DECEMBER 1982

- improved TouchTone™ decoder
- rotary dial and encoder
- 40-meter transmitter-receiver
- data bandwidths compared

focus on communications technology
Compact.
Only 3.7 in (H) x 9.5 in (W) x 10.8 in (D) will fit into most mobile operations (compact car, airplane, boat, or suitcase)

Affordable.
Priced right to meet your budget as your main HF rig or as a second rig for mobile/portable operation.

Convenient.
- Unique tuning speed selection for quick and precise QSY, choice of 1 KHz, 100 Hz or 10 Hz tuning.
- Electronic dial lock, deactivates tuning knob for lock on, stay on frequency operation.
- One memory per band, for storage of your favorite frequency on each band.
- Dual VFO system built in standard at no extra cost.

Full Featured.
- 200W PEP input—powerful punch on SSB/CW (40 W out on AM)
- Receiver preamp built-in • VOX built-in
- Noise blanker (selectable time constant) standard
- Large RIT knob for easy mobile operation
- Amateur band coverage 10-80M including the new WARC bands
- Speech processor—built-in, standard (no extra cost)
- IF shift slide tuning standard (pass band tuning optional)
- Fully solid state for lower current drain
- Automatic protection circuit for finals under high SWR conditions
- Digital readout • Receives WWV • Selectable AGC
- Up/down tuning from optional microphone
- Handheld microphone standard (no extra cost)
- Optional mobile mount available

ICOM
2112 116th Avenue N.E., Bellevue, WA 98004
3331 Towerwood Dr., Suite 307, Dallas TX 75234

All stated specifications are approximate and subject to change without notice or obligation. All ICOM radios significantly exceed FCC regulations limiting spurious emissions.
New Levels of Control
With the Ungar Series 9000 Soldering Line

In the world of soldering, control is essential. And with the new Ungar Series 9000 soldering line, you can choose the precise level of control you need!

First, our state-of-the-art Electronic Soldering System 9000, with variable temperature control from 420°F to 800°F and bright bar graph temperature display so you can see the exact temperature from across the room.

Then there’s the Electronic Soldering System 9100, with variable lower energy use at idle, and unparalleled recovery.

Our System 9200 has constant temperature control. And, like all Series 9000 units, the iron can be set on either the left or right side for optimum operator comfort.

The System 9300 micro electronic soldering iron has our new THERMO-DURIC, long-life heater plus easy-to-change tips that translates into quicker heat-up.

So when you need control in your universe, rely on the Series 9000 by Ungar. For further information, call the Ungar Hotline, toll free 1-800-421-1538, in California call collect 1-213-774-5950.

Ungar
Division of Eldon Industries
Compton, California 90220
In Canada: Markham, Ontario, Canada L3R 1H5
SSB, CW, AM, FM, digital VFO’s, 10 memories, memory and band scan, dual 24-hour clocks...

R-2000

The R-2000 is an all mode SSB, CW, AM, FM receiver that covers 150 kHz–30 MHz in 30 bands. New microprocessor controlled operating features and an UP conversion PLL circuit provide maximum flexibility and ease of operation to enhance the excitement of listening to stations around the world. Key features include digital VFO’s, ten memories that store frequency, band, and mode information, memory scan, programmable band scan, fluorescent tube digital display, and dual 24-hour clock with timer.

R-2000 FEATURES:

- **All mode:** USB, LSB, CW, AM, FM. Provides expanded flexibility in receiving various signal types. Front panel mode selector keys, with LED indicators.
- **Digital VFO’s for best stability.**
 - 50-Hz step, switchable to 500-Hz or 5-kHz, using front panel pushbutton switches. F. LOCK switch provided.
- **Ten memories store frequency, band, and mode data.**
 - Complete information on frequency, band, and mode is stored in memory, assuring maximum ease of operation. Each memory may be tuned as a VFO. Original memory frequency may be recalled. AUTO, M switch for automatic storage of current operating data, or, when off, selective storage of data using M. IN switch.
- **Lithium battery memory back-up.** (Est. 5 yr. life.)
- **Memory scan.**
 - Scans all memories, or may be programmed to scan specific memories. HOLD switch interrupts scanning frequency, band, and mode are automatically selected in accordance with the memory channel being scanned. The scanning time is approximately 2 seconds per channel.
- **Programmable band scan.**
 - Scans automatically within the programmed bandwidth. Memory channels 9 and 0 establish upper and lower scan limits. HOLD switch interrupts scanning. Frequency may be adjusted, using the tuning control, during scan HOLD.
- **Fluorescent tube digital display (100-Hz resolution).**
 - Built-in 7 digit fluorescent tube digital display indicates frequency or time, plus memory channel number. DIM switch provided. The display may be switched to indicate CLOCK-2, FREQUENCY, CLOCK-1, and timer ON or OFF by the front panel FUNCTION switch.
- **Dual 24-hour quartz clocks, with timer.**
 - Permits programming two different time zones. Timer for ON and OFF programming. Timer REMOTE output on rear panel (not for AC power).
- **Three built-in IF filters with NARROW/WIDE selector switch. (CW filter optional.)**
 - 6 kHz wide or 2.7 kHz narrow on AM. 2.7 kHz automatic on SSB. 2.7 kHz wide on CW, or, with optional YG-455C filter installed. 500 Hz narrow. 15 kHz automatic on FM.
- **Squelch circuit, all mode, built-in, with BUSY indicator.**
- **Noise blanker built-in.**
 - Eliminates pulse-type noise on SSB, CW, and AM.
- **Large front mounted speaker.**
- **Tone control.**
- **RF step attenuator. (0-10-20-30 dB.)**
 - Four step attenuator, plus antenna fuse.
- **AGC switch. (Slow-Fast.)**
- **“S” meter, with SINPO “S” scale.**
- **High and low impedance antenna terminals.**
 - A high impedance (500 ohm) terminal, and a low impedance (50 ohm) co-axial connector are provided.
- **100/120/220/240 VAC, or 13.8 VDC operation.** (Optional DCK-1 cable kit required for 13.8 VDC.)

Other features.

- **RECORD output jack.**
- **Audible “beeper” (through speaker).**
- **Carrying handle.**
- **Headphone jack.**
- **External speaker jack.**

Optional accessories:

- **HS-4, HS-5, HS-6 headphones.**
- **DCK-1 DC cable kit.**
- **YG-455C 500-Hz CW filter.**
- **HC-10 World digital quartz clock.**

More information on the R-2000 is available from all authorized dealers of Trio-Kenwood Communications 1111 West Walnut Street Compton, California 90220.

Specifications and prices are subject to change without notice or obligation.
Please enter my gift subscriptions to HAM RADIO Magazine as follows:

EACH GIFT JUST $14.50
SAVE OVER 25%

Name ___________________________ Call ___________________________
Address ___
City ___________________ State ____ Zip __________
□ new □ renewal

Name ___________________________ Call ___________________________
Address ___
City ___________________ State ____ Zip __________
□ new □ renewal

Name ___________________________ Call ___________________________
Address ___
City ___________________ State ____ Zip __________
□ new □ renewal

□ Start or □ Renew my own HR subscription
□ Enclosed is a check or money order for $__________ for _______ subscriptions (use separate envelope)

□ VISA □ MasterCard □ Bill me later
Acct # _______ Expires _______ MC Bank # __________

My Name ___________________________ Call ___________________________
Address ___
City ___________________ State ____ Zip __________

Prices U.S. only
DECEMBER 1982
volume 15, number 12

contents

12 low cost linear design and construction
R. P. Haviland, W4MB

24 improved TouchTone™ decoder
Jerry Hinshaw, N6JH

30 rotary dial and encoder for digital tuning
C. A. Eubanks, N3CA

43 40-meter transmitter-receiver
Ed Marriner, W6XM

50 data bandwidths compared
J. T. Dijk, W9JD/2

54 battery charge sensor
F. T. Marcellino, W3BYM

58 ham radio techniques
Bill Orr, W5SAI

77 receiver dynamic range
Cornell Drentea, WB3JZ0

84 is it stolen?
George H. Goldstone, W8AP

132 advertisers index
80 DX forecaster
88 new products
70 ham notes
95 flea market
6 reflections
38 ham calendar
10 presstop
114 ham mart
132 reader service
I must share this with you. I must blurt this out before I bust. We at *ham radio* magazine are so pleased with the turn of events and even more importantly with our glimpse at the future: a larger staff, a very welcome increased advertiser response (it’s nice to be adding pages in groups of eight at the last minute), and so very importantly, your response to us. Yes, all the letters will be answered, the many article suggestions considered and encouraged. Reflections is our attempt at looking in both directions, remembering the past technical excellence of our hobby, individuals, and industry, while keeping an eye toward the future.

I feel very fortunate to be able to address so large a group of technical and knowledgeable individuals through this page and am taking the opportunity to throw out to the “floor” possibly the first question of our new technical forum section. The problem: Normal communications channels down. A fine gentleman, while honorably serving his country, suffered a wound that resulted in Padget’s disease. For those not familiar with it, this is a progressively degenerative bone malady. Fortunately, through modern medicine, its destructiveness has been arrested. However one quite intelligent human being with a fine mind is now deaf and almost totally blind. The two normal means of communications that most of us take for granted — seeing and hearing — are “down.” But his speech is excellent and his ability and desire to learn new techniques are great. They are surpassed only by his desire to carry on normal communications. I might add that his memory is outstanding. He knows the Morse code (from army days) and he has very slight shadow vision. Are techniques available (such as aural to tactile converters, aural to light converters and so forth) that can be used to provide faster inputting under these circumstances? I am aware of articles on this subject that have appeared in some of the ham magazines. Do any of our readers know of, or have ideas for, other techniques that might help?

Presented below is a preview of some of the subject areas *ham radio* magazine will cover in 1983. Please feel free to respond with your suggestions for additions or changes:

<table>
<thead>
<tr>
<th>Antennas</th>
<th>Phased verticals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filters</td>
<td>Preamplifiers</td>
</tr>
<tr>
<td>Future technology</td>
<td>Propagation</td>
</tr>
<tr>
<td>Ham computers</td>
<td>Receivers</td>
</tr>
<tr>
<td>Ham towers</td>
<td>Repeaters</td>
</tr>
<tr>
<td>Oscillators and synthesizers</td>
<td>RFI</td>
</tr>
</tbody>
</table>

Two thousand miles of almost non-stop driving during my move from Denver, Colorado, to join *ham radio* in Greenville, New Hampshire, gave me plenty of time to reflect on and appreciate another wonderful aspect of ham radio, the ability to communicate with a cross-section of Amateurs from Salinas and Topeka, Kansas; Kansas City and St. Louis, Missouri; Indianapolis, Indiana; Zanesville, Ohio; Wheeling, West Virginia; Pittsburgh and Scranton, Pennsylvania; through Binghamton, New York — to name a few. The miles melted away with the good company provided by local hams as we discussed everything from lightning protection for highly exposed repeaters to elaborate test procedures for squeezing out that last tenth of a dB in a high-gain Yagi array. There is real joy in hearing a warm voice coming from the 2-meter transceiver telling one very weary driver that there are motels just ahead where a late arrival might find a welcome bed. How I appreciated each transistor, resistor, and capacitor in my mobile unit, the repeaters I worked through, Maxwell’s equations, and, most of all, the operators and technicians who made it all possible. To the many Amateurs I talked to during this recent trip, a hearty thank you.

Rich Rosen, K2RR
technical editor

December 1982
ENCOMM

Tokyo Hy-power
HL-160V 299.95
HL-32V 79.95

Sanbec
ST-144M 289.00
ST-6B 69.95
ST-1C Leather 99.95
Case 29.95
SM-1 29.95
SS-32 29.95
ST-EC 4.95
ST-200B 24.95
ST-MC 9.95
ST-WC 9.95
ST-EMC 8.95

ICOM

IC-730 699.00
IC-720A General coverage rcrv 1149.00
Icom SP-3 49.50
Icom PS-15 134.00
IC-740 969.00
IC-7A 239.00
IC-3AT 249.00
EX203 CI audio filter 39.00
EX205 TRV unit 7200 29.00
FL30 SSB crystal filter 59.50
FL44 455 Hz SSB crystal filter 143.00
FL45 CW narrow crystal filter 59.50

Microphones
HM5 34.50
HM7 29.00
HM10 39.50
HP1 headphone 34.50

We have everything in Icom accessories for your HF, VHF and UHF needs.

KENWOOD

The 930S, 830S, 660, 530S and 130S are all in stock. Call for Holiday Specials!

ACCESSORIES

Filters for 930S
YK-86A 59.95
YK-86C 69.95
YQ-455C 89.95
YQ-455CN 107.95
SP-30 79.95
SP-40 25.95
HC-10 92.95
MB-100 29.95
VX-4 55.00
PS-30 139.45
PS-230 71.95
DUC-360 250.90
KPS-21 112.00
KPS-21 MC-60 69.95

Announcing...

the new Collins 4515-1 Receiver, the Kenwood TR-3500, and the Icom IC-290H (25 watts)

YAESU

FT-760 2395.00
FT102 999.00
FTV102DM 295.95
SP102 59.00
FRG7 59.00
FRG-7700 59.00
FT-208R & FT 708R 12.00
M MB-10 15.00
FNB-2 59.00
YM-24A 39.00
NC-7 59.00
NC-9 59.00
PA-3 39.00
FBA-2 6.50
FBA-3 39.00
QTR-24 49.00
YD-444A 32.00
YH-55 15.00

HAM-KEY

HK-3M 19.95
HK-1 29.95

B&W antenna switches Stock
Cantronics Stock
Vibroplex Stock
Cushcraft & Hygain Stock
Telex headsets Stock
Daiwa meters Stock
Denton tuners Stock
Ruben towers Stock
Bearcat Scanners Stock
Telex rotors
Ham-4 169.00
Ham-X 249.00
MFJ Stock

Holiday Specials!

Rohn
25G 45.00
45G 100.00
55G 125.00

Hygain
TH7DX 349.00

YAESU FT1 + Accessories 2300.00
FT206R 289.00
FT706R 259.00

Hal
CT2100 699.00
KB2100 159.00
Robot 800A, 800H 749.00
Microlog ACT-1 + RS232 Battery 995.00
10% off Shrewdog, Curtis 230.00
Sanbec ST77 124.00
ST740 UP Call
Kenwood
TR9130 Call
TR7950 Call
TR7730/TTM 299.00
R600 299.00
TS530S new demo 600.00
AEA CK2 99.00
KT2 89.00
MM2 135.00
MBARO 269.00

Icom
IC2AT/IC4AT 249.00
IC2A 299.00
IC2AT 239.00

TRI-EX W-51 Tower F.O.B. Calif. 799.00
AR2BXC 34.00

Cushcraft
A3 179.00
A4 229.00

Butternut HFSV 125.00
Drake R7A 1400.00

Rockwell
KWM380 (limited) 2795.00

Kantronics Interface 169.00
Software Stock

KDK FM 4030 269.00
Bird 4304 - Stock Call

713-658-0268 - CALL FOR QUOTES

1508 McKinney
Houston, Texas 77010

More Details? CHECK - OFF Page 132

December 1982
Dear HR:

After reading the April issue of *Ham Radio*, I would like to comment on the Ham Notebook item by Mr. Foot, WA9HUV. He is not alone in his desire for a method of BCD addition and subtraction. However, Motorola already solved this problem many years ago with the introduction of a chip pair combination, the MC14560B and the MC14561B. The first is an NBCD adder and the second is a 9s complementer.

Connecting the units as shown in the data sheets (and reprinted in fig. 1) permits the user to choose a thumbwheel-selected number to program his synthesizer, or shift the number a fixed amount plus or minus. This feature is useful for setting a frequency source at a particular channel and then being able to shift its output to the upper or lower sideband.

The approximate cost per BCD digit is $5.40 in unit quantities. It’s a slightly more expensive approach, but one that does not require clocking and can be easily cascaded. For further reading and more application assistance, I would recommend Motorola’s application note AN-738, which covers the subject more completely.

Jeffrey L. Schiffer, Pres.
Phasetec Corporation
West Peabody, Massachusetts

quad versus Yagi

Dear HR:

Quad lovers awake! We are again being attacked by the Yagis (*Ham Radio*, May, 1982, “Quad Owner Switches”). It is not immediately apparent that the quad was given a fair shake by the test procedure. For example, a five-element Yagi on a 32-foot boom is matched up against a three-element quad on a 27-foot boom on 20 meters. On 15 meters a five-element Yagi was up against a four-element quad. On 10 meters, where the correlation is best except for the reversal of directivity, the match is five versus five.

The next problem I had was whether there were any matching devices at the antennas. Were baluns used, were their losses equal, was each antenna delivering maximum power to the line?

What bugs me most is that the authors took boom height as a reference height for both the quad and the Yagi. If the quads were fed at the center of the lower element, that point should be taken as the height of the quad. This would put the current loop for each antenna at the same height. It would seem that the procedure used in the tests handed the Yagi a height advantage on the order of 12 feet on 20 meters, 9 feet on 15 meters, and 6 feet on 10 meters. This would be expected to affect the vertical angle of the main lobe of the quad. Some Amateurs have advocated feeding the center of the upper element of the quad to improve the gain. Of course, there is a current loop in each of the horizontal elements if they are fed, but the loop at the feedpoint will be greater.

C’mon home, guys. Wouldn’t you rather fight than switch?

Howard B. Mouatt, W6BQD
Palm Desert, California

fig. 1. Connections for an NBCD adder and 9s complementer allowing a thumbwheel selected number or a number shift of a plus or minus fixed amount.
Hear Police/Fire Weather
on 2 Meter Handsets with this MFJ VHF Converter.

MFJ-313
$39.95

New MFJ VHF converter turns your synthesized scanner to 2 meter handheld into a hot Police/Fire/Weather band scanner. 144-148 MHz handsets receive Police/Fire on 154-158 MHz with direct frequency readout. Heat NOAA weather, maritime coastal plus on 160-164 MHz. Mounts between handheld and rubber ducky. Feedthru allows simultaneous scanning of both 2 meters and Police/Fire bands. Crystal controlled. Good input filter and 2.5 GHz transistor gives excellent uniform sensitivity over both bands. Crystal controlled. Bypass/Off switch allows transmitting. Won't burn out if you transmit (up to 5 watts) with converter on. Low insertion SWR. Uses AAA battery. 2½x1½x⅞ in., BNC connectors. Enjoy scanning, memory, digital readout, etc., as provided by your handheld on Police/Fire band.

220 MHz Converter for 2 M Handheld

MFJ-314
MFJ-314, like MFJ-313 but lets you receive 221-225 MHz on your 2 meter handheld. Police/Fire/Weather Band Converter for 2 Meters Mobile Rigs.

MFJ-312
$59.95

MFJ-312, like MFJ-313 but for mobile 2 meter rigs. Transmit up to 40 watts thru converter without damage. SO-239 connectors. Mobile mounting brackets. Rugged, “ON” LED. Use 12 VDC or AAA battery. 3¾x⅞ inch. Order from MFJ and try it-no obligation. If not delighted, return within 30 days for refund (less shipping). One year unconditional guarantee.

Order today. Call toll free 800-647-1800. Charge VISA, MC or mail check, money order for amount indicated. Add $4.00 each shipping. Hear police/fire/weather. Order now.

CALL TOLL FREE... 800-647-1800
Call 601-323-5869 in Miss., outside continental USA, tech/order/repair info. Tela 53-4560.

MFJ ENTERPRISES, INCORPORATED
Box 494, Mississippi State, MS 39762

MFJ DUMMY LOADS
Tune up fast into 50 ohm resistive load. Extend life of finals.

Includes high quality transformer oil.

$34.95

New MFJ-250 VERSALOAD Kilowatt Dummy Load lets you tune up fast. Extends life of transmitter finals. Reduces on-the-air QRM. Run 1 KW CW or 2 KW PEP for 10 minutes, ½ KW CW or 1 KW PEP for 20 minutes. Continuous duty with 500-750 watts. 400 watts PEP. Complete with derating curve. Quality 50 ohm non-inductive resistor. Oil cooled. Includes high quality, industrial grade transformer oil. SO-239 coax connector. Vented for safety. Removable vent cap. Has carrying handle. 7½x1½ in. high, 6-½ in. diameter.

MFJ “Dry” 300W and 1 KW Dummy Loads

MFJ-262
$64.95

MFJ-250
$26.95

Air cooled, non-inductive 50 ohm resistor in perforated metal housing with SO-239 connectors. Full load for 30 seconds, derating curves to 5 minutes. MFJ-250 (300 W). SWR: 1.1:1 to 30 MHz, 1.5:1 for 30-160 MHz. 2½x2½x7 in. MFJ-262 (1 KW). SWR: 1.5:1 for 30 MHz. 3x3x13 inches.

MFJ HF SWR/Wattmeter

MFJ-816
$29.95

New MFJ-816 low cost HF SWR/Wattmeter for 1.8 to 30 MHz range. Toroidal current pickup gives uniform sensitivity over entire HF frequency. Read SWR, forward and reflected power in 2 ranges (30 and 300 watts) on two color scale. SO-239 coax connectors, 4-1/2x2-3/8x7-1/8 in. Order from MFJ and try it. If not delighted, return within 30 days for refund (less shipping). One year unconditional guarantee.

Order today. Call TOLL FREE 800-647-1800. Charge VISA, MC or mail check, money order. Add $4.00 each shipping. Write for free catalog.

CALL TOLL FREE... 800-647-1800
601-323-5869 in Miss., outside continental USA, tech/order/repair info. Tela 53-4560.

MFJ ENTERPRISES, INCORPORATED
Box 494, Mississippi State, MS 39762

MFJ 24 HOUR CLOCKS
Your choice: dual 24 hour LCD display, or 24/12 hour with ID timer, or 12 inch quartz analog.

$39.95

DUAL 24 HOUR LCD
MFJ-104

Two independent 24 hour LCD displays! Read both GMT and local times at a glance. Six digit main display has seconds readout. Four digit auxiliary. Switch reverses main/aux. Alarm plays 4 selectable melodies. Alarm “ON” indicator. Snooze button. Quartz timing. Synchronizable to WWV. Flip-top cover serves as stand. Night light. Forward/reverse, fast/slow set buttons. Lock function prevents mis-setting. Display main time only, main/auxiliary or main/alarm time. Includes battery. 4x2x1½ inches.

MFJ-102
$32.95

Switchable 24 hour GMT or 12 hour format. ID timer sounds every 9 minutes after reset. Switchable seconds readout. Observed time. Just start clock from zero and note time of event up to 24 hours. Bright blue 0.6” vacuum fluorescent digits. Alarm with sneeze function. Synchronizable with WWV. Fast/slow set buttons. Lock function prevents mis-setting. Power out, alarm “ON” indicators. 110 VAC, 60 Hz (50 Hz with simple modification). UL and CSA approved. Black, brushed aluminum top/front. 6x2½x3”.

24 HOUR QUARTZ
MFJ-105
$49.95

True 24 hour quartz wall clock has huge 12 inch face. Gives excellent visibility across computer radio room. Fifteen seconds per month accuracy. Single “AA” battery provides over one year operation, immunity from power line failure and eliminates power cord. Sweep seconds work. Brown hi-impact case. Glass front. 24 hour military time format.

Order from MFJ and try it. If not delighted, return within 30 days for refund (less shipping). One year unconditional guarantee.

Order yours today. Call toll free 800-647-1800. Charge VISA, MC or mail check, money order. Add $4.00 each for shipping and handling.

CALL TOLL FREE 800-647-1800
Call 601-323-5869 in Miss., outside continental USA, tech/order/repair info. Tela 53-4560.

MFJ ENTERPRISES, INCORPORATED
Box 494, Mississippi State, MS 39762

More Details? CHECK-OFF Page 132

December 1982
"CQ 30 METERS" HAS FINALLY BECOME A REALITY for U.S. Amateurs. FCC Commissioners voted October 28 to grant "temporary access" to the new band. Acting on a suggestion made by Senator Barry Goldwater, K7UGA, in an August letter to Chairman Mark Fowler (October Presstop), the Commissioners permitted General class and above to use 250 watts input, narrow-band (CW and RTTY) modes only, from 10.1 to 10.15 MHz. The 10.109-10.115 MHz slot, however, was held back to protect existing users. The band was opened at 1900Z on the 28th, with W1AW, K7UGA, and W9MU among the many taking part in the U.S. 30-meter inaugural.

A Possible Conflict with the new band and also the 18 and 24 MHz bands has surfaced in FCC General Docket 82-625, released mid September. This Notice of Proposed Rule Making would open many segments of the 2-25 MHz HF spectrum, including the three new WARC bands (but no other Amateur frequencies), to various licensees in industrial radio services. Telephone and power companies plus oil, gas, and mineral exploration firms would all be authorized to use these frequencies when it was in the "national interest."

These Proposals Conflict With Other New WARC 79 Assignments as well as with the new Amateur bands, but it's predicted that frequencies conflicting with WARC allocations will be deleted as the NPRM is reviewed. The ARRL did, however, file comments pointing out the conflict prior to the comment closing date of November 5.

A "SPACE DXPEDITION" IS ALMOST CERTAIN FOR NEXT YEAR, when astronaut Owen Garriott, W5LFL, will fly the space shuttle Columbia's ninth mission. After lengthy negotiations, NASA Houston agreed to let him take a specially reworked 2-meter handheld along, to operate when possible with ATLA\$-KIZZ, W1KL\$, and WBGGVO. The unusual ruling was to "protect" the pay TV company, since they do not own the frequency as the NPRM issued October 28 to grant "temporary access" to the new band. It should be released as an RM shortly.

\textbf{NOVICE EXAMS WOULD BE PREPARED AND GRADED} as well as administered by Amateur volunteer examiners under an NPRM put forth by the Commissioners at their October 19 agenda meeting. It's proposed that examiners would make up an exam using the FCC Novice syllabus as a guide, let the applicant answer the questions, and then grade it. If the applicant passes both the written and the CW test, the examiner would note that on the applicant's Form 610, which would still need to be maintained. Comment due date for PR Docket 82-726 had not been released at press time.

The ARRL Proposed Proposal for the preparation and administration of exams by Amateurs was delivered to the FCC on October 28. It should be released as an RM shortly. The ARRL Proposed Proposal for the preparation and administration of exams by Amateurs was delivered to the FCC on October 28. It should be released as an RM shortly.

\textbf{AMATEUR LOGBOOK REQUIREMENTS WOULD BE ENTIRELY ELIMINATED} by another NPRM agreed to at that same agenda meeting. In this proposal the few remaining operating log requirements, such as noting changes in control operator, would be deleted, though certain station records would still need to be maintained. Comment due date for PR Docket 82-727 had not been released at press time.

\textbf{SACRAMENTO AMATEURS MUST GET PERMISSION} from a local pay TV Company before acquiring microwave equipment, according to a preliminary injunction issued by a superior court judge. He issued the order after hearing a suit from California Satellite Systems, Inc., against a local pay TV dealer who was also selling down-converters and antennas for the 2150 MHz pay TV band. He made the unusual ruling to "protect" the pay TV company, since they do not encode their signals and Amateur 2300-MHz equipment could be used to intercept the movie channel signals.

"AUTOMATIC CONTROL" OF AMATEUR RADIO BEACONS was authorized by the Commissioners on October 21. This means that operators of U.S. Amateur beacons will no longer have to shut down when they are unavailable to perform control operator functions.

\textbf{CW CREDIT FOR ANY CLASS AMATEUR LICENSE} was also granted to holders of any class commercial CW ticket at the same meeting.

\textbf{BURBANK CITY OFFICIALS ARE IN DEFAULT} under federal court rules for having failed to respond to the complaint filed against them to test their severe antenna restrictions (see Observation and Opinion, August, 1982, Ham Radio, and recent Presstops). The judge hearing the case has set November 4 for a status report by the parties. Attorney W9MU, representing Burbank, filed a motion for class certification and preliminary injunction prior to the November 4 court date to keep pressure on Burbank officials.

\textbf{FCC'S POWER MEASUREMENT NPRM, PR Docket 82-624,} proposes changing power limits for all classes except Novices to 1500 watts PEP output. Novices would be limited to a 200-watt PEP output. Due date for comments is February 15, 1983; reply comments are due by March 1.

\textbf{SONIC CABLE TV WAS FINED} $6,000 by the FCC for 2-meter interference following a two-year battle by WBGGVO. One third of the fine was for failing to correct the cable channel E problem after citation by an FCC engineer, while the remaining $4,000 was imposed for the California company's on-going illegal interference to Amateur operations on 2 meters.
Polar Research, Inc., is pleased to introduce the "Li'l Slipper". This highly versatile, rotating antenna mount was designed and built for the discriminating radio operator who wants the utmost efficiency in his antenna operation and total utilization of tower structure. The "Li'l Slipper" consists of an inner ring system solidly mounted to the tower structure, and an outer ring that has four versatile aluminum housings where antenna masts are inserted.

This outer ring system, driven by a heavy duty D.C. geared reduction motor, "slips" smoothly around the tower structure, guided by eight (8) precision molded rubber tracking rollers.

Rotation of the antennas provides multi-directional transmission and receiving for enhanced radio operation. The "Li'l Slipper" features a rugged all metal construction and reliable solid state electronics for dependable service. An attractive electronic control module provides the operator with relative information of the system's bearing around the tower.

The tower's structure is totally utilized, allowing the entire face area to be used with reduced interference to the antenna's pattern. Further utilization is possible through the mounting of more than one antenna on the system at one time. As many as four different antennas, in limitless combinations, are feasible. Study the illustration shown and consider your applications for the Li'l Slipper system. Call or write for a free brochure.

Call Toll Free 1-800-328-2041

Polar Research, Inc.
P.O. Box 781
Thief River Falls, MN 56701; Phone (218) 681-7413

More Details? CHECK-OFF Page 132

December 1982
low cost linear design and construction

Practical design techniques using common power tubes and parts provide 10-40 meter kilowatt amplifier

Constructing a linear amplifier is one way an Amateur can save money. It's not so much that commercial amplifiers are overpriced for the components they contain, but because of OEM pricing, components bought singly may add up to more than the cost of an assembled unit. Home construction allows you to take advantage of a readily available supply of parts (well-stocked junk pile) that can be used or traded for other items.

When constructing your own amplifier, it's usually not possible to exactly duplicate a published design. Modifications are often required to accommodate differences in components. For this reason, a specific design, and more importantly, the steps used to arrive at it, are presented. By providing sufficient data, minor and even major deviations from the specific design can be made while still obtaining good performance.

A review of amplifier design information, such as found in Bill Orr's Radio Handbook, in addition to this design data, is helpful prior to starting the project. Other good source material may be found in the ARRL Handbook and articles by W6SAI.

tubes

Tubes, and their availability, greatly influence the design approach to be taken. Good sources for low cost tubes are:

1. Surplus, often WW-II
2. Pull-outs from stations on a maintenance schedule
3. TV sweep tubes

A strong recommendation is in order: get 'the tubes you want to use before you start and get at least twice as many as you need, preferably two complete sets of spares. This will save you much trouble later, and possibly much expense (such as buying a low-production tube or making a design change). Test the tubes first, if at all possible, in a friend's rig or by

By R.P. Haviland, W4MB, 2100 S. Nova Road, Box 45, Daytona Beach, Florida 32019
using a pair of transformers, one with the proper filament voltage, and a second at 300-700 volts. Test the tube as a diode with a series resistor to give rated current. This test lets you separate out most bad tubes.

Some of the common tubes to look for are listed in table 1. Though possibly considered old-fashioned, out of style and even obsolete, they are inexpensive and perfectly usable. If you have a set, with spares, or can find a set, don’t be afraid to use them. This includes out-of-date or unusual tubes such as the 810 or the 715. There are some design considerations to look out for, however. These will be covered later.

TV sweep tubes have two ratings, one for average loads and another for peak loads, such as the flyback pulse in a sweep circuit. Average peak and duty cycle terms are important in the operation of any tube, and consequently are important design factors.

In amplifiers used in fm or teleprinter service a constant signal is present at all times, that is, the duty-cycle is 100 percent. With CW, the carrier is keyed on and off with a resulting duty cycle of approximately fifty percent. With SSB voice, the average energy is far below the peak, normally 10-16 dB down. This results in a duty cycle of ten percent or less. Use of clippers and other speech processors can raise SSB signal duty cycles to fifty percent or more. However, thirty to forty percent is probably nearly optimum. Low average power requirements of SSB service is the reason why modern linears can be made so small and why separate ratings are required for SSB and CW operation.

It makes quite a difference in component size if the rig is to be used for SSB only, or if it must also handle FSK teleprinter. This is one of your major design choices. If you are primarily interested in one mode, it’s best to design for it and accept the performance you get with other modes.

In my case, eight 4-125s and four 813s were available. A review of some of the local ham stock showed more 813s available. Though nearly equivalent, the greater ruggedness of the 813 plate and the more severe cooling design requirements of the 4-125s tilted the choice toward the 813s.

The next factor considered is the design for input power level. I have never used a linear except on SSB. There didn’t seem to be much reason for a linear unless it was well above the output of a normal rig (provided by most modern transceivers). This indicated a 2 kW PEP design. Experience indicates that a moderate amount of speech processing is best, with heavy processing only needed during pile-ups. Consequently, a normal duty-cycle of twenty to thirty percent seemed appropriate, with a capability of increasing to fifty percent. This allows for pile-up processing and CW if ever needed. It’s preferable to design for peak outputs of at least twenty percent greater than normally used. A design capable of thirty percent duty-cycle at 2200 watts input, but with normal operation set for about 1800-1900 watts, would satisfy this requirement.

Amplifier efficiency for SSB operation is normally fifty percent at an average input level, versus sixty-five percent for CW. At an average input of 600

Table 1. Low-cost tubes for linears.

<table>
<thead>
<tr>
<th>tube type</th>
<th>E_p, volts</th>
<th>I_p, mA, max.</th>
<th>rated/class C maximum dissipation</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>6DQ5</td>
<td>800</td>
<td>250</td>
<td>24/100</td>
<td>1</td>
</tr>
<tr>
<td>6J66</td>
<td>800</td>
<td>242</td>
<td>30/100</td>
<td>1</td>
</tr>
<tr>
<td>811</td>
<td>1200-1700</td>
<td>160</td>
<td>50/65</td>
<td>2,4</td>
</tr>
<tr>
<td>812</td>
<td>1200-1700</td>
<td>160</td>
<td>50/65</td>
<td>2,4</td>
</tr>
<tr>
<td>813</td>
<td>2000-2500</td>
<td>250</td>
<td>100/125</td>
<td>2,4</td>
</tr>
<tr>
<td>4-125</td>
<td>2000-3000</td>
<td>260</td>
<td>125</td>
<td>3</td>
</tr>
<tr>
<td>572B</td>
<td>2750</td>
<td>275</td>
<td>160</td>
<td>3</td>
</tr>
<tr>
<td>810</td>
<td>2500</td>
<td>300</td>
<td>125/175</td>
<td>2</td>
</tr>
<tr>
<td>4-250</td>
<td>4000</td>
<td>345</td>
<td>250</td>
<td>3</td>
</tr>
<tr>
<td>250TH</td>
<td>2000-3000</td>
<td>350</td>
<td>250</td>
<td>3</td>
</tr>
<tr>
<td>304TH</td>
<td>2000-3000</td>
<td>900</td>
<td>300</td>
<td>3</td>
</tr>
<tr>
<td>4-400</td>
<td>4000</td>
<td>317</td>
<td>400</td>
<td>3</td>
</tr>
</tbody>
</table>

Notes:

1. Average/peak ratio
2. CCS/ICAS ratio
3. Rated dissipation (ratings nomenclature depends on reference used)
4. A number of these tubes are no longer manufactured. Obtain spares prior to starting the design.
watts, approximately 300 watts of dissipation is indicated. This requires three 813s, with some safety factor, or two 813s with some overloading or operation at reduced power levels.

However, average dissipation is not the whole story. Peak operation must also be considered. At 2200 volts a 2200 watt capability means one ampere of plate current. This is twice the rating of a pair of 813s, and thirty-three percent more than three would supply.

One solution is to use four 813s. However, there is another approach. To see this, look at the tube ratings in table 2. Note that the major differences between continuous commercial and Amateur service is a lower plate dissipation, plate voltage, and current. The instantaneous plate voltage is allowed to go to 3200 volts and the peak plate current to 300 mA in the CCS a-m service, and even higher, to 4000 volts and 400 mA in the Amateur a-m service. Continuously-applied voltage is allowed to go to 2500 volts in the Amateur af amplifier service. However, in all cases, the plate dissipation must not exceed the CCS and Amateur limits of 100 and 125 watts, respectively.

The point is, we can choose a combination of operating conditions to suit the service we plan, within reasonable limits, as long as we do not exceed the rated plate dissipation. For example, for the 813:

For several continuous hours of teleprinter
\[E_p = 2,000, \quad i_p = 180 \text{ mA}, \quad P_{out} = 275 \text{ watts} \]

For typical CW
\[E_p = 2250, \quad i_p = 220 \text{ mA}, \quad P_{out} = 375 \text{ watts} \]

For non-processed SSB, at peak input
\[E_p = 2500, \quad i_p = 300 \text{ mA}, \quad P_{out} = 450 \text{ watts} \]

For SSB, with compression, at peak input
\[E_p = 2250, \quad i_p = 220 \text{ mA}, \quad P_{out} = 375 \text{ watts} \]

We could even raise the plate voltage for SSB to 1.5 times the normal commercial voltage, or approximately 2700-3000 volts. This isn't really good for the 813, since the internal construction leakage path is short. Other tubes, such as the 250th or even some sweep tubes, have longer leakage paths but they already have maximum specified high voltage ratings. (Higher voltage operation makes it easier to drive the tube to peak output.)

We can now make another selection, the amplifier input, and the number of tubes required. Let's assume that a full "gallon" was the goal. For continuous teleprinter use, three 813s are required. CW could be handled with two 813s, and SSB operation, with or without processing, requires three tubes. (The allowable PEP input decreases from 2 kW with no compression, since the average input must be kept under 1000 watts, as indicated by a meter.)

Other types require an even larger number of tubes. The extreme would be the sweep tubes, where eight or even ten would be required to achieve 2 kW PEP. As we will see, the design for this is special, but by no means impossible.

Incidentally, during the design stage we find there is some difference in circuit parameters for the CW, teleprinter, and SSB conditions. Simple designs represent performance compromises for some services. An alternative is to change the tube voltage-current operating point to suit the circuit, as done in the big Henry amplifiers.

I chose three 813s, with plate voltages between 2250 and 2500. Since SSB was the primary mode of operation, no special provision for CW or teleprinter seemed necessary. However, each designer should decide what modes are important and how much of a performance trade-off he's willing to accept.

power supply, part 1

At this point it's a good idea to consider some of the other large components — those in the power supply. The plate transformer is the key to this, and you may find some trading or surplus purchasing necessary (have you priced new kW supply transformers lately?).

Though large-capacity high voltage electrolytic capacitors aren't as common as they were a few years ago, they are still available. Because of size and weight problems, choke input and half-wave filtering are not attractive. The remaining choices are full wave, bridge and full-wave doubler circuits. For these, and capacity input, the transformer should have an RMS high voltage rating of about the plate voltage times 1.12, 0.56, and 0.3, for the three types respectively. DC voltages of 2200-2500 equate to 2500-2800 volts (CT) for the full wave, 1250-1400 volts for the bridge, and about 675-750 volts for the doubler.

 Transformer power ratings are 1 kW continuous for teleprinter and CW, about 2 kW intermittent for heavily-processed SSB, but as low as 300-500 watts for SSB with no processing. This amounts to perhaps 60, 40, and 20 pounds, respectively — quite a difference due to duty cycle.

When you get a transformer with the required voltage and rating, you are ready to proceed with the design. My transformer turned out to be 925 volts each side of center tap, at 500 mA dc, ample for 300 watts continuous or a full gallon at a thirty percent duty
table 2. Typical operating characteristics.

<table>
<thead>
<tr>
<th>tube type</th>
<th>811</th>
<th>572B</th>
<th>813</th>
<th>4-125</th>
</tr>
</thead>
<tbody>
<tr>
<td>E<sub>FIL</sub></td>
<td>6.3</td>
<td>7.5</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>I<sub>FIL</sub></td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6.5</td>
</tr>
<tr>
<td>E<sub>B</sub></td>
<td>1700</td>
<td>2400</td>
<td>2500</td>
<td>2500</td>
</tr>
<tr>
<td>I<sub>B</sub></td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>I<sub>max</sub></td>
<td>160</td>
<td>250</td>
<td>200</td>
<td>110</td>
</tr>
<tr>
<td>I<sub>max</sub></td>
<td>28</td>
<td>45</td>
<td>50</td>
<td>55</td>
</tr>
<tr>
<td>R<sub>k</sub></td>
<td>320</td>
<td>215</td>
<td>270</td>
<td>340</td>
</tr>
<tr>
<td>R<sub>L</sub></td>
<td>5200</td>
<td>4500</td>
<td>7000</td>
<td>13500</td>
</tr>
<tr>
<td>drive power</td>
<td>15</td>
<td>30</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td>input power</td>
<td>270</td>
<td>600</td>
<td>500</td>
<td>275</td>
</tr>
<tr>
<td>output power</td>
<td>175</td>
<td>350</td>
<td>350</td>
<td>190</td>
</tr>
<tr>
<td>average dissipation</td>
<td>65</td>
<td>160</td>
<td>150</td>
<td>85</td>
</tr>
</tbody>
</table>

for 2 kW PEP input

<table>
<thead>
<tr>
<th>no. tubes</th>
<th>4</th>
<th>4</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z plate</td>
<td>1300</td>
<td>1150</td>
<td>1750</td>
<td>3350</td>
</tr>
<tr>
<td>C tank-in (note 1)</td>
<td>300 pF</td>
<td>450 pF</td>
<td>225 pF</td>
<td>128 pF</td>
</tr>
<tr>
<td>L tank (note 1)</td>
<td>7.9 µH</td>
<td>5.4 µH</td>
<td>10.1 µH</td>
<td>17 µH</td>
</tr>
<tr>
<td>C tank-out (note 1)</td>
<td>1420 pF</td>
<td>1850 pF</td>
<td>1100 pF</td>
<td>50 pF</td>
</tr>
</tbody>
</table>

Notes:
1. Component values are given for 3.5 MHz
2. Design data is for 2 kW PEP grounded-grid linear service. Based on Radio Handbook data.

The plate circuit

With the basic tube operating conditions established, final design can start. As is common today, a single-ended design with tubes in parallel is assumed, since multi-band operation is much simpler.

The plate circuit looks like a generator, with an impedance of

\[R_p = \frac{E_p}{k \times I_{\text{design}}^2} \text{ ohms} \]

where \(k \) equals 1.57 for a linear amplifier and 2 for a Class C amplifier. For an amplifier designed with reserve power capability, for example, one ampere at 2200 volts in linear operation, the plate resistance is 1400 ohms. For Class C operation it would be 1100 ohms. (Alternately, we could change the operating conditions of the tube to give the same impedance, say to 2500 volts at 850 mA.) The other alternative is to operate Class B for CW as well as SSB. This was the approach taken in this design.

A pi-matching circuit is normally used to transform this impedance to 50 ohms, needed for coax feed. The input capacitor reactance is:

\[X_C = \frac{R_p}{Q} \text{ ohms} \]

where a Q of ten is considered optimum. For the 813 design, this amounts to a reactance of 140 ohms, corresponding to an input capacitance of about 35 pF at 30 MHz, and to 340 pF at 3.5 MHz.
Here we run into a small problem. The plate circuit capacity of a single 813 is 14 pF, so we are faced with a capacity of 42 pF for the tubes alone. Adding 5 pF for strays, and 10 pF for tuning-capacitor minimum gives a pi-input capacity of 57 pF, too much for a Q of ten. The problem would be even worse if sweep tubes are used, eight in parallel giving as much as 160-pF plate capacity, with a total circuit capacitance of 180 pF. (Of course, the plate circuit resistance goes down also, to about 320 ohms, so a Q of 10 would allow as much as 150 pF.)

One way of solving this problem is to accept a higher Q on 10 and perhaps 15 meters. Using the previous values, this equates to a Q of 12, normally considered somewhat high, but acceptable.

Another way to handle this is to abandon the pi-network circuit. A push-pull tank could solve the problem. Past editions of the ARRL Handbook show a tapped-coil sweep-tube design, fine for a single band, but a nuisance for multiple band operation. Or, we could simply regard the output as a low impedance capacity-shunted source, as is done in transistor designs.

There is another approach which doesn’t seem to have been described before. As a matter of fact, it should be considered in any matching design network above 14 MHz. The approach regards the output circuit as two networks in series. One of these is the normal pi-output circuit, and the second is the L network composed of tube and associated stray capacitance, plus the inductance of the lead from the tube or tubes to the pi-network. Its equivalent circuit with the given design parameters is shown in fig. 1.

To see the importance of the technique use the given values: 1400 ohm plate impedance and $42 + 5 = 47$ pF of tube and stray capacitance. Assume that the lead from the tank circuit to the tubes is only four inches long, with a diameter of one-eighth inch, giving an inductance of about 0.05 μH, and a reactance of about ten ohms at 30 MHz. Performing the parallel-to-series conversion, reducing the capacitive reactance by this amount and converting back again, gives an equivalent driving point impedance of 1170 ohms, and a shunt reactance of 109 ohms, or 50 pF. With a tank circuit Q of 10, the value of X_{cl} becomes 117 ohms, or 55 pF. A capacitor of 5 pF minimum capacity can be used and still obtain a pi-section Q of 10.

If the allowable capacity is still less than the tube and stray capacitance, the length of the plate lead can be further increased. However, the equivalent drive resistance will also decrease. Several more repetitions may be needed to obtain a workable combination.

Once the values have been obtained for the highest band, repeat the calculation for the next few lower bands. When the equivalent resistance approaches the tube resistance, use this for the lower bands, while maintaining a Q of 10. The values of the pi-network elements are then calculated using the formulas in fig. 2. Don’t forget to use the equivalent impedance for R_1 at the higher bands.

What type of inductance should be used? Roller coils allow one to closely adjust circuit parameters for maximum efficiency, but they are expensive. Tap switching is perfectly acceptable, and there are many old tuner switches available that provide rugged low-resistance design. Looking ahead with eight bands between 3 and 30 MHz, the number of taps may be excessive. You may want to consider having one linear for 1.7-7.5 MHz, and another for 10-30 MHz.
This was my choice. It certainly makes design a lot easier.

The input circuit

The driving-point impedance, \(Z_K \), of a grounded-grid amplifier is

\[
Z_K = \frac{e_{g \text{max}}}{i_C + 1.5 i_{\text{max}}} \approx 0.6 i_p
\]

where
- \(e_g \) = rms grid drive voltage
- \(i_C \) = cathode current
- \(i_{\text{max}} \) = fundamental current

For most combinations of tubes, this will probably be between 50 and 150 ohms.

The input circuit must be reasonably well-matched to the driving amplifier. It must also provide a load to the amplifier when the tube is cut off (Class C), or nearly so (Class B).

While the drive power used in grounded-grid operation is much greater than for grounded-cathode service, provisions must be made to prevent an overdrive condition from occurring. (Modern transceivers have more than sufficient output power). An automatic overdrive protection circuit is one possibility.

The usual way of preventing overdrive is to use a low Q tuned circuit in the cathode, say a Q of 2, plus ALC feedback to set the level. This is perfectly acceptable if the ALC is not forced to work too hard. However, the added coil switching is a nuisance.

An alternate method that doesn’t use switching is shown in fig. 3. A lowpass filter, used in the drive circuit, provides an impedance transformation from 50 ohms to the tubes’ input resistance. The filter output drives the tubes’ cathodes and a resistor bank. The latter provides a load to the driver during the entire input cycle, and dissipates part of the driver’s excess power.

Circuit losses and a varying driver load complicate the calculation of the required resistance. As an approximation for designs where between thirty to fifty percent of the rated driver output is required, a resistance of five times the cathode impedance has worked well. Basically, start with a higher resistance and monitor the drive level. If it is still excessive reduce the loading resistance until the exciter’s maximum output just drives the amplifier throughout its linear range.

High power-rating resistors are not needed. For example, if the total drive is 50 watts, the resistors dissipate only 10-12 watts of it (using the above rule of thumb). A bank of six two-watt resistors will do.

Even though 813s have an isolated cathode, a filament choke is a good idea. For a kW amplifier, the choke core can be a 6-8 inch (150-200 mm) long, \(\frac{3}{4} \) -inch (12.7 mm) diameter ferrite rod. If the amplifier is to cover only the higher bands, 10 through 40, the winding can be trifilar, with two elements the filament conductors, the third a nylon cord, or other non-moisture absorbing spacer with the same wire diameter. For low frequency use, the filament leads can be bifilar wound. Number 12 wire is ample for three 813s, but be sure to estimate the voltage drop and allow for it when selecting a filament transformer. Low filament voltage causes problems with linearity and tube life.

One nice feature of the 813 is that it doesn’t require bias in grounded-grid operation. If the operating mode requires bias, it can best be obtained by using a Zener diode. Shunt it with a resistor that will draw approximately ten percent of the expected grid plus plate current. This helps prevent instability. If a power Zener is not available, the circuit of fig. 4 can be used.

Power supply, part 2

Let’s return to the power supply, keeping it simple. Our basic requirements are:

1. Apply only filament power for an adequate warm-up period.
2. Initially apply power to the plate circuit at a low level, to hold capacitor charge current down.
3. Apply full power to the plate circuit.
4. Remove plate and filament power simultaneously, or plate before filament.

We also want adequate protection for ourselves and the equipment. We can accomplish these functions manually, semi-automatically, or in a fully automatic mode. However, cost increases as the system becomes more automatic (complex).
A simple way of achieving partially protected manual operation is to use a progressively-operated switch for the transformer primary, as shown in fig. 5A. The first position turns on the filaments. After a short delay, the switch is placed in the second position, feeding power to the plate transformer through a dropping resistor. After an additional (short) delay full power is achieved by placing the switch in the operate position. This can be further modified by including one more intermediate voltage switch position.

For 120-volt operation, a single section switch can be used, as shown. Old TUs and Navy surplus are a good source of multi-position or rotary type switches. For 220-volt operation, both sides of the line should be switched for safety.

A simple semi-automatic version is shown in fig. 5B. Filament power goes on when the master switch is on. This enables a relay circuit, picked up when the transmitter is keyed. It applies power to the plate circuit and a series resistor holds this low until the capacitors charge up. This is controlled by another relay across the transformer primary, which activates when the charging current drops, shorting the series resistor. The first relay can be the antenna changeover relay.

This circuit is easily made automatic by activating the first relay from a time delay device, such as a fluorescent lamp starter. The relay removes power from the delay device when it activates. It should be separate from the antenna relay.

metering, antenna switching and ALC

Though simple metering is desirable, it must be remembered that good metering can help improve performance and extend tube life. Also, the FCC requires input power-level monitoring if it exceeds 900 watts (or 1800 watts PEP).

If automatic drive limiting is used and set at the 1800 watt level, safe, legal operation with simplified metering is possible. Figs. 6A and 6B show two possibilities, the first measuring cathode current only, the second measuring grid and plate current. An external output wattmeter should also be used.

A plate voltage indication is also useful, and can serve as an ON indicator. An inexpensive type uses a neon bulb, connected across the bottom capacitor of the filter bank. The indicator warns of unusual conditions, including shorted or open capacitors, and excessive drain. Note that two resistors are shown across each filter capacitor. One serves as a bleeder and voltage-equalizing resistor and is normally wired. The second is a composition resistor, of 1 watt rated dissipation. It is a safety device that ensures filter discharge in case the wirewound resistor opens up. Good design practice is to choose the bleeder resistors so that the sum of their drain plus the
TVI Prevention

Prevention of TVI is a design goal for any transmitter. Most of the basic steps can be handled fairly late in the design stage, but there are a few that must be initially considered. One of these is the nature and extent of needed output coax filtering. Lower circuit Q increases the need for filtering. For example, with a Q of 10, a two-section, lowpass filter will probably be sufficient though a three-section filter is better. For higher harmonic rejection, it's a good idea to install a form of suck-out trap. On a low-frequency transmitter, it can be placed across the plate circuit. However, the added capacitance is undesirable on the higher-frequency bands. For these, a trap at the point of attachment of the output coax to the pi-section loading capacitor is indicated. The trap can be a high-pass filter, with a small bank of load resistors to dissipate any harmonic energy present. A design using a 50-ohm load seems to work well. The cutoff frequency should be between the highest operating frequency and the TV i-f frequency of 45 MHz.

The filters will probably not be effective if the self-resonant frequencies of the grid and plate circuits occur at the same frequency and near any of the TV bands. Unfortunately, there is a version of Murphy's idling current of the tubes is about ten percent of the design peak current.

I prefer to use a multiple pole relay in the antenna change-over circuit, wired as shown in fig. 7A. This provides protection for a receiver-transmitter combination, or a separate receiver used with a transceiver. (A 6-10 dB pad can be connected in this separate circuit to reduce signal loss in the main path due to paralleling mismatch.) Separate contacts on the relay can be used for power control, or for control of external devices.

While the trick of loading the input circuit can eliminate the need for an automatic level control, it's still a good idea to provide this. For one thing, you may want to use a different transmitter than designed for, and the back-up protection is beneficial.

The simplest approach to ALC is to use an rf level measurement technique to develop a threshold voltage. An ALC circuit is shown in fig. 7B. Assuming the grid loading has been adjusted, the ALC threshold control is set to give a barely discernible deflection on a VTVM at maximum design output. It can then serve as a backup for improper load.

Figure 6. Metering circuits. At (A), a single meter is used to read total cathode current. At (B), two meters read plate and grid currents. At (C), a neon tube indicates plate voltage, and serves as a safety indicator.

Figure 7. (A). Antenna changeover relays provide a spare contact to feed an auxiliary receiver and ground it during transmit. (B). An ALC circuit provides an adjustable threshold voltage from the plate tank circuit.
law which applies here. Try to design the circuit components and layout to give high self-resonant and well-separated frequencies. The filter-drive grid circuit helps, but the plate load modification using series inductance can be a handicap, forcing a high Q tank for TVI prevention. Measure the resonant frequencies as the construction progresses, and modify the design if necessary.

In addition, all the standard TVI prevention practices should be followed. Each lead should have an LC filter where it enters the shield enclosure. Internally, use shielded (high capacity) leads. Dial shaft holes should be small, and a metal shaft should have a ground spring contact on the inside of the cabinet. It should have this for safety anyway if high voltage is near it. Meters should be metal-cased, with filters at the terminals, or have a piece of screen wire across the face, with the entire meter case inside the formed shield.

Internally, watch the ground current paths. Keep joints out of the path, and don't forget to provide a path for the rf flowing through the tuning capacitor to get back to the tube cathode. If the tube is to be recessed below a chassis, make the mounting holes sufficiently large.

Parasitics, another cause of TVI, are reduced or eliminated by placing suppressors in the plate circuit. Neutralization may be called for in grounded-grid design, and certainly in grounded-cathode circuits. The use of loading to absorb excess driving power greatly reduces the problem, however, and may be a sufficient measure in itself. It might eliminate the need for neutralization. This is easily added by a small tertiary winding on the filament choke, grounded at one end and coupled to the plate from the other end through a variable neutralizing capacitor.

mechanical construction

Kilowatt amplifiers, especially single package types, are large. Don't try to shoehorn everything in. Try to leave at least two-inch clearance for all rf components. The power supply isn't critical, but don't
forget cooling. This is vital for the tubes. Cool tubes are less likely to fail prematurely.

Symmetry in the tube area of a multiple tube design is recommended. Keep lead lengths the same. These techniques help equalize the load distribution. Elsewhere, symmetry is not necessary. Don't force the layout to give a symmetrical front panel.

For homebrew construction, a dual-chassis layout seems to work well. A horizontal section contains the tubes and rf components, and a vertical section the power supply. Input and control elements are under the horizontal section. Front and rear panels, plus a U-shaped top and end and a flat bottom part, complete the mechanical elements. Use angles along the top and sides of the panels.

Perforated aluminum is fine for the top, ends, and bottom of this design, but a lot of screws will be necessary to make the joints rf-tight. A better way of fastening is to use 1/8-inch aluminum strap along all edges, clamping the thin perforated metal between this and angle sections, with screws every six inches or so. Front panel appearance is improved if the strap projects a 1/4-inch (6.4 mm) over the shield edge.

A compact linear layout is possible if the power supply is built separately. The two-chassis design works well with the tubes mounted horizontally. Four 811s or even 872s can be placed in a cabinet measuring 5-1/2 x 10 x 12 inches (140 x 254 x 305 mm). Rf components will be a little crowded, though, and a good cooling fan is a must.

Home-built designs don't need to be sloppy in appearance. Be careful to avoid dents and scratches, and paint the completed unit, either to match other gear or to contrast with it. (Don't paint mating-shield surfaces.) Use appropriate size stick-on or transfer lettering to label controls and the unit itself.

A special note: use honest-to-goodness dials, with engraved marks or a digital readout that can be preset to one degree or better. Keep a log of readings for each band. If manufacturers were more careful with their dial designs, we would have far less tune-up QRM on the bands.

putting it all together

Fig. 8 is the schematic of the linear used at W4MB for several years. These basic design goals were considered:

1. Legal limit with good linearity
2. Drive from two 6146s
3. 10-40 meter operation, with new band operation considered
4. Separate antenna tuning
5. Separate lowpass filter

fig. 9. General view of the amplifier of fig. 8. Note the T-type bar knobs, and the vernier dials with calibrated scales for tune and load (makes band changing easier). Note the screen-wire shield over the meter.

fig. 10. Top view of the amplifier. The rf section is at the top, the plate supply on right, and the filament transformer at the lower left. The harmonic trap is just above the filament transformer. The tank coil is constructed from a continuous length of heavy wire. The ALC circuit is at the bottom center.

fig. 11. Bottom view of the amplifier. The copper plate in the center grounds all grids to chassis using metal standoffs. The grid filter and loading resistors are at the upper right. The coil is adjusted by spreading or squeezing turns to set the cut-off frequency above the 10-meter band.
Kit #1

DOWNCONVERTER $19.95
VARIABLE POWER SUPPLY $19.95
CIGAR ANTENNA $19.95
* Kit Special — buy all three $49.95
SAVE $10.00

Kit #2

DOWNCONVERTER $19.95
VARIABLE POWER SUPPLY $19.95
KD 44 DISH ANTENNA $47.95
* Kit Special — buy all three $79.95
SAVE $7.90

Assembled Special

ASSEMBLED DOWNCONVERTER $39.95
ASSEMBLED VARIABLE POWER SUPPLY $29.95
CIGAR ANTENNA $19.95
* Assembled Special — buy all three $79.95
SAVE $10.00

Great Gift Ideas for the Holiday Season

SUPERVERTER I assembled only $109.95
crystal not included
SELECTIVE PREAMPLIFIER $26.95
HIGH GAIN TRANSISTOR $6.95
DRIFT MODIFICATION $1.25
KD 44 DISH ANTENNA $47.95

Our product may be copied,
but the performance is never equaled.

For Information or ordering
(817) 860-1641
Hours, 8:30-5:00 CST; Mon.-Fri.

Ham radio

Fig. 12. Linear performance of the W4MB-W4LDY three (tube) 813 amplifier is shown. Actual flat-topping starts at about 1250 mA of plate current, well above the legal limit. This illustrates how an extended linearity design is an important factor in providing a clean signal.

6. Use tubes and components on hand
7. Simple switching

Fig. 9 provides an overall view of the transmitter, fig. 10 the inside top view, and fig. 11 the bottom view. Note the use of a copper plate to connect the various drive grounds together, and the arrangement for making filament lengths the same. Plate leads are also the same length. The layout lead length brings the effective Q of the tank circuit to about 10.5 on 10 meters.

A graph of amplifier linearity is shown in fig. 12. More output is possible, but the combination of input loading and ALC limits the maximum input to 1800 watts PEP (note that this is above the legal limit if appreciable speech processing is used).

As seen in the photographs, there are no parasitic suppressors in the plate circuit in this design. No instability was noticed during testing. There have been one or two reports of a wide signal, so possibly some instability can arise as a result of load variation or mis-tuning. All solicited critical signal checks have agreed with the data and with unsolicited reports. This amplifier, as intended, produces a clean signal, and, because of its simplicity, is also a pleasure to operate.
HOLIDAY GIFT VALUES FROM SPECTRONICS!

“easy-talk’” VOX PORTABLE TRANSCEIVER

- **6-BAND POCKET WORLD RECEIVER**
 - 6-band pocket world receiver—SW 1-5, plus MW
 - Extremely compact and lightweight—gain sized!
 - SW band spread out-easy tuning • Tuning indicator

FREE WRNO T-SHIRT

SPECIFY SIZE (SM, M, L, and XL)

ALEXANDER BP 4-W 500 MAH NICAD

$24.95 plus $2.00 shipping

AMEMO PREAMPS

$12.95 plus $1.50 shipping (Cont’d USA only)

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLF-2</td>
<td>$52.95</td>
</tr>
<tr>
<td>PLF-2E</td>
<td>$57.95</td>
</tr>
<tr>
<td>PT-2</td>
<td>$79.95</td>
</tr>
<tr>
<td>PT-2E</td>
<td>$84.95</td>
</tr>
</tbody>
</table>

POPULAR HAMFEST SPECIALS!

VoCom POWER POCKET

- **$199.95** plus $8.00 shipping (Cont’d USA only)
 - $2.99 each (Cont’d USA only)

We stock Communications Specialists SS-32 and SS-32M encoders for most any mobile or hand-held applications including the very popular Icom Handhelds.

NEW! IC3AT (220 MHz) IC4AT (440 MHz)

ICOM IC25A

- Compact
- Quality Construction
- Versatile
- Affordable
- Wide Range of Accessories

CALL FOR PRICE & AVAILABILITY

FIXED, PORTABLE And MOBILE ANTENNA VALUE FAVORITES!

MORGAIN MULTI-BAND ANTENNAS

B&W PORTABLE APARTMENT ANTENNA

AVANTI THRU-GLASS ANTENNA

$32.95 plus $5.00 shipping

Quick, easy mounting. Tunes 2, 6, 10, 15, 20 and 40 meter Amateur bands, plus SW BC bands in some ranges. 360 watts SSB/CW. 22½" whip extends to 57”. 14” mount. Includes 5 base-loading coils. Weighs less than 2 lbs.

The Avanti On-Glass is the first two-way communications antenna that mounts on glass and transmits and receives through the glass. Extremely low VSWR is achieved by adjusting special tuning slug on matching network inside the vehicle. Can be easily removed for car washes without special tools.

FAMOUS "EAVEDROPPER" SW RECEIVING ANTENNA

$59.95 plus $3.00 shipping (Cont’d US)

TO ORDER:

CALL OR WRITE. MASTER CARD, VISA, MONEY ORDERS, PERSONAL CHECKS TAKE 3 WEEKS TO CLEAR. ACCEPTED. INTERNATIONAL ORDERS WELCOME. PLEASE REQUEST PRO FORMA INVOICE. ILLINOIS RESIDENTS ADD 6% SALES TAX.

HOURS:

MON. THRU WED. 9:30-6:00, THURS-FRI. 9:30-8:00, SAT. 9:30-3:00.

STOP BY AND VISIT WHEN IN THE CHICAGOLAND AREA!!

SPECTRONICS INC.

1009 GARFIELD ST. OAK PARK, IL. 60304

PHONE (312) 848-6777

December 1982
an improved TouchTone* decoder

ITT's device provides simple, reliable crystal-controlled decoding of DTMF signals

Several years ago, ITT (International Telephone and Telegraph) introduced a single integrated circuit capable of decoding TouchTone signals. Using this device, we can construct a decoder system suitable for use in remote control applications with a microprocessor.

Nearly all remote control of Amateur Radio equipment, be it of a repeater, an autopatch, or a remotely controlled station, is at least in part accomplished by the use of TouchTones, also known as DTMF (Dual-Tone, Multiple-Frequency) signals. Since most modern Amateur VHF and UHF equipment now on the market is available with DTMF-encoded keyboards that provide either twelve or sixteen combinations, the transmitter end of a control link is readily available.

At the receiving end, some means must be provided to detect and decode the incoming DTMF signals (as the name implies, each signal consists of a pair of tones transmitted simultaneously). In the case of a twelve-key pad, one of a set of three tones is combined with one of a set of four tones, to provide twelve different codes. For a sixteen-key encoder, eight tones total are needed, as shown in fig. 1. The decoder must detect these tones and provide some indication that a valid DTMF code has been received; at the same time, the decoder must not be spoofed by the randomly occurring tones in speech sent over the same channel.

prior technology

In the past, Amateurs have often used decoder circuits consisting of a detector tuned for each of the seven or eight tones. The detectors are usually either resonant reed filters, or more recently, monolithic tone-decoder PLL (phase-locked loop) integrated circuits, usually type 567.

My own experience is with this type of decoder system. Typically, they consist of seven 567 ICs, one for each frequency, a demultiplexer circuit to convert the two-of-seven output to a more useful code, such as one-of-ten, or binary. Such decoders work, but they can be a bit tedious to align initially, as each PLL must be individually adjusted. Furthermore, since the accuracy of each PLL detector depends on its RC network, they can drift with temperature changes or with time as the frequency-determining components age. These problems are usually depressingly familiar to anyone who has tried to keep a repeater autopatch decoder operating for any length of time.

an integrated decoder

In the last few years, the telecommunications industry, fueled by tremendous growth in the commercial markets, has begun to integrate many previously discrete components into more compact monolithic circuitry, in order to reduce the size and cost of communications equipment. Examples of this process are seen in ICs that replace the hybrid transformer in telephones, in the replacement of bulky analog filters by monolithic active filters and, recently, with the development of integrated DTMF decoder circuits.

One such DTMF decoder IC is ITT’s 3201, which can decode all sixteen standard TouchTone signals to provide a four-bit binary output (see table 1). It uses an inexpensive 3.57945 MHz TV colorburst crystal as the frequency reference, so that temperature and age drifts are practically eliminated. In addition, it has excellent immunity to false outputs caused by

*TouchTone is a trademark of the Bell Telephone Company.

By Jerry Hinshaw, N6JH, 4558 Margery Drive, Fremont, California 94538

24 / December 1982
Microprocessor Controlled

The ultimate in communications versatility, the **Drake Theta 9000E** provides complete transceive capability of CW (Morse Code), RTTY (Baudot), and ASCII. A full computer RS232 interface, cassette tape storage port, selective calling feature with answer-back, light pen graphics, printer interface and word processing software are all standard.

Seven large 256 character memories are backed up with battery power so there is no need to reload information with each use. Memories may also be partitioned providing up to 29 separate storage locations. A type-ahead buffer of 3120 characters makes it easy to compose your response while still receiving. Operator controlled scrolling permits review of up to 10,720 previously received characters. Line length is selectable at 40 or 80 characters, your choice, and all mode and speed indicators are displayed on the screen for instant status recognition. The 9000E has 3 tone groups and 3 shifts which are all keyboard selected.

You won't buy any other communications terminal once you have studied all the advanced operating convenience built into the **Drake Theta 9000E**. It's complete.

LA7 Line Amplifier

Line output, input levels as low as 15 mV rms (47 kilohm) will result in an output of 1 mW nominal into a 600 ohm balanced line. Output level adjustable by internal preset level control. Interfaces low level audio to RTTY terminal unit or phone line that requires a 600 ohm balanced/unbalanced input. One 36" phono to phono cable supplied.
COLUMNS 1 COLUMN 2 COLUMN 3 COLUMN 4
1209 Hz 1336 Hz 1477 Hz 1633 Hz

ROW 1
697 Hz 1 2 3 A

ROW 2
770 Hz 4 5 6 B

ROW 3
852 Hz 7 8 9 C

ROW 4
941 Hz * 0 # D

Fig. 1. Sixteen-key TouchTone pad shows how each key is assigned a discrete pair of tones.

Table 1. Code list of the output of ITT's 3201 DTMF decoder IC.

<table>
<thead>
<tr>
<th>input TouchTone code</th>
<th>binary</th>
<th>outputs</th>
<th>decimal equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0001</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>0</td>
<td>1010</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>*</td>
<td>1011</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>#</td>
<td>1100</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>A</td>
<td>1101</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>B</td>
<td>1110</td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>C</td>
<td>1111</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>D</td>
<td>0000</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Speech or noise on its input. In this single IC are all the functions that my old 567-type decoder board failed to duplicate fully with ten ICs.

Fig. 2 shows that the 3201 is a CMOS LSIIC (large-scale integrated circuit) housed in a 22-pin DIP. It requires only a single power supply, and draws little current. No front-end filtering is required, nor does the input have to be split into high and low bands, as some other DTMF ICs require. Audio from the receiver is fed directly to the 3201, and is automatically decoded.

The only catch, if there is one, is that the price is still higher than for the 567-type decoder. At the time of writing, the single-piece price for the 3201 is about $43.00, but that price should fall as the production quantity increases. In fact, the price has already fallen quite dramatically since the introductory price of $35.00. (The trend in semiconductors is that they are expensive when introduced, and the price then steadily falls as the volume of use rises; this IC should not be an exception to that industry-wide rule).

My own feeling is that the cost of the device, if a bit high, is more than compensated for by the utter simplicity of its construction and adjustment, and by the long-term benefits of stable, crystal-controlled operation.
circuit description

In fig. 3, audio from the receiving system is fed to the high-impedance analog input of the 3201. If the input signal is a valid DTMF tone pair, the 3201 produces an output on the four data lines. During the time a tone is being received and decoded, the DV (Data Valid) output goes to the logic-high state.

The DV line serves as a signal that the four data outputs contain valid data; while DV is high, the data are good, and so the transition of DV from low to high can be used to latch the output of the decoder. The data latch (U3 in the diagram) is needed so that fleeting input signals (which may be as short as 40 milliseconds in length) can be held and read at a later time.

The output of the 3201 is CMOS level, and is not directly compatible with the usual TTL interface circuitry used in most microcomputers. This incompatibility is corrected by U2, the 74C902, a CMOS-to-TTL level converter.

Thus, when a valid DTMF signal is fed to the input of the 3201, properly-decoded output signals appear at the output lines of U2, and the DV output goes high. This transition of DV from low to high is used to clock U3, the 74LS374 octal data latch, which holds the decoded equivalent of the last DTMF signal received.

In order for a microcomputer system to tell the difference between a newly received DTMF input and a previously stored word, a handshake circuit has been included. This handshake is set by the DV line, and is reset after the word has been read by the computer. In other words: the output of the handshake latch goes high when the 3201 puts a new word into the data storage latch, and is reset again when the computer reads the output of the data latch. Therefore, if the computer is programmed to first look at the handshake output, it can determine if a new word is waiting to be read.

Since any computer that monitors the decoder can scan the output lines much faster than an operator’s finger can press a button on the DTMF encoder keyboard, it is also a good idea to have the computer watch the DV line so it can tell a long input tone, which it has already read, from a newly received tone. The DV line, used in this way, is a form of key debouncing and prevents reading one tone as a series of several digits.

construction and testing

Layout and construction of this circuitry is non-critical. The few discrete components, such as the crystal and the bypass capacitors, can be soldered to the IC socket pins, and the rest of the wiring com-
HAL'S HOLIDAY SPECIALS

2010-2500 MHZ

TONE ANODIZED ALUMINUM CABINET MEASURES ONLY 16 x 16 x 3 1/8 INCHES. NEW-16 FLOWED G-10 PCB BOARD.

HAL ACCUKEYER-MEMORY OPTION KIT PROVIDES A SIMPLE, LOW COST METHOD OF PROVISIONING FOR OC AND ALARM OPERATION.

HAL ECD-12 LINE DELUXE ENCODER COMPLETE WITH PC BOARD, ALL PARTS & CASE. VOLT AC (NOT SUPPLIED) PROVISIONS FOR OC AND ALARM OPERATION.

CLOCK KIT — HAL 79 QUARTZ-DRIVEN CLOCK KIT, COMPLETE WITH PCB BOARD, ALL ELECTRONIC COMPONENTS AND SIX-DIGIT ACCUKEYER (KIT)...

 precooded with wire-wrap interconnections. (I built my decoder on a small prototype board with an edge connector to which the input and output were wired.)

Once the wiring is completed, and the supply voltages have been checked at the socket pins, the ICs can be installed. Keep in mind that the high-impedance input of the 3201, which is a CMOS device, is sensitive to damage by static electric charges. It is a good idea to keep the 3201 in the protective packaging it comes in until it is to be installed, and then equalize the potential of the circuit and the protective package by touching them together. Remove the 3201 and install it in its socket. Once the IC is installed, the danger of static charge damage is reduced.

There are no adjustable components (this is my kind of circuit!) so the unit should work when power is turned on and a DTMF signal is applied to the analog input. The circuit shown in fig. 4 is a simple test set that uses a standard TouchTone telephone to determine if the decoder is properly decoding the DTMF signals. The telephone is disconnected from the phone lines, and hooked as shown to the network, which provides power for the phone's internal tone generator and matches the normal line impedance of 600 ohms.

If the decoder fails to work, check the wiring first. The DV line at the 3201s pin 18 should rise to nearly +12 volts when a DTMF signal is applied; if it does, the problems are probably elsewhere than in the 3201's circuitry.

summary

This decoder is a simple, modern alternative to the DTMF decoders of the past. It provides dependable performance, and should make remote-control systems easier to set up. Except for the 3201, all the components are standard types and widely available. The 3201 can be obtained from the manufacturer at this address: ITT North Microsystems Division, 700 Hillsboro Plaza, Deerfield Beach, Florida 33441; telephone 305-421-8450.

ham radio

fig. 4. Simple test set uses a TouchTone telephone and a matching network to provide DTMF signals.
We Will Not Be Undersold Call: 212-925-7000

Kitty Says: For the best prices in town, buy at Barry's. All merchandise 100% guaranteed. Low, low prices.

For orders only please call: 1-800-221-2683.

We Stock:

We now stock COMMERCIAL COMMUNICATIONS SYSTEMS. Dealer inquiries invited. Phone in your order & be reimbursed.

New York City's LARGEST STOCKING HAM DEALER
COMPLETE REPAIR LAB ON PREMISES

Mail all orders to BARRY ELECTRONICS CORP., 512 BROADWAY, NEW YORK CITY, N.Y. 10012.

Barry International Telex 12-7670
Top trades given on your used equipment

Store hours: Monday-Friday 9 to 6:30 PM
Saturday & Sunday 10 to 4 PM (Free Parking)

Authorized Dists: Mckay Dymek for Shortwave Antennas & Receivers.

IRI-LEX "Spring St. Station"
Subways: BMT "Prince St. Station"
 IND. "F" Train-Bwy. Station
Bus: Broadway #6 to Spring St.
a rotary dial and encoder for digital tuning

A digital controller using multiple dials and microprocessor logic

The shift to digital and microprocessor control of ham gear makes rotary dial encoding more popular. Earnshaw's approach to dial encoding, simplified and improved by Opal, offers a practical method for the Amateur builder.1,2 Both require discrete components for each dial.

This article describes another method incorporating multiple dials using microprocessor logic.3 This method reduces the number of components necessary and is suitable for digital controllers having concurrent tasks.

why encode the rotary dial

Switches are inherently digital; they are either on or off. Conventional tuning dials have an infinite number of positions. A digital tuning dial is not infinite; you must select the position closest to a desired setting.

Most 2-meter fm gear uses some form of discrete, digital frequency selection. This is difficult to use on lower bands without channelized frequencies: that rare DXCC contact may be between positions and will never be reached.

If you have a digitally-controlled master oscillator, one tuning solution is to use a potentiometer (pot) with an analog-to-digital converter. This has limits: an inexpensive pot has less than a full turn and an expensive, ten-turn pot can't be spun continuously (nor does it have the range) of conventional tuners.

A better way is to use the continuous, segmented digital rotary dial and an encoder to determine direction and amount of rotation. Each dial position, or state, is used to drive a counter. The counter provides an input to the controlled function. Encoding may be accomplished through discrete circuitry or through a microprocessor program. The position resolution is limited only by the dimensions and construction quality of your encoding design. I resolve two hundred positions per revolution easily. Opal resolved four hundred, with a larger encoder disk and better construction.

the technique

Earlier rotary dial methods provided continuous updating of dial position, or state-change. This system polls four dials in sequence, to determine if any dial status has changed from the previous poll.

I selected a four-dial input because a station can require several. Four uses might be main tuning, bandspread, filter frequency setting and keyer or keyboard speed control. Four inputs also work well with an 8-bit microprocessor.

the basic dial

Fig. 1 shows the progression of logic states from a pair of optical interrupters scanning the marks on a disk. For any given state, movement of the dial disk

By C.A. Eubanks, N3CA, P.O. Box 127, Valencia, Pennsylvania 16059
will yield a new state that defines direction of rotation.

Table 1 summarizes all possible state-change combinations, original state to new state. Valid rotation is implied if only one of the optical interrupter inputs changes. Invalid rotation sensing occurs if both interrupters see a change; this change must be ignored. Invalid sensing could occur if the polling speed is too slow, or sensing could indicate the wrong direction if an even number of state changes were missed.

The microprocessor system used in dial sensing performs other tasks as well. Polling speed is subject to trade-offs. To test the speed, I tentatively selected Opal's fifty-mark encoder disk. Some experimentation with a conventional transceiver proved that the dial spins easily at one revolution per second. This became the design rotation-rate goal. Assuming the rotation algorithm senses all state changes: (1 rev./Sec) × (50 marks/rev.) × (4 states/mark) = 200 states/Sec. All else being equal, polling rate must occur once every five milliseconds.

Everything else is not equal, however. First, the dial spin rate is not constant. Sudden starts and stops create faster state changes. Second, interrupters are not ideally spaced; some state changes occur at a lesser angular displacement and the state-change rate can increase.

With these factors in mind, I finally selected a two millisecond polling rate. The encoder still loses a few counts on rapid dial movement, but I've noticed no erroneous counts.

Table 1. Matrix diagram (Karnaugh Map) of all possible logic states of one dial's optical interrupter detector. A₀ and B₀ are the previous A and B interrupter states while A₁ and B₁ are the current states. L indicates left motion in fig. 1, R is right motion. N/C is no change; dial has not moved. N/A is a not-applicable condition resulting from non-allowed state-change progression of motion in either direction. The logical expression is used by the process subroutine shown in fig. 4.

<table>
<thead>
<tr>
<th>A₁A₀</th>
<th>00</th>
<th>01</th>
<th>11</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>N/C</td>
<td>L</td>
<td>N/C</td>
<td>R</td>
</tr>
<tr>
<td>0</td>
<td>R</td>
<td>N/A</td>
<td>L</td>
<td>N/A</td>
</tr>
<tr>
<td>11</td>
<td>N/C</td>
<td>R</td>
<td>N/C</td>
<td>L</td>
</tr>
<tr>
<td>10</td>
<td>L</td>
<td>N/A</td>
<td>R</td>
<td>N/A</td>
</tr>
</tbody>
</table>

L = \overline{A}_1\overline{A}_0B_0 + \overline{A}_1A_0B_1B_0 + \overline{A}_1\overline{A}_0B_1B_0 + A_1A_0B_1B_0

R = \overline{A}_1A_0B_1B_0 + A_1A_0B_1B_0 + \overline{A}_1A_0B_1B_0 + A_1A_0B_1B_0

Fig. 2 is a schematic for one application card of the Intelligent Controller.³ The darlington output of each optical interrupter is buffered by 7414 hex schmitt inverters. This buffer provides hysteresis to prevent jitter.

![fig. 1. Encoder optical interrupter detectors relative to encoder disk and resulting logic states. Logic 1 is a mark seen by the detector, logic 0 a space.](image-url)

The application card and one rotary dial assembly. Optical interrupters are visible at the disk bottom, just above the bracket for the ribbon cable DIP socket. The large chip on the card is the 8255 PPI with hex inverters at top center. Other card components are for another application not described here. The clamp is for photographic support of the dial assembly.
An Intel 8255 Programmable Peripheral Interface (PPI) is the link between the inverters and the Intelligent Controller's HAM BUS. The 8255 was chosen because it is compatible with other system components, readily available, and one of the least expensive input/output (I/O) devices available.

The PPI is shown with connections to port B. Each 8255 has three ports, and the remaining two ports may be used for other functions in the Intelligent Controller.

motion algorithm

This algorithm was developed for a 6502 microprocessor but is of general nature and should work equally well on other microprocessor systems. General flow for motion sensing is shown in fig. 3, and is executed once every two milliseconds. Any state change detected due to dial motion will call the process subroutine detailed in fig. 4.

Twelve bytes of storage are required by both routines. Three are temporary, for scratch-pad storage, labelled TEMP1, TEMP2, and TEMP3 on the charts. OLDIAL holds the status of all four dials from the previous poll. Four bytes are the old dial logic (ODL) registers, one for each dial. The remaining four are direction registers (one for each dial), to indicate dial position.

Direction registers may be used in a service routine to remember dial motion. In my application they indicate positive ($01 to $7F) on the increments and negative ($80 to $FF) on decrements.

The microprocessor program allows other tasks to be executed between dial readings. Details on the flow charts and program operation are found in the appendix.

construction

As a disclaimer, I am more impressed with K3CU's mechanical construction than my own. For breadboarding purposes, I used parts taken from a ten-turn pot for its shaft and bushing. The dial and optical interrupters were mounted on a small piece of unetched PC board stock. It is very desirable to
Ham operators know that EIMAC started in power tube development with the 150T in 1934. While the 150T is now a collector's item, EIMAC, a division of Varian, still holds leadership in power tube design with its 4CX250B, 8874, 3-500Z, 8877 and 3CX400U7; modern examples of EIMAC's continuing, innovative solutions to tough communication requirements.

EIMAC's proven power tubes are used in amateur service for heavy-duty, reliable performance in traffic; RTTY; SSTV; DX operation; VHF/UHF work; moonbounce, and exploration of the outer limits of communication techniques across the spectrum.

High quality and long life make EIMAC tubes the favorite choice of operator and equipment builder, amateur and professional alike.

For communication and research worldwide, choose EIMAC. For information on VARIAN EIMAC power tubes, call or write today. Or contact the nearest Varian Electron Device Group sales office.

VARIAN EIMAC
301 Industrial Way
San Carlos, California 94070
415-592-1221

VARIAN EIMAC
1678 S. Pioneer Road
Salt Lake City, Utah 84104
801-972-5000

VARIAN AG
Grienbachstrasse 17
Postfach
CH-6300 Zug, Switzerland
Tel: (042) 31 66 55
Telex: 84578789
mount the interrupters with the shaft bushing for proper optical adjustment.

The dial subassembly holds a 16-pin DIP socket for interconnection to the application card. Flat-cable DIP plug cables are readily obtained. (Mine was an 18-inch (46 cm) cable from Radio Shack, part number 276-1976.)

I made the encoder disk in two steps: first I made a photocopy from the optical mask in fig. 1 of Opal's article, then transferred it to a thermal-contact transparency. This gives satisfactory results, but you can purchase finished disks directly from K3CU.*

Opal suggested cementing the disk to a large knob for support. I soldered a circular piece of PCB stock to the shaft and attached the disk with rubber cement. My technique takes less space, while Opal's is easier.

The exact location of the optical interrupters is not critical. The illuminator center should be near the mark mid-radius. Once assembled, the relative interrupter positions can be set by bending the leads. Two cautions: keep the interrupter leads long enough and be careful not to pull off the PC board foil.

The dial shaft should have some friction device to prevent drift or coasting. I included a short piece of helical compression spring between bushing and encoder disk. This takes up any axial play and provides the necessary friction.

The inverters and PPI were mounted on a Radio Shack prototype board (part number 276-157). This is compatible with the intelligent controller. The extra chips seen in the photo are to support a Morse keyboard. The two spare 8-bit ports of the PPI may be used for other purposes.

operation

I had some initial problems providing sufficient signal for inverter inputs. I believe the interrupter collector resistor values given in fig. 1 to be adequate for variations in both the interrupters and inverters. To make certain, the inverter and interrupter outputs can be checked with a high-impedance voltmeter. Inverter output should be low when interrupter output is high, and vice versa.

I wrote a simple program to drive a display for 256 counts to test the device. Depending on the spacing between interrupters, the count may go in either direction. The proper direction is obtained by repositioning the interrupters or modifying the service routine. I prefer the latter, having had some bad experiences with interrupter leads and foil peeling on the encoder subassembly.

Program documentation and burned 2716 EPROMs for the Intelligent Controller are available from the author. Please send a self-addressed, stamped envelope for information.

acknowledgment

The author wishes to express appreciation to Chet B. Opal, K3CU, for his comments and review of this article.

references

appendix

The flow chart details presented here will be useful if you are interested in converting to a microprocessor other than a 6502 or are not familiar with programming.

Photo disks are available from K3CU for $1.00 each. Please send SASE to Chet B. Opal, K3CU, 5414 Old Branch Avenue, Temple Hills, Maryland 20748.
Any halfway decent photovoltaic panel should be able to survive laboratory testing.

But the real test of a solar module is how well it stands up over time in the biggest, toughest laboratories of all.

The real world.

On remote mountaintops, where maintenance is difficult and costly, Photowatt's aluminum substrate and laminated solar modules have been providing dependable, worry-free power to communications devices, such as microwave links, radio phones and UHF/VHF repeaters. For almost a decade.

In the desert, Photowatt's solar modules have proven that they can withstand the harsh blasting of sandstorms, and ground level temperatures as high as 150°F.

And in the ocean, Photowatt's heavy duty aluminum substrate panels have proven that they can withstand gale-force winds, corrosive salt spray and the pounding of 60-foot high waves.

In more than 10,000 navigational aid applications throughout the world.

According to the U.S. Coast Guard, Photowatt's aluminum substrate panels are one of the few tested that successfully completed the Coast Guard's test criteria for offshore navigational aids.

If you don't want to scale a mountain every couple of weeks, make sure the solar panels you buy are the most rugged and durable on the market.

Make sure they've proven themselves out in the real world.

In other words, make sure they're Photowatt solar modules.

PHOTOWATT
INTERNATIONAL INC.
2414 West 14th St., Tempe, AZ 85281
(602) 984-9564/ TWX 910-950-0142

The dial routine in fig. 3 is invoked by a two-millisecond timer interrupt in the Intelligent Controller. This routine reads the status of all dials and compares that status with the previous status stored in the ODLIAL register. If there is no change, the routine returns from processor interrupt.

Change of dial input is indicated by one or more bits set to logic 1 after the exclusive-OR with ODLIAL. Each dial is then polled in a loop. The loop starts with dial status in the accumulator as follows:

A0 A1 A2 A3 B0 B1 B2 B3

The accumulator is first pushed onto the stack (temporarily saved), then masked by ANDing with a bit pattern of 00010001 ($11 in hexadecimal notation). The result, on the first loop pass, will have A2 in bit 4, B2 in bit 0, and all other bits zero. If all bits are zero, no change in that dial occurred; the accumulator is restored by pulling it from the stack, and the accumulator is shifted right once. The index register (loop counter) is decremented, tested, and program flow continues at the loop start.

The purpose of right-shifting the accumulator is to provide separation in the $11 AND for the next dial. The second loop pass will have A2 in bit 4, B2 in bit 0. Each loop pass will test individual dials in decreasing order.

Any non-zero result of the AND accumulator with $11 will jump to the process subroutine shown in fig. 4. Entry to this subroutine will have TEMP1 holding an individual dial status in bits 4 and 0. Another mask with $11 is assurance that the three accumulator left-shifts and ORs with TEMP1 will have an individual dial input arranged as:

A A A A B B B B

The accumulator is exclusive-ORed with a bit pattern of 10011100 or $9C. The result of the exclusive-OR will set up the accumulator for subsequent testing of motion direction. Logic representation in the accumulator is now:

A A A A B B B B

Bit patterns in the accumulator will be as follows for the four possible optical interrupter state combinations:

A B = 01100011 A B = 10011100

Only one pattern will exist for one dial, stored in TEMP2.

The next two instructions set the accumulator to hold a logic 1 in one of the higher four bits for one of the previous state combinations. This is done by left-shifting the accumulator four times, then ANDing with TEMP2. The next two instructions (four right-shifts and OR with TEMP2) will duplicate the higher four accumulator bits into the lower four. The accumulator is now set for motion determination and is stored in TEMPS. The accumulator and TEMP3 will have one of the following bit patterns dependent on dial status:

A B = 00100010 A B = 00010001

One of these bit patterns will be loaded into a dial’s ODL on subroutine exit.

The first motion decision occurs when the accumulator is shifted left once, then ANDed with the existing ODL (from a previous subroutine call). The result is ANDed again with 01111000 ($78) to strip any extraneous bits. If the second AND yields a non-zero accumulator, right motion was detected and the direction register for that dial is incremented.

The second motion decision is made by loading the accumulator with TEMP3, shifting the accumulator right once, then ANDing with the existing ODL. The second AND with $78 strips any extraneous bits. A non-zero result indicates left motion and the direction register is decremented. The final operation is updating the ODL with the current dial logic stored in TEMPS.

A key element in motion decision is the direction of accumulator shift prior to ANDing with the ODL register. This can be seen by examining the logic expressions in table 1, or the following state-change progression:

Right motion: AB → AB

Left motion: AB → AB

The current state combination must always be compared to the previous one.

Any out-of-sequence state combination will pass through the subroutine without effect on the direction register. Start-up may produce an arbitrary bit pattern in the ODL register byte and may cause an increment or decrement of the direction register; only one change occurs since subroutine exit will update ODL to the new dial logic. Set-up prior to motion decision ensures a minimum number of direction register glitches.

Each left-shift assumes a zero entering the least-significant bit. Each right-shift assumes a zero entering the most-significant bit. 6502 coding uses ASL and LSR instructions, respectively. TEMPS is the Y-register of the 6502 with the X-register used as an index for each ODL and direction register in RAM.

Calculated execution time of the four-dial program in the Intelligent Controller is 141 μs with no dial change, 355 μs with one dial change, and 436 μs with two dial changes. Clock period is one microsecond and there is adequate time between 2-millisecond interrupts to execute other tasks in the controller program.
EVERYTHING YOU WANT FOR A HAPPY “HAM” CHRISTMAS.

GIVE YOURSELF A TREAT. “UNCLE BEN” HAS THE GEAR
...you’ve been looking for. Get fast delivery... great trades... big discounts, plus real, old-time, reliable, friendly service.

INTERESTED IN COMPUTING?
Check our low discount prices on:
TEXAS INSTRUMENTS
ATARI
COMMODORE
FRANKLIN... and more.

CALL ME...
Toll Free (800) 645-9187
New York (516) 293-7995
WRITE ME...
for my prompt, personal reply
SEE ME...
At one of the world’s largest Ham Supply Centers!
We ship anywhere!

“Uncle Ben” Snyder, W2SOH
the head man of
HARRISON RADIO

“HAM HEADQUARTERS, USA”
...Since 1925!

Toll Free (800) 645-9187
New York (516) 293-7995

See our low discount prices on:
ATARI
COMMODORE
FRANKLIN... and more.

Check our low discount prices on:
TEXAS INSTRUMENTS
ATARI
COMMODORE
FRANKLIN... and more.

INTERESTED IN COMPUTING?
Check our low discount prices on:
TEXAS INSTRUMENTS
ATARI
COMMODORE
FRANKLIN... and more.

CALL ME...
Toll Free (800) 645-9187
New York (516) 293-7995
WRITE ME...
for my prompt, personal reply
SEE ME...
At one of the world’s largest Ham Supply Centers!
We ship anywhere!

“Uncle Ben” Snyder, W2SOH
the head man of
HARRISON RADIO

“HAM HEADQUARTERS, USA”
...Since 1925!

170-01/02 BY-1/2 Keyer Paddle

170-01/02 BY-1/2 Keyer Paddle

CN 520/540/550 SWR/Pwr. mtr.

CN 520/540/550 SWR/Pwr. mtr.

TR 2500 2 mtr. transceiver

TR 2500 2 mtr. transceiver

HC-10 24 hr. Digital Clock

HC-10 24 hr. Digital Clock

DM-81 Grid dip mtt.

DM-81 Grid dip mtt.

KENWOOD

KENWOOD

TS930S 160-10 mtrs. (150 kHz-
30 MHz. gen. coverage recvr.)

TS930S 160-10 mtrs. (150 kHz-
30 MHz. gen. coverage recvr.)

QTR 24 Quartz world clock

QTR 24 Quartz world clock

Headset

Headset

FT 208R 2 mtr. Syn H/T

FT 208R 2 mtr. Syn H/T

“HAM HEADQUARTERS, USA”
2263 Broadhollow Road (Route 110).
E. Farmingdale, NY 11735
(800) 645-9187

More Details? CHECK—OFF Page 132

December 1982
<table>
<thead>
<tr>
<th></th>
<th>SUNDAY</th>
<th>MON</th>
<th>TUES</th>
<th>WED</th>
<th>THUR</th>
<th>FRI</th>
<th>SATURDAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAM CALENDAR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WIAW Schedule</td>
<td>April 1, 1992</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40m CW</td>
<td>M, W, F: 3 PM, 7 PM, 11 PM</td>
<td>2 PM, 6 PM, 10 PM</td>
<td>4 PM, 8 PM, 12 PM</td>
<td>6 PM, 10 PM, 2 AM</td>
<td>8 PM, 12 PM, 4 AM</td>
<td>10 PM, 2 AM, 6 AM</td>
<td></td>
</tr>
<tr>
<td>40m SSB</td>
<td>M, W, F: 3 PM, 7 PM, 11 PM</td>
<td>2 PM, 6 PM, 10 PM</td>
<td>4 PM, 8 PM, 12 PM</td>
<td>6 PM, 10 PM, 2 AM</td>
<td>8 PM, 12 PM, 4 AM</td>
<td>10 PM, 2 AM, 6 AM</td>
<td></td>
</tr>
<tr>
<td>10m CW</td>
<td>M, W, F: 3 PM, 7 PM, 11 PM</td>
<td>2 PM, 6 PM, 10 PM</td>
<td>4 PM, 8 PM, 12 PM</td>
<td>6 PM, 10 PM, 2 AM</td>
<td>8 PM, 12 PM, 4 AM</td>
<td>10 PM, 2 AM, 6 AM</td>
<td></td>
</tr>
<tr>
<td>10m SSB</td>
<td>M, W, F: 3 PM, 7 PM, 11 PM</td>
<td>2 PM, 6 PM, 10 PM</td>
<td>4 PM, 8 PM, 12 PM</td>
<td>6 PM, 10 PM, 2 AM</td>
<td>8 PM, 12 PM, 4 AM</td>
<td>10 PM, 2 AM, 6 AM</td>
<td></td>
</tr>
</tbody>
</table>

December

<table>
<thead>
<tr>
<th></th>
<th>SUNDAY</th>
<th>MON</th>
<th>TUES</th>
<th>WED</th>
<th>THUR</th>
<th>FRI</th>
<th>SATURDAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIAW Schedule</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40m CW</td>
<td>M, W, F: 3 PM, 7 PM, 11 PM</td>
<td>2 PM, 6 PM, 10 PM</td>
<td>4 PM, 8 PM, 12 PM</td>
<td>6 PM, 10 PM, 2 AM</td>
<td>8 PM, 12 PM, 4 AM</td>
<td>10 PM, 2 AM, 6 AM</td>
<td></td>
</tr>
<tr>
<td>40m SSB</td>
<td>M, W, F: 3 PM, 7 PM, 11 PM</td>
<td>2 PM, 6 PM, 10 PM</td>
<td>4 PM, 8 PM, 12 PM</td>
<td>6 PM, 10 PM, 2 AM</td>
<td>8 PM, 12 PM, 4 AM</td>
<td>10 PM, 2 AM, 6 AM</td>
<td></td>
</tr>
<tr>
<td>10m CW</td>
<td>M, W, F: 3 PM, 7 PM, 11 PM</td>
<td>2 PM, 6 PM, 10 PM</td>
<td>4 PM, 8 PM, 12 PM</td>
<td>6 PM, 10 PM, 2 AM</td>
<td>8 PM, 12 PM, 4 AM</td>
<td>10 PM, 2 AM, 6 AM</td>
<td></td>
</tr>
<tr>
<td>10m SSB</td>
<td>M, W, F: 3 PM, 7 PM, 11 PM</td>
<td>2 PM, 6 PM, 10 PM</td>
<td>4 PM, 8 PM, 12 PM</td>
<td>6 PM, 10 PM, 2 AM</td>
<td>8 PM, 12 PM, 4 AM</td>
<td>10 PM, 2 AM, 6 AM</td>
<td></td>
</tr>
</tbody>
</table>

SPECIAL CHRISTMAS EVENT

December 1992
At Last! An RTTY Tuning Scope!

And who else but HAL would bring you such a practical solution to the RTTY tuning problem. If all you have is flashing lights, you know how difficult it can be to match your transmit frequency with that of a received RTTY signal. The RS2100 RTTY Scope ends these problems with an accurate display of the received signal (both signal amplitude and phase). The RS2100 is a matching companion for the CT2100 Communications Terminal and may be used with most HAL and other manufacturers' RTTY equipment. An internal loop supply is included.

- X-Y tuning scope indication
- 1" diameter green phosphor CRT
- Front panel focus, intensity, and position controls
- Internal 200 VDC, 60 ma loop supply
- Two loop keying circuits (high voltage or optical isolator)
- 3-1/2"x8-1/4"x10-3/16", 9 lbs net, 12 lbs shipping 120/240 VAC, 50/60 Hz power
- Scope indicator works with CT2100, DS2050, DS2000, CWR685, CWR6850, CWR670, CWR6700, ST5000, ST-6K, ST-5K, and more
- Loop supply works with CT2100, DS2050, DS2000, CWR685, and CWR6850

Write or call for more details. See the RS2100 at your favorite HAL dealer.

HAL COMMUNICATIONS CORP.
BOX 365
URBANA, ILLINOIS 61801 217-367-7373
COMMODORE VIC-20 personal computer with 5K memory

The VIC-20 offers more dollar-for-dollar performance than any other personal computer. It has built-in BASIC language, 5K of RAM (expandable to 32K) high resolution graphics, sound, color and a wide range of add-on accessories. Full size keyboard features 64 ASCII character set, numerics and business/calculation symbols. Screen display 22 characters wide by 23 lines deep. Program line length 88 characters. Will accept plug-in program cartridges, floppy disc and cassette storage systems.

178.00 List Price 299.00
Item No. COMVIC20
Add 3.50 shipping & handling

KANTRONICS THE INTERFACE RTTY/CW/ASCII to computer adapter

Transforms your personal computer into a complete CW/RTTY/ASCII send and receive terminal with The Interface linking it to your transceiver. Active filter at 2295 Hz for RTTY and 750 Hz for CW. LED bargraph for fast and easy tuning. Hamsoft package required for VIC-20.

170.95 List Price 199.95
Item No. KANINTERFACE
Add 1.75 shipping & handling

KANTRONICS Hamsoft package

The necessary software for connecting The Interface to the VIC-20, includes VIC-20 program board & the needed cables. Allows your computer to have a split screen display, scrolling receive display, 1024 character type ahead buffer and more!

49.95 Item No. KANVIC20
Add 1.36 shipping & handling

KANTRONICS Mini Terminal

Sends and receives Morse code, RTTY, and ASCII. Converts any CW input from a CW keyer or keyboard into standard 2 tone RTTY or ASCII. Terminal transmits at 60, 75, 100 on RTTY and 110 on ASCII. Epson MX-80 or Paper Tiger may be attached for hard copy.

269.95 List Price 299.95
Item No. KANMINITERM
Add 1.75 shipping & handling

AEA MBA-RO Morse, RTTY, ASCII reader

Attaches to the speaker terminals of a receiver and displays Morse, RTTY, or ASCII on its 32 character 0.29” high display screen. Compact size only 8½” x 5½” x 2”. A great way to monitor one’s sending proficiency. Power requirement 13V DC @ 500 ma.

269.95 List Price 299.95
Item No. AEAMBARO
Add 2.23 shipping & handling

"WORLD PRESS SERVICES FREQUENCIES" listings of RTTY transmissions

A true storehouse of information for the RTTY specialized amateur of SWL. Publication lists AP,UPI,Reuters,TASS,VOA,London Press, and other active press RTTY frequencies from around the world. Lists over 65 news and press services. Great for code reader users!

7.95 Item No. BOORTTY
Add 1.36 shipping & handling

KANTRONICS Mini Reader

A code reader the size of a calculator! Measures only 5¼” x 3¼” x 1¾”. 10 digit 3/8” high character display. Copy Morse, RTTY, or ASCII from the palm of your hand. Features automatic Morse speed tracking, and 24 hour clock. Comes with display stand and AC adaptor.

260.95 List Price 289.95
Item No. KANMINIREADER
Add 1.75 shipping & handling
Complete satellite TV system $1795!

10 FT. PARABOLIC DISH

List Price 3985.00
Item No. MISSY97
Shipped Freight Collect

What the system will do:
You can receive up to 60 channels of TV direct from satellites to your home receiver. Movies, sporting events, religious programs, other TV stations and much more.

What the system includes:
1. 10 ft. fiberglass dish made of reflective metal bonded with fiberglass. Weather resistant and virtually maintenance free. Comes in 4 sections for easy assembly.
2. Single-pole polar mount complete with azimuth and elevation adjustments for easy satellite-to-satellite tracking.
3. LNA mount complete with rotor for adjusting horizontal and vertical polarity of LNA. Extension poles not included.
4. KLM89-22 receiver. Consists of two parts: receiver and downconverter. The receiver can be placed indoors and linked to the downconverter by remote cable. Features scan, video inversion, LED signal strength indicator, fine tuning and audio level control.
5. Avantek 4215 120° low noise amplifier. Takes weak signals reflected by the dish and amplifies them so that they can be converted to a TV picture. Uses GaAs FET transistors and has its own built-in power source. Urethane coated.
6. Chaparral feed horn. Provides 0.5 dB gain improvement over conventional rectangular horns for superior picture and sound quality. Virtually eliminates system noise.

Note: Customer provides all cables. Approximate cost $80. Customer must feed audio and video through VCR or use RF modulator ($59).

Read all about Satellite TV!

9.95
Add 1.36 shipping & handling
Item No. BOOTAB1409

At last! A complete guide to satellite TV!
“Build a Personal Earth Station for Worldwide Satellite TV Reception”

A complete guide to gaining access to the large amount of TV programming available from satellite transmissions. You can choose to build your own system or purchase one ready-to-operate, and both ways are thoroughly covered in this book. It begins with a review of basic television fundamentals and satellite transmission and reception. Building your own system is covered and the complicated task of installing the antenna and aiming it to pick up the signals you want is simplified. There’s even a complete list of available satellite programming.

Call Toll Free 1-800-633-3410

IN ALABAMA CALL 1-800-292-8668 9 AM TIL 5:30 PM CST, MONDAY THRU FRIDAY

More Details? CHECK — OFF Page 132
YOUR OWN PRIVATE AUTOPATCH

Introducing our Latest Model
NOVAX II

SIMPLEX / DUPLEX
AUTOPATCH

NOW TWO MODELS TO
SERVE YOU BETTER
YOUR OWN PRIVATE AUTOPATCH

NOVAX II

NOVAX II

NOVAX II

NOVAX II

NOVAX II

TET Antenna Systems presents three full size trap multiband beams to meet every amateur need. 5 element, 4 element, and 3 element models all with the exclusive TET dual phased drive. This famous drive system originated with HB9CV and was perfected by JA3MP. When you buy TET dual drive you know you have the best. It has more gain - just like adding another parasitic element. And wide bandwidth so you can use your solid-state transceiver on both phone and CW without a tuner.

Only the highest quality materials are used throughout. All aluminum tubing is 6061 solid-state transceiver on both phone and CW without a tuner. and predrilled to precision tolerances for easy one afternoon assembly. Light weight alloy. Stainless steel fasteners are provided for all electrical connections. Tubing is cut dual phased drive. This famous drive system originated with improved beam pattern.

Price: $399.95

 inkl.

+ shipping

+ shipping

+ shipping

Weight, Ibs.:

Boom Length: 24' 7"

Turn Radius: 18' 10"

Wind Area Ft²: 7.9

Wind load lbs. @ 80 mph: 160

Wind Dia: 2"

Weight, lbs.: 50

Price: $399.95

+ shipping

+ shipping

+ shipping

HB35T

HB43SP

HB33SP

Send for free catalog describing these dual drive beams, our VHF Swiss quads, roof mount towers, elevation rotators and more. Don't wait any longer to start working rare DX. Order your dual-drive beam today!

BY MAIL:
TET Antenna Systems
1924 E. Mission Road
Escondido, CA 92025

BY PHONE: 714-743-7025

Introducing our Latest Model — NOVAX II

NOVAX II

NOW TWO MODELS TO
SERVE YOU BETTER
YOUR OWN PRIVATE AUTOPATCH

NOVAX interfaces your standard 2 meter, 220, 450, etc. Base station and telephone, using a high speed scan switching technique so that you can direct dial from your automobile or with your HT from the backyard or poolside — Automatically. Easy installation. Transceivers, featuring solid state switching, offer best results ... Available interfaced with an ICOM 220J.

TET Antenna Systems

START YOUR OWN HELP-LINE

PAL 10 WATT ATV POWER MODULE $89 ppd

The PAS can put out 10 watts RMS power on the FM band when driven with 80 ma by the TXAS exciter 50 drive output. Outside, plus bandwidth for the whole band with good linearity for color and sound! Requires 13.8 VDC regulated @ 3 amps.

FMAS AUDIO SUBCARRIER GENERATOR $29 ppd

Put audio on your camera video just as broadcast TV does at 4.5 MHz. Puts out up to 1 p. to drive the PAS5 or VM 2.3, or 4 modulators. Requires low 25 ma (1000 ohms) and +2 to 10 VDC 25 ma Works with any sync with 5 mHz video bandwidth.

TVC-2 ATV DOWNCONVERTER ...$55 ppd

Stopframe MRF901 (7 db NF) preamp and double balanced mixer module digs out the weak ones but resists intermod and overload. Connects between unit antenna and TV set and tuned to channel 2 or 3. Variac tunes 420 to 450 mHz. Requires +2 to 10 VDC 25 ma Works with any sync with 5 mHz video bandwidth.

*TXAS5, PAS5, FMAS and TVC Basic Module Pkg.

Call or write for our complete list of specifications, station set-up diagrams, and optional accessories which include antennas, modulators, detectors, test generators, cameras, etc. WE ARE A FULL-LINE SUPPLIER OF ALL YOUR ATV NEEDS.

TERMS: VISA or MASTER CARD by telephone or mail, or check or money order by mail. All prices are delivered in USA. Allow three weeks before delivery. (213) 447-4565 Charge card order only

P.C. ELECTRONICS

2522 Paxson Lane
Tom W6GRC Maryann W86YSS
Arcadia, California 91006

Tell 'em you saw it in HAM RADIO!
A 40-meter transmitter and receiver using semi-break-in keying is described in this article. It uses transistors in all the circuits except for the final tube, driver and T-R switch.

This article indicates problem areas and cures. Many hobbyists like myself build circuits acquired from handbooks and magazine articles and they don't always work. During construction things change. Perhaps the layout, perhaps a fine copper short on a PC board which can only be seen with a magnifying glass. I have spent hours searching for opens on parts which appeared to be soldered only to find no connection actually existed. I now scrape all component leads before I solder to ensure good electrical contact.

Access to parts represents another variable and the constructor must choose from his collection or from other sources. For example, I had silver-plated, nylon-covered wire available which I used for the VFO coil. It works quite well and provides stable VFO operation.

PC board construction

Printed circuit board construction takes practice and experience. I start by cutting the copper PC board with a hacksaw, holding the board in a vise between two pieces of angle iron. I smooth the edges and rub the surface of the copper with steel wool until it's bright. Black paper tape and drafting dots are used for circuit layout, and I keep a pencil sketch of the work. The dots and holes are center-punched. The board is placed in a cut-out milk container and ferric chloride solution is poured over it. Fresh etching solution is used each time since it weakens after several applications. A 75-watt lamp, placed over the container, hastens the etching process. I use steel tweezers to turn the board and pick it up because the solution can stain your fingers badly. Don't spill or drop any of it on the floor or sidewalk — it won't come off!

After the board is etched and washed the tape is removed and cleaned with paint thinner and the board is rubbed with steel wool again. Sometimes I put the board in a tinning solution if I have any on hand. If not, I hot solder-wipe the board. Holes are made with a number 60 drill and parts mounted and soldered one at a time with the board secured in a vise. Always check the board after you are done wiring. Run a scribe between the segments and look at the board with a magnifying glass. This sounds like a small point but can prevent problems such as shorts and open circuits.

Making boards by hand may seem to be time-consuming, but you will find it is fun and a good way to build. More elaborate methods include making negatives of the artwork and exposing photo-sensitized copper plates. However, that is a more expensive technique.

Occasionally, breadboarded circuits do not perform when printed on copper boards. Once again poor layout should be suspected. Above all, don't try to build an entire circuit and expect it to completely work initially. Build and test one section at a time.

Power supply

A good place to start is by building a power supply. I built two receivers with an inexpensive 18-volt rms transformer using an LM 340-T regulator IC. The first two units worked. However, after constructing the third unit all the LM 340-Ts self-destructed though neither a capacitive nor resistive load had yet been connected. Exchanging the T unit with an LM 340-k-12 apparently solved the problem. An added benefit of this change was a total elimination of audio motor-boating. (A better transformer had also been introduced).

By Ed Marriner, W6XM, 528 Colima Street, La Jolla, California 92037
Some experimenters use batteries (12-volt storage or Ni-Cds) to independently power their circuits. It also helps pinpoint causes of hum, unwanted oscillations and audio motor-boating. It's a good idea to run all the stages to a separate point, isolating each power lead with a 100-ohm resistor and five or more microfarad by-pass capacitors. This prevents inter-stage coupling.

audio amplifier

Now you have a working power supply, the next logical circuit to build is the audio stage. LM 380N chips work well and provide sufficient audio output. A 0.1 μF capacitor on the input pin prevents hum when the volume control is lowered.

A common practice is to use between two and ten microfarad capacitors for coupling audio stages. I found the audio stage would block with this large a value and reduced it to 0.02 μF. For CW low-frequency coupling is not necessary. The audio stages in this set are left on at all times to enable sidetone oscillator injection for CW monitoring.

product detector

A 40673 MOSFET is used as a detector and gain element. It eliminates the need for another i-f stage. Sufficient CW signal output is obtained from the mixer when a 1.5 V rms BFO level is injected. The 1k resistor and 0.05 microfarad capacitors form a filter that suppresses high frequency hiss (a mixer by-product), preventing its introduction into the audio stages.

bfo

A crystal BFO is simpler to build than a variable one. However, it is more difficult to make the 453.5 kHz crystal stage oscillate. After some research, the circuit in fig. 1. was tried. By placing an rf choke in the collector lead, and adjusting the capacitors from base to ground, the oscillator provided 10 volts rms output. I used a variable capacitor to experimentally determine the optimum values (200 pF from base to ground and 70 pF from collector to ground). The transistor oscillated only when the emitter was not grounded.
fig. 18. Schematic diagram for the 40-meter transmitter-receiver.
i-f stage and filter

I-f filters are expensive and hard to find. A CW and SSB filter can be constructed using two low-frequency crystals, one at 455 kHz and the other at 453.5 kHz. The J.W. Miller crystal-matching i-f transformers, types 1725 and 1726, complete the crystal filter assembly. The transformers can be mounted on a PC board and must be grounded. Care must be observed when tuning the i-f slugs. Do not screw the slug in too far or it will damage the internal wiring. Peaking is accomplished by listening to off-air signals or by feeding in a 455 kHz signal.

The i-f stage transformers are small potted toroids which resonate at 455 kHz with a 100 pF capacitor. A J.W. Miller 330 microHenry unit also works. A paral-
fig. 1D. Schematic diagram for the 40-meter transmitter-receiver.
Parts List

coils J.W. Miller Co., 19070 Reyes Ave., Compton, California 90224.

semi-conductors Semiconductors from Circuit Specialists, Box 3047, Scottsdale, Arizona 85267 or telephone 1-800-528-1417.

Some semi-conductors can be found at Integrated Circuits Unlimited, 7889 Clairemont Mesa Blvd., San Diego, California 92111.

printed circuit tape Drafting tape for printed circuits. Mesa Design Reprographics, 4925 Convoy St., San Diego, California 92111, telephone 714-565-4724.

dots Dots are called donut pad D144 for .150 od x .031 inch (3.81 mm x 0.79 mm).

tape I use Bishop precision slit tape #201-250-11 which is .250 inch wide (6.35 mm). Tape 201-125-11, .125 inch (3.18 mm).

Also some .062 inch wide tape is useful. The tape comes in all widths, from Bishop Graphics, Westlake Village, California 91359.

toroids Amidon Associates, 12033 Otsego St., North Hollywood, California 91607.

i-f coils Radio Shack sometimes has an assortment bag of coils. Check here for i-f coils. Those used in this set were potted in ceramic, red color and have two leads projecting out. No number for stock.

etching Try WA3OJF, PO Box 398, New Cumberland, Pennsylvania 17070. You can get mixed solution at your local chemical supply house.

leled 18k resistor reduces the Q and chance of oscillation. The FET's source by-pass capacitor was left off to reduce the possibility of self-oscillation in the i-f stage.

rf and mixer stage

The rf and mixer stage is keyed by the relay for semi-break-in. Amidon (red) toroids are satisfactory for the coils as long as they resonate on 40 meters. Slug-tuned coils can be used as well. However, it is easier to tap down on toroid windings. The idea here is to sharpen the tuning without loading the circuit too heavily.

1N914 diodes inserted back-to-back on the antenna link coil reduce the rf if it exceeds 1 volt. The T-R switch reduces the transmitter leak-through rf level to about 2 volts.

vfo

A Colpitts' configuration is preferred for the receiver VFO. The 500 pF coupling and two fixed 530 pF capacitors are appropriate values needed for oscillation. The tuning capacitor, affected by these capacitors, requires careful matching for specific range coverage. The MFP-102 transistor stage provides 1.4 volts, enough to drive the buffer and emitter follower. This circuit eliminates frequency pulling by reducing mixer influence. The base voltage on the buffer is adjusted to read between 3 to 4 Vdc. This is accomplished by carefully selecting the 12k and 10k resistors. The 1.5 volts from the crystal filter provide one of the mixer inputs. Its injected level determines the mixer output.

transmitter

The transmitter VFO was designed for 80-meter operation to prevent 40-meter rf interference. The VFO is actuated when the relay closes. Better performance is achieved using this technique rather than keying the VFO directly. Drive is increased by placing an rf choke in the collector lead and taking the output from the collector rather than from the emitter. The emitter by-passing increases the rf drive to the 6AU6 doubler on 40 meters. The 6AU6 provides enough drive to the 2E26 with 300 volts on the plate. When lightly-loaded, the 2E26 plate has a pronounced tuning dip if sufficient drive is applied. The 6AU6 and 2E26 output stages are keyed and isolated by 1N4007 diodes. The keyed semi-break-in and sidetone circuits are also isolated from each other by diodes. A keying network, introduced by VU2JN, produces a clickless signal.

relay circuit

When the key is closed a positive pulse is transmitted to the 2N2219A base. The two 1N914 diodes ensure 2219A cutoff when the key is released. The diode across the relay eliminates any hang-up problems. The relay hold-in time is determined by the delay potentiometer and the 50 μF capacitor. A positive voltage, from the sidetone keyer, applied to the base of the 2N2222 turns it on. The sidetone oscillator, which provides a clean, adjustable level, monitoring signal, is lightly-coupled to the LM 380N input.

ham radio
data bandwidths compared

Bandwidth requirements for four competitive data modulators

With increasingly crowded Amateur bands, will hams begin using more sophisticated digital-data modulation schemes in the future? FSK (frequency-shift keying) is the predominant modulation scheme used to transmit data in the Amateur service; but this may not always be the case, because there are several other possible schemes which are better than FSK in some ways. This article will compare the bandwidth requirements for four competitive methods of modulation data.

It is in our interest to use our limited spectrum space as efficiently as we can. I will be discussing FSK, CW, and two forms of PSK (phase-shift keying), that is, two-phase PSK, also called Binary PSK, or BPSK; and four-phase PSK, also called Quaternary PSK, or QPSK.

the fast-Fourier transform

In the discussion that follows, the signal spectra presented were generated by performing a spectrum analysis on a computer simulation of typical data modulated by each of the different schemes. This was done by creating a mathematical model of a data signal consisting of a sequence of 128 samples with 156 microsecond spacing and modulating it by each of the four methods. The results were then processed by a Fast-Fourier Transform computer program that produced a power spectra plot (showing energy content as a function of frequency) for each of the signals. I will not be discussing how this program operates, but only the results of this analysis.

The horizontal axis of each plot is frequency (in Hertz), and the vertical axis is the signal power for each frequency component in (dB relative to the strongest component). As a convenient reference, we will define the bandwidth of the signals as the band over which frequency components greater than −15 dB relative amplitude are present. This standard will allow bandwidth comparisons between the different modulation schemes.

frequency-shift keying

FSK is the most popular data mode today because it is comparatively simple to generate and demodulate. The output frequency of the transmitter is shifted between one of two different frequencies (mark or space) depending upon the data bit being sent (0 or 1). The demodulator can be two simple filters, one for each of the frequencies, and rectifiers and a slicer to determine which frequency channel has the most energy at any time.

An FSK signal using 1200 Hz and 1600 Hz was modelled for this analysis, and a data rate of 400 BPS (bits per second) was used. (This is about the maxi-

By J.T. Dijak, W9JD, 215 Tareyton Drive, Ithaca, New York 14850
We could also send data using a CW signal where

CW

the others.

thin, and we will use it as a reference in discussing

the signal of 900 Hertz bandwidth. This is our first spec.

Fig 6. Analysis of CW signal: the 400 Hertz data rate requires
of the FSK method.

only 160 Hertz bandwidth, but twice as many bits per second than that

Fig 7. Analysis of frequency-shift keying signal: the data rate

moderate error protection.

of 400 BPS requires a bandwidth of 900 Hertz, and provides
the presence of the signal could indicate a mark, and the absence, a space. This signal is also very simple to generate, and simple to demodulate. The error rate versus signal-to-noise ratio is not as good as that for an FSK signal, however. This is because it is easier to tell a mark from a space when we are considering two different frequencies than when we must determine the presence or absence of one signal in a noisy channel.

For this analysis, a CW signal at a 400 BPS data rate using 1600 Hz as the center frequency was used. The same data pattern used with the FSK signal was used with this signal.

Fig. 2 shows the spectrum plot for the CW signal. We can see that (considering only -15 dB components or greater) the signal bandwidth (500 Hz) is narrower than for the FSK signal. We can also see that there are now other components farther out from the carrier. We can expect a small amount of signal distortion in the demodulator if we use filtering to limit our bandwidth to something on the order of what was required for FSK.

It is reasonable to expect the CW data signal to show higher harmonic spectral components than the FSK signal. The FSK waveform had smooth transitions between mark and space bits. The only difference between the two signals was a difference in frequency, and the transitions were made at a zero-crossing of the signal. Therefore, there were no abrupt changes in the FSK waveform. The CW signal, on the other hand, imposes very abrupt changes in the signal when it goes from mark to space — from no signal present, to full signal present. We know that higher harmonic terms are required in a signal spectrum to accomplish any abrupt transition like this in the waveform.

BPSK

Binary PSK sends a continuous carrier at one frequency, but the phase of the signal is shifted 180 degrees for a space bit. This signal, while requiring more complicated modulators and demodulators than either FSK or CW, provides an error rate superior to either other mode for a given signal-to-noise ratio.

Fig. 3 shows the spectrum plot for the 400 BPS BPSK signal. The same data pattern used in the previous examples was again used. We can see that the BPSK signal is wider than either the CW or FSK signals. This is not a surprise, since we know the BPSK waveform has very abrupt transitions at the bit boundaries where the phase of the carrier signal goes from +180 degrees to 0 degrees. In order to reproduce these abrupt transitions, the signal requires the higher harmonic spectral components that we see.

From this we can say that an unfiltered BPSK signal will require a wider signal bandwidth than CW or FSK for the same data rate; however, due to the superior synchronous detection process used (and required) with PSK, we can discard many of the
higher harmonic spectral components (by filtering). This blurs the transitions between bits, but does not seriously disturb the most important signal information for each bit. We could use a filter at the transmit-
battery charge sensor

A small sensor that warns you before your Ni-Cds discharge

Many a nickel-cadmium cell has been destroyed by depletion of its charge below the protective voltage level. As many Amateurs know, when a Ni-Cd cell is discharged to near zero voltage there is a good possibility the cell may take on a reverse charge. The reason for this is the small differences in capacitance between cells; the cell reaching full discharge first is reversed charged. This condition can be prevented if the protective voltage level is detected and the cell is recharged.

My slightly vintage crystal 2-meter rig (a Kenwood TR2200A) uses ten Ni-Cd AA cells arranged in a four- and six-pack as its power source. The rig does have provision for monitoring the voltage level of the battery pack using the combination RF/S/battery-meter. This is fine if you operate in enough light to read the meter, which is, even under best conditions, somewhat inconvenient and difficult to read. But suppose you have no light — such as on your patio in the evening or in the forest on a camping trip. The battery meter is not of much use under these conditions.

My solution to this problem is a sensor circuit designed to continuously monitor the battery voltage and detect the approaching protective voltage level. When this level is reached, the sensor activates an alarm, which in my rig flashes the built-in channel pilot lamp at a 1-Hz rate. I chose to set this voltage level to 11 Vdc, which allows some additional time after the alarm to end a QSO. The lamp will automatically stop flashing when, during charge, 11 Vdc is exceeded. The sensor circuit and lamp are powered in such a way that the main ON/OFF power switch will turn off everything.

By F.T. Marcellino, W3BYM, 13806 Parkland Drive, Rockville, Maryland 20853
Introducing incredible tuning accuracy at an incredibly affordable price: The Command Series RF-3100 31-band AM/FM/SW receiver. No other shortwave receiver brings in PLL quartz synthesized tuning and all-band digital readout for as low a price. The tuner tracks and "locks" onto your signal, and the 5-digit display shows exactly what frequency you're on.

There are other ways the RF-3100 commands the airways: It can travel the full length of the shortwave band (that's 1.6 to 30 MHz). It eliminates interference when stations overlap by narrowing the broadcast band. It improves reception in strong signal areas with RF Gain Control. And the RF-3100 catches Morse communications accurately with BFO Pitch Control.

Want to bring in your favorite programs without lifting a finger? Then consider the Panasonic RF-6300 8-band AM/FM/SW receiver (1.6 to 30 MHz) has microcomputerized preset pushbutton tuning, for programming 12 different broadcasts, or the same broadcast 12 days in a row. Automatically, it even has a quartz alarm clock that turns the radio on and off to play your favorite broadcasts.

The Command Series RF-3100 and RF-6300. Two more ways to roam the globe at the speed of sound. Only from Panasonic.

* Shortwave reception will vary with antenna, weather conditions, operator's geographic location and other factors. An outside antenna may be required for maximum shortwave reception.
* Based on a comparison of suggested retail prices.

This Panasonic Command Series shortwave receiver brings the state of the art closer to the state of your pocketbook.

With PLL Quartz Synthesized Tuning and Digital Frequency Readout.

Panasonic.
just slightly ahead of our time.
Because my 2-meter rig is a Kenwood TR2200A, placement of the sensor was not difficult. In the battery compartment, the manufacturer had installed a rectangular box to take up space next to the four-cell pack. The box is removable by taking out two Phillips-head screws. The inside measurements of the box are $1 \times 1-3/4 \times 5/8$ inches, which lends itself to housing a miniature circuit board. Fig. 1 shows the removable portion of the box and how I mounted a hand-wired circuit board in place. Fig. 2 is the circuit board showing layout of parts.

circuit description

Assume the Ni-Cd battery pack has a charge between 11 Vdc and full charge. Under those conditions, the zener diode, CR3, will be biased into its forward breakdown region, developing a voltage at the junction of R1 and R2. If this voltage is above 0.65 Vdc, Q1 will be saturated with its collector pulled down essentially to ground. This condition prevents Q2 from conducting, and so the ground pin No. 1 of the 555 will be held high near the battery voltage. The 555 will not start oscillating until pin 1 is grounded. The output of the 555 is pin 3 and it is internally held at the battery voltage at this time. A PNP transistor, Q3, is used to control the alarm/channel lamp. The lamp will light every time Q3's base is grounded — or flash if the base is pulsed to ground.

As the battery pack depletes itself and the terminal voltage approaches 11 Vdc, CR3, a 9.2-Vdc zener, will stop conducting because it is biased above ground by CR1, CR2, and the emitter-base diode of Q1. Fig. 3 shows the sensor circuit, including the zener voltage drops for battery levels of 11 Vdc to full charge. To achieve the proper protective voltage level it is necessary for CR1, CR2, and Q1 to be silicon devices. Germanium components will not do because of their lower forward bias voltages, placing the level far too low. When Q1 stops conducting, Q2 will saturate and ground pin 1 of the 555. At this time the channel lamp will begin to flash at a 1-Hz rate.

The sensor circuit is composed of fourteen components plus the circuit board. With a typical ham's junkbox, the sensor can be produced for less than five dollars. The circuit requires three hard-wired connections to the rig: a power ground, a connection to the ground side of the channel lamp, and a controlled positive battery voltage.

Normal operation of the TR2200A's front panel lamp switch is not impaired by the sensor circuit. The channel lamp can be turned on at any time — even when the lamp is flashing. The standby current drawn by the sensor is 5 mA at a battery charging voltage of 13.6 Vdc and it tapers to 2.28 mA just prior to the lamp's flashing at 11 Vdc. These current levels are constant and do not change under transmit conditions. I consider this current drain a small price to pay for Ni-Cd reverse-polarity protection. In my rig the original standby drain was 45 mA, so an additional 5 mA amounts to slightly more than 10 percent.

One nice feature of this sensor is that it can be removed quite easily for resale purposes. The rig would regain its original unmodified status with no unwanted front panel holes. But once the purpose of the sensor has been explained to the buyer, he probably would gladly accept the rig with the modification included.

ham radio

reference

SWD-1 VIDEO CONVERTER
FOR CABLE TV

The SWD-1 Video Converter is utilized on cable TV systems to remove the Kita's signal from a distorted video channel (3 mi out) and pass thru the normal undistorted/detected audio signal. Block switch selects operating mode to remove Kita's distortion from the video or pass all other channels normally. Simple to assemble—less than 30 minutes. Pre-tested. Input/output Channel 3, Impendence 75 ohms, 117VAC.

SWD-1 Video Converter Kit — $69.95

VTR ACCESSORIES

SIMPLE SIMON VIDEO STABILIZER

Simple Simon Video Stabilizer, Model VS-125, eliminates vertical roll and jitter from "copy guard" video tapes when playing through any form of screen projection, on another VTR. Simple to use, just adjust lock for a stable picture. Once the control is set, the tape will play all the way through without further adjustments. Includes 12V power supply.

VS-125 Video Stabilizer, wired — $54.95

NEW VCR Quality

MODULATOR
Not a Game Type Modulator

The MPS-1 kit converts Video/Audio signals to a crystal controlled RF output for TV Channels 3 and 4. The MPS-1 Modulator inputs are designed to match all TV cameras and VCR's and features a voltage regulated power supply, power switch and LED indicator. No Torx tool required. Operates on 117VAC.

Assembly Takes 5 Minutes

MPS-1 Kit — $39.95

MDS-AMATEUR-ETV 32 ELEMENT

YAGI ANTENNA

- Not A Kit
- Includes F-41 Connector and Mounting Hardware

MAE-32 Element Yagi Antenna — $23.95

Kato Sons' Down Convert Kit 1.9 - 2.5GHz

Designed for Simple Simon by former Japanese CQ Amateur Magazine's "HF Editor/Engineer". Unit utilizes new ingenious Printed Circuit Plate for maximum gain. Board circuit fits inside MAE-2 antenna housing. Requires 1 hour assembly. C & couplers pre-installed. Model KSDC-KIT 1.9 - 2.5GHz Down Convert Kit — $34.95

Kato Sons' Regulated Variable DC Power Supply

For use with KSDC-KIT 1.9 - 2.5GHz Down Converter. Completely assembled with Attatchable Cabinet, TV Modem Switch Mode Control, Frequency Control and LED indicator.

Model KSPS-1 Assembly Power Supply — $23.95

ORDER ALL THREE ITEMS

MAE-2, KSDC-KIT and KSPS-1 for Only $74.95

COAX CABLES ARE NOT INCLUDED —

ZYZZZX VHF-UHF Wideband Antenna Amplifier

Revolutionary New HYBRID IC Broadband Amplifiers

50 MHz - 900 MHz

Model ALL-1 12dB Gain

Model ALL-2 25dB Gain

These units are not available anywhere else in the world. Each unit will serve many purposes and is available in 1, 2, or 4 amplifier form. Ideal for audio or video on UHF Channels 16 & 39. Amplifiers incorporate separate co-channel power supply. Each assembled in 25 minutes. No tools, no mess, no soldering.

ALL-1 Complete unit w/amplifier supply — $24.95

ALL-1 Wide Band Impulse Supply — $34.95

ALL-2 Complete unit w/amplifier supply — $49.95

Our New STVA 14.5dB Gain, 4 ELEMENT CORNER REFLECTOR YAGI ANTENNA

STVY-3 Yagi Antenna, 14.5dB Gain, Dimensions 75 x 300 ohm

St VLA-3 Yagi Antenna, 14.5dB Gain, 75 x 300 ohm, SAME AS STVY-3

St SVA-200 Yagi Antenna, 14.5dB Gain, Dimensions 200 x 300 ohm

St VLA-200 Yagi Antenna, 14.5dB Gain, Dimensions 200 x 300 ohm, SAME AS STVLA-200

RS-50/U-100 75 ohm Low Noise Cable, 8.12ft/15

RS-50/U-100 75 ohm Low Noise Cable, 15 ft/30

MT-1 Special UHF 75-300 ohm Matching Transformer — $14.49 ea

SWITCH TO BAMB!®

Electronically

Bambio Electronic Video Switch...

makes switching of your VCR/VTR, Pay TV Decoders, Cable TV, Video Discs, Video Games, Closed Circuit TV, Antennas and Microcomputer as easy as pushing buttons.

The Bambio Electronic Video Switch is an excellent expansion network which can accept up to six different sources of video signals and provide the flexibility of directing the inputs to any of or all of the three outputs. Now you can eliminate...the drudgery of disconnecting and reconnecting your video equipment each time you use it...the tangled mess of cables which are impossible to trace out...not being able to use more than one function at a time.

Bambio lets you enjoy using your video equipment the way it should be...electronically and on line at the push of a button.

Model BEVS-1 Completely Wired and Assembled. Includes comprehensive Instruction/Operation Manual and Descit Set for customizing your Video Switch Installation.

Model BEVS-1 Complete Unit — $129.95

Bambio’s Specifications:

- Input/Output Impedance
- Signal Loss
- Noise
- Input Return Loss
- Isolation
- Package Req.
- Dimensions
- Weight

FREE Bambio Poster with any purchase

7+11 SWD PARTS KITS

INTRODUCING OUR 7+11 PWD PARTS KITS

MITSUMI VARACOR UHF-TUNER MODEL UE5-455 $24.95

ORDER ALL ITEMS (1 thru 7) — $139.95

MIGHTY SWITCHES

1P1T-SWD Varactor UHF Tuner, Model UE5-455 — $24.95

2CB1-SWD Printed Circuit Board, Pre-Drilled — $18.95

3STP-SWD F.C. Potentiometer, 1-20K, 1-1K, and 5-10K SMD Types, $5.95

4GR3-SWD Resistor Kit, 1/4 Watt, 5% Carbon Film, 32 pieces, $5.95

5SP1-SWD Power Transformer, Ph-117VAC, SEC-240VAC, $5.95

6BP2-SWD Panel Mount Potentiometers and Knobs, 1-10K and 1-50K with Switch, $5.95

7TS14-SWD 1 ft. 7-pcs, Diode 4-pcs, Resistors 2-pcs, Heat Sink 1-piece — $29.95

8CEC-SWD Electronic Capacitor Kit, 8 pieces

9CC3-SWD Ceramic Capacitor Kit, 50 F, 3 pieces

10CTC-SWD Variable Ceramic Trimmer Capacitor Kit, 5-60pF, 8 pieces — $5.95

11I14-SWD Call Kit, 180 pF, 2 pieces, 22uF/1 piece (precision induction) and 1 173-12 Ferrite Terminal Core with 6 ft. #26 wire, $5.95

12LC5-SWD I.C. Switches, Tin inlet, 6 pin-5 pieces, and 14 pin-2 pieces — $1.95

13LS14-SWD Speaker, 44Ft. D9G and Prepackaged Word Endorse — $14.95

14AMC-SWD Misc. Parts Kit Includes Hardware, (6/8, 8/32, 2 1/8, 10/32, Nut & Bolt), Hookup Wire, Solen, Ant. Term., Ant. Switch, Fuse, Fan, Footswitch, etc. — $7.95

When Ordering All Items, (1 thru 7), Total Price — $139.95

CUSTOMER NOTICE: BUY WITH CONFIDENCE...BEWARE OF LOW QUALITY IMITATORS. All of our kits consist of New, 1st Class, RF Quality, Parts Engineered for Optimum Operation, for factory seconds or stock close-outs. We service your completed kits that you’ve purchased and built. You will never get stuck with a BAG of PARTS when ordering from Simple Simon.

SIMPLE SIMON ELECTRONIC KITS, INC.

3881 Valley View, Suite 12, Dept. H, Las Vegas, Nevada 89103

More Details? CHECK — OFF Page 132

Available by Mail Order Only
Send Check* or Money Order. Minimum Order $16.95. Add 10% Shipping and Handling on orders under $40.00, For orders over $40.00, add 5% Minimum Shipping and Handling $2.00. CA: $1.00

*Visa and Mastercard Acceptable — *Check orders will be held 30 days before shipping.

In Nevada Call: 702-871-2892
1-800-782-3717

December 1982
The fall antenna construction season is almost over and the winter months are close at hand. Not much time left this year for antenna experimentation!

Even so, here's some interesting and useful data on the inverted-V dipole antenna. This simple antenna is very popular. It has the forgiving characteristics of the dipole (easy to get into operation), it is inexpensive, a good radiator and it can be supported from a single center point.

This past summer some extensive tests were run on the inverted-V dipole by JA5COY (Japan) and were reported in a recent issue of *CQ-ham radio*, published in Tokyo. JA5COY made measurements summarized in fig. 1. The first tests were on an 80-meter dipole (fig. 1A). The antenna exhibited a feedpoint impedance very close to 73 ohms, as expected, and the bandwidth between the 2-to-1 SWR points was about 330 kHz.

He then dropped the ends of the dipole to form an included angle of 120 degrees (fig. 1B). The feedpoint impedance dropped from 73 ohms to 50 ohms and the bandwidth dropped to 310 kHz. In addition, the resonant frequency of the antenna dropped about 15 kHz.

The last experiment was to decrease the included angle to 90 degrees (fig. 1C). The feedpoint impedance dropped down to 30 ohms at resonance and the bandwidth further decreased to 210 kHz between the 2-to-1 SWR points of measurement. And, finally, the resonant frequency dropped about 35 kHz from that of the straight, horizontal dipole. Antenna height during these tests was not noted.

This is handy information, as it provides all that is needed for a pre-cut inverted-V dipole antenna. The summation is:

Dipole antenna:
- Length for resonant frequency
 \[\frac{468}{f(MHz)} \text{ feet} \]
 (Feedpoint impedance approximately 73 ohms.)

Inverted-V dipole antenna:
- Included angle = 120 degrees
- Length for resonant frequency
 \[\frac{465.6}{f(MHz)} \text{ feet} \]
 (Feedpoint impedance approximately 50 ohms.)

Inverted-V dipole antenna:
- Included angle = 90 degrees
- Length for resonant frequency
 \[\frac{463.3}{f(MHz)} \text{ feet} \]
 (Feedpoint impedance approximately 30 ohms.)

As an example, suppose you want an inverted-V dipole for 80-meter phone operation to cover the range of 3750 to 4000 kHz. This is a span of 250 kHz. An antenna with an angle of 120 degrees included will do the job as it provides a bandwidth of about 310 kHz and — best of all — has a feedpoint impedance of about 50 ohms when mounted at a reasonable height above ground.

The mid-point of the chosen range is 3875 kHz, so the dipole is cut for this frequency:

Inverted-V dipole length = \[\frac{465.6}{3.875} \]
= 120.15 feet, or 120 feet, 2 inches (round it off to 120 feet).

![fig. 1. Comparison of feedpoint impedance (R) and bandwidth (BW) for dipole (A) and the two versions of the inverted-V dipole (B and C).](image)
Thus, the dipole will be 60 feet on a leg, with an included angle of 120 degrees and should cover the complete 80-meter phone region with an SWR of less than 2-to-1.

The antenna can be zeroed-in for minimum SWR by raising or lowering the ends of the dipole. As in the case of any antenna, the presence of nearby metallic objects (power lines, TV antennas, etc.) may alter the performance and SWR a bit.

more about TVI and RFI

TVI and RFI seem to be a sore subject these days. More hams and more entertainment equipment is the prime factor, plus the fact that solid-state circuits, as used in home entertainment equipment, operate at a lower signal level than does the older, tube-style gear. Nevertheless, the Amateur operator should make sure his equipment is clean and a few simple preventive, anti-TV steps should be taken even if there is no TVI or RFI. Better to be safe than sorry!

Cleaning up the exciter: at the very least, an rf line filter should be used with the exciter to prevent rf from finding its way into the primary power line. A simple and effective line filter, such as the J.W. Miller C-508-L, or equivalent, will be satisfactory. In addition, the exciter should be grounded (more about this later).

Cleaning up the linear amplifier: an rf line filter should be used on the linear amplifier. J.W. Miller Co., and others, make suitable filters, or you can build your own. A practical filter is shown in fig. 2.

Your antenna system: you’ll require a lowpass filter between your transmitter and your antenna. It should go in the 50-ohm coaxial line after all such devices as SWR meters or coaxial switches. That is, there should be nothing between the filter and the antenna except the interconnection line. Several makes of lowpass filters are available; a good one is the Barker & Williamson 425, rated at 1 kW.² (The model 424 filter is rated at 100 watts — just the thing for your exciter.) Both these filters are designed for 50-ohm coaxial systems.

Your ground system: the station ground is important, especially from the FCC point of view. If you are ever visited by the FCC or a TVI committee, one of the first questions they will ask is, “Is the transmitting equipment grounded?”

To protect yourself in this instance, you’ll need a ground lead from the equipment to the nearest ground point: either a water pipe ground or an external ground rod driven into the soil.

From a legal point of view, this satisfies the requirement. But I don’t have to tell you that such a ground is worthless as an rf ground. Unfortunately, a good rf ground is hard to get, unless your station is at ground level and the ground wire from the equipment to the ground is only a foot or two long! In most cases, this is an impossible requirement.

In my case, I am on the ground floor of my home. I connected all equipment (receiver, exciter, amplifier) together with flexible No. 10 insulated copper wire. I did not depend upon the shields of the coaxial interconnecting wires to do the job. The next step was to drill a small hole in the floor behind the operating table and drive an eight-foot (2.5 m) ground rod down into the earth through this hole, until only an inch of the rod protruded into the room. Then ran a No. 10 flexible wire from the equipment to the ground rod.

This provided a satisfactory ground on all bands except 10 meters. I found that I still had some rf floating around the equipment on that band, even though everything was supposedly at ground potential. I didn’t want to drive another ground rod under the house (it was a terrible job), so I drove one into the ground at the point where my coaxial line came from under the house and passed across the yard to the antenna tower. I grounded the shield of the coaxial line to this ground rod and then, spurred on by over-enthusiasm, I drove a third ground rod at the base of the tower and tied the coaxial shield and the tower to this rod. In addition, I bypassed all the rotor control wires to the ground rod at the base of the tower.

That seemed to do the job. All equipment was rf-cold on all bands, I used a lowpass TVI filter for the transmitter and all power leads were filtered and bypassed. That should make my equipment TVI-proof. Did it?

![Diagram](image-url)
cleaning up the TV receiver

The answer to the question, of course, is no. While my transmitting equipment was reasonably clean, both my TV receiver and those of my neighbors were wide open to strong local signals in the ham bands. My receiver (a ten year old RCA XL-100) turned black in the face when I went on the air with the linear amplifier — on any band!

When I removed the back from the set, the reason was apparent: a rat’s nest of interconnecting wires running between printed circuit boards and no sign of any filtering or protective circuits. (The TV set was much worse, from a TVI point of view, than my previous one — an old tube model with very good internal shielding).

To clean up this receiver, it was necessary to use a line filter (J.W. Miller C-508-L), plus a good high-pass filter on the antenna ribbon line. One of the best filters is the J.W. Miller C-513-T3. This is a multiple section design enclosed in an aluminum box. It provides more low frequency attenuation than simpler filters.

The combination of the line filter and the high-pass antenna filter did the job. Now I could operate at full power on all bands below 30 MHz with no TVI. Eventually, I got Miller line and high-pass filters for my nearby neighbors and now I am clean on their TV receivers.

what about stereo equipment?

Ham signals can easily get into stereo gear and can cause a lot of problems. Again, the cause is simple. The equipment is mostly solid-state, operates at low signal levels and has no shielding or filtering against strong nearby radio transmissions! The stereo market is very competitive and everything that can be done to save a penny is done, and this includes omission of any RFI suppression circuits.

Filtering and bypassing interconnecting leads usually solves this vexing problem, but the subject is too complex to cover in this short article. A recommended publication tells the whole story and gives you plenty of good data on RFI problems in general.3

two new, good books for Radio Amateurs

It is always refreshing to find publications of interest to Radio Amateurs. Prentice-Hall publishers (Englewood Cliffs, New Jersey) are entering this field with two new books by Doug DeMaw, W1FB. Doug, as you know, is the Senior Technical Editor of QST magazine.

Doug’s first book is Ferromagnetic-Core Design & Application Handbook.4 This hardcover, 256-page book covers design and use of inductors using toroids, rods and pot cores for ferrite and powered-iron materials.

Ferromagnetic materials are common today in receiver and transmitter circuits, power supplies, and antenna baluns, but the use and theory of these interesting devices are shroud-
Drake TR5 Transceiver

A NEW DIMENSION IN PERFORMANCE

- U.S. Made • Competitive Price • All Solid State • 12V DC • SWR Protected •
- Broadband • No Tune Up • Full Break-in CW • 150 Watts PEP, SSB or CW Input •
- High Dynamic Range • Excellent Sensitivity/Selectivity • Digital Readout •
- 160-10 Meters Plus WARC Bands and MARS Coverage**

Front panel switching allows independent MODE and optional crystal filter selection.
A passive double balanced mixer is employed in the receiver front end. This stage is preceded by a low noise high dynamic range bipolar rf amplifier to provide good, strong signal performance and weak signal sensitivity.
Accurate digital readout of operating carrier frequency is displayed to 100 Hz.

A rugged, solid-state PA provides continuous duty in SSB and CW modes. A cooling fan (FA7) is available for more demanding duty cycles, such as SSTV or RTTY. The PA also features very low harmonic and spurious output.
VOX GAIN, VOX DELAY, VOX disable, QSK, selectable AGC time constants, RIT and noise blanker selection are front panel controlled for ease of operation.
The TR5 is designed with modular construction techniques for easy accessibility and service.

TRANSMITTER

- Power Input (Nominal): 150 Watts, PEP or CW
- Load Impedance: 50 ohms
- Spurious and Harmonic Output: Greater than 40 dB down
- Intermodulation Distortion: Greater than 30 dB below PEP
- Carrier Suppression: Greater than 50 dB
- Undesired Sideband Suppression: Greater than 60 dB at 1 kHz
- Duty Cycle: Sub, CW 100%
- Lock Key (w/o FA7 Fan): 30%, 5 minutes maximum transmit.
- Lock Key (w/FA7 Fan): 100%
- Microphone Input: High Impedance
- CW Keying: Instantaneous full break-in, adjustable delay.

RECEIVER

- Sensitivity: Less than 0.5 uV for 10 dB S+N
- Selectivity: 2.3 kHz minimum at 6 dB, 4.1 kHz maximum at 60 dB (1.8:1 shape factor)
- Ultimate Selectivity: Greater than 96 dB
- AGC: Less than 5 dB output variation for 100 dB input signal change, referenced to agc threshold
- Intermodulation: (20 kHz or greater spacing) Intercept Point: Greater than 6 dBm. Two-Tone Dynamic Range: Greater than 85 dB
- IF Frequency: 5.645 MHz
- IF Rejection: 50 dB, minimum
- Image Rejection: 60 dB, minimum below 14 MHz
- Audio Output: 2 watts, minimum @ less than 10% THD (4 ohm load)
- Spurious Response: Greater than 60 dB down.

ACCESSORIES AVAILABLE

Model 7021 SL300 CW Filter
Model 7022 SL500 CW Filter
Model 7027 SL1000 RTTY Filter
Model 7023 SL1600 RTTY Filter
Model 7026 SL4000 AM Filter
Model 7024 SL6000 AM Filter
Model 1570 PS75 AC Power Supply
Model 1545 RV75 Synthesized Remote VFO
Model 1531 MS7 Speaker
Model 1507 CW75 Keyer
Model 1558 NBS Noise Blanker
Model 7077 Microphone

R.L. DRAKE COMPANY

540 Richard St., Miamisburg, Ohio 45342 USA
Phone: (513) 866-2421 • Telex 288-017
The new Radio Handbook

The twenty-second edition of the Radio Handbook (Howard W. Sams Co., publisher) has been on the market for a few months. I have edited this book since the fourteenth edition (1956). It is interesting to note the tremendous advance made in Amateur Radio in 26 years!

The new edition is primarily devoted to solid-state equipment, side-band and linear amplifiers — the latter hardly mentioned or known in 1956. And in addition, counters, phase-locked oscillators, fm, satellite communication, moonbounce, slow-scan TV, RTTY, color TV, spectrum transmission, keyboards, keyers, solid-state amplifiers, and low noise reception are covered in the twenty-second edition of the Radio Handbook.

Ham radio

I have monitored the 10-MHz band almost daily during the past year. Over 50 countries permit Amateur operation on this band and such good DXers as FB8WG and VK9YC operate regularly in the 10-MHz region. By the date this is in print, the band should be open to American Amateurs.

It is interesting to compare those who should be in this region against those who are actually there. Table 1 shows the official International Telecommunications list of stations registered for operation between 10.1 and 10.15 MHz. Careful monitoring of the band during the summer showed that most of these stations really weren't there, with the exception of NAA's powerful RTTY signal at 10.130 MHz. Most of the rest of the ITU-registered stations were conspicuous by their absence. In their place was a rag-tag group of intruders who have less legal reason for being there than do Radio Amateurs.

the 10-MHz Amateur band

<table>
<thead>
<tr>
<th>ROTATOR MODEL</th>
<th>MOUNTED INSIDE TOWER</th>
<th>WITH STANDARD LOWER MAST ADAPTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR22XL or AR40</td>
<td>3.0 sq. ft. (0.28 sq. m)</td>
<td>1.5 sq. ft. (0.14 sq. m)</td>
</tr>
<tr>
<td>CD451</td>
<td>8.5 sq. ft. (0.79 sq. m)</td>
<td>5.0 sq. ft. (0.46 sq. m)</td>
</tr>
<tr>
<td>HAM IV</td>
<td>15.0 sq. ft. (1.4 sq. m)</td>
<td>N/A</td>
</tr>
<tr>
<td>TX</td>
<td>20.0 sq. ft. (1.9 sq. m)</td>
<td>N/A</td>
</tr>
<tr>
<td>HDR300</td>
<td>25.0 sq. ft. (2.3 sq. m)</td>
<td>N/A</td>
</tr>
</tbody>
</table>

For HF antennas with booms over 26’ (8 m) use HDR300 or our industrial R3501.

Full details at better Amateur dealers or write:

TELEX hy-gain
TELEX COMMUNICATIONS, INC.

hy-gain
ANTENNA ROTATORS
for your peace of mind.

Determine the total wind-load area of your antenna(s), plus any antenna additions or upgrading you expect to do. Now, select the matching rotor model from the capacity chart below. If in doubt, choose the model with the next higher capacity. You’ll not only buy a rotator, you’ll buy peace of mind.

<table>
<thead>
<tr>
<th>ANTENNA WIND-LOAD CAPACITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROTATOR MODEL</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>AR22XL or AR40</td>
</tr>
<tr>
<td>CD451</td>
</tr>
<tr>
<td>HAM IV</td>
</tr>
<tr>
<td>TX</td>
</tr>
<tr>
<td>HDR300</td>
</tr>
</tbody>
</table>

For HF antennas with booms over 26’ (8 m) use HDR300 or our industrial R3501.

ed in mystery for most Amateurs. Doug’s book tells the whole story in simple words and terms and covers circuit design and application from A to Z. The information is invaluable and the book should be in every ham’s library. Of great help is the section covering available cores and rods. Now when some article specifies a core with a red dot on it, or Q-2 material, I’ll know what the author is talking about!

Doug’s second book is Practical RF Design Manual, a hardcover book of 246 pages. This is a gold mine of information for the experimenter who designs and builds his own equipment, or for the inquisitive Amateur who wants to know how his gear works. It covers the important circuitry used in today’s exciters, receivers and transceivers. It contains in-depth coverage that general-coverage handbooks can’t afford to include, mainly because of a restriction on the total number of pages in the publication.

The book has an impressive section on receiver dynamic range, and equally handy sections on frequency control systems, very useful to the home constructor. It also includes more data on small- and large-signal amplifiers than I have ever seen in one publication. Best of all, the book is written in language the average Amateur can understand.

hy-gain

Full details at better Amateur dealers or write:

TELEX hy-gain
TELEX COMMUNICATIONS, INC.

1. A copy of the J.W. Miller catalog can be obtained free by writing to: Bill Courtney, J.W. Miller Division, Bell Industries, Box 5825, Compton, California 90224.
2. A copy of the B&G catalog can be obtained free by writing Elmer Bush, Barker and Williamson, 10 Canal St., Bristol, Pennsylvania 19007.
3. RFI is no problem if you don’t have it, but many headaches if you do. Recommended reading on this subject is the Interference Handbook, by William Nelson, WA6FOG, former RFI investigator, Southern California Edison Company. This Ham Radio Bookstore has this Handbook, or it may be ordered from Radio Publications, Box 149, Milton, Connecticut 06867.
4. These books are available from the Ham Radio’s Bookstore for $28.95 each plus $2.00 shipping and handling.
5. Available from the Ham Radio’s Bookstore, Greenville, New Hampshire 03048 for $34.95 plus $2.00 shipping and handling.
3-Element Monobanders also available.
Optional EN-86 balun recommended for above antennas.

MECHANICALLY Hy-Gain monoband antennas employ the best materials available and are fabricated with accurate tooling for an integral balance so all parts work together. For example, our element-to-mast brackets are the best in the industry and our tiltable mast-to-boom clamps are unique. Stainless steel hardware is chemically passivated to eliminate rust. All tubing and parts are deburred and finished so you don't have to re-manufacture the antenna before installation. It all adds up to antennas with maximum mechanical integrity that withstand 80 mph (129 km/h) windloads and radial ice.

ELECTRICAL performance is not based on theoretical calculations alone but is tuned and tested for optimum results on our government approved test range. Hy-Gain's factory tuned 52 ohm Beta Match is exclusive and assures positive dc ground for lightning protection and reduced precipitation static. Though sometimes unconventional, our meticulous element spacing assures maximum F/B ratio and uncompromising power gain. VSWR at resonance is less than 1.5:1. All Hy-Gain monobanders handle maximum legal power with a 4:1 safety margin. In short, electrical performance is at maximum by design and requires no re-tuning.

SPACE problems are virtually eliminated. Even our largest monoband antennas fit most residential lots. And thanks to Hy-Gain's careful materials selection and superb mechanical engineering, the weight and windload of antennas is at an absolute minimum to permit stacking on conventional heavy duty towers and rotators. This gives you maximum DX performance even with limited space.

MONOBAND BEAMS

Hy-Gain Monobander Antennas Maximus
at Better Amateur Dealers

TELEX COMMUNICATIONS, INC.
5600 Aldrich Ave. So., Minneapolis, MN 55420 U.S.A.
Europe: Le Bonaparte-Office 711, Centre Affaires Puteaux, 93153 Le Blanc-Mesnil, France

More Details? CHECK—OFF Page 132

December 1982
Introducing Corsair

A New No-Compromise
HF Transceiver

The CORSAIR is an extraordinary new HF transceiver. Every function operates without compromise. New unique features make it a delight to operate.

A new front end provides extreme sensitivity, low internal noise and high dynamic range to bring weak signals to life. For even greater overload prevention, the integral rf preamplifier can be switched out. More effective than the usual rf attenuator.

The filtering system, a TEN-TEC exclusive, virtually switches to privacy. It starts with a superb 2.4 kHz 12-pole ladder sideband filter system, standard. It provides variable bandwidth for ssb, great for today's crowded phone bands. A novel pass band tuning circuit allows a received signal to be moved within the pass band to its optimum position with respect to QRM. Optional narrow band filters are available for ssb, cw and RTTY, all switched from the front panel. The ultimate in QRM reduction.

Full cw break-in opens a window on the band while transmitting, turning monologues into conversation. Or, if conditions dictate, just switch to semi-break-in. And no VOX adjustment when changing modes.

A versatile offset tuning system allows the receiver and transmitter to be tuned separately with a ± 1 kHz range for fine tuning or ± 4 kHz for working off frequency. For net operation, both can be moved simultaneously.

Reliability is designed in. The CORSAIR system is so rugged it will operate into infinite SWR. And we guarantee it unconditionally (except for lightning) for one year.

Beauty is more than skin deep. The contemporary styling with the blackout LED frequency display (last digit in green), the baked-on textured bronze/black finish with aluminum trim will retain its handsome appearance permanently. Beneath its sleek exterior is a carefully crafted chassis packed with performance.

There are many other features, each with superb performance. An effective speech processor, notch filter, adjustable noise blanker, signal spotter, three position AGC, threshold ALC, simplified VOX, all controlled from the front panel. In addition, the CORSAIR has a compression loaded speaker, less than 2% audio distortion, and full accessory connections including remote bandswitch output. It even has a volume equalizing headphone output.

The CORSAIR is a total system of pure operating pleasure—it really must be put through its paces to be fully appreciated. Its smooth controls, comfortable and logically spaced, give it the feel of a superlative transceiver. One that will be a faithful companion for the years ahead.

All TEN-TEC products are completely manufactured in the U.S.A., in the foothills of the Great Smoky Mountains.

Model 560, CORSAIR transceiver $1169.

See your TEN-TEC dealer or write for full information.
Now, you can enjoy over 60 television channels with Lowrance Earth Station/System 7 Receiver. Today, television and stereo programming is so diverse — so complete, it's no longer enough to have access to only a few channels.

With the magic of satellites, you can receive more than 60 channels of television and over 20 channels of stereo directly into your home. Including first-run movies, sports events, special children's shows, religious programs, news, live coverage of Congress, farm reports — and much, much more.*

It all comes from a satellite earth station consisting of a dish antenna, amplifier and satellite receiver. The station picks up signals from satellites thousands of miles overhead and converts them into television and stereo for you to enjoy. And it's surprisingly affordable. (Systems start as low as $2,900.)

The most advanced receiver on the market today is System 7, made by Lowrance Electronics. We supply the satellite receiver, and our distributors add a dish antenna. Lowrance has been a leader in the electronics industry for more than 25 years now. You may already be familiar with our sportfishing sonar products, acclaimed as the finest in the world. And we're building that same quality and reliability into our satellite receivers.

Right now, you're missing out on worlds of entertainment. For more information on the Lowrance Earth Station/System 7 Receiver, clip the coupon below and mail.

*While most satellite programming is free, some channels are reserved for pay audiences and may require a small viewing fee.
If you're just beginning or you are an experienced dealer, National Satellite Communications has the TVRO System in stock for you

DISTRIBUTOR OF:
ADM/ARUNTA/AUTOMATION
TECHNIQUES/AVANTEK/AVCOM/
CHAPARREL/DRAKE/E.T./
COMTECH/DEXCEL/LOWRANCE/
LULY/Earth TERMINALS/
MICRODYNE/PILOT-VIEW/
PRODELIN/SAT-TEC/SATELLITE
DATA/STANDARD/VECTOR/VIDARE
and more

NO COST ORDERING: To ensure the QUICKEST DELIVERY, use our TOLL-FREE NUMBER, SIX DAYS A WEEK/ (800) 833-4485
ALL ORDERS SHIPPED WITHIN 24 HRS. For prices or technical information call us at (518) 783-0088.

Complete Residential & Commercial Systems.

NATIONAL SATELLITE COMMUNICATIONS
Plaza 7 / Latham, New York 12110 / (518) 783-0088
LOW OHM METER MODULE, DM-10

- Measures resistance from 10 milliOhms to 20 Ohms. Now you can measure resistance down to 10 milliOhms with this low cost, easy to use DM-10 module. Check coil resistance, transformers, relays, chokes, printed circuit board copper paths and ground cables. Special zero balance compensates out input cable resistance to insure accurate readings. Your DVM has to be set to 2V range during operation.

- Resistance range 10 milliOhms to 20 Ohms
- Zero Calibration control
- Battery powered (up to 20 battery saver circuits. Requires 9 volt Battery not included)
- Size 6.25" x 2.75" x 2"
- Includes Model 336 Test Clips

ORDER BEFORE JAN. 15th AND GET A FREE GIFT!

$55.95

REGULATED TRIPLE POWER SUPPLY, LOW PRICED! DM-6

A fully assembled and tested triple benchtop power supply includes fixed 5V @ 1 Amp, 5V to 15V @ 0.5 Amp and -5V to -15V @ 0.5 Amp—all supplies regulated, short proof. Each supply has a power on indicator LED. Complete and ready for use in a durable (8" x 6" x 3½") metal case.

COMpletely ASSEMBLedaND TESTedaND READY TO USE!

$99.95

8 CHANNEL SCOPE MULTIPLEXER, DM-12

Convert your single channel scope into a 4 or 8 channel instrument: just connect the DM-12. 8 channel scope multiplexer to your scope, clip the 8 input probes to the signals you want to view. Simple, easy, fast—can handle logic level TTL signals from DC to 3 MHz. Features separate spacing and trace amplitude and spacing controls and selectable sampling rate—all to insure easy clear scope display.

- 8 TTL compatible input channels (1 TTL load per channel) can drive 50 Ohm scope cable.
- Maximum full screen amplitude 1.6 Volts adjustable
- Trace amplitude and spacing controls
- 4 or 8 channel selector switch
- 8 color coded input cable 24" long with insulated alligator clips
- External 9 VDC power supply included (Model MMAC-2)
- Size 6.25" x 3.75" x 2"
- BNC Output Cable Accessory (Model PSA-2 add $14.95)

VIEW 8 CHANNELS AT ONCE!

$74.95

LOW COST CAPACITANCE METER MODULE, DM-8

Connect this high quality low cost Capacitance Meter Module, DM-8 to your digital Volt Meter and turn it into a Digital Capacitance Meter—the Low Cost Way!

- 2V Output
- Accuracy better than 5%
- Push to read range (button) from 1 pF to 20,000 µF
- Zero Calibration control
- In one easy to use, self-contained package
- Battery powered, with "push to read" battery saver circuit (9 V batteries not included)
- Size 6.25" x 3.75" x 2"
- Includes Model 336 Test Clips

COMPLETELY ASSEMBLED AND TESTED! READY TO USE!

$79.95

PORTABLE SELF-CONTAINED CIRCUIT DESIGNER, DM-5

Contains 8 LEDs and 8 logic switches.
- Control switches and buffered LED logic indicators
- Plug your ICs into solderless breadboards, tie in power and ground, connect your logic switches and LED indicators
- All interconnections between LEDs, switches and circuits via 22/26 solid wire
- Self-powered, in compact, durable carrying case
- Batteries (4 1/2 Volt C cells) or AC powered providing economical bench use or convenient portable use Available in two models

$69.95

LOW COST HIGH FREQUENCY COUNTER

- MODEL NO. DM-7
- The Albia Model DM-7, 8 Digit High Frequency Counter is easy to use, switch selectable time base input by a single BNC, nothing to build
- 5 Hz to 550 MHz
- 8 big easy-to-read 3½" high intensity LED display
- Crystal (±3 ppm @ 25°C) controlled 0.1 or 10 sec. gate times
- Convenient benchtop size (7" x 10" x 3") durable attractive case

COMPLETELY ASSEMBLED PRE-CALIBRATED PRE-TESTED

$149.95

Mention this magazine and get a FREE GIFT!

$99.95

Prices & Specifications subject to change • Special ends Jan 30th

FOR FASTER SERVICE USE YOUR CREDIT CARD

Most Orders Shipped Next Day

CALL TOLL FREE 1-800-243-6953

9 AM 5 PM EST

December 1982
More Transceiver

Heath's SS-9000 Deluxe Synthesized HF Transceiver is a quantum leap ahead in terminal-controllable communications gear. Streamlined for ultimate performance. Consummate in every design detail. Pacesetting amateurs will use it to set a new high standard for station and contest control.

Entirely solid-state, broadbanded in design. Delivers 100 watts out on SSB, CW and RTTY.

Built-in Motorized Bandswitch rotates band selector to the desired setting under remote control.

A Terminal Interface offers two-way communication between the Transceiver and an ASCII teletype, video terminal or computer through a rear panel RS-232C I/O port.

Commands are available to select, display and change the band, mode, all 27 memory and operating frequencies, passband shift, plus the band scanning and baud rates.

Also, set and toggle T/R/Tr status on the display, and freely manipulate the three frequencies on each band, with full diagnostic error-prompting.

Main tuning dial has optically-encoded shaft for smooth, linkage-free control and zero backlash.

Pushbutton up & down variable-speed scan traverses the band in 16 selectable rates, with 100 Hz final resolution and ultra-low drift.

There's more for the Ham at Heath
than ever before

Unique dual digital display gives the smart operator multiplied advantage in frequency-handling speed and agility.

100% synthesized and microprocessor-based. A crystal controlled master oscillator provides exact PLL reference for super stability and repeatability.

Simultaneous readout of working frequencies. Pushbutton exchange with (and copy into) memory or opposite display permits instantaneous QSY.

256 bytes of on-board CMOS Random Access Memory accepts three inputs per band (preserved with battery backup) for a total of 27 frequencies to recall and work at will.

Superior over-current, thermal and high VSWR protection incorporated for safe, worry-free operation.

The PS-9000 AC Power Supply with Speaker and independent 12/24-hour digital clocks (illustrated below) is a perfectly matched component.

MORE IN THE CATALOG
For complete details and specs, get a FREE Heathkit catalog. WRITE: Heath Company, Dept. 122-964, Benton Harbor, MI 49022. Or visit your nearby Heathkit Electronic Center. See last page for nearest location.

Add the Heathkit SA-1480 Remote Coax Switch. When changing bands, the proper antenna will be selected automatically.
Ten-Tec 645 ultramatic keyer mods

I run my station on battery 100 percent of the time, and am always looking for a way to trim a few milliamps of drain. I became concerned with the appetite of my Ten-Tec 645 Ultramatic Keyer the first time I put a meter in series and discovered a quiescent drain of over 300 mA. After opening the case and pulling the board, I burned my thumb on the two 68 ohm 2-watt resistors used to drop the 12 Vdc line.

I removed R17, R18, and D3, a 5.6 volt zener diode. In this same space I mounted an LM340 T-5 three-terminal regulator and a small heatsink. The regulator mounted easily after I drilled a single hole for the middle (ground) wire. I could then put the keyer back in its original shape without a lot of telltale holes in the board.

Because this regulator is some distance from the 12 volt supply, I used an external bypass capacitor of 0.22 µF on the input terminal of the regulator. Mount it as close as possible to the regulator. The 0.1 µF capacitor recommended for the output is provided by C9 already in place.

Next socket the ICs and substitute some 7400 LS chips for the original 7400s. I did this on a trial and error basis and found it worked for IC-1, IC-2, IC-3 but not IC-4 and IC-5. Thus, you need two 74LS00 (IC 1 and 2) and one 74LS10 (IC-3). A check showed 120 mA quiescent, almost a two-thirds reduction! Not enough to fool with if you are using commercial ac, but enough to make a difference for extended battery operation.

Adding an extra key jack in parallel with the output of the 645 keyer allows you to use a straight key. Mount the phono jack on the rear panel and bypass with a 0.01 µF capacitor.

The low speed range of the keyer can be expanded by changing the value of R1 from 4.7K to 8.2K. Unless you really need 50 WPM, it is much nicer to be able to accurately adjust in the 10-20 WPM range; the top end is still above 40 WPM.

A stereo (three conductor) jack can be added to the rear panel to allow the use of the 645 paddles to feed a memory keyer (such as the Autek MK-1). Use a shorting jack and the paddles return to the 645 when the plug is removed. This saves getting used to new paddles for contest work.

Gil Frey, Jr., K4JST
fig. 2. Wiring block diagram.
The ultimate team... the new Drake "Twins"

The TR7A and R7A offer performance and versatility for those who demand the ultimate!

TR7A Transceiver
- CONTINUOUS FREQUENCY COVERAGE — 1.5 to 30 MHz full receive coverage. The optional AUX7 provides 0 to 1.5 MHz receive plus transmit coverage of 1.8 to 30 MHz, for future Amateur bands, MARS, Embassy, Government or Commercial frequencies (proper authorization required).
- Full Passband Tuning (PBT) enhances use of high rejection 8-pole crystal filters.
Newl Both 2.3 kHz ssb and 500 Hz cw crystal filters, and 9 kHz a-m selectivity are standard, plus provisions for two additional filters. These 8-pole crystal filters in conjunction with careful mechanical/electrical design result in realizable ultimate rejection in excess of 100 dB.
Newl The very effective NB7 Noise Blanker is now standard.
Newl Built in lightning protection avoids damage to solid-state components from lightning induced transients.
Newl Mic audio available on rear panel to facilitate phone patch connection.
- State-of-the-art design combining solid-state PA, up-conversion, high-level double balanced 1st mixer and frequency synthesis provided a no tune-up, broadband, high dynamic range transceiver.

R7A Receiver
- CONTINUOUS NO COMPROMISE 0 to 30 MHz frequency coverage.
- Full passband tuning (PBT).
Newl NB7A Noise Blanker supplied as standard.
- State-of-the-Art features of the TR7A, plus added flexibility with a low noise 10 dB rf amplifier.
Newl Standard ultimate selectivity choices include the supplied 2.3 kHz ssb and 500 Hz cw crystal filters, and 9 kHz a-m selectivity. Capability for three accessory crystal filters plus the two supplied, including 300 Hz, 1.8 kHz, 4 kHz, and 6 kHz. The 4 kHz filter, when used with the R7A's Synchro-Phase a-m detector, provides a-m reception with greater frequency response within a narrower bandwidth than conventional a-m detection, and sideband selection to minimize interference potential.
- Front panel pushbutton control of rf preamp, a-m/ssb detector, speaker ON/OFF switch, i-f notch filter, reference-derived calibrator signal, threeagi receive times (plus AGC OFF), integral 150 MHz frequency counter/digital readout for external use, and Receiver Incremental Tuning (RIT).

The "Twins" System
- FREQUENCY FLEXIBILITY. The TR7A/R7A combination offers the operator, particularly the DX'er or Contestor, frequency control agility not available in any other system. The "Twins" offer the only system capable of no-compromise DSR (Dual Simultaneous Receive). Most transceivers allow some external receiver control, but the "Twins" provide instant transfer of transmit frequency control to the R7A VFO. The operator can listen to either or both receiver's audio, and instantly determine his transmitting frequency by appropriate use of the TR7A's RCT control (Receiver Controlled Transmit). DSR is implemented by mixing the two audio signals in the R7A.
- ALTERNATE ANTENNA CAPABILITY. The R7A's Antenna Power Splitter enhances the DSR feature by allowing the use of an additional antenna (ALTERNATE) besides the MAIN antenna connected to the TR7A (the transmitting antenna). All possible splits between the two antennas and the two system receivers are possible.

Specifications, availability and prices subject to change without notice or obligation.

See your Drake dealer or write for additional information.

R. L. DRAKE COMPANY • 540 Richard Street, Miamisburg, Ohio 45342 • Phone (513) 866-2421 • Telex 288-017

COMING SOON: New RV75 Synthesized VFO
Compatible with TR5 and 7-Line Xcvrs/Rcvrs
- Frequency Synthesized for crystal-controlled stability • VRTO (Variable Rate Tuning Oscillator*) adjusts tuning rate as function of tuning speed
- Resolution to 10 Hz • Three programmable fixed frequencies for MARS, etc. • Split or Transceive operation with main transceiver PTO or RV75

* Patent pending
CT2100
HAL Puts MORE Behind The Buttons

45-1200 Baud RTTY
1-100 WPM Morse

Code

72 or 36
Character Lines

Status
Indicator
on Screen

Black
or
White
Characters

Unshift
on
Space
(For Baudot)

Half
or
Full
Duplex

Auto
TX/RX
Control

2 Page
Display

CT2100 System:
- CT2100 Communications Terminal
- KB2100 Keyboard
- Video Monitor
- Printer (300Bd Serial ASCII-MPI-88G)

- 24 Line Display
- 2 Pages of 72 Character Lines
 -or-
- 4 Pages of 36 Character Lines
- Split Screen (with KB2100)

Audio or
RS232 Data

LED Tuning Indicators
-Plus-
On-Screen Tuning Bar
-Plus-
Ext. Scope Connections

Transmit
and Receive
With RTTY Loop Devices

Input Audio
From Receiver or Tape

Audio Monitor
For Either
Input or Output
Signals
Internal Speaker
Plus External Output

HAL COMMUNICATIONS CORP.
Box 365
Urbana, Illinois 61801
217-367-7373

NOW! HAL Equipment is
in stock at leading Amateur
Dealers.
HERE’S A QUICK AND EASY CHRISTMAS GIFT.

At the receiving end of a Ham Radio subscription, it will be remembered all year long as a token of friendship.

It looks like 1983 will be a very busy year here at Ham Radio. We can expect the opening of the first of our new WARC bands. Our authors and staff are hard at work with our new technical editor, K2RR, preparing the very best state-of-the-art articles to be found in any Amateur journal. From our ever popular Special May Antenna Issue to the sophisticated new modes of communication such as slow-scan and packet radio, it'll all be there in upcoming issues of Ham Radio Magazine! It's your best source for what's going on in the field of Amateur communications.

There has never been a better time than now to “gift” Ham Radio to that hard-to-buy-for friend . . . Or yourself.

One year, 12 issues regularly $19.50

SPECIAL PRICE $14.50

SAVE OVER 25%

DON’T DROP THE BALL. GIVE A GIFT OF HAM RADIO THIS YEAR!

Please send my ham radio gift subscriptions as indicated. Also send a handsome gift acknowledgement card. (Gift card will be sent if your order is received before Dec. 17, 1982.)

From:
Name ________________________________
Address ________________________________
City________ State____ Zip____

☐ Payment enclosed $________________________
(check or money order)

☐ Mastercard ☐ VISA/BAC

Acct.#________ Exp.____ Bank#________

☐ Bill me after Jan. 1, 1983

FILL OUT AND MAIL TO:
HAM RADIO MAGAZINE
Greenville, NH 03048
(603) 878-1441

SEND TO:
Name ________________________________
Address ________________________________
City________ State____ Zip____

☐ New Subscription ☐ Subscription Renewal

SEND TO:
Name ________________________________
Address ________________________________
City________ State____ Zip____

☐ New Subscription ☐ Subscription Renewal

SEND TO:
Name ________________________________
Address ________________________________
City________ State____ Zip____

☐ New Subscription ☐ Subscription Renewal

PRICES U.S. Only. CANADA $21.50 per year.
Use Handy Bind-in Card Between Pages 2 and 5
Tek's most successful scope series ever: At $1200-$1450, it's easy to see why!

In 30 years of Tektronix oscilloscope leadership, no other scopes have recorded the immediate popular appeal of the Tek 2200 Series. The Tek 2213 and 2215 are unapproachable for the performance and reliability they offer at a surprisingly affordable price.

There's no compromise with Tektronix quality. The low cost is the result of a new design concept that cut mechanical parts by 65%. Cut cabling by 90%. Virtually eliminated board electrical connectors. And eliminated the need for a cooling fan.

Yet performance is written all over the front panels. There's the bandwidth for digital and analog circuits. The sensitivity for low signal measurements. The sweep speeds for fast logic families. And delayed sweep for fast, accurate timing measurements.

The cost: $1200* for the 2213. $1450* for the dual time base 2215.

You can order, or obtain more information, through the Tektronix National Marketing Center, where technical personnel can answer your questions and expedite delivery. Your direct order includes probes, operating manuals, 15-day return policy and full Tektronix warranty.

For quantity purchases, please contact your local Tektronix sales representative.

Order toll free:
1-800-426-2200
Extension 39

In Oregon call collect:
(503) 627-9000 Ext. 39

*Price F.O.B. Beaverton, OR. Price subject to change.
ANTENNA SYSTEMS/TOWER HARDWARE

CUMRAFT ELECTRONICS CO.

- Designed to operate on all Amateur Bands at "FULL" Legal Power Input.
- Automatic Band Switching (80/10 meters).
- Automatic Band Switching (160/10 meters) with optional model TBR-160 HD.
- IN STOCK for IMMEDIATE DELIVERY & LOOK at very SPECIAL PRICES.
- New Model HF$W $129.00.
- New Model TBR-160HD (High Power 160 meter Base Resonator).

Model RMK-11 (roof mount kit with multiband radial kit) $39.00.
Model STR-2 (STub Tuned Radial Kit) $20.00.

This Month Only: Delivery Anywhere In The Continental USA At No Additional Cost.

CUMRAFT ELECTRONICS CO.

Designed to operate on all Amateur Bands at "FULL" Legal Power Input.
Automatic Band Switching (80/10 meters).
Automatic Band Switching (160/10 meters) with optional model TBR-160 HD.
IN STOCK for IMMEDIATE DELIVERY & LOOK at very SPECIAL PRICES.
New Model HF$W $129.00.
New Model TBR-160HD (High Power 160 meter Base Resonator).

Model RMK-11 (roof mount kit with multiband radial kit) $39.00.
Model STR-2 (STub Tuned Radial Kit) $20.00.

This Month Only: Delivery Anywhere In The Continental USA At No Additional Cost.

CUMRAFT ELECTRONICS CO.

Designed to operate on all Amateur Bands at "FULL" Legal Power Input.
Automatic Band Switching (80/10 meters).
Automatic Band Switching (160/10 meters) with optional model TBR-160 HD.
IN STOCK for IMMEDIATE DELIVERY & LOOK at very SPECIAL PRICES.
New Model HF$W $129.00.
New Model TBR-160HD (High Power 160 meter Base Resonator).

Model RMK-11 (roof mount kit with multiband radial kit) $39.00.
Model STR-2 (STub Tuned Radial Kit) $20.00.

This Month Only: Delivery Anywhere In The Continental USA At No Additional Cost.

CUMRAFT ELECTRONICS CO.

Designed to operate on all Amateur Bands at "FULL" Legal Power Input.
Automatic Band Switching (80/10 meters).
Automatic Band Switching (160/10 meters) with optional model TBR-160 HD.
IN STOCK for IMMEDIATE DELIVERY & LOOK at very SPECIAL PRICES.
New Model HF$W $129.00.
New Model TBR-160HD (High Power 160 meter Base Resonator).

Model RMK-11 (roof mount kit with multiband radial kit) $39.00.
Model STR-2 (STub Tuned Radial Kit) $20.00.

This Month Only: Delivery Anywhere In The Continental USA At No Additional Cost.

CUMRAFT ELECTRONICS CO.

Designed to operate on all Amateur Bands at "FULL" Legal Power Input.
Automatic Band Switching (80/10 meters).
Automatic Band Switching (160/10 meters) with optional model TBR-160 HD.
IN STOCK for IMMEDIATE DELIVERY & LOOK at very SPECIAL PRICES.
New Model HF$W $129.00.
New Model TBR-160HD (High Power 160 meter Base Resonator).

Model RMK-11 (roof mount kit with multiband radial kit) $39.00.
Model STR-2 (STub Tuned Radial Kit) $20.00.

This Month Only: Delivery Anywhere In The Continental USA At No Additional Cost.

CUMRAFT ELECTRONICS CO.

Designed to operate on all Amateur Bands at "FULL" Legal Power Input.
Automatic Band Switching (80/10 meters).
Automatic Band Switching (160/10 meters) with optional model TBR-160 HD.
IN STOCK for IMMEDIATE DELIVERY & LOOK at very SPECIAL PRICES.
New Model HF$W $129.00.
New Model TBR-160HD (High Power 160 meter Base Resonator).

Model RMK-11 (roof mount kit with multiband radial kit) $39.00.
Model STR-2 (STub Tuned Radial Kit) $20.00.

This Month Only: Delivery Anywhere In The Continental USA At No Additional Cost.

CUMRAFT ELECTRONICS CO.

Designed to operate on all Amateur Bands at "FULL" Legal Power Input.
Automatic Band Switching (80/10 meters).
Automatic Band Switching (160/10 meters) with optional model TBR-160 HD.
IN STOCK for IMMEDIATE DELIVERY & LOOK at very SPECIAL PRICES.
New Model HF$W $129.00.
New Model TBR-160HD (High Power 160 meter Base Resonator).

Model RMK-11 (roof mount kit with multiband radial kit) $39.00.
Model STR-2 (STub Tuned Radial Kit) $20.00.

This Month Only: Delivery Anywhere In The Continental USA At No Additional Cost.

CUMRAFT ELECTRONICS CO.

Designed to operate on all Amateur Bands at "FULL" Legal Power Input.
Automatic Band Switching (80/10 meters).
Automatic Band Switching (160/10 meters) with optional model TBR-160 HD.
IN STOCK for IMMEDIATE DELIVERY & LOOK at very SPECIAL PRICES.
New Model HF$W $129.00.
New Model TBR-160HD (High Power 160 meter Base Resonator).

Model RMK-11 (roof mount kit with multiband radial kit) $39.00.
Model STR-2 (STub Tuned Radial Kit) $20.00.

This Month Only: Delivery Anywhere In The Continental USA At No Additional Cost.
Today's communications receiver is expected to detect and extract information from signals of varying levels in a crowded spectrum. Earlier designs were concerned primarily with good sensitivity and selectivity. New requirements call for a high degree of rejection of spurious products produced by nonlinear interaction of many strong signals, sometimes far removed from the receiving frequency.

One method of determining the quality of receiver performance is to specify both an upper and lower signal-handling power limit, that is, a spurious-free dynamic range. To establish performance criteria requires a knowledge of the receiver's sensitivity (MDS), its third-order intercept point (defined later), system noise figure, and i-f bandwidth. Let's first define dynamic range.

Dynamic range is the power range over which a device such as a radio receiver provides useful operation. The upper limit of the dynamic range (P_u) is limited by the level of two equal input signals that create a third-order intermodulation product, which is equal in amplitude to the Minimum-Detectable-Signal (MDS)* level. The MDS is considered as the lower limit (P_L) of the dynamic range, and is defined as a signal 3 dB greater than the equivalent noise level for a specified i-f bandwidth. The minimum detectable signal can be found through eq. 1.

$$P_L(dBm) = MDS(dBm)$$
$$= -171 dBm + NF(dB) + 10 \log (BW)_{IF}$$

Where: MDS is the low-power limit of dynamic range in dBm.
NF is system noise figure in dB.
BW_{IF} is i-f bandwidth in Hz.
P_L is lower power limit of dynamic range in dBm.

The upper limit of the dynamic range can then be expressed by eq. 2.

$$P_u(dBm) = \frac{1}{3} (MDS + 2IP)$$
$$= \frac{1}{3} (-171 dBm + NF dB) + \frac{1}{3} IP(dBm)$$

Where: P_U is the upper power limit of the dynamic range in dBm.
IP is receiver's third order input intercept point in dBm.

By combining the two equations, we can find eq. 3 for the total spurious-free dynamic range:

$$SFDR \ (dBm) = P_U (dBm) - P_L (dBm)$$
$$= \frac{1}{3} (MDS + 2 IP) - MDS$$
$$= \frac{2}{3} (IP - MDS)$$
$$= \frac{2}{3}(IP(dBm) - NF(dB) - 10 \log BW_{IF} (Hz) + 171 dBm)$$

* Sometimes referred to as the noise floor.
† $KTB + 3 dB = -171 dBm.$

By Cornell Drentea, WB3JZO, 7140 Colorado Avenue, N., Brooklyn Park, Minnesota 55429

December 1982
Where: SFDR is the spurious free dynamic range.

This equation shows that the dynamic range is directly proportional to the intercept point (IP) and inversely proportional to the noise figure (NF), and i-f bandwidth (BWIF).

We can then say that the dynamic range improves with lower noise figures, narrower i-f bandwidths and higher intercept points.

The following example shows a practical application for the dynamic-range formula. Assume a typical high-performance receiver with a noise figure of 8 dB, an i-f bandwidth of 2.1 kHz and an input intercept point of +20 dBm. Substituting these quantities in eq. 3 yields:

\[
SFDR = 2/3 \left(+20 \text{ dBm} - 8 \text{ dB} - 10 \log 2100 \text{ Hz} + 171 \text{ dBm} \right) \\
= 99.85 \text{ dB.}
\]

The total distribution of this number can best be understood by examining the graph in fig. 1. We know that the total spurious-free dynamic range (SFDR) for our receiver is 99.85 dB, but what is not known is where this range fits in the total picture of the receiver's sensitivity, and once this is found, what this range means from a practical performance point of view. We had previously determined that the lower limit of the dynamic range is given by the Minimum Detectable Signal (MDS). If, using eq. 1 for our example, we find the lower limit of the receiver's dynamic range to be −129.77 dBm.

\[
MDS = -171 + 8 + 10 \log 2100 = -129.77 \text{ dBm.}
\]

We can then say that the system's noise level for an i-f bandwidth of 2.1 kHz is 3 dB below this number, or −132.7 dBm (MDS is defined as a signal 3 dB greater than the equivalent noise level for a specified i-f bandwidth).

Knowing the MDS, the IP (20 dBm) and with the help of eq. 2, we can determine the upper limit of our 99.85 dB dynamic range:

\[
P_u = 1/3 (-129.77 + 40) = -29.92 \text{ dBm.}
\]

The same result would be obtained if we added the total dynamic range of 99.85 dB to the MDS:

\[
P_u = 99.85 + (-129.77) = -29.92 \text{ dBm.}
\]

This last procedure could be used to verify the validity of eq. 2.

If these numbers are plotted as shown in fig. 1, we can conclude that the receiver in our example will perform undisturbed for all input signals varying from approximately −30 dBm to −130 dBm, with the receiver tuned to a third-order intermodulation product produced by two strong signals equal in amplitude and differing in frequency from each other. The amplitude of these signals, as well as the difference frequency (Δf), were represented in our example by the +20 dBm input-intercept point. In practice, this quantity is a function of the output intercept of all non-linear elements, such as mixers, amplifiers, etc., involved in the design of the receiver, as we will see next.

intercept method

Fig. 2 shows the intercept method, used as an evaluation method for the strong-signal handling capability of a radio receiver. In practice, the dynamic range of a receiver is measured with the setup shown in figs. 3 and 4.

First, the MDS is found as shown in fig. 3. The +20 dBm input-intercept point. In practice, this quantity is a function of the output intercept of all non-linear elements, such as mixers, amplifiers, etc., involved in the design of the receiver, as we will see next.
tor G (expressed in dB), to produce a 3 dB increase in audio output over the noise level of the receiver. The MDS is specified for a given i-f bandwidth. The greatest bandwidth should be used for a worst-case analysis.

Knowing the MDS, the setup in fig. 4 can be used to actually find the output intercept, and with this information, the input intercept can be plotted as shown in fig. 2.

To find the output intercept point, the outputs of the two signal generators \(G_1 \) and \(G_2 \) are combined in a hybrid combiner. The output of the combiner (which now contains a two tone signal) is applied through a calibrated step attenuator to the receiver.

The two generators are usually 10 kHz apart, with the receiver tuned to \(2F_2-F_1 \) or \(2F_1-F_2 \), a third order product. The attenuator is then varied until the response of the receiver at the frequency of the third-order product is the same as that produced by the MDS found earlier. The performance is specified by measuring and plotting the output intercept as shown.

If the receiver is well designed, the desired output signal and the distortion product curve will intersect as high as possible, as shown in our example. This is the output intercept which describes the intermodulation response of the receiver.

The input intercept can also be plotted from the intercept point. This number can then be used to find the spurious-free dynamic range as previously discussed.

In conclusion, the receiver processes a weak signal in the presence of many adjacent strong signals. Because of the deficiencies in the design of the first mixer and the front end, if a preamplifier is used, the receiver may not be able to copy the weak signal, and it may be completely blocked out. The receiver’s ability to perform under such conditions is expressed by the spurious-free dynamic range.

This article was adapted from the book *Radio Communications Receivers* by the author, published by TAB Books Inc. It is available from the Ham Radio Bookstore, Greenville, NH 03048, for $13.95 plus $2.50 shipping and handling.

bibliography

August C. Neitzel Jr., "71-59 Derives Receiver's Dynamic Range, Noise Figure," Electronics, June, 1980.

Ray Moore, "Modern RF Amplifiers for Communications Receivers," hr, September, 1974.

Gonzior, "Intermodulation-Distortion," hr, September, 1974.

"Mixer Products," Aertech, PP 1 to 4, TRW.

"Mini-Circuits Laboratory Data Book. Definition of Mixer Terms.

ham radio
last-minute forecast

December is probably the best month for winter DX. The low signal absorption combined with high daytime MUFs result in excellent signals on the higher DX bands (10 and 20 meters). On the other end of the frequency spectrum, the long nights make for excellent DX on 40 through 160 meters.

Expect the 27-day solar maximum just at the end of November and again on the 23rd of December: consequently, the higher DX bands should be active the first week and the last week-and-a-half of the forecast period. The days in between should favor the lower frequency bands. December is traditionally one of the quietest insofar as geomagnetic disturbances are concerned, but the days of highest probability will be around the 9th, 18th, and 28th.

The winter solstice will take place on the 22nd at 0439 UT. A partial eclipse of the sun (74 percent obscured) will occur on the 15th across Europe, extreme northeast Africa, and west Asia, and on the 30th there will be a total eclipse of the moon across North America, Asia, and Australia. Lunar perigee will be on the 2nd at 1100 UT and the 30th at 2200 UT; by coincidence, full moon will be on the 1st and 30th.

The Geminid meteor shower, which reaches its peak on December 13th and 14th provides the richest and most reliable display of the year, with rates of 60 to 70 per hour (determined mainly by radio, because of the poor weather in December). Also, a smaller portion of the shower (15 to 20 per hour) is observed on December 22.

more on the radio-quality index

If you have talked Santa into bringing you a home computer for Christmas, you may want to use it to enhance your ham radio DX operating by programming a radio-quality index into it. A formula was given in the DX Forecaster column in the August, 1982, ham radio. Further programming and debugging help is given below.

I have divided the formula into three sections, a term and factors, and given representative values within the ranges of the variables. First is the seasonal term, θ, which is raised. This term is needed to increase quality in the summertime, probably representing increased signal strength from sporadic-E layer propagation. It varies from 0.7375 in winter to 1 near summer solstice as in the following table:

<table>
<thead>
<tr>
<th>Day</th>
<th>ϕ (0.49315x)</th>
<th>$\cos^2 A$</th>
<th>θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Jan)</td>
<td>0.49315x</td>
<td>0.999925</td>
<td>0.7375</td>
</tr>
<tr>
<td>80 (Mar)</td>
<td>39.45200</td>
<td>0.59626</td>
<td>0.8435</td>
</tr>
<tr>
<td>172 (Jun)</td>
<td>84.82180</td>
<td>0.008215</td>
<td>0.9978</td>
</tr>
</tbody>
</table>

Day number x is the day of the year, starting with January 1 as 1. January 1 would be 32, and so on. Use trig identity, $\cos^2 A = \frac{1}{2}(1 + \cos 2A)$.

The radio flux factor, $\log \left(\frac{4\sqrt{\phi}}{A} \right)^{\theta}$, is the log to base 10 of the fourth root of the radio flux number, right from WWV. The ϕ varies from about 65 to 400, and the value of this factor for three values of ϕ and the θ extremes of 1.0 and 0.7375 are as follows:

<table>
<thead>
<tr>
<th>ϕ</th>
<th>$\log \phi$</th>
<th>June</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>1.84510</td>
<td>0.461</td>
<td>0.340</td>
</tr>
<tr>
<td>150</td>
<td>2.17609</td>
<td>0.544</td>
<td>0.401</td>
</tr>
<tr>
<td>375</td>
<td>2.57403</td>
<td>0.643</td>
<td>0.475</td>
</tr>
</tbody>
</table>

The magnetic factor is $e^{-0.01A}$, where A is the magnetic number (estimate) for the day from WWV. The exponential function e^x is used. A table of representative values is as follows:

<table>
<thead>
<tr>
<th>A</th>
<th>$e^{-0.01A}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.9512</td>
</tr>
<tr>
<td>10</td>
<td>0.9048</td>
</tr>
<tr>
<td>50</td>
<td>0.6065</td>
</tr>
<tr>
<td>100</td>
<td>0.3679</td>
</tr>
</tbody>
</table>

Finally, putting the factors all together with the 10-times factor and the +0.82 term to shift the scale to a 0 to 9 range of numbers, an overall example for March 21, 1982, (day 80) with solar flux of 150 and A of 10 is calculated as follows:

$Q = 10 \left(\frac{0.8435}{4} \right) (2.17609)(0.9048)$

$+ 0.82 = 4.15 + 0.82 = 4.97$ or 5

band-by-band summary

Ten, fifteen, and twenty meters will have DX from most areas of the world during daylight and into the evening almost every day. Long skip and one-long-hop trans-equatorial openings toward evening can be opportunities for new DX locations. Look for them during the few disturbed geomagnetic periods, otherwise watch for high solar flux days for ten and fifteen meter openings.

Forty, eighty, and one-sixty meters are the night DXer’s bands. Excellent extended periods of long skip, albeit over shorter distances than on the higher bands, can make a cold winter night enjoyable. Low noise and quiet geomagnetic conditions generally result in pleasant operating this time of year. Happy Holidays, and lots of DX during the coming new year!
<table>
<thead>
<tr>
<th>DECEMBER</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>00</th>
<th>05</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>00</th>
<th>05</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASIA</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>FAR EAST</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>EUROPE</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>S. AFRICA</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>S. AMERICA</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>ANTARCTICA</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>NEW ZEALAND</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>OCEANIA AUSTRALIA</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>JAPAN</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>20</td>
</tr>
</tbody>
</table>

Look at next higher band for possible openings.
We're AGL - North Texas' AUTHORIZED dealer for over 70 different product lines. Call us... chances are we've got it in stock.

AEA
- ISPOLE 14 SPECIAL 1 $29
- 2 Cont. Kreyer $30
- MM-20 monoractic $30
- MRA-Q Reader Special $30
- Other AEA products in stock. Call!

ASTRON POWER SUPPLIES
- RST7 5amp cont-7amp ICAS $49
- RST9 20amp cont-12amp ICAS $67
- RST8 20amp cont-20amp ICAS $87
- RST12 30amp cont-20amp ICAS $119

BENCHER
- BY-1 Key Paddles $35
- BY-2 Key Paddles, Chrome $45
- Other Bench products. Call!

ETO ALPHA
- 66A 2-8874 tubes for 20W... $1590
- 66A 2-8874 tubes - runs cooler $35
- 75C5A 3-8874 tubes for 30 amp and 1000 lines $35
- 744A 2-8874 tubes - runs cool $35
- 738 3-8874 tubes - runs cold $35

HAL COMMUNICATIONS
- CT2020 RTTY TERMINAL $59.00
- KB7000 Keyboard for Above $141
- CWP 6850 Teledial Terminal $49.00

SANTEC
- ST-144U $2850 Special
- October Special $2850

SANTEC Accessories In Stock

CALL TODAY 1-800-527-3418

In TEXAS - Call 1-214-699-1081 (See, it's easy and free, at least to you!) or visit us at 13929 North Central Expressway, Suite 419 - Dallas, Texas 75243

BARKER & WILLIAMSON

VERTICAL ANTENNAS

MODEL 370-31
- Slim Line Vertical for 10, 15, 20 and 40 meters. All traps tuned. Overall height 21 feet. Can be used with or without ground radials. Model 370-33 - 75 meter add on kit. 75 and 80 meter operation optional with model 370-33 add on kit. Power rating 1 KW-2 KW P.E.P.

MODEL 370-36
- Economy model vertical for 10, 15, 20 and 40 meter operation. High Q factory tuned traps. Overall height 21 feet. Can be used with or without ground radials. Model 370-36 - 75 meter add on kit. 75 and 80 meter operation optional with model 370-36 add on kit. Power rating 1 KW-2 KW P.E.P.

MODEL 370-34
- Radial Kit. Radial Kit for Models 370-30 and 370-31 Vertical antennas. All necessary wire and hardware for two ground plane radials. Write for more details and other antenna products.

Barker & Williamson, Inc. 10 Canal St., Bristol, Pa. 19007 215-788-5501

STATEMENT OF OWNERSHIP, MANAGEMENT AND CIRCULATION

PUBLICATION
- **Title**: Amateur Radio
- **Date of Publication**
- **Frequency of Issue**
 - Monthly
 - Price: 12 $1.50

Statement

Publication Address
- Communications Technology, Inc.
- Main Street, Greenville, MI 48838
- T. H. Tenney, Jr.
- Main Street, Greenville, MI 48838

Known Bondholders, Mortgagees, and other Security Holders owning or holding 1% or more of total amount of bonds, mortgages or other securities

Statement

Mailing Address
- Communications Technology, Inc.
- Main Street, Greenville, MI 48838
- T. H. Tenney, Jr.
- Main Street, Greenville, MI 48838

For Further Information by Nonprofit Organizations Authorized to Mail at Special Rates (See page 222/223)

We're AGL - North Texas' AUTHORIZED dealer for over 70 different product lines. Call us... chances are we've got it in stock!
What are you looking for in a fiberglass dish?

High gain, sturdiness, longevity, price? We offer all these and more — SERVICE. In our role as largest manufacturer of fiberglass dishes in the world, we can supply 10, 12, 13, 16, and 20 foot dishes on short notice — and in large supply.

We have manufactured thousands of dishes and have over 20 years experience in fiberglass fabrication—a rare statement in the fledgling satellite antenna industry.

Check our dish gain figures, check our prices, ask the dealers who handle our dishes and we feel you will make the right decision.

For further information on dishes or complete systems, call or write:

VIDARE, INC.
P. O. Box Q
Conway, Arkansas 72032
(501) 327-0510 In-State
WATTS 1-800-643-1137 Out-of-State

Here are a few of our authorized dealers:

Earthstar Corp.
South Chicago Heights, IL
(312) 755-5400

Satellite T.V. of Colorado
Denver, CO
(303) 625-2876

National Satellite
Latham, NY
(518) 763-0088

Eastern Satellite T.V. Systems
Bangor, ME
(207) 942-9077

Tem-Sat Video
Punxsutawney, PA
(614) 938-5100

McBeth Enterprises
Ocala, FL
(904) 622-9424

Saturn Satellite Systems
Jackson, KY
(606) 666-5118

Essaws
El Paso, TX
(915) 565-3009

Magico
Greenville, MS
(601) 335-2014

Satellite T.V.
Lubbock, TX
(806) 797-2110

Jackson T.V. Center
Patterson, LA
(504) 395-2609

Down To Earth Video
Muskegon, MI
(616) 766-2074

Sat Tron
Stillwater, OK
(405) 372-4548

Energy Systems Ltd.
Dubar, WV
(800) 624-9046

Call us for the name of the dealer nearest you.

*We are needing dealers in Arizona, New Mexico and California.

BEWARE

In any field of endeavor cheap imitations attempt to ride on the coattails of the successful leader. These imitations resemble the original and are many times passed off as such. This is especially true in our business.

To protect our product and name from this deception, we are now serial numbering all our fiberglass dishes. This will enable you to easily identify our product and rest assured you are getting the quality you expect.
How to avoid being burnt by more than rf

Willie Hambone earned the name “Bargain Willie” at his local radio club for good reason. He always knew the price of the latest radio equipment, and had a feeling for what a seller would expect when it was offered at a ham flea market. He was, of course, a veteran of the Dayton Hamvention; after Willie had made the pilgrimage to Dayton for several years, his acquaintances wondered what equipment he didn’t have. But when the annual local hamfest — one of the largest in the state — came, Willie was there.

This time Willie’s eagle eye fastened on the latest model Modzilla 870, complete with power supply, Modzilla mike, and 870-RV remote VFO. No manual; but the seller assured Willie that since it was a current model, he would have no trouble getting one from the U.S. distributor for $10, and he’d shave that off the price. Price? Well, the current market price was $1,350 — but since the seller was about to take a job working for an oil exploration company in South America, and needed some cash to pay his wife’s hospital bill, he’d take $675 — exactly half price — less the $10 to buy a manual.

Not everybody goes to a hamfest with $665 in his pocket, but Willie always said that cash talks, and his hot little hands soon pulled that bargain price out of his wallet, gave it to the seller, and proceeded to carry his new acquisition to his car. The rest of the hamfest was anti-climactic for Willie; he could hardly wait to get his new gear home and on the air. Since it was a class piece of equipment, he decided he ought to check with another ham in town who had a Modzilla 870; and after his friend had reviewed the tune-up procedure with him over the telephone, Willie plugged it in for the smoke test.

It worked beautifully. The path to Europe was open on 15, and it was no trouble to work Qs and DLs with the barefoot rig, one station after another. During the next few days, Willie checked the rig out on other bands, and found it even brought in QSOs on 160. In short, he was delighted, both with the rig and with his bargain. He was tempted to forget about the instruction manual, lack of which had shaved $10 off the price — but when he thought that someday he’d sell the rig for a later model, he wrote a letter to Modzilla’s U.S. distributor in La Squinta, California, enclosing $10 for a manual, carefully noting the serial number of the equipment so that he would get the proper edition for his new 870.

Willie’s joy seemed unlimited. The heatsink on his 870 hardly had a chance to cool down, so happily did Willie describe his bargain far and wide during the next few weeks. Then, on Saturday afternoon, it happened.

the problem arises

The doorbell rang, and with some disgust, Willie — who was home alone — answered. The caller turned out to be a Deputy Sheriff with a folded sheet of paper in his hand. “Willie Hambone?” he inquired.

“That’s me,” Willie acknowledged.

“Mr. Hambone,” the deputy went on, “I have a search warrant signed by Judge Green of the County Court, authorizing me to search your premises for pieces of stolen radio equipment. They are called a Modzilla Model 870 and an 870-RV; and I have a picture of this type of equipment. If you have it here and want to show it to me, fine; otherwise, my partner and I will have to go through your house, room by room.”

Willie felt the floor sinking beneath him. “Look, officer, I have a Modzilla 870, and you’re welcome to look at it; but I paid good money for it. I didn’t steal it from anybody; I bought it, and it’s mine!”

They proceeded to Willie’s shack, where Willie announced, “Here it is. These are produced by the

By George H. Goldstone, W8AP, 1010 Burnham Road, Bloomfield Hills, Michigan 48013
thousands. Maybe a few get stolen, but I paid for this one.’”

“You may have paid for it, Mr. Hambone, but if this equipment carries serial number 89-6634, you are in possession of stolen property. May I look at the serial number on the back?”

Willie already knew the number; his heart sank. His request for an instruction manual, giving the serial number . . . of what was a stolen rig!

It didn’t take the deputy long to check the number. But if Willie felt bad about losing $665, he felt even worse after the deputy’s next announcement:

“Mr. Hambone, you are under arrest, charged with receiving and concealing stolen property of a value sufficient to constitute a felony. I must advise you that you are not required to make any statement; any statement you make can be used against you in court; you are entitled to counsel; and if you cannot afford counsel, an attorney will be provided for you. You must come with me to the County Jail, where you will be booked, and you will be allowed to call an attorney from there.”

Willie’s bargain had evaporated. In fact, so had his world.

what happened to Willie

Willie hired a competent lawyer, whose services were not inexpensive. At a preliminary hearing, his lawyer raised the defense that Willie had no knowledge the transceiver was stolen; that such knowledge is an essential element of the crime of receiving stolen property. The judge agreed and dismissed the charge, but his remarks to Willie are worth noting:

“Mr. Hambone, I am dismissing the charge of receiving stolen property, although I hesitate to do so. You are an Amateur Radio operator, and I feel quite sure you knew the true value of this equipment at the time you bought it. Such knowledge of value would permit this court to draw an inference that you sensed the equipment was stolen. Since you have no criminal record, I am dismissing the complaint; but if you are ever again found to have stolen equipment in your possession, the court will take a different attitude.”

Some bargain, that transceiver! Willie not only lost the $665 he had paid for the Modzilla 870; he paid his attorney’s fee, and in local ham circles, he was now known as “the ham who has been had.”

The unhappy situation fictionalized here may well have happened, at least in many details. We all know expensive Amateur Radio equipment is stolen from time to time. The elaborate high-frequency mobile installation is almost a thing of the past. VHF and some HF equipment is now made small enough that the owner can unplug the major component — a transceiver — and carry it in his briefcase.

The development of the ARRL insurance program, to a considerable extent, is the result of growing radio equipment theft. This article is not designed to tell you how to avoid theft of your equipment; it is designed to suggest ways in which you may avoid the purchase of stolen equipment.

Traditionally, physical possession is considered one indication of ownership. While it may be an indication of ownership, it does not prove your title to the property. So, where do you obtain some proof of title? As to new merchandise — and let us take a typical transceiver purchased from an established dealer — you will receive a paid invoice, identifying the goods by make, model, and serial number. Considering the importance of equipment warranties, every buyer should insist that a serial number be included on his invoice. This invoice is evidence of a contract of sale, and by law, a contract of sale implies a warranty of good title to the merchandise sold, and that the transfer is a rightful one.

At any flea market, the majority of vendors are not merchants regularly dealing in Amateur Radio equipment. More often, they are individuals with usable gear they no longer want or need, which they want to convert into money or other ham gear. We normally do not expect such a casual seller to furnish ownership documentation; it is unusual when he furnishes a receipt for the goods you purchase. If a seller will accept your check in payment, you may note on the back, “In payment for Johnson Invader Serial No. 116628,” but this only shows what the check paid for; it does nothing to prove that the seller was the owner.

proof of ownership

It is not too much to ask a seller of any major item of equipment to furnish some evidence the goods are his. Every ham should staple his purchase invoice onto the back of the instruction manual for reference at the time it is sold. There are tactful ways to ask for title evidence; you will not make friends by saying “How do I know it isn’t stolen?” but you can easily say, “Do you have an invoice to show where this gear was purchased?”

Not everyone keeps sales invoices. Sometimes we want to forget how much money went into one piece of gear! But there is no reason why a Bill of Sale cannot be given, preferably in a form which will identify both buyer and seller, say where the seller obtained the equipment, state the selling price, contain a warranty of title in all cases, a warranty against liens, and a warranty of condition whenever condition is vital to the sale. A suggested form for a Bill of Sale is shown in fig. 1. It can easily be reproduced in quantity to use at hamfests and flea markets; perhaps the club
BILL OF SALE

The Seller, ________________________________

(Name of Seller)

in consideration of the price of $ ________________________________ paid to him, receipt of which is acknowledged, hereby sells to ________________________________

(Name of Purchaser)

the following equipment:

(Quantity) (Description) (Serial No.)

originally purchased from ________________________________

(Seller)

Seller represents and warrants that he is the owner of the equipment sold, and no other person has any interest in it, or lien upon it by way of an unterminated Financing Statement, or otherwise. As to the condition of the equipment, Seller makes the following representations:

☐ 1. The equipment is in good working condition.
☐ 2. The equipment is sold “as is”, and Seller makes no representation as to its performance.
☐ 3. The equipment requires repairs (other than normal alignment) in order to meet the performance specifications of the manufacturer.

Witness: ________________________________

(Signature of Seller)

Date of Sale: ________________________________

fig. 1. Sample Bill of Sale form.

sponsoring the affair can have them printed, and make them available at printing cost.

effect of a Bill of Sale

Between seller and buyer, the Bill of Sale is clear proof that the seller has transferred whatever ownership he had to the buyer. In most cases, possession of a Bill of Sale by the buyer precludes any criminal intent on his part, should the gear prove to be stolen; without criminal intent, you would not end up with a charge of receiving stolen property as suggested in poor Willie’s example.

If the seller has valid title to the property, the Bill of Sale effectively transfers it to the purchaser. But if the seller does not have good title to the property, the purchaser acquires no more ownership than the seller had. It is certainly worthwhile to protect yourself against criminal liability by asking for and receiving a Bill of Sale. Would you want to make a deal with someone who refuses to give a Bill of Sale?

possible liens

Much new radio equipment is bought on credit. Some radio supply houses reputedly make more money on their credit operations than on the sale of the gear itself, which can occur when a supplier does the financing rather than using Master Charge, VISA, etc. If the gear has been financed by the purchaser, the seller or the financing agency has probably filed what is called a Financing Statement. When a Financing Statement has been recorded, the party extending credit may have rights to the goods after the date of recording which are legally superior to those of the purchaser. If you acquire an expensive piece of relatively new gear from someone who has a reputation for buying everything on credit, you would be wise to check with your County Clerk or Register to see if there is the lien of a Financing Statement recorded against what you plan to buy. A Bill of Sale should include a representation that no such lien exists.

some common-sense conclusions

No one wants his own equipment stolen, nor does anyone want to help thieves of Amateur Radio equipment by furnishing them a market. We can all help shrink the stolen equipment market by retaining our purchase documents, complete with serial numbers. When buying used gear, insist on evidence of ownership; ask for purchase records, but take a Bill of Sale in any event. The Bill of Sale, if properly drawn up, will show that you purchased the equipment in good faith, will identify the seller, and can also serve as a warranty of the condition of the equipment. Taking into account the present cost of equipment — either new or good used gear — insisting on a Bill of Sale is a wise precaution!

references

1. Uniform Commercial Code, Section 2-312.
Buy any SANTEC ST series radio now, and you can get both a super SANTEC-nology T-shirt and an ST-MC mobile charger direct from Encomm, Inc. To get your free mobile charger and T-shirt, together a $15.95 suggested retail value, send us your SANTEC warranty card and verification of the date of your SANTEC ST series purchase. Qualifying purchases must be made between Sept. 15 and Dec. 31, 1982. This offer is limited to T-shirt supplies on hand at Encomm, Inc., and it is void where prohibited by law.

HURRY!

I've Got SANTEC-nology From

SANTEC

ST-MC Mobile Charger and SANTEC-nology T-shirt

SANTEC's ST Series Radios for VHF and UHF.

© 1982, Encomm, Inc.
2000 Avenue G, Suite 800, Plano, Texas 75074
Phone (914) 423-0024 • TLX 79-4783 ENCOMM DAL

More Details? CHECK-OFF Page 132
Heil EQ200 mike equalizer

We always thought we had good audio from our transmitter. No one ever complained about garbled speech or hard-to-understand transmission. Granted, we had people tell us we sound like Demosthenes, the Greek orator who practiced with stones in his mouth... that was before Bob Heil sent us his latest product, the EC200 microphone equalizer.

Bob Heil is well-known throughout the audio field as an expert on sound reproduction. Besides being a professional organist, he is in constant demand by music groups from rock bands to Philharmonic orchestras. He knows his audio. In a conversation with Bob, he stated that the most misunderstood and neglected part of any ham station is the microphone/audio circuitry. Sure, there have been compressors, clippers, and whatever. But they do more to compound the problems of poor audio than solve them.

With this in mind, Bob determined to apply his professional expertise to solve the problem. Looking through manufacturers specifications, Bob found most modern transmitters and transceivers have filter networks that limit audio input to the 300-3,000 Hz range. But most microphones are designed to cover a much broader range of frequencies, since they are used in services as diversified as stereophonic reproduction to paging services. The broader response of the microphone will be transmitted, and this will unnecessarily broaden your output.

The solution he came up with is the EQ200. The basic circuit is two 741 op amps (cm 1458). One-half of the first IC is used as a preamplifier and a transformer to provide proper impedance matching. The other half of the IC is used as a peaking lowpass active filter. The second IC is used as a shelving highpass filter and a line summing amplifier.

There are three controls on the front panel of the unit. The mike preamp gain may be adjusted from 0 to +20 dB. Heil advises that this be set so the microphone will not overload or clip. The LO control is used as a boost and cut control. Boost refers to increasing the level, cut reduces the level. The boost and cut is ±12 dB. The low filter is centered at 490 Hz. The HI control is also a boost and cut, with the filter centered at 2800 Hz.

As mentioned before, most microphones used today were not designed for ham use; their audio response is usually much greater than is necessary. Since all microphones are different, there is no universal setting. Heil has some recommended settings, but it best to set the processor through a trial-and-error process. Luckily, we have a friend who received an EQ200, so we tested and set our processors together. It was interesting to actually hear how the high and low tones can be emphasized and deemphasized to create a truly pure-sounding signal.

The only problem we found was that we chewed up batteries. That can be remedied easily by installing a 9 Vdc supply or adding a low drain LED to remind you the unit is on. This is more of an inconvenience than a problem. Bob Heil tells us a newer model will incorporate these changes.

Finally, Bob provides some helpful hints about how to use the microphone properly, such as keeping adequate spacing between mouth and microphone and making sure your operating room is not full of echoes.

The EQ200 is a nice item to have between your rig and microphone. Price is $49.95 for the basic unit. For more information, contact Heil Sound, Box 26, Marissa, Illinois 62257.

As an added feature, the EQ200 can be modified to work as a two-tone generator for SSB tuning and testing. A parts kit is available from Heil Sound for an additional $7.00.

new high-frequency equipment line

Yaesu Electronics Corporation is pleased to announce the availability of the new FT-102 line of high-frequency equipment. The FT-102 transceiver uses an all-new transmitter section, featuring three 6146B final tubes for extremely low distortion. In addition to VOX and an RF clipping-type speech processor, the FT-102 transmit audio may be adjusted for optimum response to the operator’s voice.

The FT-102 receiver uses JFET components in the front end for wide dynamic range. A number of filter options are available, with wide/narrow filter selection independent of the mode switch. Audio peak filtering for CW, audio shaping for all modes, and an i-f notch filter provide intelligence recovery. The noise blanker is highly effective against the Woodpecker and pulse noises.

Equipped for SSB and CW operation, the FT-102 option list includes an a-m/fm module for activating those modes. Other accessories for the FT-102 are the FV-102DM synthesized VFO, the SP-102 speaker with audio filter, the SP-102P speaker/patch, and the FC-102 1.2-kw an-
tenna tuner with optional remote antenna selector.

For further details, contact Yaesu Electronics Corp., P.O. Box 49, Paramount, California 90723.

electronic parts by mail

A new, free catalog lists over 1500 electronic items which can be ordered through the mail. Parts are high quality, no rejects or seconds. Large line of semiconductors, LED displays, lamps, connectors, sockets, headers, jumpers, switches, meters, amplifiers, generators, etc. Some items are available in kit form or assembled. All items can be shipped immediately from stock.

For more information, contact Sintec Company, Drawer Q, Milford, New Jersey 08848; telephone 1-800-526-5960 (New Jersey residents dial 201-996-4093).

photovoltaic battery charger

The Phaeton II Photovoltaic Battery Charger manufactured by International Solar Products Corporation of Durham, North Carolina, produces 4.8 volts of direct current power at 240 milliammps in peak sunlight. Four AA cells, two C cells, and two D cells can be charged with the unit. Batteries are fully recharged in 14 to 16 hours of sunshine.

Phaeton II measures 6 x 7 inches and weighs less than two pounds. It is constructed with anodized gold or silver frame, heavy-duty aluminum battery cradles and the same silicone covering used to protect the solar cells on orbiting communication satellites. The unit contains no plastic parts.

The manufacturer states the average consumer could spend as much as $100 per year on throw-away batteries to power portable radios, tape recorders, toys, games, flashlights, cameras, and other electronic appliances found in many homes today. At $49.50, the Phaeton II can totally replace this annual cost after it pays for itself in the first 6 to 7 months of use.

The unit is available directly from the manufacturer, International Solar Products Corporation, 1105 W. Chapel Hill St., Durham, North Carolina 27701; telephone 919-489-6224.

frequency counter program

A cassette program that turns the Apple II computer into an audio frequency counter with an accuracy of 30 parts-per-million. You may consider this a rather expensive frequency counter, especially when it doesn't cover rf at all. However, it is aimed primarily at those experimenters who already have an Apple II computer.

This counter has a twist to it. Unlike most frequency counters, it does not gate the unknown for a fixed reference period. Rather it counts an approximately equal number of clock pulses over an exact (but arbitrary) multiple of whole cycles of the unknown. Then it calculates the frequency from this average, much as a period counter would. The result is that the full stated accuracy is achievable in less than two seconds, over the entire audio range. This means that in less than two seconds you can find out the frequency of your subaudible tone encoder to within 0.01 Hz. The counter can achieve even
CB TO TEN METER CONVERSION KITS

KITS for AM—SSB—FM 40 Channel PLL chassis conversions
DETAILED INSTRUCTIONS for easy installation with minimum time and equipment
BAND COVERAGE flexibility provides up to 1 MHz coverage for most PLL chassis.

PRICES Low cost prices range from $8.00 to $50.00
All kits are in stock including several different FM kits.
FREE CATALOG Write or call today.

INDEPENDENT CRYSTAL SUPPLY COMPANY
P.O. Box 183
Sandwich, Ma. 02563-0183
(617) 888-4302

NEW products

greater accuracy if you have a little patience. It also keeps a running average of the last N (default is 50) samples. If fewer than N have been taken, it will average them. The result is accuracy approaching 1 PPM.

Although the Apple's time base (which is the reference for this program) isn't calibrated or compensated, it is crystal controlled and therefore relatively stable over short periods once it has temperature stabilized. Included is a procedure (need only your cassette recorder, microphone, and a color TV) to calibrate it in software, using the 15734.26 Hz horizontal oscillator frequency of a color TV receiver. This signal is of course locked to the station it is receiving, which, if a network program is being viewed, is in turn locked to a cesium 3.579545 MHz reference at the network.

A copy of the cassette costs $15.

For more information and dealer prices, contact Wilton Helm, WAGGOO, 827 Vinton Court, Thousand Oaks, California 91360.

220 MHz H.T. amplifier

Mirage Communications Equipment, Inc., announces the release of its new 220-MHz amplifier. The C22 solid-state all-mode 220 to 255 MHz amplifier has the same famous five-year warranty (one year on rf power transistors) as all Mirage products.

The C22 has many features, including bias as a linear amplifier I.E: fm, SSB, CW; it can be keyed with as little as 300 mW; 2 watts in with 20 watts out; and dc power 13.6 Vdc at 3 amps (full output).

For additional information, contact Mirage Communications Equipment, Inc., P.O. Box 1393, Gilroy, California 95020; telephone 408-847-1857.

300-watt antenna tuner

Palomar Engineers introduces the new PT-407 antenna tuner. The PT-407 is a general-purpose tuner for 1.8-30 MHz, for matching antennas fed with coaxial or open wire lines, single wire, or mobile antennas. The 300-watt power rating makes it just right for most transceivers. The PT-
Hamtronics® kits

The R76 VHF fm receiver kit is a new version of the R75 receiver for 10 meters, 6 meters, 2 meters, 220 MHz, or the adjacent commercial bands. It features a very low noise front end, pump-resistant squelch with hysteresis to lock on fading signals, onboard volume and squelch controls for easy wiring, and fixed i-f filters for easy alignment. It has also been reduced in size — now only 3 1/4 x 4 inches (8.25 x 10.16 cm). It is available in two selectivity options, starting at $84.95.

The model R451 UHF receiver kit includes the features in the R76 kit as well as automatic frequency control to lock on drifting transmit signals. Kits are available with various options starting at $94.95.

Hamtronics® new line of low-noise amplifiers resembles the popular P30 and P432 receiver preamps, but the circuit is new. The LNA 28, LNA 50, LNA 144, LNA 220, and LNA 432 units are optimized for lowest noise figure at the ham bands, but they can also be used on adjacent commercial bands. The LNA 432 also provides very good gain and noise figures for UHF TV signals and the new 800 MHz commercial band: 0.5 dB at 28 and 50 MHz, 0.6 dB at 144 MHz, 0.7 dB at 220 MHz, and 0.95 dB at 432 MHz. Gain runs from 33 dB at 28 and 50 MHz to 17 dB at 432 MHz. The price is $39.95 for the VHF units and $44.95 for the UHF unit.

The Shuttle receiver kit, a special version of the Hamtronics R110-450 UHF a-m aircraft receiver to listen to the space shuttle, is now available off the shelf for $94.95.

For further information, contact Hamtronics, Inc., 65-V Moul Road, Hilton, New York 14468-9535; telephone 716-392-9430.

regulated dc power supply

The precision-regulated dc power supply from Tripp-Lite converts 120 Vac into 13.8 Vdc. It allows users to operate dc mobile equipment on ac home power, and it saves money, as this unit is inexpensive and eliminates the need for buying ac equipment.

Features include solid-state integrated circuits for precise regulation; filter insuring low noise operation; current limiting electronic foldback for automatic overcurrent protection; heavy duty power transformer for complete line isolation; ripple voltage from 0 to full load is only 0.1 volts maximum; on/off indicator light and on/off switch on face-plate; UL listed ac cord and plug type SPT-2.

For more information, contact Tripp-Lite, 500 N. Orleans, Chicago, Illinois 60610.
radiator providing increased efficiency and range for handheld radios.

Designated Style F, the new antenna for VHF frequency bands from 118-174 MHz is fitted with a BNC connector.

For more information, contact

Centurion International, P.O. Box 82846, Lincoln, Nebraska 68501-2846; telephone 402-467-4491.

special keyboard

Pipo Communications has just announced a specially designed keyboard compatible with the Collins KWM-380 high-frequency radio. The new sixteen-button keyboard is color-coordinated and has the fourth row buttons marked to indicate their function. This will facilitate ease of operation by eliminating the need to memorize what the buttons do. The keyboard sells for $20 and has a frame available for $3.

For more information or to order, please contact Pipo Communications, P.O. Box 3435, Hollywood, California 90028; telephone 213-852-1515.

6-meter transceiver

ICOM has announced the IC-505, a fully synthesized multimode transceiver covering 50 to 54 MHz (option), USB, LSB, and CW on fm. It uses an internal battery pack (9 C-size batteries), and puts out three watts of rf power when run on its batteries, or ten watts when connected to an ex-
ternal 13.6 volt dc source. Low power is 0.5 watts.

Features include an LCD frequency display for low battery consumption, provision for internal memory back-up, dual VFOs, five memories plus a call channel, memory scan, program scan, sideband squelch, LCD annunciators for VFO, scan, memory channel, call and split, and split frequency operation.

For more information, contact ICOM America, Inc., 2112 116th Avenue, N.E., Bellevue, Washington 98004; telephone 206-454-8155.

GaAs FET VHF/UHF amplifiers

Lunar Electronics announces a line of narrow-band tuned receiving preamplifiers for the VHF and UHF communities. Typical specifications exceed previously available receiving preamplifiers by up to ten times in performance. Exhibiting very high gain at VHF, typically 22-24 dB, moderate gain at UHF, typically 16 dB, plus a very low noise figure, typically 0.3-0.4 dB at VHF and 0.5-0.6 dB at UHF land mobile frequencies, these units are also well suited to high rf environments, exhibiting 1 dB compression power levels of +10 dBm or more. The good gain, coupled with very low noise figure, effectively reduces a typical repeater receiver sensitivity to that of ambient limitations. Improvements in receiver performance have been consistently reported by users at 6-10 dB in a typical repeater installation between the duplexer and receiver input.

Units are built to customer's specified frequency, but do exhibit a typical bandwidth of 5 percent CF with little degradation in performance. Dc input is well filtered and regulated, which allows accepting any dc voltage between 12 and 28 volts, drain approximately 35 mA. VHF connector options include BNC, SMA, N in and out; UHF connector options are SMA, N in and out, with SMA in BNC out the standard option. SMA to RG-58 connectors are included as option for UHF units. Frequencies are available from as low as 15 MHz to the 800 MHz land mobile bands.

For more information, contact Lunar Electronics, 2775 Kurtz Street, Suite 11, San Diego, California 92110; telephone 714-299-9740.
CAYWOOD ELECTRONICS, INC.

Exclusive Manufacturer of MILLEN Equipment
P.O. Drawer U
Malden, MA 02148-0921

FREE CATALOG

HAND-TO-FIND PRECISION TOOLS

Less than 2000 items: pliers, tweezers, wire-strippers, vacuum systems, relay tools, optical equipment, tool kits and cases. Send for your free copy today!

JENSEN TOOLS INC.

3765 40th Street
Phoenix Az 85040

AMP-LETTER

New publication, new owner KB1XX.

The AMP-LETTER is devoted to the design, building, and modification of amplifiers. The AMP-LETTER will help you lower your building cost, provide sources for parts and information, keep you abreast of latest techniques and solid state design.

Subscription cost $10.00 yr. 12 issues. Sample issue $2.00 VISA/MASTER CARD

THE AMP-LETTER

73 Maple Drive, Hudson, OH 44236
216-653-8127

R-4 C\SHERWOOD FILTERS STILL THE FINEST COMBINATION

600 Hz LOW LOSS 1st IF CW FILTER. Improve early stage selectivity. Eliminate high pitched leakage around 2nd IF filters. Improve ultimate rejection to 140 dB. Eliminate strong signals overlapping 2nd order, causing intermod and demodulation. CF 28-25 - $60.00. New PC board rotary switch kit - $45.00.

1st IF SSB FILTERS - 140 dB utl. rej. CF 2K C/8 - $150.00 pair.

5 kHz 1st IF FILTER. Reduces high pitched QRN. CF 5K/8 - $60.00.

18-Pole R/C SSB Filter-28 dB - $100.00.

1800 Hz at 6 dB, 2400 Hz at 80 dB. CF 2K 16 - $135.00.

250, 500, and 1000 Hz BIPOLE 2nd IF PLUG-IN FILTERS - CF 2K 58. CF 500/100 & CF 1K/8 - $80.00.

PC Board mod. and switching kits. Special AM filters/detector. Filters also for R4 (B), R7, TR, TR, TR, Signal/Line, Atlantis. Add $2 shipping per order. 66 overseas.

Sherwood Engineering Inc.

1268 South Ogden St.
Denver, Colo. 80210

(303) 722-2257

ALL BAND TRAP ANTENNAS!

PRICE REDUCED ASSEMBLED ONLY ONE NEAT SMALL TRAP ANTENNA THAT PROVIDES
EXCELLENT FOR ALL AMATEUR AMATEURS - IM
PROVED DESIGN!

COMPLETE with 90 ft. RG58U-50 ohm feeder, and PL259 connector, insulators, 32o, 330, test block and end supports, center connector with built in lightning arrester and static discharge. Low SWR on all bands. NEW! NEVER NEEDED! Can be used in dual V's on either side of antenna, or around those where you WILL NEVER NEED FOR ALL BANDS! NO BALUNs NEEDED! Full size for each band. Models - 7000BCU $199.95 40-200-15-10 - 2 trap - $245.00. Model 1000BGCU $249.95 20-4010-5 - 2 trap - $189.95. Model 2000BGCU $419.95 15-100-5 - 2 traps - $295.00. "Free Postpaid in Canada only."

Send Full Price for Postpaid Insured Del. In USA. (Canada is $5.00 extra for postage - customs, etc.)

Western Electronics

Dept. AR-12
Kearney, Nebraska, 68847

Tell 'em you saw it in HAM RADIO!
Rates

Noncommercial ads 10¢ per word; commercial ads 60¢ per word, both payable in advance. No cash discounts or agency commissions allowed.

Hamfest

Sponsored by non-profit organizations, receive one free Flea Market ad (subject to our editing) on a space available basis only. Insertion of hamfest ads pay the non-commercial rate.

Copy

No special layout or arrangements available. Material should be typed or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each ad and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

Deadline

15th of second preceding month.

Send Material To: Flea Market, Ham Radio, Greenville, N. H. 03048.

QSL Cards

QSLs & Rubber Stamps — Top Quality! Card Samples and Stamps Incl. — Eberhard Graphics 5R, Box 70, Westerville, Ohio 43081.

Travel Pak QSL Kit — Converts post cards, photos to QSL. Stamps available. Material should be typed or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each ad and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

Send Material To: Flea Market, Ham Radio, Greenville, N. H. 03048.

Flea Market Cores

- All the popular sizes and mixes.
- Fast Service. Same day shipping via first class mail or air.

Iron Powder Toroids

- Includes:
 - 100, T25-12, T37-2, T80-2, T106-2
 - 2 ea., T25-6, T37-6, T50-2, T50-6
 - 3 ea., T68-2

Ferrite Beads Toroids

- Includes:
 - 100, F50-Q2, F114-Q1
 - 2 ea., F23-Q1, F23-Q2, F37-Q1
 - F37-Q2, F50-Q1, F87-Q1

Jumbo Beads Toroids

- Includes:
 - 100, F50-Q2, F114-Q1
 - 2 ea., F23-Q1, F23-Q2, F37-Q1
 - F37-Q2, F50-Q1, F87-Q1

Experimentor's Kits

- Includes:
 - 100, F50-Q2, F114-Q1
 - 2 ea., F23-Q1, F23-Q2, F37-Q1
 - F37-Q2, F50-Q1, F87-Q1

Ferrite Beads slip over 18 ga. wire

- For sale: Heath HW-8 and supply $100. Heath GDO $35; Astatie D104/U82 $50. All $1 each. WB2ZGP, T. Woodrup, Box 847, Pierrepont Mont., NY 13674.

- For Sale: Heath SB-200 with 10m $225, KLM 2m linear PA 15-808L $75. Both FCB my QTH. Neil (201) 362-9262.

- **Antenna Trouble?** For $5.00, Antenna Analyst, 41 Benefit Hl., Wakefield, RI. 02879. Will check your head-ache, or refund your money.

- **Pre-1946 Television Sets** wanted for substantial cash. Finder's fee paid for leads. Also interested in spinning drum, mirror in-th-lid, early color sets, S7AP picture tubes. Arnold Chace, 9 Rushing Road, West Hartford, Conn. (06117) (203) 521-5280.

- **Rtty and ASCII for Atari.** Plans and a printed PC board to build your own modem. ASCII and RTTY programs on disk all for $25. Robert Hossel, 1775KD/KH2, Box 4426, AA8B Br. Yigo Guam 96912 (USA).

- **Apple II Computer OWNERS!** The RADCOM PLUS+ package consists of a quality TU interface that installs in the APPLE, connects to your rig and uses the most advanced feature packed software ever developed for sending and receiving RTTY and Morse code. Detailed information from A. Massimo, AF6W, 4041 - 41st Street, San Diego, CA 92105.

- **Tubes** wanted for cash trade. 304T, 4C4/1000A, 4PR60C, 4CX1000A, 4PR60C, WE300, 777, 777, 57, 6LSM. Any high gain special purpose tubes of Elmac/Varian. DCO, 10 Schuyler Avenue, No. Arlington, VA 22201. (703) 526-1270.

- **QSL CARDS**

RATES

Commercial ads $1.50, non-commercial ads $1.00 per line. Send prepaid checks, money orders, or stamps. All checks and money orders will be returned if not accepted.

QSLs

- **QSLs & Rubber Stamps** — Top Quality! Card Samples and Stamps Incl. — Eberhard Graphics 5R, Box 70, Westerville, Ohio 43081.

- **Travel Pak QSL Kit** — Converts post cards, photos to QSLs. Stamps available. Material should be typed or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each ad and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

Deadline

15th of second preceding month.

Send Material To: Flea Market, Ham Radio, Greenville, N. H. 03048.
FOR SALE: Popular Kenwood TS-520S w/G filter, VOX and CW never used. Rig used very little and in mint condition. Original carton and manual $500. Morris Shashoff, W6RIP, 613 S. Breed St., Los Angeles, CA 90023. (213) 262-4596.

WANTED: Buy or swap Model 28 paper winders (LPW 300). Top prices paid for complete units or parts. Call or write Van, W2DLT, In NJ 800-212-1311, outside NJ 800-520-3662 Box 217, Berkeley Hts., NJ 07592.

SATTELE TELEVISION — Howard/Coelman boards to build your own receiver. For more information write Robert Coleman, Rt. 3, Box 58-AHR, Travelers Rest, SC 29690.

WANTED: Schematics-Rider, Sams or other early publications. Scaramella, P.O. Box 1, Woonsocket, RI 02895-0001.

WANTED: Early Hallicrafters Skyriders" and "Super Skyriders" with silver panels, also "Skyrider Commercial", early transmitters such as HT-1, HT-2, HT-8, and other Hallicrafter gear, parts, accessories, manuals. Chuck Dachs, WS6EG, The Hallicrafter Collector, 4500 Russell Drive, Austin, Texas 78745.

SATTELE TELEVISION: Discount prices on all major TVRO items. Communications Consultants. (501) 452-3149.

HAM RADIO REPAIR: experienced, reasonable, commercial licensed. Robert Hall Electronics, P.O. Box 8363, San Francisco, CA 94129. WEBSH, (415) 292-6007.

RUBBER STAMPS: 3 lines $3.25 PPD. Send check or MO to G.L. Pierce, 5521 Kilo-Tec, Austin, Texas 78745.

SATTELE TELEVISION: Discount prices on all major TVRO items. Communications Consultants. (501) 452-3149.

HAM RADIO REPAIR: experienced, reasonable, commercial licensed. Robert Hall Electronics, P.O. Box 8363, San Francisco, CA 94129. WEBSH, (415) 292-6007.

RUBBER STAMPS: 3 lines $3.25 PPD. Send check or MO to G.L. Pierce, 5521 Kilo-Tec, Austin, Texas 78745.

SATTELE TELEVISION: Discount prices on all major TVRO items. Communications Consultants. (501) 452-3149.

HAM RADIO REPAIR: experienced, reasonable, commercial licensed. Robert Hall Electronics, P.O. Box 8363, San Francisco, CA 94129. WEBSH, (415) 292-6007.

RUBBER STAMPS: 3 lines $3.25 PPD. Send check or MO to G.L. Pierce, 5521 Kilo-Tec, Austin, Texas 78745.

SATTELE TELEVISION: Discount prices on all major TVRO items. Communications Consultants. (501) 452-3149.

HAM RADIO REPAIR: experienced, reasonable, commercial licensed. Robert Hall Electronics, P.O. Box 8363, San Francisco, CA 94129. WEBSH, (415) 292-6007.

RUBBER STAMPS: 3 lines $3.25 PPD. Send check or MO to G.L. Pierce, 5521 Kilo-Tec, Austin, Texas 78745.

SATTELE TELEVISION: Discount prices on all major TVRO items. Communications Consultants. (501) 452-3149.

HAM RADIO REPAIR: experienced, reasonable, commercial licensed. Robert Hall Electronics, P.O. Box 8363, San Francisco, CA 94129. WEBSH, (415) 292-6007.

RUBBER STAMPS: 3 lines $3.25 PPD. Send check or MO to G.L. Pierce, 5521 Kilo-Tec, Austin, Texas 78745.

SATTELE TELEVISION: Discount prices on all major TVRO items. Communications Consultants. (501) 452-3149.

HAM RADIO REPAIR: experienced, reasonable, commercial licensed. Robert Hall Electronics, P.O. Box 8363, San Francisco, CA 94129. WEBSH, (415) 292-6007.

RUBBER STAMPS: 3 lines $3.25 PPD. Send check or MO to G.L. Pierce, 5521 Kilo-Tec, Austin, Texas 78745.

SATTELE TELEVISION: Discount prices on all major TVRO items. Communications Consultants. (501) 452-3149.

HAM RADIO REPAIR: experienced, reasonable, commercial licensed. Robert Hall Electronics, P.O. Box 8363, San Francisco, CA 94129. WEBSH, (415) 292-6007.

RUBBER STAMPS: 3 lines $3.25 PPD. Send check or MO to G.L. Pierce, 5521 Kilo-Tec, Austin, Texas 78745.
SMA PLUG
SMA PLUG FOR MCI
TWE
TYPF
TYPE N CHASSIS MOUNT
TYPE
PLLII;
Type 1.1
Ip I
I

CALL TOLL FREE
800-482-3610

$1500
$1400

SOLDIER TYPE
1000 PT
$1.50

SOLDER TYPE
470 PT
$1.50

LEADLESS CERAMIC CAPACITORS
1000 PT
$0.25

OPEN AT 8 PM EST CLOSED BPM PST
ORDERS ARE POSTAGE PAID COD - VISA - MASTERCHARGE

THE CHAMP
BIRD MODEL 4304
NO ELEMENTS
25-1000 MHZ
RF SAMPLING PORT
AUTHORIZED DISTRIBUTOR
WEBSTER COMMUNICATIONS INC.
115 BELMARINE
ROCHESTER, MI 48063
313-375-0420
CALL TOLL FREE
800-521-2333
800-482-3610

Dual-purpose power amplifiers for HT and XCVR!

Dual-purpose power amplifiers for HT and XCVR!

- 1-10 Watts Input
- All-mode operation
- 5 year warranty

model:
B1016 (2 meters)
1W In = 35W Out
2W In = 90W Out
10W In = 160W Out
with RX preamp!
$279.95

C106 (220 MHz)
1W In = 15W Out
2W In = 30W Out
10W In = 60W Out
with RX preamp!
$199.95

D1010 (430-450 MHz)
1W In = 20W Out
2W In = 45W Out
10W In = 100W Out
$319.95

There's more, and
WAIT/SWR Meters, too!
See your nearest Dealer

2 for 1
performance
from

VIRAGE

made in U.S.A.

December 1982
CONSUMER PRODUCTS

SECURITY ALARM SYSTEMS

- Self-alarms: microprocessors, alarm detectors, anti-theft devices, automatic deadbolt locking, smoke detectors, fire alarms, security locks, and more.

DIGITAL QUARTZ TIME PEN

5-Function LCD Quartz Digital

STICK-ON CLOCK

5-Function LCD Quartz Digital

STICK-ON CLOCK

- Mounts on windows, doors, walls, and more.
- Features 5 functions: time, temperature, alarm, calculator, and more.

DIGITAL QUARTZ TIME PEN

5-Function LCD Quartz Digital

STEREO CASSETTE PLAYER

- With FM Stereo Tuning
- Lightweight Headphones
- CR60/Metal/Normal Tape Selector

ANTI-ROLLING MECHANISM FEATURES

- Includes carrying case, shoulder strap, belt strap, light weight headphone, FM stereo tuner, tape selector, and CR60/Metal/Normal tape selector

JUMPER AND CABLE ASSEMBLIES

- STANDARD DP JUMPERS
 - All jumpers are after the 0.250" and 0.375" pin centers

- STANDARD DB25 SERIES CABLES
 - All cables are after the 0.250" pin centers

HOME ALARM SYSTEMS

- Includes keypads, sirens, strobes, and more

- Self-alarms: microprocessors, alarm detectors, anti-theft devices, automatic deadbolt locking, smoke detectors, fire alarms, security locks, and more.

- DIGITAL QUARTZ TIME PEN

- 5-Function LCD Quartz Digital

- STICK-ON CLOCK

- 5-Function LCD Quartz Digital

- DIGITAL QUARTZ TIME PEN

- 5-Function LCD Quartz Digital

- STICK-ON CLOCK

- 5-Function LCD Quartz Digital

- DIGITAL QUARTZ TIME PEN

- 5-Function LCD Quartz Digital

- STICK-ON CLOCK

- 5-Function LCD Quartz Digital

- DIGITAL QUARTZ TIME PEN

- 5-Function LCD Quartz Digital

- STICK-ON CLOCK

- 5-Function LCD Quartz Digital

- DIGITAL QUARTZ TIME PEN

- 5-Function LCD Quartz Digital

- STICK-ON CLOCK

- 5-Function LCD Quartz Digital

- DIGITAL QUARTZ TIME PEN

- 5-Function LCD Quartz Digital

- STICK-ON CLOCK

- 5-Function LCD Quartz Digital

- DIGITAL QUARTZ TIME PEN

- 5-Function LCD Quartz Digital

- STICK-ON CLOCK

- 5-Function LCD Quartz Digital

- DIGITAL QUARTZ TIME PEN

- 5-Function LCD Quartz Digital

- STICK-ON CLOCK

- 5-Function LCD Quartz Digital

- DIGITAL QUARTZ TIME PEN

- 5-Function LCD Quartz Digital

- STICK-ON CLOCK

- 5-Function LCD Quartz Digital

- DIGITAL QUARTZ TIME PEN

- 5-Function LCD Quartz Digital

- STICK-ON CLOCK

- 5-Function LCD Quartz Digital

- DIGITAL QUARTZ TIME PEN

- 5-Function LCD Quartz Digital

- STICK-ON CLOCK

- 5-Function LCD Quartz Digital

- DIGITAL QUARTZ TIME PEN

- 5-Function LCD Quartz Digital

- STICK-ON CLOCK

- 5-Function LCD Quartz Digital

- DIGITAL QUARTZ TIME PEN

- 5-Function LCD Quartz Digital

- STICK-ON CLOCK

- 5-Function LCD Quartz Digital

- DIGITAL QUARTZ TIME PEN

- 5-Function LCD Quartz Digital

- STICK-ON CLOCK

- 5-Function LCD Quartz Digital

- DIGITAL QUARTZ TIME PEN

- 5-Function LCD Quartz Digital

- STICK-ON CLOCK

- 5-Function LCD Quartz Digital

- DIGITAL QUARTZ TIME PEN

- 5-Function LCD Quartz Digital

- STICK-ON CLOCK

- 5-Function LCD Quartz Digital

- DIGITAL QUARTZ TIME PEN

- 5-Function LCD Quartz Digital

- STICK-ON CLOCK

- 5-Function LCD Quartz Digital

- DIGITAL QUARTZ TIME PEN

- 5-Function LCD Quartz Digital

- STICK-ON CLOCK

- 5-Function LCD Quartz Digital

- DIGITAL QUARTZ TIME PEN

- 5-Function LCD Quartz Digital

- STICK-ON CLOCK

- 5-Function LCD Quartz Digital

- DIGITAL QUARTZ TIME PEN

- 5-Function LCD Quartz Digital

- STICK-ON CLOCK

- 5-Function LCD Quartz Digital

- DIGITAL QUARTZ TIME PEN

- 5-Function LCD Quartz Digital

- STICK-ON CLOCK

- 5-Function LCD Quartz Digital

- DIGITAL QUARTZ TIME PEN

- 5-Function LCD Quartz Digital

- STICK-ON CLOCK

- 5-Function LCD Quartz Digital

- DIGITAL QUARTZ TIME PEN

- 5-Function LCD Quartz Digital

- STICK-ON CLOCK

- 5-Function LCD Quartz Digital

- DIGITAL QUARTZ TIME PEN

- 5-Function LCD Quartz Digital

- STICK-ON CLOCK

- 5-Function LCD Quartz Digital

- DIGITAL QUARTZ TIME PEN

- 5-Function LCD Quartz Digital

- STICK-ON CLOCK

- 5-Function LCD Quartz Digital

- DIGITAL QUARTZ TIME PEN

- 5-Function LCD Quartz Digital

- STICK-ON CLOCK

- 5-Function LCD Quartz Digital
IF YOU DON'T HAVE THE LATEST CALLBOOK ... YOU'RE ALREADY PAYING FOR IT.

1983 U.S. RADIO AMATEUR CALLBOOK
Your Amateur station is incomplete without the latest copy of the Callbook on your operating table. The new 1983 edition has over 400,000 licensed Amateurs with up-to-date names and addresses. Also contains many helpful and hard to find operating and station aids. ©1982
CB-US83
Softbound $23.00
($19.00 + $3.00 Shipping)

1983 FOREIGN RADIO AMATEUR CALLBOOK
DKing is one of the greatest aspects of Ham Radio! To ensure that you get your QSL card, accurate addresses and names are of the utmost importance. With a copy of the Foreign Callbook on your desk, it's a breeze. Order today for the late fall and winter DX season. ©1982
CB-FB3
Softbound $22.00
($16.80 + $3.00 Shipping)

BUY BOTH CALLBOOKS, SAVE M-O-N-E-Y!!
CB-US6F
Softbound $39.95
($25.00 + $4.95 Shipping)

For books other than the US or Foreign Callbook or Call Directory, please add $2.50 to cover shipping and handling. Radio Amateur Callbooks will be ready for shipping the week of December 1, 1982.

EVERYTHING YOU ALWAYS WANTED TO KNOW ABOUT AMATEUR TELEVISION but were afraid to ask by The Publishers of Amateur Television Magazine
Here is, in one complete volume, an introduction to the exciting world of Amateur TV. This book starts you off with the history behind ATV, then tells you all about the equipment you need and then helps you put it together into an operating station. Transmitters, receivers, cameras and antenna systems are fully covered. You also get suggestions on handy HAM antennas and helpful hints that will get you on the air. Also a chapter on ATV repeaters — the exciting way to extend your range. ©1982, 112 pages, 1st edition.
S-ATV
Softbound $9.95

FROM BEVERAGES THRU OSCAR — A BIBLIOGRAPHY — Addendum 1979-1981 A further index of all articles in HR, QST, CO, 73 and Radio Communications from 1979 through 1981. A must for your personal technical library. ©1982
PR-BO2
Softbound $9.95

2ND OP by Jim Rafferty, N6RJ
HR-OP
SPECIAL XMAS GIFT PRICE $8.95
NOW $4.95

AMATEUR RADIO — THEORY AND PRACTICE by Robert L. Shrader, W8NB
W8NB’s Electronic Communication has been considered the absolute “Cadillac” of radio theory license manuals. But the high price of this super book has kept many from buying a copy. Now Mr. Shrader has come out with a new book which presents just those parts of Electronic Communication which are necessary to pass all five classes of Amateur licenses. You save 1/3 off the price of the larger book. A complete guide to Amateur Radio including self-check examinations and quizzes. 8 1/2 by 11, 225 pages (taken from 2nd Edition Electronic Communication).
MH-57146
Softbound $21.95

IN A HURRY? CALL TODAY (603) 878-1441 — CHARGE CARD ORDERS ONLY.

HARRadio’s BOOKSTORE
GReenville, NH 03048

1983 ARRL RADIO AMATEUR’S HANDBOOK
Place your order today and be one of the first to get a copy of the latest edition Radio Amateur’s bible. Full of new projects and ideas, this book is a great gift idea as well as a present for yourself. Packed with information, drawings and illustrations so that anyone can understand the material being presented. ©1982
AR-HB
Softbound $12.00
AR-BB
Hardbound $17.75
AR HANDBOOK — Scheduled to be ready for shipping late November 1982.

HAM RADIO LOGBOOK
A real Ham Radio bestseller. Lies flat just like the other one. But uses both sides of each page to give you twice as many entries per book! Plenty of extra-a features make this the Logbook for you. 8 1/2 x 11
©1982
HR-LB
Spiralbound $2.50 ea.
Christmas Special — 3 logs for $4.95

FIRST TIME EVER ★
AMATEUR RADIO CALL DIRECTORY
It’s finally been done. A complete and up-to-date (7/1/82) directory of all licensed Radio Amateurs in the U.S. at two-thirds the price of the other well-known book. Similar in layout and appearance but printed on higher quality paper for easier reading, this book is a full 8 1/2 x 11” and is very easy to handle. Generic in appearance but, oh what a value! Over 410,000 licensed Amateurs listed. ©1982
BM-CD
Softbound $15.95
($12.75 + $3.00 shipping)

UNIQUE ADDITIONAL CALL DIRECTORIES
Here are two other call directories never before available. A bit expensive but well worth every dollar. See who the other Amateurs are in your area. Find those old friends you lost track of many years ago. Perfect for your club or your own library.
AMATEURS LISTED BY GEOGRAPHICAL LOCATION
Lists Amateurs in each town in U.S. ©1982
BM-GA
Softbound $28.00
($25 + $3 shipping)
AMATEURS LISTED BY NAME
An alphabetical listing of all U.S. Amateurs. ©1982
BM-AL
Softbound $28.00
($25 + $3 shipping)

ARRL ANTENNA BOOK
14th Edition
This book is the Amateur Antenna bible. It includes just about every bit of information you’d ever want to know about antenna design, construction and theory. Starting off with wave propagation, antenna fundamentals and transmission line theory, this book progresses through coupling the transmitter and antenna to the feedline to 9 big, inclusive chapters on how to build different antennas. You also get a chapter on antenna and transmission line measurements and Antenna Orientation. New, large, magazine style graphics give more "bang for your buck." ©1982, 2nd edition, 200 pages.
©1982
AR-AM
Softbound $8.00

CONFIDENTIAL FREQUENCY LIST
5th Edition
by Oliver P. Ferrell
Enjoy tuning across the bands looking for who-knows-what? If so, you’ve got to get a copy of this new book. 225 pages are jam-packed with frequencies and call/igns. Hundreds of stations from around the world are listed first by frequency and then by callsign. You also get plenty of helpful hints and tips taken from the author’s 40+ years in Radio. Author Ferrell is known worldwide as a source of reliable information about what’s going on. ©1982, 5th edition, 225 pages.
©1982
GL-CF
Softbound $9.95

BEGINNER’S RTTY HANDBOOK
by the Editor, RTTY Journal
More than 85 pages of jam-packed information, technical discussion and illustrations for the Amateur Radio starting RTTY operation. This handbook covers RTTY theory, applications, and operation. Includes discussion of basics, murray code, pulsing, AFSK keying, demodulation methods, mechanical equipment descriptions, loop supplies, keying circuits, and test methods; machine installation and interconnections; adjustment and calibration; printer parts repair and replacement; HF transceiver hook-ups; auto-start, RTTY art; RTTY equipment supply sources. A valuable resource for any level of RTTY interest. ©1982, 2nd Edition.
©1982
RJ-BH
Softbound $8.00

BEGINNER’S RTTY HANDBOOK
by Bill Orr, W6SAI
A best seller for over 45 years! The 22nd edition reflects state-of-the-art techniques in a comprehensive, single source reference book. Invaluable for Hams, technicians, and engineers alike. Also check out all of Oliver’s other books — all of which are of interest to all levels of electronics expertise. 1136 pages. ©1981, 22nd edition.
©1982
21874 Hardbound
Reg. $34.95
SAVE $2
NOW $32.95

IN A HURRY? CALL TODAY (603) 878-1441 — CHARGE CARD ORDERS ONLY.
FILTER CASCADING

The most cost-effective way to improve the selectivity of any receiver – old or new – is to improve its IF filtering. A Fox-Tango Cascading Kit puts a high-quality steep-sided 8-pole filter in series with your present filter(s), both SSB and CW. The result is narrower Bandwidth and better Selectivity Factor, both of which dramatically reduce adjacent channel QRM – a necessity in today’s crowded bands.

CONSIDER THESE KIT FEATURES
- Easy installation - 30 minute average.
- No drilling, switching, alignment.
- 16 poles of filtering:
 - Filter Shape Factor as high as 11.9.
 - Ultimate Rejection better than 100dB.
 - Works wonders on SSB, improves CW.
- Compensates for Filter insertion loss.
- Complete instructions, clear diagrams.
- No RX audio impairment, TX unaffected.
- Includes Filter and all needed parts.
- Fits all models of Series, any letter.
- All Filters 8-pole – Guaranteed One Year.

SPECIFY KIT WANTED WHEN ORDERING
- YAESU FT101 $75; FT101D $70; FT107 $75; FT101/2 $65; FT101 $55 (filter only); KENWOOD TS520/550 $70; TS520/550 $70; TS330/310 $150 (Two Filters); HEATH SB104A $60.

Shipping $3 (Air S&H), FL Sales Tax 5%.

In addition to the above, FOX-TANGO stocks a wide line of SSB, CW, and AM 8-pole filters for Yaesu, Kenwood, Drake RAC and 9Nm, and Heathkit. Also, special filters made to order. Send specs for quote.

GO FOX-TANGO TO BE SURE!

TOLL 800-221-0860 FREE

- **TUBES**
 - **TOP BRAND Popular Receiving Tube Types**
 - **FACTORY BOXED 75%/OFF LIST**
 - **FREE LIST Available**
 - **Includes full line of RF Power Transistors.**
 - **Minimum Order $25.**
 - **Allow $3.00 Minimum for UPS Charges.**
 - **Write or phone for free catalog.**

TUBES – BOUGHT, SOLD AND TRADED

- **PREMIUM PRICE**
- **December 1982**

CeCo

Premium Prices Paid

For EIMAC Tubes

COMMUNICATIONS, Inc.

2115 Avenue X

Brooklyn, NY 11235

Phone (212) 646-6300

CeCo Since 1922

For EIMAC Tubes

December 1982
Cocktail Party hosted by Ham Radio Magazine, Friday evening, for all SAROC exhibitors and SAROC paid registered guests. Ladies' program Saturday, included with Ladies' SAROC paid registration. Two Aladdin Hotel Breakfast/Brunches included with each SAROC paid registration, one on Saturday and one on Sunday. Technical sessions and exhibits Friday and Saturday for all SAROC registered guests. Friday and Saturday hourly awards, main drawing, Saturday afternoon. Must be present to win, ownership of award does not pass until picked up. SAROC advance registration is only $17.00 per person if postmarked before January 1, 1983. After January 1, 1983 it is $19.00 per person. SAROC swap table $2.50 each with SAROC registration. Coupon book and cellophane badge holder may be picked up at SAROC registration desk. Send check or money order to SAROC, P.O. Box 945, Boulder City, Nevada 89005-0945. Refunds will be made after SAROC is over to those requesting same in writing and postmarked before January 13, 1983. Special SAROC Aladdin Hotel room rate is $37.00, plus room tax, per night, single or double occupancy. Aladdin Hotel accommodations request card will be sent to all SAROC exhibitors and SAROC paid registered guests.

Enclosed is $_______ check or money order (no cash) for ________ SAROC advance registration at $17.00 each: after January 1, 1983 SAROC registration is $19.00 each. Extra drawing tickets for main drawings are $1.00 each, limit 5 for each SAROC paid advance registration only.

OM Call Class
YL Call Class
Address City
State ZIP Telephone No. / AC

I have attended SAROC ________ times. I plan to attend Friday Cocktail Party ________

I am interested in: ARRL, Cocktail Party, CW, DX, FCC, FM, MARS, RTTY, TV, other ________

Another super edition of the standard manual of rf communications! Each year, The Handbook is revised to reflect changes in the state-of-the-art and this 60th edition is no exception. Expanded emphasis is given to the use of amateur satellites including RS and Phase III information. You will find computer and calculator programs for satellite tracking. There is also a new TVI troubleshooting flow chart and more coverage of amateur television. New construction projects include power supplies, 160-meter kW amplifier, deluxe voice/cw audio filter, single-band superhets, UHF signal source and dip meter plus a universal logic translator for digital communications. In 640 pages and 23 chapters, The Handbook presents everything from electrical laws and circuits to sophisticated communications techniques including packet radio and spread spectrum. Order your copy today! Paper edition: $12 in the U.S., $13 in Canada, and $14.50 elsewhere. Cloth edition: $17.75 in the U.S. and $20 elsewhere. Payment must be in U.S. funds.

Here is the most comprehensive and up-to-date antenna book available. It's chock-full of theory and practical information and includes proven designs for: Yagis, quads, wires, verticals or the more specialized designs: Beverage, curtain arrays and fish-bone antennas. It also has a chapter that covers UHF and VHF antenna design. You'll find antennas for any kind of real estate from the apartment dweller to the true antenna farm. The Antenna Book covers in complete, easy-to-understand language, antenna and transmission line theory and includes the most complete explanation available of the SMITH CHART®. Finally there is a thorough discussion of the phenomena of radio wave propagation. 328 pages 14th edition. Softbound Price $8.00 in the US. Elsewhere $8.50 (US FUNDS). Available from your local dealer or direct from ARRL.

Please include $1.00 per title for shipping and handling.
FACIT 4555 SERIAL PAGE PRINTER

The Facit 4555 alphanumerical serial printer is complete. Equipped with RS232C interface, printing mechanism, control electronics, drive electronics, power supply and character generator. The adaptation electronics can be modified in four versions: Bit-parallel data transfer, CCITT (EIA, RS232C) for bit-serial data transfer and the current loop (TTY) interface also for bit serial data transfer. The Facit 4555 prints on ordinary paper and is adjustable for different paper widths and formats, 9.5" paper width with 66 lines per page or DIN A4 with 70 lines per page.

SPECIFICATIONS

<table>
<thead>
<tr>
<th>Print speed</th>
<th>up to 60 ch.s.</th>
<th>Char. spacing</th>
<th>2.54mm/1/10" 80ch/line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Printing mode</td>
<td>Incremental.</td>
<td>Char. Code</td>
<td>1.55mm/0.06" 132ch/line</td>
</tr>
<tr>
<td>Max. # of ch/line</td>
<td>80 alt. 132.</td>
<td>Char. Set</td>
<td>ECMA-6 7-bit coded char. set</td>
</tr>
<tr>
<td>Matrix</td>
<td>7 X 5 dot matrix.</td>
<td>Feed mechanism</td>
<td>63 Char. various national versions</td>
</tr>
<tr>
<td>Char. Size Height</td>
<td>2.7mm/1/8"</td>
<td>Sprocket feed.</td>
<td></td>
</tr>
<tr>
<td>Char. Size Width</td>
<td>1.3mm/0.05" 132ch/line</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.1mm/0.083" 80ch/line</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These units were pulled out of service in good working condition. We check each unit on a Radio Shack TRS-80 Color Computer.

PRINTER ONLY $129.99
Printer with linecord, box of paper, inter-connect cable for TRS-80 Color Computer. $149.99

GENEVA CALCULATOR WATCH!

This attractive watch has the following modes:
- Normal Time Setting
- Calendar Setting
- Daily Alarm Time Setting
- Weekly Alarm Time Setting
- Chronograph
- Calculator

Featured in Black Plastic $24.99 or Featured in Stainless Steel $29.99

SILICON DIODES

- MR510 1000vdc/6Amps $10/$5.00 $100/$38.00
- IN3209 1000vdc/15Amps $2.00 $10/15.00
- BYX21/200 200vdc/25Amps $2.00 $10/15.00
- IN2138A 600vdc/30Amps $5.00 $10/35.00
- DS55-04C 400vdc/40Amps $10.00 $10/50.00
- IN3269 600vdc/160Amps $15.00 $10/80.00
- 275241 300vdc/250Amps $20.00 $10/150.00
- 7-5734 300vdc/400Amps $30.00 $10/250.00
- RCD-15 15KVDC/20ma. $3.00 $10/20.00
- SMF20K 20KVDC/20ma. $6.00 $10/30.00
- IN4148 signal $4.00 $10/30.00

FEED THRU SOLDER RF CAPACITORS

- 470pF +20%
- 5/1/0.0 10/1/0.15 or 100/1/0.0
- 1000/1/0.0
- 1000pF/.001uf +10%
- 4/1/0.0 10/1/0.2 or 100/1/0.0
- 1000/1/0.2

- E PMOS
- 2708 1024x1 $2.00 each
- 2716 2048x8 $4.00 each
- 27L32/25L32 $10.00 each

FAIRCHILD 4116 16K DYNAMIC RAMS 200ns. Part # 16K75
25 For $25.00 or 100 For $90.00 or 1000 For $750.00

HEWLETT PACKARD MICROWAVE DIODES

- IN5711 (5082-2800) Schottky Barrier Diodes $1.00 or 10 for $8.50
- IN5712 (5082-2810) $1.50 or 10 for $10.00
- IN6263 (HSCH-1001) $1.75 or 10 for $5.00
- 5082-2835 $1.50 or 10 for $10.00
- 5082-2805 Quad Matched $5.00 or 10 for $40.00

Toll Free Number
800-528-0180
(For orders only)

Prices subject to change without notice

MHz electronics

Tell 'em you saw it in HAM RADIO!
"MIXERS"

WATKINS JOHNSON WJ-M6 Double Balanced Mixer

LO and RF 0.2 to 300MHz
Conversion Loss (SSB) IF DC to 300MHz $21.00
Noise Figure (SSB) 6.5dB Max. 1 to 50MHz
same as above 8.5dB Max. .2 to 300MHz
Conversion Compression 8.5dB Max. 50 to 300MHz
Conversion Loss (SSB) .3dB Typ.

NEC (NIPPON ELECTRIC CO. LTD. NE57835/2SC2150 Microwave Transistor

NF Min F=2GHz dB 2.4 Typ. MAG F=2GHz dB 12 Typ. $5.30
F=3GHz dB 3.4 Typ. F=3GHz dB 9 Typ.
F=4GHz dB 4.3 Typ. F=4GHz dB 6.5 Typ.

UNELCO RF Power and Linear Amplifier Capacitors
These are the famous capacitors used by all the RF Power and Linear Amplifier manufacturers, and described in the RF Data Book.

5pf 10pf 18pf 30pf 43pf 100pf 200pf 1 to 10pcs. $1.00 ea
5.1pf 12pf 22pf 32pf 51pf 110pf 220pf 11 to 50pcs. $.90 ea
6.8pf 13pf 25pf 33pf 60pf 120pf 470pf 51 up pcs. $.80 ea
7pf 14pf 27pf 34pf 80pf 130pf 500pf
8.2pf 15pf 27.5pf 40pf 82pf 140pf 1000pf

SAFIRCHILD / DUMONT Oscilloscope Probes Model 4290B

Input Impedance 10 meg., Input Capacity 6.5 to 12pf., Division Ratio (Volts/Div Factor) 10:1, Cable Length 4 Ft., Frequency Range Over 100MHz.

PRICE $45.00

MOTOROLA RF DATA BOOK

Lists all Motorola RF Transistors / RF Power Amplifiers, Varactor Diodes and much much more.

PRICE $7.50
<table>
<thead>
<tr>
<th>PART</th>
<th>PRICE</th>
<th>PART</th>
<th>PRICE</th>
<th>PART</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1S2199</td>
<td>7.50</td>
<td>2N6083</td>
<td>13.25</td>
<td>CA2612</td>
<td>(TRW)</td>
</tr>
<tr>
<td>1S2200</td>
<td>7.50</td>
<td>2N6084</td>
<td>15.00</td>
<td>CA2674</td>
<td>(TRW)</td>
</tr>
<tr>
<td>2N1561</td>
<td>25.00</td>
<td>2N6094</td>
<td>/M9622</td>
<td>CA2881</td>
<td>(TRW)</td>
</tr>
<tr>
<td>2N1562</td>
<td>25.00</td>
<td>2N6095</td>
<td>/M9623</td>
<td>CA4101</td>
<td>(TRW)</td>
</tr>
<tr>
<td>2N2857</td>
<td>1.55</td>
<td>2N6096</td>
<td>/M9624</td>
<td>CA4201</td>
<td>(TRW)</td>
</tr>
<tr>
<td>2N2857JAN</td>
<td>2.55</td>
<td>2N6097</td>
<td>17.25</td>
<td>CA4600</td>
<td>(TRW)</td>
</tr>
<tr>
<td>2N2876</td>
<td>11.00</td>
<td>2N6136</td>
<td>21.85</td>
<td>CD1889</td>
<td>20.00</td>
</tr>
<tr>
<td>2N2947</td>
<td>18.35</td>
<td>2N6166</td>
<td>40.25</td>
<td>CD2545</td>
<td>20.00</td>
</tr>
<tr>
<td>2N2948</td>
<td>15.50</td>
<td>2N6201</td>
<td>50.00</td>
<td>CMD514AB</td>
<td>20.00</td>
</tr>
<tr>
<td>2N2949</td>
<td>3.90</td>
<td>2N6459</td>
<td>18.00</td>
<td>D4939</td>
<td>10.00</td>
</tr>
<tr>
<td>2N2950</td>
<td>6.50</td>
<td>2N6603</td>
<td>12.60</td>
<td>D4987M</td>
<td>20.00</td>
</tr>
<tr>
<td>2N3375</td>
<td>8.00</td>
<td>2N6680</td>
<td>80.00</td>
<td>D5147D</td>
<td>10.00</td>
</tr>
<tr>
<td>2N3553</td>
<td>1.57</td>
<td>2SC756A</td>
<td>7.50</td>
<td>D5506</td>
<td>10.00</td>
</tr>
<tr>
<td>2N3632</td>
<td>13.80</td>
<td>2SC781</td>
<td>2.80</td>
<td>D5827AM</td>
<td>20.00</td>
</tr>
<tr>
<td>2N3818</td>
<td>5.00</td>
<td>2SC1018</td>
<td>1.00</td>
<td>DMD6022</td>
<td>30.00</td>
</tr>
<tr>
<td>2N3866</td>
<td>1.30</td>
<td>2SC1042</td>
<td>12.00</td>
<td>DMS-2A-250</td>
<td>40.00</td>
</tr>
<tr>
<td>2N3924</td>
<td>3.35</td>
<td>2SC1070</td>
<td>2.50</td>
<td>HEP76</td>
<td>4.95</td>
</tr>
<tr>
<td>2N3927</td>
<td>17.75</td>
<td>2SC1239</td>
<td>2.50</td>
<td>HEPS3002</td>
<td>11.30</td>
</tr>
<tr>
<td>2N3950</td>
<td>25.00</td>
<td>2SC1251</td>
<td>12.00</td>
<td>HEPS3003</td>
<td>30.00</td>
</tr>
<tr>
<td>2N4072</td>
<td>1.80</td>
<td>2SC1306</td>
<td>2.90</td>
<td>HEPS3005</td>
<td>10.00</td>
</tr>
<tr>
<td>2N4127</td>
<td>21.00</td>
<td>2SC1307</td>
<td>5.50</td>
<td>HEPS3006</td>
<td>19.90</td>
</tr>
<tr>
<td>2N4427</td>
<td>1.30</td>
<td>2SC1760</td>
<td>1.50</td>
<td>HEPS3007</td>
<td>25.00</td>
</tr>
<tr>
<td>2N4428</td>
<td>1.85</td>
<td>2SC1970</td>
<td>2.50</td>
<td>HEPS310</td>
<td>11.34</td>
</tr>
<tr>
<td>2N4957</td>
<td>3.45</td>
<td>2SC2166</td>
<td>5.50</td>
<td>HTEF2204</td>
<td>H.P. 112.00</td>
</tr>
<tr>
<td>2N4958</td>
<td>2.90</td>
<td>8B1087</td>
<td>(M.A.)</td>
<td>5082-0112</td>
<td>H.P. 14.20</td>
</tr>
<tr>
<td>2N4959</td>
<td>2.30</td>
<td>A50-12</td>
<td>20.00</td>
<td>5082-0253</td>
<td>H.P. 105.00</td>
</tr>
<tr>
<td>2N5090</td>
<td>13.90</td>
<td>A283B</td>
<td>5.00</td>
<td>5082-0320</td>
<td>H.P. 58.00</td>
</tr>
<tr>
<td>2N5108</td>
<td>4.00</td>
<td>ALD4200N (AVANTEK)</td>
<td>395.00</td>
<td>5082-0386</td>
<td>H.P. POR</td>
</tr>
<tr>
<td>2N5109</td>
<td>1.70</td>
<td>AM123</td>
<td>97.35</td>
<td>5082-0401</td>
<td>H.P. POR</td>
</tr>
<tr>
<td>2N5160</td>
<td>3.45</td>
<td>AM688</td>
<td>100.00</td>
<td>5082-0438</td>
<td>H.P. POR</td>
</tr>
<tr>
<td>2N5177</td>
<td>21.62</td>
<td>BB105B</td>
<td>.52</td>
<td>5082-1028</td>
<td>H.P. POR</td>
</tr>
<tr>
<td>2N5179</td>
<td>1.00</td>
<td>BD4/4JFBD4 (G.E.)</td>
<td>10.00</td>
<td>5082-2711</td>
<td>H.P. 23.15</td>
</tr>
<tr>
<td>2N5583</td>
<td>4.00</td>
<td>BF085</td>
<td>1.50</td>
<td>5082-3080</td>
<td>H.P. 2.00</td>
</tr>
<tr>
<td>2N5589</td>
<td>8.65</td>
<td>BF109</td>
<td>1.30</td>
<td>5082-3188</td>
<td>H.P. 1.00</td>
</tr>
<tr>
<td>2N5590</td>
<td>10.35</td>
<td>BF91</td>
<td>1.65</td>
<td>5082-6459</td>
<td>H.P. POR</td>
</tr>
<tr>
<td>2N5591</td>
<td>13.80</td>
<td>BF92</td>
<td>1.50</td>
<td>5082-8323</td>
<td>H.P. POR</td>
</tr>
<tr>
<td>2N5635</td>
<td>10.95</td>
<td>BF89</td>
<td>1.00</td>
<td>35826E</td>
<td>H.P. POR</td>
</tr>
<tr>
<td>2N5637</td>
<td>15.50</td>
<td>BFY90</td>
<td>1.00</td>
<td>35831E</td>
<td>H.P. 29.99</td>
</tr>
<tr>
<td>2N5641</td>
<td>9.20</td>
<td>BG54</td>
<td>25.00</td>
<td>35853E</td>
<td>H.P. 71.50</td>
</tr>
<tr>
<td>2N5642</td>
<td>10.95</td>
<td>BG55</td>
<td>25.00</td>
<td>35854E</td>
<td>H.P. 75.00</td>
</tr>
<tr>
<td>2N5643</td>
<td>15.50</td>
<td>BG74</td>
<td>25.00</td>
<td>HPA0241</td>
<td>H.P. 75.60</td>
</tr>
<tr>
<td>2N5645</td>
<td>13.80</td>
<td>BG75</td>
<td>25.00</td>
<td>HXTR3101</td>
<td>H.P. 7.00</td>
</tr>
<tr>
<td>2N5646</td>
<td>20.70</td>
<td>BL161</td>
<td>10.00</td>
<td>HXTR3102</td>
<td>H.P. 8.75</td>
</tr>
<tr>
<td>2N5691</td>
<td>18.00</td>
<td>BLX67</td>
<td>11.00</td>
<td>HXTR6101/2N6617</td>
<td>H.P. 55.00</td>
</tr>
<tr>
<td>2N5764</td>
<td>27.00</td>
<td>BLY568GF</td>
<td>25.00</td>
<td>HXTR6104</td>
<td>H.P. 68.00</td>
</tr>
<tr>
<td>2N5836</td>
<td>5.45</td>
<td>BLY87</td>
<td>13.00</td>
<td>HXTR6105</td>
<td>H.P. 31.00</td>
</tr>
<tr>
<td>2N5842</td>
<td>8.00</td>
<td>BLY88</td>
<td>14.00</td>
<td>HXTR6106</td>
<td>H.P. 33.00</td>
</tr>
<tr>
<td>2N5849</td>
<td>20.00</td>
<td>BLY89</td>
<td>15.00</td>
<td>QSC1995</td>
<td>H.P. POR</td>
</tr>
<tr>
<td>2N5913</td>
<td>3.25</td>
<td>BLY90</td>
<td>20.00</td>
<td>J02000TRW</td>
<td>10.00</td>
</tr>
<tr>
<td>2N5922</td>
<td>10.00</td>
<td>BLY351</td>
<td>10.00</td>
<td>J02001TRW</td>
<td>25.00</td>
</tr>
<tr>
<td>2N5923</td>
<td>25.00</td>
<td>C4005</td>
<td>20.00</td>
<td>J04065TRW</td>
<td>25.00</td>
</tr>
<tr>
<td>2N5941</td>
<td>23.00</td>
<td>CA402</td>
<td>(TRW)</td>
<td>K3A</td>
<td>10.00</td>
</tr>
<tr>
<td>2N5942</td>
<td>40.00</td>
<td>CA405</td>
<td>(TRW)</td>
<td>MA450A</td>
<td>10.00</td>
</tr>
<tr>
<td>2N5944</td>
<td>9.20</td>
<td>CA612B</td>
<td>(TRW)</td>
<td>MA41487</td>
<td>POR</td>
</tr>
<tr>
<td>2N5945</td>
<td>11.50</td>
<td>CA2100</td>
<td>(TRW)</td>
<td>MA41765</td>
<td>POR</td>
</tr>
<tr>
<td>2N5946</td>
<td>19.00</td>
<td>CA2113</td>
<td>(TRW)</td>
<td>MA43589</td>
<td>POR</td>
</tr>
<tr>
<td>2N6080</td>
<td>9.20</td>
<td>CA2200</td>
<td>(TRW)</td>
<td>MA43636</td>
<td>POR</td>
</tr>
<tr>
<td>2N6081</td>
<td>10.35</td>
<td>CA2213</td>
<td>(TRW)</td>
<td>MA47044</td>
<td>POR</td>
</tr>
<tr>
<td>2N6082</td>
<td>11.50</td>
<td>CA2418</td>
<td>(TRW)</td>
<td>MA47651</td>
<td>25.50</td>
</tr>
</tbody>
</table>

Toll Free Number
800-528-0180
(For orders only)

Prices subject to change without notice

MHz electronics
GaAs, TUNNEL DIODES, ETC.

<table>
<thead>
<tr>
<th>PART</th>
<th>PRICE</th>
<th>PART</th>
<th>PRICE</th>
<th>PART</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA47100</td>
<td>$ 3.05</td>
<td>MRF503</td>
<td>$ 6.00</td>
<td>PT4186B</td>
<td>$ POR</td>
</tr>
<tr>
<td>MA47202</td>
<td>30.80</td>
<td>MRF504</td>
<td>7.00</td>
<td>PT4209</td>
<td>POR</td>
</tr>
<tr>
<td>MA47771</td>
<td>POR</td>
<td>MRF509</td>
<td>5.00</td>
<td>PT4209C</td>
<td>POR</td>
</tr>
<tr>
<td>MA47852</td>
<td>POR</td>
<td>MRF511</td>
<td>8.65</td>
<td>PT4566</td>
<td>POR</td>
</tr>
<tr>
<td>MA49558</td>
<td>POR</td>
<td>MRF605</td>
<td>20.00</td>
<td>PT4570</td>
<td>POR</td>
</tr>
<tr>
<td>MB4021</td>
<td>1.00</td>
<td>MRF629</td>
<td>3.47</td>
<td>PT4571</td>
<td>POR</td>
</tr>
<tr>
<td>MBD101</td>
<td>POR</td>
<td>MRF644</td>
<td>23.00</td>
<td>PT4571A</td>
<td>POR</td>
</tr>
<tr>
<td>MDO513</td>
<td>42.50</td>
<td>MRF816</td>
<td>15.00</td>
<td>PT4577</td>
<td>POR</td>
</tr>
<tr>
<td>MW11171</td>
<td>48.60</td>
<td>MRF823</td>
<td>20.00</td>
<td>PT4590</td>
<td>POR</td>
</tr>
<tr>
<td>MW1182</td>
<td>49.35</td>
<td>MRF901</td>
<td>3.00</td>
<td>PT4612</td>
<td>POR</td>
</tr>
<tr>
<td>MW44172</td>
<td>51.90</td>
<td>MRF8004</td>
<td>2.10</td>
<td>PT4628</td>
<td>POR</td>
</tr>
<tr>
<td>MW43462</td>
<td>68.75</td>
<td>MS261F</td>
<td>POR</td>
<td>PT4640</td>
<td>POR</td>
</tr>
<tr>
<td>MLP102</td>
<td>25.00</td>
<td>MT4150</td>
<td>Fair.</td>
<td>PT4662</td>
<td>POR</td>
</tr>
<tr>
<td>MML500</td>
<td>32.32</td>
<td>MT5126</td>
<td>Fair.</td>
<td>PT5632</td>
<td>POR</td>
</tr>
<tr>
<td>MML550</td>
<td>POR</td>
<td>MT5481</td>
<td>Fair.</td>
<td>PT5749</td>
<td>POR</td>
</tr>
<tr>
<td>MML552</td>
<td>50.00</td>
<td>MT5482</td>
<td>Fair.</td>
<td>PT6612</td>
<td>POR</td>
</tr>
<tr>
<td>MML553</td>
<td>50.00</td>
<td>MT5483</td>
<td>Fair.</td>
<td>PT6626</td>
<td>POR</td>
</tr>
<tr>
<td>MML614</td>
<td>10.00</td>
<td>MT5596</td>
<td>Fair.</td>
<td>PT6709</td>
<td>POR</td>
</tr>
<tr>
<td>MS2608</td>
<td>5.00</td>
<td>MT5764</td>
<td>Fair.</td>
<td>PT6720</td>
<td>POR</td>
</tr>
<tr>
<td>MM3375A</td>
<td>11.50</td>
<td>MV109</td>
<td>.77</td>
<td>PT8510</td>
<td>POR</td>
</tr>
<tr>
<td>MM4429</td>
<td>10.00</td>
<td>MV1401</td>
<td>8.75</td>
<td>PT8524</td>
<td>POR</td>
</tr>
<tr>
<td>MM8000</td>
<td>1.15</td>
<td>MV1624</td>
<td>1.42</td>
<td>PT8609</td>
<td>POR</td>
</tr>
<tr>
<td>MM8006</td>
<td>2.30</td>
<td>MV1805</td>
<td>15.00</td>
<td>PT8633</td>
<td>POR</td>
</tr>
<tr>
<td>MO277L</td>
<td>POR</td>
<td>MV1808</td>
<td>10.00</td>
<td>PT8639</td>
<td>POR</td>
</tr>
<tr>
<td>MO283L</td>
<td>POR</td>
<td>MV1817B</td>
<td>10.00</td>
<td>PT8659</td>
<td>POR</td>
</tr>
<tr>
<td>MO3757</td>
<td>POR</td>
<td>MV1863B</td>
<td>10.00</td>
<td>PT8679</td>
<td>POR</td>
</tr>
<tr>
<td>MP102</td>
<td>POR</td>
<td>MV1864A</td>
<td>10.00</td>
<td>PT8708</td>
<td>POR</td>
</tr>
<tr>
<td>MPN3202</td>
<td>10.00</td>
<td>MV1864B</td>
<td>10.00</td>
<td>PT8709</td>
<td>POR</td>
</tr>
<tr>
<td>MPN3401</td>
<td>.52</td>
<td>MV1864D</td>
<td>10.00</td>
<td>PT8710</td>
<td>POR</td>
</tr>
<tr>
<td>MPN3412</td>
<td>1.00</td>
<td>MV1868D</td>
<td>10.00</td>
<td>PT8712</td>
<td>POR</td>
</tr>
<tr>
<td>MPSU31</td>
<td>1.01</td>
<td>MV2101</td>
<td>.90</td>
<td>PT8727</td>
<td>POR</td>
</tr>
<tr>
<td>MRA2023-1.5 TRW</td>
<td>42.50</td>
<td>MV2111</td>
<td>.90</td>
<td>PT8731</td>
<td>POR</td>
</tr>
<tr>
<td>MRF212/208</td>
<td>16.10</td>
<td>MV2115</td>
<td>1.55</td>
<td>PT8742</td>
<td>POR</td>
</tr>
<tr>
<td>MRF223</td>
<td>13.25</td>
<td>MV2201</td>
<td>.53</td>
<td>PT8680</td>
<td>POR</td>
</tr>
<tr>
<td>MRF224</td>
<td>15.50</td>
<td>MV2203</td>
<td>.53</td>
<td>RAY-3</td>
<td>24.99</td>
</tr>
<tr>
<td>MRF237</td>
<td>3.15</td>
<td>MV2209</td>
<td>2.00</td>
<td>40081</td>
<td>POR</td>
</tr>
<tr>
<td>MRF238</td>
<td>12.65</td>
<td>MV2215</td>
<td>2.00</td>
<td>40281</td>
<td>POR</td>
</tr>
<tr>
<td>MRF243</td>
<td>25.00</td>
<td>M6A110</td>
<td>7.45</td>
<td>40282</td>
<td>POR</td>
</tr>
<tr>
<td>MRF245</td>
<td>34.50</td>
<td>M6A120</td>
<td>7.80</td>
<td>40290</td>
<td>POR</td>
</tr>
<tr>
<td>MRF247</td>
<td>34.50</td>
<td>M6A130</td>
<td>8.25</td>
<td>RF110</td>
<td>25.00</td>
</tr>
<tr>
<td>MRF304</td>
<td>43.45</td>
<td>M6A210</td>
<td>7.80</td>
<td>SCA3522</td>
<td>POR</td>
</tr>
<tr>
<td>MRF315</td>
<td>23.00</td>
<td>M6A220</td>
<td>8.25</td>
<td>SCA3523</td>
<td>POR</td>
</tr>
<tr>
<td>MRF420</td>
<td>20.00</td>
<td>M6A230</td>
<td>8.65</td>
<td>SD1065</td>
<td>25.00</td>
</tr>
<tr>
<td>MRF421</td>
<td>36.80</td>
<td>M6A310</td>
<td>8.25</td>
<td>SS43</td>
<td>POR</td>
</tr>
<tr>
<td>MRF422</td>
<td>41.40</td>
<td>M6A320</td>
<td>8.65</td>
<td>TP1014</td>
<td>POR</td>
</tr>
<tr>
<td>MRF427</td>
<td>16.10</td>
<td>M6A330</td>
<td>9.50</td>
<td>TP1028</td>
<td>POR</td>
</tr>
<tr>
<td>MRF428</td>
<td>46.00</td>
<td>NEC57835</td>
<td>5.30</td>
<td>TRW-3</td>
<td>POR</td>
</tr>
<tr>
<td>MRF450/A</td>
<td>13.80</td>
<td>ON382</td>
<td>5.00</td>
<td>TRW-3</td>
<td>POR</td>
</tr>
<tr>
<td>MRF453/A</td>
<td>17.25</td>
<td>PPT515-20-3</td>
<td>POR</td>
<td>UTO504</td>
<td>Avantek. 70.00</td>
</tr>
<tr>
<td>MRF454/A</td>
<td>19.90</td>
<td>PRT8637</td>
<td>POR</td>
<td>UTO511</td>
<td>Avantek. 75.00</td>
</tr>
<tr>
<td>MRF455/A</td>
<td>16.00</td>
<td>PSC02-160</td>
<td>POR</td>
<td>V15</td>
<td>4.00</td>
</tr>
<tr>
<td>MRF458</td>
<td>19.90</td>
<td>PT3190</td>
<td>POR</td>
<td>V33B</td>
<td>4.00</td>
</tr>
<tr>
<td>MRF463</td>
<td>25.00</td>
<td>PT3194</td>
<td>POR</td>
<td>V100B</td>
<td>4.00</td>
</tr>
<tr>
<td>MRF472</td>
<td>1.00</td>
<td>PT3195</td>
<td>POR</td>
<td>VAB801EC</td>
<td>25.00</td>
</tr>
<tr>
<td>MRF475</td>
<td>2.90</td>
<td>PT3537</td>
<td>POR</td>
<td>VAB804EC</td>
<td>25.00</td>
</tr>
<tr>
<td>MRF477</td>
<td>11.50</td>
<td>PT4166E</td>
<td>POR</td>
<td>VAS21AN20</td>
<td>25.00</td>
</tr>
<tr>
<td>MRF502</td>
<td>1.04</td>
<td>PT4176D</td>
<td>POR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Toll Free Number
800-528-0180
(For orders only)

MHz electronics

PRICES SUBJECT TO CHANGE WITHOUT NOTICE

More Details? CHECK—OFF Page 132

December 1982
COAXIAL RELAY SWITCHES SPDT

Electronic Specialty Co./Raven Electronics
Part # 25028
Part # SU-01
260dc Type N Connector, DC to 1 GHz.

Amphenol
Part # 316-10102-8
115Vac Type BNC DC to 3 GHz.

Fxr
Part # 300-11182
120Vac Type BNC DC to 4 GHz.
FSN 5985-543-1225

Fxr
Part # 300-11173
120Vac Type BNC Same
FSN 5985-543-1850

BNC To Banana Plug Coax Cable RG-58 36 inch or BNC to N Coax Cable RG-58 36 inch.

$29.99

$39.99

$39.99

SOLID STATE RELAYS

P&B Model ECT1D872
Svdc turn on
PRICE EACH $3.50

Digisig, Inc. Model ECS-215
Svdc turn on
PRICE EACH $7.50

Grigsby/Barton Model GB7400
Svdc turn on
PRICE EACH $7.50

NOTE: *** Items may be substituted with other brands or equivalent model numbers. ***
RECALL PHONE MEMORY TELEPHONE WITH 24 NUMBER AUTO DIALER

The Recall Phone Telephone employs the latest state of art communications technology. It is a combination telephone and automatic dialer that uses premium-quality, solid-state circuitry to assure high-reliability performance in personal or business applications. $49.99

ARON ALPHA RAPID BONDING GLUE

Super Glue #CE-486 high strength rapid bonding adhesive. Alpha Cyanoacrylate. Set-Time 20 to 40 sec., 0.7fl.oz. (20gm.) $2.00

TOUCH TONE PAD

This pad contains all the electronics to produce standard touch-tone tones. New with data. $9.99 or 10/$89.99

MITSUMI UHF/VHF VARACTOR TUNER MODEL UE1A

Perfect for those unscrambler projects. New with data. $19.99 or 10/$149.99

INTEGRATED CIRCUIT.

<table>
<thead>
<tr>
<th>MC1372P</th>
<th>Color TV Video Modulator Circuit.</th>
<th>1 to 10</th>
<th>1up</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC1358P</td>
<td>IF Amp., Limiter, FM Detector, Audio Driver, Electronic Attenuator.</td>
<td>$4.42</td>
<td>$2.95</td>
</tr>
<tr>
<td>MC1350P</td>
<td>IF Amplifier</td>
<td>5.00</td>
<td>4.00</td>
</tr>
<tr>
<td>MC1330AP</td>
<td>Low Level Video Detector</td>
<td>1.50</td>
<td>1.25</td>
</tr>
<tr>
<td>MC1310P</td>
<td>FM Stereo Demodulator</td>
<td>1.50</td>
<td>1.15</td>
</tr>
<tr>
<td>MC1496P</td>
<td>Balanced Modulator/Demodulator</td>
<td>4.29</td>
<td>3.30</td>
</tr>
<tr>
<td>LM568N</td>
<td>Phase Locked Loop</td>
<td>1.50</td>
<td>1.25</td>
</tr>
<tr>
<td>LM380N</td>
<td>2Watt Audio Power Amplifier</td>
<td>2.50</td>
<td>2.00</td>
</tr>
<tr>
<td>LM1889N</td>
<td>TV Video Modulator</td>
<td>1.56</td>
<td>1.25</td>
</tr>
<tr>
<td>NE564N</td>
<td>Phase Locked Loop</td>
<td>5.00</td>
<td>4.00</td>
</tr>
<tr>
<td>NE561N</td>
<td>Phase Locked Loop</td>
<td>10.00</td>
<td>8.00</td>
</tr>
</tbody>
</table>

FERRANTI ELECTRONICS AM RADIO RECEIVER MODEL ZN414 INTEGRATED CIRCUIT.

Features:
- 1.2 to 1.6 volt operating range
- Less than 0.5ma current consumption
- 150KHz to 3MHz Frequency range
- Easy to assemble, no alignment necessary
- Effective and variable AGC action
- Will drive an earphone direct
- Excellent audio quality
- Typical power gain of 72dB
- TO-18 package
New with data $2.99 or 10 For $24.99

NI CAD RECHARGEABLE BATTERIES

AA Battery Pack of 6 These are Factory New. $5.00

SUB C Pack of 10 2.5Amp/Hr. $10.00

Gates Rechargeable Battery Packs
- 12vdc at 2.5Amp/Hr. $11.99
- 12vdc at 5Amp/Hr. $15.99

holiday greetings!

Toll Free Number 800-528-0180 (For orders only)

PRICES SUBJECT TO CHANGE WITHOUT NOTICE

More Details? CHECK — OFF Page 132

December 1982
Eimac Tube Sockets and Chimneys

<table>
<thead>
<tr>
<th>Socket Code</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>SK110</td>
<td>Socket for 4CX5000A, R, J, 4CX10, 000D, 4CX15, 000A, J</td>
<td>$59.00</td>
</tr>
<tr>
<td>SK300A</td>
<td>Socket for 4-125A, 250A, 400A, 400C, 4PR125A, 400A, 4-500A, 5-500A</td>
<td>$560.00</td>
</tr>
<tr>
<td>SK406</td>
<td>Chimney for 4-250A, 400A, 400C, 4PR400A</td>
<td>$40.00</td>
</tr>
<tr>
<td>SK416</td>
<td>Chimney for 3-400A</td>
<td>$30.00</td>
</tr>
<tr>
<td>SK500</td>
<td>Socket for 4-1000A, 4PR1000A, B</td>
<td>$350.00</td>
</tr>
<tr>
<td>SK600</td>
<td>Socket for 4CX250B, BC, FG, R, 4CX350A, F, FJ</td>
<td>$27.00</td>
</tr>
<tr>
<td>SK602</td>
<td>Socket for 4CX250B, BC, FG, R, 4CX350A, F, FJ</td>
<td>$27.00</td>
</tr>
<tr>
<td>SK606</td>
<td>Chimney for 4CX250B, BC, FG, R, 4CX350A, F, FJ</td>
<td>$11.00</td>
</tr>
<tr>
<td>SK607</td>
<td>Socket for 4CX6001J, JA</td>
<td>$60.00</td>
</tr>
<tr>
<td>SK610</td>
<td>Socket for 4CX6001J, JA</td>
<td>$60.00</td>
</tr>
<tr>
<td>SK620</td>
<td>Socket for 4CX6001J, JA</td>
<td>$60.00</td>
</tr>
<tr>
<td>SK626</td>
<td>Chimney for 4CX6001J, JA</td>
<td>$10.00</td>
</tr>
<tr>
<td>SK636</td>
<td>Chimney for 4CX6001J, JA</td>
<td>$34.00</td>
</tr>
<tr>
<td>SK640</td>
<td>Socket for 4CX6001J, JA</td>
<td>$36.00</td>
</tr>
<tr>
<td>SK646</td>
<td>Chimney for 4CX6001J, JA</td>
<td>$71.00</td>
</tr>
<tr>
<td>SK700</td>
<td>Socket for 4CX300A, Y, 4CX125C, F</td>
<td>$225.00</td>
</tr>
<tr>
<td>SK711A</td>
<td>Socket for 4CX300A, 4CX125C, F</td>
<td>$225.00</td>
</tr>
<tr>
<td>SK740</td>
<td>Socket for 4CX300A, 4CX125F</td>
<td>$86.00</td>
</tr>
<tr>
<td>SK770</td>
<td>Socket for 4CX300A, 4CX125C, F</td>
<td>$86.00</td>
</tr>
<tr>
<td>SK800A</td>
<td>Socket for 4CX1000A, 4CX1500B</td>
<td>$225.00</td>
</tr>
<tr>
<td>SK806</td>
<td>Chimney for 4CX1000A, 4CX1500B</td>
<td>$40.00</td>
</tr>
<tr>
<td>SK810</td>
<td>Socket for 4CX1000A, 4CX1500B</td>
<td>$225.00</td>
</tr>
<tr>
<td>SK900</td>
<td>Socket for 4X500A</td>
<td>$300.00</td>
</tr>
<tr>
<td>SK906</td>
<td>Chimney for 4X500A</td>
<td>$57.00</td>
</tr>
<tr>
<td>SK1420</td>
<td>Socket for 4CX300A, Y, 4CX125C, F</td>
<td>$225.00</td>
</tr>
<tr>
<td>SK1490</td>
<td>Socket for 4CX8000A</td>
<td>$585.00</td>
</tr>
</tbody>
</table>

Johnson Tube Sockets and Chimneys

<table>
<thead>
<tr>
<th>Socket Code</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>122-0275/001</td>
<td>Socket for 3-500Z, 4-125A, 250A, 400A, 4-500A, 5-500A</td>
<td>(pair) $15.00</td>
</tr>
<tr>
<td>124-0113-00</td>
<td>Capacitor Ring</td>
<td>$15.00</td>
</tr>
<tr>
<td>813 Tube Socket</td>
<td></td>
<td>$20.00</td>
</tr>
</tbody>
</table>

Chip Capacitors

<table>
<thead>
<tr>
<th>Capacitance</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>.8pF</td>
<td>10pF</td>
</tr>
<tr>
<td>1pF</td>
<td>12pF</td>
</tr>
<tr>
<td>1.1pF</td>
<td>15pF</td>
</tr>
<tr>
<td>1.4pF</td>
<td>18pF</td>
</tr>
<tr>
<td>1.5pF</td>
<td>20pF</td>
</tr>
<tr>
<td>1.8pF</td>
<td>22pF</td>
</tr>
<tr>
<td>2.2pF</td>
<td>24pF</td>
</tr>
<tr>
<td>2.7pF</td>
<td>27pF</td>
</tr>
<tr>
<td>3.3pF</td>
<td>33pF</td>
</tr>
<tr>
<td>3.6pF</td>
<td>39pF</td>
</tr>
<tr>
<td>3.9pF</td>
<td>47pF</td>
</tr>
<tr>
<td>4.7pF</td>
<td>51pF</td>
</tr>
<tr>
<td>5.6pF</td>
<td>56pF</td>
</tr>
<tr>
<td>6.8pF</td>
<td>68pF</td>
</tr>
<tr>
<td>8.2pF</td>
<td>82pF</td>
</tr>
</tbody>
</table>

Prices

- 1 to 10 - .99¢
- 101 to 1000 - .60¢
- IS A SPECIAL PRICE: 10 for $7.50
- 11 to 50 - .90¢
- 101 & Up - .35¢
- 51 to 100 - .80¢
- 1000 For $350.00

TUBE CAPS (PLATE)

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRL, 4</td>
<td>$11.00</td>
</tr>
<tr>
<td>HRL2, 3, 6 & 7</td>
<td>$13.00</td>
</tr>
<tr>
<td>HRS, 8</td>
<td>$14.00</td>
</tr>
<tr>
<td>HRP</td>
<td>$17.00</td>
</tr>
<tr>
<td>HR40</td>
<td>$20.00</td>
</tr>
</tbody>
</table>

Watkins Johnson WJ-V907

Voltage Controlled Microwave Oscillator $110.00

<table>
<thead>
<tr>
<th>Frequency range</th>
<th>Power output</th>
<th>Min. 10dBm typical, 8dBm Guaranteed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6 to 4.2GHz</td>
<td></td>
<td>Spurious output suppression Harmonic (in dB)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Residual FM, pk to pk, Max. 5kHz, pushing factor, Max. 8kHz/V, Pulling figure (1:5 VSWR), Max. 60MHz, Tuning voltage range +1 to +15 volts, Tuning current, Max. ~0.1mA, modulation sensitivity range, Max. 120 to 30MHz/V, Input capacitance, Max. 100pF, Oscillator bias +15 to +0.05 volts @ 55mA, Max.</td>
</tr>
</tbody>
</table>

MHZ Electronics

<table>
<thead>
<tr>
<th>Toll Free Number</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>800-528-0180</td>
<td></td>
</tr>
</tbody>
</table>

(For orders only)

Prices Subject to Change Without Notice
<table>
<thead>
<tr>
<th>TYPE</th>
<th>PRICE</th>
<th>TYPE</th>
<th>PRICE</th>
<th>TYPE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2E26</td>
<td>$ 5.69</td>
<td>KT88</td>
<td>$ 20.00</td>
<td>6562/6974A</td>
<td>$ 50.00</td>
</tr>
<tr>
<td>2K28</td>
<td>100.00</td>
<td>DX362</td>
<td>50.00</td>
<td>6832</td>
<td>22.00</td>
</tr>
<tr>
<td>2X1000A</td>
<td>300.00</td>
<td>DX415</td>
<td>50.00</td>
<td>6883/8032A/8552</td>
<td>7.00</td>
</tr>
<tr>
<td>3B22</td>
<td>19.75</td>
<td>5728/T160L</td>
<td>49.00</td>
<td>6897</td>
<td>110.00</td>
</tr>
<tr>
<td>3B28/866A</td>
<td>7.50</td>
<td>592/3-200A3</td>
<td>144.00</td>
<td>6907A</td>
<td>75.00</td>
</tr>
<tr>
<td>3-500Z</td>
<td>102.00</td>
<td>807</td>
<td>7.50</td>
<td>6939</td>
<td>15.00</td>
</tr>
<tr>
<td>3-1000Z</td>
<td>400.00</td>
<td>811</td>
<td>10.00</td>
<td>7094</td>
<td>125.00</td>
</tr>
<tr>
<td>3CX1000A/8283</td>
<td>428.00</td>
<td>811A</td>
<td>15.00</td>
<td>7117</td>
<td>17.00</td>
</tr>
<tr>
<td>3CX1500A7/887</td>
<td>533.00</td>
<td>812A</td>
<td>35.00</td>
<td>7211</td>
<td>60.00</td>
</tr>
<tr>
<td>3X2500A3</td>
<td>200.00</td>
<td>813</td>
<td>50.00</td>
<td>7289/3CX100A5</td>
<td>34.00</td>
</tr>
<tr>
<td>3CX3000A7</td>
<td>490.00</td>
<td>829B</td>
<td>38.00</td>
<td>7360</td>
<td>11.00</td>
</tr>
<tr>
<td>4-65A/8165</td>
<td>45.00</td>
<td>832A</td>
<td>28.00</td>
<td>7377</td>
<td>67.00</td>
</tr>
<tr>
<td>4-125A/4D21</td>
<td>58.00</td>
<td>4624</td>
<td>310.00</td>
<td>7408</td>
<td>4.00</td>
</tr>
<tr>
<td>4-250A/5D22</td>
<td>75.00</td>
<td>4662</td>
<td>80.00</td>
<td>7650</td>
<td>250.00</td>
</tr>
<tr>
<td>4-400A/8432</td>
<td>90.00</td>
<td>4665</td>
<td>585.00</td>
<td>7695</td>
<td>8.00</td>
</tr>
<tr>
<td>4-400C/6775</td>
<td>95.00</td>
<td>5675/A</td>
<td>25.00</td>
<td>7843</td>
<td>58.00</td>
</tr>
<tr>
<td>4-1000A/8166</td>
<td>300.00</td>
<td>5721</td>
<td>200.00</td>
<td>7854</td>
<td>83.00</td>
</tr>
<tr>
<td>4B32</td>
<td>22.00</td>
<td>5768</td>
<td>85.00</td>
<td>7868</td>
<td>5.00</td>
</tr>
<tr>
<td>4E27A/5-125B</td>
<td>155.00</td>
<td>5836</td>
<td>100.00</td>
<td>7894</td>
<td>12.00</td>
</tr>
<tr>
<td>4CS250R</td>
<td>146.00</td>
<td>5837</td>
<td>100.00</td>
<td>8072</td>
<td>65.00</td>
</tr>
<tr>
<td>4X150A/7034</td>
<td>30.00</td>
<td>5861/EC55</td>
<td>110.00</td>
<td>8117A</td>
<td>130.00</td>
</tr>
<tr>
<td>4X150D/7035</td>
<td>40.00</td>
<td>5876A</td>
<td>25.00</td>
<td>8121</td>
<td>60.00</td>
</tr>
<tr>
<td>4X150G/8172</td>
<td>100.00</td>
<td>5881/6L6W</td>
<td>6.00</td>
<td>8122</td>
<td>100.00</td>
</tr>
<tr>
<td>4X250B</td>
<td>30.00</td>
<td>5893</td>
<td>45.00</td>
<td>8236</td>
<td>30.00</td>
</tr>
<tr>
<td>4CX250F/7203</td>
<td>45.00</td>
<td>5894/A</td>
<td>50.00</td>
<td>8295/PL172</td>
<td>506.00</td>
</tr>
<tr>
<td>4CX250F/G/8621</td>
<td>55.00</td>
<td>5894/B</td>
<td>60.00</td>
<td>8462</td>
<td>100.00</td>
</tr>
<tr>
<td>4CX250K/8245</td>
<td>100.00</td>
<td>5946</td>
<td>258.00</td>
<td>8505A</td>
<td>73.50</td>
</tr>
<tr>
<td>4CX250R/7580W</td>
<td>69.00</td>
<td>6080</td>
<td>10.00</td>
<td>8533W</td>
<td>92.00</td>
</tr>
<tr>
<td>4CX300A/8167</td>
<td>140.00</td>
<td>6083/A9909</td>
<td>89.00</td>
<td>8560/A</td>
<td>65.00</td>
</tr>
<tr>
<td>4CX350A/8321</td>
<td>83.00</td>
<td>6098/6AK6</td>
<td>14.00</td>
<td>8560AS</td>
<td>90.00</td>
</tr>
<tr>
<td>4CX350F/J/8904</td>
<td>95.00</td>
<td>6115/A</td>
<td>110.00</td>
<td>8608</td>
<td>34.00</td>
</tr>
<tr>
<td>4K500A</td>
<td>282.00</td>
<td>6145</td>
<td>7.00</td>
<td>8637</td>
<td>38.00</td>
</tr>
<tr>
<td>4CX600J/8809</td>
<td>607.00</td>
<td>6146A</td>
<td>7.50</td>
<td>8643</td>
<td>100.00</td>
</tr>
<tr>
<td>4CW800F</td>
<td>625.00</td>
<td>6146B/8298A</td>
<td>8.50</td>
<td>8647</td>
<td>123.00</td>
</tr>
<tr>
<td>4CX1000A/8168</td>
<td>340.00</td>
<td>6146W</td>
<td>14.00</td>
<td>8737/5894B</td>
<td>60.00</td>
</tr>
<tr>
<td>4CX1500B/8660</td>
<td>397.00</td>
<td>6156</td>
<td>66.00</td>
<td>8873</td>
<td>260.00</td>
</tr>
<tr>
<td>4CX5000A/8170</td>
<td>932.00</td>
<td>6156</td>
<td>66.00</td>
<td>8874</td>
<td>260.00</td>
</tr>
<tr>
<td>4CX10000D/8171</td>
<td>990.00</td>
<td>6161</td>
<td>233.00</td>
<td>8875</td>
<td>260.00</td>
</tr>
<tr>
<td>4CX15000A/8281</td>
<td>1260.00</td>
<td>6291</td>
<td>125.00</td>
<td>8877</td>
<td>533.00</td>
</tr>
<tr>
<td>4PR60A</td>
<td>100.00</td>
<td>6293</td>
<td>12.00</td>
<td>8908</td>
<td>12.00</td>
</tr>
<tr>
<td>4PR60B/8252</td>
<td>175.00</td>
<td>6360</td>
<td>5.00</td>
<td>8930/651Z</td>
<td>71.00</td>
</tr>
<tr>
<td>4PR400A/8188</td>
<td>192.00</td>
<td>6524</td>
<td>53.00</td>
<td>8950</td>
<td>12.00</td>
</tr>
<tr>
<td>5CX1500A</td>
<td>569.00</td>
<td>6550</td>
<td>10.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TUBES

<table>
<thead>
<tr>
<th>TYPE</th>
<th>PRICE</th>
<th>TYPE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>6BK4C</td>
<td>6.00</td>
<td>6J6M</td>
<td>6.00</td>
</tr>
<tr>
<td>6DQ5</td>
<td>5.00</td>
<td>6JN6</td>
<td>6.00</td>
</tr>
<tr>
<td>6FW5</td>
<td>6.00</td>
<td>6J56G</td>
<td>6.00</td>
</tr>
<tr>
<td>6GE5</td>
<td>6.00</td>
<td>6K6G/EL505</td>
<td>6.00</td>
</tr>
<tr>
<td>6GJ5</td>
<td>6.00</td>
<td>6K6</td>
<td>6.00</td>
</tr>
<tr>
<td>6HS5</td>
<td>6.00</td>
<td>6K6G</td>
<td>6.00</td>
</tr>
<tr>
<td>6JB5/6HE5</td>
<td>6.00</td>
<td>6LP6</td>
<td>6.00</td>
</tr>
<tr>
<td>6JB6A</td>
<td>6.00</td>
<td>6LQ6 (GE)</td>
<td>6.00</td>
</tr>
</tbody>
</table>

NOTICE ALL PRICES ARE SUBJECT TO CHANGE WITHOUT NOTICE !!
TUBES MAY EITHER BE NEW OR SURPLUS CONDITION !!
"TVRO BOARD LIST"

70 MHz IF BOARD: This circuit provides about 43 dB gain with 50 ohm input and output impedance. It is designed to drive the Demodulator. The on-board bypass filter can be tuned to bandwidths between 20 and 35 MHz with a passband ripple of less than 4 dB. Hybrid ICs are used for the gain stages.

SINGLE AUDIO BOARD: This circuit recovers the audio signals from the 6.8 MHz frequency. The Miller 9051 coils are tuned to pass the 6.8 MHz subcarrier and the 9052 coil tunes for recovery of the audio.

DUAL AUDIO BOARD: Duplicate of the single audio but also covers the 6.2 range.

DC CONTROL BOARD: No description.

DUAL AUDIO BOARD

<table>
<thead>
<tr>
<th>Printed Circuit Board</th>
<th>PRICE EACH</th>
</tr>
</thead>
<tbody>
<tr>
<td>$25.00</td>
<td></td>
</tr>
<tr>
<td>3.7Kf sm</td>
<td>$1.00</td>
</tr>
<tr>
<td>2.2Kf sm</td>
<td>$1.00</td>
</tr>
<tr>
<td>50pf sm</td>
<td>$1.00</td>
</tr>
<tr>
<td>68pf sm</td>
<td>$1.00</td>
</tr>
<tr>
<td>91pf sm</td>
<td>$1.00</td>
</tr>
<tr>
<td>.001ufmd</td>
<td>$.35</td>
</tr>
<tr>
<td>.01ufmd</td>
<td>$.35</td>
</tr>
<tr>
<td>.0ufmd</td>
<td>$.35</td>
</tr>
<tr>
<td>47ufmd 25vd</td>
<td>$.35</td>
</tr>
<tr>
<td>1ufmd 10vd</td>
<td>$.39</td>
</tr>
<tr>
<td>2ufmd 5vd</td>
<td>$.59</td>
</tr>
<tr>
<td>4ufmd 25vd</td>
<td>$1.29</td>
</tr>
<tr>
<td>220Kf 1/4w</td>
<td>$.15</td>
</tr>
<tr>
<td>150Kf 1/4w</td>
<td>$.15</td>
</tr>
<tr>
<td>6.8Kf 1/4w</td>
<td>$.15</td>
</tr>
<tr>
<td>3.9Kf 1/4w</td>
<td>$.15</td>
</tr>
<tr>
<td>2.2Kf 1/4w</td>
<td>$.15</td>
</tr>
<tr>
<td>1Kf 1/4w</td>
<td>$.15</td>
</tr>
<tr>
<td>10 ohm 1/4w</td>
<td>$.15</td>
</tr>
<tr>
<td>20Kf pots</td>
<td>$.10</td>
</tr>
<tr>
<td>5Kf pot</td>
<td>$.10</td>
</tr>
<tr>
<td>CA3085</td>
<td>$2.16</td>
</tr>
<tr>
<td>LM380</td>
<td>$1.56</td>
</tr>
<tr>
<td>7812 Voltage Reg.</td>
<td>$1.27</td>
</tr>
<tr>
<td>2N2222</td>
<td>$0.50</td>
</tr>
<tr>
<td>Miller 9051</td>
<td>$5.99</td>
</tr>
<tr>
<td>Miller 9052</td>
<td>$5.99</td>
</tr>
<tr>
<td>TOTAL KIT PRICE</td>
<td>$97.62</td>
</tr>
</tbody>
</table>

DC CONTROL BOARD

<table>
<thead>
<tr>
<th>Printed Circuit Board</th>
<th>PRICE EACH</th>
</tr>
</thead>
<tbody>
<tr>
<td>$15.00</td>
<td></td>
</tr>
<tr>
<td>470ufmd 25vd</td>
<td>$1.29</td>
</tr>
<tr>
<td>4.7ufmd 25vd</td>
<td>$.59</td>
</tr>
<tr>
<td>1meg 1/4w</td>
<td>$.15</td>
</tr>
<tr>
<td>TOTAL KIT PRICE</td>
<td>$97.62</td>
</tr>
</tbody>
</table>

DEMODULATOR BOARD

<table>
<thead>
<tr>
<th>Printed Circuit Board</th>
<th>PRICE EACH</th>
</tr>
</thead>
<tbody>
<tr>
<td>$40.00</td>
<td></td>
</tr>
<tr>
<td>1ufmd 35vd</td>
<td>$.59</td>
</tr>
<tr>
<td>47ufmd 50vd disc</td>
<td>$.35</td>
</tr>
<tr>
<td>470ufmd 25vd</td>
<td>1.29</td>
</tr>
<tr>
<td>100ufmd 16vd</td>
<td>$.69</td>
</tr>
<tr>
<td>2ufmd 35vd</td>
<td>$.59</td>
</tr>
<tr>
<td>47ufmd 35vd</td>
<td>$.59</td>
</tr>
<tr>
<td>4300pf sm</td>
<td>$2.00</td>
</tr>
<tr>
<td>330pf sm</td>
<td>$1.00</td>
</tr>
<tr>
<td>100pf sm</td>
<td>$.10</td>
</tr>
<tr>
<td>91pf sm</td>
<td>$.10</td>
</tr>
<tr>
<td>2pf sm</td>
<td>$.10</td>
</tr>
<tr>
<td>2 to 8pf ceramic trimmer</td>
<td>$1.00</td>
</tr>
<tr>
<td>100uf choke</td>
<td>$1.50</td>
</tr>
<tr>
<td>4.7uf choke</td>
<td>$1.50</td>
</tr>
<tr>
<td>2.7uf choke</td>
<td>$.50</td>
</tr>
<tr>
<td>TOTAL KIT PRICE</td>
<td>$86.65</td>
</tr>
</tbody>
</table>

SINGLE AUDIO BOARD

<table>
<thead>
<tr>
<th>Printed Circuit Board</th>
<th>PRICE EACH</th>
</tr>
</thead>
<tbody>
<tr>
<td>$15.00</td>
<td></td>
</tr>
<tr>
<td>3pf sm</td>
<td>$1.00</td>
</tr>
<tr>
<td>11pf sm</td>
<td>$1.00</td>
</tr>
<tr>
<td>50pf sm</td>
<td>$1.00</td>
</tr>
<tr>
<td>68pf sm</td>
<td>$1.00</td>
</tr>
<tr>
<td>91pf sm</td>
<td>$1.00</td>
</tr>
<tr>
<td>.001ufmd</td>
<td>$.35</td>
</tr>
<tr>
<td>.01ufmd</td>
<td>$.35</td>
</tr>
<tr>
<td>TOTAL KIT PRICE</td>
<td>$55.14</td>
</tr>
</tbody>
</table>

TVRO BOARD DESCRIPTION AND PARTS LIST

DUAL CONVERSION BOARD: This board provides conversion from the 3.7-4.2 band first to 70 MHz where gain and bandwidth filtering are provided and, second, to 70 MHz. The board contains both local oscillators, one fixed and the other variable, and the second mixer. Construction is greatly simplified by the use of Hybrid IC amplifiers for the gain stages.

DEMODULATOR BOARD: This circuit takes the 70 MHz center frequency satellite TV signal in the 18 to 200 mill伏 voltage range, detects then using a phase lock loop, de-emphasizes and filters the result to produce standard NTSC video. Other outputs include the audio subcarrier, a DC voltage proportional to the strength of the 70 MHz signal, and AFC voltage centered at about 2 volts DC.

70 MHz IF BOARD

<table>
<thead>
<tr>
<th>Printed Circuit Board</th>
<th>PRICE EACH</th>
</tr>
</thead>
<tbody>
<tr>
<td>$25.00</td>
<td></td>
</tr>
<tr>
<td>TOTAL KIT PRICE</td>
<td>$97.62</td>
</tr>
</tbody>
</table>

THE ELECTRONICS

P RICES S UBJECT T O C HANGE W ITHOUT N OTICE
“CHIPS”

FAIRCHILD VHF AND UHF PRESCALER CHIPS

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency Range</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>95/90 DC</td>
<td>350MC Prescaler divide by 10/11</td>
<td>$8.50</td>
</tr>
<tr>
<td>95/91 DC</td>
<td>350MC Prescaler divide by 5/6</td>
<td>$6.50</td>
</tr>
<tr>
<td>110/90 DC</td>
<td>650MC Prescaler divide by 10/11</td>
<td>15.50</td>
</tr>
<tr>
<td>11091 DC</td>
<td>650MC Prescaler divide by 5/6</td>
<td>15.50</td>
</tr>
<tr>
<td>110C06 DC</td>
<td>UHF Prescaler 75MC D Type Flip Flop</td>
<td>12.30</td>
</tr>
<tr>
<td>110C05 DC</td>
<td>1GHz Counter Divide by 4</td>
<td>(Regular price $75.00) 50.00</td>
</tr>
<tr>
<td>110C01FC</td>
<td>High Speed Dual 5/4 Input NO/INOR Gate</td>
<td>15.40</td>
</tr>
<tr>
<td>82590</td>
<td>Presettable High Speed Decade/Binary</td>
<td></td>
</tr>
<tr>
<td>Counter used with the 110C90/91 or the 9589091 Prescaler can divide by 100 (Signetics)</td>
<td>5.00</td>
<td></td>
</tr>
<tr>
<td>110C240 DC</td>
<td>This chip is the same as a Motorola MC4024/4324 Dual TTL Voltage Control Multivibrator.</td>
<td>3.37</td>
</tr>
<tr>
<td>110C440 DC</td>
<td>This chip is the same as a Motorola MC4044/4344 Phase Frequency Detector.</td>
<td>3.37</td>
</tr>
</tbody>
</table>

GENERAL ELECTRIC CO. GUNN DIODE MODEL 2167F

- Freq. Gap (GHz) 12 to 18, Output (Min.) 100mW, Duty (%) CW, Typ. Bias (Vdc) 8.0, Type: Oper. (mAdc) 550, Max. Thres. (mAdc) 1000, Max. Bias (Vdc) 10.0 | $39.99 |

VARICIAN GALLIUM ARSENIDE GUNN DIODES MODEL VSX-920155

- Freq. Coverage 8 to 12.4GHz, Output (Min.) 100mW, Bias Voltage (Max.) 14vd, Bias current (mAdc) Operating 550 Typ. 750 Max., Threshold 850 Typ. 1000 Max | $39.99 |

VARIL Co. Inc. MODEL SS-43 AM MODULATOR

- Freq. Range 60 to 150MC, Insertion Loss 13dB Nominal, Signal Port Imp. 50ohms Nominal, Signal Port RF Power +10dBm Max., Modulation Port BW DC to 1KHZ, Modulation Port Bias 1mA Nominal | $24.99

AVANTEK CASCADABLE MODULAR AMPLIFIERS

- Model UTO-504 | UTO-511 |
- Frequency Range | 5 to 500 MHz | 5 to 500 MHz |
- Gain | 6dB | 15dB |
- Noise Figure | 11dB | 23dB to 3dB |
- Power Output | +17dB | -2dB to |
- Gain Flatness | 1dB | 2dB to |
- Input Power Vdc | +24 | +15 |
- mA | 100 | 10 |

PRICE $75.00 $75.00

HEWLETT PACKARD MIXERS MODELS

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency Range</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>10514A</td>
<td>2MHz to 500MC</td>
<td>10514B</td>
</tr>
</tbody>
</table>

Input/Output Frequency L & R | 200KHz to 200KHz |
Input/Output Frequency L & R | 500MC to 500MC |
Input/Output Frequency L & R | DC to 500MC |
Noise Performance (SSB) (A) | 7dB |
Noise Performance (SSB) (B) | 9dB |
Noise Performance (SSB) (C) | 9dB |

PRICE $49.99 $39.99

FREQUENCY SOURCES, INC MODEL MS-74X MICROELECTRONIC SIGNAL SOURCE

- MS-74X: Mechanically Tunable Frequency Range (MHz) 10630 to 11230 (10.63 to 11.23GHz) Minimum Output Power (mW) 10, Overall Multiplier Ratio 108, Internal Crystal Oscillator Frequency Range (MHz) 98.4 to 104.0, Maximum Input Current (mA) 400 |

- Our Price $1158.00 (These are NEW) $289.00

HEWLETT PACKARD 1N5712 MICRO Diode

This diode will replace the MBD101, 1N5711, 5082 2800, 5082 2825 ect. This will work alike in all those Down Converter projects $1.50 or 10/$10.00

MOTOROLA MWL1172R LOW DISTORTION WIDEBAND AMPLIFIER MODULE

- Frequency Range 40 to 300 MHz, Power Gain at 50MHz 16.6m, 17.4m, Gain Flatness ±1 Typ ±0.2 Max dB, DC Supply Voltage –28v, DC Voltage Input +70BmV

PRICE $29.99

GENERAL ELECTRIC AA NICADS

- Model #41B95D011 G1
- Pack of 6 for $5.00 or 60 Cells, 10 Packs for $45.00

These may be broken down to individual cells.

ORDNER INSTRUCTIONS

DEFFECTIVE MATERIAL All claims for defective material must be made within sixty (60) days after receipt of parcel. All claims must include the defective material for testing purposes; our invoice number and the date of purchase. All returns must be shipped prepaid and insured to avoid any loss.

DELIVERY: Orders are normally shipped within 24 hours after receipt of customer's order. If a part has to be back-ordered the customer is notified. Our normal shipping method is UPS F.O.B. Chicago. When the purchase order is shipped, the package is normally shipped at the customer's expense. All claims for damage in transit must be filed with the carrier. In no event shall we be liable for loss or damage resulting from acts of God.

REORDER: A minimum of a six (6) month supply of any item will be shipped with no charge. Orders for less than a six (6) month supply of any item will be shipped at the normal price. Orders for less than a six (6) month supply of any item will be charged at a six (6) month supply of any item.

SHIPPING: All orders are shipped F.O.B. Chicago. The customer is responsible for all shipping charges on orders shipped F.O.B. Chicago. All orders shipped F.O.B. Chicago are subject to an additional shipping charge.

ORDERING INSTRUCTIONS

DEFECTIVE MATERIAL: All claims for defective material must be made within sixty (60) days after receipt of parcel. All claims must include the defective material for testing purposes; our invoice number and the date of purchase. All returns must be shipped properly to avoid any loss. All returns must be shipped prepaid and insured to avoid any loss. All returns must be shipped prepaid and insured to avoid any loss.

DELIVERY: Orders are normally shipped within 24 hours after receipt of customer's order. If a part has to be back-ordered the customer is notified. Our normal shipping method is UPS F.O.B. Chicago. When the purchase order is shipped, the package is normally shipped at the customer's expense. All claims for damage in transit must be filed with the carrier. In no event shall we be liable for loss or damage resulting from acts of God.

REORDER: A minimum of a six (6) month supply of any item will be shipped with no charge. Orders for less than a six (6) month supply of any item will be shipped at the normal price. Orders for less than a six (6) month supply of any item will be charged at a six (6) month supply of any item.

SHIPPING: All orders are shipped F.O.B. Chicago. The customer is responsible for all shipping charges on orders shipped F.O.B. Chicago. All orders shipped F.O.B. Chicago are subject to an additional shipping charge.

TERMS: DOMESTIC: Prepaid, COD or Credit Card

FOREIGN: Prepaid only, U.S. Funds—money order or cashier's check only.

C.O.D.: Acceptable by telephone or mail. Payment from customer will be by cash, money order or cashier's check. We are sorry but we cannot accept personal checks for C.O.D.'s.

CONFORMING ORDERS: We will endeavor to conform orders not sent after a telephone order has been placed. If company policy necessitates a confirming order, please mark "CONFIRMING ORDER" boldly on the order. If problems or duplicate shipments occur due to an order which is not properly marked, customers will be held responsible for any charges incurred, plus a 10% restock charge on returned parts.

CREDIT CARDS: We accept Mastercard Visa and American Express.

DATA SHEETS: When we have data sheets in stock on devices we do supply them with the order.

MHZ electronics

(820) 242-3037
(820) 242-9918
2111 W. Camellback Road
Phoenix, Arizona 85015
Toll Free Number 800-528-0180
(For orders only)

More Details? CHECK — Off Page 132

December 1982
Ham Radio's guide to help you find your loc

California

C & A ELECTRONIC ENTERPRISES
22010 S. WILMINGTON AVE.
SUITE 105
CARSON, CA 90745
213-834-5868
Not The Biggest, But The Best — Since 1962.

FONTANA ELECTRONICS
8628 SIERRA AVENUE
FONTANA, CA 92335
714-822-7770
714-822-7725
The Largest Electronics Dealer in San Bernardino County.

JUN'S ELECTRONICS
3919 SEPULVEDA BLVD.
CULVER CITY, CA 90230
213-390-8003
Trades
714-463-1886 San Diego
800-882-1343

Connecticut

HATRY ELECTRONICS
500 LEDYARD ST. (SOUTH)
HARTFORD, CT 06114
203-527-1881
Call today. Friendly one-stop shopping at prices you can afford.

Delaware

DELWARE AMATEUR SUPPLY
71 MEADOW ROAD
NEW CASTLE, DE 19720
302-328-7728
800-441-7008
Icom, Ten-Tec, DenTron, Yaesu, Azden, Kantronics, Santec and more.
One mile off I-95, no sales tax.

Florida

AMATEUR ELECTRONIC SUPPLY
1898 DREW STREET
CLEARWATER, FL 33515
813-461-HAMS
Clearwater Branch
West Coast's only full service Amateur Radio Store.

Massachusetts

TEL-COM, INC.
675 GREAT ROAD, RTE. 119
LITTLETON, MA 01460
617-486-3040
617-486-3400 (this is new)
The Ham Store of New England
You Can Rely On.

Minnesota

MIDWEST AMATEUR RADIO SUPPLY
3452 FREMONT AVE. NO.
MINNEAPOLIS, MN 55412
612-521-4662
It's service after the sale that counts.

Nevada

AMATEUR ELECTRONIC SUPPLY
1072 N. RANCHO DRIVE
LAS VEGAS, NV 89106
702-647-3114
Dale Porray “Squeak,” AD7K
Outside Nev: 1 (800) 634-6227
JUN'S ELECTRONICS
460 E. PLUMB LANE - 107
RENO, NV 89502
702-827-5732
Outside Nev: 1 (800) 648-3962
Icom — Yaesu Dealer

New Jersey

RADIOS UNLIMITED
P. O. BOX 347
1760 EASTON AVENUE
SOMERSET, NJ 08873
201-469-4599
800-526-0903
New Jersey’s only factory authorized Yaesu and Icom distributor. New and used equipment. Full service shop.

New Hampshire

TUFTS ELECTRONICS
61 LOWELL ROAD
HUDSON, NH 03051
603-883-5005
New England’s friendliest ham store.

New Jersey

ROUTE ELECTRONICS 46
225 ROUTE 46 WEST
TOTOWA, NJ 07512
201-256-9555

ROUTE ELECTRONICS 17
777 ROUTE 17 SOUTH
PARAMUS, NJ 07625
201-444-8717
Drake, Cubic, DenTron, Yaesu, Cushcraft, Hustler, Larsen, MFJ, Butternut, Fluke & Beckman Instruments, etc.

Dealers: YOU SHOULD BE HERE TOO!
Contact Ham Radio now for complete details.
New York

BARRY ELECTRONICS
512 BROADWAY
NEW YORK, NY 10012
212-925-7000
New York City's Largest Full Service
Ham and Commercial Radio Store.

GRAND CENTRAL RADIO
124 EAST 44 STREET
NEW YORK, NY 10017
212-599-2630
Drake, Kenwood, Yaesu, Atlas,
Ten-Tec, Midland, DenTron, Hy-Gain,
Mossley in stock.

HARRISON RADIO CORP.
20 SMITH STREET
FARMINGDALE, NY 11735
516-293-7990
"Ham Headquarters USA" since
1925. Call toll free 800-645-9187.

RADIO WORLD
ONEIDA COUNTY AIRPORT
TERMINAL BLDG.
ORISKANY, NY 13424
TOLL FREE 1 (800) 448-9338
NY Res. 1 (315) 337-0203
Authorized Dealer — ALL major
Amateur Brands. We service
everything we sell! Warran K2IXN or Bob WA2MSH.

Ohio

AMATEUR ELECTRONIC SUPPLY
28940 EUCLID AVE.
WICKLiffe, OH (CLEVELAND AREA) 44092
216-585-7368
Ohio Wats: 1 (800) 362-0290
Outside Ohio: 1 (800) 321-3594

UNIVERSAL AMATEUR RADIO, INC.
1280 AIDA DRIVE
REYNOLDSBURG (COLUMBUS), OH 43068
614-866-4267
Featuring Kenwood and all other
Ham gear. Authorized sales and service.
Shortwave headquarters. Near l-270 and airport.

Oklahoma

DERRICK ELECTRONICS, INC.
714 W. KENOSHA — P.O. BOX A
BROKEN ARROW, OK 74012
Your Discount Ham equipment dealer
in Broken Arrow, Oklahoma
1-800-331-3688 or
1-918-251-9923

Pennsylvania

HAMTRONICS,
DIV. OF TREVOSE ELECTRONICS
4033 BROWNSVILLE ROAD
TREVOSVILLE, PA 19047
215-357-1400
Same Location for 30 Years.

LaRUE ELECTRONICS
1112 GRANDVIEW STREET
SCRANTON, PENNSYLVANIA 18509
717-343-2124
Icom, Bird, Cushcraft, Beckman,
Fluke, Larsen, Hustler, Astron,
Antenna Specialists, W2AU/W2VS,
AEA, B&W, CDE, Sony, Vibroplex.

Texas

MADISON ELECTRONICS SUPPLY
1505 MCKINNEY
HOUSTON, TX 77010
713-658-0268
Christmas?? Now?? See ad index
page.

Virginia

ELECTRONIC EQUIPMENT BANK
516 MILL STREET, N.E.
VIENNA, VA 22180
703-938-3350
Metropolitan D.C.'s One Stop
Amateur Store. Largest Warehousing
of Surplus Electronics.

Wisconsin

AMATEUR ELECTRONIC SUPPLY
4828 W. FOND DU LAC AVE.
MILWAUKEE, WI 53216
414-442-4200
Wisc. Wats: 1 (800) 321-5195
Outside Wisc: 1 (800) 558-0411

SAY YOU SAW IT IN
Ham radio!

December 1982
high-frequency antennas

Aligning Yagi beam elements (HN) W4ASON p. 92, May 81
Base-loaded vertical antenna for 160 meters W6XM p. 64, Aug 80
Beverage antenna for 40 meters KGBRT p. 58, Jul 79
Big quad — small yard W6SUN p. 56, May 80
Butterfly beam W1KU p. 30, May 81
Compact loop antenna for 80 and 40 meters W6TQ p. 24, Oct 79
De-icing the quad (HN) W5TR p. 75, Aug 80
Delta loop, top-loaded W1DTV p. 57, Dec 78
Dipole antenna over sloping ground N4HI p. 16, May 82
Dipole antenna, trimming the (HN) W5NPQ p. 69, Jul 81
Folded end-fire radiator N7WD p. 44, Oct 80
Folded umbrella antenna W6LQI p. 38, May 79

Ground-mounted vertical for the lower bands, improved (HN) W5NPQ p. 68, Nov 80
Ground systems for vertical antennas W6BQJ p. 31, Aug 79
Half-square antenna, the N8AN p. 48, Dec 81
Short circuit W6BQJ p. 79, Oct 82
Half-wave vertical VE2CV p. 36, Sep 81
Ham radio techniques W6SAA p. 32, Sep 81
High-frequency Yagi antennas, understacking W1XT p. 62, Jun 80
High-gain phased array, experimental K77EM p. 44, May 80
Short circuit W6BQJ p. 67, Sep 80
Junk-box portable antenna W5SMJ p. 24, Oct 81
K7CW quad W71TB p. 36, Sep 82
Log-periodic antennas for high-frequency Amateur bands W4AEO, W6PYK p. 67, Jan 80
Log-periodic fixed-wire beams for 75-meter DX W4AEO, W6PYK p. 40, Mar 80
Log-periodic fixed-wire beams for 40 meters W4AEO, W6PYK p. 26, Apr 80
Log period design W5PYK, WA4EO p. 34, Dec 79
Loop antenna, compact (letter) W6QR p. 6, Feb 80
Low-band antenna problem, solution to W6YFB p. 46, Jan 78
Mobile color code (letter) WB6JFD p. 90, Jan 78
Mobile high-frequency antenna, refinements to W3NZ p. 34, Jun 81
Multiband antenna system W6AOU p. 62, May 79
Multiband vertical antenna system W6CNU p. 28, May 78
Open quad antenna W6Q p. 36, Jul 80
Phased antenna (letter) Thacker, Jerry W6Q p. 6, Oct 78
Phased vertical antenna for 21 MHz W6XM p. 42, Jun 80
Phased vertical arrays, pattern calculations for W6XHR p. 40, May 81
Quad antenna, modified
ZF1MA p. 68, Sep 78
Quad antenna, repairs (HN)
K9MM p. 67, May 78
Quad for 7.28 MHz
W2NZ p. 12, Nov 80
Quad owner switches
N6NB, W6AQ p. 12, May 82
Comments, W6BDQ p. 8, Dec 82
Quad, three-element, for 15-20 meters using circular
elements
W4GVO p. 12, May 80
Quad, three-element switchable, for 40 meters
N6ET p. 26, Oct 80
Quad variations, more (HN)
W2TRS p. 72, Oct 80
Short circuit
W1HA p. 70, Feb 82
Quads vs Yagi’s revisited
N6NB, Comments, W6MMV, N6NB p. 80, Oct 79
Selective receiving antennas
W2TRS p. 20, May 78
Short antennas, efficiency of
W1GV4 p. 18, Sep 82
Shunt-fed tower (HN)
N6HZ p. 74, Nov 79
Six-element wide-beam for 10 (ham radio techniques)
W6SAI p. 30, Dec 81
Small beams, high performance
G6XN p. 12, Mar 79
Stressed quad (HN)
W6TUL p. 40, Sep 78
Suspended long Yagi (ham radio techniques)
W6SAI p. 34, Nov 81
The K2GNC Giza beam
W2GNC p. 52, May 81
Trapped antenna, trapping the mysteries of
N3GO p. 10, Oct 81
Comments, K9CZB p. 8, Feb 82
Traps and trap antennas
W6FPX p. 34, Aug 79
Triband Yagi beam (ham radio techniques)
W6SAI p. 68, Jan 81
Two delta loops fed in phase
W6KH p. 60, Aug 81
Vertical antenna for 40 and 75 meters
W6PKY p. 44, Sep 79
Vertical antenna, portable
W8ANWL p. 46, Jun 78
W8UK antenna, a new look at
OD5CG p. 60, Jul 81
Wilson Mark II and IV, modifications to (HN)
W9EPF p. 89, Jan 80
Windom antennas
K4KJ p. 10, May 78
Windom antenna (letter)
K6KA p. 6, Nov 78
Pt. I Yagi antenna design: performance calculations
W2PWY p. 23, Jan 80
Short circuit
W1HY p. 66, Sep 80
Pt. II Yagi antenna design: experiments confirm
computer analysis
W2PWY p. 19, Feb 80
Pt. III Yagi antenna design: performance of multi-
element simplistic beams
W2PWY p. 15, May 80
Pt. IV Yagi antenna design: multi-element simplistic
beams
W2PWY p. 33, Jun 80
Pt. V Yagi antenna design: optimizing performance
W2PWY p. 18, Jul 80
Pt. VI Yagi antenna design: quads and quagis
W2PWY p. 37, Sep 80
Pt. VII Yagi antenna design: ground or earth effects
W2PWY p. 29, Oct 80
Pt. VIII Yagi antenna design: stacking
W2PWY p. 22, Nov 80
Pt. IX Yagi antennas: practical designs
W2PWY p. 30, Dec 80
Yagi beam elements, aligning (HN)
W2ZBO p. 79, Jan 81
ZL, special antenna, ‘‘10-meter, for indoor use
K5AN p. 50, May 80
3.5-MHz broadband antennas
W3LU p. 44, May 79
3.5-MHz sloping antenna array
W3LU p. 70, May 79
3.5-MHz tree-mounted ground-plane
K2INA p. 48, May 78
7-MHz antenna array
K7CW p. 30, Aug 78
7-MHz rotary beam
W7DJ p. 34, Nov 78
14-MHz delta-loop array
N2GW p. 16, Sep 78
vhf antennas
Antenna-performance measurements
using celestial sources
W5CQ/W4RKY p. 75, May 79
Dual quad array for two meters
W7JLO p. 30, May 80
Folded whip antenna for vhf mobile — Weekender
W6BZV p. 50, Apr 79
Ham radio techniques
W6SAI p. 32, Sep 79
Inexpensive five-eighth wave groundplane (HN)
W7ZCD p. 64, Mar 81
Magnetic mount for mobile antennas
W6NB p. 52, Nov 78
Microwave-antenna designers, challenge for
W6FOO p. 44, Aug 80
Microwave antenna, homebrew
W9BVI, Johnson p. 66, Sep 82
Multiband J antenna
W6BPI p. 74, Jul 78
Oscar 11’s antenna system
WA1NKP p. 70, May 78
Re-entrant cavity antenna for the VHF bands
W6KEE p. 12, May 81
True north, how to determine for antenna orientation
K4DE p. 38, Oct 80
Comments, N6XQ, K4DE p. 7, Mar 81
Using a 2-meter quarter-wave whip on 450 MHz (HN)
K12JH p. 92, May 81
Yagi u.hf antenna simplified (HN)
W3CWP p. 74, Nov 79
144-MHz mobile antenna
W6QOB p. 68, May 79
296-MHz antenna, high-gain
W3AE0 p. 74, May 78
matching and tuning
A coreless balun
W2ASON p. 62, May 81
Active antenna coupler for VLF
Burhans, Ralph W. p. 46, Oct 79
Antenna bridge calculations
Anderson, Leonard H. p. 34, May 78
Antenna bridge calculations (letter)
W2JAR p. 6, Aug 78
Antenna bridge calculations
K5GO p. 85, Mar 81
Short circuit
W2JAR p. 84, Nov 81
Antenna match, quick and simple
Anderson, Leonard H. p. 58, Jan 81
Short circuit
W2JAR p. 70, Feb 82
Antenna tuners (ham radio techniques)
W6SAI p. 30, Jul 81
Balun design, another
W6PHH p. 54, May 82
Broadband balun, high performance
K4KJ p. 28, Feb 80
Broadband balun, simple and efficient
W1JR p. 12, Sep 78
Broadband reflectometer and power meter
VK2ZTB, VK2ZZQ p. 28, May 79
Coaxial-line transformers, a new class of
W3CQ/W4RKY p. 12, Feb 80
Short circuit
W3CQ/W4RKY p. 70, Mar 80
Short circuit
W3CQ/W4RKY p. 67, Sep 80
Wave-balun: theory and application
K4KJ p. 32, Sep 80
Ham radio techniques
W6SAI p. 42, Oct 81
High-frequency mobile antenna matchers, simple
W6ECK p. 20, Jun 81
Johnson Matchbox, improved
K4EIV p. 45, Jul 79
K4EIV p. 92, Sep 79
L-matching network, appreciating the
W4AETH p. 27, Sep 80
Low-pass antenna matching unit, inductance-tuned
W8YBF p. 24, May 82
Low swr, how important?
W1GV4 p. 33, Aug 81
Comments K1KSY, W1GV4 p. 6, Dec 81
Macromatcher: increasing versatility
K9CZB p. 68, Jun 80
Matching complex antenna loads to coaxial transmission lines
W6TAUL p. 52, May 79
Matching sections
K7LJH p. 68, Mar 82
Matching transformers, multiple-quarter-wave
K3BY p. 44, Nov 78
Noise bridge construction (letter)
OH2ZAZ p. 4, Sep 78
Noise bridge calculations with
T156/89 calculators
W4DGR p. 45, May 78
Omega-matching networks, design of
W3TBF p. 54, May 78
Optimumipl-network design
DLRLX p. 50, Sep 80
Swr meter
W6SAI p. 68, Nov 80
Swr meter, how accurate? (HN)
W9BTO p. 78, Jan 81
Swr meter for the high-frequency bands
W6BAPF p. 62, Oct 81
Swr, what is your?
N4JE p. 68, Nov 79
T-Network impedance matching to coaxial feedlines
W3BMY p. 22, Sep 78
Tandem pi networks
W8MUR p. 32, Jul 82
Transformers, coaxial-line
W3TC p. 18, Mar 80
towers and rotators
Antenna guys and structural solutions
W6RKT p. 33, Jun 78
Antenna position display
AE4K p. 16, Feb 79
Armstrong beam rotator
K5AQM p. 68, Feb 82
CDE tailwister rotor, pulse-position control of
W4BEXW p. 30, Jan 81
Ham-motor automatic position control
W6BGNM p. 42, May 77
Ham-M rotor control box, modification of (HN)
K4DJ-LW41DRD p. 68, Nov 80
KLM antenna rotor, computer control for (HN)
W6MQW p. 66, Feb 81
Rotator starting capacitors (letter)
W6BVX p. 92, Sep 79
Short circuit
W6BVX p. 70, Mar 80
transmission lines
Antiflex coaxial cable connection (HN)
W4K p. 42, May 82
Cheapie coax (letter)
W4HAH p. 8, May 82
Coax cable, repairing water damage (HN)
W5WX p. 73, Dec 79
Coax cable, salvaging water-damaged (HN)
W5WX p. 88, Jan 80

December 1982
Coaxial cable connectors, homebrew hardline-to-uhf
K2QYO p. 32, Apr 80
Coaxial connectors, sealing, (HN) W5XV p. 64, Mar 80 Letter K7ZFG p. 6, Oct 80
Coaxial-line transformers, a new class of W6TC p. 12, Feb 80 Short circuit p. 70, Mar 80
Motor, E p. 67, Sep 80
Coax, measuring with an RCL bridge (MN) WB9TQG p. 78, Oct 82
Connectors for CATV coax cable WI1M p. 52, Oct 79
Hardline, matching 75 to 50-ohm W4VRF p. 43, Oct 82
Hybrid coupler W1QG p. 36, Jun 82
Matching transformers, multiple quarter-wave K3BY p. 44, Nov 78
Matching 75-ohm CATV hardline to 50-ohm system K1XX p. 31, Sep 78
Measuring coax cable loss with an swr meter WB9TQG p. 35, May 81 Comments, WA4KMP, WB9TQG p. 6, Sep 81 Comments, WAPPB p. 8, Feb 82
Pl, pi-L, and tandem quarter-wave line matching networks, response of W6UM p. 12, Feb 82
Plumber's delight coax connector (weekender) PL-259 connectors, attaching to RG-58U cable (MN) WB9VF p. 81, Jan 82
RF power divider (HN) W6IO p. 60, Feb 82
T coupler, the (HN) K3KUX p. 66, Nov 80
Time-domain reflectometry, checking transmission lines with K7CG p. 32, Jul 80
Transformers, coaxial-line W6TC p. 18, Mar 80
Transmission-line circuit design for 50 MHz and above W6GGV p. 38, Nov 80
Transmission-line design, Pt. 2: distributed resonant circuits in uhf/vhf lines W6GGV p. 62, Jan 81
Transmission-line design, Pt. 3: distributed resonant circuits in uhf/vhf lines W6GGV p. 58, Feb 81
Transmission-line design, Pt. 4: distributed resonant circuits in uhf/vhf lines W6GGV p. 64, Mar 81
Transmission-line design, Pt. 5: 50 MHz and above W6GGV p. 72, Apr 81
Transmission lines, long, for optimum antenna location N4UH p. 12, Oct 80
Transmit/receive switch, solid-state vhf/uhf W3WCH p. 54, Feb 78
Zip-code feedlines (HN) W7FXX p. 32, Apr 82
Zip-code feedlines (letter) WB6BHI p. 6, Oct 78
75-ohm CATV cable in amateur installations W7IY p. 28, Sep 78
75-ohm CATV hardline matching to 50-ohm systems K1XX p. 31, Sep 78

better audio for mobile operation N1FB p. 48, Feb 81
Duplex audio-frequency generator with AFSK features N1FB p. 66, Sep 79
Handheld transceiver, audio amplifier for N1RM p. 38, Jul 81
Headphones, dual-impedance (MN) A8BQ p. 80, Jan 79
Heath HW-2036 mods (letter) Norman, E. p. 8, Jun 81
Microphones and simple speech processing W1OLL p. 30, Mar 80 Letter, W5VVR p. 6, Sep 80
Phone patch using junk-box parts K7NPM p. 40, Oct 80
Relieve filters (letter) W6RMR p. 102, Jul 82
Simulated carbon microphones, using with Amateur transmitters W6MKV p. 18, Aug 80
Solid-state processor, split-band (letter) WA2SSO p. 5, Dec 79
Speech processors (letter) K3JU p. 6, Aug 80
Speech processing, split-band (letter) Schreuer, NTWS p. 74, Feb 80
Speech systems, improving K2PMA p. 72, Apr 80
TR-2400, external microphone for (HN) N4UJ p. 64, Mar 82
Variable-frequency audio filter W4VRF p. 62, Apr 79
Voiceband equalizer W5BCGR p. 50, Oct 80

commercial equipment

Amateur Radio equipment survey number two W1WB p. 52, Jan 80
Atlas 210 transceiver, sidetone (HN) K2QYO p. 87, Mar 82
Short circuit p. 79, Oct 82
Atlas 350 AGC circuit, modifications (HN) K8RL p. 42, May 82
Autoek filter (HN) K6EVG, WA6WZG p. 83, May 79
CDE telliwinder rotor, pulse-position control of W9FZG p. 30, Jan 81
Cleanup tips for amateur equipment (HN) Fisher p. 49, Jun 78
Collins KWM-2, updating W8SAI p. 48, Sep 79
Collins KWM-2 KWM-2A, owners' reports W6BCH p. 22, Mar 81
300-Hz crystal filter for Collins receivers (letter) G3SUJ p. 90, Jan 78
Collins S-line backup power supply (HN) N1FB p. 78, Oct 79
Collins S-line monitoring (HN) N1FB p. 78, Aug 79
Collins S-line, owners' report W1WICU p. 12, Apr 81
Collins 325 cooling (HN) N1FB p. 74, Nov 79
Collins 325, improved stability for (HN) N1FB p. 83, May 79
Collins 328 PA disable jacks W1FB p. 65, Mar 80
Collins 755 CW sidetone (HN) N1FB p. 93, Apr 79
Collins 326-1, updating N1FB p. 76, Dec 78
Collins 51U, modifying for ssb reception (HN) W6SAI p. 66, Feb 78
Collins 51J power detector (letter) K5CE p. 6, Oct 78
Collins 516W-2 high-voltage regulation (HN) N1FB p. 85, Jun 79
Collins 516W-2 solid-state rectifiers (HN) N1FB p. 91, Feb 79
Collins 755 receiver, (HN) N1FB p. 94, Oct 78

Collins 755-3 alignment (HN) p. 97, Jan 81
Collins 516W-2 low-voltage and bias modification (HN) p. 88, Jan 81
Collins 516W-2 power supply, transient protection for WSAD p. 31, Apr 81
Dentron 160XV transistorizer, stabilizing the (weekender) WB2QLL p. 46, Jun 81
Drake R4C backlash, cure for (HN) W3CVM p. 82, May 79
Drake R4C, cleaner audio for (HN) K1IJO p. 88, Nov 78
Drake R4C receiver audio improvements (HN) W3CVM p. 79, Jan 81
Drake R4B and TR-4, split-frequency operation WB3RQJ p. 86, Apr 79
Drake R4C, new audio amplifier for W6BIP, K0RHJ p. 48, Apr 79
Drake R4C, new product detector for (HN) WB9JOP p. 94, Oct 80
Drake R4C product detector, improving (HN) W5HD p. 84, Mar 80
Drake TR-7 transceiver, Woodpecker microphone bank for (HN) K3UL p. 67, Feb 81
Drake TR-22C sensitivity improvement (HN) K7OR p. 78, Oct 79
Drake T4X transmitters, improved tuning on 180 meters (HN) W1IB1, W1HIZH p. 81, Jan 79
Factory service (letter) W6EHK p. 6, Jul 80
Fanline service (HN) FT-101E, 10-meter preamp for K1KNY p. 28, Jul 81
Feasibility test, calculating with a single measurement at the transmitter (HN) K9MM p. 96, Jul 78
Hamakers HT-37, improving W6N1F p. 78, Jul 79
Ham-o-meter control box, modifications of (HN) K40LW1DRR p. 68, Nov 80
Ham-M rotor torque loss (HN) W1WB p. 85, Jul 79
Short circuit p. 92, Sep 79
Ham-3 rotator, digital readout for K5E p. 56, Jan 79
Health HD-10 keyer, positive lead keying (HN) W4VAF p. 88, Nov 78
Health Model 10-4530 oscilloscope, modifications Bailey p. 20, Aug 82
Health HD-1982 Microo for low-impedance operation Johnson, Wesley p. 86, May 78
Health HP-2B external speaker and tone pad (HN) N1FB p. 89, Nov 78
Health HW-8, improved keying for (HN) W3SHK p. 60, Aug 72
Health HW-101 sidetone control (HN) K7OR p. 79, Jul 79
Health HW-2036 antenna socket (HN) W3CHC p. 86, Jan 79
Health HW-2036, carrier-operated relay for W6D5HYQ p. 58, Feb 80
Health HW-2036; Lever action switch illumination (HN) W2W p. 99, Jul 77
Health HW-2036, outboard LED frequency display W8BMT, WA8DOR p. 62, Mar 79
Health HW-2036-3 crowbar circuit (HN) W3CUC p. 68, Nov 78
Health Micromodifiers WK1BY p. 42, Nov 78
Health Micromodifiers matching (letter) W6BVJN p. 8, Sep 78
Health SB-102 modifications (letter) W1JE p. 110, Mar 78
Health SB-400G2-401, simple speech amplifier for (HN) W7LMH p. 67, Nov 81
Health Micromodifiers adapted to low-impedance input (HN) W6B3XF p. 78, Aug 79
Health HW-8, increased break-in delay (HN) K5YF p. 84, Jun 79
Health HW-2036, increased sensitivity (HN) W4ABP p. 50, Nov 80

audio

Active filters K5LM p. 70, Feb 78
Add-on selectivity for communications receivers G4GMQ p. 41, Nov 81
Audio processor, communications for reception W6NRW p. 71, Jan 80
Audio response, tailoring (HN) N1FB p. 42, May 82
ROHN "fold-over" Towers

ROHN "fold-over" Towers offer unbeatable value. These towers let you work completely on the ground for antenna and rotator installation and servicing eliminating the need of climbing the tower. Send $2.00 for complete catalog.

UNR-Rohn
Division of UNR, Inc.
P.O. Box 2000
5718 West Plank Road
Rochelle, Illinois 61068
(815) 637-687-4400

FM REPEATERS
FM & AM RECEIVERS
FM EXCITERS & XMTRS
FM & SSB POWER AMPS
RECEIVING & TRANSMITTING CONVERTERS FOR FM & SSB
LOW-NOISE PREAMPS
CWID's, COR's, RT-TIGHT CASES
HELICAL RESONATORS

For Repeaters, Links, OSCAR, ATV, Mobile, Base, Scientific

International Crystal Mfg. Co., Inc.
10 North Lee, Oklahoma City, Oklahoma 73102

More Details? CHECK — OFF Page 132

December 1982

hamtronics, inc.
65-X MOUL RD. • HILTON NY 14468
Phone: 716-392-9430
Hamtronics® is a registered trademark
Heathkit SB-104A, improved receiver performance for N2EO p. 78, Apr 81
Heath's new all-band transceiver, the SS-9000 W4JUV p. 12, Nov 82
Henry 2K and 3KA linear, electronic bias switching W1CBY p. 75, Aug 78
Hy-Gain 400 rotator, improved indicator system for W4PSJ p. 60, May 78
ICOM IC-2AT(1), odd splits N7AAD p. 65, Jul 82
ICOM IC-22S, using below 145 MHz (HN) W1BBI p. 92, Apr 79
ICOM 701 owners' report WB1CHQ p. 45, Jul 79
Johnson Matchbox, improved KA4Y1 p. 45, Jul 79
Short circuit p. 92, Sep 79
Kenwood TR-7400A scanner, for the Ken-457 W0TOYB p. 50, Jan 81
Kenwood TR-7500, preprogrammed (HN) W9KNI p. 95, Oct 78
Kenwood TS-520-SE transceiver, counter mixer for W5NP P. 60, Sep 80
KLM antenna rotor, computer control for (HN) W8MQW p. 66, Feb 81
Measurements Corporation 59 grid-dip oscillator improvements W8GHN p. 82, Nov 78
Micro Meter RM terminal modification (HN) W9AVQK p. 99, Jun 78
National NCL-2000, using the Drake T-4XC (HN) KSR p. 94, Jan 78
Ni-cad battery charging (letter) W9RM p. 6, Jul 80
Owners' survey, TR7 WB1CCH p. 66, Nov 81
Owners survey: 2-meter handheld KA1ZM p. 35, Jul 82
R-1000 mod (HN) W9DM p. 60, Aug 82
S-line, QSK noise (HN) N1FJ p. 66, Mar 82
SW-220 transceiver, inrush current protection for — Weekender W9BYM p. 66, Dec 80
SB-303 receiver, noise reduction (HN) W6SU p. 70, Jun 82
Sony ICF-2001, eight-channel memory scanner for W3CSW p. 54, Aug 78
Swan 180X birdie suppression (HN) W6SAI p. 36, Oct 78
Swan 300, tuning frequency drift WA5IPH p. 42, Aug 79
Ten-Tec Horizon/2 audio modification (HN) W9BRKIN p. 79, Oct 79
Ten-Tec Omni-D, improved CW agc for (HN) W6COSA p. 88, Jan 80
TS-820TS-82S, reducing interference in (HN) W4WMB p. 88, Jan 80
TS-820 filter switching modification (HN) K9OAF p. 72, Jun 80
Wilson Mark II and IV, modifications to (HN) W9EPT p. 89, Jan 80
Yaeus FT-227R memory, improved memory (HN) WA2DHF 3-5027 tube failure (HN) AG6K p. 78, Oct 82
SCX1500A power pentode (HN) K9YI p. 77, Oct 82

construction techniques
Anodize dyes (letter) W4WMB p. 6, Sep 79
Anodizing aluminum VE2DKR p. 62, Jan 79
Comments, W4JUXK p. 6, Nov 79

ANUFPX & Cavities, converting surplus WB1NIB p. 12, Mar 81
Cabinet construction techniques W6KGN p. 76, Mar 79
Cheap shots (HN) W6SKM p. 77, Sep 82
Clipped earphone (HN) W5THAOGM p. 79, Oct 79
Coaxial cable connectors, homemade hardline-to-uhf KY2OF p. 32, Apr 80
Coax cable, salvaging water-damaged (HN) W6SKW p. 88, Jan 80
Crystal switching, remote (HN) W9ABYN p. 91, Feb 79
Dust buildup, decreasing (HN) K6KI p. 77, Sep 82
Fan, speed control (HN) K4KI p. 77, Sep 82
Lightning protection (letter) K5MM p. 12, Dec 79
Metal cleaning with dip-type cleaners (HN) W5KX p. 82, Jan 82
Metalized capacitors (HN) W6LBF p. 82, May 79
Microcircuits, visual aids for working on K9SRL p. 90, Jul 78
Phone plug wiring (HN) W9NFB p. 85, Jul 78
PC layout using longhand W6KQZE p. 26, Nov 78
Comments, W9TOU p. 6, Jan 78
Printed circuit layout and drilling template W4WDL p. 73, Jul 82
Printed-circuits, simple method for (HN) W4MTD p. 51, Apr 78
Rejuvenating transmitting tubes with thoria-tungsten filament (HN) W6NIF p. 80, Aug 78
Set screws, taming (HN) W5P0G p. 64, Mar 82
Ten-Tec Omni-D, improved CW agc (HN) W5OA p. 72, Dec 79
Wilson Mark II and IV modifications (HN) W9EPT p. 73, Dec 79
Wilson second potentiometer repair (HN) W4ATE p. 77, Feb 78

Packet radio, introduction to VE2BEN p. 64, Jun 79
Propagation delay and flip-flops Anderson, Leonard H. p. 82, Mar 79
Self-gating the 82590/74S196 decade counter (HN) W9LL p. 82, May 79
Synthesizers, VHF and UHF, design of digital components G4CLP p. 26, Jul 82
Talking digital clock W5KV p. 30, Oct 79

features and fiction
DXer's Diary W9KNI p. 18, Mar 81
DXer's Diary W9KNI p. 26, Apr 81
DXer's Diary Comments W9KNI p. 16, Sep 81
DXer's Diary W9KNI p. 22, Jun 81
DXer's Diary W9KNI p. 60, Aug 81
DXer's Diary N1FJ p. 70, Dec 81
James R. Fisk memorial W1XU p. 2, Jun 82
James R. Fisk, W1HR — some reflections Jim Fisk, tribute to, publisher's log W1NLB p. 8, Jun 80
From Amateur to professional W15D p. 54, Aug 81
Hallcrafters history W6SAI p. 20, Nov 79
Hallcrafters story (letter) K5DM p. 6, May 80
Hallcrafters story (letter) W6SAI p. 6, May 80
Hallcrafters story (letter) W6SAI p. 6, Sep 80
Ham radio techniques: triband Yagi beam for 20, 15, and 10 meters W6SAI p. 68, Jan 81
Ham radio techniques: earth-moon-earth W6SAI p. 40, Feb 81
Ham radio techniques: more about moonbounce W6SAI p. 34, Mar 81
Ham radio techniques: ten-meter band W6SAI p. 38, Apr 81
Ham radio techniques: 160-meter band W6SAI p. 46, May 81
Ham radio techniques: amateur radio, 1933 W6SAI p. 41, Jun 81
Ham radio techniques: antenna tuners W7TVN p. 30, Jul 81
Ham radio techniques: amateur radio 1941 WESAI p. 30, Aug 81
Ham radio techniques W6SAI p. 32, Sep 81
Ham radio techniques W6SAI p. 42, Oct 81
Ham radio techniques: radio-frequency W6SAI p. 34, Nov 81
Ham radio techniques: radio-frequency W6SAI p. 30, Dec 81
Hallcrafters, a rediscovery PAKC p. 28, Dec 79
Hammer problem, solutions for UX3PU p. 56, Apr 81
Comments Jim, a tug at your memory W7VW p. 28, May 81
Observation and opinion W9KNI p. 6, Jul 81
Remants, John L., father of shortwave radio WA6CBO p. 10, Aug 81
Shopping for parts by mail W6FX Comments K1THP p. 16, Jul 81
Tune in on the world WA6PYQ p. 12, Jun 81
FREE! FREE! FREE! FREE! FREE!

OPERATIONS LOG
KA6OFA
H. N. LOCKWOOD

Give him a PERSONALIZED BINDER for his operations log!

Deluxe flexible vinyl with highly polished brass-plated corners, custom gold stamped with type, your choice of brown or mint vinyl base.

- H-144 3-ring bder. for standard log sheets, 1" capacity
- H-548 Cover for spiral-bound ARRL log
- Only $38 plus $3 handling/shipping.
- MasterCard or VISA. Calif. residents add 3.5% sales tax.

H. N. LOCKWOOD, INC., 450 Maple St. Redwood City, CA 94063 • (415) 366-9557

SYNTHESIZED SIGNAL GENERATOR

MODEL S1000
$349.95 plus shipping

- Covers 100 to 185 MHz in 1 kHz steps with thumb-wheel dial
- Accuracy 1 part per million at all frequencies
- Internal FM adjustable from 0 to 100 kHz at 1 kHz
- Spur and noise at least 60 dB below carrier
- RF output adjustable from 5-500 mV
- Operates on 12 Vdc ge 1/2 Amp
- Available for immediate delivery
- $349.95 plus shipping

- Add-on Accessories available to extend freq. range, add infinite resolution, voice and sub-audible tones. AM, precision 120 dB calibrated attenuator
- Call for details • Dealers wanted worldwide.

VANGUARD LABS
192-23 Jamaica Ave., Hollis, NY 11423
Phone: (212) 468-2720

FREE! FREE! FREE! FREE! FREE!

SEND FOR OUR NEW 1982/1983 PARTS CATALOG
THOUSANDS OF SURPLUS ELECTRONIC PARTS, SUPPLIES AND DEVICES.

EE! FREE! FREE! FREE! FREE! FREE!

DIRECTION FINDING?

- Circular LED Display
- Optional Digital Display
- Optional Serial Interface
- 12 VDC Operation
- 90 Day Warranty

DOPPLER SYSTEMS, 5540 E. Charter Oak, Scottsdale, AZ 85254 (602) 998-1151

December 1982 121

fm and repeaters

Add fm to your receiver (weekender)
K3NU p. 74, Mar 81

Amateur fm, close look at
W2YE p. 48, Apr 79

Antenna design for omnidirectional repeater coverage
NSNN p. 20, Sep 79

Command function debugging circuit
WA7HFP p. 84, Jun 78

Deviation, measuring
W9MLE p. 20, Jan 79

Digital scanner for 2-meter synthesizers
K4OKG p. 56, Feb 79

External frequency programmer (HN)
WB9WWM p. 92, Apr 79

Fm demodulator using the phase-locked loop
K7LPS p. 74, Sep 79

Comments

Anderson, Leonard H. p. 6, Apr 79

Folded whip antenna for vhf mobile — Weekender
WB2IFY p. 50, Apr 79

Frequency synthesizers. 600 kHz offset for (HN)
K6KLO p. 96, Jul 78

Ni-cad charger, any-state
WATBC p. 66, Dec 79

Preamplifier for hand-talkies
WB2IFV p. 89, Oct 78

Private call system for vhf fm
WB2UJM p. 77, Feb 78

Repeater channel spacing (letter)
WB2IFV p. 20, Jan 79

Repeater interference: some corrective actions
W4Mb p. 54, Apr 78

Simple scope monitor for vhf fm
W1RHN p. 70, Aug 78

Single-tone decoder
WA2UMJ p. 28, Dec 78

Solar powered repeater design
WB2W1Ay p. 14, Jul 78

Speech processor for fm transmitters
G4CLF, G3ZRP p. 78, Mar 82

Subaudible tone encoders and decoders
WB2EGR p. 28, Jul 78

Synthesizer, 144 MHz, 800-channel
K4VB, WA4GJT p. 10, Jan 79

Synthesizer, 144-MHz CMOS
K9LHA p. 14, Dec 79

Tone-alert decoder
WB2HJ p. 64, Nov 78

Tone generator, IC (HN)
W6P6B p. 88, Mar 79

Tone-detector, IC
W3OG p. 28, Jul 78

Touch-tone decoder, third generation
WA7DYP p. 36, Feb 80

Short circuit
W6GE p. 67, Sep 80

144-MHz synthesizer, direct output (letter)
WB2BJR p. 90, Jan 79

keying and control

Accukeyer speed readout
K5MA1 p. 60, Sep 79

Biased bandpass filter for CW
NBDE p. 79, Jun 79

CW break-in, quieting amplifiers for
W1OB p. 46, Jan 79

CW identifier, versatile
WB2BWJ p. 22, Oct 80

CW keyboard using the Apple II computer
WB6RJ p. 70, Feb 78

CW keyboard using the APPLE II computer
W6W p. 60, Oct 80

CW memory modification
WB6LQ p. 93, May 81

CW operator’s PAL
W2YE p. 23, Apr 79

CW signal processor
W7KZG p. 34, Oct 79

Comments, VE3CJB p. 6, Jun 79

Dasher
K4HJF p. 68, Mar 79

Delay circuit with 3072-bit capacity
W2VT p. 32, Apr 79

Short circuit
W2VT p. 92, Sep 79

Short circuit
W2VT p. 32, Apr 79

Electronic keyer
OK3IA p. 10, Apr 87

End-of-transmission K generator
K6GY p. 58, Oct 79

Keyer, single-chip, for QRP (weekender)
W2HV p. 70, Oct 82

Keyer: with memory (letter)
Hansen, William p. 6, Dec 79

Key toggle
W6NW p. 50, Mar 79

Memory keyer, W7BBX (letter)
SP2DX p. 6, Jan 80

Memory keyer, (letter)
W2VT p. 6, Feb 80

Memory keyer, 2048-bit (HN)
W42CQ p. 73, Jun 80

Microcomputer-based contest keyer
K6CW p. 36, Jan 81

Paddle for electronic keyers
Z56AL p. 28, Apr 87

Programmable accessory for electronic keyers (HN)
K9WGNW/RUSL p. 81, Aug 87

Programmable keyer, Aulek MK 1, expanded memory for
NSA9 p. 58, Jan 80

Radio Shack ASCII keyboard encoder for micro-
processor-controlled CW keyboard, using (HN)
V72V p. 72, Oct 80

Ten-Tec 645 ultramatic keyer mods (HN)
K4JST p. 70, Dec 82

Transceiver diplexer: an alternative to relays
NSY p. 71, Dec 80

WBM readout for deluxe memory keyer (weekender)
WA10EU p. 50, Apr 82

measurements and test equipment

Antenna bridge calculations
Anderson, Leonard H. p. 34, May 78

Automatic noise-figure measurements
W50JR p. 40, Aug 78

Battery-charger sensor
WB2YM p. 54, Dec 82

Broadband reflectometer and power meter
V22TB, WB2ZZQ p. 28, May 79

Capacitance measurements with a frequency counter — Weekender
Matheson, John p. 62, Oct 79

Capacitance meter, simplified
WB2FVC p. 51, Feb 78

Capacitance meter, simplified improvements to
W3C2PH p. 54, Mar 80

Capacitance measurements and
W2JH p. 79, Nov 78

Capacitance, using and improving
W3SGM p. 89, Aug 79

Capacitance, using and improving
W4WM p. 20, Jan 79

Capacitance, using and improving
K2QGO p. 33, Jul 80

Diode noise source for receiver noise measurements
WB6NI p. 32, Jun 79

Dip meters, a new look at
W6XCK p. 25, Aug 81

Diode-meter converter for VLF
W4YOT p. 28, Aug 79

Diode-meter converters, measuring capacitance of
WB6RO p. 42, Jul 81

Diode-meter converters, measuring capacitance of
WB6RO p. 70, Apr 80

Direction counter (HN)
W2JH p. 79, Nov 78

Direction counter (HN)
W2JH p. 20, Jan 79

Digitally capacitance meter
WD2JH p. 66, Aug 80

Diode noise source for receiver noise measurements
WB6NI p. 32, Jun 79

Field-strength meter for the high-frequency Amateur
WB6AFT p. 42, Jul 81

Field-strength meter for the high-frequency Amateur
WB6AFT p. 70, Apr 80

Field-strength meter for the high-frequency Amateur
WB6AFT p. 34, Sep 80

Field-strength meter for the high-frequency Amateur
WB6AFT p. 42, Jul 81

Field-strength meter for the high-frequency Amateur
WB6AFT p. 70, Apr 80

Frequency counter, capacitance-measurement accuracy for
W2JH p. 44, Apr 80

Frequency counter, capacitance-measurement accuracy for
W2JH p. 67, Sep 80

Frequency counter, miniature
WB6NI p. 34, Oct 79

Frequency counters, K4JJU, modifications for (HN)
K4JJU p. 65, Mar 80

Frequency counters, modify for direct counting to 100 MHz
WB1SNG p. 26, Feb 78

Frequency counters, front-ends for a 500-MHz
K4JJU p. 30, Feb 78

Frequency counter, high-impedance preamp and pulse shaper for
K4YAF p. 47, Feb 78

Frequency counter, simple (HN)
WB4MR p. 81, Aug 78

Frequency counter, simplifying
W1WP p. 94, Feb 78

Frequency counters, unit and microwave
WB6NI p. 34, Sep 78

Frequency counters, understanding and using
WB6NI p. 10, Feb 78

Frequency counters, high-sensitivity prepamplifier for
W1CFI p. 80, Oct 78

Function generator, integrated circuit
N3FG p. 30, Aug 80

Gallon-size dummy load
WB6RP p. 74, Jun 79

Grid-dip meter, no-cost
W8YFB p. 67, Feb 78

integrated circuits

Active filters
K6JM p. 70, Feb 78

Binary coded decimal addition (HN)
W49HUV p. 68, Apr 82

Command, Schiffier, Jeffrey L. p. 8, Dec 82

CMOS programmable divide-by-N counter (HN)
W17BZ p. 94, Jan 78

Exar XR-205 waveform generator as capacitance meter (HN)
W6WV p. 79, Jul 79

IC arrays
K6JM p. 42, Sep 78

December 1982
Your own satellite TV system for $2388.00
10 FT. PARABOLIC

What the system will do:
You can receive up to 60 channels of T.V. direct from satellites to your home receiver. Movies, sporting events, religious programs, other T.V. stations, and much more.

What the system includes:
1. 10 ft. fiberglass dish made of reflective metal bonded with fiberglass. Weather-resistant and virtually maintenance-free. Dish comes in 4 sections.
2. Single pedestal heavy duty polar mount for extra strength and installation simplicity; easy satellite to satellite adjustment.
3. Four pole rotator mount for more stability, square tube legs and rotator included.
4. All aluminum LNA mount and horn holder for accurate aiming of LNA. All aluminum, weather-proof LNA cover.
6. Amplica or Avantek LNA 120".
7. Chapparel Feed Horn for unsurpassed quality.
8. All accessories included.

Complete Systems, Receivers, Antennas, LNA's & Accessories
CALL US TODAY! 901-795-4504

TENNESSEE ELECTR
P.O. BOX 181108
MEMPHIS, TENNESSEE 38118

Iron Powder and Ferrite
tOROIDAL CORES

Shielding Beads, Shielded Coil Forms
Ferrite Rods, Pot Cores, Baluns, Etc.

Small Orders Welcome
Free 'Tech-Data' Flyer

AMIDON
ASSOCIATES Since 1963
12033 Otsego Street, North Hollywood, Calif. 91607

WARNING! DON'T BUY THIS AUDIO FILTER

...or any other until you've read our Audio Filter Fact Sheet. Audio filters, unfortunately, lend themselves to some pretty spectacular claims, like "infinitely variable" or "20 Hz bandwidth." Fine, but is this what you really need? Probably not. That is what is so confusing about "Q" and ringing? They can be serious limitations in any filter. And, counting knobs on the front panel is no guarantee of virtue either.

Get a BP-3, CP-1, and BP-4 free with the purchase of an IC-2AT at $269 or an IC-3AT at $299 or an IC-4AT at $299.

We also carry Ten-Tec, Daiwa, MFJ, Cushcraft, Yaesu, Kenwood, DenTron, Icom, Hy-Gain, Larsen and Hustler.

Get THEIR lowest price THEN CALL US!
P.O. BOX 2728
DALLAS, TX 75221
Telephone: (817) 496-9000

Iron Powder and Ferrite
TOROIDAL CORES

Shielding Beads, Shielded Coil Forms
Ferrite Rods, Pot Cores, Baluns, Etc.

Small Orders Welcome
Free 'Tech-Data' Flyer

AMIDON
ASSOCIATES Since 1963
12033 Otsego Street, North Hollywood, Calif. 91607

WARNING! DON'T BUY THIS AUDIO FILTER

...or any other until you've read our Audio Filter Fact Sheet. Audio filters, unfortunately, lend themselves to some pretty spectacular claims, like "infinitely variable" or "20 Hz bandwidth." Fine, but is this what you really need? Probably not. That is what is so confusing about "Q" and ringing? They can be serious limitations in any filter. And, counting knobs on the front panel is no guarantee of virtue either.

Get a BP-3, CP-1, and BP-4 free with the purchase of an IC-2AT at $269 or an IC-3AT at $299 or an IC-4AT at $299.

We also carry Ten-Tec, Daiwa, MFJ, Cushcraft, Yaesu, Kenwood, DenTron, Icom, Hy-Gain, Larsen and Hustler.

Get THEIR lowest price THEN CALL US!
P.O. BOX 2728
DALLAS, TX 75221
Telephone: (817) 496-9000
impedance bridge measurement
errors and corrections
K4KJ
Inductance meter, easy-to-build
W8KM
Comments, WB2LAQ
Short circuit
K4EEU frequency standard, battery backup for (HN)
N4BA
Light bulb dummy loads (HN)
W6PH
Logic probe
K9CW
Logic probe, digital
N5UE
Meter amplifiers, calibrating
W4HT
Multiplexed counter displays (HN)
K1XK
Noise bridge calibrations with TI 66593 calibrators
W4DGR
Noise figure measurements
W6NI
SB
Comments
W0SLV, W0PNI
Noise figure meter, automatic, for preamplifiers and converters
K9MM
p. 12, Feb 81
Prescaler, 1-GHz, for frequency counters
W0BNI
p. 84, Sep 78
Prescaler, 600-Hz, for use with electronic counters
W4ASNR
p. 50, Apr 80
Resistance values below 1 ohm, measuring (letter)
K1J
p. 91, Jan 78
Resistance values, measuring below 1 ohm
W4HT
p. 66, Sep 77
RF current readout, remote (HN)
W4ATE
p. 87, May 78
RF power meter, part 1: instrument description and construction
N9YC
p. 70, May 81
RF power meter, part 2: measurements and measurement accessories
N9YC
p. 55, Jun 81
Comments W0QNB
p. 6, Oct 78
RTTY test generator
WB9ATW
p. 64, Jan 78
Noise bridge construction (letter)
OH22AZ
p. 8, Sep 78
Spectrum analyzer, microwave
N5TX
p. 34, Jul 78
Spectrum analyzer tracking generator
W6UR
p. 30, Apr 78
Sweevo generator, stable wideband
W7BAR
p. 18, Jun 81
Short circuit
W4AT
p. 84, Nov 78
Swr measuring at high frequencies
DJ2LR
p. 34, May 79
Swr meter
WB9AP
p. 66, Nov 78
Swr meter for the high-frequency bands
WB9AFT
p. 62, Oct 81
Comments, W4AUP, WB6AFT
p. 36, Mar 82
Tester for 6148 tubes (HN)
W5KNE
p. 81, Aug 78
Test equipment mainframe
W4MB
p. 52, Jul 79
Testing power tubes
K4IR
p. 60, Apr 78
TVI locator
WB6A
p. 24, Aug 78
Two-tone generator
N1RM
p. 32, Jun 78
Two-tone signal generator (HN)
K4KJ
p. 77, Sep 82
Vhf prescaler
WB4CHK
p. 92, Jun 78
VLF dip meter, no-adjust bias for (HN)
WB3DIJ
p. 69, Jul 80
Voltage calibrator for digital voltmeters
W6NB
p. 66, Jul 78
Short circuit
W4R
p. 94, Feb 79
Voltmeter calibrator, precision
K6ZV
p. 94, Jun 78
VSWR bridge, broadband power-tracking
K1Z2I
p. 72, Aug 79
VSWR and power meter, automatic
WB6NK
p. 34, May 80

microprocessors, computer systems, and calculators
An RS-232 to TTL interface
W64KG
p. 70, Nov 82
Calculator or computer — which to buy?
W4MB
p. 8, Jun 81
Computer rfi (letter)
K4SU
p. 8, Jun 81
Computer, satellite, for under $150
WB6POU
p. 12, Mar 80
CW keyboard, Microprocessor controlled
WB7DAK
p. 81, Jan 78
CW keyboard using the APPLE II computer
WB1VR
p. 60, Oct 80
CW trainee key using a single-chip microcomputer
N6TY
p. 16, Aug 79
Data retrieval program using the APPLE II computer (HN)
W7BYM
p. 75, Oct 81
Digital keyboard entry system
N2YKINOW
p. 92, Sep 78
Frequency counters, MOS timing circuit for (HN)
Kurth, Waldo H.
p. 72, Jul 82
Ham gear controller: part 1
K3CA
p. 12, Oct 82
Ham gear controller: part 2
K3CA
p. 25, Nov 82
IC tester using the KIM-1
W3GUL
p. 74, Nov 78
Interfacing a 10-bit DAC (Microprocessors)
Rony, Titus, WB4HYJ
p. 66, Apr 78
Microcomputer-based keyer
K9CW
p. 36, Jan 81
Radio Shack ASCII keyboard encoder for microprocessor-controlled CW keyboard using the (HN)
V72Y
p. 72, Oct 80
Video display, simple
K3AOH
p. 46, Dec 78

miscellaneous technical
Ac-line switching precautions (HN)
W5P6G
p. 69, Jul 81
Air pressure, measuring across transmitting tubes
(HN)
W89J
p. 89, Jan 80
Amplifier for 220 MHz, stripline kitwatt
W2GN
p. 12, Apr 82
Amplitude compensated sideband
WBBJN
p. 48, Dec 80
Analog-to-digital display converter for the visually handicapped
K8BJW
p. 44, Jan 81
Battery charging (letter)
DL8K
p. 6, Nov 80
Circuit figure of merit (letter)
W2JTP
p. 6, Dec 80
Communicating filters
W6GWN
p. 54, Sep 79
Computer for the blind (HN)
W6GWN
p. 69, Jun 82
Crystal filters, monolithic
DK1AG
p. 28, Nov 78
Crystal use locator
W4ASUR
p. 36, Nov 80
CW identifier, versatile
W2BBM
p. 22, Oct 80
Short circuit
W7BO
p. 70, Feb 82

CW identifier, versatile, an improved memory for
WB2BU
p. 24, Feb 82
CW station, updating (HN)
K59ST
p. 77, Oct 82
Data bandwidths compared
W5DJ
p. 50, Dec 82
DSB generators, audio-driven (HN)
W9STR
p. 68, Jul 80
Earth anchors for guyed towers
W3JG
p. 60, May 80
Elmac CX5100A power pentode, notes on
K3X1
p. 6, Aug 80
Electrolytic capacitors (letter)
WBB4KU
p. 6, Jun 81
Electrolytic capacitors, re-forming the oxide layer (HN)
K9MM
p. 99, Jul 78
Field-strength meter and voltm-ohmmeter
W6BAF
p. 70, Feb 79
Filters, bridged
W9WMR
p. 51, Oct 82
Four-quadrant curve tracer/analyzer
W1OXS
p. 46, Feb 79
Frequency divider, divide
W9STR
p. 54, Aug 80
Frequency-lock loop
W4KZ
p. 37, Jul 78
Ground systems, notes on
K6KX
p. 26, May 80
Ground, a synthetic inductor
WB9ATW
p. 96, Jun 78
Ham radio techniques: radio-frequency interference
W4E
p. 34, Nov 81
Ham radio techniques: radio-frequency interference
W6SA1
p. 30, Dec 81
HF synthesizer, higher resolution for
N4ES
p. 34, Aug 78
Hyperbolic navigation (letter)
W4KJ
p. 6, Feb 81
Impedance bridge measurement errors and corrections
K4KJ
p. 22, May 79
Impedance measurements using an SWR meter
K4GF
p. 80, Apr 79
Inductance or capacitance, a method for measuring (HN)
W2CH0
p. 68, Jul 80
Instant balun (letter)
W6MWQ
p. 6, Aug 81
Interference problems, how to solve
ON4UN
p. 93, Jul 78
Light-emitting diodes: theory and application
W9BAFT
p. 12, Aug 80
Lightning protection for the amateur station
K9MM
p. 18, Dec 78
Comments
WB9RKT, WB2FBFL
p. 6, Jul 79
Linear-amplifier cost efficiency
WB6ML
p. 80, Jul 80
Linear tuning, a fresh look at (HN)
W2OLU
p. 74, Aug 80
Low cost linear design and construction
W4MB
p. 12, Dec 82
Matching networks, how to design
Anderson, Leonard H.
p. 44, Apr 78
Multiplexing, the how and why of
K9HN
p. 80, Sep 81
Navigational aid for small-boat operators
W5STRS
p. 46, Sep 80
Ni-cad battery charging (letter)
W6HMM
p. 6, Jul 80
Operation upgrade: part 1
W6BNB
p. 12, Sep 81
Operation upgrade: part 2
W6BNB
p. 28, Oct 81
Optimum pi-network design
Carlson
p. 50, Sep 80
Passive lumped constant 90-degree phase-difference networks
K6ZV
p. 70, Mar 79
PCB "threat" (letter)
V6SUK
p. 66, Sep 80
Phase-locked loops
WB6FOC
p. 54, Jul 78
Phase-shift network, 90-degree, offers 2:1 bandwidth
K6S
p. 66, Feb 80
Pi network design
Anderson, Leonard H.
p. 36, Mar 78
Comment
Anderson, Leonard H.
p. 6, Apr 79
WARNING!
Electric Power Pollution. Spikes & Lightning HAZARDOUS to MICROCOMPUTERS!!
Patented ISOLATORS provide protection from:
• Computer errors caused by power line interference
• Computer errors due to system equipment interaction
• Spike damage caused by copier/elevator/air conditioner
• Lightning damage

MONEY BACK GUARANTEE!
• ISOLATOR (ISO-1) 3 isolated 3-prong sockets; Spike Suppression; useful for small offices, laboratories, classrooms.
 $69.95
• ISOLATOR (ISO-2) 2 isolated 3-prong socket banks; (6 sockets total); Spike Suppression; useful for multiple equipment installations.
 $69.95
• SUPER ISOLATOR (ISO-3) similar to ISO-1 except double isolation & oversize Spike Suppression; widely used for severe electrical noise situations such as factories or large offices.
 $104.95
• MAGNUM ISOLATOR (ISO-17) 4 Quad isolated Sockets; Multiple Spike Suppressors; For ULTRA-SENSITIVE Systems in extremely harsh environments.
 $181.95
• CIRCUIT BREAKER, any model (Add-CB) Add $9.00
• REMOTE SWITCH, any model (Add-RS) Add $16.00

AT YOUR DEALERS
MasterCard, Visa, American Express
ORDER TOLL FREE 1-800-225-4876 (except AK, HI, PR & Canada)

Finally...A 12-volt panel that will charge ALL your 12 and 9 volt batteries for under $50.00
4.37 Watt Photovoltaic Battery Charger
$49.95

Maximum output 17.5 v.
Amperage 250 mA
Size 5¼” X 10”
• Space quality silicon cells
• Annodized aluminum frame
• Silicone encapsulation
• One plug, universal cord
• Blocking diode

Order direct from:
INTERNATIONAL SOLAR PRODUCTS CORPORATION
1105 W. Chapel Hill St.
Durham, N.C. 27701
(919) 489-6224

Mobile HF Antennas
The Pro-Am HF mobile series are heavy-duty, slim line construction, designed for the HF Amateur Bands, 75M, 40M, 20M, 15M, and 10M.

MODEL BAND
PHF75 75 Meters
PHF40 40 Meters
PHF20 20 Meters
PHF15 15 Meters
PHF10 10 Meters

Write or call today for complete details.
valor Enterprises, Inc.
185 W. Hamilton St., West Milton, OH 45383
PH: (513) 698-4194, Outside Ohio: 1-800-543-2197
Telex: 724-389 ATT: Valor

December 1982 125
operating

Amateur band intruders (letter) WSSAD
Amateur radio, 1933 (ham radio techniques) W6SAI
Amateur radio, 1941 (ham radio techniques) W6SAI
Best bet regards regards (letter) W6BDQ
Comments, N4AGS p. 8, Jan 82
Comments, K3AGZ p. 8, Apr 82
Comments, K2AQZ p. 8, May 82
Comments, K2AYF p. 8, Sep 82
Gerrey, Bill
Burger alarm RFI (letter) WB2YYY
Card from Francisly (letter) WV1PV
County awards (letter) KS7SB
p. 8, Jul 81

On-air tune-up (letter) K3MP
CW BFO crystal for the 10-MHz CW transceiver (letter) K3LA
AFC circuit for the 10-MHz CW transceiver (letter) K3LA
K4DHC

 protects amateur radio (letter) KB2UJ
Operation upgrade: part 4 WWNB
Operation upgrade: part 5 WWNB
Operation upgrade: part 6 WWNB
Operation upgrade: part 7 WWNB
Operation upgrade: part 8 WWNB
Operation upgrade: part 9 WWNB
Operation upgrade: part 10 WWNB
Operation upgrade: part 11 WWNB
Other guy (letter) K2AGS
Propagation of radio waves W1GV4
 Protecting amateur radio (letter) KB2UJ

RSP (letter) W6Z4M
RST feedback (letter) K4DHC
RST feedback (letter) W6BN
RST (letter) W6Z4M

S40C

Ten-meter band (ham radio techniques) W6SAI
Ten-second call swaps (letter) KB2UJ
Transceiver tuning (letter) K3LA
Wearing cans (letter) W6Z4M
Who pays the jammer (letter) K4DHC

SW7ZU
CW memory, simple — Weekender CW anyone?
DX and QRP (letter) W6BDQ

N4AE
DX and QRP (letter) W6BDQ

W6QJJ
DXer’s diary WK5NI p. 18, Aug 81

W6KNI
DXer’s diary WK5NI p. 8, Sep 82

W6KNI
DXer’s diary WK5NI p. 6, Apr 80

W6KNI
DXer’s diary WK5NI p. 22, Jun 81

W6&B
DX Forecaster KBRVY
p. 76, Nov 81

W6&B
DX Forecaster KBRVY
p. 78, Dec 81

W6&B
EI2W six-meter report (letter) EI2W

p. 12, Jul 80

W6&B
E8E, 70-CM, requirements and recommendations W1L

p. 12, Jun 82

W6&B
Short circuit FOC actions (letter) W1L

p. 6, Apr 80

W6&B
FOC actions (letter) N8DA

p. 6, Apr 80

W6&B
Great-circle maps N8KR

p. 24, Feb 79

W6&B
Ham radio techniques W6SAI

p. 53, Jan 82

W6&B
Ham radio techniques W6SAI

p. 60, Feb 82

W6&B
Ham radio techniques W6SAI

p. 26, Mar 82

W6&B
Ham radio techniques: the crystal ball W6SAI

p. 68, May 82

W6&B
Ham radio techniques W6SAI

p. 78, Jun 82

W6&B
Ham radio techniques W6SAI

p. 42, Jul 82

W6&B
Ham radio techniques W6SAI

p. 42, Aug 82

W6&B
Ham radio techniques W6SAI

p. 40, Sep 82

W6&B
Ham radio techniques W6SAI

p. 20, Oct 82

W6&B
Ham radio techniques W6SAI

p. 46, Nov 82

W6&B
Ham radio techniques W6SAI

p. 58, Dec 82

W6&B
Ham radio techniques W6SAI

p. 8, Jan 82

W6&T
Homebrew linears: treat or trap? (HN) VK4LR
p. 77, Nov 82

W6&T
Intruder watch (letter) ZL8WIGL1BAD
p. 6, Aug 81
Buckmaster Publishing's
1982-1983
AMATEUR RADIO
CALL DIRECTORY

THE BARGAIN
AT $12.95

Also available for the first time ever—
(Alphabetically arranged—Sold separately)
- Geographical Index
 by State, City and Street No. and Call
- Name Index
 by Name and Call

Ordering Information:
- Directory—$12.95
- Geographical Index—$25.00
- Name Index—$25.00
Add $3.00 Shipping to all orders.
Full satisfaction or your money back.

BUCKMASTER PUBLISHING
70-D Florida Hill Road
Ridgefield, CT 06877
U.S.A.

Send your order—enclosing check or money order in U.S. dollars to:

BUCKMASTER PUBLISHING
70-D Florida Hill Road
Ridgefield, CT 06877
U.S.A.

ANTECK, INC.
Route 1, Box 415
Hansen, Idaho 83334
208-423-4100

DEALER INQUIRIES INVITED

An ultra high quality encoder for professional application. Absolutely reliability and function makes the difference. There’s a Pipo encoder for every system and application. Totally serviceable, easy to operate and install. Call or write for free catalog and information! (213) 852-1515 or P.O. Box 3435, Hollywood, CA 90028

PATENTED

Call 603-878-1441
Voltage-tuned mosfet oscillator
WASHUV
1-MHz oscillator, new approach
KAYWJ
5-ampere power supply, adjustable
N1JR

power supplies
Adjustable 5-ampere supply
N1JR
Battery charging (letter)
Carson
Bench power supply — Weekender
WA6AFT
Constant-current battery charger for portable operation
KSPA

DX forecaster
KARYW

propagation
Calculator-aided propagation predictions
N4UU
Comments
D X forecaster
KARYW
DX forecaster
KARYW

receivers and converters
general
Active mixers, performance capability: part 1
DJZLR
Active mixers, performance capability: part 2
DJZLR
Audio processor, communications, for reception
WENRW
Automatic repeater/remote sensitivity (HNN)
V7AABK
Auto-product detection of double-sideband
K4JD
Letter G3UJ
Bandspreading techniques for resonant circuits (letter)
W6EU
Bandspreading techniques (letter)
K4JD
Broadband filter amplifiers
NBDX
Communications receiver
K ZBA
Communications receiver, calculating the cascade
K7BD
Crystal ladder filters, systematic design of
N4NN
CW filter, high performance
W3QO
Comments
K4JD
Detector, logarithmic with post-injection
K4JD
Digital display
N3PG
Comments
K4JD
Direct readout, universal
WBBFM
Digital vfo basics
Earnshaw
Direct-conversion receivers (HNN)
YUZL
Diversity reception
K4JD
Dynamic range, measuring
WBBCTW
DX forecaster
KARYW
Low-noise preamplifiers with good impedance match
W1OOP
Measuring receiver dynamic range: an addendum
WBNCTW
Multiple receivers on one antenna (Two for one) (HNN)
W2QZY
Noise Blanker
W6QR
Noise figure relationships (HNN)
WBBX
Phase-lock 9-MHz fbo
W7GHM
Phased-locking up-converter
W7GHM
Power-line noise
K4WJ
Receiver dynamic range
W7ZDJ
Receiver dynamic range (letter)
AABPW
Receiver, high-performance
W1AFRJ
Rotary dial and encoder for digital tuning
W2YS
Signal-power, measuring
W2YE
Superhet tracking calculations
W5ANZ
Talking clock (letter)
KQRYW
Talking digital readout (letter)
W6ABF
Vacuum-tube receivers, updating
W6KPH
Short circuit
W2OZ
Wideband amplifier summary
DJZLR

high-frequency receivers
Blanking the Woodpecker: part 1
VK1DN
Blanking the Woodpecker, part 2: a practical circuit
VK1DN
Comments, N4PB
Blanking the Woodpecker, part 3: an amateur blanket
VK1DN
Collins receivers (letter)
G3UFZ
Communications receivers, high frequency, recent developments in circuits and techniques
DJZLR
Communications receivers for the year 2000: part 1
DJZLR
Communications receivers for the year 2000: part 2
DJZLR
CW regenerator for Amateur receivers
W3BYM
Digitally programmable high-frequency communications receiver
WASHUV
Comments
Foot, WASHUV
Diversity receiver, high-frequency, from the 1930s
K4JK
Drake R-4C product detector, improving (HN)
K4JK
Frequency synthesized local-oscillator system
W7GHM
Inexpensive CW filter (letter)
W6ABF
Low-noise 30-MHz preamplifier
W1W
Short circuit
W2OZ
Shortwave converter, portable
PY2PFC
NEW TS830S for $150?

Yes indeed! Just add a Matched Pair of top-quality 2.7 kHz BW (bandwidth) Fox Tango filters. Here are a few quotes from users:

- "... Makes a new rig out of my old TS305i..."
- "...VHF now works the way I dreamed it should..."
- "...Spectacular improvement in SSB selectivity..."
- "...Completely eliminates my need for a CW filter..."
- "...Simple installation — excellent instructions..."

The Fox Tango filters are notably superior to both original 2.7 kHz BW units but especially the modest ceramic 2nd IF, our substitutes are 6-pole discrete-crystal construction. The comparative FT vs Kenwood results? VFT OFF — RX BW: 2.0 vs 2.4; Shape Factor: 1.19 vs 1.34; 80 dB BW: 2.48 vs 3.41; Ultimate Rejection: 110 dB vs 80. VFT SET FOR CW at 300 Hz BW — SF 2.9 vs 3.33. Insertion Loss: 1 dB vs 10 dB.

AND NOW A NEW TS830SI! Tests prove that the same filters improve the '930 even more than the 930. Don't buy CW filters — not even ours. You probably won't need them!

INTRODUCTORY PRICE:

(Complete Kit) ... $150

Included: Matched Pair of Fox Tango Filters, all needed cables, parts, detailed instructions

Specify kit desired: FTK-830 or FTK-930

Shipping $3 (Air $5). FL Sales Tax 5%

ONE YEAR WARRANTY:

GO FOX-TANGO — TO BE SURE!

AUTHORIZED EUROPEAN AGENTS:
Scandinavia: MICROTEC (Norway)
Other: INGOM/EPEX (W Germany)

FOX TANGO CORPORATION
Box 15434-1 W Palm Beach FL 33406
Phone (305) 193-1595

WARNING

SAVE YOUR LIFE OR AN INJURY

Base plates, flat roof mounts, hinged bases, hinged sections, etc., are not intended to support the weight of a single man. Accidents have occurred because individuals assume situations are safe when they are not.

Installation and dismantling of towers is dangerous and temporary guys of sufficient strength and size should be used at all times when individuals are climbing towers during all types of installations or dismantlings. Temporary guys should be used on the first 10' or tower during erection or dismantling. Dismantling can even be more dangerous since the condition of the tower, guys, anchors, and/or roof in many cases is unknown.

The dismantling of some towers should be done with the use of a crane in order to minimize the possibility of member, guy wire, anchor, or base failures. Used towers in many cases are not as inexpensive as you may think if you are injured or killed.

Get professional, experienced help and read your Rohn catalog or other tower manufacturers' catalogs before erecting or dismantling any tower. A consultation with your local, professional tower installer would be very inexpensive insurance.

SWITCHING POWER SUPPLY HANDBOOK

Free!

Paid for by the following:

UNR-Rohn
Division of UNR, Inc.
6718 Extension Road
Prairie, Illinois 60061
USA

PERSONALIZED AMATEUR RADIO WINDOW DECALS

AMATEUR RADIO UR CALL

Beautiful — Durable

These personalized decals will adhere to the inside of windows —
cars — home — shack — boat — office — anywhere...

$5.00 - 1
$9.00 - 2
$12.00 - 3

Send check or money order with Ham Call, name and address to:

DELICRAFT CO.
PO Box 148
Westland, MI 48185

Clubs and organizations please write or call 313-425-0009
for special pricing

RTTY your TRS-80 with CONTACT-80

Ultra sophisticated yet S-I-M-P-L-E to operate.

FEATURES:

- Disk I/O
- SAV, LOAD, KILL, & DIR...
- TRI-SPLIT screen, user defined...
- 10 CANNED MESSAGES...
- DYNAMIC BUFFER ALLOCATION...
- Live HARDCOPY for parallel printers...
- Keyboard CONTROL of STATION...
- AUTO-ID RTTY CW (selectable ON/OFF)

PRICE: $19.95 pdt. to 48 states with UPS

PRICING:

FL 193.95

DISK

MOD-III with DISK plus TU with 60ma loop.

MOD-III, 32K Cassette

V6.00

V6.00

ORDER:

COMM TEK

4463 Orleans Dr., Dunwoody, GA 30338

SWITCHING POWER SUPPLY HANDBOOK

From

POWER GENERAL

152 Will Drive, Canton, Massachusetts 02021
Telephone: (617)628-0216; TWX: 71-348-0200
Shortwave receiver, portable monoband, with
electronic digital frequency readout
PY3EIC p. 42, Jan 80
Simple 40-meter receiver — Weekender
WXRM p. 64, Sep 80
Synthesizer, high resolution hf (letter)
DJ2LR p. 6, Jan 79
Ten-Tac Omni-D, improved CW agc for (HN)
W6OA p. 8, Jan 80
Transceiver, 40-meter, for low-power operation
WB5JDE p. 12, Apr 80
Understanding performance data of high-frequency
receivers
K6FM p. 30, Nov 81
Comments KLVHT, K6FM p. 8, Aug 82
Up-conversion receiver for the high-frequency bands:
part 1
W7VUJ p. 54, Nov 81
Up-conversion receiver for the high-frequency bands:
part 2
W7VUJ p. 20, Dec 81
Woodpecker noise blanker
DJ2LR p. 18, Jun 80
80-meter receiver for the experimenter
WXRM p. 24, Feb 81
Comments
7-MHz receiver
K6DSX p. 12, Apr 79
432-MHz converter
N9KO p. 74, Apr 79
vhf receivers
and converters
Cavity bandpass filters
W4FXXE p. 48, Mar 80
Communications receivers for the year 2000: part 1
DJ2LR p. 12, Nov 81
Communications receivers for the year 2000: part 2
DJ2LR p. 36, Dec 81
Interesting preamplifier for 144 MHz (HN)
WA2GPJ p. 50, Nov 81
K6LHA 2-meter synthesizer, extending
the range of (HN)
K6LHA p. 52, Dec 81
Synthesized 2-meter mobile stations, automation for
WS6GI p. 20, Jun 80
144-432 MHz GaAs fet preamp
J191VY p. 38, Nov 79

RTTY
Active bandpass filter for RTTY
W4AYV p. 46, Apr 79
AFSK generator, an accurate and practical
KS8BU p. 56, Aug 80
Bandit, a vote for (letter)
W6RMR p. 8, Mar 82
Cleaning teletypewriter (HN)
W8CD p. 66, May 78
Digital repetitID
WB2ATW p. 58, Nov 78
Dual demodulator terminal unit
KB4AT p. 74, Oct 78
Comments
WB6PMV, KB9AT p. 5, Oct 79
Duplex audio-frequency generator
WB6AFT p. 66, Sep 78
Electronic teletypewriter keyboard
WB8HPY p. 56, Aug 78
Hellschreiber, a rediscovery
PABCO p. 28, Dec 78
Hellschreiber (letter)
K6KA p. 6, Mar 80
Comments, G5X8 p. 6, Sep 80
Hellschreiber (letter)
WB6KZ p. 6, Mar 80
LED tuning indicator for RTTY
WABELA p. 50, Mar 80
Modulator-demodulator for vhf operation
WILLDC p. 34, Sep 78
Phase-coherent RTTY modulator
KSPA p. 26, Feb 79
RTTY tuning indicator, a free (HN)
NT1AW p. 74, Oct 81

semitronics
Selcom
K9HHV, WB4KUR, K4EID p. 10, Jun 78
Slow ASCII
W3FCV p. 8, Jun 81
SSB transmitters, FSK adapter for
WA3PLC p. 12, Jul 78
Comments N1AT, WA3PLC p. 8, Mar 82
Comments WB6DPZ, N1AT p. 8, Oct 82
Test generator, RTTY
WB9ATW p. 64, Jan 78
XXC2 AFSK generator, the
W3HVK p. 58, Nov 80

satellites
AMSAT-OSCAR D
W3PK, G3ZCZ p. 18, Apr 78
Antenna accuracy in satellite tracking systems
N5KR p. 24, Jun 79
Calculator, OSCAR
W8GCI p. 34, Dec 78
Geostationary satellite bearings with the TI-5859
programmable calculator (HN)
WB8BKC p. 87, Apr 81
Geostationary satellites, locating
WA20K p. 66, Oct 81
Comments W1DTHX p. 8, Jan 82
Comments W2TI p. 8, Feb 82
Short circuits
WB6PMT p. 89, Jan 82
OSCAR az-el antenna system
WA1NXP p. 70, May 78
Phase III spacecraft orbits, geometry of
WBMOW p. 66, Oct 80
Programming for automated satellite
communication
KP4MO p. 68, Jun 78
Receiving preamplifier for OSCAR 8 Mode J
Gb1R and Pupulis p. 20, Jun 78
Satellite communications on 10 meters (letter)
G3IOR p. 12, Dec 79
Satellite tracking — pointing and
range with a pocket calculator
Bail, John A. p. 40, Feb 78
Tracking satellites in elliptical orbits
WAV9VJ p. 46, Mar 78

semiconductors
Amplifiers, biasing Class-A bipolar transistor
K97B p. 32, Aug 82
Antenna bearings for geostationary
satellites, calculating
NTX p. 67, May 78
GaAs field-effect transistors, introduction
EA2ZZF p. 74, Jan 78
Mosfet power amplifier, 160 - 6 meters
WA1WLV p. 12, Nov 78
Mospat fet (letter)
W3QOM p. 110, Mar 78
Predicting close encounters:
OSCAR 7 and OSCAR 8
K2UBC p. 62, Jul 79
Proteccting solid-state devices from
voltage transients
WB6DPE p. 74, Jun 78
Switching inductive loads with
solid-state devices (HN)
WA8RCF p. 98, Jun 78

single sideband
Early single-sideband transmitter (ham radio
techniques)
W6SAl p. 30, Dec 81
Linear amplifier design
W6AIG p. 12, Jun 79
Part 1 p. 12, Jun 79
Part 2 p. 34, Jul 79
Part 3 p. 58, Aug 79
Linear amplifier, modular, for the high-frequency
Amateur bands
K9RA p. 12, Jan 81
Comments K1THP p. 6, Mar 81
Phasing networks (letter)
W2ESS p. 8, Nov 78
Speech processor, split-band
NY7WS p. 12, Sep 78
SSB phasing techniques, review
9K2TV p. 52, Jan 78
Short circuit
W1QF p. 94, Feb 79
SSB phasing techniques, review (letter)
W8RYEM p. 82, Aug 78
Transceiver, high-frequency with digital readout
DJ2LR p. 12, Mar 78
Transmitter, low-power, high frequency
W8RMR p. 12, Dec 78

software
TI58T15S (HN) K3VGO p. 65, Mar 82

Television
Broadcast quality television camera
WA8RMIC p. 10, Jan 78
Console, video, for ATV
W8BLGA p. 12, Jan 80
CRT character enhancer
W9CGI p. 68, Aug 75
Display SSTV pictures on a fast-scan TV
K6AE 1 p. 12, Jul 79
Medium-scan television
WN1TP p. 54, Dec 81
SSTV, applying microcomputers to
G3ZCZ.4K p. 20, Jun 79

Transmitters and power amplifiers

General
Air pressure measurements
across transmitting tubes (HN)
W4PSI p. 73, Dec 79
Amplifier converter for facsimile transmission, an
SM6FJR p. 12, Dec 81
CQer, automatic, for RTTY
WA4YYV p. 18, Nov 80
Digital readout, universal
W8BIFM p. 34, Dec 78
Digital rf/so basics
Earsnaw p. 18, Nov 78
Elmac SCX1500A power pentode, notes on
K9KI p. 80, Aug 80
High-voltage fuses in linear amplifiers (HN)
K3MM p. 76, Feb 78
Linear power amplifiers (letter)
KB5GY, W8SAI p. 6, Dec 79
Lowpass filters, elliptic, for transistor amplifiers
W5NQI p. 20, Jan 81
Pi network design
Anderson, Leonard H. p. 36, Mar 78
Comments
W1PJ p. 6, Apr 79
Pi networks (letter)
W6NIF p. 6, Oct 78
Pi-network rf choke (HN)
W6KNE p. 98, Jun 78
Quartz crystals (letter)
WB2EIGV p. 12, Dec 79
RJ leakage from your transmitter, preventing
K9AM p. 44, Jun 78
Single-conversion transceivers, digital frequency
display for
KBYK p. 26, Mar 81
Talking clock (letter)
9K9V p. 75, Feb 80
Talking digital readout (letter)
N5AF p. 6, May 80
40-meter transmitter-receiver
WB8IM p. 43, Dec 82
XXC2 AFSK generator, the
W3HVK p. 58, Nov 80
high-frequency transmitters

Air pressure, measuring across transmitting tubes (HIN) p. 89, Jan 80
W4PSF p. 19, Aug 81
ALC circuits, an analysis of KAJPW p. 43, Dec 80
Kilowatt mobile for DX K7DU p. 56, Jul 80
Linear-adapter cost efficiency WBFLP p. 60, Jul 80
Linear amplifier design WBBSAI Part 1 p. 6, Mar 81
Part 2 p. 34, Jul 80
Part 3 p. 58, Aug 79
Linear amplifier, modular, for the high-frequency Amateur bands KJRA p. 12, Jan 81
Comments K1THP p. 6, Mar 81
Linear amplifiers, modifying for full break-in-operation K4KU p. 38, Apr 78
Lowpass filters, elliptic, for transistor amplifiers W5QNN p. 21, Jan 80
Most power amplifier, for 160 - 6 meters W9AWX p. 12, Nov 78
Transceiver, high-frequency with digital readout DJ1JLR p. 12, Mar 78
Transmitter, low-power, high-frequency WA9RBR p. 12, Dec 78

vhf and uhf transmitters

Converter, dc-dc, increases Gunnplexer frequency swing (HIN) W1KXZ p. 70, Apr 80
Synthesized 2-meter mobile stations, automation for W9CGI p. 20, Jun 80
10-GHz transceiver for amateur microwave communications DJ7DO p. 10, Aug 78
30-MHz preamplifier, low-noise WH1R p. 38, Oct 78
220-MHz kilowatt linear WA8PO p. 12, Jun 80

troubleshooting

IF transformers, problems and cures — Weekender K4IPV p. 56, Mar 79

vhf and microwave general

Battery-voltage monitor for HTs (weekender) K2MWU p. 78, Sep 82
Cavity filters, surplus, how to modify for 144 MHz W8FXE p. 42, Feb 80
Earth-moon-earth (ham radio techniques) W9ESAI p. 40, Feb 81
E12W six-meter report (letter) E12W p. 12, Jul 80
Frequency synthesizer (letter) W5AESAI p. 12, Jul 80
F-237GRC surplus cavity filter, conversion versatility using the WA8FXE p. 22, Dec 80
GaAs field-effect transistors, introduction WA4ZZZ p. 74, Jan 78
Gunn Oscillator design for the 10-GHz band WBZXXW p. 6, Sep 80
Handheld transceiver mount (a two-ashtry for your car) (weekender) KB2XM p. 64, Jul 81
Instant balun (letter) W8DGTU p. 6, Aug 81
K9LHA 2-meter synthesizer, extending the range of (HIN) K9LHA p. 52, Dec 81
L-band local oscillators N6TX p. 40, Dec 79
Microstrip transmission line W1HR p. 28, Jan 78
Microwave bibliography WA8HD0 p. 68, Jan 78
Microwave-frequency converter for vhf counters K9AYTI p. 40, Jul 78
Microwave network for multimode communications K4WJ p. 36, Aug 82
Microwave path evaluation N7DH p. 52, Dec 80
Monitor, tone alert W4KRT p. 24, Aug 80
More about moonbounce (ham radio techniques) WBSAI p. 34, Mar 81
Multipurpose uhf oscillator, simplifying the WASHVY p. 26, Sep 81
Plasma-delta experiments StockVY p. 62, Feb 80
Repeater security WA5FRF p. 52, Feb 81
Spectrum analyzer microwave N6TX p. 34, Jul 78
Super-bias circuit for repeaters KA0AQI p. 48, Jul 81
Synthesized time identifier for your repeater W9A4P p. 42, Nov 82
Tone decoder, the ultimate W6DEIA, WB9BGZ p. 32, Sep 82
Touchtone auto-dialer, portable K2MWU p. 12, Aug 82
Two-meter autopatches, tone-encoder for W6BVIZ p. 51, Jun 80
Varactor tuning tips (HIN) N9SN p. 69, Dec 80
Voltage-tuned uhf oscillator, multipurpose WA9HUV p. 12, Dec 80
VHF techniques p. 62, Jul 80
VHF transceivers, regulated power supply for WA9XRU p. 56, Sep 80
Weak-signal communications WA4TU p. 26, Mar 78
Wireless 220-MHz to 2-meter converter (weekender) WP3W p. 36, Jan 82
X-band calibrator WA8EJO p. 44, Apr 81
10-GHz cross-guide coupler WB2XXK p. 66, Oct 79
10-GHz Gunnplexer transceivers, construction and practice Comments, W6CAL p. 6, Sep 79
40-meter transmitter-receiver W8XM p. 43, Dec 82
144-MHz frequency synthesizer, CMOS K9LHA p. 14, Dec 79
Short circuit W8IAY p. 81, Apr 80
440-MHz bandpass filter WA8YRT p. 62, Nov 79
1296-MHz stub-taper tuner K9LHA p. 70, Dec 78
1296-MHz microstrip filter, improved grounding for N6TX p. 60, Aug 78

vhf and microwave receivers and converters

Add fm to your receiver (weekender) W29XU p. 74, Mar 82
Cavity filters, surplus, how to modify for 144 MHz W4FXE p. 42, Feb 80
Crystal-controlled vhf receivers, tuning aid for (HIN) W9AFH8 p. 69, Jul 80
Fm transceiver, remote synthesized for 2 meters W8BUJ p. 28, Jan 80
Kensac 74 WB70YB p. 50, Jan 81
Short circuit WB4UPC p. 69, Jan 82
Microwave mixer, new WB5RD X Modification of K9LHA 2-meter synthesizer for 144-148 MHz coverage (HIN) K9LHA p. 93, May 81
Preamp design, uhf, computer-aided K9BO p. 28, Oct 78
Preamplifiers, vhf low-noise W5A0F p. 50, Dec 79
Synthesizer, genesis of a VE3FIT p. 38, Mar 81
Uhf local-oscillator chain N6TX p. 27, Jul 79
Vhf receiver, general-purpose K7JUH p. 16, Jul 78
Vhf/uhf preamplifier burnout (HIN) WUJR p. 43, Nov 78
2-meter synthesizer, frequency modulator for K9LHA p. 68, Apr 81
2-meter transverter W8IHP p. 24, Jan 82
10-50 MHz preamp, low-noise, low-cost W9AGOF p. 65, May 81
30-MHz preamplifier, low-noise WA1HR p. 38, Oct 78
Short circuit WC4Z p. 94, Feb 79
144-452 MHz GaAs fet preamp K1HBY p. 38, Nov 79
432-MHz converter K0KD p. 74, Apr 79
432-MHz GaAs preamp K1HBY p. 22, Apr 78
432-MHz preamplifier, low-noise WB5LUA p. 26, Oct 78
1296-MHz local-oscillator chain WA2ZZF p. 42, Oct 78

vhf and microwave transmitters

ANU6X:6 cavities, converting surplus W8NB1 p. 12, Mar 81
CMOS 2-meter synthesizer K9LHA p. 14, Dec 79
Short circuit W89A p. 69, Jan 82
Fm transceiver, remote synthesized for 2 meters WB4UPC p. 28, Jan 80
Linear amplifiers, solid-state vhf AF8Z p. 48, Jan 80
Modification of K9LHA 2-meter synthesizer for 144-148 MHz coverage (HIN) K9LHA p. 93, May 81
Solid-state power for 1296 MHz N9JH p. 30, Feb 81
Synthesizer, genesis of a VE3FIT p. 38, Mar 81
2-meter synthesizer, frequency modulator for K9LHA p. 96, Apr 81
50-MHz SSB exciter K1LOG p. 12, Oct 79
144-MHz 10dBm watt amplifier W8B9IMA p. 12, Feb 79
Introducing Private Patch. A giant step forward in non-sampling Autopatch/Interconnect technology, capability and standard features. Our revolutionary new techniques of audio and digital signal processing offer several advantages over conventional sampling/scanning type Autopatches: 1. The annoyance of continuous squelch tails is totally eliminated. Makes conversation much more natural and enjoyable. 2. In addition to superb simplicity, operation through repeaters is made possible. 3. The only connections made to your base transceiver are to microphone and speaker jacks. NO INTERNAL CONNECTIONS OR MODIFICATIONS NECESSARY! Use Private Patch simplex for local operation, through a repeater for extended range. CW ID makes your Autopatch legal, and alerts you to incoming calls when ringback is turned on. Channel monitor logic precludes ringback transmission if channel is in use. Police services are not affected. Five digit owner programmable access code and operator/long distance inhibit switch assure security and protect your phone bill. Positive control is assured by special check digit logic functions. A fully digital timing approach eliminates all interchannel interference. Five digit owner programmable access code and operator/long distance inhibit switch assure security and protect your phone bill. Positive control is assured by special check digit logic functions. A fully digital timing approach eliminates all interchannel interference.

Announcing

NEW AUTOPATCH

Place your check mark in the space between name and number. Ex: Ham Radio

*Please contact this advertiser directly.

Limit 15 inquiries per request.

December, 1982

Please use before January 31, 1983

Tear off and mail to:

HAM RADIO MAGAZINE — “check off”
Greenville, N. H. 03048-0498

NAME:

CALL:

STREET:

CITY:

STATE..ZIP.

1 YEAR WARRANTY

$489

Postage Paid

PHONE: (213) 540-1053

Special Factory Direct Introductory Price

121

DEALERSHIPS INVITED

P.O. BOX 4155
TORRANCE, CA 90510

AGL Electronics

155

Alaska Microwave Labs

155

Alba Electronics

87

All Electronics Corp.

155

Aluma Tower Company

155

American Radio Relay League

103

Amidon Associates

123

Amp Supply

94

Antech, Inc.

127

Atlantic Surplus Sales

121

ATV Magazine

155

AutoConnect

121

Barker & Williamson, Inc.

82

Barry Electronics

29

Bauman, R. H., Sales Company

96

Bencher, inc.

123

Ben Franklin Electronics

101

Blue Company

96

Bit-O-Byte

127

Buckmaster Publishing

127

Budweiser Distributors

127

Butternut Electronics

89

Caddell Coil

127

Caywood Electronics

34

Ceco

136

Communications Specialists

136

Comm Tech

129

Crown Microproducts

101

Current Development Corp.

136

Deltacraft

129

Dig-Key

49

Dopper Systems

121

Drake, R. L., Co.

25, 61, 72

DX Signal Co.

115

Electronic Specialties, Inc.

125

Encore, Inc.

87

Epson Records

115

Ferrantini Limited

125

Fox Tel Corp.

101

Galaxy Electronics

90

Goldsmith Scientific Corporation

123

Grand Systems

75

Hal Communications Corp.

39, 73

Hall Products

101

Hall Tronix

52

Ham Radio’s

101

Ham Radio’s Bookstore

98, 100, 127

Ham Radio Magazine

125

The Ham Shack

91

Hamtronics

119

Harrison Radio

37

Heath Company

68, 89

Hoover Electronics

115

Icon America, Inc.

Cover II

Independent Crystal Supply Company

90

International Communications

125

International Solar

125

JWCL Electronics

16

Jameco

99

Jameco Electronics

99

Jameco Tools, Inc.

94

Kentron Electronics

92, 93

Kemi-Kenwood Communications

2, Cover IV

K. H. Lockwood, Inc.

115

Lowrance Electronics

95

Long’s Electronics

40, 41

Luna Electronics

40

MFJ Enterprises

9

Mite Electronics

104-113

Midwest Electronic Supply

7

Mirage Communications Equipment

97

National Satellite Communications

97

Nemal Electronics

34

P. C. Electronics

42

Pamotron Engineers

96, 95

Panasonic

55

Petersen Electronics

55

Photowatt International, Inc.

25

Pipo Communications

127

Polar Research

11

Power General

129

Pro-Search

115

RF Products

129

Radio Amateur Calibook

39

Radio Warehouse

123

Radio World

121

SAROC

102

Sherwood Engineering

94

Simple Simon Electronic Kits, Inc.

57

Spectronics

23

Spectrum International

98

Tektronix

75

Telex Communications

62, 63

Tennessee Electronics

123

Ten-Tec

64

TET Antenna Systems

122

Texas Towers

76

The Comm Center

96

Unite, Division of Edcon Industries

96

Universal Communications

22

UNR-Rohn

119, 129

Value Enterprises, Inc.

125

Vanguard Labs

121

Vetans, Etc.

83

Vidare, Inc.

83

Webster Associates

97

Western Electronics

98

West Jersey Communication Products

121

Yates Electronics Corp.

Cover III

Index
... for literature, in a hurry — we'll rush your name to the companies whose names you print below. It's simple to do. Simply select the advertiser's number and name from the Advertisers' Checkoff list found on the same page as the Advertisers' Index. Just print the number and the company's name and drop in the mail.

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>NAME OF COMPANY</th>
<th>NUMBER</th>
<th>NAME OF COMPANY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Limit 14 inquiries please.

NAME
ADDRESS
CITY STATE ZIP

CALL
introducing a new dimension...

COMPUTERIZED ANTENNA CONTROL
FROM PRO-SEARCH™

For Contesters,
DXers, Handicapped
Operators and General
Purpose Ham
Operators:
- The Most Advanced
 Antenna Control
 available...
- The Only
 Computerized Unit
- The Only Talking
 Unit
- The Only Scanning
 Unit
- The Only
 Programmable Unit
- The Only Automatic
 Braking Unit

Contesters:
Pro-Search seeks out a
re-programmed heading, plus
stores various common head-
gs and automatically scans
those rare multipliers, giv-ning the operator hands-free
operation and more time for
contesting.

DXers:
Pro-Search loads in short path
no long path headings and
with the touch of a button, the
system works between both
headings. Plus you have all of
the other features of the Pro-
search to aid you in catching
that rare DX station.

Handicapped Operators:
Pro-Search offers ease of
operation... control the entire
system with just one touch. A
microloop... vocally calls out the
headings, allowing blind opera-
riors to accurately program and
set their headings.

General Purpose Operators:
Pro-Search has numerous
uses.
-set beam headings for
CEDS, VHR WORK, and many
others. Current headings can
be read, by displaying the
present directions with LEDs.
Pro-Search also displays and
stores the last station worked,
high can be recalled by the
uto-Locate system with the
uch of a button.

Pro-Search Is
Adaptable To Many
Systems, Simple
To Install.

- Pro-Search is NOW
 available for most
 popular rotors. CDE,
 HY-GAIN, TELREX,
 WILSON, ALLIANCE,
 and PROP-PITCH.

Disconnect your
present antenna
control system and
connect ours.

Some modifications
are necessary
depending on type of
rotor.

To Order:
1-800-325-4016
1-314-994-7872 (Missouri)

Or write:
Pro-Search Electronics
A Division of Wurdack and
Associates, Inc.
10411 Clayton Road
Suite 305
St. Louis, Missouri 63131
*Patent Pending
Stuck with a problem?

Our TE-12P Encoder might be just the solution to pull you out of a sticky situation. Need a different CTCSS tone for each channel in a multi-channel Public Safety System? How about customer access to multiple repeater sites on the same channel? Or use it to generate any of the twelve tones for EMS use. Also, it can be used to access Amateur repeaters or just as a piece of versatile test equipment. Any of the CTCSS tones may be accessed with the TE-12PA, any of the audible frequencies with the TE-12PB. Just set a dip switch, no test equipment is required. As usual, we're a stickler for 1-day delivery with a full 1 year warranty.

- Output level flat to within 1.5db over entire range selected.
- Immune to RF.
- Powered by 6-30vdc, unregulated at 8 ma.
- Low impedance, low distortion, adjustable sinewave output, 5v peak-to-peak.
- Instant start-up.

TE-12PA

<table>
<thead>
<tr>
<th>Frequency</th>
<th>67.0 XZ</th>
<th>85.4 YA</th>
<th>103.5 1A</th>
<th>127.3 3A</th>
<th>156.7 5A</th>
<th>192.8 7A</th>
</tr>
</thead>
<tbody>
<tr>
<td>71.9 XA</td>
<td>86.5 YB</td>
<td>107.2 1B</td>
<td>131.8 3B</td>
<td>162.2 5B</td>
<td>203.5 7B</td>
<td></td>
</tr>
<tr>
<td>74.4 WZ</td>
<td>91.3 ZW</td>
<td>110.9 2Z</td>
<td>136.4 4Z</td>
<td>167.9 6Z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>77.0 XB</td>
<td>94.8 ZA</td>
<td>114.8 2A</td>
<td>141.3 4A</td>
<td>173.8 6A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>79.7 SP</td>
<td>97.4 ZB</td>
<td>118.8 2B</td>
<td>146.2 4B</td>
<td>179.9 6B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>82.5 YZ</td>
<td>100.1 3Z</td>
<td>123.0 3Z</td>
<td>151.4 5Z</td>
<td>186.2 7Z</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Frequency accuracy, ±.1 Hz maximum – 40°C to +85°C
- Frequencies to 250 Hz available on special order.
- Continuous tone

TE-12PB

<table>
<thead>
<tr>
<th>Frequency</th>
<th>600</th>
<th>697</th>
<th>1209</th>
<th>1600</th>
<th>1850</th>
<th>2150</th>
<th>2400</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>770</td>
<td>1336</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>852</td>
<td>1477</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2175</td>
<td>941</td>
<td>1633</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2805</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Frequency accuracy, ±1 Hz maximum – 40°C to +85°C
- Tone length approximately 300 ms. May be lengthened, shortened or eliminated by changing value of resistor

$89.95

COMMUNICATIONS SPECIALISTS

426 West Taft Avenue, Orange, California 92667
(800) 854-0547/California: (714) 998-3021
The long-awaited new generation of Yaesu HF technology has arrived! New research in improved receiver filtering and spectral purity is brought to bear in the competition-bred FT-102, the HF transceiver designed for active Amateurs on today's intensely active bands!

Unique Cascaded Filter System
The FT-102 utilizes an advanced 8.2 MHz and 455 kHz IF system, capable of accepting as many as three filters in cascade. Optional filters of 2.9 kHz, 1.8 kHz, 600 Hz, and 300 Hz may be combined with the stock 2.9 kHz filters for operating flexibility you've never seen in an HF transceiver before now!

All New Receiver Front End
Utilizing husky junction field-effect transistors in a 24 volt, high-current design, the FT-102 front end features a low-distortion RF preamplifier that may be bypassed via a front panel switch when not needed.

IF Notch and Audio Peak Filter
A highly effective 455 kHz IF Notch Filter provides superb rejection of heterodynes, carriers, and other annoying interference appearing within the IF passband. On CW, the Audio Peak Filter may be switched in during extremely tight pile-up conditions for post-detection signal enhancement.

Variable IF Bandwidth with IF Shift
The FT-102's double conversion receiver features Yaesu's time-proven Variable Bandwidth System, which utilizes the cascaded IF filters to provide intermediate bandwidths such as 2.1 kHz, 1.5 kHz, or 800 Hz simply by twisting a dial. The Variable Bandwidth System is used in conjunction with the IF Shift control, which allows the operator to center the IF passband frequency response without varying the incoming signal pitch.

Wide/Narrow Filter Selection
Depending on the exact combination of optional filters you choose, a variety of wide/narrow operating modes may be selected. For example, you may set up 2.9 kHz in SSB/WIDE, 1.8 kHz in SSB/NARROW, and then select 1.6 kHz for CW/WIDE, and 600 Hz or 300 Hz for CW/NARROW. Or use the Variable Bandwidth to set your SSB bandwidth, and use 600 Hz for CW/WIDE and 300 Hz for CW/NARROW! No other manufacturer gives you so much flexibility in selecting filter responses!

Variable Pulse Width Noise Blanker
Ignition noise, the "Woodpecker," and power line noise are modern-day enemies of effective Amateur operation. The FT-102 Noise Blanker offers improved blanking action on today's man-made noise sources (though no blanker can eliminate all forms of band noise) for more solid copy under adverse conditions.

Low Distortion Audio/IF Stage Design
Now that dynamic range, stability, and AGC problems have been largely eliminated thanks to improved technology, Yaesu's engineers have put particular attention on maximizing intelligence recovery in the receiver. While elementary filter cascading schemes often degrade performance, the FT-102's unique blend of crystal and ceramic IF filters plus audio tone control provides very low phase delay, reduced passband ripple, and hence increased recovery of information.

Heavy Duty Three-Tube Final Amplifier
The FT-102 final amplifier uses three 6146B tubes for more consistent power output and improved reliability. Using up to 10 dB of RF negative feedback, the FT-102 transmitter third-order distortion products are typically 40 dB down, giving you a studio quality output signal.

Dual Metering System
Adopted from the new FT-101E transceiver, the Dual Metering System provides simultaneous display of ALC voltage on one meter along with metering of plate voltage, cathode current, relative power output, or clipping level on the other. This system greatly simplifies proper adjustment of the transceiver.

Microphone Amplifier Tone Control
Recognizing the differences in voice characteristics of Amateur operators, Yaesu's engineers have incorporated an ingenious microphone amplifier tone control circuit, which allows you to tailor the treble and bass response of the FT-102 transmitter for best fidelity on your speech pattern.

VOX with Front Panel Controls
The FT-102 standard package includes VOX for hands-free operation. Both the VOX Gain and VOX Delay controls are located on the front panel, for maximum convenience.

WARC Bands Factory Installed
The FT-102 is factory equipped for operation on all present and proposed Amateur bands, so you won't have to worry about retrofitting capability on your transceiver. An extra AUX band position is available on the bandswitch for special applications.

Full Line Of Accessories
For maximum operating flexibility, see your Authorized Dealer for details of the complete line of FT-102 accessories. Coming soon are the FV-1020M Synthesized VFO, SP-102 Speaker/Audio Filter, a full line of optional filters and microphones, and the AM/FM Unit.

Price And Specifications Subject To Change Without Notice Or Obligation

YAESU ELECTRONICS CORP., 6851 Walthall Way, Paramount, CA 90723 (213) 633-4007
YAESU Eastern Service Ctr., 9812 Princeton-Glendale Rd., Cincinnati, OH 45246 (513) 874-3100

582
Digital DX-terity...

General coverage, Superior dynamic range, 2 VFO's, 8 memories, Scan, Notch... COMPACT!

TS-430S

The TS-430S combines the ultimate in compact styling with advanced circuit design and performance. An all solid-state SSB, CW, and AM transceiver, with FM optional, covering the 160-10 meter Amateur bands, it also incorporates a 150 kHz-30 MHz general coverage receiver having a superior dynamic range, dual digital VFO's, 8 memories, memory scan, programmable band scan, IF shift, notch filter, all-mode squelch, and built-in speech processor.

TS-430S FEATURES:

- **160-10 meter operation, with general coverage receiver**
 With 160-10 meter Amateur band coverage, including WARC 30, 17, and 12 meter bands, it also features a 150 kHz-30 MHz general coverage receiver. Innovative UP-conversion digital PLL circuit, for superior frequency stability and accuracy. UP/DOWN band switches for Amateur bands or 1-MHz steps across entire 150 kHz-30 MHz range. Two digital VFO's continuously tunable from band to band. Band information output on rear panel.

- **USB, LSB, CW, AM, with optional FM**
 Operates on USB, LSB, CW, and AM, with optional FM, internally installed. AGC time constant automatically selected by mode.

- **Compact, lightweight design**
 Measures only 10-5/8 (270) W x 3-3/4 (96) H x 10-7/8 (275) D. Inches (mm), weighs only 14.3 lbs. (6.5 kg).

- **Superior receiver dynamic range**
 Use of 2SK125 junction-type FET's in the Dyna-Mix high sensitivity, balanced, direct mixer circuit provides superior dynamic range.

- **10-Hz step dual digital VFO's**
 10-Hz step dual digital VFO's operate independently, include band and mode information. Different band and mode cross-operation possible. Dial torque adjustable. STEP switch for tuning in 10-Hz or 100-Hz steps. A-B switch quickly shifts "B" VFO to the same frequency and mode as "A" VFO, or vice-versa. VFO LOCK switch provided. RIT control tunes VFO or memory. UP/DOWN manual scan possible using optional microphone.

- **Eight memories store frequency, mode, and band data**
 Memories store frequency, mode, and band data. Eight memory stores receive and transmit frequencies independently. M.CH switch for operation of memory as independent VFO, or fixed frequency.

- **Lithium battery memory back-up**
 Estimated five-year life.

- **Memory scan**
 Scans memories in which data is stored.

- **Programmable automatic band scan**
 Scans programmed band width. Scan-speed adjustable. HOLD switch interrupts band or memory scan.

- **IF shift circuit for minimum QRM**
 IF passband may be moved to place interfering signals outside the passband, for best interference rejection.

- **Tunable notch filter built-in**
 Deep, sharp, tunable, audio notch filter.

- **Narrow wide filter selection**
 NAR wide switch for IF filter selection on SSB, CW, or AM, when optional filters are installed. (2.4 kHz IF filter built-in.)

- **Speech processor built-in**
 Improves intelligibility, increases average "talk-power".

- **Fluorescent tube digital display**
 Indicates frequency to 100 Hz (10 Hz modifiable).

- **All solid-state technology**
 Input rated 250 W PEP on SSB, 200 W DC on CW. 120 W on FM (optional), 60 W on AM. Built-in cooling fan, multi-circuit final protection. Operates on 12 VDC, or 120 VAC, or 220-240 VAC with optional AC power supply.

- **All-mode squelch circuit, built-in**

- **Noise blanker, built-in**

- **RF attenuator (20 dB)**

- **Vox circuit, plus semi-break-in with side-tone**

Optional accessories:

- **PS-430 compact AC power supply.**
- **PS-30 or KPS-AC AC power supplies.**
- **SP-430 external speaker.**
- **MB-430 mobile mounting bracket.**
- **AT-130 compact antenna tuner.**
- **80-40 m inl. WARC.**
- **AT-230 base antenna tuner.**
- **160-10 m inl. WARC.**
- **FM-430 FM unit.**
- **YK-88C (500 Hz) or YK-88CN (270 Hz) CW filters.**
- **YK-88SN (1.8 kHz) narrow SSB filter.**
- **YK-88A (6 kHz) AM filter.**
- **MC-42S UP/DOWN hand microphone.**
- **MC-60A deluxe desk microphone, UP/DOWN switch.**

More information on the TS-430S is available from all authorized dealers of Trio-Kenwood Communications, 1111 West Walnut Street, Compton, California 90220.

KENWOOD...

pacesetter in amateur radio

Specifications and prices are subject to change without notice or obligation.