

DECEMBER 1982

- improved TouchTone ${ }^{\text {TM }}$ decoder
- rotary dial and encoder
- 40-meter transmitter-receiver
- data bandwidths compared

focus

on
communications technology

ICOMIC730 ICOM's GoAnywhere HF Rig for Everyone's Pocketbook

Son aact.

Only 3.7 in $(\mathrm{H}) \times 9.5$ in (W) $\times 10.8$ in (D) will fit into most mobile operations (compact car, airplane, boat, or suitcase)

Affordable.

Priced right to meet your budget as your main HF rig or as a second rig for mobile/portable operation.

Convenient.

- Unique tuning speed selection for quick and precise QSY, choice of $1 \mathrm{KHz}, 100 \mathrm{~Hz}$ or 10 Hz tuning.
- Electronic dial lock, deactivates tuning knob for lock on, stay on frequency operation.
- One memory per band, for storage of your favorite frequency on each band.
- Dual VFO system built in standard at no extra cost.

Full Featured.

- 200W PEP input-powerful punch on SSB/CW (40 W out on AM)
- Receiver preamp built-in - VOX built-in
- Noise blanker (selectable time constant) standard
- Large RIT knob for easy mobile operation
- Amateur band coverage $10-80 \mathrm{M}$ including the new WARC bands
- Speech processor-built-in, standard (no extra cost)
- IF shift slide tuning standard (pass band tuning optional)
- Fully solid state for lower current drain
- Automatic protection circuit for finals under high SWR conditions
- Digital readout - Receives WWV - Selectable AGC
- Up/down tuning from optional microphone
- Handheld microphone standard (no extra cost)
- Optional mobile mount available

CD ICOM

2112 116th Avenue N.E., Bellevue, WA 98004
3331 Towerwood Dr., Suite 307, Dallas TX 75234

In the world of soldering, control is essential. And with the new Ungar Series 9000 soldering line, you can choose the precise level of control you need!

First, our state-of-the-art Electronic Soldering System 9000 . with variable temperature control from $420^{\circ} \mathrm{F}$ to $800^{\circ} \mathrm{F}$ and bright bar graph temperature display so you can see the exact temperature from across the room.
dering System 9100 , with variable temperature control, housed in a compact, versatile module.

Our System 9200 has constant temperature control. And, like all Series 9000 units, the iron can be set on either the left or right side for optimum operator comfort. The System 9800 micro electronic soidering iron has our new THERMO-DUAIC, long-life heater plus easy-to-change tips that
lower energy use at idle, and unparalleled recovery.

So when you need control in your universe, rely on the Series 5000 by Ungar. For further information, call the Ungar Hotline, toll free 1-800-421-1538, in California call collect 1-218-774-5950.

Scan the World.

SSB, CW, AM, FM, digital VFO's, 10 memories, memory and band scan, dual 24-hour clocks...

R-2000
The R-2000 is an all mode SSB, CW, AM, FM receiver that covers $150 \mathrm{kHz}-30 \mathrm{MHz}$ in 30 bands. New microprocessor controlled operating features and an UP conversion PLL circuit provide maximum flexibility and ease of operation to enhance the excitement of listening to stations around the world. Key features include digital VFO's, ten memories that store frequency, band, and mode information, memory scan, programmable band scan, fluorescent tube digital display, and dual 24 -hour clock with timer.

R-2000 FEATURES:

- Covers $150 \mathrm{kHz}-30 \mathrm{MHz}$ in $\mathbf{3 0}$ bands. Uses innovative UP-conversion digitally controlled PLL circuit. UP/DOWN band switches ($1-\mathrm{MHz}$ step). VFO's continuously tuneable across $150 \mathrm{kHz}-30 \mathrm{MHz}$.
- All mode: USB, LSB, CW, AM, FM. Provides expanded flexibility in receiving various signal types. Front panel mode selector keys, with LED indicators.
- Digital VFO's for best stability. $50-\mathrm{Hz}$ step, switchable to $500-\mathrm{Hz}$ or $5-\mathrm{kHz}$, using front panel pushbutton switches. F. LOCK switch provided.
- Ten memories store frequency, band, and mode data.
Complete information on frequency, band. and mode is stored in memory, assuring maximum ease of operation. Each memory may be tuned as a VFO. Original memory frequency may be recalled. AUTO. M switch for automatic storage of current operating data, or, when off, selective storage of data using M. IN switch.
- Lithium battery memory back-up. (Est. 5 yr. life.)

- Memory scan.

Scans all memories, or may be programmed to scan specific memories. HOLD switch interrupts scanning. Frequency, band, and mode are automatically selected in accordance with the memory channel being scanned. The scanning time is approximately 2 seconds per channel.

- Programmable band scan.

Scans automatically within the programmed bandwidth. Memory channels 9 and 0 establish upper and lower scan limits. HOLD switch interrupts scanning. Frequency may be adjusted, using the tuning control, during scan HOLD.

- Fluorescent tube digital display ($\mathbf{1 0 0}-\mathrm{Hz}$ resolution).
Built-in 7 digit fluorescent tube digital display indicates frequency or time, plus memory channel number. DIM switch provided. The display may be switched to indicate CLOCK-2, FREQUENCY, CLOCK-1, and timer ON or OFF by the front panel FUNCTION switch.
- Dual 24-hour quartz clocks, with timer. Permits programming two different time zones. Timer for ON and OFF programming. Timer REMOTE output on rear panel (not for AC power).
- Three built-in IF filters with NARROW/ WIDE selector switch. (CW filter optional.)
6 kHz wide or 2.7 kHz narrow on AM . 2.7 kHz automatic on SSB. 2.7 kHz wide on CW, or, with optional YG-455C filter installed. 500 Hz narrow. 15 kHz automatic on FM.
- Squelch circuit, all mode, built-in, with BUSY indicator.
- Noise blanker built-in.

Eliminates pulse-type noise on SSB, CW, and AM.

- Large front mounted speaker.
- Tone control.
- RF step attenuator. (0-10-20-30 dB.)

Four step attenuator, plus antenna fuse.

- AGC switch. (Slow-Fast.)
- "S" meter, with SINPO "S" scale.
- High and low impedance antenna terminals.
A high impedance (500 ohm) terminal, and a low impedance (50 ohm) co-axial connector are provided.
- 100/120/220/240 VAC, or $\mathbf{1 3 . 8}$ VDC operation. (Optional DCK-1 cable kit required for 13.8 VDC.$)$

Other features.

- RECORD output jack.
- Audible "beeper" (through speaker).
- Carrying handle.
- Headphone jack.
- External speaker jack.

Optional accessories:

- HS-4, HS-5, HS-6 headphones.
- DCK-1 DC cable kit.
- YG-455C $500-\mathrm{Hz}$ CW filter.
- HC-10 World digital quartz clock.

More information on the R-2000 is available from all authorized dealers of Trio-Kenwood Communications 1111 West Walnut Street
Compton. California 90220.
riease enter my gir subscnptions to HAM RADIO Magazine as follows: EACH GIFT JUST \$14.50 SAVE OVER 25\%

 olpes

－HN＇ə\｜ı＾иәә」	
qy甘O 人7dヨy SSヨNISng	

ham radio magazine

volume 15, number 12
T. H. Tenner. Jr.. W1NLB publisher and editor-in-chief

Martin Hanft. KA1ZM editor

Rich Roses, K2R senior technical edit and associate publisher
editorial staff
Debra Marshall
managing editor
Alfred Wilson, W6 NI
Joseph J. Schroeder, W9JUV - tonard H. Anderson
associate editor
Susan Shorrock
production
publishing staff
J. Craig Clark, Jr., NiACH assistant publisher Rally Denims
director of advertising sales
Susan Shorrock circulation manage Therese Bourgau circulation
ham radio magazine s published monthly by Communications Technology, In Greenville. New Hampshire 03048-049 Telephone: 603-878. 144
subscription rates
United States: one year, $\$ 19.50$ wo years, $\$ 32.50$; three years, $\$ 42.50$ Canada and other countries (via Surface Mail one year, \$21.50. iwo years, $\$ 40.00$ three years, $\$ 57.00$

Europe, Japan, Africa via A Forwarding Service one year. $\$ 28.00$ All subscription orders payable in United States funds, pleas
foreign subscription agents
Foreign subscription agents at listed on page 95

Microfilm copies are available from
University Microfilms, Internation
Ann Arbor, Michigan 48106
Order publication number 3076
Cassette tapes of selected articles from ham radio are available to the blind and physically handicapped from Recorded Periodical 919 Walnut Street, Am Floc Philadelphia. Pennsylvania 1910
Copyright 1982 by Title registered al US. Patent Office

contents

12 low cost linear design and construction
R.P. Haviland, W4MB

24 improved Touch Tone ${ }^{\text {TM }}$ decoder
Jerry Hinshaw, N6JH

30 rotary dial and encoder for digital tuning
C.A. Eubanks, N3CA

43 40-meter transmitter-receiver Ed Marriner, W6XM

50 data bandwidths compared
J.T. Dijak, W9JD/2

54 battery charge sensor
F.T. Marcelino, W3BYM

58 ham radio techniques
Bill Orr, W5SAI

77 receiver dynamic range
Cornell Drentea, WB3JZO

84 is it stolen?
George H. Goldstone, W8AP

132 advertisers index 70 ham notes

8 comments
80 DX forecaster
95 flea market
38 ham calendar
114 ham mart

116 ham radio index
88 new products
6 reflections
10 presstop
132 reader service

I must share this with you. I must blurt this out before I bust. We at ham radio magazine are so pleased with the turn of events and even more importantly with our glimpse at the future: a larger staff, a very welcome increased advertiser response (it's nice to be adding pages in groups of eight at the last minute), and so very importantly, your response to us. Yes, all the letters will be answered, the many article suggestions considered and encouraged. Reflections is our attempt at looking in both directions, remembering the past technical excellence of our hobby, individuals, and industry, while keeping an eye toward the future.

I feel very fortunate to be able to address so large a group of technical and knowledgeable individuals through this page and am taking the opportunity to throw out to the "floor" possibly the first question of our new technical forum section. The problem: Normal communications channe/s down. A fine gentleman, while honorably serving his country, suffered a wound that resulted in Padget's disease. For those not familiar with it, this is a progressively degenerative bone malady. Fortunately, through modern medicine, its destructiveness has been arrested. However one quite intelligent human being with a fine mind is now deaf and almost totally blind. The two normal means of communications that most of us take for granted - seeing and hearing - are "down." But his speech is exceilent and his ability and desire to learn new techniques are great. They are surpassed only by his desire to carry on normal communications. I might add that his memory is outstanding. He knows the Morse code (from army days) and he has very slight shadow vision. Are techniques available (such as aural to tactile converters, aural to light converters and so forth) that can be used to provide faster inputting under these circumstances? I am aware of articles on this subject that have appeared in some of the ham magazines. Do any of our readers know of, or have ideas for, other techniques that might help?

Presented below is a preview of some of the subject areas ham radio magazine will cover in 1983. Please feel free to respond with your suggestions for additions or changes:

Antennas	Phased verticals
Filters	Preamplifiers
Future technology	Propagation
Ham computers	Receivers
Ham towers	Ropeaters
Oscillators and synthesizers	RFI

Two thousand miles of almost non-stop driving during my move from Denver, Colorado, to join ham radio in Greenville, New Hampshire, gave me plenty of time to reflect on and appreciate another wonderful aspect of ham radio, the ability to communicate with a cross-section of Amateurs from Salinas and Topeka, Kansas; Kansas City and St. Louis, Missouri; Indianapolis, Indiana; Zanesville, Ohio; Wheeling, West Virginia; Pittsburgh and Scranton, Pennsylvania; through Binghamton, New York - to name a few. The miles melted away with the good company provided by local hams as we discussed everything from lightning protection for highly exposed repeaters to elaborate test procedures for squeezing out that last tenth of a dB in a high-gain Yagi array. There is real joy in hearing a warm voice coming from the 2 -meter transceiver telling one very weary driver that there are motels just ahead where a late arrival might find a welcome bed. How l appreciated each transistor, resistor, and capacitor in my mobile unit, the repeaters I worked through, Maxwell's equations, and, most of all, the operators and technicians who made it all possible. To the many Amateurs I talked to during this recent trip, a hearty thank you.

Rich Rosen, K2RR technical editor

ENCOMM

TR-5 699.00
PS-7 269.00
PS-75 143.00
P-75 79.95
TR-7A 1450.00
RV-75 269.95
L-7 980.00
R-7 1400.00
1525 EM 59.95

Announcing . . .
the new Collins 451S-1 Receiver, the Kenwood TR-3500, and the Icom IC-290H (25 watts)

IC-730 699.00	FL45 CW narrow	
IC-720A General coverage rcvr ... 1149.00	crystal filter	59.50
Icom SP-3 49.50	Microphones	
Icom PS-15 134.00	HM5	34.50
IC-740 969.00	HM7	29.00
IC-2AT 239.00	HM8	49.50
IC-3AT 249.00	HM10.	39.50
EX203 CW audio filter 39.00	HP1 headphone	34.50
EX205 TRV unit for IC-730 29.00	LDA1 interface unit for 720 .	27.50
FL30 SSB crystal filter	SM2 desk mike	39.00
for IC-730 59.50	SM6 desk mike	39.00
FL44 455 Hz SSB 14300	IC-25A	309.00
crystal filter 143.00	IC-551D	599.00

We have everything in Icom accessories for your HF, VHF, and UHF needs.

© KENWOOD

The 930S, 830S, 660,530S and 130S are all in stock. Call for Holida) Specials!

ACCESSORIES	BS-5	79.95
	MC-46	49.95
Filters for 930S	MC-50	47.95
YK-88A-1 59.95	MC-30S	29.95
YK-88C-1 69.95	MC-35S	29.95
YG-455C-1 89.95	HS-5	41.95
YG-455CN-1 107.95	HS-4	19.95
SP-930 79.95	SP-40	25.95
HC-10 92.95	ST1	89.95
MB-100 29.95	MS-1.	42.95
VOX-4.... 55.00	TU-1	34.95
PS-30 130.45	SMC-25	34.95
SP-230 71.95	LH-2	37.95
DFC-230 260.95	PB-25	34.95
DM-81 93.00	BH-2	. 4.95
KPS-21 112.00	MC-60	69.95

FT-ONE	2395.00	NC-7	59.00
FT102	. 9999.00	NC-8	99.00
FV102DM	. 295.95	PA-3	39.00
SP102	59.00	FBA-2	. 6.50
FRG-7 \&		FBA-3	12.00
FRG-7700	Call	NC-9B	10.00
FT-208R		SSY-32	32.95
\& FT 708R	Call	QTR-24	49.00
MMB-10	15.00	YD-844A	32.00
FNB-2	29.00	YH-55	15.00
YM-24A.	. 39.00		

713-658-0268

HAM-KEY	
HK-3M.	19.95
HK-1	29.95
B\&W antenna switches	Stock
Kantronics	Stock
Vibroplex	Stock
Cushcraft \& Hygain	Stock
Telex headsets	Stock
Daiwa meters.	Stock
Dentron tuners	Stock
Rohn towers	Stock
Bearcat Scanners	Stock
Telex rotors	
Ham-4	. 169.00
Ham-X	249.00
MFJ	Stock

BCD addition/ subtraction

Dear HR:

After reading the April issue of ham radio, I would like to comment on the Ham Notebook item by Mr. Foot, WA9HUV. He is not alone in his desire for a method of $B C D$ addition/
subtraction. However, Motorola already solved this problem many years ago with the introduction of a chip pair combination, the MC14560B and the MC14561B. The first is an NBCD adder and the second is a 9 s complementer.
Connecting the units as shown in the data sheets (and reprinted in fig. 1) permits the user to choose a thumbwheel-selected number to program his synthesizer, or shift the number a fixed amount plus or minus. This feature is useful for setting a frequency source at a particular channel and then being able to shift its output to the upper or lower sideband.
The approximate cost per BCD digit is $\$ 5.40$ in unit quantities. It's a slightly more expensive approach, but one that does not require clocking and can be easily cascaded. For further

TRUTH TABLE
TERO ADDISUBTRACT RESULT 0 0 O DIAS A 0 1 B minus A 1 x B

fig. 1. Connections for an NBCD adder and 9s complementer allowing a thumbwheel selected number or a number shift of a plus or minus fixed amount.
reading and more application assistance, I would recommend Motorola's application note AN-738, which covers the subject more completely.

Jeffrey L. Schiffer, Pres.
 Phasetec Corporation
 West Peabody, Massachusetts

quad versus Yagi

Dear HR:

Quad lovers awake! We are again being attacked by the Yagis (ham radio, May, 1982, "Quad Owner Switches"). It is not immediately apparent that the quad was given a fair shake by the test procedure. For example, a five-element Yagi on a 32 foot boom is matched up against a three-element quad on a 27 -foot boom on 20 meters. On 15 meters a five-element Yagi was up against a four-element quad. On 10 meters, where the correlation is best except for the reversal of directivity, the match is five versus five.

The next problem I had was whether there were any matching devices at the antennas. Were baluns used, were their losses equal, was each antenna delivering maximum power to the line?

What bugs me most is that the authors took boom height as a reference height for both the quad and the Yagi. If the quads were fed at the center of the lower element, that point should be taken as the height of the quad. This would put the current loop for each antenna at the same height. It would seem that the procedure used in the tests handed the Yagi a height advantage on the order of 12 feet on 20 meters, 9 feet on 15 meters, and 6 feet on 10 meters. This would be expected to affect the vertical angle of the main lobe of the quad. Some Amateurs have advocated feeding the center of the upper element of the quad to improve the gain. Of course, there is a current loop in each of the horizontal elements if they are fed, but the loop at the feedpont will be greater.

C'mon home, guys. Wouldn't you rather fight than switch?

Howard B. Mouatt, W6BQD Palm Desert, California

Hear Police / Fire Weather

on 2 Meter Handhelds with this MFJ VHF Converter.

New MFJ VHF converter turns your synthesized scanning 2 meter handheld into a hot Police/Fire/Weather band scanner
$144-148 \mathrm{MHz}$ handheids receive Police/Fire on $154-158 \mathrm{MHz}$ with direct frequency readout. Hear NOAA weather maritime coastal plus more on $160-164 \mathrm{MHz}$.
Mounts between handheld and rubber ducky.
Feedthru allows simultaneous scanning of both 2 meters and Police/Fire bands. No missed calls.
Highpass input filter and 2.5 GHz transistor gives excellent uniform sensitivity over both bands. Crystal controlled.

Bypass/DFF switch allows transmitting. Won't burn out if you transmit (up to 5 watts) with converter on. Low insertion SWR. Uses AAA battery, $21 / 4 \times 1 \frac{1}{2} \times 11 / 2 \mathrm{in}$. BNC connectors.

Enjoy scanning, memory, digital readout, etc. as provided by your handheld on Police/Fire band.
220 MHz Converter for 2 M Handheld
 MFJ-314, like MFJ-313 $\$ 5995 \begin{aligned} & \text { but lets you receive } 221 . \\ & 225 \mathrm{MHz} \text { on your } 2 \text { meter }\end{aligned}$ handheld.
Police/Fire/Weather Band Converter for 2 Meter Mobile Rigs.

MFJ-312, like MFJ-313 but for mobile 2 meter rigs. Transmit up to 40 watts thru converter without damage. SO-239 connectors. Mobile mounting brackets. Rugged. "ON" LED. Use 12 VDC or AAA battery. $3 \times 4 \times 1$ in. Order from MFJ and try it-no obligation. If not delighted, return it within 30 days for refund (less shipping). One year unconditional guarantee.

Order today. Call toll free 800-647-1800. Charge VISA, MC or mail check, money order for amount indicated plus $\$ 4.00$ each shipping.

Hear police/fire/weather. Order now.
CALL TOLL FREE . . . 800-647-1800 Call 601-323-5869 in Miss.outside continental USA, tech/order/repair info. Telex 53-4590.

MFJ DUMMY LOADS
Tune up fast into 50 ohm resistive load. Extend life of finals.

Includes
high quality
transformer oil.

534 ${ }^{95}$

New MFJ-250 VERSALOAD Kilowatt Dummy Load lets you tune up fast. Extends life of transmitter finals. Reduces on-the-air QRM.
Run 1 KW CW or 2 KW PEP for 10 minutes, $1 / 2$ KW CW or 1 KW PEP for 20 minutes. Continous duty with 200 watts CW or 400 watts PEP. Complete with derating curve.
Quality 50 ohm non-inductive resistor
Oill cooled. Includes high quality, industrial grade transformer oil (contains no PCB).
Low VSWR to 400 MHz : Under 1.2:1, $0-30$ MHz . $1.5: 1,30-300 \mathrm{MHz} .2: 1,300-400 \mathrm{MHz}$. Ideal for testing HF and VHF transmitters.
S0-239 coax connector. Vented for safety. Removable vent cap. Has carrying handle. 7-1/2 in. high, 6-5/8 in. diameter.

MFJ "Dry" 300 W and
1 KW Dummy Loads.

Air cooled, non-inductive 50 ohm resistor in perforated metal housing with SO-239 connectors. Full load for 30 seconds, derating curves to 5 minutes. MFJ-260 (300 W). SWR: 1.1:1 to 30 $\mathrm{MHz}, \quad 1.5: 1$ for $30-160 \mathrm{MHz}$. $21 / 2 \times 21 / 2 \times 7 \mathrm{in}$. MFJ-262 (1 KW). SWR 1.5:1 for 30 MHz . $3 \times 3 \times 13$ inches.

MFJ HF SWR/Wattmeter

\$2995

MFJ-816

New MFJ-816 low cost HF SWR/Wattmeter for 1.8 to 30 MHz range. Torodial current pickup gives uniform sensitivity over entire HF frequency. Read SWR, forward and reflected power in 2 ranges (30 and 300 watts) on two color scale. SO-239 coax connectors. $4-1 / 2 \times 2-3 / 8 \times 2-7 / 8 \mathrm{in}$.

Order from MFJ and try li. If not delighted, return it within 30 days for refund (less shipping).

One year unconditional guarantee.
Order today. Call TOLL FREE 800-647-1800. Charge VISA, MC. Or mail check, money order. Write for free catalog.
CALL TOLL FREE . . . 800-647.1800 601-323-5869 in MS, outside continental USA. Ti - ENTERPRISES,
Box 494, Mississippl State, MS 39762

Your choice: dual 24 hour LCD display, or 24/12 hour with ID timer, or 12 Inch quartz analog.

$\$ 295$ DUAL 24 HOUR LCD MFJ-104

Two independant 24 hour LCD displays! Read both GMT and local times at a glance.
Six digit main display has seconds readout. Four digit auxiliary. Switch reverses main/aux.
Alarm plays 4 selectable melodies. Alarm ON" indicator. Snooze button.
Quartz timing. Synchronizable to WWV.
Flip-top cover serves as stand.
Night light. Forward/reverse, fast/slow set buttons. Lock function prevents mis-setting. Display main time only, main/auxitiary or main/ alarm time. Includes battery. $4 \times 2 \times 1 / 2$ inches.

24/12 HOUR, ID TIMER \$35
MFJ-102
Switchable 24 hour GMT or 12 hour format. ID timer sounds every 9 minutes after reset. Switchable seconds readout.
Observed timer. Just start clock from zero and note time of event up to 24 hours.

Bright blue $0.6^{\prime \prime}$ vacuum fluorescent digits.
Alarm with snooze function. Synchronizable with WWV. Fast/slow set buttons. Lock function prevents mis-setting. Power out, alarm "ON" indicators. $110 \mathrm{VAC}, 60 \mathrm{~Hz}$ (50 Hz with simple modification). UL approved.

Black, brushed aluminum top/front. $6 \times 2 \times 3$

24 HOUR QUARTZ
MFJ-105
$\$ 1095$
True 24 hour quartz wall clock has huge 12 inch diameter face. Gives excellent visability across computer /radio room.
Fifteen seconds per month accuracy.
Single "AA" battery provides over one year operation, immunity from power line failure and eliminates power cord.

Sweep second hand. Brown hi-impact case. Glass front. 24 hour military time format.

Order from MFJ and try it. If not delighted, return within 30 days for refund (less shipping). One year unconditional guarantee.
Order yours today. Call toll free 800-647-1800. Charge VISA, MC. Or mail check, money order. Add $\$ 4.00$ each for shipping and handling.

CALL TOLL FREE 800-647-1800

Call 601-323-5869 in Miss., outside continental USA, tech/repair info. Telex $53-4590$ MFJ STKV

prestop de W9JUV

"CQ 30 METERS' HAS FINALLY BECOME A REALITY for U.S. Amateurs. FCC Commissioners voted October 28 to grant "temporary access" to the new band. Acting on a suggestion made by Senator Barry Goldwater, K7UGA, in an August letter to Chairman Mark Fowler (October Presstop), the Commissioners permitted General class and above to use 250 watts input, narrowband (CW and RTTY) modes only, from 10.1 to 10.15 MHz . The $10.109-10.115 \mathrm{MHz}$ slot, however, was held back to protect existing users. The band was opened at 1900 Z on the 28 th, with WIAW, K1Z2, W1XX, and W9JUV among the many taking part in the U.S. 30 -meter inaugural.

A Possible Conflict with the new band and also the 18 and 24 MHz bands has surfaced in FCC General Docket 82-625, released mid September. This Notice of Proposed Rule Making would open many segments of the $2-25 \mathrm{MHz} \mathrm{HF}$ spectrum, including the three new WARC bands (but no other Amateur frequencies), to various licensees in industrial radio services. Telephone and power companies plus oil, gas, and mineral exploration firms would all be authorized to use these frequencies when it was in the "national interest."

These Proposals Conflict With Other New WARC 79 Assignments as well as with the new Amateur bands, but it's predicted that frequencies conflicting with WARC allocations will be deleted as the NPRM is reviewed. The ARRL did, however, file comments pointing out the conflict prior to the comment closing date of November 5.

A "SPACE DXPEDITION" IS ALMOST CERTAIN FOR NEXT YEAR, when astronaut Owen Garriott, W5LFL, will fly the space shuttle Columbia's ninth mission. After lengthy negotiations, NASA Houston agreed to let him take a specially reworked 2 -meter handheld along, to operate when possible with a ground plane in the cargo bay. Only final approval from Washington is still needed for the October, 1983, operation, which would last seven days

NOVICE EXAMS WOULD BE PREPARED AND GRADED as well as administered by Amateur volunteer examiners under an NPRM put forth by the Commissioners at their October 19 agenda meeting. It's proposed that examiners would make up an exam using the FCC Novice syllabus as a guide, let the applicant answer the questions, and then grade it. If the applicant passes both the written and the CW test, the examiner would note that on the applicant's Form 610, which would then be sent to Gettysburg where a license would be issued.

Some 97% Now Pass The Novice Exam under present procedures, which require the FCC to issue and grade Novice exams, so little compromise of standards is anticipated. In addition, the simpler procedures would drop about eight weeks from Novice licensing. Comment due date for PR Docket 82-727 had not been released at press time

The ARRL Detailed Proposal for the preparation and administration of exams by Amateurs was delivered to the FCC on October 22. It should be released as an RM shortly

Amateur Logbook Requirements Would Be Entirely Eliminated by another NPRM agreed to at that same agenda meeting. In this proposal the few remaining operating log requirements, such as noting changes in control operator, would be deleted, though certain station records would still need to be maintained. Comment due date for PR Docket $82-726$ had not been released at press time.

SACRAMENTO AMATEURS MUST GET PERMISSION from a local pay TV Company before acquiring microwave equipment, according to a preliminary injunction issued by a superior court judge He issued the order after hearing a suit from California Satellite Systems, Inc., against a local Amateur dealer who was also selling down-converters and antennas for the 2150 MHz pay TV band. He made the unusual ruling to "protect" the pay TV company, since they do not encode their signals and Amateur $2300-\mathrm{MHz}$ equipment could be used to intercept the movie channel signals.
"AUTOMATIC CONTROL" OF AMATEUR RADIO BEACONS was authorized by the Commissioners on October 21. This means that operators of U.S. Amateur beacons will no longer have to shut down when they are unavailable to perform control operator functions.

CW Credit For Any Class Amateur License was also granted to holders of any class commercial CW ticket at the same meeting.

BURBANK CITY OFFICIALS ARE IN DEFAULT under federal court rules for having failed to respond to the complaint filed against them to test their severe antenna restrictions (see Observation and Opinion. August, 1982, Ham Radio, and recent Presstops). The judge hearing the case has set November 4 for a status report by the parties. Attorney W9MU, representing Burbank's Amateurs, intends filing a motion for class certification and preliminary injunction prior to the November 4 court date to keep pressure on Burbank officials.

FCC'S POWER MEASUREMENT NPRM, PR Docket 82-624, proposes changing power limits for all classes except Novices to 1500 watts PEP output. Novices would be limited to a 200 -watt PEP output. Due date for comments is February 15 , 1983; reply comments are due by March 1.

SONIC CABLE TV WAS FINED $\$ 6,000$ by the FCC for 2 -meter interference following a two-year bat tle by WB6GVO. One third of the fine was for failing to correct the cable channel E problem after citation by an FCC engineer, while the remaining $\$ 4,000$ was imposed for the California company's on-going illegal interference to Amateur operations on 2 meters!

Polar Research, Inc., is pleased to introduce the "Li'l Slipper". This highly versatile, rotating antenna mount was designed and built for the discriminating radio operator who wants the utmost efficiency in his antenna operation and total utilization of tower structure. The "Li'l Slipper" consists of an inner ring system solidly mounted to the tower structure, and an outer ring that has four versatile aluminum housings where antenna masts are inserted.

This outer ring system, driven by a heavy duty D.C. geared reduction motor, "slips" smoothly around the tower structure, guided by eight (8) precision molded rubber tracking rollers.

Rotation of the antennas provides multi-directional transmission and receiving for enhanced radio operation. The "Li'l Slipper" features a rugged all metal construction and reliable solid state electronics for dependable service. An attractive electronic control module provides the operator with

relative information of the system's bearing around the tower.

The tower's structure is totally utilized, allowing the entire face area to be used with reduced interference to the antenna's pattern. Further utilization is possible through the

mounting of more than one antenna on the system at one time. As many as four different antennas, in limitless combinations, are feasible. Study the illustration shown and consider your applications for the Li'I Slipper system. Call or write for a free brochure.

Call Toll Free 1-800-328-2041

Polar Research, Inc.

P.O. Box 781

Thief River Falls, MN 56701; Phone (218) 681-7413

low cost linear
 design and construction

Practical design techniques using common power tubes and parts provide 10-40 meter kilowatt amplifier

Constructing a linear amplifier is one way an Amateur can save money. It's not so much that commercial amplifiers are overpriced for the components they contain, but because of OEM pricing, components bought singly may add up to more than the cost of an assembled unit. Home construction allows you to take advantage of a readily available supply of parts (well-stocked junk pile) that can be used or traded for other items.
When constructing your own amplifier, it's usually not possible to exactly duplicate a published design. Modifications are often required to accommodate differences in components. For this reason, a specific design, and more importantly, the steps used to arrive at it, are presented. By providing sufficient data,
minor and even major deviations from the specific design can be made while still obtaining good performance.
A review of amplifier design information, such as found in Bill Orr's Radio Handbook, in addition to this design data, is helpful prior to starting the project. Other good source material may be found in the ARRL Handbook and articles by W6SAI.

tubes

Tubes, and their availability, greatly influence the design approach to be taken. Good sources for low cost tubes are:

1. Surplus, often WW-II
2. Pull-outs from stations on a maintenance schedule
3. TV sweep tubes

A strong recommendation is in order: get the tubes you want to use before you start and get at least twice as many as you need, preferably two complete sets of spares. This will save you much trouble later, and possibly much expense (such as buying a lowproduction tube or making a design change). Test the tubes first, if at all possible, in a friend's rig or by

By R.P. Haviland, W4MB, 2100 S. Nova Road, Box 45, Daytona Beach, Florida 32019
table 1. Low-cost tubes for linears.

tube type	E_{p}, volts	$I_{p}, \mathrm{~mA}$, max .	rated/class C maximum dissipation	notes
6D05	800	250	24/100	1
6.566	800	242	30/100	1
811	1200-1700	160	50/65	2,4
812	1200-1700	160	50/65	2,4
813	2000-2500	250	100/125	2,4
4-125	2000-3000	260	125	3
572 B	2750	275	160	3
810	2500	300	125/175	2
4-250	4000	345	250	3
250 TH	2000-3000	350	250	3
304 TH	2000-3000	900	300	3
4-400	4000	317	400	3

Notes:

1. Average/peak ratio
2. CCS/ICAS ratio
3. Rated dissipation (ratings nomenclature depends on reference used)
4. A number of these tubes are no longer manufactured. Obtain spares prior to starting the design.
using a pair of transformers, one with the proper filament voltage, and a second at $300-700$ volts. Test the tube as a diode with a series resistor to give rated current. This test lets you separate out most bad tubes.

Some of the common tubes to look for are listed in table 1. Though possibly considered old-fashioned, out of style and even obsolete, they are inexpensive and perfectly usable. If you have a set, with spares, or can find a set, don't be afraid to use them. This includes out-of-date or unusual tubes such as the 810 or the 715. There are some design considerations to look out for, however. These will be covered later.

TV sweep tubes have two ratings, one for average loads and another for peak loads, such as the flyback pulse in a sweep circuit. Average peak and duty cycle terms are important in the operation of any tube, and consequently are important design factors.

In amplifiers used in fm or teleprinter service a constant signal is present at all times, that is, the dutycycle is 100 percent. With CW, the carrier is keyed on and off with a resulting duty cycle of approximately fifty percent. With SSB voice, the average energy is far below the peak, normally $10-16 \mathrm{~dB}$ down. This results in a duty cycle of ten percent or less. Use of clippers and other speech processors can raise SSB signal duty cycles to fifty percent or more. However, thirty to forty percent is probably nearly optimum. Low average power requirements of SSB service is the reason why modern linears can be made so small and why separate ratings are required for SSB and CW operation.

It makes quite a difference in component size if the rig is to be used for SSB only, or if it must also handle FSK teleprinter. This is one of your major design choices. If you are primarily interested in one mode, it's best to design for it and accept the performance you get with other modes.

In my case, eight 4-125s and four 813s were available. A review of some of the local ham stock showed more 813s available. Though nearly equivalent, the greater ruggedness of the 813 plate and the more severe cooling design requirements of the 4-125s tilted the choice toward the 813s.

The next factor considered is the design for input power level. I have never used a linear except on SSB. There didn't seem to be much reason for a linear unless it was well above the output of a normal rig (provided by most modern transceivers). This indicated a 2 kW PEP design. Experience indicates that a moderate amount of speech processing is best, with heavy processing only needed during pile-ups. Consequently, a normal duty-cycle of twenty to thirty percent seemed appropriate, with a capability of increasing to fifty percent. This allows for pile-up processing and CW if ever needed. It's preferable to design for peak outputs of at least twenty percent greater than normally used. A design capable of thirty percent duty-cycle at 2200 watts input, but with normal operation set for about 1800-1900 watts, would satisfy this requirement.

Amplifier efficiency for SSB operation is normally fifty percent at an average input level, versus sixtyfive percent for CW. At an average input of 600
watts, approximately 300 watts of dissipation is indicated. This requires three 813 s , with some safety factor, or two 813s with some overloading or operation at reduced power levels.

However, average dissipation is not the whole story. Peak operation must also be considered. At 2200 volts a 2200 watt capability means one ampere of plate current. This is twice the rating of a pair of 813s, and thirty-three percent more than three would supply.

One solution is to use four 813s. However, there is another approach. To see this, look at the tube ratings in table 2. Note that the major differences between continuous commercial and Amateur service is a lower plate dissipation, plate voltage, and current. The instantaneous plate voltage is allowed to go to 3200 volts and the peak plate current to 300 mA in the CCS a-m service, and even higher, to 4000 volts and 400 mA in the Amateur a-m service. Con-tinuously-applied voltage is allowed to go to 2500 volts in the Amateur af amplifier service. However, in all cases, the plate dissipation must not exceed the CCS and Amateur limits of 100 and 125 watts, respectively.

The point is, we can choose a combination of operating conditions to suit the service we plan, within reasonable limits, as long as we do not exceed the rated plate dissipation. For example, for the 813:

For several continuous hours of teleprinter

$$
E_{p}=2,000, i_{p}=180 \mathrm{~mA}, P_{o u t}=275 \text { watts }
$$

For typical CW

$$
E_{p}=2250, i_{p}=220 \mathrm{~mA}, P_{o u t}=375 \text { watts }
$$

For non-processed SSB, at peak input

$$
E_{p}=2500, i_{p}=300 \mathrm{~mA}, P_{o u t}=450 \text { watts }
$$

For SSB, with compression, at peak input

$$
E_{p}=2250, i_{p}=220 \mathrm{~mA}, P_{o u t}=375 \text { watts }
$$

We could even raise the plate voltage for SSB to 1.5 times the normal commercial voltage, or approximately 2700-3000 volts. This isn't really good for the 813, since the internal construction leakage path is short. Other tubes, such as the 250TH or even some sweep tubes, have longer leakage paths but they already have maximum specified high voltage ratings. (Higher voltage operation makes it easier to drive the tube to peak output.)

We can now make another selection, the amplifier input, and the number of tubes required. Let's assume that a full "gallon" was the goal. For continuous teleprinter use, three 813s are required. CW could be
handled with two 813s, and SSB operation, with or without processing, requires three tubes. (The allowable PEP input decreases from 2 kW with no compression, since the average input must be kept under 1000 watts, as indicated by a meter.)

Other types require an even larger number of tubes. The extreme would be the sweep tubes, where eight or even ten would be required to achieve 2 kW PEP. As we will see, the design for this is special, but by no means impossible.

Incidentally, during the design stage we find there is some difference in circuit parameters for the CW, teleprinter, and SSB conditions. Simple designs represent performance compromises for some services. An alternative is to change the tube voltage-current operating point to suit the circuit, as done in the big Henry amplifiers.

I chose three 813 s , with plate voltages between 2250 and 2500. Since SSB was the primary mode of operation, no special provision for CW or teleprinter seemed necessary. However, each designer should decide what modes are important and how much of a performance trade-off he's willing to accept.

power supply, part 1

At this point it's a good idea to consider some of the other large components - those in the power supply. The plate transformer is the key to this, and you may find some trading or surplus purchasing necessary (have you priced new kW supply transformers lately?).

Though large-capacity high voltage electrolytic capacitors aren't as common as they were a few years ago, they are still available. Because of size and weight problems, choke input and half-wave filtering are not attractive. The remaining choices are full wave, bridge and full-wave doubler circuits. For these, and capacity input, the transformer should have an RMS high voltage rating of about the plate voltage times $1.12,0.56$, and 0.3 , for the three types respectively. DC voltages of 2200-2500 equate to 2500-2800 volts (CT) for the full wave, 1250-1400 volts for the bridge, and about 675-750 volts for the doubler.

Transformer power ratings are 1 kW continuous for teleprinter and CW, about 2 kW intermittent for heavily-processed SSB, but as low as 300-500 watts for SSB with no processing. This amounts to perhaps 60,40 , and 20 pounds, respectively - quite a difference due to duty cycle.

When you get a transformer with the required voltage and rating, you are ready to proceed with the design. My transformer turned out to be 925 volts each side of center tap, at 500 mA dc , ample for 300 watts continuous or a full gallon at a thirty percent duty
table 2. Typical operating characteristics.

tube type	811	572B	813	4-125
$\mathrm{E}_{\text {FiL }}$	6.3	7.5	10	5
$\mathrm{I}_{\text {FIL }}$	4	4	5	6.5
E_{B}	1700	2400	2500	2500
${ }_{\text {I }}$ rest	30	20	30	15
I_{p} max	160	250	200	110
$\mathrm{I}_{\mathrm{g} \text { max }}$	28	45	50	55
R_{k}	320	215	270	340
R_{L}	5200	4500	7000	13500
drive power	15	30	11	16
input power	270	600	500	275
output power	175	350	350	190
average dissipation	65	160	150	85
for 2 kW PEP input				
no. tubes	4	4	3	4
Z plate	1300	1150	1750	3350
C tank-in (note 1)	300 pF	450 pF	225 pF	128 pF
L tank (note 1)	$7.9 \mu \mathrm{H}$	$5.4 \mu \mathrm{H}$	$10.1 \mu \mathrm{H}$	$17 \mu \mathrm{H}$
C tank-out (note 1)	1420 pF	1850 pF	1100 pF	50 pF

Notes:

1. Component values are given for 3.5 MHz
2. Design data is for 2 kW PEP grounded-grid linear service. Based on Radio Handbook data.
cycle. This was chosen over another rated at 725 volts each side of center-tap at 1.3 amperes, simply because of size and weight.

When selecting a transformer, don't forget to look at combination possibilities. If the transformers are rated for high altitude operation or show an adequate test voltage, it's safe to put two secondaries in series. Two identical secondaries in parallel are also okay. Don't forget the possibility of a low voltage transformer connected to buck or boost line voltage to allow use of the odd-voltage transformers you sometimes find, for example, with 170 -volt or 265 volt primaries.

While you are searching for a transformer, look for filter capacitors. You will need a minimum (capacitance) of:

For full-wave or bridge rectifiers:

$$
C=\frac{50,000 I_{\max }}{E_{p}} \text { microfarads }
$$

For a voltage doubler:

$$
C=\frac{150,000 I_{\max }}{E_{p}} \text { microfarads }
$$

For a 2200 -volt bridge-rectifier type of supply, capable of one ampere, this amounts to $22 \mu \mathrm{~F}$, or to 132 $\mu \mathrm{F}$ at 450 volts working with six in series, and $175 \mu \mathrm{~F}$ at 350 volts working with eight in series. These include an allowance for voltage surges. If possible, use even larger capacitors.

the plate circuit

With the basic tube operating conditions established, final design can start. As is common today, a single-ended design with tubes in parallel is assumed, since multi-band operation is much simpler.

The plate circuit looks like a generator, with an impedance of

$$
R_{p}=\frac{E_{p}}{k \times i_{p \text { design }}} \text { ohms }
$$

where k equals 1.57 for a linear amplifier and 2 for a Class C amplifier. For an amplifier designed with reserve power capability, for example, one ampere at 2200 volts in linear operation, the plate resistance is 1400 ohms. For Class C operation it would be 1100 ohms. (Alternately, we could change the operating conditions of the tube to give the same impedance, say to 2500 volts at 850 mA .) The other alternative is to operate Class B for CW as well as SSB. This was the approach taken in this design.

A pi-matching circuit is normally used to transform this impedance to 50 ohms, needed for coax feed. The input capacitor reactance is:

$$
X_{c}=\frac{R_{p}}{Q} o h m s
$$

where a Q of ten is considered optimum. For the 813 design, this amounts to a reactance of 140 ohms, corresponding to an input capacitance of about 35 pF at 30 MHz , and to 340 pF at 3.5 MHz .

$\xrightarrow{P_{P}^{\prime}}$

$$
\begin{aligned}
& C_{p}=C_{\text {lube }}+C_{\text {stray }} \\
& x_{p}=\frac{1}{2 \pi F C_{p}} \\
& x_{L_{s}}=2 F L_{s} \\
& x_{s}^{g}=x_{S}-x_{i_{S}} \\
& A_{S}=\frac{R_{p}}{1+\left(\frac{R_{g}}{X_{p}}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& R_{p}^{\prime}=\frac{R_{s}^{2}+x_{s}^{2}}{R_{s}^{2}} \\
& x_{p}^{\prime}=\frac{R_{s}^{2}+x_{s}^{2}}{x_{s}^{\prime}} \\
& c^{1}=\frac{1}{2 \pi x_{p}^{\prime}}
\end{aligned}
$$

fig. 1. Principle of L-pi-network design for high tube capacity systems. The equations are for parallel-series, series-parallel transformations.

Here we run into a small problem. The plate circuit capacity of a single 813 is 14 pF , so we are faced with a capacity of 42 pF for the tubes alone. Adding 5 pF for strays, and 10 pF for tuning-capacitor minimum gives a pi-input capacity of 57 pF , too much for a Q of ten. The problem would be even worse if sweep tubes are used, eight in parallel giving as much as 160-pF plate capacity, with a total circuit capacitance of 180 pF . (Of course, the plate circuit resistance goes down also, to about 320 ohms, so a Q of 10 would allow as much as 150 pF .)

One way of solving this problem is to accept a higher Q on 10 and perhaps 15 meters. Using the previous values, this equates to a Q of 12 , normally considered somewhat high, but acceptable.

Another way to handle this is to abandon the pinetwork circuit. A push-pull tank could solve the problem. Past editions of the ARRL Handbook show a tapped-coil sweep-tube design, fine for a single band, but a nuisance for multiple band operation. Or, we could simply regard the output as a low impedance capacity-shunted source, as is done in transistor designs.

There is another approach which doesn't seem to have been described before. As a matter of fact, it should be considered in any matching design network above 14 MHz . The approach regards the output circuit as two networks in series. One of these is the normal pi-output circuit, and the second is the L network composed of tube and associated stray capacitance, plus the inductance of the lead from the
tube or tubes to the pi-network. Its equivalent circuit with the given design parameters is shown in fig. 1.

To see the importance of the technique use the given values: 1400 ohm plate impedance and $42+5$ $=47 p F$ of tube and stray capacitance. Assume that the lead from the tank circuit to the tubes is only four inches long, with a diameter of one-eighth inch, giving an inductance of about $0.05 \mu \mathrm{H}$, and a reactance of about ten ohms at 30 MHz . Performing the paral-lel-to-series conversion, reducing the capacitive reactance by this amount and converting back again, gives an equivalent driving point impedance of 1170 ohms, and a shunt reactance of 109 ohms, or 50 pF . With a tank circuit Q of 10 , the value of $X_{c 1}$ becomes 117 ohms, or 55 pF . A capacitor of 5 pF minimum capacity can be used and still obtain a pi-section Q of 10.

If the allowable capacity is still less than the tube and stray capacitance, the length of the plate lead can be further increased. However, the equivalent drive resistance will also decrease. Several more repetitions may be needed to obtain a workable combination.

Once the values have been obtained for the highest band, repeat the calculation for the next few lower bands. When the equivalent resistance approaches the tube resistance, use this for the lower bands, while maintaining a Q of 10 . The values of the pi-network elements are then calculated using the formulas in fig. 2. Don't forget to use the equivalent impedance for R_{1} at the higher bands.

What type of inductance should be used? Roller coils allow one to closely adjust circuit parameters for maximum efficiency, but they are expensive. Tap switching is perfectly acceptable, and there are many old tuner switches available that provide rugged lowresistance design. Looking ahead with eight bands between 3 and 30 MHz , the number of taps may be excessive. You may want to consider having one linear for $1.7-7.5 \mathrm{MHz}$, and another for $10-30 \mathrm{MHz}$.

fig. 2. Circuit relations for pi-networks. If Qs below ten are necessary, harmonic rejection is low. High-Q circuits increase operating loss.

This was my choice. It certainly makes design a lot easier.

the input circuit

The driving-point impedance, Z_{K}, of a groundedgrid amplifier is

$$
Z_{K} \approx \frac{e_{g \max }}{i_{1 \max }+1.5 I_{C}} \approx 0.6 i_{p}
$$

$$
\text { where } \begin{aligned}
e_{g} & =\text { rms grid drive voltage } \\
I_{C} & =\text { cathode current } \\
i_{\text {max }} & =\text { fundamental current }
\end{aligned}
$$

For most combinations of tubes, this will probably be between 50 and 150 ohms.

The input circuit must be reasonably well-matched to the driving amplifier. It must also provide a load to the amplifier when the tube is cut off (Class C), or nearly so (Class B).

While the drive power used in grounded-grid operation is much greater than for grounded-cathode service, provisions must be made to prevent an overdrive condition from occurring. (Modern transceivers have more than sufficient output power). An automatic overdrive protection circuit is one possibility.

The usual way of preventing overdrive is to use a low Q tuned circuit in the cathode, say a Q of 2 , plus ALC feedback to set the level. This is perfectly acceptable if the ALC is not forced to work too hard. However, the added coil switching is a nuisance.

An alternate method that doesn't use switching is shown in fig. 3. A lowpass filter, used in the drive circuit, provides an impedance transformation from 50 ohms to the tubes' input resistance. The filter output drives the tubes' cathodes and a resistor bank. The latter provides a load to the driver during the entire input cycle, and dissipates part of the driver's excess power.

Circuit losses and a varying driver load complicate the calculation of the required resistance. As an approximation for designs where between thirty to fifty percent of the rated driver output is required, a resistance of five times the cathode impedance has worked well. Basically, start with a higher resistance and monitor the drive level. If it is still excessive reduce the loading resistance until the exciter's maximum output just drives the amplifier throughout its linear range.

High power-rating resistors are not needed. For example, if the total drive is 50 watts, the resistors dissipate only 10-12 watts of it (using the above rule of thumb). A bank of six two-watt resistors will do.

Even though 813s have an isolated cathode, a filament choke is a good idea. For a kW amplifier, the choke core can be a 6-8 inch ($150-200 \mathrm{~mm}$) long, $1 / 2-$ inch (12.7 mm) diameter ferrite rod. If the amplifier is

$$
\begin{aligned}
& \text { FROM } \\
& \text { DRIVER }
\end{aligned}
$$

fig. 3. Circuit relations for impedance matching lowpass filters. This is used instead of a tuned input in order to simplify the design.
to cover only the higher bands, 10 through 40 , the winding can be trifilar, with two elements the filament conductors, the third a nylon cord, or other non-moisture absorbing spacer with the same wire diameter. For low frequency use, the filament leads can be bifilar wound. Number 12 wire is ample for three 813 s , but be sure to estimate the voltage drop and allow for it when selecting a filament transformer. Low filament voltage causes problems with linearity and tube life.

One nice feature of the 813 is that it doesn't require bias in grounded-grid operation. If the operating mode requires bias, it can best be obtained by using a Zener diode. Shunt it with a resistor that will draw approximately ten percent of the expected grid plus plate current. This helps prevent instability. If a power Zener is not available, the circuit of fig. 4 can be used.

power supply, part 2

Let's return to the power supply, keeping it simple. Our basic requirements are:

1. Apply only filament power for an adequate warmup period.
2. Initially apply power to the plate circuit at a low level, to hold capacitor charge current down.
3. Apply full power to the plate circuit.
4. Remove plate and filament power simultaneously, or plate before filament.

We also want adequate protection for ourselves and the equipment. We can accomplish these functions manually, semi-automatically, or in a fully automatic mode. However, cost increases as the system becomes more automatic (complex).

fig. 4. High power Zener diode substitution circuit. The drop across the circuit will be slightly greater than the voltage across the low power Zener.

A simple way of achieving partially protected manual operation is to use a progressively-operated switch for the transformer primary, as shown in fig. 5A. The first position turns on the filaments. After a short delay, the switch is placed in the second position, feeding power to the plate transformer through a dropping resistor. After an additional (short) delay full power is achieved by placing the switch in the operate position. This can be further modified by including one more intermediate voltage switch position.

For 120 -volt operation, a single section switch can be used, as shown. Old TUs and Navy surplus are a good source of multi-position or rotary type switches. For 220 -volt operation, both sides of the line should be switched for safety.

A simple semi-automatic version is shown in fig. 5B. Filament power goes on when the master switch is on. This enables a relay circuit, picked up when the transmitter is keyed. It applies power to the plate circuit and a series resistor holds this low until the capacitors charge up. This is controlled by another relay across the transformer primary, which activates when the charging current drops, shorting the series resistor. The first relay can be the antenna changeover relay.

This circuit is easily made automatic by activating the first relay from a time delay device, such as a fluorescent lamp starter. The relay removes power from the delay device when it activates. It should be separate from the antenna relay.

metering, antenna
 switching and ALC

Though simple metering is desirable, it must be remembered that good metering can help improve performance and extend tube life. Also, the FCC re-
quires input power-level monitoring if it exceeds 900 watts (or 1800 watts PEP).

If automatic drive limiting is used and set at the 1800 watt level, safe, legal operation with simplified metering is possible. Figs. 6A and 6B show two possibilities, the first measuring cathode current only, the second measuring grid and plate current. An external output wattmeter should also be used.

A plate voltage indication is also useful, and can serve as an ON indicator. An inexpensive type uses a neon bulb, connected across the bottom capacitor of the filter bank. The indicator warns of unusual conditions, including shorted or open capacitors, and excessive drain. Note that two resistors are shown across each filter capacitor. One serves as a bleeder and voltage-equalizing resistor and is normally wirewound. The second is a composition resistor, of 1 watt rated dissipation. It is a safety device that ensures filter discharge in case the wirewound resistor opens up. Good design practice is to choose the bleed resistors so that the sum of their drain plus the

fig. 5A. Manual power-supply switching using a progressive shorting switch. The switch should be left ten to twenty seconds in each position. This provides filament preheat and in-rush surge protection.

fig. 5B. Semi-automatic power-supply switching. Filament power is applied when the master switch is on. Plate power is brought up in two steps when the transmitter is keyed. This is after a ten to twenty second initial delay.

fig. 6. Metering circuits. At (A), a single meter is used to read total cathode current. At (B), two meters read plate and grid currents. At (C), a neon tube indicates plate voltage, and serves as a safety indicator.
idling current of the tubes is about ten percent of the design peak current.
I prefer to use a multiple pole relay in the antenna change-over circuit, wired as shown in fig. 7A. This provides protection for a receiver-transmitter combination, or a separate receiver used with a transceiver. (A 6-10 dB pad can be connected in this separate circuit to reduce signal loss in the main path due to paralleling mismatch.) Separate contacts on the relay can be used for power control, or for control of external devices.
While the trick of loading the input circuit can eliminate the need for an automatic level control, it's still a good idea to provide this. For one thing, you may want to use a different transmitter than designed for, and the back-up protection is beneficial.
The simplest approach to ALC is to use an rf level measurement technique to develop a threshold voltage. An ALC circuit is shown in fig. 7B. Assuming the grid loading has been adjusted, the ALC threshold control is set to give a barely discernible deflection on a VTVM at maximum design output. It can then serve as a backup for improper load.

TVI Prevention

Prevention of TVI is a design goal for any transmitter. Most of the basic steps can be handled fairly late in the design stage, but there are a few that must be initially considered. One of these is the nature and extent of needed output coax filtering. Lower circuit Q increases the need for filtering. For example, with a Q of 10, a two-section, lowpass filter will probably be sufficient though a three-section filter is better. For higher harmonic rejection, it's a good idea to install a form of suck-out trap. On a low-frequency transmitter, it can be placed across the plate circuit. However, the added capacitance is undesirable on the higher-frequency bands. For these, a trap at the point of attachment of the output coax to the pi-section loading capacitor is indicated. The trap can be a high-pass filter, with a small bank of load resistors to dissipate any harmonic energy present. A design using a 50 -ohm load seems to work well. The cutoff frequency should be between the highest operating frequency and the TV i-f frequency of 45 MHz .

The filters will probably not be effective if the selfresonant frequencies of the grid and plate circuits occur at the same frequency and near any of the TV bands. Unfortunately, there is a version of Murphy's

fig. 7. (A). Antenna changeover relays provide a spare contact to feed an auxiliary receiver and ground it during transmit. (B). An ALC circuit provides an adjustable threshold voltage from the plate tank circuit.

fig. 8. Complete circuit of a full-gallon linear using three 813 tubes. Note the harmonic trap at the output. A series filter is also externally used.
law which applies here. Try to design the circuit components and layout to give high self-resonant and well-separated frequencies. The filter-drive grid circuit helps, but the plate load modification using series inductance can be a handicap, forcing a high Q tank for TVI prevention. Measure the resonant frequencies as the construction progresses, and modify the design if necessary.

In addition, all the standard TVI prevention practices should be followed. Each lead should have an LC filter where it enters the shield enclosure. Internally, use shielded (high capacity) leads. Dial shaft holes should be small, and a metal shaft should have a ground spring contact on the inside of the cabinet. It should have this for safety anyway if high voltage is near it. Meters should be metal-cased, with filters at the terminals, or have a piece of screen wire across the face, with the entire meter case inside the formed shield.
Internally, watch the ground current paths. Keep joints out of the path, and don't forget to provide a
path for the rf flowing through the tuning capacitor to get back to the tube cathode. If the tube is to be recessed below a chassis, make the mounting holes sufficiently large.

Parasitics, another cause of TVI, are reduced or eliminated by placing suppressors in the plate circuit. Neutralization may be called for in grounded-grid design, and certainly in grounded-cathode circuits. The use of loading to absorb excess driving power greatly reduces the problem, however, and may be a sufficient measure in itself. It might eliminate the need for neutralization. This is easily added by a small tertiary winding on the filament choke, grounded at one end and coupled to the plate from the other end through a variable neutralizing capacitor.

mechanical construction

Kilowatt amplifiers, especially single package types, are large. Don't try to shoehorn everything in. Try to leave at least two-inch clearance for all rf components. The power supply isn't critical, but don't
forget cooling. This is vital for the tubes. Cool tubes are less likely to fail prematurely.

Symmetry in the tube area of a multiple tube design is recommended. Keep lead lengths the same. These techniques help equalize the load distribution. Elsewhere, symmetry is not necessary. Don't force the layout to give a symmetrical front panel.

For homebrew construction, a dual-chassis layout seems to work well. A horizontal section contains the tubes and if components, and a vertical section the power supply. Input and control elements are under the horizontal section. Front and rear panels, plus a U -shaped top and end and a flat bottom part, complete the mechanical elements. Use angles along the top and sides of the panels.

Perforated aluminum is fine for the top, ends, and bottom of this design, but a lot of screws will be necessary to make the joints rf-tight. A better way of fastening is to use $1 / 8$-inch aluminum strap along all edges, clamping the thin perforated metal between this and angle sections, with screws every six inches or so. Front panel appearance is improved if the strap projects a $1 / 4-\mathrm{inch}(6.4 \mathrm{~mm})$ over the shield edge.

A compact linear layout is possible if the power supply is built separately. The two-chassis design works well with the tubes mounted horizontally. Four 811s or even 872s can be placed in a cabinet measuring 5-1/2 $\times 10 \times 12$ inches ($140 \times 254 \times 305 \mathrm{~mm}$). Rf components will be a little crowded, though, and a good cooling fan is a must.

Home-built designs don't need to be sloppy in appearance. Be careful to avoid dents and scratches, and paint the completed unit, either to match other gear or to contrast with it. (Don't paint mating-shield surfaces.) Use appropriate size stick-on or transfer lettering to label controls and the unit itself.

A special note: use honest-to-goodness dials, with engraved marks or a digital readout that can be preset to one degree or better. Keep a log of readings for each band. If manufacturers were more careful with their dial designs, we would have far less tune-up QRM on the bands.

putting it all together

Fig. 8 is the schematic of the linear used at W4MB for several years. These basic design goals were considered:

1. Legal limit with good linearity
2. Drive from two 6146 s
3. 10-40 meter operation, with new band operation considered
4. Separate antenna tuning
5. Separate lowpass filter

fig. 9. General view of the amplifier of fig. 8. Note the TUtype bar knobs, and the vernier dials with calibrated scales for tune and load (makes band changing easier). Note the screen-wire shield over the meter.

fig. 10. Top view of the amplifier. The rf section is at the top, the plate supply on right, and the filament transformer at the lower left. The harmonic trap is just'above the filament transformer. The tank coil is constructed from a continuous length of heavy wire. The ALC circuit is at the bottom center.

fig. 11. Bottom view of the amplifier. The copper plate in the center grounds all grids to chassis using metal standoffs. The grid filter and loading resistors are at the upper right. The coil is adjusted by spreading or squeezing turns to set the cut-off frequency above the 10 -meter band.

fig. 12. Linear performance of the W4MB-W4LDY three (tube) 813 amplifier is shown. Actual flat-topping starts at about 1250 mA of plate current, well above the legal limit. This illustrates how an extended linearity design is an important factor in providing a clean signal.
6. Use tubes and components on hand
7. Simple switching

Fig. 9 provides an overall view of the transmitter, fig. 10 the inside top view, and fig. 11 the bottom view. Note the use of a copper plate to connect the various drive grounds together, and the arrangement for making filament lengths the same. Plate leads are also the same length. The layout lead length brings the effective Q of the tank circuit to about 10.5 on 10 meters.

A graph of amplifier linearity is shown in fig. 12. More output is possible, but the combination of input loading and ALC limits the maximum input to 1800 watts PEP (note that this is above the legal limit if appreciable speech processing is used).

As seen in the photographs, there are no parasitic suppressors in the plate circuit in this design. No instability was noticed during testing. There have been one or two reports of a wide signal, so possibly some instability can arise as a result of load variation or mis-tuning. All solicited critical signal checks have agreed with the data and with unsolicited reports. This amplifier, as intended, produces a clean signal, and, because of its simplicity, is also a pleasure to operate.
ham radio

BEARCAT BC-100 HAND-HELD PROGRAMMABLE SCANNER

Reg. S34gor

- 8 Band, 16 Channel - Auto Scan - Channel Lockout " Now Take it With You Anywhere!'

ALEXANDER BP 4-W 500 MAH NICAD

$\$ 24^{95} \begin{gathered}\text { plus } \$ 2.00 \\ \text { shipping }\end{gathered}$
Fits Wilson Mark II, and Mark IV plus Yaesu FT-207. 500 MAH, 11.7 V. NickelCadmium.

POPULAR HAMFEST SPECIALS!

VoCom POWER POCKET

$\underset{\substack{\text { plus } \$ 8.00 \\ \text { shipping }}}{\$ 1905}$ Cont'I USA
Accepts any version of the IC 2A., applies its output to a wide. band rf amplifier, and delivers 25 watts to your mobile anten25 watts to your mobile anten
na Miobile talk-out power!

SUB-AUDIBLE TONE HEADQUARTERS $\begin{array}{cc}\text { ENCODERS } & \text { plus } \$ 2.00 \\ \$ 295 & \text { shipping } \\ \text { EACH } & \text { (Cont'I USA only) }\end{array}$

We stock Communications Specialists SS. 32 and SS-32M encoders for most any mobile or hand-held applications includ. ing the very popular lcom Handhelds.

FIXED, PORTABLE And MOBILE ANTENNA VALUE FAVORITES!

MORGAIN MULTI-BAND ANTENNAS
 80.40HD/A $80 / 40 \mathrm{Mtr}$ bands (69)..... 99.00
75/40HD/A $75 / 40 \mathrm{Mtr}$ bands (66).... 94.50
 for shipping Coni'l U.S.A.

famous "eavesoropper SW RECEIVING ANTENNA $\$ 59^{95} \begin{gathered}\text { plus } 53.00 \\ \text { scopping } \\ \text { (Contu. } 5 .\end{gathered}$

B\&W PORTABLE

Quick, easy mounting. Tunes 2, 6, 10 , 15, 20 and 40 meter Amateur bands, plus SW BC bands in some ranges. 360 watts SSB/CW. $221 / 2^{\prime \prime}$ whip extends to $57 " .14$ " mount. Includes 5 base-loading coils. Weighs less than 2 lbs.

AVANTI THRU-GLASS ANTENNA

The Avanti On-Glass is the first two-way communications antenna that mounts on glass and transmits and receives through the glass. Extremely low VSWR is acheived by adjusting special tuning slug on matching network inside the vehicle. Can be easily removed for car washes without special tools.

TO ORDER:

CALL OR WRITE. MASTER CARD, VISA, MONEY ORDERS, PERSONAL CHECKS TAKE 3 WEEKS TO CLEAR, ACCEPTED. INTERNATIONAL ORDERS WELCOME, PLEASE REQUEST PRO FORMA INVOICE. ILLINOIS RESIDENTS ADD 6\% SALES TAX.

HOURS:

STOP BY AND VISIT WHEN IN THE CHICAGOLAND AREA!!

an improved TouchTone* decoder

> ITT's device provides simple, reliable crystalcontrolled decoding of DTMF signals

Several years ago, ITT (International Telephone and Telegraph) introduced a single integrated circuit capable of decoding TouchTone* signals. Using this device, we can construct a decoder system suitable for use in remote control applications with a microprocessor.

Nearly all remote control of Amateur Radio equipment, be it of a repeater, an autopatch, or a remotely controlled station, is at least in part accomplished by the use of TouchTones, also known as DTMF (DualTone, Multiple-Frequency) signals. Since most modern Amateur VHF and UHF equipment now on the market is available with DTMF-encoded keyboards that provide either twelve or sixteen combinations, the transmitter end of a control link is readily available.

At the receiving end, some means must be provided to detect and decode the incoming DTMF signals (as the name implies, each signal consists of a pair of tones transmitted simultaneous(y). In the case of a twelve-key pad, one of a set of three tones is combined with one of a set of four tones, to provide twelve different codes. For a sixteen-key encoder, eight tones total are needed, as shown in fig. 1. The decoder must detect these tones and provide some indication that a valid DTMF code has been received); at the same time, the decoder must not be spoofed by the randomly occurring tones in speech sent over the same channel.

[^0]
prior technology

In the past, Amateurs have often used decoder circuits consisting of a detector tuned for each of the seven or eight tones. The detectors are usually either resonant reed filters, or more recently, monolithic tone-decoder PLL (phase-locked loop) integrated circuits, usually type 567.
My own experience is with this type of decoder system. Typically, they consist of seven 567 ICs, one for each frequency, a demultiplexer circuit to convert the two-of-seven output to a more useful code, such as one-of-ten, or binary. Such decoders work, but they can be a bit tedious to align initially, as each PLL must be individually adjusted. Furthermore, since the accuracy of each PLL detector depends on its RC network, they can drift with temperature changes or with time as the frequency-determining components age. These problems are usually depressingly familiar to anyone who has tried to keep a repeater autopatch decoder operating for any length of time.

an integrated decoder

In the last few years, the telecommunications industry, fueled by tremendous growth in the commercial markets, has begun to integrate many previously discrete components into more compact monolithic circuitry, in order to reduce the size and cost of communications equipment. Examples of this process are seen in ICs that replace the hybrid transformer in telephones, in the replacement of bulky analog filters by monolithic active filters and, recently, with the development of integrated DTMF decoder circuits.
One such DTMF decoder IC is ITT's 3201, which can decode all sixteen standard TouchTone signals to provide a four-bit binary output (see table 1). It uses an inexpensive 3.57945 MHz TV colorburst crystal as the frequency reference, so that temperature and age drifts are practically eliminated. In addition, it has excellent immunity to false outputs caused by

DRAKE

 COMMUNICATIONS

 COMMUNICATIONS TERMINALS

 TERMINALS}

Microprocessor Controlled

mown Thet9000F

 The ultimate in communications versatility, the Drake Theta 9000 E provides complete transceive capability of CW (Morse Code), RTTY (Baudot), and ASCII. A full computer RS232 interface, cassette tape storage port, selective calling feature with answer-back, light pen graphics, printer interface and word processing software are all standard.Seven large 256 character memories are backed up with battery power so there is no need to reload information with each use. Memories may also be partitioned providing up to 29 separate storage locations. A type-ahead buffer of 3120 characters makes it easy to compose your response while still receiving. Operator controlled scrolling permits review of up to 10,720 previously received characters. Line length is selectable at 40 or 80 characters, your choice, and all mode and speed indicators are displayed on the screen for instant status recognition. The 9000 E has 3 tone groups and 3 shifts which are all keyboard selected.

You won't buy any other communications terminal once you have studied all the advanced operating convenience built into the Drake Theta 9000 E . It's complete.

mew Theta550

 The Drake Theta 550 is a compact receive-only communications terminal and is designed to demodulate and display the three most popular over-the-air modes of data communications: CW (Morse Code), RTTY (Baudot), and ASCII. Any standard TV monitor can be used.A full-featured microprocessor controlled unit, the Drake Theta 550 has selective calling, battery backed-up memory, audio monitor, and informative L.E.D. tuning indicators. There is also interfacing to permit the addition of a dot matrix printer for "hard" copy and a keyer paddle input to permit CW transmission with full iambic operation.
CW automatically tracks over a speed range of 5 to 50 words per minute and RTTY modes offer nine selectable standard speeds of transmission. 12 volts DC is required.
This unit is ideal for shortwave listeners and hams who have been missing the increasing volume of data communications over the air.

LA7 Line Amplifier

Line output, input levels as low as 15 mV rms (47 kilohm) will result in an output of 1 mW nominal into a 600 ohm balanced line. Output level adjustable by internal preset level control. Interfaces low level audio to RTTY terminal unit or phone line that requires a 600 ohm balanced/unbalanced input. One $36^{\prime \prime}$ phono to phono cable supplied.

COLUMN 1 COLUMN 2 COLUMN 3 COLUMN 4 $1209 \mathrm{~Hz} \quad 1336 \mathrm{~Hz} \quad 1477 \mathrm{~Hz}$ 1633 Hz

ROW 1 697 Hz ROW 2 770 Hz ROW 3 852 Hz
ROW 4
941 Hz

1

4
5

8
0
2

3 A

6
B

9
c

D
fig. 1. Sixteen-key TouchTone pad shows how each key is assigned a discrete pair of tones.
table 1. Code list of the output of ITT's 3201 DTMF decoder IC.

input TouchTone code	binary	outputs decimal equivalent
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
0	-1010	10
$*$	1011	11
$\#$	1100	12
A	1101	13
B	1110	14
C	1111	15
D	0000	0

speech or noise on its input. In this single IC are all the functions that my old 567-type decoder board failed to duplicate fully with ten ICs.

Fig. 2 shows that the 3201 is a CMOS LSIC (largescale integrated circuit) housed in a 22-pin DIP. It requires only a single power supply, and draws little current. No front-end filtering is required, nor does the input have to be split into high and low bands, as some other DTMF ICs require. Audio from the receiver is fed directly to the 3201, and is automatically decoded.

The only catch, if there is one, is that the price is still higher than for the 567-type decoder. At the time

fig. 2. Pin assignments of the 3201 decoder.
of writing, the single-piece price for the 3201 is about $\$ 43.00$, but that price should fall as the production quantity increases. In fact, the price has already fallen quite dramatically since the introductory price of $\$ 95.00$. (The trend in semiconductors is that they are expensive when introduced, and the price then steadily falls as the volume of use rises; this IC should not be an exception to that industry-wide rule).

My own feeling is that the cost of the device, if a bit high, is more than compensated for by the utter simplicity of its construction and adjustment, and by the long-term benefits of stable, crystal-controlled operation.

fig. 3. Schematic diagram of a decoder system. This circuit accepts a TouchTone input signal and produces a four-bit TTLlevel output.

circuit description

In fig. 3, audio from the receiving system is fed to the high-impedance analog input of the 3201. If the input signal is a valid DTMF tone pair, the 3201 produces an output on the four data lines. During the time a tone is being received and decoded, the DV (Data Valid) output goes to the logic-high state.
The DV line serves as a signal that the four data outputs contain valid data; while DV is high, the data are good, and so the transition of DV from low to high can be used to latch the output of the decoder. The data latch (U3 in the diagram) is needed so that fleeting input signals (which may be as short as 40 milliseconds in length) can be held and read at a later time.

The output of the 3201 is CMOS level, and is not directly compatible with the usual TTL interface circuitry used in most microcomputers. This incompatibility is corrected by U2, the 74C902, a CMOS-toTTL level converter.

Thus, when a valid DTMF signal is fed to the input of the 3201, properly-decoded output signals appear at the output lines of U2, and the DV output goes high. This transition of DV from low to high is used to clock U3, the 74LS374 octal data latch, which holds the decoded equivalent of the last DTMF signal received.

In order for a microcomputer system to tell the difference between a newly received DTMF input and a previously stored word, a handshake circuit has been included. This handshake is set by the DV line, and is reset after the word has been read by the computer. In other words: the output of the handshake latch goes high when the 3201 puts a new word into the data storage latch, and is reset again when the computer reads the output of the data latch. Therefore, if the computer is programmed to first look at the handshake output, it can determine if a new word is waiting to be read.

Since any computer that monitors the decoder can scan the output lines much faster than an operator's finger can press a button on the DTMF encoder keyboard, it is also a good idea to have the computer watch the DV line so it can tell a long input tone, which it has already read, from a newly received tone. The DV line, used in this way, is a form of key debouncing and prevents reading one tone as a series of several digits.

construction and testing

Layout and construction of this circuitry is noncritical. The few discrete components, such as the crystal and the bypass capacitors, can be soldered to the IC socket pins, and the rest of the wiring com-

HAL 2304 MHz DOWN CONVERTERS (FREQ. RANGE 2000/2500 MHZ)
2304 MODEL \#1 KIT BASIC UNIT WIPREAMP LESS HOUSING \& FITTINGS. 2304 MODEL \#2 KIT (with preamp) $\$ 19.95$

2304 MODEL ${ }^{3} 3$ KIT (with High Gain preamp) $\$ 29.95$ 2304 MODEL H3 KIT (with High Gain preamp) . $\$ 39.95$ MODELS 2 \& 3 WITH COAX FITTINGS IN \& OUT ANO WITH WEATHER-PROOFED DIE CAST MOUSINGS
BASIC POWER SUPPLY
$\$ 19.95$
POWER SUPPLY KIT FOR ABOVE WITH CASE
FACTOAY WIRED \& TESTED
$\$ 24.95$
ANTENNAS \& OTHER ACCESSORIES AVAILABLE. SEND FOR MORE INFO

- MMR-II COMPLETE UNIT
COMPLETE SYSTEM AS SHOWN. NOT A KIT. INCLUDES A PC BOARD, POWER SUPPLY, CABLES \& CONNECTORS-PRE-ASSEMBLED AND TESTED. 24dB GAIN OR GREATER.

- ham microwave receiver

PRE-SCALER KITS
HAL 300 PRE
HAL 300 A/PRE HAL 600 PRE HAL 600 APPRE
(Pre-drilled G. 10 board and all components) (Same as above but with preamp). (Pre-drilled G- 10 board and all components) (same as above but with preamp).
$\$ 14.95$
$\$ 24.95$ $\$ 29.95$ $\mathbf{\$ 3 9 . 9 5}$

TOUCH TONE DECODER KIT

highly stable decoder kit comes with 2 Sided, plated thru and solder FLOWED G-10 PC BOARD. 7.567 's, $2-7402$. AND ALL ELECTRONIC COMPONENTS. BOARD MEASURES $3-1 / 2 \times 5-1 / 2$ INCHES. HAS 12 LINES OUT.

ONLY 539.95

NEW-16 LINE DELUXE DECODER

569.95

DELUXE 12-BUTTON TOUCHTONE ENCODER KIT UTILIZING THE NEW ICM 7206 CHIP PROVIDES BOTH VISUAL AND AUDIO INDICATIONS! COMES WITH ITS OWN TWO TONE ANODIZED ALUMINUM CABINET MEASURES ONLY $2^{1 / 4}$ " $\times 3^{3 / 4}$ "COMPLETE WITH TOUCH. TONE PAD. BOARD. CRYSTAL, CHIP AND ALL NECESSARY COMPONENTS TO FINISH THE KIT.

PRICEDAT $\$ 29.95$
NEW-16 LINE DELUXE ENCODER $\mathbf{\$ 3 9 . 9 6}$
HAL ECD-16 LINE DELUXE ENCODER INCLUDES PC BOARD, ALL PARTS \& CASE
$\$ 39.95$
hal ECD-12 LINE DELUXE ENCODER COMPLETE WITH PC BOARD, ALL PARTS \& CASE \$29.95
ACCUKEYER (KIT) THIS ACCUKEYER IS A REVISED VERSION OF THE VERY POPULAR WBAVVF ACCUKEYER ORIGINALLY DESCRIBED BY JAMES GARRETT. IN QST MAGAZINE AND THE IG75 RADIO AMATEUR'S HANDBOOK
$\$ 16.95$
ACCUKEYER-MEMOAY OPTION KIT PROVIDES A SIMPLE, LOW COST METHOD OF ADOING MEMORY CAPABILITY TO THE WB4VVF ACCUKEYER. WHILE OESIGNED FOR DIRECT ATTACHMENT TO THE ABOVE ACCUKEYER. IT CAN ALSO BE ATTACHED TO ANY STANDARD ACCUKEYER BOARD WITH LITTLE DIFFICULTY $\mathbf{\$ 1 6 . 9 5}$ BUY BOTH THE MEMORY \& KEYER AND SAVE COMBINED PRICE ONLY $\$ 32.00$ HAL MAKES BOARD SETS FOR UNICORN 1 ROBOT PROJECT AND HEART-A. MALIC HEART MONITOR AS PUBLISHED IN RADIO ELECTRONICS MAGAZINE.

PRE-AMPLIFIER

HAL.PA-19 WIDE BAND PRE.AMPLIFIER, 2.200 MHZ BANDWIDTH (- 3 dB POINTS), 19dB GAIN

FULLY ASSEMBLED AND TESTED $\$ 8.95$
HAL-PA.1.4 WIDE BAND PRE-AMPLIFIER, 10 MHz TO 1.4 GHz .12 dB GAIN
FULLY ASSEMBLED $\$ 12.95$
CLOCK KIT - hal 79 FOUR.DIGIT SPECIAL - $\$ 7.95$ OPERATES ON 12. VOLT AC (NOT SUPPLIED) PROVISIONS FOR DC AND ALARM OPERATION.

6-DIGIT CLOCK•12/24 HOUR

COMPLETE KIT CONSISTING OF 2 PC G-10 PRE-DRILLED PC BOARDS, 1 CLOCK CHIP, 6 FND COMM. CATH. READOUTS. 13 TRANS., 3 CAPS, 9 RESISTORS, 5 DIODES, 3 PUSH. BUTTON SWITCHES, AND INSTRUCTIONS. WILL RUN OFF ANY $12 V$ A.C. POWER SUP. PLY. DON'T BE FOOLED BY PARTIAL KITS WHERE YOU HAVE TO BUY EVERYTHING EXTRA. PRICED AT \$12.95
CLOCK CASE AVAILABLE AND WILL FIT ANY ONE OF THE ABOVE CLOCKS. REGULAR PRICE . . $\$ 6.50$ BUT ONY $\$ 4.50$ WHEN BOUGHT WITH CLOCK.
SIX-DIGIT ALARM CLOCK KIT FOR HOME, CAMPER, RV, OR FIELD.DAY USE OPERATES ON 12 -VOLT AC OR DC, AND HAS ITS OWN 60-Hz TIME BASE ON THE BOARD. COMPLETE WITH ALL ELECTRONIC COMPONENTS AND TWO-PIECE, PREDRILLED PC BOARDS. BOARD SIZE $4^{\prime \prime} \times 3^{\prime \prime}$, COMPLETE WITH SPEAKER AND SWITCHES. IF OPERATED ON DC, THERE IS NOTHING MORE TO BUY•

PRICED AT $\$ 16.95$

- twelve.volt ac line cord for those who wish to operate the clock FROM 110 -VOLT AC

WHEN PURCHASED WITH CLOCK KIT $\$ 2.95$
SHIPPING INFORMATION: ORDERS OVER $\$ 25$ WILL BE SHIPPED POST.PAIO EXCEPT ON ITEMS WHERE ADDITIONAL CHARGES ARE REQUESTED. ON ORDERS LESS THAN $\$ 25$, PLEASE INCLUDE ADDITIONAL $\$ 2.00$ FOR HANDLING AND MAILING CHARGES. SEND 2OC STAMP FOR FREE FLYER.

DISTRIBUTOR FOR
Alume Tower.AP Products
(We have the new Hotby-Blox System)
We have the new Hobby-Blox System)
P. O. BOX 1101 SOUTHGATE, MICH. 48196 PHONE (313) 285 -1782

fig. 4. Simple test set uses a TouchTone telephone and a matching network to provide DTMF signals.
pleted with wire-wrap interconnections. (I built my decoder on a small prototype board with an edge connector to which the input and output were wired.)

Once the wiring is completed, and the supply voltages have been checked at the socket pins, the ICs can be installed. Keep in mind that the high-impedance input of the 3201, which is a CMOS device, is sensitive to damage by static electric charges. It is a good idea to keep the 3201 in the protective packaging it comes in until it is to be installed, and then equalize the potential of the circuit and the protective package by touching them together. Remove the 3201 and install it in its socket. Once the IC is installed, the danger of static charge damage is reduced.
There are no adjustable components (this is my kind of circuit!) so the unit should work when power is turned on and a DTMF signal is applied to the ana\log input. The circuit shown in fig. 4 is a simple test set that uses a standard TouchTone telephone to determine if the decoder is properly decoding the twelve tones. The telephone is disconnected from the phone lines, and hooked as shown to the network, which provides power for the phone's internal tone generator and matches the normal line impedance of 600 ohms.

If the decoder fails to work, check the wiring first. The DV line at the 3201s pin 18 should rise to nearly +12 volts when a DTMF signal is applied; if it does, the problems are probably elsewhere than in the 3201's circuitry.

summary

This decoder is a simple, modern alternative to the DTMF decoders of the past. It provides dependable performance, and should make remote-control systems easier to set up.

Except for the 3201, all the components are standard types and widely available. The 3201 can be obtained from the manufacturer at this address: ITT North Microsystems Division, 700 Hillsboro Plaza, Deerfield Beach, Florida 33441; telephone 305-421-8450.

wE SHIP wORLDWIDE WORLD WIDE AMATEUR RADIO SINCE 1950
 Your one source for all Radio Equipment!

We Will Not Be Undersold Call:

Wherever I go, I take my Radio!

KITTY SAYS: FOR THE BEST PRICES IN TOWN, BUY AT BARRY'S. All merchandise 100\% guaranteed. Low, low prices. FOR ORDERS ONLY PLEASE CALL:
1-800-221-2683.
YAESSU

IC-R70, IC-720A, IC-730, IC-740, IC-25A, IC-251A, IC-2KL, IC-451A, IC-290H, IC-45A

FT-ONE, FT-102, FT-101ZD, FI-707, FT-230R, FT-480R, FT-720RU, FT-290R, FRG-7700, FT-625RD
 $\begin{array}{ccc}\text { YAESU } & \text { ICOM } & \text { Land-Mobile H/T } \\ \text { FT-208R } & \text { IC2AT } & \text { WIIson Mini-Com II } \\ \text { FT-708R } & \text { IC3AT Yaesu FTC-2203, FT.4703 }\end{array}$

DRAKE TR-5, TR.7A, R-7A, L.7, L-15, Earth Satellite Receiver ESR-24, THETA 9000E \& 500, Digital Multimeter Model \#8550-\$95.00

POWER PACKET VoCom Power Amplifier \& $5 / 8 \lambda$ HT Gain Antennas IN STOCK

KANTRONICS Mini-Reader, Field Day Interface,Code Tapes In Stock

AEA 144 MHz AEA 440 MHz ANTENNAS

EIMAC

 $3-500 \mathrm{Z}$ 572B, 6JS6C 12BY7A \& 4-400A
New York City's

BIRD Wattmeters \& Elements In Stock

SANTEC
ST-144/UP ST-440/UP

MIRAGE B-23, B-1016, B-108, B-3016, C-22, C-106, D-24, D-1010

NEW IMPROVED MURCH Model UT2000B

BENCHER PADDLES \& Vibroplex Keys In Stock!!

CES.Simplex Autopatch 510-SA Will Patch FM Transceiver To Your Telephone. Great For Telephone Calls From Mobile To Base. Simple To Use - \$319.95.

Dentron Amplifiers, Tuners, Receivers Stock ed: Clipperton T, Clipperton L, GLA-1000B GLT-1000, Galion, MLA-2500 2 Meter 1800 Watts Linear, MLX Mini Transceiver, The Scout C.A.P. Transceiver, Horizon One Transceiver, Station One CW Radio Station. Write for specs, or call.

DIGITAL FREQUENCY

 COUNTER TrionyxModel TR-1000 0.600 MHz

Dimax Model D. $51050 \mathrm{~Hz} \cdot 1 \mathrm{GHz}$

Tri-Ex Towers Hy-Gain Towers \& Antennas. and Rotors will be shipped direct to you FREE of shipping cost.

MAIL ALL ORDERS TO BARRY ELECTRONICS CORP.. 512 BROADWAY, NEW YORK CITY, NY 10012.

BARRY INTERNATIONAL TELEX 12.7670

TOP TRADES GIVEN ON YOUR USED EQUIPMENT
STORE HOURS: Monday-Friday 9 to 6:30 PM
Saturday \& Sunday 10 to 4 PM (Free Parking)
AUTHORIZED DISTS. MCKAY DYMEK FOR
SHORTWAVE ANTENNAS \& RECEIVERS
IRT/LEX."Spring St. Station"
BMT."Prince St. Station" IND."F" Train-Bwy. Station"
Bus: Broadway \#6 to Spring St.

We Stock: AEA, ARRL, Alpha, Ameco, Antenna Specialists, Astatic, Astron, B \& K, B \& W, Bash, Bencher, Bird, Butternut, CDE, CES, Collins, Communications Spec. Connectors, Covercraft, Cubic (Swan), Cushcraft, Daiwa, Dentron, Digimax, Drake, ETO (Alpha), Eimac, Encomm, Henry, Hustler (Newtronics), Hy-Gain, Icom, KLM, Kantronics, Larsen, MCM (Daiwa), MFJ, J.W. Miller, Mini-Products, Mirage, Newtronics, Nye Viking,'Palomar, RF Products, Radio Amateur Callbook, Robot, Rockwell Collins, Saxton, Shure, Swan, Telex, Tempo, Ten-Tec, Tokyo Hi Power, Trionyx TUBES, W2AU, Waber, Wilson, Yaesu Ham and Commercial Radios, Vocom, Vibroplex, Curtis, Tri-Ex, Wacom Duplexers, Repeaters, Phelps Dodge, Fanon Intercoms, Scanners, Crystals.

WE NOW STOCK COMMERCIAL COMMUNICATIONS SYSTEMS DEALER INQUIRIES INVITED. PHONE IN YOUR ORDER \& BE REIMBURSED

a rotary dial and encoder for digital tuning

A digital controller using multiple dials and microprocessor logic

The shift to digital and microprocessor control of ham gear makes rotary dial encoding more popular. Earnshaw's approach to dial encoding, simplified and improved by Opal, offers a practical method for the Amateur builder. 1,2 Both require discrete components for each dial.

This article describes another method incorporating multiple dials using microprocessor logic. ${ }^{3}$ This method reduces the number of components necessary and is suitable for digital controllers having concurrent tasks.

why encode the rotary dial

Switches are inherently digital; they are either on or off. Conventional tuning dials have an infinite number of positions. A digital tuning dial is not infinite; you must select the position closest to a desired setting.
Most 2-meter fm gear uses some form of discrete, digital frequency selection. This is difficult to use on lower bands without channelized frequencies: that rare DXCC contact may be between positions and will never be reached.

If you have a digitally-controlled master oscillator, one tuning solution is to use a potentiometer (pot) with an analog-to-digital converter. This has limits:
an inexpensive pot has less than a full turn and an expensive, ten-turn pot can't be spun continuously (nor does it have the range) of conventional tuners.

A better way is to use the continuous, segmented digital rotary dial and an encoder to determine direction and amount of rotation. Each dial position, or state, is used to drive a counter. The counter provides an input to the controlled function. Encoding may be accomplished through discrete circuitry or through a microprocessor program. The position resolution is limited only by the dimensions and construction quality of your encoding design. I resolve two hundred positions per revolution easily. Opal resolved four hundred, with a larger encoder disk and better construction.

the technique

Earlier rotary dial methods provided continuous updating of dial position, or state-change. This system polls four dials in sequence, to determine if any dial status has changed from the previous poll.

I selected a four-dial input because a station can require several. Four uses might be main tuning, bandspread, filter frequency setting and keyer or keyboard speed control. Four inputs also work well with an 8-bit microprocessor.

the basic dial

Fig. 1 shows the progression of logic states from a pair of optical interrupters scanning the marks on a disk. For any given state, movement of the dial disk

By C.A. Eubanks, N3CA, P.O. Box 127, Valencia, Pennsylvania 16059
will yield a new state that defines direction of rotation.

Table 1 summarizes all possible state-change combinations, original state to new state. Valid rotation is implied if only one of the optical interrupter inputs changes. Invalid rotation sensing occurs if both interrupters see a change; this change must be ignored. Invalid sensing could occur if the polling speed is too slow, or sensing could indicate the wrong direction if an even number of state changes were missed.

The microprocessor system used in dial sensing performs other tasks as well. Polling speed is subject to trade-offs. To test the speed, I tentatively selected - Opal's fifty-mark encoder disk. Some experimentation with a conventional transceiver proved that the dial spins easily at one revolution per second. This became the design rotation-rate goal. Assuming the rotation algorithm senses all state changes: (1 rev./ $\mathrm{Sec}) \times(50 \mathrm{marks} / \mathrm{rev}) \times.(4$ states $/ \mathrm{mark})=200$ states $/ \mathrm{Sec}$. All else being equal, polling rate must occur once every five milliseconds.

Everything else is not equal, however. First, the dial spin rate is not constant. Sudden starts and stops create faster state changes. Second, interrupters are not ideally spaced; some state changes occur at a lesser angular displacement and the statechange rate can increase.
With these factors in mind, I finally selected a two millisecond polling rate. The encoder still losses a few counts on rapid dial movement, but l've noticed no erroneous counts.
table 1. Matrix diagram (Karnaugh Map) of all possible logic states of one dial's optical interrupter detector. A_{0} and B_{0} are the previous A and B interrupter states while A_{1} and B_{1} are the current states. L indicates left motion in fig. 1. R is right motion. N / C is no change; dial has not moved. N/A is a not-applicable condition resulting from non-allowed state-change progression of motion in either direction. The logical expression is used by the process subroutine shown in fig. 4.

$\mathbf{A}_{1} \mathbf{A}_{0}$					
$\mathbf{B}_{1} \mathbf{B}_{0}$	00	01	11		
00	$\mathrm{~N} / \mathrm{C}$	L	N / C	R	
11	$\mathrm{~N} / \mathrm{C}$	R	N / C	L	
10	L	$\mathrm{~N} / \mathrm{A}$	R	N / A	

$$
\mathrm{L}=\overline{\mathrm{A}}_{1} \mathrm{~A}_{0} \overline{\mathrm{~B}}_{1} \overline{\mathrm{~B}}_{0}+\mathrm{A}_{1} \overline{\mathrm{~A}}_{0} \mathrm{~B}_{1} \mathrm{~B}_{0}+\overline{\mathrm{A}}_{1} \overline{\mathrm{~A}}_{0} \mathrm{~B}_{1} \overline{\mathrm{~B}}_{0}+\mathrm{A}_{1} \mathrm{~A}_{0} \bar{B}_{1} \mathrm{~B}_{0}
$$

$$
R=\bar{A}_{1} A_{0} B_{1} B_{0}+A_{1} \bar{A}_{0} \bar{B}_{1} \bar{B}_{0}+\bar{A}_{1} \bar{A}_{0} \bar{B}_{1} B_{0}+A_{1} A_{0} B_{1} \bar{B}_{0}
$$

the interface circuit

Fig. 2 is a schematic for one application card of the Intelligent Controller. ${ }^{3}$ The darlington output of each optical interrupter is buffered by 7414 hex schmitt inverters. This buffer provides hysteresis to prevent jit-

fig. 1. Encoder optical interrupter detectors relative to encoder disk and resulting logic states. Logic 1 is a mark seen by the detector, logic 0 a space.

The application card and one rotary dial assembly. Optical interrupters are visible at the disk bottom, just above the bracket for the ribbon cable DIP socket. The large chip on the card is the 8255 PPI with hex inverters at top center. Other card components are for another application not described here. The clamp is for photographic support of the dial assembly.

fig. 2. Schematic of the four-dial application card for the Intelligent Controller. The optical interrupter circuit may be repeated for three additional dials.
ter when an interrupter is near a dial mark edge.
An Intel 8255 Programmable Peripheral Interface (PPI) is the link between the inverters and the Intelligent Controller's HAM BUS. The 8255 was chosen because it is compatible with other system components, readily available, and one of the least expensive input/output (I/O) devices available.

The PPI is shown with connections to port B. Each 8255 has three ports, and the remaining two ports may be used for other functions in the Intelligent Controlier.

motion algorithm

This algorithm was developed for a 6502 microprocessor but is of general nature and should work equally well on other microprocessor systems. General flow for motion sensing is shown in fig. 3, and is executed once every two milliseconds. Any state change detected due to dial motion will call the process subroutine detailed in fig. 4.

Twelve bytes of storage are required by both routines. Three are temporary, for scratch-pad storage,
labelled TEMP1, TEMP2, and TEMP3 on the charts. OLDIAL holds the status of all four dials from the previous poll. Four bytes are the old dial logic (ODL) registers, one for each dial. The remaining four are direction registers (one for each dial), to indicate dial position.

Direction registers may be used in a service routine to remember dial motion. In my application they indicate positive ($\$ 01$ to $\$ 7 F$) on the increments and negative ($\$ 80$ to $\$ F F$) on decrements.

The microprocessor program allows other tasks to be executed between dial readings. Details on the flow charts and program operation are found in the appendix.

construction

As a disclaimer, I am more impressed with K3CU's mechanical construction than my own. For breadboarding purposes, I used parts taken from a tenturn pot for its shaft and bushing. The dial and optical interrupters were mounted on a small piece of unetched PC board stock. It is very desirable to

Ham operators know that EIMAC started in power tube development with the 150T in 1934. While the 150T is now a collector's item, EIMAC, a division of Varian, still holds leadership in power tube design with its 4CX250B, $8874,3-500 Z, 8877$ and 3CX400U7; modern examples of EIMAC's continuing, innovative solutions to tough communication requirements.
EIMAC's proven power tubes are used in amateur service for heavy-duty, reliable performance in traffic; RTTY; SSTV; DX operation; VHF/UHF work; moonbounce, and exploration of the outer limits of communication techniques across the spectrum.

High quality and long life make EIMAC tubes the favorite choice of operator and equipment builder, amateur and professional alike.
For communication and research worldwide, choose EIMAC. For information on VARIAN EIMAC power tubes, call or write today. Or contact the nearest Varian Electron Device Group sales office.

VARIAN EIMAC
301 Industrial Way
San Carlos, California 94070 415-592-1221

VARIAN EIMAC
1678 S. Pioneer Road
Salt Lake City, Utah 84104
801-972-5000

VARIAN AG

Grienbachstrasse 17
Postfach
CH-6300 Zug, Switzerland
Tel: (042) 316655
Telex: 845-78789
varian

fig. 3. Flow diagram of the dial polling routine.
mount the interrupters with the shaft bushing for proper optical adjustment.

The dial subassembly holds a 16-pin DIP socket for interconnection to the application card. Flat-cable DIP plug cables are readily obtained. (Mine was an 18 -inch (46 cm) cable from Radio Shack, part number 276-1976.)

I made the encoder disk in two steps: first I made a photocopy from the optical mask in fig. 1 of Opal's article, then transferred it to a thermal-contact transparency. This gives satisfactory results, but you can purchase finished disks directly from K3CU.*

Opal suggested cementing the disk to a large knob for support. I soldered a circular piece of PCB stock to the shaft and attached the disk with rubber cement. My technique takes less space, while Opal's is easier.

The exact location of the optical interrupters is not

[^1]critical. The illuminator center should be near the mark mid-radius. Once assembled, the relative interrupter positions can be set by bending the leads. Two cautions: keep the interrupter leads long enough and be careful not to pull off the PC board foil.

The dial shaft should have some friction device to prevent drift or coasting. I included a short piece of helical compression spring between bushing and encoder disk. This takes up any axial play and provides the necessary friction.

The inverters and PPI were mounted on a Radio Shack prototype board (part number 276-157). This is compatible with the intelligent controller. The extra chips seen in the photo are to support a Morse keyboard. The two spare 8-bit ports of the PPI may be used for other purposes.

operation

I had some initial problems providing sufficient signal for inverter inputs. I believe the interrupter collector resistor values given in fig. 1 to be adequate for variations in both the interrupters and inverters. To make certain, the inverter and interrupter outputs can be checked with a high-impedance voltmeter. Inverter output should be low when interrupter output is high, and vice versa.

I wrote a simple program to drive a display for 256 counts to test the device. Depending on the spacing between interrupters, the count may go in either direction. The proper direction is obtained by repositioning the interrupters or modifying the service routine. I prefer the latter, having had some bad experiences with interrupter leads and foil peeling on the encoder subassembly.

Program documentation and burned 2716 EPROMs for the Intelligent Controller are available from the author. Please send a self-addressed, stamped envelope for information.

acknowledgment

The author wishes to express appreciation to Chet B. Opal, K 3 CU , for his comments and review of this article.

references

1. Lester A. Earnshaw, "A Tunable Synthesizer," ham radio, November, 1978, page 18
2. Chet B. Opal, K3CU, "Rotary-Dial Mechanism for Digitally Tuned Transceivers," ham radio, July, page 14.
3. C.A. Eubanks, N3CA, "An Intelligent Controller for Ham Gear," ham radio, October, 1982, page 12, and November, 1982, page 25.

appendix

The flow chart details presented here will be useful if you are interested in converting to a microprocessor other than a 6502 or are not familiar with programming.

The real world.

Any halfway decent photovoltaic panel should be able to survive laboratory testing.

But the real test of a solar module is how well it stands up over time in the biggest, toughest laboratories of all.

The real world.
On remote mountaintops, where maintenance is difficult and costly, Photowatt's aluminum substrate and laminated solar modules have been providing dependable, worry-free power to communications devices, such as microwave links, radio phones and UHF/VHF repeaters.

For almost a decade.

In the desert, Photowatt's solar modules have proven that they can withstand the harsh blasting of sandstorms, and ground level temperatures as high as 150°

And in the ocean, Photowatt's heavy duty aluminum substrate panels have proven that they can withstand galeforce winds, corrosive salt spray and the pounding of 60 -foot high waves.

In more than 10,000 navigational aid applications throughout the world.

2414 West 14th St., Tempe, AZ 85281
(602) 894-9564/TWX 910-950-0142

According to the U.S. Coast Guard Photowatt's aluminum substrate panels are one of the few tested that successfully completed the Coast Guard's test criteria for offshore navigational aids.*

If you don't want to scale a mountain every couple of weeks,make sure the solar panels you buy are the most rugged and durable on the market.

Make sure they've proven themselves out in the real world.

In other words, make sure they're Photowatt solar modules.

- Refer to report: CG-D-10-81-NTIS ADA098257 "Testing of Solar Photovoltaic Arrays For Utilization On Marine Aids To Navigation: November, 1980

fig. 4. Flow diagram of the process subroutine to determine dial motion.

The dial routine in fig. 3 is invoked by a two-millisecond timer interrupt in the Intelligent Controller. This routine reads the status of all dials and compares that status with the previous status stored in the OLDIAL register. If there is no charge, the routine returns from processsor interrupt.

Change of dial input is indicated by one or more bits set to logic 1 after the exclusive-OR with OLDIAL. Each dial is then polled in a loop. The loop starts with dial status in the accumulator as follows:

$$
A_{0} A_{1} A_{2} \quad A_{3} B_{0} B_{1} B_{2} B_{3}
$$

The accumulator is first pushed onto the stack (temporarily saved), then masked by ANDing with a bit pattern of 00010001 ($\$ 11$ in hexadecimal notation). The result, on the first loop pass, will have A_{3} in bit 4, B_{3} in bit 0 , and all other bits zero. If all bits are zero, no change in that dial occurred, the accumulator is restored by pulling it from the stack, and the accumulator is shifted right once. The index register (loop counter) is decremented, tested, and program flow continues at the loop start.

The purpose of right-shifting the accumulator is to provide separation in the $\$ 11$ AND for the next dial. The second loop pass will have A_{2} in bit 4, B_{2} in bit 0 . Each loop pass will test individual dials in decreasing order.

Any non-zero result of the AND accumulator with $\$ 11$ will jump to the process subroutine shown in fig. 4. Entry to this subroutine will have TEMP1 holding an individual dial status in bits 4 and 0 . Another mask with $\$ 11$ is assurance that the three accumulator left-shifts and ORs with TEMP1 will have an individual dial input arranged as:

AAAABBBB
The accumulator is exclusive-ORed with a bit pattern of

10011100 or $\$ 9 \mathrm{C}$. The result of the exclusive-OR will set up the accumulator for subsequent testing of motion direction. Logic representation in the accumulator is now:

$\bar{A} A A \bar{A} \bar{B} \bar{B} B B$

Bit patterns in the accumulator will be as follows for the four possible optical interrupter state combinations:
$A B=01100011$
$\bar{A} B=10010011$
$\bar{A} \bar{B}=10011100$
$A \bar{B}=01101100$

Only one pattern will exist for one dial, stored in TEMP2.
The next two instructions set the accumulator to hold a logic 1 in one of the higher four bits for one of the previous state combinations. This is done by left-shifting the accumulator four times, then ANDing with TEMP2. The next two instructions (four rightshifts and OR with TEMP2) will duplicate the higher four accumulator bits into the lower four. The accumulator is now set for motion determination and is stored in TEMP3. The accumulator and TEMP3 will have one of the following bit patterns dependent on dial status:

$$
\begin{array}{ll}
A B=00100010 & \bar{A} B=00010001 \\
\vec{A} \bar{B}=10001000 & A \bar{B}=01000100
\end{array}
$$

One of these bit patterns will be loaded into a dial's ODL on subroutine exit.

The first motion decision occurs when the accumulator is shifted left once, then ANDed with the existing ODL (from a previous subroutine call). The result is ANDed again with 01111000 $(\$ 78)$ to strip any extraneous bits. If the second AND yields a nonzero accumulator, right motion was detected and the direction register for that dial is incremented.
The second motion decision is made by loading the accumulator with TEMP3, shifting the accumulator right once, then ANDing with the existing ODL. The second AND with $\$ 78$ strips any extraneous bits. A non-zero result indicates left motion and the direction register is decremented. The final operation is updating the ODL with the current dial logic stored in TEMP3.
A key element in motion decision is the direction of accumulator shift prior to ANDing with the ODL register. This can be seen by examining the logic expressions in table 1, or the following statechange progression:

$$
\begin{array}{ll}
\text { Right motion: } & A B \rightarrow \\
\text { Left motion: } & \bar{A} \bar{B} \rightarrow \bar{A} B \rightarrow A B \rightarrow A \bar{B} \rightarrow \bar{A} \bar{B} \rightarrow
\end{array}
$$

The current state combination must always be compared to the previous one.

Any out-of-sequence state combination will pass through the subroutine without effect on the direction register. Start-up may produce an arbitrary bit pattern in the ODL register byte and may cause an increment or decrement of the direction register; only one change occurs since subroutine exit will update ODL to the new dial logic. Set-up prior to motion decision ensures a minimum number of direction register glitches.
Each left-shift assumes a zero entering the least-significant bit. Each right-shift assumes a zero entering the most-significant bit. 6502 coding uses ASL and LSR instructions, respectively. TEMP3 is the Y -register of the 6502 with the X -register used as an index for each ODL and direction register in RAM.
Calculated execution time of the four-dial program in the Intelligent Controller is $141 \mu s$ with no dial change, $355 \mu s$ with one dial change, and $436 \mu \mathrm{~s}$ with two dial changes. Clock period is one microsecond and there is adequate time between 2-millisecond interrupts to execute other tasks in the controller program.
ham radio

EVERYTHING YOU WANT FOR A HAPPY "HAM" CHRISTMAS.

GIVE YOURSELF A TREAT. "UNCLE BEN" HAS THE GEAR

...you've been looking for. Get fast delivery... great trades...big discounts, plus real, old-time, reliable, friendly service.

INTERESTED IN COMPUTING?

Check our low discount prices on:
TEXAS INSTRUMENTS ATARI
COMMODORE
FRANKLIN....and more.

CALL ME...
Toll Free (800) 645-9187
New York (516) 293-7995
WRITE ME...
for my prompt, personal reply SEE ME...
At one of the world's largest Ham Supply Centers!
We ship anywhere!

"Uncle Ben" Snyder, W2SOH the head man of

HAßRISON
RADIO
"HAM HEADQUARTERS, USA'"
...Since 1925!

RTTY SCOPE

At Last! An RTTY Tuning Scope!

And who else but HAL would bring you such a practical solution to the RTTY tuning problem. If all you have is flashing lights, you know how difficult it can be to match your transmit frequency with that of a received RTTY signal. The RS2100 RTTY Scope ends these problems with an accurate display of the received signal (both signal amplitude and phase). The RS2100 is a matching companion for the CT2100 Communications Terminal and may be used with most HAL and other manufacturers' RTTY equipment. An internal loop supply is included.

> - X-Y tuning scope indication
> - $1^{\prime \prime}$ diameter green phosphor CRT
> \bullet Front panel focus, intensity, and position controls
> \bullet Internal 200 VDCC, 60 ma loop supply
> \bullet Two lop keying circuits (high voltage or optical isolator)
> $\bullet 3-1 / 2^{\prime \prime} \times 8-1 / 4^{\prime \prime} \times 10-3 / 16^{\prime \prime}, 9$ lbs net, 12 lbs shipping $120 / 240$ VAC, $50 / 60 \mathrm{~Hz}$ power
> \bullet Scope indicator works with CT2100, DS2050, DS2000, CWR685, CWR6850, CWR670, CWR6700, ST5000, ST-6K, ST-5K, and more
> Loop supply works with CT2100, DS2050, DS2000, CWR685, and CWR6850

Write or call for more details. See the RS2100 at your favorite HAL dealer.

HAL
 HAL COMMUNICATIONS CORP.
 BOX 365
 URBANA, ILLINOIS 61801
 217-367-7373

Order both books at the same time for $\$ 41.95$ including shipping.
Order from your dealer or directly from the publisher. All direct orders add shipping charge. Foreign residents add $\$ 4.55$ for shipping. Illinois residents add 5% sales tax.

SPECIAL OFFER!
Amateur Radio Emblem Patch only $\$ 2.50$ postpaid
Pegasus on blue field, red lettering. $3^{\prime \prime}$ wide $\times 3^{\prime \prime}$ high. Great on Jackets and caps.

мо м мaxamallbook wc.
 Dept. F
925 Sherwood Drive Lake Bluff, IL 60044, USA

Long's makes Christmas shopping easy!

COMMODORE VIC-20 personal computer with 5 K memory
The VIC-20 offers more dollar-for-dollar perfor mance than any other personal computer. It has built in BASIC language, 5 K of RAM (expandable to 32 K) high resolution graphics, sound, color and a wide range of add-on accessories. Full size keyboard features 64 ASCII character set numerics and business/calculation symbols. Screen display 22 characters wide by 23 lines deep. Program line length 88 characters. Will accept plug-in program cartridges, floppy disc and cassette storage systems.
178.00 Add 3.50 shipping \& handling

KANTRONICS THE INTERFACE RTTYICWIASCII to computer adaptor

Transforms your personal computer into a complete CW/RTTY/ASCII send and receive terminal with The Interface linking it to your transceiver. Active filter at 2295 Hz for RTTY and 750 Hz for CW. LED bar graph for fast and easy tuning. Hamsoft package required for VIC-20.

List Price 189.95
170.95 $\begin{gathered}\text { Item No. KANINTERFACE } \\ \text { Add } \\ 1.75 \text { shipping \& handling }\end{gathered}$

AEA MBA-RO Morse,
 RTTY, ASCII reader

Attaches to the speaker terminals of a receiver and displays Morse, RTTY, or ASCII on its 32 character $0.29^{\prime \prime}$ high display screen. Compact size only $83 / /^{\prime \prime} \times$ $5^{\prime \prime \prime} \times 2^{\prime \prime}$. A great way to monitor one's sending proficiency. Power requirement 13V DC @ 500 ma .

List Price 299.95
269.95 $\begin{aligned} & \text { tem } \\ & \text { Add } 2.33 \\ & \text { No. AEAMBARO }\end{aligned}$

KANTRONICS

Hamsoft package

The necessary software for connecting The Interface to the VIC-20. Includes VIC-20 program board \& the needed cables. Allows your computer to have a split screen display, scrolling receive display, 1024 character type ahead buffer and more!
49.95 ${ }^{\text {Item No. KANVIC20 }}$
4.95 Add 1.36 shipping \& handling

"WORLD PRESS

 SERVICESFREQUENCIES'" listings of RTTY transmissions
A true storehouse of information for the RTTY specialized amateur of SWL. Publication lists AP, UPI, Reuters, TASS, VOA, London Press, and other active press RTTY frequencies from around the world. Lists over 65 news and press services. Great for code reader users!

7.95 Add 1.36 shipping \& handiling

KANTRONICS Mini Reader

A code reader the size of a calculator! Measures only $5334^{\prime \prime} \times 31 / 2^{\prime \prime} \times 1^{\prime \prime} .10$ digit $3 / 8^{\prime \prime}$ high character display. Copy Morse, RTTY, or ASCII from the palm of your hand. Features automatic Morse speed tracking, and 24 hour clock. Comes with display stand and AC adaptor.

List Price 289.95
260.95 Adin

KANTRONICS Mini Terminal

Sends and receives Morse code, RTTY, and ASCII. Converts any CW input from a CW keyer or keyboard into standard 2 tone RTTY or ASCII. Terminal transmitts at $60,75,100$ on RTTY and 110 on ASCII. Epson MX-80 or Paper Tiger may be attached for hard copy.

List Price 299.95
Item No. KANMINITERM
269.95 Add 1.75 shipping \& handling Add 1.75 shipping \& handiling

Complete satellite TV system \$1795!

10 FT. PARABOLIC DISH

List Price 3985.00
Item No. MISSY67
Shipped Freight Collect

What the system will do:

You can receive up to 60 channels of TV direct from satellites to your home receiver. Movies, sporting events, religious programs, other TV stations and much more.

What the system includes:

1. 10 ft . fiberglass dish made of reflective metal bonded with fiberglass. Weather resistant and virtually maintenance free. Comes in 4 sections for easy assembly.
2. Single-pole polar mount complete with azimuth and elevation adjustments for easy satellite-to-satellite tracking. 3. LNA mount complete with rotor for adjusting horizontal and vertical polarity of LNA. Extension poles not included. 4. KLM SS-22 receiver. Consists of two parts: receiver and downconverter. The receiver can be placed indoors and linked to the downconverter by remote cable. Features scan, video inversion, LED signal strength indicator, fine tuning and audio level control.
3. Avantek 4215120° low noise amplifier. Takes weak signals reflected by the dish and amplifies them so that they can be converted to a TV picture. Uses GaAs FET transistors and has its own built-in power source. Urethane coated.
4. Chaparral feed horn. Provides 0.5 dB gain improvement over conventional rectangular horns for superior picture $=$ and sound quality. Virtually eliminates system noise.

Note: Customer provides all cables. Approximate cost $\$ 80$. Customer must feed audio and video through VCR or use RF modulator (\$59).

IN ALABAMA CALL 1-800-292-8668 9 AM TIL 5:30 PM CST, MONDAY THRU FRIDAY

DUAL DRIVE TRIBANDERS

- 20, 15 and 10 meters - Wideband. Low SWR. No tuner needed - Exclusive phased dual drive gives higher gain • Exclusive coaxial capacitors have lower losses, higher Q - Transmitter power is radiated not lost in the traps - Full power low loss balun. Gives improved beam pattern
TET, Antenna Systems presents three full size trap multiband beams to meet every amateur need. 5 element, 4 element, and 3 element models all with the exclusive TET dual phased drive. This famous drive system originated with HB9CV and was perfected by JA3MP. When you buy TET dual drive you know you have the best. It has more gain - just like adding another parasitic element. And wide bandwidth so you can use your solid-state transceiver on both phone and CW without a tuner.
Only the highest quality materials are used throughout. All aluminum tubing is 6061-T6 alloy. Stainless steel fasteners are provided for all electrical connections. Tubing is cut and predrilled to precision tolerances for easy one afternoon assembly. Light weight and low wind area designs permit use of simpler support structures.
All models feature full 3 Kw PEP power handling, VSWR typical 1.5 or less across all of 20, 15 and, on 10 meters, from 28.0 to 29.2 MHz . Drive impedance is 50 ohms and maximum element length 27^{\prime}. They accomodate masts from $11 / 2$ to $2^{\prime \prime}$ diameter, withstand winds to 100 mph and are furnished complete with a low loss balun that easily withstands full rated power. For gain and front-to-back ratio specifications write or call the factory.

> HB35T

HB43SP
HB33SP
Boom Length: 24'7" $19^{\prime} 8^{\prime \prime}$

13' 2"
$16^{\prime} 9^{\prime \prime} \ldots5^{\prime}$
6.6 4.7

132 102

27
$\$ 199.95$

+ shipping

Send for free catalog describing these dual drive beams, our VHF Swiss quads, roofmount towers, elevation rotators and more.
Don't wait any longer to start working rare DX. Order your dual-drive beam today! BY MAIL:
TET Antenna Systems 1924-E W. Mission Road
Escondido, CA 92025
BY PHONE: 714-743-7025

Introducing our Latest Model — NOVAX II

SIMPLEX / DUPLEX AUTOPATCH
novax I

NOW TWO MODELS TO

 SERVE YOU BETTER
YOUR OWN PRIVATE AUTOPATCH

NOVAX interfaces your standard 2 meter; 220; 450; etc. Base station and telephone, using a high speed scan switching technique so that you can direct dial from your automobile or with your HT from the backyard or poolside - Automatically ... Easy installation. Transceivers, featuring solid state switching. offer best results ... Available interfaced
with an ICOM 22U. with an ICOM 22U.

FEATURES	NOVAX I	NOVAX II
- 3 min. Call duration timer	YES	YES
- Up to 45 sec . activity timer	YES	YES
- Single digit Access Control	YES	NO
- DTMF (Touch Tone)* phone connection	YES	YES
- 4 digit Access Control	NO	YES
- Toll Restrict	NO	YES
- LED Digital Display	NO	YES
- Vinyl covered alum. case size	$5^{\prime \prime} \times 6^{\prime \prime} \times 2^{\prime \prime}$	$10^{\prime \prime} \times 8^{\prime \prime} \times 1 \%^{\prime \prime}$
- Directiy Interfaces with Repeater	NO	YES
- Rotary Dial System (incl. Last digit dial)	NO	YES-"Option"-\$49.95
- Ring Black (reverse autopatch) "Option"	YES-\$39.95; Kit \$29.95	YES-Wired-\$39.95
- Price	Kit:\$169.95/wired\$219.95	Wired only \$279.95
N., Y.S. Res, add appro. Sales Tax	SHIPPING ADD $\$ 3.50$ in U.S.A.	
To order, sendcheck, moneyorder to:MASTER CHARGEANO VISA ACCEPTED(formerly R.W.D. Inc.)		

-

*\$249
A modular approach. . . for your own custom-designed ATV system . . . Here's how TXA5-4 ATV EXCITER/MODULATOR. 889 ppd
 This wired and tested module is designed to drive the
Motorola MHW. 710 module in the PA5 10 watt linear Motorola MHW- 710 module in the PAS 10 watt linear amp. The crystal in the 100 mHz tegion keeps har-
monics out of two meters for taik back. The video modulator is full 8 mHz for computer graphics and color Requires 13.8 vdc reg a 70 ma . Tuned with xtal on $439.25,434,0$, or 42625 mHz Provision for sync expanding Two frequencies available.

PA5 10 WATT ATV POWER MODULE $\$ 89$ ppd The PA5 will put out 10 watts RMS power on the sync lups when driven with 80 mw by the TXAS exciter 50 onms in and out, plus bandwidth for the whole band wdc regulated $\& 3$ amps

FMA5 AUDIO SUBCARRIER GENERATOR

FMA5 AUDIO SUBCARRIER GENERATOR
Puts audio on with your camera video just as broad cast TV does at 4.5 mHz Puts out up to 1 I p-p to drive the TXAS or VM.2. 3, or 4 modulators Requites low Z mic (150 to 600 ohms), and +12 to 18 vdc a 25 m
Works with any $\times \mathrm{mt}$ with 5 mHz video bandwidth

TVC-2 ATV DOWNCONVERTER. ... $\$ 55 \mathrm{ppd}$ Stripline MRF901 (1 7 db NF) preamp and double bal. anced mixer module digs out the weak ones but resists na and TV set tuned to channel 2 of 3 . Varicap tunes 420 to 450 mHz . Requires +12 to 18 vdc a 20 ma Super sensitive TVC-2L with NE64535 preamp (9 db NF) stage $\quad \mathbf{5 6 9} \mathrm{ppd}$

*TXA5, PA5, FMA5 and TVC Basic Module Pkg.
Call or write for our complete list of specifications, station set-up diagrams, and optional accessories which include antennas, modulators, detectors, test generators, cameras, etc. WE ARE A FULL-LINE SUPPLIER OF ALL YOUR ATV NEEDS.
TERMS: VISA or MASTER CARD by telephone or mail, or check or money order by mail. All prices are delivered in USA. Allow three weeks after order tor delivery.
(213) 447-4565 Charge card orders only
> P.C. ELECTRONICS 2522 Paxson Lane, Tom W6ORG Maryann WB6YSS Arcadia, California 91006

a 40-meter transmitter-receiver

Useful construction hints for a versatile, complete package

Abstract

A 40-meter transmitter and receiver using semi-break-in keying is described in this article. It uses transistors in all the circuits except for the final tube, driver and T-R switch.

This article indicates problem areas and cures. Many hobbyists like myself build circuits acquired from handbooks and magazine articles and they don't always work. During construction things change. Perhaps the layout, perhaps a fine copper short on a PC board which can only be seen with a magnifying glass. I have spent hours searching for opens on parts which appeared to be soldered only to find no connection actually existed. I now scrape all component leads before I solder to ensure good electrical contact.

Access to parts represents another variable and the constructor must choose from his collection or from other sources. For example, I had silver-plated, nylon-covered wire available which I used for the VFO coil. It works quite well and provides stable VFO operation.

PC board construction

Printed circuit board construction takes practice and experience. I start by cutting the copper PC board with a hacksaw, holding the board in a vise between two pieces of angle iron. I smooth the edges and rub the surface of the copper with steel wool until it's bright. Black paper tape and drafting dots are used for circuit layout, and I keep a pencil sketch of the work. The dots and holes are center-punched. The board is placed in a cut-out milk container and ferric chloride solution is poured over it. Fresh etching solution is used each time since it weakens after several applications. A 75 -watt lamp, placed over the
container, hastens the etching process. I use steel tweezers to turn the board and pick it up because the solution can stain your fingers badly. Don't spill or drop any of it on the floor or sidewalk - it won't come off!

After the board is etched and washed the tape is removed and cleaned with paint thinner and the board is rubbed with steel wool again. Sometimes I put the board in a tinning solution if I have any on hand. If not, I hot solder-wipe the board. Holes are made with a number 60 drill and parts mounted and soldered one at a time with the board secured in a vise. Always check the board after you are done wiring. Run a scribe between the segments and look at the board with a magnifying glass. This sounds like a small point but can prevent problems such as shorts and open circuits.

Making boards by hand may seem to be time-consuming, but you will find it is fun and a good way to build. More elaborate methods include making negatives of the artwork and exposing photo-sensitized copper plates. However, that is a more expensive technique.

Occasionally, breadboarded circuits do not perform when printed on copper boards. Once again poor layout should be suspected. Above all, don't try to build an entire circuit and expect it to completely work initially. Build and test one section at a time.

power supply

A good place to start is by building a power supply. I built two receivers with an inexpensive 18 -volt rms transformer using an LM 340-T regulator IC. The first two units worked. However, after constructing the third unit all the LM 340 -Ts self-destructed though neither a capacitive nor resistive load had yet been connected. Exchanging the T unit with an LM $340-k-12$ apparently solved the problem. An added benefit of this change was a total elimination of audio motor-boating. (A better transformer had also been introduced).

By Ed Marriner, W6XM, 528 Colima Street, La Jolla, California 92037

fig. 1A. Schematic diagram for the $\mathbf{4 0}$-meter transmitter-receiver.

Some experimenters use batteries (12-volt storage or Ni -Cds) to independently power their circuits. It also helps pinpoint causes of hum, unwanted oscillations and audio motor-boating. It's a good idea to run all the stages to a separate point, isolating each power lead with a 100 -ohm resistor and five or more microfarad by-pass capacitors. This prevents interstage coupling.

audio amplifier

Now you have a working power supply, the next logical circuit to build is the audio stage. LM 380N chips work well and provide sufficient audio output. A $0.1 \mu \mathrm{~F}$ capacitor on the input pin prevents hum when the volume control is lowered.

A common practice is to use between two and ten microfarad capacitors for coupling audio stages. I found the audio stage would block with this large a value and reduced it to $0.02 \mu \mathrm{~F}$. For CW low-frequency coupling is not necessary. The audio stages in this set are left on at all times to enable sidetone oscillator injection for CW monitoring.

product detector

A 40673 MOSFET is used as a detector and gain element. It eliminates the need for another i-f stage. Sufficient CW signal output is obtained from the mixer when a 1.5 V rms BFO level is injected. The 1 k resistor and 0.05 microfarad capacitors form a filter that suppresses high frequency hiss (a mixer byproduct), preventing its introduction into the audio stages.

bfo

A crystal BFO is simpler to build than a variable one. However, it is more difficult to make the 453.5 kHz crystal stage oscillate. After some research, the circuit in fig. 1. was tried. By placing an rf choke in the collector lead, and adjusting the capacitors from base to ground, the oscillator provided 10 volts rms output. I used a variable capacitor to experimentally determine the optimum values (200 pF from base to ground and 70 pF from collector to ground). The transistor oscillated only when the emitter was not grounded.

i-f stage and filter

I-f filters are expensive and hard to find. A CW and SSB filter can be constructed using two low-frequency crystals, one at 455 kHz and the other at 453.5 kHz . The J.W. Miller crystal-matching i-f transformers, types 1725 and 1726, complete the crystal filter assembly. The transformers can be
mounted on a PC board and must be grounded. Care must be observed when tuning the i-f slugs. Do not screw the slug in too far or it will damage the internal wiring. Peaking is accomplished by listening to off-air signals or by feeding in a 455 kHz signal.
The i-f stage transformers are small potted toroids which resonate at 455 kHz with a 100 pF capacitor. A J.W. Miller 330 microHenry unit also works. A paral-

fig. 1D. Schematic diagram for the $\mathbf{4 0}$-meter transmitter-receiver.

Parts List	
coils	J.W. Miller Co., 19070 Reyes Ave., Compton, California 90224.
semi-conductors	Semiconductors from Circuit Specialists, Box 3047, Scottsdale, Arizona 85267 or telephone 1-800-528-1417. Some semi-conductors can be found at Integrated Circuits Unlimited, 7889 Clairemont Mesa Blvd., San Diego, California 92111.
printed circuit tape	Drafting tape for printed circuits. Mesa Design Reprographics, 4925 Convoy St., San Diego, California 92111, telephone 714.5654724.
dots	Dots are called donut pad D144 for .150 od $\times .031$ inch 13.81 $m m \times 0.79 \mathrm{~mm}$).
tape	I use Bishop precision slit tape \#201-250-11 which is .250 inch wide (6.35 mm). Tape 201-125-11, . 125 inch ($\mathbf{3 . 1 8}$ mm). Also some .062 inch wide tape is useful. The tape comes in all widths, from Bishop Graphics, Westlake Village, California 91359.
toroids	Amidon Associates, 12033 Otsego St., North Hollywood, California 91607.
i-f coils	Radio Shack sometimes has an assortment bag of coils. Check here for i.f coils. Those used in this set were potted in ceramic, red color and have two leads projecting out. No number for stock.
etching	Try WA3OJF, PO Box 398, New Cumberland, Pennsylvania 17070. You can get mixed solution at your local chemical supply house.

leled 18 k resistor reduces the Q and chance of oscillation. The FET's source by-pass capacitor was left off to reduce the possibility of self-oscillation in the i-f stage.

rf and mixer stage

The of and mixer stage is keyed by the relay for semi-break-in. Amidon (red) toroids are satisfactory for the coils as long as they resonate on 40 meters. Slug-tuned coils can be used as well. However, it is easier to tap down on toroid windings. The idea here is to sharpen the tuning without loading the circuit too heavily.

1N914 diodes inserted back-to-back on the antenna link coil reduce the rf if it exceeds 1 volt. The T-R switch reduces the transmitter leak-through of level to about 2 volts.

vfo

A Colpitts' configuration is preferred for the receiver VFO. The 500 pF coupling and two fixed 530 pF capacitors are appropriate values needed for oscillation. The tuning capacitor, affected by these capacitors, requires careful matching for specific range coverage. The MFP-102 transistor stage provides 1.4 volts, enough to drive the buffer and emitter follower. This circuit eliminates frequency pulling by reducing mixer influence. The base voltage on the buffer is adjusted to read between 3 to 4 Vdc . This is accomplished by carefully selecting the 12 k and 10 k resistors. The 1.5 volts from the crystal filter provide one of the mixer inputs. Its injected level determines the mixer output.

transmitter

The transmitter VFO was designed for 80 -meter operation to prevent 40 -meter if interference. The VFO is actuated when the relay closes. Better performance is achieved using this technique rather than keying the VFO directly. Drive is increased by placing an of choke in the collector lead and taking the output from the collector rather than from the emitter. The emitter by-passing increases the rf drive to the 6AU6 doubler on 40 meters. The 6AU6 provides enough drive to the 2E26 with 300 volts on the plate. When lightly-loaded, the 2 E26 plate has a pronounced tuning dip if sufficient drive is applied. The 6AU6 and 2E26 output stages are keyed and isolated by 1N4007 diodes. The keyed semi-break-in and sidetone circuits are also isolated from each other by diodes. A keying network, introduced by VU2JN, produces a clickless signal.

relay circuit

When the key is closed a positive pulse is transmitted to the 2N2219A base. The two 1 N914 diodes ensure 2219A cutoff when the key is released. The diode across the relay eliminates any hang-up problems. The relay hold-in time is determined by the delay potentiometer and the $50 \mu \mathrm{~F}$ capacitor. A positive voltage, from the sidetone keyer, applied to the base of the 2 N 2222 turns it on. The sidetone oscillator, which provides a clean, adjustable level, monitoring signal, is lightly-coupled to the LM 380 N input.
ham radio

data bandwidths compared

Bandwidth requirements for four competitive data modulators

With increasingly crowded Amateur bands, will hams begin using more sophisticated digital-data modulation schemes in the future? FSK (frequencyshift keying) is the predominant modulation scheme used to transmit data in the Amateur service; but this may not always be the case, because there are several other possible schemes which are better than FSK in some ways. This article will compare the bandwidth requirements for four competitive methods of modulation data.

It is in our interest to use our limited spectrum space as efficiently as we can. I will be discussing FSK, CW, and two forms of PSK (phase-shift keying), that is, two-phase PSK, also called Binary PSK, or BPSK; and four-phase PSK, also called Quaternary PSK, or QPSK.

the fast-Fourier transform

In the discussion that follows, the signal spectra presented were generated by performing a spectrum analysis on a computer simulation of typical data modulated by each of the different schemes. This was done by creating a mathematical model of a data signal consisting of a sequence of 128 samples with

156 microsecond spacing and modulating it by each of the four methods. The results were then processed by a Fast-Fourier Transform computer program that produced a power spectra plot (showing energy content as a function of frequency) for each of the signals. I will not be discussing how this program operates, but only the results of this analysis.

The horizontal axis of each plot is frequency (in Hertz), and the vertical axis is the signal power for each frequency component in (dB relative to the strongest component). As a convenient reference, we will define the bandwidth of the signals as the band over which frequency components greater than -15 dB relative amplitude are present. This standard will allow bandwidth comparisons between the different modulation schemes.

frequency-shift keying

FSK is the most popular data mode today because it is comparatively simple to generate and demodulate. The output frequency of the transmitter is shifted between one of two different frequencies (mark or space) depending upon the data bit being sent (0 or 1). The demodulator can be two simple filters, one for each of the frequencies, and rectifiers and a slicer to determine which frequency channel has the most energy at any time.

An FSK signal using 1200 Hz and 1600 Hz was modelled for this analysis, and a data rate of 400 BPS (bits per second) was used. (This is about the maxi-

By J.T. Dijak, W9JD/2, 215 Tareyton Drive, Ithaca, New York 14850

әләчм ןeubis Mכ е Gu！sn eגep puəs osje pınoə әM

MO

－sıəцдо әцд

 －asuenbes ןeu6！s әчł pesodmoo uлəıled wop

＇uо！дכәдолd доләә әделөрои

的
相
We
\％
42
38
野
新
相

4is
Mi
6
463
wis
6？

the presence of the signal could indicate a mark, and the absence, a space. This signal is also very simple to generate, and simple to demodulate. The error rate versus signal-to-noise ratio is not as good as that for an FSK signal, however. This is because it is easier to tell a mark from a space when we are considering two different frequencies than when we must determine the presence or absence of one signal in a noisy channel.
For this analysis, a CW signal at a 400 BPS data rate using 1600 Hz as the center frequency was used. The same data pattern used with the FSK signal was used with this signal.

Fig. 2 shows the spectrum plot for the CW signal. We can see that (considering only -15 dB components or greater) the signal bandwidth (500 Hz) is narrower than for the FSK signal. We can also see that there are now other components farther out from the carrier. We can expect a small amount of signal distortion in the demodulator if we use filtering to limit our bandwidth to something on the order of what was required for FSK.
It is reasonable to expect the CW data signal to show higher harmonic spectral components than the FSK signal. The FSK waveform had smooth transitions between mark and space bits. The only difference between the two signals was a difference in frequency, and the transitions were made at a zerocrossing of the signal. Therefore, there were no abrupt changes in the FSK waveform. The CW signal, on the other hand, imposes very abrupt changes in the signal when it goes from mark to space - from no signal present, to full signal present. We know that higher harmonic terms are required in a signal spectrum to accomplish any abrupt transition like this in the waveform.

BPSK

Binary PSK sends a continuous carrier at one frequency, but the phase of the signal is shifted 180 degrees for a space bit. This signal, while requiring more complicated modulators and demodulators than either FSK or CW, provides an error rate superior to either other mode for a given signal-to-noise ratio.
Fig. 3 shows the spectrum plot for the 400 BPS BPSK signal. The same data pattern used in the previous examples was again used. We can see that the BPSK signal is wider than either the CW or FSK signals. This is not a surprise, since we know the BPSK waveform has very abrupt transitions at the bit boundaries where the phase of the carrier signal goes from +180 degrees to 0 degrees. In order to reproduce these abrupt transitions, the signal requires the higher harmonic spectral components that we see.

fig. 3. Analysis of binary phase-shift keyed signal: because of the high error protection provided by the BPSK method, the signal can be filtered to require less than 500 Hz bandwidth at 400 BPS; but the hardware required is more complex.

From this we can say that an unfiltered BPSK signal will require a wider signal bandwidth than CW or FSK for the same data rate; however, due to the superior synchronous detection process used land required) with PSK, we can discard many of the

Fig. 4. Analysis of quaternary phase-shift keyed signal: because each bit in this system can have four states, filtered OPSK signals provide twice the data rate for the same bandwidth as the BPSK method (although the hardware is even more complex). The error rate is slightly worse than with the BPSK method.
higher harmonic spectral components (by filtering). This blurs the transitions between bits, but does not seriously disturb the most important signal information for each bit. We could use a filter at the transmit-
ter to limit signal bandwidth to that required for FSK, and the detection process would still work well. Then, in exchange for the added complexity of the BPSK modulator and demodulator, we could obtain superior error-rate performance at the same data rate and in the same bandwidth as FSK.

OPSK

Quaternary PSK sends a carrier with one of four possible phase states at any time (that is, $0,+90$, +180 , or +270 degrees). Rather than sending one of two possible signals during each bit interval in the channel, we now send one of four possible signals, so each channel can be used to send two data bits (also called a di-bit). This is how a QPSK signal using a 400 BPS signalling rate in the channel can maintain an 800 BPS data throughput.

Fig. 4 shows the spectrum plot for an 800 BPS (throughput) QPSK signal - twice the rate for the previous examples - operating at a 400 BPS signalling rate in the channel. The spectrum looks somewhat similar to the BPSK spectrum, except that there are now several additional frequency components close-in near the carrier.
The higher harmonic components decrease in amplitude at a rate similar to those for the BPSK signal. We are sending di-bits through the channel at a 400 BPS rate, so we can again filter the transmit signal to pass only components within 400 Hz of the carrier and obtain good receiver performance. (In fairness, we must note, however, that QPSK does not exhibit error-rate performance as good as BPSK - this is because it is more difficult for the decoder to make the proper decision from the more complicated signal set.)
The main advantage of QPSK is that, assuming we can tolerate a slightly worse error rate than with BPSK, we can send twice the data rate while using the same bandwidth as BPSK or FSK. This is especially important in Amateur Radio VHF fm applications where we have good signal-to-noise ratios, but limited bandwidths.

summary

FSK is currently the most popular data-modulation scheme, due to its simplicity; but, when Amateurs become interested in better error-rate performance and maximum data throughput for a given signal bandwidth, they will probably start moving toward filtered BPSK or QPSK. This will be especially true at VHF and UHF where the frequency-diversity advantages FSK enjoys at high-frequency frequencies are much reduced.

battery charge sensor

A small sensor

 that warns you before your Ni-Cds dischargeMany a nickel-cadmium cell has been destroyed by depletion of its charge below the protective voltage level.' As many Amateurs know, when a Ni-Cd cell is discharged to near zero voltage there is a good possibility the cell may take on a reverse charge. The reason for this is the small differences in capacitance between cells; the cell reaching full discharge first is reversed charged. This condition can be prevented if the protective voltage level is detected and the cell is recharged.

My slightly vintage crystal 2-meter rig (a Kenwood TR2200A) uses ten Ni-Cd AA cells arranged in a fourand six-pack as its power source. The rig does have provision for monitoring the voltage level of the battery pack using the combination RF/S/batterymeter. This is fine if you operate in enough light to read the meter, which is, even under best conditions, somewhat inconvenient and difficult to read. But suppose you have no light - such as on your patio in the evening or in the forest on a camping trip. The battery meter is not of much use under these conditions.

My solution to this problem is a sensor circuit designed to continuously monitor the battery voltage and detect the approaching protective voltage level. When this level is reached, the sensor activates an alarm, which in my rig flashes the built-in channel pilot lamp at a $1-\mathrm{Hz}$ rate. I chose to set this voltage level to 11 Vdc , which allows some additional time after the alarm to end a QSO. The lamp will automatically stop flashing when, during charge, 11 Vdc is exceeded. The sensor circuit and lamp are powered in such a way that the main ON/OFF power switch will turn off everything.

fig. 1. The battery compartment box, showing placement of sensor circuit board.

Introducing incredible tuning accuracy at an incredibly affordable price: The Command Series RF-3100 31-band AM/FM/SW receiver.' No other shortwave receiver brings in PLL quartz synthesized tuning and all-band digital readout for as low a price. ${ }^{\text {T }}$ The tuner tracks and "locks" onto your signal, and the 5 -digit display shows exactly what frequency you're on.

There are other ways the RF-3100 commands the airways: It can travel the full length of the shortwave band (that's 1.6 to 30 MHz). It eliminates interference when stations overlap by narrowing the broadcast band. It improves reception in strong signal areas with RF Gain Control. And the RF-3100 catches Morse
communications accurately with BFO Pitch Control. Want to bring in your favorite programs without lifting
 a finger? Then consider the Panasonic RF-6300 8-band AM/FM/SW receiver (1.6 to 30 MHz) has microcomputerized preset pushbutton tuning, for programming 12 different broadcasts, or the same broadcast 12 days in a row. Automatically. It even has a quartz alarm clock that turns the radio on and off to play your favorite broadcasts.

The Command Series RF-3100 and RF-6300. Two more ways to roam the globe at the speed of sound. Only from Panasonic.
-Shortwave reception will vary with antenna, weather conditions, operator's geographic location and other factors. An outside antenna may be required for maximum shortwave reception.
${ }^{*}$ Based on a comparison of suggested retail prices.

This Panasonic Command Series" shortwave receiver brings the state of the art closer to the state of your pocketbook.

With PLL Quartz SynthesizedTuning and Digital Frequency Readout.

Panasonic.
just slightly ahead of our time.

Because my 2-meter rig is a Kenwood TR2200A, placement of the sensor was not difficult. In the battery compartment, the manufacturer had installed a rectangular box to take up space next to the four-cell pack. The box is removable by taking out two Phillipshead screws. The inside measurements of the box are $1 \times 1-3 / 4 \times 5 / 8$ inches, which lends itself to housing a miniature circuit board. Fig. 1 shows the removable portion of the box and how I mounted a hand-wired circuit board in place. Fig. 2 is the circuit board showing layout of parts.

circuit description

Assume the Ni-Cd battery pack has a charge between 11 Vdc and full charge. Under those conditions, the zener diode, CR3, will be biased into its forward breakdown region, developing a voltage at the junction of R1 and R2. If this voltage is above 0.65 Vdc, Q1 will be saturated with its collector pulled down essentially to ground. This condition prevents 02 from conducting, and so the ground pin No. 1 of the 555 will be held high near the battery voltage. The 555 will not start oscillating until pin 1 is grounded. The output of the 555 is pin 3 and it is internally held at the battery voltage at this time. A PNP transistor, Q3, is used to control the alarm/channel lamp. The lamp will light every time 03's base is grounded - or flash if the base is pulsed to ground.

As the battery pack depletes itself and the terminal voltage approaches $11 \mathrm{Vdc}, \mathrm{CR} 3$, a 9.2-Vdc zener, will stop conducting because it is biased above ground by CR1, CR2, and the emitter-base diode of Q1. Fig. 3 shows the sensor circuit, including the zener voltage drops for battery levels of 11 Vdc to full charge. To achieve the proper protective voltage level it is necessary for CR1, CR2, and Q1 to be sili-

fig. 2. Sensor circuit board and parts layout.

Except as indicated, decimal
values of capacitance are in micro

$k=1,000 \quad M=1,000,000$
fig. 3. Battery-charge sensor diagram with zener current path voltage drops.
con devices. Germanium components will not do because of their lower forward bias voltages, placing the level far too low. When Q1 stops conducting, Q2 will saturate and ground pin 1 of the 555. At this time the channel lamp will begin to flash at a $1-\mathrm{Hz}$ rate.

The sensor circuit is composed of fourteen components plus the circuit board. With a typical ham's junkbox, the sensor can be produced for less than five dollars. The circuit requires three hard-wired connections to the rig: a power ground, a connection to the ground side of the channel lamp, and a controlled positive battery voltage.

Normal operation of the TR2200A's front panel lamp switch is not impaired by the sensor circuit. The channel lamp can be turned on at any time - even when the lamp is flashing. The standby current drawn by the sensor is 5 mA at a battery charging voltage of 13.6 Vdc and it tapers to 2.28 mA just prior to the lamp's flashing at 11 Vdc . These current levels are constant and do not change under transmit conditions. I consider this current drain a small price to pay for Ni-Cd reverse-polarity protection. In my rig the original standby drain was 45 mA , so an additional 5 mA amounts to slightly more than 10 percent.

One nice feature of this sensor is that it can be removed quite easily for resale purposes. The rig would regain its original unmodified status with no unwanted front panel holes. But once the purpose of the sensor has been explained to the buyer, he probably would gladly accept the rig with the modification included.

ham radio

reference

[^2]SWD-1 VIDEO CONVERTER
FOR CABLE TV
The SWD-1 Video Converter is utilized on cable TV systems to redistorted video (channel 3 in/ out) and also pass thru the normal undistorted/detected sudio signal. Rocker switch selects operating mode to remove KHz^{\prime} 's distortion from the video or pass all other chanels normally. Simple to assemble-less than 30 minutes. Pre-tuned. Input/output Channel 3. Impedance 75 ohms. 117VAC.
SWD-1 Video Converter Kit

$\$ 69.95$

VIR ACCESSORIIES

SIMPLE SIMON VIDEO STABILIZER
Simple Simon Video Stabilizer, Model VS-125, eliminates the vertical roll and jitter from "copy guard" video tapes when playing through large screen projectors or on another VTR. Simple to use, just adjust the lock control for a stable picture. Once the control is set, the tape will play all the way through without further adjustments. Includes 12V power supply. SPECIAL VS-125 Video Stabilizer, wired Aeg. 54.95 ... \$39.95

VCR Quality

MODULATOR

Not a Game Type Modulator The MPS-1 Kit converts Video/Audio signais to a crystal controlled RF output for TV Channels 3 and 4 .
The MPS. 1 Modulator inputs The MPS-1 Modulator inputs are designed to match all TV
vorage regulated power supply, power with and LED indicator. No Tuning Required. Operates on 117VAC.

MPS-1 Kit.
$\$ 39.95$

UHF ANTENNAS and AGGESSORIIES

MDS-AMATEUR-ETV 32 ELEMENT YAGI ANTENNA
 - 23aB Average Gain - Commartial Grade

- Die Cest Waterproot Housing with 4\%" $\times 2 \% h^{\prime \prime}$ Arses for Electronics
- Includes P.C. Prober F-51 Conaector and Mounting Herdware

MAE-2 32 Element YAGI Antenna
$\$ 23.95$
Kato Sons' Down Converter Kit $\star \mathbf{1 . 9} \cdot \mathbf{2 . 5 6 H z}$
Designed for Simple Simon by former Japanese CO Amateur Magazine's UHF Edifo/Enginee. Unit utitizes new ingenious Pinted Circuit Probe for maximum gain Circuit board fits inside MAE-2 antenna housing Requires 1 hour assembly. IC and capaciors pre-soldered.
Model KSOC-KIT $1.9-256 \mathrm{~Hz}$ Down Corveter Kit
Kato Sons' Regulated Varible DC Power Supply
for use with KSOC-KIT $1.9-2.56 \mathrm{~Hz}$ Down Comerter. Completely assembled with Attractive Cabinet. TV/Converter Mode Switch Frequency Control and IED indicator.
Model KSPS-1A Assembled Power Supply
\$23.95

ORDER ALL THREE ITEMS
MEE-2, KSOC-KIT
KSPS-1A loc Onty.
Reodu rice t oteal meth 1838 CO-AX CABCLS ARE NOT INCLUDE
-
ZYZZX VHF-UHF Wideband Antenna Amplifier

Revolutionary Hew HYBRID IC Broadhand Amplifiers

$$
\begin{array}{lll}
50 \mathrm{MHz}-900 \mathrm{MHz} & \begin{array}{l}
\text { Model ALL-1 } \\
\text { Model ALL-2 }
\end{array} & 12 \mathrm{~dB} \text { Gain } \\
\text { M G Gain }
\end{array}
$$

 ayuction to mine as abpic

Our New STVA 14.5dB GAIN, 14 ELEMENT CORNER REFLECTOR YAGI ANTENNA

Switch to Bambi!

Electronically

Bambi Electronic Video Switch makes switching of your VCR/VTR. Pay TV Decoders, Cable TV, Video Discs, Video Games, Closed Circuit TV. Antennae and Microcomputer as easy as pushing buttons.
 Now you can eliminate ... the drudgery of disconnecting and reconnecting your video equipment each time you use it the tangled mess of cables which are impossible to trace out ...not being able to use more than one function at a time.

Bambi lets you enjoy using your video equipment the way it should be ... electronically and on line at the push of a button.
Model BEVS-1 Completely Wired and Assembled. Includes comprehensive Instruction/Operation Manual and Decal Set for
 customizing your Vidoo Switch installation.

Bambi's front panel was designed with the user in mind. Computer styled construction with soft-touch keyboard (rated for over 10 million operations), arranged in matrix form allows easy input/output selection without efering to charts. Functions selected through the keyboard are immediately displayed on the 18 LED status indicators.

Check the quality of Bambl against that of much higher priced competition. All solid state electronic switching provides low attenuation (3dB), wide frequency response (40890 MHz), and excellent isolation between signal sources (each I/O section individually sheilded for 65 dB min . isolation).

Bambirs Specifications:
 - Signal Loss

- lisolation
- Dimensions

Bambi Poster
with
with
any
purchase

7+11 SWD PARTS KITS MITSUM VARACTOR UHF TUNER $\$ 24.95$
Ion how uncor-yman
vere 140 Mapat Dow,
Na PART
1 IVTI-SWD
2 2CB1-SWD
3 3TP7-SWD
4 4FR35-SWD
5 5PTI-SWD
6 6PP2-SWD
7 7SS14-sW0
8 8CE9-SW0
9 9cc.3-sWD
10 10CT-SWD
11 1114-5W0

12 r21cs-sW
13 13SR-SW
14 14MISC-SWD
-
 Operation, not factory seconds or stock close-outs. We service your comple
never get stuck with a BAG OF PARTS when ordering from Simple Simon
SIMPLE SIMON ELECTRONIC KITS, ${ }^{\text {w" }}$ Inc.
3871 S. Valley View, Suite 12, Dept. H, Las Vegas, NV 89103
\qquad
Whiti Fon quantity Discounts
Outside Nevada Call

Nuts, \& Boits), Heolup Wre, Ant. Terms, DPDT
Ant. Switch. Fuse, Fuseholder, atc.

atscription

Paic

PC.B. Potentiometern, 1-20K, 1-1K, and
5-10K ohms, 7-pieces
5.95

Resistar Ka, \%/ Watt, 5\% Cabon Fim, 32-pleces . . . 4.95 Powe Transformer, PRI-117VAC, SEC-24VAC, 250ma
Panel Mount Potentiometers and Knobs, 1-1KBT
6.95 and 1-5KAT w/Switch IC's 7-pcs, Diodes 4-pcs, Regulators 2-pcs, Heat Sink 1-piect
 Ceramic Diak Capacitor Kit, 50 W.V., 33 -pieces. Variable Ceramic Trimmer Copacitor Kit, 5-65pld, 6-pieces. Coll KC. 18 mhs 2 -pieces, 22 uhs 1 -piece (pow inductors) and 1 T37-12 Ferrite Torroid Cort with 3 ft . of a 26 wire.
IC. Sockets, Tin inlay, 8 -pin 5 -pieces and 14 -pin 2 -pieces Misc. Parts Kit Includes Hardware, (5/32, 8/32

7+11 PWD PARTS KITS INTRODUCING OUR 7+11 PWD PARTS KITS

ofscaipmen
ofscalpion
Varactor UHF Tune, Model UES-A56F $\mathbf{\$ 2 4 . 3 5}$ Printed Circuit Board, Pre-drilled 18.s
3 3TP11-PWD PCB Potentionetern 4-20K, 1-5K. 2-10K, 2-5K, 1-1K, and $1-50 \mathrm{k}$. (11 pieces)
4 4FR-31-PWO Renistar KR, 14W, 5\% 29-pcs, \% W 2-pcs
5 5PT1-PWO Powet Transformet, PRI-117VAC, SEC-24VAC at 500 ma
Panel Mount Potentiometers and Knobs, 1-1KBT and 1-5KAT with switch
7 7SS17-PW0 IC': 7-pcs, Diodes 4-pcs, Regutators 2-pCs Transistors 2-pcs, Heat Sinka 2-pcs
8 8CE 14-PWD Electrol|tic Capacitor Kit, 14 -pieces.
9 9CC20-PWO Ceramic Disk Capacitor Kit. 50 WV. 20-pcs
10 10CT5-PWD Varibie Ceramic Trimmer Capacitor,
11 11L5-PWD Coil Ka, 18 mhs 3 -pcs, 22μ hs 1 -piece (prewound inductors) and 2 T37-12 Ferrite Toroid cores with 6 ft \# 26 wire.
IC Sockets, Tin inlay, 8 pin 4 -pcs, 14 pin 1-px
12 12ICS-PWD IC Sockets, Tin inlay, 8 pin 4 -pcs, 14 pin 1-px 16 pin 2 -pcs.
2.85

13 13SR-PWD $\begin{aligned} & \text { Enclosure with PM Speaker and Pris-driled } \\ & \text { Backpanel for mounting PCB and Ant. Terms } ~ \\ & 14.95\end{aligned}$
14 14MISC-PWD Misc. Parts Kit, Includes Hartwars, ($6 / 32,8 / 32$ Nuts bs Boits). Hookup Wire, Solder, Ant. Tems OPOT Ant. Switch, Fuse, Fuseholder, stc
15 15MC16-PWO Mylar Capaciton, 14-pca and Silver Mica Capscitons 2-piects. 3.95
7.95

When Ordering All Items. (1-15), Total Price.
59.95 Operation, not factory seconds or stock close-outs. We service your completed kits that you've purchased and built. You will

Available by Mail Order Only
Send Check* or Money Order. Minimum Order: $\$ 16.95$. Add 10% Shipping and Handling on orders under $\$ 40.00$. For orders over $\$ 40.00$, add 5%. Minimum Shipping and Handling \$2.00. Cat. \$1.00 - VISA and Mastercard Acceptable -

ham radio TECHINIOUES $\beta^{\mu M}$

The fall antenna construction season is almost over and the winter months are close at hand. Not much time left this year for antenna experimentation!

Even so, here's some interesting and useful data on the inverted- V dipole antenna. This simple antenna is very popular. It has the forgiving characteristics of the dipole (easy to get into operation), it is inexpensive, a good radiator and it can be supported from a single center point.

This past summer some extensive tests were run on the inverted-V dipole by JA5COY (Japan) and were reported in a recent issue of CQ-ham radio, published in Tokyo.

JA5COY made measurements summarized in fig. 1. The first tests were on an 80 -meter dipole (fig. 1A). The antenna exhibited a feedpoint impedance very close to 73 ohms, as expected, and the bandwidth between the 2-to-1 SWR points was about 330 kHz .

He then dropped the ends of the dipole to form an included angle of 120 degrees and repeated his tests (fig. 18). The feedpoint impedance dropped from 73 ohms to 50 ohms and the bandwidth dropped to 310 kHz . In addition, the resonant frequency of the antenna dropped about 15 kHz .

The last experiment was to decrease the included angle to 90 degrees (fig. 1C). The feedpoint impedance dropped down to 30 ohms at
resonance and the bandwidth further decreased to 210 kHz between the 2-to-1 SWR points of measurement. And, finally, the resonant frequency dropped about 35 kHz from that of the straight, horizontal dipole. Antenna height during these tests was not noted.

This is handy information, as it provides all that is needed for a pre-cut inverted-V dipole antenna. The summation is:

Dipole antenna:

Length for resonant frequency

$$
=\frac{468}{f(M H z)} \text { feet }
$$

(Feedpoint impedance approximately 73 ohms.)
Inverted-V dipole antenna:
Included angle $=120$ degrees
Length for resonant frequency

$$
=\frac{465.6}{f(M H z)} \text { feet }
$$

(Feedpoint impedance approximately 50 ohms.)

Inverted-V dipole antenna:
Included angle $=90$ degrees
Length for resonant frequency

$$
=\frac{463.3}{f(M H z)} \text { feet }
$$

(Feedpoint impedance approximately 30 ohms.)

As an example, suppose you want an inverted-V dipole for 80 -meter
phone operation to cover the range of 3750 to 4000 kHz . This is a span of 250 kHz . An antenna with an angle of 120 degrees included will do the job as it provides a bandwidth of about 310 kHz and - best of all - has a feedpoint impedance of about 50 ohms when mounted at a reasonable height above ground.
The mid-point of the chosen range is 3875 kHz , so the dipole is cut for this frequency:

$$
\begin{aligned}
& \text { Inverted- } V \text { dipole length }=\frac{465.6}{3.875} \\
& =120.15 \text { feet, or } 120 \text { feet, } 2 \text { inches } \\
& \text { (round it off to } 120 \text { feet). }
\end{aligned}
$$

(4)

(a)

fig. 1. Comparison of feedpoint impedance (R) and bandwidth (BW) for dipole (A) and the two versions of the inverted-V dipole (B and C).

fig. 2. A simple line filter you can make. The dual winding coil (L) is composed of $\mathbf{2 0}$ bifilar turns No. 18 insulated wire, wound on a ferrite rod, 1/2-inch diameter. Rod is $\mathbf{6 1}$ nickel-zinc material having a permeability of 125 (J.W. Miller FR-500-7 or Amidon R61-050-750). Wires are wound in parallel and ends are held in place with twine and epoxy cement. Capacitors (C) are $0.01-\mu F$ ceramic units, rated for continuous operation at 125 Vac and can withstand surges to 1400 volts (Aerovox AC-7, Centralab $\mathrm{Cl}-103$ or Sprague 125L-S10). Filter is built on a metal plate bolted within an aluminum chassis which serves as a dust cover. (Filter data from Interference Handbook, by Nelson, published by Radio Publications, Inc., Box 149, Wilton, Connecticut 06897).

Thus, the dipole will be 60 feet on a leg, with an included angle of 120 degrees and should cover the complete 80-meter phone region with an SWR of less than 2-to-1.
The antenna can be zeroed-in for minimum SWR by raising or lowering the ends of the dipole. As in the case of any antenna, the presence of nearby metallic objects (power lines, TV antennas, etc.) may alter the performance and SWR a bit.

more about TVI and RFI

TVI and RFI seem to be a sore subject these days. More hams and more entertainment equipment is the prime factor, plus the fact that solid-state circuits, as used in home entertainment equipment, operate at a lower signal level than does the older, tubestyle gear. Nevertheless, the Amateur operator should make sure his equipment is clean and a few simple preventive, anti-TVI steps should be taken even if there is no TVI or RFI. Better to be safe than sorry!

Cleaning up the exciter: at the very least, an if line filter should be used with the exciter to prevent if from finding its way into the primary power line. A simple and effective line filter, such as the J.W. Miller ${ }^{1}$ C-508-L, or equivalent, will be satisfactory. In ad-
dition, the exciter should be grounded (more about this later).

Cleaning up the linear amplifier: an if line filter should be used on the linear amplifier. J.W. Miller Co., and others, make suitable filters, or you can build your own. A practical filter is shown in fig. 2.

Your antenna system: you'll require a lowpass filter between your transmitter and your antenna. It should go in the 50 -ohm coaxial line after all such devices as SWR meters or coaxial switches. That is, there should be nothing between the filter and the antenna except the interconnection line. Several makes of lowpass filters are available; a good one is the Barker \& Williamson 425, rated at $1 \mathrm{~kW}^{2}{ }^{2}$ (The model 424 filter is rated at 100 watts - just the thing for your exciter.) Both these filters are designed for 50 -ohm coaxial systems.

Your ground system: the station ground is important, especially from the FCC point of view. If you are ever visited by the FCC or a TVI committee, one of the first questions they will ask is, "Is the transmitting equipment grounded?"
To protect yourself in this instance, you'll need a ground lead from the equipment to the nearest ground point: either a water pipe ground or
an external ground rod driven into the soil.

From a legal point of view, this satisfies the requirement. But I don't have to tell you that such a ground is worthless as an rf ground. Unfortunately, a good if ground is hard to get, unless your station is at ground level and the ground wire from the equipment to the ground is only a foot or two long! In most cases, this is an impossible requirement.
In my case, I am on the ground floor of my home. I connected all equipment (receiver, exciter, amplifier) together with flexible No. 10 insulated copper wire. I did not depend upon the shields of the coaxial interconnecting wires to do the job. The next step was to drill a small hole in the floor behind the operating table and drive an eight-foot (2.5 m) ground rod down into the earth through this hole, until only an inch of the rod protruded into the room. I then ran a No. 10 flexible wire from the equipment to the ground rod.
This provided a satisfactory ground on all bands except 10 meters. I found that I still had some if floating around the equipment on that band, even though everything was supposedly at ground potential. I didn't want to drive another ground rod under the house (it was a terrible job), so 1 drove one into the ground at the point where my coaxial line came from under the house and passed across the yard to the antenna tower. I grounded the shield of the coaxial line to this ground rod and then, spurred on by over-enthusiasm, 1 drove a third ground rod at the base of the tower and tied the coaxial shield and the tower to this rod. In addition, I bypassed all the rotor control wires to the ground rod at the base of the tower.
That seemed to do the job. All equipment was if-cold on all bands, I used a lowpass TVI filter for the transmitter and all power leads were filtered and bypassed. That should make my equipment TVI-proof. Did it?

cleaning up the TV receiver

The answer to the question, of course, is no. While my transmitting equipment was reasonably clean, both my TV receiver and those of my neighbors were wide open to strong local signals in the ham bands. My receiver (a ten year old RCA XL-100) turned black in the face when I went on the air with the linear amplifier on any band!
When I removed the back from the set, the reason was apparent: a rat's nest of interconnecting wires running between printed circuit boards and no sign of any filtering or protective circuits. (The TV set was much worse, from a TVI point of view, than my previous one - an old tube model with very good internal shielding).
To clean up this receiver, it was necessary to use a line filter (J.W. Miller C-508-L), plus a good highpass filter on the antenna ribbon line. One of the best filters is the J.W. Miller C-513-T3. This is a multiple section design enclosed in an aluminum box. It provides more low frequency attenuation than simpler filters.
The combination of the line filter and the high-pass antenna filter did the job. Now I could operate at full power on all bands below 30 MHz with no TVI. Eventually, I got Miller line and high-pass filters for my nearby neighbors and now I am clean on their TV receivers.

what about stereo equipment?

Ham signals can easily get into stereo gear and can cause a lot of problems. Again, the cause is simple. The equipment is mostly solid-state, operates at low signal levels and has no shielding or filtering against strong nearby radio transmissions! The stereo market is very competitive and everything that can be done to save a penny is done, and this includes omission of any RFI suppression circuits.

Filtering and bypassing interconnecting leads usually solves this vexing problem, but the subject is too
table 1. List of stations registered for operation on 10.1 and $10.15 \mathbf{~ M H z}$.

kHz	mode	call	location	kW	remarks
10,100.0	RTTY	RUZU	Molodezhnaya Base, Antaretica		Meteo
100.5	CW	K NY28	Washington, DC, U.S.A.	1.0	
102.0	RTTY	Y I F25	Baghdad, Iraq	2.5	PTT
103.0	\%	Y I E99	" \quad "	2.5	INA
103.3	ISB	WWL20	San Juan, PR, U.S.A.	2.0	Telcom
105.0	RTTY	RKA19	Moscow, U.S.S.R.	20.0	TASS
105.0	*	S TL52	Khartoum Sudan	5.0	SUNA
113.0	"	FJY2	Port-aur-Francais, Kerguelen Is.	1.0	Meteotrc
114.7	$15 B$	TTZ	N'Djamena, Chad	6.0	${ }_{\text {ralcom }}^{\text {Tra }}$
115.0	CW	8 PX	Barbados, Barbados	0.2	TFC
115.0	FAX	BAF4	Beijing, P.R.China		Meteo
116.5	RTTY	5 N K 33	Kano, Nigeria	3.5	Meteo
118.0	US B	R G I 24	Moscow, U.S.S.R	15.0	8. Moseor
118.5	RTTY	OEM70	Vienna, Austria	5.0	Meteo
118.7	\%	STK	Khartoum, Sudan		Aero
120.0	"	HMR 59	Pyongyang, North Korea		KCNA
122.0	"	AWC	Calcutta, India	2.5	Aero
123.1	CW	CS P40	Guarda, Portugal		Air Force
125.0	RTTY	ETD 3	Addis Ababa, Ethiopia	2.5	Aero
125.0	.	OLG3	Prague, Czechoslovakia	30.0	TFC
126.0	*	DKZ	Berlin, German D.R.		D P
127.5	*	NGD	McMurdo Base, Antarctica	15.0	USN
128.0	ISB	JBE30	Tokyo, Japan	10.0	TFC
130.0	RTTY	NAA	Colter, ME, U.S.A.	15.0	USN
130.0	"	Y I F 29	Baghdad, Iraq		1 NA
130.0	FAX	R B W 48	Murmansk, U.S.S.R.	20.0	Meteo
132.0	RTTY	T N L55	Brazzaville, Congo	1.5	Aero
133.0	"	J3R			UN 1 D
135.0	I S B	IRH31	Rome, Italy	10.0	Telcom
136.6	CW/USB		Emergency Nets of U.S.A.		USCG
137.0	RTTY	TNL97	Brazzaville, Congo	1.5	Meteo
140.0	RTTY/CW	RUZU	Moloderhnaya Base, Antaretica		${ }^{\text {meteo }}$ frc
140.0	RTTY	UB J	Baku, U.S.S.R.		Meteo
140.0	CW	UGE2	Belliagobsusen Base, Antaretice		T FC
143.0	RTTY	A9C	Behrain, Bahrain		Aero
144.9	*	HBO20	Geneva, Switzerland	10.0	
145.0	"	JAE 30	Japan		
147.0	USB	TUP	Abidjan, Ivory Coast	2.0	Telcom
150.0	RTTY	SUA246	Cairo, Eypt	10.0	MENA

complex to cover in this short article. A recommended publication tells the whole story and gives you plenty of good data on RFI problems in general. ${ }^{3}$

two new, good books for Radio Amateurs

It is always refreshing to find publications of interest to Radio Amateurs. Prentice-Hall publishers (Englewood Cliffs, New Jersey) are entering this field with two new books by Doug DeMaw, W1FB. Doug, as you
know, is the Senior Technical Editor of $Q S T$ magazine.

Doug's first book is FerromagneticCore Design \& Application Handbook.4 This hardcover, 256-page book covers design and use of inductors using toroids, rods and pot cores for ferrite and powered-iron materials.

Ferromagnetic materials are common today in receiver and transmitter circuits, power supplies, and antenna baluns, but the use and theory of these interesting devices are shroud-

- U.S. Made • Competitive Price • All Solid State•12V DC•SWR Protected•
 - Broadband - No Tune Up • Full Break-in CW • 150 Watts PEP, SSB or CW Input •
 - High Dynamic Range - Excellent Sensitivity/Selectivity • Digital Readout • - 160-10 Meters Plus WARC Bands and MARS Coverage*•

Front panel switching allows independent MODE and optional crystal filter selection.
A passive double balanced mixer is employed in the receiver front end. This stage is preceeded by a low noise high dynamic range bipolar if amplifier to provide good, strong signal performance and weak signal sensitivity.
Accurate digital readout of operating carrier frequency is displayed to 100 Hz .

A rugged, solid-state PA provides continuous duty in SSB and CW modes. A cooling \tan (FA7) is available for more demanding duty cycles, such as SSTV or RTTY. The PA also features very low harmonic and spurious output.
VOX GAIN, VOX DELAY, VOX disable, QSK, selectable AGC time constants, RIT and noise blanker seiection are front panel controlled for ease of operation.
The TR5 is designed with modular construction techniques for easy accessibility and service.

GENERAL

Frequency Coverage: $18-2.0$. $3.5-4.0,7.0-7.5$, $10.0-10.5,14.0-14.5, \quad 18.0-18.5^{\circ}, \quad 21.0-215$, $24.5-25.0^{\circ}, 28.0-28.5^{\circ}, 28.5-29.0,29.0-29.7^{\circ} \mathrm{MHz}$ (*With accessory range crystal)
Modes of Operation: Usb, Lsb, Cw.
Frequency Stability: Less than 1 kHz drift first hour. Less than 150 Hz per hour drift after first hour. Less than 100 Hz change for $\mathrm{a} \pm 10 \%$ line voltage change.
Readout Accuracy: $\pm 10 \mathrm{ppm} \pm 100 \mathrm{~Hz}$
Power Requirements: 13.6 V -dc regulated, 2 A 12 to 16 V -dc unregulated, 0.8 V ms maximum ripple, 15 A .
Dimensions:
Depth: 12.5 in (31.75 cm), excluding knobs and connectors.
Width: 13.6 in. $(34.6 \mathrm{~cm})$.
Height: 4.6 in . (11.7 cm) excluding leet.
Weight: $14 \mathrm{lb} .(6.35 \mathrm{~kg})$

TRANSMITTER

Power Input (Nominal). 150 Watts, PEP or Cw. Load Impedance: 50 ohms.
Spurious and Harmonic Output: Greater than 40 dB down.
Intermodulation Distortion: Greater than 30 dB below PEP
Carrier Suppression: Greater than 50 dB .
Undesired Sideband Suppression: Greater than 60 dB at 1 kHz .
Duty Cycle:
Ssb, CW: 100\%
Lock Key (w/o FA7 Fan): 30\%, 5 minutes max imum transmit.
Lock Key (w/FA7 Fan). 100\%.
Microphone Input: High Impedance.
Cw Keying: Instantaneous full break-in, adjustable delay.

RECEIVER

Sensitivity: Less than 0.5 uV for $10 \mathrm{~dB} \mathrm{~S}+\mathrm{N} / \mathrm{N}$ except less than $1.0 \mathrm{uV}, 1.8-2.0 \mathrm{MHz}$.
Selectivity: 2.3 kHz minimum at -6 dB .4 .1 kHz maximum at -60 dB (18:1 shape factor). Ultimate Selectivity: Greater than -95 dB .
Agc: Less than 5 dB output variation for 100 dB input signal change, referenced to agc threshold
Intermodulation: (20 kHz or greater spacing) intercept Point: Greater than 0 dBm . Two-Tone Dynamic Range: Greater than 85 dB .
I.f Frequency: 5.645 MHz .
I.f Rejection: 50 dB , minimum,

Image Rejection: 60 dB , minimum below 14 MHz 50 dB , minimum above 14 MHz .
Audio Output: 2 watts, minimum @ less than 10\% THD (4 ohm load).
Spurious Response: Greater than 60 dB down.

ACCESSORIES AVAILABLE

Model 7021 SL300 CW Filter Model 7022 SL500 CW Filter Model 7027 SL 1000 RTTY Filter Model 7023 SL1800 RTTY Filter

Model 7026 SL4000 AM Filter
Model 7024 SL6000 AM Filter
Model 1570 PS75 AC Power Supply
Model 1545 RV75 Synthesized Remote VFO

Model 1531 MS7 Speaker
Model 1507 CW75 Keyer
Model 1558 NB5 Noise Blanker
Model 7077 Microphone
for your peace of mind.
Determine the total wind-load area of your antenna(s), plus any antenna additions or upgrading you expect to do. Now, select the matching rotator model from the capacity chart below. If in doubt, choose the model with the next higher capacity. You'll not only buy a rotator, you'll buy peace of mind.

	ANTENNA WIND-LOAD CAPACITY	
ROTATOR MODEL	$\begin{gathered} \hline \text { MOUNTED } \\ \text { INSIDE } \\ \text { TOWER } \end{gathered}$	WITH STANDARD LOWER MAST ADAPTER
$\begin{gathered} \text { AR22XL } \\ \text { or AR40 } \\ \hline \end{gathered}$	$\begin{array}{r} 3.0 \mathrm{sq} \cdot \mathrm{ft} \\ (.28 \mathrm{sq} \cdot \mathrm{~m}) \\ \hline \end{array}$	$\begin{aligned} & 1.5 \mathrm{sq} . \mathrm{ft} . \\ & (.14 \mathrm{sq} . \mathrm{m}) \end{aligned}$
CD45 II	$\begin{array}{r} 8.5 \mathrm{sq} . \mathrm{ft} \\ (.79 \mathrm{sq}, \mathrm{~m}) \\ \hline \end{array}$	$\begin{gathered} 5.0 \mathrm{sq} . \mathrm{ft} . \\ (.46 \mathrm{sq} . \mathrm{m}) \end{gathered}$
HAM IV	$\begin{aligned} & 15.0 \mathrm{sq} . \mathrm{ft} \\ & (1.4 \mathrm{sq} . \mathrm{m}) \end{aligned}$	N/A
$\mathrm{T}^{2} \mathrm{X}$	$\begin{aligned} & 20.0 \mathrm{sq} . \mathrm{ft} . \\ & (1.9 \mathrm{sq} . \mathrm{m}) \end{aligned}$	N/A
HDR300	$\begin{aligned} & 25.0 \mathrm{sq} . \mathrm{ft} \\ & (2.3 \mathrm{sq} . \mathrm{m}) \end{aligned}$	N/A

For HF anterinas with booms over $26^{\prime}(8 \mathrm{~m})$ use HDR300 or our industrial R3501.

Full details at better Amateur dealers or write:

TELEX COMMUNICATIONS. INC.

ed in mystery for most Amateurs. Doug's book tells the whole story in simple words and terms and covers circuit design and application from A to Z . The information is invaluable and the book should be in every ham's library. Of great help is the section covering available cores and rods. Now when some article specifies a core with a red dot on it, or Q-2 material, I'll know what the author is talking about!
Doug's second book is Practical RF Design Manual, ${ }^{4}$ a hardcover book of 246 pages. This is a gold mine of information for the experimenter who designs and builds his own equipment, or for the inquisitive Amateur who wants to know how his gear works. It covers the important circuitry used in today's exciters, receivers and transceivers. It contains in-depth coverage that general-coverage handbooks can't afford to include, mainly because of a restriction on the total number of pages in the publication.
The book has an impressive section on receiver dynamic range, and equally handy sections on frequency control systems, very useful to the home constructor. It also includes more data on small- and large-signal amplifiers than I have ever seen in one publication. Best of all, the book is written in language the average Amateur can understand.

the $\mathbf{1 0 - M H z}$ Amateur band

I have monitored the $10-\mathrm{MHz}$ band almost daily during the past year. Over 50 countries permit Amateur operation on this band and such good DXers as FB8WG and VK9YC operate regularly in the $10-\mathrm{MHz}$ region. By the date this is in print, the band should be open to American Amateurs.

It is interesting to compare those who should be in this region against those who are actually there. Table 1 shows the official International Telecommunications list of stations registered for operation between 10.1 and 10.15 MHz . Careful monitoring of the
band during the summer showed that most of these stations really weren't there, with the exception of NAA's powerful RTTY signal at 10.130 MHz . Most of the rest of the ITU-registered stations were conspicuous by their absence. In their place was a rag-tag group of intruders who have less legal reason for being there than do Radio Amateurs.

the new Radio Handbook

The twenty-second edition of the Radio Handbook (Howard W. Sams Co., publisher) has been on the market for a few months. ${ }^{5}$ I have edited this book since the fourteenth edition (1956). It is interesting to note the tremendous advance made in Amateur Radio in 26 years!

The new edition is primarily devoted to solid-state equipment, sideband and linear amplifiers - the latter hardly mentioned or known in 1956. And in addition, counters, phase-locked oscillators, fm , satellite communication, moonbounce, slowscan TV, RTTY, color TV, spreadspectrum transmission, keyboards, keyers, solid-state amplifiers, and low noise reception are covered in the twenty-second edition of the Radio Handbook.

ham radio

references

1. A copy of the J.W. Miller catalog can be obtained free by writing to: Bill Courtney, J.W. Miller Division, Bell Industries, Box 5825 , Compton, California 90224. 2. A copy of the B\&W catalog can be obtained free by writing Elmer Bush, Barker and Williamson, 10 Canal St., Bristol, Pennsylvania 19007.
2. RFI is no problem if you don't have it, but many headaches if you do. Recommended reading on this subject is the Interference Handbook, by William Nelson, WA6FQG, former RFI investigator, Southern California Edison Company. Thé Ham Radio Bookstore has this Handbook, or it may be ordered from Radio Publications, Box 149, Wilton, Connecticut 06897.
3. These books are available from the Ham Radio's Bookstore for $\$ 28.95$ each plus $\$ 2.00$ shipping and handling.
4. Available from the Ham Radio's Bookstore, Greenville. New Hampshire 03048 for $\$ 34.95$ plus $\$ 2.00$ shipping and handling.

hu-gain
 MONOBANDERS MAX

> MAX. MECHANICAL INTEGRITY, ELECTRICAL PERFORMANCE, SPACE SAVINGS AND SELECTION

3-Element Monobanders also available. Optional BN-86 balun recommended for above antennas.

MECHANICALLY Hy-Gain monoband antennas employ the best materials available and are fabricated with accurate tooling for an integral balance so all parts work together. For example, our element-to-mast brackets are the best in the industry and our tiltable mast-to-boom clamps are unique. Stainless steel hardware is chemically passivated to eliminate rust. All tubing and parts are deburred and finished so you don't have to re-manufacture the antenna before installation. It all adds up to antennas with maximum mechanical integrity that withstand 80 mph ($129 \mathrm{~km} / \mathrm{h}$) windloads and radial ice.

ELECTRICAL performance is not based on theoretical calculations alone but is tuned and tested for optimum results on our government approved test range. Hy-Gain's factory tuned 52 ohm Beta Match is exclusive and assures positive dc ground for lightning protection and reduced precipitation static. Though sometimes unconventional, our meticulous element spacing assures maximum F / B ratio and uncompromising power gain. VSWR at resonance is less than 1.5:1. All Hy-Gain monobanders handle maximum legal power with a $4: 1$ safety margin. In short, electrical performance is at maximum by design and requires no re-tuning.

SPACE problems are virtually eliminated. Even our largest monoband antennas fit most residential lots. And thanks to Hy-Gain's careful materials selection and superb mechanical engineering. the weight and windload of antennas is at an absolute minimum to permit stacking on conventional heavy duty towers and rotators. This gives you maximum DX performance even with limited space.

MONOBAND BEAMS

Hy-Gain Monobander Antennas Maximus at Better Amateur Dealers

TELEX Hy-gain

TELEX COMMUNICATIONS, INC.
9600 Aldrich Ave. So., Minneapolis. MN 55420 U. S. A.
Europe Le Bonaparte-Office 711, Centre Affares Paris-Nord, 93153 Le Blanc-Mesni, France

Introducing Corsair

The CORSAIR is an extraordinary new HF transceiver. Every function operates without compromise. New unique features make it a delight to operate.
A new front end provides extreme sensitivity, low internal noise and high dynamic range to bring weak signals to life. For even greater overload prevention, the integral rf preamplifier can be switched out. More effective than the usual rf attenuator.
The filtering system, a TEN-TEC exclusive, virtually switches to privacy. It starts with a superb 2.4 kHz 12 pole ladder sideband filter system, standard. It provides variable bandwidth for ssb, great for today's crowded phone bands. A novel pass band tuning circuit allows a received signal to be moved within the pass band to its optimum position with respect to QRM. Optional narrow band filters are available for ssb, cw and RTTY, all switched from the front panel. The ultimate in QRM reduction.
Full cw break-in opens a window on the band while transmitting, turning monologues into conversation. Or, if conditions dictate, just switch to semi-break-in. And no VOX adjustment when changing modes.
A versatile offset tuning system allows the receiver and transmitter to be tuned separately with $\mathrm{a} \pm 1 \mathrm{kHz}$ range for fine tuning or $\pm 4 \mathrm{kHz}$ for working off frequency. For net operation, both can be moved simultaneously.
Reliability is designed in. The CORSAIR system is so rugged it will operate into infinite SWR. And we guarantee it unconditionally (except for lightning) for one year. The CORSAIR is designed for 100% duty cycle, ideal for RTTY, SSTV and of course, contests.

Beauty is more than skin deep. The contemporary styling with the blackout LED frequency display (last digit in green), the baked-on textured bronze/black finish with aluminum trim will retain its handsome appearance permanently. Beneath its sleek exterior is a carefully crafted chassis packed with performance.
There are many other features, each with superb performance. An effective speech processor, notch filter, adjustable noise blanker, signal spotter, three position AGC, threshold ALC, simplified VOX, all controlled from the front panel. In addition, the CORSAIR has a compression loaded speaker, less than 2% audio distortion, and full accessory connections including remote bandswitch output. It even has a volume equalizing headphone output.
The CORSAIR is a total system of pure operating plea-sure-it really must be put through its paces to be fully appreciated. Its smooth controls, comfortable and logically spaced, give it the feel of a superlative transceiver. One that will be a faithful companion for the years ahead.
All TEN-TEC products are completely manufactured in the U.S.A., in the foothills of the Great Smoky Mountains. Model 560, CORSAIR transceiver \$1169. See your TEN-TEC dealer or write for full information.

WORLDS OF ENTERTAINMENT

Now, you can enjoy over 60 television channels with Lowrance Earth Station/System 7 Receiver.

Today, television and stereo programming is so diverse - so complete, it's no longer enough to have access to only a few channels.
With the magic of sateliites, you can receive more than 60 channels of television and over 20 channels of stereo directly into your home. Including first-run movies, sports events, special children's shows, religious programs, news, live coverage of Congress, farm reports - and much, much more.
It all comes from a satellite earth station - consisting of a dish antenna, amplifier and satellite receiver. The station picks up
signals from satellites thousands of miles overhead and converts them into television and stereo for you to enjoy. And it's surprisingly affordable. (Systems start as low as $\$ 2,900$.)
The most advanced receiver on the market today is System 7, made by Lowrance Electronics. We supply the satelite receiver, and our distributors add a dish antenna. Lowrance has been a leader in the electronics industry for more than 25 years now. You may already be familiar with our
sportfishing sonar products, acclaimed as the finest in the world. And we're building that same quality and reliability into our satellite receivers.
Right now, you're missing out on worlds of entertainment. For more information on the Lowrance Earth Station/System 7
Receiver, clip the coupon below and mail.
'While most satellite programming is free, some channels are reserved for pay audiences and may require a small viewing fee.

Yes! I want to know more about the Lowrance Earth Station/System 7 Receiver. Send me more information today.

L'LOWRANCE

Name
LOWRANCE ELECTRONICS, INC.
12000 E. Skelly Dr., Tulsa, Okla. 74128

Two Meter
 "The Big John"* 13 Element Quad 22' Boom 16.5dBd gain F/B 30 dB Mast Size Up to 2" Bandwidth 144-145 MHz $\$ 129.95$
 "The Little John"** 11 Element Quad 18' Boom 15.5 aBd gain F/B 30db Mast Size 2" Bandwidth 144-145 MHz 109.95 "PTG Special"*** 9 Element Quad 13' Boom 14.8 Bd F/B 30 dB Bandwidth 144 - $146 \mathrm{MHz} \$ 89.95$
 Featuring The Wondermatch Driven Element
 Six Meter
 "6-PTG-4" 4 Element Vagi 13' Boom 12 dBi Mast Size 2" Longest Element 115 " $50-51 \mathrm{MHz} \$ 89.95$
 You've Heard About Us On The Air, So Call Collect Between 8AM-10PM Or Write For Details
 *Measured at JWL Laboratories
 **First Place Winner at Baton Rouge Gain Measuring Contest (7/31/82).
 ***Second Place Winner at Baton Rouge Gain Measuring Contest (7/31/82).
 COPYRIGHT 1982

If you're just beginning or you are an experienced dealer, National Satellite Communications has the TVRO System in stock for you

DISTRIBUTOR OF: ADM/ARUNTA/AUTOMATION TECHNIQUES/AVANTEK/AVCOM/ CHAPARREL/DRAKE/ ET./ COMTECH/DEXCEL/LOWRANCE/ LULY/EARTH TERMINALS/ MICRODYNE/ PILOT-VEW/ PRODELIN/SAT-TEC/SATELLITE DATA/ STANDARD/VECTOR/VIDARE

NO COST ORDERING: To ensure the QUICKEST DELIVERY, use our TOLL-FREE NUMBER, SIX DAYS A WEEK / (800) 833-4485 ALL ORDERS SHIPPED WITHIN 24 HRS. For prices or technical information call us at (518) 783-0088. and more

Complete Residential \& Commercial Systems. NATIONAL SATELLITE COMMUNICATIONS Plaza 7 / Latham, New York 12110 / (518) 783-0088

LOW OHM meter module，dM－10

Measures resistance from 10 miliohms to 20 Ohms．Now you can measure resistance down to 10 milliOhms with this low cost easy to use DVM module．Check coil resistance． transtormers，relays．chokes，printed circuir board copper pais and ground cabies Your DVM has to be set to 2 V range during operation．
 （1）
8 CHANNEL SCOPE MULTIPLEXER，DM－12

Season＇s Savings

ReGULATEL゙ TRIPLE POWER

 SUPPLY，LOW PRICED！DM－6

A fully assembied and tested triple benchtop power supply． Includes fixed 5V＠ 1 Amp． 5 V to $15 \mathrm{~V} @ 0.5 \mathrm{Amp}$ and -5 V to －15V＠ 0.5 Amp－all supplies regulated，short proot Each supply has a power on indicator LED Com－ plete and ready for use in a durable （ $8^{\prime \prime} \times 6^{\prime \prime} \times 3^{1 / 2^{\prime \prime}}$ ）metal case
sg

Convert your single channel scope into a 4 or 8 channel instrument．just connect the DM－12．8 channel scope multiplexer to your scope．clip the 8 input probes to the signals you want to view． Simple，easy，fast－can handle logic level TTL signals from DC to 3 MHz Features separate spacing and trace amplitude controls and selectable sampling rate－all to insure easy clear scope display．
 COMPLETELY ASSEMBLED AND TESTED！ heady to Usel

－2V Output
－Accuracy better than 5\％
－Push to read range（button）from 1 pF to $20,000 \mu \mathrm{~F}$ －Zero Calibration control
－In one easy to use，self－contained package
－Battery powered，with＂push to read＂battery savet circuit（ 9 V batteries not included） - Size $625^{\prime \prime} \times 375^{\prime \prime} \times 2^{\prime \prime}$
－Includes Model 336 Test Clips

MOST ORDERS SHIPPED NEXT DAY．
 BACKED BY ALBIA＇S FAMOUS WARRANTY．

CALL TOLL FREE 1－800－243－6953
9 AM
5 PM

COMPLETELY
ASSEMBLED
AND TESTED！
READY TO USE！
-8 TIL compatidie input channels（1 IIL load per channel）can drive 500 hm scope cable．
Trace ampli screen amplitude 16 Volts adistable
4 or 8 channel selector switch
-8 color coded input cable． $24^{\prime \prime} \mathrm{long}$ with insulated alligator clips
－External 9 VDC power supply included（Model MMAC－2） $\times 375^{-1} \times 2$
SNC Output Cable Accessory（Model PSA－2 add \＄1495）

LOW COST CAPACITANCE METER MODULE，DM－8

Connect this high quality low cost Capacitance Meter Moduie，DM－8to your digital Volt Meter and turn it into a Digital Capacitance Meter－the Low Cost Way！
${ }^{5} 79^{95}$
510 －Battery powered，with push to rea t

More irenseciver

Heath's SS-9000 Deluxe Synthesized HF Transceiver is a quantum leap ahead in terminal-controllable communications gear. Streamlined for ultimate performance. Consummate in every design detail.
Pacesetting amateurs will use it to set a new high standard for station and contest control.

Entirely solid-state, broadbanded in design. Delivers 100 watts out on SSB, CW and RTTY.

Built-in Motorized Bandswitch rotates band selector to the desired setting under remote control.

A Terminal Interface offers twoway communication between the Transceiver and an ASCII teletype, video terminal or computer through a rear panel RS-232C I/O port.

Commands are available to select, display and change the band, mode, all 27 memory and operating frequencies, passband shift, plus the band scanning and baud rates.

There's more for the Ham at Heath

than ever before

Unique dual digital display gives the smart operator multiplied advantage in frequency-handling speed and agility.

Ten-Tec 645
 ultramatic keyer mods

I run my station on battery 100 percent of the time, and am always looking for a way to trim a few milliamps of drain. I became concerned with the appetite of my Ten-Tec 645 Ultramatic Keyer the first time I put a meter in series and discovered a quiescent drain of over 300 mA . After opening the case and pulling the board, I burned my thumb on the two 68 ohm 2-watt resistors used to drop the 12 Vdc line.

I removed R_{17}, R_{18}, and D_{3}, a 5.6 volt zener diode. In this same space I mounted an LM340 T-5 three-terminal regulator and a small heatsink.

The regulator mounted easily after I drilled a single hole for the middle (ground) wire. I could then put the keyer back in its original shape without a lot of telltale holes in the board.

Because this regulator is some distance from the 12 volt supply, I used an external bypass capacitor of 0.22 $\mu \mathrm{F}$ on the input terminal of the regulator. Mount it as close as possible to the regulator. The $0.1 \mu \mathrm{~F}$ capacitor recommended for the output is provided by C_{9} already in place.

Next socket the ICs and substitute some 7400 LS chips for the original 7400 s . I did this on a trial and error basis and found it worked for IC-1, IC-2, IC-3 but not IC-4 and IC-5.

Thus, you need two 74LS00 (IC 1 and 2) and one 74LS10 (IC-3). A check showed 120 mA quiescent, almost a two-thirds reduction! Not enough to fool with if you are using commercial ac, but enough to make a difference for extended battery operation.

Adding an extra key jack in parallel with the output of the 645 keyer allows you to use a straight key. Mount the phono jack on the rear panel and bypass with a $0.01 \mu \mathrm{~F}$ capacitor.

The low speed range of the keyer can be expanded by changing the value of R_{1} from 4.7 K to 8.2 K . Unless you really need 50 WPM, it is much nicer to be able to accurately adjust in the $10-20$ WPM range; the top end is still above 40 WPM.

A stereo (three conductor) jack can be added to the rear panel to allow the use of the 645 paddles to feed a memory keyer (such as the Autek MK-1). Use a shorting jack and the paddles return to the 645 when the plug is removed. This saves getting used to new paddles for contest work.

Gil Frey, Jr., K4JST

fig. 1. Logic board.

fig. 2. Wiring block diagram.
ham radio

The

The TRJS and PIJA offer performance and versatility for those who demand the ultimate!

TR7A Transceiver

- CONTINUOUS FREQUENCY COVERAGE -1.5 to 30 MHz full receive coverage. The optional AUX7 provides 0 to 1.5 MHz receive plus transmit coverage of 1.8 to 30 MHz , for future Amateur bands. MARS, Embassy. Government or Commercial frequencies (proper authorization required).
- Full Passband Tuning (PBT) enhances use of high rejection 8 -pole crystal filters.
New! Both 2.3 kHz ssb and 500 Hz cw crystal filters, and 9 kHz a-m selectivity are standard, plus provisions for two additional filters. These 8 -pole crystal filters in conjunction with careful mechanical/electrical design result in realizable ultimate rejection in excess of 100 dB .
New! The very effective NB7 Noise Blanker is now standard. New! Built in lightning protection avoids damage to solid-state components from lightning induced transients.
Newl Mic audio available on rear panel to facilitate phone patch connection.
- State-of-the-art design combining solid-state PA. up-conversion, high-level double balanced 1st mixer and frequency synthesis provided a no tune-up, broadband, high dynamic range transceiver.

R7A Receiver

- CONTINUOUS NO COMPROMISE 0 to 30 MHz frequency coverage.
- Full passband tuning (PBT).

New! NB7A Noise Blanker supplied as standard.

- State-of-the-Art features of the TR7A, plus added flexibility with a low noise 10 dB rf amplifier. Newl Standard ultimate selectivity choices include the supplied 2.3 kHz ssb and 500 Hz cw crystal filters, and 9 kHz a-m selectivity. Capability for three accessory crystal filters plus the two supplied, including 300 Hz . $1.8 \mathrm{kHz}, 4 \mathrm{kHz}$, and 6 kHz . The 4 kHz filter, when used with the R7A's Synchro-Phase a-m detector, provides a-m reception with greater frequency response within a narrower bandwidth than conventional a-m detection. and sideband selection to minimize interference potential. - Front panel pushbutton control of if preamp. a-m/ssb detector, speaker ON / OFF switch, i-f notch filter. reference-derived calibrator signal, three agc release times (plus AGC OFF), integral 150 MHz frequency counter/digital readout for external use, and Receiver Incremental Tuning (RIT).

The "Twins" System

- FREQUENCY FLEXIBILITY. The TR7A/R7A combination offers the operator, particularly the DX'er or Contester, frequency control agility not available in any other system. The "Twins" offer the only system capable of no-compromise DSR (Dual Simultaneous Receive). Most transceivers allow some external receiver control, but the "Twins" provide instant transfer of transmit frequency control to the RTA VFO. The operator can listen to either or both receiver's audio, and instantly determine his transmitting frequency by
appropriate use of the TR7A's RCT control (Receiver Controlled Transmit). DSR is implemented by mixing the two audio signals in the R7A
- ALTERNATE ANTENNA CAPABILITY. The R7A's Antenna

Power Splitter enhances the DSR feature by allowing the use of an additional antenna (ALTERNATE) besides the MAIN antenna connected to the TR7A (the transmitting antenna). All possible splits between the two antennas and the two system receivers are possible.

DRAKE
See your Drake dealer or write
for additional information.

COMING SOON: New RV75 Synthesized VFO Compatible with TR5 and 7-Line Xcvrs/Rcvrs

- Frequency Synthesized for crystal-controlled stability • VRTO (Variable Rate Tuning Oscillator*) adjusts tuning rate as function of tuning speed. - Resolution to 10 Hz - Three programmable fixed frequencles for MARS, etc. - Split or Transceive operation with main transceiver PTO or RV75

HAL Puts MORE Behind The Butions

CT2100 System:

- CT2100 Communications Terminal
- KB2100 Keyboard
- Video Monitor
- Printer (300Bd Serial ASCII-MPI-88G)
- 24 Line Display
- 2 Pages of 72 Character Lines -or. 4 Pages of 36 Character Lines
- Split Screen (with KB2100)

```
- RM2100 Rack Adapter
- MSG2100 2000 Character
    "Brag Tape" ROM
```


HERES A QUICK AND EASY CHRISTMAS GIFT.

At the receiving end of a Ham Radio subscription, it will be remembered all year long as a token of friendship. It looks like 1983 will be a very busy year here at Ham Radio. We can expect the opening of the first of our new WARC bands. Our authors and staff are hard at work with our new technical editor, K2RR, prepa.ing the very best state-of-the-art articles to be found in any Amateur journal. From our ever popular Special May Antenna Issue to the sophisticated new modes of communication such as slowscan and packet radio, it'll all be there in upcoming issues of Ham Radio Magazine! It's your best source for what's going on in the field of Amateur communications.
There has never been a better time than now to "gift" Ham Radio to that hard-to-buy-for friend . . . Or yourself.

One year, 12 issues regularly $\$ 19.50$ SPECIAL PRICE \$14.50 SAVE OVER 25\%

DON'T DROP THE BALL. GIVE A GIFT OF HAM RADIO THIS YEAR!

Please send my ham radio gift subscriptions
as indicated. Also send a handsome ift
acknowledgement card. (Gift card will be
sent if your order is received before Dec. 17,
1982.)

Tek's most successful scope series ever: At \$1200-\$1450, it's easy to see why!

In 30 years of Tektronix oscilloscope leadership, no other scopes have recorded the immediate popular appeal of the Tek 2200 Series. The Tek 2213 and 2215 are unapproachable for the performance and reliability they offer at a surprisingly affordable price.
There's no compromise with Tektronix quality: The low cost is the result of a new design concept that cut mechanical parts by 65%. Cut cabling by 90%. Virtually eliminated board electrical connectors. And eliminated the need for a cooling fan.

Yet performance is written all over the front panels. There's the bandwidth for digital and analog circuits. The sensitivity for low signal measurements. The sweep speeds for fast logic families. And delayed sweep for fast, accurate timing measurements.

The cost: $\$ 1200^{*}$ for the 2213. $\$ 1450^{*}$ for the dual time base 2215. You can order, or obtain more information, through the Tektronix National Marketing Center, where technical personnel can answer your questions and expedite delivery. Your direct order includes
probes, operating manuals, 15day return policy and full Tektronix warranty.

For quantity purchases, please contact your local Tektronix sales representative.

Order toll free: 1-800-426-2200 Extension 39

In Oregon call collect: (503) 627-9000 Ext. 39

[^3]
ANTENNA SYSTEMS/TOWER HARDWARE

HELD OVER by Popular Demand

UNARCO-ROHN

Self Supporting
Towers On Sale!
Freight Prepaid

These rugged beauties are being offered at Big Discounts and - we are shipping them freight propaid! Look over the specifications and pick the unit mest suited for your needs, then - Call us to place your order with Mastercard/Visa or write and include your check for quick shipment - Freight Prepaid!

And - Save even more - include antenna and rotor of your choice with the order and we will ship them along freight prepaid also! Hows that for good old fashioned savings?

Tower Model	Tower Ht	Load Rating	Ship Weight	Tower Base	Tower Price	Base Price	Total Price
HBX40	40 ft	10 sq ft	164	BXB6	269	24	293
HBX48	48 ft	10 sq ft	303	BXB7	349	26	375
HBX56	56 ft	10 sq ft	385	BXB8	419	30	449
HDBX40	40 ft	18 sq ft	281	BXB7	313	26	339
HDBX488	48 ft	18 sq ft	363	BXB8	399	30	429

BUTTERNUT	
HF6V	80-10 mtr. Vortical $\mathbf{\$ 1 2 9}$
TBR 160HD	160-mtr. Coil Kit. \$ 49
RM KIT	Root Mount w/Stub Tuned Radials \$ 39
STR KIT	Stub Tuned Radial Kit. \$ 20
CUSHCRAFT	
40-2CD	2-EI. "Bread Band" 40 mtr, Beam. $\$ 279$
A3	3-E1. Triband Beam $\$ 179$
A4	4-EI. Triband Beam $\$ 229$
A743/A744	40 mtr . Add-on Kif for A3/A4 Antenna $\$ 69$
R3	New Motor Tuned 20/15/10 mtr. Vertical. . \$229
AV5	$\mathbf{8 0 - 1 0}$ mtr. Trap Vertical \$ 95
20-3CD	3-EI. 20 mtr. Beam 5179
20-4CD	4-EL. 20 mtr. Beam $\$ 239$
15-3CD	3-EL. 15 mtr. Beam $\$ 99$
154CD	$4 . E 1.15$ mtr. Beam $\$ 109$
10.3CD	3.EL. 10 mtr. Beam 576
10-4CD	4.EL. 10 mtr . Beam 889
A50.5	5EL. 6 mtr. Beam \$ 65
4248	24-EI. 432 MHz "Boomer" $\mathbf{\63
2148	14.EL. 2 mtr, "Boomer" 569
214F8	14.EI. 2 mtr. FM "Boomer" $\$ 69$
228 FB	23-EI. 2 mtr. FM "Power Pack" $\mathbf{5 1 8 9}$
32.19	19.EI. 2 mtr, "Super Boomer" \$83
2208	17.EL. 220 MHz "Boomer" 575
ARX2B	2 mtr, "Ringo Ranger II" \$ 36
ARX4508	450 Mhz "Ringo Ranger II", \$ 38
A147.20T	2 mtr. Vert. 8 Horiz. 10-EL Beam $\$ 63$
A144.10T	10.E1. 2 mtr. Satellite Antenna $\$ 45$
A144-20T	20-EI. 2 mtr. Satellite Antenna 69
A432-20T	$20-E 1.432 \mathrm{MHz}$. Satellite Antenna \$ 85
A14T MB	Dual Antenna Mounting Assembly \$ 25
MANY OTHER CUSHCRAFT ANTENNAS IN STOCK - CALL!	
HYGAIN	
V2S	New 2 mtr. Base Vertical. $\$ 39$
TH5MK2S	New Broad Band 5-El. Triband Beam $\mathbf{\$ 3 1 9}$
TH7DXS	New Broad Band 7-EL. Triband Beam $\mathbf{5 3 7 9}$
TH3MK3S	3-E1. Triband Beam $\mathbf{\$ 2 1 9}$
TH3JAS	3-EI. Triband Beam $\$ 159$
TH2MK3S	2-EI. Triband Beam $\$ 139$
HY-OUAD	2-E1. Triband Quad $\mathbf{\$ 2 7 9}$
402BAS	2-E1. 40 mtr. Beam $\$ 199$
205BAS	5-EI. 20 mtr. "Long John". $\$ 299$
155BAS	5-EI. 15 mtr. "Long John". \$179
105BAS	5-E1 10 mtr. "Long John" $\$ 1119$
204BAS	4-EI. 20 mtr. Beam $\$ 229$
2038AS	3-EI. 20 mtr. Beam $\mathbf{~ \$ 1 3 9}$
153BAS	3-EI. 15 mtr. Beam $\$ 79$
103BAS	3-E1. 10 mtr. Beam 559
DB1015AS	3-E1. 10/15 mtr. Beam $\mathbf{5 1 5 9}$
64BS	4-EI. 6 mtr. Beam 555
66BS	6-E1. 6 mtr, "Long John"* $\$ 109$
18HTS	$\mathbf{8 0 - 1 0}$ mtr. Hy-Tower Vertical $\mathbf{\$ 3 3 9}$
18AVT/WBS	80-10 mtr. Trap Vertical. \$ 95
214	14-E1. 2 mtr. Beam \$ 35
2800	80/40 mtr. Trap Dipole $\$ 49$
58D0	80-10 mtr. Trap Dipole s 99
BN86	80-10 mtr. KW Balun $\$ 19$
HUSTLER	
3TBA	New 3-El. Triband Beam $\quad \mathbf{\$ 1 9 9}$
4BTV	40.10 mtr . Vertical \$ 79
58 TV	$\mathbf{8 0 . 1 0} \mathbf{m t r}$. Vertical $\$ 999$
G6.1448	2 mtr. Base Vertical. 599
G7.144	2 mtr, Base Vertical. \$ 99
HF Mobile Re	esonators (ST0 400 Watt) Super 2 KW)
$10 \& 15 \mathrm{mtr}$.	. $\$ 10 \ldots$.
20 mtrs.	. $\$ 12 \ldots ~ \$ 18$
40 mtrs.	\$15 $\mathbf{\$ 2 1}$
75 mers.	\$17 $\$ 32$
BUMPER MOUNTS, SPRINGS, FOLDING MASTS IN STOCK KLM CALLI	
KT34A	4-E1. Tribander $\$ 309$
KT34XA	6-E1. Tribander $\$ 469$
7.21	$\mathbf{4 0} \mathrm{mtr}$. Rotatable Dipole $\quad \$ 159$
7.2.2	2.E1. 40 mtr. Beam $\mathbf{\$ 2 9 9}$
7.2 .3	3-E1. 40 mtr. Beam S449
7.0.7.3-4A	4-E1. 40 mtr. Beam $\$ 629$
144.148-13L ${ }^{\text {d }}$	13 El. 2 mtr. Long Boomer \% 79
432-16L ${ }^{\text {c }}$	16.EL, 432 Mhz . Long Boomer $\$ 99$
144.150-16C	16.EL. 2 mtr. Circular Pol. Beam \$ 99
420-450-18C	18.EI. 435 MHz . Circular Pol. Beam \$ 59
CALL FOR OUR LOW PRICES ON OTHER KLM PRODUCTS! MINI PRODUCTS	
H0.1 Mini-	uad Compact 20/15/10 mtr. Antenna \$139

MOSLEY

CL-33	3-EI. Triband Beam	$\$ 229$
TA-33	3-E. Triband Beam	$\$ 199$
TA-33 Jt.	3-E1. Triband Beam	$\$ 149$
S-402	2-E1. 40 mtr. Beam	$\$ 279$

ROTORS A CABLES
Alliance HD73 (10.7 sq. ft. Rating).
Alliance U100 (For small beams \& Oscar Elev. Rotor) Ham 4 ($15 \mathrm{sq}, \mathrm{ff}$. Rating)
Tailtwister (20 sq. ft. Rating)
HYGAIN HDR-300 (Most HD. Rotor for BIG Arrays) 8 COND (2-818 GA/6-422 GA) Rotor Cable
H.D. 8 COND $(2+16 \mathrm{GA} . / 6 / 18 \mathrm{GA}$.) Rotor Cable

COAXIAL CABLE A CONNECTORS
RG213/U (95\% shield - non-contaminating jacket) . . . $\$ 0.29 / \mathrm{ft}$.
RG8X (95% shield non contaminating jacket) $\$ 0.18 / \mathrm{f}$
RG11/U (75 OHM - 95% shieid)
$Y_{n}^{\prime \prime}$ Aluminum Hardline w/poly jacket
$K_{1}^{\prime \prime}$ Copper Hardline w/poly jacket
$Y^{\prime \prime}$ Alum. H.L. Conn (UHF or N Male or Female).
$K^{\prime \prime}$ Copper H.L. Conn (UHF or N - Male or Female) Amphenol Silver Plate PL259
Amphenal Nickel Plate PL259
Amphenol N Type Male Conn For RG213/U
$\$ 1.10 / \mathrm{ft}$
$\$ 15.00$
$\$ 15.00$
$\$ 22.00$
$\$ 22.00$
$\$ 1.25$
$\$ 1.25$
$\$ 10.90$

HYGAIN CRANKUPS
HG37SS $\quad 37 \mathrm{ft}$. Self Supporting
HG52SS $\quad 52 \mathrm{ft}$. Self Supporting
HG54HD Heavy Duty 54 Ft Self Supporting.
HG70HD Heavy Duty 70 Ft . Self Supporting. HG50MT2 50 ft . Side Supported.
ALL HYGAIN TOWERS FREIGHT PAID! CALL FOR PACKACE ON TOWER, ANTENNA \& ROTOR-FREIGHT PAID.
ROHN TOWERS
20G- $\mathbf{5 3 2 . 0 0 \quad \text { 256-541.50 456-593.50 }}$
HBX32 $\quad 32 \mathrm{ft}$. Free Standing (rated $10 \mathrm{sq} . \mathrm{ft}$) $\ldots . \mathrm{S}_{169}$
HDBX32 $\quad 32 \mathrm{ft}$. Free Standing (rated 18 sq. ft.) ... $\$ 189$
HBX40 40 ft Free Standing (rated 10 sq ft)
HDBX40 $\quad 49 \mathrm{ft}$. Free Standing (rated 18 si ft)
HOBX40 $\quad 49 \mathrm{ft}$. Free Standing (rated 18 sq. fL)
$\begin{array}{ll}\text { HBX48 } & 48 \mathrm{ft} \text {. Free Standing (rated } 10 \mathrm{sq} . \mathrm{ft} \text {). } \\ \text { HOBX48 } & 48 \mathrm{ft} \text {. Free Standing (rated } 18 \text { s. } \mathrm{ft} \text {). }\end{array}$
$\begin{array}{ll}\text { HOB } & 48 \mathrm{ft} \text {. Free Standing (rated } 18 \mathrm{sq} . \mathrm{ft} \text {) } \\ \text { HBX56 } & 56 \mathrm{ft} \text {. Free Standing (rated } 10 \mathrm{sq} \mathrm{ft} \text {) } \\ \text { FK2548 }\end{array}$
$\begin{array}{lll}\text { HBX56 } & 56 \mathrm{ft} \text {. Free Standing (rated } 10 \text { sq. } \mathrm{ft} \text {.) } \\ \text { FK2548 } & 48 & \mathrm{ft} \text {. } 250 \text { F }\end{array}$
$\begin{array}{ll}\text { FK2548 } & 48 \mathrm{ft} 256 \text { Foldover Tower } \\ \text { FK2558 } & 58 \mathrm{ft} 256 \text { Foldover Tower }\end{array}$
FK2558 $\quad 58 \mathrm{ft}$. 256 Foldover Tower
FK2568 $\quad 68 \mathrm{ft} .256$ Foldover Tower
FK4544 $\quad 44 \mathrm{ft} 456$ Foldover Tower.
FK4554 $\quad 54$ t. 45 G Foldover Tower.
FK4564 $\quad 64 \mathrm{ft} 45 \mathrm{G}$ Foldover Tower
Foldover Towers Freight Paid 10\% Higher We... . . \$1329 ALL ROHN ACCESSORIES IN STOCK - CALL!

GALVANIZED STEEL TWR. HARDWARE
$3 / 16^{\prime \prime}$ EHS Guywire (3990 lbs.) . . . $\$ 12 / 100 \mathrm{ft} . \$ 111 / 1000 \mathrm{ft}$ $1 / 4^{\prime \prime}$ EHS Guywire ($\mathbf{6 0 0 0} \mathrm{lbs}$.) . . . $\$ 15 / 100 \mathrm{ft}$. $\$ 139 / 1000 \mathrm{ft}$. $5 / 32^{\prime \prime} 7 \times 7$ Aircraft Cable (2700 lbs.) $\$ \$ 11 / 100 \mathrm{ft}$. $3 / 16^{\prime \prime}$ CCM Cable Clamp ($3 / 16^{\prime \prime}$ or $5 / 32^{\prime \prime}$ Cable) $\$ 0.30$ 1/4" CCM Cable Clamp ($1 / 4^{\prime \prime}$ Cable) $\$ 0.40$
1/4" TH Thimble (fits all sizes) $\$ 0.25$
3/8 EE ($3 / \mathbf{8}^{\prime \prime}$ Eye \& Eye Turnbuckle) $\$ 5.50$
3/8 EJ (3/8" Eye \& Jaw Turnbuckle)
$1 / 2$ EE ($1 / 2^{\prime \prime}$ Eye $\&$ Eye Turnbuckle)
1/2 E J ($1 / 2^{\prime \prime}$ Eye $\&$ Jaw Turnbuckle)
3/16" Preformed Guy Grip
1/4" Preformed Guy Grip
$6^{\prime \prime}$ Diam - 4 ft. Long Earth Screw Anchor
\boldsymbol{z}^{*} Diam 10 ft . Long Heavy Duty Steel Mast. 5000 Guy Insulator ($5 / 32^{\circ \prime}$ or $3 / 16^{* "}$ Cable)
502 Guy Insulator ($1 / 4^{\prime \prime}$ Cable).
$5 / 8^{\prime \prime}$ Diam 8 ft . Copper Clad Ground Rod w/clamp.
ANTENNA WIRE A ACCESSORIES
14 Ga . Solid Copperweld (Multiples of 50 ft .) $\$ 5 / 50 \mathrm{ft}$.
14 Ga . Stranded Copper (Multiples of 50 ft) $\$ 5 / 50 \mathrm{ft}$.
14 Ga . Stranded Copper (70 ft . coil) \$ 7.00
14 Ga . Stranded Copper (140 ft . Coil) $\$ 14.00$
18 Ga . Copperweld ($1 / 4$ mile spool) $\$ 3000$
Heavy Duty B\&W End Insulator
HYGAIN Model 155 Center Insulator
\$4/Pair
HYGAIN Model 157 Center Insulator w/S0239.
$\$ 5.95$
450 OHM H.D. Low Loss Ladder tine

1108 SUMMIT AVE, SUITE 4 - PLANO, TEXAS 75074

receiver dynamic range

Defining and deriving a popular and important specification

Today's communications receiver is expected to detect and extract information from signals of varying levels in a crowded spectrum. Earlier designs were concerned primarily with good sensitivity and selectivity. New requirements call for a high degree of rejection of spurious products produced by nonlinear interaction of many strong signals, sometimes far removed from the receiving frequency.

One method of determining the quality of receiver performance is to specify both an upper and lower signal-handling power limit, that is, a spurious-free dynamic range. To establish performance criteria requires a knowledge of the receiver's sensitivity (MDS), its third-order intercept point (defined later), system noise figure, and i-f bandwidth. Let's first define dynamic range.

Dynamic range is the power range over which a device such as a radio receiver provides useful operation. The upper limit of the dynamic range (P_{u}) is limited by the level of two equal input signals that create a third-order intermodulation product, which is equal in amplitude to the Minimum-Detectable-Signal (MDS)* level. The MDS is considered as the lower
limit (P_{L}) of the dynamic range, and is defined as a signal 3 dB greater than the equivalent noise level for a specified i-f bandwidth. The minimum detectable signal can be found through eq. 1.

$$
\begin{aligned}
P_{L(d B m)}= & M D S_{(d B m)} \\
= & -171 d B m \dagger+N F_{(d B)}+10 \log \\
& (B W)_{I F}
\end{aligned}
$$

Where: MDS is the low-power limit of dynamic range in dBm .
$N F$ is system noise figure in dB .
$B W_{I F}$ is i-f bandwidth in Hz .
P_{L} is lower power limit of dynamic range in dBm.

The upper limit of the dynamic range can then be expressed by eq. 2.

$$
\begin{align*}
P_{u(d B m)}= & 1 / 3(M D S+2 I P) \tag{eq. 2}\\
= & 1 / 3(-171(d B m)+N F(d B) \\
& \left.+10 \log B W_{I F}(H z)\right)+2 / 3 I P(d B m)
\end{align*}
$$

Where: P_{U} is the upper power limit of the dynamic range in dBm .
$I P$ is receiver's third order input intercept point in dBm .

By combining the two equations, we can find eq. 3 for the total spurious-free dynamic range:

$$
\begin{align*}
\operatorname{SFDR}(d B m)= & P_{U}(d B m)-P_{L}(d B m) \tag{eq. 3}\\
= & 1 / 3(M D S+2 I P)-M D S \\
= & 2 / 3(I P-M D S) \\
= & 2 / 3(I P(d B m)-N F(d B)-10 \log \\
& \left.B W_{I F}(H z)+171(d B m)\right)
\end{align*}
$$

By Cornell Drentea, WB3JZO, 7140 Colorado Avenue, N., Brooklyn Park, Minnesota 55429

fig. 1. Determining the dynamic range of a receiver with a noise figure of 8 dB , an $\mathrm{i}-\mathrm{f}$ bandwidth of 2.1 kHz , and an input intercept point of +20 dBm .

Where: $S F D R$ is the spurious free dynamic range.
This equation shows that the dynamic range is directly proportional to the intercept point (IP) and inversely proportional to the noise figure (NF), and i-f bandwidth ($\mathrm{BW} \mathrm{W}_{\mathrm{IF}}$).

We can then say that the dynamic range improves with lower noise figures, narrower i-f bandwidths and higher intercept points.

The following example shows a practical application for the dynamic-range formula. Assume a typical high-performance receiver with a noise figure of 8 dB , an i-f bandwidth of 2.1 kHz and an input intercept point of +20 dBm . Substituting these quantities in eq. 3 yields:

$$
\begin{aligned}
S F D R= & 2 / 3(+20 \mathrm{dBm}-8 \mathrm{~dB}-10 \log 2100 \mathrm{~Hz} \\
& +171 \mathrm{dBm}) \\
= & 99.85 \mathrm{~dB} . \\
S F D R= & 99.85 \mathrm{~dB} .
\end{aligned}
$$

The total distribution of this number can best be understood by examining the graph in fig. 1. We know that the total spurious-free dynamic range (SFDR) for our receiver is 99.85 dB , but what is not known is where this range fits in the total picture of the receiver's sensitivity, and once this is found, what this range means from a practical performance point of view. We had previously determined that the lower limit of the dynamic range is given by the Minimum Detectable Signal (MDS). If, using eq. 1 for our example, we find the lower limit of the receiver's dynamic range to be -129.77 dBm .

$$
M D S=-171+8+10 \log 2100=-129.77 \mathrm{dBm}
$$

We can then say that the system's noise level for an i-f bandwidth of 2.1 kHz is 3 dB below this num-
ber, or -132.7 dBm (MDS is defined as a signal 3 dB greater than the equivalent noise level for a specified i-f bandwidth).

Knowing the MDS, the IP (20 dBm) and with the help of eq. 2, we can determine the upper limit of our 99.85 dB dynamic range:

$$
P_{u}=1 / 3(-129.77+40)=-29.92 \mathrm{dBm}
$$

The same result would be obtained if we added the total dynamic range of 99.85 dB to the MDS:

$$
P_{u}=99.85+(-129.77)=-29.92 \mathrm{dBm} .
$$

This last procedure could be used to verify the validity of eq. 2.

If these numbers are plotted as shown in fig. 1, we can conclude that the receiver in our example will perform undisturbed for all input signals varying from approximately -30 dBm to -130 dBm , with the receiver tuned to a third-order intermodulation product produced by two strong signals equal in amplitude and differing in frequency from each other. The amplitude of these signals, as well as the difference frequency (ΔF), were represented in our example by the +20 dBm input-intercept point. In practice, this quantity is a function of the output intercept of all non-linear elements, such as mixers, amplifiers, etc., involved in the design of the receiver, as we will see next.

intercept method

Fig. 2 shows the intercept method, used as an evaluation method for the strong-signal handling capability of a radio receiver. In practice, the dynamic range of a receiver is measured with the setup shown in figs. 3 and 4.

First, the MDS is found as shown in fig. 3. The MDS is measured as the power necessary at genera-

fig. 2. Determining output and input intercepts of a radio receiver.
tor G (expressed in dB), to produce a 3 dB increase in audio output over the noise level of the receiver. The MDS is specified for a given i-f bandwidth. The greatest bandwidth should be used for a worst-case analysis.
Knowing the MDS, the setup in fig. 4 can be used to actually find the output intercept, and with this information, the input intercept can be plotted as shown in fig. 2.
To find the output intercept point, the outputs of the two signal generators (G_{1} and G_{2}) are combined in a hybrid combiner. The output of the combiner (which now contains a two tone signal) is applied through a calibrated step attenuator to the receiver.
The two generators are usually 10 kHz apart, with the receiver tuned to 2F2-F1 or 2F1-F2, a third order product. The attenuator is then varied until the response of the receiver at the frequency of the thirdorder product is the same as that produced by the MDS found earlier. The performance is specified by measuring and plotting the output intercept as shown.
If the receiver is well designed, the desired output signal and the distortion product curve will intersect as high as possible, as shown in our example. This is the output intercept which describes the intermodulation response of the receiver.
The input intercept can also be plotted from the intercept point. This number can then be used to find the spurious-free dynamic range as previously discussed.
In conclusion, the receiver processes a weak signal in the presence of many adjacent strong signals. Because of the deficiencies in the design of the first mixer and the front end, if a preamplifier is used, the receiver may not be able to copy the weak signal, and it may be completely blocked out. The receiver's ability to perform under such conditions is expressed by the spurious-free dynamic range.
This article was adapted from the book Radio Communications Receivers by the author, published

fig. 4. Set-up for measuring output intercept point. Input intercept can then be plotted and used in the dy-namic-range formula.
by TAB Books Inc. It is available from the Ham Radio Bookstore, Greenville, NH 03048, for $\$ 13.95$ plus $\$ 2.50$ shipping and handling.

bibliography

C. Drentea, "Radio Communications Receivers," TAB Books Inc., Blue Ridge Summit, PA 17214.
"Nonlinear System Modeling and Analysis with Applications to Communications Receivers," AD-766 278, Signatron, inc., Prepared for Rome Air Development Center, June 1973.
Rodney K. McDowell, "High Dynamic Range Receiver Parameters, Wat-kins-Johnson Company, Tech-Notes Vol. 7 No. 2, March/April 1980.
"Present and Future Trends in Communications Equipment Design," IEEE Electro 76 Program Papers, Boston, 1976.
W. Sabin, "The Solid State-Receiver," OST, July, 1970.
R. Moore, "Designing Communications Receivers For Good Strong-Signal Performance," hr, February, 1973.
Alex J. Burwasser, "Reducing Intermodulation Distortion in High-Frequency Receivers," $h r$, March, 1977.
August C. Neitzel Jr., "TI-59 Derives Receiver's Dynamic Range, Noise Figure," Electronics, June, 1980.
Ray Moare, "Modern RF Amplifiers for Communications Receivers," hr, September, 1974.
Wes Hayward, "More Thoughts on Receiver Performance Specification," OST, November, 1979.
Doug DeMaw and George Collins, 'Modern Receiver Mixers for High Dynamic Range," OST, January, 1981.
Ulrich L. Rohde, "Eight Ways to Better Radio Receiver Design," Electronics, February, 1975.
Gonzior, "Intermodulation-Distortion," hr, September, 1974.
Sherwood, "Present-Day Receivers, Some Problems and Cures," hr, December, 1977.
U.L. Rohde, "Optimum Design for High-Frequency Communications Receivers," hr, October, 1976.
David Adamy, "Calculate Receiver Sensitivity," Electronic Design, December, 1973.
Ed. Oxner, "Junction FETs in Active Double-Balanced Mixers," Application Note, Siliconix Incorporated, June, 1973.
P.E. Chadwick, "High Performance Integrated Circuit Mixers," if design, June, 1980.
"Mixer Products," Aertech, PP 1 to 4, TRW.
Mini-Circuits Laboratory Data Book, Definition of Mixer Terms.
Nubar Ayrandjian, "System Intermod Performance," rf design, Summer 1980.
"High-Intercept-Point Mixer Conquers Distortion, Stretches Dynamic Range," Microwaves, June، 1981.
ham radio

DX
 FORECASTER

Garth Stonehocker, K0RYW

last-minute forecast

December is probably the best month for winter DX. The low signal absorption combined with high daytime MUFs result in excellent signals on the higher DX bands (10 and 20 meters). On the other end of the frequency spectrum, the long nights make for excellent DX on 40 through 160 meters.

Expect the 27-day solar maximum just at the end of November and again on the 23rd of December: consequently, the higher DX bands should be active the first week and the last week-and-a-half of the forecast period. The days in between should favor the lower frequency bands. December is traditionally one of the quietest insofar as geomagnetic disturbances are concerned, but the days of highest probability will be around the 9 th, 18th, and 28th.

The winter solstice will take place on the 22nd at 0439 UT. A partial eclipse of the sun (74 percent obscured) will occur on the 15th across Europe, extreme northeast Africa, and west Asia, and on the 30th there will be a total eclipse of the moon across North America, Asia, and Australia. Lunar perigee will be on the 2nd at 1100 UT and the 30th at 2200 UT; by coincidence, full moon will be on the 1st and 30th.
The Geminid meteor shower, which reaches its peak on December 13th and 14th provides the richest and most reliable display of the year, with rates of 60 to 70 per hour (determined mainly by radio, because of the poor weather in December). Also, a smaller portion of the shower (15 to

20 per hour) is observed on December 22 .

more on the radio-quality index

If you have talked Santa into bringing you a home computer for Christmas, you may want to use it to enhance your ham radio DX operating by programming a radio-quality index into it. A formula was given in the $D X$ Forecaster column in the August, 1982, ham radio. Further programming and debugging help is given below.

I have divided the formula into three sections, a term and factors, and given representative values within the ranges of the variables. First is the seasonal term, θ, which is used as the power to which the solar flux, ϕ, is raised. This term is needed to increase quality in the summertime, probably representing increased signal strengths from sporadic-E layer propagation. It varies from 0.7375 in winter to 1 near summer solstice, as in the following table:

	A		
day	$0.49315 x$	$\cos ^{2} \mathbf{A}$	θ
1 (January)	0.49315	0.999925	0.7375
80 (March)	39.45200	0.59626	0.8435
172 (June)	84.82180	0.008215	0.9978

Day number x is the day of the year, starting with January 1 as 1. February 1 would be 32 , and so on. Use trig identity, $\cos ^{2} A=1 / 2(1+\cos 2 A)$.

The radio flux factor, $\log (\sqrt{4} \sqrt{\phi})^{\theta}$, is the log to base 10 of the fourth root of the radio flux number, right from WWV. The ϕ varies from about 65 to 400 , and the value of this factor for
three values of ϕ and the θ extremes of 1.0 and 0.7375 are as follows:

	factor value in		
ϕ	$\log \phi$	June	December
70	1.84510	0.461	0.340
150	2.17609	0.544	0.401
375	2.57403	0.643	0.475

The magnetic factor is $e^{-0.01 A}$, where A is the magnetic number (estimate) for the day from WWV. The exponential function e^{x} is used. A table of representative values is as follows:

A	$-0.01 A$	$e^{-0.01 A}$
5	-0.05	0.9512
10	-0.10	0.9048
50	-0.50	0.6065
100	-1.00	0.3679

Finally, putting the factors all together with the 10 -times factor and the +0.82 term to shift the scale to a 0 to 9 range of numbers, an overall example for March 21, 1982, (day 80) with solar flux of 150 and A of 10 is calculated as follows:
$Q=10 \frac{0.8435}{4}$
(2.17609) (0.9048)
$+0.82=4.15+0.82=4.97$ or 5

band-by-band summary

Ten, fifteen, and twenty meters will have $D X$ from most areas of the world during daylight and into the evening almost every day. Long skip and one-long-hop trans-equatorial openings toward evening can be opportunities for new DX locations. Look for them during the few disturbed geomagnetic periods, otherwise watch for high solar flux days for ten and fifteen meter openings.

Forty, eighty, and one-sixty meters are the night DXer's bands. Excellent extended periods of long skip, albeit over shorter distances than on the higher bands, can make a cold winter night enjoyable. Low noise and quiet geomagnetic conditions generally result in pleasant operating this time of year. Happy Holidays, and lots of DX during the coming new year!
ham radio

December								\％ 8 \％ 8^{8}				㜢 18	88：8818	1878：888		
m	\％	\％	ज5	Fig	8mig	gig										
			\％		\％\％		\％1	111	1	11	1	$1 \pm$	＊	：		
man					5	8		111	11	1 \％	\％	888	88ら	5		
momat					－								\％	5～5		
	5				11			18 \％	－				－			
	－	－	5	ज5	\％ 8						\％\％		5	デ5		
								$8: 1$								
m	寿	－		\％ 1	11			188	88	8	5\％	\％\％	\％\％	可家		
		\％${ }^{\text {：}}$						$8{ }^{\frac{8}{8} \frac{8}{8}}$								
\％mar		1		®̌g			88	811	11	，		1	118	可馬馬		
		8 \％		らい				111	11	1 ว	\％ 8	\％$\frac{1}{}$	\％	ョะ ะ		
mea	5	－	5	bit			11	11								
emaca			55		55			\％${ }^{\text {a }}$	：	\％\％	－	\％ 8 \％	\％\％\％			
mmaman								11：	： 1	1			－			
	\％	5	5	\％				111	11	11	\％	\％\％\％	ロッ	5\％5		
mamment								111								
				11				11 \％	\％\％	\％\％			ロッ\％	88ら気年		
		88	18	［司				［ 8^{818}	$8^{8} 8$	\％\square_{8}^{8}	8	［ ${ }^{\text {B }}$	［事䃀：			
								8．8．8		88		${ }_{8}^{8} 8{ }_{8} 8_{8}$				
mant								111	，				111	125a		
								111	11	18	88	8．${ }^{\circ}$	8	8		
mea	$\sqrt[5]{5}$															
mem	－			－	¢			\％\％	88	8 \％	88	8\％	888	888		
emaxamo						a 1		111	18	\％${ }^{\circ}$	\％	－	号云	可勾気馬		

[^4]
AGL Electronics

We're AGL - North Texas
AUTHORIZED dealer for over 70 different product lines. Call us . . . chances are we've got it in stock!

AEA ISOPOLE 144 SPECIALII.

 CK-2 Contest Kever MM2 Morsematic … \$ Call MBA-RC Reader-Sender ASTRON POWER SUPPLIES RS7A 5amp cont-7amp ICAS RS12A9amp cont-12amp ICAS RS20A 16mpcont20ampICAS RS20M above w/meter RS35A $25 a m p$ cont-35 ICAS RS35M above w/meter RS50A $37 a r$
BY-1 Key Paddies
BY-2 Keyer Paddles, Chrome Other Bencher products. Cali

ETO ALPHA

76A 2.8874 tubes for 2 KW . . $\$ 1590$ 76PA 3.8874 tubes-runs cooler. \$Call 76CA 3-8874 tbs-hprcil XFMR. SCall 784 A 2.8874 tbs-broad band. SCall 7838874 tbs-broad band, SCall We'll play the sume price sames everyone else does on Alphas. HAL COMMUNICATIONS CT2100 RTTY TERMINAL. . $\$ 689$ KB2100 Keyboard for Above . \$141 CWR 6850 Telerdr. Terminal.

Other AEA Products Available
ICOM IC-740

The New ICOM Transceiver

FT-ONE
Top of the Line It's what the Competition is trying to Equal!
 CHECK OUR CALLI

Tramer

ICOM

IC2AT October Special. IC $740 \quad 160-10 \mathrm{~m}$ HF XCVR IC 720A/PS15 combo ic 25 A 2 m XCVR/w TT mic IC 251 A 2 m all mode.

MIRAGE COMMUNICATIONS
B23 2 in 30 out Talkie Power . SCall B108 10 in 80 out 2 m Amp . . SCall B108 10 in 80 out $2 \mathrm{~m} \mathrm{Amp} .$. SCall
B 101610 in 160 out $2 \mathrm{~m} \mathrm{Amp}$.SCall 8301616 in 160 out 2 m Amp Amp SCall
83016 . SCall D101N 10 in 100 out 450 mhz
Amp.
MP2 meter

VOCOM PRODUCTS

5/8 wave 2 m HT Ant
Power Pocket for IC2AT

YAESU ELECTRONICS

FT102 new 160-10XCVR. 36146 's FT1012D 160-10 XCVR. . . . $\$ 749$ FT10120 $160-10 \times$ CVR. \$ $\$ 749$

FT902DM $160.10 \times$ CVR FT902DM 160-10 XCVR . . . SCall FT707 MF Mobile We Sell. . . \$ Call FT-ONE ...Aptly named, because it is Number One . . \$ Call FT 208R 2 m handheid. FT 708R 450 mhz handheld. FT 230 R 2 m 25 wt mini xcvr . FT 480R 2 m all mode FT 780R 430 mhz all mode | sCall |
| :--- |
| $\$ \mathrm{Call}$ | .. \$Call FT 290 R 2 m portable all . $\$$ Call Complete Yaesu line with Accessories normally in stock.

CALLTODAY 1-800-527-3418

In TEXAS - Call 1-214-699-1081 (See, it's easy and free, at least to you!) or visit us at 13929 North Central Expressway, Suite 419 - Dallas, Texas 75243

BARKER \& WILLIAMSON

VERTICAL ANTENNAS
MODEL 370-31 Slim Line Vertical designed for 10, 15,20 and 40 meters. All traps pretuned. Overall height 21 feet. Can be used with or without ground radials. Model $370-33-75$ meter add on kit. 75 and 80 meter operation optional with model $370-33$ add on kit. Power rating 1 KW- 2 KW P.E.P.
MODEL 370-30 Economy model vertical for 10,15 , 20 and 40 meter operation. High Q factory tuned traps. Overall height 21 feet. Can be used with or without ground radials. Model 370-32-75 meter add on kit. 75 and 80 meter operation optional with model $370-32$ add on kit. Power rating 1 KW-2 KW P.E.P.

MODEL 370-34 Radial Kit. Radial Kit for Models 370 30 and 370-31 Vertical antennas. All necessary wire and hardware for two ground plane radials. Write for more details and other antenna products.
BW
Barker \& Williamson, Inc.
10 Canal St., Bristol, Pa. 19007
215-788-5581

$$
\text { MAIN STREET GREENVILLE, HILLSBOROUGH, BH } 03048
$$

MAIN STREET
GREENVILLE, NH 03048MAIH ST, GQEENYILIE, NH 03048

$$
\text { Main ST, GREENVILLE, NH } 03048
$$

What are you looking for in a fiberglass dish?

High gain, sturdiness, longevity, price? We offer all these and more - SERVICE. In our role as largest manufacturer of fiberglass dishes in the world, we can supply 10, 12, 13, 16 , and 20 foot dishes on short notice - and in large supply.

We have manufactured thousands of dishes and have over 20 years experience in fiberglass fabrication-a rare statement in the fledgling satellite antenna industry.

Check our dish gain figures, check our prices, ask the dealers who handle our dishes and we feel you will make the right decision.

For further information on dishes or complete systems, call or write:

BEWARE

In any field of endeavor cheap imitations attempt to ride on the coattails of the successful leader. These imitations resemble the original and are many times passed off as such. This is especially true in our business.

To protect our product and name from this deception, we are now serial numbering all our fiberglass dishes. This will enable you to easily identify our product and rest assured you are getting the quality you expect.

VIDARE, INC.
P. O. Box Q

Conway, Arkansas 72032
(501) 327-0510 In-State

WATTS 1-800-643-1137 Out-of-State

Here are a few of our authorized dealers:

Earthstar Corp.
South Chicago Heights, IL
(312) 755-5400

Satellite T.V. of Colorado
Denver, CO
(303) 623-8876

National Satellite
Latham, NY
(518) 783-0088

Eastern Satellite T.V. Systems
Bangor, ME
(207) 942-9077

Tem-Sat Video
Punxsutawney, PA
(814) 938-5100

McBeth Enterprises
Ocala, FL
(904) 622-9424

Saturn Satellite Systems Jackson, KY (606) 666-5118

Essaws
El Paso, TX
(915) 565-3009

Magico

Greenville, MS
(601) 335-2014

Satellite T.V.
Lubbock, TX
(806) 797-2110

Jackson T.V. Center
Patterson, LA (504) 395-2609

Down To Earth Video
Muskegon, MI
(616) 766-2074

Sat Tron

Stillwater, OK
(405) 372-4548

Energy Systems Ltd.
Dubar, WV
(800) 624-9046

Call us for the name of the dealer nearest you.
*We are needing dealers in Arizona, New Mexico and California.

is it stolen?

How to avoid being burnt by more than rf

open on 15, and it was no trouble to work Gs and DLs with the barefoot rig, one station after another. During the next few days, Willie checked the rig out on other bands, and found it even brought in OSOs on 160 . In short, he was delighted, both with the rig and with his bargain. He was tempted to forget about the instruction manual, lack of which had shaved $\$ 10$ off the price - but when he thought that someday he'd sell the rig for a later model, he wrote a letter to Modzilla's U.S. distributor in La Squinta, California, enclosing $\$ 10$ for a manual, carefully noting the serial number of the equipment so that he would get the proper edition for his new 870 .

Willie's joy seemed unlimited. The heatsink on his 870 hardly had a chance to cool down, so happily did Willie describe his bargain far and wide during the next few weeks. Then, on Saturday afternoon, it happened.

the problem arises

The doorbell rang, and with some disgust, Willie - who was home alone - answered. The caller turned out to be a Deputy Sheriff with a folded sheet of paper in his hand. "Willie Hambone?" he inquired.
"That's me," Willie acknowledged.
"Mr. Hambone," the deputy went on, "I have a search warrant signed by Judge Green of the County Court, authorizing me to search your premises for pieces of stolen radio equipment. They are called a Modzilla Model 870 and an 870 -RV; and I have a picture of this type of equipment. If you have it here and want to show it to me, fine; otherwise, my partner and I will have to go through your house, room by room."
Willie felt the floor sinking beneath him. "Look, officer, I have a Modzilla 870, and you're welcome to look at it; but I paid good money for it. I didn't steal it from anybody; I bought it, and it's mine!"
They proceeded to Willie's shack, where Willie announced, "Here it is. These are produced by the

By George H. Goldstone, W8AP, 1010 Burnham Road, Bloomfield Hills, Michigan 48013
thousands. Maybe a few get stolen, but I paid for this one."
"You may have paid for it, Mr. Hambone, but if this equipment carries serial number 89-6634, you are in possession of stolen property. May I look at the serial number on the back?"

Willie already knew the number; his heart sank. His request for an instruction manual, giving the serial number . . . of what was a stolen rig!

It didn't take the deputy long to check the number. But if Willie felt bad about losing $\$ 665$, he felt even worse after the deputy's next announcement:
"Mr. Hambone, you are under arrest, charged with receiving and concealing stolen property of a value sufficient to constitute a felony. I must advise you that you are not required to make any statement; any statement you make can be used against you in court; you are entitled to counsel; and if you cannot afford counsel, an attorney will be provided for you. You must come with me to the County Jail, where you will be booked, and you will be allowed to call an attorney from there."

Willie's bargain had evaporated. In fact, so had his world.

what happened to Willie

Willie hired a competent lawyer, whose services were not inexpensive. At a preliminary hearing, his lawyer raised the defense that Willie had no knowledge the transceiver was stolen; that such knowledge is an essential element of the crime of receiving stolen property. The judge agreed and dismissed the charge, but his remarks to Willie are worth noting:
"Mr. Hambone, I am dismissing the charge of receiving stolen property, although I hesitate to do so. You are an Amateur Radio operator, and I feel quite sure you knew the true value of this equipment at the time you bought it. Such knowledge of value would permit this court to draw an inference that you sensed the equipment was stolen. Since you have no criminal record, I am dismissing the complaint; but if you are ever again found to have stolen equipment in your possession, the court will take a different attitude."

Some bargain, that transceiver! Willie not only lost the $\$ 665$ he had paid for the Modzilla 870; he paid his attorney's fee, and in local ham circles, he was now known as "the ham who has been had."

The unhappy situation fictionalized here may well have happened, at least in many details. We all know expensive Amateur Radio equipment is stolen from time to time. The elaborate high-frequency mobile installation is almost a thing of the past. VHF and some HF equipment is now made small enough that the owner can unplug the major component - a transceiver - and carry it in his briefcase.

The development of the ARRL insurance program, to a considerable extent, is the result of growing radio equipment theft. This article is not designed to tell you how to avoid theft of your equipment; it is designed to suggest ways in which you may avoid the purchase of stolen equipment.
Traditionally, physical possession is considered one indication of ownership. While it may be an indication of ownership, it does not prove your title to the property. So, where do you obtain some proof of title? As to new merchandise - and let us take a typical transceiver purchased from an established dealer - you will receive a paid invoice, identifying the goods by make, model, and serial number. Considering the importance of equipment warranties, every buyer should insist that a serial number be included on his invoice. This invoice is evidence of a contract of sale, and by law, a contract of sale implies a warranty of good title to the merchandise sold, and that the transfer is a rightful one. ${ }^{1}$
At any flea market, the majority of vendors are not merchants regularly dealing in Amateur Radio equipment. More often, they are individuals with usable gear they no longer want or need, which they want to convert into money or other ham gear. We normally do not expect such a casual seller to furnish ownership documentation; it is unusual when he furnishes a receipt for the goods you purchase. If a seller will accept your check in payment, you may note on the back, "In payment for Johnson Invader Serial No. 116628," but this only shows what the check paid for; it does nothing to prove that the seller was the owner.

proof of ownership

It is not too much to ask a seller of any major item of equipment to furnish some evidence the goods are his. Every ham should staple his purchase invoice onto the back of the instruction manual for reference at the time it is sold. There are tactful ways to ask for title evidence; you will not make friends by saying "How do I know it isn't stolen?" but you can easily say, "Do you have an invoice to show where this gear was purchased?"
Not everyone keeps sales invoices. Sometimes we want to forget how much money went into one piece of gear! But there is no reason why a Bill of Sale cannot be given, preferably in a form which will identify both buyer and seller, say where the seller obtained the equipment, state the selling price, contain a warranty of title in all cases, a warranty against liens, and a warranty of condition whenever condition is vital to the sale. A suggested form for a Bill of Sale is shown in fig. 1. It can easily be reproduced in quantity to use at hamfests and flea markets; perhaps the club

The Seller,

> (Name of Seller)
(Address of Seller)
of the price of $\$$ in consideration
(Name of Purchaser)
(Address of Purchaser)
the following equipment:
(Quantity)
originally purchased from
Seller represents and warrants that he is the owner of the equipment sold, and no other person has any interest in it, or lien upon it by way
of an unterminated Financing Statement, or otherwise. As to the condition of the equipment, Seller makes the following representations:
(Check one below which applies)
\square 1. The equipment is in good working condition.
\square 2. The equipment is sold "as is", and Seller makes no representation as to its performance.
3. The equipment requires repairs (other than normal alignment) in order to meet the performance specifications of the manufacturer.
Witness:
(Signature of Seller)
Date of Sale:
fig. 1. Sample Bill of Sale form.
sponsoring the affair can have them printed, and make them available at printing cost.

effect of a Bill of Sale

Between seller and buyer, the Bill of Sale is clear proof that the seller has transferred whatever ownership he had to the buyer. In most cases, possession of a Bill of Sale by the buyer precludes any criminal intent on his part, should the gear prove to be stolen; without criminal intent, you would not end up with a charge of receiving stolen property as suggested in poor Willie's example.
if the seller has valid title to the property, the Bill of Sale effectively transfers it to the purchaser. But if the seller does not have good title to the property, the purchaser acquires no more ownership than the seller had. It is certainly worthwhile to protect yourself against criminal liability by asking for and receiving a Bill of Sale. Would you want to make a deal with someone who refuses to give a Bill of Sale?

possible liens

Much new radio equipment is bought on credit. Some radio supply houses reputedly make more money on their credit operations than on the sale of the gear itself, which can occur when a supplier does the financing rather than using Master Charge, VISA, etc. If the gear has been financed by the purchaser, the seller or the financing agency has probably filed what is called a Financing Statement. When a Financing Statement has been recorded, the party ex-
tending credit may have rights to the goods after the date of recording which are legally superior to those of the purchaser. If you acquire an expensive piece of relatively new gear from someone who has a reputation for buying everything on credit, you would be wise to check with your County Clerk or Register to see if there is the lien of a Financing Statement recorded against what you plan to buy. A Bill of Sale should include a representation that no such lien exists.

some common-sense conclusions

No one wants his own equipment stolen, nor does anyone want to help thieves of Amateur Radio equipment by furnishing them a market. We can all help shrink the stolen equipment market by retaining our purchase documents, complete with serial numbers. When buying used gear, insist on evidence of ownership; ask for purchase records, but take a Bill of Sale in any event. The Bill of Sale, if properly drawn up, will show that you purchased the equipment in good faith, will identify the seller, and can also serve as a warranty of the condition of the equipment. Taking into account the present cost of equipment - either new or good used gear - insisting on a Bill of Sale is a wise precaution!

references

[^5]

Heil EO200 mike equalizer

We always thought we had good audio from our transmitter. No one ever complained about garbled speech or hard-to-understand transmission. Granted, we have had people tell us we sound like Demosthenese, the Greek orator who practiced with stones in his mouth . . . that was before Bob Heil sent us his latest product, the EC200 microphone equalizer.

Bob Heil is well-known throughout the audio field as an expert on sound reproduction. Besides being a professional organist, he is in constant demand by music groups from rock bands to Philharmonic orchestras. He knows his audio. In a conversation with Bob, he stated that the most misunderstood and neglected part of any ham station is the microphone/ audio circuitry. Sure, there have been compressors, clippers, and whatever. But they do more to compound the problems of poor audio than solve them.

With this in mind, Bob determined to apply his professional expertise to solve the problem. Looking through manufacturers specifications, Bob found most modern transmitters and transceivers have filter networks that limit audio input to the $300-3,000 \mathrm{~Hz}$ range. But most microphones are designed to cover a much broader range of frequencies, since they are used in services as diversified as stereophonic reproduction to paging services. The broader response of the microphone will be transmitted, and this will unnecessarily broaden your output.

The solution he came up with is the

EO200. The basic circuit is two 741 op amps (cm 1458). One-half of the first IC is used as a preamplifier and a transformer to provide proper impedance matching. The other half of the IC is used as a peaking lowpass active filter. The second IC is used as a shelving highpass filter and a line summing amplifier.
There are three controls on the front panel of the unit. The mike preamp gain may be adjusted from 0 to +20 dB . Heil advises that this be set so the microphone will not overload or clip. The LO control is used as a boost and cut control. Boost refers to increasing the level, cut reduces the level. The boost and cut is $\pm 12 \mathrm{~dB}$. The low filter is centered at 490 Hz . The HI control is also a boost and cut, with the filter centered at 2800 Hz .

As mentioned before, most microphones used today were not designed for ham use; their audio response is usually much greater than is necessary. Since all microphones are different, there is no universal setting. Heil has some recommended settings, but it best to set the processor through a trial-and-error process. Luckily, we have a friend who received an EO200, so we tested and set our processors together. It was interesting to actually hear how the high and low tones can be emphasized and deemphasized to create a truly pure-sounding signal.

The only problem we found was that we chewed up batteries. That can be remedied easily by installing a 9 Vdc supply or adding a low drain LED to remind you the unit is on. This is more of an inconvenience than a problem. Bob Heil tells us a newer model will incorporate these changes.*
Finally, Bob provides some helpful hints about how to use the microphone properly, such as keeping adequate spacing between mouth and microphone and making sure your operating room is not full of echoes. \dagger
The EO200 is a nice item to have between your rig and microphone. Price is $\$ 49.95$ for the basic unit. For
more information, contact Heil Sound, Box 26, Marissa, Illinois 62257.

- For those who own EO200s, changing the input resistors from 10 K to 100 K should solve the problem of excessive power drain.
tAs an added feature, the EQ200 can be modified to work as a two-tone generator for SSB tuning and testing. A parts kit is available from Heil Sound for an additional $\$ 7.00$.

new high-frequency equipment line

Yaesu Electronics Corporation is pleased to announce the availability of the new FT-102 line of high-frequency equipment. The FT-102 transceiver uses an all-new transmitter section, featuring three 6146B final tubes for extremely low distortion. In addition to VOX and an rf clippingtype speech processor, the FT-102 transmit audio may be adjusted for optimum response to the operator's voice.

The FT-102 receiver uses JFET components in the front end for wide dynamic range. A number of filter options are available, with wide/narrow filter selection independent of the mode switch. Audio peak filtering for CW, audio shaping for all modes, and an i-f notch filter provide intelligence recovery. The noise blanker is highly effective against the Woodpecker and pulse noises.

Equipped for SSB and CW operation, the FT-102 option list includes an $\mathrm{a}-\mathrm{m} / \mathrm{fm}$ module for activating those modes. Other accessories for the FT-102 are the FV-102DM synthesized VFO, the SP-102 speaker with audio filter, the SP-102P speaker/ patch, and the FC-102 $1.2-\mathrm{kw}$ an-
tenna tuner with optional remote antenna selector.

For further details, contact Yaesu Electronics Corp., P.O. Box 49, Paramount, California 90723.

electronic parts by mail

A new, free catalog lists over 1500 electronic items which can be ordered through the mail. Parts are high quality, no rejects or seconds. Large line of semiconductors, LED displays, lamps, connectors, sockets, headers, jumpers, switches, meters, amplifiers, generators, etc. Some items are available in kit form or assembled. All items can be shipped immediately from stock.

For more information, contact Sintec Company, Drawer Q, Milford, New Jersey 08848; telephone 1-800-526-5960 (New Jersey residents dial 201-996-4093).

photovoltaic battery charger

The Phaeton II Photovoltaic Battery Charger manufactured by International Solar Products Corporation of Durham, North Carolina, produces 4.8 volts of direct current power at 240 milliamps in peak sunlight. Four AA cells, two C cells, and two D cells can be charged with the unit. Batteries are fully recharged in 14 to 16 hours of sunshine.
Phaeton II measures 6×7 inches and weighs less than two pounds. It is constructed with anodized gold or silver frame, heavy-duty aluminum battery cradles and the same silicone covering used to protect the solar cells on orbiting communication satellites. The unit contains no plastic parts.

The manufacturer states the average consumer could spend as much as $\$ 100$ per year on throw-away batteries to power portable radios, tape recorders, toys, games, flashlights,

cameras, and other electronic appliances found in many homes today. At $\$ 49.50$, the Phaeton II can totally replace this annual cost after it pays for itself in the first 6 to 7 months of use.
The unit is available directly from the manufacturer, International Solar Products Corporation, 1105 W. Chapel Hill St., Durham, North Carolina 27701; telephone 919-489-6224.

frequency counter program

A cassette program that turns the Apple II computer into an audio frequency counter with an accuracy of 30 parts-per-million. You may consider this a rather expensive frequency counter, especially when it doesn't cover rf at all. However, it is aimed primarily at those experimenters who already have an Apple II computer.

This counter has a twist to it. Unlike most frequency counters, it does not gate the unknown for a fixed reference period. Rather it counts an approximately equal number of clock pulses over an exact (but arbitrary) multiple of whole cycles of the unknown. Then it calculates the frequency from this average, much as a period counter would. The result is that the full stated accuracy is achievable in less than two seconds, over the entire audio range. This means that in less than two seconds you can find out the frequency of your subaudible tone encoder to within 0.01 Hz . The counter can achieve even

CB TO TEN METER CONVERSION KITS

KITS for AM - SSB-FM 40 Channel PLL chassis conversions
DETAILED INSTRUCTIONS for easy installation with minimum time and equipment
BAND COVERAGE flexibility provides up to 1 MHz coverage for most PLL chassis.
PRICES Low cost prices range from $\$ 8.00$ to $\$ 50.00$

All kits are in stock including several different FM kits.
FREE CATALOG Write or call today.

INDEPENDENT

CRYSTAL SUPPLY COMPANY

P.O. Box 183

Sandwich, Ma. 02563-0183
(617) 888-4302

QUALITY MICROWAVE TV SYSTEMS

1.9 to 2.5 GHz Antennas

 Complete System (Rod Style as pictured) $\$ 124.95$ Complete System(Reilector Style as pictured) $\$ 149.95$ Down Converter. Assembled \& Tested $\$ 64.95$ Power Supply 1221018 v$)$ $\$ 49.95$ Also Dish Style Antennas In Stock.

Galaxy

Electronics 6007 N. 61stave. Glendale, Az. 85301
(602) 247-1151

COD's
Quantity Pricing

greater accuracy if you have a little patience. It also keeps a running average of the last N (default is 50) samples. If fewer than N have been taken, it will average them. The result is accuracy approaching 1 PPM.

Although the Apple's time base (which is the reference for this program) isn't calibrated or compensated, it is crystal controlled and therefore relatively stable over short periods once it has temperature stabilized. Included is a procedure (need only your cassette recorder, microphone, and a color TV) to calibrate it in software, using the 15734.26 Hz horizontal oscillator frequency of a color TV receiver. This signal is of course locked to the station it is receiving, which, if a network program is being viewed, is in turn locked to a cesium 3.579545 MHz reference at the network.

A copy of the cassette costs $\$ 15$. For more information and dealer prices, contact Wilton Helm, WA6GQO, 827 Vinton Court, Thousand Oaks, California 91360.

220 MHz H.T. amplifier

Mirage Communications Equipment, Inc., announces the release of its new $220-\mathrm{MHz}$ amplifier. The C22 solid-state all-mode 220 to 255 MHz amplifier has the same famous fiveyear warranty (one year on rf power transistors) as all Mirage products.

The C22 has many features, including bias as a linear amplifier IE: fm , SSB, CW; it can be keyed with as little as 300 mW ; 2 watts in with 20 watts out; and dc power 13.6 Vdc at 3 amps (full output).

For additional information, contact Mirage Communications Equipment, Inc., P.O. Box 1393, Gilroy, California 95020; telephone 408-847-1857.

micro computer pollution control

Power-line electrical noise, hash, and spikes often cause erratic computer operation. In addition, severe spikes from lightning or heavy machinery may damage expensive hardware. Many systems create their own pollution. Disks and printers often create enough electrical interference to disrupt an entire program. Nearby electronic equipment is affected as well.

Electronic Specialists' recentlyannounced Magnum Isolator Model ISO-17 is designed to control severe electrical pollution. Incorporating heavy duty spike/surge suppression, the Magnum Isolator features four individually quad-Pi filtered ac sockets. Equipment interactions are eliminated and disruptive/damaging power line pollution is controlled. The Magnum Isolator will control pollution for an 1875 -watt load. Each socket can handie a 1000 -watt load. Price, $\$ 181.95$.

For more information, contact Electronic Specialists, Inc., 171 South Main Street, P.O. Box 389, Natick, Massachusetts 01760; telephone 617-655-1532.

300-watt antenna tuner

Palomar Engineers introduces the new PT-407 antenna tuner. The PT407 is a general-purpose tuner for $1.8-30 \mathrm{MHz}$, for matching antennas

fed with coaxial or open wire lines, single wire, or mobile antennas. The 300 -watt power rating makes it just right for most transceivers. The PT-

407 is an efficient tuner with a large, airwound coil, a large balun for openwire feed, and with ceramic insulation throughout. It is housed in an 8 $\times 4 \times 7$-inch aluminum cabinet with brushed aluminum control panel and black vinyl cover. All controls are on the front panel. Coaxial connectors are SO-239. Porcelain feedthrough insulators are used for balanced line and single wire inputs.

The PT-407 Antenna Tuner sells for $\$ 149.95$. For further information write to Palomar Engineers, 1924-F W. Mission Road, Escondido, California 92025; telephone 714-747-3343.

regulated dc power supply

The precision-regulated dc power supply from Tripp-Lite converts 120 Vac into 13.8 Vdc . It allows users to operate dc mobile equipment on ac

home power, and it saves money, as this unit is inexpensive and eliminates the need for buying ac equipment.

Features include solid-state integrated circuits for precise regulation; filter insuring low noise operation; current limiting electronic foldback for automatic overcurrent protection; heavy duty power transformer for complete line isolation; ripple voltage from 0 to full load is only 0.1 volts maximum; on/off indicator light and on/off switch on face-plate; UL listed ac cord and plug type SPT-2.

For more information, contact Tripp-Lite, 500 N . Orleans, Chicago, Illinois 60610.

Hamtronics ${ }^{\oplus}$ kits

The R76 VHF fm receiver kit is a new version of the R75 receiver for 10 meters, 6 meters, 2 meters, 220 MHz , or the adjacent commercial bands. It features a very low noise front end, pump-resistant squelch with hysteresis to lock onto fading signals, onboard volume and squelch controls for easy wiring, and fixed i-f filters for easy alignment. It has also been reduced in size - now only $31 / 4 \times 4$ inches ($8.25 \times 10.16 \mathrm{~cm}$). It is available in two selectivity options, starting at $\$ 84.95$.

The model R451 UHF receiver kit includes the features in the R76 kit as well as automatic frequency control to lock onto drifting transmit signals. Kits are available with various options starting at $\$ 94.95$.

Hamtronics ${ }^{\oplus}$ new line of low-noise amplifiers resembles the popular P30 and P432 receiver preamps, but the circuit is new. The LNA 28, LNA 50 , LNA 144, LNA 220, and LNA 432 units are optimized for lowest noise figure at the ham bands, but they can also be used on adjacent commercial bands. The LNA 432 also provides very good gain and noise figures for UHF TV signals and the new 800 MHz commercial band: 0.5 dB at 28 and 50 $\mathrm{MHz}, 0.6 \mathrm{~dB}$ at $144 \mathrm{MHz}, 0.7 \mathrm{~dB}$ at 220 MHz , and 0.95 dB at 432 MHz . Gain runs from 33 dB at 28 and 50 MHz to 17 dB at 432 MHz . The price is $\$ 39.95$ for the VHF units and $\$ 44.95$ for the UHF unit.

The Shuttle receiver kit, a special version of the Hamtronics R110-450 UHF a-m aircraft receiver to listen to the space shuttle, is now available off the shelf for $\$ 94.95$.

For further information, contact Hamtronics, Inc., $65-\mathrm{V}$ Moul Road, Hilton, New York 14468-9535; telephone 716-392-9430.

5/8 antenna for handhelds

Centurion has added a new model to their line of heavy-duty telescoping antennas. It is a full-length $5 / 8$-wave

radiator providing increased efficiency and range for handheld radios.

Designated Style F, the new antenna for VHF frequency bands from $118-174 \mathrm{MHz}$ is fitted with a BNC connector.

For more information, contact

Centurion International, P.O. Box 82846, Lincoln, Nebraska 685012846; telephone 402-467-4491.

special keyboard

Pipo Communications has just announced a specially designed keyboard compatible with the Collins KWM-380 high-frequency radio. The new sixteen-button keyboard is colorcoordinated and has the fourth row buttons marked to indicate their function. This will facilitate ease of operation by eliminating the need to memorize what the buttons do. The keyboard sells for $\$ 20$ and has a frame available for $\$ 3$.

For more information or to order, please contact Pipo Communications, P.O. Box 3435, Hollywood, California 90028; telephone 213-852-1515.

6-meter transceiver

ICOM has announced the IC-505, a fully synthesized multimode transceiver covering 50 to 54 MHz (option), USB, LSB, and CW on fm . It uses an internal battery pack (9 C-size batteries), and puts out three watts of rf power when run on its batteries, or ten watts when connected to an ex-
ternal 13.6 volt dc source. Low power is 0.5 watts.

Features include an LCD frequency display for low battery consumption, provision for internal memory backup, dual VFOs, five memories plus a call channel, memory scan, program scan, sideband squelch, LCD annunciators for VFO, scan, memory channel, call and split, and split frequency operation.

For more information, contact ICOM America, Inc., 2112 116th Avenue, N.E., Bellevue, Washington 98004; telephone 206-454-8155.

GaAs FET VHF/UHF amplifiers

Lunar Electronics announces a line of narrow-band tuned receiving preamplifiers for the VHF and UHF communities. Typical specifications exceed previously available receiving preamplifiers by up to ten times in performance. Exhibiting very high gain at VHF, typically 22-24 dB, moderate gain at UHF, typically 16 dB , plus a very low noise figure, typically $0.3-0.4 \mathrm{~dB}$ at VHF and $0.5-0.6 \mathrm{~dB}$ at UHF land mobile frequencies, these units are also well suited to high rf environments, exhibiting 1 dB compression power levels of +10 dBm or more. The good gain, coupled with very low noise figure, effectively reduces a typical repeater receiver sensitivity to that of ambient limitations. Improvements in receiver performance have been consistently reported by users at 6-10 dB in a typical repeater installation between the duplexer and receiver input.

Units are built to customer's specified frequency, but do exhibit a typi-

The Interface ${ }^{t m}$

Sugg. Price \$189.95
Your personal computer becomes a complete cW/ RTTY/ASCII send and receive terminal with The interface linking it to your transceiver.
If you own an Apple II or Apple II Plus, Atari 400 or 800 , TRS-80 Color Computer, or VIC-20, The interface will put your computer "On-The-Air".
Software for each system features split screen display, buffered keyboard, status display, and message ports. Attach any Centronics compatible printer for hard copy. Software is available, on diskette for the Apple and program boards for the others, at an additional cost.

Apple diskette	Atari board	VIC-20 board	TRS-80C board
$\$ 29.95$	$\$ 49.95$	$\$ 49.95$	$\$ 59.95$

see The Interface at your authorized Kantronics dealer, or contact:

EEKantronics

cal bandwidth of 5 percent CF with little degradation in performance. Dc input is well filtered and regulated, which allows accepting any dc voltage between 12 and 28 volts, drain approximately 35 mA . VHF connector options include BNC, SMA, N in and out; UHF connector options are SMA, N in and out, with SMA in

BNC out the standard option. SMA to RG-58 connectors are included as option for UHF units. Frequencies are available from as low as 15 MHz to the 800 MHz land mobile bands.

For more information, contact Lunar Electronics, 2775 Kurtz Street, Suite 11, San Diego, California 92110; telephone 714-299-9740.

Continuing ition of performance...

AMP-LETTER

All new publication, new owner K8KXK.
The AMP-LETTER is devoted to the design, building, and modi-
fication of amplifiers.
The AMP-LETTER will help you lower your building cost, provide sources for parts and information, keep you abreast of latest techniques and solid state design
Subscription cost $\$ 18.00 / \mathbf{y r}$. 12 issues. Sample issue $\$ 2.00$ VISA Master Charge.
THE AMP-LETTER
73 Maple Drive, Hudson, OH $44236 \quad 216-653-8157$

LUNAR'S LINEARIZED AMPS AND PREAMPS SUBSTANTIALLY IMPROVE THE OUTPUT POWER OF YOUR MOBILE AND FIXED STATIONS PLUS IMPROVE BASIC RECEIVER SENSITIVITY.

- Amplifiers have pre-amps built handheld in emergencies. into a single package.
- Being Linearized, they accept all modes: SSB, AM, FM, etc.
- Will function with lower than rated drive. Eg.: Lunar 30 W amp can be used with 5 watt

Write for complete literature.

FREE! CABLE LOSS CHART IN WINTER CATALOG NEMAL ELECTRONICS COAXIAL CABLE SALE

 POLYETHYLENE DIELECTRIC RG213 noncontaminating 96% shield mil spec . RG214/U double siver shield 50 ohm. RG142/U double silver shield 50 ohm Tefion RG11U 96% shield 75 ohm mil specR $\star \mathrm{RG}-8 / \mathrm{M} 96 \%$ shield Mil $\mathrm{Spec} \quad$ ($\$ 27.95 / 100$) or 31 th RG62A/U.96\% shield mil spec 93 ohm

 LOW LOSS FOAM DIELECTRIC
RG-8X (Mini 8) 95% shield ($\$ 14.95 / 100$) or $17^{*} /$ /t.

* RG8U 80% sheld
($\$ 15.95 / 100$) or $19^{*} / \mathrm{fI}$.
RG-B/U 97% shield 11 gauge (equiv. Belden 8214)
RG58U 80% shield
RG58U 95\% shield
RG59/U 100\% toil shield TV type i $\$ 700 / 1001010^{\circ} / \mathrm{ft}$.
HEAVY DUTY 2.16 ga 6.18 ga .
Rotor cable $2 \cdot 18$ ga $6 \cdot 22$ ga
CONNECTORS MADE IN USA
Amphenol PL 259
PL-259 push-on adapter shell
PL-259 and/or S0-239
Double Male Connector
PL-258 Double Female Connector
1 ft . patch cord w/RCA type plugs each end
3/5100
Reducer UG-175 or 176
UG-255 (PL-259 to BNC)
Elbow (M359) UHF Elbow
F59A (TV type)
UG 21 D/U Type N Male for RG8. Amphenol
UG-88C/U BNC Male for RG-58. Amphenol
UG 273 BNC.PL259 Amphenol
16 inch Mike Plug tor Collins etc. (cutoff)
Call or write for Free Catalog

shipping

Cable - $\mathbf{\$ 3 . 0 0}$ 1st $100 \mathrm{ft}, \mathbf{\$ 2 . 0 0}$ each add'l 100 ft . Connectors - add 10%, $\$ 3.00$ minimum.
COD add $\$ 1.50$. Florida Residents add 5%
NEMAL ELECTRONICS
1327 N.E. 119 St., Dept. H, N. Miami, FL 33161 Telephone: (305) 893-3924

R-4C+SHERWOOD

STLL THE FINEST COMBINATION
600 HZ LOW-LOSS 1st.IF CW FILTER. Improve early-stage selectivity. Eliminate high-pitched leakage around 2nd-IF filters overloading 2 nd mixer, causing intermod and desensitization CF 600/6: $\$ 80.00$. New PC board relay switch kit: $\$ 45.00$ 1st-IF SSB FILTERS. 140 dB ult. rej. CF-2K/8: $\$ 150.00$ pair. 5 kHz 1st-IF FILTER. Reduces hi-pitched QRM. CF $-5 \mathrm{~K} / 8: \$ 80.00$ 16 POLE R4C SSB! Plug in filter. Unexcelled skirt selectivity 1800 Hz at $-6 \mathrm{~dB}, 2400 \mathrm{~Hz}$ at 60 dB . CF $2 \mathrm{~K} / 16: \$ 135.00$
250, 500 and 1000 Hz 8-POLE 2nd-IF PLUG-IN FILTERS, CF-250/8, CF-500/8 and CF-1.0K/8 $\$ 80.00$.
PC Board mod, and switching kits. Special AM filters/detector, Filters also for R-4 (B), R-7, TR-7, TR-4, Signal/One, Atlas. Add $\$ 3$ shipping per order; $\$ 6$ overseas air.

Sherwood Engineering Inc.

1268 South Ogden St.
Denver, Colo. 80210
(303) 722-2257

VISA

ALL BAND TRAP ANTENNAS!

PRETUNED-ASSEMBLED ONLY ONE NEAT SMALL ANTENNA FOR ALL BA-
NDS! EXCELLENT FOR APARTMENTSI
PROVED DESIGN I IM-

COMPLETE
CL259 connectoth 90 ft RG58U-52 ohm feediline, and supports, center connector with buith in lightning arrester and tatic discharge. Low SWR over all bands - Tuners usually NOT NEEDEDI Can be used as inverted V's - slopers - in attics, on
building tops or narrow lots. The ONLY ANTENNA YOU WILL
EOU building tops or narrow lots. The ONLY ANTENNA YOU WIL
EVER NEED FOR ALL BANDS! NO BALUNS NEEDED! 80-40-20-15-10 - - 2 trap - 104 ft . - Model 998BUC . \$89.95 40-20-15-10 - 2 trap .- 54 ft . - Model 10018UC . \$88.95 20-15-10 meter - 2 trap - 26 ft . - Model 1007BUC . $\$ 87.95$ SEND FULL PRICE FOR FOSTPAID INSURED, DEL. IN USA. (Canada is $\$ 5.00$ extra for postage - clerical- customs etc) or order using VISA - MASTER CARD - AMER. EXPRESS. Give number and ex, date. Ph 1-308-236-5333 9AM - 6PM SAVE - ORDER NOWI All antennas guaranteed for 1 year 10 day money back trial if returned in new condition! Made in USA. FREE INFO. AVAILABLE ONLY FROM

Dept. AR- 12 WESTERN ELECTRONICS
Tell 'em you saw it in HAM RADIO!

fleo Ninin兵 market

RATES Noncommercial ads 10¢ per word; commercial ads 60¢ per word both payable in advance. No cash discounts or agency commissions allowed.

HAMFESTS Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing) on a space available basis only. Repeat insertions of hamfest ads pay the non-commercial rate.

COPY No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.
DEADLINE 15th of second preceding month.
SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

QSL CARDS

QSLs \& RUBBER STAMPS - Top Quality! Card Samples and Stamp Info - 50 c - Ebbert Graphics 5R, Box 70 , Westerville, Ohio 43081.
TRAVEL-PAK QSL KIT - Converts post cards, photos to QSLs. Stamp brings circular. Samco, Box 203-c, Wynantskill, New York 12198.

QSL CARDS: $500 / \$ 12.50$, ppd. Free catalogue. Bowman Printing, 743 Harvard, St. Louis, MO 63130.

QSL SAMPLES: 25c. Samcards, 48 Monte Cario Drive, Pittsburgh, PA 15239.
DISTINCTIVE QSL's - Largest selection, lowest prices, top quality photo and completely customized cards. Make your QSL's truly unique at the same cost as a standard card, and get a better return rate! Free samples, catalogue. Stamps appreciated. Stu K2RPZ Print, P.O. Box 412, Rocky Point, NY 11778 (516) 744-6260.

QSL ECONOMY: 1000 for $\$ 13$. SASE for samples. W4TG, Box F, Gray, GA 31032.

QSLS'S: NO STOCK DESIGNS! Your art or ours; photos, originals, 50 . for samples \& details (refundable). Certified Communications, 4138 So. Ferris, Fremont, Michigan 49412.

Foreign Subscription Agents for Ham Radio Magazine

FOR SALE: Heath HW-8 and supply $\$ 100$. Heath GDO \$35. Astatic D104/TUG8 mike \$25. All A-1 cndx. WB2ZQP, T. Woodruft, Box 847, Pierrepont Mnt., NY 13674.

HAM-AD-FEST - Next 6 issues $\$ 2.00$. WA4OSR's Rigs \& Stuff, Box 973.H, Mobile, AL 36601

TWO-METER TRANSVERTER for sale. Yaesu FTV-250, 28 MHz in/out, 10 watts CW-SSB output on $144-148 \mathrm{MHz}$. Lunar 20dB gain lo-noise preamp installed for higher performance $\$ 190.00$. CD AR-22 rotator $\$ 15.00$. Daiwa RF-440 speech frocessor $\$ 115.00$. WB2ARS, 5011 Calle De Luna, Albuquerque, NM 87111. (505) 296-4653.

WANTED: Micor and Mstr II Base Stations 406-420 and $450-470 \mathrm{MHz}$. Also 2 and 6 GHz solid state microwave equipment. AK7B, 4 Ajax Place, Berkeley, CA 94708.

TRANSMITTERS, receivers, antennas, rotor, test equipment. Very reasonable. (603) 352-4205.
CHASSIS and cabinet kits. SASE K3IWK.
FOR SALE: Heath SB-200 with 10 m \$225. KLM 2 m linear PA 15-80BL \$75. Both FOB my QTH. Neil (201) 362-9262.

ANTENNA TROUBLE ??? For $\$ 5.00$, Antenna Analyst, 40 Benefit Rd., Wakefield, R.I. 02879 will cure your headache, or refund your money.

PRE-1946 TELEVISION SETS wanted for substantial cash. Finder's fee paid for leads. Also interested in spinning disc, mirror in-the-lid, early color sets, 9AP4 picture tubes. Arnold Chase, 9 Rushleigh Road, West Hartford, Conn. 06117 (203) 521-5280.

RTTY AND ASCII for Atari. Plans and a drilled PC board to build your own modem. ASCII and RTTY programs on disk all for \$25. Robert Holsti, K7ZJD/KH2, Box 4426, AAFB Br. Yigo Guam 96912 (USA).

APPLE II COMPUTER OWNERS! The RADCOM PLUS + package consists of a quality TU interface that installs in the APPLE, connects to your rig and uses the most advanced, feature packed software ever developed for sending and receiving RTTY and Morse code. Detailed information from: Alex M. Massimo, AF6W, 4041-41st Street, San Diego, CA 92105.

TUBES, TUBES wanted for cashortrade. 304TL, 4CX1000A, 4PR60C, WE300, 7F7, 7N7, 53, 6L6M. Any high power or special purpose tubes of Eimac/Varian. DCO, 10 Schuyler Avenue, No. Arlington, NJ 07032. (800) 526-1270.

SALE: SASE for list of Ham, TV tubes, hard to find parts, etc. Lowest prices. WA9CAQ, 1449 W. Ash, Fullerton, CA 92633.

FOR SALE: Ham Radio Horizons March 1977 (first issue) to December 1980. Plus Ham Radio January 1981 to April 1982. Excellent condition. Make offer. G. Gifford, 9936 Timothy, Salinas, CA 93907.

EMBROIDERED EMBLEMS, ENAMELED PINS, your design, low minimum. Informational booklet. Emblems, Dept. 65, Littleton, New Hampshire 03561. (603) 444-3423.

DRAKE SATELLITE RECEIVER with modulator installed only $\$ 969$. Satellite and Microwave TV catalog $\$ 1.00$. TEM Microwave, 22518 97th Ave. No., Corcoran, MN 55374 (612) 498-8014.

FREE! To 100th customer, 100 watt, 2 meter amp for use of "call" to verify receipt. Custom built class A, AB, B \& C power amps covering std. Ham bands to your specs to 1 KW at lowest prices. 1 yr , warrantee. Quotes by return mail. L.L. Lektronics, P.O. Box 7086, Long Beach, CA 90807.

SATELLITE TELEVISION INFORMATION. Build or buy your own earth station, $\$ 4.00$ to Satellite Television, RD \#3, Oxford, NY 13830. Parabolic antenna construction book also available. Send SASE for details.

MOBILE IGNITION SHIELDING. Estes Engineering, 930 Marine Dr., Port Angeles, WA 98362.

RTTY-EXCLUSIVELY for the Amateur Teleprinter. One year $\$ 7.00$. Beginners RTTY Handbook $\$ 8.00$ includes journal index. PO Box RY, Cardiff, CA 92007.

SWITZERLAND: Need urgent VOCOM power amplifier Model 2C400 2m FM-SSB 10w drive if possible with diagram new or second hand. Edy von Wartburg, HB9ABV, $\mathrm{CH}-1099$ Servion Villa large vue.

WE WANT your innovative, working antenna and ham product designs for development and marketing. Jon Titus (KA4QVK) Box 242, Blacksburg, VA 24060. (703) 951-9030.

DRAKE TWINS - T-4XB, R-4B, AC-4, MS-4. Mint condition. Extra crystals. $\$ 500 / B O$. You ship. Tow Browning. Needharn, Mass. WA1ELQ (617) 444-3638 after 6 PM.

PC BOARDS from your artwork or schematic. Info and sample. Jaxxon Electronics, K0UV, 1530 W. Villa Theresa, Phoenix, AZ 85023. (602) 866-9071.

- All the popular sizes and mixes.
- Fast Service. Same day shipment via first class mail or air.

IRON POWDER TOROIDS:

$\begin{aligned} & \text { CORE } \\ & \text { SIZE } \end{aligned}$	$\begin{gathered} \text { M1X } 2 \\ 5 \cdot 30 \\ \text { MHz } \\ u=10 \end{gathered}$	$\begin{gathered} \text { M1X } 6 \\ 10.90 \\ M H z \\ u=8.5 \end{gathered}$	$\begin{aligned} & \text { MIX } 12 \\ & 600200 \\ & M H 2 \\ & U=4 \end{aligned}$	$\begin{aligned} & \text { SIZE } \\ & \text { OD } \\ & \text { [in.] } \end{aligned}$	$\begin{gathered} \text { PRICE } \\ \text { USA } \\ 5 \end{gathered}$
T-200	120			2.00	4.25
T-106	135			1.06	1.75
T-80	55	45		80	1.05
T-68	57	47	21	68	95
T-50	51	40	18	50	70
T-37	42	30	15	. 37	60
T-25	34	27	12	25	45

RF FERRITE TOROIDS:

$\begin{aligned} & \text { CORE } \\ & \text { SIZE } \end{aligned}$	$\begin{gathered} \text { MIX } 01 \\ u=125 \\ 1.70 \\ M H z \end{gathered}$	$\begin{gathered} \text { MIX } 02 \\ u=40 \\ 10-150 \\ 102 \\ M H z \end{gathered}$	$\left\|\begin{array}{c} \text { MIX H } \\ U=850 \\ \text { to }=10 \mathrm{MHz} \end{array}\right\|$	$\begin{aligned} & \text { SIZE } \\ & 00 \\ & \text { [in.] } \end{aligned}$	$\begin{gathered} \text { PRICE } \\ \text { USA } \\ \text { S } \end{gathered}$
F-240	1300			2.40	9.00
F-114	1500			1.14	2.50
F-87	900	300		87	1.25
F-50	750	250	5000	50	80
F-37	550	200	4000	. 37	60
F-23	250	100	1500	23	. 50

Chart shows uH per 100 turns
Ferrite Beads slip over 18 ga. wire
FB-1 for $50-200 \mathrm{MHz} \ldots$. \$2/dozen
FB-2 for 50 MHz \& below ... \$2/dozen Jumbo Beads slip over \#12 wire

FB-3 for 50 MHz \& below . . \$3/dozen
EXPERIMENTER'S KITS
Iron Powder Toroids $\quad \$ 10.00$ Includes:
1 ea. T25-12, T37-2, T80-2, T106-2. 2 ea. T25-6, T37-6, T50-2, T50-6. 3 ea. T68-2

RF Ferrite Toroids

$\$ 10.00$
Includes:
1 ea. F50-Q2, F114-Q1
2 ea. F23-Q1, F23-Q2, F37-Q1
F37-Q2, F50-Q1, F87-Q1
TO ORDER: Specity both core size and mix for toroids. Packing and shipping $\$ 1.50$ per order USA and Canada. Californians add 6% sales tax.

Fast service. Free brochure and winding chart on request.

> Palomar
> Engineers
> Box 455. Escondido. CA 92025 Phone: (619) 747-3343

ON

ICOM

IC.740

IC-720A

IC-730

FOR SALE: Popular Kenwood TS-520S w/CW filter, vOX and CW never used. Rig used very little and in mint condition. Original carton and manual $\$ 500$. Morris Shishcoff, W6IRP, 613 S. Breed St., Los Angeles, CA 90023. (213) 262 -4598.

SAVE MONEY on Rubber Stamps. Catalog plus discount coupon. Send 25 c . Hastings, Box 1951-HR, Pine Bluff, AR 71613.

CHEAP, QUALITY ANTENNAS! Di-poles. "The Di-pole" report covers construction, materials, setting up. Plus: frequency, SWR/Power loss and effective radiated power charts. Only $\$ 3.00 /$ copy. Cheque or MO to HBE Publishing, Box 13226, Kanata, Ontario K2K-1X4.
WANTED: Buy or swap Model 28 paper winders (LPW 300). Top prices paid for complete units or parts. Call or write Van, W2DLT. In NJ 800-272-1331, outside NJ 800-$526-3662$. Box 217, Berkeley Hts., NJ 07922 .
R390A SSB ADAPTER - excellent SSB, RTTY. No receiver modifications needed \$25. K8EYU/7, 963 Birch Bay Lynden Rd., Lynden, WA 98264. (206) 354-5884.
MANUALS for most ham gear made 1937/1970. Send $\$ 1.00$ for 18 page "Manual List", postpaid. HI-MANUALS, Box R802, Council Bluffs, lowa 51502.

SATELLITE TELEVISION - Howard/Coleman boards to build your own receiver. For more information write: Robert Coleman, Rt. 3, Box 58 -AHR, Travelers Rest, SC 29690.

WANTED: Schematics-Rider, Sams or other early publications. Scaramella, P.O. Box 1, Woonsocket, RI 02895-0001.

WANTED: Early Hallicrafter "Skyriders" and "Super Skyriders" with silver panels, aiso "Skyrider Commercial", early transmitters such as HT-1, HT-2, HT-8, and other Hallicrafter gear, parts, accessories, manuals. Chuck Dachis, WD5EOG, The Hallicrafter Collector, 4500 Russell Drive, Austin, Texas 78745.

TELETYPE PARTS WANTED: Any quantity, any models, highest prices paid. In NJ 800-272-1331, outside NJ 800 -526-3662. Van, W2DLT, Box 217, Berkeley Hts., NJ 07922.
SATELLITE TELEVISION: Discount prices on all major TVRO items. Communications Consultants. (501) 452.3149.

HAM RADIO REPAIR, experienced, reasonable, commercial licensed. Robert Hall Electronics, P.O. Box 8363, San Francisco, CA 94128. W68SH, (408) 292-6000.
RUBBER STAMPS: 3 lines $\$ 3.25$ PPD. Send check or MO to G.L. Pierce, 5521 Birkdale Way, San Diego, CA 92117. SASE brings information.
D \& V RADIO PARTS - Variable capacitors, miniductors, toroids, etc. Write for flyer, stamp please. 12805 W . Sarle, Freeland, Michigan 48623.

WANTED: New or used MS and coaxial connectors, synchros, tubes, components, military surplus equipment. Bill Willams, PO \#7057, Norfolk, VA 23509.
VERY in-ter-est-ing! Next 5 issues $\$ 2$. Ham Trader "Yellow Sheets", POB356, Wheaton, IL 60187.
CB TO 10 METER PROFESSIONALS: Your rig or buy ours - AM/FM/SSB/CW. Certified Communications, 4138 So. Ferris, Fremont, Michigan 49412; (616) 924.4561.

HAMS FOR CHRIST - Reach other Hams with a Gospel Tract sure to please. Clyde Stanfield. WA6HEG, 1570 N. Albright, Upland, CA 91786.

KT5B Multi-Band dipole 160-80M (WARC) \$59.95, 2KW plus center connector w/SO239 $\$ 8.50$. Kilo-Tec, P.O. Box 1001, Oak View, CA 93022. (805) 646-9645.
MOTOROLA ALL SOLID.STATE MOTRAN RADIOS, Model X43LSN-2170, four frequency, transmit 150 MC (30W), receive 450 MC . Will operate in Ham Bands. No modification required. Large stock available. $\$ 150.00$ each. Omni Communications. Call (312) 852-0738.

MOTOROLA VHF (2 meters) U43 Motran, 4 channel all solid state. Omni Communications. Call (312) 852-0738.

Coming Events ACTIVITIES
 "Places to go..."

ILLINOIS: Wheaton Community Radio Amateurs Hamfest will be held February 6, 1983 at Arlington Park Race Track EXPO Center, Arlington Heights, Illinois. Free Flea Market tables and plenty of floor space. Large commercial area including computer section. For general info call W9JTO at 311-231-9524. Clear paved parking.

SAY

YOU SAW

 IT IN
ham radio!

Alaska

Microwave Labs
GENERAL DELIVERY, PALMER, ALASKA 99645 (907) 277-2968

DEPT. HR

 $180.220 .270 .330 .390 .470 .560 \quad 680 \quad 820.1 \mathrm{~K}+2 \mathrm{~K}$

I BK 39 K .82 K .10 K .100 K

MGF 1400 NF 200 B @ 4 GHZ MAG $150 \mathrm{~B} \quad \$ 1900$ MGF 1412 NF 080 B @ 4GHZ MAG 180

 MCF4 GHZ

COAX CONNEGTORS

BNC CHASSIS MOUNT SOUARE FLANGE

BNC PLUG FOR RG-58
SMA CHASSIS MOUNT SQUARE FLANGE SMA CHASSIS MOUNT PLUG SO FLANGE SMA CHASSIS MOUNT STRIP-LINE TAB SMA PLUG FOR RG-58
SMA PLUG FOR RG-174
SMA PLUG FOR 141 SEMI RIGID
TYPE N CHASSIS MOUNT SQUARE FLANGE TYPE N PLUG FOR RG-9/RG-8
TPPE N DOUBLE MALE
TYPE N FOR 141 SEMI-RIGID
TYPE N CHASSIS MOUNT PLUG SOUARE FLANGE
SILVER PLATING KIT
Will plate Copper. Brass. Bronze. Nickel. Tin. Pewter,
Gold and most white metal alloys
VTO
V72T-1 27GHZ TO 3.2GHZ MIN POWER OUT 10 MW TUNING VOLTAGE O TO 20V VCC -15 VDC © $60 \mathrm{MA} \$ 9800$ VB2T-1 SAME AS V72T-1 BUT FREO. $366 \mathrm{GHZ} 1042 \mathrm{GHZ} ~ \$ 9800$ TEFION CIRCUIT BOARD DBE SIDED $10 Z$
 APPROX $325=50=0312$
APPROX $325=50=0625$

FEED-THRU CAPACITORS

 1000 PF SOLDER TYPE470 PF SOLDER TYPE
LEADLESS CERAMIC CAPACITORS
1000 PF
NO WARPANTE ON SEMCONOUCTORS
OPEN AT 8 PM EST CLOSED 8PM PST ORDERS ARE POSTAGE PAID
COD - VISA - MASTERCHARGE
THE CHAMP

BIRD MODEL 4304
NO ELEMENTS 25-1000 MHZ
RF SAMPLING PORT
authorize Ditili oistributor
Webster
WEBSTER COMMUNICATIONS INC. 115 BELLARMINE ROCHESTER, MI 48063 313-375-0420
CALL TOLL FREE 800-521-2333 800-482-3610

Awards. Tickets $\$ 3.00$ at entrance, $\$ 2.50$ in advance. Send SASE to WCRA, P.O. Box QSL, Wheaton, IL 60187. Talk-in on 146.01/61 and 146.94. Doors open 8 AM. Be There! - KA9KDC.

INDIANA - SOUTH BEND: Hamfest Swap \& Shop, January 2, 1982, first Sunday after New Year's Day at Century Center downtown on U.S. 33 Oneway North between St. Joseph Bank Building and river. Industrial History Museum in same building. Carpeted half acre room. Tables $\$ 3$ each. Four lane highways to door from all directions. Talk-in freq: 52-52, 99-39, 93-33, 78-18, 69-09, 145.43, 145.29.

MINNESOTA: The annual Handi-Ham Winter Hamfest, Saturday, December 4, at the Eagles Club, Faribault. Registration at 9 AM. Handi-Ham equipment auction, noon dinner, program and prize drawing. Talk-in on 19/79. For more information: Don Franz, W0FIT, 1114 Frank Avenue, Albert Lea, Minnesota 56007.

VIRGINIA: Richmond Frostfest '83. The annual winter Ham Radio and Computer Show will be held Sunday. January 16 at the State Fairgrounds, Richmond. General admission: $\$ 4.00$. All indoor flea market and commercial exhibits. Major prizes in HF and VHF equipment and a minicomputer. Sponsored by the Richmond Amateur Telecommunications Society, P.O. Box 1070, Richmond, VA 23208.

WOULDN'T IT BE GREAT? To pick a winner for "Amateur of the Year" at the Dayton Hamvention and get Free Tickets too. Write for details: Hamvention, P.O. Box 44, Dayton, Ohio 45401, attention awards. Do it now!

OPERATING EVENTS

"Things to do..."

DECEMBER 4: The Everglades ARC will operate W4SVI, 1300 UTC, December 4 and 2200 UTC December 5 to celebrate the 35th anniversary of the dedication of Everglades National Park. Frequencies: 10 kHz up from lower edges of 40 to 10 meter General phone bands and 146.52 MHz . Certificates for QSL and large SASE to: W4SVI, c/o Dick Dowst, Everglades ARC, 14511 S.W. 287th Street, Leisure City, FL 33033.

DECEMBER 17: The Switzeriand of Ohio ARES will operate a Christmas special event station at Jerusalem, Ohio, under the call N8DLJ, December 17, 18, 19 from 1600 to 2200 Z each day. Frequencies: First 10 kHz of General phone portion of each band and the first 10 kHz of the Novice bands as propagation permits.

DECEMBER 7: KCOFW plans to operate from St. Kitts (VP2K) December 7 to 13 . All bands $160-10$ phone and CW. Special attention to working Europeans and JA's.

DECEMBER 1-31: The BBC is celebrating the 50th anniversary of the official start of the Empire Service (now renamed the External Service). To commemorate this, the Ariel Radio Group has obtained special call signs. Stations will be GB2BBC, GB3BBC, GB8BBC, Central London; G3BBC, West London and GB4BBC, Caversham near Reading. Also other BBC Club Stations will participate. 80 m to 2 m with maximum activity around December 19. Main operating mode SSB on HF
DECEMBER: The Borealis ARC will present the Worked All North Pole Certificate to anyone working a minimum of three BARC members. Operating time 0400-0900Z, 30 kc up from lower edge of Novice and General bands. For certificate send call signs, dates worked and $\$ 2.00$ to: Borealis ARC, c/o Wendell Keller, SR Box 80343, Fairbanks, AK 99701.
DECEMBER 9: The Triple States Radio Amateur Club will operate from Bethlehem, West Virginia, December 9 December 12 from 1400 to 2300 UTC daily. Frequencies: for WD8DDL8 will be $7.275,14.325,21.415$ and 28.550 MHz on SSB and 7.110, 14.075, 21.110 and 28.110 MHz on CW. For a special holiday certificate for contacts SASE to TSRAC, 26 Maple Lane, Bethlehem, Wheeling. WV 26003.

DECEMBER 18: The Sandy River ARC, Farmington, Maine, will operate KA1CNG, Saturday, December 18, 1500 Z to Sunday, December 19, 2100 Z to celebrate Chester Greenwood Day. Also mobile from the Chester Greenwood Day Parade and related activities Tuesday. December 21, 1400 Z to 2100 Z . Frequencies: 5 to 10 kHz from bottom of General band edges and 3940 kHz . Certificate for your QSL card and two first-class stamps to KA1CNG, 5 Franklin Ave., Farmington, Maine 04938.

DECEMBER 4: The Argonne Amateur Radio Club plans to operate the club's memorial station, W9QVE, to commemorate the 40th anniversary of the first controlled nuclear chain reaction experiment conducted at Alonzo Stagg field on the University of Chicago campus, from 1500 GMT through 2400 GMT December 5. Frequencies: 20 kHz up from lower edge of General portion of bands 80 to 10 m , phone and CW.

-1-1O Watts Input - All-mode operation

 - 5 year warrantymodel:
B1O16 (2 meters)
IW In $=35 \mathrm{~W}$ Out
2W In $=90 \mathrm{~W}$ Out
10W In = 160W Out
with RX preamp!
$\$ 279.95$
C1O6 (22O MHz)
IW In $=15 \mathrm{~W}$ Out
2 W In = 30W Out
10W In $=60 \mathrm{~W}$ Out
with RX preamp!
$\$ 199.95$

D1O1O (43O-45O MHz)

IW In = 20W Out
2 W In $=45 \mathrm{~W}$ Out
10W In $=100 \mathrm{~W}$ Out
\$319.95
There's more, and WATT/SWR Meters, too! See your nearest Dealer

SATELLITE TELEVISION SYSTEMS

WE WILL NOT BE UNDERSOLD! Complete Systems, Antennas,
 Receivers, LNA's \& Accessories CALL US TODAY!
 812-238-1456

"Nation's Largest Total Communications Distributor" P.O. BOX 3300 - TERRE HAUTE, INDIANA 47803

ORR BOOKS

BEAM ANTENNA HANDBOOK

by Bill Orr, W6SAI

Recommended reading. Commonly asked questions like: What is the bes element spacing? Can different yagi antennas be stacked without losing performance? Do monoband beams outperform tribanders? Lots of construc tion projects, diagrams, and photos. 198 pages. © 1977 . Ist edition \square RP-BA

Softbound \$5.95

SIMPLE LOW-COST WIRE ANTENNAS

by Bill Orr, W6SAI
Learn how to build simple, economical wire antennas. Apartment dwellers take note! Fool your landlord and your neighbors with some of the "invisible" antennas found here. Well diagramed. 192 pages. © 1972
\square RP-WA
Softbound \$6.95

THE RADIO AMATEUR ANTENNA HANDBOOK

by William I. Orr, W6SAI and Stuart Cowan, W2LX
Contains lots of well illustrated construction projects for vertical, long wire. and HF/VHF beam antennas. There is an honest judgment of antenna gain figures, information on the best and worst antenna locations and heights, a long look at the quad vs. the yagi antenna, information on baluns and how to use them, and new information on the popular Sloper and Delta Loop antennas. The text is based on proven data plus practical, on-the-air experience. The Radio Amateur Antenna Handbook will make a valuable and often consulted reference. 190 pages. ©(c) 1978
$\square \mathbf{R P}$-AH
Softbound \$6.95

aLL ABOUT CUBICAL QUAD ANTENNAS

by Bill Orr, W6SAI
The cubical quad antenna is considered by many to be the best DX antenna because of its simple, lightweight design and high performance. You'll find quad designs for everything from the single element to the multi-element monster quad, plus a new, higher gain expanded quad ($x-0$) design There's a wealth of supplementary data on construction, feeding, tuning and mounting quad antennas. 112 pages. © 1977.

Softbound \$5.95
Please add $\$ 1.00$ to cover shipping and handling.
HAM RADIO'S BOOKSTORE
GREENVILLE, NH 03048

by

MODEL
XF-9A
XF-9B
XF-9B-01
XF-9B-02
XF-9B-02
XF-9B-10
XF-9B-10
XF-9C
XF-9C
XF-9D
XF-9D
XF-9E
XF-9M
XF.9M
XF.9NB
XF-9NB
XF-9P
XF910

XF107-A
XF107-A
XF107-B
XF 107 -B
XF 107 -C
XF 107 -C
XF107-D
XFF107-D
XF107.E
XM107-SO4

Appli- cation	Band- width	Poles
SSB	2.4 kHz	5
SSB	2.4 kHz	8
LSB	2.4 kHz	8
USB	2.4 kHz	8
SSB	$2.4 \mathrm{kHz}^{\text {AM }}$	3.75 kHz
AM	$5.0 \mathrm{kHz}^{\text {AM }}$	10
FM	12.0 kHz	8
CW	500 Hz	8
CW	500 Hz	8
CW	250 Hz	8
IF noise	15 kHz	8

10.7 MHz CRYSTAL FILTERS

Export Inquiries Invited

NBFM	12	kHz	8	$\$ 64.10$
NBFM	15	kHz	8	64.10
WBFM	30	kHz	8	64.10
WBFM	36	kHz	8	64.10
Pix/Data	40	kHz	8	64.10
FM	14	kHz	4	28.70

MICROWAVE MODULES VHF \& UHF EQUIPMENTS
Use your existing HF or 2 M rig on other VHF or UHF bands.
LOW NOISE RECEIVE CONVERTERS

1691 MHz	MMk1691-137	$\$ 224.95$
1296 MHz	MMk1296-144	119.95
$432 / 435$	MMc435-28(S)	69.95
$439-\mathrm{ATV}$	MMc439-Chx	74.95
220 MHz	MMc220-28	69.95
144 MHz	MMc144-28	54.95

LINEAR TRANSVERTERS

1296 MHz	1.3 W output, 2 M in	MMt1296-144	$\$ 374.95$
$432 / 435$	10 W output, 10 M in	MMt435-28(S)	299.95
144 MHz	10 W output, 10M in	MMt144-28	199.95
Other bands \&			

Other bands \& IFs available.

LINEAR POWER AMPLIFIERS

1296 MHz	10 W output	MML 1296-10-L	\$ ask
432/435	100 W output	MML432-100	444.95
	50 W output	MML432-50-S	239.95
	30 W output	MML 432 -30-LS	ask
144 MHz	100 W output	MML 144 -100-S	264.95
	50 W output	MML 144-50-S	239.95
	30 W output	MML144-30-LS	124.95
	25 W output	MML144-25	114.95
All models include VOX T/R switching. "L" models 1 or 3W drive, others 10W drive.			
Shipping: F	cord, Mass.		

420-450 MHz MULTIBEAMS

Ham Radio's Holiday Shopping Checklist

 IF YOU DON'T HAVE THE LATEST CALLBOOK ...

 IF YOU DON'T HAVE THE LATEST CALLBOOK ... YOU'RE ALREADY PAYING FOR IT.

 YOU'RE ALREADY PAYING FOR IT.}

1983 U.S. RADIO AMATEUR CALLBOOK

Your Amateur station is incomplete without the latest copy of the Callbook on your operating table The new 1983 edition has over 400,000 licensed Amateurs with up-to-date names and addresses. Also contains many helptul and hard to find operating and station aids. (c) 1982 . \square CB-US83 Softbound $\$ 23.00$
($\$ 19.95+\$ 3.05$ Shipping $)$

1983 FOREIGN RADIO AMATEUR CALLBDOK

DXing is one of the greatest aspects of Ham Radia! To ensure that you get your OSL card, accurate addresses and names are of the utmost im portance. With a copy of the Foreign Callbook on your shack desk, it's a breeze. Order today for the late fall and winter DX season. (G) 1982
\square CB-F83
Softbound \$22.00
($\$ 18.95+\$ 3.05$ Shipping)

1983 ARRL RADIO AMATEUR'S HANDBOOK

Place your order today and be one of the first to get a copy of the latest edition Radio Amateur's bible. Full of new projects and ideas, this book is a great gift idea as well as a present for yourself. Packed with information drawings and illustrations and written so that anyone can understand the material being presented. (c) 1982
\square AR-HB
Softbound \$12.00
$\square A R-B B$
Hardbound $\$ 17.75$
available mid December)
ARRL HANDBOOK - Scheduted to be ready for shipping late November 1982.

HAM RADIO LOGBOOK

A real Ham Radio bestseller. Lies flat just like the other one . . . But uses both sides of each page to give you twice as many entries per book! Plenty of e-x-t-r-a features make this the Logbook for you. $8 \frac{1}{2} \times 11$
© 1982
\square HR-LB
Spiralbound \$2.50 ea. Christmas Special - 3 logs for $\$ 4.95$

FIRST TIME EVER

AMATEUR RADIO CALL DIRECTORY

It's finally been done. A complete and up-to-date ($7 / 1 / 82$) directory of all licensed Radio Amateurs in the U.S. at twothirds the price of the other well-known book. Similar in lay out and appearance but printed on higher quality paper for easier reading, this book is a full $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ and is very easy to handle. Generic in appearance but oh what a value! Over 410,000 licensed Amateurs listed. (©) 1982 \square BM-CD

Softbound \$15.95
($\$ 12.95+\$ 3.00$ shipping)

UNIQUE ADDITIONAL

 CALL DIRECTORIESHere are two other call directories never before available. A bit expensive but well worth every dollar. See who the other Amateurs are in your area. Find those old triends you lost track of many years ago. Perfect for your club or your own library.

AMATEURS LISTED BY
 GEOGRAPHICAL LOCATION

Lists Amateurs in each town in U.S. (c) 1982.
\square BM-GA
Softbound \$28.00
($\$ 25+\$ 3$ shipping)
AMATEURS LISTED BY NAME
An alphabetical listing of all U.S. Amateurs. (c) 1982 .
\square BM-AL
Sottbound \$28.00 $(\$ 25+\$ 3$ shipping $)$

ARRL ANTENNA BOOK 14th Edition

This book is the Amateur Antenna bible. It includes just about every bit of intormation you'd ever want to know about antenna design, construction and theory. Starting off with wave propagation, antenna fundamentals and transmission line theory, this book progresses through coupling the transmitter and antenna to the feedline to 9 big, inclusive chapters on how to build difterent antennas. You also get a chapter on antenna and transmission line measurements and Antenna Orientation. New. large, magazine style gets you more "bang for your buck. © 1982 , 14th edition, 200 pages

$\square A R-A M$

Softbound $\$ 8.00$
CONFIDENTIAL FREQUENCY LIST 5th Edition

by Oliver P. Ferrell

Enjoy tuning across the bands looking for who-knowswhat? If you do, you've got to get a copy of this new book 225 pages are jam-packed with frequencies and callsigns. Hundreds of stations from around the world are listed first by frequency and then by callsign. You also get plenty of helptul hints and tips taken from the author's 40 + years in Radio. Author Ferrell is known worldwide as one of the most knowledgeable folks around when it comes to SWLing. ©) 1982, 5th edition 225 pages.
\square GL-CF
Softbound $\$ 9.95$

BEGINNER'S RTTY HANDBOOK

by the Editor, RTTY Journal
More than 85 pages of jam-packed information, lechnical discussion and illustrations for the Radio Amateur starting RITY operation. This handbook covers RTTY theory, applications, and operation. Includes: discussion of basics murray code, pulsing, AFSK keying, demodulation methods mechanical equipment descriptions, loop supplies, keying circuits, and test methods: machine instaliation and interconnections; adjustment and calibration: printer parts repair and replacement; HF transceiver hook-ups; auto-start; RTTY art; RTTY equipment supply sources. A valuable resource for any level of RTTY interest. (c) 1982 . 2nd Edition.
\square RJ-BH
Softbound $\mathbf{\$ 8 . 0 0}$

RADIO HANDBOOK
 22ND EDITION

by Bill Orr, W6SAI
A best seller for over 45 years! The 22nd edition reflects state-of-the-art techniques in a comprehensive, single source reference book. Invaluable for Hams, technicians, and engineers alike. Also chock-full of projects and other ideas that are of interest to all levels of electronics expertise, 1136 pages. © 1981 . 22nd edition
$\square 21874$ Hardbound
SAVE \$2 $\begin{array}{r}\text { Reg. } \$ 34.95 \\ \text { NOW } \$ 32.95\end{array}$

EVERYTHING YOU ALWAYS WANTED TO KNOW ABOUT AMATEUR TELEVISION but were afraid to ask
 by The Publishers of Amateur
 Television Magazine

Here is, in one complete volume, an introduction to the exciting world of Amateur TV. This book starts you oft with the history behind ATV, then tells you all about the equipment you need and then helps you put it together into an operating station. Transmitters, receivers, cameras and antenna systems are fully covered. You also get suggestions on handy station aids and helptul hints that will get you on the air. Also a chapter on ATV repeaters - the exciting way to extend your range. (c) 1982.112 pages 1 st edition.
CS-ATV
Softbound $\$ 9.95$

FROM BEVERAGES THRU OSCAR A BIBLIOGRAPHY -
 Addendum 1979-1981

A further index of all articles in HR. QST, CQ. 73 and Radio Communications from 1979 through 1981. A must guide to your technical library. (c) 1982 .
[.]PR-802
Softbound \$9.95

2ND OP

by Jim Rafferty, N6RJ
The 2 nd 0 p is an indispensable operating aid for ail Radio Amateurs. Gives you at the twist of a dial: prefixes in use, continent, zone, country, beam heading, time differential, postal rates, OSO and OSL record and the official ITU prefix list. Every ham needs a $2 n d$ Op. Order yours today. (c) 1981, NGRJ's 1st Edition
[HR-OP SPECIAL XMAS GIFT PRICE \$8.95
NOW \$4.95

AMATEUR RADIO -
 THEORY AND PRACTICE

by Robert L. Shrader, W6BNB
W6BNB's Electronic Communication has been considered the absolute "Cadillac" of radio theory license manuals But the high price of this superb book has kept many trom owning a copy. Now Mr. Shrader has come out with a new book which presents just those parts of Elec tronic Communication which are necessary to pass all five classes of Amateur licenses. You save $1 / 3$ off the price of the larger book. A complete guide to Amateur Radio including self-check examinations and quizzes, (c) 1982,340 pages (taken from 4 th Edition Electronic Communication).
$\square \mathrm{MH}-57146$
Sottbound \$21.95

IN A HURRY? CALL TODAY (603) 878-1441 - CHARGE CARD ORDERS ONLY. HAM RADIO'S BOOKSTORE

NEW!
NEW!
NEW!

RADIO ELECTRONICS BUYERS GUIDE

y

A Guide To

Radio and Electronic Parts Sold By Retail Mail Order
Have you ever wanted to build something but did not know where to lind all of the parts? The Radio Electronics Buyers Guide lists where you can buy over 2500 kinds of parts from over 50 suppliers. Lists antenna parts, analog, digital, microwave components, mechanical hardware, etc, and the address and phone number of each supplier so you can contact them immediately. Make your construction projects more enjoyable by locating the parts you want $\$ 395$ postage paid

HALLWARD PRODUCTS

GOING OUT OF AMATEUR BUSINESS SALE!

LAST DAY - DECEMBER 31, 1982. CALL US NOW.
If we still have what you want in stock. we will beat anyone's price. And, ship it FREE! No charge cards. Cash or cashier's checks only.

BEN FRANKLIN ELECTRONICS

$1151 / 2$ N. Main Hillsboro, KS 67063 316-947-2269

Featuring:
1200 BAUD OPERATION. Not limited to 110 baud because of timing loops. 60, 66, 75 \& 100
W.P.M. Plus $110,150,300,600 \& 1200$ baud operations possible.
FLEXIBILITY OF OPERATION. Instantly change:
Baud Rates; Program Mode (ASCII/Baudot);
Program Status.
SPLIT SCREEN VIDEO. Transmit \& receive data displayed separately.
REAL TIME. Automatic CW/ID without user intervention. Automatically updates at end of month or year.

MicroProducts

Dther features include:

- Two Serial Ports
- Fourteen Buffers
- Automatic CW/ID
- Transmit Control
- Selective Call Feature
- Error Correction \& Editing
- Word Wraping
- Easy to Interface
- 30 Day Unconditional Guarantee
- Hardware Requirements: TRS-80 Model I or III 16 K (Not for the color computer) EXTERNAL TERMINAL UNIT REQUIRED

606 State Street, P.O. Box 982-T • Marysville, WA 98270 • (206) 659-4279

FILTER CASCADING

The most cost-effective way to improve the selectivity of any receiver - old or new - is to improve its IF filtering. A Fox-Tango Cascading Kit puts a high-quality steepsided 8-pole filter in series with your present filter(s). both SSB and CW. The result is narrower Bandwidth and better Shape Factor, both of which dramatically reduce adjacent channel QRM - a necessity in today's crowded bands.

CONSIDER THESE KIT FEATURES

- Easy installation - 30 minute average.
- No drilling, switching, alignment.
- 16 poles of filtering yield:

Filter Shape Factor as high as 1.19
Uiltimate Rejection better than 100 dB .
Works wonders on SSB; improves CW

- Compensates for Filter insertion loss.
- Complete instructions, clear diagrams.
- No RX audio impairment, TX unaffected. - Includes Filter and all needed parts.
- Fits all models of Series - any letter
- All Filters 8-pole-Guaranteed One Year

SPECIFY KIT WANTED WHEN ORDERING YAESU FT101 \$75; FT101ZD \$70; FT107 \$75; FT901/2 \$65; FR101 \$55 (filter only). KENWOOD TS520/R599 \$70; TS820 \$70; TS830/RB20 \$150 (Two Filters). HEATH SB104A $\$ 60$.

Shipping $\$ 3$ (Air \$5). FL Sales Tax 5\% In addition to the above, FOX-TANGO stocks a wide line of \$55 SSB, CW, and AM 8 -pole filters for Yaesu, Kenwood, Drake R4C and 7-line, and Heathkit. Also, special filters made to order. Send specs for quote.

GO FOX-TANGO - TO BE SURE! Order by Mail or Telephone. AUTHORIZED EUROPEAN AGENTS Scandinavia: MICROTEC (Norway) Other: INGOIMPEX (West Germany)

FOX TANGO CORPORATION
Box 15944H W Palm Beach FL 33406 Phone (305) 683.9587

Your Ham Tube

 Headquarters!

TOP BRAND Popular Receiving Tube Types
FACTORY BOXED $75 / 80 \%$ OFF LIST FREE LIST Available
Includes full line of RF Power Transistors Minimum Order $\$ 25$
Allow $\$ 3.00$ Minimum for UPS Charges Write or phone for free catalog. TUBES-BOUGHT, SOLD AND TRADED

Premium Prices
Paid
For EIMAC Tubes
COMMUNICATIONS, Inc. 2115 Avenue X
Brooklyn, NY 11235
Phone (212) 646.6300

ANNUAL LAS VEGAS PRESTIGE CONVENTION
 ALADDIN HOTEL, LAS VEGAS, NEVADA JANUARY 13-14-15-16, 1983

Cocktail Party hosted by Ham Radio Magazine, Friday evening, for all SAROC exhibitors and SAROC paid registered guests. Ladies' program Saturday, included with Ladies' SAROC paid registration. Two Aladdin Hotel Breakfast/Brunches included with each SAROC paid registration, one on Saturday and one on Sunday. Technical sessions and exhibits Friday and Saturday for all SAROC] registered guests. Friday and Saturday hourly awards, main drawing, Saturday afternoon. Must be present to win, ownership of award does not pass until picked up. SAROC] advance registration is only $\$ 17.00$ per person if postmarked before January 1, 1983. After January 1, 1983 it is $\$ 19.00$ per person. [AROC] swap table \$2.50
each with SAKOC registration. Coupon book and cellophane badge holder may be picked up at $\boldsymbol{S A R O C}$] registration desk. Send check or money order to SAROC , P.O. Box 945, Boulder City, Nevada 89005-0945. Refunds will be made after SAKOCD is over to those requesting same in writing and postmarked before January 13, 1983. Special SAROC Aladdin Hotel room rate is $\$ 37.00$, plus room tax, per night, single or double occupancy. Aladdin Hotel accommodations request card will be sent to all SAROC exhibitors and SAROC paid registered guests.

Coming SAKOC] conventions: January 12 15, 1984; January 10-13, 1985.

Enclosed is \$ check or money order (no cash) for SAROC advance registration (a) $\$ 17.00$ each: after January 1, 1983 SAROC registration is $\$ 19.00$ each. Extra drawing tickets for main drawings are $\$ 1.00$ each, limit 5 for each SAROCD paid advance registration only.

OM Call \qquad Class

YL Call \qquad Class

Address \qquad City \qquad
State \qquad ZIP \qquad Telephone No. I AC

I have attended SAROC times. I plan to attend Friday Cocktail Party \qquad
I am interested in: ARRL, Cocktail Party, CW, DX, FCC, FM, MARS, RTTY, TV, other \qquad
I receive: CQ, Ham Radio Magazine, Westlink, QCWA, QST, RTTY, Spark/Gap, 73, Worldradio,
publications. Please circle ones received.

1983 HANDBOOK

Another super edition of the standard manual of rf communication! Each year, The Handbook is revised to reflect changes in the state-of-the-art and this 60th edition is no exception. Expanded emphasis is given to the use of amateur satellites including RS and Phase III information. You will find computer and calculator programs for satellite tracking. There is also a new TVI troubleshooting flow chart and more coverage of amateur television. New construction projects include power supplies, 160-meter kW amplifier, deluxe voice/cw audio filter, single-band superhets, UHF signal source and dip meter plus a universal logic translator for digital communications. In 640 pages and 23 chapters, The Handbook presents everything from electrical laws and circuits to sophisticated communications techniques including packet radio and spread spectrum. Order your copy today! Paper edition: \$12 in the U.S., \$13 in Canada, and $\$ 14.50$ elsewhere. Cloth edition: $\$ 17.75$ in the U.S. and $\$ 20$ elsewhere. Payment must be in U.S. funds.

ANTENNA BOOK

 14th

 14th EDITION

 EDITION}

Here is the most comprehensive and up-to-date antenna book available. It's chock-full of theory and practical information and includes proven designs for: Yagis, quads, wires, verticals or the more specialized designs: Beverage, curtain arrays and fish-bone antennas. It also has a chapter that covers UHF and VHF antenna design. You'll find antennas for any kind of real estate from the apartment dweller to the true antenna farm. The Antenna Book covers in complete, easy-to-understand language, antenna and transmission line theory and includes the most complete explanation available of the SMITH CHART ${ }^{\text {s }}$. Finally there is a thorough discussion of the phenomena of radio wave propagation. 328 pages 14th edition. Softbound Price $\$ 8.00$ in the US. Elsewhere $\$ 8.50$ (US FUNDS). Available from your local dealer or direct from ARRL.

Please include $\$ 1.00$ per title for shipping and handling.
THE AMERICAN RADIO RELAY LEAGUE, INC.
225 MAIN STREET
NEWINGTON, CT 06111

FACIT 4555 SERIAL PAGE PRINTER

The Facit 4555 alphanumerical serial printer is complete. Equipped with RS232C Interface, printing mechanism, control electronics, drive electronics, power supply and character generator. The adaptation electronics can be modified in four versions:Bit-parallel data transfer, CCITT (EIA, RS232C) for bit-serial data transfer and the current loop (TTY) interface also for bit serial data transfer. The Facit 4555 prints on ordinary paper and is adjustable for different paper widths and formats, $9.5^{\prime \prime}$ paper width with 66 lines per page or DIN A4 with 70 lines per page.

SPECIFICATIONS

Print speed Printing mode Max. \# of ch/line Matrix
Char. Size Height
Char. Size Width
up to $60 \mathrm{ch} . \mathrm{s}$. Incremental.
80 alt. 132.
7×5 dot matrix.
$2.7 \mathrm{~mm} / 1 / 8^{\prime \prime}$
$1.3 \mathrm{~mm} / 0.05^{\prime \prime} 132 \mathrm{ch} /$ line $2.1 \mathrm{~mm} / 0.083^{\prime \prime} 80 \mathrm{ch} / 1$ ine

Char. spacing
Char. Code
Char. Set
Feed mechanism
$2.54 \mathrm{~mm} / 1 / 10^{\prime \prime} 80 \mathrm{ch} / 1$ ine $1.55 \mathrm{~mm} / 0.06^{\prime \prime} 132 \mathrm{ch} / 1$ ine ECMA-6 7-bit coded char. set 63 Char. various national versions. Sprocket feed.

THESE UNITS WERE PULLED OUT OF SERVICE IN GOOD WORKING CONDITION. WE CHECK EACH UNIT ON A RADIO SHACK TRS-80 COLOR COMPUTER.

Printer with 1 inecord, box of paper, inter-connect cable for TRS-80 COLOR COMPUTER.

gENEVA CALCULATOR WATCH

This attractive watch has the following modes:
Normal Time Setting,
Calendar Setting,
Daily Alarm Time Setting, Weekly Alarm Time Setting,
Chronograph,
Calculator.

Featured in Black Plastic $\$ 24.99$ or Featured in Stainless Steel $\$ 29.99$
SILICON DIODES

MR 751	100vdc	6 Amps	10/\$5.00	100/\$38.00	470pf +-20\%	
MR510	1000 vdc	3Amps	10/\$3.75	100/\$24.00		
HEP 170	1000 vdc	2Amps	20/\$2.00	100/\$15.00	$5 / \$ 1.00$ or $100 / \$ 15.00$ or ${ }^{\text {c }}$	
1N3209	100 vdc	15 mmps	\$2.00	10/ \$15.00	1000/\$100.00	
BYX21/200	200vdc	25Amps	\$2.00	10/ \$15.00		
1N2138A	600 vdc	60Amps	\$5.00	10/ \$40.00	1000pf/.001uf +-10\%	
DS85-04C	400 vdc	80 Amps	\$10.00	10/ \$80.00		
1N3269	600 vdc	160Amps	\$15.00	10/\$120.00	$4 / \$ 1.00$ or $100 / \$ 20.00$ or$1000 / \$ 150.00$	
275241	300 vdc	250 Amps	\$20.00	10/\$175.00		
7-5754	300 vdc	400Amps	\$30.00	10/\$250.00		
RCD-15	15 KVDC	20 ma .	\$3.00	10/ \$20.00	E PROMS	
SMFR20K	20KVDC	20 ma .	\$4.00	10/ \$30.00		
1N4148	signal		30/\$1.00	100/ \$3.00	27081024×1	\$2.00 each
FAIRCHILD 4116 16K DYNAMIC RAMS 200ns. Part il 16 K 75					27162048×8	\$4.00 each
25 For \$25	or 100	\$90.00 or	000 For		27L32/25L32	\$10.00 each

HEWLETT PACKARD MLCROWAVE DIODES

"MIXERS"

FAIRCHILD / DUMONT Oscilloscope Probes Model 4290B

Input Impedance 10 meg., Input Capacity 6.5 to 12pf., Division Ration (Volts/Div Factor) 10:1, Cable Length 4Ft. , Frequency Range Over 100 MHz .
These Probes will work on all Tektronix, Hewlett Packard, and other Oscilloscopes.
PRICE $\$ 45.00$

MOTOROLA RF DATA BOOK
Listsall Motorola RF Transistors / RF Power Amplifiers, Varactor Diodes and much much more.
PRICE $\$ 7.50$

Toll Free Number
800-528-0180

वM9L electronics (For orders onty)

RF TRANSISTORS, MICROWAVE DIODES

PART	PRICE
1 S 2199	\$ 7.50
152200	7.50
2N 1561	25.00
2N1562	25.00
2N2857	1. 55
2N2857JAN	2.55
2N2876	11.00
2N2947	18.35
2N2948	15.50
2N2949	3.90
2N2950	4.60
2N3375	8.00
2N3553	1.57
2N3632	13.80
2N3818	5.00
2N3866	1. 30
2N3924	3.35
2N3927	17.75
2N3950	25.00
2N4072	1.80
2N4127	21.00
2N4427	1. 30
2N4428	1.85
2N4957	3.45
2N4958	2.90
2N4959	2.30
2N5090	13.90
2N5108	4.00
2N5109	1.70
2N5160	3.45
2N5177	21.62
2N5179	1.00
2N5583	4.00
2N5589	8.65
2N5590	10.35
2N5591	13.80
2N 5635	10.95
2N5637	15.50
2N5641	9.20
2N5642	10.95
2N5643	15.50
2N5645	13.80
2N5646	20.70
2N5691	18.00
2N5764	27.00
2N5836	5.45
2N5842	8.00
2N5849	20.00
2N5913	3.25
2N5922	10.00
2N5923	25.00
2N5941	23.00
2N5942	40.00
2N5944	9.20
2N5945	11.50
2N5946	19.00
2N6080	9.20
2N6081	10.35
2N6082	11.50

PART	PRICE
CA2612 (TRW)	\$ 25.00
CA2674 (TRW)	25.00
CA2881-1 (TRW)	25.00
CA4101 (TRW)	25.00
CA4201 (TRW)	25.00
CA4600 (TRW)	25.00
CD1889	20.00
CD2545	20.00
CMD 514 AB	20.00
D4959	10.00
D 4987 M	20.00
D5147D	10.00
D5506	10.00
D5827AM	20.00
DMD6022	30.00
DMS-2A-250	40.00
HEP76	4.95
HEPS 3002	11.30
HEPS 3003	30.00
HEPS 3005	10.00
HEPS 3006	19.90
HEPS3007	25.00
HEPS 3010	11.34
HTEF2204 H.P.	112.00
5082-0112 H.P.	14.20
5082-0253 H.P.	105.00
5082-0320 H.P.	58.00
5082-0386 H.P.	POR
5082-0401 H.P.	POR
5082-0438 H.P.	POR
5082-1028 H.P.	POR
$5082-2711$ H.P.	23.15
5082-3080 H.P.	2.00
5082-3188 H.P.	1.00
5082-6459 H.P.	POR
5082-8323 H.P.	POR
35826 E H.P.	POR
35831 E H.P.	29.99
35853 E H.P.	71.50
$35854 \mathrm{EH.P}$.	75.00
HPA0241 H.P.	75.60
HXTR3101 H.P.	7.00
HXTR3102 H.P.	8.75
HXTR6101/2N6617	H.P. 55.00
HXTR6104 H.P.	68.00
HXTR6105 H.P.	31.00
HXTR6106 H.P.	33.00
QSCH 1995 H.P.	POR
JO2000 TRW	10.00
JO2001 TRW	25.00
J04045 TRW	25.00
K3A	10.00
MA450A	10.00
MA41487	POR
MA4 1765	POR
MA43589	POR
MA43636	POR
MA47044	POR
MA47651	25.5

Toll Free Number 800-528-0180 (For orders only)

GaAs, TUNNEL DIODES, ETC.

PART	PRICE	PART	PRICE	PART	PRICE	
MA47100	\$ 3.05	$\overline{\text { MRF } 503}$	\$ 6.00	PT4186B	\$	POR
MA47202	30.80	MRF504	7.00	PT4209		POR
MA47771	POR	MRF509	5.00	PT4209C		POR
MA47852	POR	MRF511	8.65	PT4566		POR
MA49558	POR	MRF605	20.00	PT4570		POR
MB4021	POR	MRF629	3.47	PT4571		POR
MBD101	1.00	MRF644	23.00	PT4571A		POR
MD0513	POR	MRF816	15.00	PT4577		POR
MHW1171	42.50	MRF823	20.00	PT4590		POR
MHWI 182	48.60	MRF901	3.00	PT4612		POR
MHW4171	49.35	MRF8004	2.10	PT4628		POR
MHW4172	51.90	MS261F	POR	PT4640		POR
MHW4342	68.75	MT4150 Fair.	POR	PT4642		POR
MLP102	25.00	MT5126 Fair.	POR	PT 5632		POR
MM1 500	32.32	MT 5481 Fair.	POR	PT 5749		POR
MM1550	POR	MT5482 Fair.	POR	PT6612		POR
MM1552	50.00	MT5483 Fair.	POR	PT6626		POR
MM1553	50.00	MT5596 Fair.	POR	PT6709		POR
MM1614	10.00	MT5764 Fair.	POR	PT6720		POR
MM2608	5.00	MT8762 Fair.	POR	PT8510		POR
MM3375A	11.50	MV109	. 77	PT8524		POR
MM4429	10.00	MV1401	8.75	PT8609		POR
MM8000	1.15	MV1624	1.42	PT8633		POR
MM8006	2.30	MV1805	15.00	PT8639		POR
M0277L	POR	MV1808	10.00	PT8659		POR
M0283L	POR	MV1817B	10.00	PT8679		POR
M03757	POR	MV 1863B	10.00	PT8708		POR
MP 102	POR	MV 1864A	10.00	PT8709		POR
MPN 3202	10.00	MV1864B	10.00	PT8727		POR
MPN 3401	. 52	MV 1864D	10.00	PT8731		POR
MPN 3412	1.00	MV1868D	10.00	PT8742		POR
MPSU31	1.01	MV2101	. 90	PT8787		POR
MRA2023-1.5 TRW	42.50	MV2111	. 90	PT9790		41.70
MRF212/208	16.10	MV2115	1.55	PT 31962		POR
MRF 223	13.25	MV2201	. 53	PT31963		POR
MRF224	15.50	MV2203	. 53	PT31983		POR
MRF237	3.15	MV2209	2.00	PTX6680		POR
MRF238	12.65	MV2215	2.00	RAY-3		24.99
MRF243	25.00	MWA110	7.45	40081		POR
MRF245	34.50	MWA120	7.80	40281		POR
MRF247	34.50	MWA130	8.25	40282		POR
MRF 304	43.45	MWA210	7.80	40290		POR
MRF315	23.00	MWA220	8.25	RF110		25.00
MRF420	20.00	MWA230	8.65	SCA3522		POR
MRF421	36.80	MWA310	8.25	SCA3523		POR
MRF422	41.40	MWA320	8.65	SD1065		POR
MRF427	16.10	MWA330	9.50	SS43		POR
MRF428	46.00	NEC57835	5.30	TP1014		POR
MRF450/A	13.80	ON 382	5.00	TP 1028		POR
MRF453/A	17.25	PPT515-20-3	POR	TRW-3		POR
MRF454/A	19.90	PRT863?	POR	UT0504 Avantek.		70.00
MRF455/A	16.00	PSCQ2-160	POR	UT0511 Avantek		7.5 .00
MRF458	19.90	PT3190	POR	V15		4.00
MRF463	25.00	PT3194	POR	V33B		4.00
MRF472	1.00	PT3195	POR	V100B		4.00
MRF475	2.90	PT3537	POR	VAB801EC		25.00
MRF477	11.50	PT4166E	POR	VAB804EC		25.00
MRF502	1.04	PT4176D	POR	VAS21AN20		25.00

$\$ 49.00$
Part | Part if SU-01 26 Vdc Type N Connector, DC to 1 GHz .

Amphenol
Part 316-10102-8
115 Vac Type BNC DC to 3 GHz .

FXR
Part \# 300-11182
120 Vac Type BNC DC to 4 GHz . FSN 5985-543-1225
$\$ 39.99$

FXR
Part \# 300-11173
120 Vac Type BNC Same FSN 5985-543-1850
$\$ 39.99$

BNC To Banana Plug Coax Cable RG-58 36 inch or BNC to N Coax Cable RG-58 36 inch.
$\$ 7.99$ or 2 For $\$ 13.99$ or 10 For $\$ 50.00$

SOLID STATE RELAYS
P\&B Model ECT1DB72
5 vdc turn on
PRICE EACH $\$ 5.00$
Digisig, Inc. Model ECS-215 5vdc turn on PRICE EACH $\$ 7.50$

Grigsby/Barton Model GB7400 5vdc turn on PRICE EACH $\$ 7.50$
$\$ 8.99$ or 2 For $\$ 15.99$ or 10 For $\$ 60.00$

120 vac contact at 7 amps or 20 amps on a $10^{\prime \prime} \times 10^{\prime \prime} \mathrm{x} .124$ aluminum. Heatsink with silicon grease.

240 vac contact 14 amps or 40 amps on a $10^{\prime \prime} \times 10^{\prime \prime} \mathrm{x} .124$ aluminum. Heatsink with silicon grease.
240 vac contact at 15 amps or 40 amps on a $10^{\prime \prime} \times 10^{\prime \prime} \mathrm{x} .124$ aluminum. Heatsink with silicon grease.

NOTE: *** Items may be substituted with other brands or equivalent model numbers. ***

Toll Free Number

The Recall Phone Telephone employs the latest state of art communications technology. It is a combination telephone and automatic dialer that uses premium-quality, solid-state: circuitry to assure high-reliability performance in personal or business applications. $\$ 49.99$

$\$ 9.99$ or $10 / \$ 89.99$

MITSUMI UHF/VHF VARACTOR TUNER MODEL UVE1A
Perfect for those unscrambler projects. New with data.

ARON ALPHA RAPID BONDING GLUE

Super Glue \#CE-486 high strength rapid bonding adhesive. Alpha Cyanoacrylate.Set-Time 20 to 40 sec., 0.7f1.oz.(20gm.)

$$
\$ 2.00
$$

$\$ 19.99$ or $10 / \$ 149.99$

INTEGRATED CIRCUIT.	1 to	10	11 up
MC1372P	Color TV Video Modulator Circuit.	4.42	$\$ 2.95$
MC1358P	IF Amp.,Limiter,FM Detector,Audio	Driver, Electronic Attenuator.	5.00
MC1350P	IF Amplifier	1.50	1.00
MC1330A1P	Low Level Video Detector	1.50	1.15
MC1310P	FM Stereo Demodulator	4.29	3.30
MC1496P	Balanced Modulator/Demodulator	1.50	1.25
LMS65N	Phase Locked Loop	2.50	2.00
LM380N14	2Watt Audio Power Amplifier	1.56	1.25
LM1889N	TV Video Modulator	5.00	4.00
NE564N	Phase Locked Loop	10.00	8.00
NE561N	Phase Locked Loop	10.00	8.00

FERRANTI ELECTRONICS AM RADIO RECEIVER MODEL ZN4 14 INTEGRATED CIRCUIT.
Features:
1.2 to 1.6 volt operating range., Less than 0.5 ma current consumption. 150 KHz to 3 MHz Frequency range., Easy to assemble, no alignment necessary. Effective and variable AGC action., Will drive an earphone direct. Excellent audio quality., Typical power gain of 72 dB ., T0-18 package. With data.
$\$ 2.99$ or 10 For $\$ 24.99$
NI CAD RECHARGEABLE BATTERIES
AA Battery Pack of 6 These are Factory
New.
$\$ 5.00$
SUB C Pack of $102.5 \mathrm{Amp} / \mathrm{Hr}$. $\$ 10.00$
Gates Rechargeable Battery Packs
12 vdc at $2.5 \mathrm{Amp} / \mathrm{Hr}$. $\$ 11.99$
12 vdc at $5 \mathrm{Amp} / \mathrm{Hr}$.
$\$ 15.99$

Toll Free Number
800-528-0180
(For orders only)

"SOCKETS AND CHIMNEYS"

EIMAC TUBE SOCKETS AND CHIMNEYS

SK110	Socket	\$POR
SK300A	Socket For 4CX5000A, R,J, 4CX10,000D, 4 CXl , $5,000 \mathrm{~A}, \mathrm{~J}$	\$ 520.00
SK400	Socket For $4-125 \mathrm{~A}, 250 \mathrm{~A}, 400 \mathrm{~A}, 400 \mathrm{C}, 4 \mathrm{PR} 125 \mathrm{~A}, 400 \mathrm{~A}, 4-500 \mathrm{~A}, 5-500 \mathrm{~A}$	260.00
SK406	Chimney For 4-250A, 400A, 400C,4PR400A	74.00
SK416	Chimney For 3-4002	36.00
SK500	Socket For 4-1000A/4PR1000A/B	390.00
SK600	Socket For $4 \mathrm{CX} 250 \mathrm{~B}, \mathrm{BC}, \mathrm{FG}, \mathrm{R}, 4 \mathrm{CX} 350 \mathrm{~A}, \mathrm{~F}, \mathrm{FJ}$	51.00
SK602	Socket For $4 \mathrm{CX} 250 \mathrm{~B}, \mathrm{BC}, \mathrm{FG}, \mathrm{R}, 4 \mathrm{CX} 350 \mathrm{~A}, \mathrm{~F}, \mathrm{FJ}$	73.00
SK606	Chimney For $4 \mathrm{CX} 250 \mathrm{~B}, \mathrm{BC}, \mathrm{FG}, \mathrm{R}, 4 \mathrm{CX} 350 \mathrm{~A}, F, F J$	11.00
SK607	Socket For 4CX600J,JA	60.00
SK610	Socket For $4 \mathrm{CX600J}, \mathrm{JA}$	60.00
SK620	Socket For $4 \mathrm{CX} 600 \mathrm{~J}, \mathrm{JA}$	66.00
SK626	Chimney For $4 \mathrm{CX} 600 \mathrm{~J}, \mathrm{JA}$	10.00
SK630	Socket For 4CX600J, JA	66.00
SK636B	Chimney For 4CX600J, JA	34.00
SK640	Socket For 4CX600J, JA	36.00
SK646	Chimney For 4CX600J, JA	71.00
SK700	Socket For 4CX300A, Y, 4CXl25C,F	225.00
SK711A	Socket For 4CX300A, Y, 4CX125C, F	225.00
SK740	Socket For 4CX300A, Y, 4CX125C, F	86.00
SK770	Socket For 4CX300A, Y, 4CX125C, F	86.00
SK800A	Socket For 4CX1000A, 4CX1500B	225.00
SK806	Chimney For 4CX1000A, 4CXI500B	40.00
SK810	Socket For 4CX1000A, 4CXis00B	225.00
SK900	Socket For 4X500A	300.00
SK906	Chimney For 4X500A	57.00
SK1420	Socket For 5CX3000A	650.00
SK1490	Socket For 4CV8000A	585.00

JOHNSON TUBE SOCKETS AND CHIMNEYS

124-111/SK606	Chimney For 4CX250B, BC, FG, R, 4CX350A, F, FJ	\$ 10.00
122-0275-001	Socket For 3-5002, 4-125A, 250A, 400A, 4-500A, 5-500A	(pair) 15.00
124-0113-00	Capacitor Ring	15.00
124-116/SK630A	Socket For $4 \mathrm{CX} 250 \mathrm{~B}, \mathrm{BC}, \mathrm{FG}, \mathrm{R}, \mathrm{/} 4 \mathrm{CX} 350 \mathrm{~A}, \mathrm{~F}, \mathrm{FJ}$	55.00
124-115-2/SK620A	Socket For $4 \mathrm{CX} 250 \mathrm{~B}, \mathrm{BC}, \mathrm{FG}, \mathrm{R}, / 4 \mathrm{CX} 350 \mathrm{~A}, \mathrm{~F}, \mathrm{FJ}$	55.00
	813 Tube Socket	20.00

Frequency range 3.6 to 4.2 GHz , Power ouput, Min. 10 dBm typjcal, 8 dBm Guaranteed. Spurious output suppression Harmonic ($n f_{0}$), min. 20dB typical, In-Band Non-Harmonic, min. 60dB typical, Residual FM, pk to pk, Max. 5 KHz , pushing factor, Max. $8 \mathrm{KHz/V}$, Pulling figure (1.5:1 VSWR), Max. 60 MHz , Tuning voltage range +1 to +15 volts, Tuning current, Max. -0.1 mA , modulation sensitivity range, Max. 120 to $30 \mathrm{MHz} / \mathrm{V}$, Input capacitance, Max. 100pf, Oscillator Bias $+15+-0.05$ volts @ 55 mA , Max.

Toll Free Number
 800-528-0180
 (For orders only)

TUBES

TYPE	PRICE	TYPE	PRICE	TYPE	PRICE
2E26	\$ 5.69	KT88	\$ 20.00	6562/6974A	\$ 50.00
2K28	100.00	DX362	50.00	6832	22.00
2X1000A	300.00	DX415	50.00	6883/8032A/8552	7.00
3B22	19.75	572B/T160L	49.00	6897	110.00
3B28/866A	7.50	592/3-200A3	144.00	6907A	75.00
3-5002	102.00	807	7.50	6939	15.00
3-10002	400.00	811	10.00	7094	125.00
$3 \mathrm{CX1000A/8283}$	428.00	811A	15.00	7117	17.00
3CX1500A7/887	533.00	812A	35.00	7211	60.00
3x2 500A3	200.00	813	50.00	7289/3CX100A5	34.00
3Cx3000A7	490.00	829B	38.00	7360	11.00
4-65A/8165	45.00	832A	28.00	7377	67.00
4-125A/4D21	58.00	4624	310.00	7408	4.00
4-250A/5D22	75.00	4662	80.00	7650	250.00
4-400A/8432	90.00	4665	585.00	7695	8.00
4-400C/6775	95.00	5675/A	25.00	7843	58.00
4-1000A/8166	300.00	5721	200.00	7854	83.00
4B32	22.00	5768	85.00	7868	5.00
4E27A/5-125B	155.00	5836	100.00	7894	12.00
4CS250R	146.00	5837	100.00	8072	65.00
4X150A/7034	30.00	5861/EC55	110.00	8117A	130.00
4X150D/7035	40.00	5876A	25.00	8121	60.00
4X150G/8172	100.00	5881/6L6W	6.00	8122	100.00
4X250B	30.00	5893	45.00	8236	30.00
4CX250B/7203	45.00	5894/A	50.00	8295/PLI72	506.00
4CX250F/G/8621	55.00	5894/B	60.00	8462	100.00
4CX250K/8245	100.00	5946	258.00	8505A	73.50
4CX250R/7580W	69.00	6080	10.00	8533W	92.00
4CX300A/8167	140.00	6083/AX9909	89.00	8560/A	65.00
4CX350A/8321	83.00	6098/6AK6	14.00	8560AS	90.00
4CX350F/J/8904	95.00	6115/A	110.00	8608	34.00
4X500A	282.00	6146	7.00	8637	38.00
4CX600J/8809	607.00	6146A	7.50	8643	100.00
$4 \mathrm{CW800F}$	625.00	6146B/8298A	8.50	8647	123.00
4CX1000A/8168	340.00	6146W	14.00	8737/5894B	60.00
$4 \mathrm{CX1500B} / 8660$	397.00	6156	66.00	8873	260.00
4CX5000A/8170	932.00	6159	15.00	8874	260.00
4CX10000D/8171	990.00	6161	233.00	8875	260.00
4CX15000A/8281	1260.00	6291	125.00	8877	533.00
4 PR 60 A	100.00	6293	12.00	8908	12.00
4PR60B/8252	175.00	6360	5.00	8930/6512	71.00
4PR400A/8188	192.00	6524	53.00	8950	12.00
5CX1500A	569.00	6550	10.00		
6BK4C	6.00	6JM6	6.00	6LQ6 (Sylvania)	7.50
6DQ5	5.00	6JN6	6.00	6LU8	6.00
6FW5	6.00	6JS6B	6.00	6LX6	6.00
6GE5	6.00	6KG6/EL505	6.00	6ME6	6.00
6GJ5	6.00	6KM6	6.00	12BY7A	4.00
6HS5	6.00	6KN6	6.00	12JB6A	6.00
6JB5/6HE5	6.00	6LF6	6.00	6KD6	6.00
6JB6A	6.00	6LQ6 (GE)	6.00	6JT6A	6.00
				6KD6	6.00

NOTICE ALL PRICES ARE SUBJECT TO CHANGE WITHOUT NOTICE $1!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$ TUBES MAY ETTHER BE NEW OR SURPLUS CONDITION !!!

"TVRO BOARD LIST"

70 MHZ IF BOARD: This circuit provides about 43 dB gain with 50 ohm input and output impedance. It is designed to drive the Demodulator. The on-board bypass filter can be tuned to bandwidths between 20 and 35 MHz with a passband ripple of less than dB . Hybrid IC's are used for the gain stages.
SINGLE AUDIO BOARD: This circuit recovers the audio signals from the 6.8 mHz frequency. The Miller 9051 coils are tuned to pass the 6.8 MHz subcarrier and the 9052 coil tunes for recovery of the audio.

DUAL AUDIO BOARD: Duplicate of the single audio but also covers the 6.2 range.
DC CONTROL BOARD: No description.

DUAL AUDID BOARD	PRICE EACH	3	10K 1/4w	. 15
Printed Circuit Board	\$ 25.00	1	3. $3 \mathrm{~K} 1 / 4 \mathrm{w}$. 15
23 pF sm	1.00	3	2. $2 \mathrm{~K} 1 / 4 \mathrm{w}$. 15
$2 \quad 12 p f \mathrm{sm}$	1.00	2	SK 10 turn erimpot	1.00
2.50 pf sm	1.00	4	10K 10 curn trimpot	1.00
268 pf sm	1.00	1	10 K 10 turn with dial	10.00
4 9lpf sm	1.00	1	7815 Voltage Reg.	1.17
5.001 mfd	. 35	1	LM324	2.50
6.01 mfd	. 35	1	5 pole rotary switch	2.50
2.047 mfd	. 35		SPDT switch	1.00
1.47 mfd 25 vdc	. 35	1	DPDT swich	1.00
2 imad lovdc	. 59	1	0-1ma meter	5.00
$4 \quad 4.7 \mathrm{mfd} 35 \mathrm{vdc}$	- 59	1	18 to 24 vdc at J amp	
1470 mFd 25 vdc	1.29		power supply	24.99
2 220K 1/4w	. 15			
$2150 \mathrm{~K} \quad 1 / 4 \mathrm{w}$. 15		TAL KIT PRICE	74.27
$\therefore 6.8 \mathrm{~K} \mathrm{1/4w}$. 15			
2 3.3k 1/4w	. 15			
$2 \quad 2.2 \mathrm{~K} \quad 1 / 4 \mathrm{w}$.15			
4 1k 1/4w	. 15			
210 ohm 1/4w	. 15	DEMO	DULATOR BOARD	PRICE EACH
2 50k pots	1.00	Printed Circuit Board		\$ 40.00
1.5 K pot	1.00	13	1 mfd 35 vdc	. 59
2 CA3065	2.16		. 01 mfd 50 vdc disc	
1 LM380	1.56	13	470 mfd 25 vdc	1.29
17812 Voltage Reg.	1.17	1	100 mfd 16 vdc	. 69
5 2N2222	. 50	2	22 mfd 35 vdc	. 59
4 Miller 9051	5.99 5.99	2	4.7 mfd 35 vdc	. 59
2 Miller 9052	5.99	3	4300pf sm	2.00
TOTAL KIT PRICE	97.62	330 pf sm		1.00
		100pf sm		1.00
DC CONTROL BOARD		1 9lpf sm		1.00
		23 pf sm		1.00
Printed Circuit Board	15.00	12 to 8pf ceramic trimmer		1.00
2470 mfd 25 vdc	1.29	1 loouh choke		1.50
24.7 mfd 25 vdc	. 59	1 4.7uh choke		1.50
$1 \mathrm{meg} 1 / 4 \mathrm{w}$. 15	1	2.7uh choke	1.50

4	100K 1/4w	. 15
1	51 ohm 1/4w	. 15
1	27K 1/4w	. 15
5	10K 1/4w	. 15
1	8.2K 1/4w	15
2	4.7K 1/4w	. 15
1	2. $2 \mathrm{~K} \mathrm{l/4w}$. 15
1	1.2K 1/4w	. 15
3	$1 \mathrm{~K} 1 / 4 \mathrm{w}$. 15
3	560 ohm 1/4w	. 15
1	470 ohm 1/4w	. 15
1	390 ohm 1/4w	. 15
1	300 ohm 1/4w	. 15
1	270 obm 1/4w	. 15
1	150 ohm $1 / 4 \mathrm{w}$. 15
1	41 ohm 1/4w	. 15
1	10K pot	1.00
1	NE592/LM733N	2.50
1	NE564	5.00
1	MWA120 (Motorola)	7.80
1	7812 Voltage Reg,	1.17
1	7815 Voltage Reg.	1.17
3	2N2222	. 50
2	1N34/38	. 50
1	HP 5082-2800	2.20
1	5 to 7 volt Zenner	1.00
	AL KIT PRICE	92.25
	PLETE KIT WITH DUAL AUDIO	\$923.23
	PLETE KIT WITH SINGLE AUDIO	880.77
LESS 10\% ON ALL COMPLETE KIT ORDERS		
BOARDS AND PARTS MAY BE PURCHASED SEPERATELY AT THE PRTCES LISTED ABOVE.		
ALL PRICES ARE SUBJECT TO CHANGE WITHOUT NOTICE!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!		

TVRO BOARD DESCRIPTION AND PARTS LIST

DUAL CONVERSION BOARD: This board provides conversion from the 3.7-4.2 band first to 900 MHz where gain and bandpass filtering are provided and, second, to 70 MHz . The board contains both local oscillators, one fixed and the other variable, and the second mixer. Construction is greatly simplified by the use of Hybrid IC amplifiers for the gain stages.

DEMODULATOR BOARD: This circuit takes the 70 MHz center frequency satellite TV signal in the 10 to 200 millivolt range, detects them using a phase lock loop, de-emphasizes and filters the result to produce standard NTSC video. Other outputs include the audio subcarrier, a DC voltage proportional to the strength of the 70 MHz signal, and AFt voltage centered at about 2 volts DC.

1	. 047 mfd	. 35
1	. 47 mfd	. 35
1	1 mfd 10 vde	. 59
3	$4.7 \mathrm{mfd} 35 v \mathrm{vc}$. 59
1	470 mfd 25 vdc	1.29
1	220K 1/4 W	. 15
1	150K 1/4w	. 15
1	6. $8 \mathrm{~K} \mathrm{1/4w}$. 15
1	3.3K 1/4w	. 15
1	2. $2 \mathrm{~K} \mathrm{1/4w}$. 15
3	1K 1/4w	. 15
1	10 ohm 1/4w	. 15
1	50 K pot	1.00
1	Sk pot	1.00
1	CA3065/MC1358P	2.16
1	LM 380	1.56
1	7812 Voltage Reg,	1.17
3	2N2222	. 50
2	Miller 9051	5.99
1	Miller 9052	5.99
TOTAL KIT PRICE		55.16

Toll Free Number
800-528-0180
(For orders only) PRICES SUBJECT TO CHANGE WITHOUT NOTICE

HEWLETT PACKARD		
MIXERS MODELS	10514A	10514B
Frequency Range	2 MHz to 500MC	2 MHz to 500MC
Input/Output Frequency L \& R	200 KHz 10	200 KHz to
	500 MC	500 MC
x	DC 10 500MC	DC to 500MC
Mixer Conversion Loss (A)	7 dB	7 dB
(B)	9dB	9 dB
Noise Performance (SSB) (A)	7dB	7 dB
(8)	9dB	9dB
PRICE	\$49.99 PRICE	\$39.99

FREQUENCY SOURCES, INC MODEL MS.74X MICROWAVE SIGNAL SOURCE

MS.74X: Mechanically Tunable Frequency Pange (MHz) 10630 to 11230 (10.63 to 11.23 GHz) Minimum Output Power (mW) 10. Overal Multıplier Ratio 108, Internal Crystal Oscillator Frequency Range (MHz) 98.4 to 1040 . Maximum Input Current (mA) 400.
The signal source are designed tor applications where high stability and low noise are of prime concern. these sources utilize fundamen tal transistor oscillators with high Q coaxial cavities, followed by broadband stable step recovery diode multipliers. This design allows single screw mechanical adjustment of frequency over standard communications bands. Broadband sampling circuits are used to phase lock the oscillator to a high stability reference which may be elther an internal sell-contained crystal oscillator, external primary standard of VHF synthesizer. This unique technique allows for optimization of both FM noise and long term stability. List Price is $\$ 115800$ (THESE ARE NEW)

Our Price-\$289.

HEWLETT PACKARD 1 N5712 MICROWAVE DIODE

This diode will replace the MBD101, 1N5711, 5082-2800. 5082.2835 ect This will work like a champ in all those Down Converter projects.
$\$ 1.50$ or $10 / \$ 10.00$
MOTOROLA MHWI172R LOW DISTORTION WIDEBAND AMPLIFIER MODULE
Frequency Range 40 to 300 MHz . Power Gain at 50 MHz
16 mmin . 1017.4 max., Gain Flatness ± 0.1 Typ. ± 02
Max. dB., DC Supply Voltage -28 vdc . RF Voltage Input $+70 \mathrm{dBmV}$

PRICE $\$ 29.99$

GENERAL ELECTRIC AA NICADS

Model 441B905HD11G1
Pack of 6 for $\$ 500$ or 60 Cells, 10 Packs for $\$ 45.00$
These may be broken down 10 individual cells.
torm of payment either Further intormation is a
HOUAS: Monday itru Saturday 8.30 a m 10500 D
INSURANCE: Please include 254 for each additional $\$ 100.00$ over $\$ 10000$. Uniled Parcel oniy
ORDER FOAMS: New order forms are included with each order for your convenience Addtional forms are
avaliabie on request.
POSTAGE: Minmum ghiooing and handing in ine US Canada and Mexico is $\$ 2.50$ all oner countries is $\$ 500$ On toreign orders include 20% shipping and handing
PREPAID ORDERS: Order must be accompanied by a check
Paices: Prices are subject to change without notice
RESTOCK CHARGE: \| parts are returned to MHZ Eloctronics due to customer eftor customer will be held esponsible for all exira tees. will be charged a 15% restocking tee with the remainder in creditonly All returns must have approva
SALES TAX: Arizona musi add 5% sales tax. uniass a signed Arizona resale lax card is currentiy on tile with MMZ Electronics All orders placed by persons outside of Arizona Dut delivered to persons in Arizona are sub ect $10 \mathrm{th} 5 \%$ sales tax
SHORTAOE OR DAMAGE: All claims tor shortages or damages must be made within 5 days atter recerpt of parcel. Claims must include our invoice number and the date of purchase Customers which do not notify u within this time period will be held cesponsible for the entire order as we will consider the order complete. OUR 800 NUMBER IS STRICTLY FOR ORDERS ONLY NO INFORMATION WILL BE GIVEN 1.800 .520 .0180
(602) 242.3037 (602) $242-6918$ 2111 W. CAMELBACK ROAD PHOENIX, ARIZONA 85015

California

C \& A ELECTRONIC ENTERPRISES
22010 S. WILMINGTON AVE.
SUITE 105
CARSON, CA 90745
213-834-5868
Not The Biggest, But The Best Since 1962.

FONTANA ELECTRONICS
8628 SIERRA AVENUE
FONTANA, CA 92335
714-822.7710
714-822.7725
The Largest Electronics Dealer in San Bernardino County.

JUN'S ELECTRONICS

3919 SEPULVEDA BLVD.
CULVER CITY, CA 90230
213-390-8003 Trades
714-463-1886 San Diego 800-882-1343
The Home of the One Year Warranty

- Parts at Cost - Full Service.

Habla Espanol
SHAVER RADIO, INC.
1378 S. BASCOM AVENUE
SAN JOSE, CA 95128
408-998.1103
Azden, Icom, Kenwood, Tempo,
Ten-Tec, Yaesu and many more.

Connecticut

HATRY ELECTRONICS

500 LEDYARD ST. (SOUTH)
HARTFORD, CT 06114
203-527-1881
Call today. Friendly one-stop shopping at prices you can afford.

Delaware

DELAWARE AMATEUR SUPPLY
71 MEADOW ROAD
NEW CASTLE, DE 19720
302-328-7728
800-441-7008
Icom, Ten-Tec, DenTron, Yaesu,
Azden, Santec, KDK, and more.
One mile off $1-95$, no sales tax.

Florida

AMATEUR ELECTRONIC SUPPLY 1898 DREW STREET CLEARWATER, FL 33515 813-461-HAMS Clearwater Branch West Coast's only full service Amateur Radio Store.

AMATEUR ELECTRONIC SUPPLY 621 COMMONWEALTH AVE.
ORLANDO, FL 32803
305-894-3238
Fla. Wats: 1 (800) 432-9424
Outside Fla: 1 (800) 327-1917
AMATEUR RADIO CENTER, INC.
2805 N.E. 2ND AVENUE
MIAMI, FL 33137
305-573-8383
The place for great dependable names in Ham Radio.

RAY'S AMATEUR RADIO
1590 US HIGHWAY 19 SO.
CLEARWATER, FL 33516
813-535-1416
Your complete Amateur Radio and Computer Store.

Illinois

ERICKSON COMMUNICATIONS,INC. 5456 N. MILWAUKEE AVE.
CHICAGO, IL 60630
Chicago - 312-631-5181
Outside Illinois - 800-621-5802
Hours: 9:30-5:30 Mon, Tu, Wed \& Fri; 9:30-8:00 Thurs; 9:00-3:00 Sat.

Indiana

THE HAM SHACK

808 NORTH MAIN STREET
EVANSVILLE, IN 47710
812-422-0231
Discount prices on Ten-Tec, Cubic, Hy-Gain, MFJ, Azden, Kantronics, Santec and others.

Kansas

ASSOCIATED RADIO

8012 CONSER, P. O. BOX 4327
OVERLAND PARK, KS 66204
913-381-5900
America's No. 1 Real Amateur Radio
Store. Trade - Sell - Buy.

Maryland

THE COMM CENTER, INC.
LAUREL PLAZA, RT. 198
LAUREL, MD 20810
800-638-4486
Kenwood, Drake, Icom, Ten-Tec, Tempo, DenTron, Swan \& Apple Computers.

Massachusetts

TEL-COM, INC.
675 GREAT ROAD, RTE. 119
LITTLETON, MA 01460
617-486-3040
$617-486-3400$ (this is new)
The Ham Store of New England
You Can Rely On.

Minnesota

MIDWEST AMATEUR RADIO SUPPLY

3452 FREMONT AVE. NO.
MINNEAPOLIS, MN 55412
612-521-4662
It's service after the sale that counts.

Nevada

AMATEUR ELECTRONIC SUPPLY
1072 N. RANCHO DRIVE
LAS VEGAS, NV 89106
702-647-3114
Dale Porray "Squeak," AD7K
Outside Nev: 1 (800) 634-6227
JUN'S ELECTRONICS
460 E. PLUMB LANE - 107
RENO, NV 89502
702-827-5732
Outside Nev: 1 (800) 648-3962
Icom - Yaesu Dealer

New Hampshire

TUFTS ELECTRONICS
61 LOWELL ROAD
HUDSON, NH 03051
603-883-5005
New England's friendliest ham store.

New Jersey

RADIOS UNLIMITED

P. O. BOX 347

1760 EASTON AVENUE
SOMERSET, NJ 08873
201-469-4599
800-526-0903
New Jersey's only factory authorized Yaesu and Icom distributor. New and used equipment. Full service shop.
ROUTE ELECTRONICS 46
225 ROUTE 46 WEST
TOTOWA, NJ 07512
201-256-8555

ROUTE ELECTRONICS 17

777 ROUTE 17 SOUTH
PARAMUS, NJ 07625
201-444-8717
Drake, Cubic, DenTron, Hy-Gain,
Cushcraft, Hustler, Larsen, MFJ,
Butternut, Fluke \& Beckman
Instruments, etc.

Amateur Radio Dealer

New York

BARRY ELECTRONICS

512 BROADWAY
NEW YORK, NY 10012
212-925-7000
New York City's Largest Full Service Ham and Commercial Radio Store.

GRAND CENTRAL RADIO

124 EAST 44 STREET
NEW YORK, NY 10017
212-599-2630
Drake, Kenwood, Yaesu, Atlas, Ten-Tec, Midland, DenTron, Hy-Gain, Mosley in stock.

HARRISON RADIO CORP

20 SMITH STREET
FARMINGDALE, NY 11735
516-293-7990
"Ham Headquarters USA" since
1925. Call toll free 800-645-9187.

RADIO WORLD

ONEIDA COUNTY AIRPORT
TERMINAL BLDG
ORISKANY, NY 13424
TOLL FREE 1 (800) 448-9338
NY Res. 1 (315) 337.0203
Authorized Dealer - ALL major Amateur Brands.
We service everything we sell! Warren K21XN or Bob WA2MSH.

Ohio

AMATEUR ELECTRONIC SUPPLY 28940 EUCLID AVE.
WICKLIFFE,OH (CLEVELAND AREA) 44092
216-585-7388
Ohio Wats: 1 (800) 362-0290
Outside Ohio: 1 (800) 321-3594

UNIVERSAL AMATEUR RADIO, INC.

1280 AIDA DRIVE
REYNOLDSBURG (COLUMBUS), OH 43068
614-866-4267
Featuring Kenwood and all other Ham gear. Authorized sales and service. Shortwave headquarters. Near 1-270 and airport.

Oklahoma

DERRICK ELECTRONICS, INC.
714 W. KENOSHA - P.O. BOX A BROKEN ARROW, OK 74012
Your Discount Ham equipment dealer in Broken Arrow, Oklahoma
1.800-331-3688 or

1-918-251-9923

Pennsylvania

HAMTRONICS,

DIV. OF TREVOSE ELECTRONICS

4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215-357-1400
Same Location for 30 Years.

LaRUE ELECTRONICS

1112 GRANDVIEW STREET
SCRANTON, PENNSYLVANIA 18509
717-343-2124
Icom, Bird, Cushcraft, Beckman,
Fluke, Larsen, Hustler, Astron, Antenna Specialists, W2AU/W2VS, AEA, B\&W, CDE, Sony, Vibroplex.

Texas
MADISON ELECTRONICS SUPPLY
1508 McKINNEY
HOUSTON, TX 77010
713-658-0268
Christmas?? Now?? See ad index page.

Virginia

ELECTRONIC EQUIPMENT BANK
516 MILL STREET, N.E.
VIENNA, VA 22180
703-938-3350
Metropolitan D.C.'s One Stop
Amateur Store. Largest Warehousing of Surplus Electronics.

Wisconsin

AMATEUR ELECTRONIC SUPPLY
4828 W. FOND DU LAC AVE.
MILWAUKEE, WI 53216
414-442-4200
Wisc. Wats: 1 (800) 242-5195
Outside Wisc: 1 (800) 558-0411

IIX Xignal Co.
 P.O. BOX 37, Lacon, IL 61540
 Phone (309)246-2087

INCREDIBLE CODE!!

Learn the International Morse Code by the patented 'WORD METHOD

NOB00KS cards VISUAL AIDS gIMmicks

Just listen and learn! The ' WORD METHOO' is based on the tatest scientific and psychological techniques. You can zoom past 13 WPM in less than HALF THE USUAL TIME!!
The kit contains two cassette tapes. over Two HOURS of unique instruction by internationally tamed educator Russ Farisworth. Complete satisfaction guaranteed.
Available at local Electronic Dealers, or send check or money order for $\$ 14.95$ plus $\$ 1.50$ for postage and handling to:

EPSILON RECORDS

5002 W. McFadden - \#73
Santa Ana, Ca. 92704

ham radio
 cumaulative
 index

1978-1982

antennas and transmission lines

general

Antenna gain and directivily W2PV	
Antenna geometry for optimum performance	
N 4 HI	p. 60, May 8
Antenna parameters, equations for determining	
KG6B	p. 40, Mar
Antenna restrictions: another solution	
Antenna restrictions (letter)	
Beam antenna mast lock	
W4KV	p. 68, Jun
Best way to get an antenna into a tree (HN)	
WA5VLX	p. 84, Mar
Coaxial connections, sealing (HN)	
W5XW	p. 64, Mar 8
	p. 6, Oct 80
De-jising the quad (HN)	
W5TRS	p. 75, Aug 80
Dipole antenna length reterence chart (HN)	
W6XM	p. 75
Earth anchors for guyed towers	
Gain calculations, simplified	
W1DTV	p. 78, May
Ground current measuring on 160-meters	
W0KUS	
Ground systems (letter)	
ZL2BJR	p. 6, Nov. 80
Half-delta loop	
VE2CV	p. 37, May 82
Light-bulb dummy loads (HN)	
W6HPH	74, Oct 8
Lightning protection	
K9MM	p. 18, Dec 78
Comments, W6RTK	p. 6, Jul 79
Comments, W2FBL	p. 6, Jul 79
Letter, K9MM	p. 12, Dec 79
Neglected antenna for 40 and 80 meters	
WeWL	p. 44, Jan 82
Comments, WOWL	p. 8, May 82

Radials, installing, for vertical antennas

K3ZAP	p. 56 , Oct 80

Scaling antenna elements W7ITB
p. 58, Jul 79

Smith chart, numerical WBMQW
p. 104, Mar 78

Solid-state T-R switch for tube transmitters
K1MC

The Zepp (letter)
p. 58, Jun 80
he Zepp
p. 63, Aug 82

Vertical antenna, folded umbrella, top-loaded
VE2CV p. 12, Sep 82

Vertical-vee, converting (letter)
KA5KWV
p. 8. Sep 82

VSWR and power meter, automatic
p. 34, May 80

WOINK
p. 6, Jan 80

high-frequency antennas

Aligning Yagi beam elements (HN) WA2SON
p. 92, May 81

Base-loaded vertical antenna for 160 meters
W6XM
p. 64, Aug 80

Beverage antenna for 40 meters
p. 40 Jul 79

KG6RT
p. 40 , Jul 79

Big quad - small yard W6SUN
p. 56, May 80

Butterfly beam
p. 30, May 81

W1XU \quad p. 30
W6TC p. 24, Oct 79
De-icing the quad (HN)
WSTRS
Delta loop, top-loaded
W1DTY
Dipole antenna over sloping ground N 4 HI
Dipole antenna, trimming the (HN) W5NPD
Folded end-fire radiator
N7WD
N7WD
WB5ili
p. 18, May 82
p. 69, Jul 81
p. 44 , Oct 80
p. 75, Aug 80
p. 57, Dec 78
p. 38, May 79

Ground-mounted vertical for the lower bands,
improved (HN)
W5NPD
p. 68 , Nov 80

Ground systems for vertical antennas WO8CBJ
p. 31, Aug 79

Half-square antenna, the
N0AN p. 48, Dec 81
Short circuit p. 79, Oct 82
Half-wave vertical
VE2CV
Ham radio techniques
W6SA
p. 36, Sep 81
enmas, understacking
High-gain phased array, experimental KLZIEH
p. 44, May 80

Short circuit p. 44 , Sep 80
$\begin{array}{ll}\text { Junk-box portable antenna } & \\ \text { W3SMT } & \text { p. 24, Oct } 81\end{array}$
K7CW quad
K7CW
p. 36, Sep 82

Log-periodic antennas for high-frequency Amateur bands
W4AEO, WGPYK
p. 67, Jan 80
og-periodic tixed-wire beams for 75 -meter DX
W4AEO, W6PYK
p. $40, \mathrm{Mar} 80$

Log-periodic fixed-wire beams for 40 meters
WAAEO, W6PYK
D. 26 , Apr 80

Log periodic design
W6PYK, W4AEO
p. 34, Dec 79

Loop antenna, compact (letter)

- 6. Feb 80

W6WR
Low-band antenna problem, solution to
Low-band antenna problem, solution to
WgYFB
W8YFB
Mobile color code (letter)
WB6.JFD code (letter)
Mobile high-frequency antenna, refinements to
W3NZ D. 34, Jun 81
Multiband antenna system
VK2AOU
p. 62, May 79

Multiband vertical antenna system woncu
D. 28, May 78

Open quad antenna
12RR
p. 36, Jul 80

Phased antenna (letter)
Thacker, Jerry
p. 6, Oct 78

Phased vertical antenna for 21 MHz
W6XM
p. 42, Jun 80

Phased vertical arrays, pattern calculations for
WB5HGR
p. 40 , May 81

Quad antenna, modified	
Quad antenna, repairs (HN)	
K9MM	p. 87, May 78
Quad for 7-28 MHz	
W3N2	p. 12, Nov 80
Quad owner switches	
N6NB, W6AQ	p. 12, May 82
Comments, W6BQD	p. 8, Dec 82
Quad, three-element, for 15-20 meters using circular elements	
W40VO	p. 12, May 80
Quad, three-element switchable, for 40 meters	
N8ET	p. 26, Oct 80
Quad variations, more (HN)	
W5TRS	p. 72, Oct 80
Short circuit	p. $70, \mathrm{Feb} 82$
Quads vs Yagis revisited	
N6NB	p. 12, May 79
Comments, WB6MMV, N6NB	p. 80, Oct 79
Selective receiving antennas	
Short antennas, efficiency of W1GV/4	p. 18, Sep 82
Shunt-fed tower (HN)	
N6HZ	p. 74, Nov 79
Six-element wide-beam for 10 (ham radio techniques)	
W6SAI	p. 30, Dec 81
Small beams, high performance	
Stressed quad (HN)	
W5TIU	p. $40, \operatorname{Sep} 78$
Suspended long Yagi (ham radio techniques)	
W6SAI	p. 34, Nov 81
The K2GNC Giza beam	
Trapped antenna, trapping the mysteries of	
N3GO	p. 10, Oct 81
Comments, K9CzB	p. 8, Feb 82
Traps and trap antennas	
W8FX	p. 34, Aug 79
Triband Yagi beam (ham radio techniques)	
W6SAI	p. 68, Jan 81
Two delta loops fed in phase	
WBHXR	p. 60, Aug 81
Vertical antenna for 40 and 75 meters	
W6PYK	p. 44, Sep 79
Vertical antenna, portable	
WA8NWL	p. 48, Jun 78
W8JK antenna, a new look at	
Wilson Mark II and IV, modifications to (HN)	
W9EPT	p. 89, Jan 80
Windom antennas	
K4KJ	p. 10, May 78
Windom antenna (letter)	
K6KA	p. 6, Nov 78
Pt. I Yagi antenna design: performance calculations	
W2PV	p. 23, Jan 80
Short circuit	p. 66, Sep 80
Pt. ll Yagi antenna design: experiments contirm	
computer analysis W2PV	
Pt. Ilf Yagi antenna design: performance of multi-	
element simplistic beams	
W2PV	p. 18, May 80
Pt. IV Yagi antenna design; multi-element simplistic	
W2PV	p. 33, Jun 80
Pt. V Yagi antenna design: optimizing performance	
Pt. VI Yagi antenna design: quads and quagis	
W2PV	p. 37, Sep 80
Pt. VII Yagi antenna design: ground or earth effects	
W2PV	p. 29, Oct 80
Pt. VIII Yagi antenna design: stacking	
Pt. IX Yagi antennas: practical designs	
W2PV	p. 30, Dec 80
Yagi beam elements, aligning (HN)	
WA2SON	0. 79, Jan 81
ZL special antenna, 10-meter, for indoor use	
KSAN	p. 50, May 80
3.5-MHz broadband antennas	
N6RY	p. 44, May 79
3.5-MHz sloping antenna array	
W2LU	p. 70, May 79
3.5-MHz tree-mounted ground-plane K2INA	

7-MHz antenna array

K7CW
7-MHz rotary beam
W7DI
$14 \cdot \mathrm{MHz}$ delta.loop array
N2GW
p. 14, Nov 78
p. 16 , Sep 78
vhf antennas
Antenna-performance measurements using celestial sources W5CQ/W4RXY
p. 75 , May 79

Dual quad array for two meters WTSLO
p. 30, May 80

Folded whip antenna for vhf mobile - Weekender WB2IFV
o. 50, Apr 79

Ham radio techniques
W6SAI
p. 32, Sep 81

Inexpensive five-eighth wave groundplane (HN) W7CD WOHK
p. 84, Mar 8

Microwave-antenna designers, challenge for W6FOO

52, Nov 78
p. 44 , Aug 80

Microwave antenna, homebrew WBOVGI, Johnson
p. $68, \operatorname{Sep} 82$

Multiband J antenna
p. 74, Jul 78

OSCAR az-el antenna system
WA1NXP
p. 70, May 78

Re-entrant
bands 12 , May 81
W4FXE
orientation
True north, how to determine for antenna orientation
p. 38 . Oct 80 K4DE
p. 7, Mar 81
sing a 2 -meter quarter-wave whip on $450 \mathrm{MHz}(\mathrm{HN})$ K1ZJH
p. 92 , May 81

Yagi unf antenna simplified (HN) WA3CPH
p. 74, Nov 79

144-MHz mobile antenna WD8QIB
$1296-\mathrm{MHz}$ antenna, high-gain
p. 68, May 79

W3AED
D. 74 , May 78

matching and tuning

A coreless balun	
Active antenna coupler for VLF	
Burhans, Palph W.	p. 46 , Oct 7
Antenna bridge calculations	
Anderson, Leonard	p. 34, May
Antenna bridge calculations (letter)	
Antenna bridge calculations	
K6GK	p. 85, Ma
Short circuit	p. 84, Nov
Antenna match, quick and simple	
Anderson, Leonard H .	p. 58, Jan
Short circuit	p. 70, Feb 82
Antenna tuners (ham radio techniques)	
W6SAI	p. 30, Jul
Balun design, another	
Broadband balun, high performance	
Broadband balun, simple and efficient W1JR	
Broadband reflectometer and power meter	
VK2ZTB, VK2Z7Q	p. 28, Ma
Coaxial-llne transformers, a new class of	
W6TC	p. 12, Feb 80
Short circuit	p. 70, Mar 80
Short circuit	p. 67, Sep 8
Half-wave balun: theory and application K4KJ	
am radio techniques	
W6SAI	

High-frequency mobile antenna matcher, simple W6BCX
Johnson Matchbox, improved
K4IHV p. 45 , Jul 79

Short circuit
L-matching network, appreciating the WA2EWT
p. 27, Sep 80

Lowpass antenna matching unit, inductance-tuned WOYBF
p. 24, May 82

Low swr, how important?
W1GV/4 p. 33, Aug 81
Comments K1KSY, W1GV/4
Macromatcher: increasing versatility K9DCd
p. 68, Jun 80

Matching complex antenna loads to coaxial transmission lines WB7AUL
p. 52, May 79

Matching sections
p. 68, Mar 82

KL7HIT p. 6B,
Matching transformers, multiple quarter-wave
K3BY
$\begin{array}{ll}\text { Katching transformers, multiple quarter-wave } \\ \text { p. 44, Nov } 7\end{array}$
Noise bridge construction (letter) OH2ZAZ
p. 8, Sep 78

Noise bridge calculations with

TI 58/59 calculators

WD4GRI
p. 45, May 78

Omega-matching networks, design of W7ITE
p. 54, May 78

Optimum pi-network design
DL9LX
p. $50, \operatorname{Sep} 80$

Swr meter
p. 68 , Nov 78

Swr meter, how accurate? (HN)
WB9TQG
p. 78, Jan 81

Swr meter for the high-frequency bands WB6AFT
p. 62, Oct 81

Swr, what is your?
p. 68 , Nov 79

T-Network impedance matching to coaxial feedlines
Network impedance matching to coaxial teedines
W6EBY
p. 22 , Sep 78
Tandem pi networks
W6MUR
p. 32, Jul 82

Transformers, coaxial-line
p. 18, Mar 80

towers and rotators

Antenna guys and structural solutions W6RTK
p. 33, Jun 78

Antenna position display AE4A
p. 18, Feb 79

Armstrong beam rotator KP4DM
p. 68, Feb 82

COE tailtwister rotor, pulse-position control of
WB4EXW
Ham-M rotator automatic position control
WB6GNM
p. 42, May 77

Ham-M rotator control box, modification of (HN)
KADLA/WIRDR p. 68, Nov 8
KLM antenna rotor, computer control for (HN)
W8MQW
W6WX
p. 66, Feb 81
p. 92, Sep 79

Short circuit

transmission lines

Antiflex coaxial cable connection (HN) W4KV
p. 42, May 82

Cheapie coax (letter)
WB4AHZ p. 8, May 82
Coax cable, repairing water damage (HN)
W5XW p. 73, Dec 79
Coax cable, salvaging water-damaged (HN)
W5XW P. 88, Jan 80

Measuring coax cable loss with an swr meter
WB9TQG p. 35, May 81
Comments, WD4KMP, WB9TQG p. 6, Sep 81 Comments, W4PPB
p. 6, Sep 82
$\mathrm{Pi}, \mathrm{pi} \cdot \mathrm{L}$, and tandem quarter-wave line matching networks, response of W6MUR
Plumber's delight coax connector (weekender) N4LI
PL-259 connectors, attaching to RG-58/U cable (HN) W5BVF
p. 81, Jan 82

Ri power divider (HN) W5TRS
p. 80, Feb 82

T coupler, the (HN) K3NXU
p. 68, Nov 80

Time-domain reflectometry, checking transmission lines with
K7CG
p. 32, Jul 80

Transtormers, coaxial-line
WGTC
p. 18, Mar 80

Transmission-line circuit design for 50 MHz and above W6GGV
p. 38 , Nov 80

Transmission-line design, Pt. 2: distributed resonant circuits in uhfivhf lines
WGGGV
p. 62, $\operatorname{Jan} 81$

Transmission-line design, Pt. 3: distributed resonant circuits in vht/uhf lines
W6GGV
p. 56 , Feb 81

Transmission-line design, Pt. 4: distributed resonant circuits in vhi/uhf lines
WGGGV
p. 64, Mar 81

Transmission-line design, Pt. 5: 50 MHz and above WGGGV
p. 72, Apr 81

Transmission lines, long, for optimum antenna location
N 4 UH
p. 12 , Oct 80

Transmit/receive switch, solid-state vhf-uhf W4NHH
p. 54, Feb 78

Zip-cord feedlines (HN) W7RXV
p. 32, Apr 78

Zip-cord feedlines (letter) p. 6, Oct 78

75 -ohm CATV cable in amateur installations
W7VK p. 28, Sep 78
75 -ohm CATV hardine matching to $\mathbf{5 0}$-ohm systems
K1XX

audio

Active filters
K6JM
p. 70, Feb 78

Add-on selectivity for communications receivers G4GMQ
p. 41, Nov 81

Audio processor, communications for reception W6NRW
p. 71, Jan 80

Audio response, tailoring (HN) N1FB
p. 42, May 82

Better audio for mobile operation
K6GCO
p. 48, Feb 81

Duplex audio-frequency generator
p. 66, Sep 79 with AFSK features

Handheld transcelver, audio amplifier for
N1RM p. 38, Jul 81

Headphones, dual-Impedance (HN) AB9Q p. 80, Jan 79

Heath HW-2036 mods (letter) p. 8, Jun 81

Mosher, E.A.
Microphones and simple speech processing
p. 30 , Mar 80 Letter, W5VWR p. 6, Sep 80

Phone patch using junk-box parts
p. 40, Oct 80

RC active filters (letter)
W6NRM
p. 102, Jun 78

Simulated carbon microphones, using with Amateur transmitters
W9MKV
p. 18 , Oct 81

Speech processor, split-band (letter)
p. 6, Dec 79

WA2SSO
eeech processors (letter)
K3ND
p. 6, Aug 80

Speech processing, split-band (letter) Schreuer, NTWS
p. 74, Feb 80

Speech systems, improving K2PMA
p. 72, Apr 78

TR-2400, external microphone for (HN) WB21FV
p. 64, Mar 82

Variable-frequency audio filter W4VRV
p. 62, Apr 79

Volce-band equalizer
WB2GCR
p. 50, Oct 80

commercial equipment

Amateur Radio equipment survey number two W1SL
ZL2RP
p. 52, Jan 80
p. 67 , Mar 82

Short circuit p. 79, Oct 82
Atlas 350 AGC circuit, modifications (HN) KORL
p. 42, May 82

Autek filter (HN)
p. 83, May 79

K6EVQ, WABWZQ
CDE tailtwister rotor, pulse-position control of
WB4EXW p. 30, Jan 81
Cleanup tips for amateur equipment (HN) Fisher
Collins KWM-2, updating
p. 49, Jun 78

W6SAI

Ollins KWM-2 KWM-2A owners' reporis
WB1CHQ
300-Hz crystal filter for Collins receivers (letter)
G3UFZ
Collins S-line backud power supp
N1FB
90, Jan 78

Collins S-line monitoring (HN)
p. 78 , Oct 79

N1FE
p. 78, Aug 79

Collins S-line, owners' report
p. 12, Apr 81

WB1CHO
Collins 32S cooling (HN)
N1FB
Collins 32S, improved stability for (HN)
Collins 32 S PA disable jacks \quad p. 83, May 79
N1FB \quad p. 65, Mar 80
$\begin{array}{ll}\text { Collins } 75 \mathrm{~S} \text { CW sidetone (HN) } & \\ \text { N1FB } & \text { p. 93, Apr } 79\end{array}$
Collins 32S-1, updating
N1FB
p. 76, Dec 78

Collins 51 J , modifying for ssb reception
W6SAl p.66, Feb 78
Collins 51J product detector (letter)
K5CE
N1FB \quad p. 85, Jun 79
Collins 516F-2 solid-state rectifiers (HN)
N1FB
Collins 755 receiver, (MN)
p. 91, Feb 79

N1FB
p. 94 , Oct 78

Collins 755.3 alignment (HN)
N1FB \quad D. 79 , Jan 8

Collins 516F-2 low-voltage and bias modification (HN)
N1FB
p. 68, Jul 81
Collins 516F-2 power supply, transient protection for
W6AD
DenTron 160 XV transverter, stabilizing the
DenTron 160XV
(weekender)
WB2QLL
0. 46 Jun 81

Drake R4C backlash, cure for (HN) W3CVS
p. 82, May 79

Drake R-4C, cleaner audio for (HN) K1FO
p. 88, Nov 78

Drake R-4C receiver audio improvements (HN) W3CVS
split-frequency operation
split-frequency operation
WB8JCQ
Drake R-4C, new audio amplifier for WBQJGP, K8RRH
p. 48, Apr 79

Drake R-4C, new product detector for (HN)
WBQWG
Drake R-4C product detector, improving (HN)
W3CVS p.64, Mar 80
Drake TR-7 transcelver, Woodpecker nolse blanker for (HN)
K1KSY p. 67, Feb 81
Drake TR-22C sensitivity improvement (HN
K7OR on 160 meters (HN)
W1IBI, W1HZH
p. 81, Jan 79

Factory service (letter W6HK
p. 6, Jul 80

FT. $101 E$, 10 -meter preamp for K1NYK
p. 26, Jul 81

Feedline loss, calculating with a single $\begin{array}{ll}\text { measurement at the transmitter (HN) } \\ \text { K9MM } & \text { p. } 96 \text {, Jun } 78\end{array}$
Hallicrafters HT-37, improving W6NIF
p. 78 , Feb 79

Ham-M rotator control box, modiflcations of (HN) K4DLA/W1RDR
W1JR
p. 68, Nov 80 Short circuit
p. 85, Jun 79

Ham-3 rotator, digital readout for K1DG
p. 92, Sep 79

Heath HD-10 keyer, positive lead keying (HN)
W4VAF p. 88, Nov 78

Heath Model 10-4530 oscllloscope, modifications
Bailey p. 20, Aug

Heath HD-1982 Micoder for low-impedance operation
Johnson, Wesley p. 86, May 78
Heath HR-2B external speaker and tone pad (HN)
N1FB
Heath HW-8 improved keying for (HN) W3HVK
p. 60, Aug 82

AD9M
Heath HW-2036 antenna socket (HN) W3HCE
p. 79, Jul 79

Heath HW-2036, carrier-operated relay for WD5HYQ \quad p. 58, Feb 80
Heath HW2036; Lever action switch Illumination (HN)
W2IFR p. 99, Jul 78

Heath HW2036, outboard LED frequency display WB8TJL
p. 50, Jul 78

Heath HW-2036, updating to the HW-2036A WB6TMH, WA6ODR
Heath HWA-2036-3 crowbar circuit (HN)
W3HCE
Heath Micoder improvements
p. 62, Mar 79
p. 88 , Nov 78

W1OLP
p. 42, Nov 78

Heath Micoder matching (letter) WB8VUN
p. 8, Sep 78

Heath SB-102 modifications (letter) W1JE
p. 110, Mar 78

Heath SB-400/SB-401, simple speech amplifier for (HN) W8LMH p. 72, Jun 81

Heathkit Micoder adapted to low-impedance input (HN) input (HN
WB2GXF
WB2GXF p. 78, Aug 79
Heathkit HW-8, increased break-in delay (HN) K6YB
p. 84, Jun 79

Heathkit HW-2036, updating the WA4BZP
p. 50 , Nov 80

quality says it all...

 ROHN "fold-over" Towers offer unbeatable value. These towers let you work completely on the ground for antenna and rotator installation and servicing eliminating the need of climbing the tower. Send $\$ 2.00$ for complete catafog.UNR-Rohn
Division of UNR, Inc.
P.O.Box 2000
e718 West Plank Road yoldilinois 61656 309-697-4400

QUALITY VHF/UHF KITS
International
Crystals \& Kits -O: TMI $=$ EXPERMMENIIR

MXX-1 Transistor RF Mixer 3 to 20 MHz , Cat. No 035105
20 to 170 MHz Cat. No 035106

SAX-1 Transistor RF Amp. 3 to 20 MHz , Cat No. 035102 20 to 170 MHz . Cat No 035103 BAX-1 Broadband Amp 20 Hz to 150 MHz . Cat No 035107

${ }^{5} 6^{88}$
02\% Calibration Tolerance
EXPERIMENTER
CRYSTALS
(HC 6/U Holder)

Cat. No. Specifications
$031300 \quad 31020 \mathrm{MHz}$ - For use in
OF-1L OSC Specity when ordering 20 to 60 MHz - For use in OF-1HOSC Specity when ordering

WRITE FOR BROCHURE

CONDITIONSOF SALE Sold on a cash basis. Shipping and postage inside U.S. will be prepaid by International ORDERING INSTRUCTIONS Order by catalog number Enclose check or money order with your order
Enclose check or money order with your ordet
FOREIGN ORDERS. Prices quoted for U.S orders only Orders for shipment to other countries will be quoted on request Prices subject to change. Minimum foreign order $\$ 25.00$

International Crystal Mfg. Co., Inc. 10 North Lee, Oklahoma City. Okiahoma 73102

AT AFFORDABLE PRICES
Call or Write for FREE CATALOG
(Send $\$ 1.00$ or 4 IRC's for overseas mailing)
See our two page ad in 73 Magazine

FM REPEATERS
FM \& AM RECEIVERS
FM EXCITERS \& XMTRS
FM \& SSB POWER AMPS
RECEIVING \& TRANSMITTING CONVERTERS FOR FM \& SSB LOW-NOISE PREAMPS
CWID's, COR's, RF TIGHTCASES
HELICAL RESONATORS
For Repeaters, Links, OSCAR,
ATV, Mobile, Base, Scientific

hamtronics, inc.

65-X MOUL RD. O HILTON NY 14468 Phone: 716-392-9430
Hamtronics ${ }^{\text {® }}$ is a registered trademark

Heathkit SB-104A, improved receiver performance for
N2EO
p. 78, Apr 81
Heath's new all-band transceiver the SS.9000 W9JUV
p. 12, Nov 82

Henry 2 K 4 and 3 KA linears, electronic
bias switching
W1CBY

Hy-Gain 400 rotator, improved indicator
system for
W4PSJ p. 60, May 78
HP. 35 calculator, keyboard cleaning ($H N$)
Anderson, Leonard H. p. 40, Jul 78
ICOM IC-2A(T), odd splits
N7AAD
p. 65, Jul 82

ICOM IC-22S, using below 146 MHz (HN) W1IBI p. 92, Apr 79

ICOM 701 owners' report
WB1CHQ
Johnson Matchbox, improved K4IHV p. 56 , Oct 81

> Short circuit

$$
\text { p. 45, Jul } 79
$$ D. 92, Sep 79

Kenwood TR-7400A, scanner for (the Kenscan 74)
WB70YB

Kenwood TR-7500, preprogrammed (HN) W9KNI p. 95 , Oct 78

Kenwood TS-520-SE transceiver, counter mixer for W5NPD
OLM antenna rotor, computer control for (HN) W8MOW
p. 66, Feb 81

Measurements Corporation 59 grid.dip
oscillator improvements WGGXN
Micro Mart RM terminal modification (HN) WA5VQK p. 99, Jun 78
National NCL-2000, using the Drake T-4XC (HN) K5ER p. 94, Jan 78
Ni-cad battery charging (letter)
W6NRM
p. 6, Jul 80

Owners' survey, TR7
WB1CHQ
p. 66, Nov 81

Owners survey: 2 -meter handhelds
p. 35, Jul 82

KA1ZM
p. 60 , Aug 82

W6XM
p. 60 , Aug 82

S-line, QSK noise (HN)
p. 66, Mar 82

SB-220 transceiver, inrush current protection for Weekender W3BYM
p. 66, Dec 80

SB-303 receiver, noise reduction (HN)
Suzuki
p. 70, Jun 82

Sony ICF-2001, eight-channel memory scanner for W3CSW p. 54, Aug 82
Swan 160X birdie suppression (HN) W6SAI
p. 36, Oct 78

Swan 350 , curing frequency drift WA6IPH
p. 42, Aug 79

Ten-Tec Horizon/2 audio modification (HN)
WB9RKN p.
Ten-Tec Omni-D, improved CW agc for (HN)
W6OA
TS-820/TS-820S, reducing interference in (HN)
W4MB p. 88, Jan 80
TS-820 filter switching modification (HN)
K70AK p. 72 Jun 80
Wilson Mark II and IV, modifications to (HN)
W9EPT
p. 89, Jan
faesu FT-227R memorizer, improved memory (HN)
Yaesu FT-227R memorizer, improved memory (HN)
WA2DHF
-500Z tube tailure (HN)
AG6K
p. 78 , Oct 82

SCX1500A power pentode (HN)
p. 77, Oct 82

construction techniques

Anodize dyes (letter)
W4MB
p. 6, Sep 79
Anodizing aluminum VE7DKR
p. 62, Jan 79
Comments, WA9UXK
p. 6, Nov 79

AN/UPX-6 cavities, converting surplus

W6NBI	p. 12, Mar 81
Cabinet construction techniques	p. 76, Mar 79
W7KDM Cheap dots (HN) p. 77, Sep 82 W6XM Cliplead carousel (HN) p. 79, Oct 79 WB1AQM	

WB1AQM p. 79 , Oct 79
Coaxial cable connectors, nomebrew hardline-to-uht
K2YOF p.
Coax cable, salvaging water-damaged (HN)
W5XW
Crystal switching, remote (HN)
WABYBT
Dust buildup, decreasing (HN)
p. 88, Jan 80
p. 91, Feb 79 K4KI
p. 77, Sep 82

Fan, speed control (HN)
K4KI
p. 77, Sep 82

Lightning protection (letter) K9MM
p. 12, Dec 79

Metal cleaning with dip-type cleaners (HN)
W5XW p. 82, Jan 82

Comment, K6YPD p. 8, Jun 82
Metalized capacitors (HN)
W8YFB p. 82 May 79
Microcircuits, visual aids for working on K9SRL
p. 90 , Jul 78

Phone plug wiring (HN) N1FB
p. 85, Jun 79

PC layout using longhand
WB9QZE p. 26, Nov 78

Comments, W5TKP
p. 26, Nov 78

Printed circuit layout and drilling template WA4WDL W4MTD
p. 73, Jul 82
p. 51 , Apr 78

Rejuvenating transmitting tubes with thoriated-tungsten filaments (HN) W6NIF
p. 80 , Aug 78

Set screws, taming (HN) W5PGG
p. 64, Mar 82

Ten-Tec Omni-D, improved CW agc (HN) W60A $1{ }^{\text {Wend }}$ IV modifications (H)
(P. 73, Dec 79
Wire-wound potentiometer repair (HN)
W4ATE
p. 77, Feb 78

digital techniques

Basic rules and gates
p. $76, \operatorname{Jan} 79$

Counters and weights Anderson, Leonard H.
p. 66, Aug 79

Digiscope
p. 50, Jun 79

WBGCLH p. 50 , Jun
Digital-circuit problems, avoiding built-in, part one
$\begin{array}{ll}\text { Digital-circuit problems, avoiding built-in, part one } \\ \text { W1BG } & \text { p. } 43 \text {, Sep } 81\end{array}$ W1BG
Comments VE2QO
p. 43 , $\operatorname{Sep} 81$
p. 6 , $\operatorname{Dec} 81$

Digital-circuit problems, avoiding built-in, part two WIBG p. 50, Oct 8
Comments VE2QO D.
Digital techniques: gate arrays for control 82 Jan 80
Digital techniques: inside a phase-frequency detector
Anderson, Leonard H. p. 28, Sep 82
Digital techniques: shocking truths about semiconductors Anderson, Leonard H. p. 36, Oct 82
Down counters
Anderson, Leonard H.
p. 72, $\operatorname{Sep} 79$

Flip-flop internal structure Anderson, Leonard H.
p. 86 , Apr 79

Gate arrays for pattern generation Anderson, Leonard H .
p. 72 , Oct 79

Gate structure and logic families
p. 66 , Feb 79

Anderson, Leonard H.
Making waves W6HDM
p. 44, Mar 82

Multivibrators and analog input interfacing
Anderson, Leonard H. p. 78, Jun 79

Packet radio, introduction to VE2BEN
p. 64, Jun 79

Propagation delay and flip-flops Anderson, Leonard H.
p. 82, Mar 79

Self-gating the 82S90/74S196 decade counter (HN) W9LL
p. 82, May 79

Synthesizers, VHF and UHF, design of digital
components
G4CLF
p. 26, Jul 82

Talking digital clock
K9KV
p. 30 , Oct 79

features and fiction

DXer's Diary
p. 18, Mar 81

W9KNI
p. 26, Apr 81

W9KNI
Comments
p. 6, $\mathrm{S} \in \mathrm{p} 81$

OXer's Diary
W9KNt
p. 22, Jun 81

DXer's Diary
p. 60, Aug 81

DXer's Diary
p. 70, Dec 81
$\begin{array}{ll}\text { James R. Fisk memorial } & \text { p. 2, Jun } 80\end{array}$
James R. Fisk, W1HR - some reflections
W6NIF p.6, Jun 80

Jim Fisk, tribute to, publisher's log
WiNLB
From Amateur to professional
p. 54, Aug 81

KI2U
Hallicrafters history
W6SAI
p. 20, Nov 79

Hallicrafters story (letter)
KOADM
p. 6, May 80

Hallicrafters story (letter)
WITVN
p. 6, May 80

Hallicrafters story (letter)
WA2JVD
p. 6, Sep 80

Ham radio techniques: 4 riband Yagi beam for 20,15 , and 10 meters
W6SAI
p. 68, Jan 81

Short circuit
p. 84, Nov 81

Ham radio techniques: earth-moon-earth W6SAI
p. 40 , Feb 81

Ham radio techniques: more about moonbounce
$\begin{array}{ll}\text { W6SAI } & \text { p. 34, Mar } 81 \\ \text { Ham radio techniques: ten-meter band } & \end{array}$
Ham radio techniques: ten-meter band
W6SAl
Ham radio techniques: 160 -meter band
Ham radio techniques: amateur radio, 1933
W6SAI
Ham radio techniques: antenna tuners
W6SAI
Ham radio techniques: amateur radio 1941
W6SAI
Ham radio techniques
W6SAI
W6SAI
Ham radio techniques
W6SAI
p.

Ham radio techniques: radio-frequency interference
W6SAI
p. 34, Nov 81

Ham radio techniques: radio-frequency interference
W6SAI D. 30, Dec 81
Hellschreiber, a rediscovery
PA@CX
Jammer problem, solutions for
UX3PU
p. 28, Dec 79

Comments \quad p. 56, Apr 79
Jim, a tug at your memory
W4VT p. 6, Sep 79
p. 28, May 81

Observation and opinion
W9KNI
Reinartz, John L., father of shortwave radio 6 , Jut 81
Reinartz, John L., father of shortwave radio
$\begin{array}{ll}\text { WA6CBQ } & \text { p. 10, Aug } 81\end{array}$
Shopping for parts by mai!
W8FX
p. 16, Jul 81

Comments
p. 6, Dec 81

Tune in on the world
WA4PYQ
p. 12, Jun 81

Want a great Xmas gift? Leave this where your XYL will see it!

OPERATIONS LOG

KA60FA

H. N. LOCKWOOD him a

PERSONALIZED BINDER

 for his operations log!Deluxe flexible vinyl with highly polished brass-plated corners, custom gold stamped with \%" high call letters "Operations Log" and station owner's name in $\% / 10$ " type. Your choice of brown or mink vinyl base.
\#H-144 3 -ring bndr. for standard log sheets, 1 " capacity
\#H-548 Cover for spiral-bound ARRL log
Only $\$ 36$ plus $\$ 3$ handling/shipping.
MasterCard or VISA. Calif. residents add $61 / 2 \%$
H.N. LOCKWOOD, INC., 450 Maple St. Redwood City, CA 94063 • (415) 366-9557

- Covers 100 to 185 MHz in 1 kHz steps with thumbwheel dial - Accuracy 1 part per 10 million at all frequencies - Internal FM adjustable from 0 to 100 kHz at a 1 kHz rate - Spurs and noise at least 60 dB below carrier - RF output adjustable from 5.500 mV at 50 ohms • Operates on 12 Vdc (a) $1 / 2 \mathrm{Amp}$ • Available for immediate delivery • $\$ 349.95$ plus shipping - Add-on Accessories available to extend freq. range, add infinite resolution, voice and sub-audible tones, AM, precision 120 dB calibrated attenuator - Call for details - Dealers wanted worldwide.

VANGUARD LABS
196-23 Jamaica Ave., Hollis, NY 11423
Phone: (212) 468-2720
FREE! FREE! FREE! FREE! FREE!
ГEE! FREE! FREE! FREE! FREE! 905 S. Vermont Ave 905 S. Vermor 20406 Angeles. Cal 90006 Los Angeles. Cal 90006

"THE GOOD OLE CAGE"

No balun! No tuner! No "built in loss" such as found in coaxial antennas! (Redesigned using todays materials as the 'BN Cage Kit' by W2BN: Patent Pending).

MODEL 8075 (80/30/10M)

- Overall length 117
- All parts including 100' coax and connector supplied
- 50-75 ohm feed impedance
- Install as flattop, sloper, Inverted-V or bent
- ABS spreaders and insulators
- Government, MARS, special frequencies on request

80/30/10M
\$119.95
40/15M \$99.95
160M \$179.95
(INTRODUCTORY)
Credit cards accepted;
N.J. residents add 5% sales tax.

As Christmas gift, we will ship prepaid.
West Jersey Communication Products 932 Oakland Ave.
Burlington, NJ 08016 609-386-5021

Featuring Kenwood, Yaesu, Icom, Drake, Ten-Tec, Swan, Dentron, Alpha, Robot, MFJ, Tempo, Astron, KLM, Hy Grain, Mosley, Larsen, Cushcraft, Hustler, Mini Products, Bird, Mirage, Vibroplex, Bencher, Info-Tech, Universal Towers, Callbook, ARRL, Astatic, Shure, Collins, AEA. We service everything we sell! Write or call for quote. You Won't Be Disappointed.
We are just a few minutes off the NYS Thruway (I-90) Exit 32

ONEIDA COUNTY AIRPORT TERMINAL BUILDING ORISKANY. NEW YORK 13424

Warren-K21×N
out of state
Bob - WA2MSH
ORDER TOLL FREE
$800-448-9338$
NY Res Call 315 , 736 .0184
AI. WA2MSI

DIRECTION FINDING?

\star Doppler Direction Finding
\star No Receiver Mods
\star Mobile or Fixed
\star Kits or Assembled Units
$\star 135-165 \mathrm{MHz}$ Standard Range

* Circular LED Display
\star Optional Digital Display
\star Optional Serial Interface
* 12 VDC Operation
* 90 Day Warranty

New Technology (patent pending) converts any VHF FM receiver into an advanced Doppler Direction Finder. Simply plug into receiver's antenna and external speaker jacks. Use any four omnidirectional antennas. Low noise, high sensitivity for weak signal detection. Kits from $\$ 270$. Assembled units and antennas also available. Call or write for full details and prices.

DOPPLER SYSTEMS,
5540 E. Charter Oak,
Scottsdale, AZ 85254
(602) 998-1151

fm and repeaters

Add fm to your receiver (weekender) K3NXU	81
Amateur fm, close look at W2YE	79
Antenna design for omnidirectional repeater coverage N9SN	
Command function debugging circult WATHFY	
Deviation, measuring N6UE	p. 20, Jan 79
Digital scanner for 2 -meter synthesizers K4GOK	p. 56, Feb 78
External frequency programmer (HN) WB9VWM	p. 92, Apr 79
Fm dernodulator using the phase-locked	1000
KL7IPS Comments	p. 74, Sep 78
Anderson, Leonard H .	9
Folded whip antenna for vht mobile WB2IFV	
Frequency synthesizers, 600 kHz offs KGKLO	or (HN) p. 96, Jul 78
Ni -cad charger, any-state WA6TBC	66, Dec 79
Preamplifier for handi-talkies WB2IFV	89, Oct 78
Private call system for vhf fm (HN) W9ZTK	p. 77, Feb 78
Receivers, setup using ht harmonics (HN)	
K9MM	p. 89, Nov 78
Repeater channel spacing (letter) WB6JPI	p. 90, Jan 78
Repeater jammers, tracking down W4MB	56, Sep 78
Repeater interlerence: some corrective W4MB	actions p. 54, Apr 78
Simple scope monitor for vhf fm WIRHN	p. 66, Aug 78
Single-tone decoder WazUMY	p. 70, Aug 78
Solar powered repeater design WB5REAWB5RSN	p. 28, Dec 78
Speech processor for fom transmitters G4CLF, G3RZP	p. 76, Mar 82
Subaudible tone encoders and decoders W8GRG	p. 26, Jul 78
Synthesizer, 144 MHz , 800-channel K4VB, WA4GJT	p. 10, Jan 7
Synthesizer, 144-MHz CMOS K9LHA	14, Dec 79
Tone-alert decoder WBzXH	
Tone generator, IC (HN) W6IPB	p. 88, Mar 79
Touch-tone decoder, IC W3QG	p. 26, Jul 78
Touch-tone decoder, third generation	
WA7DPX	p. 36, Feb 80
Short circuit	p. 67, Sep 80
144.MHz synthesizer, direct output (lette)	er) 00 jan 78
W86JPI	p. 90, Jan 78

integrated circuits

Active filters K6JM	
Binary coded decimal addition (HN)	p. 70 , Feb 78
WA9HUV	p. 66, Apr 82
Comment, Schiffier, Jeffrey L.	p.8, Dec 82
CMOS programmabie divide-by-N counter (HN)	
W7BZ D. 94 , Jan 78 Exar XR-205 waveform generator as capacitance meter (HN) W6WR p. 79, Jul 79 IC arrays K6JM p. 42, Sep 78	

IC op amp update

Jung, Walter
Op amp challenges the 741 WASSNZ
Socket label for ICs (HN) WA4WDL, WB4LJM
Touch Tone decoder, an improved N6JH
TTL ICs, simple tests for W6ALF
TTL oscillator (HN) WB6VZM
555 timer operational characteristics WB6FOC
2716 EPROM programme N3CA
p. 62, Mar 78
p. 76, Jan 78
p. 94, Jan 78
p. 24, Dec 82
p. 37, Mar 82
p. 77, Feb 78
p. 32, Mar 79
p. 32, Apr 82

keying and control

Accu-keyer speed readout K5MAT
p. $60, \operatorname{Sep} 79$

Biquad bandpass filter for CW NODE
p. 70 , Jun 79

Short circuit
p. 92, Sep 79

Comments p.6, Nov 79
Cathode key with the Heath HD-1410 (HN) K9XM, N9MX
p. 80, Jan 82

CMOS keyer, simple
p. 70, Jan 79

HB9ABO
Code speed counter K8TT
D. 86 , Feb 79

Constant pitch monltor for cathode or grid-block keyed transmitters (HN) K4GMR
p. 100, Sep 78

CW break-in, quieting amplifiers for
p. 46, Jan 79

CW identifier, versatile WB2BWJ
p. 22, Oct 80 Short circuit p. 70, Feb 82

CW keyboard using the APPLE II computer W6WR
CW memory modification (HN)
p. 60 , Oct 80
p. 93, May 81

WODLQ
CW operator's PAL W2YE
p. 23, Apr 79

CW signal processor
p. 34 , Oct 78

Comments, VE3CE
p. 6, Jun 79

Dasher
p. 68, Mar 79

Deluxe memory keyer with 3072 -bit capacity
Short circuit p. 92, Sep 79
Short circuit p. 89, Jan 82

Electronic keyer
p. 89, Jan 82 OK31A
p. 10, Apr 78

End-of-transmission K generator
G8KGV
Keyer, single-chip, for QRP (weekender)
p. 58 , Oct 79 W3HVK
p. 70, Oct 82

Keyer with memory (letter) p. 6, Dec 79 Hansen, WIlliam
Key toggle
p. 50, Mar 79

Memory keyer, W7BEX (letter) SP20X
D. 6. Jan 80

Memory keyer, (letter)
p. 6, Feb 80

W3VT
p. 73, Jun 80

GW4CQT
p. 36, Jan 81

Microcomputer-based contest keyer K9CW
p. 28, Apr 78

ZS6AL (HN)
KgWGN/WOUSL
p. 81, Aug 78

Programmable keyer, Autek MK-1, expanded memory for N9AKT
p. 58 , Jan 80

Radio Shack ASCll keyboard encoder for micro-
processor-controlled CW keyboard, using (HN) VE7ZV
p. 72, Oct 80

Ten-Tec 645 ultramatic keyer mods (HN)
K4JST p. 70, Dec 82
Transceiver diplexer: an alternative to relays
N6RY
WPM readout for deluxe memory keyer (weekender) WAIOEH
p. 50, Apr 82

measurements and

 test equipmentAntenna bridge calculations Anderson, Leonard H .
p. 34, May 78

Antenna bridge calculations (letter) W5OJR Repair Bench Repair Be W6NBI
р. 6, May 78

Battery charger senso W3BYM
p. 40, Aug 78

Broadband reflectometer and power meter
VK2ZTB, WB2Z7Q
Capacitance measurements with a
frequency counter - Weekender Moran, John
p. 28, May 79

Moran, John
Capacitance met Mathieson, P. H
p. 62, Oct 79
p. 51 , Feb 78

Capacitance meter, simplified
p. 78, Nov 78
p. 78, No
Capacitance meter, (simplified), improvements to

Capacitance meter, (simplified), improvements to
WA3CPH
p. 54 , Mar 80
Counter control pulses (HN) W9LL
p. 70 , Apr 80

Deviation, measuring
p. 20, Jan 79

NoUE
K4GOK
D. 66, Aug 80
Diode noise source for receiver noise measurements
Diode noise source for receiver noise measurements
WGNBI
$\begin{aligned} & \text { p. 32, Jun } 79\end{aligned}$
Dip meters, a new look at W6GXN
p. 25 , $A \cup g 81$

Dip-meter converter for VLF
p. 26 , Aug 79

WAYOT p. 26, Aug
Electrolytic capacitors, measuring capacitance of
KP4DIF p. 24, Sep 80
Field-strength meter for the high-frequency Arnateur bands
\qquad
Frequency counter, capacitance-measurement accuracy for W1ZUC
p. 44, Apr 80

Short circuit p. 67. Sep 80
Frequency counter, miniature
p. 34 , Oct 79

Frequency counter, K4JIU, modifications for (HN)
K4JIU p. 65, Mar 80
Frequency counter, modify for direct counting to 100 MHz WA1SNG
p. 26, Feb 78

Frequency counter, front-ends for a $500-\mathrm{MHz}$
K4JIU p. 30, Feb 78

Frequency counter, high-impedance preamp and pulse shaper for 14 YAF
p. 47 , Feb 78

Frequency counter, simple (HN) W2QBR
p. 81, Aug 78

Frequency counter, simplitying WIWP
p. 22, Feb 78

Short circuit
p. 94, Feb 79

Frequency counters, uhf and microwave
W6NB
Frequency counters, understanding and using
W6NBI
Frequency counters, high-sensitivity
preamplifier for
W1CFI
p. 80 , Oct 78

Function generator, integrated circuit N3FG
p. $30, A \operatorname{Aug} 80$

Gallon-size dummy load
W4MB
Grid-dip meter, no-cos W8YFB
p. 74, Jun 79
p. 87, Feb 78

QUALITY SPECIALS

SOPHISTICATED I.C.S

onta sheets mon apphoppate appucaton notes ane provioto pret Fant a a wneur In all integarto cincuits listed nelo macties)

 ISTMO
145
 "4ncom

 Fomeron, sonor tco Dishar meras SD Diar AD Comentel (co onven pespato fon Lowfomblyturions bow CAPACITORS

CAPACITORS						
dipped tantalums 1-80(*es) 10				computen anade nd wop mas (esen)		
	mesoy	1*0	120	2×0	${ }^{10}$	
		∞		4000	50	310
	messy	\times	${ }^{*}$	12000	30	30
	mesor	0	∞	27.500	0	$3 \times$
	- \%nvisv	*	3	773000	${ }_{3}^{0}$	\% 50
π	-stav	\%	*	400000	20	*s
axial ELECTROLITICS 				radial electholrtics 		
	nevar	11	11	2 mtanv	Is	11
	numav	3	4	,	18	18
	Tmuty	$\stackrel{18}{8}$	4	y yozv	18	㫛
	masy	\%	4	At mentisi	\%	\%
	mevior	"	$\stackrel{ }{4}$	30 meoviv	0	1
	matav	n	2	*0 mozav	0	\#
	muav	0	*	500 meazy	3	"
	mazy	8	\$0	${ }^{1000}$	8	∞
0×0	-1vosv	0	${ }_{8}^{*}$	mmerror	0	\%
MISCELLANEOUS						

oftcuipnow

Fiw st. Low mopuric sockits max matel
 2w onaw Monizontai Thim Pot weo ore nonitowthi mat por
 GOLDSMITH SCIENTIFIC CORPORATION
P.O. BOX 318, COMMACK, NY 11725 PHONE ORDEAS WELCOME-(516) $979-7944$
MINIMUM OROR S ST0.00-U.S. FUNDS ONLY Minimum oaper siado-u.s funds only
new toak state hesioents aio sales tax

Your own satellite

 TV system for $\$ 2388 .{ }^{00}$ 10 FT. PARABOLICWhat the system will do:

You can receive up to 60 channels of T.V. direct from satellites to your home receiver. Movies, sporting events, religious programs, other T.V. stations, and much more. What the system includes:

1. 10 ft . fiberglass dish made of reflective metal bond with fiberglass. Weather-resistant and virtually mainten-ance-free. Dish comes in 4 sections.
2. Single pedestal heavy duty polar mount for extra strength and installation simplicity; easy satellite to satellite adjustment.
3. Four pole rotator mount for more stability, square tube legs and rotator included.
4. All aluminum LNA mount and horn holder for accurate aiming of LNA. All aluminum, weather-proof LNA cover.
5. Drake ESR-24 Receiver or Auto-Tech Receiver. Your choice. Down converter located at the dish.
6. Amplica or Avantek LNA 120°.
7. Chapparel Feed Horn for unsurpassed quality. 8. All accessories included.

NEW WEST COAST SHIPPING WAREHOUSE

Complete Systems, Receivers, Antennas, LNA's \& Accessories CALL US TODAY! 901-795.4504

 MEMPHIS, TENNESSEE 38118

Iron Powder and Ferrite TOROIDAL CORES

Shielding Beads, Shielded Coil Forms Ferrite Rods, Pot Cores, Baluns, Etc.

Small Orders Welcome Free 'Tech-Data' Flyer

12033 Otsego Street, North Hollywood, Calif. 91607

In Germany Eiextronikiaden. Witheim - Meilies Str $88 \quad 4930$ Detmold 18. West Germany In Japan Toyomura Electronics Company. Lid. 7-9. 2-Chome Sota-Kanda Chiyoda-Ku. Tokyo. Japan
 TA DON'T BUY THIS' AUDIO FILTER
.or any other until you've read our Audio Filter Fact Sheet. Audio filters, unfortunately, lend themselves to some pretty spectacular claims, like "infinitely variable" or "20 Hz bandwidth." Fine, but is this what you really need? Probably not. What about " Q " and ringing? They can be serious limitations in any filter. And, counting knobs on the front panel is no guarantee of virtue either.
A well designed audio filter can be a real asset in a station, one that literally makes the difference between solid copy and pure garbage, in even the finest receivers. There are several excellent filters on the market. Ours is one of them.
Some of the filters are not all that they seem to be. We think that our fact sheet can help you decide for yourself. Drop us a note, or your QSL. We'll rush the Audio Filter Fact Sheet riaht out to you.
If you decide not to heed this warning: $\$ 69.95$ at your dealer. In U.S.A. add $\$ 2.00$ handling.

333 W. Lake St., Chicago, IL 60606

RADIO WAREHOUSE

Holiday ${ }^{\text {Sopecial }}$

Get a BP-3, CP-1, and BP-4 free with the purchase of an IC-2AT at $\$ 269$ or an IC-3AT at $\$ 299$ or an IC-4AT at $\$ 299$.

We also carry Ten-Tec, Daiwa, MFJ, Cushcraft, Yaesu, Kenwood, DenTron, Icom, Hy-Gain, Larsen and Hustler.

Get THEIR lowest price THEN CALL US!

P.O. BOX 2728
DALLAS, TX 75221
Telephone: (817) 496-9000

Impedance bridge measurement errors and corrections	
Inductance meter, easy-to-build	
W6XM	p. 76, Apr 82
Comments, WB2LAO	p. 8, Sep 82
Short circuit	p. 79, Oct 82
K4EEU frequency standard, battery backup for (HN)	
N4BA	p. 68, Jul Bl_{1}
Light-bulb dummy loads (HN)	
W6HPH	p. 74, Oct 81
Logic probe	
K9CW	p. 83, Feb 79
Logic probe, digital	
Meter amplifiers, calibrating	
W4OHT	p. 80, Sep 78
Multiplexed counter displays (HN)	
K1XX	p. 87, May 78
Noise bridge calculations with	
WD4GR1	p. 45, May 78
Noise figure measurements	
W6NBI	p. 40, Aug 78
Comments	
WB5LHV, W6NBI	p. 6, Aug 79
Noise-figure meter, automatic, for preamplifiers and	
K91MM	p. 12, Feb 81
Prescaler, 1.GHz, for frequency counters	
W6NBI	p. 84, Sep 78
Prescaler, $600-\mathrm{Hz}$, for use with electronic counters	
WA1SP1	p. 50, Apr 80
Resistance values below 1 ohm, measuring (letter)	
W1PT	p. 91, Jan 78
Resistance values, measuring below 1 ohm	
W4OHT	p. 66, Sep 77
Rt current readout, remote (HN)	
W4ATE	p. 87, May 78
Rf power meter, part 1: instrument description and	
construction N6YC	
Ri power meter, part 2: measurements and	
N6YC	p. 55, Jun 81
Comments W3NQN	p. 6, Oct 81
RTTY test generator	
WB9ATW	p. 64, Jan 78
Noise bridge construction (letter)	
Spectrum analyzer, microwave	
N6TX	p. 34, Jul 78
Spectrum analyzer tracking generator	
WSURH	p. 30, Apr 78
Sweep generator, stable wideband	
W7BAR	p. 18, Jun 81
Short circuit	p. 84, Nov 81
Swr measuring at high frequencies	
DJ2LR	p. 34, May 79
Swr meter	
WB6AFT	p. 68, Nov 78
Swr meter for the high-frequency bands	
WB6AFT	p. 62, Oct 81
Comments. WA4UPN, WB6AFT	p. 36, Mar 82
Tester for 6146 tubes (HN)	
W6KNE	p. 81, Aug 78
Test-equipment mainframe	
Testing power tubes	
K4IPV	p. 60, Apr 78
TVI locator	
W6BD	p. 24, Aug 78
Two-tone generator	
N1RM	p. 32, Jun 82
Two-tone signal generator (HN)	
K4KI	p. 77, Sep 82
Vhf prescaler	
W8CHK	p. 92, Jun 78
VLF dip meter, no-adjust bias for (HN)	
WB3ID.	p. 69, Jul 80
Voltage calibrator for digital voltmeters	
W6NBI	p. 66, Jul 78
Short circuit	p. 94, Feb 79
Voltmeter calibrator, precision	
Woods, Hubert	p. 94, Jun 78
VSWR bridge, broadband power-tracking	
K1ZOI VSWR and power meter, automatic WOINK	p. 72, Aug 79
	p. 34, May 80

Wattmeter, low power (letter)
Wien Bridge oscillators, voltage-controlled resistance for
WASSNZ
p. 56, Feb 80
1.5 GHz prescaler, divide by 4
p. 88, Dec 78

microprocessors, computers and calculators

An RS. 232 to TLL interface

An RS. 232 to TLL interface	
Calculator or computer - which to buy?	
W4MB	p. 86, Nov 82
Computer rif (letter)	
KA5HJI	p. 8, Jun 81
Computer, satellite, for under \$150	
WB6POU	p. 12, Mar 80
CW keyboard, Microprocessor controlled	
W82DFA	p. 81, Jan 78
CW keyboard using the APPLE II computer	
W6WR	p. 60, Oct 80
CW trainer/keyer using a single-chip microcomputer	
Data retrieval program using the APPLE il computer (HN)	
WB6YHS	p. 75, Oct 81
Digital keyboard entry system	
Frequency counters, CMOS timing circuit for (HN)	
Bevel, David H.	p. 72, Jul 82
Ham gear controller: part 1	
N3CA	p. 12, Oct 82
Ham gear controlier: part 2	
N3CA	p. 25, Nov 82
IC tester using the KIM-1	
W3GUL p.	p. 74, Nov 78
Interfacing a 10-bit DAC (Microprocessors)	
Rony, Titus, WB4HYJ	p. 66, Apr 78
Microcomputer-based contest keyer	
Radio Shack ASCII keyboard encoder for	
microprocessor-controlled CW keyboard using	
VE7ZV	p. 72, Oct 80
Video display, simple	
$\mathrm{VK3AOH}$ p.	p. 46, Dec 78

miscellaneous technical

Ac-line switching precautions (HN)
p. 69, Jul 81 W5PGG
p. 69, Jul 81

Air pressure, measuring across transmitting tubes (HN) W4PSJ
Amplifier for 220 MHz , stripline kilowatt
W2GN
Amplitude compandored sideband
p. 89, Jan 80
p. 12, Apr 82

WB6.JNN
p. 48, Dec 80

Analog-to-digital display converter for the visually handicapped
KB7JW
p. 44, Jan 81

Battery charging (Ietter) Carlson
Circuit figure of merit (letter)
W2JTP
p. 6. Dec 80

Commutating filters
p. 54, Sep 79

W6GXN
م. 69, Jun 82
W8MOW
Crystal filters, monolithic
p. 28, Nov 78

Crystal use locator
WA6SWR
p. 36, Nov 80

CW identifier, versatile
p. 22, Oct 80
p. 70, Feb 82

CW identifier, versatile, an improved memory for p. 24 Feb 82

CW station, updating (HN) KM5T
p. 77, Oct 82

Data bandwidths compared W9JD/2
p. 50, Dec 82

DSB generators, audio-driven (HN) p. 68 , Jul 80

Earth anchors for guyed towers W5QJR
Eimac 5CX1500A power pentode, notes on
K9XI p. 60, May 80 K9XI p. 60, Aug 80

Electrolytic capacitors (letter) WBBMKU
D. 6, Jun 81

Electrolytic capacitors, re-forming the oxide layer (HN)
K9MM D. 99, Jul 78
Field-strength meter and voll-ohmmeter WB6AFT
Filters, bridged W6MUR p. 70 , Feb 79

Four-quadrant curve tracer/analyzer W1QXS
Frequency divider, diode
W5TRS
W5TRS
Frequency-lock loop WA3ZKZ K6WX p. 26, May 80

Gyrator: a synthetic inductor WB9ATW
p. 96, Jun 78

Ham radio techniques: radio-frequency interference
W6SAI
p. 34 , Nov 81

W6SAI	p. 34 , Nov
Ham radio techniques: radio-frequency interference	

p. 30, Dec 81

Hf synthesizer, higher resolution for
N4ES

Hyperbolic navigation (letter)	P. 34, Aug 78
Burhans, Ralph W.	p. 6, Feb 81

Surhans, Ralph W.
Impedance bridge measurement
errors and corrections
K4KJ

Impedance measurements using an SWR meter
K4QF \quad p. 80, Apr 79

Inductance or capacitance, a method for measuring
(HN)
W2C
p. 68, Jul 80

W2CHO
p. 6, Aug 81
wiant balun (letter)
p. 93, Jul 78
interference problems, how to solve
p. 93, Jul 78
light-emitting diodes: theory and application
Light-emitting diodes: theory and application
WB6AFT p. 12, Aug 80
Lightning protection for the amateur station
Lightning protection for the amateur station
K 9 MM
p. 18 , Dec 78 K9MM
Comments
W6RTK, WB2FBL p. 6, Jul 79
Linear-amplifier cost efficiency
W8MFL
Linear tuning, a fresh look at (HN)
W2OLU
Low cost linear design and construction
w cost linear design and construction p. 74, Aug 80
W4MB p. 12, Dec 82
Matching networks, how to design
Anderson, Leonard H.
Multiplexing the how and why of
p. 80 Sep 81

KH6N
Navigational aid for small-boat operators
$\begin{array}{ll}\text { W5TRS } & \text { p. 46, Sep } 80\end{array}$
Ni-cad battery charging (letter) W6NRM
p. 6, Jul 80

Operation upgrade: part 1
\qquad p. 12, Sep 81

W6BNB
Operation upgrade: part 2 W6BNB
p. 28, Oct 81
$\begin{array}{ll}\text { Optimum pi-network design } & \text { D. } 50 \text {, Sep } 80\end{array}$
Passive lumped constant 90 -degree
p. 70, Mar 79

Khase-difference networks	p. 70, Mar 79
KCB "threat" (letter)	

$\begin{array}{ll}\text { PCB "threat" (letter) } & \text { p. 66, Sep } 80 \\ \text { VE5UK }\end{array}$
Phase-locked loops WB6FOC
p. 54, Jul 78

Phase-shift network, 90-degree, offers 2:1 bandwidth
K6ZV
p. 66, Feb 80
Pl network design
Anderson, Leonard H. p. 36, Mar 78
Comments
Anderson, Leonard H.
p. 6, Apr 79

EsP Electronic Specialists, Inc.
171 South Main Sireet. Box 389 Natick. Mass 01760

PROGRAMMABLE

 CTCSS ENCODER- All 37 EIA Tones
- Quartz Accurate
- Less than 1 inch square

AVAILABLE FOR IMMEDIATE DELIVERY

For more information call TOLL-FREE:
(800) 828-6884

In Canada call: (416) 884-3180

FERRITRONICS
SIGNALLING AND CONTROL

1319 PINE AVE.
NIAGARA FALLS NY 14301
TELEX 64.6303
TELEX 64.6303
(800) 828.6884
(800) 828-6884/NY (716) 282.7470

Finally...A 12-
volt panel that will charge $A L L$ your 12 and 9 volt batteries for under $\$ 50.00$

Maximum output 17.5 v . Amperage 250 mA Size $5^{1} /_{4}^{\prime \prime} \times 10^{\prime \prime}$

- Space quality silicon cells
- Annodized aluminum frame
- Silicone encapsulation
- One plug, universal cord
- Blocking diode

Order direct from:
INTERNATIONAL SOLAR PRODUCTS CORPORATION
1105 W. Chapel Hill St.
Durham, N.C. 27701
(919) 489-6224

< BIT "0" BYTE

All Prices Include Shipping and Tax in the U.S.A. ALL DISKS are WARRANTED against material defects for 90 days from date of purchase
(1) $51 / 4$ inch Diskettes (sott sectored), Center Reinforcing Ring, Jacket and plastic box-stand - $\$ 27$ for box of 10 to 20.20 to 100 is $\$ 25$ per box
2) SYMTEC HIGH RES LIGHT PEN - With software $=$
(3) 16K RAM CARD for the APPLE II or II + BARE BOARD
(4) PADDLE-ADAPPLE
only $=\$ 27.50$ $=\$ 30.00$
5) MAGIC KEYBOARD
(6) MICROBUFFER II For most printers $32 \mathrm{~K}=\$ 250.00$ Epson Parallel $16 K=\$ 135.00$
(7) ECHO II Speech Synthesizer with Software on 3.3 disk and Speaker = \$170.00
8) THUNDERCLOCK PLUS with sottware $=\$ 125.00$

BSR X-10 INTERFACE OPTION $=\$ 45.00$
DOS-DATER DISK $=\$ 20.00$
PASCAL SOFTWARE DISK $=\$ 20.00$
(9) RAMDISK-320

SottTalk.
I will carry other items in the future. It you don' see hat you need, let me know
Coming soon - VISA charging and computer ordering. Most products carry a 90 day warranty The prices may change without notice
Please send ORDERS (with payment) and inquiries to

BIT "O" BYTE

P.O. Box 60972, Sunnyvale, CA 94088

RELIABLE MICROWAVE TV ANTENNAS

2.1 to $\mathbf{2 . 6} \mathbf{~ G H z ~ F r e q u e n c y ~ R a n g e ~}$ 34db System Gain (or Greater)

Complete System (as pictured)
$\$ 149.95$
Down Converter Probe Style (Assembled and Tested)
Power Supply (12 V to $16 \mathrm{~V} \mathrm{DC}^{+}$) (Assembled and Tested)

FCC STUDY GUIDE RADIO TELEPHONE OPERATOR LICENSE

IT'S AMAZING HOW EASY FCC EXAMS REALLY AREI

SEND TO:
HAM RADIO'S BOOKSTORE
Greenville, NH 03048
Please rush me Tests-Answers for FCC License. My \$12.95 is enclosed.

The Original Tests-Answers Exam manual prepares you at home for FCC Radio telephone licenses You get the complete set of mul tiple-choice examinations- cover ing all areas tested on the actual FCC exam. Also included-helpful study tips, short cuts, and Self-Study Ability Test." These updated FCC TestsAnswers take the mystery out of preparing for current FCC exams. Practical proven Material. \$12.95 postpaid

[^6]BUCKMASTER PUBLISHING'S 1982-1983
AMATEUR RADIO
CALL DIRECTORY

THE BARGAIN
 AT \$ 995
 Plus Shipping

Also available for the
first time ever-
(Alphabetically arranged-Sold separately

- Geographical Index
by State, City and Street No. and Call
- Name Index
by Name and Call
Active Radio Amateurs need an affordable directory of call listings. No need to put off buying that important call directory because of price.
The Buckmaster Publishing Call Directory is a no frills directory of over 411,000 U.S. Radio Amateurs (as licensed by the U.S. Gov't.). $81 / 2 \times 11$, easy to handle and read format. Completely updated.

Ordering Information:
Directory-\$12.95
Geographical Index-\$25.00
Name Index-\$25.00
Add $\$ 3.00$ Shipping to all orders.
Full satisfaction
or your money back.

Send your order-enclosing check or money order in U.S. dollars to:

Buckmaster Publishing 70-D Florida Hill Road Ridgefield, CT 06877 U.S.A.

Office Hours: Mon-Thurs 8-5 MST.
ANTECK, INC.
STAINLESS STEEL WHIP - FIBERGLASS LOADING COIL - PATENT APPLIED. NO COILS TO CHANGE

MDnDum - LESS THAN 1.5 VS WR (ENTIRE TUNING RANGE) TUNE 3.2 TO 30 MHZ FROM THE OPERATORS POSITION - FAST AND SLOW SCAN RATES

The Model MT-1RT mobile antenna tunes 3.2 to 30 MHz inclusive, 750 watts CW, 1500 watts' PEP for hams, military MARS. CAP, and commercial service. Center loaded for high efticiency. Enables tuning to exact resonance to wanted frequency. Allows full output from solid state finals. No worry about reduced output from shut down circuits. Output is unaffected by moisture and the elements. Tuned by a control box at the operator's position. Mast section contains a double action hydraulic cylinder driven by two miniature hydraulic pumps and 12 volt DC motors for positive control. No creeping during operation or mobile motion Can be remoted up to 500 ft . from antenna
MT-1RT (remote tuned) $\$ 279.95$
11.00 UPS shipping

MT-1RTR (retro kit for MT-1) $\$ 129.95$ MT. 1 (manual tuned) $\$ 149.95$
6.00 UPS shipping
9.00 UPS shipping

MT-1A (marine manual tuned) $\$ 199.95$
Route 1, Box 415
ANTECK, INC. Hansen, Idaho 83334 208-423-4100

DEALER INQUIRIES INVITED

Voltage-tuned mosfet oscillator
1- MHz oscillator, new approach WA2SPI
p. 26, Mar 79

5-ampere power supply, adjustable N1JR
p. 50, Dec 78
power supplies

Adjustabie 5 -ampere supply	
ttery charging (letter)	
Carls	
ch power B6AFT	
Constant-current battery charger for portable operation	
Drake R-4C receiver improved power supply	
Dual voltage surge-protection for high-voltage power supplies (weekender) K8VIR p. 42, Aug 81	
Electrolytic capacitors (letter)	
High-current regulated dc supply N8AKS	
IC power supply, adjustable (HN) W3HB	
Instantaneous-shutdown high-current regulated supply	
w-voltage dc power supplies KAIPV	ir Bench
Ni -cad charger, any-state	des
Nickel-cadmium batteries, time-current W1OLP	charg
ower supply for the big amplifier	
rotection for your solid-state devices	
Regulated power supplies, designing (letter)	
afe power for your low-noise GaA WA9HUV	
Squirrel-cage motors make field-day power supplies (HN) K6DZY	
Trans-global power supply (HN)	
Two-way power for the IC2AT 2-meter h WB3JJF Comments WB4MNW, WE3JJF	andheld p. 57, Feb 82 p. 8, Jul 82
Variable high-voltage supply	
Variable-voltage power supply, 1.2 amps	
WA8RXU	

propagation

Calculator-alded propagation predictions 26 , or 79	
Comments	p. 6, Sep 79
DX forecaster	
K0RYW	p. 76, Jan 81
DX forecaster	
KORYW	p. 92, Feb 81
DX forecaster	
KORYW	p. 78, Mar 81
OX forecaster	
KGRYW	p. 52, Apr 81
OX forecaster	
KORYW	p. 76, May 81
DX forecaster	
KORYW	p. 52, Jun 81
DX forecaster	
KORYW	p. 56, Jul 81
DX forecaster	
KORYW	p. 46, Aug 81
DX forecaster	
KORYW	p. 48, Sep 81

DX forecaster KORYW	p. 46, Oct 81
DX forecaster	
KORYW	p. 76, Nov 81
DX forecaster	
KORYW	p. 78, Dec 81
DX forecaster	
KORYW	p. 74, Jan 82
DX forecaster	
KORYW	p. 74, Feb 82
DX forecaster	
K0RYW	p. 82, Mar 82
DX forecaster	
K0RYW	p. 70, Apr 82
DX forecaster	
K@RYW	p. 50, May 82
DX forecaster	
K@RYW	p. 42, Jun 82
OX forecaster	
K0RYW	p. 78, Jul 82
DX forecaster	
K0RYW	p. 80, Aug 82
DX forecaster	
KORYW	p. 82, Sep 82
DX forecaster	
KORYW	p. 82, Oct 82
DX forecaster	
KORYW	p. 84, Nov 82
DX forecaster	
KORYW	p. 80, Dec 82
Radio signals, radiation of	
W1GV/4	p. 26, Jun 82

receivers and converters

general

Active mixers, performance capability: part 1
DJ2LR p. 30, Mar 82

Active mixers, performance capability: part 2
\qquad
Audio processor, communications, for reception
Audio processor, communications, for reception
W6NRW 71, Jan 80
Automatic repeater/receiver sensitivity (HN)
VETABK
Auto-product detection of double-sideband
K4UD p. 58, Mar 80
Letter G3JIP o. 6 Oct 80
Bandspreading techniques for p. 6. Oct 80 resonant circults (letter) resonant circults (letter)
WOEJO p. 6. Aug 78

Bandspreading techniques (letter)
p. 6, Jan 79
adband iteonardifier
p. 12, Nov 79

N6DX
K2BLA
Communications receivers, calculating the cascade
intercept point of
WA7TOB
Crystal ladder filters, systematic design
N7WD
CW filter, high performance
p. 50 . Aug 80
p. 40, Feb 82

W3NQN
p. 18, Apr 81

Comments W3NQN p. 6, Nov 81
Detector, logarithmic with post-injection marker generator W1ERW
p. 36, Mar 80

Digital display
p. 40 , Mar 79

N3FG p. 6. Jul 79

Digital readout, universa WB8IFM
p. 34, Dec 78

Digital vfo basics
Earnshaw
p. 18, Nov 78

Direct-conversion receivers (HN) p. 100, Sep 78
YU2HL
Diversity reception
K4KJ
Kynamic range, measuring
Dynamic range
WB6CTW
p. 48, Nov 79
1.f transformers, problems and cures - W. Weekender

K4IPV p. 56, Mar 79

Low-noise preamplifiers with good impedance match WIOOP
p. 36, Nov 82

Measuring receiver dynamic range: an addendum (HN)
WB6CTW p. 86, Apr 81
Multiple recelvers on one antenna (Two for one) (HN) W2OZY
Noise Blanker W5QJR p. 72, Jun 80

Noise figure relationships (HN)
W6WX
p. 70, Apr 80

Phase-locked $9 . \mathrm{MHz}$ bfo W7GHM
p. 49 , Nov 78

Phaselocked up-converter W7GHM
Power-line noise K4TWJ
p. 26, Nov 79
p. 60 , Feb 79

Receiver dynamic range W3JZO
p. 77, Dec 82

Receiver dynamic range (letter) AA6PZ
p. 7. Aug 80

Rf-agc amplifier, high-performance WA1FRJ
p. 64, Sep 78

Rotary dial and encoder for digital tuning N3CA
W2YE
Superhet tracking calculations WASSNZ
Talking clock (ietter) N9KV
p. 30 , Oct 78
alking digital readout (letter)
p. 75, Feb 80 N5AF
p. 6, May 80

Vacuum-tube receivers, updating W6HPH
p. 62, Dec 78

Short circuit
p. 73, Dec 79

Wideband amplifier summary DJ2LR
p. 34, Nov 79

high-frequency receivers

Porta-Tenna

5/8

TELESCOPIC VHF
\& UHF 5/8 WAVE FOR HTS
High Quality Maximum Performance

NEW TS830S for \$150?

Yes indeed! Just add a Matched Pair of topquality 2.1 kHz BW (bandwidth) Fox Tango Filters. Here are a few quotes from users:
". . . Makes a now rig out of my old TS830S! ..." ". . . VBT now works the way I dreamed it should ..." "... Spectacular improvement in SSB selectivity..." ". . . Completely oliminates my need for a CW filter. . "... Simple Installation - excellent Instructions ..."

The Fox Tango filters are notably superior to both original 2.7 kHz BW units but especially the modest ceramic 2nd IF; our substitutes are 8 -pole dis-crete-crystal construction. The comparative FT vs Kenwood results? VBT OFF - RX BW: 2.0 vs 2.4; Shape Factor: 1.19 vs $1.34 ; 80 \mathrm{~dB}$ BW: 2.48 vs 3.41; Ultimate Rejection: 110 dB vs 80 . VBT SET FOR CW at 300 Hz BW - SF 2.9 vs 3.33; Insertion Loss: 1 dB vs 10 dB

AND NOW A NEW TS930S! Tests prove that the same filters improve the ' 930 even more than the '830. Don't buy CW filters - not even ours. You probably won't need them!

INTRODUCTORY PRICE:

(Complete Kit) . . . \$150
Includes Matched Pair of Fox Tango Filters, all needed cables, parts, detailed instructions Specify kit desired: FTK-830 or FTK-930 Shipping \$3 (Air \$5). FL Sales Tax 5%

ONE YEAR WARRANTY

GO FOX-TANGO - TO BE SURE! Order by Mail or Telephone AUTHORIZED EUROPEAN AGENTS Scandinavia: MICROTEC (Norway) Other: INGOIMPEX (W. Germany)

Box 1594.4 H W Palm Beach. FL 33406 Phere: (305) fisi3-9587

Gain (ref. $1 / 4$ wave helical) 6dB min. Bandwidth VHF (1.5:1 VSWR) 3.5 MHz min. Bandwidth UHF (1.5:1 VSWR) 10 MHz min. Maximum power 5 watts Connector type BNC

LENGTH W/BNC CONNECTOR

Band Extended

Collapsed
$34 \mathrm{M} \quad 44^{1 / 4} \mathrm{~m}^{\prime \prime}(1124 \mathrm{~mm}) \quad 8^{\prime \prime \prime \prime \prime}(207 \mathrm{~mm})$
$11 / 4 \mathrm{M} \quad 321^{1 / 3}(815 \mathrm{~mm}) \quad 73 \mathrm{~s}=(197 \mathrm{~mm})$ $34 \mathrm{M} \quad 17316^{\prime \prime}(435 \mathrm{~mm}) 6516^{\prime \prime}(160 \mathrm{~mm})$

Model No.	Band	Freq. MHz
$191-214$	$2 M$	$144-148$
$191-814$	$1 / / M$	$220-225$
$191-914$	$3 / 4 M$	$440-450$

Models also available for

148-174 and $450-512 \mathrm{MHz}$

PRICE - $\$ 19.95$ ppd to 48 states via UPS For air delivery add $\$ 1.50$ Floriḍa residents add $\$ 1.00$ sales tax Payment by M.O. or cashiers ck. only

Dealer Inquiries Invited

RF PRODUCTS

P.O. Box 33, Rockledge, FL 32955 (305) 631-0775

Shortwave receiver, portable monoband, with electronic digital frequency readout PY2PE1C p. 42, Jan 80	
Simple 40 -meter recelver - Weekender W6XM	
Synthesizer, high resolution hf (letter) DJ2LR	
Ten-Tec Omnl-D, Improved CW agc for (HN)	
Transceiver, 40-meter, for low-power operation	
Understanding performance data of high-frequency receivers	
K6FM	p. 30, Nov 8
Comments KL7HT, K6FM	p. 8, Aug 82
Up-conversion receiver for the high-frequency bands: part 1	
W2VJN	W2VJN p. 54, Nov 8
Up-conversion receiver for the high-frequency part 2	
W2VJN	p. 20, Dec 8
Woodpecker noise blanker	
DJ2L.A	18, Jun 80
80-meter receiver for the experimenter	
W6XM	p. 24, Feb
Comments	
7-MHz receiver	
K6SDX	p. 12, Apr 7
432-MHz converter	
N9KO	

vhf receivers and converters

Cavity bandpass filters W4FXE
p. 46, Mar 80

Communications receivers for the year 2000: part 1 DJ2LA p. 12, Nov 81

Communications receivers for the year 2000: part 2 DJ2LR p. 36, Dec 81

Interesting preamplifier for $144 \mathrm{MHz}(\mathrm{HN})$ WA2GFP
p. 50, Nov 81

K9LHA 2-meter synthesizer, extending the range of (HN) K9LHA p. 52, Dec 81

Synthesized 2 -meter mobile stations, automation for W9CG|
144-432 MHz GaAs fet preamp JH1BRY p. 38, Nov 79

RTTY

Active bandpass filter for RTTY	
AFSK generator, an accurate and practical	
KOSFU	p. 56, Aug 80
Baudot, a vote for (letter)	
W6NRM	p. 8, Mar 82
Cleaning teleprinters (HN)	
W8CD	p. 86, May 78
Digital reperf/TD	
WB9atw	p. 58, Nov 78
Dual demodulator terminal unit	
KB9AT	p. 74, Oct 78
Comments	
WB6PMV, KB9AT	p. 6, Oct 79
Duplex audio-frequency generator with AFSK features	
WAGAFT	p. 66, Sep 79
Electronic teleprinter keyboard	
W0PHY	p. 56, Aug 78
Hellschreiber, a rediscovery	
PAOCX	p. 28, Dec 79
Helischreiber (letter)	
K6KA	p. 6, Mar 80
Comment, G5XB	p. 6, Sep 80
Hellschreiber (letter)	
W6DKZ	p. 6, Mar 80
LED tuning indicator for RTTY	
WADELA	p. 50, Mar 80
Modulator-demodulator for vhif operation	
W6LLO	p. 34, Sep 78
Phase-coherent RTTY modulator	
K5PA	p. 26, Feb 79
RTTY tuning indicator, a free (HN)	
N1AW	p. 74, Oct 81

Selcom
K9HVW, WB4KUR, K4EID
p. 10, Jun 78

Stow ASCII
W3FVC
SSB transmltters, FSK adapter for WA3PLC
Comments N1AL, WA3PLC
Comments WB5DPZ, N1AL
p. 12, Jul 81 p. 8, Mar 82 p. 8, Oct 82

Test generator, RTTY
WB9ATW
p. 64, Jan 78

XK2C AFSK generator, the W3HVK
p. 58 , Nov 80

satellites

AMSAT-OSCAR D
p. 16, Apr 78

W3PK, G3ZCZ
p. 24, Jun 79

Antenna accuracy in satellite tracking system
p. 24 N5KR
Calcu-puter, OSCAR W9CGI
p. 34, Dec 78

Geostationary satedite bearings with the T1-58159 programmable caiculator (HN)
WA6BKC
p. 87, Apr 81

Geostationary satellites, locating
p. 66 , Oct 81

Comments W D. 8, Jan 82

Comments W2TI
p. 8, Feb 82

Short circuits
p. 89, Jan 82

OSCAR az-el antenna system
WA1NXP
p. 70 , May 78

Phase III spacecraft orbits, geometry of W8MOW communication
KP4MD
p. 68 , Oct 80
\qquad Receiving preamplifier for OSCAR 8 Mode
K1RX and Puglia
p. 68, Jun 78
satellite 0 p. 20 G3IOR
. 20, Jun 78

Satellite tracking - pointing and
range with a pocket calculator Ball, John A.
p. 12, Dec 79
p. $40, \mathrm{Feb} 78$
racking satelites in elliptical orbits
WA6VJR
p. 46, Mar 81

semiconductors

Ampilfiers, biasing Class-A bipolar transistor KQ7B
Antenna bearings for geostationary Antenna bearings for
satellites, calculating N6TX
p. 32, Aug 82

NaAs field-effect transistors introduction
p. 67, May 78

WA2ZZF
p. 74, Jan 78

Mosfet power amplifier, 160-6 meters WAIWLW
p. 12. Nov 78

Mospower fet (letter)
. 110, Mar 78
Prealcting close encounters:
p. 62 , jul 79

OSCAR
K2UBC
p. 62, Jul 79

Protecting solid-state devices from voltage transients
WB5DEP
p. 74, Jun 78

Switching inductive loads with
solid-state devices (HN)
WAGROC
p. 99, Jun 78

single sideband

Early single-sideband transmitter (ham radio techniques) W6SAI
p. 30, Dec 81

Linear amplifier design
W6SAI
Part 1
p. 12, Juก 79

Part 2
p. 34, Jul 79

Part 3 p. 58, Aug 79
Linear amplifier, modular, for the high-frequency Amateur bands

Amateur bands	p. 12, Jan 81

$\begin{array}{lr}\text { K8RA } & \text { p. 12, Jan } 81 \\ \text { Comments K1THP } & \text { p. 6, Mar } 81\end{array}$

Phasing networks (letter)

SSB phasing techniques, review
p. 52, Jan 78 VK2ZTB
Short circuit
SSB phasing techniques, review (letter) WB9YEM
Transceiver, high-frequency with digital readout DJ2LR
Transverter, low-power, high-frequency WORBR
p. 12, Dec 78

software

TI58/TI59 (HN)
K3VGX
p. 65, Mar 82

television

Broadcast quality television camera WABRMC
p. 10 , Jan 78

Console, video, for ATV
p. 12, Jan 80

CRT character enhancer W9CGI
Display SSTV pictures on a fast-scan TV K6AEP
p. 12, Jul 79

Medium-scan television W9NTP
p. 54, Dec 81

SSTV, applying microcomputers to
p. 20, Jun 82

transmitters and power amplifiers general

Air pressure measurements across transmitting tubes (HN) W4PSJ
p. 73, Dec 79

A-m/fm converter for facsimile transmission, an
SM6FJB
p. 12, Dec 81

CQer, automatic, for RTTY W4AYV
p. 18 , Nov 80

Digital readout, universal WB8IFM
p. 34, Dec 78

Digital vfo basics
Earnshaw
p. 18, Nov 78

Eimac 5CX1500A power pentode, notes on
$\begin{array}{lll}\mathrm{K} 9 \times 1 & \text { p. } 60 \text {. Aug } 80\end{array}$
High-voltage fuses in Iinear ampliflers (HN)
K9MM KB5EY, W6SAI
p. 76, Feb 78

Lowpass filters, elliptic, for transistor amplifiers W3NQN
Pi network design Anderson, Leonard H . p. 36, Mar 78 Comments p. 6, Apr 79
Pi networks (leiter) W6NIF
Pi-network rf choke (HN) WGKNE
p. 98, Jun 78

Quartz crystals (letter)
o. 12, Dec 79

WB2EGV

p. 44 , Jun 78 | K9MM |
| :--- |
| p. 44, Ju |

Single-conversion transceivers, digital frequency display for K6YHK
p. 28, Mar 81

Talking clock (letter)
N9KV
p. 75, Feb 80

Talking digital readout (letter) N5AF
p. 6, May 80

40-meter transmitter-receiver W6XM
p. 43 , Dec 82

XK2C AFSK generator, the
W3HVK
p. 58 , Nov 80

high-frequency
 transmitters

Air pressure, measuring across transmitting tubes

(HN) W4PSJ	p. 89, Jan 80
ALC circuits, an analysis of	
K4JW	p. 19, Aug 81
Kilowatt mobile for DX	
K5DUT	p. 43, Dec 80
Linear-amplifler cost efficiency	
W8MFL	p. 60, Jul 80
Linear amplifier design	
W6SAI	
Part 1	p. 12, Jun 79
Part 2	p. 34, Jul 79
Part 3	p. 58, Aug 79
Linear amplifier, modular, for the high-trequency	
Amateur bands	
K8RA	p. 12, Jan 81
Comments K1THP	p. 6, Mar 81
Linear amplifiers, modifying for full	
break-in operation	
K4XU	p. 38, Apr 78
Lowpass filters, elliptic, for transistor amplifiers	
W3NQN	p. 20, Jan 81
Mosfet power amplifier, for 160-6 meters	
WA1WLW	p. 12, Nov 78
Transcelver, high-frequency with digital readout	
DJ2LR	p. 12, Mar 78
Transverter, low-power, high-frequency	
WAORBR	p. 12, Dec 78

vhf and uhf transmitters

Converter, dc-dc, increases Gunnplexer frequency swing (HN)
WIXZ p. 70, Apr 80
Synthesized 2 -meter mobile stations, automation for W9CGI
o. 20, Jun 80
$10-\mathrm{GHz}$ transceiver for amateu microwave communlcations DJ700
p. 10, Aug 78
$30-\mathrm{MHz}$ preamplifier, low-noise W1HR
p. 38, Oct 78
$220-\mathrm{MHz}$ kilowatt linear W6PO
p. 12, Jun 80

troubleshooting

I-f transformers, problems and cures - Weekender K4IPV

vhf and microwave

general

voltage monitor for HTs (weekende	
Cavity filters, surplus, how to modify fo W4FXE	
Earth-moon-earth (ham radio techniques)	
2W six-meter report (letter)	
Frequency synthesizer (letter)	
using the W4FXE p. 22, Dec 80	
GaAs field-effect transistors, introduction WA2ZZF	
Gunn oscillator design for the $10-\mathrm{GHz}$ band WB2ZKW	
andheld transceiver mount (a 2-way ashtray for your car) (weekender)	
K82XM	
stant balun	
W8MQW	
K9LHA 2-meter synthesizer, extending the range of (HN)	

L-band local oscillators

Microstrip transmission line	
W1HR	p. 28, Jan 78
Microwave bibliography	
W6HDO	p. 68, Jan 78
Microwave-frequency converter for vhf counters	
KA9BYI	p. 40, Jut 80
Microwave network for multimode communications	
K4TWJ	p. 36, Aug 82
Microwave path evaluation	
N7DH	p. 40, Jan 78
Microwave systems, first building blocks for	
WA2GFP	p. 52, Dec 80
Monitor, tone alert	
W4KRT	p. 24, Aug 80
More about moonbounce (ham radio techniques)	
W6SAI	p. 34, Mar 81
Multipurpose uhf oscillator, simplifying the	
WA9HYV	p. 26, Sep 81
Plasma-diode experiments	
Stockman, Harry	p. 62, Feb 80
Repeater security	
WA5FRF	p. 52, Feb 81
Spectrum analyzer microwave	
N6TX	p. 34, Jul 78
Super beep circuit for repeaters	
KP4AOI	p. 48, Jul 81
Synthesized time identifier for your repeater	
WA4GUA	p. 42, Nov 82
Tone decoder, the ulitmate	
WD9EIA, WB9HGZ	p. 32, Sep 82
Touchtone auto-dialer, portable	
Two-meter autopatches, tone-encoder for	
WB6VSZ	p. 51, Jun 80
Varactor tuning tips (HN)	
N3GN	p. 69, Dec 80
Voltage-tuned UHF oscillator, multipurpose	
WA9HUV	p. 12, Dec 80
VHF techniques	
W6NBI	p. 62, Jul 80
VHF transceivers, regutated power supply for	
WA8RXU	p. 58, Sep 80
Weak-signal communications	
W4LTU	p. 26, Mar 78
Wireless 220-MHz to 2-meter converter (weekender)	
W3RW	p. 36, Jan 82
X-band calibrator	
WA6EJO	p. 44, Apr 81
10-GHz cross-guide coupler	
WB2ZKW	p. 66, Oct 79
10-GHz Gunnplexer transcelvers,	
construction and practice	p. 26, Jan 79
Comments, W6OAL	p. 6, Sep 79
40-meter transmitter-receiver	
W6XM	p. 43, Dec 82
$144-\mathrm{MHz}$ frequency synthesizer, CMOS	
K9LHA	p. 14, Dec 79
Short circuit	p. 81, Apr 80
440-MHz bandpass filter	
WA8YBT	p. 62, Nov 79
$1296 \cdot \mathrm{MHz}$ double-stub tuner	
K6LK	p. 70, Dec 78
1296-MHz microstrip filter, improved grounding for	
N6TX	p. 60, Aug 78

vhf and microwave antennas

Antenna-performance measurements using celestial sources W5CQ/W4RXY ylindrical feedhorns, second-generation WA9HUV
. 75 , May 79
p. 31, May 82

Fresnel-zone plate for 10.4 GHz
$\begin{array}{lr}\text { WB6YVK } & \text { p. 44, May } 8 \\ \text { Comments, KB9O, WBBYVK } & \text { p. 8, Nov } 8\end{array}$
p. 44, May 82

Inexpensive five-eighth wave groundplane (HN) W7CSD
p. 84, Mar 81

OSCAR az-el antenna system WA1NXP
p. 70, May 78

Re-entrant cavity antenna for the vhf bands W4FXE
p. 12, May 81

True north, how to determine for antenna orientation K4DE
p. 38, Oct 80

Using a 2-meter quarter-wave whip on 450 MHz (HN) K1ZJH
p. 92, May 81

Weathering the elements at 10.4 GHz WB6YVK
1296-MHz antenna, high-gain
p. 74, Aug 82

W3AED
p. 74, May 78

vhf and microwave receivers and converters

Add fm to your receiver (weekender) K3NXU
p. 74, Mar 81

Cavity filters, surplus, how to modify for 144 MHz W4FXE
p. 42, Feb 80

Crystal-controlled vhf receivers, tuning aid for (HN) WA1FHB
p. 69, Jul 80

Fm transceiver, remote synthesized for 2 meters
WB4UPC p. 28, Jan 80

Kenscan 74
p. 50, Jan 81

WB7QYB
p. $89, \tan 82$

Microwave mixer, new WAORDX
p. 84 , Oct 78

Modification of K9LHA 2-meter synthesizer for 144-148 MHz coverage (HN) K9LHA
p. 93 , May 81

Preamplifier design, UHF, computer-aided KB60
p. 28, Oct 82

Preamplifiers, vhif low-noise WA2GFP
p. 50, Dec 79

Synthesizer, genesis of a VE3FIT
p. 38, Mar 8

Uhf local-oscillator chain
p. 27, Jul 79

Vhf receiver, general-purpose
p. 16, Jul 78

K1Z.JH
Vht/unf preamplifier burnout (HN) W1JR
p. 43, Nov 78

2-meter synthesizer, frequency modulator fo
K9LHA
W6HPH
WA2GFP \quad p. 65, May 81
$30-\mathrm{MHz}$ preamplifier, low-noise
p. 38 , Oct 78

Short circult o.94, Feb 79

144-432 MHz GaAs fet preamp JHIBRY
p. 38 , Nov 79

432-MHz converter N9KD
p. 74, Apr 79

432-MHz GaAs preamp
JH1BRY
p. 22, Apr 78

432-MHz preamplifier, low-noise WB5LUA
p. 26, Oct 78
$1296-\mathrm{MHz}$ local-oscillator chain WA272F
p. 42 , Oct 78

vhf and microwave transmitters

AN/UPX-6 cavities, converting surplus

	p.
CMOS 2-meter synthesizer	
K9LHA	p. 14, Dec
Short circuit	p. 89, Jan 82
Fm transceiver, remote synthesized for 2 meters	
WB4UPC	p. 28, Jan
Linear amplifiers, solid-state $\mathbf{v h}$ AF8Z	p. 48,
Modification of K9LHA 2-meter synthesizer for	
K9LHA	p. 93,
Solid-state power for 1296 MHz N6JH	p. $30, \mathrm{Feb}$
Synthesizer, genesis of a	
2-meter synthesizer, frequency modulator for	
K9LHA	p. 68 ,
$50-\mathrm{MHz} \mathrm{SSB}$ exciter	
K1LOG	p. 12
$144 \cdot \mathrm{MHz} 10 / 80$-watt amplifier WR9RMA	

Adverlisers check-off

... for literature, in a hurry - we'll rush your name to the companies whose names you "check-off"

Place your check mark in the space between name and number. Ex: Ham Radio 234

AGL 265	Ind. Crystal _005
Alaska Microwave _826	Int. Crystal _066
Albia Elec. 020	Int. Solar _ 028
All Elec. 926	JWL 058
Aluma 589	Jameco _ 333
ARRL _ 780	Jensen __ 293
Amidon 005	Kantronics __ 605
Amp Supply 991	Kenwood *
Anteck 733	Lockwood _ 059
Atlantic Surplus *	Lowrance _ 065
ATV Magazine _ 001	Long's 468
AutoConnect __ 037	Lunar - 577
Barker ε Williamson 015	MFJ MHz Elec. M
Barry *	Madison _ 431
Baurnan __ 017	Mirage _ 760
Bencher _ 629	National Satellite __ 046
Ben Franklin _ 864	Nemal 968
Bilal 817	P.C. *
Bit "O" Byte 023	Palomar Eng. *
Buckmaster 052	Panasonic 683
Budwig _ 233	Peterson Elec. 047
Butternut *	Photowatt _ 070
Caddell Coil _ 244	Pipo - 481
Caywood 053	Polar Research _008
Ceco 054	Power General 048
Centurion _ 798	Pro-Search _ 983
Comm. Spec. 330	RF Products 064
Comm Tek 055	Callbook 100
Crown 056	Radio Warehouse *
C.D.C. 988	Radio World __ 592
Deicraft _ 061	SAROC
Digi-Key $\quad 520$	Sherwood
Doppler __ 003	Simple Simon __ 998
Drake	Sintec 030
DX Signal _ 057	Spectronics*
Elec. Specialists 039	Spectrum Int. __ 108
Encomm - 888	Tektronix *
Epsilon _ 040	Telex
Ferritronics 041	Tennessee Elec.__031
Fox-Tango 657	Ten-Tec
Galaxy 026	TET 009
Goldsmith Scientific 042	Texas Towers 681
Grand Systems _ 027	The Cornm Center_634
Hal Comm. 057	Tripp-Lite 069
Hallward _ 043	Ungar _062
Hal -Tronix 254	Universal Comm. 885
H. R. B $\quad 150$	UNR-Rohn _ 410
H. R. Magazine *	Valor 946
Ham Shack _ 879	Vanguard Labs _ 716
Hamtronics, N.Y. 246	Varian _ 043
Harrison Radio - 044	Vidare 067
Heath 060	Webster Assoc. 423
Heil Sound __ 013	Western Elec. 909
Wilton Helm _068	WJCP 063
Hoosier _ 977	Yaesu _ 127

- Please contact this advertiser directly. Limit 15 inquiries per request.

December, 1982
Please use before January 31, 1983

Tear off and mail to
HAM RADIO MAGAZINE - "check off"
Greenville, N. H. 03048-0498

NAME.
CALL
STREET .
CITY
STATE.

PRIVATE PATCH

Introducing Private Patch. A giant step forward in non-sampling Autopatch/ Interconnect technology, capability and standard features. Our revolutionary new techniques of audio and digital signal processing offer several advantages over conventional sampling/ scanning type Autopatches: 1. The annoyance of continuous squelch tails is totally eliminated. Makes conversation much more natural and enjoyable. 2. In addition to superb simplex capability, operation through repeaters is made possible. 3. The only connections made to your base transceiver are to microphone and speaker jacks. NO INTERNAL CONNECTIONS OR MODIFICATIONS NECESSARY! Use Private Patch simplex for local operation, through a repeater for extended range. CW ID makes your Autopatch legal, and alerts you to incoming calls when ringback is turned on. Channel monitor logic precludes ringback transmission if channel is in prior use. Eliminates accidental interference. Five digit owner programmable access code and operator/long distance inhibit switch assure security and protect your phone bill. Positive control is assured by Private Patch logic functions. A fully digital timing approach eliminates all Timing adjustments. Three/six minute timer shuts down Private Patch if you drive out of range. Resettable with reset code for additional talk time as required. Self contained AC supply. Modular phone jack and modular phone cord provided. All electronics contained on one high quality glass circuit card. Private Patch contains 42 integrated circuits and 16 transistors. Send for additional information. Compare our features. (State callsign when ordering.)

Special Factory Direct Introductory Price 1 YEAR WARRANTY s489
 Postage Paid

PHONE: (213) 540-1053 AutoConnect
P.O. BOX 4155 TORRANCE, CA 90510 dealerships invited

AGL Electronics
Alaska Microwave Labs
Albia Electronics.
All Electronics Corp
Aluma Tower Company
American Radio Relay League
Amidon Associates.
Amp Supply
Anteck, Inc.
Atiantic Surplus Sales
ATV Magazine
AutoConnect
Barker $\&$ Williamson, Inc
Barry Electronics
Bauman, R.H., Sales Company
Bencher, Inc.
Ben Franklin Electronics
Bial Company
Bit "O" Byte.
Buckmaster Publishing
Budwig Mig. Company
Butternut Electronics
Caddell Coil Corp.
Caywood Electronics
Ceco.
Communications Specialists
Comm Tek
Crown Microproducts
Current Development Corp
Delcraft
Digi-Key
Doppler Systems
Drake, R.L., Co
DX Signal Co..
Electronic Specialists, Inc
Encomm, Inc..
Epsilon Records
Ferrittonics Limited.
Fox-Tango Corp.
Galaxy Electronics
Goldsmith Scientific Corporation
Grand Systems.
Hal Communications Corp.
Hallward Products
Hal- Tronix
Hals
Ham Radio's Bookstore
Ham Radio Magazine
The Ham Shack.
The Ham Shack
Hamtronics, N. Y
Hamtronics, N.Y
Harrison Radio
Harrison Radio ..
Heath Company
Hoosier Electronics
com America, Inc.
Independent Crystal Supply Company Cover II
international Crystal
International Solar
JWL Electronics.
Jameco Electronics
Jensen Tools, Inc.
Kantronics
Trio-Kenwood Communications.......... 2 Cover IV
H.N. Lockwood, Inc

Lowrance Electronics, Inc.
Long's Electronics
unar Electronics
MFJ Enterprises
MHz Electronics.
Madison Electronics Supply
Mirage Communications Equipment, Inc
National Satellite Communications.
Nemal Electronics
P.C. Electronics

Palomar Engineers
Panasonic.
Peterson Electronics
Photowatt International, Inc
Pipo Communications
Polar Research
Power General
Pro-Search Electronics
RF Products
Radio Amateur Callbook
Radio Warehouse
Radio World
SAROC
Sherwood Engineering
Simple Simon Electronic Kits, Inc.
Spectronics
Spectrum International, Inc.
Tektronix
Telex Communications
Tennessee Electronics
Ten-Tec
TET Antenna Systems
Texas Towers.
The Comm Center
Ungar, Division of Eldon Industries .
Universal Communications.
UNR-Rohn
Valor Enterprises, Inc.
Vanguard Labs
Varian, Eimac Division
Vidare, Inc..
Webster Associates
Western Electronice
West Jersey Communication Products
Yaesu Electronics Corp.

Adverifisers check-off

NAME OF COMPANY

\qquad
for literature, in a hurry - we'll rush your name to the companies whose names you print below.
It's simple to do. Simply select the advertiser's number and name from the Advertisers' Checkoff list found on the same page as the Advertisers' Index. Just print the number and the company's name and drop in the mail.
NUMBER
NAME OF COMPANY
\qquad Limit 14 inquiries please. Dec. Oct. _Nov. \qquad CALL
NAME
ADDRESS
CITY
STATE
ZIP

```
AFFIXPOSTAGE

\section*{ham radio}

READER SERVICE CENTER
P.O. BOX-358

ARLINGTON, MA 02174

ATTN: Reader Service Dept.

\section*{introducing a new dimension...}

\section*{} HROM Riosinich
or Contesters, X'ers, Handicapped perators and General urpose Ham pperators:
he Most Advanced intenna Control ivailable...

\section*{I The Only}

Computerized Unit The only Talking Unit
IThe Only Scanning Unit
I The Only
Programmable Unit IThe Only Automatic Braking Unit

\section*{:ontesters:}
ro-Search seeks out a re-programmed heading, plus tores various common headigs and automatically scans or those rare multipliers, iving the operator hands-free peration and more time for ontesting.

\section*{X'ers:}
ro-Search loads in short path nd long path headings and ith the touch of a button, the stem works between both eadings. Plus you have all of le other features of the Proearch to aid you in catching lat rare DX station.
andicapped Operators:
ro-Search offers ease of peration...control the entire stem with just one touch. A Ik loop...vocally calls out the eadings, allowing blind operairs to accurately program and par their headings.

\section*{eneral Purpose Operators:}
ro-Search has numerous
ses.
e-set beam headings for CEDS, VHR WORK, and many thers. Current headings can 3 read, by displaying the esent directions with LEDS. o-Search also displays and ores the last station worked, hich can be recalled by the uto-Locate system with the fuch of a button.


1-800-325-4016
1-314-994-7872 (Missouri)
Or write:
Pro-Search Electronics
A Division of Wurdack and
Associates, Inc.
10411 Clayton Road
Suite 305
St. Louis, Missouri 63131
- Patent Pending



\section*{Stuck with a problem?}

Our TE-12P Encoder might be just the solution to pull you out of a sticky situation. Need a different CTCSS tone for each channel in a multi-channel Public Safety System? How about customer access to multiple repeater sites on the same channel? Or use it to generate any of the twelve tones for EMS use. Also, it can be used to access Amateur repeaters or just as a piece of versatile test equipment. Any of the CTCSS tones may be accessed with the TE-12PA, any of the audible frequencies with the TE-12PB. Just set a dip switch, no test equipment is required. As usual, we're a stickler for 1 day delivery with a full 1 year warranty.
- Output level flat to within 1.5 db over entire range selected.
- Immune to RF.
- Powered by \(6-30 \mathrm{vdc}\), unregulated at 8 ma .
- Low impedance, low distortion, adjustable sinewave output, \(5 v\) peak-to-peak.
- Instant start-up.

\section*{TE-12PA}
\begin{tabular}{lrllll}
\hline 67.0XZ & 85.4 YA & 103.51 A & 127.33 A & 156.75 A & 192.87 A \\
71.9XA & 88.5 YB & 107.21 B & 131.83 B & 162.25 B & 203.5 M 1 \\
74.4WA & 91.5 ZZ & 110.92 Z & 136.54 Z & 167.96 Z & \\
77.0XB & 94.8 ZA & 114.82 A & 141.34 A & 173.86 A & \\
79.7 SP & 97.4 ZB & 118.82 B & 146.24 B & 179.96 B & \\
82.5 YZ & 100.01 Z & 123.03 Z & 151.45 Z & 186.27 Z & \\
\hline
\end{tabular}
- Frequency accuracy, \(\pm .1 \mathrm{~Hz}\) maximum \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
- Frequencies to 250 Hz available on special order.
- Continuous tone

TE-12PB
\begin{tabular}{cccccccc}
\hline TEST-TONES: & \multicolumn{3}{c}{ TOUCH-TONES: } & \multicolumn{4}{c}{ BURST TONES: } \\
600 & 697 & 1209 & 1600 & 1850 & 2150 & 2400 \\
1000 & 770 & 1336 & 1650 & 1900 & 2200 & 2450 \\
1500 & 852 & 1477 & 1700 & 1950 & 2250 & 2500 \\
2175 & 941 & 1633 & 1750 & 2000 & 2300 & 2550 \\
2805 & & & 1800 & 2100 & 2350 \\
\hline
\end{tabular}
- Frequency accuracy, \(\pm 1 \mathrm{~Hz}\) maximum \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)
- Tone length approximately 300 ms . May be lengthened, shortened or eliminated by changing value of resistor
\(\$ 89.95\)

\section*{I- COMMUNICATIONS SPECIALISTS}

426 West Taft Avenue, Orange, California 92667 (800) 854-0547/California: (714) 998-3021

\title{
New Yaesu FT-102 Series Transceiver of Champions!
}


The long-awaited new generation of Yaesu HF technology has arrived! New research in improved receiver filtering and spectral purity is brought to bear in the competition-bred FT-102, the HF transceiver designed for active Amateurs on today's intensely active bands!

\section*{Unique Cascaded Filter System}

The FT-102 utilizes an advanced 8.2 MHz and 455 kHz IF system, capable of accepting as many as three filters in cascade. Optional filters of \(2.9 \mathrm{kHz}, 1.8\) \(\mathrm{kHz}, 600 \mathrm{~Hz}\), and 300 Hz may be combined with the two stock 2.9 kHz filters for operating flexibility you've never seen in an HF transceiver before now! All New Receiver Front End
Utilizing husky junction field-effect transistors in a 24 volt, high-current design, the FT-102 front end features a low-distortion RF preamplifier that may be bypassed via a front panel switch when not needed.
IF Notch and Audio Peak Filter
A highly effective 455 kHz IF Notch Filter provides superb rejection of heterodynes, carriers, and other annoying interference appearing within the IF passband. On CW, the Audio Peak Filter may be switched in during extremely tight pile-up conditions for post-detection signal enhancement.
Variable IF Bandwidth with IF Shift
The FT-102's double conversion receiver features Yaesu's time-proven Variable Bandwidth System, which utilizes the cascaded IF filters to provide intermediate bandwidths such as \(2.1 \mathrm{kHz}, 1.5 \mathrm{kHz}\), or 800 Hz simply by twisting a dial. The Variable Bandwidth System is used in conjunction with the IF Shift control, which allows the operator to center the IF passband frequency response without varying the incoming signal pitch.

\section*{Wide/Narrow Filter Selection}

Depending on the exact combination of optional filters you choose, a variety of wide/narrow operating modes may be selected. For example, you may set up 2.9 kHz in SSB/WIDE, 1.8 kHz in SSB/NARROW, then select 1.8 kHz for CW/ WIDE, and 600 Hz or 300 Hz for CW/NARROW. Or use the Variable Bandwidth to set your SSB bandwidth, and use 600 Hz for CW/WIDE and 300 Hz for CW/NARROW! No other manufacturer gives you so much flexibility in selecting filter responses!
Variable Pulse Width Noise Blanker
Ignition nosse, the "Woodpecker," and power line noise are modern-day enemies of effective Amateur operation. The FT-102 Noise Blanker offers improved blanking action on today's man-made noise sources (though no blanker can eliminate all forms of band noise) for more solid copy under adverse conditions.
Low Distortion Audio/IF Stage Design
Now that dynamic range, stability, and AGC problems have been largely eliminated thanks to improved technology, Yaesu's engineers have put particular attention on maximizing intelligence recovery in the receiver. While elementary filter cascading schemes often degrade performance, the FT-102's unique blend of crystal and ceramic IF filters plus audio tone control provides very low phase delay, reduced passband ripple, and hence increased recovery of information.

Heavy Duty Three-Tube Final Amplifier
The FT-102 final amplifier uses three 6146B tubes for more consistent power output and improved reliability. Using up to 10 dB of RF negative feedback, the FT-102 transmitter third-order distortion products are typically 40 dB down, giving you a studio quality output signal.

\section*{Dual Metering System}

Adopted from the new FT-ONE transceiver, the Dual Metering System provides simultaneous display of ALC voltage on one meter along with metering of plate voltage, cathode current, relative power output, or clipping level on the other. This system greatly simplifies proper adjustment of the transmitter.

\section*{Microphone Amplifier Tone Control}

Recognizing the differences in voice characteristics of Amateur operators, Yaesu's engineers have incorporated an ingenious microphone amplifier tone control circuit, which allows you to tailor the treble and bass response of the FT-102 transmitter for best fidelity on your speech pattern.

\section*{RF Speech Processor}

The built-in RF Speech Processor uses true RF clipping, for improved talk power under difficult conditions. The clipping type speech processor provides cleaner, more effective "punch" for your signal than simpler circuits used in other transmitters.
VOX with Front Panel Controls
The FT-102 standard package includes VOX for hands-free operation. Both the VOX Gain and VOX Delay controls are located on the front panel, for maximum operator convenience.
IF Monitor Circuit
For easy adjustment of the RF Speech Processor or for recording both sides of a conversation, an IF monitor circuit is provided in the transmiter section. When the optional AM/FM unit is installed, the IF monitor may be used for proper setting of the FM deviation and AM mic gain.
WARC Bands Factory Installed
The FT-102 is factory equipped for operation on all present and proposed Amateur bands, so you won't have to worry about retrofitting capability on your transceiver. An extra AUX band position is available on the bandswitch for special applications.
Full Line Of Accessories
For maximum operating flexibility, see your Authorized Dealer for details of the complete line of FT-102 accessories. Coming soon are the FV-102DM Synthesized VFO, SP-102 Speaker/Audio Filter, a full line of optional filters and microphones, and the AM/FM Unit.

YAESU ELECTRONICS CORP., 6851 Walthall Way, Paramount, CA 90723 (213) 633-4007
YAESU Eastern Service Ctr., 9812 Princeton-Glendale Rd., Cincinnati, OH 45246 (513) 874-3100

\title{
General coverage, Superior dynamic range, 2 VFO's, 8 memories, Scan, Notch...COMPACT!
}


The TS-430S combines the ultimate in compact styling with advanced circuit design and performance. An all solidstate SSB, CW, and AM transceiver, with FM optional, covering the 160-10 meter Amateur bands, it also incorporates a \(150 \mathrm{kHz}-30 \mathrm{MHz}\) general coverage receiver having a superior dynamic range, dual digital VFO's, 8 memories, memory scan, programmable band scan, IF shift, notch filter, all-mode squelch, and builtin speech processor.
TS-430S FEATURES:

\section*{160-10 meter operation, with general coverage receiver}

With 160-10 meter Amateur band coverage, including WARC 30, 17, and 12 meter bands, it also features a \(150 \mathrm{kHz}-30 \mathrm{MHz}\) general coverage receiver. Innovative UP conversion digital PLL circuit. for superior frequency stability and accuracy. UP/ DOWN band switches for Amateur bands or \(1-\mathrm{MHz}\) steps across entire \(150 \mathrm{kHz}-\) 30 MHz range. Two digital VFO's continuously tuneable from band to band. Band information output on rear panel.

\section*{USB, LSB, CW, AM, with optional FM} Operates on USB, LSB, CW, and AM, with optional FM, internally installed. AGC time constant automatically selected by mode.
- Compact, lightweight design

Measures only 10-5/8 (270) W x 3-3/4 (96) \(\mathrm{H} \times 10-7 / 8\) (275) D , inches ( mm ), weighs only \(14.3 \mathrm{lbs} .(6.5 \mathrm{~kg}\).).
- Superior receiver dynamic range Use of 2SK125 junction-type FET's in the Dyna-Mix high sensitivity, balanced, direct mixer circuit provides superior dynamic range.

\section*{- 10-Hz step dual digital VFO's}
\(10-\mathrm{Hz}\) step dual digital VFO's operate inde pendently, include band and mode infor mation. Different band and mode cross operation possible. Dial torque adjustable. STEP switch for tuning in \(10-\mathrm{Hz}\) or \(100-\mathrm{Hz}\) steps. A-B switch quickly shifts "B" VFO
to the same frequency and mode as " A " VFO, or vice-versa. VFO LOCK switch provided. RIT control tunes VFO or memory. UP/DOWN manual scan possible using optional microphone.
- Eight memories store frequency, mode, and band data
Memories store frequency, mode, and band data. Eighth memory stores receive and transmit frequencies independently. M.CH switch for operation of memory as independent VFO, or fixed frequency.
- Lithium battery memory back-up Estimated five-year life

\section*{- Memory scan}

Scans memories in which data is stored.

\section*{- Programmable automatic band scan} Scans programmed band width. Scan speed adjustable. HOLD switch interrupts band or memory scan.

\section*{- IF shift circuit for minimum GRM.}

IF passband may be moved to place interferring signals outside the passband, for best interference rejection.

\section*{- Tuneable notch filter built-in} Deep. sharp, tuneable, audio notch filter.

\section*{- Narrow-wide filter selection}

NAR-WIDE switch for IF filter selection on SSB, CW, or AM, when optional filters are installed. ( 2.4 kHz IF filter built-in.)
- Speech processor built-in

Improves intelligibility, increases average "talk-power"
- Fluorescent tube digital display Indicates frequency to \(100 \mathrm{~Hz}(10 \mathrm{~Hz}\) modifiable).
- All solid-state technology

Input rated 250 W PEP on SSB, 200 W DC on CW, 120 W on FM (optional), 60 W on AM. Built-in cooling fan, multi-circuit final protection. Operates on 12 VDC , or 120 VAC, or \(220 / 240 \mathrm{VAC}\) with optional PS-430 AC power supply.
- All-mode squelch circuit, built-in
- Noise blanker, built-in
- RF attenuator ( 20 dB )
- Vox circuit, plus semi break-in with side-tone

\section*{Optional accessories:}
- PS-430 compact AC power supply.
- PS-30 or KPS-21 AC power supplies.
- SP-430 external speaker.
- MB-430 mobile mounting bracket.
- AT-130 compact antenna tuner,
\(80-10 \mathrm{~m}\) inel. WARC.
- AT-230 base antenna tuner,
\(160-10 \mathrm{~m}\) incl. WARC.
- FM-430 FM unit.
- YK-88C \((500 \mathrm{~Hz})\) or YK-88CN \((270 \mathrm{~Hz})\) CW filters.
- YK-88SN \((1.8 \mathrm{kHz})\) narrow SSB filter.
- YK-88A ( 6 kHz ) AM filter.
- MC-42S UP/DOWN hand microphone.
- MC-60A deluxe desk microphone, UP/DOWN switch.

More information on the TS-430S is available from all authorized dealers of Trio-Kenwood Communications. 1111 West Walnut Street. Compton, California 90220.

\section*{KENWOOD \\ pacesetter in amateur radio}```


[^0]:    *TouchTone is a trademark of the Bell Telephone Company.

[^1]:    *Photo disks are available from K 3 CU for $\$ 1.00$ each. Please send SASE to Chet B. Opal, K3CU, 5414 Old Branch Avenue, Temple Hills, Maryland 20748.

[^2]:    1. "Eveready Battery Applications and Engineering Data," Union Carbide Corporation, 1968.
[^3]:    -Price FO. B. Beaverton, OR Price subject to change

[^4]:    Look at next higher band for possible openings．

[^5]:    1. Uniform Commercial Cade, Section 2-312.
[^6]:    Name

