

ICOM IC730 ICOMs GoAnywhere HF Rig for Everyone's Pocketbook

Sompact.

Only 3.7 in $(\mathrm{H}) \times 9.5$ in (W) $\times 10.8$ in (D) will fit into most mobile operations (compact car, airplane, boat, or suitcase)

AfCridabe.

Priced right to meet your budget as your main HF rig or as a second rig for mobile/portable operation.

Convenient.

- Unique tuning speed selection for quick and precise QSY, choice of $1 \mathrm{KHz}, 100 \mathrm{~Hz}$ or 10 Hz tuning.
- Electronic dial lock, deactivates tuning knob for lock on, stay on frequency operation.
- One memory per band, for storage of your favorite frequency on each band.
- Dual VFO system built in standard at no extra cost.

Full Featured.

- 200W PEP input-powerful punch on SSB/CW (40 W ou on AM)
- Receiver preamp built-in - VOX built-in
- Noise blanker (selectable time constant) standard
- Large RIT knob for easy mobile operation
- Amateur band coverage $10-80 \mathrm{M}$ including the new WARC bands
- Speech processor-built-in, standard (no extra cost)
- IF shift slide tuning standard (pass band tuning optional)
- Fully solid state for lower current drain
- Automatic protection circuit for finals under high SWR conditions
- Digital readout - Receives WWV - Selectable AGC
- Up/down tuning from optional microphone
- Handheld microphone standard (no extra cost)
- Optional mobile mount available

2112 116th Avenue N.E., Bellevue, WA 98004
3331 Towerwood Dr., Suite 307, Dallas TX 75234

The Memory Keyer

 that started a revolutionStore
commands, as well as text, for automatic execution

The Heathkit μ Matic Memory Keyer's sneak preview caused a sensation at Dayton in 1981, and the excitement is still running high. Ask about it on the air. Those who own one will tell you it revolutionized their operating practices, eased their hand fatigue, multiplied QSOsand increased the number of incoming QSLs. In contest, you can prove it's the best every time. Inside, a custom microprocessor stores up to 240 characters of text or commands. Variablelength buffers eliminate wasted memory space. Command strings let you sequence speed, weight and repetition alterations or text in any order you desire. Choose the speed (1-99), any of 11 weight settings, plus spacing and message repeat count, then sit back and collect contacts... Capacitive-touch lambic paddles unplug and store inside the keyer when not in use. Left handed? A two-key function will reverse the paddles! Or a socket will connect to your favorite keyer. To boost copy, a 4-level random 'practice'
mode permits 6400 different and repeatable, 3000-character training sessions at any speed you like. Other features include a built-in sidetone oscillator and speaker with volume/tone controls, phone jack and earphone, message editing, entry error alarm, self-diagnostics, battery backup and a unique auto-shutoff should you forget. Complete details on the revolutionary μ Matic Memory Keyer are in the new Heathkit Catalog and at your nearby Heathkit Electronic Center.*

imate team
 Drakotinins

The $T: T / A$ and RJA offer performance and versatility for those who demand the ultimate!

TR7A Transceiver

- CONTINUOUS FREQUENCY COVERAGE - 1.5 to 30 MHz full receive coverage. The optional AUX7 provides 0 to 1.5 MHz receive plus transmit coverage of 1.8 to 30 MHz , for future Amateur bands. MARS. Embassy. Government or Commercial frequencies (proper authorization required).
- Full Passband Tuning (PBT) enhances use of high rejection 8 -pole crystal filters.
New! Both 2.3 kHz ssb and 500 Hz cw crystal filters, and 9 kHz a-m selectivity are standard, plus provisions for two additional filters. These 8-pole crystal filters in conjunction with careful mechanical / electrical design result in realizable ultimate rejection in excess of 100 dB .
Newl The very effective NB7 Noise Blanker is now standard. New! Built in lightning protection avoids damage to solid-state components from lightning induced transients.
Newl Mic audio available on rear panel to facilitate phone patch connection.
- State-of-the-art design combining solid-state PA. up-conversion. high-level double balanced 1st mixer and frequency synthesis provided a no tune-up, broadband, high dynamic range transceiver.

R7A Receiver

- CONTINUOUS NO COMPROMISE 0 to 30 MHz frequency coverage.
- Full passband tuning (PBT).

New! NB7A Noise Blanker supplied as standard.

- State-of-the-Art features of the TR7A. plus added flexibility with a low noise 10 dB rf amplifier. New! Standard ultimate selectivity choices include the supplied 2.3 kHz ssb and 500 Hz cw crystal filters. and 9 kHz a-m selectivity. Capability for three accessory crystal filters plus the two supplied, including 300 Hz . 1.8 kHz .4 kHz , and 6 kHz . The 4 kHz filter, when used with the R7A's Synchro-Phase a-m detector. provides a-m reception with greater frequency response within a narrower bandwidth than conventional a-m detection. and sideband selection to minimize interference potential.
- Front panel pushbutton control of if preamp, a-m/ssb detector, speaker ON / OFF switch. i-f notch filter. reference-derived calibrator signal, three agc release times (plus AGC OFF), integral 150 MHz frequency counter/digital readout for external use, and Receiver Incremental Tuning (RIT).

The "Twins" System

- FREQUENCY FLEXIBILITY. The TR7A / R7A combination offers the operator, particularly the DX'er or Contester, frequency control agility not available in any other system. The "Twins" offer the only system capable of no-compromise DSR (Dual Simultaneous Receive). Most transceivers allow some external receiver control, but the "Twins" provide instant transfer of transmit frequency control to the R7A VFO. The operator can listen to either or both receiver's audio, and instantly determine his transmitting frequency by
appropriate use of the TR7A's RCT control (Receiver Controlled Transmit). DSR is implemented by mixing the two audio signals in the R7A
- ALTERNATE ANTENNA CAPABILITY. The RTA's Antenna Power Splitter enhances the DSR feature by allowing the use of an additional antenna (ALTERNATE) besides the MAIN antenna connected to the TR7A (the transmitting antenna). All possible splits between the two antennas and the two system receivers are possible.

See your Drake dealer or write
for additional information.

Foreign rates: Europe, Japan and Africa, $\$ 28.00$ for one year by air forwarding service All other countries $\$ 21.50$ for one year by
surface mail. Please allow $4-6$ weeks for delivery of first issues.

||||||||||||||||||||||

ham radio magazine

contents

12 recommendations for 70-cm EME
Joe Reisert, W1JR

20 applying microcomputers to SSTV
Joe Kasser, G3ZCZ/4X

27 the radiation of radio signals
Stan Gibilisco, W1GV/4

32 two-tone generator
Douglas A. Blakeslee, N1RM

36 the hybrid coupler
Henry H. Cross, W100P

54 operation upgrade:
part 7
Robert L. Shrader, W6BNB

64 the big-amplifier
power-supply
Robert E. Bloom, W6YUY

76 ham radio techniques
Bill Orr, W6SAI

92 advertisers index	69 ham notes
8 comments	85 new products
42 DX forecaster	6 observation and
71 flea market	opinion
53 ham calendar	10 presstop
80 ham mart	92 reader service

Monday morning, 0500. It's early and cold. Why am I following this man?
"All right you bums. Get your lazy selves out of bed and let's get rolling!" he yelled. Now I know why. I'm in the Army again.

So began my two weeks' Reserve duty with the 39th Engineer Battalion (Combat) at Fort Devens, Massachusetts. I thought you might be interested in what communications are like in the Army these days. With all the billions of dollars that are being spent on defense you'd expect that state-of-the-art would be the byword. T'aint so!

As a captain, I was assigned to be the Assistant Battalion Communications Electronics officer. It was my job to assist the CE officer and sergeant in training their unit to do their job.

At the battalion level, communications are conducted by two basic means: $30-75 \mathrm{MHz} \mathrm{fm}$ radio and wire. Since we were detached from our brigade we also had RTTY, or RATT in military jargon. It was our mission to provide all communications that are necessary to accomplish the battalion's assigned task.

Fm radio is probably the most widely used mode of intra-battalion communications. It's easy to install and operate, and it gives you a tremendous amount of flexibility. But because it is radio, it is easy to locate and interfere with. You can encode signals to keep unauthorized reception to a minimum, but you still are using a transmitter. With radio-location a fairly sophisticated art, fm radio is vulnerable to being compromised (translation: destroyed, you and your radio).

The equipment is of fairly modern design. The basic vehicular radio is the RT-524. The RT-524 is an air-cooled, wideband fm transceiver that covers $30-75 \mathrm{MHz}$. The RT-524 is a fairly bulky radio, about the size of a small suitcase. It's of hybrid design using tubes and transistors. It's also built to take a fair amount of abuse and keep on cooking. You can switch the output to either low power (about 2 watts) or high power (25 watts). It uses either a PL or noise squelch circuit. Signals can be encrypted, but that is more the exception than the rule here in the U.S. Operating these radios is just like being on 2 meters. Range is basically line-of-sight, usually $5 \mathbf{- 1 5}$ miles depending on terrain and other variables.

Would you want to buy one? If you got one at a super cheap price, sure. Otherwise, the more compact equipment available on the Amateur market today is much more cost-effective and useful for Amateur work. I don't know the exact purchase price of the radio, but it is well over $\$ 10,000$.

Telephone communications hasn't changed much over the last forty years. Wire is still hard to install and a pain to maintain. Usually it is used when you are going to stay in one place for a while. It's just too hard to lay wire, install phones, and connect a switchboard while you're on the move. It can be done, but it's very taxing to put it in one minute and then rip it out soon after.

The real problem with wire comes after it's been installed. Jeeps and trucks seem to have "wire magnets" that draw them to locations where wire is. Invariably, when wire is in place someone will run a vehicle through it and tear it up. This necessitates walking the line searching for the break and then repairing it. That's not bad on a sunny summer afternoon, but it's a real stinker when you have to tramp through the pucker brush on a rainy, pitch black night.

The basic military telephone, the TA312, has been around for years. It's nothing fancy but it's built like a brick. It runs off two D-cell batteries. To ring, you hand crank a 105-volt pulse down the line. At the terminating point we have an SB-22 switchboard. This equipment is reminiscent of the old pictures of Ma Bell's operators sitting behind racks of jacks using plugs to connect the various circuits together. It's the same way in the Army today. When things get hot and heavy, you will find the operator with arms flying all over the place to keep everyone hooked up. It is a sobering experience for anyone who thinks he can handle a pressure situation. Ma Bell's operators of years gone by deserve a round of applause for having been able to handle it day in and day out.
(Continued on page 47.)

Introducing incredible tuning accuracy at an incredibly affordable price: The Command Series RF-3100 31-band AM/FM/SW receiver: No other shortwave receiver brings in PLL quartz synthesized tuning and all-band digital readout for as low a price.t The tuner tracks and "locks" onto your signal, and the 5 -digit display shows exactly what frequency you're on.

There are other ways the RF-3100 commands the airways: It can travel the full length of the shortwave band (that's 1.6 to 30 MHz). It eliminates interference when stations overlap by narrowing the broadcast band. It improves reception in strong signal areas with RF Gain Control. And the RF-3100 catches Morse
communications accurately with BFO Pitch Control.
Want to bring in your favorite programs without lifting a finger? Then consider the Panasonic RF-6300 8-band AM/FM/SW receiver (1.6 to 30 MHz) has microcomputerized preset pushbutton tuning, for programming 12 different broadcasts, or the same broảdcast 12 days in a row. Automatically. It even has a quartz alarm clock that turns the radio on and off to play your favorite broadcasts.

The Command Series RF-3100 and RF-6300. Two more ways to roam the globe at the speed of sound. Only from Panasonic.
-Shortwave reception will vary with antenna, weather conditions, operator's geographic location and other factors. An outside antenna may be required for maximum shortwave reception.
Based on a comparison of suggested retail prices.

This Panasonic Command Series" shortwave receiver brings the state of the art closer to the state of your pocketbook.

With PLL Quartz SynthesizedTuning and Digital Frequency Readout.

Panasonic.
just slightly ahead of our time.

Fig. 1 helps to explain the operation. The receiver is tuned to an incoming signal to obtain maximum response at 800 Hz (or other frequency, depending on the beat frequency selected by your transceiver). The receiver will be actually tuned (as indicated by the dial and digital readout) to a frequency 800 Hz lower than that of the incoming signal. There is no loss of received signal strength, since the signal is still within the i-f passband.

fig. 1. Relationship of dial setting and received (or transmitted) frequency in modern transceivers.

Keying the transceiver provides $800-\mathrm{Hz}$ offset in the direction of higher frequency, thus transmitting a signal that is at the same frequency as the received signal. This makes it easy for the other operator to receive your signal. He can, of course, vary his receive beat frequency (as you can) by using the Receiver Incremental Tuning (RIT) control, which does not affect transmit frequency. This helps in avoiding chasing each other around an initial frequency. If at least one of the two operators uses his RIT, then, once settled, there will be no further need to adjust frequency by either one.

I'm not sure whether there is industry agreement on which sideband to select for use in the CW mode, but it wouldn't make any difference. A technique for using the sideband other than that used in the TS-180S
would be to tune the receiver to a higher frequency (by 800 Hz or so) than the received frequency.

Finally, if I had my druthers, this is what I would like:

1. CW pitch variable with a front panel control. It should not vary either receive or transmit frequency.
2. The receive and transmit frequency should be at the same place on the dial, as indicated by the analog and digital readouts.

G.W. Legel, N6T0 Fullerton, California

CW nets

Dear HR:
Because of my interest in public service and CW operation, I have compiled a list of groups that operate on Novice/Technician high frequencies (80 through 10 meters) at slower speeds and welcome newcomers. This list is referenced to time (UTC) and contains information involving day(s) of session(s), frequency (kHz), net name and abbreviation, net manager, area of coverage, and purpose of operation.

The list is available from me for an SASE.

Mike Adams, N4EVS
Route 4, Box 764
Panama City, Florida 32405

cancer warning

Dear HR:

In your January, 1982, issue, on page 82, there is an article by Robert Wheaton, W5XW, on metal cleaning. He lists the active ingredient as thiourea.

Well, thiourea is listed in the publication Cancer Causing Chemicals by N. Irving Sax (Van Nostrand Reinhold Co., New York, 1981). I think you should warn your readers about its use.

Normal Wells, K6YPD
Inglewood, California

MFJ/Bencher Keyer Combo

Deluxe MFJ Keyer fits on Bencher Paddle. Curtis 8044 IC. lambic. Adjustable weight, tone, volume, speed. Semi and automatic modes. Solid state keying. RF proof.

MFJ-422 Combo

The best of all CW worlds - a deluxe MFJ Keyer in a compact configuration that fits right on the Bencher iambic paddle! You can buy the combination or just the keyer for your Bencher
New MFJ Keyer-small in size, big in features. Curtis 8044 IC, adjustable weight and tone, front pa eel volume and speed controls ($8-50 \mathrm{wpm}$). Built-in dot-dash memories. Speaker, sidetone, and push button selection of semi-automatic/tune or automatic modes.
Ultra-reliable solid state keying: grid-block cathode and solid state transmitters $(-300 \mathrm{~V}, 10 \mathrm{~mA}$ max., +300 V, 100 mA max.). Fully shielded Uses 9 V battery or 110 VAC with optional adapter MFJ 1312, \$9.95.
Beautiful functional engineering. The keyer mounts on the paddle base to form a small $\left(41 / 8 \times 25 / 8 \times 51 / 2^{\prime \prime}\right)$ attractive combination that is a pleasure to look at and use

The Bencher Paddle is a best seller. Fully adjustable gold-plated silver contacts, lucite paddles, chrome plated brass, heavy steel base with non-skid feet.
Order from MFJ and try it - no obligation. if not delighted, return it within 30 days for refund (less shipping). One year unconditional guarantee.

Order today. Call toll free 800-647-1800. Charge VISA. MC or mail check, money order for amount indicated plus $\$ 4.00$ each shipping and handling.
Enjoy CW. See dealer or call MFJ now.
CALL TOLL FREE . . . 800-647-1800 Call 601-323-5869 in Miss.. outside continental USA or for technical info., order/repair status.

NEW MFJ-312 VHF Converter lets you

 HEAR POLICE/FIRE CALLS and Weather Band on 2 meter rigs. Covers nearly all FCC allocated police/fire VHF-hi freq. ($154-158 \mathrm{MHz}$). Direct freq. readout on synthesized, VFO $\mathbf{1 4 4 - 1 4 8} \mathbf{~ M H z ~ F M ~ r i g s . ~}$
Now with weather band coverage!

Scanning rigs become policelfire scanner. Direct freq. readout on synthesized and VFO rigs.

"On" LED. 9.18 VDC. SO.239. Mtg bkt. $3 \times 4 \times 1$ " MFJ-311, \$49.95. Like MFJ-312 less WX band. Order from MFJ and try it - no obligation. If not delighted, return it within 30 days for refund (less shipping). One year unconditional guarantee.
Order today. Call toll free 800-647-1800. Charge VISA, MC or mail check, money order for $\$ 59.95$ for MFJ.312, \$49.95 for MFJ-311 plus $\$ 4.00$ each shipping/handling.

Enjoy exciting police and fire calls, order now. CALL TOLL FREE . . . 800-647-1800 Call 601.323-5869 for technical information, or der/repair status. Also call 601-323-5869 outside continental USA and in Mississippi. ed power from 1.8-30 MHz.

New low cost in-line HF SWR/Wattmeter. MFJ-814 lets you monitor SWR, forward, reflected average power in 2 ranges from 1.8 to 30 MHz . Read 200/2000 watts forward, 20/200 watts reflected power. SWR, 1:1-6:1

Easy push-button switch operation: has powerl SWR, high/low range, forward/reflected pushbutton switches. SWR sensitivity control.

Lighted meter (requires 12V). Rugged aluminum eggshell white, black cabinet. $6^{1 / 4 \times 3} 1 / 4 \times 4^{1 / 4 "}$ SO-239 coax connectors, 2 color meter scale.

MFJ VHF SWR/Wattmeter/ Field Strength Meters

MFJ. 812

New low cost VHF operating aids.
MFJ-812, \$29.95: Read SWR from 14 to 170 MHz to monitor antenna and feedlines. Read forward and reflected power at 2 meters (144.148 MHZ). 2 scales (30 and 300 watts).

Read relative field strength from 1 to 170 MHz . Binding post for field strength antenna. Easy push-button operation: has forward/reflected and SWR/field strength push buttons. Aluminum eggshell white, black cabinet. $41 / 4 \times 2^{1 / 4 \times 2^{3 / 4}}{ }^{11}$. S0-239. 2 color meter scale.

MFJ.810, \$24.95: similar to MFJ. 812 less field strength function.

MFJ "Dry" 300 W and 1 KW Dummy Loads.

Air cooled, non-inductive 50 ohm resistor in perforated metal housing with S0-239 connectors. Full load for 30 seconds, de-rating curves to 5 minutes. MFJ-260 (300 W). SWR: $1.1: 1$ to $30 \mathrm{MHz}, 1.5: 1$ for $30.160 \mathrm{MHz}, 2^{1 / 2} \times 2^{1 / 2} \times 7^{\prime \prime}$ MFJ-262 (1KW). SWR $1.5: 1.30 \mathrm{MHz} .3 \times 3 \times 13^{\prime \prime}$

MFJ-10, 3 foot coax with connectors. $\$ 4.95$.
Order from MFJ and try it. If not delighted, return within 30 days for refund (less shipping). One year unconditional guarantee.
Order yours today. Call toll free 800-647-1800. Charge VISA, MC. Or mail check, money order. Add $\$ 4.00$ each for shipping and handling.

CALL TOLL FREE . . . 800-647-1800

Call 601-323-5869 for technical information, order/repair status. Also call 601-323-5869 outside continental USA and in Mississippi.

ENTERPRISES, INCORPORATED

 Box 494, Mississippi State, MS 39762
presstop

THE PHASE III-B LAUNCH has been delayed for at least two months. A problem with the MARECS-A, put into orbit by the European Space Agency on board Arianne LO-4 a few months ago, is the cause of the delay. A plasma ring has developed around the satellite, causing a corona discharge and seriously impairing the satellite's operation. The E.S.A. ordered the freeze on future Arianne launches to give its scientists time to investigate the cause of the problem and find a solution.

It Is Believed that an out-gassing effect from the MARECS could be the cause but scientists want to be sure. The launch date for Phase III-B may slip even further, as it's expected that many of the E.S.A.'s other customers will be vying for preferred launch dates on a revised schedule now being prepared by that agency. Phase III-B was scheduled to be placed into orbit on board Arianne L0-6 in late July, but it now must wait for a new launch commitment.

JAPAN WANTS TO ESTABLISH reciprocal operating privileges. Their Ministry of Post and Telecomminications has sent letters to twelve nations requesting information it will then use to formulate plans for operating agreements. The countries approached are Australia, Brazil, Canada, Finland, Germany, Great Britain, Ireland, New Zealand, Norway, Sweden, Switzerland, and the United States.

THE ITU REGION I MEETING was a total success, according to ARRL General Manager Dave Sumner, KlZZ. While complete details of the April lst meeting which took place in Manila are not yet available, Sumner says that many important issues were agreed upon. Region 2 was well represented by Victor Clark, W4KFC; Dick Baldwin, W1RU; Carl Smith, W@BWJ; and Noel Eaton, VE3CJ.

THE NEW GENERAL RADIOTELEPHONE operator's license, which replaced the old 1st and 2nd Class licenses, now has a new test as well. The Commission has combined the necessary test elements into one examination to eliminate the need for three separate tests. To obtain the GRT license, an applicant must pass an exam of the same difficulty as that of the old 2 nd Class test.

A CODE-FREE AMATEUR LICENSE is still a distinct possibility some time in the near future. The Commissioners were scheduled to take up the question of creating such a new license class at their meeting last week, but action on it was deferred to some later date. No reason was given for the delay.

THE RETURN TIME PERIOD for Novice exams has been extended to sixty days from the current thirty by FCC action. This means an applicant will have sixty days in which to take the exam and return it to the Commission for grading, and it's especially helpful to clubs and schools who order the examinations in bulk for use as a final exam in Amateur Radio training courses.

THE FCC HAS TAKEN ACTION against a licensee in the Grizzly Peak jamming case. Donald E. Gilbeau, N60Z, has had his station license revoked and his Extra Class operating privileges suspended for what the Commission alleged to be his jamming of the Grizzly Peak repeater in California's northern Central Valley. $N 60 Z$ was one of a number of hams charged by the FCC with malicious interference and jamming of the system over one and a half years ago. In May, 1980, N60Z was monitored by an FCC engineer of the San Francisco field office transmitting "random words, Morse code, and unintelligible sounds" on 146.22 MHz , the input frequency of the repeater. At his show cause hearing last year, $N 60 Z$ claimed that all but one of the alleged transmissions were accidental. The administrative law judge who heard Gilbeau's case found otherwise; he agreed with the Private Radio Bureau's contention that Gilbeau's claim was false, and that "any leniency that Gilbeau's long, previously unblemished record as an Amateur might warrant was outweighed by the attempt at deception." The findings in the N 602 case are the first of many expected in the Grizzly Peak matter.

THE PERSONAL COMMUNICATIONS FOUNDATION seeks data on CATV RFI for their legal library. As they've done in the past with tower and antenna ordinances, they intend to collect information on this subject for Amateurs involved in cable TV RFI problems. Information should be sent to The Personal Communications Foundation; c/o Astor \& Merdler, Attorneys; 9036 Reseda Boulevard; Northridge, California 91324; attention: Joseph Merdler, N6AHU.

TWO SECTIONS OF THE RULES have been deleted. Part 97.74, which required a licensee to provide for measurement of his transmitter carrier frequency, and Part 97.71 , which required an Amateur to use an adequately filtered DC supply on any transmitter operating below 144 MHz , were both deemed antiquated by the Commission. They feel that Amateurs realize both are simply good operating procedures, and so deleted the language in keeping with the FCC's policy of simplifying regulatory procedures in all services it supervises.

Barry Electronics Corp. WE SHIP WORLDWIDE WORLD WIDE AMATEUR RADIO SINCE 1950 Your one source for all Radio Equipment!

SPECIAL! FTZ-720 RU Mobile Transceiver $\mathbf{4 4 0 - 4 5 0} \mathbf{~ M H z}$ (also avallable $\mathbf{4 3 0 - 4 4 0 ~ M H z) ~} \mathbf{\$ 2 9 9 . 0 0}$. FTZ-720 RVH $\mathbf{1 4 4 - 1 4 8} \mathbf{~ M H z}$ Super Special \$299.00. WHILE THEY LAST!

New York City's LARGEST STOCKING HAM DEALER WE STOCK ARRL \& BASH PUBLICATIONS. COMPLETE REPAIR LAB ON PREMISES

MAIL ALL ORDERS TO BARRY ELECTRONICS CORP., 512 BROADWAY, NEW YORK CITY, NEW YORK 10012. BARRY INTERNATIONAL TELEX $12 \cdot 7670$ 212-925-7000 TOP TRADES GIVEN ON YOUR USED EQUIPMENT.
AUTHORIZED DISTS. MCKAY DYMEK FOR SHORTWAVE ANTENNAS \& RECEIVERS.

"Aqui Se Habla Espanol"

WE STOCK: KLM ANTENNAS, UHF \& VHF AMPLIFIERS, NEW ROBOT MODEL \#800, BIRD WATTMETER, HY-GAIN, LARSEN, SHURE, KDK-2015R, TURNER, ASTATIC, VOCOM, VHF ENG., MFJ, KANTRONICS, AVANTI, CORDLESS TELEPHONES, POCKET SCANNERS, NYE, BENCHER, VIBROPLEX, ALPHA. WE NOW STOCK COMMERCIAL COMMUNICATIONS SYSTEMS DEALER INQUIRIES INVITED. PHONE IN YOUR ORDER \& BE REIMBURSED.

This photograph was taken by W1OG while the author was in contact with YV5ZZ on 70-cm EME in July of 1977 at $\mathbf{2 3 0 0}$ UTC. Note moon in lower right quadrant. Antenna is a 128 -element extended, expanded collinear array (reference 12).

requirements and recommendations for 70-cm EME

Seventy-centimeter EME has really matured since my report in 1973.1 EME contacts are now routine, with many stations having worked all continents and over twenty-five DXCC countries. By 1980 over 150 different stations had reported two-way contacts, and two-way SSB contacts were quite common. Three stations now have a WAS on 70 cm and others are not far behind. This would have been impossible on 70 cm without EME.

The basic requirements outlined in my original report still stand. However, the state of the art has advanced a great deal since then, and I think it's about time to update the recommended equipment list, consolidate most of the material in one place, and provide a list of selected references on the subject.

While all these improvements were becoming available, many $70-\mathrm{cm}$ EMEers have tried to outdo each other by building larger and more efficient
antenna systems than are required to hear their own echoes. As a result, newcomers now can make contacts even if their station is only marginal (not quite capable of hearing one's own echoes). The block diagram in fig. 1 gives the overall system picture, and you can refer to it as I describe each element in a typical $70-\mathrm{cm}$ EME system.

minimum requirements

for $\mathbf{7 0}-\mathrm{cm}$ EME
The ideal plan is to build a station that gives you the capability to hear your own echoes. This will allow you to have a built-in test facility, since you will

By Joe Reisert, W1JR, 17 Mansfield Drive, CheImsford, Massachusetts 01824

be able to evaluate system changes and improvements by echo testing. Based on a $0-\mathrm{dB}$ signal-tonoise ratio and no Faraday rotation (a change in polarization that occurs when a VHF/UHF signal passes through the ionosphere), the following requirements apply:

1. Path loss, $262 \pm 1 \mathrm{~dB}$.*
2. Minimum antenna gain, 25 dBi (gain over an isotropic radiator). \dagger
3. Maximum receiver noise figure, 2 dB (referenced to the antenna feed point).
4. Minimum transmit power, 500 watts output (at the antenna feed point).
5. Receiver bandwidth, 500 Hz .

antennas

The most important piece of equipment in an EME station is the antenna system. This is true because the antenna is present in both the received and transmitted paths. Hence a $1-\mathrm{dB}$ antenna gain increase will yield a $2-\mathrm{dB}$ system improvement. It is also desirable that the antenna radiation pattern be as clean as possible. Rear and side grating lobes llobes that result when you stack identical antennas/ should be at least 13 to 15 dB down from the main lobe, and

[^0]15 to 20 dB is preferred. A good, clean pattern means that all transmitted power is aimed at the moon and that extraneous noise sources are not picked up by the receiver.

Parabolic antennas. These antennas, with dish diameters of 18 to 40 feet (5.5 to 12 meters), the minimum recommended for 25 dBi gain, are very popular on 70 cm EME. They have a f / d (focal length to diameter) ratio of 0.45 to 0.55 . If properly designed, they provide high gain and they are very quiet on receive. They have the extra advantages that they are easily adapted to adjustable polarization feeds (to offset Faraday rotation) and they are usually usable on other frequency bands (for example, 23 cm) by simply changing the feed system. Some stressed dishes ${ }^{2,3}$ are in use, but trussed rib designs ${ }^{4,5}$ are recommended for improved performance and durability.

Properly feeding a parabolic dish is the secret to success. The most popular and efficient feed for dishes having f / d ratios of 0.45 to 0.55 is the EIA (Electronics Industries Association) dual-dipole reference standard. 4,6 K3BPP has designed a similar feed system, ${ }^{7}$ which provides both horizontal and vertical polarization for instantaneous polarity change or circular polarization. It is important to remember that the overall efficiency of a parabolic dish is typically 50 to 55 percent at best.

Yagis. Yagi arrays are also very popular, since such an array is usually smaller than a dish of equivalent gain and is less of a problem to maintain in severe weather areas. The WDEYE Yagi8 is very popular among homebrewers. It is important that this and
other designs be duplicated exactly as shown by the designer to achieve optimum performance. Several persons have taken the liberty of adding extra elements or making other changes to this or other designs only to find out that gain dropped. Changes should never be made unless adequate testing facilities are available to verify the performance after modification. Eight of these Yagis properly built will be capable of marginal EME, but sixteen will be quite acceptable. The best stacking distance seems to be about 4-1/2 feet (1.37 meters) in the E-plane (horizontal) and 4 feet (1.22 meters) in the H -plane (vertical). Other Yagi designs are also available. ${ }^{9}$ The quagi, a Yagi with a quad reflector and driven element, 10 is also in use and is inexpensive to build but has $1-\mathrm{dB}$ less gain than claimed. Spacings similar to the WDEYE Yagi are recommended for a quagi array and a minimum array of sixteen quagis is suggested to those interested.

Excellent commercial antennas are now available such as the F9FT twenty-one-element array on a 15foot (4.5 -meter) boom and the K2RIW nineteenelement on a 13 -foot (4 -meter) boom. Eight of these antennas in an array (four wide and two high or vice versa) spaced at 5 feet (1.5 meters) in the E-plane and 4-1/2 feet (1.4 meters) in the H -plane will deliver very acceptable performance, while sixteen will put you in the big league. The K2RIW Yagi has recently gone out of production, but a similar design, the TAMA SST-0719, is being imported from Japan and sold by Lunar Electronics.* The K2RIW nineteenelement Yagi has been widely duplicated by homebrewers. \dagger

Other configurations of antennas are also usable. ${ }^{11}$ The extended expanded collinear array ${ }^{12}$ with 128 elements has been used by several $70-\mathrm{cm}$ EMEers. Additional improvements to this design are available from the author (see note 1 in reference section). It is low in cost, easy to build, and relatively broadbanded, (meaning fewer mechanical tolerance problems). It can be easily set up for polarity rotation. Another choice would be an array of from sixteen to thirty-six, 1-2.2 wavelength long Yagis. 9

Some closing remarks about antenna systems may be in order (also refer to the system checkout section of this article). High antenna gain implies narrow beamwidths. A $25-\mathrm{dBi}$-gain antenna will have a halfpower beamwidth that will be no greater than 12 degrees (and probably much less) in at least one of the planes. Higher gain antennas will be commensurately narrower. Since gain is so important, it is de-

[^1]\dagger Suitable insulators are manufactured by Amcraft, c/o Bob Johnson, K9KFR, Rt. 4, Road 600 N, Columbia City, Indiana 46725.
sirable to keep the antenna aimed within its $1-\mathrm{dB}$ beamwidth, which would be less than 6 degrees. With moderate gain ($25-\mathrm{dBi}$) antennas it is necessary to re-aim your antenna only every 10 to 15 minutes. Beginners can easily do this by using setting circles and going outside to re-aim the antenna when required. It is desirable, however, to have a good rotator and readout for routine and continued operation.

A converted prop-pitch motor ${ }^{13}$ with a 1.0 -degree readout indicator ${ }^{14}$ is satisfactory. Several rotator and readout systems have been published. ${ }^{15}$ The sun and the star Polaris (for Northern Hemisphere stations) can be used for rough calibration. A carpenter's level and protractor can be very useful for accurate elevation settings.

receivers

Most $70-\mathrm{cm}$ EMEers prefer to use one or more antenna-mounted preamplifiers with very low noise figure ahead of a crystal-controlled down converter located in the radio room. This is fed into a suitable high-frequency receiver. A desirable converter for EME work should have a noise figure of no greater than 3 dB with at least 15 to 20 dB of image rejection. It is now possible to build a high-quality down converter ${ }^{16}$ with adequate filtering, a double-balanced mixer, and a clean local oscillator (a $28.1-\mathrm{MHz}$ i-f is recommended using a $100.975-\mathrm{MHz}$ crystal to prevent spurious beats when calibrating and to give adequate tuning range if the crystal is slightly off frequency).

The most commonly used commercial down converter is the Microwave Modules MMC-432/28S (or the MMT-432/28S transverter described in the transmitter section of this article), also usable on OSCAR. The earlier Microwave Modules converters/transverters (before the S models) had insufficient image rejection or a higher-than-desired noise figure.

Preamplifiers. Low-noise preamplifiers have come a long way in the last few years. The NEC V645 bipolar transistor has been in wide use and easily can yield a 1.0 dB noise figure. If operated in an area with high levels of rf (such as near TV or fm stations) it is susceptible to intermodulation distortion. A low-loss input filter ${ }^{17}$ or a built-in filter ${ }^{18}$ will help keep unwanted signals out. An acceptable commercial bipolar preamplifier using the V645 is the Lunar Electronics model PAE 432-5.

Recently, GaAs FETs have become readily affordable and available. The NEC V244, Mitsubishi MGF 1400, and the Dexel D-432 are the most popular GaAs FETs, and all are capable of noise figures in the $0.5-1.0 \mathrm{~dB}$ region with $18-25 \mathrm{~dB}$ gain. Because of the

fig. 2. EME antenna relay and switching scheme (from reference 21). Resistor R1 is used to terminate the preamplifier when the latter is on standby, thus providing additional isolation from the transmitter.
higher input impedances of these devices, it is easier to design a preamplifier with a built-in input filter as part of the input-matching network. One of the most popular circuits was developed by W6PO and makes use of a D-432 with a microstrip input circuit and a bifilar-wound transformer on the output. ${ }^{19}$ This preamplifier is now available from Lunar Electronics (Model PAG-432).

A few important things should be considered before you spend your time and money on your state-of-the-art preamplifier. I'd recommend that you first build an inexpensive preamplifier with a moderate ($1.75-\mathrm{dB}$) noise figure using a device such as the Motorola MRF 901,20 which costs less than $\$ 3.00$. Use this preamplifier, antenna mounted, as your first stage until you have completely debugged your relay switching system (more on this shortly) and have successfully transmitted with full power into your EME antenna. If you do have an accident (as many others have), it will not require a very costly repair. This preamplifier is capable of receiving EME signals as is. After you are confident you have no switching or isolation problems, then you can use this preamplifier for your second stage and put your super-low-noise preamplifier ahead of it with a $1-\mathrm{dB}$-loss feedline in between (see fig. 1). It is also a good idea to keep a spare preamplifier handy just in case it's needed!

Isolation. The low-noise devices we have been discussing are really a breakthrough in the state of the art, and they are far less complex and costly than the parametric amplifiers used during the 1960s. They are very susceptible to burnout from transients or high (100 milliwatt or more) input power, however, and hence must be carefully protected. Never use a power supply for your preamplifier that is also used to control relays, since transients may be induced from the relay coils into the preamplifier and destroy the device. It is preferable not to exceed 1 milliwatt into the preamplifier. With an rf power level of 500 watts, this suggests that the isolation of the antenna transfer relay should be 57 to 60 dB as a minimum. The typical Dow-Key relay, even with type-N, connectors has only 30 dB receiver-to-transmitter isolation (at 432 MHz), while the Transco Y -type relay is generally around 60 dB . This is too marginal. Futhermore, preamplifiers of this type do not like to operate with a shorted or open input during transmit.
A double relay scheme (fig. 2) is therefore highly recommended. The preamplifier has its own separate relay (a low-power type is usually adequate) that terminates the preamplifier into a 50 -ohm load during transmit and provides additional isolation from the transmitter. ${ }^{21}$ To obtain most of the additional isolation from the second relay, the transmission line between relays RY1 and RY2 should be 0.10-0.25

fig. 3. Approximate isolation of two relays (each 30 dB isolation) spaced by the transmission line.
wavelength (see fig. 3). Two relays butted closely together will exhibit only 6 dB more isolation than the best one alone.

Last but not least, the preamplifier should always be mounted as close to the antenna as possible, preferably at the central feed point. This is necessary because feedline loss does not add dB for dB to the noise figure with the cold sky (typically 20 to 70 degrees Kelvin) experienced on 70 cm . A feedline loss of 0.25 dB can degrade system receive sensitivity by up to 1.0 dB !

I-f system. The foregoing is all academic unless your i-f system is very stable ($25-50 \mathrm{~Hz}$ short-term stability) and has slow tuning capability. Also it may be desirable to have an i-f bandwidth of $200-500 \mathrm{~Hz}$ for CW work with very weak signals. Special receivers are not required, as most modern receivers meet these requirements. Some operators can use wider i-f bandwidths, while others even add a narrower bandwidth filter (passive or active type) in the audio system. CW operators long ago realized that they can copy weak signals with wider bandwidths even in heavy ORM, because the human ear and brain can be trained to narrow hearing bandwidth to perhaps $20-50 \mathrm{~Hz}$ and vary in frequency response at will. 22

Successful contacts also require good frequency accuracy ($\pm 1 \mathrm{kHz}$ is recommended) both on the transmitter and receiver. A very stable 3 or 4 MHz accurate secondary frequency standard (calibrated to WWV) is highly recommended. On $70-\mathrm{cm}$ EME, a received signal can be as much as $\pm 1.5 \mathrm{kHz}$ different from the original transmitted signal frequency due to Doppler shift (the moon is usually approaching or leaving the receiving station; hence the signal frequency varies in a manner similar to that of a moving train whistle). Echoes will be higher in frequency when the moon is east of your local longitude and lower in frequency after the moon transits your longitude. Stations should always set their transmit-
ter to the true scheduled frequency and offset their receiver as required by Doppler shift.

transmitters

Tripling from 144 and 432 MHz is a simple way to build an exciter, but stability is usually not good enough for EME operation. It is now common practice to heterodyne a 28 - or $50-\mathrm{MHz}$ exciter to 432 MHz . Not only does this usually improve stability, but it also allows the use of SSB. The most common type of up converter has an output of $5-10$ watts. The Microwave Modules MMT-432-28S is one of the most popular commercial types and is all solid state. It also has the desirable feature of a built-in receiving down converter.
Most present-day $70-\mathrm{cm}$ power amplifiers require $25-40$ watts of drive power. Many operators use a solid-state power amplifier to increase the trans-verter-exciter output. Several commercial units are available and most are acceptable; but one that can also be operated as a linear is desirable, since it will be easier to adjust drive level and can also be used for SSB operation. A simple amplifier with a 2 C 39 equivalent tube is also usable and sometimes available at a reasonable cost. One example is to use the cavity from a Motorola T-44 transmitter strip. ${ }^{23}$
The most popular $70-\mathrm{cm}$ power amplifier is the parallel-tube stripline kilowatt using 4CX250 tubes designed by K2RIW ${ }^{24}$ with special modifications. ${ }^{25}$ W2GN has made additional improvements to this amplifier and stocks all the required parts necessary for construction. He will even sell a kit or an assembled and tested unit complete with power supply.* In addition, some EMEers have slightly modified the plate line on the K2RIW kilowatt and substituted type 8930 tubes for greater output and better thermal stability. Some of the keys to success are a low-impedance bias supply (1000 ohms or less) for the input grid, good low-loss sockets with built-in screen-grid bypasses and shielding (for example, the Eimac SK-620 or SK-630), a shunt-type screen regulator (VR tube) with 20,000 ohms or less resistance from each tube screen grid to ground, and adequate air circulation to prevent thermal drift.
The W1OWJ push-pull amplifier using 4CX250Bs ${ }^{26}$ is also capable of high-output power, although some claim it is more difficult to get operational initially. Some recommended improvements are available. ${ }^{27}$ ZE5JJ has further increased the output power by shortening the output loop by 1 inch (4.25 versus 5.25 inches), and using separate screen meters to monitor balance.
Some RCA type 7650 or 7651s are in use in a single-tube microstrip configuration. The larger RCA

[^2]table 1. Transmission-line characteristics of commonly used coaxial cable (note 1).

cable type	loss (dB) (note 3)	power handling capability (watts)	velocity of propagation factor
RG-58C/U	11.5	75	0.659
0.141 semirigid, PTFE dielectric	7.5	1000	0.75
RG-8/U (note 2)	4.75	350	0.659
RG-213/U	4.75	350	0.659
Belden 8214	4.0	350	0.78
RG-17/U	2.0	1000	0.659
$1 / 2$ inch (1.3 cm) Alumifoam, RG-231/331/U	2.0	1000	0.80
$1 / 2$ inch (1.3 cm) Heliax,* RG-366/U foam dielectric	2.0	1000	0.79
$1 / 2$ inch (1.3 cm) Heliax,* air dielectric	1.8	1000	0.914
$\begin{aligned} & 7 / 8 \text { inch }(2 \mathrm{~cm}) \text { Alumifoam, } \\ & \text { RG- } 332 / 333 / \mathrm{U} \end{aligned}$	1.4	2000	0.80
75 -ohm CATV $3 / 4$ inch (1.9 cm) polyethylene dielectric	1.1	1500	0.80
$7 / 8$ inch (2 cm) Heliax,* RG-323/U foam dielectric	1.1	2000	0.79
$\begin{aligned} & 7 / 8 \text { inch }(2 \mathrm{~cm}) \text { Heliax, }{ }^{*} \\ & \text { RG-318/U air dielectric } \end{aligned}$	0.85	2500	0.916
75 -ohm CATV 1 inch (2.5 cm) polyethylene dielectric	0.85	2000	0.80
$15 / 8$ inch (4 cm) Heliax,* polyethylene dielectric	0.85	5000	0.79
15/8 inch (4 cm) Heliax,* RG-319A/U air dielectric	0.45	6000	0.921

Note 1. These are approximate figures but good for comparison. All the data presented is for $70 \mathrm{~cm}(432 \mathrm{MHz})$.
Note 2. The RG-8/U coax produced in recent years may have higher losses than quoted. See text for further information.
Note 3. All losses are nominal for 100 feet (30.5 meters). Air dielectric Heliax* loss figures apply only if the cable is moisture free and is pressurized with dry air or nitrogen.
*Registered trademark of the Andrew Corporation.

7213 or 7214 s have been used in some cavity amplifier designs. Others have used the Eimac 8938.28

feedlines

No article on $70-\mathrm{cm}$ EME would be complete without a few words on recommended feedlines. All antenna feedline losses must be kept to a bare minimum. Yagi arrays are usually fed with the shortest possible length of RG-213/U (the current military version of RG-8/U) or Belden 8214 foam dielectric coax. The latter uses a slightly larger inner conductor (a UG-21B connector is recommended). Also the lower dielectric constant (foam versus polyethelene) is more prone to phasing variations. Some operators are now switching back to openwire line, which is virtually lossless except during wet weather. RG-8/U coax should be avoided because it is no longer made to military specifications, and the shield coverage has been reduced. In addition, a
plasticizer in the jacket will contaminate the dielectric and losses will increase with time. Larger and lowerloss coax is recommended, especially after the first power divider in a Yagi array. For comparison I have included various feedlines and their characteristics in table 1.

If the preamplifier is mounted at the antenna feed, its output can go to the next stage through a 1-dBloss coax cable (for example, 20 feet, or 6 meters, of RG-213/U) to both stabilize the preamplifier and to allow it to be mounted in a more convenient place outside the antenna feed system. The losses ahead of the first preamplifier must be kept low (and should never exceed 0.5 dB). The transmitter feedline loss is on a dB -for- dB basis and should be low enough (typically 1 to 1.5 dB) to obtain the recommended 500 watts output at the antenna. One-half inch (1.3 cm) or larger hardline is definitely recommended, and air dielectric Heliax ${ }^{\text {TM }}$ (if you can afford it) is preferred
but must be pressurized with dry air or nitrogen if its low-loss properties are to be maintained. Recently there has been a surplus of large (3/4-1 inch or $1.9-2.5 \mathrm{~cm}) 75$-ohm foam dielectric CATV feedline. This is definitely usable if suitable impedance transformers ${ }^{29}$ and connectors are obtainable.

scheduling

Seventy-cm EME schedules are usually conducted between 432 and 432.05 MHz and are thirty minutes in duration with most westerly station (with respect to the international date line) transmitting the first 2-1/2 minutes of each five-minute period. The last thirty seconds of each transmitting period is reserved exclusively for signal reports. Do not transmit during this time if you are not sending a signal report. The reporting system is quite similar to meteor-scatter procedures. The letters T-M-O are used, with T meaning detectable signal or letters, M meaning the call signs have been positively identified, and O meaning signals are Q 5 copy. For a valid contact, both stations must send and receive an M or O plus a receipt acknowledgment (an R or roger). Schedules are coordinated through the $70-\mathrm{cm}$ EME net, which meets from 1600 to 1700 UTC every Saturday and Sunday on 14.345 MHz , or through the various schedule coordinators, who are published in the 70cm EME newsletter.* Most activity takes place on the weekend when the moon is nearest perigee (closest to the earth) and at positive delination (north of the earth's equator), excepting the new moon. Additional information on scheduling and locating the moon has also been published. 30,31

system checkout

Now that you are all ready, you're probably asking yourself, "How do I know it's all working?" If you have followed all the above and have a station that meets the minimum recommended requirements, you may try echo testing. The round trip time for the EME path is just over 2.5 seconds, so letters or long dahs can be sent and listened for (don't forget to compensate for Doppler shift on your receiver). Hearing echoes is great, but don't be discouraged if you do not hear signals right off. Be patient! The Faraday rotation may not be right. It may take hours for the correct polarization to occur and could be longer during the nighttime when ionization changes at a slow rate. Better yet, set up a schedule and see if you or the other station hear each other.

Other tests can and should be conducted to verify system performance. First, measure your transmitter output power and antenna VSWR at the feedpoint.

[^3]
fig. 4. Approximate antenna gain as a function of sun noise referenced to cold sky. Frequency is 432 MHz , noise figure is approximately 1 dB , and side/grating lobes are less than $-13 \mathbf{d B}$.

Caution: Do not stand in front of the antenna with transmitter power applied, since your body may absorb hazardous levels of if radiation.

The sun is a convenient signal source for testing receiver sensitivity as well as antenna gain. Fig. 4 has been prepared only as a crude guide to assist you in this test. First set your receiver to the CW/SSB mode, remove the AGC and noise limiter and select a wide (2 or 3 kHz) bandwidth. Then measure the receiver audio output with a dB meter while making sure the receiver system is not in compression. Next aim your antenna to a cold spot in the sky; that is, away from the sun, local objects, the ground, or the galactic plane, and note the dB meter reading. Then aim your antenna at the sun and peak for maximum sun noise (note: maximum noise should be right on boresite. If not, you may have antenna phasing errors.) For example, with a reasonable noise figure and an antenna-mounted preamplifier (as described earlier) and moderate solar activity (1981), a $25-\mathrm{dBi}$ antenna should yield about an $11-\mathrm{dB}$ noise increase between the cold sky and the sun. It is best to compare your measurements with a similar station on the same day and time for better accuracy. Note that when the sun drops below 10 dB , it no longer drops in a linear fashion.

summary

I have tried to cover a lot of bases and naturally I have probably missed some. Many of us have spent five or ten years or more, and a lot of time and money, trying to perfect our stations and operating techniques. The purpose of this guide is to help you avoid some of the pitfalls by telling you things that have worked for other $70-\mathrm{cm}$ operators. There may be other ways to go, but I believe this information is the path to success with the least number of prob-
lems. I would particularly like to thank Lewis Collins, W1GXT, and Allen Katz, K2UYH, for their review of this article and thoughtful suggestions. Good luck. See you on $70-\mathrm{cm}$ EME soon.

references (see note 1)

1. J. Reisert, W6FZJ, 432 EME Notes, 1973 (note 2).
2. A. Katz, K2UYH, "An Inexpensive Parabolic Reflector," CQ. August, 1966.
3. R. Knadle, K2RIW, "A Twelve-Foot Stressed Parabolic Dish," QST, August, 1972.
4. R. Norton, VK3ATN, "Parabolic Reflector Antennas," ham radio, May, 1974.
5. The ZE5JJ Antenna, EIMAC EME Note AS-49-23 (note 3).
6. R. Turrin, W2IMU, "Antenna Performance Measurements," QST, November, 1974
7. W. Bohlman, K3BPP, "Dual Polarized Dish Feed," 1975 Eastern VHF/UHF Conference (note 1).
8. B. Smith, " 15 -Element Yagi by WøEYE," OST, January, 1972, page 96 with errata, QST, March, 1972, page 101.
9. J. Reisert, W1JR, "How To Design Yagi Antennas," ham radio, August, 1977.
10. W. Overbeck, N6NB, "The Long-Boom Quagi," QST, February, 1978 and April, 1978, page 34.
11. EIMAC EME Notes AS-49-8, 10, 14, 20, and 27 (note 3).
12. J. Reisert, W6FZJ/1, "VHF Antenna Arrays for High Performance," QST, December, 1974.
13. D. Umberger, W8ZCQ, "Rejuvenating That Old Prop-Pitch Rotator," QST, August, 1971.
14. J. Bartiett, K1JX, A Radio-Compass Antenna-Elevation Indicator, QST. September, 1979.
15. EIMAC EME Notes AS-49 and AS-49-11 (note 3).
16. J. Reisert, W1JAA, "What's Wrong With Amateur VhF/UHF Receivers .," ham radio, March, 1976.
17. J. Reisert, W1JAA, "Ultra Low-Noise UHF Preamplifier, ham radio, March 1975, and modifications to use V64535 upon request (note 1).
18. A. Ward, WB5LUA, "Super Low-Noise $432-\mathrm{MHz}$ Preamplifier," ham radio. October, 1978.
19. R. Sutherland, W6PO, "Some GaAs FET Preamplifiers, EIMAC EME Note AS-49-31 (note 3).
20. J. Reisert, W1JR, "An Inexpensive amsat oscar Mode J Receiver Preamplifier," AMSAT News/etter, June, 1978.
21. J. Reisert, W6FZJ/1, "An EME Antenna Relay Switching Technique," EIMAC EME Note AS-49-9 (note 3).
22. R. Turrin, W2IMU, "Simple Super Selectivity," QST, January, 1967.
23. The ARRL Handbook, Chapter on VHF and UHF Transmitting. American Radio Relay League, Inc., 1980/1981.
24. R. Knadle, K2RIW, "A Strip-Line Kilowatt Amplifier for 432 MHz ," Parts 1 and 2, QST. April and May 1972, with feedback in QST, July, 1972, page 47.
25. J. Reisert, WIJAA, "More on the K2RIW Strip-Line Amplifier," QST, July, 1975, page 47.
26. E. Tilton, W1HDQ, "The W1QWJ 432 Mc kW Amplifier," QST, February, 1966.
27. E. Tilton, W1HDQ, "Some Hints on Push-Pull 432-MHz Power Amplifiers," QST, February, 1970.
28. A. Sousa, W3HMU, "432-MHz Power Amplifier Using Stripline Techniques," ham radio, June, 1977.
29. J. Reisert, W1JAA, "Feeding and Matching Techniques...," ham radio, May, 1976.
30. J. Reisert, W6FZJ/1, EME Scheduling When and Where, QST, July, 1974.
31. EIMAC EME notes AS 49-1, 49-6, 49-13, 49-17, 49-19, 49-24, and 49-29 (note 3).

Notes:

1. Requests for additional information can be made to the author but they will not be answered without an SASE.
2. This publication had limited distribution but copies are available (note 1). 3. EIMAC EME notes can be obtained by writing William Orr, W6SAI, c/o Varian, EIMAC, 301 Industrial Way. San Carlos, California 94070.
"HAL"
 HAROLD C. NOWLAND W8ZXH
$\$ 69.95$
G-10 PC BOARD, $7-567$'s, $2-7402$, AND ALL ELECTRONIC COMPONENTS BOARD MEAS G-10 PC BOARD, $7-567$'s. $2 \cdot 7402$, AND ALL ELECTRONIC COMPONENTS. BOARD MEAS-
URES $3-1 / 2 \times 5-1 / 2$ INCHES. HAS 12 LINES OUT. ONLY $\$ 39.95$ NEW - 16 LINE DELUXE DECODER

EW ICM
DELUXE 12-BUTTON TOUCHTONE ENCODER KIT UTILIZING THE NEW ICM 7206 CHIP PROVIDES BOTH VISUAL AND AUDIO INDICATIONS! COMES WITH ITS OWN PLETE WITH TOUCH-TONE PAD BOARD CRYSTAL CHIP AND AL NECESSARY COMPO NENTS TO FINISH THE KIT. PRICED AT \$29.95 NEW - 16 LINE DELUXE ENCODER $\mathbf{\$ 3 9 . 9 5}$
ACCUKEYER (KIT) THIS ACCUKEYER IS A REVISED VERSION OF THE VERY POPULAR WB4VVF ACCUKEYER ORIGINALLY DESCRIBED BY JAMES GARRETT, IN OST MAGAZINE AND THE 1975 RADIO AMATEUR'S HANDBOOK
$\$ 16.95$
ACCUKEYER - MEMORY OPTION KIT PROVIDES A SIMPLE, LOW COST METHOD OF ADDING MEMORY CAPABILITY TO THE WBAVVF ACCUKEYER. WHILE DESIGNED FOR DIRECT ATTACHMENT TO THE ABOVE ACCUKEYER, IT CAN ALSO BE ATTACHED TO ANY STANDARD ACCUKEYER BOARD WITH LITTLE DIFFICULTY.
$\mathbf{\$ 1 6 . 9 5}$
BUY BOTH THE MEMORY AND THE KEYER AND SAVE COMBINED PRICE ONLY $\mathbf{\$ 3 2 . 0 0}$

PRE-AMPLIFIER

HAL.PA- 19 WIDE BAND PRE.AMPLIFIER, $2 \cdot 200 \mathrm{MHz}$ BANDWIDTH (-30
POINTS) 19 dB GAIN
FULLYASSEMBLED AND TESTED POINTS), 19 dB GAIN. FULLY ASSEMBLED AND TESTED $\mathbf{\$ 8 . 9 5}$

CLOCK KIT - HAL 79 FOUR-DIGIT SPECIAL - $\mathbf{\$ 7 . 9 5}$. OPERATES ON, 12 -VOLT AC (NOT SUPPLIED). PROVISIONS FOR DC AND ALARM OPERATION

6-DIGIT CLOCK • $12 / 24$ HOUR

COMPLETE KIT CONSISTING OF 2 PC G-10 PRE-DRILLED PC BOARDS. 1 CLOCK CHIP, 6 FND COMM. CATH READOUTS, 13 TRANS. 3 CAPS, 9 RESISTORS, 5 DIODES. 3 PUSHBUTTON SWITCHES, POWER TRANSFORMER AND INSTRUCTIONS DON'T BE FOOLED BY PARTIAL KITS WHERE YOU HAVE TO BUY EVERYTHING EXTRA. PRICEDAT $\$ 12.95$
CLOCK CASE AVAILABLE AND WILL FIT ANY ONE OF THE ABOVE CLOCKS. REGULAR PRICE . $\$ 6.50$ BUT ONLY $\$ 4.50$ WHEN BOUGHT WITH CLOCK.
SIX-DIGIT ALARM CLOCK KIT FOR HOME, CAMPER, RV, OR FIELD-DAY USE OPERATES ON 12 -VOLT AC OR DC, AND HAS ITS OWN $60-H z$ TIME BASE ON THE BOARD COMPLETE WITH ALL ELECTRONIC COMPONENTS AND TWO-PIECE, PRE-DRILLED PC BOAROS BOARD SIZE $4^{\prime \prime} \times 3^{\prime \prime}$ COMPLETE WITH SPEAKER AND SWITCHES IF OPERATED ON DC, THERE IS NOTHING MORE TO BUY •

PRICED AT $\mathbf{\$ 1 6 . 9 5}$
-TWELVE-VOLT AC LINE CORD FOR THOSE WHO WISH TO OPERATE THE CLOCK FROM
$\mathbf{1 1 0 - V O L T A C . ~}$
SHIPPING INFORMATION - ORDERS OVER $\$ 25.00$ WILL BE SHIPPED POSTPAID EXCEPT ON ITEMS WHERE ADDITIONAL CHARGES ARE REOUESTED ON ORDERS LESS EXCEPT ON IIEMS WHERE ADDITIONAL CHARGES ARE REOUESTED ON ORDERS LESS
THAN $\$ 25.00$ PLEASE INCLUDE ADDITIONAL $\$ 2.00$ FOR HANDLING AND MAILING CHARGES SEND SASE FOR FREE FLYER.

DISTRIBUTOR FOR
Aluma Tower - AP Products (We have the new Hobby-Blox System)

A look at

the future of

slow-scan television

applying microcomputers to SSTV

Slow-scan television (SSTV) is a medium for transmitting still pictures via Amateur Radio. It is almost identical to facsimile in concept. The standards commonly used in Amateur SSTV are listed in table 1.
table 1. Amateur slow-scan standards (from the ARRL Handbook).

	$60-\mathrm{Hz}$ areas	50-Hz areas
sweep rates:		
horizontal	15 Hz	$16-2 / 3 \mathrm{~Hz}$
	($60 \mathrm{~Hz} / 4$)	$(50 \mathrm{~Hz} / 3$)
vertical	8 sec .	7.2 sec .
No. of scanning lines	120	120
aspect ratio	1:1	1:1
direction of scan: horizontal vertical	left to right top to bottom	left to right top to bottom
sync pulse duration: horizontal vertical	5 millisec. 30 millisec.	5 millisec. 30 millisec.
subcarrier frequency:		
sync	1200 Hz	1200 Hz
black	1500 Hz	1500 Hz
white	2300 Hz	2300 Hz
required transmitter bandwidth	1.0 to 2.5 kHz	1.0 to 2.5 kHz

table 2. Digital picture transmission header. Each byte contains eight bits.

item	no. bytes	code
sync vector	4	binary
receiving-station callsign	10	ASCII
sending-station callsign	10	ASCII
horizontal resolution	2	binary
vertical resolution	2	binary
colors	1	binary
luminance	1	binary
spare	2	
total	32	

This article presents some ideas on how microcomputers can be used to improve this mode of Amateur communications.

background

Fig. 1 depicts three generations of an Amateur SSTV receiving setup. In the early days of SSTV, the picture was displayed on a cathode-ray tube having a long persistence. Once the novelty of receiving pictures had worn off, the display was seen to be crude and inconvenient. The tube had to be viewed in a darkened room. The picture was updated slowly (every eight seconds) and faded rapidly. Most people, in fact, photographed the picture and viewed the photograph rather than the screen. The second generation of SSTV equipment incorporated scan converters. These are relatively expensive, but convert the SSTV pictures into a form displayable on a standard fast-scan TV monitor.
The advent of the microcomputer introduces the third generation of SSTV equipment, which will improve the capabilities of the medium by at least an order of magnitude. It will allow image-processing techniques to be used to cut down the effects of interference, and it will allow real-time color displays using a field-sequential color transmitting scheme.

Basic SSTV equipment comprises a picture source and display. Many Amateurs, when first entering the mode, purchase a display and generate a tape recording on a friend's system to use as a video source. Later, as funds permit, they add cameras, electronic pattern generators and other signal sources.

the microcomputer and SSTV

The microcomputer can be added to the SSTV sta-

fig. 1. First, second and third generation slow-scan TV receiving arrangements.
tion in stages. It can be used to generate patterns or characters. For example, it can display any characters typed in at the console. It could digitize and scan convert incoming pictures. A picture library could be built up on floppy disks. Then, as image processing software is added, interesting things begin to happen. Initially, the use would be to compensate for interference on received signals. Simple techniques (algorithms), such as displaying the average picture received over a number of sequential frames, could be used. Gray-scale adjustments could be made. A whole picture editing system could be developed using the console or a light pen or both as control inputs.

Color could be added if three pictures (red, blue, and green) can be stored separately and combined in the display. A fast-scan display at the system console makes the pictures much more viewable. Later additions to the software could include overlaying one picture upon another, merging pictures, or merging sections of different pictures. A picture of a person could be overlaid onto different backgrounds. Composites could be built up. Data could be added to annotate the picture. The narrow bandwidth of the transmission medium, as well as the visual impact of the display when used with the microcomputer, have the potential to make SSTV as popular as SSB voice in the Amateur field. It offers new capabilities in other areas such as law enforcement, whereby pictures of suspects (stored in computers) could be
transmitted via conventional VHF/UHF voice quality links.

color

Slow-scan color may be transmitted using a field sequential technique. The picture to be transmitted is separated into blue, red, and green components. Each component is transmitted as a separate picture frame and assembled at the receiving station into a color picture. The transmission of one slow-scan color picture thus requires three frames.

Transmission is quite simple because the regular station camera can be used. Color separation is performed by inserting a filter between the camera and the subject. Three filters are required: green, red, and blue. The filters can be cemented to a disk and rotated by a stepping motor, so that the disk is advanced one filter band for each field sync pulse, as shown in fig. 2. The more filter bands present on the disk, the fewer steps the motor must sequence to switch colors. This simple technique allows the transmission of live color pictures, but ignores the problem of the receiving station deciding which frame is allocated to which color. This problem can be resolved by always transmitting the colors in the same sequence and verbally announcing which color is coming first, or by transmitting some kind of colorreference synchronizing signal. Since color slowscan television is still in its infancy, these standards still have to be worked out.

digital slow pictures

Videographic displays and digital communications can be merged to provide picture transmission

fig. 2. Color filter-wheel possibilities. Filters may be cemented onto a disk, which is rotated by a stepping motor so that the disk is advanced one filter band for each sync pulse.
capabilities. A videographic display causes the contents of a memory area in the computer to be displayed on a TV screen. The display may be color or black and white with gray scales. If the contents of a display memory in one computer can be transmitted to the display memory of another one, a picture will have been transferred.
If two Amateur Radio stations have the same video display hardware, the transfer of the contents of the video memory in one computer to the other one in effect transmits a picture from one station to the other. If the displays have 1024×1024 pixel resolution with color and luminance, then a very high-resolution picture can be transmitted, although at a slow rate. The majority of videographic displays at this time have resolutions of the order of 128×128 or 256×192, and so forth. Some may be color, some may be black and white, and some may be color but viewable as black and white on a black and white monitor. Now it is desirable that anyone with a graphics video display capability in his computer should be able to transmit and receive pictures if a suitable modem is available.

transmission format

The digital format of transmission means that any format could be used providing that suitable software exists. To avoid resolution problems, it is desirable that the formats be compatible with all kinds of displays, a situation that is hardly likely to occur in practice.
The digital format is really a digitized analog signal. Thus, a zero level, or a sync pulse level will always be a 00 signal and a very bright signal would always be an OFF Hex or a maximum. If signals are transmitted in consecutive lines with a header in the first line, format independent pictures can be transmitted. The header would contain the data as shown in table 2.

The sync vector of four bytes synchronizes the system and notifies the receiver that a header is coming. The callsigns of the sender and recipient are then transmitted in the next 20 bytes. Ten bytes are sufficient for 99.9 percent of the Amateur Radio callsigns allocated today. GW3ZCZ/KH6 is only ten bytes long, for example.

The next two bytes contain in binary code the number of pixels per line, followed by two bytes that contain the number of lines in a frame, also in binary. One byte each is allocated to color and luminance information. The color byte could be an ASCII R, G or B to signify which frame of a field-sequential color picture is being transmitted or any other information. The luminance byte contains information about how many gray levels are present in the picture. Two spare bytes are allocated at this time to bring the byte count to 32.

fig. 3. Digital line transmission format. A sync vector synchronizes the receiving-station software, the pixels are transmitted, and the sync vector is again transmitted to ensure that the receiver stays in sync with the transmitter.

picture information

A sync vector synchronizes the receiving-station software (fig. 3) and the pixels are then transmitted. The number of pixels is known from the header, and when the line is completed, the sync vector is again transmitted to ensure that the receiver stays in sync with the transmitter. When a whole frame has been transmitted, the sequence may stop, or another frame may be transmitted.
The picture transmission has been defined in terms of memory-to-memory transfer. If both stations have identical videographics hardware, they can display the same picture. What happens, however, if the second station does not have the same hardware as the first?

If the receiving station has hardware with the same resolution as that of the transmitting station, the same picture can be displayed. If color or luminance are the same, they will be lucky. If the receiving station does not have color, it will probably be able to display a black-and-white picture.

If the receiving station has a resolution different than that of the transmitting station, a number of choices are open. Assume that the picture being transmitted is 256×256 pixels, and the receiving station has a 128×128 display. The receiving station has a number of options. The first option is to perform some kind of signal processing on the picture data to combine two pixels in both horizontal and vertical directions to reduce the resolution of the picture. This will allow the whole picture to be displayed, but at a lower resolution. The remaining options are shown in fig. 4. Here a reduced area of the picture is displayed. A corner, as shown in fig. 4A or a middle section, as shown in fig. 4B may be chosen. This technique is sometimes used to zoom in on selected portions of a high-resolution picture. As the display options are in software, the receiving station has a choice of how to display the picture.

If the receiving system has better resolution than that of the sending station, similar techniques can be used either to display the picture in a part of the screen together with other desired information (such as callsigns) in the remaining portions of the screen, or the picture information can be doubled both

fig. 4. Lower-resolution receiving options. In this example, the transmitted picture contains 256×256 pixels, and the receiving station has a 128×128 display capability. A corner, as in A, may be chosen - or a middle section, as in B.
horizontally and vertically to fill the screen. If the receiving station has a 256×192 resolution for example, the choices can be applied to the vertical portion only.

The picture has been transmitted as a memory-tomemory transfer. The software in the receiving station can thus decide if processing must be performed for the display. The processing can be performed on the picture as it is received in systems with minimal amounts of memory, or the picture can be stored in memory and moved to the video display area by the processing algorithm.

The mode of transmission of the digital data can be ASCII, RTTY, or packet, depending on what is available to the users. The use of digital transmission formats for slow scan television changes the meaning of "slow," for it no longer applies to lowresolution pictures but can now refer to the slow data rate for transferring a picture of any resolution.
ham radio

The places to buy ARCO Solar"

Power Systems are

 popping up everywhere.For some very sound reasons. Not all solar electric systems are created equal. ARCO Solar products offer all the features that add up to superior performance and increased value. Features like design, construction, warranty, accessories and service. Those who know what dependable, stand-alone power can do for their communications equipment, know how important these features are.

And now, there are 2,500 dealers across the United States and Canada offering ARCO Solar power systems. For the narne of the dealer nearest you, contact one of our regional distributors:

Long's best ham values.Order now!

Buy the KENWOOD TS-530S CWISSB transceiver \& save $\mathbf{\$ 2 0 0}$ plus get a $\$ 15$ rebate! The TS-530S featuresdigital displays showing actual and transmit frequencies on all modes, IF shift, built-in speech processor and two 6146B final tubes running 220W PEP/180W DC on all bands. Covers $160-10 \mathrm{~m}$ plus 10,18 and 24 MHz . Requires 120 V AC. Buy by June 15, 1982 and get a Bonus Bucks coupon worth \$15 off the purchase price.

A fantastic buy on the ICOM IC-2KL solid state linear amplifier An all solid-state linear with broadband tuning and full protected finals (no vacuum tubes). 160 thru 15 meter operation including the new 10 and 18 MHz WARC bands. Power supply is usable on $110 / 220 \mathrm{~V}$ AC. Output power: 500W PEP SSB. Also features hands-off bandswitching when used with the IC-701 and IC-720. Hurry, only 4 left at this price!
$4401 \begin{aligned} & \text { List Price } 1795.00 \\ & \text { Item No ICO2KL } \\ & \text { Add } 7.60 \text { shipping } \\ & \text { \& handiling }\end{aligned}$ 8 handiling

Save $\$ 334$ on the -TEN-TEC Hercules 444 solid state KW linear amplifier
Amateur radio's first full break-in solid state KW linear. Features 600W typical RF output, 1000W input on all bands and forced air cooling. Covers $160 \cdot 10 \mathrm{~m}$. Included power supply provides approx. $45 \mathrm{~V} D \mathrm{DC}$ @ 24 A . Requires $117 / 230 \mathrm{~V}$ AC. Also features automatic line voltage correction and exciter by-pass.

Add 15.78 shipping \& handing

Satellite TV system \$1995!

10 FOOT PARABOLIC

List Price 4015.00
Item No. MISSY19 Shipped Freight Collect

What the system will do:

You can receive up to 60 channels of TV direct from satellites to your home receiver. Movies, sporting events, religious programs, other TV stations and much more.

What the system includes:

1. 10 ft . fiberglass dish made of reflective metal bonded with fiberglass. Weather-resistant and virtually maintenance-free. Comes in 4 sections.
2. Polar mount complete with azimuth and elevation cranks for easy satellite-to-satellite adjustment.
3. LNA mount complete with rotor for turning LNA from horizontal to vertical polarity. Tubing for mount legs not included.
4. KLM Sky Eye IV satellite receiver: Consists of two pieces, receiver and downconverter. Features video inversion, AFC defeat, slide rule tuning and latest singleconversion electronics. Modulator optional.
5. Avantek 4215 low noise amplifier: A 120 degree uncooled LNA. Takes the weak signals to a TV picture. Uses GaAs FET transistors for maximum performance and has its own built-in power supply. Urethane coated for weatherproofing.
6. Chaparral feed horn: Provides 0.5 dB gain improvement over conventional rectangular horns. Virtually eliminates system noise.
Note: Customer provides small cables that run from downconverter outside to receiver inside (approx. cost $\$ 40)$. Customer can use conventional TV set tuned to

IN ALABAMA CALL 1-800-292-8668 9 AM TIL 5:30 PM CST, MONDAY THRU FRIDAY

Unviesal OMMUNICATIONS

A Division of Innovative Labs, Inc.
VIDEO STABILZER KTVideo Stabilizers are used to eliminate roll-ing and unviewable pictures when viewingpre-recorded video tapes. A must for all VCRowners.
TMVS-1 Kit $\$ 55.00$
SUPERVERTER I KIT \$99.95
The ultimate in converter technology! Dual stage selec-controlled oscillator. We recommend this kit for theexperienced kit builder. No crystal supplied.
Without preamp \$59.95
Superverter I built and tested \$149.95
12 V. Stationary Power Supply \$24.95
SELECTIVE PREAMP \$39.95 39.95This new unit is not like other wide band preamps.
Experienced kit builders can easily add this unit to ourThis new unit is not like other wide band preamps.
Experienced kit builders can easily add this unit to ourexisting boards or to other manufactured boards toimprove overall performance.
tive preamp, mixer, i.f. amplifier and no-drift crystal

Arlington, TX 76004-0339
Simple and easy to operate. The Drake DM2350 Digital Multimeter automatically measures your selected functions in up to 5 ranges, at the touch of a button. Drake's Digital Multimeter will not overload circuits and DC accuracy is 0.8% of reading $\pm 0.2 \%$ of full scale. A continuity test sounds a signal when circuit resistance is less than 20 ohms. The liquid crystal display and three step protection leature with auto-zeroing. polarity indication and over-range warning signal make it ideal for servicemen or hobbyists.
The Drake Digital Multimeter is sold complete with batteries |battery life is greater than 300 hrs .). probes, 20 amp current shunt, spare fuse, and soft carrying case for only $\$ 95.95$.
Add $\mathbf{\$ 2 . 5 0}$ shipping and handling per order. Send check with order and provide street address for UPS shipment. Ohio residents add Sales Tax
DRAKE

$$
\begin{array}{lc}
\text { In Ohio, or for } & \text { Credit-Card buyers } \\
\text { information call: } & \text { may call toll tree } \\
1.513-866-2421 & 1-800-543-5612
\end{array}
$$

[^4]Assembled and Tested\$70.00
For use between two VCRs.
TMVS-IRF Kit $\$ 79.00$
Assembled and Tested $\$ 99.00$
Built-in RF modulator for direct connection from
VCR to TV.
$\mathbf{2 3 0 0}$ MHz Downconverter$\$ 35.00$
PC Board, all components and instructions for a working unit.
VARIABLE POWER SUPPLY\$24.95
Complete kit includes all compon onents for working unitincluding deluxe box and overlays.DISH YAGI ANTENNA$\$ 25.00$
Complete kit with PVC and mounting brackets. Strong-er than loop yagi, equal in gain.
KD44 Antenna \$54.95Overall 25 dB gain. Partial assembly required. ShippedUPS ground only.

the radiation of radio signals

An explanation of how a radio transmitter puts a signal into space

What, exactly, is flying around when you key your rig? How does that high-frequency alternating current in the final amplifier tank circuit manage to propagate its effects far into space? We all have a vague idea of what happens, but misconceptions abound. This article will explain, in understandable but rigorous terms, how that signal gets to bounce around the world - and, perhaps, into the receiver of a rare DX station.

the antenna system

Of course, the antenna system is responsible for putting your signal into space. When speaking of the antenna system, we refer to two components: the
transmission line and the antenna. The purpose of the transmission line, or feed line, is to get the signal from the rig to the antenna. The purpose of the antenna is to get as much of the signal as possible into space.

the transmission line

Rare is the station that uses no transmission line between the rig and the antenna. Of those few stations with antennas that run right down to the transmitter, rare indeed is the one without "rf-in-theshack" troubles. The antenna, in performing its function of radiating the signal, will put some of that signal right into the shack unless the antenna is far enough away. The feed line allows you to put the antenna far away from the rig, so the signal will go where it should and not where it shouldn't.

How does the feed line transfer the signal? An alternating voltage is present at the input of the line,

By Stan Gibilisco, W1GV/4, P. O. Box 561652, Miami, Florida 33156
and this causes alternating currents to flow in the conductors. But the actual propagation of the signal along the line is not because of these currents and voltages themselves. It is not current, or voltage, or even power, that travels along the line. It is an electromagnetic field that travels.

Fig. 1 is a "stop-action" diagram of the currents and voltages, and the resulting electric and magnetic fields, in a short section of parallel-wire feed line. The currents in the two wires are equal in amplitude, but opposite in direction. A magnetic field (M) is produced around each conductor. A voltage exists between the two conductors, producing an electric field (E). The E and M fields vary in intensity as the currents and voltages alternate, but the fields are always perpendicular to each other. You should recall from high school physics that this situation produces a unique type of energy field, an electromagnetic field (EM). EM fields regenerate themselves in a sort of "leapfrog" manner, and thus they can travel great distances with much less attenuation than can either E or M fields by themselves. The EM field travels in a direction perpendicular to both the E and M fields. From fig. 1, we can see that this direction runs right along the transmission line. The voltage at the line input causes an EM field to propagate down the line away from the rig. This field is restricted to the immediate vicinity of the conductors because it can travel only exactly in line with them. Hence the line does not radiate, and serves as a sort of guide for the EM field.

Fig. 2 shows what happens in a coaxial line. The E and M fields, although confined to the inside of the cable, are still perpendicular at every point. The EM field is thus produced in line with the cable. It can't escape the outer conductor, and so it is entirely confined within the dielectric material in the coax.

how fast does it move?

Electromagnetic fields travel at the speed of light - about 300,000,000 meters per second in a vacuum. Through air, they travel about 97.5 percent as fast as they do in a vacuum. EM fields travel more slowly through dielectric materials (non conductors) such as glass or polyethylene. In solid polyethylene they go about 66 percent of their speed in a vacuum; in foamed polyethylene the figure varies between 75 and 80 percent. The velocity factor for a given material is the ratio of the speed of the EM field through the material divided by the speed through a vacuum.

Since commercially prefabricated feed lines usually have either à foamed or solid polyethylene dielectric, the speed of EM fields along such lines is somewhat less than their speed in free space. In a coaxial line, all of the EM field is confined to the dielectric
material. In a two-wire line, such as TV ribbon, some of the EM field travels through the dielectric and some travels through the air near the line. Thus, the

fig. 1. Generation of an EM field in a parallel-wire transmission line. Thin arrows represent currents in the conductors. The dotted line shows the electric (E) field and the curved lines show the magnetic (M) field. A is a side view; B is the view along the conductors. The heavy arrow represents the EM field, which travels along the conductors in their immediate vicinity. Because the EM field can move only parallel to the conductors, the line does not radiate as long as the currents in the conductors are equal in magnitude and opposite in direction.

fig. 2. Generation of an EM field in a coaxial line. A is a side view (assuming transparent shield material); B is the view along the line. As in fig. 1, thin arrows represent current in the center conductor, dotted lines represent E fields and curved lines represent M fields. The heavy arrows show the direction of the EM field. The fields are entirely confined to the inside of the cable, assuming a solid tube of metal constitutes the shield. With braided shielding, as is used in most commercially made line, a tiny amount of the EM field "leaks out," but it is insignificant.
velocity factor for two-wire line is usually greater, for a given dielectric material, than it is for coax. Table 1 shows the velocity factors of several common types of transmission line.

Abstract

table 1. Surge impedance and velocity factor for common types of transmission lines used by Amateurs. In the line type column, SP stands for solid polyethylene dielectric and FP stands for foamed polyethylene dielectric. The term open wire refers to parallel-wire line where the dielectric is predominantly air.

line type open wire, no spacers	$\mathbf{Z}_{\mathbf{0}}$, ohms	velocity factor
open wire, plastic spacers	$70-800$	0.975
RG-8/U, SP	$70-800$	$0.95-0.97$
RG-8/U, FP	52	0.66
RG-58/U, SP	52	0.80
RG-58/U, FP	52	0.66
RG-59/U, SP	52	0.80
TV twinlead, SP	73	0.66
	300	0.82

characteristic impedance

Suppose, for a moment, that the transmission line extending from the transmitter is infinitely long, so that a signal will continue along it without end. Suppose also that the conductors and dielectric material have no loss, so the signal will remain at the same intensity forever. As the EM field travels down the line away from the rig, there is a certain current (I) in the conductors, and a voltage (E) across them. The product El is equal to the transmitter output power. The ratio E / I depends on the size and spacing of the feedline conductors, and also on the nature of the dielectric material. For a two-wire line, the ratio E/I may be as low as about 70 or as high as about 800; for coaxial line it ranges between roughly 30 and 100. The ratio $E / 1$ is called the characteristic, or surge impedance, of the line. It is abbreviated Z_{0}.

Of course, a real feed line has some loss. Because of loss, we will observe that both the voltage and current decrease as we get farther away from the rig. However, their ratio will stay the same, since the Z_{0} of the line is constant.

Naturally, it is impossible to have a line that is infinitely long. Suppose that the line is terminated by a resistor at the far end, whose value in ohms is equal to Z_{0}. Then when the EM field arrives at the resistor, it will all be absorbed and dissipated as heat. This situation is encountered in practice when we connect our rigs to matched "dummy loads."

radiation resistance

of the antenna
Putting a resistor at the far end of a transmission
line won't do much if we want to get on the air. We usually want the EM field to be radiated, not used up heating resistors!

If we put the right kind of antenna at the far end of the line, the EM field along the line will behave exactly as it does when the line is terminated by a resistor with an ohmic value of Z_{0}. In radiating the EM field, all antennas seem to display a certain resistance. This resistance is called the radiation resistance $\left(R_{R}\right)$ of the antenna. In order for an antenna to radiate all of the EM field arriving from the feed line, R_{R} must be equal to the line Z_{0}, and the antenna must also be resonant at the operating frequency. If both of these requirements are not met, some of the EM field will be reflected back toward the rig. This complicates the pattern of voltage and current along the line. We'll look at this in more detail shortly.

The R_{R} of an antenna is a function of its physical length in wavelengths. This function is illustrated by fig. 3. A half-wavelength dipole in free space, fed at the center, displays a radiation resistance of about 73 ohms. As far as the EM field on the transmission line is concerned, this kind of antenna is just like a 73 -ohm noninductive resistor (of sufficient power-handling capacity!). But of course there is quite a difference once the field gets to the antenna. A resistor condemns the field to an unceremonious death; the antenna sets it free.

into the antenna

Once the EM field has completed its journey from the input end of the feed line to the antenna - a matter of nano- or microseconds - it is ready to be radiated. If we're lucky enough to have a perfect match between Z_{0} and R_{R}, along with resonance, the situation is fairly simple. So for now we'll make that assumption.

Once the field reaches the antenna feed point, it continues outward along the antenna wire. But, while the fields were forced to move straight along the feed line, they are not restricted to any particular path once they get to the antenna. Fig. 4 shows the configuration of the EM fields in the vicinity of a dipole. The E and M fields exist in a rather complicated pattern that allows some radiation in all directions, except exactly in line with the wire, where no E or M fields exist. The greatest EM field intensity is in directions perpendicular to the wire.

into space

Once the EM field has left the antenna, it will propagate into space in ever-expanding wavefronts. How effective is an antenna in radiating EM energy? That depends on many things: the resistance of the conductors in the antenna, obstructions near the antenna, the height of the antenna above ground, and the
physical length of the antenna. We can control all of these factors. But we can use conductors that are only so hefty; we can put the antenna up only so high. Ultimately, the efficiency of a common dipole can be made almost 100 percent. But there will always be some loss of signal. The efficiency of an an-

fig. 3. Radiation resistance of antennas as a function of length. The solid line represents a vertical antenna over a ground plane; the dotted line represents a dipole fed at the center. The data is for antennas without nearby obstructions. This graph is adapted from information in The ARRL Antenna Book, 13th Edition, 4th Printing, 1977, page 60.

fig. 4. Radiation of EM field from a dipole antenna. A two-wire feed line is shown. The M field, produced by the current in the antenna wire, is shown by the solid circular arrows. The E field, caused by the voltage difference between different points in the dipole, is shown by the dotted lines. Heavy solid arrows show the direction of EM field radiation. EM radiation occurs in all directions except right along the axis of the wire; the greatest amount of EM radiation is in directions perpendicular to the wire.
tenna system, mathematically, is given by:

$$
E f f=\left(P_{T}-P_{L}\right) / P_{T}
$$

where P_{T} is the transmitter output power and P_{L} is the power lost in the feed line, antenna, and surrounding obstructions, including the ground. The power $P_{T}-P_{L}$ is given up as EM radiation.

standing waves

Usually, the line Z_{0} and the antenna R_{R} are not exactly equal, or the antenna is not exactly resonant at the operating frequency. In this case, when the EM field arrives at the antenna feed point, some of it will be reflected back toward the transmitter. The proportion of the EM field that is reflected depends on the severity of the mismatch; the greater the mismatch, the more of the EM field is reflected.

When the reflected EM field gets back to the rig, it is all re-reflected toward the antenna.* When this rereflected field arrives again at the antenna, it will be reflected partially again, in the same proportions as on its first encounter with the feed point. This process will continue on and on, until line loss reduces the reflecting EM field intensity to practically zero. (This usually takes only a few microseconds.)

The total EM field received by the antenna is the sum of the EM fields received on each encounter.

The reflecting EM fields produce an interference pattern in the voltage E and the current I along the feed line. Instead of being uniformly distributed, there are points of current and voltage minima and maxima. The more severe the mismatch, the worse this nonuniformity. If the mismatch is bad enough, the current may get so high that the conductors overheat and melt the dielectric material. Or the voltage may get so high that an arc occurs and puts a hole in the dielectric. This increase in E and \mid causes the overall temperature of the feed line to rise, the result of loss in the line under mismatch conditions. This loss may or may not be enough to matter in practice. \dagger

The voltage standing-wave ratio (VSWR) is the ratio of the maximum voltage to the minimum voltage along a feed line. If the VSWR is 1 , the voltage is the same all along the line. If it is 3 , then the maximum voltage is three times the minimum voltage. We can measure VSWR in a transmission line with rf voltmeters at various points, or with a reflectometer such as the common SWR indicator.

It is commonly thought that the transmission line transfers power from the transmitter to the antenna, and that some power is reflected when the line and antenna are not perfectly matched. In fact, many

[^5]SWR meters actually have "forward" and "reflected" power scales calibrated in watts. But the feed line is not really transferring power; it is the EM field that moves along the line. The currents and voltages in any feed line are always alternating back and forth; to say that these currents and voltages, or the power represented by their product EI, is going "forward" or "backward" in any continuous manner, doesn't really make any sense. If the SWR is such that a reflectometer shows 100 watts "forward" and 25 watts "reflected," this means that the forward-moving EM field is four times as intense as the backward-moving EM field. It also tells us something about the relative intensity of the fields; if we reduce the transmitter drive the meter readings might change to 80 watts "forward" and 20 watts "reflected," or some other 4-to-1 ratio.

conclusions

The dipole antenna of fig. 4 has its own characteristic radiation pattern. Other antennas have different radiation patterns, but they all have been designed to radiate an EM field.

All transmission lines share the property of being good carriers, but poor radiators, of EM fields. Sometimes, however, if an antenna system is not properly designed, the feed line can allow quite a lot of signal to be radiated. Improper balance is the most common cause of feed-line radiation. Of course, we can deliberately design an antenna system so that part or all of the transmission line radiates.

Once the EM field has left the antenna, we no longer have control over where it will go, or whose receiving system it might end up in. The frequency band we use will give us a certain amount of choice as to where the EM field can go (on 2-meter FM it probably won't be heard in India); but we cannot choose, within its characteristic range, whose receiver it will enter and whose it will not. If someone wants to hear our signal, and he's in range, then he can tune it in.

On some frequencies, our signal escapes through the ionosphere into outer space. Theoretically, it goes on forever. One of the bands where this happens is 2 meters. Perhaps a few centuries from now, on a planet orbiting a distant star, some scientists may be experimenting with their first radio-communication devices for VHF. They may be just discovering fm . They may tune in your transmission, boosted by the help of your local repeater. They may have had, from previous hf experiments, exposure to our potpourri of rf energy, and they may have deciphered our languages.

How will they react to the news that traffic is flowing smoothly on I-95?
ham radio

State of the art

K.V.G.

9 MHz CRYSTAL FILTERS					
MODEL	Application	Ban		Poles	Price
XF.9A	SSB	2.4	kHz	5	\$50.60
XF-9B	SSB	2.4	kHz	8	68.60
XF-9B-01	LSB	2.4	kHz	8	91.35
XF-98-02	USB	2.4	kHz	8	91.35
XF.9B-10	SSB	2.4	kHz	10	119.65
XF-9C	AM	3.75	kHz	8	73.70
XF.9D	AM	5.0	kHz	8	73.70
XF.9E	FM	12.0	kHz	8	73.70
XF.9M	CW			4	51.55
XF-9NB	cW	500		8	91.35
XF-9P	CW	250		8	124.95
XF910	IF noise	15	kHz	2	16.35

1296 MHz EQUIPMENT
 Announcing the new 1296 MHz units by Microwave Modules.

TRANSVERTERS FOR ATV OSCARS 7, 8 \& PHASE 3

Transverters by Microwave Modules and other manufacturers can convert your existing Low Band rig to operate on the VHF \& UHF bands. Models also available for 2 M to 70 cm and for ATV operators from $\mathrm{Ch} 2 / \mathrm{Ch} 3$ to 70 cms . Each transverter contains both a Tx up-converter and a Rx down-converter. Write for details of the largest selection available.
Prices start at $\$ 189.95$ plus $\mathbf{\$ 6} .50$ shipping.

Attention owners of the original MMt432-28 models: Update your transverter to operate OSCAR 8 \& PHASE 3 by adding the 434 to 436 MHz range. Mod kit including full instructions $\$ 26.50$ plus $\$ 1.50$ shipping, etc.

Write for technical data and price details
ANTENNAS
(FOB CONCORD, VIA UPS)
144-148 MHz J-SLOTS
8 over 8 Hor. pol D8/2M

8 by 8 Vert. pol D8/2M-vert 12.3 dBd
$8+8$ Twist $\quad 8 X Y / 2 \mathrm{M} \quad 9.5 \mathrm{dBd}$
420.450 MHz MULTIBEAMS

48 Element $70 /$ MBM48 $15.7 \mathrm{dBd} \quad 75.75$
88 Element $\quad 70 /$ MBM88 18.5 dBd
105.50

UHF LOOP YAGIS
1250-1350 MHz 28 loops 1296 -LY 20 dBi
$1650-1750 \mathrm{MHz} 28$ loops 1691-LY 20 dBi
Order Loop-Yagi connector extra: Type N
Send $40 \mathbf{C}$ (2 stamps) for full detals of all your VHF \& UHF equipment and KVG crystal product requirements.

Local Agents:

Florida: Silvernail Electronics, Inc., Largo, FL
Mid-West: Lee-Tronics, Lid., Canton, IL
(813) $595-3317$ (309) 647.0153
N.W. \& Alaska: Spectrum West, Seattle, WA
213) 447.4565 206) $523-6167$
(617) 263-2145 SPECTRUM INTERNATIONAL, INC. Post Office Box 1084 Concord, MA 01742, U.S.A.

Using inexpensive parts you can build this device in only a few hours

a simple two-tone generator

Today's integrated ham stations include sophisticated accessories such as an oscilloscope for signal monitoring. Usually not included, however, is the two-tone generator needed to test a single sideband (SSB) transmitter and its linear amplifier. A suitable generator can be constructed in a few hours from inexpensive parts.

A single, tone injected into the microphone jack of

The main portion of the two-tone audio generator is constructed on a universal circuit board. The pc board is mounted via two $1 / 2$-inch stand-off posts. The output control, switches, and output jack are mounted on the aluminum panel from an "experimenter" box.
an SSB transmitter will produce CW rf output. Adding a second tone will produce rf output on two frequencies. These two frequencies, when viewed on an oscilloscope, will produce an interference pattern. If one or more stages in the transmitter are nonlinear, new frequencies that are products of the original two will be generated. These new frequencies will modify the oscilloscope pattern perceptibly. Thus, a twotone generator and a 'scope are the primary tools needed to test and evaluate SSB equipment.

circuit description

The heart of the generator is a Wien bridge audio oscillator. This circuit was first described in Amateur literature in the early 1950s. It uses two resistors and two capacitors to establish an audio frequency. A nonlinear resistance (an incandescent lamp) in a feedback loop stabilizes operation and reduces harmonic content.

One problem with some Wien bridge designs is that they often call for unusual lamps that are often

By Douglas A. Blakeslee, N1RM, c/o Eaton Corp., Discrete Test Systems Division, Precision Road, Danbury, Connecticut 06810

fig. 1. Circuit diagram of the two-tone generator.
difficult to obtain. An exception is the circuit which has appeared in the ARRL Handbook in recent years; it uses the 327 bulb, a 24 -volt lamp widely used in telephone equipment.
The circuit for the two-tone generator is shown in fig. 1. The ever-popular 741 op amps are used for the active elements. (The 1458 is the dual version of the 741.) The frequencies of the two oscillators were chosen to fit standard component values.

Other frequencies can be employed; they should be between 500 and 2000 Hz and should not be harmonically related.

The output level of U1A is set by a resistive divider, while the output of U1B is adjustable in amplitude through R1. The output of the two oscillators is combined in U2, an op-amp adder with unity gain. The output from U2 can be adjusted using R2.

Power for the generator is provided by two 9 -volt transistor radio batteries. The power leads to the opamp packages are decoupled with 100 -ohm resistors and $0.1 \mu \mathrm{~F}$ capacitors. These components are required to ensure stable operation. The 741-type opamps are available in single, dual, and quad packages. A quad package can be substituted for the single and dual used in fig. 1, or three singles can be employed, with appropriate changes in component arrangement.

construction

The generator is assembled on a universal circuit board. The board was cut in half, with the second half relegated to the "junk box" for a future project. The parts layout of fig. 2 was employed. Holes were drilled for all component leads with a No. 60 bit. (Be sure to mount the drill bit well down into the chuck, as it is easily broken.) Parts can be tack soldered to the isolated pads rather than drilling holes, but this assembly procedure is somewhat lacking in neatness.
Before any parts are mounted, the circuit board should be brushed with fine steel wool until all pads are bright and shiny. Then, mount the components a few at a time, bending the leads slightly to hold the components in place. Solder each connection, making sure to use sufficient heat so that the solder flows freely. Any solder joint that appears dull or matted should be reheated.

The two-tone generator can be housed in any metal or plastic housing of sufficient size. A coat of paint for the box and a few decals will improve the

Output from a single oscillator shows a "clean," low-distortion sine wave.

UNADILLA/REYCO HAM products that go the Dx.

Round after round of transmission, durable allweather UNADILLA/REYCO baluns, traps and kits will take you the distance. Unadilla/Reyco will suppress feedline radiation and maximize antenna efficiency better than any competitive HAM line.

The Big Signal W2AU Balun gives you the right connection between any antenna and transmitter. The W2AU Balun can withstand 600 lbs . of pull, has a built-in lightning arrestor and can handle full legal power. For more than 20. years, it's been the choice of HAMS, Armed Forces and commercial communication around the world.

The Old Reliable W2VS Reyco Trap will always give you the perfect dipole. Professionals demand Reyco Traps because they're weatherized and can withstand 500 lbs. of pull. Developed by veteran HAM W2VS, Reyco Traps are paired by precision frequency.

The W2AU/W2VS 5-band Antenna Kit includes everything for low SWR on 40 and 80 meters, and resonants on 10, 15 and 20. The quality crafted components in this kit are time tested by HAMS around the world.

Other Unadilla/Reyco products include low pass filters, quad parts, insulators and endsulf.tors. Call for our free catalog and the name of your nearest dealer. Hamfest managers: we cooperate. Remember: Unadilla/Reyco will take you the distance.

UNADILLA/REYCO

Division of Microwave Filter Co., Inc.
6743 Kinne St., East Syracuse, NY 13057
Toll Free 1-800-448-1666
TWX 710-541-0493
NY/HI/AK/Canada (collect) 1-315-437-3953
FOREIGN HAMS
LONDON: AMCOMM 01804 1166/VICTORIA: Scalar 725 9677/PUNTA ARENAS: Novedades Rasmussen 22327/BUENOS AIRES: Multi-Radio $773 \cdot 1266 /$ COL. ANAHUAC: Radiac 2-50-32-40/FRANCE: SFL (90) 533940 (90) 611258

UnApHLLA/RFIUCO
A Division of IIICZOWAVE FILEEZ CO., InC.

values of capacitance are in micro
tarads if Fi: others are in picotar farads (\mathcal{F}) : others are in picotar.
ads $(\rho F F$, resistances are in ohms. ads (pFk resistances are in ohm
$k=1.000 \quad M=1.000 .000$

fig. 2. Component layout for the audio generator.
appearance of the finished product.
Only one adjustment is required for the unit - to balance the two tones for equal amplitudes. Adjust R1 for zero output from U1B. Close S2, set R2 at mid scale, and observe the level of audio at J1 using an ac voltmeter or an oscilloscope. Record the reading. Open S2 and adjust R1 until an identical level is obtained. The two tones are now of equal amplitude, and your unit is ready for use.
ham radio

A NEW GENERATION of REPEATER CONTROLLERS MS 101

- 4 ACCESS MODES
- AUTOPATCH
- AUTODIAL (72 No .)
- REVERSE AUTOPATCH
- 16 digit Xtal controlled TOUCH TONE DECODER
- COMPLETE RX, TX, \& PHONE AUDIO INTERFACE W/MUTING
- EASY TO CHANGE CONTROL CODES
- TRANSISTOR BUFFERED INPUTS
- 60 CONTROL FUNCTIONS
- 12 VDC \& 117 VAC OPERATION
- 30 timers
- master revr control
- 2 XCVR LINKS
- 2 CW IDs
- hi/lo Freo. indicator
- relay driver outputs
- optional voice synth.
wired \& tested \$849.25 MS-301 Voice synth. \$219.95

9307 MEADOWS LANE
GREENFIELD, IN 46140
(317) 894-1201

Introducing
 Mobile Connection simplex operation

HUNDREDS ALREADY
IN OPERATION
CALL ANYONE-
ANYWHERE-ANYTIME
Shipping $\$ 3.50$ in U.S. A.

ONLY $\$ 16995$ KIT
Wired and Fully Tested $\mathbf{\$ 2 1 9 . 9 5}$ N.Y.S. Residents add approprate sales tax

NOVAX interfaces your standard 2 meter; 220; 450; etc. base station and DTMF (Touchtone) Telephone, using a high speed scan switching technique so that you can direct dial from your automobile or with the HT from the backyard or poolside-automatically. Easy installation. Ringback (reverse autopatch) option available for $\$ 29.95 \mathrm{kit}-\$ 39.95$ factory wired.

- SMALL SIZE-($\left.5^{\prime \prime} \times 6^{\prime \prime} \times 2^{\prime \prime}\right)$
- state of the art CIRCUITRY 12-16 V.D.C

EASY INTERFACING with radio

- ADJUUSTABLE ACTIVITY TIMER (clears out if mobile is out of range)

TO ORDER-SEND Check-Money Order (MasterCard or Visa accepted) to: R.W.D. Inc., Oriskany, N.Y. 13424 or call 315-829-2785

1982 ARBL NATIONAL CONVENTION czDAR RAPIDS, IOWA July 23, 24, 25, 1982

The CVARC invites you to the ARRL National Convention to be held in the hew Five Seasons Civic Center Excellent hotel and parking tachithes attached drectly to the Center Commetcial exhibits a large liea market excelient torums and a banquet featuting Robert M. Hisamoto as quest speaket M. Hisampoto was born in Honolulu Hawail Bob was first licensed in 1925 and the tounded the Japanese Amateut Rado Leaque IJARLI in 1926 He has tieen continuously ative in Amdeur Radio and has had is different Catis
Grand Door Award - Collins KWM-380 (Drawing - Sun 2 PM)
Convention Opens Friday. July 23, with Registration beginning at 12.00 Noon Exhibits Open (6:00 PM - 10:00 PM - July 23)
Ladies Activities Room Open (4:00 PM - 10:00 PM - July 23)
CONVENTION REGISTRATION (After July 1 - $\$ 8.00$)
BANQUET
FLEA MARKET TABLES - Enclosed Area ($\$ 7.00$ At Door)....... $\quad \$ 6.00$
COLLINS TOUR AnLas, tom cmatitiont. No Charge
AMANA COLONIES TOURIWITH LUNCH . $\$ 22.50$
WEST BRANCH TOURIWITH LUNCH............................... $\$ 20.50$
CEDAR RAPIDS HISTORY RE-VISITED TOURIWITH LUNCH .. $\$ 14.50$
WOUFF HONG (July 24) . Payment at Door
CODE SPEED RUN (Record Run Only) No Charge
For General Intormation Hotel/Motel lorm and Registration torm CEDAR VALLEY AMATEUR RADIO CLUB P PO Box 243 Mation IA 52302 Pre-registation must be received betore July 1 . Ail registration/Tickets will be heid tor artival CVARC will contirm pre-registration

AMSAT
hayn ane went.

- antenna baluns

- antenna tower construction
- arrl communication DEPT
wis
- arrl forum

Pow buen wefic Anot lumene alt

* ATV/SSTV
- war sume wieoca
* Aurora borealis
* big gun dx stations

Metar villye sus

* CONTEST FORUM

GOBIn weso

* DX FORUM
- EME-IOWA STYLE

* FCC FORUM
* Freouency synthesizers
* HF ANTENNAS
* history of collins amateur eouip
homebrewing linear amplifiers
MACHINE CW
buo semer se
* Microprocessors in amateur radio
- dev
- NATIONAL SCM MEETING
- regional frequency coord-meeting
- Ditr come *acis
- RTTY BASICS
* SPECIAL TECH TALK
- SPREAD NPEC
- Spread spectrum technioues
* STATE-OF-THE-ART RECEIVERS
- ten meter fm
- WASHINGTON SCENE
* weather satellite receivers
* Dent rach veson
* Flea market

COLLINS TOUR

CONVENTION CHAIRMAN
WBgVVZ Dick isard. P 0 Box 994. Cedar Rapids. IA 52406
Home (319) 364-0855. Otfice (319) 365-7551
REGISTRATION CHAIRMAN
WDBBHR Duane Rinderknecht - (319) 377-2761
ARRL NATIONAL CONVENTION
CVAAC PO. Box 243 - Mation. IA 52302

the hybrid coupler

Evolution of and practical applications for a versatile circuit

Originally, the term hybrid was telephone company shorthand for hybrid coil or hybrid transformer. This device was invented (before the development of vacuum-tube amplifiers) to make it possible to put amplifiers in a two-way telephone line. A similar use is found in some phone patches.

The coil of fig. 1 is such a hybrid - if \mathbf{C} and \mathbf{D} feed identical lines; and if the amplifier input is connected to B, and the output to A, then any signal coming from \mathbf{C} will be amplified and sent out to \mathbf{C} and \mathbf{D}. In the case of a trancontinental system, \mathbf{C} will get a strong echo, but if \mathbf{C} and \mathbf{D} are close to equal impedance, the amplifier will not "sing" (oscillate). It's similar to a Wheatstone bridge, except that the cen-ter-tapped winding eliminates two resistors and their power losses.

The point is, the network has four ports (terminal pairs). With matched loads on any three, the fourth is matched; and with matched loads on the two others, opposite ports are not coupled (are isolated). Fig. 1 shows the circuit of a 2 to 20 MHz ferrite-core transformer hybrid, called a 180-degree type.

Fig. 2 shows a coax-cable equivalent (at a single
frequency).' If there are 50 -ohm loads on C and D, then power into B will be divided between them equally, and the input impedance at B will be about 50 ohms. If a dummy load (50 ohms) is put on A, we have an in-phase power divider, in which \mathbf{C} and \mathbf{D} are isolated from each other; that is, shorting out \mathbf{C} will not affect the signal delivered to \mathbf{D}. If \mathbf{C} and \mathbf{D} feed two receivers from a common antenna or preamp coming in at \mathbf{B}, the local oscillator radiation from the receiver at \mathbf{C} will be considerably attenuated at D. The two arms feeding \mathbf{A}, and the load, provide the isolation without absorbing any of the input power. When the 70 -ohm lines are not a quarter and threequarter wave, say ten percent off frequency, it doesn't work as well.

Now suppose this 50 -ohm 180 -degree hybrid has a quarter wave of 50 -ohm line added on (this will work only at one frequency, but that's OK for hams), as in fig. 3. The power still divides between C and D^{\prime}, but they are 90 (or 270) degrees out of phase (depending on how you measure); that is, in quadrature. At the frequency chosen, this is known as a quadrature hybrid, one of many kinds.

an experiment

Let's put two identical 20 -ohm loads on the ports C and D^{\prime}. That means that power will be reflected

By Henry H. Cross, W100P, 111 Bird's Hill Avenue, Needham, Massachusetts 02192
from each load (about 18 percent), but the reflection from D' occurs 180 degrees later than it would have without the quarter-wave line. The result is that a signal from \mathbf{A} will show up at \mathbf{B} after being reflected; or if the signal were coming from \mathbf{B}, it would show up at \mathbf{A}. The isolation between \mathbf{A} and \mathbf{B} is degraded

fig. 1. A 2- to $\mathbf{2 0 - M H z} \mathbf{1 8 0}$-degree hybrid using a ferritecore transformer.

fig. 2. A coaxial-cable equivalent of the hybrid shown in fig. 1 (narrowband type). Line lengths shown are important for optimum operation at a single frequency.

fig. 3. One example of a 90 -degree, or quadrature hybrid. The reflections from Z_{C} and Z_{D} cancel at A and add at B. A 1:1 VSWR is presented to A.
by the mismatch, but if the added line is an exact quarter wave, the reflection at \mathbf{A} is cancelled. If and only if the mismatches at \mathbf{C} and D^{\prime} are identical, \mathbf{A} still sees a good match.

The more common type of quadrature hybrid is most familiar to hams as a "directional coupler," which is used in measuring antenna power and VSWR.

the quadrature coupler

Fig. 4 shows schematically the type of directional coupler found in a Bird wattmeter. The loop picks up the magnetic field and the capacitive coupling of the loop to the center conductor picks up the electric field. If constructed right, these components add for a wave going down the coax one way and cancel for a wave coming back - that's why it's directional. Fig. 5A shows the same thing carried to the extreme - a quarter wave of main line and a quarter wave of "pickup loop".
Notice that in both cases the coupled signal comes out in the reverse direction. If the proportions are right, it's possible to get half the input power to come out the coupled port - and of course the main line has only the other half coming out. That's a " 3 dB directional coupler." If the phase of such a loop coupler is investigated, it will be found that the coupled output is 90 degrees out of phase from the main-line output. Thus it's a quadrature coupler. It has equal power division and an isolated port, as in the circuit of fig. 3. Unlike that hybrid, however, the quarter-wave coupler works well from $2 / 3$ to $4 / 3$ of center frequency, which is two to one, or an octave. The capacitance between the two inner connections must be fairly high to obtain the 50 -percent power split.
Some hybrids are made by printing strip conductors on either side of the dielectric, as in fig. 5B, and some are made by using solid strip with a thin dielectric sheet between, in a cast housing. Another type is built much like coaxial cable. Two wires are twisted together with a thin insulation between them, then Teflon covers the wire pair. The assembly is shielded by a copper wrap, braid or tubing. The trade name of

fig. 4. Version of the quad hybrid as a directional coupler used in the Bird wattmeter.

fig. 5. The directional coupler of fig. 4 carried to the extreme, using a quarter wavelength of main line and a quarter wavelength of "pickup loop," A. In both cases the coupled signal comes out in the reverse direction. In B a hybrid is shown that is made by printing strip conductors on a fiber glass-filled teflon sheet.

fig. 6. Construction of the Wireline ${ }^{\text {® }}$ hybrid. Measurements were made using a Hewlett-Packard timedomain reflectometer.
this hybrid is Wireline, * and the length can be cut for any frequency range as long as it's less than two to one.

Fig. 6 shows the Wireline ${ }^{\circledR}$ construction and shows how to check a length (if you make it yourself) with a time-domain reflectometer. The twisted pair should perform as a balanced 40 -ohm line; while with the center wires shorted together, it should appear as a piece of 60 -ohm coax.

[^6]
fig. 7. Response of a typical quarter-wave hybrid coupler.

fig. 8. VSWR versus frequency for 100 -percent (identical) reflections at the reflection coefficient point for a quad hybrid.

phase relationships

In case of a quarter-wavelength coupler (about 16 cm of Wireline ${ }^{\circledR}$ for a center frequency of 300 MHz), the voltage at the coupled port (the wire adjacent to the input, labled \mathbf{C}) is approximately in phase with the input voltage at center frequency. The voltage at D, at the far end of the input line, is 90 degrees late and varies with frequency, as one would expect of a constant time delay. The phase between \mathbf{C} and \mathbf{D}, with a matched termination on the isolated port, is

fig. 9. Two identical amplifiers in "parallel." Power gain and noise figure are the same as for one amplifier (except for hybrid coupler losses). Maximum input and output power is twice that of one amplifier.
almost exactly 90 degrees and independent of frequency as long as there is enough voltage to measure at the coupled output. This is shown, for a typical $3-\mathrm{dB}$ hybrid, in fig. 7. It's true for any coupling factor for simple couplers. Fig. 8 shows why a slightly overcoupled hybrid, such as that in fig. 7, is desirable for most applications.

some applications

Quadrature hybrids for VHF are made in various packages and frequency ranges, by a number of manufacturers. I'm familiar with Anaren, Anzac, Merrimac, Microwave Associates, Olektron, Sage (of course), and there are many others. The small size (you can get one in a TO-5 can) usually has a bit more loss, so if that's important get a big one. Some popular types cost as little as $\$ 15.00$, but most are fairly expensive by ham standards.

For use at intermediate frequencies, such as would be required for a single-sideband up- or downconverter, a lumped-constant network may be handier. Anzac and Merrimac sell such devices, including ranges as wide as $2-32 \mathrm{MHz}$.

The obvious use for the quadrature hybrid is to combine a pair of power amplifiers (because of the isolation, one transistor failing won't cause the other one to blow), but the same layout is good for linear amplifiers (match is important for linearity) and for low-noise or broadband amplifiers (see fig. 9).
A balanced mixer is shown in fig. 10. This mixer is "balanced" in that noise in the local-oscillator is cancelled, and the local-oscillator fundamental is balanced out at the i-f port. A lot of local-oscillator power will come out the rf port unless the mixer is carefully adjusted, but the VSWR is good, and the noise figure can be excellent (that is, 6 dB) without much effort. The i-f port output impedance is about 100 ohms for 4 milliwatts of oscillator drive.
Quadrature hybrids (one for the local oscillator and one for the i-f) are needed to make the image-can-
celled (SSB) mixer. One reason for wanting an im-age-cancelled mixer is that there has to be something that takes out the amplified noise at the image frequency that is coming from the rf stages. It could be an image filter (which will have loss, and may have to be retuned as you change frequency) or it could be a mixer in which the image response is suppressed by 16 dB or more. For moderate values of rf gain, the SSB mixer may give better over-all noise figure (and you can't measure the effect of image noise easily) than the best real filter, which has some loss.

make your own i-f hybrid

In fig. 11A the coil is a bifilar inductor, a transmission line (two wires, twisted a few turns per inch) wound on a coil form or a carbonyl-iron or ferrite toroid. The end-to-end inductance of one wire is the important parameter. The inductive reactance should be equal to 50 ohms at the frequency of interest, if you are making a $50-\mathrm{ohm}$ coupler. Two capacitors are connected across the bifilar line at the ends, and the total capacitance (both capacitors plus the distributed capacitance of the twisted pair) should be the value that would resonate with that value of inductance. The coupling has a fast change with frequency, but it's useful over ten percent bandwidth. U.S. patent $3,452,301$ probably covers these.

Two of the above couplers with a twin coax line between them (23 degrees at center frequency) make an octave-wide unit, as described by Reed Fisher, W 2 COH . Fig. 11B shows a version with an artificial line (a lowpass filter) between couplers. Because the values are not very critical, the coils could be air-core types wound to calculated turns, or they could be set up with a grid dip meter. I had access to a O-meter, which made it easy. (U.S. patent $3,452,300$, assigned to Merrimac Industries, Inc.)

Fig. 11C shows how two quad hybrids and two commercial double-balanced mixers can be used to make an image-cancelled mixer. I built one at 1296

fig. 10. Mixer for 1296 MHz using the quad hybrid.

- 14.0-14.350, 21.0-21.45, 28.0-29.750 MHz
- 4KW PEP - 50 2 feed with balun
- F/S 30dB • F/B 20 dB
- 24 ft . longest element

SAME BASIC SPECS AS THE KT-34 BUT:

- 32 foot boom
- 2-4 dB more gain depending on band
- Overhead boom support with "Phillystran" non-conductive, nonreactive guy wire

DESIGNED TO OUTPERFORM ALL
COMMERCIALLY AVAILABLE TRIBANDER AND MANY MONOBAND SYSTEMS, TOO

KLM

P.O. Box 816, Morgan Hill, CA 95037
(408) 779-7363

fig. 11. Practical uses for the hybrid. A 3-dB i-f hybrid is shown in A; a $\mathbf{1 2 - 2 0} \mathbf{M H z} 3-d B$ hybrid in B; and an SSB mixer for 432 MHz in C. The $450-\mathrm{MHz}$ hybrid can be Wireline ${ }^{(0)}$ lany length from 3.6 to 5.6 inches, or 9 to 14 cm will work).

MHz for $14-18 \mathrm{MHz}$ i-f, which had about $16-\mathrm{dB}$ image ratio (0.107 dB of added noise from the image for a 2 $d B$ rf stage). If the mixer noise figure were 7 dB , the image-cancelled arrangement would be as good as a perfect image filter with $0.8-\mathrm{dB}$ loss, assuming 13 dB gain in the rf amplifier. (With two rf amplifiers, and 20 or more dB gain, the filter would be better, but where do you get a filter with $40-\mathrm{dB}$ rejection 28 MHz away at 1296 MHz ?)

references

1. Henry S. Keen, W2CTK, "Microwave Hybrids and Couplers for Amateur Use," ham radio, July, 1970, page 57. (Reprinted in ham radio, March, 1978, page 72.)
ham radio

IC-720A

ICOM's top of the line - 9 band HF transceiver, general coverage receiver -0.1 MHz to $30 \mathrm{MHz}, 12 \mathrm{VDC}$ operation (compatible with PS15 power supply). 2 VFO's builtin.

$C D I C O M$

TOP OF THE LINE NUMBER ONE

If you're the type of person that will settle for nothing less, we've got what you're looking for ...top of the line. We offer more than just the rigs - super service after the sale. Call us soon for a quote on your next rig.

Call us TOLL FREE
For All Your Radio \& Computer Needs 800-845-6183
SERVICE DEPT 803-366-7158

IC-730

ICOM's portable/affordable 80 10 meter HF ham band transceiver. IF shift/AM, SSB, CW/8 memories/microphone included standard.

G.I.S.M.O.

1039 LATHAM DRIVE ROCK HILL, S. C. 29730

IC-451A

UHF transceiver for 432 MHz . Operates from AC or 12 VDC. FM, SSB, CW, 10 watt output. Squelch on SSB, CW sidetone

IC-551D

6 meter synthesized, 3 memories scanning, squeich on SSB, 80W, 12 VDC operation. (Compatible with PS20 power supply). VOX and passband tuning standard. FM optional. (IC-551, 10W with internal AC supply also available, economically priced, FM, VOX, PBT optional.)

Add $\mathbf{\$ 2 . 5 0}$ shipping and handling per order. \square 종 Send check with order and provide street address for UPS shipment. Ohio residents add Sales Tax. Charge card buyers may call toll-free:

1-800-543-5612
In Ohio, or for information, call: 1-513-866-2421
R.L. DRAKE COMPANY

540 Richard Street. Miamisburg, Ohio 45342 institutional and dealer inauiries invited

DX FORECASTER

Garth Stonehocker, K0RYW

events of the month

Several interesting geophysical events occur on June 21st, affecting radio propagation and therefore DX. Lunar perigee is on the 21st at 1200 UT. The summer solstice occurs at 1723 UT. And there will be a partial solar eclipse from 1028 to 1340 UT.
The eclipse path is obscured 62 percent at maximum. It begins in the extreme south Atlantic Ocean, then moves on to South Africa and the Indian Ocean. Not many U.S. hams will be in the eclipse path, but our southern friends may find some lowering of maximum usable frequencies (MUFs) in the first half and some short-skip DX (from the ionospheric hole created) in the second half of the eclipse.

The full moon will be on the 6th of June. The solar activity and flux maximum is expected to be about the 18th. Solar-flare-induced geomagnetic/ionospheric disturbances may occur around the 14th and 22nd through 24th. Solar flux minimum is expected about the 5th through 8th and may be accompanied by a long geomagnetic disturbance from a weak coronal hole.

last-minute forecast

Solar-geophysical events translate into varying DX conditions throughout the month. The higher-frequency bands (10 and 20 meters) are expected to be excellent later, after the 15th, following a marginally good beginning. If 6 meters has openings at all, it will be Sporadic E propagation (Es) near midday. The solar cycle is far enough down from the minimum
that the summertime ionosphere may not provide support for 50 MHz . The F region requires twice the density that the Es does to provide usable paths. The lower frequency bands (40-160 meters) should be the best during the first two weeks of the month. Noise (QRN) from summer thunderstorms may erupt in the evenings.

Since the Es propagation season is just now underway, let's have a look at some of its DX characteristics. In the major area for Es production and paths, south-east Asia, a frequency as high as 15 MHz will propagate continuously on a $2500-\mathrm{km}$ east/west path twenty-four hours a day. During the hours of daylight into late evening, the F region mode propagates radio signals. Enough Es is then available to keep that frequency alive through the early morning hours, when the F region density normally becomes too low. This early-morning decrease is usually called the pre-sunrise dip, and it is caused by the temperature dipping down just prior to sunrise. Loss of signal is common if the path is being worked near its MUF, but in this case Es holds the signal in with very high signal strengths across the dip. The pre-sunrise dip is usually a propagation problem for a fixed communications circuit. The problem requires at least two frequency changes, one down and another back up, resulting in time lost. If you're not skilled you may lose the other fellow, but Es propagation solves the problem in summer. See last month's, or last year's, May and July ham radio magazine DX Forecaster for more on Es.

band-by-band summary

Ten and fifteen meters should give excellent daytime openings to most worldwide locations on both F-region long skip to 2500 miles (4000 km) and sporadic-E short skip to 1200 miles $(2000 \mathrm{~km})$ or multiples thereof on many days of the month. Don't expect as much one-hop trans-equatorial DX during disturbed periods this time of year.

Twenty meters will be open to some areas of the world for nearly all hours of the day and night. Sporadic-E propagation will fill in the pre-sunrise dip in usable frequencies during many mornings to make round-the-clock openings possible. The direction of the openings will not be much different than usual, and the openings will be extended in time.

Forty meters will give the best DX during the night from sunset until just after sunrise. Static levels may be high at times. Watch for local storms and operate near Sporadic-E peaks around sunrise and sunset (particularly sunrise, when fewer thunderstorms have built up).

Eighty meters on some nights can have DX openings to areas of interest. Static from thunderstorm activity, long distance and local, may limit working the rare ones when propagation is otherwise right. Coastal stations usually have more favorable propagation geometry under summer conditions for working the rare DX than inland stations. Sporadic-E propagation around sunrise and sunset is good for this band also. Daytime work will be limited to within about 220 miles (360 km).
One-sixty-meter DX activities really require a lot of work this time of year. During hours of darkness between storm-front passages, you may work 1000 miles (1600 km) if your ears hold up. DX takes on a new meaning here. You may want to give it a try.
ham radio

JUNE													
Amar			जfar	5588	88\％	8®\％	8	881	115				
	ジッ		\％\％										
			二告		$\bigcirc 11$	＇1							
			5	111	1	1							
					111	158	\％ 8 \％	\％	ロ̊\％	8			
				585	\％	\％\％\％							
	ごらった	ज	111	118	\％®\％	－̊\％\％	\％	\％					

		${ }_{8} \square_{8}$	［8］ 8_{8}	［8］	？ 8_{8}	T8 8	78	${ }_{8}^{818}$	B	38	（1）	8 $\frac{18}{8188}$		
\％			－								－\％			
							吅：	价	118	2	88.8			
						\％\％	11			\％\％	\％			
manca	\square	\％	5 ¢		\％	\％\％	－\％	8 8 ？		¢ั8	－\％	5		
										－\％\％	\％${ }^{2}$	¢88゙		
		5	5－5	11										
comme			511	11	1	18	\＆ 8	8 8 \％	88	888				
		－1	111	182	\％	\％	\＆	8						

[^7]

Nem OrakevR5 Transcetver

farabove average!

With the new TR5 versatility and value are spelled D-R-A-K-E...

D YNAMIC RANGE

COMING SOON: RV75 Synthesized VFO featuring the Drake "VRTO" - Frequency Synthesized for crystal-controlled stability = VRTO (Varlable Rate Tuning Oscillator ${ }^{*}$) adjusts tuning rate as function of tuning speed. - Resolution to 10 Hz * Three programmable fixed frequencies for MARS, etc. - Split or Transceive operation with main transceiver PTO or RV7S

- Patent pending

Call AES ${ }^{\circ}$ for Low Prices on DRAKE Equibment

R-7A 0.30 MHz dig. Rcvi/NB/500 Hz filter $\$ 1649.00$ Accessories:
MS-7 Speaker
$\$ 39.00$ FA. 7 Cooling fan 29.00 AUX-7 Range program board

RRM-7 Range receive module.
RTM-7. Range transceive module . 45.00

WARC-7 WARC band kit (3-RTM's) 24.95
SL-300 300 Hz CW filter 59.95
SL-500 500 Hz CW filter
59.95

SL-1000 1 Khz RTTY filter, R-7A
SL-1800 1.8 KHz SSB/RTIY filter
SL-4000 4 kHz AM filter
59.95

SL-6000 6 KHz AM filter
1548 R-7A/TR-7A cable interface kit
7037 Extender card service kit Service manuals \qquad 1982 Worid Radio/TV Handbook
\qquad

MN-75 200w, 160-10m antenna tuner.
$\$ 259.00$

The prices shown in this ad are suggested by the Manufacturer. On most MAJOR items you can Save Money with a Big AES" Discount. Don't wait! - Call us TOLL FREE and get your price.

CS-7 1533 Remote antenna switch 169.00 1534 Control console only for CS. 7 102.00 1535 Remote switch only for CS.7. 67.00

AK-75 Multiband antenna
39.95 AA-75 Antenna insulator kit.
3.49

79.95

LA-7 600 ohm balanced line amplifier. 49.95

CW-75 Electronic keyer
SP-75 Speech processor
WH-7 $\quad 160-10 \mathrm{~m} \quad 20 / 200 / 2 \mathrm{kw}$ wattmeter
59.00
129.00

7073 Hand microphone w/plug 29.95 49.00

ESR-24 Earth station receiver
$\$ 745.00$ SC/ESR Single conversion down converter 250.00 SPH-24 Splash proof housing 60.00
Buy with Confidence AES has Over 24 years of Experience in Mail Order
Mastercard

VISA ${ }^{\circ}$

Use your CREDIT CARD!

E-X-P-A-N-D-E-D WATS PHONE HOURS Our Milwaukee Headquarters will answer the Nationwide WATS line 1-800-558-0411 until 8 pm (Milwaukee time) Monday thru Thursday
Please use WATS ine for Placing Orders For other information, etc. please use Regular line
HOURS: Mon, Tue, Wed \& Fri 9-5:30; Thurs* 9-8; Sat 9-3 *Las Vegas $\&$ flonda stores NOT open Thussday evenings

Call Toll Free: 1-800-558-0411
In Wisconsin (outside MIIwaukee Metro Area) 1-800-242-5195
AMATEUR ELEGTRONIC SUPPLY
4828 W. Fond du Lac Avenue; Milwaukee, WI 53216 - Phone (414) 442-4200

WICKLIFFE, Ohio 44092	ORLANDO, Fla. 32803	CLEARWATER, FIa. 33515	LAS VEGAS. Nev. 89106	CHICAGO. Illinois 60630
28940 Euclid Avenue	621 Commonwealth Ave.	1898 Drew Street	1072 N. Rancho Drive	ERICKSON COMMUNICATIONS
Phone (216) 585.7388	Phone (305) 894-3238	Phone (813) 461-4267	Phone (702) 647-3114	5456 N. Milwaukee Avenue
Ohio WATS 1-800-362-0290	Fia WATS 1-800-432-9424	No In-State WATS	No In-State WATS	Phone (312) 631-5181
Outside Ohio 1-800-321-3594	Outside Fla. 1-800-327-1917	No Nationwide WATS	Outside Nev. 1-800-634.6227	Outside ILL. 1-800-621-5802

(Continued from page 6. .)
Our last method of communications is RATT, or RTTY. Teletype is tasked with being the workhorse of battalion-to-higher-headquarters communications. You'll find everything from command instructions to orders for repair parts being transmitted by RATT. In many instances the RATT operators are the busiest of all the platoon members.
The RATT van is a Dodge pickup truck with a mobile shelter in the bed. Power for the radios can come from either a $100-\mathrm{amp}$ generator hooked to the truck's engine or from a towable 5 -kW generator. You would figure that you could tow the generator with the truck but you can't. It's too heavy. So you always have to depend on someone else to pull your generator and, as you'd expect, this causes problems. A vertical is used for mobile stations and a dipole when staying in one place. The teletype units are model GGC-3s, so hams familiar with RTTY would be at home with them.
Since RATT is the workhorse, or most important element, in battalion-to-higher-headquarters communications, you have to ensure that it is fully protected from enemy interception. Inside the van there is equipment that will code the RATT signals. And it's policy that whenever the radio is used it will be coded. Enough said about that! Because of this security equipment, you really can't hop in the van, go out in the boonies, and play field day. It's a shame because, for a ham, it would be a nice diversion from the day to day routine.
That's about it for my summer camp. Two weeks spent in the field putting systems in and taking them down. And a lot of time spent hurrying up and waiting. Some things never change. That's for sure! It was an interesting experience and I hope a learning one for all involved. I know I learned quite a bit. I just hope we never have to go to war for me to use that experience.

J. Craig Clark, Jr., N1ACH assistant publisher

HAVE RTTY—WILL TRAVEL

Yes, now you can take it with you! The new HAL CWR-6850 Telereader is the smallest RTTY and CW terminal available, complete with CRT display screen. Stay active with your RTTY and CW friends even while traveling. Some of the outstanding features of the CWR-6850 are:

- Send and receive ASCII, Baudot, and Morse code
- RTTY and Morse demodulators are built-in
- RTTY speeds of $45,50,57,74,110$, and 300 bau ${ }^{+}$
- High or Low RTTY tones
- Send and receive CW at 3 to 40 wpm
- Built-in 5 inch green CRT display
- Four page video screen display
- Six programmable HERE IS messages
- Pretype up to 15 lines of text
- External keyboard included
- Runs on + 12 VDC @ 1.7 Amperes
- Small size ($12.75^{\prime \prime} \times 5^{\prime \prime} \times 11.5^{\prime \prime}$)

Write or call for more details. See the CWR-6850 at your favorite HAL dealer.

ALL BAND TRAP VERTICAL ANTENNAS!

FULL 1/4th WAVE - All Bands! Automatic Selection with proven Hi-Q Traps 3 Models-ALL Automatic Selection with
popprting - Ground
or or root mount HI STRENGTH FIBERGLASS TUBING
OVER ALL NO WOBBLY, LUMPYTRAPS. NO UNSIGHTLY CLAMPS needed. Siae $11 / 4^{-}$all the way up-
 FOR APARTMENTS. MOBBLE HOMES. CONDOS Etc.
where minimum space and neat appearence is MAND. Wher minimum space and neat appearence is MAND. or without radials (included) (All angle root mount. Exe with
COMPLETELY PRE TUNED. NO AD SUSTME NTS NEED. COMPLETELY PRETUNED. NO ADJUSTMENTS NEEDED EVER: NO TUNER NEEDED FOR MOST TRANS-
CIEVERS! Use-RGBU teedline, any length! 2000 Watt CIEVERS! Use - RGBU teedine, any length! 2000 Watt
PEP. input power. Shipped - PREPAID IN USA. Assembles in 10 min using only screwdriver. WEATHERPROOFI No. AVT B0-10- 5 Band - $29^{\prime} 1^{\prime \prime}$
No-AVT40.10- 4 Band 11^{\prime} \qquad No-AVT $40.10-4$ Band- $19^{\prime \prime} 3^{\prime \prime} \quad \$ 129.95$
No. AVT20-10- 3 Band- $\quad 16^{\prime} \quad \$ 99.95$
SEND FULL PRICE FOR PP DEL IN USA (Canada is VISA. MA postage, cierical, Customs etc) or order using VISA. MASTER CARD or AMER-EXP Ph $1-308$ days.5333 All AnM-6PM weekdeys. We ship in 2-3 days All Antennas Guar

WESTERN ELECTRONICS
Dept AR- 6

"D)X-traordinary"

Superior dynamic range, auto. antenna tuner, QSK, dual NB, 2 VFO's, general coverage receiver.

The TS-930S is a superlative, high performance, all-solid state, HF transceiver keyed to the exacting requirements of the DX and contest operator. It covers all Amateur bands from 160 through 10 meters, and incorporates a 150 kHz to 30 MHz general coverage receiver having an excellent dynamic range.
Among its other important features are, SSB slope tuning, CW VBT, IF notch filter, CW pitch control, dual digital VFO's, CW full break-in, automatic antenna tuner, and a higher voltage operated solid state final amplifier. It is available with or without the AT-930 automatic antenna tuner built-in.
TS-930S FEATURES:
160-10 Meters, with $150 \mathrm{kHz}-30 \mathrm{MHz}$ general coverage receiver.
Covers all Amateur frequencles from 160-10 meters, including new WARC, 30,17 , and 12 meter bands, on SSB. CW, FSK, and AM Features $150 \mathrm{kHz}-30 \mathrm{MHz}$ general coverage receiver. Separate Amateur band access keys allow speedy band selection. UP/DOWN bandswitch changes in $1-\mathrm{MHz}$ steps. A new, innovative, quadruple conversion, digital PLL synthesized circuit provides superior frequency accuracy and stability, plus greatly enhanced selectivity.
Excellent receiver dynamic range. Recelver two-tone dynamic range, 100 dB typical (20 meters. 500 Hz CW bandwidth. at sensitivity of $0.25 \mu \mathrm{v}, \mathrm{S} / \mathrm{N} 10 \mathrm{~dB}$). provides the ultimate in rejection of im distortion.
All solid state, 28 volt operated final amplifier.
The final amplifier operates on 28 VDC for lowest IM distortion. Power input rated at 250 W on SSB. CW. and FSK, and at 80 W on AM. Final amplifier protection circuit with cooling fan. SWR/Power meter built-in.

Automatic antenna tuner, built-in.

Available with AT-930 antenna tuner builtin. or as an option. Covers Amateur bands 80-10 meters, including the new WARC bands. Tuning range automatically
pre-selected with band selection to minimize tuning time. "AUTO-THRU" switch on front panel.
CW full break-in.
CW full break-in circuit uses CMOS logic IC plus reed relay for maximum flexibility. coupled with smooth, quiet operation. Switchable to semi-break-in.
Dual digital VFO's.
$10-\mathrm{Hz}$ step dual digital VFO's include band information. Each VFO tunes continuously from band to band. A large, heavy, flywheel type knob is used for improved tuning ease T.F. Set switch allows fast transmit frequency setting for split-frequency operations. $A=B$ switch for equalizing one VFO frequency to the other. VFO "Lock" switch provided. RIT control for $\pm 9.9 \mathrm{kHz}$ receive frequency shift.
Eight memory channels.
Stores both frequency and band information. VFO-MEMO switch allows use of each memory as an independent VFO, the original memory frequency can be recalled at will), or as a fixed frequency. Internal Battery memory back-up, estimated 1 year life. (Batteries not Kenwood supplied).
Dual mode noise blanker ("pulse" or "woodpecker").
NB-1, with threshold control, for pulse-type noise. NB-2 for longer duration
"woodpecker" type noise.
SSB IF slope tuning.
Allows independent adjustment of the low and/or high frequency slopes of the IF passband, for best interference rejection. CW VBT and pitch controls.
CW VBT (Variable Bandwidth Tuning) control tunes out interfering signals. CW pitch controls shifts IF passband and simultaneously changes the pitch of the beat frequency. A "Narrow/Wide" filter selector switch is provided.

IF notch filter.

$100-\mathrm{kHz}$ IF notch circuit gives deep. sharp, notch, better than -40 dB .
Audio filter built-in.
Tuneable, peak-type audio filter for CW AC power supply built-in.

Fluorescent tube digital display.
Fluorescent tube digital display has analog type sub-scale with $20-\mathrm{kHz}$ steps. Separate 2 digit display indicates RIT frequency shift.

RF speech processor.

RF clipper type processor provides higher average "talk-power", plus improved intelligibility. Separate "IN" and "OUT" front panel level controls.

One year warranty.

The TS-930S carries a one year limited warranty on parts and labor.

Other features:

- SSB monitor circuit, 3 step RF attenuator.

VOX, and $100-\mathrm{kHz}$ marker.

Optional accessories:

- AT-930 automatic antenna tuner.
- SP-930 external speaker with selectable audio filters.
- YG-455C-1 $(500 \mathrm{~Hz})$ or YG-455CN-1 $(250 \mathrm{~Hz})$ plug-in CW filters for $455-\mathrm{kHz}$ IF.
- YK-88C-1 (500 Hz) CW plug-in filter for $8.83-\mathrm{MHz}$ IF
- YK-88A-1 (6 kHz) AM plug-in filter for $8.83-\mathrm{MHz} \mathrm{IF}$.
- MC-60 (S-8) deluxe desk microphone with UP/DOWN switch.
- TL-922A linear amplifier
- SM-220 station monitor.
- HC-10 digital world clock.
- HS-6, HS-5, HS-4 headphones.

More information on the TS-930S is available from all authorized dealers of Trio-Kenwood Communications
1111 West Walnut Street,
Compton. California 90220
(operates on AC only).

CONVENIENT TOP CONTROLS

UP/DOWN manual scan.
Repeater reverse operation.
2.5 W or 300 mW RF output. (HI/LOW power switch).
Built-in tunable (with variable resistor) sub-tone encoder.
Built-in 16-key autopatch.
Slide-lock battery pack.

- Keyboard frequency selection.

Covers 143.900 to 148.995 MHz in 5 kHz steps.

- Optional power source, MS-1 mobile or ST-2 AC charger/ power supply allows operation while charging. (Automatic drop-in connections.)
High impact plastic case.
- Battery status indicator.

Two lock switches for keyboard and transmit.

Standard accessories:

- Flexible rubberized antenna with BNC connector.
-400 mAH heavy-duty $\mathrm{Ni}-\mathrm{Cd}$ battery pack.
- AC Charger.

Optional accessories:

- VB-2530 25 W RF Power amp. BNC-BNC cables, and mounting bracket, supplied.
- MS-1 13.8 VDC mobile stand/ charger/power supply.

Optional accessories:

- ST-2 Base station power supply and quick charger (approx 1 hr.)
- TU-1 Programmable "DIP switch" (CTCSS) encoder.
- SMC-25 Speaker microphone.
- LH-2 Deluxe leather case.
- PB-25 Extra Ni-Cd battery pack. 400 mAH , heavy-duty.
- BT-1 Battery case for AA manganese or alkaline cells.
- BH-2 Belt hook.
- WS-1 Wrist strap.
- EP-1 Earphone.

All mode (FM/SSB/CW) 25 watts, plus...!!!

The TR-9130 is a powerful, yet compact, 25 watt FM/USB/LSB/ CW transceiver, featuring six memories, memory scan, memory back-up capability, automatic band scan, all-mode squelch, and CW semi break-in. Available with a 16-key autopatch UP/ DOWN microphone (MC-46), or a basic UP/DOWN microphone. TR-9130 FEATURES:

- 25 Watts RF output on all modes, ($\mathrm{FM} / \mathrm{SSB} / \mathrm{CW}$).
- FM/USB/LSB/CW all mode. The mode switch, with the digital step (DS) switch, determines the size $(100 \mathrm{~Hz}, 1 \mathrm{kHz}, 5 \mathrm{kHz}, 10$ kHz) of the tuning step.
- Six memories. On FM, memories $1-5$ for simplex or $\pm 600 \mathrm{kHz}$ offset, using OFFSET switch. Memory 6 for non-standard offset. All six memories may be simplex, any mode.
- Memory scan. Scans memories in which data is stored.

Optional accessories:

- KPS-7 DC power supply for TR-9130 base station operation. 7 A intermittent, 6 A continuous. protection circuit built-in.
- SP-40 compact mobile speaker. Only 2-11/16 W x 2-1/2 H x 2-1/8 D (inches). Handles 3 watts of audio.
- TK-1 AC adapter for memory back-up (not shown).
- Squelch circuit, all modes (FM/SSB/CW).
- Repeater reverse switch.
- Tone switch.
- CW semi break-in circuit with sidetone.
- Digital display with green LED's.
- Compact size and lightweight. $170(6-11 / 16) \mathrm{W} \times 68$ (2-11/16) H x 241 (9-1/2) D mm (inch). 2.4 kg (5.3 lbs .) weight.
- Covers 143.9 to 148.9999 MHz .
- HI/LOW power switch. 25 or 5 watts on FM or CW.
- Transmit offset switch.
- High performance noise blanker.
*RF gain control. • RIT circuit.

Spring Picks For Your Bookshelf

1982 U.S. RADIO AMATEUR CALLBOOK

No Amateur station is complete without the very latest Callbook! The 1982 U.S. Callbook features over 390,000 up-todate names and addresses right where you want them - at your finger tips. Also contains many helpful operating and station aids. (c) 1981 . Softbound.
\square CB-US $\quad \$ 18.95+\$ 3.05$ shipping $(U . S . A)=\$ 22.00$

1982 FOREIGN CALLBOOK
If DX is your "thing" then you need a copy of the 1982 Foreign Callbook. Getting a QSL card can be quite a chore without proper names and addresses. Make sure you don't miss out. © 1981. Softbound
$\square \mathbf{C B}-\mathbf{F} \quad \$ 17.95+\$ 3.05$ shipping (U.S.A.) $=\mathbf{\$ 2 1 . 0 0}$
Get 'em both! You save money too! -CB-USF

Only $\$ 39.95$

1982 ARRL RADIO
 AMATEUR'S HANDBOOK

Internationally recognized, universally consulted. It's the all purpose volume for radio. Jam packed with information, drawings, and illustrations that are useful to the Amateur and protessional alike. Get your copy today. © 1981
\square AR-HB82
\square AR-BB82

Softbound $\$ 10.00$ Hardbound \$15.75

HOW TO BUILD HIDDEN, LIMITED SPACE ANTENNAS by R. J. Traister

Space problems limiting your signal? It doesn't have to be that way. How-to book complete with plenty of projects on how to put out that big signal. Projects include suspended multi-band vertical, window antenna, attic dipole. 20 m indoor antenna, two meter coaxial and much more. Softbound 308 pages. © 1981.
$\square \mathrm{T}-1254$

PACKET RADIO

by Robert Rouleau, VE2PY and Ian Hodgson, VE2BEN
Packet Radio could be one of the most important technological developments in Amateur Radio this decade. Can you imagine getting your newspaper or paying bills through a computer terminal linked by radio with other computers? It's happening, now. And you should make yourself aware of all the amazing things packet radio can do for you. This comprehensive sourcebook explains all the principles of packet radio in an easy-10-understand, non-technical language. You'll learn all about modulation, bandwidths, polling, random access, data rates and more. Plus there is an overview of how the computer is integrated into the packet concept with discussions on the software and peripheral equipment that is used. Finally, the authors give you a detailed description of the packet system in use in the Montreal, Quebec area. (c) 1981, 1st Edition, 304 pages.
$\square \mathrm{T}-1345$
Softbound $\$ 11.95$

RADIO HANDBOOK

by Bill Drr, W6SAI 22ND EDITION
The Radio Handbook has been an electronic best seller for over 45 years! This brand new edition reflects all of the latest state-of-the-art advances in a comprehensive, single source reference book. An invaluable aid for Hams, technicians, and engineers alike. Also chock-full of projects and other ideas that are of interest to all levels of electronics expertise. 1136 pages. ©1981. 22nd edition $\square 21874$

Hardbound \$34.95
BAND-AIDS
by James E. Dersch, KB7FT
This revised edition of Band-Aids contains a collection of the most often used operating aids, charts and tables that every Ham needs. Not only does it cover the fundamentals of operating. but it also contains operating aids for CW Communications, WWV and WWHH broadcasting schedules, DXCC check sheet and international pretixes, plus many other features. A handy reference data section includes conversion tables, metric data and abbreviations. © 1981. 156 pages \square CC-BA Spiralbound $\$ 9.95$

COMPLETE HANDBOOK OF RADIO RECEIVERS

by Josaph J. Carr, K4IPV
All-in-one manual. Contains complete data on almost all receivers in use today. Written in an easy-to- read manner, this handbook includes basic receiver types; specifications for the latest ideas in parameter measurements such as sensitivity, noise figures, dynamic range, and selectivity measurements. Also covered are all types of modern receiver circuits, and a wide range of troubleshooting ideas for both solid-state and vacuum tube receiver circuits. © 1980, 300 pages.
$\square \mathrm{T}$-1182 Softbound $\$ 9.95$
Send today for a free book catalog. Chock-full of interesting books on all aspects of Radio Communications.

Can't wait?

CALL TODAY
878-1441

For books other than US and Foreign Callbooks, please add \$2.50 to cover shipping and handling.

PRINT THE WORLD

See What You've Been Missing!

Stay in touch with world events, monitor weather, ship traffic, and radio amateurs. Connect to your receiver and display shortwave radio teleprinter and Morse code transmissions with the new receive-only HAL CWR-6700 Telereader.

- Receive ASCII or Baudot RTTY
- Six standard RTTY speeds
- 3 RTTY shifts for low or high tones
- Adjustable space for fine tuning
- Receive Morse code - 4 to 50 wpm
- 16 lines by 36 or 72 character display
- Two page video display
- Parallel ASCII printer output
- Requires ± 12 VDC and external TV monitor
- One year limited warranty
- Small size ($\mathbf{8}^{\prime \prime} \times 3^{\prime \prime} \times 12.75^{\prime \prime}$)

Write or call for more details. See the CWR-6700 at your favorite HAL dealer.

UNARCO-ROHN
 Self Supporting Towers On Sale!

During April these rugged beauties are being offered at Big Discounts and - we are shipping them freight prepaid! Look over the specifications and pick the unit most suited for your needs. Call us to place your order with Mastercard/Visa or write and include your check for quick shipment - Freight Prepaid
Save even more - include antenna and rotor of your choice with the order and we will ship them along freight prepaid also! How's that for good old-tashioned savings?

FREIGHT PREPAID

Tower Model	$\left.\begin{array}{\|c\|} \hline \text { Tower } \\ \mathrm{HL} . \end{array} \right\rvert\,$	Load Rating	Ship Weight	$\begin{array}{\|c} \text { Tower } \\ \text { Base } \\ \hline \end{array}$	$\begin{array}{\|c} \text { Tower } \\ \text { Price } \end{array}$	$\begin{aligned} & \text { Base } \\ & \text { Price } \end{aligned}$	Total Price
HBX40	40 ft	10 sq ft	154	8x86	269	24	293
H8X48	48 tt	10 sqgit	303	8×87	349	26	375
H8X56	56 tt	10 satt	385	BX88	419	30	449
H08×40	40 tt	18 sqgh	281	BX87	313	26	339
H0BX48	48 tt	18 sqgt	363	8×88	399	30	429

In the proud tradition of the $\mathrm{S} /$ Line and KWM-2: Collins KWM-380.

What is 'tradition'? Fifty years of HF communications experience and a high technology base that makes us an industry leader. Plus added value like the KWM-380 12-month warranty and 24-hour factory "burnin" followed by individual testing and calibration of each transceiver.

The Collins KWM-380 gives you "tradition" in one box. Microprocessor control provides operation from the front panel or optional remote interface connector. Plug-in read-onlymemory I.C. allows the addition of WARC
band changes. Built-in AC/DC power supply lets you operate almost anywhere.

Rate selectable tuning to 10 Hz with frequency memory and split VFO provide excellent operational flexibility.

The Collins KWM-380. A sound investment that offers excellent resale value. See it at your authorized dealer. Collins Telecommunications Products Division. Defense Electronics Operations. Rockwell International. Cedar Rapids, Iowa 52498. Phone 319/395-5963. Telex 464-435.

HAM CALENDAR

SUNDAY	MON	tues	WED	THUR	FRI	SATURDAY
"aven		1	2	3	- ${ }^{+2}$	
			9	10		
	1		16	17	18	
	21		23	24	25	26
27	28		30			sef commenavas

operation upgrade: part 7

In this month's issue, Bob discusses the basics of transmitter design

This article is aimed at helping you with the fundamentals of ham radio. With this information you should understand the subjects on the FCC test questions better. The subjects explained are specifically for Novice, Technician/General, and Advanced class license aspirants. After the fundamentals are presented, in as simple a form as possible, there will be a short series of Extra-class license subject articles.

The first article, or Part 1, in the September, 1981, issue, discussed basic direct current (dc) circuits involving resistors and voltage sources. Part 2 (October) investigated some alternating current (ac) circuits with inductors, capacitors, and resistors. Part 3 (January) took a broad look at active devices such as diodes, transistors, and vacuum tubes. Part 4 (February) went into the basic power supplies and a few simple amplifier circuits. Part 5 (March) developed the theory of oscillators. Part 6 (April) was an overall outline of a variety of amplifier forms including classes of operation. In Part 7 we will put some of the basic theory to work in explaining radiotelegraph (CW or A1) transmitters of various types, and include a little about antennas. This is really the first "radio" article. Prior subjects were used to lay the groundwork, so that you might have a better chance of understanding how "systems" composed of two or more circuits can function. It might be a good idea to
go back and thumb through the last few articles so that the terms we used will be fresh in your mind.

a basic transmitter

To communicate on the Amateur bands with some other Amateur down the street, across town, across the country, or across the oceans, you must have: (1) something to generate a radio frequency ac, (2) an antenna to radiate the if energy into space, (3) some way of controlling the of ac to make it carry intelligence for you, and (4) a device which will make received if ac signals audible to you (a receiver).
Let's look at the simplest kind of rf ac generator an oscillator - that will allow you to actually communicate with someone else. The Hartley oscillator of fig. 1 should work satisfactorily on the 160, 80, and 40 meter Amateur bands. As a transmitter it may not have much power output, but you might be able to communicate up to 500 miles with it if conditions are right.
When the key is closed the rf power-type bipolar junction transistor (BJT) circuit starts oscillating. You can check to see if it is oscillating with a two-turn loop of wire connected across a low power flashlight lamp, shown in the box. When the loop is coupled (held near) to the LC circuit coil, the lamp should glow.

The rf ac developed in the tuned LC circuit is coupled through the $20-\mathrm{pF}$ capacitor to the antenna wire. If the antenna wire is cut to a half-wavelength ($\lambda / 2$) to make it resonant at 7 MHz , where $\lambda / 2$ in feet $=$ $468 / f_{M H z}$ ($66 \mathrm{ft} \pm$), or $\lambda / 2$ in meters $=142.5 / f_{M H z}$ (20.4 m), electrons will oscillate back and forth along the antenna producing $7-\mathrm{MHz}$ electromagnetic fields around the wire, and $7-\mathrm{MHz}$ electrostatic fields from

By Robert L. Shrader, W6BNB, 11911 Barnett Valley Road, Sebastopol, California 95472
end to end. These fields expand and radiate out into the space surrounding the antenna. This forms the radio wave that travels outward with a maximum strength at right angles to a $\lambda / 2$ antenna, and minimum strength in the direction of the wire. The velocity of radio wave travel in a vacuum is roughly 186,000 mi / s, or $300,000,000 \mathrm{~m} / \mathrm{s}$.
If the key is closed and opened to produce Morse code letters, it is possible to communicate with other Amateurs. There are, however, some difficulties with this simple circuit. For one thing, any change in the emitter-collector voltage will change the frequency of oscillation a little. The frequency is also affected by the voltage built up across the 200-pF base-to-LC coupling capacitor. As a result, when the key is closed the emitter-collector voltage (E_{C}) rises to 12 volts as soon as the $0.01-\mu \mathrm{F}$ capacitor between collector and ground charges to this value. The 200-pF capacitor must also rise to its operating voltage. Until these final voltages are attained the frequency will continually be changing. It may be only a few hundred hertz of frequency variation and may occur in a few milliseconds, but it is usually noticeable to the listener as a rising or falling chirping tone at the make and break of each stroke. We say the signal sounds chirpy. This is not good.
[Before we go any further, it's important to say that you may build such a QRP (low power) transmitter, but without a license you cannot legally use it if you connect it to an antenna. You must have at least a Novice or Technician license before you can operate it on the Novice bands $13700-3750 \mathrm{kHz}$ for the $80-$ meter band, and $7100-7150 \mathrm{kHz}$ on the 40 -meter band). If you have a General or higher class license you may use it to transmit code on the 160-meter band ($1800-2000 \mathrm{kHz}$), or the 80 -meter band ($3525-$ 3775 and $3800-4000 \mathrm{kHz}$), or the 40 -meter band (70257300 kHz). See FCC Rules and Regulations, Part 97 for the complete list of Amateur frequencies.]

Another unsatisfactory feature about a simple transmitter like this is the frequency instability it will have. For example, if the power supply (battery) changes voltage when under a load (key down) the frequency will change. If you put your hand near the LC circuit you will be substituting the dielectric coefficient of your hand for that of the air surrounding the LC circuit. As a result the overall capacitance of this circuit increases and the frequency will decrease. If the antenna swings in the wind its capacitance to ground will change and this will be felt by the LC circuit as a change in capacitance across it, resulting in a swinging of the transmitting frequency. As the components (BJT, capacitors, coil, resistors) warm or cool, their values may change slightly, usually causing a slow drift of frequency.

All in all, it doesn't seem like a worthwhile rig to be using. But by employing mica or air dielectric capacitors, a heavy-duty battery or a voltage-regulated power supply, by using a good heatsink on the transistor, by shielding the oscillator (building it inside a metal box, dashed lines), by grounding the shield, and by stretching and holding the antenna tight, such a little transmitter can be a lot of fun to play with. If you use a crystal oscillator instead of the Hartley circuit, it will usually result in a stable output, but on only the one frequency to which the crystal has been ground.

Although an oscillator can be made that will operate with the maximum of one kilowatt (1 kW) dc power input permitted for Amateur transmitters, increasing the power output of an oscillator above a few watts will usually result in very poor frequency stability characteristics and bad key clicks.

Briefly, if it takes 100 cycles of the $7-\mathrm{MHz}$ rf ac being generated to build up to the maximum carrier ac level after the key is pressed, this represents the first quarter cycle of a modulating wave having a frequency of about 4×100, or $7,000,000 / 400$, or 17.5 kHz . As a result, when keying you would not only be transmitting energy at the $7-\mathrm{MHz}$ carrier frequency, but also "sideband" energy out 17.5 kHz on both sides of the carrier. These broad-bandwidth spurious signals will sound like clicks to anyone having a receiver tuned to anywhere within at least 17.5 kHz of your carrier frequency. Furthermore, when the key opens, the carrier amplitude drops very rapidly, causing even higher frequency sidebands and key clicks that extend out even further.

A method of reducing key clicks is to slow the buildup and the drop-off of the carrier ac. This can be accomplished by using a key-click filter: an inductor (which opposes any change in current) in series with the key, and a capacitor (which opposes any change in voltage) across the key, as shown below the key symbol in fig. 1. The resistor reduces the discharge current when the key closes across the charged capacitor, preventing pitting of the key contacts. Unfortunately, slowing the rise and fall of the carrier strength of an oscillator also accentuates the chirping. Transmitters up to perhaps 10 watts output will not usually produce bothersome key clicks. Above this power level they may begin to give trouble unless some improved form of keying is used.

an MOPA transmitter

The next step in producing a more desirable transmitter is to add an amplifier after the oscillator. This makes up a system called a master-oscillator-poweramplifier, or an MOPA. The MOPA can deliver much more power to the antenna and still be relatively stable.

fig. 1. Simple self-excited oscillator 7 MHz band CW transmitter.

With an MOPA, in most cases the oscillator is allowed to operate all of the time that the transmitter is turned on. Keying is usually accomplished by switching the power amplifier on and off with a telegraph key, as in fig. 2, or more likely, with a keying relay, shown dashed. This diagram illustrates a possible MOPA that could be used to transmit CW signals. The term CW means continuous-amplitude waves, and is used to indicate code transmissions. In the "good old days" of radio, spark transmitters were used to send code. But spark oscillators generated of ac in 120 to 1000 wave trains (dying out rf ac bursts) per second. Because of the nonsinusoidal damped characteristics of these rf pulses the emitted wave was very broad. When vacuum tubes (VTs) were developed they produced constant amplitude (strength) carriers. When not carrying intelligence (on-off code, or speech "modulation") a carrier has essentially zero bandwidth and is termed AD (A-zero) by the FCC. When broken up into code signals the emission is called A1. The A indicates a carrier having its amplitude varied, and the 1 indicates that intelligence is being conveyed by using some kind of a code. The bandwidth of such an emission will be broader the faster the code speed used.
The MOPA circuit is shown in both block diagram form and as a schematic diagram. In both cases there is a transmit-receive (TR) switch to throw the antenna from receiver to transmitter when it is desired to change from receive to transmit or back.

Do you recognize the oscillator to be a JFET Hartley? It is shown capacitively coupled to the grid of a triode VT, which in turn is inductively coupled to a tuned antenna circuit.
Although shown as a JFET, the active device in the oscillator might just as well be a BJT or a VT. This stage determines the transmitting frequency of the
transmitter. The output power of the oscillator might be about 1 watt of rf ac . With active devices made for higher power, the oscillator output may produce several watts of $r f$ ac drive to the input of the amplifier. Usually, the less the power output of an oscillator the better its stability (and the less frequency drift, chirp, etc.).
The amplifier is shown as a "neutralized" VT triode. It might have been shown as a VMOS or other power FET, a power BJT, or a beam power tetrode. The FETs would have essentially the same circuitry as the triode $V T$, but the BJTs, being a lower impedance type device, would require some variations in the circuit impedances (tapped down coils, greater capacitance values, etc.). As explained in Part 5, the capacitance which exists between plate and grid of a VT triode (drain-to-gate of an FET) can feed back ac energy and cause an amplifier to oscillate rather than amplify. To prevent this, the electrical center of the output tuned circuit can be tapped and bypassed to

fig. 2. MOPA transmitter with power amplifier keying, A in block form, and B in schematic form showing relay keying dashed.
ground. Now the plate current pulses coming down through the top half of L_{2} start LC circuit flywheel oscillations. The rf ac is developed at the frequency of the pulses, which are at the frequency of the oscillator's ac that is driving the grid or input circuit of the PA. Since the center of the LC circuit is at ground potential due to bypass capacitor C_{bp}, when the top of the coil is ac positive the bottom of the coil will be equally ac negative. Any feedback from plate to grid due to interelectrode capacitance can be completely cancelled, provided the neutralizing capacitor C_{n} is set to whatever the value of the P-G feedback capacitance happens to be.

Although we say the feedback capacitance is the interelectrode capacitance of the active device, actually it is somewhat more because of nearness of connecting wires and components external to the active device. If the P-G capacitance is 5 pF , there might also be 3 pF of external capacitance, requiring a setting of 8 pF for C_{n}. For this reason C_{n} is almost always a small variable capacitor.

The keying is accomplished by closing and opening the PA cathode-to-ground connection. Can you see that if you happened to get your fingers across the open key that you would be between ground ($B-$) and high voltage ($B+$) through the conductance of the triode? This will really jar your teeth! So, whenever there is more than 100 or possibly 200 volts involved, a keying relay should be used, shown dashed. The low voltage of the keying circuit will cause no physical discomfort, since with dry hands you will normally feel no current shock with potentials up to perhaps 40 to 50 volts. (With really good electrical contact to your two hands 12 to 15 volts might kill you!)

If you can imagine the relay as having two sets of arms and contacts (the second connected to the antenna), can you see that it would be possible, by pushing the key down, to not only close the cathode lead, but also to shift the antenna's relay arm from receive to transmit at the same time? When your key is up you would be able to hear incoming signals because the antenna would then be connected to the receiver. When the key is down the transmitter is coupled to the antenna and all you would hear is your own transmitter. This is known as "full break-in" (or OSK, meaning, I can hear you between my dots or dashes), which is the only way to go on CW. The other Amateur can stop you by merely pushing his or her key down for a second and you will hear the signal and stop transmitting. If other Amateurs start tuning up on your frequency while you are sending you will know it and can move away from the ORM (interference).

To tune an MOPA transmitter like this you would go through a series of steps somewhat as follows:

1. Turn on the oscillator power supply (not the PA supply) and adjust C_{1} until you hear your signal (usually a whistle) on the spot on the band where you want to operate.
2. Listen to your signal on the receiver and adjust C_{2} until you obtain a maximum received signal of the oscillator feeding or leaking through the amplifier stage.
3. Rctate the neutralizing capacitor to minimum received signal, which indicates proper amplifier neutralization.
4. Turn on the PA power supply, and, as soon as you press the key, adjust C_{2} for parallel resonance, shown by a minimum plate current on A_{2}. (The oscillator meter A_{1} should change very little at any time if the amplifier is neutralized.)
5. With this quarter-wavelength antenna (33 ft for 7 MHz) adjust C_{3} to antenna series resonance, shown by a maximum current indication on the rf ammeter A_{3}. You will find that this will also produce an increase in the A_{2} reading because now the amplifier is being more heavily loaded. Under a load the PA LC circuit O goes down, and it presents a lower impedance to the VT, resulting in greater plate current (l_{p}).

Always be sure to listen to the frequency on which you plan to work before you transmit anything. Even if the frequency is clear do not hold your key down any longer than about five seconds, and then immediately send TEST DE followed by your call sign. If the band is busy or your testing is going to take a protracted time, couple your PA to a dummy load instead of the antenna. Tune up on low power (low $B+1$. A 100 -watt lamp has a cold resistance of about 20 ohms and a hot resistance of about 144 ohms. With a few-turn loop across it, it can be used as a dummy load for transmitters that emit 10 to 100 watts of rf . Keep in mind that even with a dummy load your signal may be carrying quite a few miles. If you are using an antenna that requires no tuning, it will usually require a 50 -ohm or a 70 -ohm dummy load. Actually, a 2:1 to 3:1 impedance mismatch will not matter too much for a dummy load (50 ohms to 100 ohms represents a $2: 1$ mismatch and a standing wave ratio, or SWR, of $2: 1$. This will be discussed more in later articles.)
Actually, the antenna ammeter is not necessary except that it can be used to tell you your approximate power output by computing power from $P=$ $I^{2} R$. You can use 40 ohms for the impedance at ground for a quarter-wavelength antenna.
The amount or degree of coupling to the antenna can be adjusted by changing the number of turns you use on the antenna coil. With only one turn you will
couple very little energy to the antenna. As you move the tap (arrow) up the coil you will be able to couple more energy out of the $\mathrm{L}_{2} \mathrm{C}_{2}$ tank circuit, but you will also be increasing the length of the antenna circuit and its inductance. We say you are making the antenna more inductive (increasing its X_{L} value). To compensate for this you will have to decrease the antenna capacitor C_{3} a little (increasing its X_{C}) to bring the antenna circuit back into resonance. How much coupling is required is determined by how much plate (drain, collector) current you want to use. If the tube manual says use 100 mA (milliamperes) and you find that at $\mathrm{L}_{2} \mathrm{C}_{2}$ resonance and I_{p} minimum you read only 80 mA on meter A_{2}, you can safely increase coupling. If your I_{p} value is 110 mA when the rig is tuned you are overcoupled and should back off on the coupling or you may shorten the life of the tube needlessly. The difference between any increase in power for those extra 10 mA will not be noticeable to the Amateur at the receiving end.

Another method of varying the coupling is to physically move the antenna coil closer or farther away from the PA tank circuit. If you are very clever you can arrange the antenna coil so that it rotates inside, or at the end, of the LC tank coil. When the antenna coil is in line with the PA coil the coupling will be at a maximum. When turned 90°, the coupling will drop to zero. Such an arrangement is known as a variocoupler, but is rarely seen anymore.

improving the MOPA

While the MOPA is a great improvement over a simple oscillator as a transmitter, it has some drawbacks. For one thing, unless the neutralization is perfect and the oscillator and the PA are completely shielded, there will be some leak-through of the oscillator signal when the PA key contacts are open. Even with the best neutralization and shielding there may be enough oscillator leak-through signal to block out reception of weak signals on the receiver. This "backwave" can be eliminated by keying the oscillator, but then chirps and instabilities become a problem again. When neutralization is not complete on some other Amateur's transmitter, you may sometimes hear the backwave signal if relay type break-in keying is not being used at that station. The backwave is transmitted in such a case because the antenna switch is connected to the transmitter as long as that station is transmitting.
The addition of a buffer amplifier between the oscillator and the PA improves things greatly. Now the oscillator is further isolated from the PA and the antenna. A buffer amplifier might be a neutralized triode tube, FET, or BJT stage, or it may be a tetrode or pentode tube amplifier which may need no neutrali-
zation. Since the buffer is an amplifier, it will allow the oscillator to operate at a lower power output level, which helps frequency stability. It may also drive the PA harder, which means greater output possibilities for the PA. If the buffer is keyed instead of the PA, the backwave will usually be reduced to insignificance if all stages are properly neutralized and shielded.
If the buffer amplifier is used as a frequency multiplier (doubler, tripler, etc.) frequency stability and backwave difficulties will be improved still more. The diagram of fig. 3illustrates a doubler stage link coupled to a tuned LC tank of the next stage's input circuit. If a 3.5 MHz oscillator's rf ac is fed to the gate of the JFET, while the gate is driven positive, as indicated on C_{c}, the right plate of this capacitor picks up electrons from the JFET's source. When the rf ac alternates it drives the electrons away from the right-hand plate and they travel down the biasing resistor R . Since electrons always move from negative to positive, the top of R must be more negative than the source. The bias voltage developed across R can be great enough to bias the JFET into class C operation. This means that the drain current pulses flowing down through the LC circuit are far less than 180° in width, usually more like 100° to 120° (considering 360° as the complete of ac cycle). With narrow pulses there is a relatively long zero-current period of time in between pulses. As a result, if the LC circuit is tuned to resonate at 7 MHz (twice 3.5 MHz), the 3.5 MHz pulses will drive down through the coil to $+V_{D D}$ and then the JFET waits while the LC circuit oscillates (flywheel effect) for two cycles of 7 MHz ac before another pulse arrives to start the next oscillations. The stage is operating as a frequency doubler. If the value of R is increased (from about 50 kilohms to perhaps 75 kilohms) the bias voltage will increase and the drain pulses will be still narrower, allowing more rest time for the JFET. There should now be time for the LC circuit to oscillate three times before the next pulse arrives. In this case the frequency multiplier is called a tripler. The rf ac power output from a doubler is roughly half what the stage would produce as a straight-through amplifier. It puts out about onethird as much when operating as a tripler. Since the input and output circuits are not resonant to the same frequency, no neutralization is required in frequency multipliers.
As might be expected, any output from a frequency multiplier will be rich in harmonics. One method of reducing unwanted higher harmonic output signals is to use tuned circuits at the desired operating frequency. The link coupling shown in fig. 3 is one method of discriminating against the transmission of higher-frequency harmonics. Link coupling is actually a step-down tuned transformer coupled to a step-

fig. 3. A frequency multiplier stage with link coupling to the next amplifier stage.
up tuned transformer (the number of link turns is not too important as long as both are similar). Link coupling is also advantageous to transfer rf ac from one place to another with minimum losses. The links can also be interconnected by coaxial line with the outer braid grounded, as indicated in fig. 3. Usually any form of inductive coupling is superior to capacitive coupling in preventing transmission of unwanted higher harmonic frequencies.

By using a multiplier between the oscillator and the PA, and keying the multiplier, almost all leak-through or backwave will be eliminated.

a heterodyne CW transmitter

Most commercially constructed Amateur transmitters today utilize the heterodyning of two frequencies to obtain a desired third frequency, which is then transmitted. The terms heterodyning, mixing, and beating all mean essentially the same thing. They mean that if one frequency is mixed with another in a nonlinear device (diode, triode type device, etc.) the output will be basically four frequencies: (1) the first
frequency, (2) the second frequency, (3) the sum of the two frequencies, and (4) the difference of the two frequencies. A basic heterodyne CW transmitter is shown in semi-block form in fig. 4. The two frequencies to be heterodyned are developed by a 5MHz variable frequency oscillator (VFO) and a 12MHz crystal (XTAL) oscillator. Both of these frequencies are fed to the mixer BJT. In the collector circuit will appear the 5 MHz , the 12 MHz , a 17 MHz (sum), and a 7 MHz (difference) frequency. Since only one of these frequencies (7 MHz) is in any of the Amateur bands, $L_{1} C_{1}$ is tuned to that frequency. With both $L_{1} C_{1}$ and $L_{2} C_{2}$ tuned to 7 MHz they discriminate against transmission of all of the other frequencies. As a result, only the 7 MHz signal is amplified by the BJT PA.

Note that the buffer amplifier between the crystal oscillator and the mixer is being keyed. When the key is up there is no 12 MHz signal to be mixed, so there is no 7 MHz output. Inasmuch as there is no 7 MHz being generated anywhere, with the key up there can be no backwave at all. When the buffer is keyed there should be no chirping or frequency instabilities, and (one hopes) no key clicks. Both oscillators are running all of the time, so there is no warm-up frequency drifting after the transmitter has been turned on for a few minutes. It might be noted, however, that if the equipment is not shielded and grounded there might be some radiation of the $5-\mathrm{MHz}$ variable oscillator signal at all times, and some 12 MHz output particularly when the key is down. So shielding is important in all transmitters. In this case we are keying a $12-\mathrm{MHz}$ signal and changing or "translating" it to 7 MHz . We will find translation of frequencies in many radio systems. It is the result of heterodyning.

In the interests of simplicity we have not included any buffer or driver amplifiers between the mixer and the PA. The BJT amplifier shown is worthy of some further explanation. Notice that there is no bias in the

base-emitter circuit. The reason for this is that with no forward bias there can be no collector current (IC) flowing and no output from the stage. It requires about 0.6 volt of forward bias before I_{C} starts to flow in a silicon type BJT. So BJT stages with no bias are automatically in class C. This can be good in CW transmitters but may be a disadvantage in SSB transmitters. It is important that the voltage driving the base not be so high that so much I_{C} and I_{B} flow that the junctions of the BJT melt. A resistor in series with the base may help to protect these junctions, or protective diodes can be used to limit the base driving voltages. Be very careful how hard you drive a BJT. Start with minimum coupling and sneak up to the desired value in small steps.

Note the output tuned circuit in the PA stage. It is coupled directly to a quarter-wave ($\lambda / 4$) length antenna wire, which should have an impedance at its base (coupling point) of about 37 ohms. Therefore the part of the tuned circuit feeding it should also have a 37 -ohm impedance. The output LC circuit has been redrawn to the right of the PA. Can you see that the PA LC circuit consists of C_{4} and C_{5} in series across L_{3} ? The values of these components must be chosen so that at resonance the impedance seen by the antenna is 37 ohms across C_{5} and that seen by the BJT across C_{4} might be perhaps a little more than this value to match a somewhat higher BJT output impedance. As a result, C_{5} will need a somewhat higher capacitance value (lower X_{C}) than C_{4} will have. The coil must have the correct inductance to produce resonance at 7 MHz when the two capacitors are set to their correct values. In some equipment C_{5} will be a fixed capacitor, while C_{4} is variable to tune the circuit to resonance. Capacitor C_{5} in many circuits is also variable and functions as a degree-of-coupling control. The greater its capacitance the lower the coupling coefficient to the antenna. For higher frequency bands the L and C values will be proportionally smaller.
The radio frequency choke coil (RFC) has a high impedance to all Amateur bands and therefore develops high $7-\mathrm{MHz}$ ac voltage drops across it when 7 $\mathrm{MHz} \mathrm{I}_{\mathrm{C}}$ pulses flow through it. These voltages are coupled to the LC circuit by coupling capacitor C_{3}. This is called a shunt-fed amplifier circuit because no I_{C} flows through the tuned circuit inductor. Because of its configuration a circuit of this type is known as a pi-network (π-network) tuned circuit.
Note that an earth ground symbol is shown at the base of C_{5} which completes the quarter-wave (or $3 \lambda / 4$) antenna to earth ground to make it resonate properly. This same line is also shown as being at chassis (and metal shielding cabinet) ground.
Can you see that if the $5-\mathrm{MHz}$ variable oscillator is changed to 4.9 MHz the difference signal would then
be 12 minus 4.9 , or 7.1 MHz ? If changed to 4.7 MHz the output would be 12 minus 4.7 , or 7.3 MHz . So, if the variable oscillator is tunable from 5 MHz to 4.7 MHz , the resulting output heterodyne signal will cover all of the frequencies in the 40 -meter Amateur band (7.0 to 7.3 MHz). If the $12-\mathrm{MHz}$ crystal is changed to an 8.5 MHz crystal (assuming a broadly tuned buffer) the difference signal between 5 MHz and 8.5 MHz will be 3.5 MHz , which is in the $80-$ meter ham band ($3.5-4 \mathrm{MHz}$). If the crystal is changed to a $17-\mathrm{MHz}$ crystal the difference frequency is 14 MHz and is in the 20-meter ham band ($14-14.35 \mathrm{MHz}$). It is necessary only to switch in different crystals land amplifier tuned circuits) to change bands in this type of transmitter. Tuning across all bands is accomplished by varying only the frequency of the VFO stage.

The circuit described will work nicely for normal CW (A1), for narrow-band $\mathrm{fm}(\mathrm{F} 3$) voice communications, and for frequency-shift keying (F1) using any of the various codes such as Morse (CW) Baudot (RTTY), and ASCII (computer). The circuit can also be used for amplitude voice modulation if the PA is the stage to which modulation is applied. To use single-sideband (SSB) amplitude modulation the PA bias must be changed to class A or AB by forward biasing the BJT base. Although modulation is dealt with in later articles, we might point out that if the power supply feeding the PA (or any amplifier stage) is not adequately filtered, its dc voltage output will have a ripple or variation in it. As a result the output signal of the transmitter will be alternately stronger and weaker at the frequency of the ripple. We say the carrier is "modulated" in strength by the ripple. To a receiver the signal would have an audible tone component equivalent to the ripple frequency. Assuming $60-\mathrm{Hz}$ ac as the power source, the ripple frequency would be 60 Hz if the power supply is halfwave rectified, and 120 Hz if it is full-wave rectified. The resulting low-frequency tones produced in the receiver is known as a hum, or as hum modulation. This is an amplitude modulation since it varies the strength of the signal being radiated. If the oscillator power supply has ripple in it, the result may be both an amplitude modulation plus a slight variation of frequency of the oscillator, which would be known as frequency modulation.

an electronic TR switch

When full break-in CW is desired, but without the use of the electromechanical relay mentioned previously, an electronic TR switch can be used. There are a variety of such devices. A simple form is shown in fig. 5. These circuits have no connection with the keying circuit at all. The transmitter can be oscillator, buffer, or PA keyed. The antenna input for the re-

fig. 5. Electronic TR switch feeds received signals to a receiver from a transmitter output LC circuit when PA is not on.
ceiver is taken from the output tuned circuit of the transmitter stage. The TR switch has essentially no effect on the transmission of energy from the transmitter into the antenna. However, it does allow the receiver to be fed received signals from the antenna when the key is up. While the key is down the signal fed to the TR switch would be overwhelming for the receiver's input except for the limiting of this of by the TR switch circuitry. With the key down, a relatively high-amplitude signal is fed from the π-network tuned circuit to the input of the TR switch. If the two input diodes are silicon types, the maximum rf ac voltage that can be developed across them will be limited to 0.6 volt (0.3 volt for germanium diodes). This limited signal voltage is amplified and fed through the broadband ($1.8-30 \mathrm{MHz}$) transformer (XFMR), is limited again by the two output diodes and is fed to the receiver as an rf ac signal of no more than 0.6 (or 0.3) peak volts, which will not damage any normal receiver.

With the key up the PA has no power output. Now received signals in the antenna at the resonant frequency of the π-network LC circuit are fed to the TR switch. These will usually be in the micro- or low-millivolt range. They will be fed through C and R to the input diodes. Although there is some loss of signal because of the series resistor R, the JFET amplifier can more than make up for that and feed a relatively strong received signal to the receiver. Because almost all received signal voltages developed in an antenna will be well below the 0.6 -volt barrier voltage of the diodes, the diodes have no effect on such signals, although it is possible that they might limit extremely strong local signals. With a well designed TR switch, full break-in operation is possible with any

CW transmitter. However, PA stages using VTs must be biased to class C to prevent the receiver (discussed next month) from picking up "white noise" generated by random electron movements in resistors or between elements in active devices.

FCC test topics

The following Novice test topics are discussed in this article, but should be understood by Technician/General and Advanced applicants also:

- emission type A1

- block diagram of stages in a simple telegraphy transmitter
- superimposed hum, cause and cure
- backwave, cause and cure
- key clicks, cause and cure
- chirp, cause and cure
- vacuum tube applications, symbols
- quartz crystal applications
- undesirable harmonic output
- functional layout of a Novice CW transmitter including antenna switching, antenna, and telegraph key.
- transmitter tune-up procedure

The following Technician/General class FCC test topics are discussed in this article, but should be understood by Advanced class license applicants also:

- emission types A0, F1, F3
- neutralizing final amplifiers
- sidebands
- physical dimensions of antennas
- transformer applications and symbols
- antenna tuning
- use of a nonradiating load or dummy antenna
- full break-in telegraphy
- electronic TR switch
- frequency translation, mixing, multiplication
- modulation, amplitude, frequency
- bandwidth

The following Advanced class FCC license test topics are discussed in this article, but should be understood by Extra class license applicants also:

- electromagnetic radiation
- transmitter final amplifiers
- oscillators, applications, stability
- rf amplifier stages

For additional information on these subjects you can refer to Electronic Communication, or to Amateur Radio Theory And Practice, by Robert L. Shrader, W6BNB, McGraw-Hill Book Company, available through Ham Radio's Bookstore.
ham radio

NEW ... \$139.95

NEW MORSEMATICTM
MM-2 KEYER
THE MORSEMATIC KEYER BY AEA HAS BEEN PROCLAIMED BEST OF ALL PADDLE KEYERS ON THE MARKET

Now you can get all the features of the world's first and still best microcomputerized keyer at a 30\% reduction in price. The new model MM-2 has all the outstanding features of the MM-1 predecessor such as dual microcomputers with copywritten software, 500 character soft-partitioned ${ }^{\text {w }}$ memory with editing, exclusive beacon mode, exclusive automatic speed increase trainer mode, and exclusive automatic serial number generator. In addition, the MM-2 comes complete with CMOS memory and provisions for internal memory keep alive battery. The MM-2 operates from external 12 VDC at approximately 350 Ma .

ACCESSORIES:

Model AC-1 600 Ma 12 VDC Wall Adaptor $\$ 14.95$
Model ME-2 Memory Expansion (2000 Total Morse Characters) \$39.95
If you have hesitated buying the best because of price, you need to wait no longer, the best is now available in an improved form at a price you can afford.

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE call or visit:

AEA
Brings you the Breakthrough!

G \& K Amateur Supply

2920 East 9th Street
Des Moines, lowa 50316
(515) 262-1745

FACSIMILE
COPY SATELLITE PHOTOS,
WEATHER MAPS, PRESS!
The Faxs Are Clear - on our full size (18-1/2"
wide) recorders Free Fax Guide.
TELETYPPE
RTTY MACHINES, PARTS, SUPPLIES
ATLANTIC SURPLUS SALES
3730 WAUTILUS AVE BROOKLYN

S35 each	CW (Hz)						SSB-AM (KHz)				
	125	250	400	500	600	800	1.8	2.1	2.4	6.0	8.0
Yaesu FT-101/F/FR-101		*		*	*		*		*	*	
FT-301/FT-7B/620		*		-			*		*	*	
FT-901/1012D/107		*		*			*		*	*	
FT-401/560/570		*		*			-	*			
FT-200/TEMPO 1							*	*		*	
R-4C GUF-1 Broad ist IF										*	*
R-4C GUF-2 Narrow	st IF				*	*					
R-4C 2nd IF	-			*			*	*			
Kenwood TS-520/R-599		*	*				*	*			
TS-820/R-820		*	*				*	*			
TS-130S		*	*				*	-			
TS-530S		*	*				*	*			
TS-830S 1st IF		*	*				*	*			
Heath ALL HF		*	*				*	*			
S70 each											
Kenwood TS-830S 2nd IF		*		*							
Collins $75 S-3 B / C$		*									

Money Back Guarantee
Crystal Filters

FREE FILTER!
Buy any 3 filters \& receive your choice of ANY \$35 FILTER Free-of-Charge!
Ask for our 160-page
Test Equipment/
Component Catalog
SHIPPING CHARGES

* ADD \$3.00 ${ }_{\text {* }}^{\text {* COD }}$ fee $\$ 2.00$ additional ***************************)

FUJI-SVEA
P.O. Box 3375

Torrance, CA 90510

RED HOT SPECIALS

AZDEN PCS 30002 m Xcvr.,
AZDEN PCS 3002 m Handheid
AZDEN PCS 280010 m FM Xcvr.
KDK 2025A MkII w/TT Mike JANEL QSA5 2 m Rcvr. Preamp BEARCAT $210 \times L$ Scanner 283.00 KANTRONICS Mini Codereader Pkg TEN-TEC Argosy Xcrr. TEN-TEC Delta Xcyr.. TEN-TEC Hercules Amp. CUSHCRAFT Ringo Ranger ARX2B KANTRONICS Micro-RTTY

Prices subject to change without notice SASE for our Large Specials

BEN FRANKLIN ELECTRONICS

115 $1 / 2$ N. Main Hillsboro, KS 67063 프 316-947-2269

QSK

FULL BREAK-IN WITH YOUR PRESENT AMP

$\$ 59 \frac{50}{\frac{10}{\text { usd }}}$

Full Break-In Amplifier Module

Full break-in (QSK) is increasingly popular among CW operators due to more and more transceivers featuring full break-in.
The problem is how to accomplish full break-in with your present amplifier.
The QSK- - $^{\text {TM }}$ module is the solution. It is simple to install, "plug and play" between the transceiver and the amplifier. With the QSK-1 ${ }^{\text {TM }}$ installed, the transceiver is instantly sensitive to other signals on the band between the transmitted keying pulses. Computerized CW and key board operators will love the QSK-1 ${ }^{\text {TM }}$.
Enjoy conversation-like CW qso's at a full kilowatt.
Post paid continental U.S.A. $\$ 59.50$

Transceiver

Q S K-1

Amp

Amp Supply Co.
73 Maple Dr., Hudson,Ohio 44236 216-656-4364

ORR BOOKS

BEAM ANTENNA HANDBOOK

by Bill Orr, W6SAI
Recommended reading. Commonly asked questions like: What is the best element spacing? Can different yagi antennas be stacked without losing performance? Do monoband beams outperform tribanders? Lots of construction projects, diagrams, and photos. 198 pages. (c) 1977. 1st edition \square RP-BA

Softbound $\$ 5.95$

SIMPLE LOW-COST WIRE ANTENNAS

by Bill Orr, W6SAI
Learn how to build'simple, economical wire antennas. Apartment dwellers take note! Fool your landiord and your neighbors with some of the "invisible" antennas found here. Well diagramed. 192 pages. (c) 1972.
\square RP-WA
Softbound \$6.95

THE RADIO AMATEUR ANTENNA HANDBOOK

by William I. Orr, W6SAI and Stuart Cowan, W2LX Contains lots of well illustrated construction projects for vertical, long wire, and HF/VHF beam antennas. There is an honest judgment of antenna gain figures, information on the best and worst antenna locations and heights, a long look at the quad vs. the yagi antenna, information on baluns and how to use them, and new information on the popular Sloper and Delta Loop antennas. The text is based on proven data plus practical, on-the-air experience. The Radio Amateur Antenna Handbook will make a valuable and often consulted reference. 190 pages. (c) 1978.
\square RP-AH
Softbound \$6.95
ALL ABOUT CUBICAL QUAD ANTENNAS
by Bill Orr, W6SAI
The cubical quad antenna is considered by many to be the best DX antenna because of its simple, lightweight design and high performance. You'll find quad designs for everything from the single element to the multi-element monster quad, plus a new, higher gain expanded quad ($\mathrm{X}-\mathrm{Q}$) design. There's a wealth of supplementary data on construction, feeding, funing. and mounting quad antennas. 112 pages. (c) 1977. \square RP-CQ

Softbound \$4.75
Please add $\$ 1.00$ to cover shipping and handling
HAM RADIO'S BOOKSTORE
GREENVILLE, NH 03048

The Saturn-V receiver is a high quality receiver that enables you to receive many ranges of local microwave signals. It is normally used within line of sight of a transmitting tower in a 50 mile range and is simply attached to your TV antenna mast.
Mcrowave and Satehte Systems

4558 Auburn Blvd., Suite 208
Sacramento, California 95841 (916) 454-2190 -72

what about the big-amplifier power supply?

Design tips for this all-important piece of equipment

You are planning the construction of that ultimate high-power amplifier with the big triodes. Researching the library and ham journals has been completed, but you are still unsure of the power supply. Almost all articles on the subject skim through the power supply, treating it as a necessary evil.

If you think about it, you'll realize that the power supply is far and away the most important part of the amplifier. The initial problems found in a newly completed amplifier generally point to power supply deficiencies. This article will not only provide you with the complete circuit of the supply but will guide you through the complete relay sequence and point out pitfalls, alternatives, and consequences so that you, on your own, can build the supply you need.

You've already decided upon the plate voltage to be used in your amplifier and have procured that ugly thing known as a power transformer. It weighs between 35 pounds (if you're lucky) and 110 pounds $(16-50 \mathrm{~kg})$. The transformer is probably an irritating subject by now, as it won't fit properly into any plans you have formulated. But one way or another you will manage to get it into the supply.

[^8]The purpose of this article is not to tell you how to determine the secondary voltage you'll need for a particular dc loaded voltage, as it never comes out correct anyway. One of the reasons for this is that the transformer used by most hams has a secondary resistance that's too high and a current-carrying capacity that's too low - but is good enough for Amateur intermittent service. The no-load to fullload voltage may vary from 200 to 1500 volts. For more information on this subject, I would suggest you read the Intermittent Voice Service (IVS) rating section in the power supply chapter of the Radio Handbook by Bill Orr, W6SAI.

input requirements

Let's now proceed with what's vital for a reliable power supply. The very first consideration is a negative one. Don't even think of using a supply with 120 -volt line power. Primary power of 240 volts is a must, and a 25 -amp circuit breaker should be incorporated into the power supply chassis or cabinet. I assume that there's a 30 -amp unit in your main breaker box. Other fuses in the power supply are a 2 amp fuse for 120 -volt line overload protection, and a $11 / 2$ amp fuse, generally used in the rf cathode circuit in the rf deck.

Referring to the schematic of fig. 1, you will note a full-wave bridge circuit. This may not be consistent with the secondary voltage of your transformer. You

By Robert E. Bloom, W6YUY, 8622 Rubio
Avenue, Sepulveda, California 91343

may need a voltage doubler circuit, or perhaps the secondary ac voltage is high enough for just a simple full-wave circuit. At any rate, remember that a 2 -kilovolt-ampere RMS transformer will put out only 2 kilowatts of power RMS. The transformer may have a tapped primary to reduce the power-supply voltage for tune up. Remember that the rf-load impedance changes downward when the supply is switched back to the higher voltage. The amplifier's circuit Q now must be brought back up, requiring an increase in plate as well as load capacitance.

If your amplifier uses a ceramic-type tube or tubes, you'll be using a squirrel-cage blower for cooling. Should the blower fail during operation, the chances are that the amplifier tube will too, and that's an expensive failure. Thus an air-flow switch is a must. If the blower fails, the air-flow switch shuts down both the plate and heater voltages, protecting your expensive tube from seal fracture.

filter system

The filter circuit is the next important item in the supply. A swinging choke is nice to have, as it provides better voltage regulation and also provides a means for obtaining an increase in output voltage (by shorting out the choke). However the choke is large and takes up a lot of room, so I'd eliminate it. The filter capacitors can be the high-voltage oil type (they are expensive). Series capacitors are often used. These are most always high-capacitance electrolytic types with a working voltage of 450 volts and a surge voltage rating of 500 volts. The total capacitance of the series string is equal to the value of one capacitor divided by the total number used, assuming all are of the same capacitance rating. The voltage rating of the string is the working voltage of one unit multiplied by the total number in the string.

The total voltage should be at least equal to the
peak voltage of the supply (1.4 times the RMS value) plus a 10 percent safety factor. Each capacitor should be shunted with a 10 to 20 kilohm, 10 -watt resistor - approximately 25 kilohms to 50 kilohms total per thousand volts of supply. These resistors are important: they equally divide the supply voltage across each capacitor, thus preventing any one from exceeding its rating. An additional high-wattage bleeder resistor should be used to bleed the voltage from the capacitors. This resistor should draw about 50 mA of bleeder current. By rule of thumb, use $100-$ watt, 20 kilohms for each 1000 volts of supply voltage.

rectifiers

Most articles in the Amateur handbooks show a string of 1000 -volt, 3 -ampere (30 -amperes surge) rated diodes in series for the high-voltage rectifiers. One determines the peak ac voltage plus a safety factor in each branch of the circuit. These articles suggest a series string of enough diodes to satisfy the voltage requirement. A $250 \mathrm{k}, 1 / 2$-watt resistor and a $0.01-\mu \mathrm{F}, 1000$-volt or higher rating ceramic capacitor are placed across each diode to make up a rectifier stack. The resistors divide the voltage between the diodes, while the capacitor suppresses any spikes or transients.

I've seen this arrangement work satisfactorily in medium-size supplies, but in big supplies I've seen the diodes disintegrate despite the quantity used. I recommend purchasing a 10,000 -volt, 100 -ampere surge commercial stick rectifier. It is so much neater, takes up less space, probably costs the same and one doesn't have to worry. I believe a double bridge stick runs about $\$ 35.00$ (possibly available at Henry Radio*). This is inexpensive when you consider what you've already spent on the amplifier.

inrush current

When power is first applied to the supply, the rectified voltage out of the diodes looks into the filter capacitor bank, which at this first instant, is a short circuit. The impedance of the capacitors increases as they take on a charge. The current surge through the rectifiers at the instant of turn-on may well exceed 50 amperes or more. However, with a series string of 3ampere diodes with a surge rating of only 30 amperes, there is no question as to why things explode. There have been several instances that I know of where the diodes did not blow up; however, the power-line fuse did. The comments heard go something like this: "This has happened before, but when I change the fuse or reset the breaker, the problem goes away." Until, of course, it happens again.

[^9]Whether or not the fuse blows depends upon the line voltage phase at the instant power is applied to the transformer. If you catch this at the top of the power cycle, you transform the maximum peak current and then - instant disaster.
There are a number of circuits that will prevent this from happening. The one I prefer is to place a heating element in series with one side of the highvoltage transformer primary. This added resistance absorbs inrush current. This resistor in my supply (R1 in fig.1) is shorted out by the relay contact of RY4 about a half second after RY2 activates. The timing of this half second is controlled by the time constants of the resistors and capacitor in the base circuit of the 2 N 2222 transistor. I believe these resistor elements can be purchased at most electrical supply houses and are available in both 120 - and 240 -volt versions. A very heavy duty relay (RY2) should be used in the high-voltage transformer primary circuit. A third set of contacts on this relay is used to furnish 24 volts to other parts of the circuit at the proper time.

In addition to the one-half-second delay relay used to short out R1, there is a requirement for a second delay circuit of 90 seconds. This 90 -second delay allows the rf amplifier tube heater to attain the proper temperature before $B+$ is applied.
Most power supplies I have seen use an Amperex time-delay relay that has the physical configuration of a vacuum tube. The circuit I use has an accurate electronic time delay, which can be altered as one pleases simply by selecting the correct resistor value. This circuit uses the well-known 555 timer integrated circuit chip (refer to fig. 2). Varying the value of R4 will change the timing to suit one's requirements.

switching logic and timing

Referring to fig. 1, let's follow carefully through the complete sequence of events that occur when the main power switch is thrown. Activating the main power switch, S 1 , applies 120 -volt and 240 -volt single phase power to the supply. One hundred twenty volts is immediately applied to the 24 -volt dc relay supply and blower. The air flow switch comes on, activating RY1. One set of RY1's contacts apply 120 volts primary power to tube-heater transformer T2, and a pilot light on the rf deck indicates the heaters are on. Resistor R2 in the transformer primary is used to adjust the voltage at the tube heater pins to the correct value. A second set of RY1's contacts makes 24 volts dc available at various relay coils and contacts, including the high-voltage primary relay RY2. RY3's field coil and contacts receive 24 volts, but the relay does not activate at this time.
Twenty-four volts dc are also applied to RY6 by RY1. The 90 -second delay circuit of RY6 is now

fig. 2. A 90 -second time-delay relay circuit makes use of the popular NE-555 timer IC. This circuit allows the amplifier tube heaters to come up to temperature before high voltage is applied.
energized and the countdown begins. When the time has expired, RY6's contacts close, connecting the RY2's coil return to ground, activating it. The two sets of contacts of RY2 apply 240 volts ac to the high-voltage transformer primary through surge resistor R1. The filter capacitors start to charge and as they do, their impedance begins to increase. A third set of contacts of RY2 apply 24 volts to the one-half-second transistor timer delay circuit. In one-half second, the 2N2222 switching transistor conducts and completes the return circuit of the small, highimpedance coil of relay RY3, which in turn activates its small contacts, providing 24 volts to RY4. The heavy paralleled contacts of RY4 close, which shorts out the T1's primary inrush surge current resistor, R1. Full power is then applied to transformer T1. A second pilot light on the rf deck illuminates, indicating that full $B+$ voltage is present at the amplifier tube. However, no resting plate current will show on the plate meter as yet.

A third set of contacts on RY2 made 24 volts dc available at $S 2$. (S 2 is preferably located on the rf panel.) Throwing this switch applies 24 volts de to RY5's field coil. However, RY5 does not activate because the field return must be closed by push-to-talk relay contacts from the transceiver. The two sets of contacts of RY5 apply 24 volts to the input and output antenna relays in the rf amplifier and also short out the amplifier's standby bias resistor. S2 on the rf panel in its OFF state prevents RY5 from being acti-
vated should the push-to-talk circuit in the transceiver be energized. This is necessary so that the exciter (or transceiver) can be tuned without activating the amplifier.

After the exciter has been tuned to frequency, reduce the carrier to zero, and activate $S 2$ on the amplifier panel. RY5 then closes, shorts out the standby cutoff bias, and activates the antenna relay. The plate meter indicates standby plate current and the final amplifier is now ready to be tuned to frequency.

some final suggestions

There are a few points of interest that may not be evident in the schematic. First, it is important to have a 0.002 to $0.01 \mu \mathrm{~F}$ ceramic capacitor of appropriate voltage rating placed at each of the transformer primary terminals to ground. These caps prevent transients, other hash and rf from getting into the supply or onto the power lines.

It is suggested that a good location for RY1 and RY5 would be on or in the rf deck. The 50 -ohm resistor in the ground circuit of the B minus line should really consist of three 50 -ohm resistors placed throughout the B minus circuit. Suggested locations would be: from the bridge rectifier circuit to chassis, from the supply cable connector B minus pin to ground, and one at the same connector point on the rf-deck. The use of several 50 -ohm resistors could save your grid meter should one of the resistors become open.

It is a good idea to use more than one connector pin for B minus and ground connections and to run at least two separate wires for each from the power supply to the rf deck. It could save your life should one of the wires in the cables become open circuited.

Resistor R2 in the primary of tube-heater transformer T2 will probably be less than 30 ohms but should be about 20 watts. The resistance 1 required was about 12 ohms, so I connected it so that two portions of the one resistor were paralleled, increasing its power dissipation. Lastly, the terminal strip shown in my supply is a very handy addition for connecting all of the power wires. That's why I show extra terminals - use it.

The supply described here presently powers a newly completed 8877 amplifier. It is the final result of five separate kW amplifier and power-supply projects, each with its own theme and goals. The first four phases of this long project used Eimac tetrodes, all having screen supplies. Each was individual and different. I've been exceptionally well pleased with the last three phases of the project and as always, the last seemed to be the ultimate.
ham radio

Leading the way-with your help

Communications Engineers and Technicians

At M.V.S. (formerly Microwave Associates Communications Co.) we are seeking talented people to support our rapid growth in the areas of satellite TVRO's, broadcast communications and digital radio equipment.

Current opportunities exist in Engineering, Production and Manufacturing Engineering. Experience required in one or more of the following areas:

- UHF/VHF COMMUNICATION EQUIPMENT AND CIRCUIT DESIGN
 - FREQUENCY SYNTHESIZERS
 - IF/RF FILTER DESIGN
 - MICROWAVE OSCILLATOR AND/OR AMPLIFIER DESIGN
 - MICROWAVE COMMUNICATION EQUIPMENT

Send resume in confidence to Professional Employment, M.V.S., 63 Third Avenue, Burlington, MA 01803. 617-272-3100.

An equal opportunity employer M/F/H.

M/A-COM VIDEO SATELLITE, INC.

M/A-COM VIDEO SYSTEMS, INC. 63 THIRD AVENUE
BURLINGTON MASSACHUSETTS O18O3 (817) 272-3100

 protects solid state communications equipment from damage caused by high-voltage transients entering the antenna system

These transients usually are caused by atmospheric static discharges or nearby lightning strikes.
The new Model 1549 Surge Shunt can be used with both receivers and transceivers having up to 200 watts output.
Convenient UHF type coaxial connections are supplied.

Price is $\mathbf{\$ 2 4 . 9 5}$
The arrester "pill" element has a long life, but can be easily and economically replaced if necessary

Credit-Card buyers may call toll free 1-800-543-5612
 DRAKE
n Ohio or for information call: 1-513-866-2421

R. L. DRAKE COMPANY

540 Richard Street. Miamisburg. Ohio 45342

July 31 thru August 13, 1982
Our 23rd year
Have trouble finding time to study for Upgrading? Do it on your vacation at the
OAK HILL ACADEMY RADIO SESSION in the
Blue Ridge Mountains of Virginia
Two weeks of intensive Code and Theory Study starting at your level.

- Novice to General
- General or Technician to Advanced
- Advanced to Amateur Extra

Expert Instructors - Friendly Surroundings - Excellent Accommodations.

Ham Lab set up for all to use.
"A Vacation with a Purpose'

C PETERS, K4DNJ Director

Oak Hill Academy Amateur Radio Session
Oak Hill Academy Amateur Radio Session
P. O. Box 1461, N. Myrtle Beach, SC 29582
(803) $272-6428$

Name \qquad Call
Address
City/State/Zip

a computer for the blind

Often a computer can be viewed as a huge breadboard wired by software. So if one is experimentally inclined yet blind, the computer would appear to be an ideal playground. Thus I suggested to my friend Randy, N8KL, that we attempt to adapt some micro for his use.

My AIM-65 has a user-alterable vector (DILINK) in the display routine,

fig. 1. The display is echoed in Morse code.
which would make a Morse-code-display routine an easy construction. However, a not insignificant portion of the cost of the AIM-65 is the "smart" LED display and the printer, both useless to the blind.
The machine that caught our attention was the Ohio Scientific OSI 1-P, which in its 8 K BASIC form, can be bought for $\$ 349$ - truly a remarkable value. Once it had been purchased, I tried in vain to wedge into the display routine a Morse-code echo. Next we turned to hardware.

From WD8DTL we borrowed a Xitex MRS-100 Morse-code transceiver and connected it to the OSI as in fig. 1; the computer and Xitex now communicated through TTL levels.

This arrangement was usable but not handy - the computer overran the 32 -character buffer of the Xitex. So, following an idea of WA8LMF, we let the Xitex toggle the clear-tosend of the ACIA, as in fig. 2. If desired you can omit the emitter follower on the OSI board and pull C-T-S down wth a 1.5 k . You must, in any case, break the jumper (W3) connecting pin 24 of the ACIA (U14) to ground.

The start-up procedure is as follows: turn on both the OSI and the Xitex. On the OsI type BREAK, C, RETURN, RETURN, SAVE, return, and Morse will output. Re-
set the Xitex, then on the OSI type $\$$, your desired speed in wpm, then SPACE. The display will now echo in Morse.

One negative note. The TTY output routines exist only in BASIC. You'll need a software assembler to do machine language programming. Randy and I will soon report to you on our success with a Braille printer.
C.R. Mac Cluer, W8MOW

fig. 2. Handshake. Both transistors are 2N2222.
(Continued on page 70)

noise reduction for the SB-303 receiver

If you have a Heathkit SB-303 re--ceiver, you may have noticed a rather high internal noise level. The mods described below will eliminate the noise, although at a sacrifice in audio output power. However, after the mods were made in my set, more than adequate audio was available for headphone operation. To make the modifications, refer to fig. 3 and proceed as follows:

1. Remove the cabinet, turn power on, and listen to the noise level using headphones.
2. Set function switch to STBY, rf and af gain controls to their full counter clockwise stops, and converter switch to VHF1.
3. Set mode switch to USB, AGC switch to FAST, preselector to peaked position on any band, and speaker disable switch to DISABLE position. Now the noise will be most pronounced in your headphones.
4. Remove the two white wires from the AUD OUT terminal, which is located on one of the three terminal strips for the i-f/audio amplifier circuit board on top of the unit. Refer to pictorial 13-14 in the Heath manual. Now the headphones will be completely silent.
5. Connect a 1-watt, 100-ohm resistor between the two white wires just removed and the AUD OUT terminal (fig. 1). Use insulation tubing.

Now you will notice substantial noise reduction through your headphones. You'll also notice a reduction in audio level when you set the controls and switches to their normal receiving positions.
6. Now set the controls and switches back to the positions described in steps 2 and 3. The hum and noise level will still be high. Place the unit upside down.
7. Connect one end of a piece of No.

14 (1.6 mm) hookup wire (about 10 inches or 25 cm long) to the ground terminal of the af gain control, now positioned at the lower left-hand corner. Route the wire along the chassis and connect the other end to the ground terminal of the CW SHIFT phone jack on the rear panel. This ground connection makes a good rfcurrent return and the receiver will become very quiet.
8. Now place the unit back to the normal operation position.
9. Connect a $2000-\mu \mathrm{F}, 50$-volt electrolytic capacitor across the +35 volt terminal and the ground terminal at the top of the chassis on the power supply, BFO, calibrator circuit board side. This completes the modifications.

fig. 3. Modifications to the SB-303 to reduce noise.

My set is now almost completely free from hum and other noise. Operation of the af gain control is smoother, and its $10-o^{\prime}$ clock setting produces ample gain for weak-signal reception.

I checked the set's sensitivity after the modification and found that I could copy signals as low as -20 dB .

Hajime Suzuki, (SWL)

fleg market㗜日

RATES Noncommercial ads $10 ¢$ per word; commercial ads 60¢ per word both payable in advance. No cash discounts or agency commissions allowed.

HAMFESTS Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing) on a space available basis only. Repeat insertions of hamfest ads pay the non-commercial rate.

COPY No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

DEADLINE 15th of second preceding month.
SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

QSL CARDS

QSL's - BE PLEASANTLY SURPRISEDI Order our three colored QSL's in all varieties for $\$ 8.00$ per 100 or $\$ 13.00$ for 200. Satisfaction guaranteed. Samples $\$ 1.00$ (refund able). Constantine Press, 1219 Ellington, Myrtle Beach, SC 29577.
QSLs \& RUBBER STAMPS - Top Qualityl Card Samples and Stamp Info - 50 c - Ebbert Graphics 5R, Box 70, Westerville, Ohio 43081.

QSL CARDS: $500 / \$ 12.50, \mathrm{ppd}$. Free catalogue. Bowman Printing, 743 Harvard, St. Louis, MO 63130.
OSL SAMPLES: 25e. Samcards, 48 Monte Carlo Drive, Pittsburgh, PA 15239.
dISTINCTIVE QSL's - Largest selection, lowest prices, top quality photo and completely customized cards. Make your QSL's truly unique at the same cost as a standard card, and get a better return rate! Free samples, catalogue. Stamps appreciated. Stu K2RPZ Print, P.O. Box 412, Rocky Point, NY 11778 (516) 744-6260.

Foreign Subscription Agents for Ham Radio Magazine

Ham Ractio Austria F. Basti Hauptpiatz 5 A. 2700 Wiener Neustadt Austra	Ham Radio Holtand Postbus 413 NL- 7800 Ar Emmen Holland
Ham Radio Belgium Stereohouse Brusselsesteenweg 416 B. 9218 Gent Belgium	Ham Radio Italy G Vulpetti P. Box 37 122063 Cantu Haly
Ham Radio Canada Box 400 , Goderich Ontario, Canada N7A 4C7	Ham Radio Switzerland Karin Ueber
Ham Radic Europe Box 444 \$ 19404 Upplands Vasby Sweden	Postlach 2454 D. 7850 Loerrach West Germany
Ham Radic France SM Electronic 20 bis Ave des Clanons F. 89000 Auxerre France	Ham Radio UK PO Box63. Harrow Middiesex HA36HS England
Harn Aadic Germany Karin Ueber Posttach 2454 West Germany	Holland Radio 143 Greenway Greenside. Johannesburg Republic of South Africa

CADILLAC OF OSL CARDS, 3 to 4 colors, send $\$ 1$ for samples (Refundable). Mac's Shack, P.O. Box 43175, Seven Points, TX 75143.
OSL ECONOMY: 1000 for $\$ 13$. SASE for samples. W4TG, Box F, Gray, GA 31032.

WANTED - MILITARY SURPLUS RADIOS. We need Wilcox 807 A or RT857/ARC-134, ARC-114, ARC-115, ARC-164, RT-823/ARC-131 or FM622, RT-712/ARC-105, RT-859/APX-72, APN-171, RT-1388/ARN-82, R-1391/ ARN-83, Antenna couplers Collins 490T, CU-1658A, CU1669A. Top dollar paid or trade for new Amateur gear. Write or phone Bill Slep, 704-524-7519, Slep Electronics Company, Highway 441, Otto, NC 28763.

MOBILE OPERATORS: Anteck's Mobile Antennas cover 3.2 to 30 MHz inclusive, with no coil changing. 50 Ohms input. Two models, the MT-1 MANUAL, MT-1RT RE-MOTE-TUNED from the operators position. Uses two Hyd. Pumps and Motors. MT-1 \$129.95, MT-1RT $\$ 240.00$ plus UPS postage. Check your local dealer or write for Dealer List and Brochure. ANTECK, INC., Route One, Box 415, Hansen, ID 83334. 208-423-4100.
VHF-HT's: 4 DuMount HH-300 5 channel $150-170 \mathrm{MHz}$, extra clean units with nicads and charger. Perfect for volunteer fire dept. $\$ 825$. K6KZT, 2255 Alexander, Los Osos, CA 93402. 805-528-3181.

WANTED: Micor and Mstr II Base Stations 406-420 and $450-470 \mathrm{MHz}$. Also 2 and 6 GHz solid state microwave equipment. AK7B, 4 Ajax Place, Berkeley, CA 94708.
reLaX receiving Morse. Converter uses tone or direct inputs, gives ASCII serial, parallel, outputs. Also speed, ratio. \$169. Telecraft Laboratories, Box 1185, E. Dennis, Mass. 02641 .

AMP-LETTER: Devoted to designing, building, and oper ating Amateur Radio Amplifiers. Sample $\$ 2.00$. AMP. LETTER, RR2 Box 39A, Thompsonville, IL 62890.

VHF COMMUNICATIONS MAGAZINE: A quarterly radio magazine, catering to VHF-UHF-SHF technology. Published in spring, summer, autumn, and winter. Subscription - $\$ 20$ per year. Make check payable to: Selecto Inc., 372 Bel Marin Keys, Novato, CA 94947.

TUBES, TUBES wanted for cashortrade. 304TL, 4CX1000A. 4PR60C, 7F7, 7N7, 53, 6L6M. Any high power or special purpose tubes of Eimac/Varian. DCO, 10 Schuyler Avenue, No. Arlington, $N J 07032$. (800) 526-1270.
FOR SALE: Signal/One CX7A, UFO Control, 2 valves and additional spares. Price $\$ 800.00$. Reply to Douglas Cahen, 231 West 46 Street, New York, NY 10036. 212 . 221.5983.

WANTED: Hammerlund HQ145. Call Arnie (212) 925-6048.
"NEW" KI5B Multi-band Dipole 80-10 (WARC), Mini-8 Coax $\$ 17.25 / 100^{\prime}, 450$ Ohm open wire $\$ 14.75 / 100^{\prime}$. Details - Kilo-Tec, P.O. Box 1001, Oak View, CA 93022.

ATLAS 350XL, DD6XL, AUXVFO305 \$850. Icom IC211 \$450. SASE for list. K4TO, Dave Sublette, 1207 Monte Sano Bivd., Huntsville, AL 35801.

FOR SALE: HP 805C slotted line $\$ 45.00$. HP 478A Termis tor mount $\$ 125.00$. HP 416A ratio meter for swept gain SWR $\$ 45.00$. HP 415 SWR meter $\$ 25.00$. Stoddard MN50A $.375-1 \mathrm{GHz}$ field strength meter $\$ 80.00$. AIL 132 noise receiver and preamp $\$ 95.00$. X12, X13, 726 Klystrons $\$ 20.00 .5722$ noise tube $\$ 5.00$. WR 90 Isolator $\$ 20.00$. Kurt Bittmann, WB2YVY, 147 McGaw Ave., Centereach, NY 11720. (516) 585-9775.

CONNECTICUT'S Ham Store - Rogus Electronics, 250 Meriden-Waterbury Turnpike, (Rt. 66) Southington. (203) 621-2252.

ATLAS 350-XL transceiver with digital dial, auxiliary VFO, power supply $\$ 780.00$ FOB. WA6TKT, 1012 OImo Ct., San Jose, CA 95129.
WANTED: Surplus 1.3 kW HF transmitter type FRT-15, Collins TDH or equivalent, or higher power up to 20 kW SSB not necessary. P.J. Plishner, 2 Lake Ave. Ext., Danbury, СT 06810. WA1LDU.
YAESU FRG-7000 receiver, synthesized, mint. $\$ 280.00$ FOB. WA6TKT, 1012 OImo Ct., San Jose, CA 95129.
RTTY JOURNAL-EXCLUSIVELY AMATEUR RADIOTELETYPE, one year subscription $\$ 7.00$. Beginners RTTY Handbook $\$ 5.00$, RTTY Index $\$ 1.50$. P.O. Box RY, Cardiff, CA 92007.

SANTEC HT-1200 with case. Fine. $\$ 235 \mathrm{ppd}$. cont. USA. KD4WA, (803) 279-6513.
CUSTOM EMBROIDERED EMBLEMS - Your design, low minimum. Informational booklet. Emblems, Dept 65, Littleton, New Hampshire 03561. (603) 444-3423.

- Continuous coverage 160 through 10 meters - even new WARC bands.
- All controls up front. No rear panel switches or jumpers.
- Ceramic insulation on all switches, capacitors and feed-through insulators.
- Tap switch for fast band change.

Are solid state finals giving you trouble? Here is a tuner that will match your dipole, inverted Vee, random wire, vertical, mobile whip, yagi, quad, or balanced-linefed antenna. Quickly and easily.

Easy to operate. The front panel function switch selects the auxiliary coax connector (use it for an antenna or for your dummy load), coax fed antenna direct, coax fed antenna through the tuner, single wire, and balanced wire antennas. Wide range " T " network gives low SWR and maximum radiation.

Efficient, dependable. Large air core inductor. Heavy duty balun built in.

Compact size. $8 \times 8 \times 41 / 2$ in. All metal cabinet. Attractive brushed aluminum panel. Black pebble vinyl cover. Convenient control knobs.

Model PT-407 \$149.95 in the U.S. and Canada. Add $\$ 4.00$ shipping/handling. California residents add sales tax.

Free catalog on request.

1924-F West Mission Road Escondido, CA 92025 Phone (714) 747-3343

SATELLITE SYSTEM HEADQUARTERS Don't wait. Get Your TVRO System TODAY!

- Receivers featuring the DEXCEL and Automation Techniques units
- Modulators
- Complete System ready to install from \$2850
- Call today for more information

CHAPARRAL
"Super Feed" feed horn $\$ 85.00$

DEXCEL
120 low noise
amplifiers
$\$ 495.00$

SATELLITE ANTENNAS

MDS POWER SUPPLIES
$\$ 35.00$

1900 to 2500 MHz Microwave Downconverters
Kit . $\$ 28.50$
Assembled.
$\$ 48.50$
ÅLSO AVAILABLE
Commercial M.D.S. System .
... \$169.95
SLOTTED ARRAY ANTENNA . . . $\$ 28.50$

PB RADIO SERVICE

1950 E. PARK ROW • ARLINGTON, TX 76010
CALL ORDER DEPT. TOLL FREE
(800) 433-5169

FOR INFORMATION CALL
(817) 460-7071

17 CONTESTER ${ }^{\text {m }}$
 Computerized Morse Code Keyer
 WITH THE NEW AEA MODEL CK-2, YOU TOO CAN HAVE THE WINNER'S EDGE

The model CK-2 "CONTESTER" is part of the latest generation of famous AEA computerized e'ectronic keyers. Like many of our other innovative electronic products, the Contester ${ }^{\text {m }}$ keyer utilizes a custom AEA microcomputer with proprietary copywritten software. The CK-2 retains virtually all the remarkable features of the CK-1 predecessor such as an automatic serial number generator, large soft-partitioned memory with editing capabilities, etc. In addition, we have added CMOS memory with internal battery keep-alive provisions, automatic repeat mode and a lower price! See it now so you too can appreciate the fine quality of design and craftsmanship that goes into all AEA products.

ACCESSORIES:

AC-2 350 Ma 12 VDC Wall Adaptor. $\$ 9.95$
 DC-2 Mating Rechargeable 8 hour Battery Pack and Charger $\$ 39.95$

PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE call or visit:

TOLL FREE 800-336-8473
TUE-SAT 10AM-4PM EST

EEB

516 Mill Street, N.W.
Vienna, Va. 22180
(703) 938-3350

KNOW FIRST! Ham fanatics, you need The Pink Sheets - twice-monthly award-winning Hot Insider Newsletter Ten pages, acclaimed best! Confidential facts, ideas, in sights, news, technology, predictions, alerts! Quoted coast-to-coast! We print what you don't get elsewhere! \$18.00 annually w/money back guarantee! Free sample - SASE (two stamps) W5YI. Box \#10101•H, Dallas, TX 75207.

PACKET RADIO - Start a network with our hardware and free software using HDLC, ASCII. Smart terminal controller pcb \$30, parts \$112. 1200 baud radio modem pcb $\$ 15$, tested $\$ 70$. Newsletter $\$ 10$. VADCG, 818 Rondeau St., Coquitlam, B.C. Canada V3J 5 Z3

ROSS'S SECRET: Price, selection, and service mean more than size of ad. NEW: Kenwood 130SE \$569.90. Used: FT101B, CW, for $\$ 489.00$. Huge selection, your call will save $\$ \$ \$$ or send .37 stamps for 5 pages used, or .95 stamps for 63 pages new. Closed Monday at 2:00. Ross Distributing Co., Preston, ID 83263. (208) 852-0830.

OUR KEYERS turn difficult DX into logged contacts. SASE for information. Webco, Box 740211. Houston, Texas 77274

HEATH HW-12A 75 m 200W SSB transceiver with fixed/ mobile power supplies, speakers, mikes, and Xtal calibrator $\$ 75$. Wilson T-1405SM $1 \& 5$ watt, 6 -channel 2 m HT with case, charger, mobile mike and 3 antennas $\$ 65$. Heath SB-303 80-10m receiver with SSB and CW filters $\$ 150$. Trac electronic keyer and Vibroplex paddle $\$ 40$. Best offer over the above amounts within 30 days of publication date takes it. John Efird, WB4WIS, 1109 SE Cypress Lane, Palm Bay, FL 32905. (305) 724-9092.

WANTED: Pre-1950 TV sets and old TV Guides. Jefl Kadet, W3CRH, Box 90 -HR, Rockville, MD 20850. (301) 654-1876.
TELETYPE Model 28 ASR with dome reperferater, $\$ 300.00$, model 37 full ASCII KSR with stand, $\$ 325.00$. Central Electronics 200V transmitter, $\$ 275.00$. Tony Sperduti, WB2MPZ, 4071 Fairview Pkwy., Blasdell, NY 14219.

SINCLAIR RADIO LABS MR-344B four cavity 450 MHz duplexers. Mint condition, \$25. Alan Brown, K5MW, Route 4, Box 200-A, College Station, Texas 77840
ICOM/KENWOOD owners. We have a newsletter for you. SASE please Users International Radio Club, 364 H Kilpatrick Ave., Port St. Lucie, FL 33452.

RTTY FOR SALE: Several machines remaining. Model 15, Model 19, 28RO wigearshift, p.s. for ROBOT 800, deluxe 34ASR, $28 \mathrm{KSR}, 28$ keyboard typing reperf, 28TD's, $33 \mathrm{KSR}, 33 \mathrm{ASR}, 35 \mathrm{KSR}$, several demodulators, video RTTY. Model 28 gearshifts, parts and supplies. Send SASE for complete list and prices. Lawrence R. Pfleger, K9WJB, 2600 S. 14th Street, St. Cloud, MN 56301. Phone (612) $255 \cdot 9794$.

WORLDWIDE AWARDS DİRECTORY - Complete information on over 400 different worldwide awards. \$12.95. Larry Kebel, KB@ZP, 736-39th Street, West Des Moines, IA 50265.

MANUALS for most ham gear made 1937/1970. Send \$1.00 for 18 page "Manual List", postpaid. HI-MANUALS, Box R802, Council Bluffs, Iowa 51502

KENWOOD TS-520SE. Very good condition with new finals, 10 meter beam, and accessories. Paul Budlong, KA2IMR. (609) 443-4319.
DON'T GET STRANDED! Battery Watchdog's alarm informs you of excess power drain. \$19.95. J.F. Ratcliff, 3600 Meadow N., Renton, WA 98056. SASE brochure.

ELECTRONIC BONANZA: Police-Fire-Aircraft scanners Bearcat. Regency. Frequency directories. Shortwave receivers. Sony, Kenwood, Yaesu, Panasonic. True discount prices and free UPS shipping in the continental U.S. Write: Galaxy Electronics, Box 1202, Akron, OH 44309.

WANTED: Early Hallicrafter "Skyriders" and "Super Skyriders" with silver panels, also "Skyrider Commercial" early transmitters such as HT-1, HT-3, HT-19, and other Hallicrafter gear, parts, accessories, manuals. Chuck Dachis, WD5EOG, The Hallicrafter Collector, 4500 Russell Drive, Austin, Texas 78745.

WANTED: Collins 32S3 transmitter. Either operational or In-Op. Price and condition to: Cal Moss, KL7HEM, P.O Box 11560, Reno, NV. (702) 329-0019 or 786-1296.
YAESU OWNERS: Join you: International Fox-Tango Club, now in its eleventh year. Calendar year dues still only \$8 US, \$9 Canada, \$12 airmail elsewhere. Don't miss out, get 1982 top-rated FT Newsletters packed with modifications monthly, catalog of past modifications, free advertisements, technical consultation, FT net (Saturdays, $17902,14.325 \mathrm{MHz}$), more. Go Fox-Tango! To join,
send dues to FT Club, Box 15944, W. Palm Beach, FL 33406.

FOR SALE: Seven Micor Hi Band mobiles with all acc'y 100 watt units model T83RTA1200A, 8 channel $\$ 700$ each. Excellent condition. Cal Moss, P.O. Box 11560, Reno, NV. (702) 329-0019 or 786-1296.

HAM RADIO REPAIR, experienced, reasonable, commercial licensed. Robert Hall Electronics, P.O. Box 8363, San Francisco, CA 94128. W6BSH, (408) 292-6000.

FOR SALE: A complete Micor mobile radio, 25.50 MHz , with Systems 90 electronic siren and public address system. All equipment new, never installed. Comes with manuals, cables, covert antenna, 100 watt externa speaker. Best offer. Write: Dean, P.O. Box 3403, APO New York, NY 09009.

RUBBER STAMPS: 3 lines $\$ 3.25$ PPD. Send check or MO to G.L. Pierce, 5521 Birkdale Way, San Diego, CA 92117. SASE brings information.
SELL: Excellent Triton IV digital power supply, blanker, filters. Best offer over $\$ 350$. Also want telegraph sounder in resonator box. Cleveland, KC7IW, 12585 Jones Bar Rd., Nevada City, CA 95959.

HAM-AD-FEST ${ }^{T M}$ - Next 6 issues, $\$ 2.00$. WA4OSR, Box 973, Mobile, AL 36601.
MODERNIZE YOUR TRANSCEIVER - With Protronics RIT kit, for only $\$ 15.90$ postpaid. Kit comes complete with custom potentiometer and simple step by step instructions. Add $\$ 2.50$ for XIT. Visa/MasterCard. Protronics, 20 Monte Vista, Buckley, WA 98321. 1-206-829-0056.

MOBILE IGNITION SHIELDING provides more range with no noise. Available most engines. Many other suppression accessories. Literature, Estes Engineering, 930 Marine Dr., Port Angeles, WA 98362.

SAFETY BELTS. $\mathbf{\$ 3 5 . 0 0}$ and up. Free information. Avatar Co., (W9JVF) 1147 - (H) N. Emerson, Indianapolis, IN 46219.

CONTESTERS: Package of programs designed for the ARRL DX, CQWW, CQWPX and IARU Radio Sport Contests produces scored, duped log, dupe sheet, QSLs and many valuable operator statistics. TRS-80 Model $1,48 \mathrm{k}, 1$ or more discs, MX-80 printer required. $\$ 69.95$ plus tax non-refundable. Sample printout with SASE. P. Chamalian, W1RM, P.O. Box 1188, Burlington, CT 06013.

SALE - HW-16 \$125 (w/crystals \$150). 2 Johnson matchbox tuners, best $\$ 50$, other (needs repair) $\$ 25$. Heath 2 meter mobile amp $\$ 30.10-40$ vertical $\$ 25$. You pay shipping. KA4EBW, Jim Howell, 18 Dan Street, Salisbury, NC 28144.

WANTED: New or used MS and coaxial connectors, synchros, tubes, components, military surplus equipment. Bill Willams, PO \#7057, Norfolk, VA 23509.

VERY in-ter-est-ing! Next 5 issues \$2. Ham Trader "Yellow Sheets", POB356, Wheaton, IL 60187.

CB TO 10 METER PROFESSIONALS: Your rig or buy ours - AM/SSB/CW. Certified Communications, 4138 So. Ferris, Fremont, Michigan 49412; (616) 924-4561.

AFC SEMI-KITS! Stop VFO drift. See June 1979 HR. $\$ 55.00$ plus $\$ 3.00$ UPS. Mical Devices, P.O. Box 343 , Vista, CA 92083.

HAMS FOR CHRIST - Reach other Hams with a Gospel Tract sure to please. Clyde Stanfield, WA6HEG, 1570 N . Albright, Upland, CA 91786.

PURPLE HEART VETERANS: Organizing national Amateur Radio Chapter and Net to be affiliated with Military Order of the Purple Heart, Inc. For information and applications contact Clem Harris, KC5MM (ex WB5VDL), 6110 Pecan Trail Dr., San Antonio, TX 78249. (512) 699-1420.

BUY-SELL.TRADE. Send $\$ 1.00$ for catalog. Give name, address, and call letters. Complete stock of major brands new and reconditioned amateur radio equipment. Call for best deals. We buy Collins, Drake, Swan, etc. Associated Radio, 8012 Conser, Overland Park, KS 66204. (913) 381-5900.

DRAKE READOUTS: Direct digital readouts provide accurate 6 digit trequency display for Drake rigs. Model FR-4 for the "Twins" just \$169.95. Model FR-4TR for the TR-3 and TR-4 series transceivers \$179.95. Include \$2.50 shipping and handling. e-tek, P.O. Box 625, Marietta, Ohio 45750.
REQUEST FOR INFORMATION: The Viroplex Company's records were destroyed by fire and the company has no way to determine the year of manufacture by serial number on their units. I would appreciate hearing from anyone having this kind of information. K6ARE, 1263 Lakehurst Rd., Livermore, CA 94550.

Coming Events
 ACTIVITIES
 "Places to go..."

IDAHO: The Fifth annual Treasure Valley Hamfest sponsored by the Voice of Idaho Amateur Radio Club and the Treasure Valley Radio Association, June 19 and 20, 9 AM Saturday to 3 PM Sunday, Mini-dome, Payette. $\$ 15.00$ pre-registration, $\$ 20.00$ registration at door includes breakfast, dinner and prize tickets. Swap tables, dealers, transmitter hunts, ladies' and children's activities, games, contests, prizes, banquet Saturday, breakfast Sunday, cocktail party Friday evening and picnic Saturday. Talk in on 147.84/24, (WB7NSE/R), 147.7212(K7OJI/R), 146.52 simplex. For information: Samuel K. Sower, N7DOV, 1909 Grant St., Caldwell, ID 83605. (208) 4598132.

ILLINOIS: The Six Meter Club of Chicago's Silver Anniversary Hamfest, Sunday, June 13, Santa Fe Park, 91st and Wolf Road, Willow Springs. Advance registration $\$ 2.00$; $\$ 3.00$ gate. Swappers' row, picnicking, displays, refreshments, AFMARS meeting. First prize: color TV: second: IC-2A or Bearcat 210XL and other goodies. Talkin on 146.52 or K9ONA/R 37-97. Advance tickets: Val Hellwig, K9zWV, 3420 South 60th Court, Cicero, IL 60650.

INDIANA: The Indiana State Amateur Radio Convention in conjunction with the Indianapolis Hamfest and Computer Show, Sunday, July 11, Marion County Fairgrounds, southeast intersection 1-74 and 465 . Inside/outside flea markets. Separate computer show and flea market. Camper hookups available on grounds. Technical forums, club activities, ladies' activities. Gate ticket $\$ 4.00$, for all activities and major prize drawing plus hourly prizes. For information: Indianapolis Hamfest, Box 11086, Indianapolis, IN 46201.

INDIANA: The Lake County Amateur Radio Club's 10th annual "Dad's Day" Hamfest, June 20, Lake County Fairgrounds, Industrial Arts Building, Crown Point. Prizes. Talk-in on $147.84 / 24$ or 52 . Tickets $\$ 2.50$. Mail check to: Lake County ARC, clo Walley Kozol, KA9FDC, 624 N . Rensselear St., Griffith, IN 46319.
MAINE: The third annual Yankee Hamtest, sponsored by the Yankee Radio Club, Saturday, June 19, 9 AM to 5 PM, Oxford County Fairgrounds, Oxford. Admission $\$ 1.50$. Camper hookups available Friday and Saturday nights, $\$ 3.00$ per night. Flea Market, displays, women's activities, swap tables, CW contest, food available, many prizes. Ham of the Year Award. Talk-in by Don Dean, WIBYK on $146.28 / 88$ and 146.52.
MICHIGAN: The annual Monroe County Radio Communications Hamfest, June 13, 8 AM to 3 PM, Monroe Community College, Raisinville Road, Monroe, Tickets $\$ 2.00$ gate, $\$ 1.50$ advance. XYLs and children free. Free parking. Contests, auctions and displays. Plenty of table space. Talk-in on 146.13/73 and 52. For information: Fred Lux, WD8ITZ, P.O. Box 982, Monroe, MI 48161 or call 1 -313-243-1088 Hot Line.

NEW JERSEY: The Raritan Valley Radio Club's 11th annual Hamfest and Flea Market, June 19, 8:30 AM to 4 PM, Columbia Park, Dunellen. Door prizes and snack bar. Admission $\$ 3.00$ sellers; $\$ 2.00$ lookers. Talk-in on $146.625 / 025$ (W2OW) and 146.52 direct. For information call Bob, KB2EF, 201-369-7038.

NEW YORK CITY: The annual Hall of Science Amateur Radio Club's indoorloutdoor, rain or shine Hamfest, Sunday, June 13, 9 AM to 4 PM, Municipal Parking Lot, 80-25 126th Street (1 block off Queens Blvd.), Kew Gardens, Queens. Sellers' donation $\$ 3.00$. Buyers $\$ 2.00$. XYLs, kids free. Walk/talk-in on $\mathbf{1 4 5 . 5 2 0}$. For information KA2DTB, (212) 738-8887.
NEW YORK: The Genesee Radio Amateurs' second annual ARRL approved Batavia Hamfest, Sunday, July 11, 7 AM to 5 PM, Alexander Firemen's Grounds, Route 98, Alexander. Registration $\$ 2.00$ advance, $\$ 3.00$ gate. Flea market $\$ 1.00$. Prizes, exhibits, OM and YL programs, contests, food, overnight camping, boat anchor auction at 3 PM. Fun for all. Talk-in to W2RCX on 4.71/5.31 and 52 simplex. For advance tickets make checks payable to: Batavia Hamfest, c/o GRAM, Inc., Box 572, Batavia, NY 14020.

NEW YORK: The Staten Island Amateur Radio Associa tion's Flea Market, June 12, 9 AM to 3 PM, All Saints Episcopal Church, Staten island. Free admission for buyers. Sellers $\$ 3.00$ per space, own table. $\$ 1.00$ for electricity. Raffle, refreshments. Talk-in on 146.52 and 146.281.88. For information SASE to: George Rice, Jr., WA2AMJ, 480 Jewett Ave., Staten Island, New York 10302.
\&SOTITRON AMTENNAS
THE BEST THINGS come in little packages...

ISOTRON 80 ISOTRON 40 ISOTRON 20

 54 INHIGH $31 \mathrm{IN} . \mathrm{HIGH} \quad 17 \mathrm{IN} . \mathrm{HIGH}$ BIG ON PERFORMANCE SMALL ON SPACE (\#G) BILAL COMPANY
(303) 687-3219

STAR ROUTE
FLORISSANT CO 80816

GLB ID-1 AUTOMATIC IDENTIFIER

- For transceivers and repeaters!
- Small - only $2.3^{\prime \prime} \times 1.7^{\prime \prime} \times 0.6^{\prime \prime}$!
- Low cost - only $\$ 39.95$ (wired \& tested)!
- Easy installation -2 wires plus ground!
- Pots for speed \& amplitude!
- 8 switchable messages!
- Each message up to 2000 bits long!
- Automatic operation!
- Reprogrammable memory!
- Allow $\$ 1.50$ for shipping \& handling

We have a complete line of transmitter and receiver strips and synthesizers for Amateur and commercial use. Write for our catalog.

We welcome MasterCard or VISA

GLBELECTRONICS

1952 Clinton St., Buffalo, N. Y. 14206 1-(716) 824-7936, 9 to 4

STILL MORE USABLE ANTENNA FOR YOUR MONEY PLUS 30 Meters!

Butternut's new HF6V automatic bandswitching vertical lets you use the entire 26 -foot radiator on $80 / 75,40,30,20$ and 10 meters (full quarterwave unloaded performance on 15 meters). No lossy traps. Butternut's exclusive Differential Reactance Tuning ${ }^{\text {'w }}$ circuitry uses rugged ceramic capacitors and large-diameter self-supporting inductors for radiation efficiency and DX performance unmatched by conventional multiband designs of comparable height

For complete information concerning the HF6V \& other Butternut products see your dealer or write for our free catalog

GARY AIRPORT
BOX 356E Rte. 2 SAN MARCOS, TX 78666

NORTH DAKOTAMMANITOBA: The 19th annual Interna tional Hamfest, July 10 and 11, International Peace Gar dens between Dunseith, North Dakota, and Boissevain, Manitoba, at the Canadian Pavilion on the north side of the Gardens. Excellent camping available. Transmitter hunts, mobile judging, CW and QLF contests, flea markets, seminars, Saturday night dance, Sunday morning breakfast, lots of prizes and more. For information contact WDOGMD or WDØGRC.

OHIO: The 8th annual Hall of Fame Hamfest, Sunday. July 18, Nimishillen Grange, 6461 Easton Street, Louisville. Tickets $\$ 2.50$ advance, $\$ 3.00$ gate. Under 16 free Flea market opens 9 AM. Reserved tables available for rent. Awards, forums, food, dealers, XYL activities and more. Mobile check-in on 146.19/79, 146.52/52 simplex and $147.72 / 12$. For tickets/information: WA8SHP, 10877 Hazelview Avenue, Alliance, Ohio 44601. (216) 821-8794.

OHIO: The Lancaster and Fairfield County Amateur Radio Club's annual Lancaster Hamfest, Sunday, June 20, 9 AM to 5 PM, Fairfield County Fairgrounds, Lancaster. Tickets $\$ 2.00$ advance, $\$ 3.00$ door. Hourly drawings, refreshments available. Flea market tables available or bring your own. Talk-in on $147.03 / 63$ or 146.52 simplex. For information: Box \#3, Lancaster, Ohio 43130.

OKLAHOMA: The 25 th reunion of the VHF Radio Amateurs who were members of the Oklahoma Central 6 Meter Club, later known as the Central VHF Club. Please send name, address and present call, and whether you intend to attend the reunion, to: T.W. Stevens, W5VCJ, P.O. Box 976, Edmond, OK 73083. The reunion will be held at the same time but not in conjunction with the Oklahoma City Ham Holiday on the last weekend in July.

OREGON: Lane County Ham Fair, July 17 and 18, Oregon National Guard Armory, 2515 Centennial, Eugene. Doors open 8 AM. Swap and shop tables $\$ 5.00$. 2 meter bunny hunt, women's activities, children's corner, computer demos, all day snack bar, free parking for RVs, no hookups. Saturday potluck supper. Grand Prize: Icom 730 low band Mobile rig and many other prizes. Tickets purchased before July 1 receive one extra drawing ticket free. Talk-in on 146.28/88, 147.86/26 and 52/52. 3.910 HF. For tickets send checks to Eunice Brown, WA7MOK, 2456 Corral Ct., Springfield, OR 97477. Phone 747-7939.

PENNSYLVANIA: Harrisburg annual Firecracker Hamfest, Sunday, July 4, sponsored by the Harrisburg Radio Amateur Club, Shellsville VFW Picnic Grounds, exit 27, interstate 81, north of Harrisburg. Talk-in on 16/76 or simplex 52/52. Tables available or bring your own. Admission: $\$ 3.00$. XYL and children free. Tailgating $\$ 1.50$. Door prizes and Grand Prize drawings. For details: KA3HZW, 131 Livingston Street. Harrisburg, PA 17113 or phone (717) 939-4957.

PENNSYLVANIA: The Nittany Amateur Radio Club Ham Festival, July 10, 8 AM to 4 PM. First prize: Radio Shack color computer; second prize: reconditioned Tempo 2meter amplifier; many more prizes. Talk-in on 146.161.76, $146.25 / 85$ and 146.52 . Tickets $\$ 3.00$; tailgating/tables $\$ 5.00$. Information from NARC, P.O. Box 614, State Col. lege, PA 16801.
PLAYBOY RESORT at Great Gorge, McAfee, NJ - the place to relax and enjoy - see all the manufacturers' and dealers' exhibits - attend the vital and informative forums - renew old acquaintances and makenew ones all at the ARRL Hudson Division Convention, October 30-31. Send SASE now for complete details to HARC, Box 528, Englewood, NJ 07631.

SOUTH DAKOTA: The annual South Dakota Hamfest, sponsored by the Black Hills ARC, July 10 and 11, Surbeck Center, SD School of Mines \& Technology, Rapid City. Pre-registration $\$ 7.00 ; \$ 8.00$ door. Prize drawing for pre-registrants. Free tables for flea market. Forums, contests, picnic, prizes. W0BLK call-in 34/94. For information: Rudy, WB0PWA, Black Hills ARC, 4822 Capitol, Rapid City, SD 57701.

WEST VIRGINIA: Hamfest WV's "biggie". TSRAC Wheeling WV Hamfest, Sunday, July 25, 9 AM to 4 PM. Major and door prizes, indoor dealer displays, flea market, auction, refreshments. Park attractions - family affair. Reasonable motel accommodations, catch WWVA Jamboree, Saturday night. Donation \$2.00, children 12 \& under free. Contact: TSRAC, Box 240, RD 2, Adena, OH 43901.

WISCONSIN: Swapfest ' 82 sponsored by the South Milwaukee Amateur Radio Club, Saturday, July 10, 7 AM, American Legion Post 434, Oak Creek. Tickets $\$ 2.00$. Buy, sell, swap. Refreshments, prizes, camping. Happy Hour (free beer and soda). First prize $\$ 100$; second prize $\$ 50$ plus hourly prizes. Talk-in WA9TXE/9 146.94. For details and a map: South Milwaukee Amateur Radio Club, P.O. Box 102, South Milwaukee, WI 53172.

BRITISH COLUMBIA: Hamfest ' 82 sponsored by the Maple Ridge ARC, July 10 and 11 , Maple Ridge Fairgrounds, 30 miles east of Vancouver. Hams $\$ 5.00$; nonHams over 12 years $\$ 2.00$. Food, prizes, swap \& shop, displays, bunny hunt, ladies' and children's programs and much more. Main prize Kenwood TR-2500. Camper

4335 E. 5TH STREET ANCHORAGE.ALASKA 98504 (907) 338-0340

DEPT HR

CHIP CAPACITORS

$\begin{array}{llllllllllll}12 . & 22 & 33 . & 47.68 & 10.18 .22 .27 & 47 & 100 & 120 \\ 180 & 220 & 270.330 .390 & 470 & 560 & 680 & 820 & 1 \mathrm{~K} & 12 \mathrm{~K}\end{array}$ 18K $39 \mathrm{~K} \quad 8.2 \mathrm{~K} \quad 10 \mathrm{~K} \quad 100 \mathrm{~K}$
 4 GHZ

COAX CONNECTORS				
BNC CHASSIS MOUNT SQUARE FLANG BNC PLUG FOR RG-58				
SMA	CHASSIS	MOUNT	SQUARE FIA	FLANGE
	CHASSIS	MOUNT P	PLUG SO F	FLANGE
SMA	CHASSIS	MOUNT	STAIP-LINE	NE TAB
SMA PLUG FOR RG-58				
SMA PLUG FOR RG-174				
SMA PLUG FOR 141 SEMI RIGID				
TYPE N CHASSIS MOUNT SQUARE FLANGETYPE PLUG FOR RG-9/RG-8				
TYPE N DOUBLE MALE				
TYPE N FOR 141 SEM -RIGID				

VILT 27 GHZ 10 $32 G \mathrm{HZ}$ MIN POWEA OUT 10 MW

TEFLON CIRCUT BOARD DBLSIDED $10 Z$ APPROX $325^{\circ}=50^{\circ}=0312$

FEED-THRU GAPACITORS 1000 PF SOLDER TYPE
LEADLESS CERAMIE CAPACITORS
1000 PF NO WARRANTE ON SFMCONOUCTORS

OPEN AT 8 PM EST CLOSED 8PM PST ORDERS ARE POSTAGE PAID COD - VISA - MASTERCHARGE

R-4C+SHERWOOD STLL THE FNEST COMBINATION
 600 HZ LOW-LOSS ist-IF CW FILTER. Improve early-stage

 selectivity. Eliminate high pitched leakage around 2nd-IF filters Improve ultimate rejection to 140 dB . Eliminate strong signals CF-600/6: $\$ 80.00$. New PC board relay switch kit: $\$ 45.00$. 1st-IF SSB FILTERS. 140 dB ult. rei. CF-2K/8: $\$ 150.00$ pair 5 kHz 1st-IF FILTER. Reduces hi-pitched QRM. CF. $5 \mathrm{~K} / 8: \$ 80.00$ 16-POLE R-4C SSB! Plug-in filter. Unexcelled skirt selectivity 1800 Hz at $6 \mathrm{~dB}, 2400 \mathrm{~Hz}$ at 60 dB . CF. $2 \mathrm{~K} / 16: \$ 135,00$. 250, 500 and 1000 Hz 8-POLE 2nd-IF PLUG-IN FILTERS CF-250/8, CF-500/8 and CF. $1.0 \mathrm{~K} / 8: \$ 80.00$PC Board mod. and switching kits. Special AM filters/detector Filters also for R-4 (B), R-7, TR-7, TR-4, Signal/One, Atias Add $\$ 3$ shipping per order; $\$ 6$ overseas air.

Sherwood Engineering Inc.
1268 South Ogden St.
Denver, Colo. 80210
(303) 722-2257

VISA

SYNTHESIZED
SIGNAL GENERATOR

- Covers 100 to 185 MHz in 1 kHz steps with thumb wheel dial - Accuracy 1 part per 10 million at all frequencies - Internal FM adjustable from 0 to 100 kHz at a 1 kHz rate - Spurs and noise at least 60 dB below carrier - RF output adjustable from $5-500 \mathrm{mV}$ at 50 ohms • Operates on 12 Vdc (a) $1 / 2 \mathrm{Amp}$ - Available for immediate delivery • $\$ 349.95$ plus shipping - Add-on Accessories available to extend freq range, add intinite resolution, voice and sub-audible tones, AM, precision 120 dB calibrated attenuator - Call for details - Dealers wanted worldwide

OPERATING EVENTS

"Things to do..."

JUNE 19: The Cape Fear Amateur Radio Society of Fayetteville, NC, will operate a special event station, club call WB4YZF, from the 14th annual National Hollerin' Contest, Spivey's Corner, NC. Operation will be on 7235 MHz between $1300-2100$ UTC. For a special certificate send QSL and $\$ 1.00$ US to: Sonny Bartron, Rt. 2, Box 532 , Fayetteville, NC 28301.

JUNE 26 \& 27: A special events day of the Tri-City Amateur Radio Club will be held at the Goodnoe Wind Turbine Site, ten miles east of Goldendale, WA. The power usage is sponsored and special permission granted from NASA, Boneville Power Administration, Department of Energy, and Boeing Aircraft Co.

JULY 3 \& 4: The Hannibal Amateur Radio Club's second annual special certificate from the National Tom Sawyer Days celebration in Mark Twain's boyhood home town, Hannibal, MO. House 1500-2100 UTC both days. Frequencies: Phone 7.245, 14.290, 21.400, 28.770. CW 7.125 and 21.125. The club is also observing its 50th anniversary. For a certificate, send large SASE and QSL card confirming contact to: Hannibal Amateur Radio Club, WOKEM, 2108 Orchard Avenue, Hannibal, MO 63401.

JULY 4: Commemorative Amateur Radio Station, Bonfield, Illinois, Centennial Celebration. Frequencies: $223.50,144.250,146.520,50.115,28.600,21.400,14.325$, $7.275,3.8-3.9$. SASE to WB9WOC, QSL Manager.

JULY 4 \& 5: The High Plains ARC will have a special events station K7YPT at historic Fort Laramie, Wyoming. starting 0000Z, July 4 to 0000Z, July 5. Frequencies: Phone 28550, 21300, 21360, 14250, 14300, 7250, 3850, 3900 . CW 50 kHz up from lower band edge. Novice middle of band. For a special certificate for QSL send large SASE to: K7YPT, P.O. Drawer T, Torrington, WY 82240.

October 31 to november 10: The Penn Wireless Association is sponsoring a HAM DXPEDITION AT SEA aboard the Royal Caribbean Line's Sun Viking. All hams are invited to participate in this exciting adventure. For more information contact: Bill Buckley, WA2ALG, 1158 Oxford Valley Road, Levittown, PA 19057. See April HR, page 95.

IF WE WERE YOU

MODEL 6154 TERMALINER
I'D BUY FROM US
YOUR INQUIRY OR ORDER WILL GET OUR PROMPT ATTENTION AUHORzEO Jinill oisrauroe

associates
115 BELLARMINE ROCHESTER, MI 48063

CALL TOLL FREE
800-521-2333
IN MICHIGAN $313-375-0420$

Q. Don't lightning protectors "wear out"? How would this affect performance?
A. They all do, eventually. That's why we use the unique Arc-Plug ${ }^{\text {™ }}$ cartridge. "How soon" is a function of the number and severity of discharges. But the problem is, most devices fail "open" so you don't know you've lost your protection. The Arc-Plug in our Transi-Trap ${ }^{\text {w }}$ "shorts" and provides protection until replaced. A competitive device claiming longer life has a firing response time of one microsecond which is 10 times slower than ours. and they have no replacement capability.
Q. Why don't you ground the coax shield in the protector?
A. Grounding the shield would make it common with the arc discharge. which could flow to the chassis. causing serious damage. We use "isolated ground" which routes the discharge directly to ground. Our instruction sheet recommends that you ground your shield at the point of entry to the building for maximum protection.

Q. I've seen comparisons showing total discharge amp capability. What about that?

A. Discharge amp capability can be a misleading subject since it might imply direct hit protection. Since certain direct hits could consist of nearly $100,000 \mathrm{amps}$, which might even destroy a house, we'll stay out of this comparison. Transi-Trap protectors are 100% tested to provide near-hit protection for solid state components, with a firing response time faster than any air-gap design.

AlphaDelta Transi-Trap Protection Systems are designed to reduce the hazards of lightning-induced surges These devices, however, will not prevent fire or damage caused by a direct stroke to an antenna or other structure.

alphadelta comulications

P.O. Box 571, Centerville, Ohio 45459 (513) $435-4772$

HATRY'S
Your One Stop Shopping Center

TEN-TEC

OMNI
IC 4AT 299.00

DRAKE

DRAKE TR-7A
\$1699
TEMPO
HANDHELDS
VHF S1, S5, and S2
UHF S-4
144, 220 and 440 MHz Full line of accessories and amplifiers

MFJ

Everything from KEYBOARDS to OSCILLATORS
MIRAGE
VHF \& UHF Amps

ham radio TECHINIOUES Bu Prizi

Spring is on the way, and with the advent of milder weather the thoughts of many Amateurs turn toward antennas. A lot of interesting antenna experiments and tests should be underway this summer. And all of them will probably include the use of an SWR meter to help determine antenna operation.

My discussion of the SWR meter and its problems in the April column raised several inquiries concerning an accuracy test for the SWR meter. How can the owner of such a device determine if the readings he gets are meaningful? Fortunately, there is a simple and inexpensive test procedure that will determine the excellence of any SWR meter. You can run the test in a few hours' time.

Consider the situation in fig. 1. Three SWR meters are plăced at random spots along a transmission line to an antenna. At any given value of SWR the three devices should provide the same indicated reading. Does this happen in real life? Probably not. In addition to inherent error mechanisms such as meter movement and
the linearity of the diodes in the SWR indicators, the directivity of the individual couplers in each SWR meter enters the picture. By directivity I mean the ability of the coupler to discriminate between opposite direc-

fig. 1. Three identical SWR meters placed at random spots along a transmission line should give the same indication regardless of the SWR on the line. Does this happen in real life? Probably not. The ability of the SWR meter to discriminate against the reverse-traveling wave determines to a large extent the accuracy of the readings. (By this I mean the ability of the "forward" indication to discriminate against the "reverse" indication, and the ability of the "reverse" indication to discriminate against the "forward" indicationl. This discrimination is termed directivity.
tions of rf power flow. Since most simple SWR meters have both a "forward" and a "reverse" coupler built in them, the directivity factor assumes great importance.

A sketch of a representative SWR meter showing the two couplers is given in fig. 2.

the SWR meter test

The idea shown in fig. 1 is a good check for an SWR meter. Move the meter along the transmission line and note any change in indicated SWR. This, however, is a cumbersome idea that is hard to accomplish in most cases, and the results may not be reproducible because of the interaction between the field of the antenna and the outer shield of the transmission line.

A more practical test for the SWR meter is shown in fig. 3. A deliberate mismatch is measured through various lengths of transmission line. A dummy load is used to eliminate the interaction between antenna field and the line. The degree of mismatch SWR is known and repeatable. And

fig. 2. Simple SWR meter uses two direction couplers (A and B) to sense forward and reflected wave components in a transmission line. Reflected components of voltage and current are 180 degrees out of phase while the forward components of voitage and current are in phase. Inductive (M) and capacitive (C) pickup between transmission line and pickup line provide voltage that is rectified by diodes (CR1,CR2) to provide "forward" and "reflected" readings on meter M. Couplers are terminated in a common resistor, R.
best of all, the test is easy to run and inexpensive to set up.

Note that a second harmonic filter is required between the signal generator (your transmitter or exciter) and the test setup. This is because the second harmonic energy, small though it may be, is sufficient to disrupt the results of the investigation. See fig. 4.

The mismatched load is made up of a 50 -ohm dummy load and a quarter-
wave section of 75 -ohm coaxial line. The line section serves as an impedance transformer, providing a terminal impedance of 112.5 ohms at the open end. If this value of load is measured through a 50 -ohm SWR meter, the indicated SWR should be the ratio of the load to the line impedance, or:

$$
\frac{112.5}{50}=2.25-t o-1
$$

The test is conducted as shown in the illustration. The mismatch load is measured directly, and then remeasured through various lengths of 50ohm line. If the SWR meter is perfect (and none of them are) the SWR reading will remain constant at each observation point. The amount of variation in the indicated SWR reading from the true reading determines the excellence of the SWR meter.

preparing for the test

It is understood that the test is run at 14.0 MHz in this example. The $75-$ ohm mismatch line section is made from an 11-foot 7 -inch (3.54-meter) section of either RG-59B/U or RG11/U. (Other versions of RG-59 coax are not suitable, as their impedances may be as low as 73 ohms.)

Suitable connectors are placed on each end of the line and line length is measured from tip to tip of the center conductor. Next, three sections of 50 -ohm line are made up. Two are one-eighth-wavelength long (5 feet 9-
$1 / 2$ inches, or 1.77 meters) and the third is one-quarter-wavelength long (11 feet 7 inches, or 3.54 meters). Again, suitable plugs are placed on the line and length is measured from tip to tip of the center conductor. An accuracy of plus-or-minus one-half inch is satisfactory. Suggested cable types are RG-8A/U, RG-213/U, RG$58 / \mathrm{U}$, or RG-58C/U. Don't use the old cable designation of RG-8/U or "RG-8-type" cable. That usually runs close to 52 ohms impedance.

When the cables are complete, label the 75 -ohm cable A, the two short 50 -ohm cables B and C, and the long 50 -ohm cable D. You can make

fig. 4. A harmonic filter for 14 MHz . An attenuation of about 30 dB is provided for the second harmonic. Each capacitor (C) is $\mathbf{2 2 0} \mathbf{~ p F}$. Each inductor (L) is $0.55 \mu \mathrm{H}$ seven turns, No. $16(1.3-\mathrm{mm})$ wire $3 / 4$-inch $(19-\mathrm{mm})$ diameter. $7 / 8$ inch ($22-\mathrm{mm}$) long. Suitable coaxial connectors are placed on the ends of the box (J1, J2) and the filter sections are separated by a shield plate placed across the middle of the box. Filter wire passes through a small hole drilled in the shield.

fig. 3. A representation of the test procedure. At the left is the 112.5 -ohm dummy load made up of a 50 -ohm load and a quarter-wave section of transmission line acting as an impedance transformer. At the right is the test setup for the swr meter. See fig. 4 for filter data. The test arena is the area between the vertical dashed lines. Five tests are conducted: One test requires no interconnecting lines, and the other four tests require line sections representing 1/8-, 1/4-, 3/8-, and 1/2wave line sections.

fig. 5. Representative SWR readings recorded with a "Brand X" SWR meter as various cable lengths are added between the meter and an unmatched load, as shown in fig. 3. Actual value of SWR in each case is 2.25-to-1.
up paper labels and tape them directly over the jacket of the lines with transparent tape.

The last step is to make up the second harmonic filter. A suitable filter is shown in fig. 4. It is made of airwound coils and mica capacitors and built in a small metal box. A shield is placed between the filter sections, as shown, and suitable coaxial receptacles are placed on the ends of the box. The filter is rated for a power level of about 150 watts.

running the test

Test number 1 consists of measuring the SWR directly at the end of cable A. Make up a suitable chart and record all your readings on it. Later, a graph can be drawn from the chart data (fig. 5).

For test number 2, cable B is added between the SWR meter and cable A, and an SWR reading is taken and logged. Test number 3 consists of using cables B and C in series. Test number 4 consists of cables B and D in series. Test number 5 consists of using cables B, C, and D in series. The numbers in fig. 5 were derived by testing a cheap, imported SWR meter.

What you have just finished doing, in effect, is to add eighth-wavelength sections of coax line between the "mismatch" line section and the SWR meter. This is electrically equivalent to moving the SWR meter along the line, as discussed in fig. 1.

results of the test

A representative test on two SWR meters is charted in fig. 6. The second instrument is a Bird 43 coupler,

The variations of the indicated reading from the true SWR values are obvious and startling!

This graph explains one of the reasons that the indicated SWR will vary with the placement of the instrument in the line. It also gives lie to the popular but incorrect belief that changing line length changes the SWR on the line! Changing line length changes the indicated SWR reading to a degree, depending upon the accuracy of the SWR meter, but the actual SWR on the line remains the same. (It is true that actual SWR will decrease with line length due to line attenuation, but this is another matter and may be ignored in the high-frequency spectrum. Most Amateur handbooks provide tables of line attenuation for those interested in pursuing that subject further.)

interpreting the results

The graph shows that even an excellent SWR coupler such as the Bird

fig. 6. Using the data in fig. 5, plus a second test run on a Bird 43 coupler. produces the chart shown. The indicated SWR measurements (\mathbf{Y}-axis) are plotted against cable length (X -axis). An additional section of cable was used to extend the plot to $5 / 8$-wavelength. Note that the plot is not symmetrical about the true SWR value.
provides a reading that varies with line length to a small degree. The inexpensive "Brand- X " SWR meter, however, is not to be trusted. The indicated reading varies between a low value of 1.5-to-1 and a high value of 3.35-to-1 for a true SWR value of 2.25-to-1. You can get almost any reading you wish by merely moving the instrument back and forth along the line!

The test results are based upon a single frequency measurement (14.0 MHz) and the variations in SWR reading change with frequency, growing worse as the frequency of operation is raised. This is why most cheap SWR meters provide gibberish at 10 meters and higher. The Bird coupler, on the other hand, has frequencyrated, plug-in detectors which provide good accuracy in the VHF and UHF regions.

The indicated SWR excursions determined by the just-completed tests can be used to determine the directivity factor of the SWR meter (directional coupler), with the aid of fig. 7. (This drawing is reproduced, with thanks, from the November, 1959, issue of QST. It was in an article entitled "Possible Errors in V.S.W.R. Measurement" by Louis D. Breetz, W3KDZ/W8QLP.)

The directivity is found by locating the maximum excursions of SWR on the graph you have made and finding them on the Y -axis (vertical) of fig. 7. For example, the Bird Coupler has a SWR excursion of 2.35-to-1 to 2.1-to-1. Find the true value of SWR (2.25-to-1) on the X -axis (horizontal) and proceed upward until you cross the points you have located on the Y axis. This indicates a directivity of almost 40 dB , which is excellent.

On the other hand, the indicated maximum SWR excursions of the "Brand-X" SWR meter are 3.35-to-1 and $1.5-$ to-1. Locating these points on fig. 7 indicates a directivity of about 15 dB , which is very poor!

As you can see from an inspection of your graph, and also fig. 7, a directivity of about 40 dB is required to

fig. 7. A reproduction of the chart in the November, 1959, issue of QST, showing the relationship between true SWR and measured SWR. A good directional coupler has a directivity figure of close to 40 dB . (Reprinted courtesy of QST magazine).

STEP UP TOTELREX Professionally Engineered Antenna Systems Single transmission line "TRI-BAND" ARRAY"

 tinues to outperform all competition... and has for two decades. Here's why Telrex uses a unique trap design employing 20 HiQ 7500 V ceramic condensers per antenna. Telrex uses 3 opti-mum-spaced, optimum-tuned reflectors to provide maximum gain and true F/B Tri-band performance.

For technical data and prices on complete Telrex line, write for Catalog PL 7

give a meaningful SWR reading, and even that degree of excellence allows an error of about 5 percent in the reading. Note, too, that the indicated SWR curve plotted for both instruments is not symmetrical about the true SWR value, further complicating interpretation of data to a degree.

SWR meter wrap-up

This simple experiment illustrates that only a good SWR meter (or directional coupler, if you wish) will provide meaningful SWR numbers. My April column pointed out some of the pitfalls in making SWR measurements. This column explores the limitations of the SWR meter itself. Armed with this information, it should be possible for any Amateur to make meaningful SWR measurements.
(Note: Thanks to Willy Sayer, WA6BAN, for deriving this test setup and for making the measurements on the two SWR meters.)

COAXIAL CABLE SALE

POLYETHYLENE DIELECTRIC

AG213 noncontaminating 96% shield mil spec $\quad 36^{\circ} / \mathrm{tt}$ RG214/U double silver shield 50 ohm . $\$ 135 / \mathrm{ft}$. RG142/U double siviver shield 50 ohm Tefion... $\quad 95^{\prime /} / \mathrm{H}$
RGI 96% shield 1 onm mil s
\star RG-8/U 96% shield Mil Spec ($\$ 27$
RG62A/U 96% shield mil spec 93 onm RG-55B/U double shield (RG-58 size) 50 ohm RG58U mil spec 96% shield

LOW LOSS FOAM DIELECTRIC RG-8X (Mini 8) 95% shield ($\$ 14.95 / 100$) or $17 \% /$ /t

RG-8/U 97% shield 11 gauge (equiv. Beiden 8214
RG58U 80\% shield
RG58U 95% shield

Rotor cable 2.18 ga 6.22 ga .
CONNECTORS MADE IN USA Amphenol PL 259
PL-259 push-on adapter shell
PL.259 \& SO-239
Double Male Connector
PL-258 Double Femaie Connector
1 It . patch cord w/RCA type plugs each end
Reducer UG-175 of 176
UG-255(PL- 259 to BNC)
ElDow (M359) UHF ElDOW
Elbow (M359) U
25 $/ 11$

F59A (TV type
UG $210 / \mathrm{O}$ U yype N Male tor RG8. Amphenol
UG-88C/U BNC Male tor RG-58. Amphenol.
UG 273 BNC-PL 259 Amphenol
$3 / 16$ inch Mike Plug for Collins etc. (cutoff)
Call or write for Free Catalog

shipping

Cable - $\mathbf{\$ 3 . 0 0}$ 1st 100 ft ., $\mathbf{\$ 2 . 0 0}$ each add'l 100 ft . Connectors - add 10\%, $\mathbf{5 2 . 5 0}$ minimum. COD add \$1.50. Florida Residents add 4\%.
NEMAL ELECTRONICS
5685 SW 80th St., Dept. H, Miami, FL 33143 Telephone: (305) 661-5534

QUALITY VHF/UHF KITS

 AT AFFORDABLE PRICES Call or Write for FREE CATALOG (Send \$1,00 or 3 IRC's for overseas mailing) See our full page ad in 73 Magazine

FM TRANSCEIVERS
FM \& AM RECEIVERS
FM EXCITERS \& XMTRS
FM \& SSB POWER AMPS
RECEIVING \& TRANSMITTING CONVERTERS FOR FM \& SSB LOW-NOISE PREAMPS
CWID's, COR's, RF TIGHT CASES
For Repeaters, Links, OSCAR,
ATV, Mobile, Base, Scientific

hamironics, inc.

65-U MOUL RD. •HILTON, NY 14468 Phone: 716-392-9430
Hamtronics ${ }^{*}$ is a registered trademark

California

C \& A ELECTRONIC ENTERPRISES 22010 WILMINGTON AVE.
SUITE 105
CARSON, CA 90745
213-834-5868
Not The Biggest, But The Best -
Since 1962.

JUN'S ELECTRONICS
3919 SEPULVEDA BLVD.
CULVER CITY, CA 90230
213-390-8003 Trades
714-463-1886 San Diego
The Home of the One Year Warranty

- Parts at Cost - Full Service.

SHAVER RADIO, INC.
1378 S. BASCOM AVENUE
SAN JOSE, CA 95128
408-998-1103
Azden, Icom, Kenwood, Tempo,
Ten-Tec, Yaesu and many more.

Connecticut

HATRY ELECTRONICS

500 LEDYARD ST. (SOUTH)
HARTFORD, CT 06114
203-527-1881
Call today. Friendly one-stop shopping at prices you can afford.

Delaware

DELAWARE AMATEUR SUPPLY
71 MEADOW ROAD
NEW CASTLE, DE 19720
302-328-7728
Icom, Ten-Tec, Swan, DenTron, Tempo, Yaesu, Azden, and more. One mile off l-95, no sales tax.

Florida

AMATEUR ELECTRONIC SUPPLY 1898 DREW STREET
CLEARWATER, FL 33515
813-461-HAMS
Clearwater Branch
West Coast's only full service
Amateur Radio Store.

AMATEUR ELECTRONIC SUPPLY

621 COMMONWEALTH AVE.
ORLANDO, FL 32803
305-894-3238
Fla. Wats: 1 (800) 432-9424
Outside Fla: 1 (800) 327-1917

AMATEUR RADIO CENTER, INC.
2805 N.E. 2ND AVENUE
MIAMI, FL 33137
305-573-8383
The place for great dependable names in Ham Radio.

RAY'S AMATEUR RADIO
1590 US HIGHWAY 19 SO.
CLEARWATER, FL 33516
813-535-1416
Your complete Amateur Radio and Computer Store.

Indiana

THE HAM SHACK

808 NORTH MAIN STREET
EVANSVILLE, IN 47710
812-422-0231
Discount prices on Ten-Tec, Cubic, Hy-Gain, MFJ, Azden, Kantronics, Santec and others.

Kansas

ASSOCIATED RADIO

8012 CONSER, P. O. BOX 4327
OVERLAND PARK, KS 66204 913-381-5900
America's No. 1 Real Amateur Radio
Store. Trade - Sell - Buy.

Maryland

THE COMM CENTER, INC.

LAUREL PLAZA, RT. 198
LAUREL, MD 20810
800-638-4486
Kenwood, Drake, Icom, Ten-Tec,
Tempo, DenTron, Swan \& Apple
Computers.

Massachusetts

TEL.COM, INC.
675 GREAT ROAD, RTE. 119
LITTLETON, MA 01460 617-486-3040 617-486-3400 (this is new) The Ham Store of New England You Can Rely On.

Minnesota

MIDWEST AMATEUR RADIO SUPPLY 3452 FREMONT AVE. NO.
MINNEAPOLIS, MN 55412
612-521-4662
It's service after the sale that counts.

Nevada

AMATEUR ELECTRONIC SUPPLY
1072 N. RANCHO DRIVE
LAS VEGAS, NV 89106
702-647-3114
Pete, WA8PZA \& Squeak, AD7K
Outside Nev: 1 (800) 634-6227

JUN'S ELECTRONICS
460 E. PLUMB LANE - 107
RENO, NV 89502
702-827-5732
Outside Nev: 1 (800) 648-3962
Icom - Yaesu Dealer

New Hampshire

TUFTS ELECTRONICS

61 LOWELL ROAD
HUDSON, NH 03051
603-883-5005
New England's friendliest ham store.

New Jersey

RADIOS UNLIMITED

P. O. BOX 347

1760 EASTON AVENUE
SOMERSET, NJ 08873
201-469-4599
800-526-0903
New Jersey's only factory authorized Yaesu and Icom distributor. New and used equipment. Full service shop.

ROUTE ELECTRONICS 46
225 ROUTE 46 WEST
TOTOWA，NJ 07512
201－256－8555
ROUTE ELECTRONICS 17
777 ROUTE 17 SOUTH
PARAMUS，NJ 07625
201－444－8717
Drake，Cubic，DenTron，Hy－Gain， Cushcraft，Hustler，Larsen，MFJ， Butternut，Fluke \＆Beckman Instruments，etc．

New York

BARRY ELECTRONICS

512 BROADWAY
NEW YORK，NY 10012
212－925－7000
New York City＇s Largest Full Service Ham and Commercial Radio Store．

GRAND CENTRAL RADIO
124 EAST 44 STREET
NEW YORK，NY 10017
212－599－2630
Drake，Kenwood，Yaesu，Atlas，
Ten－Tec，Midland，DenTron，Hy－Gain， Mosley in stock．

HARRISON RADIO CORP．
20 SMITH STREET
FARMINGDALE，NY 11735
516－293－7990
＂Ham Headquarters USA＂since
1925．Call toll free 800－645－9187．

RADIO WORLD

ONEIDA COUNTY AIRPORT
TERMINAL BLDG．
ORISKANY，NY 13424
TOLL FREE 1 （800）448－9338
NY Res． 1 （315）337－0203
Authorized Dealer－ALL major
Amateur Brands．
We service everything we sell！
Warren K2IXN or Bob WA2MSH．

Ohio

AMATEUR ELECTRONIC SUPPLY
28940 EUCLID AVE．
WICKLIFFE，OH（CLEVELAND AREA） 44092
216－585－7388
Ohio Wats： 1 （800）362－0290
Outside Ohio： 1 （ 800 ）321－3594
UNIVERSAL AMATEUR RADIO，INC．
1280 AIDA DRIVE
REYNOLDSBURG（COLUMBUS），OH 43068
614－866－4267
Featuring Kenwood and all other Ham gear．Authorized sales and ser－ vice．Shortwave headquarters．Near 1－270 and airport．

Oklahoma

DERRICK ELECTRONICS，INC．
714 W．KENOSHA－P．O．BOXA
BROKEN ARROW，OK 74012
Your Discount Ham equipment dealer in Broken Arrow，Oklahoma
1－800－331－3688 or
1－918－251－9923

Pennsylvania

HAMTRONICS，

DIV．OF TREVOSE ELECTRONICS
4033 BROWNSVILLE ROAD
TREVOSE，PA 19047
215－357－1400
Same Location for 30 Years．

LaRUE ELECTRONICS

1112 GRANDVIEW STREET SCRANTON，PENNSYLVANIA 18509 717－343－2124
Icom，Bird，Cushcraft，Beckman， Fluke，Larsen，Hustler，Astron， Antenna Specialists，W2AU／W2VS， AEA，B\＆W，CDE，Sony，Vibroplex．

Virginia

ELECTRONIC EQUIPMENT BANK
516 MILL STREET，N．E．
VIENNA，VA 22180
703－938－3350
Metropolitan D．C．＇s One Stop Amateur Store．Largest Warehousing of Surplus Electronics．

Wisconsin

AMATEUR ELECTRONIC SUPPLY
4828 W．FOND DU LAC AVE．
MILWAUKEE，WI 53216
414－442－4200
Wisc．Wats： 1 （800）242－5195
Outside Wisc： 1 （800）558－0411

	Surface U．S．／Canade Mexico	Surface All	Airmail Coreign C．Americal	Alrmall All Other
Forsign				

Published 12 times per year by M／ke Stone WBOQCD P．O．Box H，Lowden，lowa 522550408

[^10]
at it 10 motor Converimas
 by CERTHED COMmunicanous

vour rig from $\$ 45$ ：Now from us from $\$ 179$
SEE US AT OVER 70 SHOWS A YEAR，CALL OR WRITE FOR OUOTE， CATALOG，INFORMATION，OSL SAMPLES（5O cents）

CALL COLLECT TO ORDER

Chack the pricas in this magazine and then call．－
on Cushcraft，Hustler and Larsen，
WE WILL NOT BE UNOERSOLO
SEE YOU AT GRAND RAPIDS．PAINCETON SANTE FE PARK AND MIDLAND
ITS WORTH YOUR WHILE TO CALL OA WRITE Vist （1Rいいいいいハいい！ハい

FCC STUDY GUIDE－ RADIO TELEPHONE OPERATOR LICENSE

IT＇S AMAZING HOW EASY FCC EXAMS REALLY ARE！
 The Original Tests－Answers Exam manual prepares you at home for FCC Radio telephone licenses． You get the complete set of mul－ tiple－choice examinations－cover－ ing all areas tested on the actual FCC exam．Also included－help ful study tips，short cuts，and ＂Self－Study Ability Test．＂ These updated FCC Tests－ Answers take the mystery out of preparing for current FCC exams．Practical proven Material． $\mathbf{\$ 1 2 . 9 5}$ postpaid．

SEND TO：
HAM RADIO＇S BOOKSTORE
Greenville，NH 03048
Please rush me Tests－Answers for FCC License．My $\$ 12.95$ is enclosed．
Name
Address
City
Ciry $=0=-2$ Call 603－878－1441

TUBES

6KD6	
6LQ6/6.JE6	7.00
6MJ6/6LQ6/6JE6C	6.00
6LF6/6MH6	10.00
12BY7A	6.60
2E26	4.00
4X150A	4.69
4CX250B	29.99
4CX250R	68.00
4CX300A	78.00
$4 \mathrm{CX350A} / 8321$	109.99
$4 \mathrm{CX} 350 \mathrm{~F} / \mathrm{J} / 8904$	100.00
$4 \mathrm{CX} 1500 \mathrm{~B} / 8660$	100.00
811 A	300.00
6360	25.00
6939	4.00
$6146 \mathrm{~B} / 8298$	30.00
6146 W	9.99
6550 A	12.95
8908	10.00
8950	14.00
$4-400 \mathrm{~A}$	13.00
$4-400 \mathrm{C}$	145.00
$572 B / \mathrm{T} 160 \mathrm{~L}$	145.00
7289	44.00
$3-1000 \mathrm{Z}$	39.99
$3-500 \mathrm{Z}$	229.00
	141.00

RF Transistors

Transistors

2N2857	1.55
2N285 7JAN	2.50
2N2949	3.60
2N2947	15.00
2N2950	4.60
2N3375	8.00
2N3553	1.90
2N3818	5.00
2N3866	1. 30
2N3866JAN	2. 50
2N3866JANTX	4. 00
2N3925	10.00
2N3948	2. 00
2N3950	25.00
2N3959	3.85
2N3960JANTX	10.00
2N40 72	1. 80
2N4427	1. 30
2N4429	7.00
2N4877	1.00
2N4959	2.30
2N4976	15.00
2N5070	18.40
2N5071	20.70
2N5108	4.00
2N5109	1. 70
2N5179	. 69
2N5583	4. 00
2N5589	8. 65
2N5590	10.35
2N5591	13.80
2N5635	10.35
2N5636	12.00
2N5637	15.50
2N5641	9. 20
2N5643	15.50
2N5645	13.80
2N5 842	8.00
2N5849	20.00
2N5942	40.00
2N5946	19.00
2N5862	57.50
2N6080	9. 20
2N6081	10.35
2N6082	11.50
2N6083	10.00
2N6084	15.00
2N6095	12.00
2N6096	15.50
2N6097	17. 25
2N6166	40.25
2N6368	28.75
A210/MRF517	2.00
BLY 38	5.00
40280/2N4427	1. 30
40281/2N3920	7.00
40282/2N3927	17.25
MMT.74	1.04

LM 202H

IC'S

MC4000P	5.09	LM 205	4. 70
MC4000L	7.30	LM211	4.43
MC4001P	9.60	LM 258	2. 15
MC4002P	4.96	LM 270	7.55
MC4002L	7.30	LM $3014 \mathrm{P} / \mathrm{H}$. 69
MC4006P	5. 99	LM 304H	1.20
MC4006L	8.33	LM307N	55
MC 4007L	8, 43	LM308H	1.00
MC 4008P/74408P	4. 24	LM310H	1.10
MC4012P/74412P	7. 16	LM311V	. 89
MC4012L	9.55	LM312H	2. 70
MC4015P/74415P	5.81	LM319H	1.95
MC 40 15L/74415L	8.25	LM319N	1.25
MC 4016P/74416P	6.89	LM324N	1.59
MC4017P/74417P	6.89	LM339N	. 99
MC4018P/74418P	6.89	LM342N15	69
MC4018L/74418L	10.05	LM348N	1.85
MC4019P/74419P	6. 89	LF351/T L081	. 60
MC4019L/74419L	10.05	LF355	1.31
MC4022P	5. 41	LM358	. 99
MC4023P	7. 79	LM376	66
MC4024P	3.00	LM377/ULN2278	2.95
MC 4044P	3.00	LM380	2. 50
MC $4050 \mathrm{P} / 74450 \mathrm{P}$	12.25	LM381	1.95
MC4060P	5.32	LM386	1. 75
MC 4062 P	3.43	LM387	1.00
MC4000F	8.87	LM393	3.40
MC 4006 F	8.33	NE527	11.25
MC 4007F	8.43	NE531T/RC4531	3.95
MC4008F	6.16	NE540L	6.00
MC $4060 \mathrm{~F} / 74460 \mathrm{~F}$	7.57	NE555Y	. 39
MC 4062F	7.00	LM555H	2.00
MC4300C	8.20	LM556CJ	1. 42
MC4306L	9.05	LM565CH	1. 75
MC4307L	11.09	LM567V	. 99
MC4312L	10.67	LM/UA 703	. 89
MC4318L/MC54148L	11. 40	LM709H	1.00
MC4322L	8.61	LM711N	79
MC4350L/MC54450L	17. 16	LM715	. 79
MC4300F	10.00	LM723CH	1.45
MC4307F	10.99	LM741CN/Y	. 56
MC4316F	13. 55	LM 741 CH	1.01
MC4322F	10.40	LM 747 CT	. 99
MC4323F	13.87		
MC4350F	20.89	LM 748CN	59
MC4362F	7. 75	LM/UA 749	3. 70
MC 1303L	1.00	LM1310N/ULN2110	1.95
MC 1306	1.27	LM1391N	1. 17
MC1311	3.00	LM1458V	. 59
MC 1330	2.50	LM1514J	4.98
MC 1350	2. 50	LM1889	6. 70
MC1351	1.43	LM2901/SL61638	1.39
MC1352	1.37	LM3900/CA 3401	. 84
MC 1358	2.50	LM4250CH	1.84
MC1359	3.00	CA3011	1.97
MC1393	1. 76	CA3046	1.30
MC 1408L6	2. 75	CA30 85	. 98
MC 1414 L	1. 83	CA30 86	1.04
MC1414P	1. 29	CA3140	1.24
MC1435L	2.25	LM3146	2. 00
MC1436G	4.40	LM3146	
MC1437	2.25	Series 74S	
MC1439	3.57	74500	. 59
MC1461		74502	. 59
MC1468L	5.33	$74 \mathrm{S03}$. 59
MC 1469R	5.65	74 SO 4	. 59
MC1496P	2. 50	74505	. 59
MC1511G	12.00	$74 \mathrm{S08}$. 79
MC1535G	18.19	74.510	. 59
MC 1539G	5.40	74511	. 59
MC 1550G	1.00	74 S 20	. 59
MC 1552G	11.61	74 S 22	. 69
MC 1558L	1.68	74 S 30	. 59
MC 1560R	16.25	74537	99
MC1569RB2	10.49	74538	99
MC1590G	6.00	74540	69
MC 1709CG	. 97	74564	89
MC1710G	1. 79	74565	. 89
MC1711CL	1.03	74S74	1. 49
MC1712CP	3.35	74 S 83	1. 75
MC 1723CP	. 67	74 S 86	1.69
MC 1733CL	1.35	74 S 112	1.39
MC1741G	1.50	745114	1.39
MC14528B	2.04	745124	3.75
MC14530BCP	1.22	74 S 133	89
		74 S 134	1.90
LMIOIAH	2.40	74 S 138	3. 95
LM 108AH	8.83	745139	3.95
LM111H	8. 73	74 S 140	1.29
LM139A	12.13	74 S 151	1.95
LM202H	9.00	74S153	2. 75

RCA CA 3028A
Cascade Amplifier. DC-500 MHz
Analog Devices AD580 IC. .
Low drift voltage reference.
Low drift voltage reference.
3 -terminal device: V. out $=2.5 \mathrm{~V}+1 \%$
$4.5 \mathrm{~V}<\mathrm{V}$. in $<30 \mathrm{~V}$
MEM $631 \ldots$.
Dual gate MOS Fet
$\mathrm{Vds}=25 \mathrm{~V} . I \mathrm{~d}=30 \mathrm{~mA}$
Mhos B00(min)
LM3909 LED Flasher IC \$1. 25 each
TCA440 AM Receiver IC \$2. 19 each with FF . AGC, mixer. low current draw

Microwave Pin Switching Di odes
MPN 3401 52 each or 3,1.00
MRF511
$1500 \mathrm{MHz}, 7.3 \mathrm{~dB}$ noise at 200 MHz
Sale price at..................... $\$ 3.99$ each
2N5179
$900 \mathrm{MHz}, 4.5 \mathrm{~dB}$ noise at 200 MHz
Sale price at........................ $\$.69$ each

2N5638 Fet "N" Channel. 3/\$1. 00
MPF102 Fet 'N'" Channel 3. \$1.00
2N5458 Fet 'N"' Channel 3. $\$ 1.00$
MC 1590G $\$ 6.00$ each
RF-IF Audio Amp w AGE.

CAPACITORS
Elpac Paper Caps. Part \#CQ 20A104, . 10 @ 2 KV

Sprague/Goodman Ceramic Caps. . . \$. 69 each \#GKR50000, 5.1 to 50 pF
. $\$ 1.69$ each

Sprague/Goodman Piston Caps . . . \$1.99 each
\#GGP12000, . 8 to 12 pF
$\$ 1.00$ each

to $10 \mathrm{GHz}, 5000 \mathrm{pF} 200 \mathrm{VDC}$

Erie $1201-785 \ldots \ldots \ldots . \mathrm{MHz}^{2} . \ldots 0$ each
Min. attenuation: 50 dB from 100 MHz
Min. attenuation: 50 dB from 100 MH
to $10 \mathrm{GHz}, 5500 \mathrm{pF} 200 \mathrm{VDC}$
NEW Sanghmd Type 2A Caps \$1.00 each
\#CM560333J, . 333 MFD 600 VDC
$1 / 2^{\prime} H \times 13 / 4^{\prime \prime} \mathrm{L} \times 11 / 4^{\prime} \mathrm{W}$
New High Voltage Oil Filled Capacitor
Mfr. \#4W308T, Mfr. - CSI
53.3 MFD, 3.5 KVDC, Length - $41^{\prime / 2 \prime}$.
width - 3 3, $4^{\prime \prime}$, height - $11^{\prime \prime}$
$\$ 29.99$ each
Dip Tantalum Capacitors
15 MFD @ 25 VDC UNELCO CAPS

$6.8 p F$	47 pF	13 pF	240 pF
8.2 pF	62 pF	14 pF	360 pF
10 pF	160 pF	20 pF	470 pF
12 pF	180 pF	24 pF	1000 pF
	-350 V		$\$ 1.00$ each

TRIMMER CAPS
Sprague. Stable Polypropylene.
.50 each or $10 / 4.00$
not sold mixed
1.2 to 13 pF

$2^{\prime \prime}$
$7 \$ 1.00$
3.9 to 18 pF

MHW 591
1 to 250 MHz frequency range, $35,36.5 \mathrm{~dB}$ gain. 13.6 VDC input. 700,100 out put level 1 dB compression. 5 dB noise © 250 MHz .

MHW592
1 t 1250 MHz [requency range, 34.5 .36 dB
gain. 24 VDC input. $900 \cdot 100$ output level
1 dE compression. 5 dB nisise (o 250 MHz .
MRF450 \& MRF450A
$\$ 13.80$ each
4 Wutts input. 50 Watts rutput.
11 dB gann, 136 VDC .
BFR91
5000 MHz
1.9 nutse at 500 MHz

16 dB gain a 500 MHz
MRF901
$\$ 2.15$ each
4500 MHz
2.0 nolse 1000 MHz

10 dB gain 4000 MHz
MHW 252
$\$ 39.99$ each
3 Watts input power
25 Watts out put power
$144.148 \mathrm{MHz}, 19.2 \mathrm{Gp}$ power gain 13.6 VDC input

MHW 612A
$\$ 39.99$ each
. 2 Watts input power
20 Watts output power
$146-174 \mathrm{MHz}, 20 \mathrm{Gp}$ power gain
12.5 VDC input

AIR VARIABLE CAPACITORS

1- 10 pF	189-6-1	1. 50
5- 12pF	160-107-16	1. 50
9-15pF		1.50
1- 5 pF	T-3-5 187-103-5	1.50
1.3-6.7pF	189-502-4	1. 50
1. $4-9.2 p F$	189-503-105.	1.50
1.4- 13 pF	193-3	1. 50
1.7-11pF	T6-5	1. 50
1.7- 14 pF		2,1.50
1. 7 -14.1pF	189-505-107.	1.50
1.8-9.2pF	-89-509-105	1. 50
1.8-11.4pF	545-043.	1. 50
1.8-16.7pF	189-506-103	1. 50
2-19.3pF	189-507-105	1. 50
2. 1-22.9pF	189-509-5	1.50
2.2- 34 pF	193-10-104.	1. 50
2.2- 34 pF	193-10-6, 3.16"x3'shall	2.50
2. $4-24.5 \mathrm{pF}$	189-509-5.	1. 50
3- 105 pF	1000 VDC, $1 / 4^{\prime \prime} \times 6^{\prime \prime}$ shaft.	4.99

HIGH VOLTAGE CAPS.

304.	100-550pF	S1. 50
\# 400.	. 9- 7pF	\$1.00
\# 402.	1.5-20pF	\$1.00
\# 404.	8-60pF	\$1.00
- 405 .	$5-80 \mathrm{pF}$	\$1.00
- 420	1-12pF	\$1.00
- 422	4- 40pF	\$1.00
- 423.	7- 100 pF	\$1.00
\# 426.	37-250pF	\$1.00
\# 429.	80-300pF	\$1.00
\# 464	25-200pF	\$1.00
- 465.	50-380pF	\$1.00
\# 467.	110-580pF	\$1.00
\$2564	75-280pF	\$2.00
\#4615	390-1400pF	\$2.00

2822 North 32nd Sireet. \#1 • Phoenix. Arizona 85008 - Phone 602-956-9423

more capacitors

FEED THRU CAPACITORS

Solder Type 5, \$1. 99			
3 pF	47 pF	1000 pF	
20pF	82 pF	2000 pF	
27pF	100 pF		
Stud Mount			\$1.99 ea.

Stud Mount - 1.5 KV .
$\$ 1.99$ ea.
OluF, $1000 \mathrm{pF}, 2200 \mathrm{pF}$
DOOR KNOB CAPACITORS

100 pF @ 5 KV .	\$3. 99
470 pF @ 15 KV	\$3.99
Dual 500 pF (ix 15 KV	\$3.99
680 pF (¢) 6 KV .	\$1.99
800 pF ¢ 15 KV	\$3.99

CERAMIC CAPS

001 uF	10 KVDC	9
001 uF (6)	2 KV	4.1 .00
0015 UF	3 KV	31100
. 01 UF @	4 KV .	79
01 UF @	1.6 KV	4.1 .00
01 uF (a)	1 KV .	61.00
05 uF (a)	3 KV Electro-cube	3.99
1 uF (a)	2 KV Electro-cub	

CHIP CAPS.
$\$ 1.00$ ea, or $10 / \$ 7.50$

.033 pF	8.2 pF	47 pF
.047 pF	10 pF	51 pF
.068 pF	11 pF	56 pF
.01 pF	12 pF	62 pF
.3 pF	13 pF	58 pF
1 pF	15 pF	75 pF
1.2 pF	16 pF	82 pF
1.5 pF	20 pF	91 pF
1.8 pF	22 pF	100 pF
2.2 pF	24 pF	150 pF
2.7 pF	27 pF	300 pF
3.3 pF	30 pF	330 pF
3.9 pF	33 pF	1000 pF
4.7 pF	36 pF	1200 pF
5.6 pF	39 pF	1500 pF
6.8 pF	43 pF	1800 pF

PISTON TRIMMERS

PANEL METERS

RF Power output $0-1000$ scale 1 MA movement

Large $8^{\prime \prime}$ scale meter 50 MV movement $\$ 5.99$ ea
$\$ 6.99$ ea.

DC MA meter 0-5 MA Emico
$\$ 2.99$ ea.

3 assorted 50 uA meter movements, one each: zero center, linear display and signal strength $\$ 4.99$ ea.

CERAMIC COIL FORMS

CAMBION WITH SLUGS
LST-P/530-2020-03 \qquad
3. $16^{\prime \prime} \mathrm{d} \times 1$ 2', $20-50 \mathrm{MHz}$

Green slug with hardware.

LST -H/530-1532-01
 $\$ 1.50$

$3 / 16^{\prime \prime} \mathrm{d} \times 1 / 2^{\prime \prime}, 1-20 \mathrm{MHz}$
Red slug with hardware.
LS6-E/530-1535-02. \qquad
Red slug with hardware.
LST-H/530-2020-02. \qquad
$3 / 16^{\prime \prime} \mathrm{d} \times 5 / 16^{\prime \prime}$ with terminals
1-20 MHz, red slug
PLST-1 530-1532-01
......
$3 / 16^{\prime \prime} \mathrm{d} \times 5 / 16^{\prime \prime}$ with terminals
$2-1.5 \mathrm{MHz}$
PLS5-B - 2 Cyl. . $1-20 \mathrm{MHz} \ldots$. . . $\$ 1.99$
$3 / 8^{\prime \prime}$ dia. $\times 5 / 8^{\prime \prime}$ with terminals and
hardware, red slug
PLS5-C - 2Cyl., $2-2.5 \mathrm{MHz}$. . $\$ 1.99$
$3 / 8^{\prime \prime}$ dia. x $5.8^{\prime \prime}$ with terminals
yellow slug
LST-1 - Yellow slug, . 2-1. 5 MHz .
$\$ 1.99$
CERAMIC COIL FORMS - No Slug

41.	3, $16^{\prime \prime} \times 5 / 8^{\prime \prime}$	1.00
\#2.	$3 / 16^{\prime \prime} \times 1 / 2^{\prime}$.	1.00
\#3.	$1 / 4^{\prime \prime} \times 5 / 8^{\prime \prime}$	1.00
\#4.	$3 / 8^{\prime \prime} \times 1^{\prime \prime}$	1.00
\#5	$1 / 2^{\prime \prime} \times 1 / 2^{\prime \prime}$	1.00

PAPER COIL FORMS - With Slug

\#6	$1 / 4^{\prime \prime} \times 3 / 4^{\prime \prime}$	1.00
\#7	$3 / 16^{\prime \prime} \times 3 / 4^{\prime \prime}$	1.00

VHF/UHF/MICROWAVE COMPONENTS
J-Fet \#J310...................................... $\$ 1.00$
N-Channel, 450 MHz . Good for
UHF/VHF amplifiers, oscillator and mixers.
2N6083 . \$10. 00 ea.
8. 1 Watts input, 30 Watts output.
5.7 dB gain, 12.5 VDC

Motorola RF Amp, Modules. \$29. 99 ea.
*544-4001-002
Similar to type MHW 401-2

1. 5 Watts output, . 047 Watts input.
$440-512 \mathrm{MHz}, 15 \mathrm{~dB}$ gain, 7.5 VDC
TRW CA602/CA 2601BV \qquad $\$ 29.99$ ea.
Microelectronics Broadband Amp.
15 to $270 \mathrm{MHz}, 30 \mathrm{~dB}$ gain max.
30 VDC supply voltage
New Microwave Diode
Microwave Associates, Inc. - MA41482 and MA41482R, 10 GHz to 40 GHz

DIODES

1N4148/1N914
Switching diode
$30 / \$ 1.00$ or $100 / \$ 3.00$
HEP 170
2. $5 \mathrm{~A}, 1000 \mathrm{PIV}$
.20 ea., 100 for $\$ 15.00$
HVK 1153
$25 \mathrm{~mA}, 20,000 \mathrm{PIV}$
$\$ 1.00$ ea., 10 for $\$ 8.00$
Motorola MA 752 Rectifier
6 Amps, 200 PIV
4/\$1.00
High-voltage diode EK500
5000 Volts, 50 mA

DG-1005
$1.5 \mathrm{~A}, 1000 \mathrm{PIV}$
.15 ea., 100 for $\$ 12.00$
SCMS 10 K
$15 \mathrm{~mA}, 10,000$ PIV
$\$ 1.69$ ea., 10 for $\$ 12.50$
Fairchild LEDs
FLV 5007 \& 5009 red.
Case type TO-92.
$6 / \$ 1.00$
Motorola SCR
TO-92 Case, $0.8 \mathrm{Amp}, 30 \mathrm{~V}$.
lgt 0.2 Vgt 0.8 .
Same as 2N5060.
$4 / \$ 1.00$ or $100 / \$ 15.00$
10 KV at 1.5 Amps
$\$ 3.99$
High Voltage Diode

CRYSTALS

	$\$ 3.00$ each	
5.120	10.010	11.855
7.3435	10.020	11.900
7.4585	10.030	11.905
7.4615	10.040	11.955
7.4625	10.0525	12.000
7.4665	10.130	12.050
7.4685	10.140	12.100
7.4715	10.150	16.965
7.4725	10.160	17.015
7.4765	10.170	17.065
7.4785	10.180	17.165
7.4815	10.240	17.215
7.4825	10.245	17.265
7.4865	10.595	17.315
7.4925	10.605	17.355
7.4985	10.615	17.365
7.5015	10.625	37.600
7.5025	10.635	37.650
7.5065	11.155	37.700
7.7985	11.275	37.750
7.8025	11.700	37.800
9.545	11.705	37.850
9.555	11.730	37.900
9.565	11.750	37.950
9.575	11.755	38.000
9.585	11.800	60.000
10.000	11.850	

CRYSTAL FILTERS

EFCL455K13E	3.99
EFC L455K40B2	2.99
FX-07800L, 7.8 MHz	12.99
FHA 103-4, 10.7 MHz	12.99

FHA 103-4, 10.7 MHz
12.99

ORDERING INSTRUCTIONS

Check, money order, or credit cards welcome. (Master Charge and VISA only.) No personal checks or certified personal checks for foreign certified personal checks or forelgn cashiers check in U.S. funds only. cashiers check in U.S. funds only Letters of credit are not acceptable
Minimum shipping by UPS is $\$ 2.35$ with insurance. Please allow extra shipping charges for heavy or long items.

All parts returned due to customer error or decisicn will be subject to a 15% restock charge. If we are out of an item ordered, we will try to replace it with an equal or better part unless you specify not to, or we will back order the item, or refund your money.

PRICES ARE SUBJECT TO CHANGE WITHOUT NOTICE. Prices supersede all previously published. Some items offered are limited to small quantities and are subject to prior sale.
We now have a toll free number, but we ask that it be used for charge orders only. If you have any quesorders only. If you have any questions please use our other number. Monday thru Saturday.

Our toll free number orders only is $800-528 \cdot 3611$.

audio processor/ descrambler

The Grove Enterprises DSC-2 Code Breaker is a second-generation audio processor designed for use with scanner or shortwave receivers when monitoring speech inversion scrambling systems. This specialized accessory allows restoration of speech inverted messages to recognizable transmissions.

The low cost of the DSC-2 makes it ideal for monitoring posts that need to be alerted to operations of other departments using speech inverted security systems when a scrambled reply is not necessary (the DSC-2 is designed for receive only). Surveillance and other low profile intelligence operations will find the DSC-2 Code Breaker most valuable when monitoring speech-inverted messages frequently used by suspects either on mobile radiotelephone or over telephone lines when used in conjunction with standard electronic monitoring equipment.

An additional feature of the new DSC-2 is a tunable audio notch filter which permits the user to further clarify signals by removing masking tones which are often used to detract from recognizable speech. When
used with shortwave receivers, this same audio notch filter is effective in removing heterodyne interference from adjacent-frequency signals without the need for using narrow i-f selectivity and its attendant muffled quality.
Additionally, the DSC-2 may be used for reversing sidebands to reduce interference. Similarly, closespaced CW signals may be isolated by adjusting the receiver to zero-beat the unwanted signal, then the Code Breaker is adjusted to change the pitch of the received signal to any desired frequency for comfortable copy.

For more information contact Grove Enterprises, Inc., Dept. D, Brasstown, North Carolina 28902; telephone 704-837-2216.

AEA model MM-2 keyer

Advanced Electronic Applications, Inc., announces the latest generation of MorseMatic ${ }^{\text {TM }}$ keyer, the MM-2. The MM-2 is a full-feature paddle input keyer that offers virtually all the features of the MM-1 predecessor plus CMOS memory and at a new low price. The new MM-2 features two powerful pre-programmed microcomputers with copyrighted AEA "firmware."
Like the MM-1, the new MM-2 offers more exclusive features than any other keyer on the market: an automatic serial number generator, an automatic beacon mode, and an automatic speed increasing Morse trainer mode.
The MM-2 permits the operator to vary all of the following from the control keypad: stepped variable monitor tone; dot ratio; dash ratio (for full independent weighting control); dot memory enable or disable; dash memory enable or disable; semi-automatic ("bug") or full automatic operation; speed select from 02 to 99 WPM to 1 WPM increments; and more.

memory

Like its predecessor, the new MorseMatic MM-2 keyer offers a
message storage mode with many exclusive AEA features never before offered. Some of these include: ten soft-partitioned ${ }^{\text {TM }}$ memory locations; selectable real time message loading or automatic word space loading mode; additional word or character space insertion for perfect formatting in the automatic words space mode; and much more.

The new model MM-2 MorseMatic keyer comes in a handsome metal package that offers the same rf protection that earned the MM-1 such a good reputation for being "bulletproof." The MM-2 also has a new ex-tended-life, highly reliable sixteenbutton keypad. All integrated circuits are mounted on sockets for easy repair if ever necessary. The unit operates from 10 to 16 Vdc or use the optional AEA model AC-1 wall adaptor for 110 Vac .

Perhaps the biggest change between the MM-2 and MM-1 is the price. The new model MM-2 carries a manufacturer's suggested price of $\$ 139.95$. For further information, contact Advanced Electronic Applications, Inc., P.O. Box 2160, Lynnwood, Washington 98036; telephone 206-775-7373.

portable transceiver

The Santec ST series of radios (both the 2 -meter and $440-\mathrm{MHz}$ versions) are the first units to incorporate accurate digital clocks within the programs to control the operation of the radio. The ST-144 contains some of the finest features and easy-to-use functions to be found in a 2-meter portable.

The ten memories store both the frequency information and the instructions to the transmitter as to which way to offset the transmit frequency for repeater use. Once this information is set, the operator no longer has to worry about the offset switches. Bandscan is handled by three different microprocessor programs. The manual mode is for stepping through the band one step at a time; the search mode will automati-

Here they are! The latest editions. Worldfamous Radio Amateur Callbooks, the most respected and complete listing of radio amateurs. Lists calls, license classes, address information. Loaded with special features such as call changes, prefixes of the world, standard time charts, worldwide QSL bureaus, and more. The U.S. Edition features over 400,000 listings, with over 70,000 changes from last year. The Foreign Edition has over 370,000 listings, over 60,000 changes. Place your order for the new 1982 Radio Amateur Callbooks, available now.

Order both books at the same time for $\$ 39.95$ including shipping.
Order from your dealer or directly from the publisher. All direct orders add shipping charge. Foreign residents add $\$ 4.55$ for shipping. Illinois residents add 5% sales tax.

SPECIAL LIMITED OFFER!
Amateur Radio
Emblem Patch
only \$2.50 postpaid

Pegasus on blue field, red lettering. $3^{\prime \prime}$ wide $\times 3^{\prime \prime}$ high. Great on Jackets and caps.

ORDER TODAY!

Dept. \qquad
925 Sherwood Drive Lake Bluff, IL 60044, USA

products
cally find the first station talking and stop scanning further. In addition, there is the scan mode which steps through the band and pauses for a while at each busy station to sample the conversation and then moves on. The upper and lower frequency limits of this scan are settable by the user through stored values in the microprocessor.

The microprocessor itself is a very versatile CMOS four-bit CPU. This means that it doesn't eat much current, and it can handle any of the data functions and drive the crisp, clear liquid crystal display as well as process all the commands given it by the user through the keyboard. In addi-

tion, if you turn the radio off and put it down, it can stay there for about six months before it needs to be recharged - and it can still remember what you told it to memorize six months before!

For those who are involved in the public service programs of MARS or CAP, the ST-144/uP provides frequency coverage external to the 2 meter Amateur band down to 142.000 MHz and up to 149.995 MHz . In this band range there are three selectable power levels of $100 \mathrm{~mW}, 1$ watt (medium), and 3.5 watts (high).

Memory one is treated as a priority memory in the SCAN mode and signals on this frequency (whatever you stored there) are given priority treatment. When you're listening to one channel at a time, the computer detects an absence of activity and turns off the unneeded circuitry of the unit. At a later time, the computer checks to see if the circuitry is again called for and returns the radio to normal operation. This results in a very low receiver current drain in quiet standby of only 8 mA . Add to this the full six-teen-key keypad, the variable offsets and the big 500 mA -hr (8 cell) NiCad pack plus the easy installation of tone burst or subaudible tone and you have the most exciting, most versatile radio to come along yet.

For more information, contact Encomm, 2000 Avenue G, Suite 800, Plano, Texas 75074; telephone 214-423-0024.

IC-730 HF transceiver

ICOM announces the IC-730 compact solid state high-frequency transceiver. The IC-730 is specifically designed for the budget-minded ham. It's priced at \$829.00, making it affordable as a second transceiver for mobile/portable operation, or as the main high-frequency base station transceiver.

The IC-730 is compact, only $9.5 \times$ 3.7×10.8 inches. It has $10-80-$ meter frequency coverage including all three new WARC bands; it has fully
synthesized tuning for stability in mobile operation $(1 \mathrm{kHz}, 100 \mathrm{~Hz}, 10 \mathrm{~Hz}$ steps). Other features include dual VFOs standard; eight-frequency memory storage (one frequency per band); fully solid-state circuitry with automatic final protection; and i-f shift standard with passband tuning optional.

For more information, write ICOM, Suite 307, 3331 Towerwood, Dallas, Texas 75234.

TS-930S

Trio-Kenwood has just announced the new top-of-the-line model TS930 S all solid-state high frequency transceiver. Designed to cover all Amateur bands from 160 through 10 meters, the TS-930S also incorporates a 150 kHz to 30 MHz generalcoverage receiver having an excellent dynamic range.

Among the more interesting features to be found on this model is an automatic built-in antenna tuner, dual digital VFOs, eight-memory channels, dual model noise blanker, i-f notch filter, fluorescent tube display, rf-type speech processor, if step attenuator, $100-\mathrm{kHz}$ marker, and voice controlled operation. Special circuitry is also in-

corporated that allows operator adjustment of the i-f passband characteristics for best rejection of interfering signals, as well as a tunable audio filter for CW reception. Power input is 250 watts PEP SSB, 250 watts dc on CW, 140 watts de on FSK, and 80 watts dc on a-m. The built-in power supply operates on 120,220 , or 240 Vac only.

For further information, write TrioKenwood Communications, P.O. Box 7065, Compton, California 90224.

general coverage receiver

Trio-Kenwood Communications has just announced a new generalcoverage communications receiver, the Model R-600, covering 150 kHz to 30 MHz in thirty bands. It will be available in mid December. The use

of PLL synthesized circuitry results in highly accurate frequency control and maximum tuning ease. The unit features an easy-to-read digital display, a-m, SSB, and CW reception, built-in i-f filters, noise blanker, rf attenuator, S-meter, and front mounted speaker. It can be operated from power sources of 100, 120, 220, and $240 \mathrm{Vdc}, 50 / 60 \mathrm{~Hz}$. Operation on 13.8 Vdc is also possible, using the optional DCK-1 dc power cable kit.

For more information, contact Trio-Kenwood Communications, P.O. Box 7065, Compton, California 90220.

Supercw

Supercw offers computer-aided-instruction in International Morse Code with sound and graphics. You should be able to reach 5 WPM in 12 hours, 13 WPM in 48 hours, and 20 WPM in 72 hours (time varies with users).

Features include introduction to International Morse Code, individualized learning methodology, random burst word practice, unlimited random word copying, and lots more.

Supercw is compatible to TRS-80 Model I or Model III, 48k and one disk drive. For more information, contact Frontier Enterprises, 3511 Gallows Road, Falls Church, Virginia 22042; telephone 703-573-8086.

\section*{Mounts and Antennas}

Commercial users and amateurs who demand the very best will find professional quality and performance with Valor's Pro-Am Communications products. As original equipment or replacements, Pro-Am antennas and mounting systems are compatible with the Motorola type TAD and TAE components. Stainless steel whips, heavy-duty, chrome-plated brass parts; weather-sealed, 200 -watt low loss coils ensure long-lasting performance. Available from 27 MHz thru 866 MHz .

See Pro-Am in Booth 90 at Atlanta Ham Festival June 12.13

Write or call today for complete details.
VQ)or Enterprises, Inc.
185 W. Hamilton St., West Milton, OH 45383 PH: (513) 698-4194, Outside Ohio: 1.800.543-2197 Telex: 724-389 ATT: Valor

Take your favorite H.T. out for a drive tonight.
 For $\$ 69.95$ you get the most efficient,

 dependable, fully guaranteed 35W 2 meter amp kit for your handy talkie money can buy.Now you can save your batteries by operating your H.T. on low power and still get out like a mobile rig. The model 335A produces 35 watts out with an input of 3 watts, and 15 watts out with only 1 watt in. Compatible with IC-2AT, TR-2400, Yaesu, Wilson \& Tempo! Other 2 meter models are available with outputs of 25 W and 75 W , in addition to a 100 W amplifier kit for 430 MHZ .
Communication Concepts Inc.
2648 N. Aragon Ave., Dayton, OH 45420 (513) 296-1411

GROTH-Type

 COUNTS \& DISPLAYS YOUR TURNS - 99.99 Turns - One Hole Panel Mount - Handy Logging Area - Spinner Handle Available Case: $2 \times 4^{\prime \prime}$; shaft $14^{\prime \prime} \times 3^{\prime \prime}$| TC2 \$10.00 | , |
| :---: | :---: |
| TC3 \$11.00 | |
| Spinner Handle | Skirt 3";
 Knob 2-3/8' |
| de | |

$A Z D E N$ only ${ }^{S} 279^{00}$ TTKETT

- For $\$ 25.00$ we will assemble your kit and install it in the back of your mike. READY TO USE Send us your mike and TT kit only and $\$ 25.00$ Or if you buy AZDEN from us, we will install TT Kit for $\$ 15$
Order 24 hours a day - (215) 884-6010 FREE UPS. N.P. Inc WA31FO 1138 BOXWOOD RD.,JENKINTOWN, PA 19046

SAY YOU SAW IT IN HAM RADIO

products

flea-size keyer

The tiny but rugged low-priced keyer from Curtis Electro Devices, the "'Lil' Bugger," is only 1.5 inches square, 3 inches deep, and 3.5 ounces in weight. It offers many of the features found on full-sized keyers, plus a few of its own. The front panel contains only a thumbwheel speed control. Sidetone pitch, volume and weighting are adjustable internally via small trimmers. The tungsten output relay will easily key any Amateur transmitter, including the really tough cases such as old shipboard transmitters.

Jacks are provided for the keyline, sidetone output, and an external ac adaptor, although the case contains a compartment for an ordinary 9 -volt transistor radio battery. The standard model, K5, is equipped with the Curtis 8044 chip. A second version of the unit (model K5B), uses the new Curtis 8044 B IC, which provides the squeeze keying characteristics of the Ten-Tec, Heath, Nye and Accukeyer. Provision for a straight key is also made.

Both the K 5 and K 5 B are priced at $\$ 39.95$ plus shipping and are available from stocking dealers or direct from the factory. For more detailed information, contact Curtis Electro Devices, Inc., Box 4090, Mountain View, California 94040 or telephone 415-494-7223.

TR-5

The R.L. Drake Company announces the introduction of the new TR-5 Amateur Radio. This solid-state transceiver is broadbanded, operates on single sideband or CW, and covers all the Amateur bands, even the proposed 12,17 , and 30 meter bands.

Features include excellent sensitivity and selectivity, high dynamic range, digital frequency readout, and full break-in CW operation. AGC time constants are selectable and RIT is front panel selectable. Most Drake 7line accessories are compatible. Nominal power input is 150 watts. Price is \$1099.

For more information, contact R.L. Drake Company, 540 Richard St., Miamisburg, Ohio 45342; telephone 513-866-2421.

low-cost etching system

Stellmaker Enterprises has designed a high-quality power etching system that is reasonably priced. The kit includes an air pump, air disperser, base with support for $41 / 2$-pint plastic tank with cover, mounting screws, and all necessary instructions.

This compact system will etch PC boards up to 6×6 inches, the size featured in most magazine articles. The acid agitated by the air pump makes for fast and more even etching.

This kit sells for $\$ 34.50$ plus $\$ 3.50$ shipping and handling from Stellmaker Enterprises, 250 Pequot Trail, Westerly, Rhode Island 02891; telephone 203-599-1283.

For AEA Readers or other AEA Products, call or visit:

Brings you the Breakthrough!

Radios Unlimited
 1760 Easton Avenue Somerset, N.J. 08873 (201) 469-4599 (800) 526-0903

 New Jersey's Largest Ham Dealer

Modern CW technology at its best! Carefully engineered

Standard \$42.95
Chrome \$52.95
Gold Plated $\$ 150.00$
At selected dealers or add $\$ 2.00$ handling Write: to make optimum use of today's keyers, the Bencher lambic Paddle is a symphony of modern materials, design and workmanship. This is the paddle that provides the perfect interface between the CW operator and his rig. Smooth, instantly responsive and fully adjustable to suit your own touch. From the gold plated solid silver contacts to the heavy leaded steel base, it truly is the ultimate.

333 W. Lake St., Chicago, IL 60606 (312) 263-1808

*Quality Microwave Systems

2100 to $\mathbf{2 6 0 0} \mathbf{~ M H z}$ Antennas 34 db Gain or Greater

808 N. Main - Evansville. IN 47711

AEA

MBA-RO Reader
MBA-RC Rcv/Code Conv. Xmt
MM-2 MorseMatic Ulitimate Keyer CK-2 Contest Memory Keyer KT-2 Keyer/Trainer
Isopole $144 / 220 \mathrm{MHz}$
ARRL
Handbook
Ant. Book new \& improved
Large assortment of publications
ALLIANCE
HD73 (10.7 sq . ft.) Rotator
U. 100 Small Rotator

ALPHA-DELTA
R-T 200W Lightning Protector HV 2 KW Lightning Protector AMTCO Amateur Radio Theory Course ASTRON
RS7A 5-7 Amp Power Supply
RS20A 16 -12 Amp
RS20M 16-20 Amp wimeter
RS20M 16-20 Amp
RS35M $25-35$ Amp w/meter
AZDEN PCS $3000 / 300$
Most accessories in stock
B\&W Folded Dipole (Super Antenna)
BASH Study Guides
BENCHERBY. 1 Paddle
BUTTERNUTHF6V
CUSHCRAFT
EL
A 4 Tribander 4 EL
214B 14 EL 2 Mtr Boomer 32-19 19 EL 2 Mtr Super Boomer
Many others in stock
DAIWA
CNA 20022.5KW Auto Tuner
CNA 1001.5KW Auto Tuner
CN 520 1.8-60 MHz Smalimt
CN 620 B 1.8-150 MHzMtr
DRAKE
TR7A Xcvr
TR5 Xcyr
ENCOMM (SANTEC)
ST. 144/uP
ST.440/uP
All accessories in stock HAL
CT2100 Terminal
KB2100 Keyboard
CWR 685A TeleReader
HY-GAIN
TH7DX7 EL Tribander
TH3 MK3S 3 EL Tribander
V22 Mtr Vertical "Excelient"
HAMIV Rotator 15 sq . ft .
Tailtwister Rotator 20 sq . ft .
HDR- 30025 sq. ft.
Many others in stock
ICOM
720A Magniffcent Xcvr!
730 Excellent Rig!
PS 15 Power Suply
PS 20 Heavy Duty PS/Spkr
251A 2 Mtr All Mode
25A 2 Mtr Very Small Mobile
2 AT 2 Mtr Hand Held
Large stock of xcyrs \& accessories
KLM
Ki4A4 EL Tribander
KT34XA6EL Tribander "Beautiful Ant" 465.00 KANTRONICS
Interface
Mini-Terminal Rcv/Code Conv. Xmt
LARSEN NLA 150 MM 2 Mtr Mag.
MFJ
496 Keyboard
941 C Tuner
Huge Stock! Call for Discount!
MIAAGE
823
8108
81016
81016
HFNHF Meters (5\% accuracy)
SHURE
444D Very Nice Mic
TEN.TEC
546 Omnic
580 Delta
All accessories in stock
$\$ 169.00$ 269.00
$\$ 39.00$

$\$ 79.00$

155.00
239.00
239.00
205.00
100.00
$\$ 50.00$
$\$ 975.00$
679.00
679.00
439.00
call

manual antenna tuners

Daiwa announces two new manual antenna tuners. The CNW-518 is a lightweight, rugged tuner rated at 2.5 kW (PEP), 1 kW CW (50 percent duty). It will match unbalanced lines from 10 to 250 ohms impedance and features 80 through 10 meter coverage including the new WARC bands. Features include attractive styling and planetary gearing. Insertion loss is less than 0.5 dB .

The new CNW-18 is rated at 500 watts (PEP), 200 watts CW, and incorporates the same features as the CNW-518 except planetary gearing. Both manual tuners feature the unique Daiwa cross needle meter that

shows forward power, reflected power, and resultant SWR at a single glance. For more information, contact EMCM, 858 E. Congress Park Dr., Centerville, Ohio 45459, or telephone 513-434-0031.

Larsen Quik Change

Larsen Antennas' new Quik Change Radio Mount system lets you change your mind - and your radio - fast. The innovative new mount permits temporary expansion of a delivery fleet, interchangeable use on farm equipment, or easy removal for protection against theft from unattended vehicles. It's a flexible product with flexible use. Transfers take only a minute. Radio malfunctions can be
checked quickly and replacements installed easily in any vehicle. The Quik Change is tough enough to stand heavy equipment vibration.

There are no manual connections, just a simple latch release that disconnects the positive power lead, then the ground and speaker leads and the antenna connection. Reinsertion connects positive power last to protect the radio. First-class connectors are used throughout with connections provided for power, ground, and speaker screw terminals.

For more information, contact Larsen Antennas, P.O. Box 1799, Vancouver, Washington 98668.

VHF fm transceivers

Hamtronics, Inc., well known for high quality fm transmitter, receiver, and power amplifier modules, now has a complete VHF fm transceiver all on one PC board. The new model FM-5 transceiver kit is available for the $6-$ meter, and $220-\mathrm{MHz}$ ham bands and may also be used in some countries on adjacent commercial bands. It operates on up to five channels at 10 watts output. The receiver uses ten poles of i-f filtering and dual gate MOSFETS for superior selectivity and cross-mod rejection.

Because all components, including controls and heatsinks, are mounted right on the main PC board, construction is simplified and cost is reduced. The complete kit costs only $\$ 159.95$. Cabinets, microphones, and crystals
are readily available as options.
For further information, including a forty-page catalogue of all Hamtronics kits, contact Hamtronics, Inc., $65 F$ Moul Rd., Hilton, New York 14468; teléphone 716-392-9430.

MFJ-955 VLF/MW/SWL antenna

The new MFJ-955 VLF/MW/SWL preselecting antenna tuner greatly improves reception of $10-\mathrm{kHz}$ through $30-\mathrm{MHz}$ signals.

The MFJ-955 connects between your receiver and antenna. You can peak desired signals while rejecting interference and reducing overload, background noise, cross modulation, and inter-modulation. VLF signals come roaring in. Front panel switching allows push button selection of two antennas and two receivers.

The MFJ-955 sells for $\$ 59.95$ (plus $\$ 4.00$ shipping and handling), has a money back guarantee (less shipping and handling) and a one-year unconditional warranty.

For more information, contact MFJ Enterprises, Inc., P.O. Box 494, Mississippi State, Mississippi 39762; telephone 800-647-1800.

catalogs

Long known as an excellent source of coaxial cable and other products, Nemal Electronics has just released their latest catalog. Catalog B is chock full of interesting items for all electronic enthusiasts. They have a full line of coax cable and connectors for ham and TV use. Write today or check number 968 on Reader Service card for more information. Nemal Electronics, 3685 SW 80th St., Miami, Florida 33134.

WARNING SAVE YOUR LIFE OR RND IMOURY

Base plates, flat roof mounts, hinged bases, hinged sections, etc., are not intended to support the weight of a single man. Accidents have occurred because individuals assume situations are safe when they are not.

Installation and dismantling of towers is dangerous and temporary guys of sufficient strength and size should be used at all times when individuals are climbing towers during all types of installations or dismantlings. Temporary guys should be used on the first 10' or tower during erection or dismantling. Dismantling can even be more dangerous since the condition of the tower, guys, anchors, and/or roof in many cases is unknown.

The dismantling of some towers should be done with the use of a crane in order to minimize the possibility of member, guy wire, anchor, or base failures. Used towers in many cases are not as inexpensive as you may think if you are injured or killed.
Get professional, experienced help and read your Rohn catalog or other tower manufacturers' catalogs before erecting or dismantling any tower. A consultation with your local, professional tower erector would be very inexpensive insurance

Adveritisers check-off

for literature, in a hurry - we'll rush your name to the companies whose names you "check-off"

Place your check mark in the space petween name and number. Ex: Ham Radio - 234

AEA ___ 67 Alaska Microwave \qquad 826	
All Elec. _ 926	
Alpha Delta __. 949	
Aluma _-.. 589	
Amateur Elec. Supply __ 659	
Amp Supply __ 991	
Applied inv. _-.. 862	
Arco Solar __ 965	
ARRL Nat. Conv., Cedar	
Atlantic Surplus *	
ATV Magazine *	
	Barker $\&$ Williamson \qquad 015
	Barry *
Bauman - 017	
Bencher _-_ 629	
Ben Franklin __ 864	
Bilat ___ 817	
Butternut *	
Certified Int. __ 976	
Comm. Concepts _ 797	
Comm. Spec. __ 330	
Curtis Electro __ 034	
Drake *	
EEB __ 288	
EGE _- 901	
ETCO ___ 886	
Encomm _- 888	
Frontier Ent. __989	
Fuil Svea __9 928	
G\&K__. 967	
GLB __ 552	
G.I.S.M.O.__691	
Grove ___ 848	
Hal Comm. __ 057	
Hal-Tronix - 254	
H. R. B. _ 150	
Ham Shack __ 879	
Hamtronics, N.Y. __ 246	
Harry __... 889	
Heath _-... 060	
	Icom*

*Please contact this advertiser directly Limit 15 inquiries per request.

June, 1982

Please use before July 31, 1982

```
Tear off and mail to
HAM RADIO MAGAZINE - "check off"
Greenville, N. H. 03048-0498
NAME
CALL
Street
```

city
look here
CALL TOLL FREE: 1-800-231-3057
(TEX. RES.Call Collect 10AM-5PMCDST, 1-713-721-7920
days 1-713-658-0268

YAESU	FT1 2395.00
	FT902DM 1249.00
	FT1012D/Mark 374900
	FT208R 708R 289.00 ea
ICOM	IC3AT/IC4AT 269.00 ea.
	IC25A 309.00
	IC730 Call
	IC2AT 249.00
	IC22U 269.00
ROBOT	800A (+ Rebate) 749.00
	400A (+ Rebate) 675.00
KLM	KT34XA 469.00
	KT34A 309.00
	144-14816C ... 89.95
DRAKE	TR5 995.00
	TR7A 1495.00
	R7A 1450.00
AEA	CK1 115.00
	CK2 89.00
	MBA-RO 269.00
	MBA-RC 349.00
ROCKWELL	KWM380 ... 2795.00
COLLINS	Hi S/N, All mods Accessories 10\% Off List
KENWOOD	Complete Line ... Call
AMPHENOL	Siverplate PL259 , 1.00
SAXTON	450 OHM Open Wire Ladderline .. 20 C ft
BELDEN	9405, 8214, 9258, 8267
	9251 - Stock Call
	RG 8A/U. 45¢/ft.
HAL	CWR685A
	+ Keyboard . 875.00
	CT2100 699.00
	KB2100 159.00
World Radio	TV Handbook
 16.50 ppd. UPS
HYGAIN	TH7DX 349.00
10\% Off	Curts, Sherwood, Palomar
BUTTERNUT	HF6V Vertical .. 100.00
TONNA	F9FT, 9 EL 2 Meter 30.00
KANTRONICS	S Minireader . . . 249.00
	MicroRTTY. 249.00
ANTIQUE	Rare Tubes Call!
mosley	Antennas Call!

MASTERCARD VISA

All prices fob Houston except where indicated. Prices subject to change without notice, all items guaranteed Some items subject prior sale. Texas residents add 6\% Some items subject prior sale. Texas residents add 6
tax. Please add sufficient postage, balance collect.

Advertisers index

Alaska Microwave Labs 74
All Electronics Corp. 47
Alpha Detta 75
Aluma Tower Company 62
Amateur Electronic Supply. 46
Amp Supply 63
Applied Invention 51
Arco Solar, Inc. 23
ARRL National Convention, Cedar Rapids 35
Atlantic Surplus Sales 62
ATV Magazine 81
Barker E Williamson, Inc. 26
Barry Electronics 11
Bauman. R.H., Sales Company 88
Bencher, Inc. 89
Ben Franklin Electronics 62
Bilal Company 73
Butternut ElectronicsCertified International.74
81
Communications Concepts. 88
Communications Specialists 95
Drake, R.L., Co. $2,26,41,45,68$
EEB 72
EGE, Inc. 87
ETCO. 62
Fuji Svea 62
G \& K Amateur Supply. 62
GLB Electronics 73
G.I.S.M.O.
7. 51
Hal Communications Corp.19
Ham Radio's Bookstore 47, 50, 63, 81, 88
The Ham Shack 90
Hamtronics, N.Y 79
Hatry Electronics75
Heath CompanyCover II
JDL 63
Jameco Electronics 40
KLM Electronics. Inc 48. 49
Long's Electronics 24, 25
M/A-Com Video Satellites, Inc 68
MFJ Enterprises 9
Madison Electronics Supply. 92
Micro Security 35
Microwave Filter, Inc. 34
Mirage Communications Equipment, Inc 91
N.P.S., Inc.Nemal Electronics.79
Oak Hill Academy Amateur Radio Session 68
P.B. Radio 72
P.C. Electronics 41
Palomar Engineers7
Phillips-Tech Electronics89
Pro-Search Electronics. 96
Radio Amateur Callbook.89
Radios Unlimited51
Rockwell International, Collins Division 52
Roux Wire Die, Inc.82, 83, 84
Sherwood Engineering. 74
Smithe Aluminum 62
Spectrum International, Inc.31
Telrex Laboratories. 79
exas Towers70
Universal Communications. 26
UNR-Rohn. 91
Valor Enterprises, Inc74
Cover IV
Webster Associates75
Nestern ElectronicsCover III

Advertisers
 check-off

NUMBER
NAME OF COMPANY

NAME pro
for literature, in a hurry - we'll rush your name to the companies whose names you print below It's simple to do. Simply select the advertiser's number and name from the Advertisers' Checkoff list found on the same page as the Advertisers' Index. Just print the number and the company's name and drop in the mail.

NUMBER
NAME OF COMPANY
\qquad
\qquad
\qquad
-_ _ _
\qquad
\qquad
_ May

CALL
ADDRESS
CITY \qquad

```
AFFIX POSTAGE
OR
pOST OFFICE
WILL NOT
DELIVER
```


Stuck with a problem?

Our TE-12P Encoder might be just the solution to pull you out of a sticky situation. Need a different CTCSS tone for each channel in a multi-channel Public Safety System? How about customer access to multiple repeater sites on the same channel? Or use it to generate any of the twelve tones for EMS use. Also, it can be used to access Amateur repeaters or just as a piece of versatile test equipment. Any of the CTCSS tones may be accessed with the TE-12PA, any of the audible frequencies with the TE-12PB. Just set a dip switch, no test equipment is required. As usual, we're a stickler for 1day delivery with a full 1 year warranty.

- Output level flat to within 1.5 db over entire range selected.
- Immune to RF
- Powered by $6-30 \mathrm{vdc}$, unregulated at 8 ma .
- Low impedance, low distortion, adjustable sinewave output, 5 v peak-to-peak.
- Instant start-up.

TE-12PA

67.0 XZ	85.4 YA	103.51 A	127.33 A	156.75 A	192.87 A
71.9 XA	88.5 YB	107.21 B	131.83 B	162.25 B	$203.5 \mathrm{M1}$
74.4 WA	91.5 ZZ	110.92 Z	136.54 Z	167.96 Z	
77.0 XB	94.8 ZA	114.82 A	141.34 A	173.86 A	
79.7 SP	97.4 ZB	118.82 B	146.24 B	179.96 B	
82.5 YZ	100.01 Z	123.03 Z	151.45 Z	186.27 Z	

- Frequency accuracy, $\pm .1 \mathrm{~Hz}$ maximum $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Frequencies to 250 Hz available on special order.
- Continuous tone

TE-12PB

| TEST-TONES: | TOUCH-TONES: | | BURST TONES: | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 600 | 697 | 1209 | 1600 | 1850 | 2150 | 2400 |
| 1000 | 770 | 1336 | 1650 | 1900 | 2200 | 2450 |
| 1500 | 852 | 1477 | 1700 | 1950 | 2250 | 2500 |
| 2175 | 941 | 1633 | 1750 | 2000 | 2300 | 2550 |
| 2805 | | | 1800 | 2100 | 2350 | |

- Frequency accuracy, $\pm 1 \mathrm{~Hz}$ maximum $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Tone length approximately 300 ms . May be lengthened, shortened or eliminated by changing value of resistor
$\$ 89.95$

I COMMUNICATIONS SPECIALISTS

426 West Taft Avenue, Orange, California 92667 (800) 854-0547/California: (714) 998-3021

introducing a new dimension...

codruarz Mulewn conito mannosime

For Contesters,
DX'ers, Handicapped Operators and Ceneral Purpose Ham Operators:
The Most Advanced Antenna Control Available...

- The Only

Computerized Unit

- The Only Talking Unit
- The Only Scanning Unit
- The Only

Programmable Unit

- The Only Automatic Braking Unit

Contesters:

Pro-Search seeks out a pre-programmed heading, plus stores various common headings and automatically scans for those rare multipliers, giving the operator hands-free operation and more time for contesting.

DXers:

Pro-Search loads in short path and long path headings and with the touch of a button, the system works between both headings. Plus you have all of the other features of the ProSearch to aid you in catching that rare DX station.

Handicapped Operators:

Pro-Search offers ease of operation...control the entire system with just one touch. A talk loop...vocally calls out the headings, allowing blind operators to accurately program and hear their headings.

General Purpose Operators:

Pro-Search has numerous

 uses.Pre-set beam headings for SKEDS, VHF WORK, and many others. Current headings can be read, by displaying the present directions with LEDS. Pro-Search also displays and stores the last heading worked, which can be recalled by the Auto-Locate system with the touch of a button.

New Yaesu FT-102 Series Transceiver of Champions!

Abstract

The long-awaited new generation of Yaesu HF technology has arrived! New research in improved receiver filtering and spectral purity is brought to bear in the competition-bred FT-102, the HF transceiver designed for active Amateurs on today's intensely active bands !

Unique Cascaded Filter System

The FT-102 utilizes an advanced 8.2 MHz and 455 kHz IF system, capable of accepting as many as three filters in cascade. Optional fitters of $2.9 \mathrm{kHz}, 1.8$ $\mathrm{kHz}, 600 \mathrm{~Hz}$, and 300 Hz may be combined with the two stock 2.9 kHz filters for operating flexibility you've never seen in an HF transceiver before now! All New Receiver Front End
Utilizing husky junction field-effect transistors in a 24 volt, high-current design, the FT-102 front end features a low-distortion RF preamplifier that may be bypassed via a tront panel switch when not needed
IF Notch and Audio Peak Filter
A highly effective 455 kHz IF Notch Filter provides superb rejection of heterodynes, carriers, and other annoying interference appearing within the IF passband. On CW, the Audio Peak Filter may be switched in during extremely tight pile-up conditions for post-detection signal enhancement.
Variable IF Bandwidth with IF Shift
The FT-102's double conversion receiver features Yaesu's time-proven Variable Bandwidth System, which utilizes the cascaded IF filters to provide intermediate bandwidths such as $2.1 \mathrm{kHz}, 1.5 \mathrm{kHz}$, or 800 Hz simply by twisting a dial. The Variable Bandwidth System is used in conjunction with the IF Shift control, which allows the operator to center the IF passband frequency response without varying the incoming signal pitch.
Wide/Narrow Filter Selection
Depending on the exact combination of optional filters you choose, a variety of wide/narrow operating modes may be selected. For example, you may set up 2.9 kHz in SSB/WIDE, 1.8 kHz in SSB/NARROW, then select 1.8 kHz for $\mathrm{CW} /$ WIDE, and 600 Hz or 300 Hz for CW/NARROW. Or use the Variable Bandwidth to set your SSB bandwidth, and use 600 Hz for CW/WIDE and 300 Hz for CW/NARROW! No other manufacturer gives you so much flexibility in selecting filter responses!
Variable Pulse Width Noise Blanker
Ignition noise, the "Woodpecker," and power line noise are modern-day enemies of effective Amateur operation. The FT-102 Noise Blanker offers improved blanking action on today's man-made noise sources (though no blanker can eliminate all forms of band noise) for more solid copy under adverse conditions. Low Distortion Audio/IF Stage Design
Now that dynamic range, stability, and AGC problems have been largely eliminated thanks to improved technology. Yaesu's engineers have put particular attention on maximizing intelligence recovery in the receiver. While elementary filter cascading schemes often degrade performance, the FT-102's unique blend of crystal and ceramic IF filters plus audio tone control provides very low phase delay, reduced passband ripple, and hence increased recovery of information.

Heavy Duty Three-Tube Final Amplifier
The FT-102 final amplifier uses three 6146B tubes for more consistent power output and improved reliability. Using up to 10 dB of RF negative feedback, the FT-102 transmitter third-order distortion products are typically 40 dB down, giving you a studio quality output signal.
Dual Metering System
Adopted from the new FT-ONE transceiver, the Dual Metering System provides simultaneous display of ALC voltage on one meter along with metering of plate voltage, cathode current, relative power output, or clipping level on the other. This system greatly simplifies proper adjustment of the transmitter.

Microphone Amplifier Tone Control

Recognizing the differences in voice characteristics of Amateur operators, Yaesu's engineers have incorporated an ingenious microphone amplifier tone control circuit, which allows you to tailor the treble and bass response of the FT-102 transmitter for best fidelity on your speech pattern

RF Speech Processor

The buitt-in RF Speech Processor uses true RF clipping, for improved talk power under difficult conditions. The clipping type speech processor provides cleaner, more effective "punch" for your signal than simpler circuits used in other transmitters.
vOX with Front Panel Controls
The FT-102 standard package includes VOX for hands-free operation. Both the VOX Gain and VOX Delay controls are located on the front panel, for maximum operator convenience.
IF Monitor Circuit
For easy adjustment of the RF Speech Processor or for recording both sides of a conversation, an IF monitor circuit is provided in the transmiter section. When the optional AM/FM unit is installed, the IF monitor may be used for proper setting of the FM deviation and AM mic gain.
WARC Bands Factory Installed
The FT-102 is factory equipped for operation on all present and proposed Amateur bands, so you won't have to worry about retrofitting capability on your transceiver. An extra AUX band position is available on the bandswitch for special applications
Full Line Of Accessories
For maximum operating flexibility, see your Authorized Dealer for details of the complete line of FT-102 accessories. Coming soon are the FV-102DM Synthesized VFO, SP-102 Speaker/Audio Filter, a full line of optional filters and microphones, and the AM/FM Unit.

Price And Specitications Subject To

YAESU ELECTRONICS CORP., 6851 Walthall Way, Paramount, CA 90723 - (213) 633-4007 YAESU Eastern Service Ctr., 9812 Princeton-Glendale Rd., Cincinnati, OH 45246 - (513) 874-3100

envic cavities cover 54 to 970 MHz at power levels to 30 kW - our design or yours

Varian EIMAC has complete cavity design and production capability. We make sure that tube and cavity are compatible. If it isn't an off-the-shelf-item, we have the designers and engineers for any specific job.
EIMAC has expertise in all disciplines including pulse, CW, FM, and TV. We match tube, power,
bandwidth and operating mode to achieve optimum performance.
More information on EIMAC cavities and tubes is available in our Cavity Capability brochure from Varian EIMAC. Or for prompt consideration of your special design requirements, contact Product Manager, Var-

EIMAC Cavity	Matching EIMAC Tube	Tuning Range (MHz)	Power Output
CV-2200	4CX20,400A	86-108	30 kW
CV-2220	3CX1500Ai	86-108	1.5 kW
CV-2225	4CX3500A	86-108	5 kW
CV-2240	3CX10,000U7	54-88	$10 \mathrm{~kW} \dagger$
CV-2250	3CX10,000U7	170-227	$10 \mathrm{~kW} \dagger$
CV-2400	8874	420-450	300/1250 W*
CV-2800	$3 \mathrm{CX400U7}$	850-970	225 W
CV-2810	$3 \mathrm{CX400U7}$	910-970	190 W

ian EIMAC, or the nearest Varian Electron Device Group sales office. Call or write today.

Electron Device Group Varian EIMAC 301 Industrial Way San Carlos, California 94070 415-592-1221
Varian A.G.
Steinhauserstrasse CH-6300 Zug, Switzeriand
Tel: (042) 232575
Telex: 78841

[^0]: *The one-way path loss to the moon is approximately 197 dB at 70 cm . The moon's surface has a gain of 132 dB as a passive reflector at 70 cm . Hence the round-trip loss is $197+197-132=262 \mathrm{~dB}$.
 tAn isotropic antenna is an imaginary mathematical model that radiates power equally in every direction. Generally speaking, a dipole has a gain of 2.14 dB over an isotropic antenna.

[^1]: *Lunar Electronics, 2775 Kurts St., Suite 11, San Diego, California 92110.

[^2]: *Fred Merry, W2GN, ARCOS, Box 546, East Greenbush, New York 12061.

[^3]: *The $70-\mathrm{cm}$ EME News/etter is published monthly by Allen Katz, K2UYH, 326 Old Trenton Road, RD 4, Trenton, New Jersey 08691. A sample copy is available for a business sized (No. 10) envelope with 1 ounce postage.

[^4]: R. L. DRAKE COMPANY

 540 Richard Street. Miamisburg. Ohio 45342 vish त

[^5]: *Assuming the transmitter is tuned properly. tGibilisco, "How Important is Low SWR?", ham radio, August, 1981.

[^6]: *Wireline is a trademark of Sage Laboratories, Inc.

[^7]: ＊Look at next higher band for possible openings．

[^8]: Caution! Thistype of powersupply contains voltages that can cause death or paralysis. Handle with all precautions, respect, and care

 Editor

[^9]: *Henry Radio, 2050 S. Bundy Drive, Los Angeles, California 90025, (213) 820-1234.

[^10]: （\％）（hathin internatoval

 NO HUGE AD－JUST SAVINGS FOR YOU

 ## ON

 CUSHCRAFT，HUSTLER，LARSEN，UNADILLA，BELDEN， COPPERWELD，SIGNALCRAFTER，PALOMAR，NYE－VIKING TRIONYX，TRAC，JANEL，BENCHER，VIBROPLEX，
 AMPHENOL，GOULD，DURACELL，WELLEA AND OTHERS．
 OSL＇S CUSTOM MADE ALL CRYSTALS from $\$ 4.00$

