- A homebrew 8877 linear
- Neutrino communications. . 24
- Analog-to-digital converter
uick and simple itenna match. . . 50
Γ NR

Abstract

[i, 1 D - 5 ...Another fine member of the famous Henry Radio family of superior amplifiers. And we're still convinced that it's the world's finest linear in Its class. The 1KD-5 was designed for the amateur who wants the quality and dependability of the 2KD-5 and 2K-4, who may prefer the smaller size, lighter weight and lower price and who will settie for a little less power. But make no mistake, the 1KD-5 is no slouch. Its 1200 watt PEP input (700 watt PEP nominal output) along with its superb operating characteristics will still punch out clean powerful signals...signals you'll be proud of. Compare Its specifications, Its features and its fine components and we're sure you will agree that the 1KD-5 is a superb value at only $\mathbf{\$ 6 9 5}$.

(h) -5 We have been suggesting that you look inside any amplifier before you ny the hight quallt, buy it. We hope that you win. Hyou III the id on a 2KD-5 you wil see號 promise a long life of continous operation in any mode at full legal power. The 2KD-5 is a 2000 watt PEP input (1200 watt PEP nominal output) RF linear amplifier, covering the $\mathbf{8 0 , 4 0 , 2 0}$, and 15 meter amateur bands. It operates with two Elmac 3-500Z glass envelope triodes and a PI-L plate circuit with a rotary silver plated tank coll. Price $\mathbf{\$ 9 4 5}$.

And don't forget the rest of the Henry family of amateur amplifiers...the Tempo $\mathbf{2 0 0 2} \mathbf{~ h i g h ~ p o w e r ~}$ VHF amplifier and the broad IIne of top quality solid state amplifiers. Henry Radio also offers the 3K-A and 4K-Ultra superb high power H.F. amplifiers and a broad line of commercial FCC type accepted amplifiers for two way FM communications covering the range to $500 \mathbf{M H z}$.

A brand new "super" linear...the 3K Classic! Designed for the most critical Amateur Radio operator...the individual who wants and appreciates owning the finest. Available in spring 1981.

INEXPENSIVELY SUPERIOR The OS 2000 KSR is the lowest priced $\mathrm{R} T \mathrm{Y}$ t terminal available with these advanced features:

- TX/RX operation on Baudot and ASCII RTTY plus Morse Code (Morse RX optional)
- Integrated keyboard and video generator allows editing of transmit text
- Full 24 line by 72 characters per line display

Bright/dim display of characters differentiates between TX and RX display

- Morse receive option may be added at any time
- Separate CW identification key for RTTY operation
- Status line on top of screen shows terminal operating conditions
- Pretype transmit message into 255 character buffer; edit before transmitting
- 2 programmable "Here Is" messages

Word-wrap-around prevents word splitting at end of display line
Word mode allows editing of text to be transmitted
Quick Brown Fox and RYRY test message keys

- Small size metal cabinet gives effective RFI shielding from transmitters
- Loop compatible RTTY connections and plus or minus CW key connections
- 110 and 300 baud ASCII

45,50,57.74.100 baud Baudot

- $1-175$ wpm Morse transmit1-175 wpm optional Morse receive
- 120/240 v, $50 / 60 \mathrm{~Hz}$ power
- Internal CW side-tone
- UnShift On Space for Baudot

Keyboard Operated Switch

- SYNC idle for RTTY
- One year warranty

Write or give us a call. We'll be glad to send you our new RTTY catalog.

BALHAL COMMUNICATIONS CORP.
Box 365
Urbana, Illinois 61801
217.367.7373

For our European customers, contact: Richter \& Co. D3000 Hannover $1 \cdot$ I.E.C. Interelco, 6816 Bissone/Lugano • Radio Shack Ltd., London NW6 3AY • Erik Torpdahl Telecom, DK 3660 Stenlose Denmark

Up Your Power With MFJ Speech Processors

$\$ 11995{ }_{(+54)}^{95}$ MFJ-520BXII \$59?

MFJ-525 RF Speech Processor gives you up to 4 times more average SSB power on all bands. Powerful, natural sounding speech punches through QRM and DX piles ups. A true RF processor, the 525 works with any rig, any mic. No internal connections needed. Two color VU meter aids in setting clipping. Full controls: clipping level, output level, On-Off/Bypass switch, LED indicator. Shielded cable with PTT line, 4-pin mic. jack \& plug, RFI protected. 12-18 VDC
or 110 VAC with optional AC adapter ($\$ 7.95$ $+\$ 2$). $6 \times 2 \times 6^{\prime \prime}$

Super Logarithmic Speech Processors:
MFJ LSP-520BX II gives up to 400% more RF power. Plugs between mic. and transmitter. Three active filters concentrate power to slice through QRM; $\mathbf{3 0} \mathbf{d B}$ dynamic range IC amp., 9 V battery required. $4 \times 2 \times 6^{\prime \prime}$ beige \& walnut grain cab. LSP-520BX, $\$ 49.95$ $+\$ 4$, similar, in metal cab. $2 \times 3 \times 4^{\prime \prime}$

MFJ Dummy Loads - Air or Oil Cooled

MFJ-250 $\$ 29_{(+54)}^{95}$

MFJ-262 \$4995 MFJ-260 \$26"5

MFJ-250 1 kW load with oil only $\$ 29.95$! Rated I kW CW or 2 kW PEP for 10 min .. half ratings for 20 min ., cont. at 200 W CW.

400 W PEP. VSWR under $1.2: 1$ to 30 MHz ; 1.5:1 to 300 MHz . $71 / 2^{\prime \prime}$ h x $65 / 8^{\prime \prime}$ diam. New MFJ "Dry" Loads. Air cooled 50 ohm non-inductive resistors in perforated metal housings; rated full load for 30 seconds, de-rating curves to 5 min . inc. Low VSWR: MFJ-260 (300W) 1.1:1 to 30 MHz , 1.5:1 to $160 \mathrm{MHz} ; 2^{1 / 2} \times 2 \frac{1}{2} \times 7^{\prime \prime}$; MFJ-262 (1 kW) $1.5: 1$ to $30 \mathrm{MHz} .3 \times 3 \times 13^{\prime \prime}$

MFJ Deluxe Phone Patches

MFJ-624 Telepatch II hybrid phone patch with unmatched performance and quality.

Crisp, clear, hum-free audio with VOX or PTT. VU meter to monitor line level and adjust null depth. Full controls: separate transmit and receive gain controls, null control, function switch. Jacks for in, out. speaker \& mic.; terminals for phone lines. Beige \& walnut grain cab. $8 \times 2 \times 6^{\prime \prime}$. MFJ$620, \$ 49.95+\$ 4$, similar, less meter. $6 \times 2 \times 6^{\prime \prime}$

MFJ-1030BX Receiver Preselector boosts $10-30 \mathrm{MHz}$ signals $3-5^{\text {' }} \mathrm{S}$ " units. Dual-gate MOSFET has 20-25 dB gain, noise figure less than 2.5 dB . Beige/Walnut. $4 \times 2 \times 6{ }^{\prime \prime}$ MFJ-40T QRP CW Transmitter works the world with 5 watts on 40 M ; no tuning: 3 crystal sockets, or VFO input; protected transistor output; pi net; $12 \mathrm{VDC}: 2 \times 3 \times 4^{\prime \prime}$. MFJ-40V QRP VFO; direct dial 7.7.2 MHz ; less than 100 Hz drifi/hr after warmup;
clean 4 V peak-to-peak output flat to 2 dB ; 12 VDC ; metal cab. matches 40 T .
CPO-555 Code Oscillator; crisp clear sound from built-in speaker; enough vol. for class use: tone control; 9 V battery, $2 \times 3 \times 4^{\prime \prime}$. TK-555, \$1.95, optional key
MFJ-200BX Frequency Standard; gated for easy ID, markers every 100, 50, and 25 kHz into VHF: 9 V battery, $2 \times 3 \times 4$ "

NEW 12/24 Hour Digital Clock/ID Timer Switch from 12 hr . to GMT, to "seconds" readout, ID timer or elapsed timer. WWV sync, solid-state, blue $0.6^{\prime \prime}$ digits, reg. alarm +indicators. $110 \mathrm{VAC}, 60 \mathrm{~Hz}, 6 \times 2 \times 3^{\prime \prime}$
MFJ-941C "Versa Tuner II" matches dipoles, vees, randoms, verticals, mobile whips, beams; $160-10 \mathrm{M} ;$ SWR + dual range wattmeter (300 \& 30 watts); 6 -position antenna sw . : built-in balun; $8 \times 2 \times 6^{\prime \prime}$: mobile mtg. brkt \$3.

MFJ-408 "Deluxe Electronic Keyer II"; Curtis 8044 IC keyer chip; speed meter to 50 WPiM; dot-dash memories; RF proof; sends iambic, automatic, semi-auto, or manual; weight, speed, vol., tone controls; speaker; solid-state keying: grid block, cathode, solid-state transmitters $(-300 \mathrm{~V}, 10 \mathrm{~mA}$ max $,+300 \mathrm{~V}, 100 \mathrm{~mA}$ max) ; 6-9 VDC or 110 VAC with optional AC adapter (\$7.95 $+\$ 2$): $8 \times 2 \times 6^{\prime \prime}$.
 \title{

N1
 \title{ \section*{N1 Operating fids \& Instruments Operating fids \& Instruments Operating fidr \& Intruments Operating fidr \& Intruments號

號}

Handy helpers from the world's leading manufacturer of amateur radio accessories

MFJ RF Noise Bridge MFJ-202 $\mathbf{\$ 5 4} 4_{(-151}^{95}$

Maximize your antenna performance. Measure resonant frequency, radiation resistance, reactance, learn how to get minimum SWR. Great for experiments, tests in tuned circuits (measure inductance. RF impedance \& more). Series bridge, $\pm 150 \mathrm{pf}, 250$ ohms, $1-100 \mathrm{MHz}$. Includes range extender for measurements beyond scale readings. 9 VDC $2 \times 3 \times 4^{\prime \prime}$

Multi-Sensor SWR/Wattmeters

MFJ-825 Deluxe Power Sentry accepts any 3 sensors; operates 3 rigs; peak or avg. forward/reflected power in 2 ranges; SWR 1:1 to 6:1,9 VDC or 110 VAC with optional AC adapter $(\$ 7.95+\$ 2): 6 \% \times 5 \frac{3}{1 / 8} \times 5 \% / 4$ "; includes one sensor of your choice.
MFJ-820 Power Sentry accepts one sensor; avg, forward/ref. power in 2 ranges; SWR 1:1 to $6: 1 ; 37 / x^{\prime \prime} \times 5 \frac{1}{6} \times 41 / 2^{\prime \prime}$; includes one sensor of your choice.
MFJ-830 HF Sensor, $1.8-30 \mathrm{MHz}, 200 /$ 2000W fwd, 20/200W ref. MFJ-831 VHF Sensor, $50-175 \mathrm{MHz}, 20 / 200 \mathrm{~W}$ fwd \& ref. MFJ-832 QRP HF Sensor, $1.8-30 \mathrm{MHz}$, 2/20W fwd \& ref. MFJ-833 Hi-Pwr VHF Sensor, like \#831 but 200/2000W fwd, 20/200W ref.

For tech. info., order or repair status, or calls outside continental U.S. and inside Miss. call 601-323-5869.

- All MFJ products unconditionally guaranteed for one year (except as noted)
- Products ordered from MFJ are returnable within 30 days for full refund (less shipping)
- Add shipping $\&$ handling charges in amounts shown in parentheses

Write for FREE catalog, over 60 products
ENTERPRISES

Box 494; Mississippi State, MS 39762
 shown in parenthes.

ham

JANUARY 1981

volume 14, number 1
T. H. Tenney, Jr., W1NLB publisher and editor in chief

Alfred Wilson, W6NIF edito editorial staff
Martin Hanft, WB1CHO production editor

Joseph J. Schroeder, W9JU
Leonard H . Anderson associate editors
W. E. Scarborough, Jr. KA1DXO graphic production manager ene Hollingsworth editorial assistant
publishing staf
J. Craig Clark. Jr , N1ACH assistant publisher and advertising manager Susan Shortock circulation manager
ham radio magazin
is published monthiy by
Comm is published monthiy ay Communications Technology, Telephone: 603-878-1441
subscription rates United States: one year, $\$ 1500$ wo years, $\$ 2600$ three years, $\$ 3500$ Canada and other countries (via Surface Mail) one year, \$18.00; two years, \$3200 three years, $\$ 44.00$
Europe. Japan, Alrica (via Air
Forwarding Servicel one year, $\$ 28.00$
All subscription orders payable in nited States funds, pleas
foreign subscription agents
foreign subscription agents ar listed on page 83

Microfilm copies are available from
University Microfims, internationa Ann Arbor, Michigan 48106 Order publication number 307
Cassette tapes of selected article from ham radio are available to the blind and physically handicapped
from Recorded Periodical 919 Walnut Street, 8th Floo Philadelphia, Pennsylvania 1910 and at additional manimg office ISSN $0148-598$
incorporating HOMRZONS contents

12 modular linear amplifier for the high-frequency bands Jerry Pittenger, K8RA

20 elliptic lowpass filters for transistor amplifiers Ed Wetherhold, W3NQN

24 neutrino communications
Jay M. Pasachoff and Marc L. Kutner
30 pulse-position control of the CDE Tailtwister rotor
Watson R. Gabriel, Jr., WB4EXW
36 microcomputer-based contest keyer Andrew B. White, K9CW

44 analog-to-digital display converter for the visually handicapped Pat Berry, KB7JW

50 the Kenscan 74
Kenneth R. Fletcher, WB7QYB
58 quick and simple antenna match
Leonard H. Anderson
62 transmission-line circuit design: part two
H.M. Meyer, Jr., W6GGV

68 ham radio techniques
Bill Orr, W6SAI

110 advertisers index	6 observation and
76 DX forecaster	opinion
83 flea market	9 presstop
90 ham mart	4 publisher's log
78 ham notebook	110 reader service

The year 1981 is a year of great change and opportunity here at ham radio. We start off by welcoming as new readers the many thousands of subscribers to ham radio's former sister magazine, Ham Radio Horizons. These readers will be receiving ham radio each month on an issue-for-issue basis for the balance of their subscriptions (and, we hope, for many years after that). If you are one of our loyal supporters who took both magazines, then your ham radio subscription will be extended on the same issue-for-issue basis.
What are our plans for the combined magazine? Alf Wilson, W6NIF, our editor, will be explaining on page 6 in greater detail, but basically we intend to devote a major segment of each issue to keeping ham radio the pre-eminent technical publication in the Amateur field. At the same time, we plan to offer an interesting variety of new features derived from successful ideas that first appeared in Ham Radio Horizons - plus a few that are new to both publications. All of this material will be carefully chosen to make ham radio the most interesting and useful Amateur Radio magazine, both for the technically involved reader and the active but less technically oriented Amateur.
It all adds up to a big challenge for Alf and his staff, but he is well geared up for this project and I'm sure you're going to be seeing some of the best issues of ham radio that we've ever put out. Your comments will be of great value to us during this period of change. Don't hesitate to let us know your likes and dislikes, and also any other suggestions you may have.
Many folks have been wondering why we stopped HRH, at a time when it was getting better and better with each issue and was showing such great promise. It wasn't an easy decision to make, especially in view of the fact that our readership kept growing stronger every month after our redirection of the magazine early last year. Our weakness was in the advertising column. As the newest of the major Amateur monthlies, Horizons never really got its share of the Amateur Radio advertising action. A new advertising sales team, which took over here last summer and had great luck in making ham radio grow, could not - despite their extensive efforts - keep the outlook for Horizons from deteriorating.
The answer soon became obvious. With the combination of our two magazines, ham radio now has the largest circulation of any of the independent Amateur magazines, and our new economics of operation allow us to give the advertiser a value unmatched anywhere else.

Everyone should benefit, because a strong magazine means a better magazine. Suddenly everyone here in the ham radio organization can double his efforts toward our one magazine.
This issue represents just the beginning of our new direction. It will take a few issues to really get the new format in place. We have a lot of good ideas, and by the time spring rolls around you'll be seeing the most interesting and best balanced magazine that has ever been offered to the Radio Amateur.

Skip Tenney, W1NLB

2A Versatility Popular 2A and 2AT Even More Popular!

As the new editor of ham radio, I've seen a number of changes occur in this organization. Some of these changes reflect difficult choices and decisions, but all of them have been made with the continued welfare of ham radio and its readers in mind.

The structure of the Ham Radio Publishing Group has changed. One of the best Amateur magazines in the world, Ham Radio Horizons, has been discontinued. The decision to drop Horizons was made with great reluctance. However, business is business, and Horizons just didn't pull its weight in advertising revenue, although the magazine flourished in the Amateur community. It provided many newcomers with down-to-earth information on operating techniques, easy-to-build construction projects, and an opportunity to get the feel of what Amateur Radio is all about.
ham radio, on the other hand, provides advanced Amateurs with the latest state-of-the-art developments in technology. It will continue to do so. So we have a dilemma: How do we keep Horizons readers interested in our product without turning off the old guard ham radio reader? It's a real challenge - one that is rare in the technical-publications business.

Our decision has been to expand ham radio, still retaining the best in communications technology but also including material for readers who have enjoyed Ham Radio Horizons.

In this issue you'll find two features that were standbys in Horizons: Bill Orr's "Ham Radio Techniques" and "DX Forecaster." The latter is a two-page summary of what's happening for the month in the DX world, including a propagation chart based on scientific observations. Bill Orr's column, which explores Amateur Radio from top to bottom, will be welcomed by every active Amateur, old and new.

Also in this issue are some subtle changes in magazine graphics. Our graphics designer, Bill Scarborough, has instituted some interesting methods of portraying the editorial material so that it's easier to read and much more pleasing to the eye. We think you'll like it.

Here's a brief description of the other new features you'll find in future issues of the new ham radio. "Questions and Answers" was extremely popular in Ham Radio Horizons. We plan to continue this feature. We also plan to include our "Owner's Survey," which is compiled from reader responses to questions about popular pieces of ham gear. This is probably one of the most unbiased reviews ever published in an Amateur Radio magazine. It's the kind of report that will never be prepared by a laboratory or in a manufacturer's test facility - it tells it like it is: no holds barred.

The DXer is very much a part of Amateur Radio. This fellow is unique. He will do just about anything to work a new country. In Ham Radio Horizons, Bob Locher, W9KNI, wrote on the trials and tribulations of the DX operator in his series, "DXer's Diary." Bob's easy-going literary style was much appreciated by Horizons readers. In a future issue of ham radio, we'll publish another of Bob's articles on DXing. We'd like to hear from readers as to how they like this feature. If the response is positive, we'll continue "DXer's Diary"; if not, we'll drop it. Let us know what you think. It's your magazine. We'll do our best to publish articles that appeal to the most readers.

We're trying to provide the best balance of articles ever published in an Amateur Radio magazine. Let us know your desires and needs. We welcome all suggestions.

Alf Wilson, W6NIF Editor

MORE KEYER FEATURES FOR LESS COST
 AEA Invites You to Compare the AEA Keyer Features to Other Popular Keyers on the Market.

 KT-1 MT-1

Keyer Trainer Morse Trainer Contest Keyer Morse Keyer

IMPORTANT KEYER AND/OR TRAINER FEATURES	$\begin{aligned} & \text { AEA } \\ & \text { MM-1 } \end{aligned}$	$\begin{aligned} & \hline \text { AEA } \\ & \text { KT-1 } \end{aligned}$	$\begin{aligned} & \text { AEA } \\ & \text { MT-1 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { AEA } \\ & \text { CK-1 } \end{aligned}$	$\begin{aligned} & \text { AEA } \\ & \text { MK-1 } \end{aligned}$	A	COMPE	$\begin{gathered} \text { ETITOR } \\ \text { C } \end{gathered}$	D
Speed Range (WPM)	2-99	1-99	1-99	1-99	2-99	$8-50$	5-50+	?	$8-50$
Memory Capacity (Total Characters)	500			500		400	100/400	400	
Message Partitioning	Soft			Soft		Hard	Hard	Hard	
Automatic Contest Serial Number	Yes			Yes		No	No	No	
Selectable Dot and Dash Memory	Yes	Yes		Yes	Yes	No	No	No	No
Independent Dot \& Dash (Full) Weighting	Yes	Yes	Yes	Yes	Yes	No	No	No	No
Calibrated Speed, 1 WPM Resolution	Yes	Yes	Yes	Yes	Yes	No	No	Yes	No
Calibrated Beacon Mode	Yes			No		No	No	No	
Repeat Message Mode	Yes			No		Yes	Yes	Yes	
Front Panel Variable Monitor Frequency	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes
Message Resume After Paddle Interrupt	Yes			Yes		No	No	Yes	
Semi-Automatic (Bug) Mode	Yes	Yes		Yes	Yes	No	No	No	No
Real-Time Memory Loading Mode	Yes			Yes		Yes	Yes	No	
Automatic Word Space Memory Load	Yes			Yes		No	No	Yes	
Instant Start From Memory	Yes			Yes		No	No	Yes	
Message Editing	Yes			Yes		No	No	No	
Automatic Stepped Variable Speed	No	No	No	Yes	No	No	No	No	No
2 Presettable Speeds, Instant Recall	No	No	No	Yes	No	No	No	No	No
Automatic Trainer Speed Increase	Yes	Yes	Yes						No
Five Letter or Random Word Length	Yes	Yes	Yes						No
Test Mode With Answers	Yes	Yes	Yes						No
Random Practice Mode	Yes	Yes	Yes						Yes
Standard Letters, Numbers, Punctuation	Yes	Yes	Yes						Yes
All Morse Characters	Yes	Yes	Yes						No
Advertised Price	\$199.95	\$129.95	\$99.95	\$129.95	\$79.95	\$139.95	$\begin{array}{r} \$ 99.50 \\ \$ 139.50 \end{array}$	\$229.00	\$129.95

OPTIONS:

MT-1P (portable version of MT-1) with batteries, charger, earphone
ME-1 2000 character plug-in memory expansion for MM-1
AC-1 600 Ma .12 Volt wall adaptor for MM-1 with ME-1
AC-2 350 Ma .12 Volt wall adaptor for all AEA keyer and trainer products except MM-1 w/ ME-1
DC-1 Cigarette lighter cord for all AEA keyers and trainers except MT-1P
5.95

MT-1K Factory conversion of MT-1 to KT-1
PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE OR OBLIGATION.

All our keyers (except the MT-1) will operate with any popular single lever or lambic squeeze paddle and will key any type of modern amateur transmitter with no external circuitry required. AEA keyers are as easy to operate as a four function calculator. The internal AEA computers are all pre-programmed for the features shown above. Each AEA product is fully RF protected and receives a complete elevated temperature burn-in and test before it is shipped from the factory.
Ask a friend how he likes his AEA keyer compared to anything else he has ever tried, then JUDGE FOR YOURSELF. See the AEA keyer and trainer family at your favorite dealer.
Advanced Electronic Applications, Inc., P.O. Box 2160, Lynnwood, WA 98036. Call 206/775-7373

The Majority Leader

In the race of popular demand for quality in fully synthesized, multifeature hand held transceivers, the Santec HT-1200 emerges as the commanding front runner. More than just handy, the Santec stands on a solid platform of big rig features which fully utilize the very latest microprocessor technologies.

When you choose Santec, you opt for 4 modes of automatic scan and search of 10 memories and the whole band. When you choose Santec, you opt for selectable output power of 3.5 W or 1.0 W , with only a 6 ma drain for the optional continuous display of the bright LED readout. When you choose Santec, you opt for variable scan steps in any multiples of 5 kHz . And when you choose Santec, you opt for a band range that covers most Army MARS, Navy MARS, and CAP frequencies and the ease of entering all frequencies from the integrated keyboard. Assuredly, when you choose Santec, you opt for the majority leader which hands over features hand over fist.

SUGGESTED REIALL PRICE: $\$ 379.00$

Check the price at your Authorized Santec Dealer todayl

SANTEC HT-4200 \qquad Texas Instruments TMS1000 milcroprocessor	YAESU FT NEC. 650	KENWOOD TR-2400 NEC. 650
Rx on 143 to 149.995 MHz Tx on 143 to 148.995 MHz (1200 channels with MARS coverage)	Rx \& Tx on 144 to 147.995 MHz , Ham band only (800 channels)	$R \mathrm{R} \& \mathrm{Tx}_{\mathrm{x}}$ on 143.9 to 148.495 (900 channels with some MARS coverage)
Direct keyboard entry of all frequencies. Keyboard entry of 5 kHz digit which stays in memory	Keyboard enrty of 10 kHz steps with a switch for 5 kHz stcps	Direct keyboard entry of Ham band only. MARS frequencies must be entered into a memory by stepping and recalling.
10 programable memories with frequencies preloaded on cold boot.	5 programable memories. All memories loaded with 144.00 on cold boot.	10 programable memories. All memorics loaded with 145.00 on cold boot.
Up/Down variable acan steps in any multiples of 5 kHz over whole band or auto-acan of 10 memorics. Scan (restart) or search (lock) modes for both band and memory modes.	Up/Down scan with 10 kHz stepe only. Misses every other 15 kHz by 5 kHz . Locks without restari.	Scans 10 memories only. Rentart only: lock mode not avallable. Continuous band scan/scarch not avallable.
Full 16 button TTP with LED display of number as it is dialed.	12 button TTP only.	Full 16 button TTP. Readout of the number dialed is not available.
9.6v 500mah battery (Included)	10.8 v 450 mah battery (Included)	9.6 v 500 mah battery (included)
$\begin{aligned} & \text { Tx Hight } 3.5 W \text { (} 4 \mathrm{~W} \text { nominal) } \\ & \text { Tx Low: } 1 \mathrm{~W} \end{aligned}$	Tx High, 2.5W Tx Low Tx Low 800 mW	Txat 1.5 W only.
Readout: LED	Readout: LED	Readout: LCD
$\begin{aligned} & \text { Volume: 543ce } \\ & 170 \mathrm{~mm}(\mathrm{H}) \times 68 \mathrm{~mm}(\mathrm{~W}) \times \\ & 47 \mathrm{~mm}(\mathrm{D}) \end{aligned}$	$\begin{aligned} & \text { Volume: } 664 \mathrm{cc} \\ & 181 \mathrm{~mm}(\mathrm{H}) \times 68 \mathrm{~mm}(\mathrm{~W}) \times \\ & 54 \mathrm{~mm}(\mathrm{D}) \end{aligned}$	$\begin{aligned} & \text { Volume, } 640 \mathrm{cc} \\ & 198 \mathrm{~mm}(\mathrm{H}) \times 71 \mathrm{~mm}(W) \times \\ & 47 \mathrm{~mm}(D) \end{aligned}$

The Santec HT-1800 is approved under FCC Part 15 and exceeds FCC regulations limiting spurious emiseions.
-1980, ENCDNTV_inc.

prestoop

HAM RADIO HORIZONS ceased publication with the December, 1980, issue. Though Ham Radio Horizons had succeeded in building a loyal and ever-increasing following of Amateur Radio readers, it had not achieved sufficient popularity with advertisers to put it into a very solid financial position. That, coupled with Horizons' pulling of some ad revenue from its parent publication, Ham Radio, and the current spottiness of the Amateur Radio marketplace, led to the decision to concentrate both editorial and marketing efforts of the staff on the older, more successful and better known magazine.

Ham Radio Horizons Subscribers wili receive Ham Radio on an issue for issue basis; the 25 per cent or so who now receive both publications will have their Ham Radio subscriptions extended proportionally. Adding the unduplicated Horizons subscribers to Ham Radio will increase that magazine's subscriber list to more than 75,000 . As a re-

* sult, Ham Radio advertisers will, for the moment, be getting the best bargain in the Amateur Radio field.

Though The Shutdown after four years of publication is a disappointment to both Ham Radio Horizons staff and its many loyal readers, it provides the necessary resources to ensure that Ham Radio will maintain its well entrenched position as Amateur Radio's top technical publication. In addition, Ham Radio's editorial coverage will be broadened somewhat by adding to it some of the more popular features for Ham Radio Horizons.

SIGNIFICANT IMPLICATIONS FOR AMATEUR RADIO can be inferred from Ronald Reagan's smashing victory in the presidential elections. The effects will be felt almost entirely through the FCC, which Washington observers feel will retreat sharply from the recent liberal philosophy under Chairman Ferris that led to directions blurring the distinctions between Amateur Radio and CB.

The Transition Won't Occur quickly, however; Dick Wiley was FCC Chairman for almost a year after Jimmy Carter won the presidency in 1976, while the new president tended first to higher priority changes in the Washington hierarchy. During the interim period. expect the Commission to move very slowly, avoiding any appearance of "making waves."

Though This May Mean Delays in implementing some needed rule making and even access to the new 10.1 MHz band, the more conservative Reagan administration is expected to return Amateur Radio's direction to more traditional paths than it has recently been on.

220 MHZ IS AGAIN BEING EYED by other services, according to current rumors from Washington. Users of the inland waterways system are reported to be looking at $220-225 \mathrm{MHz}$ to relieve the congestion they're presently experiencing on the $160-\mathrm{MHz}$ marine band, possibly at the suggestion of someone within the FCC!

Placing Inland Waterways Communications on $220-225 \mathrm{MHz}$ came up earlier this year in FCC General Docket $80-1$, an NPRM that was issued in response to the waterways users' request for more $150-170 \mathrm{MHz}$ channels, suggesting $216-220$ or $806-890 \mathrm{MHz}$ for alternatives. The problem with that NPRM came in its summary, which cited $216-225 \mathrm{MHz}$ instead of $216-220 \mathrm{Miz}$ for expansion. After discussing the discrepancy with Amateur Radio representatives (and a storm of protests from 220 users), the FCC did issue a correction, but there was then and certainly is now some suspicion that inclusion of the 220 MHz Amateur band in the FCC's proposal was more a trial balloon than an error.

The ARRL Is Well Aware of this new threat, and is planning a determined campaign to quash it. Still another threat is brought out in the December, 1980, issue of Popular Electronics, in an article on cordless phones which says that manufacturers are looking to the FCC for new frequencies in either the 27 or $220-225 \mathrm{MHz}$ band!

A PROBE INTO AMATEUR LICENSING IMPROPRIETIES dating back to 1976 , when the August 15 issue of the Indianapolis Star ran a long article headlined "FBI PROBES HAM RADIO SCANDAL," is finally coming to a head. In a November 6 release, the Private Radio Bureau Chief ordered 13 Amateurs, 10 of them from Indianapolis or vicinity, to show cause why their station licenses should not be revoked, and suspended their operators licenses. Another, whose license is up for renewal, is under review.

All of The 14 Are Alleged to have "fraudulently obtained or attempted to obtain new or upgraded Amateur licenses without examination" or "actively participated to fraudulently obtain or attempt to obtain new or upgraded Amateur licenses without examination" by the Commission in PR Dockets 80-668 through 80-682.

PLAIN LANGUAGE AMATEUR RULES GOT the Commissioners' nod recently along with some nice comments about both the Amateur Service and the staff's work on the rewrite job. The proposed new Part 97 has four parts: Part A, The Amateur Radio Service; Part B, The Radio Amateur Civil Emergency Service; Part C. The Amateur Satellite Service; and Part D, Technical Standards common to all three services.

Three Important Changes are in the proposed new rules. One: All previous log keeping requirements are deleted. Two: The Conmunications Act Section 303 requirement that an Amateur make his station available to the Commission for inspection will now be incorporated in the new Part 97. Three: Every Amateur would be required to keep a copy of Part 97 in his station.

A fresh idea!

Our new crop of tone equipment is the freshest thing growing in the encoder/decoder field today. All tones are instantly programmable by setting a dip switch; no counter is required. Frequency accuracy is an astonishing $\pm .1 \mathrm{~Hz}$ over all temperature extremes. Multiple tone frequency operation is a snap since the dip switch may be remoted. Our SS- 32 encode only model is programmed for all 32 CTCSS tones or all test tones, touch-tones and burst-tones. And, of course, there's no need to mention our 1 day delivery and 1 year warranty.

TS-32

TS-32 Encoder-Decoder

- Size: $1.25^{\prime \prime} \times 2.0^{\prime \prime} \times .40^{\prime \prime}$
- High-pass tone filter included that may be muted
- Meets all new RS-220-A specifications
- Available in all 32 EIA standard CTCSS tones

SS-32 Encoder

- Size: $.9^{\prime \prime} \times 1.3^{\prime \prime} \times .40^{\prime \prime}$
- Available with either Group A or Group B tones

Frequencies Available:

Group A						
67.0 XZ	91.5 ZZ	118.8	2 B	156.7	5 A	
71.9 XA	94.8	ZA	123.0	3 Z	162.2	5 B
74.4 WA	97.4 ZB	127.3	3 A	167.9	6 Z	
77.0 XB	100.0	1 Z	131.83 B	173.86 A		
79.7 SP	103.5 A	136.5	4 Z	179.9	6 B	
82.5 YZ	107.2 B	141.3	4 A	186.2	7 Z	
85.4 YA	110.9 ZZ	146.2 B	192.8	7 A		
88.5 YB	114.8	2 A	151.45 Z	203.5 M 1		

- Frequency accuracy, $\pm .1 \mathrm{~Hz}$ maximum $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Frequencies to 250 Hz available on special order
- Continuous tone

Group B						
TEST-TONES:	TOUCH-TONES:	BURST-TONES:				
600	697	1209	1600	1850	2150	2400
1000	770	1336	1650	1900	2200	2450
1500	852	1477	1700	1950	2250	2500
2175	941	1633	1750	2000	2300	2550
2805		1800	2100	2350		

- Frequency accuracy, $\pm 1 \mathrm{~Hz}$ maximum $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Tone length approximately 300 ms . May be lengthened, shortened or eliminated by changing value of resistor
Wired and tested: TS-32 \$59.95, SS-32 \$29.95

modular linear amplifier

for the high-frequency Amateur bands

Genesis of an 8877 amplifier an example of Amateur craftsmanship

Many articles have been published on linearamplifier construction. The reason is that an rf linear amplifier is one relatively simple, technical project the average Amateur can build that can rival the best commercial units on the market. The amplifier described here was inspired by the excellent series on amplifier design by Bill Orr, W6SAI, ${ }^{1}$ combined with my desire to try some new ideas. The results of the project are illustrated and discussed below.

The amplifier was built for a friend, Steve, K8EJ, who wanted a "clean" amplifier built around the Eimac 8877 ceramic metal triode. Steve supplied all
financial backing in return for a design that provided excellent performance and maintenance as well as reliability. These objectives have been met. I hope that the results of this project will encourage others.

preliminary building tips

After designing and building several different amplifiers, l've come to some basic conclusions and recommendations which I feel are worth consideration. First of all, build the amplifie; right the first time! If you compromise anywhere, you'll not be happy with the product in the long run. Granted, it will cost more money and take more time and effort, but you'll be more gratified with the final results. For example, buy a commercial cabinet. Spend $\$ 35.00$ each for nice meters with lighting kits. Buy a good, heavy filament transformer and quality pushbutton switches. Use Teflon wire and plenty of cable ties to bundle the cable harnesses.

Most important, plan your design. This is extremely important. II spent time on this project drawing circuits, laying out the front panel, rear panel, and chassis.) Build the amplifier in your mind before you drill the first hole. Also, modularize the design and test as many of the modules as possible as they're constructed. Take the time to learn how the unit wo-ks. Study the technical details, and enjoy the project as a creation to be proud of, developed by your own nands.

Amplifier bottom view. The modularization is evident here. Refer to fig. 3 for identification of each module.

circuit design

This amplifier (fig. 1A) is designed around the popular Eimac 8877 high-mu power triode. The 8877 was selected for its low drive requirements (that is, 50 watts drive for 2 kW PEP), its compactness, and the clean operating characteristics* exhibited by the tube.

[^0]The amplifier uses a tuned input, which is ganged to the main band switch, and an effective ALC circuit (fig. 1B) to prevent overdriving the tube. The ALC level is adjustable from the front panel. Drive conditions can also be monitored by a pair of LEDs located on the front panel lower left corner. One LED is green and begins to flash with approxiately 50 mA of grid current. The other LED, red, begins to flash at approximately 150 mA grid current; thus, the LEDs provide a convenient way to monitor instantaneous grid current, which cannot be accomplished with metering circuits because of the slow response of meter movements.

Lead filtering. All leads entering and leaving the amplifier rf deck are filtered using a pi-section network. Leads include 110 Vac coming to the amplifier, and 110 Vac returning to the power supply; a high-voltage metering line, a Blead, and a chassis ground lead.

The amplifier also has a very effective grid-trip circuit, which snaps the amplifier out of the transmit line should the grid current exceed 200 mA . This feature protects the tube if the antenna is disconnected or if the tube should flash over for any reason. The grid trip circuit is reset for normal operation by pushing the GRID TRIP RESET button on the lower front panel.

The amplifier uses a vacuum relay on the output because of its quiet operating characteristics, compactness, and power-handling capability. Also, vacuum variable capacitors are used for both tune and loading controls in a pi-L output matching network.

Included also is a built-in if wattmeter and a timedelay circuit, which keeps the blower on for about two minutes after the amplifier is turned off to ensure cooling.

The amplifier shown in the photos was built in a

fig. 1. Schematic of the modularized linear amplifier rf deck (A).

fig. 1. Automatic level control schematic (B).

fig. 2. Modular component layout.
modularized fashion. Fig. 2 shows the location of each module below and above the amplifier chassis. The major modules are discussed.

amplifier control circuit

The control circuit (fig. 3) provides the power control for operation of the amplifier. Ac power is received from the,amplifier power supply in this design. Actuating the POWER ON button on the front panel turns on the blower, the tube filaments, and initiates a three-minute warm-up sequence for the 8877 . Time delay is accomplished using an Amperite time delay tube, which provides a reliable timing circuit. The Amperite delay tube has a normally open set of con-

Amplifier top view. All metering circuits are isolated from the rf section using a subpanel. The subpanel is used to mount the bandswitch and the two vacuum variables.
tacts, which close after the designed period of time after 110 Vac has been applied to the delay-tube coil. The POWER ON button also activates the 26 Vdc regulated power supply to light the meters and POWER ON front panel push button. Note that the amplifier can't be keyed up until the required warm up time has elapsed (S2B). When three minutes have elapsed, the READY LED, located at the bottom center on the amplifier front panel, lights. The HIGH VOLTAGE front-panel pushbutton can then be pressed, which results in 110 Vac applied to the power supply to actuate the step start relays, which turns on the high voltage. Note that activating the HIGH VOLTAGE switch before the READY light comes on results in no action.

The $26-\mathrm{Vdc}$ power supply uses an LM317 voltage regulator chip, which is readily available. A regulated supply was used to avoid having the pilot lights and meter lights dim when the amplifier is keyed up.

input network

The amplifier input network is designed for a $Q=1$ and is enclosed in a self-contained shielded module. The design departs somewhat from conventional designs in that toroids are used instead of slug-tuned coils. Initially, there had been concern that the ferrite cores would saturate at the given drive powers, but this proved not to be a problem. I've used this same module in two other amplifiers with great success. The advantages are obvious. The toroids are compact and can be suspended right into the network bandswitch for easy mounting.

The rf enters and leaves the input network through BNC connectors. Since the nominal input impedance

fig. 3. Amplifier control circuit.
of the 8877 is approximately 60 ohms, the module can be tested separately by connecting it in series with a 50 -ohm dummy load. Initially, I used plenty of inductance on each core, then removed one turn at a time to obtain a flat SWR across each band with the fixed micas used. The input network is connected to the main bandswitch using a bead chain sprocket.*

grid-trip circuit

The grid-trip circuit automatically causes the amplifier to drop out of the rf line when the grid current reaches a specific level. It's a great feature and operates as follows.

Grid current is drawn through the 12-ohm, 2-watt resistor, R1, developing a voltage drop across the resistor, which turns on transistor switch Q1 (fig. 1). The amount of grid current drawn through R1 to turn on Q 1 is determined by the voltage divider created by trim pot R2. When Q1 turns on, current is drawn through the grid-trip relay coil, RY1, which actuates the relay. Three sets of relay contact on RY1 are used. One set sends 26 Vdc to the pilot light on the GRID TRIP RESET normally closed momentary switch located on the front panel, which indicates that the grid trip has been actuated. A second set of contacts (normally closed) break the vox line, resulting in amplifier standby mode. The third set of contacts provide a path to ground for RY1, so it remains closed. The GRID TRIP RESET switch deactivates RY1, which puts the amplifier back into the ready mode. Of course, you should check loading conditions to

[^1]determine the problem that resulted in the excessive grid current.

peak LED grid

current indicators

The peak grid current indicators operate on the same principle as the grid trip reset circuit discussed previously. The voltage generated across R1 turns on transistors Q2 and O3, which operates the red and green LEDs respectively. Voltage dividers R3 and R4 provide a way to adjust the grid current levels at which the LEDs turn on. 1 recommend that the LEDS be turned on at approximately 150 mA (red) and 50 mA (green) respectively. In proper operation, the drive power should be controlled using the ALC adjustment to allow the green LED to just start flashing on voice peaks. Any flashing of the red LED indicates either excessive drive power or improper loadingcontrol adjustment in the pi-L circuit.

lead filtering

All control cables between the amplifier rf deck and the power supply are filtered before entering or leaving the rf deck. This will minimize any of leakage, which might cause RFI. The filters are mounted on a separate module and use a pi-network section. Make the leads from each pi section as short as possible to the rear-panel connector.

operating bias circuit

Operating bias is generated using a high-power 2N3055 NPN transistor (Q4) which, with the 1-watt zener, acts as a high-power zener (see fig. 1). This circuit includes readily available components and
provides an easy way to adjust the bias voltage merely by changing the 1 -watt zener between the collector and base of Q4. The bias should be adjusted to give approximately 180 mA idle current for the plate voltage used.

blower delay circuit

When the amplifier is turned off, the blower remains on for about two minutes. This is accomplished with an Amperite three-minute time delay relay (TD1). The Amperite time delay operates by heating a resistive coil, which acts as a filament, to heat a thin strip of metal, causing it to bend, thus closing two relay contacts. I found that the threeminute Amperite unit required about two minutes to cool after the power had been removed to the point that the relay contacts open. This delay keeps the blower on after the amplifier is turned off. Note that S1B turns on the blower immediately with the filaments.

in/out relay sequencing

When keyed up, the amplifier closes both an input open-frame relay and an output vacuum relay. The relays must be sequenced to ensure that the output vacuum relay is closed before any drive power reaching the tube. Should the output relay close second, the amplifier would be placed in operation for a short period without a proper 50 -ohm load. This condition could be harmful to the 8877 tube. Fig. 4 illustrates the timing circuit that accomplishes proper relay sequencing. Capacitor C1 determines the length of delay on the input relay. Usually the delay can be detected by your ear.

Amplifier rear view. The holes in the rear panel are for air intake to the blower. The 10 -pin Cinch Jones connector is for the control cable running to the high-voltage power supply. Rf input is through the BNC connector, and the rf output is through the type \mathbf{N} connector. The highvoltage connector is a Millen 37001. The phono plug provides ALC to the exciter. The two-pin Cinch Jones connector is the vox line to control keying up the amplifier in transmit mode.

fig. 4. Amplifier relay sequencing schematic.

pi-L matching network

The pi-L network was selected because of its improved harmonic attenuation characteristics over a regular pi-network. The inductance values depend on the tube plate impedance, which is based on the operating conditions of the tube and the selected network Q. The plate impedance is determined by:

$$
\begin{equation*}
I=\frac{V_{p}}{(1.6)\left(I_{p}\right)} \tag{1}
\end{equation*}
$$

where $\quad I=$ plate impedance (ohms)
$V_{p}=$ plate voltage (volts)
$I_{p}=$ plate current (amperes)
Given the plate impedance, I, component values in the pi-L network are available for a Q of 12 from tables published in the literature. ${ }^{2}$
I recommend that the L coil be shielded from the pi coil for most efficient operation. Therefore, a toroid coil was used for the L section in this amplifier. A toroid has the inherent advantage of being self-shielding. The toroid L coil also has the advantages of compactness. The pi-coil is wound from $1 / 4$-inch $(6.4 \mathrm{~mm})$ diameter soft copper tubing that has been silver plated.*

Taps on the coils always seem to be a troublesome detail for many builders. A way I've found to be successful in determining tank-circuit inductance is this:

1. Mount the coils into the amplifier but disconnect the tube end of the coil network and the plate and load vacuum-tuning capacitors.
2. Obtain a high-tolerance mica capacitor (selected for its low-inductance properties). Connect one lead to the tube-end of the network. With a very short piece of wire, connect the other lead to the coil turn at which the inductance is to be determined.

[^2]3. Use a grid dip meter to determine network resonant frequency.
4. Determine the coil-tap inductance from:
\[

$$
\begin{equation*}
L=\frac{10^{6}}{2 \pi^{2} f^{2} C} \tag{2}
\end{equation*}
$$

\]

where $L=$ inductance $(\mu \mathrm{H})$
$f=$ frequency (kilohertz)
$C=$ capacitance (pF)
5. Set taps according to inductance values for the circuit Q selected ($Q=12$ is recommended).
Remember that these data provide approximate inductance values, since the leads to the bandswitch will also affect inductance. I've found that slightly less inductance from the values determined by the procedure above should be used for 10 and 15 meters.

cooling

I have only one recommendation concerning amplifier cooling, and that is use plenty of it! Excessive heat will destroy a vacuum tube in short order. Refer to Bill Orr's comments ${ }^{1}$ for a discussion of a representative air-cooling system for the 8877 tube.

Note the air duct in the photo that directs the air out of the top of the cabinet. The air flow is ducted to avoid the blower from short circuiting the hot air into the blower intake. The air duct is made from a $1 / 8$ inch $(3-\mathrm{mm})$ Neoprene sheet. The Neoprene sheet was first wrapped around the tube and held in place with a large cable tie. The seam was then stitched with a large needle and thread. I made a slit at the bottom of the neoprene tube to allow the plate strap

8877 socket assembly. The tube socket is a Johnson 248 submounted $\mathbf{1 / 2}$ inch (12.7 mm) below the chassis. Grid clips were made from a stiff copper stock and were silver plated. (An Eimac socket assembly, SK-2210, can be purchased directly from Eimac.) The Eimac Technical Data Sheet for the SK-2200 and SK-2210 air system gives detailed mounting information. If only the grid clips are needed, order Eimac part 149-842.

fig. 5. Rf wattmeter schematic.
to exit. The blower air intake is through the back panel.

meters

The meters in this amplifier are 1.5 -ampere for plate current and 200 microampere for the multimeter. A microammeter was selected for the multimeter because of sensitivity requirements of the built-in rf wattmeter. The plate-current meter was used as purchased. However, the $200 \mu \mathrm{~A}$ multimeter required work relabeling the scale. The 0-200 $\mu \mathrm{A}$ scale was used for grid current. All other lettering was made with dry transfers available from most electronic suppliers. Note that any labeling that comes on a meter scale can usually be removed with a pencil eraser and a little determination. The additional scale for rf power was added to the meter using a set of dry transfers contained in a kit.*

rf wattmeter

The rf wattmeter (fig. 5) is taken directly from the Drake L4B. Any of the popular wattmeter designs will work well. An rf wattmeter was selected over a relative output meter to eliminate the sensitivity control, which must be adjusted at different frequencies.

concluding remarks

Results from using this amplifier have been gratifying. The amplifier loafs at 1 kW dc input. It should give many years of trouble-free service. The project has resulted in a piece of equipment that is of better quality than most commercial amplifiers on the market and can be built at a competitive price.

reference

1. William I. Orr, W6SAI, "Design Considerations for Linear Amplifiers," ham radio, June, 1979, page 12.
2. Irvin M. Hoff, W6FFC, "Pi Network Design for High-Frequency Power Amplifiers," ham radio, June, 1978, page 52.
ham radio
[^3]
NEW FROM HAL ELECTRONIC MAILBOX FOR RTTY

- DELETEF - KY2ON
- DIR - KY2OFF
- ENDFILE - PRINTON
- EXIT - PRINTOFF
- FILEHELP - QBF
- HELP - READF
- KY1ON - RYS
- KY1OFF - WRITEF

MSO-3100
Message Storage Option for DS3100 $\$ 595.00$

The DS3100 Super Terminal is now even more versatile with the addition of the new MSO-3100.
The Message Storage Option (MSO) adds mass storage to the DS3100 so that relatively long messages may now be stored and replayed at will. For example, the MSO-3100 will provide more than 32,000 characters of additional storage-approximately 450 lines for messages. Messages are stored in variable length files with user-assigned file names and pass-words for file protection if desired.

The MSO feature may be accessed from either the DS3100 keyboard or by other users through the WRU feature of the ASR terminal. Thus, messages can be written, played, and relayed with either remote or local control.

Automatic TX/RX relay control. CW ID, and user help messages make the "electronic mailbox easy for all to use. This factory installed option may also be used for bragtape and net bulletin preparation and storage.

Write or call us for more details.

When our customers talk . . . we listen.

Urbana, Illinois 61801 Box 365 217.367.7373
 \title{
transistor amplifiers
}
 \title{
transistor amplifiers
}
elliptic lowpass filters

Advances in computer-aided filter design provide increased exactness and number of designs for Amateur use

The typical solid-state rf amplifier usually requires lowpass filtering to attenuate harmonics to an acceptable level. A selection of eleven Chebyshev lowpass filters was recently published for the 160-10meter Amateur bands, but because of the relatively gradual rise in attenuation, the second harmonic was attenuated only $27-40 \mathrm{~dB}$. 1 For those desiring greater attenuation at the second-harmonic frequency, the elliptic filter may be preferred, because its two resonant circuits can be tuned very closely to the second and third harmonics of the transmitter fundamental
output frequency. This technique was first used in 1967 in the design and construction of a $10-$ meter harmonic TVI filter. ${ }^{2}$

background

In his March, 1974, ham radio article, G. Kent Shubert, WAØJYK, improved on the harmonic filtering application and presented six elliptic designs of seven elements, which required only standard-value capacitors. 3 Shubert designed one filter for each band using the well-known and frequently referenced elliptic tables of Saal and Zverev, 4,5 Because the normalized filter design data in these references was available only for the commonly published eleven values of reflection coefficient, Shubert was restricted in his design selections. To minimize the effect of this restriction, the exactness of the designs was compromised slightly to make all the capacitor values come out as standard values, thus simplifying filter construction.

Recently it has become possible to calculate the component values of elliptic filters for any desired reflection coefficient using a small computer such as the Radio Shack TRS-80.6 Thus it's no longer necessary to restrict the elliptic designs to only the published normalized data. Because of this advancement in computer programming, it's now possible to make

By Ed Wetherhold, W3NQN, Honeywell, Defense Electronics Division, Signal Analysis Center, Box 391, Annapolis, Maryland 21404
significant improvements on Shubert's designs. This article demonstrates how these advancements in computer-aided filter design can be used to increase both the exactness and number of elliptic lowpass filter designs for Amateur Radio applications.

filter designs

Table 1 lists thirty-one 50 -ohm elliptic lowpass filter designs that have the unusual feature in which the three shunt capacitors ($\mathrm{C} 1, \mathrm{C} 3$ and C 5) are all of the standard 5 per cent value. These designs were especially selected for transmitter output filtering in the six Amateur radio-frequency bands of 160 through 10 meters. Only those designs having reflection coefficients less than 13 per cent (VSWR $=1.3$ and $A_{p}=0.074 \mathrm{~dB}$) were selected to minimize the maximum VSWR and to make the designs less sensitive to component-value variation. Fig. 1 shows the filter schematic diagram; fig. 2 shows the attenuation response.

The first four columns of table 1 list the filter design identification number and the frequencies (in MHz) at the $A_{p}, 3 \cdot d B$ and A_{s} attenuation levels. The significance of the frequency/attenuation parameters is illustrated in fig. 2. Column five lists the minimum value of the stopband attenuation, A_{5}, in dB . The remaining columns list the reflection coefficient, component values, and the F2 and F4 frequencies of maximum attenuation. The column headings of the capacitor and inductor listings are associated with the similarly labeled components in fig. 1.

In Shubert's designs, the values of C2 and C4 (capacitors that resonate the inductors to F2 and F4) were given standard values. In table 1, however, the values of C2 and C4 are listed exactly as calculated and no attempt has been made to force these two values to be standard.

Standard values for these two capacitors are unnecessary, because these two circuits should be individually tuned to the exact design frequency either by using trimmer capacitors or by slightly varying the inductor turns. For convenience in construction, the standard value closest to the listed C2 and C4 capacitor values may be used if the inductor is adjusted to tune the circuit to the listed frequency. If this is done, the resulting attenuation will differ only slightly from the exact design value.

For example, in filter design 4, if the nonstandard C4 value (375 pF) is replaced by either standard values of 360 pF or 390 pF , and if L 4 is adjusted to resonate at 4.04 MHz , the new attenuation response between $2-4 \mathrm{MHz}$ will differ by only $\pm 0.5 \mathrm{~dB}$, respectively from the exact design response.

A similar procedure may be used for C2 and L2. This characteristic of the elliptic filter demonstrates
the importance of accurately tuning the resonant circuits to the listed frequencies. In comparison, the exact values of C and L of the resonant circuit are less important. This tuning may be made with a calibrated grid-dip meter.

computer-calculated designs

The computer-calculated filter designs of table 1 have several advantages over the manually calculated designs. ${ }^{3}$ The main advantage in using a computer to perform the design calculations is that several designs can be easily obtained for each band, so that one can choose a design that may be optimum for a particular application; or perhaps some capacitor values will be more convenient to obtain than others. The minimum stopband attenuation, A_{s}, will usually be higher in the computer-designed filters than in those manually calculated. For example, five of Shubert's designs ${ }^{3}$ have A_{s} values of 41 dB or less. In comparison, the computer-designed filters have A_{s} values between 47-63 dB. The computer-designed filters have a maximum passband ripple amplitude, A_{p}, of 0.074 dB , which corresponds to a maximum VSWR of 1.3. In comparison, all of Shubert's designs had A_{p} values of 0.1 dB or more, implying higher VSWRs.

To demonstrate the application of the tabulated data in constructing an actual filter, design 18 was assembled and its insertion loss was measured with a spectrum analyzer. Fig. 3 shows the assembled filter with the inductor specifications. A plot of the insertion loss is shown in fig. 4.

fig. 3. Photograph and inductor specifications of filter constructed from design $18\left(F_{A_{p}}=14.9 \mathrm{MHz}\right)$.

fig．1．Filter schematic diagram．

fig．2．Typical attenuation response．
table 1．Elliptic lowpass filters selected for Amateur transmitter output filtering， $\mathbf{1 6 0}$ through 10 meters．

$\begin{aligned} & \text { FL.T } \\ & \text { HD. } \end{aligned}$	$\begin{aligned} & F-\mathrm{AF} \\ & \mathrm{MHZ} \end{aligned}$	$\begin{gathered} F-2 I I F \\ \mathrm{MHZ} \end{gathered}$	$\begin{aligned} & F-H C \\ & \text { YHZ } \end{aligned}$	$\begin{aligned} & \mathrm{HC} \\ & \mathrm{TIE} \end{aligned}$	$F \cdot E$	$\underset{\mathrm{FF}}{\mathrm{FF}}$	$\because F$	$\overline{G E}$	$F \overline{F F}$	$\frac{\mathrm{LE}}{\mathrm{OH}}$	$\begin{gathered} F E \\ M H E \end{gathered}$	$\begin{aligned} & E 4 \\ & \mathrm{FF} \end{aligned}$	$\begin{aligned} & \mathrm{L} 4 \\ & \ddots H O \end{aligned}$	F4 （NHZ）
1	1.87	E． 47	5.31	Eこ． 4	3 \％	1100	2400	10 OnO	Es．0	5.15	8.84	173	4.74	5.56
Ξ	1.89	2．19	3．68	53.3	9.50	1500	こ700	1300	13こ	5.39	5.96	569	4.65	3.84
3	1.9 E	E．35	3.80	49.3	5.41	1玉口0	2400	1000	130	E． 10	E． 17	37E	4.36	3.97
4	2． 05	E．40	3.87	50.5	E． 8	1300	E4010	1100	138	4.90	6.24	375	4.15	4.104
5	2．19	2． 5	4.178	48.6	5.35	1100	E®00	＇910	184	4.68	6.60	355	3.94	4.25
θ	E．E1	2．73	5.6 E	61.9	5.6 .9	11010	ごロロ	1000	6玉．8	4.59	9.30	1.75	4.19	5.88
7	3.90	4.41	6.63	47.6	10.82	750	18010	EOO	88.4	2． 5.7	11.6	ご天	$E .10$	E－91
8	3.91	4.67	7． 29	47.8	6.38	EOT	1こけ	510	アご守	2．5\％	11.8	208	E． 10	P． 61
9	4.15	5． 111	9.89	60.5	6.80	¢EO	1800	5611	39.5	E． 47	16.8	106	\cdots	10.4
111	4.16	4.74	7.14	47．3	9.95	GEO	$1 \approx 10$	560	81.3	E． 40	11.4	238	1.97	7.44
11	7.70	8.34	13.3	48.7	7.26	360	ESO	300	$3 \cdot 7$	1.41	ご．	118	1.18	13．
12	7.30	E． 34	15.9	60.9	11.71	430	ア5010	300	20． 1	1.43	E6． 1	71.9	1.88	16.6
13	7． 55	8.5	13．5	50.2	18.78	390	Es0	350	40.4	1.34	21.7	114	1．1E	14.1
14	7.58	Э．5	19． 2	60.1	$4 . E E$	300	Eこロ	Er0	19.1	1．$\% 1$	31.8	$5 E$－	1.13	－0． 0.1
15	E．EG	9.85	14．E	48.4	11．Eこ	86	EEO	300	40.7	1．${ }^{\text {E }}$	E®E	1．16	1．011	14.8
16	$日$ ， E	9.94	19.6	61.7		390	E－O	300	19.3	1．25	ここ．4	$5 \mathrm{E} \cdot 6$	1.14	20.6
17	14.7	17.0	こモ．0	59.5	9.91	E00	S＊0	180	18.0	． 76	52.4	З5．	－63	3.5
18	14.9	17.3	－7．00	48.8	8． 40	180	350	150	20.0	． 6.5	43.3	57.0	－56E	－8．1
19	15．6	18．${ }^{\text {E }}$	3 B	57.3	8.91	180	850	160	13.10	．EEt	54.8	36． 8	．585	34.7
E0	17．5	19.5	29.8	4 E ．$=$	$1 E .98$	180	3010	150	－11．E	．57\％	4E．4	58.5	． 468	30.4
E1	E＊． 1	E7．	St．E	61.9	5.69	110	E－0	10	E． 4	． 459	98.10	17．5	． 419	5.8
2 E	ここ．	25．9	41.4	48.8	8.40	120	E－0	1 0	13.3	． 450	－5．0	SE．0	－ 375	4E．E
23	E－G	27．9	43.9	47.7	5.37	1010	E10	\％	11.8	．4EE	71.0	3\％＇9	－ 56	45.8
24	E4．5	28．4	43.6	48.10	8.69	110	E00	$\cdots 1$	12.7	． 403	69.9	36.4	－37	45.4
ES	E＇E．	E9． E	43.8	48.2	12． 38	1 こ0	$=10$	106	13.7	． 81	E9．E	39.0	． 312	45.6
$E 6$	E8．7	37.1	77.9	61.7	3.84	7	160	58	4.4	． 342	10^{-9}	12.1	． 313	81.6
E7	E9．3	35.2	55.9	48.6	6.14	BE	160	Cis	9.2	． 337	90.4	EG． 3	． 28	58.3
26	30.7	37.3	59.7	48.5	5.39	3	150	6	5.5	． 319	96.7	E4． 3	．EES	GE． 3
29	31.8	35.6	5% ， 6	47.4	10．12	91	18.0	75	10.8	． 00	85.5	31.0	－6E	5.9
30	32． 4	40.0	81.3	61.4	$5.6 E$	F5	150	6	4.5	． 313	135	1E．${ }^{\text {E }}$	． 8.8	85． 1
31	ここ．	37.9	59.5	48.8	6.45	ER	150	5	9.4	，З17	－9．9	E®F	－ 85	61.0

fig. 4. Measured insertion loss of elliptic filter constructed from design 18.

The plotted response shows that the circuit of L4C4 was accurately tuned to the design frequency of 28.1 MHz , but the L2C2 circuit resonance was slightly in error. The effect of this mistuning was not significant (only a $2-\mathrm{dB}$ lower-than-normal level of A_{s} at 33 MHz), so no attempt was made to adjust the circuit to the correct frequency. This design was intended for a 20 -meter filter application, and the attenuation at the second and third harmonics is greater than 50 and 60 dB respectively. The Micrometals T44-10 toroidal cores were on hand, and to expedite construction they were used; if the filter is to be used in filtering transmitter outputs greater than a few watts, however, the larger T80 cores used by Shubert are recommended.

construction notes

The filter was assembled in a 1.578 by 3.5 by 1.547 inch (40 by 89 by 39 mm) Hudson tinned steel box ${ }^{12}$ (HU-6570-1.547ST). The center partition and the Button ${ }^{\oplus}$-mica capacitor ($C=330 \mathrm{pF}$) are recommended if maximum stopband attenuation is required above 50 MHz . If the filter cutoff frequency is less than about 10 MHz , the center partition probably can be omitted. The capacitor voltage ratings should be 500 V or greater, and the capacitors can be either polystyrene or mica. See references 7, 8, and 9 for information regarding the winding and application of toroidal inductors. References 10 and 11 give two distributors of the Micrometal cores.
Those familiar with modern filter design can confirm the correctness of the designs in table 1 by using one of the published normalized designs of Saal

[^4]or Zverev to calculate independently the component values of filter design 16. This is possible only because design 16 has a reflection coefficient of 8.03 per cent, which is almost identical with the 8 per cent standard published value. Also, the A_{s} value for design 16 is 61.7 dB , which is practically identical to the published value of 61.6 dB . Therefore, if the published normalized data for an elliptic design of C0508, $\theta=25$ (see page 78 of Saal's book) is used, an independent calculation using the $F-A_{p}$ cutoff frequency of design $16(8.28 \mathrm{MHz})$ should give the same component values listed in table 1.

The published normalized values of Saal for C1, C 3 , and C5 for $A_{s}=61.6 \mathrm{~dB}$ and for an 8 per cent reflection coefficient are: $0.8574 \mathrm{~F}, 1.612 \mathrm{~F}$, and 0.7790 F. Capacitor scaling factor, $C_{s}=1 /(R w)=$ $1 /\left(50 \cdot 2 \pi \cdot 8.28 \cdot 10^{6}\right)=384.4 \cdot 10^{-12}$. Calculating the filter component values for $C 1,3$, and $5: C 1=C_{s}$ $(0.8574)=330 \mathrm{pF}, C 3=C_{s}(1.612)=620 \mathrm{pF}$, and $C 5=C_{s}(0.7790)=300 \mathrm{pF}$.
These independently calculated values are identical to the computer-calculated values, and the validity of the computer program used to generate table 1 is therefore confirmed. In a similar way, the other component values of design 16 may be confirmed.
I gratefully acknowledge the assistance of the following: Philip Geffe of Lynch Communications Systems for providing the computer program needed to calculate the elliptic normalized values, Roosevelt Townsend of Honeywell for his assistance in modifying the computer program to generate table 1, Charles Miller of Honeywell for his assistance in plotting the filter insertion loss, and Joseph Gutowski of EWC and Rex Cox of Honeywell for their review of the manuscript.

references

1. E. Wetherhold, "Low-Pass Filters for Amateur Radio Transmitters," QST, Vol. 63, No. 12, December, 1979.
2. E. Wetherhold, "A Ten-Meter Harmonic TVI Filter," $Q S T$, Vol. 51, No. 9, September, 1967.
3. G.K. Shubert, "Lowpass Filters for Solid-State Linear Amplifiers," ham radio, March, 1974.
4. R. Saal, The Design of Filters Using the Catalog of Normalized Lowpass Filters, Telefunken GmbH, Backnang/Wurtt., Germany (1966).
5. A.I. Zverev, Handbook of Filter Synthesis, John Wiley and Sons, New York, 1967.
6. P. Amstutz, "Elliptic Approximation and Elliptic Filter Design on Small Computers," IEEE Transactions on Circuits and Systems, Vol. CAS-25, No. 12, December, 1978.
7. G.K. Shubert, "Tuning Toroidal Inductors," ham radio, April, 1972.
8. M.F. '"Doug" DeMaw, "The Practical Side of Toroids," QST, Vol. 63, No. 6, June, 1979.
9. M.F. "Doug" DeMaw, "Magnetic Cores in RF Circuits," r.f. design, April, 1980.
10. Amidon Associates, 12033 Otsego St., North Hollywood, California 91607.
11. Palomar Engineers, Box 455, Escondido, California 92025.
12. Hudson Tool \& Die Company, Inc., Main Office: 18 Malvern St., Newark, New Jersey 07105.
neutrino communications A discussion of the use of neutrinos for interstellar communications and the search for extraterrestrial intelligence

In 1888 when Heinrich Hertz first transmitted radio waves over a distance of a few paces in his Karlsruhe, Germany, laboratory, no one could have predicted the vast global and interplanetary radio communications systems of today or that radio telescopes would detect quasars at distances of more than 10 billion light-years. Although neutrino communications is now in a primitive state, as radio was in Hertz's time, who can foresee what its capabilities may be 100 years from now?

In this article, Jay Pasachoff and Marc Kutner assess the state of the art of neutrino communications, and consider the potential of neutrinos for bridging interstellar distances. Dr. Pasachoff is director of the Hopkins Observatory and Associate Professor of Astronomy at Williams College in Williamstown, Massachusetts. Dr. Kutner is Associate Professor of Physics at the Rensselaer Polytechnic Institute in Troy, New York. Pasachoff's collaboration with Kutner in expanding the widely used text, Contemporary Astronomy, into a mathematical version, University Astronomy, led to this article.

Republished with permission from the May, 1979, issue of COSMIC SEARCH magazine, John Kraus, W8JK, editor.

Though no interstellar communication is going to be quick, it is obviously better to send messages that travel at the highest possible velocity, all other things being equal. This usually leads to the conclusion that we should communicate with radio or other electromagnetic waves, but one nuclear particle - the neutrino - travels at the speed of light, and the possibilities of using neutrinos as the vehicle for interstellar communication should be carefully explored.

It turns out that neutrinos have many advantages for this purpose, along with their major difficulties, and we think that investigation of neutrino communications should not be ignored. We note that we are here exploring possibilities whose realization would be in the distant future; nonetheless, since most other communicating civilizations would be far more advanced than our own, it is an interesting exercise

By Jay M. Pasachoff and Marc L. Kutner
to examine alternative means by which interstellar communication may have evolved.
Though neutrinos are very difficult to detect, the scientific benefits of studying the neutrinos that emanate from stellar interiors or supernovae have made it worthwhile. Continued improvements in the sensitivity of neutrino detection devices can be expected.

advantages of
 neutrino communications

Much discussion of the Search for Extra-Terrestrial Intelligence (SETI) has been taken up with finding a suitable frequency for radio communications. Interesting arguments have been advanced for a wavelength of 21 centimeters, the water hole, and other wavelengths. It is hard to reason satisfactorily on this subject; only the detection of a signal will tell us whether or not we are right. Neutrino detection schemes, on the other hand, are broadband; that is, the apparatus is sensitive to neutrinos over a wide energy range. The fact that neutrinos pass through the earth would also be an advantage, because detectors would be omnidirectional. Thus, the whole sky can be covered by a single detector. It is perhaps reasonable to search for messages from extraterrestrial civilizations by looking for the neutrinos they are transmitting, and then switch to electromagnetic means for further conversations.
Though the means of detecting neutrinos are now relatively insensitive, we must remember that we are in the dawn of the age of neutrino detection. It is only 23 years since the first antineutrinos were detected; on the other hand it is almost a hundred years since the detection of radio waves, and our sensitivity to them has increased manyfold. We can expect that in the next decades we will be better able to detect neutrinos from space, both those arising naturally from astronomical phenomena and those carrying messages from extraterrestrial civilizations. It may well be that neutrinos are considered by extraterrestrial civilizations to be a more advanced method of communications than radio waves.
Neutrino beams are currently generated on earth by proton beams impinging on targets in large accelerators. Proton beams are highly directional, and neutrino beams are also highly directional. The present neutrino beams generated at the Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois, has a beamwidth as narrow as one-tenth of a degree. The beams are so narrow because of the way they are formed. As the incident proton beams become stronger in energy, the resulting neutrino beams become even more directional.

The doubling in energy expected within two years
at Fermilab, to be matched by the accelerator at the European Center for Nuclear Research (CERN), near Geneva, Switzerland, will lead to a neutrino beam about one-twentieth of a degree in width. This is twice as sharp as the beam of the Arecibo radio telescope when used at 21 centimeters. At the distance of the star Tau Ceti (12 light years), the neutrino beam will be broad enough* to irradiate all the planets of a system like our solar system. Since we have no idea where any planets might be, we would

The tunnel that composes the "Main Ring" at Fermilab. The proton beam travels in an evacuated tube (inside square housing) around the 6 kilometer circumference ring 50,000 times per second being constrained to stay in the pipe by over one thousand magnets. On each revolution the beam is given a $\mathbf{3}$ million electron-volt "kick" from a radio transmitter boosting the proton beam energy to $\mathbf{2 0 0}$ billion electron volts or higher. Pipes carry cooling water to the electromagnet coils located at intervals along the square housing.
have to cover roughly this scale to be sure we are not missing planets, not to mention the difficulties in the high precision tracking that would be necessary.

neutrinos

In the early 1930s, Wolfgang Pauli suggested that a new nuclear particle might exist to explain the

[^5]apparent lack of conservation of energy and spin in beta decay, a radioactive process that involves the emission of an electron (a beta particle). Soon Enrico Fermi worked out a theory for the new particle, which he called neutrino, Italian for "little neutral one (since the particle has no charge and to distinguish it from the neutron, which had recently been discovered). The neutrino is a particle with no charge but with a certain energy and a certain spin; it travels at the speed of light, and to do so, it must have no rest mass.

fig. 1. In the Deep Underwater Muon and Neutrino Detection system the light flash and accoustic "ping" resulting from a neutrino interaction with the nucleus of an atom would be picked up by optical sensors and hydrophones (underwater microphones) deployed on the bottom of the ocean.

Neutrinos are the most elusive atomic particles of which we know. They have a very low probability of interacting with any other matter. On the average, in fact, neutrinos can penetate four light years of lead before being stopped. Rather than try to detect individual neutrinos, we normally resort to capturing a tiny fraction of a huge number of neutrinos. In this way, Frederick Reines and Clyde L. Cowan, Jr., detected antineutrinos in 1956 in the flood of particles coming from the Savannah River reactor. The existence of antineutrinos shows that neutrinos too must exist.

The disadvantage that neutrinos interact so weakly with matter is also an advantage, because this property allows neutrinos to escape from the center of a star. The nuclear fusion cycles that fuel our sun lead to the emission of neutrinos of relatively low energy. These neutrinos come straight out of the solar core, reaching the radius of the earth's orbit in 8 minutes,
thus providing us with our only direct link to the solar core.

Raymond Davis, Jr., of the Brookhaven National Laboratory, has set up a 400,000 -liter tank of perchloroethylene (a type of cleaning fluid, $\mathrm{C}_{2} \mathrm{Cl}_{4}$) to capture solar neutrinos. His tank is located deep underground in a gold mine at Lead, South Dakota, where it is shielded by earth and rock from other particles that would cause reactions in his material. He is now detecting $1.8(\pm 0.4)$ Solar Neutrino Units (SNUs)* of neutrinos. This amounts to about one interaction every six days.

Davis's results are lower by a factor of almost three than the best current predictions of the solar neutrino outflow, but within about twice the error (standard deviation) in the theoretical predictions, which give $4.7(\pm 1.4) \mathrm{SNU}$. Gallium is more sensitive to lowerenergy neutrinos than chlorine, and Davis is planning an experiment using gallium; a Soviet group is also planning a gallium experiment.

Still higher-energy neutrinos should be emitted in supernova explosions. Such neutrinos might be detected by an apparatus being considered in Project DUMAND (Deep Underwater Muon and Neutrino Detection). One plan involves setting up acoustic or optical detectors over an area of several square kilometers on the floor of the Pacific Ocean near Hawaii to detect the Cerenkov radiation emitted when neutrinos interact with nucleons in the water. (Cerenkov radiation is emitted when a particle enters a medium traveling faster than the speed of light in that medium and is somewhat analogous to a sonic boom.)

A Very Big Accelerator (VBA) is under discussion as a possible international project on a large scale. This accelerator would generate a proton beam of 10 times higher energy than the new Fermilab and CERN beams. If directed at our solar system from Tau Ceti, this beam would encompass the planets out to Neptune.
neutrino generator and detection

Presently the proton beam generated at Fermilab in the 2 kilometer-diameter ring has energies of 400 billion electron volts. Neutrinos are produced in pulses of 10 billion per pulse with pulses occurring every eight seconds. The proton beam impinges on a target, resulting in muons, particles of mass intermediate between electrons and protons. The muons travel in a forward direction and their decay products include neutrinos. This forward beam travels through a "filter" of 1 kilometer of earth, which excludes all

[^6]
the particles except neutrinos. To detect the neutrinos, a bubble chamber or an apparatus containing approximately 1000 tons of steel is used. Even that much steel produces only about 1 interaction per pulse. A person can (and often does) stand in the neutrino beam without any effect on either the person or the beam.
As the proton beam is brought to higher energies, the number of protons per pulse goes up proportionally to the energy. Thus the particle flow (or flux) at a given distance from the ring goes up with two factors of energy from the increase in the number of protons and, thus, neutrinos per pulse. This means that the particle flux goes up with the cube of the energy. For a given neutrino beam, the number of interactions in the target is also roughly proportional to the energy. Thus for a one-trillion-electron-volt proton beam, we have calculated that about 50 trillion, trillion kilograms (5×1025 kilograms or ten times the mass of the earth) of material would have to be located at the distance of Tau Ceti to obtain one interaction per day with a neutrino from earth. This is about the rate of Davis's solar neutrino experiment. We are currently comparing prospective fluxes with the natural neutrino background.
With the technology we expect to have within a few years, we would need ten times the mass of the earth as detector material. However, we must
remember that the neutrino pulses are on only about 0.00025 per cent of the time. If this percentage can be raised to even one per cent, and the proton beam energy can be brought up by another factor of 10 , then the detector mass required is less than one millionth the mass of the earth to detect one neutrino event per day. This is equivalent to a cubic volume of 100 kilometers on a side, not too different from the scale of detectors being proposed for Project DUMAND.
We must also allow for further technological development. Already a detection scheme has been suggested that detects muons simultaneously with the Cerenkov radiation. Detecting muons can be achieved by a smaller apparatus. Even though a large detector mass may be required for interaction, the active part (or electronic equipment) involved could be much smaller.
Some investigation of neutrino communications has been underway for sending a neutrino signal through the earth to nuclear submarines on the other side of the earth, but this will require the reduction of the detection apparatus from a cube 100 kilometers on a side to the size of a submarine.

present data

Though solar neutrino schemes involve much lower energies than Project DUMAND methods, solar

Kitty's

Resolution for the New Year. Service with a capital " S " and full guaranty on everything we sell!

The outstanding FT-707, FT-901 DM or consider the FT-107 M or the NEW 9. Band FT-101ZD

FT 720 RVH, 25 watts, 2 meter transceiver. FT 720 RU, UHF transceiver. FT 480, 2 meter, all mode, 30 watts.

JANUARY FEATURES COLLINS KWM 380

 and accessories for all major lines SWAN/CUBIC 102 BX plus wattmeters MIRAGE 2M amplifiers • MURCH UT 2000BIt's Barry's for the Drake TR/DR-7 and R-7 CW Ops - we've got NYE keys and Bencher paddles

AND THERE'S MUCH MORE!

Bearcat Scanners, HyGain Antennas, 2 m beams \& mobile, IBAUT/WB Rotators BARRY'S HAS HAND-HELDS
Yaesu FT-207R
Santec HT-1200
Icom IC-2AT
BARRY'S HAS TUBES -3-500's, 572's, 6146's and more
BARRY now carries the ALPHA 76PA with three 8874 tubes, $2,000 \mathrm{~W}$ PEP

```
Just arrived - Kantronics
                        "MINI READER."
```

Our lines include:

AEA	CUSHCRAFT	ICOM	SWAN/CUBIC
ALLIANCE	DSI	KLM	TEMPO
ASTRON	DENTRON	KANTRONICS	TRI-EX
AVANTI	DRAKE	MFJ	VHF ENGINEERING
B \& W	ETO	MIRAGE	WACOM
BIRD	EIMAC	MURCH	YAESU
COLLINS	ENCOMM	ROBOT	AND MORE
COMMUNICATIONS	HUSTLER	SHURE	
SPECIALISTS	HY-GAIN	STANDARD	- Ask us for details

BUSINESSMEN: Ask about BARRY'S line of business-band equipment. We've got it!

Amateur Radio License Classes: Wednesday \& Thursday: 7.9 pm Saturday $10 \mathrm{am}-$ Noon

- AQUISE HABLA ESPAÑOL
 The Export Experts Invite Overseas orders - We Ship Worldwide
 BARRY ELECTRONICS 512 BROADWAY, NEW YORK, N.Y. 10012 TELEPHONE (212) 925-7000

TELEX 12-7670
neutrinos represent our longest string of data on interstellar neutrinos. We have examined the Davis records for any sign of obvious messages, and have found none. It seems reasonable that any civilization that chooses to generate strong neutrino beams and point them at a given star would also calculate the appropriate number of neutrinos that inhabitants associated with the star would need to detect the incoming signal. Davis's data involve runs of a month or a few months, with interactions occurring once per day. There is no reason to believe that a neutrino signal need be any shorter in duration than months, nor indeed to be even that short. It seems worthwhile to continue collecting data on a regular basis to have long enough data runs to properly search for an extraterrestrial signal.

conclusions

Current plans for neutrino generation, coupled with prospective abilities for neutrino detection, are beginning to make feasible neutrino messages we might send to be detected at the distances of nearby stars. Though neutrino beams are expensive to generate, this disadvantage may be outweighed by such advantages as very narrow focusing of the transmitted neutrino beam, and the ability to receive simultaneously from the whole sky over a broad range of neutrino energies.

On earth, neutrino communications have lagged radio communications by about 100 years, during which time our ability to send and receive radio signals has increased dramatically. We can hope for similar improvements in neutrino communications in the next decades.
Technologically, the transmission of strong modulated neutrino signals would be a sure sign of an advanced civilization, and we should be looking for such a signal. Since our transmission of a neutrino signal would involve finding a way of making the neutrino beam track the stars to a high degree of accuracy, the transmission of neutrino signals from earth seems farther in the future.
It may be that neutrino communications is best suited for finding another civilization, after which dialogue could be carried out by electromagnetic means. In any case, if our reasoning of the advantages of neutrino communications is correct, then much of the information now crisscrossing the galaxy could be in this mode.

glossary

Muon:
A particle with a mass between that of an electron and a proton. It has a negative charge and a mean lifetime of 2.2×10^{-6} second.
Neutrino:
Either of two massless, electrically neutral, stable particles. One is named "electron's neutrino"; the other "muon's neutrino."
ham radio

INTRODUCING SONY'S NEW DIGITAL DIRECT ACCESS RECEIVER!

A Whole New Breed Of Radio

Innovative design. Advanced technology. Digital key-touch tuning. The ICF-2001. It's a whole new breed of radio. A receiver that supplants the conventional multi-band concept. receiving a wide amplitude-modulated frequency rangeshortwave, mediumwave and most longwave broadcasts. Plus FM, SSB and CW. Even more important, the 2001 replaces the ordinary tuning knob and dial with a direct-access tuning keyboard and a Liquid Crystal Display (LCD) for digital frequency readout. Which make the unit as easy to use as a pocket calculator. Instant, direct-access tuning modes and six memory-station presets assure maximum ease of use. And the quartz-crystal, frequency-synthesized circuitry behind them assures outstanding reception. Reception of local broadcasts and exciting news, music, sports, entertainment and information from around the world. You'll get the inside, local news stories from foreign countries ... exclusive coverage of world sports events ... plus everything from informal "ham" to marine communications. All at your fingertips.

Key-Touch Tuning

To tune a station manually, you simply punch in the station frequency numerals on the direct-access, digital tuning keyboard. Press the "Execute" key and the command is entered, the station is received and LCD readout confirms tuning. If you punch in an incorrect frequency by mistake, the ICF-2001 tells you to "Try Again" by flashing those words on the display. The instant, fingertip tuning provides total accuracy and convenience. And the LCD digital frequency display confirms the exact, drift-free signal reception.

Automatic Scanning

In auto-scan mode, the tuner can be set for continuous scanning of a given frequency range, which you set by means of upper and lower limit keys designated " L_{1} " and " L_{2}." You may want to scan an entire frequency range. For instance, the 76 to 108 MHz FM spectrum. If you want scanning to stop at any strong signal-one that reads " 4 " or " 5 " on the LED signalstrength indicator- switch on "Scan Auto Stop." For continuous scanning, leave the switch off, and just press the "Start/Stop" key to listen to a station or resume scanning.

Manual Tuning

Like the auto-scanning mode, manual tuning is useful for quick signal searching when you don't know particular station frequencies within a given range. You simply press the "Up" or "Down" key, and the tuner does the searching for you. And if you press the "Fast" key at the same time, the scanning rate increases for especially rapid station location. When you hear a broadcast you want to receive, just release the keys for instant reception, presssing the "Up" or "Down" key again if necessary for exact tuning.

Memory Presets

After you've tuned a station using punch-in, key-touch tuning or either scanning mode, you can enter it in the 2001's memory for instant, one-touch preset reception. Which means no retuning hard-to-find foreign broadcasts. Plus instant access to your favorite local stations for music and news. Six preset buttons allow up to six stations-in any wave range-to be memorized. And there's LCD digital readout of the memory buttons being used on each band. What's more, the upper and lower limit keys can be used as memory presets when they're not being used for scanning. allowing a total of eight frequencies to be memorized for instant, one-touch reception.

The 2001's direct-access tuning and outstanding reception quality are made possible by the unit's all-band quartz-crystal, PLL frequency synthesis. Instead of the conventional analog tuning system, with its variable tuning capacitor, the 2001 incorporates an LSI and a quartz-crystal reference oscillator. Which means that the local-oscillator frequencies used in superheterodyning are locked to the "synthesized" quartz reference frequencies. The result is the utmost in tuning stability, without a trace of tuning drift. In addition, dualconversion superheterodyning for AM assures exceptionally clean, clear reception across the entire $150-\mathrm{to}-29,999 \mathrm{kHz}$ spectrum.

Features

FM/AM/SSB/CW/wide spectrum coverage
Dual-conversion superheterodyne circuitry of AM assures high sensitivity and interference rejection
Quartz-crystal, phase-locked-loop frequency synthesis for all bands assures the utmost tuning stability. without a trace of tuning drift
Direct-access, digital tuning keyboard and LCD digital frequency readout for quick, key-touch station selection-maximum accuracy and ease of use
Manual tuning and automatic scanning for effortless signal searching, easy DXing
6 -station presets, plus 2 auxiliary presets, for instant reception of memorized stations on any band-plus LCD memory indication.
5-step LED signal-strength indicator
Local/Normal/DX sensitivity selector for AM
SSB/CW compensator for low-distortion reception
Telescopic antenna, plus external antenna included
$4^{\prime \prime}$ speaker for full, rich sound
Slide-bar bass and treble controls
Sleep timer-with LCD readout-can be set in 10-minute increments for up to 90 minutes of play before automatic radio shut-off

Only
 \$299 ${ }^{\text {s }}$

Plus $\$ 5.00$ S\&H (Cont'I U.S.A. Only)

pulse-position control of the CDE Tailtwister rotor

Many Amateurs worry or become frustrated when they put up a large antenna array and then notice how unevenly the system moves when turned by one of the commercially available rotors. Large moments of inertia build up in long-boom hf Yagis or large multi-antenna vhf arrays used in EME communications. These antennas must be rotated at a slower rate than that which most commercial rotors provide. To relieve this frustration, a method is described for incremental pulse-position modulation of a CornellDubilier Tailtwister rotor.

background

I became aware of the large moments of inertia that build up in an antenna system when I began the design of my 160 -element collinear array for 144 MHz EME (or moonbounce, as others call it). This array has a 33 -foot (10 -meter) boom of 3 -inch ($7.6-\mathrm{cm}$) OD aluminum tubing that supports four 24 -foot (7.3meter) secondary booms of $1-1 / 4$ inch $(3.2 \mathrm{~cm})$ aluminum tubing. Eight Cushcraft DX-120 collinear antennas are mounted on the secondary booms. The antenna array, excluding the elevation mount, weighs about 125 pounds (56.7 kg).

I could picture in my mind (as well as on paper) the jerking and twisting that would occur if this array were rotated by a conventional rotor. I'd planned to use a CDE Tailtwister.

Other complications arise when one wants only to move the array a few degrees in azimuth. A 1 -degree change for an array with a 33 -foot (10-meter) boom is only about 3.6 inches $(9 \mathrm{~cm})$ of arc movement at the end of the boom. The rotor doesn't need to be activated very long to give this change. Also, every time you push a control switch, the rotor tries to turn the array at full speed: quite an acceleration for a longboom, large-mass array. We must also allow for array coastdown before releasing the brake switch, which complicates matters further.

theory

Could I add speed control to the motor used in the Tailtwister rotor? This question turned out to be easier asked than answered, as the motor is an induction type. It starts to lose torque quickly if its applied voltage is reduced. This problem rules out the use of Variacs and typical triac motor speed controls. After
much meditation, I decided to take a different approach. Why not try to pulse-position modulate the rotor motor? I reasoned that if I could pulse the motor with full voltage, I could make it turn only a few revolutions and have practically full torque available. The rotor gearing would reduce these revolutions to a small incremental step in actual rotor position. Two major benefits arise:

1. The small incremental steps can be only parts of a degree, so that positioning the antenna to a particular azimuth setting would be no problem at all.
2. The slow motion of the long boom never allows any appreciable velocity buildup, so no moment-ofinertia problem occurs.

Now all I had to do was develop some hardware to do what all these words are saying, which turned out to be the least difficult part of this project. The pulsecontrol unit, as I call it, is surprisingly simple. A block diagram of the result is shown in fig. 1.

Basically two items were needed. The first was an electronic switch that could be opened and closed for small periods of time to apply power to the rotor motor. The motor would have full voltage applied to it during each pulse. Second, a pulse generator was needed to send constant-width pulses at a variable rate to the electronic switch. By adjusting the pulse width, I could vary the number of revolutions that the motor would turn for a given load, thus varying the incremental movement of the rotor. Also, the pulse rate could be adjusted to vary the number of incremental steps that occurred each second or, in other words, vary the rotor speed.

the circuit

The schematic of the pulse-control unit, integrated with the circuit of a CDE Tailtwister rotor, appears in fig. 2. All control-unit parts are numbered starting with $\times 20$ so they won't be confused with those that are part of the Tailtwister rotor.
Power supply. Parts CR20, C20, C21, and VR20

fig. 1. Block diagram of the pulse-control unit added to the Tailtwister motor-control circuit. Brake solenoid and end-of-travel limit switches have been omitted for simplicity.

fig. 2. Schematic of the pulse-control unit and Tailtwister control box. The PCU schematic is below the dashed line that separates the two circuits. Note wiring changes to control box.

Close-up of the pulse-control unit showing parts placement. Unit is mounted on the underside of the Tailtwister control box chassis above the power transformer, as shown. Note that VR20 leans slightly to clear the bottom cover when installed.
define a regulated 12 Vdc power supply for the PCU. Resistor R20 decreases the 26 Vac from the rotor power transformer somewhat, so that the rectified input voltage to VR20 will be below its 35 -volt maximum. Do not omit R20. You may notice that the ac input leads to the power supply section seem to be hooked up backward. The lead from R20 (PWR) connects to terminal 1 of the eight-terminal output connector of the rotor control box. It is grounded to the chassis. The pulser unit common lead is connected to terminal 2. These power leads must be wired in this manner to provide proper phasing to the electronic switch.

Pulse-rate generator. The pulse rate generator is made from IC20, an NE-555 timer wired as an astable multivibrator. Resistors R21, R22, and capacitor C22 determine the frequency of oscillation of IC20. R21 is a 1-meg pot, which can be a panel-mount type for varying the pulse rate. Or it could be a trimpot mounted on the PC wiring board for those who like set-it-and-forget-it controls. The minimum pulse rate was set to about 0.5 Hz .

It's possible to allow IC20 output to provide the control signal to the electronic switch. But if you investigate the inner workings of an NE-555 used in the astable mode, you'll find that the duty cycle also varies as the frequency of oscillation is changed. I wanted constant-width pulses applied to the electronic switch, so that the incremental movement of the rotor could be controlled. Thus, IC21, another NE-555, was added as a monostable multivibrator.
Each time IC20 output (pin 3) goes low, it triggers IC21. IC21 output (pin 3) then goes high and turns on the electronic switch. IC21 pin 3 stays high for a period determined by R23 and C23. The output pulse width is determined by:

$$
\begin{equation*}
T=1.1 R C \tag{1}
\end{equation*}
$$

where $T=$ Output pulse width (seconds)
$R=$ R23 resistance (ohms)
$C=\mathrm{C} 23$ capacitance (farads)
Realize that the tolerances of C23 and R23 may make eq. 1 seem invalid; actually, the formula is quite accurate.

Pulse-width calculations. The pulse width in my unit is about 24 milliseconds. The $0.1-\mu \mathrm{F}$ cap I used for C23 supposedly had a tolerance of ± 10 per cent. Using eq. 1, I should be using a 200k resistor for R23. However, I ended up with a 68 k to obtain the 24 -millisecond pulse width. (The capacitor was way out of tolerance or incorrectly labeled.) Rough measurements indicate that this pulse width gives an incremental rotor travel of about 0.1 degree for my antenna system. By varying the R23 value, you can change the pulse width to suit your needs.

Electronic switch. The last part of the pulse control

Overall view of the PCU and regulator module installed in the control box. The smaller board next to the PCU is the regulator module. Also shown is the external rateadjustment pot mounted on the rear panel. Azimuthindicating meter in this control box has been modified to a digital readout for improved accuracy.
unit to be described is the electronic switch. A triac, Q20, gave simple, full-wave ac control to the rotor motor. Output pin 3 of IC21 going high will turn on the triac. The triac will pass current to the motor so long as it has gate drive. When gate drive is removed, the triac will turn off the next time that the ac current through it passes through zero. The suppression network, made up of R25 and C25, which is across the main terminals of the triac, was added to prevent triac false triggering. In some cases, where a triac is used to control an inductive load, there's enough phase difference between the voltage and current waveforms to cause the triac to retrigger when the gate drive is removed. Later I found that the suppression network was not needed in this application, but I left it in the circuit as a precaution.

I also found that I didn't need additional circuitry to make the triac switch at the zero points of the ac voltage waveform. No radio frequency interference has been noted.

printed wiring board

A full-size layout of a printed wiring board for the pulse control unit is shown in fig. 3. It's designed to mount on two $8-32$ by $1 / 2$-inch (M4 by 12.5 mm) threaded spacers that are screwed down onto the existing mounting bolts for the power transformer in the Tailtwister control box (see photo). Solder pads are provided for external connections. Don't forget to install the three jumpers on the printed wiring board.

The two NE-555 timers mount in one 16 -pin IC socket. Both are oriented in the same direction as shown in the parts layout (fig.4). The heatsink used for the triac is a Thermalloy 6107B. A similar heatsink can be made from a piece of scrap aluminum. If a substitute is made for the 2 N6071 triac, be sure that it has the same pinout and triggering characteristics.
Notice that the voltage regulator must be tilted somewhat to clear the bottom cover of the rotor control box. It does not require a heatsink. Resistors R22 and R25 mount vertically. C22 is a small dipped tantalum capacitor, and C23 should be a Mylar capacitor for stability.

The pulse-rate generator control pot can be a printed wiring board type such as a CTS X201 or can be a panel-mount pot as shown in the photo. If an external pot is used, wire it so that clockwise rotation of the shaft decreases the total resistance. Then the pulse frequency and rotor speed will increase with clockwise rotation.

installation

Only five wires must be soldered to the printed wiring board (three if you mount R21 on the board) for

fig. 3. Full-size printed wiring board layout for the pulse-control unit. Wire side is shown.

fig. 4. Parts placement for the pulse-control unit. IC20 and IC21 mount in a single 16-pin dual inline socket. R22 and R25 mount vertically. Do not omit the three jumpers (labeled J1, J2, J3). A trimpot can be used for R21, or leads can be extended to a panel-mounted pot.
external connections. Solder two wires, preferably color-coded, to the pads marked PWR and COM. Make sure the wires are long enough to reach to the rotor control box eight-terminal connector block. Solder another wire, that will reach to the CW and CCW control switches, to the pad marked OUT. The last two wires are for the external pulse-rate adjust pot; their length depends on where the pot is mounted.

Before permanently mounting the pulse-control unit, you must make two minor wiring changes in the Tailtwister control box. You must first remove the existing wire that connects terminal 2 of the eightterminal connector block to the common terminals of the CW (S4) and CCW (S5) control switches. Leave the jumper that connects the common terminals of S4 and S5 together in place.

Next unsolder the wire from terminal 2 of the connector whose opposite end is soldered to point 1 of the Meter/LED printed wiring board. Connect the end of this wire that was on terminal 2 to the common terminal of either S4 or S5. This wiring change avoids a triac gating problem due to the LED indicator circuitry. The LEDS will still be functional but in a slightly different manner, as discussed later.

Mount the printed wiring board on its spacers over the power transformer. Solder the PWR wire to terminal 1 and the COM wire to terminal 2 of the eightterminal block. Connect the OUT wire to the common terminal of either the S4 or S5 control switch. The last two wires connect to the pulse-rate adjust potentiometer. This completes the hookup of the unit.

checkout

Check all wiring against fig. 2 and the instructions in the previous section to uncover any possible wiring errors. Next, set the rotor-control box on its side so you have access to both pulse-control unit and eight-terminal connector. Set the pulse-rate adjust pot to mid position.

Turn on the control-box power switch. This should cause the meter to indicate existing rotor position and become illuminated. Connect the common probe of an ac voltmeter to terminal 1 of the eight-terminal connector, and connect the input probe to terminal 2. Press the bRAKE RELEASE switch on the control box. This should cause the brake to release; about 26 Vac will be indicated on the voltmeter. The green LED that normally indicates brake release should light, but it should flash on and off. (It will flash at the pulse rate set by R21.) The brake solenoid now is receiving full power, but the LED flashes so you can set the desired pulse rate before applying pulsed power to the rotor motor. Vary the pulse rate adjust pot to see that the LED flashes from about 0.5 Hz to full on.

If this checks out, proceed to the next step.
Leave the common voltmeter probe connected to terminal 1 and connect the input probe to terminal 6. Press the brake release switch, then press the CCW control switch. Pulsed $26-\mathrm{Vac}$ should show on the meter (the voltmeter will not actually indicate 26 Vac because of the short pulses). Both green brake and red CCW LED indicators should flash with the 26Vac pulses. Your antenna should rotate counterclockwise at a much slower rate than before.

Next, remove the probe from terminal 6 and connect it to terminal 5. Press the bRake release switch again, then press the CW control switch. Pulsed 26-Vac should show on the voltmeter; the brake and CW LEDs should flash, and your antenna should slowly rotate clockwise.

If you have problems, recheck all wiring and use the schematic and circuit-board description as a troubleshooting guide. When checking the operation of the pulse-control unit, be sure to use terminal 2 and the common point for voltage measurements. Also note that the pulse-control unit receives no power unless the BRAKE RELEASE switch is operated.

This modification is made to a CDE Tailtwister rotor, but is also applicable to HAM-type rotors. In fact, I initially checked out the pulse-control unit in my HAM-2 rotor. All wiring changes in the rotor-control box are the same except for the LED indicator wire change. Since a HAM-2 or -3 has no LED indicators, this change doesn't have to be made.

position circuit modification

You've probably noticed the small circuit board mounted next to the pulse-control unit (photo). It is a $13-\mathrm{Vdc}$ regulator module that replaces the zener diode and current-limit resistor on the Tailtwister printed wiring board. This circuit offers a more stable regulated source for the azimuth indication circuitry. The schematic (fig. 5) uses a simple 8 -volt, 3 -terminal regulator. The 500 -ohm trimpot allows the output to be adjusted to 13 volts. The filtered dc supply is about 30 volts and is close to the maximum input voltage rating of the 7808 regulator, so a 150 -ohm, 1/2-watt resistor was added to reduce the regulator input voltage. An added benefit is reduced power dissipation. Mine was built on a small piece of perf board, mounted on a standoff in an existing hole in the control-box chassis.

To wire the regulator module, first remove R1, the 390 -ohm, 2-watt resistor, and VR1, the 13 -volt zener from the rotor printed wiring board. Don't use much heat, as the traces on the printed wiring board are fragile. Next, connect the module IN terminal to the pad left by R 1 that connects to the positive lead of C1. Connect the OUT terminal to the pad left by R1

fig. 5. Schematic of the $\mathbf{1 3}$-volt regulator module for the rotor position is contained in the dashed box. Also shown are the connections from the module to the original circuit. R1 and VR1 are removed before connections are made. Adjust the trimpot for 13 Vdc across terminals 3 and 7 of the control box.
that connected to VR1 cathode. Solder the COM terminal to the pad that previously contained the VR1 anode lead. Turn the control box on, and adjust the trimpot for 13 volts across terminals 3 and 7 of the connector block.

conclusion

This modification to the Tailtwister rotor system has made controlling my large EME array a dream. Variable speed control, from 360 degrees per minute down to much less than one degree per second, allows turning torque and positioning overshoot to be minimized. The system would now lend itself well to microprocessor control; thus, this modification should also be of interest to Amateur satellite users.

My rotor-control box has also been incorporated into a digital readout similar to that described by K1DG. ${ }^{1}$ Positioning accuracy has been increased, as errors of 5 degrees or more existed in the indication circuitry alone in my control box before the digital indicator was added. Now my position accuracy seems to be limited mainly by a) the potentiometer linearity, and b) the accuracy to which I can set the antenna to a calibrated point.

reference

1. Doug Grant, K1DG, "Digital Readout for the HAM-3 Rotator, ham radio, January, 1979, pages 56-59.
ham radio

State of the art

by

XF-9B
Reduce QRM with improved IF selectivity
The XF-9B crystal filter is the heart of good, modern receiver (and transceiver) designs. It is used between the mixer stage and the IC IF amplifier stage to suppress adjacent channel interference by over 100 dBs .

The XF-9B can also be used to upgrade older receiver designs which use vacuum tube or discrete transistor IF amplifier stages. PRICE $\mathbf{\$ 6 8 . 6 0}$ plus shipping.
Specification XF-9B
Center Frequency
Bandwidth
Passband Ripple
Insertion Loss

9.0 MHz	Shape Factor $6: 60 \mathrm{~dB}$	1.8
2.4 KHz	$6: 80 \mathrm{~dB}$	2.2
42.0 dB	Ultimate Attenuation	100 dB
43.5 dB	Terminations:	500 ohms
Export Inquiries Invited	30 pF	

1296 MHz EQUIPMENT Announcing the new 1296 MHz units by Microwave Modules.

> Low Noise RECEIVE Convertet
> Low Noise RECEIVE Preamplifier MMk1296-144
> LOW Power LINEAR TRANSVERTER MMa1296
> مas all sur regular 1296 MHz atems. antenasas, simers, tripiers

TRANSVERTERS FOR ATV OSCARS 7, 8 \& PHASE 3

Transverters by Microwave Modules and other manutacturers can convert your existing Low Band rig to operate on the VHF \& UHF bands. Models also available for 2 M to 70 cm and for ATV operators from Ch2/Ch3 to 70 cms . Each transverter contains both a Tx up-converter and a Rx down-converter. Write for details of the largest selection available.
Prices start at $\mathbf{\$ 1 9 9 . 9 5}$ plus $\mathbf{\$ 3} .50$ shipping.

SPECIFICATIONS:

Output Power
Receiver N.F. $\quad 3 \mathrm{~dB}$ typ
Receiver Gain
Prime Power
30 dB typ.

Attention owners of the original MMt432-28 models: Update your transverter to operate OSCAR 8 \& PHASE 3 by adding the 434 to 436 MHz range. Mod kit including full instructions $\$ 26.50$ plus $\$ 1.50$ shipping, etc.
ANTENNAS (FOB CONCORD, VIA UPS)
144-148 MHz J.SLOTS

420.450 MHz MULTIBEAMS
For local, DX, OSCAR, and ATV use.
$48 \mathrm{EL} \quad \mathrm{GAIN}+15.7 \mathrm{dBd} 70 / \mathrm{MBM} 48 \quad \mathbf{\$ 6 9 . 9 5}$ 88 EL . GAIN + $18.5 \mathrm{dBd} 70 / \mathrm{MBM} 88 \quad \$ 95.95$
UHF LOOP YAGIS
28 LOOPS GAIN $+20 \mathrm{dBi} \quad 50$-ohm, Type N Connector

$2850-1340 \mathrm{MHz}$	$1296-\mathrm{LY}$	8 ft . boom	$\mathbf{\$ 5 9 . 7 0}$
$1650-1750 \mathrm{MHz}$	$1691-\mathrm{LY}$	6 ft boom	$\mathbf{\$ 6 4 . 7 0}$

Send 30 (2 stamps) tor full details of KVG crystal products and all your VHF \& UHF equipment requirements.
Pre-Selector Filters
Decade Pre-Scalers Antennas

Amplitiers Ampitiers Crysta filters
Frequency Filters Frequency Finters
Osciliator Crystals

SSB Transverters
FM Transverters VHF Converters UHF Converters

Spectrum International, Inc. Post Office Box 1084

microcomputer-based contest keyer

During the last CW contest, did you wish you had a memory keyer to send the contest exchange and give you more time for log and dupe-sheet entry? Did you wish you could automatically transmit the proper QSO number and generate any contest exchange? The microcomputer-based contest keyer may be the answer. This fully iambic keyer has ten programmable messages, a four-digit QSO counter, and the flexibility to transmit almost any contest exchange. An added feature is the display of the current code speed setting.

Several years ago I used tape-recorded tones to drive a relay and key my transmitter during a CW sweepstakes. Since this first attempt at automation, I built several memory keyers, ${ }^{1}$ a TTL CW OSO number generator, and an 8080 microprocessor keyer that required three circuit boards. Because of the decreasing cost of microcomputer chips, I thought the time had arrived to design a state-of-the-art contest keyer.

Several operational objectives were set for the design. First, it should be an iambic keyer having dot and dash memory plus the optional forced-letter space of the popular WB4VVF Accu-Keyer. ${ }^{2}$ For simple programming, the user should be able to load messages directly in code from the keyer paddle. Next, there should be several options such as automatic OSO number and RST generation. Last and most important, the keyer should be simple and natural to use but be flexible enough for any contest exchange. The result is the microcomputer keyer presented here.

circuit description

Keyer construction is shown in the lead photo and fig. 1. Instead of a large keyboard, I selected a simple, twelve-button keypad for control. A potentiometer is included to adjust code speed and a four-digit LED display is included for QSO number and other alpha-numeric keyer messages. Simplicity results from using an Intel 8748 programmable microcomputer. The advantage of such a device is the ability to perform complex tasks with minimum circuitry. Soft-
ware may be reprogrammed for other features or options. The following sections describe the design, discuss operation, and outline software routines for the keyer functions.

The keyer circuit, fig. 2, requires only seven integrated circuits and six transistors. The 8748 microcomputer, U1, contains 1024 bytes of electrically programmable read-only memory (EPROM), 64 bytes of random access memory (RAM), a programmable counter, and three 8 -bit input/output ports. Since a complete description of the 8748 was recently published, it will not be repeated here. Readers should review the article by N6TY ${ }^{3}$ and the Intel MCS-48 Microcomputer Users Manual. ${ }^{4}$

The 8748 has limited RAM for this design. U2, an Intel 8155, is used to expand the message buffer area. The 8155 contains 256 bytes of RAM, three input/output ports, and a 14-bit counter; only the RAM section is used. While this may seem a waste of internal functions, the 8155 will directly interface with the 8748's multiplexed data and address lines, DB0 to DB7. Additional interface circuitry is not required, saving at least two additional chips and considerable wiring.

U3 is an Intel 8279 programmable keyboard/display interface.* This versatile device can drive up to thirty-two multiplexed 4-bit display digits and simultaneously decode a 64-button keyboard. This design uses the interface to drive four 7 -segment LED displays for alpha-numeric messages to the user. It also scans the 12-button keypad, decoding the key and signalling U1's IRQ (Interrupt Request) input with a logic 1. An internal first-in, first-out (FIFO) buffer stores up to eight keypresses; the user can "type ahead" without losing inputs.

Display multiplexing of the common-anode 7-segment display reduces the number of interconnect wires from 32 to 11. Anodes are switched by Q3 to Q6 from U6 inverting SL0 to SL3 from U3. Scan out-
*U2, U3 functions are programmed by commands from U1; the EPROM within U1 contains the actual program for the entire keyer.

By Andrew B. White, K9CW, 31 Quebec Road, Marlboro, New Jersey 07746

fig. 1. The keyer electronics are contained on one singlesided printed circuit board.
puts SL0 to SL3 are also used for the switch rows in the keypad. Segment driving is accomplished by A0 to $A 2, B 0$ to B3 from U3 through U7. Scanning is invisible to the user.

Keypad switch columns are connected to RLO, RL2, RL4, and RL6 of U3 for key decoding. U3 provides debouncing and key rollover detection internally. The keypad may be a conventional telephone type with separate switch contacts.

command and control

U1, U2, and U3 are all connected to the same 8-bit data/address bus, DB0 to DB7, and the same Read (RD) and Write (WR) control lines. Data input or output for the microcomputer will be enabled by a logic 0 on either U1-36 (chip select for U3) or U1-37 (chip select for U2). U1-35 is the Control/Data (C/D) input for U3; Control mode (logic 1) is for display scanning, Data mode (logic 0) reads the keypad and loads the display.

The keyboard/display interface requires a clock input for display multiplexing and other timing operations. This is supplied by U1's Address Latch Enable (ALE) and is equal to the crystal frequency divide by 15. This signal eliminates a separate display oscillator. It should also be noted that U1 contains an internal clock oscillator circuit, requiring only an external crystal.

Dual timer U4 functions as both code-speed oscillator and sidetone generator. The code-speed section, U4A, is enabled by a logic 0 on U1-34. The same enable signal energizes clock indicator CR1 to indicate that the code clock is on. Code speed output, U4-5, is connected to U1's internal 8-bit counter. The microcomputer will set the length of one dot
as 100 code speed pulses during CW operations. U4A oscillates at 100 times dot rate and is set by R1; speed range may be altered from the keypad.

Transmitter keying occurs when U1-33 is logic 0 (U5-10 at logic 1). The Q1, Q2 circuit is used with grid-block keying on my transmitter. Key-up voltage at the TX line is about - 30 Vdc . Key-down voltage is close to ground. Other keying methods will require changing the Q1, Q 2 circuit.

The microcomputer interrogates the key dot and dash paddle switches through I/O ports at U1-27 and U1-28. Internal pull-up resistors allow direct key connection.

U1 will automatically reset to program start when turned on. A manual reset push button, S1, is included for convenience. CR3 and CR4 are program status indicators and are described later.

Sidetone oscillator U4B is optional. The speaker may be any small unit with 8 -ohm impedance or higher. CR2 indicates key down and should be retained; a keyer option function allows holding key down for tuning.

software routines

Microcomputer hardware is useless without a program to make it "come alive". Software routines are described, but the detailed program is too long to include here. A complete program listing is available from the author. \dagger

A flowchart of the main software polling loop appears in fig. 3. At power on or RESET, the keyer status flags are initialized and - HI - appears on the 4-digit display. The program enters a loop that continually checks the key paddle switches and keypad switch status, waiting for some request. Any switch closure will enable a branch to a routine that will generate the proper message or code element.

For example, assume the dot paddle switch is closed. The microcomputer turns on the transmitter for one dot period. It also checks the dash paddle switch and sets the dash memory flag if the dash switch was closed before the dot was completed. If so, a dash will begin after the dot space. Holding either dot or dash paddle closed will generate successive dots or dashes with proper spacing.

If no key paddle switches are closed, the microcomputer checks the letter space option. If enabled, no paddle inputs are processed for two dot periods, corresponding to one letter space interval. Key paddles are still tested during this interval. If either is closed during the interval, the proper flag is set and the appropriate dot or dash is sent after interval com-

[^7]
fig. 2. The keyer schematic. The four-digit LED display module may be replaced with four individual seven-segment common-anode digits.

fig. 3. A flow chart for the microcomputer keyer program. The keyer is fully iambic and has an optional forced letter space.
pletion.* If no requests are pending, the program returns to the main polling loop and waits for the next input.

Pressing one of the keyboard switches calls a keypad processing routine. This routine decodes the keypad and executes one of several routines shown in the flow chart of fig. 4.

function keys

To set various keyer options, the keypad F (FUNC-

[^8]TION) key is pressed, followed by 0 through 9 for the selected option. Pressing F will display -F- with the third digit blank to indicate an option number must be entered next. Entering the option will fill in the display and execute the function.

Table 1 summarizes function-key options. The first four, F-0 through F-3, will display, increment, decrement, or load a four-digit QSO counter. If QSO count load is selected, the number keys are used to enter an initial count. Once this initial count is entered, pressing the F or L (load) key will load it into memory as the current OSO count.
table 1. Function key options are activated by first entering F on the keypad, then the option number. Function F-
9 may be tarminated by pressing any key or key lever.

keypad entry description

F-0	display OSO total
F-1	increment and display OSO total
F-2	decrement and display OSO total
F-3	load the OSO total
F-4	toggle forced letter space option
F-5	toggle 3-digit QSO number option
F-6	toggle -HI-/QSO-total display option
F-7	display code speed in wpm
F-8	toggle code speed range
F-9	tune transmitter (key-down hold)

fig. 4. The operation performed by each key depends on the current keyer mode. For example in the message programming mode, the table 2 options are selected.

fig. 5. Printed circuit board pattern for the keyer shown from the foil side.

Options F-4, F-5, and F-6 select various keyer operating modes. Letter space option F -4 will force a letter space if neither dot nor dash is closed upon completion of a code element. Front panel indicator CR4 will light if this function is enabled. Option F-5 determines if OSO numbers should always be transmitted as three digits or if the leading zeros in the number should be suppressed. Option F-6 allows display of oSO total instead of -HI - during the input waiting period. Default values at turn-on are: Letter space enabled, suppress leading zeros, display - HI -

Current code speed in words per minute is displayed by the F-7 option. Since the microcomputer is continuously measuring speed, speed control R1 can be adjusted through digital readout. Pressing any key or paddle lever will exit this function.
Option F-8 selects speed range, either 16-60 wpm or $5-30 \mathrm{wpm}$. Default value is $16-60 \mathrm{wpm}$. Option F-9 will key down the transmitter for tuning purposes; key up occurs on pressing any key or the paddle. Transmit indicator CR2 will be on and -F9-displayed during key down.

loading messages

To load one of the message buffers, the L key is pressed, followed by a selected message number of 0 through 9. Entering only L will display -L- with a blank third digit prompting the user for a message number. Entering the number will fill in the display such as -L5- for message number five.

Once the load identification is complete, the manually sent code is stored in memory until either F or L is pressed to terminate the message. The number of memory bytes per message is displayed during message entry. Message buffers 0 through 9 are contiguous in U2 so that individual messages can be up to 25 bytes long without interfering with the next higher message number.

Twenty-five bytes can store 100 dots, dashes, or spaces, but this is not a limit. Because the keyer allows variable message length, one long message containing over 1000 dots, dashes, or spaces is possible; this is an average of 200 letters at three dots or dashes per letter.

In addition to manually entered code, several special functions can be loaded into a message. Table 2 gives the function options and a specific display for user confirmation. CR3 will be on during message loading.

> table 2. Message loading options are activated by a single keypad entry. These options insert special functions into the message during message loading.

keypad	display	description
0	-C0-	send OSO total
1	-C1-	increment and send QSO total
2	-59-	send 5NN or 5 (keypad) 9
3	-IP-	send keypad numbers
4	-SP-	insert a letter space
5-8		ignored; reserved future use
9	-00-	restart message loading
Lor F		terminate a message load

special message options

During playback, option 0 transmits the current QSO total as two to four numbers depending on lead-ing-zero suppression previously set by F-5. Option 1 first increments the OSO total then sends the number.

Option 2 transmits an RST in one of two formats. If a key has been typed during message playback but before this option is encountered, that keypad number is sent as the middle digit (signal strength) in the RST. If no keypad number has been pressed, 5 NN is transmitted.

Option 3 allows transmitting a number directly from the keypad. The keypad FIFO buffer is checked when this option is encountered. If any keypad numbers are stored (maximum of 8), they are sent, the FIFO empties, and message playback resumes.

Option 4 simply inserts one letter space each time it is entered. Option 9 allows the user to restart loading in case of error. Options 5 through 8 are currently ignored, reserved for future additions.

These options allow almost any contest message to be loaded. For example, 599001 can be loaded by typing 2, then 1 . Keypad 2 calls for the 5NN; keypad 1 calls for the QSO total (incremented from zero, no suppression of leading zeros). NR 100 IL is loaded by manually keying NR, pressing 1 on the keypad, pressing 4 twice for two letter spaces, then keying IL manually.

During message loading, a routine measures the time between manually keyed dots and dashes. It corrects most spacing errors. No more than one word space interval will be automatically stored in memory. The user can stop loading without filling the memory with spaces. No word space is automati-
cally inserted after loading options. Inserting spaces (option 4) permits storage of perfect Morse code.

message playback for transmission

A stored message is played back by simply pressing the appropriate keypad number. If message number seven is selected, the display shows -P7-. If one of the QSO number options is encountered in a message, the current or incremented QSO count is displayed. The keyer returns to the main polling loop when a message is complete and displays - HI - or the current QSO count (if F-6 is set).

Manually sent code can be inserted at any time during a message playback. When a paddle switch is closed, the keyer stops and waits for a word space interval. If the paddle switch is still closed, manual code transmission begins. When manual code ceases, the stored message playback continues. Message playback can be halted at any time by pressing the RESET button or briefly tapping the dot or dash levers.

A common method of storing Morse code in a digital memory is to use a length equivalent to each element. A Morse dot would appear in memory as binary 010. A Morse dash would be binary 01110. This keyer uses two bits for each element: A letter space is binary 00 , a dot is binary 01, a dash is binary 10 . Bi nary 11 is used as an option indicator for one of the message options. This assignment allows four code elements per memory byte.

construction

The circuit may be built on the PC pattern of figs. 5 and 6 or with wire-wrap techniques. Sockets are suggested for either case to avoid IC damage. Space has been provided on the PC layout for diode rectifiers and a filter capacitor. A three-terminal voltage regulator should be used with an output rating of +5 Vdc at 0.5 amperes. Mount it on the cabinet for heat sinking.

Several $0.1 \mu \mathrm{~F}$ disc capacitors are used on the PC board to bypass the +5 volt line at each IC and reduce logic switching noise. A wire-wrap version should have these capacitors installed first with minimum lead length.

The finished keyer can be mounted in a commercial case or a homemade one such as in the title photo. Some users may want to separate the keypad to move the main keyer circuitry off the desk. In either configuration, be certain to rf bypass all leads into or out of the keyer cabinet.

> Locating components isn't difficult.* Most of the

[^9]
fig. 6. Component layout for the keyer shown from the component side of the board. Pads are provided for several $0.1 \mu \mathrm{~F}$ bypass capacitors on the +5 volt supply line.
computer hobbyist advertisers carry the Intel components. The four-digit LED display is a National Semiconductor NBS7882, but four separate seven-segment, common-anode displays may be substituted in place of that unit.

The $8748-8$ is a lower-speed version that can use a 3.58 MHz color TV crystal; the program listing includes modification for this option. Either crystal should be series-resonant with series impedance less than 75 ohms for 6.144 MHz ; less than 180 ohms for 3.58 MHz .

The 8748 is supplied unprogrammed. You must locate a nearby programming facility with an Intel compatible EPROM programmer. EPROM programming of the 8748 requires more care than a conventional hobby computer PROM burner. Intel supplies all information on EPROM programming in reference 4.

conclusion

This keyer has been used in only a few contests so far. I find the automatic number generation and multiple message playback features to be useful operating aids. Automatic message transmission during each exchange is an advantage that allows filling in the dupe sheet and checking off section multipliers.

In addition, errors are never made in transmitting the QSO number or other parts of the contest exchange.

My objective in writing this article is not only to describe a powerful, inexpensive contest keyer, but also to start people thinking about new applications for microcomputers in Amateur Radio. I'd be interested in your ideas for using this new technology. Microprocessors and computers are already appearing in common ham equipment. Several manufacturers sell combination RTTY and Morse keyboards and displays based on microprocessors.

Perhaps a future version of the contest keyer will be able to scan the band, copy a call, check the dupe list, and make a contest contact automatically. While that operation may be feasible, I don't believe it's desirable. After all, what would remain for the contest operator to do?

references

1. A.B. White, K9CW, "Programmable Memory Accessory for Electronic Keyers," ham radio, August 1975, page 24.
2. J. Garret, WB4VVF, "The WB4VVF Accu-Keyer," QST, August 1973. page 19.
3. J. Beaston, N6TY, "CW Trainer/Keyer Using a Single Chip Microcomputer," ham radio, August 1979, page 16.
4. MCS-48 MICROCOMPUTER USER'S MANUAL, Intel Corporation, 1977.
ham radio

analog-to-digital display converter for the visually handicapped

The circuit described in this article was designed for a visually impaired Amateur to replace his analog panel meter with a large digital display. A variation of the circuit can be used to drive a tactile decimal readout for the blind. This is the primary use of this circuit, but with a little ingenuity it can be adapted to convert any analog device (such as the frequencyreadout dial on Amateur gear) to a digital display. For instance, it could be used as an azimuthal readout for an antenna rotor, calibrated directly in degrees of bearing. If so desired, using a thermistor, it could monitor the temperature of a final amplifier or linear amplifier tube compartment, crystal oven, or anything where temperature is critical.

theory of operation

All analog meters are designed with a specific internal resistance and are constructed to display a particular current as "full scale." It is easy to calculate the voltage necessary to produce a full-scale reading, using Ohm's Law, $E=I R$. Thus a $100-\mathrm{ohm}, 1-\mathrm{mA}$

fig. 1. Example using a meter that reads 1 mA full scale. To obtain a full-scale reading of 500 mA with this meter, a 0.2 -ohm resistor is connected across the meter, which has an internal resistance of 100 ohms. Eq. 1 explains how to do it.

fig. 2. Another example showing how to obtain a full-scale range of 1 kV using a voltage divider, with the meter supplying part of the resistance.
full-scale meter requires 100 ohms $\times 0.001$ ampere $=0.1$ volt for full scale; a $1000-\mathrm{ohm}, 100-$ micro-ampere full-scale meter requires 1000 ohms \times 0.0001 ampere $=0.1$ volt, and so on.

To obtain a higher full-scale range for a meter, construct a divider network or shunt network into which the meter is connected. Thus, to obtain a fullscale reading of 500 mA , using a $100 \mathrm{ohm} / 1 \mathrm{~mA}$ fullscale meter, calculate the resistance, to be placed in series with the current through the meter, that will develop a voltage drop of 0.1 volt (the full-scale voltage of the meter) at 500 mA . Using Ohm's Law again, $R=E / I=0.1 \mathrm{~V} / 0.5 \mathrm{~A}=0.2 \mathrm{ohm}$. (See the circuit in fig. 1.) Likewise, to obtain a full-scale range of 1000 volts, construct a voltage divider with the meter as part of the divider. Again, $R=$ $E / I=1000 \mathrm{~V} / 0.001 \mathrm{~A}=1 \mathrm{megohm}$. See fig. 2.

If we replace the meter in fig. 2 with a 100 -ohm resistor, we can measure the voltage produced across the 100 -ohm resistor and construct our voltmeter so that 0.1 volt reads 1000 . That's basically what we're

By Pat Berry, KB7JW, P. O. Box 814, Mulino, Oregon 97042
doing with this converter circuit, using a special analog-to-digital voltmeter.

It's beyond the scope of this article to go into the various methods to convert an analog signal to a digital output. Numerous texts are available covering the subject. Some of the best are the Motorola publications listed at the end of this article.

device selection

This circuit uses the Motorola MC14433 3-1/2 digit A/D converter. The MC14433 is a low-power linear and digital CMOS monolithic dual-slope A/D converter packaged in a 24 -pin IC. It provides an accuracy of ± 0.05 per cent of reading plus-or-minus one count and provides up to twenty-five conversions per second. The input resistance is 1000 megohms, and its outputs are standard B -series CMOS that will drive one low-power Schottky load. Power consumption is only 8.0 mW typical at 5.0 Vdc . For those interested,
the data sheet contains schematics for several voltmeters, including an auto-ranging multimeter with ac and dc full-scale ranges from 200 mV to $200 \mathrm{~V} ; 2 \mathrm{~mA}$ to 2 A ; and 2 k to 2 megohms.

This circuit uses a finely adjustable reference voltage for the MC14433 to force it into giving any fullscale reading desired (up to 1999). By switching in a number of reference voltages, we can obtain a meter with any number of full-scale ranges.

Methods are available to allow any number of digits to be displayed, but this circuit is limited to displaying three and one-half digits to reduce cost and circuit complexity.

circuit description

Referring to fig. 3, the MC14433 uses two external resistors and two external capacitors to set its internal clock and ramp. Since analog ground, V_{AG} must be at least 2.8 volts above circuit ground, V_{EE}, we

fig. 3. Schematic of the A/D converter using the Motorola MC14433 to drive a MC7447 seven-segment decoder-driver for the LED readouts.

fig. 4. Alternative scheme using an MC7445 ten-line decoder IC for pop-up solenoids (tactile readouts).
use four silicon diodes between V_{AG} and ground (V_{EE} and $\mathrm{V}_{\text {ss }}$), giving a voltage drop/separation of 2.8 volts (4×0.7 volt). We need either 2 or 0.2 volts for $V_{\text {REF }}$, depending on the range we must measure and the value we select for R 1 , so we use a 7805 regulator (5 volt) as an accurate voltage source and connect it through a 1 k , ten-turn pot (available as surplus in many places) to V_{AG}. Since V_{AG} is 2.8 volts above ground, we have 2.2 volts available across the pot, $15.0 \mathrm{~V}-2.8 \mathrm{~V}$ or 0.22 volt per turn of the ten-turn pot. This voltage is adjusted during calibration for new full-scale readings.

The Q outputs of the MC14433 (pins 20-23) are fed to a 7447 seven-segment decoder-driver for LED readouts or to a 7445 ten-line decoder-driver for tactile readouts. (See fig. 4.) Note that only segments b and c are connected to the MSD (most significant digit) readout, fig. 3. The digit selects (pins 16-19) then enables each digit in turn through Motorola MPS A12 NPN transistor switches. You may use as large a digital display as desired, as the LEDs or solenoids are mounted external to the decoding and voltmeter circuitry for convenience.

Constuction of the circuit is straightforward, using normal PC techniques. * Care must be taken to shield

[^10]the circuit and rf bypass the input and output leads, as the circuit can generate small amounts of if hash due to its clock rate. I haven't found this to be objectionable except during very weak signal reception, so shielding is recommended.

The input voltage to the 7805s can be anywhere from 8 to 18 Vdc . I use a rectified and filtered filament line on my rig. You will experience less dissipation from the 7805 s if you use a voltage closer to 8 than 18 volts.

The finished board can be mounted anywhere in the rig, as long as it is shielded from rf-sensitive areas. If at all possible, mount the new range switches onto the existing meter range switch. It's worth replacing the old switch with one that will switch everything.

calibration and installation

To replace an existing panel meter, determine the internal resistance and full-scale current of the meter.

1. As accurately as possible measure a resistor of the same nominal value as the internal resistance of the meter for example, $100 \mathrm{ohm}, 1 \mathrm{k}$, and so on.
2. Disconnect the meter from the circuit and connect the leads to the new resistor. If the meter is not removed from the panel, single-lug terminal strips mounted to the meter binding posts make excellent mounts for the new resistor.
3. Now, as accurately as possible, measure the

HAL'S SHOPPER'S GUIDE

voltage produced across the new resistor at each setting of the meter range switch.
4. Use eq. 1 to calculate the correct digital reading:

$$
\begin{equation*}
\left[\frac{V_{\text {meas }}}{\left(R_{\text {rep }}\right)\left(I_{\text {meter }}\right)}\right] \text { Range }_{f s}=\text { digital reading } \tag{1}
\end{equation*}
$$

where $\quad V_{\text {meas }}=$ measured voltage (volts)

$$
\begin{aligned}
R_{\text {repl }}= & \begin{array}{c}
\text { meter replacement resistance } \\
\\
(\text { ohms })
\end{array} \\
I_{\text {meter }}= & \text { meter full-scale current (amperes) } \\
\text { Range }_{f s}= & \text { meter full-scale range reading }
\end{aligned}
$$

Adjust each reference potentiometer to obtain the correct reading at each range setting.

Thus, using a 100 -ohm resistor to replace a $1-\mathrm{mA}$ full-scale meter, a voltage reading of 0.07 volt should read:

$$
\left[\frac{0.07}{(100)(0.001)}\right] 500=0350
$$

for a full-scale range of 500 mA . Similarily, if your resistor is 100 ohms and replaces a 100-microampere meter, and your range is 500 mA full scale, 0.05 volt will read:

$$
\left[\frac{0.05}{(1000)(0.001)}\right] 500=0250
$$

(Leading zeros are not blanked.)
As you can see from eq. 1, the accuracy of your new readout will be no better than the accuracy with which you measure the new resistor and the voltages produced across it.

conclusion

Although intended primarily as a panel-meter replacement, this circuit may find almost unlimited uses in the Amateur station. If you design a PC board, do as I did and leave at least one blank spot on the function switch so you can add another function switch for expansion as you find more and more uses for the circuit. I hope you find this device as useful as I have.

bibliography

Motorola publications:

MC14433	Data sheet
AN471	Analog-to-Digital Conversion Techniques
AN557	Analog-to-Digital Cyclic Converter
AN559	Simple Ramp A/D Converter
AN702	High-Speed Digital-to-Analog and Analog-to-Digital Techni- ques
AN713	Binary D/A Converters Can Provide BCD-Coded Conversion AN716
Successive Approximation A/D Conversion	
EB51	Successive Approximation BCD A/D Converter

COMPLETE KITS: CONSISTING OF EVERY ESSENTIAL PART NEEDED TO MAKE YOUR COUNTER COMPLETE. HAL-6OOA 7-DIGIT COUNIER WITH FREOUENCY RANGE OF ZERO TO 600 MHz . FEATURES TWO INPUTS: ONE FOR LOW FREQUENCY AND ONE FOR HIGH FREOUENCY: AUTOMATIC ZERO SUPPRESSION. TIME BASE IS 1.0 SEC OR I SEC GATE WITH OPTIONAL 10 SEC GATE AVAILABLE ACCURACY $\pm .001 \%$. UTILIZES $10-\mathrm{MHz}$
CRYSTAL 5 PPM.
COMPLETE KIT $\$ 129$ CRYSTAL 5 PPM
HAL-300A 7 -DIGIT COUNTER (SIMILAR TO 600A) WITH FREQUENCY RANGE OF 0 300 MHz .

COMPLETE KIT $\$ 109$
HAL-50A 8-DiGIT COUNTER WITH FREQUENCY RANGE OF ZERO TO 50 MHz OR BETTER AUTOMATIC DECIMAL POINT, ZERO SUPPRESSION UPON DEMAND. FEATURES TWO IN PUTS: ONE FOR LOW FREOUENCY INPUT, AND ONE ON PANEL FOR USE WITH ANY INTER NaLLY MOUNTED HALTRONIX PRE-SCALER FOR WHICH PROVISIONS HAVE ALREADY BEEN MADE 1.0 SEC AND 1 SEC TIME GATES. ACCURACY $\pm 001 \%$ UTILIZES $10 \cdot \mathrm{MHz}$ CRYSTAL 5 PPM.

COMPLETE KIT \$109
FREE: HAL-79 CLOCK KIT PLUS AN INLINE RF PROBE WITH PURCHASE OF ANY FREOUENCY COUNTER

PRE-SCALER KITS

HAL-1 GHz PRESCALER, vhF \& UHF input \& OUTPUT, DIVIDES BY 1000. OPERATES ON A SINGLE 5 VOLT SUPPLY
 PREBUILT \& TESTED $\mathbf{5 7 9 . 9 5}$

TOUCH TONE DECODER KIT

HIGHLY STABLE DECODER KIT. COMESWITH 2 SIDED. PLATED THRU AND SOLDER FLOWED G-10 PC BOARD, $7-567$'s. 2-7402, AND ALL ELECTRONIC COMPONENTS. BOARD MEAS URES $3-1 / 2 \times 5 \% 1 / 2$ INCHES. HAS 12 LINES OUT. ONLY $\$ 39.95$
DELUXE 12-BUTTON TOUCHTONE ENCODER KIT UTILIZING THE NEW ICM 7206 CHIP PROVIDES BOTH VISUAL AND AUDIO INDICATIONS' COMES WITH ITS OWN TWO-TONE ANODIZED ALUMINUM CABINET. MEASURES ONLY $2 \cdot 3 / 4^{*} \times 3-3^{\prime} / 4^{-}$. COMTPLETE WITH TOUCH-TONE PAD BOARD. CRYSIAL CHIP AND ALL NECESSARY COMPONENTS TO FINISH THE KIT.

PRICED AT \$29.95
FOR THOSE WHO WISH TO MOUNT THE ENCODER IN A HAND-HELD UNIT, THE PC BOARD FOR THOSE WHO WISH TO MOUNT THE ENCODER IN A HAND-HELD UNIT, THE PC BOARD
MEASURES ONLY $9 / 16^{\prime \prime} \times 1-3 / 4^{*}$ THIS PARTIAL KIT WITH PC BOARD. CAYSTAL, CHIP MEASURES ONLY $9 / 16^{\prime \prime} \times 1-3 / 4^{\prime \prime}$. THIS PARTIAL KIT WITH PC BOARD, CAYSTAL, CHIP
AND COMPONENTS
PRICED AT $\$ 14.95$ ACCUKEYER (KIT) THIS ACCUKEYER IS A REVISED VERSION OF THE VERY POPULAR WB4VVF ACCUKEYER ORIGINALLY DESCRIBED BY JAMES GARRETT, IN OST MAGAZINE AND THE 1975 RADIO AMATEUR'S HANDBOOK.
$\$ 16.95$
ACCUKEYER - MEMORY OPTION KIT PROVIDES A SIMPLE. LOW COST METHOD OF ADDING MEMORY CAPABILITY TO THE WBAVVF ACCUKEYER. WHILE DESIGNED FOR OF ADDING MEMORY CAPABIL AOV HE WBKEF. IT CAN ALSO BE ATTACHED TO ANY SIANDARD ACCUKEYER BOARD WITH LITLLE DIFFICULTY.

PRE-AMPLIFIER
HAL.PA-19 WIDE BAND PRE-AMPLIFIER, $2 \cdot 200 \mathrm{MHz}$ BANDWIDTH (-3 dB POINTS), 19 dB GAIN.

FULLY ASSEMBLED AND TESTED $\$ 8.95$
CLOCK KIT - HAL 79 FOUR-DIGIT SPECIAL - \$7.95. OPERATES ON 12 -VOLT AC (NOT SUPPLIED) PROVISIONS FOR DC AND ALARM OPERATION

6-DIGIT CLOCK • $12 / 24$ HOUR

COMPLETE KIT CONSISTING OF 2 PC G-10 PRE-DRILLED PC BOARDS, 1 CLOCK CHIP. 6 FND COMM. CATH. READOUTS, 13 TRANS. 3 CAPS, 9 RESISTORS, 5 DIDDES. 3 PUSHUUTTON SWITCHES. POWER TRANSFURMER AND INSTRUCTIONS. DON'T BE FOOLED BY PARTIAL KITS WHERE YOU HAVE TO BUY EVERYTHING EXTRA. PRICED AT \$12.95
CLOCK CASE AVAILABLE AND WILL FIT ANY ONE OF THE ABOVE CLOCKS. REGULAR PRICE . . $\$ 6.50$ BUT ONLY $\$ 4.50$ WHEN BOUGHT WITH CLOCK.
SIX-DIGIT ALARM CLOCK KIT FOR HOME, CAMPER, RV, OR FIELD-DAY USE. OPERATES ON 12 -VOLT AC OR DC. AND HAS ITS OWN 60 -Hz TIME BASE ON THE BOARD. COMPLETE WITH ALL ELECTRONIC COMPONENTS ANO TWO-PIECE, PRE-DRILLED PC BOARDS. BOARD SIZE $4^{-1} \times 3^{\prime \prime}$ COMPLETE WITH SPEAKER AND SWITCHES. IF OPERATED ON DC, THERE IS NOTHING MORE TO BUY- - PRICED AT $\$ 16.95$ -TWELVE-VOLT AC LINE CORD FOR THOSE WHO WISH TO OPERATE THE CLOCK FROM 110-VOLT AC
$\$ 2.50$
SHIPPING INFORMATION - ORDERS OVER $\$ 20.00$ WILL BE SHIPPED POSTPAID EXCEPT ON ITEMS WHERE ADDITIONAL CHARGES ARE REQUESTED. ON ORDERS LESS THAN $\$ 20.00$ PLEASE INCLUDE ADDITIONAL $\$ 1.50$ FOR HANDLING AND MAILING CHARGES. SEND SASE FOR FREE FLYER

DISTRIBUTOR FOR
Aluma Tower - AP Products
VISA (We have the new Hobby-Blox System)

The Orlando Amateur Radio Club Inc. Presents.
'ORLANDO HAMCATION 81' And The

1981

 ARRL NATIONAL

 ARRL NATIONAL CONVENTION

'MARCH 13-14-15 1981 IN ORLANDO THE ACTION CENTER OF FLORIDA... at The sheraton twin towers hotel \& CONVENTION CENTER ON S435 NEAR THE CROSSROADS OF THE FLORIDA TURNPIKE AND I-4 INTERCHANGE

Plan a Fantastic Family Vacation Around the Greatest Orlando Hamfest Ever And Enjoy A Great, Wonderful 'Hamcation'

\star ARRL Forums, Meetings \& Speakers -
\star Extra Large Manufacturers Exhibit Area \star Day Long Ladies Activities \star Large Swapfest \star Many Big Door Awards \star Code Contest More and Much, Much More ...
FRIDAY, Registration opens 4PM. Swap Shop open from 6 to 9 PM. SATURDAY, ALL areas open 9 AM to 4PM. SUNDAY, 9AM to 3PM.

SPECIAL SATURDAY NITE LUAU
 Banquet \& Show
 Held at Sea World - \$16 Ea.

Transportation From Hamfest Included
NOTICE!! Limited Seating, Adv. Registration Suggested

Adv. Hamcation Registration (Till 2-20-81) All Amateurs, Non Amateurs and Students Over 14-\$4.00, At The Door - $\$ 5$. Ladies \& Children Under 14 FREE.

SWAP TABLES $\$ 10$ ea. FOR ALL 3 DAYS. NO ONE DAY TABLES

- Complete Information Package on Request -

Mail All Orders And Request To: HAMCATION CHAIRMAN
P.O. Box 191, DeBary, Fla. 32713
make Checks payable 10
the orlando amateur radio club, inc.

WK-7 \quad COMPLETE IC INSERTER/EXTRACTOR KIT $\quad \$ 29.95$

INDIVIDUAL COMPONENTS

MOS-1416	14-16 PIN MOS CMOS SAFE INSERTER	$\$ 7.95$
MOS-2428	24-28 PIN MOS CMOS SAFE INSERTER	$\$ 7.95$
MOS-40	$36-40$ PIN MOS CMOS SAFE INSERTER	$\$ 7.95$
EX-1	14-16 PIN EXTRACTOR TOOL	$\$ 1.49$
EX-2	24-40 PIN CMOS SAFE EXTRACTOR TOOL	$\$ 7.95$

MINIMUM BILLING \$25.00. ADD SHIPPING CHARGE \$2.00. NEW YORK RESIDENTS ADD APPLICABLE TAX.
OK MACHINE \& TOOL CORPORATION 3455 CONNER ST., BRONX. N.Y. 10475 (212) 994-6600/TELEX 125091

the Kenscan 74

An inexpensive scanner and preset memory adapter for the

Kenwood TR-7400A transceiver

Vhf transceiver design began with single-crystal control, then frequency synthesizers were added to cover an entire band. The newest radios have preset frequency memories and microprocessor scanning control. One purpose of Amateur Radio is to improve the state of the art. Another is building your own circuits. Some of us aren't designers, so l'd like to share this simple scanning module with those who want to improve the Kenwood TR-7400A transceiver. The module is inexpensive and has improved the operation at my station. I call it the Kenscan 74.

functional description

The Kenscan 74 module can store up to sixteen preset frequencies. Each can be selected individually in the step mode or scanned in the scan mode. Scanning will stop when the receiver squelch indicates an active frequency or when the transmitter is keyed. Scan rate is nominally four per second.

Scan is held for about seven seconds after a receiver frequency becomes clear. This pause allows you to pick up the microphone and press the transmit button. Scanning is then stopped and normal trans$\mathrm{mit} /$ receive operations are possible. Scanning will remain at one frequency until reset by the Kenscan 74 module CLEAR button. Scanning will resume if the microphone button is untouched.

Step mode allows single-button manual scan. Preset channels are selected in groups of $2,4,8$, or 16 frequencies. Either mode is especially convenient
when operating mobile in heavy traffic or when changing a predetermined frequency.
Frequencies to be preset are first selected by the TR-7400A controls. The Kenscan 74 module memory is then loaded by using a single pushbutton. Memory contents are made available to the TR-7400A display and internal PLL frequency control. Once loaded, each frequency setting is held in separate memory locations and recalled with a single button.

Kenscan 74 module circuits are placed between the Kenwood panel controls and internal PLL circuit. Conversion doesn't alter existing Kenwood circuit boards; module wiring isn't critical. Parts count is minimal: only fourteen integrated circuits and two transistors. Layout isn't critical. The design offers many advantages at little expense.

memory and memory control

Fig. 1 is a block diagram of the Kenscan 74 mod-

By Kenneth R. Fletcher, WB7QYB, 4080 SW 193rd, Aloha, Oregon 97007
ule. Three random access memory (RAM) ICs store the frequency switch settings. Each RAM is four bits by sixteen words; three RAMs are required to hold sixteen ten-bit words.*

The 74189 bipolar RAM memory IC (fig. 2) has inverted outputs. An inverting buffer is placed between RAM output and Kenwood control circuits to restore the original switch data. The RAMs are normally in read mode; a frequency word is always present at the output, depending on the memory address from the counter.

The sixteen-state address counter is set by either step-or scan-mode clocking. RAM addressing is thus one of sixteen stored frequency settings. Setting a particular address, then selecting a frequency and pressing the LOAD switch (fig. 2) will write the frequency setting into the RAM. Releasing the LOAD switch will set the Kenwood frequency control and display.

Fig. 2 is the Kenscan 74 module schematic. U5, U6, and U7 are the RAMs. U8 and U9 are the CMOS RAM output buffers. U3 is the RAM address counter. U 3 is CMOS, so noninverting buffer U 4 is used to provide sufficient drive for three TTL RAMs.

The number of address states produced by U 3 is controlled by the CHANNEL SELECT switch, S2. In the 2 position, reset pin 9 of U 3 is connected to the second stage. Counter output is 0000 , then 0001 . On reaching 0010, the second-stage high state causes a reset to all-zero; address count is limited to two. Positions 4 and 8 will reset on third- and fourth-stage high states, respectively, while the 16 positon allows a full count.

mode control

The counter is clocked in the step mode by oneshot U2. U2 is triggered by STEP switch S3, and the counter advances once. Scan-mode clocking is controlled by U1, a 555 timer used as an astable multivibrator with a rate of 4 Hz .
While STEP/SCAN switch S 1 selects the counter clock, U1 output must pass through latch U10, which will stop the scan-mode clock when U12, Q1, and Q_{2} detect a receiver input from the TR-7400A squelch. \dagger
Voltage-follower U12A input pin 3 is connected to

[^11]Q13 collector on the receiver board inside the Kenwood. Q13 collector goes to about +1.8 volts when a signal is received; to +0.1 volts with no signal. Q1 and Q 2 saturate when the buffered squelch voltage is high. C 6 is normally charged to +5 volts through R9 and R 10 but is discharged to ground by $\mathbf{0 2}$ through R11. Voltage follower U12B couples the charge of C6 to the AND gate formed by U11. Latch U13 is normally high, so a low at AND gate pin 5 will cause its output pin 10 to be low. Dinput pin 5 of U 10 is now low, so U10 latches and prevents scan pulses from reaching the address counter.

When the squelch voltage input drops to +0.1 volts, Q 1 and Q 2 are cut off and C 6 begins charging through R10 and R9 to +5 volts. After seven seconds (adjustable by R10), C6 will charge high enough to bring the AND gate pins 5 and 10 high. U10 pin 5 is now high, scan pulses from U1 are passed through U10, and scanning resumes.

Latch flip-flop U13 is connected to the receivetransmit relay that supplies +12 volts when the transmitter is keyed. Zener CR1 clamps the transmit level to +5.1 volts at U13 clock pin 3. U13 D input pin 5 is tied high. U13 will toggle on the first transmit key pulse and remain set; O pin 2 will drop low and inhibit AND gate U11A pin $6 . \mathrm{U} 10$ is then latched, and scanning stops.

U13 will lock up and scan until manually reset by the CLEAR switch. A squelch break or transmit-key pulse will stop scanning, but manual reset is required after transmitting to restore a scan.

The voltage regulator for the module is an LM340T-5 rated at 1.5 amperes. An LM7805CT will work equally well. Both have TO-220 cases.

assembly

The circuit is fairly dense so I chose wire-wrap assembly. Layout isn't critical but the module must be larger than 12 square inches (80 square cm). Control switches may be mounted off the board. I prefer ribbon cable for both switch wiring and the 34 conductors necessary to interface with the Kenwood transceiver. Harmonica connectors, such as the 3M No. 3414, make neat, low-profile connections for compact places such as inside the transceiver.

Position the wire-wrap sockets and arrange connectors close to the IC locations. Wire wrapping should begin with all power and ground connections. Verify all wiring with an ohmmeter before inserting the ICs. It's much easier to correct wire-wrap mistakes early; the deeper the wiring, the harder it is to trace wires. Regulator U14 can be checked for operation at this point.

fig. 2. Schematic diagram of the Kenscan 74 module. U5-U7 are the RAMs; U8, U9 are CMOS RAM output buffers; U3 is the RAM address counter.

SUPER RIG

TEN-TEC SUPER RIG IS READY. For every band, every band condition. With the latest in solid-state hf technology, the latest in features. To make communications easier, more reliable super.

OMNI-C

The new model in this famous series. With new coverage and new features to make it better than ever!
All 9 HF Bands. From 160 through 10 meters, including the new 10, 18 and 24.5 MHz bands. Coverage you can live with-for years and years
3-Mode, 2-Range Offset Tuning. Offset the receiver section or the transmitter section or the entire transceiver! In 2 ranges: $\pm 500 \mathrm{~Hz}$ or ± 4 kHz . For complete flexibility in fine tuning, a DX work, or net operations
Seven Response Curves. Four for SSB, three for CW With new switching to select the standard 2.4 kHz filter, optional 1.8 kHz SSB filter, 500 Hz or 250 Hz CW filters, and standard 450 and 150 Hz CW active audio filters. Up to 16 poles of i-f filtering plus audio filtering to handle any situation.
Built-In Notch Filter and Noise Blanker. Notch is variable from 200 Hz to 3.5 kHz with a depth of more than 50 dB . New noise blanker reduces ignition and line noise. Both standard equipment.
"Hang" AGC. New, smoother operation.
Super Specs. Optimized sensitivity-a balance between dynamic range and sensitivity ($2 \mu \mathrm{~V}$ on 160 to $0.3 \mu \mathrm{~V}$ on 10 meters) Greater dynamic range: better than 90 dB . And a PIN diode switchable 18 dB attenuator. 200 watts input on all bands! 100% duty cycle on all bands for up to 20 minutes.
Super Convenient. Built-In VOX with 3 up-front controls. Built-In PTT control at front and rear jacks. Built-In Zero-Beat switch puts you on exact frequency Built-In Adjustable Sidetone with variable pitch and level. Adjustable ALC for full control from low power to full output. 2-Speed Break-In, fast or slow speeds to fit operating conditions. Built-In Speaker eliminates desk clutter. Automatic Sideband Selection-reversible.
Super Design. All Solid-State and Broadbanded-from the pioneer, Ten-Tec. Modular plug-in circuit boards. Functional Styling with convenient controls, full shielding, easy-to-use size ($5 \frac{1}{4}$ " $\mathrm{h} \times 14^{1 / 4} 4^{\prime \prime} \mathrm{w} \times 14^{\prime \prime} \mathrm{d}$).
Super Hercules Companion. Styled to match, plus separate receiving antenna capability, plus transceiver front panel control of linear's bandswitching (one knob does it all)
Full Accessory Line including filters, remote VFO, power supplies, keyers, microphones, speech processors, antenna tuners-all in matching color.
Model 546 OMNI-Series C.... \$1289.

HERCULES

Amateur Radio's first full break-in solid-state kW linear amplifier. With the reliability you'd expect from the pioneer in high-power solid-state technology-TEN-TEC
All Solid-State. No tubes. Instead, HERCULES uses two 500 -watt push-pull solid-state amplifier modules with an output combiner. Super solid.
Broadband Design. No knobs, no tuning. From the pioneer, TEN-TEC. For fast, effortless changing of bands. Super easy.
Automatic Bandswitching when used with OMNI (the OMNI bandswitch also controls HERCULES bandswitching through a motor driven stepping switch). Super convenient.
Full Break-In. HERCULES puts the conversation back into high power CW operation-you can hear between every character you send.
Full Coverage. 160 through 15 meters plus four "AUX" positions for 10 -meter conversion by owner and future band additions.
Full Gallon. 1000 watts input on all bands, 600 watts output, typical. Built-in forced-air cooling. Driving power 50 watts, typical Adjustable negative ALC voltage 100% duty cyde for SSB voice modulation; 50% duty cycle for CW/RTTY (keydown time: 5 minutes max.) Continuous carrier operation at reduced output
Full Protection. Six LED status indicators continuously monitor operating conditions and shut down the amplifier whenever any one exceeds set limits (the exciter automatically bypasses the amplifier under amplifier shut-down for barefoot operation). The six parameters monitored are: 1) overdrive; 2) improper control switch setting, 3) heat sink temp.; 4) SWR; 5) overvoltage/overcurrent: 6) rf output balance. Two meters monitor collector current, voltage, and forward/reverse power. And a highly efficient automatic line voltage correction circuit (patent applied for) eliminates the need for selecting transformer taps, prevents applying too high a voltage to final amplifier devices, becomes operative under low line conditions.
Super Power Supply. Provides approximately 45 VDC (a 24 amperes, operates on 105/125 VAC or 210/250 VAC Tape wound transformer and choke reduce weight (50 lbs) and size ($71 / 2^{\prime \prime} \mathrm{h} \times 153 / 4^{\prime \prime} \mathrm{w} \times 131 / 2^{\prime \prime} \mathrm{d}$) Separate enclosure.
Super Styling. Designed to match OMNI, the HERCULES has the same height as OMNI, plus matching bail and matching colors. The front panel is simplicity in itself with two push-button switches (power and mode) plus two knobs (meter and bandswitch), and a "black-out" monitor panel (when unit is off, meters are unobtrusive). Amplifier size is $5 \frac{14^{\prime \prime}}{} \mathrm{h} \times 16^{\prime \prime} \mathrm{w} \times 15 \frac{1}{2} / \mathrm{d}$
Model 444, HERCULES amplifier \& power supply.... $\$ 1575$.
table 1. Interface connections.

outputs from frequencyselect switches (square pins)	scanner module connector P1	input to PLL and display
A3	1	
B3	2	
A2	3	
B2	4	
C2	5	
D2	6	
A1	7	
B1	8	
C1	9	
D1	10	
GND	16,33	
+ 12 V	17,34	
transmit relay	31	
Q13 collector	32	
	18	A3
	19	B3
	20	A2
	21	B2
	22	C2
	23	D2
	24	A1
	25	B1
	26	C1
	27	D1
	28,29,30	no connection
5 V		5 V
OK		OK
5K		5K
CT1		CT1
CT2		CT2

Kenwood TR-7400A modifications

This portion may be the most undesirable part of the project but it isn't difficult. To interface the scanner module, the mating interface connectors must be wired inside the Kenwood transceiver in the following manner.

Find the place on the TR-7400A schematic where the frequency programming information from the front-panel switches goes through a harmonica connector to two other boards. This connector is marked OK, 5K, A2, C2, and so on. Stop! The connector is not marked correctly on the schematic. Call the pin marked $\emptyset \mathrm{K}$ as 1 . There's a space and a 5 K marked on the schematic as the next pin. The space in the plug should really be between two pins marked A3 and 5 V . The other plug is also misdrawn: the space should be moved from between CT1 and CT2 to between E and B1. Remarking the schematic will eliminate any confusion between the physical wiring and the schematic.

Next remove both top and bottom covers, then remove all knobs. The MHz lever pulls straight off, while all others have setscrews. Remove the four screws holding the front panel. Pull the display modules straight up, which will expose a board that must be loosened and moved aside (this board has two screws on each end). The frequency control connectors will now be visible. Identify each connector with the corrected schematic data.

The Kenwood TR-7400A connectors should now be replaced with the scanner module interface connector. The square pins are mated to the frequencycontrol switches, while the plugs are inputs to the
table 2. Troubleshooting chart.

problem	possible cause	solution
nothing works	no 5 V	Check U14
	no GND to scanner	check P1-16, P1-33
	no 12 V to regulator	check P1-17, P1-34
will not load frequency	pin 3 of U5, U6, U7	check S4 and wiring
	not pulled low	to P5
Display incorrect when LOAD is	wiring error A1-B3	check P1-1 through P1-10
pushed	broken wire	check P1-18 through P1-27
will not step	U2 wired incorrectly	check wiring
	S1 wired incorrectly	check wiring
	S3 wired incorrectly	check wiring
will not SCAN	S1 wired wrong	check wiring
	S2 wired wrong	check wiring
	no clock pulse	check U1-3, U10-10,
		U10 latched

display and PLL circuitry. With the aid of table 1, reconnect each wire to the scanner module interface connector. Note that five wires marked $5 \mathrm{~V}, 0 \mathrm{~K}, 5 \mathrm{~K}$, CT1, CT2 are jumpered inside the transceiver and do not go to the scanner module.
Once the interface connector is installed, reassembly is in the reverse order of assembly. Make certain that all knob indices are correct. Proceed with the scanner module and switch cabinet.

final test

Be sure that the regulator on the scanner module has an output of +5 volts before any ICs are installed: - overvoltage will damage the RAMs. Eliminate any static electricity possibilities when handling the CMOS ICs or when handling the unconnected module.
With all assemblies and connectors ready, connect the scanner module to the TR-7400A. If any problems occur with the Kenscan 74, refer to the troubleshooting chart in table 2.

programming

Place the CHANNEL SELECT switch in the 2 position and the STEP/SCAN switch in STEP. Dial up the first frequency and press the LOAD switch. Push the STEP switch to change memory address. Dial the second frequency and push lOAD. Set the STEP/SCAN switch to SCAN and push CLEAR. The two preset frequencies should now be scanning. Step mode can select either frequency at a single touch of the STEP switch.
The other fourteen memories can be loaded and accessed in the same manner. The CHANNEL SELECT switch will allow you to preset two, four, eight, or sixteen combinations.

etched-circuit boards

At this wiring, etched circuit boards are being designed. For further information on these boards or kits, send a self-addressed, stamped envelope to the author. If you have any problems with the circuit, send an SASE with a detailed description of the problem and I'll try to help.

[^12]STOP RF
SPILLOVER!
You may be losing up to half the available output from your vertical gain antenna because of RF spillover. The amazing AEA Isopole with unique decoupling design, virtually eliminates RF spillover and can help you multiply your power in all directions on the horizon relative to an ideal half-wave dipole, or end-fed non-decoupled "gain" antennas.

CALL TODAY
BRITT'S
2-way Radio Service 2508 North Atlanta Road Belmont Hills Center Smyrna, Georgia 30080 Phone (404) 432-8006

AEABrings you the Breakthrough!

A BETTER BALUN

from Barker \& Williamson, Inc.

BROAD BAND BALUNS

- Power Rating 2.5 KW-5 KW PEP
- Frequency Range $3.5-30 \mathrm{MHz}$
- SO 239 CONNECTOR

Types Available

Model BC-1
50 ohms unbalanced to 50 ohms balanced

Model BC-2
50 ohms unbalanced to 200 ohms balanced

Model BC-3
50 ohms unbalanced to 300 ohms balanced

Model BC-4
50 ohms unbalanced to 600 ohms balanced
See your dealer or write:
Barker \& Williamson, Inc.
10 Canal Street
Bristol, Pa. 19007

ham radio

TS-Etas

"Top-notch". .VBT, notch, IF shift, wide dynamic range

The TS-830S has every conceivable operating feature built-in for 160-10 meters (including the three new bands). it combines a high dynamic range with variable bandwidth tuning (VBT), IF shift, and an IF notch filter, as well as very sharp filters in the $455-\mathrm{kHz}$ second IF. Its optional VFO-230 remote digital VFO provides five memories.

TS-830S FEATURES:

- LSB, USB, and CW on 160-10 meters, including the new 10 18 , and $24-\mathrm{MHz}$ bands. Receives WWV
- Wide receiver dynamic range. Junction FETs in the balanced mixer, MOSFET RF amplifier at low level, and dual resonator for each band.
- Variable bandwidth tuning (VBT). Varies IF filter passband width.
- Notch filter (high-Q active circuit in $455-\mathrm{kHz}$ second IF,
- IF shift (passband tuning)
- Built-in digital display (six digits, fluorescent tubes), analog subdial, and display hold (DH) switch
- Noise-blanker threshold level control.
- 6146 B final with RF negative feedback. Runs 220 W PEP (SSB)/180 W DC (CW) input on all bands.
- Built-in RF speech processor.
- Narrow/wide filter selection on CW.
- SSB monitor circuit to check transmitted audio quality.
- RIT (receiver incremental tuning) and XIT (transmitter incremental tuning).

OPTIONAL ACCESSORIES:

- SP-230 external speaker with selectable audio filters
- VFO-230 external digital VFO with $20-\mathrm{Hz}$ steps, five memories, digital display
- AT-230 antenna tuner/SWR and power meter/antenna switch: 160-10 meters, including three new bands.
- YG-455C $(500-\mathrm{Hz})$ and YG-455CN $(250-\mathrm{Hz}) \mathrm{CW}$ filters for $455-\mathrm{kHz}$ IF.
- YK-88C $(500-\mathrm{Hz})$ and YK-88CN ($270-\mathrm{Hz}$) CW filters for $8.83-\mathrm{MHz}$ IF (VFOs for TS-830S, TS-130 Series, and TS-120S are compatible with all three series of transceivers.)

TS-130s/V

"Small wonder"... processor, N/W switch, IF shift, DFC option

The compact, all solid-state HF SSB/CW mobile or fixed station TS-130 Series transceiver covers 3.5 to 29.7 MHz . including the three new bands.

TS-130 SERIES FEATURES:

- 80-10 meters, including the new 10,18 , and $24-\mathrm{MHz}$ bands. Receives WWV.
- TS-130S runs 200 W PEP/160 W DC input on 80-15 meters and 160 W PEP/140 W DC on 12 and 10 meters. TS-130V runs 25 W PEP/20 W DC input on all bands
- Built-in speech processor
- Narrow/wide filter selection on both CW (500 Hz or 270 Hz) and SSB (1.8 kHz) with optional filters.

- Automatic selection of side band mode (LSB on 40 meters and below, and USB on 30 meters and above) SSB REVERSE switch provided
- Built-in digital display
- Built-in RF attenuator.
- IF shift (passband tuning)
- Effective noise blanker

OPTIONAL ACCESSORIES:

- PS-30 base-station power supply.
- YK-88C (500 Hz) and YK-88CN (270 Hz) CW filters.
- YK-88SN (1.8 kHz) narrow SSB filter
- AT-130 compact antenna tuner (80-10 meters, including three new bands)
- SP-120 external speaker
- VFO-120 remote VFO
- MB-100 mobile mounting bracket
- PS-20 base-station power supply for TS-130V

Optional DFC-230 Digital Frequency Controller Frequency control in $20-\mathrm{Hz}$ steps with UP/DOWN microphone (supplied with DFC-230). Four memories and digital display. (Also operates with TS-120 and TS-830S.)

R-1000

"Hear there and everywhere"... easy tuning, digital display

The R-1000 is an amazingly easy-to-operate, highperformance, communications receiver, covering 200 kHz to 30 MHz in 30 bands. This PLL synthesized receiver features a digital frequency display and analog dial, plus a quartz digital clock and timer.
R-1000 FEATURES

- Covers 200 kHz to 30 MHz contiñuously.
- 30 bands, each 1 MHz wide
- Five-digit frequency display with $1-\mathrm{kHz}$ resolution and analog dial with precise gear dial mechanism.
- Built-in 12 -hour quartz digital clock with timer to turn on radio for scheduled listening or control a recorder through remote terminal
- Step attenuator to prevent overioad.
- Three IF filters for optimum AM, SSB, CW. $12-\mathrm{kHz}$ and $6-\mathrm{kHz}$ (adaptable to $6-\mathrm{kHz}$ and $2.7-\mathrm{kHz}$) for AM wide and narrow, and $2.7-\mathrm{kHz}$ filter tor high-quality SSB (USB and LSB) and CW reception.
- Effective noise blanker,
- Terminal for external tape recorder.
- Tone control.
- Built-in 4 -inch speaker
- Dimmer switch to control intensity of S-meter and other panel lights and digital display.

SP-100
R-1000
HS-5

HC-10

Digital world clock with two

24-hour displays, quartz time base

The HC-10 digital world clock with dual 24-hour display shows local time and the time in 10 preprogrammed plus two programmable time zones. HC-10 FEATURES:

- Two 24-hour displays with quartz time base. Right display shows local (or UTC) hour, minute, second, day. Left display shows month, date, world time in various cities.
memory time (QSO starting time), and time difference (in hours from UTC).
- Preprogrammed time in 10 cities around the world, plus two programmable time zones.
- "TOMORROW" and
-YESTERDAY" indicators
- Memorization of present time. Can be recalled later, for logging purposes.
- High accuracy (± 10 seconds/ month).

ロM-81

Dip meter performs many RF measurements

The DM-81 dip meter is highly accurate and features, in addition to the traditional inductive coupling technique capacitive coupling for measuring metalenclosed coils and toroidal coils

DM-81 FEATURES

- Measuring range of 700 kHz 250 MHz in seven bands.
- Built-in storage compartment for all seven coils, capacitive probe, earphone, and ground clip lead
- All solid-state and built-in battery.
- HC-25U and FT-243 sockets for checking crystals and marker-generator function
- Amplitude modulation
- FET for good sensitivity.
- Absorption frequency meter function.
- Earphone tor monitoring transmitted signals.
- Capacitance probe for measuring resonant frequencies without removing coil shields, and also for measuring resonant frequencies of toroidal coils.

quick and simple antenna match

A candidate for monoband mobile work

One component and a length of transmission line will make a quick and simple antenna match. Sound too good to be true? The method borrows an old microwave technique and is limited to narrow bandwidths. It's useful for restricted monoband operation, especially for mobile work.
Familiarity with the Smith chart is required. ${ }^{1}$ You must have a good measurement of the antenna impedance at the transmitter end. 2,3 The component value and extra line length can be found by graphic or numerical methods. This matching scheme is best explained by a quick review of certain parts of the Smith chart.

intercepting the R_{O} circle

A key element of the Smith chart is the resistive circle lying on the bisecting line and passing through chart center and infinite resistance. This circle is marked as R_{O} equal to Z_{0} for a specific impedance or unity on a "normalized" chart.*
This simple matching method requires adding a line to move the measured impedance in a clockwise direction until the rotated impedance point intersects the $R_{O}=Z_{0}$ circle at either of two places. A clockwise rotation is marked "toward generator." Once at the R_{O} circle intersection, the new reactance may be read directly.

[^13]
fig. 1. Graphic method of finding a match.

Matching requires adding an opposite reactance in series with the new end impedance. It is simply series resonating, so that only the resistive part remains. You have reached the perfect match!

a graphical method

Fig. 1 shows the matching scheme. Suppose you measure an impedance of $12-j 17$ ohms at the exist-ing-line transmitter end. Using a drafting compass
pivoting on chart center, draw a circle through this impedance point until the $R_{O}=Z_{0}$ circle is intercepted. Next, draw radial lines from chart center through the original impedance and each R_{O} circle intercept. Radial lines should go through the circular wavelength scales.

Note the reactance component at the R_{O} circle intercept. In this example it's about 84.5 ohms. Caiculate a capacitor and inductor value for this reactance

fig. 2. Schematic representation of the Smith chart operations.
at the original impedance-measurement frequency; choice of capacitor or inductor depends on the added line length.

Total the fractional wavelength, in a clockwise direction, from original impedance radial to each of the R_{O} circle intercept radials. Inductive-reactance side intercept should total 0.236 wavelength; series capacitance is used at this intercept. Capacitive reactance intercept occurs at 0.374 wavelength, and a series inductor would be required here.

The sequence of events is shown in fig. 2. Rotating the original $12-j 17$ ohm impedance by 0.236 wavelength (adding a line) will make it $50+j 84.5$ ohms. Adding a series capacitor of $-j 84.5$ ohms results in a final impedance of $50+j 0$ ohms.

The antenna hasn't changed impedance, but the load presented to the transmitter is now purely resistive; a better power transfer occurs. The original impedance has a 4.67:1 VSWR and may be out of the range of a tuner or may upset an ALC circuit.

line lengths

This quantity is easily determined by

$$
\begin{gather*}
\text { Length }=k \times \text { wavelength } \\
\times \text { velocity of propagation } / \text { frequency }(\mathrm{MHz}) \tag{1}
\end{gather*}
$$

where: $K=984$ for length in feet, 300 for length in meters

Propagation velocity depends on the added transmission line and would be 0.659 for common polyethylene dielectric coaxial cable. The example in feet at 3.9 MHz with RG-58A cable would be:

$$
\begin{aligned}
& 984 \times 0.236 \times 0.659 / 3.9 \\
& =161.86 / 3.9=39.24 \text { feet }
\end{aligned}
$$

This length of line might shock 80 -meter fans at today's prices. An advantage is that the added line is indoors; some previously used outdoor line may still be good.

numerical methods

Previously published formulas can be rearranged for those lacking Smith charts. ${ }^{4}$ Assigning R_{O} as the added line characteristic impedance and $R_{L}+j X_{L}$ as the original transmitter-end measurement, series reactance is:

$$
\begin{equation*}
X_{s}=\sqrt{\left[R_{O}\left(R_{O}^{2}+X_{L}^{2}\right)\right] / R_{L}+R_{O}\left(R_{L}-2 R_{O}\right)} \tag{2}
\end{equation*}
$$

This reactance is both capacitive and inductive. It represents the inductive-component-side intercept and the added capacitor reactance. Calculation from the example would be:

$$
\begin{gathered}
X=\sqrt{[50(2500+289)] / 12+50(12-100)} \\
=\sqrt{7220.83}=84.98 \mathrm{ohms}
\end{gathered}
$$

Line-length formula results in a phase angle, β, that must be divided by 360 degrees to obtain fractional wavelength in eq. 1.

$$
\begin{equation*}
\beta=\arctan \frac{R_{O}\left(R_{O}-R_{O}\right)}{R_{O} X_{L}+R_{L} X} \tag{3}
\end{equation*}
$$

The X term with no subscript is the value from eq. 2 . Example calculations are:

$$
\begin{aligned}
& \beta=\tan ^{-1}\left[\frac{50(50-12)}{50(-17)+12(84.98)}\right] \\
& =\tan ^{-1}\left[\frac{1900}{169.76}\right]=84.89 \text { degrees }
\end{aligned}
$$

Dividing 84.98 by 360 gives the wavelength of 0.236 , and eq. 1 is used for physical length.

A rotation greater than 0.25 wavelength gives a negative angle for β. Simply add 180 degrees for the correct angle. The reason for a negative result is that an arctangent result can only be within ± 90 degrees. The negative angle represents a counterclockwise rotation. Since the Smith chart is only 180 degrees in circumference, adding 180 degrees to a negative result will give a correct clockwise rotation angle.

Suppose another measurement was 22.5-j50 ohms. Numeric equations would yield X of 85.07 ohms and β of -66.92 degrees. Adding 180 degrees to β would give the correct 113.08 degrees or 0.314 wavelength rotation.

case history of a quick match

A newly moved ham wanted to get on 20 meters in

It GOUICNK be anvihing but...

(A) A FULL KW CCS POWER SUPPLY WITH A 45 POUND, 1.5 KVA TRANSFORMER that plugs in for easy handling.
(B) TOUGH EIMAC CERAMIC TRIODES, THOROUGHLY COOLED by ETO's exclusive full-cabinet ducted air system.
(C) HEAVY SILVER PLATED

TUBING COIL IN A FULL PI.L NETWORK that extends to 160 meters and provides 10.15 dB better harmonic suppression than the pi networks commonly used.

(ALPHA 76 PA SHOWN)

(D) CENTRIFUGAL BLOWER FLOATING ON A FOAM RUBBER "SANDWICH" that absorbs noise and vibration, permitting whisper quiet operation. .

AND WHO ELSE BUT ETO rates linears for "a full kilowatt key-down forever?"

EVERY NEW ALPHA CARRIES A TWO YEAR (limited) FACTORY WARRANTY-just one factor that makes ALPHA such a sensible investment. Most ALPHA s command resale prices close to what they sold for new five or even ten years earlier!

To prevent a sad case of linear buyer's remorse later on, your best move now is to investigate ALPHA carefully before you buy any amplifier. Call or write your dealer or ETO today. Just ask for our full color brochure; it contains inside and outside photographs and detailed specifications for all the famous ALPHA amplifiers.
table 1. Calculated data of the $\mathbf{2 0 - m e t e r}$ dipole matching example. Columns marked "original" and "measured" are from $R X$ noise bridge readings, others are ideal conditions. Capacitive reactance for 200 pF . Target frequency for optimum match was 14.15 MHz .

F (MHz)	original		$\begin{aligned} & \text { new } Z \text { at } \\ & \text { 12-foot } \end{aligned}$	X_{C}	ideal new $Z+X_{C}$		measured	
	impedance	VSWR	extension		impedance	VSWA	impedance	VSWR
14.00	39.3-j50.8	3.04	$25.7+\mathrm{j} 34.2$	-56.8	25.7-j22.6	2.45	26.6-j22.1	2.35
14.05	32.6-j45.1	3.11	$29.0+\mathrm{j} 40.5$	- 56.6	29.0-j16.1	1.98	30.3-j15.3	1.88
14.10	27.8-j41.3	3.27	$31.7+\mathrm{j} 46.6$	-56.4	31.7-j9.8	1.67	$32.7-\mathrm{j} 8.6$	1.60
14.15	25.1-j36.1	3.22	$37.7+j 52.3$	-56.2	$37.7-\mathrm{j} 3.9$	1.35	$39.7-\mathrm{j} 3.5$	1.28
14.20	23.3-j31.6	3.15	$45.2+j 57.4$	- 56.0	$45.2+j 1.4$	1.11	$47.0+j 1.0$	1.07
14.25	23.2-j24.9	2.80	$60.7+j 58.2$	- 55.8	$60.7+j 2.4$	1.22	$62.0+j 1.0$	1.24
14.30	24.5-j17.5	2.36	$80.7+j 47.0$	- 55.6	80.7-j8.6	1.64	78.8-j9.6	1.52
14.35	25.8-j10.5	2.05	$93.7+\mathrm{j} 25.0$	- 55.5	93.7-j30.5	2.14	90.9-j28.7	2.07
14.40	$27.7-\mathrm{j} 2.8$	1.81	$90.5-\mathrm{j} 2.7$	-55.3	90.5-j58.0	2.74	90.1 - j56.1	2.68

a hurry with a temporary dipole. The antenna tuner had been mislaid and the transmitter did not seem to load correctly. $R X$ noise bridge readings and calculations showed a reasonable VSWR condition given in the left columns of table 1. A better match was desired at 14.15 MHz .

Numerical calculations resulted in 61.90 ohms for $X, 101.42$ degrees or 0.282 wavelength added line. This translated to 181.7 pF series capacitance and 12.92 feet (3.94 meters) of line. Smith chart plots are given in fig. 3 with the dash-dot line marking the 50 ohm intersection at 14.15 MHz .

Two six-foot (1.83-meter) lengths of RG-58C were available and a junkbox search came up with two $100-\mathrm{pF}$ transmitting mica capacitors along with a small box having appropriate cable connectors (to
house the capacitors). HP-67 calculator work indicated this combination should do well. 5 The ideal rotation plus series capacitance is plotted in fig. 3; ideal and actual results are in table 1. Total time for measurement and matching took half of a Sunday afternoon.

This type of match is no substitute for a good antenna tuner but shows what can be done quickly and with fixed components. The rotated impedance in fig. 3 is slightly more than 90 degrees away from the original. Plot points of the ideal case are on each resis-tive-part locus, differing only by the series reactance.

applications

Monoband mobile work seems the best application for this simple matching scheme. Restricting the frequency to phone bands permits matching to within 2:1 VSWR. A fixed series reactance should survive vibration better than a variable tuner; it should be in a sturdy metallic box since both ends are above ground. Added cable can be tucked away in the trunk or behind seat backs. Do not put any cable under adjustable seats; slashed cable is the invariable result.

Although a simple technique, the method requires accurate measurement and calculation.6,7

references

1. James Fisk, W1DTY, "How to Use the Smith Chart," ham radio, November, 1970, page 16 (reprinted March, 1978, page 92).
2. Robert A. Hubbs, W6BXI, and A. Frank Doting, W6NKU, "Improvements to the RX Noise Bridge," ham radio, February, 1977, page 10.
3. Paul White, W6BKX, 'BKX Bridge," 73, November, 1969, page 32.
4. Leonard H. Anderson, "Antenna Bridge Calculations," ham radio, May, 1978, page 34
5. Program $02603 D$, HP Users' Library, 1000 N. E. Circle Blvd., Corvallis, Oregon, 97330 (a similar HP-97 program is Program 02258D; each is $\$ 6.00$ and includes a recorded card).
6. T.J. Anderson, WD4GRI, "Noise Bridge Calculations," ham radio, May, 1978, page 45 (TI-58, 59 programs).
7. C.R. MacCluer, W8MQW, "Numerical Smith Chart," ham radio, March, 1978, page 104 (HP-25 programs).
ham radio

transmission-line circuit design

Using distributed resonant circuits for
 uhf/vhf transmission lines

In part 1 of this article (ham radio, November, 1980) I addressed the governing expressions for calculating resonant transmission-line parameters. Included were data on design relationships such as efficiency, coupling, and resonating capacitance. Programs for the Hewlett-Packard HP-67/97 calculator were detailed using the HP-97 printer capability.

This part of the article examines the geometry of the first four configurations of twelve different transmission lines in common use at 50 MHz and above (50 MHz is not a lower limit, however). The parameters for resonant-circuit design are described for:

1. Coaxial lines.
2. Parallel plates.
3. Parallel wires in air.
4. Single wire over a plane.

Subsequent issues of ham radio will present similar data on the remaining transmission-line configurations.

line configurations, graphs, and calculator programs

The critical parameters of the twelve transmissionline configurations previously identified in fig. 1 (ham radio, November, 1980) are described. Graphic solution of characteristic impedance, Z_{0}, as a function of the physical geometry of each line is given where practical. Also HP-67/97 calculator programs are provided for each line configuration, permitting rapid solution for the selected variables or variables. For most cases the programs are written to permit the reverse solution to be calculated, thereby checking both accuracy of data entry and program.

The programs are not optimized to minimize steps. In all cases the 224 steps available in the HP-67/97 are sufficient to calculate the desired results. In some cases, more than one line configuration can be programmed on a magnetic card. The final choice rests with each user as to exactly what line configurations are grouped together to satisfy design requirements.

Following each program is a table that shows which registers are used in the program and what they contain. Tables indicating how the program is controlled are included and, where useful, a sample problem is given. References give the source data from which the transmission-line parameters were calculated.
coaxial line

This is the basic transmission-line configuration used in resonant circuits. The governing equation for transmission-line parameters (reference 4) is:

$$
\begin{equation*}
Z_{0}=\frac{138}{\sqrt{\epsilon_{r}}} \log _{10} \frac{D}{d} \tag{19}
\end{equation*}
$$

where $Z_{0}=$ transmission line impedance (ohms)
$\epsilon_{r}=$ dielectric constant (air $=1$)*
$D=$ inside major diameter
$d=$ outside minor diameter

Fig. 8 shows the graphical relationship of D / d versus Z_{0} for Z_{0} between zero and 300 ohms. These values were calculated for the HP-67/97 program shown in table 8. The storage register contents are in table 9; program control is in table 10. The program assumes that the dielectic constant, ϵ_{r}, is 1.0; that is, ϵ_{r} is equal to air if no value is entered.

Table 8. HP-67/97 program for calculating D / d and Z_{0} for coaxial lines.

step	$\begin{gathered} \text { HP-97 } \\ \text { key } \end{gathered}$	$\begin{gathered} \text { HP-97 } \\ \text { code } \end{gathered}$	step	$\begin{gathered} \text { HP-97 } \\ \text { key } \end{gathered}$	$\begin{aligned} & \text { HP-97 } \\ & \text { code } \end{aligned}$
001	* $L B L A$	2111	026	x	-35
002	$\sqrt{\chi}$	54	027	1	01
003	STOD	3500	028	3	03
004	RTN	24	029	8	08
005	* LBLB	2112	030	\div	-24
006	\div	-24	031	$10 x$	1633
007	*LBL1	2101	032	STO1	3501
008	STO1	3501	033	RTN	24
009	LOG	1632	034	*LBLD	2114
010	1	01	035	STO1	3501
011	3	03	036	GTO1	2201
012	8	08	037	*LBL2	2103
013	x	-35	038	R!	-31
014	PCLO	3600	039	1	01
015	$X=0$?	16-43	040	STOO	3500
016	GSB2	2302	041	-	-24
017	\div	-24	042	STO2	3502
018	STO2	3502	043	R/S	51
019	RTN	24	044	* 2 BL3	2103
020	*LBLC	2113	045	1	01
021	STO2	3502	046	STOO	3500
022	*LBL4	2104	047	R!	-31
023	RCLO	3600	048	GTO4	2204
024	$X=0$?	16-43	049	R/S	51
025	GSB3	2303			

table 10. HP-67/97 program control for calculating D / d and Z_{0} for coaxial lines.

enter	ϵ_{r}	press A
calculates	Z_{0}	
enter	D	press ENTER (1)
enter	d	press B
calculates	D / d	
enter	Z_{0}	press C
calculates	Z_{0}	
enter	D / d	press D

Note: If no value for ϵ_{τ} is entered, program assumes $\epsilon_{r}=1=$ air.
table 9. Register contents for HP-67/97 program for calculating D / d and Z_{0} for coaxial lines.

STO 0	$\sqrt{\epsilon_{r}}$
STO 1	D / d
STO 2	Z_{0}

fig. 8. Characteristic impedance of coaxial lines.

This baseline configuration is often used with vacuum tubes. It is also used as a baseline geometry in calculating striplines between and over a ground plane. It is important to note that fringe and distributed capacitance effects, which can introduce substantial errors, are not considered. In addition, the thickness of the lines is assumed to be zero.

The governing equation (reference 4) as shown for this configuration is:

$$
\begin{equation*}
Z_{0}=\frac{377}{\sqrt{\epsilon_{r}}} \log _{10} \frac{w}{t} \tag{20}
\end{equation*}
$$

where $Z_{0}=$ line impedance (ohms)
$w=$ line width
$t=$ minimum distance between lines
$w / t>1.0$
Table 11 is the program for the HP-67/97, table 12 shows the storage registers used, and table 13 shows program control. Fig. 9 shows the relationship of w / t with respect to Z_{0}. The program assumes $\epsilon_{r}=1$ if no value is entered.

Table 11. HP-67/97 program for calculating \mathbf{Z}_{0} and \mathbf{w} / t for parallel plates.

step	$\begin{gathered} \text { HP-97 } \\ \text { key } \end{gathered}$	$\begin{aligned} & \text { HP-97 } \\ & \text { code } \end{aligned}$	step	$\begin{gathered} \text { HP-97 } \\ \text { key } \end{gathered}$	$\begin{aligned} & \text { HP-97 } \\ & \text { code } \end{aligned}$
001	* LBLA	2111	026	\div	- 24
002	STOO	3500	027	STO3	3503
003	$\sqrt{7}$	54	028	*LBL4	2104
004	STO1	3501	029	LOG	1632
005	RTN	24	030	3	03
006	*LBLB	2112	031	7	07
007	STO2	3502	032	7	07
008	*LBL1	2101	033	x	-35
009	RCL1	3601	034	STO4	3504
010	$X=0$?	16-43	035	*LBL2	2102
011	GSB9	2309	036	RCL1	3601
012	x	-35	037	$X=0$?	16-43
013	3	03	038	GSB8	2308
014	7	07	039	\div	-24
015	7	07	040	STO2	3502
016	\div	-24	041	R/S	51
017	10x	1633	042	* LBL8	2108
018	STO3	3503	043	1	01
019	R/S	51	044	STO1	3501
020	*LBL9	2109	045	RCL4	3604
021	1	01	046	GTO2	2202
022	STO1	3501	047	* LBLD	2114
023	RCL2	3602	048	STO3	3503
024	GTO1	2201	049	STO4	2204
025	* LBLC	2113	050	R/S	51

fig. 9. Parallel plate w / t versus Z_{0}.
table 12. Register contents for HP-67/97 program for calculating Z_{0} and w / t for parallel plates.

STO	ϵ_{r}
STO 1	$\sqrt{\epsilon_{r}}$
STO	z_{o}
STO 3	w / t
STO 4	INTERIM

table 13. HP-67/97 program control for calculating Z_{0} and w / t for parallel plates.

enter	ϵ_{r}	press A
calculates	w / t	
enter	Z_{0}	press B
calculates	Z_{0}	
enter	$\left.W\right\|_{t}$	press C
calculates Z_{0}		
enter w / t	press D	

Note: If no value for ϵ_{r} is entered, program assumes $\epsilon_{r}=1=$ air.

parallel wires in air

This is the classic balanced transmission line. It is included here for completeness. The exact equation (reference 4) is:

$$
\begin{equation*}
Z_{0}=120 \cosh ^{-1} \frac{D}{d} \tag{21}
\end{equation*}
$$

where $D=$ center-to-center spacing between lines
$d=$ outside diameter of each line
$Z_{0}=$ line impedance (ohms)
Fig. 10 is a plot of line impedance versus ratio D / d. Table 14 shows the HP-67/97 program for calculating either the Z_{0} or D / d values depending on the available data. Table 15 shows the storage register content used for the program; table 16 shows program control.
To calculate $\cosh ^{-1} D / d$, the following was used:

$$
\begin{equation*}
\cosh ^{-1} \frac{D}{d}=\ell n\left\{\frac{D}{d}+\left[\left(\frac{D}{d}\right)^{2}-1\right]^{1 / 2}\right\} \tag{22}
\end{equation*}
$$

In calculating the converse, assume $\cosh ^{-1}=a$, then:

$$
\begin{equation*}
\frac{D}{d}=\frac{\left(e^{a}\right)^{2}+1}{2 e^{a}} \tag{23}
\end{equation*}
$$

Table 14. HP-67/97 program for calculating Z_{0} and D / d for parallel lines in air.

step	$\begin{gathered} \text { HP-97 } \\ \text { key } \end{gathered}$	$\begin{aligned} & \text { HP. } 97 \\ & \text { code } \end{aligned}$	step	$\begin{gathered} \begin{array}{c} \text { HP-97 } \\ \text { key } \end{array} \end{gathered}$	$\begin{aligned} & \text { HP-97 } \\ & \text { code } \end{aligned}$
001	*LBLA	2111	020	*LBL1	2101
002	stoo	3500	021	x^{2}	53
003	1	01	022	1	01
004	2	02	023	-	-45
005	0	∞	024	$\sqrt{ }$	54
006	\div	-24	025	RCL3	3603
007	e^{x}	33	026	+	-55
008	STO2	3502	027	LN	32
009	${ }^{2}$	53	028	1	01
010	1	01	029	2	02
011	+	-55	030	0	0
012	RCL2	3602	031	x	-35
013	2	02	032	STOO	3500
014	x	-35	033	R/S	51
015	-	-24	034	*LBLC	2113
016	STO3	3503	035	\div	-24
017	R/S	51	036	STOз	3503
018	*LBLB	2112	037	GTO1	2201
019	STO3	3503	038	R / S	51

table 16. HP-67/97 program control for calculating Z_{0} and D / d for parallel lines in air.

calculates	D / d	
enter	Z_{0}	press A
calculates	Z_{0}	
enter	D / d	press B
calculates	Z_{0}	
enter	D	
enter	d	press D

table 15. Register contents for HP-67/97 program for calculating Z_{0} and D / d for parallel lines in air.

STO 0	Z_{0}
STO 1	INTERIM
STO 3	D / d

fig. 10. Characteristic impedance of parallel lines.

Table 17. HP-67/97 program for calculating Z_{0} and h / d for a wire over a plane.

step	$\begin{aligned} & \text { HP-97 } \\ & \text { key } \end{aligned}$	$\begin{aligned} & \text { HP-97 } \\ & \text { code } \end{aligned}$	step	$\begin{aligned} & \text { HP-97 } \\ & \text { key } \end{aligned}$	$\begin{aligned} & \text { HP-97 } \\ & \text { code } \end{aligned}$
001	* L BLA	2111	028	3	03
002	STOO	3500	029	8	08
003	$\sqrt{7}$	54	030	\div	-24
004	STO1	3501	031	STO3	3503
005	RTN	24	032	*LBL3	2103
006	* L BLB	2112	033	RCL1	3601
007	\div	-24	034	$X=0$?	16-43
008	*LBL1	2101	035	GSB8	2308
009	STO2	3502	036	x	-35
010	4	04	037	10^{x}	1633
011	x	-35	038	4	04
012	LOG	1632	039	\div	-24
013	1	01	040	STO2	3502
014	3	03	041	R/S	51
015	8	08	042	*LBLD	2114
016	x	-35	043	GT01	2201
017	STO3	3503	044	*LBL9	2109
018	*LBL2	2102	045	1	01
019	RCL1	3601	046	STO1	3501
020	$X=0$?	16-43	047	RCL3	3603
021	GSB9	2309	048	GTO2	2202
022	\div	-24	049	*LBL8	2108
023	STO4	3504	050	1	01
024	R/S	51	051	STO1	3501
025	*LBLC	2113	052	RCL3	3603
026	STO4	3504	053	GTO3	2203
027	1	01	054	RIS	51

table 19. HP-67/97 program control for calculating Z_{0} and h / d for a wire over a plane.

enter ϵ_{r}	press A	
calculates	Z_{0}	
enter	h	press ENTER
enter	d	press B
calculates h / d		
enter Z_{0}	press C	
calculates Z_{0}		
enter h / d	press D	

Note: If no value for ϵ_{r} is entered, program assumes $\epsilon_{\mathrm{r}}=1=$ air.

In the next series, to be published in a subsequent issue, I shall discuss the geometry and resonantcircuit design of the following line configurations:

1. Circular wire between planes.
2. Parallel wires over a plane.
3. Circular wire in an open trough.
4. Parallel wires between planes/rectangular box.

reference

4. Reference Data for Radio Engineers, ITT Corporation, 5th Edition, 1968 (included in subsequent editions).

bibliography

Bahl, Dr. K.J., "Use Exact Methads for Microstrip Design," Microwaves, December, 1978, pages 61-62.
Fisk, J.R., W1HR, "Microstrip Transmission Lines," ham radio, January, 1978, page 28.
Gardiol, F.E., "HP-65 Program computes Microstrip Impedance," Microwaves, December, 1977, pages 186-187.
"Letters to the Editor," Microwave Systems News, December, 1978, pages 13-14.
Murdock, B.K., Handbook of Electronics Design and Analysis Procedures Using Programmable Calculators, Van Nostrand Reinhold, 1979.
ham radio

ransey the first name in Counters !

9 DIGITS 600 MHz \$129 SPECIFICATIONS: WIRED

The CT-90 is the most versatile, feature packed counter available for less than $\$ 300.00$! Advanced design features include three selectable gate times, nine digits, gate indicator and a unique display hold function which holds the displayed count after the input signal is removed Also, a 10 mHz TCXO time base is used which enables easy zero beat calibration checks against WWV Optionally, an internal nicad battery packe external time base input and Micro power high stability crystal oven time base are available. The CT-90, performance you can count on'

Range $\quad 20 \mathrm{~Hz}$ to 600 MHz
Sensitivity Less than 10 MV to 150 MHz Less than 50 MV to 500 MHz
Resolution 0.1 Hz (10 MHz range)
1.0 Hz (60 MHz range) 10.0 Hz (600 MHz range)

Display. $\quad 9$ digits $0.4^{\prime \prime}$ LED
Time base Standard $10.000 \mathrm{mHz}, 1.0 \mathrm{ppm} 20-40^{\circ} \mathrm{C}$ Optional Micro power oven-0.1 ppm $20-40^{\circ} \mathrm{C}$ Power $\quad 8-15$ VAC © 250 ma

7 DIGITS 525 MHz \$99 95 WIRED

SPECIFICATIONS
Range $\quad 20 \mathrm{~Hz}$ to 525 Mhiz Sensitivity: Less than 50 MV to 150 MHz Less than 150 MV to 500 MHz
Resolutions $\quad 1.0 \mathrm{~Hz}$ (5 MHz range) 10.0 Hz (50 MHz range) 100.0 Hz (500 MHz range)

Display $\quad 7$ digits $0.4^{\prime \prime}$ LED
Display:
Power:

The CT-70 breaks the price barrier on lab quality frequency counters Deluxe features such as three frequency ranges - each with pro amplification. dual selectable gate times, and gate activity indication make measurements a snap. The wide frequency range enables you to accurately measure signals from audio thru UHF with 1.0 ppen accuracy - that's $.0001 \%$! The CT-70 is the answer to all your measurement needs, in the field, lab or ham shack

PRICES
CT-70 wired, 1 year warranty 599.95 CT. 70 Kit 90 day parts warranty
AC. 1 AC adapter
BP-1 Nicad pack + AC
adapter/charger
12.95

PRICES:
MINF 100 wired, 1 year Warranty
MINI- 100 Kit, 90 day part warranty AC-Z Ac adapter for MINI100 BP.Z Nicad pack and AC adaptet/charger

7 DIGITS 500 MHz \$79 95

WIRED
Here's a handy. general purpose counter that provides most counter functions at an unbelievable price. The MINI-100 doesn't have the full frequency range or input impedance qualities found in higher price units, but for basic RF signal measurements, it can't be beat' Accurate measurements can be made from 1 MHz all the way up to 500 MHz with excellent sensitivity throughout the range, and the two gate times let you select the resolution desired. Add the nicad pack option and the MINI- 100 makes an ideal addition to your tool box for "in the-field" frequency checks and repairs

ham radio

We are happy to introduce a new department in ham radio by one of the most respected and knowledgeable Amateurs in the world. Bill Orr started his Amateur career in 1934, when he obtained his first license, W2HCE. He has been a prolific contributor to the Amateur literature, having authored more than 100 magazine articles and many books. Perhaps his most famous works are The Beam Antenna Handbook and Radio Handbook, of which he is the editor. Bill's literary style is friendly and easy to read and understand. We hope our readers will enjoy this series of articles, which will contain technical topics of general interest to Radio Amateurs. Editor

Happy New Year 1981! What will the New Year bring to Amateur Radio? We have the prospect of the new 10MHz band in the near future and the probability that the 160 -meter band will be expanded as the Loran-A equipment is deactivated. And, the sunspot cycle will continue its inexorable decline.

You probably won't notice much deterioration in DX conditions on the high-frequency bands this spring, but you might find that 10 meters is noticeably less " $D X-y^{\prime}$ this coming fall. And by spring, 1982, the slump in 10-meter openings should be quite apparent. So enjoy 10 while you have the chance. Pay attention to 6 meters, too; it might be a long time before 6 meters shows the long-distance communications that seem to be almost a daily occurrence these past years.

the popular triband

Yagi beam
This column discusses the triband

Yagi beam for 20, 15, and 10 meters. This well-known design is used (with impressive results) by many DXers, and it's an inexpensive and effective antenna that's not too big.
The modern triband Yagi was developed from a multifrequency dipole invented and perfected by Howard K. Morgan, Superintendent of Communications, Transcontinental and Western Airline, Inc. The requirement of the airline (the grandfather of the modern TWA) was for a simple, multifrequency antenna that would provide good reception of various aircraft frequencies at ground communication stations. The multifrequency dipole devised by Morgan was described in the August, 1940, issue of Electronics, and the original drawing from that article appears in fig. 1.

The Morgan antenna consisted of a center-fed dipole with the end insulators replaced by parallel-tuned circuits. Extra wire sections were added beyond the circuits so that the dipole was again resonant at a lower frequency.

BY WILLIAM I. ORR, W6SAI

For example, if the center dipole section is cut for 21.2 MHz and the parallel-tuned circuits (commonly called traps) are tuned to 21.2 MHz , the dipole works in a normal manner; the very high impedance of the resosulator. Wires that have been added after the traps have little, if any, effect on antenna operation at, or near, 21.2 MHz .

If wire sections are added after the traps are cut to the proper length, the overall antenna system will resonate at a lower frequency, say, 14.0 MHz . The presence of the tuned circuits affects the length of the antenna, so resonance is obtained at 14.0 MHz with an overall antenna length somewhat shorter than normal. A typical antenna is shown in fig. 2C. The traps act as electrical switches that are either open or closed, depending on the frequency of operation of the antenna.

Morgan's article pointed out that antennas for operation on as many as four different frequencies had been built successfully. Finally, the article
provided detailed information concerning adjustment of the traps for proper antenna operation.

resurrection of the multiband dipole

Morgan's multifrequency antenna died a quick death. Here was the perfect antenna for operation on the various Amateur high-frequency bands; the traps were easy to build
and adjust, low-impedance transmission line was readily available, yet nobody carried the idea forward. With the coming of World War II and the ban on Amateur Radio, the multi-band-antenna principle fell by the wayside.

It was not until after the war that the concept of multiband operation surfaced again, in a design by Chester Buchanan, W3DZZ, described in the December, 1950, issue

fig. 1. The original illustration in the issue of Electronics magazine depicting the trap dipole scheme evolved by Howard K. Morgan. The multifrequency antenna was originally designed for ground-station reception in the aeronautical service. Parallel-tuned trap circuits served as insulators at the resonant frequency of trap and antenna.
of Radio and Television News. Buchanan described a dual-band beam for 10 and 20 meters using trapped elements. He also provided the first complete description of how the trapped antenna worked. His final beam design, known to many DXers as the "W3DZZ beam," was fully described in QST, for March, 1955.

how the triband
 beam operates

Frequency-sensitive "switches" are the operating secret of the triband beam. The switches consist of a capacitor and inductance connected in parallel. This is a simple paralleltuned circuit, which provides a very high impedance across the terminals at the resonant frequency.
The actual value of the impedance is the reactance of the coil times its $Q\left(Q \times Q_{L}\right)$. If the value of Q is high (Q being the electrical excellence of the coill, the circuit works as a highimpedance insulator at the circuit resonant frequency.
The curve in fig. 2D shows that the off-frequency reactance of the circuit is quite small: inductive at frequencies lower than resonance and capacitive at frequencies higher than resonance.
When the trapis placed in an antenna, the equivalent circuit of the antenna above and below resonance is shown in fig. 2C.

On 15 meters the center portion of the antenna works as a dipole with trap "insulators" tuned to 15 meters. When the antenna is used on 20 meters, the inductive reactance of the traps is quite low, and they act as loading coils. The wire length between the traps is cut so that the wire, plus the loading coils, is resonant at 20 meters, in conjunction with the center section.
Thus, on 20 meters, the trap dipole

fig. 2. Operation of tuned trap for $20-15$ meter, two-band dipole antenna. A: Equivalent circuit of antenna and trap at some frequency above resonant frequency of trap. Trap "looks like" a series capacitance. B: Circuit of antenna and trap at some frequency below resonant frequency trap. Trap "looks like" series inductance. C: At trap resonance, trap acts as a very high-impedance - the equivalent of an insulator. Examples given are for a trap tuned to 21.2 MHz (15 meters). D: Impedance chart of 15 -meter trap showing reactance curve through the $14-28 \mathrm{MHz}$ region. At 14 MHz the coil is the dominant component of the trap, and at 28.5 MHz the capacitor is the dominant component. Antenna is resonant at 14 MHz but is not resonant at 28.5 MHz . An extra set of traps is required for $\mathbf{1 0}$-meter operation, as shown in fig. 3.
is considerably shorter than normal due to a portion of the antenna being duplicated by the series inductance of the traps - the antenna is nonresonant on 10 meters unless extra traps are added.

To put it all together, in a triband
element, the inner section and inner traps are resonant at 10 meters, the middle portion of the antenna and associated traps are resonant at 15 meters, and the whole antenna assembly is resonant at 20 meters (fig. 3).

trap performance

The trap is the heart of the triband antenna. A good trap will have reasonably high Q and must be waterproof. Many Amateurs make their own traps for triband dipoles ${ }^{1}$ from an airwound inductance and a transmitting-type ceramic capacitor. The trap is placed in a waterproof housing.

Commercially made traps for triband beams are more sophisticated and are designed for mass production. The two traps in one section of an element may be combined into one structure, as shown in fig. 4. This arrangement provides a compact and rugged assembly.

No reliable information exists, as far as I know, as to the actual gain of a triband beam compared to a fullsize antenna. Admittedly, the perfect trap has not yet been built, so some power is lost in each trap. In addition, on the two lowest bands, the antenna elements are not full size, so additional power is lost because of the reduced element length. This power is lost in the trap, which acts as a loading coil.

On the whole, the tribander design is good. The triband Yagi beams on the market work, and work well, judging from the number of DXers who use them and the robust signals they put out.

triband-beam bandwidth

One specification in which the triband beam suffers is bandwidth. On 10 meters, where the inner set of traps act as insulators, the bandwidth of the triband Yagi compares favorably with that of a conventional $10-$ meter Yagi beam. On 15 and 20 meters, operational bandwidth is somewhat restricted, because a por-
tion of the element on each band is made up of the trap (or traps) for the higher-frequency band.

Then, too, some triband beams are built on shorter-than-normal booms to conserve space. This compromise further reduces operating bandwidth (and gain) - especially on 20 meters.

A set of representative SWR curves for a triband Yagi and a full size 20 meter Yagi is shown in fig. 5. Both beams are built on 20-foot (6-meter) booms. Observe that the 20 -meter bandwidth of the tribander suffers in comparison with the full-size 20 meter beam, but bandwidth improves on 15 meters, and is equal for both antenna designs on 10 meters. This is of little consequence to the Amateur having a tube-type final-amplifier stage with an adjustable output network, but it poses a problem to those who have a solid-state output stage that requires an antenna with a low standing wave ratio.

One way around this problem is to build an SWR "flattener" that will reduce the SWR on the line at the transmitter end of the line (fig. 6). This simple matching network is placed between the coaxial line to the antenna and the station SWR meter. The capacitors and number of coil turns are adjusted for lowest SWR on the operating band. It can be easily adjusted for near-zero SWR at any point in the 10,15 , or 20 -meter bands by tuning the controls for minimum SWR as observed on the meter. The settings can be logged for future use.

is a triband Yagi beam practical?

Based on personal observations over the years, the answer to this question is yes. If you have a wellmade tribander, you have the tremendous advantage of three-band operation with one relatively small antenna. l've used a triband Yagi for years, alternating with a full-size 20-meter beam, on occasion. As far as working DX goes, I can do equally well with either antenna, and I notice no differ-
ence between the three-band design and the single-band beam.

Common sense and measurements made on the triband Yagi tell me that it isn't as efficient as the full-size beam. The bandwidth is somewhat restricted, and the front-to-back ratio isn't quite up to snuff, particularly on 15 and 10 meters. But these complaints fade away when I consider the convenience of working three bands, and the fact that I can compete in DX work and get reports that are just about equal to those of others in the area.
Tests. Before I installed the tribander, I wouldn't have believed this, as I took the traps into the company laboratory and measured the Q on a precision meter. A trap that I made out of the best materials available lair-wound, silver-plated, copper coil and a transmitting-type ceramic capacitor) provided a Q of over 300 at 30 MHz .
The Q of the commercial trap, measured at 30 MHz , was only about 180. This so discouraged me that the triband beam sat in my garage in the original box for about a year. Finally, deciding to see for myself how the antenna performed, the 20 -meter Yagi came down, and the tribander went up in its place. Despite my misgivings, the triband worked, and worked well.

Some of my engineering colleagues sniffed in disdain at my unscientific test and were unmoved when I beat them out in a DX pileup. "Pure luck," was their conclusion.
Well, I don't know about that. Luck and operating skill surely are factors to be reckoned with. But if the antenna doesn't work, all the luck and operating skill in the world are to no avail.
Power transfer. It's true that some transmitting power is lost in the traps. I have a telescoping tower and can reach the traps in my antenna from the garage roof when the tower is retracted. Running a kilowatt input for 10 minutes, key down (when the band is dead!) results in the traps being
table 1. Data for the G3LDO wire-beam antenna. All dimensions are in inches and are for insulated wire; multiply by 1.04 for uninsulated wire. Dimension C is approximate.

band	reflector	driven element	A	B	C	D
20	452	417	245	263	180	33
15	302	279	154	166	113	22
10	225	208	114	122	85	15

fig. 3. A triband element for 20, 15, and 10 -meters. Dimensions are given for no. 16 (1.3 mm) antenna wire size (not critical). Each trap is resonated to the design frequency before it is installed in the antenna. Length of each trap is about $\mathbf{2}$ inches (51 mm). Small ceramic or mica capacitors, rated at $\mathbf{3} \mathbf{~ k V}$, are used, which should have zero temperature coefficient.
fig. 4. Typical trap construction. A: Single trap composed of inductor connected in parallel with cylindrical capacitor. The capacitor serves as an outer shield for the inductor and provides capacitance between cylinder and coil. End of assembly is sealed against weather with a plastic rain cap. B: Dual, two-band trap composed of two coils mounted within a single cylindrical capacitor. Number of turns on coils and placement within cylinder determines effective capacitance. Ends of assembly are sealed with plastic rain caps. Connection between coils and cylinder is made at center junction of inductors.
ELEMENT
COIL FORM
\qquad
CINDRICAL
APACITOR
slightly warm to the touch. Obviously, some rf power is being converted to heat in the traps. Other hams (having more ego than common sense) have attempted running excess
power to a trap Yagi beam and have damaged the traps.

In conclusion, then, a good trap Yagi beam is an acceptable compromise for the Amateur who wants

fig. 5. SWR bandwidth curve of typical triband Yagi beam is quite sharp on 20 meters, approaching 2 at band edges. A three-element, full-size Yagi exhibits a more moderate SWR curve for the same frequency span. On 15 meters. tribander bandwidth is somewhat improved and is essentially equal to fullsize Yagi on the 10 -meter band.
three-band operation. If a solid-state transmitter is used, an SWR "flattener" will prove helpful in making the transmitter perform at top efficiency.

the G3LDO wire

While on the subject of Yagi antennas, the interesting design by G3LDO is worth considering. ${ }^{2}$ Experiments

fig. 6. Simple SWR "flattener" for coaxial line. Capacitors are single-spaced receiving types for powers to 250 watts. Mica compression units can be used for low power. Inductor consists of 15 turns, 1 -inch $(26.4 \mathrm{~mm})$ diameter and 2 inches $(51 \mathrm{~mm})$ long. Tap to coil is through a ceramic, single-pole rotary switch, such as Centralab 2501 (two to six positions, nonshorting). The coil is tapped about every other turn. Wire tap can easily be soldered to coil by depressing turn on either side of tap with screwdriver to allow tap wire to pass around a turn of the coill (coil may be a B\&W miniductor or equivalent). Network is symmetrical; either terminal may be used for Input or output.
were run on 144 MHz with wire beams, and G3LDO came up with the interesting observation that the resonant length of a wire element depended upon the insulation on the wire. Uninsulated copper wire and enamel-coated copper wire provided "normal" dimensions, whereas insulated copper wire (hookup wire) had a velocity factor of about 0.965 . The insulation on the tested wire was PVC (polyvinyl chloride).

Based on this information, G3LDO built a test beam on 2 meters, and then a larger model for 10 meters (fig. 7). He found that bending the elements back in the plane of the antenna caused an increase in the resonant frequency of the bent element and also resulted in a drop in gain. The solution was to fold the elements back in umbrella fashion, with the ends of the elements forming guys for the bamboo or fiberglass support structure. Dimensions for the beam are given in table 1. The performance of this simple and inexpensive wire beam was equal in every way to a standard equivalent design using full-size elements. This looks like a good antenna design for the ham who has a problem locating aluminum tubing.

a TVI filter for

 the 6-meter operatorDo you have a problem with 6meter operation? It's a tough deal, what with TV channel 2 only a few megahertz away. Filters that can protect channels 2 and 3 (and provide attenuation of TV garbage in the 6meter receiver) are hard to find.

My attention has just been directed to a new filter that will be of interest to all 6-meter operators. It is the Unadilla/ Reyco Interfilter, specifically designed for 6 meters. It's rated for full Amateur power over the range $50-52 \mathrm{MHz}$ and provides over 63 dB attenuation at TV channel 3. (Attenuation at channel 2 is somewhat less.) For full information on this interesting filter, write Unadilla/Reyco, 6743 Kinne St., East Syracuse, New York 13057.

references

1. Design and construction of trap antennas is covered in detail in Simple Low-cost Wire Antennas, by the author of this column. Available from Ham Radio's Bookstore for $\$ 6.95$.
2. This material is abstracted from Radio Communications, a publication of the Radio Society of Great Britain, 35 Doughty Street, London WC1N 2AE, England.
ham radio

fig. 7. The G3LDO wire beam antenna for 10, 15, or $\mathbf{2 0}$ meters. Framework consists only of vertical mast and four bamboo or glass fiber support rods. Antenna is fed with coaxial line at midsection of driven element. Dimensions are given in table 1.

SxWICHMTUCTHRSEIBSUS

2822 North 32nd Street, \#1 • Phoenix, Arizona 85008 • Phone 602-956-9423

MORY		
	Description	Price
08	$1 \mathrm{k} \times 8$ Eprom	\$ 5.00
16/2516	$2 \mathrm{~K} \times 85 \mathrm{~V}$ single supply	9.99
14/9114	$1 \mathrm{~K} \times 4$ Static	5.00
1127	$4 \mathrm{~K} \times 1$ Dynamic Ram	2.99
17/4116	$16 \mathrm{~K} \times 1$ Dynamic Ram	5.00
32-6	32K Eprom	39.95
P.U.'s, Etc.		
6800p	Microprocessor	9.99
$68 \mathrm{B2IP}$	PIA	6.99
6845P	CRT Controller	25.00
6850 P	ACIA	4.99
6852 P	SSDA	5.00
1108-1	Microprocessor	5.00
1180A	Microprocessor	5.00
\$0A	Microprocessor	10.99
30	Microprocessor	8.99
30A	P10	9.99
330	S $10 / 0$	22.50
330	S $10 / 1$	22.50
$\underline{12}$	8 Bit input/output part	3.99
"51	Communication Interface	6.99
\#1602/AY5-1013	13 UART	6.99
MS 1000NL	Four Bit Microprocessor	4.99
-14826	PSAT	5.99
$\because 57$	DMA Controller	8.99
341	64×4 FIFO	3.00
45316/F3817	clock with alarm	5.99
$\begin{aligned} & \pi 41 \\ & \pi 48 \end{aligned}$		60.00
	8 Bit Microcomputer with programmable/erasable EPROM	60.00
$\because 1408 \mathrm{~L} / 6$	6 Bit D/A	3.25
DM2502		9.99
MM2601		9.99

RYSTAL FILTERS
"co 001-19880 Same as 2194F
). 7 MHz narrow band
dB bandwidth 15 KHz min.
) dB bandwidth 60 kHz min.
D $d B$ bandwidth 150 KHz min.
lltimate 50 dB insertion loss 1 dB max. iipple 1 dB max. Ct. $0+/-5$ pf 3600 Ohms
$\$ 3.92$ each
RF454 Same as MRF458 117.95 each
$12.5 \mathrm{VDC}, 3-30 \mathrm{MHz}$
80 Watts output, 12 dB gain

MRF472
$12.5 \mathrm{VDC}, 27 \mathrm{MHz}$
4 Watts output, 10 dB gain $\$ 1.69$ each

CARBIDE Circuit Board Drill Bits for PCB Boards
5 mix for $\$ 5.00$
murata ceramic filters
SFD $455 \mathrm{C} \quad 455 \mathrm{KHz} \quad \$ 2.00$
SFB $455 \mathrm{D} \quad 455 \mathrm{kHz} \quad 1.60$
CFM $455 \mathrm{E} \quad 455 \mathrm{KHz} \quad 5.50$
SFE 10.7 MA $\quad 10.7 \mathrm{MHz} \quad 2.99$
ATLAS CRYETAL FILTERS FOR ATLAS ham GEAR
5.52-2.7/8
$5.595-2.7 / 8 / U$
5.645-2.7/8
5.595-.500/4/CW YOUR CHOICE
5.595-2.7 USB \$12.99 each
5.595-2.7/8/L
5.595-2.7 LSB
9.0-USB/CW

J310 N-CHANNEL J - FET 450 MHz Good for VHF/UHF Amplifier, Oscillator and Mixers. $3 / \$ 1.00$

AMPHENOL COAX RELAY
26 VDC Coil SPDT \#360-11892-13 100 watts Good up to 18 Ghz $\$ 19.99$ each

78 MO5 Same as 7805 but only $\frac{1}{2}$ Amp 5 VDC 49\& each or $10 / \$ 3.00$

NEW TRANSFORMERS

F-18X	6.3 VCT@ 6Amps	$\$ 6.99$ ea
F-46X	24 V @1Amp	5.99
F41X	25.2 VCT @Amps	6.99
P-8380	10VCT@3Amps	7.99
P-8604	20VCT@1Amp	4.99
P-8130	$12.6 V C T @ 2 A m p s$	4.99
K-32B	28VCT@100 MA	4.99
E30554	Dual17V@1Amp ea. 6.99	

EIMAC FINGER STOCK \#Y-302
36 in. long $\times \frac{1}{2}$ in. $\$ 4.99$ each

Sकwictulurnyissurjur

2822 North 32nd Street, \#1 • Phoenix, Arizona 85008 • Phone 602-956-9423

Sxwicymulw icsurjur

2822 North 32nd Street, \#1 • Phoenix, Arizona 85008 • Phone 602-956-9423

Abstract

Introducing Garth Stonehocker, KORYW, who will present a series of columns on propagation and DX forecasting. Garth is a physicist and electronics engineer with extensive experience in propagation forecasting. He was associated with the Central Radio Propagation Laboratory and also did short-term radio propagation forecasting for the North Atlantic Warning Service in Boulder, Colorado. First licensed in 1950 as W4RCF, then as W7ROY, Garth has been a member of several DXpeditions in conjunction with propagation forecast studies. Among them were an expedition to Antarctica (KC4USK) in 1956-58 and to the Cook Islands (KH6MG/ZK1) in 1958. Garth is a DXer and enjoys recording DX signals from beacons for propagation studies. Editor

New DXers

Are you a new ham who has come onto the thrill of your first DX with that new rig for Christmas, or an old one that has taken time out from years of rag chewing for a renewed go at DX chasing? If either, you may be interested in some propagation fundamentals and a look at which frequencies to use for putting the signal where you want it. To get your signal there the loudest of the bunch and to receive his probably weaker signal (other countries usually have lower power limits) is the goal. This can be done by fine-tuning your system for the particular location of the DX of your interest. That is, the antenna and ionosphere can be coupled together to increase the chance of their hearing you, and you hearing them, by the signal going to the right azimuth and out to the right distance.

The height of "reflection" in the ionosphere depends on the frequency band used. The angle of incidence into the ionospneric layer also affects what depth in the ionosphere the
radio wave penetrates to be "reflected." Your antenna system needs to feed the maximum power at the correct vertical take-off angle to be maximum at the correct distance away and the correct azimuth for the correct direction (great circle bearing, usually). This is the best coupling to the ionosphere. The distances mentioned in the band-by-band summary show how the frequency penetration into the ionosphere varies the signal distance from band to band. A different antenna should be used for best results in short skip and in long skip; a high take-off angle for short skip and a lower angle for long skip. Articles on antennas often mention the takeoff angles, or you can consult the antenna handbooks.

January is very similar to December in propagation effects. The ionosphere is a balanced energy system that changes slowly in its seasonal change from month to month. There is an intense but short meteor shower over a few hours sometime between January 2nd through 4th. It is known as the Quadrantid shower.

Band-by-band summary

Six meters will open occasionally for F2 long skip propagation with hops 1,000-2,500 miles long and with many hops usable. The openings will follow the sun during the day and early evening.

Ten and Fifteen meters will have openings similar to 6 meters, but more often and longer. Worldwide DX is usual from after sunrise until well after sunset during peirods of 27day solar flux maxima. Short skip of 1,200 miles maximum distance is also possible and will also be following the sun across the earth.

Twenty meters will be open most all days and nights to some area of the globe, with long skip and plenty of short skip with similar distances and number of hops as the 15,10 , and 6 meter bands. This is the workhorse of the bands. Tall towers and high beams or quads are a natural for long skip for this band.

Forty and Eighty meters will be the most usable night-hour bands for DX. Most areas of the world can be worked between darkness until just before sunrise. Hops shorten on these bands to about 2,000 miles for 40 and 1,500 miles for 80 meters, but the number of hops can increase, since signal absorption in the ionospheric D region is low during the night. The path direction follows the darkness across the earth, similar to the higher bands following the sun. Daytime short skip can be used during the day and night, particularly if low-height horizontal antennas (high take-off angle) are used. Vertical antennas over good ground systems give the lowest take-off angles for long skip on these bands.

One-Sixty meters will be about like eighty meters and provide good stuff for the enthusiastic DXer who can come up with low-take-off angle antennas with good efficiency at the long wavelength of this band.
ham radio

$\boldsymbol{\omega} \boldsymbol{\mu} \boldsymbol{\mu}$
$\underset{\sim}{\mu} \boldsymbol{\mu}$

$\boldsymbol{\omega} \rightarrow \underset{\sim}{\omega} \boldsymbol{\sim}$

8	$\stackrel{\underset{\sim}{\mathrm{i}}}{ }$	$\stackrel{8}{i}$	8	8	$\stackrel{8}{6}$	$\stackrel{8}{\sim}$	$\bar{\phi}$	8	$$	$\stackrel{8}{\square}$	$\xrightarrow{8}$	גУ甘ПNV「

how accurate is that SWR meter?

A friend recently contracted a radio operator's most dreaded ailment: reflectophobia, the unwarranted fear of reflected waves on a transmission line. Fortunately, this was not a terminal case. I still remember the early morning phone call and the troubled voice saying, "Something is wrong with my antenna. The SWR won't go below 1.8." To make a long story as short as possible, there was nothing wrong with the antenna. The SWR
meter he was using wouldn't read below 1.8. This made me think about SWR meters and their accuracy. Is there a way to check the accuracy of an SWR meter without using expensive or complicated test equipment? There is.

Basic transmission line theory tells us the SWR on the line will be the ratio of the load resistance to the line impedance. 1 If the load resistance equals the line impedance, the SWR will be $1: 1$. However, if the load resistance is either double or half the line

fig. 1
impedance, the SWR will be $2: 1$. This is the key to a simple way to check the accuracy of an SWR meter. While it would be possible to use a 100 -ohm resistor as a dummy load and measure the SWR, this method has several limitations. If the resistor has a 10 per cent tolerance, its resistance could be anywhere between 90 and 110 ohms; and it might not provide an SWR of $2: 1$. Additionally, carbon composition resistors can't dissipate more than a few watts, and anything but a QRP rig would overheat the 100 -ohm dummy load. Using a wirewound resistor to increase the amount of power the dummy load can handle won't work because at higher frequencies the inductance of the wire in the resistor will have enough inductive reactance that the SWR won't be 2:1. Instead of using a 100 -ohm dummy load with a 50-ohm transmission line to obtain an SWR of $2: 1$, we can use a 25 -ohm dummy load and obtain the same results.

But where can I get a 25 -ohm dummy load? It's easy. Just connect two 50 -ohm dummy loads in parallel. Several commercially available dummy loads consist of a 50 -ohm noninductive resistor in a bucket of transformer oil. The resistor itself can dissipate some power and the oil absorbs the heat, effectively increasing the amount of power the dummy load can safely handle.

Basic theory tells us the total resistance of two resistors in parallel ${ }^{2}$ is $R=\frac{R 1 \times R 2}{R 1+R 2}$. In this case, both resistors are 50 ohms; thus $R=25$ ohms. Since $S W R=\frac{Z \text { line }}{Z \text { load }}$, then $\frac{50}{25}=2.1$. The easiest way to connect two dummy loads in parallel is to use a coaxial T fitting (Amphenol 831T or equivalent) with short patch cords as shown in fig. 1. With two dummy loads in parallel, the load will
be 25 ohms and the SWR will be 2:1. If you are using a bidirectional wattmeter, the reflected power should be 11.11 per cent of the forward power. That's really all there is to it. This method of checking the accuracy of the meter can be used for hf, vhf, QRP, or even CB. In fact, any frequency and power level within the meter's capabilities can be used.

Now for the bad news. If your meter doesn't indicate an SWR of 2:1 when connected between a 50 -ohm transmitter and a 25 -ohm load, there might not be much you can do about it. Many lower priced SWR meters don't have any internal adjustments for calibration. Check the schematic for your meter to see whether it has a calibration adjustment. Even if your meter doesn't have a calibration adjustment, at least you'll know whether it reads high or low.

references

1. Understanding Amateur Radio, ARRL, 1977, page 96.
2. Understanding Amateur Radio, ARRL, 1977, page 9 .

John W. Frank, WB9TOG

Drake R-4C receiver audio improvement

In the December, 1977, issue of ham radio, the article. "Present-Day Receivers - Some Problems and Cures" suggests a $0.0015-\mu \mathrm{F}$ capacitor be placed across R83 to correct a phase error in the Drake R-4C receiver.
I made this change and noted an improvement in audio quality. However, I also found another problem. With a headset connected to the earphone jack and the receiver in a standby position, an annoying shotgun noise was heard while transmitting. This noise was not noticed when the earphones were removed and the speaker alone was working.

A quick check of the R-4C circuit

aligning Yagi beam elements

Assembling beam elements so that they are both in line with each other and parallel to the ground can be a frustrating experience when the eye-
ball or ground-assembly methods are used. The scheme shown in fig. 2 is effective in providing a neat installation in a few minutes, and doesn't require any special tools other than a small level.

Roy Lehner, WA2SON

indicated that a $0.01-\mu \mathrm{F}$ bypass capacitor was connected from the speaker terminal to ground. This effectively bypassed any of picked up by the speaker leads. However, when the headset is plugged in, this bypass capacitor is disconnected from the circuit. The addition of a $0.01-\mu \mathrm{F}$ capacitor from earphone jack to ground bypassed any of picked up by the headset leads, and the problem was solved. Another solution is to remove the present $0.01-\mu \mathrm{F}$ capacitor and reconnect it so it appears across both the earphone and speaker leads to the output transformer.

Bernard White, W3CVS

75S-3 alignment

During a recent rf circuit alignment
procedure on my Collins 75S-3 receiver, I found a slight alteration that proved to be very beneficial to the reception of 10 -meter signals. The modified procedure has been repeated a number of times with equal results.

The if alignment procedure in the instruction manual is followed from steps a through \mathbf{f}. After step \mathbf{f}, repeak the OSC, RF, and ANT slug adjustments on the moveable platform; only a minor readjustment will be necessary. Once this is accomplished, continue with steps g through o. Then recheck the RF and ANT trimmer capacitor adjustments at 3.7 MHz . Again, a slight readjustment will suffice.

The foregoing should result in a marked improvement in the reception of 10-meter signals.

Paul K. Pagel, N1FB

Whether your SSB rig is old or new there is no easier or essentially less expensive way to significantly up. grade its performance than by improving its If passband filtering FOX-TANGO filters are made of speciallytreated high-0 quartz crystals, affording excellent shape factors and ultimate rejection exceeding 80 dB . They are custom made for drop-in installation, matching perfectly, both physically and eiectronically Our Diode Switching Boards make possible (now or in the future) the addition of a variety of switch-selectable filters affording superior variable bandwidth without the need to buy an expensive new model It you want the best for less, you'll buy FOX.TANGO Just tell us the bandwidth(s) desired tor your make and model
-DIODE SWITCHING BOARDS available to permit 1.2 or more filters than those for which manufacturer provides room SPECIFY make and model

Single-filter type: \$12 Airmail postpaid worldwide.
Dual-filter type: \$21 Airmail postpaid worldwide.
fignida residents ado 4% (saies tax) (FOREIGN ADD $\$ 5$ per filter)
Dealer Inquiries Welcomed
(1) Visa/MC welcomed. Money back if not satisfied. V/SI BROCHURE ON REQUEST GIFT CERTIFICATES AVAILABLE

Box 15944S, West Palm Beach, FL 33406

MEMORY KEYER BREAKTHROUGH!

The remarkable AEA Morsematic memory keyer has 35 fantastic features including two AEA designed microcomputers, up to 2,000 character memory, automatic serial number, beacon mode, and automatic morse trainer mode.

ORDER NOW TOLL FREE 800-527-3418

AGL Electronics

13929 N. Central Expressway.
Suite 419, Dallas, Texas 75243, (214) 699-1081
A EA Brings you the

ELECTRONIC TECHNICIAN

If you'd like to switch from soldering iron to typewriter and have a good command of the English language, tell us all about yourself, including past education and experience.
Location, Western Mass., with nation-ally-known manufacturer. Position involves preparation of data sheets, engineering bulletins, technical manuals, etc.

Box 0
HAM RADIO MAGAZINE
Greenville, NH 03048
We Are An Equal Opportunity Employer m/f

The plated quartz crystal used in communication equipment permits closer calibration and temperature tolerances. We use gold, silver or nickel for plating crystals. Selection of the metal for your crystal depends on the required parameters.

International crystals are designed and manufactured to operate under all types of field conditions. For example, crystals must function properly over a wide range of temperatures ...in equipment from a fixed location or mobile installations subjected to rough treatment. Conditions such as these are created by our research and development program. We will be pleased to quote details and prices on special crystals to meet almost any specifications.

Orders may be placed by Phone: 405/236-3741 TELEX: 747-147 - Cable: Incrystal - TWX: 910-831-3177 • Mail: International Crystal Mfg. Co., Inc., 10 North Lee, Oklahoma City, Oklahoma 73102.

Hatry Electronics
500 Ledyard St. (South) Hartlord, Ct. 06114
203-527-1881

TEN-TEC DELTA 580

160-10 Meter including three new ht bands (10,18 \& 24.5 MHz). Low noise double conversion design. 200 watts input on all bands. 100% duty cycle. Ottset tuning. Full break-in. Built-in VOX and PTT
$\$ 849.00$
Call for quote

The JR. MONITOR
The JR. MONITORTM has it all wrapped up in one neat package. All metal cabinet $514^{" \mathrm{w}}$ $\times 21 /{ }^{\prime \prime} h \times 6^{\prime \prime} d$. Think of the unlimited possibilities you'll have for experimenting with dozens of antennas! Covers $5: 8.30 \mathrm{MHz}$.
$\$ 79.50$
Call for quote
The BIG DUMMY
A full 1 KW dummy load, the Big Dummy IM ofters a flat SWR, ful frequency coverage from $1.8-300$
MHz , and high grade industrial MHz , and high grade industrial cooling oil furnished with the unit. The Den Iron Big Dummy is assembled and warrantied.
$\$ 39.50$
Call for quote

TEN-TEC ARGONAUT (515)

$80-10$ Meters. Full break-in. 5 watts input. Built-in T.V.I filter. Restyled cabinet, easy to read controls. The premier QRP rig.
$\$ 429.00$
Call for quote
The MT-3000A
DenTron's MT-3000ATM does
more than tune coax, random
wire, and balanced feed antennas. There is a built-in antenna selector switch for selecting five different antennas, plus lets. you tune your station off air through a 250 watt dummy load. Dual in-line forward and reflected watt meters provide continuous monitoring of both power output and antenna tuning Switchable between 200 and 2000 watts. Continuous tuning from 160 through 10 meters with power handling capability in excess of 3 kW PEP.
$\$ 399.50$
Call tor quote

AT 1 K

A full 1000 watt CW and 1200 watt SSB power handling capability (DC input to amplitier) Matches virtually any teed line. SWR/Relative forward power meter is without a watt meter. Continuous tuning from 1.8 to 30 MHz $\mathbf{\$ 1 4 9 . 5 0}$ Call for quote
\cdots
SHIPPING F.O.B. HARTFORD
COD

STEP UP TO TELREX

Professionally Engineered Antenna Systems Single transmission line "TRI-BAND ${ }^{\circ}$ ARRAY"

(a) Caddell Coll Corp. (a) COILS FOR HOMEBUILT
 Sardine Sender 80 Meter QRP Rig
 QST Oct '79, p. 15
 QRP Transmatch- 25 Watt Max 7.00
 Tuna Tin 2-WAS 40 Meter Transmitter OST May '76, p. 21
 Amplifier for HW-8 QRP Transceiver
 OST Apr '79, p. 18.

fleg market ,

QSL'S: No stock designs! Your art or ours; photos originals, 50Φ for samples \& details (refundable). Certified Communications, 4138 So. Ferris, Fremont, Michigan 49412.

WANTED: One Heathkit SB-104A VFO with manual. Must be in good condition. Clifton Branham, W4KLX P.O. Box 68, Matewan, WV 25678.
NEED HELP for your Novice or General ticket? Recorded audio-visual theory instruction. No electronic back ground required. Free information. Amateur License P.O. Box 6015, Norfolk, VA 23508.

COLLINS ROUND KWM-2A, mint, late complete CP-1 crystal pack, S16F-2 round, mint $\$ 1500$. 312B-4 round, mint $\$ 175$. 30L- 1 round $\$ 550$. Kenwood TS- 900 , VFO- 900 two PS-900 absolutely mint $\$ 650$. FOB WA6NWP, 52632 RD 426, Oakhurst, CA 93644.
ANTIQUE (PRE-1950) TELEVISION SETS WANTED. WIII pay top dollar for unusual or pre-WWil sets, Arnold Chase, 9 Rushleigh Road. West Hartford, Connecticut 06117 (203) 521.5280.

COLLINS, GR, HP, Tek gear, etc. Large list of wholesale bargains. SASE please! Ted, W2KUW, 10 Schuyler Avenue, No. Arlington, New Jersey 07032

WANTED: Early Hallicrafter receivers, transmitter, accessories, parts, manuals for my collection. Special interest in silver colored panel receivers and ones with "airplane" dials. Also need "ultra Skyrider" SX-10, "Skyrider Commercial" SX-12 and others. Chuck Dachis, WD5EOG, 4500 Russell, Austin, TX 78745
amateur radio profiles. The most meaningful equipment review publication to hit the Amateur ranks in years. No commercial advertisers, thus no obligation to the manufacturers. We tell it like it is, good and bad, in plain, easy to understand, language by Amateur enthusiasts who have used, tested, and compared. "Is the TA. 7 that good?", "What $\$ 500$ transceiver is giving the $\$ 1000$ units a run for their money?", "Need a tri-bander?" Study the "Battle of the Amps". Get the true story before you buy or trade. Check the "Dream System", best dollar value, good, better, best systems by performance versus cost. Know what to expect, both negatively and positively, from that gear you're planning to buy, before you buy!! - thus no surprizes; you know what you're buying because you read A.R.P. $\$ 13.00$ Yearly - Multi issues. A.R.P., P.O. Box 164, Catauta, Georgia 31804.

ICOM, KENWOOD, OWNERS - Separate, Very Informative Newsletters. Details S.A.S.E. U.I.R.C., 606H, Brack Road, Fort Pierce, FL 33450.
QSL'S WITH CLASS! Unbeatable quality, reasonable price. Samples: 50 c refundable. QSLs Unlimited, 1472 S.W. 13 th St., Boca Raton, FL 33432.

CB TO 10-METER CONVERSIONS. SSB/AM/CW. Let a specialist convert your rig, or buy one complete. Write Conversion Engineering. Box 183, Sandwich, Massachusetts 02563.

MAKE HAM RADIO FUN! Supplement your learning programs with a motivational hypnosis cassette. Tape \#3, Learning the Code; Tape \#4, Breaking the Speed Barrier Tape \#7, Electronics Theory. Free catalog. For tapes send $\$ 10.95$ to John Wolf Hypnosis Center, P.O. Box 497, Hayden, Idaho 83835.
QSLs SECOND TO NONE. Same day service. Samples 50 cents. Include your call for free decal. Ray, K7HLR, Box 331, Clearfield, UT 84015.

SUPER QRP with Direct Conversion's 5 watt transmitter kits. Write Direct Conversion Technique, Box 1001, Dept. JFM, 535 No. Michigan Avenue, Chicago, IL 60611.
"CADILLAC" of QSL'S - FAST 100 - $\$ 9.95$ - Our Design. Send $\$ 1.00$ for Samples-Refundable. MAC'S SHACK, P.O. Box 43175, Seven Points, Texas 75143.
HAMS FOR CHRIST - Reach other Hams with a Gospel Tract sure to please. Clyde Stanfield, WA6HEG, 1570 N . Albright, Upland, CA 91786.

OSL ECONOMY $1000 \$ 12.00$ S.A.S.E. for samples. W4TG Drawer F, Gray, Georgia 31032.

DISTINCTIVE QSL's - Largest selection, lowest prices, top quality photo and completely customized cards. Make your QSL's truly unique at the same cost as a standard card, and get a better return rate! Free samples, cat alogue. Stamps appreciated. Stu Goodman, K2RPZ Print, P.O. Box 412, Rocky Point, NY 11778 (516) 744-6260.

FREE SAMPLE Ham Radio Insider Newsletter! Send large S.A.S.E.. W5YI, Box \#10101-H, Dallas, Texas 75207.

MAGAZINE SAMPLES! For a free list of over 135 magazines offeringa sample copy, send a stamped, addressed envelope to: Publisher's Exchange, P.O. Box 1368, Dept. 26A, Plainfield, NJ 07061.

CALL TOLL FRE

For the best deal on
-AEA•Alliance•Ameco•Apple•ASP - Avanti•Belden•Bencher•BirdeCDE -CES-Communications Specialists - Collins•Cushcraft• Daiwa•DenTron -Drake•Hustler•Hy-Gain•Icom•IRL•KLM -Kenwood•Larsen• Macrotronics•MFJ - Midland•Mini-ProductseMirage•Mosley -NPC•Newtronics•Nye• Panasonic

- Palomar Engineers• Regency•Robot
- Shure - Standard•Swan• Tempo
- Ten-Tec•Transcom•Yaesu

NEW YEAR SPECIALS!

ICOM IC-255A \$329

TEMPO S-1 $\$ 239$ with touchtone \$269
MIRAGE B-108 10-80 W 2-meter amplifier with built-in pre-amp $\$ 159$
KENWOOD TR-7800, TR-9000 and TR-2400 all now in stock... call today for our GREAT Erickson prices!
APPLE: Disk Based System; Apple II or Apple II Plus with 48k RAM installed, Disk II with controller, RF Modulator. Includes NEW DOS 3.3 only $\$ 1799$
Apple prices include prepaid shipping within continental U.S.A.

CALL TOLL FREE (outside lilinois only)
 (800) 621-5802
 HOURS: 9:30-5:30 Mon., Tues., Wed. \& Fri.

 v/u 9:30-9:00 Thursday 9:00-3:00 SaturdayERICKSON COMMUNICATIONS Chicago. IL 60630 5456 North Milwaukee Ave. [312) 631-5181 (within Illinois)

HAM RADIO REPAIR - Professional lab, personal service, "Grid" Gridley, W4GJO. April thru October: Rt. 2, Box 138B, Rising Fawn, Georgia 30738. (404) 657-7841. November thru March: $\mathbf{2 1 2}$ Martin Drive, Brooksville, Florida 33512. (904) 799-2769.

TEMPO VHF-1.PLUS. 2 meter FM, 32W, remote scan. Like new. $\$ 250$ prepaid. Allen Kirchner, WA4ZKW. 156 University Pky., Alken, S.C. 29801. 803-649-7535.

LINEAR AMPLIFIER PLAN BOOK II, 13 plans, 1.6 to 400 $\mathrm{MHz}, 15$ to 1000 watts, 92 pages, $\$ 11.95$, CB modification kits, crystals, de-scramblers, other tities, electronic flea market and more in our catalog, $\$ 1.00$ refundable. A.P. Systems, P.O. Box 263 HR, Newport, R.I. 02840.

BUY-SELL-TRADE. Send $\$ 1.00$ for catalog. Give name address and call letters. Complete stock of major brands new and reconditioned amateur radio equipment. Call for best deals. We buy Collins, Drake, Swan, etc. Associated Radio, 8012 Conser, Overland Park, KS 66204. (913) 381-5900

6800 MORSE CODE PROGRAM, decodes codes into ASCII, $1 / 4 \mathrm{~K}$ memory, relocatable, documented, auto speed, adaptable, 0 to $100 \mathrm{wpm} . \$ 10.00$. Frank Lyman, 12 Reservoir St., Cambridge, MA 02138.

CWISSB FILTERS: IC audio install in any radio, sharp CW, stagger tuned SSB - $\mathbf{\$ 1 5}$, $\$ 32$. SASE info: WBCBR, 80 W. Mennonite, Aurora, OH 44202.

BEAT THE HIGH COST OF POSTAGE! A new stateside QSL. Bureau to be starting up. Send a card for 4 c instead of 10 c . Info - write P.O. Box 85, Sextonvilile, WI 53584.

MOTOROLA RADIOS WANTED: I need micors, motracs, mocom 70's, H.T.'s, and bases . . . anything Motorola newer than 12 years. I pay all shipping. Len Rusnak, WA3TJO 301-441-1221.

Century 21 digital. Perfect, 11 months. $\$ 320$. HW2036-A with micoder. Perfect, 1 year. $\$ 200$. Selling to buy Argonaut. Scott, WB1GNX, RDill, Box 18, Oakfield, ME 04763.

RTTY FOR SALE: Model 28 KSR , M28 stand-alone TD, M28 receive-only typing repert, M28 keyboard typing reperf, M28 triple TD, M28 under-dome typing reperf, M28 motorized paper winder, answerback, auto CR-LF kit for M28 printers. Model 33 and 35 machines. Gears, gearshifts, parts and supplies for all Teletype machines. Send SASE for list and prices. Lawrence R. Pfleger, K9WJB, 2600 S. 14th Street, St. Cloud, MN 56301.

WANTED: Someone to repair my SBE-36. Phone: (305) 546-6012. Louis Albizati, 8312 S.E. Skylark Ave., Hoebsound, FL 33455.

WANTED: Motorola micor base stations. $406-420 \mathrm{MHz}$ AK7B, 4 Ajax PL., Berkeley, CA 94708.

YAESU YO- 100 monitor scope with manual and original carton, \$145. Comdel RF speech processor, connects between mike and rig, $\$ 85$. John Skubick, K8JS, 791-106 Ave., Naples, FL 33940.
FREE HAM/COMPUTER NEWSLETTER: Send selfaddressed stamped envelope for your copy. W5YI; P.O. Box \#10101; Dallas, Texas 75207.

SELL 5000 NEW TUBES at $\$ 1.00$ each, boxed, many oldies back to the 1930's. Wanted to buy machinist tools from retired machinists. W5QJT, 4215 Darwood Dr., EI Paso, TX 79902.

500 OSL's, $\$ 10$. Catalogue, 743 Harvard, St. Louis, MO 63130 .
VERY in-ter-est-ing! Next 6 issues $\mathbf{\$ 2}$. Ham Trader "Yellow Sheets", POB356, Wheaton, IL 60187.

DX, YOU BET! THE DX BULLETIN - Best weekly DX info in the worid. For FREE sample copy, send business-size SASE to: The DX Bulletin, 306 Vernon Avenue, Vernon, Connecticut 06066.

STOP LOOKING for a good deal on amateur radio equipment - you've found it here - at your amateur radio headquarters in the heart of the Midwest. Now more than ever where you buy is as important as what you buy. We are factory-authorized dealers for Kenwood, Drake, Yaesu, Collins, Wilison, Ten-Tec, ICOM, DenTron, MFJ, Tempo, Regency, Hy-Gain, Mosley, Alpha, CushCraft, Swan and many more. Write or call us today for our low quote and try our personal and friendly Hoosier Service. HOOSIER ELECTRONICS, P.O. Box 2001, Terre Haute, Indiana 47802. (812) 238-1456.

UPGRADE SUCCESSFULLY! Pass FCC Exams! TRS-80 owners, I'll show you how! KE7C, H-2665 Busby Road, Oak Harbor, WA 98277 . SASE please.
CB TO 10 METER PROFESSIONALS: Your rig or buy ours - AM/SSB/CW. Certified Communications, 4138 So. Ferris, Fremont, Michigan 49412; (616) 924-4561.

IF WE WERE YOU

MODEL 6154 TERMALINE R
I'D BUY FROM US
YOUR INQUIRY OR ORDER WILL
GET OUR PROMPT ATTENTION AUTHORIZE DTHTI DISTRIBUTOR

associates
115 BELLARMINE ROCHESTER, MI 48063

CALL TOLL FREE
$811=524-2933$
IN MICHIGAN $313-375-0420$

NOT A SUBSCRIBER? DO IT TODAY! Use the handy card between pages 104 \& 105.

More Details? CHECK - OFF Page 110

S-LINE OWNERS
 ENHANCE YOUR INVESTMENT

 withTUBESTERS ${ }^{\text {™ }}$
Plug-in, solid state tube replacements

- S-line performance-solid state!
- Heat dissipation reduced 60\%
- Goodbye hard-to-find tubes
- Unlimited equipment life

TUBESTERS cost less than two tubes, and are guaranteed for so long as you own your S-line.

SKYTEC
 Box 535
 Write or phone for
 Talmage, CA 95481 specs and prices.

SYNTHESIZED SIGNAL GENERATOR
 MADE IM USA

- Covers 100 to 179.999 MHz in 1 kHz steps with thumb-wheel dial - Accuracy $.00001 \%$ at all frequencies - Internal frequency modulation from 0 to over 100 kHz at a 1 kHz rate - Spurs and noise at least 60 dB below carrier - RF output adjustable from $5-500 \mathrm{mV}$ across 50 ohms - Operates on 12 vdc (at $1 / 2 \mathrm{amp}$ • Price $\$ 329.95$ plus shipping.
In stock for immediate shipping. Overnight delivery available at extra cost. Phone: (212) 468-2720

TRANSMITTER TECHNICIANS - Voice of America has overseas positions available at supervisory and operating levels for experienced transmitter technicians. Duties include operation and maintenance of high power VOA transmitters and related facilities. Applicants must have 3 to 5 years "hands-on" experience in technica operation of broadcast, TV or military fixed-station transmitters. Must be available on a woridwide basis to serve in VOA's radio relay station system. U.S. citizenship required. Starting salary commensurate with qualifications, plus housing and overseas allowances. Full federal fringe benefits apply, Qualified candidates should send standard Federal application form SF-171 to international Communication Agency, MGT/PDE, 1776 Pennsyivania Ave., Washington, D.C. 20547. An Equal Opportunity Employer.

OSLs \& RUBBER STAMPS - Top Quality! State Outline Straight Key Cards and Other Designs! Report, Call and Address Stamps - More! Card Samples \& Stamp Info 50c. Ebbert Graphics 5H, Box 70, Westerville, Ohio 43081.

ATLAS DD6-C and 350XL Digital Dial/Frequency Count ers. $\$ 175.00$ plus $\$ 3.00$ UPS. AFCI Stop VFO drift. See June 79 HR. $\$ 65.00$ plus $\$ 3.00$ UPS. Mical Devices, P. O. Box 343, Vista, CA 92083

SELL: TS-120S, mint, \$575; HQ-170AC-VHF, manua \$160; MFJ-752 Superfilter, \$55; Drake SSR-1, \$180; Viking Adventurer, VF-1 VFO, \$50; Add UPS. WA7ZYQ 208-245-2070.

ROHN TOWER - Buy direct from Worldwide distributor of all Rohn products. Sample prices - 25 G sections $\$ 38.72$ each, 45 G sections, $\$ 88.00$ each, FK-2548 foidover tower with freight paid $\$ 693.00, \mathrm{BX}$ - 48 free standing \$218.90. Hill Radio, Box 1405, Bloomington, IL 61701, (309) 663-2141.

KENWOOD TS-700A. 2 meter All-mode with factory subband modification. All papers, acces., boxes. $\$ 400$ prepaid. Allen Kirchner, WA4ZKW. 156 University Pky., Aiken, S.C. 29801. 803-649-7535.

ANTENNA TOWERS. Heavy duty, hot dipped galvanized steel, crank-up with till-over base. Sky Towers of Vero Beach, Box 6068, Vero Beach, FL 32960

WANTED: Cushman Communications Service Monitors, working or non-working units. Also need plug-in mod ules, manuals, parts, etc., will pay cash or take over payments. Also need RF voltmeters; WB8IJX, Fred L Slaughter, 5844 Grisell Road, Oregon, OH 43618. Phone (419) 698-8597

MUST SELL - Need money for college: Atlas 110 S deluxe SSB/CW Transceiver with AC supply, CW filter and RIT. Choice of 250 or 20 watts. Excellent with warranty cards. $\$ 400$ plus UPS. Richard Brock, N8RB, 15806 Fernway Road, Shaker Heights, Ohio 44120 (216) $752 \cdot 0355$.

ELECTRONIC BARGAINS, CLOSEOUTS, SURPLUS! Parts, equipment, stereo, industrial, educational. Amazing values! Fascinating items unavailable in stores or catalogs anywhere. Unusual FREE catalog. ETCO-012, Box 762, Plattsburgh, NY 12901. SURPLUS WANTED.

DIRECT CONVERSION RECEIVER KITS. Write Direct Conversion Technique, Box 1001, Dept. JFM, 535 No. Michigan Avenue, Chicago, IL 60611.

ELECTRONIC COMPONENTS: Integrated Circuits, Linear, TTL, CMOS, Low Prices on Capacitors. Resistors 5\% Carbon Film Factory Fresh $1 / 4$ Watt $\$ 1.65$ Per Hun dred, $1 / 2$ Watt \$1.75 Per Hundred. IC Sockets, Trim Pots and More. Send for FREE Catalog. Westland Electronics, 34245 Ford Rd. Westiand, MI 48185. (313) 728-0650

MOBILE IGNITION SHIELDING provides more range with no noise. Available most engines. Many other sup pression accessories. Literature, Estes Engineering, 930 Marine Dr., Port Angeles, WA 98362.

ETCH IT YOURSELF PRINTED CIRCUIT KIT, Photo-Positive Method - No darkroom required, All the supplies for making your own boards, direct from magazine article in less than 2 hours. Only $\$ 24.95$, S.A.S.E. for details: Excel Circuits Co., 4412 Fernlee, Royal Oak, MI 48073.
T.V. CAMERA, Zoom Lens, 2:1 Interlace Optical Viewfinder. Ready to use on ATV, SSTV, Security or your Computer Portrait System. Good Used Condition with all cables and instructions. $\$ 150.00$. Alltronics, 15460 Union Avenue, San Jose, CA 95124. (408) 371-3053

Coming Events

ILLINOIS: Over the hilis and thru the woods to Wheaton Community Radio Amateurs Hamfest we go. For the bargains and buys and to meet all the guys, come to the best Winter Hamfest in the U.S.A. - January 25, 1981 Plan on it. - N9YL

Have you waited to get into code reading until you found out what this latest fad was about? You can stop waiting because it's no longer a fad.

Amateurs everywhere are tossing the gigantic clanking monsters of yesteryear that once performed the job of reading radioteletype. They are trading them in for state-of-theart code-reading devices that are incredibly small noiseless if desired and in finitely more versatile than their antique predecessors.

Kantronics, the leader in code-reading development, has just introduced the latest and most-advanced break. through in the copying of Morse code, radioteletype and ASCII computer language.

The Kantronics MiniReader reads all three types of code, displays code speed, keeps a 24 -hour clock, acts as a radioteletype demodulator and reads all of its decoded information out on a travel ing display of 10 easy-to-read characters. It is so compact that it fits in a hand-held, calculator-size enclosure
At \$314.95, the Mini-Reader outperforms anything within another $\$ 400$ of its price range.

Call or visit your Authorized Kantronics Dealer now to find out what the latest in technology has done to code-reading.

When it comes to AMATEUR
RADIO QSL's...

it's the
ONLY BOOK!

US or DX Listings

calllbooks NOW READY!

Here they are! The latest editions. Worldfamous Radio Amateur Callbooks, the most respected and complete listing of radio amateurs. Lists calls, license classes, address information. Loaded with special features such as call changes, prefixes of the world, standard time charts, worldwide QSL bureaus, and more. The U.S. Edition features over 400,000 listings, with over 100,000 changes from last year. The Foreign Edition has over 300,000 listings, over 90,000 changes. Place your order for the new 1981 Radio Amateur Callbooks, available now.

	Each	Shipping	Total
US Callbook	$\$ 17.95$	$\$ 2.55$	$\$ 20.50$
Foreign Callook	$\$ 16.95$	$\$ 2.55$	$\$ 19.50$

Order both books at the same time for $\$ 37.45$ including shipping.

Order from your dealer or directly from the publisher. All direct orders add $\$ 2.55$ for shipping. Illinois residents add 5% sales tax.

SPECIAL LIMITED OFFER!
Amateur Radio
Emblem Patch
only $\$ 2.50$ postpaid
Pegasus on blue field, red lettering. $3^{\prime \prime}$ wide x $3^{\prime \prime}$ high. Great on jackets and caps. Sorry, no call letters

ORDER TODAY!

RADIO AMATEUR||bock INC.

Dept. F

925 Sherwood Drive Lake Bluff, IL 60044, USA

VIRGINIA: Frostfest 81 on January 11 (8AM - 4PM) at the Chesterfield County Fairgrounds, Chesterfield, Virginia. Prizes, new and larger facilities, exhibits, flea market, auction, contests and much more. Admission: $\$ 3.00$ at gate. Talk-in on $146.34 / .94$ and $146.28 / .88$. Richmond Amateur Telecommunications Society, P.O. Box 1070, Richmond, Virginia 23208
MICHIGAN: Oak Park Amateur Radio Club's Swap and Shop, Sunday, January 11, 1981 at Oak Park High School, Oak Park Blvd., Oak Park, Michigan. 8 AM to 3 PM. Admission: $\$ 2.00$ with under twelve free. League table, door prizes, YL raffle and table. Refreshments. Talk-in on $146.04 / 64$ and 146.52 simplex. For info and reservations, SASE to: Rob Numerick, WB8ZPN, 23737 Couzens, Hazel Park, MI 48030 or (313) 398-3189.

OPERATING EVENTS

JANUARY 17th - 19th: QRP Amateur Radio Club International Inc.'s annual SSB QSO Party. Certificate awards to highest scoring station in each state, province, or country with more than two entries. More info: QRP ARCI Contest Chairman, Edwin R. Lappi, WD4LOO, 203 Lynn Dr., Carrboro, NC 27510.
JANUARY 17th and 18th: The Ford Tin Lizzy Club's North Metro Chapter's 3rd annual "Freeze Your Arctic Off" expedition from 2000 Z the 17 th to 1500 Z the 18 th. Handsome certificate available. More info: Box 545, Sterling Heights, Michigan 48078.
JANUARY 17th and 18th: Sponsored by West Virginia State Amateur Radio Council from 1700Z the 17th to 1700 Z the 18th. Single operator only. Operation may be on all bands and repeater contacts are allowed. More info: N8AH, 933 Glen Way. South Charleston, West Virginia 25309.

FAGEMM\|LE	
COPY SATELLITE PHOTOS, WEATHER MAPS, PRESS! The Faxs Are Clear - on our full size (18-1/2" wide) recorders. Free Fax Guide.	
TELETYPE	
RTTY MACHINES, PARTS, SUPPLIES	
ATLANTIC SURPLUS SALES	121213720349
3730 NAUTILUS AVE BROOKIYN	NY 11224

P.O. Box 122, Itasca, III. 60143

2300 MHz DOWN CONVERTER

HAPPY NEW YEAR
from Universal COMMUNICATIONS DEBORAH and STEVE (WB5KGL) KNOWN AS THE STOP SIGN BOARD. THIS 2300 MHz DOWN CONVERTER KIT WORKS THE IMPROVED BOARD EVEN MAKES IT BETTER THAN BEFORE. SO WHY PAY TWICE AS MUCH?
Kit supplied with an 8 -page brochure, PC board, Diodes, Chip Caps, Transistors, and all parts to complete a working board... \$38.50

POWER SUPPLIES AVAIL
Money Order or Check. Mail or phone UNIVERSAL COMMUNICATIONS P.O. BOX 6302, ARLINGTON, TEX. 76011 817-265-0391

2 m AMPLIFIER

SALE
THPUMACH

${ }_{(10.0 d} \cup^{S A}$

35w 2m FM AMPLIFIER KIT • MODEL 335-K

- $1 \mathbb{I N}$ - 35 OUT • $2 \mathbb{I N}$ - 30 OUT • $1 \mathbb{I N}$ - 15 OUT - COR - CLASS C - 4.5 A AT 13 6VDC
- BNC CONNECTORS

ASK ABOUT OUR OTHER VHF \& UHF MODELS

Communication Concepts Inc.

2648 NORTH ARAGON AVE
DAYTON, OHIO 45420
(513) 296.1411

$$
\begin{aligned}
& \text { HOT DX INFOII! } \\
& \text { World's Best Known } \\
& \text { WEEKLY DX BULLETIN } \\
& \text { Calls • Frequencies } \\
& \text { • Propagation - } \\
& \text { asL Info for those Rare } \\
& \text { and Exotic countries } \\
& \text { SEND Business size SASE } \\
& \text { for sample copy TO: } \\
& \text { THE DX BULLETIN } \\
& \text { 306 Vernon Ave., } \\
& \text { Vernon, CT 06066 }
\end{aligned}
$$

HRI will train you at home to be ane electronics professional in the wide world of communications.
 Learn to service, repair, and install everything from

 Mobile Radio

microwave antennas to two-way radios...from radar sets to TV transmitters.
No other home-study course gives you such complete, professional training in so many fields of communication. No other gives you the actual bench training with kits and demonstration units specially designed for learning. Only NRI gives you the thorough preparation and training you need to achieve professional competence in the wide world of communications.

Learn at Home in Your Spare Time

Learn at your own pace, right in your own home. There's no need to quit your job or tie up your evenings with night classes. No time or gas wasted traveling to school...NRI brings it all to you. You learn with NRI-pioneered "bite-size" lessons and proven, practical "power-on" training.

Build Your Own 2-Meter, Digitally Synthesized VHF Transceiver

NRI training is "hands-on" training. You get honest bench experience as you build and test this

Microwave Relay

CB Radio

AM \& FM Broadcasting
industrial-quality two-way radio and power supply You reinforce theory lessons as you induce and correct faults, study individual circuits and learn how they interface with others. Or, at your option, you can train with a fully-assembled forty-channel mobile CB and base-station power supply converter.

You also build and keep for use in your work a transistorized volt-ohm meter and digital CMOS frequency counter. NRI even gives you special lessons to get your Amateur License so you can go on the air with your VHF transceives.

FCC License or Full Refund

In all, you get 48 lessons, 9 special reference texts, and 10 training kits...the training you need to become a professional. And NRI includes training for the required FCC radiotelephone license examination. You pass or your tuition will be refunded in full. This money-back agreement is valid for six months after the completion of your course.

Free Catalog,

No Salesman Will Call

NRI's free, 100-page full-color catalog shows all the equipment you get, describes each lesson and kit in detail, tells more about the many specialized fields we train you for It includes all facts on other interesting areas like TV and audio servicing or digital computer electronics. Mail the coupon and see how we can make you a pro. If coupon has been removed, write: NRI Schools, 3939 Wisconsin Ave., Washington, D.C. 20016.

Digital Electronics • Electronic Technology - Basic Electronics \square Small Engine Repair \square Electrical Appliance Servicing Automotive Mechanics \square Auto Air Conditioning
Nir Conditioning, Refrigeration, \& Heating Including Solar Technology
free catalog only
NO SALESMAN WILL CALL
\square TV/Audio/Video Systems Servicing \square Complete Communications Electronic with CB \bullet FCC Licenses • Nircraft, Mobile, Marine Electronics \square CB Specialists Course \square Computer Electronics Including Microcomputers

Name (Please Print) Age
Street
City/Stat/Zip
Accredited by the Accrediting Commission of the National Home Study Council

ASSOCIATED RADIO

8012 CONSER BOX 4327
OVERLAND PARK, KANSAS 66204

BUY-SELL-TRADE All Brands New \& Reconditioned

NOTE: SEND $\$ 1.00$ FOR OUR CURRENT CATALOG OF NEW AND RECONDITIONED EQUIPMENT.

* ALSO WE PERIODICALLY PUBLISH A LIST OF UNSERVICED EQUIPMENT AT GREAT SAVINGS. A BONANZA FOR THE EXPERIENCED OPERATOR.
TO OBTAIN THE NEXT UNSERVICED BARGAIN LIST SEND A SELF ADDRESSED STAMPED ENVELOPE.

HUSTLER ANTENNAS

5BTV $\quad 5$-Band trap vertical $10-80 \mathrm{~m}$., reg. $\$ 139.95 \ldots . . \$ 125.95$ 4BTV $\quad 4$-Band trap vertical $10-40 \mathrm{~m}$., reg. $\$ 109.95 \ldots .9 .98 .96$
$\begin{array}{lll}\text { BM-1 } & \text { Bumper mount, reg. } \$ 18.95 \ldots & 17.06 \\ \text { MO-1 } & \text { Mast fold-over, deck mounting, reg. } \$ 22.95 \ldots & 20.66\end{array}$
MO-1 Mast, fold-over, deck mounting, reg. $\$ 22.95 \ldots 20.66$
MO-2 Mast, fold-over, bumper mount, reg. $\$ 22.95 \ldots 20.66$
RM-75 Resonator, 75 meters, 400 watt, reg. $\$ 18.95 \ldots \quad 17.06$
RM-40 Resonator, 40 meters, 400 watt, reg. $\$ 16.95 \ldots \quad 15.26$
RM-40S Super resonator, 40 meters, KW, reg. \$24.95... 22.46
RM-20 Resonator, 20 meters, 400 watt, reg. $\$ 14.95 \ldots$... 13.46
RM-20S Super resonator, 20 meters, KW, reg. $\$ 21.95 \ldots$.
RM-15 Resonator, 15 meters, 400 watt, reg $\$ 10.95 \ldots 9.9 .86$
RM-10 Resonator, 10 meters, 400 watt, reg. $\$ 10.95 \ldots . \quad 9.86$
CG-144 Mobile 2 meter colinear, w/o mount, reg. \$28.95. 26.06
CGT-144 2 meter colinear w/trunk mount, reg. $\$ 45.95 \ldots .441 .36$

PALOMAR ENGINEERS

Price Shpg

All items F.O.B. Lincoin, $\$ 1.00$ minimum shipping. Prices subject to change without notice. Nebraska residents please add 3% tax.

INTIMIDATEDBY MORSE CODE?

THE NEW AEA MODEL MT-1 COMPUTERIZED MORSE TRAINER MAKES MORSE CODE EASY AND FUN TO LEARN.

KT-1 Computerized Keyer With All Features of Above Trainer is Also Available in Same Package

- Automatic Speed Increase, User May Program: Starting Speed, Ending Speed, Practice Duration; 5 Letter code Groups or Random Space; Common or All Characters.
- Precise Speed Control 1 to 99 WPM (Tailor to Your Exact Requirements).
- 24,000 Character Answer Book Available For 10 Starting Positions.
- Rándom Mode For Practice (No Answers). CALL TODAY

G \& K Amateur Supply

2920 East 9th Street, Des Moines, lowa 50316, 515-262-1745

A E $A \begin{aligned} & \text { Brings you the } \\ & \text { Breakthrough! }\end{aligned}$

90 WATT AMPLIFIER: $\$ 89.95!$

SPECIAL PACKAGE DEAL

That's right - 90 watts of linear power for 2 meters class AB1 for FM \& SSB for only $\$ 89.95$. Also offering a 15 dB gain in-line preamp with integrated T/R relay. A $\$ 29.95$ value, for only $\$ 20.00$ when purchased with the VJ90L Amplifier.

*ORDER TODAY TOLL FREE (800) 231-9649

PRICING OFFER EXPIRES FEBRUARY 1, 1981

Each VJ Product component is hand wired and individually funed for maximum reliability and performance. VJ Products are guaranteed to be free of defects in parts or workmanship for 1 year from the date of purchase. POWER TRANSISTORS ARE EXCLUDED, BUT WARRANTED FOR 90 DAYS. Visa accepted. Immediate shipment guaranteed by VJ Products, Inc.

SERVING THE ELECTRONICS INDUSTRY SINCE 1965 V-J Products, Inc. 505 E. Shaw Street, Pasadena, Texas 77506 (713) 477-0134

The
 Iambic Keyer Paddle.

Features include: adjustable jeweled bearings ("Deluxe" only) - tension and contact spacing fully adjustable \bullet large, solid, coin silver contact points 2 $^{\prime}: \mathrm{lb}$. chrome plated steel base rests on non-skid feet lifetme guarantee against manufacturing defects. "Standard" model with tevtured Leal base: \$49.50; "1)cluse" model with chrome plated base: $\$ 65,(0)$. Available at dealer or through the factory. Send chech, money order or use Master Charge or VISA. Vibroples pays all shipping charges within the continental U.S.

Telephone (207) 775-7710

P.O. Bov 7230, 476 Fore Sireet. Porlland, Maine 0.4112,

Ham Radio's guide to help you find your loca

Arizona

POWER COMMUNICATIONS CORPORATION
1640 W. CAMELBACK ROAD
PHOENIX, AZ 85015
$602-242 \cdot 6030$ or $242 \cdot 8990$
Arizona's \#1 "Ham" Store. Kenwood, Yaesu, Icom and more.

California

C \& A ELECTRONIC ENTERPRISES
2210 S. WILMINGTON AVE.
SUITE 105
CARSON, CA 90745
213-834-5868
Not The Biggest, But The Best Since 1962

JUN'S ELECTRONICS 3919 SEPULVEDA BLVD. CULVER CITY, CA 90230 213-390-8003 Trades 714-463-1886 San Diego The Home of the One Year Warranty - Parts at Cost - Full Service.

QUEMENT ELECTRONICS

1000 SO. BASCOM AVENUE
SAN JOSE, CA 95128
408-998-5900
Serving the world's Radio Amateurs since 1933.

SHAVER RADIO, INC.
1378 S. BASCOM AVENUE
SAN JOSE, CA 95128
408-998-1103
Azden, Icom, Kenwood, Tempo,
Ten-Tec, Yaesu and many more.

Connecticut

HATRY ELECTRONICS
 500 LEDYARD ST. (SOUTH)
 HARTFORD, CT 06114
 203-527-1881
 Connecticut's Oldest Ham Radio Dealer

Delaware

DELAWARE AMATEUR SUPPLY
71 MEADOW ROAD
NEW CASTLE, DE 19720 302-328-7728
Icom, Ten-Tec, Swan, DenTron, Tempo, Yaesu, Azden, and more. One mile off l-95, no sales tax.

Florida

AGL ELECTRONICS, INC.
1898 DREW STREET
CLEARWATER, FL 33515
813-461-HAMS
West Coast's only full service
Amateur Radio Store.

AMATEUR RADIO CENTER, INC.
2805 N.E. 2ND AVENUE
MIAMI, FL 33137
305-573-8383
The place for great dependable names in Ham Radio.

RAY'S AMATEUR RADIO
1590 US HIGHWAY 19 SO.
CLEARWATER, FL 33516
813-535-1416
Atlas, B\&W, Bird, Cushcraft, DenTron, Drake, Hustler, Hy-Gain, Icom, K.D.K., Kenwood, MFJ, Rohn, Swan, Ten-Tec, Wilson.

Illinois

AUREUS ELECTRONICS, INC.
1415 N. EAGLE STREET
NAPERVILLE, IL 60540
312-420-8629
"Amateur Excellence"

ERICKSON COMMUNICATIONS, INC.
5456 N. MILWAUKEE AVE.
CHICAGO, IL 60630
Chicago - 312-631-5181
Outside llinois - 800-621-5802
Hours: 9:30-5:30 Mon, Tu, Wed \& Fri.; 9:30-9:00 Thurs; 9:00-3:00 Sat.

Indiana

THE HAM SHACK

808 NORTH MAIN STREET
EVANSVILLE, IN 47710
812-422-0231
Discount prices on Ten-Tec, Cubic, Hy-Gain, MFJ, Azden, Kantronics,
Santec and others.

Kansas

ASSOCIATED RADIO

8012 CONSER, P. O. BOX 4327
OVERLAND PARK, KS 66204
913-381-5900
America's No. 1 Real Amateur Radio
Store. Trade - Sell - Buy.

Maryland

THE COMM CENTER, INC.
LAUREL PLAZA, RT. 198
LAUREL, MD 20810
800-638-4486
Kenwood, Drake, Icom, Ten-Tec,
Tempo, DenTron, Swan \& Apple Computers.

Massachusetts

TEL-COM, INC.
675 GREAT ROAD, RT. 119
LITTLETON, MA 01460
617-486-3040
The Ham Store of New England You Can Rely On.

TUFTS RADIO ELECTRONICS
206 MYSTIC AVENUE
MEDFORD, MA 02155
617-391-3200
New England's friendliest ham store.

Minnesota

PAL ELECTRONICS INC.
3452 FREMONT AVE. NO.
MINNEAPOLIS, MN 55412
612-521-4662
Midwest's Fastest Growing Ham
Store, Where Service Counts.

New Hampshire

EVANS RADIO, INC.

BOX 893, RT. 3A BOW JUNCTION CONCORD, NH 03301
603-224-9961
Icom, DenTron \& Yaesu dealer. We service what we sell.

mateur Radio Dealer

New Jersey

RADIOS UNLIMITED

P. O. BOX 347

1760 EASTON AVENUE
SOMERSET, NJ 08873 201-469-4599
New Jersey's Fastest Growing Amateur Radio Center.

ROUTE ELECTRONICS 46

225 ROUTE 46 WEST
TOTOWA, NJ 07512
201-256-8555
Drake, Swan, DenTron, Hy-Gain,
Cushcraft, Hustler, Larsen, Etc.

WITTIE ELECTRONICS

384 LAKEVIEW AVENUE
CLIFTON, NJ 07011
201-546-3000
Same location for 63 years. Full-line authorized Drake dealer. We stock most popular brands of Antennas and Towers.

New Mexico

PECOS VALLEY

AMATEUR RADIO SUPPLY
112 W. FIRST STREET
ROSWELL, NM 88201
505-623-7388
Now stocking Ten-Tec, Lunar, Icom, Morsematic, Bencher, Tempo, Hy-Gain, Avanti and more at low, low prices. Call for quote.

New York

BARRY ELECTRONICS

512 BROADWAY
NEW YORK, NY 10012
212-925-7000
New York City's Largest Full Service
Ham and Commercial Radio Store.

GRAND CENTRAL RADIO

124 EAST 44 STREET
NEW YORK, NY 10017
212-599-2630
Drake, Kenwood, Yaesu, Atlas,
Ten-Tec, Midland, DenTron, Hy-Gain,
Mosley in stock.

HARRISON RADIO CORP.

20 SMITH STREET
FARMINGDALE, NY 11735
516-293-7990
"Ham Headquarters USA" since 1925. Call toll free 800-645-9187.

RADIO WORLD

ONEIDA COUNTY AIRPORT
TERMINAL BLDG.
ORISKANY, NY 13424
TOLL FREE 1 (800) 448-9338
NY Res. 1 (315) 337-0203
Authorized Dealer - ALL major
Amateur Brands.
We service everything we sell!
Warren K21XN or Bob WA2MSH.

Ohio

UNIVERSAL AMATEUR RADIO, INC. 1280 AIDA DRIVE
COLUMBUS (REYNOLDSBURG), OH 43068
614-866-4267
Complete Amateur Radio Sales and Service. All major brands - spacious store near 1-270.

Pennsylvania

HAMTRONICS,

DIV. OF TREVOSE ELECTRONICS

4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215-357-1400
Same Location for 30 Years.

LaRUE ELECTRONICS

1112 GRANDVIEW STREET
SCRANTON, PENNSYLVANIA 18509
717-343-2124
Icom, Bird, Cushcraft, CDE, Ham-
Keys, VHF Engineering, Antenna
Specialists.

SPECIALTY COMMUNICATIONS
2523 PEACH STREET
ERIE, PA 16502
814-455-7674
Service, Parts, \& Experience For Your Atlas Radio.

Virginia

ELECTRONIC EQUIPMENT BANK
516 MILL STREET, N.E.
VIENNA, VA 22180
703-938-3350
Metropolitan D.C.'s One Stop Amateur Store. Largest Warehousing of Surplus Electronics.

HI-Q BALUN

- For dipoles, yagis, inverted vees $\&$ doublets
- Replaces center insulator
- Puts power in antenna
- Broadbanded $3-40 \mathrm{MHz}$
- Small, lightweight and weatherproof

- For full legal power and more
- Heips eliminate TVI
- With SO 239 connector

\$10.95

HI-Q ANTENNA

 CENTER INSULATOR

Small, rugged, lightweight weatherproof
Replaces center insulator Handles full legal power and more
$\$ 5.95$ with so 239 connector
HI-Q ANTENNA END INSULATORS

Van

Gan
Engineering
cingineering
sox a130s, s. suciviono 4.
Deaber inquiries imvited

FREF ${ }^{\text {BoOk }}$ FLYER

Whether you're interested in Amateur Radio, Electronics, Radio Astronomy, Old-Time Radio, VHF, SSB or just novels that involve Amateur Radio - you'll find a large selection of these books and more! Vast inventory of over 200 titles. Send your name and address to:

HAM RADIO'S BOOKSTORE Greenville, NH 03048

We'll send you our most current book flyer and add your name to our bookstore list.

OMGHZ

 electrontes

 electrontes}

1900 MHz to 2500 MHz DOWN CONVERTER
This receiver is tunable over a range of 1900 to 2500 mc and is intended for amateur radio use. The local oscillator is voltage controlled (i.e.) making the i-f range approximately 54 to 88 mc (Channels 2 to 7).
PC BOARD WITH DATA
$\$ 19.99$
PC BOARD WITH CHIP CAPACITORS 13. $\$ 44.99$
PC BOARD WITH ALL PARTS FOR ASSEMBLY . $\$ 69.99$
PC BOARD WITH ALL PARTS FOR ASSEMBLY PLUS $2 N 6603$. $\$ 89.99$
PC BOARD ASSEMBLED AND TESTED
$\$ 99.99$
PC BOARD WITH ALL PARTS FOR ASSEMBLY, POWER SUPPLY AND ANTENNA. $\$ 159.99$
POWER SUPPLY ASSEMBLED AND TESTED . $\$ 49.99$
YAGI ANTENNA 4' LONG APPROX. 20 TO 23 dB GAIN . $\$ 59.99$
YAGI ANTENNA 4' WITH TYPE (N, BNC, SMA Connector) . $\$ 64.99$
2300 MHz DOWN CONVERTER
Includes converter mounted in antenna, power supply, plus 90 DAY WARRANTY. $\$ 259.99$
OPTION \#1 MRF902 in front end. (7 dB noise figure). $\$ 299.99$
OPTION \#2 2N6603 in front end. (5 dB noise figure) . $\$ 359.99$
2300 MHz DOWN CONVERTER ONLY
10 dB Noise Figure 23 dB gain in box with N conn. Input F conn. Output. $\$ 149.99$
7 dB Noise Figure 23 dB gain in box with N conn. Input F conn. Output. . .. $\$ 169.99$
5 dB Noise Figure 23 dB gain in box with SMA conn. Input F conn. Output . $\$ 189.99$
DATA IS INCLUDED WITH KITS OR MAY BE PURCHASED SEPARATELY
$\$ 15.00$
Shipping and Handling Cost:
Receiver Kits add $\$ 1.50$, Power Supply add $\$ 2.00$, Antenna add $\$ 5.00$, Option $1 / 2$ add $\$ 3.00$, For complete system add $\$ 7.50$.

» INTRODUCING THE HOWARD/COLEMAN TVRO CIRCUIT BOARDS

(Satellite Receiver Boards)DUAL CONVERSION BOARD$\$ 25.00$This board provides conversion from the $3.7-2$ band first to 900 MHz where gain and bandpass filtering are provided and, second, to 70 MHz .The board contains both local oscillators, one fixed and the other variable, and the second mixer. Construction is greatly simplified by the useof Hybrid IC amplifiers for the gain stages. Bare boards cost $\$ 25$ and it is estimated that parts for construction will cost $\$ 270$. (Note: The twoAvantek VTO's account for $\$ 225$ of this cost.)$\$ 6.00$
47 pF CHIP CAPACITORS For use with dual conversion board. Consists of $6-47 \mathrm{p} \dot{\mathrm{F}}$.
This circuit provides about 43 dB gain with 50 ohm input and output impedance it is desioned to drive the HOWARDICOLEMAN TVRO DEmodulator. The on-board band pass filter can be tuned for bandwidths between 20 and 35 MHz with a passband ripple of less than $1 / 2 \mathrm{~dB}$. Hy-brid ICs are used for the gain stages. Bare boards cost $\$ 25$. It is estimated that parts for construction will cost less than $\$ 40$..01 pF CHIP CAPACITORS$\$ 7.00$For use with 70 MHz IF Board. Consists of $7-01 \mathrm{pF}$.DEMODULATOR BOARD40.00
This circuit takes the 70 MHz center frequency satellite TV signals in the 10 to 200 millivolt range, detects them using a phase locked loop, deemphasizes and filters the result and amplifies the result to produce standard NTSC video. Other outputs include the audio subcarrier, a DCvoltage proportional to the strength of the 70 MHz signal, and AFC voltage centered at about 2 volts DC. The bare boards cost $\$ 40$ and totalparts cost iess than $\$ 30$.parts cost iess than $\$ 30$SINGLE AUDIO$\$ 15.00$
This circuit recovers the audio signals from the 6.8 MHz frequency. The Miller 9051 coils are tuned to pass the 6.8 MHz subcarrier and theMiller 9052 coil tunes for recovery of the audio.
DUAL AUDIO $\$ 25.00$$\$ 15.00$
DC CONTROLThis circuit controls the VTO's, AFC and the S Meter.

TERMS:

WE REGRET WE NO LONGER ACCEPT BANK CARDS.
PLEASE SEND POSTAL MONEY ORDER, CERTIFIED CHECK, CASHIER'S CHECK OR MONEY ORDER.
PRICES SUBJECT TO CHANGE WITHOUT NOTICE. WE CHARGE 15% FOR RESTOCKING ON ANY ORDER.
ALL CHECKS AND MONEY ORDERS IN US FUNDS ONLY.
ALL ORDERS SENT FIRST CLASS OR UPS.
ALL PARTS PRIME AND GUARANTEED.
WE WILL ACCEPT COD ORDERS FOR $\$ 25.00$ OR OVER, ADD $\$ 2.50$ FOR COD CHARGE.
PLEASE INCLUDE $\$ 2.50$ MINIMUM FOR SHIPPING OR CALL FOR CHARGES.
WE ALSO ARE LOOKING FOR NEW AND USED TUBES,
TEST EQUIPMENT, COMPONENTS, ETC.
WE ALSO SWAP OR TRADE.

MRF454

NPN SILICON RF POWER TRANSISTORS

designed for power amplifier applications in industrial, com mercial and amateur radio equipment to 30 MHz .

- Specified 12.5 Volt, 30 MHz Characteristics -

Output Power $=80$ Watts
Minimum Gain $=12 \mathrm{~dB}$
Efficiency $=50 \%$

NPN SILICON RF POWER TRANSISTOR
designed primarily for use in large-signal output amplifier stages.

MRF472
$\$ 2.50$

- Specified $12.5 \mathrm{~V}, 27 \mathrm{MHz}$ Characteristics -

Power Output $=4.0$ Watts
Power Gain $=10 \mathrm{~dB}$ Minimum
Efficiency $=65 \%$ Typical

NPN SILICON RF POWER TRANSISTOR

designed primarily for use in single sideband linear amplifier
 output applicaiions in citizens band and other communications equipment operating to 30 MHz .

- Characterized for Single Sideband and Large-Signal Amplifier Applications Utilizing Low-Level Modulation.
- Specified $13.6 \mathrm{~V}, 30 \mathrm{MHz}$ Characteristics -

Output Power $=12 \mathrm{~W}(\mathrm{PEP})$
Minimum Efficiency $=40 \%$ (SSB)
Output Power $=4.0 \mathrm{~W}(\mathrm{CW})$
Minimum Efficiency $=50 \%$ (CW)
Minimum Power Gain $=10 \mathrm{~dB}($ PEP \& CW)

- Common Collector Characterization

Tektronix Test Equipment

```
B lideband High Ga in plug In
Dua) Trace plug tm
Fast Rise DC Plug
Iransistor Risetime plug in
    High Ga in Differential Comparator Piug In
    Test Load Plug In for 530/540/550 Ma in Frames
    Wideband Dual Trace Plug In
    AC Differential Plug ln
    al Trace sampling of
    Dual Trace Sampling of to 8%5MHZ Plug in
3S76
```



```
S00
$38
3/54C Dual Trace Plug In
53/54D High Gain DC Differential plug in
53/54G Wideband DC Differential Plug In
53/54L
    Square wave Generator.4 to 1MHZ
    Preamplifier 2Hz to 40KHZ
        AC Coupled Preamplifier
        Current Probe Amplifier
        Program Control Unit
        Trigger Countdown Unit
        Portable Dual Trace 5OMHZ Scope
        Portable Dual Trace 100MHZ Scope
        DC to 15MHZ Scope Rack Mount
        oc to 33N+12 Scope
        Of to 10MH2 Scope Rack Mount
```

NEW - TOLL-FREE NO. 800-528-0180

$\mathrm{o}^{0} \mathrm{M}^{2} \mathrm{Z}_{\text {electroncs }}$

ARRA	MICROWAVE COMPONENTS	
2416	Variable Attenuator	\$ 50.00
3614-60	Variable Attenuator 0 to 60dB	75.00
KU520A	Variable Attenuator 18 to 26.5 GHz	100.00
4684-20C	Variable Attenuator 0 to 180dB	100.00
6684-20F	Variable Attenuator 0 to 180dB	100.00

General Microwave
Directional Coupler 2 to 4GHz 20dB Type N 75.

Hewlett Packard

H487B	100 ohms	Neg Thermistor	Mount	(NEW)
H487B	100 ohms	Neg Thermistor	Mount	(USED)
4778	200 ohms	Neg Thermistor	Mount	(USED)
X487A	100 ohms	Neg. Thermistor	Mount	(USED)
$\times 4878$	100 ohms	Neg. Thermistor	Mount	(USED)
J468A	100 ohms	Neg Thermistor	Mount	(USED)
478A	200 ohms	Neg Thermistor	Mount	(USED)
J382	5.85 to 8.	8.2 GHz Variable	Atten	nuator
$\times 382 \mathrm{~A}$	8.2 to 12	2.4 GHz Variable	Atten	nuator

	MEMORY
	2708
150.00	$2716 / 2516$
100.00	$2114 / 9114$
100.00	$2114 L 2$
100.00	2114 L 3
125.00	4027
	$4060 / 2107$
150.00	$21114-250 / 9111$
150.00	$2112 A-2$
250.00	$2115 A L-2$
250.00	$6104-3 / 4104$
	$7141-2$
	MCM6641L20
	9131

DESCRIPTION

$1 \mathrm{~K} \times 8$ EPROM
$2 K \times 8$ EPROM 5Volt Single Supply
$1 \mathrm{~K} \times 4$ Static RAM 450ns
$1 \mathrm{~K} \times 4$ Static RAM 250 ns
$1 \mathrm{~K} \times 4$ Static RAM 350 ns
$4 K \times 1$ Dynamic RAM
$4 K \times 1$ Oynamic RAM $4 \mathrm{~K} \times 1$ Dynamic RAM 256×4 Static RAM 256×4 Static RAM
$1 K \times 1$ Static RAM 55ns $4 \mathrm{~K} \times 1$ Static RAM 320 ns $4 K \times 1$ Static RAM 200 ns $4 K \times 2$ Static RAM 200 ns $1 \mathrm{~K} \times 1$ Static RAM 300 n

Abstract

12.4 to 18 GHz Variable Attenuator 0 to 60 dB 8.2 to 12.4 GHz Variable Attenuator 0 to 60 dB Variable Attenuator 0 to 60dB Slotted Line wi Type N Adapter 8.2 to 12.4 GHz Variable Attenuator 0 to 50 dB 7.05 to 10 GHz Variable Attenuator 0 to 40 dB 8.2 to 12.4 GHz Variable At tenuator 0 to 45 dB 3.95 to 5.85 GHz Variable Attenuator 0 to 45 dB Frequency Meter 5.3 to 5.7 GHz Fixed Attenuators

COMPUTER I.C. SPECIALS

9131

250.00

394A	1 to 2 GHz Variable Attenuator 6 to 120 dB	250.00
NK292A	Waveguide Adapter	65.00
K422A	18 to 26.5 GHz Crystal Detector	250.00
8436A	Bandpass Filter 8 to 12.4 GHz	75.00

8439 A	2 GHz Notch Filter	75.00
8471 A	RF Detector	50.00
H532A	7.05 to 10 GHz Frequency Meter	300.00
G532A	3.95 to 5.85 GHz Frequency Meter	300.00
J532A	5.85 to 8.2 GHz Frequency Meter	300.00

809A $\begin{aligned} & \text { Carriage with a 444A Slotted Line Untuned Detector Probe } \\ & \text { and } 809 \mathrm{~B} \text { Coaxial Slotted Section } 2.6 \text { to } 18 \mathrm{GHz}\end{aligned}$

Merrimac

$A U-25 A /$
$A U-26 A /$
801115 Variable Attenuator

Microlab/FXR

$\begin{aligned} & \times 638 S \\ & 601-B 18 \\ & Y 6100 \end{aligned}$	Horn 8.2-12.4 GHz X to N Adapter $8.2-12.4 \mathrm{GHz}$ Coupler	$\begin{aligned} & 60.00 \\ & 35.00 \\ & 75.00 \end{aligned}$
Narda		
4013C-10/	22540A Directional Coupler 2 to 4 GHz 10db Type SMA	90.00
4014-10/	22538 Directional Coupler 3.85 to 8 GHz 10dB Type SMA	90.00
4014C-6/	22876 Directional Coupler 3.85 to 8 GHz Gd8 Type SMA	90.00
4015C-10/	22539 Directional Coupler 7.4 to 12 GHz 10d8 Type SMA	95.00
4015C-30/	23105 Directional Coupler 7 to 12.4 GHz 30 dB Type SMA	95.00
3044-20	Directional Coupler 4 to 8 GHz 20 dB Type N	125.00
3040-20	Direcitonal Coupler 240 to 500 MC 20 dB Type N	125.00
3043-20/	22006 Directional Coupler 1.7 to 4 GHz 20 dB Type N	125.00
3003-10/	22011 Directional Coupler 2 to $4 \mathrm{GHz} \mathrm{10dB}$ Type N	75.00
3003-30/	22012 Directional Coupler 2 to 4 GHz 30 dB Type N	75.00
3043-30\%	22007 Directional Coupler 1.7 to 3.5 GHz 30 dB Type N	125.00
22574	Directional Coupler 2 to 4 GHz 10dB Type N	125.00
3033	Coaxial Hybrid 2 to 4 GHz 3 dB Type N	125.00
3032	Coaxial Hybrid 950 to 2 GHz 3 dB Type N	125.00
784/	22380 Variable Attenuator 1 to 900 B 2 to 2.5 GHz Type 5MA	550.00
22377	Waveguide to Type N Adapter	35.00
720-6	Fixed Attenuator 8.2 to 14.4 GHz 6 dB	50.00
3503	Waveguide	25.00

AU-26A/

$$
801162 \text { Variable Attenuator }
$$

22540 A Directional Coupler 2 to 4 GHz 10db Type SMA 22538 Directional Coupler 3.85 to 8 GHz 10dB Type SMA 22539 Directional Coupler 3.85 to 8 GH2 Gd8 Type SMA 23105 Directional Coupler 7 to 12.4 GHz 30dB Type SMA Directional Coupler 4 to 8 GHz 20 dB Type N 22006 Directional Coupler 1.7 to 4 GHz 20 dB Type 22011 Directional Coupler 2 to 4 GHz l0dB Type N 22012 Directional Coupler 2 to 4 GHz 30 dB Type N 22007 Directional Coupler 1.7 to 3.5 GHz 30 dB Type N Coaxial Hybrid 2 to 4 GHz 3 dB Type N Waveguide to Type N Adapter
Waveguide

C.P.U.'s ECT.

MC6800L


```
icroprocessor \(128 \times 8\) Static RAM 450 ns \(128 \times 8\) Static RAM 360 ms \(128 \times 8\) Static RAM 250 ns P1A P1A PIA
PIA PIA
Mikbug
CRT Controller CRT Controller CRT Controller
ACIA
SSDA
SSDA
0-600 BPS Modem
2400 BPS Modem
F8 Microprocessor
FB Memory Interface
F8 Memory Interface
F8 Direct Memory Access
Microprocessor
Microprocessor
Microprocessar
PIA
Support for 6500 series
Microprocessor
Four Bit Microprocessor
\(9 \times 64\) Oigital Storage Buffer (FIFO)
UART
Bit Rate Generator
Four Digit Counter/Display Drivers
Repertory Dialler
Push Button Telephone Diallers
Keyboard Encoder
TV Game Chip
UART
UART
DMA Controller
Communication Interface
System Controller \& Bus Oriver
8 System Controller \& Bus
2 of 8 Tone Encoder
Low Speed Modem
Binary to Phone Pulse Converter
Binary to Phone Pulse Converter RS232 Driver
RS232 Receiver
A/D Converter Subsystem
6 Bit D/A Converter
8 Bit D/A Converter
Low Level Video Detector
Video IF Amplifier
LM733 OP Amplifier
Phase Lock Loop
```


SATELLITE RECEIVER SYSTEM
 The entertainment opportunity of a lifetime!

Look what KLM's SKY EYE 1 offers: nearly 100 channels of the latest movies, sports, news, comedy, classic films, specials, religious programs and much more . . . all in clear, sharp studio quality picture and sound. Forget about "fringe" or no-reception areas, ghosts, fading, imaging and all the other problems of TV reception. KLM's SKY EYE 1 is your direct link to the 11 TV satellites now orbiting above the U.S. You'll experience great shows and the greatest picture quality you've ever seen.
KLM's SKY EYE 1 is a complete system, featuring performance-proven "state of the art" electronics design and materials. All you need is a modest amount of space for the special parabolic antenna (its screened surface blends with the landscaping to become a discrete addition to your yard). Inside your home, all those channels are accessible through the compact SKY EYE 1 Control Center.
With KLM's SKY EYE 1 your TV becomes a true entertainment center, bringing you an amazing variety of great shows - something to please every member of your family.

KLM's SKY EYE 1 SYSTEM

Control Center

* CONTINUOUS CHANNEL TUNING
* CONTINUOUS AUDIO TUNING 5.8 to 7.4 MHz
* POLARITY CONTROL CAPACITY, MOMENTARY AND LIMIT MODELS
* SEPARATE REGULATED POWER SUPPLIES FOR LNA AND RECEIVER
* STANDARD RG-59 COAX TO RECEIVER UNIT

Receiver Unit

\star SINGLE CONVERSION IMAGE REJECTION MIXER (greater linearity and video response than any PLL)

* BUILTINDCBLOCK
* MODULAR CONSTRUCTION
* WEATHER-PROOF ENCLOSURE

CONTROL CENTER and RECEIVER UNIT $\$ 1500.00$
Antenna: KLM Parabolic Dish

* SCREENED FOR LIGHT WEIGHT AND LOW WINDLOAD
* EASY AZIMUTH AND ELEVATION CHANGES
* MODEST BASEMOUNT REQUIREMENTS
* HIGH GAIN LNA (AVANTEK)
\star MOTOR DRIVEN POLARITY CHANGES
$\star 12$ FOOT OR 16 FOOT PARABOLIC DISHES 12 Foot $\$ 3000.00$
16 Foot \$3500.00

electronics

Manufacturer \& Model AIL 124A 390A-3
$\begin{aligned} & \text { AILTECH } \\ & 473 A \end{aligned}$
$\begin{aligned} & \text { ALTO } \\ & \text { 34A1 } \end{aligned}$
$\begin{aligned} & \text { B8K } \\ & 161 \\ & 607 \end{aligned}$
$\begin{aligned} & \text { BALLANTINE } \\ & 303-06 \\ & 355 \\ & 6130 A \end{aligned}$
$\begin{aligned} & \text { BELL \& HOWELL } \\ & 2970 \end{aligned}$
$\begin{aligned} & \text { BIRD } \\ & \text { 67C } \\ & \text { TS-118A/AP } \\ & \text { CY-1764/UPM } \end{aligned}$
$\begin{aligned} & \text { BIRTCHER } \\ & \text { 10-AC } \\ & 10-C \\ & 10-E \\ & 70 \end{aligned}$
$\begin{aligned} & \text { BOONTON } \\ & \text { 63M } \\ & \text { 71AR } \\ & \text { 71D } \\ & \text { 74CS8 } \\ & \text { 91CA } \\ & \text { 91H } \\ & \text { 95AR } \end{aligned}$
BOONTON/HEWLETT PACKARD 190A 207H 230A 230B 240A 250A 280A 280A
CLEVITE BRUSH $13 / 4214-00$
$\begin{aligned} & \text { COHU } \\ & 204 A R \end{aligned}$
CHROMALLYIMILITARY ACRTS-20
$\begin{aligned} & \text { DANA } \\ & 5500 / 130 \\ & 5740 \\ & 5800 \end{aligned}$
DYMEC/HEWLETT PACKARD 2650A
DYNAMIC 504
$\begin{aligned} & \text { E.H. LAB } \\ & \text { 120D } \end{aligned}$
$\begin{aligned} & \text { E.I.P. } \\ & \text { 101A } \end{aligned}$
ELECTRONIC SERVICE 710A
EMPIREISINGER NF 105 TANF105 TXUNF105 T1/NF105 T2/NF105 T3/NF105 TANF 105 T2/MM120 T2/NF112 T3/NF112
$\begin{aligned} & \text { FAIRCHILD } \\ & 74.03 \\ & 76-01 \mathrm{~A} \\ & 757 \end{aligned}$
FEL

TEST EQUIPMENT SALE

Description	Price
200 to 2500 MHZ Wide Range Power Oscillator	$\$ 300.00$
Microwave Diode Test Set	25.00
Swept RF Power Source 225 to $\mathbf{4 0 0 \mathrm { MHZ }}$	500.00

FM TV Receiver 220MHZ 200.00
$\begin{array}{ll}\text { Transistor Tester } & 75.00\end{array}$
Tube Tester 100.00
AC Voltmeter 100.00
Dignal Volmeter Acto 750.00
Color Video TV Camera with Monitor 300.00
RF Wattmeter 0 to 2.5 KW at 30 to 500 MHZ 200.00
RF Wattmeter 2 to 500 W at 20 to 1400 MHZ 150.00
RF Wattmeter
Hybrid Parameter Plug In For Model 70 50.00
Transistor Leakage Plug In For Model 70
Transistor Leakage Plug In For Model 70 50.00
Test Plug In For Model 70175.00
Inductance Bridge 500.00
Capacitance Inductance Bridge 600.00
Capacitance Inductance Reference 200.00
RF Voltmeter $300 \mu \mathrm{~V} / 3 \mathrm{~V}$ at 10 HZ 600 MHZ600.00
RF Voltmeter $100 \mu \mathrm{~V} / 300 \mathrm{~V}$ at $20 \mathrm{HZ} / 1.2 \mathrm{GHZ}$ 350.00
DC Microvolt/Picoammeter $10 \mu \mathrm{~V} / 1000 \mathrm{~V}, 1 \mathrm{pA} / 1 \mathrm{~A}$
Q Meter 20 to 260 MHZ 500.00
Univerter 100 KHZ to 55 MHZ 100.00
Power Amplifier 10 to 500 MHZ 4.5 watts 500.00
Power Amplifier Later Version of 230A 900.00
Sweep Generator 4.5 to 120 MHZ 200.00
1500.00
RXMeter .5 to 500 MHZ1500.00
500.00
Q Meter 200 to 600 MHZ 500.00
Log Amplifier 75.00
Galvenometer 75.00
Radio Test Set 100.00
Digital Volt 150.00
Digital Voltmeter 50.00
Digital Ratiometer/Multimeter 200.00
Oscillator Synchronizer 100.00
Multimeter DC Micromultimeter 100.00
Pulse Generator 100 HZ to 20 MHZ 200.00
Spectrum Analyzer Plug In and Power Supply 700MHZ to 15.4 GHZ 1500.00
Crystal Impedance Meter 300.00
Noise \& Fiald Intensity Meter 400.00150 KHZ to 30 MHZ Mod.M126 For NF105200.0014 KHZ to 150 KHZ Mod.M126 For NF 10520 MHZ to 200 MHZ Mod.M 126 For NF 10520 MHZ to 200 MHZ Mod.M 126 For NF 105
200 MHZ to 400 MHZ Mod.M126 For NF 105400 MHZ to 1000 MHZ Mod. M126 For NF105200.00
200.00
150 KHZ to 30 MHZ For NF 105 200.00200.00
2000 MHZ to 4000 MHZ For NF113900 MHZ to 7200 MHZ For NF112200.00
Time Base Plug In For 700 Series Scopes 150.00
Single Input Vertical Amplifier For 700 Series Scopes 75.00200.00
Microwave Synchronizer 300.00

electronics

Description	Price
X Y Recorder . 5 mV to 10 V	\$225.00
Logarithmic Converter	100.00
High Voltage Divider	250.00
VAW Meter	150.00
Impedance Meter Bridge	250.00
OC Null Detector/High Impedance Voltmeter	250.00
Differential Meter	250.00
DC Differential Voltmeter	250.00
Microwave Power Meter	100.00
Audio Frequency Microvolter	25.00
Strobe	50.00
Compensated Decade Resistor	50.00
Capacitance Test Bridge	75.00
Power Supply	40.00
Power Supply	60.00
Oscillator 65 to 500 MHZ	75.00
Oscillator . 5 to 50 MHZ	100.00
Null Detector	50.00
Unit Oscillator	50.00
Unit Oscilliator	50.00
Unit Osclllator 50 to 250MHZ	100.00
Unit Oscillator 50 to 250MHZ	200.00
IF Amplifier	75.00
Unit Pulse Generator	50.00
Tune Circult	15.00
Power Supply	100.00
Unit Osclilator 50 to 500MHZ	300.00
Noise Generator	275.00
Noise Generator	200.00
Pulse, Sweep, Time Delay Generator With 1391P2 Power Supply	450.00
Comparison Bridge	125.00
Capacitance Bridge	500.00
Resistance Limit Bridge	100.00
Variac	200.00
Synchro Bridge	50.00
Transtormer	15.00
Oscilloscope	75.00
XY Recorder . 1 to 20V	350.00
Barretter Matching Transformer	15.00
Scope Camera	200.00
Pulse Generator 10HZ to 1MHZ	650.00
Puise Generator to 100 MHZ	650.00
Attenuator Set	100.00
Attenuator	250.00
VTVM 10HZ to 4MHZ	50.00
AC Transistor Voltmeter	150.00
VTVM	125.00
RF Millivoltmeter	250.00
DC Null Voltmeter	100.00
VSWR Meter	50.00
Ratio Meter	100.00
VHF Detector 10 to 500MHZ	125.00
DC Microvoit/Ammeter	250.00
Clip On DC Ammeter	275.00
Microwave Power Meter DC to 10GHZ 10mW	100.00
Microwave Power Meter 10MHZ to 40GHZ $10 \mu \mathrm{~W}$ to 10mW	200.00
Microwave Power Meter 10MHZ to 40GHZ $10 \mu \mathrm{~W}$ to 10 mW	350.00
Caloimetric Power Meter DC to 12.4GHZ 10W	450.00
ACOC Converter	75.00
Frequency Meter	100.00
Motor	25.00
Pulse Generator	50.00
AC Current Amplifier	75.00
Electromyograph Plug in	250.00
Migh Gain Vertical Plug in For 175A Scope	50.00
Auxiliary Plug In For 175A Scope	25.00
Amplifier	100.00 100
Power Supply	100.00
Auxillary Plug in	25.00
Function Generator Broadband Sampling Voltmeter 10KHZ to 1.2GHZ	500.00 750.00
Broadband Sampling Voltmeter 10 KHZ to 1.2 GHZ	750.00

Description	Price
Digital Voltmeter	\$150.00
Comparator	250.00
Range Selector For 3439A/3440A	75.00
Plug In For 3439A Automatic Range Selector \& 3440A	50.00
High Gain Auto Range Plug in For 3439A/3440A	200.00
AC DC Range Plug In For 3439A/3440A	175.00
AC DC Remote Plug In For 3439A/3440A	150.00
Digital Voltmeter	750.00
Universal Bridge	900.00
Open Fault Locator	250.00
Prescaler For 5245L5246L to 350MHZ	250.00
Frequency Divider to 12.4GHZ	1000.00
Timer Counter DVM to 512MHZ	1000.00
520 MHZ Frequency Counter	300.00
with a 5486A and a 5485A, Memory Display, Control, and a Two Channel Input	3500.00
Pulse Generator	750.00
Pulse Genarator	750.00
Calibrator For 431A and 431B	250.00
Generator/Sweeper	1200.00
Medium Gain Amplifier	100.00
Vertical Response Tester	100.00
Plug In Extender	100.00
Horizontal Gain Calibrator	100.00
Attenuator Set	100.00
Compactron Adapter For Tube Tester DC Plug in	150.00 25.00
Die Bonder (Like New)	1000.00
Distortion Measuring Equipment	100.00
Mega Sweep	100.00
Rada Pulse Sr. 10 to 80MHZ	100.00
Utilator 4.5 to 220 MHZ	100.00
DC VTVM	50.00
Static Meter	300.00
Pico Ampmeter	100.00
Electrometer	200.00
TWT Amplifier 8 to 12.4 GHZ at 100 W 40 dB Gain	5000.00
Band Pass Filter 20CPS to 200KC	100.00
Ultra Low Frequency Rejection Filter. 02 HZ to 2KHZ	100.00
Rejection Filter 20CPS to 200KC	100.00
Temp. Detector	100.00
Millivolt Potentiometer	250.00
Signal Generator	500.00
Impedance Bridge	150.00
HF Signal Generator 10KHZ to 50MHZ	250.00
RF Voltmeter Multimeter	100.00
Tube Tester	125.00
RF Microvoltmeter Solid State (NO PROBE)	100.00
Spectrum Analyzer 0KC 10 500KC	300.00
Spectrum Analyzer 1 KC to $\mathbf{2 M H Z}$	300.00
Frequency Counter	100.00
Scope	200.00
Prescaler	150.00
Ratio Box	75.00
Phase Angle Voltmeter	100.00
Spectrum Analyzer with a UR-3 and a VR-4 1 KHZ to 27.5MHZ	1200.00
High Power Signal Generator 200 to 500MHZ 50W	1100.00
Multi Pulse Spectrum Analyzer Modulator	$\begin{array}{r} 75.00 \\ 150.00 \end{array}$

Manulacturer \& Modal	Description	Price
POLARAD		
1107	Signal Generator 3.8 to 8.2GHZ	\$500.00
1108	Signal Generator 6.95 to 11GHZ	500.00
1108M4	Signal Generator 7 to 11 GHZ	500.00
1206	Signal Generator 1.95 to 4.2GHZ	500.00
PRD 680/X670	Calorimetric Power Meter with Dry Calorimeter 8.2 to 14.4GHZ	300.00
RADIO OMETER COPENHAGGEN SMG-1	Stereo Generator	500.00
$\begin{aligned} & \text { RAMCOR } \\ & 1200 \end{aligned}$	Densiometer	250.00
RCA WV-98C	Senior Volt Ohmyst	75.00
$\begin{aligned} & \text { RFL } \\ & 107 \mathrm{~A} \\ & 541 \mathrm{~A} \\ & 541 \mathrm{C} \\ & 942 \mathrm{~A}-\mathrm{B} / \mathrm{HB} 7778 \end{aligned}$	Magnet Charger 10 KC to 1100 KC Crystal Impedance Meter 2.5 KC to 1100 KC Crystal Impedance Meter Magnet Charger with Transformer	$\begin{array}{r} 500.00 \\ 400.00 \\ 500.00 \\ 1000.00 \end{array}$
ROHDE \& SCHWARZ KRT SLRD	Capacitance Meter UHF Power Signal Generator 275 to 2750MHZ 20 W	500.00 1000.00
SENCOR CA122B	Color Circuit Analyzer	200.00
SIEMENS 3 D 3325 3D3325	Selective Voltmeter	250.00
SPECTRA UBD $1 / 2^{\circ}$	Photo Research Spotmeter	1500.00
STODDART NM-10A NM-40A	RFI Meter 10 to 250 KHZ RFI Meter 30 HZ to 15 KHZ	$\begin{aligned} & 200.00 \\ & 300.00 \end{aligned}$
TECA CORP CH-3	Variable Pulse Generator \& Chronavie Meter	150.00
TELE SIGNAL CORP. 320	Test \& Meter Unit	100.00
TELONIC SM2000	Sweeper	300.00
TEKTRONIX		
B	Wideband High Gain Plug In	35.00
CA	Dual Trace Plug in	100.00
D	High Gain Differential	25.00
H	Wideband HIgh Gain DC	50.00
K	Fast Rise DC	35.00
M	Four Trace	200.00
N	Sampling	200.00
Q	Transducer \& Strain Gauge	200.00
R	Transistor Risetime	75.00
TU-2	Test Load	35.00
W	High Gain Differential Comparator	100.00
1A2	Dual Trace	200.00
1A5	Differential Comparator Amplifier	250.00
1S1	Sampling Unit with 350ps Risetime DC to 1GHZ	300.00
2A61	AC Differential	75.00
2463	Differential	75.00
2867	Time Base Single Sweep	200.00
3 A75	Wideband DC	75.00
353	Dual Trace Sampling DC to 1GHZ	250.00
3576	Dual Trace Sampling DC to 875MHZ	200.00
3 T 4	Programmable Sampling Sweep	300.00
3177	Sampling Sweep	200.00
3T77A	Sampling Sweep	250.00
4S1/4S2/4S3/5T1/661	Sampling Scope with Dual Trace Sampling Units (3) and Timing Unit	1000.00
7A15AN-11	Vertical Amplifier DC to 80MHZ	450.00
10 A 1	Differential Amplifier	250.00
10A2A	Dual Trace	250.00
RM15	Oscilloscope Same as 51515 MHZ	200.00
RM31A	Oscilloscope Same as 531A with Dual Trace Plug In 15MHZ	300.00
RM35A	Oscilloscope Same as 535A with Dual Trace Plug In 15MHZ	300.00
RM41A	Oscilloscope Same as 541A with Dual Trace Plug In 30MHZ	350.00
50	Amplifier	50.00
51	Sweep	50.00
53A	Wideband DC Plug In	20.00
53B	Wideband High Gain	25.00
53/54B	Wideband High Gain	30.00
53/54C	Dual Trace	75.00
53/54D	High Gain Differential	20.00
53/54K	Fast Rise DC	45.00
63	Differential	65.00
81	Plug In Adapter For 581/A \& 585/A	65.00

Manufacturer ${ }_{\text {R Model }}$	Description	Price
${ }_{814}$ TEKTRONIX	Adapter For 581/A \& 585/A	\$90.00
84	Test Unit	75.00
107	Square Wave Generator	50.00
RM122	Preamplifier	50.00
123	AC Coupled Preamplifier	20.00
131	Current Probe Amplifler	75.00
240	Control Unit	+50.00
280	Trigger Countdown Unit	75.00
RM503	Oscilloscope 450KHZ	200.00
535	Oscllioscope with Dual Trace Plug in 15MHZ	325.00
535A	Oscllloscope with Dual Trace Plug in 15MHZ	375.00
543	Oscilloscope with Dual Trace Plug in 33MHZ	350.00
543A	Oscilloscope with Dual Trace Plug in 33MHZ	400.00
545A	Oscilloscope with Dual Trace Plug in 30MHZ	450.00
555	Dual Beam Oscilloscope with Dual Trace Plug In 33MHZ	500.00
581	Oscilloscope 10MHZ	100.00
RM581	Oscilloscope 10MHZ Same as 561	100.00
RM561A	Oscilloscope 10MHZ Same as 561A	175.00
561 B	Oscilloscope 10MHZ	250.00
584	Split Screen Storage Oscilloscope	450.00
RM585	Oscilloscope Same as 585 Dual Beam 10MHZ	650.00 550
581	Oscilloscope with 81 Adapter and Dual Trace Plug in	550.00 250
601	Storage Display	250.00
611	Storage Display	1000.00 1500.00
1791	NC Program Verifier	1500.00
087.0513-00	Callbration Fixture	100.00
087-0591-00	Calibration Fixture	100.00
087.508	Calibration Fixture	100.00
TIC		
T.10A	DME Pulse Generator	200.00
T.10M	DME Speed Indicator Adapter	200.00
teradyne ACT1	Analogical Clrcuit Tester with Boards	500.00
TEXSCAN		
HS-85	Sweep Generator 400 to 1000 MHZ	250.00
VS-73	Sweep Generator 400 to 450MHZ	100.00
THETA SSB-11E	System Error Bridge	75.00
WANDEL U GOLTERMANN LDE2 \& LDS2	Measuring Set For Group Delay Attenuation and Receiver and Attenuation Generator	Make Offer
WEINSCHEL ENG.		
BA5	Attenuation Calibrator	100.00 100.00
${ }_{8}^{675} \mathrm{~N}$	Thermistor Mount	100.00
WESTERN RESERVE RFI RF-204U	RFI Receiver	200.00
WILTRON		
321/322/326/327/640G50	Phase \& Amplitude Indicator with Local Osciliator 2.5 to $\mathbf{1 0 0 M H Z}$, Time Delay Unit, High Resolution	
	Time Delay Unit, Modulation Unit	750.00
640G50	Sweep Generator to 500MHZ	750.00
LATE ADD ONS TEXTRON		
N160	X Y Recorder	200.00

DIRECTION FINDERS

If you're serious about direction finding, you want the best, most dependable and proven equipment for a fast find, whether it's for a downed aircraft or a repeater jammer.

If your needs are in the 100-300 MHz range, think of L-Tronics for ground, air, or marine DF. We also have equipment that gives dual capability, such as search \& rescue/amateur radio, 146/220 amateur, and air/marine SAR.

Our units will DF on AM, FM, pulsed signals and random noise. The meter reads left-right in the DF mode for fast, accurate bearings, and left to right signal
 strength in the RECeive mode (120 dB total range with the sensitivity control). Its 3 dB antenna gain and . 06 uV typical DF sensitivity allow the crystal-controlled unit to hear and positively track a weak signal at very long ranges. It has no 180° ambiguity.

Over 3,000 of our units are in the field being used to save lives, catch jammers, find instrument packages, track vehicles. Prices start at under $\$ 250$ for factory-built equipment backed by warranty, money-back guarantee, and factory service and assistance. Write today for a free brochure and price list.

L-TRONICS (Attention Ham Dept.)
5546 Cathedral Oaks Rd.
Santa Barbara, CA 93111

Iron Powder and Ferrite TOROIDAL CORES

Shielding Beads, Shielded Coil Forms Ferrite Rods, Pot Cores, Baluns, Etc.

> Small Orders Welcome Free 'Tech-Data' Flyer

AMIDه́N H ssociates

12033 Otsego Street, North Hollywood, Calif. 91607
 (213) 762-2418

In Germany Elextronikiaden. Witheim - Meilies Sit 884930 Detmoid 18. West Germany
In Japan Toyomura Eiectronics Company. Lta 7-9. 2-Chome Sota-Kanda Chiyoda-Ku, Tokyo, Japan
The price is $\$ 55.00$ in the U.S and Canada. Add $\$ 3.00$ shipping/handling, California residents add sales tax.

Fully guaranteed by the originator of the R-X Noise Bridge. ORDER YOURS NOW!

Palomar Engineers
 Box 455, Escondido, CA. 92025 Phone: [714] 747-3343

Switch it... tune it... load it... measure it... send it...with Heathkit amateur gear

No matter what you are doing to your signal, Heath has the amateur gear to help you do it better.... and to save you money, too. Heath is your onestop headquarters for accessories, antennas and complete, build-it-yourself rigs. And they're all backed by the more than 200 hams at Heath.
The new Heathkit Catalog describes one of the most complete selections of ham gear anywhere. You'll also find the latest in home computers, fine stereo components, color TV's, precision test instruments and innovative electronics for your home...all in easy-to-build, money-saving kits.
It's one catalog you don't want to be without. Write for your free copy today or pick one up at your nearest Heathkit Electronic Center.
 WRITE FOR LITERATURE

July 25 thru August 7, 1981
Our 22nd year
Have trouble finding time to study for Upgrading? Do it on your vacation at the OAK HILL ACADEMY RADIO SESSION in the
Blue Ridge Mountains of Virginia
Two weeks of intensive Code and Theory Study starting at your level.

- Novice to General
- General or Technician to Advanced
- Advanced to Amateur Extra

Expert Instructors - Friendly Surroundings - Excellent Accommodations. Ham Lab set up for all to use.
"A Vacation with a Purpose"'
C. L. PETERS, K4DNJ, Director

Oak Hill Academy Amateur Radio Session Mouth of Wilson, Virginia 24363
Name
Call
Address
City/State/Zip

GO MOBILE WITH YOUR H.T.!

Handi- Tek Regulator allows CONTINUOUS HAND-HELD OPERATION FROM AUTO DC OR BASE SUPPLY WITH NO NI-CAD DRAIN. MODEL K - TR2400 $M_{M} O D E L Y$ - FT-207R, MK II, MK IV MODEL T - SIMPLE MOD FOR TEMPO S-1, S-2, S-5. GUARANTEED. 819.95 PPD IN USA. CAL ADD 81.20 ORDER DIRECT OR SEND FOR SPECS...
HANDI-TEK
P.O. BOX 2205, LA PUENTE, CA 91746

NEW CATALOG OF
HARD-TO-FIND HARD-TO-FIND

Lists more than 2000 items: pliers, tweezers wre strippers, vacuum systems, relay tools. op tical equipment, tool kits and cases. Send for your free copy todayt

Tay solid state continuous coverage synthesized hf system

Model 1336

Continuous Frequency Coverage - The TR7 provides continuous coverage in receive from 1.5 to 30 MHz . Transmit coverage is provided for all amateur bands from 160 through 10 meters. The optional AUX7 Range Program Board allows out-of-band transmit coverage for MARS, Embassy, Government and Commercial services as well as future band expansions in the 1.8 through 30 MHz range.* The AUX7 Board also provides 0 through 1.5 MHz receive coverage and crystal-controlled fixed-channel operation for Government, Amateur or Commercial applications anywhere in the 1.8 to 30 MHz range.
Synthesized/PTO Frequency Control-A Drake exclusive: carefully engineered high-performance synthesizer, combined with the famous Drake PTO, provides smooth, linear tuning with 1 kHz dial and 100 Hz digital readout resolution. 500 kHz up/down range switching is pushbutton controlled.

Advanced, High-Performance Receiver Design-The receiver section of the Drake TR7 is an advanced, up-conversion design. The first intermediate frequency of 48.05 MHz places the image frequency well outside the receiver input passband, and provides for true general coverage operation without i-f gaps or crossovers. In addition, the receiver section features a high-level double balanced mixer in the front end for superior spurious and dynamic range performance.

True Passband Tuning-The TR7 employs the famous Drake full passband tuning instead of the limited range "i-f shift" found in some other units. The Drake system allows the receiver passband to be varied from the top edge of one sideband, through center, to the bottom edge of the opposite sideband. In fact, the range is even wider to accommodate RTTY. This system greatly improves receiving performance in heavy QRM by
allowing the operator to move interfering signals out of the passband, and it is so flexible that you can even transmit on one sideband and listen on the other.

Unique Independent Receiver Selectivity-Space is provided in the TR7 for up to 3 optional crystal filters. These filters are selected, along with the standard 2.3 kHz filter, by front panel pushbutton control, independent of the mode control. This permits the receive response to be optimized for various operating conditions in any operational situation. Optional filter bandwidths include 6 kHz for $\mathrm{a}-\mathrm{m}, 1.8 \mathrm{kHz}$ for narrow ssb or RTTY, and 500 Hz and 300 Hz for cw .

Broadband, Solid State Design-100\% solid state throughout. All circuits are broadbanded, eliminating the need for tuning adjustments of any kind. Merely select the correct band, dial up the desired frequency, and you're ready to operate.

Rugged, Solid State Power Amplifier-The power amplifier is internally mounted, with nothing outboard subject to physical damage. A Drake designed custom heat sink makes this possible. The unique air ducting design of this heat sink allows an optional rear-mounted fan, the FA7, to provide continuous, full power transmit on SSTV/RTTY. The fan is not required for ssb/cw operation, since normal convection cooling allows continuous transmit in these modes.

Effective Noise Blanker-The optional NB7 Noise Blanker plugs into the TR7 to provide true impulse-type noise blanking performance. This unit is carefully designed to maximize both blanking and dynamic range in order to preserve the excellent strong-signal handling characteristics of the TR7.

* NOTE: Transmitter coverage for MARS, Government, and future WARC bands is available only in ranges authorized by the FCC, Military, or other government agency for a specific service. Proof of license for that service must be submitted to the R. L. Drake Company, including the 500 kHz range to be covered. Upon approval, and at the discretion of the R. L. Drake Company, a special range IC will be supplied for use with the Aux7 Range Program Board. Prices quoted from the factory. See Operator's Manual for details. (Not available for services requiring type acceptance.)

Specifications, availability and prices subject to change without notice or obligation.

U.S. \& FOREIGN 1981 RADIO AMATEUR CALLBOOKS

Don't be one of those who waits until the year is half over to buy a new Callbook. Invest in your 1981 Callbooks today and get a full year's use out of them. Crammed full of the latest addresses, QSL information, and other vital data.

\square CB-US81

\square CB-F81
Softbound \$17.95
Softbound $\$ 16.95$
Early December delivery!

BRAND NEW! STEP INTO '81 WITH THE LATEST HANDBOOK AT LAST YEAR'S PRICE!

1981 HANDBOOK

Now is the time to order your copy of the 1981 ARRL "RADIO AMATEUR'S HANDBOOK." Internationally recognized and universally consulted, every ama teur should have the latest edition. The new HANDBOOK covers virtually all of the state-of-the-art developments in electronics theory and design. Novices will find it to be an indispensable study guide, while the more advanced Amateur will enjoy building the many new projects.
\square Order AR-HB81
Order AR-BB81
Softbound $\$ 10.00$
Hardbound \$15.75
Late November delivery

NEW!

radio PROPAGATION HANDBOOK

by Peter N. Saveskie

Here it is! Total coverage of radio propagation in the RF spectrum from very low to extremely high frequencies! Ground wave, sky-wave, tropospheric media are thoroughly discussed. Includes data tables, worksheets, charts and tables covering most technical aspects of interest to Amateur radio operators. Subjects include: HF propagation prediction by computers, microwave path selection (theory versus practice), millimeter wave propagation. A must for every Amateur! (c) 1980, 499 pages.
\square T-1146
Softbound \$10.95

GUIDE TO RTTY FREQUENCIES

by Oliver P. Ferrell

Radioteletype to many hams and SWL's is an exotic, complicated form of electronic communication. The author is a well known expert in this interesting field and brings to you a weath of knowledge and practical experience. First he covers the basics of RTTY identification codes and equipment. Once you've mastered the basics, he gives you a complete rundown on how to receive and understand what you'll be seeing. And - there are over 60 pages of worldwide station listings. For your convenience, listings are made by frequency with station location and service. (©) 1980, 96 pages.
\square GL-RF
Softbound \$8.95

study for the NEW LIcense examinations

AMECO AMATEUR LICENSE GUIDES

by Martin Schwartz, W2OSH

Each of these useful books contains a sample FCC-type examination, plus the FCC sludy questions along with easy-to-understand answers. The questions are grouped according to subject for easier study. Novice. Technician and Advanced Guides include special addendum covering latest FCC exams! Extra Class adden-
dum will be rushed to you when released (early November)
[]16-01 Advanced Class - 64 pages, © $1980-\$ 1.75$
[117-01 Exira Class - 64 pages, (c) 1979 - $\$ 1.75$
[]7-01 Novice Class License Guide - 32 pages, © $1979-\$ 1.00$
[]12-01 General Class License Guide - 64 pages, © 1979 - $\$ 1.50$

AMATEUR RADIO THEORY COURSE Revised 1980!

A complete, well explained, home study course in radio theory, from elementary electronics to antennas, covering the requirements for the Novice, Technician, and General Class Amateur License. Each of 14 lessons is followed by practice questions and "FCC Type" examination questions similar to those in the Novice and General Class exams. A complete reprint of the FCC Amateur Radio Rules and Regulations is also provided. Even if you have no prior background in electronics, you'll tind this latest revised edition an excellent way to get yourself on the air. 320 pages. Revised 1980.
$\square 102-01$
Softbound $\$ 6.95$

FEDERAL FREQUENCY DIRECTORY edited by Robert Grove

It's the only complete guide to US Government communication stations available today. The author spent many hours compiling this comprehensive listing. First of all, stations are conveniently listed by frequency. Then each station is categorized by which agency or department it is and where it is located. About the only stations missing are the very top secret services. Without a doubt, this book is of great interest to both SWL's and hams alike. Over 100,000 listings. (c) 1980
\square GE-FD
Softbound $\$ 14.95$

10-METER FM FOR THE RADIO AMATEUR by Dave ingram, K4TWJ

A new, unique single-volume collection of 10 meter FM reference material tor the radio amateur interested in this growing facet of Ham Radio. Features: available equipment, propagation, mobile and fixed station operation, repeaters, antennas and FM theory. Easy to read format with numerous illustrations. © 1980,140 pages.
$\square \mathrm{T}-1189$
Softbound \$4.95

Ham Radio's
Bookstore
Greenville, NH 03048
FROM:
NAME CALL
ADDRESS
CITY \qquad STATE \qquad ZIP
\square Master Charge
\square Check or M.O. Enclosed Exp \qquad Bank

SHIP TO (if different from above)
NAME \qquad CALL
ADDRESS
CITY STATE \qquad

CALL 603-878-1441
TOLL-FREE MINIMUM \$10.00 ORDER PLEASE

Catalog*	titie	ory.	Price	total
PLEASE INCLUDE \$2.55 for CALLBOOK SHIPPING Prices subject to change without notice.			SUBTOTAL SHIPPING TOTAL	
			\$2.00	

FAST SCAN ATV

WHY GET ON FAST SCAN ATV?

- You can send broadcast quality video of home movies, video tapes, computer games, etc, at a cost that is less than sloscan.
- Really improves public service communications for parades, RACES, CAP searches, weather watch, etc.
- $D X$ is about the same as 2 meter simplex - 15 to 100 miles. ALL IN ONE BOX

TC-1 Transmitter/Converter Plug in camera, ant., mic, and TV and you are on the air. Contains AC supply, T/R sw, 4 Modules below \$ 399 ppd

PUT YOUR OWN SYSTEM TOGETHER

PACKAGE SPECIAL all four modules \$239 ppd

TXA5 ATV Exciter contains video modulator and x tal on 434 or 439.25 mHz . All modules wired and tested \$89 ppd PA5 10 Watt Linear matches exciter for good color and sound. This and all modules run on 13.8 vdc. $\$ 79$ ppd TVC-2 Downconverter tunes 420 to 450 mHz . Outputs TV ch 2 or 3 . Contains low noise MRF901 preamp. $\$ 55$ ppd FMA5 Audio Subcarrier adds standard TV sound to the picture \$ 29 ppd SEND FOR OUR CATALOG, WE HAVE IT ALL
Modules for the builder, complete units for the operator, antennas, color cameras, repeaters, preamps, linears, video ider and clock, video monitors, computer interface, and more. 19 years in ATV.
Credit card orders call (213) 447-4565. Check, Money Order or Credit Card by mail.

CONTESTING?

THE NEW LOW COST
AEA CONTEST KEYER MODEL CK-1 WILL MAKE YOU MORE COMPETITIVE THAN EVER!
s129.95
SUGGESTED AMATEUR NET

- Automatic Serial Number Generator From 01 to 9999.
- 500 Character Soft Partitioned ${ }^{\text {TM }}$ Memory That Can Be Divided Into as Many as 10 Messages.
- Exclusive AEA Memory Editing Capability.
- Two Presettable Speeds With Fast Recall Plus Stepped Variable Speed Selection.
- lambic Operation From 1 to 99 wpm and Complete Weighting Control.
- Extreme R.F. Immunity, Will Key Any Modern Transceiver, Operates from 12 ± 3 Volts D.C.

CALL 505-623-7388 TODAY
Pecos Valley Amateur Radio Supply
112 WEST 1st • ROSWELL, NEW MEXICO 88201

\triangle A $\begin{aligned} & \text { Brings you the } \\ & \text { Breakthrough! }\end{aligned}$

trans com inc.

1021 Touch Tone Decoder
The 1021 Touch Tone decoder is ideal to repeater control. Design your own or use with our 102 DTMF Controlle

Features

* Decodes All 16 Digits
* Binary and Strobe outputs as well as 16 discreet outputs
* 5 VDC or $7-20 \mathrm{VDC}$ operation
* Current consumption of 4 mA @5VDC
* Measure $3.5^{\prime \prime} \times 1.9^{\prime \prime} \times 4^{\prime \prime}$
* Dialing speed to 20 PPS

PRICED AT \$154.95
401 Sub-Audible Tone Encoder For the ICOM IC2A/AT

PRICED AT \$29.95

The model 401 features * Fits IC2A/AT and most other hand heid radios

* Compatible with PL, CG. and most other CTCSS systems
* Fully tuneable from 76.0 Hz to 251 Hz
* Operating voltage is $7-15 \mathrm{VDC}$ (34 4 mA
\star Adjustable tone level, 0-2 VPP
* Small size $1.0^{\prime \prime} \times .6^{\prime \prime} \times .3^{\prime \prime}$

Send check or money order. Use VISA or Master Charge IL residents add $51 / 4 \%$ state tax plus $\$ 2.00 \mathrm{~S} 8 \mathrm{H}$ To order or for more information contact:

trans corn inc
1104A Ridge Ave., Lombard, IL 60148 (312) 932-1491

BEAT YOUR BATTERIES!

OPERATE your SYNTHESIZED HT from any $13-30 \mathrm{v}$ D.C source-Auto. Truck, Light Aircraft (12 or 28 v system), Home Power Supply!
STEWART's New BATTERY-BEATER provides the proper REGULATED voltage for your rig and plenty of current for CONTINUOUS FULL POWER TRANSMITI A11 day travel, all evening simplex Net with NO QRT TO RE-CHARGE

- NOT a battery charger but a FULL POWER SOURCE with Fused Circuit to protect your rig!
- RUGGED ALUMINUM CASE (except ICOM unit is built into 1C-BP4 case for slide on/slide off power supply change!
-YOUR NiCads REMAIN IN PLACE (except ICOM). Simply - YuUR NiCads REMAN IN PLACE INSTANT PORTABILITY!
umple
- DESIGNED by an engineer from NASA's Jet Propulsio Laboratory with components rated 50% beyond
requirements!
- WIRED JACK (except ICOM) and detailed installation instructions supplied!
- 5 FI . power cord. VELCRO pads supplied to mount anywhere! 1 FULL YEAR WARRANTY
-PRICE: A11 models- $\$ 25.00$ Post paid. Ca Res, add 51.50 Tax. C.0.0.'s- You pay Postane and C.O.D. fees.
NOW AVAILABLE for TEMPO. - KENMDOO TR 2 for TEMPO $\mathrm{S}-1,5-2,5-5$, ICOM IC TR-2400 (Retains Memory 1). and PHONE: 1 -213-357-7875 Collect for C. O.D. STEWART aWDS F.U. Box 2335 I FWINDALE, CA. 9170

5 MODE KEYBOARD

Sends Morse, Baudot and ASCII from keys or Morse from paddle. Also random CW with lists for practice. Meters for speed and buffer. Message memories, editing, all prosigns. 110 Baud ASCII, 45.45 Baud Baudot. Continuous control of speed, weight, pitch and volume. PTT, KOS control.

KB-4900 \$37995

Write for information:
CURTIS ELECTRO DEVICES INCORPORATED

BOX 4090
MOUNTAIN VIEW, CA 94040 TELEPHONE (415) 494-7223

Handful of POWER
Ask about our 50 and 100 watt amplifiers for use with low-power hand-held radios!

Give your low-power 2-meter rig real punch by delivering a potent 25 -watt signal with only two watts of drive (also available set up for 200 milli-watts drive). Compact and convenient to mount VoCom's Model 2C025 is ideal for car, boat, or anywhere you've got a 12 VDC source. At only $\$ 84.95$ ($\$ 99.95$ for 200 mW drive), it's the perfect companion for your Drake, Encomm, Henry, Icom, Kenwood, Motorola, Standard, Wilson, Yaesu or other 2-meter FM portable!

- 2 or 2 watt nominal drive (specify)
- 2 watt model delivers $\mathbf{1 5 - 2 0}$ watts with only one watt of drive
- 10 MHz bandwidth for CAP or MARS
- Meets all applicable FCC specifications
- 200 mW drive model permits operating Icon IC-2A or Yaesu FT-207R on their battery-saving low-power mode
- Only \$84.95 (\$99.95 for $\mathbf{2 0 0} \mathbf{~ m W}$ drive)

Available now from your local amateur radio dealer or order direct: V B B 1 219, Prospect Heights. IL 60070 PRODUCTS CORPORATION St (312) 459-3680
$W_{\text {heation }}^{\text {sunday. jan }}$ Community

A Amateurs

 Over the hills and through the vow we, to the WHF ATOYHAMFEST go \ldots bargains and pros and goodies, all sizes, they always put cur a great show!

ARLINGTON PARK EXPO CENTER
ARLINGTON HEIGHTS, ILLINOIS
SPONSORED BY WCRA BOX ASL WHEATON, IL

60187

\section*{| INFO | $\left.\begin{array}{lll}\text { GENERAL WB9PWM } & 312 / 629.3296 \\ \text { COMMERCIAL WB9TTE } & 312 / 766-1684\end{array}\right)$ |
| :--- | :--- | :--- | :--- |}

ALL BAND TRAP ANTENNAS!

- COMPONENTS -

\square Amphenol connectors

- B \& W coils, switches, antennas
\square Hammond and LMB enclosures
\square Jackson dials and drives
\square J.W. Miller parts
\square Knobs and shaft couplers
\square Millen components
\square Multronics roller inductors
\square Padders and trimmer capacitors
\square Resistors, capacitors, inductors
\square Semiconductors
\square Toroids, cores, beads, baluns
\square Variable capacitors:
Cardwell - E.F. Johnson
Hammarlund - Millen
\square Wire and cable

- KITS -

Microcomputer-based Contest Meyer (hr 1/81) partial; CMOS 2-Meter Synthesizer (hr 12/79) partial; $40-$ Meter QRP Transceiver ($\mathrm{hr} 4 / 80$) partial or complete: Split-band Speech Processor (hr 9/79); IARU Rx and Tx (QST 4/78 \& 12/78): W1JR Broadband Balun (hr 4/79): R-X Noise Bridge (hr 2/77): Memory IcuKeyer (hr 4/79) boards only.

Catalog 25 cents

Box 411H, Greenville, NH 03048 (603) 878-1033
\rightarrow CIIIII lom

PRETUNED- COMPLETELY ASSEMBLED ONLY ONE NEAT SMALL ANTENNA FOR UP TO 7 BANDS GESTED HOUSING AREAS -APARTMENTS LIGHT - STRONG - ALMOST INVISIBLE!

FOR ALL MAKES \& MODELS OF AMATEUR TRANSCEIVERS TRANSMITTERS GUARANTEED FOR 2000 WATTS SSE 1000 WAT ALL CLASS AMATEURS

COMPLETE AS SHOWN with 90 ft . RGSBU-52 ohm redline, and PL259 connector, insulators, 30 ft . molded, sealed, weatherproof, resonant traps $1^{\prime \prime} X 6^{\prime \prime}$-you Just switch to band desired for excellent worldwide operation - transmkting and recieving! Low SWR over all bands - Tuners usually NOT NEEDED I Can be used as inverted V's - slopers - in attics, on building tops or narrow lots. The ONLY ANTENNA YOU WILL EVER NEED FOR ALL DESIRED BANDS - WITH ANY TRANSCEIVER - NEW - EXCLUSIVEI NO BALUNS NEEDED 80-40-20-15-10-6 meter - 2 trap --. 104 ft . with 90 ft . RG5 8 C - connector -Model 9988UA ... $\$ 69.95$
 SEND FULL PRICE FOR POSTPAID INSURED. DEL, IN USA. (Canada is $\$ 5.00$ extra for postage - clericalcustoms etc.) or order using VISA - MASTER CHARGE - CARD - AMER. EXPRESS. Give number and ex. date. Ph 1-308-236-5333 9AM-6PM week days. We ship in 2-3 days. ALL PRICES WILL INCREASE SAVE - ORDER NOWI All antennas guaranteed for 1 year. 10 day money back trial if returned in new condition Made in USA. FREE INFO. AVAILABLE ONLY FROM
WESTERN ELECTRONICS Dept. AR-
Kearney, Nebraska, 68847

AAFFORDABLE CW KEYBOARD

Transmits perfect Morse Code * Built-in 16 character buffer * Internal speaker and sidetone * Reed relay output eliminates keying problems * All solid state circuits and sockets for reliability * Speed range 5-45 WPM * Perfect companion to our MORSE-A-WORD CW code reader.
MORSE-A-KEYER KIT, model MAK-K, Complete kit of parts \& manual \$159.95 MORSE-A-KEYER, model MAK-F, Factory wired \& tested . . $\$ 205.00$ - MORSE-A-KEYER ESSENTIAL PARTS KIT, modeI EPK-K. \$ 69.95
(Essential parts kit for home-brewers consists of pc board, board parts and manual.
You supply 'ASCII keyboard, cabinet, power supply \& miscellaneous parts.)

- Send check or money order. Use your VISA or MasterCard. Add $\$ 5.00$ shipping and * handling for Continental U.S. Wisconsin residents add 4% Wisconsin State Sales Tax.
- Micractalat Corporation $\begin{aligned} & \text { Cost Office Box 513HR, Thiensville, Wisconsin } 53092\end{aligned}$

Quality

600 Hz 6-Pole First - IF Filter for Drake R-4C

 ithation Buth the exating titer and oun CF 600.6 con be mounted in the erecire: and triar swithed to tetan phone capabilites CF 600/6 $\$ 80.00$ New relay Imith kit with PC board $\$ 45.00$.
Superior 8-Pole CW Selectivity for TR-4s
 Switch and mounting kit $\$ 1000$
Signal/One CX-7, CX-11 8-Pole CW Filter All purpone CW bandwidth, low losk. 350 Hz ldeas tor RTTY C5 350/8 $\$ 12000$

Atlas Superior SSB Selectivity

 515000
European amatruts prease contuct Ham. Radio, Pontach 120, CH 5702 , Nieder
ient, in Switartiand, and ingompex:
Germany, tor the rest of the continent
16-Pole R-4C SSB!
 and content work Manerum ikint velectivit mith max. mum inteligipility Shape tactoo 13 Less than 2000 Hz at 6 de, less than 2600 Hz at 60 de Pluay disctiv into

250 Hz and 3 kHz 8-Pole Filters for R-7, TR-7, R-4C
 (two AM biter, ,elay witch kit tor R. 4 C S 53900 CF $3 \mathrm{~K} / 8$
 Other tandwitthe wasiable
Sherwood Engineering Inc.
1268 South Ogden St.
Denver, Colo. 80210
(303) 722-2257

Money back if not satisfied Add $\$ 3$ per order shipping. $\$ 6$ overseas air
Dealer Inquiries Welcome vish

New low profile design.

Here is the famous Palomar Engineers high power tuner in a new compact size. Only $51 / 2^{\prime \prime} \times 14^{\prime \prime} \times 14^{\prime \prime}$ yet it has all the features, works from 160 through 10 meters, and works with coax, single wire and balanced lines. And it lets you tune up without going on the air!

WE INVESTIGATED

All tuners lose some if power. We checked several popular tuners to see where the losses are. Mostly they are in the inductance coil and the balun core.
So we switched from \#12 wire for the main inductor to $1 / 4^{\prime \prime}$ copper tubing. It can carry ten times the rf current.

IMPOSSIBLE FEAT

The biggest problem with tuners is getting them tuned up. With three knobs to tune on your transceiver and three on the tuner and ten seconds to do it (see the warning in your transceiver manual) that's $11 / 2$ seconds per knob.

We have a better way: a built-in 50 -ohm noise bridge that lets you set the tuner controls without transmitting. And a switch that lets you tune your transmitter into a dummy load. So you can do the whole tuneup without going on the air. Saves that final; cuts QRM

For further details on this exciting new high-power low-loss, easy-to-use tuner send for our new brochure. Or visit your Palomar Engineers dealer

Model PT-3000, \$349.50. To order send $\$ 10.00$ shipping/handling. California residents add sales tax.

Palomar Engineers

Box 455, Escondido, CA. 92025 Phone: [714] 747-3343

melfus V check-off

. for literature, in a hurry - we'll rush your name to the companies whose names you "check-off"

Place your check mark in the spacefoetween name and number. Ex: Ham Radio $\sqrt{234}$

Ace Comm. __ 850
AEA __ 677
Aluma __ 589
Amidon __ 005
Applied Inv. __ 862
Associated Radio __ 892
Atiantic Surplus *
Barker __ 015
Barry *
Bauman __ 017
Bencher ___ 629
Bilai ._. 817
Budwig ___ 233
Caddell Coil ___ 244
Comm. Concepts __ 797
Comm. Spec. 330
Curtis Electro __ 034
DCO __ 324
DX Bulletin *
Dave*
Drake*
ETCO __ 856
E. T. O. *
Encomm _ 888
Erickson Comm.
Fair Radio __ 048
Fox-Tango __ 657
G \& C Comm. 754
GLB _ 552
Grove ___ 848
Hal __ 057
Hal-Tronix _ 254
H. R. B. 150
Ham Shack __ 879
Handi-Tek ___ 893
Hatry __ 889
Heath __ 060
Henry ___ 062
1com*
Int. Crystal __ 066
Jameco ___ 333
Jan__067
Jensen ___ 293
Jones _ - 626
Kantronics*

Kenwood *
L-Tronics ___ 576
MFJ ___ 082
MHz Elec. - 415
Madison _- 431
Microcraft ___ 774
Nicrowave Filter 637
N.P.S. _ 866

NRI Schools*
Nemal *
OK Machine *
Oak Hill Academy A.R.S. *
Orlando Hamcation *
P. Elec.__ 766

Palomar Eng. *
Callbook ___ 100
Radiokit __. 801
Radio Warehouse *
Radio World *
Ramsey ___ 442
S.F A.R.S. __ 640

Semiconductors
Surplus __ 512
Sherwood ___ 435
Skytec __ 704
Spectronics __ 191
Spec. Int._- 108 Stewart Quads __ 890
Telrex*
Ten-Tec*
Trans Com__ 891
Tropical Hamboree *
UNR-Rohn ___ 410
Universal Comm. __ 885
V.J Products ___ 855
Van Gorden __ 737
Vanguard Labs __ 716
Varian ___ 043
Vibroplex __ 870
VoCom - 857
Webster
Assoc. 423
Western Elec. *
Wheaton Hamfest *
Yaesu _ 127
*Please contact this advertiser directly.
Limit 15 inquiries per request.

January, 1981
Please use before February 28, 1981

Tear off and mail to
HAM RADIO MAGAZINE - "check off"
Greenville, N. H. 03048
NAME.

CALL

STREET

CITY

STATE

DON \& MIKE'S
 EQUIPMENT EXTRAVAGANZA

Cubic-Swan 103. Call
Astro 150A. $\$ 779.00$
Astro 100MXA. 499.00
Mirage B23 1 watt-30 watt
amp 89.95
DSI 5600A w/Ant/Ac 185.00
Robot 800 699.00
Cushcraft A3 Tribander . . . 169.00
AEA Morsematic 169.00
Bird 43, Slugs Call
CDE Ham-4 Rotor 169.00
Ham-X 239.00
BT-1 HFIVHF Rotator. 79.95
FDK Palm 2 Handie with BPIAC
149.00

Cetron, GE 572B 34.00
Kenwood Service Manuals Stock
10.00 ea.

Telrex TB5EM 425.00
Telrex Monobanders Call
Santec HT-1200
Synthesized
339.00

Order Your KWM380 Now!
 Old Pricing \& Free Goods!

Adel Nibbling Tool 8.95
Janel QSA5 41.95
Rohn Tower 20\% off dealer 25G, 45G Sections
Belden 9405 Heavy Duty
Rotor Cable 2\#16, 6\#18... 38¢/ft
Belden 8214 RG-8 Foam 32థ/ft
Belden 9258 RG-8 Mini-coax. 19¢/ft
Alliance HD73 Rotor
109.95

Amphenol Silverplate
PL259.
1.00

ICOM 255A 2M Synthesized 319.00
w/touch-tone mike (limited qty.)
ICOM 260A 2M SSB/FM/CW 429.00

Late Specials:

Kenwood TS-520SE, TS-130S . Call
ICOM IC2AT/TTP/NICAD . . 229.00
Bearcat 220-\$299.00 300-399.00
Lunar 2M4-40P
109.00

Call for TS830S, TS130S plus accessories

MASTER CHARGE•VISA

All prices fob Houston except where indicated. Prices subject to change without notice, all items guaranteed. Some items subject prior sale. Send letterhead for Dealer price list. Texas residents add 6% tax. Please add postage estimate $\$ 1.00$ minimum.

Electronics Supply, Inc.
1508 McKinney
Houston, Texas 77010 713/658-0268

Advertisers ${ }^{N} \mathrm{~N}_{\mathrm{dex}}$

c.	
Aluma Tower Company	
Amidon Associates.	
Applied Inve	
Associated Rad	
Atlantic Surplus Sale	
Barker \& Williamson, In	
Barry Electronics	
Bauman, R.H., Sales Company	
Bencher, Inc	
Bilai Company	
Budwig Mfg. Compa	
Caddell Coil Corp	
Communication Concepts, Inc.	
Communications Specialists	
Curtis Electro De	
DCO,	
DX	
Drake, R. L., Co	
Ehrhorn Technological Operations	
Encomm, Inc...	
Engineering Consulting Services	
Erickon Commun	
Fair Radio SalesFox-Tango Corp.	
Fox-Tango Corp	
G \& C Communications	
GLB Electronics	
Grove Enterprises	
Hal Communications Corp. 1.19Hal-Tronix 47	
Hal-TronixHam Radio's Bookstore . .	
Ham Radio's Bookstore	
The Ham Shack	
Handi-TekHatry Electronics	
Heath Company	
Henry Radio Stores Cover Icom America, Inc.	
International Crystal Mfg. Co.	
Jan Crystals	
Jensen Tools, Inc. 83Jones, Marlin P. \& Associates 83	
Kantronics . 85, 87	
Trio-Kenwood Communications,	
L-Tronics	
MFJ Enterprises . 2MHz Electronics 92, 93, 94, 95, 96, 97, 98, 99, 100, 101	
Madison Electronics Supply 110, 112	
Microcraft Corporation	
Microwave Filter, Inc. . .	
N.P.S. Inc..	
NRI Schools. . . .	
Nemal Electronics.	
OK Machine \& Tool.	
Oak Hill Academy Amateur Radio SessionOrlando Harncation	
Orlando Hamcation	
P.C. Electronics . 1010	
Palomar Engineers . 102, 109	
Radio Amateur Callbook.	
Radiakit . 8108Radio Warehouse	
Radio World	
Ramsey Electronics	
S-F Amateur Radio Services.	
Semiconductors Surplus. $73,74.75$	
Sherwood Engineering . 109	
Skytec .	
Spectrum International.	
Stewart Quads . . .	
Telrex Laboratories.	
Ten-Tec.	
Trans Com, Inc. 1071Tropical Hamboree 107	
UNR-Rohn...	
Universal Communications.	
V-J Products	
Van Gorden Engineering Vanguard Labs	
Varian, Eimac Division . Cover IV	
Vibroplex Co., Inc. 89	
VoCom. 108Webster Associates . 848Wer	
Western Electronics . 108Wherer III	

WANTED FOR CASH
 490-T Ant. Tuning Unit (Also known as CU1658 and CU1669)

 618-T Transceiver (Also known as MRC95, ARC94, ARC102. or VC102)

Highest price paid for these units. Parts purchased. Phone Ted, W2KUW collect. We will trade for new amateur gear. GRC106, ARC105, ARC112, ARC114, ARC115, ARC116, and some aircraft units also required.

DCO, INC.
10 Schuyler Avenue
Call Toll Free
No. Arlington, N. J. 07032
(201) $998-4246$

Evenings (201) 998-6475

WE BACK EVERYTHING WE SELL WITH OUR P'ERSONAL GUARANTEE PRICES F.O.B. HOUSTON
PRICES SUBJECT TO CHANGE WITHOUT NOTICE
ITEMS SUBJECT TO PRIOR SALE

MIIISIN
 master charge +

the

What's so new about the 902?

- WARC Bands Factory Installed!

Your FT-902DM won't be "obsoleted" when the new bands become available.

- True Reading Frequency Counter!

No need to recalibrate when changing bands or modes.

- Diode Ring Receiver Front End!

The industry-standard dynamic range of the
FT-901DM is now better than ever.

- Curtis $\mathbf{8 0 4 4}$ IC Keyer!

Full dot and dash memory are now provided on the built-in keyer.

What's more, the FT-902DM retains these great features of the '901:

- Variable IF Bandwidth
- Built-in memory system
- Audio peak CW filter
- IF rejection tuning
- SSB, CW, AM, FM and FSK
- Digital plus analog readout
- RF speech processor
- Highly stable PLL local oscillator
- Plug-in modular construction
- AC and DC operation built in

The FT-902DM . . . designed to give you the competitive edge!

EIMAC's new high-mu triode/cavity combination. It takes the hassle out of 10 kW VHF transmitter design.

Relax. Now EIMAC offers you the best triode available and a cavity that has been custom designed for it. All you have to do is design them in.

- The advantages are impressive. EIMAC's ceramic-metal high-mu triode (3CX10000U7) gives you peak sync power output of 10 kW and a stage gain of 14 dB . That's 2 dB more than with comparable tetrodes.

And there's more. Driving requirements are reduced; screen power supply and screen circuitry are eliminated; and cooling requirements are lessened. The result is ease of maintenance and substantial cost reduction.

There are two EIMAC cavities for your 10 kW combination, the CV-2240 for channels 2-6, and the CV-2250 for channels 7-13. For further information contact Varian, EIMAC Division, 301 Industrial Way, San Carlos, California 94070, (415) 592-1221. Or call any of the more than 30 Varian Electron Device Group Sales Offices throughout the world.
varian

[^0]: *Refer to Eimac Bulletin 3950, which is the technical data sheet for the 8877 (3CX1500A7).

[^1]: -Available from Small Parts, Inc., 6901 N.E. Third Avenue, Miami, Florida 33128. Ask for their catalog. They have a wealth of hard-to-find parts available in small quantities.

[^2]: *Custom-made coils may be obtained at nominal charge. Send a SASE for details to the author.

[^3]: -DATAK Corporation, 65 71st Street, Guttenberg, New Jersey 07092.

[^4]: ${ }^{6}$ Erie registered trademark.

[^5]: -Beamwidth 600 astronomical units (AU); the earth's orbit is two AU in diameter and Pluto's is about 80 AU .

[^6]: *One SNU corresponds to 10^{-36} captures per chlorine atom per day, or one capture per day among a trillion, trillion, trillion atoms.

[^7]: \dagger A copy may be obtained from the author for $\$ 3.00$, which covers reproduction and postage costs.

[^8]: *The microcomputer is able to do several things seemingly at once due to execution speed and internal IC circuitry.

[^9]: *Drilled and etched PC boards and some parts are available from RADIOKIT, Box 411, Greenville, N. H. 03048.

[^10]: *I will supply PC boards, kits, or completed units to those submitting proof of visual impairment, at my cost. The number and values of scales desired, and the replaced meter information (resistance and full-scale current), must be specified when inquiring about completed units and kits. Please send a self-addressed stamped envelope with your inquiry - KB7JWW

[^11]: *Word is a term used to describe several bits in parallel for a specific data or value function.

 The CD4042 latch in U10 is not a conventional D flip-flop. Holding polaritypin 6 high with clock-pin 5 high will pass any D input at pin 7 to output pin 10. D input will be latched into the output when pin 5 goes low; output is held (latched) until the clock returns to a high state.

[^12]: Author WB7QYB has a versatile adapter with a noncritical interface. While bells and whistles have been kept to a minimum, enough unused IC functions are available to experiment with your own additions. For example, the preset input pins of U3 could be used with a separate switch bank to add individual selection. You could scan eight frequencies with the CHANNEL SELECT switch set at 8 then use the other eight memory locations for fixed frequencies. A bit of study of the CMOS data sheets will show how this could be done. It has lots of possibilities. Editor.

[^13]: *Normalized charts have all impedances divided by characteristic impedance of a line. These charts can be used with any impedance.

