coordination (fig. 8). On the 2036-MB and PTT switch connect a wire to each of the following: +5 Vdc on

fig. 3. Pin layout of the Fairchild 9368 LED drivers used in the display board.
table 1. Binary-coded decimal format representing the 2036MB micboard output. Valid outputs are from zero to nine.

	A	B	C	D	
0	0	0	0	0	$1=+5$ Vdc
1	1	0	0	0	$0=0$ Vdc
2	0	1	0	0	
3	1	1	0	0	
4	0	0	1	0	
5	1	0	1	0	
6	0	1	1	0	
7	1	1	1	0	
8	0	0	0	1	
9	1	0	0	1	
A	0	1	0	1	
B	1	1	0	1	
C	0	0	1	1	
D	1	0	1	1	
E	0	1	1	1	
F	1	1	1	1	

fig. 4. Scan board (2036-SB). This board mounts above the display board for the scanning option (see text).

TRANSMIT, +5 Vdc on RECEIVE, +5 Vdc ground. On the micboard, pin 3 is labeled +5 Vdc on TRANSMIT; pin $1+5 \mathrm{Vdc}$ on RECEIVE. Pin 2 is the audio output. Power for all circuits in the microphone is obtained from the 7805 (IC1) originally in the rig (fig. 10).

display board (2036-DB)

Molex pins or low-profile IC sockets may be used on this board. R9 is a 200-ohm resistor to enable the decimal point on the display. Install it and connect a wire to one end for further connection to the mega-
hertz LED. Capacitor C1 is installed if double or triple digiting happens when the key pad is pressed (fig. 9). Whether or not your SN74LS298 chips match has a direct bearing on the need for C 1 ; its range is between $100 \mu \mathrm{~F}-470 \mathrm{pF}$. To test all of the LEDs after installation, just key in four "eights."

fig. 5. Mounting of components for the voltage regulator, which are installed under the HW-2036 synthesizer board.

HW-2036 synthesizer board

Our next adventure starts on the HW-2036 synthesizer board. Very carefully remove all the pull-up resistors associated with the thumbwheel switches: R401-R409, R411-413. Install a small solder bridge on the 2036-DB, at the scan bridge to pin 10 of IC7 if not using the scan option (fig. 9). A small piece of wire with five leads should be run from the microphone cable to the display board for strobe and BCD data. No shielding is required here. Run the wire beneath

fig. 6. Same as fig. 5, except the regulator is mounted on the back wall of the HW-2036 near the transmitter board.

fig. 7. Inside view of the microphone element and PTT switch showing signal connections.
the volume control and mode switches. All common cathode LEDs should be mounted about $1 / 4$ inch (6.5 mm) above the 2036-DB surface. A piece of balsa wood or plastic can be used for this task.

Install the 2036-DB board, and with a pencil mark the window center position. Then super glue the LEDs to the board. Install the $25-\mu \mathrm{F}, 25-\mathrm{Vdc}$ and the

fig. 8. Microphone-cable color code, A, and rear view of the Fairchild 9368 LED driver IC, B.
$.01 \mu \mathrm{~F}$ capacitors to both 7805 voltage regulators.
Connect the rear 7805 to the B power pin and the front 7805 to the A power pin (fig. 10). All common cathodes of the LEDs can be daisy-chained, then one end can be connected to ground. The wires to the thumbwheel switches should be resoldered to their corresponding drivers at locations A-B-C-D. For IC8, pins 7 and 1 are points A1 and A2 respectively on the

fig. 9. Layout of the display board (2036-DB), A, and the micboard (2036-MB) B, showing corrections. (Labels were reversed on the latter PC board.)
synthesizer board. IC10 displays the tens of kilohertz; IC11 kilohertz (fig. 2).

scan board (2036-SB)

This scan board mounts forward on the $6-32 \times 2$ $1 / 4$-inch ($\mathrm{M} 3 / 5 \times 57 \mathrm{~mm}$) screw. The scan board is built on a piece of perf board. Install all chips and transistor 01 with resistor R1. Clock-out from the NE555 goes to the scan-operate switch ($0 / 5 \mathrm{kHz}$) to provide a strobe pulse to the SN74LS298s. When scanning, if your synthesizer isn't locking onto frequency, the clock frequency of IC4 on the 2036-SB should be slowed down by increasing the values of R1 and R2 to above 1 meg. The leads from IC1-IC3 of

the scan board should be connected to the display board using wire wrap.

Wiring the scan/operate switch is next. The 2036DB strobe is connected to the center pole of one side of this switch. To scan $147.000-147.999 \mathrm{MHz}$, key in 7-7-7-7, then switch to scan. The switch should be toggled slowly. This scan modification facilitates the location of new repeaters in a new city. By no means is it competitive with professional scanners.

checkout

Complete all connections and reassemble, leaving the skins off. For that matter, you can leave the display board out and to the side of your rig. (No need to hook up the synthesizer wires until the 2036-DB is operational.) Assuming you've done all the above correctly, we're ready to power up. The display will
read some random numbers and sometimes even letters.

On the 2036-MB check the NE-555 pin 8 and MC14419 pin 16 for +5 Vdc. If it's present, we'll assume pin 3 of the NE-555 is generating a clock pulse. There are two key strokes considered by the keypad to be invalid in the receive mode. They are \# and *. This being true, they will not generate a bit pattern upon key depression, only in receive mode.
Depress some digits. Your display should follow from right to left; if not, let's troubleshoot it. When you depress a valid key, the strobe pulse should appear on the output of MC14419 pin 14. A scope or logic probe is required to view this signal, as it is very short in duration. As long as you hold your finger on the keypad digit, the output loads (A-B-C-D) of MC14419 will represent the desired digit. If not, check all voltages in your micboard and repair. The keypad data and strobe are sent to IC7 on the 2036DB. At IC7, which is the kHz digit, the BCD data is sent to decimal converter IC3. It will generate a logic one if the BCD input is between zero and four and a logic zero if it is between five and nine. The signal is inverted at IC2 then sent to a five-input NOR gate for the final $0 / 5 \mathrm{kHz}$ output. A logic zero is equal to zero kHz , and a logic one equals $5-\mathrm{kHz}$ shift up.
On displaying your operating frequency, suppose you desire 147.345 MHz . Simply touch in the digit sequence 7-3-4-5 on the keypad. Upon depressing the push-to-talk switch, the keypad is now a TouchTone ${ }^{\text {TM }}$ pad and will generate the standard phone tones.

concluding remarks

The mic-Touch-Tone ${ }^{\text {TM }}$ kit is available from Data Signal Incorporated labeled EK-2036. It includes a 1 MHz crystal, MC14410 Touch-Tone ${ }^{\text {TM }}$ encoder, and various capacitors and components. This kit is required only if your Micoder ${ }^{\text {TM }}$ doesn't have the Motorola Touch-Tone ${ }^{\text {TM }}$ encoder. Heathkit used the Mostek chip in some versions of the Micoder 2 ${ }^{\text {TM }}$, so check it carefully
Circuit-board artwork is included for the daring individuals who are familiar with double-sided etching. For those who are not so well off, the author supplies one 2036-MB and one 2036-DB with instructions for $\$ 19.95$. The 2036-SB (scan board) must be built on perf board, as designing a board was not feasible at the time of this writing.

bibliography

Stephens, Bill, W88TJL, 'Outboard LED Frequency Display for the HW-2036," ham radio, July, 1978, page 50
ham radio

the XK2C AFSK generator

Introducing a CMOS version of the Mainline XK2 a spinoff design

offering low power consumption

The AFSK generator described in this article is a low-power CMOS version of the Mainline XK2. ${ }^{1}$ The XK2, using TTL devices, required approximately 150 mA at 5 Vdc . The XK2C will operate from a $10-15$ Vdc supply; at 12 Vdc it draws only 8 mA , including the additional audio driver stage (fig. 1).

device compatibility

The basic logic of the XK2C is the same as that of its predecessor. However, as Murphy's law would indicate, things are not as simple as direct substitution of CMOS ICs for TTL devices. CMOS operation is slower than that of TTL (about one-quarter as fast at $5 \mathrm{Vdc})$.

propagation delay

Propagation delay through the programmable divider logic can easily exceed the time for one cycle of the clock, thereby skipping clock pulses and yielding an erratic output frequency. Three steps were taken to get around this problem. First, the clock frequency was reduced to 1606.5 kHz (one-half the TTL clock) and the final divide-by-two stage was eliminated. This provided the same output frequencies while allowing the programmable divider to function at one-half the rate. Second, the number of logic gates for the divider preset was held to a minimum. The preset input polarity for the CD4516 (fig. 2) is opposite to that required for the original 74193s, so an AND gate was required for proper preset. Third, the input voltage was raised to 10 Vdc minimum because CMOS operates faster at higher supply voltages.

power-supply voltages

Operation from a 5 -Vdc supply may well be possible, depending on the propagation delays of the chips used and the temperature range over which they will be operated. If 5 Vdc operation is desired, the output frequency should be closely checked with a frequency counter over the desired operating temperature range. The output frequencies should be stable at $2125 \mathrm{~Hz}, 2295 \mathrm{~Hz}$ and 2975 Hz . Propaga-

By Robert W. Lewis, W3HVK, P.O. Box 41, Stevensville, Maryland 21666

fig. 1. Block diagram of the XK2C crystal Mainline AFSK generator. Power consumption is low; at 12 Vdc circuit draws only 8 mA , even with the added audio driver stage.

fig. 2. Schematic of the XK2C AFSK generator. Operation from a 5-Vdc supply may be possible, depending on several factors (see text).

Note: $A=$ thru -board
Jumper wire soldered to foil on both sides of PC board.
All components must be soldered to foil on both sides of
PC board.
fig. 3. Component layout for the Mainline XK2C AFSK generator (component-side view).

fig. 4. Component side of PC board.

fig. 5. Non-component side of PC board.
tion delays may cause one clock pulse to skip for each preset of the programmable divider, thereby yielding outputs of $2114 \mathrm{~Hz}, 2282 \mathrm{~Hz}$, and 2953 Hz respectively. At $10-\mathrm{Vdc}$ or more, worst-case propagation delays won't be great enough to cause difficulties.

Elimination of the final divide-by-two stage left one clocked D latch (one-half of a CD-4013) unused. I decided to use this latch to clock in the CW ID data, thereby making it coherent, as with the TTY data. This doesn't really buy anything, but it was available and eliminates the need for one inverter, since both Q and \bar{Q} outputs are available from the latch.

Shift-selection logic was added so that the $170-\mathrm{Hz}$ or $850-\mathrm{Hz}$ selection could be made with a spst switch instead of the spdt switch required by the XK2. I added an audio driver stage (UA741 op amp) to provide plenty of output signal and a good, stiff source capable of driving low- as well as high-impedance transmitter audio inputs. I added a loop-to-logic converter (SK3106, SK3114, and IL74) for direct connection into the teleprinter loop. This input is isolated from ground and will operate with either polarity current.

The value of $R 1$ was selected from fig. 1 for keying from either a $20-\mathrm{mA}$ or $60-\mathrm{mA}$ loop; or R1 may be
deleted altogether for keying directly across a 5-Vdc supply. High-voltage loops (100-200 Vdc), with selector magnets directly in line, often generate spikes and rf hash, which could get into the XK2C logic. The PC board has been designed so that the loop-tologic converter can be easily shielded if required. The PC board plugs into a Cinch type 50-15A-20, 15-pin receptacle.

assembly

The XK2C was assembled on a double-sided, plugin PC board (figs. 4 and 5). Since it was not possible for me to make plated-through holes, it was necessary to solder the components to the foil on both sides of the board. Care must be taken not to overheat the ICs during soldering.

The XK2C has all the features of the earlier XK2 plus a few extra, and it offers a considerable savings in power consumption.

reference

[^7]

Model 1336

Continuous Frequency Coverage-The TR7 provides continuous coverage in receive from 1.5 to 30 MHz . Transmit coverage is provided for all amateur bands from 160 through 10 meters. The optional AUX7 Range Program Board allows out-of-band transmit coverage for MARS, Embassy, Government and Commercial services as well as future band expansions in the 1.8 through 30 MHz range.* The AUX7 Board also provides 0 through 1.5 MHz receive coverage and crystal-controlled fixed-channel operation for Government, Amateur or Commercial applications anywhere in the 1.8 to 30 MHz range.

Synthesized/PTO Frequency Control-A Drake exclusive: carefully engineered high-performance synthesizer, combined with the famous Drake PTO, provides smooth, linear tuning with 1 kHz dial and 100 Hz digital readout resolution. 500 kHz up/down range switching is pushbutton controlled.

Advanced, High-Performance Receiver Design-The receiver section of the Drake TR7 is an advanced, up-conversion design. The first intermediate frequency of 48.05 MHz places the image frequency well outside the receiver input passband, and provides for true general coverage operation without i-f gaps or crossovers. In addition, the receiver section features a high-level double balanced mixer in the front end for superior spurious and dynamic range performance.

True Passband Tuning-The TR7 employs the famous Drake full passband tuning instead of the limited range "i.f shift" found in some other units. The Drake system allows the receiver passband to be varied from the top edge of one sideband, through center, to the bottom edge of the opposite sideband. In fact, the range is even wider to accommodate RTTY. This system greatly improves receiving performance in heavy QRM by

TRy

solid state continuous coverage synthesized hf system

Drake PS7 120/240V Ac Supply for continuous duty operation (25 amps)
Model 1570

Model 1553
Model 1230
Model 1533
Model 7077
Model 1520
Model 1536
Model 1531
Model 1537
Model 1529
Model 7021
Model 7022
Model 7023
Model 7024
Model 1335
Model 7037
Model 385-0004

Drake PS75 120/240V Ac supply for intermittent duty (15 amps continuous, 25 amps intermittent)
Drake SP75 Speech Processor
Drake LA7 Line Amplifier
Drake CS7 Coax Switch Drake Desk Microphone Drake P75 Phone Patch Drake Aux7 Range Program Board *
Drake MS7 Matching Speaker
Drake NB7 Noise Blanker Drake FA7 Fan
Drake SL-300 Cw Filter, 300 Hz
Drake SL-500 Cw Filter, 500 Hz
Drake SL-1800 Ssb/RTTY Filter, 1.8 kHz
Drake SL-6000 A-m Filter, 6.0 kHz
Drake MMK-7 Mobile Mounting Kit
Drake TR7 Service Kit/Extender Board Set Drake TR7 Service/Schematic Book

TR7 SPECIFICATIONS

GENERAL

Receive
Without Aux7
With Aux7
Transmit
Without Aux7
With Aux7*

Modes of Operation

Frequency Stability
1.5 to 30 MHz , continuous, no gaps. Same, plus 0 to 1.5 MHz at reduced performance.
1.8-2.0, 3.5-4.0, 7.0-7.5, 14.0-
$14.5,21.0-21.5,28.0-30.0 \mathrm{MHz}$.
Above ranges, plus any eight 500 kHz segments from 1.8 to 30 MHz .
Usb, Lsb, Cw, RTTY, A-m equiv. (A-3H).
Less than 1 kHz first hour. Less than 150 Hz per hour after 1 hour warm up. Less than 100 Hz for $\pm 10 \%$ line voltage change.

Frequency Readout Accuracy
Analog Better than $\pm 1 \mathrm{kHz}$ when calibrated at the nearest marker point.
$15 \mathrm{ppm} \pm 100 \mathrm{~Hz}$.
External Counter Mode
Maximum Input Freq.
Input Level Range 50 mV to 2 V , rms.
Power Supply Requirements
11-16 V-dc (13.6 V-dc nominal), 3A
receive, 25A transmit.
Dimensions
Depth
Width
Height
Weight
12.5 in . (31.75 cm), excluding knobs and connectors.
13.6 in . (34.6 cm).
4.6 in . (11.6 cm) excluding feet.
$17.1 \mathrm{lb} .(7.75 \mathrm{~kg})$.

RECEIVER

Sensitivity

Ssb, Cw
A-m (30\% Mod.)
Selectivity

Less than $0.5 \mu \mathrm{~V}$ for $10 \mathrm{~dB}(\mathrm{~S}+\mathrm{N}) / \mathrm{N}$. Less than $2.0 \mu \mathrm{~V}$ for $10 \mathrm{~dB}(\mathrm{~S}+\mathrm{N}) / \mathrm{N}$. 2.3 kHz at -6 dB and 4.4 kHz at -60 dB (1.8:1 shape factor).

Ultimate Selectivity
Agc Agc

Intermodulation

I-f Frequency

Image and I-f Rejection
Spurious Response
Internally Generated Spurious Less than $1 \mu \mathrm{~V}$ equivalent, except

Audio Output

TRANSMITTER

Power Input (Nominal)

Ssb 250 watts PEP.
Cw
A-m equiv.
Load Impedance
Spurious Output
Harmonic Output
Intermodulation Distortion

Undesired Sideband Suppression

Duty Cycle
Ssb, Cw
Tune, SSTV, RTTY, A-m

Wattmeter Accuracy

Carrier Suppression
Microphone Input

Greater than 60 dB down. $3 \mu \mathrm{~V}$ equivalent from 5 to 6 MHz
(reduced specs on internal osc $3 \mu \mathrm{~V}$ equivalent from 5 to 6 MHz
(reduced specs on internal osc frequencies).
2.0 watts @ less than 10% THD (4 ohm load).

Greater than 60 dB @ 1 kHz .
Greater than 100 dB .
Less than 4 dB output variation for 100 dB input signal change, referenced to agc threshold.
Intercept Point, +20 dBm . Two-tone Dynamic Range, 99 dB (at spacings of 100 kHz and greater).
First i-f -48.05 MHz .
Second i-f -5.645 MHz .
Greater than 80 dB .

250 watts.
80 watts (carrier), plus upper sideband.
50 ohms, nominal.
Greater than 50 dB down.
Greater than 45 dB down.
30 dB below PEP (24 dB below one of two tones).
100%.
w/o 1529 FA7 Fan $-33 \%, 5 \mathrm{~min}$. transmit, max. with 1529 FA7 Fan-100\%. $\pm 5 \%$ @ 100 watts (50 ohm load). Greater than 50 dB .
High Impedance.

R7

Synthesized General Coverage Receiver

Model 1240

Full general coverage reception, $0-30 \mathrm{MHz}$, with no gaps or range crystals required.
Continuous tuning all the way from vif thru hf. Superb state-of-the-art performance on a-m, ssb, RTTY, and cw -and it transceives with Drake TR7.

- 100\% solid state broadband design, fully synthesized with a permeability tuned oscillator (PTO) for smooth, continous tuning.
- Covers the complete range 0 to $\mathbf{3 0} \mathbf{~ M H z}$ with no gaps in frequency coverage. Both digital and analog frequency readout.
- Special front-end circuitry employing the high level double balanced mixer and 48 MHz "up-converted" 1st i-f for superior general coverage, image rejection and strong signal handling performance.
- Complete front-end bandpass filters are included that operate from hf thru vif. External vif preselectors are not required.
- 10 dB pushbutton-controlled broadband preamp can be activated on all ranges above 1.5 MHz . Low noise design.
- Various optional selectivity filters for cw , RTTY and a-m are switch-selected from the front panel. Ssb filter standard.
- Special new low distortion "synchro-phase" a-m detector provides superior international shortwave broadcast reception. This new technique permits $3 \mathrm{kHza} \mathrm{a}-\mathrm{m}$ sideband response with the use of a 4 kHz filter for better interference rejection.
- Tunable i-f notch filter effectively reduces heterodyne interference from nearby stations.
- The famous Drake full electronic passband tuning system is employed, permitting the passband position to be adjusted for any selectivity filter. This is a great aid in interference rejection.
- Three agc time constants plus "Off" are switch-selected from the front panel.
- Complete transceive/separate functions when used with the Drake TR7 transceiver are included, along with separate R7 R.I.T. control.
- Special multi-function antenna selector/50 ohm splitter is switch-selected from the front panel, and provides simultaneous dual receive with the TR7. This makes possible the reception of two different frequencies at the same time. Main and alternate antennas and vhf/uhf converters may also be selected with this switching network.
- The digital readout of the R7 may be used as a 150 MHz counter, and is switched from the front panel. Access thru rear panel connector.
- The built-in power supply operates from 100, 120, 200, 240 V-ac, $50 / 60 \mathrm{~Hz}$, or nominal 13.8 V -dc.
- The R7 includes a built-in speaker, or an external Drake MS7 speaker may be used.
- Built-in $\mathbf{2 5} \mathbf{~ k H z}$ calibrator for calibration of analog dial.
- Low level audio output for tape recorder.
- Up to eight crystal controlled fixed channels can be selected. (With Drake Aux7 installed.)
- Optional Drake NB7A Noise Blanker available. Provides true impulse type noise blanking performance.

Model 1531 Drake MS7 Speaker
Model 7021 Drake SL-300 Cw Filter, 300 Hz
Model 7022
Drake SL- 500 Cw Filter, 500 Hz
Model 7023 Drake SL-1800 Ssb/RTTY Filter, 1800 Hz
Model 7024 Drake SL-6000 A-m Filter, 6.0 kHz
Model 7026 Drake SL-4000 A-m Filter. 4.0 kHz
Model 1532
Model 1536 Drake Aux7 Range Program/Fixed-Frequency Board
Model 1548 Drake R7/TR7 Interface Cable Kit
Model 385-0005 Drake R7 Service/Schematic Book
Model 3506 Drake RP700 Receiver Protector
Model 1230 Drake LA7 Line Amplifier

R7 SPECIFICATIONS

Frequency Coverage, continuous tuning 0.01 to 30.0 MHz

Plus any eight additional $\mathbf{5 0 0} \mathbf{~ k H z}$ segments between 0 and 30 MHz when programmed into Aux7 Board.

Crystal Controlled Fixed Frequencies: Up to eight crystalcontrolled fixed frequencies within the $0-30 \mathrm{MHz}$ range with Aux7 Accessory Board. Proper 500 kHz range for desired fixed frequency is also programmed into Aux7.
Frequency Stability: Less than 1 kHz first hour. Less than 150 Hz per hour after 1 hour warm up. Less than 100 Hz for $\pm 10 \%$ line voltage change.

Digital Readout Accuracy: (DR-7 installed) $15 \mathrm{PPM} \pm 100 \mathrm{~Hz}$
Analog Dial Accuracy: Better than $\pm 1 \mathrm{kHz}$ when calibrated to nearest calibrator marker.
Modes of Operation: Ssb, cw, RTTY, SSTV, a-m.
Sensitivity (ssb): $1: 8-30 \mathrm{MHz}$ Less than $.20 \mu \mathrm{~V}$ for $10 \mathrm{~dB}(\mathrm{~S}+\mathrm{N}) / \mathrm{N}$ with preamp on (typically $.15 \mu \mathrm{~V}$) (Noise floor typically - 134 dBm) Less than $.50 \mu \mathrm{~V}$ for $10 \mathrm{~dB}(\mathrm{~S}+\mathrm{N}) / \mathrm{N}$ without preamp (typically $.30 \mu \mathrm{~V}$) (Noise floor typically -128 dBm). . $01-1.5 \mathrm{MHz}$ Less than $1.0 \mu \mathrm{~V}$ for $10 \mathrm{~dB}(\mathrm{~S}+\mathrm{N}) / \mathrm{N}$

Sensitivity (a-m): $1.8-30 \mathrm{MHz}$ Less than $1.2 \mu \mathrm{~V}$ for $10 \mathrm{~dB}(\mathrm{~S}+\mathrm{N}) / \mathrm{N}$ @ 30% modulation, preamp on. Less than $2.0 \mu \mathrm{~V}$ for 10 dB ($\mathrm{S}+\mathrm{N}$)/ $\mathrm{N} @ 30 \%$ modulation, preamp off. . $01-1.5 \mathrm{MHz}$ Less than $4.0 \mu \mathrm{~V}$ for $10 \mathrm{~dB}(\mathrm{~S}+\mathrm{N}) / \mathrm{N} @ 30 \%$ modulation.

Selectivity (2.3 kHz filter supplied): 2.3 kHz at $-6 \mathrm{~dB}, 4.4 \mathrm{kHz}$ at -60 dB (1.8:1) shape factor. Optional $300 \mathrm{~Hz}, 500 \mathrm{~Hz}, 1800 \mathrm{~Hz}, 4$ kHz , and 6 kHz filters are available as follows:

Accessory Crystal Filters

SL-300 cw filter: $300 \mathrm{~Hz} @ 6 \mathrm{~dB}, 700 \mathrm{~Hz}$ @ 60 dB
SL-500 cw, RTTY Filter: $500 \mathrm{~Hz} @ 6 \mathrm{~dB}, 1100 \mathrm{~Hz} @ 60 \mathrm{~dB}$
SL- 1800 ssb/RTTY Filter: 1800 Hz @ 6 dB , 3600 Hz @ 60 dB
SL-4000 a-m Filter: $4 \mathrm{kHz} @ 6 \mathrm{~dB}, 8 \mathrm{kHz} @ 60 \mathrm{~dB}$
SL-6000 a-m Filter: $6 \mathrm{kHz} @ 6 \mathrm{~dB}, 12 \mathrm{kHz} @ 60 \mathrm{~dB}$

Ultimate Selectivity: Greater than 100 dB
Intermodulation:
Two-tone dynamic range: $99 \mathrm{~dB} \cdot \quad 1.8-30 \mathrm{MHz}$
Third order intercept point: +20 dBm
Two-tone dynamic range: 95 dB *
Third order intercept point: +10 dBm
preamp off
$1.8-30 \mathrm{MHz}$
preamp on

Blocking: $>145 \mathrm{~dB}$ above noise floor

- (at tone spacings of 100 kHz and greater)

I-f and Image Rejection: Greater than $80 \mathrm{~dB}(48.05 \mathrm{MHz}$ 1st $i-f)$ (5.645 MHz 2 nd i-f) ($50 \mathrm{kHz} 3 \mathrm{rd} \mathrm{i-f}$)
Agc Performance; Less than 4 dB audio output variation for 100 dB input signal change above agc threshold. Agc threshold is typical $.8 \mu \mathrm{~V}$ with preamp off and $.25 \mu \mathrm{~V}$ with preamp on.
Attack time: 1 millisecond. Three selectable release times: Slow-2 seconds; Med-400 m sec; Fast-75 m sec. Also, "Off" position is provided.

Antenna Input Impedance: Nominal 50 ohms
Audio Output: 2.5 watts with less than 10% T.H.D. into nominal 4 ohm load.
Power Requirements: $100 / 120 / 200 / 240 \mathrm{~V}-\mathrm{ac} \pm 10 \%, 50 / 60 \mathrm{~Hz}, 60$ watts or 11.0 to 16.0 V -dc (13.8 V -dc nominal), 3 amps

External Counter Mode (DR-7 installed): Readout: to 100 Hz . Accuracy: $15 \mathrm{PPM} \pm 100 \mathrm{~Hz}$. Maximum input frequency: 150 MHz . Input level range: 50 mV to 2 V rms .

Dimensions/Weight:

Depth-13.0 in $(33.0 \mathrm{~cm})$ excluding knobs and connectors.
Width- 13.6 in $(34.6 \mathrm{~cm})$
Height- 4.6 in (11.6 cm) excluding feet
Weight- $18.4 \mathrm{lbs}(8.34 \mathrm{~kg})$

Specifications, availability and prices subject to change without notice or obligation.

Model 1528
Drake L7
Continuous Duty 160-15* Meters

2kW Linear Amplifier

Temperature-controlled design for "key-down" operation over a wide frequency range.

2 kW PEP, 1 kW cw, RTTY, SSTV operation-all modes full rated input, continuous duty cycle.
160-15* meter amateur band coverage, plus expanded ranges for any future hf band expansions or additions within FCC rules. These ranges also include increased coverage for MARS, embassy, government, or other such services.
The Drake L7 utilizes a pair of Eimac $3-500$ Z triodes for rugged use, and lower replacement cost compared to equivalent ceramic types.
Accurate built-in rf wattmeter, with forward/reverse readings, is switch selected. Calibrated $300 / 3000$ watt scales.
Temperature controlled two speed fan is a high volume low noise type and offers optimum cooling.
Adjustable exciter agc feedback circuitry permits drive power to be automatically controlled at proper levels to prevent peak clipping and cw overdrive. Front panel control.
By-pass switching is included for straight through, low power operation without having to turn off amplifier.
Bandpass tuned input circuitry for low distortion and 50 ohm input impedance.
Amplifier is comprised of two units-rf deck for desk top and separate power supply.
Operates from $120 / 240 \mathrm{~V}$-ac, $50 / 60 \mathrm{~Hz}$ primary line voltage.

DRAKE L7 SPECIFICATIONS

- Frequency Coverage*: Ham bands 160 through 15 meters*. Nonamateur frequencies between 6.5 and 21.5 MHz may be covered with some modification of the input circuit. - Plate Power Input: 2000 watts PEP on ssb and a-m. 1000 watts dc on cw, RTTY, and SSTV. - Drive Power Requirements: 100 watts PEP on ssb and 75 watts on cw, a-m, RTTY, and SSTV. - Input impedance: 50 ohms. (Bandpass tuned input) - Output Impedance: Adjustable pi-network matches 50 ohm line with SWR not to exceed 2:1. - Intermodulation Distortion Products: In excess of -33 dB . - Wattmeter Accuracy: 300 watts forward and reflected, \pm (5% of reading +3 watts). 3000 watts forward, \pm (5% of reading + 30 watts). - Power Requirements: 240 volts $50-60$ hertz 15 amperes, or 120 volts $50-60$ hertz 30 amperes. - Tube Complement: Two of $3-500 \mathrm{Z}$ or $8802 / 3-500 \mathrm{Z}$ or $3-400 \mathrm{Z}$. - Dimensions: Amplifier $13.69{ }^{\prime \prime} \mathrm{W} \mathrm{x}$ $6.75^{\prime \prime} \mathrm{H} \times 14.25^{\prime \prime} \mathrm{D}(34.8 \times 17.1 \times 36.2 \mathrm{~cm})$. Power Supply $6.75^{\prime \prime} \mathrm{W} \times 7.88^{\prime \prime} \mathrm{H}$ $\times 11^{\prime \prime} \mathrm{D}(17 \times 20 \times 28 \mathrm{~cm})$. - Weight: Amplifier $27 \mathrm{lbs}(12.25 \mathrm{~kg})$, Power Supply $42.5 \mathrm{lbs}(19.3 \mathrm{~kg})$.
- Export model includes coverage of the 10-meter Ham Band.

- Frequency Coverage: $1.8 \cdot 30 \mathrm{MHz}$
- Antenna Choice: Matches antennas fed with coax, balanced line (use optional B-1000 Balun), or random wire.
- Antenna/By-Pass Switching: Allows matching unit by-pass regardless of antenna in use, and selects various antennas.
- Extra Harmonic Reduction: Employs "pi-network" low pass filter type circuitry for maximum harmonic rejection.
- Built-in Metering: Accurate Rf Wattmeter and VSWR Reading, pushbutton controlled from front panel.
- Input Impedance: 50 ohms resistive.
- Power Capability: MN7-250 watts average continuous duty (0-300 W scale). MN2700-1000 watts average continuous duty (2000 watts PEP). (0-200 or 0-2000 W scale).
- Dimensions: MN7-13.1"W $\times 4.53^{\prime \prime} \mathrm{H} \times 8.5^{\prime \prime} \mathrm{D}$ excluding knobs and connectors ($33.26 \times 11.5 \times 21.6 \mathrm{~cm}$). MN2700$13.1^{\prime \prime} \mathrm{W} \times 4.53^{\prime \prime} \mathrm{H} \times 13^{\prime \prime} \mathrm{D}$ excluding knobs and connectors $(33.26 \times 11.5 \times 33 \mathrm{~cm})$.
- Weight: MN7-10 lbs (4.5 kg). MN2700-11 lbs (5 kg).

Drake MN7 and MN2700 Specifications

- Frequency Coverage: 1.8 to 30 MHz . Band Switch marked for 160,80 , $40,20,15$, and 10 meter amateur bands; however, frequency coverage between amateur bands is possible by using the nearest band positions with a small reduction in matching capability. - Input Impedance: 50 ohms (resistive). - Load Impedance: 50 ohm coaxial with VSWR of 5:1 or less at any phase angle ($3: 1$ on 10 meters). 75 ohm coaxial at a lower VSWR can be used. - Balanced Feedlines: With the Drake B-1000 accessory balun, which mounts on rear panel, tunes feed point impedances of 40 to 1000 ohms, or $5: 1$ VSWR referenced to 200 ohms (3:1 on 10 meters). - Long-Wire Antennas: Feed point impedances up to 5:1 VSWR referenced to 50 ohms. Also, 5:1 referenced to 200 ohms with the Drake B-1000 accessory balun ($3: 1$ on 10 meters). - Meter: Reads VSWR or forward power. - Wattmeter Accuracy: $\pm 5 \%$ of reading $\pm 1 \%$ of full scale. - Insertion Loss: 0.5 dB or less on each band after tuning. - Front Panel Controls: Provide for the adjustment of resistive and reactive tuning, antenna switching, band switching, VSWR calibration, and selection of watts or VSWR calibration, and selection of watts or VSWR functions of the meter. - Rear Panel Connectors: The rear panel has four type SO-239 connectors (one for input and 3 for outputs), three screw terminal connections (for long-wire and open-wire feeder systems), and a ground post.

DRAKE 7-Line Family

ACCESSORIES

Model 7077 Dynamic Desk Microphone

- Audio and level characteristics custom dêsigned to match the transmit audio requirements of the Drake TR7. - Features both VOX and PTT operation without modification. - High Impedance - Includes coil cord and plug wired for direct connection to the Drake TR7. - Style and color provide a beautiful match to the Drake 7 -line - Size $4.3^{\prime \prime} \mathrm{W} \times 5.8^{\prime \prime} \mathrm{D}$ $\times 9.3^{\prime \prime} \mathrm{H}(10.9 \times 14.7 \times 23.6 \mathrm{~cm})$. Weight 1 lb 7 oz (650 g).

Model 1553

SP75 Speech Processor

Provides an increase in average powerl readability of a single sideband voice signal during weak signal, high interference conditions. The SP75 is connected between the microphone and microphone input of the ssb transmitter, requiring no modification of existing transmitter or transceiver. A front panel switch allows the processor to be switched in or bypassed. Two additional inputs, such as a tape player or phone patch, may be front panel selected.
Rf envelope clipping adjustable between zero and twenty decibels. LED indicates proper audio input level.
Muting circuitry reduces gain during speech pauses, allowing VOX operation with the processor on.
SPECIFICATIONS - Processing Type: Preclipping audio compression followed by if envelope clipping at the processor intermediate frequency. - Rf Clipping Range: Adjustable 0 to 20 dB from front panel control. - Input Level (Microphone Input): 3.5 mV minimum for full processing. Gain adjustable to accommodate up to 300 mV maximum. - Input Level (Tape and Patch Inputs): 15 mV minimum for full processing. 30 mV maximum. - Input Impedance (Microphone): 1 megohm. - Input Impedance (Tape and Patch): 50 kilohm.

- Output Level w/Processing: 0.50 mV adjustable into 50 kilohm load. - Output Impedance: 50 kilohm. - Muting (Microphone Input Only): 10 to 20 dB attenuation during speech pauses. - Frequency Response: 400$6000 \mathrm{~Hz} @ 6 \mathrm{~dB}$. - Distortion: Less than 5% T.H.D. (a) 1kHz, 20 dB clipping. - Power: 11-16 V-dc@95 mA. - Size: $7^{\circ} \mathrm{L} \times 61 / 4{ }^{\text {"W }}$ x 2114 "H $(17.3 \times 15.9 \times 5.4 \mathrm{~cm})$. Weight: $1.4 \mathrm{lbs} .(.63 \mathrm{~kg})$.

Model 1520
 P75 Phone Patch

Hybrid Phone Patch for use with 7 -line or other receiver/transmitter combination. - In/out Switching - Adjustable TX and RX level controls.

Model 1535

(E) CS7 Coax Switch

- Switches up to five coax-fed antennas via one main feed line. - Allows selection of up to five radios at other end of main feed line.
- Minimizes amount of coax needed for multiantenna installation. - Grounds unused inputs (both local and remote).
DRAKE CS7 SPECIFICATIONS - Maximum Input Power: 2000 watts PEP - Frequency Range: Up to 30 MHz , insertion of Switch changes VSWR no more than 1.05:1. From 30 MHz to 150 MHz , insertion changes VSWR no more than 1.5:1 (both switches). - Operating Temperature Range: $-40^{\circ} \mathrm{F}$. to $150^{\circ} \mathrm{F}$. - Supply Voltage: 120 V -ac or 240 V -ac selectable, $50 / 60$ $\mathrm{Hz}, 50$ watts. - Dimensions \& Weight: Console $-5.25^{\prime \prime} \mathrm{H} \times 6.81^{\text {" W W, }} 7.06^{\prime \prime}$ cabinet depth ($13.3 \times$ $17.3 \times 17.9 \mathrm{~cm}$); $4.33 \mathrm{lbs}(1.96 \mathrm{~kg})$; Remote Antenna Switch $-7.13^{\prime \prime} \mathrm{H} \times 5.88^{\prime \prime} \mathrm{W} \times 4.39^{\prime \prime} \mathrm{D}$ $(18.1 \times 15.0 \times 11.1 \mathrm{~cm}) .8 .19^{\prime \prime}(20.8 \mathrm{~cm})$ center to center mounting; $5 \mathrm{lbs}(2.27 \mathrm{~kg}$).

Model 1531
 MS7 Matching Speaker

- Size: $7.5^{\circ} \mathrm{D} \times 6.9^{\circ} \mathrm{W} \times 4.6^{\circ} \mathrm{H}$ excluding feet (19 $\times 17.5 \times 11.6 \mathrm{~cm}$). - Weight: $2.5 \mathrm{lbs}(1.13 \mathrm{~kg})$.

"Dry" Dummy Loads -no oil required

Model 1551 Drake DL-1000

- 1000 watts for 30 seconds, with derating curve to 5 minutes. Accepts Drake FA7 cooling fan for extended high power operation. - VSWR of 1.5:1 $\max .0-30 \mathrm{MHz}$ - SO-239 coax connector
- Rubber feet for desk or bench use - Size 14"
$\times 3.6^{\prime \prime}(35.6 \times 9.1 \mathrm{~cm})$. Weight: 2 lbs (910 g).

Model 1550 Drake DL-300

- 300 watts for 30 seconds, with derating curve to 5 minutes. - Built-in PL-259 coax connector for direct connection to rear of transceiver or transmitter-no jumper coax necessary. - VSWR of 1.1:1 max. 0-30 MHz 1.5 $\max 30-160 \mathrm{MHz}$ - Ideal as bench test device for amateur or commercial hf and vhf gear. - Small size fits conveniently in any field service tool box. $6.7^{\prime \prime} \times 2.08^{\prime \prime}(17.0 \times 5.3 \mathrm{~cm})$. Weight: $11 \mathrm{oz}(310 \mathrm{~g})$.

Specifications, availability and prices subject to change without notice or obligation.

540 Richard St. Miamisburg. Ohio 45342. USA Phone: (513) 866-2421 - Telex 288-017

the T coupler

Here's a handy little gadget for your shack or shop that l've found to be as useful as the zip top on a Bud.

If you've ever had a need for a convenient transmitter-to-counter coupler, low power dummy load, matching network for a signal generator, or a little device to help measure repeater desense, this might be just what the doctor ordered. Basically, it's a 50 -ohm, 2-watt dummy load and capacitance coupler made from three standard uhf connectors: a barrel (PL-258), a tee (M-358), and a plug (PL-259).

Construction is simple. Insert a 50 ohm, 2-watt resistor into the back of a PL-259 (fig. 1). Solder and trim the pin end of the connector. Trim the resistor lead at the back end of the connector and fill with solder to prevent any if leakage. This will serve as your conventional 2-watt dummy load. Not too tricky so far.

Now, modify the T connector as follows. Unscrew the pin from the center section T and replace it with a flat-head screw. Over the head of the screw, place two or three pieces of insulation mica or plastic. Insert another flat-head screw into one end of the barrel connector. Now screw all three connectors together and check continuity to ensure proper insulation.

fig. 1. Construction of the T coupler using standard UHF connectors.

When tuning a low-power transmitter, a counter can now be coupled through the barrel. For higher-power transmitters, replace the 2 -watt dummy load with a larger one.

With a receiver coupled to the 50 ohm match, a signal generator can be coupled by means of the barrel connector.

To check repeater desense, connect the duplexer output to a suitable dummy load through the T and connect a calibrated generator through the barrel connector. Measure the
signal difference with the transmitter on and at idle.

Now that you've probably thought of at least 27 other uses for this little gem, there's no excuse for not adding it to your test bench.

John LaMartina, K3NXU

improved groundmounted vertical for the lower bands

When using ground-mounted verticals a good ground system is essential for best results. In the case of a $1 / 4$-wave or shorter vertical, the largest current in the ground system is near the base. Many radials will result in a small amount of power loss. However, it should be possible to improve on the average ground system by moving the high current portion of the ground into a metal conductor. A coaxial vertical antenna is the basis for this idea.

The upper $1 / 4$ wave could be shortened by top loading. The lower $1 / 4$-wave sleeve also could be cut to a more convenient length, with the feed line passing through the sleeve, as usual. The ground radials would be connected to the bottom of the sleeve at ground level.

Increasing the height above ground of the high-current portion, and allowing current to flow into a low-loss conductor out of the ground, should result in some degree of improvement. Of course, a full-size coaxial vertical would be nice - it wouldn't need any ground radials at all. Quite impressive, too, at 260 feet (79 meters) it would direct passing hams to your location from miles away.
E.R. Lamprecht, W5NPD

modification of Ham-M rotator control box

Early models of the popular Ham-M rotator have one very undesirable characteristic. When power is removed from the rotator motor, power is simultaneously removed from the
brake solenoid, causing the brake to slam into the rotator housing. This brings the moving antenna to an abrupt halt, thereby applying severe torsional strain to mast, rotator and tower.

I redesigned the switch in the control unit to change the make-break contacts so the antennas would come to a halt before the brake was applied. I had no way to manufacture a substitute switch, so I sent a drawing of the switch to the manufacturer and suggested the improvement. They said they were not interested! I had no intention of installing a torsion bar (per the manual) on my tower when there surely must be a better way.

Simple wiring changes in the control box of Series-3 units will provide independent brake control with no additional parts or switches and no drilling. My Ham- M is a Series 1 , in which I modified the control unit to a Series 3 configuration per the simple instructions in the owner's manual, which came with the unit. Therefore, Series 1 and Series 2 units should be modified to Series 3 before the changes are made.

When the following changes have been made, moving the control lever slightly to right or left will cause the meter to indicate antenna position and will simultaneously release the brake. Moving the lever full right or left will start rotation. When the antenna has reached the desired heading, moving the lever back to first position will allow the antenna to come to a gentle stop. Returning the lever to center position then applies the brake.

I put a piece of masking tape just above the screw terminals on the back of the control box and marked them 1 Blk, 2 Red, 3 Blu, and so on. It is also a good idea to mark out the Series 1 on the control box back and change it to Series 3 for reference, if, indeed, you're modifying one of the earlier models.

One final note: In modifying my
unit, I used parts of three schematics to come up with the desired result. I decided to write out the steps required and work from that, rather than pick off each step from a drawing. It worked beautifully for me and I'm sure it will for you.

mod steps

Viewing the control box switch from the top, contact 1 is the first contact on lower left; other contacts progress clockwise. Proceed as follows.

1. Remove eight wires from rear terminal strip. They will be returned to their original position when wiring is completed. Remove four rubber mounting feet. Lift off plastic cabinet. Remove four screws that hold meter assembly to base plate. Move meter assembly outward to provide access to control switch. It may be necessary to remove the powertransformer mounting screws to provide access to the inside of rear terminal strip. In the following wiring changes, when a connection is made, it should be soldered unless another wire is to be connected to that point later, in which case the instructions will say "do not solder."
2. Disconnect wire from SW contact 1. Leave it connected to 5 on rear terminal strip.
3. Remove jumper that is connected between SW contacts 4 and 8 .
4. Remove from SW contact 4 the wire that goes to the primary of the instrument transformer.
5. Remove wire that connects SW contact 2 to 2 on rear terminal strip.
6. Remove wire from SW contact 3. Leave other end connected to 6 on rear terminal strip.
7. Reroute this wire from terminal 6 and solder to SW contact 8.
8. Remove the bottom wire from the primary winding of the power transformer.
9. Connect the wire just removed from the power transformer to 2 on the rear terminal strip. This now connects SW contact 6 to rear terminal strip 2.
10. Remove the wire from SW contact 4. (This is one lead of the primary of the instrument transformer.)
11. Connect the wire just removed to SW contact 2. Do not solder.
12. Connect a wire from the bottom terminal on the power transformer to SW contact 2. Solder two.
13. Install a jumper wire between SW contacts 1 and 3. Do not solder 3.
14. Remove wire that connects SW contact 7 to 3 -amp fuse holder on instrument side of fuse.
15. Connect a wire from 3 -amp fuse holder on instrument side of fuse to SW contact 3. Solder two.
16. Connect the wire attached to 5 on the rear terminal strip to SW contact 4. In this modification switch contacts 5 and 7 are not used.

This completes the wiring. It might be a good idea to check over the instructions before starting the modification, once the unit is removed from the cabinet. In this way it will become apparent as to just what's happening and why the brake operation will be independent of rotation.

After attaching the eight wires to the rear terminal strip, check out, with 120-Vac connected, should read approximately 30 Vac across terminals 1 and 2 when the switch is operated in either direction. A reading of 31 Vdc across terminals 3 and 7 with the switch operated is normal.

I modified my rotor control about three years ago and it has certainly been a source of pleasure to know that my tower, beams, and rotator are no longer subjected to the severe (and totally unnecessary) torsional forces.

William G. Blankenship, Jr., K4DLA/W1RDR

fact: ARMCHAIR COPY begins here!

The NEW Model 444D For: High/Low Impedance SSB/FM

The Model 444D incorporates all the tried-and-proven features that made Shure's Model 444 the recognized "standard" fixedstation microphone among serious amateurs. The 444D retains the Shure-designed, super-rugged CONTROLLED MAGNETIC ${ }^{\circledR}$ microphone element that lets you come across with "armchair copy"! Its unmatched performance characteristics include a tailored response for maximum voice intelligibility, PLUS...

DUAL IMPEDANCE-(150 ohms) Low \& High. Impedance selector switch located on bottom of base.

FREE NAMEPLATE IMPRINTED WITH YOUR CALL LETTERS-Personalized nameplate with your station call letters.

ALL-NEW WIRING GUIDE-Provides user instructions for wiring the microphone to major manufacturers' ham equipment.

IMPROVED CONTROL BAR-Shure Million-Cycle push-to-talk (PTT) improved fingertip action actuates microphone and an external relay or control circuit.

VOX/NORMAL SWITCH-Defeats PTT switch, for VOX equipment requiring continuously "on" microphone. Located conveniently on bottom of base.

PROFESSIONAL BLACK FINISH-Sturdy, high impact ARMO-DUR ${ }^{*}$ base and microphone case is metalized for RF shielding. It is comfortable to the touch in any temperature or humidity, and will not rust or deteriorate.
CONVENIENT INSTALLATION
-The coiled cable leads and push-to-talk switch are arranged to permit immediate hookup to transmitters with either isolated or grounded switching.

Personalized call letter nameplate

Intelligibility \&
 Reliability

(R)

Shure Brothers Inc., 222 Hartrey Ave., Evanston, IL 60204 In Canada: A. C. Simmonds \& Sons Limited Outside the U.S. or Canada, write to Shure Brothers Inc., Attn: Dept J6 for information on your local distributo Manufacturers of high fidelity components, microphones, sound systems and related circuitry

Save on Scanners! NEW Rebates!

Communications Electronics," the world's largest distributor of radio scanners, celebrates Christmas early with big savings on Bearcat synthesized scanners. Electra Company, the manufacturers of Bearcat brand scanners is offering consumer rebates on their fantastic line of crystalless scanners purchased between September 15 and November 15, 1980.
We give you excellent service because CE distributes more scanners worldwide than anyone else. Our warehouse facilities are equipped to process thousands of scanner orders every week. We also export scanners to over 300 countries and military installations. Most items are in stock for quick shipment. Do your Christmas scanner shopping early and order today from CE!

Bearcat ${ }^{\circ}$ 300

The Ultimate Synthesized Scanner! List price $\$ 519.95 /$ CE price $\$ 329.00 / \$ 20.00$ rebate Your final cost is a low $\$ 309.00$
4-Band, 50 Channel - Service Search © Nocrystal scanner - AM Aircraft and Public Service bands. - Priority Channel - AC/DC Bands: $32-50,118-136$ AM, 144-174, 421-512 MHz. The new Bearcat 300 is the most advanced automatic scanning radio that has ever been offered to the public. The Bearcat 300 uses a bright green fluorescent digital display, so it's ideal for mobile applications. The Bearcat 300 now has these added features: Service Search, Display Intensity Control, Hold Search and Resume Search keys,
 eny band tor moree etticien sencice saach

Bearcat ${ }^{\oplus} 250$

List price $\$ 419.95 /$ CE price $\$ 259.00 / \$ 20.00$ rebate Your final cost is a low $\$ 239.00$
50 Channels © Crystalless © Searches Stores • Recalls • Digital clock • AC/DC Priority Channel - 3-Band © Count Feature. Frequency range 32-50, $146 \cdot 174,420-512 \mathrm{MHz}$. The Bearcat 250 performs any scanning function you could possibly want. With push button ease you can program up to 50 channels for automatic monitoring. Overseas customers should order the Bearcat 250FB at $\$ 349.00$ each. This model is like a Bearcat 250, but designed for international operation with 220 V AC/ 12 V DC power supply and 66.88 MHz low band coverage instead of 32.50 MHz .

Bearcat ${ }^{\oplus} 220$

List price $\$ 419.95 /$ CE price $\$ 259.00 / \mathbf{2 0 . 0 0}$ rebate
Your final cost is a low \$239.00
Aircraft and public service monitor. Frequency
The Bearcat 220 is one scanner which can monitor all public service bands plus the exciting AM aircraft band public service bands plus the exciting AM aircratt band the same time. Overseas customers should order the Bearcat 220FB at $\$ 349.00$ each. This model is like a Bearcat 220FB at $\$ 349.00$ each. This model is like a Bearcat 220 , but designed for international operation
with $220 \mathrm{~V} \mathrm{AC/12V} \mathrm{DC} \mathrm{power} \mathrm{supply} \mathrm{and} 66-88 \mathrm{MHz}$ low band coverage instead of $32-50 \mathrm{MHz}$.

NEW! Bearcat
 210XL

 Your final cost is a low $\$ 189.00$ Your final cost is a low \$189.0018 Channels - 3 Bands © Crystalless © AC/DC 18 Channels - Bands Crystaliess AC/DC The Bearcat $210 \times L$ scanning radio is the second generation scanner that replaces the popular Bearcat 210 and 211. It has almost twice the scanning capacity of the Bearcat 210 with 18 channels plus dual scanning speeds and a bright green fluorescent display.

NEW! 50-Channel Bearcat 300

FREE Bearcat ${ }^{\circ}$ Rebate Offer
Get a coupon good for a $\$ 20$ rebate when you purchase a Bearcat 300, 250, 220 or 210 XL . $\$ 10$ rebate on models 211 210 and 160. To get your rebate, mail this coupon with your original dated sales receipt and the Bearcat model number from the carton to Electra. You'll receive your rebate in fout September 15, 1980 and November 15, 1980. All requests must be postmarked by November 29, 1980. Limit of one must be postmarked by November 29, 1980. Limit of one requests and may not be reproduced. Offer good only in the U.S.A. Void where taxed or prohibited by law. Resellers, companies, clubs and organizations-both profit and non-profit-are not eligible for rebates. Employees of Electra Company, their advertising agencies, distributors and retailers of Bearcat Scanners are also not eligible for rebates. Please be sure to send in the correct amount for your scanner. Pay the listed CE price in this ad. Do not deduct the rebate amount since your rebate will be sent directly to you from Electra. Orders received with insufficient payments will

NEW! Bearcat ${ }^{\circledR} 160$

List price $\$ 279.95 /$ CE price $\$ 189.00 / \$ 10.00$ rebate Your final cost is a low $\$ 179.00$
16 Channels - 3 Bands • AC only - Priority Dual Scan Speeds © Direct Channel Access Frequency range: $32-40,144-174,440-512 \mathrm{MHz}$. The Bearcat 160 presents a new dimension in scanning form and function. The keyboard is smooth. No buttons to punch. No knobs to turn. Instead, finger-tip pads provide control of all scanning operations, including orovide cont, Volume and Squelch. Green easy to read fluorescent display

NEW! Bearcat ${ }^{\circ}$ 5/800 MHz

The world's first $800 \mathbf{M H z}$. scanner! This is a new $179.95 /$ CE Pis $\$ 129.00$ November, 1980 8 Crystal Channels - 4 Bands © AC only Frequency range: $33-50,144-174,440-512,806-870 \mathrm{MHz}$
The Bearcat $5 / 800 \mathrm{MHz}$ is the only scanner The Bearcat $5 / 800 \mathrm{MHz}$ is the only scanner on the market today that offers coverage of the 800 MHz . public service band and the other public service bands. Individual channel lockout. Scan Delay. Manual Scan.

Bearcat ${ }^{\circ} 5$

List price $\$ 129.95 /$ CE price $\$ 94.00$
8 Crystal Channels - 3 Bands © AC only Frequency range: $33-50,146-174,450-508 \mathrm{MHz}$ The Bearcat 5 is a value-packed crystal scanner built for the scanning professional - at a price the first-time buyer can afford. Individual lockout switches.

Bearcat ${ }^{\circ}$ Four-Six ThinScan ${ }^{1 /}$ List price \$179.95/CE price s114.00

Frequency range: $33-47,152-164,450-508 \mathrm{MHz}$ The incredible, new Bearcat Four-Six Thin Scan ${ }^{*}$ is like having an information center in your pocket. This three band, 6 channel crystal controlled scanner has patented Track Tuning on UHF. Scan Delay and Channel Lockout. Measures $2 \frac{1}{4} \times 61 / 4 \times 1$. Includes rubber ducky antenna. Order crystals for each channel. Made in Japan

NEW! Fanon Slimline 6-HLU

List price $\$ 169.95 /$ CE price $\$ 109.00$
Low cost 6-channel, 3-band scannert
The new Fanon Slimline 6-HLU gives you six channels of crystal controlled excitement. Unique Automatic Peak Tuning Circuit adjusts the receiver front end for maximum sensitivity across the entire UHF band. Individual channel lockout switches. Frequency range 30-50 $146-175$ and $450-512 \mathrm{MHz}$. Size $23 / 4 \times 61 / 4 \times 1$: ' Includes rubber ducky antenna. Order crystal certificates for each channel. Made in Japan.

NEW! Fanon Slimline 6-HL 6-Channel performance at 4-channel cost!

 Frequency range: $30-50,146-175 \mathrm{MHz}$If you don't need the UHF band, get this model and save money. Same high performance and features as the model HLU without the UHF band. Order crystal certificates for each channel. Made in Japan

FANON SCANNER ACCESSORIES

CHB-6 AC Adapter/Battery Charger

CAT-6 Carrying case for Fanon w/Belt Clip
OTHER SCANNER ACCESSORIES
SP50 AC Adapter.....
SP51 Battery Charger
SP51 Battery Charger SP58 Carrying Case for Bearcat 4-6 ThinSca FB-E Frequency Directory for Eastern U.S.A. FFD Federal Frequency Directory for U.S.A. B-4 1.2 V AAA Ni-Cad's for ThinScan ${ }^{-}$and Fanon A-135cc Crystal certificate Add $\$ 300$ shiptal certificate

INCREASED PERFORMANCE ANTENNAS

scanner it isessential that in performance from your We have six base and mobile antennas specifically designed for receiving all bands. Order \#A60 is a magnet mount mobile antenna. Order \#A61 is a gutter clip mobile antenna Order \#A62 is a trunk-lip mobile antenna. Order \#A63 is a $7 / 4$ inch hole mount. Order antenna. Order \#A63 is a $1 / 4$ inch hole mount. Order
\#A64 is a $\%$ inch snap-in mount, and \#A70 is an all band \#A64 is a $\%$ inch snap-in mount, and \#A70 is an all band base station antenna. All antennas are $\$ 30.00$ and
$\$ 3.00$ for UPS shipping in the continental United States.

TEST ANY SCANNER

Test any scanner purchased from Communications Electronics ${ }^{-}$for 31 days before you decide to keep it. If for any reason you are not completely satisfied, return in in refund (less shipping/handling charges and rebate credits)

NEW!Regency ${ }^{\text {T}}$ M400
List price $\$ 379.95 /$ CE price $\$ 259.00$
30 Channel • Synthesized - Service Search Digital clock - Digital timer - M100 styling Search/Store - Priority Channel - AC/DC

Frequency range: $30-50,144-174,440-512 \mathrm{MHz}$

The new Regency M400 is a compact programmable FM monitor receiver for use at home or on the road.

OTHER REGENCY SCANNERS
Touch K100
Touch M100
$\$ 199.00$

NEW! Telephone Products
 Electra's cordless Freedom Phone does everything

 an ordinary phone does and more. Because it is cordless, you can take it anywhere, inside or outside-on the patio, by the pool, in the garage, in the workshop...even next door at the neighbor's.Model FF-500 has pushbutton dialing. Rechargeable ni-cad batteries included. Battery low light. Secure feature. Telescopic antenna. Your cost is $\$ 179.00$ Model FF-1500 has the same features as the FF-500 but also includes a charger/cradle that allows the phone's handset to be recharged away from the base station. Your cost for this cordless phone is \$199.00. The model FF-3000 has all the standard features (except charger/cradle) plus interchangeable telescopic and rubber ducky antenna. Redial feature. Belt clip. ic and rubber ducky antenna. Redial feature. Belt clip
Carrying case. Greater range. Your cost is $\$ 229.00$.

World Scanner Association ${ }^{\text {w }}$

as a public service by Communications Electronics: When you join, you'll receive a one-year membership and our quarterly newsletter with scanner news and features. You'll also get a wallet I.D. card, an Official WSA Membership Certificate, and more. FREE classified ads for members so you can contact other scanner owners when you want to sell or buy a scanner. FREE membership in the WSA Buyer's Co-op. Your Co-op membership will allow you to get special discounts on scanners and scanner related products. Since the WSA Buyer's Co-op gives you group purchasing power, you can easily pay for your membership dues the first time you make a Co-op purchase. To join, send \$1200 ($\$ 20.00$ outside U.S.A.) for your membership materials.

BUY WITH CONFIDENCE

To get the fastest delivery from CE of any scanner, send
To get the fasfesi delivery from CE of any scanner, send
or phone your order directly to our Scanner Distribution Center ${ }^{-}$Be sure to calculate your price using the CE prices Center Be sure to calculate your price using the CE prices
in this ad. Michigan residents please add 4% sales tax. in this ad. Michigan residents please add 4% sales tax.
Written purchase orders are accepted from approved govWritten purchase orders are accepted from approved gov-
ernment agencies and most well rated firms at a 10% ernment agencies and most well rated firms at a bility. All sales on accessories are final. Prices, terms and specifications are subject to change without notice. Out of stock items will be placed on backorder automatically unless CE is instructed differently. Most products that we sell have a manufacturer's warranty. Free copies of warranties on these products are available prior to purchase by writing to CE. International orders are invited with a $\$ 20.00$ surcharge for special handling in addition to shipping charges. Al shipments are F.O.B. Ann Arbor, Michigan. No COD's please. Non-certified and toreign checks require five weeks please. Non-cert
Mail orders to: Communications Electronics; Box 1002, Ann Arbor, Michigan 48106 U.S.A. Add $\$ 6.00$ per scanner or phone product for U.P.S. ground shipping, or $\$ 12.00$ for faster U.P.S. air shipping to some locations. If you have a Master Charge or Visa card, you may call anytime and place a credit card order. Order toll free in the U.S.A. 800-521-4414. If you are outside the U.S. or in Michigan, dial 313-994-4444. Dealer inquiries invited. All order lines at Communications Electronics* are staffed 24 hours.
WSA* Scanner Distribution Center ${ }^{-}$and CE logos are trademarks of Communications Electronics.
\dagger Bearcat and Freedom Phone are federally registered rademarks of Electra Company, a Division of Masco Corporation of Indiana.
\ddagger Regency is a federally registered trademark of Regency Electronics Inc.
Copyright ${ }^{*} 1980$ Communications Electronics

(1) VE MISA master charge
 \&iof VISA master charge

COMMUNICATIONS ELECTRONICS

854 Phoenix Box $1002 \square$ Ann Arbor, Michigan 48106 U.S. A

> We're first with the best.'

Palomar Engineers

1520G Industrial Avenue, Escondido, CA 92025 Telephone (714) 747-3363

\$349.95

ANTENNA TUNER
 New Low Profile Design

Here is a new tuner that puts more power into your antenna, works from 160 through 10 meters, handles full legal power and then some, and works with coax, single wire and balanced lines. And it lets you tune up without going on the air!

R-X NOISE BRIDGE \$55.00

- Learn the truth about your antenna.
- Find its resonant frequency
- Adjust it to your operating frequency quickly and easily.
If there is one place in your station where you cannot risk uncertain results, it is in your antenna.

ANTENNA BALUNS

- Model 1K \$32.50

1 Kw CW, 3 Kw PEP input.

- Model 2K \$42.50

2 Kw CW, 6 Kw PEP input.

- Beam Balum $\mathbf{\$ 4 7 . 5 0}$ 2 Kw CW, 6 Kw PEP input. Adjustable U bolt for mounting on rotary beams.

IC KEYER \$117.50

All the desirable features are built into this compact self-contained unit. Sends manual, semi-automatic, dot memory, squeeze, and iambic. Speeds 5.50 wpm . Built-in sidetone, speaker, speed and volume controls.

VLF CONVERTER \$59.95

- New device open up the world of Very Low Frequency radio.
- Gives reception of the 1750 meter band at $160-190 \mathrm{KHz}$ where transmitters of one watt power can be operated without FCC license.
- Also covers the navigation radiobeacon band, standard frequency broadcasts, ship-to-shore communications, and the European low frequency broadcast band.

1750 METER XMTR \$145.00

NEWI

- Main transmitter assembly factory wired and tested
- Antenna tuning assembly can be wired and mounted on your breadboard in less than an hour.
- Meets all F.C.C. requirements.
- For use in U.S.A. only. Not for Canada.

LOOP ANTENNA

- Low noise reception.
- Nulls out interference.
- Accurate direction finder.
- Rotates 360° in azimuth. Tilts $\pm 90^{\circ}$ in elevation.
- Superb nulls.
- Loop amplifier connects to your receiver or to your VLF converter.
- Plug-in loops available for $1600-5000 \mathrm{KHz}$ (160/80 meter amateur bands) $550 \cdot 1600 \mathrm{KHz}$ (Broadcast Band)
$150-550 \mathrm{KHz}$ (VLF, 1750 meter band)
$40-150 \mathrm{KHz}$ (WWVB, Loran)
10.40 KHz (Omega)
$5-15 \mathrm{MHz}$ (Model HF-1)
Loop Amplifier $\mathbf{\$ 6 7 . 5 0}$; Plug-in Loop Antenna \$47.50 each.

These items are stocked for Christmas delivery. Order today direct or from your favorite dealer.
Include \$3 shipping/handling (\$4 for IC Keyer, \$10 for Antenna Tuner). Add sales tax in Calif. Free catalog on request.

You can't tell the players
without a scorecard!

Order today!
NEW 1981
RADIO AMATEUR CALLBOOKS READY DECEMBER 1st!

The latest editions will be published soon! World-famous Radio Amateur Callbooks, the most respected and complete listing of radio amateurs. Lists calls, license classes, address information. Loaded with special features such as call changes, prefixes of the world,standard time charts, world-wide QSL bureaus, and more. The U.S.Edition features over 400,000 listings, with over 100,000 changes from last year. The Foreign Edition has over 300,000 listings, over 90,000 changes. The new 1981 Callbooks will be available on December 1, 1980. Place your order now.

	Each	Shipping	Total
\square US Callbook	$\$ 17.95$	$\$ 2.55$	$\$ 20.50$
Foreign Callbook	$\$ 16.95$	$\$ 2.55$	$\$ 19.50$

Order both books at the same time for $\$ 37.45$ including shipping.

Order from your dealer or directly from the publisher. All direct orders add $\$ 2.55$ for shipping. Illinois residents add 5% sales tax.

SPECIAL LIMITED OFFER!
Amateur Radio
Emblem Patch
only $\$ 2.50$ postpaid
Pegasus on blue field, red lettering. $3^{\prime \prime}$ wide x 3 "high. Great on jackets and caps. Sorry, no call letters

ORDER TODAY!

Dept. F
925 Sherwood Drive Lake Bluff, IL 60044, USA

International's TV-4300 is a high performance satellite receiver that tunes all channels within the $3.7-4.2 \mathrm{GHz}$ band. Standard dual audio output provided at 6.2 and 6.8 MHz . Others available.
The TV-4300 is a fully packaged and assembled receiver complete with a built-in LNA power supply, built-in AFC, tuner, control circuitry and power cable. All output levels compatible with video monitor and VTR input. Easy to use! Simple tuning!

$\$ 995.00$

Select These Options

INTERNATIONAL CRYSTAL MANUFACTURING CO., INC.
10 N. Lee, Oklahoma City, Oklahoma 73102, 405-236-3741

1900 MHz to 2500 MHz DOWN CONVERTER

This receiver is tunable over a range of 1900 to 2500 mc and is intended for amateur radio use. The local oscillator is voltage controlled (i.e.) making the $\mathrm{i}-\mathrm{f}$ range approximately 54 to 88 mc (Channels 2 to 7).
PC BOARD WITH DATA $\$ 19.99$
PC BOARD WITH CHIP CAPACITORS 13. $\$ 44.99$
PC BOARD WITH ALL PARTS FOR ASSEMBLY \$69.99
PC BOARD WITH ALL PARTS FOR ASSEMBLY PLUS 2N6603 $\$ 89.99$
PC BOARD ASSEMBLED AND TESTED $\$ 99.99$
PC BOARD WITH ALL PARTS FOR ASSEMBLY, POWER SUPPLY AND ANTENNA \$159.99
POWER SUPPLY ASSEMBLED AND TESTED $\$ 49.99$
YAGI ANTENNA 4' LONG APPROX. 20 TO 23 dB GAIN $\$ 59.99$
YAGI ANTENNA 4' WITH TYPE (N, BNC, SMA Connector) \$64.99
2300 MHz DOWN CONVERTER
Includes converter mounted in antenna, power supply, plus 90 DAY WARRANTY \$259.99
OPTION \#1 MRF902 in front end. (7 dB noise figure) \$299.99
OPTION \#2 2N6603 in front end. (5 dB noise figure) $\$ 359.99$
2300 MHz DOWN CONVERTER ONLY
$\$ 149.99$
10 dB Noise Figure 23 dB gain in box with N conn. Input F conn. Output.
$\$ 169.99$
7 dB Noise Figure 23 dB gain in box with N conn. Input F conn. Output. $\$ 189.99$
DATA IS INCLUDED WITH KITS OR MAY BE PURCHASED SEPARATELY $\$ 15.00$
Shipping and Handling Cost:Receiver Kits add $\$ 1.50$, Power Supply add $\$ 2.00$, Antenna add $\$ 5.00$, Option $1 / 2$ add $\$ 3.00$, For complete system add $\$ 7.50$.

Replacement Parts:			
MRF901	$\$ 5.00$.001 chip caps	$\$ 2.00$
2N6603	$\$ 12.00$	PC Board only	$\$ 25.00$ with data

INTRODUCING THE HOWARD/COLEMAN TVRO CIRCUIT BOARDS \star

(Satellite Receiver Boards)
DUAL CONVERSION BOARD$\$ 25.00$The board contains coth localof Hybrid IC amplifiers for the gain stages. Bare boards cost $\$ 25$ and it is estimated that parts for construction will cost $\$ 270$. Note: The fwoAvantek VTO's account for $\$ 225$ of this cost.)
47 pF CHIP CAPACITORS$\$ 6.00$
For use with dual conversion board. Consists of $6-47 \mathrm{pF}$.$\$ 25.00$
70 MHz IF BOARD
This circult provides about 43 de gain with 50 onm input and output impedance. it is designed to drive the HOWARDCOMEMAN TVRO De modulator. The on-board band pass filter can be tuned for bandwidths between 20 and 35 MHz with a passband ripple of less than $1 / 2 \mathrm{~dB}$. Hy-brid ICs are used for the gain stages. Bare boards cost $\$ 25$. It is estimated that parts for construction will cost less than $\$ 40$.. 01 pF CHIP CAPACITORS$\$ 7.00$
For use with 70 MHz IF Board. Consists of 7 - .01 pF .
DEMODULATOR BOARD40.00This circuit takes the 70 MHz center frequency satellite TV signals in the 10 to 200 millivolt range, detects them using a phase locked loop, de-emphasizes and filters the result and amplifles the result to produce standard NTSC video. Other outputs include the audio subcarrier, a DCvoltage proportional to the strength of the 70 MHz signal, and AFC voltage centered at about 2 volts DC. The bare boards cost $\$ 40$ and totalparts cost less than $\$ 30$.$\$ 15.00$
This circuit recovers the audio signals from the 6.8 MHz frequency. The Milier 9051 colls are tuned to pass the 6.8 MHz subcarrier and theMilier 9052 coll tunes for recovery of the audio.$\$ 25.00$
DUAL AUDIO Duplicate of the single audio but also covers the 6.2 range.$\$ 15.00$

TOTAL COSTS
Using the HOWARD/COLEMAN boards and the recommended parts, it is easily possible to build the complete receiver (excluding LNA) forless than $\$ 600$. Construction time is a few evenings and the tune up is minimal.
TERMS:
WE REGRET WE NO LONGER ACCEPT BANK CARDS.PLEASE SEND POSTAL MONEY ORDER, CERTIFIED CHECK, CASHIER'S CHECK OR MONEY ORDER.PRICES SUBJECT TO CHANGE WITHOUT NOTICE. WE CHARGE 15% FOR RESTOCKING ON ANY ORDER.

ALL ORDERS SENT FIRST CLASS OR UPS.
WE WILL ACCEPT COD ORDERS FOR $\$ 25.00$ OR OVER, ADO $\$ 1.50$ FOR COD CHARGE. PLEASE INCLUDE $\$ 1.50$ MINIMUM FOR SHIPPING OR CALL FOR CHARGES.
WE ALSO ARE LOOKING FOR NEW AND USED TUBES,
TEST EQUIPMENT, COMPONENTS, ETC.
WE ALSO SWAP OR TRADE.
FOR CATALOG SEE JANUARY, 1980, 73 Magazine, 10 Pages.

FAIRCHI	AND UHF PRESCALER CHIPS
95H90DC	350 MHz Prescaler Divide by $10 / 11$
95H91DC	350 MHz Prescaler Divide by $5 / 6$
11C900C	650 MHz Piescaler Divide by $10 / 11$
11C910C	650 MHz Prescaler Divide by $5 / 6$
11C83DC	1 GHz Divide by 248/256 Prescaler
11c70DC	600 MHz Flip/Flop with reset
11C58DC	ECL VCM
11C44DC/MC4044	Phase Frequency Detector
11C24DC/MC4024	Dual TTL VCM
11C06DC	UHF Prescaler 750 MHz D Type Flip/
11C05DC	1 GHz Counter Divide by 4
11C01FC	High Speed Dual 5-4 input NO/NOR G

WISPER FANS

This fan is super quiet, efficient cooling where low acoustical disturbance is a
must. Size $4.68^{\prime \prime} \times 4.68^{\prime \prime} \times 1.50^{\prime \prime}$, Impedance protected, $50 / 60 \mathrm{~Hz} .120 \mathrm{Vac}$
TRW BROADBAND AMPLIFIER MODEL CA615B
Frequency response 40 MHz to 300 MHz
Gain: $\quad 300 \mathrm{MHz} 16 \mathrm{~dB}$ Min., 17.5 dB Max.
50 MHz 0 to -1 dB from 300 MHz
Voltage: 24 volts dc at 220 ma max.
$\$ 19.99$
CARBIDE - CIRCUIT BOARD DRILL BITS FOR PC BOARDS
Size: 35, 42, 47, 49, 51, 52
Size: 53, 54, 55, 56, 57, 58, 59, 61, 63, 64, 65
Size: 66
Size: $1.25 \mathrm{~mm}, 1.45 \mathrm{~mm}$
Size: 3.20 mm
$\$ 9.99$

CRYSTAL FILTERS: TYCO 001-19880 same as 2194F
10.7 MHz Narrow Band Crystal Filter

3 dB band width 15 kHz min. 20 dB bandwidth $60 \mathrm{kHz} \min .40 \mathrm{~dB}$ bandwidth 150 kHz min.
Ultimate 50 dB : Insertion loss 1.0 dB max. Ripple 1.0 dB max. Ct. $0+1-5 \mathrm{pf} 3600$ ohms.
MURATA CERAMIC FILTERS

Models:	SFD-455D 455 kHz	$\$ 3.00$
	SFB-455D 455 kHz	2.00
	CFM. 455 HE 455 kHz	7.95
	SFE. 10.710 .7 MHz	5.95

TEST EQUIPMENT - HEWLETT PACKARD - TEKTRONIX - ETC.

Howlett Packard

491C	TWT Amplifier 2 to 4 Gc 1 watt 30 dB gain	\$1150.00
608C	10 to 480 mc .1 uv to .5 V into 50 ohms Signal Generator	500.00
608D	10 to 420 mc .1 uV to 5 V into 50 ohms Signal Generator	500.00
612A	450 to 1230 mc .1 uV to $\mathbf{5} \mathrm{V}$ into 50 ohms Signal Generator	750.00
614A	900 to 2100 mc Signal Generator	500.00
616A	1.8 to 4.2 Gc Signal Generator	400.00
616B	1.8 to 4.2 Gc Signal Generator	400.00
618A	3.8 to 7.2 Gc Signal Generator	400.00
618B	3.8 to 7.2 Gc Signal Generator	400.00
620A	7 to 11 Gc Signal Generator	400.00
623B	Microwave Test Set	900.00
626A	10 to 15 Gc Signal Generator	2500.00
695A	12.4 to 18 Gc Sweep Generator	900.00
Alltech; 473	225 to 400 mc AM/FM Signal Generator	750.00
Singer: MF5/VR-4	Universal Spectrum Analyzer with 1 kHz to 27.5 mc Plug In	1200.00
Keltek: XR630-100	TWT Amplifier 8 to 12.4 Gc 100 watts 40 dB gain	9200.00
$\begin{aligned} & \text { Polarad: } \\ & \text { 2038/2436/1102A } \end{aligned}$		
Calibrated Display with an SSB Analysis Module and a 10 to40 mc Single Tone Synthesizer1500.00		

HAMLIN SOLID STATE RELAYS
120 Vac at 40 Amps .
Input Voltage 3 to 32 Vdc .
240 Vac at 40 Amps .
Input Voltage 3 to 32 Vdc .
Your Cholce $\$ 4.99$

RF TRANSISTORS

TYPE	PRICE	TYPE	PRICE	TYPE	PRICE
2N1561	\$15.00	2N5590	\$8.15	MM1550	\$10.00
2N1562	15.00	2N5591	11.85	MM1552	50.00
2N1692	15.00	2N5637	22.15	MM1553	56.50
2N1693	15.00	2N5641	6.00	MM1601	5.50
2N2632	45.00	2N5642	10.05	MM1602/2N5842	7.50
2N2857JAN	2.52	2N5643	15.82	MM1607	8.65
2N2876	12.35	2N6545	12.38	MM1661	15.00
2N2880	25.00	2N5764	27.00	MM1669	17.50
2N2927	7.00	2N5842	8.78	MM1943	3.00
2N2947	18.35	2N5849	21.29	MM2605	3.00
2N2948	15.50	2N5862	51.91	MM2608	5.00
2N2949	3.90	2N5913	3.25	MM8006	2.23
2N2950	5.00	2N5922	10.00	MMCM918	20.00
2N3287	4.30	2N5942	46.00	MMT72	1.17
2N3294	1.15	2N5944	8.92	MMT74	1.17
2N3301	1.04	2N5945	12.38	MMT2857	2.63
2N3302	1.05	2N5946	14.69	MRF245	33.30
2N3304	1.48	2N6080	7.74	MRF247	33.30
2N3307	12.60	2N6081	10.05	MRF304	43.45
2N3309	3.90	2N6082	11.30	MRF420	20.00
2N3375	9.32	2N6083	13.23	MRF450	11.85
2N3553	1.57	2N6084	14.66	MRF450A	11.85
2N3755	7.20	2N6094	7.15	MRF454	21.83
2N3818	6.00	2N6095	11.77	MRF458	20.68
2N3866	1.09	2N6096	20.77	MRF475	5.00
2N3866JAN	2.80	2N6097	29.54	MRF476	5.00
2N3866JANTX	4.49	2N6136	20.15	MRF502	1.08
2N3924	3.34	2N6166	38.60	MRF504	6.95
2N3927	12.10	2N6265	75.00	MRF509	4.90
2N3950	26.86	2N6266	100.00	MRF511	8.15
2N4072	1.80	2N6439	45.77	MRF901	3.00
2N4135	2.00	2N6459/PT9795	18.00	MRF5177	21.62
2N4261	14.60	2N6603	12.00	MRF8004	1.60
2N4427	1.20	2N6604	12.00	PT4186B	3.00
2N4957	3.62	A50-12	25.00	PT4571A	1.50
2N4958	2.92	BFR90	5.00	PT4612	5.00
2N4959	2.23	BLY568C	25.00	PT4628	5.00
2N4976	19.00	BLY568CF	25.00	PT4640	5.00
2N5090	12.31	CD3495	15.00	PT8659	10.72
2N5108	4.03	HEP76/S3014	4.95	PT9784	24.30
2N5109	1.66	HEPS3002	11.30	PT9790	41.70
2N5160	3.49	HEPS3003	29.88	SD1043	5.00
2N5179	1.05	HEPS3005	9.95	SD1116	3.00
2N5184	2.00	HEPS3006	19.90	SD1118	5.00
2N5216	47.50	HEPS3007	24.95	SD1119	3.00
2N5583	4.55	HEPS3010	11.34	TA7993	75.00
2N5589	6.82	HEPS5026	2.56	TA7994	100.00
		HP35831E		TRWMRA2023-1.5	42.50
		HXTP5104	50.00	40281	10.90
		MM1500	32.20	40282	11.90
				40290	2.48

CHIP CAPACITORS

1pf	27pf	220pf	1200pf
1.5pf	33pf	240pf	1500pf
2.2pf	39pf	270pf	1800pf
2.7pf	47pf	300pf	2200pf
3.3pf	56pf	330pf	2700pf
3.9pf	68pf	360pf	3300pf
4.7pf	82pf	390pf	3900pf
5.6pf	100pf	430pf	4700pf
6.8pf	110pf	470pf	5600pf
B.2pf	120pf	510pf	6800pf
10pf	130pf	560pf	$8200 p f$
12pf	150pf	620pf	.010 mf
15pf	160pf	680pf	.012 mf
18pf	180pf	820pf	$.015 m f$
22pf	200pf	1000pf	.018 mf

ATLAS CRYSTAL FILTERS FOR ATLAS HAM GEAR
5.52-2.7/8
$5.595-2.7 / 8 / \mathrm{U}$
5.595-.500/4/CW
5.595-2.7LSB
5.595-2.7USB
5.645-2.7/8
9.OUSB/CW

(4)
 MOTOROLA Semiconductor

MRF454
\$21.83
NPN SILICON RF POWER TRANSISTORS
designed for power amplifier applications in industrial, com
mercial and amateur radio equipment to 30 MHz

- Specified 12.5 Volt, 30 MHz Characteristics -

Output Power $=80$ Watts
Minimum Gain = 12 dB
Efficiency $=50 \%$

NPN SILICON RF POWER TRANSISTOR

MRF472
$\$ 2.50$

MRF475
NPN SILICON RF POWER TRANSISTOR
designed primarily for use in single sideband linear amplifier output applicaions in citizens band and other communications equipment operating to 30 MHz .

- Characterized for Single Sideband and Large-Signal Amplifier Applications Utilizing Low-Level Modulation.
- Specified $13.6 \mathrm{~V}, 30 \mathrm{MHz}$ Characteristics -

Output Power $=12 \mathrm{~W}$ (PEP)
Minimum Efficiency $=40 \%$ (SSB)
Output Power $=4.0 \mathrm{~W}$ (CW)
Minimum Efficiency $=\mathbf{5 0 \%}$ (CW) Minimum Power Gain $=10 \mathrm{~dB}($ PEP \& CW)

- Common Collector Characterization

Tektronix Test Equipment

${ }^{8}$	Widebend High
${ }_{k}^{C A}$	ction trace plug in
	保l ing Plug in
${ }^{\text {R }}$	Trans istor Risset ime Plug ln
1	High Gain Differential comparator Plug In
$\frac{1 U-2}{1 A)^{2}}$	Iest Load plug in tor $530 / 560 / 560$ Mdin Frames
is!	Sampling unit with 350ps Risetire dC to lighl
${ }_{2}^{2961}$	Ac Differential Plug in
353 356	Dual Trace sampling DC
${ }^{76}$	Irace samplin
${ }^{778}$	
${ }_{50}$	
	Sweed plug in
538	Wideband High Gain Plug In
53/548	Wideband High Gain Plug in
53/54C	Dual Irace Plug in
53/540	High Gain DC Differential Plug In
53/546	Wideband DC Differential Plug in
53/54L	fast Rise High Gain Plug
S	Test Plug in For 5ta/581 Ma in Fra
${ }^{107}$	Square wave benerdtor 4 to im
RMI22	Preamplif fier 2 Hz to ${ }^{4} 40 \mathrm{KHz}$
23	AC Coupled Preamplifier
121	Power Supply for a Plug In's
13.	rent Probe Amplif ler
184	Time Mark Generator
${ }^{2} 240$	Program Control Unit
280	俍igger Countdown Unit
455	Portable Oual 1 race 50 MHz Scope
${ }^{465}$	Portable Sual Trace 100MHz Scope
${ }_{5}^{503}$	DC to 450khz Scope
${ }_{543}$	oc to 33 mH 22 Scope
	OC to 10\%Hz scope Rack M
561 A	to 10MHL Scope Rack Mount

The RF Line
MRF458
$\$ 20.68$

NPN SILICON RF POWER TRANSISTOR

designed for power amplifier applications in industrial, commerical and amateur radio equipment to 30 MHz .

- Specified 12.5 Volt, 30 MHz Characteristics -

Output Power $=80$ Watts
Minimum Gain $=12 \mathrm{~dB}$
Efficiency $=\mathbf{5 0 \%}$

- Capable of Withstanding 30:1 Load VSWR @ Rated Pout and VCC

ज119710-2
$\$ 46.45$
440 to 470 MC

UHF POWER AMPLIFIER MODULE

designed for 12.5 volt UHF power amplifier applications in industrial and commercial FM equipment operating from 400 to 512 MHz .

- Specified 12.5 Volt, UHF Characteristics Output Power $=13$ Watrs
Minimum Gain $=19.4 \mathrm{~dB}$ Harmonics $=40 \mathrm{~dB}$
- 50 s2 Input/Output Impedance
- Guaranteed Stability and Ruggedness
- Gain Controi Pin for Manual or Automatic Output Level Control
- Thin Film Hybrid Construction Gives Consistent Performance and Reliability

NEW - TOLL-FREE NO. 800-528-0180 - please, orders only!

STEP UPTOTELREX Professionally Engineered Antenna Systems Single transmission line "TRI-BAND" ARRAY"

For technical data and prices on complete Telrex line, write for Catalog PL 7

phone for more details.

cin	
2400 Crystal Drive	
	Ft. Myers, Florida 33907 all phones (813) 936-2397

By the only test that means anything... on the air comparison ... this array continues to outperform all competition and has for two decades. Here's why

Telrex uses a unique trap design employing 20 HIQ 7500 V ceramic condensers per antenna. Telrex uses 3 opti-mum-spaced, optimum-tuned reflectors to provide maximum gain and true F / B Tri-band performance.

ILLUSTRATION TRAP

illustration balun

Handful of POWER

Give your low-power 2-meter rig real punch by delivering a potent 25 -watt signal with only two watts of drive (also available set up for 200 milli-watts drive). Compact and convenient to mount VoCom's Model 2 CO 25 is ideal for car boat, or anywhere you've got a 12 VDC source. At only $\$ 84.95$ ($\$ 99.95$ for 200 mW drive), it's the perfect companion for your Drake, Encomm, Henry, Icom, Kenwood, Motorola, Standard, Wilson, Yaesu or other 2-meter FM portable!

- 2 or 2 watt nominal drive (specity)
- 2 watt model delivers 15-20 watts with only one watt of drive
- 10 MHz bandwidth for CAP or MARS
- Meets all applicable FCC specifications
- 200 mW drive model permits operating Icom IC-2A or Yaesu FT-207R on their battery-saving low-power mode
- Only $\$ 84.95$ ($\$ 99.95$ for 200 mW drive)

CALL FOR QUOTES

Plus Accessories: TS130V - \$599.95; DFC230 - \$279.95; AT130 - \$139.95; YK88SN - \$59.95

WANTED FOR CASH

490-T Ant. Tuning Unit (Also known as CU1658 and CU1669) -

Highest price paid for these units. Parts purchased. Phone Ted, W2KUW collect. We will trade for new amateur gear. GRC106, ARC105, ARC112, ARC114, ARC115, ARC116, and some aircraft units also required.

DCO, INC.

10 Schuyler Avenue Call Toll Free
800-526-1270

No. Arlington, N. J. 07032
(201) 998-4246 Evenings (201) 998-6475

HUSTLER ANTENNAS

5BTV	5-Band trap vertical $10-80 \mathrm{~m}$., reg. \$139.95.	25.95
4BTV	4-Band trap vertical $10-40 \mathrm{~m}$., reg. \$109.95	98.96
BM-1	Bumper mount, reg. \$18.95	17.06
MO-1	Mast, fold-over, deck mounting, reg. \$22.95	20.66
MO-2	Mast, fold-over, bumper mount, reg. \$22.95	20.66
RM-75	Resonator, 75 meters, 400 watt, reg. \$18.95	17.06
RM-40	Resonator, 40 meters, 400 watt, reg. \$16.95	15.26
RM-40S	Super resonator, 40 meters, KW, reg. \$24.95	22.46
RM-20	Resonator, 20 meters, 400 watt, reg. \$14.95	13.46
RM-20S	Super resonator, 20 meters, KW, reg. \$21.95.	19.76
RM-15	Resonator, 15 meters, 400 watt, reg. \$10.95	9.86
RM-10	Resonator, 10 meters, 400 watt, reg. \$10.95	9.86
CG-144	Mobile 2 meter colinear, w/o mount, reg. \$28.95.	26.06
CGT-144	2 meter colinear w/trunk mount, reg. \$45.95....	41.36
PALOMAR ENGINEERS		
	Price	Shpg.
R-X	Noise bridge \$ 55.00	\$2.00
VLF	Converter 59.95	2.00
IK	Toriod balun. 3 KW SSB, $1: 1$ or $4: 1 \ldots .332 .50$	2.00
2K	Toriod balun, 6 KW SSB, 1:1 or $4: 1 . \ldots .42 .50$	2.00
IC	Keyer, battery operated 117.50	3.00
Loop Ante	enna, plug-in units, 160/80, BCB, VLF . 47.50	2.00
Loop Amp	plifier . 67.50	2.00
Tuner - 10	10-60 meters, built-in noise bridge 299.95	6.50
CW Filter.	8 pole IC........................... 39.95	2.00

ALSO IN STOCK

Antenna Components - Larsen Antennas
Centurion International Rubber Duck Antennas
WRITE FOR A FREE COPY OF OUR CATALOG

MASTER CHARGE

VISA
All items FO.B. Lincoin, $\$ 1.00$ minimum shipping. Prices subject to change without notice. Nebraska residents please add 3% tax

Microcraft's New RTTY READER

Decodes RTTY signals directly from your receiver's loudspeaker. * Ideal for SWLs, novices \& seasoned amateurs. * Completely solid state and self-contained. Compact size fits almost anywhere. No CRT or demodulator required . . . Nothing extra to buy! * Built-in active mark \& space filters with tuning LEDs for $170,425 \& 850 \mathrm{~Hz}$ FSK. * Copies 60, 67, 75, \& 100 WPM Baudot \& 100 WPM ASCII. * NOW you can tune in RTTY signals from amateurs, news sources \& weather bulletins. The RTTY READER converts RTTY signals into alphanumeric symbols on an eight-character moving LED readout. Write for details or order factory direct.
RTTY READER KIT, model RRK
$\$ 189.95$ RTTY READER wired and tested, model RRF . $\$ 269.95$ Send check or money order. Use your VISA or MasterCard. Add $\$ 5.00$ shipping and handling for continental U.S. Wisconsin residents add 4% Wisconsin State Sales Tax.

> Microcraft
> Corporation
> Telephone: (414) 241.8144
> Post Office Box 513HR, Thiensville, Wisconsin 53092

- KITS

40 Meter Transceiver (hr, 4/80) Split Band Speech Processor (hr, 9/79) R-X Noise Bridge (hr, 2/77) CMOS 2 Meter Synthesizer IARU Rx and Tx (OST, 4/78 \& 12/78) Mini Antenna (HRH, 6/79) Audio Function Generator (HRH. 3/77) Broadband Balun (hr, 9/78) Code Practice Oscillator Transmatch Balun Drake Receiver Improvements Gunnplexer-AFC/Speech Amp./Pwr. Supply Transmatch
Plate Choke
Filament Choke
Toroid Assortments
Ferrite Bead Assortment

- BOARDS ONLY -

Memory Accu-Keyer (hr, 4/79) Linearity Meter (hr, 6/76) Keyer (hr, 3/73)

ALSO
 - HARD-TO-FIND PARTS -

NEW CATALOG - 25 CENTS

 RADIOKITBOX 411H, GREENVILLE, NH 03048
(603) 878-1033

YAESU FT-207R OWNERS AUTOMATIC SCAN MODULE

15 minutes to install; scan restarts when carrier drops off: busy switch controls automatic scan on-off; includes module and instructions.
Model AS-1.
$\$ 25.00$
ENGINEERING CONSULTING
P. O. BOX 94355

RICHMOND, B. C. V6Y2A8, CANADA

$\mathrm{flog}_{\mathrm{t}}^{\mathrm{m}}$ market 4 = =

RATES Non-commercial ads 10c per word; commercial ads 60¢ per word both payable in advance. No cash discounts or agency commissions allowed.
HAMFESTS Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing). Repeat insertions of hamfest ads pay the noncommercial rate.
COPY No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.
DEADLINE 15th of second preceding month.
SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N.H. 03048.

DX, YOU BETI THE DX BULLETIN - Best weekly DX Info in the world. For FREE sample copy, send business-size SASE to: The DX Bulletin, 306 Vernon Avenue, Vernon, Connecticut 06066.

CELESTRON 5" telescope, complete including solar filter. Make offer, will trade. Ron Vanke, K8YAH, (614) 890-0609.

STOP LOOKING for a good deal on amateur radio equipment - you've found it here - at your amateur radio headquarters in the heart of the Midwest. Now more than ever where you buy is as important as what you buy. We are factory-authorized dealers for Kenwood, Drake, Yaesu, Collins, Wilson, Ten-Tec, ICOM, DenTron, MFJ, Tempo, Regency, Hy-Gain, Mosley, Alpha, CushCraft, Swan and many more. Write or call us today for our low quote and try our personal and friendly Hoosler Service. hOOSIER ELEGTRONICS, P.O. Box 2001, Terre Haute, Indiana 47802. (812) 238-1456.

CRYSTAL FILTERS: Brand new K.V.G. 9 MHz . XF9.A, $\$ 35.00$. XF9-B, $\$ 48.00$. XF9-M, $\$ 39.00$. XF9-NB, $\$ 77.00$. Matching crystals: XF900, XF901, XF902, XF903, \$4.25 each. Terry Taylor, 26102 13th Pl., South, Kent, WA 98031.

Foreign Subscription Agents for Ham Radio Magazine

CB TO 10 METER PROFESSIONALS: Your rig or buy ours - AM/SSB/CW. Certified Communications, 4138 So. Ferris, Fremont, Michigan 49412; (616) 924-4561.

QSL'S: No stock designs! Your art or ours; photos originals, 504 for samples \& details (refundable). Certified Communications, 4138 So. Ferris, Fremont, Michigan 49412.

NEED HELP for your Novice or General ticket? Recorded audio-visual theory instruction. No electronic back ground required. Free information. Amateur License, P.O. Box 6015, Norfolk, VA 23508

ANTIQUE (PRE-1850) TELEVISION SETS WANTED. WII pay top dollar for unusual or pre.WWII sets, Arnold Chase, 9 Rushleigh Road, West Hartford, Connecticut 06117 (203) 521-5280.

WANTED: Early Hallicrafter receivers, transmitter, accessories, parts, manuals for my collection. Special interest in silver colored panel receivers and ones with "airplane" dials. Also need "ultra Skyrider" SX-10 "Skyrider Commercial" SX-12 and others. Chuck Dachis, WD5EOG, 4500 Russell, Austin, TX 78745.

MANUALS for most ham gear 1937/1970. Send 25¢ for "Manual Catalog." H.I., Inc., Box H864, Council Bluffs lowa 51502

G3NVA offers 3 potent antenna designs, each for 10,15, 20 meters. MAXI 25 ft . boom, 4 elements each band. Outstanding forward gain with off beam rejection. JUNIOR 17 ft . boom, 3 elements each band, outperforms 3 ele ment quads. Still too large, then try my MINI, only 8 ft .6 inch boom, 2 elements each band. These designs get big, big signals at only 35 ft . and even lower, without the need of costly tall towers. Full details only $\$ 18$. Box 283, Agassiz, B.C., Canada VOM 1AO.

MO8ILE HF ANTENNA $3.2-30 \mathrm{MHz}$ Inclusive, 750 watts PEP, center loaded, tuned from the base, eliminating coil changing or removing from mount. Less than 1.5 to 1 VSWR thru entire coverage. $\$ 129.95$ ea. plus shipping. Contact your local dealer, If none in your area order direct. Anteck, Inc., Route One, Hansen, Idaho 83334. (208) 423-4100. Master Chg., and VISA accepted. Dealer and factory rep. inquiries invited.

ATLAS DD6-C and 350XL Digital Dial/Frequency Counters. $\$ 175.00$ plus $\$ 3.00$ UPS. AFCI Stop VFO drift, See June 79 HR, $\$ 65.00$ plus $\$ 3.00$ UPS. Mical Devices, P. O. Box 343, Vista, CA 92083

VERY in-ter-est-ing! Next 3 Issues \$1. "The Ham Trader" Wheaton, IL 60187.

SWAN 100 MX transcelver, brand new, never used. Ask ing price $\$ 600.00$. S. Pavone, W2DDN, Box 105A, FD3, Boonton, NJ 07005. (201) 335-5732.

COLLINS RECEIVER FOR SALE. 75A-3, 10-11-15-20-40-$80-160$ meters. All original. Very good condition, $\$ 375.00$ P. J. Vassallo, 1117 Darby-Paoli Road, Berwyn, Pennsyl vania (14 miles from Philadelphia) 215-647-2379.

WANTED: Cushman Communications Service Monitors, working or non-working units. Also need plug-in modules, manuals, parts, etc., will pay cash or take over payments. Also need RF voltmeters; WB8IJX, Fred L. Slaughter, 5844 Grisell Road, Oregon, OH 43618. Phone (419) 698-8597.

MOBILE IQNITION SHIELDING provides more range with no nolse. Available most engines. Many other sup pression accessories. Literature, Estes Engineering, 930 Marine Dr., Port Angeles, WA 98362

W1HR ESTATE: Llst of Ham equipment and test equipment avallable. Collins, General Radio, Knight, many more; also list of Antique Radios now available. Send SASE with $\$ 1.00$ to: Mrs. D. Fisk, P. O. Box 429, Hollis, New Hampshire 03049. Note: Will not ship, plck-up only.
ham RADIO REPAIR - Protessional lab, personal ser vice. "Grid" Gridley, W4GJO. April thru October: Rt. 2, Box 138B, Rising Fawn, Georgla 30738. (404) 657.7841. November thru March: 212 Martin Drlve, Brooksvitle, Florida 33512. (904) 799-2769.

TELETYPE 3320, 5JE punch, reader, and printer with Car terphone DX-103A-7 and Dai-Data Dialer. AFSK output into line. In like new condition, $\$ 400$ or best offer. Steven Terhaar, 650 Beech, Moorhead, MN 56560

BUY-SELL.TRADE. Send $\$ 1.00$ tor catalog. Give name address and call letters. Complete stock of major brands new and reconditioned amateur radio equipment. Call for best deals. We buy Collins, Drake, Swan, etc. Assoclated Radio, 8012 Conser, Overland Park, KS 66204. (913) 381-5900.

MICROCONPUTER electronics decodes Morse automat Ically. Improve speed, measure difficult signals. Fea tures unavallable commercially. SASE, Seastrom, Box 1185, East Dennis, MA 02641.

please ado sufficient postage

$\$$ sotron Antennas	
THE ULTIMATE space savers . . . for 80 and 40 meters.	
Designed and proved by WDDEJA	$\begin{aligned} & \text { Hear on } \\ & 7245 \mathrm{kHz} \\ & \text { at } \\ & 385 \mathrm{PM} \\ & \text { MDT } \end{aligned}$
80 Meters	40 Meters
$41 / 2 \mathrm{ft}$. 8 lbs . $110 \mathrm{kHz}^{*}$ 508 coax $\$ 59.95$	$\begin{aligned} & 31 \text { inches } \\ & 4 \mathrm{lbs} . \\ & 250 \mathrm{kHz} \\ & 500 \mathrm{coax} \\ & \$ 49.95 \end{aligned}$
*Limits for 2:1 SWR; center frequency adjustable	
Isotron antennas need no radials or matching devices. Feed with 50Ω coax. For indoor or outdoor mounting. Excelient for all amateur uses.	
BILAL COMPANYSTAR ROUTE(303) $687-3219$FLORISSANT, C0. 80816	

35w 2m FM AMPLIFIER KIT

3 Watts In-35Watts Out

Communication Concepts Inc. 2648 NORTH ARAGON AVE. DAYTON, OHIO 45420 VISA

SALE: Heathkit HW-2021 HT, touchtone kit, extras - b/o $\$ 130$. KDK FM-144 15W synthesized mobile - b/o $\$ 220$. New Isotron 80M antenna - b/o \$45. QST 1/74-6/76 except $8 / 74$ - b/o \$17. Details SASE. Elkind, WB2ARN/3, 6340 Marchand, Pittsburgh, PA 15206. (412) 361-3788.

THE SUPERMARKET OF ELECTRONICS - thousands of items for sale or trade each month. Free classified ad with subscription. Only $\$ 5.00$ to Nuts \& Volts, P.O. Box 1111-F, Placentia, California 92670.

SMALL COMPUTER NEWS - biweekly newsletter covering microcomputer programs, new products, industry happenings. Sample copy $\$ 1$ - Edwards Publications, 78-56 86th Street, Flushing, NY 11385.
RECONDITIONED TEST EQUIPMENT for sale. Catalog \$.50. Walter, 2697 Nickel, San Pablo, CA 94806.
LEARN MORSE CODE - One hour of practice material at 3,5 , and 6 WPM on cassette tape, prepares you for Novice Exam. Includes Code Groups, Punctuation and Numbers. Instructions included. $\mathbf{\$ 6 . 0 0}$ Postpaid. Increase your speed. One hour advance cassette tape at 8 , 10, 12 and 14 WPM. Completely different text. Price $\$ 5.00$ both for $\$ 10.00$ postpaid. A \& F Enterprises, P. O. Box 47152 , Atlanta, Georgia 30362.

FOR SALE: One table model 28 teletype, and one Typing, printing reperf with keyboard and a 28 TD. All 60 WPM with sync motors. Sell all for $\$ 300.00$. Pick up only. George Tate, 4 Homewood Avenue, Taylors, SC 29687.
FOR SALE: Tempo fma 2 -meter 'xcvr \& mike. Six channels. Base station or mobile. $\$ 75.00$ firm. W6NIF, Box 42, Greenville, NH 03048.
CWISSB FILTERS: IC audio install in any radio, sharp CW, stagger tuned SSB - $\$ 15, \$ 32$. SASE info: W8CBR, 80 W . Mennonite, Aurora, OH 44202.
MOTOROLA RADIOS WANTED: I need micors, motracs, mocom 70's, H.T.'s, and bases . . . anything Motorola newer than 12 years. I pay all shipping. Len Rusnak, WA3TJO 301-441-1221.
RTTY FOR SALE: Model 28 KSR , M28 stand-alone TD, M28 receive-only typing reperf, M28 keyboard typing reperf, M28 triple TD, M28 under-dome typing reperf, M28 motorized paper winder, answerback, auto CR-LF kit for M28 printers. Model 33 and 35 machines. Gears, gearshifts, parts and supplies for all Teletype machines. Send SASE for list and prices. Lawrence R. Pfleger, K9WJB, 2600 S. 14th Street, St. Cloud, MN 56301.
WANTED: Motorola micor base stations. $\mathbf{4 0 6 - 4 2 0} \mathbf{~ M H z}$. AK7B, 4 Ajax PI., Berkeley, CA 94708.
FREE HAM/COMPUTER NEWSLETTER: Send selfaddressed stamped envelope for your copy. W5YI; P.O. Box I10101; Dallas, Texas 75207.

SOLAR CELLS $.4 \mathrm{v}, 4^{*}$ diameter, 2 amps. $\$ 8.75,10$ for $\$ 85.00$ plus shipping. Kenneth Foster, 1742 Dowd, St. Louis, MO 63136. 314-522-6667.
$\mathbf{5 0 0}$ OSL's, $\$ 10$. Catalogue, 743 Harvard, St. Louis, MO 63130.

SELL: Knight T-60 with VF-a VFO $\mathbf{\$ 6 0 . 0 0}$. Heath HX-10 built-in solid-state PS. Meter not working but transmitter works FB. Very clean, $\$ 95.00$ or best offer. RME 4350 $160-10$ meter receiver mint, $\$ 85.00$. Will consider trade. N4CSY, Phil Patton, 536 Raccoon Trail, Chattanooga, TN 37419.

SATELLITE TELEVISION: Build or buy your own earth station. Article gives much hard to find, necessary information. Send $\$ 3.00$. Satellite Television, R.D. 3, Box 140, Oxford, NY 13830.
"HAM RADIO" Magazines in binders, every issue, perfect. Make offer, will trade. Ron Vanke, K8YAH, (614) 890-0609.

Coming Events

OHIO: 23rd annual auction, Auctionfest ' 80 on November 16 at the Massillon Knights of Columbus Hall, Massillon, Ohio. From 8:00 A.M. to 5:00 P.M. Flea market opens at 8:00 A.M. and auction starts at 11:00 A.M. Auctionfest ' 80 features 3 major prizes plus many door prizes given away hourly. Tickets: $\$ 2.50$ advanced and $\$ 3.00$ at the door. More info, tickets or table reservations: Steve Nevel, WD8MIJ, 1864 Massachusetts Ave., S.E. Massillon, Ohio.

Digitrex Electronics

 PA-19 Wideband Preamplifier- 10200 MHZ Bandwidth(-3a8 founts)
 - 50 Ohms Input s Output impedance
- Tiny PC Board Size(7/8" $\times 1.5 / 8^{\prime \prime}$) - Tiny PC Board Size $17 / 8^{\prime \prime} \times 1 \cdot 5 / 8$
- Absolutely No Tuning Required - Absolutely No Tuning Requ
- Extremely Stable
- Extrems only 20MAe12VDC

> I PAY CASH
> for your military surplus electronics If you have or know of availability: TT-98 TT-76 Teletypewriter phone me collect
> Dave - (213) 760-1000

OVER the hills and thru the woods to Wheaton Community Radio Amateurs Hamfest we go. For the bargains and buys and to meet all the guys, come to the best Winter Hamfest in the U.S.A. - January 25, 1981 - Plan on it. - N9YL.

QSO PARTY: John D. Burlie Chapter's sixteenth annual QSO Party from 1900 hours UTC, Saturday, December 6 to 0500 hours UTC on Monday, December 8. Fifteen bands for use during event. More info: Ted Phelps, W8TP, John D. Burlie Chapter No. 89, Telephone Pioneers of America, c/o Western Electric, Dept. 45160, 6200 East Broad Street, Columbus, OH 43213.
LOUISIANA: The Twin City Ham Club of Monroe/West Monroe, Louisiana will hold its annual "Hamfest" November 9 at the West Monroe Civic Center at 910 Ridge Ave., West Monroe, Louisiana. Starts 8:00 A.M. Free Swap-Tables and parking. VHF forum, left-footed CW contest, refreshments, door prizes and more. \$1.00 admission includes chance on grand prize. Talk-in on .251 .85 and .521 .52 - Dealers invited. More info: WB5MHU, 94 Birchwood Dr., Monroe, Louisiana 71203.

DELAWARE QSO PARTY: Starts: 1700 GMT Sat. November 8. Ends: 2300 GMT Sun. November 9. Sponsored by the Delaware Amateur Radio Club. More info: S.A.S.E. to Charlie Sculley, AE3H, 103 E. Van Buren Ave., New Castle, Delaware 19720.

 AFFORDBLE CW KEYBOARD

Transmits perfect Morse Code * Built-in 16. character buffer * Internal speaker and sidetone * Reed relay output eliminates keying problems * All solid state circuits and sockets for reliability * Speed range 5-45 WPM * Perfect companion to our MORSE-A-WORD CW code reader.
MORSE-A-KEYER KIT, model MAK-K, Complete kit of parts \& manual \$159.95 MORSE-A-KEYER, modeI MAK-F, Factory wired \& tested \$205.00 - MORSE-A-KEYER ESSENTIAL PARTS KIT, model EPK-K. $\$ 69.95$ (Essential parts kit for home-brewers consists of pc board, board parts and manual. You supply ASCII keyboard, cabinet, power supply \& miscellaneous parts.)

- Send check or money order. Use your VISA or MasterCard. Add $\$ 5.00$ shipping and * | handling for Continental U.S. Wisconsin residents add 4% Wisconsin State Sales Tax.

Corporation
Telephone: (414) 241.8144 Post Office Box 513HR, Thiensville, Wisconsin 53092

NO COIL HEATING - RESETTABLE TO EXACT FREQUENCY
ANTECK, Inc.
BOX 415, ROUTE 1
HANSEN, IDAHO 83334
PHONE (208) 423.4100

MOBILE OPERATORS

LOOKING FOR VALUE, HIGH PERFORMANCE, AND EASE OF OPERATION?
The MT-1 MOBILE ANTENNA, GENERAL COVERAGE, 3.2 to 30 MHz . 750 Watts C.W., 1500 P.E.P., CENTER LOADED, Tune to EXACT RESONANCE. NO COIL HEATING. 50 OHMS INPUT. FULL OUTPUT from SOLID STATE FINALS. BASE TUNED WITH LOGGING SCALE AND CORRELATION CHART for ease of resetting. Max. length 116 inches at $3.2 \mathrm{MHz}, 92.5$ inches at 30 MHz . FITS ANY STD. MOUNT (3/8 X 24 THREAD.) Send for free brochure. MAX. DIA. OF COIL 1.125 INCH.
Check with your LOCAL DEALER OR ORDER DIRECT \$129.95 PLUS UPS MT-1A HEAVY DUTY STAINLESS STEEL MARINE UNIT $\mathbf{\$ 1 7 9 . 9 5}$ PLUS UPS NO COILS TO CHANGE - POSITIVE TUNING LOCK - LESS THAN 1.5 VSWR

CALL TOLL $\rightarrow \mathrm{D}$

For the best deal on

-AEA•Alliance•Amec $0 \bullet$ Apple•ASP
-Avanti•Belden•BenchereBird•CDE -CES-C ommunications Specialists -Collins• Cushcraft•Daiwa•DenTron -Drake•Hustler•Hy-Gain•Icom•1RL•KLM - Kenwood•Larsen• Macrotronics•MFJ - Midland• Mini-Products•Mirage•Mosley - NPC•Newtronics \bullet Nye• Panasonic - Palomar Engineers• Regency•Robot -Shure•Standard•Swan• Tempo - Ten-Tec•Transcom•Yaesu

HOLIDAY SPECIALS

KENWOOD TR-7600

 closeout …........... \$269ICOM IC-255A \$329
TEMPO S-1 $\$ 239$ with touchtone \$269
KENWOOD TR-7800, TR-9000 and TR-2400 all now in stock... Call for great Erickson prices today!
APPLE: Buy a 16k Apple II or Apple II Plus for \$1195; get 32k more memory, installed, free! Complete with disc drive, only
\$1739
Apple prices include prepaid shipping within continental U.S.A.
CALL TOLL FREE (outside Illinois only) (800) 621-5802

HOURS: 9:30-5:30 Mon., Tues., Wed. \& Fri. 9:30-9:00 Thursday 9:00-3:00 Saturday
ERICKSON communcations Chicago. IL 60630 5456 North Milwaukee Ave. (312) $631-5181$ |within Illinois)

Be A Ham Radio Transceiver

Transmit your favorite magazine to your friends.
Recelve the most "alive" magazine in Amateur Radio today.

There's no question about it. Ham Radio HORIZONs makes the perfect holiday gift. Look at the great new features: Bill Orr's Ham Radlo Techniques, K5FUV's DX Column, our own O\&A Section, and W9KNI's Dlary of a DXer. Add our exciting new look plus our new emphasis on serving today's ACTIVE Amateur and you have an unbeatable gift for all your ham friends.
To make Ham Radio HORI-
ZONS even more appealing, we've lowered our prices for this special holiday offer. In fact, to take advantage of all these new features, shouldn't you also be starting or extending your own HORIZONS subscription? Feel free to add your own name at these low, holiday prices.
Make up your list today and send it along. We'll take it from there. We'll even send an attractive gift card announcing your thoughtfulness.

1st Gift \$10.00
 (save \$2.00)
 Additional \$8.00 Gift
 (save \$4.00)

The Ham Radio Publishing Group Greenville, NH 03048

Yes! Please send my HORIZONS gift subscriptions as indicated. Also send a gift acknowledgement card . . .
\$ \qquad is enclosed for \qquad subscriptions. FROM:
My Name \qquad Call \qquad Address \qquad City \qquad State \qquad Zip \qquad
Master Charge Account
VISA
Start or
Renew my HORIZONS subscription.
\square Bill me after January 1, 1981

18t GIFri$\square \begin{aligned} & \text { New Subscription } \\ & \text { Renewal }\end{aligned}$
SEND TO:
Name \quad Call
Address
City \qquad State \qquad Zip

2nd GIFT $\square{ }_{\text {Renewal }}^{\text {New Substiption }}$

SEND TO:
Name
Call
Address \qquad
City \qquad State

For additional gifts give complete information on separate sheet of paper and return with above order

THE VERY FINEST ANSWER TO YOUR NEED for one to two kilowatts of solid HF power: a superlative ALPHA linear amplifier - FIRST in performance, in convenience. in quality and durability.
Brute RF power without time limit, whisper-quiet operation, instant no-tune-up bandchanging, high speed
break-in (QSK), the ability to cover any newly-assigned HF band - there's an ALPHA perfectly suited to YOUR requirements.
ALPHA: power in a class by itself. For complete details, contact your ALPHA dealer or ETO direct.

ASTRON POWER SUPPLIES
 - HEAVY DUTY • HIGH QUALITY • RUGGED • RELIABLE •

SPECIAL FEATURES

- SOLID STATE ELECTRONICALLY REGULATED
- FOLD-bACK CURRENT LIMITING Protects Power Supply from excessive current \& continuous shorted output.
- CROWBAR OVER VOLTAGE PROTECTION on Models RS-7A. RS-12A, RS-20A, RS-35A, RS-20M \& RS-35M
- MAINTAIN REGULATION \& LOW RIPPLE at low line input Voltage.
- HEAVY DUTY HEAT SINK • CHASSIS MOUNT FUSE
- THREE CONDUCTOR POWER CORD
- ONE YEAR WARRANTY - MADE IN U.S.A.
- VOLT \& AMP METER ON MODELS RS-20M \& RS-35M PERFORMANCE SPECIFICATIONS
- INPUT VOLTAGE: 105-125 VAC
- OUTPUT VOLTAGE: 13.8 VDC ± 0.05 volts (Internally Adjustable: 11-15 VDC)
- RIPPLE Less than 5 mv peak to peak (full load $\&$ low line)
- REGULATION: $\pm .05$ volts no load to full load \& low line to high line

ASTRON 20 AMP REGULATED POWER SUPPLY Model RS-20M 16 Amps continuous
20 Amps ICS*
$5^{\circ}(\mathrm{H}) \times 9^{\circ}(\mathrm{W}) \times 105^{\circ}(\mathrm{D})$
Shipping Weight 20 lbs . Price

Other popular POWER SUPPLIES also available: (Same features and specifications as above)

Model	Continuous Duty (amps)	ICS (amps)	Size (in.) H \times W X D	Shipping Wt. (lbs.)	Price
RS-35M	25	35	$5 \times 11 \times 11$	29	$\$ 167.95$
RS-35A	25	35	$5 \times 11 \times 11$	29	$\$ 149.95$
RS-20A	16	20	$5 \times 9 \times 101 / 2$	20	$\$ 99.95$
RS-12A	9	12	$41 / 2 \times 8 \times 9$	13	$\$ 74.95$
RS-7A	5	7	$33 \times 61 / 2 \times 9$	8	$\$ 54.95$
RS-4A	3	4	$33 \times 61 / 2 \times 9$	5	$\$ 39.95$

- ICS - Intermittent Communication Service (50% Duty Cycle) If not available at your local dealer. please contact us directly.

Inside View - RS-12A

1971 South Ritchey Street Santa Ana. CA 92705
(714) 835-0682

NEW CATALOG

For Hobbyists, Experimenters!

Now. circuit boards and components for many projects described in popular HAM magazines. Finest PC boards of our own manufacture, plus LED's, semiconductors and more All 100% guaranteed Low prices, prompt delivery
\square Send me your NEW catalog. I enclose $25 ¢$ postage \& handling. Name Address City
\qquad
\qquad
state \qquad
ROCKY MOUNTAIN CIRCUITS
RM~ Dept. HR-1, 2715 Alteza Lane
Colorado Springs, CO 80917

S-LINE OWNERS ENHANCE YOUR INVESTMENT

TUBESTERS ${ }^{\text {™ }}$

Plug-in, solid state tube replacements

- S-line performance-solid state!
- Heat dissipation reduced 60\%
- Goodbye hard-to-find tubes - Unlimited equipment life

TUBESTERS cost less than two tubes, and are guaranteed for so long as you own your S-line.

SKYTEC
Box 535
Talmage, CA 95481

Write or phone for specs and prices.
(707) 462-6882

RF POWER

Your One Stop Source for RF Power Tubes and Transistors ©hristmas ©

8877/3CX1500A7	\$300.00	6MJ6	\$4.50
811A	10.00	6146B	6.00
572B	32.00	8950	6.50
3-500Z	95.00	8236	22.00

RF Transistors

SD1451 - 60W 2-30 MHz 12.5V Flange
(Premium replacement for MRF 450A and 2N6084)
RF $33-70 \mathrm{~W} 2-30 \mathrm{MHz} 12.5 \mathrm{~V}$ Stud Type.
.15 .00 (Premium replacement for MRF 455A)

MINIMUM ORDER $\$ 30.00$

CALL TOLL-FREE 800-645-2322 (N.Y. State 516-536-8868)

Commercial in, epoxy glass PC bords 12 vallDC is lug AC operation - Power supply included. Four digit access - Single digit releases - field programmable. Hybrid network - No switching required. FCC certified telephone line coupler. Auxiliary "In Use" contacts supplied. Land line "call-in" signalling control contacts provided. Price complete $\$ 498+\$ 3$ shipping \& handling. Master Charge, Bank money order, or certified check acceptable.

Accessories: CES-300 powered tone pad - $\$ 59$ BUS-COM Soft-touche telephone powered mike/pad element - $\$ 34.95$.
MONROE ELECTRONICS, INC. 410 Housel Ave., Lyndonville, N.Y. 14098

SL-56 AUDIO ACTIVE FILTER

FOUR FILTERS IN ONE AT THE SAME TIME

Call, Write or SEE Another ISSUE for Details

ELECTRONICS RESEARCH CORP. OF VIRGINIA P.O. B0X 2394 VIRGINIA BEACH, VIRGINIA 23452 TELEPHONE (EO4) 463-2659

G133 HF RECEIVER

0.2 to 30 Mhz SSB, AM, CW in thirty continuously tuneable bands. Set is Collins 51S1 repackaged by LTV-Tenco for military with added AM BFO, extra filtering, and jack for 14.600 Khz tuner. 50 ohm input impedance: 600 or 4 ohm audio output. 16 tubes. Requires $115 / 230$ VAC $50.400 \mathrm{~Hz} ; 24$ VDC for AM BFO $61 / 4 \times 18^{1 / 4} \times 13^{\prime \prime}: 40 \mathrm{lbs}$. sh. More into upon request. Used, reparable: $\mathbf{\$ 6 9 5}$. Checked: $\mathbf{\$ 8 5 0}$. Collins 51SI manual, $\mathbf{\$ 1 5}$ when purchased with G 133. Prices F.O.B. Lima, O. - VISA, MASTERCARD Accepted. Allow for Shipping - Send for New FREE CATALOG!

Addrass Dept. HR - Phone: 419/227-6573
FARR RARAC SARES

Repeater Jammers Running You Ragged?

Here's a portable direction finder that REALLY works-on AM, FM, pulsed signals and random noise! Unique left-right DF allows you to take accurate (up to 2°) and fast bearings, even on short bursts. Its 3 dB antenna gain and $.06 \mu \mathrm{~V}$ typical DF sensitivity allow this crystalcontrolled unit to hear and positively track a weak signal at very long ranges-while the built-in RF gain control with 120 dB range permits positive DF to within a few feet of the transmitter. It has no 180° ambiguity and the antenna can be rotated for horizontal polarization.

The DF is battery-powered, can be used with accessory antennas, and is $12 / 24 \mathrm{~V}$ for use in vehicles or aircraft. It is available in the $140-150 \mathrm{MHz}$ VHF band and/or $220-230 \mathrm{MHz}$ UHF band. This DF has been successful in locating malicious interference sources, as well as hidden transmitters in "T-hunts", ELTs, and noise sources in RFI situations.

Price for the single band unit is $\$ 195$, for the VHF/UHF dual band unit is $\$ 235$, plus crystals. Write or call for information and free brochure.

L-TRONICS
5546 Cathedral Oaks Road
W6GUX
(Attention Ham Dept.) Santa Barbara, CA 93111

WD6ESW

ALL BAND TRAP ANIENXAS!

\rightarrow -

PRETUNED- COMPLETELY ASSEMBLED-
ONLY ONE NEAT SMALL ANTENNA FOR UP TO 7 BANDS! EXCELLENT FOR CONGESTED HOUSING AREAS. APARTMENTS LIGHT - STRONG - ALMOST INVISIBLEI ALL CLASS AMATEURS!
COMPLETE AS SHOWN with 90 ft . RG58U-52 ohm reediline, and PL259 connector, insulators, 30 ft . 300 ib . test dacron end supports, center connector with built in Hightning arrester and static discharge molded, sealed, weatherproot, resonant traps 1 "X6"-you Just switch to band desired for excellent worldwide operation- transmitting and recleving! Low SWR over all bands - Tuners usually NOT NEEDEDI Can be used as
inverted V 's. siopers. In attics, on bulding tops or narrow lots. The ONLY ANTENNA YOU WILL EVER NEED FOR ALL DESIRED BANDS - WITH ANY TRANSCEIVER - NEW - EXCLUSIVEI NO BALUNS NEEDEDI 80-40-20-15-10-6 meter - 2 trap -.. 104 ft . with 90 ft . RG58U - connector -Model 998BUA ... $\$ 69.95$ 40-20-15-10 meter $\boldsymbol{- 2} 2$ trap $\boldsymbol{\cdots - 5 4} \mathrm{ft}$. with 90 ft . RG58U - connector - Model 1001BUA $\$ 68.95$ 20-15-10 meter -2 trap … 26ft. with 90 ft . RG58U - connector - Model 1007BUA $\$ 67.95$ SEND FULL PRICE FOR POSTPAID INSURED. DEL. IN USA. (Canada is $\$ 5.00$ extra for postage - clericalcustoms etc.,.) order using VISA - MASTER CHARGE. CARD. AMER. EXPRESS. GIVe number and ex date. Ph 1-308-236-5333 9AM - 6PM week days. We ship in 2-3 days. ALL PRICES WILL INCREASE SAVE - ORDER NOW! All antemnas guaranteed for 1 year. 10 day money back trial if returned in new conditiont Made in USA. FREE INFO. AVAILABLE ONLY FRON

WESTERN ELECTRONICS Dept. AR- 11
Kearney, Nebraska, 68847

Featuring Kenwood, Yaesu, Icom, Drake, Ten-Tec, Swan, Dentron, Alpha, Robot, MFJ, Tempo, Astron, KLM, Hy Gain, Mosley, Larsen, Cushcraft, Hustler, Mini Products, Bird, Mirage, Vibroplex, Bencher, Info-Tech, Universal Towers, Callbook, ARRL, Astatic, Shure. We service everything we sell!

Write or call for quote. You Won't Be Disappointed. We are just a few minutes off the NYS Thruway (I-90) Exit 32
OUT OF STATE ONEIDA COUNTY AIRPORT TERMINAL BUILDING CALL TOLL FREE

ORISKANY, NEW YORK 13424
N.Y. Res. Call (315) 337-0203

Warren - K2IXN
800-448-9338
Bob - WA2MSH

Ham Radio's guide to help you find your local

Arizona

POWER COMMUNICATIONS
CORPORATION
6012 N. 27TH AVE.
PHOENIX, AZ 85017
$602 \cdot 242 \cdot 6030$ or $242 \cdot 8990$
Arizona's \#1 "Ham" Store. Yaesu,
Kenwood, Icom and more.

California

C \& A ELECTRONIC ENTERPRISES 2210 S. WILMINGTON AVE.
 SUITE 105
 CARSON, CA 90745
 213-834-5868
 Not The Biggest, But The Best -
 Since 1962.

JUN'S ELECTRONICS
11656 W. PICO BLVD.
LOS ANGELES, CA 90064
213-477-1824 Trades
714-463-1886 San Diego
The Home of the One Year Warranty

- Parts at Cost - Full Service.

QUEMENT ELECTRONICS
1000 SO. BASCOM AVENUE
SAN JOSE, CA 95128
408-998-5900
Serving the world's Radio
Amateurs since 1933.

SHAVER RADIO, INC.
1378 S. BASCOM AVENUE
SAN JOSE, CA 95128
408-998-1103
Atlas, Kenwood, Yaesu, KDK, Icom, Tempo, Wilson, Ten-Tec, VHF Engineering.

Connecticut

HATRY ELECTRONICS

500 LEDYARD ST. (SOUTH)
HARTFORD, CT 06114
203-527-1881
Connecticut's Oldest Ham
Radio Dealer.

Delaware

DELAWARE AMATEUR SUPPLY 71 MEADOW ROAD
NEW CASTLE, DE 19720
302-328-7728
ICOM, Ten-Tec, Swan, DenTron, Tempo, Yaesu, Azden, and more. One mile off 1-95, no sales tax.

Florida

AGL ELECTRONICS, INC.
1898 DREW STREET
CLEARWATER, FL 33515
813-461-HAMS
West Coast's only full service
Amateur Radio Store.

AMATEUR RADIO CENTER, INC.
2805 N.E. 2ND AVENUE
MIAMI, FL 33137
305-573.8383
The place for great dependable names in Ham Radio.

RAY'S AMATEUR RADIO

1590 US HIGHWAY 19 SO.
CLEARWATER, FL 33516
813.535-1416

Atlas, B\&W, Bird, Cushcraft, DenTron, Drake, Hustler, Hy-Gain, Icom, K.D.K., Kenwood, MFJ, Rohn, Swan, Ten-Tec, Wilson.

Illinois

AUREUS ELECTRONICS, INC.
1415 N. EAGLE STREET
NAPERVILLE, IL 60540
312-420-8629
"Amateur Excellence"

ERICKSON COMMUNICATIONS, INC.
5456 N. MILWAUKEE AVE.
CHICAGO, IL 60630
Chicago - 312-631-5181
Outside tllinois - 800-621-5802
Hours: 9:30-5:30 Mon, Tu, Wed \&
Fri.; 9:30-9:00 Thurs; 9:00-3:00 Sat.

Kansas

ASSOCIATED RADIO

8012 CONSER, P. O. BOX 4327
OVERLAND PARK, KS 66204 913-381-5900
America's No. 1 Real Amateur
Radio Store. Trade - Sell - Buy.

Maryland

THE COMM CENTER, INC.
LAUREL PLAZA, RT. 198
LAUREL, MD 20810
800-638-4486
Kenwood, Drake, Icom, Ten-Tec,
Tempo, DenTron, Swan
\& Apple Computers.

Massachusetts

TEL-COM, INC.
675 GREAT ROAD, RT. 119
LITTLETON, MA 01460
617-486-3040
The Ham Store of New England You Can Rely On.

TUFTS RADIO ELECTRONICS
206 MYSTIC AVENUE
MEDFORD, MA 02155
617.391-3200

New England's friendliest
ham store.

Minnesota

PAL ELECTRONICS INC.
3452 FREMONT AVE. NO.
MINNEAPOLIS, MN 55412
612-521-4662
Midwest's Fastest Growing Ham
Store, Where Service Counts.

New Hampshire

EVANS RADIO, INC.
BOX 893, RT. 3A BOW JUNCTION CONCORD, NH 03301 603-224-9961
Icom, DenTron \& Yaesu dealer.
We service what we sell.

New Jersey

RADIOS UNLIMITED
P. O. BOX 347

1760 EASTON AVENUE SOMERSET, NJ 08873
201-469-4599
New Jersey's Fastest Growing
Amateur Radio Center.

ROUTE ELECTRONICS 46
225 ROUTE 46 WEST
TOTOWA, NJ 07512
201-256-8555
Drake, Swan, DenTron, Hy-Gain,
Cushcraft, Hustler, Larsen, Etc.

WITTIE ELECTRONICS

384 LAKEVIEW AVENUE
CLIFTON, NJ 07011
(201) $546-3000$

Same location for 63 years. Full-line authorized Drake dealer. We stock most popular brands of Antennas and Towers.

New Mexico
PECOS VALLEY
AMATEUR RADIO SUPPLY
112 W. FIRST STREET
ROSWELL, NM 88201
505-623-7388
Now stocking Ten-Tec, Lunar, Icom, Morsematic, Bencher, Tempo, Hy-Gain, Avanti and more at low, low prices. Call for quote.

New York

BARRY ELECTRONICS

512 BROADWAY
NEW YORK, NY 10012
212.925-7000

New York City's Largest Full Service Ham and Commercial Radio Store.

GRAND CENTRAL RADIO
124 EAST 44 STREET
NEW YORK, NY 10017
212.599-2630

Drake, Kenwood, Yaesu, Atlas,
Ten-Tec, Midland, DenTron, Hy-Gain, Mosley in stock.

HARRISON RADIO CORP.

20 SMITH STREET
FARMINGDALE, NY 11735
516-293-7990
"Ham Headquarters USA" since 1925.
Call toll free 800-645-9187.

RADIO WORLD

ONEIDA COUNTY AIRPORT
TERMINAL BLDG.
ORISKANY, NY 13424
Toll Free 800-448-7914
NY \{ 315-337-2622
Res. \{ 315-337-0203
New \& Used Ham Equipment.
See Warren K2IXN or Bob WA2MSH.

Ohio

UNIVERSAL AMATEUR RADIO, INC. 1280 AIDA DRIVE
COLUMBUS (REYNOLDSBURG)
OH 43068
614-866-4267
Complete Amateur Radio Sales and Service. All major brands - spacious store near 1-270.

Pennsylvania

HAMTRONICS, DIV. OF TREVOSE ELECTRONICS 4033 BROWNSVILLE ROAD TREVOSE, PA 19047 215-357-1400
Same Location for 30 Years.

```
LaRUE ELECTRONICS
1112 GRANDVIEW STREET SCRANTON, PENNSYLVANIA 18509
717-343-2124
ICOM, Bird, Cushcraft, CDE, Ham-Keys, VHF Engineering, Antenna Specialists.
```

SPECIALTY COMMUNICATIONS
2523 PEACH STREET
ERIE, PA 16502
814-455.7674
Service, Parts, \& Experience
For Your Atlas Radio.

Virginia

[^8] MAP LIBRARY!

Here's an offer you can't refuse! You receive three, information-packed, Amateur Callbook maps, folded, plus the World Atlas for only $\$ 4.50$ plus $\$ 1.50$ shipping and handling. If purchased separately, total value of map/atlas offer would be $\$ 7.50$ plus shipping. You save $\$ 3.00$ and get these invaluable radio amateur aids!

1. Prefix Map of the World, folded.

World-wide prefixes. Shows 40-zone map on one side, 90 -zone map on the other. Size 40 " $\times 28$ "
2. Map of North America, folded. Includes Central America and Caribbean to the Equator. Shows call areas, zone boundaries, prefixes, etc. Size 30 " $\times 25$ "
3. Great Circle Chart of World, folded Centered on $40^{\circ} \mathrm{N}, 100^{\circ} \mathrm{W}$. Shows cities, latitude, longitude, great circle bearings and more! Size $30^{\prime \prime} \times 25$ "

Plus special FREE bonus!

The Callbook's own Radio Amateur World Atlas, FREE with the purchase of the 3 maps. Contains eleven full color maps of the world, looking at things from the radio amateurs point of view.

Callbook Map Library	$\mathbf{\$ 4 . 5 0}$
Shipping	$\mathbf{1 . 5 0}$
	Total
$\mathbf{\$ 6 . 0 0}$	

Special Offer! Amateur Radio Emblem Patch only $\$ 2.50$ prepaid
Pegasus on blue field, red lettering. $3^{\prime \prime}$ wide x 3 " high. Great on jackets and caps. Sorry, no call letters.

ORDER TODAY!
Order from your favorite electronics dealer of direct from the publisher. All direct orders add $\$ 1.50$ for shipping. Illinois residents add 5\% Sales Tax

Ham Radio's Bookstore

U.S. \& FOREIGN 1981 RADIO AMATEUR CALLBOOKS

Don't be one of those who waits until the year is half over to buy a new Callbook. Invest in your 1981 Callbooks today and get a full year's use out of them. Crammed full of the latest addresses, QSL information, and other vital data.

\square CB-US81

\square CB-F81
Softbound \$17.95
Softbound \$16.95
Early December delivery!

BRAND NEW! STEP INTO '81 WITH THE LATEST HANDBOOK AT LAST YEAR'S PRICE!

1981 HANDBOOK

Now is the time to order your copy of the 1981 ARRL "RADIO AMATEUR'S HANDBOOK." Internationally recognized and universally consulted, every amateur should have the latest edition. The new HANDBOOK covers virtually all of the state-of-the-art developments in electronics theory and design. Novices will find it to be an indispensable study guide, while the more advanced Amateur will enjoy building the many new projects
\square Order AR-HB81
Softbound $\$ 10.00$Order AR-BB81
Hardbound \$15.75
Late November delivery

NEW!

RADIO PROPAGATION HANDBOOK

by Peter N. Saveskie

Here it is! Total coverage of radio propagation in the RF spectrum from very low to extremely high frequencies! Ground wave, sky-wave, tropospheric media are thoroughly discussed. Includes data tables, worksheets, charts and tables covering most technical aspects of interest to Amateur radio operators. Subjects include: HF propagation prediction by computers, microwave path selection (theory versus practice), millimeter wave propagation. A must for every Amateur! © 1980, 499 pages.

$\square \mathrm{T}-1146$

Soltbound $\mathbf{\$ 1 0 . 9 5}$

GUIDE TO RTTY FREQUENCIES

by Oliver P. Ferrell
Radioteletype to many hams and SWL's is an exotic, complicated form of electronic communication. The author is a well known expert in this interesting field and brings to you a wealth of knowledge and practical experience. First he covers the basics of RTTY identification codes and equipment. Once you've mastered the basics. he gives you a complete rundown on how to receive and understand what you'll be seeing. And - there are over 60 pages of woridwide station listings. For your convenience, listings are made by frequency with station location and service. © 1980,96 pages.
\square GL.-RF
Softbound $\$ 8.95$

Study for the NEW license examinations

AMECO AMATEUR LICENSE GUIDES

by Martin Schwartz, W2OSH
Each of these useful books contains a sample FCC-type examination, plus the
FCC study questions along with easy-to-understand answers. The questions are
grouped according to subject for easier study. Novice, Technician and Advanced
Guides include special addendum covering latest FCC exams! Extra Class adden-
dum will be rushed to you when released (early November)
[]16-01 Advanced Class - 64 pages, © $1980-\$ 1.75$
[]17-01 Extra Class - 64 pages, © 1979 - $\$ 1.75$
[77-01 Novice Class License Guide - 32 pages, (c) 1979 - $\$ 1.00$
[12-01 General Class License Guide - 64 pages, (c) 1979 - $\$ 1.50$

AMATEUR RADIO THEORY COURSE Revised 1980!

A complete, well explained, home study course in radio theory, from elementary electronics to antennas, covering the requirements for the Novice, Technician, and General Class Amateur License. Each of 14 lessons is followed by practice questions and "FCC Type" examination questions similar to those in the Novice and General Class exams. A complete reprint of the FCC Amateur Radio Rules and Regulations is also provided. Even if you have no prior background in electronics, you'll find this latest revised edition an excellent way to get yourself on the air 320 pages. Revised 1980.
[] 102-01
Softbound \$6.95

FEDERAL FREQUENCY DIRECTORY

aditad by Robert Grove

It's the only complete guide to US Government communication stations available today. The author spent many hours compiling this comprehensive listing. First of all, stations are conveniently listed by frequency. Then each station is categorized by which agency or department it is and where it is located. About the only stations missing are the very top secret services. Without a doubt, this book is of great interest to both SWL's and hams alike. Over 100,000 listings. © 1980.
$\square G E-F D$
Softbound $\$ 14.95$

10-METER FM FOR THE RADIO AMATEUR by Dave Ingram, K4TWJ

A new, unique single-volume collection of 10 meter FM reference material for the radio amateur interested in this growing lacet of Ham Radio. Features: available equipment, propagation, mobile and fixed station operation, repeaters, antennas and FM theory. Easy to read format with numerous illustrations. (c)1980, 140 pages.
[]T-1189
Softbound $\$ 4.95$

*DIODE SWITCHING BOARDS available to permit 1,2 or more filters than those for which manufacturer provides room. SPECIFY make and model.

Single-filter type: \$12 Airmail postpaid Dual-filter type: \$21 Airmail postpaid

$$
\text { Fiorida residents add } 4 \% \text { (sales tax) } \text { (FOREIGN ADD } \$ 3 \text { per filter) }
$$

BROCHURE ON REQUEST Dealer Inquiries Welcomed

The Iambic Keyer Paddle.

[^9]VANGUARD LABS
196-23 Jamacia Ave. Hollis, NY 11423

NEW

 from clbA complete line of QUALITY 50 thru 450 MHz TRANSMITTER AND RECEIVER KITS. Only two boards for a complete receiver. 4 pole crystal filter is standard. Use with our CHANNELIZER or your crystals. Priced from \$69.95. Matching transmitter strips. Easy construction, clean spectrum, TWO WATTS output, unsurpassed audio quality and built in TONE PAD INTERFACE. Priced from \$29.95.
SYNTHESIZER KITS from 50 to 450 MHz . Prices start at \$119.95.
Now available in KIT FORM GLB Model 200 MINI-SIZER.
Fits any HT. Only 3.5 mA current drain. Kit price $\$ 159.95$ Wired and tested. \$239.95
Send for FREE 16 page catalog. We welcome Mastercharge or VISA

GLBELECTRONICS

1952 Clinton St., Buffalo, N. Y. 14206

TheBest Got Better

MODEL 4381 RF POWER ANALYST
This new generation RF Wattmeter with nine-mode system versatility reads... IN STOCK QUICK DELIVERY aUTHorized Ditel distributor

associates
115 BELLARMINE ROCHESTER, MI 48063
CALL TOLL FREE
800-521-2333
IN MICHIGAN $313-375-0420$

Advertisers check-off

... for literature, in a hurry - we'll rush your name to the companies whose names you "check-off"

Place your check mark in the space petween name and number. Ex: Ham Radio $\sqrt{ } 234$

Ace Comm. _ 850	Jameco ___ ${ }^{333}$
AEA __ 677	Jan __. 067
Alaska Microwave __ 826	Jones __ 626
Aluma __ 589	Kantronics *
Anteck ___ 733	Kenwood *
Applied Inv. __ 862	L-Tronics __ 576
Astron __ 734	MFJ _ _ 082
Atlantic Surplus *	MHz Elec. -_ 415
Barker __ 015	Madison _- 431
Barry *	Microcraft __ 74
Bilal __ 817	Monroe Elec. __ 725
Budwig ___ 233	Nemal *
Comm. Concepts __ 797	Palomar Eng.*
Comm. Elec. _ 489	Panasonic __ 683
Comm. Spec. _ 330	Payne - 867
DCO __ 324	R.F Gain ___ 876
Dave *	Callbook __ 100
Digitrex ___ 823	Radiokit __ 801
Drake *	Radio Warehouse *
ETCO _ 856	Radio World *
E. T. O. ${ }^{\text {- }}$	Ramsey ___ 442
Elcom _- 877	R. M. C.
Elec. Research Virginia *	Shure _- 771
Eng. Consulting *	Skytec __ 704
Erickson Comm. *	Spectronics __ 191
Fair Radio _- 048	Spec. Int._- ${ }^{108}$
Fox-Tango __ 657	Telrex*
G\&C Comm._ 754	Ten-Tec*
GLB __ 552	V.J Products _ 855
Hal _ 057	Vanguard ___ 716
Hal-Tronix __ 254	Varian - 043
H. R. Bookstore _- 150	Vibroplex - 870
Horizons*	VoCom __ 857
Henry \qquad 062 Hildreth 283	Webster Assoc. \qquad 423
Icom ${ }^{\text {- }}$	Western Elec. -
int. Crystal __ 066	Yaesu ___ 127

Please contact this advertiser directly.
Limit 15 inquiries per request.

November, 1980
Please use before December 31, 1980

NAME.
CALL.
STREET
CITY
STATE.

DON \& MIKE'S GOODIES

Cubic - Swan 102BXA $\$ 999.00$
Astro 150 779.00
Astro 100MXA 499.00
Mirage 823 1 watt 30 watt
amp 89.95
DSI 5600A w/Ant/Ac 185.00
Robot 800 699.00
Cushcraft A3 Tribander 169.00
AEA Morsematic 169.00
Bird 43, Slugs Stock
CDE Ham. 4 Rotor 169.00
Ham-X 239.00
FDK Palm 2 Handie with
BP/AC 149.00
Cetron, GE 572B 34.00
Kenwood Service Manuals
Stock................ 10.00 ea.
Telrex TB5EM 425.00
Telrex TB6EM 540.00
Telrex Monobanders Stock
Santec HT1200
Synthesized
339.00

Order Your KWM380 Now! Old Pricing \& Free Goods!

Adel Nibbling Tool......... 8.95
Janel QSA5 41.95
Sprague 100MFD/450V Cap 2.00
Rohn Tower 20\% off dealer
25G, 45G Sections
Belden 9405 Heavy Duty
Rotor Cable 2\#16, 6\#18.....38 3 /ft
Alliance HD73 Rotor 109.95
Amphenol Silverplate PL259
1.00

ICOM 255A 2M Synthesized 319.00
ICOM 260A 2M SSB/FM/CW 429.00
Late Specials:
Kenwood TS180S/DFCISSB . . . Call ICOM IC2AT/TTP/NICAD . . . 229.00 NEW -ICOM IC720 w/AC/mike Call Bearcat 220-\$299.00 300-399.00

MASTERCHARGE • VISA

All prices fob Houston except where indicated. Prices subject to change without notice, all items guaranteed. Some items subject prior sale. Send letterhead for Dealer price list. Texas residents add 6% tax. Please add postage estimate $\$ 1.00$ minimum.

1508 McKinney
Houston, Texas 77010 713/658-0268

Adverfisers index

Ace Communications, Inc 95
Advanced Electronics Applications. 72, 73
Alaska Microwave Labs 75
Aluma Tower Company 85
Anteck, Inc. 85
Applied Invention 82
Astron Corporation. 88
Atlantic Surplus Sales 85
Barker \& Williamson, inc95
Barry Electronics 21
Bilal Company 84
Budwig Mfg. Company 84
Communication Concepts, Inc. 84
Communications Electronics 71
Communications Specialists. 10, 11
DCO, Inc. 81
Dave. 84
Digitrex Electronics. 84
Drake، R. L., Co. 62. 63, 64, 65, 66, 6ETCO82
Ehrhorn Technological Operations 87
Elcom Systerns, Inc 82
Electronic Research Corp. of Virginia 89
Engineering Consulting Services. 82
Erickson Communications 85, 91
Fair Radio Sales 89
Fox-Tango Corp. 93
G\&C Communications 81
GLB Electronics 93
Ha Communications Corp 7
Hal-Tronix 47
Ham Radio's Bookstore 80, 92
Ham Radio Horizons. 86, 88
Henry Radio Stores. Cover II
Hildreth Engineers 82
Icom America, Inc. 5
International Crystal Mfg. Co. 75
Jameco Electronics 57
Jan Crystals 80
Jones, Marlin P. \& Associates 83
Kantronics 84
Trio-Kenwood Communications, Inc 48,49
L-Tronics 89
MFJ Enterprises 76, 77, 78, 79
Madison Electronics Supply 81,94
Microcraft Corporation 82, 85
Monroe Electronics. 89
Nemal Electronics. 93
Palomar Engineers 74
Panasonic. 1
Payne Radio 35
R-F Gain, Ltd. 88
Radio Amateur Calibook 74
Radiakit 82
Radio Warehouse 84
Radio World 89
Ramsey Electronics 96
Rocky Mountain Circuits 88
Shure Brothers, Inc. 7
Skytec. 88
Spectronics34
Spectrum International. 34
Telrax Laboratories.
Ten-Tec9
95
V-J Products93
Vanguard Labs Cover IV
Vibroplex Co., Inc. 93
VoCom 80
Webster Aasociates 93
Western Electronics 89
Cover III

VJ90SSB
 POWER INPUT IN WATTS

POWER CHART

POWER-UP FOR ONLY $\$ 79.95$

SPECIAL PACKAGE DEAL

That's right - 90 watts of linear power for 2 meters for only $\$ 79.95$. Check out the VJ90SSB Power Chart, and you'll see the real value - 8 watts out for one watt drive, 16 out with two watts drive! Now you can put that new HT to mobile use, for only $\$ 79.95$. As a special deal, we've designed a 19 dB gain in-line preamp with integrated T/R relay. A $\$ 29.95$ value, for only $\$ 20.00$ when purchased with the VJ90SSB Amplifier.

But that's not all! We've built a 15 amp (20 amp sur ge) 13.8 VDC power supply just for this combo, the VJ15. When you buy the VJ90SSB and Preamp. we'll sell you this super power supply for only $\$ 79.95$. It all adds up to over $\$ 225.00$ worth of gear for only $\$ 179.90$. Don't wait. Order Today!

Each VJ Product component is hand wired and individually funed for maximum reliability and performance. VJ Products are guaranteed to be free of defects in parts or workmanship for 1 year from the date of purchase. POWER TRANSISTORS ARE EXCLUDED. BUT WARRANTED FOR 90 DAYS. Visa accepted. Immediate shipment guaranteed by VJ Products, Inc.

SERVING THE ELECTRONICS INDUSTRY SINCE 1965 V-J Products, Inc. 505 E. Shaw Street, Pasadena, Texas 77506 (713) 477-0134

the first name in Counters !

 9 DIGITS 600 MHzSPECIFICATIONS:

The CT-90 is the most versatile, feature packed counter available for less than $\$ 300.00$: Advanced design features include, three selectable gate times, nine digits, gate indicator and a unique display hold function which holds the displayed count after the input signal is removed Also, a 10 mHz TCXO time base is used which enables easy zero beat calibration checks against WWV. Optionally, an internal nicad battery pack external time base input and Micropower high stability crystal oven time base are available. The CT 90 , performance you can count on'

Range $\quad 20 \mathrm{~Hz}$ to 600 MHz
Sensitivity: Less than 10 MV to 150 MHz Less than 50 MV to 500 MHz
Resolution 0.1 Hz (10 MHz range) 1.0 Hz (60 MHz range) $10.0 \mathrm{~Hz}(600 \mathrm{MHz}$ range)
Display. $\quad 9$ digits $0.4^{\prime \prime}$ LED
Time base \quad Standard $10.000 \mathrm{mHz}, 1.0 \mathrm{ppm} 20-40^{\circ} \mathrm{C}$. Optional Micro-power oven $0.1 \mathrm{ppm} 20-40^{\circ} \mathrm{C}$
Power: $\quad 8.15 \mathrm{VAC} @ 250 \mathrm{ma}$

7 DIGITS 525 MHz \$99 $\frac{95}{\mathrm{w}}$

SPECIEICATIONS:

Range $\quad 20 \mathrm{~Hz}$ to 525 MHz
Sensitivity: Less than 50 MV to 150 MHz Less than 150 MV to 500 MHz
Resolution: $\quad 1.0 \mathrm{~Hz}$ (5 MHz range) 1.0 Hz (5 (50 MHz range)
10.0 Hz (50 ge) 100.0 Hz (500 MHz range)

Display: $\quad 7$ digits $0.4^{\prime \prime}$ LED
Time base. $\quad 1.0 \mathrm{ppm}$ TCXO $20-40^{\circ} \mathrm{C}$
Power: $\quad 12$ VAC @ 250 ma

The CT-70 breaks the price barrier on lab quality frequency counters Deluxe features such as three frequency ranges - each with pre- amplification, dual selectable gate times, and gate activity indication make measurements a snap. The wide frequency range enables you to accurately measure signals from audio thru UHF with 1.0 ppm accuracy- that's $.0001 \%$! The CT-70 is the answer to all your measurement needs, in the field, lab or ham shack.

PRICES:

CT-70 wired, 1 year warranty $\$ 99.95$ CT-70 Kit, 90 day parts warranty
AC-1 AC adapter
BP-1 Nicad pack + AC
adapter/charger

7 DIGITS 500 MHz

Here's a handy, general purpose counter that provides most counter

PRICES:
MINI-100 wired, 1 year MINI-100 Kit, 90 day part warranty
AC- Z Ac adapter for MINI100
BP-Z Nicad pack and AC
adapter/charger
functions at an unbelievable price. The MINI-100 doesn't have the full
frequency range or input impedance qualities found in higher price units, but for basic RF signal measurements, it can't be beat' Accurate measurements can be made from 1 MHz all the way up to 500 MHz with excellent sensitivity throughout the range, and the two gate times let you select the resolution desired. Add the nicad pack option and the MINI-100 makes an ideal addition to your tool box for "in-the-field" frequency checks and repairs.

8 DIGITS 600 MHz \$15995

SPECIFICATIONS:

Range: $\quad 20 \mathrm{~Hz}$ to 600 MHz Sensitivity: Less than 25 mv to 150 MHz Resolution $\quad 1.0 \mathrm{~Hz}$ (60 MHz range) Display: $\quad 10.0 \mathrm{~Hz}(600 \mathrm{MHz}$ range) 8 digits $0.4^{\prime \prime}$ LED $\begin{array}{ll}\text { Power. } & 110 \mathrm{VPAC} \text { or } 12 \mathrm{VDC} \\ & \end{array}$

The CT-50 is a versatile lab bench counter that will measure up to 600 MHz with 8 digit precision. And, one of its best features is the Receive Frequency Adapter, which turns the CT-50 into a digital readout for any receiver. The adapter is easily programmed for any receiver and a simple connection to the receiver's VFO is all that is required for use. Adding the receiver adapter in no way limits the operation of the CT-50, the adapter can be conveniently switched on or off. The CT-50, a counter that can work double duty!

PRICES:
CT-50 wired, 1 year warranty $\$ 159.95$ CT-50 Kit, 90 day parts warranty
119.95

RA-1, receiver adapter kit RA-I wired and pre programmed (send copy of receiver schematic)

DIGITAL MULTIMETER \$99온 WIRED

The DM-700 offers professional quality performance at a hobbyist price Features include; 26 different ranges and 5 functions, all arranged in a convenient, easy to use format. Measurements are displayed on a large $31 / 2$ digit, $1 / 2$ inch LED readout with automatic decimal placement, automatic polarity, overrange indication and overlond protection up to 1250 volts on all ranges, making it virtually goof-proof: The DM-700 looks great, a handsome, jet black, rugged ABS case with conventent retractable tilt bail makes it an ideal addition to any shop.

SPECIFICATIONS:
$\overline{\text { DC/AC volts } 100 \mathrm{uV}}$ to $1 \mathrm{KV}, 5$ ranges DC/AC
current $\quad 0.1 \mathrm{uA}$ to 2.0 Amps, 5 ranges Resistance 0.1 ohms to 20 Megohms 6 ranges Input
impedance $10 \mathrm{Megohms} \mathrm{DC} / \mathrm{AC}$ volts
Accuracy: 10.1% basic DC volts Power: $\quad 4^{\circ} \mathrm{C}$ cells

PRICES:

DM. 700 wired 1 year warnnty $\$ 99.95$
DM-700 Kit, 90 day parts warranty

BP-3, Nicad pack + AC
adapter/charger
MP.1, Probe kit
2.95

AUDIO SCALER

For high resolution audio measurements, multiplies UP in frequency.

- Great for PL tones
- Multiplies by 10 or 100
- 0.01 Hz resolution'
$\$ 29.95$ Kit $\$ 39.95$ Wired

ACCESSORIES
 Telescopic whip antenna-BNC plug.

57.95 High impedance probe, light loading Low pass probe, for audio measurements
Direct probe, general purpose usage Tilt bail, for CT 70, 90, MIN1-100
Color burst calibration unit, calibrates counter against color TV signal.

COUNTER PREAMP

For measuring extremely weak signals from 10 to 1,000 MHz . Small sise, powered by plug transformer-included. - Flat 25 db gain

- BNC Connectors
- Great for sniffing RF with pick-up loop
$\mathbf{\$ 3 4 . 9 5}$ Kit $\$ 44.95$ Wired

With the Yaesu FT-480R . . . TWO METERS COMES ALIVE!

Features

- Coverage of $143.5-148.5 \mathrm{MHz}$ (good news for you MARS operators)
- USB, LSB, CW and FM operation are all built-in
- Four channels of memory, with priority channel
- Two VFOs for unusual repeater splits
- Convenient synthesizer steps: $10 \mathrm{~Hz}, 100 \mathrm{~Hz}$, or 1 kHz per step on SSB/CW, $1 \mathrm{kHz}, 20 \mathrm{kHz}$, or 100 kHz per step on FM
- Scanning control from microphone
- Highly effective noise blanker
- Receiver offset tuning for following Dopplershifted signals
- SAT switch allows shifting of transmit frequency during OSCAR operation (many rigs cannot QSY on TX)
- 30 watts DC input on FM/CW, 30 watts PEP input on SSB, HI/LOW power selection on FM and CW

- Built-in tone burst generator
- Bright LED signal strength/relative power output level meter
- Easy-to-read fluorescent display of operating frequency and memory channel
- Front panel switch for zeroing synthesizer to convenient step when changing modes from SSB/CW to FM
- Requires 13.8 VDC , negative ground

Available Options:

FP-80 AC Power Supply
FTS-64E Synthesized CTCSS/Burst Encoder
Price and specifications subject to change without notice or obligation

Did You Know . . .

Yaesu now has a crystal-controlled 220 MHz FM rig - The FT-127

EIMAC's new high-mu triode/cavity combination. It takes the hassle out of 10 kW VHF transmitter design.

Relax. Now EIMAC offers you the best triode available and a cavity that has been custom designed for it. All you have to do is design them in.
The advantages are impressive. EIMAC's ceramic-metal high-mu triode (3CX10000U7) gives you peak sync power output of 10 kW and a stage gain of 14 dB . That's 2 dB more than with comparable tetrodes.

And there's more. Driving requirements are reduced; screen power supply and screen circuitry are eliminated; and cooling requirements are lessened. The result is ease of maintenance and substantial cost reduction.

There are two EIMAC cavities for your 10 kW combination, the CV-2240 for channels 2-6, and the CV-2250 for channels 7-13.
For further information contact Varian, EIMAC Division, 301 Industrial Way, San
Carlos, California 94070, (415) 592-1221. Or call any of the more than 30 Varian Electron Device Group Sales Offices throughout the world.

varian

[^0]: Don Nelson, WB2EGZ Vorhees, New Jersey

[^1]: *A few partial kits consisting of board and programmed PROM, and a few wired and tested units are available. Send a SASE to author for prices and information.

[^2]: *The radiated beam from a mechanically fixed (system) array of laterally spaced Yagi antennas can, in principle, be steered in azimuth by changing the excitation phase to each Yagi antenna. However, the beam quality generally deteriorates. Such mechanically fixed, electrically steered phased arrays are not considered here.

[^3]: * For certain point-to-point communications, where the path conditions are marginal, the increased gain from lateral stacking could outweigh the nuisance of the narrower azimuthal angle.

[^4]: "Southwest Technical Products.

[^5]: By Ray Megirian, K4DHC, 606 SE 6 Avenue, Deerfield Beach, Florida 33441

[^6]: *Touch-Tone is a registered trademark of the Bell System.

[^7]: 1. Irving Hoff, W6FCC, "The Mainline XK2 Crystal AFSK," RTTY Journal, July-August, 1976, page 3.
 ham radio
[^8]: ELECTRONIC EQUIPMENT BANK
 516 MILL ST., N.E.
 VIENNA, VA 22180
 703.938-3350

 Metropolitan D.C.'s One Stop
 Amateur Store. Largest
 Warehousing of Surplus Electronics.

[^9]: SYNTHESIZED SIGNAL GENERATOR

 - Covers 100 to 179.999 MHz in 1 kHz steps with thumb-wheel dial - Accuracy . 00001% at all frequencies - Internal frequency modulation from 0 to over 100 kHz at a 1 kHz rate - Spurs and noise at least 60 dB below carrier - RF output adjustable trom 50 to 500 mv across 50 ohms - Operates on 12 vdc (a) $1 / 2 \mathrm{amp} \bullet$ Price $\$ 299.95$ plus shipping.

 In stock for immediate shipping. Overnight delivery available at extra cost. Phone: (212) 468-2720

