

ham

 radFo magazine
DECEMBER 1980

- cavity filter conversion
- Yagi antennas: practical designs
- mobile kilowatt
ude compandored ind

980 cumulative index
106

tempo does it again THE WORLD'S FIRST 44O MHZ SYNTHESIZED HAND HELD RADIO

Tempo was the first with a synthesized hand held for amateur use, first with a 220 MHz synthesized hand held, first with a 5 watt output synthesized hand held....and once again first in the 440 MHz range with the $\mathrm{S}-4$, a fully synthesized hand held radio. Not only does Tempo offer the broadest line of synthesized hand helds. but its standards of reliability are unsurpassed...reliability proven through millions of hours of operation. No other hand held has been so

Tempo S-I

The first and most thoroughly field tested hand held synthesized radio available today. Many thousands are now in use and the letters of praise still pour in. The $\mathrm{S}-1$ is the most simple radio to operate and is built to provide years of dependable service. Despite its light weight and small size it is built to withstand rough handling and hard use. Its heavy duty battery pack allows more operating time between charges and its new lower price makes it even more affordable.

Tempo S-5

Offers the same field proven reliability, features and specifications as the S-1 except that the S-5 -provides a big 5 watt output (or 1 watt low power operation). They both have external microphone capability and can be operated with matching solid state power amplifiers (30 watt or 80 watt output). Allows your hand held to double as a powerful mobile or base radio.
S-30...\$89.00
S-80... $\$ 149.00^{*}$
-For use with S-1 and S-5

Tempo S-2

With an S-2 in your car or pocket you can use 220 MHz repeaters throughout the U.S. It offers all the advanced engineering, premium quality components and features of the $\mathrm{S}-1$ and S-5. The S-2 offers 1000 channels in an extremely lightweight but rugged case. If you're not on 220 this is the perfect way to get started. With the addition of the S-20 Tempo solid state amplifier it becomes a powerful mobile or base station. If you have a 220 MHz station, the S-2 will add tremendous versatility. Price... $\$ 349.00$ (With touch tone pad installed... $\$ 399.00$) S-20...\$89.00
thoroughly field tested, is so simple to operate or offers so much value. The Tempo S-4 offers the opportunity to get on 440 MHz from where ever you may be With the addition of a touch tone pad and matching power amplifier its versatility is also unsurpassed
The S-4. \$349 00
With 12 button touch tone pad . $\$ 399.00$ With 16 button touch tone pad. $\$ 419.00$ S-40 matching 40 watt output
13.8 VDC power amplifier \$149.00

Specifications:

Frequency Coverage: 440 to 449.995 MHz Channel Spacing: 30 KHz minimum
Power Requirements: 9.6 VDC
Current Drain: 17 ma-standby 400 ma-transmit (1 amp high power) Antenna Impedance: 50 ohms
Sensitivity: Better than .5 microvolts nominal for 20 db
Supplied Accessories: Rubber flex antenna 450 ma ni-cad battery pack, charger and earphone
RF output Power: Nominal 3 watts high or 1 watt low power Repeater Offset: $\pm 5 \mathrm{MHz}$

Optional Accessories for all models

12 button touch tone pad (not installed): $\$ 39$ • 16 button touch tone pad (not installed): $\$ 48$ - Tone burst generator: $\$ 29.95$ - CTCSS sub-audible tone control: $\$ 29,95$ - Leather holster: $\$ 20$ • Cigarette lighter plug mobile charging unit: $\$ 6$

TEMPO VHF \& UHF SOLID STATE POWER AMPLIFIERS
Boost your signal. . . give it the range and clarity of a high powered base station. VHF ($\mathbf{1 3 5}$ to $175 \mathbf{~ M H z}$)

Drive Power	Output	Model No	Price
2 W	130 W	$130 A 02$	$\$ 209$
10 W	130 W	$130 A 10$	$\$ 189$
30 W	130 W	$130 A 30$	$\$ 199$
2 W	80 W	80 A 02	$\$ 169$
10 W	80 W	80 A 10	$\$ 149$
30 W	80 W	80 A 30	$\$ 159$
2 W	50 W	50 A 02	$\$ 129$
2 W	30 W	$30 A 02$	$\$ 89$

UHF (400 to 512 MHz) models, lower power and FCC type accepted models also available.

2050 S. Bundy Dr., Los Angeles, CA 90025
(213) 820-1234 931 N. Euclid, Anaheim, CA 92801
(714) 772-9200 Butler, Missouri 64730
(816) 679-3127

NEW MFJ-102 24/12 Hour Digital Clock/ID Timer

MFJ-102 $\$ 32_{(+54)}^{95}$

The latest in time keeping convenience. Now you can switch to either 24 hour GMT time or 12 hour format! Double usefulness-great for your operating position and great for other family members to use. Switch to "seconds" readout. For the times when you need the utmost accuracy.
Switch to ID timer. Alerts every 9 minutes after you tap the button (also functions as a snooze alarm).
Switch to "observed" timing. Just start clock from zero and note end time of event; counts up to 24 hours and repeats. (requires resetting clock time after use).
Switch to regular alarm. For skeds remind-
er or wake-up use (has alarm-on indicator).

Synchronize with WWV. Now you can adjust the MFJ clock to WWV accuracy. Fast/Slow set buttons for easy setting of time and alarm.
Big, bright, blue digits are $0.6^{\prime \prime}$ for easy-on-the-eyes, across-the-room viewing. Lock function prevents missetting. Solid-state circuitry for long life. Operates on $110 \mathrm{VAC}, 60 \mathrm{~Hz}$ (50 Hz with simple modification). UL approved.
Handsome styling with rugged black plastic case with brushed aluminum top and front. Front has sloping surface for easy viewing. Cabinet measures $6 \times 2 \times 3^{\prime \prime}$.
Put this new improved MFJ digital clock to work in your shack.

Here's the most convenient, most protected way to power-up radio and computer gear. MFJ-1104: Varistor protects against voltage spikes (worth the investment alone to guard your transceiver, computer, or SWL radios.
Individual double-pi RFI filters for each of 3 pairs of outlets to completely isolate radios, computers, and computer peripherals from interference.
8 sockets, 4 pairs, all 3 -prong; the fourth pair is unisolated and unswitched.
Pop-Out fuse for easy changing (15A, 125 VAC), heavy duty 3 -wire 6^{\prime} power cord. Lighted switch shows circuits are "on."

Deluxe heavy-gauge .063 aluminum case, finished in black, has easy mounting slots. Measures $18^{\prime \prime} \mathrm{Lx} 21_{4}{ }^{\prime \prime} \mathrm{W} \times 17 / 8^{\prime \prime} \mathrm{H}$.
MFJ-1103, similar but 12 sockets (2 unswitched), one RFI filter for all.
MFJ-1102, similar to 1103 but no RFI filter. MFJ-1101: 6 sockets, all 3-prong type. Fuse protected, $15 \mathrm{~A}, 125 \mathrm{VAC}$. On-off switch. Lighted "On" indicator. 3-wire 6' power cord. Steel case, finished in gray hammertone, has mounting slots, measures $131 / 8^{\prime \prime} \mathrm{L}$ $\times 2 \%{ }^{\prime \prime} \mathrm{W} \times 11 / 2^{\prime \prime} \mathrm{H}$.
MFJ-1100, similar to 1101 but 5 sockets, less switch, light, and is $85 / 8^{\prime \prime} \mathrm{L}$.

NEW MFJ Compact 3 KW Antenna Tuner Has Roller Inductor

Meet "Versa Tuner \mathbf{V} ". It has all the features you asked for, including the new smaller size to match new smaller rigs only $10 \frac{1}{4} \mathrm{~W} \times 41 / 2 \mathrm{Hx} 147 \mathrm{~B}^{\prime \prime} \mathrm{D}$
Matches coax, balanced lines, random wires $1.8-30 \mathrm{MHz}$.

3 KW PEP - the power rating you won't outgrow. ($250 \mathrm{pf}-6 \mathrm{~K} \mathrm{~V}$ caps).
Roller inductor with a 3-digit turns counter plus a spinner knob for precise inductance control to get that SWR down to minimum every time.
Built-in 300 watt, 50 ohm dummy load.
Built-in 4:1 ferrite balun.
Built-in lighted 2% meter reads SWR plus forward and reflected power in 2 ranges (200 \& 2000 w).
6-position antenna switch (2 coax lines, through tuner or direct, random/balanced line or dummy load). SO-239 coax conn.. ceramic feed-throughs, binding post ground. Deluxe aluminum low-profile cabinet with sub chassis for RFI protection, black finish, black panel with raised letters; tilt bail; requires 12 VDC for meter light.

exciting new ideas from the world's leading manufacturer of amateur radio accessories

NEW MFJ VHF SWR/

Wattmeter/Field Strength Meters

New low cost VHF operating aids.
MFJ-812: Reads SWR from 14-170 MHz to keep you informed about antenna/ feedlines. SO-239 coax conn.
Reads forward \& reflected power at 2 Meters ($144-148 \mathrm{MHz}$) 2 scales (30 \& 300 W). Reads field strength levels from 1-170 $\mathbf{M H z}$. Binding posts provided for antenna. Easy push-button switch operation.
MFJ-810, similar less field strength function.
NEW MFJ DXer's Communications

MFJ-732 Puts more presence in SSB/ AM/FM voice communications, brings more signals out of the "mud."
Easy to use, just push up to 4 buttons.
10-pole (5-stage) circuit with Chebyshev superfast roll-off (up to $58 \mathrm{~dB} /$ octave). First button: On/Off-Bypass, response $300-3000$ Hz ; second: 500 Hz lower cutoff; third: 2200 Hz upper cutoff; fourth: 1500 Hz upper cutoff. Built-in speaker, 2 watt amplifier, LED, 9-18 VDC or 110 VAC with optional AC adapter ($\$ 7.95+\$ 2$), $5 \times 6 \times 15 / 8^{\prime \prime}$.

For tech. info., order or repair status, or calls outside continental U.S. and inside Miss.. call 601-323-5869.

- All MFJ products unconditionally guaranteed for one year (except as noted)
- Products ordered from MFJ are returnable within 30 days for full refund (less shipping)
- Add shipping $\&$ handling charges in amounts shown in parentheses

Write for FREE catalog, over 60 products

M豆
 ENTERPRISES INCORPORATED

Box 494; Mississippi State, MS 39762

ham

 radio magazinevolume 13, number 12
T. H. Tenney, Jr., W1NLB publisher and editor in chief
Alfred Wilson, W6NIF editor
editorial staff
Martin Hanft WB1CHC adtin Hanft, WB1CHC
Robert Schneider, N6MR assistant edito
Thomas F. McMullen, Jr., WISL
Joseph J. Schroeder, WgJuV onard H. Anderson associate editors
W. E. Scarthorough, Jr, KA IDXO graphic production manage rene Kollingsworth editorial assistan
Catherine M. Umphres production assistant
Wayne Pierce, K3SU
publishing staff
Peter M. Hurd, N1SS assistant publisher

1. Craig Clark, Jr., N1ACH
advertising manage
Susan Shorrock
circulation manager
ham radio magazine
ham radio magazine Communications Technology In Greenville, New Hampshire 03048 Telephone: 603-878-144
subscription rates Unitat Sutes: Unied States: one year, $\$ 15.0$ Canade and other countries Ivia Surface Mail one year, $\$ 18.00$; two years, $\$ 32.00$ three years, $\$ 44.00$
Europe, Jepan, Africa lvia A
Forwarding Service) one year, $\$ 25.00$
All subscription orders payable in United States funds, please
foreign subscription agents
Foteign subscription agents are listed on page 103

Microfilm copies Microfirm copies University Microfilms, Internationa Ann Arbor. Michigan 48106 Order publication number 3076

Cassette tapes of selected articles from ham radio are available to the blind and ohysically handicapped from Fecorded Periodicals 919 Walnut Street, 8th Floo

$$
\text { Copyright } 1980 \text { by }
$$

Copyright 1980 by
Communications Technology, Inc
Title registered at U. S. Patent Office
Second-class postage
paid at Greenville, N.H. 03048 and at additional mailing offices
ISSN $0148-5989$

Postmaster zand Form 307% to ham redlo Graenville, Naw Hampahire 03048

contents

12 multipurpose voltage-tuned UHF oscillator
Norman J. Foot, WA9HUV
22 conversion versatility using the F-237/GRC surplus cavity filter William Tucker, W4FXE

30 Yagi antennas: practical designs
James L. Lawson, W2PV
43 mobile kilowatt for DX
Donald P. Winfield, K5DUT
48 amplitude compandored sideband James Eagleson, WB6JNN

52 first building blocks for microwave systems
Geoffrey H. Krauss, WA2GFP
66 inrush current protection for the SB-220 linear
F.T. Marcellino, W3BYM

71 transceiver diplexer: an alternative to relays
Terry A. Conboy, N6RY
106 ham radio cumulative index, 1971-1980

126 advertisers index	84 new products
106 cumulative index	4 observation and
obsopinion	
88 ham mart	8 presstop
78	ham notebook
6	letters

It seems that a West Coast Amateur has decided to make some easy money by publishing material to aid prospective licensees in passing FCC Amateur examinations. His material is crafted so that mere memorization of answers to FCC exam questions practically guarantees a passing grade. His product apparently is derived from FCC exam materials. Such material is gleaned by a well-organized effort to collect questions verbatim from the various exams when they are administered by FCC representatives. Very often this has happened at Radio Amateur conclaves and conventions. We at ham radio magazine deplore such tactics. Amateur Radio has flourished because of its many established traditions. "In today, out tomorrow" publications, such as that referred to above, defeat the entire purpose of the Amateur Radio tradition, which has made our hobby one of the greatest in the nation for over 60 years.

Where do these questions and answers come from? From Radio Amateurs. The publisher in question solicits FCC test questions from those who have recently taken the exam, then publishes these questions along with the proper answers. Pretty neat. All one has to do is memorize the questions and answers, and the exam is a comparative cinch.

The publisher probably is making lots of money publishing the exam questions and answers without apparent legal sanctions (at least to date). But what about the long-range impact on the Amateur Radio Service and U.S. taxpayers at large? We lose.

An interesting sidelight is that the publisher justifies his action in the interest of "socially motivated" hams. His rationale for this rather obtuse reasoning is Part 97.1 (a) of the FCC rules and regulations, Basis and Purpose: "Recognition and enhancement of the value of the amateur service to the public as a voluntary noncommercial communication service, particularly with respect to providing emergency communications." (Italics mine.)

The publisher, however, conveniently overlooks Part 97.1 (b), which states: "Continuation and extension of the amateur's proven ability to contribute to the advancement of the radio art." (Italics mine.)

How can anyone in the Amateur Service comply with regulation 97.1 (b) if a license is obtained by memorizing answers to FCC questions? It is the purpose of this magazine to encourage Amateurs, by publishing articles on current technology, to "contribute to the advancement of the radio art." We believe that, for the most part, Amateurs who obtain their license using only the memorization technique are rarely in a position to contribute to part 97.1 (b) on a technical basis. There are exceptions, of course, but the method of preparing for exams to which we object seems to augur an increasingly less proficient operator in the midst of a rapidly increasing technical operating environment.

What can we Amateurs do to promote the technical integrity of Amateur Radio? Let's learn as much electronic theory as possible before taking the examination. It requires some effort, true, but when we pass the FCC exams based on knowledge rather than memorization we achieve a more significant accomplishment. After all, that's what ham radio is all about. Consider part three of "The Amateur's Code" by Paul Segal: "The Amateur is Progressive . . . He keeps his station abreast of science. It is well-built and efficient. His operating practice is above reproach."
ham radio continues to endorse this philosophy. The Amateur Radio Service cannot survive if licenses are obtained without due regard to technical knowledge: that is, passing FCC exams by learning the questions and answers by rote.

All prospective Amateurs should take a closer look at this problem. We licensed Amateurs who organize training classes and other tutorial endeavors have a special responsibility in this regard. Obtaining an Amateur license requires some effort. It is usually a difficult, time-consuming process. The successful license applicant will find the process rewarding for years to come.

What can the FCC do at this point to promote the technical integrity of Amateur Radio? We have some ideas, but we would like to hear from our readers on this point. Should the FCC look the other way while the abuse of Amateur exams continues? Should the FCC adopt an Amateur exam question series broadly similar to the FAA's several-hundred-question series for the Private Pilot license? More basically, why should newly updated exams be negated by one of us at the expense of us all? Consider this issue carefully, then discuss it among your Amateur Radio associates. Your views on the subject will be welcome at ham radio.

Alf Wilson, W6NIF Editor

Smine Yesad

ICOM IC-255A

Features that have made the field proven and tested
IC-255A the most popular 2 meter FM rig on the air today.

* $25 \mathrm{~W} / 1 \mathrm{~W}$ battery saving output
* Scanning (memory and programmable limit band scan), now with automatic scan resume
* Programmable splits - Felxibility for new repeater offisets
\star Dual speed tuning - 15 KHz Steps, 5 KHz Steps with TS Switch depressed
* 5 memory channels - For easy access to your favorite repeaters
\star Dual VFO's built in, lockable mobile mount, dynamic mic standard, RIT fine tuning.
* Simple, easy to use single knob tuning system for mobile operation.

ICOM

ICOM AMERICA, INCORPORATED

notes added) is as follows:
QSA 1 Scarcely perceptible - no copy
2 Weak - very little copy
3 Fairly good - partial copy
4 Good - almost full copy
5 Very good - full copy
Reports would simply be Q1, 2, 3, 4, or 5 . Where the situation permits, an operator should do the other station the favor of reporting technical signal defects such as distortion, overdriving, VOX clipping, key clicks, poor tone, etc.

The difference between a signal re-
ceived off the end of a dipole and the same signal received by a properly oriented high-gain beam is tremendous. The signal strength measured in the receiver depends almost entirely upon the character and orientation of the receiving antenna. A signal reported as S 5 by a station with a mediocre antenna might easily be reported S9 or more by the station right next door having a superior antenna. So the popular " S " reports are all but meaningless anyhow!
J.W. Kennicott, W40VO
Lexington, Tennessee

"circuit figure of merit"

Dear HR:

In reference to "Observations and Comments" in the September, 1980, issue of ham radio, I thought you might be interested in the "Circuit Figure of Merit" used by the State of New York in police two-way fm radio communications in the vhf and uhf ranges.

In writing specifications we usually ask the bidder to guarantee a Circuit Figure of Merit of 3 or better in a defined area of coverage from defined sites and with defined equipment parameters.

Byron H. Kretzman, W2JTP
Huntington, New York rol, and a-c on the plate supply brought an immediate citation from the newly formed FCC.
There is a definite need for accurate signal reporting, but if a report on tone is no longer needed (I for one disagree strongly with this reasoning), then let us not go the route of "inventing" a new system when the need is clearly covered in the international Q signals.
My personal feeling is that the RST system is performing admirably, with the exception of some contesters, and a change of the system would not change that. In other words, if it ain't broke, don't fix it!

Rue O'Neill, W0NN
St. Louis, Missouri

Dear HR:

I applaud the idea of junking the RST signal reporting system. But do we really need a new system? Why not simply make use of the existing OSA system which (with "copy"

The performance of a two-way radio circuit can be defined by grading the circuit in terms of a "Circuit Figure of Merit" using a scale of 1 to 5 under the following conditions:

circuit figure of merit	grade of circuit performance	voice frequency signal-to-noise ratio	typical receiver quieting
1	Unusable. Presence of speech barely discernible.	Below 8 dB	0 to 6 dB
2	Readable with dif- ficulty. Requires frequent repeats. (Noncommercial)	8 to 16 dB	14 dB
3	Readable with only a few syllables missing. Requires occasional repeats. (Commercial)	14 to 22 dB	20 dB
4	Perfectly readable but with noticeable noise.	20 to 30 dB	25 dB
5	Perfectly readable; negligible noise.	Above 30 dB	Above

INTRODUCING SONY'S NEW DIGITAL DIRECT ACCESS RECEIVER!

A Whole New Breed Of Radio

Innovative design. Advanced technology. Digital key-touch tuning: The ICF-2001. It's a whole new breed of radio. A receiver that supplants the conventional multi-band concept. receiving a wide amplitude-modulated frequency rangeshortwave, mediumwave and most longwave broadcasts. Plus FM, SSB and CW. Even more important, the 2001 replaces the ordinary tuning knob and dial with a direct-access tuning keyboard and a Liquid Crystal Display (LCD) for digital frequency readout. Which make the unit as easy to use as a pocket calculator. Instant, direct-access tuning modes and six memory-station presets assure maximum ease of use. And the quartz-crystal, frequency-synthesized circuitry behind them assures outstanding reception. Reception of local broadcasts and exciting news, music, sports, entertainment and information from around the world. You'll get the inside, local news stories from foreign countries ... exclusive coverage of world sports events ... plus everything from informal "ham" to marine communications. All at your fingertips.

Key-Touch Tuning

To tune a station manually. you simply punch in the station frequency numerals on the direct-access. digital tuning keyboard. Press the "Execute" key and the command is entered, the station is received and LCD readout confirms tuning. If you punch in an incorrect frequency by mistake, the ICF-2001 tells you to "Try Again" by flashing those words on the display. The instant, fingertip tuning provides total accuracy and convenience. And the LCD digital frequency display confirms the exact, drift-free signal reception.

Automatic Scanning

In auto-scan mode, the tuner can be set for continuous scanning of a given frequency range, which you set by means of upper and lower limit keys designated " L," and " L_{2} " You may want to scan an entire frequency range. For instance, the 76 to 108 MHz FM spectrum. If you want scanning to stop at any strong signal-one that reads " 4 " or " 5 " on the LED signalstrength indicator-switch on "Scan Auto Stop." For continuous scanning, leave the switch off, and just press the "Start/Stop" key to listen to a station or resume scanning.

Manual Tuning

Like the auto-scanning mode, manual tuning is useful for quick signal searching when you don't know particular station frequencies within a given range. You simply press the "Up" or "Down" key, and the tuner does the searching for you. And if you press the "Fast" key at the same time, the scanning rate increases for especially rapid station location. When you hear a broadcast you want to receive, just release the keys for instant reception, presssing the "Up" or "Down" key again if necessary for exact tuning.

Memory Presets

After you've tuned a station using punch-in. key-touch tuning or either scanning mode. you can enter it in the 2001's memory for instant. one-touch preset reception. Which means no retuning hard-to-find foreign broadcasts. Plus instant access to your favorite local stations for music and news. Six preset buttons allow up to six stations-in any wave range-to be memorized. And there's LCD digital readout of the memory buttons being used on each band. What's more the upper and lower limit keys can be used as memory presets when they' re not being used for scanning, allowing a total of eight

The 2001's direct-access tuning and outstanding reception quality are made possible by the unit's all-band quartz-crystal. PLL frequency synthesis. Instead of the conventional analog tuning system, with its variable tuning capacitor, the 2001 incorporates an LSI and a quartz-crystal reference oscillator, Which means that the local-oscillator frequencies used in superheterodyning are locked to the "synthesized" quartz reference frequencies. The result is the utmost in tuning stability, without a trace of tuning drift. In addition, dualconversion superheterodyning for AM assures exceptionally clean, clear reception across the entire $150-\mathrm{to}-29,999 \mathrm{kHz}$ spectrum.

Features

FM/AM/SSB/CW/wide spectrum coverage
Dual-conversion superheterodyne circuitry of AM assures high sensitivity and interference rejection
Quartz-crystal, phase-locked-loop frequency synthesis for all bands assures the utmost tuning stability, without a trace of tuning drift
Direct-access, digital tuning keyboard and LCD digital frequency readout for quick, key-touch station-selection-maximum accuracy and ease of use
Manual tuning and automatic scanning for effortless signal searching, easy DXing
6 -station presets, plus 2 auxiliary presets, for instant reception of memorized stations on any band-plus LCD memory indication.
5-step LED signal-strength indicator Local/Normal/DX sensitivity selector for AM
SSB/CW compensator for low-distortion reception
Telescopic antenna, plus external antenna included $4^{\prime \prime}$ speaker for full, rich sound
Slide-bar bass and treble controls
Sleep timer-with LCD readout-can be set in 10-minute increments for up to 90 minutes of play before automatic radio shut-off

Only \$20995

Plus $\$ 5.00$ S\&H (Cont'I U.S.A. Only)

presstop

AN IMPORTANT ANTENNA VICTORY has not only restored the right of a Placentia, California, Amateur to use the antenna system of his choice, but has also reimbursed him his attorney's fees for defending that right. W6QOL, represented by attorney K6JAN, won his decision by taking the offensive and suing the city of Placentia in federal court for violating his civil rights by passing legislation aimed at his installation.

W6QOL's Tower, A 71-foot Crankup with several beams on it, had been constructed in 1977 with the approval of the city's planning commission, but prodding by an unhappy councilman who lived nearby led the city council to pass an emergency ordinance making such installations illegal and ordering W6QOL to take it down. His response was to file a suit charging civil rights violation in the Federal District Court for the Central District of California.

On May 2, 1978, Judge Robert M. Takasugi granted a preliminary injunction that prohibited Placentia' from enforcing its ordinance but limiting the antenna to 50 feet. On December 11, 1978, the preliminary injunction was made permanent, noting that the ordinance had infringed W6QOL's right to free speech and ordering the city to review and revise its ordinance to conform with the Constitution. On June 3, 1980, the court awarded W6QOL his attorney's fees as "prevailing plaintiff in the Paragraph 1983 action pursuant to the Civil Rights Attorney's Fees Act."

W600L's Antenna Was Still Limited to 50 feet, however, until a September 26 ruling by Judge Takasugi that modified his permanent injunction by removing the height restrictions. Placentia has 30 days in which to appeal, but it's considered unlikely that it will. The city has already spent a great deal of money on this case, and an appeal would cost it a good deal more, with at best a marginal chance of success.

Details On This Unusual antenna case will be available from both the Personal Communications Foundation, which assisted K6JAN during the proceedings, and the ARRL.

THE COMMUNICATIONS ACT REWRITE IS DEAD for this session of Congress. The House Judiciary Subcommittee has voted unanimously to recommend delaying further Congressional consideration of the often stalled and controversial legislation until Congress's next term, essentially ensuring it's a dead issue for now. Biggest current problem with the rewrite was the possible effect its proposed restructuring of AT\&T would have on the government's antitrust case against Bell Telephone.

Although Another Rewrite effort can surely be expected in the next Congress, there's a serious question as to just what it is likely to contain. Each rewrite attempt has some significant shifts in emphasis, and the next one should be no exception. One addition that can be expected, however, is a provision, similar to Rep. Preyer's bill and the current California legislation, to control or restrict unscramblers and other equipment designed to intercept pay TV signals.

Rep. Preyer's Bill has been modified by Congressmen Smith (Washington) and Waxman (California) in attempts to further strengthen protection for the subscription TV industry. Their new version is directed specifically at the "commercial piracy" firms, a move that apparently will resolve the potential threat to Amateurs who wish to work on homebrew gear, and their suppliers.

That California Bill Has Finally been signed by Governor Jerry Brown, making it illegal in California to manufacture, distribute or sell "any device or plan or part for the knowing purpose of facilitating an unauthorized interception or decoding of subscription TV signals." This bill is so broad in its scope that it's sure to be challenged in court-even one of the subscription TV firms is thinking of going after it.

ATTEMPTS BY RC MODELERS TO GET 6 meters for non-Amateur RC use was to come up for hearing before the FCC on Thursday, November 6. Unhappy with an earlier staff opinion that only licensed Amateurs could operate RC equipment in the 6 -meter band, the Academy of Model Aeronautics petitioned for a formal review before the Commissioners and staff. They'd like to bring about a rules change to permit anyone to operate 6 -meter RC transmitters under the supervision of "a licensed Amateur." However, Part 97 still requires an Amateur license to operate an Amateur transmitter, though a "third party" may communicate through an Amateur station with a "control operator", standing by. Since Radio Control is a one-way transmission the rules pertaining to third party communications should not apply, so any decision to permit someone not holding an Amateur license to operate a transmitter on Amateur frequencies-even under "supervision"-would be a departure.

COST OF AMATEUR GEAR IN CANADA should be dropping sharply, following the long hopedfor elimination of import duty on Amateur Radio equipment. New Tariff Item 44535-2, passed on October 28 and effective October 29 , removed the 15 per cent tariff formerly charged Canadians on "Amateur transmitters, receivers, transceivers, transverters, assembled or in kit form, designed for use only on Amateur bands of the radio frequency as defined by regulations made pursuant to the Radio Act; linear amplifiers, VFOs and power supplies designed for use with the foregoing, parts of all the foregoing. " The federal sales tax of 9 per cent still pertains, however, and equipment not specifically made for Amateur use-for example, general coverage receivers-is still subject to the 15 per cent bite.

DELTA RIG

THE TSILOTSC STATION FOR CHANGING TIMES

DELTA-symbol of change-and the first HF transceiver with all nine bands-offers more of the features you need for these changing times.

Tennessee Technology Leads The Way.

Today's operating demands the changes a DELTA station offers. All nine HF bands in all solid-state design with optimized receiver sensitivity and selectivity, 200 watt, 100% duty cycle no-tune transmitter, QSK, VOX, PTT, ALC, Notch, Offset, and more, All in a compact, ready-to-go-anywhere functional design that offers light weight, thorough shielding, and operating ease. And a price that permits affording the full complement of accessories. TEN-TEC put it all together-in DELTA-for you.

For The Change in Bands.

DELTA with all nine bands-another TEN-TEC "first." 160 through 10 meters, including the new 10,18 and 24.5 MHz bands. (Crystals optional for $18 \& 24.5 \mathrm{MHz}$). DELTA is ready.

For The Change in Band Conditions.

Optimized design for the ideal balance between sensitivity $(0.3 \mu \mathrm{~V}$ for $10 \mathrm{~dB} \mathrm{~S}+\mathrm{N} / \mathrm{N}$) and dynamic range (85 dB or better) plus switchable 20 dB attenuator that puts you in control of even extreme situations. No matter where you live or what power your neighbor is running, DELTA can handle it.
Super selectivity permits narrowing DELTA bandpass to suit the crowds. The four-position switch selects the standard 2.4 kHz SSB filter, adds a section of the 4 -stage active audio filter, cascades an optional CW filter (for 14 poles of filtering), and cascades both filters with 4 stages of audio filters to give you the passband window you need with the virtually ultimate skirt selectivity required to knife through strong adjacent signals.
Built-ins to quiet the world. A variable notch filter is standard on DELTA. Vary from 200 to 3500 Hz to notch out interfering carriers or CW signals to a depth of 50 dB or more. Offset tuning for moving the receiver frequency $\pm 1 \mathrm{kHz}$ to reach that DX or to fine tune. "Hang" AGC to give you smoother receiver operation.

For The Change in Operating Styles.

Variety is the word for today, and DELTA offers it.
For a rag-chew with an old friend, 200 watts of SSB to the proven solid-state amplifier (designed by the leader, TEN-TEC) with built-in VOX and PTT.
For the fun of operating 200 watts CW with QSK-full, fast break-in that makes CW a conversation, saves time, and opens a window on DX

Power up or down. Adjustable threshold ALC and drive let you choose power levels with full ALC control.
DELTA accepts what you have, what you want . from separate antennas to linears, transverters, remote VFO, 12 VDC, keyers and more-just plug in.

For The Change In Lifestyles.

DELTA moves with you. "At home" anywhere-on your operating desk, in the field, on a boat, plane, camper, wherever. Its neat small
 good traveling companion. Yet compact as it is, DELTA panel size and knob spacing make it comfortable to use hour after hour in your home station.

For The Change In Economics.

These days, everyone wants more value for his money. And DELTA offers it. More features and performance per dollar. Quality that's American-made. Service you can count on. A solid warranty-one year on the transceiver plus an extra five year pro-rata warranty on the amplifier transistors. And low prices!

The DELTA Rig

Model 580 DELTA Transceiver	\$849.00
Model 283 DELTA Remote VFO	179.00
Model 280 DELTA Power Supply	149.00
Model 282, 250 Hz CW Filter	50.00
Model $285,500 \mathrm{~Hz}$ CW Filter	45.00
Model 234 RF Speech Processor	124.00
Model 214 Electret Microphone	39.00
Model 645 Dual Paddle Keyer	85.00
Other Optional Acc	
Model 670 Single Paddle Keyer	34.50
Model 227 Antenna Tun	79.00

Isn't it time for you to change? Check the DELTA rig at your dealer or write for full details.

Food for thought.

Our new Universal Tone Encoder lends it's versatility to all tastes. The menu includes all CTCSS, as well as Burst Tones, Touch Tones, and Test Tones. No counter or test equipment required to set frequency-just dial it in. While traveling, use it on your Amateur transceiver to access tone operated systems, or in your service van to check out your customers repeaters; also, as a piece of test equipment to modulate your Service Monitor or signal generator. It can even operate off an internal nine volt battery, and is available for one day delivery, backed by our one year warranty.

- All tones in Group A and Group B are included.
- Output level flat to within 1.5 db over entire range selected.
- Separate level adjust pots and output connections for each tone Group.
- Immune to RF
- Powered by $6-30 \mathrm{vdc}$, unregulated at 8 ma .
- Low impedance, low distortion, adjustable sinewave output, 5 v peak-to-peak.
- Instant start-up.
- Off position for no tone output.
- Reverse polarity protection built-in.

Group A

67.0 XZ	91.5 ZZ	118.82 B	156.75 A
71.9 XA	94.8 ZA	123.03 Z	162.25 B
74.4 WA	97.4 ZB	127.33 A	167.96 Z
77.0 XB	100.01 Z	131.83 B	173.86 A
79.7 SP	103.5 IA	136.54 Z	179.96 B
82.5 YZ	107.21 B	141.34 A	186.27 Z
85.4 YA	110.92 Z	146.24 B	192.87 A
88.5 YB	114.82 A	151.45 Z	203.5 M 1

- Frequency accuracy, $\pm .1 \mathrm{~Hz}$ maximum $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Frequencies to 250 Hz available on special order
- Continuous tone

Group B

TEST-TONES:	TOUCH-TONES:		BURST TONES:			
600	697	1209	1600	1850	2150	2400
1000	770	1336	1650	1900	2200	2450
1500	852	1477	1700	1950	2250	2500
2175	941	1633	1750	2000	2300	2550
2805			1800	2100	2350	

- Frequency accuracy, $\pm 1 \mathrm{~Hz}$ maximum $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Tone length approximately 300 ms . May be lengthened, shortened or eliminated by changing value of resistor

Wired and tested: \$79.95

This easy-to-build oscillator features multiple-band application, remote tuning, and phase-lock capability

This uhf oscillator is the result of much experimentation. It has an outstanding record of utility and performance. Despite the opinion of many Amateurs, a good uhf oscillator can be built without a shop full of machine tools, expensive test equipment, and a high degree of manual dexterity. The PC boards that have been developed for the circuit described here will allow anyone to build a voltage-tuned uhf oscillator.

general description

This oscillator has many applications. It was originally intended for use as the local oscillator in a $1215-1300 \mathrm{MHz}$ TV converter. Later, the board was modified so that the operating-frequency band could be moved up or down to satisfy various other applications. Finally, provisions were made to add either a doubler or tripler circuit to extend the useful output frequency range into the microwave region.

features

The fundamental tuning range of the circuit covers $\approx 1120-1300 \mathrm{MHz}$. However, by changing the lengths and locations of the frequency-determining circuit elements on the PC board, the operatingfrequency range can be adjusted to about 900 MHz and 1400 MHz , giving coverage between $900-4200$ MHz with the help of the multiplier circuits.

A varactor provides continuous tuning from a remotely located potentiometer. This feature may be important if you're interested in weak-signal detection, because it allows the entire converter, including the uhf local oscillator, to be located where it belongs - at the antenna.

For television applications, the oscillator may be

multipurpose voltage-tuned UHF oscillator

operated either in the free-running mode or phase locked to a stable reference signal.

The addition of phase-lock capability is easy, because the basic oscillator already includes a tuning varactor. Remote tuning can be used with or without the phase-lock feature. The uhf oscillator is simple. No need for a crystal multiplier chain; therefore no need to struggle with unwanted crystal-oscillator harmonics. Also, if your interest lies in ATV, where crystal control may not be necessary, the design is a natural because of its simplicity.

A divide-by-40 prescaler is mounted on the PC board with the oscillator. The prescaler drives an external frequency counter to monitor the oscillator frequency. Not only is the counter useful as a frequency indicator, it's needed for setting and adjusting the oscillator. The prescaler also provides a signal for the phase detector.

Numerous techniques can be used to phase lock the uhf oscillator to a crystal reference to achieve a high degree of frequency stability; many articles have been written to describe them. In this article, attention is placed on a simple technique that uses a crystal clock as the phase-locked loop (PLL) reference and manual tuning to select the desired lock point. By the proper choice of crystal frequency and divider chains, the uhf oscillator may be locked to any one of a number of desired frequencies. Tuning is done with a ten-turn pot.

applications

Fig. 1 illustrates a typical ATV application that employs the uhf oscillator in the free-running mode as the local oscillator for the mixer. No phase-locked loop is associated with this circuit. A single shielded wire connecting the operating position with the converter serves for tuning, and the converter output is fed over a length of inexpensive transmission line to the receiver. This arrangement avoids the usual degradation in signal-to-noise ratio that generally results from transmitting the rf signal over a long transmission line.

By Norman J. Foot, WA9HUV, 293 East Madison Avenue, Elmhurst, Illinois 60126

fig. 1. Functional block diagram showing the uhf oscillator in a typical ATV application (free-running mode).

In applications where frequency stability is important, or where a click-stop form of tuning is desired, the basic oscillator can be locked to a stable reference. A block diagram of such a scheme is illustrated in fig. 2. The i-f output from the mixer feeds a bandpass filter wide enough to pass the entire band of frequencies of interest, while a wideband fm or television receiver provides the necessary tuning and selectivity. A preselector may be needed between the low-noise preamplifier and the mixer, depending on

fig. 2. Basic uhf oscillator used in a phase-locked application. Crystal oscillator provides a stable reference for frequency stability.
the application and choice of intermediate frequency.
In both of these arrangements, a frequency scaler drives a frequency counter to permit measurement and continuous monitoring of the uhf oscillator frequency. It's convenient to have this capability, whether the phase-lock feature is used or not. If a programmable counter is available, the readout can display the signal frequency rather than the oscillator frequency.

The advantages to be gained by use of the uhf oscillator described here are now apparent. In some applications the basic oscillator and prescaler alone may do the job, and continuous tuning from a re-

fig. 3. Schematic of the uhf oscillator. Capacitor C1 is the varactor tuning diode (GHZ devices GC-1607 or equivalent - 3.3 pF at $\mathbf{-} \mathbf{4 . 0}$ volts).
mote location can be used; or a simple PLL may be added for bandswitching, with tuning and selectivity provided by an fm or TV receiver. In either case, a counter can monitor the oscillator (or the equivalent signal) frequency. Other applications can be accommodated using the same PC board with minor modifications, and frequency multiplication can be added for application up into the microwave region.

the uhf oscillator

The transistor selected for the uhf oscillator (fig. 3) is the HP-35821B. It has an f_{t} of 4.5 GHz . In the commonbase configuration it's ideally suited for oscillator service. The 35821 has been around for over ten years and is inexpensive. As an oscillator, it can provide 50 mW or more of useful output power with good efficiency.

The base terminals of the 35821 are soldered di-

fig. 4. Mechanical details of inductor L1 in fig. 3. Material is 0.032 -inch-thick $(0.8 \mathrm{~mm})$ brass stock.
rectly to the pad provided on the PC board. The board is G10, which is entirely satisfactory for use over the uhf oscillator fundamental tuning range. The board includes all the rf bypass capacitors associated with the oscillator circuit; no chip capacitors are needed.
Fig. 3 is the schematic of the uhf oscillator. There are four special if circuit elements, L1, L2; C1 and C2. L1 and C1 are the most critical, because they are the principal frequency-determining components. L1 is made of flat brass strip elevated about 0.1 inch (2.5 mm) above the ground plane. The mechanical details of this inductance are illustrated in fig. 4.

Capacitor C 1 is a varactor tuning diode connected in series with L1 (fig. 3). It returns to ground through the large pad under L1 but is electrically above ground to accommodate tuning and automatic phase control. The location of C1 sets the effective length of L1. Moving it back and forth adjusts the tuning range up and down in frequency. The distance between the transistor collector and the tuning varactor should be about 1-1/2 inches (38 mm) to tune the range $1120-1320 \mathrm{MHz}$. The rf ground pad on the PC board was made long intentionally to provide a wide choice of operating range.

Inductor L2 is a four-turn coil wound with No. 18 $(1.0 \mathrm{~mm})$ tinned copper busbar with a $1 / 8$ inch (3 mm) inside diameter. The exact inductance of this coil isn't critical.

Capacitor C2 is a feedback capacitor made from 0.010 -inch (0.25 mm) shim brass stock $1 / 2$ inch (13 mm) long and $1 / 8$ inch $(3 \mathrm{~mm})$ wide. It is soldered to the emitter and extends over the top of the transistor, parallel with the collector inductance, L1. The feedback capacitor is insulated from L1 with 0.001 inch $(0.03 \mathrm{~mm})$ Mylar tape. Feedback is controlled by bending the shim to position it closer or further away from L1. Note that the fixed bias divider consisting of R1 and R2 provides very little forward base bias; consequently, the collector current is primarily determined by the amount of feedback from emitter to collector. This is convenient, because it allows a simple means
for properly adjusting the feedback. The correct feedback corresponds to the spacing that produces $30-40 \mathrm{~mA}$ collector current. Capacitor C3 is a printedbase bypass capacitor. Capacitor $\mathrm{C4}$, which is the rf bypass for the series L1-C1 circuit, is also printed on the oscillator board.
The if choke is an eight-turn solenoid wound with No. $24(0.5 \mathrm{~mm}$) enamel copper with a $1 / 8$ inch (3 mm) ID. The junction of the of choke and the $10-\mathrm{ohm}$ resistor is supported by the terminal of a push-in Teflon standoff insulator.

power output

Overall converter performance can be degraded because of lack of sufficient local oscillator power. Many Amateurs don't have facilities to measure rf power accurately, in which case the adequacy of their local oscillator is unknown. Mixer noise figures less than 5 dB can be realized with 10 milliwatts of Lo power. However, as the LO power is reduced below a few milliwatts, noise figure generally increases dramatically. If the mixer in your system needs the help of more than one low-noise preamplifier, chances are that the mixer noise figure is abnormally high. This is most likely the result of inadequate local-oscillator power. It's possible to reduce the mixer's appetite for LO power by various schemes, including applying dc forward bias to the diodes; but for most practical applications, a good design goal for mixer LO power is 10 milliwatts. This point was kept in mind during the design of the uhf oscillator.

The available power from the uhf oscillator described here is, fortunately, quite high, which allows the output to be loosely coupled; in turn this promotes good free-running stability. When the uhf oscillator is used to drive a doubler, power levels well above 10 milliwatts are easily obtained, with the doubler circuit providing the isolation. Power output from a fixed-tuned tripler was measured at +7 dBm minimum when used with an appropriate ider circuit.

fig. 5, Interface wiring between uhf oscillator board and phase-detector board showing external signal and power requirements.

the phase-locked loop

To provide design flexibility, the oscillator is on one PC board and the phase detector on another. Input signals required by the phase detector are the prescaled signal from the uhf oscillator and the tuning voltage. A single output feeds the VTO (varactortuned oscillator) varactor diode for frequency control. Fig. 5 is a wiring diagram showing a) how these two boards interface, and b) the external signal and power requirements.

The circuit on the phase detector PC board is identical in most respects to the parametric phase detector described in reference 1 . This circuit provides considerable design flexibility. In the application here, it operates at about 30 MHz . The circuit (fig. 6) also includes provisions for the reference generator, consisting of a quartz crystal and a CD4060B oscillator and divider chain.

Fig. 6 shows the parametric phase detector. This board includes most of the PLL key components, which are the reference generator, spectrum generator, phase detector, and loop filter and dc amplifier. Fig. 7 shows the phase detector foil and parts layout.

reference signal

The lock points for the uhf VTO are specified in terms of the reference-signal frequency and the prescaling factor. For example, assume the VTO is to be used as the local oscillator in a $23-\mathrm{cm}$ ATV converter and $6-\mathrm{MHz}$ lock-point separation is desired. If a $45-$ $\mathrm{MHz} \mathrm{i}-\mathrm{f}$ is to be used, the local oscillator frequencies
will be $1206,1212,1218$, and 1224 MHz , corresponding to signal frequencies of 1251, 1257, 1263, and 1269 MHz .

The lock points are 6 MHz apart at the oscillator frequency, but only 150 kHz apart at the phase detector because of the prescaler. The reference needed by the phase detector is therefore 150 kHz . Note that the 202 nd harmonic of 150 kHz is 30.3 MHz , which is the spectral line recognized by the phase detector for the $1218-\mathrm{MHz}$ phase lock. Thus, in this type of phase detector, the reference signal must be rich in harmonics. To accomplish this, the phase detector board includes a spectrum generator. On the other hand, if you're interested in a single operating frequency (1257 MHz for example), a crystal-controlled signal at 30.3 MHz is all that's needed. There are, of course, many other schemes that may be used depending on the application.

Tuning and locking to a particular point is easily accomplished by watching the counter. When unlocked, the units and tenths of kilohertz digits will fluctuate due to jitter. When locked, all counter digits will remain steady, and it will be possible to rock the tuning knob back and forth within the hold-in range with no apparent change in the counter status. The final setting should be near the center of the hold-in range.

The pull-in range of the PLL should be less than half the lock point separation; otherwise, if power is momentarily lost, the oscillator may end up locked to the wrong channel. Pull-in range can be controlled

fig. 6. Parametric phase-detector circuit. This circuit includes most of the PLL key components, such as the reference generator, phase detector, and loop filter and dc amplifier.
by adjusting the power level of the prescaled uhf oscillator signal at the input of the phase detector.

prescaler

The Plessey SP-8610 is a $1-\mathrm{GHz}$ divide-by-four prescaler that works well considerably above 1 GHz , even when mounted in a DIP socket. This chip, together with the Plessey 8636 decade divider, provides outputs in the $27-33 \mathrm{MHz}$ frequency range. The circuit is simple and straightforward. One important consideration is that prescalers used at these frequencies require leadless bypass capacitors. Chip capacitors used initially performed satisfactorily from an electrical standpoint, but PC-board flexing caused them to work loose. To solve this problem, leadless capacitors were made by modifying dipped mica capacitors. The insulation was removed with a file, uncovering two metal clamps that hold the stack together. Connections were made directly to the clamps by soldering. This arrangement is entirely satisfactory and considerably less expensive.

The output from the SP-8636 drives a 2N5179 NPN
transistor amplifier, which, in turn drives a 2N918 splitter to provide dual low-impedance outputs. One of these is intended to drive the phase detector, while the other can be used to operate the frequency counter. I suggest that an external divide-by- 25 circuit be added to increase the overall division factor to 1,000 for the counter. This circuit adds a convenience that relates counter kilohertz to oscillator megahertz. For example, the counter will display 1200 kHz when the uhf oscillator frequency is 1200 MHz .

A schematic of the prescaler is shown in fig. 8. An input signal is coupled to the SP8610 by a small probe bent in an L shape and soldered to pin 4 . The bent part of the probe is approximately $1 / 4$ inch (6 mm) long and spaced $3 / 32$ inch (2.4 mm) from L1. The probe should be carefully insulated with Mylar tape to prevent it from coming into contact with +12 volts on L1. Also, to prevent damage, do not overcouple the 8610 . The proper procedure is to tune the oscillator to the high end of its range and couple the probe sufficiently for the counter to operate properly.

fig. 7. Phase detector board foil side, top, and component layout, bottom. Assembled board, Jower right.

fig. 8. Prescaler schematic. An input signal is coupled to the SP8610 by a small L-shaped probe, which is soldered to pin 4. See text for correct coupling adjustment.

At 1200 MHz , a very small coupling capacitance is sufficient.

construction details

The task of duplicating the performance of the original uhf oscillator is relatively simple when PC boards designed specifically for this project are used. If you don't have the facilities to etch your own boards, they can be obtained from Rock Engineering Supply Company, Inc., 1769 Armitage Ct., Addison, Illinois 60101 .
Construction sequence. For the most part, the uhf oscillator assembly is simple except that there is a certain sequence that makes the task easier if followed. I suggest that the feedthrough capacitors be mounted on the board first, followed by the DIP sockets, then all discrete parts not directly associated with the oscillator. Fig. 9 is a drilling template to be used to locate the feedthrough holes, shoulder washers, and Teflon standoff. If the oscillator is to be used at its fundamental frequency, holes should be drilled for the SMA connector. The coupling loop dimensions and assembly are shown in fig. 10 if an SMA fitting is not available, a BNC type may be substituted.
Connection is made to the rf ground-return pad of the varactor diode by inserting a 2-56 (M2) screw in hole A, using a fiber washer to insulate it from the ground plane on the component side of the board. This is the terminal used to bring the tuning and con-
trol voltage to the varactor diode.
Varactor diode. The varactor tuning diode should be mounted with special care. Locate it on the rf pad with the cathode side up and solder the anode to the pad. Use a toothpick or pointed object to hold the diode in place during the soldering operation. Apply the soldering iron to the pad, not the diode, and only long enough for the solder to flow. Then tin the diode cathode terminal using a fine soldering iron tip. Apply as little solder as possible.
Before proceeding further, cement the two phenolic shoulder washers in the base bypass pad holes with two-part epoxy cement. Use the quick-setting (5 -minute) variety to avoid a 12 -hour cure cycle.

Collector line. The collector line, L1, should be mounted next. Tin the bottom side of the line where contact will be made with the varactor diode. Insert the pointed end of L1 into the collector shoulder washer hole and solder the line to the varactor diode. Also, to take the stress off the varactor diode, a fiberglass shim should be cemented in place under the line near the if choke. Trim the shim with a file so that it slides under the line without forcing, then ap-

fig. 9. Top view of uhf oscillator board showing mount-ing-hole locations.

fig. 10. Top: Uhf oscillator board, front side. Bottom left: Foil side of oscillator board showing parts placement. Bottom right: Uhf oscillator assembly, top view.

fig. 11. Top: Uhf oscillator board, rear side. Bottom left: Component-side of oscillator board showing parts placement. Voltage control is a 5k Piheri pot. Bottom right: Uhf oscillator assembly, bottom view.
ply a small amount of epoxy cement and secure the assembly in place. Finally, apply a very small amount of epoxy cement into the collector shoulder washer hole to secure L1.

Emitter coil. The emitter coil should be mounted next, and epoxy cement should be applied to the shoulder washer hole to secure it in place. Mount the transistor on the base pad and solder the base leads to the pad. Solder the emitter and collector leads to the emitter coil and L1 respectively, as shown in fig. 10. Solder the feedback shim to the emitter end of L2 (not shown) and insulate the shim with Mylar tape. Space it about $1 / 8$ inch (3 mm) above the collector line.

Before mounting the rf choke and the 10 -ohm resistor, check out the 723 regulator and set its output voltage to +12 volts by adjusting the trimpot.

There are five $1 / 10$-watt resistors and three special mica capacitors that are soldered to the foil side of the board (see fig. 10). The parts layout on the component side of the uhf oscillator board is shown in fig. 11.

Connect a shielded wire from one of the buffered prescaler outputs to a frequency counter and confirm that the counter displays frequencies between $\approx 27-33 \mathrm{MHz}$ as the tuning control is adjusted.

oscillator enclosure

The mechanical details of the aluminum shield cover that encloses the uhf oscillator are shown in fig. 12. The $2-56(M)$ screws used to mount the shield cover on the board also interconnect the groundplane foils on opposite sides of the board. Since initial tests will be made without the enclosure, it will be necessary to insert the screws and temporarily secure them with nuts to simulate the grounding condition.

initial oscillator tests

The uhf oscillator should be checked out first, without the aid of the phase detector board. Temporarily connect a 10 k ten-turn potentiometer between +12 volts and ground and connect the arm of the pot to the varactor terminal. Use the regulated voltage from the 723 post regulator. Set the tuning voltage to about 5 volts and monitor the current from the 20 -volt source with a milliammeter. When power is applied, the current should be approximately 25 mA . Gradually increase the feedback capacitance until the collector current is approximately 35 mA , but do not exceed 40 mA .

Finally, the phase detector board is integrated into the system as illustrated in fig. 5, and the PLL is then checked out.

fig. 12. Oscillator enclosure. Material is 0.032 -inch $\mathbf{0} 0.8$ mm) aluminum.

conclusion

The uhf oscillator described here has many potential applications, depending on your interests. In my case, the performance of an existing 1296 TV converter was considerably improved when the basic uhf oscillator operating in the PLL mode was substituted for the original crystal-oscillator-multiplier chain. A similar uhf oscillator equipped with a doubler circuit was used as the local oscillator in a converter originally designed for use at 2304 MHz . Excellent MDS and ITFS TV pictures were received. Note that the uhf oscillator is not recommended for use in a narrowband receiver intended for CW, am, or SSB service because of its relatively high phase noise.

I've also used the uhf oscillator with a tripler as the local oscillator in a TVRO receiver. In this case, the PLL was built with $20-\mathrm{MHz}$ lock point spacing corresponding to the channel spacing of this class of service. In a future article l'll describe frequency multipliers designed for use with the uhf oscillator.

Some of the parts required to build this uhf oscillator probably won't be found in Amateur parts boxes. These include the prescalers, oscillator transistor, and the tuning varactor. I may be able to suggest sources for some of these parts or help you with other problems. In either case, please send an SASE with your inquiry.

reference

[^0]ham radio
${ }^{\text {Y }}$

MM5 290J-2 (MK4116/UPD416) . . . $\$ 6.95$ each 16 K DYNAMIC RAM (150NS)
(8 EACH \$49.95) (100 EACH $\$ 550.00 / \mathrm{lot})$ MM5298J-3A
$\$ 3.25$ each 8K DYNAMIC RAM iLOW HAZALF OF MM5290J 200NS (100 EACH \$250.00/10 MM2114-3
$\$ 5.95$ each 4K STATIC RAM (
(8 EACH $\$ 43.95)$
$(100$ EACH $\$ 450.00 /$ /ot $)$ MM2114L-3
$\$ 6.25$ each 4 STATIC RAM (LOW POWER 3OONS)

Jumbo 6-Digit Clock Kit - Four. $630^{\prime \prime \mathrm{ht}}$, and two $.300^{\prime \prime} \mathrm{ht}$.

- Uses MM5314 clock chip

COMPUTER CUBE
MICROPROCESSOR COMPONENTS

- Switches for hours, minutes and hold functions
- Simulated wainut case
- 12 or 24 hour operation
- Includes all components, case and wall transformer JE747 \$29.95

6-Digit Clock Kit His easily viewable to 20 rt . Simulated wainut case incl all components, case \& JE701 $\$ 19.95$
Regulated Power Supply

ADAPTER BOARD

- Adapts to JE200 -
$\pm 5 \mathrm{~V}, \pm 9 \mathrm{~V}$ and $\pm 12 \mathrm{~V}$
DC/DC converter with +5 V input. Toriodal hi speed switching XMFR. Short circuit protection.
PC board construction. Piggy-back to JE 200 board. Size: $312^{\prime \prime} \times 2^{\prime \prime} \times 9 / 16^{\prime \prime} \mathrm{H}$
JE205
\$12.95

DESIGNERS' SERIES Blank Desk-Top Electronic Enclosures

- High strength epoxy molded end pieces in mocha brown finish.
Sliding rear/bottom panel for
service and component accessibility.
Top/bottom panels. 080 thk alum. Alodine type 1200 finish (gold tint color) for best paint adhesion after modification
- Vented top and bottom panels for cooling efficiency. Ripid construction provides
unfimited applications.

CONSTRUCTION
The "DTE" Blank Desk Top Electronic Enclosures are designed to blend and complement today's modern computer equipment and can be used in both industrial and home. The today s modern compare precision molded with an internal slot (all around) to accept both top and bottom panels. The panels are then fastened to $1 /^{\prime \prime}$ thick tabs inside the end pieces to provide maximum rigidity to the enclosure. For ease of equipment servicing, the rear/ bottom panel slides back on slotted tracks while the rest of the enclosure remains intact. Different panel widths may be used while maintaining a common profile outline. The molded end pieces can also be painted to match any panel color scheme.

Enclosure Model No.	Panel Width	PRICE
DTE-8	$8.00^{\prime \prime}$	$\$ 29.95$
DTE-11	$10.65^{\prime \prime}$	$\$ 32.95$
DTE-14	$14.00^{\prime \prime}$	$\$ 34.95$

$\$ 10.00 \mathrm{Min}$. Order - U.S. Funds Oni
Calif. Residents Add 6% Sales Tax Postage - Add 5% plus $\$ 1$ Insurance

[^1]

CUBE-1
$\$ 99.95$
TRS-80
16K Conversion Kit

Expand your 4 K TRS-80 System to 16 K .

 8 each MM5290(250NS or less)
TRS-16K
$\$ 49.95$
JE610 ASCII Encoded Keyboard Kit

The JE 610 ASCII Keyboard Kit can be interfaced into
most any computer syatem. The kit comes compiete most any computer system. The kit comet complete
with an industrial grade kavboard switch astembly with an industrial grade kevboard switch assembly
(62 -keva), IC s, sockets. connector, electronic compo.

 chip. Outputs directly compatible with TTLDTL or
MOS iogic arravs Easy interfacing with a 16 -pin dip or
18-pin edge connector.
JE610 (Case not included) \$79.95
K62 (Keyboard only)
\$34.95
Desk-Top Enclosure for
JE610 ASCII Encoded Keyboard Kit
Compact desk-top enclosure: Color-coordinated de
signer's case with light tan aluminum panels and molded signer's case with light tan aluminum panels and molded
end pieces in macha brown. Includes mounting hardware. Size: $3 \%^{\prime \prime} \mathrm{H} \times 14 \%^{\prime \prime} \mathrm{W} \times 84^{\prime \prime} \mathrm{D}$.
DTE.AK
\$49.95
SPECIAL JE610/DTE-AK PURCHASED TOGETHER (Value \$129.90)
. $\$ 124.95$
Hexadecimal Encoder Kit

The JE 600 Encoder Keyboard Kit provides two separate to allow direct programming for 8 bit microprocassor of 8 -bit memory circuits. Three additional keys are pro-
vided for user operations with one having a bistable output avalisbig. The outputs are iatched and monitored
with 9 LED readouts. Also included is a key entry strobe.
Featues Festures: FFill 日, bit tatched output for microprocessor
ise. Three user-define keys with one being bistable se. Three User-derine keys with one being bistose
operation. Debounce circuit provided for all 19 kevs
9 LED readouts to verify entries Easy interfacing with

JE600 (Case not includa) \$59.95
K19 (Keyboard only)
.$\$ 14.95$
Desk-Top Enclosure for
JE600 Hexadecimal Keyboard Kit Compact desk-top exclosure: Color-coordinated de-
signer's case with light tan aluminum panels and molded end pieces in mocha brown. Includes mounting hardware. Size: $3 \%^{\prime \prime} \mathrm{H} \times 8 \%{ }^{\prime \prime} \mathrm{W} \times 8 \%^{\prime \prime} \mathrm{D}$.
DTE-HK .$\$ 44.95$
SPECIAL: JE600/DTE.HK PURCHASED TOGETHER
(Value \$104.90)

conversion versatility

 F-237IGRC surplus cavity filter
Good news for

VHF/UHF experimenters -

this surplus filter

In two recent articles, 1,2 I described the conversion of several obscure surplus cavity bandpass filters for use in the vhf and uhf Amateur bands. Since then I've found another very interesting surplus cavity bandpass filter* that I've converted for use in the $50-54 \mathrm{MHz}, 144-148 \mathrm{MHz}$, and $220-225$ MHz Amateur bands.

The theory and operation of resonant-cavity bandpass filters have been fully covered in the literature ${ }^{3}$ and in my two previous articles. Therefore l'll go right into a description of this surplus "sleeper" and the conversions.

the F-237/GRC-10 bandpass filter

This filter was designed for use with the receiver section of Army radio set AN/GRC-10 and consists of three individual coaxial resonant re-entrant cavities connected in cascade, each tuned with its own variable capacitor ganged for single-dial control.

[^2]By William Tucker, W4FXE, 1965 South Ocean Drive, 15-G, Hallandale, Florida 33009

fig. 1. The F-237/GRC-10 bandpass filter showing the zig-zag configuration to compress 22 inches (55.9 cm) of coax cavity into a compact package. Note that the pickup loops are close to the open end.

Each cavity is about 20 inches (51 cm) long but compressed into a compact package by using a snake-like configuration as shown in fig. 1. The cavities are of sturdy copper, and the center conductor is silver plated for high conductivity.

Normally, if pickup loops are located near the shorted high-current end of coaxial type re-entrant resonant cavities where the electromagnetic field is at a maximum. Note that in this cavity, however, the pickup loops are located closer to the open end, evidently to provide looser coupling. This will provide greater selectivity at the expense of a higher insertion loss, which becomes a little over 2 dB per cavity.

The three cavities are similar electrically and physically except that the input and output pickup loops L1 and L6, (fig. 2) are a little larger than the others. Also the coaxial cable connection to each cavity varies slightly.

Receiver and antenna jacks on the front panel are made to accommodate a type-C UG-573 connector, which is a jumbo type BNC that's not in general use. If you wish, an N type or uhf type socket can be used in its place by removing the existing socket. Some filing of the socket flange may be necessary to fit into the recessed opening on the front panel.

The F-237 has an input and output impedance of 50 ohms and covers $54-70.9 \mathrm{MHz}$ with continuous tuning. The bandwidth at the $3-\mathrm{dB}$ points is 250 kHz . The attenuation is 40 dB at 4.5 MHz . Insertion loss is 7 dB at resonance. The complete assembly in its cabinet weighs about 16 pounds (7.3 kg) and is approximately $6 \times 11 \times 11$ inches ($15 \times 28 \times 28 \mathrm{~cm}$).

simple conversion to

the 6-meter band

Fortunately, the three air-dielectric trimmers

C1002-3-4, which are mounted directly on the threegang variable capacitor C1001 A-B-C, fig. 3, have sufficient spare capacitance so they can be adjusted to cover the $50-54 \mathrm{MHz}$ band. After adjustment, the range is $49.5-60 \mathrm{MHz}$.

Because of the high selectivity, the following procedure is suggested. Set the tuning dial at the lowest frequency position, 54 MHz , and feed a $53-\mathrm{MHz}$ signal into the antenna terminal from any convenient source, such as a grid-dip meter or signal generator. Adjust the three trimmers for maximum output as measured at the receiver terminal using an if meter or receiver S-meter. A simple if meter can be made using a germanium diode such as the 1 N34 in series with a microammeter.

Repeat the above procedure in small steps until 49.5 MHz is reached; the trimmers should now be at almost maximum capacitance with some to spare for final adjustment. If this filter is to be used with a receiver only, it can be inserted into the transmission line and, with a weak signal around 52 MHz , the filter tuning dial can be tuned for maximum output. The trimmers can then be repeaked for maximum output.

If the filter is to be used with a transmitter or transceiver, an SWR indicator should be used between transmitter and filter. The trimmers should be adjusted for minimum SWR at 52 MHz . The tuning dial can then be calibrated in any manner you choose.

lowering the insertion loss

For general Amateur use, 7 dB is quite a large bite to take out of the received or transmitted signal. The F-237 filter assembly can be modified to provide less insertion loss at the expense of a little selectivity by using only one or two of the original cavities instead of all three. Even with a single cavity, selectivity is adequate for most Amateur applications.

To lift out the cavity assembly and its ganged capacitors in one piece, remove all the screws from

fig. 2. Schematic of the F-237/GRC-10 cavity. The antenna and receiver pickup loops are larger than those connecting the assembly.

fig. 3. Interior of the F-237/GRC-10 cavity. The three air-dielectric trimmers have enough capacitance to allow coverage of $50-54 \mathrm{MHz}$.
the underside and unsolder the two coaxial cable leads leading to the front panel. To eliminate a cavity section, remove the Phillips-head screw and unsolder the ground strap. Unsolder the cavity center conductor from the variable-capacitor stator plates and the cavity will unplug from its adjacent cavity (fig. 4).

If only one section is to be used, any of the cavities will do. If two sections are to be used, then eliminate the center cavity and interconnect the remaining two with a short length of RG-58/U coaxial cable. This arrangement is necessary to ensure proper tracking. Adjustment follows the original procedure.

even less insertion loss

The insertion loss can be reduced to under 1 dB per cavity section by rearranging the cavity so that the pickup loops are placed in the high-current end of the cavity. This can be done by reversing the cavity sections as shown in fig. 5.

Unsolder the closed end plate at \mathbf{A} and resolder it to the other end, B. Make certain that very good electrical contact is made between the center conductor and the housing at this high current end, B. Unsolder the ground strap and relocate as shown. Cut a short length of copper or brass rod and insert it into the center conductor at \mathbf{A} so that it will reach the tuning-capacitor stator. Finally, unsolder the mounting bracket and replace it at the other end as shown.

Reassemble the cavities to the ganged capacitors
and you now have a bandpass filter with an insertion loss of less than $1-\mathrm{dB}$ per cavity section. The selectivity is still adequate even if you use only one cavity to do the job. The adjustment and tuning is as previously described.

for use with higher power

The F-237 bandpass filter is tuned to resonance by a three-gang variable capacitor of excellent quality with 0.06 -inch $(1.5-\mathrm{mm})$ spacing between plates. It should withstand power levels in the order of several hundred watts. The weak point in the filter is the very small air dielectric trimmers, which will probably arc over with rf power in excess of $30-40$ watts. To overcome this limitation, the trimmers can be removed and replaced with the APC type of trimmer, 20 pF or more, and with a plate spacing of at least 0.03 inch $(0.76 \mathrm{~mm}$). The larger trimmer will also extend the low range a few MHz below 49.5 MHz .

conversion to the 2-meter band

This conversion can be made from either left-over cavities from the $50-54 \mathrm{MHz}$ conversion or from another F-237. A length of 22 inches (56 cm) of coaxial re-entrant cavity is too long for $144-148 \mathrm{MHz}$ and must be shortened to allow for variable capacitance loading.

Fig. 6 shows a convenient method of obtaining a workable length, while at the same time placing the pickup loops very close to the shorted high-current end of the cavity. In addition, the open end is terminated in a handy housing for the variable capacitor.

As shown in fig. 7, carefully eliminate the shaded portion with a sharp hacksaw; this will leave about 11 inches $(28 \mathrm{~cm})$ of cavity for the 2 -meter band. File all rouugh edges to a flat and smooth finish and tin thoroughly at both ends for soldering. Unsolder the

fig. 5. Reversal of cavity to place pickup loops in the high-current area for lower insertion loss. Sketches (A) and (B) show before and after mods.
right-angle portion of the inner conductor as shown.
The two pickup loops will now be visible and accessible from the short open end. Using a screwdriver, bend the center of each loop toward the housing away from the center conductor as shown by the dotted line in fig. 8. Try to make the loops as symmetrical as possible.

To close up the end near the pickup loops, unsolder the end plate on the cut-off portion or cut a piece of flashing copper to $1-1 / 2$ inch (3.8 cm) diameter with a $1 / 4$-inch $(0.6-\mathrm{cm})$ opening in the center.

Solder either one securely to ensure good electrical contact at this high-current area.

Select an APC air dielectric trimmer capacitor and install in the cubical housing as shown in fig. 9. A capacitance of about 25 pF with an air gap spacing of at least 0.03 -inch $(0.76-\mathrm{mm})$ should fit into the available space and provide adequate tuning range. Solder the stator plates to a heavy lead and attach to the center conductor. The rotor wiper arm should be soldered directly to the housing wall. Try to obtain an APC trimmer with a standard $1 / 4$-inch $(0.6-\mathrm{cm})$ shaft so

fig. 7. Shaded portions are removed with a hacksaw to leave about 11 inches (28 cm) of cavity for the 2 -meter band.

fig. 8. Pickup loops are bent as shown for the 2-meter conversion.
that a knob can be used instead of the inconvenient screwdriver adjustment.

To test the unit for frequency coverage, attach a 3/4-inch ($1.9-\mathrm{cm}$) loop to either coaxial terminal and couple a grid-dip meter to it. A sharp dip will indicate resonance, which should occur about midrange with plenty of spare capacitance on either side of resonance. The open end of the cavity can then be closed with flashing copper or left open as you wish.

conversion to $\mathbf{2 2 0 - 2 2 5} \mathbf{~ M H z}$

This modification is identical to the $144-148-\mathrm{MHz}$ conversion except for the tuning capacitor. At this frequency, even the minimum capacitance of the APC trimmer is too high; therefore, a simple very low capacitance trimmer can be built using two copper pennies. Solder one penny to the inner conductor and the other to a brass machine screw as shown in fig. 10. Solder a brass hex nut to the outside of the housing and use a second hex nut to lock in the frequency adjustment. A grid-dip meter can be used to check the frequency range, which should be between approximately $180-240 \mathrm{MHz}$.

an experimenter's delight

The several conversions discussed in this article are just a small sampling of what can be done with the F-237. One assembly will supply three cavities; one for each band, or all three for one band.

For those who wish to experiment, a length of cavity somewhat shorter than the 11 inches (28 cm)

fig. 9. Installation of the APC trimmer capacitor for the $\mathbf{2}$-meter conversion.
used for the $144-\mathrm{MHz}$ band can be used with a $50-\mathrm{pF}$ air trimmer to provide coverage of both the 144- and $220-\mathrm{MHz}$ bands with one cavity. Also, by using a shorter length of about 3-5 inches ($7.6-12.7 \mathrm{~cm}$), this cavity section can be made to resonate in the 440 MHz band.

The size of the pickup loops, which serve an important role in impedance matching and determining cavity selectivity, can be changed by unsoldering the elongated mounting strip for easy access. Also, for convenient cable connection, small sockets such as the BNC, F, or RCA type can be used as they are small enough to be mounted into the strip.

Another suggestion: You can attach three modified cavities, each for a different band, to the stators of the three-gang tuning capacitor. Separate sets of coaxial cables can be run to sets of separate termi-

fig. 10. Air trimmer installation for the 22 MHz conversion using two copper pennies to replace the APC trimmer capacitor.
nals on the front panel, or a three-position switch can be used to select the cavity to be used. Depending on the length of each cavity, the individual capacitor sections can be used to tune the desired band. If the capacitance is too high, rotor plates can be easily removed to lower capacitance to fit the application. The main tuning dial can be calibrated with three separate scales, as required.

summary

With 66 inches (167.6 cm) of good-quality coaxial cavity available, a three-gang variable capacitor, three shielded miniature air dielectric trimmers, a precision tuning assembly, and a sturdy metal cabinet, vhf and uhf experimenters can really have a field day with the F-237/GRC-10.

references

1. William Tucker, W4FXE, "How to Modify Surplus Cavity Filters for Operation on 144 MHz ," ham radio, February, 1980, page 42.
2. William Tucker, W4FXE, "More Conversions of Surplus Cavity Bandpass Filters," ham radio, March, 1980, page 46.
3. William Tucker, W4FXE, "How to Modify Surplus Cavity Filters for Operation on 144 MHz ," Bibliography, ham radio, February, 1980, page 46.
ham radio

CALL

 TOLL FREEFor the best deal on
-AEA•Alliance•A mec $0 \bullet$ Apple•ASP - Avanti•Belden•Bencher•Bird•CDE
-CES•Communications Specialists
-Collinse Cushcraft• Daiwa•DenTron

- Drake•Hustler•Hy-Gain•IcomeIRL•KLM
-Kenwood•Larsen• Macrotronics•MFJ
-Midland•Mini-Products-Mirage•Mosley
- NPC• Newtronics• Nye• Panasonic
- Palomar Engineers•Regency•Robot
- Shure•Standard•Swan• Tempo
- Ten-Tec•Transcom•Yaesu

HOLIDAY SPECIALS

KENWOOD TR-7600 closeout \$269

ICOM IC-255A \$329
TEMPO S-1 \$239
with touchtone \$269
KENWOOD TR-7800, TR-9000 and TR-2400 all now in stock... Call for great Erickson prices today!

APPLE: Buy a 16k Apple II or Apple II Plus for \$1195; get 32k more memory, installed, free!
Complete with disc drive, only \$1739

Apple prices include prepaid shipping within continental U.S.A.
CALL TOLL FREE (outside lilinois only)
(800) 621-5802

HOURS: 9:30-5:30 Mon., Tues., Wed. \& Fri. v/n 9:30-9:00 Thursday 9:00-3:00 Saturday $\cdots \cdots$ ERICKSON communications Chicago. IL 60630 5456 North Milwaukee Ave. (312) 631-5181 |withnin Illinois)

THERE IS A DIFYBRGNCE IN QUARTZ CRYSTALS

For more than a quarter century, International Crystal Mfg. Co., Inc. has earned a reputation for design and capability in manufacturing and marketing precision electronic products.

The market for International crystals is worldwide. With a full range of types and frequencies available, International is a major supplier to the commercial and industrial crystal market.
International's leadership in crystal design and production is synonymous with quality quartz crystals from 70 KHz to 160 MHz . Accurately controlled calibration and a long list of tests are made on the finished crystal prior to shipment.

That is why we guarantee International crystals against defects, material and workmanship for an unlimited time when used in equipment for which they were specifically made.
Orders may be placed by Phone: 405/236-3741 - TELEX: 747-147 • CABLE: Incrystal • TWX: 910-831-3177 • Mail: International Crystal Mfg. Co., Inc., 10 North Lee, Oklahoma City, Oklahoma 73102.
Write for information.

INTERNATIONAL CRYSTAL MFG. CO., INC.
10 North Lee, Oklahoma City. Oklahoma 73102

TRy

solid state continuous coverage synthesized hf system

Continuous Frequency Coverage-The TR7 provides continuous coverage in receive from 1.5 to 30 MHz . Transmit coverage is provided for all amateur bands from 160 through 10 meters. The optional AUX7 Range Program Board allows out-of-band transmit coverage for MARS, Embassy, Government and Commercial services as well as future band expansions in the 1.8 through 30 MHz range.* The AUX7 Board also provides 0 through 1.5 MHz receive coverage and crystal-controlled fixed-channel operation for Government, Amateur or Commercial applications anywhere in the 1.8 to 30 MHz range.

Synthesized/RTO Frequency Control-A Drake exclusive: carefully engineered high-performance synthesizer, combined with the famous Drake PTO, provides smooth, linear tuning with 1 kHz dial and 100 Hz digital readout resolution. 500 kHz up/down range switching is pushbutton controlled.

Advanced, High-Performance Receiver Design-The receiver section of the Drake TR7 is an advanced, up-conversion design. The first intermediate frequency of 48.05 MHz places the image frequency well outside the receiver input passband, and provides for true general coverage operation without i-f gaps or crossovers. In addition, the receiver section features a high-level double balanced mixer in the front end for superior spurious and dynamic range performance.

True Passband Tuning-The TR7 employs the famous Drake full passband tuning instead of the limited range "i-f shift" found in some other units. The Drake system allows the receiver passband to be varied from the top edge of one sideband,
through center, to the bottom edge of the opposite sideband. In fact, the range is even wider to accommodate RTTY. This system greatly improves receiving performance in heavy QRM by
allowing the operator to move interfering signals out of the passband, and it is so flexible that you can even transmit on one sideband and listen on the other.

Unique Independent Receiver Selectivity-Space is provided in the TR7 for up to 3 optional crystal filters. These filters are selected, along with the standard 2.3 kHz filter, by front panel pushbutton control, independent of the mode control. This permits the receive response to be optimized for various operating conditions in any operational situation. Optional filter bandwidths include 6 kHz for a-m, 1.8 kHz for narrow ssb or RTTY, and 500 Hz and 300 Hz for cw .

Broadband, Solid State Design-100\% solid state throughout. All circuits are broadbanded, eliminating the need for tuning adjustments of any kind. Merely select the correct band, dial up the desired frequency, and you're ready to operate.

Rugged, Solid State Power Amplifier - The power amplifier is internally mounted, with nothing outboard subject to physical damage. A Drake designed custom heat sink makes this possible. The unique air ducting design of this heat sink allows an optional rear-mounted fan, the FA7, to provide continuous, full power transmit on SSTV/RTTY. The fan is not required for ssb/cw operation, since normal convection cooling allows continuous transmit in these modes.

Effective Noise Blanker-The optional NB7 Noise Blanker plugs into the TR7 to provide true impulse-type noise blanking performance. This unit is carefully designed to maximize both blanking and dynamic range in order to preserve the excellent strong-signal handling characteristics of the TR7.

[^3]* Aux 7 must be used with either Model 1546 RRM-7 Range Receive Module, or Model 1547 RTM-7 Range Transceive Module. Use one module per 500 kHz range. Modules plug directly into Aux7.

Model 1570
Model 1553
Model 1230
Model 1533
Model 7077
Model 1520
Model 1536
Model 1531
Model 1537
Model 1529
Model 7021
Model 7022
Model 7023
Model 7024
Model 1335
Model 7037
Model 385-0004

Drake PS7 120/240V Ac Supply for continuous duty operation (25 amps)
Drake PS75 120/240V Ac supply for intermittent duty (15 amps continuous, 25 amps intermittent)
Drake SP75 Speech Processor
Drake LA7 Line Amplifier
Drake CS7 Coax Switch
Drake Desk Microphone
Drake P75 Phone Patch
Drake Aux 7 Range Program Board *
Drake MS7 Matching Speaker
Drake NB7 Noise Blanker
Drake FA7 Fan
Drake SL-300 Cw Filter, 300 Hz
Drake SL- 500 Cw Filter, 500 Hz
Drake SL-1800 Ssb/RTTY Filter, 1.8 kHz
Drake SL-6000 A-m Filter, 6.0 kHz
Drake MMK-7 Mobile Mounting Kit
Drake TR7 Service Kit/Extender Board Set
Drake TR7 Service/Schematic Book

TR7 SPECIFICATIONS

GENERAL	
Receive	
Without Aux7	1.5 to 30 MHz , continuous, no gaps.
With Aux7	Same, plus 0 to 1.5 MHz at reduced performance.
Transmit	
Without Aux7	1.8-2.0, 3.5-4.0, 7.0-7.5, 14.0-$14.5,21.0-21.5,28.0-30.0 \mathrm{MHz}$.
With Aux7*	Above ranges, plus any eight 500 kHz segments from 1.8 to 30 MHz .
Modes of Operation	Usb, Lsb, Cw, RTTY, A-m equiv. (A-3H).
Frequency Stability	Less than 1 kHz first hour. Less than 150 Hz per hour after 1 hour warm up. Less than 100 Hz for $\pm 10 \%$ line voltage change.
Frequency Readout Accuracy	
Analog	Better than $\pm 1 \mathrm{kHz}$ when calibrated at the nearest marker point.
Digital	$15 \mathrm{ppm} \pm 100 \mathrm{~Hz}$.
External Counter Mode	
Maximum Input Freq.	150 MHz .
Input Level Range	50 mV to $2 \mathrm{~V}, \mathrm{rms}$.
Power Supply Requirements	
	11-16 V-dc (13.6 V-dc nominal), 3A receive, 25A transmit.
Dimensions	
Depth	12.5 in (31.75 cm), excluding knobs and connectors.
Width	13.6 in . (34.6 cm).
Height	4.6 in . (11.6 cm) excluding feet.
Weight	$17.1 \mathrm{lb} .(7.75 \mathrm{~kg})$.
RECEIVER	
Sensitivity	
Ssb, Cw	Less than $0.5 \mu \mathrm{~V}$ for $10 \mathrm{~dB}(\mathrm{~S}+\mathrm{N}) / \mathrm{N}$.
A-m (30\% Mod.)	Less than $2.0 \mu \mathrm{~V}$ for $10 \mathrm{~dB}(\mathrm{~S}+\mathrm{N}) / \mathrm{N}$.
Selectivity	2.3 kHz at -6 dB and 4.4 kHz at -60 dB (1.8:1 shape factor).

Ultimate Selectivity
Age

Intermodulation

I-f Frequency
Image and I-f Rejection
Spurious Response
Internally Generated Spurious Less than $1 \mu \mathrm{~V}$ equivalent, except $3 \mu \mathrm{~V}$ equivalent from 5 to 6 MHz
(reduced specs on internal osc $3 \mu \mathrm{~V}$ equivalent from 5 to 6 MHz
(reduced specs on internal osc frequencies).
Audio Output
2.0 watts @ less than 10\% THD (4 ohm load).

TRANSMITTER

Power Input (Nominal)

Ssb
 250 watts PE

Cw
A-m equiv.

Load Impedance
Spurious Output
Harmonic Output
Intermodulation Distortion
Undesired Sideband Suppression
Greater than 60 dB @ 1 kHz .
Duty Cycle
Ssb, Cw
Tune, SSTV, RTTY, A-m

Wattmeter Accuracy
Carrier Suppression
Microphone Input
Greater than 100 dB .
Less than 4 dB output variation for 100 dB input signal change, referenced to agc threshold.
Intercept Point, +20 dBm . Two-tone Dynamic Range, 99 dB (at spacings of 100 kHz and greater).
First i-f -48.05 MHz .
Second i-f -5.645 MHz .
Greater than 80 dB .
Greater than 60 dB down.

80 watts (carrier), plus upper sideband.
50 ohms, nominal.
Greater than 50 dB down.
Greater than 45 dB down.
30 dB below PEP (24 dB below one of two tones).
100%.
w/o 1529 FA7 Fan $-33 \%, 5 \mathrm{~min}$. transmit, max. with 1529 FA7 Fan- 100%.
$\pm 5 \%$ @ 100 watts (50 ohm load).
Greater than 50 dB .
High Impedance.

Yagi antennas:

practical designs

In all the previous articles of this series the specifications for a Yagi antenna have been stated only in terms of strictly cylindrical elements. Each element is characterized by an x coordinate or position along the boom, a physical length, $L E$, and a radius $R O$; each of these three quantities is expressed in terms of wavelengths, λ, at a central design frequency. Such specifications have led to a number of rather good antenna designs, and I shall shortly list a brief selection of such designs. However, when a real Yagi
antenna is constructed it will rarely ever be convenient to adhere rigorously to the given cylindrical element design. To start, the element diameter is usually adjusted to fit a mechanical requirement (wind loading, etc.); moreover, the element itself is usually not a cylinder, but a series of telescoping tubes starting with a large-diameter section at the boom and tapering to a small-diameter section at the outer end of the element. In addition, the element is fastened to the boom with a clamping arrangement that may be a plate or angle bracket U-bolted to both boom and element. Some mechanical designs even put the element directly through the boom. Thus, the path from the cylindrical design to a practical antenna will involve three tasks: scaling the original design to an equivalent new design using a different (average) element radius, computing the potentially significant change in element length as a result of the chosen (telescoping) taper schedule, and making (usually minor) corrections to allow for the boom clamping system. Methods for carrying out each of these three tasks will be given following the next section on preferred antenna designs.

preferred antenna designs

In this section I shall discuss one preferred design for a two-, three-, four-, five- or six-element Yagi antenna. Recall that simplistic Yagis ${ }^{4}$ (element spacing uniform and all directors having a common length) are as good as any other design up to a boom length of one wavelength. It was shown that a good two-element beam would have a boom length of about 0.15λ; the exact length is not critical and is a compromise between better gain and lower efficiency and bandwidth. Best parasite element length is a compromise between better forward gain and lower F/B ratio. For a three-element beam it was shown that a boom length of about one-quarter wavelength produces a naturally high F / B and similarly for four-, five-, and six-element beams a boom length of about $3 / 4$ wavelength gives a naturally good F / B ratio.
Table 1 shows the characteristics of these good Yagi designs. These particular antenna designs are not unique; for example, the boom length can be varied somewhat. Longer booms, in general, give larger forward gain, but the frequency for highest F/B ratio drops somewhat below the center of the band, where gain remains high.
A procedure has also been described that allows fine tuning or optimization to improve the F / B ratio;5
this optimization procedure can be done for Yagi antennas having four or more elements. Optimization must be done for a specific end use. Table 2 shows optimized six-element beams first for free-space use, next for operation at 1.0λ over ground, and finally for operation in a two-Yagi stack at heights of 0.60λ and 1.5λ. These parameters are mathematically correct. But note that approximations used in the model really do not justify complete confidence in the precise values in table 2. Nevertheless, I suspect that practical antennas constructed from this table (for use over ground) will exhibit superior properties to the (freespace) 6 -element case shown in table 1.

scaling

Any of the Yagi antenna designs, such as those in table 1, can be scaled either to other center frequencies or to elements of different diameter at the same center frequency. Because all design parameters include dimensions expressed in wavelengths at a central design frequency, the design itself is independent of frequency scaling; therefore, the behavior of the antenna will not be affected by the choice of central design frequency. However, this is true only if the design is truly unchanged; that is, all physical dimensions (including element radii) are adjusted proportional to the desired wavelength.
table 1. Preferred Yagi antenna designs. All elements with radius, $R O$, of $0.0005260 \lambda_{0}$), length, $L E$, in $\left(\lambda_{0}\right)$, and boom position, X, in $\left(\lambda_{0}\right)$.

element	X	LE	X	LE	X	LE	X	LE	X	LE
R	0.000	0.49366	0.000	0.49801	0.000	0.49185	0.0000	0.49994	0.000	0.49528
DR	0.150	0.47050	0.150	0.48963	0.250	0.47900	0.1875	0.48040	0.150	0.48028
D1			0.300	0.46900	0.500	0.46319	0.3750	0.45232	0.300	0.44811
D2					0.750	0.46319	0.5625	0.45232	0.450	0.44811
D3							0.7500	0.45232	0.600	0.44811
D4									0.750	0.44811
number										
elements	2		3		4		5		6	
gain (dBi)	6.88		7.86		10.62		10.45			10.70
F/B (dB)		7.94		23.60		41.62		27	52.71	

table 2. Optimized 6-element Yagi antenna, $R O$ is $0.0005260\left(\lambda_{0}\right), L E$ in $\left(\lambda_{0}\right)$, and X in $\left(\lambda_{0}\right)$.

	\mathbf{A}		\mathbf{B}			
element	X	$L E$	X	$L E$	C	$L E$
\mathbf{R}	0.0000	0.49528	0.0000	0.49528	0.0000	0.49528
DR	0.1500	0.48071	0.1500	0.48028	0.1500	0.48157
D1	0.2992	0.44811	0.3039	0.44811	0.3029	0.44811
D2	0.4500	0.44811	0.4500	0.44811	0.4500	0.44811
D3	0.6000	0.44811	0.5959	0.44811	0.6395	0.44811
D4	0.7500	0.44811	0.7500	0.44811	0.7500	0.44811

Note:
A. Optimized in free space.
B. Optimized at $1.0 \lambda_{0}$ over ground.
C. Optimized in a stack/ground at $0.6 \lambda_{0}$ and $I .5 \lambda_{0}$.

Experience has shown that desired element radii expressed in wavelengths is not constant; at low frequencies (long wavelengths) relatively thin elements are used, while at high frequencies relatively fat elements are normal. How, then, can a given design be altered to an equivalent design where element radii are changed? The clue is to make the impedance of the changed, or scaled, element exactly the same as the impedance of the original unscaled element at the central design frequency; in this way exactly the same element currents will flow, resulting in the same detailed antenna performance. Because the (radiation) resistance of the element is essentially unchanged, we need only to make the reactance invariant to scaling-element radius.

Recall ${ }^{2}$ that element reactance, X, near resonance can be expressed as:

$$
\begin{equation*}
X=R Q(F / F R-F R / F) \tag{1}
\end{equation*}
$$

where $R=$ the (radiation) resistance
$Q=$ the effective Q
$F=$ the frequency referred to central design frequency
$F R=$ the element resonant frequency, also referred to central design frequency.

Recall also that $R Q$ can be (rather accurately) empirically expressed as:

$$
\begin{equation*}
R Q=(215.15 \log K-160) \tag{2}
\end{equation*}
$$

where $K \equiv 1 / R O$
$R O=$ the radius of the element expressed in wavelengths at $F=1$, the central design frequency.

From eqs. 1 and 2:

$$
\begin{equation*}
X=(215.15 \log K-160)(F / F R-F R / F) \tag{3}
\end{equation*}
$$

and at the central design frequency ($F=1$):

$$
\begin{equation*}
X_{(F=1)}=(215.15 \log K-160)(1 / F R-F R) \tag{4}
\end{equation*}
$$

Thus, if we wish to scale the element radius from an original value to a new value, we must ensure that $X_{(F=1)}$ is unchanged. Note that $X_{(F=1)}$ contains
two variables, (K and $F R$), which are a function of element radius $R O$. Recall ${ }^{2} F R$ is calculated from the physical length of element $L E$ and physical resonant length $L E R$; both of these lengths are measured in wavelengths, λ_{0}, at $F=1$:

$$
\begin{equation*}
F R=L E R / L E \tag{5}
\end{equation*}
$$

Empirically, ${ }^{2}$

$$
\begin{equation*}
L E R=\left[1-(10.7575 \log K-8)^{-1}\right] / 2 \tag{6}
\end{equation*}
$$

Thus, from eqs. 5 and 6:

$$
\begin{equation*}
F R=\left[1-(10.7575 \log K-8)^{-1}\right] /(2 L E) \tag{7}
\end{equation*}
$$

We now have the tools to convert a given antenna, such as one in table 1, to a new (scaled) antenna where the element radii are changed; the new scaled antenna will perform exactly in the same way as the original antenna at the central design frequency ($F=1$). However, the frequency-swept behavior of the (scaled) antenna, while qualitatively similar to the original, will show a broader or narrower bandwidth, depending on the change in element Q (see eq. 2).

The procedure is simple. For any given original element (subscript 1) we are given $L E_{1}$ and $R O_{1}$. The new (scaled) (subscript 2) radius is designated as RO_{2}. Compute the new (scaled) element length, $L E_{2}$:

$$
\begin{gather*}
K_{1}=1 / R O_{1} ; K_{2}=1 / R O_{2} \tag{8}\\
F R_{1}=\left[1-\left(10.7575 \log K_{1}-8\right)^{-1}\right] /\left(2 L E_{1}\right) \tag{9}\\
X_{1}=\left(215.15 \log K_{1}-160\right)\left(1 / F R_{1}-F R_{1}\right) \tag{10}
\end{gather*}
$$

Having calculated reactance (at $F=1$), compute the value of $F R_{2}$ that will give the same value of X with the new element radius, RO_{2} :

$$
\begin{gather*}
X_{2}=X_{1} \\
\left(1 / F R_{2}-F R_{2}\right)=X_{1} /\left(215.15 \log K_{2}-160\right) \equiv A \\
F R_{2}=\left[-A+\left(A^{2}+4\right)^{1 / 2}\right] / 2 \tag{12}\\
L E_{2}=\left[1-\left(10.7575 \log K_{2}-8\right)^{-1}\right] /\left(2 F R_{2}\right) \tag{13}
\end{gather*}
$$

It is simple and convenient to set up the entire procedure (eqs. 8-13) on a small programmable calculator.

An example illustrates the results. Consider the antenna design for the six-element antenna in table 1;
table 3. Six-element Yagi; element length, $L E\left(\lambda_{0}\right)$.

'	reflector			driver			director		
		2	3	1	23			13	
LE (λ_{0})	0.49528	0.49489	0.49465	0.48028	0.47876	0.47785	0.44811	0.44431	0.44204
FR	0.97252	0.97042	0.96917	1.00289	1.00311	1.00325	1.07489	1.08090	1.08451
X (ohms)	30.40800	30.40800	30.40800	-3.14700	-3.14700	-3.14700	-78.58200	-78.85200	-78.85200

Note:

Column $1 R_{0}=0.0005260\left(\lambda_{0}\right)$, from table 1
Column $2 R_{0}=0.0008\left(\lambda_{0}\right)$
Column $3 R_{0}=0.0010\left(\lambda_{0}\right)$
this would be a reasonable design for a $14.2-\mathrm{MHz}$ antenna where $\lambda_{0}=69.3$ feet (21.13 meters) and where an RO of $0.0005260\left(\lambda_{0}\right)$ would correspond to an element physical diameter of $0.875 \mathrm{inch}(2.22 \mathrm{~cm})$. This would be a reasonable dimension for a mechanically adequate element. Now, suppose that we would like an equivalent antenna for 28 MHz , where $R O$ probably should be increased. The results of eqs. 8-13 are shown in table 3. Note that the (scaled) changed values for $L E$ are not wholly intuitive, because two things happen simultaneously. As RO increases the Q decreases, requiring a greater spread in resonant frequencies of reflector and director; however, at the same time, the resonant physical length, $L E R$, also changes. Note that, if one scales the actual physical dimensions of boom length up by a factor, S (from, say, a smaller high-frequency antenna model), and the element radius dimension is not also scaled up equivalently, it is wrong, conceptually, to scale element length by the same factor S. Moreover, it is also wrong, in this case, to scale down element resonant frequency by the same factor, S. The only correct way to scale an antenna element is to design it (length and radius) to give the same electrical reactance.

element taper corrections

To this point, antenna designs and all antenna calculations have been made for strictly cylindrical elements, and the results will apply directly to most high-frequency (small) Yagi antennas where the general practice is to use cylindrical elements. However, for frequencies less than about 30 MHz , mechanical considerations usually require that the elements consist of one or more telescoping sections of tubing. At the lower frequencies (say $\leq 7 \mathrm{MHz}$), the Yagi antenna becomes gigantic, and it is no small mechanical engineering task to construct even a good element. Smail diameters favor smaller wind forces, but these diameters are insufficiently rugged for long elements. It is, therefore, a practice to make these large elements of several telescoping sections. The largestdiameter section is clamped to the boom, and succeeding monotonically smaller-diameter sections make up the outer portions of the element. The resulting element taper can introduce a significant change in the required element length.

It's important to understand how to relate the actual detailed taper schedule of an element (diameters and lengths of all sections) to the equivalent length of a cylindrical (untapered) element having the same average or mean diameter. Equivalence is intended to mean that the resonant frequency and the Q are the same for the actual tapered element as for the equivalent cylinder.

To start, I shall introduce the concepts of element pipe inductance and pipe capacitance. Consider a cylindrical element of length s and radius $R O$ as shown in fig. 1. A length coordinate, x, is defined with the origin at the center of the element and a related (angle) coordinate, θ, where $\theta=\pi x / s$. Note that electrical excitation of this element in the neighborhood of the resonant frequency, f, will produce a current and voltage distribution:

$$
\begin{equation*}
I_{\theta}=I_{0} \sin (2 \pi f t) \cos (\theta) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{\theta}=V_{0} \cos (2 \pi f t) \cos (\theta) \tag{15}
\end{equation*}
$$

The electrical driving-point impedance of the element consists of a resistance (which is directly related to far-field energy radiation) and, of course, a reactance.

All reactance effects, including resonant frequency and electrical Q are caused by near-field (non-radiating) energy storage. Energy storage occurs in two ways: the magnetic flux surrounding the current distribution in eq. 14 and the electrical field produced by the voltage distribution in eq. 15 . Note that at certain instantaneous times ($t=n / 2 f$), the current everywhere is zero, and all stored energy resides in the electrical field. Similarly, at certain other times ($t=n / 2 f+1 / 4 f$ the electric field vanishes, and all stored energy resides in magnetic flux.

As time progresses the (constant) total stored energy transfers back and forth between magnetic and electrostatic fields. This transfer or exchange frequency is, of course, the element resonant frequency. As a result of this complete nonradiative energy transfer, the peak or maximum magnetic stored energy must exactly equal the peak electrostatic stored energy. Note also that the resonant or natural exchange frequency must decrease as the total stored energy is increased.

Now, consider the effect of inserting an infinitesimal length of pipe (of the same radius, $R O$) into the element of fig. 1 at the center ($x=0$.) The original

fig. 1. Coordinates of a single Yagi element. $S=$ overall length, X is coordinate of length with zero at center (boom), and θ is corresponding angle $(\theta=\pi \cdot S / X)$.
(subscript 1) element driving-point reactance, ${ }^{2} X$, was shown to be:

$$
\begin{equation*}
X=(430.30 \log K-320)\left(F / F R_{1}-1\right) \tag{16}
\end{equation*}
$$

where $K=\lambda / R O$
At the (original) resonant frequency, $F R_{1}$, the reactance vanishes; inserting an additional infinitesimal length of pipe, Δs, at $X=0$ will change the resonant frequency to $F R_{2}$. At this new frequency the total reactance again vanishes. The added reactance due to the inserted pipe must be balanced by the original pipe reactance at the new frequency:
$0=(430.30 \log K-320)\left(F R_{2} / F R_{1}-1\right)+2 \pi f \Delta L$
where $f=$ actual (resonant) frequency $\Delta L=$ increased inductance due to $\Delta \mathrm{s}$.

The inserted pipe at $x=0$ can produce only inductive effects (stored magnetic flux) since the electrical potential is strictly zero. Now, $F R_{2}$ is clearly related to $F R_{1}$ by the overall length(s) of the element:

$$
\begin{equation*}
F R_{2} / F_{1}=s /(s+\Delta s) \tag{18}
\end{equation*}
$$

from which

$$
\Delta L / \Delta s=(430.30 \log K-320) /(S 2 \pi f)
$$

and

$$
\begin{equation*}
\Delta L / \Delta s=(430.30 \log K-320) /(\pi c) \tag{19}
\end{equation*}
$$

where c is the velocity of light.
Thus, the addition of the small infinitesimal pipe section causes the element to behave just as though a pure series inductance were added. The effective inductance per unit length, which I designate by IND, is given by eq. 19 and is easily expressed in conventional units as:

$$
\begin{gather*}
I N D=(43.03 \log K-32)\left(1.061 \times 10^{-8}\right) \tag{20}\\
\text { henries } / \text { meter }
\end{gather*}
$$

From the simple model of a resonant circuit it is easy to relate the magnitude of voltage on the reactive components to magnitude of input current by:

$$
\begin{equation*}
\left|V_{0}\right|=\left|I_{0}(R Q)\right| \tag{21}
\end{equation*}
$$

with:

$$
\begin{equation*}
R Q=(215.15 \log K-160) \tag{22}
\end{equation*}
$$

Now, consider extending the element in fig. 1 by length Δs (of the same radius, $R O$) at its outer end $(x=s / 2)$. Here the current is zero so the small pipe increases only the electrostatic energy (capacitive effect). Since in this case eq. 13 is still valid, the total increase in stored energy should be just the same as it was for insertion at $x=0$. Therefore:

$$
\begin{equation*}
\Delta L\left(I^{2}\right) / 2=\Delta C\left(V^{2}\right) / 2 \tag{23}
\end{equation*}
$$

where $\Delta C=$ the capacitance increase due to $\Delta \mathrm{s}$ at the element end.
$\Delta L=$ the increase in inductance due to Δs at the element center.

From eqs. 21 and 23:

$$
\begin{equation*}
\Delta C=\Delta L /(R Q)^{2} \tag{24}
\end{equation*}
$$

Using eqs. 22, 24, and 19:

$$
\begin{equation*}
\Delta s / \Delta C=(43.03 \log K-32)(25 \pi c / 10) \tag{25}
\end{equation*}
$$

or in conventional units

$$
\begin{equation*}
\Delta s / \Delta C=1 / C A P \tag{26}
\end{equation*}
$$

$$
=(43.03 \log K-32)\left(2.356 \times 10^{9}\right) \text { meters } / \text { farad }
$$

where $C A P=$ the capacitance per unit length.
Note that $1 / C A P$ is directly related to IND, differing only in a constant multiplier.

Thus, we now can think of a cylindrical section of element pipe as contributing to element inductance (eq. 20) and element capacitance (eq. 26). Each contribution is a function of $K(\lambda / R O)$, and therefore $R O$, and each will depend on the current or voltage on the pipe section.

Let us now see what happens if a small section of pipe of length $\Delta B / 2$ is first removed at a position x (or corresponding θ) and for symmetry also at $-x$ or $-\theta$ from the element shown in fig. 1. Now replace these removed sections with equal length sections $(\Delta B / 2)$ of larger radius $R O$. The overall length of the element remains s, but cylindrical "bumps" occur at X and $-X$. As a result of these bumps the stored energy of the system is changed and therefore the resonant frequency is changed. Designate the value of K for the original pipe as K_{1} and for the short bumps as K_{2}. The contribution of the bump(s) to stored energy, W_{2}, will be

$$
\begin{equation*}
2 W_{2}=\Delta B\left[I N D_{2}\left(I^{2} \cos ^{2} \theta\right)+C A P_{2}\left(V^{2} \sin ^{2} \theta\right)\right] \tag{27}
\end{equation*}
$$

The relationship of V at the end of the element to I at $x=0$ is essentially unchanged from the original element, that is, $C A P_{1} V^{2}=I N D_{1} I^{2}$ (see eq. 23). Note also that (eqs. 19 and 25):

$$
\begin{equation*}
C A P_{2} / C A P_{1}=I N D_{1} / I N D_{2} \tag{28}
\end{equation*}
$$

so that eq. 27 can be rewritten as

$$
\begin{align*}
& 2 W_{2}=\Delta B\left[I N D_{2}\left(I^{2} \cos ^{2} \theta\right)\right. \\
& \left.+\left(I N D_{7}^{2} / I N D_{2}\right)\left(I^{2} \sin ^{2} \theta\right)\right] \tag{29}
\end{align*}
$$

Let us now find an equivalent length, $\Delta A / 2$, of the original pipe which, when placed at the same positions as each of the bumps, contributes an equal stored energy.

$$
\begin{align*}
2 W_{1} & =\Delta A\left[I N D_{1} I^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)\right] \\
& =\Delta A I N D_{1} I^{2}=2 W_{2} \tag{30}
\end{align*}
$$

so that

$$
\begin{gather*}
\Delta A / \Delta B=\left(I N D_{2} / I N D_{1}\right) \cos ^{2} \theta \\
+\left(I N D_{1} / I N D_{2}\right) \sin ^{2} \theta \tag{31}
\end{gather*}
$$

Now, for a longer section (longer bump) going from θ_{1} to θ_{2}, the equivalent length of the original pipe can be easily calculated. Designate $I N D_{2} / I N D_{1} \equiv m$, the length of the long bump as S_{B}, and the length of the original pipe, which gives equivalent stored energy, as S_{A}.

$$
S_{A} / S_{B}=m \overline{\cos ^{2} \theta}+(1 / m) \overline{\sin ^{2} \theta}
$$

The angular functions are to be averaged over the complete bump section. Eq. 32 is easily integrated and averaged; the result is

$$
\begin{equation*}
S_{A} / S_{B}=\left(m+\frac{1}{m}\right) / 2+\left(m-\frac{1}{m}\right) F(\theta) / 2 \tag{33}
\end{equation*}
$$

where

$$
\begin{equation*}
F(\theta)=\left(\sin 2 \theta_{2}-\sin 2 \theta_{1}\right) /\left(2 \theta_{2}-2 \theta_{1}\right) \tag{34}
\end{equation*}
$$

with θ measured in radians.
We can now compute from a given element taper schedule (involving several sections with different pipe diameters) the equivalent lengths of sections of "standard" cylindrical pipe. The procedure is to first choose the "standard" cylinder that is expected to provide equivalent Q. This is, of course, the pipe size at the center of each half element; that is, the average or mean pipe size. Next, for each section of the tapered element, compute the starting θ_{1} and ending θ_{2}. For each section compute m; it is easily derived from eq. 20, or

$$
\begin{equation*}
m=\left(43.03 \log K_{2}-32\right) /\left(43.03 \log K_{1}-32\right) \tag{35}
\end{equation*}
$$

From eqs. 35 and 33 compute S_{A} / S_{B}, which, multiplied by the (tapered) section physical length, gives the equivalent section length of the standard pipe. Adding the lengths of all equivalent sections gives the overall length of the standard cylindrical element that should perform essentially the same as the chosen taper schedule.

Perhaps an example will illustrate the procedure. Fig. 2 shows schematically a half element with five

fig. 2. Diagram of a tapered half-element example.
different sections whose physical diameters range from 1.250 inches $(3.25 \mathrm{~cm})$ at the boom $(x=0)$ to 0.500 inch (1.3 cm) at the outer end. Readers will recognize this taper schedule as one in common use (by Wilson) for a $14-\mathrm{MHz}$ Yagi reflector antenna element. The middle pipe section, 7/8 inch (2.2 cm) in diameter, will represent the "standard" pipe. At a frequency of $14.2 \mathrm{MHz}, \lambda_{0}=831.76$ inches $(21.13$ meters), $R O=0.0005260$, and $K_{1}=1901.17$. Table 4 illustrates how to calculate the equivalent cylinder section lengths. For each section column 2 shows the actual physical length, S_{B}, column 3 shows pipe diameter, column 4 the K value, column 5 the value of m computed from eq. 35, column 6 values of θ_{1}, column 7 values of θ_{2}, column 8 values of $F(\theta)$ computed from eq. 33, and column 9 equivalent section lengths, S_{A}, also computed by eq. 33. Note that the overall actual length of the tapered half element is 215 inches (5.46 meters), whereas the overall length of the equivalent cylindrical standard $7 / 8$ inch (2.2 cm) pipe is only 206.54 inches (5.25 meters). In other words, just due to the taper schedule alone the total (full length) tapered element must be made 16.9 inches (42.9 cm) longer than an equivalent cylinder! This taper correction is surprisingly large; it shows clearly that element length alone is a totally inadequate specification.

The physical reason why the tapered element must be longer than an equivalent cylinder is that the inner (larger) sections have smaller inductance than a standard cylinder and therefore must be made longer; similarly, the outer (smaller) sections have smaller capacitance than the standard cylinder and must also be made longer. The taper correction will be quite
table 4. Equivalent length computations for element in fig. 2.

section	$\begin{gathered} S_{B} \\ \text { (inches) } \end{gathered}$	d (inches)	K	m	θ_{1} degrees	θ_{2} degrees	$F(\theta)$	S_{A} (inches)
1	36	1.250	1330.82	0.93890	0.000	15.070	0.95452	33.904
2	50	1.125	1478.68	0.95695	15.070	36.000	0.61449	48.696
3	44	0.875	1901.17	1.00000	36.000	54.419	-0.00718	44.000
4	32	0.625	2661.63	1.05764	54.419	67.814	-0.52851	31.102
5	53	0.500	3327.04	1.09586	67.814	90.000	-0.90300	48.835
	215							206.537

small if the taper is small, but quite significant if the taper is large.
In the derivation of taper correction calculations, I have assumed that radial "bumps" are treated as small perturbations on the strictly cylindrical case and that the current and voltage distributions are sinusoidal. Note that K values for the heavily tapered element of fig. 2 differ from unity by only a few per cent; thus the calculation, even though made by a perturbation method, should be reasonably good. Moreover, the current distribution should still be reasonably sinusoidal over the tapered element. Nevertheless there may be some small inaccuracies in the overall calculation. It is important to note, however, that we are after a length correction of only a few per cent due to taper, and therefore some inaccuracy in the computation of the (small) correction is tolerable.
One further point merits elaboration. The procedure just outlined allows only a computation of cylinder equivalents from a given taper schedule; how may we compute a suitable taper schedule starting from a given cylinder? I have found that the simplest procedure is to initially specify all of the taper schedules from mechanical considerations, leaving as a variable only the length of the outermost section. Choose a guessed or estimated length for this section and compute the overall equivalent cylinder. It will generally miss the desired length by a differential length, Δ. One can now readjust the length of the outermost section by $-\Delta m$ and recalculate. One or two such iterations will bring the tapered element equivalent cylinder length into adequate agreement with the desired figure.

boom clamping correction

I now come to the subject of the boom-to-element mechanical clamping system and its effect on the element reactance and, hence, resonance. It is clear that a wide range of clamping systems are in common use; it is virtually impossible to make valid calculations for all varieties. Nevertheless there are two major kinds and it is helpful to understand them.
The first clamping system is simply to put the element directly through the (round) boom. In this construction a length of element equal to the complete boom diameter is replaced with the boom itself. Since this replacement occurs at a voltage node, we must determine the effective inductance of the replacement; once this is done it can be considered the first section of a tapered element from which an equivalent cylinder length can be calculated. I have not attempted a rigorous calculation of (boom) inductance; instead, I refer to the measurements of Viesbicke ${ }^{9}$ in which his fig. 10 shows that element length due to the presence of a (round) boom should
be increased by about 0.7 the diameter of the boom. This is tantamount to saying that the inductance of the boom section of the element is very low compared with normal element inductance; physically this is an expected result. The low inductance, of course, is due to the blockage of magnetic flux by the boom.
The second clamping system is much more widely used since it permits easier element maintenance and replacement. In this sytem either a flat, metal, rectangular plate or an angle bracket is interposed between element and boom; two U-bolts fasten the boom to plate or bracket and two more U-bolts fasten the element to plate or bracket. The U-bolts may also use saddles or cradles, which are mechanically better and which further tend to separate boom and element. For this clamping system we wish to know the inductive effect of the boom itself and more importantly the inductive effect of the plate or bracket. I have found experimentally that for this clamping system the boom itself has remarkably little effect. Even though the (round) boom and (round) element are in physical contact, the element length should be increased by only 6 per cent of the boom diameter; this small correction rapidly disappears as the element is spaced away from the boom (even by a small amount). The reason this result is so different from the through-the-boom result is the relative ease with which the magnetic flux (which results from element current flow) can squeeze between boom and element, especially if there is any gap between them.
The correction in length due to the mounting plate or bracket is readily calculable. The method is to first calculate the equivalent radius of the element plus bracket (which produces the same inductance) and second to use this equivalent radius as the first (short) section of a taper design. The theory for equivalent radii of single and multiple parallel conductors is given by Mushiake and Uda. ${ }^{10}$ In their notation the equivalent radius, ζ_{ϵ}, of a flat thin plate of total width, a, is simply:

$$
\begin{equation*}
\zeta_{\epsilon}=a / 4 \tag{36}
\end{equation*}
$$

and that for a right-angled bracket of width a and b is given by a rather complicated expression, which depends only slowly on the ratio b / a. For ratios between 0.3 and 1.0 a good approximation (error < 5 per cent) is:

$$
\begin{equation*}
\zeta_{\epsilon} \cong 0.2(a+b) \tag{37}
\end{equation*}
$$

Mushiake and Uda show that for two parallel conductors, it is possible to calculate the equivalent radius of the combination. If a_{1} and a_{2} are the lengths of the peripheries of the cross sections, ζ_{1} and ζ_{2} the equivalent radii of the two conductors, d_{m} the mean
distance between them, and ζ_{ϵ} the equivalent radius of the combination of both conductors, then

$$
\begin{align*}
& \log \zeta_{\epsilon}=\left(a_{1}^{2} \log \zeta_{1}+a_{2}^{2} \log \zeta_{2}\right. \\
& \left.+2 a_{1} a_{2} \log d_{m}\right) /\left(a_{1}+a_{2}\right)^{2} \tag{38}
\end{align*}
$$

Eqs. 36 and 38 permit a calculation of the equivalent radius of an element which is proximate to a plate; similarly, eqs. 37 and 38 provide a way of calculating the equivalent radius of an element proximate to an angle bracket. To check this method of calculation, I have determined the experimental detuning effect of a plate just touching a 1 inch (2.54 cm) diameter element resonant at 46 MHz . Table 5 shows both theoretical and experimental results for two different plates. These experiments were not particularly accurate because the resonant frequency is difficult to measure accurately; nevertheless the agreement of theory and experiment within estimated experimental accuracy is gratifying.

Note that element length corrections due to a proximate mounting plate or bracket can easily be as much as 10 percent of plate length. These corrections are not especially large in practice, but should be made wherever there is a relatively large boom-toelement clamping system.

scaling and taper example

It may be helpful to show how to specify a good three-element beam starting with the cylindrical design in table 1 . I shall go through necessary scaling, then taper schedule calculations for element length(s), and finally apply reasonable boom clamping and boom corrections; this procedure is used to specify a $14.2-\mathrm{MHz}$ beam, a $21.3-\mathrm{MHz}$ beam and a $28.5-\mathrm{MHz}$ beam.

First I choose an average cylinder size that is sufficiently strong. I shall assume that the final element is made of aluminum tubing such as 6061-T6 with seamless 0.059 inch (1.5 mm) wall thickness. For all three bands I choose a cylinder size of 0.875 inch (2.2 cm) OD, although for 28.5 MHz a slightly smaller size is probably permissible. Second, I choose a convenient taper schedule which is easily made from stan-
table 5. Increase in resonant frequency due to a proximate plate. Element radius is 0.50 inch $(1.3 \mathrm{~cm})$ and length produces resonance at 46 MHz .

	plate dimensions			change in resonant frequency	
	length (inches)	width (inches)		per cent theory	per cent expected
1	4.5	3.625		0.304	0.325 ± 0.1
2	6.0	4.000		0.530	0.521 ± 0.1

dard 12-foot (3.7-meter) lengths, leaving the length of the outermost section to be adjusted for correct overall length. The sections of seamless tubing (except the last section) are slit back about 3 inches (7.6 cm) at the outer ends (I use one slit only), and a common stainless steel hose clamp fastens sections together. Tubing overlap of about 8 inches (20 cm) gives good joint strength. For 14.2 MHz , the second section is a full 12 -foot (3.7-meter) section, over which is slid the shorter first section; this procedure gives added (central) strength and improves the ease of clamping with U-bolts and saddles. For 21.3 and 28.5 MHz this extra inner section is unnecessary.

Table 6 shows the specifications for these tapered half elements where x_{1} and x_{2} represent the start (inner) and end (outer) positions (in inches) of each section. Note that the tubing requirements for all three elements are shown in 12 -foot (3.7-meter) lengths.
table 6. Taper schedules (half elements), for the 3-element Yagi.

section	14.2 MHz			
	$\begin{gathered} d \\ \text { (inches) } \end{gathered}$	(inches)	(inches)	tubing lengths (12 feet)
1	1.125	0	24	1
2	1.000	24	72	3
3	0.875	72	136	3
4	0.750	136	176	2
5	0.625	176	<215	2
21.3 MHz				
1	0.875	0	72	3
2	0.750	72	112	2
3	0.625	112	<145	2
38.5 MHz				
1	0.875	0	72	3
2	0.750	72	<105	2

Third, for these three cases it is necessary to scale the original design of table 1 to use the desired average cylinder size. Table 7 shows the scaled cylinder lengths (in λ_{0} for all three beams using scaling techniques discussed previously.

We are now ready to compute the effect of taper schedule. For the $14.2-\mathrm{MHz}$ element(s), table 8 shows the flow of calculations; x_{1} and x_{2} (inches) show the start and finish of each section. First, a trial guess at the overall reflector length is made; I guessed 212 inches (5.38 meters) in this case. For each section $K, m, F(\theta)$ and S_{A} (in inches) are calculated by the previously described technique. Note that the sum of all cylinder equivalents S_{A} is 207.63 inches (5.27 meters); what was desired was 207.11 inches
(5.26 meters). This was a lucky guess; however, a small correction should be made to section 5 . This correction is m times the needed cylinder correction. Next in table 8 is shown a second reflector calculation after the correction is made; note that the new cylinder equivalent is exactly what was desired. Thus the overall length of the half element (last x_{2}) is 211.45 inches (5.37 meters).

By using the correction procedure, the next calculation derives the overall length of the driven element and a small iteration sets it (last x_{2}) at 208.0 inches (5.28 meters). The same procedure is used for the director, whose overall length (last x_{2}) is 198.83 inches (5.05 meters). Table 9 shows exactly the same calculation procedure for the $21.3-\mathrm{MHz}$ beam elements, and table 10 shows the results for the $28.5-\mathrm{MHz}$ beam elements.

We are now ready for the final small boom and boom clamp corrections. For this purpose I assumed the elements are U-bolted with saddles to flat plates, which in turn are U-bolted with saddles to the boom. Boom diameters are assumed to be 3 inches (7.6 cm) OD (14 MHz) and 2 inches (5.1 cm) OD (21 and 28 MHz). Full plate dimensions are assumed to be 6 inches (15.2 cm) wide and 8 inches (20.3 cm) long (14 MHz); 5 inches (12.7 cm) wide and 6 inches (15.2 cm) long (21 MHz); and 4 inches (10.2 cm) wide 4 inches (10.2 cm) long (28 MHz). These plates reduce central pipe inductance and thus cause an electrical shortening of the half element. This shortening is easy to calculate by techniques previously described. It amounts to about 0.66 inch (1.7 cm) (14 MHz); 0.44 inch (1.1 cm) (21 MHz); and 0.24 inch (0.6 meters) (28 MHz).
table 7. Scaling computations (3-element beam of table 1).

Freq. (MHz)	λ_{0} (inches)	d (inches)	K	$R O\left(\lambda_{0}\right)$	R	$D R$	D
14.2	831.76	0.875	190.17	0.0005260	0.49801	0.48963	0.46900
21.3	555.81	0.875	1270.42	0.0007871	0.49790	0.48916	0.46765
28.56	414.42	0.875	947.25	0.001056	0.49769	0.48819	0.46490

table 8. Taper calculations at 14.2 MHz .

	SEC.	d (inches)	x_{1} (inches	x_{2} (inches)	K	M	$F(\theta)$	S_{A} (inches)
R ${ }_{\text {TRIAL }}$$\lambda_{0}=831.76$ inchesCYLINDER$R O$	1	1.125	0.	24.	1478.68	0.95695	0.97905	22.990
	2	1.000	24.	72.	1663.51	0.97713	0.74164	47.189
	3	0.875	72.	136.	1901.17	1.00000	0.02854	64.000
	4	0.750	136.	176.	2218.03	1.02641	-0.66514	39.320
	5	0.625	176.	212.	2661.63	1.05764	-0.95324	34.133
								207.632
R	1	1.125	0.	24.	1478.68	0.95695	0.97894	22.989
	2	1.000	24.	72.	1663.52	0.97713	0.74038	47.190
	3	0.875	72.	136.	1901.17	1.00000	0.02467	64.000
	4	0.750	136.	176.	2218.03	1.02641	-0.66945	39.316
$L E=0.49801\left(\lambda_{0}\right)$	5	0.625	176.	211.45	2661.63	1.05764	-0.95540	33.609
HALF LENGTH 207.11 inches								207.104
			$T=211$.	inches				
DRLE $=0.48963\left(\lambda_{0}\right)$HALF LENGTH 203.63 inches	1	1.125	0.	24.	1478.68	0.95695	0.97820	22.990
	2	1.000	24.	72.	1663.52	0.97713	0.73174	47.200
	3	0.875	$72 .$	136.	1901.17	1.00000	-0.00145	64.000
	4	0.750	$136 .$	$176 .$	2218.03	1.02641	-0.69796	39.286
	5	0.625	176.	207.8	2661.63	1.05764	-0.96192	30.135
								203.611
$x_{2} L A S T=208.0$ inches								
DLE $=0.46900\left(\lambda_{0}\right)$HALF LENGTH 195.00 inches	1	1.125			1478.68	0.95695	0.97619	22.992
	2	1.000	24.	$72 .$	1663.52	0.97713	0.70843	47.226
	3	0.875	72.	136.	1901.17	1.00000	-0.06997	64.000
	4	0.750	136	176.	2218.03	1.02641	-0.76731	39.214
	5	0.625	176.	198.75	2661.63	1.05764	-0.97859	21.538
								194.97
	$x_{2} L A S T=198.83$ inches							

table 9. Taper calculations at $\mathbf{2 1 . 3} \mathbf{~ M H z}$.

table 10. Taper calculations at $\mathbf{2 8 . 5} \mathbf{~ M H z}$.

Thus, to compensate for the boom clamp, each half element should be lengthened by an equivalent amount; it should be further lengthened by the empirical $1 / 16$ boom radius described previously.

With all these corrections, the overall physical length of each half element is shown in table 11. None of these taper schedules is severe; therefore, the actual element lengths are not a great deal longer than the cylinder lengths shown in tables 8, 9, and 10; nevertheless the differences are there. Also shown in table 11 is the boom position x_{B} for each element expressed both in λ_{0} and in inches. Although

I have not tested any of these particular three-element beams experimentally, I am confident that their performance will be excellent and, moreover, they all should be easy to construct.

summary

Let me now summarize briefly the results of the entire Yagi design series.

1. A computational methodology was developed and validated ${ }^{2,3}$ that allows the important Yagi antenna
table 11. Overall element half lengths (in inches) and boom positions (in λ_{0} and inches); 3 element beams with taper schedules of tables 8, 9 and 10.

(MHz) freq	element	initial taper (inches)	clamp (inches)	boom (inches)	final length (inches)	boom location, x_{b} $\left(\lambda_{0}\right)$ (inches)	
14.2	R	211.45	0.66	0.09	212.20	0	0
	DR	208.00	0.66	0.09	208.75	0.15	124.7
	D	198.83	0.66	0.09	199.58	0.30	249.5
21.3	R	140.2	0.44	0.06	140.70	0	0
	DR	137.6	0.44	0.06	138.10	0.15	83.4
	D	131.4	0.44	0.06	131.90	0.30	166.75
28.5	R	103.91	0.24	0.06	104.21	0	0
	DR	101.90	0.24	0.06	102.30	0.15	62.2
	D	96.97	0.24	0.06	97.27	0.30	124.3

properties to be computed. Such computations produce results which are judged accurate to a few per cent; such an accuracy probably exceeds the accuracy of state-of-the-art experimental techniques.
2. Computations have been made throughout the series which have led to many new insights to Yagi antenna behavior. Among them are:
a. Simplistic designs (all elements spaced equally along the boom, and all directors of equal length) are as good as any other design for the same boom length as long as the boom is shorter than one wavelength. 4
b. Yagi forward gain basically depends only on boom length (in λ); it is essentially independent of number of elements as long as element spacing along the boom is not too large. 4 Conceptually, the boom can be considered an aperture illuminated in a quasiuniform way by the discrete elements. The illumination produces a diffraction pattern (the radiated antenna pattern) whose details are controlled by the precise illumination schedule.
c. Yagi F / B ratio is (naturally) best when the diffraction pattern has a null in the back direction. This occurs approximately when the boom length is an odd multiple of $\lambda / 4$.
d. A procedure exits whereby a Yagi antenna having four or more elements and roughly favorable boom length can be fine tuned by slight changes in element positions on the boom to give an indefinitely high F / B ratio; this astronomical F / B (that is, $>120 \mathrm{~dB}$) exists only at a single frequency. It occurs due to vectorial cancellation of individual element contributions and is equivalent in concept to a notch frequency filter which is carefully adjusted to give an exceptionally deep notch. ${ }^{5}$
e. Yagis, quads and quagis all behave alike qualitatively. Conceptually a quad can (if properly adjusted)
have a somewhat higher gain (a fraction of one dB) than a single Yagi; for horizontal polarization the increased gain comes about from slightly increased vertical directivity. This conceptual advantage may be eroded in practice by the difficulty of experimental quad adjustment compared with the accurate construction of a Yagi to a valid computed design. 6
f. The gain and impedance of any equilateral quad loop is strictly independent of the position of the feed point.
g. Ground effects are extremely important and lead directly to preferred antenna heights (1 to 2λ) with corresponding preferred radiation elevation angles. ${ }^{7}$
h. Stacking (horizontally polarized) Yagis vertically over ground is very effective if the top Yagi is sufficiently high (1 to 3λ). Stacking does result in significant mutual coupling effects, which can degrade normally expected performance, especially F / B ratio. ${ }^{8}$
i. A new method is suggested for raising the radiation acceptance angle for stacked beams. This method uses phase reversal for one of two antennas in a stack; the apparent advantage is the retention of stack gain at the higher angles. ${ }^{8}$
j. Fine tuning, or beam optimization, for high F / B ratio depends on the ultimate end use. Designs are different for free-space conditions, a single Yagi antenna over ground, and Yagi antennas to be used in a stack. 8
3. Practical computation procedures are provided in this article for scaling a given design to use elements of different radii, for length corrections due to element taper schedule, and for length corrections due to mechanical boom-to-element clamps.
4. The entire series provides a way for anyone to make a Yagi antenna system having high computed
performance, starting from his own computed designs, or starting from designs which have been suggested in this series. Moreover, it is also shown in this article how to make a Yagi antenna which will accurately emulate the performance of any existing Yagi design; the performance will be just as good (or just as bad) as the emulated design.

final comments

In the development and exposition of this series of related articles, which I found both technically challenging and requiring considerably more effort than originally anticipated, I have attempted to proceed from basic electromagentic theory to a model of a Yagi antenna system which could ultimately be used in a practical way. All of the required steps and tools have been described. However, along the way I have noticed a number of areas in which further work by interested people could be very helpful. Among these are the following:

1. Valid theoretical treatment of mutual impedance where element length is not $\lambda / 2$, and where the current distribution is not sinusoidal but consistent with the element function and environment. A particularly difficult question exists with regard to the imaginary part of this impedance at small distances.
2. Valid theoretical treatment of the screening effect of closely adjacent dipoles on the electric field normally present at a given dipole.
3. Valid theoretical treatment of the mutual coupling between quad loops, especially including the imaginary component of coupling at all loop distances.
4. Valid theoretical treatment of the reactance of a full quad loop as a function of its length (perimeter) in the neighborhood of λ.

None of these tasks is easy. All require good physics followed by tractable mathematics. Moreover, even if "solutions" are claimed, they must be viewed with some suspicion until accurate experimental results confirm their validity.
In addition to these theoretical tasks, it would be extremely helpful if good experiments could be made in one or more of the following areas:

1. Experiments on model Yagi antennas, similar to those reported by NBS9, but carried out with improved instrumentation and especially improved control of the physical environment. Such experiments could be exceedingly useful in attempting to validate not only the models I have used, but improved models which I am sure will occur in the future.
2. Find a way to better characterize real (rough, contoured, or both) ground sites. Such characterization
should also include the electromagnetic properties of ground. The objective of such work is to provide valid models for a wide spectrum of real-world sites; the use of these models should lead to better understanding of ground effects and perhaps methods for minimizing ground problems.
3. From (flat) ground sites at several magnetic latitudes measure the (statistical) arrival angles of incoming signals. Such measurements should be made at a number of widely separated useful frequencies; at each frequency the results should be correlated with the measured state of the ionosphere. These measurements should be made, not only over a yearly cycle, but over at least one complete solar cycle. Only in this way will a real understanding of the relevant behavior be reached. The end result of this understanding is, of course, to allow specifications for needed incoming arrival angles and hence specifications for optimum antenna height(s) and stacking arrangements.

It is clear that all of these suggestions require an uncommon competence and dedication, as well as the development of sophisticated experimental instrumentation. They also require a great deal of effort.

In the meantime I am convinced that the tools now available will not only permit the design of improved antenna systems, but in many aspects also permit a practical design that is unlikely, even in principle, to be significantly improved.

It is my wish that many readers will construct these superior Yagi antenna systems, make meaningful measurements of their properties, and report results accurately in the literature.

references

1. J.L. Lawson, "Antenna Gain and Directivity Over Ground," ham radio August, 1979, pages 12-15.
2. J.L. Lawson, "Yagi Antenna Design: Performance Calculations," ham radio, January, 1980, pages 22-27.
3. J.L. Lawson, "Yagi Antenna Design: Experiments Confirm Computer Analysis," ham radio, February, 1980, pages 29-27.
4. J.L. Lawson, "Yagi Antenna Design: Performance of Multi-Element Simplistic Beams," ham radio, May, 1980, pages 18-26; and ham radio, June, 1980, pages 33-40.
5. J.L. Lawson, "Yagi Antenna Design: Optimizing Performance," ham radio. July, 1980, pages 18-31.
6. J.L. Lawson, "Yagi Antenna Design: Quads and Quagis," ham radio, September, 1980, pages 37-45.
7. J.L. Lawson, "Yagi Antenna Design: Ground or Earth Effects," ham radio, October, 1980, pages 29-37.
8. J.L. Lawson, "Yagi Antenna Design: Stacking," ham radio, November, 1980, pages 22-34.
9. P. Viesbicke, "Yagi Antenna Design," NBS Technical Note "688, December, 1976, U.S. Government Printing Office, Washington, D.C 20402.
10. S. Uda and Y. Mushiake, "Yagi-Uda Antenna," Res. Inst. of Elect. Comm., Tohoku University, Sendai, Japan, Printed by Sasaki Ltd., Sendai, Japan, 1954.
ham radio

mobile kilowatt

Applying $25-30$ volts to a transformer rated at 12 volts can be alarming but because of the alternator output frequency, the impedance is acceptable, and the transformers will work well without any heating.

Although the alternator is rated at 7 volts output, the output voltage is dependent on the regulator. The regulator (fig. 3) sets the alternator output at $25-30$ volts. The alternator works quite efficiently at the elevated output voltage. I've had no problems while running it this way. The field current must be taken into account, however, and the 5.6 -ohm resistor (fig. 1) limits it to a safe value. I've test-loaded this power system at approximately 2400-2600 watts with no problems.

After several years of DXing with a six-element quad, I thought it would be a real challenge to put out a big signal from a mobile rig and see what could be done. It turned out that working DX from a moving automobile is enjoyable and well worth the effort of building the equipment to provide a full kilowatt input.
In my mobile a TS-120S drives a modified HA-14 amplifier. The TS-120S is powered from the standard 55 -ampere automotive system. To power the HA-14 linear, I use a three-phase alternator-powered supply.

high-voltage mobile supply

A three-phase Leece-Neville alternator is used as a primary source, which I bought for $\$ 10$. It has a rating of 7 volts at 60 amperes. The alternator circuit is shown in fig. 1.
I mounted the alternator on the car and used a belt drive from the crankshaft pulley on the engine. (It takes a tight belt to prevent slippage under maximum load.)
The high-voltage supply (fig. 2) is a three-phase delta configuration with voltage from each phase applied to a full-wave voltage doubler.
The outputs of each voltage doubler are connected in series to obtain 2400-2600 Vdc. I used three surplus transformers with 12 -volt primaries and 170 -volt secondaries. Other transformers can be used, and if the turns ratio is correct, voltage doublers aren't necessary. Regular $12-\mathrm{volt}, 60-\mathrm{Hz}$ filament transformers with a 220 -volt winding can be used.

regulator

The regulator is a modified version of a circuit published several years ago. No battery is needed in this power system. Several regulator designs were tried and worked well; this is the one I like best. The alternator will usually self-excite when turned on, but if not a momentary push button switch will do it (S2, fig. 1).

This power system has been trouble-free and very dependable. Since the high power drain doesn't affect the automotive power system or its battery, rundown battery problems don't exist. I can run full power with this mobile setup for hours on end with no overheating or other problems. The limitation, of course, is that the engine must run at idle rpm or more to operate the linear.

installation

I mounted the power supply and linear amplifier in the car trunk and the regulator under the hood away from engine heat. If the antenna is bumper mounted, it must be well grounded. While transmitting with this high power, allow no one to touch the antenna - severe burns will result. Even the outside of the car can give of burns.

While pulling into my drive one night I was surprised to see what I thought was lightning on a clear night.

By Don Winfield, K5DUT, 6080 Anahuac Avenue, Fort Worth, Texas 76114

fig. 1. Primary power source for the mobile linear amplifier uses a three-phase Leece-Neville alternator. Voltage from each phase is applied to a fullwave voltage doubler.

fig. 2. High-voltage supply. Outputs of each voltage doubler are connected in series to provide $\mathbf{2 4 0 0} \mathbf{- 2 6 0 0}$ Vdc for the mobile final amplifier. The system has been test loaded at 2400-2600 watts.

The top of the antenna was touching low tree limbs as I transmitted, and the damp limbs drew arcs from the antenna, with one of the limbs smoldering and on fire. I've since learned to shut down when under trees with low limbs.

results

After everything is in place and working, what kind of results can be expected from a kW in the car?
DX stations such as D4, ZS, EL2, 6W8, XT2, H44, VR8, and TR8 have been worked with 5-9 or better reports from the 20 -meter mobile. I've enjoyed many contacts with DX friends such as ZS6DN, F3EG, and VR3AR while driving to and from work. In my case, that's a 35 -minute trip on the interstate usually with light traffic. Just right for a little mobile DXing.

During peak band conditons, reports are routinely received from both coasts of $30-40 \mathrm{~dB}$ over S9 and occasionally "pegging the S meter." Numerous comments such as, "You're too strong to be a mobile," have occurred. I usually honk the horn to convince the doubters.*

Other bands are worked also, and, what with the excellent conditions during the fall of 1979, the $10-$ and 15 -meter band propagation was so good that the mobile was just as good as a fixed station. Many DX stations were worked on first call on these bands in pile-ups during this time. During the winter months, 75 meter DX is worked routinely into most areas of the world. I use CW from the mobile also. A memory keyer is a great help.
The biggest limitation to DX work from a mobile is the ability to receive. On today's crowded bands, with the nondirectional vertical, interference is a problem, as is noise while operating mobile in populated areas. Noise blankers help a great deal. The most common problem with the mobile occurs when a CQ is called. The average ham expects a mobile not to be too strong, and when he hears one calling CO and answers him, he finds it hard to believe that the mobile can't copy his signal on a simple antenna.

I've enjoyed this mobile for about $11 / 2$ years and can recommend mobile DXing as another means of enjoying ham radio. For a mobile station to be able to jump into a huge pileup on a rare station on 20 meters and come up with a contact is something that apparently never ceases to amaze the Big Guns at their multikilowatt stations with huge antennas scraping the clouds.

I'll be glad to help in planning your super mobile DX station on the receipt of a large, self-addressed stamped envelope.
ham radio

[^4]

Kitty's Christmas Gift Giving Ideas

Come to BARRY'S for your
YAESU transceivers and receivers.

The outstanding FT-707, FT-901 DM or consider the FT-107 M or the NEW 9. Band FT-1012D
See the Yaesu FRG-7700 and the top rated ${ }^{*}$ FRG-7 receivers. DECEMBER FEATURES COLLINS KWM 380 and accessories for all major lines SWAN/CUBIC 102 BX plus wattmeters MIRAGE 2M amplifiers • MURCH UT 2000B It's Barry's for the Drake TR/DR-7 and R-7 CW Ops - we've got NYE keys and Bencher paddles
AND THERE'S MUCH MORE! Please call, TODAY BARRY'S HAS HAND-HELDS

Yaesu FT-207R
Icom IC-2AT
Tempo S-2, 5
Santec HT-1200
BARRY'S HAS TUBES LOTS OF TUBES!!!
BARRY now carries the ALPHA 76PA with three 8874 tubes, 2,000W PEP

Our lines inciude:

AEA	CUSHCRAFT	ICOM	SWAN/CUBIC
ALLIANCE	DSI	KLM	TEMPO
ASTRON	DENTRON	KANTRONICS TRI-EX	
AVANTI	DRAKE	MFJ	VHF ENGINEERING
B\&W	ETO	MIRAGE	WACOM
BIRD	EIMAC	MURCH	YAESU
COLLINS	ENCOMM	ROBOT	ANDMORE...
COMMUNICATIONS	HUSTLER	SHURE	
SPECIALISTS	HY-GAIN	STANDARD	"Ask us for details.

BUSINESSMEN: Ask about BARRY'S line of business-band equipment. We've got it!
Amateur Radio License Classes: Wednesday \& Thursday: 7-9 pm Saturday 10 am-Noon
The Export Experts Invite Overseas orders

- AQUİSE HABLA
- We Ship Worldwide ESPANOL
BARRY ELECTRONICS
512 BROADWAY, NEW YORK, N.Y. 10012
TELEPHONE (212) 925-7000
TELEX 12-7670

ANNUAL LAS VEGAS PRESTIGE CONVENTION SAROC DUNES HOTEL \& COUNTRY CLUB Las Vegas, Nevada JANUARY 1-2-3-4, 1981

Cocktail Party hosted by Ham Radio Magazine, Friday evening, for all exhibitors and GAROC registered guests.
Ladies Bingo and Program Saturday, included with [SAROC] registration.
Dunes Hotel Breakfast/Brunch, Saturday and Sunday included with SAROC registration.
Technical sessions and exhibits Saturday \& Sunday, for SAROC registered guests. Saturday and Sunday Hourly awards, main drawing Sunday afternoon.
advance registration is only $\$ 16.00$ per person if received before Dec. 20. 1980.

Send check or money order to [SAROC] P. O. Box 945, Boulder City, NV 89005 Refunds will be made if requested in writing and postmarked before January 1. 1981.

Special SAROC Dunes Hotel \& Country Club room rate is $\$ 35.50$, plus room tax, includes telephone. Send deposit and request direct to RESERVATIONS MANAGER, Dunes Hotel \& Country Club, 3650 Las Vegas Blvd. South, Las Vegas, NV 89109 or call toll free 1-800-634-6971
Clip and mail to REGISTRATION, P. O. Box 945, Boulder City, NV 89005 before December 20, 1980.
\qquad check or money order (no cash) for \qquad SAROC ${ }^{-1}$ advance Registration (a) \$16.00 each, and \qquad extra main drawing tickets (a) $\$ 1.00$ each maximum of ten.

OM	Please print	CALL	CLASS
YL	Please print	CALL	CLASS
ADDRESS		CITY	

STATE \qquad ZIP \qquad Telephone no. and A/C

I have attended SAROC times. I plan to attend Friday Cocktail Party \qquad
I am interested in: ARRL, Cocktail Party, CW, DX, FCC, FM, MARS, RTTY,
I receive: CQ. HAM RADIO MAGAZINE, HAM RADIO HORIZONS, HR REPORT, QCWA, QST, RTTY, SPARKS/GAP,

IETISEA the first name in Counters !

The CT-90 is the most versatile, feature packed counter available for less than $\$ 300.00$: Advanced design features include, three selectable gate times, nine digits, gate indicator and a unique display hold function which holds the displayed count after the input signal is removed Also, a 10 mHz TCXO time base is used which enables easy zero beat calibration checks against WWV. Optionally; an internal nicad battery pack, external time base input and Micropower high stability crystal oven time base are available. The CT-90, performance you can count on!

Range $\quad 20 \mathrm{~Hz}$ to 600 MH
Sensitivity. Less than 10 MV to 150 MHz
Less than 50 MV to 500 MHz
Resolution 0.1 Hz (10 MHz range) 0.1 Hz (10 MHz range)
1.0 Hz (60 MHz range) 10.0 Hz (600 MHz range)

Display. $\quad 9$ digits $0.4^{\prime \prime}$ LED
Time base: Standard $10.000 \mathrm{mHz}, 1.0 \mathrm{ppm} 20-40^{\circ} \mathrm{C}$ Optional Micro-power oven $0.1 \mathrm{ppm} 20-40^{\circ} \mathrm{C}$
Power: $\quad 8-15 \mathrm{VAC} @ 250 \mathrm{ma}$

7 DIGITS 525 MHz \$99 $\frac{95}{\mathrm{w}}$

SPECIFICATIONS:

Range: $\quad \quad \quad 20 \mathrm{~Hz}$ to 525 MHz
Serfitivity. Less than 50 MV to 150 MHz Less than 150 MV to 500 MHz
Resolution $\quad 1.0 \mathrm{~Hz}$ (5 MHz range)
10.0 Hz (50 MHz range) 100.0 Hz (500 MHz range)

Display: $\quad 7$ digits $0.4^{\prime \prime}$ LED
Time base $\quad 1.0 \mathrm{ppm}$ TCXO $20-40^{\circ} \mathrm{C}$
Power: $\quad 12 \mathrm{VAC}$ (a 250 ma

The CT-70 breaks the price barrier on lab quality frequency counters Deluxe features such as three frequency ranges - each with pro- amplification, dual selectable gate times, and gate activity indication make measurements a snap. The wide frequency range enables you to accurately measure signals from audio thru UHF with 1.0 ppm accuracy-that's $.0001 \%$! The CT-70 is the answer to all your measurement needs, in the field, lab or ham shack

PRICES:
CT-70 wired, 1 year warranty $\$ 99.95$ CT-70 Kit, 90 day parts warranty
$\mathrm{AC}-1 \mathrm{AC}$ adapter
BP-1 Nicad pack + AC
adapter/charger
12.95

PRICES:

MINF-100 wired, 1 year warranty
MINI-100 Kit, 90 day part warranty
AC- Z Ac adapter for MINI 100
NP. Nicad pack and AC
adapter/charger

7 DIGITS 500 MHz

Here's a handy, general purpose counter that provides most counter functions at an unbelievable price. The MINI-100 doesn't have the full frequency range or input impedance qualities found in higher price units, but for basic RF signal measurements, it can't be beat' Accurate measurements can be made from I MHz all the way up to 500 MHz with excellent sensitivity throughout the range, and the two gate times let you select the resolution desired. Add the nicad pack option and the MINI-100 makes an ideal addition to your tool box for "in-the-field" frequency checks and repairs

8 DIGITS 600 MHz \$15995

SPECIFICATIONS:

Range: $\quad 20 \mathrm{~Hz}$ to 600 MHz

Resolution:
Display
Display:
Time base
Power:

Sensitivity: Less than 25 mv to 150 MHz Less than 150 mv to 600 MH 1.0 Hz (60 MHz range) 10.0 Hz (600 MHz range) 8 digits $0.4^{\prime \prime}$ LED $2.0 \mathrm{ppm} 20-40^{\circ} \mathrm{C}$ 110 VAC or 12 VDC

The CT-50 is a versatile lab bench counter that will measure up to 600 MHz with 8 digit precision. And, one of its best features is the Receive Frequency Adapter, which turns the CT-50 into a digital readout for any receiver. The adapter is easily programmed for any receiver and a simple connection to the receiver's VFO is all that is required for use. Adding the receiver adapter in no way limits the operation of the CT-50, the adapter can be conveniently switched on or off. The CT-50, a counter that can work double duty!

PRICES:
CT-50 wired, 1 year warranty $\$ 159.95$ CT-50 Kit, 90 day parts
warranty
RA-1, receiver adapter kit RA-1 wired and pre- programmed (send copy of receiver schematic)

DIGITAL MULTIMETER $\$ 99 \frac{95}{w}$

The DM-700 offers professional quality performance at a hobbyist price. Features include; 26 different ranges and 5 functions, all arranged in a convenient, easy to use format. Measurements are displayed on a large $31 /$ digit. /\% inch LED readout with automatic decimal placement, automatic polarity, overrange indication andoverload protection up to 1250 volts on all ranges, making it virtually goof-proof! The DM-700 looks great, a handsome, jet black, rugged ABS case with convenient retractable tilt bail makes it an ideal addition to any shop.

SPECIFICATIONS

$\overline{\text { DC/AC volts } 100 \mathrm{uV}}$ to 1 KV .5 ranges DC/AC
current $\quad 0.1 u \mathrm{~A}$ to $2.0 \mathrm{Amps}, 5$ ranges Resistance 0.1 ohms to 20 Megohms 6 ranges Input
impedance 10 Megohms DC/AC volts Accuracy. 10.1% basic DC volts Power. $\quad 4^{\circ} \mathrm{C}$ ' cells

PRICES:

DM-700 wired I year warranty DM-700 Kit, 90 day parts warranty
BP-3, Nicad pack + AC adapter/charger MP-1. Probe kit
$\$ 99.95$
19.95
2.95

AUDIO SCALER
For high resolution audio measurements, multiplies UP in frequency

- Great for PL tones
- Multiplies by 10 or 100
- 0.01 Hz resolution'
$\$ 29.95$ Kit $\$ 39.95$ Wired

ACCESSORIES
Telescopic whip antenna - BNC plug

COUNTER PREAMP

SPECIFICATIONS
Range. $\quad 1 \mathrm{MHz}$ to 500 MHz Sensitivity: Less than 25 MV Resolution 100 Hz (slow gate) 1.0 KHz (fast gate) 7 digits, $0.4^{\prime \prime}$ LED $2.0 \mathrm{ppm} 20-40^{\circ} \mathrm{C}$ 5 VDC © 200 ma

amplitude compandored sideband

Narrowband techniques for vhf mobile communications

It is obvious to most observers in larger metropolitan areas (New York, Los Angeles, Chicago, San Francisco) that saturation is beginning to occur on the 2 -meter band. Even with the extra megahertz provided by the added repeater sub-band, with a total possible repeater population of 60 or so machines above 146 MHz , and 20 or so in the $144-145 \mathrm{MHz}$ region, there are times when a ham population of 10,000 or more in such regions taxes these systems to their limit. Timers of 60,40, or even 30 seconds are not really the answer.

If hams have been experiencing a problem, consider the plight of commercial users of vhf/uhf. It has been impossible for some time to obtain vhf licenses in many areas, and uhf channels are in short supply as well. Common carrier multiplexing schemes and/ or $900-\mathrm{MHz}$ channels have been proposed, but individual vhf/uhf or semi-shared channels have many advantages to the ultimate user, not the least of which is long-term cost.

Sideband use on vhf has long been used by Radio Amateurs (and the military). With the recent introduction of multi-mode 2-meter rigs, a surge in interest and activity has been sparked using this mode. Below fm threshold, SSB provides distinct advantages in sensitivity and range capabilities. Unfortunately, many of the convenience featues of fm operation do not work with our current sideband transceivers, and the signal-to-noise ratio on stronger signals, as well as the audio bandwidth and quality, do not match the better fm rigs.

amplitude compandored sideband

Recent developments promise to change the situation. In his report to the FCC after an extensive twoyear research program into narrowband techniques for vhf land mobile, ${ }^{1}$ Dr. Bruce Lusignan of Stanford University's Satellite Planning Center has come to some very interesting conclusions. By modulating a standard single-sideband transceiver with specially processed audio and processing the recovered audio through a similar system on the receive end, equal or even better performance can be obtained than when using NBFM. Because less than one-fifth the spectrum is required for equivalent channel-to-channel protection, five times as many stations can occupy the same spectrum space.

ACSB, or amplitude compandored sideband, combines several common techniques especially tailored for SSB. The system, developed by Dr. Lusignan in conjunction with Dr. Fred Cleveland of the University of the Pacific and VBC, Incorporated, features 4:1 amplitude compandoring, a pilot subcarrier system, and $12-\mathrm{dB} /$ octave pre-emphasis/de-emphasis. The resultant ACSB system provides:

1. $50-70 \mathrm{~dB}$ adjacent channel protection using $5-\mathrm{kHz}$ channels (as opposed to $20-25 \mathrm{kHz}$ spacing for fm).
2. $10-\mathrm{dB}$ power advantage due to both processing and bandwidth.
3. Automatic frequency locking and carrier identification.
4. Very rapid AGC (20 Hz) to greatly reduce mobile flutter.
5. A degree of quieting performance that, combined with its greater sensitivity, equals or exceeds normal fm .
6. Extended, reliable range by a factor of two, up to

By James Eagleson, WB6JNN, 280 Manfre Road, Watsonville, California 95076
about 25 miles (40 km), limited to a factor of 1.5 times only by earth curvature beyond this distance.

Furthermore, noise during fading is much less distracting (and less tiring as a result). This feature is the result of compandor characteristics, which reduce both noise and signal at poor signal-to-noise ratios rather than producing the noise bursts common to fm . Unlike normal sideband, ACSB provides a $5-\mathrm{dB}$ capture effect that is several $d B$ better than fm's normal 6-8 dB capability.

description of a typical system

The microphone audio is first passed through a preamplifier to bring it up to the proper level for the compressor circuitry. It is then passed through the first of two 2:1 compressors so that the normally desired $40-\mathrm{dB}$ dynamic range of speech is compressed into 20 dB .

This compressed audio is then mixed with a 2850Hz pilot tone set -7 dB below peak audio output. Both signals are then passed through a second 2:1 compressor, which compresses the 20-dB dynamic range of the first compressor into a $10-\mathrm{dB}$ dynamic range. As one might expect, the pilot tone will be reduced during voice peaks by the amount of gain reduction produced by the audio peaks. This works out to about $10-\mathrm{dB}$ reduction of the pilot on voice peaks, or 17 dB below peak reference level. Obviously, if we were to monitor this signal at this point, very compressed audio with a high pitched tone would be heard.

The final processing technique is to pre-emphasize the speech at a rate of 12 dB per octave. This is done to equalize the inherent differences in power levels in human speech, which tends to be concentrated in the low frequency areas.

The processed signal is transmitted on an otherwise standard single-sideband transmitter. It is also received on a standard single-sideband receiver using its normal AGC techniques (perhaps modified slightly to complement ASCB characteristics).

The received signal is passed through an AGC-controlled audio stage, which is controlled by a detector tuned to the pilot tone frequency. Its time constant is set very fast so that up to a 20 Hz -per-second change in input signal will be kept nearly constant in output level. Additionally, as a reduction in pilot level will cause an increase in output level, the suppression of the pilot in the second transmit amplitude compandor will be translated by the pilot AGC system into expansion at the same rate. Thus, a strong signal with no modulation will be quieted by the presence of the pilot signal. As the pilot is at its peak when there is no modulation, maximum quieting will occur.

After processing by the pilot-derived AGC, the leveled, expanded signal is again passed through a 2:1 expander. The pilot-derived expansion restores the $20-\mathrm{dB}$ dynamic range from the transmitted $10-\mathrm{dB}$ dynamic range signal. The second expander restores the original 40 dB dynamic range from the $20-\mathrm{dB}$ pilot-derived expansion. The resulting audio is then processed through a 12-dB per octave de-emphasis filter to restore the original frequency response.

ACSB, then compresses 40 dB of speech information into a dynamic range of $10-\mathrm{dB}$, transmits it, then restores the $40-\mathrm{dB}$ dynamic range at the receiving end of the system. This means that a signal-to-noise ratio of just over $10-\mathrm{dB}$ is all that is required for an effective restored dynamic range (signal dynamics and signal-to-noise) of 40 dB . Additionally, a 2:1 quieting curve is established due to the constant presence of the pilot tone in the AGC and pilot expander receiver circuits.

A close look at the dynamics of ACSB will show that a carrier-to-noise ratio of only 5 dB will provide the equivalent of 20 dB quieting (to use fm terminology). Indeed, a $10-\mathrm{dB}$ carrier-to-noise will give almost the full 40 dB dynamics and signal-to-noise we started with, except for the addition of a few dB of noise due to proximity to the noise floor. This certainly explains the weak signal superiority of this mode.

Dr. Lusignan estimates that ACSB has about a 15dB advantage over normal SSB the assumes 20-22 dB signal-to-noise is required for "high intelligibility" . . . all consonants audible). It also has a bandwidth advantage over fm , giving less interference from impulse noise (ignoring fm limiting) and higher signal-to-noise for a given power level at the receiver. This combination provides the measured $10-\mathrm{dB}$ advantage of ACSB over $5-\mathrm{kHz}$ deviation fm .

ACSB and NBFM comparison

Dr. Lusignan's report to the FCC ${ }^{1}$ compares ACSB with NBFM as follows:

Signal to noise. ACSB shows a $10-\mathrm{dB}$ advantage over fm at equal peak power levels.

Power required. ACSB requires $1 / 10$ th the power of fm for equal signal to noise. Additionally, ACSB requires $1 / 3$ to $1 / 2$ the average power of fm when the transmitters have equal peak output power, since the unmodulated output of ACSB is 7 dB less than its peak output.
Range. ACSB provides a reliable range equal to twice the fm range at distances up to 25 miles $(40$ km). Beyond 25 miles (40 km) this is reduced to 1.5 times due to the earth's curvature, which then becomes the limiting factor.

During 8-watt PEP tests, simultaneously transmitting ACSB and fm combined on a common transmitting antenna and receiving on an ACSB and fm receiver fed from a common receiving antenna, the fm signal was lost in the south San Jose, California, area, while the ACSB signal was lost near Gilroy, California - some 16 miles (26 km) and 35 miles (56 km) from the Stanford transmitting site respectively.

Fading/multipath noise bursts (kerchunking). Field tests and bench tests show ACSB burst noise is 10 dB less than fm burst noise. Additionally, ACSB should be less prone to multipath distortions due to its narrower bandwidth and lack of sensitivity to phase relationships.

Message completion. ACSB is 3-5 times more reliable at a 9 -mile ($15-\mathrm{km}$) range than fm at equal power levels. ACSB at this range gives an 85 per cent completion rate compared with fm's 20 per cent rate.
Co-channel protection. On-channel rejection is 2-3 dB better with ACSB than with fm. Capture ratio for $A C S B$ is about 5 dB compared to $7-8 \mathrm{~dB}$ for fm .
Adjacent-channel rejection. At $5-\mathrm{kHz}$ spacings, ACSB provides $50-70 \mathrm{~dB}$ rejection of adjacent channel interference (depending on linearity and frequency stability). Fm at $25-\mathrm{kHz}$ channel spacing yields $65-75 \mathrm{~dB}$; at $20-\mathrm{kHz}$ spacing it yields $55-65 \mathrm{~dB}$.

According to the report, ${ }^{1}$ the protection of 50 dB is
sufficient, because other factors (intermodulation, co-channel interference) become equally problematical beyond this point.
"In typical applications the probability of loss from adjacent channel transmissions compared with 50 dB isolation is negligible compared with . . . shadowing or co-channel transmissions. Increasing . . . from $50-70 \mathrm{~dB}$ would not result in a noticeable change in the probability of successful transmissions."

Stability requirements. The ACSB system developed by VBC, Incorporated, for this study will automatically lock signals that are $\pm 800 \mathrm{~Hz}$ from the center of the channel. At 160 MHz this is not outside normal stability for current fm equipment.

Digital transmissions. ACSB can handle up to 4 $\mathrm{Kb} /$ second in the main $2-\mathrm{kHz}$ audio channel as well as about $20 \mathrm{~b} /$ second superimposed on the pilot carrier.*
Doppler shift in mobile service. The AFC circuit will control Doppler shifts normally encountered at all frequencies through $900 \mathrm{MHz}(\pm 800 \mathrm{~Hz})$.
Fm/ACSB shared channels. It is possible to use ACSB and fm from a common repeater site providing the two channels are separated by 12.5 kHz . That is,

[^5]an fm repeater could also provide two ACSB channels each 3 kHz wide centered 15 kHz away without interference from the ACSB channels to the main channel. (This might be a solution to the $15-\mathrm{kHz}$ split situation on 2 meters between $146-148 \mathrm{MHz}$, for example.)

hardware

Commercially available LSI chips that perform all ACSB functions should be available in one to two years, depending on FCC action, market acceptance, and other normal factors relating to volume and production. In the meantime, experiments with ACSB Level 1 is within easy reach of the experimentally inclined ham. The Signetics NE 570/571 Compandor IC is available from Jameco Electronics, 1021 Howard Ave., San Carlos, California 94070. Their price is $\$ 4.95$ (1980 catalog), but they also have a $\$ 10.00$ minimum.

The NE570, an LM324 op amp, and an rf-tight box will allow everything necessary for $2: 1$ compandoring with pre-emphasis/de-emphasis. My own experimentation shows a marked improvement on all but the weakest signals (signals under $4-5 \mathrm{~dB}$ signal-tonoise ratio show no apparent improvement, even though background noise with no signal will be improved). The block diagram on the preceding page is recommended as a starting point.

conclusion

Out here in the west we like to talk about the wide open spaces. Well, you can still drive to those wide open spaces without too much effort. In the crowded city, however (and we do have some crowded cities), one soon learns that it is best to give one's neighbor plenty of elbow room whenever possible. On vhf, ACSB promises a good way to do just that.

reference

1. Bruce Lusignan, "The Use of Amplitude Compandored SSB in the Mobile Radio Bands: A Progress Report," Stanford University Communications Satellite Planning Center, February, 1980. (Report funded by the FCC, Washington, D.C.)

bibliography

Eagleson, James, WB6UNN "How Does SSB Really Stack Up? - The SSB Solution?," 73, January, 1977.
Lusignan, Bruce, "Single-Sideband Transmission for land Mobile Radio," IEEE Spectrum, July, 1978.
Lusignan, Bruce, "AGC, AFC, Tone Select Circuits for Narrowband Mobile Radio," (paper presented at Intelcom 79, Dallas, Texas, February, 1979).
Stoner, Don, W6TNS/7, "A Do-lt Yourself Speech Compandor," 73, March, 1980.
Weils, Ray, "SSB for VHF Mobile Radio at $5-\mathrm{kHz}$ Channel Spacing," Communications, December, 1978.
"Spectrum Efficient Technology for Voice Communications," UHF Task Force Report, FCC Office of Plans and Policy, Washington, DC, February, 1978.
ham radio

11 CO 51 GHz , pre.
Special \$59.95
ATF 417 pre-amp. net
Special \$19.95 MRF 901 UHF transistor, $1 \mathbf{G H z}$ Special $\$ 3.95$

COMPLETE KITS: CONSISTING OF EVERY ESSENTIAL PART NEEDED TO MAKE YOUR COUNTER COMPLETE. HAL-6OOA 7-DIGETT COUNTER WITH FREOUENCY RANGE OF ZERO COUNTER COMPLETE, HAL-6OOA 7-DIGI COUNTER WIH FREQUENCY RANGE OF LERO
TO 600 MH2. FEATURES TWO INPUTS: ONE FOR LOW FREOUENCY AND ONE FOR HIGH TO 600 MHz. FEATURES WO INPUSP. ONE FOR TOW FREQUENCY AND ONE FOR HIGH FREOUENCY: AUTOMATIC ZERO SUPPRESSION. TIME BASE IS 1.0 SEC OR I SEC GAIE
WITH OPTIONAL 10 SEC GATE AVAILABLE. ACCURACY $\pm .001 \%$. UTILIZES $10-M H Z$ WITH OPTIONAL 10 SEC GATE AVAILABLE. ACCURACY $\pm .001 \%$. UIILIZES
COMYSTAL 5 PPM. HAL-300A 7-DIGIT COUNTER (SIMILAR TO 600A) WITH FREQUENCY RANGE OF O300 MHz .

COMPLETEKIT $\$ 109$
HAL-50A 8-DIGIT COUNTER WITH FREOUENCY RANGE OF ZERO TO 50 MHz OR BETTER AUTOMATIC DECIMAL POINT, ZERO SUPPRESSION UPON DEMAND. FEATURES TWO INAUTOMATIC DECIMAL POINT, ZERO SUPPRESSION UPN DEMAND FEATHES
PUTS: ONE FOR LOW FREOUENCY INPUT. AND ONE ON PANEL FOR USE WITH ANY INTERPUTS: ONE FOR LOW FREQUENCY INPUT, AND ONE ON PANEL FOR USE WITH ANY INIERNALLY MOUNTED HALTRONIX PRE-SCALER FOR WHICH PROVISIONS HAVE ALREADY BEEN MADE, 1.0 SEC AND - 1 SEC TIME GATES. ACCURACY $\pm 001 \%$. C MPLETE KIT $\$ 109$
CRYSTAL 5 PPM.
FREE: HAL-79 CLOCK KIT PLUS AN INLINE RF PROBE WITH PURCHASE OF ANY FRE QUENCY COUNTER.

PRE-SCALER KITS
HAL 300 PRE... (Pre-drilled G-10 board and all components) $\$ 14.95$
HAL 300 A/PRE......... (Same as above but with preamp)........ $\$ 24.95$
HAL 800 PRE

HAL-1 GHz PRESCALER, VHF \& UHF INPUT \& OUTPUT, DIVIDES BY 1000. OPERATES ON A SINGLE 5 VOLT SUPPL Y

PREBUILT \& TESTED $\$ 79.95$

TOUCH TONE DECODER KIT

HIGHLY STABLE DECODER KIT. COMESWITH2SIDED. PLATED THRU AND SOLDER FLOWED G-10 PC BOARD, 7-567's, 2-7402, AND ALL ELECTRONIC COMPONENTS, BOARD MEASURES $3-1 / 2 \times 5 \cdot 1 / 2$ INCHES. HAS 12 LINES OUT. ONLY $\$ 39.95$
DELUXE 12-BUTTON TOUCHTONE ENCODER KIT UTILIZING THE NEW ICM 7206 CHIP. PROVIDES BOTH VISUAL AND AUDIO INDICATIONS! COMES WITH ITS OWN TWO-TONE ANODIZED ALUMINUM CABINET. MEASURES ONLY $2 \cdot 3 / 4^{\prime \prime} \times 3.3 / 4^{\prime \prime}$. COMPLETE WITH TOUCH-TONE PAD, BOARD. CRYSTAL. CHIP AND ALL NECESSARY COMPO NENTS TO FINISH THE KIT.

PRICED AT $\mathbf{\$ 2 9 . 9 5}$
FOR THOSE WHO WISH TO MOUNT THE ENCODER IN A HAND-HELD UNIT, THE PC BOARD MEASURES ONLY $9 / 16^{\prime \prime} \times 1-3 / 4^{\prime \prime}$. THIS PARTIAL KIT WITH PC BOARD, CRYSTAL, CHIP AND COMPONENTS ACCUKEYER (KIT) THIS ACCUKEYER IS A REVISED VERSION OF THE VERY POPULAR WB4VVF ACCUKEYER ORIGINALLY DESCRIBED BY JAMES GARRETT, IN OST MAGAZINE
AND THE 1975 RADIO AMATEUR'S HANDBOOK AND THE 1975 RADIO AMATEUR'S HANDBOOK.
ACCUKEYER - MEMORY OPTION KIT PROVIDES A SIMPLE, LOW COST METHOD OF ADDING MEMORY CAPABILITY TO THE WB4VVF ACCUKEYER. WHILE DESIGNED FOA DIRECT ATTACHMENT TO THE ABOVE ACCUKEYEA, IT CAN ALSD BE ATTACHED TO ANY STANDARD ACCUKEYER BOARD WITH LITILE DIFFICULTY.

PRE-AMPLIFIER
HAL-PA-19 WIDE BAND PRE-AMPLIFIER, $2-200 \mathrm{MHz}$ BANDWIDTH (-30 B POINTS). 19 dB GAIN.

FULLY ASSEMBLED AND TESTED $\$ 8.95$

CLOCK KIT - HAL 79 FOUR-DIGIT SPECIAL - $\mathbf{\$ 7 . 9 5}$

 OPERATES ON 12 -VOLT AC (NOT SUPPLIED). PROVISIONS FOR DC AND alarm operation6-DIGIT CLOCK • $12 / 24$ HOUR
COMPLETE KIT CONSISTING OF 2 PC G-10 PRE-DRILLED PC BOARDS, 1 CLOCK CHIP, 6 FND COMM. CATH. READOUTS, 13 TRANS., 3 CAPS, 9 RESISTORS, 5 DIODES. 3 PUSH BUTTON SWITCHES. POWER TRANSFORMER AND INSTRUCTIONS. DON'T BE FOOLED BY PARTIAL KITS WHERE YOU HAVE TO BUY EVERYTHING EXTRA. PRICED AT $\mathbf{\$ 1 2 . 9 5}$ CLOCK CASE AVAILABLE AND WILL FIT ANY ONE OF THE ABOVE CLOCKS. REGULAR PRICE . . $\$ 6.50$ BUT ONLY $\$ 4.50$ WHEN BOUGHT WITH CLOCK.
SIX-DIGIT ALARM CLOCK KIT FOR HOME, CAMPER, RV, OR FIELD-DAY USE OPER ATES ON 12 -VOLT AC OR DC, AND HAS ITS OWN $60-\mathrm{Hz}$ TIME BASE ON THE BOARD. COM PLETE WITH ALL ELECTRONIC COMPONENTS AND TWO-PIECE, PRE-DRILLED PC BOAROS BOARD SIZE $4^{\prime \prime} \times 3^{\prime \prime}$. COMPLETE WITH SPEAKER AND SWITCHES. IF OPERATED ON DC THERE IS NOTHING MORE TO BUY.:

PRICED AT $\mathbf{\$ 1 6 . 9 5}$
-TWELVE-VOLT AC LINE CORD FOR THOSE WHO WISH TO OPERATE THE CLOCK FROM 110-VOLTAC.
$\$ 2.50$
SHIPPING INFORMATION - ORDERS OVER $\$ 20.00$ WILL BE SHIPPED POSTPAID EXCEPT ON ITEMS WHERE ADDITIONAL CHARGES ARE REQUESTED. ON ORDERS LESS THAN $\$ 20.00$ PLEASE INCLUDE ADDITIONAL $\$ 1.50$ FOR HANDLING AND MAILING CHARGES. SEND SASE FOR FREE FLYER.

DISTRIBUTOR FOR
Aluma Tower - AP Products
(We have the new Hobby-Blox System)
$\mathrm{H}_{\text {al. }}$ Tronix
P. O. BOX 1101

HAROLD C. NOWLAND W8ZXH

first building blocks for

microwave systems

Simple and stable 1152-MHz multiplier chain for Amateur microwave bands

There is an apparent abundance of commercially built high-frequency and vhf equipment available, little of which is adaptable for use above 1 GHz . Purchased equipment may be used to provide a 1296MHz station Igenerally a varactor tripler driven by a $432-\mathrm{MHz}$ transmitter, and a relatively high-noisefigure receiving converter with no if preamplification). It's virtually impossible to purchase any station equipment specifically designed for weak-signal communications above 1296 MHz . Thus far only the most intrepid experimenters have ventured above 1296 MHz , generally hand-in-hand with a master machinist and expensive power tools (lathes and the like).

All is not lost, however. Because of two interesting factors, building a microwave station is now possible for most experimenters willing to spend a few evenings etching PC boards and soldering components. That's right - no more machinists, at least not for $1296-\mathrm{MHz}$ and $2304-\mathrm{MHz}$ equipment.

frequency relationships

The first factor to help resolve the microwave dilemma lies in the arithmetic of our microwave bands.

Within all our bands above 1300 MHz is at least one frequency that is a multiple of that "magic number" - 1152 MHz . Even 1296 MHz is related to 1152 MHz . The former frequency was originally selected for weak-signal work because it is the third harmonic of 432 MHz and therefore can be obtained by tripling. A difference frequency of 144 MHz exists between 1296 and 1152 MHz , which becomes the receiving i-f. Note also that 1152 MHz is the eighth harmonic of 144 MHz . The relationships between the $1152-\mathrm{MHz}$ magic number and weak-signal frequencies in our uhf and microwave bands are listed in table 1 and graphically illustrated in fig. 1.

low-order frequency multiplication

Another interesting mathematical feature is that the frequency of 1152 MHz can itself be generated by a chain of low-order (and therefore relatively good efficiency) multipliers. This chain, made up only of frequency doublers and/or frequency triplers, allows filtering to reduce undesired (spurious) signals at the multiplier-chain output. Many writers have insisted that starting frequencies be in the range of about $50-100 \mathrm{MHz}$ to avoid producing undesired harmonics in the $144-\mathrm{MHz}$ and/or $432-\mathrm{MHz}$ bands. This requires an overtone crystal. As the frequency of such crystals is notoriously difficult to pull, a variable-crystalfrequency source was developed that allows use of

By Geoffrey H. Krauss, WA2GFP, c/o UHF Electrospecialties, Inc., 16 Riviera Drive,

crystals operating in the fundamental mode, below about 20 MHz .

One optimum chain (shown by the heavy-bordered boxes in fig. 2) thus starts at 16 MHz , triples to 48 MHz , doubles to 96 MHz , doubles a second time to 192 MHz , doubles a third time to 384 MHz , then triples to 1152 MHz . The use of this chain requires that the unwanted third harmonic of 48 MHz be very greatly attenuated. If present, the third harmonic will fall into the low end of the 2 -meter band (at the weak-signal EME portion around 144.000 MHz). Radiation of any significant amount of energy at that frequency will tend to irritate neighboring 2-meter CW operators. In a vhf-contest environment, the third or ninth harmonics may very well QRM your own 2meter or $70-\mathrm{cm}$ station. These two undesired harmonics, however, appear to be the only problem harmonics. The ability to suppress undesired harmonics is enhanced by proper partitioning of the multiplier chain. The basic-frequency (for example $16-\mathrm{MHz}$) oscillator and only a few of the total number of multipli-

fig. 1. Relationship between 1152 MHz and desirable frequencles for highly stable, weak signals in the Amateur bands above 1 GHz .
table 1. Relationship between "magic number" 1152 MHz and weak-signal frequencies in the Amateur uhf and microwave bands.

band (MHz)	desirable frequency (MHz)	by mixer	by multiplier
1240-1300	1296	$1152+144$	$\begin{gathered} 432 \times 3 \\ \text { or } 108 \times 2 \times 2 \times 3 \end{gathered}$
2300-2450	$\begin{aligned} & 2304 \\ & 2448 \end{aligned}$	$(1152 \times 2)+144$	$\begin{aligned} & 1152 \times 2 \\ & \text { or } 102 \times 2 \times 2 \times 3 \times 2 \end{aligned}$
3300-3500	3456		1152×3
5650-5925	5760		1152×5
10,000-10,500	10,368		$\begin{aligned} & 1152 \times 9 \\ = & 1152 \times 3 \times 3 \\ = & 3456 \times 3 \end{aligned}$
24,000-24,250	24,192		$\begin{aligned} & 1152 \times 21 \\ = & 1152 \times 3 \times 7 \\ = & 3456 \times 7 \end{aligned}$
48,000-50,000	48,384		$\begin{aligned} & 1152 \times 42 \\ = & 1152 \times 3 \times 7 \times 2 \\ = & 3456 \times 7 \times 2 \\ = & 24,192 \times 2 \end{aligned}$
71,000-76,000	72,576		$\begin{aligned} & 1152 \times 63 \\ = & 1152 \times 3 \times 7 \times 3 \\ = & 3456 \times 21 \\ = & 3456 \times 7 \times 3 \\ = & 10,368 \times 7 \\ = & 24,192 \times 3 \end{aligned}$
165,000-170,000	169,344		$\begin{aligned} & 1152 \times 147 \\ = & 1152 \times 3 \times 7 \times 7 \\ = & 3456 \times 49 \\ = & 24,192 \times 7 \end{aligned}$
240,000-250,000	241,920		$\begin{aligned} & 1152 \times 210 \\ = & 3456 \times 70 \\ = & 48,384 \times 5 \end{aligned}$

ers are packaged in a low-frequency building block. The remainder of the multipliers are packaged in a separate, second building block. The low-frequency block output may then be made to have very low levels of signals at undesired frequencies.

The second important factor is the present-day ability to generate the desired 1152 MHz signal in a practical manner from a lower frequency driving signal. In this regard, great thanks should be given to Paul Shuch, N6TX, for his design of a PC board $96-1152 \mathrm{MHz}$ multiplier unit. ${ }^{1}$ This microstrip unit, for which a printed circuit board and set of tuning capacitors are available from N6TX, was apparently designed to replace a multiplier chain ${ }^{2}$ using a packaged oscillator, at 96 MHz , driving a pair of 2N5179 transistor frequency doublers to 384 MHz ; a pair of 2N3866 power amplifiers, providing several hundred milliwatts at $384 \mathrm{MHz}{ }^{3}$ and a step-recovery-diode tripler to provide about 5 milliwatts at 1152 MHz .4 Having built three such frequency-multiplier chains, I must concur with the general undesirability of vhf multipliers using step-recovery diodes.

The replacement of the entire $96-1152 \mathrm{MHz}$ chain with three stages of transistor multipliers (using the Motorola MRF 901) results in a great saving of time, labor, and parts cost. I've built several of the 1152MHz sources (described later in this article) as well as a $1296-\mathrm{MHz}$ solid-state transmitter, based on the microstrip multiplier of reference 1 , and have selected that basic design for the $96-1152 \mathrm{MHz}$ portion of this common microwave system. While some may desire to be purists and design all their equipment themselves, I believe that judicious use of the contributions of others often makes for the best (and the most rapid) attainment of the end goal: to get as many stations on the microwave bands as quickly and inexpensively as possible.

96-MHz VXS

As mentioned, the N6TX unit was designed for use with a fifth-overtone oscillator, which is replaced with the variable-crystal-frequency source (VXS) shown in the block diagram of fig. 3. I've arbitrarily chosen a tuning range, at 2304 MHz , of $2303.928-2304.086$

fig. 3. Block diagram of the VXS/BPF system. Output is at 96 MHz using a $\mathbf{1 6 - M H z}$ overtone crystal oscillator.

fig. 4. Schematic of the $\mathbf{9 6 - M H z}$ variable-crystal-frequency (vxs) source. Circuit is built on a single-sided PC board.

MHz , corresponding to an oscillator frequency range of $15.9995-16.0006 \mathrm{MHz}$ (therefore, an $1100-\mathrm{Hz}$ range at 16 MHz gives a $158.4-\mathrm{kHz}$ range, when multiplied 144 times, to frequencies around 2304 MHz). This requires that the crystal frequency be pulled about 0.0066 per cent, which certainly can be achieved with almost any fundamental crystal.

The crystal frequency was chosen as $16,001 \mathrm{kHz}$ with 20 pF parallel capacitance, and thus is slightly higher than the nominal $16,000-\mathrm{kHz}$ frequency. By paralleling the crystal with a bit more capacitance, provided by the main tuning capacitor C 1 and its series and shunt band-setting capacitors C 2 and C 3 , the desired frequency range can be realized. The schematic of the $96-\mathrm{MHz}$ variable-crystal-frequency source is shown in fig. 4, the PC-board layout is shown in fig. 6, and the parts placement in fig. 7.

PNP transistor 01 is the crystal-controlled oscillator, driving a frequency tripler, O2. Transistor Q 3 is a $48-\mathrm{MHz}$ buffer, Doubler $\mathrm{Q4}$ and a tuned buffer, 05 , at 96 MHz , follow. The $96-\mathrm{MHz}$ output filter is a double-tuned bandpass configuration. An additional double-tuned bandpass filter (fig. 5) may be used at the high-frequency multiplier block or placed in a separate shielded box outboard of the source and multiplier blocks to provide an additional 20 dB suppression of the undesired signals provided by the
vxs. The tuning range, with the components listed, is sufficient to allow the VXS to be used with crystals between $15-18 \mathrm{MHz}$. In the first case ($15-\mathrm{MHz}$ crystal) the final multiplier output is 1080 MHz , which is used for doubling to 2160 MHz . This frequency is used for local-oscillator output in $2304-\mathrm{MHz}$ receiver converters with a $144-\mathrm{MHz}$ i-f. The $18-\mathrm{MHz}$ crystal produces a final multiplier output of $1296 \mathbf{~ M H z}$ for use in exciters in the $23-\mathrm{cm}$ band.

fig. 5. An auxiliary outboard bandpass filter that may be used at the high-frequency multiplier block to provide an additional 20 dB suppression of unwanted signals from the VXS.

fig. 6. PC-board layout for the VXS-96 microwave signal source.

fig. 7. Component side of the vxs-96 board (copper side). Mount all variable caps on this side; all other components are mounted on the reverse side.

fig. 8. Shield, side, and end pieces for the vxs constructed from double-clad PC-board stock. Covers (top and bottom) are $31 / 4 \times 61 / 4$ inch $(8.25 \times 15.9 \mathrm{~cm}) \mathrm{PC}$-board pieces.

some other uses

The output of the VXS can be:

1. Set to 116 MHz (by using a $19.334-\mathrm{MHz}$ crystal) for use as a 2-meter local oscillator.
2. Used with a frequency doubler to generate a 192MHz signal for use as a $220-\mathrm{MHz}$ local oscillator.
3. Set by a $16.834-\mathrm{MHz}$ crystal to provide a $101-\mathrm{MHz}$ signal for input to a cascaded pair of frequency doublers to generate a $404-\mathrm{MHz}$ local-oscillator signal for use in $70-\mathrm{cm}$ equipment. (See fig. 9.)
In the VXS schematic of fig. 4, both crystal leads are above ground in the circuit. This might be a problem if crystal switching is desired. For higher stability the crystal will be placed in a thermally isolated environment (such as a crystal oven positioned above the PC board or in a block of styrofoam).

shielding considerations

Note, in fig. 8, that pieces of double-clad PC board form three shield partitions, A, B, and C, directly soidered to the copper-clad side of the PC board. A similar partition, D, is soldered to a PCboard case built around the entire board above shield A (between the oscillator and the multiplier stages) for added attenuation of oscillator harmonics. The oscillator is enclosed in a shielded compartment separated from the tripler-buffer area, which is separated from the doubler-buffer area. The output filter is in its own compartment, shielded from all oscillator, frequency multiplier, and buffer stages.

The VXS circuit also includes a high degree of power-supply decoupling. An IC voltage regulator,

U1, provides a constant voltage to the circuit; this is necessary not only to prevent oscillator frequency changes with varied input voltage lin my case, from the battery in my automobile during mobile operation from any convenient mountaintop), but also to keep all transistors operating at fixed biased points, which causes the transistor input and output impedances to be stabilized. This stabilization of device impedances prevents changes in tuning with changing input voltage and contributes to the overall spectral purity of the VXS output signal. Note the use of a BNC connector for the if output of the source, and the use of a feedthrough capacitor to bring the voltage into the VXS enclosure. Both components are used to maintain the shielding integrity and provide minimum amplitude of undesired signals.

Also note that the voltage regulator IC, U1, and the associated resistors, R24-R28, and capacitors C36-C38 are mounted on a wire-wrap 18 -pin IC socket, with the end pins on either side extending full length and soldered to the inside of the case. The remaining 14 pins are bent at right angles, close to the bottom of the socket; the regulator-circuit resistors and capacitors are soldered between the bent pins. See fig. 10.

spectrum analysis

The VXS is aligned by using any of the well-known

fig. 9. Other uses for the vxs. A shows a $116-\mathrm{MHz}$ local oscillator for a 2-meter converter with a $28-\mathrm{MHz}$ i-f. A frequency doubler for generating a $192-\mathrm{MHz}$ local-oscillator signal for a $220-\mathrm{MHz}$ converter, using a $28-\mathrm{MHz} \mathrm{i}-\mathrm{f}$, is shown in B. A pair of cascaded frequency doublers, C, generate a $\mathbf{4 0 4} \mathbf{- M H z}$ local-oscillator signal for a $\mathbf{4 3 2 - M H z}$ converter with a $\mathbf{2 8} \mathbf{- M H z}$ i-f.
tuning procedures including: a) monitoring the emitter or collector current of the stage following the stage you're tuning for an increase in current, and b) using a test receiver, grid-dip meter and so forth. If a spectrum analyzer is available (and its use is highly desirable although not mandatory) an output signal spectrum similar to that shown in fig. 11 may be obtained. In fig. 11, spectrum (A) is for the basic circuit, built on the circuit board, but without the output filter (L5, L6, C10, C11, and C13). Note that the second harmonic is at a level of only $-14 \mathrm{dBc}(\mathrm{dB}$

fig. 10. Method of mounting the $\mathbf{U 1}$ (18 -pin) socket on the vXS case wall with four end pins used for support. The remaining 14 pins are bent outward and hold R24-R26; C36-C38.
below the desired carrier, at 96 MHz). Adding the output filter, but without shielding, typically provides the (B) spectrum, wherein the greatest-amplitude undesired signal is still the second harmonic, now suppressed to a level of -40 dBc . Adding the shields and a shielded box (fig. 8) results in the (C) spectrum (shown in solid lines in fig. 11). With the shields and shield box, the greatest-amplitude undesired signals are those spaced above and below the desired signal by the fundamental frequency; for example, at 80 and 112 MHz .
With the use of the outboard additional filter (labeled BPF-96) the only signals found, up to 1500 MHz , are as shown in spectrum (D):

frequency (MHz)	16-MHz oscillator harmonic	$96-\mathrm{MHz}^{\text {output }}$ harmonic	attenuation (dBc)
80	5		-77
112	7		-79
192	12	2	-70
288	18	3	-70
480	30	5	-74

Minor signals occur at the 65th, 66th, and 67th harmonics of the crystal frequency (16.001 MHz), with respective amplitudes of $-73,-75$, and -76 dBc .

Even with the additional two-section BPF-96 filter, the desired $96-\mathrm{MHz}$ output has a level of 16 dBm (40 milliwatts). Because a significantly lower level, on the order of 0 dBm (1 milliwatt), is required for driving the first doubler in the high-frequency multiplier circuit, additional bandpass filters, or a lowpass filter having a cutoff frequency on the order of 150 MHz , could be easily used. Note that the presence of the second and third harmonic of the desired output signal is not particularly troublesome, since these frequencies will be generated in subsequent multiplier circuitry anyway.

To achieve the required Q the on-board doubletuned bandpass filters use air-wound rather than

fig. 11. Output of the VXS as seen on a spectrum analyzer. Attenuation of undesirable signals is shown as a function of frequency for three different configurations. Note the effect provided by adding the bandpass filter.

fig. 12. Modification of the N6TX multiplier board for use with an external signal source.
lower- Q toroidal inductors. It is probable, because of the relatively high insertion loss of the bandpass filter sections, that the filters are not completely optimized. However, the ability to provide easily tuned filters using low-cost components was deemed more important than squeezing out an additional few dB of harmonic rejection. Whether or not additional filtering is used, at least 10 dB of attenuation (a T-pad with 22 -ohm series arms and a 33 -ohm shunt arm) is used at the N6TX high-frequency multiplier board input to ensure that a relatively constant output terminating impedance appears, as well as to reduce the drive level. I've burned out several MRF 901s but haven't harmed any 2N5179s, in the first doubler stage, with only 6 dB attenuation.)

I prefer the 2N5179 in this stage with an increase in the tuning capacitance of the $192-\mathrm{MHz}$ circuit; this is especially advantageous because the 2N5179 is not only less expensive but is also more readily available than the MRF 901. Of course, any change in terminating impedance can detune the filter or filters and reduce the ultimate suppression of undesired harmonics. Similarly, the ultimate suppression of harmonics of the $1152-\mathrm{MHz}$ signal is a function of the suppression provided by the N6TX circuit and any additional filtering applied thereafter. See fig. 13.

construction

After building the basic PC board of fig. 6 and drilling all component mounting holes, mount the crystal socket on the non-copper side of the board with 4-40 (M3) by 0.37 (9.5 mm) screw, lockwasher and nut. If a crystal oven is to be used, don't mount the crystal socket but wire the oven crystal leads to the appropriate PC-board pads after assembling the board and mounting the crystal oven on it. Before mounting the components, solder the two box sides, cut as shown in fig. 8, to the long edges of the PC board. About $1-1 / 2$ inches (38 mm) of the sides extend above and
below the plane of the circuit board. A hole for the feedthrough capacitor and for the BNC connector can be drilled in the appropriate side, either before or after soldering.

Solder shield A between the two sides and also to the copper-clad PC-board side. The counterpart of shield A (shield D in fig. 8) is positioned against the non-copper side of the PC board and soldered to the pair of opposed box sides. At this side, all components should be mounted to the PC board. Variable capacitors C2-C12 are soldered to the copper pattern on the bottom of the board, while all remaining components are mounted from the top (non-copper bearing) surface of the board.

After installing all components, carefully mount shield B then shield C before soldering the end pieces between the two sides and to the ends of the PC board. A hole may be drilled in the end piece, at the oscillator end of the board, for tuning capacitor C1. However, if the VXS is to be used as a fixed-frequency source, in which capacitor C1 is merely adjusted to set the output to a particular frequency and not to be continuously tuned (as in setting a local-oscillator frequency in a receiver), then capacitors C1 and C2 are dispensed with; frequency is adjusted with C3. Note that output filter inductors L5 and L6 and the $48-\mathrm{MHz}$ trap inductance L 7 are also mounted beneath the PC board. The voltage regulator IC socket, with its components, can now be mounted by soldering to one copper side piece, as shown in fig. 10.

tune up

Tack solder the top cover to all four sides, but don't completely solder. Install the crystal in its socket and apply at least +12 but less than +20 volts to the $B+$ feedthrough. Note the voltage at regulator pin 3 (which will be pin 4 of the socket, since pin 1 is attached to ground). The regulator output voltage should be between +8.5 and +9.1 volts dc. Total

fig. 13. Output spectra of the NGTX multiplier block using the VXS/BPF circuits.
current into the box will be no more than about 75 milliamperes and will probably be considerably less at this time. The base lead of $\mathbf{Q 2}$ can be monitored for a $16-\mathrm{MHz}$ signal, indicating that the oscillator is working. Monitor the base lead of Q 3 with a $48-\mathrm{MHz}$ rf indicator and tune C 4 for maximum rf voltage. Shift the of indicator to the base lead of Q4 and tune C5 and C 6 for maximum voltage at 48 MHz . Retune the indicator to 96 MHz and monitor the base of 05 ; tune C 7 , then C 6 and C 5 , for maximum voltage.
Move the monitor to the tap of filter coil L5 and tune C8 and C9 for maximum voltage. Now connect the monitor to the output connector and tune C10, C 11 for maximum output. Then retune $\mathrm{C} 9, \mathrm{C} 8$ for maximum 96 MHz signal. Note that a commercial fm receiver, with carrier-strength meter, may be used for the 96 MHz monitor indicator.
After tuning the bandpass filter for maximum 96MHz signal, reset the tuning monitor to 48 MHz and adjust C 12 for minimum $48-\mathrm{MHz}$ signal. The outboard filter can now be tuned, if used, for maximum $96-\mathrm{MHz}$ signal. As indicated previously, if you can beg or borrow a spectrum analyzer, set the analyzer to display the spectrum from at least 15 MHz to at least 150 MHz (and preferably to at least 500 MHz). Finely adjust C4-C11 several times in sequence for best suppression of undesired harmonics while maintaining the desired $96-\mathrm{MHz}$ signal at a reasonable maximum.
Capacitors C6 and C9, especially, are used to adjust the symmetry of the amplitudes of the undesired fifth and seventh harmonics of the crystal oscillator next to the desired sixth-harmonic signal at 96 MHz . Capacitor C12 has some effect on the tuning of C7. Furthermore, if you use a spectrum analyzer, the $68-k$ resistor in the voltage regulator circuit may be replaced with a $25-\mathrm{k}$ pot in series with a $56-\mathrm{k}$ fixed resistor, and the pot will vary the circuit voltage. Varying the regulated voltage will often allow you to find a specific voltage at which maximum harmonic suppression is achieved, although power output will
change [but, as previously mentioned, it isn't particularly important so long as at least 20 milliwatts (+13 $\mathrm{dBm})$ are available at the attenuator input to be added to the N6TX multiplier].

multiplier modifications

The N6TX multiplier board (fig. 12) is modified by removing the 9.1 -volt zener, the $0.01-\mu \mathrm{F}$ capacitor in parallel with the zener, and the 180 -ohm resistor to the zener (not shown). A 27 -ohm, 1/8-watt resistor is soldered from the base lead of the first multiplier transistor to the circuit trace that was the unit oscillator $\mathrm{B}+$ line. A 39 -ohm resistor is soldered from the $B+$ trace to ground, and one end of another 27 -ohm resistor is also soldered to the B+trace. The other end of the second 27 -ohm resistor is soldered to the outer conductor of a piece of RG-174 coaxial cable, whose shield is soldered to multiplier ground.

A coaxial cable is connected from the input of the outboard bandpass filter, if used, to the BNC connector on the VXS. If transistor Q1 of the multiplier is a 2N5179 transistor, tuning capacitor CT, on the collector side, should be increased from 1 to 5 pF . The original C1 capacitor (at the first doubler input and unit oscillator output) is no longer needed.

The multiplier should be tuned in the same manner as specified by N6TX in his article. I've found that the tripler input and three output filter capacitors should be the suggested Triko 202-08M, although the pair of 384 MHz tuning capacitors may have to be increased to $2-10 \mathrm{pF}$, to adequately tune the modified multiplier board. Fig. 13 illustrates the output spectra of the modified multiplier block when driven with the VXS and $96-\mathrm{MHz}$ outboard bandpass filter.

Some uses of the vxs and multiplier blocks are shown in figs. 14 through 17. In fig. 14, one possible way that high transmitting power may be eventually economically realized within the next several years in the $2300-2450 \mathrm{MHz}$ band will probably be by use of microwave oven magnetrons (a magnetron being es-

fig. 14. Possible transmitter for crystal-controlled injection locking of a microwave magnetron producing 600 watts output at 2448 MHz .

fig. 15. Block diagram of a phase-locked $1152-\mathrm{MHz}$ subsystem that will provide a highly stable signal for multiplication into the $\mathbf{1 3 - \mathrm { cm } , 9 - \mathrm { cm } , \text { or } 5 - \mathrm { cm } \text { bands. }}$
sentially a diode tube in which oscillations occur at microwave frequencies because of the finite time required for electrons to travel or drift between the tube elements). Available magnetrons, which cost about as much as a vhf power tube of the 4CX250 type, provide up to 600 watts of output power but are normally pretuned at the factory for oscillation at about 2450 MHz .

The tuning adjustment is not normally accessible (apparently being inside the vacuum envelope of the tube), but some tuning can apparently be accomplished by varying the tube anode current. Many operators interested in magnetron use have concluded, although none (to my knowledge) have yet proved, that it should be possible to reduce the magnetron frequency to be just within the upper edge of the $2300-2450 \mathrm{MHz}$ band. Advantageously, another multiple of 144 MHz is present at 2448 MHz , which is also a $144-\mathrm{MHz}$ i-f above 2304 MHz , itself a second harmonic of 1152 MHz . It may well be possible, using equipment as shown in fig. 14, to injection-lock a 600 -watt output magnetron with less that 10 watts of power from a very-high-frequency-stability source, whereby the magnetron assumes the same stability as its locking source. The 10-watt power level is obtainable, now, with fully-transistorized amplifiers.

Probably the greatest obstacle in achieving high power in the $13-\mathrm{cm}$ band is the requirement for a 600 watt circulator. I know of no such unit commercially available, although the technology appears to exist. I am confident, however, that some experimenter will
eventually design, or design around, a circulator for this frequency and power level, allowing an injectionlocked, high-power source to be realized. Fig. 15 is a phase-locked $1152-\mathrm{MHz}$ subsystem that will provide a highly stable signal for multiplication into any of the $13-\mathrm{cm}, 9-\mathrm{cm}$, or $5-\mathrm{cm}$ bands.

Fig. 16 A is a keyed $1152-\mathrm{MHz}$ source having about

fig. 16. Keyed $1152-\mathrm{MHz}$ source providing about 0.1 watt output. A. Output spectrum, B, shows only one spur at slightly more than $\mathbf{- 7 0 ~ d B c . ~ A ~ d i r e c t - c o n v e r s i o n ~ t r a n s - ~}$ ceiver using the $1152-\mathrm{MHz}$ source is shown in C .

fig. 17. Some other microwave configurations based on the multiplication scheme described in this article.

1/10th watt output, while fig. 16B shows its output spectrum (only a single spurious output at slightly more than 70 dB below the carrier). Fig. 16C shows a direct-conversion transceiver using the source of fig. 16A. Fig. 17 shows other microwave source configurations, all based upon multiplication of the 1152 MHz signal.

summary

All of our microwave bands have one frequency that's related to 1152 MHz . By building a power source at 1152 MHz , multiplication to the microwave bands becomes possible. A relatively simple, yet stable, $1152-\mathrm{MHz}$ chain is necessary; one such chain is described. The power amplifier, producing 100 milliwatts at 1152 MHz , is an adaptation of a circuit designed by Dick Frey, WA2AAU. Simple frequency doublers and receiving mixers for 2304 MHz have been described in many articles (check your ham radio and OST indexes). Thus it's possible to find easily built components for 2304 MHz right now.

Higher-frequency blocks and subsystems are being worked on, and further results, from this writer or others, should be forthcoming.

acknowledgments

I would like to thank Dick Frey, the other half of the present Mt. Greylock microwave gang, for his help and encouragement; all the local microwave people for their interest; and my four-year old son, Jeremy, and nine-year-old daughter, Alyssa, for helping to mount parts onto PC boards and for tuning and measuring.

references

[^6]ham radio

90 WATT AMPLIFIER: $\mathbf{\$ 7 9 . 9 5 !}$

That's right - 90 watts of linear power for 2 meters for only $\$ 79.95$. Check out the VJ90SSB Power Chart, and you'll see the real value - 8 watts out for one watt drive, 16 out with two watts drive! Now you can put that new HT to mobile use, for only $\$ 79.95$. As a special deal, we've designed a 19 dB gain in-line preamp with integrated T/R relay. A $\$ 29.95$ value, for only $\$ 20.00$ when purchased with the VJ9OSSB Amplifier.

But that's not all! We've built a 15 amp (20 amp sur ge) 13.8 VDC power supply just for this combo, the VJ15. When you buy the VJ90SSB and Preamp. we'll sell you this super power supply for only $\$ 79.95$. It all adds up to over $\$ 225.00$ worth of gear for only $\$ 179.90$. Don't wait. Order Today!

Each VJ Product component is hand wired and individually funed for maximum reliability and performance. VJ Products are guaranteed to be free of defects in parts or workmanship for 1 year from the date of purchase. POWER TRANSISTORS ARE EXCLUDED. BUT WARRANTED FOR 90 DAYS. Visa accepted. Immediate shipment guaranteed by VJ Products, Inc.

SERVING THE ELECTRONICS INDUSTRY SINCE 1965 V-J Products, Inc. 505 E. Shaw Street, Pasadena, Texas 77506 (713) 477-0134

The Fingertip Volume Control makes it simple - without screwdrivers, nail files or special tools.
NO DRILLING! NO SOLDERING! NO CUTTING!
Remove the stock bottom plate, screw on the Fingertip Volume Control, adjust with one finger, and talk. It's that simple!

THE QUALITY UNIT!

Rugged black Cycolac with aluminum look dial is both durable and attractive. No-scratch rubber feet protect fine furniture.
FITS THEM ALL!
The Fingertip Volume Control fits all TUG8, TUG9, and TUP9 D104 microphones, including the Golden Eagle, Silver Eagle, and Blackfoot models. Complete instructions and hardware included.

> SATISFACTION GUARANTEED!

URBAN ENGINEERING, INC.
P.O. Box 571052

Miami, Florida 33157
Yes, please send me \qquad Fingertip Volume Control(s) at $\$ 7.95$ plus 80 cents postage and handling each (Florida residents add 4\% tax). I understand that if 1 am not completely satisfied. I can return the unit(s) within ten days for a full refund
Name (please print)
Address
City/State/Zip
\square My check is enclosed, please ship within 14 days
\square I have enclosed a money order for immediate shipping \square Charge my credit card: \square Visa \square Master Charge
Card No.
Exp. Date \qquad Sig. Phone (714)544-8281

TE-130S with DFer

High quality...top performance, with optimum features

The top-of-the-line TS-180S all solid-state HF SSB/CWIFSK transceiver with DFC (Digital Frequency Control) provides maximum performance and efficiency for every amateur.

TS-180S FEATURES:

- All solid-state. 200 W PEP/ 160 W DC input on 160-15 meters, and 160 W PEP/140 W DC on 10 meters. Adaptable to three new bands.
- Dual SSB filter (optional) to improve selectivity, reduce noise, and improve RF-speech-processor operation.
- Digital Frequency Control (DFC), including four memories with digital up/down paddle-switch tuning in $20 \cdot \mathrm{~Hz}$ steps. Memories operate in transceiver or split modes. (Also available without DFC.)
- IF shift (passband tuning).
- Built-in digital display with differential function. Shows actual VFO frequency and difference between VFO and "M1" memory (or "hold" without DFC) frequencies.
- Selectable wide and narrow CW bandwidth.
- Tunable noise blanker. - RF AGC.

TS-180S

- Automatic selection of upper and lower sideband (with SSB NORMAL/REVERSE switch)
- Dual RIT (VFO, memory/fix).

OPTIONAL ACCESSORIES:

- PS-30 base-station power supply.
- SP-180 external speaker with selectable audio filters.
- VFO-180 remote VFO.
- AT-180 antenna tunerISWR and power meter/antenna switch.
- DF-180 digital frequency control (for TS-180S without DFC).
- YK-88C $(500 \mathrm{~Hz})$ and YK-88CN $(270 \mathrm{~Hz}) \mathrm{CW}$ filters. - YK-88S SSB filter for dual IF filter system.

VFO-180

TS-52OSE

"Cents-ability" in a quality 160-10 meter SSB/CW rig

The TS-520SE is an economical, full-featured 160-10 meter transceiver, found in more ham shacks than any other rig.

TS-520SE FEATURES:

- 160-10 meters ... and receives

WWV on 15 MHz .

- 200 W PEP (SSB)/160 W DC (CW) input on all bands.
- CW WIDE/NARROW bandwidth switch for use with optional $500-\mathrm{Hz}$ CW filter.
- Speech processor for extra audio punch.
- Effective noise blanker.
- 20-dB RF attenuator.
- RIT (receiver incremental tuning) control.
- Digital display with optional DG-5, showing actual operating frequency while transmitting and receiving.
- Eight-pole crystal filter for excellent selectivity.
- Built-in $25-\mathrm{kHz}$ calibrator, adjustable to WWV.
- VOX and semi-break-in CW with sidetone.
- Built-in speaker.
- Solid-state, with tube driver and final.
- Amplified-type AGC circuit
- Amplified-type ALC.
- Front-panel carrier level control.

OPTIONAL ACCESSORIES:

- SP-520 external speaker.
- DG-5 digital frequency display and $40-\mathrm{MHz}$ counter.
- VFO-520S remote VFO.
- CW-520 500-Hz CW filter.
- AT-200 antenna tuner/SWR and RF power meter/antenna switch.

TR-7800

"Easy selection"... 15 memories/offset recall, scan, priority, DTMF (Touch-Tone ${ }^{\text {® }}$)
Frequency selection with the TR-7800 2-meter FM mobile transceiver is easier than ever. The rig incorporates new memory developments for repeater shift, priority, and scan, and includes a built-in autopatch Touch-Tone ${ }^{\oplus}$ encoder.
TR-7800 FEATURES:

- 15 multifunction memory channels, selected with a
rotary switch. M1-M13 memorize frequency and offset ($\pm 600 \mathrm{kHz}$ or simplex). M14 . . . memorize transmit and receive frequencies independently for nonstandard offset. MO ... priority channel, with simplex, $\pm 600 \mathrm{kHz}$, or nonstandard offset.
- Internal backup for all memories, by installing four $A A$ NiCd batteries (not Kenwood-
supplied) in battery holder
- Priority channel (memory "0") and priority alert.
- Covers $143.900-148.995 \mathrm{MHz}$. in $5-\mathrm{kHz}$ or $10-\mathrm{kHz}$ steps.
- Built-in autopatch DTMF (Touch-Tone ${ }^{\text {s }}$) encoder.
- Front-panel keyboard for selecting frequency, transmit offset, and autopatch encoder tones, programming memories, and controlling scan.
- Automatic scan of entire band ($5-\mathrm{kHz}$ or $10-\mathrm{kHz}$ steps) and memories.
- Manual scan of band and memories, with UP/DOWN microphone (standard).

Compact, high-quality mobile speaker

- Matches all HF, VHF, and UHF radios for mobile operation.
- Only $2-11 / 16$ inches wide by 2-1/2 inches high by 2-1/8 inches deep.
- 4-ohm input impedance.
- Handles 3 watts of audio.
- Mounting bracket with ferrite magnet. Adhesive-backed steel plate supplied for mounting virtually anywhere.

- Repeater REVERSE switch.
- Selectable power output.

25 W (HI)/5 W (LOW).

- LED S/RF bar meter.
- TONE switch to actuate subaudible tone module (not Kenwood-supplied).

OPTIONAL ACCESSORIES

- KPS-7 fixed-station power supply.

4 $5=\square=\square$
 "Go synthesized on 440 MHz FM".. 5 memories, memory/band scan

The TR-8400 synthesized $70-\mathrm{cm}$ UHF FM mobile transceiver covers $440-450 \mathrm{MHz}$ in $25-\mathrm{kHz}$ steps and includes five memories, automatic memory and band scan, UPIDOWN manual scan, and two VFOs.
TR-8400 FEATURES:

- Synthesized coverage of $440-450 \mathrm{MHz}$ in $25-\mathrm{kHz}$ steps.
- Five memories and memory backup terminal on rear panel.
- Two VFOs.
- Offset switch for $\pm 5 \mathrm{MHz}$ transmit offset and simplex operation. Fifth memory allows any other offset by memorizing receive and transmit frequencies independently.
- Automatic scan of memories and of $440-450 \mathrm{MHz}$ band (in $25 \cdot \mathrm{kHz}$ steps), Locks on busy channel and resumes when signal disappears. HOLD or mic PTT button cancels scan.
- Up/down manual band scan in $25-\mathrm{kHz}$ steps with UP/ DOWN microphone supplied with TR-8400.
- Only 5-3/4 inches wide, 2 inches high, and 7-5/8 inches deep. Weighs only 3.75 pounds.
- TONE switch to activate sub tone device (not Kenwoodsupplied). DTMF (TouchTone) terminal on rear panel.
- Four-digit frequency display and S/RF bar meter. Other LEDs indicate BUSY, ON AIR, and REPEATER operation.
- HIILOW (10 W/1 W) RFoutput power switch.
OPTIONAL ACCESSORIES:
- KPS-7 fixed-station power supply.
- SP-40 compact mobile speaker.

Inrush current protection for the SB-220 linear

Do you have adequate surge protection for your SB-220? If you own this fine piece of gear or similar equipment without the benefit of built-in surge protection, this article should be placed at the top of your project list. For about $\$ 10$ in parts and six hours of bench work, you can breathe easy when you push the power switch. I call it the $\$ 10$ insurance policy.

The subject of surge protection has been addressed by many in the past few years. In my opinion, one of the better articles was written by K. M. Gleszer, W1KAY, entitled "Upgrading Your SB-220 Linear Amplifier," which appeared in OST, February, 1979. Specific solutions were offered for operation with 117-Vac for filament inrush current, diode-transient and voltage-equalization protection, plus other items. But conspicuous by its absence was a scheme for diode inrush current protection. This protection is easily obtained with the simple circuit described here.

One other area where l'd suggest a change is the time-delay relay. The time-delay function is auto-

fig. 1. SB-220 rectifier board.

By F. T. Marcellino, W3BYM, 13806 Parkland Drive, Rockville, Maryland 20853

fig. 2. Relay connections for the surge-protection circuit.
matic with a standard relay coil and a current-limiting resistor. Therefore the high cost, plus purchase time and final alteration, of a time-delay relay can be avoided.

The mods I've installed are not unfamiliar, as they've appeared in several 1970-series of the Radio Amateur's Handbook. However, I've described the procedures in a detailed order using short, sometimes elementary, phrases for clarification. I'm a stickler for the smallest detail, so you needn't bother with assumptions.

With the mods installed, the following benefits will be added to your SB-220:

1. Rectifier transient surge protection.
2. Rectifier reverse voltage equalization.
3. Rectifier inrush current protection.
4. Inrush current protection for the 3-500Z filaments.

This procedure is divided into two parts: rectifier protection and surge protection. You can elect to cancel one, but because the amplifier must be uncaged for installation of either, it seems wise to include both.

The fourteen original diodes in the SB-220 were not replaced with higher PIV units. This action is not necessary unless you break some during disassembly. These diodes are rated for 1 ampere average forward current at a PIV of 600 volts. The ratings are adequate for this application, and, combined with the modification, they will have a long life.

The nominal delay was selected as 5 seconds. This time can be altered by varying the total limiting resistance. A resistance of 200 ohms caused a long delay, and the resistors dissipated much power. At the op-
posite extreme, 100 ohms provided insufficient delay. Therefore, a satisfactory value of 150 ohms was selected. Note that the time delay and resistance values were selected using a line voltage of 220 Vac . I intended to operate this linear only on the higher line voltage for increased efficiency.

rectifier protection

1. Remove amplifier case, top shield cover, and rightside shield.
2. Remove the four rectifier board hold-down screws.
3. Make a wiring map of all twelve wires connected to the rectifier board and identify by color designator (fig. 1).
4. Unsolder all twelve wires at the board end, then remove diodes.
5. Wick twelve wire pads and all diode holes. Remove flux.
6. Drill out all diode holes using a No. $47(2 \mathrm{~mm})$ drill bit from the pad side of the board lassuming all boards are the same).
7. Using a No. $15(4.5 \mathrm{~mm})$ drill bit, deburr the new holes from the component side. Do not deburr the pad side.
8. Install resistors ($470 \mathrm{k} 1 / 2 \mathrm{w}$) from the pad side, then
install diodes and capacitors (0.01 at 1 kV) from the component side. Next:
a. Solder each pad with its three wires.
b. Clip component pigtails as you go.
c. Clean board to remove flux.
d. Ohmmeter check - note highs will be 470 k .
9. Connect board to SB-220 using the following sequence:
a. Solder red wire to hole D.
b. Solder blue wires at holes H and J.
c. Mount board using three screws-omit lower LH.
d. Solder bare wire at hole K.
e. Solder black wire at hole E .
f. Solder black wires to holes and pads for the zener. Observe proper polarity.
g. Solder orange wire to hole G.
h. Solder yellow wire to hole F.
i. Solder red small wire to hole A.
j. Solder black wire (minus filter bank) to hole B.
k. Solder black wire (I_{p} meter) to hole C.

This completes the rectifier-board wiring. Dress all wires at right angles away from the board, then

fig. 3. SB-220 surge modifications.
10. Reinstall right-side shield.
11. Oil felt pads on fan motor while top cover is off.
12. Install top shield cover.
13. Test the amplifier using a dummy load.
14. If OK, proceed to the next section.

surge protection

1. Solder No. 14 (1.6 mm) bus wire 2 inches (5 cm) long to pins 3 and 4 of relay K1 (fig. 2).
2. Solder No. 14 (1.6 mm) bus wire 2 inches (5 cm) long to pins 5 and 6 of relay K1.
3. Bend the two wires and solder to a two-lug tie strip.
4. Connect pin 5 to 7 using No. 20 (0.8 mm) bare wire.
5. Connect a black insulated wire (rated for 220 Vac , 10 amperes) about 10 inches (25 cm) long to K1 pin 8.
6. Stack the two current-limiting resistors (100 and 50 ohms) and connect in series. Solder this pair to the lower holes in the tie strip.
7. Mount the completed surge-protection into the SB-220 using the center ground lug on the tie strip and the existing chassis screw located about 2 inches (51 mm) forward of terminal strip AE. The relay case should rest against the chassis, being supported by the bus wires.
8. Connect the 10 -inch ($25-\mathrm{cm}$) black insulated wire (trim as required) from relay K1 pin 8 to terminal 2/3 on terminal strip AE of the linear.
9. Remove existing black jumper wire between power switch Z and front standoff AW.
10. Connect Z to pins 3 and 4 of K1 using the tie strip. Use insulated wire with ($220 \mathrm{Vac}, 10$-ampere rating).
11. Connect Y from standoff $A W$ to pins 5 and 6 using the tie strip. Use insulated wire with $220-\mathrm{Vac}$, 10-amp rating.
12. This completes the surge relay installation.

From the Heathkit manual, these codes are used:
AE 110/220 Vac input terminal strip.
AW front-mounted standoff tie point.
AL front corner hole.
Z power switch.

operation

Checkout of the surge protection circuit can be
monitored each time the linear is fired up, assuming the filter capacitors have discharged to a low level. Place the selector switch in the HV position, while the mode switch can be in either the CW/TUNE or SSB position. After the power switch is pushed, there will be a time period of a few seconds of dead silence. This delay time is controlled by the value of the limiting resistors. During this period the plate voltage meter can be observed to slowly increase from zero to about 1500 Vdc. Additionally, the meter illumination lamps will slowly energize to about half brilliance. Since the 3-500Z filaments are in parallel with these lamps, they will be responding in the same way. If in doubt, turn off your room lights while energizing the linear and peer down through the case top.

The cooling fan will be turning very slowly while gradually building up speed. Therefore there will be no noise from this source during the initial few seconds.

After the five-second surge-delay period, adequate voltage will be available for surge relay K 1 to pull in. During a brief interval K1 contacts will close and hold, thus shorting the limiting resistors and applying full line voltage to the transformers. Instantly the plate voltage will increase from 1500 Vdc to its normal maximum value. The 3-500Z filaments will glow with their normal brilliance, and the cooling fan will attain maximum speed. Don't be alarmed when you hear a brief buzzing sound as the relay closes. This sound is caused by K1 contacts bouncing (as all mechanical relays dol combined with slight inductive arcing.

Although this article is written specifically for the SB-220, other similar equipment could be surge protected using these mods.

For additional information on rectifier diode protection I suggest the April, 1980, edition of Worldradio, which has a fine article written by Joe Carr, K4IPV.

Once you've installed the mods as shown in fig. 3, you can place the problem of surge protection on the shelf for a well-deserved rest. I've used these circuits on two other homebrew linear amplifiers with total success. In addition l've used them on power supplies for several transmitters using the lower line voltage. The only difference is the selection of the limiting resistance for a satisfactory delay period.

[^7]
ham radio

The Iambic Keyer Paddle.

Featurer include: adjusable jeweled bearing: ("Deluxe" only) - tention and contact spacing fully adjustable - large, solid. coin vileer contact point- $\bullet 2^{\prime}=\mathrm{lb}$, chrome plated ated base ress on non-खhid feet lifetime guarantee against manufacturing detess. "Standard" model with tevtured gray have: S49.50; "Deluxe" model with drome plated bave: 565,00 . Atailable at deaker or through the factory. Send chech, money order or we Master Charge of VISA. Vibropk pas all thipping dharge within the continental U.S.

Telephone
(207) 775-7710

P.O. Box 7230, 476 Fore Street. Porlland. Maine 04112.

FAST SCAN ATV

WHY GET ON FAST SCAN ATV?

- You can send broadcast quality video of home movies, video tapes, computer games, etc, at a cost that is less than sloscan.
- Really improves public service communications for parades, RACES, CAP searches, weather watch, etc.
- DX is about the same as 2 meter simplex - 15 to 100 miles. ALL IN ONE BOX

TC-1 Transmitter/Converter Plug in camera, ant., mic, and TV and you are on the air. Contains AC supply, T/R sw, 4 Modules below \$ 399 ppd

PUT YOUR OWN SYSTEM TOGETHER

PACKAGE SPECIAL all four modules \$ 239 ppd

TXA5 ATV Exciter contains video modulator and x tal on 434 or 439.25 mHz . All modules wired and tested \$89 ppd PA5 10 Watt Linear matches exciter for good color and sound. This and all modules run on 13.8 vdc. $\$ 79$ ppd TVC-2 Downconverter tunes 420 to 450 mHz . Outputs TV ch 2 or 3 . Contains low noise MRF901 preamp. $\$ 55$ ppd FMA5 Audio Subcarrier adds standard TV sound to the picture. $\$ 29$ ppd SEND FOR OUR CATALOG, WE HAVE IT ALL
Modules for the builder, complete units for the operator, antennas, color cameras, repeaters, preamps, linears, video ider and clock, video monitors, computer interface, and more. 19 years in ATV.
Credit card orders call (213) 447-4565. Check, Money Order or Credit Card by mail.

HUSTLER ANTENNAS
5BTV \quad-Band trap vertical $10-80 \mathrm{~m}$., reg. $\$ 139.95 \ldots . \$ 125.95$
4BTV $\quad 4$-Band trap vertical $10-40 \mathrm{~m}$., reg. $\$ 109.95 \ldots .998 .96$
BM-1 Bumper mount, reg. $\$ 18.95 \ldots$.
MO-1 Mast, fold-over, deck mounting, reg. \$22.95... 20.66
MO-2 Mast, fold-over, bumper mount, reg. \$22.95 ... 20.66
RM-75 Resonator, 75 meters, 400 watt, reg. $\$ 18.95 \ldots .17 .06$
RM-40 Resonator, 40 meters, 400 watt, reg. $\$ 16.95 \ldots .15 .26$
RM-40S Super resonator, 40 meters, KW, reg. $\$ 24.95 \ldots 22.46$
RM-20 Resonator, 20 meters, 400 watt, reg. $\$ 14.95 \ldots \quad 13.46$
RM-20S Super resonator, 20 meters, KW, reg. \$21.95.... 19.76
RM-15 Resonator, 15 meters, 400 watt, reg. $\$ 10.95 \ldots .9 .86$
RM-10 Resonator, 10 meters, 400 watt, reg. $\$ 10.95 \ldots \quad 9.86$
CG-144 Mobile 2 meter colinear, w/o mount, reg. \$28.95. 26.06
CGT-144 2 meter colinear w/trunk mount, reg. $\$ 45.95 \ldots .441 .36$
PALOMAR ENGINEERS

		Price	Shpg,
R-X	Noise bridge	55.00	\$2.00
VLF	Converter	59.95	2.00
IK	Toriod balun, 3 KW SSB, 1:1 or 4:1.	32.50	2.00
2 K	Toriod balun, 6 KW SSB, 1:1 or 4:1	42.50	2.00
IC	Keyer, battery operated	117.50	3.00
Loop	enna, plug-in units, 160/80, BCB, VLF.	47.50	2.00
Loop	lifier	67.50	2.00
Tune	10-60 meters, built-in noise bridge	299.95	6.50
CW	8 pole IC	39.95	2.00

ALSO IN STOCK
Antenna Components - Larsen Antennas Centurion International Rubber Duck Antennas

WRITE FOR A FREE COPY OF OUR CATALOG

MASTER CHARGE

VISA
All items F.O.B. Lincoln, $\$ 1.00$ minimum shipping. Prices subject to change without notice. Nebraska residents please add 3% tax.

WANTED FOR CASH

490-T Ant. Tuning Unit (Also known as CU1658 and CU1669)

618-T Transceiver (Also known as MRC95, ARC94, ARC 102. or VC102)

Highest price paid for these units. Parts purchased. Phone Ted, W2KUW collect. We will trade for new amateur gear. GRC106, ARC105, ARC112, ARC114, ARC115, ARC116, and some aircraft units also required.

DCO, INC.

10 Schuyler Avenue Call Toll Free
800-526-1270

No. Arlington, N. J. 07032
(201) $998-4246$

Evenings (201) 998-6475

Diplexer consists of a matched pair of highpass and lowpass filters, which allow a vhf and high-frequency antenna to share a common feedline. The filter at the antenna end has three sections (top); that at the station end has five sections (bottom).

transceiver diplexer: an alternative to relays

Frequency-selective filters allow vhf and hf antennas to share a common feedline

In many cases it's desirable to reduce the number of feedlines between the ham station and the antennas. One of the more important reasons is the price of high-quality coax cable. It's easy to spend as much money on transmission lines as on a small commercially manufactured 2-meter Yagi antenna. A second reason may be the need to tidy up your installation to please neighbors. If antenna restrictions exist in your area, and you're trying to avoid detection, the presence of several coax cables can be too much to hide.

One of the more popular ways of making the best use of feedlines is to use switching relays at the

By Terry A. Conboy, N6RY, 2631 S.W. Orchard Hill Place, Lake Oswego, Oregon 97034
antennas to select the desired antenna. Several systems to accomplish this are available commercially, and homebrewing such an arrangement is not technically difficult.

There are disadvantages to such schemes. What happens when you're chasing a rare station and still want to listen to the local DX repeater on 2 meters? If you have only one feedline, this can be inconvenient. Care must be taken to avoid transmitting on the wrong-frequency antenna to prevent possible damage to both transmitter and antenna.

enter the diplexer

An alternative to relays is frequency selective networks to select the proper antenna automatically. The networks can also allow simultaneous combination of more than one transceiver on the same coax cable.
These networks are called diplexers, since they allow two transmitters (or receivers) to use the same feedline at the same time. They differ from duplexers, as used in repeaters. Duplexers permit simultaneous operation of one transmitter and one receiver on a common antenna.
Although possible, it would be difficult to construct networks that would permit several different high-frequency antennas to share the same feedline. Relays are probably best used for this purpose. Because 144 MHz and 220 MHz are commonly used for local communications, I designed a simple network to permit either of these vhf bands to coexist with high-frequency signals on one coax cable. I did not include the $50-\mathrm{MHz}$ band because this design would have required more complex networks. (The 420MHz band will pass through the filters, but the impedance match is marginal.)
I used two networks. The one at the station end (fig. 1) allows both the high-frequency and vhf rig to access the coax simultaneously. The network at the antenna end (fig. 2) does the same for the high-frequency and vhf antennas. Each network consists of a mated pair of highpass and lowpass filters to accomplish the separation and combination of the two different frequencies.

Some disadvantages occur in the use of filters to perform these functions. A small amount of loss is added to the system. This is minimal, however. Also the impedance presented to the transceivers is modified. By proper filter design this mismatch can be kept to a minimum.

One added benefit of the filters should be noted: Lowpass filters are in the circuit to the high-frequency antenna, so some reduction in harmonic radiation is evident, which may reduce TVI to the point that an additional filter isn't needed.

designing the filters

The highpass and lowpass filters are simple Chebychev units that can be designed from tables of normalized filter prototypes or by calculating normalized inductor and capacitor values. I found it easier, however, to use the network design programs available on the engineering computer at my place of employment.

Reflection coefficient. To minimize the amount of mismatch introduced by the filters, I designed them to have a maximum reflection coefficient of 0.065 . Since two filters are in tandem, the worst-case reflection coefficient with a 50 -ohm load could be twice this amount, or 0.13 , which corresponds to a maximum SWR of 1.3. The worst-case situation at the transmitter for a load with a 2 -to-1 SWR would be SWR of 2.7. Because of the designs I used, the frequencies of worst match don't coincide, and such a degradation is unlikely. The match may also be better at some frequencies because of the small variations in the impedance transformation through the filters.

Cutoff frequencies. I set the filter cutoff frequencies about 7 per cent above and below the required maximum and minimum frequencies to avoid the loss appearing near the filter corners caused by the finite Q 's of the inductors. The resulting cutoff frequencies were 32 MHz for the lowpass filters and 135 MHz for the highpass filters.

Isolation. The number of filter sections is governed by the isolation required between high-frequency and vhf equipment. Isolation at the transceivers must be much greater than at the antennas. For protection against receiver overload, at least 50 dB isolation was desired between the high-frequency transmitter and the vhf receiver. Such isolation reduces 1000 watts to 10 milliwatts at the receiver front end. Because of the wide frequency separation, no undesirable intermodulation occurs in the vhf receiver.
The isolation required between vhf transmitter and high-frequency receiver is usually not as great, because most stations use much lower power on vhf than on hf. Even so, I designed the filters to be symmetrical, which should give the same isolation in both directions.

At the antennas, I set the isolation at 30 dB . This isolation should prevent high-frequency-antenna radiation from causing any significant reduction in the front-to-back ratio of a directional vhf antenna.

To obtain the desired isolation, I made the networks at the station end with five sections each and those at the antennas with only three sections each.
After I designed the filters I increased the reac-

fig. 1. The five-section filters used at the transceivers. Inductor data is given in table 1.
tances of the components at the common port by the same ratio to compensate for the shunting effect of the other filter. I did this with an interactive network analysis program. To make the impedance match as good as for the highpass or lowpass filter alone, I increased the end inductor of the five-section lowpass filter by 15 per cent and decreased capacitor of the five-section highpass filter by the same amount. For the three-section filter, the change of the end components was 30 per cent.

I made allowances for the parasitic capacitances of the inductors to ground in the lowpass sections, which add in parallel with the shunt capacitors. I made allowance of 3 or 4 pF in the capacitors I used. I added small metal tabs about 0.4 inch (1 cm) square to the highpass filters. This restored symmetry to the highpass sections and improved the match at 220 MHz. The final design of the filters appears in Figs. 1 and 2.

construction

The filters were built in cast aluminum boxes and a piece of unetched copper-clad PC board was attached to the inside of the box with machine screws. The shunt components were then soldered directly to the copper board with the shortest possible leads. The series components were supported by the shunt components (this arrangement can be seen in the photos). This construction provides a rigid mounting for the parts with minimal stray inductance and capacitance.

Shields were placed between the highpass and lowpass filters in each box to reduce mutual coupling. If you don't include the shields, isolation between the vhf transmitter and high-frequency receiver will be seriously impaired.

For the five-section networks, additional shields were required. The shields were made of double-sided copper board. They were soldered all along the seams together with the groundplane copper boards
and the other shields, then fastened to solder lugs on the connectors where possible.
All coils were placed at right angles to each other in the same shielded area to avoid mutual coupling, which can cause filter performance to depart drastically from the theoretical predictions.

components

The fixed caps were micas with a 1000 -volt rating. This rating is adequate for power levels up to the legal limit. Because of the high currents flowing in the shunt capacitors in the lowpass filters, the required capacitance was obtained by using two capacitors in parallel, which reduces any possible heating in the capacitors. Currents are highest when operating near the filter cutoff frequency and can easily reach 5 amperes with 1000 watts of input power.
Air variable capacitors could be used throughout, in place of the micas, provided the voltage rating is adequate. In the highpass sections, the micas were paralleled with air variables and glass piston capacitors to allow tuning. After the filters were tuned, it appeared that fixed units of the calculated values would have worked just as well, as judged from the positions of the variables.

All the inductors were wound of No. $12(2.1-\mathrm{mm})$ tinned copper wire. Winding data were obtained from charts in the ARRL Handbook. Information on the dimensions of the coils appears in table 1.

tuning the filters

By far the best way to tune Chebychev filters is with a swept reflectometer. These filters were tuned this way, adjusting the coils by stretching and squeezing and by tuning the capacitors until the impedance match across the passband of each filter was within the desired limits. Not everyone has the facilities to adjust the networks in this manner. As an alternative, the filters should be adjusted one at a time into a dummy load with an SWR meter or a noise bridge set to 50 ohms. The frequencies to use are given in table 2. It's important not to vary the components too far from the calculated values; do-

fig. 2. The three-section filters used at the antennas.

fig. 3. Measured frequency response and return loss for the five-section lowpass filter.
ing so may cause the isolation to be upset.
After tuning for best match at the frequencies indicated, check the match at other frequencies within
table 1. The inductors should be wound according to this data. The wire used is solid No. $12(2.1 \mathrm{~mm})$ with spacing between the turns equal to the wire diameter.

inductor	nominal inductance $\mu \mathrm{h}$	inside diameter		
L1	0.208	0.5	(12.7)	4.5
L2	0.413	0.75	(19.0)	5.0
L3	0.24	0.5	(12.7)	5.25
L4	0.044	0.5	(12.7)	1.25
L5	0.044	0.5	(12.7)	1.25
L6	0.176	0.5	(12.7)	4.0
L7	0.23	0.5	(12.7)	5.0
L8	0.057	0.375	(9.5)	2.0

fig. 4. Measured frequency response and return loss for the five-section highpass filter.
table 2. Adjust the inductors (and variable capacitors, if used) for best match into a $\mathbf{5 0}$-ohm load at these frequencies.

filter	adjustment frequency $(\mathbf{M H z})$
5-section lowpass	28.3
5-section highpass	148.0
3-section lowpass	28.0
3-section highpass	147.0

the filter passbands. It may be necessary to retune somewhat if the impedance match is poor. Remember that the match should not necessarily be perfect at all frequencies, but the SWR should not be worse than 1.2 anywhere in the passband of either filter.

diplexer performance

The two networks were measured with 50 -ohm terminations on the unused ports. The results of the

fig. 5. Measured isolation between the high-frequency and vhf ports of the five-section filters. The common port was terminated with 50 ohms.
measurements are given in figs. 3 through 8. The impedance match is plotted as return loss. This quantity is 20 times the logarithm of the magnitude of the reflection coefficient. It was measured directly by the test equipment used. The reflection coefficient for which the filters were designed, 0.065 , represents a
table 3. These are actual measured losses in a 50 -ohm circuit with the unused ports terminated. Resistive and mismatch losses are included.

filter	maximum loss (dB)	frequency (MHz)
5-section lowpass	0.1	21.0
5-section highpass	0.22	220.0
3-section lowpass	0.07	28.0
3-section highpass	0.05	225.0

fig. 6. Measured frequency response and return loss of the three-section lowpass filter.
return loss of 23.7 dB and an SWR of 1.14. The diplexer insertion loss was surprisingly low. Table 3 summarizes the measured losses through the filters.

Use of the filters shows that the isolation between the high-frequency and vhf equipment is more than adequate. The equipment was a Yaesu FT-301 with an FL-2100B and an Icom IC-22S. The only problem areas were at harmonics of the high-frequency transmitter that fell on frequencies in the 2 -meter band. However, this was also a problem when operating with separate feedlines. Significant fifth-harmonic energy was picked up by the 2-meter transceiver even when it and the high-frequency transmitter were connected to dummy loads.

possible improvements

The layout of the filters would be much better if

fig. 7. Measured frequency response and return loss of the three-section highpass filter.
the boxes were long and narrow, with the common connection near the center of the assembly. Then the high-frequency and vhf ports would be separated by the greatest distance. Another layout improvement would be to shield separately each inductor in its own small compartment. This would greatly reduce mutual coupling between the coils.
The other possible improvement is to reduce the effective stray inductance of the shunt capacitors in the lowpass filters by paralleling more than two capacitors to obtain the required value. The self-resonant frequency of smaller capacitors would be moved higher in frequency, and the stopband attenuation and isolation would be greater.

using the diplexers

If antenna tuners or TVI filters are in use at your

fig. 8. Measured isolation between the high-frequency and vhf ports of the three-section filters. The common port was terminated with 50 ohms.
station, they must be placed between the transceiver and the diplexer, which can be a problem if the antenna tuner is used to compensate for fairly high standing-wave ratios. Possible voltage and current stresses on the components in the filters could easily damage them. It would be wise to restrict operation at maximum legal power to standing-wave ratios no higher than 2.5 on the main feedline.

For normal exciter power levels (under 300 watts input), there should be no problem with standingwave ratios up to 5 under normal use, especially below the 20 -meter band.
If your SWR meter is capable of operation on both hf and vhf, it may be placed in the common feedline and measurements can be made in either frequency range.
ham radio

One-Stop Component Center AUTHORIZED DISTRIBUTORS

For Distributor Information, write or phone JIM-PAK $® 1355$ Shoreway Road, Belmont, CA 94002 (415) 595-5936

Because of the lightweight construction of the TA-33 antenna, I didn't bother with an end thrust bearing at the bottom of the 1-1/2-inch pipe. The spring was heavy enough to take up the beam weight. However, with heavier and more complex beam antennas, it might be wise to do something along these lines. One simple method would be to slide a 2 or 3 -inch (5 or 8 cm) cut of the 1-1/2inch pipe inside the 2 -inch pipe at the place you want the bottom end of the $1-1 / 2$-inch pipe to rest, then drill through both pipe walls and secure the pipes with a bolt to hold the piece inside the 2 -inch pipe. To avoid as much friction as possible, of course, the bottom of the 1-1/2-inch pipe and
the top of the small inserted piece should be ground as flat as possible and packed with heavy machine grease.

springs

The heavier the spring the better. I came across a spring about 10 inches $(25 \mathrm{~cm})$ long made from $3 / 8$ inch $(9.5$ mm) spring steel and 2 -inches (51 cm) inside diameter. Many such springs are available in auto-part shops, usually from discarded shock absorbers. But I was lucky. I was driving past a shop one day and noticed a sign that said, HEAVY DUTY SPRINGS OF ALL KINDS. It turned out to be a spring manufacturer who

the cure

It's a simple measure and easy to accomplish (fig. 1). The mast from my rotor is a 2 -inch piece of pipe. I slid a 6 -foot (1.8 meter) piece of 1-1/2 inch pipe (this could be any other length of course) down inside the 2inch pipe about 2 feet (0.6 meter) (this could vary). I slipped a heavy automobile shock absorber coil spring over both pipes so that the center of the spring came to the top of the 2inch pipe. Then I welded the coil to the pipe: the top end of the coil to the $1-1 / 2$-inch pipe; the bottom end to the 2 -inch pipe. I made three weld spots around each pipe. The spring I used fit snugly around the 2 -inch pipe, so welding directly to the pipe was easy.

At the top, I shimmed the spring with three pieces of $3 / 4$-inch (2 cm) strap iron cut to about 1 -inch $(2.5 \mathrm{~cm})$ long. This made the weld spots fit snugly to the $1-1 / 2$-inch pipe. This precaution probably wouldn't be necessary, but it didn't take much more time and it made a neater looking weld.

made springs for the shock absorber people. I explained what I was looking for, and the shop foreman produced just what I wanted. When I asked, "How much?" he said, "Take it. It isn't worth the paperwork." Still some nice people around yet.

My beam has been up for six years. We have had all kinds of high winds, near-tornadoes, and gusts that shook the house. But the beam and the rotor gears are still intact. The beam bounces around a bit in high winds, but there is very little shock to the rotor gears. If I had it to do over, I'd try to find a heavier spring; but of course the nearer you get to a rigid connection, the less effective the arrangement becomes.

Russ Rennaker, W9CRC

calculator care

Many of the less-expensive small calculators aren't too well sealed against moisture and dirt. After living with the results of dirty contacts on the calculator keyboard of my unit, I decided to do something about it.

I opened the machine and squirted some aerosol switch-contact cleaner onto the bottom of the keyboard. I then cut and shaped a sandwich bag to fit around the calculator and taped the ends of the bag with Scotch ${ }^{\text {TM }}$ tape. I poked a hole in the bag with a toothpick to accept the charger plug.

Now the calculator is protected from cigarette smoke, dirt, and grime. No more problems with contact bounce resulting in wrong entries when working long problems. The cost: about 0.5 cent.

Alf Wilson, W6NIF

varactor tuning tips

In tuning power varactor doublers, triplers, etc., there is often a sharp or
sudden discontinuity in the tuning of one or more of the tuned circuits; a condition known as hysteresis.

While hysteresis is caused by some nonlinearities in the diode function, it seems that it may also be a result of the circuit Q aggravating diode nonlinearities. I figured that it might be possible to lessen the effect by a reduction in circuit Q. Accordingly, I reduced the bias resistor in my 144to -432 MHz tripler from 92 to about 12. I was pleased to note that circuit performance was actually improved - tune up was easier, and there was no appreciable loss of power output.

Richard N. Coan, N3GN

power dissipation

Described here is a power-absorbing device commonly known as a dummy load. The circuit contains an active element so I have changed the name from dummy to active load.

an active load

The need for this circuit developed when I was trying to repair a 5 -volt, 3 ampere power supply. No hot-dogsized, 1.66 -ohm resistors were available for load testing, so the circuit of fig. 2A was constructed and tested on the supply. Load current is controlled in both circuits (figs. 2A and

2B) by R1. R2 limits the maximum base current to a safe value for the transistor used. One-hundred ohms is a nominal value. If the active load is to be used for more than a few seconds, adequate heatsinking must be provided for the transistor.

A provision for metering the current being consumed is included. I used the Simpson 260 volt ohmmeter on the 10 -ampere scale.

other applications

This active load, when coupled to a properly designed heatsink, could be used in place of the Hot Mugger X1.1 While these phenomena have not been fully investigated, an aluminum plate would probably exhibit an SWR of less than 3:1 over the operating range of the "coffee cup." Unfortunately, exact specifications for such a Hot Plate Matcher are beyond the scope of this article.

acknowledgments

I must acknowledge the contributions of David M. Newell, ex-K1KRG, who first introduced me to this circuit idea, and Donald S. Patterson, PS7ZAC, who developed the PNP version shown in fig. 2A.

reference

1. Burton, "The Hot Mugger X1," 73, February, 1979, page 163.

Wm. Denison Y. Rich, PS7ZAD

Fig. 2

STEP UPTOTELREX Professionally Engineered Antenna Systems Single transmission line "TRI-BAND ARRAY"

Varifilter
 single audio filter

Versatile
Compact
Easy
operation

$\$ 139.95$
Both models feature:
Variable frequency
from less than 150 Hz to over 3000 Hz
Variable bandwidth
from less than 30 Hz to over 1000 Hz
Tuning eyes
for fast, accurate tuning
Peak/Notch Modes
to maximize a signal, or minimize
interference, or both with a Signal Enforcer

Warranty

one full-year

Signal Enforcer

dual audio filter
Two independent filters Demodulator output

By the only test that means anything. on the air comparison ... this array continues to outperform all competition and has for two decades. Here's why

Telrex uses a unique trap design employing 20 HiQ 7500 V ceramic condensers per antenna. Telrex uses 3 opti-mum-spaced, optimum-tuned reflectors to provide maximum gain and true F / B Tri-band performance.

For technical data and prices on complete Telrex line, write for Catalog PL 7

Iron Powder and Ferrite TOROIDAL CORES

Shielding Beads, Shielded Coil Forms Ferrite Rods, Pot Cores, Baluns, Etc.

Small Orders Welcome
Free 'Tech-Data' Flyer

AMID\&N
 isociates

Since 1963

12033 Otsego Street, North Hollywood, Calif. 91607
In Germany Elektronikladen. Witheim - Mellies Str 88. 4930 Detmold 18. West Germany
In Japan Toyomura Electronics Company, Lid.. 7.9. 2-Chome Sota-Kanda. Chiyoda-Ku. Tokyo. Japan

Microcraft's New RTTY READER

Decodes RTTY signals directly from your receiver's loudspeaker. - Ideal for SWLs, novices \& seasoned amateurs. © Completely solid state and self-contained. Compact size fits almost anywhere. No CRT or demodulator required . . . Nothing extra to buy! * Built-in active mark \& space filters with tuning LEDs for $170,425 \& 850 \mathrm{~Hz}$ FSK. - Copies 60, 67, 75, \& 100 WPM Baudot \& 100 WPM ASCII. * NOW you can tune in RTTY signals from amateurs, news sources \& weather bulletins. The RTTY READER converts RTTY signals into alphanumeric symbols on an eight-character moving LED readout. Write for details or order factory direct.
RTTY READER KIT, model RRK \$189.95 RTTY READER wired and tested, model RRF $\$ 269.95$ Send check or money order. Use your VISA or MasterCard. Add $\$ 5.00$ shipping and handling for continental U.S. Wisconsin residents add 4% Wisconsin State Sales Tax.

GXMGYMUMYRS MIRDUS

2822 North 32nd Street, \#1 • Phoenix, Arizona 85008 • Phone602-956-9423

MEMORY

2703

$2716 / 2515$
$2114 / 9114$ 4027 $2117 / 4116$ 2732-6
$\frac{\text { Qescription }}{1 k \times 8 \text { Eprom }}$
$2 k \times 3$ jv single supply
$1 \mathrm{k} \times 4$ static
I $4 \mathrm{~K} \times 1$ Dynamic Ram
$15 k \times 1$ Dynamic Ram
32k Eprom

$$
\begin{array}{r}
\text { Prica } \\
\hline \$ 5.00 \\
9.39 \\
5.00 \\
2.99 \\
5.00 \\
39.95
\end{array}
$$

C.P.U.'s, Etc.

1C6300p MC68B21P MC6845P MC6850P MC6352P
3008-1
8080A
Z80A
z80
280A
z30
Z 80
8212
8251
TR1602/AY5-101
TMS 1000NL PTI482B
8257
3341
4M5316/F3817
3741
8748
4C1408L/6
ᄃOM2502
COM2601
Microprocessor
PIA
CRT Controller
ACIA
SSDA
Microprocessor
Microprocessor
Microprocessor
Microprocessor
Plo
S10/0
S10/1
8 Bit input/output part
Communication Interface
13 UART
Four Bit Microprocessor PSAT
DMA Controller
64×4 FIFO
Clock with alarm
8 Bit Microcomputer with
programmable/erasable EPROM
$6 \mathrm{Bit} \mathrm{D} / \mathrm{A}$

こRYSTAL FILTERS
ryco 001-19830 Same as 2194F
10.7 MHz narrow band

3 dB bandwidth 15 KHz min.
20 dB bandwidth 60 kHz min.
40 dB bandwidth 150 KHz min .
Jltimate 50 dB insertion loss 1 dB max.
Ripple l dB max. Ct. $0+/-5$ pf 3600 Ohms
$\$ 3.99$ each
MRF454 Same as MRF458 $\$ 17.95$ each
$12.5 \mathrm{VDC}, 3-30 \mathrm{MHz}$
80 Watts output, 12 dB gain

MRF ${ }^{4} 72$
12.5 VDC, 27 MHz

4 watts output, 10 dB gain
$\$ 1.69$ each
CARBIDE Circuit Board Drill Bits
for PCB Boards
3 mix for $\$ 5.00$

MURATA CERAMIC FILTERS		
SFD 4550	455 KHz	$\$ 2.00$
SFB 4550	455 KHz	1.60
CFM $455 E$	455 KHz	5.50
SFE 10.7 MA	10.7 MHZ	2.99

ATLAS CRYSTAL FILTERS FOR ATLAS
HAM GEAR
5.52-2.7/8
$5.595-2.7 / 3 / v$
5.545-2.7/8
$5.595-.500 / 4 / \mathrm{CW}$ YOUR CHOICE
5.595-2.7 USB \$12.99 each
5.595-2.7/8/L
5.595-2.7 LSB
9.0-USB/CW

J310 N-CHANNEL J - FET 450 MHz Good for VHF/UHF Amplifier, Oscillator and Mixers. 3/\$1.00

AMPHENOL COAX RELAY
26 VDC Coil SPOT \#360-11892-13 100 watts Good up to 18 Ghz
$\$ 19.99$ each
78 mO 5 Same as 7805 but only $\frac{1}{2}$ Amp
5 VDC 49 e each or $10 / \$ 3.00$

NEW TRANSFORMERS

F-18X	6.3VCT@ 6Amps	$\$ 6.99$ é
F-46X	24 V @1Amp	5.99
F41X	25.2VCT@2Amps	6.99
P-8380	10VCT@3Amps	7.99
P-8604	20VCT @1Amp	4.99
P-8130	12.6VCT@2Amps	4.99
K-32B	28VCT@100MA	4.99
E30554	Dual17V@1Amp ea. 6.99	

EIMAC FINGER STOCK \#Y-302
36 in . long $\times \frac{1}{2} \mathrm{in}$. \$4.99 each

Gwicenilrugissurgus

2822 North 32nd Street, \#1 • Phoenix, Arizona 85008 • Phone 602-956-9423

MRF 203	\$P.0.R.	BFw 2 A $\$ 1.00$		UHF/VHF RF POWER TRANS ISTORS
MRF 216	19.47	BFW92 . 79		CD2867/2N6439
MRF 221	8.73	MrCM919 14.30		60 Watts output
MRF 226	10.20	MMCM2222 15.65		Reg. Price $\$ 45.77$
MRF 227	2.13	MíCN2369 15.00		SALE PRICE \$19.99
MRF 238	10.00	МАСМ2 434 15.25		
MRF 240	14.62	MACM3960A 24.30		1900 MHz to 2500 MHz DOWNCONVERTERS
MRF 245	28.87	MWAllo 6.92		Intended for amateur radio use.
MRF 247	28.87	MWA120 7.38		Tunable from channel 2 thru 6.
MRF 252	6.25	MWA130 8.08		34 dB gain 2.5 to 3 dB noise.
MRF 314	12.20	MWA210 7.46		Warranty for 6 months
MRF 406	11.33	MWA220 8.03		Model HMR 11
MRF412	20.65	MwA230 8.62		Complete Receiver and Power Supply
MRF421	27.45	MWA310 8.03		\$225.00 (does not include coax)
MRF 422 A	38.25	MWA320 8.62		4 foot Yagi antenna only
MRF 422	38.25	MWA330 $\quad 9.23$		\$39.99
MRF428	38.25			Downconverter kit - PCB and parts
MRF428A	38.25	tubes		\$69.95
MRF 426	8.87	6 K06	\$ 5.00	Power Supply Kit - Box, PCB and parts
MRF426A	8.87	6LQ6/6JE6	6.00	\$49.99
MRF449	10.61	6MJ6/6LQ6/6JE6C	6.00	Downconverter assembled
MRF449A	10.61	6LF6/5MH6	5.00	\$79.99
MRF 450	11.00	12BY7A	4.00	Power Supply assembled
MRF450A	11.77	2 E 26	4.69	\$59.99
MRF452	15.00	4×150A	29.99	Complete Kit form with Yagi antenna
MRF 453	13.72	$4 \mathrm{C} \times 2508$	45.00	\$109.99
MRF 454	21.83	$40 \times 250 \mathrm{R}$	69.00	REPLACEMENT PARTS
MRF 454 A	21.83	$4 \mathrm{C} \times 300 \mathrm{~A}$.	109.99	MRF901 \$ 3.99
MRF 455	14.08	$4 \mathrm{C} \times 350 \mathrm{~A} / 8321$	100.00	MBDIO1 1.29
MRF455A	14.08	$4 \mathrm{C} \times 350 \mathrm{~F} / \mathrm{J} / 8904$	100.00	. 001 Chip Caps 1.00
MRF472	2.50	$4 C \times 1500 \mathrm{~B} / 8660$	300.00	Power Supply PCB 4.99
MRF 474	3.00	811 A	20.00	Downconverter PCB19.99
MRF 475	2.90	6360	4.69	
MRF 476	2.25	6939	7.99	NEW ASCII ENCODED KEYBOARDS
MRF 477	10.00	6146	5.00	110 Keys Numeric and Cursor Pad
MRF 485	3.00	$6146 A$	5.69	No data available \$19.99
MRF492	20.40	6146B/8298	7.95	
MRF502	. 93	6146W	12.00	86 PIN MOTOROLA BUS EDGE CONNECTORS
MRF 604	2.00	6550A	8.00	Gold plated contacts
MRF 629	3.00	8908	9.00	Dual $43 / 86$ pin .156 spacing
MRF 648	26.87	8950	9.00	Soldertail for PCB $\quad \$ 3.00$ each
MRF901	3.99	4-400A	71.00	
MRF 902	9.41	4-400C	80.00	CONTINUOUS TONE BUZZERS
MRF 904	3.00	572B/T160L	44.00	12VDC $\quad \$ 2.00$ each
MRF911	4.29	7289	9.95	
MRF5176	11.73	3-10002	229.00	llovac muffin fans
MRF8004	1.39	3-5002	129.99	New \$11.95 Used \$5.95
BFR90	1.00			
BFRgl	1.25	TO-3 TRANSISTOR SOCKETS Phenolic type $6 / \$ 1.00$ NO ORDERS UNDER		PL259 TERMINATION 52 hm (5 Watts$\$ 1.50$ each
BFR96	1.50			

2822 North 32nd Street, \#

Phoenix, Arizona 85008

Phone 602-956-9423

new MFJ indoor
 active antenna

The new MFJ-1020 indoor active antenna can rival, or even exceed, the reception of outside long-wire type antennas.

The tuned circuit of this unique active antenna helps to reduce intermod, provides rf selectivity, and reduces noise outside the tuned band.

The MFJ-1020 can also be used as a preselector for an external antenna. It covers 300 kHz to 30 MHz in four bands: $0.3-1 \mathrm{MHz}, 1-3 \mathrm{MHz}, 3-10$ MHz , and $10-30 \mathrm{MHz}$.

The 1020 comes with an adjustable telescoping antenna, ready to sit on your desk and listen to the world. The controls include: tune, band selector, gain, and on-off/bypass. A 9 -volt battery will provide power for portable use, or it may be used on 110 Vac with the optional ac adapter.

If ordered from MFJ, there is a $30-$ day, money-back trial period. If you are not satisfied, you may return it within 30 days for a full refund (less shipping). MFJ also provides a oneyear unconditional warranty.

The MFJ-1020 Indoor Active Antenna is available from MFJ Enterprises, Inc., for $\$ 79.95$ plus $\$ 3.00$ shipping and handling.

To order, call toll-free 800-6471800 , or mail order with check or money order to MFJ Enterprises, Inc., P.O. Box 494, Mississippi State, Mississippi 39762.

pocket-size digital receiver

New, from Ace Communications, Inc., is the world's first 1,800 channel "Slimsizer" pocket-size vhf fm receiver. With this receiver, designated the AR-22, the entire 141.000-149.995 MHz Amateur band, or $151.000-$ 159.995 MHz commercial band, can be tuned automatically in precise 5 kHz steps.

The AR-22 tuning system gives a direct frequency reading by employing digital-pushbutton switches and a slide switch.

The clean signal reception of this compact unit is the equal of many full-sized base stations. An electric tuning system in the rf-amplifier stage provides a typical sensitivity of 12 dB SINAD for less than $0.2 \mu \mathrm{~V}$ on all frequencies.

The unit is rugged and reliable. Circuitry is contained on a double-sided, glass-epoxy printed-circuit board.

The AR-22 is completely portable. With its nicad battery pack, the receiver weighs only 7.1 ounces (200 grams) and measures only $51 / 2 \times 21 / 2$ $\times 1$ inch $(130 \times 63 \times 25 \mathrm{~mm})$. It comes equipped with a high-performance, "Mini-Helical" flexible rubber antenna.

For a dependable, clear sounding, pocket-sized, digital 2-meter Amateur receiver, the AR-22 is one of the best buys on the market at $\$ 125$. For more information on the "Slimsizer" AR-22, contact Ace Communications, Inc., 2832-D Walnut Ave., Tustin, California 92680.

digital dial for rotators

The digital age has entered the antenna rotator field. The DX-360 Digital Degree Dial custom module converts your CDE Ham M, II, III, IV, T2X, Alliance HD-73, KLM, Wilson, Kenpro (TET) 400, 500, 600, and
other rotor control boxes into easier-to-read digital-bearing readouts, which have superior accuracy compared to present analog meters. Guesswork is eliminated.

The tested and assembled DX-360 customized module is only $\$ 39.95$ (U.S.) with VISA, Master Charge, money order, or check. Shipped first class air mail. Guaranteed. Write for free details, and specify rotor type: Monitor, Box 55AB, Agincourt, Canada M1S 3 B4.

Xitex introduces"Smart TU' for ASCII/Baudot/ Morse

Xitex Corporation has just announced the addition of the UDT170, Universal Data Transceiver, to its data-products line for RTTY and Morse operation. The UDT-170 connects directly between the user's ASCII or Baudot teletypewriter or video terminal, and the station transceiver. For the user who does not currently have an RTTY or video terminal, the Xitex SKT-100 video terminal is recommended.

The UDT-170 is the combination of a microprocessor-based data converter plus a high-performance RTTY Terminal Unit (TU). In the receive mode, the TU takes the RTTY or Morse signal from the receiver audio output and converts it to a dc signal, which is fed to the data converter portion of the UDT-170. Here, two single-chip microcomputers convert the ASCII, Baudot, or Morse input signal into an RS232 or 60 -milliampere output signal, which has been regenerated to match the mode (ASCII or Baudot), Baud rate, and line length of the user's terminal.

In the transmit mode, the serial output from the keyboard on the user's terminal is fed into the data converter in the UDT-170 where it is continuously buffered and regenerated in the desired output mode
(ASCII, Baudot, or Morse) and data rate.

The UDT-170 will operate at any FSK shift from less than 100 Hz to over 1000 Hz ; Baudot rates of 60, 67, 75, and 100 wpm ; ASCII rates of 110 or 300 Baud; Morse rates from 1 to 150 wpm with "Auto Track"; and line lengths from 40 to 80 characters. Other features include a two-digit LED display for the copy rate (Morse only) and buffer states, and an optional CW "Ident" feature for RTTY operation.

The UDT-170 is packaged in an RFIprotected metal enclosure and operates on either 115 or $230 \mathrm{Vac}, 50 / 60$ Hz . For additional information contact Xitex Corporation, 9861 Chartwell Drive, Dallas, Texas 75243.

new energy-efficient voltage controls

A new and convenient style of portable, variable ac-control system has just been announced by Staco Energy Products. Operating from standard 120 -volt ac line current, the system allows the user to select and adjust ac voltage at any level from zero to 140 volts to provide power for applications requiring up to ten amperes continuous duty, or to 100 amperes surge, depending upon the unit selected.

An all-new, rugged, aluminum housing provides a complete enclosure, and on the largest unit provides an integral carrying handle for ease of portability. All units feature fused, three-wire grounded circuitry for safety; and provide an on-off switch and pilot lamp in addition to a volt-age-level adjustment knob. All controls are located on the front panel, which is recessed into the outer housing to minimize accidental readjustment. Models include the L-221 rated 1.75 A, the L-501 rated 4.5 A , and the L-1010 rated 10 A . All models are available from franchised Staco dis-
tributors throughout the country.
Applications include portable use, laboratory or bench applications, and incorporation into new or existing machines and equipment. The housing provides a means of custom mounting from either side, top, bottom, or rear of the unit, as the application requires.

Styles range from manual panelmounted units through closed-loop voltage-regulator systems. Requests for engineering assistance may be addressed to the attention of Sales Manager, 301 Gaddis Boulevard, Dayton, Ohio 45403.

KLM multi-band vertical

KLM announces a new multiband vertical antenna. Designated $40-10 \mathrm{~V}$, the design uses a series of lossless linear loading and efficient High-Q air capacitor sections on 20,15 , and 10 meters, similar to those on the KT34A and KT-34XA tribanders. Old style, power-robbing coils and capacitors have been eliminated.
In the KLM tradition, the $40-10 \mathrm{~V}$ provides broadband coverage. All of 40 meters is accessible with no tuning adjustment at 1.5:1 VSWR or better. Optimized tuning is also possible using an adjustable element tip. Just two settings on each band provide complete coverage of 20,15 , and 10 meters at 1.5:1 VSWR or better.

The $40-10 \mathrm{~V}$ is self-supporting; no guying is necessary. It is designed for mast, stake, or sidewall mounting. All aluminum tubing is strong, weatherresistant 6063-T832 alloy. All electrical hardware is stainless steel. Nominal feed impedance is 50 ohms. Windload is 2 square feet (0.6 square meters). Price is $\$ 109.95$. For more information contact KLM Electronics, P.O. Box 816, Morgan Hill, California 95037.

Sends Morse, Baudot and ASCII from keys or Morse from paddie. Also random CW with lists for practice. Meters for speed and buffer. Message memories, editing, all prosigns. 110 Baud ASCII, 45.45 Baud Baudot. Continuous control of speed, weight, pitch and volume. PTT control.

BOX 4090
MOUNTAIN VIEW, CA 94040
TELEPHONE (415) 494-7223

PAY CASH

for your military surplus electronics If you have or know of availability: TT-98 TT-76 Teletypewriter phone me collect Dave - (213) 760-1000

COMM Audio Processor SELECT: 13 POLE VOICE-FILTER OR 9 POLE 100 Hz gh FILIER
WITH SEIECTABLE FLAT SKIRIS. ADJUSTABLE TONE-TAG AND ANTI-PHASIC WHIIE NOISE - ALL IN SYNTHESIZED BINAURAL See HR Jen, $30 \cdot$ COMPLETE SYSTEM, KITS, BOARDS - BROCHURES Hildreth Engineering P.O. Box 60003 Sunnyvale, CA 94088

¡AFFORDABLE CW KEYBOARD

Transmits perfect Morse Code * Built-in 16. character buffer * Internal speaker and sidetone * Reed relay output eliminates keying problems * All solid state circuits and sockets for reliability * Speed range 5-45 WPM * Perfect companion to our MORSE-A-WORD CW code reader.

MORSE-A-KEYER KIT, model MAK-K, Complete kit of parts \& manual \$159.95 MORSE-A-KEYER, model MAK-F, Factory wired \& tested \$205,00

- MORSE-A-KEYER ESSENTIAL PARTS KIT, modeI EPK-K. $\$ 69.95$ *
(Essential parts kit for home-brewers consists of pc board, board parts and manual. You supply ASCII keyboard, cabinet, power supply \& miscellaneous parts.)
* Send check or money order. Use your VISA or MasterCard. Add $\$ 5.00$ shipping and * handling for Continental U.S. Wisconsin residents add 4% Wisconsin State Sales Tax.

Corporation
Telephone: (414) 241-8144
Post Office Box 513HR, Thiensville, Wisconsin 53092

Featuring Kenwood, Yaesu, Icom, Drake, Ten-Tec, Swan, Dentron, Alpha, Robot, MFJ, Tempo, Astron, KLM, Hy Gain, Mosley, Larsen, Cushcraft, Hustler, Mini Products, Bird, Mirage, Vibroplex, Bencher, Info-Tech, Universal Towers, Callbook, ARRL, Astatic. Shure. We service everything we sell!

Write or call for quote. You Won't Be Disappointed.
vish We are just a few minutes off the NYS Thruway (1-90) Exit 32

OUT OF STATE ONEIDA COUNTY AIRPORT TERMINAL BUILDING
CALL TOLL FREE
800-448-9338 N.Y. Res. Call (315) 337-0203

KLM SSV 80-40-15 antenna

The SSV 80-40-15 is the latest addition to KLM's unique new series of vertical, multi-band antennas, and, in the KLM tradition, features broadband response on 80,40 , and 15 meters. The SSV is free standing, with the lower half made up of three electrically active tripod legs. Excellent DX is possible, because the configuration of the legs contributes to a low angle of radiation on each band. Two of the legs are hinged at the base, allowing the SSV to be raised easily by two men. Only modest base preparations are needed. The upper half of the SSV is a single tele-scoping-whip section. It is quite flexible, and survives high winds by laying over to reduce its own wind load. Although the SSV stretches over 60 feet above ground, no guying is necessary. Overall weight is only 88 lb (39 kg). Feed impedance is 50 ohms.
A full $1 / 4$-wave resonance is possible on 80 meters by the use of one tripod leg and the upper whip section. The adjustable tip allows the SSV to be tuned from below 3.5 MHz to 6.5 MHz , in $300-\mathrm{kHz}$ steps, at $1.5: 1$ VSWR or better.

Resonance at 40 meters is quite broad thanks to the diameter of the base section (two of the tripod legs). Wide-range tuning is possible from 6.5 MHz and up. Performance on 40 meters appears better than a standard, ground-mounted, $1 / 4$-wave vertical because shock excitation of the 80 meter section improves the radiation pattern.

Performance of the $3 / 4$-wave, 15 meter section is also improved by shock excitation of the 80 meter section. The VSWR curve is very broad, with little change from band edge to band edge.
Performance approaching that of a full $1 / 4$-wave vertical is also possible on 160 meters by simply adding inductance at the antenna base.
Experimental uses for the SSV abound. A wide-spectrum VSWR plot shows three more naturally occurring resonances that fall very close to the three new high frequency bands authorized at WARC-79 (10, 18, and 24 MHz) and are usable with slight retuning.
High-quality materials are used throughout the SSV. All aluminum tubing is drawn, seamless, 6063-T832 alloy. Tough fiberglass insulators insulate the SSV from ground and insulate the resonant sections. Basemounting anchor-plates are supplied.
Price of the SSV 80-40-15 is $\$ 399.95$. For more information, contact KLM Electronics, Inc., P.O. Box 816, Morgan Hill, California 95037.

B\& W balun

Barker \& Williamson, Inc., announce a new product for the Radio Amateur: the Model BC-1 Balun.

Specifications:

Impedance	50 ohms unbalanced to 50 ohms balanced
Frequency	$1.8-30 \mathrm{MHz}$
Power	$2.5-5 \mathrm{~kW}$ PEP
Connector	SO-239; mates with standard PL-259
Size	$21 / 4$ inch diameter; $71 / 2$ inches long $(57 \times 191$ Wm) Weight
	15 ounces $(0.4 \mathrm{~kg})$

For additional information contact Mr. Elmer Bush or Martin T. Zegel, Jr., at Barker \& Williamson, Inc., 10 Canal Street, Bristol, Pennsylvania 19007.

This $160-190 \mathrm{KHz}$ transmitter kit is easy to build. The power supply and exciter portions are factory wired and tested, the Litz wire coils are wound and complete instructions are supplied so you can build it in one evening. The main unit with control panel (shown above) installs at your operating position. The active antenna matching network mounts at the base of your vertical antenna. A 50' antenna is permitted. Shorter antennas can be used. Transmitter operates from $115-\mathrm{v}$ AC. One watt input crystal controlled (crystal supplied). No license needed. Meets all FCC requirements. Not for use in Canada.
Enter the fascinating world of low frequency radio. Order your trarsmitter today! Free brochure on request.

Complete your 1750 meter station with:

VLF CONVERTER

 \$59.95Converts the band $10-500 \mathrm{KHz}$ to $3510-4000 \mathrm{KHz}$ so you can hear it on your short wave receiver. Stable crystal control. Sensitive IC mixer and RF stage. Covers the 1750 meter band, navigation radiobeacons, ship-toshore, European low frequency broadcast band. Free brochure on request.

LOOP ANTENNA Amplifier . . . \$67.50 Plug-in Loops \$47.50

A low noise receiving antenna. Connects to your receiver or VLF converter. Plug-in loops cover 10 KHz to 15 MHz (VLF plug-in covers $150-550 \mathrm{KHz}$). Rotates 360°, tilts $\pm 90^{\circ}$ to null out interference. Manmade noise limits low frequency reception. The loop antenna helps! Free brochure on request.

Order your LOW \& MEDIUM FREQUENCY RADIO
 SCRAPBOOK by Ken Cornell, W2IMB $\$ 6.95$ and 77178 ADDENDUM by Ken Cornell, W2IMB $\$ 3.95$ from PaloADDENDUM by
mar Engineers.
 Order today direct or from your favorite dealer. To order direct include
$\$ 3$ shipping/handling. $\$ 1$ for books. Add sales tax in Calif. Order today! Palomar Engineers Box 455, Escondido, CA. 92025 • Phone: [714] 747-3343

Arizona

POWER COMMUNICATIONS

CORPORATION

1640 W. CAMELBACK ROAD
PHOENIX, AZ 85015
602-242-6030 or 242-8990
Arizona's \#1 "Ham" Store. Kenwood, Yaesu, Icom and more.

California

C \& A ELECTRONIC ENTERPRISES
2210 S. WILMINGTON AVE.
SUITE 105
CARSON, CA 90745
213-834-5868
Not The Biggest, But The Best Since 1962.

JUN'S ELECTRONICS
11656 W. PICO BLVD.
LOS ANGELES, CA 90064
213-477-1824 Trades 714-463-1886 San Diego
The Home of the One Year Warranty - Parts at Cost - Full Service.

QUEMENT ELECTRONICS
1000 SO. BASCOM AVENUE
SAN JOSE, CA 95128
408-998-5900
Serving the world's Radio Amateurs since 1933.

SHAVER RADIO, INC.
1378 S. BASCOM AVENUE
SAN JOSE, CA 95128
408-998-1103
Atlas, Kenwood Yaesu, KDK, Icom, Tempo, Wilson, Ten-Tec, VHF Engineering.

Connecticut

HATRY ELECTRONICS

500 LEDYARD ST. (SOUTH)
HARTFORD, CT 06114 203-527-1881
Connecticut's Oldest Ham Radio Dealer

Delaware

DELAWARE AMATEUR SUPPLY

71 MEADOW ROAD
NEW CASTLE, DE 19720 302-328-7728
Icom, Ten-Tec, Swan, DenTron, Tempo, Yaesu, Azden, and more. One mile off $\mathrm{I}-95$, no sales tax.

Florida

AGL ELECTRONICS, INC.
1898 DREW STREET
CLEARWATER, FL 33515
813-461-HAMS
West Coast's only full service
Amateur Radio Store.

AMATEUR RADIO CENTER, INC.
2805 N.E. 2ND AVENUE
MIAMI, FL 33137
305-573-8383
The place for great dependable names in Ham Radio.

RAY'S AMATEUR RADIO
1590 US HIGHWAY 19 SO.
CLEARWATER, FL 33516
813-535-1416
Atlas, B\&W, Bird, Cushcraft, DenTron, Drake, Hustler, Hy-Gain, Icom, K.D.K., Kenwood, MFJ, Rohn, Swan, Ten-Tec, Wilson.

Illinois

AUREUS ELECTRONICS, INC.
1415 N. EAGLE STREET
NAPERVILLE, IL 60540
312-420-8629
"Amateur Excellence"

ERICKSON COMMUNICATIONS, INC.
5456 N. MILWAUKEE AVE.
CHICAGO, IL 60630
Chicago - 312-631-5181
Outside Illinois - 800-621-5802
Hours: 9:30-5:30 Mon, Tu, Wed \& Fri.; 9:30-9:00 Thurs; 9:00-3:00 Sat.

Indiana

THE HAM SHACK

808 NORTH MAIN STREET
EVANSVILLE, IN 47710
812-422-0231
Discount prices on Ten-Tec, Cubic, Hy-Gain, MFJ, Azden, Kantronics, Santec and others.

Kansas

ASSOCIATED RADIO
8012 CONSER, P. O. BOX 4327
OVERLAND PARK, KS 66204
913-381-5900
America's No. 1 Real Amateur Radio
Store. Trade - Sell - Buy.

Maryland

THE COMM CENTER, INC.
LAUREL PLAZA, RT. 198
LAUREL, MD 20810
800-638-4486
Kenwood, Drake, Icom, Ten-Tec, Tempo, DenTron, Swan \& Apple Computers.

Massachusetts

TEL.COM, INC.

675 GREAT ROAD, RT. 119
LITTLETON, MA 01460
617-486-3040
The Ham Store of New England You
Can Rely On.
TUFTS RADIO ELECTRONICS
206 MYSTIC AVENUE
MEDFORD, MA 02155
617-391-3200
New England's friendliest ham store.

Minnesota

PAL ELECTRONICS INC. 3452 FREMONT AVE. NO.
MINNEAPOLIS, MN 55412 612-521-4662
Midwest's Fastest Growing Ham Store, Where Service Counts.

New Hampshire

EVANS RADIO, INC.
BOX 893, RT. 3A BOW JUNCTION CONCORD, NH 03301
603-224-9961
lcom, DenTron \& Yaesu dealer. We service what we sell.

Amateur Radio Dealer

New Jersey

RADIOS UNLIMITED

P. O. BOX 347

1760 EASTON AVENUE
SOMERSET, NJ 08873
201-469-4599
New Jersey's Fastest Growing Amateur Radio Center.

ROUTE ELECTRONICS 46

225 ROUTE 46 WEST
TOTOWA, NJ 07512
201-256-8555
Drake, Swan, DenTron, Hy-Gain, Cushcraft, Hustler, Larsen, Etc.

WITTIE ELECTRONICS

384 LAKEVIEW AVENUE
CLIFTON, NJ 07011
201-546-3000
Same location for 63 years. Full-line authorized Drake dealer. We stock most popular brands of Antennas and Towers.

New Mexico

PECOS VALLEY

AMATEUR RADIO SUPPLY
112 W. FIRST STREET
ROSWELL, NM 88201
505-623-7388
Now stocking Ten-Tec, Lunar, Icom, Morsematic, Bencher, Tempo, Hy-Gain, Avanti and more at low, low prices. Call for quote.

New York

BARRY ELECTRONICS

512 BROADWAY
NEW YORK, NY 10012
212-925-7000
New York City's Largest Full Service
Ham and Commercial Radio Store.

GRAND CENTRAL RADIO

124 EAST 44 STREET
NEW YORK, NY 10017
212-599-2630
Drake, Kenwood, Yaesu, Atlas, Ten-Tec, Midland, DenTron, Hy-Gain, Mosley in stock.

HARRISON RADIO CORP.

20 SMITH STREET
FARMINGDALE, NY 11735
516-293-7990
"Ham Headquarters USA" since 1925. Call toll free 800-645-9187.

RADIO WORLD

ONEIDA COUNTY AIRPORT
TERMINAL BLDG.
ORISKANY, NY 13424
TOLL FREE 1 (800) 448-9338
NY Res. 1 (315) 337-0203
Authorized Dealer - ALL major
Amateur Brands.
We service everything we sell!
Warren K2IXN or Bob WA2MSH.

Ohio

UNIVERSAL AMATEUR RADIO, INC. 1280 AIDA DRIVE
COLUMBUS (REYNOLDSBURG), OH 43068
614-866-4267
Complete Amateur Radio Sales and Service. All major brands - spacious store near I-270.

Pennsylvania

HAMTRONICS,
DIV. OF TREVOSE ELECTRONICS

4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215-357-1400
Same Location for 30 Years.

LaRUE ELECTRONICS

1112 GRANDVIEW STREET
SCRANTON, PENNSYLVANIA 18509 717-343-2124
Icom, Bird, Cushcraft, CDE, Ham-
Keys, VHF Engineering, Antenna Specialists.

SPECIALTY COMMUNICATIONS
2523 PEACH STREET
ERIE, PA 16502
814-455-7674
Service, Parts, \& Experience For Your Atlas Radio.

Virginia

ELECTRONIC EQUIPMENT BANK
516 MILL STREET, N.E.
VIENNA, VA 22180
703-938-3350
Metropolitan D.C.'s One Stop
Amateur Store. Largest Warehousing of Surplus Electronics.

You can't tell the players

without a scorecard!

Order today!
NEW 1981
RADIO AMATEUR CALLBOOKS READY DECEMBER 1st!

The latest editions will be published soon! World-famous Radio Amateur Callbooks, the most respected and complete listing of radio amateurs. Lists calls, license classes, address information. Loaded with special features such as call changes, prefixes of the world,standard time charts, world-wide QSL bureaus, and more. The U.S.Edition features over 400,000 listings, with over 100,000 changes from last year. The Foreign Edition has over 300,000 listings, over 90,000 changes. The new 1981 Callbooks will be avallable on December 1, 1980. Place your order now.

	Each	Shipping	Total
U US Callbook	$\$ 17.95$	$\$ 2.55$	$\$ 20.50$
Foreign Callbook	$\$ 16.95$	$\$ 2.55$	$\$ 19.50$

Order both books at the same time for $\$ 37.45$ including shipping.
Order from your dealer or directly from the publisher. All direct orders add $\$ 2.55$ for shipping. llinois residents add 5% sales tax.

Pegasus on blue field, red lettering. $3^{\prime \prime}$ wide x $3^{\prime \prime}$ high. Great on jackets and caps. Sorry, no call letters.

ORDER TODAY!

RADIO AMATEUR||book inc.

 Dept. \qquad
925 Sherwood Drive Lake Bluff, IL 60044, USA
गMOz

electron!cs

1900 MHz to 2500 MHz DOWN CONVERTER
This receiver is tunable over a range of 1900 to 2500(Channels 2107 .
PC BOARD WITH DATA$\$ 19.99$
PC BOARD WITH CHIP CAPACITORS 13 $\$ 44.99$
PC BOARD WITH ALL PARTS FOR ASSEMBLY $\$ 69.99$
PC BOARD WITH ALL PARTS FOR ASSEMBLY PLUS 2N6603 $\$ 89.99$
PC BOARD ASSEMBLED AND TESTED $\$ 99.99$
PC BOARD WITH ALL PARTS FOR ASSEMBLY, POWER SUPPLY AND ANTENNA \$159.99
POWER SUPPLY ASSEMBLED AND TESTED $\$ 49.99$
YAGI ANTENNA 4' LONG APPROX. 20 TO 23 dB GAIN $\$ 59.99$
YAGI ANTENNA $4{ }^{\prime}$ WITH TYPE (N, BNC, SMA Connector) $\$ 64.99$
2300 MHz DOWN CONVERTER
Includes converter mounted in antenna, power supply, plus 90 DAY WARRANTY $\$ 259.99$
OPTION \#1 MRF902 in front end. (7 dB noise figure) $\$ 299.99$
OPTION \#2 2N6603 in front end. (5 dB noise figure) \$359.99
2300 MHz DOWN CONVERTER ONLY
10 dB Noise Figure 23 dB gain in box with N conn. Input F conn. Output. $\$ 149.99$
7 dB Noise Figure 23 dB gain in box with N conn. Input F conn. Output. $\$ 169.99$
5 dB Noise Figure 23 dB gain in box with SMA conn. Input F conn. Output. $\$ 189.99$
DATA IS INCLUDED WITH KITS OR MAY BE PURCHASED SEPARATELY $\$ 15.00$
Shipping and Handling Cost:Receiver Kits add $\$ 1.50$, Power Supply add $\$ 2.00$, Antenna add $\$ 5.00$, Option $1 / 2$ add $\$ 3.00$, For complete system add $\$ 7.50$.
\star INTRODUCING THE HOWARDICOLEMAN TVRO CIRCUIT BOARDS
(Satellite Receiver Boards)
This board provides conversion from the $3.7-4.2$ band first to 900 MHz where gain and bandpass filtering are provided and, second, to 70 MHzThe board contains both local oscillators, one fixed and the other variable, and the second mixer. Construction is greatly simplified by the useof Hybrid IC amplifiers for the gain stages. Bare boards cost $\$ 25$ and it is estimated that parts for construction will cost $\$ 270$. (Note: The twoAvantek VTO's account for $\$ 225$ of this cost.)47 pF CHIP CAPACITORS$\$ 6.00$
For use with dual conversion board. Consists of $6-47 \mathrm{pF}$.
70 MHz IF BOARD This circuit provides about 43 dB gain with 50 ohm input and output impedance. it is designed to drive the HOWARDCOLEMAN TVRO De$\$ 25.00$modulator, the on-board band pass filter can be tuned for bandwidths between 20 and 35 MHz with a passband ripple of less than $1 / 2 \mathrm{~dB}$. Hy-brid ICs are used for the gain stages. Bare boards cost $\$ 25$. It is estimated that parts for construction will cost less than $\$ 40$..01 pF CHIP CAPACITORS$\$ 7.00$
For use with 70 MHz IF Board. Consists of $7-.01 \mathrm{pF}$.DEMODULATOR BOARD40.00
This circult takes the 70 MHz center frequency satelite $T V$ signals in the 10 to 200 millivolt range, detects them using a phase locked loop, de-emphasizes and filters the result and amplifies the result to produce standard NTSC video. Other outputs include the audio subcarrier, a DCvoltage proportional to the strength of the 70 MHz signal, and AFC voltage centered at about 2 volts DC. The bare boards cost $\$ 40$ and totalparts cost less than $\$ 30$.SINGLE AUDIOThis circuit recovers the audio signals from the 6.8 MHz frequency. The Miller 9051 coils are tuned to pass the 6.8 MHz subcarrier and theMiller 9052 coil tunes for recovery of the audio.DUAL AUDIO$\$ 25.00$
Duplicate of the single audio but also covers the 6.2 rangeDC CONTROL ...$\$ 15.00$

TERMS:

WE REGRET WE NO LONGER ACCEPT BANK CARDS.
PLEASE SEND POSTAL MONEY ORDER, CERTIFIED CHECK, CASHIER'S GHECK OR MONEY ORDER.
PRICES SUBJECT TO CHANGE WITHOUT NOTICE. WE CHARGE 15% FOR RESTOCKING ON ANY ORDER.
ALL CHECKS AND MONEY ORDERS IN US FUNDS ONLY.
ALL ORDERS SENT FIRST CLASS OR UPS
ALL PARTS PRIME AND GUARANTEED.
WE WILL ACCEPT COD ORDERS FOR $\$ 25.00$ OR OVER, ADD $\$ 2.50$ FOR COD CHARGE
PLEASE INCLUDE $\$ 2.50$ MINIMUM FOR SHIPPING OR CALL FOR CHARGES.
WE ALSO ARE LOOKING FOR NEW AND USED TUBES,
TEST EQUIPMENT, COMPONENTS, ETC.
WE ALSO SWAP OR TRADE.

FAIRCHILD VHF AND UHF PRESCALER CHIPS		
95H900C	350 MHz Prescaler Divide by $10 / 11$	\$9.50
95H91DC	350 MHz Prescaler Divide by $5 / 6$	9.50
11C900C	650 MHz Prescaler Divide by $10 / 11$	16.50
11C910C	650 MHz Prescaler Divide by $5 / 6$	16.50
11C830C	1 GHz Divide by 248/256 Prescaler	29.90
11C700C	600 MHz Flip/Flop with reset	12.30
11C58DC	ECL VCM	4.53
11C44DC/MC4044	Phase Frequency Detector	3.82
11C24DC/MC4024	Dual TTL VCM	3.82
11C08DC	UHF Prescaler 750 MHz D Type Flip/Flop	12.30
11C05DC	1 GHz Counter Divide by 4	50.00
11C01FC	High Speed Dual 5-4 input NO/NOR Gate	15.40

TRW BROADBAND AMPLIFIER MODEL CA615B
Frequency response 40 MHz to 300 MHz
Gain: $\quad 300 \mathrm{MHz} 16 \mathrm{~dB}$ Min., 17.5 dB Max.
50 MHz 0 to -1 dB from 300 MHz

CARBIDE - CIRCUIT BOARD DRILL BITS FOR PC BOARDS
Slze: 35, 42, 47, 49, 51, 52
Size: 53, 54, 55, 56, 57, 58, 59, 61, 63, 64, 65
Size: 66
Size: $1.25 \mathrm{~mm}, 1.45 \mathrm{~mm}$
Size: 3.20 mm
RF TRANSISTORS

CRYSTAL FILTERS: TYCO 001-19880 same as 2194F
10.7 MHz Narrow Band Crystal Filter

3 dB bandwidth 15 kHz min. 20 dB bandwidth 60 kHz min. 40 dB bandwidth 150 kHz min.
Ultimate 50 dB : Insertion loss 1.0 dB max. Ripple 1.0 dB max. Ct. 0+/-5 pf 3600 ohms.

MURATA CERAMIC FILTERS
Models: SFD-455D 455 kHz

TYPE	PRICE	TYPE	PRICE	TYPE	PRICE
2N1561	\$15.00	2N5590	\$8.15	MM1550	\$10.00
2N1562	15.00	2N5591	11.85	MM1552	50.00
2N1692	15.00	2N5637	22.15	MM1553	56.50
2N1693	15.00	2N5641	6.00	MM1601	5.50
2N2632	45.00	2N5642	10.05	MM16022N5842	7.50
2N2857JAN	2.52	2N5643	15.82	MM1607	8.65
2N2876	12.35	2N6545	12.38	MM1661	15.00
2N2880	25.00	2N5764	27.00	MM1669	17.50
2N2927	7.00	2N5842	8.78	MM1943	3.00
2N2947	18.35	2N5849	21.29	MM2605	3.00
2N2948	15.50	2N5862	51.91	MM2608	5.00
2N2949	3.90	2N5913	3.25	MM8006	2.23
2N2950	5.00	2N5922	10.00	MMCM918	20.00
2N3287	4.30	2N5942	46.00	MMT72	1.17
2N3294	1.15	2N5944	8.92	MMT74	1.17
2N3301	1.04	2N5945	12.38	MMT2857	2.63
2N3302	1.05	2N5946	14.69	MRF245	33.30
2N3304	1.48	2N6080	7.74	MRF247	33.30
2N3307	12.60	2N6081	10.05	MRF304	43.45
2N3309	3.90	2N6082	11.30	MRF420	20.00
2N3375	9.32	2N6083	13.23	MRF450	11.85
2N3553	1.57	2N6084	14.66	MRF450A	11.85
2N3755	7.20	2N6094	7.15	MRF454	21.83
2N3818	6.00	2N6095	11.77	MRF458	20.68
2N3866	1.09	2N6096	20.77	MRF502	1.08
2N3866JAN	2.80	2N6097	29.54	MRF504	6.95
2N3866JANTX	4.49	2N6136	20.15	MRF509	4.90
2N3924	3.34	2N6166	38.60	MRF511	8.15
2N3827	12.10	2N6439	45.77	MRF901	5.00
2N3950	26.86	2N6459/PT9795	18.00	MRF5177	21.62
2N4072	1.80	2N6603	12.00	MRF8004	1.60
2N4135	2.00	2N6604	12.00	PT4186B	3.00
2N4261	14.60	A50-12	25,00	PT4571A	1.50
2N4427	1.20	BFR90	5.00	PT4612	5.00
2N4957	3.62	BLY568C	25.00	PT4628	5.00
2N4958	2.92	BLY568CF	25.00	PT4640	5.00
2N4959	2.23	CD3495	15.00	PT8659	10.72
2N4976	19.00	HEP76/S3014	4.95	PT9784	24.30
2N5090	12.31	HEPS3002	11.30	PT9790	41.70
2N5108	4.03	HEPS3003	29.88	SD1043	5.00
2N5109	1.66	HEPS3005	9.95	SD1116	3.00
2N5160	3.49	HEPS3006	19.90	SD1118	5.00
2N5179	1.05	HEPS3007	24.95	SD1119	3.00
2N5184	2.00	HEPS3010	11.34	TRWMRA2023-1.5	42.50
2N5216	47.50	HEPS5026	2.56	40281	10.90
2N5583	4.55	HP35831E		40282	11.90
2N5589	6.82	HXTR5104	50.00	40290	2.48
		MM1500	32.20		

TEST EQUIPM

491C	TWT Amplifier 2 to 4 Gc 1 watt 30 dB gain	\$1150.00
608C	10 to 480 mc .1 uv to .5 V Into 50 ohms Signal Generator	500.00
608D	10 to 420 mc .1 uV to .5 V into 50 ohms Signal Generator	500.00
612A	450 to 1230 mc .1 uV to .5 V into 50 ohms Signal Generator	750.00
614 A	900 to 2100 mc Slignal Generator	500.00
616A	1.8 to 4.2 Gc Signal Generator	400.00
616B	1.8104 .2 Gc Signal Generator	500.00
61BA	3.8107 .2 Gc Slg al Generator	400.00
618B	3.8 to 7.2 Gc Signal Generator	500.00
620A	7 to 11 Gc Signal Generator	400.00
623B	Microwave Test Set	900.00
626A	10 to 15 Gc SIgnal Generator	2500.00
695A	12.4 to 18 Gc Sweep Generator	900.00
Allech: 473	225 to 400 mc AM/FM Signal Generator	750.00
Singer: MF5/VR-4	Universal Spectrum Analyzer with $1 \mathbf{k H z}$ to 27.5 mc Plug In	1200.00
Koltek: XR630-100	TWT Amplifier 8 to 12.4 Gc 100 watts 40 dB gain	9200.00

Polarad:
2038/2436/1102A
Calibrated Display with an SSB Analysis Module and a 10 to 40 mc Single Tone Synthesizer
1500.00

HAMLIN SOLID STATE RELAYS
120 Vac at 40 Amps.
Input Voltage 3 to 32 Vac
240 Vac at 40 Amps.
Input Voltage 3 to 32 Vdc
Your Choice $\$ 4.99$

ATLAS CRYSTAL FILTERS FOR ATLAS HAM GEAR

5.52-2.7/8
5.595-2.7/8/U
5.595.500/4/CW
5.595-2.7LSB
5.595-2.7USB
5.645-2.7/8
9.0USB/CW

(M) MOTOROLA Semiconductor The RFLine

MRF454

NPN SILICON RF POWER TRANSISTORS
designed for power amplifier applications in industrial, commercial and amateur radio equipment to 30 MHz

- Specified 12.5 Volt, 30 MHz Characteristics Output Power $=80$ Watts
Minimum Gain $=12 \mathrm{~dB}$ Efficiency $=50 \%$

NPN SILICON RF POWER TRANSISTOR
designed primarily for use in large-signal output amplifier stages. Intended for use in Citizen-Band communications equipment operating at 27 MHz . High breakdown voltages allow a high percentage of up-modulation in AM circuits.
$\$ 2.50$

- Specified $12.5 \mathrm{~V}, 27 \mathrm{MHz}$ Characteristics -

Power Output $=4.0$ Watts
Power Gain $=10 \mathrm{~dB}$ Minimum
Efficiency $=65 \%$ Typical

NPN SILICON RF POWER TRANSISTOR

designed primarily for use in single sideband linear amplifier output applicaiions in citizens band and other communications equipment operating to 30 MHz .

- Characterized for Single Sideband and Large-Signal Amplifier Applications Utilizing Low-Level Modulation.
- Specified $13.6 \mathrm{~V}, 30 \mathrm{MHz}$ Characteristics -

Output Power $=12 \mathrm{~W}($ PEP $)$
Minimum Efficiency $=\mathbf{4 0 \%}$ (SSB)
Output Power $=4.0$ W (CW)
Minimum Efficiency $=50 \%(C W)$
Minimum Power Gain $=10 \mathrm{~dB}($ PEP \& CW $)$

- Common Collector Characterization

NPN SILICON RF POWER TRANSISTOR

designed for power amplifier applications in industrial, commerical and amateur radio equipment to 30 MHz

- Specified 12.5 Volt, $30 \mathrm{MHz}_{2}$ Characteristics -

Output Power $=80$ Watts
Minimum Gain $=12 \mathrm{~dB}$
Efficiency $=50 \%$

- Capable of Withstanding 30:1 Load VSWR @ Rated Pout and VCC

MHW710-2

$\$ 46.45$
 440 to 470 MC

UHF POWER AMPLIFIER MODULE

designed for 12.5 volt UHF power amplifier applications in industrial and commercial $F M$ equipment operating from 400 to 512 MHz .

- Specified 12.5 Volt, UHF Characteristics Output Power $=13$ Watts
Minimum Gain $=19.4 \mathrm{~dB}$ Harmonics $=40 \mathrm{~dB}$
- 50Ω Input/Output Impedance

- Guaranteed Stability and Ruggedness
- Gain Control Pin for Manual or Automatic Output Level Control
- Thin Film Hybrid Construction Gives Consistent Performance and Reliability

Tektronix Test Equipment

${ }^{\text {b }}$	Widetand High Ga in Plug In
${ }_{k}^{C A}$	Fast Rise DC Plug in
$\underset{R}{N}$	Sampling plug in
$\underset{{ }_{2}^{R}}{ }$	Transistor Risetime Plug
TU-2	Test Lodd Plug in for 530/540/550 Matin Frames
${ }_{18,}^{1 A_{2}}$	Wideband Dual Irace plug in
,	Sampling Unit with 350pS Risetime dC
61	AC Differential Plug
353	Dual Jrace sampl ing oc to 16 Hz P1
	Dual trace sampling oc to 875 MHz
${ }^{3} 777 \mathrm{~A}$	Sampling Sweep Plu
3110	Spectrum Analyzer 1 to 36 MHz P
50	Anplifier Plug in
5	eep P
538	Wideband Righ Ga in Plug
3/548	Widetand High Gain Plug
$53 / 54 \mathrm{C}$	Dual Trace plug
53/540	High Gain x ditferential Plug in
53/546	wideband DC Differential plug
53/542	Fast Rise High Gain flug
34	Cst Plug in for $580 / 58$
	Square wave generator
${ }_{123}$	Preamp ifier 2 Hz to 40 KHz
13	Ac coupled Preamplifier
131	Current Probe Amplifier
184	Time Mark Generator
R240	Program Controi unit
280	Prigger countdown Un
455	Portable dual Trace somm
465	Portable Dual trace 100NH2 Scope
503	DC to 450 OKHz scope Rack Mount
535A	DC to 15MH2 Scope Rack Mount.
543	oc to 3 3 MHz S Scope
1	DC to 10whz Scope Rack Mourt
561 A	DC to lownz Scope rack mount

Scopes with Plug-in's

```
561A OC to 104#Z Scope with a 3576 Dual Trace DC to
    875m+2 Sampling Plug in and a 3T77R Sweep Plug In. Rack Mount

```

581 OC to 80MHZ Scope with a B2 Dual Trace High Gain Plug in 650.00

```

\section*{Tubes}
\begin{tabular}{|c|c|c|c|c|c|}
\hline 2 E 26 & \$ 5.00 & \(4 \mathrm{C} \times 350 \mathrm{~F}\), & \$116.00 & 6146W & 12.00 \\
\hline \(3-5007\) & 102.00 & 4 Cx 1000 a & 300.00 & 6159 & 10.60 \\
\hline 3-10002 & 268.00 & \(4 \mathrm{C} \times 1500 \mathrm{~B}\) & 350.00 & 6161 & 75.00 \\
\hline 3828/866A & 5.00 & \(4 \mathrm{C} \times 15000 \mathrm{~A}\) & 750.00 & 6293 & 18.50 \\
\hline \(3 \times 2500 \mathrm{~A} 3\) & 150.00 & 4 E 27 & 50.00 & 6360 & 6.95 \\
\hline 4-65A & 45.00 & \(4 \times 1504\) & 41.00 & 6907 & 40.00 \\
\hline 4-125A & 58.50 & \(4 \times 1500\) & 52.00 & 6939 & 14.75 \\
\hline 4-250A & 68.50 & \(4 \times 1506\) & 74.00 & 7360 & 12.00 \\
\hline 4.400 A & 71.00 & 5728/T160L & 39.00 & 7984 & 10.40 \\
\hline 4-1000 A & 184.00 & 6LF6 & 5.00 & 8072 & 49.00 \\
\hline 5. 500 A & 145.00 & \(6 \mathrm{LQ6}\) & 5.00 & 8106 & 2.00 \\
\hline \(4 \mathrm{C} \times 2506\) & 65.00 & 811A & 12.95 & \({ }^{8156}\) & 7.85 \\
\hline \(4 \mathrm{Cx} 250 \ddagger / \mathrm{G}\) & 55.00 & 813 & 29.00 & 8226 & 127.70 \\
\hline \(4 \mathrm{C} \times 250 \mathrm{~K}\) & 113.00 & 5894/A & 42.00 & 8295/PL172 & 328.00 \\
\hline 4 Ck 250 R & 92.00 & 6146 & 5.00 & 8458 & 25.75 \\
\hline 4 Cx 300 A & 147.60 & 6146 A & 6.00 & 8560A/AS & 50.00 \\
\hline \(4 \mathrm{C} \times 350 \mathrm{~A}\) & 107.00 & 61468/8298A & 7.00 & 8908 & 9.00 \\
\hline & & & & 8950 & 9.010 \\
\hline
\end{tabular}

\title{
\(\mathfrak{C M H z}\) \\ electronics
}

MICROWAVE COMPONENTS
ARRA
2416 3614-60 KU520A 4684-20C 6684-20F

Variable Attenuator 0 to 60dB
Variable Attenuator 18 to 26.5 GHz
Variable Attenuator 0 to 180 dB
Variable Attenuator 0 to 180dB

75.00
50.00
300.00
300.00
300.00

Merrimac
\(\begin{array}{ll}\text { AU-25A/ } & 801115 \text { Variable Attenuator } \\ \text { AU-26A/ } & 801162 \text { Variable Attenuator }\end{array}\)

\section*{Microlab/FXR}
\begin{tabular}{|c|c|}
\hline \(\times 6385\) 601-B18 Y6100 & \begin{tabular}{l}
Horn 8.2-12.4 GHz \\
X to N Adapter 8.2 - 12.4 GHz Coupler
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Narda} \\
\hline 4013C-10/ & 22540A Directional Coupler 2 to 4 GHz 10db Type SMA \\
\hline 4014-10/ & 22538 Directional Coupler 3.85 to 8 GHz 10 dB Type SMA \\
\hline 4014C-6/ & 22876 Directional Coupler 3.85 to 8 GHz 6dB Type SMA \\
\hline 4015C-10/ & 22539 Directional Coupler 7.4 to 12 GHz 10 dB Type SMA \\
\hline 4015C-30/ & 23105 Directional Coupler 7 to 12.4 GHz 30 dB Type SMA \\
\hline 3044-20 & Directional Coupler 4 to \(8 \mathrm{GHz} 20 d B\) Type N \\
\hline 3040-20 & Direcitonal Coupler 240 to 500 MC 20 dB Type N \\
\hline 3043-20/ & 22006 Directional Coupler 1.7 to 4 GHz 20 dB Type N \\
\hline 3003-10/ & 22011 Directional Coupler 2 to \(4 \mathrm{GHz} \mathrm{10dB} \mathrm{Type} \mathrm{N}\) \\
\hline 3003-30/ & 22012 Directional Coupler 2 to 4 GHz 30 dB Type N \\
\hline 3043-30/ & 22007 Directional Coupler 1.7 to 3.5 GHz 30 dB Type N \\
\hline 22574 & Directional Coupler 2 to 4 GHz lodB Type N \\
\hline 3033 & Coaxial Hybrid 2 to 4 GHz 3 dB Type N \\
\hline 3032 & Coaxial Hybrid 950 to 2 GHz 3 dB Type N \\
\hline 784/ & 22380 Variable Attenuator 1 to 90dB 2 to 2.5 GHz Type SMA \\
\hline 22377 & Waveguide to Type N Adapter \\
\hline 720-6 & Fixed Attenuator 8.2 to 14.4 GHz 6 dB \\
\hline 3503 & Waveguide \\
\hline
\end{tabular}
\begin{tabular}{llr} 
394A & 1 to 2 GHz Variable At tenuator 6 to 120 dB & 250.00 \\
NK292A & Waveguide Adapter & 65.00 \\
K422A & 18 to 26.5 GHz Crystal Detector & 250.00
\end{tabular}
\begin{tabular}{ll} 
8439A & 2 GHz Notch Filter \\
8471 A & RF Detector \\
H532A & 7.05 to 10 GHz Frequency Meter \\
6532 A & 3.95 to 5.85 GHz Frequency Meter \\
J 532 A & 5.85 to 8.2 GHz Frequency Meter \\
& \\
& \\
& \\
809A & Carriage with a 444A Slotted Line Untuned Detector Probe
\end{tabular}
100.00
60.00
35.00
75.00



2708
2716/2516
2114/9114
2114 L 2
2114L3
4027
\(4060 / 2107\)
4050/9050 \(2111 \mathrm{~A}-2 / 8111\) \(2112 \mathrm{~A}-2\) 2115AL-2 6104-3/4104 7141-2 MCM6641L20 9131
\begin{tabular}{lr}
12.4 to 18 GHz Variable Attenuator 0 to 60 dB & \\
8.2 to 12.4 GHz Variable Attenuator 0 to 60 dB & 300.00 \\
Variable Attenuator 0 to 60 dB & 200.00 \\
Slotted Line with Type N Adapter & 200.00 \\
8.2 to 12.4 GHz Variable Attenuator 0 to 50 dB & 100.00 \\
7.05 to 10 GHz Variable Attenuator 0 to 40 dB & 100.00 \\
8.2 to 12.4 GHz Variable Attenuator 0 to 45 dB & 100.00 \\
3.95 to 5.85 GHz Variable Attenuator 0 to 45 dB & 100.00 \\
Frequency Meter 5.3 to 6.7 GHz & 100.00 \\
Fixed Attenuators & 100.00 \\
Fixed Attenuators & 25.00 \\
2692 Variable Attenuator +30 to 60 dB & 100.00
\end{tabular}

\section*{COMPUTER I.C. SPECIALS}

DESCRIPTION
PRICE
\(1 K \times 4\) Static RAM 450 ns
\(1 K \times 4\) Static RAM 250 ns
\(1 \mathrm{~K} \times 4\) Static RAM 350 ns
\(4 k \times 1\) Dynamic RAM
\(4 K \times 1\) Dynamic RAM
\(4 K \times 1\) Dynamic RAM
\(256 \times 4\) Static RAM
\(256 \times 4\) Static RAM
\(1 K \times 1\) Static RAM \(55 n \mathrm{n}\)
\(4 K \times 1\) Static RAM \(320 n \mathrm{n}\)
\(4 K \times 1\) Static RAM 200 ns
\(4 k \times 2\) Static RAM 200 ns
C.P.U.'s ECT.
\begin{tabular}{|c|c|}
\hline MC6800L & Microprocessor \\
\hline MCM6810AP & \(128 \times 8\) Static RAM 450ns \\
\hline MCM68AIOP & \(128 \times 8\) Static RAM 360ns \\
\hline MCM68BIOP & \(128 \times 8\) Static RAM 250 ns \\
\hline MC6B20P & PIA \\
\hline MC6820L & PIA \\
\hline MC6821 \({ }^{\text {P }}\) & P|A \\
\hline MC68821P & PIA \\
\hline MCM6830L7 & Mikbug \\
\hline MC6840P & PTM \\
\hline MC6845 \({ }^{\circ}\) & CRT Controller \\
\hline MC6845L & CRT Controller \\
\hline MC6850L & ACIA \\
\hline MC6852P & SSOA \\
\hline MC6852L & SSDA \\
\hline MC6854 \({ }^{\circ}\) & ADLC \\
\hline MC6860CJCS & 0-600 BPS Modem \\
\hline MC6862 & 2400 BPS Modem \\
\hline MK3850N-3 & F8 Microprocessor \\
\hline MK3852P & F8 Memory Interface \\
\hline MK3852N & F8 Memory Interface \\
\hline MK3854N & F8 Direct Memory Access \\
\hline 8008-1 & Microprocessor \\
\hline 8080A & Microprocessor \\
\hline Z80CPU & Microprocessor \\
\hline 6520 & PIA \\
\hline 6530 & Support For 6500 series \\
\hline 2650 & Microprocessor \\
\hline TMS 1000NL & Four Bit Microprocessor \\
\hline TMS 4024NC & \(9 \times 64\) Digital Storage Buffer (FIFO) \\
\hline TMS6011NC & UART \\
\hline MC14411 & Bit Rate Generator \\
\hline AY5-40070 & Four Digit Counter/Display Orivers \\
\hline AY5-9200 & Repertory Dialler \\
\hline AY5-9100 & Push Button Telephone Diallers \\
\hline AY5-2376 & Keyboard Encoder \\
\hline AY 3-8500 & TV Game Chip \\
\hline TR1402A & UART \\
\hline PR14728 & UART \\
\hline PT1482B & UART \\
\hline 8257 & DMA Controller \\
\hline 8251 & Communication Interface \\
\hline 8228 & System Controller \& Bus Driver \\
\hline 8212 & 8 Bit Input/Output Port \\
\hline MC14410CP & 2 of 8 Tone Encoder \\
\hline MC14412 & Low Speed Modem \\
\hline MC14408 & Binary to Phone Pulse Converter \\
\hline MC14409 & Binary to Phone Pulse Converter \\
\hline MC1488L & RS232 Driver \\
\hline MCI489L & RS232 Receiver \\
\hline MC1405L & A/D Converter Subsystem \\
\hline MC1406L & 6 Bit D/A Converter \\
\hline MC1408/6/7/8 & 8 Bit D/A Converter \\
\hline MC1330P & Low Level Video Detector \\
\hline MC1349/50 & \(V\) Video IF Amplifier \\
\hline MC1733L & LM733 OP Amplifier \\
\hline LM565 & Phase Lock Loop \\
\hline
\end{tabular}
300.00
200.00
200.00
100.00
100.00
100.00
100.00
25.00
100.00
20.00
6.99
6.99
8.99
8.99
7.99
3.99
3.99
3.99
3.99
3.99
14.99
14.99
10.99

\title{
KLM \\ BRAND NEW \\ \\ SATELLITE RECEIVER SYSTEM \\ \\ SATELLITE RECEIVER SYSTEM The entertainment opportunity of a lifetime!
}

Look what KLM's SKY EYE 1 offers: nearly 100 channels of the latest movies, sports, news, comedy, classic films, specials, religious programs and much more . . . all in clear, sharp studio quality picture and sound. Forget about "fringe" or no-reception areas, ghosts, fading, imaging and all the other problems of TV reception. KLM's SKY EYE 1 is your direct link to the 11 TV satellites now orbiting above the U.S. You'll experience great shows and the greatest picture quality you've ever seen.
KLM's SKY EYE 1 is a complete system, featuring performance-proven "state of the art" electronics design and materials. All you need is a modest amount of space for the special parabolic antenna (its screened surface blends with the landscaping to become a discrete addition to your yard). Inside your home, all those channels are accessible through the compact SKY EYE 1 Control Center.
With KLM's SKY EYE 1 your TV becomes a true entertainment center, bringing you an amazing variety of great shows - something to please every member of your family.

\section*{KLM's SKY EYE 1 SYSTEM}

\section*{Control Center}
\(\star\) CONTINUOUS CHANNEL TUNING
* CONTINUOUS AUDIO TUNING 5.8 to 7.4 MHz
* POLARITY CONTROL CAPACITY, MOMENTARY AND LIMIT MODELS
\(\star\) SEPARATE REGULATED POWER SUPPLIES FOR LNA AND RECEIVER
* STANDARD RG-59 COAX TO RECEIVER UNIT

\section*{Receiver Unit}
\(\star\) SINGLE CONVERSION IMAGE REJECTION MIXER (greater linearity and video response than any PLL)
* BUILT-IN DC BLOCK
* MODULAR CONSTRUCTION
\(\star\) WEATHER-PROOF ENCLOSURE
CONTROL CENTER and RECEIVER UNIT
\(\$ 1500.00\)

\section*{Antenna: KLM Parabolic Dish}
\(\star\) SCREENED FOR LIGHT WEIGHT AND LOW WINDLOAD
\(\star\) EASY AZIMUTH AND ELEVATION CHANGES
\(\star\) MODEST BASEMOUNT REQUIREMENTS
* HIGH GAIN LNA (AVANTEK)
\(\star\) MOTOR DRIVEN POLARITY CHANGES
\(\$ 800.00\)
* 12 FOOT OR 16 FOOT PARABOLIC DISHES 12 Foot \(\$ 3000.00\)

16 Foot \(\$ 3500.00\)
NEW - TOLL-FREE NO. 800-528-0180 - please, orders only!

\section*{TEST EQUIPMENT SPECIALS}

\begin{abstract}
HEWLETT-PACKARD
180A Oscilloscope with a 1801A Dual Channel Vertical Amplifier Plug-in 50 MHz and with a 1821A Time Base and Delay Generator Plug-in. \(\$ 1250.00\) 180A Oscilloscope with a 1802A Dual Channel Vertical Amplifier Plug-in 100 MHz and with a 1822A Time Base and Delay Generator Plug-in. \(\$ 1350.00\) 181A Oscilloscope with a 1803A Differential DC Offset Amplifier Plug-in and with a 1825A Time Base and Delay Generator Plug-in.
\(\$ 1950.00\)
181A Oscilloscope with a 1807A Dual Channel Vertical Amplifier Plug-in 35 MHz and with a 1822A Time Base and Delay Generator Plug-in.
\$1550.00
(We will be glad to mix the above systems any way you would like them.)
183A Oscilloscope with a 1831A Direct Access Vertical Amplifier Plug-in 600 MHz and with a 1840A Time Base and a 1841A Time Base and Delay Generator Plug-in.
\$2500.00
\end{abstract}
140A Oscilloscope with a 1401A Dual Channel Vertical Amplifier Plug-in and with a 1420A Time Base Plug-in.
\(\$ 799.00\)
141A Oscilloscope with a 1402A Dual Channel Vertical Amplifier Plug-in 20 MHz and a 1421A Time Base and Delay Generator Plug-in. \(\$ 1690.00\)
140A Oscilloscope with a 1410A Dual Trace Sampling Plug-in DC to 1 GHz and with a 1425A Sampling Time Base. (Built-in probes.) \(\$ 2200.00\)
141A Oscilloscope with a 1411A Dual Trace Sampling Plug-in DC to 12.4 GHz and with a 1424A Sampling Time Base. \(\$ 2000.00\)
140A Oscilloscope with a 1411A Dual Trace Sampling Plug-in DC to 12.4 GHz and with a 1424A Sampling Time Base. \(\$ 1500.00\)
1430A Feed Thru Sampling Head DC to \(12.4 \mathrm{GHz}, 28\) picosecond rise time. \(\$ 1250.00\)

302A Wave Analyzer High selectivity and sensitivity with frequency resolution of 10 Hz .20 Hz to 50 kHz range \(\pm 1 \% .30 \mathrm{mv}\) to 300 v full scale range. Built-in AFC . 75 dB dynamic range.
\(\$ 975.00\)
310A Wave Analyzer This unit is a high frequency wave analyzer. A narrow band selective voltmeter. Its selectivity allows analysis of closely spaced fundamental signals, harmonics, and intermodulation products. Frequency range: 1 kHz to 1.5 MHz ( 3000 Hz bandwidth). Frequency Accuracy: \(\pm(1 \%+300 \mathrm{~Hz})\). Selectivity: 3 IF bandwidths \(200 \mathrm{~Hz}, 1000 \mathrm{~Hz}\) and 3000 Hz . Voltage range: 10 uv to 100 v full scale. Dynamic range: 75 dB .
\$1050.00

431B Power Meter Measures RF Power 10uw to 10 mw . 10 MHz to 40 GHz with 478A Mount and cable.
\(\$ 330.00\)
431C Power Meter Measures RF Power 10 uw to 10 mw . 10 MHz to 40 GHz with 478 A Mount and cable.
\(\$ 580.00\)

NEW - TOLL-FREE NO. 800-528-0180 - please, orders only!

\section*{TEST EQUIPMENT SPECIALS}

\section*{HEWLETT-PACKARD}

805A Slotted Line 500MC to \(4 \mathrm{GHz}, 1.04\) residual SWR.
\(\$ 250.00\)
809B Carriage with 806B Coaxial Slotted Section (. 3 to 12 GHz ), a X810B Slotted Section (8.2 to 12.4 GHz ), a H810B Slotted Section ( 7.05 to 10 GHz ), a X281A X to N adapter, a H281A H to N adapter, a HX292B H to X adapter, a 444A Probe ( 2.6 to 18 GHz ), a PRD250 Probe ( 2.4 to 12.4 GHz ) \(\$ 650.00\)
340A Noise Figure Meter Automatically Measures and Displays IF and RF Amplifier Noise at 30 or 60 MHz . Bandwidth of 1 MHz .
\(\$ 200.00\)
340B Noise Figure Meter Automatically Measures and Displays IF and RF Amplifier Noise at 30 or 60
MHz . Bandwidth of 1 MHz . Input requirements -60 to -10 dBm .
\(\$ 350.00\)

\begin{abstract}
AIL
74A Automatic Noise Figure Meter with a type 70 Diode Noise Generator 10 to 250 MHz , a type 71 Power Supply, a 07049 Noise Generator 3.95 to 5.85 GHz , a 07010 Noise Generator .20 to 2.6 GHz , a 0752 Noise Generator.
\(\$ 650.00\)
\end{abstract}

\section*{TEKTRONIX}

66190 Picosecond Rise Time Sampling Oscilloscope with a 4S1 350 Picosecond Dual Trace Sampling Plug-In DC to \(1 \mathrm{GHz}, 4 \mathrm{~S} 290\) Picosecond Dual Trace Plug-In DC to \(3.5 \mathrm{GHz}, 4 \mathrm{~S} 3350\) Picosecond Dual Trace Plug-In DC to 1 GHz (all above Plug-Ins are \(2 \mathrm{mv} / \mathrm{cm}\) to \(200 \mathrm{mv} / \mathrm{cm}\) and with a \(5 \mathrm{~T} 1 \mathrm{Plug}-\mathrm{In}\) Sampling System Timing. \(1 \mathrm{~ns} / \mathrm{cm}\) to \(100 \mathrm{us} / \mathrm{cm}\), (useful beyond 5 GHz ).
\$1000.00

\section*{SPECTRUM ANALYZER PLUG.INS}

1 L 550 Hz to 1 MHz , Center Frequency 50 Hz to 990 kHz , Dispersion - \(10 \mathrm{~Hz} / \mathrm{cm}\) to \(100 \mathrm{kHz} / \mathrm{cm}\), Deflection Factor \(10 \mathrm{uv} / \mathrm{cm}\) to \(2 \mathrm{v} / \mathrm{cm}\). \(\$ 1000.00\)
1 L 101 MHz to 36 MHz , Bandwidth resolution of 10 Hz to 1 kHz , Calibrated Dispersion from 10 Hz to 2
kHz , Sensitivity of -100 dBm . \(\$ 900.00\)
1 L 30925 MHz to 10.5 GHz , Bandwidth resolution of 1 kHz to 100 kHz , Dispersion of 1 kHz to 10
MHz cm , Sensitivity of -75 dBm to -105 dBm . \(\$ 1100.00\)
1 L 40 1.5 GHz to 40 GHz about same specifications as above. \(\$ 1500.00\)
3 L 101 MHz to 36 MHz same as 1 L 10 But For 560,561 Mainframe Oscilloscopes. \(\$ 1000.00\)

\section*{HEWLETT-PACKARD}

852A with a 8551B Spectrum Analyzer a Highly Versatile Instrument that Covers 10.1 MHz to 40 GHz . Sensitivity of up to -100 dBm . Ten Calibrated Spectrum widths from 100 kHz to 2 GHz . Large 7 and 10 cm Display.
The 852A is a Storage Display. \(\$ 2000.00\)
With The 851A Display (NOT STORAGE) \(\$ 1500.00\)
With the 851B Display (NOT STORAGE BUT NEWER) \(\$ 1800.00\)

R F CONNECTORS COAX

TYPE
UG-273
UG-146/u
UG-83a/u
UG-318/u
874
UG-394b/u
UG-255/u
UG-21e/u
UG-58a/u or UG-58b/u
SO-239
UG-1094a/u or UG-625b/u
UG-290a/u or UG-185/u
PL-259
UG-175 or UG-176
UG-88/u or UG-260/u
SO-239BM
UG-57b/u
UG-27d/u
UG-274a/u
UG-636a/u
UG-564/u
UG-635/u
UG-565a/u
UG-201a/u
UG-306/u
M-358
UG-491b/u
UG-914/u
PE9090
PE9089
PE9088
PE9087
PE9086
PE9085
PE9084, 9083, 9082
PE9081
PE9080
PE9079
PE9078
PE9077
PE9076
PE9075
PE9074
PE9073
PE9072
PE9071
PE9070
Tektronix 011-0049-01
FXR AH-A92
FXR AH-A93
FXR AH-A94

DESCRIPTION
Female BN
o PL-259
N 239 to N Male \(\$ 3.00\)

N Female to PL-259
10.00

PL-259 to N Male 10.00

N Female to General Radio \(\quad 15.00\)
BNC Male to N Female 10.00
NBC Male to SO-239 5.00
N Cable Connector Male 4.00
N Female Panel 4.50
UHF Female Panel
4.50
1.00

BNC Female Bulkhead 1.35
BNC Female
2.50

UHF Cable Connector 1.00

Adapter for RG58 or RG59 Cable for PL-259 . 50
BNC Male 50 or 75 ohm 1.50
SO-239 to PL-259 Quick Disconnect 3.00
N Male to Maie 4.50
\(\mathrm{N} 90^{\circ}\) Male to Female 6.50
BNC T Male Female Male 5.00
BNC Female to "C" Male 10.00
"C" Female to N Male 10.00
BNC Male to "C'" Female 10.00
N Female to ' \(C\) " Male
10.00

BNC Female to N Male 5.00
BNC \(90^{\circ}\) Male to Female 3.00
UHF T Female Male Female 3.25
BNC Male to Male \(\quad 5.00\)
BNC Female to Female 3.00
TNC Female to N Male 10.00
TNC Male to N Female 10.00
TNC Female to TNC Female 12.00
TNC \(90^{\circ}\) Male to Female 20.00
\(\begin{array}{ll}\text { TNC Male to Male } & 12.00\end{array}\)
TNC Female to Female 20.00
TNC Panel and Bulkhead 3.00
BNC Male to F Female 5.00
BNC Male to TNC Female 10.00
N Female to SMA Female Panel 30.00
BNC Female to SMA Female Panel 30.00
"C" Female to SMC Female Bulkhead 30.00
SMA Male for 141 semi-ridg 3.00
SMA Male for . 085 semi-ridg \(\quad 3.00\)
SMA Flange Female 5.00
SMA Flange Male 5.00
SMA Female Short 7.50
SMA Male 50 ohm load \(\quad 10.00\)
SMA Female to Female 10.00

50 ohm 2 watt term. BNC Female to Male 15.00
0.5 dB SMA Male Female Att.
1.0 dB SMA Male Female Att
15.00
1.5 dB SMA Male Female Att.

\section*{COAX CABLE SPECIAL SALE}

Microdot RG-174
miniature 50 ohm coax cable for small jobs. This cable was made to meet military spec. (PRICE PER FOOT)
1 to 25 foot 15¢; 26 to 50 foot 12థ; 51 to 100 foot 114; 101 and up \(\$ 10 屯\)
Microdot RG-402U
.141 miniature 50 ohm hard line/semi-ridg coax for use with SMAISMC etc. miniature coax connectors. This cable is very low loss and is used for High Frequency projects. (PRICE PER FOOT)
1 to 10 foot \(\$ 5.00 ; 11\) to 25 foot \(\$ 4.00 ; 26\) to 50 foot \(\$ 3.00\)
Microdot RG-402U with two Male SMA Connectors Assembled.
Approx. 10 to \(15^{\prime \prime}\).
Microdot RG-402U with two Male N Connectors Assembled.
Approx. 10 to \(20^{\prime \prime}\).

\section*{CRYSTALS — \$4.99}
\begin{tabular}{|c|c|c|c|c|c|}
\hline KC/KHZ & MC/MHZ & MC/MHZ & MC/MHZ & MC/MHZ & MC/MHZ \\
\hline 15.75 & 2.148875 & 2.65075 & 3.067 & 4.0457 & 6.380416 \\
\hline 24 & 2.151 & 2.6545 & 3.074 & 4.096 & 6.380833 \\
\hline 26.25 & 2.153125 & 2.65825 & 3.1 & 4.1153 & 6.381041 \\
\hline 32 & 2.15375 & 2.66 & 3.1125 & 4.1299 & 6.381666 \\
\hline 49.71 & 2.15525 & 2.662 & 3.126 & 4.26 & 6.382291 \\
\hline 70 & 2.157375 & 2.66575 & 3.137 & 4.335 & 6.382916 \\
\hline 81.9 & 2.1595 & 2.6695 & 3.13975 & 4.6895 & 6.383541 \\
\hline 96 & 2.16375 & 2.677 & 3.1435 & 4.6965 & 6.384166 \\
\hline 100 (note) & 2.165875 & 2.68075 & 3.144 & 4.7175 & 6.384791 \\
\hline 114.1666 & 2.170125 & 2.681 & 3.145 & 4.7245 & 6.385416 \\
\hline 153.6 & 2.17225 & 2.6845 & 3.1545 & 4.7315 & 6.42963 \\
\hline 250 & 2.1765 & 2.68825 & 3.158 & 4.765 & 6.43104 \\
\hline 285.714 & 2.17925 & 2.69575 & 3.1585 & 4.89 & 6.45926 \\
\hline 327.82 & 2.18475 & 2.702 & 3.1615 & 4.9037 & 6.47 \\
\hline 576 & 2.18575 & 2.704 & 3.1625 & 4.93333 & 6.47111 \\
\hline 600 & 2.194125 & 2.71075 & 3.166 & 5. & 6.48889 \\
\hline 980 & 2.198 & 2.715 & 3.16975 & 5.13125 & 6.537 \\
\hline 998.4 & 2.207063 & 2.716 & 3.177 & 5.139583 & 6.567 \\
\hline & 2.208313 & 2.723 & 3.181 & 5.147917 & 6.57778 \\
\hline & 2.209563 & 2.73 & 3.1825 & 5.164583 & 6.582 \\
\hline MC/MHZ & 2.21812 & 2.7315 & 3.18475 & 5.1755 & 6.612 \\
\hline & 2.210813 & 2.73225 & 3.1885 & 5.1768 & 6.627 \\
\hline 1.024 & 2.212063 & 2.732625 & 3.2035 & 5.25926 & 6.6645 \\
\hline 1.05145 & 2.214562 & 2.733 & 3.20725 & 5.3037 & 6.673 \\
\hline 1.065158 & 2.214563 & 2.737 & 3.2165 & 5.33333 & 6.693 \\
\hline 1.077368 & 2.215625 & 2.73975 & 3.2175 & 5.34815 & 6.705 \\
\hline 1.092105 & 2.217938 & 2.742125 & 3.2315 & 5.3484 & 6.723 \\
\hline 1.125263 & 2.21975 & 2.7425 & 3.23275 & 5.426636 & 6.7305 \\
\hline 1.136316 & 2.222125 & 2.744 & 3.2365 & 5.436636 & 6.738 \\
\hline 1.165789 & 2.22325 & 2.7445 & 3.23775 & 5.456 & 6.75 \\
\hline 1.197368 & 2.22675 & 2.74475 & 3.2385 & 5.4675 & 6.75125 \\
\hline 1.3 & 2.23725 & 2.746875 & 3.238875 & 5.499 & 6.753 \\
\hline 1.3065 & 2.2395 & 2.751 & 2.23925 & 5.5065 & 6.7562 \\
\hline 1.6896 & 2.24075 & 2.754 & 3.24025 & 5.1111 & 6.7605
67712 \\
\hline 1.6525 & 2.241 & 2.75525 & 3.2405 & 5.5215 & 6.7712 \\
\hline 1.7 & 2.246 & \({ }_{2}^{2.762375}\) & 3.241
3.2425 & 5.544
5.5515 & 6.77625
6.7833 \\
\hline 1.76375 & 2.2475 & 2.7735
2.776625 & 3.2425
3.244 & 5.5515
5.559 & 6.7833
6.81482 \\
\hline 1.77125 & 2.264
2.2925 & 2.776625 & 3.244
3.248875 & 5.559
5.565 & 6.81482
6.87407 \\
\hline 1.773125 & 2.2925 & 2.78
2814 & 3.248875 & & 6.87407
6.9037 \\
\hline 1.78675 & 2.2975 & 2.814
2.817 & 3.24925
3.24975 & 5.574
5.5815 & 6.9037
6.844444 \\
\hline 1.81875 & 2.3 & 2.817
2.8225 & 3.24975
3.2515 & 5.58519 & 6.844444
6.88 \\
\hline 1.845125 & \({ }^{2} .32\) & 2.8225 & 3.2515 & 5.58519
5.589 & 6.88
6.91 \\
\hline 1.845625 & \({ }^{2} .326\) & 2.835
285 & 3.253625
3.255 & 5.589
5.604 & 6.91
6.92 \\
\hline 1.84575 & 2.32625 & 2.85 & 3.255125 & 5.6115 & \\
\hline 1.846 & 2.3525 & 2.854
2.854285 & 3.256125 & & 6.94333 \\
\hline 1.84825 & 2.35256 & 2.854285 & 3.258625 & 5.619 & 6.94 \\
\hline 1.84975 & 2.368 & 2.865 & 3.2611 & \({ }_{5} 5.6265\) & 6.96296 \\
\hline 1.8575 & 2.374
2.375 & 2.868
2.8725 & 3.261125
3.263625 & 5.62963
5.6415 & 7.012 \\
\hline 1.908125 & 2.375
2.38725 & 2.876875 & 3.263625
3.266125 & 5.6715 & 7.1225 \\
\hline 1.925
1.925125 & 2.394 & 2.887 & 3.268625 & 5.68 & 7.25 \\
\hline 1.925125 & 2.395 & 2.889 & 3.271125 & 5.7037 & 7.255555 \\
\hline 1.927 & 2.396875 & 2.894 & 3.273625 & 5.7105 & 7.275 \\
\hline 1.932 & 2.42 & 2.892545 & 2.33 & 5.733333 & 7.3435 \\
\hline 1.982
1.985 & 2.4375 & 2.931 & 3.4045 & 5.74815 & 7.35 \\
\hline 1.9942 & 2.44275 & 2.94375 & 3.4115 & 5.80741 & 7.36296 \\
\hline 1.995975 & 2.4495 & 2.945 & 3.4325 & 5.83704 & 7.3728 \\
\hline 1.96475 & 2.45 & 2.94675 & 3.4535 & 5.85185 & 7.39 \\
\hline 1.999659 & 2.482 & 2.952 & 3.4675 & 5.8968 & 7.42222 \\
\hline 2. & 2.486 & 2.966 & 3.4815 & 5.92593 & 7.443 \\
\hline 2.0285 & 2.5 & 2.97125 & 3.541 & 5.9525 & 7.4585 \\
\hline 2.05975 & 2.51375 & 2.973 & 3.579545 & 6. & 7.4615 \\
\hline 2.078 & 2.581 & 2.98 & 3.64 & 6.21 & 7.4885 \\
\hline 2.082 & 2.604 & 2.981 & 3.656 & 6.22222 & 7.4715 \\
\hline 2.125 & 2.618 & 2.98325 & 3.745 & 6.25185 & 7.473 \\
\hline 2.126175 & 2.6245 & 2.987 & 3.8 & 6.254167 & 7.4785 \\
\hline 2.12795 & 2.62825 & 3. & 3.803 & 6.28146 & 7.4815 \\
\hline 2.1315 & 2.633125 & 3.001 & 3.805 & 6.31111 & 7.4985 \\
\hline 2.133275 & 2.63575 & 3.0235 & 3.860 & 6.321458 & 7.62963 \\
\hline 2.13505 & 2.639 & 3.049 & 3.908 & 6.37037 & 7.65926 \\
\hline 2.1425 & 2.64325 & 3.053 & 3.9168 & & \\
\hline 2.144625 & 2.647 & 3.062 & 4. & & \\
\hline
\end{tabular}

NOTE 100 KC is \(\$ 9.99\) each

\section*{CRYSTALS — \$4.99}
\begin{tabular}{|c|c|c|c|c|}
\hline MC/MHZ & MC/MHZ & MC/MHZ & MC/MHZ & MC/MHZ \\
\hline 7.67407 & 10.8864 & 23.575 & 35.14 & 40.555556 \\
\hline 7.68889 & 10.962 & 26.375 & 35.18 & 40.59259 \\
\hline 7.71852 & 11.005 & 26.62 & 35.19 & 40.62963 \\
\hline 7.7985 & 11.055 & 26.64 & 35.2 & 40.66666 \\
\hline 7.8015 & 11.13 & 26.66667 & 35.3 & 40.703704 \\
\hline 7.81 & 11.1805 & 26.67 & 35.36 & 40.740741 \\
\hline 7.9 & 11.228 & 26.74 & 35.55555 & 40.77777 \\
\hline 7.925 & 11.2995 & 26.8965 & 35.90125 & 40.814815 \\
\hline 7.928667 & 11.34 & 26.958 & 35.97625 & 40.85185 \\
\hline 7.95 & 11.3565 & 26.965 & 36. & 40.88888 \\
\hline 7.975 & 11.50875 & 27.005 & 36.04 & 40.96296 \\
\hline 8. & 11.53375 & 27.045 & 36.08 & 42.59259 \\
\hline 8.002 & 11.55347 & 27.095 & 36.16 & 45. \\
\hline 8.003333 & 11.705 & 27.126 & 36.2 & 46.2 \\
\hline 8.0355 & 11.755 & 27.185 & 36.2675 & 48.98333 \\
\hline 8.0835 & 11.805 & 27.205 & 36.3525 & 48.92777 \\
\hline 8.04864 & 11.855 & 27.225 & 36.3875 & 49.21389 \\
\hline 8.1 & 11.905 & 27.5 & 36.4275 & 49.692 \\
\hline 8.123 & 11.955 & 27.7 & 36.66667 & 49.95 \\
\hline 8.125 & 11.96125 & 27.77778 & 37. & 53.45 \\
\hline 8.12625 & 12.925 & 27.845 & 37.2175 & 53.3 \\
\hline 8.14 & 12.93 & 27.9 & 37.46 & 56.9 \\
\hline 8.15 & 13.102 & 28. & 37.77777 & 58.794 \\
\hline 8.15571 & 13.2155 & 28.615 & 37.845 & 60.45 \\
\hline 8.15714 & 13.2455 & 28.7 & 38. & 61.25 \\
\hline 8.175 & 13.2745 & 28.728 & 38.33333 & 61.95 \\
\hline 8.2 & 13.2845 & 28.775 & 38.77777 & 66.66867 \\
\hline 8.284615 & 13.2945 & 28.8 & 38.88888 & 67.52 \\
\hline 8.364 & 13.3045 & 28.805 & 38.88889 & 67.82 \\
\hline 8.42308 & 13.3145 & 28.835 & 39. & 67.94 \\
\hline 8.5266 & 13.3245 & 28.855 & 39.16 & 68.1 \\
\hline 8.625 & 13.3345 & 28.88889 & 39.51851 & 68.12 \\
\hline 8.82 & 13.3445 & 28.905 & 39.55555 & 68.18 \\
\hline 8.8285 & 13.3545 & 28.93888 & 39.592593 & 68.375 \\
\hline 8.837 & 13.824 & 29.896 & 39.629630 & 68.48 \\
\hline 8.8455 & 14.315 & 29.9 & 39.666667 & 68.60 \\
\hline 8.854 & 15.02 & 30. & 39.703704 & 71.015625 \\
\hline 8.8625 & 15.016 & 30.25 & 39.74071 & 72.855 \\
\hline 8.871 & 15.036 & 30.662 & 39.777778 & 73.50 \\
\hline 8.8795 & 16.965 & 31. & 39.81481 & 75.185 \\
\hline 8.888 & 17.00925 & 31.11111 & 39.851852 & 76.66667 \\
\hline 8.905 & 17.01018 & 31.66667 & 39.88888 & 82.75 \\
\hline 8.9135 & 17.015 & 31.9 & 39.92592 & 83. \\
\hline 8.9305 & 17.065 & 32. & 39.962963 & 84. \\
\hline 8.939 & 17.115 & 32.005156 & 40. & 90.833 \\
\hline 8.958 & 17.165 & 32.175 & 40.037037 & 93.1346 \\
\hline 9.0265 & 17.215 & 32.22222 & 40.074074 & 93.535 \\
\hline 9.327778 & 17.28 & 32.6 & 40.111111 & 93.9353 \\
\hline 9.36 & 17.9065 & 32.936 & 40.14814 & 94.3 \\
\hline 9.37491 & 17.9165 & 33. & 40.222222 & 102.2 \\
\hline 9.425938 & 17.9265 & 33.3 & 40.25925 & 106.85 \\
\hline 9.5075 & 17.9365 & 33.33333 & 40.29629 & 115.83 \\
\hline 9.545 & 17.9465 & 33.44945 & 40.33333 & 121.5 \\
\hline 9.555 & 17.9865 & 33.9 & 40.37037 & 126.4 \\
\hline 9.565 & 17.975 & 34. 34.245 & 40.407407
40.44444 & \begin{tabular}{l}
\[
128 .
\] \\
146.64
\end{tabular} \\
\hline 9.585 & 17.9935 & 34.245 & 40.444444 & \[
\begin{aligned}
& 146.64 \\
& 14704
\end{aligned}
\] \\
\hline 9.643125 & 18.29 & 34.44444 & 40.48148 & 147.09 \\
\hline 9.65 & 18.76563 & 34.565 & 40.51851 & \\
\hline 9.657292 & 19.006 & 34.585 & & \\
\hline 9.7 & 19.1 & 34.605 & & \\
\hline 9.75 & 19.1003 & 34.625 & & \\
\hline 9.8 & 19.100308 & 34.655 & & \\
\hline 9.85 & 19.103394 & 34.685 & & \\
\hline 9.9 & 19.3483 & 34.695 & & \\
\hline 9.934375 & 19.3484 & 34.705 & & \\
\hline 9.95 & 19.43125 & 34.725 & & \\
\hline 10. & 19.45208 & 35. & & \\
\hline 10.01 & 19.5385 & 35.02 & & \\
\hline 10.02 & 19.6608 & 35.03 & & \\
\hline \[
\begin{aligned}
& 10.021 \\
& 10.20833
\end{aligned}
\] & \[
\begin{aligned}
& 20.1 \\
& 22 .
\end{aligned}
\] & \[
\begin{aligned}
& 35.04 \\
& 35.07
\end{aligned}
\] & & \\
\hline 10.04 & 22.22 & 35.08 & & \\
\hline 10.355 & 23.25 & \[
35.11
\] & & \\
\hline 10.80375 & & 35.12 & & \\
\hline & & & & \\
\hline & & & & -1a \\
\hline  & \[
\Gamma
\] & \[
80
\] &  & \[
1
\] \\
\hline
\end{tabular}




MS-215


Dual Trace 15 MHz Reg. price s465. \(\$ 399^{95}\)

MS-15


Single Trace 15 MHz Reg. price \(\$ 349\). \(\$ 299^{95}\)
MS-230


Dual Trace \(30 \mathrm{MHz}^{2}\) Regular price \(\$ 598\). \(\$ 499^{95}\)

THESE 1980 B\&K OSCILLOSCOPES ARE IN STOCK AND AVAILABLE FOR IMMEDIATE DELIVERY


1477 Dual-Trace 15 MHz
1432 Dual-Trace 15 MHz Portable
1476 Dual-Trace 10 MHz
1466 Single-Trace 10 MHz
1405 Single-Trace 5 MHz
CALL FOR OUR
EARLY BIRD SPECIAL LOW PRICE

\section*{KEITHLEY}

Model 169 BENCH/PORTABLE DMM - \(31 / 2\) Digit liquid crystal display
- \(0.25 \%\) basic accuracy
- 26 Ranges
\$15900

\section*{WESTON}

The Roadrunner Model 6100
- 5 Range audible signaling function
- \(0.5^{\prime \prime}\) LCD display
- 6 Functions
- 29 Ranges
\(\$ 139.00\)
BEEP!

80MHz Counter with Period Function

model 1820
- 5 Hz to 80 MHz reading guaranteed100 MHz typical
- Period measurements from 5 Hz to 1 MHz .
- Period average, auto and manual positions
- One PPM resolution
- Totalizes to 999999 plus overtiow
- Elapsed time measurements from . 01 to 9999.99 seconds plus overflow
- One-megohm input resistance - Bright \(43^{-}\)high LED readouts

\section*{THE TEST EQUIPMENT SPECIALISTS}

TOLL FREE HOT LINE

\section*{ATTENTION HAMS!}

Earn a "FREE" Antenna, Tower or BOTH!

If you are employed by a company that could use a high lift work platform, as shown below, you may earn a new antenna system FREE.


With today's inflationary times, this may be the perfect opportunity to upgrade your station with no drain on the family budget.

Contact Jerry Flatt at WILSON SYSTEMS for the details on this offer ... call Toll Free (800) 634-6898.

4286 Polaris Avenue Las Vegas, Nevada 89103


\section*{ALL BAND TRAP ANTENNAS!}

PRETUNED - COMPLETELY ASSEMBLED ONLY ONE NEAT SMALL ANTENNA FOR UP TO 7 BANDS! EXCELLENT FOR CONGESTED HOUSING AREAS-APARTMENTS LIGHT - STRONG - ALMOST INVISIBLEI

FOR ALL MAKES \& MODELS OF AMATEUR TRANSCEIVERS TRANSMITTERS GUARANTEED FOR 2000 WATTS SSB
1000 WATTS CW INPUT FOR NOVICE AND 1000 WATTS CW. INPUT FOR NOVICE AND ALL CLASS AMATEURS!
COMPLETE AS SHOWN with 90 ft . RG58U-52 ohm teedline, and PL259 connector, insulators, 30 ft . 300 lb . test dacron end supports, center connector with builh in lightning arrester and static discharge. molded, sealed, weatherproof, resonant traps \({ }^{\prime \prime}\) X6"- you just switch to band desired for excellent worldwide operation-transmitting and recieving! Low SWR over all bands - Tuners usuall NO NEEDEDILA be used as inverted V's-slopers - in attics, on building tops or narrow lots. The ONLY ANTENNA
FOR ALL DESIRED BANDS - WITH ANY TRANSCEIVER. NEW -EXCLUSIVE! NO BALUNS NEEDEDI 80-40-20-15-10-6 meter-2 trap … 104 ft . with 90 ft . RG58U - connector-Model 998BUA ... \$69.95 40-20-15-10 meter ... 2 trap \(\cdots 54 \mathrm{ft}\). with 90 ft . RG58U - connector - Model 1001BUA .... \$68.95 20-15-10 meter -.. 2 trap -..- 26ft, with 90 ft . RG58U - connector - Model 1007BUA. ..... \$67.95 SEND FULL PRICE FOR POSTPAID INSURED. DEL. IN USA. (Canada is \(\$ 5.00\) extra for postage - clericalcustoms etc.) or order using VISA - MASTER CHARGE - CARD - AMER. EXPRESS. Give number and ex. date. Ph 1-308-236-5333 9AM - 6PM week days. We ship in 2-3 days. ALL PRICES WILL INCREASE. SAVE - ORDER NOW! All antennas guaranteed for 1 year. 10 day money back trial if returned in new condition! Made in USA. FREE INFO. AVAILABLE ONLY FROM WESTERN ELECTRONICS

Dept. AR- 12
Kearney, Nebraska, 68847


\section*{Bill Orr's famous} Radio Handbook 21st Edition

Often referred to as the "California Handbook,' Bill Orr's 21st edition of the RADIO HANDBOOK is a must for every ham's bookshelf. 1080 pages cover extensively everything from antennas to zero bias tubes. In addition you'll find new and enlarged sections on frequency synthesizers, IC design, HF and VHF linear amplifier construction and NBVM. Radio theory, construction projects, tests and measurements, and reference data are all here, under one cover. W6SAI and more than 20 other notable Amateurs have combined their talents to produce one of the finest and most complete Amateur Radio reference sources ever put in print. 1080 pages. © 1978.

\title{
flea market - F
}

RATES Non-commercial ads 10c per word; commercial ads 60¢ per word both payable in advance. No cash discounts or agency commissions allowed.

HAMFESTS Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing). Repeat insertions of hamfest ads pay the noncommercial rate.

COPY No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

DEADLINE 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N.H. 03048.

WANTED: Motorola micor base stations. \(406-420 \mathrm{MHz}\). AK7B, 4 AJax PI., Berkeley, CA 94708.
FREE HAM/COMPUTER NEWSLETTER: Send selfaddressed stamped envelope for your copy. W5YI; P.O. Box \#10101; Dallas, Texas 75207.

500 OSL's, \$10. Catalogue, 743 Harvard, St. Louls, MO 63130.

SATELLITE TELEVISION: Bulld or buy your own earth station. Article gives much hard to find, necessary information. Send \(\$ 3.00\). Satellite Television, R.D. 3, Box 140, Oxford, NY 13830.
"HAM RADIO" Magazines in binders, every issue, perfect. Make offer, will trade. Ron Vanke, K8YAH, (614) 890-0609.

DX, YOU BET! THE DX BULLETIN - Best weekly DX info in the world. For FREE sample copy, send business-size SASE to: The DX Bulletin, 306 Vernon Avenue, Vernon, Connecticut 06066
CELESTRON \(5^{\prime \prime}\) telescope, complete including solar filter. Make offer, will trade. Ron Vanke, K8YAH, (614) 890-0809.

\section*{Foreign Subscription Agents for Ham Radio Magazine}
\begin{tabular}{|c|c|}
\hline Ham Radio Austria F. Bast Hauptplatz 5 A-2700 Wiener Neustadt Austria & \begin{tabular}{l}
Ham Radio Holland \\
MRL Ectronics \\
Postbus 88 \\
NL. 2204 Delft \\
Holland
\end{tabular} \\
\hline Ham Radio Belglum Stereohouse Brussei sesteenweg 416 - 9218 Gent Beiglum & Ham Radlo Italy G. VulpettI P.O. \(80 \times 37\) 1-22083 Cantu \\
\hline Hart Radio Canada Box 400, Goderich Ontarlo, Canada NTA 4 C7 & Ham Remio Switzerland \\
\hline \begin{tabular}{l}
Ham Radio Europe Eox 444 \\
S-19404 Upplands Vasby \\
Sweden
\end{tabular} & \begin{tabular}{l}
Karin Ueber \\
Poatfach 2454 \\
D-7eso Loerrach \\
West Germany
\end{tabular} \\
\hline Ham Redlo France SM Electronic 20 ble Ave des Clarlons F-89000 Auxerre France & Ham Radio UK P.O. Box 63, Harrow Midelienox HA36HS England \\
\hline Ham Radio Germany Karin Ueber Postfach 2454 D7850 Loerrach West Germany & Holland Redio 143 Greenway Greenside, Johannesburg Republic of South Arica \\
\hline
\end{tabular}

THE SUPERMARKET OF ELECTRONICS - thousands of items for sale or trade each month. Free classified ad with subscription. Only \(\$ 5.00\) to Nuts \& Volts, P.O. Box 1111-F, Placentia, Callfornia 92670

WANTED: Inoperative Heath HW22, HW32 with manuals. Peter Plasecki, 14 Park St., Madawaska, ME 04756.

MANUALS for most ham gear 1937/1970. Send 25 for "Manual Catalog." H.l., Inc., Box H864, Councll Bluffs, lowa 51502.

ICOM 230, includes all split channels, IC-3P power supply, \$195.00. John Skubick, 791. 106 Ave., Naples, FL 33940.

ATLAS DD6-C and 350XL Digital Dial/Frequency Counters. \(\$ 175.00\) plus \(\$ 3.00\) UPS. AFC! Stop VFO drift. See June 79 HR. \(\$ 65.00\) plus \(\$ 3.00\) UPS. Mical Devices, P. 0 . Box 343, Vista, CA 92083.

ROHN TOWER - Buy direct from Worldwide distributor of all Rohn products. Sample prices - 25G sections \(\$ 38.72\) each, 45G sections, \(\$ 88.00\) each, FK- 2548 fold over tower with freight paid \(\$ 693.00, \mathrm{BX}-48\) free standing \(\$ 218.90\). Hill Radio, Box 1405, Bloomington, IL 61701 (309) 683-2141.

VERY In-ter-est-Ing! Next 3 issues \$1. "The Ham Trader" Wheaton, IL 60187.
HEATHKIT STATION ESTATE SALE. SB-301, SB-401, \(\$ 460.00\), SB-200 Jinear, \(\$ 300.00\). SB-600 with power sup ply, \(\$ 230.00\). All in unused condition, factory allgned. Lot price \(\$ 1000.00\). A.S. Welch, 27 Elwood Rd., Londonderry, \(\mathrm{NH}(603)\) 434-7702.

SWAN 100MX transceiver, brand new, never used. Ask ing price \(\$ 600.00\). S. Pavone, W2DDN, Box 105A, RD3 Boonton, NJ 07005. (201) 335-5732.

ANTENNA TOWERS. Heavy duty, hot dipped galvanized steel, crank-up with tilt-over base. Sky Towers of Vero Beach, Box 6068, Vero Beach, FL 32960

WANTED: Cushman Communications Service Monitors, working or non-working units. Also need plug-in modules, manuals, parts, etc., will pay cash or take over payments. Also need RF voltmeters; WB8IJX, Fred L. Slaughter, 5844 Grisell Road, Oregon, OH 43618. Phone (419) 698-8597.

ELECTRONIC BARGAINS, CLOSEOUTS, SURPLUS! Parts, equipment, stereo, industrial, educational. Amazing values! Fascinating fitems unavailable in stores or catalogs anywhere. Unusual FREE catalog. ETCO-012, Box 762, Plattsburgh, NY 12901. SURPLUS WANTED.

MOBILE IGNITION SHIELDING provides more range with no noise. Available most engines. Many other suppression accessories. Literature, Estes Engineering, 930 Marine Dr., Port Angeles, WA 98362.

STOP LOOKING for a good deal on amateur radio equip. ment - you've found it here - at your amateur radio headquarters in the heart of the Midwest. Now more than ever where you buy is as important as what you buy. We are factory-authorized dealers for Kenwood, Drake, Yaesu, Collins, Wilson, Ten-Tec, ICOM, DenTron, MFJ Tempo, Regency, Hy-Gain, Mosley, Alpha, CushCraft, Swan and many more. Write or call us today for our low quote and try our personal and friendly Hoosier Service. HOOSIER ELECTRONICS, P.O. Box 2001, Terre Haute, Indiana 47802. (812) 238-1456.

CRYSTAL FILTERS: Brand new K.V.G. 9 MHz . XF9.A, \(\$ 35.00\). XF9-B, \(\$ 48.00\). XF9-M, \(\$ 39.00\). XF9-NB, \(\$ 77.00\). Matching crystals: XF900, XF901, XF902, XF903, \$4.25 each. Terry Tayior, 26102 13th Pl., South, Kent, WA 98031.

CB TO 10 METER PROFESSIONALS: Your rig or buy ours - AM/SSB/CW. Certified Communications, 4138 So. Ferrls, Fremont, Michigan 49412; (616) 924-4561.

QSL'S: No stock designs! Your art or ours; photos, originals, 504 for samples \& details (refundable). Certified Communications, 4138 So. Ferris, Fremont, Michigan 49412

NEED HELP for your Novice or General ticket? Recorded audio-visual theory instruction. No electronic background required. Free information. Amateur License, P.O. Box 6015, Norfolk, VA 23508.

ANTIQUE (PRE-1950) TELEVISION SETS WANTED. WII pay top dollar for unusual or pre-WWII sets, Arnold Chase, 9 Rushleigh Road, West Hartford, Connecticut 06117 (203) 521-5280.

WANTED: Early Hallicrafter recelvers, transmitter, accessories, parts, manuals for my collection. Special interest in silver colored panel recelvers and ones with "airplane" dials. Also need "ultra Skyrider' SX-10, 'Skyrider Commercial' SX-12 and others. Chuck Dachis, WD5EOG, 4500 Russell, Austin, TX 78745.


*ADD \$1, ORDERS UNDER \$10. *FLA. RES. 4: SALE TAX PLEASE ADD SUFFICIENT POSTAGE

A complete line of QUALITY 50 thru 450 MHz TRANSMITTER AND RECEIVER KITS. Only two boards for a complete receiver. 4 pole crystal filter is standard. Use with our CHANNELIZER or your crystals. Priced from \$69.95. Matching transmitter strips. Easy construction, clean spectrum, TWO WATTS output, unsurpassed audio quality and built in TONE PAD INTERFACE. Priced from \$29.95.
SYNTHESIZER KITS from 50 to 450 MHz . Prices start at \(\$ 119.95\).
Now available in KIT FORM GLB Model 200 MINI-SIZER.
Fits any HT. Only 3.5 mA current drain. Kit price \(\$ 159.95\) Wired and tested. \$239.95
Send for FREE 16 page catalog.
We welcome Mastercharge or VISA

\section*{GLBELECTRONICS \\ 1952 Clinton St., Buffalo, N. Y. 14206}

\section*{S-LINE OWNERS ENHANCE YOUR INVESTMENT} with

\section*{TUBESTERS \({ }^{\text {TM }}\)}

Plugin, solid state tube eeplacements
- S-line performance-solid state! - Heat dissipation reduced 60\% - Goodbye hard-to-find tubes - Unlimited equipment life

TUBESTERS cost less than two tubes, and are guaranteed for so long as you own your S-line.

\section*{SKYTEC}

Box 535
Write or phone for
Talmage, CA 95481 specs and prices.

SYNTHESIZED SIGNAL GENERATOR

- Covers 100 to 179.999 MHz in 1 kHz steps with thumb-wheel dial - Accuracy \(.00001 \%\) at all frequencies - Internal frequency modulation from 0 to over 100 kHz at a 1 kHz rate - Spurs and noise at least 60 dB below carrier • RF output adjustable from 50 to 500 mv across 50 ohms • Operates on 12 vdc (4) \(1 / 2 \mathrm{amp}\) • Price \(\$ 299.95\) plus shipping.

In stock for immediate shipping. Overnight delivery available at extra cost. Phone: (212) 468-2720.

W1HR ESTATE: List of Ham equipment and test equipment available. Collins, General Radio, Knight, many more; also list of Antique Radios now available. Send SASE with \(\$ 1.00\) to: Mrs. D. Fisk, P. O. Box 429, Hollis, New Hampshire 03049. Note: Will not ship, pick-up only.

ETCH IT YOURSELF PRINTED CIRCUIT KIT, Photo-Positive Method - No darkroom required, All the supplies for making your own boards, direct from magazine article in less than 2 hours. Only \(\$ 24.95\), S.A.S.E. for details: Excel Circuits Co., 4412 Fernlee, Royal Oak, MI 48073.
ham radio repair - Professional lab, personal ser vice. "Grid" Gridley, W4GJO. April thru October: Rt. 2, Box 138B, Rising Fawn, Georgia 30738. (404) 657-7841. November thru March: 212 Martin Drive, Brooksville, Florida 33512. (904) 799-2769.

BUY.SELL-TRADE. Send \(\$ 1.00\) for catalog. Give name address and call letters. Complete stock of major brands new and reconditioned amateur radio equipment. Call for best deals. We buy Collins, Drake, Swan, etc. Associated Radio, 8012 Conser, Overland Park, KS 66204. (913) 381-5900.

WANTED: 4.125A/4D21, 6155 tubes. H.P. 423. W4BUZ, 1203 Verdun Dr., Greensboro, NC 27410 (919) 292-1538.

AUTOMATICALLY decode Morse. Improve speed, measure difficult signals. Microcomputer electronics, features unavailable commercially. SASE. Seastrom, Box 1185, East Dennis, MA 02641
CWISSB FILTERS: IC audio install in any radio, sharp CW, stagger tuned SSB - \(\$ 15\), \(\$ 32\). SASE info: W8CBR, 80 W. Mennonite, Aurora, OH 44202.

MOTOROLA RADIOS WANTED: I need micors, motracs, mocom 70's, H.T.'s, and bases . . . anything Motorola newer than 12 years. I pay all shipping. Len Rusnak, WA3TJO 301-441-1221.
RTTY FOR SALE: Model 28 KSS , M28 stand-alone TD, M28 receive-only typing reperf, M28 keyboard typing reperf, M28 triple TD, M28 under-dome typing reperf, M28 motorized paper winder, answerback, auto CR-LF kit for M28 printers. Model 33 and 35 machines. Gears, gearshifts, parts and supplies for all Teletype machines. Send SASE for list and prices. Lawrence R. Pfleger, K9WJB, 2600 S. 14th Street, St. Cloud, MN 56301.

\section*{Coming Events}

ILLINOIS: Over the hills and thru the woods to Wheaton Community Radio Amateurs Hamfest we go. For the bargains and buys and to meet all the guys, come to the best Winter Hamfest in the U.S.A. - January 25, 1981 Plan on it. - N9YL.


YAESU FT-207R OWNERS AUTOMATIC SCAN MODULE


15 minutes to install; scan restarts when carrier drops off: busy switch controls automatic scan on-off; includes module and instructions.
Model AS-1.
\(\$ 25.00\)

\section*{ENGINEERING CONSULTING}

\section*{Coming Soon} 1981 HANDBOOK 1981 U.S. \& FOREIGN CALLBOOKS

CALL TODAY TO RESERVE YOUR COPY 1-800-258-5353

\author{
Ham Radio's Bookstore \\ GREENVILLE, N. H. 03048
}


EFFECTIVE JuLY 1, 1980


\section*{ASTRON POWER SUPPLIES \\ - HEAVY DUTY • HIGH QUALITY • RUGGED • RELIABLE •}

\section*{SPECIAL FEATURES}
- SOLID STATE ELECTRONICALLY REGULATED
- FOLD-BACK CURRENT LIMITING Protects Power Supply from excessive current \& continuous shorted output
- CROWBAR OVER VOLTAGE PROTECTION on Models RS-7A. RS-12A, RS-20A, RS-35A, RS-20M \& RS-35M
- MAINTAIN REGULATION \& LOW RIPPLE at low line input Voitage
- HEAVY DUTY HEAT SINK - CHASSIS MOUNT FUSE
- THREE CONDUCTOR POWER CORD
- ONE YEAR WARRANTY • MADE IN U.S.A.
- VOLT \& AMP METER ON MODELS RS-20M \& RS-35M

PERFORMANCE SPECIFICATIONS
- INPUT VOLTAGE: 105-125 VAC
- OUTPUT VOLTAGE: 13.8 VDC \(\pm 0.05\) volts (Internally Adjustable: 11-15 VDC)
- RIPPLE: Less than 5 mv peak to peak (full load \(\&\) low line)
- REGULATION: \(\pm 05\) volts no load to full load \& low line to high line


ASTRON 20 AMP REGULATED POWER SUPPLY Model RS-20M
16 Amps continuous
20 Amps ICS*
\(5^{*}(\mathrm{H}) \times 9^{*}(\mathrm{~W}) \times 10.5^{*}(\mathrm{D})\)
Shipping Weight 20 lbs .
Price
\(\$ 117.95\)
Other popular POWER SUPPLIES also available: (Same features and specifications as above)
\begin{tabular}{|l|c|c|c|c|c|}
\hline Model & \begin{tabular}{c} 
Continuous \\
Duty (amps)
\end{tabular} & \begin{tabular}{c} 
ICS \\
(amps)
\end{tabular} & \begin{tabular}{c} 
Size (in.) \\
H \(\times\) W \(\times\) D
\end{tabular} & \begin{tabular}{c} 
Shipping \\
Wt. (lbs.)
\end{tabular} & Price \\
\hline RS-35M & 25 & 35 & \(5 \times 11 \times 11\) & 29 & \(\$ 167.95\) \\
\hline RS-35A & 25 & 35 & \(5 \times 11 \times 11\) & 29 & \(\$ 149.95\) \\
\hline RS-20A & 16 & 20 & \(5 \times 9 \times 101 / 2\) & 20 & \(\$ 99.95\) \\
\hline RS-12A & 9 & 12 & \(41 / 2 \times 8 \times 9\) & 13 & \(\$ 74.95\) \\
\hline RS-7A & 5 & 7 & \(33 \times 61 / 2 \times 9\) & 8 & \(\$ 54.95\) \\
\hline RS-4A & 3 & 4 & \(33 \times 61 / 2 \times 9\) & 5 & \(\$ 39.95\) \\
\hline
\end{tabular}
*ICS - Intermittent Communication Service ( \(50 \%\) Duty Cycle) If not available at your local dealer, please contact us directly.


Inside View - RS-12A

\title{
/ \\ ASTRON
}

2852 Walnut - Unit E
Tustin, CA 92680
(714) 835-0682

\section*{RF Speech Processors for Drake TR-7, TR-4s, T4Xs}

High intelligibility, unexcelled talkpower. No-compromise design. Special 8 -pole IF crystal filtering, followed by highly effective active hard clipping (followed by rig filter): the keys to highest processing efficiency. TR-7 and TR-4 units keys to highestall 16 pole receive, as well as automatic eature selectable 16 pole Newest TR 7 processor has two transmit/receive switch (1.9 and 1.6 kHz ) allowing selection of 16-pole positions \((1.9\) and 1.6 kHz ), allowing selection of up to eight different bandwidths. All solid-state pin-diode switching. Model 7-SP MkII for TR-7: \(\$ 400,00\). Model 4-SP for T-4Xs: \(\mathbf{\$ 4 0 0 . 0 0}\). Model D-SP for TR-4s: \(\$ 425.00\)

\section*{Mike Equalizer Pre-Processor}

Companion to above units, but good between any mike and rig (with or without processing). Can reduce distortion, improve crispness, intelligibility. Easily adjustable single control tailors both high and low frequencies to optimize response of any microphone for varying conditions. Contains in/out, gain, equalization controls. Model SE-1: \$100.00.

European amateurs: please contact Ham-Radio, Portfach 120, CH 5702. Niederlent, in Switzerland; and Ingoimpex, Postfach 2449 D.8070, Ingolstadt, West Germany, for the rest of the continent.

NEW! RF CLIPPERS


Sherwood Engineering Inc. 1268 South Ogden St.
Denver, Colo. 80210 (303) 722-2257

Money back if not satisfied
Add \(\$ 3\) per order shipping. \(\$ 15\) overseas air
Dealer Inquiries Welcome

\section*{RED HOT SPECIALS}

\author{
AZDEN PCS-2000, 2 meters. \\ 249.00
}

ICOM 260A, All Mode, 2 m . . . . . . . . . . . . . . . . . 415.00
KANTRONICS CODE READER . . . . . . . . . . . 360.00
ICOM 720 w P/S \& MIKE . . . . . . . . . . . . . . . . . . 1140.00
BEARCAT 220 or 250 SCANNER . . . . . . . . . . . 269.00
ICOM IC 255A, 2 meters . . . . . . . . . . . . . . . . . . 299.00
SWAN ASTRO 150, New Style . . . . . . . . . . . . . 750.00
ICOM IC251A, 2 m All Mode . . . . . . . . . . . . . . . . 568.00
JANEL QSA 5, 2m Pre Amp . . . . . . . . . . . . . . . . 36.50
ICOM IC2A HANDHELD w Nicad . . . . . . . . . . 199.00
with Touch Tone Pad ....................... 219.00
ICOM 551, 6 meters. . . 380.00

ALL MFJ PRODUCTS and Used Equipment Lists
BEN FRANKLIN ELECTRONICS
\(1151 / 2\) N. Main
Hillsboro, KS 67063
316-947-2269

\title{
ham radio cumulatīe index \\ \\ 1971-1980
} \\ \\ 1971-1980
}

\section*{a note on this index}

To make the index easier to use only the years 1971-1980 are included, because most of the earlier material is now of limited interest. Refer to any December issue between 1970 and 1977 for a cumulative index covering 1968-1970. Copies of ham radio for December, 1977, may be purchased from Ham Radio's Bookstore for \(\$ 2.50\) postpaid.

\section*{antennas and transmission lines general}

Antenna control, automatic azimuth/elevation
Antenna controi, automatic azimuthielevation
for satellite communications
\begin{tabular}{ll} 
WA3HLT & p. 26 , Jan 75 \\
Correction & p. 58 , Dec 75
\end{tabular}

Correction
Antenna and control-link calculations for repeater IIcensing W7PUG
Short clrcult
p. 58, Nov 73

Short circult p. 59, Dec 73
Antenna and feediine facts and fallacies
W5JJ p. 24, May 73
Antenna design, programmable calculator simplifies (HN) W3DVO
p. 70, May 74

Antenna gain (letter) W3AFM
p. 62, May 76

Antenna gain and directivity W2PV
p. 12, Aug 79

Antenna restrictions: another solution N4AQD
p. 46, Jun 80

Antenna wire, low-cost copper (HN) W2EUQ
p. 73, Feb 77

Anti-QRM methods W3FQJ
p. 50, May 71

Coaxial connections, sealing (HN)
W5XW
p. \(64, \operatorname{Mar} 80\)
letter, K7ZFG p. 6, Oct 80
De-icing the quad (HN) W5TRS
p. 75 , Aug 80

Diversity recejving system W2EEY
p. 12, Dec 71

Dummy load, low-power vhf WB9DNI
p. 40 , Sep 73

Earth anchors for guyed towers W5QJR
p. 60 , May 80

Effective radlated power (HN) VE7CB
p. 72, May 73

Feedpolnt impedance characteristics of practical antennas W5.JJ
p. 50, Dec 73

Filters, low-pass, for 10 and 15 W2EEY
p. 42, Jan 72

Gain calculations, simplified W1DTV
Gain vs antenna height, calculating WB8IFM
p. 78 , May 78
p. 54, Nov 73

Gin poie, simple lever for raising masts
WA2ANW
Ground current measuring on 160 -meters WOKUS

72, May 77

Ground rods (letter)
p. 46, Jun 79

W7FS
p. 66, May 71

Ground screen, alternative to radials WBASGP
Ground systems (letter) ZL2BJR
p. 22, May 77

Ground systems, vertical antenna W7LR
p. 6, Nov. 80

Grounding, safer (letter) p. 30, May 74

WA5KTC
p. 59, May 72

Headings, beam antenna
W6FFC
W6FFC
p. 64, Apr 71

Horizontal or vertical (HN) W7IV
p. 62, Jun 72

Impedance measurements, nonresonant antenna W7CSD \(\quad\) p. 46, Apr 74
Insulators, homemade antenna (HN)
W7ZC
ightning protection (C\&T) W1DTY
p. 70, May 73

Lightning protection
K9MM
Comments, W6RTK
Comments, W2FBL
Letter, K9MM
p. 6, Jul 79
p. 6, Jul 79
ine-of-sight distance, calculating w日5CBC
-12, Dec

Measurement techniques for antennas and
transmission lines W400
p. 36, May 74

Mobile mount, rigid (HN) VETABK
p. 69, Jan 73

Power in reflected waves Woods
p. 49 , Oct 71

Radials, installing, for vertical antennas K3ZAP
p. 56 , Oct 80

Af power meter, low-level W5WGF
p. 58, Oct 72

Sampling network, if - the milli-trap W6QJW
p. 34, Jan 73

Scaling antenna elements W7ITB
p. 58, Jul 79

Smith chart, numerical WBMQW p. 104, Mar 78

Solid-state T-R switch for tube transmitters K1MC
p. 58, Jun 80

Standing-wave ratios, importance of W2HB
p. 26, Jul 73 p. 67, May 74

Time-domain reflectometry, practical experimenter's approach WAGPIA
p. 22, May 71

VSWR and power meter, automatic WGNK
p. 34, May 80

Wattmeter, low power (letter) WODLO p. 6, Jan 80

\section*{high-frequency antennas}
\begin{tabular}{lc} 
All-band phased-vertical & \\
WA7GXO & p. 32, May 72 \\
Antenna, 3.5 MHz , for a small tot & \\
W6AGX & p. 28 , May 73 \\
Antenna potpourri & \\
W3FQJ & p. 54, May 72 \\
Army loop antenna - revisited & \\
\begin{tabular}{ll} 
W3FQJ & p. 59, Sep 71 \\
Added notes & p. 64, Jan 72 \\
Base-loaded vertical antenna for 160 meters \\
W6XM & p. 64, Aug 80 \\
Beverage antenna & p. 67, Dec 71 \\
W3FQJ &
\end{tabular}
\end{tabular}

Beverage antenna for 40 meters KG6RT
p. 40, Jul 79

Big quad - small yard
W6SUN
p. 56, May 80

Bobtail curtain array
W8YFB
p. 81, May 77

Coaxial dipole antenna, analysls of W2DU
p. 46, Aug 76

Coaxial dipole, multiband (HN)
W4BDK
p. 71, May 73

Collinear, six-element for
WGYBF
p. 22, May 76

Compact antennas for 20 meters
W4ROS
p. 38, May 71

Compact loop antenna for 80 and 40 meters
W6TC
Corner-fed loop, low frequency
ZL1BN
Installation modified
p. 24, Oct 79

Installation modified p. 30, Apr 76
Cubical-quad antennas, mechanical design 41, Feb 77
VE3II P. 44, Oct 74
Cubical quad, improved low-proflle, three band W1HXU
p. 25 , May 76

Cubical quad, three-band WIHXU
p. 22, Jul 75

Curtain antenna (HN)
W4ATE
De-icing the quad (HN)
W5TRS
W5TRS
Delta loop, top-loaded
WIDTY
p. 66, May 72

Dipole, all-band tuned ZS6BT
p. 75, Aug 80
ipole beam
W3Fole beam
W3FQJ
Dipole pairs, low SWR
W6FPO
Double bl-square array W6FFF
p. 32, May 71

DX antenna, singie-element
p. 52, Dec 72

W6FHM
p. 65, Oct 73

Folded end-fire radiator NTWD
p. 44, Oct 80

Folded umbrella antenna
WB5IIR
W3FQJ
p. 38, May 79

W3FQJ p. 53, Aug
Ground-mounted vertical for the lower bands, improved (HN)
W5NPD
p. 68 , Nov 80

Ground-plane antenna: history and development
K2FF p. 26, Jan 77

Ground-plane, multiband (HN)
JA1QIY
p. 62, May 71
\(\begin{array}{ll}\text { Ground plane, three-band } \\ \text { LA1E1 } & \text { p. 6, May } 72\end{array}\)
\begin{tabular}{lr} 
Correction & p. 6, May 72 \\
p.91, Dec 72
\end{tabular}

Footnote (letter)
p. 91, Dec 72
\(\begin{array}{ll}\text { Ground systems for vertical antennas } & \\ \text { WDBCBJ } & \text { p. 31, Aug } 79\end{array}\)
High-frequency Yagl antennas, understacking


High-gain phased array, experimental KLZIEH
p. 44 , May 80
\(\begin{array}{ll}\text { Short circuit } & \text { p. 67, Sep } 80\end{array}\)
Horizontal-antenna gain at selected vertical
radlation angles
W7LA
Horizontal antennas, optimum helght for W7LR
p. 54 , Feb 76
p. 40, Jun 74

Horizontal antennas, vertical radiation patterns
WA9RQY p. 58, May 74
Inverted-vee antenna (ietter)
WB6AQF
p. 66, May 71

Inverted-vee antenna, modified
W2KTW
p. 40 , Oct 71

Inverted-vee installation, improved low-band (HN)
W9KNI
p. 68, May 76
nverted V or delta loop, how to add to tower K40JC
p. 32, Jul 76

Large vertical, 160 and 180 meters W7IV
p. 8, May 75

Log-periodic antenna, 14,21 and 28 MHz
W4AEO
Log-periodic antennas, \(7-\mathrm{MHz}\)
W4AEO
Log-periodic antennas, feed system for
WAAEO
p. 18, Aug 73
p. 16, May 73 W4AEO
D. 30 , Oct 74

Log-periodic antennas for high-frequency Amateur bands
W4AEO, W6PYK
p. 67 , Jan 80

Log-periodic fixed-wire beams for 75 -meter DX
W4AEO W6PYK
p. 40, Mar 80

Log-periodic fixed-wire beams for 40 meters W4AEO, W6PYK p. 26, Apr 80
Log-periodic antennas, graphical design method for
W4AEO
og-periodic anten
3.5 and 7.0 MHz
\(\begin{array}{ll}3.5 \text { and } 7.0 \mathrm{MHz} & \text { p. 44, Sep } 73 \\ \text { W4AEO }\end{array}\)
Log-periodic beams, improved (letter)
W4AEO
Log-periodic beam, 15 and 20 meters
W4AEO
p. 74, May 75

W4AEO
p. 6, May 74

Log periodic design
W6PYK, W4AEO
Log-periodic feeds (letter)
W4AEO
p. 34, Dec 79

W4AEO
p. 66, May 74

Log-perlodic, three band
W 4 AEO
W4AEO
Longwire antenna, new design
p. 28, Sep 72

\section*{K4EF}
p. 10, May 77

Loop antennas
W4OQ
p. 18, Dec 76

Loop antenna, compact (letter)
p. 6, Feb 80

Loop receiving antenna
W2IMB
p. 66, May 75

Correction
Loop-Yagi antennas
Loop-Yagi
VK2ZTB
D. 58, Dec 75
\(\begin{array}{ll}\begin{array}{l}\text { Low-band antenna problem, solution to } \\ \text { W8YFB }\end{array} & \text { p. 30, May } 76 \\ \text { p. 46, Jan } 78\end{array}\)
\begin{tabular}{|c|c|}
\hline Low-mounted antennas W3FQJ & p. 66, May 73 \\
\hline Moblle antenna, hellcally wound ZE8JP & p. 40, Dec 72 \\
\hline Mobile color code (letter) & \\
\hline W86.JFD & p. 90, Jan 78 \\
\hline Multiband antenna system VK2AOU & p. 62, May 79 \\
\hline Multiband vertical antenna system WeNCU & p. 28, May 78 \\
\hline Open quad antenna
12RR & p. 36, Jul 80 \\
\hline Phased antenna (letter) Thacker, Jerry & p. 6, Oct 78 \\
\hline Phased array, design your own KIAON & p. 78, May 77 \\
\hline Phased array, electrically-controlled W5TRS & p. 52, May 75 \\
\hline Phased vertical antenna for 21 MHz W6XM & p. 42, Jun 80 \\
\hline Phased vertical array, flne tuning W4FXE & p. 46, May 77 \\
\hline Phased vertical array, four-element W8HXR & p. 24, May 75 \\
\hline Quad antenna, modified
ZF1MA & p. 68, Sep 78 \\
\hline Quad antenna, repairs (HN) K9MM & p. 87, May 78 \\
\hline Quad for 7-28 MHz & \\
\hline W3NZ & p. 12, Nov 80 \\
\hline
\end{tabular}

Quad, three-element, for \(\mathbf{1 5 - 2 0}\) meters using circular 80
elements
W. 12,
Quad, three-element switchable, for 40 meters N8ET
p. 26 , Oct 80

Quad variations, more (HN) W5TRS
p. 72 , Oct 80

Quads vs Yagis revisited
p. 12, May 79 N6NB
Comments, WB6MMV, N6NB
Satellite antenna, simple (HN) WA6PXY
p. 59, Feb 75

Selective antenna system minimizes unwanted signals W5TRS
p. 28, May 76

Selective receiving antennas W5TRS
p. 20, May 78

Shunt-fed tower (HN) N6HZ
p. 74, Nov 79

Shunt-feed systems for grounded vertical radiators, how to design W4OQ
p. 34 , May 75

Simple antennas for 40 and 80 W5RUB
p. 16, Dec 72

Sloping dipoles W5RUB
p. 19, Dec 72

Performance (letter) p. 76, May 73

Small beams, high performance G6XN
p. 12, Mar 79

Small-loop antennas W4YOT
p. 36, May 72

Stressed quad (HN) W5TIU
p. 40 , Sep 78

Suitcase antenna, high-frequency
p. 61, May 73

Tailoring your antenna, how to KH6HDM
Telephone-wire antenna (HN) K9TBD
Traps and trap antennas W8FX
p. 34, May 73
p. 70, May 76

Triangle antennas
W3FQJ
Triangle antennas
p. 34, Aug 79 W6KIW
Triangle antennas (letter) p. 58, May 72 K4ZZV
Triangle beams
W3FQJ p. 70, Dec 71
Tuning aid for the sightless (HN) W6VX
p. 83, Sep 76

Vertical antenna for 40 and 75 meters
WGPYK W6PYK
Vertical antenna radiation patterns W7LR
p. 44, Sep 79

Vertical antenna, low-band
p. 50, Apr 74

W4IYB
Vertical antenna, portable WABNWL
Vertical antenna, three-band W9BQE
Vertical antennas, improving performance of
```

K6FD
p. 54, Dec 74

```

Vertical antennas, performance characteristics
W7LR
Vertical dipole, gamma-loop-fed W6SAI
p. 34, Mar 74

Vertical for 80 meters, top-loaded
p. 19, May 72 W2MB
p. 20, Sep 71

Vertical radiators
W4OQ
p. 16, Apr 73

Vertical-tower antenna system W4OQ
p. 56, May 73

Wilson Mark II and IV, modifications to (HN) W9EPT
p. 89, Jan 80

Windom antenna, four-band
W4VUO p. 62, Jan 74
Correction (letter) \(\quad\) p. \(74, \mathrm{Sep} 74\)
Windom antennas K4KJ
p. 10, May 78

Windom antenna (letter) K6KA
p. 6, Nov 78

Pt. I Yagi antenna design: performance calculations
W2PV p. 23, Jan 80

Short circult \(\quad\) p. 66, Sep 80
Pt. II Yagl antenna design: experiments confirm computer analysis W2PV
p. 19 , Feb 80

Pt. III Yagi antenna design: performance of multielement simplistic beams
W2PV p. 18, May 80
Pt. IV Yagi antenna design: multi-element simplistic beams
W2PV p. 33, Jun 80
Pt. V Yagi antenna design: optimizing performance W2PV
p. 18, Jul 80

Pt. VI Yagi antenna design: quads and quagis
W2PV p. 37, Sep 80
Pt. VII Yagi antenna design: ground or earth effects
W2PV
Pt VIII Yagi antenna design: stacking
Pt. VIll Yagi antenna design: stacking
W2PV
D. 29 , Oct 80

Pt. IX Yagi antennas: practical designs W2PV
Zepp antenna, extended W6QVI
p. 22, Nov 80

ZL special antenna, 10 -meter, for indoor
K5AN
ZL special antenna, understanding the
WAGTKT
WAGTKT
3.5-MHz broadband antennas N6RY
\(3.5-\mathrm{MHz}\) phased horizontal array K4JC
5-MHz sloping antonna array W2LU
p. 30, Dec 80
p. 48, Dec 73
p. 50, May 80
p. 38, May 76
p. 44, May 79
p. 56, May 77
p. 70 , May 79
3.5-MHz tree-mounted ground-plane K21NA
p. 48, May 78
7. MHz antenna array

K7CW
p. 30, Aug 78

7-MHz rotary beam W7DI
p. 34, Nov 78

7-MHz short vertical antenna
p. 60, Jun 77

4-MHz delta-loop array
N2GW
p. 16, Sep 78
p. 46, May 74
p. 72, May 76
p. 34 , Oct 72

\section*{vhf antennas}

Antennas for satellite communications, simple K4GSX
Antenna-performance measurements
using celestial sources
W5CQM4RXY
p. 24, May 74

Circularly-polarized ground-plane antenna for sateltite communications K4GSX
p. \(\mathbf{2 8}\), Dec 74

Collinear antenna for two meters, nine-element
WGRJO p. 12, May 72
Collinear antenna (letter)
W6SAI
p. 70, Oct 71

Collinear array for two meters, 4 -element
WB6KGF p. 6, May 71
Collinear antenna, four element \(440 \cdot \mathrm{MHz}\)
WABHTP
p. 38 , May 73
Converting low-band mobile antenna
to \(144-\mathrm{MHz}(\mathrm{HN})\)
K7ARR
p. 90, May 77

Corner reflector antenna, 432 MHz WA2FSQ
p. 24, Nov 71

Dual quad array for two meters

\section*{W7SLO}
p. 30 , May 80

Feed horn, cylindrical, for parabolic reflectors wa9HUV
p. 16, May 76

Folded whip antenna for vhf mobile - Weekender
WB2IFV WB2IFV
p. 50, Apr 79

Ground plane, portable vhf (HN)
K9DHD
Magnet-mount antenna, portable (HN)
WB2YY
Magnetic mount for mobile antennas
WaHK
p. 71, May 73 WOHK
67. May 76

Matching techniques for vhf/uhf antennas W1JAA
p. 50, Jul 76

Microwave-antenna designers, challenge for W6FOO
p. 44, Aug 80

Mobile antenna, magnet-mount W1HCl
p. 54, Sep 75

Mobile antennas, vhf, comparison of W4MNW
p. 52, May 77

Multiband J antenna
WB6JPI p. 74, Jul 78
OSCAR antenna, moblle (HN)
WGOAL
p. 67, May 76

OSCAR az-el antenna system WAINXP
p. 70, May 78

Parabolic reflector antennas
p. 12, May 74

Parabolic reflector element spacing Waghuv
p. 28, May 75

Parabollc reflector gain
W2TQK
p. 50 , Jul 75

Parabolic reflectors, finding the focal length (HN)
WA4WDL
Quad-Yagl arrays, 432- and \(1296-\mathrm{MHz}\)
W3AED
p. 57, Mar 74

Short circuit
p. 20, May 73

Simple antennas, \(144-\mathrm{MHz}\) p. 58, Dec 73
WA3NFW
p. 30, May 73

Two-meter fm antenna (HN) WB6KYE
p. 64, May 71

Vertical antennas, truth about \(5 / 8\)-wavelength
K0DOK p. 48, May 74
Added note (ietter)
Whip, \(5 / 8\)-wave, \(144-\mathrm{MHz}\) (HN)
VE3DDD
p. 54, Jan 75

Yagi antennas, how to design
W1JR
Yagi uhf antenna simplifled (HN)
WA3CPH
Yagi, \(1296-\mathrm{MHz}\)
W2CQH
\(\begin{array}{ll}\text { W2CQH } & \text { p. 24, May } 72 \\ 7-\mathrm{MHz} \text { attic antenna (HN) } & \end{array}\)
-MHz attic antenna (HN)
W2ISL
p. 70, Apr 73
p. 22, Aug 77
p. 74, Nov 79
p. 68, May 76

10-GHz dielectric antenna (HN)
p. 80, May 75

144-MHz vertical, \(5 / 8\)-wavelength K6KLO
p. 40, Jul 74

144- MHz antenna, \(5 / 8\)-wavelength built from CB mobile whip (HN) WB4WSU
p. 67, Jun 74
\(144-\mathrm{MHz}\) collinear uses PVC pipe mast (HN)
K8LLZ p. 66, May 76
144-MHz mobile antenna (HN) W2EUQ
p. 80, Mar 77

144-MHz mobile antenna WD8QIB
p. 68, May 79
\(144-\mathrm{MHz}\) vertical mobile antennas, \(1 / 4\) and
\(5 / 8\) wavelength, test data on
W2LTJ, W2CQH
p. 46, May 76
\(144 \cdot \mathrm{MHz}, 5 / 8\)-wavelength vertical WIRHN
p. 50, Mar 76
\(144-\mathrm{MHz}, 5 / 8 \cdot\) wavelength, vertical antenna for mobile KALPO
p. 42 , May 76
\(432-\mathrm{MHz}\) high-gain Yagi
K6HCP p. 46, Jan 76
Comments, WQPW
Comments, WQPW
\(432 \cdot \mathrm{MHz}\) OSCAR antenna (HN) WIJAA
p. 63, May 76

1296-MHZ antenna, high-gain
p. 58, Jul 75

W3AED
p. 74, May 78
\(1296-\mathrm{MHz} \mathrm{Yagi} \mathrm{array}\)
p. 40 , May 75

\section*{matching and tuning}
\begin{tabular}{|c|c|}
\hline Active antenna coupler for VLF & 79 \\
\hline Antenna bridge calculations & \\
\hline Anderson, Leonard H . & p. 34, May 78 \\
\hline Antenna bridge calculations (letter) W5QJR & 78 \\
\hline Antenna coupler for three-band beams ZS6BT & 72 \\
\hline Antenna coupler, six-meter & \\
\hline Antenna instrumentation, simple, & \\
\hline K4IPV & p. 71, Jul 77 \\
\hline Antenna matcher, one-man W4SD & 71 \\
\hline Antenna tuner adjustment (HN) WA4MTH & 75 \\
\hline Antenna luner, automatic WAOAQC & p. 36, Nov 72 \\
\hline Antenna tuner, medium-power toroidal WB22SH & \\
\hline Antenna tuners & \\
\hline W3FQJ & p. 58, Dec 72 \\
\hline Antenna tuning units W3FGJ & . 58, Jan 73 \\
\hline Balun, adjustable for Yagl antennas W6SAI & \\
\hline Broadband balun, high performance K4KJ & 80 \\
\hline Broadband balun, simple and etficient WIJR & p. 12, Sep 78 \\
\hline Broadband reflectometer and power me VK2ZTB, VK2ZZQ & \begin{tabular}{l}
er \\
p. 28, May 78
\end{tabular} \\
\hline Coaxial-llne transformers, a new & \\
\hline 6TC & p. 12, Feb 80 \\
\hline Short circuit & p. 70, Mar 80 \\
\hline Short circuit & p. 67, \(\operatorname{Sep} 80\) \\
\hline Dummy loads W4MB & p. 40, Mar 76 \\
\hline \begin{tabular}{l}
Feeding and matching techniques for vhf/uhf antennas \\
WIJAA
\end{tabular} & \\
\hline ma-m & \\
\hline K2BT & p. 74, May 75 \\
\hline Gamma-matching networks, how to desig & \\
\hline W71TB & p. 46, May 73 \\
\hline alf-wave balun: theory and application & \\
\hline K4KJ & p. 32, \(\operatorname{Sep} 80\) \\
\hline Impedance bridge, low-cost RX WBYFB & p. 6, May 73 \\
\hline Impedance-matching baluns, open-wire WGMUR & p. 46, Nov 73 \\
\hline Impedance-matching systems, designing
W7CSO & p. 58, Jui 73 \\
\hline Johnson Matchbox, improved & \\
\hline IHV & p. 45, Jul 79 \\
\hline Short circuit & p. 92, Sep 79 \\
\hline L.matching network, appreclating the WA2EWT & p. 27, Sep 80 \\
\hline Macromatcher: increasing versatility K9DCJ & p. 68, Jun 80 \\
\hline Matching, antenna, two-band with stubs & \\
\hline W6MUR & p. 18, Oct 73 \\
\hline
\end{tabular}

Matching complex antenna loads
to coaxial transmission lines
WB7AUL
p. 52, May 79

Matching system, two-capacitor W6MUR
p. 58, Sep 73

Matching transformers, multiple quarter-wave K3BY p. 44, Nov 7
Measuring complex impedance with swr bridge
WB4KSS p. 46 , May 75

Mobile transmitter, loading
W4YB
RX noise bridge, improvements to
p. 46, May 72

W6BXI, W6NKU
Comments
p. 10, Feb 77 p. 100. Sep 77

Noise bridge construction (letter) OH2ZAZ
p. 8, Sep 78

Nolse bridge, antenna (HN) K8EEG
p. 71, May 74

Noise bridge calculations with
TI \(58 / 59\) calculators
WD4GRI
p. 45, May 78

Noise bridge for impedance measurements
YA1GJM
p. 62, Jan 73

Added notes \(\quad\) p. 66, May 74; p. 60, Mar 75
Comments, W6BXI \(\quad\) p. 6, May 79
Omega-matching networks, design of W7ITB
Optimum pi-network design
p. 54, May 78
p. 50, Sep 80

Phase meter, if
p. 28, Apr 73

Quadrifilar torold (HN)
p. 52, Dec 75

Swr bridg
WB2ZSH
p. 55, Oct 71

Swr bridge readings (HN)
W6FPO
p. 63, Aug 73

Swr indicator, aural, for the visually
handicapped
K6HTM
p. 52, May 76

Swr meter
Swr meter, improving (HN)
W5NPD
p. 68, Nov 78

Swr, what is your?
N4OE
p. 68, May 76
p. 68, Nov 79

T-Network impedance matching to coaxial feedlines
W6EBY
ransformers, coaxial-line
W6TC
p. 22, Sep 78

Transmatch, five-to-one
W7IV
p. 18, Mar 80

W7IV
Transmission lines, grid dipping (HN)
W2OLU
WA2VTR
Uht coax connectors (HN)
( HN )
WOLCP
p. 70, Sep 72

\section*{towers and rotators}

Antenna and tower restrictions W7IV
p. 24, Jan 76

Antenna guys and structural solutio W6RTK
p. 33, Jun 78

Antenna position display AE4A communications W2LX
p. 18, Feb 79

Cornell-Dubilier rotators (HN)
K6KA
Ham-M modifications (HN)
p. 34, Mar 75 W2TQK

75

Ham-M rotator automatic position control WB6GNM
, May 7 B p. 42, May K4DLAW1RDR
KLM antenna rotor, computer control for (HN) W8MOW
Plpe antenna masts, design data for W3MR
p. 68, Dec 80 AMa
p. 52, Sep 74 p. 75, May 75

Rotator, AR-22, fixing a sticky WA1ABP p. 34, Jun 71

Rotator for medlum-sized beams K2BT
Rotator starting capacitors (ietter) WBWX
Short circuit
Rotator, T-45, Improvement (HN) WAOVAM
p. 48, May 76
p. 92, Sep 79 p. 70, Mar 80
p. 64, Sep 71

Stress analysis of antenna systems W2FZJ
p. 23, Oct 71

Telescoping TV masts (HN)
WAOKKC
p. 57, Feb 73

Tilt-over tower uses extension ladder
W5TRS
p. 71, May 75

Tower guying (HN) K9MM
p. 98 , Nov 77

Tower, homemade tilt-over
p. 28, May 71

Towers and rotators
K6KA
p. 34 , May 76

Wind loading on towers and antenna
structures, how to calculate
K4KJ
p. 16, Aug 74

\section*{transmission lines}

Antenna-transmission line analog, part 1
W6UYH Antenna-transmission line analog, part 2

Antenna-transmission line analog, part 2
W6UYH
Balun, coaxia
p. 52, Apr 77
p. 29, May 77
wanRox
p. 26, May 77

Coax cable dehumidifier
K4RJ
Coax cable, repairing water damage (HN)
p. 26 , Sep 73 W5XW
p. 73, Dec 79

Coax cable, salvaging water-damaged (HN)
W5XW p. 88, Jan 80
Coaxlal cable (C\&T)
W1DTY
p. 50, Jun 76

Coaxlal cable, checking (letter)
p. 68, May 71

Coaxial cable connectors, homebrew hardline-to-uhf
K2YOF
p. 32, Apr 80

Coaxial connectors, sealing, (HN) WSXW
Letter K7ZFG
p. 64, Mar 80

Letter K7ZFG
Coaxial-cable fittings, type-F K2MDO
p. 6, Oct 80

Coaxial connectors can generate rfi
p. 44, May 71

WIDTY
p. 48, Jun 76

Coaxial-line transformers, a new class of
WBTC

WET
p. 12, Feb 80

Short circult \(\quad\) p. 70, Mar 80
Short circuit
Coaxial-line loss, measuring with reflectometer
W2VCl
p. 50, May 72

Connectors for CATV coax cable WỊIM
p. 52, Oct 79

Impedance transformer, non-synchronous (HN)
W5TRS p. 66, Sep 7

Comments, W3DVO p. 63, May 76
Matching transformers, multiple quarter-wave
K3By
p. 44, Nov 78
Matching 75-ohm CATV harding
to 50 -ohm system
K1XX
Open-wire feedthrough insulator (HN)
W4RNL
p. 31, Sep 78

Remote switching multiband antennas
G3LTZ
ingle feedine for multiple antennas
ingle feadine for multiple antennas
K21SP
T coupler, the (HN)
K3NXU
p. 79, May 75

Time-domain reflectometry, checking transmission
lines with
K7CG
p. 32, Jul 80

Transformers, coaxial-line
WeTC
Transmission line calculations
using your pocket calculator for W5TRS
p. 18, Mar 80

Transmission. Hne circult design for 50 MHz and above
W6GGV p. 38, Nov 80
Transmission lines, long, for optimum antenna

\section*{location}

N4UH p. 12, Oct 80
Transmit/receive switch, solid-state vhf-uhf
W4NHH
Uhf microstrip swr bridge
WACGC
p. 54, Feb 78

WWM indicator, computing 22, Dec 72
WB9CYY p. 58, Jan 77
Short clrcult \(\quad\) p. 94, May 77
Zip-cord feedlines (HN) W7RXV
p. 32, Apr 78

Zlp-cord feedlines (letter)
WB6BHI
WB6BHI p.
W7VK
75 - hm CATV hardline matching to 50 -ohm systems
K1XX \(\quad\) p. 31, Sep 78

\section*{audio}

Active filters
p. 70, Feb 78

Audio agc principles and practice p. 28, Jun 71 Audio CW filter W7DI p. 54, Nov 71

Audio filter, tunable, for weak-signal communications K6HCP
p. 28, Nov 75

Audio filters, aligning (HN) W4ATE
p. 72, Aug 72

Audio filters, inexpensive WBYFB
p. 24, Aug 72

Audio filter mod (HN)
p. 60, Jan 72

Audio mixer (HN)
66, Nov 76
W6KNE
p. 66, Nov 76

Audio module, a complete K4DHC
p. 18, Jun 73

Audio-oscillator module, Cordover WB2GQY
p. 44, Mar 71

Correctlon
p. 80, Dec 71

Audio-power integrated circuits W3FQJ
p. 64, Jan 76

Audio processor, communications for reception W6NRW
Audio transducer (HN) WA1OPN p. 71, Jan 80

Binaural CW reception, synthesizer for W6NRW
p. 59, Jul 75

Comment
p. 46, Nov 75 p. 77, Feb 77

Duplex audio-frequency generator with AFSK features
p. 66 , Sep 79

Dynamic microphones (C\&T) W1DTY
p. 46, Jun 76

Filter, lowpass audio, simple OD5CG D. 54, Jan 74

Gain control IC for audlo signal processing
Jung
Hang age clrcuit for ssb and CW Hang agc
W1ERJ p. 47, Jul 77

Meadphone cords (HN) W2OLU
p. 50, Sep 72

Headphones, dual-Impedance (HN) AB9Q
p. 62, Nov 75
p. 80, Jan 78

W5JJ
p. 67, Sep 73

Increased flexibility for the MFJ Enterprises CW filters
K3NEZ
p. 58, Dec 76

Intercom, simple (HN)
W4AYV
p. 66, Jul 72

Microphone preamplifler with agc Bryant
p. 28, Nov 71

Microphone, using Shure 401A with Drake TR-4 (HN)
p. 68, Sep 73

Microphones, muting (HN)
W6IL
p. 63, Nov 75

Microphones and simple speech processing
W1OLP \(\quad\) p. 30 , Mar 80
Letter, W5VWR p. B, Sep 80
Notch filter, tunable RC
p. 16, Sep 75

Comment p. 78, Apr 77

Oscillator, audio, IC p. 50, Feb 73

W6GXN
p. 20, Jul 71

W8GRG
p. 40 , Oct 80

K7NM
p. 38, Feb 72

OH2CD
p. 38, Feb 72

RC active filters using op amps p. 54 , Oct 76

RC actlve filters (ietter) W6NRM
p. 102, Jun 78

Recelvers, better audio for K7GCO
p. 74, Apr 77

Rf clipper for the Collins S-line
р. 18, Aug 71

Rf speech processor, ssb
Apeech
W2MB
p. 18, Sep 73

Speaker-driver module, IC
p. 24, Sep 72

Speech clipper, IC
p. 18, Feb 73

Added notes (ietter)
p. 64, Oct 73

Speech clippers, it

G6XN
Added notes
p. 26, Nov; p. 12, Dec 72

Speech clippling in single-sideband equipment
K1YZW

Speech clipping (letter)

W3EJD
Speech compressor (HN) Novotny
p. 72, Jul 72 peech proc
p. 70, Feb 76

Speech processing, principles of
p. 28, Feb 75

Added notes p. 75, May 75; p. 64, Noy 75
Speech processing technique, split audio band WIDTY
p. 30, Jun 76

Speech processor, audio-frequency K3PDW Short circuit
Speech processor, IC VK9GN
Speech processor, split-band (letter) WA2SSO
Speech processors (letter) K3ND
Speech processing, split-band (letter) Schreuer, NTWS
Speech systems, Improving K2PMA
RC active filters using op amps W4IYB
Squelch, audio-actuated K4MOG
Synthesizer-filter, binaural W6NRW
Tape head cleaners (letter) K4MSG
p. 48 , Aug 77 p. 68, Dec 77
p. 31, Dec 71
p. 6, Dec 79
p. 6, Aug 80
p. 74 , Feb 80
p. 72, Apr 78
p. 54 , Oct 76
p. 52, Apr 72
p. 52, Nov 76

Tape head cleaning (letter) Buchanan
Variable-frequency audio filter W4VRV
p. 67, Oct 72
p. 62, Apr 79

Volce-band equalizer WB2GCR
p. 50 , Oct 80

Voice-operated gate for carbon microphones W6GXN
p. 35, Dec 77

\section*{commercial equipment}

Alliance rotator improvement (HN)
K6JVE
Alliance \(\mathrm{T}-45\) rotator Improvement ( HN ) WAOVAM
p. 68, May 72
p. 64, Sep 71

Amateur Radio equipment survey number two W1SL p. 52, Jan 80
Atlas 180, improved vfo stability (HN) K6KLO
p. 73, Dec 77

Autek fitter (HN)
K6EVQ, WABWZO
p. 83, May 79

CD'R AR-22 rotator, fixing a sticky WA1ABP
p. 34, Jun 71

Cieanup tips for amateur equipment (HN)
Fisher
legg 27B, S-meter for (HN)
WA2YUD
WA2YUD
Collins KWM-2, updating W6SAI
p. 61, Nov 74

Collins KWM-2KKWM-2A modifications (HN) W6SAI p. 80, Aug 76 Collins KWM2 transceivers, improved rellability (HN) WBSA1
Collins R390 rf transformers, repairing (HN)
WA2SUT
Collins receivers, \(300 \cdot \mathrm{~Hz}\) erystal filter for W1DTY
\(300-\mathrm{Hz}\) crystal filter for Collins recelvers -Hz crystal filter for Collins recelvers p. 58, Sep 75
W1DTY p. 58, Sep 75
\(300 \cdot \mathrm{~Hz}\) crystal filter for Collins receivers 58 , 75
W1DTY
\(300-\mathrm{Hz}\) crystal filter for Collins recelvers (letter)
\(\begin{array}{cc}\text { G3UFZ } & \text { D. 80, Jan } 78 \\ \text { Collins S-Ilne, improved frequency readout for the }\end{array}\)
W1GFC D. 53, Jun 7
Collins S-line backup power supply (HN)
N1FB
ollins S-line monitoring (HN)
N1FB
Collins S-line power supply mod (HN) W6IL
p. 61, Jul 74

Collins S-line receivers, Improved selectivity W6FR
Collins S-line, reducing warm-up drift W6VFR
Collins S-line, ri clipper for K6JYO Correction
Collins S-Ine spinner knob (HN) W8VFR
Collins S-Ine, syllabic vox system for
WhP W6VFR
p. 71, Nov 72

Collins 32S-series ALC meter Improvement (HN) W6FR

Collins 32S-3 audio (HN)

p. 64, Oct 71

Collins 325 cooling (HN)
N1FB
p. 74, Nov 79

Collins 32S, improved stability for (HN) N1FB
p. 83, May 79

Collins 32S PA disable jacks
N1FB
Collins 75 S CW sidetone (HN)
N1FB
Collins 32S-1, updating
N1FB
Coilins 51J, modifying for ssb reception
W6SAI
K5CE
K5CE
Collins \(516 \mathrm{~F} \cdot 2\) high-voltage regulation ( HN )
N1FB
Collins \(516 \mathrm{~F}-2\) solid-state rectifiers (HN)
1FB
Collins 70E12 PTO repair (HN)
W6BIH
p. 72, Feb 77

Collins 70K-2 PTO, correcting
mechanical backlash (HN) K9WEH
p. 58, Feb 75

Collins 75A4 avc mod (letter) W9KNI
p. 63, Sep 75

Collins 75A4 hints (HN)
W6VFR
p. 68, Apr 72

Collins 75A4, Increased selectivity for (HN)
W1DTY p.62, Nov 75
Collins 75A-4 modifications (HN)
p. 67 , Jan 71

Collins 75A4 noise limiter
W1DTY p. 43, Apr 76
Colilins 75A4 PTO, making it perform like new
W3AFM
Collins 75
p. 24, Dec 74

W6NBI
p. 8, Dec 75

Short circuit
p. 85 , Oct 76

Collins 75S receiver, (HN) N1FB
p. 94, Oct 78

Collins 75S-series crystal adapter (HN)
K1KXA
Collins R-388(51J), inter-band
calibration stability (HN)
W50ZF
p. 72, Feb 77
p. 95, Sep 77

Collins R390A, improving the product detector
W7DI
Colins R390
WA2SUT
p. 12, Jul 74
p. 58, Nov 75

Collins R392, improved ssb reception with (HN)
VE3LF
Comdel speech processor, increasing the versatility
Comdel speech processor, increasing the versatility of (HN) Of (HN)
W6SAI
p. 67, Mar 71

Cornell-Dubilier rotators (HN)
K6KA
p. 82, May 75

Drake gear, simple tune-up (HN) W7DIM
p. 79, Jan 77

Drake R-4 receiver frequency synthesizer for
W6NBI p. 6, Aug 72

Modification (letter)
Drake R4C backlash, cure for (HN)
W3CVS
Drake R-4C, cleaner audio for (HN) K1FO
p. 6, Aug 72
p. \(74, \operatorname{Sep} 74\)
p. 82, May 79

Drake R-4B and TR-4,
split-frequency operation

\section*{WB8JCO}
p. 88, Nov 78

Drake R-4C, electronic bandpass tuning in
Horner
p. 66, Apr 79

Horner
Drake R-4C, new audio amplifier for
WBajGP, K8RRH
Drake R-4C, new product detector for (HN)
WBQGP product detector, Improving (HN)
W3CVS p. 64, Mar 80

Drake transcelver, Woodpecker nolse blanker
for (HN)
KIKSY
p. 69, Dec 80

Drake TR-4, using the Shure 401A
microphone with (HN)
G3XOM
p. 68, Sep 73

Drake TR-22C sensitivity improvement (HN)
K7OR p.
Drake T-4X transmitters, Improved tuning
on 160 meters (HN)
W1IBI, W1HZH
p. 81, Jan 79

Factory service (letter)
W6HK
p. 6, Jul 80

Feediline loss, calculating with a single
measurement at the transmitter ( HN ) K9MM
p. 98, Jun 78

Genave transceivers, S-meter for (HN) K90XX
p. 80, Mar 77

Hallicrafters HT-37, improving W6NIF
p. 78, Feb 79

Ham-M modification (HN) W2TQK
p. 72, May 76

Ham-M rotator automatic position control WB6GNM o. 42, May 77
Harm-M rotator control box, modifications of (HN) K4DLAN1RDR
p. 68 , Nov 80

Ham-M rotator torque loss (HN) W1JR
p. 85, Jun 79

Short clrcuit
Ham-3 rotator, digital readout for K1DG
p. 92 , Sep 79
P. 56, Jan 79

Hammarlund HQ215, adding 160 -meter coverage D. 10 (H)
Heath HD-10 keyer, positive lead keying (HN) W4VAF
.32, Jan 72
p. 88, Nov 78 eath HD-1982 Micoder for low-impedance operation Johnson, Wesley p. 86, May 78
Heath HM- 2102 wattmeter, better balancing (HN) VE6RF p. 56, Jan 7
Heath HM-2102 vhf wattmeter, high power callbration for (HN) W9TKR
p. 70, Feb 76

Heath HM-2102 wattmeter mods (ietter) K3VNR \(p\)
Heath HO. 10 as RTTY monitor scope (HN) K9HVW
Heath HR-2B external speaker and tone pad (HN) N1FB p. 69, Nov 78
Heath HW-7 mods, keying and receiver blanking ( HN )
WA5KPG
p. 60, \(\mathrm{Dec}_{\mathrm{ec}} 74\)

Heath HW- 12 on MARS (HN) KBAUH
p. 63, Sep 71

Heath HW-16 keying (HN) W7DI
p. 57, Dec 73

Heath HW-16, low-impedance headphones for (HN)
p. 88, Jul 77

WNBWJR
Heath HW-16, vfo operations for WB6MZN
p. 54, Mar 73 Short circult
p. 58, Dec 73

Heath HW-17 modifications (HN) WA5PWX
p. 66, Mar 71

Heath HW-100, HW-101, grid-current monitor for K4MFR
p. 46, Feb 73

Heath HW- 100 tuning knob, loose (HN)
Veath HW-101 sidetone control (HN)
AD9M
Heath HW-101, using with a separate re
p. 68, Jun 71
p. 79, Jul 79 WATMKP
p. 63 , Oct 73

Heath HW-202, adding private-line
Wa8awJ
p. 53. Jun 74

Heath HW-202, another look at the fm channel scanner for K7PYS
p. \(68, \operatorname{Mar} 76\)

Heath HW-202 lamp replacement (HN) W5UNF
p. 83, \(\mathrm{Sepp}^{76}\)

Heath HW-2036 antenna socket (HN) W3HCE
p. 80 , Jan 79

Heath HW-2036, carrier-operated relay for WD5HYO
p. 58, Feb 80

Heath HW2036; Lever action switch illumination (HN) W2IFR p. 99, Jul 78
Heath HW2036, outboard LED frequency display W88TJL
WB6TMH, WA6ODR D. 62, Mar 79
WB6TMH, WA6ODR
Heath HWA-2036-3 crowbar circuit (HN) W3HCE
Heath IM-11 vivm, convert to IC voltmeter
Heath IM-11 vivm, convert to IC voltmeter K6VCl Rossman p. 42, Dec 74 p. 81, Jun 77

Heath Micoder Improvements W10LP
p. 42, Nov 78

Heath Micoder matching (letter) WB8VUN
p. 8, Sep 78

Heath SB- 102 headphone operation (HN) K1KXA
Heath SB-102 modifications (HN) W2CNO
p. 87, Oct 77
p. 58, Jun 75

Heath SB-102 modifications (HN) W2CNQ
p. \(79, \mathrm{Mar} 77\)

Heath SB-102 modifications (HN) W2CNO
p. 78 , Mar 77

Heath SB-102 modifications (letter) W1JE
p. 110, Mar 78

Heath SB-102, rf speech processor for
W6IVI p. 38, Jun 75
Heath SE-t02, recelver incremental tuning for (HN)
K1KXA p. 81, Aug 76
Heath SB-102, WWV on (HN)
K1KXA
p. 78. Jan 77

Heath SB-200 amplifier modifying for the 8873
zero-bias triode
W6UOV
p. 32, Jan 71

Heath SB-200 amplifier, six-meter conversion
K1RAK
p. 38, Nov 71

Heath SB-200 CW modification
p. 99, Nov 77

K6YB
Heath S8-303, \(10 . \mathrm{MHz}\) coverage for (HN) \({ }^{\text {P. }}\)
Heath S8-303, \(10-\mathrm{MHz}\) coverage for (HN) p. 61 , Feb 74
W 1 JE
Heath SB-610 as RTTY monitor scope (HN)
K9HVW p. 70, Sep 74
Heath SB-650 using with other receivers
K2BYM
Heath SB receivers, RTTY reception with (HN)
K9HVW p. 64, Oct 71
Heath SB-series crystal control and narrow
shift RTTY with (HN)
WA4VYL p. 5
Heathkit Micoder adapted to low-impedance
Input (HN)
WB2GXF p. 78 Aug 79
Heathkit HW-8, increased break-in delay (HN) K6YB
b. 84, Jun 79

Heathkit HW-2036, updating the
p. 50 , Nov 80

Heathkit SB-serles equipment, heterodyne
crystal switching (HN)
K1KXA
p. 78, Mar 77

Heath ten-minute timer K6KA
p. 75, Dec 71

Heathkit, nolse limiter for (HN) W7CKH p. 67, Mar 71

Heathklt HW202, fim channel scanner for W7BZ \(\quad\) p. 41, Feb 75
Henry 2K4 and 3KA linears, electronic
blas switching
W1CBY p. 75, Aug 78
Hy-Gain 400 rotator, improved indicator system for
W4PSJ
p. 60 , May 78

HP- 35 calculator, keyboard cleaning (HN)
Anderson, Leonard \(H\).
K1KXA
COM IC-22S, using below 146 MHz (HN) W1IBI p. 73, Feb 77

COM IC-230, adding splinter channels (HN) WA1OJX
p. 82, Sep 76

ICs, drilling template for (HN)
WA4WDL, WB4LJM
p. 78, Mar 77

Johnson Matchbox, improved K4IHV
p. 45, Jul 79

Short circuit
p. 92, Sep 79

Kenwood TR-7500, preprogrammed (HN)
WGKNI
p. 95 , Oct 78

Kenwood TS-520 CW filter modification (HN)
W7ZZ
Kenwood TS-520, TVI cure for (HN)
Kenwood
W3FUN
p. 21, Nov 75

W3FUN
p. 78, Jan 77

Kenwood TS-520-SE transceiver, counter mixer for
W5NPD p. 60, Sep 80
Measurements Corporation 59 grid-dip oscillator improvernents
W6GXN p. 82, Nov 78
Micro Mart RM terminal modification (HN) WA5VQK
p. 99, Jun 78

Mini-mitter II
W6SLQ
p. 72, Dec 71

Mini-mitter II modiflcatlons (HN)
p. 64, Apr 76

KIETU
Motorola channel elements
WB4NEX
p. 32, Dec 72

Motorola Dispatcher, converting to 12 volts
WB6HXU
p. 26, Jul 72

Short circuit
p. \(64, \mathrm{Mar} 74\)

Motorola fm receiver mods (HN)
p. 60, Aug 71 VE4RE
Motorola P-33 series, Improving WB2AEB
p. 34, Feb 71

Motorola receivers, op-amp relay for W6GDO
p. 16, Juil 73

Motrac Receivers (letter) K5ZBA
p. 69, Jul 71

National NCL-2000, using the Drake T.4XC (HN)
K5ER
p. 94 Jan 78

Ni-cad battery charging (letter)
W6NRM p. 6, Jul 80
Regency HR transcelvers, signal-peaking
indicator and generator for (HN) W8HVG
p. 68, Jun 76

Regency MR.2, narrowbanding WA8TMP
Regency HR-212, channel scanner for
p. 44, Dec 73 WAGSJK
p. 28, Mar 75
R. 392 recelver mods (HN)

KH6FOX
p. 65، Apr 76

SB-220 transceiver, inrush current protection, Apr 7 Weekender
W3BYM
p. 66, Dec 80

Spurious causes (HN) K6KA
p. \(66, \operatorname{Jan} 74\)

Standard 826 M , more power from (HN) WB6KVF
p. 68, Apr 75

Swan television interference: an affective remedy

Swan 160X birdie suppression (HN) W6SAI
p. 46, Apr 71

Swan 250 Carrier suppression (HN) WB8LGA
Swan 350, curing frequency drift
WAGIPH
p. 36 , Oct 78
p. 79, Oct 76

Swan 350 CW monitor (HN) K1KXA p. 63, Jun 72 Correction (letter) p. 77, May 73
Swan 350, receiver incremental tuning (HN)
K1KXA
Telefax transcelver conversion
KOQMR p.
p. 64, Jul 71

Ten-Tec Argonaut, accessory package for
W7BBX
W7BBX
Ten-Tec Horizon/2 audio modification (HN)
WB9RKN
Ten-Tec KR-20 keyer, stablization of (HN)
W3CRG
Ten-Tec Omni-D, improved CW agc for (HN)
\(\begin{array}{ll}\text { W6OA } & \text { p. 88, Jan } 80\end{array}\)
Ten-Tec RX10 communicators recelver
W1NLB
p. 88, Jan 80

TS-820/TS-820S, reducing interference in (HN)
W4MB
TS-820 filter switching modification (HN) K7OAK
WIIson Mark II and IV modifications to
p. 72, Jun 80

Wison Mark II and IV, modifications to (HN)
W9EPT p. 89, Jan 80
Yaesu sideband switching (HN)
W2MUU
Yaesu spurious signals (HN) K6KA
p. 56, Dec 73

Units affected (letter)
p. 69, Dec 71

Yaesu FT-101 clarifler (letter)
K1NUN
p. 67, Oct 73
p. 55, Nov 75

Yaesu FT-227R memorizer, improved memory (HN)
WA2DHF
p. 79, Aug 79

\section*{construction techniques}

AC line cords (letter)
W6EG
p. 80, Dec 71

Aluminum tubing, clamping (HN) WA9HUV
p. p. 78, May 75
\begin{tabular}{ll} 
Anodize dyes (letter) & p. 6, Sep 79 \\
W4MB
\end{tabular}
Anodizing aluminum \(\quad\) p. 62, Jan 79
VE7DKR p. 6 Nov 79

Comments, WA9UXK p. 6, Nov 79
\begin{tabular}{ll} 
Antenna insulators, homemade (HN) \\
W7ZC & D. 70, May 73
\end{tabular}
\begin{tabular}{l} 
Blower-to-chassis adapter (HN) \\
K6JYO
\end{tabular}
Cabinet construction techniques
W7KDM

Capacitors, custom, now to make p. 36, Feb 77

WBGESV
Capacitors, oil-filled (HN)
W2OLU
Circuit boards with terminal inserts ( HN )
Circuit boards with terminal inserts (HN)
W3KBM
p. 61, Nov 75
Cliplead carousel (HN)
p. 79 Oct 79

Coaxial cable connectors, homebrew hardline-to-uhf
K2YOF
p. 32, Apr 80
(HN)
Coax cable, salvaging water-damaged (HN)
WSXW
Coils, self-supporting
Anderson p. 42, Jul 77
Cold galvanizing compound (HN) WSUNF
p. \(70, \mathrm{Sep} 72\)

Color coding parts (HN)
WA7BPO
p. 58, Feb 72

Component marking (HN)
W1JE
p. 66, Nov 71
wal swifching, remote (HN)
WABYET
p. 91, Feb 79

Orill guide (HN)
W5EvF p. 88, Oct 71

Drilling aluminum (HN)
WGIL
p. 67, Sep 75

Enclosures, homebrew custom
W4YUU
p. 50, July 74

W3HUC
p. 79, Jan 77
\begin{tabular}{|c|c|}
\hline Exploding diodes (HN) VE3FEZ & 57 \\
\hline \multicolumn{2}{|l|}{Files, cleaning (HN)} \\
\hline Walton & . 66, \\
\hline \multicolumn{2}{|l|}{Ferrite beads, how to use} \\
\hline \multicolumn{2}{|l|}{Hot etching (HN)} \\
\hline K8EKG & . 66 \\
\hline \multicolumn{2}{|l|}{Hot wire stripper (HN)} \\
\hline W8DWT & p. 67 \\
\hline \multicolumn{2}{|l|}{IC holders (HN)} \\
\hline W3HUC & p. 80, Aug \\
\hline \multicolumn{2}{|l|}{IC lead former (HN)} \\
\hline W5ICV & p. 67 \\
\hline \multicolumn{2}{|l|}{Indicator circuit, LED} \\
\hline \multicolumn{2}{|l|}{Inductance, toroidal coil (HN)} \\
\hline W3WLX & p. 26, Sep \\
\hline \multicolumn{2}{|l|}{Inductors, graphical aid for winding} \\
\hline \multicolumn{2}{|l|}{Lightning protection (letter)} \\
\hline K9MM & p. 12 \\
\hline \multicolumn{2}{|l|}{Magnetic fields and the \(7360(\mathrm{HN})\)} \\
\hline \multicolumn{2}{|l|}{Metalized capacitors (HN)} \\
\hline W8YFB & p. 82, May \\
\hline \multicolumn{2}{|l|}{Metric conversions for screw and wire sizes} \\
\hline W1DTY & p. 67 \\
\hline \multicolumn{2}{|l|}{Microcircuits, visual alds for working on} \\
\hline \multicolumn{2}{|l|}{Minibox, cutting down to size (HN)} \\
\hline \multicolumn{2}{|l|}{Neutralizing tip (HN)} \\
\hline ZE6JP & p. 69, Dec 72 \\
\hline \multicolumn{2}{|l|}{Noisy fans (HN)} \\
\hline W8IUF & p. 70, Nov 72 \\
\hline Correction (letter) & p. 67, Oct 73 \\
\hline \multicolumn{2}{|l|}{Nuvistor heat sinks (HN)} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Phone plug wiring (HN) \\
N1FB
\end{tabular}}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Printed-circuit boards, cleaning ( HN ) W5BVF}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Printed-circuit boards, how to clean K2PMA} \\
\hline \multicolumn{2}{|l|}{Printed-circuit boards, how to make K4EEU} \\
\hline \multicolumn{2}{|l|}{Printed-circult boards, low-cost W6CMQ} \\
\hline \multicolumn{2}{|l|}{Printed-circult boards, low-cost} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Printed-clrcuit boards, practical photofabrication of}} \\
\hline & \\
\hline Hutchinson & p. 6, Sep 71 \\
\hline \multicolumn{2}{|l|}{PC layout using longhand} \\
\hline WB9QZE & p. 26, Nov 78 \\
\hline Comments, W5TKP & D. 6, Jun 79 \\
\hline Printed-circuit standards (HN) W6.JVE & \\
\hline \multicolumn{2}{|l|}{Printed-circuit tool (HN)} \\
\hline W2GZ & p. 74 \\
\hline \multicolumn{2}{|l|}{Printed-circuits, simple method for (HN)} \\
\hline W4MTD & p. 51, Apr 78 \\
\hline \multicolumn{2}{|l|}{Rejuvenating transmitting tubes with} \\
\hline Thoriated-tungsten filaments (HN) & \\
\hline W6NIF & p. 80, Aug 78 \\
\hline Restoring panel lettering (HN) & \\
\hline WBCL & p. 69, Jan 73 \\
\hline \multicolumn{2}{|l|}{Screwdriver, adjustment (HN)} \\
\hline \multicolumn{2}{|l|}{Silver plating (letters)} \\
\hline WAgAGD & p. 94, Nov 77 \\
\hline \multicolumn{2}{|l|}{Silver plating made easy} \\
\hline WA9HUV & p. 42, Feb 77 \\
\hline \multicolumn{2}{|l|}{Soldering aluminum (HN)} \\
\hline ZEB.JP & p. 67, May 72 \\
\hline \multicolumn{2}{|l|}{Soldering tip cleaner (HN)} \\
\hline W3HUC & p. 79, Oct 76 \\
\hline \multicolumn{2}{|l|}{Soldering tips} \\
\hline WA4MTH & p. 15, May 76 \\
\hline \multicolumn{2}{|l|}{Ten-Tec Omnl-D, improved CW agc (HN)} \\
\hline W60A & p. 72, Dec 79 \\
\hline \multicolumn{2}{|l|}{Thumbwheel switch modification (HN)} \\
\hline \multicolumn{2}{|l|}{Toroids, plug-in (HN)} \\
\hline K8EEG & p. 60, Jan 72 \\
\hline \multicolumn{2}{|l|}{Transfer letters (HN)} \\
\hline WA2TGL & p. 78, Oct 78 \\
\hline \multicolumn{2}{|l|}{Unf coax connectors (HN)} \\
\hline \multicolumn{2}{|l|}{Vectorboard tool (HN)} \\
\hline WA1KWJ & p. 70, Apr 72 \\
\hline \multicolumn{2}{|l|}{Volume controls, nolsy, temporary fix (HN)} \\
\hline w9Juv & D. 62, Aug 74 \\
\hline \multicolumn{2}{|l|}{Wilson Mark II and IV modificatlons (HN)} \\
\hline W9EPT & p. 73, Dec 79 \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Wire-wound potentiometer repair (HN) W4ATE \\
p. 77, Feb 78
\end{tabular}} \\
\hline
\end{tabular}
digital techniques

Basic rules and gates


\section*{features and fiction}

Alarm, burglar-proof (HN) Elsenbrandt p. 56, Dec 75

Binding 1970 issues of ham radlo (HN) W10HZ
p. 72, Feb 71

Brass pounding on wheels K6QD
p. 58 , Mar 75

Fire protection in the ham shack Darr
p. 54, Jan 71

First wireless in Alaska
p. 48 , Apr 73

James R. Fisk memorial
p. 2, Jun 80

W1XU
James R. Fisk, W1HR - some reflections
W6NIF
Jim Fisk, tribute to, publisher's log
im Fisk, tribute to, publisher's log W1NLB
Hallicrafters history W6SAI
p. 6, Jun 80

Hallicrafters story (letter) KBADM

20, Noy 79

Hallicrafters story (letter) W1TVN
p. 6, May 80

Hallicrafters story (letter)
WA2JVD
Ham Radio sweepstakes winners, 1972
p. 6, May 80 W1NLB
Ham Radio sweepstakes winners, 1973 W1NLB W1NLB
Hellschreiber, a rediscovery PAOCX
Jammer problem, solutions for UX3PU
Comments
Nostalgia with a vengance W6HDM
p. 6, Sep 80
p. 58, Jui 72
p. 68, Jul 73
p. 54, Jul 75
p. 28, Dec 79

Reminisces of old-time rad K4NW
p. 40, Apr 71

Ten commandments for technicians
p. 58 , Oct 76

1929-1941, the Golden years of amateur radi
W6SAI 1979 world administrative radio conference
W6APW \(\quad\) p. 48, Feb 76

\section*{fm and repeaters}

Amateur fm, close look at W2YE
Antenna and control-link calculations for repeater licensing W7PUG

Antenna design for omnidirectiona repeater coverage N9SN
Antennas, simple, for two-meter fm WA3NFW
Antenna, two-meter fm (HN) WB6KYE
D. 46, Aug 79
p. 58, Nov 73
p. 59 , Dec 73
p. 20, Sep 79
p. 30, May 73
p. 64, May 71

Antenna, 5/8-wavalength, two-meter K6KLO
p. 40, Jul 74

Antenna, \(5 / 8\) wavelength two-meter, build from CB mobile whips (HN) WB4WSU
p. 67, Jun 74

Automatically controlled access
to open repeaters W8GRG
p. 22, Mar 74

Autopatch system for vhf fm repeaters W8GRG
p. 32, Jul 74

Base station, two-meter fm W9JTQ
p. 22, Aug 73

Carrier-operated relay
K0PHF, WAQUZO
p. 58, Nov 72

Carrier-operated relay and call monitor VEARE
p. 22, Jun 71

Channel scanner
W2FPP
p. 22, Dec 73

W2FPP
Channels, three from two (HN) VE7ABK
p. 29, Aug 71

Charger, fet-controlled for nicad batteries WAGJYK
Collinear antenna element W6RJO
Collinear array for two meters, 4 -element
WB6KGF
Command function debugging circuit WA7HFY
Control head, customizing
VETABK
VE7ABK
Converting low-band mobile antenna
to \(144 \mathrm{MHz}(\mathrm{HN})\)
K7ARR
p. 90, May 77

Decoder, contral function
p. 66, Mar 77

Detectors, im, survey of W6GXN
p. 22. Jun 76
\(\begin{aligned} & \text { Deviation measurement (letter) } \\ & \text { K5ZBA }\end{aligned} \quad\) p. 68, May 71
Deviation measurements
W3FQJ
p. 52, Feb 72

N6UE
Digital scanner for 2 -meter synthesizers
Digital scanner for 2-meter synthesizers
K4GOK
Digital touch-tone encoder for vhf fm p. 56, Feb 78 W7FBB
p. 28, Apr 75

Discriminator, quartz crystal
p. 67, Oct 75

European vhf-fim repeaters SM4GL
p. 80, Sep 76

External frequency programmer (HN)
WB9VWM
Filter, \(455-\mathrm{kHz}\) for fm
WAGYK
p. 22, Mar 72

Fm demodulator using the phase-locked loop
KL7IPS
p. 74 , Sep 78

Comments
Anderson, Leonard H. p. 6, Apr 79
Fm demodulator, TTL
W3FQJ
Fm receiver frequency control (letter)
W3AFN
Fm transmitter, solid-state two-meter
W6AJF
Fm transmitter, Sonobaby, 2 meter
WAOUZO
Short circuit
Crystal deck for Sonobaby
Folded whip antenna for vhf mobile - Weekender

\section*{WB2IFV}
D. 50, Apr 79

Frequency meter, two-meter fm W4JAZ
p. 40, Jan 71

Short clrcuit
p. 72, Apr 71

Frequency synthesizer, inexpensive
all-channel, for two-meter fm
WCOA
p. 50, Aug 73

Correction (letter)
Frequency-synthesizer, one-crystal
for two-meter fm
WOMV
p. 30, Sep 73

Frequency synthesizer, for two-meter fm WB4FPK
p. 34, Jul 73

Frequency synthesizer sidebands, filter reduces (HN) K1PCT
p. 80, Jun 77

Frequency synthesizers, 600 kHz offset for (HN) K6KLO
p. 98, Jul 78

High performance vhf fm transmitter WA2GCF
IC-230 modification (HN)
W8PEY
i-f system, multimode
WA2IKL
p. 10 , Aug 76
p. 80, Mar 77
p. 39, Sep 71

WB90NI
intertace problems fm aquipment (HN) p. 38, Apr 73 WGDPY
p. 58 , Jun 75

Interference, scanning receiver (HN) K2YAH
p. 70, Sep 72

Logic oscillator for multi-channel crystal control WISNN
p. 46, Jun 73

Magnet mount antenna, portable (HN) WB2YYU
p. 67, May 76

Mobile antenna, magnet-mount W 1 HCl
p. 54, Sep 75

Mobile antennas, vhf, comparison of W4MNW
p. 52, May 77

Mobile operation with the Touch-Tone pad WOLPC Correction Modification (letter)
p. 58, Aug 72
p. 90 , Dec 72

Moblle rig, protecting from theft (C\&T) WIDTY
Monitor recelvers, two-meter fm WB5EMI
Motorola channel elements WB4NEX
Motorola fm receiver mods (HN) VE4RE
p. 72, Apr 73
p. 42, Apr 76
p. 34, Apr 74
p. 32, Dec 72

Motorola P-33 series, improving the WB2AEB

Aug 71

Motrac receivers (letter) K5ZBA
Multimode transcelvers, fm-ing on uhf (HN W6SAI
p. 98, Nov 77

Ni -cad charger, any-state WA6TBC
p. 66, Dec 79

Phase-locked loop, tunable, 28 and 50 MHz WIKNI P. 40
Phase modulation principles and techntques
VE2BEN
p. 28, Jul 75 Correction
Power amplifler, rf \(220-\mathrm{MHz} \mathrm{fm}\) K7JUE
p. 59, Dec 75

Power amplifier, rf, 144 MHz Hatchett
p. 6, Sep 73

Power amplifier, rf, 144-MHz fm W4CGC
p. 6, Dec 73
p. 6, Apr 73

Power amplifier, two-meter fm, 10 -watt WIDTY
p. 67, Jan 74

Power supply, regulated ac for mobile fm equipment WABTMP
p. 28, Jun 73

Preamplifier for hand-talkies WB2IFV
p. 89, Oct 78

Preamplifier, two meter WA2GCF
p. 25, Mar 72

Preamplifier, two meter W8BBB
p. 36, Jun 74

Private call system for vhf fm WAGTTY
Private call system for vhf fm (HN) W9ZTK
Private-line, adding to Heath HW-202 WABAWJ
Push-to-talk for Stylellne telephones W1DRP
Receiver alignment techniques, vhf fm K4IPV
Receiver for six and two meters, multichannel fm W1SNN
p. 62, Sep 77
p. 77, Feb 78
p. 53, Jun 74
p. 18, Dec 71
p. 14, Aug 75
p. 54, Feb 74

Receiver, modular, for two-meter fm WA2GBF
p. 42, Feb 72 Added notes
Recelver performance, comparison of

VE7ABK
VE7ABK
Receiver performance of vacuum-tube vhf-fm equipment, how to improve W6GGV
p. 52, Oct 76

Receiver, tunable vhf fm K8AUH
p. 34, Nov 71

Recelver, vhf fm WA2GCF
p. 6, Nov 72

Recelver, vhf fm WA2GCF
p. 8, Nov 75

Receiver, vhf fm (letter) K8IHQ
p. 76, May 73

Recelvers, setup using hf harmonics (HN) K9MM
Relay, operatlonal-amplifier, for Motorola recelvers W6GDO
p. 16, Jul 73

Remote base, an altarnative to repeaters WA6LBV, WA6FVC
p. 32, Apr 77

Repeater channel spacing (letter) WB6.JPI
Repeater control with simple timers W2FPP Correction
p. 90, Jan 78
p. 46, Sep 72
p. 91, Dec 72

Repeater decoder, multi-function
p. 24, Jan 73

Repeater instaliation
W2FPP
p. 24, Jun 73

Repeater jammers, tracking down W4MB
p. 56 , Sep 78

Repeater kerchunk eliminator WB6GTM
p. 70, Oct 77

Repeater linking, carrier-operated relay for KOPHF
p. 57, Jul 76

Repeater problems
VE7ABK
p. 38, Mar 71

Repeater shack temperature, remote checking ZL2AMJ ingle-frequency fm W2FPP
p. 84, Sep 77
p. 40, Nov 73

Reset timer, automatic
W5ZHV
p. 54 , Oct 74

Satellite recelvers for repeaters
WA4YAK
p. 64, Oct 75

Scanner, two-channel, for repeater monltoring W8GRG
p. 48 , Oct 76

Scanner, vhf receiver
K2LZG
p. 22, Feb 73

Scanning receiver, improved for vhf fm
WA2GCF
p. 26, Nov 74

Scanning recelver modifications, whf im
WA5WOU
K4IPV P. 28, Aug 74
Sequentlal encoder, moblle fm W3JJU
p. 34, Sep 71

Sequential switching for Touch-Tone repeater control
W8GRG
p. 22, Jun 71

Repeater interference: some correctlve actions W4MB
p. 54, Apr 78

Simple scope monitor for vhf fm W1RHN
p. 66, Aug 78

Single-frequency conversion, vhf/uhf W3FQJ
p. 62, Apr 75

Single-sideband fm, introduction to W3EJD
p. 10, Jan 77

Single-tone decode WA2UMY
p. 70, Aug 78

S-meter, audible, for repeaters ZL2AMJ
p. 49, Mar 77

S-meter for Clegg 27 B (HN) WA2YUD
p. 61, Nov 74

Solar powered repeater design
p. \(\mathbf{2 8}, \operatorname{Dec} 78\) WB5REANBSRSN
p. 68, Sep 74 uelch-audio amplifier for fm receivers WB4WSU
p. 78 Oct 7 WB4WSU
p. 78 , Oct 76

Squelch circuits for transistor radlos WB4WSU
p. 36, Dec 75

Subaudlble tone encoders and decoders
WBGRG
Synthesized channel scanning WAQUZO
p. 26, Jul 78
ynthesized two-meter fm transceiver
p. 68, Mar 77

Synthesized two-meter fm transceiver W1CMR, K1IJZ
p. 10 , Jan 76
p. 78, Sep 76

Synthesizer, 144 MHz , 800-channel K4VB, WA4GJT
Synthesizer, 144-MHz CMOS K9LHA
Telephone controller, automatic for your repeater KBPHF, WAGUZO
Telephone controller for remote repeate operation
KOPHF, WAQUZO p. 50, Jan 76
Precautions (letter) p. 79, Apr 77
Test set for Motorola radios
K0BKD
Short clrcult \(\quad\) p. 58, Dec 73
Added note (letter) p. 64, Jun 74
Time-out warning indicator for tm repeater users K3NEZ
p. 62, Jun 76

Timer, simple (HN) W3CIX
p. 58, Mar 73

Tone-alert decoder WBZXH
p. 64, Nov 78

Tone-burst generator (HN) K4COF
p. 58, Mar 73

Tone-burst generator for repeater accessing
WASKPG
p. 68 , Sep 77
p. 94, Feb 79

Tone-burst keyer for fm repeaters W8GRG
p. 36, Jan 72

Tone encoder, universal for vhf fm W6FUB
p. 17, Jul 75 p. 58, Dec 75

Tone generator, IC
Ahrens
p. 70, Feb 77

Tone generator, IC (HN)
W6IPB
p. 88, Mar 79

Touch-tone circult, mobile
p. 50 , Mar 73

K7QWR
Touch-tone decoder, IC W3QG
p. 26, Jul 78

Touch-tone decoder, multi-function
p. 14 Oct 73 K0PHF, WAOUZO
Touch-tone decoder, third generation
WA7DPX
p. 36, Feb 80

Short circuit p. 67, Sep 80
Touch-tone decoder, three-digit
W6AYZ
Circuit board for p.62, Sep 75
Touch-tone encoder
p. 41, Aug 77

Touch-tone hand-held
Ouch-tone hand-held
K7YAM
Touch-tone handset, converting slim-line
K2YAH
K2YAH
WGAOI
p. 23, Jun 75

Transmitter, two-meter for
W9SEK p. 6, Apr 72
Tunable receiver modification for vhf fm
WB6VKY
Two-meter synthesizer, direct output
p. 40, Oct 74 WB2CPA
p. 10, Aug 77

Short circult p. 68, Dec 77
144-MHz synthesizer, direct output
WB2CPA
p. 10, Aug 77
144. MHz synthesizer, direct output (letter)

WB6.JPI
Jp/down repeater-mode circuit for two-meter synthesizers, 600 kHz WB4PHO Short circuit
p. 40, Jan 77

Vertical antennas, truth about \(5 / 8\)-waveleng, May 77
ertical antennas, truth about \(5 / 8\)-wavelength
KODOK
p. 48 , May 74

Added note (letter)
Weather monitor recelver, retune to
two-meter fm (HN) W3WTO
Whip, 5/8-wave, \(144 \mathrm{MHz}(\mathrm{HN})\)
VE3DDD
VE3DDD
p. 70 , Apr 73

144- MHz digital synthesizers, readout display
WB4TZE
144-MHz fm exciter, high performance
WA2GCF
144-MHz mobile antenna (HN)
W2EUQ
p. 10, Aug 76
\(144-\mathrm{MHz}\) vertical mobile antennas, \(1 / 4\) and
5/8 wavelength, test data on
W2LTJ, W2CQH p. 46, May 76
\(144-\mathrm{MHz}, 5 / 8\)-wavelength vertical antenna
W1RHN
\(144-\mathrm{MHz} 5 / 8\)-wavelength, vertical antenna
for mobile
K4LPQ
p. 42, May 76
\(144-\mathrm{MHz}\) synthesizer, dlrect output
WB2CPA
p. 10, Aug 77
\(144-\mathrm{MHz}\) synthesizer, direct output (letter)
WB6JPI
220 MHz frequency synthesizer
W6GXN
p. 90, Jan 78
p. 8, Dec 74
\(450-\mathrm{MHz}\) preamplifier and converter
p. 40 , Jul 75

\section*{integrated circuits}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Active filters} \\
\hline KBJM & p. 70, Feb 78 \\
\hline Amplifiers, broadband IC & \\
\hline W6GXN & p. 36, Jun 73 \\
\hline \multicolumn{2}{|l|}{Audio-power ICs} \\
\hline W3FQJ & p. 64, Jan 76 \\
\hline CMOS logic circults & \\
\hline W3FQJ & p. 50, Jun 75 \\
\hline \multicolumn{2}{|l|}{CMOS programmable divide-by-N counter (HN)} \\
\hline W782 & p. 94, Jan 78 \\
\hline Counter reset generator (HN) W3KBM & p. 68, Jan 73 \\
\hline \multicolumn{2}{|l|}{C L logic elrcuit} \\
\hline W1DTY & p. 4, Mar 75 \\
\hline \multicolumn{2}{|l|}{Digital counters (letter)} \\
\hline W1GGN & p. 76, May 73 \\
\hline \multicolumn{2}{|l|}{Digital ICs, part I} \\
\hline W3FQJ & p. 41, Mar 72 \\
\hline
\end{tabular}


Voltage regulators

W6GXN
Voltage-regulator ICs, adjustable WB9KEY
Voltage-regulator ICs, three-termina WB5EMI
Added note (letter)
Vivm, convert to an IC voltmeter K 6 VCl
555 timer operational characteristics WB6FOC
p. 31, Mar 77
p. 36, Aug 75
p. 26, Dec 73
p. 73, Sep 74
p. 42, Dec 74
p. 32, Mar 79
keying and control
Accu-keyer speed readout
K5MAT
Accu-Mill, keyboard interface for the Accu-Keyer WN9OVY
ASCll-to-Morse code translator
Morley, Scharon
p. 26, Sep 76
p. 41, Dec 76

Automatic beeper for station control WA6URN
p. 38, Sep 76

Biquad bandpass filter for CW N0DE
p. 70, Jun 79
Short circuit

Comments
p. 82, Sep 79

Break-In circult, CW W8SYK
Bug, solid-state K2FV
p. 40, Jan 72

Carrier-operated relay K@PHF, WAQUZO
p. 50, Jun 73

CMOS kayer simpl
p. 58, Nov 72

HB9ABO
CMOS keying circuits (H
p. 70, Jan 79

CMOS keying circuits (HN)
WB2DFA
Code speed counte K8TT
p. 86, Feb 79

Constant pitch monltor for cathode or grid-block keyed transmitters (HN)
K4GMR
Contest keyer, programmable Contest key
W7BBX
p. 100, Sep 78

CW break-in, quieting amplifiers for W1DB
p. 10, Apr 76

CW identifier, versatile
WB2BWJ
p. 22, Oct 80

CW keyboard using the APPLE II compute W6WR W2YE
p. 60, Oct 80
p. 23, Apr 79

CW reception, enhancing through a simulated-stereo technique WA1MKP
p. 61, Oct 74

CW regenerator for interference-free communications
Leward, WB2EAX
CW signal processor
W7KGZ
Comments, VE3CBJ.
p. 54, Apr 74
p. 34, Oct 78

CW sidetone (C\&T) W1DTY
p. 51, Jun 76

Dasher
p. 68 , Mar 79

Deluxe memory keyer with 3072-bit capacity
W3VT p. 32, Apr 79 Short circuit
p. 32, Apr 79

Differential keying circult W4IYB
p. 60, Aug 76

Electronlc hand keyer K5TCK
p. 36, Jun 71

Electronic keyer OK31A
p. 10, Apr 78

Electronic keyer, cosmos IC WB2DFA Short circult
p. 6. Jun 74 p. 62, Dec 74

Electronic keyer notes (HN) lectronic keyer package, compac W4ATE
p. 74, 0ec 71 p. 50, Nov 73

Electronic keyer with random-access memory WB9FHC
Corrections (letter)
p. 6, Oct 73
p. 58, Dec 74
p. 57, Jun 75
p. 76, Feb 77 Increased flexibillty (HN)
p. 62, Mar 75

Electronic keyer, 8043 IC WGGXN
D. 8, Apr 75

Electronic keyers, simple IC WA5TRS
p. 38, Mar 73

End-of-transmission \(K\) generator G8KGV
p. 58, Oct 79

External keying circuit
for multimode rigs (HN) WB2GXF
p. 72, Dec 79

Improving transmitter keying K6KA
p. 44, Jun 76

Key and vox clicks (HN)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Key and vox clicks (HN)} \\
\hline \multicolumn{2}{|l|}{Keyboard electronic keyer, the code mill} \\
\hline W6CAB & p. 38, Nov 74 \\
\hline \multicolumn{2}{|l|}{Keying, paddle, Slamese} \\
\hline WA5KPG & p. 45, Jan 75 \\
\hline \multicolumn{2}{|l|}{Keyer modification (HN)} \\
\hline W9KNI & p. 80, Aug 76 \\
\hline Comments & p. 94, Nov 77 \\
\hline \multicolumn{2}{|l|}{Keyer mods, micro-TO} \\
\hline DJ9RP & p. 68, Jul 76 \\
\hline \multicolumn{2}{|l|}{Keyer paddle, portable} \\
\hline WA5KPG & p. 52, Feb 77 \\
\hline \multicolumn{2}{|l|}{Keyer with memory (ietter)} \\
\hline Hansen, William & p. 6, Dec 79 \\
\hline \multicolumn{2}{|l|}{Key toggle} \\
\hline W6NRW & p. 50, Mar 79 \\
\hline \multicolumn{2}{|l|}{Latch circuit, dc} \\
\hline WOLPQ & p. 42, Aug 75 \\
\hline Correction & p. 58, Dec 75 \\
\hline \multicolumn{2}{|l|}{Memo-key} \\
\hline WA7SCB & p. 58, Jun 72 \\
\hline \multicolumn{2}{|l|}{Memory accessory, programmable for electronic keyers} \\
\hline WA9LUD & p. 24, Aug 75 \\
\hline \multicolumn{2}{|l|}{Memory keyer, W7BBX (letter)} \\
\hline SP2DX & p. 6, Jan 80 \\
\hline \multicolumn{2}{|l|}{Memory keyer, (letter)} \\
\hline W3VT & p. 6, Feb 80 \\
\hline \multicolumn{2}{|l|}{Memory keyer, 2048-bit (HN)} \\
\hline GW4CQT & p. 73, Jun 80 \\
\hline \multicolumn{2}{|l|}{Morse generator, keyboard} \\
\hline \multicolumn{2}{|l|}{Morse sounder, radio controlled (HN)} \\
\hline \multicolumn{2}{|l|}{Paddle, electronic keyer (HN)} \\
\hline KL7EVD & p. 68, Sep 72 \\
\hline \multicolumn{2}{|l|}{Paddle for electronic keyers} \\
\hline ZS6AL & p. 28, Apr 78 \\
\hline
\end{tabular}

Programmable accessory for electronic keyers (HN)
K9WGNMWOUSL p. 81, Aug 78
Programmable keyer, Autek MK-1, expanded memory for
N9AKT p. 58, Jan 80

Push-to-talk for Styleline telephones W1DRP
p. 18, Dec 71

Radio Shack ASCII keyboard encoder for micro-
processor-controlled CW keyboard, using (HN)

\section*{VE7ZV}
p. 72, Oct 80

RAM keyer update
K3NEZ
p. 60, Jan 76

KBKA
p. 62, Sep 71

Relays, undervoltage (HN)
W2OLU
p. 64, Mar 71

Reset timer, automatic W5ZHV
p. 54, Oct 74

Sequentlal switching (HN)
W5OSF
Step-start circuit, high-voltage (HN)
W6VFR
W6VFR
Suppression networks, arc (HN) WA5EKA
p. 64, Sep 71

Time base, calibrated electronic keyer \(\quad\) p. 70, Jul 73 W1PLJ
p. 39, Aug 75

Timer, ten-minute (HN)
DJ9RP
p. 66, Nov 76

Transceiver diplexer: an alternative to relays
N6RY
Transistor switching for
electronic keyers (HN) W3QBO
p. 71, Dec 80
ransmit/receive switch PIN diode
p. 66, Jun 74

\section*{W9KHC}

Vox, versatile
W9KIT
Short circult
p. 50, Jul 71

\section*{measurements and test equipment}

Absorption measurements, using your signal generator for W2OUX
p. 79 , Oct 76

AC current monitor (letter)
WB5MAP
p. 61, Mar 75

AC power-line monltor W2OLU
p. 46, Aug 71
\(\begin{array}{ll}\text { AFSK generator, crystal-controlled } & \text { p. 13, Jul } 72\end{array}\)
AFSK generator, phase-locked loop
p. 27, Mar 73

K7ZOF
A.m modulation monitor, vhf (HN)
K7UNL
p. 67, Jul 71
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Antenna bridge calculations} \\
\hline Antenna bridge calculations (letter) W5OJR & p. 6, May 78 \\
\hline \multicolumn{2}{|l|}{Antenna matcher} \\
\hline W4SD & p. 24, Jun 71 \\
\hline \multicolumn{2}{|l|}{Antenna and transmission line measurement techniques} \\
\hline \multicolumn{2}{|l|}{Automatic noise-figure measurements} \\
\hline Repair Bench & \\
\hline W6NBI & p. 40 , Aug 78 \\
\hline \multicolumn{2}{|l|}{Base step generator} \\
\hline WB4YDZ & p. 44, Jul 76 \\
\hline \multicolumn{2}{|l|}{Bridge, noise, for impedance measurements} \\
\hline YA1GJM & p. 62, Jan 73 \\
\hline Added notes p. 66, May & p. 60, Mar 75 \\
\hline \multicolumn{2}{|l|}{Broadband reflectometer and power meter} \\
\hline VK2ZTB, WB2ZZQ & p. 28, May 79 \\
\hline \multicolumn{2}{|l|}{Calibrating ac scales on the vivm, icvm and fet voltmeter} \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Capacitance measurements with a frequency counter - Weekender}} \\
\hline & \\
\hline & p. 62, Oct 79 \\
\hline \multicolumn{2}{|l|}{Capacitance meter} \\
\hline Mathieson, P. H. & p. 51, Feb 78 \\
\hline \multicolumn{2}{|l|}{Capacitance meter, digital} \\
\hline K4DHC & p. 20, Feb 74 \\
\hline \multicolumn{2}{|l|}{Capacitance meter, direct-reading} \\
\hline W6MUR & p. 48, Aug 72 \\
\hline Short circuit & p. 64, \(\operatorname{Mar} 74\) \\
\hline \multicolumn{2}{|l|}{Capacitance meter, direct-reading} \\
\hline WA5SNZ & p. 32, Apr 75 \\
\hline Added note & p. 31, Oct 75 \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Capacitance meter, direct reading, for olectrolytics \\
W9DJZ
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Capacitance meter, simplified} \\
\hline WA5SNZ & p. 78, Nov 78 \\
\hline \multicolumn{2}{|l|}{Capacitance meter, (simplified), improvements to} \\
\hline \multicolumn{2}{|l|}{Coaxial cable, checking (ietter)} \\
\hline \multicolumn{2}{|l|}{Coaxial-line loss, measuring with a reflectometer} \\
\hline W2VCl & p. 50, May 72 \\
\hline \multicolumn{2}{|l|}{Continuity bleeper for circuit tracing G3SBA} \\
\hline \multicolumn{2}{|l|}{Converter, mosfet, for receiver} \\
\hline \multicolumn{2}{|l|}{instrumentation} \\
\hline WA9ZMT & p. 62, Jan 71 \\
\hline \multicolumn{2}{|l|}{Counter control pulses (HN)} \\
\hline W9LL & p. 70, Apr 80 \\
\hline \multicolumn{2}{|l|}{Counter readouts, switching (HN)} \\
\hline \multicolumn{2}{|l|}{Counter reset generator (HN)} \\
\hline W3KBM & p. 68, Jan 73 \\
\hline \multicolumn{2}{|l|}{CRT intensifier for RTTY} \\
\hline K4VFA & p. 18, Jul 71 \\
\hline \multicolumn{2}{|l|}{Crystal checker} \\
\hline W6GXN & p. 46, Feb 72 \\
\hline \multicolumn{2}{|l|}{Crystal test oscillator and signal} \\
\hline generator
K4EEU & \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{Crystal-controlled frequency markers (HN)}} \\
\hline & \\
\hline WA4WDK & p. 64, Sep 71 \\
\hline \multicolumn{2}{|l|}{Decade standards, economical (HN)} \\
\hline \multicolumn{2}{|l|}{Deviation, measuring} \\
\hline N6UE & p. 20, Jan 79 \\
\hline \multicolumn{2}{|l|}{Digital capacitance meter} \\
\hline \multicolumn{2}{|l|}{Digital counters (tetter)} \\
\hline W1GGN & p. 76, May 73 \\
\hline \multicolumn{2}{|l|}{Digital readout station accessory, part I} \\
\hline \multicolumn{2}{|l|}{Digltal station accessory, part II} \\
\hline \multicolumn{2}{|l|}{Digital station accessory, part III} \\
\hline \multicolumn{2}{|l|}{Diode noise source for recelver noise measurements} \\
\hline W6NBI & p. 32, Jun 79 \\
\hline \multicolumn{2}{|l|}{Diode tester} \\
\hline W6DOB & p. 46, Jan 77 \\
\hline \multicolumn{2}{|l|}{Dip-meter converter for VLF} \\
\hline W4YOT & p. 26, Aug 79 \\
\hline Dummy load low-power vhf & p. 40, Sep 73 \\
\hline \multicolumn{2}{|l|}{Dummy loads} \\
\hline W4MB & p. 40, Mar 76 \\
\hline \multicolumn{2}{|l|}{Dynamic transistor tester (HN)} \\
\hline VE7ABK & p. 65, Oct 71 \\
\hline \multicolumn{2}{|l|}{Electrolytic capacitors, measuring capacitance of} \\
\hline \multicolumn{2}{|l|}{Electrolytic capacitors, measurement of (HN)} \\
\hline W2NA & p. 70, Feb 71 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Fm deviation measurement (letter) K5ZBA & 71 \\
\hline Fm deviation measurements W3FQJ & 2 \\
\hline Fm frequency meter, two-me & \\
\hline W4JAZ & 71 \\
\hline Short circuit & Apr 71 \\
\hline Frequencies, counted (HN) K6KA & p. 62, Aug 74 \\
\hline Frequency calibrator, generat coverage W5uas & p. 28, Dec 71 \\
\hline Frequency calibrator, how to design W3AEX & 71 \\
\hline Frequency counter, capacitance-meas accuracy for & men \\
\hline W1zUC & p. 44, Apr 80 \\
\hline Short circuit & p. 67, Sep 80 \\
\hline Frequency counter, miniature K5WKQ & 79 \\
\hline Frequency counter, K4JIU, mod K4JIU & for (HN) \\
\hline \begin{tabular}{l}
Frequency counter, modify for direct counting to 100 MHz \\
WA1SNG
\end{tabular} & 78 \\
\hline Frequency counter, CMOS & \\
\hline W2OKO & p. 22, Feb 77 \\
\hline Short circuit & p. 94, May 77 \\
\hline Frequency counter, front-ends for a 500 K4JIU & \begin{tabular}{l}
MHz \\
p. 30, Feb 78
\end{tabular} \\
\hline Frequency counter, how to improve the accuracy of W1RF & \\
\hline Frequency counter, high-impedan and pulse shaper for I4YAF & \\
\hline Frequency counter, simple (HN) W2QBR & \\
\hline Frequency counter, simplifying & \\
\hline W1WP & p. 22, Feb 78 \\
\hline Short circ & p. 94, Feb 79 \\
\hline Frequency counters, uhf and microwave W6NBI & p. 34, Sep 79 \\
\hline Frequency counters, understanding and W6NBI & \begin{tabular}{l}
using \\
p. 10 , Feb 78
\end{tabular} \\
\hline Frequency counters, high-sensitivity preamplifier for W1CFI & 78 \\
\hline Frequency counter, 50 MHz , 6 diglt & \\
\hline WB2DFA & p. 18, Jan 76 \\
\hline Comment & p. 79, Apr 77 \\
\hline Frequency-marker standard using cmos W4IYB & p. 44, Aug 77 \\
\hline \begin{tabular}{l}
Frequency measurement of received signals \\
W4AAD
\end{tabular} & \\
\hline Frequency measurement, vhf, with hf receiver and scaler (HN) W3LB & \\
\hline Frequency scaler, divide-by-ten & \\
\hline W6PBC & p. 41, Sep 72 \\
\hline arrectio & p. 90, Dec 72 \\
\hline Added comments (letter) & p. 64, Nov 73 \\
\hline Prescaler, improvements for W6PBC & 30, Oct 73 \\
\hline Frequency scaler, uhf (11C90) WB9KEY & 50, Dec 75 \\
\hline Frequency scaler, \(500-\mathrm{MHz}\) WEURH & p. 32, Jun 75 \\
\hline Frequency scalers, \(1200 \cdot \mathrm{MHz}\) WB9KEY & p. 38, Feb 75 \\
\hline Frequency standard (HN) WA7JIK & p. 69, Sep 72 \\
\hline Frequency standard, universal & \\
\hline K4EEU & p. 40, Feb 74 \\
\hline Short circuit & p. 72, May 74 \\
\hline Frequency synthesizer, high-frequency K2BLA & p. 16, Oct 72 \\
\hline Function generator, IC W1DTY & p. 40, Aug 71 \\
\hline Function generator, IC K4DHC & p. 22, Jun 74 \\
\hline Function generator, integrated circuit N3FG & p. 30, Aug 80 \\
\hline Function/units indicator using LED dis & \\
\hline K0FOP & p. 58, Mar 77 \\
\hline Gallon-size dummy load W4MB & p. 74, Jun 79 \\
\hline Gate-dip meter & \\
\hline W3WLX & p. 42, Jun 77 \\
\hline Grid-dip meter, no-cost W8YFB & p. 87, Feb 78 \\
\hline I-f alignment generator \(455-\mathrm{kHz}\) WA5SNZ & p. 50, Feb 74 \\
\hline I-f sweep generator & \\
\hline K4DHC & p. 10, Sep 73 \\
\hline Impedance bridge, low-cost RX W8YFB & \\
\hline
\end{tabular}

Impedance bridge measurement
errors
K4KJ
p. 22, May 79

Impedance, measuring with swr bridge
WB4KSS
mpulse generator, pulse-snap diode
mpulse generato
Siegal, Turner
p. 46, May 75

Intermodulation-distortion measurements on SSB transmitters W6VFR
p. 34, Sep 74

L, C, R bridge, universal WGAOI
p. 54, Apr 76

Linearity meter for SSB amplifiers W4MB
p. 40, Jun 76

Line-voltage monitor (HN)
WA8VFK
p. 66, Jan 74

Current monitor mod (letter)
p. 61, Mar 75

Logic monitor (HN)
WA5SAF
p. 70, Apr 72

Correction p. 91, Dec 72
Logic probe
K9CW
p. 83, Feb 79

Logic probe, digital
N6UE
p. 38, Aug 80

Logic test probe
VEGRF
\begin{tabular}{ll} 
Logic test probe (HN) & \\
Rossman & p. 56 , Feb 73 \\
Short circuit & p. 58, Dec 73
\end{tabular}

Short circuit p. 58 , Dec 73
Meter amplifiers, calibrating
W4OHT
Meter amplifier, electronic
WA9HUV p. 38, Dec 76
Meter interface, high-impedance
Laughlin
Meters, testing unknown (HN)
Meters, testing unknown (HN) WIONC
p. 66, Jan 71

Microwave marker generator, 3 cm band (HN)
WAAWDL
Milfiammeters, how to
W4PSJ
Monitorscope, RTTY
Monitorsc
W3CIX
p. 48, Sep 75

Multiplexed counter displays (HN)
p. 36, Aug 72 K1XX
p. 87, May 78

Multitester (HN)
W1DTY
p. 63, May 71
\(\begin{array}{ll}\begin{array}{l}\text { Noise bridge, antenna (HN) } \\ \text { K8EEG }\end{array} & \text { p. } 71, \text { May } 74\end{array}\)
Noise bridge calculations with TI 58/59 calculators
WD4GRI p. 45, May 78
\(\begin{array}{ll}\text { Noise figure measurements } & \text { p. } 40, \text { Aug } 78 \\ \text { W6NBI } & \end{array}\)
Comments
WB5LHV, W6NBI p.6, Aug 79
Noise-figure measurements for vhf
WB6NMT
Nolse figure, vhf, estimating
WASHUV
\begin{tabular}{ll} 
Noise generator, \(1296 \cdot \mathrm{MHz}\) & \\
W3BSV & p. 46, Aug 73
\end{tabular}
\(\begin{array}{ll}\text { Oscillator, audio } & \text { p. } 50 \text {, Feb } 73\end{array}\)
Oscillator, frequency measuring
W6IEL W6IEL P. 16, Apr
Oscillator, two-tone, for ssb testing
W6GXN
Oscilloscope voltage calibrator W6PBC
p. 54, Aug 72
eak envelope power, how to measure
W5JJ VE2AYU, Korth
p. 32, Nov 74

Power meter, of K8EEG
p. 28, Apr 73

Power meter, rf, how to use (repair bench) W6NBI WGMGI p.
Prescaler, vhf, for digital frequency counters K4GOK W6NBI
p. 84, Sep 78
\(\qquad\) with electronic counters Probe, sensitive rt (HN)
W5.JJ
G3SBA
p. 61, Dec 74

Radio Shack meters, internal resistance
Katzenberger p. 94, Nov 77
Repairs, thinking your way through Allen
Resistance standard, simple (HN)
W2OLU
o. 65, Mar 71

Resistance values below 1 ohm, measuring W4OHT
Resistance values below 10 hm , measuring (letter) W1PT
Resistance values, measuring below 1 ohm W4OHT
Resistor d
W4ATE
p. 66, Sep 77
p. 66, Jul 71

Rit current readout, remote (HN) W4ATE
p. 87, May 78

Rf detector, sensitive WB9DNI
p. 38, Apr 73

Rf power meter, low-level W5WGF
p. 58 , Oct 72

Rf wattmeter, accurate low power WA4ZRP
p. 38, Dec 77

WB2MPZ
RTTY signal generator W7ZTC
p. 33 , Oct 71
p. 23, Mar 71

Short circuit
p. 96, Dec 71

RTTY test generator (HN)
p. 67, Jan 73

RTTY test generator (HN)
p. 59, Mar 73

RTTY test generator
WB9ATW
p. 64, Jan 78

RX impedance bridge, low-cost W8YFB
p. 6, May 73

RX noise bridge, improvements to W6BXI, W6NKU
Comments
p. 10, Feb 77 p. 100 , Sep 77

Noise bridge construction (letter) OH2ZAZ
Safer suicide cord (HN) K6JYO
p. 8, Sep 78

Sampling network, rf - the milli-tap W6QJW
p. 64, Mar 71
p. 34, Jan 73

Signal generator, wide range W6GXN
p. 18 , Dec 73

Slotted line, how to use (repair bench) W6NBI
p. 58, May 77

Slow-scan TV test generator K4EEU
p. 6, Jul 73

Spectrum analyzer, dc-100 MHz W6URH
p. 16, Jun 77
p. 69 , Dec 77

Short circuit
p. 69 , Dec 77
p. 94 , Feb 79

Spectrum analyzer for SSB W3.JW
p. 24, Jul 77
pectrum analyzer, four channel W91A
p. 6 , Oct 72

Spectrum analyzer, microwave N6TX
p. 34 , Jul 78

Spectrum analyzer tracking generator W6URH
p. 30, Apr 78

Spectrum analyzers, understanding WA5SNZ
p. 50, Jun 74

SSB, signals, monitoring
W6VFR
p. 35, Mar 72

Sweep response curves for low-frequency i-f's Allen
p. 56, Mar 71

Switch-off flasher (HN)
Thomas
p. 64, Jul 71

Swr bridge
\(\begin{array}{ll}\text { WB22SH } & \text { p. } 55, \text { Oct } 71 \\ \text { Swr bridge (HN) } & \text { p. 66, May } 72 \\ \text { WA5TFK } & \\ \begin{array}{l}\text { Swr bridge readings (HN) } \\ \text { W6FPO }\end{array} & \text { p. } 63, \text { Aug } 73\end{array}\)
p. 63, Aug
dicapped

Swr indicator, aural, for the visually handicapped
K6HTM
p. 52, May 76
Swr Indicator, how to use (repair bench)
\(\begin{aligned} & \text { W6NBI }\end{aligned}\) p. 66, Jan 77
W6NBI
Swr measuring at high frequencles DJ2LR
Swr meter WB6AFT
p. 34, May 79

Swr meter, improving (HN)
W5NPD
p. 68, Nov 78

Swr meters, direct reading and expanded scale WA4WDK
p. 28, May 72 Correction
p. 90 , Dec 72

Tester for 6146 tubes (HN) W6KNE
p. 81, Aug 78

Test-equipment mainframe W4MB
p. 52, Jul 79

Test probe accessory (HN) W2IMB
p. 89, Jul 77

Testing power tubes K4IPV
p. 60, Apr 78

Time-base oscillators, improved calibration WA7LUJ, WA7KMR
p. 70, Mar 77

Time-domain reflectometry, experimenter's approach to
WABPIA
p. 22, May 71
coroid permeability meter

Transconductance tester for fets W6NBI
p. 46, Jun 77
p. 44, Sep 71
ransistor curve tracer
WA9LCX
p. 52, Jul 73

Short circuit
p. 63, Apr 74

Transistor tester, shirt pocket
WOMAY
Transmitter tuning unit for the blind W9NTP
p. 40 , Jul 76

Turn-off timer for portable equipment W50XD
p. 60, Jun 71

TVI locator
W6BD
p. 42, Sep 76
vacuum tubes, testing high-power (HN) W2OLU
Vhf prescaler
WBCHK
Vhf pre-scaler, improvements for W6PBC
VLF dip meter, no-adjust bias for (HN) WB3IDJ
Voltage calibrator for digital voltmeters W6NBI
Short circuit
p. 66, Jul 78
oltmeter calibrator precision p. 94, Feb 79
Woods Huber
Woods, Hubert
Vom/vtvm, added uses for (HN) W7DI
p. 94, Jun 78

VSWR bridge, broadband power-tracking K1ZDI
p. 67, Jan 73
p. 72, Aug 79

KWR indicator, computing WB9CYY
p. 58, Jan 77

Short circuit
VSWR and power meter, automatic WOINK
Vtvm, convert to an IC voltmeter K 6 VCl
p. 34, May 80

Wattmeter, low power (letter) WODLQ
p. 42, Dec 74

Weak-signal source, stable, variable-output
K6JYO p. pide
Wien Bridge oscillators, voltage-controlled
resistance for
WA5SNZ
36, Sep 71

WWV receiver, simple regenerative
WA5SNZ
WWV-WWVH, amateur applications for W3FQJ
D. 42, Apr 73

WWVB signal processor W9BTI
1.5 GHz prescaler, divide by 4

N6.JH
p. 88, Dec 78
microprocessors, computers and calculators
\begin{tabular}{|c|c|}
\hline Accumulator I/O versus memory I/O WB4HYJ, Rony, Titus & \\
\hline Computer, satellite, for under \(\$ 150\) WB6POU & p. 12, Mar 80 \\
\hline W keyboard & \\
\hline WB2DFA & \\
\hline CW keyboard & \\
\hline W6WR & p. 60, Oct \\
\hline CW trainer/keyer using a single N6TY & \begin{tabular}{l}
crocomputer \\
p. 16, Aug 79
\end{tabular} \\
\hline Data converters WAIMOP & 79, Oct 77 \\
\hline Decision, how does a microcompu WB4HYJ, Titus, Rony & \begin{tabular}{l}
ake a \\
p. 74, Aug 76
\end{tabular} \\
\hline Device-select pulses, generating WB4HYJ, Titus, Rony & output
\[
\text { p. } 44, \mathrm{Ap}
\] \\
\hline Digital keyboard entry system N2YKIN2GW & p. 92, \\
\hline How microprocessors fit into sc computers and controllers WB4HYJ, Rony, Titus & p. \\
\hline IC tester using the KIM-1 W3GUL & 74, Nov \\
\hline Input/output device, what is a? WB4HYJ, Rony, Titus & p. 50, Feb 76 \\
\hline Interfacing a digital multimeter with an 8080-based microcomputer W84HYJ, Rony, Titus & \\
\hline Interfacing a 10-bit DAC (Micr & \\
\hline Rony, Titus, WB4HYJ & p. 66 \\
\hline ernal registers, 8000 & \\
\hline Rony, Titus, WB4HYJ & \\
\hline
\end{tabular}

Interrupts, microcomputer
WB4HYJ, Rony, Titus
p. 66, Dec 76

Introduction to microprocessors WB4HYJ, Rony, Titus
p. 32, Dec 75

Comments, WB4FAR
p. 63, May 76

Logical instructions
Titus, WB4HYJ, Rony
p. 83, Jul 77

MOV and MVI 8080 instructions
Titus, WB4HYJ, Rony p. 74, Mar 77
Radio Shack ASCil keyboard encoder for microprocessor-controiled CW keyboard using the (HN)
VE7ZV
p. 72 , Oct 80

Register pair instruction
Rony, Titus, WB4HYJ
Software UAR/T, interfacing a WB4HYJ, Rony, Titus
p. 76, Jun 77

Whitution of software for hardware
WB4HYJ, Rony, Titus
p. 62, Jul 76

UARI, how it works
Vectored interrupts
WB4HYJ, Rony, Titus p. 74, Jan 77
Video display, simple
VK3AOH
p. 46, Dec 78

WB HYJ, instructions
p. 89, Sep 77

8080 microcomputer output instructions
WB4HYJ, Rony, Titus
p. 54, Mar 76

\section*{miscellaneous technical}

Active bandpass filters WB6GRZ
p. 49, Dec 77 Short circuit p. 94, Feb 79

Admittance, impedance and circuit analysis Anderson p. 76, Aug 77
Short circult \(\quad\) p. 94, Feb 79

Air pressure, measuring across transmitting tubes (HN) W4PSJ
p. \(89, \operatorname{Jan} 80\)

Alarm, wet basement (HN) W2EMF
p. 68, Apr 72

Amplitude compandored sideband WB6JNN
p. 48, Dec 80

Antenna masts, design for plpe W3MR
p. 52, Sep 74 Added design notes (letter) p. 75, May 75

Bandpass filter design
K4KJ
p. 36, Dec 73

Bandpass filters for 50 and 144 MHz , etched
W5KHT
Anderson
p. 6, Feb 71

Anderson p. 34, Jun 77
Bandspreading techniques for resonant circuits
Anderson
Short circuits
p. 46, Feb 77

Batteries, selecting for portable equipment

\section*{WBaAIK}
p. 40, Aug 73

Battery charging (letter)
p. 6. Nov 80

Bipolar-fet amplifiers
\(\begin{array}{ll}\text { W6HDM } & \text { p. 16, Feb } 76\end{array}\)
\(\begin{array}{ll}\text { Comments, Worcester } & \text { p. } 76 \text {, Sep } 76\end{array}\)
Broadband amplifier, bipolar
WB4KSS
Broadband amplifier uses mospower fet
Oxner amplifier wide-range
Wroadband amplifier, wide-range
W6GN 40, Apr 74
Bypassing, ri, at uhf WB6BHI
p. 50, Jan 72
alculator-aided circuit analysis Anderson
p. 38, Oct 77

Calculator, hand-held electronic, its function and use
W4MB
p. 18 , Aug 76

Calculator, hand-held electronic,
solving problems with it W4MB
p. 34, Sep 76

Capacitors, oil-filled (HN)
p. 66, Dec 72

Circuit figure of merit (ietter)
6 Dec 80
W2JTP
Coll-winding data, vhf and uhf
K3SVC
K3SVC
Communications recelvers, designing
for strong-signal performance Moore
p. 6, Feb 73

Commutating filters W6GXN
p. 54, Sep 79
\begin{tabular}{|c|c|c|c|}
\hline Contact bounce eliminators (letters) W7IV & p. 94, Nov 77 & Injection lasers (letter) Mims & p. 64, Apr 71 \\
\hline Crystal filters, monolithic DK1AG & p. 28, Nov 78 & Injection lasers, high power Mims & p. 28, Sep 71 \\
\hline Crystal use locator & & Integrated circults, part I & \\
\hline WA6SWR & p. 36, Nov 80 & W3FQJ & p. 40, Jun 71 \\
\hline Digital clock, low-cost WA6DYW & p. 26, Feb 76 & Integrated circuits, part il W3FQJ & p. 58, Jul 71 \\
\hline Digital mixer, introduction WB8IFM & p. 42, Dec 73 & Integrated circuits, part III W3FOJ & p. 50, Aug 71 \\
\hline Digital readout system, simplified W60IS & p. 42, Mar 74 & Interference, hi-fi (HN) K6KA & p. 63, Mar 75 \\
\hline DSB generators, audio-driven (HN) W5TRS & p. 68, Jul 80 & Interference problems, how to solve ON4UN & p. 93, Jul 78 \\
\hline Earth anchors for guyed towers W5QJR & p. 60, May 80 & Interference, of (letter) G3LLL & p. 65, Nov 75 \\
\hline Eimac 5CX1500A power pentode, notes K9XI & \begin{tabular}{l}
on \\
p. 60 , Aug 80
\end{tabular} & Interference, rf WA3NFW & p. 30, Mar 73 \\
\hline Effective radiated power (HN) VE7CB & & Interference, if, coaxial conne
WidTy & generate \\
\hline Electrical units: their derivation and hist & & Interference, rf, its cause and cure & \\
\hline WB6EYV & p. 30, Aug 76 & G3LLL & p. 26, Jun 75 \\
\hline Electrolytic capacitors, re-forming the oxide layer (HN) K9MM & p. 99, Jul 78 & \begin{tabular}{l}
Intermittent voice operation of power tubes \\
W6SAI
\end{tabular} & p. 24, Jan 71 \\
\hline Ferrite beads, how to use & & LC circult calculations & \\
\hline K10RV & p. 34, Mar 73 & W20UX & p. 68, Feb 77 \\
\hline Fet biasing W3FQJ & p.61, Nov 72 & Light-emitting dlodes: theory and app WB6AFT & \begin{tabular}{l}
cation \\
p. 12, Aug 80
\end{tabular} \\
\hline Field-strength meter and volt-ohmmeter WB6AFT & p. 70, Feb 79 & Lightning protection for the am K9MM & \begin{tabular}{l}
ation \\
p. 18, Dec 78
\end{tabular} \\
\hline Filter preamplifiers for 50 and 144 & & Comments & \\
\hline MHz, etched & & W6RTK, WB2FBL & p. 6, Jul 79 \\
\hline W5KHT & p. 6, Feb 71 & Linear-amplifier cost efficlency & \\
\hline Filters, active for did & ivers & W8MFL & p. 60, Jul 80 \\
\hline W7ZOI & p. 12, Apr 74 & Linear tuning, a fresh look at (HN) & \\
\hline Fire extinguishers (letter) & & W2OLU & p. 74, Aug 80 \\
\hline W5PGG & p. 68, Jul 71 & Local-oscllator waveform effects & \\
\hline Fire protection & & on spurious mixer responses & \\
\hline Darr & p. 54, Jan 71 & Robinson, Smith & p. 44, Jun 74 \\
\hline Fire protection (letter) & & Lowpass filters for & plifiers \\
\hline K7QCM & p. 62, Aug 71 & WAOJYK & p. 38, Mar 74 \\
\hline Four-quadrant curve tracer/analyzer & & Short circu & p. 62, Dec 74 \\
\hline W10XS & p. 46, Feb 79 & L-networks, how to design & \\
\hline Frequency counter as a synthesizer DJ2LR & & \begin{tabular}{l}
W7LR \\
Short circuit
\end{tabular} & p. 26, Feb 74 p. 62, Dec 74 \\
\hline Frequency divider, diode & & Marine Installations, amateur, on s & \\
\hline W5TRS & p. 54, Aug 80 & W3MR & p. 44, Aug 74 \\
\hline Freon danger (letter) WA5RTB & p. 63, May 72 & Matching networks, how to design Anderson, Leonard H. & p. 44, Apr 78 \\
\hline Frequency-lock loop WA3ZKZ & p. 17, Aug 78 & Matching techniques, broadband, for transistor rf amplifiers & \\
\hline Frequency multipliers & & WATWHZ & p. 30, Jan 77 \\
\hline W6GXN & p. 6, Aug 71 & Microprocessors, introduction to & \\
\hline Frequency synchronization for scatter & & WB4HYJ, Rony, Titus & p. 32, Dec 75 \\
\hline propagation
\[
\mathrm{K} 20 \mathrm{VS}
\] & p. 26, Sep 71 & Microwave rf generators, solid-state WIHR & p. 10, Apr 77 \\
\hline Frequency synthesizer, high-frequency K2BLA & p. 16, Oct 72 & Microwaves, getting started in Roubal & p. 53, Jun 72 \\
\hline Frequency synthesizer sidebands, filter reduces (HN) & & Microwaves, introduction W1CBY & p. 20, Jan 72 \\
\hline K1PCT & p. 80, Jun 77 & Mini-mobile & \\
\hline Frequency synthesizers, how to design & & K9UQN & p. 58, Aug 71 \\
\hline DJ2LR & p. 10, Jul 76 & Multi-function integrated circuits & \\
\hline Short circuit & p. B5, Oct 76 & W3FQJ & p. 46, Oct 72 \\
\hline Gamma-matching networks, how to desi & ign & Navigational aid for small-boat opera & \\
\hline W71TB & p. 46, May 73 & W5TRS & p. 46, Sep 80 \\
\hline Ground systems, notes on K6WX & p. 26, May 80 & Network, the ladder W2CHO & p. 48, Dec 76 \\
\hline Gyrator: a synthetic inductor WB9ATW & p. 96, Jun 78 & Networks, transmitter matching W6FFC & p. 6, Jan 73 \\
\hline Harmonic generator, crystal-controlled W1KNI & p. 66, Nov 77 & Ni -cad battery charging (letter) W6NRM & p. 6, Jul 80 \\
\hline Harmonic output, how to predict & & Nolse bridge for impedance measurem & ants \\
\hline Utne & p. 34, Nov 74 & YA1G.JM & p. 62, Jan 73 \\
\hline Heatsink problems, how to solve & & Comments, W6BXI & p. 6, May 79 \\
\hline WA5SNZ & p. 46, Jan 74 & Optimum pl-network design & \\
\hline Hf synthesizer, higher resolution for
N4ES & & DL9LX & p. 50, Sep 80 \\
\hline N4ES & p. 34, Aug 78 & Passive lumped constant 90 -degree & \\
\hline Hydroelectric station, amateur K6WX & p. 50, Sep 77 & phase-difference networks K6ZV & p. 70, Mar 79 \\
\hline Impedance bridge measurement errors and corrections & & PCB "threat" (letter) VE5UK & p. 66, Sep 80 \\
\hline K4KJ & p. 22, May 79 & Phase detector, harmonic & \\
\hline Impedance-matching systems, designing & & W5TRS & p. 40, Aug 74 \\
\hline W7CSD & p. 58, Jul 73 & Phase-locked loops & \\
\hline Impedance measurements using an SW & R meter & WB6FOC & p. 54, Jul 78 \\
\hline K40F & p. 80, Apr 79 & Phase-locked loops, IC & \\
\hline Inductors, how to use ferrite and & & W3FQJ & p. 54, Sep 71 \\
\hline powdered-iron for W6GXN & p. 15, Apr 71 & Phase-locked loops, IC, experiments W3FOJ & p. 58 , Oct 71 \\
\hline Correction & p. 63, May 72 & Phase-shlit network, 90-degree, offers & 2:1 bandwidth \\
\hline Inductance or capacitance, a method for & or measuring & K6ZV & p. 66, Feb 80 \\
\hline (HN) & & Pi network design & \\
\hline W2CHO & p. 68, Jul 80 & W6FFC & p. 6, \(\operatorname{Sep} 72\) \\
\hline Infrared communications (letter)
K2OAW & p. 65, Jan 72 & Pi network design Anderson, Leonard H . & p. 36, \\
\hline
\end{tabular}

Comments


Radlotelegraph translator and transcriber W7CUU K7KFA
p. 8, Nov 71 Eliminating the matrix KH6AP
p. 60, May 72

Rating tubes for linear amplifier service W6UOV, W6SAI
p. 50, Mar 71

RC active filters using op amps
W4YIB \(\begin{array}{lr}\text { Comments, W6NRM } & \text { p. 54, Oct } 76 \\ \text { p. 102, Jun } 78\end{array}\) Short clrcuit p. 94, Feb 79
Resistor performance at high frequencies K1ORV
Resistors, frequency sensitive (fetter)
W5UHV
Rf amplifier, wideband WBAKSS
Rf autotransformers, wideband K4KJ

58, Apr 75

Rf chokes, performance above and below resonance WA5SNZ
p. 40, Jun 78

Rf exposure WA2UMY p. 26, Sep 79
Rf interference, suppression In telephones K6LDZ Rf radiation, environmental aspects of K6YB p. 79, Mar 77

Rotary-dial mechanism for digitally tuned transcelvers K3CU
p. 14, Jul 80

Safety circult, pushbutton switch (HN) K3RFF, WA1FHB
p. 73, Feb 77

Satellite communications, first step to K1MTA
p. 52, Nov 72 Added notes (letter)
atellite signal polarization KH6IJ
p. 73, Apr 73
emiconductor curve tracing simplified W6HPH p. 34, Aug 80
Signal-strength, measuring W2YE
p. 20, Aug 80

Silverlsillcone grease (HN) W6DDE
p. 63, May 71

Simple formula for microstrip impedance (HN)
W1HA p. 72, Dec 77
Solar energy
W3FQJ
p. 54, Jul 74

Solid-state amplifier switching (HN) WB2HTH
Speech clippers, rf, performance of G6XN
Speed of light (letter)
KL6WU
p. 75, Aug 80
p. 26, Nov 72

Speed of light (letter)
WB2AOT
0. 67, Sep 80
p. 6, Apr 80
\begin{tabular}{|c|c|}
\hline Speed of light (letter) W4MLM & p. 6, Aug 80 \\
\hline Speed of light, observations on, through system & the metric \\
\hline W71TB & p. 62, Jan 80 \\
\hline Square roots, finding (HN) & \\
\hline K9DHD & p. 67, Sep 73 \\
\hline Increased accuracy (letter) & p. 55, Mar 74 \\
\hline Staircase generator (C\&T) W1DTY & p. 52, Jun 76 \\
\hline Standing-wave ratios, importance of & \\
\hline W2HB & p. 26, Jul 73 \\
\hline Correction (letter) & p. 67, May 74 \\
\hline Stress analysls of antenna systems W2FZJ & p. 23, Oct 71 \\
\hline Synthesizer design (letters) WB2CPA & p. 94, Nov 77 \\
\hline Synthesizer system, simple (HN) & \\
\hline AATM & p. 78, Jul 79 \\
\hline Talking clock (letter) & \\
\hline N9KV & p. 75, Feb 80 \\
\hline Talking digital readout for amateur trans & sceivers \\
\hline N9KV & p. 58, Jun 79 \\
\hline Taiking digital readout (letter) N5AF & p. 6, May 80 \\
\hline T coupler, the (HN) & \\
\hline K3NXU & p. 78, Nov 80 \\
\hline Temperature sensor, remote (HN) WA1NJG & p. 72, Feb 77 \\
\hline Toroidal coil inductance (HN) & \\
\hline W3WLX & p. 26, Sep 75 \\
\hline Toroid colls, \(88-\mathrm{mH}(\mathrm{HN})\) WA1NJG & p. 70, Jun 76 \\
\hline Toroids, calculating inductance of W89FHC & p. 50, Feb 72 \\
\hline Toroids, plug-in (HN) & \\
\hline K8EEG & p. 60, Jan 72 \\
\hline Transistor amplifiers, tabulated characteristics of & \\
\hline W5.JJ & p. 30, Mar 71 \\
\hline Trig functions on a pocket calculator (HN) & \\
\hline W9ZTK & p. 60, Nov 75 \\
\hline Tube shields (HN) & \\
\hline W9KNI & p. 69, Jul 76 \\
\hline Tubes, surplus (letter) & \\
\hline W2JTP & p. 6, Aug 80 \\
\hline Tubes, surplus (letter) & \\
\hline Sellati & p. 66, Sep 80 \\
\hline TVI locator & \\
\hline W6BD & p. 23, Aug 78 \\
\hline Vacuum-tube amplifiers, tabulated characteristics of & \\
\hline W5.JJ & p. 30, Mar 71 \\
\hline Variable-Inductance variable frequency & oscillators \\
\hline WOYBF & p. 50, Jul 80 \\
\hline VLF dip meter, no-adjust blas for (HN) & \\
\hline WB3IDJ & p. 69, Jul 80 \\
\hline White nolse diodes, selecting (HN) & \\
\hline W6DOB & p. 65, Apr 76 \\
\hline Wideband amplifier summary & \\
\hline DJ2LR & p. 34, Nov 79 \\
\hline Wind generators W3FQJ & p. 24, Jul 76 \\
\hline Wind loading on towers and antenna & \\
\hline structures, how to calculate & \\
\hline K4KJ & p. 18, Aug 74 \\
\hline Added note & p. 56, Jul 75 \\
\hline Y parameters, using in rit amplifier desi & \\
\hline WAOTCU & p. 46, Jul 72 \\
\hline 24-hour clock, digital WB6AFT & p. 44, Mar 77 \\
\hline
\end{tabular}
novice reading
\begin{tabular}{|c|c|}
\hline AC power line monltor W2OLU & p. 46, Aug 71 \\
\hline Amplifiers, tube and transistor, tabulated characterlstics of W5.JJ & p. 30, Mar 71 \\
\hline Antenna, bow tie for 80 meters WOVMQ & p. 56, May 75 \\
\hline Antenna, multiband phased vertical WA7GXO & p. 33, May 72 \\
\hline Antenna tuning units W3FQJ & , p. 58, Jan 73 \\
\hline Antenna, 80 meters, for small lot W6AGX & p. 28, May 73 \\
\hline Antennas, dipole KHBHDM & p. 60, Nov 75 \\
\hline Antennas, low elevation W3FQJ & p. 68, May 73 \\
\hline Antennas, QRM reducing & \\
\hline W3FQJ & p. 54, May 71 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Antennas, simple for 80 and 40 meters W5RUB & p. 16, Dec 72 \\
\hline Audio agc principles and practice WA5SNZ & p. 28, Jun 71 \\
\hline Audlo filters, inexpensive W8YFB & p. 24, Aug 72 \\
\hline Audio module, solld-state receiver
K4DHC & p. 18, Jun 73 \\
\hline Batteries, selecting for portable equipm & \\
\hline WBOAIK & p. 40, Aug 73 \\
\hline \begin{tabular}{l}
Battery power \\
W3FQJ \\
p. 56, Aug 74
\end{tabular} & p. 57, Oct 74 \\
\hline COSMOS Integrated circults W3FQJ & p. 50, Jun 75 \\
\hline CW audio filter, simple W7DI & 71 \\
\hline CW monitor, simple WA9OHR & \\
\hline CW reception, improved through simula WA1MKP & ated stereo \\
\hline CW transceiver, low-power for 40 meter & \\
\hline W7BEX & p. 16, Jul 74 \\
\hline Diode detectors WBGXN & p. 28, Jan 76 \\
\hline Feedpoint impedance characteristics o practical antennas W5JJ & p. 50, Dec 73 \\
\hline Fire protection in the ham shack Darr & p. 54, Jan 71 \\
\hline ICs, basics of W3FQJ & p. 58, Jul 71 \\
\hline \begin{tabular}{l}
ICs, digital, basics \\
W3FQJ \\
p. \(41, \mathrm{Mar} 72\)
\end{tabular} & p. 58, Apr 72 \\
\hline ICs, digital flip-flops W3FQJ & 72 \\
\hline ICs, digital multivibrators W3FQJ & p. 42, Jun 72 \\
\hline ICs, digital, oscillators and dividers W3FQJ & p. 62, Aug 72 \\
\hline Interference, hi-fi & \\
\hline G3LLL & p. 26, Jun 75 \\
\hline Interference, radio frequency WA3NFW & p. 30, Mar 73 \\
\hline Meters, how to use & \\
\hline W4PSJ & p. 48, Sep 75 \\
\hline Morse code, speed standards for VE2ZK & p. 58, Apr 73 \\
\hline Mosfet circults & \\
\hline W3FQJ & p. 50, Feb 75 \\
\hline Preamplifier, 21 MHz & \\
\hline WA5SNZ & p. 20, Apr 72 \\
\hline Printed-circuit boards, how to max & own \\
\hline K4EEU & p. 58, Apr 73 \\
\hline Printed-circult boards, low cost W8YFB & p. 16, Jan 75 \\
\hline Q factor, understanding & \\
\hline W5.JJ & p. 16, Dec 74 \\
\hline Receiver frequency calibrator W5UQS & p. 28, Dec 71 \\
\hline Recelver, regenerative for WWV WA5SNZ & p. 42, Apr 73 \\
\hline Receivers, direct-conversion W3FQJ & p. 59, Nov 71 \\
\hline Rectifiers, improved half-wave Bailey & p. 34, Oct 73 \\
\hline Semiconductors, charge flow in WB6BIH & p. 50, Apr 71 \\
\hline Semiconductor diodes, evaluating W5.JJ & p. 52, Dec 71 \\
\hline S-meters, circults for KBSDX & p. 20, Mar 75 \\
\hline Swr bridge & \\
\hline WB2zSH & p. 55, Oct 71 \\
\hline Towers and rotators K6KA & p. 34, May 76 \\
\hline Transistor power dlssipation, how to de WN9CGW & \begin{tabular}{l}
etermine \\
p. 56, Jun 71
\end{tabular} \\
\hline Transmitter keying, improving K6KA & p. 44, Jun 78 \\
\hline Transmitter, low-power, 80 -meter W3FQJ & p. 50, Aug 75 \\
\hline Transmitter, multiband low power with K8EEG & \begin{tabular}{l}
vfo \\
p. 39, Jul 72
\end{tabular} \\
\hline Transmitter power levels WA5SNZ & p. 62, Apr 71 \\
\hline Troubleshooling, basic James & p. 54, Jan 76 \\
\hline Troubleshooting by voltage measureme James & p. 64, Feb 76 \\
\hline Troubleshooting, resistance measureme James & \begin{tabular}{l}
ents \\
p. 58, Apr 76
\end{tabular} \\
\hline Troubleshooting, thinking your way thro Allen & p. 58, Feb 71 \\
\hline Tuneup, off-the-air & \\
\hline W4MB & p. 40, Mar 76 \\
\hline Vertical antennas, improving efficiency K6FD & p. 54, Dec 74 \\
\hline
\end{tabular}

Vfo, stable solid-state
p. 8, Dec 71
operating
\begin{tabular}{|c|c|}
\hline Amateur band intruders (letter) W5SAD & p. 6, Oct 80 \\
\hline Beam antenna headings & \\
\hline W6FFC & p. 64, App 71 \\
\hline Code practice stations (letter) & \\
\hline WB4LXJ & p. 75, Dec 72 \\
\hline Code practlce (HN) & \\
\hline W2OUX & p. 74, May 73 \\
\hline CW memory, slmple - Weekender K4DHC & p. 46, Nov 80 \\
\hline CW monitor, simple & \\
\hline WA90HR & p. 65, Jan 71 \\
\hline DXCC check list, simple W2CNO & p. 55, Jun 73 \\
\hline El2W slx-meter report (letter) El2W & p. 12, Jul 80 \\
\hline FCC actions (letter) W1ZI & p. 6, Apr 80 \\
\hline FCC actions (letter)
NBADA & p. 6, Apr 80 \\
\hline Fluorescent light, portable (HN) K8BYO & p.62, Oct 73 \\
\hline Great-circle charts (HN) K6KA & p. 82, Oct 73 \\
\hline Great-clicle maps & \\
\hline N5KR & p. 24, Feb 79 \\
\hline Identiflcation timer (HN) & \\
\hline K9UQN & p. 60, Nov 74 \\
\hline Monitor, tone alert & \\
\hline WAKRT & p. 24, Aug 80 \\
\hline Morse code, speed standards for & \\
\hline VE2ZK & p. 68, Apr 73 \\
\hline Added note (letter) & p. 68, Jan 74 \\
\hline RST feedback (letter) & \\
\hline V4OVO & p. 6, Dec 80 \\
\hline RST feedback (letter) & \\
\hline WONN & p. 6, Dec 80 \\
\hline Selfish attitudes (letter) & \\
\hline K2OZ & p. 6, Nov 80 \\
\hline Sldeband location (HN) & \\
\hline K6KA & p. 62, Aug 73 \\
\hline Spurious signals (HN) & \\
\hline K6KA & p. 61, Nov 74 \\
\hline True north for antenna orientation, how & to determine \\
\hline K4DE & p. 38, Oct 80 \\
\hline Zulu time (HN) & \\
\hline K6KA & p. 58, Mar 73 \\
\hline
\end{tabular}

\section*{oscillators}
\begin{tabular}{|c|c|}
\hline AFC circult for VFOs K6EHV & p. 19, Jun 79 \\
\hline Audlo oscillator, NE566 IC & \\
\hline W1EZT & p. 36, Jan 75 \\
\hline Clock oscillator, TTL (HN) W9ZTK & p. 56, Dec 73 \\
\hline Colpitts oscillator desion technique & \\
\hline WB6BPI & p. 78, Jul 78 \\
\hline Short circuit & p. 94, Feb 79 \\
\hline Crystal oscillator, frequency adju & \\
\hline W9ZTK & p. 42, Aug 72 \\
\hline Crystal osclllator, high stability W6TNS & p. 36, Oct 74 \\
\hline Crystal oscillator, simple (HN) W2OUX & p. 98, Nov 77 \\
\hline Crystal osclilators, stable & \\
\hline DJ2LR & p. 34, Jun 75 \\
\hline Correction & p. 67, Sep 75 \\
\hline Crystal oscillators, survey of VK2ZTB & p. 10, Mar 76 \\
\hline Crystal oven, simple (HN)
Mathleson & \\
\hline Math & p. 68, Apr 76 \\
\hline K4VA & p. 34, Feb 78 \\
\hline Crystal test osciliator and signal & \\
\hline generator K4EEU & p. 46, Mar 73 \\
\hline Crystals, overtone (HN) & \\
\hline GBABR & p. 72, Aug 72 \\
\hline Drift-correctlon circult for free running oscillators & \\
\hline PAOKSB & p. 45, Dec 77 \\
\hline Goral oscillator notes (HN) K50IN & p. 66, Apr 76 \\
\hline Hex Inverter vxo circuit & \\
\hline W2LTJ & p. 50, Apr 75 \\
\hline IC crystal controlled osciliators & \\
\hline VK2ZTB & p. 10, Mar 76 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{IC crystal controlled oscillators (letter)} \\
\hline W7EKC & p. 91, Jan 78 \\
\hline Local oscillator, phase locked VE5FP & p. 6, Mar 71 \\
\hline Monitoring oscillator W2JIO & 2 \\
\hline \multicolumn{2}{|l|}{Multiple band master-frequency osciliator} \\
\hline K6SDX & p. 50, Nov 75 \\
\hline Multivibrator, crystal-controlled WN2MQY & p. 65, Jul 71 \\
\hline \multicolumn{2}{|l|}{Noise sideband performance in oscillators, evaluating} \\
\hline DJ2LR & p. 51 , Oct 78 \\
\hline \multicolumn{2}{|l|}{Osciflator, audio, IC} \\
\hline W6GXN & p. 50, Feb 73 \\
\hline \multicolumn{2}{|l|}{Oscillator, Franklin (HN)} \\
\hline W5JJ & p. 61, Jan 72 \\
\hline \multicolumn{2}{|l|}{Oscillator, frequency measuring} \\
\hline W6IEL & p. 16, Apr 72 \\
\hline Added notes & p. 90, Dec 72 \\
\hline \multicolumn{2}{|l|}{Oscillator, gated (HN)} \\
\hline WB9KEY & p. 59, Jul 75 \\
\hline \multicolumn{2}{|l|}{Oscillator, phase-locked} \\
\hline Oscillator, two-tone, for SSB testing & p. 11, Apr 72 \\
\hline \multicolumn{2}{|l|}{Oscillators, resistance-capacitance} \\
\hline \multicolumn{2}{|l|}{Overtone crystal oscillators without inductors} \\
\hline \multicolumn{2}{|l|}{Quadrature-phased local oscillator (letter)} \\
\hline K6ZX & p. 62, Sep 75 \\
\hline \multicolumn{2}{|l|}{Quartz crystals (letter)} \\
\hline WB2EGZ & p. 74, Dec 72 \\
\hline \multicolumn{2}{|l|}{Regulated power supplles, designing} \\
\hline \multicolumn{2}{|l|}{Stable vfo (C\&T)} \\
\hline W1DTY & p. 51, Jun 76 \\
\hline \multicolumn{2}{|l|}{TL crystal oscillators (HN)} \\
\hline WQVA & p. 60, Aug 75 \\
\hline \multicolumn{2}{|l|}{TL oscillator (HN)} \\
\hline WB6VZW & p. 77, Feb 78 \\
\hline UHF local-oscillator chain N6TX & p. 27, Jul 79 \\
\hline \multicolumn{2}{|l|}{Versatlle audio oscillator (HN)} \\
\hline W7EBX & p. 72, Jan 76 \\
\hline \multicolumn{2}{|l|}{Vfo buffer amplifier (HN)} \\
\hline W3QBO & p. 66, Jul 71 \\
\hline \multicolumn{2}{|l|}{Vfo deslgn, stable} \\
\hline W1CER & p. 10, Jun 76 \\
\hline \multicolumn{2}{|l|}{Vfo design using characteristic curves} \\
\hline \multicolumn{2}{|l|}{Regulated power supplies, designing} \\
\hline \multicolumn{2}{|l|}{Vfo, digital readout} \\
\hline WBEIFM & p. 14, Jan 73 \\
\hline \multicolumn{2}{|l|}{Vfo, high-stability, vhf} \\
\hline OH 2 CO & p. 27, Jan 72 \\
\hline \multicolumn{2}{|l|}{Vfo, multiband fet} \\
\hline K8EEG & p. 39, Jul 72 \\
\hline \multicolumn{2}{|l|}{Vfo, stable} \\
\hline K4BGF & p. 8, Dec 71 \\
\hline \multicolumn{2}{|l|}{Voltage-tuned mosfet oscillator} \\
\hline \multicolumn{2}{|l|}{1-MHz oscillator, new approach} \\
\hline WAZSPI & p. 46, Mar 79 \\
\hline 5-ampere power supply, adjustable N1JR & p. 50, Dec 78 \\
\hline
\end{tabular}
power supplies
\begin{tabular}{|c|c|}
\hline AC current monitor (letter) WB5MAP & p. 61, Mar 75 \\
\hline AC power supply, regulated, for mobile fm equipment WABTMP & p. 28, Jun 73 \\
\hline Adjustable 5-ampere supply N1JR & p. 50, Jan 79 \\
\hline All-mode-protected power supply K2PMA & p. 74, Oct 77 \\
\hline Arc suppression networks (HN) WA5EKA & p. 70, Jul 73 \\
\hline Batteries, selecting for portable equipm WAlaik & \begin{tabular}{l}
ent \\
p. \(\mathbf{4 0}\), Aug 73
\end{tabular} \\
\hline Battery charging (letter) Carison & p. 6, Nov 80 \\
\hline Battery drain, auxillary, guard for (HN) WIDTY & p. 74, Oct 74 \\
\hline Battery power W3FQJ & p. 56, Aug 74 \\
\hline Bench power supply - Weekender WB8AFT & p. 50, Feb 80 \\
\hline Charger, fet-controlled, for nicad batte & . \\
\hline WAajYK & p. 46, Aug 75 \\
\hline
\end{tabular}

Constant-current battery charger for portable operation K5PA
p. 34, Apr 78

Converter, 12 to 6 volt (C\&T)
p. 42, Apr 76

Current limiting (HN) WOLPQ
p. 70, Dec 72

Current limiting (letter) K5MKO
Dc-dc converter, low-power
p. 66 , Oct 73

W5MLY
p. 54, Mar 75

Dc power supply, regulated (C\&T)
W10TY
p. 51, Jun 76

Diode surge protection (HN) WA7LUJ
p. 65, Mar 72

Added note
p. 41, Apr 76

W1DTY
Dual-voltage power supply (HN) W5JJ
p. 68, Noy 71

Fllament transformers, miniature Balley
High-current regulated de supply p. 66, Sep 74 N8AKS
IC power (HN)
p. 50, Aug 79

W3KBM
p. 68, Apr 72

IC power supply, adjustable (HN) W3HB
p. \(95, \operatorname{Jan} 78\)

Instantaneous-shutdown high-current regulated supply
W6GB
p. 81, Jun 78

Klystrons, reflex power for ( HN ) W6EPK
Line-voltage monitor (HN) WABVFK Current monitor mod (letter)
Load protection, scr (HN) W5OZF
Low-value voltage source (HN) WA5EKA
p. 66, Nov 71
dc power supplies - Repair Bench K4IPV
p. 38, Oct 79

Low voltage, variable bench power supply (weekender)
W6NBI \(\quad\) p. 58, Mar 76
Motorola Dispatcher, converting to 12 volts WB6HXU
Nicad battery care \(\langle\mathrm{HN}\) W1DHZ
p. 26, Jul 72
p. 71, Feb 76

Ni-cad charger, any-state WAGTBC
p. 66, Dec 79

Nickel-cadmium batteries, time-current charging
W1OLP p. 32, Feb 79
Overvoltage protection (HN)
WIAAZ
Pilot-lamp life (HN)
W2OLU
p. 64, Apr 76

Polarity inverter, medium current Laughlin

26, Nov 73
Power-supply hum (HN)
W8YFE
p. 64, May 71

Power supply, improved (HN) W4ATE
p. 72, Feb 72

Power supply, precision W7SK
p. 26, Jul 71

Power supply troubleshooting (repair bench)
K4IPV
p. 78, Sep 77
phase-locked terminal unit (HN)
Whasela
Rectifler, half-wave, improved Bailey
p. 60, Jul 74

Regulated power supplles, how to design
K5VKQ p. 58, Sep 77
Regulated power supplies, designing (letter) W9HFR \(\quad\) p. 110, Mar 78
Regulated power supply, 500-watt
WA6PEC WA6PEC Short circult
Regulated solid-state high-voltage power supply
W6GXN
Short circuit
Regulated 5-volt supply (HN)
W6UNF
Selenium rectifiers, replacing W1DTY
Servicing power supplies W6GXN
Solar energy W3FQJ
Solar power
W3FQJ
W3FQJ
olar power source, 36-volt
W3FOJ
W6VFR
p. 94 , Feb 79
p. 40, Jan 75
p. 69, Apr 75
p. 67, Jan 73
p. 41, Apr 76
p. 44, Nov 76
p. 54, Jul 74
p. 52, Nov 74
p. 54, Jan 77
p. 63, Sep 71

Storage-battery QRP power
W3FQJ
p. 64, Oct 74

Super regulator, the MPC1000
W3HUC
Transformers, miniature (HN)
W4ATE \(\quad\) p. 67, Jul 72
\(\begin{array}{ll}\text { Translent eliminator (C\&T) } & \text { p. } 52 \text {, Jun } 76 \\ \text { W1DTY }\end{array}\)
Transients, reducing
W5JJ

Variable high-voltage supply
W1OLP
Variable power supply for transistor work
WA4MTH
Variable-voltage power supply, 1.2 amps
WB6AFT
Vibrator replacement, solid-state (HN)
K8RAY p. 70, Aug 72
VHF transceivers, regulated power supply for WA8RXU p. 58, Sep 80
Voltage-regulator ICs, adjustable
WB9KEY
Voltage-regulator ICs, three-terminal
WB5EMI
p. 36, Aug 75

Added note (letter)
WA7VVC p. 90, May 77
\(\begin{array}{ll}\text { Voltage regulators, IC } \\ \text { W6GXN } & \text { p. 31, Mar } 77\end{array}\)
\(\begin{array}{ll}\text { Voltage safety valve } & \text { p. } 78 \text {, Oct } 76 \\ \text { W2UVF }\end{array}\)
Wind generators
p. 50, Jan 75

\section*{propagation}

Artificial radio aurora, scattering
characteristics of
WB6KAP
p. 18, Nov 74

Calculator-aided propagation predictions
\(\begin{array}{ll}\mathrm{N} 4 \mathrm{UH} & \text { p. 26, Apr } 79\end{array}\)
Comments p. 6, Sep 79
Scatter-mode propagation, frequency
synchronization for K2OVS
p. 26, Sep 71

Solar cycle 20, vhfer's view of p. 46, Dec 74

WA5IYX
6-meter sporadic-E openings, predicting
6-meter sporadic-E openings, predicting
WAGRAQ WAgRAQ
Added note (letter)
p. 38, Oct 72

\section*{receivers and converters}

\section*{general}
\begin{tabular}{|c|c|}
\hline Anti-QRM methods W3FQJ & 71 \\
\hline Attenuation pads, receiving (letter) KOHNQ & p. 69, Jan 74 \\
\hline Audio agc amplifier & \\
\hline WA5SNZ & p. 32 \\
\hline Audio agc principles and practice WA5SNZ & 28, Jun 71 \\
\hline Audio filter mod (HN) K6HIU & p. 60, Jan 72 \\
\hline Audio filters, CW (letter) 6Y5SR & p. 56, Jun 75 \\
\hline Audio filters for ssb and CW reception K6SDX & p. 18, Nov 76 \\
\hline Audio-filters, inexpensive W8YFB & p. 24, Aug 72 \\
\hline Audio, improved for receivers K7GCO & p. 74, Apr 77 \\
\hline Audlo module, complete K4DHC & p. 18, Jun 73 \\
\hline Audio processor, communications, W6NRW & \begin{tabular}{l}
ception \\
p. 71, Jan 80
\end{tabular} \\
\hline Auto-product detection of double-sideba & \\
\hline K4UD & p. 58, Mar 80 \\
\hline Letter G3JIP & p. 6, Oct 80 \\
\hline Bandspreading techniques for resonant & circults \\
\hline Anderson & p. 46, Feb 77 \\
\hline Short circuits & p. 69, Dec 77 \\
\hline Bandspreading techniques for rester & circuits \\
\hline Anderson, Leonard H. & p. 46, Feb 77 \\
\hline Bandspreading techniques for resonant clrcults (letter) & \\
\hline W0EJO & p. 6, Aug 78 \\
\hline Bandspreading technlques (letter) & \\
\hline Anderson, Leonard H . & p. 6, Jan \\
\hline
\end{tabular}

Batteries, how to select for portable equipment WABAIK
p. 40, Aug 73

Bfo multiplexer for a multimode detector WA3YGJ
p. 52, Oct 75

Broadband jfet amplifiers N6DX
p. 12, Nov 79

Calibrator crystals (HN) K6KA
p. 66, Nov 71

Communications recelvers, calculating the cascade intercept point of WA7TDB
p. 50, Aug 80

Communications receivers, design ideas for Moore
p. 12, Jun 74

Communications receivers, designing for strong-signal performance Moore
p. 6, Feb 73

Crystal-filter design, practical
p. 34, Nov 76

CW fllter, adding (HN) W2OUX
p. 66, Sep 73

CW monitor, simple WA9OHR
p. 65, Jan 71

CW processor for communications receivers
W6NRW p. 17, Oct 71
CW reception, enhancing through a simulated-stereo technique WA1MKP
p. 61 , Oct 74

CW reception, noise reduction for W2ELV
p. 52, Sep 73

CW regenerator for interference-free Leward Libenschek
p. 54, Apr 74

Detector, logarithmic with post-injection marker generator W1ERW
p. 36 , \(\operatorname{Mar} 80\)

Detector, reciprocating
p. 32, Mar 72

W1SNN
p. 54 , Mar 74; p. 76, May 75

Added notes
Detector, single-signal phasing type WB9CYY
p. 71 , Oct 76 Short circult
p. 68, Dec 77

Detector, superregenerative, optimizing Ring
p. 32, Jul 72

Detectors, fm, survey of W6GXN
p. 22, Jun 76

Digital display N3FG
p. 40 , Mar 79 Comments
p. 6, Jul 79

Digital frequency display WB2NYK
p. 26, Sep 76

Digital readout, universa
p. 34, Dec 78

Digital vfo basics Earnshaw
p. 18, Nov 78

Diode detectors
p. 28, Jan 76 W6GXN p. 77, Feb 77

Direct-conversion receivers (HN) YU2HL
p. 100 , Sep 78

Diversity receiving system W2EEY
p. 12, Dec 71

Diversity reception K4KJ
p. 48, Nov 79

Double-balanced mixer, active, highdynamic range DJ2LR
p. 90, Nov 77

Dynamic range, measuring
p. 56, Nov 79

Filter alignment W7UC
p. 61, Aug 75

Filter, vari-Q W1SNN
Frequency calibrator, how to design W3AEX
p. 62, Sep 73

Frequency calibrator, receiver W5UQS
Frequency-marker standard using cmos
W4IYB
Frequency measurement of received signals
W4AAD
Fequency
p. 38, Oct 73

WA7JIK
p. 69, Sep 72

Frequency standard, universal Short circuit
p. 40 , Feb 74

Hang agc clrcult for ssb and CW
p. 72, May 74

W1ERJ
Headphone cords (HN) W2OLU
p. 50, Sep 72
f amplifier design DJ2LR
p. 10, Mar 77

Short circult
p. 94 , May 77
-f detector recelver module
p. 34, Aug 76

I-f system, multimode WA2IKL
p. 39, Sep 71
I.f transformers, problems and cures - Weekender K4IPV
p. 56, Mar 79
mage suppression (HN) W6NIF
p. 68, Dec 72

Interference, electric fence
p. 68, Jul 72

Interference, hi-fl (HN)
p. 63, Mar 75

K6KA
Interference, rf
WA3NFW
p. 30, Mar 73

Interference, rf, its cause and cure G3LLL
p. 26, Jun 75

Intermodulation distortion, reducing
p. 26, Mar 77
in high-frequency receivers
WB4ZNV
p. 69, Dec 77

Local oscillator, phase-locked VE5FP
p. 6, Mar 71

Local-oscillator waveform effects on spurious mixer responses Robinson, Smith
p. 44, Jun 74

Mixer, crystal
W2LTJ
p. 38, Nov 75

Monitor receiver modification (HN) W2CNO
p. 72, Feb 76

Multiple recelvers on one antenna (Two for one) (HN) W2OZY p. 72, Jun 80
Noise blanker K4DHC
p. 38, Feb 73

Nolse Blanker W5QJR
p. 54 , Feb 79

Noise blanker design K7CVT
p. 26, Nov 77

Noise figure relationships (HN) WBWX
p. 70, Apr 80

Noise effects in receiving systems
p. 34, Nov 77

Phase-locked 9-MHz bfo W7GHM
Whe-locked
p. 49, Nov 78

Phaselocked up-converter
p. 26, Nov 79

Power-line noise K4TWJ
p. 60, Feb 79

Preamplifier, wideband WIAAZ
p. 60, Oct 76

Radio-frequency interference WA3NFW
p. 30, Mar 73

Radiotelegraph translator and transcriber W7CUU, K7KFA
p. 8, Nov 71 Eliminating the matrix KH6AP
p. 60, May 72

Receiver dynamic range (letter) AA6PZ
p. 7. Aug 80

Receiver spurious response Anderson
p. 82, Nov 77

Recelvers - some problems and cures
WBajGP, K8RRH p. 10, Dec 77
Ham notebook p. 94, Oct 78
\begin{tabular}{ll} 
Short circuit & p. 94, Feb 79 \\
Recelving RTTY, automatic frequency &
\end{tabular}

Recelving RTTY, automatic frequency control for
W5NPO
p. 50, Sep 71

Reciprocating detector as fm discriminator
W1SNN
Reciprocating-detector converter
p. 18, Mar 73

W1SNN
p. 58, Sep 74

Resurrecting old receivers K4IPV
p. 52, Dec 76

Rt-agc amplifier, high-performance WA1FRJ
p. 64, Sep 78

Ri amplifiers for communications recelvers Moore p. 42, Sep 74
Rf amplifiers, Isolating parallel currents in G3IPV
p. 40, Feb 77

Rf amplifier, wideband
p. 58 , Apr 75

Selectivity and gain control, improved VE3GFN
p. 71, Nov 77

Selectivity, receiver (letter) K4ZZV
p. 68, Јап 74

Sensitivity, nolse figure and dynamic range
W1DTY
ignals, how many does a recelver see?
Signals, how many does a recelver see?
DJ2LR
p. 8, Oct 75

Comments
p. 58, Jun 77

Signal-strength, measuring
p. 20, Aug 80

S-meters, solld-state KBSDX
p. \(\mathbf{2 0}\), Mar 75

Spectrum analyzer, four channel W9la
Squelch, audio-actuated K4MOG
p. 6, Oct 72

SSB signals, monitoring W6VFR
p. 52, Apr 72
p. 36, Mar 72

Superhet tracking calculations
p. 30, Oct 78
\begin{tabular}{|c|c|}
\hline Superregenerative detector, optimizing Ring & p. 32, Jul 72 \\
\hline Talking clock (letter) & \\
\hline N9KV & p. 75, Feb 80 \\
\hline Talking digital readout (letter) & \\
\hline N5AF & p. 6, May 80 \\
\hline Threshold-gatellimiter for CW reception & \\
\hline W2ELV & p. 46, Jan 72 \\
\hline Added notes (letter) & \\
\hline W2ELV & p. 59, May 72 \\
\hline Troubleshooting the dead receiver K4IPV & p. 56, Jun 76 \\
\hline Vacuum-tube receivers, updating & \\
\hline W6HPH & p. 62, Dec 78 \\
\hline Short circuit & p. 73, Dec 79 \\
\hline VIf converter (HN) & \\
\hline W3CPU & p. 69, Jul 76 \\
\hline Weak signal reception in CW receivers
ZS6BT & p. 44, Nov 71 \\
\hline Wideband amplifier summary & \\
\hline DJ2LR & p. 34, Nov 79 \\
\hline WWV receiver, five-frequency & \\
\hline W6GXN & p. 36, Jul 76 \\
\hline
\end{tabular}

\section*{high-frequency receivers}

Bandpass filters for receiver preselectors
W7ZOI
p. 18, Feb 75

Bandpass tuning, electronic, in the Drake R-4C
Horner
p. 58, Oct 73

Horner
WIOTY
Collins recelvers (letter)
p. 58, Sep 75

Collins recelvers (letter) p. 90, Jan 78

Collins 75A.4 hints (HN)
WGVFR 4 hints (HN) p. 68, Apr 72

Collins 75A-4 modifications (HN)
W4SD
p. 67, Jan 71

Communications receiver, five band K6SDX
p. 6, Jun 72

Communications receiver for 80
meters, IC
VE3ELP
p. 6, Jul 71

Communications recelvers, high frequency, recent
developments in circults and techniques for
DJ2LR
WB9FHC
p. 20, Apr 80

Short circuit
p. 30, Jun 73
p. 58, Dec 73

Communications receivers, miniature
design ideas for
K4DHC
p. 18, Apr 76

Communications receiver, miniaturized
K4DHC p. 24,
DJ2LR
Communications receiver, solid-state
I5TDJ
p. 10, Oct 76

Correction
p. 32, Oct 75

Companion receiver, all-mode W1SNN
p. 59, Dec 75

Converter, hi, solid-state
VE3GFN
p. 18, Mar 73
p. 32, Feb 72

Converter, tuned very low-frequency
OH2KT
Converter, very low frequency receiving
W2IMB
Crystal-controlled phase-locked converter 24 , Nov 76
W3VF p. 58, Dec 77
CW regenerator for Amateur receivers
W3BYM
Digitally programmable high-frequency
communlcations receiver
WA9HUV
Comments
Foot, WA9HUV
p. 10 , Oct 78
p. 6, Apr 79

Direct-conversion receivers
p. 59, Nov 71

Direct-conversion recelvers
paase
p. 44, Nov 77

Direct-conversion receivers, improved

\section*{selectivity}
p. 32, Apr 72

Direct-conversion receivers
simple active filters for
W7ZOI p. 12, Apr 7
Diversity recelver, high-frequency, from the 1930s
K4KJ
Double-conversion hf recelver with mechanical frequency readout Perolo
p. 26 , Oct 76

Drake R-4C product detector, improving (HN) w3CVS
p. 64, Mar 80

Frequency synthesized local-oscillator system
W7GHM
p. 60, Oct 78


\section*{vhf receivers \\ and converters}

Cavity bandpass filters W4FXE
p. 46, Map 80

Converters for six and two meters, mosfet WB2EGZ
p. 41, Feb 71
p. 96, Dec 71

Cooled preamplifier for vhf-uh WAGRDX

Filter-preamplifiers for 50 and 144 MHz
etched W5KNT
p. 6, Feb 71

Fm channel scanner
W2FPP p. 29, Aug 71

Fm receiver frequency control (letter) W3AFN
p. 65, Apr. 71

Fm receiver performance, comparison of
VE7ABK multichannel for six and two
Fm receiver, multichannel for six and two WISNN
Fm receiver, tunable vht K8AUH

68, Aug 72

Fm receiver, uht WA2GCF
Improving vhffuhf recelvers W1JAA
Interference, scanning recelver (HN) K2YAH
Monitor receivers, two-meter fm WB5EMI
Overload problems with vhf converters, solving WiOOP
Recelver allgnment techniques, whifm
K4IPV KAIPV WA2GFB

dar iwo-meter fm
Receiver, whe fm
WA2GCF
Receiving converter, vhf four-band W3TQM
P.

Scanning receiver for vhf fm , improved WA2GCF
Scanning recelver modifications, vhf fm (HN)
WASWOU
p. 60, Feb 74

Scanning receivers for two-meter fm K4IPV
p. 28 , Aug 74

Squelch-audio amplifier for im receivers WB4WSU p.68, Sep 74
Synthesized 2-meter mobile stations, automation for W9CG1 p. 20, Jun 80
Terminator, 50 -ohm for viff converters WA6UAM
p. 26, Feb 77

Vhf fm receiver (latter) W8IHO
p. 76, May 73

Vhf recelver scanner
p. 22, Feb 73

Vhf superregenerative recelver, low-voltage
\(\begin{array}{ll}\text { WASSNZ } & \text { p. 22, Jul } 73\end{array}\)
Short circuit
28-30 MHz prearnplifier for satellite reception W1JAA
\(50-\mathrm{MHz}\) preamplifier, improved WA2GCF
144- MHz converter (letter) WOLER
144-432 MHz GaAs tet preamp JH1BRY
144-MHz preamp, low-nolse W1DTY
\(\begin{array}{ll}\text { 144-MHz preamplifier, improved } & \text { p. } 40, \text { Apr } 78 \\ \text { WA2GCF } & \text { p. } 25, \text { Mar } 72\end{array}\) Added notes
432 MHz preamplifier and converter WA2GCF
\(1296-\mathrm{MHz}\), double-balanced mixers for WA6UAM
1296-MHz preamplifier
WAGUAM
o. 64, Mar 74
p. 48, Oct 75
p. 46, Jan 73
p. 71, Oct 71
p. 38, Nov 79
p. 40, Apr 76
p. 25, Mar 72
p. 73 , Jul 72
p. 40, Jul 75
p. 8, Jul 75

1296-MHz preamplifier, low-noise WA2VTR
p. 42, Oct 75

Added note (letter)
\(2304-\mathrm{MHz}\) converter, solld-state K2JNG, WA2LTM, WA2VTR
p. 50 , Jun 71
p. 65, Jan 72
\(2304 \cdot \mathrm{MHz}\) preamplifler solld-state
p. 16, Mar 72

WA2VTR
p. 20, Aug 72

\section*{receivers and converters, test and troubleshooting}

Weak-signal source, variable-output K8JYO
p. 38, Sep 71

\section*{RTTY}

Actlve bandpass fllter for RTTY W4AYV
Active bandpass filter for RTTY W4AYV
AFSK, digital WA4VOS
p. 46, Apr 79
p. 46, Apr 79
p. 22, Mar 77

Short circult
p. 94, May 77

AFSK generator (HN) F8KI
p. 69, Jui 76

AFSK generator, an accurate and practical
KOSFU p. 56, Aug 80
AFSK generator and demodulator
WB9ATW
p. 26, Sep 77

AFSK generator, crystal-controlled K7BVT
p. 13, Jul 72

AFSK generator, crystal-controlled W6LLO
p. 14, Dec 73

Sluggish oscillator (letter)
Audio-frequancy kayer, simple W2LTJ
p. 56, Aug 75

Audio-frequency shift keyer
p. 45, Sep 76

KH6FMT
Wudio-frequency shift keyer, simple (C\&T)
W. 43, Apr 76
Audio-shift keyer, continuous-phase
VE3CTP
p. 10, Oct 73

Short circuit
p. 64, Mar 74

Automatic frequency control for receiving RTTY
W5NPO
p. 50. Sep 71

Added note (letter)
p. 66, Jan 72

Autostart, digital RTTY
K4EEU Autostart monttor receiver K4EEU
p. 6, Jun 73

CRT intensifier for RTTY
p. 37, Dec 72

K4VFA
Carriage return, adding to the automatic p. 18, Jul 71
Carriage return, adding to the automatic
line-feed generator (HN)
K4EEU
p. 71, Sep 74

Cleaning teleprinters (HN)
W8CD
p. 86, May 78

Coherent frequency-shift keying, need for
K3WJQ
p. 30, Jun 74

Added notes (latter)
p. 5B, Nov 74

Crystal test oscillator and signal generator
K4EEU
CW memory for RTTY identification
W6LLO
p. 46, Mar 73

Digital reperf/TD
p. 6, Jan 74

WB9ATW
م. 59, Nov 78
DT-500 demodulator
K9HVW, K4OAH, WB4KUR p. 24, Mar 76
Short clircult
DT-600 demodulator
K9HVW, K4OAH, WB4KUR p. 8, Feb 76
Letter K5G7R
p. 78, Sep 76

Short circuit
p. 85, Oct 76

Dual demodulator terminal unit KB9AT
p. 74, Oct 78

WB6PMV, KB9AT
p. 6, Oct 79

Duplex audio-frequency generator with AFSK features
WB6AFT \(\quad\) p. 68, Sep 79
Electronic speed conversion for RTTY teleprinters
WA6JYJ p. 38, Dec 71
Printed circult for \(\quad\) p. 54, Oct 72
Electronic teleprinter keyboard WOPHY
p. 56, Aug 78

Hellschreiber (letter)
K6KA p. 6, Mar 80
Comment, G5XB
p. 6, Sep 80

Hellschrelber (letter) W8DKZ
p. 6, Mar 80

LED tuning indicator for RTTY p. 50, Mar 80
ine-end indicator, IC
p. 22, Nov 75

Line feed, automatic for RTTY K4EEU
p. 20, Jan 73

Mainline ST-5 autostart and antlspace K2YAH
Mainline ST-6 RTTY demodulator
W6FFC
p. 46, Dec 72

Short circuit
p. 6, Jan 71

Mainilne ST-6 RTTY demodulator, more
uses for (letter)
W6FFC
Malniline ST-6 RTTY demodulator, troubleshooting W6FFC
Message generator, random access memory
RTTY
K4EEU
p. B, Jan 75

Message generator, RTTY W6OXP, WBKCD
p. 30, Feb 74

Modulator-demodulator for vhf operation W6LLO
p. 34, Sep 78

Monltor scope, phase-shift
W3CIX
p. 36, Aug 72

Monitor scope, RTTY, Heath
HO-10 and SB-610 as (HN) K9HVW
p. 70, Sep 74

Monltor scope, RTTY, solid-state
WE2MPZ
p. 33, Oct 71
\begin{tabular}{|c|c|}
\hline Performance and signal-to-noise ratio of low-frequency shift RTTY K6SR & p. 62, Dec 76 \\
\hline Phase-coherent RTTY modulator K5PA & p. 26, Feb 79 \\
\hline Phase-locked loop AFSK generator K7ZOF & p. 27, Mar 73 \\
\hline \multicolumn{2}{|l|}{Phase-locked loop RTTY terminal unit} \\
\hline W4FOM & p. 8, Jan 72 \\
\hline Correction & p. 60, May 72 \\
\hline Power supply for & p. 60, Jul 74 \\
\hline Optimization of the phase- & \\
\hline locked terminal unit & p. 22, Sep 75 \\
\hline Update, W4AYV & p. 16, Aug 76 \\
\hline \multicolumn{2}{|l|}{Printed clrcult for RTTY speed converter} \\
\hline \multicolumn{2}{|l|}{RAM RTTY message generator, increasing capacity of (HN)} \\
\hline Receiver-demodulator for RTTY net operation VE7BRK & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Ribbon re-Inkers \\
WBFFC \\
p. 30, Jun 72
\end{tabular}}} \\
\hline & \\
\hline RTTY distortion: causes and cures WB8IMP & p. 36, Sep 72 \\
\hline \multicolumn{2}{|l|}{RTTY for the blind (letter)} \\
\hline VE7BRK & p. 76, Aug 72 \\
\hline RTTY line-length indicator (HN) W2UVF & p. 62, Nov 73 \\
\hline \multicolumn{2}{|l|}{RTTY reception with Heath SB recelvers (HN)} \\
\hline K9HVW & p. 64, Oct 71 \\
\hline \multicolumn{2}{|l|}{Selcom} \\
\hline K9HVW, WB4KUR, K4EID & p. 10, Jun 78 \\
\hline Serial converter for 8 -level teleprinters & \\
\hline VE3CTP & p. 67, Aug 77 \\
\hline Short circuit & p. 68, Dec 77 \\
\hline \multicolumn{2}{|l|}{Signal Generator, RTTY} \\
\hline W7ZTC & p. 23, Mar 71 \\
\hline Short circuit & p. 96, Dec 71 \\
\hline \multicolumn{2}{|l|}{Simple circult replaces jack patch panel} \\
\hline Speed control, electronic, for RTTY W3VF & p. 50, Aug 74 \\
\hline \multicolumn{2}{|l|}{ST-5 keys polar relay (HN)} \\
\hline WOLPD & p. 72, May 74 \\
\hline \multicolumn{2}{|l|}{Tape editor} \\
\hline W3EAG & p. 32, Jun 77 \\
\hline \multicolumn{2}{|l|}{Terminal unit, phase-locked loop} \\
\hline W4FGM & p. 8. Jan 72 \\
\hline Correction & p. 60, May 72 \\
\hline \multicolumn{2}{|l|}{Terminal unit, phase-locked loop} \\
\hline \multicolumn{2}{|l|}{Terminal unit, variable-shift RTTY} \\
\hline \multicolumn{2}{|l|}{Test generator, RTTY} \\
\hline WB9ATW & p. 64, Jan 78 \\
\hline \multicolumn{2}{|l|}{Test generator, RTTY (HN)} \\
\hline W3EAG & p. 67, Jan 73 \\
\hline \multicolumn{2}{|l|}{Test generator, RTTY (HN)} \\
\hline W3EAG & p. 59, Mar 73 \\
\hline \multicolumn{2}{|l|}{Test-message generator, RTTY} \\
\hline K9GSC, K9PKQ & p. 30, Nov 76 \\
\hline \multicolumn{2}{|l|}{Time/date printout} \\
\hline WOLT & p. 18, Jun 76 \\
\hline Short circult & p. 68, Dec 77 \\
\hline \multicolumn{2}{|l|}{Voltage supply, precision for phase-locked terminal unit (HN)} \\
\hline
\end{tabular}

\section*{satellites}

AMSAT-OSCAR D
\begin{tabular}{|c|c|}
\hline G3ZCZ & pr 78 \\
\hline \multicolumn{2}{|l|}{Antenna accuracy In satellite tracking systems} \\
\hline N5KR & p. 24, Jun 79 \\
\hline \multicolumn{2}{|l|}{Antenna control, automatic azimuth/elevation} \\
\hline for satellite communicatio & \\
\hline WA3HLT & p. 26, Jan 75 \\
\hline Correction & p. 58, Dec 75 \\
\hline \multicolumn{2}{|l|}{Antenna, simple satellite (HN)} \\
\hline WA6PXY & p. 59, Feb 75 \\
\hline \multicolumn{2}{|l|}{Antennas, simple, for satellite communlcations} \\
\hline K4GSX & p. 24, May 74 \\
\hline \multicolumn{2}{|l|}{Az-el antenna mount for satellite communications} \\
\hline W2LX & p. 34, Mar 75 \\
\hline \multicolumn{2}{|l|}{Calcu-puter, OSCAR} \\
\hline W9CGI & p. 34, Dec 78 \\
\hline \multicolumn{2}{|l|}{Circularly-polarized ground-plane antenna for satellite communications} \\
\hline K4GSX & p. 28, Dec 74 \\
\hline Communications, first step to satellite KIMTA & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Added notes (letter) & p. 73, Apr 73 \\
\hline Future of the amateur satelite service K2UBC & p. 32, Aug 77 \\
\hline Medical data relay via OSCAR K7RGE & p. 67, Apr 77 \\
\hline OSCAR antenna (C\&T) & \\
\hline W1DTY & p. 50, Jun 76 \\
\hline OSCAR antenna, mobile (HN) W6OAL & p. 67, May 76 \\
\hline OSCAR az-el antenna system WAINXP & p. 70, May 78 \\
\hline OSCAR tracking program, HP-65 calculator (ietters) WA3THD & p. 71, Jan 76 \\
\hline OSCAR 7, communications technlques G3ZCZ & for \({ }_{\text {p. } 6, ~ A p r ~} 74\) \\
\hline Phase III spacecraft orbits, geometry of WBMOW & p. 68, Oct 80 \\
\hline Programming for automated satellite communlcation KP4MD & p. 68, Jun 78 \\
\hline Receiving preamplifier for OSCAR 8 Mo & \\
\hline K1RX and Pugila & p. 20, Jun 78 \\
\hline Satellite communications on 10 meters G3IOR & (letter)
\[
\text { p. 12, Dec } 79
\] \\
\hline Satellite tracking - pointing and range with a pocket calculator Ball, John A. & p. 40, Feb 78 \\
\hline Signal polarization, satellite KH6IJ & p. 6, Dec 72 \\
\hline Tracking the OSCAR satellites Harmon, WABUAP & p. 18, Sep 77 \\
\hline 28-30 MHz preamplifier for satellite & \\
\hline \begin{tabular}{l}
reception \\
W1JAA
\end{tabular} & p. 48, Oct 75 \\
\hline 432-MHz OSCAR antenna (HN) W1JAA & p. 58, Jul 75 \\
\hline emiconductors & \\
\hline Antenna bearings for geostationary satellites, calculating N6TX & p. 67, May 78 \\
\hline Charge flow in semiconductors WB6BIH & p. 50, Apr 71 \\
\hline Diodes, evaluating & \\
\hline W5.J & p. 52, Dec 71 \\
\hline VE7ABK & p. 65, Oct 71 \\
\hline European semiconductor numbering sys & stem (C\&T) \\
\hline W1DTY & p. 42, Apr 76 \\
\hline Fet bias problems simplified WA5SNZ & p. 50, Mar 74 \\
\hline Fet biasing & \\
\hline W3FQJ & p. 61, Nov 72 \\
\hline Fetrons, solld-state replacements for tub & ubes \\
\hline \begin{tabular}{l}
W1DTY \\
Added notes p. 66, Oct 73;
\end{tabular} & \begin{tabular}{l}
p. 4, Aug 72 \\
; p. 62, Jun 74
\end{tabular} \\
\hline Frequency multipliers W6GXN & p. 6, Aug 71 \\
\hline GaAs field-effect transistors, introduct & \\
\hline WA2ZZF & p. 74, Jan 78 \\
\hline Heatsink problems, how to solve transis & \\
\hline WA5SNZ & p. 46, Jan 74 \\
\hline Impulse generator, snap dlode Siegal Turner & p. 29, Oct 72 \\
\hline Injection lasers, high power & \\
\hline Mims & p. 28, Sep 71 \\
\hline Injection lasers (letter) & \\
\hline Mims & p. 64, Apr 71 \\
\hline Linear power amplifier, high power solid & d-state \\
\hline Chambers & p. 6, Aug 74 \\
\hline Linear transistor amplifier W3FQJ & p. 59, Sep 71 \\
\hline Matching techniques, broadband, for transistor rf ampliflers WATWHZ & p. 30, Jan 77 \\
\hline Microwave amplifier design, solid state WABUAM & p. 40 , Oct 76 \\
\hline Mosfet circuits & \\
\hline W3FQJ & p. 50, Feb 75 \\
\hline Mosfet power amplifier, 160-6 meters WA1WLW & p. 12, Nov 78 \\
\hline Mospower fet (letter) W3QQM & p. 110, Mar 78 \\
\hline Motorola fets (letter) & \\
\hline W1CER & p. 64, Apr 71 \\
\hline Nolse, zener-dlode (HN) & \\
\hline VE7ABK & p. 59, Jun 75 \\
\hline Power dissipation ratings of transistors WN9CGW & p. 56, Jun 71 \\
\hline Power fets W3FQJ & p. 34, Apr 71 \\
\hline
\end{tabular}

Power transistors, parallelling (HN) WA5EKA
p. 62, Jan 72

Predlcting close encounters
OSCAR 7 and OSCAR 8
K2UBC
p. 62, Jul 79

Protecting solid-state devices from voltage translents WB5DEP
p. 74, Jun 78

Snap diode Impuise generator Siegal, Turner
p. 29, Oct 72

Switching inductive loads with
solid-siate devices (HN)
WABROC
p. 99, Jun 78

Transconductance tester for field-effect transistors
W6NBI
p. 44, Sep 71

Transistor amplifiers, tabulated characteristics of W5JJ
p. 30, Mar 71

Translstor breakdown voltages WA5EKA
p. 44, Feb 75

Trapatt diodes (letter) WA7NLA
p. 72, Apr 72

Y parameters in rf design, using WAgTCU p. 46, Jul 72
single sideband
\begin{tabular}{|c|c|}
\hline Balanced modulators, dual fet W3FQJ & p. 63, Oct 71 \\
\hline Communications receiver, phasing-type WAQYK & p. 6, Aug 73 \\
\hline Detector, SSB, IC (HN) & \\
\hline K4ODS & p. 67, Dec 72 \\
\hline Correction & p. 72, Apr 73 \\
\hline Electronic blas switching for Innear amplifiers & \\
\hline W8VFA & p. 50, Mar 75 \\
\hline Filters,
KBKA & p. 8 \\
\hline Frequency dividers for SSB W7BZ & p. 2 \\
\hline Hang age circult for SSB and CW WIERJ & p. 50, Sep \\
\hline Intermittent vo & \\
\hline W6SAI & p. 24, Jan 71 \\
\hline Intermodulation-distortion measurements on SSB transmitters & \\
\hline W6VFR & p. 34, Sep 74 \\
\hline Linear ampl & \\
\hline W6SAI & \\
\hline Part 1 & p. 12, Jun 79 \\
\hline Part 2 & p. 34, Jul 79 \\
\hline Part 3 & p. 58, Aug 79 \\
\hline \begin{tabular}{l}
Linear amplifler, flve-band conductioncooled \\
W9KIT
\end{tabular} & p. 6, Jul 72 \\
\hline Linear amplifier, five-band kilowatt & \\
\hline W4OQ & p. 14, Jan 74 \\
\hline Improved operation (letter) & p. 59, Dec 74 \\
\hline Linear amplifier performance, improving W4PSJ & p. 68, Oct 71 \\
\hline Linear amplifier, 100 -watt W6WR & p. 28, Dec 75 \\
\hline Linear, five-band hf W7OI & p. 6, Mar 72 \\
\hline Linear for 80-10 meters, high-power & \\
\hline W6HHN & . 5 \\
\hline Short circult & p. 96, Dec 71 \\
\hline Linearlty meter for SSB amplifiers W4MB & p. 40, Jun 76 \\
\hline Modifying the Heath SB-200 amplifier for the new 8873 zero-blas trlode w6uOV & p. 32, Jan 71 \\
\hline Peak envelope power, how to measure W5.JJ & p. 32, Nov 74 \\
\hline Phasing networks (letter) & \\
\hline W2ESH & p. 6, Nov 78 \\
\hline Pre-emphasls for SSB transmitters OH2CD & p. 38, Feb 72 \\
\hline Rating tubes for ilnear ampilifier service WEUOV, WESAI & p. 50, Mar 71 \\
\hline Rf clipper for the Collins S-line & \\
\hline K6JYO & p. 18, Aug 71 \\
\hline Letter & p. 68, Dec 71 \\
\hline Rf speech processor, SSB & \\
\hline W2MB & p. 18, Sep 73 \\
\hline \({ }_{\text {Slden }}^{\text {Sideband }}\) location (HN) & \\
\hline K6KA & p. 62, Aug 73 \\
\hline Solid-state transmitting converter for 144-MHz SSB & \\
\hline W6NBI & p. 6, Feb 74 \\
\hline Short circuit & p. 62, Dec 74 \\
\hline Speech clipper, IC
K6HTM & \\
\hline K6HTM & p. 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \\
\hline \multicolumn{2}{|l|}{Speech clipper, rf, construction} \\
\hline \multicolumn{2}{|l|}{Speech clippers, if, performance of} \\
\hline G6XN & p. 26, Nov 72 \\
\hline Added notes & p. 72, Sep 74 \\
\hline Speech clipping in single-sideband equip KIYZW & \[
\begin{aligned}
& \text { D. 22, Feb } 71
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{Speech processing, principies of} \\
\hline L1日N & p. 28, Feb 75 \\
\hline Added notes & p. 64, Nov 75 \\
\hline \multicolumn{2}{|l|}{Speech processor, split-band} \\
\hline \multicolumn{2}{|l|}{Speech processor, SSB} \\
\hline Speech splatter on single sideband W4MB & p. 28, Sep 75 \\
\hline \multicolumn{2}{|l|}{SSB generator, phasing-type} \\
\hline W7CMJ & p. 22, Apr 73 \\
\hline Added comments (letter) & p. 65, Nov 73 \\
\hline \multicolumn{2}{|l|}{SSB phasing techniques, review} \\
\hline VK2ZTB & p. 52, Jan 78 \\
\hline Short circuit & p. 94, Feb 79 \\
\hline \multicolumn{2}{|l|}{SSB phasing techniques, review (ietter) WB9YEM} \\
\hline \multicolumn{2}{|l|}{SSB transceiver, IC, for 80 meters} \\
\hline \multicolumn{2}{|l|}{Switching and linear amplification} \\
\hline \multicolumn{2}{|l|}{Syllabic vox system for Drake equipment} \\
\hline W6RM & p. 24, Aug 76 \\
\hline \multicolumn{2}{|l|}{Transceiver, high-frequency with digital} \\
\hline \multicolumn{2}{|l|}{Transceiver, miniature \(7-\mathrm{MHz}\)} \\
\hline \multicolumn{2}{|l|}{Transcelver, SSB, IC} \\
\hline G3ZVC & p. 34, Aug 74 \\
\hline Circuit change (letter) & p. 62, Sep 75 \\
\hline \multicolumn{2}{|l|}{Transceiver, SSB, using LM373 IC W58AA} \\
\hline \multicolumn{2}{|l|}{Transceiver, \(3.5-\mathrm{MHz} \mathrm{SSB}\)} \\
\hline \multicolumn{2}{|l|}{Transmilter and receiver for 40 meters, SSB} \\
\hline VE3GSD & p. 6, Mar 74 \\
\hline Short circuit & p. 62, Dec 74 \\
\hline \multicolumn{2}{|l|}{Transmitter, phasing-type SSB} \\
\hline Transverter, low-power, high-frequency & p. 12, Dec 78 \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
TTL ICs, using in SSB equipment G4ADJ \\
p. 18, Nov 75
\end{tabular}} \\
\hline Two-tone oscillator for SSB testing W6GXN & p. 11, Apr 72 \\
\hline \multicolumn{2}{|l|}{Vacuum tubes, using odd-ball types in linear amplifier service} \\
\hline \multicolumn{2}{|l|}{Vox, versatile} \\
\hline W9KIT & p. 50, Jui 71 \\
\hline Short circuit & p. 96, Dec 71 \\
\hline \multicolumn{2}{|l|}{144-MHz transverter, the TR-144} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
432-MHz SSB, practical approach to WA2FSQ \\
p. 6, Jun 71
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{1296-MHz SSB transceiver} \\
\hline WAGUAM & p. 8, Sep 74 \\
\hline
\end{tabular}

\section*{television}
\begin{tabular}{|c|c|}
\hline dcast qua A8RMC & 8 \\
\hline Calisign generator & \\
\hline Caption device tor SSTV G3LTZ & 77 \\
\hline Console, video, for ATV WB8LGA & 80 \\
\hline Display SSTV pictures on a fast-scan TV K6AEP & \\
\hline ast-scan camera converter for SSTV WA9UHV & p. 22, Jul 74 \\
\hline Fast- to slow-scan conversion, TV W3EFG, W3YZC & p. 32, Jul 71 \\
\hline Frequency-selective and sensitivitycontrolled SSTV preamp DK1BF & p. 36, Nov 75 \\
\hline Interiaced sync generator for ATV came WABRMC & \begin{tabular}{l}
a control \\
p. 10, Sep 77
\end{tabular} \\
\hline Slow-to-fast-scan television converters, an introduction K4TWJ & 44, Aug 76 \\
\hline ync generator for black-and-wh K4EEU & \begin{tabular}{l}
Te TV \\
p. 79, Jul 77
\end{tabular} \\
\hline ync generator, IC, for ATV WOKGI & p. 34, Jul 75 \\
\hline
\end{tabular}

Sync generator, SSTV (letter)

WIIA
p. \(73, \mathrm{Apr} 73\)

Television DX
WA9RAQ
Test generator, SSTV
p. 30, Aug 73 K4EEU
p. 6, Jul 73

Vestigial sideband microtransmitte
for amateur television
WAGUAM
Short circuit
50 years of television
W1OTY, K4TWJ
Letter, WAG.JFP
p. 20 , Feb 76
p. 94, May 77
p. 36, Feb 76
p. 77, Sep 76
transmitters and power amplifiers

\section*{general}

Air pressure measurements across transmitting tubes (HN) W4PSJ
p. 73, Dec 79

Batteries, how to select for portable equipment
WA0AIK
Blower maintenance (HN) W6NIF
Blower-to-chassis adapter (HN) K6.JYO
CQer, automatic, for RTTY W4AYV
Digital readout, universal WBBIFM
Digital vfo basic Earnshaw
Efficiency of linear power ampliflers,

\section*{how to compare} W5 JJ
p. 64, Jul 73

Eimac 5CX1500A power pentode, notes on
K9XI
Electronic bias switching for linear amplifiers
W6VFR
p. 60 , Aug 80

Fail-safe timer, transmitter (HN)
p. 50 , Mar 75

\section*{K9HVW}
p. 72 , Oct 74

Filter converter, an up/down W5DA
p. 20, Dec 77

Filters, SSB (HN)
p. 63, Nov 73

Frequency multipliers
W6GXN
High-voltage fuses in linear amplifiers (HN
K9MM
p. 6, Aug 71

K9MM
Intermittent volce operation of power tubes
W6SAI p. 24, Jan 71

Key and vox clicks (HN)
p. 24, Jan 7

K6KA
p. 74, Aug 72

Linear power amplifiers (letter)
p. 6, Dec 79

KB5EY, W6SAI P. 6,
Lowpass filters for solid-state Ilnear amplifiers
Lowpass filters for solid-state Ilnear amplifiers
WAQYK
p. 38 , Mar
Short circuit
Matching techniques, broadband, for
Matching techniques, broad
transistor rf amplifiers
p. 38, Mar 74
p. 62, Dec 74
p. 30, Jan 77

Multiple tubes in parallel grounding grid (HN)
W7CSO
p. 60, Aug 71

National NCX. 500 modification for 15 meters (HN)
Networks, transmitter matching
W6FFC
Neutralizing tip (HN)
ZE6JP
p. 69, Dec 72

Pl network design
\(\begin{array}{lr}\text { Anderson, Leonard H. } & \text { p. 36, Mar } 78 \\ \text { Comments } & \text { p. 6, Apr } 79\end{array}\)
Pi network design aid W6NIF
Correction (letter)
p. 62, May 74

Pl-network design, high-frequency power ampllfier

\section*{W6FFC}

PI networks (letter)
W6NIF
解
Pi-network if choke (HN)
W6KNE
Pi networks, serles tuned W2EGH
Power fets
W3FQJ
p. 6, Sep 72
p. 6, Oct 78
p. 78, Dec 72
p. 98, Jun 78
p. 58, Dec 74
p. 42, Oct 71
p. 34, Apr 71

Power tube open filament pins (HN) W9KNI
p. 69 , Apr 75

Pre-emphasis for SSB transmitters OH 2 CD
p. 38, Feb 72

Quartz crystals (letter) WB2EGV
p. 12, Dec 79

Relay activator (HN)
K6KA
p. 62, Sep 71

Rf leakage from your transmitter, preventing
K9MM
Rf power amplifiers, high-efficiency WB8LOK
SSTV reporting system
Step-start circuit, high-voltage (HN) W6VFR
Talking clock (letter N9KV
p. 75 , Feb 80

Taiking digital readout (letter)
p. 6. May 80

Transmitter power levels, some observations regarding WA5SNZ
p. 62, Apr 71

Transmitter-tuning unit for the blind W9NTP
p. 60, Jun 71

Vacuum tubes, using odd-ball types in linear amplifiers
W5JJ
p. 58, Sep 72
\(\checkmark\) fo, digital readout WB8IFM
XK2C AFSK generator, the
W3HVK
p. 14, Jan 73
p. 58, Nov 80
high-frequency
transmitters
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Air pressure, maasuring across transmitting tubes (HN)} \\
\hline W4PSJ & 9. Jan \\
\hline \multicolumn{2}{|l|}{CW transceiver for 40 and 80 meters, improved} \\
\hline W3NNL & 18 \\
\hline CW transceiver, low-power 20-meter W7ZOI & p. 8, Nov 74 \\
\hline Driver and final for 40 and 80 meters, solid-state W30BO & p. 20, Feb 72 \\
\hline \multicolumn{2}{|l|}{Electronic blas switch for negatively-blased} \\
\hline Fleld-effect translstor transmitters K2BLA & p. \\
\hline Filters, low-pass for 10 and 15 meters W2EEY & p. 42, Jan 72 \\
\hline Five-band transmitter, hf, solid-state I5TDJ & p. \\
\hline requency synthesizer, high frequency K2BLA & p. \\
\hline \begin{tabular}{l}
eath HW-101 transceiver, using with a separate receiver (HN) \\
WA1MKP
\end{tabular} & \\
\hline Kilowatt mobile for DX K5DUT & p. 43, Dec 80 \\
\hline inear-ampilfier cost efficlency WBMFL & .60, Jul 80 \\
\hline near amplifier desig & \\
\hline W6SA1 & \\
\hline Part & p. 12, Jun 79 \\
\hline Part 2 & p. 34, Jul 79 \\
\hline Part 3 & p. 58, Aug 79 \\
\hline \multicolumn{2}{|l|}{Linear amplifier, five-band conduction-cooled} \\
\hline W9KIT & p. 6, Jul 72 \\
\hline \multicolumn{2}{|l|}{Linear amplifier performance, improving} \\
\hline Inear amplifier, 100-watt W6WR & p. 28, Dec 75 \\
\hline inear amplifiers, modifying for full break-in operation
\[
\mathrm{K} 4 \times U
\] & 38, Apr 78 \\
\hline Linear, five-band hf W7DI & p. 6, Mar 72 \\
\hline \multicolumn{2}{|l|}{Linear, flve-band kilowatt} \\
\hline 400 & p. 14, Jan 74 \\
\hline Improved operation (letter) & p. 59, Dec 74 \\
\hline Linear for 80-10 meters, high-power
W6HHN
Short circuit & \begin{tabular}{l}
p. 56, Apr 71 \\
p. 96 , Dec 71
\end{tabular} \\
\hline \multicolumn{2}{|l|}{Linear power amplifier, high-power} \\
\hline \multicolumn{2}{|l|}{Lowpass filter, high-frequency} \\
\hline W2OLU & p. 24, Mar 75 \\
\hline Shori circuit & p. 59, Jun 75 \\
\hline \multicolumn{2}{|l|}{Modifying the Heath SB-200 ampllfier for the new 8873 zero-blas triode} \\
\hline
\end{tabular}

Mosfet power amplifier, for 160-6 meters WA1WLW
p. 12, Nov 78

Phase-locked loop, 28 MHz W1KNI
p. 40, Jan 73

QRP fet transmitter, 80 -meter W3FQ.
p. 50, Aug 75

SSB transceiver, miniature 7. MHz W7BBX
p. 16, Jul 74

SSB transcelver using LM373 IC
p. 32, Nov 73

SSB transcelver, \(9-\mathrm{MHz}\), IC
G3zVC
p. 34, Aug 74

Clircuit change (letter)
SSB transmitter and receiver, 40 meters VE3GSD
p. 6, Mar 74 Short circuit
p. 62, Dec 74

SSB transmitter, phasing type
WAOYK
p. 8, Jun 75

Transceiver, high-frequency with digital readout DJ2LR
p. 12, Mar 78

Transceiver, \(3.5-\mathrm{MHz}\) SSB VE6ABX
p. 6, Mar 73

Transmitter, flve-band, CW and SSB WN3WTG
p. 34, Jan 77

Transverter, low-power, high-frequency WA0RBR
p. 12, Dec 78

Wideband linear amplifier, 4 watt VE5FP
p. 42, Jan 76

3-400Z, 3-500Z filament circuits, notes on
KOWEH
p. 66, Apr 76

7-MHz QRP
WA4MTH
p. 26, Dec 76

14- MHz vfo transmitter, solid-state W3QBO
p. 6, Nov 73

160 -meters, 500 -watt power amplifier
p. 8, Aug 75

\section*{vhf and uhf transmitters}

Converter, dc-dc, increases Gunnplexer frequency swing (HN)
W1XZ p. 70 , Apr 80
Synthesized 2-meter mobile stations, automation for
W9CGI
Phase-locked loop, 50 MHz
p. 20, Jun 80

W1KNI
p. 40, Jan 73

10-GHz transceiver for amateur microwave communications DJ700
p. 10. Aug 78
\(30-\mathrm{MHz}\) preamplifier, low-noise W1HR
p. 38, Oct 78
\(50-\mathrm{MHz}\) kllowatt, inductively tuned
p. 8, Sep 75

50-MHz lin
p. 38, Nov 71
\(50-\mathrm{MHz}\) linear amplifier, \(2 \cdot \mathrm{~kW}\) W6UOV
p. 16, Feb 71
\(50-\mathrm{MHz}\) transverter p. 12, Mar 71
\(144-\mathrm{MHz}\) fm transmitter
p. 6, Apr 72

144-MHz fm transmitter, solid-state W6AJF
p. 14, Jul 71

144-MHz fm transmitter, Sonobaby WAQUZO
p. B, Oct 71 Short circult
p. 96, Oec 71 Crystal deck for p. 26, Oct 72

144-MHz power amplifier, high-performance
\(\qquad\)
144-MHz power amplifier, 10 -watt solid-state
W1DTY
44-MHz power amplifiers, solid state
W4CGC
p. 6, Apr 73

144-MHz transmitting converter, solid-state ssb W6NBI
p. 6, Feb 74

144-MHz transcelver, a-m K1AOB
p. 55, Dec 71
\(220-\mathrm{MHz}\) exciter
WB6DJV
p. 50 , Nov 71
\(220-\mathrm{MHz}\) kilowatt linear
p. 12, Jun 80

W6PO
p. 44, Dec 71

W6UOV
220-MHz, ff power amplifier for p. 44, Jan 71
\(220-\mathrm{MHz}\) rf power amplifier, vhf fm
p. 6, Sep 73
432.MHZ solld-state linear amplifier
p. 30 , Aug 75

WB60XF
432- MHz 100 -watt solid-state power amplifier WA7CNP
p. 36, Sep 75
\(1296-\mathrm{MHz}\) transverter K6ZMW
p. 10, Jul 77
-MHz power amplifier WA9HUV
p. 8, Feb 75
troubleshooting
Basic troubleshooting
\begin{tabular}{|c|c|}
\hline James & \\
\hline transformers, problems K4IPV & onc \\
\hline Logic circuits, troubleshooting W8GRG & \\
\hline Oscillator troubleshooting (repair bench) K4IPV & \\
\hline wer supply, troubleshooting K4IPV & p. 78 \\
\hline eceiver alignment techniques, vhf fm K4IPV & p. 14, Aug \\
\hline eceivers, troubleshooting the dead K4IPV & p. 56 \\
\hline esistance measurement, troublesho James & \[
\begin{aligned}
& \text { ig by } \\
& \text { p. } 58 \text {, Apr }
\end{aligned}
\] \\
\hline ransistor clrcuits, troubleshooting K4IPV & p. 60, \\
\hline oltage troubleshooting James & p. 64 Feb \\
\hline
\end{tabular}
vhf and microwave
general
Artificial radio aurora, vhf scattering characteristics WB6KAP
p. 18, Nov 74

A-m modulation monitor (HN)
p. 67, Jul 71

Bypassing, rf, at vhf
WB6BHI
p. 50, Jan 72

WB6BHI
or 144 MHz W4FXE
p. 42, Feb 80

Cavity filter, \(144-\mathrm{MHz}\)
W1SNN
p. 22, Dec 73

Short clrcuit
p. 64, Mar 74

Coaxial filter, vhf W6SAI
p. 36, Aug 71

Coil-winding data, practical vhf and uhf K3SVC
p. 6, Apr 71

Effective radiated power (HN)
p. 72, May 73

EI2W six-meter report (letter)
p. 12, Jul 80

Frequency multipllers W6GXN
p. 6, Aug 71

Frequency scaler, \(500-\mathrm{MHz}\)
W6URH W6URH
p. 32, Jun 75

Frequency scalers, \(1200-\mathrm{MHz}\) WB9KEY
p. 38, Feb 75

Frequency synchronization for scatter-mode propagation K2OVS
p. 26, Sep 71

Frequency synthesizer (HN) WA3AXS
p. 12, Jul 80

Frequency synthesizer, 220 MHz
p. 8, Dec 74

F-237/GRC surplus cavity filter, conversion versatility using the using the
W4FXE p. 22, Dec 80
GaAs field-effect transistors, introduction
WA2ZZF p.74, Jan 78
Gunn oscillator design for the \(10-\mathrm{GHz}\) band WB2ZKW
p. 6, Sep 80

Improving vhfluhf receivers
p. 44, Mar 76

Indicator, sensitive rf WB9DNI
p. 38, Apr 73

Klystron cooler, waveguide (HN) WA4WDL
p. 74, Oct 74

L-band local oscillators N6TX
p. 40, Dec 79

Microstrip impedance, simple formula for W1HR
p. 72, Dec 77

Microstrip transmission line W1HR
p. 28, Jan 78

Microwave bibliography
p. 68, Jan 78

Microwave-frequency converter for vhf counters
Kicrowave-frequency converter for vif counters
KA9BYI
p. 40, Jul 80
Microwave frequency doubler WA4WDL
p. 69, Mar 76

Microwave marker generator, 3cm band (HN) WA4WDL N7DH
p. 69, Jun 76
p. 40, Jan 78

Microwave it generators, solid-state W1HR
p. 10, Apr 77

Microwaves, getting started in Roubal
Microwaves, introduction to
p. 53, Jun 72

W1CBY
solld-state amplifier

\section*{amplifer design}

Comment, VK3TK, WA6UAM \(\quad\) p. 98 , Sep 77
Microwave systems, first bullding blocks for
WA2GFP
p. 52, Dec 80

Monitor, tone alert
W4KRT
p. 24, Aug 80

Noise figure measurements, vhif WB6NMT
p. 36, Jun 72

Phase-locked loop, tunable 50 MHz W1KNI
p. 40, Jan 73

Plasma-diode experiments Stockman, Harry
p. 62, Feb 80

Polaplexer design K6MBL
p. \(\mathbf{4 0}\), Mar 77

Power dividers and hybrids
W1DAX
Radio observatory, vhf
Radio o
Ham
p. 30, Aug 72

Ham
p. 44, Jul 74

Reflex klystrons, pogo stick for (HN)
p. 71, Jul 73

Satellite communications K1TMA
p. 52, Nov 72

Added notes (letter)
Satellite signal polarization KH6IJ
p. 6, Dec 72

Solar cycle 20, vhfer's view of
p. 46, Dec 74

Spéctrum analyzer, microwave WA6UAM
p. 54, Aug 77

Spectrum analyzer microwave N6TX
p. 34, Jul 78

Two-meter autopatches, tone-encoder for
WBOVSZ
Uhf dummy load, 150-watt
WB6QXF
p. 51 , Jun 80

Vfo, high-stability vhf OH2CD
p. 30, Sep 76

Varactor tuning tips (HN) N3GN
p. 27, Jan 72

Voltage-tuned UHF oscillator, multipurpose
WA9HUV p.12, Dec 80
Vhf beacons
W3FQJ
p. 66, Dec 71

Vhf circuits, ellminating parallel currents (HN)
G3IPV
WF techniques
W6NBI
p. 91, May 77
- p. 62, Jul 80

VHF transceivers, regulated power supply for
WA8RXU p. 58, Sep 80
Weak-signal communications
W4LTU
10-GHz cross-guide coupler
WB2ZKW
10-GHz Gunnplexer transceivers,
Construction and practice
p. 26, Jan 79
comments, WGOAL
p. 6, Sep 79

W4EKO
W4EKO
p. 70, Aug 76

W1KNI
p. 26, Mar 74
\(144-\mathrm{MHz}\) fm frequency meter
W4JAZ p. 40, Jan 71

Short circult
p. 40, Jan 71

144- MHz frequency synthesizer
WB4FPK
p. 34, Jul 73
\(144-\mathrm{MHz}\) frequency synthesizer, CMOS K9LHA
p. 14, Dec 79
p. 81, Apr 80

Short circuit p.
144-MHz frequency-synthesizer, one-crystal
WOKMV
p. 30, Sep 73
\(220-\mathrm{MHz}\) frequency synthesizer W6GXN
p. 8, Dec 74
\(432 \cdot \mathrm{MHz}\) SSB, practical approach to
WA2FSQ
p. 6, Jun 71
\(440-\mathrm{MHz}\) bandpass filter
WA8YBT
p. 62, Nov 79

K6LK
K6LK
\(1296-\mathrm{MHz}\) microstripline band pass filters
WA6UAM
p. 70, Dec 78
p. 46, Dec 75

1296-MHz microstrlp filter, improved grounding for
N6TX
p. 60, Aug 78

WA4WDL, WB4LJM
p. 50, Apr 77

\section*{vhf and microwave antennas}

Antenna-performance measurements
using celestial sources
W5CQ/W4RXY
p. 75 , May 79
\begin{tabular}{|c|c|}
\hline Circularly-polarized ground-plane antenna for sateilite communications K4GSX & p. 28, Dec 74 \\
\hline Feed horn, cylindrical, for parabolic refle & pators \\
\hline WA9HUV & p. 16, May 76 \\
\hline \begin{tabular}{l}
Feeding and matching techniques for vhf/uhf antennas \\
WTJAA
\end{tabular} & \\
\hline Ground plane, portable vhf (HN) & \\
\hline K9DHD & p. 71, May 73 \\
\hline Matching tec & \\
\hline W1JAA & p. 50, Jul 76 \\
\hline Microstrip swr bridge, vhf and uhf W4CGC & p. 22, Dec 72 \\
\hline OSCAR az-el antenna system WA1NXP & p. 70, May 78 \\
\hline Parabolic reflector antennas & \\
\hline VK3ATN & p. 12, May 74 \\
\hline Parabolic reflector element spacing WA9HUV & p. 28, May 75 \\
\hline Parabolic reflector gain W2TQK & 50, Jul 75 \\
\hline Parabolic reflectors, finding & \\
\hline focal length of (HN) & \\
\hline WA4WDL & p. 57, Mar 74 \\
\hline Transmission & \\
\hline WA2VTR & p. 36, May 71 \\
\hline 10 GHz , broadband ante & \\
\hline WA4WDL, WB4LJM & p. 40, May 77 \\
\hline Short circuit & p. 94, Feb 79 \\
\hline 10 GHz dielectric antenna ( HN ) & \\
\hline WAaWDL & p. 80, May 75 \\
\hline \(50-\mathrm{MHz}\) antenna coupler K1RAK & 44, Jul 71 \\
\hline 144-MHZ antenna, \(5 / 8\) wave vertical & \\
\hline K6KLO & p. 40, Jul 74 \\
\hline \(144-\mathrm{MHz}\) antenna, \(5 / 8\)-wave vertical, build from CB moblle whips & \\
\hline WB4WSU & p. 67, Jun 74 \\
\hline 144-MHz antennas, simple & \\
\hline A3NFW & p. 30, May 73 \\
\hline 144-MHz collinear antenna & \\
\hline W6RJO & p. 12, May 72 \\
\hline \(144-\mathrm{MHz}\) collinear uses PVC pipe mast & \\
\hline K8LLZ & p. 66, May 76 \\
\hline \(144-\mathrm{MHz}\) four-element collinear array WB6KGF & D. 6, May 71 \\
\hline 144-MHz whip, 5/8-wave (HN) & \\
\hline VE3DDD & 70, Apr 73 \\
\hline 432-MHz corner reflector antenna & \\
\hline WA2FSQ & p. 24, Nov 71 \\
\hline 432-MHz high-gain Yagi & \\
\hline K6HCP & p. 46, Jan 76 \\
\hline Comments, W0PW & p. 63, May 76 \\
\hline 432-MHz OSCAR antenna (HN) & \\
\hline W1JAA & p. 58, Jul 75 \\
\hline 432- and 1296. MHz quad-Yagi arrays & \\
\hline W3AED & p. 20, May 73 \\
\hline Short circuit & p. 58, Dec 73 \\
\hline \(440-\mathrm{MHz}\) collinear antenna, four-elem & \\
\hline WA6HTP & p. 38, May 73 \\
\hline \(1296-\mathrm{MHz}\) antenna, high-gain & \\
\hline W3AED & p. 74, May 78 \\
\hline 1296.MHz Yagi & \\
\hline W2COH & p. 24, May 72 \\
\hline \(1296-\mathrm{MHz}\) Yagi array & \\
\hline W3AED & p. 40, May \\
\hline
\end{tabular}

\section*{vhf and microwave} receivers and converters

Audio filter, tunable, for weak-signal communications K6HCP
p. 28, Nov 75

Caiculating preamplifler gain from noise-figure measurements N6TX
p. 30, Nov 77

Cavity filters, surplus, how to modify for 144 MHz W4FXE
p. 42, Feb 80

Cooled preamplifier for vhf-uhf reception WAORDX
p. 36, Jul 72

Crystal-controlled vif recelvers, iuning ald for (HN) WA1FHB
p. 69, Jul 80

Fm transceiver, remote synthesized for 2 meters WB4UPC p. 28 ,
Double-balanced mixers, circuit packaging for WA6UAM p.41, Sep 77
Microwave amplifier design, solld state WA6UAM

Microwave mixer, new
WAORDX p. 84, Oct 78
Noise flgure, sensitivity and dynamic range W1DTY
p. 8 , Oct 75

Noise figure, vhf, estimating WA9HUV
p. 42, Jun 75

Overload problems with vhf converters, solving
p. 53 Jan 73

Preamplifiers, wht low-noise WA2GFP
p. 50, Dec 79

Receiver scanner, vhif K2LZG
p. 22, Feb 73

Receiver, superregenerative, for vhf WA5SNZ
p. 22, Jul 73

Single-frequency conversion, vhfluht W3FQJ
p. 62, Apr 75

Uhf local-oscillator chain N6TX
p. 27, Jul 79

Vhf receiver, general-purpose
p. 16, Jul 78

Vhf/uhf preamplifier burnout (HN) W1JR
p. 43, Nov 78

Weak-signal source, stable, variable output K6JYO
p. 36, Sep 71

10 GHz hybrid-tee mixer G3NRT
p. 34 , Oct 77

28-30 MHz low-noise preamp WIJAA
p. 48 , Oct 75

30-MHz preamplifier, low-noise W1HR
p. 38, Oct 78 Short circuit p. 94, Feb 79
\(50-\mathrm{MHz}\) deluxe mosfet converter WB2EGZ
p. 41, Feb 71
\(50-\mathrm{MHz}\) etched-inductance banndpass filters and fitter-preamplifiers W5KHT
p. 6, Feb 71
\(50-\mathrm{MHz}\) prearmplifier, improved WA2GCF
p. 46, Jan 73

144-MHz converter, high dynamic range DJ2LR
\(144-\mathrm{MHz}\) deluxe mosfet converter WB2EGZ Short circuit Letter, WOLER
\(\begin{array}{ll} & \text { p. 96, Dec } 71 \\ \text { p. 71, Oct } 71\end{array}\)
144-MHz etched-inductance bandpass filters and filter-preamplifiers W5KHT
p. 6, Feb 71

144-MHz fm receiver WA2GBF
. 42, Feb 72
Added notes
144-MHz fm receiver WA2GCF
\(144-\mathrm{MHz}\) preamplifier, improved WA2GCF
144-MHz preamplifier, low noise W8BBB
144-MHz preamp, low-noise W1DTY
\(144-\mathrm{MHz}\) transverter using power fets WB6BPI
\(144-432 \mathrm{MHz}\) GaAs fet preamp JH1BRY
p. 38 , Nov 79

432-MHz converter N9KD
p. 74, Apr 79

432-MHz GaAs preamp JH1BRY
p. 22, Apr 78
432. MHz preamplifier, low-nolse WB5LUA
p. 26, Oct 78

432 MHz preamplifier and converter WA2GCF
432-MHz preamplifier, ultra low-noise WIJAA
p. 40, Jul 75
p. 8, Mar 75

1296 MHz , double-balanced mixers for p. 8, Jul 75

WA6UAM
\(1296-\mathrm{MHz}\) local-oscillator chain

WA2ZZF
1296-MHZ nolse generator 296-MHz nolse generator W3BSV WA6UAM
p. 42 , Oct 78
p. 46, Aug 73
\(1296-\mathrm{MHz}\) preamplifier, low-noise transisto
WA2VTR p. 50, Jun 71

Added note (letter)
1296-MHz preamplifiers, microstripline WA6UAM
p. 12, Apr 75
\(1296-\mathrm{MHz}\) SSB transceiver WA6UAM
\(1296-\mathrm{MHz}\) rat-race balanced mixer WAGUAM
p. 68, Jan 76
p. 8, Sep 74
p. 33, Jul 77
304. MHz balanced mixe

WAZZZF
p. 58, Oct 75

2304-MHz converter, solid-state
K2JNG, WA2LTM, WA2VTR
p. 16, Mar 72

2304-MHz preamplifier, solid-state WA2VTR
p. 20, Aug 72
\(2304-\mathrm{MHz}\) preamplifiers, narrow-band solid-state
WA9HUV
p. 6, Jul 74

\section*{vhf and microwave transmitters}
\begin{tabular}{|c|c|}
\hline Fm transceiver, remote synthesized for WB4UPC & \begin{tabular}{l}
2 meters \\
p. 28, Jan 80
\end{tabular} \\
\hline Linear amplifiers, solid-state vhf AF8Z & p. 48, Jan 80 \\
\hline P) networks, series-tuned W2EGH & p. 42, Oct 71 \\
\hline Water-cooled 2C39 (HN) WA9RPB & p. 94, Sep 77 \\
\hline \(50-\mathrm{MHz}\) customized transverter K1RAK & p. 12, Mar 71 \\
\hline \(50-\mathrm{MHz}\) kilowatt, inductively-tuned K1DPP & p. 8, Sep 75 \\
\hline \(50-\mathrm{MHz} 2 \mathrm{~kW}\) linear amplifier w6uov & p. 16, Feb 71 \\
\hline \(50-\mathrm{MHz}\) linear amplifier K1RAK & p. 38, Nov 71 \\
\hline \(50-\mathrm{MHz} \mathrm{SSB}\) & \\
\hline K1LOG & p. 12, Oct 79 \\
\hline \(144-\mathrm{MHz} 10 / 80\)-watt amplifier WB9RMA & p. 12, Feb 79 \\
\hline \(144-\mathrm{MHz}\) fm transceiver, compact W6AOI & 74 \\
\hline \(144-\mathrm{MHz} \mathrm{fm}\) transmitter W6AJF & p. 14, Jul 71 \\
\hline 144-MHz fm transmitter W9SEK & p. 6, Apr 72 \\
\hline 144.MHz fm transmitter, Sonobaby & \\
\hline WABUZO & p. 8, Oct 71 \\
\hline Crystal deck for Sonobaby & p. 26, Oct 72 \\
\hline 144-MHz power amplifier, high & \\
\hline W6UOV & p. 22, Aug 71 \\
\hline \(144-\mathrm{MHz}\) power amplifiers, fm W4CGC & p. 6, Apr 73 \\
\hline 144-MHz power amplifier, 10 -watt solid-st W10TY & \begin{tabular}{l}
tate (HN) \\
p. 67, Jan 74
\end{tabular} \\
\hline 144-MHz power amplifier, 80 -wat & \\
\hline Hatchett & p. 6, Dec 73 \\
\hline \(144-\mathrm{MHz}\) stripline kilowatt W2GN & p. 10, Oct 77 \\
\hline 144-MHz
K1AOB & \\
\hline K1AOB & 1 \\
\hline WGNBI & \\
\hline W & 62, 6 eb 74 \\
\hline Short circuit & p. 62, Dec 74 \\
\hline 144-MHz transverter K1RAK & p. 24, Feb 72 \\
\hline 220-MHz exciter & \\
\hline WB6DJV p. & p. 50, Nov 71 \\
\hline 220-MHz power amplifier W6UOV & p. 44, Dec 71 \\
\hline \(220 \cdot \mathrm{MHz}\) rf power amplifier WB6DJV & p. 44, Jan 71 \\
\hline 220-MHz rf power amplifier, fm K7JUE & p. 6, Sep 73 \\
\hline 432-MHz power amplifier using stripline W3HMU & \begin{tabular}{l}
techniques \\
D. 10. Jun 77
\end{tabular} \\
\hline 432-MHz solid-state linear amplifier WB6QXF & p. 30, Aug 75 \\
\hline \(432 \cdot \mathrm{MHz} \mathrm{SSB}\), practical approach WA2FSQ & p. 6, Jun 71 \\
\hline 432-MHz \(100-\) watt solid-state pow & \\
\hline WA7CNP & p. 36, Sep 75 \\
\hline 1152- to \(2304-\mathrm{MHz}\) power doubler WA9HUV & p. 40, Dec 75 \\
\hline \(1270-\mathrm{MHz}\) video-modulated power amplifi & \\
\hline W9ZIH & p. 67, Jun 77 \\
\hline 1296-MHz SSB transcelver WAGUAM & p. 8, Sep 74 \\
\hline 1296-MHz transver & \\
\hline K6ZMW & p. 10, Jul 77 \\
\hline 2304-MHz power amplifier & 5 \\
\hline
\end{tabular}

\title{
Announcing the Heathkit VP-7401 2-meter MM Digital Scanning Transceiver
}


\section*{More features that make the VF-7401 the 2-meter rig that belongs in your shack and vehicle}

No more searching through repeater guides while mobiling in unfamiliar territory - your new Heathkit VF 7401 will find the active channels for you. It will even alert you to band openings. You're going to enjoy building your VF-7401... and you're going to love using it. The VF. 7401 , the ultimate 2 -meter rig ...from the more than 200 Hams at Heath.
- Adjustable, 15-watt (nominal), solidstate, narrow-band FM Transceiver. Fully synthesized digital circuitry provides full-band coverage without need for added crystals.
- All-new, state-of-the-art circuits provide the exciting, exclusive features of 1 MHz bandwidth scanning, and Scan Lock/Latch capability on 2-meters.
- A receiver hotter than Heath's HW-2036A features dual-gate MOSFET front-end to minimize overload and adjacentchannel interference.
- "Power-up" on a pre-programmed frequency of your own choice, such as your favorite repeater.
- Convenient detachable mike using 4-pin connector.
- Power to the Micoder II Microphone (if used) eliminates need for a battery.
- Sturdy SO-239 rear-panel antenna jack.
- Chassis-mounted power and external speaker plugs.
- Improved synthesizer, eliminating need for panel mounted sync lock light.
- Tuning for Power Amplifier and output power level adjustment is accessible without removing case.
- Capability of mobile or base operation (with Model VFA-7401-1 AC Power Supply -13.8 V at \(4 \AA\) nominal, transmit).

SEND FOR FREE CATALOG OR VISIT YOUR HEATHKIT ELECTRONIC CENTER


The new VF-7401 is featured in the latest Heathkit Catalog. For a free copy write: Heath Company, Dept. 122-724, Benton Harbor, MI 49022. Or visit the nearest Heathkit Electronic Center in the U.S. or Canada where Heathkit products are displayed, sold and serviced. See the white pages of your phone book for location. In the U.S.. Heathkit Electronic Centers are units of Veritechnology Electronics Corporation.
Heathkif

\title{
Adverifisers check-off
}
...for literature, in a hurry -- we'll rush your name to the companies whose names you "check-off"

Place your check mark in the space petween name and number. Ex: Ham Radio 234
\begin{tabular}{|c|c|}
\hline Ace Comm. _ 850 & Jim-Pack __ 333 \\
\hline Advance Elec. _ 883 & Jones __ 626 \\
\hline Alaska Microwave __ 826 & KLM Elec. __ 073 \\
\hline Aluma __ 589 & Kantronics* \\
\hline Amidon __ 005 & Kenwood* \\
\hline Applied Inv. __ 862 & MFJ __ 082 \\
\hline Astron __ 734 & MHz Elec. __ 415 \\
\hline Atlantic Surplus * & Madison __ 431 \\
\hline Barker __ 015 & Microcraft __ 774 \\
\hline Barry * & Monitor __ 887 \\
\hline Bauman Sales __ 017 & Nernal * \\
\hline Bencher __ 629 & OK Machine * \\
\hline Ben Franklin__ 864 & P.C. Elec.__766 \\
\hline Budwig __ 233 & Palomar Eng.* \\
\hline Caddell Coil __ 244 & Payne ___ 867 \\
\hline Comm. Prod. __ 029 & Callbook __ 100 \\
\hline Comm. Concepts __ 797 & Radio World * \\
\hline Comm. Spec. __ 330 & Ramsey __ 442 \\
\hline Curtis Electro _ 034 & SAROC * \\
\hline DCO _-_ 324 & Securitron __ 461 \\
\hline DX Eng. _.. 222 & Semiconductors Surplus 512 \\
\hline Dave * & Surplus - 512 \\
\hline Drake * & Sherwood __ 435 \\
\hline ETCO .... 856 & Skytec __ 704 \\
\hline E. T. O. \({ }^{\text {- }}\) & Spectronics __ 191 \\
\hline Elec. Research Virginia * & Spec. Int. 108 \\
\hline Eng. Consulting * & Staco __ 881 \\
\hline Erickson Comm. * & Telrex * \\
\hline G \& C Comm. 754 & Ten-Tec * \\
\hline GLB __ 552 & Universal Comm. __ 885 \\
\hline Hal __ 057 & Urban Eng. __ 882 \\
\hline Hal-Tronix __ 254 & V-J Products __ 855 \\
\hline H. R. Bookstore 150 & Vanguard __ 716 \\
\hline Ham Radio * & Varian __ 043 \\
\hline Heath ___ 060 & Vibroplex __ 870 \\
\hline Henry _ 062 & \begin{tabular}{l}
Webster \\
Assoc. \(\qquad\) 423
\end{tabular} \\
\hline Hildreth __ 283 & Western Elec. * \\
\hline lcom & Wilson Sys. __ 787 \\
\hline Int, Crystal __ 066 & Xitex __ 741 \\
\hline Jameco __c \({ }^{333}\) & Yaesu ---- 127 \\
\hline Jan __ 067 & \\
\hline
\end{tabular}
* Please contact this advertiser directly. Limit 15 inquiries per request.

December, 1980
Please use before January 31, 1981

Tear off and mail to
HAM RADIO MAGAZINE - "check off"
Greenvilie, N. H. 03048
name.
\(\qquad\)
STREET
CITY .
STATE.

Advertisers \({ }^{\mathrm{N}} \mathrm{N}\) dex
Ace Communications, Inc. ..... 63
Advance Electronics ..... 100, 101
Alaska Microwave Labs ..... 127
Aluma Tower Company ..... 105
Amidon Associates. ..... 80
Applied Invention. ..... 102
Astron Corporation. ..... 105
Atlantic Surplus Sales ..... 85
Barker \& Williamson, Inc ..... 70
Barry Electronics ..... 45
Я. H. Bauman Sales Company ..... 127
Bencher, Inc. ..... 86
Ben Franklin Electronics ..... 105
Budwig Mfg. Company ..... 104
Caddell Coil Corp. ..... 104
Command Productions. ..... 85
Communication Concepts, Inc. ..... 104
Communications Specialists. ..... 10,11
Curtis Electro Devices. ..... 85
DCO, Inc. ..... 70
OX Engineering ..... 127
Dave. ..... 85
28,29
Drake, R. L., Co.
104
104
ETCO ..... 
127 ..... 
127 ..... 127
Ehrhorn Technological Operations
Ehrhorn Technological Operations
Engineering Consulting Services. ..... 104
Erickson Communications ..... 27
G \& C Communications ..... 70
GLB Electronics ..... 104
Hal Communicatıons Corp ..... 1
Hal-Tronix
102, 104
102, 104
Ham Radio ..... 80
Heath Company ..... 125
Henry Radio Stores ..... Cover II
Hildreth Engineers ..... 85
com America, Inc.7
International Crystal Mfg. Co.
21
21
Jameco Electronics ..... 105
Jan Crysta ..... 76,77
Jones, Marlin P. \& Associates ..... 103
Kantronics ..... 80
Trio-Kenwood Communications, Inc. ..... 64, 65
MFJ Enterprises ..... 2
MHz Electronics \(90,91,92,93,94,95,96,97,98,99\)
Madison Electronics Supply ..... 126
Microcraft Corporation ..... 80, 86
Nemal Electronics. ..... 105
OK Machine \& Tool ..... 128
P.C. Electronics ..... 69
Palomar Engineers ..... 87
Payne Radio . ..... 42
Radio Amateur Callbook. ..... 89
Radio World . ..... 86
Ramsey Electronics ..... 47
SAROC ..... 46
Securitron ..... 70
Semiconductors Surplus. ..... 81, 82, 83
Sherwood Engineering ..... 105
Skytec ..... 104
Spectronics ..... 7
Spectrum International. ..... 69
Telrex Laboratories. ..... 80
Ten-Tec ..... 9
Universal Communications ..... 127
Urban Engineering, Inc ..... 63
V-J Products ..... \(\infty\)
Vanguard Labs ..... 104
Varian, Eimec Division ..... Cover IV
Vibroplex Co., Inc. ..... 69
Webster Associates ..... 70
Western Electronics ..... 102
Wilson Systems ..... 102
Yaesu Electronics Corp. ..... Cover III



YOU've seen the magazine articles
Here's what you can expect from the DX ENGINEERING

RF Speech Processor
- 6 db INCREASE IN AVERAGE POWER
- maintains voice quality
- ImPROVES INTELLIGIBILITY
- NO CABLES OR BENCH SPACE REQUIRED
- EXCELLENT FOR PHONE PATCH
- NO ADDITIONAL ADJUST-

MENTS - MIKE GAIN ADJUSTS CLIPPING LEVEL
- UNIQUE PLUG-IN UNIT - NO

MODIFICATIONS REQUIRED


This is RF Envelope Clippingthe feature being used in new transmitter designs for amateur and military use.

Models Now Available Collins 32S, KWM-2 .... \$98.50 ea. Drake TR-3, TR-4, TR-6, TR-4C, T-4, T-4X, T-4XB, T-4XC \(\$ 128.50\) ea. Postpaid - Calif. Residents add 6\% Tax

Watch for other models later!

\section*{DX Engineering}

1050 East Walnut, Pasadena, Calif. 91106

2300 MHZ
DOWN CONVERTER

MERRY CHRISTMAS
URIVERSAL COMMUNICATIONS
DEEORAM and STEVE mbSELC
NNOEN AS THI STOF SICN BOARD THIS 2300 mble DOwnconvitie kit WORKS THFIMPROVID BOARD IVIS wakes it Betlick thak befort 50 why pay twict as muCn?

Kit supplied with a 8 page broshure, PC board, Diodes.
Chip Caps, Transistors, and
all parts to complete a
working board. \(\qquad\) power SUPPLYS avil
Money Order. or Check mail or phone
UNIVERSAL COMMUNICATIONS P.O. BOX 6302 ; ARLINGTON, TEX. 76011 817-265 0391


\section*{Digital IC Probe \& Iogic Pulser}

\section*{PRB-1 DIGITAL LOGIC PROBE}

Compatible with DTL, TTL CMOS, MOS and Microprocessors using a 4 to 15 V power supply. Thresholds automatically programmed. Automatic resetting memory. No adjustment required. Visual indication of logic levels, using LED's to show high, low, bad level or open circuit logic and pulses. Highly sophisticated, shirt pocket portable(protective tip. cap and removable noil cord).

> Automatic threshold resetting \(\bullet \mathrm{DE}\) to \(>50 \mathrm{MHZ}\) Compatible with all logic families \(4-15 \mathrm{VDC} \bullet 10 \mathrm{Nsec}\). pulse response Supply \(0 . \mathrm{V} . \mathrm{P}\). to \(\pm 70 \mathrm{VDC} \bullet 120 \mathrm{~K} \Omega\) impedance No switches/no calibration \(\bullet\) Automatic pulse stretching to 60 Msec.
> Open circuit detection \(\bullet\) Automatio reseting memory
> Range extended to 15 -26 VDC with optional PA-1 adapter PLS-1 LOGIC PULSER

The PLS-1 logic pulser will superimpose a dynamic pulse train ( 20 pps ) or a single pulse onto the circuit node under test. There is no need to unsolder pins or cut printed-circuit traces even when these nodes are being clamped by digital outputs.
PLS-1 is a multi-mode, high current pulse generator packaged in a hand-held shirt pocket portable instrument. It can source or sink sufficient current to force saturated output transistors in digital circuits into the opposite logic state. Signal injection is by means of a pushbutton switch near the probe tip. When the button is depressed, a single high-going or low-going pulse of \(2 \mu\) sec wide is delivered to the circuit node under test. Pulse polarity is automatic: high nodes are pulsed low and low nodes are pulsed high. Holding the button down delivers a series of pulses of ROpps to the circuit under test.

High input impedance(off state) 1 meg ohm • Multi mode-single pulses or pulse trains
Low output impedance(active state) 2 ohms \(\bullet\) Automatic polarity sensing
Output pulse width \(2 \mu \mathrm{sec}\) nominal • Automatic current limiting; 7 amps nominal
Input over voltage protection +50 volts \(\bullet\) Automatically programmed output level
Finger tip push button actuated \(\bullet\) Circuit powered
Power lead reversal protection \(\bullet\) No adjustments required
Multi-family RTL, DTL, TTL, CMOS, MOS and Microprocessors.


\section*{THE FT-207R HANDLE CHECKLIST}
\begin{tabular}{ll}
\(\square\) TA-2 & telescopic whip antenna \\
\(\square\) YM-24 & speaker microphone \\
\(\square\) LCC-7 & leather case \\
\(\square\) FSP-1 & external speaker \\
\(\square\) MMB-10 & mobile mounting bracket \\
\(\square\) FTS-32E & CTCSS/burst encoder \\
\(\square\) FTS-32ED CTCSS encoder/decoder
\end{tabular}

\author{
NC-1A 15-hr. desk charger \\ NC-3 4-hr. quick charger \\ NC-9B wall charger \\ PA-2 mobile battery eliminator/charger \\ FBA-1 battery sleeve \\ NBP-9 battery pack \\ FEP-1 earphone
}

What more could you ask for?

\title{
EIMAC's new high-mu triode/cavity combination. It takes the hassle out of 10 kW VHF transmitter design.
}

Relax. Now EIMAC offers you the best triode available and a cavity that has been custom designed for it. All you have to do is design them in.

The advantages are impressive. EIMAC's ceramic-metal high-mu triode (3CX10000U7) gives you peak sync power output of 10 kW and a stage gain of 14 dB . That's 2 dB more than with comparable tetrodes.


And there's more. Driving requirements are reduced; screen power supply and screen circuitry are eliminated; and cooling requirements are lessened. The result is ease of maintenance and substantial cost reduction.

There are two EIMAC cavities for your 10 kW combination, the CV-2240 for channels 2-6, and the CV-2250 for channels 7-13. For further information contact Varian, EIMAC Division, 301 Industrial Way, San Carlos, California 94070, (415)

592-1221. Or call any of the more than 30 Varian Electron

Device Group Sales Offices throughout the world.```


[^0]:    1. Norm Foot, WA9HUV, "High-Frequency Communications Receiver," ham radio, October, 1978, page 10.
[^1]:    MAIL ORDER ELECTRONICS - WORLDWIDE 1355 SHOREWAY ROAD, BELMONT, CA 94002
    PRICES SUBJECT TO CHANGE

[^2]:    *Fair Radio Co., Post Office Box 1105, Lima, Ohio 45802

[^3]:    * NOTE: Transmitter coverage for MARS, Government, and future WARC bands is available only in ranges authorized by the FCC, Military, or other government agency for a specific service. Proof of license for that service must be submitted to the R. L. Drake Company, including the 500 kHz range to be covered. Upon approval, and at the discretion of the R. L. Drake Company, a special range IC will be supplied for use with the Aux7 Range Program Board. Prices quoted from the factory. See Operator's Manual for details. (Not available for services requiring type acceptance.)

[^4]:    *Using Morse code, of course. Editor.

[^5]:    -Experiments with wider audio bandwidths (up to 3 kHz ) are in progress. This should increase digital rates as well as improve sudio fidelity.

[^6]:    1. H. Paul Shuch, N6TX, "Compact and Clean L-Band Local Oscillators," ham radio, December, 1979, page 40.
    2. H. Paul Shuch, N6TX, "UHF Local Oscillator Chain for the Purist," ham radio, July, 1979, page 27.
    3. H. Paul Shuch, WA6UAM, "Easy to Build SSB Transceiver for 1296 MHz ," ham radio, September, 1974, page 8.
    4. H. Paul Shuch, N6TX, "Improved Grounding for the $1296-\mathrm{MHz}$ Microstrip Filter," ham radio, August, 1978, page 60.
[^7]:    Note: K1 is a dpdt relay, 5000 -ohm coil, 120 Vac. Contacts are rated at 10A, 125 Vac. Dimensions: $1-5 / 8 \times 1 \times 3 / 4$ inches ( $41 \times$ $25.4 \times 19 \mathrm{~mm}$ ).

