- an FSK adapter . . 12
- buying parts by mail16
- field-strength meter42
- the W8JK tenna

FSK adapter for SSB transmitters

$1 / \Gamma^{2}$ focus on
communications technology

Tempo was the first with a synthesized hand held for amateur use, first with a 220 MHz synthesized hand held, first with a 5 watt output synthesized hand held... and once again first in the 440 MHz range with the $\mathrm{S}-4$, a fully synthesized hand held radio. Not only does Tempo offer the broadest line of synthesized hand helds, but its standards of reliability are unsurpassed...reliability proven through millions of hours of operation. No other hand held has been so
thoroughly field tested, is so simple to operate or offers so much value. The Tempo S-4 offers the opportunity to get on 440 MHz from where ever you may be. With the addition of a touch tone pad and matching power amplifier its versatility is also unsurpassed.
The S-4...\$349.00
With 12 button touch tone pad. $\$ 399.00$
With 16 button touch tone pad... $\$ 419.00$
S-40 matching 40 watt output
13.8 VDC power amplifier... $\$ 149.00$

Tempo S-I

The first and most thoroughly field tested hand held synthesized radio available today. Many thousands are now in use and the letters of praise still pour in. The S-1 is the most simple radio to operate and is built to provide years of dependable service. Despite its light weight and small size it is built to withstand rough handling and hard use. Its heavy duty battery pack allows more operating time between charges and its new lower price makes it even more affordable.

Tempo S-5

Offers the same field proven reliability, features and specifications as the S-1 except that the S-5 provides a big 5 watt output (or 1 watt low power operation). They both have external microphone capability and can be operated with matching solid state power amplifiers (30 watt or 80 watt output). Allows your hand held to double as a powerful mobile or base radio.
S-30... $\$ 89.00^{*}$
S-80...\$149.00*
-For use with S-1 and S-5

Tempo S-2

With an S-2 in your car or pocket you can use 220 MHz repeaters throughout the U.S. It offers all the advanced engineering, premium quality components and features of the S-1 and S-5. The S-2 offers 1000 channels in an extremely lightweight but rugged case. If you're not on 220 this is the perfect way to get started. With the addition of the S-20 Tempo solid state amplifier it becomes a powerful mobile or base station. If you have a 220 MHz station, the $\mathrm{S}-2$ will add tremendous versatility. Price... $\$ 349.00$ (With touch tone pad installed...\$399.00) S-20...\$89.00

Specifications:

Frequency Coverage: 440 to 449.995 MHz Channel Spacing: 25 KHz minimum
Power Requirements: 9.6 VDC
Current Drain: 17 ma-standby 400 ma-transmit (1 amp high power) Antenna Impedance: 50 ohms
Sensitivity: Better than .5 microvolts nominal for 20 db
Supplied Accessories: Rubber flex antenna 450 ma ni-cad battery pack, charger and earphone
RF output Power: Nominal 3 watts high or 1 watt low power Repeater Offset: $\pm 5 \mathrm{MHz}$

Optional Accessories for all models

12 button touch tone pad (not installed): $\$ 39$ - 16 button touch tone pad (not installed): $\$ 48$ - Tone burst generator: $\$ 29.95$ - CTCSS sub-audible tone control: $\$ 29.95$ - Leather holster: $\$ 20$ - Cigarette lighter plug mobile charging unit: \$6

TEMPO VHF \& UHF SOLID STATE POWER AMPLIFIERS

Boost your signal. . . give it the range and clarity of a high powered base station. VHF ($\mathbf{1 3 5}$ to $\mathbf{1 7 5} \mathbf{~ M H z}$)

Drive Power	Output	Model No	Price
2W	130 W	$130 A 02$	$\$ 209$
10 W	130 W	130 A 10	$\$ 189$
30 W	130 W	130 A 30	$\$ 199$
2 W	80 W	80 A 02	$\$ 169$
10 W	80 W	80 A 10	$\$ 149$
30 W	80 W	80 A 30	$\$ 159$
2 W	50 W	50 A 02	$\$ 129$
2W	30 W	$30 A 02$	$\$ 89$

UHF (400 to 512 MHz) models, lower power and FCC type accepted models also available.

2050 S. Bundy Dr., Los Angeles, CA 90025 931 N. Euclid, Anaheim, CÁ 92801
213) 820-1234
(714) 772-9200 Butler, Missouri 64730
816) 679-3127

Heathkit-SB-221 2kW Amplifier has the power to punch your signal through. Rugged Eimac $3-500$ Z's deliver 2000 watts PEP and load to 1 kW in on both CW and RTTY. A broad-band, pretuned pi-input delivers maximum efficiency with extremely low distortion over the 80 to 15 meter spectrum. And now there's a tuner to put that power to efficient use.
Heathkit SA-2060 Deluxe Antenna Tuner puts you in complete control with continuous tuning in the 160 to 10 meter spectrum. Built-in dual wattmeter/SWR bridge makes tuning a snap. Bypass switch automatically disconnects tuner for dummy load or beam. It's a super tuner.

Build-it-yourself and save. Find out how easy it is to build it yourself and how much you can save. Send today for the latest free Heathkit Catalog or pick one up at your nearby Heathkit Electronic Center.*

CDAKE 7-Line Family

A pacesetter since 1943, Drake led in 1963 with 9 MHz if transceiving, and now with 48 MHz i-f "Up Conversion". . . Drake brings you tomorrow's state of the art today.

TR7

solid state continuous coverage synthesized hf system

Model 1336

Continuous Frequency Coverage - The TR7 provides continuous coverage in receive from 1.5 to 30 MHz . Transmit coverage is provided for all amateur bands from 160 through 10 meters. The optional AUX7 Range Program Board allows out-of-band transmit coverage for MARS, Embassy, Government and Commercial services as well as future band expansions in the 1.8 through 30 MHz range.* The AUX7 Board also provides 0 through 1.5 MHz receive coverage and crystal-controlled fixed-channel operation for Government, Amateur or Commercial applications anywhere in the 1.8 to 30 MHz range.

Synthesized/PTO Frequency Control-A Drake exclusive: carefully engineered high-performance synthesizer, combined with the famous Drake PTO, provides smooth, linear tuning with 1 kHz dial and 100 Hz digital readout resolution. 500 kHz up/down range switching is pushbutton controlled.

Advanced, High-Performance Receiver Design-The receiver section of the Drake TR7 is an advanced, up-conversion design. The first intermediate frequency of 48.05 MHz places the image frequency well outside the receiver input passband, and provides for true general coverage operation without i-f gaps or crossovers. In addition, the receiver section features a high-level double balanced mixer in the front end for superior spurious and dynamic range performance.

True Passband Tuning - The TR7 employs the famous Drake full passband tuning instead of the limited range "i-f shift" found in some other units. The Drake system allows the receiver passband to be varied from the top edge of one sideband, through center, to the bottom edge of the opposite sideband. In fact, the range is even wider to accommodate RTTY. This system greatly improves receiving performance in heavy QRM by
allowing the operator to move interfering signals out of the passband, and it is so flexible that you can even transmit on one sideband and listen on the other.

Unique Independent Receiver Selectivity-Space is provided in the TR7 for up to 3 optional crystal filters. These filters are selected, along with the standard 2.3 kHz filter, by front panel pushbutton control, independent of the mode control. This permits the receive response to be optimized for various operating conditions in any operational situation. Optional filter bandwidths include 6 kHz for $\mathrm{a}-\mathrm{m}, 1.8 \mathrm{kHz}$ for narrow ssb or RTTY, and 500 Hz and 300 Hz for cw .

Broadband, Solid State Design-100\% solid state throughout. All circuits are broadbanded, eliminating the need for tuning adjustments of any kind. Merely select the correct band, dial up the desired frequency, and you're ready to operate.

Rugged, Solid State Power Amplifier - The power amplifier is internally mounted, with nothing outboard subject to physical damage. A Drake designed custom heat sink makes this possible. The unique air ducting design of this heat sink allows an optional rear-mounted fan, the FA7, to provide continuous, full power transmit on SSTV/RTTY. The fan is not required for ssb/cw operation, since normal convection cooling allows continuous transmit in these modes.

Effective Noise Blanker-The optional NB7 Noise Blanker plugs into the TR7 to provide true impulse-type noise blanking performance. This unit is carefully designed to maximize both blanking and dynamic range in order to preserve the excellent strong-signal handling characteristics of the TR7.

[^0]
ham radio magazine incorporating HOMRZODNS

volume 14, number 7
T. H. Tenney, Jr., W1NLB publisher and editor-in-chief Alfred Wilson, W6NIF editor
editorial staff
Martin Hanft, WB1CHO production editor
Joseph J. Schroeder, W9JUV
Leonard H. Anderson associate editors
W.E. Scarborough, Jr., KA1DX0 graphic production manage

Irene Hoilingsworth editorial assistant

Wayne Pierce. K3SUK
cover
publishing staff
J. Craig Clark, Jr.. N1ACH assistant publisher and advertising manager

Susan Shorrock circulation manager
ham radio magazine
s published monthly by Communications Technology. Inc Greenville, New Hampshire 03048 Telephone: 603-878.1441
subscription rates
United States: one year, $\$ 16.50$ two years, $\$ 28.50$; three years, $\$ 38.50$ Canada and other countries tia Surface Mail) one year, $\$ 24.50$; two years, $\$ 40.00$
three years, $\$ 57.00$
Europe, Japan, Africa livia Air
Forwarding Service one year, $\$ 28.00$
All subscription orders payable in United States funds, please listed on page 91

Microfilm copies are available from

contents

12 FSK adapter for SSB transmitters
Thomas B. Zeltwanger, WA3PLC

16 shopping for parts by mail
Karl Thurber, Jr., W8FX

26 10-meter preamp for the FT-101E
Dave Galley, K1NYK

30 ham radio techniques
Bill Orr, W6SAI

38 An audio amplifier for your handheld transceiver
Douglas A. Blakeslee, N1RM

42 field-strength meter for the high-frequency Amateur bands Ken Powell, WB6AFT

48 super beep circuit for repeaters Al Torres, KP4AQI

60 a new look at the W8JK antenna Frank Regier, OD5CG

64 a two-way ashtray for your car Herb Bresnick, KB2XM

The verdict is starting to roll in and it looks like a good one. As I write this several weeks before you see it, we're already starting to receive a number of our readers' questionnaires from the June issue. Thus far, an overwhelming majority of both ham radio and former HORIZONS readers have told us that they like our new combined magazine as well as or even better than before. Your comments have not come without some good criticism, but overall the consensus is quite positive.

After meeting with many of you at hamfests, club meetings, and in the course of our normal business activities we had felt that this would be the case. However, as good as intuition may be, it is very reassuring to know for sure that you are on the right course. Equally reassuring, if not even a bit more so, is the news from our accounting department. After over two years of almost consistent bad news, primarily caused by Ham Radio HORIZONS, we have been in the black since the first of February. It's quite exciting to have the whole ham radio organization back on a solid footing once again.

I'm sure you have already noted the thicker magazine we have been able to put out several times already this year, thanks to our good response from advertisers. Not only will this mean more pages, but it will also allow us to add some excellent new features in the months ahead. For instance, in September we will be introducing a new license upgrading series by Robert Shrader, W6BNB. Bob's book, "Electronic Communication," published by McGraw-Hill, now in its fourth edition, has become the leading authority in both the commercial and Amateur license study field. Bob will be putting all his great experience in this area to work for you, and I'm sure you'll find this one of the most readable and rewarding parts of our magazine each month.

In addition to a number of other good ideas that our own staff has been working on, you readers have given us a considerable number of new projects that are worthy of serious thought. We are finding a lot of excellent suggestions being enclosed with the many questionnaires we have received so far. Of course, these questionnaires are just starting to roll in now, so we'll probably really have our hands full in another week or so when we are looking at several times the number currently on my desk.

While we are on the subject of the questionnaire l'd like to ask again that if you have not already filled it out, why not take a few moments to turn to page 49 of our June issue and give us your thoughts on ham radio's new look. It's not often that you get an opportunity like this to help guide the future of what we hope is your favorite magazine.

In closing I'd like to thank all of you for your encouragement and support during our rather difficult transition period. It would have been a much greater task for all of us here at ham radio if we didn't feel that you were behind us in our efforts to bring you the very best magazine in Amateur Radio today.

Skip Tenney, W1NLB

COMHF Two Great Systems to Meet Your HF Needs

IC-2KL Solidstate Linear

16.720A Phone Patch

IC-720A. ICOM's Top of the Line HF System.

IC-720A. ICOM's full featured HF Xcyt...with top of the line features:

- 9 band TVRx (ell new WARC bands included) $160-10$ meters broedbanded.
- Geneml coverage receiver..0.1 to 30 MHz continuous tuning.
- Passband roling builein standera.

20 Dejul dith hy of mode Vro and fiequeng. 200 wid PEP fapu all solidstate.
c 200 wit Prpenput all solidente.

- Automatically bandwitches IC-2KL/AH1.
- 2 VFO's built-in standard.

C-2KL. 50 Broadband solidstate linear automatically bandswiched by the IC-720A, IC-730 (w/optional LDA unit), or IC-701... 1000 wat PEP inputicompact, no tuning required.
COX Phone Patch. Work direely with IC-T01, C-P0) of $10-730$...FCC certified.

1C-730. ICOM's Portable/Affordable System.

IC-730. ICOM's Affordable Portable HF Xcve Ideal for mobile/portable use with features found in no other unit in such a compact size:

- 8 bands Tx/Rx 80-10 meters broadbanded.
- IF shift standard/passband tuning optional.
- 200 watt PEP input...all solidstate.
- 2 VFO's built-in standard.
- Memories...one frequency per band:
- Compact size...only 3.7 in $(\mathrm{H}) \times 9.5$ in (WV) \times
$010.8 \mathrm{~min}(\mathrm{D})$.
IC-AHII. 5 band automatic bandswitching mobile antenna for use with IC-720A, IC-701, or IC-730 (w/optional LDA unit).

This month we welcome a guest editorial by well-known DXer and author Bob Locher, W9KNI, who has a few words to say about today's Amateur transceivers. You, also, are encouraged to offer your observations and opinions. Those we consider to be in the best interest of Amateur Radio will be selected for future issues. Please type your material on 8-1/2 by 11 -inch paper, double spaced, with 2 -inch margins.

I would like to remind readers who have not already done so to please complete the readers' survey form that appeared in last month's issue. We need your input Alf Wilson, W6NIF, Editor

In most respects, the state of the art of Amateur Radio equipment achieved the high-frequency operator's requirements around 1954, with the introduction of the Collins 75A-4/KWS-1 combination. These big black boxes were stable, with repeatable frequency readout to less than one-half kHz . They offered outstanding performance on SSB and CW, were reliable, and were a joy to operate. In fact, a lot of them are still in active service.
On the other hand they were large, expensive, did not offer transceive capability, and depended on "hollow state" technology. But they established a new benchmark of performance for Amateur equipment and inspired a succession of fine equipment, both from Collins and other manufacturers. Phone operators never had it so good.
Neither did CW operators. At last - stable receivers; stable enough to make really sharp CW filters usable - and a new generation of fine CW filters as well! And, stable transmitter VFOs whose outputs stayed put. Use of heterodyne techniques instead of multiplier VFOs made CW signals clean and chirp free, even on 10 meters.

The new SSB rigs required a new kind of amplifier, called a linear, and the old push-pull pair of 250 THs was obsolete. The new linears worked well on CW too, and didn't affect keying characteristics as did the old class C amplifiers; and they even had less TVI! The late fifties were great days for CW ops for sure, thanks to all that new SSB gear,

But then equipment design began to change. Collins brought out the KWM-1, and the dawn of the transceiver age arrived. It is certainly unnecessary to detail the success of this concept in high-frequency equipment. The convenience of operation for SSB and the reduction in costs and size made the concept a huge success.
In design, the early transceivers treated CW purely as an afterthought. There was no provision for CW filters in the receiver section, nor was there any provision for moving the frequency of the receiver slightly to accommodate different offsets. Little thought was given to waveform shaping of the keyed output. In justice, however, all the manufacturers of these transceivers also offered separate receiver/transmitter combinations that made fine CW equipment.

Then, transceiver sales began to far outstrip sales of separates, largely due to economic considerations - a transceiver cost little more than a receiver or a transmitter. In response, the more enterprising suppliers offered provision for CW filters in their transceivers and began to pay attention to the keyed waveform output. About this same time, paired separate receiver/transmitter combinations were discontinued, and this is pretty much where we find ourselves today

The current generation of transceivers, with few exceptions, have no capability for accurate zero-beating of another CW signal. The most guidance generally given is what the receiver offset is, if no receiver incremental tuning is in use. Beyond that, you're on your own.

What is the result of this? We have CW OSOs where the two stations walk up the band in tandem, each recentering the other in his receiver at each over. CW ops using transceivers usually end up getting creamed in pileups, because they can't accurately place their transmitted frequency. Even worse, many CW QSOs use two frequencies, separated by as much as 500 Hz , when only a single frequency is needed; but the transceiver-equipped operators can't find it. Obviously, this causes QRM.

Today, we even have a situation where two major manufacturers offer separate receivers matched to their transceivers, but with absolutely no realistic way to zero the transceiver's output in the "matching" receiver. What, then, is the value of the separate receiver?

There are ways to cure these deficiencies. The simplest technique is to see that the audio CW monitor is precisely equal in frequency to the differential frequency of the offset used between the transmitted and received frequency, with provision to key the monitor only. This is the method offered in the new Collins KWM-380.
A deluxe technique that would make transceivers as useful on CW as separates would be to make variable both the frequency of the CW monitor and the offset differential, with perfect tracking, so that the audio monitor only could be keyed, and then adjusted to zero beat the received station precisely. The additional cost would be negligible, and these techniques would work equally well with outboard VFOs.

BY POPULAR REQUEST. .

The Best Features Of Two Proven HAL RTTY Models Are Now Available In ONE Convenient New Unit-

The
DS2050 KSR

- Self contained RTTY and CW terminal -RTTY demodulator is now internal!
- Best features of BOTH the DS2000 and ST5000 in one package.
- Simplified connections to your transceiver with standard phono connectors.
- Front panel tuning meter (rear panel scope connectors).
- Both 170 Hz and 850 Hz shifts for receive and transmit.
- Full high voltage loop ${ }^{1}$ compatible for printers, keyboards, and tape transmitters (TD's).
- Full length $\mathbf{7 2}$ character lines-24 line screen.
- Pretype either 255 character transmit buffer or the full 1728 character screen.
- Two programmable HERE IS messages with CW ID.
- Keyboard Operated Switch (KOS) for automatic TX/RX control.
- Bright-dim display of received or transmitted text.
- 1-100 wpm CW; 60,66,75, 100, 133 wpm Baudot RTTY; 110 or 300 baud 2 ASCII RTTY.
- Word wrap-around, Unshift On Space (USOS), and Synchronous Idle Transmit.
- Edit as you type with WORD transmit mode.
- Built-in demodulator is a proven ST5000 demodulator, not a simple compromise.
'Use your own high voltage loop supply. ${ }^{2}$ External modem recommended for 300 baud.

WHEN OUR CUSTOMERS TALK WE LISTEN
HAL COMMUNICATIONS CORP.
BOX 365
URBANA, ILLINOIS 61801
217-367-7373

DS2050 \$649.00
MR2000 $\$ 169.00$
ESM914 \$169.00

protecting Amateur

 Radio
Dear HR:

Where are the hams with legal training, lawyers who understand electronics and who have a desire to serve the Amateur community while possibly making a buck, who have imagination and verve?

It was depressing to read in ham radio, March, 1981, a brief statement concerning an Amateur who had been sued by a neighbor for causing interference in the neighbor's stereo. The Amateur was ordered by a judge to cease operation. This item seems quite newsworthy to the Amateur community, but it happened in 1977 and I had not previously been aware of it.*

Some of us have heard of situations where hams have been forced to choose between giving up the hobby or spending large amounts in legal fees to fight for their rights, but there has been no communication of the facts to Amateurs on a current, national basis. Those situations evidently arise infrequently and in widely scattered areas so none of us know the full story. We need to become aware before many legal rulings become precedent setting, adversely affecting all of us. What is needed is a central clearing house where hams experiencing problems can seek and find relief through action taken by professionals in the fields of electronics and law. If every ham were to participate, the necessary supporting fee would be very low, and every ham could be encouraged to participate regardless of affiliation or lack of affiliation in any other organization. We must all stand together. If support were denied to any ham, and he were to lose in court, undesirable prece-

[^1]dents could adversely affect all hams.
In organizing there can be great strength, to wit, the National Rifle Association. We need such strength to protect us from the avarice of manufacturers who could build stereos immune to interference but reject that idea as too costly. Remember the rampant TVI problems of years ago? Nearly non-existent now, in part because of improved TV receivers.
If the logic used by the judge ordering an Amateur to cease operations were to be carried to its ultimate, we could shut down the airlines. At least, they come in 5 by 9 in my stereo.
We need to become organized. Won't someone take the initiative?

Donald E. Thomas, K2JIY Millville, New Jersey

Two organizations are available to help Amateurs with legal problems related to Amateur Radio: the ARRL through its Membership Services section and the Personal Communications Foundation (PCF), which provides an Amateur's attorney with information pertaining to the Amateur's problem. This information is furnished by attorneys who are members of the PCF. The PCF may be reached through Mr. Joe Merdler, Suite 203, 9036 Reseda Blvd., P.O. Box 812 Northridge, CA 91328. The phone number is (213) 349-6950.

county awards

Dear HR:

I am the Western States county award manager for the CHC award program. The CHC award program is active again through the efforts of interested Amateurs now assuming various responsibilities since the death of the former manager, Cliff Evans, K6BX.
The Western States part of the county award program encompasses Alaska, Hawaii, California, Oregon, Washington, Nevada, Arizona, Utah, Idaho, Wyoming, and Montana. The awards are available to both licensed Amateurs and SWLs.

Also available are the 10 K and 20 K U.S. Pacific awards, which are issued for confirmed contacts with 10,20 , or more of those prefixes issued to Amateurs in the islands under the jurisdiction of the U.S.A.

Another fine award is our version of the A-1 operator award. This is quite different from the ARRL A-1 Operators' Club, and is structured to allow recognition of superior Amateur operating practice by any three Amateurs.

Details on these and other awards in the program are available for an SASE to Scott R. Douglas, Jr., KB7SB, Post Office Box 46032, Los Angeles, California 90046.

We hope to hear from you.
Scott R. Douglas. Jr., KB7SB Los Angeles, California

good work

Dear HR:
1 am surprised about your combined magazines. It will be great if some of the really good features of HORIZONS are put in your magazine, like DXer's Diary, and mixed-general ham radio and technical features.

I am looking forward to getting your great magazine!

Donald Youtkus, KA2GSX
Scotch Plains, New Jersey

wearing cans

Dear HR:

I'm writing in reference to the article on better audio for mobile operation that appeared in ham radio, February, 1981, pages 48-49. Although reference is made to some headphones, such as Sennheiser, not blocking out road noises, I think your magazine should point out that in many states (including lllinois) it is itlegal to drive an automobile while wearing headphones (whether they block out road noises or not). Readers should be warned to check local and state laws before setting out wearing "cans."

Ken Van Andel, WB9FRV

Aurora, Illinois

T- Antenna TUNERS....

MFJ-941C 300 Watt Versa Tuner II

Has SWR/Wattmeter, Antenna Switch, Balun. Matches everything 1.8-30 MHz: dipoles, vees, random wires, verticals, mobile whips, beams, balanced lines, coax lines.

Ham Radio's most popular
antenna tuner. Improved, too.

$\$ 89^{95}$

S0.239 connectors, 5 way binding posts, finished in eggshell white with walnut-grained sides.
4 Other 300W Models: MFJ-940B, \$79.95 $(+\$ 4)$, like 941 C less balun. MFJ-945, \$79.95 $(+\$ 4)$, like 941C less antenna switch. MFJ-944, $\$ 79.95(+\$ 4)$. like 945 , less SWR/Wattmeter, MFJ-943, $\$ 69.95(+\$ 4)$, like 944 , less antenna switch. Optional mobile bracket for 941C, 940B, 945, 944, \$3.00.

MFJ-962 VERSA TUNER III

Run up to 1.5 KW PEP, match any feed line from 1.8 .30 MHz .

Built-in SWR/Wattmeter has 2000 and 200 watt ranges, forward and reflected.

6 position antenna switch handles 2 coax lines, direct or through tuner, plus wire and balanced lines.

4:1 balun. 250 pt 6 KV cap. 12 pos. inductor. Ceramic switches. Black cabinet, panel.

ANOTHER 1.5 KW MODEL: MFJ.961, \$179.95 $(+\$ 10)$, similar but less SWR/Wattmeter.

For tech. info.. order or repair status, or calls outside continental U.S. and inside Miss., call 601-323-5869.

- All MFJ products unconditionally guaranteed for one year (except as noted).
- Products ordered from MFJ are returnable within 30 days for full refund (less shipping).
- Add shipping \& handling charges in amounts shown in parentheses.

Write for FREE catalog, over 80 products ENTERPRISES,
INCORPORATED

Box 494, Mississippi State, MS 39762

prestoop

ARRL'S BOGUS-QSL INVESTIGATION continues, with three DXers now suspended from the DXCC program. A prominent DXpeditioner has resigned from DXCC, and still others are being checked for apparently submitting questionable cards for credit.

Phoney DX Cards First Attracted the attention of DXCC program manager W3AZD late last year. Photocopies of questionable cards, with the submitter's call blocked out, were sent to the DX station or his manager along with a request for a list of the stations worked around the time shown. Not only did the submitter's call not appear in that list, but some of the DX stations even responded with "not on that band...or mode... or even on the air" at the time shown, and further commented the writing was not theirs or any assistant's.

Bogus Cards For About two dozen different rare DX stations have thus far shown up in Newington, though there have been claims that far more than that have been printed. Most are for stations who were active in the 60 s or early 70 s , though a few are current. The one DXer whose suspension is definitely related to the counterfeits is W6NZX. Two Europeans, whose calls have not been announced, have also been suspended but for alterations or other apparently unrelated QSL questions. The DXpeditioner who is resigning is Dr. Dave Gardner, K6LPL, who discussed his involvement freely in a telephone conversation with HR Report.

K6LPL Said The Bogus Card Idea began at an informal meeting of a dozen or so DXers (including a number of Honor Roll Members) at the 1980 Fresno DX convention. Several were also DXpeditioners and all agreed that DXing was in a sad state with pursuit of QSLs an obsession. Cheating was rampant, they felt, yet the ARRL had seemed unresponsive to calls for change. Then they hit on the idea of wholesale counterfeiting of rare cards, as a means of demonstrating the present system's weakness. Dave believes at least 20,000 of the phoney cards were printed, and they've been passed out by both U.S. and overseas Amateurs to hundreds of others. Because of his part in the scheme, he has now submitted his letter of resignation to DXCC to the ARRL

Just How Many DXers Will eventually be involved is still to be determined. In the meantime, all DXers are warned to beware of cards from long past contacts or coming from unusual sources.

AMATEURS SERVING AS POLICE "eyes and ears" in a Los Angeles Police Department project found themselves providing needed communications in a kidnapping/shooting incident on May 8th. The volunteer program, operating just over a month, puts Amateurs with hand-helds at vantage points in likely crime areas. They report suspicious activities to others riding in prowl cars for follow-up. Thus far they've broken up one attempted rape and reported several possible car break-ins.

The Episode On May 8th Began when four Amateurs and a police advisor, atop the follywood Holiday Inn, heard shots fired from a room just beneath them. Police from various agencies, converging on the scene, found an immediate problem with a lack of common communications frequencies and portables. The Amateurs stepped into the breach, providing coordinating communications for several hours during negotiations with the gunman, who was holding a girl hostage in his room. Eventually she escaped, and early the next morning the gunman apparently shot himself.

160 METER POWER LIMITS will be lifted shortly, at least on the bottom half of the band At its May 21 agenda meeting the Commissioners agreed to restore full privileges to $1800-$ 1900 kHz now that Loran A is phased out in the U.S. However, since Canada is still using Loran A above 1900 kHz , the present restrictions must remain in effect on the top half for the time being.

Effective Date For The Relaxation has not yet been announced, but should be sometime early in the summer.

10 MHZ SHOULD BE RESERVED for narrow-band (CW and RTTY) Amateur use only, the 200 Amateurs atending the Region I IARU conference in Brighton, England, generally agreed late in April. A couple of nations, however, still want SSB on the new band. Representatives of IARU member societies from around the world attended the busy four-and-a-half-day session. The meeting saw the best turnout ever of African IARU representatives.

Contests Should Also Be Kept Off the new 30 -meter band, the conference agreed, though unlike the ARRL the Region I societies felt that awards for $10-\mathrm{MHz}$ operating achievements would be OK. They also agreed on SSB for the new 18 - and $24-\mathrm{MHz}$ bands, with narrow-band modes taking the bottom half and phone the top. A new satellite working group was also established and satellite band plans set up.

10-GHZ MOBILE OPERATION has been demonstrated by three Canadian Amateurs, VE2DWG, VE2FMF, and VE2FRJ. The first contact was made back in February, and even with antennas inside the cars usable signals were found at distances up to a mile despite intervening buildings and other autos. Doppler shift was quite noticeable, however.

AEA Invites You to Compare the AEA Keyer Features to Other Popular Keyers on the Market.

Contest Keyer Morse Keyer

FSK adapter

SSB transmitters

An easy method for exploring RTTY

I wanted a new mode of operation for my station. I've been thinking about a microcomputer for both domestic and radio use, and two recent FCC rulings made me interested in RTTY.

My station was designed for SSB or CW only, but there should be a way to operate RTTY using an audio modulator-demodulator, or modem. The following article describes how I did it. I hope others will follow suit.

the modem

The FCC now allows ASCII seven-bit code on highfrequency Amateur bands at 110 or 300 Baud.* ASCII is similar to the five-bit Baudot code of mechanical teleprinters, but has the advantage of being able to communicate with all modern computer systems for character transmission. This might be a breakthrough for Amateurs who want to use their computers for communicating rather than for the more conventional purposes of logging, satellite tracking, or home games.

I decided to build a modem that would make possible FSK using my SSB equipment. I'd read that some Amateurs use audio tones for FSK, and so an audio

[^2]modem seemed a good route. A keyboard for character generation and a CRT display would complete the FSK adaptation. This would work with either ASCII or Baudot.

The second FCC ruling on F1 emissions indicated that this was the correct choice. F1 emissions are allowed on high-frequency bands, but the ruling states that audio tones into the audio input of a single-sideband transmitter must have good carrier and unwanted sideband suppression to qualify for F1 emission. Certain precautions would be required to meet these criteria.

This article concerns the modem design and describes how to incorporate the modem into a complete video terminal for either ASCII or Baudot. Such a system could eventually lead to exchanging computer programs over the air.

design concepts

Modem design began with the following primary goals:

1. Use a single 5 -volt power supply.
2. Use a minimum number of ICs.
3. Use TTL-compatible interfaces for expansion.
4. Use audio-frequency operation for standard SSB equipment input and output.

The demodulator is a single chip made for this purpose, an Exar XR-2211 demodulator/tone decoder. It contains a preamp, phase locked loop (PLL), and comparators. Preamp dynamic range guarantees tracking with $3 \mathrm{mV}-3$ volt rms input levels. Center frequency, bandwidth, and output delay are inde-

fig. 1. Modem schematic diagram.
pendently set; breadboarding and alignment are very easy.

Receiver audio output is connected to the audio input, A, of fig. 1. Normal FSK shift frequency is 170 Hz , so a CW receiver filter worked best. Its narrow bandwidth reduces noise and allows the demodulator to track the audio mark and space tones faithfully. Different receiver filters may require different center frequency adjustments (R7). Demodulator center frequency is given by:

$$
\begin{equation*}
f_{0}=\frac{1}{C 3(R 6+R 7)} \tag{1}
\end{equation*}
$$

All values are in Hz , farads, and ohms. (I started with $900-\mathrm{Hz}$ center frequency but had to decrease this to 750 Hz for my receiver.)

Tracking bandwidth for shift frequency f_{s} is determined by R5 and is given by:

$$
\begin{equation*}
R 5=(R 6+R 7)\left(f_{0} / f_{s}\right) \tag{2}
\end{equation*}
$$

Other values were taken from the XR-2211 specifica-
tion sheet. A useful feature is the PLL lock signal: A LED connected to pin 6 is used for a tuning indicator. Serial-data output goes to the video board and is explained later.

modulator section

The current-controlled oscillator section of an LM567 tone decoder, U3, generates mark and space tones of 2125 and 2295 Hz . C8, R10, and R11 set the $2295-\mathrm{Hz}$ frequency with Q1 cut off. When Q 1 is conducting, C7 is in parallel with C8, and the frequency shifts down by $170 \mathrm{~Hz} . \mathrm{C} 7$ may have to be trimmed slightly for the correct shift.

Ideally, a pure sine wave should be used for modulation. U3 produces a triangular waveform. A triangular shape, or any continuous waveform, can be thought of as a combination of harmonics differing in amplitude and phase. A triangular waveform can be expressed by the Fourier series:

$$
\begin{equation*}
V=\sum_{i}^{\infty} \frac{A}{i^{2}} \sin \left(i \omega_{0} t\right) \tag{3}
\end{equation*}
$$

where:

$$
\begin{aligned}
i= & 1,3,5,7, \ldots \text { (harmonics, } 1=\text { fun- } \\
& \text { damental) } \\
A= & \text { normalized peak amplitude of fun- } \\
& \text { damental signal } \\
\omega_{0}= & 2 \pi f_{0}=\text { radian frequency of fun- } \\
& \text { damental signal } \\
t= & 1 / f_{0}=\text { period of waveform }
\end{aligned}
$$

The triangular waveshape is composed of the fundamental and odd harmonics. Calculation indicates that the third harmonic of 2125 Hz is $1 / 9$ th the power level of the fundamental, or down 9.5 dB .

Buffer amplifier U4 isolates the oscillator and provides a means of setting transmitter audio input level. Legal operating practice requires a bandwidth under 3 kHz . The RC lowpass filter, R13, C10, smooths harmonics; the -3 dB point is at 3386 Hz .

calibration

The modulator must be calibrated with a frequency counter or accurate oscilloscope. With Q1 cut off, R10 is set for a $2295-\mathrm{Hz}$ tone. With Q1 conducting through the serial-data input gate (input ground, output to Q1 base high), a value of C7 is found to lower the tone to exact/y 2125 Hz .

My calculations indicated a $0.0037-\mu \mathrm{F}$ cap should do the job. A $0.005-\mu \mathrm{F}$ was tried, but the shift was too great, according to one Amateur with a tunable i-f filter. A 0.0015 - and 0.0022 -pF cap in parallel worked fine.*

[^3]

Front panel of the modem box. All switches are accessible. A tuning indicator is included, which is helpful when receiving narrowband signals on RTTY.

Volume control level R12 should be set for an equi-valent-to-strong voice input. Adjust this pot with caution, since the RTTY duty cycle is 100 percent and can strain the final. It's the same as CW operation with the key held down continuously. I turn down the drive power input; the final still runs very warm.

Demodulator center-frequency adjust pot, R7, is the only adjustment used for receiving. Tune the receiver so that both FSK tones are in the receiver passband. Adjust R7 for maximum LED intensity or until characters are visible on the monitor screen.

operation

Best reception is obtained with the narrowest receiver filter available. I use a $500-\mathrm{Hz}$ i-f filter and CW mode - sometimes with an additional audio filter. Transmission must occur in the sideband mode.

Provisions have been included for inverting the FSK tones, as indicated by the jumpers and alternate data outputs in fig. 1. (This is required for frequency offsets and filter bandwidths in different receivers and transmitters.)

Upper sideband mode was first tried for both transmitting and receiving, but I couldn't use my 500Hz receiver filter in the SSB mode. Reception is now in CW mode, and transmission is on lower sideband. I offset-tune the receiver to zero-beat received signals. Tones are "right-side-up" in CW/LSB; that is, the higher tone is higher on the dial; they are inverted when using USB. Keep this in mind, because the demodulator will be working fine but printing will be garbled.

In CW/LSB, the idle (mark) tone will be lower in frequency, and jumper $1-2$ is used. Demodulated output is taken from \mathbf{B} (fig. 1).

test results

On-the-air tests have been encouraging. The narrow receiver bandwidth makes tuning somewhat critical but is eased appreciably by the LED indicator. After a few hours' experience, I became familiar with the response and had no real problems.

Very weak stations can be copied, but the PLL tends to unlock from noise. I've copied strong stations in 60 wpm Baudot for as long as an hour and a half with no loss of information. At higher Baud rates, the noise on 40 meters becomes a problem, but copy is still possible. I've also copied ASCII at 110 Baud on 20 meters.

ASCII reception was over 95 percent error-free under normal circumstances. Most RTTY on the hf bands has been heard between 14.075 and 14.100 MHz , including many DX stations. I have not yet heard anyone using 300-Baud ASCII.

some uses

The modem will interface with any TTL-compatible serial video terminal. It can also be used with a teleprinter to replace an RTTY converter; input and output must be modified for the $20-\mathrm{mA}$ current loop in teleprinters.

Keyboards are readily available from surplus dealers for under $\$ 50$. Video monitors with $12-\mathrm{MHz}$ minimum bandwidth may be used for the display. The most expensive part of my FSK system is the video board.

Video boards are made in many configurations. The one I used is the Xitex SCT-100 and seems to have been designed with the Amateur operator in mind. It's capable of both ASCII and Baudot operation; its speeds are 60 and 100 wpm in Baudot, 110 or 300 baud in ASCII. It may be purchased in kit form or fully assembled.

Printed-circuit board of the FSK modem. The two ICs at left make up a computer interface, allowing the video terminal to be used on the air or as a computer console.

A block diagram of my terminal system is shown in fig. 2. The modem is installed between the video board and all other equipment. The "key" is any switch connected to terminal D in fig. 1, and is used for calibrating the modulator tones.

The same system, less transmitter and receiver, has been used as a microprocessor terminal with no problems. Future applications will include the addition of a cassette tape, instead of paper tape, for

fig. 2. System block diagram.
prerecorded messages. Limited tests indicate that this is feasible.

some final thoughts

My system works well but my station is in an apartment, with the antenna about ten feet (3 meters) from my rig. Rf shielding was a problem, because the video board generates a lot of RFI on 20 meters. I've heard the same complaint from others using computers on RTTY. Tests at another location indicated that RFI is minimal with the antenna farther away from the transmitter.

PC boards are available from the author for $\$ 5.00$ plus postage. All circuit components are readily available from hobby dealers.

I'd like to extend special thanks to K 4 YI and KøWVN, who were very helpful with my first on-theair tests.

video board suppliers

Xitex Corporation (manufacturer), 13628 Neutron, Box 402110, Dallas, Texas 75240. Mini Micro Mart, Incorporated, (distributor), 1618 James Street, Syracuse, New York 13202.
ham radio

ICOM 720A

Dual VFOs, receives , to 30 MHz : 200 Watt PEP input. SSB, CW AM. and RTTY modes speech processor. PBT, VOX finals protect ed, dial lock, broad-banded, tull metering quadruple conversion receiver The New Stan: dard in Ham Radio
$\$ 1349.00$ Canl tor quite

ICOM 730

Compact, affordable, convenient, 200 Watt PEP Input, built-in receiver preamp. VOX, noise blanker. RIT, 10.80 M including WARC bands. speech processor, IF Shift, finals pro-
tected, full solid state
$\$ 829.00$ Call to quote
160-10 Meter including three new ht bands (10. 18 \& 24.5 MHz) Low noise double con version design 200 watts input on all bands
100% duty cycle 0ttset 100% duty cycle Otfset tuning Full break in. Built-in VOX and PTT
$\$ 869.00$ call tor cuote

ICOM 22U

VHF Mobile Performance at a budget price Easy to operate, versatile, compact, 10 watts 100\% duty. Finals protected, Hi/Low powe remote frequency selection option
$\$ 329.00$ Call to quote

ICOM 251A

FM, SSB, CW, Two VF0s, Squeich on SSB, Three memories, Memory Scan, Programmaianker VOX. RIT: Variable Repeater Splits Blaker Vox Men Loaded
Mobile or Station Reg Loaded
$\$ 749.00$ call to quote

ASK ABOUT OUR.CURRENT STOCK OF USED GEAR!

Solid advice for

mail-order buyers

shopping for parts by mail

To many hams, buying parts simply means a trip to the local franchised radio store, where the counter salesman is given a parts list to fill. All too often, however, the enthusiasm for your latest project is spoiled either by "out-of-stock," or by high prices. The instant-delivery convenience of the round-thecorner radio store is frequently paid for in great cost of both dollars and wasted time.

What to do? It's a good idea to preplan construction projects far in advance; to develop a complete parts list, with a breakdown into separate lists those that are best filled by mail-order means, and those that are best filled locally.

I'm not knocking local buying; there are many occasions when it is best to shop locally. I'll cover the development and breakout of parts lists for mailorder purchase, present some tips on making parts substitutions, offer some general mail-order buying hints, and discuss the pros and cons of buying in advance of needs. Also I'll discuss the problem of component identification.

The list: getting it together

Most published construction projects include an itemized parts list that states each part's nomenclature, size, value, required voltage, current, or powerhandling capacity, and other necessary information. Some projects even list brand names and recommended sources for difficult-to-obtain components.

The basic parts list can be broken down in several ways - by type of component, or - in the way 1 prefer - into two lists: by parts that are best locally
procured, and by those that are best acquired by mail order. The two lists can be broken down again by type component to facilitate shopping and ordering. You must know something about the electronic marketplace to set up the lists, of course, and it helps to have on hand a generous selection of current catalogs and flyers to sort out which components should go on which list.

Having a good-size pile of catalogs will enable you to find almost any desired part in one of them and will often allow you to locate a single mail-order firm that may have all, or nearly all, of what you need. Having a variety of catalogs also allows you to easily make price comparisons.
Table 1 is a list of dealers. Many offer free catalogs that can be obtained by filling out the reader service cards found in electronic and Amateur-Radio magazines.

After thoroughly checking your junkbox, the buylocal list is used first, so that out-of-stock items can be identified and added to the mail-order list. You'll want to at least scan the mail-order flyers and check out local sales and hamfests to see if any bargains turn up that would suggest switching an item from one list to the other. It pays, too, to consolidate mailorder "buys," due to steep postage charges, minimum order limits, and handling fees. The word is: plan ahead.

By Karl Thurber, Jr., W8FX, 317 Poplar Drive, Millbrook, Alabama 36054

table 1. Direct-mail electronic parts dealers.

Active Electronics Sales Corp.
P. O. Box 1035

Framingham, MA 01701
(617) 879-0077

ADVA Electronics
Box 4181
Woodside, CA 94062
(415) 328-1500

Alaska Microwave Labs
4335 E. 5th Street
Anchorage, AK 99504
All Electronics
Box 20406
905 S . Vermont
Los Angeles, CA 90006
Adelco
2789 Q Milburn Avenue
Baldwin, NY 11510
(516) 378-4555

Ancrona
P. O. Box 2208

Culver City, CA 90230
(213) 641-4064

Applied Invention
RD 2, Route 21
Hillsdale, NY 12529
(518) 325-3911

B \&FEnterprises*
119 Foster Street
Peabody, MA 01960
(617) 531-5774

Bullet Electronics ${ }^{*}$
P. O. Box 401244

Garland, TX 75040
(214) 278-3553

Chaney Electronics
P. O. Box 27038

Denver, CO 80227
(303) 781-5750

Digi-Key Corp.
P. O. Box 677

Thief River Falls, MN 56701
(218) 681-6674

Digital Research Corp. of Texas*
P. O. Box 401247A

Garland, TX 75040
(214) 271-2461

Edlies Electronics, Inc. 2700-DP Heampstead Turnpike Levittown, NY 11756 (516) 735-3330

Electronic Distributors, Inc. 4900 Elston Avenue
Chicago, Il 60630
(312) 283-4800

ETCO Electronics
North Country Shopping Center Plattsburgh, NY 12901
518) 561-8700

Fair Radio
1016 E. Eureka
Box 1105
Lima, Ohio 45802
Formula International, Inc.
12605 Crenshaw Blvd.
Hawthorne, CA 90250
(213) 973-1921

Fuji-Svea Enterprise** P. O. Box 40325

Cincinnati, OH 45240
(800) 421-2841 (Nationwide)
(800) 421-2877 (Ohio)

Godbout Electronics
Box 2355
Oakland Airport, CA 94614
(415) 562-0636

Hal-Tronix
P. O. Box 1101

Southgate, MI 48195
(313) 285-1782

Hobbyworld
19511 Business Center Drive
Northridge, CA 91324
(800) 423-5387 (Nationwide)
(800) 382-3651 (California)

Integrated Circuits, Unlimited* 7889 Clairmont Mesa Blvd.
San Diego, CA 92111
(800) 854-2211 (Nationwide)
(800) 542-6239 (California)

International Components Corp.
P. O. Box 1837

Columbia, MO 65201
(314) 474-9485

International Electronics Unlimited 225 Broadway
Jackson, CA 95642
(209) 223-3870

Jameco Electronics
1021 Howard Avenue
San Carlos, CA 94070
(415) 592-8097

JDR Microdevices
1101 S. Winchester Blvd.
San Jose, CA 95128
Marlin P. Jones \& Assoc.
P.O. Box 12685-E

Lake Park, FL 33403
(305) 848-8236

John Meshna, Jr. Surplus Supplies Box 62
E. Lynn, MA 01904
(617) 595-2275

MHz Electronics
2111 W. Camelback
Phoenix, AZ 85015
(602) 242-3037

M-M Electronics Sales
2300 1st Avenue
Seattle, WA 98121
(800) 426-0634

McGee Radio Co.
1901 McGee Street
Kansas City, MO 64108
(816) 842-5092

New-Tone Electronics International **
P. O. Box 1738

Bloomfield, NJ 07003
(800) 631-1250

Olson Electronics
2850 Gilchrist Road
Akron, OH 44305
(800) 321-2424

Poly-Paks
P. O. Box 942
S. Lynnfield, MA 01940

Quest Electronics
P. O. Box 4430C

Santa Clara, CA 95054
(408) 988-1640

Radiokit
Box 411
Greenville, NH 03048
(603) 878-1033

Ramsey Electronics
2575 Baird Road
Penfield, NY 14526
(716) 586-3950

Semiconductors Surplus
2822 N. 32nd Street, Unit 1
Phoenix, AZ 85008
(602) 956-9423

Solid State Sales
P. O. Box 74A

Somerville, MA 02143
(617) 547-7053

Surplus Electronics Corp.
7294 N. W. 54th Street
Miami, FL 33166
(305) 887-8228
notes:
(1) *No minimum order or handling charge There may be postage charges, however.
(2) "*Specializes in Japanese semiconductors. (3) Most of the firms listed will accept major charge cards, such as Master Charge or Visa, on telephone orders. A larger minimum order size may be required, however.
(4) The " 800 -series" numbers listed are tollfree.

parts substitution

This discussion leads to the question of substituting components. It's especially important when it comes to buying by mail, since it's inconvenient, time-consuming, and expensive to return wrongchoice components - not to mention the frustration involved. It's a fact that most small parts that aren't right usually end up in the junkbox, since it's normally not worth the effort to return them - and what's in the junkbox is seldom what's needed for a given project.

over-rated components

Generally speaking, over-rated parts can be used in electronic projects. For example, a 1 -watt carbon resistor can be used instead of a $1 / 2$-watt carbon resistor of the same resistance. A 100 -volt, 0.01 microfarad Mylar capacitor can be used in place of a lesserrated one, such as a 25 -volt, 0.01 microfarad Mylar, assuming that the tolerance range (usually ± 10 or 20 per cent) is maintained and that the larger component will physically fit its allotted space. Both resistors and capacitors can be connected in parallel or series to yield new values. And what about those confusing decimal equivalents? Table 2 shows popular electronic metric conversions you'll need. Get them right when shopping by mail!

Be careful when substituting components with over-rated ones when the device is supposed to perform a specific function at a certain value of voltage or current. In this case, a larger unit would not do the job. Zeners and other voltage- or current-regulating devices would fall into this category.

active components

As for active components, similar guidelines hold, as long as the substitute has equivalent parameters. For example, a transistor that has a maximum collector current (I_{C}) of 600 mA can be used as a substitute for one having a maximum I_{c} of 400 mA , providing that other specifications are comparable - such as power dissipation, current gain, maximum collector voltage and frequency.

literature

It pays to have a set of semiconductor reference books to enable quick substitution decisions. With so many construction projects stated in terms of widelyavailable Radio Shack component types, it's good to have on hand the Archer Semiconductor Reference Handbook. This book is a guide to Radio Shack's semiconductors and it's also a useful cross-reference and substitution guide for over 100,000 devices.*

Pin connections and detailed data are provided for ICs, diodes, SCRs, LEDs, and other semiconductors.

Other references are ARRL's Electronics Data Book and Radio Amateur's Handbook, and Bill Orr's Editors and Engineers Radio Handbook, as well as various Sams and TAB substitution handbooks and specifications manuals. Manufacturers' reference books and data sheets are needed if you're really into electronic construction.

The Allied Electronics catalog and engineering reference book is another candidate for your bookshelf. ${ }^{\dagger}$
table 2. Electronic unit conversions. The following table lists the various multiples and submultiples of fundamental units (such as the farad, henry, watt, etc.). These may be indicated by the following prefixes, abbreviations and conversion multipliers:

prefix	abbreviation	multiplier
tera	T	10^{12}
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
hecto	h	10^{2}
deci	d	10^{-1}
centi	c	10^{-2}
milli	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico		
("micro-micro")	p	10^{-12}

note:
Perhaps the most use for this table will be found in working with capacitor values. Typically, values are stated in terms of microfarads or picofarads ("micro-microfarads"). The latter is one-millionth the former, so an appropriate decimal conversion is required.
For example, to convert the value of a capacitor with a stated capacitance of 0.001 microfarad to picofarads (sometimes called "micro-microfarads"), multiply by 10^{6} or $1,000,000$. The equivalent value is 1000 pF .

If the equipment designer or article author has pointed out critical components, don't change them! Otherwise, making intelligent substitutions for the exact parts specified is all right. Hams are supposed to be experimenters!

mail-order buying tips

Buying electronic parts and components by mail is no more difficult than buying anything else this way: you write out your order, enclose a check, money order, or charge-card number, and mail it in. In anywhere from a few days upwards, you receive the parts.

[^4][^5]

Most resistors are prominently color-coded for easy identification. This chart should help dispel any confusion as to color-coding schemes.

PC-board-mounted components are usually bargainpriced since it's difficult to economically remove and reuse them. IC desoldering kit shown here has special tools for removal of in-line ICs, "TO" packages, transistors, and also includes a special device that melts and straightens bent tabs and leads to facilitate removal of delicate components, such as diodes (photo courtesy Ungar Div. Eldon Industries, Inc.).

A few pointers regarding direct-mail buying are in order. In setting up your list, have a copy of the dealer's latest catalog or flyer at hand, and use one of his order blanks to place you order. Use his part numbers, especially if they are different from, or in addition to, the generic part numbers. Accuracy in stating what you want is paramount!

Be sure to carefully check your arithmetic in pricing the order, and observe minimum-order, postage,
handling, and sales-tax requirements. Failure to do so can result in embarrassment and delay. Enclosing a little extra to allow for small price changes or increased postal or UPS charges isn't a bad idea and saves later correspondence. Most firms will refund unused amounts to the penny. For very small orders, ordinary first class mail (not parcel post) is quick and inexpensive.

substitutions

If you will accept substitutions in filling your order, so state and indicate the range of acceptable choices, without requiring the order-filler to go through a logic tree to figure out just what is okay with you. State specific "kill" instructions, such as "fill within 10 days or cancel order" or "ship in-stock items and cancel balance of order," or the like. If uncertain as to an item's availability, a phone call or postcard will allow you to check on the stock. If you have questions or correspondence that don't pertain to the order, place them on a separate sheet of paper to expedite handling.

consumer protection

There are some important mail-order consumer protections. Since 1975, direct-mail firms have to fill orders within 30 days or offer a refund. If the company can't fill the order within 30 days, or within the time frame promised, you must be sent a return postcard allowing cancellation and offering a refund. There are some exceptions - such as when buying

Industrial and military surplus, represented by this selection of meters and oil-filled capacitors, abounds in the flyers issued by direct-mail dealers. Savings over store prices can be astounding, but a bargain is a bargain only if it can be used. Stock up on the good deals if you like, but exercise care and good judgment in doing so (W8FX photo).

COD - but most merchandise is covered.
If you receive a "dud" part, or have a complaint, contact the company first for adjustment. Most want to please, but salespeople are human, parts do fail, and mistakes can occur. Give them a chance to "right" the situation before becoming aggressive in pursuing your grievance. If doing this doesn't yield satisfaction, you can, as an initial step, fill in a Consumer Service Card (PS Form 4314) at your post office. By completing and returning it, the Postal Service will look into the matter, dealing directly with the company. If fraud is suspected, it may refer the matter to postal inspectors.

What if all you have for the company is a post office box number? You can usually get the name and address of a principal by contacting the magazine that runs the firm's ads. It's also possible to obtain this information on commercial boxholders without charge from postal authorities. Contact your postmaster for help.

telephone orders

Worth noting is the fact that if you place your order over the phone, you do not have the same protection, since you didn't use the mail to place the order. Fraud is still fraud, of course, and fradulent use of the charge card may place the bad-boy firm in other kinds of trouble. Using over-the-phone charge cards is fine, in my opinion, for mail-ordering major items, but ordering large numbers of small compo-

Many direct-mail distributors frequent the hamfest circuit, operating sales tables side-by-side with the individual swapper. If you can't get what you need by mailorder, you may luck out at the next 'fest. Catalogs, flyers, parts specification sheets and bargain lists are always free for the asking. And, hamfests are great places to become familiar with the ins-and-outs of ham radio. Swap meets, technical forums, and dealer displays are staples at most (photo taken at 1979 Columbus, Georgia Hamfest by W8FX).

Buying surplus, component-laden PC boards "just for parts" is fine, if it's recognized that delicate parts such as integrated circuits, transistors, and diodes may be damaged or rendered useless in their removal from the circuit board. Special desoldering tools are required to do the job right, as shown by this array of Ungar gear. Desoldering tool, similar to a regular soldering iron, allows one-hand operation; other hand is free to lift components. The desoldering bulb is shown in three configurations, as a separate attachment, installed on the desoldering tool, and as a separate unit for use with regular irons. Bulb removes solder by a vacuum action (photo courtesy Ungar Div. of Eldon Industries, Inc.).
nents by phone can lead to confusion and mistakes in filling the order. This is especially true if it's a tape recorder that's taking your order.

if problems occur

It pays to check out a firm in advance, especially before placing a substantial order. Most of the advertisers in the Amateur and electronics publications are reputable. It's a relatively small, specialized market, and laggards will eventually be driven from business if they offer less than prompt, reliable and honest service. However, if you do have problems, you can take several courses of action after trying to resolve matters with the company. You can contact the magazine that ran the company's ads; write state or local consumer agencies; call or write a "consumer action line," such as operated by many newspapers and radio/TV stations; contact the Better Business Bureau; write the state Attorney General; complain to industry or trade associations; or write to the federal Office of Consumer Affairs (Washington, D. C. 20506). You can also contact the Mail Order Action

Line, 6 E. 43rd St., New York, NY 10017, a con-sumer-assistance program organized by mail-order companies interested in preserving the industry's good name.

in summary

Here are some general mail-order buying guidelines that should contribute to successful results with a minimum of headaches:

1. Check out the company and its reputation. Have you seen their ads before? Is there a street address and phone number listed, or just a post office box? Think before mailing in your hard-earned dollars.
2. Understand the firm's return policy. Is there a money-back guarantee? What about a restocking charge?
3. Double-check your order before mailing or calling it in. Have you provided a street address? Many firms use UPS for delivery, and they usually need a street address not a post office box number.
4. Send a large-enough remittance. But enclosing a blank check to be filled in with the exact amount by the firm is risky. COD is okay, but these special charges add to the cost of the order. Never send cash. A money order or cashier's check will help speed delivery, as will ordering by charge card.
5. Allow sufficient time to get the merchandise. Realize that it may take a few weeks to clear your personal check, process your order, and actually get the parts to you. On "special deals," look for guaranteed delivery times (and prices) or the caveat, "quantities limited."
6. Always keep a copy or record of your order, showing the date you sent it in, what you ordered, and your check number.
7. Hold onto your charge-account records and cancelled checks. You may need these papers later on. Never send in the originals when inquiring about your order.
8. Many companies routinely issue small refunds in the form of credit slips. If you don't want them, say so in advance on your order form. However, you may want to accept the slips from those firms that allow the slips to be applied to your next order at more than face value, a sort of "consolation" for the out-ofstock problem.

buying in advance:
 does it pay?

The answer to this question is a crystal-clear "yes and no." A bargain isn't a bargain unless it can be used. The suppliers' catalogs and flyers are filled with
bargains - parts by the bagful, manufacturers' seconds, unbranded and unlabeled components, surplus PC boards, and hundreds more - sometimes top-grade components for your next project at prices that are hard to beat, sometimes not. It's best to steer a middle course, taking advantage of quantity discounts and attractive parts "specials" on a highly selective basis, resisting the urge to squirrel-away and stockpile more than you could ever use.
Despite the bargain-filled flyers, direct-mail parts suppliers often have to backorder specific items to the intense displeasure of their customers - you and me. Thus, it's often not a bad idea to pad your order with limited quantities of widely-used chips, transistors and other parts for future use. Doing this is logical when you are trying to build up your order to minimum purchase levels, sometimes $\$ 10$ or $\$ 15$ or even more. Also, consider combining club construction project orders and those for friends. Quantity discounts may sometimes be brought into play. Grabbag specials on assorted parts can help put your junkbox into first-class shape. Practically every mailorder outfit offers a variety of plastic bags full of diodes, capacitors, resistors, potentiometers, transistors, ICs, and other small components.
A few words of caution apply. Buying these goodies is of use only if you are building up a spare parts inventory, not to yield components for a specific project. Rarely will you come out with just what you need from a grab-bag. Carefully check the description of what's in the bag. For example, are the components assorted popular values, or are they all of one unusual (and possibly unusable) value? Are the leads cut too short, good for use in PC board wiring only? To what tolerance are the component values? And, are the components new, used, or seconds?
For the beginners, assortments of hardware, hookup wire, small switches, knobs, low-wattage carbon resistors, ceramic disc and polystyrene capacitors, high-capacitance, low-voltage electrolytic or tantalum capacitors, popular transistors and common ICs, carbon potentiometers, and small transformers are good for starters.
A $\$ 15$ or $\$ 20$ investment in plastic bag components, if the choices are made wisely, represents money well spent. Realize that there isn't much recourse for a bad selection. You take what you get and chalk up the results to experience. It's a good idea to check out plastic bag components for proper value, shorts, open circuits, and physical damage before using them in construction projects.

component identification

Most direct-mail firms carefully label and package components they ship so that you will have little problem in identifying the parts you receive. General-
ly speaking, ICs are labeled, transistors stenciled or mounted on labeled cardboard sheets, capacitors imprinted with their values, resistors and transformer leads color coded, and so on. Exceptions are diodes and some bulk-sale components, especially ICs, coils, and capacitors, which may not be labeled. These present real problems in component identification for all but the most knowledgeable experimenter. Special color codes exist for some diodes, however, and capacitor and coil values can be measured. But determining IC and transistor types can be sporty, to say the least. Buying surplus PC boards is risky, too. Identifying and safely removing the components is sometimes a real challenge. Most resistors and capacitors are prominently color-coded for easy identification.

Coding and values for other components, such as hookup wire, transformers, pilot lamps, and diodes can be found in the ARRL Handbook and the Editors and Engineers Radio Handbook, as well as in other radio-electronic reference books. Identifying the values of unknown/unmarked components, like capacitors, coils, and chokes is an art unto itself. However, ARRL's LCF Lightning Calculator provides the data needed to make many tricky identifications, when used in conjunction with a grid-dip oscillator or other rf source.

closing remarks

We've only scratched the surface. But you should have a good idea of the facts to consider when lining up parts for your next construction project.

Buying parts by mail-order can be a money-saving and interesting way to help complete your electronic projects. Provided you recognize the rules of the game, direct-mail buying can even be fun. Give it a try!
ham radio

did anyone hear Amelia?

For the last several years, Paul L. Briand, Jr., Professor of English at the State University of New York at Oswego, has been conducting research into the disappearance of Amelia Earhart in 1937. Amelia Earhart, the first woman to fly the Atlantic, was last heard from while crossing the Pacific on the final leg of an around-theworld flight. Any shortwave listeners who might have heard her transmissions in early July of 1937 (her call letters were KHAQQ) are asked to contact Dr. Briand, Department of English, SUNY College, Oswego, New York 13126 (telephone 315-343-0635).

- For dipoles, yagis, inverted vees \& doublets
- Replaces center insulator
- Puts power in antenna
- Broadbanded 3.40 MHz
- Small, lightweight and weatherproof

HI-G ANTENNA CENTER INBULATOR

- For full legal power and more
- Helps eliminate TVI
- With SO-239 connector

Small, rugged, lightweight, weatherproof Replaces center insulator Handles full legal power and more
\$5.95 With SO-239 connector

HI-G ANTENNA END INSULATORS
 Rugged, lightweight, injection moided of top quality material, with high dielectric qualities, and excellent weatherability. End insulators are constructed in a spiral unending fashion to permit winding of loading coils or partial winding for tuned traps.

May be used for

- Guy wire strain insulators
- End or center insulators for antennas
$\$ 4.95$ - Construction of antenna loading coils or multiband traps

IIECI No

(values to \$115.60) 1152

1189
1189
List $\$ 9.95$
10-MBYER WM

ADVANCED RLDIO CONTROL inclufing Rockets \& Rabots
inclueing
attina

 | encigit | 03 |
| :---: | :---: | Take 6 exceptional books for

List \$22.95

List $\$ 17.9$

More books to pick from...

- OSCAR: The Ham Radio Satellites.

List \$8.95. No. 1120

- The Illustrated Dictionary of Electronics. List \$19.95. No. 1066
- The Giant Book of Amateur Radio Antennas. Paper List \$8.95. No. 802
- Digital Interfacing with an Analog World. List \$12.95. No. 1070
- Practical Electronics Math. List \$1 . 95. No. 1136
- 101 Easy Test Instrument Projects.

List \$13.95. No. 1339

- Radio Control Handbook/Radio Control Manual. Paper (2 vol . count as 1) List $\$ 19.90$. No. 1093/1135
- TV Field \& Bench Servicer's Handbook.

List\$9.95. No. 1082

1054
List $\$ 9.95$

List \$10.95

7 very good reasons to try Electronics Book Club...

- Reduced Member Prices. Save up to 75% on books sure to increase your know-how
- Satisfaction Guaranteed. All books returnable within 10 days without obligation
- Club News Bulletins. All about current selections-mains, alternates, extras-plus bonus offers. Comes 14 times a year with dozens of up-to-the-minute titles you can pick from
- "Automatic Order". Do nothing, and the Main selection will be shipped to you automatically! But ... if you want an Alternate selection-or no books at all-we'll follow the instructions you give on the reply form provided with every News Bulletin
- Continuing Benefits. Get a Dividend Certificate with every book purchased after fulfilling Membership obligation, and qualify for discounts on many other volumes
- Bonus Specials. Take advantage of sales, events, and added-value promotions
- Exceptional Quality. All books are first-rate publisher's editions, filled with useful, up-to-the-minute info

ELECTRONICS BOOK CLUB Blue Ridge Summit, PA 17214

Please accept my Membership in Electronics Book Club and send the 6 volumes circled below. I understand the cost of the books selected is $\$ 2.95$ (plus shipping/handling). If not satisfied, I may return the books within ten days without obligation and have my Membership cancelled. I agree to purchase 4 or more books at reduced Club prices during the next 12 months, and may resign any time thereafter.

$$
\begin{array}{ccccccccc}
714 & 802 & 805 & 955 & 1005 & 1054 & 1066 & 1070 & 1082 \\
1093 / 1135 & 1120 & 1132 & 1136 & 1146 & 1152 & 1155 \\
1189 & 1216 & 1222 & 1225 & 1245 & 1255 & 1339 & 8224
\end{array}
$$

Name \qquad Phone \qquad Address
City
State \qquad Zip \qquad HR-781

DOWN CONVERTER

COMPARE! (YOU HAVE SEEN THE OTHERS)

CAVITY TUNED FRONT END--FULLY TESTED HEWLETT PACKARD TRANSISTOR LOW NOISE

HEWLETT PACKARD MICROWAVE MIXER DIODES
STABLE, VOLTAGE TUNED OSCILLATOR FOR SMOOTH TUNING RANGE SINGLE, LIGHT WEIGHT UNIT, COMPLETELY SELF CONTAINED FOR EASY AND FAST INSTALLATION.

WEATHER TIGHT
CHROMATED ALUMINUM ENCLOSURE FOR LONG ENDURANCE TO WEATHER

$\$ 179.95$

TUNES AMATEUR 2. 3GHZ THROUGH MDS (PAY TV) PREAMPLIFIER: 10 db nom. gain, 2.5 db noise figure. OUTPUT: T.V. CHANNELS 2 THRU 5
FREE PHONE CALL, ORDERS ONLY. \$1.50 REFUNDED. POSTAGE PAID. VISA AND MASTER CHARGE ORDERS WELCOME. CQD'S OK. FULLY WARRANTED FOR ONE FULL YEAR. DEALER INQUIRIES WELCOME. VIRGINIA ORDERS INCLUDE 4\% SALES TAX.

AVAILABLE SEPARATELY: PREAMPLIFIER (FULLY ASSEMBLED, TESTED REANPLIFIER (FULLY ASSENBLED, \$ESTE5 DOWN CONVERTER ELECTRONICS-- $\mathbf{\$ 9 9 . 9 5}$

H-troniks, inc.

 2710 COLLEY AVENUE NORFOLK, VA. 23517SLOTTED ARRAY ANTENNA 15db \$29.95

CALL REFUNDED ALL ORDERS 804/622-8358
PERFORMANCE GUARANTEED, OR YOUR MONEY FULLY REFUNDED!

10-meter preamp for the FT-101E

Easy mods
 for improving the sensitivity of this popular radio and others as well

This article does not provide construction details for a preamplifier; rather it describes how to install a preamplifier in an FT-101 trensceiver. The preamp chosen by the author was described in the March, 1979, issue of QST by Doug DeMaw, W1FB. If you don't wish to use the referenced amplifier, others are available in kit form. Some examples are the Hal-Tronix HAL-PA-19 or the Hamtronics P-30. Editor

During a 1979 10-meter contest, my station was operated for the first time in the full-power, multioperator category. My partners in this effort were KA1BMB, WA1YEC, and WB1GIF. Before the con-
test began, we felt that all was in readiness, having set up the amplifier and antenna in plenty of time (that afternoon). The first hint of trouble came about an hour into the test when we calculated our less-than-astonishing rate of 25 QSO's per hour. Maybe it's the band? The second hint was the phone calls that started coming in, asking why we were calling CQ over the JAs, etc., who were calling us. One-way propagation?

The real problem, of course, turned out to be the rather poor 10-meter sensitivity of my FT-101E. After talking with other FT-101 owners, I found this to be a relatively common problem in an otherwise wellengineered transceiver.

design considerations

A preamplifier seemed to be the logical remedy for

By Dave Malley, K1NYK, 132 Lydall Street, Manchester, Connecticut 06040

fig. 1. FT-101 circuit before adding preamp showing the location (X) selected for its installation.
the problem of poor sensitivity. Since I enjoy homebrewing, I decided to build the preamp and set about to find an existing design that met the following goals:

1. Stable (no self-oscillations)

2. 1-MHz bandwidth or better

3. Good gain (15-20 dB)
4. Inboard installation

5. No loss of resale value (no hole drilling)

The advantages of the design criteria are readily apparent. In a broad sense, the circuit should bring a weak signal up to a solid 05 copy without retuning when switching between the phone and CW subbands. Retaining the resale value meant not drilling holes for cables or switches, as well as minimizing circuit mods to the transceiver. The internal installation requirement simplifies portable/mobile operation and keeps the station from being cluttered with yet another black box and its various wires. A method of switching the preamp into the circuit without using if relays was also desired.
I reviewed several construction articles to become familiar with the circuit options before making a

fig. 2. FT-101 circuit after modificaton showing added control switch and preamp module. Calibrator can be placed at point A, which may be more desirable (see text).
selection. The design I selected ${ }^{1}$ was simple, and all the goals were met. This preamp also can be set up for 15 meters instead of 10 meters if two toroid windings are changed.

The contest was still on my mind, though, so I decided to stick with the 10 -meter version. Construction is uncomplicated using a homemade circuit board, I found parts in my junkbox (oops, I mean my electronic inventory) - proving that no unusual components are needed. However, if all the parts are purchased, the bill will come to only around $\$ 8$. This works out to about half a buck per decibel. If you're not inclined toward building this unit, a satisfactory commercial preamp can probably be found that will fit in the rig. Check the ads.
The first step should be to align both the receiver and transmitter $10-$ meter front-end sections. The FT-101 owner's manual covers this trimmer capacitor peaking procedure quite well. This procedure ensures maximum performance on 10, as would be expected.
As mentioned earlier, I hoped to avoid hold drilling and other mechanical (or major electronic) surgery. 1 wanted to be able to restore the transceiver to its original state.
After removing the bottom cover, I quickly found that the preamp board should be installed topside. The most space above the chassis is directly in front of the PA cage. As luck would have it, the 1.7 inch x 3.9 inch ($43 \times 99 \mathrm{~mm}$) dimensions of my board allow it to fit vertically in this spot without interfering with the top cover. To avoid relays, which probably wouldn't fit inside the rig anyway, the preamp should be installed in the FT-101's receiver section.
A review of the circuit diagram showed that this could be done between the lamp fuse (if overload protector) and T101A, (see fig. 1). The modified circuit diagram is shown in fig. 2. A 4PDT miniature toggle switch places the preamp into the circuit and simultaneously applies the 12-14 volts. Operation on all bands is not affected when the switch is off.

hardware and wiring details

A bracket was formed from a $3 / 4$-inch-wide (19mm) piece of $1 / 32$-inch ($1-\mathrm{mm}$) aluminum, which serves double duty by holding both the preamplifier circuit board and the miniature switch in position (fig. 3). The dimension marked with an asterisk should not be exceeded, or the top cover will not close properly.
Switch wiring is shown in fig. 4. RG-174 miniature coax was used for each of run, and all coax braids must be grounded at each end. The circuit board and

fig. 3. Sketch of the bracket used to mount preamp and switch assembly in the FT-101. The $1 / 4$-inch $(6.5-\mathrm{mm})$ dimension (asterisk) should not be exceeded (see text). Bracket attached to perforated PA cover, thus no holes need to be drilled.
the switch should be mounted on the bracket, then wired for greatest convenience. The cables that connect to the rig should also be soldered to the switch at this point. One or two short machine screws will ultimately secure the bracket assembly to an existing hole in the perforated PA cage cover. Make sure that these screws do not touch any components inside the PA compartment! This bracket arrangement provides very good mechanical stability.

The input/output lines from the preamp switches were passed around the driver tube socket and down through the opening beneath the heterodyne crystal oscillator board (PB1073), located in the right-front corner of the transceiver. Routing the coax cables around the tube socket is not necessary but gives enough slack to allow removing the board for adjustment or repair without unsoldering it.

The supply voltage wiring was routed from the switch through the opening under the VFO assembly and along to pin 7 of the mixer board socket (PB1180). I used a piece of scrap RG-174 for this

fig. 4. Schematic diagram of added control switch (S13) wiring. All coax braids are grounded at the switch and through S13d.
cable, too, and pin 6 or 8 of the PB1180 socket can be used for grounding the braid. Passing the wiring between the chassis underside and the speaker plate gives the neatest appearance. Although each FT-101 circuit board has one or more 13.5 -volt connections, the mixer socket seemed to offer the easiest access point.

FT-101 circuit considerations

The simplest location for splicing the preamp into the FT-101 was right at the secondary of T101A, where the incoming signal is applied. The circuit board containing the front-end alignment trimmers must be temporarily moved aside to allow access to the T101A connections, which are between it and the underside of the chassis. Removing the wraparound cover also is convenient.

T101A has five terminals, with three of them on the transformer secondary. One secondary terminal is grounded, while another connects to the incoming signal and the crystal-calibrator signal. In my radio, the red wire carries the incoming signal, and the yellow wire goes to pin 16 of PB1547. It would be wise to check these wires in your radio with an ohmmeter to make sure that no production changes have occurred. The middle terminal is not connected to T101A and serves as a convenient tie point.

Remove the incoming and calibrator signal wires from their existing transformer terminal. Attach them and the preamp input to the T101A middle (dummy) terminal. Now connect the preamplifier output coax cable to the terminal that originally held the incoming and calibrator wires. Both preamp input/output coax shields are grounded at, or adjacent to, the transformer ground terminal. Note that the calibrator wire can remain in its original location. Once this work is finished, be sure to replace the circuit board containing the front-end alignment trimmers that was moved aside earlier.

alignment

Alignment of the preamp I selected involved peaking two trimmer capacitors on the preamp board. This condition is registered on the S-meter using a signal generator loosely coupled to the FT-101's antenna terminal. I aligned the preamp before the bracket assembly was attached to the PA compartment cover then later tweaked the caps after final assembly. (This step may not be necessary if the caps are properly peaked initially.)

It's important to couple the signal generator very loosely to the rig without developing AGC voltage (no S-meter reading). Using the calibrator signal was unsatisfactory because it was too strong and masked the correct adjustments. This resulted in no amplification of the weak signals. After all, making the
weak signals stronger is the whole ball of wax! This unit works well and has no self-oscillations, body capacitive coupling, or other problems that can occur when LC circuits are not in resonance.

a final word

That completes the rig modifications, and the cabinet can be put back together. The photograph shows the circuit board and switch assembly installed beside the PA compartment. When the preamp is switched off, the receiver should work normally on all bands as before. My unit pushes a barely audible station to an S5-S8. While the no-signal noise is also amplified, this noise does not register on the S-meter, which indicates an overall increase in the signal-tonoise ratio. I found a minor secondary advantage of this modification with the rf-gain pot. Previously, a signal would disappear altogether when the rf gain was set below about 6 . This pot now provides vari-

fig. 5. Photo of the preamp and switch assembled inside the FT-101 (arrows). Routing of the miniature coax cables is not critical and uses existing pass-through holes in the chassis.
able attenuation throughout its entire range when the preamplifier is turned on.

While the mods discussed in this article are directed toward the FT-101, the same philosophies should apply to many other transceivers and receivers as well. This mod is quite effective. Having it integrated into the transceiver's circuitry certainly helps keep the station more orderly. Looking to the future, I expect this unit will be most beneficial as 10 -meter propagation declines.

reference

[^6]

Barry is Now a Full Line Distributor of Satellite TV Receivers, LNA's, Antennas and Accessories. Call or write Kitty today for Your Quote.

The outstanding Yaesu FT. 707, FT-902DM, FT-107M or the FT-101ZD
FT 720RVH, 25 watts, 2 meter transceiver. FT-720RU, UHF transceiver. FT 480, 2 meter, all mode, 30 watts. FT780R, all mode $430-440 \mathrm{MHz}$.

DENTRON Clipperton L, GLA-1000B, AT2K JULY FEATURES, Best Price Around
COLLINS KWM 380, New Shipment just received. and accessories for all major lines. ASTRO $103 \cdot$ BIRD WATTMETERS MIRAGE 2M amplifiers • MURCH UT 2000B ROBOT 400 SSTV
It's Barry's for the Drake TR/DR-7, R-7 and L75 CW Ops - we've got NYE keys, Vibroplex, Bencher paddles and electronic keyers, AEA Morse-A-Matic MT-1, KT-1, MN-1; ICOM IC-720A, IC-730, and IC-22U. Slinky Dipoles, HyGain Antennas, 2 m beams \& mobile, 18AVT/WB, KLM, Cushcraft and Ham IV Rotators

BARRY'S HAS HAND-HELDS TEMPO S-4 70 cm
 Yaesu FT-207R
 Icom IC-2AT
 Santec HT-1200
 VOCOM ANTENNAS AND AMPLIFIERS FOR YOUR HANDHELD.

BARRY now carries the ALPHA 76CA with three 8874 tubes, 2,000W PEP and hypersil ${ }^{\circ}$ transformer Kantronics Field Day and Mini-Reader Trionyx $\mathbf{0 - 6 0 0} \mathrm{MHz}$ counters - $\$ 159.95$

- Complete selection of radio books including 1981

Handbook and Repeater Directory
JUST ARRIVED, 78th edition ARRL License Manual.
Our lines include:

AEA	CUSHCRAFT	KL.M	TEMPO
ALLIANCE	DENTRON	KANTRONICS	TRI-EX
ASTRON	DRAKE	MFJ	VIBROPLEX
AVANTI	ETO	MIRAGE	VOCOM
B \& W	EIMAC	MURCH	WACOM
BIRD	ENCOMM	ROBOT	YAESU
COLLINS	HUSTLER	SHURE	AND MORE..
COMMUNICATIONS	HY-GAIN	STANDARD SWAN/CUBIC	

BOATERS: Satellite Navigation Equipment. Call for info on "SATNAV."

BUSINESSMEN: Ask about BARRY'S line of business-band equipment. We've got it!

Amateur Radio License Classes: Wednesday \& Thursday: 7.9 pm , Saturday 10 am-noon

TELEX 12-7670

A survey of antenna tuners - how QST and Lew McCoy, W1ICP, pioneered the "Transmatch"

Society seems to go through a progression of fads. Senior citizens well remember when miniature golf courses, "Amos ' n ' Andy," and the snood were all the rage in the thirties and forties. Most of us can name some post-war fads: the hula hoop, tail fins on autos, and hot tubs.

Amateur Radio, being in some ways a mirror of society, also has its fads. Old timers remember from prewar times the Astatic D-104 microphone, the RME-69 receiver, preselectors, and the Johnson-Q antenna. in vogue today are keyboards and RTTY,quad antennas, speech processors, SWR meters, baluns, and antenna tuners. Time will tell which of these technological developments will be of the greatest benefit to Radio Amateurs.

This brings me in a roundabout way to the subject of this column: antenna tuners. If you look in the various ham magazines, you'll see a
bunch of advertisements featuring antenna tuners. Everybody has gotten in on the act! You can even buy an antenna tuner to match the decor of your equipment. Obviously, you've got to have an antenna tuner to be a part of the action.

antenna tuner? what's that?

The term antenna tuner, as By Goodman, W1DX, once pointed out, is a misnomer. It doesn't tune the antenna. Rather, it's a matching device that translates the electrical characteristics of the antenna system into values more compatible with the communications equipment attached to the antenna.
Back in the days of open-wire feedlines and simple antennas, the antenna tuner was a resonant circuit coupled to the transmitter. A few copper alligator clips on the tuner coils permitted the operator to make loading
adjustments to his taste. He didn't worry about the standing wave ratio (SWR) on the feedline - these magic initials were unknown to most Amateurs.
The SWR meter. With the availability of good, inexpensive coaxial cable after World War II, the switch-over from open-wire lines was inevitable. At about that time, Amateur Radio was introduced to the SWR meter. And the Federal Communications Commission introduced the Novice license, which brought a large number of new Amateurs on the air.
The influx of new, inexperienced hams on 80 and 40 meters brought a blizzard of problems for the FCC and Amateur Radio. The beginner's transmitter was unsophisticated and, more often that not, a prolific generator of strong harmonic signals. Moreover Amateur Radio as a whole was plagued with serious television interference (TVI) problems. Many

fig. 1. The antenna-tuner design that started it all. Shown in the March, 1959, issue of $Q S T$, this design brought the antenna tuner out of the dark ages. It incorporated a simple SWR bridge made from a length of coaxial line and a link-coupled circuit that could be adjusted for either series or parallel tuning of an open-wire transmission line. The air-wound coil is about 2 inches in diameter, 10 turns per inch. (Drawings from QST, March, 1959.)

The length A should be more than a quarter wovelength of the lowest operating frequency. When you determine the length of A to half the distance, add a sufficient length of feed line (8) to equal a quarter wavelength or multiple thereof. For example, let's assume you can put up an antenna 80 feet long and you plon to operate on the 3.7-Mc. Novice band as the lowest frequency. From the formulo

$$
\begin{aligned}
& 245=66.5 \mathrm{feel} \\
& 3.7 \\
& 66.5-40=26.5 \mathrm{feet}
\end{aligned}
$$

the feeder length, or

$$
2 \times 66.5=1.33
$$

$$
133-40=93 \text { feet. }
$$

Th:s can be carried out for greater feeder lengths, depending on the requiremerts of the installation.

This drawing shows now to mike the coil assembly. Not shown are the taps needed for changing bands. The ap points itsted below all are counted from the outside tands of the coil.
7 Mc.-. 12 iurn
14 Mc. -- 23 , urns
21 Mc. -- 23 turris.
28 Mc. -26 turns.
The coil stock in 3 inches in diam., No. 14, 8 turns per inch
fig. 2. The 1961 version of the Transmatch. The SWR bridge is shown at left. The coils are tapped, and a rotary switch is used to select the proper inductance. Note that a coaxial plug (J 4) has been added to the output terminations of the tuned circuit. Only one-half of the tuner circuit is used for the coaxial connection. (Drawings from $Q S T$, November, 1961.)

Amateurs thought that perhaps the old-fashioned antenna tuner might solve these problems. How could the old-design tuner be adapted from open-wire line to coaxial line?
The antenna tuner and SWR bridge circuit. Several solutions to
this problem were introduced during the 1950s, but the most popular and effective tuner was that developed by Lew McCoy, W1ICP, the Novice Editor and Technical Assistant for QST magazine. An early version of Lew's device is shown in fig. 1. This tuner
adapts a medium-power transmitter having a 50 -ohm coaxial antenna output to a center-fed, all-band antenna. A simple SWR meter is incorporated into the tuner. Small copper clips make connections to the tuner coil as the band is changed. This is a prac-
tical all-band (80- through-10-meter) antenna and tuner, and I recommend it to any Amateur looking for a versatile, simple, and inexpensive antenna system. For more details, refer to the March, 1959, issue of $O S T$, pages 11-15.
Later, in the November, 1961 OST Lew showed a high-power (500-watt) version of his tuner - a deluxe model having a wider adjustment range and he called it a Transmatch. Again, it was designed to match a 50 -ohm coaxial antenna output to an antenna having a balanced feed system. But he also added a coaxial output plug to the Transmatch to match to a 50-ohm transmission system. In this manner, the Transmatch could be used as a highly selective circuit in a 50 -ohm coaxial system that would greatly attenuate the harmonics of the transmitter. The circuit is shown in fig. 2.

By 1966 the impetus had switched to harmonic suppression on 50 -ohm transmission lines; so the October, 1966, issue of OST featured a simplified McCoy Transmatch that eliminated the SWR meter and emphasized single-ended output (fig. 3).

In 1967 an entirely different approach to an "antenna tuner" was described by Lance Johnson, K1MET. He built a simplified, singleended tuner based upon a T-section network that provided an unbal-anced-to-balanced match for a 50 ohm transmission system (fig. 4). This compact and simple Transmatch is an excellent solution to some of today's problems with solid-state rigs: it will reduce the SWR on an antenna system to near unity, so that the transmitter does not suffer reduced power output caused by operation into a mismatched load.

the "Line Flattener"

This circuit has shown up in Radio Amateur literature numerous times since its first introduction by K1MET (then an ARRL Lab Assistant). Previously, it had been in wide commercial use but somehow had never filtered into ham literature. In addition to providing a good match, the T section
(fig. 4) provided up to 20 dB attenuation for transmitter harmonics falling into the TV channels. An extremely practical circuit, this low-cost device is recommended to today's Amateurs who have solid-state transmitters and who wish to achieve easy and efficient antenna matching with a minimum of fuss.

By now the name Transmatch was slipping into the public domain, and almost every "antenna tuner" was called a Transmatch. (Too bad, Lew. You've suffered the fate and fame of Kodak ${ }^{\text {TM }}$ and Xerox ${ }^{\text {TM }}$!)

A simplified Line Flattener for a triband beam (10-15-20 meters) can be built. Capacitor C 1 is reduced to 250 pF , capacitor C 2 is removed, and the end of coil L2 is connected directly to
receptacle J2 (fig. 4). Then, coils L1 and L2 are reduced to nine turns each. Readers with a good memory will recall that I described a compact, 100-watt version of the Line Fiattener in my antenna column in CQ, April, 1979. A somewhat similar device was also described by W6EBY in the September, 1978, issue of ham radio (page 22).

back to the Transmatch

By 1961 the antenna tuner had taken an interesting turn, and an article describing the " 50 -Ohmer" by Lew McCoy appeared in the July, 1961, issue of QST (fig. 5). This device was a form of Line Flattener designed to be used with a coaxial system to reduce the SWR on the

CUT WIRE AND UNWIND $1 / 2$ TURN

Details for making the $80 / 40$-meter coil. The 20.meter coil consists of 2 turns for L_{1} and 6 turns for $L_{2}\left(3\right.$ turns on either side of $\left.L_{1}\right)$. Details for the $15 / 10$. meter coil are given in the text. The coils are mounted on Millen type 40305 plugs and the socket is Millen type 41305. Coil stock is Polyphase PIC type 1778, 3 -inch diameter, 6 furns per inch, No. 12 solid wire.
fig. 3. The tuned-circuit antenna-matching device reduced to the simplest form. The SWR meter is eliminated, but provision for 50 -ohm coaxial output is included. (Drawings from October, 1966, QST.)

fig. 4. The 1966 Transmatch (top). This is a T-section network that provides a match within a 50 -ohm transmission line system. The configuration is well suited to today's solid-state equipment. Tuner is designed to cover 160 through 10 meters. A pinetwork circuit, below, is used in the Drake MN-4 matching network. (Drawings from QST, October, 1967.)
transmission line. It used a "bandswitching adjustable transformer" capable of handling SWR values as high as 5 to 1 . Of interest to the circuit connoisseur is the use of a splitstator tuning capacitor with network input attached to the floating rotor.

This shunt provided a capacitive short circuit to ground for the transmitter harmonics and gave protection up to 20 dB for harmonics falling into the TV channels - a slightly different version of the K1MET design.

the Ultimate Transmatch

In July, 1970, W1ICP came up with the Ultimate Transmatch in his "Beginner and Novice" column of QST. This circuit was a sophisticated version of the 50-Ohmer, adapted for either coaxial lines or balanced lines. A 1-to-4 ferrite balun was used to achieve balanced output (fig. 6). This

Transmatch combined simplicity and flexibility, requiring only one splitstator capacitor, one single-section capacitor, and one variable inductor. Many of the antenna couplers sold today employ this circuit or variations of it. The output termination for the balanced configuration is 200 ohms when the input to the Transmatch is 50 ohms.

The use of a ferrite balun, however, should be approached with caution. Most balanced lines are other than 200 ohms $(300$ ohms for TV ribbon line, and 450-600 ohms for openwire transmission line). Ferrite baluns don't like to work into a mismatch because of core saturation. The result of this misuse is increased harmonic radiation and the chance of balun flashover at medium power levels. An air-core balun at this point is recommended.

the SPC Transmatch

Shown in the 1981 ARRL Handbook is the SPC Transmatch (SPC standing for series-parallel-capacitance) - another offspring of the long series of antenna matching units pioneered by W1ICP and others. A simplified schematic of the ARRL Handbook version is shown in fig. 7. This unit was developed by Doug DeMaw, W1FB. It provides a wide range of matching and gets around the ferrite-core balun problem by substituting an air-core device.

which antenna tuner to build or buy?

So much for the background of the Transmatch, now firmly established as part of the history of Amateur Radio. Much information is available for the interested Amateur who

Circuit diagram of the 50 －Ohmer．Decimal values of capacitances are in uf．，others are in رuf．
$C_{1}-100-\mu \mu^{f}$ ．－per－section，split stotor（Hammarlund $L_{2}-28$ turns No．14， $13 / 4$－inch diom．， 8 turns per inc．
（B \＆W Miniductor 3022，imsmitronic Air Eu．
$C_{2}-100 \cdot \mu \mu \mathrm{f}$ ．variable son 100 FD 2OH）．
$C R_{1}$－ 1 N3AA germanium diode．
$\mathrm{J}_{1}, \mathrm{~J}_{2}$－Coax chassis terminal，SO－237．
$\mathrm{L}_{1}-93 / 4$ turns No．14， $13 / 4$－irch diom．， 4 lurns per inch （ \＆\＆W Miniductor 3021，Illumitronic Air Dux 1404 T ）．14－Mc tap $21 / 2$ turns from junction of $L_{1} L_{2 ;} 21$ Mc．tap $71 / 2$ furns from junction of $L_{1} L_{2}$ ； 14087）．7－Mc．tap 5 turns from the junction o： いい。
$\mathrm{M}_{1}-0-1$ milliammeter．
$R_{1}-150$ ohms， $1 / 2$ wat．
$R_{2}-25,000$－ohm control，linear taper．
S1－2－pole，2－position switch（Centralab 1462）．
S．e－Ceramic rolary，one section，one pole， 5 positions $28-\mathrm{Mc}$ ．tap $71 / 2$ turns from junction of $L_{1} L_{\text {．}}$ ．
（Centralab type 2501 ）．
fig．5．The 50 －Ohmer circuit of 1961 is the forerunner of today＇s Transmatch．The split－stator capacitor C1 provides good rejec－ tion of the transmitter harmonics and provides TVI protection when it is properly adjusted．Note that high－impedance output for two－wire transmission line has been dropped．（Drawing from Ju／y， 1961 QST．）
wants to buy or build a Transmatch． As to the question，＂Which antenna tuner should I build or buy？，＂the first answer is，Don＇t use an antenna tuner unless you really need it．Too many Amateurs are swept away by antenna tuner fever when they could just as well get along without one．＊

Where the Transmatch really shines is in conjunction with a solid－ state transmitter and，say，a triband antenna．The tribander provides various terminating impedances as operation is conducted across the bands，and sometimes the solid－state transmitters encounter loading prob－ lems，especially at the band edges． The Transmatch will transform the odd－ball impedance at the station end of the transmission line into 50 ohms， which is what you would want for a

[^7]good match to the transmitter．
The transmitter employing vacuum tubes and a pi－network output circuit is considerably more tolerant of a high SWR antenna load，and in most cases a Transmatch is not required to match a 50 －ohm line to the transmit－ ter，with one exception： 80 meters． The great majority of 80 －meter ham antennas cannot work across the whole band without exhibiting a high value of SWR at one end of the band or the other．And here is where a Transmatch is worthwhile．Even though the antenna may be operated ＂off tune＂and may exhibit a high SWR on the feedline，the Transmatch can provide a satisfactory load for the transmitter．
Which model Transmatch to build or buy？I＇m not going to get into a dispute over that．My Transmatch needs are modest，so I have a hay－ wire version of the T －section device
shown in fig．4．In fact，I have two of them．One is built up very pretty in a low－profile case，complete with SWR meter and all bells and whistles．The other one is built upon a small sheet of plywood，and the components are interconnected with flexible leads and copper－plated battery clips．It is very flexible and I can rearrange the circuit at a moment＇s notice to fit the need at hand．

If I were buying a Transmatch I would want to look inside the pretty case and examine the innards．Is a good quality ceramic switch used？ Do the capacitors have sufficient plate spacing for the power level indi－ cated？Are all rf connections well made－solid and firm？Is there suffi－ cient air space around the inductor so that the metal cabinet is not induc－ tively coupled to the coil，producing an unwanted shorted turn in the metal of the box？Sometimes a

THE ULTIMATE CABLE TV CONVERTERI

VIDCOR 2000 CONVERTER ELIMINATES PROBLEMS

FACTORY SURPLUS UHF TUNERS

MINIATURE FM WIRELESS MICROPHONE
 The FACTORY SURPLUS VHF / UHF

20 AMP REGULATED 12VDC POWER SUPPLY:

Onice PLATTSBURGH, N Y 12901

LARSEN ANTENNAS SCALE THE ANDES.

$$
-1
$$ P.O. Box 1799 Vancouver, WA 98668 Phone 206-573-2722 Toll Free Order Line 1-800-426-1656 and Washington State 1-800-562-1747

an audio amplifier for your handheld transceiver

Build this

convenience accessory and avoid freeway trauma

Today's handheld transceivers are marvelous little radios. A long list of optional accessories makes it possible to tailor them to many applications. However, most don't have sufficient audio output to be

The audio amplifier is mounted inside the speaker enclosure using a metal stand-off post. The power and audio leads are secured with a plastic cable clamp.
used in a car. It's not much fun to drive while trying to hold the radio and its speaker/microphone to your ear. So a simple audio amplifier, with sufficient output to be heard over any amount of road noise, is a useful accessory. Let's build one.

the circuit

In fig. 1 an LM383 IC (U1) does all the work. It contains a preamplifier, power amplifier, and circuitry to protect against overheating, short circuits, and voltage spikes from an automotive electrical system. It operates from a 13.5 -volt supply and can provide up to 5 watts of audio output. It delivers a gain of 100 , about 40 dB .

Looking at fig. 1, R1 provides a load for the audio section of the handheld. (Some of the components used in the circuit prevent 2 -meter energy from getting into the amplifier.) RFC1, C7, and C2 filter the input line, and RFC2 and C6 decouple the speaker lead.

The LM373 is a stable, well-behaved amplifier. R2 and R3 form a resistive divider, which provides negative feedback to pin 2 through C8. A key to stability is C4, which must be a metalized-film capacitor, with short leads, connected from pin 4 to pin 3 of U1. Other types of capacitors should not be substituted. Components used in the amplifier, except for the ferrite beads, are available from many local electronicequipment suppliers. Ferrite beads are sold through mail order (check the ads).

By Douglas A. Blakeslee, N1RM, 4 Maple Lane, Brookfield, Connecticut 06804

fig. 1. Schematic diagram of the audio amplifier. All capacitors are ceramic except C2, C3, and C4 (metalized film type) and those with polarity indicated, which are electrolytics. RFC1-RFC3 inclusive are jumbo ferritebead, VHF type, or three small VHF beads slipped over a short piece of hookup wire. U1 is a National Semiconductor audio-amplifier IC.

construction

The amplifier can be built using point-to-point wiring on a piece of perf board, on a universal circuit board, or on a homemade board, as shown in fig. 2. Whatever type of board you choose, follow the general component layout of fig. 3. If you use an etched circuit board, touch up the copper portion with some fine steel wool to remove any oxidation. Mount the components a few at a time, and bend the leads slightly to hold them in place. Solder all connections. Then inspect all solder joints to ensure they are bright and shiny. If a joint is dull and matted with solder, reheat it until the solder flows.

fig. 2. PC-board foil pattern for the audio amplifier.

To produce loud audio, a speaker must move air. Thus, a 2 -inch diameter speaker isn't much good. A 4 -inch diameter speaker is adequate, and 5 - or 6 -inch speakers are even better. I chose a 5 -inch diameter speaker with housing, sold as an add-on rear-seat extension speaker. I mounted the audio amplifier inside the speaker housing (photo). If you use one of the extension speakers sold for CB radios and there is not enough room inside the speaker enclosure for the circuit, use a small aluminum box to house the amplifier.

power

The nominal 13.5 Vdc from an automotive electrical system is just what's needed for the audio amplifier. However, it's also desirable to power the handheld from the car electrical system, as rechargeable batteries are insufficient for long trips. Powering your handheld may not be so simple. Read your instruction book carefully. My FT-207 manual cautioned that the voltage applied be limited to 12 volts or below.

Inspection of the circuit diagram showed two dc input paths: one for needle-pin connections in a

fig. 3. Parts placement diagram.
holder/power supply, and the other a jack for the battery charger. The circuit has one diode in series with the pin contacts and two diodes between the battery-charger jack and the set. (Silicon diodes typically have a voltage drop of 0.6 volt.)

Automotive electrical systems are noisy electrically and often have high-voltage spikes called transients. The lead-acid storage batteries used in cars have a nominal voltage of 12.6 . Fully charged, the batteries will show a potential of approximately 13.5 volts. The battery-charging system delivers 14 volts or more. Transients of up to 300 volts are produced during normal operation of the car. This is not the sort of power source to be directly connected to a handheld

RADIOS UNLIMITED

1760 Easton Avenue
P. O. Box 347

Somerset, NJ 08873
(201) 469-4599

A 4Brings you the Breakthrough!

OPTOELECTRONICS Irom Siemens
LD271 High etficiency intrared LED $\$ 1.00$
BPW34 Fast, large atea PIN photo-dipde $\$ 3.00$ THERMOELECTRIC COOLERS: MELCOR FRIGICHIP $\$ 9.00$ - $\$ 30.00$
radio designed to operate from a mild-mannered nicad battery!

I chose to use the charger input jack to power my radio. With a maximum of 14.5 volts from the car, the power circuit of fig. 4 was used. The two diodes inside the FT-207 provided a 1.2 -volt voltage drop. I used two additional diodes in series with the power lead, so that the maximum voltage applied to the radio would be 12.1 volts. I included a 15 -volt zener diode to clip any voltage transients. Also, I used a capacitor to reduce the noise from the automotive electrical system. (In some installations, a more extensive filter may be needed to eliminate alternator whine.)

fig. 4. Schematic diagram of the power circuit.

installation

Installation details can be changed to suit individual requirements. My original goal was to use the radio for hamming while on family trips. I built the circuit of fig. 4 into the speaker on a solder-lug strip. The power cord is equipped with a cigarette-lighter plug for instant installation.

Two short cords with miniature phone jacks connect to the radio, one for power and one for audio. S1 of fig. 4 ensures that power is off until the power cord to the radio is in place. (It's impossible to insert or remove a "hot" phone plug without hitting ground simultaneously, which results in an impressive flash and a blown fuse!)

If you want a semi-permanent installation, the speaker and amplifier can be mounted under the dash or at any other convenient spot. I place my radio beside me on the car seat when traveling and use the remote microphone. Volume and squelch controls are handy, and the band-search feature is useful for finding repeaters when in unfamiliar areas. Best of all, when I arrive at my destination, the radio can be disconnected in seconds and clipped to my belt.
ham radio

Quality VHF/UHF Kits at Affordable Prices ~

These Low Cost SSB TRANSMITTING CONVERTERS

Let you use inexpensive recycled 10M or 2M SSB exciters on UHF \& VHF!

- Linear Converters for SSB, CW, FM, etc.
- A fraction of the price of other units; no need to spend $\$ 300-\$ 400$ t
- Use with any exciter, works with input levels as low as 1 mW .
- Use low power tap on exciter or simple resistor attenuator pad (instructions included).
- Link osc with RX converter for transceive.

XV4 UHF KIT — ONLY \$99.95

$28-30 \mathrm{MHz}$ in, $435-437 \mathrm{MHz}$ out; 1 W p.e.p. on ssb, up to $11 / 2 \mathrm{~W}$ on CW or FM . Has second oscillator for other ranges. Atten. supplied for 1 to 500 mW input, use external attenuator for higher levels.
Extra crystal for $\mathbf{4 3 2 - 4 3 4 ~ M H z}$ range
$\$ 5.95$ XV4 Wired and tested
$\$ 149.95$

XV2 VHF KIT - ONLY \$69.95

2 W p.e.p. output with as little as 1 mW input. Use simple external attenuator. Many freq. ranges available.

MODEL INPUT (MHz) OUTPUT (MHz)

XV2-1	$28-30$	$50-52$
XV2-2	$28-30$	$220-222$
XV2-4	$28-30$	$144-146$
XV2-5	$28-29(27-27.4$	CB) $145-146(144-144.4)$
XV2-7	$144-146$	$50-52$
XV2 Wired and tested		
XV........................ $\$ 109.95$		

XV28 2M ADAPTER KIT - \$24.95
Converts any 2 M exciter to provide the 10 M signal required to drive above 220 or 435 MHz units.

NEW! COMPLETE TRANSMITTING CONVERTER AND PA IN ATTRACTIVE CABINET
Far less than the cost of many 10W units! Now, the popular Hamtronics* Transmitting Converters and heavy duty Linear Power Amplifiers are available as complete units in attractive, shielded cabinets with BNC receptacles for exciter and antenna connections. Perfect setup for versatile terrestial and OSCAR operations! Just right for phase 3! You save $\$ 30$ when you buy complete unit with cabinet under cost of individual items. Run 40-45 Watts on VHF or 30-40 Watts on UHF with one integrated unit! Call for more details.
MODEL
KIT WIRED and TESTED
XV2/LPA2-45/Cabt (6,2,or220) \$199.95 \$349.95

- NEW LOW-NOISE DESIGN - Less than 2dB noise figure, 20dB gain MODEL RF RANGE OUTPUT RANGE CA28 $\quad 28-32 \mathrm{MHz} \quad 144-148 \mathrm{MHz}$ $\begin{array}{lll}\text { CA50 } & 50-52 & \text { 28-30 }\end{array}$ CA50-2 $50.54 \quad 144.148$ $\begin{array}{lll}\text { CA144 } & 144-146 & 28-30 \\ \text { CA145 } & 145-147 \text {-or } & 28.30\end{array}$ $\begin{array}{lll} & 144-144.4 & 27-27.4 \text { (CB) } \\ \text { CA146 } & 146-148 & 28-30\end{array}$ $\begin{array}{lll}\text { CA220 220-222 } & 28 \cdot 30\end{array}$ $\begin{array}{lll}\text { CA220-2 } & 220-224 & 144-148\end{array}$ CA110 Any 2 MHz of $\quad 26-28$ | CA432-2 | $432-434$ | $28-30$ |
| :--- | :--- | :--- |
| CA432-5 | $435-437$ | $28-30$ |
| CA432-4 | $432-436$ | $144-148$ |
| Easily modified for other rf and if ranges. | | | $\begin{array}{lcc}\text { STYLE } & \text { VHF } & \text { UHF } \\ \text { Kit less case } & \$ 34.95 & \$ 49.95 \\ \text { Kit with case } & \$ 39.95 & \$ 54.95\end{array}$ $\begin{array}{lll}\text { Kit with case } & \$ 349.95 & \$ 84.95 \\ \text { Wired/Tested in case } & \$ 54.95 & \$ 64.95\end{array}$

Professional Quality VHF/UHF FM/CW EXCITERS

- Double tuned circuits for spurious suppression
- Easy to align with built-in test aids

T51-30	10 Meter, 2W Kit. $\$ 44.95$
T51-50	6 Meter, 2W Kit....... 544.95
T51-150	2 Meter, 2W Kit. $\$ 44.95$
T51-220	220 MHz , 2 W Kit...... 544.95
T450	$450 \mathrm{MHz}, 3 / 4 \mathrm{~W}$ Kit 544.95
T451	450 MHz , 3 W Kit. \$59.95
Al4T	5 Chan Adapter (T518T451) $\$ 9.95$

See our Complete Line of VHF \& UHF Linear PA's

- Use as linear or class C PA
- For use with SSB Xmtg Converters, FM Exciters, etc. LPA2-15 6M, 2M, 220; 15 to 20W $\$ 59.95$ LPA2-30 6M, 2m; 25 to 30W \$89.95 LPA2.40 220 MHz : 30 to 40 W LPA2-45 6M, 2M; 40 to 45 W . $\$ 119.95$ $\$ 119.95$ \$79.95 LPA4-10 430 MHz : 10 to 14 W LPA4-30 $430 \mathrm{MHz} ; 30-40 \mathrm{~W}$.
$\$ 119.95$

IT'S EASY TO ORDER!

- Write or phone 716-392-9430
(Electronic answering service evenings \& weekends)
See catalog for complete specifications

FAMOUS HAMTRONICS PREAMPS
Let you hear the weak ones too! Great for OSCAR, SSB, FM, ATV. Over 14,000 in use throughout the worid on all types of receivers.

NEW VHF/UHF FM RCVRS Offer Unprecedented Range of Selectivity Options

R75A* VHF Kit for monitor or weather sattelite service. Uses wide L-C filter. -60 dB at $\pm 30 \mathrm{kHz}$. $\$ 69.95$ R75B* VHF Kit for normal nbfm service. Equivalent to most transceivers. -60 dB at $\pm 17 \mathrm{kHz},-80 \mathrm{~dB}$ at $\pm 25 \mathrm{kHz} . . . \$ 74.95$ R75C * VHF Kit for repeater service or high rf density area. -60 dB at $\pm 14 \mathrm{kHz},-80 \mathrm{~dB} \pm 22 \mathrm{kHz},-100 \mathrm{~dB} \pm 30 \mathrm{kHz} . \ldots . . \$ 84.95$
R75D* VHF Kit for split channel operation or repeater in high density area. Uses 8 -pole crystal filter. -60 dB at $\pm 9 \mathrm{kHz},-100 \mathrm{~dB}$ at $\pm 15 \mathrm{kHz}$. The ultimate receivert. . . $\$ 99.95$
-Specify band: $10 \mathrm{M}, 6 \mathrm{M}, 2 \mathrm{M}$, or 220 MHz . May also be used for adjacent commercial bands. Use 2 M version for 137 MHz WX satellites.

R450() UHF FM Receiver Kits, similar to R75, but for UHF band. New low-noise front end. Add \$10 to above prices. (Add selectivity letter to model number as on R75.) A145 Channel Adapter for Receivers.
$\$ 9.95$

Printed-circuit techniques,
solid-state devices,
and some old-time technology -
a project for
the first-time builder

field-strength meter for the high-frequency Amateur bands

Here's a project for the first-time builder - a bandswitching field-strength meter. It's a neat accessory for your station that indicates the relative field strength of a signal. Actually, it's a small, bandswitched receiver covering the Amateur 80, 40, 20, 15 and 10 meter bands. In this unit the speaker or headphones have been replaced by a meter that indicates the relative field strength. The receiver is a very basic unit, but it's sensitive enough for critical antenna adjustment and tuning. It's battery powered, allowing you to work at some distance
from the antenna. And it's sensitive enough so that a short whip antenna, as used on 2-meter portables, will serve as a pickup or receiving antenna.
The field-strength meter is constructed on a single printed circuit (PC) board. Component count is low, overall cost is minimal, and the highest voltage encountered is only 3 volts. The field-strength meter has a minimum number of controls: a push-button bandswitch, an rf-level meter, and a sensitivity control that keeps the instrument within reasonable bounds as you get your antenna and transmitter really humming!
The complete unit is about 5 inches wide, 6 inches deep, and 3 inches high ($13 \times 15 \times 8 \mathrm{~cm}$). It could be squeezed down a bit smaller; but, in the interest of making construction a pleasure rather than a chore, the package was kept on the roomy side. Component values are not overly critical, and no special tools or equipment are required for construction or adjustment.

circuit

The description of the field-strength meter makes it sound a bit more complex than it really is. A glance at the schematic (fig. 1) shows the simplicity of the circuit. Band switching sounds complex because we tend to think of large rotary switches and the like; but in this case, band switching is handled by a simple push-button switch mounted on the PC board. This eliminates a lot of wiring and the chance for errors. This type of switch is a real boon to the builder.
The circuit is actually a crystal set, much like those used by the pioneers of early wireless. The antenna is connected to the primary of the rf coil, L1; the secondary of this coil is tapped to provide resonance on each of the high-frequency bands covered by the field-strength meter.
The push-button bandswitch, S1, selects the desired tap on the secondary winding of the coil, L1, and shunts the secondary tap with the required capacitance to provide resonance at each switch position. To make parts procurement easy, the same variable capacitor is used on each band and is shunted by a fixed capacitor where required (see fig. 1). This provides a trimmer for setting each band and eliminates the need for a front-panel tuning control.
The voltage developed across L1 is applied to the detector, CR1, a germanium diode. This rectified voltage is filtered by capacitor C10 and applied to the base of Q1. This general-purpose germanium NPN transistor is an amplifier. It allows the use of a lowcost meter movement as an output indicator. (The alternative is a more sensitive meter, which is more expensive and more subject to damage.) The meter is shunted by sensitivity control R1, which allows a
selected portion of Q1's collector current to bypass the meter movement. This enables you to maintain the meter needle within a usable portion of the meter scale as varying signals are applied to the antenna terminal. The overall collector current of transistor Q1 is limited by resistor R2. The power OFF/ON switch, S2, is coupled to the sensitivity control. The wiring is such that the full clockwise rotation of the control yields maximum sensitivity.
Power for the field-strength meter is supplied by two AA cells mounted on the PC board. Current consumption of the unit is low: battery life should approximate the shelf life of the batteries. Trimmer capacitors C1 through C5 provide individual tuning for each of the bands, and once the unit is adjusted, it's not likely that any drift will be encountered.

construction

Construction of the field-strength meter is really tailored for the first-time builder, and the parts cost, even in today's wild economy, is low. Components aren't especially sensitive to rough handling, and the package is not crammed or difficult to assemble. Radio-frequency circuits are often difficult to duplicate, but printed-circuit construction and standard coil stock take care of that nicely.

Standard hand tools and a drill are all that are required for construction. The aluminum of the case is very soft, and woodworking tools handle it well. A bit of filing is required to get the rectangular holes for the band switch and meter movement, but it's really not much of a task.

let's get started

The first step in the construction of the fieldstrength meter is to obtain the components shown in table 1. The PC board should be etched and drilled in accordance with the foil layout depicted in fig. 2. If you don't have the facilities for fabricating the PC board, an etched and drilled board, complete with the bandswitch assembly installed, is available. The source for this board is shown in table 1.
To start construction, mount the bandswitch and solder it in place on the PC board. Next, mount the four spacers on the foil side of the PC board. These spacers elevate the board above the base of the cabinet.

Now, before mounting any other components on the PC board, take the time to work out the mechanical details of the PC board in relation to the cabinet. If you use the same case I did and want to have the same general layout on the front panel, see the layout in the photos of the completed unit.

The front panel will require five rectangular holes for the switch assembly, a rectangular hole for the meter, and a round hole for the sensitivity control.

fig. 1. Schematic diagram of the bandswitching field-strength meter. Circuit is kept simple by using simple pushbutton switch mounted directly on the PC board.

The rear panel will require holes for the UHF connector used for the antenna.

After making the cutouts in the case, the PC board can be placed into the case, and the clearance for the push buttons can be checked. If things seem to fit well, mark and drill the four holes in the base for mounting the PC board and the rubber feet furnished with the case. When you're satisfied with the mechanical details, you can go on to complete the assembly of the board.

mounting small parts

The PC-board-mounted components, with the exception of rf coil L1, can now be mounted and soldered in place on the board as shown in fig. 3. When mounting components try to develop the habit of installing like components in the same direction so all values can be read from one side or edge of the PC board. In this case, all capacitors would be installed in the same direction. This is a good practice for all your projects and can make service and checkout easier.

Install the four wires that leave the board, using stranded wire to reduce the chance of wire breakage. Leave these leads about 6 inches (15 mm) long and trim them during the final stages of wiring. Colorcoded wire is good for this purpose, and if you use color codes, note them on the schematic for reference. The PC board can now be set aside and work can be started on rf coil L1.

the rf coil

Before starting work on L1, study the drawing
shown in fig. 4. Develop a fairly good idea in your mind of how the coil is to be formulated, as it is a very easy thing to get confused. Initially, the coil stock is 3 inches (76 mm) long and contains 48 turns held in place by four plastic formers.

Starting at the left end of the coil, as shown in fig. 4, count off four complete turns then go about onethird of a turn further, just past the second former, and cut the wire. Fold this wire back so it leaves the coil stock parallel to the lead at the start of the coil. This forms the four-turn primary of L1. The remaining end of the wire just cut will be the lead wire for the secondary and is peeled from the coil stock until it is parallel with the primary coil leads. This will leave a single-turn space between primary and secondary windings of L1. From this initial point on the secondary, count off 31 turns and again cut the wire about one-third way around the coil form. Fold this wire back parallel with the other coil leads. Remove the remaining coil stock and you should have a four-turn primary and a 31-turn secondary.

Now to put a few taps on the secondary. Using nail polish or other marking device, put a small mark at the fourth, seventh, ninth, and eighteenth turns of the secondary. These marks should be placed at the former, and the taps will be soldered just past the marks in the direction of the coil winding.

Scrape the coil plating lightly with a sharp hobby knife where each tap will be placed. This will make soldering the taps easier. Tin each of these spots lightly with your iron before soldering the taps in place. Form the four tap wires from resistor leads or solid wire that is well tinned. Don't try to use wire left

fig. 2. PC board, foil side, for the field-strength meter.
fig. 3. Component layout and associated wiring viewed from component side of PC board.
table 1. Parts list for the field strength meter.
component
C1 through C5
C6
C7
C8
C9
C10
CR1
E1
E1 Holder
J1
L1
M1
Q1
R1
R2
S1
S2
case
knob
spacers
PC board

description

5 to 30 pF ceramic trimmer
150 pF ceramic cap
68 pF ceramic cap
22 pF ceramic cap
10 pF ceramic cap
$0.001-\mu \mathrm{F}$
1N34A diode
1.5 V "AA" cells (2X)
for 2 " $A A^{\prime \prime}$ " cells
UHF jack, SO-239
$1^{\prime \prime} \times 16$ turns/inch
1 mA meter
transistor, germanium
5 k pot, linear taper
270 -ohm, 1/2 W resistor
switch, 5 -position pushbutton switch for R1
$5-1 / 4^{\prime \prime} \times 3^{\prime \prime} \times 6^{\prime \prime}$
$0.750^{\prime \prime}$ diameter $\times 1 / 4^{\prime \prime}$ shaft
No. 6 screw spacers
with S1 installed

GM: Gravois Merchandisers, Inc. 715 Armour Road
No. Kansas City, MO 64116
Tel. 800-821-3686

part number	source*
E.F. Johnson 275-0430-005	CS
Sprague 5GA-T15	CS
Sprague 5GA-Q68	CS
Sprague 5GA-O22	CS
Sprague 5GA-Q10	CS
Sprague 5GA-D10	CS
$276-1123$	RS
$23-552$	RS
12A2016-0	GM
$278-201$	RS
B\&W 3015	QE
Calectro D1-905	CS
$276-2002$	RS
$271-1714$	RS
$271-016$	RS
18A1731-9	GM
$271-1740$	RS
$270-253$	RS
$274-415$	RS
64-3024	RS
FSM1	JO

QE: Quement Electronics 1000 S. Bascom Avenue San Jose, CA 95128 Tel. 408-998-5900

JO: Jim Oswald
1436 Gerhardt Avenue
San Jose, CA 95125
PC board with S1 installed $\$ 9.75$ postpaid
Tel. 408-269-2314

The field-strength meter ready for final assembly. PCboard construction and the use of pushbutton switches make a clean layout and an attractive package. Mounting screws for the meter are avoided by mounting the meter with epoxy cement.

Inside the field-strength meter showing, from left, the battery pack; rf tuned circuit consisting of L1 and C1 through C10; meter, and sensitivity control. Note that component layout pretty much follows the schematic diagram.

fig. 4. Details of rf-coil construction from standard coil stock.
over from the coil stock, as this is often difficult to solder in place.

Solder the four taps in place as shown in fig. 4. This operation is a bit tricky. Should you splash some excess solder on the coil form, it will lift off using solder wick or even a pipe cleaner.

After all the taps are in place, the coil leads can be trimmed to size and the coil can be mounted and soldered to the PC board. Don't get the tap leads too hot during this process or they may pop off the coil!

final details

Now that the PC board is complete, the mechanical details can be finished on the case. If desired, the case can be sanded with 320 or finer paper and a coat or two of your favorite color can be applied. I usually do this, as I invariably scuff up the front panel when making the required cutout.

After the paint is thoroughly dry, the rub-on lettering can be applied. This type of lettering and a few racing stripes can give your home projects a commercial look. A coat of clear lacquer will protect the lettering and level out the paint on the panel.

After all's dry, the PC board can be installed in the case and the sensitivity control, meter, and antenna jack mounted. The meter described in table 1 has two small mounting holes. However, rather than use these, I mounted the meter with a couple of drops of epoxy cement between the front panel and the mounting tabs. This eliminated the mounting screws in the front panel and makes for a clean package.

The remaining wiring can be completed as shown in fig. 3, and the control knob can be installed on the sensitivity control. Give the unit a quick once-over against the schematic and drawings, then install the two AA cells, observing proper polarity. You are just about ready for the smoke test.

Turn the field-strength meter to ON and advance the sensitivity control slowly. As you advance clockwise, the meter will move slightly off the zero position in a positive direction. This is normal and indicates that all is well so far. Should the meter move slightly in the negative direction, the meter leads are reversed and must be transposed to correct the problem.

adjustment

The field-strength meter can be tuned with a signal source such as a signal generator, grid-dip meter, or your transmitter. If you use your transmitter, be sure to couple it to a dummy load so you don't radiate signals that will bother other Amateurs. In the absence of a dummy load, turn your transmitter output down and pick a time when the band is dead. Remember to listen on frequency before transmitting and keep each transmission short, ten seconds or less, and identify each transmission as a test transmission.

Choose your favorite frequency on the 80 -meter band, and with the field-strength meter in the 80 position, inject a signal from the generator or use a pickup antenna for off-the-air or grid-dip signal source.

Adjust trimmer capacitor C1 for a maximum meter reading. Next, repeat this procedure with your signal source and the field-strength meter set for the 40 meter band. Trimmer capacitor C2 will provide adjustment for this band. Repeat this procedure for the 20-meter band, using C3 for adjustment. Capacitor C 4 is for 15 meters, and C 5 will be the trimmer for the 10 -meter band. This completes the adjustment of the field-strength meter. The cover can be installed and you can sit back and admire your handiwork!

a final word

While the field-strength meter isn't a technological breakthrough or a state-of-the-art device by today's standards, it's a good project for getting started in the fascinating field of home brew. It will help you gain the skills necessary to go on to bigger, better, and more interesting projects. Most first-time builders will be able to complete the project during a weekend once the parts have been procured. And keep in mind that if you do have any problems or areas that are confusing you, ask one of your Amateur buddies for a bit of help. You will both enjoy the project!

The next project? Well, I hope to put an SWR meter together soon, and when we're armed with the field-strength meter and an SWR meter, there won't be a tune-up problem we can't handle. So do a good job on the field-strength meter and watch for the SWR meter soon.
ham radio

super beep circuit for repeaters

Here's a circuit for your repeater that features an inhibit and selectable wait function

A beep signal in your repeater, if used properly, could be an asset; otherwise it's nothing more than another piece of trivial hardware. The super beep circuit, described here, was designed to provide the following:

1. An inhibit function against fluttering signals, as from mobile stations.
2. A selectable wait function to allow breakers to start a conversation before the beep signal is activated.
3. An adjustable duration of two independent audio oscillators, which generate a mellow and pleasant sound.
4. A high-level audio output to drive most repeater circuits.

The super beep circuit was designed for the Upper-Valley Amateur Radio Club repeater (Dayton, Ohio) using a VHF Engineering COR board. Input to the beep circuit, fig. 1 , is obtained from the PTT point on the COR board. Output from the beep circuit feeds the audio input to the repeater's transmitter.

The super beep circuit uses standard TTL and CMOS logic, operating from a 5 -volt supply. As shown in fig. 1, the circuit consists of an inhibit oneshot, a wait one-shot, and the two triggered audio oscillators. A buffer amplifier isolates and drives the repeater's audio input.

inhibit function

The inhibit function of the circuit is provided by U1, a 555 timer used as a monostable, which is made retriggerable by connecting a diode (CR1) between pins 6 and 2 (fig. 2). When the squelch from the repeater is broken, the PTT signal on the COR board, normally at logic 1 , is forced to a logic 0 . This action makes U 1 pin 2 a logic 1 . So long as the repeater's COR board keeps the PTT signal low, the output of U1 will stay high, and no timing function will be permitted since CR1 will not allow the timing capacitor to charge.

By AI Torres, KP4AQI, 4850 Hollywreath Court, Dayton, Ohio 45424

fig. 1. Block diagram of the super beep circuit, which uses standard TTL and CMOS logic. Two triggered oscillators provide the beep tone.

If the COR signal momentarily switches states (as during mobile flutter), the timing cycle of $U 1$ is initiated. This timing cycle was designed to keep U1 pin 3 at logic 1 for 0.75 second after the COR signal changes state. If the COR signal recovers before 0.75 second, U1 pin 3 will not change state, and the timing cycle is aborted (see fig. 3). Keep in mind that the wait one-shot is activated only on transitions that go from high to low.

wait function

This function is implemented by using a 74121 (U2, fig. 2) as a monostable. The time duration of this one-shot is determined by:

$$
\begin{equation*}
T_{D}=K_{d} R_{T} C_{T}\left(1+\frac{0.7}{R_{T}}\right) \tag{1}
\end{equation*}
$$

where:
$T_{D}=$ time duration (seconds)
$K_{d}=$ constant supplied by manufacturer (ND)

fig. 2. Schematic diagram of the super beep circuit.

fig. 3. Super beep circuit timing diagram.
$C_{T}=$ capacitance (farads)
$R_{T}=$ resistance (ohms)

With the values shown, the one shot can be adjusted from more than 100 milliseconds to more than 2 seconds. In practice, 1 found that 0.75 second was optimum; such time duration, in addition to the 0.75 second from the inhibit circuit (a total of 1.5 sec onds), is enough time for someone to break in between transmissions and before the beep signal is activated.

oscillators

The oscillators use CMOS logic (U5, a CD4011) and operate in the gated mode. When the input to the first gate is at logic 0 no audio is generated. Using this concept, the oscillators are fired for a fixed-time duration; control for such time duration is accomplished by two one-shots (U3 and U4). By making U3's duration longer than that of U4, a pleasant, mellow sound is generated.

The pitch of each oscillator is controlled by a 100 k pot, which can be adjusted to satisfy your taste. After careful experimentation with our system, we made U3's duration approximately 170 milliseconds and U4's just 70 milliseconds. Results showed that a ratio of $3: 1$ creates the most pleasant sound. The audio is then coupled to the repeater through two 510 -ohm resistors to a unity-gain voltage follower (U6), a $\mu \mathrm{A} 741$ op amp. Audio level is controlled by a 1 k pot.

The input impedance of this voltage follower is such that no loading occurs at the CMOS audio oscil-

lators. Audio range, with the components used, is adjustable from 1000 Hz to 10 kHz .

construction

The super beep circuit was built on a Radio Shack two-voltage-source edge-card board (RS 276-154), which mates to a 22-pin dual edge-card socket (RS 276-1551). The ICs were mounted in DIP sockets, which were soldered to the board.

Nothing is critical about the circuit. The unit operates from 5.0 Vdc , which is available on most popular repeaters. Current drain is not significant.

When adjusting the audio level, make sure that you provide enough audio to deviate your repeater $4-4.5 \mathrm{kHz}$; any greater amount will become bothersome to the operators and to adjacent repeaters.
ham radio

The right design - for all the right reasons. In setting forth design parameters for ARGOSY, Ten-Tec engineers pursued the goal of giving amateurs a rig with the right features at a price that stops the amateur radio price spiral.

The result is a unique new transceiver with selectable power levels (convertible from 10 watts to 100 watts at the flick of a switch), a rig with the right bands (80 through 10 meters including the new 30 meter band), a rig with the right operational features plus the right options, and the right price for today's economy-just \$549.
Low power or high power, ARGOSY has it. Now you can enjoy the sport and challenge of QRPp operating, and, when you need it, the power to stand up to the crowds in QRM and poor band conditions. Just flip a switch to move from true QRPp power with the correct bias voltages to a full 100 watt input. New analog readout design. Fast, easy, reliable, and efficient. The modern new readout on the ARGOSY is a mechanical design that instantly gives you all significant figures of any frequency. Right down to five figures ($\pm 2 \mathrm{kHz}$). The band switch indicates the first two figures (MHz), the linear scale with lighted red barpointer indicates the third figure (hundreds) and the tuning knob skirt gives you the fourth and fifth figures (tens and units). Easy. And effi-cient-so battery operation is easily achieved.
The right receiver features. Sensitivity of $0.3 \mu \mathrm{~V}$ for $10 \mathrm{~dB} \mathrm{~S}+\mathrm{N} / \mathrm{N}$. Selectivity: the standard 4-pole crystal filter has 2.5 kHz bandwidth and a $2.7: 1$ shape factor at $6 / 50 \mathrm{~dB}$.

> Here's a Concept You Haven't Seen In Amateur Radio For A Long TimeLow Price.

Other cw and ssb filters are available as options, see below. I-f frequency is 9 MHz , i-f rejection 60 dB . Offset tuning is $\pm 3 \mathrm{kHz}$ with a detent zero position in the center. Built-in notch filter has a better than 50 dB rejection notch, tunable from 200 Hz to 3.5 kHz . An optional noise blanker of
utes on all bands. 3-function meter shows forward peak power on transmit, SWR, and received signal strength. PTT on ssb, full break-in on cw. PIN diode antenna switch. Built-in cw sidetone with variable pitch and volume. $A L C$ control on "high" power only where needed, with LED indicator. Automatic normal sideband selection plus reverse. Normal 12-14V dc operation plus ac operation with optional power supply.
The right styling, the right size. Easy-to-use controls, fast-action push buttons, all located on raised front panel sections. New meter with lighted, easy-to-read scales. Rigid steel chassis, molded front panel with matching aluminum top, bottom and back. Stainless steel tiltup bail. And it's only $4^{\prime \prime}$ high by $91 / 2^{\prime \prime}$ wide by $12^{\prime \prime}$ deep (bail not extended) to go anywhere, fit anywhere at home, in the field, car, plane or boat.
The right acces-sories-all frontpanel switchable. Model 2202.4 kHz 8 -pole ssb filter $\$ 55$; Model 2181.8 kHz 8 pole ssb filter New TEN-TEC Argosy \$549
the i-f type has 50 dB blanking range. Built-in speaker is powered by low-distortion audio (less than 2% THD)
The right transmitter features. Frequency coverage from 80 through 10 meters, including the new 30 meter band, in nine 500 kHz segments (four segments for 10 meters), with approximately 40 kHz VFO overrun on each band edge. Convertible power: 100 or 10 watts input with 100% duty cycle for up to 20 min \$55; Model 217500 Hz cw filter $\$ 55$; Model 219250 Hz cw filter $\$ 55$; Model 224 Audio cw filter \$34; Model 223 Noise blanker \$34; Model 226 internal Ca librator \$39; Model 1125 Dc circuit breaker \$15; Model 225 117/230V ac power supply \$129; Model 222 mobile mount, $\$ 25$; Model 1126 linear switching kit, \$15.
Model 525 ARGOSY \$549.
Make the right choice, ARGOSYfor the right reasons and low price. See your TEN-TEC dealer or write.

TEN-TEC , IMC.
SEVIERVILLE, TENNESSEE 37862

Questions and Answers

> Entries must be by letter or post card only. No telephone requests will be accepted. All entries will be acknowledged when received. Those judged to be most informative to the most Amateurs will be published. Questions must relate to Amateur Radio.
> Readers are invited to send a card with the question they feel is most useful that appears in each issue. Each month's winner will receive a prize. We will give a prize for the most popular question of the year. In the case of two or more questions on the same subject, the one arriving the earliest will be used.

I notice that pattern plots for beam antennas show the beamwidth at the 3-dB down points. Why is this figure used rather than, say, the 4- or 5-dB down point? - Sylvester McCutheon.

The $3-\mathrm{dB}$ down point for antenna beamwidth measurements is a convenient reference point. The beamwidth is the angular distance between the directions at which the received or transmitted power is 0.707 times its maximum value, also called the half-power point.
l've moved a number of times in the last couple of years. The way I understand the FCC regulations is that if I move I have to notify the FCC - unless it is a temporary move. But what amount of time is considered temporary? - David Carrington, WL 7ACD.

The FCC rules pertaining to ad-
dresses of licensees are contained in Sections 97.43 and 97.44 . Basically, these rules state that you must furnish the FCC with an address in the United States where they can reach you with correspondence and documents (pink tickets, for example). Furthermore, every Amateur Radio station shall have one land location, the address of which appears on the station license, and at least one control point. Unless advised otherwise, the Commission will use the address contained in your most recent application to contact you.

After reading an article in which negative resistance was mentioned, I have wondered just what this term means. - Ted Brice.

Some devices have a property that exhibits a characteristic opposite to Ohm's law for positive resistance. This property, called negative resis-
tance, is characterized by a decrease in voltage drop across the device as current through it is increased, or vice versa. Alternatively, a decrease in current through the device will occur as voltage across the device is increased, or vice versa.

A tunnel diode is an example of a device that exhibits negative resistance. The characteristic curve of the tunnel diode, which shows forward current as a function of forward voltage, contains an area where the diode's current decreases with increased voltage. This, of course, is opposite to the behavior of a regular resistor, which permits a greater current to flow as the voltage increases. The reverse condition occurs in the diode over this range of voltages; thus it is said to have negative resistance. With suitable external circuits added, it can be used as an oscillator or amplifier.

WHY PAY

My TH6DXX antenna is on a 105foot tower, and a $2300-\mathrm{MHz}$ TV down converter is on the same tower at the 45 -foot level. When I run about 800 watts input on 15 meters, the television screen goes blank and the down converter is inoperative. I have no interference problem with the down converter disconnected. The interference does not occur when operating on any other Amateur high-frequency band. Is the problem caused by overload on the down converter, and if so, why only on 15 meters? - Jim Brown, N4DDS.

The transmission line from your converter to the TV set might be some length that is resonant at 21 MHz . So even if you disconnect the converter and don't remove the feedline, the latter will act like a beautiful antenna. Try putting a shorted quar-ter-wave stub (at 21 MHz) at the input to the TV set. The problem should then disappear.

What is the best location for a multiband vertical antenna - on the ground, on the roof, or on top of a mast? - Richard L. Beaty, KA5DDG.

The antenna should be mounted as high above ground and as far from surrounding objects as possible. In any case, a good ground system is important for a vertical antenna to work efficiently. Most vertical-antenna ground systems consist of radial wires arranged around the base of the antenna. It is not absolutely necessary that the radials form the spokes of a wheel; they can be run in almost any convenient manner. Installing radials on a mast-mounted vertical is more difficult than if the antenna is ground mounted, of course. However, you can use the radials as guy wires and slope them downward at an angle of, say, 45 degrees from the horizontal. This arrangement will make the antenna's feedpoint impedance closer to that of 50 -ohm coax than if the wires were run horizontally.

Would you discuss ALC in some detail? / can't find anything on the subject in any authoritative source, including ARRL publications or my manual for my Yaesu FT-101. Harold F. Keenan, WA1FJR.

ALC is an acronym for both Automatic Level Control and Automatic Load Control. The former is used with speech amplifiers in the radiobroadcast service. In the AmateurRadio Service, the latter term describes a form of compressor, or automatic variable-gain amplifier, which is used in SSB transmitters. Automatic load control keeps SSB transmitter gain at the highest usable level without exceeding the peakpower capability of the power amplifier - a sort of insurance policy.

In the simplified circuit shown, which is used with zero-biased triodes, the power-amplifier tube draws grid current over a certain portion of each excitation cycle. C1 and C2 divide the rf voltage in the amplifier plate circuit. The rf voltage produced across C 2 is rectified by CR1, which is connected so that its dc output voltage is negative. This negative dc voltage is applied to the control grid of a remote-cutoff tube in the driver to reduce the gain of the driver stage on signal peaks.

Other circuit elements provide appropriate attack and release time constants and bias. The overall effect of ALC is to keep the rf output relatively constant and at a level below the point where the amplifier is overdriven by widely varying audio input. ham radio

FULL PRICE FOR AN 80-10 METER VERTICAL
... if you can use only 1/3 of it on 107
\ldots or only $1 / 2$ of it on 207
... or only $3 / 4$ of it on 40 ?

Only Butternut's new HF5V-III lets you use the entire 26 -foot radiator on $80,40,20$ and 10 meters f plus a full unloaded quar-ter-wavelength on 15) for higher radiation resistance, better efficiency and greater VSWR bandwidth than conventional multi-trap designs of comparable size. The HF5V-III uses only two high-O L-C circuits (not trapsl) and one practically lossless linear decoupler for completely automatic and low VSWR resonance typically below 1.5:1) on 80 through 10 meters, inclusive. For further information, including complete specifications on the HF5VIII and other Butternut antenna products, ask for our latest free catalog. If you've already "gone vertical," ask for one anyway. There's a lot of information about vertical antennas in general, ground and radial systems, plus helpful tips on installing verticals on rooftops, on mobile homes, etc.

EUTTERNUT ELECTRONICS CO.

P.O. Box \#1411

San Marcos, Texas 78666 Phone: (512) 396-4111

Top-Notch.

VBT, notch, IF shift, wide dynamic range

Now most Amateurs can afford a highperformance SSB/CW transceiver with every conceivable operating feature built in for 160 through 10 meters (including the three new bands). The TS-830S combines a high dynamic range with variable bandwidth tuning (VBT), IF shift, and an IF notch filter, as well as very sharp filters in the $455-\mathrm{kHz}$ second IF. Its optional VFO-230 remote digital VFO provides five memories.

TS-830S FEATURES:

- 160-10 meters, including three new

 bandsCovers all Amateur bands from 1.8 to 29.7 MHz (LSB, USB, and CW), including the new 10,18 , and $24-\mathrm{MHz}$ bands. Receives WWV on 10 MHz .

Wide receiver dynamic range

 Junction FETs (with optimum IMD characteristies and low noise figure) in the balanced mixer, a MOSFET RF amplifier operating at low level for improved dynamic range (high amplification level not needed because of low noise in mixer), dual resonator for each band, and advanced overall receiver design result in excellent dynamic range.Variable bandwidth tuning (VBT)
Continuously varies the IF filter passband width to reduce interference. VBT and IF shift can be controlled independently for optimum interference rejection in any condition.

IF notch filter

Tunable high-Q active circuit in $455-\mathrm{kHz}$ second IF, for sharp, deep notch
characteristics.

- IF shift

Shifts IF passband toward higher or lower frequencies (away from interfering signals) while tuned receiver frequency remains unchanged.

- 6146B final with RF NFB

 Two 6146B's in the final amplifier provide 220 W PEP (SSB)/180 W DC (CW) input on all bands. RF negative feedback provides optimum IMD characteristics for high-quality transmission.- Built-in digital display

Six-digit large fluorescent tube display. backed up by an analog dial. Reads actual receive and transmit frequency on all modes and all bands. Display Hold (DH) switch.

- Adjustable noise-blanker level Built-in noise blanker eliminates pulse- type (such as ignition) noise. Front-panel threshold level control.

Matching accessories for fixed-station operation:

- SP-230 external speaker
with selectable audio filters
- VFO-230 external digital VFO with $20-\mathrm{Hz}$ steps,
five memories, digital display
- AT-230 antenna tuner SWR and power meter - MC-50 desk microphone Other accessories not shown - TL-922A linear amplifier - SM-220 Station Monitor - PC-1 phone patch
- HC-10 digital world clock
- YG-455C $(500-\mathrm{Hz})$ and YG-455CN $(250-\mathrm{Hz}) \mathrm{CW}$ filters for $455-\mathrm{kHz}$ IF - YK-88C $(500-\mathrm{Hz})$ and YK-88CN $(270-\mathrm{Hz}) \mathrm{CW}$ filters for $8.83-\mathrm{MHz}$ IF
- HS 5 and HS-4 headphones
- MC-30S and MC-35S noise-cancelling hand microphones

Various IF filter options
Either a $500-\mathrm{Hz}$ (YK-88C) or $270-\mathrm{Hz}$ (YK-88CN) CW filter may be installed in the $8.83-\mathrm{MHz}$ first IF, and a very sharp $500-\mathrm{Hz}$ (YG-455C) or $250-\mathrm{Hz}(\mathrm{YG}-455 \mathrm{CN})$ CW filter is available for the $455-\mathrm{kHz}$ second IF.
More flexibility with optional digital VFO VFO- 230 operates in $20-\mathrm{Hz}$ steps and includes five memories. Also allows splitfrequency operation. Built-in digital display. Covers about 100 kHz above and below each $500-\mathrm{kHz}$ band.
Built-in RF speech processor For added audio punch and increased talk power in DX pileups.

RIT/XIT

Receiver incremental tuning (RIT) shifts only the receiver frequency, to tune in stations slightly off frequency. Transmitter incremental tuning (XIT) shifts only the transmitter frequency.

- SSB monitor circuit

Monitors IF stage while transmitting, to determine audio quality and effect of speech processor.

More information on the TS 8305 is available from all authorized dealers of Trio-Kenwood Communications, Inc., 1111 West Walnut Street, Compton. California 90220 .

Small wonder

Processor, N/W switch, IF shift, DFC option
 Built-in VOX

TE-130S/V

An incredibly compact, full-featured, all solid-state HF SSB/CW transceiver for both mobile and fixed operation. It covers 3.5 to 29.7 MHz (including the three new Amateur bands!) and is loaded with optimum operating features such as digital display, IF shift, speech processor, narrow/wide filter selection (on both SSB and CW), and optional DFC-230 digital frequency controller. The TS-130S runs high power and the TS-130V is a low-power version for GRP. TS-130 SERIES FEATURES:

- 80-10 meters, including three new bands

 Covers all Amateur bands from 3.5 to 29.7 MHz , including the new 10.18 , and $24-\mathrm{MHz}$ bands. Receives WWV on 10 MHz . VFO covers more than 50 kHz above and below each $500-\mathrm{kHz}$ band.- Two power versions... easy operation TS-130S runs 200 W PEP/ 160 W DC input on 180-15 meters and $160 \mathrm{~W} \mathrm{PEP/}$ 140 W DC on 12 and 10 meters. TS-130V runs 25 W PEP/20 W DC input on all bands. Solid-state, wideband final amplifier eliminates transmitter tuning. and receiver wideband RF amplifiers eliminate preselector peaking.
CW narrow/wide selection
"N-W" switch allows selection of wide and narrow bandwidths. Wide CW and

SSB bandwidths are the same. Optional YK-88C $(500 \mathrm{~Hz})$ or YK-88CN $(270 \mathrm{~Hz})$ filter may be installed for narrow CW.

Built-in speech processor

Increases audio punch and average SSB output power, while suppressing sideband splatter.
SSB narrow selection
" $\mathrm{N}-\mathrm{W}^{\text {- }}$ switch allows selection of narrow SSB bandwidth to eliminate QRM, when optional YK-88SN (1.8 kHz) filter is installed. (CW filter may still be selected in CW mode.)
Sideband mode selected automatically LSB is selected on 40 meters and below. and USB on 30 meters and above. SSB REVERSE position on MODE switch.

Built-in digital display

Six-digit green fluorescent tube display indicates actual operating frequency to 100 Hz . Also indicates external VFO or fixed-channel frequency, RIT shift, and CW transmit/receive shifts. Backed up by an analog subdial

IF shift

Allows IF passband to be moved away from interfering signals and sideband splatter.

- Built-in RF attenuator

For optimum rejection of intermodulation distortion.

- Single-conversion PLL system Improves stability as well as transmit and receive spurious characteristics.

Matching accessories for fixed-station operation:

- SP 120 extermal speaker

power switch).

- VFO 120 remote VFO

Other accessories not shown:
YK 88 C $(5001121$ and YK R8CN - DC 1 phone pateh

- AT 130 compact antennatuner $180-10 \mathrm{~m}$, Ineluding 3 new bands)
- M13 100 mobile mountime bracke
- TL. 922 1 lincar amplifier - IIS 5 and HS I luadphone - HC-10 world digital clock - PS 20 base station power supply for TS 130 V
- 5 P - 40 compat mobile

For convenient SSB operation, as well as semibreak-in CW with sidetone.

Effective noise blanker

Eliminates pulse-type interference such as ignition noise.

Compact and lightweight

Measures only 3-3/4 inches high, 9-1/2 inches wide, and 11-9/16 inches deep, and weighs only 12.3 pounds.

Optional DFC-230 Digital Frequency Controller
Allows frequency control in $20-\mathrm{Hz}$ steps with UP/DOWN microphone (supplied with DFC-230). Includes four memories (handy for split-frequency operation) and digital display. Covers 100 kHz above and below each $500-\mathrm{kHz}$ band. Very compact.

More information on the TS-130 Series is available from all authorized dealers of Trio-Kenwood
Communications. Inc. 1111 West Walnut Street. Compton. California 90220.
FMKENVNODD

last-minute predictions

Very good conditions on the lowerfrequency bands are expected during the first few days, perhaps through the first week, of July, then another good period is expected during the third week of the month. The DX conditions for the higher-frequency bands should improve steadily until the third week. During this time the daylight hours into the evening will be favored. Some disturbance is expected for a day or two in the first week, again around the 15th, and possibly of longer duration near the 21st of the month.

events of the month

Geophysical events that may affect DX on various bands are plentiful this July. The moon comes on stage with a partial eclipse on the day it is full (July 17th). The eclipse begins at 0325 and ends at 0609 UT. It can be seen from Africa except in the northeast; southwestern Europe; Antarctica; South America; North America except the northwest; the east Pacific; and New Zealand. The maximum obscurity of moon diameter is 0.55 . Lunar perigee is on the 27 th .

The sun is the big performer, with a total eclipse on the 31st beginning at 0111 and ending at 0620 UT, with a maximum duration of two minutes, two seconds. The path of totality begins on the Arabian Peninsula then extends across the southern Black Sea, northern Caspian Sea, into the USSR and China border, across Japan and Hawaii, and into Alaska and Northern Canada. Near the path of totality radio propagation goes from day conditions (high-frequency ham bands) to night conditions (lower-frequency ham bands) and returns to daytime conditions in just a couple of hours.
When daytime conditions return after totality, look for DX from
unusual locations, as extra ionized layers are usually formed, which change slowly in height from the E to F region. The extra layer will support only nighttime radio frequencies near totality, changing slowly to daytime frequencies at the end of the eclipse. It should be fun to try some of the frequencies for DX if your OTH is near the path of the eclipse. Hams have in years past participated in eclipse propagation experiments.

The Aquarid meteor shower starts about the 18 th, peaks about the 28 th, and lasts until about August 7th. The radio-echo rate at maximum is about 34 per hour.

more on sporadic E (Es) DX

Before the Es season gets further along, a few more observations come to mind about using Es propagation in DX hunting. The DX Forecaster for May, 1981, went into some geophysical aspects of Es production. This was to give DXers an idea of where and when to look for summer short skip. Some antenna design considerations, to be able to couple well into the E propagation mode, were mentioned.

To try to short skip into a DX location use the following antenna takeoff angles and bearings: the takeoff angle should be around 5 degrees to make a hop length of 900 miles (1500 km) to obtain maximum signal strength of about 60 dB above a microvolt. To obtain the highest probability of being able to use the Es when it occurs, a fairly wide beamwidth should be used. That is, a small beam is better than a rhombic, and a wide-angle beam is better than a narrow one. Another rule is to use the lowest high-frequency band commensurate with the higher daytime versus nighttime absorption of the signal and the static. In other words, in the daytime don't use the 10 -meter
band when 20 is available or use 40 meters at night when 80 meters is available (if the static is not very bad); $6-7 \mathrm{~dB}$ are available for this difference in Es frequency range.

band-by-band forecast

Ten meters should provide excellent daytime propagation, particularly north/south path DX to South America, Africa and Pacific areas. Expect conditions to peak during the afternoon hours. There will also be some good short-skip sporadic-E conditions on many days of the month to distances between 500 and 1500 miles ($800-2400 \mathrm{~km}$) or more.
Fifteen meters will provide good worldwide DX during the daylight and early evening hours on most days of the month. Expect conditions to peak during the late afternoon, with long- and short-skip signals.
Twenty meters will be open to some area of the world for the entire twenty-four hour period on most days of the month. The band should peak in all directions just after local sunrise, and again toward the east and south during late evening hours. During darkness, the band will peak toward the west, in an arc from southwest through northwest, that will take in Pacific areas.
Forty meters can often provide good DX from sunset, through darkness, until just after sunrise, despite the atmospheric noise levels (static) provided you choose times when local thunderstorm-related static is at a minimum.

Eighty meters can sometimes provide openings to DX areas during darkness and at sunrise, but signals will be weak and static will be strong. For these DX conditions, coastal stations often have a better chance of working DX than do stations in the center of large land masses.
One-sixty meters is almost hopeless during the hours of darkness and during the daytime. Forget it!
ham radio

$\boldsymbol{\mu}$			\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc			O	\bigcirc	\bigcirc	$\underset{N}{O}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\square}$	$\stackrel{\square}{\square}$	$\stackrel{\square}{\square}$	\square	$\xrightarrow{\sim}$	－	\bigcirc	\cdots	\sim	N
$\frac{w}{z}$	$\stackrel{*}{\stackrel{*}{\ominus}}$	$\stackrel{\sim}{2}$	σ	$\stackrel{*}{\ominus}$	$\stackrel{*}{8}$	$\stackrel{\odot}{\sim}$	Ω	$\underset{\sim}{0}$	8	8	O	\bigcirc	\bigcirc	$\stackrel{\bigcirc}{\sim}$	$\stackrel{1}{\square}$	$\stackrel{\square}{\square}$	$\stackrel{5}{5}$	$\stackrel{1}{\square}$	$\stackrel{5}{5}$	5	$\stackrel{\sim}{5}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\square}$	$\stackrel{\text { ¢ }}{\substack{0}}$
	녿	$\stackrel{5}{5}$	10	$\stackrel{1}{\square}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	1		1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	$\underset{\sim}{Q}$	1		\|	$\underbrace{1}_{0}$	$\stackrel{1}{\square}$	$\stackrel{\text { ㄴ }}{\square}$	$\stackrel{\text {＊}}{\stackrel{-}{\circ}}$	$\stackrel{\square}{\sim}$

$\stackrel{5}{5}$	\％				${ }^{\circ} \mathrm{O}$	8	\％							\％			\％	\％						$\stackrel{8}{9}$	\％	$\stackrel{8}{8}$	\％			
	1	\square	$\stackrel{8}{\sim}$	$\xrightarrow{\sim}$	\bigcirc	$\stackrel{*}{\sim}$		27		$\stackrel{1}{2}$	2		2	g	\％		¢	～		\％	12		\％	2	\sim	$\stackrel{*}{\circ}$	$\xrightarrow{\sim}$			
	\checkmark	\checkmark	\because		$\because \sim$	\because		～＊		－				2	S		2			－	2				$\stackrel{\square}{\square}$	$\stackrel{*}{\sim}$	악			Muvesisiv
	O	9	$\stackrel{*}{*}$	$\stackrel{*}{*}$	$\stackrel{*}{*}$	＊	\bigcirc	\sim		\bigcirc	\sim			2	2		\％			\％ 8						\bigcirc	9			avn
	\sim	$\stackrel{8}{9}$	～	－	～${ }_{\text {O }}^{\text {¢ }}$	茹蓈	＋	＊		\％	2			2					1							$\stackrel{1}{9}$	\because			
凶ノ	\square	1	$\xrightarrow{\sim}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\sim}$	$\xrightarrow{\square}$	¢	$\bigcirc 2$		¢	$\stackrel{*}{+}$			\％	2		2	2		\sim	－			9		9	\bigcirc			
1	1	1	1		1 \％	\％ 7	¢	\％		2	芴									2	\bigcirc			\bigcirc		\％	2			
	2	2	2		\％ 2	\％ 2	2	¿2						2	2			2								$\xrightarrow{\sim}$	$\xrightarrow{2}$			з000n
	1		5		$\stackrel{\sim}{9}$	\because	2	2		\％																＊	1			Svers
家	${ }_{8}$		8	8	8 \％	힐				8				8	8			${ }_{8}^{8}$	\％					8	8	8	8			

$3{ }^{3} 4$						\sim						\％	2	\％		2	1		11	1			析				
	9	9	－		9	$\bigcirc \bigcirc$	¢	\because	¢	\sim	\sim	\％	2	\bigcirc	2	2	2	－	2	28	\％	g	1	1	－		virutsiv
言		0	－	9	\bigcirc	$\bigcirc \stackrel{*}{*}$		－		4	5	\checkmark	$\stackrel{\sim}{\sim}$	\％		2\％	\％	守	g	1			－		－	9	avviv3
		\bigcirc	茓	8	28	28		88	22	$\stackrel{1}{2}$	～	2	g			子	1		11	1			$\stackrel{ }{-}$		ת	Ω	vouovernv
世ノ	$\stackrel{*}{\square}$	4	$\stackrel{\sim}{\square}$	\sim	$\xrightarrow{\sim}$	$\xrightarrow{\sim}$	\because	2	\％	\％	$\stackrel{1}{2}$	\％	2	2		11	1		11	1	＊	\bigcirc	O				vowaw s
1	1	1	1	1	11	12		－	2－	2	1	1	1			2		2－	－	\because	\sim		$\stackrel{\sim}{\square}$	1	1	1	vousw
		2	\％		2 2	2）		2）	2	2	\％	\％	\％	1	N	20	I	O	O	$\stackrel{1}{\sim}$	$\stackrel{1}{\sim}$	1			$\stackrel{ }{ }$	$\xrightarrow{2}$	
	1	1	1	\because	2）	$\stackrel{\sim}{\square}$	$\stackrel{\square}{1}$	41	1 －	\bigcirc	\％	－	\sim	2		20	O	O	O			\bigcirc			1		vurvis
	8			：	88	88						8	8			8		8	：	8			8	8	8	8	

\％	：																								

[^8][C-CP]
Cigarette Lighter

ONLY BOOK!
US or DX Listings

1981) -a ker

Here they are! The latest editions. Worldfamous Radio Amateur Callbooks, the most respected and complete listing of radio amateurs. Lists calls, license classes, address information. Loaded with special features such as call changes, prefixes of the world, standard time charts, worldwide QSL bureaus, and more. The U.S. Edition features over 400,000 listings, with over 100,000 changes from last year. The Foreign Edition has over 300,000 listings, over 90,000 changes. Place your order for the new 1981 Radio Amateur Callbooks, available now.

	Each	Shipping	Total
\square USCallbook	$\$ 17.95$	$\$ 2.55$	$\$ 20.50$
Foreign Callbook	$\$ 16.95$	$\$ 2.55$	$\$ 19.50$

Order both books at the same time for $\$ 37.45$ including shipping.

Order from your dealer or directly from the publisher. All direct orders add $\$ 2.55$ for shipping. Illinois residents add 5\% sales tax.

Pegasus on blue field, red lettering. $3^{\prime \prime}$ wide x 3 " high. Great on jackets and caps. Sorry. no call letters

ORDER TODAY!

c) 5

Dept.
925 Sherwood Drive Lake Bluff, IL 60044, USA

CRYSTALS \& KITS/OSCILLATORS • RF MIXERS • RF AMPLIFIER • POWER AMPLIFIER

OX OSCILLATOR

Crystal controlled transistor type. 3 to $20 \mathrm{MHz}, \mathrm{OX}$-Lo, Cat. No. 035100. 20 to 60 MHz, OX-Hi, Cat. No. 035101.

Specity when ordering.
$\$ 6.31$ ea.

MXX- 1 TRANSISTOR RF MIXER
A single tuned circuit intended for signal conversion in the 3 to 170 MHz range. Harmonics of the OX or OF-1 oscillator are used for injection in the 60 to 170 MHz range. 3 to 20 MHz , Lo Kit, Cat. No. 035105. 20 to 170 MHz , Hi Kit, Cat. No. 035106. Specity when ordering.
$\$ 7.02$ ea.

OF-1 OSCILLATOR

Resistor/capacitor circuit provides osc over a range of freq with the desired crystal. 2 to 22 MHz , OF-1 LO, Cat. No. 03t108, 18 to $60 \mathrm{MHz}, \mathrm{OF}-1 \mathrm{H}$ Cat. No. 035109.
Specify when ordering.
$\$ 5.42$ ea.

PAX-1 TRANSISTOR RF POWER AMP
A single tuned output amplifier designed to follow the OX oscillator. Outputs up to 200 mw , depending on frequency and voltage. Amplifier can be amplitude modulated 3 to 30 MHz, Cat. No. 035104.
Specity when ordering.
$\$ 7.34$ ea.

SAX-1 TRANSISTOR RF AMP

A small signal amplifier to drive the MXX-1 Mixer, Single tuned input and link output. 3 to 20 MHz , Lo Kit, Cat. No. 03512.20 to 170 MHz , Hi Kit, Cat. No. 035103.
Specity when ordering.
$\$ 7.02$ ea.

BAX-1 BROADBAND AMP General purpose amplifier which may be used as a tuned or untuned unit in RF and audio applications. 20 Hz to 150 MHz with 6 to 30 db gain. Cat. No. 035107.

> Specify when ordering.
$\$ 7.34$ ea.

02\% Calibration Tolerance

EXPERIMENTER CRYSTALS (HC 6/U Holder)
Cat. No. Specifications
$031080{ }^{*} 3$ to 20 MHz - For use in OX OSC Lo $\$ 6.88 \mathrm{ea}$. $031081^{\circ} 20$ to 60 MHz - For use in OX OSC Hi $\$ 6.88$ ea. $031300{ }^{\circ} 3$ to 20 MHz - For use in OF-1L OSC $\$ 6.88 \mathrm{ea}$. $031310^{\circ} 20$ to 60 MHz - For use in OF-1H OSC $\$ 6.88$ ea.
*Specity when ordering

INTERNATIONAL CRYSTAL MFG. CO., INC. 10 North Lee Oklahoma City. Okla 73102

a new look at the

W8JK antenna

This old standby provides

interesting possibilities for the new bands

The W8JK antenna or "flat-top beam" was adapted for Amateur use and described in OST in $1938{ }^{1}$ by John D. Kraus, W8JK. This antenna was widely used for several years but has now been largely superseded by the Yagi, which has higher gain for a given size.
In 1970, 32 years after his original OST article, W8JK described a 5 -band rotary beam antenna with several modes of operation. ${ }^{2}$ In mode 1, having the highest gain, the antenna consists of a pair of vertical W8JK antennas stacked horizontally. Whether by design or chance, the same issue of $Q S T$ contains a description of a device called "The Ultimate Transmatch,' 3 which is a considerable aid in making the basic W8JK an attractive antenna.

In this article the W8JK antenna is compared to the widely-used 3 -element Yagi, and it will be shown that, despite its lower theoretical gain, the W8.JK is in several respects the better antenna.

the W8JK antenna

The basic W8JK antenna is shown in fig. 1. It consists of two closely spaced dipoles fed 180 degrees
out of phase. The original W8JK article refers to this as a single-section antenna if the dipole length, L, is a half wavelength and as a two-section antenna if L is a full wavelength. In fact, the antenna operates well and with no abrupt change in properties over a frequency range such that L varies from less than a half wavelength to more than a full wavelength, so that this distinction appears unnecessary. In the original article and elsewhere ${ }^{4}$ more complicated varieties of the antenna, and end-fed as well as center-fed versions, are discussed. However, only the basic antenna is dealt with here.

Operation of the W8JK antenna is as follows: the individual dipoles tend to radiate as they would in isolation; that is, with no radiation off the ends and maximum radiation at right angles to each dipole. However, because of the out-of-phase feed to the dipoles, radiation cancels in the upward and downward directions. The cancelled radiation is not lost but appears elsewhere, primarily in both directions along a line joining the centers of the two dipoles.

Antenna gain depends on both element length L and spacing d, but neither is critical. If a lossless antenna is assumed, very close spacing should produce the highest theoretical gain, but such spacing also results in very low radiation resistance, and conductor losses cannot then be neglected. In practice, spacings of about one-eighth wavelength seem to be opti-

By Frank Regier, OD5CG, Department of Electrical Engineering, American University of Beirut, Beirut, Lebanon

fig. 1. The basic W8JK antenna, consisting of two closely spaced dipoles fed out of phase.
mum. The spacing should not be reduced to much below this figure but can be increased to a quarter wavelength with very little reduction in gain.

Antenna length is subject to the same constraints as in the case of a simple dipole: length should not be reduced much below a half wavelength because of reduced radiation resistance, and gain increases with length up to a maximum at one and a quarter wavelengths.

The gain of a basic W8JK antenna with eighthwavelength spacing and half-wavelength elements is about 4 dB in free space. This figure increases gradually to about 6 dB at twice the design frequency, and to a maximum of about 7 dB at 2.5 times the design frequency.

the Yagi antenna

The familiar 3-element Yagi antenna is shown in fig. 2. This antenna is similar to the W8JK in that its

fig. 2. Three-element Yagi antenna. Energy from the driven element $D E$ is picked up and reradiated by reflector R and director D.
gain results from the cancellation of radiation from the various elements in some directions and addition in others. It differs, however, in how power is applied to the various elements. In the W8JK antenna both elements are fed directly. In the Yagi only one element is fed directly, and the others behave simultaneously as receiving and transmitting antennas, receiving power from the driven element and re-radiating it with an amplitude and phase determined by the length of the element and its spacing from the driven element. This method of supplying power to the parasitic elements makes the Yagi easy to feed, but the critical dependence of the phase of radiated power on element length makes the Yagi a narrowband antenna, operating as intended only near the design frequency. At frequencies far removed from resonance, the parasitic reflector and director receive and re-radiate little power, and the pattern of the antenna is not very different from that of the driven element alone.

Variations on the 3-element Yagi include: a) an increase in the number of directors, leading to improved forward gain (additional reflectors, being in a low-field region, would have little effect and are rarely used), b) interlacing elements for various frequency ranges, and c) the addition of traps in the various elements to cause resonance at several frequencies. This is a useful procedure but requires compromise spacing at the different frequencies.

a comparison

Although a 3-element Yagi has more gain in free space than the W8JK, there are at least three respects in which the latter is the better antenna. These are: noncritical construction, bandwidth, and operation at low elevation.

The noncritical nature of the W8JK results from the fact that, unlike the Yagi, it does not depend on resonance for its symmetry; and, provided symmetry is maintained, element length and spacing are relatively unimportant.

Its large bandwidth, too, results from the nonresonant nature of the W8JK antenna. This bandwidth is such that operation is possible over at least a 2.5:1 frequency range. Operation over such a range does require the use of an antenna tuner or transmatch and a tuned transmission line, since antenna impedance does change with frequency.

antenna height

We turn now to the question of operation at low elevation. It is a matter of great importance, and in fact the major point of this article, that the basic principle of operation of the W8JK antenna remains valid even at very low elevations, whereas under the same conditions the behavior of a Yagi degrades to that of

fig. 3. Basic W8JK antenna spaced at a height h above a ground plane. Although reflection from the ground plane takes place and the angle of radiation is raised, symmetry is retained, and the basic principle of operation - cancellation of radiation in the vertical direction - remains valid.
a simple dipole. This means that at low elevation the W8JK is a more effective antenna than the Yagi. To see why this is so, consider first the W8JK (see fig. 3). The presence of a nearby ground plane will affect the antenna impedance, but with a tuned feed line and a transmatch this is easily compensated.

The important point is that, because symmetry is

fig. 4. Three-element Yagi antenna at a height h above a ground plane. If h is small, director D and reflector R are detuned and improperly excited and are thus ineffective. The resultant radiation pattern is that of the driven element DE alone -- a dipole above a ground plane.
not disturbed by the ground plane, the fundamental principle of operation - cancellation of radiation in the vertical direction - remains valid. Considering next the Yagi (see fig. 4), we find that the nearby ground plane will severely detune both director and reflector and interfere with their excitation by the driven element. These two parasitic elements therefore become ineffective, and performance degrades to that of a simple dipole near ground.

It follows from the above argument that there must be some critical height below which the W8JK outperforms the Yagi, and it would be interesting to know what that height is. In principle it should, of course, be possible to calculate the characteristics of both the W8.JK and the Yagi as functions of height above a perfect ground. But, particularly in the case of the Yagi, this presents difficulties, and an experimental approach seems preferable. I am not in a position to carry out the experimental work, but I have found a reference ${ }^{5}$ that seems to contain the essential results. In this reference it is stated that a $20-$ meter antenna, essentially equivalent to a W8JK, at 38 feet (11.6 meters) gave results comparable to a 3element Yagi at the same height. When 10 -meter antennas were compared at the same height, the 3element Yagi was found to be superior. This would seem to imply that at an elevation of about one wavelength, a 3-element Yagi outperforms a W8JK, but that at a half wavelength elevation, the two are about equal. This would mean that the critical height is about a half wavelength, and that below that height a W8JK can be expected to outperform a Yagi.

Fig. 5 (from reference 4) shows the W8JK vertical radiation pattern at a height of $1 / 2$ wavelength.

conclusions and remarks

The W8JK antenna has a number of desirable characteristics and makes a particularly good antenna in situations where only a low height is possible. An elevation of a half wavelength seems to be about the critical height below which the W8JK provides higher gain than a 3 -element Yagi. Thus a W8JK at 20 feet (6 meters) should be about comparable to a 3element Yagi at the same height on 21 MHz , poorer at higher frequencies, and better at lower frequencies.

Although the W8JK exhibits gain over at least a 2.5:1 frequency range, the antenna has an impedance that is a function of frequency and should be fed by a transmatch and an open-wire line of some sort.

In addition to the 10-, 15-, and 20-meter bands, the new Amateur bands at 10,18 , and 24 MHz can be ac-

HAL'S SUMMER SALE

commodated. For example, an antenna with a length $L=40$ feet (12 meters) and a spacing $d=11$ feet (3.4 meters) should provide good performance on the Amateur bands at $10,14,18,21,24$, and 28 MHz . In addition it should provide much improved reception on the $12-, 15-, 18-$, and $21-\mathrm{MHz}$ shortwave broadcast bands, where most listeners make do with a random length of wire, or at best, a dipole. If operation below 14 MHz is not required, the spacing can be reduced to $d=8$ feet (2.4 meters), and the length L can be anything from 24-40 feet (7.3-12.2 meters).

In closing I might mention that my own experience in feeding a 30 -foot-long (9 -meter) W8JK with 8 -foot (2.4-meter) spacing by means of a 40 -foot (12.2meter) length of 300 -ohm TV twinlead has been better than might be expected. There has been no breakdown with 1200 watts PEP input, and although losses are no doubt somewhat higher than those of an open-wire line, the use of twinlead is extremely

fig. 5. Vertical pattern of W8JK antenna at a height h of one-half wavelength. At other heights additional lobes may appear, but vertical radiation is always cancelled and radiation is at lower angles than from a dipole at the same height (from reference 4).
convenient. The main disadvantage of the twinlead is that it is necessary to cease operation during rainstorms because the input impedance of the feed line becomes erratic.

references

1. J. Kraus, "Directional Antennas with Closely-spaced Elements," QST, January, 1938, pages 21-23.
2. J. Kraus, "W8JK 5-Band Rotary Beam Antenna," QST. July, 1970, pages 11-14.
3. L. McCoy, "The Ultimate Transmatch," QST, July, 1970, page 24.
4. The ARRL Antenna Book, 13th edition, 1974, pages 139-143.
5. J. Alan Biggs, "Stacking and Folding the Triplex," CQ, June, 1948.

bibliography

Lawson, James L., W2PV, "Yagi Antenna Design," harn radio, January, 1980, page 22; February, 1980, page 18; June, 1980, page 32; July, 1980, page 18; September, 1980, page 37; October, 1980, page 29; November, 1980, page 22; December, 1980, page 30.
ham radio

HAL 2304 MHz DOWN CONVERTERS (FREO. RANGE 2000/2500 MHz)
2304 MODEL \#2 KIT (with preamp)
$\$ 59.95$ 2304 MODEL \#3 KIT (with High Gain preamp)
$\$ 69.95$
ALL ABOVE MODELS WITH COAX FITTINGS IN $\&$ OUT AND WITH WEATHER-PROOFED DIE CAST HOUSINGS
FACTORY WIRED \& TESTED $\$ 50$ additional
POWER SUPPLY KIT FOR ABOVE
$\$ 24.95$
FACTORY WIRED \& TESTED
$\$ 34.95$
COMPLETE KITS: CONSISTING OF EVERY ESSENTIAL PART NEEDED TO MAKE YOUR COUNTER COMPLETE HAL-600A 7-DIGIT COUNTER WITH FREQUENCY RANGE OF ZERO TO 600 MHZ . FEATURES TWO INPUTS: ONE FOR LOW FREOUENCY AND ONE FOR HIGH FREQUENCY AUTOMATIC ZERO SUPPRESSION. TIME BASE IS 1.0 SEC OR I SEC GATE WITH OPTIONAL 10 SEC GATE AVAILABLE ACCURACY $\pm .001 \%$. UTILIZES $10 \cdot \mathrm{MHZ}$ CRYSTAL 5 PPM COMPLETE KIT $\$ 129$
HAL-300A 7-DIGIT COUNTER (SIMILAR TO 600A) WITH FREQUENCY RANGE OF 0 300 MHz . COMPLETE KIT $\mathbf{\$ 1 0 9}$
HAL-50A 8-DIGIT COUNTER WITH FREQUENCY RANGE OF ZERO TO 50 MHZ OR BETTER. AUTOMATIC DECIMAL POINT, ZERO SUPPRESSION UPON DEMAND FEATURES TWO INPUTS: ONE FOR LOW FREQUENCY INPUT, AND ONE ON PANEL FOR USE WITH ANY INTERNALLY MOUNTED HALTRONIX PRE SCALER FOR WHICH PROVISIONS HAVE ALREADY BEEN MADE 1.0 SEC AND 1 SEC TIME GATES. ACCURACY $\pm 001 \%$ UTILIZES $10 \cdot \mathrm{MHz}$
CRYSTAL 5 PPM CRYSTAL 5 PPM
FREE: HAL-79 Clock kit plus an inline rf probe with purchase of any freQUENCY COUNTER

HIGHLY STABLE DECODER KIT COMESWITH 2 SIDED. PLATED THRU AND SOLDER FLOWED G-10 PC BOARD, 7-567's, 2-7402. AND ALL ELECTRONIC COMPONENTS BOARD MEASURES $3-1 / 2 \times 5 \cdot 1 / 2$ INCHES. HAS 12 LINES OUT ONLY $\$ 39.95$
DELUXE 12-BUTTON TOUCHTONE ENCODER KIT UTILIZING THE NEW ICM 7206 CHIP PROVIDES BOTH VISUAL AND AUDIO INDICATIONS! COMES WITH ITS OWN TWO-TONE ANODIZED ALUMINUM CABINET MEASURES ONLY $2.3 / 4^{\circ} \times 3.3 / 4^{\prime \prime}$ COMPLETE WITH TOUCH-TONE PAD, BOARD, CRYSTAL. CHIP AND ALL NECESSARY COMPOFOR THOSE WHO WISH TO MOUNT THE ENCODER IN A HAND-HELD UNIT. THE PC BOARD MEASURES ONLY $9 / 16^{\prime \prime} \times 1-3 / 4^{*}$ THIS PARTIAL KIT WITH PC BOARD, CRYSTAL, CHIP AND COMPONENTS PRICED AT $\mathbf{\$ 1 4 . 9 5}$
ACCUKEYER (KIT) THIS ACCUKEYER IS A REVISED VERSION OF THE VEAY POPULAR WB4VVF ACCUKEYER ORIGINALLY DESCRIBED BY JAMES GARRETT, IN OST MAGAZINE AND THE 1975 RADIO AMATEUR'S HANDBOOK. \$16.95
ACCUKEYER - MEMORY OPTION KIT PROVIDES A SIMPLE, LOW COST METHOD OF ADDING MEMORY CAPABILITY TO THE WB4VVF ACCUKEYER. WHILE DESIGNED FOR DIRECT ATTACHMENT TO THE ABOVE ACCUKEYER, II CAN ALSO BE ATTACHED IO ANY STANDARDaCCUKEYR Boa PREAMPLFIER

PRE-AMPLIFIER
HAL-PA-19 WIDE BAND PRE-AMPLIFIER, $2 \cdot 200 \mathrm{MHz}$ BANDWIDTH (-3 dB POINTS). 19 dB GAIN

FULLY ASSEMBLED AND TESTED $\mathbf{\$ 8 . 9 5}$

CLOCK KIT - HAL 79 FOUR-DIGIT SPECIAL - $\$ 7.95$ OPERATES ON 12 -VOLT AC (NOT SUPPLIED) PROVISIONS FOR DC AND ALARM OPERATION

6-DIGIT CLOCK • $12 / 24$ HOUR
COMPLETE KIT CONSISTING OF 2 PC G-10 PRE-DRILLED PC BOARDS, 1 CLOCK CHIP. 6 FND COMM. CATH. READOUTS, 13 TRANS, 3 CAPS, 9 RESISTORS, 5 DIODES, 3 PUSHBUTION SWITCHES, POWER TRANSFURMER AND INSTRUCTIONS DONT BE FOOLED BY PARTIAL KITS WHERE YOU HAVE TO BUY EVERYTHING EXIRA. PRICED AT $\$ 12.95$ CLOCK CASE AVAILABLE AND WILL FIT ANY ONE OF THE ABOVE CLOCKS REGULAR PRICE $\$ 650$ BUT ONLY $\$ 4.50$ WHEN BOUGHT WITH CLOCK.
SIX-DIGIT ALARM CLOCK KIT FOR HOME, CAMPER, RV, OR FIELD-DAY USE OPERATES ON 12 -VOLT AC OR DC, AND HAS ITS OWN $60-\mathrm{Hz}$ TIME BASE ON THE BOARD. COMPLETE WITH ALL ELECTRONIC COMPONENTS AND TWO-PIECE, PRE-DRILLED PC BOARDS BOARD SIZE $4^{\prime \prime} \times 3^{\prime \prime}$. COMPLETE WITH SPEAKER AND SWITCHES. IF OPERATED ON DC THERE IS NOTHING MORE TO BUY • PRICED AT \$16.95 -TWELVE-VOLT AC LINE CORD FOR THOSE WHO WISH TO OPERATE THE CLOCK FROM 110 -VOLT AC
$\$ 2.50$
SHIPPING INFORMATION - ORDERS OVER $\$ 20.00$ WILL BE SHIPPED POSTPAID EXCEPT ON ITEMS WHERE ADDITIONAL CHARGES ARE REOUESTED. ON ORDERS LESS THAN $\$ 20.00$ PLEASE INCLUDE ADOITIONAL $\$ 1.50$ FOR HANDLING AND MAILING CHARGES. SEND SASE FOR FREE FLYER

DISTRIBUTOR FOR
Aluma Tower - AP Products
VISA (We have the new Hobby-Blox System)

a 2-way ashtray for your car

Mounting a handheld transceiver (HT) in your car any place other than on the front seat can sometimes be a problem - particularly if you want to be able to remove it easily. I found a simple solution that works well for me, with only about one evening's work. My Toyota Corolla (like most cars) has an ashtray in a convenient and accessible location on the front dash. It suddenly seemed obvious (particularly as I no longer smoke) that this would be an ideal location for mounting my radio. The sketch in fig. 1 is for a bracket to hold a Kenwood TR-2400, although the dimensions and design can be altered to suit any HT .

fig. 1. Ashtray bracket for mounting a handheld transceiver.

Ry Herb Bresnick, KB2XM, 16 Creekside [ive, Honeoye Falls, New York 14472

Handheld in ashtray mount makes a convenient mobile installation.

Radio and ashtray mount removed from car and resting on table.

MEMORY KEYER BREAKTHROUGH!

The remarkable AEA Morsematic memory keyer has 35 fantastic features including two AEA designed microcomputers, up to 2,000 character memory, automatic serial number, beacon mode, and automatic morse trainer mode.

RADIOS UNLIMITED
1760 EASTON AVENUE
P. O. BOX 347

SOMERSET, NJ 08873 - (201) 469-4599
A $\sqrt{4}$ Brings you the

Bencher 1:1 BALUN

- Lets your antenna radiate-not your coax
- Helps fight TVI-no ferrite core to saturate or reradiate
- Rated 5 KW peak-accepts substantial mismatch at legal limit
- DC grounded-helps protect against lightning
- Amphenol* connector; Rubber ring to stop water leakage

Rugged custom Cycolac* case, UV resistant formulation

Heavy threaded brass
contact posts

optimized $14-30 \mathrm{mHz}$ includes hardware for $2^{\prime \prime}$ boom

TEN METER TRANSCEIVER

JOIN THE FUN and EXCITEMENT OF 10 METER FM!

FM - 10

- PLL Synthesizer $29.5 \cdot 29.7 \mathrm{mHz}$.
- Super Hot Rcvr - True FM.
- 100 kHz . Repeater Offset and high power kit available

[^9]Kit includes a two color, silk screened, aluminum
Chassis, the deluxe CYBERNET (Hy Gain) CB ooard. True FM discriminator kit, crystal, jacks. pots, hardware and a thorough instruction manual
COMPLETE KIT
. \$59.95
include $\$ 200$ tor postage and randuing
MELCO
P.O. Box 26

Marissa. III. 62257

NEW, MOLDABLE PLASTIC

ค 1 Seals coax fittings from moisture and corrosion

- Only material that will adhere to poly viny or vinyl outer coax ackets.
- Forms and seals over odd shaped and difficult fittings.
- Non-contaminating and non-conductive
- Wide ambient temperature range $-30^{\circ} \mathrm{F}$ to $+180^{\circ} \mathrm{F}$
- Stays flexible for years thus insuring moisture proof connections
- Reuseable-allows you to quickly disconnect fittings and reseal them with the same material
- A must for satelite TV-microwave work -wire antenna at solder joints-in the shack Packaged in convenient $/ 2^{\prime \prime} \times 60^{\prime \prime}$ roll. 2 rolls $\$ 4.00$ post paid

INQUIRIES WELCOME

COAX-SEAL" the new space age material that is quick and simple to apply Remove backing from approximately 6° of plastic Wrap outer covering toward fitting. After wrapping. knead to form a smooth surface and force out air EFFECTIVE - FOOL PROOF INEXPENSIVE

Universal Electronics, Inc. 1280 Aida Drive, Reynoldsburg, Ohio 43068

SALS

INVENTORY OVERSTOCK. OUR LOSS WILL BE YOUR GAIN...ORDER TODAY. QUANTITIES LIMITED.

Novice	15 wpm
5 wpm	17 wpm
7 wpm	20 wpm
10 wpm	22 wpm
13 wpm	25 wpm

35 wpm
Reg. $\$ 3.95$ ea. NOW JUST
\$ 1.50 ea., 3 for $\$ 3.50$
Get 'em all
for $\$ 14.95$
A $\$ 43.45$ value
HAM RADIO'S BOOKSTORE
Greenville, NH 03048

fig. 1.

battery backup for the K4EEU frequency standard

Because of frequent power failures in my area, I made the modifications shown in fig. 1 to Bert Kelley's "Universal Frequency Standard," which was published in ham radio, for February, 1974.

When line power is on, it provides load power as well as charging current of near 50 mA as the battery approaches the discharged condition. However, because of the nonlinearity of the LED, current is reduced to below 10 mA trickle charge as the battery nears the fully charged state. It takes about 140 per cent of the battery rated ampere-hour (AH) capacity to fully charge a nicad at the normal rate. Typically it is $\mathrm{AH} / 10 \times 14$ hours, or a trickle charge of $\mathrm{AH} / 150$
continuously, depending on the amount and duration of power failures.

As shown, the battery will provide backup power for about eight hours at the normal load rate of 150 mA . When fully charged, the battery reads near 5.5 volts but in minutes reduces to 5.2 volts when discharging. At this voltage the frequency standard runs about +5 Hz in 10^{7}. For about 80 per cent of the battery discharge cycle, the battery voltage is relatively stable near 4.8 volts, and the frequency standard runs near normal frequency. When the battery nears discharge (below 4.4 volts), the standard runs about -5 Hz in 10^{7}. However, when line power returns, the standard returns to normal in minutes instead of requiring days to regain normal frequency stability.

John R. True, N4BA

516F-2 low-voltage and bias modification

Owners of Collins 516F-2 power supplies who have changed from vac-uum-tube rectifiers to solid-state devices should check the low-voltage supply potential. This supply is nominally given a 275 -volt value under load and will rise to approximately 300 volts during standby. With the use of silicon rectifiers, an increase of 10 per cent in these values might be expected, but I found it (in two cases) to be closer to 20 per cent. This means the voltage during keydown would be 330 volts and during standby would rise to 360 volts. While this had no immediate detrimental effects, 1 felt that this condition isn't one that's in the best interests of equipment longevity!

Fortunately, the secondary of the low-voltage-supply transformer has a center tap lead separate from the high-voltage winding. Two parallel 600 -ohm, 10-watt resistors were inserted between this lead and chassis ground (fig. 2). A terminal strip or insulated standoff was mounted near

fig. 2.
the chassis side rail beneath the filter chokes. The center tap lead of the low-voltage secondary winding was lifted from its ground connection at the terminal strip close to the line cord entry and reconnected at the junction of the terminal strip and resistors. The resistors were placed along this side rail as well.

When I was done, I found the low voltage to be within a few volts of the recommended value. A check should be made of the paralleled combina-
tion of R-89/R-112 (32S-1) or R-140 (32S-3) since these resistors in the cathode circuit of the exciter's vox relay tube run at their maximum power ratings, especially in the 32S-1; later model 32S-3s have a higher-power resistor here.

While working beneath the powersupply chassis, I added a 100 -volt, 1-watt zener diode (HEP Z0438) between R8 and R9 junction. This device held the bias voltage to within a volt or so of its set value, whereas before this addition the bias wandered considerably with the changing transformer load during CW keying.

Paul K. Pagel, N1FB

trimming the dipole antenna

A formula for finding the length in feet of a halfwave wire to be used as a dipole antenna is $468 / \mathrm{f}(\mathrm{MHz})$. This is a good starting place but is usually not exactly correct.

To find the correct length the easy way, find the constant for your antenna location and height: this is a number near 468 and correct for your antenna.

Erect your dipole in its final position after determining the length by the above formula. Then find the frequency where the VSWR is lowest for this length. Multiply this frequency in MHz by the number of feet used. The number will be somewhere near 468. Now, recompute the length using this new constant instead of 468.

Example: You need a dipole with low VSWR at 7.2 MHz . The constant 468 divided by 7.2 is 65 . Put up the dipole in its final position with 32.5 feet (9.9 meters) on each side. The lowest VSWR is at 7.15 MHz . Multiply 7.15 $\times 65=464.75$. This is the constant you should have used; you have the antenna out there to prove it! This time use 464.75/7.2. Answer: about 64.55 feet (19.7 meters). If you shorten the antenna by about 2-3/4 inches (70 mm) on each side, you will be on 7.2 MHz.

All this doesn't mean you're going to have zero reflected power at 7.2 MHz ; it means your antenna will have the lowest VSWR at 7.2 MHz . Chances are small that you'll have the antenna in just the right place to present 50 ohms of resistive impedance to your feed line, and this is the reason for the small amount of reflected power remaining.

> E.R. Lamprecht, W5NPD

radio interference to shortwave receivers

A troublesome source of interference to shortwave receivers is known as ITV. That's interference caused by the horizontal sweep oscillator in TV sets. It produces harmonics that cause hash every 15 kHz or so in your receiver. Cures for ITV have been described in numerous Amateur publications.

But what about other sources of interference to your receiver? An excellent description and some cures are found in reference 1, an article by the late Jim Fisk that appeared in an early issue of ham radio. Jim described causes of and cures for interference produced by TV receivers, electric-motor-powered appliances, fluorescent lights, power lines, neon signs, diathermy machines, furnace igniters, and TV boosters.

new interference sources

Now come some new interference sources. For example, I recently purchased an ion generator. That's a gadget that is supposed to produce a healthful environment by shooting out ionized particles. It also shoots out a lot of rf interference. It wasn't long before I heard a new noise in my receiver - and so did my neighbors. In fact, when I put a key into the power line to the ion generator, I was able to send spark signals (damped waves) all over the neighborhood. (1 haven't figured out how to eliminate this source of interference, except by turning off the ion generator.)

Other sources of RFI (radio interference) are light dimmers and digital
clocks. Some digital clocks have a small disk that rotates about once per second and produces a noise that can be heard some distance away in shortwave receivers.

Finding cures for this type of interference means working patiently with a sensitive monitoring device, locating the source, and then taking appropriate action with filters.

No one prohibits the sale of these interference-producing devices. They may crop up in your neighborhood any time. So if you hear a strange noise in your receiver, start looking at some of your new appliances. You might be surprised.

reference

1. Jim Fisk, W1DTY, "Radio-Frequency Interference," ham radio, December, 1970, page 12.

Ed Marriner, W6XM

ac-line switching precautions

A friend called me the other day and said that he'd used his equipment just before dinner and when he left the room, he turned "everything off." A few hours later my friend went into the radio room and smelled something burning. His linear-amplifier transformer had burned out!
"How could this have happened?" he asked. "I turned the switch off." It developed that my friend had a

fig. 3.
heavy-duty cord running into a box on the operating table through a single-pole wall switch, since he had an ordinary two-wire plug on the end of the cord. It looked like he was breaking the neutral instead of the hot side of the ac line, since the linear amplifier was grounded. It wasn't too hard to understand that the transformer was still on the line. (See fig. 3).

Orville Gulseth, W5PGG

Saw icynoumpins curous

$1 C^{\prime} S$							
Series 74S		7405	. 28	74107	. 58	74LS20	. 31
74S00	. 59	7406	. 28	74109	. 37	74 LS 21	. 43
$74 \mathrm{S02}$. 59	7407	. 28	74116	2.30	74LS 27	. 44
$74 \mathrm{S03}$. 59	7408	. 31	74120	2.00	74 LS 30	. 31
$74 \mathrm{S04}$. 59	7409	. 28	74122	. 64	74 LS 32	. 44
$74 \mathrm{S05}$. 59	7410	. 27	74123	. 64	74 LS37	. 84
$74 \mathrm{S08}$. 79	7411	. 34	74125	. 49	74 LS 38	. 44
74 S 10	. 59	7412	. 34	74126	. 62	74 LS 42	. 84
74 Sil	. 59	7413	. 44	74132	. 74	74 LS 49	1.43
74S20	. 59	7414	. 90	74141	. 74	74LS51	. 31
74 S 22	. 69	7416	. 34	74145	. 67	74 LS54	. 40
74 S 30	. 59	7417	. 34	74148	1.25	74LS73	. 50
74537	. 99	7420	. 27	74150	1.04	74LS74	. 64
74 S 38	. 99	7423	. 34	74153	. 72	74LS 75	. 73
74540	. 69	7425	. 34	74154	1.24	74LS 76	. 50
74564	. 89	7426	. 34	74155	. 87	74LS85	1. 24
74 S 65	. 89		. 34	74157	. 74	74 LS 86	. 50
74574	1.49	7428	. 34	74158	1.70	74 LS 90	. 80
74 S 83		7430	. 28	74161	1.00	74 LS 93	. 80
74 S 86	1.69	7432	. 34	74163	. 92	74LS95	. 93
74 S 112	1.39	7433	. 34	74164	1.02	74 LS 96	1.03
$74 \mathrm{S114}$	1. 39	7437	. 34	74165	1.02	74 LS 107	. 50
74 S 124	3.75	7438	. 34	74166	1.25	74LS 109	. 50
$74 \mathrm{S133}$. 89	7439		74172	6.00	74 LS 112	. 64
$74 \mathrm{S134}$	1.90	7440	. 29	74173	. 84	74 LS 123	1.24
74S138	3.95	7441	. 99	74174	. 94	74 LS 125	. 94
74 S 139	3.95	7442	. 99	74175	. 94	74LS 132	. 84
74 S 140	1. 29	7443	. 99	74177	. 90	74 LS 138	. 94
$74 \mathrm{S151}$	1.95	7445	. 99	74180	. 80	74LS139	. 68
74S153	2. 75	7446	. 99	74181	1. 80	74 LS 145	1.30
74 Sl 157	2. 70	7448	. 84	74182	. 80	74 LS 151	. 84
74 S 158	2. 70	7449		74185	2.00	74 LS 153	. 84
74S163	3. 75	7450	. 28	74186	10.00	74LS 155	1. 24
74S164	2. 75	7451	. 28	74190	1.20	74LS 156	1.04
74 S 174	3.75	7453	. 28	74191	1.20	74 LS 157	1.04
74S175	3. 75	7454	. 28	74193	. 90	74LS 158	. 80
74S181	9.50	7460	. 44	74194	. 90	74 LS 160	1.03
74S189	6.95	7470	. 39	74195	. 90	$74 \mathrm{LS161}$	1.20
74 S 194	3.25	7472	. 42	74196	. 90	74 LS 163	1.03
74 S 195	2.99	7473	. 41	74197	. 90	74LS164	. 94
74 S 200	8.95	7474	. 42	74273	1. 10	74 LS 165	. 94
74 S 240	8.95	7475	. 42	74279	. 84	74 LS 173	. 94
74 S 241	8.95	7476	. 42	74283	2. 20	74LS 174	1.04
74 S 251	2.49	7480	. 64	74298		74LS175	1.04
745257	2.49	7483	. 60	74366	. 73	74LS181	2.25
74 S 260	. 99	7485	. 70	74367	. 84	74LS 191	1.20
74 S 280	3.95	7486	. 44	74368	. 84	74 LS 193	1.03
74 S 283		7489	1. 80	Series 74LS		74 LS194	1.20
74 S 287	3. 95	7490	. 99	74 LS 00	. 40	74LS 195	1.00
74 S 373		7491	. 70	$74 \mathrm{LS01}$. 33	74 LS 196	. 94
745374		7492	. 77	$74 \mathrm{LS02}$. 33	74LS197	. 94
745474		7493	. 54	74 LS 04	. 44	74LS221	1.54
Series 74		7494	. 77	74 LS 05	. 33	74LS240	3.04
7400	. 39	7495	. 70	$74 \mathrm{LS08}$. 44	74LS244	3.00
7401	. 27	7496	. 77	74 LS 09	. 43	74 LS 245	8.95
7402	. 27	7497	. 77	74 LS 10	. 33	74LS251	1.84
7403	. 27	74100	1.04	$74 \mathrm{LS11}$. 44	74LS253	1.03
7404	. 27	74105	. 37	74 LS 14	1.30	74LS257	1.03

74LS258	1.03	MEMORY			
74 LS259	3.00				
74 LS 266	. 64	2708.................... $1 \mathrm{IK} \times 8$ EPROM 3.00			
74 LS273	1. 80				
$74 \mathrm{LS282}$		2114/3114................. . 1 lK x		c. 3.00
74 LS 283	1.15	4027.... 4 K x		mic RAM	. 1.00
74 LS293	2.00 1.34	2117/4116................. $16 \mathrm{~K} \times$		amic RAM.	. 3. 00
74 LS 298	1.34 4.79	2732-6............ 32 K E			39.95
74LS353	1. 70	C.P.U.'S ETC			
74 LS 366	1.04				
74 LS 367	1.04	MC6800P Microprocessor		 9.99
74LS368	1.04	MC68B21P PIA			. 6.99
74 LS 373	2. 80	MC6 845P CRT Con			. 25.00
74LS374	2.80	MC6850F ACI			. 4.99
74LS378	1.33	MC6852P SSD			. 5.00
74 LS 393	2.00	8008-1 . Microproporcessor			. 5.00
74 LS670	2.34				5.00
4001	. 34	Z80A Microprocessor			.10.99
4002	. 34	Z $80 . . .$. Microprocessor			. 8.99
4007	. 34	Z 80A . SIO /O			9.99
4009	. 64				. 22.50
4011	. 34	Z80 . SIO/I			. . 22.50
4012	. 34	8212 8 Bit input/output pa			3.99
4013	. 54				. 6.99
4015	1.44	TR1602/AY5-1013 UART 6.99
4017	1.24	TMS 1000NL	. Four	croprocessor	. 4.99
4021	1.54	PT 1482B. PSAT. 5.99
4023	. 42	8257. DMA Controller			. 8.99
4024	. 84				. 3.00
4025	. 43				. 5.99
4027	. 84	8741.......			. 60.00
4028	1.04	8748. 8 Bit Microcomputer with			
4029	1.34		progra	ble/erasable	. 60.00
4030	. 74	MC1408L/6 6 Bit D			. 3.25
4040	1.34	COM2502COM2601			. 9.99
4046	2. 30				. 9.99
4049	. 74	TENER DIODES			
4050	. 74				ITCHES
4052	1.15	Motorola - 500 MW		3 switch with end plates	
4060	1. 44		. 54 ea.	\$8.99 New	\$6.95 Used
4069	. 44				
4081	.40 1.04	IN747 IN756	1N966B	NEW GE OPTO COUPLERS	
7520 L	1. 35	1N748A 1N756A	1 N 967 B	4N26	or $10 / \$ 5.00$
75107	. 84	1N750A 1N757A	1N968A		
75108	. 84	1N751A 1N758A	1N969B		
75113		1N752A IN759A	1N972	MICRO-MI	CRYSTALS
75115		1N753A IN963B	1N978B	$32.768 \mathrm{~Hz} \quad \$ 3.00$ each	
75123		1N754A IN964B			
75151	2.00				
75154					
75350		TRUMPOTS		200	50000
75368		Thumb wheel type. .39 each or $10 / 2.50$ not sold mixed		250	200K
75369				500	250K
75427				1000	500K
75451	2. 10			1500	750K
75452	2. 10			2000	2 megs
75454	2.10			2500	2.2 megs
75480		100	20000	5000	3 megs
75492	. 93	150	25000	10000	5 megs

RF Transistors

MRF911	4.29	MMCM2369	15.00	NEW MRF472
MRF5176	11.73	MMCM2484	15.25	$12.5 \mathrm{VDC}, 27 \mathrm{MHz}$
MRF8004	1.39	MMCM3960A	24.30	4 Watts output
BFR90	1.00	MWA120	7.80	10 dB gain
BFR91	1.25	MWA 130	8.08	1.69 ea.
BFR96	1.50	MWA 210	7.46	10/9. 50
BFW92A	1.00	MWA 220	8.08	100/69.00
BFW 92	. 79	MW A 230	8.62	1000/480.00
MMCM918	14.30	MWA 310	8.08	
MMCM 2222	15.65			

Transistors

		2N3960JANTX	10.00	2N5645	10.00
		2N4072	1.60	2N5842	8.00
		2N4427	1.10	2N5 849	20.00
		2N4429	7.00	2N5942	40.00
		2N4877	1.00	2N5946	14.00
		2N4959	2.00	2N5 862	50.00
		2N4976	15.00	2N6080	7.00
2N285 7JAN	2.50	2N5070	8.00	2N6081	10.00
2N2949	3.60	2N5071	15.00	2N6082	11.00
2N2947	15.00	2N5108	4.00	2N6083	13.00
2N2950	4.60	2N5109	1.50	2N6084	14.00
2N3375	8.00	2N5179	1.00	2N6095	11.00
2N3553	1.57	2N5583	4.00	2N6096	20.00
2N3818	5.00	2N5589	6.00	2N6097	28.00
2N3866	1.00	2N5590	8.00	2N6166	38.00
2N3866JAN	2.50	2N5591	11.00	2N6368	22.99
2N3866JANTX	4.00	2N5635	5.44	A210/MRF517	2.00
2N3925	10.00	2N5636	11.60	BLY 38	5.00
2N3948	2.00	2N5637	20.00	40280/2N4427	1.10
2N3950	25.00	2N5641	5.00	40281/2N3920	7.00
2N3959	3.00	2N5643	14.00	40282/2N3927	10.48

CRYSTALS						
\$4.95 each						
5.120	7.4825	9.565	10.150	11.155	11.905	17.315
7. 3435	7.4865	9.575	10.160	11.275	11.955	17.355
7.4585	7.4925	9.585	10.170	11.700	12.000	17.365
7.4615	7.4985	10.000	10. 180	11.705	12.050	37.600
7. 4625	7.5015	10.010	10.240	11. 730	12.100	37.650
7.4665	7.5025	10.020	10.245	11.750	16.965	37. 700
7. 4685	7.5065	10.030	10.595	11.755	17.015	37.750
7.4715	7.7985	10.040	10.605	11.800	17.065	37.800
7.4725	7. 8025	10.0525	10.615	11.850	17.165	37.850
7.4765	9.545	10.130	10.625	11.855	17. 215	37.900
7.4785	9.555	10.140	10.635	11.900	17. 265	37.950
7.4815						38.000

CB type crystals

\$4.95 each		
	51-T	
T1	T15	T28
T2	T16	T29
T3	T17	T30
T4	T18	T31
T5	T19	T32
T6	T20	T33
T7	T21	T34
T8	T 22	T35
T9	T23	T36
T10	T24	T37
T11	T25	T38
T12	T 26	T39
T13	T27	T40
T14		
	$51-\mathrm{R}$	
R1	R15	R28
R2	R16	R29
R3	R17	R 30
R4	R18	R31
R5	R19	R 32
R6	R20	R 33
R7	R21	R 34
R8	R22	R35
R9	R23	R36
R10	R24	R37
R11	R25	R38
R12	R26	R39
R13	R27	R40
R14		
	17	
AR Variables		

$\$ 1.00$ each

$\mathrm{T}-3-5$	1 to 5 pF
$\mathrm{T}-6-5$	1.7 to 11 pF
$\mathrm{T}-9-5$	2 to 15 pF
$189-6-1$.1 to 10 pF
$189-502-\mathrm{Y}$	1.3 to 6.7 pF
$189-503-105$	1.4 to 9.2 pF
$189-504-5$	1.5 to 11.6 pF
$189-505-5$	1.7 to 14.1 pF
$189-505-107$	1.7 to 14.1 pF
$189-506-103$	1.8 to 16.7 pF
$189-507-105$	2 to 19.3 pF
$189-508-5$	2.1 to 22.9 pF
$189-509-5$	2.4 to 24.5 pF
$545-043$	1.8 to 11.4 pF

1 to 5 pF
1.7 to 11 pF
2 to 15 pF
.1 to 10 pF
1.3 to 6.7 pF
1.4 to 9.2 pF
1.5 to 11.6 pF
1.7 to 14.1 pF
1.7 to 14.1 pF
1.8 to 16.7 pF
2 to 19.3 pF
2.1 to 22.9 pF
2.4 to 24.5 pF
1.8 to 11.4 pF

johnson AlR Variables

$1 / 4 \times 21 / 2^{\prime \prime}$ shaft
$\$ 2.50$ each

$193-10-6$	2.2 to 34 pF
$193-$	1.5 to 27.5 pF
$193-$.6 to 6.4 pF
	$\$ 1.00$ each
$160-107-16$.5 to 12 pF
$193-10-9$	2.2 to 34 pF
$193-10-104$	2.2 to 34 pF
$193-4-5$	3 to 30 pF
TRANSFORMERS	

\#70169-2
..
4.99 each
26 VCT @ 1 Amp and
2.5V@1Amp
New GE model 6C-9 9 V Nicad Batter y........................... 3.69
Batter y
3.69
\section*{New MCM Moving Coil Tach

Generator

Model M100.

6.99 each}
New Mallory Mini Sonalert
Model \#SC-18. Works at 12 VDC 3500 Hz .
4.69 each
New T.V. Colorburst Crystals 3.579545.
99 each
WIDEBAND RF TRANSFOR MERS

\section*{RF Power Device}

MRF454 Same as MRF458
$12.5 \mathrm{VDC}, 3-30 \mathrm{MHz}$
80Watts output, 12 dB gain
$\$ 17.95$ ea.

CHOKES

. 1-3 uH 2.99	
VIV . 15 . 15 uH 2.929	
VIV $150 \quad 150$ uH 2.99	
$5-20$ uH 1.69Variable coll 10.80 uH . . 99	
Transformer dut 3.8 H.... 1.00	
. $47 \mathrm{uH} \ldots . .1 .00 \mathrm{ea}$. or $10 / 7.50$	
. 68 uH	. . ! 10 ea. or 10/7.50
$1 \mathrm{u}+\ldots . .7$ ท 0 ea or $10 / 7.50$	
$2.2 \mathrm{uH} \ldots . \mathrm{l}$ go ea or $10 / 7.50$	
15 uH	100 ea or $10 / 7.50$
$2.2 \mathrm{H}1 .00 \mathrm{ea}$ or $10 / 7.50$	
$2.7 \mathrm{uH} \ldots . .2 .00 \mathrm{ea}$. or $10 / 7.50$$3.3 \mathrm{uH} \ldots . .1 .00$ ea. or $10 / 7.50$	
6.5 uH 1.00 ea. or 10/7.50	
7.5 uH co ea. or 10/7.50	
10 uH 1.00 ea. or 10/7. 50
15 uH 1.00 ea. or 10/7.50	
$20 \mathrm{uH} \ldots . . \mathrm{l}$. 00 ea . or 10/7.50	
22 uHl. 1.00 ea. or 10/7.50	
$33 \mathrm{uH}1 .00$ ea. or 10/7.50	
39 uH 1.00 ea. or 10/7.50	
47 uHl.00 ea. or 10/7.50	
9	
56 uH 1.69	
62 uHl. 00 ea. or 10/7.50	
68 uHl. ${ }^{\text {c }} 00$ ea. or $10 / 7.50$	
100 uH 2.99	
120 uH 1.69	
$185 \mathrm{uH}1 .00 \mathrm{ea}$. or 10/7.50	
$538 \mathrm{uH}1 .00 \mathrm{ea}$. or 10/7.50	
$680 \mathrm{uH}1 .00$ ea. or 10/7.50	
$1000 \mathrm{uH} \mathrm{l} .1 .00 \mathrm{ea}$. or 10/7. 50	
1630 uH 1.50	
. 1 mH 2.99	
2 mH 2.99	
. 22 mH 2.99	
27 mH 2.299	
. 33 mH 2.99	
. 39 mH	2.99
. 240 mH	2.99
1.2 mH	2.99
1.5 mH	2.99
$1.65 \mathrm{mH}$	2.99
$1.75 \mathrm{mH}$	2.99
1.9 mH	2.99
1	69
1. 88 mH	3.99
2 mH	2.99
	2.99
2.5 mH	1.00 ea. or $10 / 7.50$
	. 2.99
3.0 mH	2.99
3.6 mH	2.99
4.3 mH	2.99

4.7 mH	2.99
5 mH 2.99
5.11 mH 2.99
6 mH 2. 99
7.2 mH	. 2.99
8.25 mH	. 2.99
8.28 mH	2. 99
8.6 mH	2.99
10 mH	2.99
12 mH	2.99
15 mH	2.99
17 mH	2.99
19.6 mH	2.99
20 mH	2.99
20.5 mH	2.99
22.6 mH	2.99
24 mH	2.99
27.4 mH	2.99
28.7 mH	2.99
29.9 mH	2.99
30 mH	2.99
36 mH	2.99
36.5 mH	2.99
40 mH	. 2.99
40.2 mH	. . 2.99
43 mH	. 2.99
47 mH	2.99
50 mH	2.99
59 mH	2. 99
60 mH	. 2.99
71.5 mH	2. 99
78.7 mH	. 2.99
86 mH	. 2.99
100 mH	. 2.99
120 mH	. . 2. 99
150 mH	. . . 2.99
175 mH	. 2.99
200 mH	2.99
205 mH	2.99
237 mH	2.99
240 mH	2.99
300 mH	2. 99
360 mH	2.99
390 mH	2.99
430 mH	2. 99
500 mH	1. 50
600 mH	2. 99
1000 mH	2.99
1.5 Hy	2.99
2.0 Hy	2.99
2.5 Hy	2.99
3.0 Hy	2.99
5.0 Hy	2.99
10 Hy	2. 99

Sawichinuentis surivis

E.F. JOHNSON TUBE SOCKETS

\#124-0311-100
6. 99 each

For 8072 etc.
\#124-0107-001....... 13.99 each
For 4CX250B/R, 4X150A etc.
\#124-0111-001. 4.99 each
Chimney for 4CX250B/R and
4X150
\#124-0113-001 and 124-0113-021
$\$ 12.99$ each
Capacitor for \#124-0107-001
\#123-209-33 Sockets....6.99 each For 811A, 572B, 866, etc.

UNELCO CAPS

6.8 pF	47 pF
8.2 pF	62 pF
10 pF	100 pF
12 pF	160 pF
13 pF	180 pF
14 pF	200 pF
20 pF	240 pF
24 pF	380 pF
33 pF	470 pF
36 pF	1000 pF
43 pF	350 V

NEW 2" ROUND SPEAKERS
100 Ohm coil
\$. 99 each

PLASTIC TO-3 SOCKETS 4/\$1. 00

Carbide Circuit Board Drill Bits for PCB Boards 5 mix for $\$ 5.00$

TRIMMER CAPS

Spraguc. Stable Polypropylene. .50 each or $10 / 4.00$ not sold mixed
1.2 to 13 pF

2 to 30 pF
3.9 to 18 pF
3.9 to 40 pF 3.9 to 55 pF

ATLAS FILTERS

ATLAS CRYSTAL FILTERS FOR ATLAS HAM GEAR

Your Choice
$\$ 15.95$ ea.
5.595-2.7 USB
5.595-2.7/8/L
5.595-2.7 LSB
$5.595-.500 / 4$
9.0 - USB/CW

J-Fet

J310 N-CHANNEL J-FET 450 MHz Good for VHF/UHF Amplifier,
Oscillator and Mixers $3 / \$ 1.00$

$30 \mathrm{MFD} @ 500 \mathrm{VDC}$	1.69
$22 \mathrm{MFD} @ 500 \mathrm{VDC}$	1.69
$100 \mathrm{MFD} @ 450 \mathrm{VDC}$	2.29
$150 \mathrm{MFD} @ 450 \mathrm{VDC}$	3.29
$225 \mathrm{MFD} @ 450 \mathrm{VDC}$	4.29
$.001 / 1000 \mathrm{pF} @ 10 \mathrm{KV}$.89
$.001 @ 3 \mathrm{KV}$	$4 / 1.00$
$.0015 @ 3 \mathrm{KV}$	$3 / 1.00$
$.01 @ 4 \mathrm{KV}$.79
$.01 @ 1.6 \mathrm{KV}$	$4 / 1.00$
$.02 @ 8 \mathrm{KV}$	2.00
$.01 @ 1 \mathrm{KV}$	$6 / 1.00$

1.9-2.5G CONVERTERS

1900 MHz to 2500 MHz DOWNCONVERTERS Intended for amateur radio use.
Tunable from channel 2 thru 6 .
34 dB gain 2.5 to 3 dB noise.
Warranty for 6 months Model HMR 11
Complete Receiver and Power Supply
(does not include coax).............. . $\$ 225.00$
4 foot Yagi antenna only. \$39. 99
Downconverter Kit - PCB and parts . . $\$ 69.95$
Power Supply Kit -
Box, PCB and parts
$\$ 49.99$
Downconverter assembled. \$79. 99
Power Supply assembled. $\$ 59.99$
Complete Kit form $\$ 109.99$
(includes Yagi antenna and instructions)
REPLACEMENT PARTS
MRF901............................... 3.99
MBD101. 1.29
. 001 Chip Caps . 1.00
Power Supply PCB 4.99
Downconverter PCB..................... 19.99
Instructions for any separate item . . . 10.00

NEW BOGNER DOWNCONVERTER
Industrial version.
1 year guarantee. $\$ 225.00$

NEW TRANSFORMERS

F-18X	6.3VCT @ 6Amps	6.99
F-46X	24V@1A mp	5.99
F41X	25.2VCT @ 2Amps	6.99
P-8380	10VCT @ 3Amps	7.99
P-8604	20VCT @ 1Amp	4.99
K-32B	28VCT @100 MA	4.99
E30554	Dual 17V @ 1Amp	6.99

UHF/VHF RF POWER TRANSISTORS
CD2867/2N6439
60 Watts output
Reg. Price . $\$ 45.77$
SALE PRICE
$\$ 19.99$

TRA NSFORMERS

$\$ 9.99$ each
\#2899652-01
$26.8 \mathrm{VCT} @ 660 \mathrm{MA}$
21.9 VCT @ 1.1Amps
$\$ 1.99$ each
\#18000711P
24 V @ 100 MA
$\$ 12.99$ each
\#2099459-00
28 V @ 1.5 Amps
$9.6 \mathrm{~V} @ 9 \mathrm{Amps}$
16.8 V @ 300 MA

JUMBO LED'S

Red	$8 / \$ 1.00$
Clear	$6 / \$ 1.00$
Yellow	$6 / \$ 1.00$
Green	$6 / \$ 1.00$
Amber	$6 / \$ 1.00$

MEDIUM LED'S

Red	$6 / \$ 1.00$
Green	$6 / \$ 1.00$

NE555V TIMERS
.39 each or $10 / \$ 3.00$

NEW DUAL COLON LED .69 each or $10 / \$ 5.00$

PLATE CHOKES
75 uH
3.00
.94 mH
3.99

Dual $500 \mathrm{pF} @ 15 \mathrm{KV}$	5.99 each
$680 \mathrm{pF} @ 6 \mathrm{KV}$	3.99 each

800 pF @ 15 KV
3.99 each

HIGH VOLTAGE CAPS

$420 \mathrm{MFD} @ 400 \mathrm{VDC}$	3.99 each
$600 \mathrm{MFD}(1400 \mathrm{VDC}$	3.99 each

RG174/U-\$15.00 per 100 ft . Factory new

NEW SIMPSON 260-7 $\$ 99.99$

TEXAS INSTRUMENTTIL-305P 5×7 array alphanumeric display $\$ 3.85$ each

New Fairchild Prescaler Chip
95H90DCQM............ 6.50 each 350 MHz prescaler divide by $10 / 11$

NEW CHERRY BCD SWITCH
New end plates
Type T-20. 1. 29 each

78 MO 5
Same as 7805 but only $1 / 2$ Amp
5 VDC
.49 each or $10 / \$ 3.00$

Sawtemoumyit surour

Sawternumyits irivis

NEW BCD SWITCH

8 switch with end plates
Model TSM 200-1011 (CDI) \$16.87

CONTINUOUS TONE BUZZERS
12 VDC
$\$ 2.00$ each

EIMAC FINGER STOCK \#Y-302
36 in . long $\mathrm{x} 1 / 2 \mathrm{in}$. \$4. 99 each

MAGNET WIRE

$\$ 22.50$ per spool

$\# 24$	A.W.G.	9	lb.
$\# 26$	A.W.G.	9	lb.
$\# 25$	A.W.G.	9	lb.
$\# 30$	A.W.G.	$83 / 4 \mathrm{lb}$.	
$\# 31$	A.W.G.	6	lb.

CORES		
	$4 / 1.00$	
T20-12	T30-6	T37-6
T25-6	T30-12	T37-10
T30-2	T37-2	T44-6

CABLE TIES

\#/T-18R
100 per bag
mil. spec. \#MS-3368S, 4"
Made by Tyton Corp.
\$2.50 per bag
10 bags - $\$ 20.00$

Miniature Ceramic Trimmers

.50 each or $10 / \$ 4.00$

CV31D350

2 to 8 pF
HM00-4075-03
3.5 to 11 pF

300425
E5-25A
3.5 to 13 pF

5 to 25 pF
5.1 to 40 pF
3.5 to 15 pF
5.2 to 40 pF
2.5 to 6 pF

86 Pin Motorola Bus Edge Connectors
Gold plated contacts
Dual $43 / 86$ pin . 156 spacing
Soldertail for PCB........
. $\$ 3.00$ each

CRYSTAL FILTERS

Tyco 001-19880 Same as 2194F 10. 7 MHz narrow band

3 dB bandwidth 15 KHz min.
20 dB bandwidth 60 KHz min. 40 dB bandwidth 150 KHz min.
Ultimate 50 dB insertion loss 1 dB max. Ripple 1 dB max. Ct. $0+/-5 \mathrm{pF} 3600$ Ohms
$\$ 3.99$ each

D)ODES	SCMS 10 K $15 \mathrm{~mA}, 10,000 \mathrm{PlV}$ $\$ 1.69$ ea., 10 for $\$ 12.50$	High-voltage diode EK500 5000 Volts, 50 mA . 99 each
HEP 170 $3.5 \mathrm{~A}, 1000 \mathrm{PIV}$. $20 \mathrm{ea.}$,100 for $\$ 15.00$	Motorola MA 752 Rectifier $6 \mathrm{Amps}, 200 \mathrm{PIV}$ $4 / \$ 1.29$	Motorola SCR TO-92 Case, $0.8 \mathrm{Amp}, 30 \mathrm{~V}$. Igt 0.2 Vgt 0.8. Same as \#N5060.
D61005 1.5 A, 1000 PIV	Fairchild LEDs FLV 5007 \& 5009 red. Case type TO-92.	4/\$1.00 or $100 / \$ 15.00$
HVK 1153 $25 \mathrm{~mA}, 20,000 \mathrm{PIV}$ $\$ 1.00 \text { ea., } 10 \text { for } \$ 8.00$	6/\$1.00	Dialco Type 555-2003 LED 5 VDC with built-in resistor. . 69 each

PARTS/ASSEMBUES/

ACCESSORIES
Wakefield Thermal Compound 120-8 8-oz. jar, \$5. 35

TY-Raps 08470
7 in.

TO-5 type relay
WABCO 91630301-10
26 VDC.
$\$ 4.99$ each

Transco ri coax switch - 28 VDC
Type 16500NAU12-15, 1 input, 3 output
Type N connectors
$\$ 39.99$ each

Type 2 - No. 1460-20/SA-303/U SPDT-Type N connectors $\quad \$ 39.99$ each

4 each RCA 7651 tube with socket
$\$ 200.00$ per set
One tube and one socket
Socket only $\$ 100.00$
Rotron biscuit fan
115 VAC Part BT 2A1.
$\$ 12.99$ each

3-M Company Bumpons.
2 types:
Type 1
SF-5012, black
$0.5^{\prime \prime}$ dia. x $0.14^{\prime \prime}$ high
$12.7 \times 3.55 \mathrm{~mm}$
70-0700-1813-3 sheet of 4
$\$ 3.00$
Type 2
JJ-5519, brown
$0.78^{\prime \prime} \times 0.35^{\prime \prime}$ rect. $\times 0.2^{\prime \prime}$ high
$19.8 \times 8.89 \times 5.08 \mathrm{~mm}$)
70-0700-2982-5 sheet of 64 self adhesive

Joy sticks

JVC-40 40 kn .
(2) video controller s, \$4.99

Power one
Model CP-198 power supply.
Input 105-125 VAC; output 5 VDC.
6 Amps.
$\$ 19.99$ each

ORDERING INSTR UCTIONS

Check, money order, or credit cards welcome. (Master Charge and VISA only.) No personal checks or certified personal checks for foreign countries accepted. Money order or cashiers check in U.S. funds only. Letters of credit are not acceptable.

Minimum shipping by UPS is $\$ 2.35$ with insurance. Please allow extra shipping charges for heavy or long items.

All parts returned due to customer error or decision will be subject to a 15% restock charge. If we are out of an item ordered, we will try to replace it with an equal or better part unless you specify not to, or we will back order the item, or refund your money.

PRICES ARE SUBJECT TO CHANGE WITHOUT NOTICE. Prices supersede all previously published. Some items offered are limited to small quantities and are subject to prior sale.

We now have a toll free number, but we ask that it be used for charge orders only. If you have any questions please use our other number. We are open from 8:00 a. m. - 5:00 p. m. Monday thru Saturday.

Our toll free number for charge orders only is 800-528-3611.

Sawicinulentis surous

BRAND NEW! The Gunnplexer Cookbook

 Robert M. Richardson, W4UCH/2
Ever wanted to take a good look at 10 GHz operation? Well, here's your chance. Starting with the basic theory of the Microwave Associate's Gunnplexer transceiver, author Richardson describes in 16 building-block chapters, how to put a functioning Gunnplexer system into operation.
Chapters include: Frequency and Power Measurements, Power Supplies, Proportional Temperature Control, I-f Amplifiers, Antennas, Television and Computer Data Links and more.
The Gunnplexer Cookbook has been written for the Radio Amateur or electronic student who has at least modest experience assembling vhf converter or receiver kits. Only very basic test equipment is required.
You've waited a long time for this book. Don't wait any longer. Order your copy today! (c) 1981 Softbound HR-GP $\$ 9.95$ plus $\$ 1.00$ for shipping.

Ham Radio Publishing Group Greenville, New Hampshire 03048

$$
\begin{aligned}
& \text { (800) 433-5172 }
\end{aligned}
$$

Our product may be copied, but the performance is never equalled.

P.O. Box 339

Arlington, TX 76010

Iron Powder and Ferrite TOROIDAL CORES

Shielding Beads, Shielded Coil Forms Ferrite Rods, Pot Cores, Baluns, Etc.

Small Orders Welcome Free 'Tech-Data' Flyer

AMIロ\&N
 - ssociates

Since 1963
12033 Otsego Street, North Hollywood, Calif. 91607
In Germany Elektronikiaden, Witheim - Meilies Str 88. 4930 Detmold 18. West Germany
In Japan Toyomura Electronics Company. Ltd 7.9. 2-Chome Sota-Kanda Chiyoda-Ku. Tokyo, Japan

IC-22U

ICOM VHF Mobile Performance at a Budget Price

Imagine IC-22S.performance and simplicity . . plus 800 channels. . .

Easy to Operate.

- Convenient pushbutton frequency selection
- Monitor repeater inputs at the flip of a switch
- $\mathrm{Hi} /$ Low power pushbutton selectible
- Touch Tone ${ }_{\circledR}$ available with optional HM8 microphone
- Convenient hookup points for subaudible tone encoder or continuous
tone controlled squelch system
- 5 KHz step ($800 \mathrm{~T} / \mathrm{R}$ channels standard)
- Covers the complete 144-147.995 MHz ham band
ICOM Performance.
- 5 helical resonators for outstanding selectivity
- Continuous duty rated 10 watt transmitter - rugged performance
- Excellent receiver sensitivity
- Patterned after ICOM's extremely successful and reliable IC-22S.
- APC circuit for protection of finals

Versatile.

- Easily set up for CAP/MARS use
- 8 pin mic connector
- 9 pin undedicated accessory socket
- Remotable frequency selection option
- Compact size [6.2 in (W) $\times 2.3$ in (H) $\times 8.6$ in (D)]

2112-116th Avenue NE, Bellevue WA 98004
3331 Towerwood Dr., Suite 307, Dallas, TX 75234

FULL POWER - QUALITY
HAM ANTENNA ACCESSORIES

LONDON: VICTORIA: CONCEPCION: BUENOS AIRES: COL. ANAHUAC HELSINKI:
AUSTRIA
FRANCE
GERMANY

AMCOMM 018041166
Scalar 7259677
Telecom Trans Chile 25471
Multi-Radio 773-1266
Radiac 2-50-32-40 Erikoismediat (90) 611258 Renox Telex: 76021 SFL (90) 533940 Williges 10421) 504021
the Old reliable W2VS Traps

- Lo-Pass Filter 2000W
- Quad Parts
- Baluns / Traps
- Insulators
- Wire \& Cable
- Connectors
- Antenna Kits

UNADILLA / REYCO Division Microwave Filter Co., Inc., E. Syracuse, NY 13057

FAST SCAN ATV

WHY GET ON FAST SCAN ATV?

- You can send broadcast quality video of home movies, video tapes, computer games, etc, at a cost that is less than sloscan.
- Really improves public service communications for parades, RACES, CAP searches, weather watch, etc
- $D X$ is about the same as 2 meter simplex - 15 to 100 miles. ALL IN ONE BOX

TC-1 Transmitter/Converter Plug in camera, ant., mic, and TVV and you are on the air. Contains AC supply, T/R sw, 4 Modules below \$ 399 ppd
PUT YOUR OWN SYSTEM TOGETHER

PACKAGE SPECIAL all
four modules \$ 249 ppd
TXA5 ATV Exciter contains video modulator and xtal on 434 or 439.25 mHz . All modules wired and tested \$89 ppd PA5 10 Watt Linear matches exciter for good color and sound. This and all modules run on $13.8 \mathrm{vdc} . . .2 . . .$. . 89 ppd TVC-2 Downconverter tunes 420 to 450 mHz . Outputs TV ch 2 or 3 . Contains low noise MRF901 preamp...... . $\$ 55$ ppd FMA5 Audio Subcarrier adds standard TV sound to the picture \$ 29 ppd
SEND SELF-ADDRESSED STAMPED ENVELOPE FOR OUR LATEST CATALOG INCLUDING Info on how to best get on ATV, modules for the builder, complete units, b\&w and color cameras, antennas, monitors, etc. and more. 20 years experience in ATV
Credit card orders call (213) 447-4565. Check, Money Order or Credit Card by mail.

ANTENNA BOOKS by Bill Orr, W6SAI ALL ABOUT CUBICAL QUAD ANTENNAS

The cubical quad antenna is considered by many to be the best DX antenna because of its simple, lightweight design and high performance. In Bill Orr's latest edition of this well known book, you'll find quad designs for everything from the single element to the multielement monster quad, plus a new, higher gain expanded quad ($\mathrm{X}-\mathrm{Q}$) design. There's a wealth of supplementary data on construction, feeding, tuning, and mounting quad antennas. It's the most comprehensive single edition on the cubical quad available. 112 pages. (c) 1977
\square RP-CQ Softbound \$4.75
THE RADIO AMATEUR ANTENNA HANDBOOK
by William I. Orr, W6SAI and Stuart Cowan, W2LX
If you are pondering what new antennas to put up. we recommend you read this very popular book. It contains lots of well illustrated construction projects for vertical, long wire, and HF/VHF beam antennas. But. you'll also get information not usually found in antenna books. There is an honest judgment of antenna gain figures, information on the best and worst antenna locations and heights, a long look at the quad vs the yagi antenna, information on baluns and how to use them, and some new information on the increasingly popular Sloper and Delta Loop antennas. The text is based on proven data plus practical, on-theair experience. We don't expect you'll agree with everything Orr and Cowan have to say, but we are convinced that The Radio Amateur Antenna Handbook will make a valuable and often consulted addition to any Ham's library, 190 pages. (c) 1978.
\square RP-AH
Softbound \$6.95

BEAM ANTENNA HANDBOOK

Here's recommended reading for anyone thinking about putting up a yagi beam this year. It answers a lot of commonly asked questions like: What is the best element spacing? Can different yagi antennas be stacked without losing performance? Do monoband beams outperform tribanders? Lots of construction projects, diagrams, and photos make reading a pleasurable and informative experience. 198 pages. © 1977 \square RP-BA

Softbound \$5.95
Please add $\$ 1.00$ to cover shipping and handling.
HAM RADIO'S BOOKSTORE
GREENVILLE, N. H. 03048

New Product Report

Several years ago, in one of the April Fool's articles that appeared in QST, there was a design for a hydraulic antenna mast that retracted into the ground. As I remember the story, you had to drill a hole as deep as the mast was high. To raise or lower the mast you filled the hole with water. At least at that time it seemed like an April Fool's article.

Now, N-Pro, from Oregon City, Oregon, has designed and perfected an antenna mast that can be used in much the same fashion! Their design, however, goes way beyond the QST article and is rapidly finding a home in both ham and professional applications. TV stations, for example, are putting both cameras and antennas for their remote-site shots onto N -Pro masts. They find they're able to get better pictures from an elevated camera, and also improve their transmitted signals. The N-Pro K2 mast extends to 22 feet 2 inches, and can lift 150 pounds in just under two minutes. When retracted the mast is only 7 feet 6 inches long. The K2 is fabricated from four sections of 6061-T6 aluminum alloy. The pipe sections are
splined to prevent antenna or camera rotation during elevation.
The K2 uses easy-to-find automotive automatic transmission fluid, rather than any of the more expensive hydraulic fluids. The hydraulic reservoir and pump can be conveniently located anywhere in the vehicle.
Hams will find the N-Pro masts of interest for mobile communications centers, VHF hilltopping installations, and for field day operations. For the ultimate in hidden antennas, you can even bury the mast as was done in the OST article. For more information, write N-Pro, 1022 Hazelwood Drive, Oregon City, Oregon 97045.

J. Craig Clark, N1ACH

Ten-Tec Argosy

Ten-Tec's new Argosy solid-state transceiver reverses the upward Amateur Radio price spiral with an Amateur net price of $\$ 549$, hundreds of dollars lower than you would expect for a high performance transceiver. Dual power is a unique feature: a switch converts the Argosy from a 10 -watt $Q R P p$ rig to a 100 watt SSB/CW transceiver.

The Argosy receiver features 80 through 10 meter coverage (including the new 30-meter band) with broadband design for instant band change without receiver "peaking"; typical sensitivity figure of $0.3 \mu \mathrm{~V}$ for 10 dB $\mathrm{S}+\mathrm{N} / \mathrm{N} ; 2.5 \mathrm{kHz}$ four-pole crystal filter (plus optional $1.8-\mathrm{kHz}, 500-\mathrm{Hz}$ and $250-\mathrm{Hz}$ filters); $9-\mathrm{MHz}$ i-f with 60 dB rejection; $\pm 3-\mathrm{kHz}$ offset tuning with center "off" position; built-in 50 dB notch filter that's tunable from 200 Hz to 3.5 kHz ; optional i-f type $50-\mathrm{dB}$ noise blanker; and built-in speaker with low distortion audio.

The transmitter features tuning in nine $500-\mathrm{kHz}$ segments (four segments for 10 meters) with approximately $40-\mathrm{kHz}$ VFO overrun on each band edge; 100 percent duty cycle up to 20 minutes on all bands; threefunction meter shows forward peak
power or SWR on transmit and received signal strength; full break-in on CW plus PTT on SSB; built-in sidetone with adjustable tone and volume; ALC control on high power only, where needed; automatic sideband selection plus reverse; normal 12-14 Vdc operation plus ac operation with optional power supply.

Styling includes molded front panel, matching aluminum top, side and back panels. Size is $4 \times 91 / 2 \times$ 12 inches, to fit and go anywhere. A full accessory line is available including filters, noise blanker, audio CW filter, and calibrator. Full details are available from Ten-Tec, Inc., Highway 411 East, Sevierville, Tennessee 37862.

book review:

The Art of Electronics

Many books are submitted to us for review, but here's one that deserves special attention. It's a 716-page, hard-bound volume entitled The Art of Electronics, written by Paul Horowitz and Winfield Hill. The publisher: Cambridge University Press, 32 East 57 Street, New York, New York 10022. (It is also available in the United Kingdom for overseas readers.)

We like this book. It is written for the newcomer as well as the advanced electronics enthusiast. The book covers the design of modern electronic circuits, without mathematics, in an easy-to-understand manner. Just a few of the subjects:

- Current sources and current mirrors
- Single-supply operational-amplifier design
- Operational-amplifier frequency compensation
- Active filters (with tables and graphs)
- Voltage references and regulators, including constant-current supplies

The book is both novel in its approach and, in many ways, unique in the topics treated. Much emphasis is placed on tabular data and circuit examples, so that you can understand circuit behavior and the limitations imposed by available components. Standard topics are discussed, as well as the more specialized techniques needed for the design and construction of high-frequency and low-noise, high-precision circuits.

The book provides a well-balanced introduction to modern electronics

TRANSVERTERS FOR ATV OSCARS 7, 8 \& PHASE 3

Transverters by Microwave Modules and other manutacturers can convert your existing Low Band rig to operate on the VHF \& UHF bands. Models also available for 2 M to 70 cm and for ATV operators from Ch2/Ch3 to 70 cms Each transverter contains both a Tx up-converter and a Rx down-converter Write for details of the largest selection available.
SPECIFICATIONS
Output Power $\quad 10 \mathrm{~W}$ Receiver Gain 30 dB typ.
Receiver N.F
3 dB typ. Prime Power
12 V DC
Attention owners of the original MM1432-28 models: Update your transverter to operate OSCAR 8 \& PHASE 3 by adding the 434 to 436 MHz range. Mod kit including full instructions $\$ 26.50$ plus $\$ 1.50$ shipping, etc.

ANTENNAS (FOB CONCORD, VIA UPS)
$144-148 \mathrm{MHz}$ J.SLOTS
8 OVER 8 HORIZONTAL POL. +12.3 dBd D8/2M $\$ 63.40$ 8 BY 8 VERTICAL POL. D8/2M-VERT. $\$ 72.95$ $8+8$ TWIST 8XY/2M $\$ 57.75$

420.450 MHz MULTIBEAMS

$48 \mathrm{EL} . \quad \mathrm{GAIN}+15.7 \mathrm{dBd} 70 / \mathrm{MBM}$
$\$ 75.75$
$88 \mathrm{EL} . \quad \mathrm{GAIN}+18.5 \mathrm{dBd} 70 / \mathrm{MBM} 88 \quad \mathbf{\$ 1 0 5 . 5 0}$
UHF LOOP YAGIS
28 LOOPS GAIN $+20 \mathrm{dBi} \quad 50$-ohm, Type N Connector $1250.1340 \mathrm{MHz} \quad 1296-\mathrm{LY} \quad 8 \mathrm{ft}$. boom $\mathbf{\$ 6 4 . 7 0}$
$1650.1750 \mathrm{MHz} \quad 1691$ - LY
6 ft . boom $\$ 70.90$

Send 36 C (2 stamps) for tull details of KVG crystal products and all your VHF \& UHF equipment requirements.

Pre-Selector Fiters Amplifiers Varactor Triplers Crystal Filters Decade Pre-Scalers Frequency Filters

 AntennasOscillator Crystals

Spectrum

SSB Transverters
FM Transverters VHF Converters UHF Converters
 International, Inc. Post Office Box 1084 Concord, Mass. 01742, USA

ATTENTION DEALERS!

Interested in making a PROFIT?
Sell our magazine in your store with 100\% Return Privileges
Rose will tell you how CALL 1-603-878-1441
The Ham Radio Publishing Group
Greenville, NH 03048

Transmits perfect Morse Code * Built-in 16. character buffer * Internal speaker and sidetone * Reed relay output eliminates keying problems * All solid state circuits and sockets. for reliability * Speed range 5-45 WPM * Perfect companion to our MORSE-A-WORD CW code reader.
MORSE-A-KEYER KIT, model MAK-K, Complete kit of parts \& manual \$159.95 MORSE-A-KEYER, model MAK-F, Factory wired \& tested \$205.00 - MORSE-A-KEYER ESSENTIAL PARTS KIT, model EPK-K. \$ $69.95{ }^{\circ}$ (Essential parts kit for home-brewers consists of pc board, board parts and manual. You supply ASCII keyboard, cabinet, power supply \& miscellaneous parts.) - Send check or money order. Use your VISA or MasterCard. Add $\$ 5.00$ shipping and * handling for Continental U.S. Wisconsin residents add 4\% Wisconsin State Sales Tax.

Corporation
Telephone: (414) 241-8144 Post Office Box 513HR, Thiensville, Wisconsin 53092

products
and we recommend it for study. For more information, write Cambridge University Press, 32 East 57th Street, New York, New York 10022.

portable digital multimeter

A new, hand held, $31 / 2$-digit LCD DMM has just been introduced by EICO Electronic Instrument Co., priced at $\$ 89.95$ including fitted carrying case. The EICO 274 measures ac and dc volts, dc current, and resistance in 21 ranges.
It is a precision-crafted unit that features single-chip LSI logic, and automatic decimal point and overload protection. And you get up to 200 hours' operation from a single 9 -volt transistor battery. The automatic 10 BAT indicator warns you of the last 20 percent of battery life. The large, LCD readouts allow easy viewing, and accuracy is better than 0.8 percent. Input impedance is 10 megohms. The EICO 274 comes complete with 9 -volt battery, test probes, spare fuse, and carrying case.
For further information contact EICO Electronic Instrument Co., Inc., 108 New South Road, Hickville, New York 11801.

packaging and breadboarding materials

A twelve-page brochure from Vector Electronic Company describes 109 professional electronic packaging and breadboarding products that are available, over-the-counter, from electronics and personal-computercomponent stores throughout the United States and Canada. Highlighted are microcomputer interface boards, Vector PlugbordsTM, motherboards, cases, tools, wiring terminals, and kits. A complete price list is included. Write to Vector Electronic Company, Inc., 12460 Gladstone Avenue, Sylmar, California 91342.

*Quality Microwave Systems
 2100 to 2600 MHz Antennas 34 db Gain or Greater

Complete System (As Pictured) Ready to Install
3174.95

Down Converter (Probe Mntd.) Assembled and Tested $\quad 64.95$
Down Converter PCB (Chassis Mntd.) Assembled and Tested 64.95 Power Supply Assembled and Tested 59.95 Down Converter PCB (Chassis Mntd.) Kit w/ Parts and Data 49.95 Printed Circuit Board (Chassis Mntd.) 49.95
29.95

Data Information (Plans for Kit Building)
9.95

SEND CHECK, CASH, MONEY ORDER TO:
Phillips-Tech Electronics
Dept. SP-HR, 5025 N. 68th Street,
Scottsdale, Arizona 85253
For Special Quantity Pricing, C.O.D.'s, MasterCard or Visa Call:
(602) $945-7419$

HIGH STABILITY CRYSTALS FOR FREOUENCY \sim OR TIME USE THE BEST BUY JAN CRYSTALS

SAY

YOU SAW IT IN

ham radio!

GO MOBILE WITH YOUR H.T.!

A unique battery eliminator
HANDI-TEK Regulator allows constant hand-held operation from auto DC or base supply with no ni-cad drain and WITHOUT RADIO MODIFICATICN!
Model I - Icom IC-2 $A / T ; K-T R-24,00$ Y - FT-207R, T - Simple mod for Tempo $\$ 21.95$ PPD in USA. CA add $\$ 1.50$. HANDI-TEK
P.O BOX 2205, LA PUENTE, CA 91746;

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
			$\begin{aligned} & \text { WEST COAST QUALIFYING } \\ & \text { RUN 1 } \\ & \text { CANADA CONTEST - } 001 \text { to } \\ & 235 \text { UTC 1 } \end{aligned}$	2 2 2	3	
5	\% 6			9	10	
			15	16	17	
	20		22	23	$\begin{array}{r} 24 \\ 20 \end{array}$	
26 24 2			29	30		. so. sme co

ALUMA TOWER COMPANY BOX 2806HR
VERO BEACH. FLA. 32960 (305) 567-3423 TELEX 80-3405

SAY YOU SAW IT IN HAM RADIO

HEATHKIT SB-104A OWNERS!

Improve BOTH RX and TX Performance Greatly! See Article in April 1981 Ham Radio Magazine.

ALL parts now available from a SINGLE Source. Buy the Kits you need. Complete Instructions.
FTH-1: RX Sensitivity Improvement. \$13
FTH-2: RX Mixer Improvement S15
FTH-3: Selectivity Improvement* $\$ 60$
FTH-4: Strong Signal Handling. . 10
FTH-5: TX Switching \& Audio. $\$ 5$
FTH-A: All above, with Coax. Only $\$ 100$
-Includes excelient 8 -pole Fox. Tango Fitler
Order with Contidence - Money Back Guarantee We accept Visa/ MasterCarc
For Airmail to US/Canada add $\$ 2$. Elsewhere $\$ 5$
FREE' Complete instructions. Send Large SASE (or \$1)

FOX TANGO CORP.

Box 15944, West Palm Beach. FL 33406 Phone: (305) 683-9587

DIRECTION FINDERS

If you're serious about direction finding, you want the best, most dependable and proven equipment for a fast find, whether it's for a downed aircraft or a repeater jammer.

If your needs are in the 100-300 MHz range, think of L-Tronics for ground, air, or marine DF. We also have equipment that gives dual capability, such as search \& rescue/amateur radio, 146/220 amateur, and air/marine SAR.

Our units will DF on AM, FM, pulsed signals and random noise. The meter reads left-right in the DF mode for fast, accurate bear-
 ings, and left to right signal strength in the RECeive mode (120 dB total range with the sensitivity control). Its 3 dB antenna gain and . 06 uV typical DF sensitivity allow the crystal-controlled unit to hear and positively track a weak signal at very long ranges. It has no 180° ambiguity.

Over 3,000 of our units are in the field being used to save lives, catch jammers, find instrument packages, track vehicles. Prices start at under $\$ 250$ for factory-built equipment backed by warranty, money-back guarantee, and factory service and assistance. Write today for a free brochure and price list.

L-TRONICS (Attention Ham Dept.)
5546 Cathedral Oaks Rd.
Santa Barbara, CA 93111

REPERTER CDMTRDLLEB

- 4 ACCESS MODES
- AUTO PATCH
- auto dial (72 No.)
- 16 DIGIT XTAL CONTROLLED TOUCH TONE DECODER
- reverse autopatch
- HI/LO FREQ. INDICATOR
- 12 VDC OR 117 VAC
- 60 CONTROL FUNCTIONS
- 30 tIMERS
- easy to change codes
- 3 LINKS
- PHONE, RX, \& TX AUDIO INTERFACE W/MUTING

MS-101 RACK MOUNT W/117 VAC POWER SUPPLY $\$ 849.25$

July 25 thru August 7, 1981 Our 22nd year

Have trouble finding time to study for Upgrading? Do it on your vacation at the OAK HILL ACADEMY RADIO SESSION in the
Blue Ridge Mountains of Virginia
Two weeks of intensive Code and Theory Study starting at your level.

- Novice to General
- General or Technician to Advanced
- Advanced to Amateur Extra

Expert Instructors - Friendly Surroundings - Excellent Accommodations. Ham Lab set up for all to use.
"A Vacation with a Purpose"'
C. L. PETERS, K4DNJ, Director

Oak Hill Academy Amateur Radio Session Mouth of Wilson, Virginia 24363
Name \qquad
Address
City/State/Zip

WITH THESE LOW-COST
2-METERAMPLIFIERS.
Anyone who can operate a 2 -meter rig can assembie these low
cost amplifiers. Detailed step-by-step instructions. No SWR
bridge, wattmeter, or other equipment required.
Model 22525 watts out with 350 mW drive.
Model 33535 watts on FM with 3 watt input, 2 watts yied ds 30 watts. 1 watt yields 15 watts.
Model 875 Full 75 watts on FM or SSB with 10 watt input. Model KEB 430 MHz 100 Watt Linear Amplifier This high power kit is designed
the 420 to 450 MHz band
Communication Concepts Inc.

[^10]
flea
 market気回

RATES Noncommercial ads 10¢ per word; commercial ads 60¢ per word both payable in advance. No cash discounts or agency commissions allowed.

HAMFESTS Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing) on a space available basis only. Repeat insertions of hamfest ads pay the non-commercial rate.

COPY No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

DEADLINE 15 th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

QSL CARDS

QSL's - BE PLEASANTLY SURPRISEDI Order our three colored QSL's in all varieties for $\$ 8.00$ per 100 or $\$ 13.00$ for 200. Satisfaction guaranteed. Samples $\$ 1.00$ (refundable). Constantine Press, 1219 Ellington, Myrtle Beach, SC 29577.

QSLs \& RUBBER STAMPS - Top Quality! Card Samples and Stamp Info - 50 c - Ebbert Graphics 5R, Box 70 , Westerville, Ohio 43081
500 QSL's, $\$ 10$. Catalogue, 743 Harvard, St. Louis, MO 63130.

QSL'S: No stock designs! Your art or ours; photos, originals, 50 ¢ for samples \& details (refundable). Certified Communications, 4138 So. Ferris, Fremont, Michigan 49412.

DISTINCTIVE QSL's - Largest selection, lowest prices, top quality photo and completely customized cards. Make your QSL's truly unique at the same cost as a standard card, and get a better return rate! Free samples, catalogue. Stamps appreciated. Stu Goodman, K2RPZ

Foreign Subscription Agents for Ham Radio Magazine

Ham Radio Austria F. Bast A.2700 Wiener Neustad Austra	Ham Rasio Holland MAL Ectronice NL. 2204 Dell Moliand
Ham Radio Beigium Stertohouse 8 Brusseisesteenweg 416 Belgium	Ham Radio Italy G. Vulpetti 1-22063 Cantu
Ham Radio Canada Box 400, Goderich Ontario, Canada N7A AC7 Ham Padio Switzerland	
Ham Radio Europe Box 444 S 19404 Upplands Vasby Sweden	Pontact 2454 a. 7030 Lomrrach West Germany
$\begin{aligned} & \text { Ham Radio France } \\ & \text { SMElictionic } \\ & \text { SO bis Ave Ues Ciarions } \\ & \text { F-Fosobo Auxerte } \end{aligned}$	Ham Radio UK Mi. Box 63 . Harrow Engiand
Ham Racio Germany Karin Ueber D. 7850 Loerrach West Germany	Hoiland Radia 143 Greenway Repubicic of South Atrica

Print, P.O. Box 412, Rocky Point, NY 11778 (516) 7446260 .

CADILLAC OF QSL CARDS, 3 to 4 colors, send $\$ 1$ for samples (Refundable). Mac's Shack, P.O. Box 43175 Seven Points, TX 75143.

PHOTO QSL's. Fluorescent OSL's. Distinctive "Victorian" QSL's. Stamp brings samples. A. Zanella, P.O. Box 4337, San Francisco, California 94101.
PICTURE QSL's - Quality photo and standard cards. Free samples and information. Planet Publishing, P.O. Box B, Martinsville, IL 62442 .

COLLINS Mechanical filters for sale. Unused, in box. P/N $5269522001,455 \mathrm{kHz}$ IF, 6 kHz BW. $\$ 5.00$ ea. Dave Wells KD6TC, 3522 Boston Ave., Oakland, CA 94602.
VACKAR VFO KITS. Write Direct Conversion Technique, Box 1001, Dept. 7FM, 535 No. Michigan Ave., Chicago, Illinois 60611.

SEND S.A.S.E. for list of "hard to find" RTTY parts and supplies. H. Krakover, 4591/2 So. Palm Dr., Beverly Hills, CA 90212 or call Eddie (213) 274-4048.
RTTY JOURNAL-EXCLUSIVELY AMATEUR RADIOTELETYPE, one year subscription $\$ 7.00$. Beginners RTTY Handbook $\$ 5.00$, RTTY Index $\$ 1.50$, P.O. Box RY, Cardiff, CA 92007.
SELL: Wilson System One, 5 element triband beam with BN-86 balun, $\$ 90.00$. Factory rebuilt Harn III rotor w/60 cable, $\$ 90.00$. DenTron 4 v vertical w/50' RG8 and radials, $\$ 35.00$. Swan WM-3000 wattmeter, $\$ 25.00$. Turner 254 . HC microphone, $\$ 20.00$. Heath Cantenna wloil, $\$ 10.00$ Heath coax switch, $\$ 5.00$. NQLC, 2257 West 232nd Street. Torrance, California 90501

COMPLETE LINE OF MICROWAVE Television Con verters and accessories to suit your needs. Converters have a one year warranty backed by a 3 year reputation Call or write for complete specifications and pricing Dealer Inquiries Invited. Triton Marketing, 1933 Rockaway Parkway, Brooklyn, N.Y. 11236 (212) 531-9004.

VOCOM POWER AMPLIFIERS. 2 C025-2W, $\$ 75.00$. 2 watts in, 25 watts out. VoCom telescopic antenna for 2 meters, $5 / 8$ wave, $\$ 20.00$. ELECTRONIC ACCESSORIES CO., 2522 Westover Drive, Winston-Salem, NC 27103. $1 \cdot 919-727.1777$ after 6 p.m. All items shipped C.O.D. plus U.P.S. charge.

RADIO REPAIR: Fast, protessional service by 1st phone. Jay Brown, WAøOJZ, Climax, Kansas 67207. (316) 583-6981.

RF POWER TRANSISTORS, most comprehensive line in U.S. Also TV, audio, radio, VTR transistors, IC's and diodes. Call 1-800-458-6053. VISA/MasterCard honored. B \& D Enterprizes, P.O. Box 305, Kane, PA 16735.

CUSTOM EMBROIDERED EMBLEMS - Your design, low minimum. Informational booklet. Emblems, Dept 65, Littleton, New Hampshire 03561.

AZDEN PCS-3000 TT KITS assembled and mounted in the back of your mike. Send $\$ 25.00$, your mike and TT kit to: NPS, 1138 Boxwood Rd., Jenkintown, PA 19046. Returned next day via FIRST CLASS MAIL.
PRINTED CIRCUIT BOARDS with running water! Technological breakthrough. Precise reproduction. Ideal for beginners. COVAL, Dept. HR6, 2706 Kirby, Champaign, Illinois 61820.
THE VHF SHOP - Authorized LUNAR Dealer VHF/UHF Amplitiers, Preamps, Transverters. TAMA 432-450 Antennas, KLM Antennas, Coax relays, etc. Call or write for a quote - you won't be disappointed! MC/VISA accepted. K3MKZ Box 349, RD4, Mountaintop, PA 18707. (717) 868-6565.

RTTY CLOSEOUT: 50% off of all RTTY equipment listed on my January, 1981 list. Send S.A.S.E. for six-page list of Model 14, 15, 28, 33 and 35 Teletype equipment, parts and supplies. Lawrence R. Pfleger, K9WJB, 2600 S. 14th Street, St. Cloud, MN 56301. Phone (612) 255-9794.

HEATH - HR1680 \$165, HS1661 Spkr. \$20, HX1681 $\$ 210$, PS23 $\$ 40$, Cables, Manuals, All $\$ 400$ - YOU SHIP - Chuck Lane, KA0IYE, 319-583-9432

MANUALS for most ham gear made 1937/1970. Send $\$ 1.00$ for 18 page "Manual List", postpaid. H.I., Inc., Box H864, Council Bluffs, lowa 51502.

SELL: A-Tronix single-character code reader, two months old, excellent, $\$ 150.00$, plus UPS, Richard Brock, 15806 Fernway Road, Shaker Heights, Ohio 44120. (216) 752-0355.

ATLAS DD6-C and 350XL Digital Dial/Frequency Counters. $\$ 175.00$ plus $\$ 3.00$ UPS. AFCI Stop VFO drift. See June 79 HR. $\$ 65.00$ plus $\$ 3.00$ UPS. Mical Devices, P. O. Box 343 , Vista, CA 92083.

BEAT YOUR BATTERIES!

OPERATE Your SYNTHESIZED HT CONTINUOUSLY from any 12-30v D.C. source: Auto, Truck, RV, Light Aircr
(12 or 28 v system). Home D.C. Power Supply!!! (12 or 28v system), Home 0.C. Power Supply!!!
STEWART's New"BATTERY-BEATER"provides the proper STEWART's New "BATTERY-BEATER"provides the proper REGULATED voltage for your rig and plenty of current for CONT INUOUS FULL PONER TRANSMITI AII day travel, all evening simplex ket with NO QRI - NOT a battery $\frac{\text { RE-CHARGE! }}{\text { Tharger but a }} \frac{\text { FULL }}{\text { FOL }} \frac{\text { POWER }}{\text { SOURCE }}$ with - NOT a battery charger but a FUL PMER SOUCE
-RUGGED ALIMINUM CASE! NEW, IMPROVED MODEL FOR ICOM
-RISIT - RUGGED ALLMINUM CASE! NEW, IMPROVED MODEL FOR
SO TOUGH THE AVERAGE MAN CAN STANO ON IT!

- YOUR NICAds REMAIN IN PLACE! Simply unplug fo - YOUR NANT PORTABILITY!!
-DESIGNED by an engineer from NASA's Jet Propulsion Laboratory with components rated 50% beyond requirements!
- PRE-WIRED JACK for your radio with detailed, step-by-step installation instructions.
-TWO 5 FT . POWER CORDS - 10 FT . TOTAL REACH! VELCRO pads to sount anywhere! $\frac{1}{5}$ FULL YEAR WARRANTY!! - NO INTERFERENCE with PL's! LONGER LIFE FOR NiCads! -The ONLY accessory power supply that can claim all these exciting features, and more!
YAESU FT-207R; ICOM IC-2A/T; WILSON MK II, MK IV; YAESU FT-207R; ICOM IC-2A/T; WILSON MK II, MK IV;
SANTEC HT-12001 (MEMORY RIGS RETAIN MEMORY!!) -PANTEC HT-12001 (MEMORY RIGS RETAIN MEMORYII) add - \$1. BO Tax. C.0.D. 's- You pay Postage and COD fees. STEWRRT QUADS P.O. BOX 2335 I FWINDALE, CA. 91706

Published by the experts in Amateur Radio, The American Radio Relay League, Understanding Amateur Radio is just the book for the newcomer. There are over 210 pages of text with chapters on: electronic fundamentals, semiconductor and tube operation, how code and phone (AM, SSB, and FM) transmitters and receivers work, all about antennas, tips for the workshop and test bench, building transmitters, receivers, and power supplies, making measurements, and how to set up a station. If you are interested in radio communication and basic radio fundamentals then order a copy of Understanding Amateur Radio today!

UNDERSTANDING AMATEUR RADIO
$\$ 5$ ($\$ 5.50$ OUTSIDE OF THE U.S.)
SHIPPED POSTPAID. ALLOW 4.5 WKS. FOR DELIVERY.
() My check for $\$$ is enclosed.
() Please charge my Master Charge or Visa

Name
Address
City State

Zip
Visa or MC account number

Expiration date
MC Bank no.

AMERICAN RADIO RELAY LEAGUE

 225 Main StreetNewington, CT. 06111
"HOT" General Coverage Receivers - Digital Memory - Collins filters - Custom Modifications Free Catalog! RADIO WEST, Dept. HR, 2015 S. Escondido Blvd., Escondido, CA 92025. 714-741-2891.
BUY-SELL.TRADE your computer, HAM, electronic equipment in COMPUTER TRADER. Send S.A.S.E for details, Chet Lambert, W4WDR, 1704 Sam Drive, Birmingham, AL 35235.

FREE AD with subscription (limit 30 words)! Ham Buy, Sell, Trade, Want ADS, 12 issues, $\$ 3.00$. WA4OSR's Rigs \& Stuff ${ }^{\text {TM }}$, Dept. H7, Box 973 , Mobile, AL 36601.
490T ANTENNA TUNING UNIT WANTED for cash or trade. DCO, 10 Schuyler Avenue, No. Arlington, N.J. 07032 (800) 526-1270.

FOR SALE: Ten-Tec Model 200 VFO, built-in power supply, use with Drake 2-Nt, Heath HW-16, etc., transmitters $\$ 45.00$. 417-537-8604 after 6:00 p.m. c.s.t. KAQGBS, Cecil Weinstein, Box 52, Golden City, MO 64748.
SSTV-KEYBOARD, P7 monitor, fast-slow converter, slow-fast converter. W1ZX/3. (301) 645-5584.

CALIBRATE voltmeters, scopes, computer A/D's, etc. Model DCS-1 Laboratory Voltage Standard; nominal 1.230 volts output is calibrated, accurate and stable to ± 1 millivolt. $\$ 35$ complete including shipping on prepaid orders (California residents please include $\$ 2.10$ tax). CAL-MET Co., Dept. HR-1, $3231 / 2$ Richmond St., "134, EI Segundo, CA 90245.
WANTED: Help in completing the largest collection of Hallicrafter equipment in the world. Urgently needed are receivers with aluminum colored panels, back lighted plastic dials with "airplane" hands, early transmitters, unusual accessories, etc. Chuck Dachis, WD5EOG, "The Hallicrafter Collector," 4500 Russell Drive, Austin, Texas 78745.

WANTED: Hammarlund HQ-100 Receivers, Prime Condition. Send description and price: Savoy Electronics, P.O. Box 5727, Ft. Lauderdale, FL 33310.

TUBES, TUBES wanted for cash or trade: 340TL, 4CX1000, 5CX1500. Any high power or special purpose tubes of Eimac/Varian. DCO, 10 Schuyler Avenue, No. Arlington, N.J. 07032 (800) 526-1270.
COLLINS 51S-1, 312B-4 for sale. Excellent condition. W5KX, 1732 Willow Point, Shreveport, LA 71119.

RECIPROCATING DETECTOR Construction Handbook. $\$ 10$ ppd. Peters Publications, P.O. Box 62, Lincoin, MA 01773.

KENWOOD R820 Receiver, filters, TS820S wired to work with this R820, SP820 filter speaker and SM220 with BS-8 scoop. No dents or marks, mint condition, manuals and boxes. Package $\$ 2000$. HT 207R, extra batteries, case, charger and speaker mic. As new $\mathbf{\$ 2 7 5}$. Heath dual meter HM2140 \$60. W2PD (516) 541-2342.
DIRECT CONVERSION RECEIVER KITS. Write Direct Conversion Technique, Box 1001, Dept. 7FM, 535 No. Michigan Ave., Chicago, Illinois 60611.

QUALITY PRINTED CIRCUIT BOARDS mean trouble-free projects. Catalog of over 600 popular boards, $\$ 1.50$ postpaid. Dynaclad Industries, P.O. Box 296, Meadowlands, PA 15347.
ELECTRONIC BARGAINS, CLOSEOUTS, SURPLUS! Parts, equipment, stereo, industrial, educational. Amazing values! Fascinating items unavailable in stores or catalogs anywhere. Unusual FREE catalog. ETCO-012, Box 762, Plattsburgh, NY 12901. SURPLUS WANTED.

KEYER PADDLES, iambic, more features, better action Kits available. \$15.00 up. Write Earl Snyder, 213 W. Davis, Sapulpa, OK 74066.
MOBILE IGNITION SHIELDING provides more range with no noise. Available most engines. Many other suppression accessories. Literature, Estes Engineering, 930 Marine Dr., Port Angeles, WA 98362.
WANTED: Government Surplus radar equipment, microwave equipment and "old" General Radio test equipment. P. J. Plishner, 2 Lake Avenue Extension, Danbury, CT 06810 WA1LDU.

SALE: HW-16, \$120.00 - wanted keyer, power meter, 1.50 MHz receiver, KA4EBW.

POWERMATE PX REGULATED SUPPLY: 9.5 Amp , adjustable to 13 Volts for excellent base station or service application, $\$ 59.00$. High grade industrial construction and performance. Call for specs. Hank Riley, 408 County Street, New Bedford, MA 02740. (617) 994-3487.

ETCH IT YOURSELF PRINTED CIRCUIT KIT, Photo-Positive Method - No darkroom required, All the supplies for making your own boards, direct from magazine arti-

1981 DISCOUNT ELECTRONICS CATALOG

JOIN THE PAK!

Send tor our Free catalog and become a member of our exclusive Pak. Our
members receive Poly Paks' exciling catalog several times a year. We otter: Penny Sales, Free
Premiums and Low,
Low Prices on a wide variety of
Electronic Products such as Computer Peripherals, Integrated Circuils, Speakers, Audio Equipment, Rechargeable Batteries, Solar Products, Semiconductors, and much, much more! Take advantage of our 25 years as America's toremost Supplier of discount electronics.

RUSH ME YOUR FREEDISCOUNTCATALOG!

NAME:

ADDRESS:
CITY:
STATE: \qquad
ZIP:
CLIP AND MAIL COUPON TODAY TO:
POLY PAKS, INC.
P.O. BOX 942, HM7
S. LYNNFIELD, MA. 01940
(617) 245-3828

SYNTHESIZED
 SIGNAL GENERATOR
 MADE IN
 USA

- Covers 100 to 179.999 MHz in 1 kHz steps with thumb-wheel dial - Accuracy . 00001% at all frequencies - Internal frequency modulation from 0 to over 100 kHz at a 1 kHz rate - Spurs and noise at least 60 dB below carrier - RF output adjustable from $5 \cdot 500 \mathrm{mV}$ across 50 ohms • Operates on 12 vdc @ $1 / 2 \mathrm{amp} \bullet$ Price $\$ 329.95$ plus shipping.

In stock for immediate shipping. Overnight delivery available at extra cost. Phone: (212) 468-2720.
VANGUARD LABS
196-23 Jamacia Ave. Hollis, NY 11423

cle in less than 2 hours. Only $\$ 24.95$, S.A.S.E. for details: Excel Circuits Co., 4412 Fernlee, Royal Oak, M1 48073.

DIGITAL SOLID.STATE Yaesu FT-301D Transceiver, F.P. 301 P.S., FY- 301 UFO, YD- 844 Mike, E.R.B., $\$ 750$. Excellent Johnson $10-\mathrm{M} . \mathrm{C} . \mathrm{B}$. Conversion with P.S., $\$ 100$. N7ACB, (208) 788-4540, Idaho.

RUBBER STAMPS: 3 lines, $\$ 3.25 \mathrm{ppd}$. Send check or M.O. to G.L. Pierce, 5521 Birkdale Way, San Diego, CA 92117. S.A.S.E. brings information.

HAM RADIO REPAIR - Professional lab, personal service. "Grid" Gridley. W4GJO. April thru October: Rt. 2, Box 138B, Rising Fawn, Georgia 30738. (404) 657.7841, November thru March: 212 Martin Drive, Brooksville, Florida 33512. (904) 799-2769.

SELL: Midland 220 MHF FM transceiver model $\$ 13-509$. $\$ 100.00$. WB6NOM, (415) 278.0177 , P.O. Box 546 , Hayward, CA 94543.

MIRROR-IN-THE-LID, and other pre-1946 television set wanted. Paying $500+$ for any complete RCA "TRK" series, or General Electric "HM" series set. Also looking for 12AP4, MW -31-3 picture tubes, parts, literature on prewar television. Arnold Chase, WA1RYZ, 9 Rushleigh Road, West Hartford. Conn. 06117 (203) 521-5280,

WANTED: R-278B, T-217A, 8 MD-129A/GR (GRC-27 units) unit enclosures. C.T. Huth, 146 Schenhardt St., Tiffin, OH 44883.
AMATEUR REPAIR: Professional service, reasonable rates, ALL BRANDS. USA KDK repair center. Amateur Radio Repair Center of I.E.C., Inc., 1020 Brookstown Ave., "5, Winston-Salem, NC 27101 (919) 725-7500.

MUSEUM for radio historians and collectors now open. Free admission. Old amateur (W2AN) and commercial station exhibits, 1925 store and telegraph displays. 15,000 items. Write for details. Antique Wireless Assn., Holcomb, NY 14469.

WANTED: AN-MS connectors, synchros, etc. Send list, Bill Williams, P.O. 7057, Norfolk, Virginia 23509.
WANTED: Micor and Master II base stations, 406-420 MHz . Any solid state 2 and 6 GHz microwave equipment. AK7B, 4 Ajax Place, Berkeley, CA 94708.
PROM PROGRAMMING, CW-IDers, repeater controllers. S.A.S.E. catalog. W.S Engineering. P.O.B. 58, Pine Hill, NJ 08021.

RIT, DIGITAL READOUT, BEZEL KIT (HW. 101) and WWV Kit for HW-101, SB-102, SB-303 and SB-401. Adaptable to other models and brands. Free info. Protronics, Inc., 20 Monte Vista, Buckley, WA 98321. (206) 829-0056.
CRYSTALS FM 2 METERS STILL AVAILABLEI Crystals for equipment on our parts list, $\$ 4.50$ each. For equipment list, send self addressed stamped envelope. SAVOY ELECTRONICS, P.O. Box 5727, Ft. Lauderdale, FL 33310 - Tel. (305) 563-1333.
SUPER QRP with Direct Conversion's 5 watt transmitter kits. Write Direct Conversion Technique, Box 1001, Dept. FM, 535 No. Michigan Ave., Chicago, Illinois 60611.

WANTED: Motorola micor base stations. $406-420 \mathrm{MHZ}$. AK7B, 4 Ajax Pl., Berkeley, CA 94708.

SATELLITE TELEVISION...HOWARD/COLEMAN boards to build your own receiver. For more information write: Robert Coleman, Rt. 3. Box 58 -AHR, Travelers Rest, SC 29690.

HELPI English Amateur desperately needs 1975 fully bound "Ham Radio" to complete library collection. Any reasonable price paid and shipping arranged. Mr. Trevor Campbell Davis, McGraw-Hill Book Co., Ltd., Shoppenhangers Rd., Maiden Head, Berkshire SL6 2QL UK (684) 23431.

MAKE HAM RADIO FUNI Supplement your learning programs with a motivational hypnosis cassette. Tape \#3, Learning the Code; Tape "4, Breaking the Speed Barrier; Tape \#7. Electronic Theory. Free catalog. For tapes, $\$ 10.95$ each to Gem Publishing. 3306 North 6th St., Coeur d-Alene, ID 83814.
VERY in-ter-est-ing! Next 5 issues $\mathbf{\$ 2}$. Ham Trader "Yellow Sheets", POB356, Wheaton, IL 60187.

CB TO 10 METER PROFESSIONALS: Your rig or buy ours - AM/SSB/CW. Certified Communications, 4138 So. Ferris, Fremont, Michigan 49412; (616) 924-4561.

NEED HELP for your Novice or General ticket? Recorded audiovisual theory instruction. No electronic background required. Free information. Amateur License, P.O. Box 6015, Norfolk, VA 23508.

CB TO 10 -METER CONVERSIONS. SSB/AM/CW. Let a specialist convert your rig, or buy one complete. Write
23

00
MHZ
MICROWAVE
DOWNCONVERTERS
DOWNCONVERTERS
KIT*
ASSEMBLED
KIT
'All kits include P.C. board, parts, and detailed

2300 MHZ PREAMPS
PREAMP \#1 KIT ASSEMBLED SUPER AMP (Commercial Quality)
PREAMP \#1 KIT ASSEMBLED SUPER AMP (Commercial Quality)
PREAMP \#1 KIT ASSEMBLED SUPER AMP (Commercial Quality)
PREAMP \#1 KIT ${ }^{\circ}$ ASSEMBLED SUPER AMP (Commercial Quality)

ASSEMBLED
POWER SUPPLY KIT*

(with box for down
instructions.

SLOTTED ARRAY ANTENNA converter)
$35^{\circ 0}$
ALSO AVAILABLE: COMMERCIAL SYSTEMS, BOGNER ANTENNAS, PARABOLIC ANTENNAS, MICROWAVE PARTS AND SATELLITE TV. KITS

P.B. Radio Service
 1950 E. Park Row - Arlington, TX 76010

Call Order Dept. Toll Free visa For Information Call
1-800-433-5169 1-817-460-7071

ALL BAND TRAP ANIENXAS:

- dimity
 PRETUNED- COMPLETELY ASSEMBLED ONLY ONE NEAT SMALL ANTENNA FOR

 GESTED HOUSING AREAS - APARTMENTS LIGHT - STRONG - ALMOST INVISIBLE!

FOR ALL MAKES \& MODELS OF AMATEUR TRANSCEIVERS TRANSMITTERS GUARANTEED FOR 2000 WATTS SSE 1000 WATTS CW. INPUT FOR NOVICE AND ALL CLASS AMATEURS!
COMPLETE AS SHOWN with 90 ft . RG58U-52 ohm redline, and PL 259 connector, insulators, 30 ft . 300 ib . test dacron end supports, center connector with built in lightning arrester and static discharge molded, sealed, weatherproof, resonant traps $1^{\prime \prime} \times 6^{\prime \prime}$ - you just switch to band desired for excellent worldwide inverted V's - slopers - in attics, on building tops or narrow lots. The ONLY ANTENNA YOU WILL EVER NEED FOR ALL DESIRED BANDS - WITH ANY TRANSCEIVER - NEW - EXCLUSIVEI NO BALUNS NEEDED I 80-40-20-15-10-6 meter - 2 trap $\cdots 104 \mathrm{ft}$. with 90 ft . RG58U - connector -Model 998BUA . . $\$ 79.95$ 40-20-15-10 meter ...2 trap ...54 ft . with 90 ft . RG58U - connector Model 1001BUA.... $\$ 78.95$
$20-15-10$ meter ... 2 trap ... 26 ft . with 90 ft . RG58U. connector Model 1007BUA. 877.95 20-15-10 meter ... 2 trap ... 26 ft. with 90 ft . RGS8U - connector - Model 1007BUA..... $\$ 77.95$
SEND FULL PRICE FOR POSTPAID INSURED. DEL. IN USA (Canada is $\$ 5.00$ extra SEND FULL PRICE FOR POSTPAID INSURED. DEL. IN USA. (Canada is $\$ 5.00$ extra for postage - clerical-
customs etc) or order using VISA. MASTER CHARGE. CARD. AMER. EXPRESS Give number and ex, customs etc) or order using VISA - MASTER CHARGE - CARD - AMER. EXPRESS. Give number and ex. date. Ph 1-308-236-5333 9AM - 6PM week days. We ship in $2-3$ days. ALL PRICES WILL INCREASE, SAVE - ORDER NOWI All antennas guaranteed for 1 year. 10 day money back trial if returned in new condition! Made in USA. FREE INFO. AVAILABLE ONLY FROM

WESTERN ELECTRONICS Kept. AR -7 Kearney, Nebraska, 68847

CALI TOLL fre

For the best deal on
-AEA•Alliance•Amec 0•Apple•ASP -Avanti•Belden•Bencher•Bird•CDE -CES•Communications Specialists -Collins•Cushcraft• Daiwa•DenTron - Drake•HustlereHy-Gain•IcomeIRL•KLM -Kenwood•Larsen• Macrotronics•MFJ - Midland-Mini-Products-Mirage•Mosley - NPC• Newtronics - Nye• Panasonic - Palomar Engineers- Regency-Robot

- Shure - Standard - Swan - Tempo
- Ten-Tec•Transcom•Yaesu

4th of July

 FireworksICOM IC-720A all-band Xcvr.. Now in stock! \qquad $\$ 1299$
DRAKE new L75 9-band HF linear amp... call for price KENWOOD TR-7850 Xcvr now in stock... call for price
MIRAGE B-23 2-meter 2/30 W FM/SSB linear \qquad $\$ 79.95$
APPLE Disk Based System:
Apple II or II Plus with 48k RAM installed, Disk II with controller, DOS 3.3 _\$1869 APPLE Game Paddles available Quantities limited... all prices subject to change without notice
We always have an excellent assortment of fine used equipment in stock... Come in or call Erickson is accepting late model amateur radio equipment for service: full time technician on duty

CALL TOLL FREE (outside lilinols only)

(800) 621-5802

HOURS: 9:30-5:30 Mon., Tues., Wed. \& Fri. 9:30-9:00 Thursday
9:00-3:00 Saturday
ERICKSON communications Chicago. IL 60630 5456 North Milwaukee Ave. (312) $631-5181$ |within Illinois)

Conversion Engineering, Box 183, Sandwich, Massachusetts 02563.

CASH for December 1915 to June 1920 QST's for personal collection. Kenn Miller, K6IR, 16904 George Washington, Rockville, Maryland 20853 (301) 774-7709.

HAMS FOR CHRIST - Reach other Hams with a Gospel Tract sure to please. Clyde Stanfield, WA6HEG, 1570 N . Albright, Upland, CA 91786.
FREE SAMPLE Ham Radio Insider Newsletter! Send large S.A.S.E. W5YI, Box \#10101-H, Dallas, Texas 75207.

MAGAZINE SAMPLES! For a free list of over 135 magazinesofferinga sample copy, send a stamped, addressed envelope to: Publisher's Exchange, P.O. Box 1368, Dept. 26A, Plainfield, NJ 07061.

MOBILE ANTENNAS 30.50 MHz . Baseloaded hole mount. Four ranges. First quality by Avanti. $\$ 15.00$ prepaid. H. C. Van Valzah, 1140 Hickory Trail, Downers Grove, IL 60515 (312) 852-0472.

BUY-SELL-TRADE Send $\$ 1.00$ for catalog. Give name address and call letters. Complete stock of major brands new and reconditioned amateur radio equipment. Call for best deals. We buy Collins, Drake, Swan, etc. Associated Radio, 8012 Conser, Overland Park, KS 66204. (913) 381-5900.

Coming Events ACTIVITIES

"Places to go..."

ILLINOIS: Radio Expo '81 sponsored by the Chicago FM Club will be held, rain or shine, on September 19th and 20th at the Lake County Fair Grounds, routes 45 and 120 in Grayslake. Grayslake is 30 minutes north of Chicago and 45 minutes south of Milwaukee. This year we will have a super large flea market with plenty of indoor and outdoor space, free with a gate ticket. Just bring your own table and chair or tailgate it. Parking is free. We will also have new camping sites complete with power hookups. There will be Ham seminars both Saturday and Sunday. YL's have a ladies program and door prizes both days. Only the best manufacturers of Ham and computer equipment and their distributors will be at our huge display building for you to meet and buy from. As in the past, Expo will be giving out thousands of dollars worth of prizes and admission tickets are good for both days. For advanced registration, send $\$ 3.00$ per person and a \#10 S.A.S.E. to Radio Expo Tickets, P.O. Box 1532, Evanston, illinois. Tickets at the gate are $\$ 4.00$ each. Kids under seven are free. For more information call (312) BST-EXPO. Talk-in on 146.16/.76, 146.52, and 222.5/224.10.

SOUTHERN ILLINOIS: Shawnee Amateur Radio Association's 25 th anniversity Silver Jubilee Hamfest will be August 30 at JOHN A. LOGAN College in Cartersville, Illinois. Offerings include Air Conditioned Flea Market - Prizes - Forums - Computers - Food - Refreshments - Contests. For details QSL Bill May, KB9QY. 800 Hilldale, Herrin, IL 62948 or (618) 942 -2511 days.

ILLINOIS: The Belvidere Hamfest on August 2nd, rain or shine, at the Boone County Fairgrounds, Hwy. 76. Camping available. Will be held rain or shine. Indoor facilities available with tables at a nominal charge. Contact Bob Anderson, 910 W. Locust St., Belvidere, Illinois 61008 for advance tickets at $\$ 2.00$ (S.A.S.E. please) or telephone at (815) 544-3215.

INDIANA: The Madison County A.R.C.'s MCARC Hamfes' on July 26th starting at 8:00 A.M. at the National Guard Armory on the Rt. 109 bypass in Anderson. Dealers set up at 7:00. Advanced tickets: $\mathbf{\$ 2 . 5 0}$. Vendor spaces without tables: $\mathbf{\$ 1 . 7 5}$ and w/tables: $\mathbf{\$ 2 . 5 0}$. Admission at the door: $\$ 3.50$. Door prizes and more. Talk-in on 146.22 and 146.52 simplex. Advanced tickets and space contact: Everett G. Riley, RR "4, Box 354, Alexandria, IN 46001.

INDIANA: The Steuben County Radio Amateurs present the 23rd annual Crooked Lake FM Picnic and Hamfest in Angola, Indiana on August 2nd.

INDIANA: The annual LaPorte County Hamtest, sponsored by the LaPorte and Michigan City A.R.C.'s will be heid, rain or shine, on August 30th at the County Fairgrounds on Highway 2, west of LaPorte (50 miles S.E. of Chicago) Overnight trailer parking available. Paved flea market area. Indoor tables are $\$ 1.00$. Satellite TV demonatration. Advanced tickets $\$ 2.00$ with S.A.S.E. to P.O Box 30, LaPorte, Indiana 46350.

KANSAS: The Northwest Kansas first Amateur Radio Swap Meet on August 2nd at the Community Building. Colby Kansas starting at 9:00. Auction at 2:00. Admission $\$ 1.00$, iables: $\$ 1.00$ each (same for dealers). Talk-in

only $\$ 107.50$

Pre-Fabricated - Just Assemble
Open construction. Suitable to enclose $36^{\prime \prime}$ wide by $30^{\prime \prime}$ deep \& 72' ' high Shelves adjustable on $2^{\prime \prime}$ centers. No. 3 pine shelves and select uprights - sanded, ready for finish.
Write for other available sizes \& options. Master Charge, Visa, Money orders and Checks accepted
F.O.B Fort Wayne (ind. residents add 4\% sales tax) Shipped UPS collect.
RICKER EQUIPMENT, INC. For Wayne, in 46863 Box 12304 PH. 219/745-0825

on $146.22 / .82$ and .521 .52 . No speeches, meetings, etc. just old fashioned swapping, selling and visiting. XYL activities. TVRO demonstration. Lunch available. Sponsored by Trojan A.R.C. Contact WA9GBN or KA9FBQ for more information.

MICHIGAN: The 33rd annual Upper Peninsula Hamfest sponsored by the Delta County Repeater Association on August 1st and 2nd in Escanaba at the Flat Rock Township Hall. Registration: \$2.00. DX forum, ARPSC workshop, satellite-TV seminar, slow scan, net meetings and swap \& shop. Many prizes and banquet. More info: Aileen Gagnon, WA8DHB, Kipling Loc., Mtd. Rte., Gladstone, Michigan 49837.

MICHIGAN: The Amateur Radio Public Service will hold a swap and shop on July 26th at the St. Joseph County Fair Grounds, M-86, in Centerville. Admission: $\$ 2.00$. Tables: $\$ 3.00$. Gates open at $7: 00$. Talk-in on 146.52 simplex.

MISSOURI: The third annual Northcentral Missouri Hamfest on August 2nd in Moberly at the air conditioned Municipal Auditorium. Doors open at 9:00. Tickets: $\$ 1.50$ advanced and $\$ 2.00$ at the door. Commercial dealers \& flea market (no charge for tables). ARRL display, exhibits, prizes, women's activities, and a special forum featuring Bob Heil, K9EID, on CB to ten meter conversions. Buffet lunch plus more. Talk-in on 147.69/.09 and 3963. More info: Charles Coy, WB0ENV, 601 McKinley, Moberly, Missouri 65270.

NEW HAMPSHIRE: Fly-in to New Hampshire's 3rd largest electronic flea market on July 18th at the Manchester Municipal Airport starting at 9:00. Sponsored by the New Hampshire FM Association. Admission: 50c; Dealers: $\$ 2.00$. Sellers should bring their own table or tailgate. Commercial displays welcome. Refreshments and door prizes. Talk-in on 146.52 FM and 124.9 AM. More info: Dick DesRosiers, W1KGZ, (603) 668-8880 or Doug Aiken, K1WPM, 30 Meadowglen Dr., Manchester, NH 03103. (603) 622-0831.

NEW JERSEY: The 3rd annual West Jersey Radio Amateurs hamfest on July 19th at McGuire A.F.B. in Wrightson. Admission: $\$ 2.50$. Starts at $9: 00$. Table spaces and outdoor tailgating: \$2.50. Bring your own tables. Contests, films, refreshments and more. Prizes every 15 minutes. Talk-in on 146.52 simplex and 147.15 and 145.47 repeat. Advanced tickets or info: Bill Luebkemann, WB2LCC, 116 Country Farm Rd., Box 140. Mariton, NJ 08053. (609) 983-8844 daily 6 p.m. until midnight. S.A.S.E. appreciated.

NEW JERSEY: The Gloucester County A.R.C.'s G.C.A.R.C. Hamfest on August 30th at the Gloucester County College, Tanyard Road in Sewell from 8:00 to 3:00. Admission: $\$ 2.00$ advanced and $\$ 2.50$ at the door. Tailgaters and dealers: $\$ 6.00$ (includes one free admission). Speakers, seminars, prizes and contests. Free parking, handicapped parking, food and beverages. F.C.C. exams will be given for Tech through Advanced. Please write or call for details. Dealers set-up at 7:00. Talk-in on 146.52 and $147.78 / .18$. Info and reservations: S.A.S.E. to G.C.A.R.C. Hamfest Committee, P.O. Box 370, Pitman, NJ 08071. Telephone day: (609) 456-0500 or (609) 338-4841, Evening: (609) 629-2064.

PENNSYLVANIA:Philadelphia's Mid-Atlantic A.R.C.'s annual J.B.M. Hamfest on August 9th at the Budco 309 Drive-in Theatre, Montgomeryville ($1 / 4$ mile north of the intersection of Route 63 and Route 309 and 6 miles north of the Fort Washington Interchange of the Pennsylvania Turnpike). Starts: 9:00 rain or shine. Hamfest will be combined with the Alternate Energy Fair. Major door prizes, refreshments, exhibits, flea market and more. Energy fair will include educational and commercial Alternative Energy Exhibitors featuring solar heating, building design, an energy devices flea market, alternative energy door prizes and much more. Admission: $\$ 2.50$. Tailgaters: $\$ 1.00$ for one space and 75 c for every space after one. Talk-in on club repeater, WB3JOE, $147.66 / .06$ or 146.52 simplex. More info call Don Schuenemann, WB3AYT, (215) 822-9076.

TENNESSEE: The Radio Amateur Transmitting Society's (RATS) Nashville Hamfest on July 26th at the National Guard Armory, Sidco Dr., Nashville. Starts: 8:00. Admission: $\$ 2.00$. Tables: $\$ 5.00$ each. Refreshments available. Talk-in on . $90 \% .30$. More info: RATS, P.O. Box 2892, Nashville, Tennessee 37219.

VERMONT: The Burlington A.R.C.'s annual International Hamfest on August 8th and 9th at the Old Lantern Campground in Chariotte (14 miles south of Burlington, just off Route 7). Admission: $\$ 4.00$ (U.S. funds). Flea market, commercial exhibits, CW contest, tower raising contest, HT transmitter hunt and the traditional Canadian-American tug of war. Talk-in on .34/.94. More info: Hap Preston, WIVSA, P.O. Box 312, Burlington, Vermont 05402. Campground reservations: 1-802-425-2120 (Old Lantern Campground, Charlotte).
WASHINGTON: The Radio Club of Tacoma's annual Hamfair on August 15th and 16th at the Pacific Lutheran

RED HOT SPECIALS

AZDEN PCS-3000, 2 meters

315.00

ICOM 260A, All Mode, 2 m 425.00 KANTRONICS CODE READER F.D. II. SANTEC HT 1200 HANDHELD ICOM 2 KL , Linear Amp. .360 .00 ICOM 2KL, Linear Amp. 315.00 ICOM 730 XMTR 1599.00 BEARCAT 220 or 250 SCANNER 699.00 ICOM IC251A, 2 m All Mode JANEL QSA $5,2 m$ Pre Arnp.
ICOM IC2A HANDHELD w Nicad
with Touch Tone Pad
ICOM 551, 6 meters. .. 269.00
588.00
36.50
215.00
215.00
235.00

ALL MFJ PRODUCTS
408.00

Prices subject to change without notice Write for our Large Specials
BEN FRANKLIN ELECTRONICS
1151/2 N. Main Hillsboro, KS 67063 316-947-2269

\$sotron Antennas

THE ULTIMATE space savers.
for 80 and 40 meters.

- Limits for 2.1 SWR; center frequency adjustabie

Isotron antennas need no radials or matching devices Feed with 500 coax. For indoor or outdoor mounting Excelient for all amateut uses

MSB-1 AUDIO FILTER

SSB/CW/RTTY \$84.95

8-Pole Tunable Lowpass Filter
Tunable Bandpass Filter
Tunable Notch Filter
6-Pole Fixed Highpass
Audio Amplifier

Power Requirements

110 Vac with optional adapter ($\mathbf{5 8} .95$)
ORDER TODAY, If not completely satisfied, return within 15 days for a prompt refund (less shipping and hand (ling). Add $\$ 2.50$ shipping and handling. SEND TODAY for complete list of products. Dealer inquiries welcome. -432

M\&M ELECTRONICS, INC.

Alaska Microwave Labs
 4335 E, STH STREET - OEPT.HM ANCHORAGE,ALASKA (907)33日.0340

TRANSISTORS

MHF901
 MRF911

BFR90
BRF91
NEC 02137
NEC 02135
NEC 64535
FT4.5GHZ

NEC 64535
NF $20 D B$ MAG 150 DB
HOT CARRIER DIODES
MBD 101
ND4 4314 GHZ
$\mathrm{ND} \mathrm{N}_{1} 1314 \mathrm{GHz}$
$\mathrm{HN}-14 \mathrm{GHz}$

NF 575 DB
$\$ 2100$

CHIP CAPACITORS

TEFLON GIRCUIT BOARD

APPROX $325 \times 50 \times 010$ APPROX APPROX $325 \times 50 \times 312$

APPROX $325 \times 50 \times 312$
APPROX $325 \times 50 \times 0625$
FEED-THRU GAPACITORS
1000 PI SOLDEA TYPE
DUAL GATE MOSFET
RCA 40673

GaAs FETS

MGF 1400 NF 200 DB
 MGF 1412 NF $08 D 8$

CHIP RESISTORS
SET OF 3 IN, CHIP RESISTORS
50 OHM T NETWORK 3DB PAD

COAX CONNEGTORS

SMA Chassis Mount Square Flange
SMA Chassis Mount Plug sq Fiange
SMA Chassis Mount Step-line Tab SMA Plug tor RG-58
SMA Plug for RG-174
X BAND OOMPONENTS
GUNN SOURCE 10525 GHZ 10. 5 MM .
WR-90 WAVEGUIDE MOUNTING
IMPATT SOURCE 105 to $1055 \mathrm{NH} Z$
50.- -20MW WR-90 MOUNTING

FILTER MIXER \& 2 to 124 GHZ
WR90 MOUNTING
HORN ANTENNA 18.
HORN ANTENNA 180-1DB GAIN A WAVE GUIDE FLANGE WR-90

SILVER PLATING KIT

Will plate Copper Brass Bronze
Nickel. Tin Pewter Gold and most Nickel, Tin Pewter
white metal alloys
$\$ 3000$

RF CABLE

141 Semi-rigid Cable Approx 24 DB
Loss per 100 ft (4 GHz Price is per
Other iengths by special orde
$\$ 400$
PISTON TRIMMERS

TRIKO 201-01M $3.18 \mathrm{pt} 5.3 \mathrm{pt} 1.8 \mathrm{pt} \quad \$ 250$

University in Tacoma. Many outdoor technical seminars games, contests, large flea market, commercial displays dinner, entertainment, door prizes, trailer parking, lodging and much more. For details on the largest ARRL sanctioned hamfest in the Northwest contact: Eva Anderson, WB7QNS, 517 Berkeley Ave. West, Tacoma, Washington 98466 or call (206) 564-8347.

CANADA: The Burlington A.R.C.'s seventh annual Ontario Hamfest on July 11th - 13th at the Milton Fairgrounds (south of the intersection of Hwys. 401 and 25, exit 39) in Burlington. Admission: $\$ 3.00$ at the gate and $\$ 2.00$ in advance (before June 15th). Gates open at noon on Friday and 7:00 on Saturday. Fiea Market opens at 8:00. Tables free. Camping, food and lots of prizes. Talk-in on 147.81/.21. More info: B.A.R.C., Box 836, Burlington, Ontario, L7R 3 Y7.

OPERATING EVENTS

"Things to do..."

MAY 30th - SEPTEMBER 6th: The Parma Radio Club will once again be operating from the WWII submarine, USS Cod using the club call, K8UZW. Operations will run every weekend (except the Field Day weekend) through September 6th. An attractive certificate will be awarded for 2 -way contacts from the ship upon receipt of a QSL and 30 e to cover postage. All bands will be operated, 10 to 80, band conditions will determine band of major activity. Send QSL's to: WD8RZG. Info: Don Winner, WD8RZG, 8927 Torrance Ave., Brooklyn, OH 44144.

JULY 2nd - 7th: CJ3VM will be operated by members of the Niagara Peninsula ARC from July 2.7/81, for the special anniversary celebrating the bi-centennial of Niagara-on-the-Lake, Ontario, and the bi-centennial Boy Scout Camporee. Operation will be on $80-10$ meters. Special QSL cards will be available via P.O. Box 692, St. Catharines, Ontario. L2R 6 Y3.

JULY 17th - 23rd: SWOT (Side-Winders-on-Two) is holding its fourth annual QSO party. Begins at 0000 UTC on the 17 th and ends 2359 UTC on the 23 rd. No restrictions on number of hours operated. Must exchange Call signs, Geographic location and SWOT members must include SWOT number. Must use CW or SSM mode and contacts must be made direct without the aid of satellites, etc. No logs should be submitted unless requested. Summary must be sent postmarked no later than August 21st. More info or summary: S.A.S.E. to Dean Figgins, WA7EPU, P.O. Box 1141, Caretree, AZ 85377.

JULY 18th and 19th: The Neil Armstrong Air and Space Museum in Wapakoneta, Ohio is the operating place for the 12th anniversary commemorating Neil Armstrong's historic first walk on the moon. Wapakoneta is the hometown of Neil Armstrong. Hours: 9:00 AM on the 18th to $8: 00 \mathrm{PM}$ on the 19th local time. Two station on following frequencies depending on propagation conditions. 40M-CW: 7.075-7.125 (to help novices). 40M-Phone: 7.250-7.300. 75M-Phone: 3.950-4.000. 20M-CW: 14.1 ± 1 kHz . 20M-Phone: $14.300-14.350$. 15 M -Phone: 21.400-21.450. All frequencies may not be used, but we will operate as many as possible. WD8RVZ will be used. Commemorative QSL available with S.A.S.E. U.S. and Canadian QSL direct to WD8RVZ. All others, please use bureau. Visiting amateurs may check in on 147.93/.33, Wapakoneta DSA repeater.

JULY 25th: Buffalo, Wyoming Amateurs in cooperation with the Sheridan A.R.C. will operate SSB on or about 14.280 \& 21.360 MHz under the call W7GUX. The station will be operated in honor of and during the Johnson County Centennial Celebration. Certificates will be awarded to all contacts that mail S.A.S.E. to: 7BVX, Bob Glenn, P.O. Box 383 , Buffalo, Wyoming 82834.

JULY 25th and 26th: The Franklin Middie School Radio Club and Shawano area amateurs will operate a special event station from the Shawano County Fairgrounds in conjunction with the exposition honoring various Shawano groups for either 100 or 50 years of service. Hours: From 1800 UTC on the 25th to 1700 UTC on the 26th during times the bands are open. Frequencies plus or minus QRM: 3980, 7280, 14280, 21580, and 28580 as well as 146.52 for those in the area. QSL with business size S.A.S.E. and 25 e for certificate or we'll be happy to exchange QSL cards with you. For certificates, cards, or further information: Al Hovey, Jr., WA9BZW, 314 Fairview Way, Shawano, WI 54166.
AUGUST 1st - 2nd: The nineteenth annual Illinois QSO Party from 1800Z August 1st to 2300Z August 2nd with a rest period from 0500 Z to 1200 Z on the 2nd. All bands, CW and Phone will be used. No repeater contacts allowed. Any frequency will be used, but look for activity about 60 kHz from low end on CW, about 3975, 7275, 14275, 21375 and 28675 on Phone and about 25 kHz from low end of each Novice band, especially on the hour and half hour. Exchange RST and county by Illinois stations

TheBest Got Better

MODEL 4381 RF POWER ANALYST
This new generation RF Wattmeter with nine-mode system versatility reads.
IN STOCK QUICK DELIVERY

associates
115 BELLARMINE
ROCHESTER, MI 48063
CALL TOLL FREE
800-521-2333
IN MICHIGAN $313-375-0420$

NEW ENGLAND'S HAM STORE Stocking Distributor for Major Equipment and Accessories

CODE

CLASSES ARE IN PROGRESSINSTRUCTION FROM NOVICE TO EXTRA. CALL TODAY FOR THE NEXT STARTING DATE!
(617) 391-3200

206 MYSTIC AVENUE MEDFORD. MASS. 02155

ARRL LICENSE MANUAL

78th Edition

Brand new, fully revised, covers the latest FCC exams. The new 78th Edition should be required reading for everyone studying for the Technician, General, Advanced or Extra class license. This "grandfather'' of all study guides has been carefully researched and prepared to ensure that you are capable of passing the Amateur exams if you successfully complete the book. Every Amateur should have a copy as it also contains a complete set of the latest FCC Amateur Rules and Regulations. © 1981. Bigger than ever.

\square AR-LG Softbound $\$ \mathbf{\$ 4 . 0 0}$ Plus $\$ 1.00$ Shipping

ORDER TODAY

ege, inc. Call for our Unadvertised Specials BONUS 2\% discount for prepaid orders JJIE \square	TOLL $1.800-336-4799 \quad$ CLOSED FREE ORDERS ONLY TUES HOURS: M-F $11-8 ;$ SAT $9-3$ EDT
(cashier's check or money order).	RS20M same as RS20A + meters 105.50
HY-GAIN ANTENNAS	RS35A 25 amps continuous, 35 amp ICS . 131.95
TH6DXX Triband Beam 5238.95	RS35M same as RS30A + meters 149.95 TELEX HEADSETS.HEADPHONES
TH3MK3 3-Element Beam 179.95	C1210 Headphone 22.95
IBAVT/WB 10.80 Vertical 82.95	C1320 Headphone 32.95
14AVQ/WB 10-40 Vertical 50.77	PROCOM 200 Headset/dual Imp. MIC . . . 77.50
CUSHCRAFT ANTENNAS	PROCOM 300 Lt /wt Headset/dual Imp.mic. 69.95
A4 New Triband Bearm 10-15-20m 209.95	B \& W 370-15 Allband dipole 123.45
A3 New Triband Beam 10-15-20m 171.50	VoCom Antennas/2m Amps
AV3 New 10.15-20m Vertical 41.95	5/8 wave 2 m hand held Ant 19.50
AV5 New 10.80 m Vertical 90.75	2 watts in, 25 watts out 2 m Amp 69.95
ARX-2B New Ringo Ranger 2 m 34.95	200 mw in, 25 watts out 2 m Amp 82.95
A32-19 2m "Boomer" DX Beam 76.95	2 watts in, 50 watts out 2 m Amp 108.95
220B 220 MHz "Boomer" 69.75	IRAGE 2M AMPS \& WATT
214B Jr. Boomer 144-146 M Mz 62.95	MP1. HF SWR WATT METER 101.95
214FB Jr. Bcomer 144.5.148 MHz 62.95	MP2 - VHF SWR WATT METER 101.95
Al47-1111-Element 2 m 34.95	B23 2 in, 30 out, All Mode 76.95
MINIQUAD HQ.1 . 129.95	B108 10 in, 80 out, All Mode, Pre Amp . . . 151.95
ALLIANCE HD73Rotor 98.30	B1060 10 in, 160 out. All Mode, Pre Amp . 237.95
CDE HAM IV ROTOR 178.20	\$ANTEC, KENWOOO, ICOM, YAESU, TEN-TEC
MFJ PRODUCTS COMPLETELINEIN STOCK	TRANSCEIVERS AND ACCESSORIES... CALL
989 New 3KW Tuner 244.95	AZDEN PCS 30002 m Fm Transceiver . . . CALL
962 1.5 KW Tuner mtr/switch 174.95	KLM ANTENNAS/AMPLIFIER
949 B 300 watt deluxe tuner 122.00	160V 160 Meter Vertical 84.95
941C 300 watt tuner switch/mtr 78.42	KT34A 4 Element Triband Beam 319.95
940300 watt tuner swtich/mtr 69.70	KT34XA 6 Element Triband Beam 469.50
484 Grandmaster emory keyer $12 \mathrm{msg} . .$. . 121.72	144 -148 13 LB 2 m 13 element with balun. 77.95
4824 msg Memory keyer 87.96	144-148 16C 2 m 16 element for oscar . . . 93.55
422 Pacesetter Keyer w/Bencher BYI . . 87.15	420-450.14 420-450 MHz 14 Element Beam. 37.54
$422 \times$ Pacesetter Keyer only 60.98	420-450.18C 420-450 MHz 18 element oscar. 58.70
410 Protessor Morse keyer 113.95	43216 LB 16 elem. 430.434 MHz beam/balun. 60.70
408 Deluxe Keyer with speed mtr 69.69	OTHER KLM VHF/UHF ANTENNAS IN STOCK
406 Deluxe kever 58.95	HUSTLER 5BTV 10-80m Vertical 87.95
752 B Dual turnable filter 78.42	4BTV 10.40 m Vertical 69.50
624 Deluxe phone patch 60.97	HF Mobile Resonators Standard Super
10224 hour clock 30.95	10 and 15 meter
525 RF Speech Processor 101.95	$\begin{array}{lll}20 \text { meters } & 9.95 & 14.95\end{array}$
260/262 Dry Dummy Loads 23.50/43.55	$\begin{array}{lll}40 \text { meters } & 11.95 & 16.50\end{array}$
250 2KW PEP Dummy Load 28.25	75 meters 12.95 26.95
820 SWR/Watt Meter + one sensor 58.95	Avanti AP 151.3G 2 m on glass ant 27.95
825 Dual SWR/watt meter + one sensor. 101.95	Send stamp for a flyer. Terms: Prices do not
ABLE RG8/U Foam 95\% Shield 25c/ft.	include shipping. VISA and Master Charge
8 wire Rotor 2 \#18, 6 \%22 , 17c/tt.	accepted 2% discount for prepaid orders (casheir's
BUTTERNUT HF-5V-111 10.80 m Vertical . 84.95	check or money order). COD fee $\mathbf{\$ 2 . 0 0}$ per order.
ENCHER PADDLES Black/Chrome . 35.90/43.75	Prices subject to change without notice or
STRON POWER SUPPLIES (13.8 VDC) RSAA 3 amps continuous, 4 amp ICS 32.95	obligation.
RS7A 5 amps contínuous, 7 amp ICS ... 48.60	410 Orexel Str
RSI2A 9 amps cont inuous, 12 amps ICS .. 66.35	Noodbridge, Va. 22192
RS20A 16 amps continuous, 20 amo ICS. 87.20	Information: (703) 643-1063 Orders: 1.800.336-4799

and RST, state, province and/or country by others. CerIfficates awarded to the top three llinois scorers in single-op, multi-op, multi-multi, portable out of home county, mobile, Novice, and CW Tech. More info, County, mobile, Novice, and CW Tech. Nore info, Chicago, IL 60634.
AUGUST Eth: The Radio Central A.R.C.'s unusual 24 hour mini-expedition to Little Gulf Island commencing August 8th at 16002 to August 9th 1600Z. Call sign will be WA2UEC. Littie Gulf istand is a small island in Long Island Sound about 15 miles northeast of Orlent Point. Operations will be on the lower portions of the General bands, 10 to 80 meters, both CW and SSB. There will also be a Novice station operation. A photo QSL card will supply all information about the trip. Please OSL vis callbook WAZUEC with S.A.S.E., the W2 Bureau or IRC's. This will be the first of a series of mini-expeditions.

AUGUST 15th - 17th: The Englewood A.R.A.'s 22nd annual New Jersey OSO Party starting 2000 UTC the 15th to 0700 UTC August 16th and from 1300 UTC the 16 th to 0200 UTC the 17th. Phone and CW considered the same contest. General call is "CQ New Jersey" or "CQ NJ." New Jersey stations are requested to Identify themselves by signing, "DE NJ" on CW or "New Jersey calling" on phone. Suggested frequencles are: 1810, 3535, 3900, $7035,7135,7235,14035,14280,21100,21355$, $3900,7035,7135,7235,14035,14280,21100,21355$,
$28100,28610,50-50.5$, and $144-146$. Phone activities on even hours, 15 meters on odd hours, (1500 to 2100 UTC) 160 meters at 0500 UTC. Exchange QSO number, RST, and QTH. Certificates awarded to first place station in each NJ county, ARRL section, and country. Novice and Tech certificates also awarded. More info S.A.S.E. to E.A.R.A., P.O. Box 528, Englewood, NJ 07631.

AUGUST 22nd - 23rd: The Ohio QSO Party from 0000 Z on the 22 nd to 2400 Z on the 23rd. All dates and times are UTC. Contest open to all Amateurs world wide on any amateur band from 160 to and including 2 meters. Ex. change RST and your QTH. Frequencies: 5 kHz up from the low end of each General band, both on SSB and CW. Club will operate near these frequencies using WBVPV. Plaques for top single operator in Ohio and outside Ohio. Certificates to the top single operator, multisingle, and multi-multi in each ARRL section, county (Ohio) and DXCC country. More info S.A.S.E. to The Cuyahoga Falls A.R.C., P.O. Box 6, Cuyahoga Falls, Ohio 44222.
 Also smaller roller inductor and SWR meter circuit. Requires 28 VOC 3 amps .250 or 400 VDC 35 ma , and $115 \mathrm{VAC} 400 \mathrm{~Hz} 20 \mathrm{VA}, 101 / 2 \times 73 / 4 \times 11^{1 / 2 "} .24 \mathrm{lbs} . \mathrm{sh}$. Used:
$\$ 99.50$
Collins 180L-3 Antenna Coupler, same as 180L-2 except incorporates an antenna transter relay which automatically transfers an antenna to a receiver or receiver section after the transmitter is unkeyed; 25 las sh. Used:
$\$ 119.50$
Prices F.0.B. Lima, O. VISA, MASTERCARO Accepted. Allow for Shipping - Write for New 1981 CATALOG

Address Dept. HR * Phone: 419/227-6573
FABB BABABEALES
1016 E. EUREKA . Box $1105 \cdot \operatorname{LIMA}$, OHIO. 45802

S-LINE OWNERS
 ENHANCE YOUR INVESTMENT

 with
TUBESTERS ${ }^{\text {™ }}$

Plug-in, solid state tube replacements

- S-line performance-solid state!
- Heat dissipation reduced 60\% - Goodbye hard-to-find tubes - Unlimited equipment life

TUBESTERS cost less than two tubes, and are guaranteed for so long as you own your S-line.

SKYTEC
Box 535
Talmage. CA 95481
Write or phone for
specs and prices.
(707) 462-6882

Arizona

POWER COMMUNICATIONS CORPORATION
1640 W. CAMELBACK ROAD PHOENIX, AZ 85015
602-242-6030 or 242-8990
Arizona's \#1 "Ham" Store. Kenwood, Yaesu, Icom and more.

California

C\&A ELECTRONIC ENTERPRISES 2210 S. WILMINGTON AVE.
SUITE 105
CARSON, CA 90745
213-834-5868
Not The Biggest, But The Best -
Since 1962.

JUN'S ELECTRONICS
3919 SEPULVEDA BLVD.
CULVER CITY, CA 90230
213-390-8003 Trades
714-463-1886 San Diego
The Home of the One Year Warranty

- Parts at Cost - Full Service.

QUEMENT ELECTRONICS
1000 SO. BASCOM AVENUE
SAN JOSE, CA 95128
408-998-5900
Serving the world's Radio Amateurs since 1933.

SHAVER RADIO, INC.
1378 S. BASCOM AVENUE
SAN JOSE, CA 95128
408-998-1103
Azden, Icom, Kenwood, Tempo,
Ten-Tec, Yaesu and many more.

Connecticut

HATRY ELECTRONICS
 500 LEDYARD ST. (SOUTH)
 HARTFORD, CT 06114
 203-527-1881
 Connecticut's Oldest Ham Radio Dealer

Delaware

DELAWARE AMATEUR SUPPLY
71 MEADOW ROAD
NEW CASTLE, DE 19720
302-328-7728
Icom, Ten-Tec, Swan, DenTron, Tempo, Yaesu, Azden, and more. One mile off l-95, no sales tax.

Florida

AGL ELECTRONICS, INC.
1898 DREW STREET
CLEARWATER, FL 33515
813-461-HAMS
West Coast's only full service
Amateur Radio Store.

AMATEUR RADIO CENTER, INC.
2805 N.E. 2ND AVENUE
MIAMI, FL 33137
305-573-8383
The place for great dependable names in Ham Radio.

RAY'S AMATEUR RADIO
1590 US HIGHWAY 19 SO.
CLEARWATER, FL 33516 813-535-1416
Atlas, B\&W, Bird, Cushcraft,
DenTron, Drake, Hustler, Hy-Gain, Icom, K.D.K., Kenwood, MFJ, Rohn,
Swan, Ten-Tec, Wilson.

Illinois

AUREUS ELECTRONICS, INC.
1415 N. EAGLE STREET
NAPERVILLE, IL 60540
312-420-8629
"Amateur Excellence"

ERICKSON COMMUNICATIONS, INC. 5456 N. MILWAUKEE AVE.
CHICAGO, IL 60630
Chicago-312-631-5181
Outside lllinois - 800-621-5802
Hours: 9:30-5:30 Mon, Tu, Wed \& Fri.; 9:30-9:00 Thurs; 9:00-3:00 Sat.

Indiana

THE HAM SHACK
808 NORTH MAIN STREET
EVANSVILLE, IN 47710
812-422-0231
Discount prices on Ten-Tec, Cubic, Hy-Gain, MFJ, Azden, Kantronics, Santec and others.

Kansas

ASSOCIATED RADIO

8012 CONSER, P. O. BOX 4327
OVERLAND PARK, KS 66204
913-381-5900
America's No. 1 Real Amateur Radio
Store. Trade - Sell - Buy.

Maryland

THE COMM CENTER, INC.
LAUREL PLAZA, RT. 198
LAUREL, MD 20810
800-638-4486
Kenwood, Drake, Icom, Ten-Tec, Tempo, DenTron, Swan \& Apple Computers.

Massachusetts

TEL-COM, INC.

675 GREAT ROAD, RT. 119
LITTLETON, MA 01460 617-486-3040
The Ham Store of New England You Can Rely On.

TUFTS RADIO ELECTRONICS
206 MYSTIC AVENUE
MEDFORD, MA 02155
617-391-3200
New England's friendliest ham store.

Minnesota

PAL ELECTRONICSINC.
3452 FREMONT AVE. NO.
MINNEAPOLIS, MN 55412 612-521-4662
Midwest's Fastest Growing Ham Store, Where Service Counts.

New Jersey

RADIOS UNLIMITED
P. O. BOX 347

1760 EASTON AVENUE
SOMERSET, NJ 08873
201-469-4599
New Jersey's only factory authorized
Yaesu and Icom distributor. New and used equipment. Full service shop.

nateur Radio Dealer

ROUTE ELECTRONICS 46

225 ROUTE 46 WEST TOTOWA, NJ 07512
201-256-8555
Drake, Cubic, DenTron, Hy-Gain, Cushcraft, Hustler, Larsen, MFJ, Butternut, Fluke \& Beckman Instruments, etc.

WITTIE ELECTRONICS

384 LAKEVIEW AVENUE
CLIFTON, NJ 07011
201-546-3000
Same location for 63 years. Full-line authorized Drake dealer. We stock most popular brands of Antennas and Towers.

New Mexico

PECOS VALLEY

AMATEUR RADIO SUPPLY
112 W. FIRST STREET ROSWELL, NM 88201 505-623-7388
Now stocking Ten-Tec, Lunar, Icom, Morsematic, Bencher, Tempo, Hy-Gain, Avanti and more at low, low prices. Call for quote.

New York

BARRY ELECTRONICS

512 BROADWAY
NEW YORK, NY 10012
212-925-7000
New York City's Largest Full Service Ham and Commercial Radio Store.

GRAND CENTRAL RADIO

124 EAST 44 STREET
NEW YORK, NY 10017
212-599-2630
Drake, Kenwood, Yaesu, Atlas,
Ten-Tec, Midland, DenTron, Hy-Gain,
Mosley in stock.
HARRISON RADIO CORP.
20 SMITH STREET
FARMINGDALE, NY 11735
516-293-7990
"Ham Headquarters USA" since 1925. Call toll free 800-645-9187.

RADIO WORLD

ONEIDA COUNTY AIRPORT TERMINAL BLDG. ORISKANY, NY 13424
TOLL FREE $\quad 1$ (800) 448-9338
NY Res. $\quad 1$ (315) 337.0203
Authorized Dealer - ALL major Amateur Brands.
We service everything we sell! Warren K2IXN or Bob WA2MSH.

Ohio

UNIVERSAL AMATEUR RADIO, INC. 1280 AIDA DRIVE
COLUMBUS (REYNOLDSBURG), OH 43068
614-866-4267
Complete Amateur Radio Sales and Service. All major brands - spacious store near 1-270.

Oklahoma

DERRICK ELECTRONICS, INC.
714 W. KENOSHA - P.O. BOXA BROKEN ARROW, OK 74012
Your Discount Ham equipment dealer in Broken Arrow, Oklahoma
1-800-331-3688 or
1.918-251-9923

Pennsylvania

HAMTRONICS,

DIV. OF TREVOSE ELECTRONICS

4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215-357-1400
Same Location for 30 Years.

LaRUE ELECTRONICS

1112 GRANDVIEW STREET
SCRANTON, PENNSYLVANIA 18509
717-343-2124
Icom, Bird, Cushcraft, Beckman,
Fluke, Larsen, Hustler, Astron,
Antenna Specialists, W2AU/W2VS,
AEA, B\&W, CDE, Sony, Vibroplex.
SPECIALTY COMMUNICATIONS
2523 PEACH STREET
ERIE, PA 16502
814-455-7674
Service, Parts, \& Experience For Your Atlas Radio.

Virginia

ELECTRONIC EQUIPMENT BANK
516 MILL STREET, N.E.
VIENNA, VA 22180
703-938-3350
Metropolitan D.C.'s One Stop
Amateur Store. Largest Warehousing of Surplus Electronics.

Washington

THE RADIO STORE

1505 FRUITDALE BLVD.
YAKAMA, WA 98902
509-248-4777
Your complete Ham store for sales/ service. All major brands. TRADE-SELL-BUY!

- COMPONENTS -

\square Amphenol connectors
\square B \& W coils, switches, antennas
\square Hammond and LMB enclosures
\square Jackson dials and drives
\square J.W. Miller parts
\square Knobs and shaft couplers
\square Millen components
\square Multronics roller inductors
\square Padders and trimmer capacitors
\square Resistors, capacitors, inductors
\square Semiconductors
\square Toroids, cores, beads, baluns
\square Variable capacitors:
Cardwell - E.F. Johnson
Hammarlund - Millen
\square Wire and cable

- KITS -

Microcomputer-based Contest Keyer (hr 1/81) partial; CMOS 2-Meter Synthesizer (hr 12/79) partial; $40-$ Meter QRP Transceiver ($\mathrm{hr} 4 / 80$) partial or complete Split-band Speech Processor (hr 9/79): IARU Rx and Tx (QST 4/78 \& 12/78): W1JR Broadband Balun (hr 4/79); R-X Noise Bridge (hr 2/77): Memory AccuKeyer (hr 4/79) boards only.

Catalog 25 cents

Box 411H, Greenville, NH 03048 (603) 878-1033

GLB ID-1 AUTOMATIC IDENTIFIER

- For transceivers and repeaters!
- Small - only $2.3^{\prime \prime} \times 1.7^{\prime \prime} \times 0.6^{\prime \prime}$!
- Low cost - only $\$ 39.95$ (wired \& tested)!
- Easy installation -2 wires plus ground!
- Pots for speed \& amplitude!
- 8 switchable messages!
- Each message up to 2000 bits long!
- Automatic operation!
- Reprogrammable memory!
- Allow $\$ 1.50$ for shipping \& handling

We have a complete line of transmitter and receiver strips and synthesizers for Amateur and commercial use. Write for our catalog.

We welcome MasterCard or VISA

GLBELECTRONICS

1952 Clinton St., Buffalo, N. Y. 14206 1-(716) 824-7936, 9 to 4
9月6I
electronics
1900 MHz to 2500 MHz DOWN CONVERTER
This receiver is tunable over a range of 1900 to 2500 mc and is intended for amateur radio use. The local oscillator is voltage controlled (i.e.) making the i-f range approximately 54 to 88 mc (Channels 2 to 7)
PC BOARD WITH DATA $\$ 19.99$
PC BOARD WITH CHIP CAPACITORS 13. $\$ 44.99$
PC BOARD WITH ALL PARTS FOR ASSEMBLY $\$ 69.95$
PC BOARD WITH ALL PARTS FOR ASSEMBLY PLUS $2 N 6603$ $\$ 89.99$
PC BOARD ASSEMBLED AND TESTED $\$ 159.99$
POWER SUPPLY ASSEMBLED AND TESTED $\$ 49.99$
YAGI ANTENNA 4' LONG APPROX 20 TO 23 dB GAIN $\$ 39.99$
YAGI ANTENNA 4^{\prime} WITH TYPE (N, BNC, SMA Connector) $\$ 64.99$
$\$ 200.00$
2300 MHz DOWN CONVERTER
Includes converter mounted in antenna, power supply, plus 90 DAY WARRANTY $\$ 200.00$
OPTION \#1 MRF902 in front end. (7 dB noise figure) $\$ 299.99$
OPTION \#2 2N6603 in front end. (5 dB noise figure) $\$ 359.99$
2300 MHz DOWN CONVERTER ONLY $\$ 149.99$
0 dB Noise Figure 23 dB gain in box with N conn. input F conn. Output. $\$ 169.99$
5 dB Noise Figure 23 dB gain in box with SMA conn. Input F conn. Output $\$ 189.99$
DATA IS INCLUDED WITH KITS OR MAY BE PURCHASED SEPARATELY $\$ 15.00$
Shipping and Handling Cost:
Receiver Kits add $\$ 1.50$, Power Supply add $\$ 2.00$, Antenna add $\$ 5.00$, Option $1 / 2$ add $\$ 3.00$, For complete system add $\$ 7.50$.
INTRODUCING THE HOWARDICOLEMAN TVRO CIRCUIT BOARDS
(Satellite Receiver Boards)
DUAL CONVERSION BOARD$\$ 25.00$This board provides conversion from the $3.7-4.2$ band first to 900 MHz where gain and bandpass filtering are provided and, second, to 70 MHz.The board contains both local oscillators, one fixed and the other variable, and the second mixer. Construction is greatly simplified by the useof Hybrid ic amplifiers for the gain stages.
47 pF CHIP CAPACITORS $\$ 6.00$For use with dual conversion board. Consists of 6 - 47 pF .70 MHz IF BOARD$\$ 25.00$This circuit provides about 43 dB gain with 50 ohm input and output impedance. It is designed to drive the HOWARDICOLEMAN TVRO De-modulator. The on-board band pass filter can be tuned for bandwidths between 20 and 35 MHz with a passband ripple of less than $1 / 2 \mathrm{~dB}$. Hy -brid ICs are used for the gain stages.. 01 pF CHIP CAPACITORS$\$ 7.00$
For use with 70 MHz IF Board. Consists of $7-.01 \mathrm{pF}$DEMODULATOR BOARD40.00This circuit takes the 70 MHz center frequency satellite TV signals in the 10 to 200 milivolt range, detects them using a phase iocked ioop, de-emphasizes and filters the result and amplifies the result to produce standard NTSC video. Other outputs include the audio subcarrier, a DCvoltage proportional to the strength of the 70 MHz signal, and AFC voltage centered at about 2 volts DC.
SINGLE AUDIO $\$ 15.00$This circuit recovers the audio signals from the 6.8 MHz frequency. The Miller 9051 coils are tuned to pass the 6.8 MHz subcarrier and theMiller 9052 coil tunes for recovery of the audio.DUAL AUDIO$\$ 25.00$Duplicate of the single audio but also covers the 6.2 range.DC CONTROL$\$ 15.00$This circuit controls the VTOM, $\ddot{A F} \ddot{C}$ and the \dddot{S} Meter.

TERMS:

WE REGRET WE NO LONGER ACCEPT BANK CARDS.
PLEASE SEND POSTAL MONEY ORDER, CERTIFIED CHECK, CASHIER'S CHECK OR MONEY ORDER
PRICES SUBJECT TO CHANGE WITHOUT NOTICE. ALL RETURN ORDERS SUBJECT TO PRIOR APPROVAL BY MANAGEMENT. ALL CHECKS AND MONEY ORDERS IN US FUNDS ONLY
ALL ORDERS SENT FIRST CLASS OR UPS.
ALL PARTS PRIME AND GUARANTEED.
WE WILL ACCEPT COD ORDERS FOR $\$ 25.00$ OR OVER, ADD $\$ 2.50$ FOR COD CHARGE
PLEASE INCLUDE $\$ 2.50$ MINIMUM FOR SHIPPING OR CALL FOR CHARGES.
WE ALSO ARE LOOKING FOR NEW AND USED TUBES,
TEST EQUIPMENT, COMPONENTS, ETC.
WE ALSO SWAP OR TRADE.

HAMLIN SOLID STATE RELAYS
120 Vac at 40 Amps .
Input Voltage 3 to 32 Vdc .
240 Vac at 40 Amps .
Input Voltage 3 to 32 Vdc . Your Cholce $\$ 4.99$

RF TRANSISTORS

TYPE	PRICE	TYPE	PRICE	TYPE	PRICE
2N1561	\$15.00	2N5590	\$8.15	MM1550	\$10.00
2N1562	15.00	2N5591	11.85	MM1552	50.00
2N1692	15.00	2N5637	22.15	MM1553	56.50
2N1693	15.00	2N5641	6.00	MM1601	5.50
2N2632	45.00	2N5642	10.05	MM1602/2N5842	7.50
2N2857JAN	2.52	2N5643	15.82	MM1607	8.65
2N2876	12.35	2N6545	12.38	MM1661	15.00
2N2880	25.00	2N5764	27.00	MM1669	17.50
2N2927	7.00	2N5842	8.78	MM1943	3.00
2N2947	18.35	2N5849	21.29	MM2605	3.00
2N2948	15.50	2N5862	51.91	MM2608	5.00
2N2949	3.90	2N5913	3.25	MM8006	2.23
2N2950	5.00	2N5922	10.00	MMCM918	20.00
2N3287	4.30	2N5942	46.00	MMT72	1.17
2N3294	1.15	2N5944	8.92	MMT74	1.17
2N3301	1.04	2N5945	12.38	MMT2857	2.63
2N3302	1.05	2N5946	14.69	MRF245	33.30
2N3304	1.48	2N6080	7.74	MRF247	33.30
2N3307	12.60	2N6081	10.05	MRF304	43.45
2N3309	3.90	2N60B2	11.30	MRF 420	20.00
2N3375	9.32	2N6083	13.23	MRF450	11.85
2N3553	1.57	2N6084	14.66	MRF450A	11.85
2N3755	7.20	2N6094	7.15	MRF454	21.83
2N3818	6.00	2N6095	11.77	MRF458	20.68
2N3866	1.09	2N6096	20.77	MRF502	1.08
2N3866JAN	2.80	2N6097	29.54	MRF504	6.95
2N3866JANTX	4.49	2N6136	20.15	MRF509	4.90
2N3924	3.34	2N6166	38.60	MRF511	8.15
2N3927	12.10	2N6439	45.77	MRF901	5.00
2N3950	26.86	2N6459/PT9795	18.00	MRF5177	21.62
2N4072	1.80	2N6603	12.00	MRF8004	1.60
2N4135	2.00	2N6604	12.00	PT4186B	3.00
2N4261	14.60	A50-12	25.00	PT4571A	1.50
2N4427	1.20	BFR90	5.00	PT4612	5.00
2N4957	3.62	BLY568C	25.00	PT4628	5.00
2N4958	2.92	BLY568CF	25.00	PT4640	5.00
2N4959	2.23	CD3495	15.00	PT8659	10.72
2N4976	19.00	HEP76/S3014	4.95	PT9784	24.30
2N5090	12.31	HEPS3002	11.30	PT9790	41.70
2N5108	4.03	HEPS3003	29.88	SD1043	5.00
2N5109	1.66	HEPS3005	9.95	SD1116	3.00
2N5160	3.49	HEPS3006	19.90	SD1118	5.00
2N5179	1.05	HEPS3007	24.95	SD1119	3.00
2N5184	2.00	HEPS 3010	11.34	TRWMRA2023-1.5	542.50
2N5216	47.50	HEPS5026	2.56	40281	10.90
2N5583	4.55	HP35831E/		40282	11.90
2N5589	8.82	HXTR5104	50.00	40290	2.48
		MM1500	32.20		
CHIP CAPACITORS					
			27pf	220pf 120	1200pf
We can supply any			33pf	240pf 1500pf	
			39pf	270pf 1800	1800pf
value chip capac.			47pt	$300 \mathrm{pf} \quad 22$	2200pf
itors you may need.			56pf	330 pt 2700	2700pf
			68 pt	360 pf 33	3300pf
PRICES			82pf	390 pf 39	3900pf
			100pf	430 pf 4700	4700pt
11.50	1.29		110pf	470 pf 56	5600 pf
$51 \cdot 100$. 89		120pf	510 pf 68	6800pf
101-1,000	. 69		130pf	560 pt 820	3200pf
1,001 up	. 49		150pf	620 pf . 010	010 mf
			160pf	680 pf . 012	012 mf
			180pf	820pf 1000 pf . 01	015 mf 018 mf

ATLAS CRYSTAL FILTERS FOR ATLAS HAM GEAR
5.52-2.718
5.595-2.718/U
$5.595 .500 / 4 / \mathrm{CW}$
5.595-2.7LSB
5.595-2.7USB
5.645-2.7/8
9.OUSB/CW

NPN SILICON RF POWER TRANSISTORS

designed for power amplifier applications in industrial，com－ mercial and amateur radio equipment to 30 MHz ．
－Specified 12．5 Volt， 30 MHz Characteristics－ Output Power $=80 \mathrm{Watts}$ Minimum Gain $=12 \mathrm{~dB}$ Efficiency $=50 \%$

NPN SILICON RF POWER TRANSISTOR
．designed primarily for use in large－signal output amplifier stages． Intended for use in Citizen－Band communications equipment operating at 27 MHz ．High breakdown voltages allow a high percentage of up－modulation in AM circuits．
\＄2． 50
－Specified $12.5 \mathrm{~V}, 27 \mathrm{MHz}$ Characteristics－
Power Output $=4.0$ Watts
Power Gain $=10 \mathrm{~dB}$ Minumum
Efficiency $=65 \%$ Typical

NPN SILICON RF POWER TRANSISTOR

designed primarily for use in single sideband linear amplifier
 output applicaions in citizens band and other communications equipment operating to 30 MHz ．
－Characterized for Single Sideband and Large－Signal Amplifier Applications Utilizing Low－Level Modulation．
－Specified $13.6 \mathrm{~V}, 30 \mathrm{MHz}$ Characteristics
Output Power $=12 \mathrm{~W}$（PEP）
Minimum Efficiency $=40 \%$（SSB）
Output Power $=4.0 \mathrm{~W}$（CW）
Minimum Efficiency $=50 \%(C W)$
Minimum Power Gain＝ 10 dB （PEP \＆CW）
－Common Collector Characterization

The RF Line

NPN SILICON RF POWER TRANSISTOR
designed for power amplifier applications in industrial， commerical and amateur radio equipment to 30 MHz ．
－Specified 12.5 Vort， 30 MHz Characteristics
Output Power -80 Watts
Minimum Gain $=12 \mathrm{~dB}$
Efficiency $=50 \%$
－Capable of Withstanding 30：1 Load VSWR＠Rated Pout and VCC

MiM710－2 $\begin{array}{cc}\$ 46.45 \\ 440 \text { to } 470 \mathrm{MC}\end{array}$

UHF POWER AMPLIFIER MODULE

designed for 12.5 volt UHF power amplifier applications in industrial and commercial FM equipment operating from 400 to 512 MHz ．
－Specified 12.5 Volt，UHF Characteristics Output Power $=13$ Watts Minimum Gain $=19.4 \mathrm{~dB}$ Harmonics $=40 \mathrm{~dB}$
－ 50Ω Input／Output Impedance
－Guaranteed Stability and Ruggedness
－Gain Contral Pin for Manual or Automatic Outpur Level Control
－Thin Film，Hybrid Construction Gives Consistent Performance： and Relability

Tektronix Test Equipment

Scopes with Plug－in＇s

\qquad

```f．til．i：
```


Tubes

2 E 26	58.16	4 $\times 3.8191$	\＄1：6， 00	8.146 W
3－500\％	107. ．fir	4 Cx （01020	310100	sil ${ }^{\text {a }}$ ，
－100：	268.01	4C．$\times 150$	3 la	4．16：
	＇，（1i］		Ph，(1)	\cdots
3xpula：	1！6，me	H1： 27	10．190	－ 5 ¢
4－054	45．（i）	$4 \times 1.50 \mathrm{~A}$	41.00	6\％$\%$ ？
4－125A	5x． 5.13	axiber	12． 1170	6．134
－250n	fors	4×1506	14.101	1 160
1．41098	n．us	Hemitrem	（1）．${ }^{\text {a }}$	1400
$4-100 \mathrm{da}$	14.111	6156	5． 10	ficis
t－5100	145．111］		5．16）	H1ite
い×とั5	65.19	11 A	12．94，	$\because 156$
acxe20f\％	［5，ill	H1／	13．09	1120
4 Cx 250 0	13， 311	br ${ }^{\text {a }}$／$/ \mathrm{A}$	4）ule	M，295／91！$/ 2$
4Cx250p	48.011	614%	5.00	845 ji
4C． 30004	14／ ma	blaba	6.1711	
4．3503			1．${ }^{\text {a }}$	M以

ARRA	DESCRIPTION
	Variable Attenuato Variable Attenuator 18 to 60 dB V V. GHz Variable Attenuator 0 to 180 dB Variable Attenuatoro 10180 dB

General Microwave
Directional Coupler 2104 GHz 20 ob Type N
Hewlett Packard

COMPUTER I.C. SPECIALS
MEMORY DESCRIPTION

2708	1K $\times 8$ EPROM
$2716 / 2516$	$2 K \times 8$ EPROM 5 Volt Single Supply
$2114 / 9114$	$1 K \times 4$ Static RAM 450ns
2114 L 2	$1 K \times 4$ Static RAM 250ns
2114 L 3	$1 K \times 4$ Static RAM 350ns
4027	$4 K \times 1$ Dynamic RAM
$4060 / 2107$	$4 K \times 1$ Dynamic RAM
$4050 / 9050$	$4 K \times 1$ Dynamic RAM
$2111 A-2 / 8111$	256×4 Static RAM
$2112 A-2$	256×4 Static RAM
$2115 A L-2$	$1 K \times 1$ Static RAM 55ns
$6104-3 / 4104$	$4 K \times 1$ Static RAM 320ns
$7141-2$	$4 K \times 1$ Static RAM 200ns
MCM 6641 L20	$4 K \times 2$ Static RAM 200ns
9131	$1 K \times 1$ Static RAM 300ns

C.P.U.'s ETC.

MC6800L MCM6810AP MCM68A10P MCM68B10P MC6820P MC6820L MC6821P MC68B21P MCM6830L7 MC6840P MC6845P MC6845L MC6850 MC6852P MC6852L MC6854P MC6860CJCS MC6862L MK3850N-3 MK3852P MK3852N MK3854N 8008-1 8080A Z80CPU 6520 6530 2650 TMS1000NL TMS4024NC TMS6011NC MC14411 AY5-4007D AY5-9200 AY5.9100 AY5-2376 AY3-8500 TR1402A PR1472B PT1482B 8257 8251 8228 8212 MC14401CP MC14412 MC14408 MC14409 MC1488L MC1489L MC1405L MC1406L MC1408/6/718 MC1330P MC1349/50 MC1733L LM565	Microprocessor 128×8 Static RAM 450ns 128×8 Static RAM 360ns 128×8 Static RAM 250ns PIA PIA PIA PIA Mikbug PTM CRT Controlier CRT Controller ACIA SSDA SSDA ADLC 0.600 BPS Modem 2400 BPS Modem F8 Microprocessor F8 Memory Interface F8 Memory Interface F8 Direct Memory Access Microprocessor Microprocessor Microprocessor PIA Suppart For 6500 Series Microprocessor Four Bit Microprocessor 9×64 Digital Storage Buffer (FIFO) UART Bit Rate Generator Four Digit Counter/Display Drivers Repertory Dialer Push Button Telephone Dialers Keyboard Encoder TV Game Chip UART UART UART DMA Controller Communication Interface System Controller \& Bus Driver 8 Bit Input/Output Port 2 of 8 Tone Encoder Low Speed Modem Binary To Phone Pulse Converter Binary To Phone Pulse Converter RS232 Driver RS232 Receiver AD Converter Subsystem 6 Bit D/A Converter 8 Bit D/A Converter Low Level Video Detector Video IF Amplifier LM733 OP Amplifier Phase Lock Loop

The HD-73 Rotator by Alliance
 A precision instrument built to last.

The HD-73 combines Dual-Speed rotation and a single 5 -position switch with the clear visibility of a backlit D'Arsonval meter. So you get precise control for fast and fine tuning.

And the advanced technology of HD-73 is backed by quality construction. Heavy duty aluminum casings and hardened steel drive gears. Lifetime factory lubrication that withstands $-20^{\circ} \mathrm{F}$. to $120^{\circ} \mathrm{F}$. temperatures. The superior design of the HD-73 mast support bracket, with optional no-slip positive drive, assures perfect in-tower centering with no special tools. Automatic braking minimizes inertia stress.
Easy to install, a pleasure to use. The HD-73 is on your wavelength. Write for performance details today. I want to tune in on HD-73.
\square Send complete details
\square Give me the name of my nearest dealer.

NAME
address

CITY \qquad STATE \qquad ZIP Alliance, Ohio 44601

IMPORTANT

 NEWSHR REPORT.
AMATEUR
RADIO'S ONLY
BI-WEEKLY
NEWSLETTER.
Don't wait weeks or months to get the latest news on Amateur Radio events. Let HR REPORT put it in your hands a few short days after it happens. Editor W9JUV and his staff spend hours digging out the latebreaking stories. They give them to you in a concise, easy-to-read format - just the facts, not a lot of extra words. GET COMPLETE COVERAGE of FCC actions, ARRL news, and industry happenings. You also get a last minute propagation report from noted forecaster KøRYW plus contest reminders and week-after summaries, exciting DX news and Hamfest announcements.
It's all there in HR REPORT plus much, much more. Now just $\$ 18.50$ per year US, Canada and Mexico by first-class mail. Worldwide $\$ 35.00$ per year by airmail.

26 issues $=\$ 18.50$

U.S., CANADA \& MEXICO

HR REPORT

GREENVILLE, N. H. 03048

The KLM Spotlight on:

Adverliser's check-off

.for literature, in a hurry - we'll rush your name to the companies whose names you "check-off"

Place your check mark in the space petween name and number. Ex: Ham Radio 234

Jones __ 626
KLM ___ 073
Kenwood*
L-Tronics*
Larsen __ 078
M 8 M _ _ 937
MFJ __ 082
MHz Elec. _ 415
Madison- 431
Marco _.... 929
Melco __ 938
Microcraft __. 774
Microwave Fitter __ 637
Micro Security _ 939
Mid-Com - 479
N.P.S. ... 866
N-Pro _-.. 942
Nemal *
Oak Hill Academy A.R.S. *
P.B. Radio _ 921
P.C. 766
Phillips-Tech _ 936
Poly-Paks __ 096
Callbook __ 100
Radio Warehouse *
Radio World __ 592
Radiokit ___ 801
Radios Unlimited ___ 941
Ricker __ 923
S-F A.R.S. __ 640
Semiconductors Surplus \qquad 512
Skytec __ 704
Smithe __ 930
Spectronics*
Spectrum Int. __... 108
Stewart Quads ___ 890
Tab__ 858
Ten-Tec *
Tufts __. 321
Universal Comm. __ 885
Universal Elec. __ 653
UNR-Rohn __ 410
Van Gorden __ 737
Vanguard Labs __ 716
Vector Elec. _ 943
Webster Assoc. __ 423
Western Elec. _ 909
Yaesu _... 127

*Please contact this advertiser directly. Limit 15 inquiries per request.

July, 1981
Please use before August 31، 1981

Advertisers ${ }^{\mathrm{N}} \mathrm{N}_{\mathrm{d}} \mathrm{X}$

AEA, Advanced Electronic Applications .
Alaska Microwave Labs
All Electronics Corp. .
The Alliance Manufacturing Company, Inc.
Alume Tower Company
American Radio Relay League
Amidon Associates.
Applied Invention.
Atlantic Surplus Sales
Barker \& Williamson, Inc.
Barry Electronics
Bencher, Inc.
Ben Franklin Electronics.
Bilal Company
Butternut Electronics
Command Productions.
Communication Concepts
Communications Specialists.
Cubic Communications, Inc.
Drake, R. L., Co.
EGE, Inc.
Encomm, Inc.
Erickson Communications
ETCO .
Fair Radio Sales
Fox-Tango Corp
G.I.S.M.O.

GLB Electronics
H-Troniks, Inc.
Hal Communications Corp.
Hal-Tronix
Ham Radio's Bookstore
Ham Radio Magazine
The Ham Shack
Hamtronics, N.Y.
Handi-Tek
Hatry Electronics
Heath Company
Henry Radio Stores
HR Report
International Crystal
Jameco Electronics
Jan Crystals
Jim-Pak
Jones, Marlin P. \& Associates

call toll free:nights (800) 231-3057
 6-10 PM CDST, M.W.F. days: 713 658-0268

Bash Books 9.95
Amphenol Silver Pla
Antique/Rare Tubes Call
GE 572 38
Timex 24 hour Wallclock 24.95
Robot 800A 749
Cubic 103 1195
Bird 43 SLUGS
Portable VJ Amplifier
2 watts in 33 watts out. $\$ 89.95$
Belden 9405 Heavy Duty
Rotor Cable 2\#16, 6\#18 454/ftBelden 8214 RG-8 Foam 36ष/ftBelden 9258 RG-8XMini-coax19¢/ft
Alliance HD73 Rotor 109.95
Call for TS830S, TS130S, TS-530plus accessories
MASTERCARD VISA

All prices fob Houston except where indicated. Prices subject to change without notice, all items guaranteed. Some items subject prior sale. Send letterhead for Dealer price list. Texas residents add 6% tax. Please add sufficient postage, balance collect.
 1508 McKinney Houston, Texas 77010

KLM Electronics, Inc.
Trio-Kenwood Communications, Inc. 54,55, . 105 L-Tronics
Larsen Electronics
M\&M Electronics, Inc
MFJ Enterprises
MHz Electronics.
Madison Electronics Supply \qquad
Marco.
Melco.
Microcratt Corporation.
Microwave Filter, Inc.
Micro Security
Mid-Com Electronics
N.P.S..Inc.

Nemal.
Oak Hill Academy Amateur Radio Session
P.B. Radio
P.C. Electronics

Phillips-Tech Electronics
Poly-Paks.
Radio Arnateur Callbook
Radio Warehouse.
Radio World.
Radiokit .
Radios Unlimited
Ricker Equipment Corp.

S.F Amateur Radio Services

Semiconductors Surplus. $70,71,72,73,74,75,76,77,78,79$

skytec

Smithe Aluminum
Spectronics, Inc.
Spectrum International, Inc.
Stewart Quads
Tab Books. Inc.
Ten-Tec, Inc.
Tufts Electronics.
Universal Communications.
Universal Electronics, Inc.
UNR-Rohn
Van Gorden Engineering.
Vanguard Labs.
Webster Associates
Western Electronics .
Yaesu Electronics Corp.

The MArranty and Bayond

Food for thought.

Our new Universal Tone Encoder lends its versatility to all tastes. The menu includes all CTCSS, as well as Burst Tones. Touch Tones, and Test Tones. No counter or test equipment required to set frequencyjust dial it in. While traveling, use it on your Amateur transceiver to access tone operated systems, or in your service van to check out your customers repeaters: also, as a piece of test equipment to modulate your Service Monitor or signal generator. It can even operate off an internal nine volt battery, and is available for one day delivery, backed by our one year warranty.

- All tones in Group A and Group B are included
- Output level flat to within 1.5 db over entire range selected
- Separate level adjust pots and output connections for each tone Group.
- Immune to RF
- Powered by 6-30vde, unregulated at 8 ma
- Low impedance, low distortion, adjustable sinewave output. 5 v peak-to-peak
- Instant start-up.
- Off position for no tone output
- Reverse polarity protection built-in.

Group A

67.0 XZ	915 ZZ	11882 B	15675 A
71.9 XA	94.8 A	12303 Z	162.25 B
74.4 WA	974 ZB	12733 A	16796 Z
770 XB	100.01 Z	13183 B	173.86 A
$79 . \mathrm{SP}$	103.51 A	13654 Z	17996 B
82.5 YZ	107.21 B	14134 A	186.27 Z
85.4 YA	110.92 Z	14624 B	19287 A
88.5 YB	114.82 A	151.45 Z	2035 MI

- Frequency accuracy. $\pm .1 \mathrm{~Hz}$ maximum $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Frequencies to 250 Hz available on special order
- Continuous tone

Group B

TEST-TONES	TOUCH TONES	BURST TONES				
600	697	1209	1600	1850	2150	2400
1000	770	1336	1650	1900	2200	2450
1500	852	1477	1700	1950	2250	2500
2175	941	1633	1750	2000	2300	2550
2805			1800	2100	2350	

- Frequency accuracy, $\pm 1 \mathrm{~Hz}$ maximum $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Tone length approximately 300 ms . May be lengthened.
shortened or eliminated by changing value of resistor
Model TE-64 \$79.95

426 West Taft Avenue, Orange, California 92667
(800) 854-0547/Califorma: (714) 998-3021

THE EVOLUTION OF A CHAMPION! FT-101ZD Mk III

The FT-101ZD Mk III is the latest chapter in the success story of the FT-101 line. Armed with new audio filtering for even better selectivity, the FT-101ZD now includes provision for an optional FM or AM unit. Compare features and you'll see why active operators everywhere are upgrading to Yaesu!

Variable IF Bandwidth

Using two 8 -pole filters in the IF, Yaesu's pioneering variable bandwidth system provides continuous control over the width of the IF passband - from 2.4 kHz down to 300 Hz - without the shortcomings of single-filter If shift schemes. No need to buy separate filters for $1.8 \mathrm{kHz}, 1.5 \mathrm{kHz}$, etc.
Improved Receiver Selectivity
New on the FT-101ZD Mk III is a high-performance audio peak/notch filter. Use the peak filter for single-signal CW reception, or choose the notch filter for nulling out annoying carriers or interfering CW signals. In the CW mode, you can choose between the 2.4 kHz SSB filter and an optional CW filter (600 or 350 Hz) from the mode switch.
Diode Ring Front End
The FT-101ZD now sports a high-level diode ring mixer in the front end. This type of mixer, well known for its strong signal performance, is your assurance of maximum protection from intermod problems on today's crowded bands.
WARC Bands Factory Installed
The FT-101ZD Mk III comes equipped with factory installation of the new 10, 18, and 24 MHz bands recently assigned to the Amateur Service at WARC. In the meantime, use the 10 MHz band for monitoring of WWV!
RF Speech Processor
Not an additional-cost option, the FT-101ZD RF speech processor provides a significant increase in average SSB power output, for added punch in those heavy DX pile-ups. The optimum processor level is easily set via a front panel control.

Worldwide Power Capability

Every FT-1012D comes equipped with a multi-tap power transformer, which can be easily modified from the stock 117 VAC to 100/110/200/ 220/234 VAC in minutes. A DC-DC converter is available as an option for mobile or battery operation.

Convenience Features

Designed fundamentally as a high-performance SSB and CW transceiver, the FT-101ZD includes built-in VOX, CW sidetone, semi-break-in T/R control on CW, slow-fast-off AGC selection, level controls for the noise blanker and speech processor, and offset tuning for both transmit and receive. The Mk III optional FM unit may be used for 10 meter FM operation, or choose the optional AM unit for WWV reception or VHF AM work through a transverter (AM and FM units may not both be installed in a single transceiver).
Full Line of Accessories
See your Yaesu dealer for a demonstration of the top performance accessories for the FT-101ZD, such as the FV-1012 External VFO, SP-901P Speaker/Patch, YR-901 CW/RTTY Reader, FC-902 Antenna Tuner, and the FTV-901R VHF/UHF Transverter. Watch for the upcoming FV-101DM Digital Memory VFO, with keyboard frequency entry and scanning in 10 Hz steps!

Nationwide Service Network
During the warranty period, the Authorized Yaesu Dealer from whom you purchased your equipment provides prompt attention to your warranty needs. For long-term servicing after the warranty period, Yaesu is proud to maintain two fully-equipped service centers, one in Cincinnati for our Eastern customers and one in the Los Angeles area for those on the West Coast.

Price And Specitications Subject To Change Without Notice Or Obligation

"Cents-ational."

IF shift, digital display, narrow-wide filter switch

The TS-530S SSB/CW transceiver is designed with Kenwood's latest, most advanced circuit technology, providing wide dynamic range, high sensitivity, very sharp selectivity with selectable filters and IF shift, built-in digital display, speech processor, and other features for optimum, yet economical, operation on 160 through 10 meters.
TS-530S FEATURES:

160-10 meter coverage, including three

 new bandsTransmits and receives (LSB. USB, and CW) on all Amateur frequencies between 1.8 and 29.7 MHz , including the new 10 . 18, and 24 MHz bands. Receives WWV on 10 MHz .

Built-in digital display

Large, six-digit, fluorescent-tube display shows actual receive and transmit fre quencies on all modes. Backed up by analog subdial.

IF shift

Moves IF passband around received signal and away from interfering signals and sideband splatter.

Narrow/wide filter combinations
Any one or two of three optional filters
YK-88SN (1.8 kHz) SSB, YK-88C (500 Hz) CW, YK-88CN (270 Hz) CW may be installed for selecting (with "N-W" switch) wide and narrow bandwidths on CW and/or SSB.

Wide receiver dynamic range

Greater immunity to strong-signal overload, with MOSFET RF amplifier operating at low level for improved IMD characteristics, junction FETs in balanced mixer with low noise figure, and dual resonator for each band.

Built-in speech processor

Combines an audio compression amplifier with change of ALC time constant for extra audio punch and increased average SSB output power, with suppressed sideband splatter.

Two 6146B's in final

Runs 220 W PEP/180 W DC input on all bands.
Advanced single-conversion PLL system Improved overall stability and improved transmit and receive spurious characteristics.

Adjustable noise-blanker level Pulse-type (such as ignition) noise is eliminated by built-in noise blanker, with front-panel threshold level control.

RF attenuator

The $20-\mathrm{dB}$ RF attenuator may be switched in for rejecting IMD from extremely strong signals.

Optional VFOs for flexibility

VFO-240 allows split-frequency operation and other applications. VFO-230 digital VFO operates in $20-\mathrm{Hz}$ steps and includes five memories and a digital display.

RIT/XIT

Front-panel RIT (receiver incremental tuning) shifts only the receiver frequency, for tuning in stations slightly off frequency. XIT (transmitter incremental tuning) shifts only the transmitter frequency, for calling a DX station listening off frequency.

More information on the TS-530S is available from all authorized dealers of Trio-Kenwood Communications, Inc.. 1111 West Walnut Street. Compton. California 90220.

Matching accessories for fixed-station operation:

- SP-230 external speaker - AT-230 antenna tuner with selectable audio filters SWR and power meter - VFO-240 remote VFO - MC-50 desk microphone Other accessories not shown:
- VFO-230 remote digital VFO with $20-\mathrm{Hz}$ steps, five memories, digital display - TL-922A linear amplifier - SM-220 Station Monitor - KB-1 deluxe VFO knob - PC-1 phone patch - HC-10 digital world clock - YK-88C (500 Hz) and YK- $88 \mathrm{CN}(270 \mathrm{~Hz}) \mathrm{CW}$ filters and YK-88SN (1.8 kHz SSB narrow filter
 - MC-30S and MC-35S noise-canceling hand
 - HS-5 and HS-4 headphones microphones

[^0]: * NOTE: Transmitter coverage for MARS, Government, and future WARC bands is available only in ranges authorized by the FCC, Military, or other government agency for a specific service. Proof of license for that service must be submitted to the R. L. Drake Company, including the 500 kHz range to be covered. Upon approval, and at the discretion of the R. L. Drake Company, a special range IC will be supplied tor use with the Aux7 Range Program Board. Prices quoted from the factory. See Operator's Manual for details. (Not available for services requiring type acceptance.)

[^1]: *A subscription to HR Report, issued every two weeks, will keep you posted on the latest happenings in Amateur Radio.

 Editor

[^2]: *ASCII is an acronym for "Arnerican Standard Code for Information Interchange." A Baud equals bits per second in this code.

[^3]: *A high-value mica padder capacitor from the junkbox would be ideal for this trimming. Editor

[^4]: *Radio Shack, 1400 One Tandy Center Fort Worth, Texas 76102

[^5]: tAllied Elfotronics 401 East 8th St. Fort Worth, Texas 76102.

[^6]: 1. Doug DeMaw, W1FB, JFEt "Soup" for Tired Receivers, QST, March, 1979, page 19.
 ham radio
[^7]: ＊However the antenna matching unit does attenuate harmonics．Editor

[^8]: ＊Look at next higher band for possible openings．

[^9]: * 40 ch . switch

 S MIR optional

[^10]: PC BOARD BARGAINS
 GIO FR $1 / 16^{\prime \prime} 1 \mathrm{OZ}$. COPPER
 1 SIDE $12^{\prime \prime} \times 12^{\prime \prime}$
 PKG OF 5 \$31 25 1 SIDE $53 / 4^{\prime \prime} \times 111 / 2^{\prime \prime} \quad$ PKG OF $5 \$ 1875$ 2SIDE $12^{\prime \prime} \times 12^{\prime \prime} \quad$ PKG OF $5 \$ 3525$ 2 SIDE 5% " $\times 11 \frac{1}{2}$ PKGOF $5 \$ 2125$ MARCO ?O BOX 2310 WEIRTON WV 26062

