

What's better than one ICOM in the hand?

Meet the new ICOM 220 MHz IC3AT. Providing full coverage of the 220 MHz band, the IC-3AT is similar in appearance and size to the popular IC-2AT. All accessories, including battery packs, chargers, microphone, etc: F re completely compatible between the two seri.

The IC-3AT includes a 16 button Touchtone@ Pad and covers 220 to 224.99 MHz both simplex and duplex operation. The IC-3AT system comes complete with IC-BP3 NiCd battery pac \quad C wall charger, belt clip, "rubber duckie" \& 4 wrist strap all standard at no extra cost.

(Ticom

HEATH
 AND HAMS... "PERFECT PARTNERS"

Who builds the best Amateur Radio gear around? You do! Thousands of Hams attest to the reliable performance, specifications and longterm dependability of Heathkit Amateur equipment. Not to mention the thrill of airing a rig that you've built with your own hands. The more than 200 Hams at Heath invite you to join the fun.
For over three decades, our unique "We won't let you fail" philosophy has created a strong partnership between Hams and Heath, the world's leading electronic kit manufacturer. Heath is committed to designing equipment and accessories of the highest quality that will withstand the test of performance - QSO after QSO.
Amateur Radio is an exciting, worthwhile hobby. Starting and pursuing it with Heathkit equipment is the best way to go. Our complete line can provide everything you need, from a basic Code Practice Oscillator and self-study License Courses all the way to a sophisticated station of operation with remote capability. Pacesetter Amateur Radio enthusiasts are even using Heath/Zenith computers to design antennas, plot beam headings, track OSCAR and transmit RTTY. Heath and Hams, once again, are "perfect partners" in a new adventure.

See the complete Amateur Radio line in our latest catalog or visit your nearby Heathkit Electronic Center*

Where Heathkit products are displayed, sold and serviced. See your telephone directory white pages for the store near you.

Heath Company and Veritechnology Electronics Corporation are wholly-owned subsidiaries of Zenith Radio Corporation. The Heathkit Electronic Centers are operated by Veritechnology Electronics Corporation.

New Drakoulf Henscelver

farabove average!

With the new TR5

 versatility and value are spelled D-R-A-K-E...The dynamic range of the TRS is unexcelled by any transceiver in its class. The TR5's greater than 0 dBm third order intercept point (85 dB two-tone dynamic range) at 20 kHz spacing can be achieved only by the use of a passive diode-ring double balanced mixer. Drake was the first to bring this technology to the Amateur market with a high-level mixer in the TR7.

> When you purchase a TRS, or any Drake product. you acquire a product of the latest production techniques, which provide reliable performance.
> Yet with a product as sophisticated as one of today's transceivers. after-sales service is a must. Ask any Drake owner. Our Customer Service Department has a reputation second to none.

Accessories

Drake is the only Amateur Radio manufacturer who offers a full complement of accessories to satisfy almost every desire the HF Amateur may have. This wide selection allows any operator to assemble a station which meets his needs, and assures compatible interfacing and styling instead of a desk full of equipment with a variety of styling and poor operation as a system.
input) and a decent antenna will do the trick. This rugged self-contained amplifier/ power supply will put the TRS on an even footing with the best of them.

The TR5 and all Drake Transceivers, are backed by the best in engineering. The TR5 is the result of an extensive engineering effort. combining proven past techniques and ideas with new state of the art concepts.
As a result, the TRS will not be superceded by a new model every six months. It represents a true radio communications value that will provide many years of operating enjoyment.

ham radio magazine

MARCH 1982
volume 15, number 3
T. H. Tenney, Jr., W1NLB publisher and editor-in-chief

Alfred Wilson, W6NIF editor
editorial staff
Martin Hantf. WBICHO production editor
JosephJ Schroeder, W9JuV
Leonard H. Anderson associate editors
W E Scarborough, Jr. N1BXG
graphic production manager
Susan Shorrock production
Wayne Prerce, K3SUK
publishing staff
1 Crang Clark, ir NTACH assistant publisher and advertising manager
WE Scarborough. it. NIBXG
assistant advertising manager
Susan Shorrock circulation manager
ham radio magazine
a published monthiy by Communications Technology inc Greenvilie. New Hampshire 03048.0496
subscription rates
United States one vear, \$16 50 wo vears. $\$ 2850$, three vears. $\$ 38.50$

ore year $\$ 2150$.
three years, 35700
Europe. Japan, Atrica ivia Air
Forwarding Servicel one vear. $\$ 2800$
All subscription orders payable in United States funds. please
foreign subscription agents
Foreign subscription agents are listed on page 91

Microfilm copies are available from University Microfilms, International Ann Arbor, Michigan 48106
Cassette tapes of selected articies Cassette tapes of selected articies
from ham radio are availabie to the blind and physically handicapped

919 Wainut Steet Pin Floot Philadelphia. Pennsylvania 19107 Copyright 1982 by
Communications Tectroology, inc Title registered at U.S. Patent Office Second class postage paid at Greenville, N. H. 03048 -0498 and at additional mailing offices ISSN 01485989
Postmaster send Form 3579 to ham radio Greenville. New Hampshire 03048 -0498

contents

12 microprocessor-based repeaterr controller
Bob Witte, KBØCY
22 blanking the Woodpecker: part three
David Nicholls, VK1DN
26 ham radio techniques
Bill Orr, W6SA
30 performance capability of active mixers
Dr. Ulrich L. Rohde, DJ2LR
37 simple tests for TTLICs
Raymond F. Kramer, W6ALF
40 equations for determining antenna parameters
Robert W. Hume, KG6B
44 making waves
Irv Gottlieb, W6HDM
56 operation upgrade: part five
Robert L. Shrader, W6BNB
68 easy matching sections
Jim Pruitt, KL7HIT
76 a speech processor
James M. Bryant, G4CLF
$\left.\begin{array}{lr}98 & \text { advertisers index } \\ 8 & 84 \\ \text { comments } & 7 \text { new products } \\ \text { observation and } \\ 82 & \text { DX forecaster }\end{array} \quad \begin{array}{l}\text { opinion } \\ 91\end{array}\right)$

Introducing a direct line to a 60 MHz Tektronix scope built for your bench!

From the world's most respected name in oscilloscopes: a new scope, plus a new direct order number, that finally makes it practical to put Tektronix quality on your bench...at work or home.

Among professional engineers and technicians there is no substitute for the performance and reliability of Tektronix oscilloscopes.

Now, for the first time. Tektronix is offering an advanced scope at an unprecedented low price and has a direct order line that lets you get your order processed today!

The scope: the 2213. Its radical new design brings you Tektronix quality for well below what you would pay for
lesser-name scopes.
The 2213's practical design includes 65% fewer mechanical parts, fewer circuit boards, electrical connectors and cabling. Result: a lower price for you plus far greater reliability.

Yet performance is pure Tektronix: there's 60 MHz bandwidth for digital and high-speed analog circuits. The sensitivity for low signal measurements. The sweep speeds for fast logic families A complete trigger system for digital, analog or video waveforms. And new highperformance Tektronix probes are included!

2213 PERFORMANCE DATA

Bandwidth: Two channels. $\mathrm{dc}-60 \mathrm{MHz}$ from $10 \mathrm{~V} / \mathrm{div}$ to $20 \mathrm{mV} / \mathrm{div}$. (50 MHz from
$2 \mathrm{mV} / \mathrm{div}$ to $10 \mathrm{mV} / \mathrm{div}$) Sweep speeds: Sweeps from 0.5 s to 50 ns (to 5 $\mathrm{ns} /$ div with X 10 mag).
Sensitivity: Scale factors from $100 \mathrm{~V} / \mathrm{div}$ (10X probe) to $2 \mathrm{mV} / \mathrm{div}$ (1 X probe). Accurate to $\pm 3 \%$. Ac or dc coupling.

Delayed sweep meas-

 urements: Standard sweep, intensified after delay, and delayed(Need dual time-base performance and timing accuracy to $\pm 1.5 \%$? Ask about our 2215 priced at \$1400.)

Complete trigger system:

Modes include TV field. normal, vertical mode, and automatic; internal, external, and line sources; variable holdoff.
Probes: High perform-
ance, positive attachment. $10-14 \mathrm{pF}$ and 60 MHz at the probe tip.

The price: Just \$1100 complete*. Order direct from Tektronix National Marketing Center. Phones are staffed by technical people to answer your questions about the 2213 . Your direct order includes a 15-day return policy and full Tektronix warranty.

Now it's easier than ever to get your hands on a Tek scope!

ORDER TOLL-FREE 800-547-1845

Ask for Department 100 (In Oregon, Alaska and Hawaii: 1-503-627-5402 collect.) Lines are open from 8 am EST to 5 pm PST.

$\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\prime}}}}}}}}}}}$
$\underline{\underline{\underline{\underline{2}}}}$

This month, we are presenting a guest editorial by Pat Hawker, G3VA. Pat is the author of the Technical Topics column in Radio Communication, the monthly magazine of the Radio Society of Great Britain. His column is read by Amateurs around the world, many of whom subscribe to RADCOM just to see what Pat has to say. Here is an example of his work, excerpted from the December, 1981, issue. I think you'll find it interesting. Editor.

ionospheric outlook

Those of us who depend on the ionosphere for most of our contacts have had, for many years, some inkling that man's activities may be introducing subtle change in those fickle layers. Why, for example, were there numbers of reports of apparently authentic long-delay echoes in the decade before 1939, yet so very few, if any, in modern times? The phenomenon of ionospheric cross-modulation and the creation of artificially enhanced layers resulting from very high power transmissions have been ascribed to increasing the temperature of free electrons; but does such radiation have any permanent effect? Then again, there is the very real worry that many aerosol sprays may eventually strip away part of our protection from high-energy ultra-violet rays. It is not only hf operators who have some cause to worry.

There continues to be genuine concern that high power ELF and VLF transmissions, such as those used for communicating with submarines or for the Omega navigational system, induce the precipitation of electrons from the earth's magnetosphere into the ionosphere. Such precipitation is believed to cause irregularities in the ionosphere sufficient to disrupt or degrade ELF and VLF communications. A research program aimed at determining whether such transmissions affect the free electron content of the ionsphere, and thus have effects beyond ELF and VLF range, is being undertaken by Lockheed under contract from the U.S. Office of Naval Research. This experiment includes a SEEP (stimulated emissions of energetic particles) satellite that will carry sensors able to observe electron precipitation while a number of high-power terrestrial transmitters are keyed on and off.

hybrid microelectronics

By now most of us have at least a nodding acquaintance with integrated circuits (including, these days, LSI, large scale integration, and VLSC, very large scale integration) and also, of course, with the use of discrete components assembled on printed circuit boards. But there is an increasingly important intermediate step, no longer considered a merely transitional stage, between the use of PCB assemblies and fully integrated circuits. This is the so-called hybrid technology, in which circuits are assembled as hybrid modules using "thick" or "thin" film circuits, often with special "chip" forms of discrete components.

Manufacturers often buy up standard types of IC devices in chip carrier form for fixing into the hybrid modules. The modules may finish up looking like large IC devices but inside may include single or multiple layers. A wide variety of enclosures and packages have been developed, some suitable for the dissipation of appreciable electrical power. Marconi, for example, has designed transmitter/ receivers in hybrid form dissipating up to 100 watts.

Hybrid technology is already being used for large-volume consumer electronics in power-supply regulators, fusible resistors, car electronics, medical pacemakers, and the like. There do seem to be many potential applications in Amateur Radio equipment, provided that hundreds or thousands of identical modules are required. Clearly, the technique is not suitable for one-shot prototype equipment, but on the other hand it would be very well suited for kits or perhaps as building-block modules. For communications applications, hybrid technology has a useful advantage over fully integrated devices, in that, with the use of lasers, it is possible to accurately trim resistor values during manufacture. It can also provide significant size reductions, when compared with conventional PCB techniques.

Racal, for example, uses thick-film hybrid circuit modules for a number of communications units, including lightweight man-pack transceivers incorporating frequency-hopping (spread-spectrum) based on custom-LSI and thick-film-hybrid circuits. Indeed, this technology seems to offer quite substantial advantages over the rival techniques, in that it is rather more flexible and thus more suited to circuits requiring critical adjustment than is the fully integrated approach. But it is not a technology for experimental breadboard units!

Pat Hawker, G3VA

burglar alarm RFI

Dear HR:

My neighbor installed an ULTRAR ${ }^{\text {TM }}$ ultrasonic home alarm system by Universal. Soon after, the neighborhood was aroused by a series of false alarms. I traced the problem to my 25 -watt 2 -meter transmitter, 100 feet away.
A service man in the factory gave me the following information: A radio transmission will trigger the alarm; and the ultrasonic transducers should not be pointed at the window (where the 2 -meter signals apparently enter). After hearing this, I suggested to my neighbor that he not send the alarm back, because they probably would not find anything wrong with it. I hope this will solve some puzzles of false alarms triggered by mobiles or stationary transmitters.

Kurt Bittmann, WB2YVY Centereach, New York

a vote for Baudot

Dear HR:

Note was taken on a letter concerning slow ASCII, appearing in the June, 1981, issue of ham radio. It is my impression that the writer of the note has not taken into consideration the actual typing rate of slow ASCII say 45.45 Baud. The typing rate is on the order of 41 words per minute. This results from the need for at least 11 bits in the ASCII frame, as compared with the 7.42 bits in the Baudot frame. There are many fast typists in the Baudot group; they would feel cramped if they had to handle things at a 41 -WPM rate. Of course, if the
parties concerned have plenty of time to make a transmission, the slow rate is of little consequence.

The Baudot Code, by virtue of its having fewer signaling elements, appears to be more efficient, suitable for teleprinter communications over hf radio circuits. In fact, the five-unit code is well standardized around the world, making it possible for many types of machines to intercommunicate. Telex is still five-unit based. It may be that the European people will not go overboard for ASCII, at least in the near future. Meanwhile, we have efficient microprocessor programs for converting ASCII to Baudot and vice versa, so let that serve for the time being.

I am quite well satisfied with the alphabet as contained in the Baudot code. After all, we are not sending business letters to each other over the air.

Robert H. Weitbrecht, W6NRM
 Redwood City, California

proud to be a ham

Dear HR:

During my 23 years as a licensed Amateur l've never heard of John Reinartz until now. Of course I knew that Amateurs were responsible for introducing the use of short waves after WWI, but I never knew the details.

Thanks for this enlightening article. It makes one proud to be a member of the ham community.

David Raskin, W5TYL
Ranchos de Taos, New Mexico

AFSK generator

Dear HR:

WA3PLC was too pessimistic in his discussion of his AFSK generator in the July, 1981, issue. The third harmonic of a triangular waveform is $1 / 9$ th the amplitude, not $1 / 9$ the power. It is thus 19 dB below the fundamental, not 9.5 dB .
In fact, total harmonic distortion (THD) of a triangular waveform is only 1.47 percent, versus 23.4 percent for
a square wave. While both square and triangular waveforms are made up of an infinite succession of odd harmonics, the harmonic amplitudes are much lower with the triangular wave. By "flat-topping" the triangular wave in such a way that the rise and fall times are $1 / 3$ cycle, all harmonics evenly divisible by three are eliminated. Total harmonic distortion of this waveform is only 0.215 percent better than that of many inexpensive "sine wave" generators.

Alan Bloom, N1AL
Santa Rosa, California
Regarding the letter from N1AL, he is correct about the third harmonic of a triangular waveform. The amplitude of the third harmonic is 1/9 of the fundamental as given by the equation in the article. Since power is given by $P=V^{2} / R$, the power ratio of the harmonics must equal the square of the amplitude ratio.

$$
\frac{P 3}{\bar{P} 1}=\frac{V 3^{2}}{V 1^{2}}
$$

P3P1 = power in 3rd harmonic, fundamental
V3,V1 = amplitude of 3rd harmonic, fundamental

Since the amplitude ratio is $1 / 9$, the power ratio is $1 / 81$. Thus taking

$$
10 \log P 3 / P 1=-19.1 d B
$$

Thus the AFSK modulator has better spectral purity than I had thought. This further reduces the need for the RC lowpass filter, but still, the higher margin of safety won't hurt either.
N1AL's remarks about the "flattopped" triangle were interesting. The waveform would, however, be harder to generate with the "jumps" at $1 / 3$ of the period unless it were done digitally. The triangle was used because only two components are required when the LM567 is used.

By the way, a perhaps more subtle error has shown up in the article. In the equation, t, is the time index, not the period.
Thomas B. Zeltwanger, WA3PLC State College, Pennsy/vania
(Continued on page 36)

MFJ SWR/

 WATTMETERS MFJ HF SWR/Wattmeter reads SWR, forward, reflected power from 1.8-30 MHz.

New low cost in-line HF SWR/Wattmeter. MFJ. 814 lets you monitor SWR, forward, reflected average power in 2 ranges from 1.8 to 30 MHz . Read $200 / 2000$ watts forward, 20/200 watts reflected power. SWR, 1:1-6:1.

Easy push-button switch operation: has power/ SWR, high/low range, forward/reflected pushbutton switches. SWR sensitivity control.

Lighted meter (requires 12V). Rugged aluminum eggshell white, black cabinet. $6^{1 / 4 \times 31 / 4 \times 41 / 4 " \text {. }}$ S0-239 coax connectors, 2 color meter scale.

MFJ VHF SWR/Wattmeter/ Field Strength Meters

\$2995

MFJ. 812

New low cost VHF operating aids.
MFJ-812, \$29.95: Read SWR from 14 to 170 MHz to monitor antenna and feedlines. Read forward and reflected power at 2 meters (144.148 MHZ). 2 scales (30 and 300 watts). Read relative field strength from 1 to 170 MHz . Binding post for field strength antenna. Easy push-button operation: has forward/reflected and SWR/field strength push-buttons. Aluminum eggshell white, black cabinet.
 MFJ-810, $\mathbf{\$ 2 4 . 9 5 :}$ similar to MFJ. 812 less field strength function.

MFJ "Dry" 300 W and 1 KW Dummy Loads.

Air cooled, non-inductive $50 \mathbf{o h m}$ resistor in perforated metal housing with S0-239 connectors. Full load for 30 seconds, de-rating curves to 5 minutes. MFJ- 260 (300 W). SWR: $1.1: 1$ to $30 \mathrm{MHz}, 1.5: 1$ for $30.160 \mathrm{MHz} .2^{1 / 2} \times 2^{1 / 2 x} 7^{\prime \prime}$. MFJ-262 (1KW). SWR $1.5: 1.30 \mathrm{MHz} .3 \times 3 \times 13^{\prime \prime}$

MFJ-10, 3 foot coax with connectors, $\$ 4.95$.
Order from MFJ and try it. If not delighted, return within 30 days for refund (less shipping). One year unconditional guarantee.
Order yours today. Call toll free 800-647-1800. Charge VISA, MC. Or mail check, money order. Add $\$ 4.00$ each for shipping and handling.
CALL TOLL FREE . . . 800-647-1800 Call 601-323-5869 for technical information, orderlrepair status. Also call 601.323 .5869 outside continental USA and in Mississippi.

ENTERPRISES, INCORPORATED

MFJ KEYERS

 Uses Curtis 8044 IC. lambic operation, dot-dash memories, weight control, solid state keying. RF proof.
F Geg $\$ 79^{95}$

The MFJ.408 Deluxe Electronic Keyer sends iambic, automatic, semi-automatic, manual. Use squeeze, single lever or straight key.
Speedmeter lets you read speed to 100 WPM. Socket for external Curtis memory, random code generator, keyboard. Optional cable, \$4.95. lambic operation with squeeze key. Dot-dash insertion. Semi-automatic "bug" operation provides automatic dots and manual dashes.
Dot-dash memory, self-completing dots and dashes, jam-proot spacing, instant start. RF proot. Solid-state keying: grid block, solid state xmtrs. Front panel controls: linear speed, weight. tone, volume, function switch. 8 to 50 WPM. Weight control adjusts dot-dash space ratio; makes your signal distinctive to penetrate QRM. Tone control. Speaker. Ideal for classroom. Function switch selects off, on, semi-automaticl manual, tune. Tune keys transmitter for tuningUses 4 C-cells. 2.5 mm jack for power (6.9 VDC). Optional AC adapter MFJ-1305, \$9.95. Eggshell white, walnut sides. $8 \times 2 \times 6$ inches. MFJ-406, $\$ 69.95$, like 408 less speedmeter.
\$4995

New MFJ-401 Econo Keyer II gives you a reliable, full feature economy keyer for squeeze, single lever or straight key.

Has sidetone, speaker, volume, speed, internal weight and tone controls. Sends iambic, automatic, semi-automatic, manual. Tune function. Dot-dash memories. 8.50 WPM. "On" LED. Use 9 V battery, 6.9 VDC , or 110 VAC with optional AC adapter, MFJ-1305, \$9.95. $4 \times 2 \times 31 / 2^{\prime \prime}$

Reliable solid state keying. Keys virtually all solid state or tube type transmitters.

MFJ-405 Econo Keyer II. Same as MFJ-401 but has built-in single paddle with adjustable travel. Also jack for external paddle. $4 \times 2 \times 31 / 2^{\prime \prime}$. Optional: Bencher lambic Paddle, $\$ 42.95$; 110VAC adapter, MFJ-1305, $\$ 9.95$. Free catalog. Order from MFJ and try it. If not delighted, return within 30 days for refund (less shipping). One year unconditional guarantee.
Order yours today. Call toll free 800-647-1800. Charge VISA, MC. Or mail check, money order. Add $\$ 4.00$ each for shipping and handling.
CALL TOLL FREE . . . 800-647-1800 Call 601-323-5869 for technical information, order/repair status. Also call 601-323.5869 outside continental USA and in Mississippi
ENTERPRISES,
INCORPORATED
Box 494, Mississippi State, MS 39762

MFJ VLF CONVERTER

Receive $\mathbf{1 0 - 5 0 0} \mathrm{KHz}$ on Ham rig or SWL receiver.

Plug this MFJ VLF Converter between your antenna and Ham transceiver or SWL receiver and tune the VLF 10.500 KHz band.

Hear weather, ship-to-shore CW traffic, RTTY, WWVB, navigation beacons, 1750 meter no license band, European broadcast, and more.

MFJ.332 Ham version converts 10.500 KHz to 28.010 to 28.500 MHz . Also adds standard broadcast band on 28.5 to 29.7 MHz . MFJ-331 SWL version converts to 4.010 to 4.500 MHz .

Read frequency directly on your receiver (ignore MHz).

Low noise amplifier, 6 pole lowpass filter, double balanced mixer, crystal oscillator gives very sensitive and stable, BCB interference-free signals.

On/off-Bypass switch. LED for power. S0-239 coax connectors. $3 \times 4 \times 1$ inches. Black, eggshell white aluminum cabinet. 9.18 VDC or 110 VAC with optional AC adapter, MFJ-1312, $\$ 9.95$.

VLF/MW/SWL Antenna Tuner
 Greatly improves 10 KHz to 30 MHz reception.

\$6995

This MFJ.955 VLF/MW/SWL preselecting antenna tuner greatly improves reception of 10 KHz thru 30 MHz signals, especially those below 2 MHz

Lets you peak desired signals while rejecting interference. Reduces overload, background noise, crossmodulation, and intermodulation. VLF signals come roaring in.

Switch between two antennas and two receivers. Bypass position connects antenna directly to receiver. $51 / 2 \times 2 \times 3$ inches. Black, eggshell white aluminum cabinet.

MFJ-1020 Tuned Indoor Active Antenna. Can often exceed reception of outside longwire. Covers 300 KHz to 30 MHz . Has telescoping antenna. Minimizes intermod, provides RF selectivity, reduces noise. Also use as preselector.

Order from MFJ and try it. If not delighted, return within 30 days for refund (less shipping). One year unconditional guarantee.
Enjoy VLF. Order yours today. See dealer or call MFJ toll tree 800-647-1800. Charge VISA, MC. Or mail check, money order. Add $\$ 4.00$ each for shipping and handling.

CALL TOLL FBEE
 800-647-1800

Call 601-323-5869 for technical information, order/repair status. Also call $601 \cdot 323 \cdot 5869$ outside continental USA and in Mississippi.

Two-meter Amateur Radio outlawed? Not yet, but it could be very soon. Here's why.
A problem of significant importance to Amateur Radio is cable leakage from Community Antenna Television (CATV) systems. Interference from leaking cable systems into Amateur stations (and the reverse situation of interference to cable systems) is becoming an issue of increasing magnitude. Incidents of interference from leaking cable systems operating on mid-band frequencies to legitimate Amateur Radio operations, especially in the $144-148 \mathrm{MHz}$ band, have increased at an alarming rate. The problem is aggravated by the inherent proximity of the cable systems to Amateur stations. Both operate in residential areas, and co-location is unavoidable.
Cable television is technically a nonbroadcast, or clased, service, and therefore no interaction between cable systems and any radio service should occur. In fact, however, this is far from true, and interference between cable systems and Amateur stations, often resulting in lawsuits against Amateurs in local courts, is increasing at a rate that demands FCC attention.

The cable television service is regulated by Part 76 of the FCC rules, just as the Amateur service is regulated by Part 97 . Section 76.605 (a) (12) of the Commission's rules limits cable leakage to 20 mi crovolts per meter measured at a distance of ten feet from the cable at frequencies of $54-216 \mathrm{MHz}$. The main concern of the FCC is primarily with the potential for harmful interference to ground/air communications and navigation services. A leak measured at 20 microvolts per meter at ten feet can cause interference to a nearby Amateur receiver and, by the same token, such a cable leak will allow a significant amount of signal to enter the cable from a nearby high-power Amateur transmitter.

To further aggravate the situation, a Notice of Proposed Rule Making has been released by the FCC the intention of which is to relax the cable leakage requirements to a maximum level of 100 microvolts per meter measured at ten feet from the cable. The ARRL has taken a strong stand in this matter and has filed a brief opposing the proposal to relax leakage standards. An increase in permissible cable-signal leakage will have a more profound effect on Amateur Radio operations than on any other radio service.
The portion of a cable system that creates the biggest problems, in terms of cable leakage interference, is the drop cable from the pole to the home. The shielding of this flexible coaxial cable is less effective than is the solid aluminum hardline shielding around the cable on the pole. The drop cable moves around in the wind because of its flexibility, and the connectors used, being low-cost items, are far more subject to corrosion than are the communications-grade devices familiar to Amateurs. And all of these weaknesses are present in high-density areas, close to Amateur VHF stations. An increase in permissible leakage levels to 100 microvolts per meter at $54-216 \mathrm{MHz}$ may not increase interference to aeronautical stations, but it most certainly will create or increase interference to Amateur $144-148 \mathrm{MHz}$ operation. Further, cable leakage interference works both ways. Since Amateur stations are primarily located in residential areas, increases in the number of cases of interference to cable subscribers by local Amateur VHF transmissions will result.
Another potential problem for Amateurs resulting from the explosion in consumer electronics technology comes from the American Telecommunications Corporation (ATC), a subsidiary of General Dynamics Corporation. In a petition received by the FCC on December 8, 1981, ATC requests a waiver of part 15.7 of the rules to permit more liberal operating conditions for cordless telephones in the frequency band of 1.6-2.0 MHz. The FCC also received a letter dated October 27, 1981, from the Personal Radio Section of the Electronic Industries Association suggesting interim technical standards for cordless phones. The EIA letter is being considered a petition for waiver along with the ATC petition.
Both petitions propose to use carrier current techniques on the power wiring in the home. The EIA petition proposes that the maximum signal fed into the power line shall not exceed 500 milliwatts. The ATC petition states that the present standard in part 15.7 is not adequate and asks the FCC to set a new standard. What effect such a change in rules might have on 160 -meter operation is not known, but surely it will be anything but beneficial. One wonders how many more attempts industry will make to muscle in on Amateur Radio frequencies.

microprocessor-based repeater controller

Some interesting ideas in repeater design

This article describes a fairly sophisticated repeater controller with autopatch that can be built for less than $\$ 175$, depending upon parts availability and construction techniques. It is intended as a design example, which uses the power of the microprocessor in an Amateur Radio application.

A repeater controller is the device that, when connected to a transmitter and receiver, provides all audio and control signals for the complete operation of a repeater and, in this case, autopatch. In addition, we will interface the system with a control receiver, a logging recorder, and a phone line.

The repeater controller must monitor the repeater input (by means of the receiver squelch) and turn the transmitter on when a signal is present. This is referred to as the Carrier Operated Switch function (COS) sometimes known as the Carrier Operated Relay, or COR. This COS function also includes the time-out (typically 3-5 minutes) timer. Also included is a "courtesy beep." The time-out timer does not reset until a small amount of time has elapsed after a carrier disappears from the receiver input. When the timer resets, the controller indicates this reset by sending an audible beep on the repeater output. This beep forces users to pause between transmissions (or risk having the repeater execute time-out), so that other users may have access, particularly in an emergency.

The controller should have a well-defined external interface so that the rf portions of the repeater sys-
tem can be easily connected. This requirement implies a standard level for audio signals and TTL-compatible inputs and outputs for the logic and control signals.

The logic polarity of the control lines should be chosen so that, when an input is disconnected, the tendency for TTL gates to default to a logic 1 keeps the controller in a reasonable state. For example, pulling the receiver squelch line, which is active low, does not inadvertently cause the controller to lock the transmitter on. Audio inputs should be of high impedance and outputs of low impedance to minimize loading effects. The phone-line interface should be 600 ohms.

design considerations

Our first design goal was to keep hardware to a minimum. We built the entire project on three 5 by 7 inch (12.7 by 17.8 cm) circuit boards. (Wire-wrap techniques will yield even smaller areas.) In keeping with this goal, we implemented functions such as COS and the Morse identifier in software, as opposed to the more traditional hardware approach. The entire system is of solid-state construction except for the phone-line relay.

The second design goal was a fairly extensive set of features. We needed a means for changing the repeater call sign without a major software change. Multidigit Touchtone ${ }^{T M *}$ commands were desired. We also included a software-based real-time clock to aid in autopatch logging.

[^0]By Bob Witte, KB0CY, 2253 Evelyn Court, Loveland, Colorado 80537

FCC compliance

It was impossible for our repeater group to supply a control operator for the system 24 hours a day. The FCC's recent interpretation of the rules regarding repeaters requires that a control operator be present when an autopatch is in use. To comply with this rule and still provide a means of accessing the autopatch for emergencies, we used a procedure in which, if a special access code is used, the autopatch can be accessed regardless of control-operator availability; however, only the number 911 (emergency telephone number in our area) can be dialed. This restriction is enforced by the processor monitoring the tone-decoder output.

The software also supports enhanced use of the repeater identifier to include repeater status with respect to autopatch availability and emergency power. The letters AP appear after the call sign if the autopatch is available; the letters BAT appear if the repeater is operating from emergency (battery) power.

The IDer sends the word LOVELAND at the end of the ID according to the following algorithm: if the repeater has been idle for more than ten minutes, the suffix (LOVELAND in this case) is always appended. If the repeater has been active, then the suffix is added only on every fourth ID so that it doesn't become annoying.

The suffix is control-operator programmable to any arbitrary message up to 24 characters. Thus, the repeater functions somewhat as a "billboard" for the club, with a typical message being MEETING SATURDAY.

You might ask if anyone really listens to all this Morse code from the repeater. The answer is that anyone interested in using the autopatch soon picks up the key letters AP regardless of his code speed. The message suffix scheme has worked out quite well as it takes only a small percentage of the membership copying the ID and commenting on its message to keep repeater users informed. Perhaps it provides, at least, a small incentive for Technician-grade licensees to increase their code speed!

The controller operates from a 13.6 -volt supply (12 volts nominal), as does all the equipment at our installation. This allows one common 12 -volt supply with automatic switching to battery backup. The power supply has a TTL-compatible output, which indicates the source of power in use.

hardware organization

The hardware is organized into three separate subsections mapped into three separate boards, but this is certainly optional.

decoder board

The decoder board (fig. 1) has two functions, to
decode Touchtone signals fed to it from either the control receiver or audio board and to generate Touchtone signals controlled by the local (front panel) pad. (The local pad could be eliminated, but is a useful debugging tool.)

The audio source for the decoder is chosen by two analog switches (U1), which are controlled by the control receiver squelch line so that the control receiver always has priority. U2 level shifts the TTL control inputs. The tone decoder (M-917) is a decoder module made by Teletone.

A properly decoded tone is signalled by the strobe (pin 6 of M-917) going high just after the binary code appears on line D0 through D3. These lines are levelshifted by the 4050 CMOS buffer (U3), and are further buffered by TTL drivers U4,U5. The four rightcolumn keys ($\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$) are further decoded by $\cup 6$ to provide active low, single-line outputs. One of these outputs is connected to the remote reset line on the processor board and can be accessed by the control link in case of processor failure. U5 was included to buffer the signals to a set of front-panel LEDs, which display the decoder outputs (Table 1).

The encoder uses a Motorola 14410 chip. ${ }^{1}$ Some autopatch systems regenerate the Touchtones as they enter the system; we chose not to add the extra complexity and have found the system to be quite reliable.

audio board

The audio board (fig. 2) accepts inputs from various sources and sums them for output to the decoder, transmitter, phone line, and logging tape. U2 is arranged in the summing-amplifier mode and mixes several signals. The output of $\cup 2$ goes through analog switch U6 (controlled by the processor) to U3. U3 sums the audio from U7 (an NE-555 oscillator) so that the phone line never hears an ID or beep. U4 drives the isolation transformer, and U5 is driven by the isolation transformer. The isolation transformer provides a dc isolated connection to the phone line. The audio signals to and from the phone line are switched by the analog switches, which are controlled by the processor. The patch is a simplex arrangement in which the audio from the phone line is cut off when a station is transmitting; this eliminates the need for any balanced network, as in a duplex patch, and it also provides a means of instantly muting the audio from the phone line. The NE-555 oscillator generates all tones (ID, courtesy beep, signaling tone). U1 is a limiting amplifier for the local microphone.

Audio level. In our repeater system we adopted a standard audio level of 2 volts $p-p$ at 1 kHz , which corresponds to transmitter or receiver $5-\mathrm{kHz}$ deviation. This may seem like a minor point, but before we

fig. 1. Dual-tone, multi-frequency (DTMF) decoder board. Decodes control tones from various sources and provides digital outputs for the processor. Also includes a DTMF encoder for the local keypad.
table 1. Front-panel LEDs, which show the decoder outputs.

Touchtone ${ }^{\text {TM LEDs T3, T2, T1, T }}$ T

0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
0000
adopted this approach, incompatible and unknown levels were a major source of problems. An audio level of 2 volts $p-p$ works well with a single 12 -volt supply system, allowing enough dynamic range without sacrificing noise immunity.

Other input and output signal levels can be accommodated by adjusting VR1 and VR7 and/or by changing a few resistor values (see reference 2).
Level Adjustments. Connect a 2 -volt $\mathrm{p}-\mathrm{p}, 1-\mathrm{kHz}$ sine wave signal to the receiver input and adjust VR1 for 2 volts $p-p$ at the output of U2. This sets up the basic reference for the system. VR7 may then be adjusted for proper transmitter level - in our case, 2 volts p-p. Access the autopatch and adjust VR4, while the dial tone is present, for 2 volts p-p at the output of U 2 .

The dial tone is usually the largest signal received from the phone line; therefore, it makes a good reference. Adjust VR3 for a Touchtone 5 having a p-p value of 2 volts at the output of U2. VR5 can best be adjusted by comparing the local pad's level on the
March 1982 |TV 15

fig. 2. Audio board sums audio from several sources and supplies audio to the transmitter, logging tape, phone line and tone decoder.
phone line with a telephone Touchtone pad on the same line. The audio oscillator and microphone levels are best set by listening on the transmitter output frequency.

processor board

The processor board (fig. 3) performs virtually all the control functions for the repeater. The microprocessor is an intel 8035 with onboard RAM and 10 . Its clock is a precise 1 MHz , which is divided down from the $2-\mathrm{MHZ}$ oscillator. The clock is connected to an internal counter that interrupts the processor each time the counter overflows. The processor keeps track of how many times it is interrupted; therefore it can keep track of time - this is how the real-time clock is implemented. The crystal-oscillator approach was chosen rather than using the $60-\mathrm{Hz}$ line voltage as a time base since the battery backup feature is desirable.

The processor has several software timers which time various events (such as time since last ID, autopatch duration, and carrier-operated switch functions). One of the more interesting uses of the realtime clock is automatic logging of time and date in Morse code (onto the logging tape) when an autopatch call has been completed. This feature reduces the burden on the user to remembering only his call sign and getting it onto tape.

Morse code identification

The repeater's call-sign ID in Morse is performed by the processor turning the NE-555 oscillator on and off. The call sign is entered through the DIP switches by loading the shift registers, then the data are clocked in serially. The switch registers are set according to a table lookup (table 2). The proper code is found by locating the desired character in the table, then entering its associated binary code into the switch.

Because call signs vary in length, a means for allowing for variable length was incorporated. The processor will default to sending all six characters unless it encounters a 1 in the leftmost bit. For example, to program KBøCY, find all the letters and their associated binary codes:

K	00010100
B	00001011
D	00000000
C	00001100
Y	00100010

switch programming

The switches are programmed to a 1 when the switch is open. The programmed switches would be as follows for KBØCY; 000101000000101100000000 000011000010001010000000 The last switch has its leftmost bit set, since KBØCY does not use the sixth

table 2. Morse-code table.			
character	binary	character	binary
0	00000000	I	00010010
1	00000001	J	00010011
2	00000010	K	00010100
3	00000011	L	00010101
4	00000100	M	00010110
5	00000101	N	00010111
6	00000110	O	00011000
7	00000111	P	00011001
8	00001000	Q	00011010
\mathbf{y}	00001001	R	00011011
A	00001010	S	00011100
B	00001011	T	00011101
C	00001100	U	00011110
D	00001101	V	00011111
E	00001110	W	00100000
F	00001111	X	00100001
G	00010000	Y	00100010
H	00010001	Z	00100011

character. The software automatically adds / R onto the end of the callsign to indicate repeater operation.

other processor functions

The basic-instruction fetch of the processor is performed by outputting the address onto DB0-DB7 (and P20-P23), which is then latched by U2 (fig. 3). U3 is the EPROM that holds the program and outputs the instruction or data onto DB0-DB7. ALE (pin 11) is the address latch enable. Since it is a divided-down version of the processor clock, it makes a good test point for determining whether the processor chip is alive.

The T1 input ($\mathrm{pin} 39, \mathrm{U} 1$) to the processor is one of several special-purpose input lines that are easily accessible by the software. Here it is used for the NOT TONEVALID signal. TO is a similar line, and it is used for the NOT CARRIER signal. This input is scanned by the processor's interrupt routine, and the CarrierOperated Switch (COS) function is performed using it. It is essentially the logical OR of all the various inputs that are used to turn on the transmitter: $\cos 1-\cos 3$, manual \cos, Mic PTT, receiver squelch, and control squelch. The processor can be reset by powering it on, by the front-panel reset switch or, as previously mentioned, by one of the output lines from the decoder board.

The 824310 Expander, U4 is an 8035 family chip that provides additional IO ports easily. It is used here to drive various outputs: analog switch control lines (R1-R3), transmitter PTT line, tone enable, tape enable, patch relay, and the trigger outputs. The trigger outputs are software-controlled lines, which are intended to provide for future expansion of the repeater system. A particular control code sent to the repeater will cause one of the trigger outputs to go

low for about 60 milliseconds, thereby allowing it to trigger some external device.
Suppose an antenna relay were to be added to the system. The external device (antenna relay) would have two active low TTL compatible inputs, one to connect the relay to antenna 1 and the other to connect the relay to antenna 2 . These inputs would be connected to two different trigger outputs. The appropriate antenna would be chosen by sending the control code for the desired trigger output.
$\mathrm{P} 10-\mathrm{P} 17$ and $\mathrm{P} 20-\mathrm{P} 27$ on the processor are the lines of the on-chip IO ports. Lines P10-P13 are used for entering the code from the decoder board along with the NOT TONEVALID signal. Line P14 is used to indicate to the processor that the current Touchtones are coming from a control source (that is, either the control receiver or the front panell. Line P15 is used to tell the processor whether ac or battery power is being used.

The manual COS switch and the Mic PTT switch are used to operate the repeater locally; that is, they simulate a carrier on the input of the receiver and cause the processor to act accordingly. The remote/local switch determines whether the repeater is in repeat mode or if it can be operated only from the front panel. The $\cos 1, \cos 2, \cos 3$ inputs were included to allow for further expansion of the system. These inputs can be used by any external device that needs to turn the transmitter on. These inputs are, logically, ORed with the receiver COS input (the processor can't tell the difference); so if the external device gets latched into the on mode, the processor will eventually time out and shut down the transmitter.

control functions

Following are some of the control functions:

1. Disable autopatch.
2. Enable 911 autopatch.
3. Enable full autopatch.
4. Program ID suffix.
5. Set time of day.
6. Set date.
7. Enable repeater.
8. Disable repeater.
9. Hardware reset.
10. Send all Morse characters.
11. Enable courtesy beep.
12. Disable coutesy beep.
13. Reset autopatch timer.
table 3. Abbreviated parts list. Most part values are not critical. Resistors are $1 / 4$ watt unless otherwise noted; all TTL parts can be low-power Schottky (LS) or standard TTL. VRs are multi-turn trimpots.
decoder subsection
U1 4066 CMOS switch
U2 7406 inverter (oc, or open-collector outputs)
U3 4050 CMOS buffer
U4 74LS367 TTL buffer
U5 74LS368 TTL buffer (inverting)
U6 74LS138 TTL decoder
U7 MC14410 DTMF encoder
Decoder module Teletone M-917
audio subsection
CR1,CR2 16 volt zener, 1 watt
CR3,CR4 silicon general-purpose diode
T1 audio transformer, 1.4:1, center-tapped primary (Western Electric transformer 2578 or similar)
U1-U5 LM307 or 741 op amp
U6 4066 CMOS switch
U7 555 timer
U8 7406 inverter (oc, or open-collector outputs)
processor subsection
Q1-Q3 2N3904
SW5-SW10 DIP switch (8 switches, 16-pin package)
U1 Intel 8035 microprocessor
U2 74LS374D flip flop
U3 2716 EPROM
U4 Intel 8243 IO expander
U5, U6 81LS95 or 81LS97 buffer
U7-U12 74LS165 shift register
U13 74LS07 2-input NOR gate
U14 74LS11 3-input AND gate
U15, U16 74LS04 inverter
U17 74LS04 inverter
U18 74LS74 D flip-flop

user functions

All control and user codes have the following format: *abc
where * represents the star on the conventional Touchtone pad and a, b, c, are digits $0-9$. The following user functions have been implemented:

*195 autopatch access

Our repeater output frequency is 147.195 MHz - normal autopatch access mode. The pound symbol, \#, is used to shut the patch off (that is in keeping with the procedure of using * to access a patch using \# to bring it down).
*911 emergency autopatch
This is the emergency 911 -only mode described earlier.

GET YOUR BEST PRICE THEN CALL KITTY!

FT 720 RVH VHF - FT 720 RU UHF TRANSCEIVER CALL FOR SPECIAL PRICE

COMMUNICATION SPECIALISTS TONE ENCODER FOR ALL ICOM HAND HELD RADIOS $-\$ 29.95$ FOR ALL YAESU RADIOS - $\$ 39.95$ HANDHELDS

HANDHELDS		
UHF	,	VHF
- TEMPO S.4	- ICOM	IC-2AT
- YAESU FT 70sR	: YCOM	
ICOM IC.4a	- SANTEC	C ST194/ $/$ P

UHF \& VHF BASE STATIONS

- ICOM IC-451A IC-251A, IC-25A. IC-290, \& IC-224
- YAESU FT-720RUH. FT-720RU,FT-480, \&FT-780R
- KDK PS-2025

HF TRANSCEIVERS

- YAESU FT-707.FT-902DM, FT-107, \&FT-1012D MKII FT-1
- CUBIC Astro 103 \& 150
- ICOM IC-720A \& IC. 730
- DRAKE TR-7A with DR-7

Available Now - TR. 5

- TEN-TEC Argosy. Omni, Delta

AMPLIFIERS

- DRAKE L7 \& L75
- LUNAR Linearized 220 MHz HT AMP Model $1.3 \mathrm{~m} 4-30 \mathrm{P}$
- VHF MIRAGE, VOCOM \& KLM
- DENTRON Clipperton HF \& VHF models, GLA-1000B
- DRAKE R7A

RECEIVERS
CW OPS - We've got NYE KEY. Vibroplex bugs. Bencher Paddles, and AEA Electronic keyers: MT-1. CK-1, MM1, MK1, \& KT-1. Readers for CW \& RTTY Kantronics Field Day \& Mini Reader and the new AEA MBA Reader:

ALPHA DELTA LIGHTNING ARRESTOR AEA ISOPOLE VHF \& UHF

ANTENNAS HF - VHF - UHF - BARRY'S HAS 'EM ALL Slinky Dipoles, Hy Gain, Cushcraft, AEA. Antenna Specialists, SWAN, VOCOM AND MORE. HAM IV and Alliance rotators, MURCH UT 2000B, DENTRON AT-2K. Butternut HF 6V \& 2m collinear, Larsen.
Rpt Repeaters - Completely interchangeable with VHF Engineering Models. $144-174 \mathrm{MHz} 25 \mathrm{~W}, 210-240 \mathrm{MHz} 15 \mathrm{~W}$, and $430-440 \mathrm{MHz}$. Full line of accessories.

BARRY HAS TUBES

 SET UP YOUR HOME STATION TODAY Our lines include:| AEA | CUSHCRAFT | LARSEN | TEMPO |
| :--- | :--- | :--- | :--- |
| ALLIANCE | DENTRON | LUNAR | TEN-TEC |
| ALPHA | DRAKE | MFJ | TRI-EX |
| ASTRON | ETO | MIRAGE | VIBROPLEX |
| AVANTI | EIMAC | MURCH | VOCOM |
| B\& W | ENCOMM | PALOMAR | WACOM |
| BIRD | HUSTLER | ROBOT | YAESU |
| COLLINS | HY-GAIN | SHURE | ANDMORE... |
| COMMUNICATIONS | KLM | STANDARD | |
| SPECIALISTS | KANTRONICS | SWAN/CUBIC | |

Barry Will Meet All Legitimate Prices

BUSINESSMEN: Ask about BARRY'S line of business-band equipment. We've got it!
Amateur Radio License Class Beginning Soon.
*200 time and date
Used to transmit time and date in Morse code.
*222 ID (repeater status)
This function can be called to determine autopatch status or to read any message on the IDer.
*364 Touchtone test
This test is initiated by sending *364. After the repeater responds with the signaling tone, the user hits, in any order, all twelve keys on his pad. The repeater will respond either with the letters OK or with the characters that were not successfully received. Of course, it may be necessary to have someone else initiate the test sequence if the user's pad is totally useless.

parts

The following sources are recommended for obtaining parts (table 3) for the project:

Digital, Linear ICs:
Jameco Electronics
1355 Shoreway Road
Belmont, California 94002
Advanced Computer Products
P.O. Box 17329

Irvine, California 92713
Radio Shack
Touchtone Decoder:
Teletone Corporation

- 10801 120th Avenue N.E.

Kirkland, Washington 98033
Current price for $\mathrm{M}-917$ module is $\$ 85$

summary

This system was implemented on the Loveland Repeater 147.795/195 located west of Loveland, Colorado. Since the final version of this project was installed, we have experienced excellent reliability. I welcome any response to this article, and I hope it can lead to an exchange of some new ideas on applications of microprocessors and repeater-system design. I have arranged for 2716 EPROM's to be zapped with appropriate software for a nominal charge (send me a SASE for further information).

acknowledgment

Many thanks to Virgil Leenerts (WøINK), Glenn Engel (WB0HXS), Joyce Witte (KAøDEH) and the members of the Loveland Repeater Association for various forms of assistance.
references

1. Motorola CMOS Integrated Circuits, Motorola, Inc., 1978.
2. Walter G. Jung, IC Op-Amp Cookbook, 1976.
ham radio

Save on Scanners! NEW Rebates!

Communications Electronics," the world's largest distributor of radio scanners, celebrates 1982 with big savings on Bearcat scanners. Electra Company, the manufacturers of Bearcat scanners is offering consumer rebates on their great line of scanners, when purchased between February 1 and March 15, 1982.
With your scanner, you can monitor the exciting two-way radio conversations of police and fire departments, intelligence agencies, mobile telephones, energy/oil exploration crews, and more. Some scanners, can even monitor aircraft transmissions! You can actually hear the news before it's news. If you do not own a scanner for yourself, now's the time to buy your new scanner from Communications Electronics. Choose the scanner that's right for you, then call our toll-tree number to place your order with your Visa or Master Card.
We give you excellent service because CE distributes more scanners worldwide than anyone else. Our warehouse facilities are equipped to process thousands of scanner orders every week. We also export scanners to over 300 countries and military installations. Almost all items are in stock for quick shipment, so if you're a person who prefers fact to fantasy and who needs to know what's really happening around you, order your scanner today from CE!

NEW! Bearcat ${ }^{\oplus} 350$

The Ultimate Synthesized Scanner!
List price \$599.95/CE price \$399.00/\$50.00 rebate Your final cost is a low $\$ 349.00$
7-Band, 50 Channel • Alpha-Numeric • Nocrystal scanner - AM Aircraft and Public Service bands. - Priority Channel © AC/DC Bands: 30-50, 118-136 AM. 144-174, 421-512 MHZ The new Bearcat 350 introduces an incredible breakthrough in synthesized scanning: AlphaNumeric Display. Push a button-and the Vacuum Fluorescent Display switches from "numeric" to word descriptions of what's being monitored. 50 channeis in 5 banks. Plus, Auto \& Manual Search Search Direction, Limit \& Count. Direct Channel Access. Selective Scan Delay. Dual Scan Speeds Automatic Lockout. Automatic Squelch. Non-Volatile Memory. Order your Bearcat 350 today!

Bearcat ${ }^{\oplus} 300$

List price $\$ 549.95 /$ CE price $\$ 349.00 / \$ 50.00$ rebate Your final cost is a low $\$ 299.00$
7-Band, 50 Channel - Service Search - Nocrystal scanner - AM Aircraft and Public Service bands. - Priority Channel - AC/DC Bands: 32-50, 118-136 AM, 144-174, 421-512 MHz The Bearcat 300 is the most advanced automatic scanning radio that has ever been offered to the public. The Bearcat 300 uses a bright green fluorescent digital display, so it's ideal for mobile applications. The Bearcat 300 now has these added features: Service Search. Display Intensity Control Hold Search and Resume Search keys, Separate Band keys to permit lock-in/lock-out of any band for more efficient service search.

NEW! Bearcat

FREE Bearcat ${ }^{\circ}$ Rebate Offer
Bearcat 350 or $300 ; \$ 25$ rebate on model 250 or 20/20; $\$ 15$ rebate on model $210 \times \mathrm{L}$; $\$ 10$ rebate on model 160 or $4-6$ Thin Scan. To get your rebate, mail rebate coupon with your original dated sales receipt and the Bearcat model number rom the carton to Electra. You'll receive your rebate in four to six weeks. Offer valid only on purchases made betwen February 1, 1982 and March 15, 1982. All requests must be postmarked by March 31, 1982 . Limit of one rebate per household. Coupon must accompany all rebate requests and may not be reproduced. Offer good only in the U.S.A Void where taxed or prohibited by law. Resellers, companies, clubs and organizations-both profit and non-profit-are not eligible for rebates. Employees of Electra Company, their advertising agencies, distributors and retailers of Bearcat Scanners are also not eligible for rebates. Please be sure to CE price in this ad CE price in will be sent directly to you trom Electra Orders your rebate will be sent directly to you from Electra Orders and will be returned Offer subiect to change without notice-

Bearcat
 250

6-Band, 50 Channel - Crystalless - Searches Stores • Recalls • Digital cfock © AC/DC Priority Channel - 3-Band © Count Feature. Frequency range 32-50, 146-174, 420-512 MHz. The Bearcat 250 performs any scanning function you could possibly want. With push button ease you can program up to 50 channels for automatic monitoring. Push another button and search for new frequencies. There are no crystals to limit what you want to hear. A special search feature of the Bearcat 250 actually stores 64 frequencies and recalls them, one at a time, at
NEW! Bearcat ${ }^{\ominus}$ 20/20
List price $\$ 449.95 /$ CE price $\$ 289.00$
Your final cost is a low \$264.00 7-Band, 40 Channel © Crystalless © Searches Priority Channel e Direct Channel Access \bullet Delay Priority Channel - Direct Channel Access - Delay The Bearcat 20/20 automatic scanning radio The Bearcat $20 / 20$ automatic scanning radio
replaces the Bearcat 220 and monitors 40 frequen replaces the Bearcat 220 and monitors 40 frequenswitch, located on the front panel, allows monitoring of 20 channels at a time.

\section*{Bearcat ${ }^{\bullet}$ 210XL

Bearca

Bearca

Your final cost is a low \$214.00
6-Band, 18 Channel - Crystalloss
Frequency range: $32-50,144-174,421-512 \mathrm{MHz}$
The Bearcat $210 \times \mathrm{L}$ scanning radio is the second gener ation scanner that replaces the popular Bearcat 210 and 211. It has almost twice the scanning capacity of the Bearcat 210 with 18 channels plus dual scanning speeds and a bright green fluorescent display. Auto matic search finds new frequencies. Features scan

Bearcat ${ }^{\bullet} 160$

List price \$299.95/CE price \$194.00/\$10.00 rebate

 Your final cost is a low $\$ 184.00$ 5-Band, 16 Channel © AC only • Priority Dual Scan Speeds o Direct Channel Access Frequency range: $32-50,144-174,440-512 \mathrm{MHz}$. The Bearcat 160 is the least expensive Bearcat crystalless scanner. Smooth keyboard. No buttons to punch No knobs to turn. Instead, finger-tip pads provide
NEW! Bearcat ${ }^{\ominus} 100$

The first no-crystal programmable handheld scanner

Allow 30-120 days for delivery after receipt of order due to the high demand for this product List price $\$ 449.95 /$ CE price $\$ 299.00$ 8-Band, 16 Channel - Liquid Crystal Display Search - Limit • Hold e Lockout © AC/DC Frequency range: $30-50,138-174,406-512 \mathrm{MHz}$
The world's first no-crystal handheld scanner has The world's first no-crystal handheld scanner has compressed into a $3^{\prime \prime} \times 7^{\prime \prime} \times 1 \frac{1}{4^{\prime \prime}}$ case more scanning power than is found in many base or mobile scanners. The Bearcat 100 has a full 16 channels with frequency coverage that includes all public service bands (Low High, UHF and " T " bands), the $2-$ Meter and 70 cm . Amateur bands, plus Military and Federal Government frequencies. It has chrome-plated keys for functions that are user controlled, such as lockout, manual and automatic scan. Even search is provided, both manual automatic scan. Even search is provided
and The Bearcat 100 produces audioper
The Bearcat 100 produces audio power output of 300 milliwatts, is track-tuned and has selectivity of better than 50 dB down and sensitivity of 0.6 microvolts on VHF and 1.0 microvolts on UHF. Power consumption is
kept extremely low by using a liquid crystal display and exclusive low power integrated circuits
Included in our low CE price is a sturdy carrying case earphone, battery charger/AC adapter, six AA ni-cad batteries and flexible antenna. For earliest delivery

from CE, reserve your Bearcat 100 today

TEST ANY SCANNER

Elest any scanner purchased Electronics ${ }^{-}$for 31 days before you decide to keep it. It for any reason you are not completely satisfied, return it in
onginal condition with all parts in 31 days, for a prompt retund lless shipping/handling charges and rebate credits)

Bearcat ${ }^{\circ}$ Four-Six ThinScan
List price $\$ 189.95 /$ CE price $\$ 124.00 / \$ 10.00$ rebate Your final cost is a low \$114.00
Frequency range: $33-47,152-164,450-508 \mathrm{MHz}$ The incredible, Bearcat Four-Six Thin Scan ${ }^{-1}$ is like having an information center in your pocket. This four band, 6 channel crystal controlled scanner has patented Track Tuning on UHF. Scan Delay and Channel Lockout. Measures $2^{3 / 4} \times 6 \frac{1}{4} \times 1$. Includes rubber ducky antenna. Order crystal certificate for each channel. Made in Japan.

Fanon Slimline 6-HLU

List price $\$ 169.95 /$ CE price $\$ 109.00$

Low cost 6-channel, 3-band scanner!
The Fanon Stimline 6-HLU gives you six channels of crystal controlled excitement. Unique Automatic Peak crystal controlled excitement. Unique Automatic Peak Tuning Circuit adjusts the receiver front end for maximum nel lockout switches. Frequency range 30-50, 146-175 nel lockout switches. Frequency range $30 \cdot 50$, 146.175
and $450-512 \mathrm{MHz}$. Size $21 / 4 \times 6^{1 / 4} \times 1$: Includes rubber and 450.512 MHz . Size $23 / 4 \times 61 / 4 \times 1$. Includes rubber
ducky antenna. If you don't need the UHF band, get the Fanon model 6-HL for $\$ 99.00$ each, and save money. Same high performance and features as the model HLU without the UHF band. Order crystal certificates for each channel. Made in Japan

OTHER SCANNERS \& ACCESSORIES NEW! Regency \& D810 Scanner
NEW! Rgency D300 Scanner
NEW! Regency D100 Scanner
NEW Regency H604 Scan
Regency' M400 Scanner.
Regency M400 Scanner
Regency
Regency
Regency R1040 Scanner.
SCMA-6 Fanon Mobile Adapter/Battery Charger
CHB-6 Fanon AC Adapter/Battery Charger
CAT-6 Fanon carrying case with beit clip
AUC-3 Fanon autolighter adapter/Battery Charger PSK-6 Base Power Supply/Bracket for SCMA-6 Sp50 Bearcat AC Adapter
SP51 Bearcat Battery Charger
SP58 Bearcat 4-6 ThinScan carrying case MA506 Regency carrying case for H604. FB-E Frequency Directory for Eastern U.S.A FB-W Frequency Directory for Western U.S.A FFD Federal Frequency Directory for U.S.A TSG "Top Secrer Registry of U.S. Government Freq ASD Frequency Directory for Aircraft Band B-4 12 V AAA Ni-Cad batteries (set of tour) A-135cc Crystal certificate.

```
19.00
```


INCREASED PERFORMANCE ANTENNAS

scanner, it is essential that you use an externalantenna We have six base and mobile antennas specifically designed for receiving all bands. Order \#A60 is a magnet mount mobile antenna. Order \# A61 is a gutter clip mobile antenna. Order \#A62 is a trunk-lip mobile antenna. Order \#A63 is a $3 / 4$ inch hole mount. Order \#A64 is a th inch snap-in mount, and \#A7O is an all and $\$ 3.00$ for UPS shipping in the continental United States.

BUY WITH CONFIDENCE

To get the fastest delivery from CE of any scanner, send

 or phone your order directly to our Scanner Distribution Center"* Be sure to calculate your price using the CE prices in this ad. Michigan residents please add 4% sales tax. Written purchase orders are accepted from approved government agencies and most well rated firms at a 10% bility acceptance and verification. All sales on accessories are final. Prices, terms and specifications are subject to change without notice Out of stock items will be placed on backorder automatically unless CE is instructed differently Most products that we sell have a manufacturer's warranty Free copies of warranties on these products are available prior to purchase by writing to CE. International orders are invited with a $\$ 20.00$ surcharge for special handling in addition to shipping charges. All shipments are F.O.B. Ann Arbor, Michigan. No COD's please. Non-certified and foreign checks require bank clearance Minimum order $\$ 35.00$.Mail orders to: Communications Electronics, Box 1002. Ann Arbor, Michigan 48106 U.S.A. Add $\$ 7.00$ per scanner or phone product for U.P.S. ground shipping and handling, or \$14.00 for faster U.P.S. air shipping to some locations. If you have a Visa or Master Card, you may call anytime and place a credit card order. Order toll free in the U.S.A. Dial 800-521-4414. If you are outside the U.S. or in Michigan, dial 313-994-4444. Dealer inquiries invited. Order without obligation today! Scanner Distribution Center ${ }^{*}$ and CE logos are trademarks of Communications Electronics.
\dagger Bearcat is a federally registered trademark of Electra Company, a Division of Masco Corporation of Indiana. \ddagger Regency is a federally registered trademark of Regency Electronics Inc.
$A D \# 112108$
Copyright "1982 Communications Electronics
VISA
MasterCard

[^1]

In the first of this series of articles, ${ }^{1}$ I pointed out that the Russian over-the-horizon (OTH) radar, or "Woodpecker," is transmitted at a very precisely defined pulse repetition frequency - usually 10 Hz . This fact leads to the possibility of locally generating a similarly precise frequency to control a noise blanker. The second article ${ }^{2}$ investigated a circuit that could be connected to the existing noise blanker circuitry in a transceiver, making it possible to blank out the Woodpecker.

An MM5369 crystal oscillator/divider was used to generate a precise $60-\mathrm{Hz}$ square wave. This was divided by six using a CD4018 CMOS IC, to give a very precise $10-\mathrm{Hz}$ signal. The $10-\mathrm{Hz}$ signal was processed through a series of CMOS Schmitt trigger circuits (all part of one MM74C14) to give an output pulse whose width and phase could be varied manually. By adjusting the phase of the output, one can synchronize it with the incoming Woodpecker interference. By adjusting the width of the output, one can use it to turn the noise blanker in a receiver off for precisely the duration of the Woodpecker pulses and no longer.

It is obvious that this approach is useful only when one has a receiver with a noise blanker that can be connected to the synchronous circuit. For those with receivers with either no noise blanker, or a blanker that cannot readily be connected, another approach is necessary. The circuit described in this article is an audio blanker that can be connected to the audio output of the receiver. There is therefore no need whatever to tinker with the internal workings of the set. It can be used to very good effect on receivers such as the Yaesu FRG-7.

[^2]
blanking the Woodpecker

part three: an audio blanker

i-f versus audio blanking

The ideal place to blank a noise pulse in a radio receiver is early in the i-f stages. This is because the pulse becomes broadened as it passes through the narrow selectivity stages, and therefore a longer, more noticeable blank space is needed to remove it. Also, if you do the blanking in the audio stages, it may be too late to stop the noise from triggering the AGC circuit, thus muting the receiver's sensitivity. In the case of the Woodpecker, the first of these considerations is not a problem, as its pulses are already very wide (typically 15 milliseconds). The AGC swamping is a problem, however, because the Woodpecker can get very strong - at times over S9 +20 . So there is a price to pay with the audio circuit, as compared with the i-f blanker. Because it is an outboard device, it does not reduce the AGC swamping caused by a really strong Woodpecker signal.

Even so, the circuit turns out to be very effective. The reason for this is that it is not only AGC swamping that reduces readability; the Woodpecker itself is at least as serious a cause of loss of intelligibility in the desired signal. This can be demonstrated by observing the problems that arise even when the Woodpecker is only operating at moderate levels. Consequently, an audio stage blanker can give considerable relief from the interference.

audio blanking

Basically, the audio blanker is an audio amplifier that can be turned on and off by a control signal. In this case, that control signal is supplied by exactly the same circuit used to control the transceiver i-f

By David Nicholls, VK1DN, Director, Nicholls Communications, P. O. Box 246, Jamison A. C. T. 2614 Australia

noise blanker, minus the final transistor.
There are a number of possible means of gating an audio amplifier. Perhaps the easiest way is to use a field-effect transistor as a switch at the input to the audio amplifier. There are two ways of using an FET as a switch: as a series-pass element or as a shunt element.

Block diagrams of audio blankers using FET switches in these ways are shown in fig. 1. Both depend on the fact that when an FET is switched on by the appropriate control voltage at its gate, the resistance between source and drain is quite low (a few hundred ohms). When it's in the off condition, the resistance between source and drain is very high. In this way the FET is similar to the conventional bipolar transistor. They differ, however, in that the gate of the FET presents a very high impedance to the control signal.

In the case of the series blanker, when the FET is switched off the amplifier circuit (including FET) presents a very high impedance to the incoming signal, and the output of the amplifier is low (or, at least, somewhere near the input impedance of the amplifier by itself), and the signal appears at the output of the amplifier, as required.

In the case of the shunt blanker, when the FET is switched on, it tends to short the incoming signal to ground, resulting in no output from the amplifier. When the FET is off, its high impedance means that it plays no part in the proceedings, and the amplifier does its normal job.
Both these types of FET switches can be used together if desired. I have found that in practice the series FET switch works perfectly well by itself, and it is the approach that has been followed in the circuits described in this article.

a working circuit

There are a number of points to consider when putting the above scheme into practice. First, it is essential that none of the blanking control signal gets into the audio chain, otherwise one merely substitutes a locally made series of noise pulses for the Woodpecker.

Second, one has to ensure that the audio signal one wants to hear is not tuned off and on too quickly. Otherwise the effect is to introduce switching spikes into the audio due to the sudden drop in the audio output to zero (and back up again). In other words, the control signal must turn the audio off gently.
The third consideration is the type of FET to use as switching element. I have used only junction FETs (presumably MOSFETs would work). However, one can use either P-Channel or N -channel JFETs. This choice dictates the way one applies the control signal

fig. 1. Basic theory behind audio blanking. An fET switch controls the audio to the main amplifier. Top diagram (A) shows series blanking; (B) shows shunt blanking.
to the FET. A negative-going control signal is necessary to turn off an N -channel FET , while a positivegoing control is needed to turn off a P -channel FET.

The final decision to be made is the type of audio amplifier, its gain, and its input and output impedances.

design

In developing the audio blanker circuit, I have done a lot of "tweaking" - the circuit is more or less conventional, but the component values have been chosen as much by trial and error as any other means. Part of the trouble stems from the fact that a particular type of JFET tends to vary in its specifications from component to component, so to get a circuit to work reliably with a range of FETs takes some care. The full circuit of the audio blanker is shown in fig. 2.

To avoid the problem of the control signal getting into the audio chain, and also to minimize audio switching transients, it is necessary to soften the edges of the output from the digital stages that generate the control signal. In fig. 2, U1 (an LM741) is used as a unity-gain buffer between the CMOS and the rest of the circuit. A large capacitor, $\mathrm{C} 1(33 \mu \mathrm{~F})$, from the output of U1 to ground, effectively turns the sharp-edge digital waveform into one with sloping sides. Note that U1 is operated from a single power supply using ground as the negative bus.

Capacitor C2 and diode CR1 operate as a diode clamp, which means that the control voltage applied to the gate of the N-channel JFET, Q1, drops to about -9 volts to switch Q1 off (depending on the voltage at which the CMOS is operated - here 9 volts). The control waveforms at various points in the circuit (marked with arrows) are shown in fig. 3. Q1 is an MPF102, but a variety of other N -channel JFETs should work equally well. The only requirement is

fig. 2. The audio blanker circuit. Note that the circuitry to generate the control voltage pulses was described in reference 2.
that $\mathbf{Q 1}$ must be switched off when the control voltage goes below about -7 volts. If necessary the CMOS voltage can be increased to ± 15 volts, or U1 required to give a gain of 1 . This will allow the control signal at the gate of Q1 to go to about - 14 volts which should switch anything off!

JFET Q1 is in the input leg of op amp U2 (LM741). It is isolated from U2 for dc by capacitor C3. Voltagedivider resistors R2 and R3 set the dc operating point for the noninverting input of $\mathrm{U} 2 . \mathrm{U} 2$ is arranged as a unity-gain buffer. Instead of using two LM741s, it is also possible to use one LM1458 dual op amp. However, not all types of op amps work in this circuit.

The main amplifier consists of U3, an LM380 audio amp. This is arranged in the simplest possible way (reference 3). It is isolated from the dc output level of U 2 by C 4 . R4 limits the current drawn from U 2 if R5 is set to zero. C5 and C6 in effect tailor the frequency response of the amplifier: increase C5 to cut treble, decrease C 6 to cut bass. The output volume is set by R5. Depending on the sensitivity of the output speaker or phones, R6 may be omitted.

No special adjustments are necessary, but a little tweaking of the values may not go amiss. Readers may have noted that the CMOS is operated in these circuits at 9 volts, while the analog stages run on 15 volts. While these voltages can both be obtained from the same source, the object of using separate supplies is to minimize the possibility of digital spikes getting into the audio through the voltage buses.

One further important point should be noted. The control signal fed into U1 should be taken from pin 12 of the MM74C14 Schmitt trigger IC described in the previous article, not from the transistor or from pin 11 of the MM74C14. This is because a negativegoing control signal is needed to turn off Q 1 .

operation

Apart from the volume-control knob on the audio blanker, the circuit is controlled in the same way as for the i-f blanker; that is, set the width control about half way, adjust the phase until the Woodpecker is

fig. 3. Waveforms to be found at various points in fig. 2.
muted best, then narrow down the width as far as possible without bringing back the interference.

conclusion

The audio blanker described here works well in curbing the Woodpecker, despite the fact that it does not remove the AGC swamping that can occur when the interference is strong. This circuit was actually developed before the i-f blanker, and I have used it on an FRG-7 for over two years. The model illustrated in the photograph is also equipped with a $10 / 16-\mathrm{Hz}$ switch to allow the Woodpecker to be blanked when it occasionally switches to 16 Hz . Details of this circuit will be given in a future article.

references

1. David Nicholls, VK1DN, "Blanking the Woodpecker - Part One: Synchronous Noise Blankers," ham radio, January, 1981.
2. David Nicholls, VK1DN, "Blanking the Woodpecker - Part Two: A Practical Circuit," ham radio, February, 1981.
3. "Linear Applications," Vol. I, Application Note AN-69, National Semiconductor, 1973.
ham radio

500 WATTS AT 2 METERS

With the new Clipperton-V Amplifier

Power! When you hook into DenTron's new 500 watt, 2-meter VHF amp you've got it. Enough to capture the frequency and leave the others behind. If you're into FM, repeaters, SSB, CW or DXing, the ClippertonV linear amplifier is loaded with goodies just for you. And when it's DenTron you know it's reliable, high quality, and American-made.
Ask your dealer to demonstrate the new Clipperton-V. And pick up a copy of our complete product guide. Or send to us for a free copy today. Suggested retail $\$ 599.50$.

Specifications:

- Frequency ranges
$144-148 \mathrm{MHz}$
$50-54 \mathrm{MHz}$ with 6 meter modification kit $30-165 \mathrm{MHz}$ (custom from factory for commercial applications)
- 4CX250B ceramic/metal tetrode tube
- Pressurized chassis tube cooling system Modes - USB, LSB, CW, RTTY, FM
- Power requirements - 117/234 VAC, $50 / 60 \mathrm{~Hz}$
- RF drive power - 20 watts maximum, 10 watts RMS minimum for 500 watt dc input
- RF sensing keying circuit with delay feature for SSB
- dc plate voltage \cdot idle +2250 V approximate
- dc bias voltage - variable 55 to 130 V
- Input impedance - 50 ohms nominal
- Output impedance - 50 ohms nominal
- Antenna load VSWR - 2:1 maximum
- Harmonic suppression - down 60 db or better
- Size - H 6" \times W 15" x D 17"
- Weight -45 lbs .
- Input - 500 watts

ham radio TECHNIQUES β su

Let's face it: one of the few remaining areas of experimentation available to the average Amateur is in the field of antennas. A lot of interesting antenna configurations can be built with wire, tubing, coaxial cable, and an SWR meter. On the other hand, construction of modern, digital communications equipment is outside the expertise of many Amateurs.

One of the pleasures of writing this column is getting letters from readers who are doing their own thing and experimenting with unorthodox antenna designs. I'm going to cover some of these designs in this column.

The tools required, in addition to those listed above, include a large notebook for writing down your ex-

fig. 1. Evolution of the W1PLH compact dipole. (A) End-loaded dipole; (B) Loading wire folded inward; (C) Loading wires folded inward and bent.

fig. 2. This looks like a quad but it is an oblique view of a Yagi! Folded and loaded elements are used in the W1PLH compact beam antenna. Elements are made of wire and strung on X-frames in the manner of a quad. A quarter-wave matching transformer and balun feed the beam at points F-F, as shown in fig. 3.
periments and results, and the enthusiasm to investigate and improvise. Armed with these - and plenty of caution when it comes to climbing towers and trees - any Amateur can enjoy the fruits of his labors. It's a great feeling to get an S-9 plus report on your new antenna experiment.

the W1PLH mini-beam for 15

Charlie Windslow, W1PLH, has spent a lot of time experimenting with compact antennas. His tools are a noise bridge, an SWR meter, and an old Viking Ranger II that he uses as an rf source for his experiments. (Charlie must be a pack-rat like myself. He told me he now has a collection of two noise bridges and seven SWR meters!)

His primary experiment was with a wire dipole antenna (fig. 1). To make a more compact antenna, he shortened the dipole and added "wings" on the end. When the wings were short and at right angles to the dipole, the input impedance and performance were comparable to that of the original dipole. Bandwith (frequency span between high SWR points on either side of the resonant frequency) was somewhat improved.

When the wings were folded inwards, as shown in the second illustration, the antenna seemed to work as well as before but both bandwidth and input impedance decreased. So far, so good.

The next step was to fold the wings

fig. 3. Quarter-wave transmission line transformer is made of parallel connected lengths of RG-58/U coax. Representative SWR curve for the W1PLH beam is shown at right.
back upon themselves until the antenna looked like the third illustration of fig 1. This was to be the basic element of the W1PLH Yagi (fig. 2). The beam is about 5 feet 7 inches on a side, with five-foot-seven-inch spacing between driven element and reflector. Design frequency is 21.2 MHz .

Input impedance of the small beam runs about 15 ohms at resonance, so Charlie made up a simple linear
matching transformer made of two parallel-connected quarter-wave sections of RG-58/U in parallel (fig. 3). The final SWR curve of the design is also shown in fig. 3. Front-to-back ratio at the design frequency (middle of the 15 -meter band) was approximately 12 dB . Adjusting the length of the open reflector stubs on a local signal provided optimum performance.

Power gain? Hard to tell without

fig. 4. Oblique view of the W1PLH compact 75-meter end-loaded dipole. Joints of antenna are tied off to convenient trees and supports by insulators and rope. Overall length of antenna is only 70 feet. SWR curve is shown below.
elaborate measuring equipment, but Charlie has worked plenty of DX with the miniature antenna and seems to be able to hold his own in competition.

the W1PLH short dipole for 75

Charlie has adapted his wing dipole for 75 meters, as shown in fig. 4. The overall length of the dipole is 70 feet, with 17 -foot wings at each end to establish antenna resonance. The antenna at W1PLH is 25 feet high at the center, and the ends are about 15 to 20 feet above ground. The whole thing fits comfortably on a small lot. The antenna is fed with a 1 -to- 1 balun and about 100 feet of RG-8/U transmission line. The resonant frequency of the antenna can be adjusted by trimming the tips of the 17 -foot sections. Resonance is also affected by height above ground.

Considering how low the antenna is and the loading effect of the end sections, the SWR curve across the 80 -meter band is remarkably good.

the W2CZS inverted-V dipole for 80

Stan, W2CZS, has been an active ham since he was licensed as 1 BHT in 1926. He divides his time between sailing on Barnegat Bay and working 80 meters. As so often happens, Stan ran into a space problem when he contemplated a good 80-meter antenna. Over the years he evolved a simple antenna that can operate across the whole 80-meter band with a low value of SWR. All it takes is a little physical exercise to adjust the antenna to one of three pre-chosen frequencies (fig. 5).

Stan's basic antenna is a folded or inverted-V. A 30 -foot-high pole supports the center of the antenna and the two wires of the dipole form an angle of approximately 90 degrees. The ends of the dipole are tied to 8 foot poles with steps on them.

The main wires of the antenna are

fig. 5. The compact 75/80 meter antenna at W2CZS. Stan has tip sections that he adds to each end of the V-dipole to alter length to his favorite spots in the band. It's easy to climb the 8 -foot poles at the ends of the antenna and insert the tip section jacks into the wire stubs. Antenna is fed with RG-8/U coaxial line at apex.

58 feet long and are resonant at 4.0 MHz with an SWR of very close to 1:1. At the end tie-off point on each wire, a short section of wire hangs down from the insulator. To reach a lower frequency with a low value of SWR, Stan climbs each pole and clips a wire stub which hangs down from the end of the antenna. He can thus get a very low SWR on any frequency he wishes to work on the 80 -meter band.

For example, two 25 -inch stubs will lower the resonant frequency of the antenna to 3685 kHz and two 53 -inch stubs lower the resonant frequency to 3555 kHz . Two 17 -inch stubs provide low SWR at about 3800 kHz .

So there you are! Stan placed tip jacks on the ends of the antenna wires; the stubs are made of No. 12 solid wire and plug directly into the jacks. It takes but a moment to snap the wires into position.

This is a nifty antenna for those hams with a so-called "solid-state" transmitter that requires a very low value of SWR to load to full power. With just a little leg work, you can drop the SWR to near-unity at any point in the 80 -meter band you choose. And the exercise is good for you!

the "all-band" antenna at W4GW

I can never get used to all these new-fangled calls. At least the ones starting with " W " sound natural. Now I find Ed Cushing, ex-W4OVJ, masquerading around as W4GW. What next?

In any event, regardless of the callsign, Ed has been around a long time and has tried many antennas. The one he recommends for high-frequency use has been around a long time, too - except that most hams have forgotten about it or have never heard of it. I guess you can call it an all-band antenna since you can tune it
to any frequency in the 3.5 to 30 MHz range, including the new ham bands to be forthcoming at 10,18 , and 24 MHz . Best of all, it is only about 100 feet long (fig. 6). Ed says this antenna has very few compromises as it has no traps, and provides usable gain on some bands. Here's how it works:

On 80/75 meters, it is very close to a full dipole. On 40 meters it is two half-wavelengths long; on 20 meters it is close to two full-wavelengths and provides some gain over a dipole. On 15 meters it is four half-waves in phase and provides nearly 5 dB gain over a dipole. And on 10 meters, it acts as a center-fed long wire.

The two phasing stubs are made of open-wire TV "ladder line" (not ribbon), shorted at the bottom. The feedline is made of a random length of similar open-wire line, with an antenna tuner at the station end of the line. Ed notes that good quality glass insulators should be used to support the stubs, as considerable voltage occurs across these insulators on certain frequencies. If a problem exists with tuning up at any one frequency, changing the length of the feedline a foot or two will clear up the difficulty.

Ed has a bunch of trees on his property that made it impossible to put up a tower and rotary beam without removing some trees and damaging the appearance of his lot. So as a workable compromise he uses this antenna, plus a delta loop, with outstanding success on all bands!

fig. 7. The two-band quad loop of W7CJB can be hung from a 40-foot-high tower. On 80 meters, the antenna operates as a dipole folded back upon itself. On 40 meters, the antenna acts as a quad loop, horizontally polarized. The bottom end of the antenna is open for 80 meters and closed with an adjustable, shorted stub for 40 meters.

the first transatlantic contact revisited

A short time ago I mentioned the first transatlantic ham OSO might have been made between the U.S.A. and England, rather than the famous contact between 1MO/1XAM and 8AB (France).
The purported QSO that brought this matter up was one reported in the August, 1931, issue of OST magazine; it was between 2AGB (U.S.A.) and 2 JL (England) about a month before the famous QSO that has gone down in history as No. 1. Was this interesting story true, and how could it be verified? Efforts to contact either 2 AGB or 2 JL were futile. A friendly letter from the present holder of the call G2JL indicated he is not the original G2JL.
Now the matter seems to be finally settled by a letter from G6JP, George Jessop, the unofficial historian of the Radio Society of Great Britain and one of its former presidents.
George, an old friend of mine, looked into the matter and found that the original 2 JL had been located in Crowley, Middlesex, England, and had used only a low-power spark transmitter. George talked the matter over with G2UV, who had known 2JL personally and had himself been involved in the early transatlantic test. G2UV, Bill Corsham, said that 2 JL had not taken part in the tests, nor had he been capable of such a contact with his equipment.

The only other possibility was 2JF in Liverpool, who was quite active at the time and who might have made an early contact. But G2UV knew him also, and said that no such contact had taken place. So that seems to be the end of the matter. Unless more convincing evidence turns up, the original U.S.A./France contact still stands as the first transatlantic OSO. The first reception of an American Amateur in Europe was reported by 2KW in Manchester, England, who heard American 2FP just one day before the first transatlantic tests began!

And so it goes. Viewing those early days from these later days, it is remarkable that the early history of Amateur Radio is as well documented as it is. For those who are interested in the fascinating story of early Amateur Radio 1 recommend the book Two Hundred Meters and Down by Clinton B. DeSoto, ex-W1CBD, and obtainable from the American Radio Relay League, Newington, Connecticut 06111 . It is a great story about the "roots" of Amateur Radio!

the 80-40 meter loop antenna of W7CJB

To wrap up this column, let's look at the simple two-band loop that is used at W7CJB. Old timers will recognize this, but it may be a new idea to some of our recently licensed friends (see fig. 7). Basically, it is a loop dipole that is opened opposite
the feed point for 80-meter operation. This point is jumpered for 40-meter operation. The antenna is 34 feet on a side and is fed at the apex with 75ohm coaxial line (RG-11/U). A good (but not exact) impedance match is obtained on each band and the antenna loads properly with most transmitters having a nominal 50 -ohm antenna preference.

The loop can be hung vertically from a tower, or tilted outward from the tower if height is a problem. It has been used with towers as short as 40 feet.

With the bottom of the loop closed, the bottom legs are trimmed to provide resonance in the 40 -meter band. The loop is then opened and resonance checked in the 80 -meter band. You can temporarily fold back equal lengths of wire in the lower legs to find resonance at 3.9 MHz ; you can then clip this off and use a four foot stub to short the antenna for 40 meter operation. The clip-on stub is a quick method of band changing, and costs next to nothing.

last call!

I have a few reprints of my series of articles entitled "Design Consideration for Linear Amplifiers." This series ran in ham radio in 1979, and it's a compendium of engineering information for those interested in building high-frequency linear amplifiers. A copy is free lexcept for postage).

Write to me at Varian EIMAC, 301 Industrial Way, San Carlos, California 94070, and ask for a copy. Please send three 20 -cent stamps to cover postage (or whatever amount firstclass mail will cost by the time this issue of HR reaches you!). Overseas readers, please include four IRCs with your request.

Note: Interested in build-it-yourself antennas? Send for The Radio Amateur Antenna Handbook by W6SAI and W2LX. It's available from Ham Radio's Bookstore, Greenville, New Hampshire 03048 for $\$ 6.95$ plus $\$ 1.00$ to cover shipping and handling.
ham radio

performance capability of

 active mixers
Basic mixer characteristics and interfering effects during the

 signal-handling processDepending upon the application, a large variety of circuits are used in passive and active mixers. It appears that mixers have a figure of merit expressed in the form of intermodulation distortion performance (intercept points of the order $1,2,3 \ldots n$), suppression of harmonics and isolation, cut-off frequency , and local oscillator drive.

The simple mixer consisting of one diode is generally found only in small pocket radios. Any highperformance receiver or synthesizer application requiring mixers will make use of the harmonic-canceling effect of double-balanced mixers in a lattice configuration. Passive mixers have used either vacuum diodes, germanium diodes, silicon diodes or hot-carrier diodes. Two of the basic requirements for these mixers are perfect match of the transformers and perfect match of the diodes. As the diodes are

[^3] IEEE-sponsored Wescon conference on September 16, 1981.
used in what is called "large-signal application," the same nonlinear performance of the transfer characteristic that is responsible for mixing generates harmonics of the input frequency and of the local oscillator frequency; these may appear at the output of the double-balanced mixer if it is not carefully balanced. Perfect matching will prevent even-order harmonics from appearing at the output, and the socalled linear operation of the mixer, where the local oscillator does not drive the nonlinear device, will prevent excessive harmonic generation as such. Theoretically, mixers can be driven with square waves another method of reducing harmonic combinations at the output.

While all passive mixers have losses, active mixers appear attractive because of their potential for showing gain. Using active devices as mixers, we must consider three different applications:

1. Additive mixers.
2. Multiplicative mixers.
3. Switching operation, where the active device is used as a switch and operated without dc voltage.

From a device point of view, we have three different possibilities:

1. Bipolar transistors in mixers.
2. Square-law-characteristic devices: junction field-

By Dr. Ulrich L. Rohde, DJ2LR, 52 Hillcrest Drive, Upper Saddle River, New Jersey 07458

effect transistors, MOS field-effect transistors, and enhancement field-effect transistors (VMOS).

3. Dual gate MOSFETS, or IC-type mixers.

This article shows some of the advantages, disadvantages, and high signal effects found in active mixers, their possible cures and trends. I should mention now that, for reasons explained very carefully in this article, either a) the passive mixer with special diodering configurations, or b) the field-effect transistors in a quad configuration used as a switch with no amplification is the ultimate choice for high performance. It has been shown experimentally that intercept points of +40 dBm are possible using active devices in passive mixers with about $6-\mathrm{dB}$ loss and 6 dB noise figure.

Active mixers like synthesizers can be used in a constant-amplitude environment; however, in the more hostile environment typical of receiver applica-

fig. 2. Standard-level double-balanced mixer.

fig. 3. High-level double-balanced mixers, A and B, and termination-insensitive mixer, C.
tions, passive mixers are still less expensive, more reliable, and offer superior performance.

mixer basics

Mixing occurs in any nonlinear device where the V / I curve deviates from a straight line if and when two or more signals are applied to such a device. The ideal and so-called linear mixer is a square-law device, like a field-effect transistor, with the transfer characteristic

$$
\begin{equation*}
i_{D}=I_{D S S}\left(1-\frac{V_{G S}}{V_{p}}\right)^{2} \tag{1}
\end{equation*}
$$

The transconductance is defined as the first derivative of d_{i} / d_{v}, and therefore

$$
\begin{equation*}
G M=\frac{2 I_{D S S}}{V_{p}^{2}}\left(V_{p}-V_{G S}\right) \tag{2}
\end{equation*}
$$

This is called linear mixing. It can be seen that the transconductance, $G M$, is a linear function of the gate source voltage, $V_{G S}$.

Neglecting any nonlinear effects such as might be found in MOS field-effect transistors, or any reverse biasing effects as found in junction field-effect transistors, or inability to follow high-frequency input voltage as found in VMOS transistors, the square-law characteristic will generate only the second harmonic of the input and local-oscillator signal. A perfect match in a double-balanced configuration would cancel this.

This absence of a third-order term would theoretically prevent any odd-order intermodulation distortion product from occurring. Such a square-law characteristic is found in field-effect transistors as mentioned; and for small signals, silicon or hot-carrier diodes exhibit the same square-law characteristic.

A number of configurations are known using diodes in bridges to minimize harmonics at the output, and figs. 1A through 1F show the series and shunt combination in which either two or four diodes can be used.

As shown in the literature, ${ }^{1}$ even with ideal diodes of zero forward resistance and infinite reverse resistance, the conversion loss of either the series or shunt modulator is $20 \times \log (\pi)=(9.9 \mathrm{~dB})$. Practical modulators will have higher losses than this, as the diodes are not ideal.

Fig. 2 shows the ring or lattice double-balanced modulator as frequently used, and fig. 3 shows the latest two most important derivatives of the doublebalanced mixer, the two ring configuration and the termination-insensitive mixer. It has been explained very carefully in the literature ${ }^{2}$ that all passive mixers are highly sensitive to changes in termination. The reason for this is that the non-zeroing effect of reactive currents at the output generates reflections inside the bridge and, therefore, causes distortion.

Double-balanced mixers are traditionally offered in 50 -ohm input and output impedances and, as most if applications now use 50 ohms, this is very convenient. It is extremely important that the input and output ports are balanced, and for this reason balun transmission-line transformers are used at these terminals. By using different wire sizes, the transmis-sion-line transformer impedance can be changed to a different value. Additional external transformers can shift the impedance to almost any value required. Fig. 4 shows a mixer with additional balancing at input and output. (The assumption that the $4: 1$ or $1: 4$ transformer provides ideal matching from unbalanced to balanced input or output is not necessarily true.) These discussions apply also to active mixers, as I have stressed that the input and output ports must be balanced to suppress harmonics.

The best passive mixers show an output intercept point of +30 to +35 dBm , use up to 64 monolithic diodes, and require up to +23 dBm of local-oscillator injection. A push-pull configuration of two balanced mixers can show isolation of up to +60 dB over an extremely wide frequency range; the insertion loss is in the vicinity of 5.5 dB and can be operated from 10

fig. 4. Practical circuit for a double-balanced mixer, including input and output balancing transformers.
kHz to several GHz , depending upon the transformers.

In the case of an active device, taking into consideration the linearities of the diode or active mixer, we can use the method of Fourier expansion to obtain the harmonic component of the local-oscillator pulse train of $0.2=2 \pi / \omega$.

Fig. 5 shows the train of sine-wave tip current pulses if a sine wave, the local-oscillator signal, drives the slope of G that represents the transfer characteristic. The resulting output can be used to determine the time average conductance of the device as a function of the conducting angle. To do this, we use the Fourier cosine expansion

$$
\begin{align*}
f(t) & =a_{0}+a_{1} \cos \omega t+a_{2} \cos 2 \omega t+\ldots \\
& =a_{0}+\sum_{n}{ }_{1} a_{n} \cos n \omega t \tag{3}
\end{align*}
$$

where

$$
\begin{equation*}
a_{0}=\frac{1}{T} \int_{-T / 2}^{T / 2} f(t) d t \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{n}=\frac{2}{T} \int_{-T / 2}^{T / 2} f(t) \cos n \omega t d t \tag{5}
\end{equation*}
$$

By defining $\theta=\omega t$ and integrating over $d \theta$, we obtain

$$
\begin{equation*}
a_{0}=\frac{1}{\pi} \int_{0}^{\pi} f\left(\frac{\theta}{\omega}\right) d \theta \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f\left(\frac{\theta}{\omega}\right) \cos n \theta d \theta \tag{7}
\end{equation*}
$$

From fig. 5 it can be shown that the fundamental component

$$
\begin{align*}
I_{1} & =\frac{2}{\pi} \int_{0}^{\phi} G\left(V_{1} \cos \theta-V_{x}\right) \cos \theta d \theta \\
& =\frac{2 G}{\pi}\left(\frac{V_{1} \phi}{2}+\frac{V_{1} \sin 2 \phi}{4}-V_{x} \sin \phi\right) \\
& =\frac{I_{p}}{\pi}\left(\frac{\phi-\cos \phi \sin \phi}{1-\cos \phi}\right) \tag{8}
\end{align*}
$$

In a similar way, we obtain

$$
\begin{equation*}
I_{0}=\frac{I_{p}}{\pi}\left(\frac{\sin \phi-\phi \cos \phi}{1-\cos \phi}\right) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{n}=\frac{2 I_{p \cos \phi \sin n \phi-n \sin \phi \cos n \phi}^{\pi n\left(n^{2}-1\right)(1-\cos \phi)}}{\pi}, n \geq 2 \tag{10}
\end{equation*}
$$

As explained in my previous paper, ${ }^{3}$ fig. 5 can be drawn by plotting the normalized output, normalized voltage gain, and normalized mixing transconductance, S, as a function of normalized oscillator voltage. From fig. 6, we would see a practical value for $X=0.75$, and we get a mixing (or conversion) transconductance $G_{m}=0.56 \bullet G_{M}^{\prime}=1.25 \mathrm{mS}$ for a 2N3822 field-effect transistor. For a higher-order transfer characteristic, the approach would be the same, and the equation for I as a function of V would change.

As mentioned previously, we have three types of mixing:
Additive mixing. Additive mixing is based upon the

fig. 5. Sine-wave tips representing the time variable transconductance of a square-wave transfer-characteristic device.

fig. 6. Normalized voltage gain, output impedance and mixing transconductance, S, for the FET.

fig. 7. Active mixer using the Motorola MC1596.
fact that the two components $v_{1}(t)+v_{2}(t)$ can be rewritten in the form

$$
\begin{equation*}
V=V_{1} \cos \omega_{1} t+V_{2} \cos \omega_{2} t \tag{11}
\end{equation*}
$$

The expansion of this leads to the product

$$
C(t)=\{\cos (A-B) t+\cos (A+B) t\}
$$

Additive mixing would occur where the two signals are being fed in series. All field-effect and bipolar transistor mixers use the additive principle regardless of whether the local-oscillator signal is applied together with the rf signal to the same electrode (gate, base, source, or emitter) or to different electrodes.

Multiplicative mixing. Only in the case of al a dualgate MOSFET, and bl a differential amplifier with a constant-current source, can we use the term multiplicative mixing. However, the net result remains the same. The advantage in using multiplicative mixers is that isolation exists between the two ports, which means that very little or no interaction occurs between the rf and the local-oscillator port.

Fig. 7 shows a recommended circuit for the Motorola MC1596 integrated circuit, which is the basis for the Plessey mixer type SL6440 shown in its test circuit, fig. 8. Plessey reports an intercept point in the vicinity of +30 dBm , about $0-\mathrm{dB}$ gain, and roughly an 11-dB noise figure.

fig. 8. Recommended test circuit for the SL6440 active double-balanced mixer.

Mixing by switching. In the case of the double-balanced mixer using diodes, the diodes act as a switch. These switches must be fast enough to follow the local oscillator; therefore, hot-carrier diodes are used for high-frequency operation. Because of the switching, the input and output impedances are reflected at the output and input, and the mixer becomes transparent. The insertion loss is primarily determined by the fact that the sum and difference of the two sig-
nals is at the output, and only one of them is the wanted signal. If the input voltage is divided into two output voltages, we must have $3-\mathrm{dB}$ loss. The additional losses occur from the fact that the diodes have series resistors, which are responsible for these losses. The amount of resistive loss is in the vicinity of 2 to 3 percent due to the 1 -ohm resistance the diodes exhibit under switched-on conditions. Ideally, this type of mixing does not depend upon any transfer characteristic, and we will see later that if this type of operation is duplicated with active devices, we will obtain the best possible performance.

signal handling

The characteristic of the nonlinear device again can be expanded in the form:

$$
\begin{align*}
& g_{m}=a_{01} \\
+ & \frac{a_{02}}{2!} v+\frac{a_{03}}{3!} v^{2}+\frac{a_{04}}{4!} v^{3}+\ldots \\
+ & \left(a_{11}+\frac{a_{12}}{2!} v+\frac{a_{13}}{3!} v^{2}+\frac{a_{14}}{4!} v^{3}+\ldots\right) \cos \omega_{0 t} \\
+ & \left(a_{21}+\frac{a_{22}}{2!} v+\frac{a_{23}}{3!} v^{2}+\frac{a_{24}}{4!} v^{3}+\ldots\right) \cos 2 \omega_{0 t} t \\
+ & \ldots \tag{12}
\end{align*}
$$

The following significant interfering effects can be distinguished:
a. Hum modulation, expressed by:

$$
\begin{equation*}
m_{u} \approx \frac{a_{12}}{a_{11}} V_{u} \tag{13}
\end{equation*}
$$

where $m_{u}=$ undesired modulation of carrier, and
$V_{u}==$ amplitude of the a-f voltage causing modulation.
b. Variation of the modulation depth, expressed by:

$$
\begin{equation*}
M \approx \frac{\Delta m}{m}=\frac{1}{4}\left(\frac{a_{13}}{a_{11}}\right) \quad V_{1}^{2} \tag{14}
\end{equation*}
$$

where $V_{1}=$ average amplitude of desired signal.
c. Modulation distortion, expressed by

$$
\begin{equation*}
D_{2} \approx \frac{3}{16}\left(\frac{a_{13}}{a_{11}}\right) \quad V_{1}^{2} \tag{15}
\end{equation*}
$$

where $V_{1}=$ average amplitude of desired signal.
d. Cross-modulation, expressed by

$$
\begin{equation*}
K=\frac{m_{k}}{m} \approx \frac{1}{2}\left(\frac{a_{13}}{a_{11}}\right) \quad V_{u}^{2} \tag{16}
\end{equation*}
$$

where $V_{u}=$ average amplitude of undesired signal.
e. Spurious responses at $n_{I}=1, n_{0}=x$, expressed by

$$
\begin{equation*}
\frac{V_{1}}{V_{u}(x, 1)} \approx \frac{a_{x 1}}{a_{11}} \tag{17}
\end{equation*}
$$

where $V_{1}=$ average amplitude of desired signal, and
$V_{u}(x, 1)=$ amplitude of spurious signal giving the same output as the desired signal.
f. Spurious responses at $n_{1}=2, n_{0}=x$, expressed by

$$
\begin{equation*}
\frac{V_{1}}{V_{u}(x, 2)} \approx \frac{a_{x 1}}{4 a_{11}} V_{u}(x, 2) \tag{18}
\end{equation*}
$$

where $V_{1}=$ average amplitude of desired signal, and $V_{u}(x, 2)=$ amplitude of spurious signal giving the same output as the desired signal.

The coefficients of eq. 12 depend on the $i_{2}=$ $f\left(v_{1}, v_{0}\right)$ characteristics of the mixer. If, for example, the pseudo-static current I_{2} of an additive mixer is shown as a power series,

$$
\begin{aligned}
I_{2}= & I_{2}(0)+p V+q V^{2}+r V^{3}+s V^{4}+t V^{5} \\
& +u V^{6}+\ldots
\end{aligned}
$$

then for $V \rightarrow v+V_{0} \cos \omega_{0} t, I_{2} \rightarrow i_{2}$, and since $i_{2}-I_{2}(0)=g_{m}(t) v$,

$$
\begin{equation*}
a_{01} \approx p+3 / 2 r V_{0}^{2}+\ldots \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
\frac{a_{02}}{2} \approx q+3 s V_{0}^{2}+\ldots \tag{20}
\end{equation*}
$$

$\frac{a_{03}}{6} \approx r+5 t V_{0}{ }^{2}+\ldots$
$a_{11} \approx 2 q V_{0}=3 s V_{0}{ }^{3}+\ldots$
$\frac{a_{12}}{2} \approx 3 r V_{0}+15 / 2 t V_{0}{ }^{3}+\ldots$
$\frac{a_{13}}{6} \approx 4 s V_{0}+15 u V_{0}^{3}+\ldots$
$a_{21} \approx 3 / 2 r V_{0}^{2}+5 / 2 t V_{0}^{4}+\ldots$
$\frac{a_{22}}{2} \approx 3 s V_{0}^{2}+15 / 2 u V_{0}^{4}+\ldots$
The coefficients depend on the bias point. Using theoretical characteristics of the various mixers often leads to inaccurate results, because the influence of parasitic effects may be considerable.

The final part of this article discusses some practical circuits, including an active mixer with perfect termination, a passive double-balanced mixer with a termination stage, and a passive mixer with active devices. Finally, some suggestions are given for testing and analyzing mixer characteristics.

references

[^4]ham radio

lying SWR meters

Dear HR:

In the October, 1981, article on SWR meters, no mention was made of a serious fault in this family of meters. Lying SWR meters have been a major source of the confusion about SWR.

This meter, with slight variations, has appeared in the literature over a number of years. It has always had one fault: It gives correct indications only at one setting of R1 and R2, because the diodes are non-linear at low currents. If the pots are set at the low-resistance end, the meter will give optimistic indications of low SWRs. The scale the author shows in fig. 3 can be correct at only one setting of the pots - and he does not tell how they were set when he made the scale.

The meter will give excellent results, though, if it is calibrated at one setting of the pots and the pots are left at that setting. Since the output level of almost all modern transceivers is adjustable over a wide range, it is not necessary to disturb the pots.

The meter is particularly good for permanent connection in the antenna line of a station. Moreover it is a better relative rf output indicator than the ones included in most transceivers.

Donald E. Johansson, WA4UPN Tobaccoville, North Carolina

In response to the letter from Donald E. Johansson, WA4UPN, I would like to take this opportunity to make a few comments about the subject material and the general intent of the article. The article was intended to be a home project that could be built by an Amateur without extensive experience or lab-type test facili-
ties. It was in no way claimed to be a state-of-the-art device but rather a handy device that is relative in nature rather than absolute.

As to the shortcomings of the unit, it, like many of its predecessors both commercial and homebrew, is not perfectly linear. This is because of the nature of the diodes, as discussed by Mr. Johansson. This in no way, however, reduces the use of such a device for Amateur applications.
As to the scale used for the reflected reading, it was developed with the aid of resistive loads at 21 MHz and 90 watts output power. This level was chosen to approximate today's transceivers. Performance of the completed units, two of which were built to insure that the unit could be duplicated from the manuscript, approximated that of a commercial unit of similar design.

Over the years there have been many articles published on the subject of SWR meters and their use, and many discussions as to their value to the Amateur. Arguments have been offered, both pro and con, as to the use of such meters and to what their readings really indicate about radiated power. In the course of this construction article / tried to avoid any empirical discussion of this nature and did not delve into the theory of transmission lines or antenna systems. The SWR meter article is strictly a weekend construction project, not a course on waves and fields.

My thanks to Mr. Johansson for his interest in the article and for pointing out the fact that this - and other meters of this type - should not be thought of as lab standards.

Ken Powell, WB6AFT
Boca Raton, Florida

on-air tune-up

Dear HR:
I would like to take exception to a statement made by Bob Locher, W9KNI, in his reply to a letter by Fred Streib, W6NA, in the September ham radio. Bob says that it is impossible to tune up a rig without putting the full
signal from the final out to the antenna and thus on the air. Actually, it is easy to knock that signal down by 45 dB by using equipment that has been described in the ham magazines. All that is required is a transmatch (or in my case, a simple homebrew T-network tuner), a dummy load (which most hams already own, or should) and the K4KI tune-up bridge which was described in the December, 1979, QST. If Bob hasn't read this article, I would like to suggest that he does. I would likewise suggest that anyone else desiring to cut down on the unnecessary tune-up QRM on the bands read it.

The construction technique used by K4KI leaves something to be desired in the amount of radiated signal during tune-up. My technique was to use two Heath coaxial switches instead of a simple toggle switch to switch the bridge in and out of the line. I also used the toroid from a Heath HM-102 SWR meter (spare parts cost $\$ 2.00$) for the bridge coupler element.

The use of this equipment forces the final to see an exact 50 ohm load even though the antenna itself may not be an exact match. Thus loading is exactly the same on the antenna as on the dummy load.

To me throwing two additional switches and adjusting two more controls is worth the effort, when 1 know that my tuning-up signal is 45 dB lower than it would be if I were tuning up on the air.

Wayne H. Sandford, Jr., K3EQ
Warrington, Pennsylvania

better than ever

Dear HR:

I didn't know if l'd like your magazine or not but I do - it's as good as Ham Radio Horizons ever was. I enjoy the fact that you've made it more technical than HRH but not so much that you need an EE degree to understand it. I really hope you continue along the lines you've established.

Paul E. Regan
Rye, Colorado

simple tests for TTL ICs

Checking

7400-series devices

 for homebrewing projectsThe TTL IC tester described in the August, 1976, issue of ham radio is, I believe, a much needed test instrument for builders of modern equipment. A1though suppliers of ICs guarantee the devices they sell - with promises of replacing them - the implication is that the buyer must test them. The low prices quoted indicate that something less than prime quality is being offered; thus the probability of there being some faulty units is high. Even supposedly prime-quality devices have been found to be faulty. Recently I bought two 7400s advertised as prime quality; each had one faulty gate!

The TTL tester described in ham radio is fine for someone building a circuit using fifty or more TTLs. However, I believe the person lured into building a circuit using only a few ICs, because of its simplicity and promised performance, needs a simple method of testing ICs. (Keyers and small counters are examples of such projects.)

It is my opinion that an elaborate tester is unnecessary, especially for homebrew projects using a small number of ICs of a few types. When the number of ICs reaches 50 or 100 or more, then a more elaborate unit, aimed at ease and speed of operation, is justified.

Thus, I'm submitting this description of a simple method of testing TTL ICs. All the necessary gear is usually available in most Amateur stations - particularly those of homebrewers. A voltmeter, 5 -volt power supply, six or so clipleads with miniature alligator clips, and a resistor are all you need to check .nost TTL integrated circuits. Although not absolutely necessary, a DIP socket mounted in a small PC or
perf board is helpful in handling the IC and its connections.

NAND gates

To check NAND gates such as the 7400,7410 , 7420 , and 7430 , connect +5 V to pin 14, ground to pin 7, and a voltmeter to one of the gate outputs (pin 3, for instance on the 7400), (see fig. 1). The voltmeter should read, typically, less than 0.22 volt. To

fig. 1. Test setup for checking NAND gates.
check fanout capability, connect a 390 -ohm resistor between +5 V and the gate output under observation. Voltage should read 0.4 volt or less (typically 0.22 V). Check each gate output in this manner; that is, pins $3,6,8$, and 11 on the 7400 ; pins 6,8 , and 12 on the 7410; and similarly on other NAND-gate ICs.
Remove the 390 -ohm resistor, and with the voltmeter on the gate output, ground inputs of that particular gate, one at a time. Corresponding gate output voltage should increase to at least 2.4 volts as each input is grounded. Typical voltage is 3.3 volts; however, some units may show almost 4 volts. These are OK. Repeat this test on all gate outputs.

D-type edge-triggered flip-flops, 7474, are checked similarly (fig. 2). After connecting +5 V and ground,

By Raymond F. Kramer, W6ALF, 1236 East Union Avenue, Fullerton, California 92631
connect the voltmeter to the Q output, pin 5 (or pin 9). With clipleads ground DATA pin 2 (or 12); also ground the CLOCK line, pin 3 (or 11). Now, ground PRESET pin 4 (or 10), momentarily. The Q output should increase to, and remain at least at, 2.4 volts - typically 3.5 volts. Ground CLEAR pin 1 (or 13) momentarily. The Q output should decrease to, and remain at, 0.22 volts (typical). Moving the ground (cliplead) alternately from PRESET to CLEAR will cause the voltage at Q to change from high $(3.5 \mathrm{~V})$ to low $(0.22 \mathrm{~V})$. With the voltage at Q at a low state $(0.22 \mathrm{~V})$, remove the ground clip from DATA pin 2 (or 12). Then momentarily remove ground from the CLOCK line, pin 3 (or 11). The Q output should increase to at least 2.4 volts.

fig. 2. Checking edge-triggered flip-flops.

Restore the ground on the DATA line; momentarily remove the ground from the CLOCK line. The Q output should decrease to less than 0.4 volt. Momentary removal of the ground from the CLOCK line is a simple (and crude?) way to produce a positive-going clock pulse. An ordinary toggle switch, or, better yet, a spring-return switch instead of the cliplead would make the task easier, especially if many units must be tested.
Testing J-K flip-flops such as the $7470,7472,7473$, 7476 and the decade counter, 7490 , requires a little more equipment. The simple method of creating a clock pulse, described above, would give confusing results because of contact bounce. Thus, a nobounce clock pulse is required. A simple way to achieve such a clock pulse employs a 7400 connected as a latch with spring-return switch operating the latch (fig. 3). A grounded cliplead could be used instead of the switch. Normally it would be on pin 5, then moved momentarily to pin 1 and back to pin 5 . (An extra socket is required for the clock generator.)
The 7470 and 7472 may be checked in the same socket used for the 7474, 7400, and 7410. However, the 7473 and 7490 have terminals other than pin 14 for 5 V and pin 7 for ground; and the 7476 requires a sixteen-pin socket. If testing is limited to ICs in the fourteen-pin DIP package, then three sockets allow

fig. 3. Method for testing J-K flip-flops. A no-bounce clock pulse is obtained by using a spring-raturn switch to operate the latch.
quite an array of ICs to be tested by this simple method. The 7473 uses pin 4 for 5 V and pin 11 for ground, while for the $7490,5 \mathrm{~V}$ connects to pin 5 , and ground connects to pin 10 . To avoid adding a fourth socket, clipleads can be used to connect 5 V and ground as required.

testing 7472s

The 7472 is representative of the J-K flip-flops, so its testing is described. Other J-K FFs may be tested similarly.

After the 7472 is plugged into the socket connect 5 V and ground. Connect the CLOCK line from pin 3 of the clock generator to pin 12 of the 7472. Connect the voltmeter to the Q output, pin 8 . With power on, ground PRESET momentarily (pin 13). The Q output should increase and remain at 2.4 volts (or more typically 3.5 V). Ground CLEAR (pin 2) momentarily - the Q output voltage should decrease and remain at 0.22 volt typically - maximum of 0.4 volt.

Operate the switch on the clock generator. Q voltage should increase to 3.5 V . Another operation of the switch and Q voltage should decrease to 0.22 V . As the switch is operated, Q will alternate between high and low. With Q in the low state, ground K1, pin 9 , and operate the clock switch. Q should change to high $(3.5 \mathrm{~V})$. Remove the ground from K 1 and apply it to J 1 , pin 3 . Operate the clock switch $-Q$ should decrease to low (0.22 V). Repeat for K 2 pin 10 , J 2 pin 4, K3 pin 11, and J3 pin 5 with the same results.

The 7470 is tested similarly; also the 7473 . However, the 7473 has different terminals for 5 V , ground, J, K and Q and has no PRESET or CLEAR. If clipleads are used to connect 5 V and ground to the test socket, maximum cost effectiveness is achieved, particularly where only one or two ICs of a type are being checked.

The 7476 is a dual J-K FF, each with PRESET and CLEAR, and only one J and K input on each $F F$, in a sixteen-pin package. Testing is as for the 7472.

Fanout capability of flip-flops can be checked in the same manner as described for the NAND gates. Connect the 390 -ohm resistor between 5 V and \bar{Q} or Q. When \bar{Q} or Q is in the low state, voltage should be 0.4 volt or less.

Checking 7490s seemingly presents an added level of complexity; however, the simple tools described above can be used just as effectively. More time is required, since four FFs and several gates are involved, with four output lines to observe.
The test socket for the 7400 can be used if clipleads are used to connect 5 V (pin 5) and ground (pin 10). Pin 3 of the 7400 clock generator connects to pin 14, and pin 12 connects to pin 1 for decade counting. Reset lines pins 2, 3 and pins 6, 7 are connected to ground. The BCD output lines are pins 12,9,8 and 11 weighted as follows: pin $12=1, \operatorname{pin} 9=2, \operatorname{pin} 8=4$, and pin $11=8$. Counting is from zero to 9 .

Resets should be checked before checking the counting function. Lifting ground momentarily from pin 2, 3 should reset count to ZERO. All outputs should read less than 0.4 V (typically 0.22 V). If ground is left on either pin 2 or 3, reset cannot take place.

Lifting ground from pins 6, 7 momentarily should reset to 9 . Pins 1 and 11 voltages should be more than 2.4 volts, while pins 9 and 8 voltages are less than 0.4 volt. Reset the counter to zero to prepare for counting.
Each clock pulse; that is, each operation of the clock generator switch, should advance the 7490 count by one. The first clock pulse should cause the voltage at pin 12 to increase to 3.5 V typically. Pins 9 , 8 and 11 should remain low. The second clock pulse should cause the voltage at pin 9 to go high, others low. The third clock pulse causes voltage at pins 12 and 9 to go high; others remain low. The process continues until the count reaches nine - pins 12 and 11 are high. The next clock pulse brings all outputs to low.
More elaborate arrangements can be devised easily using a monostable multivibrator as a clock generator with an oscillator to drive it. Small discrete LEDS could serve as output indicators. Each LED can be connected to 5 V through the 330 -ohm line resistor, then to one of the outputs. The display would be reversed; TRUE would turn the LED off.

Simple test setups as described above should serve the occasional builder for most applications. Obviously, not all IC specifications are checked by these simple tests. For instance, rise and fall times, thus speed of operation, are not checked. When the construction project is expected to operate at speeds near the limit of TTLs, these tests may fail to reveal those faults.

KVG announces a new series of 9 MHz crystal filters complementing the standard XF-9xx model series. The new XFM-9xx series are Monolithic Crystal Filters with characteristics equivalent to the classical discrete crystal filters with corresponding part numbers.

TRANSVERTERS FOR ATV
 OSCARS 7, 8 \& PHASE 3

Transverters by Microwave Modules and other manutacturers can convert your existing Low Band rig to operate on the VHF \& UHF bands. Models also available for 2 M to 70 cm and for ATV operators from Ch2/Ch3 to 70 cms . Each transverter contains both a Tx up-converter and a Rx down-converter. Write for details of the largest selection available
Prices start at $\mathbf{\$ 1 8 9 . 9 5}$ plus $\mathbf{\$} \mathbf{6} .50$ shipping.

Attention owners of the original MMt432-28 models: Update your transverter to operate OSCAR 8 \& PHASE 3 by adding the 434 to 436 MHz range. Mod kit including full instructions $\$ 26.50$ plus $\$ 1.50$ shipping, etc
ANTENNAS (FOB CONCORD, VIA UPS)
144-148 MHz J-SLOTS
8 OVER 8 HORIZONTALPOL. +12.3 dBd D8/2M $\$ 63.40$ 8 BY 8 VERTICAL POL. D8/2M-VERT. $\$ 76.95$ $8+8$ TWIST 8 XY/2M $\$ 62.40$ $\mathbf{4 2 0 . 4 5 0} \mathbf{~ M H z}$ MULTIBEAMS
For local, DX, OSCAR, and ATV use.
$\begin{array}{llr}48 \mathrm{EL} . & \mathrm{GAIN}+15.7 \mathrm{dBd} 70 / \mathrm{MBM} 48 & \$ 75.75 \\ 88 \mathrm{EL} . & \mathrm{GAIN}+18.5 \mathrm{dBd} 70 / \mathrm{MBM} 88 & \$ 105.50\end{array}$
UHF LOOP YAGIS

28 LOOPS	GAIN + 20 dBi	50-ohm, Type N Co	nnector
$1250-1340 \mathrm{MHz}$	1296-LY	8 ft . boom	\$64.70
$1650-1750 \mathrm{MHz}$	1691-LY	6 ft . boom	\$70.90

Send 40 C (2 stamps) for full details of KVG crystal products and all your VHF \& UHF equip-
ment requirements
Pre Seietor Fitiers
Varactor Triplers
Decade Pre-Scalers
Antennas

Amplifiers	SSB Transverters
Crystal Filters	FM Transverters
Frequency Filters	VHF Converters
Oscillator Crystals	UHF Converters

equations for determining

antenna parameters

Horizontal antenna relative dB power gain versus terrain tilt, height, and vertical

 wave angleIf you're planning a new antenna installation, there are some questions you may ask:

1. I have enough money to either raise my present antenna or buy a new, larger antenna with more gain. Which option gives the most bang for the buck?
2. I live on the side of a hill that slopes 5 degrees downward to the east and 5 degrees upward to the west. What is the optimum tower height for $14-\mathrm{MHz}$ low-angle radiation toward the east? Can I save money by using a smaller tower (that is, compared with another location on level terrain) if contacts toward the east are my major concern? How many low-angle, $14-\mathrm{MHz}$ dBs will I lose toward the west?
3. I'm considering the purchase of either a 40 -foot (12-meter) or 55 -foot (17-meter) tower. How many dBs will I gain at low DX wave angles on each Amateur band with the higher tower?
4. I live on top of a hill, but the hill starts sloping downward 800 feet (244 meters) from my location. How much gain do I actually realize from this hill site at low DX wave angles for each Amateur band with an antenna H feet (or meters) above local terrain?

I have fitted equations to the data in the ARRL Antenna Book (reference 1), providing quantitative answers to the questions listed above. I've also written a program in BASIC that can be adapted to most of the popular programmable handheld calculators. This program and output listings are available to interested readers.*

calculator equations

Define: $h=$ antenna height in wavelength units, λ, above perfectly conducting ground
$F=$ frequency (MHz)
$H=$ antenna height, feet or meters
then
$h=F H / 983.5$, Hinfeet
$h=F H / 299.8, H$ in meters
Define: $\quad \theta=$ vertical radiation angle (deg)

[^5]\[

$$
\begin{aligned}
(\theta & =90 \text { deg vertically upward) } \\
\alpha & =\text { ground tilt (deg) } \\
(\alpha & =0 \text { for horizontal terrain; } \\
\alpha & <0 \text { transmitting downhill) }
\end{aligned}
$$
\]

The relative dB power gain, G_{R}, due to direct and reflected waves (from reference 1 , page 46) is:

$$
\begin{align*}
G_{R}= & 20 \log _{10}\left\{\sin \left[360^{\circ} h \sin (\theta-\alpha)\right]\right\} \\
& d B \text { power for } \alpha<\theta<\left(180^{\circ}+\alpha\right) \tag{1}
\end{align*}
$$

The relative dB power gain $G_{R R}$ due to change in antenna radiation resistance with height h is (from reference 1, page 54):

$$
\begin{equation*}
G_{R R}=-10 \log _{10} \frac{R_{h}}{R_{0}} d B \text { power } \tag{1A}
\end{equation*}
$$

where $R_{h}=$ radiation resistance at height h

$$
R_{0}=\text { free-space radiation resistance }
$$

For a half-wave horizontal dipole, the following fitted equations apply (reference 1, page 50):

$$
\begin{align*}
& \left(R_{h} / R_{0}=\left(2.671 h+6.85 h^{2}\right)\right. \\
& \quad \text { for } h<0.234 \tag{2}\\
& R_{h} / R_{0}= \\
& \{1+0.419 \exp [-(h-0.234) / 0.6] \\
& \left.\sin \left[700^{\circ}(h-0.234)\right]\right\} \\
& \text { for } h>0.234 \tag{3}
\end{align*}
$$

$$
\begin{equation*}
R_{0}=73 \mathrm{ohms} \tag{4}
\end{equation*}
$$

The ratio $\left(R_{h} / R_{0}\right)$ is the normalized change in radiation resistance with height and depends on the type of horizontal antenna (that is, $G_{R R}$ for a dipole and a Yagi is not the same).

The total relative dB power gain, G, due to both reflection and radiation resistance effects is

$$
\begin{equation*}
G=\left(G_{R}+G_{R R}\right) \quad G(\theta, h, \alpha) d B \text { power } \tag{5}
\end{equation*}
$$

Define a terrain tilt gain, G_{α}, about fixed values of θ_{0} and h_{0} as follows:

$$
\begin{equation*}
G_{\alpha}=G\left(\theta_{0}, h_{0}, \alpha\right)-G\left(\theta_{0}, h_{0}, \alpha=0\right) \tag{6}
\end{equation*}
$$

G_{α} represents the relative dB power gain at ground tilt α compared with horizontal ground when h and θ remain fixed. Note that since h_{θ} is fixed, the $G_{R R}$ part of G will subtract in the difference, giving a result depending only on the G_{R} part of G. Thus G_{α} is valid for any type of horizontal antenna.

The explicit solution for G_{α} is

$$
G_{\alpha}=20 \log _{10} \frac{\sin \left[360^{\circ} h \sin (\theta-\alpha)\right]}{\sin \left(360^{\circ} h \sin \theta\right)} d B \text { power }(7)
$$

Table 1 (reference 1, page 18) gives representative wave angles, θ, for a 3500 -mile ($5600-\mathrm{km}$) path between New Jersey and England.
table 1. 3500 mile (5600 km) path wave angle, θ.

F	θ_{L} (1 percent (MHz)	θ_{M} (mew)	θ_{H} (1 percent high)
7	10 degrees	22 degrees	35 degrees
14	6 degrees	11 degrees	17 degrees
21	4 degrees	7 degrees	12 degrees
28	3 degrees	5 degrees	9 degrees

The 1-percent low-wave angles, θ_{L}, are probably representative of marginal band opening and closing DX propagation conditions. Contest operation over a fixed 24 -hour period could be enhanced by radiation at low angles during such periods.

terrain tilt

An important question relative to attaining ground tilt gain, G_{α}, is how close in and far out from the antenna must the terrain tilt by α degrees? In certain cases, where the terrain starts sloping too far from the antenna, (for instance, on the broad flat top of a mountain) it can turn out that the terrain is effectively flat. In other cases, a small slope only a few hundred feet in front of the antenna can have significant G_{α} gain effect.

The ground-reflection gain, G_{R}, has maxima at angles θ_{m} given by

$$
\begin{gather*}
\theta_{m}=\alpha+\sin -1 \quad \frac{(2 m-1)}{4 h} \quad \text { where } m=1,2,3, \ldots \\
\text { and } m<\left(\frac{4 h+1}{2}\right) \tag{8}
\end{gather*}
$$

The first vertical maxima ($m=1$) is at

$$
\begin{equation*}
\theta_{1}=\alpha+\sin ^{-1}\left(\frac{1}{4 h}\right) \text { for } h>0.25 \tag{9}
\end{equation*}
$$

The distances from the antenna to the near point, X_{N}, and far point, X_{F}, of the bounce zone required to support radiation at the first maxima θ_{1} are given in reference 2 as

$$
\begin{align*}
X_{N} & =7.12 \times 10^{-4} \mathrm{FH}^{2} \text { feet } \\
& =2.33 \times 10^{-3} \mathrm{FH}^{2} \text { meters } \\
X_{F} & =2.37 \times 10^{-2} \mathrm{FH}^{2} \text { feet } \tag{10}\\
& =7.77 \times 10^{-2} \mathrm{FH}^{2} \text { meters }
\end{align*}
$$

As an example, a $14-\mathrm{MHz}$ antenna at a height $H=50$ feet (15 meters) has a first maximum bounce zone extending from $X_{N}=25$ feet (7.6 meters) to $X_{F}=830$ feet (253 meters) in front of the antenna. It is over this region that the ground slope is significant and over which it should be assessed to evaluate low angle G_{α} gain.

Figs. 1 and 2 show plots that demonstrate the significance of the equation results for low-angle radiation of interest to a DXer.

HAL 2304 MHz DOWN CONVERTERS (FREQ. RANGE $2000 / 2500 \mathrm{MHz}$)
2304 MODEL. \#1 KIT BASIC UNIT W/PREAMP LESS HOUSING \& FITTINGS 2304 MODEL \#2 KIT (with preamp).
2304 MODEL \#3 KIT (with High Gain preamp)
MODELS $2 \& 3$ WITH COAX FITTINGS IN \& OUT AND WITH WEATHER-PROOFED DIE CAST HOUSINGS.
FACTORY WIRED \& TESTED
BASIC POWER SUPPLY
POWER SUPPLY KII FOR ABOVE WITH CASE
FACTORY WIRED \& TESTED
$\$ 19.95$
$\$ 24.95$
ANTENNAS \& OTHER ACCESSORIES AVAILABLE. SEND FOR MORE INFO.
COMPLETE KITS: CONSISTING OF EVERY ESSENTIAL PART NEEDED TO MAKE YOUR COUNTER COMPLETE. HAL-600A 7-DIGIT COUNTER WITH FREOUENCY RANGE OF ZERO TO 600 MHZ . FEATURES TWO INPIJTS: ONE FOR LOW FREOUENCY AND ONE FOR HIGH FREOUENCY; AUTOMATIC ZERO SUPPRESSION. TIME BASE IS 1.0 SEC OR . 1 SEC GATE WITH OPTIONAL 10 SEC GATE AVAILABLE. ACCURACY $\pm .001 \%$ UTILIZES $10-\mathrm{MHz}$ CRYSTAL 5 PPM. COMPLETE KIT $\mathbf{\$ 1 2 9}$
HAL-300A 7-DIGIT COUNTER (SIMILAR TO 600A) WITH FREQUENCY RANGE OF O300 MHz . COMPLETEKIT $\$ 109$
HAL-50A 8-DIGIT COUNTER WITH FREQUENCY RANGE OF ZERO TO 50 MHz OR BEITER. AUTOMATIC DECIMAL POINT, ZERO SUPPRESSION UPON DEMAND. FEATURES TWO INPUTS: ONE FOR LOW FREQUENCY INPUT. AND ONE ON PANEL FOR USE WITH ANY INTERNALLY MOUNTED HALTRONIX PRE-SCALER FOR WHICH PROVISIONS HAVE ALREADY BEEN MADE. 1.0 SEC AND . 1 SEC TIME GATES. ACCURACY $\pm .001 \%$. UTILIZES $10-\mathrm{MHz}$ CRYSTAL 5 PPM.

COMPLETE KIT $\$ 109$
FREE: HAL-79 CLOCK KIT PLUS AN INLINE RF PROBE WITH PURCHASE OF ANY FREQUENCY COUNTER

PRE-SCALER KITS

TOUCH TONE DECODER KIT

HIGHLY STABLE DECODER KIT. COMES WITH 2SIDED. PLATED THRU AND SOLDER FLOWED G-10 PC BOARD, 7-567's. 2-7402. AND ALL ELECTRONIC COMPONENTS. BOARD MEASURES $3-1 / 2 \times 5-1 / 2$ INCHES. HAS 12 LINES OUT. ONLY $\$ 39.95$
NEW - 16 LINE DELUXE DECODER
$\$ 69.95$
DELUXE 12-BUTTON TOUCHTONE ENCODER KIT UTILIZING THE NEW ICM 7206 CHIP PROVIDES BOTH VISUAL AND AUDIO INDICATIONS! COMES WITH ITS OWN TWO-TONE ANODIZED ALUMINUM CABINET. MEASURES ONLY $2-3 / 4^{\prime \prime} \times 3.3 / 4^{\prime \prime}$. COMPLETE WITH TOUCH-TONE PAD, BOARD. CRYSTAL, CHIP AND ALL NECESSARY COMPONENTS TO FINISH THE KIT.

PRICED AT \$29.95
NEW - 16 LINE DELUXE ENCODER . $\mathbf{\$ 3 9 . 9 5}$
FOR THOSE WHO WISH TO MOUNT THE ENCODER IN A HAND-HELD UNIT, THE PC BOARD MEASURES ONLY $9 / 16^{\prime \prime} \times 1-3 / 4^{\prime \prime}$. THIS PARTIAL KIT WITH PC BOARD, CRYSTAL, CHIP AND COMPONENTS.

PRICED AT $\$ 14.95$
ACCUKEYER (KIT) THIS ACCUKEYER IS A REVISED VERSION OF THE VERY POPULAR WB4VVF ACCUKEYER ORIGINALLY DESCRIBED BY JAMES GARRETT, IN QST MAGAZINE AND THE 1975 RADIO AMATEUR'S HANDBOOK
$\mathbf{\$ 1 6 . 9 5}$
ACCUKEYER - MEMORY OPTION KIT PROVIDES A SIMPLE, LOW COST METHOD OF ADDING MEMORY CAPABILITY TO THE WB4VVF ACCUKEYER. WHILE DESIGNED FOR DIRECT ATTACHMENT TO THE ABOVE ACCUKEYER, IT CAN ALSO BE ATTACHED TO ANY STANDARD ACCUKEYER BOARD WITH LITTLE DIFFICULTY.
$\$ 16.95$
BUY BOTH THE MEMORY AND THE KEYER AND SAVE. COMBINED PRICE ONLY $\mathbf{\$ 3 2 . 0 0}$
PRE-AMPLIFIER
HAL-PA-19 WIDE BAND PRE-AMPLIFIER, 2-200 MHz BANDWIDTH (-3dB POINTS), 19 dB GAIN. BAND PRE-AMPLIFIER,
FULLY ASSEMBLED AND TESTED $\$ 8.95$

CLOCK KIT - HAL 79 FOUR-DIGIT SPECIAL- $\mathbf{~} 7.95$. OPERATES ON, 12-VOLT AC (NOT SUPPLIED). PROVISIONS FOR DC AND ALARM OPERATION

6-DIGIT CLOCK • 12/24 HOUR

COMPLETE KIT CONSISTING OF 2 PC G-10 PRE-ORILLED PC BOARDS, 1 CLOCK CHIP, 6 FND COMM. CATH. READOUTS, 13 TRANS. 3 CAPS, 9 RESISTORS, 5 DIODES, 3 PUS'HBUTTON SWITCHES, POWER TRANSFORMER AND INSTRUCTIONS. DON'T BE FOOLED BY PARTIAL KITS WHERE YOU HAVE TO BUY EVERYTHING EXTRA. PRICED AT $\$ 12.95$
CLOCK CASE AVAILABLE AND WILL FIT ANY ONE OF THE ABOVE CLOCKS. REGULAR PRICE . . . $\$ 6.50$ BUT ONLY $\$ 4.50$ WHEN BOUGHT WITH CLOCK.
SIX.DIGIT ALARM CLOCK KIT FOR HOME, CAMPER, RV, OR FIELD-DAY USE. OPERATES ON 12 -VOLT AC OR DC. AND HAS ITS OWN 60 -HZ TIME BASE ON THE BOARD COM PLETE WITH ALL ELECTRONIC COMPONENTS AND TWO-PIECE, PRE-DRILLED PC BOAROS BOARD SIZE $4^{\prime \prime} \times 3^{\prime \prime}$. COMPLETE WITH SPEAKER AND SWITCHES. IF OPERATED ON DC THERE IS NOTHING MORE TO BUY.:

PRICED AT $\$ 18.95$
-TWELVE-VOLT AC LINE CORD FOR THOSE WHO WISH TO OPERATE THE CLOCK FROM 110-VOLTAC.
SHIPPING INFORMATION - ORDERS OVER $\$ 25.00$ WILL BE SHIPPED POSTPAID
EXCEPT ON ITEMS WHERE ADDITIONAL CHARGES ARE REOUESTED ON ORDEAS LESS THAN $\$ 25.00$ PLEASE INCLUDE ADDITIONAL $\$ 2.00$ FOR HANDLING AND MAILING CHARGES SENO SASE FOR FREE FLYER

DISTRIBUTOR FOR
Aluma Tower • AP Products
(We have the new Hobby-Blox System)

NTTY About RTTY

It doesn't take long to become NTTY about RTTY.
About 30 minutes with a Hal RTTY system should do the trick.

Because in addition to changing the concept - or information content - of what we transmit, RTTY offers a whole new range of automatic and user-controlled communications possibilities. Like RTTY DX. Or electronic mailboxes. Or automatic print out of messages, bulletins, and emergency communications.

How do you get started: If you want to start at the top, you call Madison - we're into RTTY - and ask for a DS3100 ASR terminal and ST6000 Demodulator.

The DS3100 ASR is the most versatile terminal available today. It can send ASCII, Baudot, or Morse code (0-100

WPM). You compose your next transmission while you're receiving, with 50 lines of transmit buffer and 150 lines of receive. Plus: 10 programmable memories, CWID, on-board clock and dating, on-screen terminal status indicators, automatic answerback (WRU), and much, much more.
Add Hal's MSO option and you've even got electronic mailbox capability.
Next: the ultimate demodulator, the ST6000. It does it all, at 170, 425, and 850 shifts. There's an oscilloscope for precise tuning, and special ATC and DTH circuits for greatly improved reception of weak signals.
The finest in RTTY performance comes from Hal. And the finest in RTTY prices comes from Madison. Call now, and find out why we're all a little NTTY about RTTY.

We back everything we sell with our personal guarantee.

All Prices FOB Houston and subject to change without notice. Items subject to prior sale.

Electronics Supply, Inc.
1508 McKinney • Houston, Texas 77010 • 713-658-0268

Always, Always, Always call for quotes.

Toll Free Nightline.
1-800-231-3057
Monday, Wednesday, Friday 6PM - 10PM CT.

NOW YOU CAN BE INDEPENDENT OF THE ELECTRIC COMPANY TO KEEP YOUR STATION ON THE AIR

Using the Winco generator to keep a 12 volt battery charged allows you the following advantages:

1) Freedom from power outages.
2) Your equipment is protected from power line transients caused by thunderstorm activity or surges on the line. .
3) You have a quiet field day power supply.
4) You have an alternative power source for emergencies, including a light source.
5) You will have the satisfaction of being on the air with the wind.
6) Great for repeaters.

OUR UNIT

COSTS ABOUT THE SAME AS GAS GENERATORS

Generates 200 Watts (15 volts, 14 amps)
Comes with 10' Tower
Has a Ball Bearing DC Generator
Comes with control panel with ammeter
Has 6 ' rotor
Runs HF rigs barefoot, and 2 meter rigs, TV, etc.
Can be used to operate repeaters in remote locations FREE lamps, charger!

Send check or money order for $\$ 589.00$ now, and we will send 4 (four) 50 watt standard base light bulbs (you'll be surprised how bright they are!) and a 12 volt trickle charger free. If you are unsatisfied for any reason, return the generator, tower, control panel and instructions. Keep the lamps and the charger to build your own alternative energy system, or use the lamps with your vehicle for camping or emergency lighting.

I have enclosed check or Money Order for $\$ 589.00$. Please send 200 watt generator, 10^{\prime} tower, control panel with ammeter and complete instructions.

Also, please, enclose four 12 volt 50 watt lamps, and trickle charger free. I will pay truck freight when generator arrives. If I am not completely f satisfied with the generator, I will return it within two weeks, freight f prepaid and keep the trickle charger and 12 volt lamps.

- NAME

\qquad

making waves

a close look at an unanticipated feature

Few will deny that electronics is becoming increasingly linked to digital techniques, apparently leaving the analog world behind. Careful consideration however will show that analog techniques have not been left in the past, and this is best illustrated by examining "digital" waveforms.

Pulses, ramps, sawtooths, and square waves are all collections of many sine wave harmonics and may be described by the Fourier theorem. Logic designers should be aware of this, since this "analog composite" can affect the final circuit and waveshape.

the Fourier theorem in brief

Any repetitive waveform is composed of sine waves, harmonically related with specific relative magnitude and phase relationships. A sine wave has only one harmonic, the fundamental. Symmetrical square waves have the fundamental and only odd harmonics. A sawtooth has both odd and even harmonics.

Fig. 1 shows the formation of a square wave. Fig. 1A has the fundamental and a smaller magnitude, in-phase third harmonic. It appears little
more than a distorted sine wave. Adding the fifth harmonic as in fig. 1B will start to square the result.

At the addition of odd harmonics up to the fifteenth (fig. 1C), the summation looks quite square. Summing all odd harmonics would give a perfect sine wave. Interested readers can consult texts for the mathematical details of summation.

Fig. 1D is the result of adding many odd harmonics. Note the slight overshoot on the edges of fig. 1C and the definite "rabbit ears," or corner spikes, in fig. 1D. These rabbit ears are a result of a finite number of harmonics, a "mathematically practical" square wave.

the Gibbs phenomenon

Fourier dealt with numbers to infinity. Since practical bandwidth isn't infinite, a physicist by the name of Gibbs investigated the result of distortion caused by a limited number of harmonics. This is the Gibbs phenomenon, and it applies principally to waveforms with sharp corners.

As one adds odd harmonics, the rabbit-ear spikes of the square wave become narrower until they are infinitesimally thin. Limiting the harmonics yields

fig. 1. Evolution of a square wave from harmonics. (A) is fundamental and 3rd harmonic; (B) is fundamental. 3rd, 5th harmonics; (C) fundamental with odd harmonics up to 15th; (D) several hundred odd harmonics showing the Gibbs phenomenon corner spikes.
definite spikes. These spikes are not caused by circuit parasitics or inductive kickback; they are simply the sum of a finite number of harmonics.

now you see it,

now you don't
The Gibbs phenomenon can be readily observed on low-frequency waveforms, say those at powertine frequencies. Oscilloscope bandwidth limitations, stray series-circuit inductance, and shunt capacitance all attenuate the spikes of faster waveforms.

Gibbs phenomenon rabbit ears depend on all harmonics starting with the same phase and magnitude described by Fourier. Since bandwidth reduction of measuring instruments involves both magnitude and phase shift of higher frequencies, the "mathematically perfect" square wave edges have little overshoot. The phenomenon still exists but is difficult to see at higher frequencies.

sawtooth generation

The Gibbs phenomenon can be quite prominent in a sawtooth waveshape. The sawtooth is the sum of many odd and even harmonics, and a representative waveform with ten harmonics is shown in fig. 2. The limitation of harmonics shows a pronounced Gibbs phenomenon overshoot.

It is well to emphasize that the summation in the square or sawtooth wave takes place in a linear circuit. No heterodyning is involved in these examples. One can sum lower-frequency harmonics in an op
amp to synthesize any desired waveform. One such circuit is shown in fig. 3.

experimenting with harmonic combinations

The summing amplifier of fig. $\mathbf{3}$ can be fed from a harmonic generator such as the one in fig. 4. Good results are possible by choosing a fundamental frequency in the 30 kHz range; input in fig. 4 may be either a sine or square wave.

The resonant circuits in fig. 4 should have a high ratio of capacitance to inductance for greatest purity at each harmonic output. Amplitude and phase adjustments are relatively independent. Stable phasesynchronous harmonics are generated - a task difficult to do with four separate oscillators.

The setup is simple for the sawtooth waveform. Phase adjustments are set so that all zero crossings occur at the same time and in the same direction relative to the fundamental. A dual-trace oscilloscope is best for this adjustment. Amplitude of the second harmonic is set for half that of the fundamental, the third harmonic is one-third amplitude, and the fourth harmonic amplitude is one-fourth the fundamental.

Combining these four sine waves in the summing

fig. 2. Sawtooth formed from fundamental and ten successive harmonics. Overshoot addition to sawtooth shape is due to Gibbs phenomenon.

fig. 3. A summing amplifier capable of providing a rudimentary sawtooth wave from four harmonic sources.

fig. 4. A four-frequency harmonic generator for synthesizing waveforms with the summing circuit of fig. 3.
circuit of fig. 3 will produce a sawtooth with a clearly visible Gibbs phenomenon. Variation of amplitudes and phases can produce interesting waveforms with easily measured harmonic characteristics.

conclusion

The waveshapes discussed here are generally produced by specific digital circuitry. They can also be produced by linear circuitry using the predictable Fourier coefficients for each harmonic magnitude and phase. Awareness of the Gibbs phenomenon is bound to pay dividends. One thereby gains deeper insight regarding the simulation of musical tones. Or, perhaps, the erratic triggering of a logic circuit may be understood. And maybe it isn't semiconductor charge-storage, saturation, or inductive counter-EMF that is ruining your ideal waveform!

biblography

Bloomfield, Peter, Fourier Analysis Of Time Series: An Introduction, John Wiley \& Sons, 1976.
Ontes, Robert K. and Loren Enochson, Digital Time Series Analysis, John Wiley \& Sons, 1972.
Reference Data For Radio Engineers, Sixth Edition, Chapter 44, pages 44-1 to 44-14, Howard W. Sams \& Co., Inc., 1975.
ham radio

NOW!
HfL Communications Is Proud To finnounce That Our fimateur Radio Products fre Being Stocked ft The Following Leading finateur Dealer Stores:

EASTERN UNITED STATES:
AMATEUR ELECTRONICS

SUPPLY

28940 Euclid Ave.
Wickliffe, OH 44092
(216) 585-7388

ELECTRONICS INTER-
NATIONAL SERVICE CORP. 11305 Elkin Street
Wheaton, MD 20902
(301) 946-1088

MIDWEST UNITED STATES:

AMATEUR ELECTRONICS
SUPPLY
4828 W. Fond du Lac Ave.
Milwaukee, WI 53216
(414) 442-4200

DIALTA AMATEUR RADIO

SUPPLY

212.48th Street

Rapid City, SD 57701
(605) 343-6127

ERICKSON COMMUNICATIONS
5456 N. Milwaukee Avenue
Chicago, IL 60630
(312) 631.5181

HAM RADIO CENTER
$8340-42$ Olive Blvd.
St. Louis, MO 63132
(314) 993-6060

THE HAM SHACK
808 N. Main St.
Evansville, IN 47711
(812) 422.0231

KRYDER ELEC.
Georgetown N. Shopping Ctr.
2810 Maplecrest Rd.
Ft. Wayne, IN 46815
(219) 485.9793

UNIVERSAL AMATEUR RADIO
1280 Aida Drive
Reynoldsburg, OH 43068
(614) 866.4267

WESTERN UNITED STATES:
AMATEUR ELECTRONICS
SUPPLY
1072 N. Rancho Drive
Las Vegas, NV 89106
(702) 647-3114

CW ELECTRONICS 800 Lincoln Street Denver, CO 80203 (303) 832-1111

HENRY RADIO, INC.
2050 S. Bundy Dr.
Los Angeles, CA 90025 (213) 820-1234

SOUTHERN UNITED STATES: ACK RADIO SUPPLY COMPANY 3101 4th Ave. South
Birmingham, AL 35233 (205) 322-0588

AGL ELECTRONICS 13929 N. Central Expwy Suite 419
Dallas, TX 75243
(214) 699.1081

AMATEUR ELECTRONIC

SUPPLY
621 Commonwealth Ave.
Orlando, FL 32803
(305) 894.3238

AMATEUR ELECTRONIC
SUPPLY
1898 Drew Street
Clearwater, FL 33515
(813) 461.4267

AMATEUR RADIO CENTER 2805 N.E. 2nd Ave.
Miami, FL 33137
(305) 573-8383

BRITT'S TWO-WAY RADIO 2508 N. Atlanta Rd. Belmont Hills Shopping Center Smyrna, GA 30080 (404) 432.8006

GISMO COMMUNICATIONS 1039 Latham Drive Rock Hill, SC 29730 (803) 366.7157

KRYDER ELECTRONICS 5826 NW 50th Street Oklahoma, OK 73122 (405) 789-1951

MADISON ELECTRONICS 1508 McKinney Ave. Houston, TX 77010 (713) 658.0268

N \& G DISTRIBUTING CORP. 7201 N.W. 12th Street Miami, FL 33126 (305) 592.9685

RAY'S AMATEUR RADIO 1590 US Highway 19 South Clearwater, FL 33516 (813) 535 -1416

Call Or Stop-In find See Hfil Equipment fit Your Favorite Amateur Dealer.

Write today for HAL's latest RTTY catalog

CT2100

HAL puts MORE Behind The Butions

CT2100 System:

- CT2100 Communications Terminal
- KB2100 Keyboard
- Video Monitor
- Printer (300Bd Serial ASCII-MPI-88G)
- RM2100 Rack Adapter
- MSG2100 2000 Character "Brag Tape" ROM
- 24 Line Display
- 2 Pages of 72 Character Lines -or 4 Pages of 36 Character Lines
- Split Screen (with KB2100)

HAL COMMUNICATIONS CORP.
Box 365
Urbana, Illinois 61801
217-367-7373

NOW! HAL Equipment is in stock at leading Amateur Dealers.

MICROWAVE TELEVISION

The standard RP downconverter package shown below gives you a proven converter design mounted in a weathertight antenna that teatures low wind loading and easy installation
With this package you are ready for hours of Amateur television entertainment. Just aim the antenna, connect one 75 cable from the antenna to the power supply and a second line from the power supply to your TV, and you are on the air
All downconverter models use microstrip construction for long and reliable operation. A low noise microwave preamplifier is used for pulling in weak signals. The downconverter also includes a broad-band output amplifier matched to 75 ohms. The RP model is recommended for up to 15 miles. Over a range of 15 to 25 miles, the RP + . which has a lower noise and higher gain RF amplifier stage provides better television reception. These ranges are necessarily approximate, as signal strength is very sensitive to line of sigh obstructions. For the Amateur builder Model CB converter board with trimmed oscillator is available. All models are warranted for one year

K. \& S. Enterprises

P.O. Box 741, Mansfield, MA 02048

Model RP receiver package
Model RP + receiver package
Model CB

- Covers 100 to 185 MHz in 1 kHz steps with thumbwheel dial • Accuracy 1 part per 10 million at all frequencies • Internal FM adjustable from 0 to 100 kHz at a 1 kHz rate - Spurs and noise at least 60 dB below carrier - RF output adjustable from 5.500 mV at 50 ohms • Operates on 12 Vdc @ $1 / 2 \mathrm{Amp}$ • Avail able for immediate delivery $\bullet \$ 349.95$ plus shipping - Add-on Accessories available to extend freq range. add infinite resolution, voice and sub-audible tones. AM, precision 120 dB calibrated attenuator - Call for details - Dealers wanted worldwide

VANGUARD LABS
196-23 Jamaica Ave., Hollis, NY 11423
Jamaica Ave., Holis, Phone: (212) 468-2720

July 31 thru August 13, 1982
Our 23rd year
Have trouble finding time to study for Upgrading? Do it on your vacation at the
OAK HILL ACADEMY RADIO SESSION in the
Blue Ridge Mountains of Virginia
Two weeks of intensive Code and Theory Study starting at your level.

- Novice to General
- General or Technician to Advanced
- Advanced to Amateur Extra

Expert Instructors - Friendly Surroundings - Excellent Accommodations. Ham Lab set up for all to use.
"'A Vacation with a Purpose'
C. L. PETERS, K4DNJ, Director

Oak Hill Academy Amateur Radio Session P. O. Box 1461, N. Myrtle Beach, SC 29582 (803) 272.6428

Name \qquad Call

Address
City/State/Zip

These transients usually are caused by atmospheric static discharges or nearby lightning strikes.
The new Model 1549 Surge Shunt can be used with both receivers and transceivers having up to 200 watts output.
Convenient UHF type coaxial connections are supplied.

Price is $\mathbf{\$ 2 4 . 9 5}$
The arrester "pill" element has a long life, but can be easily and economically replaced if necessary.
Credit-Card buyers may call toll free 1-800-543-5613
 In Ohio, or for information call 1.513-866-2421

R. L. DRAKE COMPANY

540 Richard Street, Miamisburg, Ohio 45342

IMPROVE YOUR MORSE SKILLS

WITH THE

MODEL KT-1

 KEYER TRAINERFEATURES INCLUDE:

- PRECISE SPEED CONTROL
- 24,000 CHARACTER PSEUDO-RANDOM LOOP WITH 10 STARTING POINTS AND FREE ANSWER BOOK
- EXCLUSIVE AUTOMATIC SPEED INCREASE
- RANDOM PRACTICE MODE
- OPERATES FROM 12 VDC
call or visit:

Brings you the Breakthrough!

Antenna Baluns

350 watts PEP. 1.7 to 30 MHz . Low cost. High performance. Just right for transceivers. Specify desired ratio from table below:

Model	Ratio	Matches 50 ohms to
PB-1	$1: 1$	50 ohms
PB-1.5	$1.5: 1$	75 ohms
PB-2	$2: 1$	100 ohms
PB-3	$3: 1$	150 ohms
PB-4	$4: 1$	200 ohms
PB-5	$5: 1$	250 ohms
PB-6	$6: 1$	300 ohms
PB-7.5	$7.5: 1$	375 ohms
PB-9	$9: 1$	450 ohms
PB-12	$12: 1$	600 ohms
PB-16	$16: 1$	800 ohms

1 Kw CW, 3Kw PEP input. $1: 1$ or $4: 1$

2 Kw CW, 6 Kw PEP input. $1: 1$ or $4: 1$

2 Kw CW, 6 Kw PEP input. 1:1 or $4: 1$

To order, add $\$ 3$ shipping/handling. California residents add sales tax.

Palomar Engineers

 Phone: (714) 747-3343Smad talk

Processor, IF shift, N/W switch, affordable

An incredibly compact, full-featured, reasonably priced, all solid-state HF SSB/CW transceiver for both mobile and fixed operation. It covers 3.5 to $29.7 \mathbf{M H z}$ (including the three new Amateur bands) and features digital display, IF shift, speech processor, and narrow/wide filter selection on both SSB and CW.
TS-130SE FEATURES:

- 80-10 meters, including three new bands Covers all Amateur bands from 3.5 to 29.7 MHz , including the new 10,18 , and $24-\mathrm{MHz}$ bands. Receives WWV on 10 MHz . VFO covers more than 50 kHz above and below each $500-\mathrm{kHz}$ band.
- Two power versions...easy operation TS-130SE runs 200 W PEP/160 W DC on $80-15$ meters, and 160 W PEP/ 140 W DC on 12 and 10 meters. TS-130V runs 25 W PEP/20 W DC input on all bands. Solidstate, wideband final amplifier eliminates transmitter tuning; receiver wideband RF amplifiers eliminate preselector peaking.
- Digital display built-in

Six-digit green fluorescent tube display indicates operating frequency to 100 Hz , external VFO or fixed-channel frequency. RIT shift, and CW transmit-receive shifts. Analog subdial back-up.

- Built-in Speech Processor

Increases audio punch and average SSB output power.

Matching accessories for fixed station operation:

- PS-30 base station power supply (remotely switchable ON or OFF with TS-130SE power switch). Other accessories not shown:
- FA-4 fan unit for TS-130SE
- YK-88C (500 Hz) and
- YK-88SN (1.8 kHz) narrow SSB filter. HC-10 world digital clock
- AT-130 compact antenna tuner 180-10 - MC-30S and MC-35S noise
meters, including 3 new bands)
- MB-100 mobile mounting brackets
- KPS-21 base station power supply (also for TS-130SE)
- TL-922A linear amplifier headphones
- SP-120 external speaker
- VFO-120 remote VFO
- MC-50 $50 \mathrm{k} \Omega / 500 \Omega$ desk microphone
- PS-20 base-station power supply for TS-130V
- PC-1 phone patch
- IF shift circuit Very effective in eliminating interfering signals, by placing them outside the IF passband.
CW narrow/wide selection " $\mathrm{N}-\mathrm{W}$ " switch allows selection of wide or narrow bandwidths. Wide CW and SSB bandwidths are the same. Optional YK-88C $(500 \mathrm{~Hz})$ or $\mathrm{YK}-88 \mathrm{CN}(270 \mathrm{~Hz})$ filter may be installed for narrow CW.
- SSB narrow selection
" $\mathrm{N}-\mathrm{W}$ " switch allows selection of narrow SSB bandwidth to eliminate GRM, when optional YK-88SN (1.8 kHz) filter is installed. (CW filter may still be selected in CW mode.)
- Sideband mode selected automatically LSB on 40 meters and below; USB on 30 meters and above. SSB REVERSE position on MODE switch.
- RF Attenuator, built-in Allows optimum rejection of IM distortion.
- Single conversion PLL system Provides improved stability and spurious characteristics.
- Protection circuit for final amplifier. For maximum reliability, the final amplifier is protected by circuitry that monitors VSWR and temperature. (TS-130V, VSWR only.) Output power is reduced when abnormal operating conditions occur. If especially severe operation is anticipated, optional cooling fan, model FA-4, may be added. Model TS-130S, with FA-4 installed, is also available.
cancelling hand microphones
- MC-60 deluxe desk microphone
- SP-40 compact mobile speaker
- HS-4, HS-5, and HS-6 headphones
- Effective noise blanker

Eliminates pulse-type noise.

- Compact and lightweight

Only $3-3 / 4 \mathrm{H} \times 9-1 / 2 \mathrm{~W} \times 11-9 / 16 \mathrm{D}$ (inches): weight 12.3 lbs .

- Other important features include: VOX for SSB, CW semi break-in with sidetone, one fixed channel, and 25 kHz marker.

More information on the TS-130 Series is available from all authorized dealers of Trio-Kenwood Communications 1111 West Walnut Street Compton. California 90220.

F-500

"Now hear this"...digital display, easy tuning

The R-600 is an affordably priced, high

 performance general coverage communications receiver covering 150 kHz to 30 MHz in 30 bands. Use of PLL synthesized circuitry provides maximum ease of operation.R-600 FEATURES:
$=150 \mathrm{kHz}$ to 30 MHz continuous coverage, AM, SSB, or CW.
. 30 bands, each 1 MHz wide, for easier tuning. - Five digit frequency display, with 1 kHz resolution

- 6 kHz IF filter for AM (wide), and 2.7 kHz filter for SSB. CW and AM (narrow)
- Up-conversion PLL circuit, for improved sensitivity, selectivity, and stability.

Communications type noise blanker elimi-
nates "pulse-type noise

- RF Attenuator allows 20 dB attenuation of strong signals.
- Tone control. - Front mounted speaker.
" S " meter, with 1 to 5 SINPO " S^{\prime} scale, plus standard scale.
- Coaxial and wire antenna terminals.
$\cdot 100,120,220$, and 240 VAC. $50 / 60 \mathrm{~Hz}$. Selector switch on rear panel.
- Optional 13.8 VDC operation, using DCK-1 cable kit.
- Other features include carrying handle. headphone jack, and record jack.
Optional accessories for R-600 and R-1000:
- DCK-1 DC Cable kit. SP-100 External

Speaker.

- HS-6. HS-5, HS-4 Headphones.
- HC-10 Digital World Clock.

R-1000

High performance, easy tuning, digital display

The R-1000 high performance communications receiver covers 200 kHz to 30 MHz in 30 bands. An up-conversion PLL synthesized circuit provides improved sensitivity, selectivity, and stability.
R-1000 FEATURES:
Covers 200 kHz to 30 MHz .

- 30 bands, each 1 MHz wide.
- Five-digit frequency display with $1-\mathrm{kHz}$
resolution and analog dial with precise gear dial mechanism
- Built-in 12 -hour quartz digital clock/timer.
- RF step attenuator.
- Three IF filters for optimum AM. SSB, CW.
- Effective noise blanker. - Tone control.
- Built-in 4-inch speaker. • Dimmer switch.
- Wire and coax antenna terminals.
- Voltage selector for $100,120,220$, and 240

VAC. Operates on 13.8 VDC with optional DCK-1 kit

TS-5305

"Cents-ational"...IF shift, digital display, narrow-wide filter switch The TS-530S SSB/CW transceiver covers 160-10 meters using the latest, most advanced circuit technology, yet at an affordable price.
TS-530S FEATURES:

- 160-10 meters, LSB, USB, CW, all amateur frequencies, including new 10,18 , and 24 MHz bands. Receives WWV on 10 MHz .
- Built-in digital display (six digits. fluorescent tubes), with analog dial.
- IF shift tunes out interfering signals.
- Narrow/wide filter selector switch for CW and/or SSB - Built-in speech processor, for increased talk power.
- Wide receiver dynamic range. with greater immunity to overload
- Two 6146B's in final, allows 220W PEP/180 W DC input on all bands.
- Advanced single-conversion PLL, for better stability, improved spurious characteristics.
- Adjustable noise-blanker, with front panel threshold control.
- RIT/XIT front panel control allows independent fine-tuning of receive or transmit frequencies.
Optional accessories:
- SP-230 external speaker with selectable audio filters.
- VFO-240 remote analog VFO
- VFO-230 remote digital VFO.
- AT-230 antenna tuner/SWR/ power meter.
- MC-50 desk microphone
- KB-1 deluxe VFO knob.
- YK-88C (500 Hz) or YK-88CN (270 Hz) CW filter.
- YK-88SN (1.8 kHz) narrow SSB filter.

$\square \square \square \square$

The TS-660 "GUAD BANDER" covers 6, 10, 12, 15 meters.

- FM, SSB (USB), CW, and AM
- Dual digital VFO's
- Digital display
- IF shift built-in
- 5 memories with memory scan - UP/DOWN microphone
- All-mode squelch
- Noise blanker
- CW semi break-in/sidetone
- 10 W on SSB, CW, FM;

4 W on AM.
Optional accessories:

- PS-20 power supply
- VOX-4 speech processor/VOX
- SP-120 External speaker
- MB-100 Mobile mount
- YK-88C, YK-88CN CW filters
- YK-88A AM filter.

1982 U.S. RADIO AMATEUR CALLBOOK

No Amateur station is complete without the very latest Callbook! The 1982 U.S. Callbook features over 390,000 up-todate names and addresses right where you want them - at your finger tips. Also contains many helpful operating and station aids. © 1981. Softbound
\square CB-US $\quad \$ 18.95+\$ 3.05$ shipping (U.S.A.) $=\$ 22.00$

1982 FOREIGN CALLBOOK

If DX is your "thing' then you need a copy of the 1982 Foreign Callbook. Getting a QSL card can be quite a chore without proper names and addresses. Make sure you don't miss out. © 1981. Softbound
\square CB-F $\quad \$ 17.95+\$ 3.05$ stipping (U.S.A.) $=\$ \mathbf{2 1 . 0 0}$
Get 'em both! You save money too! \square CB-USF

Only $\$ 39.95$

1982 ARRL RADIO AMATEUR'S HANDBOOK

Internationally recognized, universally consulted. It's the all purpose volume for radio. Jam packed with information, drawings, and illustrations that are useful to the Amateur and professional alike. Get your copy today. © 1981

\square AR-HB82

\square AR-BB82

Softbound \$10.00
Hardbound \$15.75

HOW TO BUILD HIDDEN, LIMITED

 SPACE ANTENNAS THAT WORK Bran by R. J. TraisterSpace problems limiting your signal? It doesn't have to be that way. How-to book complete with plenty of projects on how to put out that big signal. Projects include suspended multi-band vertical, window antenna, attic dipole, 20 m indoor antenna, two meter coaxial and much more. Softbound 308 pages. © 1981
$\square \mathrm{T}$-1254

PACKET RADIO

by Robert Rouleau, VE2PY and lan Hodgson, VE2BEN

Packet Radio could be one of the most important technological develop ments in Amateur Radio this decade. Can you imagine getting your newspaper or paying bills through a computer terminal linked by radio with other computers? It's happening, now. And you should make yourself aware of all the amazing things packet radio can do tor you. This comprehensive sourcebook explains all the principles of packet radio in an easy-to-understand, non-technical language. You'll learn all about modulation, bandwidths, polling, random access, data rates and more. Plus there is an overview of how the computer is integrated into the packet concept with discussions on the software and peripheral equipment that is used. Finally, the authors give you a detailed description of the packet system in use in the Montreal, Quebec area. ©1981, 1st Edition, 304 pages
$\square \mathrm{T}-1345$
Softbound $\$ 11.95$

RADIO HANDBOOK

by Bill Orr, W6SAI 22ND EDITION
The Radio Handbook has been an electronic best seller for over 45 years! This brand new edition reflects all of the latest state-of-the-art advances in a comprehensive, single source reference book. An invaluable aid for Hams, techni cians, arid engineers alike. Also chock-full of projects and other ideas that are of interest to all levels of electronics expertise. 1136 pages. ©1981. 22nd edition
$\square 21874$
Hardbound \$34.95

BAND-AIDS
 by James E. Dersch, KB7FT

This revised edition of Band-Aids contains a collection of the most often used operating aids, charts and tables that every Ham needs. Not only does it cover the fundamentals of operating, but it also contains operating aids for CW Communi cations, WWV and WWHH broadcasting schedules, DXCC check sheet and international prefixes, plus many other features. A handy reference data section includes conversion tables, metric data and abbreviations. © 1981, 156 pages \square CC-BA Spiralbound $\$ 9.95$

COMPLETE HANDBOOK OF RADIO RECEIVERS

by Joseph J. Carr, K4IPV
All-in-one manual. Contains complete data on almost all receivers in use today. Written in an easy-to-read manner, this handbook includes basic receiver types; specifications for the latest ideas in parameter measurements such as sensitivity, noise figures, dynamic range, and selectivity measurements Also covered are all types of modern receiver circuits, and a wide range of troubleshooting ideas for both solid-state and vacuum tube receiver circuits. (c) 1980,300 pages.
$\square \mathrm{T}$-1182 Softbound \$9.95
Send today for a free book catalog. Chock-full of interesting books on all aspects of Radio Communications.

Can't wait?

CALL TODAY

For books other than US and Foreign Callbooks, please add \$2.50 to cover shipping and handling.

Ham Radio's Bookstore Greenville, NH 03048

CODE PRACTICE TAPES FROM HRPG Practice copying Morse Code anytime, anywhere. Whether you're upgrading your present license or just trying to up your code speed, a large assortment allows you to choose exactly the kind of practice
you need.
each tape $\$ 4.95$
2/\$8.95
3/\$12.95

QSO SERIES

Planning to upgrade present license to General or Extra Class? Both QSO tapes are reproductions of actual on-the-air CW contacts, similar in content to the FCC code exams. Both tapes are recorded at speeds faster than those encountered in the exams. Get the best practice for that all-important code test by mastering these tapes.
A 90 minute tape of 25 QSOs sent at 15 wpm .
\square HR-QSO-1
$\$ 4.95$
A 90 minute tape of 30 QSOs sent at 22.5 wpm .
\square HR-QSO-2
$\$ 4.95$

PLAIN LANGUAGE TEXT SERIES

Copy code in plain language text, any time of the day. The PLT series is excellent for those who are learning code by the word method. Improve sending speed and accuracy by using the provided text and a code practice oscillator to send in time with the tape.
\square HR-PLT1 - \$4.95
15 wpm code for 20 minutes
18 wpm code for 20 minutes
22 wpm code for 20 minutes
25 wpm code for 20 minutes
\square HR-PLT2 - \$4.95
30 wpm code for 20 minutes 35 wpm code for 15 minutes 40 wpm code for 15 minutes 45 wpm code for 15 minutes 50 wpm code for 15 minutes

Please add $\$ 1.00$ for shipping.
Ham Radio's Bookstore
Greenville, NH 03048

COMPARE our Filters for PRICE \& QUALITY
with Fox-Tango. Yaesu. Kenwood. Drake. Heath. Collins. etc. with Fox-Tango

In the proud tradition of the S/Line and KWM-2: Collins KWM-380.

What is "tradition"? Fifty years of HF communications experience and a high technology base that makes us an industry leader. Plus added value like the KWM-380 12-month warranty and 24-hour factory "burnin" followed by individual testing and calibration of each transceiver.

The Collins KWM-380 gives you "tradition" in one box. Microprocessor control provides operation from the front panel or optional remote interface connector. Plug-in read-only-memory I.C. allows the addition
of WARC band changes. Built-in AC/DC power supply lets you operate almost anywhere.

Rate selectable tuning to 10 Hz with frequency memory and split VFO provide excellent operational flexibility.

The Collins KWM-380. A sound investment that offers excellent resale value. See it at your authorized dealer. Collins Telecommunications Products Division, Rockwell International, Cedar Rapids, Iowa 52498. Phone 319/395-5963. Telex 464-435.

HAM CALEN	DAR					March
SUNDAY	MON	tues	WED	THUR	FRI	Saturday
	5asw		3	边	5	\%
7	8	$2=$ 9 9	10		12	
	Maze 15		17	18		
21	22	$\begin{array}{r} 2 \\ 2 \\ 2 \\ 2 \end{array}$	24	25	26	
	29	$\begin{array}{r} 30 \\ 30 \\ 30 \\ 30 \end{array}$	31			Smamsame

operation upgrade: part 5

The fifth part

in a continuing series designed to help you upgrade your ticket

This series of articles is being presented to help you pass a higher grade Amateur license exam, to give you the basic radio theory needed to pass a Novice, Technician/General, or Advanced class license test. After these basics are presented in as simple a form as possible, there will be articles covering Extra class license subjects.

This month we will examine the use of some active devices in oscillator circuits to generate either radio frequency (rf $=10 \mathrm{kHz}$ to over 300 GHz) ac, or audio frequency (af $=20$ to $20,000 \mathrm{~Hz}$) ac.

a basic oscillator

There are a variety of methods of generating alternating current. The electromagnetic machine used to develop power-frequency ac is called an alternator. It must be rotated by some type of motor. The motor rotation may be developed by water wheels, windmills, electric motors, or gasoline engines. The rotation of a magnetic pole past coils of wire induces ac voltages into the coils.

Although in the early days of radio such electromechanical alternators were used to generate radio frequency ac for code transmissions up to 25 or more kHz by using many field poles, alternators today are usually limited to supplying power in the 30 to 800 Hz range. The lower the frequency of the ac generated by an alternator the more iron required in the machine and in the equipment with which it is used. Aircraft ac systems use 400 to 800 Hz ac to decrease the weight of their alternators and other components.

The oscillators used to generate af or rf ac in Amateur Radio equipment use either coils and capacitors, or resistors and capacitors, to determine the frequency at which the circuits can oscillate. Active devices are used to produce an amplified ac energy that is fed back to keep the circuits producing ac. There are a

fig. 1. A basic JFET amplifier produces a 180° phase reversal of any input signal voltages.
great many types of oscillator circuits, but they usually require an in-phase (0° or 360°) feedback circuit involving either one or two active device stages. We will discuss some single device oscillator circuits first.

Before starting on oscillator circuits, let's look at the phase reversal that occurs in a standard amplifier, such as the grounded source amplifier shown in fig. 1. It is called a grounded source circuit because the source is held at ac ground potential by the bypass capacitor C_{1}. The input signal is fed to the gate, and the amplified output signal appears at the drain of the JFET. Suppose a positive-going signal is fed to the gate (indicated by the + in the diagram). Such a positive voltage will produce an increased drain current (I_{D}) through R_{L}. With an increase of I_{D} through R_{L} the voltage-drop across this resistor will increase. When the gate is driven positive the increased I_{D} through R_{L} produces an increased voltage-drop across R_{L}, resulting in the drain voltage becoming less positive. This is the same as saying the drain terminal becomes more negative. So, whatever polarity signal is fed to the gate will show up as an amplified signal of opposite polarity (180° out of phase) at the drain. Thus, the basic amplifier shifts the phase of any signal fed to it by 180°.

Armstrong oscillators

One of the oscillator circuits that can be used in a one-active-device (FET, BJT, VT) circuit is the Armstrong oscillator, fig. 2. In this circuit, if ac is developed in the $L_{1} C_{1}$ circuit for any reason, some of this ac voltage is fed through C_{2} to the gate; it's amplified, and shows up across the drain circuit load, in this case the "tickler" coil. Capacitor C_{bp} bypasses one end of the tickler to ground, completing the ac drain circuit through the tickler to the source. The dc drain circuit is from D, through the tickler, RFC, $V_{D D}$, to S. Can you see that if the tickler coil is placed close to L_{1}, any expanding and contracting magnetic fields from it would induce an amplified ac into L_{1} ? If the tickler turns are reversed, any ac voltage induced into L_{1} would then be reversed 180° in phase. If the tickler is wound one way, ac induced into L_{1} by varying currents in the tickler would be in phase (regenerative) and would add to any ac present in the LC circuit. The whole stage is then working to keep electrons in the $L_{1} C_{1}$ circuit oscillating. If the tickler turns are reversed, the ac EMF induced into L_{1} would now be out of phase (degenerative) and would prevent the LC circuit from oscillating. To start the LC circuit oscillating at its normal resonant frequency, assuming regenerative feedback, it is necessary only to close the switch in the drain circuit. This produces a dc surge through the tickler coil. The result is a sud-

fig. 2. Armstrong oscillator circuit to generate rfac.
denly expanding magnetic field from the tickler that induces energy into the LC circuit and starts electrons oscillating back and forth in it. (The tickler coil usually has about one-fourth as many turns as are used in the LC circuit coil.)

Back in the twenties, the Armstrong circuit using a triode vacuum tube was a very popular high-sensitivity oscillating detector and is still used as a 160,80 , and 40 meter detector-receiver by experimenting Amateurs. When used as a receiver, C_{bp} is made variable to control feedback and the point of oscillation. Earphones are connected in series with the switch.

tuned-input-

tuned-output oscillators

The Armstrong circuit is an inductive feedback oscillator. The tuned-input-tuned-output circuit shown in fig. 3 is a capacitive feedback oscillator. Both of its LC circuits are tuned to the same frequency, 3.7 MHz for example. When the switch is closed, $\mathrm{L}_{2} \mathrm{C}_{2}$ has an "exciting" shock of current developed in it, which drives this circuit into flywheel-type ac oscillations at 3.7 MHz . This ac frequency is fed to the $L_{1} C_{1}$ circuit by any natural drain-to-gate capacitance that might exist, or by distributed capacitance of circuit wires being near each other, or, if necessary, by adding a $5-\mathrm{pF}$ feedback capacitor, C_{fb}, shown dashed.

In the early days of Amateur Radio this "selfexcited" oscillator circuit, using a triode VT, was known as a TPTG (tuned-plate-tuned-grid) oscillator, and was used as a simple CW transmitter. Today it is almost never used as an oscillator unless a quartz crystal (xtal) is substituted for the $L_{1} C_{1}$ circuit. However, you may run up against this kind of oscillator in receiver or transmitter amplifier stages that have tuned input and tuned output circuits in them. If care is not taken to prevent capacitive feedback coupling in such amplifiers they may begin to oscillate instead of amplify! This is very undesirable. Neutralization, a form of degeneration discussed in later articles, must be used to prevent such oscillations.

fig. 3. Tuned-input-tuned-output self-excited oscillator, or crystal oscillator if a crystal is being used as the input tuned circuit.

If a wafer of quartz crystal is sliced out of raw quartz, is ground perfectly flat, and is silver-plated on its two flat surfaces, it will have some very interesting characteristics. If the two plates are pressed together a voltage will be developed between the two plates. As the plates are released an opposite potential voltage will be developed between them. Conversely, if a dc voltage is applied across the plates the crystal wafer will contract. If the opposite polarity voltage is applied the wafer will expand.
These two reciprocal mechanical-electrical effects operate in much the same way as the electrostaticelectromagnetic effects of an oscillating LC circuit. The crystal must be ground precisely to the proper physical dimensions to vibrate and oscillate at the desired frequency, just as the inductance and capacitance values of an LC circuit must be chosen to produce oscillations at the desired frequency. In this circuit the crystal acts as a very high-Q LC circuit. Thus, by substituting the crystal (dashed) for the "selfexciting" $L_{1} C_{1}$ circuit in fig. 3, you would develop a very stable (unchanging frequency) oscillator. Although a few picofarads of capacitance across a crystal may lower its resonant frequency a few hundred hertz, crystals are considered to produce singlefrequency oscillations. If you wish to change frequency when using a crystal-oscillator-type transmitter, you must switch in a crystal ground to some other frequency. Crystals are usually encapsulated in tiny plastic or metal holders, or cans, with two connector pins protruding out the bottom. The pins fit into special crystal sockets so that crystals of different frequencies may be plugged into the circuit when a change of frequency is required.

Hartley oscillators

One of many variable frequency oscillator (VFO) circuits is a combination inductive capacitive feedback circuit called a Hartley oscillator, fig. 4. Can you see that the resonant frequency in this LC circuit would be determined by C_{1} across both L_{1} and L_{2} in series? Note that L_{2} is actually a tickler coil of an Armstrong portion of this circuit. Also, that $\mathrm{C}_{1}, \mathrm{C}_{2}$ and C_{3} form the drain-to-gate feedback capacitance
for a capacitive-feedback-type of oscillator. Where on the coil the tap is placed determines the power output and the frequency stability of the oscillator. The fewer tickler turns the lower the power output but the better the frequency stability. The more tickler turns the higher the power output but the poorer the stability. A good compromise is to have L_{1} with about twice as many turns as L_{2}. The radio-frequency choke coil (RFC) prevents the capacitance C_{4} across the $V_{D D}$ power supply from ac-shorting the tickler coil (L_{2}), which would stop oscillations.

Capacitor C_{2} and resistor R_{1} make up the class C (discussed later) grid-biasing circuit. Within limits, the higher the value of R_{1} the greater the negative bias, the lower the power output, but the better the stability. R_{1} may range from 10 kilohms to perhaps 2 megohms, depending on the requirements of the oscillator. C_{2} is usually 50 to 100 pF . Although shown with a JFET, BJTs and VTs can be used in these circuits. The low impedance of the input circuit of a BJT may require the base connection (through C_{2}) be tapped down L_{1} about half way.

Colpitts oscillators

The most popular of today's VFOs is the Colpitts, fig. 5, or one of its many variations. Whereas the Hartley uses a tap about two-thirds of the way down its LC circuit inductance, the Colpitts taps down the capacitance of the LC circuit by making C_{3} about twice the value of $\mathrm{C}_{2}, \mathrm{C}_{1}$ in this diagram is a small trimmer capacitor used to tune the oscillator a relatively few kilohertz (across a single Amateur band, for example). Energy can be taken capacitively from the top of the LC circuit in any of these oscillators, or inductively by using a secondary coil coupled to L_{1}.

You are much more likely to see the Clapp form of

fig. 4. Hartley oscillator, shunt fed (no I_{D} flowing through a tuned circuit).

fig. 5. Colpitts shunt-fed oscillator.

fig. 6. Clapp oscillator, a form of Colpitts.

fig. 7. Ultra audion VHF and UHF oscillator becomes a Pierce high-frequency oscillator if a crystal is used as the resonant tank circuit.
the Colpitts oscillator, fig. 6. Such a circuit permits the tuning capacitor, now in series with L_{1}, to have one of its terminals grounded. This is very desirable because it makes insulated tuning shafts from panel knobs to the tuning capacitors unnecessary. Usually in this circuit only the relatively small if ac voltage developed across C_{3} (and the RFC) is used as the if ac output. As a result, these oscillators are usually followed by a low-power if amplifier to bring the oscillator ac up to a usable amplitude. Such a "buffer" amplifier also tends to isolate the oscillator from external circuits which might affect the oscillator's frequency. You will usually find a fixed capacitor, shown dashed, connected across C_{1} to increase the strength and stabilize the output amplitude of Clapptype oscillators.
The higher the frequency of oscillation the smaller the required capacitances (and inductances) of any oscillator circuit. For example, an oscillator used in the VHF range (30 to 300 MHz) or higher is the "ultraaudion," which was popular with vacuum tubes land operates with FETs), fig. 7. Here the very small value inter-electrode plate-to-cathode and grid-to-cathode capacitances, shown dashed, act as C_{2} and C_{3} across the LC circuit of a Colpitts oscillator. Of more importance, a crystal, also shown dashed, can be used in place of the LC circuit, providing a simple Pierce-type crystal oscillator which requires no tuning coil or capacitor at all. The Pierce-type crystal oscillator is quite popular.
Note that the oscillator circuits shown are all devel-
oping rf ac. Af ac oscillator circuits would be similar but would use iron or ferrite cored inductors and relatively larger inductance and capacitance values to enable oscillations at such lower frequencies.

harmonic and overtone oscillators

If it is desired to have crystal-controlled oscillations in the $28-\mathrm{MHz}$ range, the crystal for such a high frequency will be very thin and fragile. For low power circuits, such as with small transistors, crystals at this frequency may be practical. More often, lower frequency crystals are used and harmonics of their fundamental frequency of oscillation are picked off. One such circuit is shown in fig. 8. When the $7-\mathrm{MHz}$ drain LC circuit is tuned to the frequency of the crystal lactually to a slightly higher frequency to produce the necessary feedback phasing), the crystal oscillates. The second $\mathrm{L}_{2} \mathrm{C}_{2}$ circuit might be tuned to the third harmonic of 7 MHz , or 21 MHz . However, the if ac power output from this LC circuit will be much less than the power generated at 7 MHz . If the harmonic circuit were tuned to the fourth harmonic of 7 MHz , then 28 MHz if ac would be the output from $\mathrm{L}_{2} \mathrm{C}_{2}$, but at a still lower power level.
The reason harmonic energy can be picked off with this circuit is that the active device is biased to such a high value (class C) that the drain current is developed as very narrow pulses widely separated from the next pulse. As a result, the pulses shockexcite the LC circuits, which may oscillate back and forth several times before the next pulse arrives. If $\mathrm{L}_{2} \mathrm{C}_{2}$ is tuned to the second, third, or fourth harmonic of the crystal frequency, the resonant circuit by its flywheel oscillations will produce very nearly sinewave of ac at that harmonic frequency. The harmonic output will always be an exact whole number multiple of the crystal's oscillating frequency.

While we think of crystals as having a basic fundamental vibration frequency, it is found that they may also oscillate or vibrate in an odd number of layers. That is, a $4-\mathrm{MHz}$ crystal will vibrate longitudinally at 12 MHz (three times 4 MHz), or at 20 MHz (five times

fig. 8. Harmonic output crystal oscillator.

fig. 9. One form of an overtone crystal oscillator.

4 MHz), and possibly at 28 MHz (seven times 4 MHz . To make the crystal oscillate at such overtones the crystal might be connected in series with the tickler coil of a shunt-fed Armstrong circuit, fig.
9. This circuit is said to be shunt-fed because the crystal, a nonconductor, forces pulsating drain dc to be fed from the drain to $+V_{D D}$ through RFC instead of through the tickler. The tickler, with the crystal in series with it, can have only rf ac flowing in it. The circuit shown back in fig. 2 is a series-fed oscillator, because I_{D} is flowing through one of its coils.

Another overtone circuit can be developed by adding a crystal in series from the FET source to the LC center-tap of the Colpitts oscillator shown in fig. 6. The LC circuit of the oscillator must be tuned to the overtone, not the fundamental frequency, of the crystal. Actually, the overtone frequency is near, but is never an exact multiple of, the crystal's fundamental oscillation frequency. If overtone crystals are required at a given frequency, the crystal manufacturer must know which overtone is to be used and the desired operating frequency, in order that the crystal can be ground to a correct fundamental frequency.

Another popular type of stabilized crystal oscillator, called a phase-locked loop (PLL), will be explained in a later article.

RC oscillators

There is a family of oscillators which fall into the category of $R C$ oscillators, because they depend on

fig. 10. Multivibrator, RC, or relaxation oscillator.
the charging and discharging time of capacitors through resistances to determine the frequency of their oscillations. In most cases these oscillators use two cascaded (one following the other) single-ended grounded-source (-emitter, -cathode) active devices with some means of feeding back from the output of the second stage to the input of the first, as in fig. 10. Since both stages are grounded-source types, there is 180° phase shift through each stage, or a total of 360° (same as 0°, or in-phase) feedback by C_{2} from the drain of Q_{2} to the gate of $\mathrm{Q}_{1} . \mathrm{C}_{1}$ alternately charges and discharges through R_{2}, and C_{2} alternately charges and discharges through R_{1}. The values of these RC pairs determine the frequency of oscillation. If C and R are both large values the time of charge and discharge is long, and the oscillation frequency is low. With small C and R pairs the oscillation frequency will be high.

The voltage-drops developed across R_{1} and R_{2} will be relatively slow charging and fast discharging, resulting in sawtooth-shaped ac waves available from the tops of these resistors. Q_{1} and Q_{2} alternately turn on and turn off as the bias values change from high values to the point where drain current just begins to flow. Since the circuit is regenerative (in-phase feedback), once drain current starts to flow the transistors switch on (to maximum I_{D}) almost instantaneously. As a result, voltages taken from the drain terminals will be squarewave pulses of dc caused by the rapid on-off switching of the device. If the output load is coupled through capacitors, the pulses of squarewave dc become squarewave ac cycles in the load. If $R_{1} C_{2}$ has a fast time constant and $R_{2} C_{7}$ has a slow time constant, a narrow pulse will be developed by Q_{1} and a wide pulse will be produced by Q_{2}. Such a circuit can produce narrow pulses from Q_{1} spaced relatively widely apart in time. Narrow pulses of this type can be used as triggering signals for some other circuit.

FCC test topics

The following Novice test topic is discussed in this article, but should be understood by Technician/ General and Advanced applicants also:

- quartz crystals, appearance, applications, symbol.

The following Advanced class test topics are discussed in this article:

- oscillators, various types, applications, stability.

For more information on these subjects it is recommended that you refer to a textbook such as Electronic Communication, by Robert L. Shrader, McGraw-Hill Book Company, available through Ham Radio's Bookstore, and to radio handbooks.
ham radio

A $=$ A . . . FIRST IN

- INNOVATION
- QUALITY DESIGN and CONSTRUCTION
- RELIABILITY
- SERVICE

AEA INVITES YOU TO SEE OUR PRODUCTS AT QUALITY DEALERS THROUGHOUT THE U.S. AND CANADA.

FOR DETAILED INFORMATION ON OUR PRODUCT LINE CONTACT ADVANCED ELECTRONIC APPLICATIONS, INC., P.O. BOX 2160, LYNNWOOD, WA 98036. CALL 206/775-7373.

AEA
 Brings you the
 Breakthrough!

2300MHz MICROWAVE DOWNCONVERTERS

DOWNCONVERTER

Kit . $\$ \mathbf{\$ 2 8 . 5 0}$
Assembled
$\$ 48.50$
2300 MHz PREAMP
Kit . $\$ 25.00$
POWER SUPPLY
Assembled.
$\$ 35.00$

SATELLITE TV EARTH STATION

- 24 Channel Receiver
- 10^{\prime} Antenna
- Dexcel 120° LNA
Call for details and price
Also Available: Commercial System with
Bogner Antenna $\$ 169.00$

2300 MHz ANTENNA

WITH BOX
FOR DOWN.
CONVERTER
\$27.50

PB RADIO SERVICE
 1950 E. PARK ROW • ARLINGTON, TX 76010

 v/su FOR INFORMATION CALL (800) $433-5169$ $\xrightarrow{2 / 54}$(817) 460-7071

400 W TRANSMITTER

T-368/URT TRANSMITTER rated by the gov't. at
 400 watts AM or 450 watts CW over 1.5 to 20 Mhz . Unit is VFO tuned; power amp has 4-400A final and 1500 pt and 300 pt 10 KV vacuum variable capacitors. Modulator uses two $4-125$ s. Input signal levels: $3-5$ Volts FSK. Requires 115 or 230 VAC 60 Hz 1570 W (CW). 2200 W (AM). $411 / 2 \times 32 \times 31^{\prime \prime}, 650$ lbs. net: 940 lbs sh. in wood crate. Used-good condition. but not operationally checked $\$ 495$.
Manual, partial repro: \$15 when purchased with T-368 BC-939/TN-339 ANTENNA TUNER designed for use with T-368 or BC-610: 85 lbs . sh. Gov't. recond. \$100. Prices F.O.B. Lima, 0. - VISA, MASTERCARD Accepted Allow for Shipping - Write for New 1982 CATALOG Address Dept. HR - Phone: 419/227-6573
FARRRABIO SALES

I WANT YOU

TO GET YOUR LICENSE TUNE IN THE WORLD WITH HAM RADIO
by ARRL Staff
This package contains THE goodies needed by the beginner to get started in Amateur Radio. Assuming that you have no prior knowledge of radio, the reader is taught how to pass the Novice exam, both code and theory, and how to set up a station. Unique code study method makes learning the Morse code easy as $1-2-3$. And it's full of illustrations to help clarify difficult technical points. 160 pages. © 1981. 3rd edition.
AR-HR
$\$ 8.50$
plus $\$ 1$ sthipping
INSTRUCTORS -
Call about ISP Program
(603) 878-1441

Greenville, NH 03048

The Gunnplexer Cookbook

Ever wanted to take a good look at 10 GHz operation? Well, here's your chance. Starting with the basic theory of the Microwave Associate's Gunnplexer transceiver, author Richardson describes in 16 building-block chapters, how to put a functioning Gunn-- plexer system into operation.

Chapters include: Frequency and Power Measurements, Power Supplies, Proportional Temperature Control, I-f Amplifiers, Antennas, Television and Computer Data Links and more.
The Gunnplexer Cookbook has been written for the Radio Amateur or electronic student who has at least modest experience assembling vhf converter or receiver kits. Only very basic test equipment is required.
You've waited a long time for this book. Don't wait any longer. Order your copy today! © 1981 Softbound HR-GP $\$ 9.95$ plus $\$ 1.00$ for shipping.

Ham Radio Publishing Group Greenville, New Hampshire 03048

QRP Corner

 Kits \qquadFun Oscillator (73 2/82) 80 or 40 Meter, VFO for FunMitter
40 Meter Transceiver ($\mathrm{hr} 4 / 80$) 40 Meter, 1 watt output IARU Transmitter (QST 12/78) 20 Meter, 6 watt output IARU Receiver (QST 4/78) 20 Meter

PC Boards
Fun-Mitter ($732 / 81$) 80 or 40 Meter, 5 watt output Fun-Ceiver $(737 / 81) 80$ or 40 Meter
Boots for the HW-8 (QST 4/79) 80-15 Meter 10.12 watt output

Millen components
Multronics roller inductors Toroids, cores, beads, baluns Variable capacitors
Cardwell-E.F. Johnson
Hammarlund-Millen
Catalog -25 cents

Box 411H, Greenville, NH 03048 (603) 878-1033

UNARCO-ROHN

Self Supporting Towers On Sale!
During March these rugged beauties are being offered at Big Discounts and - we are shipping them freight prepaid! Look over the specifications and pick the unit most suited for your needs. Call us to place your order with Mastercard/Visa or write and include your check for quick shipment - Freight Prepaid!
Save even more - include antenna and rotor of your choice with the order and we will ship them along freight prepaid also! How's that for good old-fashioned savings?

FREIGHT PREPAID

Towet Model	$\left.\begin{array}{\|c} \text { Tower } \\ \mathrm{HL} \end{array} \right\rvert\,$	Load Rating	$\begin{array}{\|c\|} \hline \text { Ship } \\ \text { Weight } \\ \hline \end{array}$	Tower Base	$\left.\begin{array}{\|l\|} \hline \text { Tower } \\ \text { Price } \end{array} \right\rvert\,$	$\begin{array}{\|l\|} \hline \text { Base } \\ \text { Price } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { Total } \\ \text { Price } \end{array}$
H8X40	40 tt	10 sq tt	164	BXB6	269	24	293
H8X48	48 ft	10 sq ft	303	BX87	349	26	375
H8X56	56 ft	10 sq ft	385	BX88	419	30	449
HD8X40	40 ft	18 sq ft	281	BXB7	313	26	339
H0BX48	48 tt	18 sq th	363	BX88	399	30	429

TEXAS TOWERS

A Divimon or rexas ne oramantons, me.
1108 SUMMIT AVE, SUITE 4-PLANO, TEXAS $7 S 074$ Mon.-Fri.t e:30 a.m.- 5:30 p.m. Saturday: 9:00 a.m. 1:00 p.m. TELEPHONE: (214) 422-7306

external microphone for the TR-2400

My new TR-2400 finally arrived, complete with earphone, charger, and battery pack. After I spent an hour playing with the buttons and learning how to use the controls, it was on the air, and the reports started coming in: "Super audio quality," "Sounds great," and "Terrific speech quality!" The 2-meter synthesized handheld made by Kenwood certainly met all my expectations.
After a few weeks of use at home, on a trip, and in the car, I realized that an external microphone would be a valuable addition. Why pick up the whole set, when only the microphone has to be used? A quick review of the instruction manual revealed that Kenwood recommended using a 2 -kilohm capacitor microphone, or else a dynamic microphone with a series $0.47-1.0 \mu \mathrm{~F}$ capacitor to block dc voltage. In addition, the microphone cable must be equipped with an external $1 / 8$-inch miniature and a $3 / 32$ inch microminiature plug (furnished as accessories with the radio) to mate with the external microphone and standby jacks.

Looking through my collection of microphones, I found a capacitor microphone element (removed from an old cassette recorder) and two dynamic microphones, one of which had the correct mating plugs used in the same cassette player. One by one each microphone was tested, and each time the audio reports came back: "Sounds awful," or "Sounds like you're in a barrel," or "Sounds pretty good, but not as good as the internal microphone." A variety of capacitors and microphone holders
were tried, but to no avail.
The next day I called Kenwood to find out if a small capacitor microphone with mating plugs was available, and was told that there was none at this time. I inquired about the internal microphone and found out it was a small Electret microphone, available as a replacement part for $\$ 5.00$ plus $\$ 2.25$ for shipping and handling. It was stocked as part no. T91-0312-05, "Condenser Microphone." I ordered one from stock, and received it by mail in a few days.

I discovered it really was small, about $1 / 4$ inch (6.4 mm) in diameter! The microphone contains an internal FET amplifier and is designed to operate into a circuit that provides around 7 volts dc through a load resistance. The circuit used by Kenwood from the external microphone jack is shown in fig. 1; the connections to the polarized microphone terminals are shown in the insert.

I decided to mount the microphone
and a microphone holder.
Carefully unsolder the microphone element. A $3 / 4$ inch (19 mm) rubber grommet with a $1 / 4$-inch $(6.4 \mathrm{~mm})$ hole mates snugly with the microphone holder, and also with the capacitor microphone element. As the grommet was too thick, I first cut down the grooved section with a razor, splitting it into two $3 / 4$-inch $(19-\mathrm{mm})$ round washers; one of the resulting washers was used. The microphone element was pressed into the hole. It makes a snug fit, so cement wasn't necessary.
Next, solder the wires carefully to the microphone element, observing polarity. The wire going to the tip of the plug is the positive connection and should be soldered to the smaller of the two microphone terminals (if your microphone doesn't work, try reversing these connections). The rubber grommet can now be pushed into the microphone holder so that it is flush with the end. A piece of $1 / 4$ inch $(6.4 \mathrm{~mm})$ thick foam plastic (the yellow, fluffy variety) can be cut to fit over the element to reduce the effect of wind on the microphone, if it is to be used for mobile work. The foam fits snugly between the element and the screw cap cover.

fig. 1. Circuit used by Kenwood from the external microphone jack. Connections to the polarized microphone terminals are shown in the insert.
element into my cassette microphone holder with the mating cables. An identical microphone is made by Radio Shack, part no. 33-1054 (1980 catalog, \$4.99), "Low Cost Dynamic Microphone." This microphone comes with a slide switch on the case

My first tests with the microphone were, as they say, good news and bad news. The good news was that the audio was excellent - the same high quality as the internal microphone lafter all, it is the same microphone). The bad news was that
microphone gain was too high, a particular problem on one local repeater that provides speech clipping to discourage excess gain.

A check of the transceiver circuit revealed that both the internal and external microphones were controlled by the same gain control. Any adjustment of the control for the external microphone would change the gain for the internal microphone as well. A gain control was needed for the external microphone.

The circuit of fig. 2 was constructed on a breadboard and found to work perfectly to reduce gain. The

fig. 2. Attenuator circuit for reducing microphone gain.
best results were with a 2 k setting of the pot, which was replaced with a 2.2 k resistor. I found $1 / 4$-watt resistors to be nice and compact. A nonpolarized $10-\mu \mathrm{F}$ tubular electrolytic was used as the capacitor. The network was soldered together as a compact array by clipping the leads short. Connect the leads to the microphone element, and tape the bare wires with plastic tape. Another small piece of plastic foam holds the components snugly inside the microphone case without rattling.
The final results were gratifying. No one has been able to tell the difference between the internal and the external microphones - the final test of perfection! A further discussion with Kenwood indicated that the microphone elements are probably quite variable from unit to unit, so the final values of the resistance network (if needed) will hạve to be determined experimentally; but the results make it all worthwhile.

Herb Bresnick, WB2IFV

TI58/TI59 calculator programs

Programs are now available from ham radio for the following items:

antenna bearing and distance between stations

This program gives the necessary antenna pointing information and the distance between locations for any latitude/longitude coordinates on the earth. It should be of great help to DXers, and those interested in meteor scatter work.

EME elevation/azimuth

This program gives small calculators the abilities of a computer. Using information found in the current year's nautical almanac, the program prints out the elevation/azimuth information in 15 -minute increments. Only a few keystrokes of input are needed to run an entire day's output of moon coordinates. This program eliminates tedious manual calculations and paperwork and should prove invaluable to moonbounce operators.
(These programs will be provided free of charge for six months by ham radio upon receipt of an $81 / 2$ by 11 inch envelope and $\$ 1.03$ in postage. After six months, there will be a reprint charge of $\$ 2.50-\mathrm{Ed}$.)

Brian M. Manns, K3VGX

taming set screws

The knob on the function switch of my transmitter kept getting loose on its shaft. The set screw was a slottedhead $6-32$ ($\mathrm{M} 3 / 5$) machine screw. I replaced the set screws with Allenhead units, which cured the problem.

I've worked around machinery all my life and have never had much luck with anything but Allen-head set screws.*

Orville Gulseth, W5PGG

[^6]
electronic timer

Here is a handy little gadget for the ham shack. I'm long winded, so it prevents me from over-talking the local 2 -meter repeaters. The time range is $1-15$ minutes. It also works well as a 10 -minute ID reminder for the low bands.

The LM-741 op amp is the heart of the timer. It is connected as an inverting differential comparator. The reference voltage is taken from the junction of two 10 k resistors. The resultant 6.75 V is connected to the inverting input (pin 3) of the LM-741 (see fig. 3). The 23 mA below V_{cc} 13.8 V is the measured current through the buzzer, transistor, and LED. Thus the LED operates in its safe region with full brightness.

fig. 3. One to 15 -minute timer. Voltages shown are with 01 conducting. Mini-buzzer ($6-9 \mathrm{~V}$) is $\$ 1.95$ at Jameco Electronics, Belmont, California 94002.

The control voltage is picked up from output pin 6 of the LM-741, passes through the $0.5-\mathrm{meg}$ linear time-setting pot to pin 2 . The capacitor is discharged through the 510 ohm resistor, which prevents damage to the LM-741 and the capacitor that would be caused by a dead short. Discharge time is roughly one sec-
ond. S 1 is a dpdt switch to activate and reset the timer.

To operate, switch S1 to ON. Pin 6 voltage should be just below the supply voltage and positive with respect to Q 1 emitter. The transistor is reverse biased and can't conduct. Voltages are: pin 2, 0 volts, pin 3, 6.75
volts, and the transistor base the same as at pin 6. The emitter is negative with respect to base. Collector voltage is zero.

When C1 charge reaches one-half the supply voltage, the LM-741 operates and the voltage at pin 6 drops. Switching-transistor Q1 conducts,
and the following voltages will be present: emitter 3.3 volts, base 2.65 volts, and collector 1.5 volts. The LED and buzzer are then activated. They are pulsed to better catch the user's attention. The transistor bias is 0.65 volt, and current is 23 mA .

Denver V. Tolle, W9EBT

S-line OSK noise

When I initially modified my Collins S-line for CW OSK, I used a circuit described by Shafer. ${ }^{1}$ I found, however, there still existed a certain amount of hash being generated by the exciter, which was picked up by the receiver even when the final amplifiers were cut off. Although far below the level produced by the final amplifiers, it was still sufficient to be annoying and hamper weak-signal reception. The culprit was the rf amplifier, V6. Since ALC voltage is fed to the control grid of this tube during SSB operation, I felt that, rather than grid-block key this stage, a simpler method would be to apply the same treatment as the final stage had received; namely, removal of screen voltage during standby.

R-38, either 4700 ohms or 100k depending upon production model, was removed and replaced with a 56 k , 1/2-watt resistor. The B-plus end was not returned to its original location; rather, it was wired to J 9 , one of the PA DISABLE jacks. This jack (to which the final-amplifier screens are also attached) has no voltage on it during key-up conditions when using the QSK circuit mentioned above. Thus, both the final amplifiers and the rf amplifier are cut off during receive, and absolutely no hash is audible in the receiver during operation. Keying is unaffected. See fig. 4 for details.

reference

1. David P. Shafer, W4AX, "Cleaner Break-In With The 32S-3," OST, November, 1964, pages 46-47.

fig. 4. Rewiring R-38 in the 32S-3 eliminates hash during CW OSK operation.

low-frequency crystal oscillator

For years I've been collecting transistor crystal-oscillator circuits hoping to find one that would work using a $455-\mathrm{kHz}$ crystal, but none would oscillate. I stumbled, onto this circuit
while building a BFO and am quite happy with it.

The circuit needs a little explanation. Most all crystal-oscillator circuits show a bypass capacitor between emitter and ground. I could not make this circuit oscillate when

fig. 5. $455-\mathrm{kHz}$ crystal oscillator.

sidetone for the Atlas

210 transceiver

One disadvantage of the Atlas 210 when operating on CW is that it has no sidetone provision. When faced with this problem, one of my Amateur friends tossed his Atlas on my bench for a solution. The following circuit is the result of the work, and has proved very satisfactory.

In fig. 6, 01 and O 2 act as a simple audio oscillator and the frequency is adjusted by altering C1 to suit the operator. Q3 acts as a keying transistor simultaneously with transmitter keying.

This oscillator operates from about 6 volts, and so a simple regulator is used to keep its voltage relatively constant. The rest of the circuit is that recommended by the manufacturer for break-in CW operation. This unit was built in a small box; the keying output goes to the key jack on the Atlas, and the key plugs into the jack on the minibox.

B.E.G. Goodger, ZL2RP

fig. 6. Modified Atlas circuit for CW sidetone with addition of connection of wire from white lead inside to pin 9 .
the emitter was bypassed. Mine would not work until I put in a 2.5 mH rf choke. The next discovery 1 found, when using two variable capacitors, was that the capacitance from base to ground had to be larger than that shown in my collection of oscillator circuits. Also I found it necessary to increase the value of the capacitor from base to ground. Juggling the two variable capacitors (fig. 5) gave the most oscillator output. The oscil-
*Crystals for 455 and 453.5 kHz are available from John L. Winton, WD6DUS, 8062 San Meteo Drive, Buena Park, California 90620 . Price is $\$ 2.50$ each.
lator puts out 8 volts rms of rf.
I used a 2N706 transistor, but others of the NPN type such as the 2N2222 should work. The crystal was a metal-can-type HC-6.* The FT-241 was not tried as I didn't have any on hand. I tried using FET MPF-102s at 455 kHz but could make none of the circuits work, although the handbooks show many low-frequency oscillators using them.
A capacitor was inserted in series with the crystal, my hope being it would vary the frequency a bit. It is also supposed to have a negative reactance to the crystal, which would be shifted into the positive-reactance
region. I found the series capacitor did nothing. The oscillator worked just as well with the crystal connected directly between the base and the collector as shown in the schematic.

That's my story. If you want a detailed description of crystal oscillators, several are given below. However, l'll use this circuit for my BFOs from now on. Success at last.

bibliography

Harrison, Roger, VK2ZTB, "Survey of Crystal Oscillators," ham radio, March, 1976.
Nelson, Don, WB2EGZ, "Quartz Crystals: Gems for Frequency Control," ham radio, February, 1979.

Ed Marriner, W6XM

easy matching sections

In single-antenna applications, using the usual 50 -ohm transmission-line system, impedance matching is no problem. However, when multiple antennas are used, the feed system becomes more complex, and impedance transformations become important.
If the antennas in question are of unknown impedance or are known to be reactive, the impedance will have to be reduced to a convenient resistive value by using stubs or other means before they can be fed in an array. 1 If stubs are used in a multiantenna array, the phasing of the antennas should be checked to ensure that all stubs are alike and are introducing identical phase changes in each line.
In the case of commercial antennas, or those of a known resistive impedance, stubs are unnecessary. However, in dealing with unbalanced coax feed-line systems, any balanced antennas must be fed with baluns.

theory

When using multiple identical antennas with a coax feed system, the necessary impedance transformations are easily handled with $1 / 4$-wavelength sections of rigid coax constructed to give the correct Z_{0} :

$$
\begin{equation*}
Z_{0}=\sqrt{Z_{\text {load }} \times Z_{\text {feed }}} \tag{1}
\end{equation*}
$$

where $Z_{0}=$ characteristic impedance (ohms)

$$
\begin{aligned}
& Z_{\text {load }}=\text { load point impedance (ohms) } \\
& Z_{\text {feed }}=\text { feedpoint impedance (ohms) }
\end{aligned}
$$

so that an antenna of 50 ohms attached to a 75 -ohm feed system would need a $1 / 4$-wavelength section of:

$$
\begin{equation*}
Z_{0}=\sqrt{50 \times 75}=61.24 \mathrm{ohms} \tag{2}
\end{equation*}
$$

This coax is not readily available, so it will have to be constructed.
A system developed by Marshal Williams, K5MB, and others, using a square aluminum outer conductor for matching sections is ideal for this unit, and will be used here. In this system the $1 / 4$-wavelength section has an outer conductor of 1 -inch square (OD) aluminum tube with either $1 / 8$ inch or $1 / 16$ inch wall thickness.

In this system, with square outer and round inner conductors, the impedance of the coax sections is given by:

$$
\begin{equation*}
Z_{0}=141 \log _{10} \frac{b}{a} \tag{3}
\end{equation*}
$$

where $b=$ OD of inner conductor (inches)
$a=\mathrm{ID}$ of outer conductor (inches)
Solving for b in terms of Z_{0} :

$$
\begin{gather*}
b=a \log _{10}^{-1}\left[\frac{Z_{0}}{141}\right] \\
\text { or } b=a \log _{10}^{-1}\left[\frac{\sqrt{Z_{\text {load }} \times Z_{\text {feed }}}}{141}\right] \tag{4}
\end{gather*}
$$

This allows us to determine the necessary inner conductor OD for each of the outer tubing wall thicknesses. The handiest combination will be used.

As an example, consider a 25 -ohm load matched to a 50 -ohm feed line. The Z_{0} of this section will be:

$$
\begin{equation*}
Z_{0}=\sqrt{25 \times 50}=35.35 \mathrm{ohms} \tag{5}
\end{equation*}
$$

Using $1 / 8$-inch thick wall outer stock and this Z_{0} we will need a 0.419 -inch OD inner conductor. This is an unusual size for tubing, so try the same process with $1 / 16$-inch wall ($7 / 8$-inch ID) outer stock. This combination requires a 0.492 inch inner conductor, so we can use standard $1 / 2$-inch OD copper tubing; obviously the easiest choice.

With this basic construction available, let's look at practical antenna combinations. Impedance matching usually becomes a problem only in multiple antenna systems, which we will assume are composed of even numbers of coax-fed antennas with impedance of $300,200,75$, or 50 ohms.

network details

Using two 50 -ohm antennas, we then have a parallel combination presenting a 25 -ohm load to the matching section. This is done by using two parallel connectors on the load end of the matching section (fig. 1). As we saw previously, this matching section will use $1 / 16$-inch thick wall outer stock and $1 / 2$-inch OD inner tubing.
Similarly four 50 -ohm antennas can be handled as four parallel loads totaling a 12.5 ohm load, fig. 2, or as two sections back-to-back forming a $1 / 2$ wavelength matching section, fig. 3, which is simply an easier way of building two $1 / 4$-wavelength, 25 -ohm to 100 -ohm sections. The 100 -ohm points are then paralleled to give a 50 -ohm point.
Up to four loads may be used on each $1 / 4$-wavelength section - one connector per side - so a $1 / 2$ wavelength section can drive up to eight loads. Matching sections may be used two deep if necessary, as in fig. 4.

Table 1 lists the appropriate inner conductor OD for each application. The values are for 50 - and $75-$ ohm antennas and feed systems most commonly used. Other values may be found using the same method, or the antenna may be converted to these values. The velocity of propagation in air dielectric coax such as this is virtually the same as air. Freespace calculations may be used, and the length found by:

$$
\begin{equation*}
\lambda / 4 \text { length }(\text { in. })=\frac{1.808 \times 10^{4}}{4 f_{o}} \tag{6}
\end{equation*}
$$

where $f_{o}=$ operating frequency (Hz).

fig. 1. Load end detail with two load connectors.

The value for 145 MHz , for instance, is 31.17 inches. This is the dimension used between connector and center pins. The outer conductor square stock will be cut approximately $1 / 2$ inch longer on each end to accommodate the connector flanges. Fig. 5 shows the connector mounting details. If more than one matching section is used in a system, make all dimensions identical in all sections to minimize errors.
The feed point in the middle of a $1 / 2$-wavelength section is constructed as shown in fig. 6. The loadend construction is identical for $1 / 2$ - or $1 / 4$-wavelength designs.

fig. 2. Load end construction showing four loads.

fig. 3. Detail of four load, halfwave construction.

examples

Now that we have the construction of the individual sections in hand, let's look at some examples. Suppose we want to design a broadside array of sixty-four antennas, with three elements each, for a total of 192 elements. All antennas are balun-fed Yagis of commercial design and present 50 -ohm loads to the balun feed points.

There are several possible feed configurations involving different-value matching sections. If we use all identical matching sections, we can work with a design to connect four 50 -ohm antennas to a 50 -

fig. 5. Detail of connector mounting.

fig. 6. Halfwave feed point connector mounting.

fig. 7. Sixty-four antenna array using all identical matching sections.
ohm system (see fig. 7). From table 1 we find that $1 / 8$-inch wall square stock and $1 / 2$-inch OD center conductor works very well for this conversion. Using this design throughout we have a network to com-

fig. 8. Sixteen 50 -ohm antennas matched to a 50 -ohm source.
table 1. Inner-conductor OD values for common 50- and 75 ohm antennas and feed lines.

number of loads	using 1/16-in. wall outer stock (in.)	using 1/8-in. wall outer stock (in.)
1/4 wavelength, $50-\mathrm{ohm}$ antennas to $50-\mathrm{ohm}$ system:		
2	1/2 very good	27/64
3	35/64	15/32
4	9/16 SWR 1.04	1/2 very good
1/4 wavelength, $\mathbf{7 5 - \mathrm { ohm }}$ antennas to $\mathbf{7 5 - \mathrm { ohm }}$ system:		
2	3/8 SWR 1.02	5/16 very good
3	27/64	3/8 very good
4	15/32 very good	13/32 very good
1/2 wavelength, 50 -ohm antennas to $50-\mathrm{ohm}$ system:		
2	9/32	15/64
4	3/8 very good	21/64
6	7/16 SWR 1.08	3/8 very good
8	1/2 very good	27/64

1/2 wavelength, 75 -ohm antennas to $\mathbf{7 5}$-ohm system:

2	$13.6 / 64$	hard to find	$4 / 32$	
4	$1 / 4$	very good	$7 / 32$	
6	$5 / 16$	very good	$9 / 32$	
8	$3 / 8$	very good	$5 / 16$	very good

1/4 wavelength, $\mathbf{7 5}$-ohm antennas to 50 -ohm system:

2	$3 / 8$		0.431
3	$1 / 2$		hard to find
4	$17 / 32$	hard to find	0.421 hard to find

1/2 wavelength, 75 -ohm antennas to	$50-$ ohm system:		
2	0.213	hard to find	$3 / 16$ good
4	0.322	hard to find	0.276 hard to find
6	$3 / 8$		0.322
8	$7 / 16$ SWR 1.18	$3 / 8$ SWR 1.18	
	not good		

bine 16 antennas into one group that will match a $50-$ ohm system (fig. 8). The addition of three more identical groups, each connected to a port on one last matching section, gives the final configuration of the sixty-four antennas shown in fig. 9. Another possibility using a combination of $1 / 2$ - and $1 / 4$-wavelength sections in the same array is shown in fig. 10.

power division

In an impedance-matching section with two or more loads we, of course, also have a power division occurring. The matching section is interested only in the transformation of total net load impedance to feed line impedance. The power division among the loads is a function of their impedances. If the power to all loads is to be equal, then the load impedances must be equal. Noting that some of the matching sections have other sections as loads, we can see that all antennas must be identical in construction, as

fig. 9. Four of the sixteen antenna arrays combined using one more four-port matching section.
must all the similar matching sections. Dimensions must be identical for similar units, so cut all the parts at the same time to ensure uniformity.

phasing

In a large array it is necessary to get maximum power to the antennas through proper impedance management and to have it evenly divided. However, we must also make sure that the rf gets to all antennas at the same time, or in phase. Since we have

- From HF to VHF - you name it, Yaesu makes it, Dan has it. Full line of accessories in stock

Britt's 2-Way Radio

2508 Atlanta St.
Smyrna, GA 30080
Belmont Hills Shopping Center

(404) 432-8006

ORR BOOKS
 BEAM ANTENNA HANDBOOK
 by Bill Orr, W6SAI
 Recommended reading. Commonly asked questions like: What is the best element spacing? Can different yagi antennas be stacked without losing performance? Do monoband beams outperform tribanders? Lots of construction projects, diagrams, and photos. 198 pages. (c) 1977. 1st edition.
 Softbound \$5.95

SIMPLE LOW-COST WIRE ANTENNAS

by Bill Orr, W6SAI

Learn how to build simple, economical wire antennas. Apartment dwellers take note! Fool your landlord and your neighbors with some of the "invisible" antennas found here. Well diagramed. 192 pages. (c) 1972.

\square RP-WA

Softbound \$6.95

the radio amateur antenna handbook

by William I. Orr, W6SAI and Stuart Cowan, W2LX
Contains lots of well illustrated construction projects for vertical, long wire. and HF/VHF beam antennas. There is an honest judgment of antenna gain figures, information on the best and worst antenna locations and heights, a long look at the quad vs, the yagi antenna, information on baluns and how to use them, and new information on the popular Sloper and Delta Loop antennas. The text is based on proven data plus practical, on-the-air experience. The Radio Amateur Antenna Handbook will make a valuable and often consulted reference. 190 pages. (c) 1978
\square RP-AH
Softbound \$6.95

aLL ABOUT CUBICAL QUAD ANTENNAS

by Bill Orr, W6SAI

The cubical quad antenna is considered by many to be the best DX antenna because of its simple, lightweight design and high performance. You'll find quad designs for everything from the single element to the multi-element monster quad, plus a new, higher gain expanded quad ($\mathrm{X}-0$) design. There's a wealth of supplementary data on construction, feeding, tuning. and mounting quad antennas. 112 pages. (c) 1977. \square RP-CQ

Softbound \$4.75
Please add $\$ 1.00$ to cover shipping and handling.
HAM RADIO'S BOOKSTORE
GREENVILLE, NH 03048
made all the matching sections equal lengths, and they all have the same air dielectric, the delay to rf traveling through them will all be the same. A good grade of coax for all connecting cables is very important. Care must be taken to make all coax lines in the system the same length as all other lines in the same positions. That is, all coax lines from the antennas to the first matching sections must be the same length. All lines from the first matching sections to the second matching sections must be the same length, but not necessarily the same length the antenna lines were, and so on.

self-correcting features

Another benefit of identical matching sections is the self-correcting feature. If for some reason the transformation is not exactly correct, so that 50 -ohm antennas are transformed to, say, 55 ohms by the first matching section, the identical second matching section will correct the situation by transforming the 55 -ohm networks back down to 50 ohms to match the drive system (fig. 11).

power and precautions

With properly constructed matching sections, the coax portions of the network will be flat with a VSWR near 1.0. The array shown here should present a 50 ohm resistive load with a feed-line VSWR of 1.0 or very close to it.

The impedance-matching sections will carry full legal power with ease provided some basic precautions are taken. It is almost impossible to waterproof everything on these units: rivets, screws, connectors all tend to leak. The best approach is to leave the ends wide open so that the water can drain out and check occasionally for obstructions such as insect nests, leaves, or ice, depending on your location.

materials

Materials are available from several sources. One-sixteenth-inch, 1 -inch square aluminum tubing is available from most hobby or building supply stores. Specifically it has been obtained from MacLanburg Duncan Co., 4041 N. Santa Fe, Oklahoma City, Oklahoma 73118. Standard copper tubing sizes are available in rigid form from a plumbing supplier. Some other tubing sizes, usually in brass, are available from large hobby shops. If this is not convenient, contact a nonferrous-metals dealer in a larger city for oddsize tubing and for the 1 -inch square, $1 / 8$-inch wall aluminum stock.

reference

[^7]ham radio

UNIVERSAL COMMUNICATIONS
A Division of Innovative Labs, Inc.

STATE-OFTHE-ART SATELLTE TV RECENVR MODEL DL-2000 - COMPLETELY ASSEMBLED CHANNEL SCAN • TUNEABLE AUDIO • REMOTE CONTROL • AND MORE $\$ 745.95$ ea.
 lots of 1
 S699.95 ea.
 lots of 10 or more

SUPERVERTER I

$\$ 99.95$
The ultimate in converter technology! Dual stage selective preamp, mixer, i.f. amplifier and no-drift crystal controlled oscillator. We recommend this kit for the experienced kit builder.

12 V. Stationary Power Supply \$24.95

SELECTIVE PREAMP
 $\$ 44.50$

This new unit is not like other wide band preamps. Experienced kit builders can easily add this unit to our existing boards or to other manufactured boards to improve overall performance.

2300 MHz Downconverter
$\$ 35.00$
PC Board, all components and instructions for a working unit.
VARIABLE POWER SUPPLY \$24.95
Complete kit includes all components for working unit including deluxe box and overlays.
DISH YAGI ANTENNA $\$ 25.00$
Complete kit with PVC and mounting brackets. Stronger than loop vagi, equal in gain.
KD44 Antenna
\$54.95
Overall 25 dB gain. Partial assembly required. Shipped UPS ground only.

Our product may be copled, but the performance is never equaled.

 Arlington, TX 76004-0339

\star Technical Forums \star ARRL and FCC Forums \star GIANT 3-Day Flea Market \star New Products and Exhibits \star Grand Banquet

\star Women's Activities
\star New! Home-Brew Equipment Forum
\star Special Group Meetings
\star YL Forum
\star New! Personal Computers Forum * Amateur of Year Award
\star Special Achievement
Awards

April 23, 24, 25, 1982
 Hara Arena and Exhibition Center - Dayton, Ohio

Meet your amateur radio friends from all over the world at the internationally famous Dayton HAMVENTION. Seating will be limited for Grand Banquet and Entertainment on Saturday evening so please make reservations early. Banquet speaker is Roy Neal, K6DUE, NBC News.
If you have registered within the last 3 years you will receive a brochure in late February. If not write Box 44, Dayton, OH 45401.
Nominations are requested for Radio Amateur of the Year and Special Achievement Awards. Nomination forms are available from Awards Chairman, Box 44, Dayton, OH 45401
For special motel rates and reservations write to Hamvention Housing, 1406 Third National Bldg.,
Dayton, OH 45402. NO RESERVATIONS WILL BE ACCEPTED BY TELEPHONE.
All other inquiries write Box 44, Dayton, OH 45401 or phone (513) 849-1720.

Rates for ALL 3 Days: Admission: $\$ 7$ in advance, $\$ 8$ at door.
 Banquet: $\$ 14$ in advance, $\$ 16$ at door.
 Flea Market Space: $\$ 15$ in advance.

Sized and priced to suit all poçkets

AR-22 DIGITALLY SYNTHESIZED VHF FM RECEIVER

STANDARD FREQUENCIES

141.000-149.995 MHZ (AR-22 Type-A)

* 146.000-154.995 MHZ (AR-22 Type-B) 151.000-159.995 MHZ (AR-22 Type-C)
* 156.000-164.995 MHZ (AR-22 Type-D) 161.000-169.995 MHZ (AR-22 Type-E) Marked with (*) are subject to available supply

ACE communications. inc.

2832-D WALNUT AVENUE, TUSTIN, CALIFORNIA 92680 (714) 544-8281
TELEX: 655-306

HERE'S A GIFT IDEA!

How about an attractive BASEBALL style cap that has name and call on it. It's the perfect way to keep eyes shaded during Field Day, it gives a jaunty air when worn at Hamfests and it is a great help for friends who have never met to spot names and calls for easy recognition.
Great for birthdays, anniversaries, special days whatever occasion you want it to be.

Hats come in the following colors GOLD, BLUE, RED, KELLY GREEN.

Please send call and name (max 6 letters per line) $\$ 5.00$ plus $\$ 1.00$ for shipping
HAM RADIO'S BOOKSTORE
GREENVILLE, N. H. 030840489

Radio Handbook

 by Bill OrrNEW 22nd EDITION

The Radio Handbook has been a best seller for over 45 years. This brand-new edition covers in complete detail all of the latest state-of-the-art advances in electronics. Hams and engineers alike will find this handy, single-source reference an invaluable aid. Chockfull of projects from simple test equipment to complex receivers and amplifiers. Chapters include an explanation of Amateur Radio communications, electronic and electrical theory, tubes and semiconductor devices; a special chapter on RFI and more . . . This invaluable book is a must for every hamshack. Orders yours today and save. 1136 pages. ©1982 $\square 21874$

\$34.95

Please add $\$ 2.00$ for shipping and handling.
> ham radio's BOOKSTORE Greenville, NH 03048

GLB ID-1
 AUTOMATIC IDENTIFIER

- For transceivers and repeaters!
- Small - only $2.3^{\prime \prime} \times 1.7^{\prime \prime} \times 0.6^{\prime \prime}$!
- Low cost - only $\$ 39.95$ (wired \& tested)!
- Easy installation - 2 wires plus ground!
- Pots for speed \& amplitude!
- 8 switchable messages!
- Each message up to 2000 bits long!
- Automatic operation!
- Reprogrammable memory!
- Allow $\$ 1.50$ for shipping \& handling

We have a complete line of transmitter and receiver strips and synthesizers for Amateur and commercial use. Write for our catalog.

We welcome MasterCard or VISA

GLBELECTRONICS

1952 Clinton St., Buffalo, N. Y. 14206 1-(716) 824-7936, 9 to 4
super
Specials

NEMAL ELECTRONICS COAXIAL CABLE SALE

POLYETHYLENE DIELECTRIC
RG213 noncontaminating 95% shield mil spec
RG62U 93 ohms
RG11U 96% shield 75 ohm mil spec
RG8U 96% shield mill spec
RG6A/U double shield 75 ohm
RG55AU (RG223) double silver shield 50 ohm
RG58U mil spec 95\% shield
LOW LOSS FOAM DIELECTRIC
RG8X (mini 8) 95\% shield
RG $8 \cup 80 \%$ shield
AG58U 80% shield
RG58U 95\% shield
RG59/U 100% foil shield TV type
Rotor cable 2-18 ga 6-22 ga

CONNECTORS MADE IN USA
PL-259 push-on adapter shell
PL-259 \& S0-239.
Double Male Connector
PL-258 Doubie Female Connector
1tt patch cord w/RCA type plugs each end
Reducer UG-175 or 176
UG-255 (Pl-259 to BNC)
Elbow (M359) Siver Plated
F59A (TV type)
UG $210 / \mathrm{U}$ Type N Male for RG8
Double Female N Chassis Mt UG-30
$3 / 16$ inch Mike Plug tor Coliins etc.
Call or write for Free Catalog
shipping
Cable - $\mathbf{\$ 3 . 0 0}$ 1st $100 \mathrm{ft}, \mathbf{\$ 2 . 0 0}$ each add'l 100 ft . Connectors - add 10\%, $\mathbf{\$ 1 . 5 0}$ minimum. COD add $\$ 1.50$. Florida Residents add 4%.

NEMAL ELECTRONICS

5685 SW 80th St., Dept. H, Miami, FL 33143
Telephone: (305) 661-5534

- 32 CHARACTERS FOR EASY HIGH SPEED COPY OF MORSE
- ASCII and BAUDOT RTTY
- NO RECEIVER MODIFICATION NECESSARY
- INSTANT SPEED TRACKING FOR MORSE CODE OVER WIDE SPEED RANGE FROM 2 TO 99 WPM - OPERATES FROM 12 V.D.C.

For AEA Readers or other AEA Products, call or visit:

Brings you the Breakthrough!

TOLL FREE: 800-336-8473
Tue-Sat 10AM-4PM EST
EEB
516 Mill Street, N.W.
Vienna, VA 22180
(703) 938-3350

RF POWER COMPONENTS

Maxi without SWR - $\$ 259.95$
Maxi with SWR - $\$ 299.95$ (Balun Optional... \$19.95)

ANTENNA TUNER

Continuous $1.7 \cdot 30 \mathrm{MHz}$ Coverage Rotary Inductor ($28 \mu \mathrm{H}$) Rugged Cast Aluminum Turns Counter Handles 3 kW PEP 2 kW with Balun Velvet-Smooth 6 to 1 Vernier Tuning 0.100 Logging Scale on 500 pF Capacitors

AZDEN

 DISCOUNT PRICE © Azden PCS 3000 (2 meter FM) - 6 amp fully reg power supply $\$ 46.00$ Order 24 hours a day (215) $884 \cdot 6010$ 'FREE UPS . N.P.S. Inc. WA3IFQ 1138 BOXWOOD RD., JENKINTOWN, PA. 19046

a speech processor for fm transmitters

A microphone amplifier and audio processor for fm transmitters using Plessey SL6043 ICs

This article describes a microphone amplifier and audio processor for fm transmitters. It uses a Plessey Semiconductors type SL6043 quad operational amplifier and consists of a high-input-impedance preamplifier (which may be omitted if a high-input impedance is not required), an amplifier, a pre-emphasis circuit, and a Sallen and Key lowpass filter.

the Plessey SL6043 IC

The SL6043 (fig. 1) has been especially developed for use in radio applications. The operating current of each amplifier is programmed by an external pin. Pin 8 biases amplifiers B, C, and D, and pin 16 biases amplifier A. It's thus possible to bias one amplifier at a totally different point than the others if desirable in a particular application. The SL6043 may be used in amplifiers, buffers, filters, comparators and voltage regulators.

speech processor circuit

Fig. 2 shows the circuit diagram of the speech processor. It consists of a high-input-impedance, noninverting stage with a gain of $16 \mathrm{~dB}(\times 6)$, a main amplifier with a gain of $38 \mathrm{~dB}(\times 80)$, a pre-emphasis stage with a response rising at $6 \mathrm{~dB} /$ octave, and a lowpass Sallen and Key filter with an 18 dB /octave rolloff above 3 kHz . The pre-emphasis stage is arranged to have symmetrical limiting so that it will also serve as a peak clipper.

The input amplifier uses operational amplifier A of the SL6043C in the noninverting mode. Its dc working voltage point is deliberately set at 0.4 Vcc rather than 0.5 Vcc , so that the electrolytic interstage coupling capacitor is correctly biased. This stage has an input impedance of about 400k and a gain of 16 dB (x6). The gain is set by R1 and R2 and may be altered by changing R2 according to

$$
\begin{equation*}
\text { gain }=\frac{R 1+R 2}{R 2} \tag{1}
\end{equation*}
$$

The gain of stage A may be varied from unity (R2 omitted) to $26 \mathrm{~dB}(\times 20)$ if $R 2$ is reduced to 27 k . This is the minimum recommended value for R2. If more gain is required, it should be added externally.

If a low-impedance dynamic microphone is used, the input amplifier is not necessary and may be omitted. In that case op-amp A may be used for some other purpose. In either case, it may be necessary to detach pin 16 from R3.(fig. 2) - either to power down op-amp A altogether or to power it to a higher level. If the input amplifier isn't used, the input signal is applied at point X, which should also be decoupled to ground by a $0.001-\mu \mathrm{F}$ capacitor.

The main amplifier is a conventional inverting "see-saw" amplifier. Its gain, which is set by R4, is normally $38 \mathrm{~dB}(\times 80)$, but it may be varied between $20 \mathrm{~dB}(\mathrm{x} 10)$ when $\mathrm{R} 4=2.7 \mathrm{k}$ and $40 \mathrm{~dB}(\times 100)$ when R4 $=27 \mathrm{k}$. The input coupling capacitor sets the low-frequency rolloff of 6 dB /octave below 300 Hz .

This amplifier, and the one following it, are biased so that any large-amplitude signals are symmetrically clipped. Clipping is essential to ensure that the transmitter does not over deviate on transients. Symmetrical clipping ensures that only odd-order harmonics are present in the clipped signal (third, fifth, etc.);

[^8]
fig. 2. Circuit diagram of the fm speech processor.

FAST SCAN ATV

WHY GET ON FAST SCAN ATV?

- You can send broadcast quality video of home movies, video tapes, computer games, etc, at a cost that is less than sloscan.
- Really improves public service communications for parades, RACES, CAP searches, weather watch, etc.
- $D X$ is about the same as 2 meter simplex - 15 to 100 miles. ALL IN ONE BOX

TC-1 Transmitter/Converter
Plug in camera, ant., mic, and TV and you are on the air. Contains AC supply, T/R sw, 4 Modules below \$ 399 ppd
PUT YOUR OWN SYSTEM TOGETHER

PACKAGE SPECIAL all four modules \$ 249 ppd

TXA5 ATV Exciter contains video modulator and xtal on 434 or 439.25 mHz . All modules wired and tested \$89 ppd
PA5 10 Watt Linear matches exciter for good color and sound. This and all modules run on 13.8 vdc. \$ 89 ppd TVC-2 Downconverter tunes 420 to 450 mHz . Outputs TV ch 2 or 3 . Contains low noise MRF901 preamp...... \$55 ppd
FMA5 Audio Subcarrier adds standard TV sound to the picture \$ 29 ppd
SEND SELF-ADDRESSED STAMPED ENVELOPE FOR OUR LATEST CATALOG INCLUDING:
Info on how to best get on ATV, modules for the builder, complete units, b\&w and color cameras, antennas, monitors, etc. and more. 20 years experience in ATV. Credit card orders call (213) 447-4565.

Check, Money Order or Credit Card by mail.

fig. 3. VOGAD using the SL6270C (may be used in place of the input stage if audio AGC is required).
they are less unpleasant and, being higher in frequency, more easily filtered than the second harmonic, which would result from asymmetrical clipping.

The third stage is another inverting see-saw amplifier; but the input half of the see-saw, consisting of $0.01 \mu \mathrm{~F}$ in series with 3.9 k , is capacitive up to 4 kHz and gives a rising 6 dB /octave response up to this frequency. This stage is the one most likely to limit.

The signal from the pre-emphasis circuit goes to a third-order Sallen and Key lowpass filter, which gives an 18 dB /octave slope above 3 kHz . This filter consists of three capacitors, three resistors, and op-amp D , which is used in the unity gain, noninverting mode.

The output level from the system depends on the input level and the gain since no AGC is used (if audio AGC is required, the input amplifier should be replaced with the Plessey Semiconductors SL6270 VOGAD, used in the circuit shown in fig. 3, and R4, fig. 2, should be 5.6 k). The gain of the first two stages should be set so that the output level is around 1.5-2 VRMS with normal speech into the microphone. This ensures a reasonable, but not excessive, level of clipping.

The power supply is a single +12 V unit, but this is not critical and may be varied from +6 to +24 V without any effect but a change in the clipping level. The supply should, however, be well decoupled from audio and radio-frequency energy.

No printed circuit board has been designed for this system, because it's so simple that it's likely to be used in many widely different applications. No special precautions are needed in construction except to isolate the high-impedance input from the output and, if it contains hum, to isolate the power supply.
ham radio

THE BIG SIGNAL® BALUN

- 160-6 meter spectrum coverage
- First with built-in lightning arrestor
- Unconditionally guaranteed
- More efficient coverage than any competitive balun
- Can withstand 600 lb . pull
- Handles 2,000 watts
- Weatherproofed

Call or write today!

THE AUTEK "QRM ELIMINATOR"

AUTEK pioneered the ACTIVE AUDIO FILTER back in 1972. Today, we're still the engineering leader. Our new QF. 1A is the latest example. It's INFINITELY VARIABLE. You vary selectivity 100:1 and frequency over the entire usable audio range. This lets you reject whistles with dual notches (to 70 dB), or reject SSB hiss and splatter with a fully adjustable lowpass plus aux. notch. Imagine what the NAR. ROWEST CW FILTER MADE will due to QRM! HP rejects low frequencies. Skirts exceed 80 dB .1 watt speaker amp.

Built-in 115 VAC supply. $61 / 2 \times 5 \times 21 / 2$. Two-tone grey styling. Even latest rigs include only a fraction of the QF-1A selectivity. Yet it hooks up in minutes to ANY rig-Yaesu, Kenwood, Drake, Swan, Atlas, Tempo, Heath, Collins, TenTec, etc. Just plug it into your phone jack and connect spkr. or phones to the output. Join the thousands of owners who now hear stations they couldn't copy without a QF-1A! it really works!

WORLDS RECORD KEYER. OVER 4000 DX QSO'S IN 2 DAYS!

Probably the most popular "professional" contest keyer

Model MK-1 Keyer \$104.50
Futek Research
16552 HUTCHINSON ROAD - BOX 302HR ODESSA, FLORIDA 33556 • (813) 920-4349 in use, yet most owners are casual CW operators or novices. After a few minutes, you'll see how memory revolutionizes your CW operation! Just start sending and record your CQ, name, QTH, etc. in seconds. 1024 bits stores about 100 characters (letters, numbers). Playback at any speed. Dot/dash memories, triggered clock, repeat, combine, 5 to $50+$ WPM, built-in monitor and 115 VAC supply. Works with any paddle. Sit back and relax while your MK-1 calls CQ and handles standard exchanges!

Optional memory expander (ME-1) expands any MK-1 to 400 characters. ME-1 factory installed $\$ 35$. Owner installed, only $\$ 25$. Add more memory now or later!

NO LONG DELAYS. WE SHIP 95\% OF ORDERS FROM STOCK

We sell only factory direct. No dealer markup in our price. Order with check, M.O. VISA, MC. We pay shipping in 48 states. Add $4 \% \operatorname{tax}$ in Fla. Add $\$ 3$ to Canada, HI., Ak. Add $\$ 18$ each elsewhere. (Shipped air.)

California

C \& A ELECTRONIC ENTERPRISES 22010 WILMINGTON AVE.
SUITE 105
CARSON, CA 90745
213-834-5868
Not The Biggest, But The Best Since 1962.

JUN'S ELECTRONICS

3919 SEPULVEDA BLVD. CULVER CITY, CA 90230 213-390-8003 Trades 714-463-1886 San Diego
The Home of the One Year Warranty

- Parts at Cost - Full Service.

SHAVER RADIO, INC.
1378 S. BASCOM AVENUE
SAN JOSE, CA 95128
408-998-1103
Azden, Icom, Kenwood, Tempo,
Ten-Tec, Yaesu and many more.

Connecticut

HATRY ELECTRONICS

500 LEDYARD ST. (SOUTH)
HARTFORD, CT 06114
203-527-1881
Call today. Friendly one-stop shopping at prices you can afford.

Delaware

DELAWARE AMATEUR SUPPLY 71 MEADOW ROAD
NEW CASTLE, DE 19720
302-328-7728
Icom, Ten-Tec, Swan, DenTron, Tempo, Yaesu, Azden, and more. One mile off I-95, no sales tax.

Florida

AMATEUR ELECTRONIC SUPPLY 1898 DREW STREET
CLEARWATER, FL 33515
813-461-HAMS
Clearwater Branch
West Coast's only full service Amateur Radio Store.

AMATEUR ELECTRONIC SUPPLY

621 COMMONWEALTH AVE. ORLANDO, FL 32803
305-894-3238
Fla. Wats: 1 (800) 432-9424
Outside Fla: 1 (800) 327-1917

AMATEUR RADIO CENTER, INC.
2805 N.E. 2ND AVENUE
MIAMI, FL 33137
305-573-8383
The place for great dependable names in Ham Radio.

RAY'S AMATEUR RADIO
1590 US HIGHWAY 19 SO.
CLEARWATER, FL 33516
813-535-1416
Your complete Amateur Radio and Computer Store.

Indiana

THE HAM SHACK
808 NORTH MAIN STREET
EVANSVILLE, IN 47710
812-422-0231
Discount prices on Ten-Tec, Cubic, Hy-Gain, MFJ, Azden, Kantronics, Santec and others.

Kansas

ASSOCIATED RADIO
8012 CONSER, P. O. BOX 4327
OVERLAND PARK, KS 66204
913-381-5900
America's No. 1 Real Amateur Radio
Store. Trade - Sell - Buy.

Maryland

THE COMM CENTER, INC.
LAUREL PLAZA, RT. 198
LAUREL, MD 20810
800-638-4486
Kenwood, Drake, Icom, Ten-Tec,
Tempo, DenTron, Swan \& Apple
Computers.

Massachusetts

TEL.COM, INC.
675 GREAT ROAD, RTE. 119
LITTLETON, MA 01460
617-486-3040
617-486-3400 (this is new) The Ham Store of New England You Can Rely On.

Minnesota

MIDWEST AMATEUR RADIO SUPPLY 3452 FREMONT AVE. NO.
MINNEAPOLIS, MN 55412
612-521-4662
It's service after the sale that counts.

Nevada

AMATEUR ELECTRONIC SUPPLY
1072 N. RANCHO DRIVE
LAS VEGAS, NV 89106
702-647-3114
Pete, WA8PZA \& Squeak, AD7K
Outside Nev: 1 (800) 634-6227

New Hampshire

TUFTS ELECTRONICS
61 LOWELL ROAD
HUDSON, NH 03051
603-883-5005
New England's friendliest ham store.

New Jersey

RADIOS UNLIMITED

P. O. BOX 347

1760 EASTON AVENUE
SOMERSET, NJ 08873
201-469-4599
New Jersey's only factory authorized Yaesu and Icom distributor. New and used equipment. Full service shop.

ROUTE ELECTRONICS 46
225 ROUTE 46 WEST
TOTOWA, NJ 07512
201-256-8555

Amateur Radio Dealer

ROUTE ELECTRONICS 17

777 ROUTE 17 SOUTH
PARAMUS, NJ 07625
201-444-8717
Drake, Cubic, DenTron, Hy-Gain, Cushcraft, Hustler, Larsen, MFJ, Butternut, Fluke \& Beckman Instruments, etc.

New York

BARRY ELECTRONICS

512 BROADWAY
NEW YORK, NY 10012 212-925-7000
New York City's Largest Full Service Ham and Commercial Radio Store.

GRAND CENTRAL RADIO

124 EAST 44 STREET
NEW YORK, NY 10017 212-599-2630
Drake, Kenwood, Yaesu, Atlas,
Ten-Tec, Midland, DenTron, Hy-Gain, Mosley in stock.

HARRISON RADIO CORP.

20 SMITH STREET
FARMINGDALE, NY 11735
516-293-7990
"Ham Headquarters USA" since 1925. Call toll free 800-645-9187.

RADIO WORLD

ONEIDA COUNTY AIRPORT
TERMINAL BLDG.
ORISKANY, NY 13424
TOLL FREE $1(800) 448-9338$
NY Res. $\quad 1$ (315) $337-0203$
Authorized Dealer - ALL major
Amateur Brands.
We service everything we sell!
Warren K2IXN or Bob WA2MSH.

Ohio

AMATEUR ELECTRONIC SUPPLY 28940 EUCLID AVE.
WICKLIFFE, OH (CLEVELAND AREA) 44092
216-585-7388
Ohio Wats: 1 (800) 362-0290
Outside Ohio: 1 (800) 321-3594

[^9]
Oklahoma

DERRICK ELECTRONICS, INC.
714 W. KENOSHA - P.O. BOX A BROKEN ARROW, OK 74012 Your Discount Ham equipment dealer in Broken Arrow, Oklahoma
1-800-331-3688 or
1-918-251-9923

Pennsylvania

HAMTRONICS,

DIV. OF TREVOSE ELECTRONICS

4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215-357-1400
Same Location for 30 Years.

LaRUE ELECTRONICS

1112 GRANDVIEW STREET SCRANTON, PENNSYLVANIA 18509 717-343-2124
Icom, Bird, Cushcraft, Beckman, Fluke, Larsen, Hustler, Astron, Antenna Specialists, W2AU/W2VS, AEA, B\&W, CDE, Sony, Vibroplex.

Virginia
ELECTRONIC EQUIPMENT BANK 516 MILL STREET, N.E. VIENNA, VA 22180 703-938-3350
Metropolitan D.C.'s One Stop Amateur Store. Largest Warehousing of Surplus Electronics.

Wisconsin

AMATEUR ELECTRONIC SUPPLY
4828 W. FOND DU LAC AVE.
MILWAUKEE, WI 53216
414-442-4200
Wisc. Wats: 1 (800) 242-5195
Outside Wisc: 1 (800) 558-0411

These filters protect any sensitive electronic equipment from power line transient damage and radio frequency interference. Both models offer common mode and differential mode surge suppression for power line "spikes". Rf interference is suppressed using both inductive and capacitive components. Ideal for computers, test equipment or TV.
LF2 a duplex outlet, 120V, 8 amps max.$\quad \mathbf{\$ 3 9 . 9 5}$
LF6 three separately filtered duplex outlets, 120 V . total fused capacity 15 amps . power switch and indicator lamp $\mathbf{\$ 5 9}$ Add $\$ 2.50$ shipping and handling per order.
Send check with order and provide street address for UPS shipment. Ohio residents add Sales Tax. Charge card buyers may call toll free.

1.800-543-5613

In Ohio, or for information call: 1.513-866-2421

R. L. DRAKE COMPANY

540 Richard Street. Miamisburg. Ohio 45342

px FORECASTER

Garth Stonehocker, K0RYW

last-minute forecast

The higher-frequency ham bands during daylight hours will offer the best DX for the first week and a half of the forecast period. Solar flare activity is expected to result in solar wind bursts of particles that disturb the magnetosphere and ionosphere. Disturbed periods are probable around the 7th, 15th, and 23rd of the month. Signals on east/west paths through high latitudes will be weak and suffer from QSB, while transequatorial north/south paths will be enhanced. Low-band DX should be very good all through the month, particularly trans-polar paths at twilight during geomagnetically quiet times. The moon will be full on March 9 and perigee on March 4 and 29.

In March and April spring storms bring rain to much of our country. From these storms come the year's first major thunderstorms - and thunderstorms mean noise (static). Increased noise lowers the signal-tonoise ratio in our receivers, decreasing readability. This brings to mind the old saying, If you can't hear 'em, you can't work 'em. Last year's March issue of ham radio went into how noise gets here and how to track it. You can schedule your DXing in between storm passages to get the best chances of hearing the weak ones.

Toward the end of March (associated with the equinox, which is on March 20 at 2256 UT), the geomagnetic field is easily disturbed. The equatorial plane of the sun lines up through space with the earth's equator, giving particles a more direct path to the earth's polar regions. Disturbances are common. DX can be from unusual locations because of
the ionosphere's erratic movements. East/west paths are generally poorer; otherwise, over-the-pole DX paths are best during the equinox season.
l've mentioned beacons several times in the past. A beacon is a transmitter which generally operates full time. It is identifiable by its frequency, modulation, or call sign. By listening for the beacon you can ascertain if the band is open to that location. Beacons can be intentionally set up by Amateurs, or it's possible to eavesdrop on the transmitters of other services on frequencies adjacent to an Amateur band. Even a megahertz or two away is close enough to give you an idea of the propagation conditions on the band in question.

One group of signals that make useful beacons are the standard frequency and time stations on $2.5,5$, 10,15 , and 20 MHz . There are some twelve different countries represented, with a total of nine beacons on 2.5 MHz , eleven on 5 MHz , nine on 10 MHz , seven on 15 MHz , and two on 20 MHz . Canada and Australia broadcast three frequencies each near these.

beacons on 2.5, 5, 10 , and 15 MHz

The following stations may be used as beacons on the WWV frequencies: BPM, China; JJY, Japan; WWVH, Hawaii; WWV, Colorado; MSE, England; IBF, Italy; LOL, Argentina; ZUO, South Africa; and RTA, Russia. If you've heard some peculiar sounds with the WWV signals while you've waited to check the daily solar flux and geomagnetic data at eighteen minutes after the hour, it may have been one of these other signals on
the frequency "interfering." Maybe that's not so bad: after you ferret them out, you can use them for determining propagation conditions and openings.

By knowing the broadcast and modulation schedule of each station, you can tell which one is which. Here are a couple of examples: WWV is a man's voice and WWVH a woman's voice, giving the time each minute (ladies first); China identifies BPM in Morse during the one minute preceding the hour and half hour. For information on all these stations and their services consult the CCIR Working Group 7-C Draft report on 267-4 (MOD F), which may be obtained from Mr. R. Beehler, National Bureau of Standards, 325 Broadway, Boulder, Colorado 80301.

band-by-band summary

Six meters will provide some excellent openings to South Africa from the eastern U.S. and from the western and central U.S. to Australia and New Zealand around local noon. The openings are more probable during periods of high solar flux values.

Ten, fifteen, and twenty meters will be full of signals from most areas of the world from morning into early evening almost every day. The openings will be shorter on the higher bands and concentrated more toward noon for the path of interest. High solar flux values and geomagnetic disturbances will favor these bands for trans-equatorial contacts. Noise effects are not too noticeable.

Forty, eighty, and one-sixty meters are the night DXer's bands. The bands open just before sunset and last just until the sun comes up on the path of interest. Except for daytime short-skip signal strengths, high solar flux values don't affect these bands much. Geomagnetic disturbances, however, which will be more evident near the equinox, cause much signal attenuation and fading on polar paths. Noise will be spasmodic and very noticeable on these lowerfrequency bands.
ham radio

EUROPE

saflca		\square	亏	$\stackrel{\square}{\circ}$	55			ir	穴	宁		1	1							\bigcirc	¢	ज	－		－
s．Amerca		－	－	\bigcirc	－ 5	－	5	$\stackrel{\square}{\circ}$	$\stackrel{\square}{\circ}$	－	－	ज	\％	\％	\％	\％	\％	ज	ज	Giv	${ }^{\circ}$	＇			
antarctica		O	－	¢ 心	解		1	1	1	1	1	冗	N	\sim	－	N	o	O	ज	ज＇	$\stackrel{\circ}{6}$	－		5	－
newzeacano		－	－	\bigcirc	－	ज	$\stackrel{\square}{1}$	G	๕	\％	\％	\％	ज	－	，	埌	¢	碞	\square	5	－	$\stackrel{\square}{6}$		5	－
Ocenan		－	$\stackrel{\square}{*}$	－ 1	1			ज		－	\％	\bigcirc	\％	＇	G	¢	${ }_{+}$		Ь	\bigcirc	－				$\stackrel{\leftarrow}{*}$
apan		－		\％	\％ 2					\bigcirc	\sim	O													

		8	\％		${ }_{8}^{8}$			$\stackrel{\text { g }}{8}$		8	8	8		$\frac{8}{8}$	18				\％	$\stackrel{\rightharpoonup}{8}$	8	88	8	8	8	8	$\stackrel{\text { gr }}{ }$
$\underset{\substack{\text { Stimast } \\ \text { ALfast }}}{ }$	$\stackrel{\square}{9}$	1	1	ज	ज	$\stackrel{\text { c }}{ }$	ज	ज	ज	$\stackrel{\square}{5}$	\％	\％	1	1	1	1	1		11	1		ज		＇	$\stackrel{\square}{\circ}$	¢	
Evaope	\％	\％	\％	G	厅		5	－	－	$\stackrel{\square}{6}$	T	云	\％	\％	\％	1	1		11	1	$\stackrel{\square}{8}$	$\stackrel{\rightharpoonup}{0}$	3	－	\％	\％	
s．africa	－	－	－	－		－	－	－	$\stackrel{\square}{\circ}$	$\stackrel{\square}{6}$	－	ज	1	1	1	\％	N		\％	O	\％	\％	\checkmark	U	$\stackrel{\sim}{\sim}$	i	
s．Amenca	－	$\stackrel{\square}{\circ}$	－	－		5	－	－	5	ज	宁	$\stackrel{\square}{0}$	N	\％	\％	\％			\％	隹	埌	ज	い	－	－	5	
antanerica	－	$\stackrel{\square}{\circ}$	－	－	¢	促	¢ if	is	$\stackrel{\square}{5}$	1	1	1	1	\％	\％	\％	O		\％	\％	碞	$\stackrel{\square}{5}$	i	G	－		
Newze		－	－	－		\％	\％	G	¢	ज	－	N	N	O	\％	\％	\％		ज	O	G	ज	$\stackrel{\circ}{\circ}$	－	－		
Ocemma		$\stackrel{5}{6}$	${ }_{7}$	－					Gis	ज	\％	\％		\％	\sim	\％	－		ज	埌	碞	－	$\stackrel{\square}{\circ}$	b	¢		
japan		－	cr	1			11	1	\bigcirc	\％	\bigcirc	1		\％	\％	\％			\％	\bigcirc		ज	G	$\stackrel{\square}{*}$	$\stackrel{\rightharpoonup}{0}$		

		ज		1	1	1					i	1			0	1	1			\bigcirc	\％					
Ops	\sim	\％	\％	$\stackrel{\text { c }}{\sim}$	ज	云		－	－	－	－	－	viclich		N	\sim	8	A		－	8 B	\％				
s．afacia	ज	ज	\％	－	¢	¢	$\stackrel{\circ}{\circ}$	\％	＇¢	－	$\stackrel{\rightharpoonup}{*}$	ち	$\stackrel{\square}{6}$	ज	1	1	1	\sim	\bigcirc	\％	\％ 0				$\stackrel{\square}{\circ}$	
Cantican	－	－	－	－	－	－	5		－	5 ¢	－	¢	ज	0	\％	\sim	\％	0	－＇	ज	G心					
antaectica	$\stackrel{\square}{\circ}$	－	－	－	－	ज	1	1	11	11	1	1	1	\％	\sim	\sim	\％	0		0	ご心可			ज		
zealano	\％		－	－	－	心			ज	\％		1	\％		\％	\％	\sim				N					
Ocennan	－		－	－	1	1	1		\bigcirc	ज的	i	－		0	\％	$\check{\sim}$	\％				N					
נapan				¢											¢											

＊Look at next higher band for possible openings．

Morse-A-Keyer

A low-cost, dependable CW keyboard is now available from Microcraft. It features an industrial quality keyboard, rugged steel case, and a 16-character first-in first-out buffer which allows you to type slightly

ahead of the text being sent. Also included are an internal speaker, sidetone monitor, and buffer full LED.

Speed range is 5 to 45 WPM standard, but can be easily increased by changing one resistor. A reed relay is used to key, your transmitter and to provide isolation between the keyboard and associated equipment.

The Morse-A-Keyer is available as a partial kit, complete kit, or factory wired and tested. The partial kit consists of a PC board, construction manual and board parts. The builder must supply an ASCII coded keyboard, 5 volts at 120 mA supply and miscellaneous hardware. Cost is $\$ 69.95$ plus $\$ 3.00$ shipping and handling. The complete kit sells for $\$ 159.95$ plus $\$ 5.00$ shipping and handling and the factory wired model for $\$ 205.00$ plus $\$ 5.00$ for shipping and handling. Write Microcraft Corporation, P.O. Box 513, Thiensville, Wisconsin 53092.

trailered towers

Trailer-mounted antenna towers can be erected by a single person in record time. From the time the trailer

was parked, to the full extension of the Telex/Hy-Gain tower, only 15 minutes had passed. These self-supporting, crank-up steel towers are easily trailered even by passenger cars. The trailer towers are exceptionally well suited to microwave tower surveys, their construction or repair, for site evaluation of two-way radio repeaters, for emergency or security field communications for remote a-m, fm or TV broadcasts at special occasions such as large outdoor concerts, fairs or sports events, or can be used as temporary light-support systems.

Towers are mounted on the trailer by a method which requires only one winch to tilt and erect the tower to its full height. Single-axle trailers, complete with legal running lights, accommodate medium to heavy-duty towers to 52 feet (15.85 m). Two axle heavy-duty trailers with towers to 70 feet $(21.3 \mathrm{~m})$ are also available. Antenna rotators, winch motors, and other accessories are optional.

For full information contact Clyde Blyleven, Hy-Gain, Division of Telex Communications, Inc., 8601 N.E. Highway Six, Lincoln, Nebraska 68505.

$440-\mathrm{MHz}$ synthesized handheld

Encomm, Inc., announces the addition of the ST-7/T 440-MHz synthe-
sized handheld transceiver for use in the $440-449.995 \mathrm{MHz}$ band to the Santec line of handheld radios.
This compact UHF package has a nominal 3 watts output from the transmitter and incorporates all 16tone DTMF tones and optional synthesized CTCSS encoder capability. The high power level is backed up by the ability to switch to either one watt or as low as 50 milliwatts for battery saving applications.

The styling of the ST-7/T is quite similar to that of the popular Santec HT-1200 2-meter unit. All of the external accessories for the 2-meter unit are compatible with the ST-7/T. Both the receiver and transmitter cover the full band of 440 fm to provide true universal compatibility with the ARRL band plan for 440 MHz . Offset of the transmitter from the dialed receiver frequency is accomplished at the flick of a three-position switch, which provides for direct operation on the same frequency and up or down 5 MHz for the standard repeater offset. Another switch feature is the immediate access to the national calling frequency of 446.000 MHz (SPX) by actuating a single slide switch. The ST-7/T features a micro-thumbwheel frequency

selector switch to provide positive readout and control of the CMOS PLL synthesizer plus a metalized center body to provide better antenna efficiency. The antenna is a full $1 / 4$ wave flex antenna which mounts on the BNC connector.

For more information, contact Encomm, Inc., 2000 Avenue G, Suite 800, Plano, Texas 75074 , or telephone (214) 423-0024.

COMM-X antennas

"COMM-X," "Communications Extender," series of antennas presently includes two models. The model CX-144 has a frequency of $144-148 \mathrm{MHz}$ and is 52 inches in length; the model CX- 220 is 35 inches long and has a frequency of 220-225 MHz .

Both feature adjustable whips designed to allow field tuning for optimum VSWR, typically 1.5:1 or less at resonance, and typical gain of 3 dB over a $1 / 4$-wave standard. In addition, two stainless steel set screws secure the heavy-duty whips to provide "double-locked" protection. The ferrule is attached with adhesive and also mechanically staked to ensure integrity.

The "COMM-X" is rated at 200 watts and is made of quality materials, including 17-7 taper ground stainless steel whip, 16 -gauge copper matching coil, and standard $3 / 8-24$ chrome-plated brass base. This combination provides excellent wear resistance for long-lasting service.
Valor Enterprises, Inc., is located in West Milton, Ohio. Additional information may be obtained by writing or calling (513) 698-4194; outside Ohio call toll free: (800) 543-2197.

vlf converters

Palomar Engineers is introducing two new converters for the $10-500$ kHz band. They add to shortwave receivers reception of weather, ship-to-shore CW traffic, RTTY, WWVB, navigation beacons, 1750 -meter no-
license band, and European low-frequency broadcast stations.

Model VLF-A converts to 3510 4000 kHz for use with ham-band-only

receivers and transceivers. This gives optimum reception, since receiver noise figure is best on 80 meters.

Model VLF-S converts to 4010 4500 kHz for general coverage shortwave receivers. With digital readout the last three digits read frequency directly.
The new converters feature antenna bypass when turned off, LED power indicator, and low-current 9 volt dc operation. They are housed in attractive brushed aluminum and black vinyl cabinets.
The new converters sell for \$79.95. For further information write Palomar Engineers, 1924-F W. Mission Rd., Escondido, California 92025.

portable RTTY/CW terminal

HAL Communications Corporation announces the new CWR685A Telereader portable RTTY/CW terminal. Featuring compact size and $12-\mathrm{Vdc}$ operation, the CRW685A is just the thing for the traveling RTTY Amateur. A green phosphor 5 -inch display is built into the small $12-3 / 4 \times 11 \times 5$ inch main cabinet, as is an RTTY modem for three shifts, both high and low tones. The keyboard is separate and connects with a 3 -foot cord to the main unit. Advanced features such as programmable HERE IS messages, type-ahead transmit buffer, and automatic transmit/receive control are included with the Telereader.

HATRY'S TEN-TEC Line-up

OMNI

\$1289
Tailored IF response, built-in notch, 3 mode 2 range offset tuning, 2 speed break-in, all 9 HF bands, broadband design, 200 watts input on all bands, full solid state.

ARGOSY

The right features at the right price. Low or high power, $3 \mu \mathrm{~V}$ sensitivity for $10 \mathrm{~dB} \dot{S}+\mathrm{N} / \mathrm{N}$, offset tuning, built-in notch, $80-10$ meters plus the new 30 meter band. Full line of accessories.

DELTA

\$869
200 watt, no tune transmitter, 100\% duty cycle, all 9 HF bands. Super selectivity, variable notch, offset tuning, small size and ultra light weight. Full line of accessories.

Accessories

Power supplies, filters, speech processors, microphones, keyers and more. Call for more information TODAY!
Inquire about Hatry's other ilines of Amateur Radio equipment and suppiles. Used gear avallable too.

HATRY ELECTRONICS

500 LEDYARD STREET HARTFORD, CT 06114

SHIPPING F.O.B. HARTFORD, CT

We have over 80,000 various transmitting, receiving, giant, miniature, subminiature, industrial, antique, etc. vacuum tubes. So may different type that it would take years to sort them! Here's our special deal: we have packaged them into assortments with not more than 2 of the same tube per assortment. You'll find tubes such as 5R4, 12AT7, 6AU6, etc. These are government surplus tubes and many are not in individual boxes but at these prices you can't lose! Sorry, no special requests.

C4616 Box of $20 \quad \$ 12.00$
C4617 Box of $40 \quad \$ 20.00$
C4618 Box of $100 \$ 48.00$
C4619 Box of $200 \$ 89.95$
Please include $\$ 3.00$ extra for UPS shipping.

REPEATER TAML"LHIPPEER-

 SQUELCH TAILELIMINATOR

Better than 6db Sinad Sens. Wide temperature range. Tone enable-disable.

TC-2000 Regency U10R
 $\$ 69.95$

TC-2100 Universal $\$ 79.95$
TC-2200 PC Mt.
$\$ 54.95$
Easy installation for most repeaters

---TRM - -CHITPPER---

* Circuit Electranics, Inc. 621 Bishop, Salina, KS 67401

Call 913-827-4521

The CWR685A can easily be slipped into a suitcase for a ham-holiday outing. In the home shack, the Telereader consumes little space and can be connected to an external monitor and parallel ASCII printer for even more versatility. For more information, contact HAL Communications Corporation, Box 365, Urbana, Illinois 61801.

handheld synthesized scanner

Electra Company has announced a breakthrough in scanning radios with their new Bearcat ${ }^{\oplus} 100$ handheld portable, which they will manufacture here in the U.S. Fully synthesized, it requires no crystals. Compressed into a $3 \times 7 \times 1 \frac{1}{4}$ inch case is more scanning power than in many base or mobile units. The unit has a full 16 channels with extended frequency coverage. Power consumption is kept extremely low by using a liquid crystal display and several lowpower integrated circuits which are new to the industry.

The Bearcat 100 produces audio power output of 500 milliwatts and a
hefty one full watt when used in conjunction with the accessory ac adapter included in the package. The unit has patented Track Tuning, selectivity of better than 50 dB down, and sensitivity of less than a microvolt on all bands and all channels.
The unit operates on six AA batteries and has a battery-low LED indicator to signal when to recharge. A special internal circuit protects against overcharging while also preventing excess drain on the batteries. The unit's wide frequency coverage includes all public service bands (low, high, UHF, and T bands), both $2-$ meter and 70 -centimeter Amateur bands, plus military and federal land mobile frequencies. The unit has direct channel access and a built in automatic scan delay.
The package includes a sturdy carrying case, earphone, battery charge/ac adapter and has a suggested retail price of $\$ 449.95$. Complete details are available from Bearcat scanner suppliers, or by writing to Electra Company, 300 East County Line Road, Cumberland, Indiana 46229.

2-meter fm transceiver

Trio-Kenwood has just introduced a new 2 -meter fm mobile transceiver, the model TR-7730. The compact TR-7730 has an rf output power of 25 watts, with HI/LO power switch, five memories, memory scan, automatic band scan, up/down manual scan on the microphone, four-digit LED frequency display, S / rf bar meter, ± 600 kHz offset switch, and LED indicators for BUSY, ON-AIR, and REPEATER.

Optional accessories include the MC-46 sixteen-button autopatch microphone, SP-40 remote speaker, and KPS-7 power supply for fixed station operation. For additional information, contact Trio-Kenwood Communications, P.O. Box 7065, Compton, California 90224.

course in TTL and CMOS

A new "hardware-oriented" course in TTL and CMOS circuits is being offered by Heathkit/Zenith Educational Systems. Designed for the electron-

ics student, experimenter, Radio Amateur, or computer enthusiast, these concise circuit descriptions are ideal for the person who wants to learn by doing.

A hardware-oriented course designed to give hands-on experience, the TTL and CMOS Circuits Course is composed of a series of circuit files arranged in a logical progression. Each file provides the student with a description of the particular circuit and its operation, a circuit schematic, and modifications that can be performed on the basic circuit.

Text reading is condensed and the course places emphasis on actual cir-
cuit construction. Examples of the circuits the student will build (components are included) are seven-segment digital displays, flip-flops, clock generators, data selector distributors, and comparators.

For more details on the EH-702 TTL and CMOS Circuits Course, see the latest 104 -page Heathkit Catalog. For a free copy write Heath Company, Dept. 350-165, Benton Harbor, Michigan 49022.

multi-purpose rf wattmeters

Bird Electronic Corporation's line of RF Power Analyst ${ }^{\text {TM }}$ directional wattmeters has been expanded by the addition of seven new models. These microprocessor-based digital THRULINE ${ }^{\text {® }}$ wattmeters are available now as rack-mounted as well as portable instruments, with built-in or external coax line sections, and with measurement parameters geared to $\mathrm{fm}, \mathrm{a}-\mathrm{m}$, SSB/DSB, CW, TV or 2-way communications signals.
In addition to bi-directional power from 0.5 to 2300 MHz and from 100 milliwatts to 250 kW , the new series of RF Power Analyst ${ }^{\text {TM }}$ instruments measure VSWR, return loss, percent of modulation, dBm and peak envelope power functions. A min/max memory of any displayed quantity makes equipment adjustments simpler than with an analog device.

Detailed specifications in bulletin PA4382-87/1. Price $\$ 500-\$ 850$, Plugin Elements $\$ 46$ - $\$ 100$. Delivery 4-6 weeks ARO. Contact Bird Electronic Corporation, 30303 Aurora Road, Cleveland (Solon), Ohio 44139.

200-watt CAP transceiver

The 200-watt solid-state Civil Air Patrol transceiver, Ten-Tec Model CAP 100, has eight crystal controlled channels (two user-selected $4-\mathrm{MHz}$ channels for primary and alternate frequencies plus the National Emer-

SSAVES
\$CALL TOLL FREE

ALL NEW
ALL BAND
antenna tuner PRESELECTOR

- Signa/Match

Now - match your antenna to your recelver at any frequency In the $\mathbf{1 0} \mathbf{K h z} \mathbf{- 3 0} \mathbf{~ M H z}$ range.

- Low cost
- Fully guaranteed

0
ETBEE CATALOG
For more information write: GROVE ENTERPRISES Department D
CRDV E Brasstown, N.C. 28902

TheBest Got Better

MODEL 4381 RF POWER ANALYST
This new generation RF Wattmeter with nine-mode system versatility reads...
IN STOCK QUICK DELIVERY AUTHORIZED DiTh DIStributor Webster associates

115 BELLARMINE ROCHESTER, MI 48063

IN MICHIGAN $313-375-0420$

gency Frequency, two CAP channels on 7 MHz , and the $11.9,14.9$, and 20.8 MHz CAP channels) all built-in. Other features include automatic sideband selection, four-pole crystal ladder filter (2.7:1 shape factor, $6 / 50$ dB), built-in squelch, S/SWR meter, adjustable threshold ALC and drive, clean audio, high-stability oscillators, built-in speaker, built-in phone patch jacks, linear T/R control relay, counter output jack, and 13 -volt dc circuitry.

Options include eight-pole plug-in filter, power supply, microphone, noise blanker, mobile mount, mobile circuit breaker, speech processor, and antenna tuner. Styling is in rich bronze with contrasting nomenclature for easy reading. The "clamshell" type aluminum case in dark finish features full shielding, tilt-up bail, and compact size: $5 \times 11-3 / 8 \times$ 12-1/8 inches.
The unit, a basic high-frequency SSB transceiver, can be adapted to domestic and foreign commercial applications as well. Model 100 is priced at $\$ 595$ with all crystals included. For full information, write Ten-Tec, Inc., Highway 411 East, Seiverville, Tennessee 37862 , or telephone (615) 453-7172.

$10 \mathrm{kHz}-30 \mathrm{MHz}$ tuner

This advanced Signa/Match fre-quency-selective tuner from Grove Enterprises is designed to optimize impedance matching between any antenna and any receiver on any frequency between 10 kHz and 30 MHz . It will reduce, and in many cases remove, receiver intermodulation, images and front-end overload. Background noise is reduced. VIf signals you never dreamed were there come roaring in loud and clear.

Front-panel switches allow instant selection between two antennas and between two receivers (or two antenna inputs to one receiver). Matched rotary switches permit the listener to peak signal strength of the frequency of interest, while a main tuning dial provides sharp resolution of the final signal.

The Signa/Match works best with $50-100$ foot wire antennas or centerfed dipole antennas. Signa/Match requires no power source. Installation is between your antenna input line and receiver. Signa/Match comes com-

plete with instruction manual and all interconnecting cables. For further information and free catalog, contact Grove Enterprises, Inc., Dept. D, Brasstown, North Carolina 28902.

MBATM reader only

AEA, Inc., announces a new reader for Morse, Baudot, and ASCII operation. The MBA-RO (reader only) is a state-of-the-art device using a 32 character vacuum fluorescent alphanumeric display. The 32 -character

display allows for up to five words to be displayed at one time. This extended display is especially useful during high speed copy.

The equipment features include speed capabilities of up to 99 WPM for CW copy, 60, 67, 75, and 100 WPM for Baudot, and ASCII at 110 and hand-typed 300 baud. The MBA incorporates automatic speed tracking, ensuring no loss of copy due to rapid speed changes in signal reception. The MBA required a $12-\mathrm{Vdc}$ external.power supply, making it ideally suitable for portable, mobile, or fixed operation. The MBA is compact in size and can be used with a hand key, bug, or electronic keyer.

For more information, contact Advanced Electronic Applications, Inc., P.O. Box 2160, Bldg. O\&P - 2006196th SW, Lynnwood, Washington 98036, or telephone (206) 775-7373.

diecast boxes

Hammond has introduced a new line of improved diecast aluminum alloy boxes. Good if shielding makes smaller sizes excellent for rf connectors. The countersunk lid has an interlocking flange and the box is drilled and tapped for screws provided.

The boxes have an attractive ground and tumbled finish which may be painted if required. Quantity discounts provided when ground and tumbled surface not required. These boxes are available at all Hammond distributors or we'll send a free cata\log on request. Contact Hammond Manufacturing Company, 1690 Walden Avenue, Buffalo, New York 14225.

STEP UP TOTELREX Professionally Engineered Antenna Systems Single transmission line "TRI-BAND" ARRAY"

 tinues to outperform all competition. and has for two decades. Here's why Telrex uses a unique trap design employing 20 HiQ 7500 V ceramic condensers per antenna. Telrex uses 3 opti-mum-spaced, optimum-tuned reflectors to provide maximum gain and true F/B Tri-band performance.

For technical data and prices on complete Telrex line, write for Catalog PL 7

SAY YOU SAW IT IN HAM RADIO

THE PROFESSIONAL. TOUCH TONE ENCODER

An ultra high quality encoder for professional application. Absolute reliability and function makes the difference. There's a Pipo encoder for every system and application. Totally serviceable, easy to operate and install. Call or write for free catalog and information! (213) 852-1515 or P.O. Box 3435, Hollywood, CA 90028.
patented
PipoGommunications
Emphasis is on Quanty \& Reliabinty

WARNING SAVE YOUR LIFE OR RN MNOURY

Base plates, flat roof mounts, hinged bases, hinged sections, etc., are not intended to support the weight of a single man. Accidents have occurred because individuals assume situations are safe when they are not.
Installation and dismantling of towers is dangerous and temporary guys of sufficient strength and size should be used at all times when individuals are climbing towers during all types of installations or dismantlings. Temporary guys should be used on the first 10^{\prime} or tower during erection or dismantling. Dismantling can even be more dangerous since the condition of the tower, guys, anchors, and/or root in many cases is unknown.
The dismantling of some towers should be done with the use of a crane in order to minimize the possibility of member, guy wire, anchor, or base failures. Used towers in many cases are not as inexpensive as you may think if you are injured or killed.
Get professional, experienced help and read your Rohn catalog or other tower manufacturers' catalogs before erecting or dismantling any tower. A consultation with your local, professional tower erector would be very inexpensive insurance.

おう"

Decodes RTTY signals directly from your receiver's loudspeaker. * Ideal for SWLs, novices \& seasoned amateurs. * Completely solid state and self-contained. Compact size fits almost anywhere. No CRT or demodulator required . . Nothing extra to buy! * Built-in active mark \& space filters with tuning LEDs for $170,425 \& 850 \mathrm{~Hz}$ FSK. * Copies 60, 67, 75, \& 100 WPM Baudot \& 100 WPM ASCII. * NOW you can tune in RTTY signals from amateurs, news sources \& weather bulletins. The RTTY READER converts RTTY signals into alphanumeric symbols on an eight-character moving LED readout. Write for details or order factory direct.
RTTY READER KIT, model RRK
\$189.98 $\$ 149.95$
RTTY READER wired and tested, model RRF
\$24\$.90 $\$ 219.95$
Send check or money order. Use your VISA or MasterCard. Add $\$ 5.00$ shipping and handling for continental U.S. Wisconsin residents add 4% Wisconsin State Sales Tax.

Micracraft

Corporation Telephone: (414) 241-8144 Post Office Box 513HR, Thiensville, Wisconsin 53092

Standard \$42.95
Chrome $\$ 52.95$
Gold Plated \$150.00
At selected dealers or add $\$ 2.00$ handling Write:

The New Standard... the Ulimate IAMBIC PADIDLE

Modern CW technology at its best! Carefully engineered to make optimum use of today's keyers, the Bencher lambic Paddle is a symphony of modern materials, design and workmanship. This is the paddle that provides the perfect interface between the CW operator and his rig. Smooth, instantly responsive and fully adjustable to suit your own touch. From the gold plated solid silver contacts to the heavy leaded steel base, it truly is the ultimate.

flea market 8\%\%四

RATES Noncommercial ads $10 ¢$ per word; commercial ads 60¢ per word both payable in advance. No cash discounts or agency commissions allowed.
HAMFESTS Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing) on a space available basis only. Repeat insertions of hamfest ads pay the non-commercial rate.
COPY No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

DEADLINE 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

QSL CARDS

QSL's - BE PLEASANTLY SURPRISED! Order our three colored QSL's in all varieties for $\$ 8.00$ per 100 or $\$ 13.00$ for 200. Satisfaction guaranteed. Samples $\$ 1.00$ (refundable). Constantine Press, 1219 Ellington, Myrtle Beach, SC 29577.

OSLs \& RUBBER STAMPS - Top Quality! Card Samples and Stamp Info - 50c - Ebbert Graphics 5R, Box 70, Westerville, Ohio 43081

QSL CARDS: $500 / \$ 12.50, \mathrm{ppd}$. Free catalogue. Bowman Printing, 743 Harvard, St. Louis, MO 63130.
OSL'S: No stock designs! Your art or ours; photos, originals, 50Φ for samples $\&$ details (refundable). Certified Communications, 4138 So. Ferris, Fremont, Michigan 49412.

DISTINCTIVE OSL's - Largest selection, lowest prices, top quality photo and completely customized cards. Make your QSL's truly unique at the same cost as a standard card, and get a better return rate! Free samples, catalogue. Stamps appreciated. Stu K2RPZ Print, P.O. Box 412, Rocky Point, NY 11778 (516) 744-6260.

Foreign Subscription Agents for Ham Radio Magazine

OSL ECONOMY: 1000 for $\$ 13$. SASE for samples. W4TG, Box F, Gray, GA 31032.

CADILLAC OF QSL CARDS, 3 to 4 colors, send $\$ 1$ for samples (Refundable). Mac's Shack, P.O. Box 43175, Seven Points, TX 75143.

FOR SALE: A complete Galaxy V Mk 2 Station, with transceiver good condition, phone patch, with swr meter, and clock, AC pwr. supply and mobile pwr. supply, remote VFO. Price $\$ 400.00$. Phone (918) 253-8958.

MOBILE OPERATORS: Anteck's Mobile Antennas cover 3.2 to 30 MHz inclusive, with no coil changing. 50 Ohms input. Two models, the MT-1 MANUAL, MT•1RT RE-MOTE-TUNED from the operators position. Uses two Hyd. Pumps and Motors. MT-1 $\$ 129.95$, MT-1RT $\$ 240.00$ plus UPS postage. Check your local dealer or write for Dealer List and Brochure. ANTECK, INC., Route One, Box 415, Hansen, ID 83334. 208-423-4100.

AMP-LETTER: Devoted to designing, building, and operating Amateur Radio Amplifiers. Sample $\$ 2.00$. AMP. LETTER, RR2 Box 39A, Thompsonville, IL 62890.
NOTICE: I will pay $\$ 1 /$ oz for gold-plated pins, connectors, transistor leads and PC board fingers. W6TWT, Ron Guard, 10105 Stern Ave., Cupertino, CA 95014. (408) 252-5067.

WOLF, SHERMAN W., Author of FM Digest. Anyone know his present address? Please contact me. K4CHE, 104 Brookfield Drive, Dover, DE 19901.
ham radio fanatics! You need the W5YI Report Twice monthly award-winning insider newsletter. 24 issues - $\$ 18.00$. Sample issue SASE (2 stamps). W5YI, Box \#10101-H, Dallas, Texas 75207

TUBES: Retired repairman's stock. SASE for details. Jesse Reed, 506 La Paloma Lane, Roswell, NM 88201.
ATLAS DD6-C Digital Dial $\$ 120.00$ plus $\$ 4.00$ UPS. NEW, while they last. Mical Devices, P.O. Box 343, Vista, CA 92083.

CONNECTICUT'S Ham Store - Rogus Electronics, 250 Meriden-Waterbury Turnpike, (Rt. 66) Southington. (203) 621-2252.

RTTY JOURNAL-EXCLUSIVELY AMATEUR RADIOTELE. TYPE, one year subscription $\$ 7.00$. Beginners RTTY Handbook $\$ 5.00$, RTTY Index $\$ 1.50$. P.O. Box RY, Cardiff, CA 92007.

FOR SALE: DenTron MLA2500, perfect condition, guaranteed. $\$ 600.00$. (401) 789-1817. W1CPI.

CUSTOM EMBROIDERED EMBLEMS - Your design, low minimum. Informational booklet. Emblems, Dept 65, Littleton, New Hampshire 03561. (603) 444-3423.

TELONIC SPI. 64 Sweep generator, Heath TC-1 manuals/ schematics needed. Purchase or photocopy. WA4VZQ, 4740 Edens View Road, Kingsport, TN 37664.

WANTED: Pre-1950 TV sets and old TV Guides. Jeff Kadet, W3CRH, Box 90-HR, Rockville, MD 20850. (301) 654-1876.

NEW REPEATER SITE? Intermod studies done by computer. Specify maximum on-site receiver bandwidth, receiver I.F. frequencies (if known) all on-site transmit and receive frequencies, and specify maximum harmonic multiplier of interest. Charges: $\$ 1.50 /$ frequency plus $\$ 5.00$ /harmonic multiplier. Lee Barrett, K7NM, Box 488, Havre, Montana 59501.

MANUALS for most ham gear made 1937/1970. Send $\$ 1.00$ for 18 page "Manual List", postpaid. HI-MANUALS, Box H802, Council Bluffs, lowa 51502.

APARTMENT HAMS - Get out like a bandit from apart ment or condo. Handbook of Apartment Operation by Dan Fox, W2IQD. Only $\$ 12.50$ plus $\$ 1.50$ postage and handling. Money back guarantee. Send check, VISA, or MC to Wessex Publishing Co., Dept. A9, POB 175, N Chelmsford, MA 01863.

SB-102, SB-600, PS, CW filter. MINT honest. Original owner. K5PA, 12412 Mossybark, Austin, TX 78750. (512) 258-4959. $\$ 390$.
ROHN TOWERS - Wholesale direct to users - All products available. Write or call for price list. Also we are wholesale distributors for Antenna Specialists and Regency FM radios. Hill Radio, P.O. Box 1405, 2503 GE Rd., Bloomington, IL 61701. (309) 663-2141.
NOVICE SHACK STARTER! Heath HR- 1680 Rcvr \$150; HS-1661 Spkr - \$15; SBA-104-1 Noise Blanker \$25. Package price - \$175. Knight KG-620 VTVM - \$20 Heath IG-102 RF Signal Generator - $\$ 25$. Both for $\$ 40$. Heath HM-102 SWR/wattmeter - $\$ 30$. I ship it all for $\$ 240$! George Ritter, WB8EPE, (614) 587-7290 (work) (614) $366-3970$ (home).

TEST EQUIPMENT RE-CONDITIONED AND LaB CALIbRATED

TS-510/U SIGNAL GENERATOR, RANGE 10 MHZ THRU 420 MHZ, AM/CW OR PULSE MODULATION, CALIBRATED ATTEN $J A T O R$, MILITARY EQUIVALENT TO HP-6080 $\$ 375.00$ TS-621/URM-52 SIGNAL GENERATOR, RANGE 3.8 GHZ TO 7 GHZ, AM/PULSE MODULATION, CALIBRATED ATTENJA. TOR. MILITARY EQUIVALENT TO HP-618A3.345.00 HP612A SIGNAL GENERATOR, RANGE $450 \mathrm{MHZ}-1230 \mathrm{MHZ}$. AM/PULSE MODULATION, CAL. ATTENUATOR ...475.00 HP614 SIGNAL GENERATOR. RANGE $900 \mathrm{MHZ}-2100 \mathrm{MHZ}$. AM/PULSE MODULATION CAL. ATTENUATOR 345.00 HP616A SIGNAL GENERATOR RANGE $1800 \mathrm{MHZ}-4000$ MHZ. AM/PULSE MODULATION, CAL. ATTENUATOR 375.00 URM-25 SIGNAL GENERATOR, HF RANGE 10 KHZ THRU 50 MHZ AM/CW MODULATION 400 \& 1 KHZ , CALIBRATED OUTPUT. PRECISION 50 OHM STOP ATTENUATOR . . 285.00 URM-26 SIGNAL GENERATOR, HF/VHF RANGE 4 MHZ - 405 MHZ AM/CW MODULATION, CAL. ATTENUATOR . . 285.00 TS-497/URR SIGNAL GENERATOR, RANGE 2 MHZ THRU 400 MHZ. CALIBRATED ATTENUATOR AM/CW MODULATION MILITARY VERSION OF MEASUREMENTS MODEL 80225.00 SG-13/U AIRCRAFT VOR/ILS SIGNAL GENERATOR. RANGE 108 THRU 135.9 MHZ AND 329.9 TO 335 MHZ . OUTPUT SIGNALS INCLLUE VOR. LOC. GLIDESLOPE AND 1000 CPS
SAME AS COLLINS $479 T$-2. OPERATES FROM 28 VDC AT $31 / 2$ AMPS BENCH POWER SUPPLY OR AIRCRAFT BATTERIES. IDEAL FOR AIRCRAFT RADIO REPAIR 295.00 SG-1A/ARN AIRCRAFT RADIO SIGNAL GENERATOR WITH PP-348/ARN $115 \mathrm{~V} / 60 \mathrm{HZ}$ P/S, RANGE 88 THRU 140 MHZ AND 110.1 TO 114.9 MHZ IN 10 KHZ STEPS. CALIBRATED OUTION INT OR EXT. MILITARY EQUIVALENT TO BOONTON 211 A
SG-12/U FM SIGNAL GENERATOR, RANGE 20 MHZ THRU 00 MHZ . ME ERED RF OUTPUT O-5V. METERED DEVIATION $0-100 \mathrm{KHZ}$ PERFECT FOR LOW BAND AMATEUR OR COMMILITARY, PRC. GRC, VRC FM RADIOS 165.00
OS-121/USM-140 OSCLLLOSCOPE WITH MX2930 DUAL TRACE PLUG-IN AND MX3078/USM HORIZ CHANNEL PLUGIN. 5" CRI INTERNAL SWEEP. 24 CALIBRATED RANGES WITH SWEEP EXPANSION. TRIGGER MODES, CALIBRATOR. DC-22 MHZ, HOUSED IN VENTED AIR COOLED CABINET. CILLOSCOPE AT A LOW PRICE 295.00 CILLOSCOPE AT A LOW PRICE
HP2590A FREQUENCY CONVERTER, EXPANDS HP5245/46 HP2590A FREQUENCY CONVERTER, EXPANDS HP5245/46
FROM 0.5 TO $15 \mathrm{GHZ} \ldots345 .00$ TV-7/U MILITARY TUBE TESTER
345.00
55.00

HP403B SOLID STATE RMS AC VTVM 165.00
GR1932A DISTORTION AND NOISE METER. PERFECT FOR AUDIO WORK 175.00
HP5261A VIDEO AMP PLUG-IN FOR HP5245/46 FREO COUNTERS 69.00 FR-149/USM-159 FREQUENCY METER 125 KHZ THRU 1000 MHZ, LATE VERSION OF THE BC-221 65.00 IEKTRONIX PLUG-INS FOR 530/540 SERIES O SCOPE, TYPE A, B, C, D, H, K, L, R EACH 65.00 TEKTRONIX $3 A 72$ DUAL TRACE DC- 650 KHZ PLUG-IN FOR 560 SERIES 0 SCOPE
GRM-46 TEST SET FOR RT-349/ARC-55 UHFTRANS. $\quad 49.00$ TS-186/UP FREO. METER $100 \mathrm{MHZ}-10.000 \mathrm{MHZ}$. . 65.00 SG-2/GRM-4 AIRCRAFT GLIDESLOPE SIGNAL GEN. 329.3335 MHZ . MIL. VERSION OF BOONTON 232A 275.00 WE SHIP BEST WAY FOB OTTO, N. C. 30 DAY MONEY BACK GUARANTEE. SEND CHECK, VISA OR M/C. PHONE BILL SLEP (704) 524-7519.
 OTTO, NORTH CAROLINA 28763

Master code or upgrade in a matter of days! Code Quick is a unique breakthrough to revolutionize the learning of Morse Code. Instead of an endless maze of dits and dahs, each letter will magically begin to call out its own name! Stop torturing yourself with old-fashioned methods. Your amazing kit contains 5 power-packed cassettes, visual breakthrough cards and original manual. All this for only $\$ 39.95$! Send check or money order today to WHEELER APPLIED RESEARCH LAB. P.O Box 3261. City of Industry, CA 91744 . Ask for Code Quick $\# 107$. California residents add 6% sales tax

You can't lose! Follow each simple step. You must succeed or return the kit for total immediate refund!

THE CK-1 IS THE MOST REQUESTED KEYER BY SERIOUS CONTESTERS.
FEATURES START WITH ...

- 500 CHARACTER SOFT-PARTITIONED ${ }^{m}$ MEMORY
- AUTOMATIC SERIAL NUMBER GENERATOR - MESSAGE EDITING AND STEPPED VARIABLE OR 2 KEYPAD SELECTABLE MEMORY SPEEDS
- OPERATES FROM 12 V.D.C.
call or visit:
454
Brings you the Breakthrough!

RADIOS UNLIMITED 1760 Easton Avenue Somerset, NJ 08873
(201) 469.4599

*Quality Microwave Systems ${ }^{2100010,2000 ~ M m i z a n t e m a s s ~}$ 34 db Gain or Greater

 $\begin{array}{lr}\text { Complete System (As Pictured) Ready to Install } & \mathbf{\$ 1 4 9 . 9 5} \\ \text { Down Converter (Probe Mntd.) Assembled and Tested } & 64.95 \\ \text { Down Converter PCB (Chassis Mntd.) Assembled and Tested } & 64.95 \\ \text { Power Supply Assembled and Tested } & 59.95 \\ \text { Down Converter PCB (Chassis Mntd.) Kit w/ Parts and Data } & 49.95 \\ \text { Printed Circuit Board (Chassis Mntd.) } & 29.95 \\ \text { Data Information (Plans for Kit Building) } & 9.95\end{array}$

SEND CHECK, CASH, MONEY ORDER TO:

Phillips-Tech Electronics

P. O. Box 33205 Phoenix, Arizona 85067
For Special Quantity Pricing, C.O.D.'s. MasterCard or Visa Call: (602) 274-2885

RED HOT SPECIALS

AZDEN PCS 30002 m
New SANTEC 1442 m Handheld KDK 2025 Mkll 2 m JANEL QSA5 2 m Preamp NEW BEARCAT $20-20$ Scanner KANTRONICS FDII Code Reade All MFJ Iterns
osy Xcvr.
TEN-TEC Delta Xcvr.
TEN-TEC Omni C Xcvr
NEW KANTRONICS Micro-RTTY New SANTEC 440 MHz Handheld New AZDEN PCS 300 Handheld. Prices subject to change without notice SASE for our Large Specials
BEN FRANKLIN ELECTRONICS
$1151 / 2$ N. Main Hillsboro, KS 67063 316-947-2269
.360 .00
12% off list
469.00
738.00
1040.00
1040.00
255.00
255.00
345.00
345.00
288.00
285.00
315.00
.
269.00
.36 .50
278.00

NEW CATALOG OF HARD-TO-FIND

 PRECISIONTOOLSLists more than 2000 items plen, ${ }^{2} w^{2}$ uitestrippers, vacuum syatems, ellay tools op uire strippers, vacuum systems, telay tools, op your free copy today

JENSEN TOOLS INC.
1230 5. priest Dr- TEmpe. AZ. 85281

FAGSIMILE								
COPY SATELLITE PHOTOS, WEATHER MAPS, PRESS! The Faxs Are Clear - on our full size (18-1/2 wide) recorders Free Fax Guide.								
TELETYPE								
RTTY MACHINES, PARTS, SUPPLIES								
ATLANTIC SURPLUS SALES \|212	3720349 3730 NAUTILUS AVE BROOKLYN NY 11224							

ELECTRONIC BARGAINS, CLOSEOUTS, SURPLUS! Parts, equipment, stereo, industrial, educational. Amazing values! Fascinating items unavailable in stores or catalogs anywhere. Unusual FREE catalog. ETCO-012. Box 762, Plattsburgh, NY 12901. SURPLUS WANTED
WANTED: Early Hallicrafter "Skyriders" and "Super Sky. riders" with silver panels, also "Skyrider Commercial", early transmitters such as HT-1, HT-3, HT-19, and other Hallicrafter gear, parts, accessories, manuals. Chuck Dachis, WD5EOG, The Hallicrafter Collector, 4500 Rus sell Drive, Austin, Texas 78745.

WANTED: Racal receiver and Racal accessories or similar to RA6217B or E, MA 350B and MA6314 synthesizers, RA6377 comparator, MA6355 oscillator, MA210 Racalator. Equipment can be incomplete or with electrical fault. Need Racal books. John, KB7HC, Box 106, APO NY 09241.

YAESU OWNERS: Join your International Fox-Tango Club, now in its eleventh year. Calendar year dues still only $\$ 8$ US, $\$ 9$ Canada, $\$ 12$ airmail elsewhere. Don't miss out, get 1982 top-rated FT Newsletters packed with mod ifications monthly, catalog of past modifications, free advertisements, technical consultation, FT net (Saturdays, 1700 Z , 14.325 MHz), more. Go Fox-Tangol To join, send dues to FT Club, Box 15944, W. Paim Beach, FL 33406.

FT.101E, Fan, SSB CW filters installed. Includes manual, mic, new tubes. Excellent condition. $\$ 550$. plus shipping. John Skubick, K8JS, 791-106 Ave., Naples, FL 33940. (813) 597-3641.

SELL OR SWAP: Heath HX-1681 with p/s for general coverage receiver. K2VGV. (212) 461.5933.
HAM RADIO REPAIR, experienced, reasonable, commercial licensed. Robert Hall Electronics, P.O. Box 8363, San Francisco, CA 94128. W6BSH, (408) 292-6000.

WANTED: Surplus NASA space hardware and documentation from Apollo, Skylab, etc. for new No. California space museum. Please contact: Mike Smithwick, AA6XI, Space Science Center, 12345 El Monte Ave., Los Altos Hills, CA 94022

RUBBER STAMPS: 3 lines $\$ 3.25$ PPD. Send check or MO to G.L. Pierce, 5521 Birkdale Way, San Diego, CA 92117. SASE brings information.
ICOM 55ID: 6 months old, \$600, I pay shipping. R. Harris, 1402 Fourth Avenue, Plattsmouth, NE 68048. (402) 296-6972.

MOBILE IGNITION SHIELDING provides more range with no noise. Available most engines. Many other suppression accessories. Literature, Estes Engineering, 930 Marine Dr., Port Angeles, WA 98362.
ONLY $\$ 169$ buys Morse-ASCII converter. Assembled, tested, connectorized, insured, shipped! Terminal compatible. Now enjoy CW! Telecraft Laboratories, Box 1185, E. Dennis, Mass. 02641.

VERY in-ter-est-ing! Next 5 issues \$2. Ham Trader "Yellow Sheets", POB356, Wheaton, IL 60187.

SEND $91 / 2$ * SASE for surplus parts and equipment catalog. Bill Williams, P.O. \#7057, Norfolk, VA 23509.

TUBES, TUBES wanted for cash or trade: 340TL, 4CX1000, SCX1500. Any high power or special purpose tubes of Eimac/Varian. DCO, 10 Schuyler Avenue, No. Arlington, NJ 07032. (800) 526-1270.
OVERPRINTED - 1981 Fox-Tango Club Newsletters. Sixty loose-leaf pages packed with modifications and information on Yaesu rigs. Only $\$ 6$ while they last. Also a few 1980 sets at $\$ 5$. (Overseas add $\$ 3$ each, airmail.) N4ML, Box 15944, W. Palm Beach, FL 33406.

WANTED: MS connectors (new or used), synchros, milltary equipment and parts. Send list, Bill Williams, P.O. 7057, Norfolk, Virginia 23509.
SATELLITE TELEVISION: Information on building or buying your earth station. Six pages of what's needed, where to get it, etc. \$4.00 to Satellite Television, RD \#3, Oxford, NY 13830. Parabolic antenna construction book also available. Send SASE for details.

WANTED: Micor and Master II base stations, 406-420 MHz . Any solid state 2 and 6 GHz microwave equipment, AK7B, 4 Ajax Place, Berkeley, CA 94708.

MODERNIZE YOUR TRANSCEIVER - With Protronics RIT kit, for only $\$ 15.90$ postpaid. Kit comes complete with custom potentiometer and simple step by step instructions. Add $\$ 2.50$ for XIT. Visa/Master Charge. Protronics, 20 Monte Vista, Buckley, WA 98321.1 . 206-829-0056.

The Drake DM2350 Digital Multimeter is a convenient. small handheld liquid crystal display meter ideal for the serviceman or hobbyist. This $31 / 2$ digit meter is auto-ranging. auto-zeroing, has polarity indication, and an over-range warning signal. Battery life is greater than 300 hours with a "low battery" indicator. A continuity test sounds a signal when circuit resistance is less than 20 ohms. Dc accuracy is a basic 0.8%.
Batteries, probes. 20 amp current shunt. spare fuse and soft carrying case all included at $\mathbf{\$ 9 5 . 9 5}$
Add $\$ 2.50$ shipping and handling per order Send check with order and provide street address for UPS shipment. Ohio residents add Sales Tax Charge card buyers may call toll free:

1-800-543-5613

In Ohio, or for information call: 1-513-866-2421

R. L. DRAKE COMPANY

540 Richard Street. Miamisburg, Ohio 45342
institutional and dealen inguiaies invited.

HIGH STABILITY CRYSTALS FOR FREOUENCY \sim
 OR TIME
 즈 USE THE BEST BUY JAN CRYSTALS

MICROWAVE CONVERTERS, decoders. Catalog 20 c G.W. Electronics, P.O. Box 688, Greenwood, Indiana 46142.

CB TO 10 METER PROFESSIONALS: Your rig or buy ours - AM/SSB/CW. Certified Communications, 4138 So. Ferris, Fremont. Michigan 49412; (616) 924-4561.

2 METER EME NEWSLETTER. For 2 meter moonbounce enthusiasts. SASE for free monthly publication. WB7DTI, 426 N.E. 156th, Seattle, WA 98155
AFC SEMI-KITS! Stop VFO drift. See June 1979 HR $\$ 55.00$ plus $\$ 3.00$ UPS. Mical Devices, P.O. Box 343 Vista, CA 92083.

HAMS FOR CHRIST - Reach other Hams with a Gospe Tract sure to please. Clyde Stanfield, WA6HEG, 1570 N Albright, Upland, CA 91786.

SATELLITE TELEVISION...HOWARD/COLEMAN boards to build your own receiver. For more information write Robert Coleman, Rt. 3, Box 58-AHR, Travelers Rest, SC 29690.

MAKE HAM RADIO FUN! Supplement your learning programs with a motivational hypnosis cassette. Tape \#3, Learning the Code: Tape \#4, Breaking the Speed Barrier Tape \#7. Electronic Theory. Free catalog. For tapes, $\$ 10.95$ each to Gem Publishing, 3306 North 6th St. Coeur d-Alene, ID 83814.

CORDLESS TELEPHONES - Low prices, all major brands. Inquiries or Visa/MasterCard orders call (206) 743-3977 or Write Trinetics, Box 6005, Lynnwood, WA 98036.

Coming Events ACTIVITIES "Places to go..."

CALIFORNIA: Orange County Hamfest, March 6 \& 7 Orange County Fairgrounds, Costa Mesa. Admission $\$ 2.50$ per person; children under 12 free. Auction, DX and CW contests; speakers; children's games; magic show. Western chicken barbeque Saturday, $\$ 5.95 \mathrm{pp}$. Talk in on 147.69, out on 147.09. For information write: Cataline Amateur Repeater Association, P.O. Box 2197, Westminster, CA 92683.

PLAYBOY CLUB: Plan ahead now to attend the ARRL Hudson Division Convention, October 30-31, 1982, at the Playboy Club, Great Gorge, McAfee, NJ. For info send SASE to HARC, Box 528, Englewood, NJ 07631.

CONNECTICUT: The Hartford County Amateur Radio Association's annual auction of used equipment and "stuff", March 11, 7:30 PM, Veterans Memorial, Sunset Ridge Drive, East Hartford. Refreshments served.

FLORIDA: The Playground Amateur Radio Club's 12th annual Swapfest, Saturday, March 20, 8 AM to 4 PM, and Sunday, March 21, 8 AM to 3 PM, Okaloosa County Fairgrounds, Fort Walton Beach. All inquiries, reservations, etc: PARC, c/o Joe Giangrosso, 304 Chickasaw Circle, Fort Walton Beach, FL 32548.

ILLINOIS: The Civil Air Patrol's second annual Spring Hamtest, Saturday, March 20, Lake County Fairgrounds, US 45 \& IL 120, Grayslake. Donation: $\$ 2.00$; tables, $\$ 3.00$. Reservations and info: SASE Captain Rehm, 637 Emerald St., Mundelein, IL 60060.

INDIANA: The Randolph Amateur Radio Association's third annual Hamtest, Sunday, March 14, 8 AM to 5 PM. Tickets: $\$ 2.00$ advance; $\$ 3.00$ door. Guaranteed reservations by advance payment only. R.A.R.A., P.O. Box 203 , Winchester, IN 47394 or W9VJX (317) 584-9361. Talk in on 147.90-30.

LOUISIANA: The 22nd annual Latayette Amateur Radio Hamfest, sponsored by the Acadiana Amateur Radio Association, Saturday, March 13 and Sunday, March 14, Evangeline Downs Racetrack Club House, off Hwy. 167, 5 miles north of Lafayette. For information: AARA, P.O. Box 51174 , Lafayette, LA 70505.

MARYLAND: The Baltimore Amateur Radio Club's Great er Baltimore Hamboree and Computerfest, Sunday, March 28 , Maryland State Fairgrounds Exhibition Com plex, Timonium. Indoor flea market, outdoor tailgating, Amateur radio, personal computer, small business computer displays. Cash grand prizes, hourly door prizes, food service, free parking. Doors open 8 AM. Admission: $\$ 3.00$. Talk in on 34/94 and 07/67. For information, table reservations: G.B.H. \& C., P.O. Box 95, Timonium, MD 21093. (310) 561-1282. For recorded announcement: (301) HAM-TALK.

MASSACHUSETTS: The Framingham Amateur Radio Association's 6th annual Spring Flea Market, the largest Ham flea market in New England, Sunday, April 4. Doors open 10 AM. Admission $\$ 2.00$. Sellers $\$ 8 /$ table (prior to

STILL MORE

 USABLE ANTENNA FOR YOUR MONEY
PLUS 30 Meters!

Butternut's new HF6V automatic bandswitching vertical lets you use the entire 26 -foot radiator on 80/75, 40, 30, 20 and 10 meters (full quarterwave unloaded performance on 15 meters). No lossy traps. Butternut's exclusive Differential Reactance Tuning circuitry uses rugged ceramic capacitors and large-diameter self-supporting inductors for radiation efficiency and DX performance unmatched by conventional multiband designs of comparable height.

For complete information concerning the HF6V \& other Butternut products see your dealer or write for our free catalog.

BUTTERNUT ELECTRONICB CO. GARY AIRPORT BOX 356E Rte. 2 SAN MARCOS, TX 78666

ANNUAL LAS VEGAS PRESTIGE CONVENTION SAROC ALADDIN HOTEL, LAS VEGAS, NEVADA APRIL 1-2-3-4, 1982

Cocktail Party hosted by Ham Radio Magazine, Friday evening, for all SAROC exhibitors and SAROC] paid registered guests. Ladies program Saturday, included with Ladies GAKOC paid registration. Two Aladdin Hotel Breakfast/Brunches included with each SAROCD paid registration, one on Saturday and one on Sunday. Technical sessions and exhibits Friday and Saturday for all SAROC registered guests. Friday and Saturday hourly awards, main drawing. Saturday afternoon. Must be present to win, ownership of award does not pass until picked up. SAROC advance registration is only $\$ 17.00$ per person if postmarked before March 1. 1982 . After March 1. 1982 it is $\$ 19.00$ per person. Non-paying guests who only wish to visit SAROC exhibits will be issued an ID
badge good for admission to exhibit area at no charge. Coupon book and cellophane badge holder may be picked up at [SAROC] registration desk. Send check or money order to SAROC] , P.O. Box 14217, Las Vegas, Nevada 89114. Refunds will be made after SAROC is over to those requesting same in writing and postmarked before April 1. 1982. Special SAROC Aladdin Hotel room rate is $\$ 36.00$, plus room tax, per night, single or double occupancy. Aladdin Hotel accommodations request card will be sent to all SAROC exhibitors and SAROC] paid registered guests.
Coming [AROC] conventions: January 13-16. 1983; January 12-15, 1984; January 10-13, 1985.

Enclosed is \$ \qquad check or money order (no cash) for \qquad SAROC ${ }^{-}$advance registration (a) $\$ 17.00$ each: after March 1. 1982 SAROC registration is $\$ 19.00$ each. Extra drawing tickets for main drawing are $\$ 1.00$ each. limit 10 for each SAROC] paid registration.
OM \qquad Call \qquad Class

YL Call \qquad Class

Address \qquad City

State \qquad ZIP \qquad Telephone No./AC

I have attended SAROC \qquad times. I plan to attend Friday Cocktail Party \qquad
I am interested in: ARRL, Cocktail Party, CW, DX, FCC, FM, MARS, RTTY, TV. other \qquad
I receive: CQ. Ham Radio Magazine, Hr Report, QCWA, QST. RTTY. Spark/Gap. 73. Worldradio.
publications. Please circle ones received.
P.O. B0X 14217, LAS VEGAS. NEVADA 89114

\square
magazine
READER SERVICE CENTER
P.O. BOX• 358
ARLINGTON, MA 02174
ATTN: Reader Service Dept.

March 27; \$10/table after that). Talk in on $75 / 15$ and 52 direct. Radio equipment, computer gear, food, bargains. Contact Ron Egalka, K1YHM, 3 Driscoll Drive, Framingham, MA 01701. (617) 877-4520.

MICHIGAN: The Southern Michigan ARS and Calhoun County Repeater Association's 21st annual Michigan Crossroads Hamfest, March 20, Marshall High School, Marshall. Doors open 7 AM for exhibitors; 8 AM for buyers/lookers. Refreshments available. Talk in on 07/67 and 52. For information: SMARS, P.O. Box 934, Battle Creek, MI 49016 or call Earl Goodrich (616) 781-3554.

MINNESOTA: The Rochester Amateur Radio Club and the Rochester Repeater Society's Hamfest, Saturday, April 3, John Adams Junior High School, 1525 N.W. 31 Street. Rochester. Doors open 8:30 AM. Large indoor flea market, prize raffles, refreshments. Talk in on 146.22/82. For further information: RARC, clo WBOYEE, 2253 Nordic Ct. N.W., Rochester, MN 55901.
MISSOURI: A.R.C.H. '82, sponsored by the Gateway Amateur Radio Association, March 27 and 28, Chase Park-Plaza Hotel, St. Louis. Amateur Radio and computer hobbyists. Giant indoor flea market, major exhibitors/ dealers; workshops and forums. Saturday evening banquet. ladies' activities. Thousands of $\$ \$ \$$ in prizes. Advance tickets $\$ 3.00$. Gateway ARA, P.O. Box 8432, St. Louis, MO 63132. (314) 361-4965.
MISSOURI: The PHD Amateur Radio Association's 13th annual Northwest Missouri Hamfest and the 1982 Missouri State ARRL Convention. Saturday and Sunday, April 3 and 4, Trade Mart Building at Downtown Kansas City Airport. Over $\$ 3500$ in prizes. Doors open 10 to $5: 30$ both days. Forums, ARRL, DX, contest, technical antenna, YL, XYL. Saturday nite banquet at world famous Gold Buffet. Guest speakers: Ellen White, W1YL, DX editor of QST; Marge Tenney, WB1FSN, Convention Coordinator, ARRL; Paul Grauer, WפFIR, ARRL Midwest Director. Registration $\$ 4.00$. Banquet tickets $\$ 10.25$. Talk in 146.34/.94. For information/preregistration: PHD Amateur Radio Association, P.O. Box 11, Liberty, MO 64068-0011. (816) 781-7313 or (816) 452-9321.

MISSOURI: The Jefferson Barracks Amateur Radio Club's annual auction and Hamfest, March 12. NEW location, Carondelet Sunday Morning Athletic Club, South St. Louis. For information: Jefferson Barracks ARC, KOZFK.
NEBRASKA: The 3900 Club and the Sooland Repeater Association's 6th annual Hamboree, Friday, March 19 and Saturday, March 20, Marina Inn, South Sioux City. Doors open Friday noon and Saturday 9 AM. Technical programs, ARRL forum, special Novice meeting, two CW contests, displays of latest equipment. Prize drawings all day Saturday and at banquet. Special exhibits by ARRL, QSL Bureau, Handi-Hams, 3900 Club and Sooland Repeater Association. Special programs for the ladies all day Saturday. Saturday evening at 5 PM entertainment by the North High School Jazz Band followed by banquet at 6. For table reservation contact: Al Smith, WQPEX, 3529 Douglas St., Sioux City, IA 51104. Advance tickets and motel reservations: Jerry Smith, WøDUN, Box 14, Akron, IA 51101. For further information: Dick Pitner, W@FZO, 2931 Pierce St., Sioux City, IA 51104 or Glen Holder, KøTFT, RR 1, Hinton, IA 51024.
NEW JERSEY; The Delaware Valley Radio Association's annual flea market, Sunday, March 28,8 AM to 4 PM, New Jersey National Guard 112th field artillery armory, Eggerts Crossing Road, Lawrence Township. Advance registration $\$ 2.50, \$ 3.00$ door. Indoor/outdoor flea market, door prizes, raffles, refreshments, FCC exams. Sellers bring own tables. Talk in on 146.52 and 146.07-.67. For further information: D.V.R.A., P.O. Box 7024, West Trenton, NJ 08628.
NEW JERSEY: The Chestnut Ridge Radio Club's Ham Radio Flea Market, Saturday, March 20, Education Building, Saddle River Reformed Church, East Saddle River Road and Weiss Road, Upper Saddle River. Tables: $\$ 10.00$ for first; $\$ 5.00$ each additional. Tailgating: $\$ 5.00$. Food and soda. Free admission. Contact: Jack Meagher, W2EHD, (201) 768-8360. Neil Abitabilo, WA2EZN, (201) 767-3575.

NORTH CAROLINA: The Raleigh Amateur Radio Society's 10th annual Hamfest, April 18,8 AM, Crabtree Valley Mall, US 70 West, Raleigh. First prize: Kenwood TS830S HF transceiver OR Icom IC251A 2 m transceiver; second prize: Icom 25A 2 m transceiver and many more prizes. Expanded covered flea market, special interest meetings, nearby motels and restaurants. Talk in W4DW 146.04/146.64; K4ITL 146.28/146.88. For information/ reservations: RARS Hamfest, P.O. Box 17124, Raleigh. NC 27619.
OHIO: The Toledo Mobile Radio Association's 27th annual Auction and Hamfest, Sunday, March 21, Lucas County Recreation Center, Key Street, Maumee. 8 AM to 5 PM. Auction starts at 10 AM. Tickets $\$ 2.00$ advance; $\$ 3.00$ door. Flea market tables available, electronics and ham gear only. Refreshments, door prizes and big raffle. Prizes include Kenwood TS-130S w/power supply; Ken-
wood TS-2500 Handy Talkie, Icom IC-2AT Handie Talkie and much more. Special ladies' programs. Area repeaters are 146.01/61, 19/79, 34/94, 147.87/27 and 975/375. Talk in on $146.52 / 52$. For more info: J. Honisko, KB8YD, 1733 Parkway Drive N., Maumee, Ohio 43537.
OHIO: The 4th annual Lake County Hamfest, Sunday, March 28, 8 AM to 4 PM, Madison High School, Madison. Admission: $\$ 2.50$ advance; $\$ 3.50$ gate. Food, prizes. Main prizes: Kenwood TR9000 2 m transceiver; Kenwood TR2500 HH 2 m transceiver; Mirage B108 2 m amplifier. Hourly door-prize drawings. Talk in on 147.81/21. For details call: (216) 953-9784 or write: Lake County Hamfest Committee, 5704 Middle Ridge, Madison, Ohio 44057.
PENNSYLVANIA: The Conemaugh Valley Amateur Radio Club's fifth annual Hamfest, March 28, Sandy Bottom Sportsman's Club, Seward, ten miles NW of Johnstown. 8 AM to 4 PM. Refreshments available. Good prizes. Check in on $146.34 / 94$ repeater. For information: Check in on $146.34 / 94$ repeater. For information:
Conemaugh Valley ARC, 2829 Bedford Street, Johnstown, PA 15904.
PENNSYLVANIA: The Eight annual Northwestern Pennsylvania Hamfest, May 1, Crawford County Fairgrounds, Meadville. Gates open 8 AM. Bring your own tables. $\$ 5$ per table to display inside, $\$ 2$ per car space outside. $\$ 3$ admission, children under 12 free. Refreshments. Commercial displays welcome. Talk in 04/64, 81/21, 63/03. Details: C.A.R.S., P.O. Box 653, Meadville, PA 16335. Attn: Hamfest Committee.

PENNSYLVANIA: Tradefest ' 82 sponsored by the Penn Wireless Association, Sunday, March 7, National Guard Armory, Southampton Road and Roosevelt Blvd., Langhorne. General admission $\$ 3$. Bring own tables; power connections $\$ 3.00$. Prizes, refreshments, rest areas, displays and surprises. Talk-in on $146.115 / 715$ and .52. Contact: Mark J. Pierson, KB3NE, P.O. Box 734, Langhorne, PA 19047.

NEW JERSEY: Annual Flemington Hamfest Saturday, April 3 from 8:30 to 3:30 at the Hunterdon Central High School Field House. 20,000 square feet of heated indoor area. Gigantic flea market, 200 tables, major manufacturers, and more. Bring the XYL, kids and friends. Flemington is located between NYC and Philadelphia at the intersection of routes 202 and 31 just 10 miles south of 1.78, and is a tourist area. Talk-in 146.52, 147.375, 147.015, 224.12 and 224.54 MHz . Admission $\$ 3.00$ donation. For reservations or information call 201-788-4080 or write Cherryville Repeater Association c/o W2FCW, Box 76, Farview Dr., Annandale, NJ 08801.

KNOXVILLE, TENNESSEE: See Worid's Fair while attending 1982 Knoxville Hamfest and ARRL Delta Division Convention, Memorial Day weekend, May 22-23. DX, computer and technical forums; air-conditioned exhibit area; and large indoor/outdoor flea market make this Tennessee's largest Hamfest. More information? (dealers, tickets, reservations) N4BAQ. 5833 Clinton Hwy., Suite 203, Knoxville, Tenn. 37912.

WEST VIRGINIA: Attention Dealers! Wheeling WV Hamfest, July 25. White Palace, Wheeling Park. Attendance from 3 states, 1000 car parking. Reserve space. Contact: TSRAC, Box 240, RD 2, Adena, OH 43901.
WISCONSIN: The Madison Area Repeater Association's tenth annual Swapfest, Sunday, April 4, Dane County Exposition Center Forum Building, Madison. Doors open 8 AM for sellers; 9 AM for public. Admişsion $\$ 2.50$ advance, $\$ 3.00$ door. Tables $\$ 4.00$ ea. advance/ $\$ 5.00$ ea. door. Door prizes; all-you-can-eat pancake breakfast and Bar-B-Q lunch available. Talk in on WR9ABT, 146.16/.76. For reservations/information: M.A.R.A., P. O. Box 3403, Madison, WI 53704 or Clyde Downing, W9HSY, P.O. Box 3403, Madison, WI 53704. (608) 222-1035.

NEW HAMPSHIRE: The Interstate Repeater Society's annual Hamfest and Flea Market, Saturday, March 13, Merrimack Hilton Hotel, Merrimack. 9 AM to 4 PM . Tables available at $\$ 10.00$. Admission: $\$ 1.00$. Prizes during day. Dinner dance with live music and entertainment. Talk-in on 146.25/85 and 146.52. Further information: Ken Soares, N1BAD, P.O. Box 94, Nashua, NH 03061 or on 25/85.

OPERATING EVENTS

"Things to do..."

MARCH 20: YL ISSB QSO Party. 0001 GMT, March 20 to 2359 GMT, March 21 (CW). 0001 GMT, April 24 to 2359 GMT, April 25 (Phone). Send logs, summary sheets, complete YLISSB QSO Party applications to: K0RDJ or KAOALX.
MARCH 21: Wisconsin QSO Party. 1800 Z, March 21 to 0200 Z. March 22. (8 hours) CW and phone. Frequencies: CW: 3570, 7070, 14070 kHz . Phone: 3990, 7290, 14290 kHz . Logs, prior to May 1, to: Wisconsin QSO Party, clo West Allis Radio Amateur Club, P.O. Box 1072, Milwaukee, WI 53201.

QUALITY VHF/UHF KITS AT AFFORDABLE PRICES Call or Write for FREE CATALOG (Send \$1.00 or 3 IRC's for overseas mailing)
 See our full page ad in 73 Magazine

FM TRANSCEIVERS
FM \& AM RECEIVERS
FM EXCITERS \& XMTRS
FM \& SSB POWER AMPS
RECEIVING \& TRANSMITTING CONVERTERS FOR FM \& SSB LOW-NOISE PREAMPS CWID's, COR's, RF TIGHTCASES For Repeaters, Links, OSCAR, ATV, Mobile, Base, Scientific hamlronics, inc.
65-R MOUL RD. • HILTON NY 14468 Phone: 716-392-9430
Hamtonics is a registered trademark
MARCH 28: A Special Event Station, W3FT, commemorating the annual Baltimore Amateur Radio Club's 1982 Hamboree and Computerfest. This station will be operated by the members of the Catonsville Community College ARS from the Maryland State Fairgrounds, Timonium, from 1200 to 2100 UTC. Frequencies: Phone $7.275,14.290,21.365,28.550 \pm$ QRM. CW -7.110 , $21.120,28.120 \pm$ QRM. A certificate will be issued to Amateurs contacting W3FT upon receipt of QSL card and $40 c$ U.S. postage. Foreign remit 2 IRCs. QSL via KA3GSN or KA3ENU, '82 Callbook.

MARCH 13. The 1982 Virginia State QSO Party sponsored by the Sterling Park Amateur Radio Club. 1800Z, Saturday, March 13 until 0200Z, Monday, March 15, 3 categories: Fixed/portable, single transmitter; fixed/ portable, multitransmitter and mobile. Exchange QSO number, QTH (county for VA stations, state, province or country for others.) Suggested frequencies: Phone $3930,7230,21375,28575 . \mathrm{CW}: 60 \mathrm{kHz}$ from low end and Novice bands. Plaque to high VA score and certificates to other high scores. Mail logs no later than April 15, 1982, to: A. Ray Massie, K3RZR, Rt. 1, Box 115E, Dunnsville, VA 22454. SASE for results.

MARCH 27: Ramapo Mountain Amateur Radio Club's UHF/VHF QSO Party. 1600 Hrs (local) Saturday, March 27 to 2400 Hrs (local) Sunday, March 28. 1982 contest rules considerably different from previous two contests. For log/entry forms SASE: RMARC, P.O. Box 364, Oakland, NJ 07436.
APRIL 7: DX YL to North American YL. All licensed women operators throughout the worid invited to participate. CW starts Wednesday, Aprit 7. 1800 UTC; ends Thursday, April 8, 1800 UTC. Phone starts Wednesday, April 14, 1800 UTC; ends Thursday, April 15, 1800 UTC. DX YLs call "CQ North American YL". N.A. YLs call "CQ DX YL". All bands may be used. No cross band operation. Nets, repeaters, OM contacts do not count. Please send logs prior to April 29, 1982, to: YLRL Vice President Sandra Heyn, WA6WZN, 962 Cheyenne Street, Costa Mesa, CA 92626.

APRIL 17: QRP AMATEUR RADIO CLUB International SSB QSO Party, 1200 UTC Saturday, April 17 to 2400 UTC Sunday, April 18 . Operate max. 24 hours. Call CQ QRP. Suggested frequencies: 1810, 3985, 7285, 14285, 21385, 28885 and/or $50385 \mathrm{kHz} \pm$ interference clearance. VHFIUHF direct - no repeaters. Send logs and scoring to: QRP ARCI Contest Chairman, William Dickerson, WA2JOC, 352 Crampton Drive, Monroe, M1 48161.

Adverifisers check-off

for literature, in a hurry - we'll rush your name to the companies whose names you "check-off"

Place your check mark in the space petween name and number. Ex: Ham Radio $\sqrt{234}$

Ace - 850
AEA __ 677
Advanced Receiver Research ___ 919
Alaska Microwave ..._ 826
All Elec. _-_ 926
Amidon ___ 005
Atantic Surplus *
Autek Research _-... 974
 Williamson \qquad 015
Barry *
Bauman _-_ 017
Bencher __ 629
Ben Franklin __- 864
Bird Elec. __ 018
Britt's 2-Way Radio --. 953
Butternut *
Chaney ___ 488
Circuir Elec. _- 863
Command Productions*
Comm. Concepts __ 797
Comm. Elec. ._- 489
Comm. Spec. _-_ 330
Dayton Hamvention*
DenTron Radio __. 259
Drake*
EEB _- 288
Electra __ 385
Elenco __ 947
Encomm __ 888
ETCO __ 856
Fair Radio __ 048
Fuji Svea __ 928
GFK _ 967
GLB__ 552
G.I.S.M.O. __ 691
Grove ___ 848
Hal Comm. _ 057
Hal-Tronix __ 254
H. R. B. _- 150
Ham Shack __ 879
Hammond Mfg. __ 624
Hamtronics, N.Y. __ 246
Hatry __ 889
Heath __ 060
Hy-Gain/Telex ___ 693

$$
\begin{aligned}
& \text { Icom* * } \\
& \text { Jameco _} \quad 333 \\
& \text { Jan_— } 067
\end{aligned}
$$

$$
\text { Jensen ___ } 293
$$

$$
K \& S \ldots 903
$$

Kenwood *

$$
\text { LaRue Elec. __ } 961
$$

$$
M F J \quad 082
$$

$$
\text { Madison__ } 431
$$

$$
\text { Microcraft ___ } 774
$$

$$
\text { Microwave Filter __ } 637
$$

$$
\text { N.P.S. } 866
$$

$$
\text { Nemal ___ } 968
$$

Oak Hill Academy A. R. S. *

$$
\text { P.B. Radio } 921
$$

$$
\text { P.C. __ } 766
$$

Palomar Eng. *

$$
\text { Phillips-Tech __ } 936
$$

$$
\text { Pipo ___ } 481
$$

$$
\text { Callbook ___ } 100
$$

$$
\text { Radiokit __ } 80 \uparrow
$$

$$
\text { Radios Unlimited __ } 941
$$

Radio Warehouse *

$$
\text { Radio World ___ } 592
$$

$$
\text { Rockwell Int. ___ } 258
$$

SAROC *

$$
\text { Slep ___ } 535
$$

$$
\text { Smithe___ } 930
$$

Spectronics *

$$
\text { Spectrum int. } \quad 108
$$

Tektronix *
Telecraft __ 975
Telrex*
Ten-Tec *
Texas Towers ___ 681
The Comm Center ___ 634
Universal Comm. __ 885 Universal Elec. __ 653 UNR-Rohn __. 410 Valor ___ 946 Vanguard Labs 716 Webster Assoc. . 423 Wheeler App.
\qquad Windpower _.__ 972 Yaesu 127
*Please contact this advertiser directly Limit 15 inquiries per request.

March, 1982
Please use before April 30, 1982

look here

call toll free:nights 1-800-231-3057

 7-10 PM CT, M.W.F. days 1-713-658-0268| Hygain ICOM | TH7DX | 349.00 |
| :---: | :---: | :---: |
| | IC 3AT/IC 4AT | 269.00 ea. |
| | IC 25A | 309.00 |
| | IC 730 | 699.00 |
| | IC 2AT | 239.00 |
| | IC 22 U | 269.00 |
| KLM | KT34XA | 469.00 |
| | KT34A | 309.00 |
| Santec | HT 1200 | 269.00 |
| | ST 144UP | 299.00 |
| Telrex | 10\% Off List on | Stock Items |
| | HAM4. | 165.00 |
| | HAMX | 235.00 |
| Drake | TR5... | 995.00 |
| | R7/DR7 | 1299.00 |
| AEA | Morsematic | 169.00 |
| | CK1 Contest | 115.00 |
| | MBA-RO Reader | 269.00 |
| Order KWM380 3095.00 | | |

High Serial Numbers, All Mods
Amphenol Silverplate
PL259........................ 1.00 ea.
Antique/rare Tubes Call
Timex 24 Hour Wallclock 24.95
Robot 800A 749.00
. 675.00
KB2100......................... . . 159.00
New CWR 685A Telereader . . 875.00
Cubic 103 1195.00
Bird 43, Slugs Stock
Drake Theta 7000 995.00
Belden 9405 Heavy Duty Rotor
Cable 2\#16, 6\#18.......... 45c/ft.
Belden 8214 RG-8 Foam 36c/ft.
Belden 9258 RG8x Mini-Coax 196/ft.
Belden 8267RG 213
Non Contam Jacket 43c/ft.
Alliance HD73................ 109.95
10\% Off Curtis, Sherwood, Palomar
Call Quotes Kenwood TS830S, TS530S, TS130S,
NEW DRAKE TR7A/R7A
We Want Special Orders!
Yaesu Specials New FT1 . . . 2395.00
 FT1012D/Mark 3 749.00 FT208R or 708R 289.00
Used Clean Corner
KWM2/PM2.................. . . 700.00
CX7A/B with Mods 1000.00
TS820S/CW. 600.00
516F2.
200.00

MASTERCARD VISA

All prices fob Houston except where indicated. Prices subject to change without notice, all items guaranteed Some items subject prior sale. Texas residents add 6\% tax. Please add sufficient postage, balance collect.

Ace Communications, Inc.
AEA, Advanced Electronic Applications Advanced Receiver Research
Alaska Microwave Labs
All Electronics Corp.
Amidon Associates.
Atlantic Surplus Sales
Autek Research
Barker \& Williamson, Inc,
Barry Electronics
Bauman, R.H., Sales Company
Bencher, Inc.
Ben Franklin Electronics
Britt's 2-Way Radio
Butternut Electronics
Chaney Electronics.
Circuit Electronics, Inc.
Command Productions
Communications Concepts.
Cornmunications Electronics
Communications Specialists
Dayton Hamvention.
DenTron Radio Co., Inc
74

Drake, R.L., Co.
EEB
Elenco Precision.
ETCO.
Fair Radio Sales
Fuji Svea
G \&K Amateur Supply
GLB Electronics
G.I.S.M.O.

Grove Enterprises.
Hal Communications Corp.
Hal-Tronix
42
Ham Radio's Bookstore. 52, 53, 62, 67, 72, 74, 89, 97
The Ham Shack
Hamtronics, N.Y.
Hatry Electronics
Heath Company
Icom America, Inc.
Jameco Electronics
Jan Crystals
Jensen Tools, Inc.
$K \& S$ Enterprises .
Trio-Kenwood Communications
LaRue Electronics.
MFJ Enterprises.
Madison Electronics Supply
Microcraft Corporation
Microwave Filter, Inc.
N.P.S., Inc.

Nemal Electronics.
Oak Hill Academy Amateur Radio Session
P.B. Radio
P.C. Electronics

Palomar Engineers
Phillips-Tech Electronics
Pipo Communications
Radio Amateur Callbook
Radiokit
Radios Unlimited
Radio Warehouse .
Radio World.
Rockwell International, Collins Division
SAROC
Slep Electronics
Smithe Aluminum
Spectronics
Spectrum International, Inc.
Tektronix
Telecraft Labs.
Telrex Laboratories
Texas Towers
The Comm Center
Universal Communications.
Universal Electronics, Inc.
UNR-Rohn
Vanguard Labs.
Webster Associates
Wheeler Applied Research Lab.
Windpower Co.
Yaesu Electronics Corp.
43
Cover III

Iron Powder and Ferrite TOROIDAL CORES

Shielding Beads, Shielded Coil Forms Ferrite Rods, Pot Cores, Baluns, Etc.

Small Orders Welcome
Free 'Tech-Data' Flyer

AMIDÓN

Asociates
Since 1963

12033 Otsego Street, North Hollywood, Calif. 91607

In Germany Elektronikiaden. Witheim - Melies Stt 88, 4930 Detmoid 18. West Germany In Japan Toyomura Electronics Company, Ltd 7.9. 2.Cnome Sota-Kanda. Chiyoda-Ku. Tokyo. Japan

Stuck with a problem?

Our TE-12P Encoder might be just the solution to pull you out of a sticky situation. Need a different CTCSS tone for each channel in a multi-channel Public Safety System? How about customer access to multiple repeater sites on the same channel? Or use it to generate any of the twelve tones for EMS use. Also, it can be used to access Amateur repeaters or just as a piece of versatile test equipment. Any of the CTCSS tones may be accessed with the TE-12PA, any of the audible frequencies with the TE-12PB. Just set a dip switch, no test equipment is required. As usual, we're a stickler for 1day delivery with a full 1 year warranty.

- Output level flat to within 1.5 db over entire range selected.
- Immune to RF.
- Powered by 6-30vdc, unregulated at 8 ma .
- Low impedance, low distortion, adjustable sinewave output, 5 v peak-to-peak.
- Instant start-up.

TE-12PA

67.0XZ	85.4 YA	103.51 A	127.33 A	156.75 A	192.87 A
71.9XA	88.5 YB	107.21 B	131.83 B	162.25 B	203.5 M 1
74.4 WA	91.5 ZZ	110.92 Z	136.54 Z	167.96 Z	
77.0XB	94.8 ZA	114.82 A	141.34 A	173.86 A	
79.7 SP	97.4 ZB	118.82 B	146.24 B	179.96 B	
82.5 YZ	100.01 Z	123.03 Z	151.45 Z	186.27 Z	

- Frequency accuracy, $\pm .1 \mathrm{~Hz}$ maximum $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Frequencies to 250 Hz available on special order.
- Continuous tone

TE.12PB

TEST-TONES:	TOUCH-TONES:			BURST TONES:			
600	697	1209	1600	1850	2150	2400	
1000	770	1336	1650	1900	2200	2450	
1500	852	1477	1700	1950	2250	2500	
2175	941	1633	1750	2000	2300	2550	
2805			1800	2100	2350		

- Frequency accuracy, $\pm 1 \mathrm{~Hz}$ maximum $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Tone length approximately 300 ms . May be lengthened, shortened or eliminated by changing value of resistor
$\$ 89.95$

I COMMUNICATIONS SPECIALISTS

426 West Taft Avenue, Orange, California 92667
(800) $854-0547 /$ California: (714) 998-3021 (800) 854-0547/California: (714) 998-3021

LOUD CRYETAL DUBPLAY
The LCD frequency readout provides high readability night and day, along with very low current drain.

KEYBOARD FREOUENCY ENIRY
All operating frequencies are entered from the front panel keyboard. Unusual repeater splits, scanning, and memory programming are all controlled via the keyboard.

UP/DOWN MANUAL SCAN
The FT-208R scans in either 5 kHz or 10 kHz steps, while the FT-708R steps are 25 kHz and 50 kHz . Automatic halting on a busy or clear channel is provided, with automatic pause and restart feature. Scan either the band or the memories.

LIATIED BAND 8CAN
You can program upper and lower frequency limits, then command the transceiver to scan that segment or exclude that segment.

TEN MEMORY CHANNELS
The memories may be used for either simplex or repeater operation. No need to throw a " 5 UP" switch for those 15 kHz channels, either!

LONG-LIFE MEMORY BACKUP
A Lithium cell provides the memory backup function. Now you won't dump memory when switching battery packs.

LOW CURRENT DRAN
Typical standby current drain is 20 mA , for long battery life.

450 mAH BATTERY PACK
With more capacity than competing packs, the FNB-2 battery pack gives you those precious extra minutes of operating time that might prove critical in an emergency!

HMLOW POWER SWITCH
In the high power position, the FT-208R packs a wallop at 2.5 watts output, while the $\mathrm{Ft}-708 \mathrm{R}$ output is 1 watt. Switch to low power for 1 watt output on the FT-208R, 200 mW on the FT-708R, for even greater battery life.
PRIORITY CHANNEL
A priority channel may be programmed from the keyboard, allowing you to check a favorite channel while operating on another.
AUTOMATIC BAND AND MEMORY SCAN WIH PAUSE/RESTART
Automatic scanning of the band or memories (or a segment of the band) with pause and restart feature.

16 BUTTON DTMAF PAD
For autopatch operation, a 16 button dual tone pad is built into every FT-208R and FT-708R.

PROGRAMMABLE SPLIS
The popular $\pm 600 \mathrm{kHz}$ shift is standard ($\pm 5 \mathrm{MHz}$ on the FT-708R) on the FT-208R. Odd splits of up to 4 MHz may easily be programmed from the keyboard. Additionally, a split memory/dial mode provides a third method of operating on unusual splits.
OPTIONAL 32 TONE CTCS8
Easy interface is provided to the synthesized SSY-32 CTCSS Encoder, providing all 32 common subaudible tones for repeater operation.
LOCK SWITCH
The keyboard lock switch allows you to disable entry from the keyboard, thus preventing inadvertent frequency change.
FULL LINE OF ACCESSORIES
A Yaesu tradition, a full line of accessories is available to maximize your enjoyment of the FT-208R and FT-708R.

For more than a quarter of a century, Yaesu has produced reliable, high-performance communications equipment for the Amateur and Land Mobile services. Contact us today for full information on our cost-effective line of HF, VHF and UHF transceivers - at Yaesu we want you to get your message across!

The ultimate team...th Drake'ranss

The TRIJA and RDA offer performance and versatility for those who demand the ultimate!

TR7A Transceiver

- CONTINUOUS FREQUENCY COVERAGE - 1.5 to 30 MHz full receive coverage. The optional AUX7 provides 0 to 1.5 MHz receive plus transmit coverage of 1.8 to 30 MHz , for future Amateur bands, MARS. Embassy. Government or Commercial frequencies (proper authorization required).
- Full Passband Tuning (PBT) enhances use of high rejection 8 -pole crystal filters.
New! Both 2.3 kHz ssb and 500 Hz cw crystal filters, and 9 $\mathrm{kHz} \mathrm{a}-\mathrm{m}$ selectivity are standard, plus provisions for two additional filters. These 8 -pole crystal filters in conjunction with careful mechanical / electrical design result in realizable ultimate rejection in excess of 100 dB .
New! The very effective NB7 Noise Blanker is now standard.
New! Built in lightning protection avoids damage to solid-state components from lightning induced transients.
New! Mic audio available on rear panel to facilitate phone patch connection.
- State-of-the-art design combining solid-state PA.
up-conversion, high-level double balanced 1st mixer and frequency synthesis provided a no tune-up. broadband. high dynamic range transceiver.

R7A Receiver

- CONTINUOUS NO COMPROMISE 0 to 30 MHz frequency coverage.

- Full passband tuning (PBT).

New! NB7A Noise Blanker supplied as standard.

- State-of-the-Art features of the TR7A, plus added flexibility with a low noise 10 dB rf amplifier. New! Standard ultimate selectivity choices include the supplied 2.3 kHz ssb and 500 Hz cw crystal filters, and 9 kHz a-m selectivity. Capability for three accessory crystal filters plus the two supplied, including 300 Hz . $1.8 \mathrm{kHz}, 4 \mathrm{kHz}$, and 6 kHz . The 4 kHz filter, when used with the R7A's Synchro-Phase a-m detector, provides a-m reception with greater frequency response within a narrower bandwidth than conventional a-m detection. and sideband selection to minimize interference potential. - Front panel pushbutton control of rf preamp. a-m/ssb detector, speaker ON / OFF switch. i-f notch filter. reference-derived calibrator signal. three agc release times (plus AGC OFF). integral 150 MHz frequency counter/digital readout for externai use, and Receiver Incremental Tuning (RIT).

The "Twins" System

- FREQUENCY FLEXIBILITY. The TR7A/R7A combination offers the operator, particularly the DX'er or Contester, frequency control agility not available in any other system. The "Twins" offer the only system capable of no-compromise DSR (Dual Simultaneous Receive). Most transceivers allow some external receiver control, but the "Twins" provide instant transfer of transmit frequency control to the R7A VFO. The operator can listen to either or both receiver's audio. and instantly determine his transmitting frequency by
appropriate use of the TR7A's RCT control (Receiver Controlled Transmit). DSR is implemented by mixing the two audio signals in the R7A
- ALTERNATE ANTENNA CAPABILITY. The R7A's Antenna Power Splitter enhances the DSR feature by allowing the use of an additional antenna (ALTERNATE) besides the MAIN antenna connected to the TR7A (the transmitting antenna). All possible splits between the two antennas and the two system receivers are possible.

Specifications, availability and prices subject to change without notice or obligation.

See your Drake dealer or write for additional information.

DRAKE

COMING SOON: New RV75 Synthesized VFO Compatible with TR5 and 7-Line Xcvrs/Revrs - Frequency Synthesized for crystal-controlled stability * VRTO (Variable Rate Tuning Oscillator*) adjusts tuning rate as function of tuning speed. - Resolution to 10 Hz - Three programmable fixed frequencies for MARS, etc. - Split or Transceive operation with main transceiver PTO or RV75

[^0]: *Touchtone is a registered trademark of the American Telephone and Telegraph Company.

[^1]: C54 Phoenix I Box 1002 Ann Arbor, Michigan 48106 U S A

[^2]: First published in Amateur Radio Action, Vol. 4, 1981, issue 5, P.O. Box 628E, Melbourne 3301 Australia. Reprinted with permission.

[^3]: This article was originally presented as a paper by the author at the

[^4]: 1. D.G. Tucker, Modulators and Frequency-Changers, Mc Donald $\&$ Co., Publishers Ltd., London, 1953, pages 72-75.
 2. Ulrich L. Rohde, DJ2LR, "Optimum Design for High-Frequency Communications Receivers," ham radio, October, 1976.
 3. Ulrich L. Rohde, DJ2LR, "The Field-Effect Transistor at V.H.F.," Wireless World, January, 1966, page 2.
[^5]: *For a copy of the BASIC program and output listings, send a self-addressed envelope with 27 cents postage and $\$ 2.50$ to cover reproduction costs to Robert W. Hume, KG6B, 1627 1st Street, Manhattan Beach, California 90266.

 By Robert W. Hume, KG6B, 1627 First Street, Manhattan Beach, California 90266

[^6]: *The same problem on a Drake R-4C receiver was cured by using Allen-head set screws. Editor.

[^7]: 1. Jim Pruitt, WB7AUL, "Matching Complex Antenna Loads to Coaxial Transmission Lines," ham radio, May, 1979, page 52.
[^8]: By James M. Bryant, G4CLF, and Peter E. Chadwick, G3RZP, Plessey Semiconductors Ltd., Cheney Manor, Swindon, SN2 2OW, England

[^9]: UNIVERSAL AMATEUR RADIO, INC. 1280 AIDA DRIVE
 REYNOLDSBURG (COLUMBUS), OH 43068
 614-866-4267
 Featuring Kenwood and all other Ham gear. Authorized sales and service. Shortwave headquarters. Near 1-270 and airport.

