

RTTY To Go
 Loud and Clear.

The Portable HAL Televeader CWR-685A.
Now RTTY can hit the road with you, when you take along this portable telereader from HAL.
HAL offers the smallest RTTY terminal you can find. It's easy to pack and go - on long drives, camping trips, boating, anywhere away from home.
Pick up your portable HAL Telereader at your favorite amateur dealer store today you can order it to go!
See HAL RTTY equipment at your favorite amateur dealer store.

Write or call us for more information.

HAL. Communications Corporation P.O. Box 365

Urbana, Illinois 61801
(217)367-7373

In the proud tradition of the $\mathrm{S} /$ Line and KWM-2: Collins KWM-380.

What is "tradition"? Fifty years of HF communications experience and a high technology base that makes us an industry leader. Plus added value like the KWM-380 12-month warranty and 24 -hour factory "burnin" followed by individual testing and calibration of each transceiver.

The Collins KWM-380 gives you "tradition" in one box. Microprocessor control provides operation from the front panel or optional remote interface connector. Plug-in read-only-memory I.C. allows the addition
of WARC band changes. Built-in AC/DC power supply lets you operate almost anywhere.

Rate selectable tuning to 10 Hz with frequency memory and split VFO provide excellent operational flexibility.

The Collins KWM-380. A sound investment that offers excellent resale value. See it at your authorized dealer. Collins Telecommunications Products Division, Rockwell International, Cedar Rapids, Iowa 52498. Phone 319/395-5963. Telex 464-435.

HOMRZODNS

contents

T. H. Tenney, Jr., W1NLB publisher and editor-in-chief

Alfred Wilson, W6NIF editor
editorial staff
Martin Hanft, WB1CHO production editor
Joseph J. Schroeder, W9JUV
Leonard H. Anderson associate editors
W.E. Scarborough, Jr., KA1DXO graphic production manage
rene Hollingsworth editorial assistant

Alif Billings
cove
publishing staff
J. Craig Clark, Je., N1ACH sssistant publisher and advertising manage

Susan Shorrock
circulation manager
ham radio magazine
is published monthly by
Comm mications Tochnology Inc reenville. New Hampshire 03048-0498 Telephone: 603-878-1441
subscription rates
United States: one year $\$ 16.50$ two years, $\$ 28.50$: three years, $\$ 38.50$ Canada and other countries (via Surface Mail) one year, $\$ 21.50$; two years, $\$ 40.00$ three years, $\$ 57.00$

Europe, Japan, Africa (via Air Forwarding Servicel one year, \$28.00

All subscription orders payable in United States funds, piease
foreign subscription agents
Foreign subscription agents are
listed on page 75

Microfilm copies University Microfilms Internationa University Microfilms, Internation Ann Arlication numi 3076

Cassette tapes of selected articles om ham radio are available to the blind and physically handicapped from Recorded Periodical 919 Walnut Street, 8th Floo Philadelphia Pennsylvania 19107 Copyright 1981 by Communications Technology inc Title registered at U.S. Patent Office

12 a-m/fm converter for facsimile transmission Karl-Gustav Strid, SM6FJB

20 up-conversion receiver: part two
George Cutsogeorge, W2VJN

30 ham radio techniques Bill Orr, W6SAI

36 communications receivers for the year 2000: part two
Dr. Uirich L. Rohde, DJ2LR

46 rf-power distributor
F.T. Marcellino, W3BYM

48 half-square antenna
Robert Schiers, NøAN

54 medium-scan television
Don C. Miller, W9NTP

70 Dxer's Diary
Bob Locher, W9KNI

120 advertisers index 106 ham radio index
6 comments 86 new products
78 DX forecaster 4 observation and
75 flea market
67 ham calendar
94 ham mart
52 ham notes
opinion
10 presstop
120 reader service
59 short circuits

This month l'd like to introduce a close friend and fellow Californian, Bill Gay, WA6PNY. Bill and his wife visited us on the last leg of an extensive trip across Canada that lasted $21 / 2$ months. They met many Amateurs and had a wonderful time operating their station, which was installed in a 31 -foot trailer. Here are some of their experiences and a look at what other American hams might expect from our colleagues up north, in Bill's own words. Editor.

The hospitality extended to my wife and me by Canadian Radio Amateurs during our trailer trip across that country is something I'll never forget. Trailering with a mobile ham station is a great way to make friends, and I want to thank all the hams I met from British Columbia to Quebec for their warmth and generosity.

I had no idea what was involved in obtaining permission to operate in Canada. I wrote to the Canadian Department of Communications for information and even included a copy of my license. I was told just to bring my gear and operate as if I were in the U.S. No fuss, no bother. With the reciprocal licensing agreement, I was allowed to work essentially all the ham bands with the same privileges I have at home as an Advanced-class licensee.

We had no problems whatever crossing into Canada.
"Where are you from?"
"San Diego."
"Where are you going?"
"Across Canada!"
"How long are you going to be in the country?"
"Two or three months."
"Okay, go ahead."
Unbelievable! I was prepared to pay duty on food, my equipment, and so forth, but there was no inspection and no hassle.

One of the highlights of the trip occurred after we'd stopped at a KOA campground just outside Calgary. I called Fred Dettmers, VE2BQY, (whom I'd met previously) on the radio and asked if there was an autopatch on the local repeater. I was told, "Oh yes. Standard access: star up; pound down." I was amazed! No secret codes, no PL tones - just star up and pound down. Another example of Canadian hospitality.

While visiting with Fred and his wife, I had an opportunity to obtain an insight into the differences between Amateur Radio in Canada and the United States. Consider, for example, that the Amateur population in Canada is only about 21,000 , compared with 53,000 in California alone. It's easy to understand the concern of the Canadian ham who must contend with the terrific wall of signals coming up from south of the border, especially when Canadians are trying to work into Europe.

The licensing structure in Canada is interesting. Three classes of license are offered: Amateur, Advanced, and Digital. For the Amateur license, the applicant must pass a ten-WPM code test, a written exam, and an oral exam. This license class grants all-band privileges, code only, plus VHF phone. After six months and proof of at least twelve contacts, a 10-meter-phone endorsement and full power privileges are granted. The Digital license allows digital operation at VHF/UHF.

The Amateur-class licensee is eligible to apply for the Advanced license after one year. This exam consists of a fifteen-WPM code test and another written test. The Advanced license permits full band and mode privileges. After five years, the Advanced-class Amateur may obtain a two-letter call sign if available. Licenses are issued for five years, with an annual fee payable to the DOC.

Our trip lasted $21 / 2$ months. I had a chance to operate in all the VE districts except VE1 and to meet a fine group of people. One real challenge was a request I received to explain the new Amercian call sign system. It seems that no one in Canada really understands what's going on, who's who, or what's what with our new calls. I'm not sure I understand either.

Bill Gay, WA6PNY

ICOM IC-720A

automatically.

Continuously variable power from 10W to full power - speech processor - LDA channeling module induded provides auto band changing capability when increasing your power using the IC-2KL broad banded solid state linear.

General coverage receiver from a 0.1 KHz to 29.999 .9 MHz - Split VFO operation - Frequency memorized in standby VFO.

Simple to use Dual VFO's standard Data transfer button for marking a frequency of interest and storing it in unused VFO.

yoot voo
빅
Droadbanded solid state transceiver operation on the 9 amateur HF bands - Readout of mode in use and VFO - Status LEDs for push button functions.

Use of RF/ALC switch in conjunction with the intemal top hatch cover switches allows monitoring relative RF Out, SWR, collector current and ALC.

The ICOM HF System. We Have You Covered.

HFIVHFIUHF AMATEUA ANO MARINE COMMUNICATION EOUIPMENT

CD ICOM
ICOM AMERICA, INCORPORATED

coaxed into noticing

Dear HR:

Your July article "Buying Parts By Mail" left out a very reliable source of coaxial cable and other parts. Please notice that Nemal Electronics (5685 S.W. 80th St., Miami, Florida 33143) has a wide selection of coaxial cable and cable accessories for sale at very attractive prices. In addition to that, their service is excellent. I can usually expect to get my order from them in little more than a week's time. Next time you need something in the cable line, I suggest you give them a call.

Dave Karpiej, K1THP Plainville, Connecticut

a new breed

Dear HR:

What is wrong with this new breed of Amateur operator? Is it that we're friendly, considerate, and delighted with the idea of being a ham operator? When I was young we looked upon ham operators as elitists - eccentric individualists, mostly rich and kooky. Well, times have changed, what with the age of electronics and with the advent of inexpensive Citi-zen-Band Radio, and many of us who suffered through the changes on 11 meters have migrated to ham radio.
There are those of us who will become the ideal ham operator, knowledgeable in all phases of electronics, capable of tearing a radio apart and arranging it in perhaps better-thannew condition. And there will be those of us who will wish we could but cannot, who will resort to the Bash book and memorization in order to escape the trials of 11 meters. It behooves the well-versed Amateur operator to use his expertise to help others and to turn his attention to more constructive matters - perhaps new rules and regulations to replace antiquated ones.

So I say Viva La Nuevo Amateur operator and remember you are now a part of the elite. Handle it with dignity and care and to you who did it the hard way - understanding is the name of the game.

Judith M. Stevens, KA4IZU
Clearwater, Florida

RFI cures

Dear HR:

In regards to John Frank's article about RFI (September, 1981), I think the rule of thumb he speaks of in reference to fig. 2 is misleading. The rule is implemented when no ac signal is desired across the resistor being bypassed, as in an emitter or cathode lead. This is not the case for a preamp input. The rule should be tied to the interfering signal. The bypass cap must have a high impedance with respect to the circuit impedance at the highest audio frequency presented to the amplifier.

Al Izatt, WB7SYB
 Aberdeen, Washington

Part of the problem in selecting bypass capacitors for RFI cures is that there are two frequencies involved (audio and radio), and we want to bypass only one of them.

The rule of thumb / mentioned in my article provides a starting point for determining how much capacitance should be added to bypass if without affecting audio. The optimum value of the bypass capacitor will depend on the impedances involved, the severity of the interference, and the frequency of the offending signal.

My own experience shows that bigger is not necessarily better when you are adding bypass capacitors to cure RFI. I prefer using the smallest amount of capacitance that will solve the RFI problem.

John W. Frank, Wb9tag
Madison, Wisconsin

low SWR

Dear HR:

I enjoyed the article by Stan Gibilisco, W1GV/4, entitied "How Important is Low SWR?" in the August, 1981, issue. It is an excellent article and I believe it will help many people, especially me. I believe, however, that there is one small mistake in fig. 2. All the cable losses are off by a factor of two. This I believe is because the cable loss is actually one-half the measured value because the measured value is a two-way cable loss. I refer you to the article by K9MM.*

John Biro, K1KSY
Chelmsford, Massachusetts

In response to the letter from John Biro, K1KSY, I have performed my own calculation, as follows:

Let $m=$ line loss when matched;
$E=$ "forward" voltage as measured at transmitter;
$e=$ "reflected" voltage as measured at transmitter
$r=S W R ;$
$\rho=$ reflection coefficient $=$ $(r-1) /(r+1)$
Then, with the far end of the line short-circuited,

$$
\begin{aligned}
-2 m= & 20 \log _{10}(e / E) \\
= & 20 \quad \log _{, 0}(\rho)=20 \quad \log _{10} \\
& {[(r-1) /(r+1)] } \\
\text { Thus } m= & -10 \log _{10}[(r-1) /(r+1)]
\end{aligned}
$$

This formula produces results that agree with John's and show that fig. 2 in my article is in fact off by a factor of 2 .

Stan Gibilisco, W1GV/4
Miami, Florida

[^0]

|||||||||||||||||||||

NEW MFJ-102 SOLID STATE

 24 HOUR DIGITAL CLOCK Switchable to 24 hour GMT or 12 hour format. ID timer. Seconds readout. Bright BLUE .6" digits. Alarm, snooze, lock functions. Power out, alarm on indicators. Assembled.Switch to 24 hour GMT
 or 12 hour format! ID timer. Seconds readout. Bright BLUE . 6 inch digits.

$\$ 32^{95}$

Now you can switch to either 24 hour GMT time or $\mathbf{1 2}$ hour format! Double usefuiness.

Switchable "Seconds" readout for accuracy
ID timer. Alerts every 9 minutes after you tap the button. Also use as snooze alarm.
"Observed" timer. Just start clock from zero and note end time of event up to 24 hours.

Alarm. For skeds reminder or wake-up use. Synchronizable with WWV
Fast/Slow set buttons for easy setting.
Big, bright, blue digits (vacuum fluorescent) are $0.6^{\prime \prime}$ for easy on-the eyes, across the room viewing

Lock function prevents missetting
Operates on 110 VAC, 60 Hz (50 Hz with simple modification). UL approved.
Handsome styling with rugged black plastic case with brushed aluminum top and front

Sloping front for easy viewing. $6 \times 2 \times 3$ "
Order from MFJ and try it - no obligation. If not delighted, return it within 30 days for refund (less shipping). One year limited warranty by MFJ.

Order today. Call toll free 800-647-1800. Charge VISA, MC or mail check, money order for $\$ 32.95$ plus $\$ 4.00$ shipping/handling for MFJ- 102.

Put this new improved MFJ digital clock to work in your shack. Order today.
CALL TOLL FREE . . . 800-647-1800
Call 601-323-5869 for technical information, or der/repair status. Also call 601-323-5869 outside continental USA and in Mississippi.

MFJ RF NOISE BRIDGE

Lets you adjust your antenna quickly for maximum performance. Measure resonant frequency, radiation resistance and reactance. Exclusive range extender and expanded capacitance range gives you much extended measuring range.

This MFJ-202 RF Noise Bridge lets you quickly adjust your single or multiband dipole, inverted Vee, beam, vertical, mobile whip or random system for maximum performance.

Tells resonant frequency and whether to shorten or lengthen your antenna for minimum SWR over any portion of a band.

MFJ's exclusive range extender, expanded ca pacitance range ($\pm 150 \mathrm{pf}$) gives unparalleled impedance measurements, 1 to 100 MHz . Simple to use. Comprehensive computer proven manual.

Works with any receiver or transceiver. S0-239 connectors. $2 \times 3 \times 4$ inches. 9 volt battery

Other uses: tune transmatch; adjust tuned circuits; measure inductance, RF impedance of amplifiers, baluns, transformers; electrical length, velocity factor, impedance of coax; synthesize RF impedances with transmatch and dummy load.

- Exclusive range extender - Expanded capacitance range - Series Bridge

$\$ 59^{95}$

Order from MFJ and try it - no obligation. If not delighted, return it within 30 days for a refund (less shipping). This bridge is unconditionally guaranteed for one year.
To order, simply call us toll free 800.647-1800 and charge it on your VISA or MasterCharge or mail us a check or money order for $\$ 59.95$ plus $\$ 4.00$ for shipping and handling for MFJ. 202.

Put this MFJ Noise Bridge to work improving your antenna. Order from MFJ or see dealer.

CALL TOLL FREE . . . 800-647-1800

Call 601-323-5869 for technical information, or der/repair status. Also call 601 -323.5869 outside continental USA and in Mississippi.

MFJ KEYERS
Uses Curtis 8044 IC. lambic operation, dot-dash memories, weight control, solid state keying. RF proof.

The MFJ-408 Deluxe Electronic Keyer sends iambic, automatic, semi-automatic, manual. Use squeeze, single lever or straight key.

Speedmeter lets you read speed to 100 WPM.
Socket for external Curtis memory, random code generator, keyboard. Optional cable, \$4.95
lambic operation with squeeze key. Dot dash insertion. Semi-automatic "bug" operation provides automatic dots and manual dashes.

Dot-dash memory, self-completing dots and dashes, jam-proot spacing, instant start. RF proof. Solid-state keying: grid block, solid state $\times \mathrm{mtrs}$. Front panel controls: linear speed, weight. tone, volume, function switch. 8 to 50 WPM. Weight control adjusts dot-dash space ratio makes your signal distinctive to penetrate QRM Tone control. Speaker. Ideal for classroom.
Function switch selects off, on, semi-automatic manual, tune. Tune keys transmitter for tuning Uses 4 C-cells. 2.5 mm jack for power (6.9 VDC). Optional AC adapter MFJ.1305, \$9.95 Eggshell white, walnut sides. $8 \times 2 \times 6$ inches MFJ-406, \$69.95, like 408 less speedmeter

\$4995

New MFJ-401 Econo Keyer Il gives you a reliable, full feature economy keyer for squeeze, single lever or straight key.

Has sidetone, speaker, volume, speed, internal weight and tone controls. Sends iambic, automatic, semi-automatic, manual. Tune function. Dot-dash memories. 8.50 WPM. "On" LED. Use 9 V battery, 6.9 VDC , or 110 VAC with optional AC adapter, MFJ-1305, \$9.95, $4 \times 2 \times 31 / 2$

Reliable solid state keying. Keys virtually all solid state or tube type transmitters.

${ }^{5} 4^{45}$
MFJ-405 Econo Keyer II. Same as MFJ. 401 but has built-in single paddle with adjustable travel. Also jack for external paddle. $4 \times 2 \times 31 / 2^{\prime \prime}$

Optional: Bencher lambic Paddle, $\$ 42.95$; 110VAC adapter, MFJ-1305, \$9.95. Free catalog.

Order from MFJ and try it. If not delighted, return within 30 days for refund (less shipping). One year unconditional guarantee.
Order yours today. Call toll free 800-647-1800. Charge VISA. MC. Or mail check, money order. Add $\$ 4.00$ each for shipping and handling.

CALL TOLL FREE . . . 800-647-1800

Call 601-323 5869 for technical information, or der/repair status. Also call $601-323.5869$ outside continental USA and in Mississippi.

ENTERPRISES, INCORPORATED
Box 494. Mississippi State, MS 39762

PROJECTED FCC STAFF CUTS could drastically alter the agency over the next two years. According to Communications Daily of October 8, over 500 Commission jobs are due to be cut during fiscal 1982 and 1983. The Reagan-administration-mandated cuts will be particularly severe in the Private Radio Bureau, which had 258 positions (250 of them filled) when fiscal 1981 ended. It's to be reduced to only 193 people in the next 12 months, and to 176 the following year. Of the Bureau's present 250 people, 145 work in licensing at Gettysburg and are thus considered essential. As a result, all of the PRB's cutback will be in Washington, where it employs 105 . The planned reduction will leave only 31 people doing the Bureau's Washington work two years from now! This will undoubtedly mean a great deal of workload doubling up, with the attention paid to each of the services the Bureau administers reduced accordingly.

The Field Office Bureau will fare just as poorly under the recently announced plans, with its staff to be reduced from the present 455 to 311 . A number of Field Offices will have to be closed, and the services provided by others drastically reduced. Enforcement efforts will also have to be sharply curtailed as well. Of course, other FCC bureaus will also be feeling the pinch, and there's even a rumor the FCC's Laurel (Maryland) Lab will close.

Some Key Provisions of Senator Goldwater's bill, S.929, take on a new meaning as the impact of the FCC cutback sinks in. Amateurs administering exams, and taking an active part in enforcement, could help the Commission greatly should it no longer be able to properly support these activities itself.

Chairman Fowler Has Announced his intention to seek a relaxation of the projected cuts from the Office of Management and Budget. Because of the importance of the FCC to a healthy Amateur Service, Amateurs could do themselves a service by asking their Congressmen to provide more FCC funding.

SENATOR GOLDWATER'S PRO-AMATEUR RADIO BILL was passed by the Senate September 25 by unanimous consent. This important piece of legislation, S.929, would affect not only the Amateur Service but would also affect $C B$ and radio control licensees as well as the electronics manufacturing industry.

Establishment Of RFI Susceptibility standards for the TV and home entertainment electronics industry could well be the most significant result of this comprehensive bill, if it becomes law. It would vest in the FCC the authority to set such standards, as a means of reducing escalating RFI problems. It would also increase the term of an Amateur license from five to ten years, while a last-minute amendment by Senator Goldwater would also permit the FCC to discontinue the licensing of $C B$ and radio control operators entirely, a deregulatory measure that has received some support from both FCC staff and Commissioners recently. In addition, it would specifically exempt Amateur transmissions from the secrecy provisions (Section 605) of the Communications Act. Though it was long assumed that Amateurs were not included in Section 605 coverage, recent legal decisions have generally applied its limitations to Amateur operations.

The Commission Could Enlist Volunteer assistants from both the Amateur Radio and CB communities, under still another provision of Senator Goldwater's bill. These volunteers would be permitted to work directly with FCC engineers in monitoring both Amateur and CB frequencies for unlicensed or otherwise improper operations. Amateur Radio licensees would also be permitted to serve as volunteer examiners for "entry level" Amateur license applicants, a long-standing practice in Amateur Radio that has recently been termed "illegal" under present laws by the FCC legal staff.

One Key Provision Of S.929, as introduced by Senator Goldwater, was not included in the bill the Senate passed. This was the provision that would have given the Commission the power to restrict the purchase of transmitting equipment to those having the appropriate license to use it. Though generally supported by the Amateur community, this provision contradicts the deregulatory philosophy of the present administration.

The Next Step For 5.929 is in the House of Representatives, where it could be tied to appropriate legislation already pending there. More likely, it will be considered by itself, possibly replacing existing legislation such as Rep. Dannemeyer's HR 2203. It will go to the House Committee on Communications, chaired by Rep. Timoty Wirth, and it's possible that some action could be taken on it by early next year.

Support of S. 929 By Amateurs, expressed to their Representatives, should help to keep the bill moving toward passage.

AVAILABILITY OF THE NEW $10-\mathrm{MHZ}$ BAND looks farther and farther away. First, the WARC treaty hasn't yet been ratified by the Senate, and, though that could happen soon, until it does there will be little further FCC action on new allocations. When those new allocations do become official, by revision of Part 2 of the FCC Rules. U.S Amateurs will still face a rule-making proceeding to determine how the new band will be used; class of licensee, power, and type of emissions. At best, the whole procedure could take many months, and with the severe staff cuts the Commission is facing it could stretch out indefinitely.
$10-\mathrm{MHz}$ Operation on January 1, 1982 , is expected by Amateurs of a number of countries whose administrations have already implemented the WARC changes.

Introducing incredible tuning accuracy at an incredibly affordable price: The Command Series RF-3100 31-band AM/FM/SW receiver." No other shortwave receiver brings in PLL quartz synthesized tuning and all-band digital readout for as low a price. ${ }^{\text {t }}$ The tuner tracks and "locks" onto your signal, and the 5 -digit display shows exactly what frequency you're on.

There are other ways the RF-3100 commands the airways: It can travel the full length of the shortwave band (that's 1.6 to 30 MHz). It eliminates interference when stations overlap by narrowing the broadcast band. It improves reception in strong signal areas with RF Gain Control. And the RF-3100 catches Morse
communications accurately with BFO Pitch Control.
Want to bring in your favorite programs without lifting a finger? Then consider the Panasonic RF-6300 8-band AM/FM/SW receiver (1.6 to 30 MHz) has microcomputerized preset pushbutton tuning, for programming 12 different broadcasts, or the same broadcast 12 days in a row. Automatically. It even has a quartz alarm clock that turns the radio on and off to play your favorite broadcasts.

The Command Series RF-3100 and RF-6300. Two more ways to roam the globe at the speed of sound. Only from Panasonic.
*Shortwave reception will vary with antenna, weather conditions, operator's geographic location and other factors. An outside antenna may be required for maximum shortwave reception.
\star Based on a comparison of suggested retail prices.

This Panasonic Command Series" shortwave receiver brings the state of the art closer to the state of your pocketbook.

With PLL Quartz SynthesizedTuning and Digital Frequency Readout.

Panasonic. just slightly ahead of our time.

A circuit that features input and output lowpass filters and a vco

In recent years, facsimile transmission by Amateur Radio has been attracting increasing interest. ${ }^{1}$ Thus, since September, 1980, the official bulletin of the DARC is regularly transmitted in facsimile by DJ8BT at Frankfurt. Most Amateur stations operating in this mode are using second-hand commercial or military equipment, although a number of home-built facsimile recorders are in use as well.

In the facsimile transmitter, the picture or document to be transmitted is scanned photoelectrically, the resulting video signal being used to amplitude modulate a carrier of constant frequency, conventionally in the range from 1300 to 1900 Hz . The modulated carrier is sent via a line or radio channel to the facsimile recorder, which converts the amplitude variations into a copy of the original picture or document.

The amplitude-modulated facsimile signal is most suitable for transmission over line circuits, where the transmission-loss variations with time can be kept within $\pm 1 \mathrm{~dB}$. When sent by radio, however, especially over long-range circuits, it is particularly vulnerable to amplitude changes caused by fading. One solution to this problem is the transmission of the a-m facsimile signal by a frequency-modulated voice channel of sufficient quality, thus employing doublemodulation technique (emission F4 with amplitudemodulated subcarrier). Due to the large bandwidth required, this procedure is confined to UHF.

high-frequency । radio transmission

For high-frequency radio circuits, therefore, other techniques have to be used. One implies that the a-m

an a-m/fm converter for facsimile transmission facsimile transmission

signal from the facsimile scanner is demodulated to produce the video signal, which is then used for modulating the carrier frequency of the high-frequency transmitter (emission F4 without subcarrier). For most purposes, the frequency is chosen to be f_{0} -400 Hz for white and $f_{0}+400 \mathrm{~Hz}$ for black, f_{0} being the nominal transmitting frequency. ${ }^{2}$ However, for meteorological charts the black and white limits are reversed, and on low-frequency circuits the limits f_{0} $\pm 150 \mathrm{~Hz}$ are used. ${ }^{3}$
Alternatively, the a-m facsimile signal is converted into an audible frequency-modulated signal, which is then used to modulate a high-frequency radiotelephone transmitter (emission A4 with frequency-modulated subcarrier). Especially, if a properly adjusted SSB transmitter is used, the emission (A4J with fm subcarrier) will be equivalent to F 4 without subcarrier. This is the method preferred by the International Radio Consultative Committee (CCIR). As a standard, the subcarrier frequency is set to 1500 Hz for white and 2300 Hz for black, ${ }^{2}$ with the limits reversed for weather charts. ${ }^{3}$

Because most commercial and military facsimile apparatus on the surplus market lacks the fm-subcarrier facility, the need arises for modulation conversion when such apparatus is to be used on high-frequency channels. Whereas an a-m/fm converter is always required at the transmitting end, the F 4 signal can often be received rather satisfactorily without any additional equipment, simply by detuning the high-frequency receiver. However, fm/a-m converters are available, like the one recently described by PE1CMX. ${ }^{4}$

The facsimile apparatus I use is an FX-1-B, one of the classical facsimile transceivers designed and manufactured in the early 1940s by the Times Facsimile Corporation for the U.S. Army Signal

By Karl-Gustav Strid, SM6FJB, Sofiagatan 83, S-416 72 Gothenburg, Sweden

fig. 1. Block diagram of transmitting portion of facsimile converter CV-2/TX.

Corps. Part of facsimile equipment RC-120-B, it scans an $18 \times 22 \mathrm{~cm}$ original at 90 strokes per minute with index of cooperation $M=264$. The transmitted signal consists of an amplitude-modulated 1800 Hz carrier, the contrast (that is, the level difference between white and black) amounting to $8-15 \mathrm{~dB}$, depending on the recording technique employed at the receiving end. For such a set to be useful on longrange radio circuits, modulation converters for both the transmitting and the receiving end were designed and built. As a basic requirement, fm transmission was to conform with the $1500 / 2300 \mathrm{~Hz}$ standard. Furthermore, the contrast of the a-m signal was to be adjustable to any value up to 30 dB , positive or negative.

design of a transmitting converter

As an example of an existing facsimile $\mathrm{a}-\mathrm{m} / \mathrm{fm}$ converter, fig. 1 shows the block diagram of the transmitting circuits of facsimile converter CV-2/TX used by U.S. Army Signal Corps. ${ }^{5}$ The a-m facsimile signal is full-wave rectified and the carrier frequency suppressed by a lowpass filter. The video voltage thus produced is passed to a reactance-modulator stage controlling the frequency of an oscillator working slightly below 100 kHz . Beating this variable-frequency output with that from a fixed oscillator at 100 kHz yields the desired audible fm signal, which after lowpass filtering and amplification, is fed to the microphone input of the radio transmitter. (A similar heterodyne technique has been used by HA5WH for generating teleprinter AFSK signals. ${ }^{6}$)

The present design is based on a different approach, as shown in fig. 2. The video signal obtained
by full-wave rectification and lowpass filtering of the a-m facsimile signal is used, after contrast adjustment, to control the frequency of a square-wave oscillator, whose output is lowpass filtered to produce a sinusoidal fm signal.
The a-m facsimile signal may be presented to the converter with either positive or negative contrast. In the former case the white level is nominally 1 mW across 600 ohms (775 mV), the black level lying 8 to 30 dB lower; in the latter case these levels are reversed. The fm signal ouput to the radio transmitter conforms with the recommendations of the CCIR and the International Telegraph and Telephone Consultative Committee (CCITT), ${ }^{2}$ white corresponding to 1500 Hz and black to 2300 Hz .

circuit description

The complete circuit of the facsimile transmitting converter appears in fig. 3, and its various parts are analyzed below.
Rectifier and video filter. A small input transformer, T 1 , isolates the converter from the facsimile apparatus; it can be omitted if the units have a common ground potential. A precision half-wave rectifier is built around amplifier U1A. The negative half-periods of the a-m signal are presented with reversed sign across R 4 at the summing point of the amplifier U1B, where the original signal is added through $\mathrm{R5}$ and $\mathrm{R6}$; balanced full-wave rectification occurs by adjustment of R6.

The video voltage is separated from the carrier by an active filter of third-order Darlington response, consisting of a simple lag circuit, U1B, and a Sallen-and-Key lowpass circuit, U1D, with an added highpass path, U1C, to insert a notch at twice the carrier

fig. 2. Block diagram of alternative facsimile transmitting converter.
frequency (3600 Hz). The filter was built with readily available plastic-film capacitors of 2.5 percent tolerance and metal-film resistors of the E48 series having 1 percent tolerance. Fig. 4 shows the response of the video filter.

The video signal is delivered negative with respect to ground; it can be measured at test point TP1. The input potentiometer, R1, is set to yield approximately -2.5 volts at TP1 for maximum input signal. Due to amplifier offset, an output is likely to be present at

fig. 3. Circuit diagram of facsimile transmitting converter (continued).

TP1 for zero-input signal; this error will be eliminated in contrast adjustment.

Contrast adjustment. Video contrast, which may be positive or negative and of arbitrary magnitude (to about 30 dB), is adjusted in a two-stage dc processor ($\mathrm{U} 2 \mathrm{~A}, \mathrm{U} 2 \mathrm{~B}$), shown in simplified form in fig. 5 .

In the first stage, a constant voltage, u_{0}, is added to the video signal, u_{1}, so that zero output is produced at test point TP2 when the a-m facsimile signal is set to its nominal maximum amplitude. The stage gain (A, determined by the resistance ratio of R15 to $R 12$) is adjusted to obtain -800 mV at TP2 when the
input a-m signal is reduced by the nominal contrast. If the converter is to be used with several different facsimile scanners, any relevant number of contrastsetting resistors (R15) may be used; the actual contrast is selectable by switch S 1 .

The second stage is used as a summing or subtracting amplifier. Resistors R16, R17, R21, and R22 have a 1 percent tolerance. For an a-m facsimile input of positive contrast, a further constant voltage ($u_{L}=1500 \mathrm{mV}$) is subtracted from the signal to yield at test point TP3:

$$
\begin{equation*}
u_{2}=-u_{L}-A\left(u_{1}+u_{0}\right) \tag{1}
\end{equation*}
$$

where A is the stage gain of the first stage (U2A). Observing the negative sign of u_{1}, we find $u_{2}=-1500 \mathrm{mV}$ for a maximum (white) and $u_{2}=-2300 m V$ for a minimum (black) input signal. For an input of negative contrast, the sign of the video signal is reversed, and a constant voltage ($u_{H}=2300 \mathrm{mV}$) subtracted so that, at TP3,

$$
\begin{equation*}
u_{2}=-u_{H}+A\left(u_{1}+u_{0}\right) \tag{2}
\end{equation*}
$$

Thus, $u_{2}=-2300 \mathrm{mV}$ for maximum (black) and $u_{2}=-1500 m V$ for minimum (white) signal.

Transistor Q1 provides a low-impedance source for the voltage fed to R21; otherwise the source impedance would affect the stage gain of U2B in transmission with positive contrast.

Those who wish to transmit facsimile by direct frequency modulation of the transmitter's carrier oscillator may use the adjusted video signal at TP3 as the input.

Voltage-controlled oscillator. The heart of the oscillator is U3, a monolithic IC comprising a comparator, single-shot multivibrator, and a gated precision current source with an internal voltage reference. The device is manufactured by Raytheon. Besides the original version RC (RM, RV) 4151, an improved version, the RC 4152, has been announced; the latter was not, however, available to me.

The negative video voltage at TP3 is summed with positive-charge pulses from pin 1 of U 3 into an integrator, U2C. The integrator output is fed into the comparator at pin 7 of U3, thus controlling the multivibrator. The pulse-repetition frequency will settle so that the average value of the current at pin 1 will equal the current due to video input. The magnitude of the charge pulses is determined by R29 and R30, which set the oscillator's voltage-to-frequency conversion factor.

Having a duty cycle that varies with frequency, the pulse train produced by U 3 is passed to the two-

fig. 4. Calculated (solid line) and measured (dots) characteristic of video filter. The carrier-suppression notch was measured at -60 dB at 3518 Hz .
stage flip-flop, U4, which provides a symmetrical square-wave train at one-fourth the original pulserepetition rate. The overall conversion factor is chosen to be $1 \mathrm{~Hz} / \mathrm{mV}$, that is, the limits 1500 and 2300 mV of the adjusted video voltage will correspond to 1500 and 2300 Hz respectively in the squarewave output.

No measure for offset compensation of U2C was found necessary.

Output filter. The square-wave train from U4 can be resolved into odd harmonics of its fundamental frequency, which implies that it can be changed into a sinusoidal signal by a filter that suppresses all components of frequency above three times the lowest

fig. 5. Processing of video signal. Switch $\mathbf{S} 2$ selects between positive and negitive contrast of the input $\mathbf{a - m}$ signal.

fig. 6. Calculated (solid line) and measured (dots) characteristic of output filter. The notches were measured at 4765 Hz and 6960 Hz .
carrier frequency used; that is, above 4500 Hz . On the other hand, this filter must pass the entire spectrum of interest - for a maximum carrier frequency of 2300 Hz and a maximum video frequency of 750 Hz , the filter cutoff frequency should not occur below

$$
2300 \mathrm{~Hz}+1.6 \times 750 \mathrm{~Hz}=3500 \mathrm{~Hz}
$$

To achieve such steep cutoff, the filter was given a fifth-order Darlington response. A simple lag circuit, U2D, is followed by two cascaded Sallen-and-Key stages, U5B and U5D, with additional highpass paths, U5A and U5C respectively. Thus, notches are produced at 7010 Hz and 4760 Hz respectively, yielding attenuation in excess of 40 dB above 4400 Hz and still keeping the passband attenuation below 1 dB up to 3400 Hz (fig. 6). The filter was implemented with 2.5 percent plastic-film capacitors and 1 percent metal-film resistors.
The final stage, U5D, is coupled to the transmitter through a small transformer, T2, if required; otherwise capacitive coupling may be used. Resistor R42 was included to provide a matched 600 -ohm output at T2; it may be omitted. The level of the output fm signal may be adjusted by changing the resistance of R32.

Power supply. The converter operates from a nega-tive-ground dc source of 12 volts nominal. For the contrast adjustment and voltage-controlled oscillator to work unaffected by any supply-voltage variations,
a regulated supply is provided at 8.25 volts; the voltage regulator, U 6 , is internally compensated for temperature drift. In addition, the operational amplifiers require a negative supply of -7.25 volts, which is furnished by a monolithic voltage inverter, U7. This device is a type ICL 7660 by Datel Intersil.

Proper operation occurs over the input-voltage range of $10.5-40$ volts; current consumption is 25 mA throughout this range.

construction notes

The prototype converter was built on a 3.7 by $4.3-$ inch (95 by 110 mm) piece of perf board, but the design can be readily transferred to an etched circuit board. In a definitive design, the simple carbon trimmer potentiometers used with the prototype will be replaced by multi-turn Cermet trimmers.

alignment procedure

The instruments required for alignment of the facsimile converter comprise a dc voltmeter, a cathoderay oscilloscope and, preferably, a frequency counter. Moreover, a sine-wave signal source is necessary; this may be the facsimile scanner.
Alignment is carried out as follows:

1. With a low-frequency $(50-\mathrm{Hz})$ sinusoidal signal applied to the converter input, R6 is adjusted to produce a symmetrical full-wave-rectified output signal at test point TP1, as shown on the oscilloscope screen.
2. A signal at the nominal carrier frequency (1800 Hz) and the nominal maximum level (775 mV) is fed into the converter. R1 is set to yield approximately -2.5 volts at TP1. Then R13 is adjusted for zero voltage at TP2.
3. The input signal level is reduced by the nominal contrast (typically $8-30 \mathrm{~dB}$), and R15 is adjusted to obtain -800 mV at TP2. If the converter is to be used with several contrast settings, this procedure is repeated for each position of S1.
4. The input signal is removed and TP2 is shorted to ground. With S2 set at position POSITIVE, R18 is set for -1500 mV at TP3, and with S2 at NEGATIVE, R19 is set for -2300 mV at TP3.
5. With -2300 mV at TP3 (S2 at NEGATIVE), R30 is adjusted for a frequency of 2300 Hz measured at the converter output. With -1500 mV at TP3 (S2 switched to POSITIVE), the frequency should then read 1500 Hz . The short at TP2 is removed.
The converter is now ready for use.

performance

Factors of importance to the converter's functioning are the responses of the filters and the linearity of

fig. 7. Square-wave response of video filter at 100 Hz (left) and 622 Hz (right).

fig. 8. Plots of the output frequency versus RMS input voltage at 1800 Hz for both positions of $\mathbf{S} 2$ with converter adjusted for 18-dB input contrast.
the voltage-controlled oscillator.
The measured characteristic of the video filter was found to closely reproduce the calculated behavior (fig. 4). Its step response (fig. 7, left) shows $340 \mu \mathrm{~s}$ rise time, about 12 percent overshoot and a slight oscillation of $400 \mu \mathrm{~s}$ half-period. The smallest picture element to be resolved in a facsimile transmission with $M=264$ and 90 scanning strokes per minute, having a duration of some 804μ s (corresponding to a 622 Hz square-wave train), is well rendered by the filter (fig. 7, right).

fig. 9. Output signal of 1500 Hz and 2300 Hz (bottom) produced by $100-\mathrm{Hz}$ square-wave train (top) applied to input of video filter.

fig. 10. Overall response (bottom) to burst-modulated $1800-\mathrm{Hz}$ sine wave (top) applied to converter input, producing at TP3 a video signal (center) alternating between $\mathbf{- 1 5 0 0 ~ m V ~ a n d ~}-\mathbf{2 3 0 0} \mathrm{mV}$. Burst duration $1100 \mu \mathrm{~s}$ (left) and $555 \mu \mathrm{~s}$ (right).

No deviation from linearity could be observed between input voltage and output frequency (fig. 8). With TP3 shorted to ground, the frequency of oscillation was measured to 5.7 Hz at pin 3 of U 3 , confirming that any offset adjustment of the oscillator could be omitted.

The output filter showed a slightly elevated response in the passband near cutoff (fig. 6) as compared to its calculated performance. This was due to tolerances of the filter components, especially the capacitors, and resulted in a 3 percent (0.3 dB) increase in output amplitude from 1500 Hz to 2300 Hz . However, in view of the baseband response of the transmitter to be used, no correcting measures were taken.

The overall response of the converter (figs. 9 and 10) is sufficient to reproduce the $800-\mu \mathrm{s}$ bursts representing the smallest picture elements. For abrupt changes in input level, a slight overshoot occurs in the output envelope; the observed 7 percent (0.6 dB) fluctuation is smaller than will be seen with certain teleprinter audio-frequency-shift keyers. ${ }^{7}$

The rms output signal at pin 14 of U5D amounts to 1.0 volt. The signal magnitude may be altered by a
change of R32, the output amplitude varying inversely with resistance.

references

1. Specialized Communication Techniques for the Radio Amateur, "Facsimile," Chapter 4. American Radio Relay League, Newington, Connecticut, 1975.
2. "Phototelegraph Transmission over Combined Radio and Metallic Circuits," Recommendation T. 15 of the CCITT, in CCITT 6 th Plenary Assembly, Orange Book, Vol. 7, International Telecommunication Union, Geneva 1977: also Recommendation 344-2 of the CCIR, in Recommendations and Reports of the CClR, 14th Plenary Assembly, Kyoto, 1978, Vol. 3, International Telecommunication Union, Geneva, 1978.
3. "Facsimile Transmission of Meteorological Charts Over Radio Circuits," Recommendation T. 16 of the CCITT; also Recommendation 343-1 of the CCIR (cf. Ref. 2)
4. W.O.M. Janssen, "Ontvangst en Registratie van FacsimileDocumenten," Electron, jaarg. 35, 1980, pages 10-14, 149-150, 205-206, 273-275
5. Converter CV-2/TX, War Department Technical Manual TMi1-2252,
U.S. War Department, Washington, 1944.
6. A. Gschwindt, "Audio-Frequency Unit for RTTY Transmission," Radio Communication, Vol. 48, 1972, pages 356-357.
7. D.J. Goacher and J. G. Denny, The Teleprinter Handbook, Radio Society of Great Britain, London, 1973, page 7.9.
ham radio

up-conversion receiver for the
 high-frequency bands

This receiver is designed as a group of modules and boards. Front panel reflects clean layout and operator convenience.

author's note

The object of this two-part construction project is strictly educational. I wanted to see if it was possible to produce a fairly good unit with readily available parts and, if so, to go on to design and construct a transceiver. Because of this, the module construction was done in breadboard fashion. There are no board layouts available, but some of the photos show typical construction techniques used throughout.

Last month, in part one of this two-part article, I described the basic design of my up-conversion receiver, then went on to discuss the mixer stages, i-f filter, and BFO. This month, in part two, I will complete my discussion of the up-conversion high-frequency receiver, beginning with the audio and AGC board.

audio and AGC board

The product-detector output is terminated in 51 ohms on the audio board and drives both the audio output circuitry and the AGC circuitry as shown in fig. 10. A two-pole Butterworth lowpass active filter provides 20 dB gain and reduces the wideband noise from the i-f output. A summing amplifier provides an auxiliary audio input for CW sidetone or a DX spotting net receiver. Power gain is provided by an LM380. A few additional $d B$ of negative feedback is used to reduce the LM380 hiss and distortion to a negligible level. The over-all audio gain is 48 dB maximum. The bandwidth is $150-2400 \mathrm{~Hz}$. Total harmonic distortion is better than -60 dB at 0.8 watt output.

The AGC is an audio-driven hang-type system. Much time was spent deciding what arrangement to

By George Cutsogeorge, W2VJN, Plasma Physics Laboratory, Princeton University, P.O. Box 451, Princeton, New Jersey 08544

fig. 10-1. Audio and AGC schematic (B3 board).
use, because much of the "operating character" of the receiver stems from its AGC system. One need only to listen to some of the modern transceivers to note that an otherwise adequate receiver can be almost ruined by poor AGC system design.

The hang-AGC system allows the decay time constant to be set very long to eliminate overshoot on strong CW signals. Many tests were run, and I found that an attack time faster than 10 milliseconds would result in the receiver responding too readily to single noise spikes, such as those produced by oil burners and wall switches. Of course, if the attack time constant is too long, each transition from weaker to stronger is accompanied by a large overshoot. The required attack time is easily obtained at audio frequencies rather than at $i-f$, and the resulting circuitry is easy to implement and is noncritical. For a step input of no signal to one millivolt, this receiver overshoots less than 2 dB . There is no overshoot on dots and dashes of a CW signal after the initial acquisition. It sounds quite smooth on SSB and CW.
The gain of op amp U3A determines the normal operating level in the product detector. This is because the minimum signal that will create AGC voltage has a peak voltage just adequate to overcome the drop in the IN914 rectifier. For the AGC threshold, the level at the product detector input is -17 dBm . The attack time is controlled by the 1 k resistor. The gain of U3B is set so that the 2N5640 FET is biased off for the signals that would normally activate the AGC. When the signal drops in level or disappears, the 2N5640 turns on and rapidly discharges the AGC capacitor through a 100 k resistor. The hold time is determined by the $15 \mu \mathrm{~F}$ capacitor in the 2N5640 gate circuit. The AGC switch allows for selection of 0.3 second or 0.7 second. U3C provides the offset volt-
age required by the MC1590 i-f amplifiers. The gain of the U3C circuit is held low to provide a slope of about 7 dB to the over-all AGC characteristic. Control voltage for the front-end attenuator is supplied by U3D. The threshold adjustment is normally set for 100 microvolts.

synthesizer

The synthesizer locks a $45-$ to $75-\mathrm{MHz}$ VCO to a $5.05-5.55-\mathrm{MHz}$ VFO in $0.5-\mathrm{MHz}$ bands, as selected by an offset crystal oscillator. The offset signal could also be synthesized, but in the interest of simplicity and minimizing spurious outputs, a crystal oscillator was chosen.
$45-75 \mathrm{MHz}$ VCO. This VCO uses a grounded-gate U310 FET in the Colpitts configuration. See fig. 11. One of four ranges may be selected by applying 8 volts to a range-select input. PIN diodes are used to minimize stray capacitance. Tuning is accomplished by an MV104 varactor. The varactor is returned to -8 volts, and the normal range of the tuning voltage is ± 5 volts. The coils are adjusted so that the maximum of each range is the fourth root of the over-all ratio times the minimum frequency; that is,

$$
\begin{align*}
& \text { range } 1 \text { max }=\sqrt[4]{\frac{75}{45}} \times 45=51.13 \mathrm{MHz} \tag{1}\\
& \text { range } 2 \text { max }=\sqrt[4]{\frac{75}{45}} \times 51.13=58.09 \mathrm{MHz} \tag{2}\\
& \text { range } 3 \text { max }=\sqrt[4]{\frac{75}{45}} \times 58.09=66.01 \mathrm{MHz} \tag{3}\\
& \text { range } 4 \text { max }=\sqrt[4]{\frac{75}{45}} \times 66.01=75.00 \mathrm{MHz} \tag{4}
\end{align*}
$$

The purpose of range selection is to improve oscillator stability and to minimize the VCO gain constant for reducing phase noise. The VCO range is selected by a diode matrix on the crystal-oscillator board.

fig. 10-2. Audio and AGC schematic (B3 board), continued from previous page.

fig. 11. 45 to $75-\mathrm{MHz}$ VCO schematic (part of M7 module). Unit uses a grounded-gate U310 FET in a Colpitts circuit. One of four ranges may be selected by applying 8 volts to a range-select input. Tuning is by an MV104 varactor.

A 2N5179 isolation amplifier couples a small amount of VCO output power to a 2N5109 power amplifier. This amplifier drives a two-way power divider. One output goes to the first mixer module at a $3-\mathrm{dBm}$ level. The other output is split to provide synthesizer feedback to drive the display module.
Crystal oscillator. Twelve crystal oscillators are used to select 12 bands. The limitation is in the switch itself, although twelve bands are more than adequate for my use. The receiver frequency coverage is shown in fig. 12. With this arrangement, all currently available bands are covered except for the
top 200 kHz of the 10 -meter band. Also, the three new bands are covered, and one spare (12) remains unused. The oscillator in use is selected by an 8 -volt level from the bandswitch.

Two types of oscillator circuit are used: the A type is for third-overtone and the B type is for fifth-overtone crystals (fig. 12). These circuits are very simple, and the price paid for this simplicity is that a certain amount of adjusting must be made with component values for reliable operation.

Each oscillator is adjusted to start and operate on the correct overtone, to remain there for $B+$ varia-

fig. 12. Crystal-oscillator schematic (B5 board). Twelve oscillators are used to select $\mathbf{1 2}$ bands. Two types of oscillator circuit are used. Circuit in A is for third-overtone and that in B is for fifth-overtone crystals. Receiver frequency coverage is shown in the table.

fig. 13. Phase-detector schematic (part of M7 module). vCO and crystal-oscillator outputs are mixed in an MC12002 IC. The two square waves representing the difference sideband signal are processed by an MC12040 phase and frequency detector. The LF356 IC operates as a differential loop filter.
tions of ± 2 volts, and to provide approximately the same drive level out of the module. It's not important that each oscillator be exactly on frequency, since the digital readout provides the receiver frequency accuracy. These frequencies vary about $\pm 1 \mathrm{kHz}$ in my receiver.

A 2N5179 isolation amplifier drives a lowpass filter through a 50 -ohm line to the synthesizer module. A 15-pF trimmer capacitor tips the frequency response to help keep a constant drive level across the 40 - to $70-\mathrm{MHz}$ band.

Phase detector. The VCO and crystal outputs are mixed in an MC12002 double-balanced modulator IC. See fig. 13. A lowpass filter selects the difference sideband signal, and one-half of a MECL comparator (MC10115) changes it to a square wave. Another half of the MECL comparator squares up the VFO output, and the two square waves are then processed by an MC12040 phase and frequency detector. This unit is functionally identical to the MC4044 but it is an MECL implementation and is usable to 80 MHz . Also, at any frequency, it provides less random jitter due to differ-
ential propagation delays between input and output. The MC12040 output drives a differential loop filter using an LF356. Some attenuation of the sampling frequency spikes is provided by the 180 pF capacitors in the loop filter.

The normal VCO operation voltage range is ± 5 volts. Under some conditions the VCO output can go below the crystal frequency. When this occurs, the feedback sense shifts to positive, and the loop will latch up with the VCO drive voltage at the negative rail. A second LF356 senses this condition, and jams the loop to a normal lock.

5-MHz VFO. This VFO uses a 2N5397 FET in the Vackar configuration, as shown in fig. 14. A surplus BC221 tuning capacitor is the main tuning element. I used it because of the high-quality worm drive that comes with it. The over-all tuning rate is about 14 kHz per knob revolution.

The output is taken through the capacitive tap across the tuned circuit. This method gives a good sine wave because of the high circuit Q. Two isolation stages buffer the output.

Introducing the first no crystal hand-held scanner. The Bearcat 100.

Now you can have the one scanner you've always wanted-a no crystal, fully synthesized hand-held scanner. The incredible, new, Bearcat 100.

Push button programming.

The new Bearcat 100 works just like the full size, no crystal Bearcat Scanners. Push button controls tune in all police calls, fire calls, weather warnings, and emergency information broadcasts, the split second they happen. Automatically.
All the features you want.
16 channels for storing

channel access. Even a liquid crystal display. Flexible antenna, earphone, AC adapter/battery charger and carry case are included.
frequencies. 8 band coverageincluding high, low, UHF and "T" public service bands; both the 70 cm and 2 meter amateur bands; plus, for the first time ever, both the military and federal government land mobile bands. Both automatic and manual search, lockout, scan delay, direct

Your Bearcat Dealer wants to hand you an earful.

See your Bearcat Dealer now for a demonstration of the amazing, new Bearcat 100. Get complete information about the world's one and only hand-held, no crystal scanner.

[^1]
fig. 14. 5-MHZ VFO (part of M7 module). A 2N5397 Vackar oscillator is used in this circuit. High circuit Q provides a good sine wave. Two isolation stages buffer the output.

The VFO has been very satisfactory in operation; however, I could have used heavier material than a minibox, because a shift of 100 Hz is noticeable if the receiver is turned upside down while listening to a CW signal. Flexing of the tuned circuit components causes this problem.

fig. 15. Receiver power-supply schematic (M8 module). Full-wave bridge circuits provide regulated positive and negative voltages for the receiver.

The short-term stability characteristics of this oscillator determine the over-all receiver performance. Therefore, high- Q components should be used in the oscillator tank circuit.

power supply

The power supply module schematic is shown in fig. 15, and the wiring diagram of the receiver in fig. 16.

display module

A six-digit counter displays receiver frequency. The counter is preset to minus 450,000 counts to subtract the first i-f from the displayed value. The counter then counts the synthesizer frequency but displays the signal frequency. A $10-\mathrm{MHz}$ clock generates the count gate. This oscillator can be set to zero beat with WWV to calibrate the display. The schematic is shown in fig. 17.

construction

The receiver is designed as a group of modules and boards with $50-\mathrm{ohm}$ interfaces. This design allows for flexibility during the construction phase; several of the modules were modified or reconstructed in some way. This receiver is strictly a breadboard unit, although it's easy to work on and is fairly sturdy from an electrical and mechanical viewpoint. Many of the modules are fastened to the sides of the frame and are easily removable. The sides may be unscrewed to gain access to the inner portions of the receiver; yet, the unit is operational in this condition. Some of the boards are fastened under the main deck and covered by shield cans. Module and board layouts are shown in the photos.

fig. 16. Interconnection diagram. The receiver is designed as a group of modules and boards with $\mathbf{5 0}$-ohm interfaces.

Several board construction techniques are used. The if circuitry is built onto blank printed-circuit material. Miniature terminal strips are soldered to the boards, and the components are mounted on the strips. This method requires no hole drilling except for the four mounting holes. The audio-AGC board is built on a VEROTM card, and the display module uses wire wrap. All boards have ground planes and use extensive bypassing.

All parts are readily available through mail-order houses. Suitable and equivalent SSB and CW filters are available from Fox-Tango Corp. The PTI and Minicircuits ${ }^{\text {TM }}$ components may be purchased direct.

Although an account was not kept, the cost was of the order of several hundred dollars for the receiver.

in conclusion

Was it worth the effort? Yes! I learned a great deal. I now have the feeling that a good transceiver can be built for about half the price of available units.

As for improvements, a few came to mind: There should be more filtering at the $5-\mathrm{MHz}$ sampling frequency. The switching sidebands are only down 80 to 85 dB . This is not sufficient with an open front-end design. The VCO and VFO should have better har-

fig. 17. Display-board schematic (B4 board). A six-digit counter displays receiver frequency.
monic filtering, which will eliminate the VFO fourth harmonic response from appearing at 21.2667 MHz as well as other spurious signals.

The VFO and synthesizer should be mounted in separate shielded boxes. Tank-circuit voltage in the VFO is quite high, and this field contributes to the filtering problem. Space should be allowed for more $3.18-\mathrm{MHz}$ crystal filters for operating flexibility.

acknowledgments

Credit is due to WB2DGJ, KB2NJ, and WA2QAF
for helping with the construction, and to WA2IFG (my XYL) and Grace (my secretary) for helping with the typing. Pictures were furnished by W2PJK.

bibliography

Gardner, Floyd M., Phaselock Techniques, John Wiley and Sons, second edition, 1979.
Norton, Dr. David E., "High Dynamic Range Transistor Amplifiers Using Lossless Feedback," Microwave Journal, May, 1976.
Saal, Rudolf, Handbook of Filter Design, AEG Telefunken, 1979.
Wetherhold, Ed E., "7-Element, 50-Ohm Chebyshev Filters Using Stan-dard-Value Capacitors," RF Design, February, 1980.
ham radio

At last, an inexpensive,

UNIVERSAL COMMUNICATIONS
A Division of Innovative Labs, Inc.
P.O. Box 339

Arlington, Texas 76004-0339

$\mathbf{\$ 7 4 9 . 9 5} \mathbf{\$ 6 9 9 . 9 5}$
Lots of 1 Lots of 10 NOT A KIT!

state-of-the-art

satellite TV receiver MODEL DL-2000

- Fully tunable audio with AFC
- Channel scan feature standard
- Remote control option available
- Jack for external signal metering
- LED bar readout indicates video quality
- Front panel selection of video polarity
- Built-in RF modulator and video output driver
- High quality construction, attractive packaging
- Local oscillator leakage minimized special mixer design

Accessories include:

- LNAs (\$595 and up)
- Power supplies for LnAs
- Feedhorns and antennas

HERE'S HOW THENEW DL. 2000 STACKS UP AGAINST THE COMPETITION

| | DL-2000 | MODEL K | MODEL ST |
| :--- | :---: | :---: | :---: | :---: |
| Built-in Modulator | Yes | Extra cost opt. | Extra cost opt. |
| Built-in Scan | Yes | No | No |
| Built-in Metering | Yes | No | No |
| Polarity Shift | Yes | No | No |
| Remote C̀ontrol | Plugs in extra cost | Yes | No |
| Clamping | True Clamping | Diode | Diode |
| External Video | Yes | Yes | Yes |
| External Audio | Yes | Yes | Yes |
| AFC Indicator | Yes | No | No |
| LNA Power | Feedline and
 Switchable | Yes | Feedlineturns on |

$\underset{\text { Fully Assembled }}{\mathbf{\$ 7 4 9 . 9 5}} \quad \underset{\text { Kit }}{\mathbf{\$ 7 4 0 . 0 0}}$
$\$ 974.95$
Fully Assembled

BOX 339
ARLINGTON, TX 76004-0339
UNIVERSAL COMMUNICATIONS
Our product may be copied, but the performance is never equalled.

The single-sideband transceiver is the standard "black box" of the modern station. Was there a time when Amateurs were without this popular means of communicating?

Old-timers can recall the days of the mid-fifties when SSB was new and exciting. In 1957, the Collins

Nevertheless, the basic idea for the SSB transceiver came about in April, 1937, when James J. Lamb, W1AL, then the Technical Editor of OST, completed the design of a "singlesideband duplex communication system" and had his sketch witnessed for posterity (fig. 1).
filter, which passes the lower (difference) sideband of 499 kHz and rejects the $501-\mathrm{kHz}$ signal. The wanted signal is amplified in a $500-\mathrm{kHz}$ passband amplifier and fed to a mixer for conversion.

The mixer injection signal is at 4.5 MHz and is derived from the ninth

fig. 2. Block diagram of the 1937-model SSB transceiver designed by W1AL. Transmitter portion is at the top, with the receiver portion at the bottom. All injection frequencies were generated by a $500-\mathrm{kHz}$ oscillator. This single-frequency design transmitted USB at 4 MHz . Because of the difficulties involved, sSB lay dormant for nearly $\mathbf{2 0}$ years, although the principles were well known and commercial SSB circuits had been in service since the early twenties.

Radio Company introduced the KWM-1 SSB transceiver; Herb Johnson, W60KI, was hard at work designing the prototype of the famous Swan series of transceivers.

But the concept of the SSB transceiver was actually developed in the spring of 1937! For twenty years the idea had lain dormant. War, and the lack of suitable sideband filters and stable oscillators, put SSB on the back burner for all except a few experimenters who toyed with this exotic form of communications.

Jim's novel transceiver worked in the 80 -meter Amateur band on a fixed frequency (4.000 MHz). A block diagram is shown in fig. 2. This clever design anticipated frequency synthesis decades before its time. The transmitter portion of the transceiver is at the top of the sketch. Starting, for example, with an audio tone of 1 kHz , the signal is amplified and mixed with a $500-\mathrm{kHz}$ carrier from a crystal oscillator. The sum and difference frequencies (499 kHz and 501 kHz) are passed through a crystal
harmonic of the $500-\mathrm{kHz}$ oscillator by virtue of a times-nine multiplier, or harmonic generator. The resulting signal is upper sideband, with the 1 kHz tone at 4.001 kHz .

Jim Lamb added a "replacement carrier" generator to supply a carrier at 4.000 kHz . Note that the carrier was radiated by a separate antenna. The purpose of the carrier, it is thought, was to ensure a reference frequency for the unstable receivers of those days. No information is provided in the drawing as to the relative
signal amplitudes of the carrier and the sideband signal.

The lower portion of the sketch represents the receiver portion of the transceiver. Referring to the block diagram, the incoming signal at 4.001 kHz is mixed with the $4.5-\mathrm{MHz}$ injection signal and the resulting signal, at 499 kHz , is amplified and passed to a diode detector receiving mixing voltage from the $500-\mathrm{kHz}$ crystal oscillator. The audio signal developed is passed to a headset and the eager operator.

W1AL clearly understood the principle of frequency synthesis, as all his mixing voltages were derived from a single crystal-controlled oscillator. To make sure everything functioned as it should, a diode monitor was added that sampled the carrier and the sideband signal.

So there it was! A breath-taking new concept that eventually would change Amateur Radio and commercial high-frequency communications techniques. But did this startling technique ever appear in QST? A look through the 1938 index and a search of the individual issues of the magazine reveal nothing. What had hap-

fig. 4. Log-periodic elements are insulated from the boom by a length of PVC plastic tubing. Two top bolts pass through element and tubing to make connections to transposed transmission line made of $1 / 4$-inch-diameter tubing. U bolts passed over PVC tubing to clamp element firmly to mounting plate, which is attached to boom by two additional U bolts.
pened to the great idea?
In a personal discussion with Jim Lamb (now living in California), I learned that the idea had been rejected by the General Manager of the League, at that time Kenneth Warner, because there was no interest in single sideband among Amateurs: the concept was too complex for Amateurs to understand, and the transceiver would be too expensive to build and too complicated to align. Thus the transceiver slumbered for two decades until postwar interest in this novel means of communicating

brought SSB into the Amateur bands to stay.

QST comfortably avoided SSB until the fall of 1947, when Mike Villard, W6QYT, and Art Nichols, WDTQK, appeared on SSB working Amateurs on 80 and 20 meters. (Before this date, one or two experimental Amateur SSB stations had been on the air, but their transmissions seemed not to be of general interest.) Now, the time was ripe. The January, 1948, issue of QST editorialized on the virtues of "single-sideband, suppressed carrier" transmission, and actual operational SSB equipment was featured. But by now Jim Lamb had left the League; it would be up to others to carry forward his far-sighted communications concepts.

a six-element wideband beam for 10

As every 10 -meter enthusiast knows, it is a difficult task to cover the whole 10 -meter band with most of the common Yagi or quad antenna designs. If the beam is tuned at, say, 28.6 MHz for operation at the lower end of the band, gain and front-toback ratio start going to pot near 29 MHz - and at the top end of the band, 29.7 MHz , the beam is relatively worthless. The same is true for beams peaked at the high end of the band: operation is severely hampered at the low-frequency end.

JH1ZGA, a Japanese Amateur
writing in CQ-ham radio magazine (Japan), has solved this problem with an adaptation of the log-periodic principle to the Yagi antenna. He describes a homemade LPY (log-period-ic-Yagi) beam consisting of four LPY elements plus a reflector and a director (fig. 3). The beam is easy to build, requires no adjustment, provides nearly uniform gain across the band, and exhibits an SWR figure ranging from about 1.5 -to-1 at 28.0 and 29.7 MHz to 1.1-to-1 at the design frequency of 28.6 MHz . Now, that's hard to beat!

The beam is built on a 2 -inch (5 cm) diameter boom, 15 feet 8 inches $(4.8$ meters) long. The elements are tapered, made of telescoping sections of aluminum tubing, the largest sections being 1 inch (2.5 cm) in diameter and the smallest being about $7 / 8$ inch (2 cm) in diameter. Element lengths and spacings are given in the drawing.

The transposed transmission line running between the elements is made of $1 / 4$-inch-diameter tubing, with the ends flattened to fit over the inner mounting bolts of the elements.
The reflector and director elements are clamped directly to the metal boom, whereas the four driven elements of the log-periodic cell must be insulated from the boom. There are a number of ways of doing this. The original JH1ZGA design calls for the elements to be slipped within a short length of plastic (PVC) conduit pipe, as shown in fig. 4. The conduit is then affixed to the boom by means of a U-bolt and mounting plate.

Impedance at the feedpoint (F-F) is about 200 ohms, so a 50 -ohm transmission line and a 4 -to- 1 balun transformer are used to provide a good match.

Since the log periodic cell of four elements provides gain, as do the parasitic elements, the overall gain figure of the beam is approximately equivalent to that of a six-element Yagi. Best of all, the gain and front-to-back ratio are realized across the whole 10 -meter band.

a word to the wise

The winter season is coming, with rain, snow, wind, and ice. Before the onslaught of bad weather it is a good idea to examine your antenna installation to make sure it will stay up when bad weather hits. The before and after photos of figs. 5 and 6 show what happened to one East Coast Amateur whose enthusiasm for a big signal was greater than his ability to install a proper support structure. The 90 -foot telescoping tower had three stacked monoband beams mounted on a heavy steel mast protruding from the top of the tower. A huge rotator was mounted at the top of the tower, too. The tower was firmly anchored at the base and house roof, and was self-supporting. But the designers of the tower clearly indicated in the data sheet what the maximum wind loading for the tower was; it was ignored. The result was that the tower twisted in heavy gusts of wind and the whole schmeer came crashing down one stormy night. Luckily,
the mess landed in the yard and no one was injured.

The unlucky Amateur is now back on the air with his big beams, but the whole antenna installation has been redesigned by a certified mechanical engineer to make sure that it will withstand winter weather.

You may not have a problem as serious as this, but the moral is clear make sure your antenna installation is robust enough to withstand the coming winter storms!

more on interference

My remarks last month on RFI (radio frequency interference) merely touched the tip of the iceberg. RFI is rapidly getting out of hand. RFI is a double problem that comprises both interference to communicators (Amateurs, CBers, and commercial communication circuits) and interference to others by communicators.

RFI travels from place to place by radiation, induction, or conduction. Radiation is electromagnetic propa-

fig. 5. July, 1980. The high-power antenna farm of a prominent East Coast DXer before the winter storms hit. The self-supporting crankup tower held stacked 20 - 15 - , and 10 -meter arrays, a heavy-duty rotator, and a side mounted 2 meter beam. All worked well until.....
gation through space. Conduction is transmission through an electrical circuit. Induction is transmission by means of a magnetic field. Transmission of RFI by an electrostatic field is also possible.

In practical terms, this means that radio noise can be radiated from the source to a nearby receiver, or can be coupled to the receiver through a common power source, or radiated from the power line to the receiver, or induced by proximity of source and receiver power lines.
RFI can be cured or attenuated in the majority of cases by a systematic investigation of the noise source and the transmission path. An important tool in the investigation of power-line RFI is a portable, multiband, batteryoperated receiver with a built-in loop-
stick antenna. The directional properties on the broadcast band of such a receiver will indicate a direction in which the interference source probably lies. Driving about an area "infested" with power-line noise usually provides a general indication of the noise source.

An important point to remember is that the area blanketed by interference is inversely proportional to the frequency of reception. That is, the closer the investigator gets to the noise source, the higher in frequency it can be heard. Thus, while listening a great distance from the noise source, it may be heard in the broadcast band but cannot be heard at, say 5 MHz . Drawing closer to the source, it can then be heard at 5 MHz but not at 30 MHz . Drawing still closer, the

fig. 6. The winter storms hit, and the tower fractured at mid-joint. Luckily, no one was injured when all of this metel tumbled down from the sky. Is your antenna designed to stay up?
noise may be loud at 30 MHz , but barely audible at 100 MHz . At this point, the search can be shifted into the fm broadcast band ($88-108 \mathrm{MHz}$) or into the Amateur 2-meter band.
Interference caused by radio transmitters of all types can be tracked in much the same manner with a directional antenna, although tracking is done on the frequency of transmission (or on a harmonic frequency). Perseverance, experience, and several receivers in an automobile can work wonders in the interesting and practical art of RFI tracking.

the spark discharge

The spark discharge is a common source of radio noise and TV interference, and it can be generated by a number of sources. The discharge sounds like a buzzing, rasping, popping noise, and appears as a band of horizontal dot-dash lines moving slowly up the screen of a television receiver. The width and intensity of the lines are dependent upon the strength and severity of the interference.

One prolific source of radio noise caused by spark discharge is the neon sign. High voltage is required to operate a neon sign, and radio noise can be caused when the neon pressure in the sign drops, causing flickering. The on-off ionization of the gas causes the radiation of a rough, spark-like radio noise that can travel for a great distance.

WA6FQG, Bill Nelson, an experienced RFI investigator, discovered bad interference on his own ham set one day. With the aid of his rotary beam he found the general direction of the noise and tracked it to a neon sign more than three miles distant. It was an animated sign over a nightclub. First, the letters TOP would flash, followed by the letters LESS, and then the complete word TOPLESS would flash.
Bill told the owner of the sign that it was causing severe interference to radios in the vicinity, but the owner couldn't care less. He told Bill that he
was probably the ham they were always hearing on the stereo whenever the topless dancers were at their best.

The sign is still flashing, but, luckily, Bill was planning to move away soon. Information Bill provided about RFI filters and sign maintenance fell on deaf ears. The dancers are still twirling their tassels and the neon sign flickers to this day. You win some, you lose some.

Bill Nelson is one of the nation's top-notch RFI investigators, who's done this type of work for over two decades for a large California public utility. He's summed up his vast knowledge of RFI in a new handbook, Radio Frequency Interference (Radio Publications, Wilton, Connecticut 06897). It's available from Ham Radio's Bookstore, Greenville, New Hampshire 03048, for $\$ 8.95$ plus $\$ 1.00$ for shipping and handling. I've had a pre-publication look at Bill's book and it is good.

an interesting observation on TVI

Interference caused by harmonics of the television receiver's sweep oscillator can be a nuisance on the Amateur high-frequency bands. They were not much of a problem to me on 20 meters, but recently when I tried 80 meters, the devilish buzzing signals nearly obliterated the band. While gazing at the TV receiver and wondering what to do, I noticed that the receiver has a three-wire, 120 -volt power cable and that it was plugged into a two-pronged wall outlet. An adapter plug was used that matched the three-prong TV plug to the wall plate. The ground wire of the threewire cable was attached to a pig-tail on the adapter. I noticed the pig-tail had not been grounded to the conduit bolt on the wall plate, but left hanging in midair.

Grabbing a screwdriver, 1 immediately attached the pig-tail to the wall plate bolt (fig. 7). Checking my receiver on 80 meters, I noted happily that the S -meter reading on the TV

fig. 7. Many homes built during the fifties and sixties are wired with wall plugs shown at left. The neutral wire (white, W) with a nickel screw is unfused and at, or near, ground potential. The other wire (black, red or blue with a brass screw) is hot, H . In most instances a third ground wire is run between all metal receptable boxes (G) and is grounded at the meter box. At the right is the newer receptacle in use since mid-sixties. Equipment ground (G) is separately grounded at the meter box and is coded green. House wiring varies from town-totown, so check yours and don't assume this wiring information is universal! If in doubt make the equipment ground connection through an $0.01 \mu \mathrm{~F}, 1.4 \mathrm{kV}$ ceramic disc capacitor.
oscillator harmonics had dropped nearly a quarter-scale! In 20 seconds of work I had reduced the racket from unbearable to merely annoying! Moral: Check your TV receiver. If the ground prong of the power plug is not grounded to the equipment ground wire of your wiring system, it would be a good idea to make this connection.

A few days later I tossed out the two-prong wall plate and substituted a new three-prong plate which automatically grounded the equipment ground wire of the TV power cord. Since modern appliances are all equipped with a three-wire power cable, examine your wall receptacles. If they have two conductors plus an equipment grounding wire, replace the old two-connector receptacles with modern three-connector designs. Wiring instructions are included with the new receptacles.
ham radio

communications receivers for the year 2000

Feedback amplifiers, i-f filters, i-f detectors,

 frequency synthesizers: part 2
Abstract

Part 1 of this article, which appeared in the November, 1981, issue discussed new approaches to receiver design, microprocessor applications in receivers, input filters, and input mixers. In this, the second and final part, I address feedback amplifiers, i-f filters, i - f detectors, and frequency synthesizers.

feedback amplifiers

The grounded field-effect transistor circuit using the CP643 has an intercept point of $35-40 \mathrm{dBm}$ relative to the output, which means that the gain labout 10 dB) must be deducted from the input. The noise figure depends on the source resistor. If the driving source is in the vicinity of 50 ohms, the noise figure will be about 3 dB . To get a lower noise figure a higher drive impedance is required.
Texas Instruments in Germany made a high-power field-effect transistor called the P8000, then replaced it with the P8002. This transistor has about $2-\mathrm{dB}$ noise figure when driven at 50 ohms. In addition, it uses a special metal housing and can dissipate more heat. This transistor appears to have been discontinued, but some are available from me (send an SASE).

A further reduction in noise with the same intercept point can be obtained by using feedback. The BFT66, made by Siemans (about \$3 each) exhibits a noise figure of about 1 dB and an intercept point of almost 40 dBm when used in the feedback circuit shown in fig. 6.
Noiseless feedback circuit. The circuit can be analyzed under the simplifying assumption that the com-mon-base transistor has an input impedance of 5
ohms, an infinite output impedance, and unity current gain, while the transformer is considered to be ideal. With these assumptions, it can easily be shown that a two-way impedance match to Z_{0} will be obtained if the transformer ratio is chosen such that $n=m^{2}-m-1$. With this choice the power gain will equal m^{2}, the load impedance presented to the collector will be $Z_{o}(n+m)$, and the source impedance presented to the emitter will be $2 \times Z_{0}$.

Usable turns ratios are obtained for $m=2,3$, and 4 , yielding gains of $6,9.5$, and 12 dB and load impedances of 3,8 , and $15 \times Z_{0}$ respectively.

It is seen that, similar to a conventional commonbase amplifier, the gain of the stage is determined by the ratio of load impedance, Z_{l}, to the input impedance, $Z_{i n}$. In this case, the gain is given by $Z_{i} / Z_{\text {in }}+1$; whereas it is just $Z_{I} / Z_{\text {in }}$ in the conventional configuration. The significant difference is that the transformer-coupled device provides a two-way impedance match, which is obtained by coupling the load impedance to the input and the source impedance to the output through the action of the transformer.

The dynamic range considerations for this device are similar to those of the directional-coupler circuit but with some important differences. First, the operation of the circuit depends on the completely mismatched conditions presented by the transistor to the circuit; that is, the emitter presents a short circuit and the collector an open circuit. Hence there is no requirement to introduce resistive elements for impedance matching as there was in the directional-coupler circuit. Therefore, a noise figure advantage is obtained with this circuit. Secondly, the source impedance of $2 \times Z_{0}$ presented to the emitter tends to give optimum noise figures. Finally, despite the small currents involved, relatively large output powers can be provided because of the high load impedance, which goes along with the higher gain versions.

The main disadvantage of the circuit is that the

By Dr. Ulrich L. Rohde, DJ2LR, 52 Hillcrest Drive, Upper Saddle River, New Jersey 07458
high load impedance tends to limit the bandwidth. Nevertheless, sufficient bandwidth can be achieved to provide broadband i-f gain with noise figures competitive with those which could previously be obtained only in very narrowband units.

As it is desirable to keep the dc operating level over a wide temperature range, an additional bias circuit was developed that maintains almost temperature-independent biasing.
Two-stage low-noise amplifier. Fig. 7 shows a two-stage amplifier that will operate up to $1,000 \mathrm{MHz}$ using this low-noise technique. The output lowpass filter prevents harmonics from occurring at the output. If this circuit is used as the second $i-f$ following the crystal filter of a receiver and drives the second mixer to obtain a lower i-f of, say, 9 MHz , we don't want any harmonics at the output that may cause intermodulation distortion products.

Two BFT66 stages are shown cascaded; the first with temperature-compensating bias. Depending on the turns ratio of transformers T1 and T2, different gains can be obtained. It's desirable to place the tap at the output transformer output so that the transformed input impedance is equal to 50 ohms.

Several other combinations of this amplifier are possible, and its significant advantage over previously published circuits is that it uses transformer, or "noiseless," feedback rather than resistive feedback, therefore the noise figure is substantially lower.

high-dynamic-range amplifiers

Conventional amplifiers built from single-stage cir-

fig. 6. The noiseless feedback circuit using a BFT66 with a noise figure of about 1 dB . An intercept point of almost 40 dBm is possible.
cuits suffer from in-band intermodulation distortion, and the previously described noiseless feedback circuit can only be set at gain values depending upon even turn ratios, as discussed.

Let's look at fig. 8, in which we see the second mixer of a receiver where the first $i-f$ is converted to a lower i-f such as 9 MHz . The output of the second mixer operates into a diplexer and, therefore, splits up the energy. The drive into the amplifier is therefore reduced by 3 dB , as only one sideband is available.
We find the familiar BFT66 circuit and a PNP/NPN output stage. Since this stage really is an emitter follower, its inherent feedback keeps the distortion low and the low drive impedance allows matching into various impedances.

This circuit is driven from the high-input-impedance point (collector) of the BFT66. To prevent any changes in output impedance, the output transformer of the BFT66 is terminated with 56 ohms. As a result, the PNP/NPN circuit has power gain, very little

fig. 8. Second mixer of a receiver chain, including the diplexer, low-noise amplifiers, and power-output stage.
feedback, and extremely low distortion. The noise figure is now determined by the BFT66 stage, and the second stage contributes very little. The other advantage of this circuit is that there are no tuned circuits; therefore, it can be used from a few hundred kHz to almost 100 MHz . This makes this circuit design very useful.

i-f filters

I mentioned earlier that there is a distinct difference between static and dynamic selectively. Static selectivity of a filter is defined as the selectivity one measures if a point-to-point measurement is taken and the curve is then plotted. If this is done more rapidly and we start to sweep the filter, then depending upon the sweep time the picture is going to change.
First, the filter shows a delay, which means it takes a certain number of milliseconds or microseconds before the signal arrives at the output. From the use of noise blankers, we note that a crystal in the receiving passband acts as a pulse stretcher, which means that the pulse of extreme amplitude and longer duration is changed into one of considerably lower amplitude and substantially lower duration. This effect is equal to the ringing noticed in reception of Morse code.
From the literature we know that several crystal filter types are available. Originally, one started out with mechanical filters, and the earlier mechanical filters also exhibited excessive ringing. The dynamic response of a filter is determined by its design. A filter with a rectangular-shaped response has the highest
selectivity and the highest ringing.
Let's consider a $200-\mathrm{Hz}$ CW filter with a shape factor of 3 and a substantial phase jump on the corners, which therefore results in excessive nonlinear distortion and ringing. In my recent paper, ${ }^{3}$ I presented several crystal filter computer programs and showed how to design crystal filters that avoid this ringing.

First of all, from filter theory, it is known that a single-tuned circuit has the least amount of ringing but insufficient selectivity. To duplicate a 6-8 pole crystal filter, $6-8$ discrete tuned circuits isolated by an amplifier are required. This is called synchronous tuning, and modern spectrum analyzers are still using this approach. If the bandwidth must be changed,

fig. 9. Amplitude response of a Bessel filter, a filter with flat group delay, and a Chebychev filter.

fig. 10. l-f section containing three i-f filters, switching arrangement, gain adjustment, and temperature-compensated high-level output stage.
each filter circuit must be tuned with a tracking circuit, which makes these analyzers expensive but gives perfect response. Mathematically, the equivalent of such a filter is "Gaussian shaped." It has the poorest selectivity but the best pulse response.
It should be noted that, for Amateur purposes, both CW and SSB are basically pulse-type modulation. In both cases, there is no carrier and no constant level. However, in the case of single sideband signals, several frequencies of different amplitude are available simultaneously. The human voice has harmonics, and if the circuit introduces distortion, we have a wider or splattered signal. Therefore, the single-sideband filter energy both inside the bandwidth and outside the bandwidth bounces against the skirts.
Let's take a look at fig. 9, which shows the three most important types of filter curves: Bessel response, flat delay, and Chebyshev. The Bessel response is an approximation of the Gaussian filter with improved skirt selectivity. The flat delay filter exhibits a constant group delay, or a group delay with an extremely small ripple. As a result, the pulse response and skirt selectivity are excellent. The disadvantage of this filter is its somewhat higher insertion loss. Finally, as a comparison, we see the Chevyshev filter with the familiar flat top in the passband, while the flat-delay filter shows a slight dip.
These filters are based on certain mathematical equations, as is the elliptical filter, which is not elliptical in the sense that it looks elliptical, but rather certain equations, called elliptical integrals, are used to calculate its characteristics. Modern computers and desktop calculators use these filters. I am currently evaluating some new types of filters that are computer optimized and easy to build.

The ultimate rejection of these filters is an important parameter, and also the termination on both sides affect performance. It is therefore very important how these filters are inserted into the circuit. Fig. 10 shows a recommended method using switching diodes and having a provision to adjust for the different gains at the different bandwidths. The German company, KVG, makes excellent filters. Their CW filter, XF9NB (available from Spectrum International), has a superior ringing performance.

For single sideband we find only one filter. If we change both the BFO as well as the second LO frequency in the receiver by 3 kHz , we can eliminate the second filter and still maintain a correct dial reading. In the section on frequency synthesizers, I show a simple circuit that can be used for the second LO and the BFO to shift the crystal frequency against an internal standard - a less expensive solution than using two filters.

i-f detectors

Multimode receivers require $\mathrm{a}-\mathrm{m}, \mathrm{fm}$, and SSB detectors. Since we want the audio at the same level, gain adjustments must be provided. Probably the best and least expensive solution for this problem is to use the SL624 Plessey IC. This chip contains the detection circuits for all three modes of operation.
Another attractive solution is to use the SL624 for fm only and the SL623 only for SSB and a-m, which allows somewhat greater flexibility in the design parameters. A third solution is to use the SL640/41 as the product detector if only SSB is required. This product detector requires the least amount of components but is not used very frequently. While it is more forgiving as far as high i-f levels are concerned, it is also less well known. A summary of i-f circuits is found in reference 4.

frequency synthesizers

Earlier I mentioned that we need a synthesizer for the BFO and for the LO. Having the BFO and LO synthesized allows i-f shifts and/or allows the use of the $2.4-\mathrm{kHz}$ filter for both upper and lower sideband. Fig. 11 is the schematic diagram of a synthesizer with a voltage-controlled crystal oscillator that is used as the second LO, and the $66-\mathrm{MHz}$ crystal can be pulled $\pm 1.5 \mathrm{kHz}$. The same technique can be used to build a BFO synthesizer by expanding the number of dividers and using a "soft" $9-\mathrm{MHz}$ crystal. It is possible to pull a $10-\mathrm{MHz}$ crystal about 1 or 2 kHz , and if the reference fequency is set at 100 Hz , this should be sufficient resolution to build an i-f shift system. New approaches are being developed to design simpler synthesizers. The most important is the frac-tional- N synthesizer, which is discussed below.

Conventional single-loop synthesizers use frequency dividers in which the division ratio, N, is an integer between 1 and several hundred thousand, and the step size is equal to the reference frequency. Because of loop-filter requirements, the decrease of reference frequency automatically means an increase of settling time.
It would be unrealistic to assume that a synthesizer with a reference lower than 100 Hz can be built, because the large division ratio in the loop would reduce loop gain so much that tracking would be very poor and the settling time would be several seconds.
If it were possible to build a frequency synthesizer with a $100-\mathrm{Hz}$ reference and fine resolution, this would be ideal because the VCO noise from 2 or 3 kHz off the carrier could determine the noise sideband; while the phase noise of frequencies from basically no offset from the carrier to 3 kHz off the carrier would be determined by the loop gain, division ratio,
and reference. Because of the higher reference frequency, the division ratio would be kept smaller. Traditionally, this conflicting requirement has resulted in multiloop synthesizers.
An alternative would be for N to take on fractional values. The output frequency could then be changed in fractional increments of the reference frequency. Although a digital divider cannot provide a fractional division ratio, ways can be found to accomplish the same task. The most frequently used method is to divide the output frequency by $N+1$ every M cycles and to divide by N the rest of the time. The effective division ratio is then $N+1 / M$, and the average output frequency is given by:

$$
\begin{equation*}
f_{o}=\left(N+\frac{l}{M}\right) f_{r} \tag{1}
\end{equation*}
$$

This expression shows that f_{o} can be varied in fractional increments of the reference frequency by varying M. The technique is equivalent to constructing a fractional divider, but the fractional part of the division is actually implemented using a phase accumulator. The phase accumulator approach is illustrated by the following example.

Consider the problem of generating 455 kHz using a fractional- N loop with a $100-\mathrm{kHz}$ reference frequency . The integral part of the division is $N=4$, and the fractional part is $1 / M=0.55$ or $M=1.8$ (M is not an integer). The VCO output is to be divided by five $(N+1)$ every 1.8 cycles, or 55 times every 100 cycles. This can be easily implemented by adding the number 0.55 to the contents of an accumulator every cycle. Each time the accumulator overflows (contents exceed 1), the divider divides by five rather than four. Only the fractional value of the addition is retained in the phase accumulator.

Arbitrarily fine frequency resolution can be obtained by increasing the size of the phase accumulator. For example, with a $100-\mathrm{kHz}$ reference frequency, a resolution of $105 / 10^{5}=1 \mathrm{~Hz}$ can be obtained using a $5-B C D$ accumulator.

This technique is being used in the Racal RA6790 and in some Hewlett-Packard signal generators. A more detailed description of this can be found in reference 5. Research engineers at Phillips have recently used a similar technique and have built a two-chip frequency synthesizer, HEF 4750 and HEF 4751, which is being distributed by Signetics. With these two chips and very little external circuitry, it is possible to build a synthesizer system to more than 1000 MHz with $100-\mathrm{Hz}$ step size. As the single-loop synthesizer is the cleanest of all the synthesizers, and as the noise sideband depends highly on the VCO, this new technique will mean a reduction in price and an increase in performance of simple synthesizers.

Signetics has several good application reports

KVG announces a new series of 9 MHz crystal filters complementing the standard XF-9xx model series. The new XFM-9xx series are Monolithic Crystal Filters with characteristics equivalent to the classical discrete crystal filters with corresponding part numbers.

Discrete model	Application	Monolithic Part No.	Ter ohm	${ }^{\text {nation }}$	Ban	
XF.9A	SSB	XFM.9A	50	30		
XF.9B	SSB	XFM-9B	500	30		
XF.9C	AM	XFM-9C	500	30		kH
XF-9D	AM	XFM-9D	500	30		
XF-9E	FM	XFM-9E	1200	30	12.0	
XF-9B-01	LSB	XFM-98-01	500	30		
XF.9B-02	USB	XFM-9B-02	500	30		
Also NEW standard filters: A new 10-pole SSB filter, model XF-9B-10 Shape factor: $1.5: 1,60 \mathrm{~dB}: 6 \mathrm{~dB}$ A new 8-pole CW filter, model XF-9P, 250 Hz BW Shape factor: $2.2: 1,60 \mathrm{~dB}: 6 \mathrm{~dB}$ Write for Data Sheets, Price \& Delivery. Export Inquiries Invited.						
1296 MHz EQUIPMENT						
Announcing the new 1296 MHz units						
by Microwave Modules.						
	Low Nois	Elve Preampitier	MMa 129			
Pus all our regular 1296 MHz Items antennas, fliters, triplers.						

TRANSVERTERS FOR ATV OSCARS 7, 8 \& PHASE 3

Transverters by Microwave Modules and other manufacturers can convert your existing Low Band rig to operate on the VHF \& UHF bands. Models also available for 2 M to 70 cm and for ATV operators from Ch2 2 Ch 3 to 70 cms Each transverter contains both a Tx up-converter and a Rx down-converter. Write for details of the largest selection available.
Prices start at $\mathbf{\$ 1 8 9 . 9 5}$ plus $\mathbf{\$ 6 . 5 0}$ shipping.
SPECIFICATIONS:
Output Power
Receiver N.F.
Receiver Gain
3 dB typ

Prime Power
30 dB typ.

Attention owners of the original MMt432-28 models: Update your transverter to operate OSCAR 8 \& PHASE 3 by adding the 434 to 436 MHz range. Mod kit including full instructions $\$ 26.50$ plus $\$ 1.50$ shipping, etc.

ANTENNAS (FOB CONCORD, VIA UPS)

$144-148 \mathrm{MHz}$ J-SLOTS
8 OVER 8'HORIZONTAL POL. +12.3 dBd D8/2M $\$ 63.40$ 8 BY 8 VERTICAL POL. D8/2M-VERT. $\$ 76.95$ $8+8$ TWIST

available for this synthesizer device. Its prime advantage is that a single-loop synthesizer can be built that uses a reference such as 1 kHz , and a resolution or step size of 100 Hz can be obtained, which is ten times the resolution. This is done in a technique similar to that of the fractional N, and the lockup time is determined by the $1-\mathrm{kHz}$ reference loop filter rather than the $100-\mathrm{Hz}$ filter system.
As the VCOs are so important, fig. 12 shows a combination of three VCOs, each covering 10 MHz . They can be used for a $10-\mathrm{kHz}$ to $30-\mathrm{MHz}$ receiver with a $75-\mathrm{MHz}$ i-f. The coarse tuning can be accomplished using a digital/analog converter, and the fine tuning can be done by the synthesizer. It is recommended that a two-bit D/A converter be used, which means that the frequency is coarse and preset with 100 kHz .

references

3. Ulrich L. Rohde, DJ2LR, "Crystal Filter Design with Small Computers," QST, May, 1981, pages 18-23.
4. Ulich L. Rohde, DJ2LR, "I-f Amplifier Design," ham radio, March, 1977, pages 10-19.
5. Ulrich L. Rohde, DJ2LR, "Low-Noise Frequency Synthesizers Using Fractional-N Phase-Locked Loops," Proceedings of Modern Solid-State Devices, Techniques and Applications for High Performance RF Communications Equipment, 1981 Southcon Professional Program.

bibliography

Haffner, E., "The Effects of the Noise in Oscillators," Proceedings of the IEEE, Vol. 54, No. 2, February, 1966, pages 179-198.
Heywood, Wes, and DeMaw, Doug, Solid State Design for the Radio Amateur, American Radio Relay League, Inc., Newington, CT 06111, pages 91-94.
Martin, M., DJ7VY, "Grosssignalfester Stoeraustaster fuer Kurzwellenund UKW-Empfaenger mit grossem Dynamikbereich," part 1/2, UKW-Berichte, 2/79, page 74 ff .
Martin, M., DJ7VY, "Moderner Stoeraustaster mit hoher Intermodulationsfestigkeit," cq-DL, 7/1978, pages 300-302.
Martin, M., "Rauscharmer UKW-Oszillator fuer einem Empfaengereingansteil mit grossem Dynamikbereich," cq-DL, 10/77, page 387.
Rohde, Ulrich L., DJ2LR, "Effects of Noise in Receiving Systems," ham radio, November, 1977, pages 34-41.
Rohde, Ulirich L., DJ2LR, "EK-56/4, The Receiver for 10 kHz . . 30 MHz ," Electronic Warfare, September/October, 1974, pages 83-88.
Rohde, Ulrich L., DJ2LR, "I-f Amplifier Design," ham radio, March, 1977, pages 10-19.
Rohde, Ulrich, L., DJ2LR, "Mathematical Analysis and Design of an Ultra Stable Low Noise 100 MHz Oscillator," Proceedings of the 32nd Annual Symposium on Frequency Control, 1978, pages 400-425.
Rohde, Ulrich L., DJ2LR, "Modern Design of Frequency Synthesizers," ham radio, July, 1976, pages 10-23.
Rohde, Ulrich L., DJ2LR, "Recent Developments in Shortwave Communication Receiver Circuits," NTC Conference Record, Vol. 2 IEEE Cat. (22.6.1/22.6.6); IEEE Cat. 796H1514-9.

Rohde, Ulrich L., DJ2LR, "Zur Optimalen Dimensionierung von UKW," Eingangsteilen Internationale Elektronische Rundschau, 5/1973, pages 103-108.
Rohde, Ulrich L., DJ2LR, "Zur Optimalen Dimensionferung von Kurz-wellen-Eingangsteilen," Internationale Elektronische Rundschau, 1973, No. 11, pages 244-280.
Winn, R.F.A., "Synthesized Communications Receiver," Wireless World, October, 1974, page 413.
H.P. 3335A Synthesizer/Level Generator Operating \& Service Manual. Racal RA6790 Communication Receiver Operating \& Service Manual.
ham radio

HOLIDAY SPECIAL

COMPLETE - ASSEMBLED AND TESTED - READY TO INSTALL - NOT A KIT AMATEUR TELEVISION BIICROWAVE DOWNCONVERTER
$50+$ dB SYSTEM GAIN
TUNES 2.1 GHz . -2.4 GHz .
PREAMPLIFIER $20+\mathrm{dB}$ GAIN @ 2.5 dB NF OUTPUT TUNES TV CHANNELS 2 TO 5 OUTPUT IMPEDANCE 75 OR 300 OHMS
FULL YEAR WARRANTY
PERFORMANCE GUARANTEED OR
YOUR, MONEY REFUNDED

\$179.95
 EA.

INCLUDING SHIPPING (U.P.S.)
$\mathbf{\$ 1 4 9 . 9 5}$ EACH - DEC. 1981 ONLY
VISA AND MASTERCARD ACCEPTED

CALL 804-622-8358

AVAILABLE SEPARATELY - FULLY ASSEMBLED AND TESTED
$10+\mathrm{dB}$ PREAMPLIFIER \$49.95, SLOTTED WAVEGUIDE ANTENNA ($15+$ dB GAIN) $\$ 29.95$, POWER SUPPLY $\$ 34.95$

EXTRA - PLESSEY - AVANTEK • EXTRA

WE NOW STOCK PLESSEY 1600 SERIES ICS
AVANTEK GPD SERIES AMPLIFIERS (GPD 401, GPD 402, GPD 403) - 12-14 dB GAIN 5 - 500 MHZ . SPECIAL $\$ 25.00$ ea.
AVANTEK VTO OSCILLATORS $\$ 130.00$ EA. CIRCUIT BOARDS FOR GPD 400 SERIES AMPS $\$ 2.00$ ea.
VIRGINIA RESIDENTS PLEASE ADD 4 : STATE SALES TAX … ADD $\$ 1.00$ PER ORDER FOR SHIPPING

the rf-power distributor

Another method for routing rf signals in your station

The problem of rf-power distribution in an Amateur Radio station has been solved using many methods. While visiting other Amateur stations I've observed techniques ranging from manually operated patch cords to the complex, remotely operated, coaxial-relay box.
The rf-power distributor described here will appeal to any Amateur who has several coaxial cables entering his station and the choice of operating more than one transmitter. The unit offers fingertip selection for instant optimizing of any antenna and transceiver combination. It is virtually maintenance free.

typical problem

I have two types of transceivers and three different antennas, each having a feed line. Many Amateurs have worked themselves into a similar situation by adding one antenna at a time followed by a long lapse before the next installation. This action results in a big outlay for coaxial cable, which has been carefully routed down towers, around eaves, and through wall-connecting boxes.

I do recognize that this problem is easily resolved by installing an antenna relay control box, thus eliminating all but one feedline. But with all my feedlines semi-permanently in place (and their expense being history), I chose to place the rf-power distributor in the station on the operating table. Indoor placement of this control also eliminates the possibility of relay malfunctions because of moisture and other problems.

fig. 1. Rf-power distributor circuit diagram.

obtaining parts

With a well-supplied junk box or a few visits to local hamfests, this project can be produced with a minimum of cost in just a few evenings. The main parts are a handful of SO-239 connectors and two good-quality ceramic rotary switches. The antenna rotary selector switch preferably should be the type that shorts out all but one position. This is a good feature that can be used to ground all butone antenna.

For the cabinet I used a $5 \times 7 \times 2$-inch $(12 \times 18 \times 5$ cm) inverted aluminum chassis. The removable top was cut and formed from a piece of vinyl-covered aluminum. I wired the unit with No. 14 AWG 1.6 mm) bus wire using direct routes. The schematic is shown in fig. 1.

construction notes

Two auxiliary positions were included: one for each of the selector switches. I had a limited amount of rear panel space for the connectors, so I wired my auxiliary connector to the antenna selector. If you have more than two rigs and no auxiliary antenna, a simple rewiring job can accommodate your situation. The front panel (photo) is labeled to satisfy either

By F.T. Marcellino, W3BYM, 13806 Parkland Drive, Rockville, Maryland 20853

Front view and rear view of the home made rf-power distributor.
condition. Of course, if you use a larger chassis, the problem will disappear with added connectors.*

The chassis was finished with several coats of DS-GM-283 Green Dupli-Color ${ }^{\text {TM }}$ automotive paint. Remember to mask the connector openings to prevent the paint from forming an insulator. The project was completed by installing four rubber feet and a pair of Heathkit knobs. I also included a selector position for my dummy load. For troubleshooting and off-the-air tune-ups this position has been used many times.

Most of my coax cables are the larger type RG$8 / \mathrm{U}$. As a result, they influence the natural resting position of the unit. I solved this problem by sandwiching the unit between my rotator control box and speaker cabinet.

The ceramic rotary switches have a dc-current capability of 3 A . This is adequate for any inputpower level up to the legal limit. I use these switches to carry power levels varying from 3 to 1000 W input with no contact degradation or change in the stand-ing-wave ratio. By quickly selecting the proper antenna, I can optimize my station for the band conditions at the moment.

Commercial coaxial-switch boxes have been available for many years. Two of them, at considerable cost, would provide this function. On the other hand, the rf-power distributor described here will do the same job and demonstrates that practical equipment can be inexpensive.

[^2]ham radio

EASTERN UNITED STATES:
AMATEUR ELECTRONICS SUPPLY

28940 Euclid Ave.
Wickliffe, OH 44092
(216) 585-7388

ELECTRONICS INTERNATIONAL SERVICE CORP.

11305 Elkin Street
Wheaton, MD 20902
(301) 946-1088

MIDWEST UNITED STATES:
AMATEUR ELECTRONICS
SUPPLY
4828 W. Fond du Lac Ave.
Milwaukee, WI 53216
(414) 442.4200

DIALTA AMATEUR RADIO
SUPPLY
212.48th Street

Rapid City, SD 57701
(605) $343-6127$

UNIVERSAL AMATEUR RADIO 1280 Aida Drive
Reynoldsburg, OH 43068 (614) 866-4267

WESTERN UNITED STATES:
AMATEUR ELECTRONICS
SUPPLY
1072 N. Rancho Drive
Las Vegas, NV 89106 (702) 647-3114

CW ELECTRONICS 800 Lincoln Street Denver, CO 80203 (303) 832-1111

HENRY RADIO, INC. 2050 S. Bundy Dr. Los Angeles, CA 90025 (213) $820-1234$

SOUTHERN UNITED STATES:
ACK RADIO SUPPLY COMPANY 3101 4th Ave. South
Birmingham, AL 35233
(205) 322-0588

AGL ELECTRONICS
13929 N. Central Expwy
Suite 419
Dallas, TX 75243
(214) 699-1081

AMATEUR ELECTRONIC SUPPLY

621 Commonwealth Ave.
Orlando, FL 32803
(305) 894-3238

AMATEUR ELECTRONIC

 SUPPLY1898 Drew Street
Clearwater, FL 33515
(813) 461-4267

AMATEUR RADIO CENTER
2805 N.E. 2nd Ave.
Miami, FL 33137
(305) $573-8383$

BRITT'S TWO-WAY RADIO 2508 N. Atlanta Rd.
Bellmount Hills
Shopping Center
Smyrna, GA 30080
(404) 432-8006

GISMO COMMUNICATIONS
2305 Cherry Road
Rock Hill, SC 29730
(803) 366-7157

MADISON ELECTRONICS
1508 McKinney Ave.
Houston, TX 77010
(713) 658-0268

N \& G DISTRIBUTING CORP. 7201 N.W. 12th Street
Miami, FL 33126
(305) 592-9685

RAY'S AMATEUR RADIO
1590 US Highway 19 South
Clearwater, FL 33156
(813) 535-1416 See Our Ads

Pages 1 \& 66
Call Or Stop-In find See HfL Equipment fit Your Favorite fimateur Dealer.
Write today for HAL's latest RTTY catalog.
HAL COMMUNICATIONS CORP.
Box 365
Urbana, Illinois 61801
217-367.7373

the half-square antenna

Practical information on feeding and operating this popular radiator

The half-bobtail or half-square antenna has begun to receive a substantial amount of attention in recent Amateur publications. This versatile antenna has yet to make the impression it deserves in actual field use, however. This is due, in my opinion, to a lack of practical information regarding methods of feeding it.

The purpose of this article is twofold. First, it is to discuss examples of feed systems for the half-square antenna that are currently in use at several stations in widely varying environments. Second, it explores the virtues of this antenna as a multiband performer.

The theory of operation of this antenna has been discussed by Ben Vester, K3BC. 1 Interested readers may refer to the bibliography for additional background.

feed system

The basic layout of the antenna is shown in fig. 1. Of primary interest to most Amateurs (beyond performance) is how to connect the coax and get the antenna fired up.

Several feed methods have been examined in terms of available parts, weathering, and ease of adjustment. By far the simplest is the parallel-tuned tank circuit (fig. 2).

Network L1C1 should resonate at the desired operating frequency. The values of $L 1$ and $C 1$ are calculated by:

$$
\begin{equation*}
L C=\frac{25,350}{f^{2}} \tag{1}
\end{equation*}
$$

where $L=$ inductance (mH)
$C=$ capacitance (pF)
$f=$ frequency (MHz)
A large value of L for a given frequency is desirable, because it decreases the Q of the $L C$ network, thus increasing the bandwidth of the feedpoint. A value of $13 \mu \mathrm{H}$ was chosen for L; therefore, for C at 7.15 MHz :

$$
\begin{equation*}
C=\frac{25,350 / 7.152}{13}=38.1 \mathrm{pF} \tag{2}
\end{equation*}
$$

In practice, a few additional turns for $L 1$ are needed. So two or three turns are added ($3 \mu \mathrm{H}$) to the calculated value for $L 1$. In my case, L is made of 15 turns of B\&W No. 30333 -inch ($7.6-\mathrm{cm}$) diameter coil stock, but any $15-\mu \mathrm{H}$ coil of No. 14 (1.6 mm) or larger wire will handle a kilowatt output.

Coils are easy to procure or wind, but capacitors are expensive, difficult to find, or both. Also, should a variable capacitor be desired for $C 1$, weatherproofing becomes a problem. Because of these constraints, I chose a homemade capacitor that could be made from inexpensive RG-8/U coax and easily weather-proofed with silicone sealant.

The capacitor value is calculated using eq. 2, and the appropriate length of RG-8/U cable is determined by the distributed capacitance listed in the literature for the properties of common transmission lines. For RG-8/U the value is approximately $30 \mathrm{pF} /$ foot (98.4

By Robert "Hasan" Schiers, NØAN, Box 1024, ISU Station, Ames, Iowa 50010
$\mathrm{pF} /$ meter). Therefore, if 38 pF is required, the desired length is found by dividing the capacitance per unit length for RG-8/U into the desired number of picofarads. That is, $30 \mathrm{pF} / 12$ inches $=2.5 \mathrm{pF} /$ inch ($0.98 \mathrm{pF} / \mathrm{cm}$), so that $38 \mathrm{pF} / 2.5 \mathrm{pF} /$ inch $=15.2$ inches or 38.6 cm . A 15.2 -inch (38.6 cm) length of RG-8/U will provide a $5-\mathrm{kV}$ capacitor at inconsequential cost. Weather-proofing is important.

It is important to note, however, that until the sealant has cured, it is not an insulator and will short out the capacitor at the treated ends. The capacitor need not slow the project down; rather, it can be assembled and weather-proofed first and set aside to cure while the rest of the project is carried out.

Refer to fig. 3 for capacitor details. The capacitor is formed by the center conductor on one end and the shield on the opposite end. Treat both ends (except for the wire at the connection point) liberally with silicone sealant. This produces a reliable capacitor that will stand high power levels.

The feed system is completed by the input tap setting. A good initial setting is to tap up from the ground side two to three turns for 50 ohms. By using an SWR bridge at the antenna, the tap may be set exactly for a $1: 1$ SWR at any part of the band you desire. The following is an adjustment procedure that has proven effective (refer to fig. 4):

1. Set input (low-side) tap at $21 / 2$ turns up from ground.
2. Set high-side tap at one turn greater than predicted in calculations.
3. Measure SWR across band and note the low point; this is primarily influenced by the high-side tap. If the low point is not in the area of the band you desire, move the tap higher for a decrease in frequency or move the tap lower for an increase in frequency.

fig. 1. General arrangement of the half-square antenna, which originally appeared in QST and later in reference 1. It was described in these publications by Ben Vester, K3BC.
4. Once the low point of SWR has been set at the desired portion of the band (no matter what its valuel, proceed to adjust the low-side tap $1 / 4$ to $1 / 2$ turn at a time to get a match of 1.2:1 or better at the desired operating frequency.

I've used this approach in three different environments. It has resulted in a match of 1.1:1 in no more than twenty minutes.

multiband operation

As may be seen from the wavelength relationships of fig. 1, this antenna, when constructed for 40 meters, is resonant on several other bands. By merely changing the feed system slightly, the antenna will perform very well on harmonically related bands. For example, the 40-meter array may be operated on 20 meters as a pair of half-wave verticals spaced one wavelength apart. While the phasing is not ideal, the performance of this antenna is very impressive, given the investment of time and money it requires. Table 1 shows the manner in which the antenna can be operated on harmonically related bands and what feed point changes are needed.

performance

At the time of this writing, this antenna has been evaluated in two ways. First, it has been compared

fig. 2. Antenna tuning network consists of a paralleltuned circuit, which features simplicity and ease of adjustment.

(by instant switching) with on-site antennas. In comparison with a full-wave loop vertically polarized and mounted 8 feet (2.4 meters) off the ground, the halfsquare array consistently outperformed the loop by two to three S-units. There were virtually no instances where the loop was superior to the half-square, regardless of time of day, bearing, or distance. The period of these observations was approximately one month of daily use.

This same comparison, that is, loop to half-square, was made in terms of communication effectiveness during the recent ARRL phone SS contest. For a similar 15 -minute period (in the same half hour) the half-square array produced over double the number of contacts that were achieved with the loop.
table 1. Characteristics of the half-square antenna as an harmonic radiator. Band design: $\mathbf{4 0}$ meters.

Amateur band	antenna operates as	feed
160 meters	$1 / 4 \lambda$ Marconi	bypass tuning network and feed against ground
80 meters	$1 / 2 \lambda$ end fed	add $\approx 100 \mathrm{pF}$ across existing coil cap. Input tap need not be readjusted.
40 meters	half-square array	as designed
20 meters	pair $1 / 2 \lambda$ verticals spaced 1λ	tap coil for fewer turns (total). Retap input. Change tuning cap.
10 meters	pair 1λ verticals spaced 2λ	tap coil for fewer turns (total). Retap input. Change tuning cap.

fig. 4. Tuning network is completely adjustable. The inductance is made of 15 turns of B\&W No. 3033 coil stock ($15 \mu \mathrm{H}$): capacitor is made of RG-8/U coax cable as described in the text. In this arrangement $\mathbf{C 1}$ is 38.1 pF. System resonates at 7.15 MHz .

In a second comparison, the half-square array was compared with a roof-mounted trap vertical with eight radials. Again, in virtually every case, the halfsquare array was superior. The half-square's superiority was 3 to 5 S -units.

In my own application, the half-square was compared with a center fed 130 -foot (40 -meter) dipole, at 35 feet (10.7 meters), using balanced wire feed and a tuner. During the day, the systems were nearly equal, with a slight edge given to the dipole. As soon as the sun set, however, the half-square array emerged as a truly superior, if not an amazing performer. My half-square pattern is broadside eastwest. I frequently operate between 1130 and $1300 Z$ from fall through spring. Each morning, I work approximately five to ten JAs with a mean signal report of 589 using a kW . In addition, I have worked VKs, ZLs, H44, and YB9 as well as other scattered Pacific and Asian countries. In the recent CO WW phone contest, I was able to compete in the pileups with the "big guns" for the very first time. It was rare for me to make more than four attempts to raise anyone. Countries in Africa and Europe were worked during the test as well as in Asia and the Pacific.

closing remarks

It seems we may have hit upon a complete antenna for a variety of Amateurs. It has proven to give high performance for DX as well as being more than adequate for normal use. It is efficient and easily fed. The half-square array is economical both in terms of initial investment and multiband applicability. The next time you get the bug to experiment with an antenna, try the half-square array. It may end your experimental urges (because of its high performance), or it may further stimulate you to try the extended approaches of parallel arrays recommended by the original author, Ben Vester. See you on 40, $160,80,20$ and 10.

acknowledgment

I wish to thank KDCQ for advice as well as AlOZ and WDOERH for their hours of comparisons and willingness to try something new with something old.

reference

1. The ARRL Antenna Anthology, American Radio Relay League, 1978 edition, pages 81-83.

bibliography

[^3]ham radio

INTRODUCING SONY'S NEW DIGITAL DIRECT ACCESS RECEIVER!

Revolutionary Instant Access Digital Shortwave Scanner

- Continuous Scanning of LW, MW, SW, \& FM Bands
- Instant Fingertip Tuning-No More Knobs!
- 6 Memories for Any Mode (AM,SSB/CW, \& FM)
- Dual PLL Frequency Synthesized-No Drift!

A Whole new breed of radio is here now! No other short wave receiver combines so many advanced teatures for both operating convenience and high performance as does the new Sony ICF-2001. Once you have operated this exciting new radio, you'll be spoiled forever! Direct access tuning eliminates conventional tuning knobs and dials with a convenient digital keyboard and Liquid Crystal Display (LCD) for accurate frequency readout to within 1 KHz . Instant fingertip tuning, up to 8 memory presets, and continuous scanning features make the ICF-2001 the ultimate in convenience.

Compare the following features against any receiver currently available and you will have to agree that the Sony ICF 2001 is the best value in shortwave receivers today:
DUAL PLL SYNTHESIZER CIRCUITRY covers entire 150 KHz to 29.999 MHz band. PLL, circuit has 100 KHz step while PLL2 handles 1 KHz step, both of which are controlled by separate quartz crystal ascillators for precise, no-drift tuning. DUAL CON. VERSION SUPERHETERODYNE circuitry assures superior AM reception and high image rejection characteristics. The 10.7 MHz IF of the FM band is utilized as the 2nd IF of the AM band. A new type of crystal filter made especially for this purpose realizes clearer reception than commonly used ceramic filters. ALL FET FRONT END for high sensitivity and interference rejection. Intermodulation, cross modulation, and spurious interference are effectively rejected. FET RF AMP contributes to superior image rejection, high sensitivity, and good signal to noise ratio. Both strong and weak stations are received with minimal distortion.

EXTENDED SPECTRUM CONTINUOUS TUNING

In stock for immediate delivery

OPERATIONAL FEATURES

INSTANT FINGERTIP TUNING with the calculator-type key board enables the operator to have instant access to any frequency in the LW, MW, SW, and FM bands. And the LCD digital frequency display confirms the exact, drift-free signal being received. AUTOMATIC SCANNING of the above bands. Continuous scanning of any desired portion of the band is achieved by setting the " L_{1} " and " L_{2} " keys to define the range to be scanned. The scanner can stop automatically on strong signals, or it can be done manually. MANUAL SEARCH is similar to the manual scan mode and is useful for quick signal searching. The "UP" and "DOWN" keys let the tuner search for you. The "FAST" key increases the search rate for faster signal detection. MEMORY PRESETS. Six memory keys hold desired stations for instant one-key tuning in any mode (AM, SSB/CW, and FM), and also, the " L_{1} " and " L_{2} " keys can give you two more memory slots when not used for scanning. OTHER FEATURES: Local, normal, DX sensitivity selector for AM; SSB/CW compensator; 90 min . sleep timer; AM Ant. Adjust.

SPECIFICATIONS

CIRCUIT SYSTEM: Fm Superheterodyne; AM Dual conversion superheterodyne. SIGNAL CIRCUITRY: 4 IC's, 11 FET's, 23 Transistors, 16 Diodes. AUXILIARY CIRCUITRY: 5 IC's, 1 LSI, 5 LED's, 25 Transistors, 9 Diodes. FREQUENCY RANGE: FM $76-108 \mathrm{MHz}$; AM $150-29,999 \mathrm{KHz}$. INTERMEDIATE FREQUENCY: FM 10.7 MHz .; AM 1st 66.35 MHz ., 2nd 10.7 MHz . ANTENNAS: FM telescopic, ext. ant. terminal; AM telescopic, built-in ferrite bar, ext. ant. terminal. POWER: 4.5 VDC/ 120 VAC DIMENSIONS: $121 / 4$ (W) $\times 2^{1 / 4}(\mathrm{H}) \times 6^{3 / 4}$ (D). WEIGHT: 3 lb .15 oz . (1.8 kg)

extending the range of the K9LHA 2-meter
 synthesizer

Although my CMOS 2-meter synthesizer, described earlier in ham radio, ${ }^{1}$ tuned only 146 to 148 MHz , capability was designed into the circuit and circuit boards for wider coverage. This was mentioned in my article, and it prompted a number of letters asking how to add $144-146 \mathrm{MHz}$ coverage. Until recently I'd not tried using that capability for a wider tuning range and could only indicate how the design was planned. Now, having actually modified a synthesizer, I'd like to share the results.

extending frequency coverage

Extending the range of my synthesizer involves the addition of one or two switches and some minor circuit changes as follows:

1. Remove the jumpers under U1 connected to pins 8 and 9 .
2. Connect the range switching circuit of fig. 1 to the input pads next to pins 8 and 9 of U .
3. Change crystal Y 2 to 47.3333 MHz .
4. Change crystal Y 1 to Y 1 freq. $=$ (47.3333-i-f/3) MHz. If i.f $=10.7$ $\mathrm{MHz}, \mathrm{Y} 1 \mathrm{freq} .=43.7666 \mathrm{MHz}$.
5. Increase C 12 to 39 pF and retune the VCO for a tuning voltage of 1.0 volt at 144.000 MHz in both receive
and transmit modes by adjusting T1 and C14.
6. Readjust T2 and T3 to the new crystal frequencies so that you don't overdrive the squaring amplifier (08/09). It may be necessary to increase R39 and R43 to 470 ohms or so, depending on the activity of your crystals.
7. Increase R25 to 1.5 k .

So that you can understand the reasons behind these changes, or improve upon the changes if you wish, let me briefly explain their intent. First, I suggest you spend a few minutes reviewing fig. 2 and the numbers directly beneath it in the synthesizer article. ${ }^{1}$

potential problems

A mixer in the synthesizer loop means that there are two VCO frequencies that will produce the same output frequency from the variable divider. Unfortunately, one of the two frequencies causes the phase detector to push the VCO away from, rather than toward, lock. In fact, lock will not occur unless it's forced in some way; preventing this condition is crucial in the design. One method is to restrict the VCO tuning range so that the wrong frequency cannot be reached; another is to select a high mixer i-f, so that the desired and image frequencies are separated as much as possible. The receive/transmit pulling circuit also helps since it

permits use of two, more precisely controlled tuning ranges for the VCO.

Because the desired and image VCO frequencies are separated by twice the variable divider input frequency (the " $\mathrm{i}-\mathrm{f}$ "), the minimum divide ratio plays a very important role in avoiding the unlock problem. Unfortunately, while a large minimum divide ratio is desired, dividers are limited in speed capability, and a compromise is necessary. I found a value of $N=400$ worked fine in my original design as well as in the fullcoverage version.

The formula in fig. 2 (reference 1) shows that both receive and transmit crystals (Y1 and Y2) must be changed to cover the new frequency range, and the new frequencies are shown here. When the new crystals are installed the oscillators can be retuned.

The nature of these oscillators is such that they must be tuned to the high side of the crystal frequency to ensure reliable starting. The slugs of T2 and T3 also serve to adjust the output level from the squaring amplifier (08/09).

tuning transformers T2 and T3

In making this adjustment, I found that the squaring amplifier behaved very badly if overdriven at the upper range of frequencies. It is therefore important that T2 and T3 be set so that the squaring amplifier just reaches clipping level. I also noted that T2 and T3 had to be detuned considerably from resonance. This resulted in an error in oscillator frequency. To allow tuning closer to resonance it was necessary to increase the value of the two emitter resistors, R39 and R43, to reduce oscillator output. Again, your need to do this will depend upon the activity of your crystals.

Although retuning alone allowed the VCO to cover the full $144-148 \mathrm{MHz}$ range, the tuning voltage came uncomfortably close to the supply voltage at the top end. Since I wanted to keep the tuning voltage within 1.0-5.0 volts to allow for temperature drift, I
made a slight increase in the padder capacitor value, C12.

After tuning the synthesizer to the top of its new range, I found loop stability had been degraded and settling time was much too long. Therefore I increased the loop-filter damping resistor, R25, to 1.5 k . A check with an f-m broadcast receiver showed that this change did not make any audible increase in sideband noise on the synthesizer output.

variable divider

The variable divider needs additional control inputs applied to pins 8 and 9 to tune the synthesizer over twice the range, as before. While it's possible to use another thumbwheel switch section for the MHz digit, the code required is not BCD; and a codechanging scheme would have to be used. The approach in fig. 1 is simply to use an additional toggle switch to choose between low ($144-146 \mathrm{MHz}$) and high ($146-148 \mathrm{MHz}$) ranges. Although this makes it a bit more difficult to read the operating frequency directly, the cost and complexity are much reduced. If you feel there's no need for receive and transmit frequencies on opposite sides of 146 MHz , only one range switch is required. The input to the switch comes from +8 (not +8 RX or TX), and the four diodes are not needed.

Here's hoping this information will help builders who wanted full band coverage. It's been fun hearing from builders of my synthesizer, and I'm interested in both their successes as well as problems. As before, I'll be glad to answer questions if accompanied by a self-addressed, stamped envelope.

I have plenty of the VCO coil forms ($\$ 1$, postpaid, including wire), and I understand that Radio Kit still has the circuit boards and parts available.*
*RadioKit, Box 411, Greenville. New Hampshire 03048.

reference

1. Tom Cornell, K9LHA, "cmos 2 -Meter Synthesizer," ham radio, December, 1979, pages 14-22.

Tom Cornell, K9LHA

STILL MORE

 USABLE ANTENNA FOR YOUR MONEY . . PLUS 30 Meters!Butternut's new HF6V automatic bandswitching vertical lets you use the entire 26 -foot radiator on $80 / 75,40,30,20$ and 10 meters (full quarterwave unloaded performance on 15 meters). No lossy traps. Butternut's exclusive Differential Reactance Tuning ${ }^{\text {™ }}$ circuitry uses rugged ceramic capacitors and large-diameter self-supporting inductors for radiation efficiency and DX performance unmatched by conventional multiband designs of comparable height.

For complete information concerning the HFGV \& other Butternut products see your dealer or write for our free catalog.

BUTTERNUT ELECTAONICB co. GARY AIRPORT BOX 356E Rte. 2
SAN MARCOS, TX 78666

medium-scan television

Recent developments in an interesting Amateur Radio communications mode

In 1958 when Copthorne MacDonald began experimenting with the fundamentals of slow-scan television, it was assumed that the only kind of image that could be sent over the high-frequency Amateur bands was unimportant, low-resolution still pictures. Time has passed, and it has turned out that even though the pictures are of relatively low resolution, now in color, they serve a very important place in Amateur communications.

With the low cost of digital memory today, it is certain that higher resolution digital scan converters will be designed and built that will improve the present quality of pictures by at least one hundred percent. Most of us today know that the original analog system did have more resolution than present day digital scan converters.

The real compromise in SSTV is the lack of motion. There is a great amount of information in each frame of television so that when many frames are transmitted giving motlon, the required bandwidth is prohibitive. About the only hope that the Amateur has to transmit motion and still keep the bandwidth within legal allocations is to examine the image for electronic sampling "tricks" that can be used to increase the apparent motion.

background

In 1978 a group of Amateurs consisting of W0LMD, W9NTP, WB9LVI, W3EFG, and W6MXV applied for a Special Temporary Authorization (STA) from the FCC to test a narrow band MSTV system on 10 meters. Mathematical analysis easily shows that even a few fields per second of motion will require more than the normal amount of voice bandwidth, which is assumed to be about 3 kHz . It is very easy to calculate the required bandwidth. It will first be as-
sumed that the horizontal and vertical resolution of MSTV will have 128 pixels per horizontal line and 128 lines per frame. Since it takes two pixels (one black and one white to approximate a sine wave) for each Hz , the total amount of bandwidth is:

$$
B W=\frac{128}{2} \times 128 \times \text { number of frames per second }
$$

The early experiments concerning motion showed that the minimum number of frames per second to give acceptable motion is 7.5 . This results in a bandwidth of 65.5 kHz . The only place that bandwidths of this size can be found in the high-frequency part of the spectrum is on 10 meters. The FCC STA request was actually for as large a spectrum bandwidth that could be obtained. When the STA was granted, it showed that only 36 kHz were available in the vicinity of 29.0 MHz . All tests have since been performed on 29.150 MHz .

bandwidth restrictions

Several problems immediately surfaced when MSTV was considered to be restricted into this bandwidth. First of all, rf-transmission is almost always twice the base video bandwidth that is calculated by the above formula. Even if the video signal were transmitted as single sideband, it would not fit the $36-\mathrm{kHz}$ spectrum allocation.

Several approaches are possible. Every parameter of the picture must now be considered to be vulnerable to restriction. If the motion were cut into onehalf or one-quarter, the signal would fit into the 36 kHz band. Tests have shown that the picture becomes very jumpy and cannot really be considered true motion if the field time or frame rate is dropped much below 7.5 frames per second.

There are many other parameters that can be changed to keep the video low in bandwidth and still give apparent motion on the screen. Tests have been made in which the picture was divided into quarters. Only one fourth of the picture was transmitted at any

By Dr. Don C. Miller, W9NTP, RR1, Box 95, Waldron, Indiana 46182

one time. Other tests divided the picture into strips and transmitted one strip at a time. Still other formats sent every other line and combined the two transmissions similar to commercial interlaced television. All these schemes achieved the required $36-\mathrm{kHz}$ bandwidth but left serious objectional artifacts on the screen that bothered the viewer.
The most ambitious test was to build a system employing a microprocessor that compared one stored image to a new image stored at a later time. The advantage of this system is that once the original image has been transmitted, only the changes need be transmitted in the future. Provision was made for periodic updates if the original picture had suffered interference. This system certainly works, but it is questionable that it could be made to work in a noisy, 10 -meter-band environment. There is also the problem of transmitting the addresses of the changed pixels, which are liable to consume as much time and bandwidth as the redundant parts of the picture. I concluded that a better system for the Amateur is one that has a periodic update in all parts of the screen that is scanned into the memory rather than one that is addressed.
The Special Temporary Authorization (STA) permission from the FCC, which has been in effect from 1978, has been renewed by the FCC for an additional two year period. The original five Amateurs (plus one additional) have been given permission to transmit MSTV on 29.150 MHz with a maximum bandwidth of 36 kHz . These six Amateurs are W0LMD, W9NTP, WB9LVI, W3EFG, W6MXV, and N@AB. During these two years additional Amateurs can be added to the list. Each case will be considered by the FCC when permission is requested. I will be glad to work with anyone in preparing a request if they enlist my help.

Mathematical analysis shows that the maximum field rate that can be used for MSTV under these bandwidth restrictions is two fields per second for a 128 -pixel by 128 -line television picture. This results in a base video bandwidth of 16 kHz . One exception to this is the use of wideband single sideband. This will be considered in due time when a source of proper filters is located.
Since the last update, various motion formats have been tried, and some of the best ones were chosen for further tests. These tests have shown that if the full raster is transmitted, it is necessary to have an effective rate of at least 7.5 fields per second to give the illusion of reasonable motion. The 7.5 fields per second can be achieved easily by field grabbing at one eighth of 60 fields per second. The base bandwidth of such an image is 64 kHz , which is far beyond the capabilities of the allocated $36-\mathrm{kHz}$ rf bandwidth.

early work

Some years ago one of the MSTV investigators, W3EFG, developed a bandwidth-reduction system called Sampledot for his employer (General Electric Company). The scheme was demonstrated in various mechanizations for several years. Sampledot works on the principle of transmitting only a fraction of the total number of pixels during any fast scan (60 Hz) field time. The chosen pixels for transmission are sampled from numerous small areas that are repeated many times throughout the total field time.The samples are taken in a pseudo-random fashion to reduce any repeated lines or edges that could result from regular sampling times.

The result is that, since each pixel is not transmitted every time the original field is scanned, the chosen pixel can be stretched in time, or "boxcar'ed," to reduce the base video bandwidth. All the pixels in the entire field will be sampled after many pseu-do-random passes through many different $60-\mathrm{Hz}$ field times. The effect is to give continuous motion on a one partial field basis at less than 60 fields per second.

recent work

Recently, in the laboratory where various forms of adaptive picture bandwidth reduction were being tested, we set up the old Sampledot scan converter, which had also been converted to a field-grab system for comparision. Other digital scan converters were also available, to make it possible to demonstrate both Sampledot and field-grab systems simultaneously. A digital scan converter makes it possible to use field rates of other than 60 Hz for further bandwidth reduction. These two scan converters were coupled together to permit the demonstration of a Sampledot image derived from a $7.5-\mathrm{Hz}$ field-grab image.

The image that viewers liked, in terms of minimum bandwidth, was a 4/1 Sampledot image at a field rate of 7.5 Hz . This gives a potential bandwidth reduction of 8×4, or 32 . When divided into the $60-\mathrm{Hz}$ field rate of the source television image, it results in an effective field rate of two fields per second, or a base video bandwidth of only 16 Hz (our objective for a transmission capability of $36-\mathrm{kHz}$ rf bandwidth).

This experiment was based on a 128×128 pixel image. We feel that eventually the image should be 256 pixels by 128 lines. This means that the base bandwidth will be 32 kHz . If it evolves as wideband single sideband, the system of field-grab Sampledot will work out very well. Remember that no one has built this system yet, but the construction should be quite simple if you own a two-memory Robot 400. See the January 1981 issue of QST for how this can be accomplished.

fig. 1. Proposed spectrum arrangement for the MSTV fm system.

SSB or fm?

The next standard to be set is the choice of transmission mode. Theory dictates that the maxmium base bandwidth signal that can be transmitted through a $36-\mathrm{kHz}$ rf bandwidth is 18 kHz . Single-sideband techniques would raise this to 36 kHz . But it would also add many unknowns to the detection and generation process; so fm has tentatively been chosen for MSTV.

After much testing of SSTV standards back in the 60 s, the originators decided upon a base bandwidth of 900 Hz , a synchronization frequency of 1200 Hz , and a white frequency of 2300 Hz . Using some of the same logic that was called forth to determine the SSTV standards, I would like to suggest as a starting point that a particular spectrum be used for further tests (see fig. 1). If it is found later that other frequencies are more useful, it will be an easy matter to readjust the oscillators and discriminators for different standards.

reception and transmission

My suggestion for reception is the modification of an existing transceiver. Many tranceivers can be modified in this way; one example is the $\mathrm{FT}-101$. This
transceiver has an i-f output for spectrum analyzers or panadapters that is brought out ahead of the SSB filter. This low-level i-f signal can be amplified by means of solid-state amplifiers. The bandwidth can be limited with filters (active, passive, or special filters that you might find at hamfests). It does not mean that filtering must be done at the frequency brought out of the special i-f output. A simple mixer and oscillator circuit can translate the signal to the frequency of your favorite "bargain" filter (see fig.2). (According to information received from the "FOX-TANGO club," filters will be available from Yaesu.)

The detection can be done in a manner similar to that of the Robot 400. The tuned-filter discriminator works very well. The output frequency of some transceivers is in the $3-\mathrm{MHz}$ band. Good high-frequency operational amplifiers could be substituted for the types in the Robot 400 . Of course the active filter elements must be redesigned for the new wideband MSTV.

Fig. 2 also contains a block diagram of the suggested circuits for MSTV transmission. If you're interested in building circuits and testing them, get in touch with one of the six STA hams previously listed. We have no boards, just lots of messy connections on the bench, hundreds of ideas, and an enthusiastic, creative spirit reminiscent of the way ham radio "used to be." Test signals are put on the air every Saturday, for the first ten minutes of each hour, beginning when the 10 -meter band opens (29.150 MHz). Call in after the ten-minute tests for the latest updates, or give us a call on the SSTV net each Saturday at 1800 GMT on 14.230 MHz .
ham radio

fig. 2. Block diagram for the proposed modifications to an FT-101 or similar transceiver. Conversions for receiver and transmitter sections are shown in A and B respectively.

mail this card today

YES, please send me my FREE Heathkit Catalog of easy-and-fun-to-build electronic kits. I am not receiving your catalogs now, and I certainly would like to get them regularly.

FREE HEATHKIT CATALOG

name
(Please Print)
address
city
state
zip

short circuits

dip meters

In the article entitled "A New Look at Dip Meters," on page 28 of the August, 1981, issue, varactor diode CR2 in fig. 7 should be rotated 180 degrees; otherwise the bias voltage will be returned to ground, and no tuning will occur.

The conversion factor for feet to meters in table 1, page 35 of the same issue should be 0.305 , not 3.05 as shown.

transmission-line design

Unfortunately, several typographical errors crept into the mathematical equations in the article by H.M. Meyer, Jr., W6GGV, that appeared in the March, 1981, issue ("Transmis-sion-Line Circuit Design, Part Four"). For an errata sheet, send a stamped, self-addressed envelope to ham radio, Greenville, New Hampshire 03048.

digital frequency display

The following corrections should be noted for the article "Digital Frequency Display For Single-Conversion Transceivers," which appeared on page 28 of the March issue. In fig. 2, U9 pin 14 should be connected to +5 volts, not to pin 13; pins 13,12 , and 8 should be tied together; pins 9 and 10 should be tied together. For U10-16, pin 14 on each should be connected to +5 volts, and in U10, 11 , and 13 pin 7 of each should be connected only to ground. In fig. 1, note that, for U17-22, the grounded pin is pin 12.

operation upgrade

Part one of "Operation Upgrade" in the September, 1981, issue, contained an error. Energy $=$ EIt, rather than $E I / t$. If $P=E I$ and $I=Q / t$, then $P=E\binom{Q}{t}$. To remove time and leave pure energy the formula would have to be $P=E\left(\frac{Q}{t}\right)$ timest.

digital techniques

In part 1 of the article on digital techniques by W1BG (page 44 of the September, 1981, issue), the A input of the first counter in fig. 4 should be at ground, not 5 volts.

2Meter Quad

- Portable. Collapsible.
- Folds into its own base for portability.
- For boating, backpacking, mountaintopping, OSCAR.

New portable quad extends the range of low power two meter transceivers by providing the gain and front-to-back discrimination of a two element quad. Gives the gain of a linear amplifier but does not require additional battery power

The entire beam slips into an 18" carrying case to go in your suitcase. For use, it unfolds to form a two element full size quad complete with stabilized mounting stand. Patented design lets you set it up or take it down in minutes. See the cover article QST September 1980 for full details
Order direct or from your favorite dealer. Model A-502 portable 2-meter quad $\$ 87.50$. Add $\$ 3$ shipping/ handling. California. residents add sales tax.

Palomar Engineers

The best amplifier value just got better....

Clipperton-L, now with tuned input.

Clipper ships sailing to foreign shores. Sixteen amateurs primed for adventare, coming together as the first group in 20 years to set foot on the remote French Island, Clipperton. Their goal: 30,000 OSO's in just 7 days.
If you're like most of us, a rare DXpedition is more a dream than a reality, but the Clipperton Linear Amplifier from DenTron brings the thrill of a DXpedition to you.
The Clipperton-LTM was inspired by the famous DXpedition on which 3 MLA-2500's were used. We built the Clipperton with 4 rugged, economical, 572 B 's in the final to provide a full 2 KW PEP on SSB and 1 KW CW on 15 through 160 meters. With features like hi-lo power selector for equal efficiencies at 1 or 2 KW , a power transformer that is vacuum impregnated, wide spaced tuning and loading capacitors, built-in ALC and an improved whisper-quiet cooling system, the excitement of crashing a pile-up can be yours.
Clipperton-L suggested price $\$ 799.50$.
FCC Type accepted.
CIRCLE 132 ON READER SERVICE CARD

Dentron:
1605 Commerce Drive Stow, Ohio 44224 (216) 688-4973 Telex-988458

"Hear there and everywhere".. easy tuning, digital display
The R-1000 is an amazingly easy-to-operate, highperformance, communications receiver, covering 200 kHz to 30 MHz in 30 bands. This PLL synthesized receiver features a digital frequency display and analog dial, plus a quartz digital clock and timer.
R-1000 FEATURES:

- Covers 200 kHz to 30 MHz continuously.
. 30 bands, each 1 MHz wide. - Five-digit frequency display with $1-\mathrm{kHz}$ resolution and analog dial with precise gear dial mechanism.
- Built-in 12 -hour quartz digital clock with timer to turn on radio for scheduled listening or control a recorder through remote terminal.
- Step attenuator to prevent overload.
- Three IF filters for optimum AM, SSB, CW. $12-\mathrm{kHz}$ and $6-\mathrm{kHz}$ (adaptable to $6-\mathrm{kHz}$ and $2.7-\mathrm{kHz}$) for AM wide and narrow, and $2.7-\mathrm{kHz}$ filter for high-quality SSB (USB and LSB) and CW reception.
- Effective noise blanker.
- Terminal for external tape recorder.
- Tone control.
- Built-in 4 -inch speaker.
- Dimmer switch to control intensity of S-meter and other panel lights and digital display.
- Wire antenna terminals for 200 kHz to 2 MHz and 2 MHz to 30 MHz . Coax terminal for 2 MHz to 30 MHz .
- Voltage selector for 100,120, 220 , and 240 VAC. Also adaptable to operate on 13.8 VDC with optional DCK-1 kit.
OPTIONAL ACCESSORIES:
- SP-100 matching external speaker.
- HS-6 lightweight, open-air headphone set.
- HS-5 and HS-4 headphones.
- DCK-1 modification kit for 12-VDC operation.

SP-100

R-1000

HS-5 GRENVNODR

TS-530

IF shift, digital display, narrow-wide filter switch

The TS-530S SSB/CW
transceiver covers 160-10 meters using the latest, most advanced circuit technology, yet at an affordable price.

TS-530S FEATURES:

- 160-10 meter, LSB, USB, CW all amateur frequencies,
including new 10, 18, and 24 MHz bands. Receives WWV on 10 MHz .
- Built-in digital display (six digits, fluorescent tubes), with

TS-530S

- IF shift tunes out interfering signals.
- Narrow/wide filter selector switch for CW and/or SSB.
- Built-in speech processor, for increased talk power.
- Wide receiver dynamic range, with greater immunity to overload.
- Two 6146B's in final, allows 220W PEP/180 W DC input on all bands.
- Advanced single-conversion PLL, for better stability. improved spurious characteristics.
- Adjustable noise-blanker, with front panel threshold control.
- RIT/XIT front panel control allows independent fine-tuning of transmit or receive frequencies.

OPTIONAL ACCESSORIES:

- SP-230 external speaker with selectable audio filters.
- VFO- 240 remote analog VFO.
- VFO-230 remote digital VFO.
- AT-230 antenna tuner/SWR/ power meter.
- MC-50 desk microphone
- KB-1 deluxe VFO knob.
- YK-88C (500 Hz) or YK-88CN (270 Hz) CW filter.
- YK-88SN (1.8 kHz) narrow SSB filter.

"Quad Bander"...dual VFOs, memory, scan, IF shift, FM, SSB, CW, AM

The TS-660 is a unique, allmode transceiver designed for operation on $6,10,12$, and 15 meters.

TS-660 FEATURES:

- FM, SSB (USB), CW and AM operation.
- 10 Hz step digital VFO. The frequency step is determined by mode of operation.
- F. STEP switch allows alternative step size in each mode.
- Dual VFOs built-in.
- 5 channel memory stores frequency and band information.
- Memory scan scans all bands, skips channels not in use.
- UPIDOWN push-button frequency control on microphone.
- UP/DOWN bandswitch.
- Frequency lock function switch.
- IF SHIFT circuit built-in.
- Fluorescent digital display shows Tx/Rx frequencies.
- Squelch circuit for FM, SSB, CW and AM.
- CW semi break-in circuit, with CW side tone.
- 10 W RF output on SSB, CW, FM. 4 W on AM.
- Two antenna terminals provided.
- RIT control. - Noise blanker.

OPTIONAL ACCESSORIES:

- PS-20 power supply.
- SP-120 external speaker.
- MB-100 mobile mounting bracket.
- YK-88C normal CW, $(500 \mathrm{~Hz})$ filter or YK-88CN narrow band CW, $(270 \mathrm{~Hz})$ filter.
- YK-88A AM (6 kHz) filter.
- VOX-4 speech processor/ VOX unit.

Maybe your friends were expecting ham radio last Christmas

Now that he has everything, why not give him something he'll really enjoy! Give ham radio this Christmas and your friends will thank you all year 'round. Each month they'll be introduced to the very latest technical advances in Amateur Radio, and become involved with such very special features as W9KNI's DX'ers Diary or Ham Radio Techniques by Bill Orr. Of course there will also be W6BNB's upgrade series and the many other exciting features that make ham radio such a special magazine for today's Amateur. So do your friends a favor and subscribe now at our very special gift price below. While you're at it, put your own name and address down - you deserve a money-saving gift too.

\square YES!

Please send my ham radio gift subscriptions as indicated. Also send a handsome gift acknowledgement card. (A gift card will be sent to each gift recipient if order is received by December 18, 1981.)

From:

Name \qquad Call

Address
City \qquad State Zip
Check or Money Order Enclosed VISA
Master Charge

Acct. \#
Expires \qquad MC Bank \#

Foreign gift subscription prices:

Europe, Japan, Africa: Air Delivery $\$ 28.00$ per year. Canada and other countries: $\$ 21.50$ per year.
\qquad

DRAKE 7-Line Family

TR7 solid state continuous coverage synthesized hf system
Model 1336

Continuous Frequency Coverage - The TR7 provides continuous coverage in receive from 1.5 to 30 MHz . Transmit coverage is provided for all amateur bands from 160 through 10 meters. The optional AUX7 Range Program Board allows out-of-band transmit coverage for MARS, Embassy, Government and Commercial services as well as future band expansions in the 1.8 through 30 MHz range.* The AUX7 Board also provides 0 through 1.5 MHz receive coverage and crystal-controlled fixed-channel operation for Government, Amateur or Commercial applications anywhere in the 1.8 to 30 MHz range.

Synthesized/PTO Frequency Control-A Drake exclusive: carefully engineered high-performance synthesizer, combined with the famous Drake PTO, provides smooth, linear tuning with 1 kHz dial and 100 Hz digital readout resolution. 500 kHz up/down range switching is pushbutton controlled.

Advanced, High-Performance Receiver Design-The receiver section of the Drake TR7 is an advanced, up-conversion design. The first intermediate frequency of 48.05 MHz places the image frequency well outside the receiver input passband, and provides for true general coverage operation without i-f gaps or crossovers. In addition, the receiver section features a high-level double balanced mixer in the front end for superior spurious and dynamic range performance.

True Passband Tuning - The TR7 employs the famous Drake full passband tuning instead of the limited range "i-f shift" found in some other units. The Drake system allows the receiver passband to be varied from the top edge of one sideband, through center, to the bottom edge of the opposite sideband. In fact, the range is even wider to accommodate RTTY. This system greatly improves receiving performance in heavy QRM by
allowing the operator to move interfering signals out of the passband, and it is so flexible that you can even transmit on one sideband and listen on the other.

Unique Independent Receiver Selectivity-Space is provided in the TR7 for up to 3 optional crystal filters. These filters are selected, along with the standard 2.3 kHz filter, by front panel pushbutton control, independent of the mode control. This permits the receive response to be optimized for various operating conditions in any operational situation. Optional filter bandwidths include 6 kHz for $\mathrm{a}-\mathrm{m}, 1.8 \mathrm{kHz}$ for narrow ssb or RTTY, and 500 Hz and 300 Hz for cw .

Broadband, Solid State Design-100\% solid state throughout. All circuits are broadbanded, eliminating the need for tuning adjustments of any kind. Merely select the correct band, dial up the desired frequency, and you're ready to operate.

Rugged, Solid State Power Amplifier-The power amplifier is internally mounted, with nothing outboard subject to physical damage. A Drake designed custom heat sink makes this possible. The unique air ducting design of this heat sink allows an optional rear-mounted fan, the FA7, to provide continuous, full power transmit on SSTV/RTTY. The fan is not required for ssb/cw operation, since normal convection cooling allows continuous transmit in these modes.

Effective Noise Blanker-The optional NB7 Noise Blanker plugs into the TR7 to provide true impulse-type noise blanking performance. This unit is carefully designed to maximize both blanking and dynamic range in order to preserve the excellent strong-signal handling characteristics of the TR7.

* NOTE: Transmitter coverage for MARS, Government, and future WARC bands is available only in ranges authorized by the FCC, Military, or other government agency for a specific service. Proof of license for that service must be submitted to the R. L. Drake Company, including the 500 kHz range to be covered. Upon approval, and at the discretion of the R. L. Drake Company, a special range IC will be supplied for use with the Aux7 Range Program Board. Prices quoted from the factory. See Operator's Manual for details. (Not available for services requiring type acceptance.)

CT2100

HAL Puts MORE Behind The Butions

CT2100 System:

- CT2100 Communications Terminal
- KB2100 Keyboard
- Video Monitor
- Printer (300Bd Serial ASCI-MP1-88G)
- RM2100 Rack Adapter
- MSG2100 2000 Character "Brag Tape" ROM
- 24 Line Display
- 2 Pages of 72 Character Lines -or. 4 Pages of 36 Character Lines
- Split Screen (with KB2100)

CT2100

HAM CALENDAR
 December

sundar	mondar	tuessay	weonespar	thursoar	FRIDAY	saturday
		$={ }_{1}$	2			\% 5
anexamex 6	maxan 7			10	11	12
	14	15	16		18	19
			23	24		26
27		$=2$	30	\cdots		

ANNUAL LAS VEGAS PRESTIGE CONVENTION SAROC ALADDIN HOTEL, LAS VEGAS, NEVADA APRIL 1-2-3-4, 1982

Cocktail Party hosted by Ham Radio Magazine, Friday evening, for all SAROC exhibitors and [SAROC] paid registered guests. Ladies program Saturday, included with Ladies [SAROC] paid registration. Two Aladdin Hotel Breakfast/Brunches included with each SAROC] paid registration, one on Saturday and one on Sunday. Technical sessions and exhibits Friday and Saturday for all SAROC registered guests. Friday and Saturday hourly awards, main drawing. Saturday afternoon. Must be present to win, ownership of award does not pass until picked up. [SAROC advance registration is only $\$ 17.00$ per person if postmarked before March 1. 1982. After March 1, 1982 it is $\$ 19.00$ per person. Non-paying guests who only wish to visit SAROC exhibits will be issued an ID
badge good for admission to exhibit area at no charge. Coupon book and cellophane badge holder may be picked up at [SARDC] registration desk. Send check or money order to SAROC . P.O. Box 14217, Las Vegas, Nevada 89114. Refunds will be made after [SAROC] is over to those requesting same in writing and postmarked before April 1. 1982. Special SAROC Aladdin Hotel room rate is $\$ 36.00$. plus room tax, per night, single or double occupancy. Aladdin Hotel accommodations request card will be sent to all SAROC exhibitors and SAROC paid registered guests.
Coming SAROC conventions: January 13-16, 1983; January 12-15, 1984: January 10-13, 1985.

Enclosed is \$ \qquad check or money order (no cash) for \qquad SAROCladvance registration (a) $\$ 17.00$ each: after March 1. 1982 SARO C registration is $\$ 19.00$ each. Extra drawing tickets for main drawing are $\$ 1.00$ each. limit 10 for each SAROC] paid registration.
OM \qquad Call \qquad Class \qquad
YL Call \qquad Class

Address \qquad City

State ZIP \qquad Telephone No./AC \qquad
I have attended SAROC" times. I plan to attend Friday Cocktail Party

I am interested in: ARRL, Cocktail Party, CW, DX. FCC, FM, MARS, RTTY, TV, other \qquad
I receive: CQ. Ham Radio Magazine, Hr Report, QCWA, QST, RTTY. Spark/Gap. 73, Worldradio.

Listen to your planet on a shortwave receiver!

Communications Electronics, the world's largest distributor of radio scanners, is pleased to introduce Panasonic Command Series shortwave receivers. Panasonic lets you listen to what the world has to say. Unlike a scanner, a Command Series radio lets you listen to shortwave broadcasts from countries around the world, as well as the U.S.A. It's the space age shortwave performance you've been waiting for....at a down to earth price you can afford.
All Panasonic shortwave receivers sold by Communications Electronics bring the real live excitement of international radio to your home or office. With your Command Series receiver, you can monitor exciting radio transmissions such as the BBC, Radio Moscow, Ham Radio and our own Armed Forces Radio Network. Thousands of broadcasts in hundreds of different languages are beamed into North America every day. You can actually hear the news before it's news. If you do not own a shortwave receiver for yourself, now's the time to buy your new receiver from CE. Choose the receiver that's right for you, then call our toll-free number to place your order with your credit card
We give you excellent service because CE distributes more scanners and shortwave receivers worldwide than anyone else. Our warehouse facilities are equipped to process thousands of orders every week. We also export receivers to over 300 countries and military installations. Almost all items are in stock for quick shipment, so if you're a person who needs to know what's really happening around you, order today from CE.

Panasonic ${ }_{+}^{\oplus}$ RF-6300

Allow 30-120 days for delivery after receipt of order due to the high demand for this product. List price $\$ 749.95 /$ CE price $\$ 499.00$ Bands: LW $150-410 \mathrm{KHz}, \mathrm{MW} 520-1610 \mathrm{KHz}$, SWI-5 $1.6-30 \mathrm{MHz}$, FM $87.5-108 \mathrm{MHz}$. The new Panasonic RF-6300 Command Series PLL synthesized 8 -band portable communications receiver, lets ypu hear the world. The RF-6300 has features such as microcomputer pre-set tuning and PLL quartz synthesized digital tuner. Microcomputer stores up to 12 different frequencies for push-button recall. FM/MW/LW/SW1-5 reception. Manual tuning knob. Wide/Narrow bandwidth selector. Double superheterodyne system. Fast/Slow manual tuning. Built-in quartz digital alarm clock. 5 inch dynamic PM speaker. 3 antennas. Multi-voltage. Detachable AC cord. Operates on 6 "D" batteries (not included). Made in Japan.

Panasonic ${ }^{\oplus}$ RF-4900

List price $\$ 549.95 /$ CE price $\$ 389.00$ Bands: MW 525-1610 KHz, SW1-8 1.6-30 MHz FM 88-108 MHz
The Panasonic RF-4900 shortwave receiver features a 5-digit fluorescent display for all 8 SW bands, as well as for AM/FM. AC or battery operation. Full coverage from 1.6 to 30 MHz on SW. Covers SSB and CW. Premix Double Superheterodyne. Fast/slow 2 speed tuning. AFC Switch on FM, narrow/wide selectivity switch for AM and SW. Antenna trimmer. Calibration control. FET RF circuit. Mode switch for AM-CW/SSB. BFO Pitch control. ANL switch for AM. RF gain control. Tuning-Battery meter with meter function switch. Separate bass and treble tone control. Dial light switch. Digital display on/off switch. Separate power switch. Rack type handle. Made in Japan.

Panasonic ${ }^{\oplus}$ RF-3100

Allow 30-120 days for delivery after receipt of order due to the high demand for this product. List price \$369.95/CE price $\$ 269.00$ Bands: MW 525-1610 KHz., SW1-29 1.6-30 MHz FM 88-108 MHz
The Panasonic RF-3100 portable 31-Band portable radio has PLL Quartz-Synthesizer tuning that "locks" onto SW stations. Operates on AC or battery. SW frequencies from 1.6 to 30 MHz . are in 29 bands. All-band 5 -digit frequency readout. Horizontal design with front mounted controls for shoulder strap operation. Double superheterodyne for clean SW reception. BFO pitch and RF gain controls. Separate bass and treble controls. Wide/Narrow bandwidth selector. Meter for tuning and battery strength. LED operation indicator. Meter light switch. $3^{1 / 22^{\prime \prime}}$ PM dynamic speaker. Comes with detachable shoulder belt. Battery power (8 " D " batteries not included). Made I IJapan.

Panasonic ${ }^{\oplus}$ RF-2900

List price $\$ 349.95 /$ CE price $\$ \mathbf{2 4 9 . 0 0}$ Bands: MW 525-1610 KHz., SW1-3 3.2-30 MHz. FM 88-108 MHz.
The Panasonic RF-2900 is a portable five-band shortwave radio with digital five digit fluorescent frequency display. Full coverage from 3.2 to 30 MHz . on SW. Covers SSB and CW. Double superheterodyne receiver. Fast/slow two speed tuning. AFC switch on FM, narrow/wide selectivity switch for AM and SW. FET RF circuit. BFO switch and pitch control. RF gain control. Tuning battery meter. Separate bass/treble tone control. SW calibration control. Dial light switch. Digital display on/off switch. Separate power switch. Detachable dial hood included. Rack type handle. Includes whip antenna and ferrite core antenna, speaker, earphone, recording output jacks, AC line and detachable adjustable shoulder belt. Made in Japan.

Command Series
RF-2900

Panasonic Commands

Panasonic
RF-3100

TEST ANY RECEIVER

Test any receiver purchased from Communications Electronics for 31 days before you decide to keep it. If for any reason you are not completely satisfied, return it in original condition with all parts in 31 days, for a prompt refund (less shipping and handling charges).
NATIONAL WARRANTY SERVICE
All Panasonic receivers listed in this ad are backed by a two-year limited warranty on parts and labor. In addition, this warranty is backed by a broad network of Panasonic service centers. For two years after original purchase, Panasonic will repair or replace your receiver if purchased and retained in the U.S.A. Customer must take it to an authorized service center. Warranty does not cover damage from abuse, misuse, or commercial use. Proof of purchase is needed for in-warranty service.

BUY WITH CONFIDENCE
To get the fastest delivery from CE of any receiver send or phone your order directly to our Consumer Products Division. Be sure to calculate your price using the CE prices in this ad. Michigan residents please add 4% sales tax. Written purchase orders are accepted from approved government agencies and most well rated firms at a 10% surcharge for net 10 billing. All sales are subject to availability, acceptance and verification. Prices, terms and specifications are subject to change without notice. Out of stock items will be placed on backorder automatically unless CE is instructed differently. International orders are invited with a $\$ 20.00$ surcharge for special handling in addition to shipping charges. All shipments are F.O.B. Ann Arbor, Michigan. No COD's please. Noncertified and foreign checks require bank clearance

Mail orders to: Communications Electronics, Box 1002, Ann Arbor, Michigan 48106 U.S.A. Add $\$ 12.00$ per receiver for U.P.S. ground shipping and handling. If you have a Master Card or Visa, you may call anytime and place a credit card order Order toll free in the U.S.A. Dial 800-521-4414 Outside the U.S. or in Michigan, dial 313-994-4444. Dealer inquiries invited. Order your Panasonic Command Series receiver today at no obligation CE logos are trademarks of Communications Electronics ${ }^{-}$ \dagger Panasonic is a registered trademark of Panasonic Company a Division of Matsushita Electric Corporation of America. Copyright ${ }^{\circ} 1981$ Communications Electronics ${ }^{*}$

COMMUNICATIONS ELECTRONICS ${ }^{\text {N }}$

Consumer Products Division

854 Phoenix D Box $1002 \square$ Ann Arbor, Michigan 48106 U.S.A Call TOLL-FREE (8OO) 521 -4414 or outside U.S.A. (313) 994-4444
We're first with the best.'

The months of fall, October and November, are possibly the most exciting months of the year on the DXer's calendar. The summer doldrums are over, and the noontime null caused by solar absorption is greatly diminished as the sun moves further south. Thunderstorms and their attendant QRN are far less noticeable, and 40 and 80 meters are really snapping back to life.
Spring is in full sway in the Southern Hemisphere. As the sun crosses the equator, paths worldwide improve, giving DXers everywhere shots at far-flung places. Ten meters is hotter than a pistol, bringing new thrills to its devotees, while 15 to 20 are really strutting their stuff.
On the other side of the ledger are the spate of solar disturbances. The period after a peak in the sunspot cycle is the worst for frequent solar upheavals, which can devastate conditions for days on end, especially on the higher frequencies. Still, the storms peak out in the summer months and their intensity fades as we head into the months of late fall.
I settle into the operating chair and adjust the headphones till they're comfortable. I glance over at my chalkboard, knowing what I'll find very little. A couple of forlorn notes on VK9NV, now over three months old. He seems to have disappeared from the bands. Maybe the incessant pileups of Japanese, American, and European DXers finally got to him. I guess I couldn't blame him if they did. But it sure doesn't help me if he's given up operating.
There's a note on the DXpedition to S9R, Sao Thome, West Africa. But yesterday's "DXer's Tout Sheet" said that the operation was going to be delayed at least six weeks, and very possibly would have to be cancelled. It figures; I need that one.
I move the bandswitch to 20 meters. Let's put the antenna on NNE, bisecting the paths to Europe and the transpolar route. It's 0000

Zulu. Europe will probably still be coming in if conditions are any good, and the path across the pole should be opening right now as morning sunlight chases the MUF up from its dog-watch lows.

I set the receiver right at the bottom edge of 20 , at 14000 kHz , and start tuning up the band. It's Friday night, so there's hope of increased activity all over the world.

Hah. There's G3FXB, in QSO with somebody, just starting a transmission. I listen, but it becomes obvious that Al is well into a ragchew with someone. I listen to that fine fist, 30 or 35 words per minute and music to the ear. Al's one of the top dogs in the DXCC program Honor Roll, a fixture on the lists for many years. Al is active, and that's part of the secret of staying on top. He's always operating contests, usually in rivalry with his close friend G3MXJ. In between contests, Al is often heard ragchewing.
A chat with Al would be nice if nothing is happening on the band. I set my extra VFO on his frequency as a marker, so that I can easily find him again, and continue tuning higher up the band.

There's a good strong signal calling CQ. Almost instantly I recognize it from the fist: it's VU2BK. A retired Indian Army officer, he's very active on the bands and generally the strongest signal from India. I pause and take a close look at his signal. I don't need a contact but a look at his signal can tell you a lot about the band. The very fact that I'm copying him at all says something, and his S 8 signal sure adds to the assessment that the band is in fairly good shape at the very least. Hmm. No trace of auroral buzz, and, really, very few of the usual characteristics of a long-haul signal. The really long-haul signals, while pleasant to listen to, often have telltale marks impressed on them that disclose their long-haul origins. These include subtle but continual tiny shifts in frequency (Doppler shifts)
caused by the slightly different paths delivering the signal, softened keying characteristics caused by the time delay differentials of the different paths - and often at least a trace of auroral buzz.

No, this signal is very clean and pretty strong, which indicates good conditions and that his primary path is overwhelming the marks and signatures secondary paths would add.

One of the games that any DXer, but especially a CW operator, constantly has to practice is identifying whether a signal is DX or not without hearing the call, so that, while tuning a band, time won't be wasted waiting for domestic stations in OSO to sign. The ability to quickly read that aspect of a signal is invaluable in contest and pileups as well.

A trained operator, even listening to a stateside station in OSO, can usually figure out whether the station you hear is into a good one; there are few operators who don't show excitement when working a new one. It's a subtle thing on CW, but it's still noticeable. The tip-off is timing. A fellow who's in contact with what is for him a new country usually has a very choppy timing and spacing on his fist, reflecting his excitement, and the world's best keyer won't cover it up.

Of course, the new one for him might be the fellow that you've been ragchewing with every Wednesday night for the last two years, or it could be a guest operator at some big gun's station experiencing the thrill of his very first DJ OSO, but whenever you hear the signs that someone is excited about his QSO, you have to wait and see who he's got.

I keep moving the receiver slowly up the band. Hmmm. There's a loud and raucus signal. Obviously an intruder, not an Amateur station at all. Some exotic form of modulation, something that no ham ticket anywhere in the world would authorize for 20 meters. And not only is the sig-
nal 20 dB over S9, but it has nasty little sidebands as well, making the signal over a kHz wide. Probably a Moscow to Havana circuit. Oh well, it's a good place to tune up my rig, where no legitimate ham will be bothered. I move the rig up, key down and check output and SWR. All's well. I tune on up the band, getting clear of the sidebands of that illegal intruder.

The receiver dial tells me that I'm just above 14,050 . I start to spin the dial back down, but stop. I've been covering the slot of 14,000 to 14,050 regularly for a long time, and recently, with very little to show for it. That area is where the action usually is, but what the heck, let's tune higher.
As with almost every band, the higher on 20 meters you go the slower the fists, in general. It seems as if the newcomers are afraid of getting blown away by hot-shots down at the bottom end of the band, and so they stay higher up. It's a good practice, just like the swimming pool; practice your strokes in the shallow end before you high dive into the deep end.

And DX stations do the same thing. So, perhaps a good one can be dredged up by working the high end. My tuning up this high in the band is slower, but still very interesting.
Almost immmediately I come across a goody; a slow, hesitant fist, not too strong, "CQ CQ DE SV9MT SV9MT KN." Crete, a nice catch, though not one I need. I chuckle at the KN at the end of his CQ ; obviously a newcomer, but he'll learn. The first couple pages of my first log book show me giving reports of 995 .
As I pick up the 2-meter microphone I hear him start a CQ again. I call it in.
"Hey, I've found Crete on 20 meter CW, that's SV9MT, Sugar Victor Nine Mexico Tango, fourteen oh sixty eight, fourteen oh sixty eight, from W9KNI."
"Hey, W9KNI, here's WD9IIC. Bob, I need that one, but l've got my station all torn apart. I can be back on in five or ten minutes. Are you working him?"
'WD9IIC from W9KNI. OK, Dick.

Nah, he's calling CQ, and not getting any takers. I don't need him, but I tell you what. If nobody comes back to him after the call he's making now, l'll try to work him and hold him for you. He's going real slow, so if I get a QSO, you'll have ten minutes for sure. OK?"
"Fine, Bob. That would be real nice. 'Preciate it, I'll get my stuff together here quick. W9KNI from WD9IIC."
"Rah-jer."
I listen to the SV9 - there, he signs. I listen closely. Yes, someone is coming back to him - about the same strength - sounds like another European. Yes, it's a DF9, a German, going nice and slow, almost dead zero on the SV9. He signs.

The SV9 starts up, coming back to the German. I pick up the 2 -meter microphone again.
"OK, Dick, you got a reprieve. A DF9 got him. You want I should watch the frequency till you're ready? WD9IIC from W9KNI, go ahead."
"OK, Bob, thanks. W9KNI from WD9IIC. I've got the receiver working again now and I'll have the transmitter hooked back up in a couple minutes. Let me find that fellow now, so that you won't have to sit around and wait. What was that frequency again?"
"Ah, he's on fourteen oh sixty eight. He's going real slow, and he's pretty much in the clear."
"OK, the one saying OTH HR CRETE? Yup, that's got to be him. OK, Bob, I'm all set. Thanks again. W9KNI from WD9IIC."
"Yeah, good hunting, Dick. W9KNI clear."
I start tuning higher again. Hmm. OK, there's fellow really clipping along; got to be at least sixty words per. A keyboard artist, for sure. Yeah, he signs it over; it's W9TO with a W6. And right next to him, just above him, a slow, steady CQ, a DX station almost for sure from the sound of it. I keep listening. Yes, it's LX1TK, Luxembourg. Not really rare, but not common either.
I decide to see if Dick caught the

SV9 yet. I touch the VFO spotting button and move the receiver to the frequency. Right on time, too. There's the SV9 signing clear with the DF9.
WD9IIC starts calling, dead zero on the frequency that the DF9 was on. But so is someone else. I pick up the 2-meter mike, "WD9IIC from W9KNI. Hey, you got competition, Dick. Make it a $1-0-n-g$ call. I'll tell you when to stop."

1 listen. Dick keeps signing his call. The other station ends his call. "OK, Dick, two more times, two more times."

Just as Dick ends, the other station realizes that the SV9 hasn't come back and starts calling again. But it's too late. He's been had. The SV9 starts coming back to WD9IIC.
"Way to go, Dick!"
"Thanks, Bob." Dick's response is brief; he's busy copying.

It's a good feeling to help a friend get a new one; almost as exciting as working a new one for yourself. The sense of pride feels good. And, at times, a little coaching on 2 meters can make all the difference.

Yes, Dick is in solid with the SV9.I call it in again on 2 meters, then resume tuning higher up the band.

There's 9TO again, still burning up the frequency. And there are six or eight stations calling the LX. Funny how they'll pick up on something like the LX and miss the rare SV9 a few kHz away. But it happens all the time.

Another CQ. OK, it's an El. Someone calling a KP4; yes, an SP9. Hmm . Someone promising a direct QSL, wait and see what that one's about for sure. There.
"GJ4CTS DE WD4KHJ." I call the GJ4 in on 2 meters - not terribly rare but someone might want it. Nobody asks for a repeat, so 1 tune on.

A loud teletype signal tells me that perhaps I'm a little high. I look at the dial. Yup, I'm at 14087. OK. I decide to move back to 14050 and start up again. This end of the band seems interesting tonight.
"Hey, Bob, thanks a lot. That was a new one for me. Hope that I can re-
pay the favor. W9KNI from WD9IIC."
"Ah, great, Dick. WD9IIC, here's W9KNI. Fine. Hey - you can pay me back. I need Kamaran. I'll be on for another twenty minutes or so; find me one before I QRT, OK?"
"Hah. OK, I'll start now. Thanks again."
"Yeah, you do that! See you later."

I glance at the antenna rotor control; still set between the paths to Europe and the transpolar route to deep Asia. I haven't heard anything on the transpolar path except the VU2 earlier. I decide to swing the antenna a bit further south, to 45 degrees, dead on Europe. I'll still hear the transpolar signals, though perhaps an S-unit weaker, but, on the other hand, I'll have a better chance of hearing Africans.

I keep tuning higher, listening carefully as I go. There's an IS0 on Sardinia, working a PY in Brazil. There's a bit of a pileup; I listen. OK, it's various European stations chasing an HP1, a Panamanian.
There's a Frenchman calling CQ. There's a UP2 calling a WD4. There's another CQ, a slow one, using a hand key for sure. There, he's signing. His fist is a bit difficult. G8AL? No, that can't be. Sounds like it though. He's calling CQ again. Can't be a G8. Could it? There, he's signing again. Let's try it again. Hey! Hey! It's a TN8, not a G8. TN8AL, the Congo, and one I need. I didn't know that any one was on from there, but here one is.

Pull the VFO up zero on him. Turn on the linear. Zapp! It's up and running. He continues his CQ call, obviously a new operator. I move the VFO just above him and key down for a moment. Yes, everything is OK as I trim the drive level of the exciter. OK, re-zero him. Move the antenna. I glance at my great circle map on the wall. OK, 80 degrees should be close enough. There, he's signing again. Yes! It's definitely TN8AL. OK, he's done.
I pause a moment, Yes, there's someone else calling him, but he's

300 or 400 hertz off. I start my call oops. Thirty or thirty-five words per minute is a little fast for a new fellow sending perhaps twelve! I move the keyer speed. That's better.
I give a two-by-three call; "TN8AL TN8AL DE W9KNI W9KNI W9KNI AR K." I stand by.
The frequency is silent. Then the other station that was calling the TN8 starts to call again. I pause a moment longer. But, just as I'm about to start a second call, I hear:
"W9KN W9KN?" DE TN8AL TN8AL K K K." A new operator, for sure. I call again.
"'R TN8AL TN8AL DE W9KNI W9KNI W9KNI KNI KNI W9KNI AR KN."
I wait. A long pause. There, he starts again.
"W9KNI W9KNI . . ." Great! He's got my call OK now . . . "TN8AL R hello om et merci eeeee tnx OSO RST 489489 OTH BOX 1293 BOX 1293 BRAZZAVILLE BRAZZAVILLE NOM CAMTI CAMTI OK? W9KNI DE TN8AL KN KN."

Wow!

"R TN8AL DE W9KNI . . ." Hmm. This fellow obviously speaks more French than English. Not surprising.
"MERCI CAMTI POUR LE OSO ET VOTRE RST 579579 PRES DU CHICAGO OTH PRES DU CHICAGO ET NOM EST BOB BOB OSL SVP MA OSL BOX 1293 OK SURE RIG 600 WATTS ET YAGI WX 6C 6C TRES FROID HI HI OK CAMTI? TN8AL DE W9KNI AR KN."
"R W9KNI DE TN8AL R FB CHER AMI BOB ET MERCI POUR LE OSO RIG 100 WATTS ET DIPOLE OSL SURE 73 A BIENTOT SK W9KNI DE TN8ALSK."
"R 73 CHER AMI CAMTI ET BONNE CHANCE A BIENTOT DE W9KNI SK EE."

The slow QSO has given me time to get all the log data written while he was transmitting. I listen - no one is calling him except the fellow that I beat out when he was calling CQ. But I can change that. I pick up the 2 meter microphone . .
ham radio

QKENwood

\$SAVE\$

\$CALL TOLL FREE\$

ICOM
SSAVES

\$CALL TOLL FREE\$

\$CALL TOLL FREE\$

ARGOSY

CALL TOLL FREE
$1.800-638-4486$

Bencher 1:1 BALUV

- Lets your antenna radiate-not your coax
- Helps fight TVI-no ferrite core to saturate or reradiate
- Rated 5 KW peak-accepts substantial mismatch at legal limit
- DC grounded-helps protect against lightning
- Amphenol ${ }^{*}$ connector; Rubber ring to stop water leakage

Rugged custom Cycolac* case, UV resistant formulation

Heavy threaded brass contact posts

Available at selected dealers, add $\$ 2.00$

Model ZA-1A Model ZA-2A
$3.5-30 \mathrm{mHz}$ optimized $14-30 \mathrm{mHz}$ includes hardware for 2 " boom postage and handling in U.S.A.
WRITE FOR LITERATURE
 $\square \square \square$

For the best deal on

-AEA•Alliance•Amec $0 \bullet$ Apple•ASP

- Avanti•Belden•Bencher•Bird•CDE
-CES-C ommunications Specialists
-Collins• Cushcraft•Daiwa•DenTron
\bullet Drake•Hustler•Hy Gain•Icom•IRL•KLM
-Kenwood•Larsen•Macrotronics•MFJ
- Midland• Mini- Products• Mirage•Mosley
-NPC•Newtronics•Nye• Panasonic
- Palomar Engineers• Regency•Robot
-Shure•Standard•Swan• Tempo
- Ten Tec•Transcom•Yaesu

SEASON'S
GREETINGS!
YAESU FL-101 HF Transmitter, close-out priced at $\$ 389$
KENWOOD TS-520S HF transceiver, close-out $\$ 669$
SWAN MX-100 HF Transceiver, close-out special $\$ 369$ ICOM IC-701 HF Xcvr with mike \& power supply, only \$975 KENWOOD TR-7730, TS-830S In stock Call for price YAESU's New FT-208R is now available from stock Call! APPLE Disk Based System: Apple II or II Plus with 48k RAM installed, Disk II with controller, DOS $3.3 \quad \$ 1899$ APPLE Game Paddles available Quantities limited all prices subject to change without notice
We always have an excellent assortment of fine used equipment in stock... come in or call

> CALL TOLL FREE (outside Illinois only)
> (800) 621-5802

HOURS: 9:30-5:30 Mon., Tues., Wed. \& Fri. v/4 9:30-9:00 Thursday 9:00-3:00 Saturday

flo
 Market 4 Exim

RATES Noncommercial ads 10¢ per word; commercial ads 609 per word both payable in advance. No cash discounts or agency commissions allowed.
HAMFESTS Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing) on a space available basis only. Repeat insertions of hamfest ads pay the non-commercial rate.
COPY No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.
DEADLINE 15th of second preceding month.
SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

QSL CARDS

QSL's - BE PLEASANTLY SURPRISED! Order our three colored QSL's in all varieties for $\$ 8.00$ per 100 or $\$ 13.00$ for 200. Satisfaction guaranteed. Samples $\$ 1.00$ (refundable). Constantine Press, 1219 Eltington, Myrtle Beach, SC 29577.
OSLs \& RUBBER STAMPS - Top Quality! Card Samples and Stamp Info - $50 ¢$ - Ebbert Graphics $5 R$, Box 70 , Westerville, Ohio 43081

QSL CAROS: $500 / \$ 12.50$, ppd. Free catalogue. Bowman Printing, 743 Harvard, St. Louis, MO 63130.

QSL'S: No stock designs! Your art or ours; photos, originals, 50 c for samples \& details (refundable). Certified Communications, 4138 So. Ferris, Fremont, Michigan 49412.
dISTINCTIVE OSL's - Largest selection, lowest prices, top quality photo and completely customized cards. Make your QSL's truly unique at the same cost as a standard card, and get a better return rate! Free samples, catalogue. Stamps appreciated. Stu K2RPZ Print, P.O. Box 412, Rocky Point, NY 11778 (516) 744-6260.

Foreign Subscription Agents
for Ham Radio Magazine

Ham Radio Austria F. BastI Hauptplatz 5 A. 2700 Wiener Neustadt Austria	Ham Radio Holland MRL Ectronics Postbus 88 NL-2204 Delft Holland
Ham Radio Bolgium Stereohouse Brusselsestoanweg 416 B-9218 Gent Belgium	Ham Radio Italy G. Vulpetti P.O. Box 37 1.22083 Cantu
Mam Radio Canade Box 400, Goderich Ontario, Canada N7A 4C7	Ham Racio Switzeriand
Ham Radio Europe 80×444 S. 19404 Upplands Vasby Sweden	Karinueber Postfach 2454 0-7850 Loerrach West Germany
Ham Radlo France SM Electronic 20 bis, Ave des Clutions F. 88000 Auxerre France	Mam Aadio UK P.O. Box 63, Harrow Middiesex HA36HS England
Ham Radio Germany Karin Ueber Posttach 2454 D. 7850 Loerrach West Germany	Holland Radlo 143 Greenway Gresnaide, Johannesburg Repubific of South Africa

CADILLAC OF QSL CARDS, 3 to 4 colors, send $\$ 1$ for sampies (Refundable). Mac's Shack, P.O. Box 43175 Seven Points, TX 75143.

THE AMP.LETTER is starting soon. Why buy an overpriced amp when you can build you own? The AMP-LETTER is devoted to the design, construction, and operation of Amateur Amplifiers. Let the AMP-LETTER and its readers help you find parts and information. For details write: Andy Thornburg, KB9WL, RR2, Box 39A, Thompsonville, IL 62890.

MOBILE OPERATORS: Anteck's Mobile Antennas cover 3.2 to 30 MHz inclusive, with no coil changing. 50 Ohms input. Two models, the MT- 1 MANUAL, MT-1RT RE-MOTE-TUNED from the operators position. Uses two Hyd. Pumps and Motors. MT-1 $\$ 129.95$, MT-1RT $\$ 240.00$ plus UPS postage. Check your local dealer or write for Dealer List and Brochure. ANTECK, INC., Route One, Box 415, Hansen, ID 83334, 208-423-4100.

ATLAS DD6-C Digital Dial $\$ 120.00$ plus $\$ 4.00$ UPS. NEW, while they last. Mical Devices, P.O. Box 343 , Vista, CA 92083.

RTTY JOURNAL-EXCLUSIVELY AMATEUR RADIOTELETYPE, one year subscription $\$ 7.00$. Beginners RTTY Handbook $\$ 5.00$, RTTY Index $\$ 1.50$ P.O. Box RY, Cardiff, CA 92007.

HEATH SB- 102 with CW filter, HP-23B power supply and SB-600 speaker. All in excellent, clean condition. Original owner. Best offer near $\$ 400.00$. Glen Jenkins, WB4KTF, 11726 Bobwhite Dr., Houston, Texas 77035. (713) 728.9641

BUSINESS WANTED: Entrepreneur/hams interested in buying an active electronics manufacturing business, preferably ham-related. Reply to J. Smallwood, Box 242 , Blacksburg, VA 24060. 703-951-9030.

RECIPROCATING DETECTOR Handbook, $\$ 10.50$ ppd. Peters Publications, 19 Loretta Rd., Waltham, Mass. 02154.

CUSTOM EMBROIDERED EMBLEMS -- Your design, low minimum. Informational booklet. Emblems, Dept 65, Littleton, New Hampshire 03561.

FOR SALE: QST, HAM RADIO, CQ, 73. 20¢ each. SASE for list W8YCG, 7281 Hi-View Drive, North Royalton, Ohio 44133.

MANUALS for most ham gear made 193711970. Send $\$ 1.00$ for 18 page "Manual List", postpaid. HI-MANUALS, Box H802, Council Bluffs, lowa 51502.

FOR SALE: World War II Japanese Navy, Air Force radio receiver, headphones, sending key, hand microphone. Good to like-new condition $\$ 395.00$. Send SASE plus $\$ 1.00$ for color photo, detailed description of each item and acquisition background. Robert O. Routh, W9DJW, 1955 E. 75 N., Lebanon, Ind. 46052.
SATELLITE TELEVISION: Information on building or buying your earth station. Six pages of what's needed, where to get it, costs, etc. $\$ 4.00$ to Satellite Television, RD \#3, Oxford, NY 13830. Build your own parabolic antenna. Book also available. Send SASE for details.

BUSINESS OPPORTUNITY - Manufacturer's Representative - Los Angeles based seeks business partner with electronic engineering background, fluency in foreign language an asset. Cover both S. Calif. and International market. Please mail resume to Ham Radio Magazine, Box 0, Greenville, NH 03048.

WANTED: Help in completing the largest collection of Hallicrafter equipment in the world. Urgently needed are receivers with aluminum colored panels, back lighted plastic dials with "airplane" hands, early transmitters, unusual accessories, etc. Chuck Dachis, WD5EOG, "The Hallicratter Collector," 4500 Russell Drive, Austin, Texas 78745.

SPECTRUM MONITOR, Cushman CE-15, mint condition, $\$ 4100$. John Townsend, 2504 Buckingham Rd., Wilson, NC 27893. (919) 237-2177.
ELECTRONIC BARGAINS, CLOSEOUTS, SURPLUS! Parts, equipment, stereo, industrial, educational. Amazing values! Fascinating items unavailable in stores or catalogs anywhere. Unusual FREE catalog. ETCO-012, Box 762, Plattsburgh, NY 12901. SURPLUS WANTED.

FOR SALE: Kenwood TS-820S, new finals, excellent condition, headset with attached boom mic, phone patch. All $\$ 895$. Heath IG-18 sine \& square $\$ 120$. I ship. Certified check or money order. Bruce Bierman, WA8SJC, 7534 Mayfield, Chesterland, OH 44026 (216) 729-4643.

HAM RADIO REPAIR, experienced, reasonable, commer cial licensed. Robert Hall Electronics, P.O. Box 8363 San Francisco, CA 94128. W6BSH, (408) 292-6000.

LOCKSmithina: Free book. Locksmithing Institute, Dept. 319-121, Little Falls, NJ 07424

R-4C+SHERWOOD STLLL THE FINEST COMBINATION

600 HZ LOW-LOSS 1st-IF CW FILTER. Improve early-stage selectivity. Eliminate high-pitched leakage around 2nd-IF filters Improve ultimate rejection to 140 dB . Eliminate strong signals overloading $2 n d$ mixer, causing intermod and desensitization
CF-600/6: $\$ 80.00$ New PC board relay switch kit: $\$ 45.00$. 16.POLE R.4C SSB! Optimumbandidth plug in filter 16-POLE R-4C SSB! Optimum-bandwidth plug-in filter. Unex

250 AND 500 HZ B.POLE 2nd.IF PLUG.IN FILTERS. CF-250/B, CF.500/8: $\$ 80.00$
1st-IF SSB FILTERS still available. CF-2K/8: $\$ 150.00$ pair SPECIAL AM FILTERS and switching kits available.
Filters also available for R-7, TR.7, TR.4, Signal/One, Atlias Add $\$ 3$ shipping per order; $\$ 6$ overseas air
Europeans: Please contact Ingoimpex, Postfach 24 49, D.8070

Sherwood Engineering lnc.

1268 South Ogden St.
Denver, Colo. 80210
(303) 722-2257

FACSIMILE
COPY SATELLITE PHOTOS.
WEATHER MAPS, PRESS
The Faxs Are Clear - on our full size (18-1/2" wide) recorders. Free Fax Guide.

TELETYPE

RTTY MACHINES, PARTS, SUPPLIES | AILANIIC SUAPLUS SALES |
| :--- |
| 3730 NAIJILUS AVE BROOKLYN |
| '2121 3720349 |
| NY |

PC BOARD BARGAINS

GIO FA $1 / 16^{\prime \prime} 1$ OZ. COPPER
1 SIDE $12^{\prime \prime} \times 12^{\prime \prime}$
PKG OF $5 \$ 31.25$

1 SIDE $53 / 4 " \times 11 / 2^{\prime \prime} \ldots$ PKG OF $5 \$ 18.75$
2 SIDE $12^{\prime \prime} \times 12^{\prime \prime} \ldots .$. PKG OF $5 \$ 35.25$
2 SIDE $5 \frac{s / 4 " \times 11 / 2 . .}{}$ PKG OF $5 \$ 21.25$
MARCO
P.O BOX 2310. WEIRTON, WV 26062

STEP UP TO TELREX Protessionally Engineered Antenna Systems Single transmission line "TRI-BAND ${ }^{\circ}$ ARRAY"

CONVERT Morse from receiver, key(er), to logic-leve ASCII, other features. Interfaces LEDs, displays, termi nais. 5vDC, \$169. Telecraft Laboratories, Box 1185, E. Dennis, Mass. 02641.

MOBILE IGNITION SHIELDING provides more range with no noise. Available most engines. Many other sup pression accessories. Literature, Estes Engineering, 930 Marine Dr., Port Angeles, WA 98362.

XTAL FILTERS: New SSB filters by Filtech, $9 \mathrm{MHz}, 2.1$ kHz, BW, similar to KVG XF9-B, $\$ 25$ postpaid. K8DRN/4 J. Wiggenhorn, 1678 NW 84th Dr., Coral Springs, FL 33065. (305) 752-7444.

WANTED: Government Surplus radar equipment, microwave equipment and "old" General Radio test equipment. P. J. Plishner, 2 Lake Avenue Extension, Danbury, CT 06810 WA1LDU.

QSL ECONOMY: 1000 for $\$ 12$. SASE for samples. W4TG, Box F, Gray, GA 31032.

TUBES, TUBES wanted for cash or trade: 340TL, $4 \mathrm{CX1} 1000$, SCX1500. Any high power or special purpose tubes of Eimac/Varian. DCO, 10 Schuyler Avenue, No. Arlington, NJ 07032. (800) 526-1270.

ATTN: ANTIQUE RADIO COLLECTORS. Two SCR-536 Army Signal Corp radio sets mfrd. May '45. Complete with original packing, spare tubes and manuals. Mint cond. Operating on 3.8 MHz using BC611 rec. \& transmit ter. Best offer over museum's collectors price. Will ship prepaid. Contact W3BAG, P.O. Box 183, Brad. Hts., MD 21714.

FT-101E, fan, three filters SSB, 600, 250 installed. In cludes spare tubes (originals ok), free UPS shipping \$675 firm. John Skubick, 791 - 106 Ave., Napies, FL 33940.

LIONEL LOCOMOTIVE COLLECTORS. Gage 027 one each: Engine 1110 and Engine 258 plus cars and controls. Mint condition. Best offer. W3BAG, John Murray, P.O. Box 183, Brad. Hts., MD 21714.

MIRROR-IN-THE-LID, and other pre-1946 television set wanted. Paying $500+$ for any complete RCA "TRK" series, or General Electric "HM" series set. Also looking for 12AP4, MW-31-3 picture tubes, parts, literature on pre-war television. Arnoid Chase, WA1RYZ, 9 Rushieigh Road, West Hartford, Conn. 06117 (203) 521-5280.
UPX6 \& UPX4 cavities wanted. Milt Cooper, W6QT, 2805 Russell St., Berkeley, CA 94705.

WANTED: AN-MS connectors, synchros, etc. Send list, Bill Williams, P.O. 7057, Norfolk, Virginia 23509.

YAESU FL101 \$300.00; Yaesu FT101EE \$450.00; Panasonic RF 4800 digital general coverage receiver $\$ 250.00$; all mint. Jim Cammack, KD4TR, 755 Sherwood Drive, Lexington, KY 40502. (606) 278-8626, (606) 253-5824.

WANTED: Micor and Master II base stations, 406-420 MHz . Any solid state 2 and 6 GHz microwave equipment, AK7B, 4 Ajax Place, Berkeley, CA 94708.

D 5 V RADIO PARTS - Variable capacitors, chokes, toroids, etc. Reduced prices many items, stamp please. 12805 W. Sarle, Freeland, MI 48623.
MAKE HAM RADIO FUNI Supplement your learning programs with a motivational hypnosis cassette. Tape 33, Learning the Code; Tape "4, Breaking the Speed Barrier; Tape 17. Electronic Theory. Free catalog. For tapes, $\$ 10.95$ each to Gem Publishing, 3306 North 6th St., Coeur d-Alene, ID 83814.

CONFIDENTIAL INSIDER HAM RADIO NEWSLETTER -

 The best in the business! $\$ \mathbf{1 4 . 0 0}$ for 24 issues published twice a month. Sample: SASE with two stamps. W5YI Report, P.O. Box 10101H, Dallas, TX 75207.VERY In-ter-est-ing! Next 5 issues \$2. Ham Trader "Yellow Sheets", POB356, Wheaton, IL 60187.

EXCELLENT OPPORTUNITY IN SUNNY SOUTHWEST. Join our staff of $20+$ technicians. Motorola MSS servicing 2 -way radio, mobile telephones, micro-wave and CCTV equipment. Openings at all levels for technicians. Contact: Jim Strickland, K5EXB, Circle Communications Co., 2740 South Freeway, Ft. Worth, Texas 76104. Phone: (817) 923-7334.

CB TO 10 METER PROFESSIONALS: Your rig or buy ours - AM/SSB/CW. Certified Communications, 4138 So. Ferris, Fremont, Michigan 49412; (616) 924-4561.

AFC SEMI-KITSI Stop VFO drift. See June 1979 HR. $\$ 55.00$ plus $\$ 3.00$ UPS. Mical Devices, P.O. Box 343, Vista, CA 92083

NEED HELP for your Novice or General ticket? Recorded audio-visual theory instruction. No electronic back ground required. Free information. Amateur License, P.O. Box 6015, Norfolk, VA 23508.

SELL: HW-1681 with power supply (all new), $\mathbf{\$ 1 8 5 . 0 0}$ Millen Grid Dip, $\$ 35.00$; Recency HR-312 (2 meters), \$175.00; many other items. SASE Joseph Schwartz, 43-34 Union Street, Flushing. NY 11355. (212) 461-5933.
HAMS FOR CHRIST - Reach other Hams with a Gospel Tract sure to please. Clyde Stanfield, WA6HEG, 1570 N . Albright, Upland, CA 91786.

MOTOROLA Micor 2 meter repeater $\$ 800.00$. Sinclair 2 meter duplexer $\$ 650.00$. Motorola HT220 UHF 4 frequency $\$ 300.00$. Icom IC551D 6 meter transceiver $\$ 650.00$. KLM 6 meter beam $\$ 50.00$. Icom IC 701 HF Transceiver $\$ 990.00$. Icom IC211 2 meter transceiver $\$ 500.00$. Icom RM2 remote control $\$ 90.00$. Amplex 2 meter kilowatt amplifier less $\mathrm{p} / \mathrm{s} \$ 250.00$. Eric Meth, VE2AS, 171 Heward Ave., Toronto, Ontario, Canada M4M 2T6. (416) 469-1084.

BUY-SELL-TRADE Send $\$ 1.00$ for catalog. Give name adJress and call letters. Complete stock of major brands new and reconditioned amateur radio equipment. Call for best deals. We buy Collins, Drake, Swan, etc. Associated Radio, 8012 Conser, Overland Park, KS 36204. (913) 381-5900.

AKAI VC100 TV camera (s/n U51115-90033) and VM100 monitor (s / n U51115-9078). Need schematics, service manual or connection instructions. Will pay postage both ways or xeroxing costs. Peter Simpson, KA1AXY, 18 University Drive, Natick, MA 01760.
WANTED: Heath IT-5283, IG-5282, IM-5284, IT-5230, CRT, checker, CMA-1550 engine analyzer, IP-2718, IP-2717, IT-5235, IC-5228, IT-3120. E. Tanrath, 3035 LaSalle Avenue, Rockford, IL 61111. (815) 877-0883.

SATELLITE TELEVISION...HOWARD/COLEMAN boards to build your own receiver. For more information write: Robert Coleman, Rt. 3, Box 58-AHR, Travelers Rest, SC 29690.

Coming Events

PLAYBOY CLUB: Plan ahead now to attend the ARRL Hudson Division Convention, October 30-31, 1982, at the Playboy Club, Great Gorge, McAtee, NJ. For info send SASE to HARC, Box 528, Englewood, NJ 07631.

ILLINOIS: Wheaton Community Radio Amateurs Hamfest will be held February 7, 1982, at Arlington Park Race Track EXPO Center, Arlington Heights, Illinois. Free Flea Market tables and expanded floor space. Large commercial area including the new "computer" section. For commercial info call WB9TTE at 312-766-1684; for general info call WB9PWM at 312-629-1427. Clear paved parking. Awards. Tickets $\$ 3.00$ at entrance, $\$ 2.50$ in advance. Send SASE to WCRA, P.O. Box QSL, Wheaton, IL 60187. Talk-in on 146.01/61 and 146.94. Doors open 8 AM. Be There! - KA9KDC.

SOUTH BEND, INDIANA Hamfest Swap \& Shop, January 3, 1982, first Sunday after New Year's Day at Century Center downtown on U.S. 33 ONEWAY North between St. Joseph Bank Building and river. Industrial history Museum in same building. Half acre carpeted in one room. Tables $\$ 3$ each. Four lane highways to door from all directions. Talk-in Freq: $52.52,99.39,93-33,78-18$, $69-09$ and 144.83-145.43.

VIRGINIA: The Richmond Amateur Telecommunications Society's annual "Frostfest,"-Sunday, January 10, Virginia State Fairgrounds, Richmond. Gates open 8 AM. Activities include CW and Homebrew contests. Admission: $\$ 3.00$. Flea market tables extra. Major prizes awarded promptly at 3 PM. For information: Joe Stern, (804) 737-0333.

OPERATING EVENTS

DECEMBER 17 TO DECEMBER 21: The Triple States Radio Amateur Club will operate from Bethlehem, West Virginia from 1400 to 2300 UTC daily. Frequencies for WD8DDL/8 will be: $7.275,14.325,21.425$ and 28.550 MHz on SSB. $7.110,14.075,21.110$ and 28.110 MHz on CW. For a special holiday season card SASE to TSRAC, 26 Mapie Lane, Bethlehem, Wheeling, WV 26003.
JANUARY 1, 1982. Worked All Hawail Awards available to all licensed Amateurs. Sponsored by the Big Island Amateur Radio Club. Contacts after 0000z. Any mode, any band. Three classes. Class A: Work 100 Hawailan stations. Class B: Work 50 Hawailan stations. Class C: work 25 Hawailian stations. Award fee $\$ 3.50$ U.S. Address award applications to: Big Island Amateur Radio Club, P.O. Box 1688, Kamuela, Hawail 96743.

JANUARY 17: The Phil-Mont Mobile Radio Club Station W3TKQ will be celebrating its 30 th anniversary and commemorating the Club's association with the Franklin Institute and the birthday of Ben Franklin, Philadelphia's First Citizen. Station will operate 80 through 10 meters from 8 AM to 8 PM. A special QSL card/certificate for a SASE. Frequencies: lower edges of the General and Advanced bands.
When it comes to
AMATEUR
RADIO QSL's ...

ONLY BOOK!

US or Foreign Listings

cialllooks
 NOW READY!

Here they are! The latest editions. Worldfamous Radio Amateur Callbooks, the most respected and complete listing of radio amateurs. Lists calls, license classes, address information. Loaded with speclal features such as call changes, prefixes of the world, standard time charts, worldwide QSL bureaus, and more. The U.S. Edition features over 400,000 listings, with over 70,000 changes from last year. The Foreign Edition has over 370,000 listings, over 60,000 changes. Place your order for the new 1982 Radio Amateur Callbooks, available now.

	Each	Shipping	Total
US Callbook Foreign Callbook	$\$ 18.95$	$\$ 3.05$	$\$ 22.00$

Order both books at the same time for $\$ 39.95$ including shipping.
Order from your dealer or directly from the publisher. All direct orders add shipping charge. Foreign residents add $\$ 4.55$ for shipping. Illinois residents add 5% sales tax.

SPECIAL LIMITED OFFER!
Amateur Radio Emblem Patch
only $\$ 2.50$ postpaid
Pegasus on blue field, red lettering. $3^{\prime \prime}$ wide $\times 3^{\prime \prime}$ high. Great on Jackets and caps.

ORDER TODAY!

RADIO AMATEUR\|EOK INC.

 Dept.925 Sherwood Drive Lake Bluff, IL 60044, USA

SHACK SUPPLIES

R. L. DRAKE SALE!

TR-7/DR-7 160-10M Transceiver . . List \$1599 . . SALE \$1399 PS. 7 Heavy Duty AC Supply . . . List \$299 SALE \$ 269 PS. 75 Standerd AC Supply R- 7 Digital 0.30 Mhz Receiver. L.7 160.15M 1KW PEP Linear L. 75 160-15M 1.2 KW Linear RV-7 Remote VFO for TR-7 MS. 7 Speaker for TR-7/R. 7 List $\$ 199$.... SALE $\$ 179$ List \$1549... SALE \$1349 List \$1090 . . . SALE \$ 969 List \$699. . . . SALE S 619 MN-75 200W PEP 160-10M Tune List S49.... SALES 45 CS. 7 Reme Anter Swith . SI S159. . SALE S 319 CS.7 Remote Antenna Switch. . . . List \$169 . . SALE S 149
WH-7 20/200/2000 Wattmeter . . . List $\$ 129$. . SALE $\$ 116$ DL-300 300W Dry Dummy Load . . List \$27 . . . SALE \$ 25 DL- 1000 1KW Dry Dummy Load. . . List \$53. . . SALE S 49 AK-75 Multiband Antenna. List \$40. SALE \$ 37 7000E Communications Terminal. List \$1095. . SALE \$ 979 TR. 930 9" Video Monitor List \$185 SALE \$ 169 COMPLETE STOCK OF DRAKE FILTERS, FANS, TECH nical manuals, serve kits, mics and other ac CESSORIES - CALL US!!

BIG TEN-TEC SALE!

OMNI-C 160-10M Tranceiver. . . List \$1289 . . . SALE $\$ 1049$ DELTA 160-10M Transceiver . . . List S869. . . SALE S 749 ARGOSY 80-10M Transeiver, . . . List $\$ 549$. . . SALE $\$ 469$ HERCULES Solid State Linear . . . List \$1575. . . SALE \$1329 225 AC Supply for Argosy. List \$129 . . . SALE S 115 255 Deluxe AC Supply for 0 mai . . . List \$199. . . SALE \$ 169 280 AC Supply for Delta. List 169 SALE S 149 209 300W PEP Dry Dummy Load . . List S26. . . SALE S 24 214 Electret Mic for 234. List $\$ 39$. . . . SALE S $\$ 36$ 215PC Ceramic Mic. List $\$ 35 . . .$. . . SALE $\$ 29$ 227 200W PEP Antenna Tuner . . . List S79. . . . SALE S 75 $228200 W$ Tuner w/SWR Meter . . . List $\$ 95$. . . SALE \$ 89 229 2KW PEP Tuner w/SWR Meter. . List \$269. . SALE \$ 229 243 Remote VFO for 0mni-C . . . List \$189 . . . SALE \$ 169 234 RF Speech Processor List \$139. SALE S 119 283 Remote VFO for Deita . . . List $\$ 189$. . . SALE S 169 COMPLETE STOCK OF ALL TEN TEC FILTERS, BREAKERS ANO OTHER ACCESSORIES IN STOCK FOR IMMEDIATE SHIPMENT - CALLII

ETO/ALPHA

76A	2 KW Pep Linear Amp w/2 88745	S1495
76PA	2 KW Pep Linear Amp w/38874S	\$1795
374A No Tune	Up Verson of 76A.	5
78 No Tune	Up OSK-38874S	\$2595
770x	Linear Amp w/8877 Final	\$3995
VOCOM	PRODUCTS	
5/8 WAVE	2 mtr . Hand Held Antenna	\$ 19
2C025-2	2 W in - 25 W out 2 mtr . Amplifier	\$ 75
2C025-200MW	200MW in - 25 W out 2 mtr . Amplifier	S 89
2C050-2	2 W in - 50 W out 2 mtr . Amplifier	\$109
2C100-()	2/10/25W in - 100W out 2 mtr . A	

AZDEN

PCS3000 2 mtr. FM XCVR w/TT Pad Kit $\$ 289$

BENCHER

BY-1 Keyer Paddie w/Black Base $\$ 36$
BY-2 Paddle w/Chrome Base S 44
BY-3 Paddie w/Gold Plated Base $\$ 129$
ZA-1A $\quad 3.5-30 \mathrm{MHz}$ Air Core Balun $\$ 16$
ZA-2A $\quad 14-30 \mathrm{MHz}$ Air Core Balun $\$ 20$

DAIWA/J.W. MILLER

AT2500 2KW PEP Automatic Antenna Tuner. 5699 CNA-1001 500W PEP Automatic Antenna Tuner $\$ 299$
CN-2608 $\quad 1.8 .150 \mathrm{Mhz}$ SWR/Power Meter. $\$ 112$
CN-630 $\quad 140-150$ Mhz SWR/Power Meter $\$ 129$
CN. 7208 - 18.150 Mir SWR/Power Meter
CS-201 2.Pos Cavity type Coax Switch
CS-401 4-Pas Cavity type Coax Switch
RF-440 RF Speech Processor w/AC Supply.
.$\$ 129$

TEXAS TOWERS

A division of texas communications products
1108 Summit Ave., Suite 4 Plano, Texas 75074
Mon.Fri. 9 a.m. -6 p.m. Sat 9 a.m. -1 p.m.
TELEPHONE: (214) 423-2376
PRICES SUBJECT TO CHANGE WITHOUT NOTICE

Garth Stonehocker, K0RYW

last-minute forecast

The 27-day solar maximum is expected to peak around the middle of the month, which leaves the beginning and end of the month with lower flux and flare activity. Geomagnetic disturbances can be expected about December 1, 11, 20, and 28. The two mid-month disturbances are solar flare effects, and the others are from coronal hole thinness, increasing the solar wind. From these solar/terrestrial relationships, the best $D X$ is probably going to be at night on the lower-frequency bands during the first week and a half. Then the higher bands will be favored for long-haul DX for the next week and a half. DX conditions may be poorer during the last week and be best on the lower bands again.

December is probably the best month for winter DX. Although the hours of daylight are quite short now in the Northern Hemisphere, the ion-osphere-propagated frequencies rise rapidly, with the rising sun, to the higher frequency bands of good DX. The sunspot number and solar flux remain high enough to ensure good MUFs during this winter DX season.

The earth is closest to the sun, which results in a 5 percent rise in solar flux and ionospheric density during winter. December is also one of the quietest months of the year in terms of geomagnetic disturbances. Radio noise propagated from the thunderstorm centers over the few land masses of the Southern Hemisphere are far from us, so the 80 - and $160-$ meter bands are good for daytime use and become good possibilities for DX during the long winter nights. All these conditions make for good DX. The longest night - winter solstice - is on the 21st this year.

The Geminid meteor shower, which reaches its peak on December 13-14, provides the richest and most reliable display of the year, with rates of 60-70 per hour (measured mainly by radio because of the poor weather in December). Also, a smaller portion of the shower (15-20 per hour) is observed on December 22. Lunar perigee and full moon occur on December 11.

band-by-band summary

Six meters will open occasionally during time of 27-day solar flux maxima. The apenings will follow the sun -
east before noon, south at noontime, and west and transequatorial during the evening.
Ten and fifteen meters will be like the openings on six, except more frequent and longer in duration. Worldwide DX will abound from after sunrise until well after sunset during periods of high solar flux (listen to WWV at 18 minutes after the hour for the daily flux value).

Twenty meters, the universal DX band, will be open most days during December this year, to most parts of the world during the day and into the night. Best conditions can be expected just after sunrise and just before sunset. Long skip will be available as the band opens upon sunrise, and will last until well after sunset.

Forty meters is a transition band between the daytime bands at high frequencies and the nighttime bands at this and lower frequencies. Our new 1979 WARC 30 -meter band will provide the in-between band that may allow round-the-clock communications on 350- to 2500-mile (560-4000 km) paths. As is, 40 meters is very active to most areas of the world during hours of darkness to just before sunrise. In late afternoon, the band will open to the east, covering Europe, then swing around to the south at about midnight, and west to the Pacific by dawn. Short skip will be available on most days.

Eighty and one-sixty meters are expected to be excellent on this best month of the year for the top bands. Low noise during the long nights will give hours of pleasure if you are looking for the rare ones on these bands. DX from the coastal areas over water to South Africa, South America, and Australia-Asia will be easiest; but rare ones from anywhere will be worth the effort. You ragchewers on these bands try some DXing.
ham radio

	$\stackrel{\square}{-}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	은	$\stackrel{\sim}{\sim}$	은	～	은	은	1	1	1	1	$\stackrel{\text { 가 }}{ }$	은	1	1	1	1	O	은	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\square}$	NVd
31	\bigcirc	－	$\stackrel{\sim}{\sim}$	$\stackrel{1}{\sim}$	은	1		N	$\stackrel{\sim}{\sim}$	든	1	악	\％	은	은	${ }_{\sim}^{n}$	$\stackrel{\sim}{\sim}$	1	\bigcirc	윽	윽	윽	O	압	$\begin{aligned} & \text { nv } \\ & 00 \end{aligned}$
	안	$\stackrel{\square}{1}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\sim}$	은	$\stackrel{*}{\circ}$	$\stackrel{\text { N }}{ }$	안	$\stackrel{\text { 간 }}{ }$	안	안	$$	＊	1	1	$\stackrel{\sim}{\sim}$	$\stackrel{1}{-1}$	－	익	은	O	－	－	anviv3
	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{-1}$	믄	나	N	N	N	사	1	오	1		1	1	1	1	1	1	1	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\square}$	\％10y\％
岕	\cdots	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{-}$	은	은	근	산	오	8	8	\％	은	$\stackrel{\sim}{\sim}$	응	윽	악	안	\bigcirc	9	은	은	\bigcirc	\bigcirc	은	
	9	$\stackrel{*}{*}$	$\stackrel{\sim}{\square}$	슨	$\stackrel{5}{\square}$	$\stackrel{n}{n}$	$\stackrel{\sim}{\square}$		1	1	산	$\stackrel{1}{1}$	앆	은	은	윽	은	－	은	윽	－	\bigcirc	윽	으	\％14
	은	근	은	은	은	아	악	옥	든	슨	근	$\stackrel{n}{\square}$	윽	읏	윽	은	응	$\stackrel{\square}{\square}$	$\stackrel{\square}{\square}$	$\stackrel{\sim}{\square}$	은	안	윽	으N	3 dot
	\because	$\stackrel{\square}{\square}$	$\stackrel{\sim}{\square}$	\cdots	간	믄	슨	1	1	1	1	1	손	안	N	\sim	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\sim}$	1	1	1	1	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\square}$	\checkmark
芻	$\stackrel{8}{8}$	8	8	$\stackrel{8}{\text { ¢ }}$	$\stackrel{8}{\square}$	8	8	$\stackrel{8}{8}$	8	8	8	8	8	8	$\stackrel{8}{\circ}$	8	8	8	8	$\stackrel{8}{8}$	8	8	8	8	

5	8	8	8	8	8	8	$\stackrel{\text { ¢ }}{ }$	8	8	8	8	8	$\stackrel{\square}{\circ}$	$\stackrel{8}{\sim}$	$\stackrel{8}{\infty}$	8	8	8	$\stackrel{8}{\text { ¢ }}$	8	8	8	8	8	
32	\bigcirc	음	음	음	$\stackrel{*}{\circ}$	극	은	슨	슨	읏	오	1	1	1	1	8	1	1	1	1	䓂	$\stackrel{\sim}{\square}$	\bigcirc	은	Nvd
31	\bigcirc	－	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\square}$	$\stackrel{\square}{\square}$	근	1	1	1	1	1	1	1	슨	N	은	슨	$\stackrel{\square}{\square}$	$\stackrel{\square}{-}$	$\stackrel{\text {－}}{\sim}$	\bigcirc	$\stackrel{-}{-}$	윽	은	viverisn
あ	안	\bigcirc	윽	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\square}$	$\begin{aligned} & \stackrel{*}{N} \\ & \hline \end{aligned}$	은	오	몬	운	아	슨	은	악	은	오	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{-1}$	$\stackrel{\sim}{1}$	－	은	윽	은	으－	onvivaz
	$\stackrel{\square}{\square}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\sim}$	$\stackrel{*}{\text { ® }}$	$\stackrel{\text {＊}}{\text {－}}$	극	슨	윽	1	1	1	1	1	1	1	1	1	1	1	1	\％110\％
出	9	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{-}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	근	든	\％	악	악	O	안	$\stackrel{7}{\square}$	$\stackrel{\sim}{\sim}$	은	은	안	\bigcirc	\bigcirc	\bigcirc	－	윽	윽	으	voluzwv
	O	O	$\stackrel{*}{*}$	$\stackrel{*}{0}$	$\stackrel{*}{0}$	안	1	1	1	1	1	1	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{-}$	윽	은	악	\bigcirc	O	O	안	읍	윽	\bigcirc	งษษ
	슨	슨	오	모	오	$\begin{aligned} & * \\ & \hline 0 \\ & \hline \end{aligned}$	\％	앙	\％	1	1	1	N	$\stackrel{*}{\sim}$	응	응	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\square}$	윽	을	을	$\stackrel{\text { 글 }}{ }$	
	\bigcirc	9	\bigcirc	$\stackrel{\sim}{\sim}$	운	1	1	1	1	1	1	1	1	1	1	앙	$\stackrel{\text { 가 }}{ }$	안	$\stackrel{\text { 간 }}{ }$	슥	곳	웅	1	1	
坹	8	$\stackrel{8}{6}$	8	8	8	$\stackrel{8}{8}$	$\stackrel{8}{3}$	\％્ผે	8	$\stackrel{8}{\text { ¢ }}$	8	8	8	8	8	8	8	8	8	$\stackrel{8}{\underline{\text { ¢ }}}$	8	$\stackrel{8}{4}$	8	8	

\％	음	\bigcirc	은	$\stackrel{\square}{\square}$	$\stackrel{\sim}{\square}$	안	은	앙	안	¢	앙	¢ 9	악	앙	앙	안	\％	악		안	오	容	$\stackrel{\sim}{\sim}$	안	은	nvavr
36	$\stackrel{\sim}{\square}$	은	O	\bigcirc	$\stackrel{\sim}{\square}$	\cdots	$\stackrel{\sim}{\sim}$	1	1	1	1	－	 	\％	\％	$\stackrel{\sim}{N}$	－	$\stackrel{\sim}{n}$		$\stackrel{*}{*}$	윽	윽	윽	응	윽	$\begin{gathered} \text { viveisnv } \\ \text { vinvzio } \end{gathered}$
	으－	은	은	은	윽	$\stackrel{\sim}{\sim}$	$\stackrel{\square}{\square}$	$\stackrel{\sim}{\square}$	은	간	$\stackrel{*}{\circ}$	아	8	O	\％	앙	$\stackrel{*}{\text { ® }}$	$\stackrel{\sim}{n}$		$\stackrel{\sim}{\square}$	윽	앙	은	응	응	anvivzz man
	$\stackrel{\square}{\square}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{n}{\sim}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\sim}$	안	2	은	今	나	아	읏	－	은	N	1	$!$		1	1	1	1	1	1	vohouving
凶	$\stackrel{\sim}{n}$	$\stackrel{\sim}{\sim}$	\sim	$\stackrel{\sim}{\sim}$	소	은	옹	안	은	옹	은	8	1	은	$\stackrel{\sim}{\square}$	앙	\bigcirc	윽		은	$\stackrel{-}{-}$	\bigcirc	을	은	응	voluewts
1	0	은	$\stackrel{*}{\text {＊}}$	号	$\stackrel{\rightharpoonup}{*}$	－	은	오	근	1	1	1	1	근	$\stackrel{\sim}{\sim}$	$\stackrel{1}{9}$	O	\bigcirc		응	O	은	－	안	\bigcirc	voruv s
	న	응	응	단	슨	\％	앙	앙	오	오	오	1	1	1	안	2	극	$\stackrel{\square}{-}$		으	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\square}$	근	－	웅	צd\％una
	\bigcirc	윽	윽	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\square}$	$\stackrel{\square}{-}$	소	1	1	1	1	1	1	1	1	1	슨	은		안	N	\sim	\sim	$\stackrel{\sim}{\square}$	은	
5	8	8	8	8	8	8	8	$\stackrel{8}{\square}$	8	8	8	8	8	8	8	8	8	$\stackrel{8}{8}$		8	8	\％	8	\％	$\stackrel{8}{4}$	y39W3J30
気	8	8	\％	8	8	\％	8	\％	8	8	$\stackrel{8}{8}$	8	\％	$\stackrel{8}{7}$	8	8	8	8		\％	$\underline{2}$	8	$\stackrel{8}{1}$	\％	\％	

TEST EQUIPMENT

HP 3450A
Mulli-finnction meter $\quad 300.00$
HP G94C Sweep Oscilator 8.0 to 12.4 GHz
800.00

HP 8690B Sweep Oscillator
with 8693B plug in
4.0 to 8.0 GHz
4000.00

HP 180A Oscilloscope with HP 1815A TDR/Sampler \& HP 158DA Narrow-band TDR
2500.00

HP 5245C Frequency Counter
with 5253 A plug-in $100-500 \mathrm{MHz}$

HP 1784A Recorder Plug-in for HP 175A Oscilloscope 150.0

HP 1783A Time Mark Generator for HP 175A Oscilloscope $\quad 100.00$

HP 606A Signal Generator 50 kr ! 105 MHz
800.00

HP606B
2000.00

Quantity: 2
HP 175A Oscilloscope
with 1781 B Delay Generator \&
1754A Four Channel
Amplifier
400.00

HP 5381A
200.00

80 MHz Frequency Counter
HP 425A
DC Micro Volt/Ammeter $\quad 100.00$

Quant ty: 3

HP 1754 A Four Channel
Amplifier for HP 175A
Oscilloscope $\quad 75.00$ ea.

HP608D

VHF Signa! Generator 10 MHz to 420 MHz

HP 6214A Power Supply
$0-10$ VDC, $0-1 \mathrm{Amp}$
100.00

SPECLAL PURCHASE
Hewlett Packard Cathode Ray Tube Display - Model 1332A
$\mathrm{X}-\mathrm{Y}$ scope with 2 -axis. Without case. Fully transistorized. Used.

Reconditioned. Manual supplied. As is. Not reconditioned.

$\$ 195.00$

TRANSISTORS/IC'S
Motorola MHW 252 VHF power amplifier. Frequency range: $144-148 \mathrm{MHz}$.
Output power: 25 W .
Minimum gain: 19.2 dB
$\$ 39.99$ each

Motorola MC 1316P.
House no. same as HEP C6073 \& EC9814.
2-W audio a mplifier
$\$ 1.29$ ea., 10 for $\$ 0.50$

MEMORY EPROMS C.P.U.'s ETC.

68B21		9.99
2716		4. 99
2708/4708		2.00
6820		4.00
6845		20.00
8202		25.00
8212		1. 50
8214		3.00
8257		6.00
8279		9.00
1793		29.99
2114-2 \& 3 .		2.00
4044		2.00
4027		1.00
3232		3.00
2732-6		14.99
280 CPU		5.00
Z80 CTC		5. 00
Z 80A - PIO		6. 99
Z 80A - SIO O		19.99
Z 80A - SIO I		.19.99
Z 80A-SIO, II		.19.99
8251.2651		4.50
3341		3.00
8741		25.00
8748		39.00
MC 1408L 6		3. 25
MC 1408L, 8.		4.25
8 T 28.		1. 99
TMS 1000 NL		4.00
1702		4.00
1488		. 99
1489		. 99
8085		9. 99
2102		. 69
MC6800P		9.99
8080		3.00
8080A		. 4.50
Floppy Disk Power Supply:		
Handles two un	with the	
greatest of eas		89.99
EMI FILTERS		
\#NF 10870-8	10 Amps	6.99
\#F 1845	5 Amps	3.99
\# 3B1	3 Amps	2. 99
\# 2B2	2 Amps	2.69
\# 3B4	3 Amps	2.99

Fairchild 007-03 IC.
ECG no. 707 Chroma demodulator. $\$ 1.29$ ea., 10 for $\$ 8.50$

Motorola rf transistors.
Selection Guide \& Cross-Reference Catalog.
$\$ 1.99$ each

RCA Triacs.
Type T2310A.
TO-5 Case with heat sinks.
$1.6 \mathrm{Amp}, 100 \mathrm{VDC}$, lgt 3 mA
Sensitive gate.
$\$ 1.00$ each
Cooling fans
$2^{\prime \prime}$ round $\times 3$." long, 12 VDC.

RCA power transistors. NPN RCS 258.
Vceo 60 NFE 5 mA .
IC 20 Amps Vee 4 V .
250 Watts, Ft 2 MHz .

RCA Triacs.
Type T4121B/40799
200 VDC 10 Amps.
stud type.

RCA Triacs.
Type 40805/T6421D,
$30 \mathrm{Amps}, 400 \mathrm{VDC}$.

Motorola rf a mplifier
544-4001-002, simitar to type

1. 5 Watts output. MHW 401-2
$440-512 \mathrm{MHz}$.
15 dB gain min.

3-M Company Bumpons. (stick on (eet)
2 types:
Type 1
SF-5012, black
$0.5^{\prime \prime}$ dia, $\times 0.14^{\prime \prime}$ high
(12.7×3.55 mm)

70-0700-1813-3 sheet of $4 \quad \$ 3.00$

Type 2

SJ-5519, brown
$0.78^{\prime \prime} \times 0.35^{\prime \prime}$ rect. x $0.2^{\prime \prime}$ high
$(19.8 \times 8.89 \times 5.08 \mathrm{~mm})$
70-0700-2982-5 sheet of 64
self adhesive
$\$ 4.29$

Quantity: 2
HP 197A Scope Camera, 200.00 ea.
HP 197B Scope Camera $\quad 200.00$
HP 431 B RF Power Meter 150.00
HP 431C RF Power Meter 200.00

TEKTRONIX OSCILLOSCOPES
$\begin{array}{ll}454 & \$ 1900.00 \\ 547 / 1 \mathrm{Al} / 1 \mathrm{~A} 2 / 1 \mathrm{~A} 4 & \$ 1500.00\end{array}$

2 New Tektronix 602 CRT -
Display
gOONTON EQUIPMENT
Quantity: 2
Model 74C-58
Capacitance Bridge
Test Freq. $100 \mathrm{kc} \quad \$ 300.00$ ea.

Quantity: 1

Model 71A
Capacitance - Inductance meter
$\mathrm{F}=1 \mathrm{Mc} / \mathrm{s}$

Quantity: 1

Model 750
1 MHz Direct Capacitance
Bridge
$\$ 1000.00$
Quantity: 1
Model 700A
Digital C/L Meter $\quad \$ 1000.00$

Solder Wick
Size \#2 Cat. \#40-2-5. 1.00 Size \#4 Cat. \#40-4-5.............. 1.00

CORES AND BEADS

CABLE TIES

\#/T-18R
100 per bag
mil. spec. \#MS-3368S, $4^{\prime \prime}$
Made by Tyton Corp.

$$
\$ 2.50 \text { per bug }
$$

10 bags - $\$ 20.00$

HIGH VOLTAGE CAPS
$420 \mathrm{MFD}(100 \mathrm{VDC} \quad 3.99$ each $600 \mathrm{MFD}(400 \mathrm{VDC} \quad 3.99$ each

DOOR KNOB CAPS

470 pF (! 15 KV		\$3.99 each
Dual 500 pF (i) 15 KV		5.99 each
680 pF (u'6 KV		3.99 each
800 pF 15 KV		3.99 each
2700 pF (1) 40 KV		5.99 each
CORES		
	4.1 .00	
T 20-12	T 30-6	T37-6
T25-6	T30-12	T 37-10
T30-2	T37-2	T44-6

T50-6.... 2 lor 1.00

MAGNET WIRE

\$22.50 per spool			
$\# 24$	A.W.G.		
$\# 26$	A.W.G.	9	lb.
$\# 25$	A.W.G.	9	lb.
$\# 30$	A.W.G.	83.4 lb.	
$\# 31$	A.W.G.	6	lb.

CONTINUOUS TONE BUZZER
\#MB12 'Soma"
Freqz 450 Hz , size $5 / 8 \times 5 / 8$
12VDC............... \$2.00 each

mH	2.99
mH	2.99
nH	2.99
niH	2.99
$\mathrm{muH}^{\text {c }}$	2.99
mH	2.99
mH	2. 99
mH	2. 99
mH	.2. 99
3 mH	2. 99
mH	. 2.99
mH	2.99
mH	.2.99
mH	.2.99
mH	.2.99
; mH	2.99
mH	.2.99
; mH	2.99
; mH	2.99
mH	2.99
4 mH	2.99
7 mH	.2.99
3 mH	2. 99
mH	.2.99
mH	2.99
; mH	2.99
mH	2.99
$\underset{\substack{2 \mathrm{mH} \\ \mathrm{mH}}}{ }$	2.99 2.99

B type crystals

\$2. 50 each	
51-T	
T 15	T28
T 16	T29
T17	T30
T18	T31
T19	T32
T20	T33
T21	T 34
T22	T35
T23	T36
T24	T37
T25	T38
T 26	T39
T27	T40
$51-1 /$	
R15	H28
R16	R29
R17	R30
R18	R31
R19	k 32
R20	R33
R21	R 34
R22	R35
R23	R36
R24	R37
R25	: 38
R26	R39
R27	R 40

oldering Kit

Wellev Soldwines Iron Kit 23 K . neludes:

- 25 Watt solderime itom,
develops 750° of tip
temperature
- lips (screwdriver, chasul cone)
- soldering aid tool
- coil 6040 rosin coro solde

47 mH	2.99
50 mH	2.99
59 mH	2.99
60 mH	2.99
71.5 mH	2.99
78.7 mH	2.99
86 mH	2.99
100 mmH	2.99
120 mH	2.99
150 mH	2.99
175 mH	2.99
200 mH	2.99
205 mH	2.99
237 mH	2.99
240 mH	2.99
300 mH	2.99
360 mH	2.99
390 mH	2.99
430 mH	2.99
500 mH	1. 50
600 mH	2.99
1000 mH	2,99
1.5 Hy	2.99
2.0 Hy	2. 99
2.5 Hy	2.99
3.0 Hv	2. 99
5.0 Hy	2.99
10 11y	2. 99

TRIMPOTS

Thumb wheel type. . 39 each or $10,2.50$ not sold mixed
100
150
200
250
500
1000
1500
2000
2500
5000
10000
20000
25000
50000
200 K
250 K
500 K
750 K
2 megs
2.2 megs
3 megs
5 megs

ATLAS FILTERS

ATLAS CRYSTAL FILTERS FOR ATLAS HAM GEAR

Your Choice $\$ 15.95 \mathrm{ra}$
5.645-2.7.8
5.595-2.7 USB
5.595-2.7.8. L
5.595-2.7 LSB
$5.595-.5004$
$9.0-\mathrm{USB}_{i} \mathrm{CW}$

Used NiCads

Used C Nickel Cadmium Batterts 1.8 amp hour

Pack of ten
\$8.99 per pack

TRANSFORMERS
\#70169-2............... 4.99 each
26 VCT 1 Amp and
2.5 V (11 Amp

New GE model 6C-9 9 V Nicad
Batlory...................... 4
New MCM Moving Coil Tach
Generator
Model M100. \qquad 8.99 cach

New Mallory Moni Sonatort
Model $\# \mathrm{SC}-18$. Works at 12 VDC 3500 Hz 4.69 titct

New T.V. Colorburse Crystals 3.579545 99 थitch

WII)E13ANI RF TRANSFORMERS
Tyep T16-1.
.......6.50 rach
310120 MHz
Insertion Joss
310120 MHz .
3 dil,
7 c 80 MH
2d13

RELAYS

Meko $\# 109 \mathrm{P} 80060$. 99 5 VDC SPDT

Mekio. 99
5 VDC SPST
AMF/P\&B..................... 2. 99
R10-E1-Y2-J1.0K - 8.5 MA
6 VDC DPDT
Omron Mhe 2021יG. 2. 99
VA-DC12 DPUT
AMF:P\&B
KUMP1ID18
12 VDC DPDT
Sicma 65F2A. 1.69 12 VDC SPI)T

NA P Controls 2.99
13 A 12 D 12 DPDT

AMF P\&B
12 VDC 210 ohms DPDT
AZ530-13-2. 2.69
12 VDC 45 ohnus SPDT
Siquma 4 70RE62. 4. 95
12 VDC 3P6T
P\&BKH4695-1.............. 2.99
120 VAC 2 P 4 T
2. 93

CERAMIC	COIL FORMS $\$ 1.00$ each
\#1	$3,16^{\prime \prime} \times 4,8^{\prime \prime}$
\# 2	3, $16^{\prime \prime} \times 1 / 4^{\prime \prime}$
\# 3	1/4 " $\times 3 / 4$ "

CONNECTORS

PL-25
UHF temate to UHF temate 1.69 M-359
UHF $90^{\circ} \quad 2.50$
UG363 CHF double temat
Pand mount
UHE M
PL-259 (1) RCA
F71-1115
4 pin play
F71-1116
4 pin jath
F71-1120
6 pis plas!
F71-1121
6 pun mot
D) phtie, ※ latk

5 puturtic \& turath . t!
BNC UGi260
BNC mate ion RG 59 L
BNC IIC;88U
BNC mala lar RG.58U
UG 273

BNO
2 tomalr to 1 bNC mak 3.75
UG 21
Type N male 3.60

UG 23
PL-259 . 99
SO-239
F 6 lemalu chassis mount
conmertor with bex nut 101.9
UG 306
BNC mate lo limale $90^{\circ} \quad 2.59$
UG255
BNC male to lemale $90^{-} \quad 2.79$
UG 491
BNC mate to 80-239 female 3.00
UG 1094 BNC fomale
chassis momat
.80
UG 914
BNC fematr io BNC lemate RS-232 Hoods

1. 00

RS-232 Mall. PCEStwe 2.00
RS-232 Fematk $P C B 1$ vpt 2.00
Centromes math 6.99

F-59 crmanetorefor UG 590
cable $\quad 100.13 .95 \mathrm{wr}^{2} 102.00$
Pぬ13 (AA-2290.
3. 09

110 VICC 2 P 4 T

P\&B PR5DY.
3. 99

25 A 12 VDC SPI)T
P\&B PR7AY. 5.99
25 A 115 VAC DPST
AMF P\&B
4.99

PRDIIAYO
24 VAC ' 25 A DPDT
MS188-901 188-212081-102
70 olmm SPST

All of the above have
powdered iron cutes.
$1 / 2^{\prime \prime} \times 23 / 4^{\prime \prime}$

ORDERING INSTRUCTIONS

Check, money order, or credil cards welcome. (Master Charge and VISA only.) No personal checks or certified personal checks for foreign countries accepted. Money order or cashiers check in U.S. funds only Letters of credit are not acceptable.
Minimum shipping by UPS is $\$ 2.35$ with insurance. Please allow extra shipping charges for heavy or long tems.
All parts returned due to customer error or decisicn will be subject to a 15% restock charge. If we are out of an item ordered wo will try to replace with an equal or better part unless with an equal or better part unless you specity not to, or we will back PR the item, or refund your money.
PRICES ARE SUBJECT TO CHANGE WITHOUT NOTICE. Prices supersede all previously published. Some Items offered are Ilmited to small quantities and are subject to prior sale.
We now have a toll free number but we ask that it be used for charge orders oniy. If you have any ques tlons please use our other number. We are open from 8:00 a.m. - 5:00 p.m Monday thru Saturday.
Our toll free number for charge orders only is 800-528-3611.

MINIMUM ORDER $\mathbf{\$ 1 0 . 0 0}$	
NEW CHERRY BCD SWITCH New end plates Type $\mathrm{T}-20$. . . . 1.20 each	
$\begin{gathered} \text { Dohnson } \\ \text { AlR Variables } \end{gathered}$	
\$1.00 each	
T-3-5	1 to 5 pF
T-6-5	1.7 to 11 pF
T-9-5	2 to 15 pF
189-6-1	.1 to 10 pF
189-502-Y	1.3 to 6.7 pF
189-503-105	1.4 to 9.2pF
189-504-5	1.5 to 11.6 pF
189-505-5	1. 7 to 14.lpF
189-505-107	$7 \quad 1.7$ to 14.1 pF
189-506-103	1.8to 16.7pF
189-507-105	2 to 19.3 pF
189-508-5	2.1 to 22.9 pF
189-509-5	2.4 to 24.5pF
545-043	1.8 to 11.4pF

CRYSTAL FILTERS

 EFCL455K13E EFC L455K 40B2 3.99 2.89 FX-07800L, 7. 8 MHz 12.89 FHA 103-4, 10. 7 MHz 12.99| MURATA CERAMIC FILTERS | | |
| :---: | :---: | :---: |
| SFD 455D | 455 KHz | 2.00 |
| SFB 455D | 455 KHz | 1.60 |
| CFM455E | 455 KHz | 5.50 |
| CFU 455H | 455 KHz | 3.00 |
| SFE 20.7MA | 10.7 MHz | 2.99 |
| TEXAS INSTRUMENT TIL-305P 5×7 array alphanumeric display $\$ 3.85$ each | | |

4/\$1.00

CRYSTAL FILTERS

Tyco 001-19880 same as 2194F
10.7 MHz marrow band
3 dB bandwidh 15 KHz min

3 dB bandwidth 15 KHz min.
20 dB bandwidth 60 KHz min.
20 dB bandwidth 60 KHz min .
40 dB bandwidth 150 KHz min.
40 dB bandwidth 150 KHz min. Ripple 1 dB max. C1. $0+/-5 \mathrm{pF} 3600$ Ohms

$78 \mathrm{MO5}$

Sa me as 7805 but only $1 / 2 \mathrm{Amp}$
$\begin{array}{ll}\text { Sa me as } 7805 \text { but only } 1 / 2 \mathrm{Amp} \\ 5 \mathrm{VDC} & .49 \text { each or } 10 / \$ 3.00\end{array}$

TRIMMER CAPS

Sprague. Stable Polypropylene. 50 each or $10 / 4.00$ not sold mixed

1. 2 to 13 pF

2 to 30 pF
3.9 to 18 pF
3.9 to 40 pF
3.9 to 55 pF

Carbide Circuit Board Drill Bits for PCB Boards

Johnson
 AIR Variables

$1 / 4 \times 21 / 2^{\prime \prime}$ shaft $\$ 2.50$ each
193-10-6 2.2 to 34 pF
$193-1.5$ to 27.5 pF $\$ 1.00$ each

$160-107-16$.5 to	12 pF
$193-10-9$	2.2 to	34 pF
$193-10-104$	2.2 to	34 pF
$193-4-5$	3 to 30 pF	

RF Power Device

MRF454 Same as MRF458
12.5 VDC, $3-30 \mathrm{MHz}$

80 Watts output, 12 dB gain
$\$ 17.95$ ea

E.F. JOHNSON
 TUBE SOCKETS

6.8 pF	47 pF
8.2 pF	62 pF
10 pF	100 pF
12 pF	160 pF
13 pF	180 pF
14 pF	200 pF
20 pF	240 pF
24 pF	380 pF
33 pF	470 pF
36 pF	1000 pF
43 pF	350 V

68 Pin Motorola Bun Edge Connectors
Gold plated contacts Dual $43 / 88$ pin .156 specing
Soldertail for PCB................. $\$ 00$ each

110VAC MUFFIN FANS

J-Fet

J310 N-CHANNEL J-FET 450 MHz Good for VHF/UH ${ }^{\text {F }}$ Amplifier Oscillator and Mixers $3 / \$ 1.00$

\#124-0311-100 6. 99 each For 8072 etc.
 For $4 \mathrm{CX} 250 \mathrm{~B} / \mathrm{R}, 4 \times 150 \mathrm{~A}$ etc
 *124-0111-001 4. 4.99 each Chimney for $4 C X 250 \mathrm{~B} / \mathrm{R}$ and
 $\$ 12.99$ each
 \#123-209-33 Sockets....6.99 each

Ued . 85

- Full range of adjustment in tension and contact spacing.
- Self-adjusting nylon and steel needle bearings
IAMIBIC PADDLE

WRITE FOR LITERATURE

- Gold plated solid silver contact points.
- Polished fucite paddles.
- Precision-machined, chrome plated brass frames.
- Standard model has black. textured finish base; deluxe model is chrome plated.
- Heavy steel base; non-skid feet.

Standard	$\$ 42.95$
Chrome	$\$ 52.95$
Gold plated	$\$ 150.00$

At selected dealers or add $\$ 2.00$ handling. Quotation for overseas postage on request.

SEASON'S GREETINGS Gifts for the Amateur

KITS

R-X Noise Bridge
$\$ 31.95$
40 meter QRP Transceiver Split-band Speech Processor L-Meter
101.95
69.95
22.95

Prices subject to change without notice. Please include $\$ 2.50$ for shipping/handling.

B\&W, Millen, Cardwell, J.W. Miller parts in stock.
Catalog - 25 cents

Box 411H, Greenville, NH 03048 (603) 878-1033

the MAXI TUNER

Clean and rugged design is featured in this antenna tuner offered by RF Power Components. No tapped inductor in this tuner. You can obtain continuous coverage from 1.7 to 30 MHz using the full legal power limit.

The MAXI TUNER design is based on the principle of conjugate matching. The circuit consists of a matching network arranged in the T configuration, with two variable capacitors forming the horizontal part of the T. A continuously variable inductor, connected to the midpoint of the two capacitors, forms the vertical part of the T. This arrangement avoids the step-function tuning in matching networks that use tapped inductors.

Rotary inductors and counter dials are very expensive, but they are the whole secret to efficient tuner operation. With this arrangement you can get the inductance exactly right, not just within "a turn or two," which is typical of tuners using tapped coils.

The MAXI TUNER uses two massive $500-\mathrm{pF}$ capacitors with $6: 1$ ratio ball drives for velvet-smooth tuning control. The inductor, a $28-\mu \mathrm{H}$ unit, is extremely rugged and is wound on a ceramic form. Electrical contact with the inductor is provided by a roller wheel, which allows continuous tuning.

Two models are available: one with a built-in SWR metering circuit and one without. An optional 4:1 balun is also available for use with balanced transmission lines.

THE BIG SIGNAL® BALUN

- 160-6 meter spectrum coverage
- First with built-in lightning arrestor
- Unconditionally guaranteed
- More efficient coverage than any competitive balun
- Can withstand 600 lb . pull
- Handles 2,000 watts
- Weatherproofed

THE
 CHOICE OF HAMS AROUND THE WORLD

Call or write today!
NY/Hawaii/Alaska/Canada
Collect 1-315-437-3953

$$
\frac{\text { Toll Free }}{1.800 .448-1666}
$$

6743 Kinne Street, East Syracuse, NY 13057

For $\$ 25$ we will assemble your kit and install it in the back of your mike. Send your kit, mike and $\$ 25$.
Order 24 hours a day (215) 884.6010 FREE UPS N.P.S. Inc. WA31FQ 1138 BOXWOOD RD., JENKINTOWN, PA. 19046

"K series $=$ S.P.S.T. Relay with adjustable delay.
M series=Detached frame for irregular installation.
P3 12 or 16 key designed for custom installation, flush mount, 3 different circuits available request P3 information. TAT\&T
 ANTI-PHASIC W+IIE :NCISL - ALL INS SYNTHESIZED BINAUYAL Ser ta Jon, 00 . COMPLETESYSIEM, KITS, BOARDS - BROCHIAE Hildreth Engineering P.O. Box 60003 Sunnyvale. CA 94088 the Pipo trouble free TOUCH TONE ENCODER

An ultra high quality encoder for absolute reliability and function. Positive touch key action with non-malfunction gold contacts, totally serviceable and self contained. Easy level control, no frequency drift, operates any system. 4.5 - 60 V.D.C., operates in temperatures from $-15^{\circ} \mathrm{f}$ to $160^{\circ} \mathrm{f}$. Supplied with instructions, schematic, template and hardware.

DEALERS:

Ham Radio Center, St. Louis, Missouri . . (800) 325-3636 Henry Radio, Los Angeles, California ... (800) 421-6631 Electronic Equipment, Virginia CW Electronics, Denver.
(703) 938-3350

Call or write for free detailed catalog and information guide.

BONUS 2% discount for prepaid orders (cashiet's cherk or money orter) CALL FOR QUOTES	TOLL $1-800$-336.4799 FREE ORDERS ONLY HOURS: M-F 11-8: SAT 9-3 EDT CLOSED TUES:IAYS
MFJ PRODUCTS COMPLETE LINE IN STOCK	AEA Kevers Corte Readers. ISOPOLE Antrmas CAll
989 New 3KW Tuner 28775	HY-GAIN ANTENNAS
96215 KW Tuher mits/switch 199.95	TH6DXX Triband Beam
961 1.5KW Tunst 13995	TH3MK3 3-Element Beath
949 B 300 watt deluxe tuner $\quad 122.00$	TH3.JR 3-Element Trwand
941 C 300 watt tuner switchimtt $\quad 78.42$	18AVT/WB 10-80 Vertica
940300 watt fungt switch, mtt 69.70	14AVQWB 10.40 Verecal 50.77
484 Gratdmasiet memor keyer 12 7isg $\quad 12172$	CUSHCRAFT ANTENINAS
482.4 msg Memor, kever. 87.96	A4 New Tritand Eeam $10.15-20 \mathrm{~m} \quad 206.95$
482 Pacesetter Kever w Benchnt BY1 87.15	A3 New Truand Beam 10-15-20mi
410 Protessor Morse knyer $\quad 113.95$	AV3 New 10.15.20\% Vertical
408 Deluxe Kever with spmert mt ... 6.69 .69	ARX 2 B New Ringo Ranner 2 m
496 Keyboard il 296.95	A32-19 2m, Bromme DX Beam.
7528 Dual turnatle biter $\quad 7842$	220B 220 MHz "Boomer
10224 -hour clock 30.95	214 B Jr Boonier 144-146 MHz $\quad 62.10$
260/262 Dry Dummy Loats $\quad 2350 / 5675$	$214 \mathrm{FB} \mathrm{It} \mathrm{Boormet} \mathrm{144} \mathrm{5-148} \mathrm{MHz} \quad 62.10$
250 2KW PEP Dummy Load. 31.10	A147-11 11-Element 2 m - 34.50
BENCHER PADDLES Black/Chrome 35 25/42 95	MINIQUAD HQ-1
ASTROII POWER SUPPLIES (138 VD	ALLIANCE HD73 RotntCDE HAM IV ROTOR
RS7A 5 amps continuous. 7 amp ICS $\quad 48.60$	
RS12A 9 amps contınuous. 12 amps ICS $\quad 66.35$	CABLE RG8/U Foam 95% Sheld
RS20A 16 amps contenudus. 20 amps ICS .. 8720	8 wire Rotor 2 \# 18, 6 \# 22
RS20M same as RS20A + meters $\quad 10550$	BUTTERNUT HF-5V-111 10.80 m Vertical
RS35A 25 amps continuous, 35 amp ICS 13195	KLM ANTENNAS (other antennas in stock;
RS35M same as RS35A + meters -. $\quad 15195$	KT34A 4-Element Triband Beam $320 / 5$
TELEX HEADSETS-HEADPHONES	KT3 34 XA 6 -Element Tritant Beat 469.50 $144-148$ 13LB 2 m 13-Elentint with talun 77.95
C1210/C1320 Headphones $\quad 2295 / 3295$	
PROCOM 200 Headset/dual imp MIC $\quad 77.50$	$144.148 \quad 16 \mathrm{C} 2 \mathrm{~mm} 16$-Element for oscar $\quad 9355$
PROCOM 300 it/wt Hesdset/dual Imp mic 6995	420.45014420 .450 MHz 14-elemwnt Bram $\quad 3754$
VoCom Antennas/2m Amps	$420-45018 \mathrm{C} 420.450 \mathrm{MHz} 18$-Elemunt ascar $\quad 5870$
5.8 wave 2 m hand held Ant 1995	$\begin{array}{ll}432161 \mathrm{~B} 16 \text { ntem. } 430-434 \mathrm{MHz} \text { beam balun } & 6070 \\ \text { HUSTEER } 5 \text { 日TV } 10.80 \text { m Vetical } & 9250\end{array}$
2 watts in. 25 watts out 2 m Amp 6995	HUSTLER 5BTV 10.80 m Vertical 92.50
200 mw in, 25 watts out 2 m Amp $\quad 8295$	4 BTV 10.40m Vertical
2 watts in, 50 watts out 2 m Amp $\quad 108.95$	3 TRA Now 10.15.20m Beam 16195
MIRAGE AMPS \& WATT METERS	HF Mobile Resonators
MP1 HF/MP2 VHF SWR Watt Metet CALL	10 and 15 meter
B23. 2 in. 30 out. All More CALL	$20 \text { meters }$
B108 10 in. 80 out, All Mode Pre.Amp CALL	40 meters 75 meters
B1016 10 in. 160 out, All Mote, Pre Amp CALL	75 meters 27.95
TRANSCEIVERS - BIG DISCOUNTS KENWOOD ICOM YAESU TENTEC	Avanti AP 151 3G 2 m on glass ant - CALL FOR QUOTES -
SANTEC AZDEN KDK - Call tor Quotes -	Send stamp for a flyer Terms: Prices do not include shupping VISA and Master Charge accepted. 2%, discount for prepaid orders fasher's check or money order) COD tee $\$ 200$ per order Prices subject to
2410 Drexel Street Woodbridge, VA 22192	
information (703) 643-1063 Oriters 1.800-336-4799	
Store Location 14415 Jeff Davis Hwy. Woodbridge. VA	

ALL BAND TRAP ANITENNAS!

Maxi without SWR - \$259.95 Maxi with SWR - \$299.95 (Balun Optional. . \$19.95)

FOR ALL MAKES \& MODELS OF AMATEUR TRANSCEIVERS TRANSMITTERS GOOO WATTS CW INPUT FOR NOVICE AND ALL CLASS AMATEURS!

PRETUNED- COMPLETELY ASSEMBLED ONLY ONE NEAT SMALL ANTENNA FOR UP TO 7 BANDS EXCELLENT FOR CONLIGHT - STRONG - ALMOST INVISIBLE!

COMPLETE AS SHOWN with 90 ft . RG58U-52 ohm reedline, and PL259 connector, insulators, 30 ft 300 ib . test dacron end supports, center connector with built in lightning arrester and static discharge molded, sealed, weatherproof, resonant traps $X 6$ - you just switch to band desired for excellent worldwide operation - transmitting and recieving! Low SWR over all bands - Tuners usually NOT NEEDE Can be used as inverted V's - slopers - in attics, on building tops or narrow IOts. NE W EXCLUSIVEI NO BALUNS NEEDEDI 80-40-20-15-10-6 meter - 2 trap $-\cdots 104 \mathrm{ft}$. with 90 ft . RG58U - connector -Model 998BUA... \$79.95 $40-20-15-10$ meter -2 trap --54 ft . with 90 ft . RG58U - connector - Model 1001BUA ... $\$ 78.95$ 20-15-10 meter -.. 2 trap ... 26ft. with 90 ft RG58U - connector - Model 1007BUA..... \$77.95 SEND FULL PRICE FOR POSTPAID INSURED. DEL. IN USA. (Canada is $\$ 5.00$ extra for postage - clerical customs etc.) or order using VISA - MASTER CHARGE - CARD - AMER. EXPRESS. Give number and ex. date. Ph 1-308-236-5333 9AM - 6PM week days. We ship in 2-3 days. ALL PRICES WILL INCREASE SAVE - ORDER NOW! All antennas guaranteed for 1 year. 10 day money back trial if returned in new conditiont Made in USA. FREE INFO. AVAILABLE ONLY FROM WESTERN ELECTRONICS Dept. AR- 12

Kearney, Nebraska, 68847

=
\&akue
Electronics

The MAXI TUNER presents a 50-75 ohm resistive load to your transmitter. It matches antennas using unbalanced coaxial cables, random-length end-fed antennas, or antennas using open-wire transmission lines (with the optional balun). Power-handling capability is 3 kW PEP $(2 \mathrm{~kW}$ PEP when the optional balun is used). A custom cabinet and handsome styling make this unit a welcome addition to any Amateur station. Dimensions: 14.5 inches wide, 6.5 inches high, and 13.5 inches deep (36.8 by 16.5 by 34.3 cm). Weight: 15 pounds (6.8 kg). For more information, write RF Power Components, 1249 Garfield, Niagara, Wisconsin 54151 (715) 251-4118.

Macrotronics

TERMINALL

Macrotronics, Inc., has announced the introduction of TERMINALL, an integrated hardware and software system which converts the TRS-80 microcomputer (Model I or III) into a state-of-the-art communications terminal.

TERMINALL includes all the necessary computer interfacing, audio demodulating, AFSK tone generating, and transmitter keying hardware integrated in one cabinet. This reduces equipment interconnection to a minimum and allows the operator to be on the air receiving and transmitting Morse or RTTY in minutes. Plug it into the receiver headphone jack and copy Morse code, Baudot, or ASCII. Plug it into the CW key jack and send Morse code. Attach a microphone connector and send Baudot or ASCII using audio tones (AFSK).

The software may be loaded into the computer from cassette or disk. Enter your callsign and the time to initiate the program. You begin receiving immediately. No settings or adjustments are necessary to receive Morse code - it's fully automatic. Press BREAK-@ to transmit, or return back to receive. Text may be typed while receiving or transmitting.

TERMINALL comes complete with

Join SCAN, and join the ever increasing number of scanner enthusiasts who are getting all the frequency information they need to really use their scanners! You get an F.C.C. quick reference frequency allocations chart; plus SCANNING TODAY magazine, a forum for scanning news and technical articles with regular frequency updates from all across the United States. Also, FREE classified ads allow members to exchange frequency info, 10 -codes, as well as sell and exchange equipment with over 30,000 members nationwide.

Your membership kit includes an I.D. card, certificate, vehicle decal, and much more. Join today and get free "Scanners Hear It First" bumper sticker! Send check or money order for $\$ 10.00$ to:

(1)55 ?

Scanner Association of North America
Suite 1212 HR, 111 E. Wacker Drive, Chicago, IL 60601.

FAST SCAN ATV

WHY GET ON FAST SCAN ATV?

- You can send broadcast quality video of home movies, video tapes, computer games, etc, at a cost that is less than sloscan.
- Really improves public service communications for parades, RACES, CAP searches, weather watch, etc.
- DX is about the same as 2 meter simplex - 15 to 100 miles. ALL IN ONE BOX

TC-1 Transmitter/Converter
Plug in camera, ant., mic, and TV and you are on the air. Contains AC supply, T/R sw, 4 Modules below
\$ 399 ppd
PUT YOUR OWN SYSTEM TOGETHER TXA5 ATV Exciter contains video modulator and xtal on 434 or 439.25 mHz . All modules wired and tested \$89 ppd PA5 10 Watt Linear matches exciter for good color and sound. This and all modules run on 13.8 vdc. \$ 89 ppd TVC-2 Downconverter tunes 420 to 450 mHz . Outputs TV ch 2 or 3 . Contains low noise MRF901 preamp. \$ 55 ppd

PACKAGE SPECIAL all FMA5 Audio Subcarrier adds standard TV sound to the picture \$ 29 ppd
SEND SELF-ADDRESSED STAMPED ENVELOPE
FOR OUR LATEST CATALOG INCLUDING:
Info on how to best get on ATV, modules for the builder, complete units, b\&w and color cameras, antennas, monitors, etc. and more. 20 years experience in ATV.
Credit card orders call (213) 447-4565. Check, Money Order or Credit Card by mail.

HAL 2304 MHz DOWN CONVERTERS (FREO RANGE $2000 / 2500 \mathrm{MHz}$
2304 MODEL "1 KIT BASIC UNIT W/PREAMP LESS HOUSING \& FITINGS
2304 MODEL "I2 KIT (with preamp)
2304 MODEL "3 KIT (with High Gain preamp)
$\$ 49.95$

MODELS 2 \& WITH COAX FITTIGS IN a Out HOUSINGS
FACTORY WIRED \& TESTED
$\mathbf{\$ 5 0}$ additional
BASIC POWER SUPPLY
$\$ 19.95$
POWER SUPPLY KIT FOR ABOVE WITH CASE
FACTORY WIRED \& TESTED
$\mathbf{\$ 1 9 4 . 9 5}$
$\mathbf{\$ 3 4 . 9 5}$
ANTENNAS \& OTHER ACCESSORIES AVAILABLE SEND FOR MORE INFO
COMPLETE KITS: CONSISTING OF EVERY ESSENTIAL PART NEEDED TO MAKE YOUR COUNTER COMPLETE HAL-GOOA 7-DIGIT COUNTER WITH FREOUENCY RANGE OF ZERO TO 600 MHZ FEATURES TWO INPUTS. ONE FOR LOW FREOUENCY AND ONE FOR HIGH FREOUENCY, AUTOMATIC ZERO SUPPRESSION TME BASE I 1 O SEC OR I SEC GATE CRYSTAL 5 PPM
HAL-300A 7-DIGIT COUNTER (SIMILAR TO 600A) WITH FREQUENCY RANGE OF 0 . 300 MHz .

COMPLETE KIT $\mathbf{\$ 1 0 9}$
HAL-50A 8-DIGIT COUNTER WITH FREQUENCY RANGE OF ZERO TO 50 MHZ OR BETTER AUTOMATIC DECIMAL POINT. ZERO SUPPRESSION UPON DEMAND FEATURES TWO IN PUTS ONE FOR LOW FREOUENCY INPUT, AND ONE ON PANEL FOR USE WITH ANY INTERNALLY MOUNTED HALTRONIX PRE-SCALER FOR WHICH PROVISIONS HAVE ALREADY BEEN MADE 1.0 SEC AND I SEC TIME GATES ACCURACY $\pm 001 \%$ UTILIZES $10-M H Z$
FREE: HAL- 79 CLOCK KIT PLUS AN INLINE RF PROBE WITH PURCHASE OF ANY FREOUENCY COUNTER.

PRE-SCALER KITS

HAL 300 PRE
HAL 600 PRE
HAL 600 AJPRE
(Pre-drilled G-10 board and all components)
(Pame as above but with preamp)....
(Silled G-10 board and all components)
$\$ 14.95$
$\$ 14.95$
$\$ 24.95$
(Same as above but with preamp)....... $\$ 39.95$

TOUCH TONE DECODER KIT

highly stable decoder kit Comes with 2sided plated thru and solder flowed G-10 PC BOARD $7-567$'s. 2.7402. AND ALL ELECTRONIC COMPONENTS BOARO MEAS URES 3-1/2 5 5-1/2 INCHES HAS 12 LINES OUT. ONLY $\$ 39.95$
NEW - 16 LINE DELUXE DECODER

$\$ 69.95$

DELUXE 12-BUTTON TOUCHTONE ENCODER KIT UTILIZING THE NEW ICM 7206 CHIP PROVIDES BOTH VISUAL AND AUDIO INDICATIONS' COMES WITH ITS OWN TWO-TONE ANODIZED ALUMINUM CABINET MEASURES ONLY $2 \cdot 3 / 4^{-} \times 3-3 / 4^{\prime \prime}$ COM PLETE WITH TOUCH-TONE PAD. BOARD. CRYSTAL. CHIP AND ALL NECESSARY COMPONENTS TO FINISH THE KIT PRICED AT $\mathbf{\$ 2 9 . 9 5}$
NEW - 16 LINE DELUXE ENCODER $\mathbf{\$ 3 9 . 9 5}$
FOR THOSE WHO WISH TO MOUNT THE ENCODER IN A HAND-HELD UNIT. THE PC BOARD MEASURES ONLY $9 / 16^{-} \times 1-3 / 4^{-}$. THIS PARTIAL KIT WITH PC BOARD. CRYSTAL CHIP AND COMPONENTS,

PRICED AT $\mathbf{\$ 1 4 . 9 5}$
ACCUKEYER (KIT) THIS ACCUKEYER IS A REVISED VERSION OF THE VERY POPULAR WBAVVF ACCUKEYER ORIGINALLY DESCRIBED BY JAMES GARREIT. IN OST MAGAZINE AND THE 1975 RADIO AMATEUR'S HANDBOOK.
ACCUKEYER - MEMORY OPTION KIT PROVIDES A SIMPLE. LOW COST METHOD OF ADDING MEMORY CAPABILITY TO THE WBAVVF ACCUKEYER WHILE DESIGNED FOR DIRECT ATTACHMENT TO THE ABOVE ACCUKEYER. IT CAN ALSO BE ATTACHED TO ANY STANDARD ACCUKEYER BOARD WITH LITTLE DIFFICULTY

BUY BOTH THE MEMORY AND THE KEYER AND SAVE. COMBINEQ.PRICE ONLY $\mathbf{\$ 3 2 . 0 0}$

PRE-AMPLIFIER

HAL.PA- 19 WIDE
MPLIFIER, 2.200 MHz BANOWIDTH -3 dg
FULLY ASSEMBLED AND TESTED $\mathbf{\$ 8 . 9 5}$
CLOCK KIT - HAL 79 FOUR-DIGIT SPECIAL - $\$ 7.95$ OPERATES ON, 12-VOLT AC (NOT SUPPLIED) PROVISIONS FOR DC AND ALARM OPERATION

6-DIGIT CLOCK • 12/24 HOUR

COMPLETE KIT CONSISTING OF 2 PC G-10 PRE DRILLED PC BOARDS. 1 CLOCK CHIP. 6 FND COMM. CATH READOUTS, 13 TRANS 3 CAPS, 9 RESISTORS, 5 DIODES, 3 PUSHBUTTON SWITCHES, POWER TRANSFORMER AND INSTRUCTIONS DON'T BE FOOLED BY PARTIAL KITS WHERE YOU HAVE TO BUY EVERYTHING EXTRA. PRICED AT $\mathbf{\$ 1 2 . 9 5}$ CLOCK CASE AVAILABLE AND WILL FIT ANY ONE OF THE ABOVE CLOCKS, REGULAR PRICE $\quad \$ 6.50$ BUT ONLY $\$ 4.50$ WHEN BOUGHT WITH CLOCK.
SIX-DIGIT ALARM CLOCK KIT FOR HOME, CAMPER. RV. OR FIELD-DAY USE OPERATES ON 12-VOLT AC OR DC. AND HAS ITS OWN $60 \cdot \mathrm{~Hz}$ TIME BASE ON THE BOARD COMPLETE WITH ALL ELECTRONIC COMPONENTS AND TWO-PIECE, PRE-DRILLED PC BOARDS BOARD SIZE $4^{\prime \prime} \times 3^{\prime \prime}$ COMPLETE WITH SPEAKER AND SWITCHES IF OPERATED ON DC THERE IS NOTHING MORE TO BUY • PRICED AT \$16.95 - TWELVE-VOLT AC LINE CORD FOR THOSE WHO WISH TO OPERATE THE CLOCK FROM 110-VOLT AC
SHIPPING INFORMATION - ORDERS OVER $\$ 20.00$ WILL BE SHIPPED POSTPAID EXCEPT ON ITEMS WHERE ADDITIONAL CHARGES ARE REOUESTED. ON ORDERS LESS THAN $\$ 20.00$ PLEASE INCLUDE ADDITIONAL $\$ 1.50$ FOR HANDLING AND MAILING CHARGES SEND SASE FOR FREE FLYER.

DISTRIBUTOR FOR
Aluma Tower - AP Products
(We have the new Hobby-Blox System)

W6ORG
"HAL

Hal.Tronix P. O. BOX 1101

W8ZXH
PHONE (313) 285-1782

"Bumper" Sticker

Put 'em everywhere - they're removable! These durable vinyl $3^{3 / 4} 4^{\prime \prime}$ X $15^{\prime \prime}$ stickers are color-fast and will not fade from weathering. Have fun with these snappy slogans.
UBS1 High On Ham Radio Bumper Sticker
UBS2 Ohm's Law Bumper Sticker
UBS3 Monitoring . 52 Bumper Sticker
$\begin{array}{ll}\$ 1.5 & \$ 1.75 \\ \$ 2.95 & \$ 1.75 \\ \$ 1.95 & \$ 1.75\end{array}$

T-Shirt Designs

Do-it-yourself and give that new or old T-shirt some real zing! "FLEX" Designs are colorful heat-sensitive transfers which are far superior to screen-painted Tshirts - FLEX Designs won't crack or fade, they're colorfast, too! Just iron-on transfer to any cotton-base garment.
Important: Machine washable. For best results turn shirt inside-out when machine drying.

UT1	Ham Radio Freq	$\$ 1.96$	$\mathbf{\$ 1 . 7 5}$
UT2	Ham It Up	$\$ 195$	$\$ 1.75$
UT3	One World	$\$ 295$	$\$ 1.75$
UT4	Something New	$\$ 1.95$	$\$ 1.75$
UT5 Ultimate Flea	$\$ 1.95$	$\$ 1.75$	

I.D. Badges

No ham should be without an I.D. badge. It's just the thing for club meetings, conventions, and gettogethers, and The Ultimate Flea gives you a wide choice of color. Have your name and call engraved in either standard or script type on one of these plastic laminated I.D. badges. Wear it with pride! Available in the following color combinations (badge/lettering): white/red, woodgrain/white, blue/white, white/black, yellow/blue, red/white, green/white, metallic gold/black, metallic silver/black.
UID Engraved I.D. Badge \$2.55 \$2.50

Ceramic Beer Mugs

Next time you get together for a few cold "807's", pour them into a 16 oz . ceramic mug from the Ultimate Flea. Handsome designs and lettering are permanently glazed for long lasting use. These mugs come in the following designs: UM-3 HAM RADIO; UM-2 OSCAR; UM-1 HOMEBREW. These heavy-duty mugs are a super gift for your hard-to-buy-for Ham friends.
\square UM-1, UM-2, UM-3
Reg. $\$ 8.95$ Now $\$ 6.95$

Heath Wall Size Frequency Spectrum Chart

Now you can have the most complete and colorful radio frequency spectrum chart ever produced. From Very Low Frequency (3 kHz), to Extremely High Frequency (300 GHz), you'll locate ship to shore, international broadcasting, Radio Astronomy, space communications, the Amateur Radio bands, plus everything else that falls in-between! Color coded for easy reading. Printed in full color. $221 / 2^{\prime \prime} \times 31^{\prime \prime}$.
\square UPS
$\$ 5.95$

Please add $\$ 1$ for shipping \& handling.
software on cassette and disk, assembled and tested hardware, and an extensive instruction manual. List price is $\$ 999$. For complete ordering information or name of dealer closest to you, contact Macrotronics, Inc., 1125 N. Golden State Blvd., Turlock, California 95380.

CW audio processor and keyer

Trac Electronics, Inc., announces the introduction of two unique products for the CW enthusiast. The TRAC*ONE CW processor, Model TE 424, is an advanced CW audio processor which receives the audio from any rig, passes it through a phased-locked-loop tone decoder, removing all QRN and QRM, and reproduces a fully adjustable CW audio signal. Front-panel controls allow full adjustment of frequency tone, delay, and gain. The frequency control is adjustable from 300 Hz to 2500 Hz , a match for any rig. While the CW signal is being decoded a front panel LED flashes in sync with the signal, establishing that the unit is locked onto the audio from the rig. The TRAC*ONE contains a built-in speaker and a headphone jack on the rear panel, and is operated on a 9-Vdc battery or with an ac-adapter. In the BYPASS position, the Model TE-424 TRAC*ONE may be left in line and the rig audio is passed through to the speaker.
The TRAC*ONE CMOS keyer, Model TE-464, combines the full featured TRAC*ONE with a deluxe state-of-the-art CMOS electronic keyer. The keyer contains self-completing dots and dashes, dot and dash memory, iambic keying with any squeeze paddle, 5-50 WPM, speed, volume, tune and weight controls, sidetone and speaker, rear panel switch for use with a bug or straight key, quarter-inch jacks for keying and output. The Model TE-464 keys both grid block and solid state rigs and operates on one $9-\mathrm{Vdc}$ battery or a 9 Vdc/ac adapter.

For further information, contact Trac Electronics, Inc., 1106 Rand Bldg., Buffalo, New York 14203.

SUPERVERTER I
$\$ 99.95$
The ultimate in converter technology! Dual stage selective preamp, mixer, i.f. amplifier and no-drift crystal controlled oscillator. We recommend this kit for the experienced kit builder.

12 V. Stationary Power Supply \$24.95
SELECTIVE PREAMP $\$ 44.50$
This new unit is not like other wide band preamps. Experienced kit builders can easily add this unit to our existing boards or to other manufactured boards to improve overall performance.

Our product may be copied, but the performance is never equaled.

UNMERSALCOMMMNCATONS A.O. Box 339 Arlington, TX 76004-0339

2300 MHz Downconverter $\$ 35.00$ PC Board, all components and instructions for a working unit.
 VARIABLE POWER SUPPLY \$ $\mathbf{\$ 4 . 9 5}$
 Complete kit includes all components for working unit including deluxe box and overlays.
 DISH YAGI ANTENNA $\$ 25.00$
 Complete kit with PVC and mounting brackets. Stronger than loop yagi, equal in gain.
 4 ft. Dish Antenna
 $\$ 49.95$
 Overall 25 dB gain. Partial assembly required. Shipped UPS ground only.

Computer

Books For Beginners

Everything you need to know to get started programming your own computer from brand-new books, each jam-packed with easy-to-understand info for beginners, laymen, novices, general consumers who want to know how to make a computer work for them. Good for advanced novices and programmers too. These handy manuals, guides and program sourcebooks are crammed with hundreds of tips, tricks, secrets, insights, shortcuts and techniques, plus hundreds of tested, ready-to-run programs.
TRS-80 Color Computer. TRS-80 Pocket Computer. Sharp PC-1211 Pocket Computer. Three of the mostpopular computers for beginners. Among our freshlywritten books are scores of programs, tips, tricks and learn-by-doing instructions for beginners.

Pocket Computer

50 Programs in BASIC for the Home, School \& Of-fice-2nd Edition, useful plug-in-and-run software, for the Pocket Computer, 96 pages. $\$ 9.95$ 50 MORE Programs in BASIC for the Home, School \& Office, sourcebook of tested ready-to-run software, for the Pocket Computer. 96 pages.
$\$ 9.95$
101 Pocket Computer Programming Tips \& Tricks, secrets, shortcuts, techniques from a master programmer, 128 pages.
$\$ 7.95$
Murder In The Mansion and Other Computer Adven-tures-2nd Edition, murder mystery, space, adventures, loads of fun, 24 programs, 96 pages. $\$ 6.95$

Color Computer

101 Color Computer Programming Tips \& Tricks, learn-by-doing instructions, techniques, shortcuts, insights, 128 pages.
$\$ 7.95$ 55 Color Computer Programs for the Home, School \& Office, practical ready-to-run software with graphics, 128 pages.
$\$ 9.95$

FROM:
Name \qquad Call \qquad
Address
City
\qquad
\square Check or Money Order Enclosed
\square VISA
\square MasterCard
Acct. \#
Expires \qquad MC Bank \#

SEND TO: HAM RADIO'S BOOKSTORE GREENVILLE, NH 03048

Dan's Got It All!

CD ICOM IC-730, IC-720A

IC-2AT

MIRAGE B-108
AEA

Dan C. Britt, K4URK L3ritt's 2-WMay kadio Sales \mathbb{S} Scruice 2508 Atlanta St. , Smyrna, GA 30080 Belmont Hills Shopping Center (404) 432-8006

NEEGEG Salem, Mass.

The Electron Devices Group of EG\&G, located on the waterfront near Pickering Wharf in historic Salem, is the home of our Electronic Components Division which supplies sophisticated devices for defense and energy programs including rubidium frequency standards used in navigational and secure communication systems.
Currently, the expansion of our frequency control products has developed a need for strong contributors who can design and produce reliable precision timing devices.
Since EG\&G Salem is part of a prominent Fortune 500 company, we have the ability to provide you with career security and a bright future.

ELECTRONIC ENGINEER

RF Circuit Design
Primary responsibilities will involve RF circuit design including oscillators, amplifiers, multipliers and frequency synthesizers for the development of a variety of circuits for frequency control products.
A BSEE with a minimum of two years experience is required. Equivalent experience, including amateur radio, will be considered. Knowledge of microwave techniques would be a plus.

As an EG\&G employee, you will enjoy a liberal compensation and an excellent benefit plan which includes comprehensive paid life, medical and dental insurance as well as pension, profit sharing and 100% tuition reimbursement.

If you are interested and qualified, please send your resume including salary requirements
in confidence, to Tim DeAraujo, or call (617) 745-3200. Ext. 296, EG\&G, 35 Congress Stree Salem, MA 01970.

SUENCE. π ECRL

Ham Radio's guide to help you find your loc:

California

C \& A ELECTRONIC ENTERPRISES 2210 S. WILMINGTON AVE.
SUITE 105
CARSON, CA 90745
213.834-5868

Not The Biggest, But The Best Since 1962.

JUN'S ELECTRONICS
3919 SEPULVEDA BLVD.
CULVER CITY, CA 90230
213-390-8003 Trades
714-463-1886 San Diego
The Home of the One Year Warranty

- Parts at Cost - Full Service.

QUEMENT ELECTRONICS
1000 SO. BASCOM AVENUE
SAN JOSE, CA 95128
408-998-5900
Serving the world's Radio Amateurs since 1933.

SHAVER RADIO, INC.
1378 S. BASCOM AVENUE
SAN JOSE, CA 95128
408-998-1103
Azden, Icom, Kenwood, Tempo,
Ten-Tec, Yaesu and many more.

Connecticut

HATRY ELECTRONICS

500 LEDYARD ST. (SOUTH)
HARTFORD, CT 06114
203-527-1881
Call today. Friendly one-stop shopping at prices you can afford.

Delaware

DELAWARE AMATEUR SUPPLY
71 MEADOW ROAD
NEW CASTLE, DE 19720
302-328-7728
Icom, Ten-Tec, Swan, DenTron,
Tempo, Yaesu, Azden, and more. One mile off I-95, no sales tax.

Florida

AMATEUR ELECTRONIC SUPPLY
1898 DREW STREET
CLEARWATER, FL 33515
813-461-HAMS
Clearwater Branch
West Coast's only full service
Amateur Radio Store.

AMATEUR ELECTRONIC SUPPLY
621 COMMONWEALTH AVE.
ORLANDO, FL 32803
305-894-3238
Fla. Wats: 1 (800) 432.9424
Outside Fla: 1 (800) 327-1917
AMATEUR RADIO CENTER, INC.
2805 N.E. 2ND AVENUE
MIAMI, FL 33137
305-573-8383
The place for great dependable names in Ham Radio.

RAY'S AMATEUR RADIO

1590 US HIGHWAY 19 SO.
CLEARWATER, FL 33516
813-535-1416
Atlas, B\&W, Bird, Cushcraft, DenTron, Drake, Hustler, Hy-Gain, Icom, K.D.K., Kenwood, MFJ, Rohn, Swan, Ten-Tec, Wilson.

Illinois

ERICKSON COMMUNICATIONS, INC.
5456 N. MIL WAUKEE AVE.
CHICAGO, IL 60630
Chicago - 312-631-5181
Outside lllinois - 800-621-5802
Hours: 9:30-5:30 Mon, Tu, Wed \& Fri.; 9:30-9:00 Thurs; 9:00-3:00 Sat.

Indiana

THE HAM SHACK

808 NORTH MAIN STREET
EVANSVILLE, IN 47710
812-422-0231
Discount prices on Ten-Tec, Cubic, Hy-Gain, MFJ, Azden, Kantronics, Santec and others.

Kansas

ASSOCIATED RADIO

8012 CONSER, P. O. BOX 4327
OVERLAND PARK, KS 66204 913-381-5900
America's No. 1 Real Amateur Radio
Store. Trade - Sell - Buy.

Maryland

THE COMM CENTER, INC.
LAUREL PLAZA, RT. 198
LAUREL, MD 20810
800-638-4486
Kenwood, Drake, Icom, Ten-Tec,
Tempo, DenTron, Swan \& Apple
Computers.

Massachusetts

TEL-COM, INC. 675 GREAT ROAD, RTE. 119
LITTLETON, MA 01460
617-486-3040
617-486-3400 (this is new)
The Ham Store of New England You Can Rely On.

Minnesota

MIDWEST AMATEUR RADIO SUPPLY 3452 FREMONT AVE. NO. MINNEAPOLIS, MN 55412 612-521-4662
It's service after the sale that counts.

Nevada

AMATEUR ELECTRONIC SUPPLY
1072 N. RANCHO DRIVE
LAS VEGAS, NV 89106 702-647.3114
Pete, WA8PZA \& Squeak, AD7K
Outside Nev: 1 (800) 634-6227

New Hampshire

TUFTS ELECTRONICS
61 LOWELL ROAD
HUDSON, NH 03051
603-883-5005
New England's friendliest ham store.

New Jersey

RADIOS UNLIMITED

P. O. BOX 347

1760 EASTON AVENUE
SOMERSET, NJ 08873
201-469-4599
New Jersey's only factory authorized Yaesu and Icom distributor. New and used equipment. Full service shop.

ROUTE ELECTRONICS 46
225 ROUTE 46 WEST
TOTOWA, NJ 07512
201-256-8555

mateur Radio Dealer

ROUTE ELECTRONICS 17

777 ROUTE 17 SOUTH
PARAMUS, NJ 07625
201-444-8717
Drake, Cubic, DenTron, Hy-Gain, Cushcraft, Hustler, Larsen, MFJ, Butternut, Fluke \& Beckman Instruments, etc.

New York

BARRY ELECTRONICS

512 BROADWAY
NEW YORK, NY 10012
212-925-7000
New York City's Largest Full Service Ham and Commercial Radio Store.

GRAND CENTRAL RADIO

124 EAST 44 STREET
NEW YORK, NY 10017
212-599-2630
Drake, Kenwood, Yaesu, Atlas, Ten-Tec, Midland, DenTron, Hy-Gain, Mosley in stock.

HARRISON RADIO CORP.

20 SMITH STREET
FARMINGDALE, NY 11735
516-293-7990
"Ham Headquarters USA" since
1925. Call toll free 800-645-9187.

RADIO WORLD

ONEIDA COUNTY AIRPORT
TERMINAL BLDG.
ORISKANY, NY 13424
TOLL FREE $1(800) 448-9338$
NY Res. $\quad 1$ (315) 337-0203
Authorized Dealer - ALL major Amateur Brands.
We service everything we sell! Warren K21XN or Bob WA2MSH.

Ohio

AMATEUR ELECTRONIC SUPPLY 28940 EUCLID AVE.
WICKLIFFE, OH (CLEVELAND AREA) 44092
216-585-7388
Ohio Wats: 1 (800) 362.0290
Outside Ohio: 1 (800) 321-3594

UNIVERSAL AMATEUR RADIO, INC.

1280 AIDA DRIVE
REYNOLDSBURG (COLUMBUS), OH 43068
614-866-4267
Featuring Kenwood and all other Ham gear. Authorized sales and service. Shortwave headquarters. Near 1-270 and airport.

Oklahoma

DERRICK ELECTRONICS, INC.
714 W. KENOSHA - P.O. BOX A BROKEN ARROW, OK 74012 Your Discount Ham equipment dealer in Broken Arrow, Oklahoma 1-800-331-3688 or
1-918-251-9923

Pennsylvania

HAMTRONICS,

DIV. OF TREVOSE ELECTRONICS

4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215-357-1400
Same Location for 30 Years.

LaRUE ELECTRONICS

1112 GRANDVIEW STREET
SCRANTON, PENNSYLVANIA 18509 717-343-2124
Icom, Bird, Cushcraft, Beckman, Fluke, Larsen, Hustler, Astron, Antenna Specialists, W2AU/W2VS, AEA, B\&W, CDE, Sony, Vibroplex.

Virginia

ELECTRONIC EQUIPMENT BANK 516 MILL STREET, N.E. VIENNA, VA 22180 703-938-3350
Metropolitan D.C.'s One Stop Amateur Store. Largest Warehousing of Surplus Electronics.

Washington

THE RADIO STORE

1505 FRUITDALE BLVD.
YAKIMA, WA 98902
509-248-4777
Your complete Ham store for sales/ service. All major brands. TRADE-SELL-BUY!

Wisconsin

[^4]

MICROVERTER VUC-36
Converts Mid and Superband Signals to UHF Channels 43 to 83 . Allows all sets to tune without costly separate selector boxes. "Rated \#1. Accessory kit available for $\$ 2.00$, consisting of matching transformer plus 2 jumper cables.

Call or write for Free Catalog
Other 75 ohm Cable Supplies:
2-way Cable Switch.
. $\$ 4.95$
F59A Connectors.
10/\$2.15
MT6UVFM Back of Set XFMR \$2.39
2-way Splitter $\$ 2.79$
4-way Splitter $\$ 4.39$
F81 "F" Barrel
RG-59/U Coax 100\% Foil.
Inline Grounding Block
S. $10 / \mathrm{ft}$

Outdoor Matching XFMR $\$ 1.89$

Indoor Matching XFMR. $\$ 2.25$

F61 Chassis Mt. Female.
$\$.48$
Parts shipping add $10 \%, \$ 1.50$ minimum.
COD add $\$ 1.50$. Fla. Res. add 4%.
NEMAL ELECTRONICS
5685 SW 80th Street, Miami, FL 33143
Telephone: (305) 661-5534

- Covers 100 to 179.999 MHz in 1 kHz steps with thumb-wheel dial - Accuracy 00001% at all frequencies - Internal frequency modulation from 0 to over 100 kHz at a 1 kHz łate - Spurs and noise at least 60 dB below carrier - RF output adjustable from $5-500 \mathrm{mV}$ across 50 ohms • Operates on 12 vdc @ $1 / 2 \mathrm{amp}$. In stock for immediate shipping. $\$ 329.95$ plus shipping. Overnight delivery available at extra cost. - Range Extender (phase-locked mixer/divider) for above unit. Extends the range from . 1 to 580 MHz . Same size as SG-100. Mounts piggyback. Price: $\$ 299.95$

VANGUARD LABS
196-23 Jamaica Ave., Holilis, NY 11423
Phone: (212) 468-2720

GROTH-Type
COUNTS \& DISPLAYS YOUR TURNS

- 99.99 Turns
- One Hole

Panel Mount

- Handy Logging Area
- Spinner Handle Available

Case: $2 \times 4^{\prime \prime}$; shaft $14^{\prime \prime} \times 3^{\prime \prime}$

2 METER 25 WATT LINEAR AMPLIFIER

200 mW drive delivers $15-20$ watts out 10 MHz bandwidth Meets FCC specifications $\mathbf{2 0 0}$ ML $\quad \$ 85.95$ Kit $\$ 69.95$

$$
\text { Add } \$ 3.00 \text { shipping and handling }
$$

Orders Only - 24 hrs. 7 days (800) $621-0660$ outside Illinois (800) 572-0444 in Illinois

10 DAYS FULL MONEY BACK GUARANTEE

REPEATER CDTTROLLER

- 4 ACCESS MODES

- AUTO PATCH
- AUTO DIAL (72 NO.)
- 16 DIGIT XTAL CONTROLLED TOUCH TONE DECODER
- REVERSE AUTOPATCH
- HI/LO FREQ. INDICATOR
- 12 VDC OR 117 VAC
- 60 CONTROL FUNCTIONS
- 30 TIMERS
- EASY TO CHANGE CODES - 3 LINKS
- PHONE, RX, \& TX AUDIO INTERFACE W/MUTING

MS-001 ON G-10 PLATED
THUR HOLE PC BOARD
WIRED \& TESTED $\mathbf{\$ 6 9 5 . 0 0}$

MS-101 RACK MOUNT W/117 VAC POWER SUPPLY \$849.25

> COMPUTERIZED GREAT CIRGLE MAPS

- Great Circle Map Projection Centered on your exact QTH Calculated and drawn by computer 11×14 inches e Personalized with your callsign • $\$ 12.95$ ppd. - (Air Mail add $\mathbf{\$ 2 . 0 0)}$ - Beam Heading Printout with bearings to 660 locations, $\$ 9.95 \bullet$ Great gift idea, too!

Bill Johnston, N5KR
Dept. H.
1808 Pomona Drive
Las Cruces, New Mexico 88001
Tell 'em you saw it in HAM RADIO!

DON'T WAIT ORDER TODAY

TUNE IN THE WORLD WITH HAM RADIO
 by ARRL staff

This package contains THE goodies needed by the beginner to get started in Amateur Radio. Assuming that you have no prior knowledge of radio, the reader is taught how to pass the Novice exam, both code and theory, and how to set up a station. Unique code study method makes learning the Morse code easy as $1-2-3$. And it's full of iiustrations to help clarity difficult technical points. 160 pages. (c) 1981. 3rd edition.
\square AR-HR
Softbound $\$ 8.50$

HAM RADIO LOG BOOK

Ham Radio's Log Book has room for 2100 OSO's - that's over twice as many entries as other popuiar log books. Room for all pertinent information, plus extra space for the name and address of each station you contact all on a convenient horizontal format. For contesters, there is a consistent 30 entries per page for easy counts. In addition. a handy frequency spectrum chart showing every band for Novice to Extra. plus a listing of all woridwide Amateur pretixes currently in use. Spiralbound to lay flat on your operating table. Unquestionably the best log book value anywhere! $8-1 / 2 \times 11.80$ pages. 1978

Spiralbound $\$ 1.75$
3 Logs Just $\$ 3.95$

1982 U.S. RADIO
 AMATEUR CALLBOOK

Radio Amateur Callbooks will be ready for shipping week of December 1, 1981. No Amateur station is complete without the very latest Callbook! The new 1982 U.S. Callbook features over 390,000 up-to-date names and addresses right where you want them - at your finger tips. Also contains many helpful operating and station aids. © 1981. Softbound.
\square CB-US $\quad \$ 18.95+\$ 3.05$ shipping (U.S.A.) $=\mathbf{\$ 2 2 . 0 0}$

1982 FOREIGN CALLBOOK

If DX is your "thing" then you need a copy of the 1982 Foreign Callbook. Getting a OSL card can be quite a chore without proper names and addresses. Make sure you don't miss out. © 1981. Softbound.
\square CB-F $\quad \$ 17.95+\$ 3.05$ shipping (U.S.A.) $=\$ 21.00$
Get 'em both and be really prepared. You save money too!

Only $\$ 39.95$

BRAND NEW 22ND EDITION OF THE FAMOUS RADIO HANDBOOK

by Bill Orr, W65Al

The Radio Handbook has been an electronic best seller for over 45 years! This brand new edition reflects all of the latest state-of-the-art advances in a comprehensive, single source reference book. An invaluable aid for Hams, technicians, and engineers alike. Also chock-full of projects and other ideas that are of interest to all levels of electronics expertise. 1136 pages. ©1981
$\square 21874$
Hardbound \$26.95

BRAND NEW 1982 ARRL RADIO AMATEUR'S HANDBOOK

Order today for delivery by late November. Be one of the first to get your copy. Internationally recognized, universally consulted. It's the all purpose volume for radio. Jam packed with information, drawings, and illustrations that are useful to the Amateur and professional alike. (c) 1981

\square AR-HB82

Softbound \$10.00
\square AR-BB82
Hardbound \$15.75

2ND OP

 by Jim Rafferty, N6RJ Shipping PostpaidCompletely revised and updated with all of the latest information, the latest 2 nd 0 p is an indispensable operating aid for ail Radio Amateurs. The 2nd Op gives you at the twist of a dial: prefixes in use, continent, zone, country, beam heading, time differential, postal rates, OSO and OSL record and the official ITU prefix list. Every ham needs a 2nd Op. Order yours today. (c) 1981. N6RJ's 1st Edition \square HR-OP
$\$ 6.95$

MODERN ELECTRONIC
 CIRCUIT MANUAL

by John Markus

$81 / 2$ lbs. of valuable information
3600 circuits, from amplifiers to zero voltage reference switches! Exhaustively researched and arranged for ease of use, this comprehensive volume is an invaluable aid to anyone interested in electronics. Many circuits are taken from popular Amateur magazines and authors. For the ham there are filters, amplifiers, counters, clippers and more. Electronics hobbyists will also find this book full of valuable and interesting circuits that can be used in a variety of different ways. The list is almost endless! Circuits are fully referenced as to where they came from, so that further research is easy. It's big, it's heavy and it's expensive. But it's a must is you want your library to be complete. (C) 1980,1238 pages, $81 / 2$ pounds.
\square MH-40446 Hardbound $\$ 47.00$
($\$ 44.50+\$ 2.50$ shipping, U.S.A.)

FROM BEVERAGES THRU OSCAR A BIBLIOGRAPHY

by Rich Rosen, K2RR

Your complete guide to 65 years of Amateur Radio Publishing.

From Beverages Thru Oscar - A Bibliography is a complete list of every article that would be of interest to a Radio Amateur or professional that has been published over the last 65 years. References are from CQ, Ham Radio, 73, QST, Proceedings of both the IRE and IEEE and Wireless Engineer, to name just a few. In fact, over 292 Magazines have been listed in this book with 92 different subject areas reterenced. It you can't find it in this wonderfully complete bibliography, chances are, it was never published. Never before has a book like this been put together. Makes your radio magazine collection infinitely more useful. It costs just $\$ 29.95$ but is worth much, much more. © 1979.
\square PR-BO
Softbound $\$ 29.95$

COMPLETE HANDBOOK OF RADIO TRANSMITTERS

by Joseph J. Carr, K4IPV
350 pages of easy-to-understand fundamentals and practical descriptions of circuits which include: fundamentals of vacuum tubes, transistors, amplifier circuits, oscillator circuits, frequency multipliers, dividers and synthesizers. RF power amplifiers, and speech amplifiers. Covers SSB, FM and PM design, theory and operation. Other subjects include: transmiter trouble-shooting, satety, interference prevention, if neutralization, tun ing, feedline devices and antennas. © 1980. 350 pages.
$\square \mathrm{T}-1224$
Softbound \$8.95

COMPLETE HANDBOOK OF RADIO RECEIVERS

by Joseph J. Carr, K4IPV
All-in-one manual. Contains complete data on almost all receivers in use today Written in an easy-to-read manner, this handbook includes basic receiver types; specifications for the latest ideas in parameter measurements such as sensitivity, noise figures, dynamic range, and selectivity measurements. Also covered are all types of modern receiver circuits, and a wide range of troubleshooting ideas for both solid-state and vacuum tube receiver circuits. (c) 1980,300 pages.
$\square \mathrm{T}-1182$
Softbound \$8.95

FROM:

Name
Call
Address
City ___ State ___ Zip
\square Check or Money Order Enclosed
\square VISA \square MasterCard
Acct. \#
Expires \qquad MC Bank \#

Catalog\# Title QTY. Price Total
Allow 2.4 weeks for delivery. Prices subject to change without notice

SEND TO: HAM RADIO'S BOOKSTORE GREENVILLE, NH 03048

. . . THE COPY MACHINE

- 4 active stages, true bandpass filter
- Tunable center frequency
- 4 bandwidths $-90 \mathrm{~Hz}, 115 \mathrm{~Hz}$, 150 Hz \& SSB
- Simple to operate
- Low Q design
- One-watt+ available audio output
- Matches any impedance

XZ-2 Audio Filter \$69.95 12V Power Supply $\$ 9.95$

 WRITE FOR LITERATUREAt selected dealers or add $\$ 2.00$ handling. Quotation for overseas postage on request.

Advanced Receiver Research

Box 1242 - Burlington CT 06013 - $203582-9409$
Postpaid for U.S. and Canada. CT Residents add $7.1 / 2 \%$ sales tax. C.O.D. orders add $\$ 2.00$. Air mall to foreign countries add 10\%

I WANT YOU

TUNE IN THE WORLD WITH HAM RADIO

by ARRL Staff

This package contains THE goodies needed by the beginner to get started in Amateur Radio. Assuming that you have no prior knowledge of radio, the reader is taught how to pass the Novice exam, both code and theory, and how to set up a station. Unique code study method makes learning the Morse code easy as $1-2-3$. And it's full of illustrations to help clarify difficult technical points. 160 pages. (c) 1981. 3rd edition. AR-HR
$\$ 8.50$
plus $\$ 1$ shipping
INSTRUCTORS Call about ISP Program (603) 878-1441

HAM RADIO'S BOOKSTORE Greenville, NH 03048

GRADY'S AMATEUR RADIO SALES AND SERVICE

The NEW KDK 2025A MarkII Lowest Price - Fastest Service! Order from us and we'll pay for the call. Also stocking ASTRON power supplies matching touch-tone mikes and a complete line of VHF antennas.
(207) 282-4644 8-4 PM EST atter 4 (207) 282-1763
GRADY'S AMATEUR RADIO SALES AND SERVICE

187 Main Street
Saco, ME 04072

THE 1982 HANDBOOK

The Standard Manual of rf communication

Abstract

The best gets even better! Each year the RADIO AMATEUR'S HANDBOOK is updated to reflect changes in the state-of-the-art. The 1982 edition is no exception. More emphasis is placed on digital communications techniques than ever before. Also making an appearance for the first time are tables and charts covering the new "WARC" Amateur Radio Bands.

- Amateur Radio
- Electrical Laws and Circuits
- Radio Design Technique and Language
- Solid State Fundamentals
- AC-Operated Power Supplies
- HF Transmitting
- VHF and UHF Transmitting
- Receiving Systems
- VHF and UHF Receiving Techniques
- Mobile, Portable and Emergency Equipment
- Code Transmission
- Single Sideband

- Frequency Modulation and Repeaters
- Specialized Communications Systems
- Interference with Other Services
- Test Equipment and Measurements
- Construction Practices and Data Tables
- Wave Propagation
- Transmission Lines
- Antennas for High Frequency
- High-Performance SSB Speech Processor
- Simple Switching Regulator
- General-Purpose RTTY Demodulator
- $50-\mathrm{MHz}$ Transmitting Converter
- 8-Band Communications Receiver

New projects added to the new Handbook include:

- Code Practice Oscillator
- QSK kw HF Linear Amplifier
- 250-Watt Linear Amplifier Covering 30-M Band
- Two-Tone Generator

New topics included in the 59th edition include:

- $10-\mathrm{MHz}$ Info Added to Several Construction Projects
- Introduction to Packet Radio and Spread Spectrum
- New RFI Chart Showing Frequency Relationships Between Amateur Bands (including WARC) and Other Services (including CATV)
- $10-\mathrm{GHz}$ Gunnplexer, Communcations
- New Antennas for VHF FM
- Updated Parts Supplier List

ORDER TODAY!

NO INCREASE IN PRICE SINCE LAST YEAR'S EDITION

ARRL

225 Main Street

Newington, CT 06111
Enclosed is my check (or charge my \square VISA \square Mastercard) in U.S. funds the amount of
$\square \$ 10$ in the U.S. - paper edition
$\square \$ 11$ in Canada - paper edition
$\$ 12.50$ elsewhere - paper edition
$\square \$ 15.75$ U.S. - cloth edition
$\square \$ 18$ elsewhere - cloth edition

Signature
Printed name
Address
City
State or Province
Zip or Postal Code
Charge account number
Expiration Date
My 1982 Handbook will be shipped to
me once copies are off the press in
November.

ham radio cumulative index

a note on this index
In an effort to give our readers as many articles as possible in this issue of ham radio, we have switched from a ten-year to a fiveyear cumulative index. By doing so we have made approximately ten additional pages available for feature articles. Those readers who wish to a see a cumulative index for years previous to 1977 should consult previous December issues of ham radio. Back issues are available from Ham Radio's Bookstore for $\$ 3.00$ postpaid.

Please let us know what you think of this change, and whether you would prefer to see five- or tenyear cumulative indexes in future December issues of ham radio.

1977-1981

antennas and transmission lines

general

Antenna gain and directivity W2PV	p. 12, Aug 79
Antenna restrictions: another solution N4AOD	p. 46, Jun 80
Antenna restrictions (letter) K3SRO	p. 6, Nov 81
Antenna wire, low-cost copper (HN) W2EUQ	p. 73, Feb 77
Beam antenna mast lock W4KV	p. 68, Jun 81
Best way to get an antenna into a tre WA5VLX	HN) $\text { p. 84, Mar } 81$
```Coaxial connections, sealing (HN) W5XW letter, K7ZFG```	$\begin{array}{r} \text { p. 64, Mar } 80 \\ \text { p. } 6, \operatorname{Oct} 80 \end{array}$
De-icing the quad (HN) W5TRS	p. 75, Aug 80
Dipole antenna length reference chart W6XM	$(N)$ $\text { p. } 75 \text {, Oct } 81$
Earth anchors for guyed towers W5QJR	p. 60, May 80

Gain calculations, simplified
W1DTV
Gin pole, simple lever for raising masts WARANU
Ground current measuring on 160 -meters WOKUS
Ground screen, alternative to radials WBAGP
Ground systems (letter)
ZL2BJR
Light-bulb dummy loads (HN) W6HPH
Lightning protection K9MM p. 18, Dec 78 Comments, W6RTK p. 6, Jul 79 Comments, W2FBL p. 6, Jul 79 Letter, K9MM p. 12, Dec 79
Radials, installing, for vertical antennas K3ZAP p. 56, Oct 80
Scaling antenna elements W7ITB
Smith chart, numerical Smith chart W9MQW
Solid-state T-R switch for tube transmitter
KiMC p. 58, Jun 80
VSWR and power meter, automatic WOINK
p. 78, May 78 p. 72, May 77 p. 46 , Jun 79 p. 22, May 77 p. 6 Nov 80

6, Nov. 80
p. 74, Oct 81
p. 6 , Jul 79
p. 6, Jul 79
p. 58, Jul 79
p. 34, May 80

Wattmeter, low power (letter) WOOLQ
p. 6, $\operatorname{Jan} 80$

## high-frequency antennas



Ground-plane antenna: history and development

Ground systems for vertical antennas WD8CBJ	
Half-square antenna, the NAAN	p. 48, Dec
Half-wave vertical VE2CV	p. 36, Sep
Ham radio techniques W6SAI	p. 32, Sep 81
High-frequency Yagi antennas, unde WIXT	acking $\text { p. } 62 \text {, Jun } 80$
High-gain phased array, experimental KL7JEH   Short circuit	p. 44, May 80 $\text { p. } 67 \text {, Sep } 80$
Junk-box portable antenna W3SMT	24,

W3SMT
Log-periodic antennas for high-frequency Amateur
bands
W4AEO, W6PYK p. 67, Jan 80
Log-periodic fixed-wire beams for 75 -meter DX W4AEO, W6PYK
p. 40 , Mar 80

Log-periodic fixed-wire beams for 40 meters W4AEO, W6PYK
p. 26, Apr 80

Log periodic design
W6PYK, W4AEO
p. 34, Dec 79

Longwire antenna, new design
p. 10, May 77

Loop antenna, compact (letter) W6WR
p. 6, Feb 80

Low-band antenna problem, solution to p. 46, Jan 78

Mobile color code (letter) WB6JFD p. 90, Jan 78

Mobile high-frequency antenna. refinements to W3NZ
p. 34, Jun 81

Multiband antenna system VK2AOU
p. 62, May 79

Multiband vertical antenna system p. 28, May 78

Open quad antenna 12RR
p. 36, Jul 80

Phased antenna (letter)
p. 6, Oct 78

Thacker, Jerry
Phased array, design your own K1AON
p. 78, May 77

Phased vertical antenna for 21 MHz
p. 42, Jun 80

Phased vertical array, fine tuning W4FXE
p. 46, May 77

Phased vertical arrays, pattern calculations for WB5HGR
p. 40 , May 81

Quad antenna, modified ZF1MA
p. $68, \operatorname{Sep} 78$

Quad antenna, repairs (HN) K9MM
p. 87, May 78

Quad for 7.28 MHz
p. 12. Nov 80
p. 12. Nov 80
Quad, three-element, for $15-20$ meters using circular elements elements
W4OVO
p. 12. May 80

Quad, three-element switchable, for 40 meters
NQET
Quad variations, more (HN) W5TRS
p. 26 , Oct 80
p. 72 , Oct 80

Quads vs Yagis revisited
p. 12, May 79 N6NB
Comments, WB6MMV, N6NB
Selective receiving antennas W5TRS
p. 20, May 78

Shunt-fed tower (HN) N6HZ
p. $74, \operatorname{Nov} 79$

Six-element wide-beam for 10 (ham radio techniques) W6SAI
Small beams, high performance G6XN
p. 30, Dec 81
p. 12, Mar 79

Stressed quad (HN) WSTIU
p. $40, \mathrm{Sep} 78$

Suspended long Yagi (ham radio techniques), W6SAI
p. 34, Nov 81

The K2GNC Giza beam
K2GNC
p. 52, May 81

Trapped antenna, trapping the mysteries of N3GO
p. 10. Oct 81

Traps and trap antennas WBFX
p. 34, Aug 79

Triband Yagi beam (ham radio techniques) W6SA!

Two delta loops fed in phase WBHXR
Vertical antenna for 40 and 75 meters WGPYK
p. 60, Aug 81

Vertical antenna, portable WABNWL
p. 44, Sep 79

W8JK antenna, a new look at OD5CG p. 48. Jun 78

Wilson Mark II and IV, modifications to (HN) W9EPT
(H)

Windom antennas K4KJ
p. 10, May 78

Windom antenna (letter)
p. 6, Nov 78

K6KA
Pt. I Yagi antenna design: performance calculations
p. 23, Jan 80

Short circuit p. 66, Sep 80
Pt. II Yagi antenna design: experiments confirm computer analysis
W2PV p. 19, Feb 80
Pt. Ill Yagi antenna design: performance of multi. element simplistic beams
W2PV p. 18, May 80
Pt. IV Yagi antenna design: multi-element simplistic beams W2PV
p. 33, Jun 80

Pt. V Yagi antenna design: optimizing performance W2PV
p. 18, Jul 80

Pt. VI Yagi antenna design: quads and quagis
W2PV p. 37, $\operatorname{sep} 80$
Pt. VII Yagi antenna design: ground or earth effects
W2PV
$\mathrm{P}_{\mathrm{t}}$. VIII Yagi antenna design: stacking
W2PV
Pt. IX Yagi antennas: practical designs
W2PV
Yagi beam elements, aligning (HN)
Yagi beam el
WA2SON
22. Nov 80
p. 79, Jan 81
special antenna, 10 meter, for indoor use
K5AN p. 50 , May 80
3.5. MHz broadband antennas
p. 44, May 79

N6RY
. Ma
3.5-MHz phased horizontal array
K4JC
p. 56, May 77
3.5- MHz sloping antenna array W2LU
p. 70, May 79
3.5. MHz tree-mounted ground-piane K2INA
p. 48 , May 78

7-MHz antenna array
p. 30, Aug 78

K7CW
7-MHz rotary beam W7DI
p. 34, Nov 78
7. MHz short vertical antenna
p. 60, Jun 77

14- MHz delta-loop array
p. 16, Sep 78

## vhf antennas

Antenna-performance measurements using celestial sources $\begin{array}{ll}\text { W5CQ/W4RXY } & \text { p. } 75 \text {, May } 79\end{array}$
Converting low-band mobile antenna to $144-\mathrm{MHz}(\mathrm{HN})$
K7ARR p. 90 , May 77
Dual quad array for two meters W7SLO
p. 30, May 80

Folded whip antenna for vhf mobile - Weekender WB2lFV
p. 50, Apr 79

Ham radio techniques
W6SAI p. 32, Sep

Inexpensive five-eighth wave groundplane (HN)
W7CD p.84, Mar 81
Magnetic mount for mobile antennas
WoHK
Microwave-antenna designers, challenge for
W6FOO p. 44, Aug 80
Mobile antennas, vhf , comparison of W4MNW
p. 52, May 77

Multiband J antenna WB6JPI

م. 74, Jul 78
OSCAR az-el antenna system WA1NXP
p. 70 , May 78

Re-entrant cavlty antenna for the VHF bands
W4FXE p. 12, May 81
True north, how to determine for antenna orientation K4DE p. 38, Oct 80 Comments, N6XQ, K4DE
p. 38 , Oct 80
p. 7 , Mar 81

Using a 2 -meter quarter-wave whip on $450 \mathrm{MHz}(\mathrm{HN})$ K1ZJH p. 92, May 89

Yagi antennas, how to design W1JR
p. 22, Aug 77

Yagi uhf antenna simplified (HN) WA3CPH
p. 74, Nov 79
144. MHz mobile antenna (HN) W2EUQ
p. $80, \operatorname{Mar} 77$
144. MHz mobile antenna WD8QIB
p. 68, May 79
$1296 \cdot \mathrm{MHz}$ antenna, high gain p. 74, May 78

## matching and tuning

A coreless balun WA2SON
p. 62, May 81

Active antenna coupler for VLF p. 46 , Oct 79

Burhans, Ralph W.
Antenna bridge calculations Antenna bridge calculation
Anderson. Leonard $H$. p. 34, May 78

Antenna bridge calculations (letter) W5QJR
p. $6, \operatorname{Aug} 78$

Antenna bridge calculations K6GK
p. 85, Mar 81

Short circuit p. 84, Nov 81
Antenna instrumentation. simple, (repair bench) K4IPV
p. 71, Jul 77

Antenna match, quick and simple Anderson, Leonard $H$.
p. 58, Jan 81

Antenna tuners (ham radio techniques) W6SAI
Broadband balun, high performance
$\mathrm{K4KJ}$
Broadband baiun, simple and efficient
p. 30 , Jul 81 W1JR
p. 28 , Feb 80

Broadband reflectometer and power meter VK2ZTB, VK2ZZQ W6TC
p. 12, Feb 80 Short circuit $\quad$ p. 70 , Mar 80 $\begin{array}{ll}\text { Short circuit } & \text { p. } 67 \text {, Sep } 80\end{array}$
Halt-wave balun: theory and application K4KJ
p. $32, \operatorname{Sep} 80$

Ham radio techniques
p. 42. Oct 81

High-trequency mobile antenna matcher, simple
W6BCX
$\begin{aligned} & \text { p. } 28 \text {, Jun } 81\end{aligned}$
Johnson Matchbox, improved K4IHV
p. 45 , Jul 79

Short circuit
p. 92, Sep 79

L-matching network, appreciating the WA2EWT important?
p. 27, $\operatorname{sep} 80$

Low swr, how important?
WIGV/4 p. 33, Aug 8

Comments K1KSY, W1GV/4 6
Macromatcher: increasing versatility
K9DCJ
Matching complex antenna loads
to coaxial transmission lines WB7AUL
p. 52, May 79

Matching transformers, multiple quarter-wave
K3EY
RX noise bridge, improvements to
W6BXI, W6NKU
p. 44, Nov 78
p. 10 , Feb 77

Comments
OH2ZAZ
p. $100, \operatorname{Sep} 77$

Noise bridge calculations with TI 58/59 calculators WD4GRI
Omega-matching networks, design of W7ITB
Optimum pi-network design DL9LX

45, May 78
p. 54 , May 78

Swr meter
WB6AFT
p. 50, Sep 80

Swr meter, how accurate? (HN) WB9TaG
p. 78 , Jan

Swr meter for the high-frequency bands WB6AFT
p. 62 , Oct 81

Swr, what is your?
p. 68, Nov 79

N4OE
T-Network impedance matching to coaxial feedlines W6EBY
p. 22, Sep 78

Transformers, coaxial-line
W6TC
p. $18, \mathrm{Mar} 80$

## towers and rotators

Antenna guys and structural solutions W6RTK
p. 33, Jun 78

Antenna position display

## AE4A

p. 18 , Feb 79

CDE tailtwister rotor, pulse-position control of
WB4EXW p
Ham-M rotator automatic position control
WB6GNM p. 42, May 77
Ham-M rotator control box, modification of (HN) KADLA/W1RDR
p. 68 , Nov 80

KLM antenna rotor, computer control for (HN)
W8MQW
Rotator starting capacitors (letter)
W6WX
p. $66, \mathrm{Feb} 81$
p. 92, Sep 79

Short circuit
p. 70, Mar 80

Tower guying (HN)
KgMM
p. 98 , Nov 77

## transmission lines

Antenna-transmission line analog, part 1
$\begin{aligned} & \text { W6UYH }\end{aligned}$ p. 52 , Apr 77
$\begin{array}{ll}\text { W6UYH } & \text { D. } 52, \text { Apr } 77 \\ \text { Antenna-transmission line analog, part } 2 \\ \text { W6UYH } & \text { p. } 29, \text { May } 77\end{array}$
p. 26, May 77

Balun, coaxial
WAORDX
p. 26 , May 77

Coax cable, repairing water damage (HN) W5XW p. 73, Dec 79
Coax catle, salvaging water-damaged (HN)
W5XW p. 88, Jan 80
Coaxial cable connectors, homebrew hardline-to-uhf K2YOF $\quad$ p. 32, Apr 80
Coaxial connectors, sealing, (HN) W5XW
p. 64, Mar 80 etter K72FG p. 6, Oct 80
Coaxial-line transformers, a new class o WGTC
.). 12, Feb BO Short circuit $\quad$ p. 70 , Mar 80 Short circuit
p. 67, Sep 80

Connectors for CATV coax cable Will M
p. 52, Oct 79

Matching Iransformers, muitiple quarter-wave
p. 44, Nov 78

Matching 75 -ohm CATV hardine to $50-\mathrm{ohm}$ system K1XX
p. 31, Sep 78

Measuring coax cable loss with an swr meter WB9TQG p. 35, May 81 Comments, WD4KMP WB9TQG p. 6, Sep 81
Plumber's delight coax connector (weekender) N4Ll
p. 50, May 81

Remote switching multiband antennas G3LT2
p. 68, May 77

T coupler, the (HN) K3NXU p. 68, Nov 80
Time-domain reflectometry, checking transmission lines with K7CG
p. 32, Jui 80

Transformers, coaxial-line W6TC
p. 18, Mar 80

Transmission-line circuit design for 50 MHz and above
W6GGV
p. 38, Nov 80

Transmission-line design, Pt. 2: distributed resonant circuits in uht/vhf lines W6GGV
p. 62, Jan 8

Transmission-line design, $\mathrm{P}_{\mathrm{t}}$. 3: distributed resonant circuits in vht/uhf lines
W6GGV
o. 56 , Feb 81

Transmission-line design, Pt. 4: distributed resonant circuits in whfluhf lines
W6GGV p. 64, Mar 8
Transmission-line design, Pt. $5: 50 \mathrm{MHz}$ and above W6GGV p. 72 , Apren
Transmission lines, long, for optimum antenna location N 4 UH
p. 12, Oct 80

Transmit/receive switch, solid-state vhi-uhf
W4NHH
p. 54 , Feb 78

VSWR indicator, computing WB9CYY
p. 58, Jan 77 Short circuit
Zip-cord feedlines ( HN ) W7RXV
p. 32 , Apr 78

Zip-cord feedlines (letter) WB6BHI p. 6 , Oct 78

75-ohm CATV cable in amateur installations
W7VK
p. $28, \operatorname{sep} 78$

75 - ohm CATV hardine matching to 50 - ohm systems K1XX p. 31, Sep 78

## audio

Active filters
р. 70 , Feb 78

Add-on selectivity for communications receivers
G4GMQ
p. 41, Nov 81

Audio processor, communications for reception W6NRW
Better audio for mobile operation K6GCO
p. 71, Jan 80 Kolex
p. 48 , Feb 81

Duplex audio-frequency generator with AFSK features
WB6AFT p. 66, Sep 79
Gain control IC for audio signal processing
Jung
Handheld transceiver, audio amplifier for
N1RM
AB9Q
p. 38, Jul 81

AB9Q
p. $80, \operatorname{Jan} 79$

Heath HW-2036 mods (letter)
p. 8, Jun 81

Mosher, E.A.
Microphones and simple speech processing w10phes p. 30 , Mar 80 Letter, W5VWR p. $6, \operatorname{Sep} 80$

Phone patch using junk-box parts
p. 40 . Oct 80 K7NM
RC active filters (letter)
p. 102. Jun 78

Receivers, better audio for
p. 74, Apr 77
ith Amateur
Simulated carbon microphones, using with Amateur
transmitters W9MKV
p. $18, \operatorname{Oct} 81$

Speech processor, audio-frequency
p. 48 , Aug 77 K3PDW Short circuit
Speech processor, split-band (letter) WA2SSO
Speech processors (letter) K3ND
D. 6. Dec 79

Speech processing, split-band (letter) Schreuer, N7WS
p. 6. Aug 80
p. 74, Feb 80

Speech systems, improving K2PMA
p. 72, Apr 78
ariable-frequency audio filter
p. 62, Apr 79 W4VRV
p. 50 . Oct 80 WB2GCR
p. 50
henes

Voice-operated gate for carbon microphones W6GXN
p. 35, Dec 77

## commercial equipment

Amateur Radio equipment survey number two
Atlas 180 , improved vfo stability ( HN ) K6KLO
p. 52, Jan 80

Autek filter (HN)
K6EVQ, WA6WZQ
p. 73, Dec 77

K6EVQ, WA6WZQ p. 83, May 79
CDE fainwisler rotor, pulse-position control of
Cleanup tips for amateur equipment (HN) Fisher
p. 30, Jan 81
p. 49, Jun 78

Collins KWM-2, updating
p. $48, \operatorname{Sep} 79$

Collins KWM-2 KWM-2A, owners' reports
WB1CHQ p. 22, Mar 81
Collins KWM2 transceivers, improved reliability (HN)
W6SAI p. 81, Jun 77
$300-\mathrm{Hz}$ crystal filter for Collins receivers (letter)
G3UFZ
Collins S-line backup power supp
N1FB
p. 90, Jan 78

Collins Sline monitoring (HN) N1FB
p. 78, Oct 79

Collins S-line, owners' report
p. 78, Aug 79

## WB1CHQ

p. 12, Apr 81

Collins S-line, syllabic vox system for WotP
p. 29, Oct 77

Collins 32S-series ALC meter improvement (HN) W6FR
Collins 32 cooling (HN) N1FB p. 100 , Nov 77 N1FB
p. 74, Nov 79

Collins 32S, improved stability for (HN)
N1FB 0.83 , May 79
Collins 32S PA disable jacks
N1FB
Collins 75 S CW sidetone ( HN )
N1FB
p. 65, Mar 80
p. 93 , Apr 79

Collins 32S.1, updating
N1FB p. 76, Dec 78
Collins 51 J , modifying for ssb reception
W6SAI
W6SAI
Collins 51 J product detector (letter)
D. 66, Feb 78
KSCE
N1FB $\quad$ p. 85, Jun 79
NiFB
Collins 516 F .2 solid-state rectifiers (HN) N1FB p. 91, Feb 79

Collins 70E12 PTO repair (HN) W6BIH p. 72, Feb 77

Collins 75S receiver, ( HN ) N1FB p. 94 , Oct 78

Collins 75S-series crystal adapter (HN)
K1KXA p. 72, Feb 77

K1KXA	p. 72, Feb 77
Collins $755-3$ alignment (HN)	
N1FB	p. 79, Jan 81

Collins R-388(51J), inter-band calibration stability (HN) W5OZF
p. $95, \operatorname{Sep} 77$

Collins R392, improved ssb reception with (HN)
VE3LF p. 88, Jul 77

Collins 516F-2 low-voltage and bias modification (HN)
N1FB p. 68, Jul 81
Coliins 516F-2 power supply, transient protection for W5AD p. 31. Apr 81

DenTron $160 \times \mathrm{V}$ transverter, stabilizing the (weekender) WB2QLL p. 46, Jun 81
Drake gear, simple tune-up (HN) W7DIM
Drake R4C backlash, cure for (HN) w3CVS
p. 79, Jan 77

Drake R-4C, cleaner audio for ( HN )
p. 82, May 79
p. 88, Nov 78

Drake R-4C receiver audio improvements ( HN )
W3CVS
Drake R-4B and TR-4,
split-frequency operation WB8JCQ
Drake R-4C, new audio amplifier for
WBQUGP K8RRH

Drake R-4C, new product detector for ( $H N$ )
WBQGGP p.94, Oct 78
Drake R-4C product detector, improving (HN) W3CVS D. 64, Mar 80
Drake TR-7 transceiver, Woodpecker noise blanker for (HN)
K1KSY p 67 Feb 81

Drake TR-22C sensitivity improvement (HN) K7OR
Drake $T-4 X$ transmitters, improved tuning
on 160 meters (HN) W1!BI, W1HZH
p. 81, Jan 79

Factory service (letter) W6HK
p. 6, Jul 80

FT-101E, 10 -meter preamp for KiNYK
p. 26 , Jul 81

Feedine loss, calculating with a single measurement at the transmitter ( HN ) K9MM
p. 96, Jun 78

Genave fransceivers, S-meter for (HN)
K90XX
Hallicrafters HT-37, improving W6NIF
p. 78 , Feb 79

Ham-M rotator automatic position control WB6GNM
p. 42, May 77

Ham-M rotator control box, modifications of (HN) KADLAW1RDR D. 68, Nov 80
Ham-M rotator torque loss (HN) W1JR
p. 85, Jun 79 Short circuit
p. 92 , Sep 79

Ham- 3 rotator, digital readout for KIDG
p. 56, Jan 79

Heath HD-10 keyer, positive lead keying (HN) W4VAF p. 88, Nov 78
Heath HD-1982 Micoder for low-impedance operation Johnson, Wesley p. 86, May
Heath HR-2B external speaker and tone pad (HN) N1FB
Heath HW-16, low-impedance headphones
Heath HW-16, low-impedance headphones for (HN) WN8WJR
Heath HW-101 sidetone control (HN)
p. 79, Jul 79

Heath HW-2036 antenna socket (HN) W3HCE
p. 80, Jan 79

Heath HW-2036, carrier-operated relay for WD5HYQ $\quad$ D. 58, Feb 80


## FILTER CASCADING WORKS!

You can get significantly better performance from your Receiver by improving its If filtering. The most cost-effective way to do this is to place a superior 8 -pole SSB filter essentially in series (or Cascade) with the original unit. The resulting increase in the number of poles of filtering to as many as 16 causes a dramatic increase in selectivity and reduction of adjacent channel QRM. The authors of the following major articles all stress the effectiveness of FOX-TANGO filters in this application and comment on its simplicity; easy soldering: no drilling, no switching, and no panel changes. As a bonus, CW performance is improved as well as SSB, at no extra cost or effort!

## Recent Magazine Articles on Filter Cascading

YAESU FT-901/902. See "73", Sept. 1981 HEATH SB104A See "Ham Radio", Aprill 1981 KENWOOD TS820 See "CQ", March 1981
Read the original article or send $\$ 1$ to FoxTango for complete details of the one that interests you. To make the modification, order the appropriate cascading kit from below. Each contains the parts specified in the article, the recommended FoxTango filter, and complete instructions.

FOX-TANGO Cascading Kits in Stock
YAESU FT-901/902 Series.
. 860
HEATH SB104A Series
. 560
KENWOOD TS820 Series...... $\$ 65 \mathrm{w} / \mathrm{mini}$ amp. *KENWOOD TS520 Series .... $565 \mathrm{w} / \mathrm{mini}$ amp. -YAESU FT-101 Series (not ZD) $\$ 65$ w/casc bd
*Proven mods based on articles in preparation
Shipping via Airmail: \$2US/Canada, \$5 Elsewhere Florida Residents: Add 4\% sales tax
FOX-TANGO stocks the widest variety of custommade time-tested crystal filters available from any source for Yaesu, Kenwood, Heath, Drake, and Collins rigs. Cascading is only one application for these filters. Others include replacing outdated or inferior original units, filling spots provided for optional filters, or adding extra filters using diode switching boards if the "spots" are filled. However, since the degree of improvement depends upon the quality of the filter used, cheap substitutes are no bargain! FOX-TANGO has never spared expense or effort to make its filters the very BEST and guarantees satisfaction - plus fast, friendly, knowledgeable, personalized service. For information about our complete line, including SSB, CW and AM filters, phone or write for our free brochure. Specify the set you want to improve.
We welcome mail or phone orders and accept payment by VISA, MASTERCHARGE, M.O., Check, Cash, or C.O.D. (at your expense).

FOX TANGO CORPORATION Since 1971, By and For Radio Amateurs Box 15944H, W. Palm Beach, FL 33406 Phone: 1-305-683-9587

## QRZ W1's, W2's and W3's...

## LOOKING FOR AEA PRODUCTS IN THE NORTHEAST?

## 40 OM TO RADOS UNMMMITED.. NEMY DERSEMMS FASTEST CROMMNG HAM STORE!

Get your hands on AEA's great keyers and Isopole antennas at Radios Unlimited You can reach us easily via the Jersey Tumpike, and when you get here you can TRY BEFORE YOU BUY at our in-store operating position. Yes! Pick out any AEA keyer, (or any other equipment from our
huge stock of ham gear), and try before you buy! We don't mean a little off-the-air diddling with the keyer...we let you PUT IT ON THE AIR AND HAVE A QSO...really check it out under YOUR kind of operating conditions .. then decide. We know AEA. and we know you'll select one of these:


MM-1 MorseMatic ${ }^{\text {TM }}$ memory keyer with two micorcomputers and 37 fantastic features including up to 2000 characters of memory plus virtually every capability of all the other keyers \& trainers listed below.

## ATTAINABLE, ZERO DEGREE RADIATION ANGLE AND 1.4:1 SWR ACROSS THE

THE EXCITING ISOPOLES THAT ARE BOOMING OUT THOSE INCREDIBLE VHF SIGNALS WITH MAXIMUM GAIN

## ENTIRE BAND!



Find them all at Radios Unlimited, plus a huge collection of new gear from all major manufacturers... a big selection of used equipment bargains, all you'll ever need in books, accessories, operating aids, coax, connectors and parts plus a modern service department dedicated to keeping you on the air. It's like a perpetual flea market! For directions, call (201) 469.4599 .

FIND AEA AT CRLCILTEL
1760 EASTON AVENUE, SOMERSET, NJ 08873 • (201) 469.4599

Heath HW2036; Lever action switch illumination (HN) W2IFR p. 99, Jul 78

Heath HW2036, outboard LED frequency display
WB8TJL p. 50, Jul
Heath HW-2036. updating to the HW-2036A
WB6TMH, WA6ODR
Heath HWA-2036-3 crowbar circuit (HN) W3HCE p. $62, \mathrm{Mar} 79$
p. 88, Nov 78

Heath intrusion alarm (HN) p. 81, Jun 77

Heath Micoder improvements W10LP
p. 42 , Nov 78

Heath Micoder matching (letter) p. $8, \operatorname{Sep} 78$

WB8VUN
Heath SB- 102 headphone operation (HN
K1KXA
Heath SB-102 modifications (HN)
W2CNQ
Heath SB-102 modifications (HN)
Heath SB. 102
W2CNQ
Heath SB-102 modifications (letter)
WIJE
p. 110, Mar 78

Heath SB-102, WWV on (HN)
p. 78, Jan 77

Heath SB- 200 CW modification
p. 99, Nov 77

Heath SB-400/SB-401, simple speech amplifier for (HN)
W8LMH
p. 72, Jun 81

Heathkit Micoder adapted to low-impedance
input (HN)
WB2GXF
p. 78 , Aug 79

Heathkit HW-8, increased break-in delay (HN) K6YB
p. 84, Jun 79

Heathkit HW-2036, updating the
WA4BZP
p. 50 , Nov 80

Heathkit SB-series equipment, heterodyne
crystal switching (HN)
K9KXA $\quad$ p. 78 , Mar 77
Heathkit SB-104A, improved receiver performance tor
N2EO
Henry $2 K 4$ and 3KA linears, electronic
bias switching
W1CBY
p. 75, Aug 78

Hy-Gain 400 rotator, improved indicator
system for
system for
W4PSJ
p. 60, May 78

HP-35 calculator, keyboard cleaning (HN)
P. $40, \mathrm{Jul} 78$

ICOM-22A wiring change (HN) K1KXA
p. $73, \mathrm{Feb} 77$

ICOM IC-22S, using below $146 \mathrm{MHz}(\mathrm{HN})$
W1IBI
COM 701 owners' report
p. 92, Apr 79

COM 701 owners' report
p. 56 , Oct 81

ICs, drilling template for (HN)
WA4WDL, WB4LJM
p. 78, Mar 77

Johnson Matchbox, improved
p. 45, Jul 79

Short circuit
p. 92, Sep 79

Kenwood TR-7400A, scanner for (the Kenscan 74) WB7QYB
Kenwood TR-7500, preprogrammed (HN)
W9KNI
Kenwood TS.520, TVI cure for (HN) W3FUN
p. 95 , Oct 78
p. 78, Jan 77

W5NPD 520 -SE transceiver, counter mixer for
W5NPD p. 60, Sep 80
KLM antenna rotor, computer control for (HN)
W8MQW
Measurements Corporation 59 grid-dip
oscillator improvements
WGGXN p. 82, Nov 78
Micro Mart RM terminal modification (HN)
WASVQK p. 99, Jun 78
National NCL-2000, using the Drake T-4×C (HN) K5ER
Ni-cad battery charging (letter)
W6NRM
p. 6, Jul 80

Owner's survey, TR7
WB1CHO p. 66, Nov 81
SB-220 transceiver, inrush current protection for Weekender
W3BYM p. 66, Dec 80
Swan 160X birdie suppression (HN) W6SAI
p. 36 , Oct 78

Swan 350, curing frequency drift WA6IPH
p. 42, Aug 79

Ten-Tec Horizon/2 audio modification (HN) WB9RKN
p. 79 , Oct 79

Ten-Tec Omni-D, improved CW agc for (HN)

W6OA p. 88
TS.820/TS.820S, reducing interference in (HN)
W4M日
p. 88, Jan 80

TS-820 filter switching modification (HN)
K7OAK
Wilson Mark II and IV, modifications to (HN)
W9EPT p. 89,

Yaesu FT-227R memorizer, improved memory ( $H N$ )
WA2DHF D. 79, Aug 79

## construction techniques

Anodize dyes (letter)

W4MB	p. 6, Sep 79
Anodizing aluminum	
VE7DKR	p. 62, Jan 79
Comments, WA9UXK	p. 6, Nov 79
AN/UPX-6 cavities, converting surplus W6NBI	p. 12, Mar 81
Cabinet construction techniques W7KDM	p. 76, Mar 79
Capacitors, custom, now to make WBDESV	p. 36, Feb 77
Cliplead carousel (HN) WBIAQM	p. 79, Oct 79

WBIAQM
Coaxial cable connectors, homebrew hardline-to-uhf
K2YOF p. 32. Apr 80
Coax cable, salvaging water-damaged ( HN ) W5 XW
p. $88, \operatorname{Jan} 80$

Coils, self-supporting Anderson
p. 42, Jul 77

Crystal switching, remote (HN) WABYBT
p. 91, Feb 79

Etch tank (HN)
p. 79 , Jan 77

W3HUC
Indicator circ
WB6AFT
p. 60, Apr 77

Inductors, graphical aid for winding W7POG
p. 41, Apr 77

Lightning protection (letter)
p. 12, Dec 79

Metalized capacitors (HN)
W8YFB
p. 82, May 79

Microcircuits, visual aids for working on
K9SRL
Phone plug wiring (HN)
N1FB
p. 90 , Jut 78
p. 85, Jun 79
wBout using longhand
p. 26, Nov 78 Comments, W5TKP p. 6. Jun 79

Printed-circuits, simple method for (HN)
W4MTD
Rejuvenating transmitting tubes with
thoriated-tungsten filaments (HN) W6NIF
p. 51, Apr 78
p. 80. Aug 78

Silver plating (letters)
p. 94, Nov 77

WADAGD
Silver plating made easy WA9HUV
p. 42, Feb 77

Ten-Tec Omni-D, improved CW agc (HN) W6OA 11 and IV modifications (HN)
W9EPT
Wire-wound potentiometer repair (HN)
p. 73, Dec 79

W4ATE
WHOUnd potentiometer repalr (HN)

p. 77, Feb 78

## digital techniques

Basic rules and gates
Anderson, Leonard $H$.
p. $76, \operatorname{Jan} 79$

Counters and weights
Anderson, Leonard H . p. 66, Aug 79
Digiscope
p. 50 , Jun 79

Digital-circuit problems, avoiding built-in, part one
W1BG p. 43, $\operatorname{Sep} 81$

Comments VE2QO p. 6, Dec 81
Digital-circuit problems, avoiding built-in, part two W1BG p. 50, Oct 81
Comments VE2QO p. 6, Dec 81
Digital techniques: gate arrays for control Anderson, Leonard H .
p. $82, \operatorname{Jan} 80$

Down counters
Anderson, Leonard $H . \quad$ p. 72, Sep 79

Flip.flop internal structure
Anderson, Leonard $H$.
p. 86, Арг 79

Gate arrays for pattern generation
Anderson, Leonard $H$.
p. 72, Oct 79

Gate structure and logic families
Anderson, Leonard $H$.
p. 66, Feb 79

Multivibrators and analog input interfacing
Anderson, Leonard H. p. 78, Jun 79
Packet radio, introduction to
VE2BEN
p. 64, Jun 79

Propagation delay and flip-flops
Anderson, Leonard $H$.
Self-gating the 82S90/74\$196 decade counter (HN)
WgLL
Talking digital clock
K9KV
p. 30 Oct 79

## features and fiction

DXer's Diary


Jim Fisk, tribute to, publisher's log
rom Amateur to professional KiZU p. 54, Aug B?
Hallicrafters history WGSAI
p. 20, Nov 79

Hallicrafters story (ietter)
KGADM
Hallicrafters story (ietter) WITVN
p. 6. May 80

Hallicrafters story (letter) WA2JVD
p. 6, Sep 80

Ham radio techniques: triband Yagi beam tor 20,15 , and 10 meters
W6SAI p. 68, Jan 8

Short circuit p. 84, Nov 81
Ham radio techniques: earth-moon-earth
W6SAl p. 40, Feb
Ham radio techniques: more about moonbounce
W6SAl
ham radio techniques: ten-meter band W6SAI
p. 34, Mar 81

Ham radio techniques: 160 -meter band W6SAl
p. 38, Apr 81

Ham radio techniques: amateur radio, 1933
W6SA!
Harn radio techniques: antenna tuners W6SAI
p. 41, Jun 81

Ham radio techniques: amateur radio 1941 W6SAl W6SAl
p. 30, Aug 8 Ham radio techniques
p. 32, Sep 81

W6SAl
Ham radio techniques: radio-trequency p. 42, Oct 8 W6SAI
nterference
Ham radio techniques: radio-frequency interference W6SAI
p. 30, Dec 81

Hellschreiber, a rediscovery
PADCX
p. 28, Dec 79

Jammer problem, solutions for UX3PU
p. 56, Apr 79 Comments
$\begin{array}{ll}\text { Jim, a tug at your memory } & \text { p. 28, May } 8\end{array}$
W4VT
p. 28, May 81
observation and opinion
Reinartz, John L., father of shortwave radio
WA6CBQ p. 10, Aug 8
Shopping for parts by mail
W8FX
p. 16, Jul 81

Comments K1THP
p. 6, Dec 81

Tune in on the world
WAAPYQ
p. 12, Jun 81


## ENJOY CW MORE THAN EVER!

- Build accuracy in sending
- Run contests impartially.
- Even learn sending alone!
- Relax while copying code.
- Improve your CW speed.
- Measure dot/dash 'weight
- Determine speed in WPM.
- Interface YOUR receiver to a DISPLAY or COMPUTER TERMINAL using "TAIMD"II TELECRAFT LABS BOX 1185. EAST DENNIS. MASS. 02641





## fm and repeaters

Add fm to your receiver (weekender)

	81
Amateur fm, close look at W2YE	46, Aug 79
Antenna design for omnidirectional repeater coverage N9SN	
Command function debugging circuit WA7HFY	p. 84, Jun 78
Converting low band mobile antenna to 144 MHz (HN) K7ARR	90, May 77
Decoder, control function WA9FTH	p. 66, Mar 77
Deviation, measuring N6UE	p. 20, Jan 79
Digital scanner for 2 -meter synthesizers K4GOK	p. 56, Feb 78
External frequency programmer (HN) WB9VWM	p. 92, Apr 79
Fm demodulator using the phase-locked	loop
KL7IPS	p. 74, Sep 78
Comments	
And	

Folded whip antenna for vhi mobile - Weekender WB2IFV
p. 50 , Apr 79

Frequency synthesizer sidebands,
filter reduces (HN) K1PCT
p. 80, Jun 77

Frequency synthesizers, 600 kHz offset for (HN) K6KLO p. 96, Jul 78

IC-230 mod
p. 80, Mar 77

Mobile antennas, vhf, comparison of W4MNW
p. 52, May 77

Multimode transceivers, fm-ing on uhf (HN) W6SA1
p. 98 , Nov 77

Ni-cad charger, any-state WABTBC
p. 66, Dec 79

Preamplifier for handi-talkies
p. 89 , Oct 78

WB2IFV
Private call system for vif fm WA6TTY
p. 62, Sep 77

Private call system for vhf fm (HN)
p. 77, Feb 78

Receivers, setup using hf harmonics (HN)
K9MM
Remote base, an alternative to repeaters
WA6LBV, WA6FVC
Repeater channel spacing (letter)
p. 90 , Jan 78

Repeater jammers, tracking down W4MB
p. 56, $\operatorname{Sep} 78$

Repeater kerchunk eliminator
p. 70 Oct 77

WB6GTM p. 70,0
Repeater shack temperature, remote checking ZL2AMJ
p. 84, Sep 77

Repeater interference: some corrective actions
W4MB p. 54, Apr 78

Simple scope monitor for vhf fm
WIRHN p. 66, Aug 78

Single-sideband fm , introduction to W3EJD
p. 10, Jan 77

Single-tone decoder WAZUMY
p. 70 , Aug 78

S-meter, audible, for repeaters
p. 49 , Mar 77

Solar powered repeater design WB5REA/WB5RSN
p. 28, Dec 78

Subaudible tone encoders and decoders W8GRG
Synthesized channel scanning p. 26, Jul 78 Synthesized
waguzo p. 68, Mar 77

Synthesizer, 144 MHz , 800-channel
p. $10 . \operatorname{Jan} 79$ K4VB, WA4GJT
Synthesizer, 144-MHz CMOS
p. 14, Dec 79 K9LHA
p. 64, Nov 78
weralert decoder
Tone-burst generator for repeater accessing
$\begin{aligned} & \text { WA5KPG } \\ & \text { p. } 68 \text {, Sep } 77\end{aligned}$ Snort circult
p. 94 , Feb 79

Tone generator, IC Ahrens
p. 70 , Feb 77

Tone generator, IC (HN)
p. 88, Mar 79

Touch-tone decoder, IC
p. 26, Jul 78

Touch-tone decoder third generation
WATDPX

Short circuit
Touch-tone encoder W3HB
Two.meter synthesizer, direct output WB2CPA
Short circuit
144-MHz synthesizer, direct output WB2CPA
p. 36, Feb 80
p. 67. Sep 80
p. 41, Aug 77
p. 10, Aug 77 p. 68, Dec 77
$144-\mathrm{MHz}$ synthesizer, direct output (letter)
WB6JPI
Up/down repeater-mode circuit for
two meter synthesizers, 600 kHz WB4PHO
Short circuit
144.MHz mobile antenna (HN) W2EUQ
p. 40, Jan 77
p. 94, May 77
144.MHz synthesizer, direct output

WB2CPA
p. 80 , Mar 77
p. 10. Aug 77
$144 . \mathrm{MHz}$ synthesizer, direct output (letter) W86JPI
p. $90 . \operatorname{Jan~} 78$

## integrated circuits

Active filters
p. 70 , Feb 78

K6JM $\quad$ p. 70, F
CMOS programmable divide-by-N counter (HN)
W7BZ
Exar XR-205 wavetorm generator as capacitance
meter (HN)
W6WR
p. 79, Jul 79

Gain control IC for audio signal processing
Jung
IC arrays
K6JM
p. 47. Jul 77

IC op amp update Jung, Walter
Op amp challenges the 741
D. 42, 1
p. 62 , Mar 78

WA5SNZ
p. $76, \operatorname{Jan} 78$

Socket label for ICs (HN
p. 94, Jan 78

TTL oscillator (HN) WB6VZM
p. 77 . Feb 78

TTL sub-series ICs, how to select
p. 26 , Dec 77

WA1SNG
Voltage regulators W6GXN
p. 31, Mar 77

555 timer operational characteristics WB6FOC
p. 32, Mar 79

## keying and control



End-of-transmission K generator
G8KGV
p. 58 , Oct 79

External keying circuit
for multimode rigs (HN)
WB2GXF
p. 72, Dec 79

Comments p. 94, Nov 77
Keyer paddle, portable
WA5KPG
p. 52, Feb 77

Keyer with memory (letter)
Hansen, William
p. 6. Dec 79

Key toggle
W6NRW p. 50, Mar 79
Memory keyer, W7BBX (letter) SP2DX
p. 6, Jan 80

Memory keyer, (letter) W3VT
D. 6, Feb 80

Memory keyer, 2048-bit (HN) GW4CQT

ค. 73, Jun 80
Microcomputer-based contest keyer K9CW
p. 36, Jan 81

Paddle for electronic keyers ZS6AL
D. 28, Apr 78

Programmable accessory for electronic keyers (HN)
K9WGN/WOUSL p. 81, Aug 78
Programmable keyer, Autek MK-1, expanded memory for N9AKT
p. $58, \operatorname{Jan} 80$

Radio Shack ASCII keyboard encoder for micro-processor-controlled CW keyboard, using (HN) VE7ZV
Transceiver diplexer: an alternative to relays
N6RY D. 71, Dec 80
measurements and test equipment

Antenna bridge calculations Anderson, Leonard H
Antenna bridge calculations (letter)
W50.JR
D. 34, May 78

Automatic noise-figure measurements
Repair Bench
W6NBI
p. 40, Aug 78

Broadband reflectometer and power meter
VK2ZTB, WB2ZZQ P. 28, May 79
Capacitance measurements with a
frequency counter - Weekender
Moran, John
p. 62 , Oct 79

Capacitance meter
p. 51, Feb 78

Capacitance meter, simplified
WA5SNZ p. 78, Nov 78
Capacitance meter, (simplified), improvements to
WA3CPH p.54, Mar 80
Continuity bleeper for circuit tracing G3SBA
Counter control pulses (HN)
W9LL $\quad$ p. 70, Apr 80
Deviation, measuring
NGUE
p. $20, \operatorname{Jan} 79$

Digital capacitance meter
K4GOK
p. 66. Aug 80

Diode noise source for receiver noise measurements W6NBI
p 32, Jun 79
Diode tester
W6DOB
Dip meters, a new look at
W6G)XN
W4YOT
p. 26, Aug 79

Electrolytic capacitors, measuring capacitance of KP4DIF p. 24, Sep 80
Field-strength meter for the high-frequency Amateur bands
WB6AFT p. 42, Jul B
Frequency counter, capacitance-measurement accuracy for
W1ZUC $\quad$ p. 44, Apr 80

Short circuit p. 67, Sep 80
Frequency counter, miniature
K5WKO
p. $34, \mathrm{Oct} 79$

Frequency counter, K4JIU, modifications for (HN)
K4JIU p. 65, Mar 80
Frequency counter, modify for direct
counting to 100 MHz
WA1SNG
p. 26, Feb 78

## Two great ways to get Q5 copy <br> Ask:

G4HUW KB5DN KJ2E K61MV K4XG K8MKH KA4CFF KB ${ }^{\text {KTM }}$ KA5DXY W4YPL WA4FNP WD5DMP

444D SSB/FM
Base-Station Microphone
Shure's most widely used basestation microphone is a ham favorite because it really helps you get through ... with switchselectable dual impedance low and high for compatibility with any rig! VOX/NORMAL switch and continuous-on capability make the 444D easy to use even under tough conditions. If you're after more Q5's, you should check it out.
 and a half! Variable output level that lets you adjust the impedance to match the system. The perfect match for virtually any transceiver made, from 500 ohms and up. Turns mobileNBFM unit into an indoor base station! Super for SSB operation, too. These and many other features make the 526T Series II a must-try unit.
FREE! Amateur Radio Microphone Selector Folder. Write for AL645.

The Sound of the Professionals* ${ }^{*}$


Shure Brothers Inc. 222 Hartrey Avenue. Evanston. IL 60204 In Canada A C. Simmonds \& Sons Limited Manufacturer of high fidelity components. microphones
loudspeakers, sound systems and related circuitry

ICOM 720A


Dual VFOs, receives 1 to $30 \mathrm{MHz}: 200$ Watt PEP input. SSB. CW. AM, and RTIY modes. speech processor. PBT. VOX, tinals protected dial lock, broad-banded, full metering. quadruple conversion receiver. The New Standard in Ham Radio
$\$ 1349.00$ call tor quvere

ICOM 730


Compact, aftordable convenient. 200 Watt PEP Input, built-in recerver preamp VOX noise blanker. RIT, $10-80 \mathrm{M}$ including WARC bands, speech processor. IF Shift, finals protected, full solid state
$\$ 829.00$ Call to quote

ICOM 22 U


VHF Mobile Performance at a budget price Easy to operate, versatile compact. 10 watts Easy to operate, versatie. compact, 10 watis
$100 \%$ duty. Finals protected Hi/Low power. remote frequency selection option
$\$ 299.00$ Call to cuove


FM, SSB, CW. Two VFOs, Squeich on SSB, Three memories; Memory Scan; Programmable Band Scan, Repeater Offsets, Noise Blanker. VOX. RIT. Variable Repeater Splits. Mobile or Station Reg Loaded
$\$ 749.00$ Call tor quove
$\square$

TEN-TEC OMNI C


Nine Bands, All Solid-State: Broadbanded Digital Readout: 100\% Duty Cycle. 200 Watts input, Finals Protected. Built-in V0x, PII Notch Filter. Noise Blanker. 2 speed Break in Autornatic
$\$ 1289.00$ callor quote

TEN-TEC DELTA 580


160-10 Meter including three new ht bands (10. $18 \& 24.5 \mathrm{MHz}$ ) Low noise double conversion design. 200 watts input on ail bands $100 \%$ duty cycle Offset tuning Full break in. Built-in VOX and PIT
$\$ 869.00$ Call tor quote

ASK ABOUT OUR CURRENT STOCK OF USED GEAR!

Other fine lines we carry:	
Ameco	MFJ
Amidon	J W Miller
Antenna Specialists	Mirage
ARRL	Murch
Astatic	Radio Amateur Callbook
Barker \& Willamson	Regency
Bash	Rohn
Belden	Sams
Bencher	Saxton
Cushcratt	Signals
Darwa	Telex
DenTron	Trac
Drake	Turnet
Giobal Specialties	Unadilla/Reyco
Gold Line	Valor
Ham-Key	Van Gorden Engineering
Hayden	Vibroplex
Hustler	VoCom
Hy-Gain	W2AU
Larsen	

Frequency counter, CMOS
p. 22, Feb 77 D. 94 , May 77

Frequency counter, front-ends for a $500-\mathrm{MHz}$
K4JIU
Frequency counter, how to improve the accuracy of W1RF p. 30, Feb 78

Frequency counter, high-impedance preamo and pulse shaper for I4YAF
p. 47 , Feb 78

Frequency counter, simple (HN) W2QBR
Frequency counter, simplifying W1WP
Short circuit
p. 81, Aug 78 p. 22, Feb 78

Frequency counters, uht and microwave W6NBI
p. $34, \operatorname{Sep} 79$

Frequency counters, understanding and using W6NBI
p. 10. Feb 78

Frequency counters, high-sensitivity preamplifier for W1CFI
p. 80, Oct 78

Frequency-marker standard using cmos W41YB
Frequency measurement. vhf,
ht receiver and scaler ( $H N$ )
W3L日
p. 44, Aug 77

Function generator, integrated circuit N3FG
p. 90 , May 77

Function/units indicator using LED displays
$\qquad$
Gatlon-size dummy load W4MB
p. 74. Jun 79

Gate dip meter
W3WLX
p. 42, Jun 77

Grid-dip meter, no-cost WBYFB
p. 87 Feb 78

Impedance bridge measurement errors and corrections K4KJ
p. 22, May 79

K4EEU frequency standard, battery backup for (HN) N4BA p. 68, Jul 81

Light-bulb dummy loads (HNN) W6HPH
p. 74 , Oct 81

Logic probe
p. 83. Feb 79

Logic probe, digital
p. 38 , Aug 80

Meter amplifiers, calibrating W4OHT
p. $80, \operatorname{Sep} 78$

Multiplexed counter displays (HN) K1XX
p. 87, May 78

Noise bridge calculations with Ti $58 / 59$ calculators WD4GRI
p. 45 , May 78

Noise figure measurements
p. 40 , Aug 78 Comments
p. 6, Aug 79

WB5LHV, W6NBI
p. b, Aug 79

Noise-figure meter, automatic, for preamplifiers and
converters converters
K91MM
p. 12 , Feb 81

Power meter, rf, how to use (repair bench)
W6NBI
Prescaler, $1-\mathrm{GHz}$, for frequency counters W6NBI
p. 44 , Apr 77
p. 84, Sep 78

Prescaler, $600 . \mathrm{Hz}$, for use with electronic counters WA1SPI
$Q$ measurement
G3SBA
p. 50 . Apr 80
p. 49, Jan 77

Radio Shack meters, internal resistance Katzenberger
p.
esistance values below 1 ohm, measuring
W4OHT p. 66, Sep 77
Resistance values below 10 hm , measuring (letter)
W1PT
p. 91, Jan 78

Resistance values, measuring below 1 ohm
W4OHT W4ATE
p. 87. May 78

Rf power meter, part 1: instrument description and construction
N6YC
p. 70, May 81

Ri power meter, part 2: measurements and
measurement accessories
N6YC D. 55 , Jun 81
Comments W3NQN p. 6, Oct 81

Rf wattmeter, accurate low power

WA4ZRP
RTTY test generator
WB9ATW
AX noise bridge, improvements to W6BXI, W6NKU
Comments
Noise bridge construction (letter) OH2ZAZ
Slotted line, how to use (repair bench) W6NB
Spectrum analyzer, dc- 100 MHz
W6URH
p. 16 Jun 7

Short circuit
Short circuit
Spectrum analyzer for SSB
W3.JW
Spectrum analyzer, microwave N6TX
Spectrum analyzer tracking generator W6URH
Sweep generator, stable wideband W7BAR
Short circuit
swr indicator, how to use (repair bench)
W6NBI

Swr measuring at high frequencies DJ2LR
Swr meter
WB6AFT
Swr meter for the high-frequency bands WB6AFT
Tester for 6146 tubes (HN) W6KNE
Test-equipment mainframe W4MB
Test probe accessory (HN) W2IMB
Testing power tubes K4IPV
Time-base oscillators, improved calibration WA7LUJ, WA7KMR
Toroid permeability meter W6RJD
TVI locator
W6BD
Vhf prescaler WBCHK
VLF dip meter, no-adjust bias for (HN) WB3IDJ
Voltage calibrator for digital voltmeters Short circuit P. 66, Jul 78
Voltmeter calibrator, precision Woods. Hubert p. 94, Jun 78

VSWA bridge, broadband power-tracking Kizol
vSWF indicator, computing WBgCYY
Short circuit p. 94, May 77
VSWR and power meter, automatic Waink
Wattmeter, low power (letter)
p. 34, May 80

WODLQ p. 6. Jan 80
Wien Bridge oscillators, voltage-controlled resistance for WA5SNZ
p. $56, F_{\ominus b} 80$
1.5 GHz prescaler, divide by 4
p. $88, \operatorname{Dec} 78$

## microprocessors, computers and calculators

Computer rfi (fetter)


Data retrieval program using the APPLE II computer (HN)
WB6YHS p. 75, Oct 81
Digital keyboard entry system NZYKIN2GW
p. 92, Sep 78

IC tester using the KIM-1 W3GUL
D. 74 , Nov 78

Interfacing a 10-bit DAC (Microprocessors)
Rony, Titus, WB4HYJ p. 66, Apr 78
internal registers, 8080
Rony, Titus, WB4HYJ
p. 66, Apr 78
p. 63, Feb 77

Logical instructions
Titus, WB4HYJ, Rony
Microcomputer-based contest keyer p. 83, Jul 77
K9CW
p. 36, Jan 81

MOV and MVI 8080 instructions Titus, WB4HYJ, Rony
p. 74, Mar 77

Radio Shack ASCII keyboard encoder for microprocessor-controlled CW keyboard using the (HN)
VETZV
p. 72, Oct B0

Register pair instruction
p. 76, Jun 77

Rony, Titus, WB4H
0. 74, Jan 77

WB4HYJ, Rony, Titus
p. 74, Jan 77

Video display, simple VK3AOH
p. 46, Dec 78

8080 logical instructions
W84HYJ, Rony, Titus
p. 89, Sep 77

## miscellaneous technical

Ac-line switching precautions (HN) W5PGG
p. 69, Jul 81

Active bandpass filters
p. 49, Dec 77
WB6GRZ
D. 94 , Feb 79

Short circuit D. 94
Admittance, impedance and circuit analysis
$\begin{array}{ll}\text { Admittance, impedance and circuit analysis } \\ \text { Anderson } & \text { p. } 76 \text {, Aug } 77 \\ \text { Short circuit } & \text { p. } 94, \text { Feb } 79\end{array}$
Short circuit p. 94, Feb 79
Air pressure, measuring across transmitting tubes (HN)
p. 89, Jan 80

Amplitude compandored sideband
Amplitude compandored sideband
WB6JNN
Analog-to-digital display converter for the visually handicapped
KB7JW $\quad$ p. 44, Jan 8

Bandpass filters, top-coupled
Anderson p. 34, Jun 77

Bandspreading techniques for resonant circuits Anderson D. 46, Feb 77

Short circuits p. 46, Feb 77

Battery charging (letter) Carison p. 6, Nov 80

Calculator-aided circuit analysis p. 38 , Oct 77

Anderson
Circuit figure of merit (letter) p. 6. Dec 80

Commutating filters
W6GXN p. 54, Sep 79

Contact bounce eliminators (letters) W7IV
p. 94, Nov 77

Crystal filters, monolithic DK1AG
p. 28, Nov 78

Crystal use locator D. 36 , Nov 80

WA6SWR
DSB generators, audio-driven (HN) WSTRS
p. 68, Jul 80

Earth anchors for guyed towers W5QUR p. 60 , May 80

Eimac 5CX1500A power pentode, notes on
K9XI
WB8MKU
Electrolytic capacitors, re-torming the oxide layer (HN)
K9MM
Field-strength meter and volt-ohmmeter WB6AFT
our quadrant curve tracerlanalyzer
W1QXS
requency counter as a synthesizer
Frequency
DJ2LR
Frequency divider, diode
WSTRS
D. 60 , Aug 80
p. 6, Jun 81
p. 99, Jul 78
$-\longrightarrow$
p. 70, Feb 79
p. 46, Feb 79
p. 44, Sep 77
p. 54, Aug 80

## GLB ID-1 <br> AUTOMATIC IDENTIFIER



- For transceivers and repeaters!
- Small - only $2.3^{\prime \prime} \times 1.7^{\prime \prime} \times 0.6^{\prime \prime}$ !
- Low cost - only $\$ 39.95$ (wired \& tested)!
- Easy installation -2 wires plus ground!
- Pots for speed \& amplitude!
- 8 switchable messages!
- Each message up to 2000 bits long!
- Aŭtomatic operation!
- Reprogrammable memory!
- Allow $\$ 1.50$ for shipping $\&$ handling

We have a complete line of trans. mitter and receiver strips and synthesizers for Amateur and commercial use. Write for our catalog.

We welcome MasterCard or VISA

## GLBELECTRONICS

1952 Clinton St., Buffalo, N. Y. 14206 1-(716) 824-7936, 9 to 4

## SAY YOU SAW IT IN HAM RADIO

```
MANSMITER TECHNICIANS
```



```
rear Deanc Clitorny, Greetvile.Noth Caroind and Bethan, Ohe
```



```
and reated towtes on sht pass Appicants mus! tave 3.3 rars it
mitsry taes tution tansmitrs u5 ctirensho mgured Suming
Suary $20.462 full leseral tringe benets apply Ouatioc canoigates
shovic send standagd Iederal appliatoes fom SF-171 (walable at
U.5 Fost Orices) to leternatony Communcatons Agency MG
```


## RED HOT SPECIALS


The standard RP downconverter package shown above gives you a proven converter design mounted in a weathertight antenna that teatures low wind loading and easy installation
With this package you are ready for hours of Amateur television entertainment Just am the antenna connect one 75 cable fom the antenna to the power supply and a second line from the power supply to yout TV and you are on the att
All downconverter models use microstrip construction for long and relable operation A low noise microwave preamplifiet is used to pulling in weak signals. The downconverter also includes a broad-band output amplifier matched to 75 ohms the RP model is recom mended for up to 15 miles Over a range of 15 to 25 miles. the RP + which has a lower noise and higher gain RF amplitier stage provides befter television reception These ranges are necessanly approximate as signal strength is very sensitive to line of sight obstructions For instaliations over 25 miles. an RPC unit which uses a separate antenna is avaliatble All nfodels are warranted for one year


Prices including UPS shipment are as follows:
Model RP receiver package
Model RP + receiver package $\$ 170$
Model RPC receiver package .
\$170

## K. \& S. Enterprises

P.O. Box 741, Mansfield, MA 02048

## Take your favorite H.T. out for a drive tonight.

For $\$ 64.95$ you get the most efficient, dependable, fully guaranteed 35W 2 meter amp kit for your handy talkie money can buy. Now you can save your batteries by operating your H.T. on low power and still get out like a mobile rig. The model 335A produces 35 watts out with an input of 3 watts, and 15 watts out with only 1 watt in. Compatible with IC-2AT, TR-2400, Yaesu, Wilson \& Tempo! Other 2 meter models are available with outputs of 25 W and 75 W , in addition to a 100 W amplifier kit for 430 MHZ
Communication Concer Inc. 2648 N . Aragon Ave, Daylon, OH 45420
Communication Concepts Inc. ${ }_{(513)}^{2648 \text { N. } 296 \cdot 1411}$


Frequency-lock loop WA3ZkZ	p. 17, Aug 78
Frequency synthesizer sidebands, filter reduces (HN)	
K1PCT	p. 80, Jun 77
Ground systems, notes on   K6WX $\text { p. 26, May } 80$	
Gyrator: a synthetic inductor	
Ham radio techniques: radio-frequency interference	
Ham radio techniques: radio-frequency interference W6SAl po 30, Dec 81	
Harmonic generator, crystal-controlled W1KNI P. 66 Nov 77	
HI synthesizer, higher resolution for	
Hydroelectric station, amateur K6WX	p. 50, Sep 77
Hyperbolic navigation (letter)	
impedance bridge measurement errors and corrections	
K4KJ	p. 22, May 79
Impedance measurements using an SWA $\mathrm{K4QF}$	R. meter Apr 79
Inductance or capacitance, a method for measuring (HN)	
W2CHO	p. 68, Jul 80
Instant balun (letter)	
W8maw	p. 6. Aug 81
Interference probiems, how to solve	
LC circuit calculations	
W2OUX	p. 68, Feb 77
Light-emitting diodes: theory and application	
WB6AFT	p. 12, Aug 80
Lightning protection for the amateur station	
K9MM	p. 18, Dec 78
Comments	
W6RTK, WB2FBL	p. 6, Jul 79
Linear-amplifier cost efficiency	p. 60, Jul 80
Linear tuning, a fresh look at (HN)	
Matching networks, how to design	
Matching techniques, broadband, for transistor if amplifiers	
	p. 10, Apr 77
Multiplexing, the how and why of	
Navigational aid for small-boat operators	
W5TRS	p. 46, Sep 80
Ni -cad battery charging (letter)	
Operation upgrade: part 1	
W6BNB	p. 12, Sep 81
Operation upgrade: part 2	
W6BNB	p. 28, Oct 81
Optimum pi-network design	
Passive lumped constant 90 -degree phase-difference networks	
K6ZV	p. 70, Mar 79
PCB "threat" (letter)	
VE5UK	p. 66, $\operatorname{Sep} 80$
Phase-locked loops	
Phase-shift network, 90 -degree, offers 2:1 ban	
K6ZV	p. 66, Feb 80
Pi network design	
Anderson, Leonard H .	p. 36, Mar 78
Comments	
Anderson, Leonard H .	p. 6, Apr 79
Pi network design and analysis	
W2HB	p. 30, Sep 77
Short circuit	p. 68, Dec 77
Plasma-diode experiments	
Stockman	p. 62, Feb 80
Q systems	
W1uz	p. 6, Nov 80
Quartz crystals	
WB2EGZ	p. 37, Feb 79
Radio sounding system	
Rf chokes, performance above and	
WA5SNZ	p. 40, Jun 78


Rf exposure	
WA2UMY	p. 26, Sep 79
Rf interference, suppression in telephones	
K6LDZ	p. 79, Mar 77
Rf radiation, environmental aspects of K6YB	p. 24, Dec 79
RI power distributor, the	
W38YM	p. 46, Dec 81
Rfi cures: avoiding side effects	
WB9TQG	$\text { p. } 52 \text {, Sep } 81$
Comments WB7SYB, WB9TQG, VE2QOp. 6, Dec 81	
Rotary-dial mechanism for digitally tuned transceivers	
K3CU	p. 14, Jul 80
Safety circuit, pushbutton switch (HN)	
Semiconductor curve tracing simplified	
Signal-strength, measuring	
W2YE	p. 20, Aug 80
Simple formula for microstrip impedance (HN)	
W1HR	p. 72, Dec 77
Solid-state amplifier switching (HN)	
WB2HTH	p. 75, Aug 80
Sorting and inventory of standard resistor values, computer program for	
WA6SWR	p. 66, Jun 81
Speed of light (ietten)	
KL6WU	p. 67, Sep 80
Speed of light (letter)	
WB2AOT	p. 6. Apr 80
Speed of light (letter)	
W4MLM	p. 6, Aug 80
Speed of light, observations on, through the metric	
W7ITB	p. 62, Jan 80
Super beep circuit for repeaters	
KP4AQI	p. 48, Jul 81
Synthesizer design (letters)	
WB2CPA	p. 94, Nov 77
Synthesizer system, simple (HN)	
AA7M	p. 78, Jul 79
Talking clock (letter)	
N9KV	p. 75, Feb 80
Talking digital readout for amateur transceivers	
NGKV	p. 58, Jun 79
Talking digital readout (letter)	
N5AF	p. 6, May 80
T coupler, the (HN)	
K3NXU	p. 78, Nov 80
Temperature sensor, remote (HN)	
Tubes, surplus (letter)	
W2JTP	p. 6, Aug 80
Tubes, surplus (letter)	
Sellatí	p. 66, Sep 60
TVi locator	
W6BD	p. 23, Aug 78
Varactor tuning tips (HN)	
N3GN	p. 67, Feb 81
Variable-inductance variable frequency oscillators	
WOYBF	p. 50, Jul 80
VLF dip meter, no-adjust bias for (HN)	
WB3IDJ	p. 69, Jul 80
Wideband amplifier summary	
DJ2LR	p. 34, Nov 79
24-hour clock, digital	
WB6AFT	
novice reading	
Novice roundup (letter)	
kA9AZY	p. 8, Jun 81
Operation upgrade: part 1 d	
W6BNB	p. 12, Sep 81
Operation upgrade: part 2	
W6BNB	p. 28, Oct 81
operating	
Amateur band intruders (letter)	
W5SAD	p. 6, Oct 80
Amateur radio, 1933 (ham radio techniques)	
W6SAI	p. 41, Jun 81
Amateur radio, 1941 (ham radio techniques)	
W6SAI	p. 30, Aug 81

County awards (letter)
KB7SB
CW anyone?
p. 8. Ju 81

W7JWJ
$\begin{array}{ll}\text { CW memory, simple - Weekender } & \text { p. } 44 \text {. Mar } 81 \\ \text { K4DHC } & \text { p. } 46 \text {. Nov } 80\end{array}$
DXer's diary
WGKNI
p. 18, Mar 81

DXer's diary
p. 26, Apr 81

Comments
p. 6, Sep 81

DXer's diary
DX Forecaster
KORYW
DX Forecaster p. 76, Nov 81
KORYW
p. 78. Dec 81

EI2W six-meter report (letter)
EI2W
W1Z!
p. 12, Jul 80
p. 6, Apr 80
p. 6, Apr 80

N8ADA
Great-circle maps
N5KR
p. 24, Feb 79

Intruder watch (ietter) ZL6IWIZL1BAD
Monitor, tone alert
W4KRT
p. 6, Aug 81

Protecting amateur radio (letter) K2JIY
RST feedback (letter)
V4OVO
RST feedback (letter)
WONN
RST (letter)
wouck
Selfish attitudes (letter) K2OZ
p. 24, Aug 80

Ten-meter band (ham radio techniques)
WGSAI
WBIFJE
p. 6. Aug 81

True north for antenna orientation, how to determine K4DE
p. 38 , Oct 80

Wearing cans (letter)
WB9FRV
p. 8 , Jul 81

160-meter band (ham radio techniques)
W6SAI
p. 46, May 81

## oscillators

$\begin{aligned} & \text { AFC circuit for VFOs } \\ & \text { K6EHV } \end{aligned}$	p. 19, Jun 79
Colpitts oscillator design technique	
WB6BPI	p. 78, Jul 78
Short circuit	p. 94, Feb 79
Crystal oscillator, simple (HN)	
W2OUX	p. 98, Nov 77
Crystal ovens, precision temperature co	
K4VA	p. 34, Feb 78
Drift-correction circuit for free running oscillators PAGKSB	77
IC crystal controlled oscillators (letter) W7EKC	p. 91, Jan 78
Noise sideband performance in oscillat evaluating	
DJ2LR	p. 51, Oct 78
Overtone crystal oscillators withou	uctors
WA5SNZ	p. 50, Apr 78
Aegulated power supplies, designing	
K5VKO	p. 58, Sep 77
TTL oscillator (HN)	
WB6VZW	p. 77, Feb 78
UHF local-oscillator chain	
N6TX	p. 27, Jul 79
Vfo design using characteristic curves 12BVZ	p. 36, Jun 78
Regulated power supplies, designing	
K5VKO	p. 58, Sep 77
Voltage-tuned mostet oscillator	
WA9HUV	p. 26, Mar 79
1-MHz oscillator, new approach	
WA2SPI	p. 46, Mar 79
5-ampere power supply, adjustable N1JR	p. 50 , Dec 78

## MBA READER', A NAME YOU SHOULD KNOW

What does MBA mean? It stands for Morse-Baudot and ASCII.
 What does the MBA Reader do? The RO model (reader only) uses a 32 character alphanumeric vacuum fluorescent display and takes cw or tty audio from a receiver or tape recorder and visually presents it on the display.

The copy moves from right to left across the screen, much like the Times Square reader board. Is the AEA model MBA Reader different from other readers? It certainly is! It is the first to give the user 32 characters of copy (without a CRT), up to five words at one time. It can copy cw up to 99 wpm and Baudot at 60-67-75 and 100 wpm. Speeds in the ASCII mode are 110 and hand typed 300 baud. The expanded display allows easy copy even during high speed reception.
The AEA model MBA has an exclusive automatic speed tracking feature. If you are copying a signal at 3-5 wpm and tune to a new signal at 90 wpm , the MBA catches the increased speed without loss of copy.
The MBA Reader allows a visual display of your fist and improves your code proficiency. It is compact in size, and has an easily read vacuum fluorescent display.
The Reader operates from an external 12 VDC source. This allows for portable/mobile or fixed operation.
Check the AEA model MBA Reader at your favorite dealer and see all the features in this new equipment. If your dealer cannot supply you, contact Advanced Electronic Applications, Inc.
P.O. Box 2160, Lynnwood, WA 98036 Call 206/775-7373

## - 4 Brings you the Breakthrough!

Prices and specifications subject to change without notice or obligation

## Chlouch

Portable Communications Antennas
For amateur and commercial services, the Val-Duckie communication antennas boast 48 different models, from 144 to 512 MHZ. Encapsulated in high gloss PVC plastic for weather resistance, all Val-Duckie antennas are $100 \%$ factory tuned for minimum VSWR and have a power rating of 35 watts at 50 ohms.

## var Bowgi CHARGEi

Valor's New HT POWER.CHARGER'" allows mobile amateurs to operate and recharge their hand-held radios from the vehicle electrical system.

The HT POWER-CHARGER" is not just a drop. ping resistor and diode-but a pair of silicon transistors in a variable current regulator that is self adjusting, depending on the battery charge state.

Model TR:	For Kenwood TR-2400
Model FT:	For Yaesu FT-207R
Model IC:	For Icom IC-2A
Model TP:	For Tempo S1, S2, S4, S5
Model SA:	For Santec HT.1200
Model WL:	For Wilson MI-II, MK-IV

185 W. Hamilton St., West Milton, OH 45383
PH: (513) 698-4194, Outside Ohio: 1-800-543-2197, Telex 724-389 ATT.: Valor

## RADIO WAREHOUSE

Get their lowest price THEN CALL US!


TS-530S ${ }^{5} 695{ }^{00}$

FT-707 ${ }^{\text {s }} 675^{00}$


ICOM 720A
with power supply
${ }^{\mathrm{s}} 1299^{\circ 0}$
TS-130 ${ }^{5} 665^{00}$
SUPER SUPER SPECIAL!!
TR-2400 ${ }^{\text {s }} 299^{95}$

Limited quantity IC-22U ${ }^{5} 249^{00}$

Available TR-7730 ${ }^{5} 295^{\circ 0}$ Introductory Offer Prices shown, m.o. or certified check only Shipping not included.

## power supplies

Adjustable 5 -ampere supply N1JR
p. $50, \operatorname{Jan} 79$

All-mode-protected power supply K2PMA
Battery charging (letter)
p. 74 , Oct 77

Carlson
p. 6, Nov 80

Bench power supply - Weekender WB6AFT
p. 50 , Feb 80

Constant-current battery charger for portable operation
K5PA
p. 34 , App 78

Dual voltage surge-protection for high-voltage power supplies (weekender) K8VIR
p. 42, Aug 81

Electrolytic capacitors (letter) WB8MKU
p. 6 , Jun 81

NBAKs regulated dc supply
p. 50, Aug 79

C power supply, adjustable (HN) W3HB
p. $95, \operatorname{Jan} 78$

Instantaneous-shutdown high-current regulated supply W6GB
p. 81, Jun 78

Low-voltage de power supplies $\sim$ Repair Bench K4IPV
p. 38, Oct 79

Ni-cad charger, any-state WAGTBC
p. 66, Dec 79

Nickel-cadmium batteries, time-current charging WIOLP
p. 32, Feb 79

Power supply troubleshooting (repair bench) K4IPV p. 78, Sep 77
Protection for your solid-state devices W100P
p. 52, Mar 81

Regulated power supplies, how to design
K5VKQ p. p. 58, Sep 77

Regulated power supplies, designing (letter) W9HFR $\quad$ p. 110 , Mar 78
Regulated power supply, 500 -watt
p. 30. Dec 77 WA6PEC
p. 94 Feb 79

Solar power source, 36 -volt W3FQJ
p. 54, Jan 77

Squirrel-cage motors make field-day power supplies (HN) K60ZY
p. 74, Aug 81

Variable high-voltage supply WIOLP
p. 62, Dec 79

Variable-voltage power supply, 1.2 amps WB6AFT
HF transceivers, regulated power supply
VHF transceivers, regulated power supply for WABRXU
Voltage regulators, boosting bargain (HN) WATVVC
D. $58, \operatorname{Sep} 80$
p. 90 , May 77

Voltage regulators, IC W6GXN
p. 31, Mar 77

## propagation

Calculator-aided propagation predictions	
N4UH	p. 26, Apr 79
Comments	p. 6, Sep 79
DX forecaster	
KORYW	p. 76, Jan 81
DX forecaster	
KOFYW	p. 92, Feb 81
DX forecaster	
KORYW	p. 78, Mar 81
DX forecaster	
KORYW	p. 52, Apr 81
DX forecaster	
KORYW	p. 76, May 81
DX forecaster	
K0RYW	p. 52, Jun 81
DX forecaster	
KORYW	p. 56, Jul 81
DX forecaster	
KORYW	p. 46, Aug 81
DX forecaster	
KORYW	p. 48, $\operatorname{Sep} 81$
DX forecaster	
KORYW	p. 46, Oct 81
DX forecaster	
KORYW	p. 76, Nov 81
DX forecaster	
KORYW	p. 78, Dec 81

receivers and converters general

Audio, improved for receivers K7GCO
p. 74, Apr 77

Audio processor, communications, for reception W6NRW
Auto-product detection of double-sideband
K4UD p. 58, Mar 80 Letter G3JIP p. 6, Oct 80
Bandspreading techniques for resonant circuits
Anderson, Leonard $H . \quad$ p. 46, Feb 77
Short circuits p. 69, Dec 77
Bandspreading techniques for
resonant circuits (letter) WOEJO
p. 6, Aug 78

Bandspreading techniques (tetter)
p. 6. Jan 79 Anderson, Leonard $H$.
Broadband jfet amplifiers N6DX
p. 12, Nov 79

Communications receivers, calculating the cascade intercept point of WA7TDB
D. 50, Aug 80

CW filter, high performance
p. 18, Apr 81

W3NQN
Comments W3NON
p. 6. Nov 81

Detector, logarithmic with post-injection marker generator
W1ERW
p. 36, Mar 80

Digital display
N3FG
p. 40 , Mar 79

Comments
Digital readout, universal
WB8IFM
p. 6, Jul 79

Digital vfo basics
p. 34, Dec 78

Earnshaw
p. 18, Nov 78

Direct-conversion receivers (HN)
p. 100 , Sep 78

Diversity reception K 4 KJ
p. 48 , Nov 79

Double-balanced mixer, active, highdynamic range DJ2LR
p. 90 , Nov 77

Dynamic range, measuring
p. 56 , Nov 79

WB6CTW
Frequency-marker standard using cmos W4IYB
p. 44, Aug 77

I-f amplifier design
DJ2LR p. 10, Mar 77

Short circuit problems and cures - $\mathbf{W}$.94, May 77
I-f transformers, problems and cures - Weekender
K4IPV
p. 56 , Mar 79
Intermodulation distortion, reducing
in high-frequency receivers
p. 26, Mar 77

Short circuit p. 69, Dec 77
Measuring receiver dynamic range: an addendum
(HN)
WB6CTW p. 86, Apr 81
Multiple receivers on one antenna (Two for one) (HN) W2OZY p. 72, Jun 80

Noise Blanker W5QJR
p. 54, Feb 79

Noise blanker design K7CVT p. 26, Nov 77

Noise figure relationships (HN) W6WX
p. 70 , Apr 80

Noise effects in receiving systems DJ2LR
p. 34, Nov 77

Phase-locked 9-MHz bfo W7GHM
p. 49 , Nov 78

Phaselocked up-converter W7GHM p. 26, Nov 79

Power-line noise K4TWJ
p. 60, Feb 79

Receiver dynamic range (letter) AA6PZ
p. 7, Aug 80

Receiver spurious response Anderson
p. 82, Nov 77

Receivers - some problems and cures
WBalGP, K8RRH WBAJGP, K8RRH
p. 10, Dec 77 Ham notebook Shorl circuit p. 94, Oct 78 Af-agc amplifier, high-performance WA1FRJ
p. 64, Sep 78

Rt amplifiers, isolating parallel currents in
G3IPV
VE3GFN
p. 40, Feb 77
p. 71, Nov 77

Signals, how many does a receiver see?
DJ2LR
Comments
Signal-strength, measuring
W2YE

Signal-strength, measuring
p. 20, Aug 80

Superhet tracking calculations
WA5SNZ
p. 30 , Oct 78

Talking clock (letter)
p. 75 , Feb 80

Talking digital readout (letter) N5AF
p. 6. May 80

Vacuum-tube receivers, updating W6HPH
p. 62, Dec 78

Short circuit
Wideband amplifier summary DJ2LR
p. 34, Nov 79

## high-frequency receivers

Collins receivers (letter)
Communications receivers, high frequency, recent developments in circuits and techniques for $\begin{array}{ll}\text { DJ2LR } & \text { p. 20, Apr } 80\end{array}$ Communications receivers for the year 2000: part 1 DJ2LA p. 12, Nov 81
Communications receivers for the year 2000: part 2
DJ2LR p.
Crystal-controlled phase-locked converter
W3VF
p. 58. Dec 77

W3BYM
Digitally programmable high-frequency
communications receiver WASHUV
p. 10 , Oct 78

Comments
p. 6. Apr 79
$\begin{array}{ll}\text { Direct-conversion receivers } & \text { p. } 44 \text {, Nov } 77\end{array}$
PADSE
$\begin{aligned} & \text { D. 44, NOV } 77 \\ & \text { Diversity receiver, high-frequency, from the } 1930 \mathrm{~s} \\ & \text { K } 4 K J\end{aligned} \quad$ p. 34 , Apr 80
Orake R-4C product detector, improving (HN)
W3CVS
Frequency synthesized local-oscillator system
Frequency synthesized local-oscillator system
$\begin{aligned} & \text { W7GHM } \\ & \text { p. } 60, \text { Oct } 78\end{aligned}$
General coverage communications receiver
$\begin{array}{ll}\text { W6URH } & \text { p. 10, Nov } 77\end{array}$
Low-noise $30-\mathrm{MHz}$ preamplifier
W1HR Short circuit p. 94 Feb 79
Radio interference to shortwave receivers (HN)
W6XM D. 68 Jul

Reciprocating detector
WISNN
p. 68, Jul 81

Shortwave converter, portable PY2PE1C
p. 64 Apr 81

Shortwave receiver, portable monoband, with electronic digital frequency readout
PY2PE1C p. 42, Jan 80
Simple 40 -meter receiver - Weekender
W6XM
Synthesizer, high resolution hf (letter) DJ2LR
p. $64, \operatorname{Sep} 80$
p. 6, Jan 79

Ten-Tec Omni-D, improved CW agc for (HN)
W6OA p. 88, Jan 80

Transceiver, 40 -meter, for low-power operation
WB5DJE P. 12, Apr 80
Understanding performance data of high-frequency receivers
K6FM p. 30, Nov 81
Up-conversion receiver for the high.frequency bands: part 1
W2VJN p. 54, Nov 81
Up-conversion receiver for the high-frequency bands: part 2
W2VJN
p. 20, Dec 81

Woodpecker noise blanker
p. 18, Jun 80

WWV receiver
Hudor iver
Hudor, Jr. $\quad$ o. 28, Feb 77
20-meter receiver with digital readout, part
K6SDX $\quad$ p. 48 , Oct 77
20-meter receiver with digital readout, part 2
K6SDX $\quad$ p. 56, Nov 77

80 -meter receiver for the experimenter W6XM
p. 24, Feb 81 Comments
p. 6. Jun 81
7. MHz direct-conversion receiver

WOYBF
p. 16, Jan 77

## CONTESTING?



## THE NEW LOW COST AEA CONTEST KEYER MODEL CK-1 WILL MAKE YOU MORE COMPETITIVE THAN EVER! <br> st29.95 <br> SUGGESTED AMATEUR NET

- Automatic Serial Number Generator From 01 to 9999.
- 500 Character Soft Partitioned ${ }^{\text {TM }}$ Memory That Can Be Divided Into as Many as 10 Messages.
- Exclusive AEA Memory Editing Capability.
- Two Presettable Speeds With Fast Recall Plus Stepped Variable Speed Selection.
- lambic Operation From 1 to 99 wpm and Complete Weighting Control.
- Extreme R.F. Immunity, Will Key Any Modern Transceiver, Operates from $12 \pm 3$ Volts D.C.

SEE YOUR FAVORITE DEALER OR CONTACT
Advanced Electronic Applications, Inc., P.O. Box 2160, Lynnwood, WA 98036. Call 206/775-7373

## A ${ }^{2}$ Arings you the

## CHRISTMAS CIFT IDEAS

THE RADIO AMATEUR ANTENNA HANDBOOK
by William I. Orr, W6SAI and Stuart Cowan, W2LX This book contains lots of well illustrated construction projects for vertical, long wire, and HF/VHF beam antennas. You'll also get information not usually tound in antenna books. There is an honest judgment of antenna gain ligures, information on the best and worst antenna locations and heights, a long look at the quad vs. the yagi antenna, information on baluns and how to use them, and new information on the popular Sloper and Delta Loop antennas. The text is based on proven data plus practical, on-the-air experience. The Radio Amateur Antenna Handbook will make a valuable and often consulted reterence 190 pages
(c) 1978.
$\square$ RP-AH
Softbound \$6.95

## INTERFERENCE HANDBOOK

by William R. Nelson, WA6FOG
RFI is a very sticky problem. It can ruin your operating fun and worse This brand-new book covers every type of RF interference that you are likely to encounter. Emphasis is placed on Amateur Radio, CB and power line problems. The author has spent over 33 years investigating RFI difficulties. Author Neison solves the mystery of power line interfer ence - how to locate it, cure it, satety precautions and more. He also gives you valuable steps on how to eliminate TV and stereo problems. To help you understand this perplexing problem even more, this new book gives you interesting RFI case histories, filters to buy or build, mobile, telephone. CATV, and computer problems and ideas on how to solve them. Profusely illustrated and packed with practical, authoritative information. © 1981.247 pages, first edition.
$\square \mathrm{RP}-\mathrm{IH}$
Softbound $\$ 8.95$
Please add $\$ 1.00$ to cover shipping and handling.
HAM RADIO'S BOOKSTORE
GREENVILLE, N. H. 03048


UHF

## HANDHELDS

VHF

- ICOM IC-2AT
- ICOM IC-3
- YAESU FT-208
- SANTEC HT 1200

UHF \& VHF BASE STATIONS

- ICOM IC-451A, IC-251A, IC-25A, IC-290, \& IC-224
- YAESU FT-720RVH, FT-720RU, FT-480, \& FT-780R
- KDK

PS-2025
HF TRANSCEIVERS

- YAESU FT-707, FT-902DM. FT-107, \& FT-10120 MKII FT-1
- CUBIC Astro Diplomat 150 - STATION IN A SUITCASE
- ICOM IC-720A \& IC-730
- DRAKE TR-7 with DR-7

Available Soon - TR-5

## AMPLIFIERS

- DRAKE

L7 \& L75

- ALPHA 76CA - 3 ceramic tubes, high load transformers
- VHF MIRAGE. VOCOM \& KLM
- DENTRON Clipperton HF \& VHF models, GLA-1000B


## RECEIVERS

- YAESU FRG 7700
- DRAKER7
- YAESUFRG 7700
ibroplex bugs. Bencher CW OPS - We've got NYE KEY, Vibroplex bugs. Bencher
Paddles, and AEA Electronic keyers, MT-1. CK-1. MM1. MK1, \& Paddles, and AEA Electronic keyers: MT-1. CK-1. MM1. MK1, \&
KT-1. Readers for CW \& RTTY Kantronics Field Day \& Mini Reader and the new AEA MBA Reader.


## NEW DRAKE TELETYPE

ANTENNAS HF - VHF - UHF - BARRY'S HAS 'EM ALL Slinky Dipoles, Hy-Gain, Cushcraft, AEA. Antenna Specialists, SWAN VOCOM AND MORE HAM IV and Alliance rotators. MURCH UT 2000B. DENTRON AT-2K, Butternut HF 6 V \& 2 m collinear
RPT REPEATERS in stock for immediate delivery. Completely interchangeable with VHF Engineering Models. 144. $174 \mathrm{MHz} 25 \mathrm{~W}, 210-240 \mathrm{MHz} 15 \mathrm{~W}$, and $430-440 \mathrm{MHz}$. Full line of accessories.

OTHER HAM SPECIALS FROM BARRY
Good Deal on ROBOT 400 SSTV • STACO TRANSFORMERS
SET UP YOUR HOME STATION TODAY Our lines include:

AEA	CUSHCRAFT	KANTRONICS	TEMPO
ALLIANCE	DENTRON	MFJ	TRI-EX
ASTRON	DRAKE	MIRAGE	VIBROPLEX
AVANTI	ETO	MURCH	VOCOM
B \& W	EIMAC	PALOMAR	WACOM
BIRD	ENCOMM	ROBOT	YAESU
COLLINS	HUSTLER	SHURE	AND MORE
COMMUNICATIONS	HY GAIN	STANDARD	
SPECIALISTS	KLM	SWAN/CUBIC	

BUSINESSMEN: Ask about BARRY'S line of business-band equipment. We've got it! Amateur Radio License Class. Enroll Now. New class begins Saturday, January 9, 1982.
7. MHz receiver
K6SDX
432. MHz converte

N9KD
p. 12, Apr 79
,
p. 74 , Apr 79

## vhf receivers and converters

Cavity bandpass filters
W4FXE
p. 46, Mar 80

Communications receivers for the year 2000: part 1
DJ2LR
p. 12, Nov 81

Communications receivers for the year 2000: part 2
DJ2LR p. 36. Dec 81
Interesting preamplifier for 144 MHz (HN) WA2GFP
p. 50, Nov 81

K9LHA 2-meter synthesizer, extending
the range of ( HN )
K9LHA
p. 52, Dec 81

Synthesized 2 -meter mobile stations, automation for WOCGI
p. 20, Jun 80
erminator, 50 -ohm for vhf converters WAGUAM
p. 26, Feb 77
144.432 MHz GaAs tet preamp
p. 38. Nov 79

## RTTY

Active bandpass filter for RTTY

W4AYV
AFSK, digital WA4VOS
Short circuit
p. 46, Apr 79
p. 22, Mar 77

AFSK generator, an accurate and practical KOSFU
AFSK generator and demodulator WB9ATW
Cleaning teleprinters (HN) W8CD
p. 56 , Aug 80
p. 26, Sep 77

Digital repert/TD WB9ATW
p. 86, May 78

Dual demodulator terminal unit KB9AT
Comments
WB6PMV, KB9AT
p. 58 , Nov 78

Duplex audio-frequency generator with AFSK features WG6AFT
p. 66, Sep 79

Electronic teleprinter keyboard
p. 56, Aug 78

WOPHY
p. 28, Dec 79

PA0CX
p. 28, Dec 79

Hellschreiber (letter)
p. $6, \operatorname{Mar} 80$ K6KA p. 6, Sep 80

Comment, G5XB
p. 6, Mar 80

W6DKZ
ED tuning indicator for RTTY p. $50, \mathrm{Mar} 80$

WADELA
Modulator-demodulator for vhf operation
WGLLO
Phase-coherent RTTY modulator
Phase-coherent RTTY modulator
p. 34 , Sep 78

K5PA
p. 26 , Feb 79

RAM RTTY message generator, increasing capacity of (HN)
F2ES
p. 86, Oct 77

RTTY tuning indicator, a tree ( HN ) N1AW
p. 74 , Oct 81

Selcom
K9HVW, WB4KUR, K4EID
p. 10, Jun 78

Serial converter for 8 -level teleprinters VE3CTP
p. 67, Aug 77
p. 68, Dec 77

Short circuit
p. 6. Jun 81

W3FVC
SSA transmitters, FSK adapter for WA3PLC
p. 12, Jul 81

Tape editor
W3EAG
p. 32, Jun 77

Test generator, RTTY
p. 64, Jan 78

## satellites

AMSAT-OSCAR D
W3PK, G3ZCZ
p. 16, Apr 78

Antenna accuracy in satellite tracking systems N5KR
p. 24, Jun 79

Calcu-puter, OSCAR
W9CGI
p. 34, Dec 78

Future of the amateur satellite service K2UBC
p. 32, Aug 77

Geostationary satellite bearings with the TI-58/59 programmable calculator (HN) WABBKC
p. 87, Apr 81

Geostationary satellites, locating W2TQK
Medical data relay via OSCAR
p. 66, Oct 81

K7RGE
p. 67, Apr 77

OSCAR az-el antenna system WA1NXP
p. 70, May 78

Phase III spacecraft orbits, geometry of W8MOW communication KP4MD
Receiving preamplifier for OSCAR 8 Mode $J$
K1RX and Puglia
Satellite communications on 10 meters (letter)
G3IOR
Satellite tracking - pointing and
range with a pocket calculator Ball, John A.
Tracking satellites in elliptical orbits WA6VJR
p. 46, Mar 81

Tracking the OSCAR satellites Harmon, WAGUAP
p. 18. Sep 77

## semiconductors

Antenna bearings for geostationary
satellites, calculating
N6TX $\quad$ p. 67. May 78
GaAs field-effect transistors, introduction
Matching techniques, broadband, for transistor rf amplifiers WA7WHZ p. $30, \mathrm{Jan} 77$

Mosfet power amplifier, 160-6 meters WA1WLW
p. 12, Nov 78

Mospower fet (letter)
W3QQM
p. $110, \operatorname{Mar} 78$

Predicting close encounters: OSCAR 7 and OSCAR 8 K2UBC
p. 62, Jul 79

Protecting solid-state devices from
ค. 74, Jun 78
WB5DEP
Switching inductive loads with
witching inductive loads
solid-state devices (HN) WA6ROC
p. 99. Jun 78

## single sideband

Early single-sideband transmitter (ham radio techniques) W6SAI
D. 30. Dec 81

Linear amplifier design
p. 12, Jun 79 W6SAI
Part 1
p. 34, Jul 79

Part 2	p. 34, Jul 79
Part 3	p. 58, Aug 79

Linear amplifier, modular, for the high-frequency Amateur bands K8RA
p. 12, Jan 81

Comments K1THP p. 6, Mar 81

Phasing networks (letter) W2ESH
Speech processor, split-band N7WS
SSB phasing techniques, review VK2ZTB
Short circuit
SSB phasing techniques, review (letter) WBgYEM
Transceiver, hightrequency with digit DJ2LR
Transverter, low-power, high-frequency WORBR

## television

Broadcast quality television camera WA8RMC
b. 10, Jan 78

Callsign generator
WB2CPA
p. 34, Feb 77

Caption device for SSTV
G3LTZ
Console, video, for ATV
WB8I GA
WB8LGA
p. 61, Jul 77

Display SSTV pictures on a fast-scan TV K6AEP
p. 12, $\operatorname{Jan} 80$

KbaEp
p. 12, Jul 79
nterlaced sync generator for ATV camera control
WA8RMC
p. 10, Sep 77

Medium-scan television
W9NTP
p. 54, Dec 81

Sync generator for black-and-white 525 -line TV
K4EEU D. 79, Jul 77

## transmitters and power amplifiers <br> general

Air pressure measurements across transmitting tubes (HN) W4PSJ
p. 73, Dec 79

A-m/fm converter for facsimile transmission, an SM6FJB
W4AYV
Digital readout universal
D. 18 , Nov 80

Digital readout, universal WBBIFM
p. 34 , Dec 78

Digital vfo basics
Earnshaw
Eimac 5CX1500A power pentode, notes on
K9XI
p. 60 , Aug 80

W5DA
High-valtage fuses in linear amplifiers (HN) K9MM
inear power amplifiers (letter) KB5EY, W6SAI
. 7 , Fob 7 B

Lowpass fitters, elliptic, for transistor amplifiers
W3NQN $\quad$ p. 20, Jan 81

Matching techniques, broadband, for transistor rf amplifiers
WATWHZ
p. 30, Jan 77

National NCX-500 modification for 15 meters (HN) WA1KYO
Pi network design
Anderson, Leonard H. p. 36, Mar 78

Comments
p. $36, \operatorname{Mar} 78$

Pi networks (letter) W6NIF
p. 6, Oct 78

Pi-network if choke (HN)
W6KNE
p. 88, Jun 78

Quartz crystals (letter)
WB2EGV
D. 12, Dec 79

Rf leakage from your transmitter, preventing
K9MM
D. 44, Jun 78

Single-conversion transcelvers, digital frequency display for
K6YHK
o. 28, Mar 81

Talking clock (letter)
N9KV
p. 75, Feb 80

Talking digital readout (letter)
N5AF
p. 6, May 80

XK2C AFSK generator, the W3HVK
p. 58, Nov 80

## high-frequency <br> transmitters

Air pressure, measuring across transmitting tubes (HN) W4PSJ
D. 89, $\operatorname{Jan} 80$

ALC circuits, an analysis of
K4JW
p. 19, Aug 81

CW transcelver for 40 and 80 meters, improved W3NNL D. 18, Jul 77

## Adverisers V check-off

```
lullll
```



Five-band transmitter, hf, solid-state

Kilowatt mobile for DX K5DUT
Linear-amplifier cost efficiency W8MFL
p. 24, Apr 77

W6SAI
W6SA
Part 1
Part 2
Part 3 -
Linear amplifier, modular, for the high-frequency
Amateur bands
K8RA p. 12, Jan 81
Comments K1THP p. 6, Mar 81
Linear amplifiers, modifying for full break-in operation
K4XU
p. 38 , Apr 78

Lowpass filters, elliptic, for transistor amplifiers
W3NQN
Mosfet power amplifier, for 160.6 meters
WA1WLW p. 12, Nov 78
Transceiver, high-frequency with digital readout
DJ21R
p. 12 Mar 78

Transmitter, five-band, CW and SSB WN3WTG
p. 34, Jan 77

Transverter, low-power, high-frequency WA6RBR
p. 12, Dec 78

## vhf and uhf transmitters

Converter, dc-dc, increases Gunnplexer frequency swing (HN)
W1XZ
p. $70, \mathrm{Apr} 80$

Synthesized 2-meter mobile stations, automation for W9CGI
p. 20, Jun 80
$10-\mathrm{GHz}$ transceiver for amateur
microwave communications
DJ700
p. 10, Aug 78

30-MHz preamplifier, low-noise W1HR
$220-\mathrm{MHz}$ kilowatt linear
p. 38 , Oct 78

W6PO
p. 12, Jun 80
$1296-\mathrm{MHz}$ transverter
p. 10 , Jul 77

## troubleshooting

I-f transformers, problems and cures - Weekender K4iPV
p. 56 , Mar 78

Logic circuits, troubleshooting W8GRG
p. 56, Feb 77

Oscillator troubleshooting (repair bench) K4IPV
p. 54, Mar 77

Power supply, troubleshooting
K4IPV
p. $78, \operatorname{Sep} 77$

## vhf and microwave

## general

Cavity filters, surplus, how to modify for 144 MHz W4FXE
Earth-moon-earth (ham radio techniques)
W6SAI
p. 40 , Feb 81

EI2W six-meter report (ietter)
p. 12, Jul 80
requency synthesizer (letter)
p. 12, Jul 80

WA3AXS
p. versatility

F-237/GRC surplus cavity filter, conversion versatility using the
p. 22, Dec 80

GaAs field-effect transistors, introduction
WA2ZZF
p. 74, Jan 78

Gunn oscillator design for the $10-\mathrm{GHz}$ band
WB2ZKW
p. 6, Sep 80

Handheld transceiver mount (a 2-way ashtray for your car) (weekender)
KB2XM
p. 64, Jul 81

Instant balun (letter)
WBMQW
p. 6, Aug 81

K9LHA 2-meter synthesizer, extending the range of (HN)
K9LHA
p. 52, Dec 81

L-band local oscillators
Microstrip impedance, simple formula fo
$\begin{array}{ll}\text { W1HR } & \text { p. 72, Dec } 77\end{array}$
Microstrip transmission line W1HR
Microwave bibliography W6HDO
p. 28, Jan 78

W6HDO p. 68, Jan 78
Microwave-frequency converter for vhf counters
KA9BYI p. 40, Jul 80
Microwave path evaluation N7DH
Microwave rf generators, solid-state W1HR
p. $40, \operatorname{Jan} 78$

Microwave systems, first building blocks for WA2GFP p. 52, Dec 80
Monitor, tone alert W4KRT
p. 24, Aug 80

More about moonbounce (ham radio techniques) W6SAI p. 34, Mar 81
Multipurpose uhf oscillator, simplifying the WA9HYV p. 26, Sep 81
Plasma-diode experiments Stockman, Harry
p. 62 , Feb 80

Polaplexer design K6MBL
p. 40 , Mar 77

Repeater security p. 52 , Feb 81

Spectrum analyzer, microwave WAGUAM
p. 54, Aug 77

Spectrum analyzer microwave N6TX
p. 34, Jul 78

Super beep circuit for repeaters KP4AQI
p. 48, Jul 81

Two-meter autopatches, tone-encoder for WBOVSZ
p. 51, Jun 80
varactor tuning tips (HN)
N3GN 69 Dec 80

Voltage-tuned UHF oscillator, multipurpose WA9HUV p. 12, De
Dhf circuits, eliminating parallel currents (HN)

VHF techniques
W6NBI
p. 91, May 77

W6NBI p. 62, Jul 80
WABRXU ers, regulated power supply for
Weak-signal communications W4LTU
p. $58, \operatorname{Sep} 80$

X-band calibrator
p. 26, Mar 78

WA6EJO
p. 44 , Apr 81
$10-\mathrm{GHz}$ cross-guide couple
p. 66 , Oct 79

10-GHz Gunnplexer transceivers, construction and practice
p. 26, Jan 79

Comments, W6OAL p. 6, Sep 79
144-MHz frequency synthesizer, CMOS
p. 14, Dec 79

Short circuit 81 Apr 80
$440-\mathrm{MHz}$ bandpass filter
WABYBT
p. 62, Nov 79

1296-MHz double-stub tuner K6LK
p. 70, Dec 78
$1296-\mathrm{MHz}$ microstrip filter, improved grounding for
N6TX
2304-MHz stripline bandpass filter
p. 60, Aug 78

WA4WDL, WB4LJM
p. 50, Apr 77
vhf and microwave
antennas
Antenna-performance measurements
using celestial sources

using celestial sources	D. 75, May 79
W5CQ/W4RXY	

Inexpensive five-eighth wave groundplane (HN)
W7CSD
p. 84, Mar 81

WA1NXP
p. 70, May 78

Re-entrant cavity antenna for the vhf bands
W4FXE
p. 12, May 81

True north, how to determine for antenna orientation K4DE p. 38, Oct 80
Comments, NGQX, K4DE
p. 7, Mar 81

Using a 2 -meter quarter-wave whip on $450 \mathrm{MHz}(\mathrm{HN})$ K1ZJH
p. 92, May 81

10 GHz , broadband antenna
WA4WDL, WE4LJM
p. 40, May 77

Short circuit
W3AED
p. 94, Feb 79
p. 74, May 78
vhf and microwave receivers and converters

Add fm to your receiver (weekender)	
Calculating preamplifier gain from noise-figure measurements	
N6TX	
Cavity filters, surplus, how to modify for 144 MHz	
Crystal-controlled vif receivers, tuning aid for (HN)	
Double-balanced mixers, circuit packaging for	
Fm transceiver, remote synthesized for 2 meters	
Microwave mixer, new	
Modification of K9LHA 2-meter synthesizer for 144.148 MHz coverage (HN)	
K9LHA	31
Preamplifiers, vhf low-noise	
Synthesizer, genesis of a	
Uhf local-oscillator chain N6TX	79
Vhi receiver, general-purpose	
Vht/uht preamplifier burnout (HN)	
2-meter synthesizer, frequency modulator for	
K9LHA	p. 68,
10 GHz hybrid tee mixer	
10-60 MHz preamp, low-noise, low-cost WA2GFP	
$30-\mathrm{MHz}$ preamplifier, low-noise	
W1HR	p. 38 , Oct 78
Short circuit	p. 94, Feb 79
144- MHz converter, high dynamic range DJ2LR	
144.432 MHz GaAs fet preamp	
432-MHz converter	
N9KD	79
432-MHz GaAs preamp	
432.MHz preamplifier, low-noise WB5LUA	p. 26, Oct 78
$1296-\mathrm{MHz}$ local-oscillator chain	
1296-MHz rat-race batanced mixer WA6UAM	p. 33, Jul 77

## vhf and microwave

 transmittersAN/UPX-6 cavities, converting surplus
Fm transceiver, remote synthesized for 2 meters WB4UPC
p. 28, Jan 80

Linear amplifiers, solid-state vhf AF8Z
p. 48 , Jan 80

Madification of K9LHA 2-meter synthesizer for 144-148 MHz coverage (HN)
$\qquad$ p. 93, May 81

Solid-state power for 1296 MHz N6JH
p. 30 , Feb 81

Synthesizer, genesis of a VE3FIT
p. 38, Mar 81

Water-cooled 2C39 (HN)
p. 94 , Sep 77

2-meter synthesizer, frequency modulator for

K9LHA	p. 68, Apr 81

$50-\mathrm{MHz}$ SSB exciter K1LOG
p. 12 , Oct 79

144-MHz 10/80-watt amplifier WB9RMA
p. 12, Feb 79

144-MHz stripline kilowatt
W2GN
p. 10 , Oct 77
$432 \cdot \mathrm{MHz}$ power amplifier using stripine techniques
W3HMU p. 10 Jun 77
$1270-\mathrm{MHz}$ video-modulated power amplifier
W9ZIH
1296-MHz transverter
K6ZMW p. 10, Jul 77
p. 67, jun 77

## At Last.

A microthin, synthesized, programmable, sub-audible tone encoder that fits inside the ICOM IC-2AT.

Need we say more?

## If You Want The Finest



- Alpha 77DX: The ultimate amplifier for those who demand the finest
- Tube: Eimac 8877-1500 watts of plate dissipation
- Transformer: 4.4 KVA Hypersil $^{\circ}$, removable, plug-in
- Filter Capacitor: oil filled, 25 MFD
- Bandswitch: 20 AMP 6 KV
- Teflon - Insulated Toroid Inductors
- QSK CW: Full break-in, (2) vacuum relays
- Tuning Capacitor: Vacuum
- Cooling: Ducted air, large, quite blower, computer grade
- Price: $\$ 4945$, limited warranty 24 months, tube by Eimac
- Other Alphas: 78-\$3185, 76CA-\$2395, 76PA-\$2195, 76A-\$1895, 374A-\$2395 77SX-\$5935 (EXPORT ONLY)
ETO ALPHA 78

- ALPHA 78: Has everything an amplifier needs.
- TUBES: 3 Eimac 8874,1200 watts dissipation
- TRANSFORMER: 2.4 kVA Hypersil*, removable plug-in
- TUNE UP: Bandpass (no tune-up) or manual
- QSK CW: Full break-in, (2) vacuum relays
- WARRANTY: 24 mos. limited warranty tubes by Eimac
- BLOWER: Noise and vibration isolated - QUIET.
- PLATE INPUT: 2.5 kW PEP.SSB, 1.5 kW CW

NO TIME LIMIT

- PRICE: $\$ 3185$, call for Special Sale Prices.

Phone Don Payne, K4ID, for a brochure, special prices, and his experience with Alpha Amplifiers

## . . . If You Want The Finest <br> Personal Phone - (615) 384-2224 <br> P.O. Box 100 <br> Springfield, Tenn. 37172

PAYNE RADIO


HOT NEW IMPORTI REMOTE CONTROL 30 CHANNEL CABLE TV CONVERTE


ETCO MKII WIRELESS


THE ULTIMATE CABLE TV CONVERTER


VIDCOR 2000 CONVERTER ELIMINATES PROBLEMS


No 3HVABO RY SURPLUS


FACTORY SURPLUS UHF TUNERS
4


MINIATURE FM WIRELESS MICROPHONE


QUARTER MILE WIRELESS MICROPHONE


FACTORY SURPLUS VHF / UHF


DUMPINGI NORELCO ENDLESS LOOP CASSETTES!


IN STOCK - THE MURA
CORDLESS TELEPHONE SYSTEM


SALE OF QUARTZ BATTERY 995 OTED CLOCK MOVEMENTS


20 AMP REGULATED 12VDC POWER SUPPLY:


## ald emeturnowics

=3 NC밍



# Adverifisels Ck-off check-off 

... for literature, in a hurry - we'll rush your name to the companies whose names you "check-off"

Place your check mark in the space petween name and number. Ex: Ham Radio $\sqrt{ } 234$


*Please contact this advertiser directly.
Limit 15 inquiries per request.

## December, 1981

Please use before January 31, 1982

Tear off and mail to
HAM RADIO MAGAZINE - "check off"
Greenville, N. H. 03048-0498
NAME. ....................................................
CALL ........................
street
CITY call toll free:nights (800) 231-3057 6-10 PM CST, M.W.F. days: 713-658-0268
HYGAIN TH7DX List $\$ 499$ Your Cost .... \$ 399.00
ICOM IC 720A/AC .... $\$ 1298$
IC 730 .............. 729
IC 2AT ............. 249
IC 22U ............ 269
IC 25A ............ 309
Santec HT 1200 ........... 299
ETO Alpha $78 \ldots . . . .$.
76A ....... 1495
76PA ...... 1795
Telrex TB 5EM ............ 425
Drake TR7/DR7 ......... 1349
R7/DR7 .......... 1299
AEA Morse CK1 .... 115.00
YAESU FT707 ............. 699
FRG7700 .......... 449
FT101ZD
Mark 3 Limited .... 749
Order KWM 380 Now $\$ 3095.00$
Free Filter Included
Rockwell Accessories in Stock
Hal CT 2100
699.00

Robot 400A....................... . . 675.00
Janel QSA5 . . . . . . . . . . . . . . . . . . 4195
Bash Books ...................... . 9.95
Amphenol Silver Plate PL-259 . . . 1.00
Antique/Rare Tubes . . . . . . . . . . . . . Call
GE 572 B ....................... . . 40.00
Timex 24 hour Wallclock . . . . . . 24.95
Robot 800A . . . . . . . . . . . . . . . . . . . . 749
Cubic 103 . . . . . . . . . . . . . . . . . . . . 1195
Portable VJ Amplifier
2 watts in 33 watts out . . . . . . . . 89.95
Curtis KS Lil Bugger . . . . . . . . . . 39.95
Belden 9405 Heavy Duty
Rotor Cable 2\#16, 6\#18 ...... 45c/ft
Belden 8214 RG-8 Foam ..... 36c/ft
Belden 9258 RG-8X Mini-coax 196/ft
Alliance HD73 Rotor ......... 109.95
Kenwood Service Manuals . . . . . 12.00
(Including Shipping)
Call for TS830S. TS130S,
TS-530S plus accessories
MASTERCARD VISA
All prices fob Houston except where indicated Prices subject to change without notice, all tems guaranteed Some items subject prior sale. Texas residents add $6 \%$ tax. Please add sufficient postage, balance collect


1508 McKinney
Houston, Texas 77010

AEA, Advanced Electronic Applications . . . . . . 91, 111, 113
AEA, Advanced Electronic Applications
Advanced Receiver Research . . . . . . .
91, 111, 113
98
76
Alaska Microwave Lab
Aluma Tower Company
American Radio Relay League
Amidon Associates.
The Antenna Specialists Co
ARCsoft Publishers
Atlantic Surpius Sales
Barker \& Williamson, Inc. .
Barry Electronics
109
Bauman, R.H., Sales Company . . . . . . . . . . . . . . . . . . . 95, 98
Bencher, Inc.
74, 86
Ben Franklin Electronics
Britt's 2-Way Radio
Butternut Electronics
Communications Concepts
Communications Electronics
Communications Specialists
Den Tron Radio Co., Inc.
Drake, R.L., Co. .
EGE. Inc
EG母G.
Electra Company
Elenco Precision .
Encomm, Inc..
Erickson Communications . . . . . . . . . . . . . . . . . . . . . . . . . .
ETCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105,119
Fox-Tango Corp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
GLB Electronics
Grady's Radio.
H Troniks Inc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Hal Communications Corp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Hal-Tronix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84,
Ham Radio's Bookstore . . . . $97,97,98,105,109,113$
Ham Radio Magazine . . 76
The Ham Shack
The Ham Shack
Heath Company.
Henry Radio Stores . . . . . . . . . . . . . . . . . . . . . . . . . Cover II
Hildreth Engineers
Icom America, Inc.
International Communications Agency
Jameco Electronics
Johnston, Bill: N5KR Computerized Great Circle Maps
Jones, Marlin P. \& Associates
K \& S Enterprises
Trio-Kenwood Communications . . . . . . . . . . . . . . . . . . .
LaRue Electronics.
MFJ Enterprises .
Madison Electronics Supply
Marco
Microcraft Corporation
Micro Security .
Microwave Filter, Inc
Mid-Com Electronics
N.P.S., Inc.

Nemal Electronics
P.B. Radio
P.C. Electronics

Palomar Engineers
Panasonic.
Payne Radio
Phillips-Tech Electronics.
Pipo Communications
Radio Amateur Callbook
Radiokit.
Radios Unlimited
Radio Warehouse
Radio World.
Rockwell International, Collins Division
SAROC
Scanner Association of North America
Sherwood Engineering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Shure Brothers.
Smithe Aluminum
Spectronics
Spectrum International, Inc
Stewart Quads .
Telecraft Laboratories \& Company
Telrex Laboratories.
Texas Towers.
The Comm Center
Universal Communications
UNR-Rohn
Vaior Enterprises, Inc.
Vanguard Labs.
Varien, Eimac Division
VoCom Products Corporation.
Webster Associates
Western Electronics
Wheeler Applied Research Lab
Yaesu Electronics Corp
...
$\qquad$


IF WE WERE YOU


MODEL 6154 TERMALINER

## I'D BUY FROM US

YOUR INQUIRY OR ORDER WILL GET OUR PROMPT ATTENTION aUthorizeo 2 ITRTI DIStributor

## Webster

associates 115 BELLARMINE ROCHESTER, MI 48063 CALL TOLL FREE
$800-521-2333$
IN MICHIGAN $313-375-0420$

## Iron Powder and Ferrite TOROIDAL CORES

Shielding Beads, Shielded Coil Forms Ferrite Rods, Pot Cores, Baluns, Etc.

Small Orders Welcome
Free 'Tech-Data' Flyer

## AMID $\mathbf{D N}$

12033 Otsego Street, North Hollywood, Calif. 91607

In Germany Eiektronikiaden, Witheim - Meilies Str 884930 Detmoid 18 West Germany In Japan Toyomura Electronics Company, Ltd .7.9. 2-Chome Sota-Kanda Chiyoda-Ku Tokyo. Japan


# SYNVTHESIZED INTRODUCING SANTEC'S S17/1 <br> SANTEC•NOLOGY breaks into 

the 440 band with style! The new ST-7/T synthesizes the entire band in 5 kHz steps, works both up and down repeater splits and does it all right from your hand, with versatile power options of 3 watts, 1 watt or even 50 milliwatts (all nominal), to reach out to where you want. The high power mode of 3 watts radiates on 440 like 5 watts on 2 meters ... and that's a handfull!

Tones? This one has them ... tones and subtones! The 16 button tone
pad is a SANTEC Standard at no extra cost, and the ST-7/T's optional synthesized subtone encoder is controlled by the radio's front panel switch.

All the regular SANTEC accessories used with your HT-1200 fit the ST-7/T as well, meaning that you can enjoy both bands fully with a smaller cash investment. Grab the new SANTEC ST-7/T and join the fun on 440 MHz . See your SANTEC Dealer for delivery details.


## HITROD



SANTEC'S popular HT-1200 is the incomparable 2 meter leader. This little rig is handing over quality, power and features that you'd expect from something nearer the size of a bread box. SANTEC packs a 2 meter ham shack into the palm of your hand!

You can carry scan, search, 10 memories and fully synthesized key pad control around with you and still get out with a big 3.5 watts (nominal). Compare them apples to anything you want, and settle for nothing less.

SANTEC radios exceed FCC regulations limiting spurious emissions.

## 4 SANTEC



# THE EVOLUTION OF A CHAMPION! FT-101zD Mk III 



The FT-101ZD Mk III is the latest chapter in the success story of the FT-101 line. Armed with new audio filtering for even better selectivity, the FT-101ZD now includes provision for an optional FM or AM unit. Compare features and you'll see why active operators everywhere are upgrading to Yaesu!

## Variable IF Bandwidth

Using two 8-pole filters in the IF, Yaesu's pioneering variable bandwidth system provides continuous control over the width of the IF passband - from 2.4 kHz down to 300 Hz - without the shortcomings of single-filter IF shift schemes. No need to buy separate filters for $1.8 \mathrm{kHz}, 1.5 \mathrm{kHz}$, etc.
Improved Receiver Selectivity
New on the FT-101ZD Mk III is a high-performance audio peak/notch filter. Use the peak filter for single-signal CW reception, or choose the notch filter for nulling out annoying carriers or interfering CW signals. In the CW mode, you can choose between the 2.4 kHz SSB filter and an optional CW filter ( 600 or 350 Hz ) from the mode switch.

## Diode Ring Fsont End

The FT-101ZD now sports a high-level diode ring mixer in the front end. This type of mixer, well known for its strong signal performance, is your assurance of maximum protection from intermod problems on today's crowded bands.
WARC Bands Factory Installed
The FT-101ZD Mk III comes equipped with factory installation of the new 10,18 , and 24 MHz bands recently assigned to the Amateur Service at WARC. In the meantime, use the 10 MHz band for monitoring of WWV!
RF Speech Processor
Not an additional-cost option, the FT-101ZD RF speech processor provides a significant increase in average SSB power output, for added punch in those heavy DX pile-ups. The optimum processor level is easily set via a front panel control.

## Worldwide Power Capability

Every FT-101ZD comes equipped with a multi-tap power transformer, which can be easily modified from the stock 117 VAC to 100/110/200/ 220/234 VAC in minutes. A DC-DC converter is available as an option for mobile or battery operation.

## Convenience Features

Designed fundamentally as a high-performance SSB and CW transceiver, the FT-101ZD includes built-in VOX, CW. sidetone, semi-break-in T/R control on CW, slow-fast-off AGC selection, level controls for the noise blanker and speech processor, and offset tuning for both transmit and receive. The Mk III optional FM unit may be used for 10 meter FM operation, or choose the optional AM unit for WWV reception or VHF AM work through a transverter (AM and FM units may not both be installed in a single transceiver).
Full Line of Accessories
See your Yaesu dealer for a demonstration of the top performance accessories for the FT-101ZD, such as the FV-101Z External VFO, SP-901P Speaker/Patch, YR-901 CW/RTY Reader, FC-902 Antenna Tuner, and the FTV-901R VHF/UHF Transverter. Watch for the upcoming FV-101DM Digital Memory VFO, with keyboard frequency entry and scanning in 10 Hz steps!
Nationwide Service Network
During the warranty period, the Authorized Yaesu Dealer from whom you purchased your equipment provides prompt attention to your warranty needs. For long-term servicing after the warranty period, Yaesu is proud to maintain two fully-equipped service centers, one in Cincinnati for our Eastern customers and one in the Los Angeles area for those on the West Coast.

Price And Specitications Subject To Change Without Notice Or Obligation

## EIMAC's 4CW300,000G Power Tetrode. A new generation of high-performance power tubes.

EIMAC's 4CW300,000G combines all the desired features transmitter designers look for: high peak plate current, low grid emission, low internal capacitances and low internal inductance. This is the first of a new generation of high performance power tubes for LF, HF, VHF and pulse service.

## Laserfab pyrolytic

 graphite gridsThe control grid and screen structures of the 4CW300,000G are precision-cut by a laser beam. Each element is monolithic and combines extremely low coefficient of expansion with low structural inductance. These features permit the 4CW300,000G to have a very high transconductance $-10^{6}$ micromhos-and allow efficient, high-frequency operation.

## Rugged mesh filament

The EIMAC mesh filament provides exceptionally high peak plate current and permits low plate voltage operation. This leads to power supply economy, making the 4CW300,000G the economic choice for 300 KWAM broadcast service or long-pulse switch service, each of which demands a reserve of peak emission.
Improved anode structure
EIMAC's multi-phase cooling technique provides high plate dissipation to extract heat evenly and quickly from the anode, contributing to long tube life and operating economy.

## EIMAC expertise

EIMAC's expertise in electron ballistics pyrolytic grid production, thermodynamics and circuit techniques combine to bring tomorrow's tubes for to-
day's transmitter designs. More information is available from Varian EIMAC. Or the nearest Varian Electron Device Group sales office.

Electron Device Group Varian EIMAC
Application Engineering
Department
301 Industrial Way
San Carlos, CA 94070
Telephone: 415-592-1221, ext. 218

## Varian AG

Steinhauserstrasse
CH-6300 Zug, Switzerland
Telephone: (042) 232575
Telex: 78841


[^0]:    *John E. Becker, K9MM, "Calculating Feedline Loss with a Single Measurement at the Transmitter," ham radio, June, 1978.

[^1]:    Electia Electra Company
    Division of Masco Corp. of Indiana
    300 East County Line Road
    Cumberland. Indiana 46229
    International Business Office
    Suite 102. 1828 Swift
    North Kansas City. Missouri 64116

[^2]:    *In this case, you might want to break the line between S1 and S2 in fig. 1 and add two connectors to accommodate accessories such as an SWR bridge or antenna matcher. Editor

[^3]:    Mitchell, Dennis, K8UR, '"Antenna Engineer - Predict Performance of Phased Arrays with a TRS-80," 73, May, 1980.
    Swank, Jerrold A., W8HXR, "The Twenty-Meter Double Bobtail," 73 , May, 1980, page 44.
    "Simple Arrays of Vertical Antenna Elements," The ARRL Antenna Anthology, American Radio Relay League, 1978 edition, pages 114-119.

[^4]:    AMATEUR ELECTRONIC SUPPLY
    4828 W. FOND DU LAC AVE.
    MILWAUKEE, WI 53216
    414-442-4200
    Wisc. Wats: 1 (800) 242-5195
    Outside Wisc: 1 (800) 558-0411

