- Morse time synthesis
- remote control hf operation
- microprocessor repeater controller
- a 6-meter amplifier

ICOM IC-25A/H

 More Features and Power Per Square Inch!

 More Features and Power Per Square Inch!}

NOW WITH
 EXTRA POWER!

IN THE NEW 25H MODEL

NEW MIC-
NEW
GREEN LED

The smallest 2 meter FM mobile on the market is now even easier to read and use with a green LED readout and a compact touchtone*/scanning microphone and gives you the option of 25 or 45 watts.

Now Green LED. Easier to read in bright sunlight, and not glaring at night, the IC-25A(H)'s new readout provides good visibility under all conditions.

5 Memories. Instant access to most used frequencies. VFO A information is transferred to the selected memory by pushing the write button.

Priority Channel. Any memory channel may be monitored for activity on a sample basis, every 5 seconds. without disruption of a QSO conducted on a VFO frequency.

New HM14 Microphone. Smaller and lighter . . . The HM14 microphone provides a 16 button touchtone* pad as well as up and down scan buttons adding easy frequency control of the radio and additional tones for repeater control

NOR/REV Capability. Use of this button in the duplex mode allows one touch monitoring of the repeater input frequency. If simplex operation is possible you will know instantly.

Scanning. Pushing the S / S button initiates the scan circuitry. With the mode switch in a memory position the unit will scan all 5 memories plus the 2 VFO frequencies. With the mode switch in a VFO position, the unit will scan the entire band or the portion of the band defined by memories 1 and 2. Full band scan or program band scan is selected from the front panel and internally switched scanning choices of adjustable delay period after a cartier is received then resume scan, or resume on carrier drop, are standard.

C-25A
2 Moter FM Mobile 25 Woits The World Systen

THE LOOK SAYS QUALITY

Model MS-6040 40 MHz DUAL TRACE
\$850.00

Model MS-6035 35 MHz DUAL TRACE
\$799.00

PERFORMANCE:

The MS-6040 vertical bandwidth is 40 MHz (typically $\geqslant 50 \mathrm{MHz}$ and triggers to $\sim 80 \mathrm{MHz}$) with 1 mV sensitivity thru $10 \mathrm{MHz}, 5 \mathrm{mV}$ thru 40 MHz both channels, 20 sweep speeds from 0.5 sec . to $0.2 \mu \mathrm{~s}$ plus X 5 mag .; 15 kV beam acceleration which assures clear bright wave-forms even at low reprates and/or fast sweep speeds.

The MS-6035 vertical bandwidth is 35 MHz with 1 mV sensitivity thru $5 \mathrm{MHz}, 5 \mathrm{mV}$ thru 35 MHz both channels; 21 sweep speeds from 0.5 sec . to 0.1μ s plus X 5 mag.; built-in HF and LF filters; trigger hold off as well as alternate trigger capability . . . and SOAR CORP. oscilloscopes typically exceed all our published specifications.

FEATURES:

Both scopes have $6^{\prime \prime}$ PDA rectangular CRT's with internal graticle and external trace rotator; auto trigger level for reference; trigger delay; single sweep; TV (video) sync separators; Z axis intensity modulation input; fully shielded switching regulator power supplies; glass epoxy PCB's laid out for super ease of calibration and maintenance; and they come complete with two 10:1 hook-on probes.

QUALITY:

EVERY SOAR CORP. oscilloscope is fully performance tested TWICE, once at the factory and once again prior to shipment from our warehouse. YOUR DOUBLE GUARANTEE OF SATISFACTION.

BACK-UP:

SOAR CORP is a company with over 20 years of design and manufacturing experience in making and selling Oscilloscopes, Spectrum Analyzers, DMM's, Power Supplies, Frequency Counters, Digital Thermometers, Pulse Generators, AC Clamp Testers, VOM's, Electrical Energy Monitors, and Automatic P.C. Board Test Systems.

ALL SOAR CORP. PRODUCTS ARE COVERED BY OUR "NO NONSENSE" ONE YEAR PARTS AND LABOR WARRANTY - JUST IN CASE.

NORTH AMERICAN SOAR CORP.
1126 CORNELL AVENUE
CHERRY HILL, N.J. 08002
(609) 488-1060

> FOR A "NO OBLIGATION TO BUY" DEMONSTRATION WRITE OR PHONE LYSBETH AT N.A. SOAR CORP.

TR-2500

The TR-2500 is a compact 2 meter FM handheld transcelver with every conceivable operating feature.
TR-2500 FEATURES:

- Weighs 540 g , (1.2 lbs). 66 (2-5/8) W x $168(6-5 / 8) \mathrm{H} x 40(1-5 / 8) \mathrm{D}$. mm (inches).
- LCD digital frequency readout.
- Ten memories includes "MO" for non-standard split repeaters.
- Lithium battery memory
back-up, built-in, (est. 5 year life).
- Memory scan.
- Programmable automatic band scan, and upper/lower scan limits; $5-\mathrm{kHz}$ steps or larger.
- Repeater reverse operation.
- 2.5 W or 300 mW RF output. (HI/LOW power switch).
- Built-in tunable (with variable resistor) sub-tone encoder.
- Built-in 16-key autopatch encoder
- Slide-lock battery pack.
- Keyboard frequency selection.
- Covers 143.900 to 148.995 MHz .

CONVENIENT TOP CONTROLS

AC charger/supply for operation while charging.

- Battery status indicator.
- Complete with flexible antenna. $400 \mathrm{mAH} \mathrm{Ni}-\mathrm{Cd}$ battery, and AC charger.

Optional accessories:

- ST-2 Base station power supply/ charger (approx. 1 hr .)
- MS-1 13.8 VDC mobile stand/ charger/power supply.
- VB-2530 2-M 25 W RF power amps., (TR-2500 only)
- TU-1 Programmable CTCSS encoder (TR-2500 only).
- TU-35B Programmable CTCSS encoder (mounts inside TR-3500 only).
- PB-25H Heavy-duty 490 mAH Ni-Cd battery pack.
- DC-25 13.8 VDC adapter.
- BT-1 Battery case for AA manganese/alkaline cells.
- SMC-25 Speaker microphone.
- LH-2 Deluxe leather case.

 7930

Big LCD, Big 45 W, Big 21 memories, Compact.

Outstanding features providing maximum ease of operation include a large, easy-to-read LCD display, 21 multi-function memories, a choice of 45 watts (TR-7950) or 25 watts (TR-7930), and the use of microprocessor technology throughout.
TR-7950/TR-7930 FEATURES:

- New, large, easy-to-read LCD digital display. Easy to read in direct sunlight or dark (back lighted). Displays TX/RX frequencies, memory channel. repeater offset, sub-tone number, scan, and memory scan lock-out. - 21 new multi-function memory channels. Stores frequency.
repeater offset, and optional sub-tone channels. Memory pairs for non-standard splits. A" and "B" set band scan limits Lighted memory selector knob. Audible "beep" indicates channel 1 position.
- Lithium battery memory back-up. (Est. 5 yr. life.)
- 45 watts or 25 watts output. HI/LOW power switch for reduction to 5 watts.
Automatic offset. Pre-programmed for simplex or $\pm 600 \mathrm{kHz}$ offset, in accordance with the 2 meter band plan. "OS" key for manual
- Programmable priority alert. May be programmed in any memory.
Programmable memory scan lock-out. Skips selected memory channels during scan.
- Programmable band scan width.
- Center stop circuit for band scan, with indicator.
- Scan resume selectable. Selectable automatic time resumescan, or carrier operated resume-scan.
- Scan start/stop from up/down microphone.

- Programmable three sub-tone channels with optional TU-79 unit (encoder).
- Built-in 16-key autopatch enco with monitor (Audible tones).
- Front panel keyboard control.
- Covers $142.000-148.995 \mathrm{MHz}$ i $5-\mathrm{kHz}$ steps.
- Repeater reverse switch. (Locking
- "Beeper" amplified through speaker.
- Compact lightweight design.

Optional accessories:

- TU-79 three frequency tone ur
- KPS-12 fixed-station power supply for TR-7950.
- KPS-7A fixed-station power supply for TR-7930.
- SP-40 compact mobile speake

Please allow 4-6 weeks for delivery of first
issues.
Foreign rates: Europe, Japan and Africa, $\mathbf{\$ 2 8 . 0 0}$ for one year by air forwarding service. All other
countries $\$ 21.50$ for one year by surface mail.

ham radio magazine

contents

12 inexpensive video monitor Carl Gregory, K8CG

16 Morse time synthesis
Lawrence G. Souder, N3SE

27 a state-of-the-art Touchstone ${ }^{\circledR}$ decoder Mark Forbes, KC9C

32 remote control hf operation Dick Sander, K50Y

52 ham radio techniques
Bill Orr, W6SAl

56 a microprocessor repeater controller Bill Warner, KB5F

72 6-meter amplifier
Fred J. Merry, W2GN

On January 20, 1983, the FCC proposed the most important Amateur rules change in many years - the proposal to delegate the responsibility for Amateur license examinations to the Amateur community. Unfortunately, the emotion-laden issue of a no-code license has all but obscured this other crucial Notice of Proposed Rule Making.
In consideration of the ARRL's Petition for Rule Making on exam administration, the FCC has proposed a three-man team headed by an Extra Class licensee to administer individual exams. Examiners would have to be certified by one of several recognized supervisory organizations called Volunteer Examiner Coordinators. They would have to be over 18 years old and could not work for a manufacturer or distributor of Amateur equipment or a publisher of training materials. Questions would be chosen from a list made up by the Commission from submissions by individual Amateurs and groups of Amateurs.

There are a lot of hard questions that must be asked about this proposed system. Three-man examining teams (for all licenses except Novice) are fine for major urban areas like Los Angeles, Chicago, or Washington, D.C., but what happens to the would-be upgrader in remote parts of the country? Should there be a mechanism provided to deal with such cases, for example an examining team led by an Amateur but including non-Amateur examiners, such as elected public officials, when three licensed Amateurs aren't available? Should a formal procedure for giving exams at hamfests or in classrooms be included in the new rules?
What should the qualifications for a Volunteer-Examiner-Coordinator (VEC) be? There has been definite interest in this program shown by some non-Amateur groups. How should the long-term integrity of the VECs be ensured?

It seems that the FCC would prefer to have more than one VEC overseeing the exam-administration effort. How could anyone be sure that the different organizations all hew to the same standards? How would the overseeing groups finance their administration costs? The ARRL is already well aware of what this program is going to cost it, and it questions whether it's fair to the League's members to have them pick up the bill. Should there be a fee charged for giving Amateur exams? Who should set the fee, and to whom - the examiners, their overseeing group, or both - should it go?

Should the FCC include the Novice exam in this new overall program, instead of establishing the less demanding Novice exam program they proposed in an NPRM late last year? The ARRL wants Novices included, yet the Commission has indicated its approach would be simpler, faster, and cheaper. The Commission received very few comments on its Novice exam NPRM; does that mean Amateurs want the Novice exam a part of the larger program, or was the FCC's proposed Novice exam program simply overlooked in the concern generated by the no-code license proposal?

There are other considerations as well. It takes time to establish workable procedures (look how long the FCC had). Might not inordinate delays occur at every step of the process, resulting in longer delays in getting licensed? Right now it's a hot topic, but what about one or two years downstream? Might not interest wane among the exam administrators - with newcomers to the hobby being the losers? Most of all, we should be concerned about the possibility that the ham ticket might be devaluated by an unequitable, nonuniform examination procedure. How simple it seems now, to go down to the nearest FCC office and take the exam. Might not a small licensing fee underwrite the cost of FCC-administered exams?

Write the FCC with your opinions. Comments on the exam administration proposal, FCC PR Docket 83-27, are due at the Commission by April 8th. Address them to the Secretary, Federal Communications Commission, Washington, D.C. 20554. You'll need to send an original neatly typed with wide margins, plus five copies (eleven is better, since each Commissioner will receive one). Your name and the Docket number should appear on each page.

What we, as individual Amateurs and through our clubs and organizations, tell the Commissioners may do more to influence the future of Amateur Radio in the United States than anything else we will ever do!
ham radio

REC:NE WEATHER CHARTS nouk Howa

You can DX and receive weather charts from around the world.

Tune in on free, worldwide government weather services. Some transmitting sites even send weather satellite cloud cover pictures!

You've heard those curious facsimile sounds while tuning through the bands - now, capture these signals on paper!

Assemble ALDEN's new radiofacsimile Weather Chart Recorder Kit, hook it up to a stable HF general-coverage receiver, and you're on your way to enjoying a new hobby activity with many practical applications. Amateurs, pilots, and educators can now receive the same graphic printouts of high-quality, detailed weather charts and oceanographic data used by commercial and government personnel.

Easy to assemble-Backed by the ALDEN name.

For over 40 years, ALDEN has led the way in the design and manufacture of the finest weather facsimile recording systems delivered to customers worldwide. This recorder kit includes pre-assembled and tested circuit boards and mechanical assemblies. All fit together in a durable, attractive case that adds the finishing professional touch.

Buy in kit form and save \$1,000

You do the final assembly. You save \$1,000. Complete, easy-to-follow illustrated instructions for assembly, checkout, and operation. And ALDEN backs these kits with a one-year limited warranty on all parts.

Easy to order.

Only $\$ 995$ for the complete ALDEN Weather Chart Recorder Kit. To order, fill out and mail the coupon below. For cash orders enclose a check or money order for $\$ 995$. Add $\$ 5$ for shipping and handling in the U.S. and Canada (for Massachusetts delivery, add $\$ 49.75$ sales tax). To use your MasterCard or Visa by phone, call (617) 366-8851.

ALDENELECTRONICS

Washington Street, Westborough, MA 01581

filters for Amateur use

Dear HR:

In his letter to the ham radio editor (February, 1983, page 8), Ed Marriner, W6XM, mentioned a problem the Radio Amateur too frequently ignores - the need to comply with the FCC requirement that transmitter harmonics be down by 40 dB or more from the fundamental. Ed further explained that to accomplish this on all bands a lowpass filter for each band is necessary. The customarily used $30-\mathrm{MHz}$ lowpass filter, widely advertised by J.W. Miller, Drake, and B\&W, is effective, he said only for the Amateur 10-meter band.

A "best solution" offered by Ed was for the Amateur to install lowpass filters designed to cut off just above the upper end of the band being used; however, the recommended designs were from the June, 1957, issue of GE Ham News designs that are more than twentyfive years old!

During the past twenty-five years, the Radio Amateur has witnessed many changes, the most obvious being the transition from vacuum tube to solid state, and more recently the introduction of the personal computer to ham operation. Less obvious was the transition from filter design using the image-parameter-design procedure invented by Otto Zobel to the modern filter (network-synthesis) design procedure. The modern design filter has a simpler configuration
and a more precise performance than the older image-parameter type. Modern lowpass designs (Chebyshev and elliptic) have been developed in which standard-value capacitors are used, thus making them simple for the Amateur to build. These designs have been widely published in the Amateur Radio handbooks, in trade handbooks, and in the Amateur and trade periodicals. I think Ed will agree that these designs are a better solution to the Amateur lowpass filtering requirements than are the old designs.

Ed also mentioned the problem of obtaining suitable high-voltage, lowloss capacitors for use in constructing lowpass filters for Amateur highpower applications. I, too, have experienced this problem, and I have continually been searching for a better high-voltage capacitor than the Centralab ceramic TVL type that Ed mentioned. I think I have finally found a suitable alternative to the TVL capacitor, but the manufacturer of the highvoltage capacitor, KD Components Inc. (3016 S. Orange Ave., Santa Ana, California 92707), sells only in quantities greater than ten and has a minimum billing of $\$ 50$. Also, the maximum capacitance available in the $2-3 \mathrm{kV}$ range is 100 pF , so several capacitors will have to be paralleled to get the larger capacities required by the filters for the lower Amateur bands. The approximate cost of the $2-\mathrm{kV}, 100-\mathrm{pF}, 10$ percent capacitor in
quantities of $10-99$ is $\$ 4$. In quantities above 500 , the price drops to $\$ 1.44$! Consequently, this capacitor type, although excellent for the application, appears to be financially practical only for a high-volume manufacturer of lowpass filters.

A filter designed from the data in reference 4 (OST, December, 1979) was constructed and operated at a 1 kW power level without a failure, but this is feasible only when the VSWR can be carefully controlled, otherwise the voltage rating of the capacitors may be exceeded and the filter damaged if the VSWR becomes excessive. For power levels below 500 watts, the polystyrene and mica capacitors seem suitable. So, contrary to Ed's concluding statement, there does seem to be hope, and I suggest that those not having a filter for each band should review the references included with this letter, and then construct any filters that may be required.

references

1. Radio Handbook, 22nd edition, edited by W.I. Orr. W6SAI, pages $3.35-3.37$, copyright 1981 by H.W. Sams \& Co. , Inc., Indianapolis, Indiana.
2. The Radio Amateur's Handbook (1983), 60th edition, edited by George Woodward, W1RN, page 6-41, fig. 65, copyright 1982 by ARRL. Newington, Connecticut.
3. The Electronic Databook, edited by R. Graf, to be published in 1983 by TAB Books. Blue Ridge Summit, Pennsyivania.
4. Ed Wetherhold, W3NON, "Low-pass filters for amateur radio transmitters," QST, December, 1979. 5. Ed Wetherhold, W3NON, "Elliptic lowpass filters for transistor amplifiers," ham radio, January, 1981. 6. Ed Wetherhold, W3NQN, "Filter Design," Comments, ham radio, October. 1981, page 6.
5. Ed Wetherhold, W3NQN, " 7 -element 50 -ohm Chebyshev filters using standard-value capacitors," if design, Vol. 3, No. 2, February, 1980, pages 26-38. 8. Ed Wetherhold, W3NQN. "Low-pass fiters (with inductive input and output)," rf design, Vol. 4, Nos. 4 and 5, July/August and September/October, 1981. 9. Ed Wetherhoid, W3NQN, "Design 7 -element lowpass filters using standard-value capacitors," EDN, Vol. 26, No. 1, January 7, 1981, pages 187-190. 10. Ed Wetherhoid, W3NON, "Low-pass Chebyshev filters use standard-value capacitors," Electronics, Engineers' notebook, June 19, 1980.

Ed Wetherhold, W3NQN
Annapolis, Maryland

MFJ CW/SSB/Notch Filters

MFJ-722 ALL MODE audio filter for CW/SSB has tunable 70 dB notch, no ring 80 Hz CW bandwidth, steep SSB skirts (18 poles total), 2 watts for speaker plus more.

New super-selective filter. The new MFJ-722 "Optimizer" offers razor sharp, no ring CW filtering with switch-selectable bandwidths (80 , $110,150,180 \mathrm{~Hz}$ centered on 750 Hz). steep-skirted SSB filtering, and a $300-3000 \mathrm{~Hz}$ tunable 70 dB notch filter with adjustable bandwidth.
The 8 -pole (4 stage) active IC filter gives CW performance no tunable filter can match (80 Hz bandwidth gives -60 dB reponse one octave from center and up to 15 dB noise reduction). The 8 pole SSB audio bandwidth is optimized for reduced sideband splatter and less QRM (375 Hz highpass cutoff plus selectable lowpass cutoffs at $2.5,2.0$ and $1.5 \mathrm{KHz}, 36 \mathrm{~dB}$ /octave rolloff). Measures $5 \times 2 \times 6^{\prime \prime}$
New Model MFJ - 723, ($\mathbf{\$ 4 9 . 9 5}$), is similar to the 722 but 'is for CW. Has a 60 dB notch tunable from 300 to 1200 Hz . Measures $4 \times 2 \times 6^{\prime \prime}$
Other models: MFJ - 721, \$59.95. Like 722, less notch. MFJ - 720, \$39.95. Like 723, less notch.

All mode versatility: razor sharp CW and steep-skirted SSB filtering with tunable notch eliminates QRM.

${ }^{\$} 69^{95}$

Versatile, all models plug into the phone jack, provide 2 watts for speaker or can be used with headphones. All require $9-18$ VDC or 110 VAC with optional adapter, MFJ-1312. \$9.95.
Order from MFJ and try it-no obligation. If not delighted, return it within 30 days for refund (less shipping). One year unconditional quarantee. Order today. Call toll free 800-647-1800. Charge VISA, MC or mail check, money order for amount indicated plus $\$ 4.00$ each shipping and handling. Enjoy improved readability, order now.

CALL TOLL FREE ... 800-647-1800

 Call 601-323-5869 in Miss.. outside continental USA or for technical info. order/repair status.
11 테 ENTERPRISES, INCORPORATED
 f BOX 494, MISSISSIPPI STATE, MS 39762

MFJ/Bencher Keyer Combo

Deluxe MFJ Keyer fits on Bencher Paddle. Curtis 8044 IC. lambic. Adjustable weight, tone, volume, speed. Semi and automatic modes. Solid state keying. RF proof.

$\underset{\substack{\text { Combo } \\ \text { MFJ-422 }} \mathbf{\$ 0 9 5} .}{ }$
The best of all CW worlds - a deluxe MFJ Keyer in a compact configuration that fits right on the Bencher iambic paddle! You can buy the combination or just the keyer for your Bencher
New MFJ Keyer-small in size, big in features. Curtis 8044 IC, adjustable weight and tone, front pa iel volume and speed controls ($8-50 \mathrm{wpm}$). Built-in dot-dash memories. Speaker, sidetone, and push button selection of semi-automatic/tune or automatic modes.
Ultra-reliable solid state keying: grid-block, cathode and solid state transmitters ($-300 \mathrm{~V}, 10 \mathrm{~mA}$ $m_{\text {max., }}+300 \mathrm{~V}, 100 \mathrm{~mA}$ max.). Fully shielded. Uses 9 V battery or 110 VAC with optional adapter. MFJ 1312, \$9.95.
Beautiful functional engineering. The keyer mounts on the paddle base to form a small $\left(41 / 8 \times 25 / 8 \times 51 / 2^{\prime \prime}\right)$ attractive combination that is a pleasure to look at and use.

MFJ DUMM
LOADS
Tune up fast into 50 ohm resistive load. Extend life of finals.

New MFJ-250 VERSALOAD Kilowatt Dummy Load lets you tune up fast. Extends life of transmitter finals. Reduces on-the-air QRM.
Run 1 KW CW or 2 KW PEP for 10 minutes, $1 / 2$ KW CW or 1 KW PEP for 20 minutes. Continous duty with 200 watts CW or 400 watts PEP. Complete with derating curve.

Quality 50 ohm non-inductive resistor.
Oil cooled. Includes high quality, industrial grade transformer oil (contains no PCB).
Low VSWR to 400 MHz : Under 1.2:1, 0-30 MHz . $1.5: 1,30-300 \mathrm{MHz}$. $2: 1,300-400 \mathrm{MHz}$.
Ideal for testing HF and VHF transmitters.
SO-239 coax connector. Vented for safety. Removable vent cap. Has carrying handle. $7-1 / 2$ in. high, $6-5$-5/8 in diameter.

MFJ "Dry" 300 W and 1 KW Dummy Loads.

Air cooled, non-inductive $\mathbf{5 0}$ ohm resistor in perforated metal housing with SO-239 connectors. Full load for 30 seconds, derating curves to 5 minutes. MFJ-260 (300 W). SWR: 1.1:1 to 30 $\mathrm{MHz}, 1.5: 1$ for $30-160 \mathrm{MHz}$. $21 / 2 \times 21 / 2 \times 7$ in. MFJ-262 (1 KW). SWR $1.5: 1$ for 30 MHz . $3 \times 3 \times 13$ inches.

New MFJ-816 low cost HF SWR/Wattmeter for 1.8 to 30 MHz range. Torodial current pickup gives uniform sensitivity over entire HF frequency. Read SWR, forward and reflected power in 2 ranges (30 and 300 watts) on two color scale. SO-239 coax connectors. $4-1 / 2 \times 2-3 / 8 \times 2-7 / 8$ in. Order from MFJ and try It. If not delighted, return it within 30 days for refund (less shipping). One year unconditional guarantee.
Order today. Call TOLL FREE 800-647-1800. Charge VISA,MC. Or mail check, money order. Write for free catalog.
CALL TOLL FREE . . . 800-647.1800 601-323-5869 in MS outside continental USA. ENTERPRISES, INCORPORATED
Box 494, Mississippi State, MS 39762

LEGAL PROBLEMS WITH BOTH ANTENNAS AND RFI are continuing for a number of Amateurs in various communities, and should be of concern to Amateurs throughout the country. Cerritos, California, long a leader in antenna height restrictions, has resisted a suit brought by several Amateurs attempting to overturn a moratorium on new antemnas. That city is in the process of drafting a new, more restrictive ordinance, but the judge ruled the suit was "premature," since the terms of the new ordinance haven't yet been decided. An appeal is being considered, and the ARRL Executive Committee has voted in favor of entertaining a request for the League to match local financial support. Other tower cases in Oklahoma City (NSSW), Farmington, Michigan (WD8BCM), and Burbank, Illinois, are still pending, but N $\emptyset C C X ' s$ challenge of a Brighton, Minnesota, ordinance has been upheld and his 65-footer is still up.

WB2BZK's Appeal To The New Jersey Supreme Court of Winslow township's prohibition of RFI has been turned down. Efforts are continuing to get the township to review and perhaps rescind its ordinance, in view of the federal assumption of such regulation contained in Public Law 97-259 (the "Goldwater Bill").

TWO VITALLY IMPORTANT AMATEUR RULES CHANGES PROPOSED BY THE FCC are up for comments during April. The proposal to establish a volunteer examining procedure for all Amateur licenses, PR Docket 83-27, has a comment closing date of April 8 , which leaves little time to consider its implications (see this month's Reflections, page 6). The no-code license proposal, PR Docket 83-28, is open for comments until April 29.

The ARRL's Adamant Positjon Against No-Code May Be Softening, according to some indications. It appears that the League membership may not be as solidly against a nocode license as was previously reported. With the strong pro no-code position apparent among the Commissioners, the ARRL now feels it may be prudent to support a form of nocode that the Amateur community can live with, rather than oppose it outright and have no say in its final form. The League Executive Committee has agreed informally to prepare a position paper outlining various no-code alternatives for the directors before their April board meeting, at which time the final League position will be determined and comments prepared.

Amateur Exam Aduninistration At This Year's Dayton Hamvention had been sought by the Hamvention Comittee, and initial FCC reaction had been positive. However, it now appears that, though exams will be given at the Hamvention, they will be administered under the supervision of the FCC. Barring unforeseen probiems, the earliest a complete volunteer program could be put together and set in motion would be late next fall, leaving too many variables to be settled in time for even a dry run at this year's Hamvention.

RICH ROSEN, K2RR, HAS BEEN APPOINTED EDITOR-IN-CHIEF OF HAM RADIO effective February 5. Rich joined Ham Radio last fall, as Senior Technical Editor.

ARRL's New Technical Department Manager Is Paul Rinaldo, W4RI, who's replacing Doug Demaw, WIFB, upon Doug's retirement in May. Paul currently edits QEX, the ARRL experimenters' newsletter, and is the president of AMRAD.

TEN SCHOLARSHIPS FOR GENERAL CLASS (OR HIGHER) AMATEURS planning to attend (or already attending) college or technical school are available through the Foundation for Amateur Radio. Full details and an application form can be obtained from Hugh Turnbull, W3ABC, 6903 Rhode Island Ave., College Park, MD 20740. May 31 is closing date for requests.

THE PHONE BAND EXPANSION IS STILL IN PROCESS within the Commission, with expectations that it will be finished and released by late spring. Just which bands will (and which won't) be changed isn't yet clear, though it seems very likely that 20 and 10 will both see some expansion of their phone subbands.

Deregulation Of The CB Service Is Also In The Mill, with the new rules (or non-rules) to be announced at about the same time as Amateur phone band expansion.

Extension Of Amateur License Terms To 10 Years from the present five is likely to surface soon. Though the FCC now has the authority to make the change, it will probably be introduced through a Notice of Proposed Rule Making to assess Amateur reaction.

PROFANE AND INDECENT LANGUAGE IS NO LONGER GROUNDS FOR REVOKING an Amateur's license, according to the FCC's Review Board. The license of N6BHU had been revoked last fall by an FCC Administrative Law Judge for such violations, but on January 26 that decision was overturned and his license reinstated. With a suburban Washington, D.C., broadcast station now airing uncensored "party" records, it appears the Commission concern with the content of transmissions may be a thing of the past. However, the ARRL is seeking a review of the subject with the FCC staff in hopes of restoring some standards for Amateurs.

THE SOLAR FLUX SLUMPED TO ITS LOWEST LEVEL SINCE JANUARY, 1978, at mid February, to give a hint of things to come as this sunspot cycle deepens. Solar activity remained low through CW DX Contest weekend, with 10 meters of little value and l5 spotty.

Deteriorating HF Band Conditions Highlight The Value of Beacons, particularly the new 14. 100 MHz worldwide system sponsored by the Northern California DX Foundation. In addition, the many beacons in the $28.2-28.3 \mathrm{MHz}$ portion of 10 meters and those operating between 50.0 and 50.1 MHz on 6 will continue to signal openings to users of those bands. See Technical Forum, page 46, for information on a beacon on 28.208 MHz .
 VHF, UHF, Across the spectrum. VARIAN EIMAC.

Ham operators know that EIMAC started in power tube development with the 150T in 1934. While the 150T is now a collector's item, EIMAC, a division of Varian, still holds leadership in power tube design with its 4CX250B, 8874, 3-500Z, 8877 and 3CX400U7; modern examples of EIMAC's continuing, innovative solutions to tough communication requirements.
EIMAC's proven power tubes are used in amateur service for heavy-duty, reliable performance in traffic; RTTY; SSTV; DX operation; VHF/UHF work; moonbounce, and exploration of the outer limits of communication techniques across the spectrum.

High quality and long life make EIMAC tubes the favorite choice of operator and equipment builder, amateur and professional alike.
For communication and research worldwide, choose EIMAC. For information on VARIAN EIMAC power tubes, call or write today. Or contact the nearest Varian Electron Device Group sales office.

VARIAN EIMAC

301 Industrial Way
San Carlos, California 94070 415-592.1221
VARIAN EIMAC
1678 S. Pioneer Road
Salt Lake City, Utah 84104 801-972-5000

VARIAN AG
Grienbachstrasse 17
Postfach
CH-6300 Zug, Switzerland
Tel: (042) 316655
Telex: 845-78789

inexpensive video monitor

Bypassing rf and i-f sections to resurrect old TVs for modern use

The current interest in home computers, slowscan and fast-scan TV, RTTY, and automatic CW keyboards - not to mention home video movies and games - creates a need for an inexpensive display device for the ham shack. Many commercial video products are designed to work with a standard TV, typically using channels 2,3 , or 4 with a video modulator. There are some drawbacks to this procedure, though; for one thing, the family TV is not likely to be located in the ham shack. And, more importantly, the performance of a TV set is less than optimum if high resolution is needed.

I first considered the problems of TV sets when I acquired a TRS-80 Model I microcomputer a few years ago. I figured I could save some money by converting an old black and white TV set for use as a monitor. Typical computer-grade monitors sell for $\$ 100$ or more, but a flea-market TV can be found for next to nothing. And TV sets have a 15 to 20 inch screen, unlike the typical 12 -inch monitor. Sounds like a bargain, but there's a hitch.

The problem is bandwidth, (or resolution, depending on your point of view). Commercial CRTs use an 80 -character display, and many home computers settle for 48,32 , or even 24 characters per line. The res-
olution of TV is typically much less. The TRS-80 uses a sixty-four character display, which is why Radio Shack sells a dedicated monitor. Those sixty-four characters occupy roughly 80 percent of the horizontal scan line. Each character is five dots (pixels) wide, and there is a one-pixel space between letters. So, we have $6 \times 64=384$ pixels per line. In a conventional (U.S.) TV scanning system, one line is scanned in 63.5 microseconds. Only 80 percent of this time is available for the letters, so the pixels are scanned at a rate of (384 pixels $/$ line $) /(0.8 \times 63.5$ microseconds) $=7.6$ million pixels $/$ second, or 130 nanoseconds/pixel! The situation is even worse for an eighty-character line. (The longer lines are desirable for RTTY - where seventy-two character machines are common - and word-processing.) Furthermore, in order that the pixels reach full brightness when on, and return to the black video baseline when off, the rise and fall times must be much less than the 130 -nanosecond duration of a pixel. Otherwise they will run together in the bars on the letters T, E, B, and so on, and fade out in the vertical part of letters I, L, etc., as noted by W9CGI.' We require a bandwidth at least twice the pixel rate, or 15 to 20 MHz!

Broadcast TV uses a $6-\mathrm{MHz}$ channel width. The i-f strip is designed to have sharp cutoff, to minimize adjacent channel interference. The video carrier is already 1.25 MHz above the lower band edge in the

By Carl Gregory, K8CG, 203 Trappers Place, Charleston, West Virginia 25314

fig. 1. Partial schematic of black and white TV set showing video amplifier and picture tube connections. CR1 is a 1 N60, 1N395, etc. L7-L10 are video peaking coils. Points TP1 and A are referred to elsewhere.
vestigial sideband system. The maximum available video bandwidth is a bit more than 4 MHz , if we use the video-modulated rf carrier approach. It should have been no surprise to me when my TRS-80 display was illegible unless I used the expanded (thirtytwo character per line) display. The problem was compounded by snow (low signal to noise ratio) from the aging rf section.

How to remedy this? Several approaches are possible:

1. Slow down the scan rate. This method has two drawbacks in that it causes annoying flicker in the display, and requires major modifications to the TV and the video display-generating circuitry.
2. Pre-process the video signal, emphasizing high frequencies. This approach was used by W9CGI. But you can compensate for only so much high frequency roll-off. The match between compensation and i-f roll-off must be exact.
3. Bypass the problem by skipping the rf and i-f sections of the TV set. This is my approach; it is the simplest, the most effective, and potentially the cheapest, since you can use a TV with a defunct tuner.

Let's consider the modification of a typical tubetype TV set for use as a wideband video display. Fig 1 shows the pertinent parts of the video amplifier stage. (The circuit is from my Setchell-Carlson set ${ }^{3}$). Note that the cathode of the picture tube is driven. Fig. 2 shows the typical video signal level available from the computer, demodulator, or other source. Our problem is to match the two devices.

simplest approach

The first method uses the existing video amplifier and bypasses the rf and i-f stages. In my set, the detector output (TP-1) was brought out to a test point on top of the chassis. I determined that, since the typical detector level is a couple of volts peak-topeak, the new video source could just be hooked in parallel here.

Fig. 3 shows the circuit. The signal comes from the computer, VCR, or other source, via the coax. Some 50 or 75 -ohm cable is all right as long as it's not more than a few feet long. I used RG-174, which is a nice size - not too stiff. A blocking capacitor is
needed since the 2200 -ohm grid leak would otherwise be shorted by the 75 -ohm video source. This capacitor must pass frequencies as low as the vertical sync pulses at 60 Hz . For 50 - or 75 -ohm systems this means $X c=50$ ohms (maximum), so $C=1 /(2$ $\times p i \times 60 \times 50$) $=53$ microfarads $($ minimum $)$. Note the polarity of the capacitor: the grid is negative. Be cautioned: This circuit will not work on a transformerless TV with a hot chassis unless an ac isolation transformer is installed, because there is no place to safely install the shield side of the video cable!

I installed this circuit (cost was less than $\$ 3.00$ for cable, connectors, and capacitor) in my TV set, and was using my new computer in a day or so. I used it that way for about a year before I had time to try to improve the performance. There was still considerable blurring of pixels, the brightness and contrast needed continuous adjustment as the set warmed up, and the contrast was a bit low.

second approach

A note in Byte magazine suggested the solution. ${ }^{2}$ A new video amplifier improves the high-frequency response, and provides the needed gain to get the desired contrast. Unfortunately, the circuit in the magazine had some drawbacks, and I finally came up with my own. The circuit in fig. 4 has the following properties: no separate power supply needed; adequate gain; sufficient bandwidth to give well-formed characters at 80 per line; linear enough to use for a video-tape or ATV monitor; uses the existing brightness control circuit; no exotic devices required. (Any modern PNP and NPN transistor should work fine.)

circuit description

The video cable is terminated in a resistive pad,

fig. 3. Direct connection of external video signal to TV set in fig. 1.

R1-R3, which also serves as part of the bias circuit for Q1. C1 passes the signal to the video amplifier (for the benefit of the sync circuitry only). Q1 operates as a linear common-emitter amplifier. The gain is about 5 at low frequencies. The emitter bypass (C2) boosts the gain above 5 MHz and compensates for the transistor's reduced beta. It is important to operate all the transistors in the linear region. Saturation of any transistor (clipping) will load the base with charge, requiring time to discharge, resulting in slow switching or reduced bandwidth.

Q2 acts as an inverter and level shifter. The gain is about 0.7. The level shifting is necessary since dc coupling is used to get wide bandwidth, and the gain need not be high since we have one more stage to go. Q3 is another common-emitter amplifier, with a gain of 3 at the collector. The signal has now been inverted three times, so it is inverted overall. The white peaks of the video input are negative peaks at the output (cathode) which drive off many more electrons and make a white spot on the screen.

The cathode of the picture tube is a low current point, so we can use a relatively small capacitor to couple the signal to it (C3). We also need dc here, but the value (+80 volts) is a bit high for the transistors, so 1 derived it from the existing bias circuit via a filter (R11-12 and C4). The filter removes the video information from the old amplifier, but passes the dc cathode current.

The overall gain is about -15 , so a 1 -volt peak-topeak input yields about 15 -volts peak-to-peak output. This means the power supply must provide considerably more than 20 volts. By trial and error, dropping resistors (R13-14) were found which gave an acceptable picture without overheating the transistors. (It is difficult to calculate the value, since the current drain of the amplifier varies with Vcc and the nature of the video signal.) C5 filters the resulting 40 volts or so and keeps it relatively constant during each frame. This unregulated supply is the least satisfactory aspect of the circuit, but the heat from the dropping resistors is hardly noticed in a tube-type set.

construction

This amplifier can be built in a breadboard format, since parts placement is not critical. I used a simple printed circuit board (cover the foil with masking tape and remove some with a knife, leaving large islands where the components are to be attached). The board was installed in the back of the set below the base of the picture tube. I just cut the yeliow cathode lead in the middle (point A in fig. 1) and attached the two ends to the board. This is probably the only semi-critical item - it wouldn't do to go to all that trouble to get a sharp video signal and then

fig. 4. New broadband video amplifier for use with tube-type TV sets. For external connections refer to fig. 1. The cathode lead is cut at point A, and the amplifier is inserted as indicated. Q1, Q3 are 2N2222A and Q2 is a 2N3905.
run it through a long inductive lead. But 6 to 8 inches doesn't seem to hurt. Caution: This circuit will not work on a transformerless TV with a hot chassis unless an ac isolation transformer is installed, because there is no place to safely install the shield side of the video cable!

adjustment

There are no adjustments in the new video amplifier. However, we can improve performance a bit by adjusting the TV set. So far, only the video characteristics associated with the horizontal sweep have been discussed. Another problem with TV is that the scan is not necessarily linear. That is, the picture may be bunched up at one side or the top or bottom of the screen, and spread out elsewhere. This would be intolerable in a color set, but is common in old black and white sets. There should be a pair of pots for adjusting top and bottom vertical linearity, and there are two tabs mounted on the yoke which can be rotated independently to position the picture properly. It should be possible to find a combination in which the part of the picture you want to use the most is conveniently displayed.

Finally, you may find that the focus is not uniform over the screen. The focus control and those positioning tabs may interact, and it should be possible to get a reasonably crisp picture over the most important parts of the screen. (For use as a computer or RTTY display, the right side is less important than the left, for instance.)

I have been using the circuit in fig. 4 with the TRS-80, and more recently with a homebrew S-100 system using an eighty-column display, for about a year now. It sure is nice to not have a lot of short, left-over lines on RTTY - you can see most of the last transmission all at once with the eighty-column display. The large screen is easy on the eyes, although the contrast is a bit low if the room is sunlit. And word-processing is handy, too; this article was written on the big screen. A test with a Panasonic portable VCR and camera showed an excellent picture of the shack. (Everything perfect except the color!)

An old TV set can be given a new lease on life as a modern video monitor for the shack at relatively low cost. The effort required will depend on the bandwidth needed for your application. I hope the principles presented here will save you a good deal of time and frustration as you attack that tube. This project is worthwhile for any experimenter on the more modern modes, such as RTTY, slow or fast-scan TV, or computer communications.

references

1. D.J. Brown, W9CGI, "CRT Character Enchancer," ham radio, August. 1982, page 66.
2. Timothy Loof, "Use Your Television Set as a Video Monitor," Byte, February, 1979, page 46.
3. Schematics for older TV sets can be obtained from your local TV-repair parts supplier. Ask for Howard W. Sams "Photofact" sheets by model number.

Morse time synthesis

This software routine lets your micro speak the time in Morse code

Talking microcomputers are becoming common as more companies develop hardware modules for voice synthesis. Most are reasonably priced, starting from $\$ 100$. If you want vocal feedback from your computer and need only a vocabulary limited to the decimal integers, you might consider a software alternative: voice synthesized telegraphy.

The program described here synthesizes a 24 -hour clock which provides an audible read-out in Morse code characters. The clock produces Morse characters for the time in hours and minutes on demand, and automatically on the hour. It is especially useful to the blind or seeing-impaired. Even to those unfamiliar with Morse code, the numerals are easy to learn.

This program was conceived on a single-board computer based on the 1802 microprocessor, running at a frequency of 1.7897725 MHz . The program
depends upon only a few hardware features: 256 bytes of RAM, a speaker amplifier on the Q line, and a push-button switch on the EF4 external flag line. All the routines in the program are straightforward, and they can be easily translated into machine code for other microprocessors.

the program

The main program begins by initializing registers to point to subroutines, locations for binary time, BCD time, and a table of Morse code patterns. The program then enters the time loop (fig. 1). This loop iterates until sixty seconds elapse, at which time binary minutes are incremented. During each iteration, the program checks to see whether the time has been requested by testing external flag EF4, and it checks to see whether sixty minutes have elapsed. In either case program control passes to register R3 for the out subroutine. The time loop also checks for twenty-four hours, at which point the clock is reset to 00:00.

The out routine (fig. 2) is the main subroutine, and produces the Morse code characters. It first clears the old BCD time. Then, after getting binary hours, the program jumps via R4 to the BCD subroutine. On return, the program gets binary minutes and again

By Lawrence G. Souder, N3SE, 4539 Manayunk Avenue, Philadelphia, Pennsylvania 19128

fig. 1. Flowchart of the time loop.
jumps to the BCD subroutine (fig. 3). Now that the program has the time in BCD, control passes to R5 for the Code routine, which converts the BCD digits into Morse characters. On return, program control reverts to RO to resume the time loop.
$B C D$ is a fairly conventional binary-to-BCD subroutine which converts by successively subtracting ten from the binary value. Every time it subtracts ten, it increments the BCD ten's value and retains the difference as the new binary value. If the subtraction yields a negative difference, the previous binary value is stored as the BCD one's value.

For each BCD digit the code subroutine (fig. 4) finds the bit pattern which corresponds to the appropriate Morse code digit. It then takes this bit pattern and ring-shifts it right, into DF (the 1802's carry flag) five times. After each shift, the code subroutine tests

DF. If DF is 0 , a dot is fetched; if DF is 1 , it returns a dash. For instance, for the numeral $2(\cdots---)$ the bit pattern fetched from the table will be XXX11100. (The higher-order three bits are not used.) The code routine will also generate a space between Morse digits.

The routine which produces the tones is called

fig. 3. Flowchart of the $B C D$ subroutine.

Program listing.					
Register	Use				
0	Main program counter				
1	Not used				
2	Not used				
3	Pointer to OUT (0055)				
4	Pointer to BCD (0076)				
5	Pointer to CODE (0088)				
6	Pointer to bit pattern for Morse digits.				
7	Pointer to DOT/DASH (00B6)				
8	Scratch pad				
9	Pointer to Binary Hours (0000)				
A	Pointer to Binary Minutes (0001)				
B	Pointer to BCD Time (starting with 10's hours at 00D2				
C	Counter for Minutes				
D	Counter for Seconds				
E	Morse character counter (low order)/Temporary code storage (high order)				
F	Pointer to top of table of bit patterns for Morse digits (starting at 0006)				
Address	Code	Label	Mnemonic	Operand	Comment
0000	F800	INIT	LDI	00	Set high order of registers
0002	B3		PHI	R3	to 00.
0003	84		PHI	R4	-
0004	B5		PHI	R5	-
0005	B6		PHI	R6	-
0006	B7		PHI	R7	-
0007	B9		PHI	R9	-
0008	BA		PHI	RA	-
0009	BB		PHI	RB	-
000 A	BF		PHI	RF	-
000B	F855		LDI	55	R3 points to OUT (0055).
000D	A3		PLO	R3	-
O00E	F876		LDI	76	R4 points to $\mathrm{BCD}(0076)$.
0010	A4		PLO	R4	-
0011	F888		LDI	88	R5 points to CODE (0088)
0013	A5		PLO	R5	-
0014	F8B6		LDI	B6	R7 points to DOT/OASH (00B6).
0016	A7		PLO	R7	-
0017	F8D0		LDI	D0	R9 points to Binary Hours (000))
0019	A9		PLO	R9	-
001A	F8D1		LDI	D1	RA points to Binary Minutes (00D1).
001C	AA		PLO	RA	-
001 D	F8D2		LDI	D2	RB points to BCD Time (00D2).
001F	AB		PLO	RB	-
0020	F8D6		LDI	D6	RF points to Table of Morse
0022	AF		PLO	RF	digits.
0023	F83C	time	LDI	3 C	Load minute count . . .
0025	AC		PLO	RC	in RC.0.
0026	F86D	SEC	LDI	6 D	Load second count . . .
0028	BD		PHI	RD	in RD. 1.
0029	2D	DECSEC	DEC	RD	Decrement second count.
002 A	3 F 32		BN4	GETSEC	Anyone want the time?
002C	372 C		B4		
002E	F855		LDI	55	If yes, set OUT sub pointer
0030	A3		PLO	R3	R3 to 0055 and . . .
0031	D3		SEP	R3	gosub OUT.
0032	90	GETSEC	GHI	RD	Get second count.
0033	3 A29		BNZ	DECSEC	If $\neq 0$, go to DECSEC again.
0035	2 C	DECMIN	DEC	RC	Decrement minute count.
0036	8C		GLO	RC	Get minute count.
0037	3 A 26		BNZ	SEC	If $\neq 0$, go to SEC again.
0039	OA		LDN	RA	Get binary minutes.
003A	FC01		ADI	01	Increment binary minutes.
003C	5A		STR	RA	Store new binary minutes.
003D	FF3C		SMI	3 C	Have 60 minutes elapsed yet?

Address	Code	Label	Mnemonic	Operand	Comment
003F	3423		BNZ	time	If not, get another minute.
0041	F800		LDI	00	If yes, clear binary minutes
0043	5A		STR	RA	and...
0044	09		LDN	R9	increment binary hours.
0045	FC01		ADI	01	-
0047	59		STR	R9	-
0048	FF18		SMI	18	Have 24 hours elapsed yet?
004A	3A4F		BNZ	GONG	If not, output hourly gong.
004C	C4		NOP		-
004D	59		STR	R9	If yes, reset time to 00:00
004E	5A		STR	RA	-
004F	F855	GONG	LDI	55	Set OUT sub pointer R3
0051	A3		PLO	R3	to 0055 and. . .
0052	D3		SEP	R3	gosub OUT.
0053	3023		BR	TIME	Back to TIME.
0055	F800	OUT	LDI	00	Clear BCD 10's Hours.
0057	58		STR	RB	-
0058	1B		INC	RB	Clear BCD T's Hours.
0059	5B		STR	RB	-
005A	1B		INC	RB	Clear BCD 10's Minutes.
005B	$5 B$		STR	RB	-
005C	1B		INC	RB	Clear BCD 1's Minutes.
005D	5B		STR	RB	-
005E	F802		LDI	D2	Restore BCD Time Pointer RB
0060	$A B$		PLO	RB	to 0002.
0061	F876		LDi	76	Restore BCD sub pointer R4
0063	A4		PLO	R4	to 0076.
0064	09		LDN	R9	Get Binary Hours and . . .
0065	D4		SEP	R4	gosub BCD.
0066	F876		LDI	76	Restore BCD sub pointer R4
0068	A4		PLO	R4	to 0076.
0069	OA		LDN	RA	Get Binary Minutes and
006A	D4		SEP	R4	gosub BCD.
006 B	F8D2		LDI	D2	Restore BCD Time pointer RB
006D	AB		PLO	RB	1000D2.
006E	F888		LDI	88	Restore CODE sub pointer R5
0070	A5		PLO	R5	to 0088.
0071	D5		SEP	R5	Gosub CODE.
0072	F8D2		LDI	D2	Restore BCD Time pointer RB
0074	$A B$		PLO	RB	to 00D2.
0075	DO		SEP	RO	Return to TIME.
0076	A8	BCD	PLO	R8	Put Binary in scratch pad R8.0
0077	FFOA	SUB10	SMI	OA	Subtract $10{ }_{10}$ from binary.
0079	$3 \mathrm{B83}$		BNF	BCD1'S	Use Binary as BCD 1's if result
007 B	A8		PLO	R8	≤ 0. Otherwise store result . .
007C	OB		LDN	RB	and increment BCD 10's.
0070	FC01		ADI	01	-
007F	5 B		STR	RB	-
0080	88		GLO	R8	Get new Binary and try to
0081	3077		BR	SUB10	subtract 10 again.
0083	18	BCD1'S	INC	RB	Since Binary is less than
0084	88		GLO	R8	10 store it as BCD 1's
0085	5B		STR	RB	-
0086	1B		INC	RB	-
0087	03		SEP	R3	Return to OUT.
0088	F830	CODE	LDI	30	Delay between Morse digits.
008A	B8		PHI	R8	-
008B	28	DECDEL	DEC	R8	Decrement delay value.
008C	98		GHI	R8	-
008D	3 ABB		BNZ	DECDEL	Time up yet?
008F	8 B		GLO	RB	Check to see if the last

Address	Code	Label	Mnemonic	Operand	Comment
0090	FFD6		SMI	D6	Morse digit has been output.
0092	C6		LSNZ		If it has, return to OUT.
0093	D3		SEP	R3	-
0094	C4		NOP		-
0095	OB		LDN	RB	Get $B C D$ value.
0096	1B		INC	RB	-
0097	FCD6		ADI	D6	Add offset.
0099	A6		PLO	R6	Put result in R6 as Code pointer.
009A	F805		LDI	05	Put Morse character count in RE. 0.
009 C	AE		PLO	RE	-
009 D	06		LDN	R6	Get Morse pattern via R6.
009E	BE		PHI	RE	Store it temporarily in RE.1.
009F	8E	CHR	GLO	RE	Have five Morse characters
0040	3288		BZ	CODE	been output yet?
00A2	9 E		GHI	RE	If not, get code pattern
0043	2E		DEC	RE	out of temporary storage in
00A4	76		SHRC		RE. 1 and shift character bit
00A5	BE		PHI	RE	into DF.
0046	33AD		BDF	DASH	If bit $=1$ load a dash.
0048	F819	DOT	LDI	19	Otherwise load a dot.
O0AA	A8		PLO	R8	
00 AB	3BBO		BNF	EXIT	
OOAD	F86B	DASH	LDI	6 B	
00AF	A8		PLO	R8	
00 BO	F8B6	EXIT	LDI	B6	Restore DOT/DASH sub pointer R7
00B2	A7		PLO	R7	to 00B6 and...
00 B 3	D7		SEP	R7	Gosub DOT/DASH.
00B4	309F		BR	CHR	Back for another character.
0086	F835	DT/OSH	LDI	35	Load pitch value of tone.
0088	78		SEO		"ON"
$00 \mathrm{B9}$	FF01	DECPT1	SMI	01	Decrement pitch value.
00bB	3AB9		BNZ	DECPT1	If "ON" time is not up, dec again.
008 D	F835		LDI	35	If it is, load pitch value again.
00 BF	7A		REO		"OFF"
00 CO	FF01	DECPT2	SMI	01	Decrement pitch value.
$00 \mathrm{C2}$	3ACO		BNZ	DECPT2	If "OFF" time is not up, dec again.
$00 \mathrm{C4}$	28		DEC	R8	
00 C 5	88		GLO	R8	Has the character been sent yet?
$00 \mathrm{C6}$	3AB6		BNZ	DT/DSH	If not, go back for more.
$00 \mathrm{C8}$	F80A	SPACE	LDI	0A	Load value for space between
OOCA	B8		PHI	R8	characters in R8.1.
OOCB	28	DECSP	DEC	R8	Decrement space value.
OOCC	98		GHI	R8	Is the space up yet?
OOCD	3 ACB		BNZ	DECSP	If not, decrement it again.
OOCF	D5		SEP	R5	Return to CODE.
00D0	-	BINHRS			Binary Hours stored here.
00 D 1	-	BINMIN			Binary Minutes stored here.
00 D 2	-	10'sHR			BCD 10's Hours stored here.
0003	-	1 'shR			$B C D 1$'s Hours stored here.
O0D4	-	$10^{\prime} \mathrm{sMN}$			BCD 10's Minutes stored here.
00D5	-	1'sMN			BCD 1's Minutes stored here.
$00 \mathrm{D6}$	1 F	digit table			" 0 "
$00 \mathrm{D7}$	1 E				"1"
$00 \mathrm{D8}$	1 C				"'2"
00D9	18				" 3 "
00DA	10				"4"
OODB	00				" 5 "
OODC	01				"6"
000D	03				"7"
OODE	07				"8"
OODF	OF				" 9 "

The BEST is still "made in U.S.A."

American made RF Amplifiers and Watt/SWR Meters of exceptional value and performance.

RF AMPLIFIERS

2 METERS-ALL MODE B23 2 W in $=30 \mathrm{~W}$ out (useable in: $100 \mathrm{~mW}-5 \mathrm{~W}$) B108.10W in $=80 \mathrm{~W}$ out $\$ 179.95$ $(1 \mathrm{~W}=15 \mathrm{~W}, 2 \mathrm{~W}=30 \mathrm{~W})$ RX preamp B1016 10W in $=160 \mathrm{~W}$ out $\$ 279.95$ (1W $=35 \mathrm{~W}, 2 \mathrm{~W}=90 \mathrm{~W}$) RX preamp B3016 30W in $=160 \mathrm{~W}$ out $\$ 239.95$ (useable in: $15-45 \mathrm{~W}$) RX preamp $(10 \mathrm{~W} \cdot=100 \mathrm{~W})$

$220 \mathbf{M H z}$ ALL MODE

C106 10W in $=60 \mathrm{~W}$ out
$\$ 199.95$ ($1 \mathrm{~W}=15 \mathrm{~W}, 2 \mathrm{~W}=30 \mathrm{~W}$) RX preamp C1012 10W in $=120 \mathrm{~W}$ out $\$ 289.95$ $(2 \mathrm{~W}=45 \mathrm{~W}, 5 \mathrm{~W}=90 \mathrm{~W}) \mathrm{RX}$ preamp
C22 2 W in $=20 \mathrm{~W}$ out $\quad \$ 89.95$ (useable in: $200 \mathrm{~mW}-5 \mathrm{~W}$)

RC-1 AMPLIFIER REMOTE CONTROL
$\$ 24.95$
Duplicates all switches, 18' cable

WATT/SWR METERS

- peak or average reading
- direct SWR reading MP-1 (HF) 1.8 .30 MHz MP-2 (VHF) $50-200 \mathrm{MHz}$
$\$ 119.95$

430-450 MHz ALL MODE

D24 2W in $=40 \mathrm{~W}$ out $\$ 199.95$ (1W $=25 \mathrm{~W})$
D1010 10 W in $=100 \mathrm{~W}$ out
$(1 \mathrm{~W}=25 \mathrm{~W}, 2 \mathrm{~W}=50 \mathrm{~W}) \$ 319.95$

fig. 4. Flowchart of the code routine.
dot/dash (fig. 5). After the code routine fetches a dot or dash, this subroutine generates a tone of proper duration. (A dash is about three times longer than a dot.) The dot/dash routine also generates a space after each character. This space is a period of silence about as long as a dot.

operation and fine-tuning

Before running the program, set the clock by entering the time. To do this, convert the hours and minutes values to hexadecimal. Then enter the hours at location 00D0 and the minutes at location O0D1. Now execute the program from location 0000 . The program will give the time whenever the EF4 flag is activated, and automatically on the hour.

Although the program should keep accurate time, you may have to adjust its speed if your microprocessor's clock frequency is different. Do this by varying the value at location 0027. Also, you can tune the pitch of the tone by changing the values at locations

fig. 5. Flowchart of the dot/dash routine.

0087 and 00BE. You can alter the speed of the Morse characters by changing the values for dot, dash, and space at locations $00 \mathrm{~A} 9,00 \mathrm{AE}$, and 00 C 9 . Finally, if you prefer a twelve-hour format, change the value at location 0049 to 0 C .

summary

The basic feature of this program is the routine which converts BCD digits into Morse code characters, and in this case, the BCD digits represent time. However, the same routine with some modification could be used where the BCD digits represent something else, like temperature, pressure, voltage, or resistance. You would need more elaborate hardware in these cases, since they involve A/D conversion, but any measuring device could be made to talk with this method.

DUAL DRIVE TRIBANDERS

- 20, 15 and 10 meters - Wideband. Low SWR. No tuner needed
 - Exclusive phased dual drive gives higher gain • Exclusive coaxial capacitors have lower losses, higher Q - Transmitter power is radiated not lost in the traps - Full power low loss balun. Gives improved beam pattern

TET Antenna Systems presents three full size trap multiband beams to meet every amateur need. 5 element, 4 element, and 3 element models all with the exclusive TET dual phased drive. This famous drive system originated with HB9CV and was perfected by JA3MP. When you buy TET dual drive you know you have the best. It has more gain - just like adding another parasitic element. And wide bandwidth so you can use your solid-state transceiver on both phone and CW without a tuner
Only the highest quality materials are used throughout. All aluminum tubing is 6061-T6 alloy. Stainless steel fasteners are provided for all electrical connections. Tubing is cut and predrilled to precision tolerances for easy one afternoon assembly. Light weight and low wind area designs permit use of simpler support structures.
All models feature full 3 Kw PEP power handling, VSWR typical 1.5 or less across all of 20, 15 and, on 10 meters, from 28.0 to 29.2 MHz . Drive impedance is 50 ohms and maximum element length 27°. They accomodate masts from $11 / 2$ to $2^{\prime \prime}$ diameter, withstand winds to 100 mph and are furnished complete with a low loss balun that easily withstands full rated power. For gain and front-to-back ratio specifications write or call the factory.

the factory.	HB35T	HB43SP	HB33SP
Boom Length:	24'7"	$19^{\prime} 8^{\prime \prime}$	$13^{\prime} 2^{\prime \prime}$
Turn Radius:	18'10"	$16^{\prime} 9^{\prime \prime}$	15^{\prime}
Wind Area Ft^{2} :	7.9	6.6	4.7
Wind load lbs. © 80 mph :	160	132	102
Boom Dia.:	. $2^{\prime \prime}$	2"	1-5/8"
Weight, lbs.	50	38	27
Price: ,	\$349.95	\$239.95	\$199.95
	shipping	+ shipping	+ shipping

Send for free catalog describing these dual drive beams, our VHF Swiss quads, rootmount towers, elevation rotators and more.
BY MAIL: BY PHONE: 619-299.9740

2775 Kurtz St., Suite 11
San Diego, CA 92110-3171
2775 Kurtz St., Suite 11
San Diego, CA 92110-3171

∇ BUILD THIS SSB TRANSCEIVER FROM OUR MODULES

HOBBY KITS®

EXPERIMENT - LEARN ELECTRONICS; BUILD AND DESIGN YOUR OWN AM, FM, CW, OR SSB RECEIVERS, TRANSMITTERS AND ETC. WITH OUR MINI-LINEAR CIRCUIT KITS All kits Come Complete With Etched and Drilled Circuit Boards and All Parts Needed To Function As Described

AFA-1 AUDIO AMP. LM-380 1-2 Watss 4-16 OHM Output
AFP-1 AUDIO PREAMP, Dual Audio Preamp - For Mike Etc. $\$ 3.95$
BMD-1 BAL. MIX. LM 1496 Mxet - S.B. Modulatot Tuned Output $\$ 9.95$
DET-1 AM DET. Am Envelope Detector With AGC Output $\$ 3.95$
DET-2 FM DET. LM 3065 FM Detector (455 KHZ or $4 \cdot 11$ MHZ) $\quad \$ 7.95$
DET-3 SSB DET. LM 1496 SSB Delector (Noeds OSC.1 or OSC-4)..... $\$ 9.95$
IFA-1 IF AMP. CA 302830 DB Gan Optional AGC (455 KHZ or 9.11 MHZ) $\$ 6.95$
FLS-9 SSB FILTER 9 mHz/2. 1 KHz ew with USB XAL tor OsC-1 $\$ 49.95$
IFA-2 IF AMP. CA 302830 DE Gain 1-100 MHz Optional AGC $\$ 6.95$

MBA-1 FREQ. MULT. Tuned Oupul Buther-Mil-Ampiter To $250 \mathrm{MHz} \quad \$ 5.95$
OSC-1 CRYSTAL OSC. $100 \mathrm{KHZ}-20 \mathrm{MHZ}$ Not Tuned $\$ 3.95$
OSC-2 CRYSTAL OSC. ov $18-200 \mathrm{MHZ}$ Tuned Output $\$ 4.95$
OSC-3 VARIABLE FREQ OSC Varactor Tuned $455 \mathrm{kHz} \quad \$ 5.95$
OSC-4 VARIABLE FRFY OSC Varactor Tuned $4.11 \mathrm{MHz} \quad \$ 5.95$
PSV-1 POWER SUPPLY LM 723 with Pass Transistor, 3 amps max $\$ 7.95$
PLL-2 TONE DETECTOR LMS67 PLL Tone Detector \$5.95
RF/MIX-1 RF-AMP/MIXER CA 3028 - Tuned RF AMP/Mser I-100 M-2 $\$ 7.95$
RF/MIX-2 RF-AMP/MIXER 3 N204 Tured RF AMMMser 1-250 MHZ $\$ 7.95$

MANY OTHER MODULES AVAILABLE

WITH CIRCUIT DIAGRAMS AND
TYPICAL RECEIVER AND
TRANSMITTER HOOK-UPS

SPECIAL PURCHASE! Hurry, limited quantity!

YAESU FT-208R handheld FM transceiver

Tremendous savings on this full feature handheld from Yaesu. The FT-208R is simply loaded with features such as split frequency coverage ($144-146 \mathrm{MHz}$ or $144-148 \mathrm{MHz}$) for non-standard repeaters, built-in autopatch and LCD frequency display. Fully synthesized design allows frequencies to be directly punched in from the keyboard. And up to 10 of your favorite frequencies may be memorized and then scanned. Up/down scanning is also provided in $5 \mathrm{kHz} / 10$ kHz or $12.5 / 25 \mathrm{kHz}$ steps as well as scanning between two frequencies. RF power output: 2.5 watts and 300 miliwatts. Supplied with NiCad battery pack and flexible rubber antenna. Requires 10.8 V DC for external power. Don't let this one get away! Order today as supplies are limited!

KENWOOD TR-8400 UHF

 FM mobile transceiverFully synthesized operation makes operation on 440 MHz as easy as 2 meters with the TR-8400! It covers $440-450 \mathrm{MHz}$ in 25 kHz steps and features a bright, LED frequency display, twin VFO's and five memories with memory scan. A multicolored bar meter indicates receNed signal level and relative RF output. And the supplied microphone features an up/down control for manually scanning the entire band in 25 kHz steps, so you can safely change frequencies while you drive! The TR-8400 is very compact, measuring only $5.9^{\prime \prime} \times 2.1^{\prime \prime} \times 7.7^{\prime \prime}$ and comes with a quick release mounting bracket. RF power output: 10 watts and 1 watt. Requires 13.8 V DC for operation. Special purchase. Limited quantities!

List Price 499.95 Item No. KENTR8400 Add 2.14 shipping \& handling

Complete home satellite TV system only \$1595!

10 FOOT PARABOLIC

List Price \$2495

Item No. MISSY97
Shipped Freight Collect

What the system will do:

Enables you to receive up to 60 channels of satellite TV programs delivered directly to your home receiver. Movies, sporting events, news, religious programs, other TV stations and much more.

What the system includes:

1. A 10 foot parabolic antenna constructed of reflective metal bonded with fiberglass. Weather resistant and virtually maintenance-free. Comes in four sections for ease of shipment and assembly.
2. Polar mount complete with azimuth and elevation adjustments for precise satellite-to-satellite tracking. Patented linkage allows antenna to travel from horizon to horizon.
3. LNA mount with rotor and control console for remote polarity adjustment. Tubing for mount legs not included. 4. KLM Sky Eye V satellite receiver with downconverter. Downconverter mounts outdoors, near the LNA and linked to receiver by remote cable. Receiver features the latest single conversion electronics and SAW filter for superb video. Also has large signal strength meter, video invert and variable audio subcarrier tuning ($5.5-7.5 \mathrm{MHz}$). Optional RF modulator available.
4. Drake 120° low noise amplifier. Takes the weak signals gathered by the parabolic antenna and boosts them to a level usable by the downconverter. Uses GaAs FET transistors for maximum performance. Powered via coax feed line. Complete weatherproof.
5. Scalor feed horn. Delivers 0.5 dB more gain than conventional rectangular types. Virtually eliminates system noise.

Note: Interconnecting cables between components not included. Your VCR's RF modulator can be used with this system, otherwise an RF modulator will be required. Approximate cost, \$59.

Read all about Satellite TV!

9.95

Add 1.36 shipping \& handling Item No. BOOTAB1409

At last! A complete guide to satellite TV! "Build a Personal Earth Station for Worldwide Satellite TV Reception"'
A complete guide to gaining access to the large amount of TV programming available from satellite transmissions. You can choose to build your own system or purchase one ready-to-operate, and both ways are thoroughly covered in this book. It begins with a review of basic television fundamentals and satellite transmission and reception. Building your own system is covered and the complicated task of installing the antenna and aiming it to pick up the signals you want is simplified. There's even a complete list of available satellite programming.

WORK THE FULL-BAND ${ }^{\circ}$

free of narrow band antenna limitations WITHOUT ANTENNA TUNERS
(

FULL-BAND® MONOBAND DIPOLES EXTREME BANDWIDTH WITHOUT COMPROMISE

All Full-Band Antennas look alike, except for length. Pictured is the model FB-40 which, when extended, measures $66^{\prime} 3^{\prime \prime}$ from tip to tip (including end insulators).

- Patent Applied for Design SelfCompensates for Frequency Change.
- No Resistors, Capacitors or Power Robbing Networks.
- Linear Response Assures Maximum Efficiency from Microvolts to Full Legal Power-and Minimum Interference with Other Services.
- Ideal Antennas for Use with Automatic Power Shutdown Rigs. Use MC, Visa, Check or Money order,
- Tested and Approved By: Ham Radio Magazine CQ Magazine QST Magazine (ARRL)
- Install as Flat-Top, Inverted "V", Sloper, Phased Array, etc.
- Shipped Complete, Ready to Connect to Your 50Ω or 72Ω Coaxial Feedline.
- UPS or Postal Shipping Paid in Continental United States

FACTORY DIRECT PRICES

Model No.	Length	Shipping Wt.	Price
FB-160	$248^{\prime} 9^{\prime \prime}$	11 lbs.	$\$ 179.95$
FB-75/80	$126^{\prime} 7^{\prime \prime}$	6 lbs	134.95
FB-40	$66^{\prime} 3^{\prime \prime}$	5 lbs	109.95
FB-20	32^{\prime}	4 lbs	71.95
FB-15	$24^{\prime} 6^{\prime \prime}$	3 lbs	66.95
FB-10 $/ 11$	$16^{\prime} 6^{\prime \prime}$	3 lbs	61.95
FB-6	9^{\prime}	3 lbs.	57.95

Prices include shipping in continental U.S.-Canada, HI and AK add $\$ 5.00$ shipping and handling. CA residents add sales tax. Write or phone for specifications and prices for antennas for other frequency bands.

YAESU

FT-ONE

- Three selectivity positions for CW (two for FSK!) using optional filters
- 73 mHz first IF
- 0.3 uV sensitivity
- full break in
- Curtis 8044 keyer available as option
- front panel keyboard
- ten VFO's
- one year factory warranty

Madison Price - \$2300.00 with RAM, FM, 4 Filters

Electronics Supply
TOLL FREE - ORDERS ONLY 1-800-231-3057 (713) 658-0268 1508 McKinney Houston. Texas 77010 $\vee 153$

1982-1983
AMATEUR RADIO CALL DIRECTORY
the aabaan at s 14^{95}
A no frills directory of over 411,000 U.S. Radio Amateurs. $81 / 2 \times 11$, easy to read format. Completely updated.

Also available for the

first time ever-

(Alphabetically athinged Sold separately
Geographical Index
by State. City and Street No and Call Name Index
by Name and Call
Ordering Information

- Directory-\$14.95
- Geographical Index-\$25.00
- Name Index-\$25.00

Add $\$ 3.00$ Stupping to all orders
Dealers/Clubs inquiries welcome
Send your order-enclosing check or money order in U.S dollars to
Buckmaster Publishing 70-B florida i till Rond

a state-of-the-art
 Touchtone ${ }^{\circledR}$ decoder

Using Silicon Systems

Inc.'s

single-chip solution

Silicon Systems Inc.'s DTMF (dual-tone, multiple frequency) decoder IC is revolutionizing the way Amateurs use TouchTones ${ }^{\circledR}$. With this device, it's possible to build a decoder with as few as three ICs, and the resulting circuit (see photo) is small, requires little power, and is very reliable.

a brief history

It wasn't too long ago that every DTMF decoder used and built by Amateurs was made with the NE567 phase-locked loop-tone decoder. At the time, that was the only way to decode dual-tone audio into a useful digital signal; it required tedious adjustment of a potentiometer for every frequency and that adjustment would rarely remain stable when temperature varied.

About five years ago, Mostek released a product that eliminated ail the adjustments and made DTMF decoding relatively simple, but rather costly. In the Mostek system, the incoming audio signal is split into the two components of DTMF (i.e., the high-frequency group and the low-frequency group). These

fig. 1. The switched-capacitor principle allows a small capacitor to be used in place of a large resistor. This has allowed the manufacturer to put filters and decoding circuits on one silicon chip.
two components are then limited and squared before being applied to the Mostek DTMF decoder. AIthough the cost of the splitting filters is high, this remains a superior system to multiple 567 s , as the dynamic range is tremendously improved and no adjustments are necessary.

The next logical step in DTMF decoders was to put the filters, limiters, and squarers on the same chip as the decoder. This was accomplished by Silicon Systems Incorporated (SSI) with their SSI201, a singlechip solution that requires only two small bypass capacitors and a 3.58 MHz color-burst crystal.

operation of the decoder

The major problem was to incorporate rather large capacitors and resistors needed for the filters onto the silicon chip. The largest size capacitor that can be integrated onto a chip is about 100 pF , and even this size requires a large area. Large resistors are not realizable for the same reason. However, a small capacitor can be made to perform, electrically, like a large resistor.

Fig. 1 illustrates the principle of a switched capacitor to realize a large resistor. At time zero, the capacitor is connected to voltage V_{1} and the capacitor charges toward the value $Q=C V_{I}$. At some later time, t_{c}, the capacitor is switched to voltage V_{2} and the value of the charge is $Q=C V_{2}$. The equations in the figure show the mathematics used to manipulate the values; the last equation is the most interesting: $R=1 / C f_{c}$, in other words, a large resistor can be made (electrically) by just using a small capacitor and switching it between voltages at a very fast rate!

This led to the development of the switched-capacitor filtering used in the SSI201 DTMF decoder. (MOS transistors are used as the switches.)

The block diagram of the entire decoder is shown in fig. 2. As in the multiple-chip Mostek system, the audio is first split into upper and lower bands. These signals are further filtered to determine the two tones present. Next, the output-decoder circuitry converts this information to digital form, and produces BCD (binary-coded decimal), or optional 2-of-8 outputs. A 3.579545 MHz color-burst crystal is used for the frequency references as well as for the switched-capacitor filter networks.

By Mark Forbes, KC9C, 1000 Shenandoah Drive, Lafayecte, Indiana 47905

fig. 3. Schematic diagram of the author's completed decoder circuit. The CMOS signals are all 12 -volt levels, so a converter is needed if the decoder must drive TTL.

the complete circuit

To make the SSI201 easier to interface to remotecontrol and repeater circuits, I have added two IC and four LEDs in this DTMF decoder design. The schematic diagram is shown in fig. 3. Audio input is coupled to the SSI201 through a $0.1 \mu \mathrm{~F}$ disk capacitor. The BCD output of the decoder is further decoded into individual "tone-pad" digits by an MC14514B 4 -to- 16 line demultiplexer.

One useful signal available from the decoder is the DV (data valid) signal. This signal goes high when the output data is in a predefined window of time, and is useful in determining when to sample the outputs of the MC14514 (although these outputs are latched, so the last data remains on the outputs until new data is presented).
As a convenience, LEDs that show the binary value of the decoded output, are included (note: the values for *, \varnothing, and \# are 11, 10, and 12, respectively). A CMOS 4049 inverting buffer is used to drive the LEDs and remove the load from the SSI201.

All the ICs in the project are powered from 12 Vdc . A note of caution here - the SSI201 requires 12 volts and not 13.8 volts as found on many power supplies. A small IC voltage regulator will provide the proper 12 volts if you don't have such a power supply (an LM340-12 is one such regulator). If the outputs are to be interfaced to 5 -volt logic such as TTL, a

The DTMF decoder circuit.
voltage converter circuit such as that shown in fig. 4 can be employed.

Construction of the circuit is very simple, using the printed circuit artwork provided in fig. 5. All that is necessary is to solder the ICs and apply 12 volts. Sockets are recommended to keep the heat of soldering off the ICs and to facilitate replacement should any of the components fail.

applications

The applications of a DTMF decoder seem almost limitless, especially when no adjustments are neces-
sary. The most obvious application is in repeater control. This circuit is highly reliable and not subject to degradation by temperature or variation of signal levels. These features, coupled with the compact size of this circuit, make it perfect for use in repeaters.
A reliable circuit like this one also opens the door to an underexplored facet of Amateur radio: remote control. Remote control of more than just repeaters is allowed by the FCC. In fact, almost anything can be remotely controlled via Amateur radio. Types of applications include remote HF stations, models, or even your house lights.
Another good use of the DTMF decoder is in autopatch circuits. Most autopatches couple the DTMF tones directly to the telephone line from the receiver.

fig. 4. A CMOS to TTL signal-level converter.

fig. 5. Printed-circuit board artwork
table 1. Parts and Prices List.

part	description	source	price
IC 1	SSI201 DTMF decoder	SAI Marketing*	60.00
IC 2	4049 inverter	Digikey	0.47
IC 3	MC14514 (4514B)	Digikey	1.99
LED 1-4	Light Emitting Diodes	Radio Shack	4 for 1.58
C 1	0.1 uF disk capacitor	Radio Shack	2 for 0.49
C 2,3	0.01 uF disk capacitor	Radio Shack	2 for 0.39
R 1	10 Megohm resistor	Radio Shack	2 for 0.19
X 1	3.579545 MHz crystal	Radio Shack	1.99
PCB	printed circuit board	Author	8.50
		Total Cost	67.10
		Total w/PCB	75.60

Note: Complete parts kits are available from the author for $\$ 75.60$ plus $\$ 1.00$ shipping. Or, the ICs and/or PCB may be purchased individually at the listed price plus $\$ 1.00$ shipping.
*The address of SAI Marketing is: SAI Marketing. Attn. Jim Taylor, 5610 Crawfordsville Road, Indianapolis, indiana 46224.

This results in two things: the user needing to adjust his TouchTone pad to tight telephone company specifications, and frequently misdialed numbers. By decoding the signal first, then re-encoding with a DTMF generator chip, the telephone line will always have a perfect and precise tone for dialing. And, with the wide dynamic range of the SSI201, adjustment of the user's tone pad is almost never necessary. An additional problem can also be solved: in areas where DTMF dialing is not yet available, a pulse dialer chip in conjunction with the SSI201 can provide autopatch functions.

conclusion

The parts list in table 1 gives the price and availability of each of the parts at the time of writing. Additionally, I have complete parts kits available for the prices shown, so there should be no trouble in finding all the necessary parts.
The SSI201 is, in my opinion, the best DTMF decoder introduced to date. The Amateur press seems to be behind in the DTMF decoder field. In fact, one book on repeaters published in 1980 still showed 567 circuits for decoding DTMF. The switched capacitor has revolutionized the DTMF scene, and will soon find its way into other areas.

references

Jacobs, G.M., et. al., "Touch-tone decoder chip mates analog filters with digital logic," Electronics Magazine, February 15, 1979, McGraw-Hill, Inc.
Silicon Systems Incorporated, '"Monolithic Dual-Tone Multi-frequency Receiver Application Note," May 1980.
ham radio

remote control hf operation

An Apple II and Collins KWM-380 talk to each other via the telephone

fig. 1. High-frequency remote-control system block diagram.

You can have remote high-frequency radio operation from a TouchTone ${ }^{\text {TM }}$ telephone. In this article I explain this design, including the interface used to control the radio and computer; the interface plugs into the radio and computer without modification to either. A remote operator can thereby use a telephone to turn on and off primary power; use a private access code; tune the radio to any discrete frequency or scan up and down; transmit; and have optional fm radio capability. The interface has a safety shutdown feature in case the power or telephone is interrupted.

The remote system is illustrated by the block diagram in fig. 1. The center of the system is the interface control, which includes a phone patch, a dual tone multi-frequency (DTMF) decoder, audio amplifiers, and control logic. I use a Rockwell-Collins KWM-380 transceiver with the control interface option, and an Apple II Plus microcomputer with an eight-bit input/output card. A regular phone-answering unit detects the telephone ring. A ring-detection circuit could be incorporated into the interface control, but I prefer having a tape recorder tied to the system for logging. A twelve-button TouchTone ${ }^{T M}$ keypad provides local control. A primary power relay, that includes transient protection, turns on the KWM-380 and the Apple. The phone-answering unit and interface control remain on at all times. An interface device that connects between the Apple's game port and the KWM-380's frequency-control interface connector provides frequency control. An optional fm audio-decoder is also included to provide additional system control and operation from a VHF/UHF fm radio.

By Dick Sander, K5QY, 110 Starlite Drive, Plano, Texas 75074

fig. 2. Apple II to KWM-380 interface schematic. It converts a four-bit binary code to a $\mathbf{2 - 0} \mathbf{- 9} \mathbf{- 8}$ code with a strobe to load the data into the radio.

The frequency-control circuitry is in a case that contains the KWM-380's sixteen-button keypad. The case also contains a switch that selects +5 volt power from either the radio or the Apple. There are two reasons for interfacing the frequency control separately: the first is that this portion can be a separate project; and the second is that fewer parts are required to build an interface compared to an 1/O card to insert into one of the Apple's card slots. The purpose of the interface device is to convert the four binary-outputs and strobe available from the Apple's game port to an eight-bit two-of-eight code required by the KWM-380 (see fig. 2 for the schematic diagram of the frequency interface). The output of each 74259 decoder is tied directly with the sixteen-button keypad to allow frequency input to the radio while the Apple is running. The negative strobe of the Apple triggers a 74121 one-shot and clocks the data into the radio. If only frequency control from the Apple II is going to be used, lines 2000 through 2650 of the program listing form a routine for operating only frequency control for the KWM-380; delete lines 2030 through 2070 and replace them with a GET F statement from the keyboard.

The remote control interface is the heart of the system; fig. $\mathbf{3}$ is its functional block diagram and fig. 4 is its schematic. The phone-answering unit has an earplug that I use to connect the telephone audio to the interface control. After the unit hooks onto the telephone line and sends its outgoing message, it

fig. 3. High-frequency remote-control functional block diagram. Each relay function is shown as a dotted line box.

fig. 4. The interface-control schematic diagram. Note that the AGC amplifier and optional fmadio decoder schematic are shown separately.

(fig. 4 cont'd)

fig. 5. AGC amplifier schematic diagram. This circuit maintains a constant audio level to the phone patch.
allows twenty seconds for an incoming message. During this time you must access the system. The incoming audio is tied through the normally closed contacts of relay K1B directly to U5, a 741 opera-tional-amplifier. U2 is an SSI 201 DTMF CMOS receiver that decodes the incoming audio tones, and U3, a CMOS-to-TTL buffer that passes the data to the eight-bit TTL input of the Apple's I/O card. If the proper access code is present, the output of the Apple pulls in relay K1 and connects the telephone line to the phone patch. The answering unit will drop off by now.
The phone patch contains a transformer-type hybrid with a balancing network. The hybrid transformers that I used were surplus, and no part number is available; the builder must decide upon his own transformers. I'm using a 1 -kilohm pot for null adjustment. Some situations may require some series capacitance to null out the telephone line inductance; the system will not work without proper balance. The DTMF decoder requires at least a $12-\mathrm{dB}$ signal-to-noise ratio, which is why a null is important. An AGC amplifier is needed to maintain a constant level to the hybrid. If you were to measure the output of your receiver, you would find the audio level varies by as much as 20 dB . Fig. 5 is the schematic diagram of the AGC amplifier I'm using. It uses an SL1626 voice-operated gain adjusting device (VOGAD) that drives a simple 2 N 2222 transistor amplifier. The output is extremely constant and maintains proper audio level. Because the VOGAD operates at low levels, resisting dividers are used to reduce the input to the proper levels. The AGC amplifier controls only outgoing audio, which includes the hf received, the beeps, and possibly a voice synthesizer. Throughout the program, beeps from the Apple's speaker tell the
operator where he is during operation. For connecting audio to the system, I couple to the Apple using a $0.47-\mu \mathrm{F}$ capacitor wrapped between the audio high side of the speaker connector and the interface. For audio low, I connect the grounds together. In the Apple, the speaker is dc-coupled to +5 volts, so be careful when connecting to the Apple's speaker connector (refer to the Apple II reference manual). Incoming audio (tones and voice) from the phone line via the hybrid, the local TT keypad, and optional fm control go to U 5 , the audio mixer. The output of U5 goes to the DTMF decoder and to the KWM-380 transmit audio.

The control-logic portion of the interface control consists mainly of a timer, a latch, and four control relays. Timer U4, a 555 , stays on for one and one-half minutes. It is reset from the data valid (DV) output of U2. If there isn't any key activity before timeout, relays K1 (phone line) and K2 (transmit/receive) drop off. Latch U1, a 4001 quad NOR gate, enables relay K4 (primary power) and turns on the radio and Apple. A shut-off command from data-out 5 causes relay K4 to drop out when U4 times out, and the radio and the Apple will turn off. Relay K3 mutes the high-frequency-received audio when a command from data-out 4 appears. Muting is used when you wish to hear only the beep or voice synthesizer (if used). Relay K2 is the transmit key relay; it sends a ground to the KWM-380's keyline and maintains a 600 -ohm load across the input side of the hybrid during transmit. Table 1 gives a detailed description of each data line and its address (I/O card in slot 4) from BASIC.

Fig. 6 is the schematic for the primary powerrelay. It contains varistor transient suppressors and

fig. 6. Primary power-relay schematic diagram. This relay box includes additional transient protection (optional). Switch $\mathbf{S 1}$ bypasses the relay if remote switching is not desired.

an EMI filter. These aren't necessary, but I had them in my junk box, so l used them. Power is switched on when K4 supplies +12 volts to relay K1, located in the primary power-relay box. When the system is on and I'm away from home, I feel secure knowing there is some protection. Not shown is a $115-\mathrm{Vac}$ antenna change-over relay that grounds the input to the receiver when power is off; when power is on, the antenna is ungrounded. The power supply uses 7812 and 7805 voltage regulators. The entire interface control operates from +12 volts and +5 volts. Fig. 7 is the diagram of the interconnection between the interface control and the Apple's eight-bit I/O card. An optional goodie is the fm audio-decoder, whose schematic is shown in fig. 8. It allows direct access to the computer through the DTMF decoder via fm radio. This is used in case you want to operate remotely from VHF or UHF. The tone decoders are 567 s and can be adjusted to detect any dual tone; I'm using tones from my keypad. It is activated by holding the proper key for eight seconds; both the telephone and fm radio operate the system, or the fm radio can operate alone. A command from data-out 3 resets the decoder (turns the fm audio off).

fig. 7. Wiring diagram from the Apple II to the remote interface control.

system operation

For testing, replace the telephone line with a 900ohm resistor to provide balance to the hybrid. Fig. 9 is the BASIC program. The program as listed will not autoboot; after the program is typed in and saved, insert a new disk and type: INIT HELLO. Apple DOS will create an autoboot disk. If the radio and Apple are off, push the digit 6 on the local TT keypad for five seconds. This allows U1A to charge the $10-\mu \mathrm{F}$ delay capacitor to set latch U1C and U1D and enable relay K4. System power will now be on. Line 70 is the three-digit access code; this can be changed at will. I use 789 in this program.

* Enter the access code and the program menu, which give prompts to each of the functional subroutines that will appear. This portion of the program is lines 400 through 540. There are six

fig. 8. Optional fm audio-decoder schematic diagram. Any pair of tones can be selected. The tones must be held on for about eight seconds before relay K1 pulls in. This permits the system to be operated by an fm radio or telephone link.

This picture shows all the components that compose the high-frequency remote-control system. See fig. 1 for the block diagram.

This picture shows the remote control interface. This unit contains a phone patch, a DTMF decoder, level amplifiers. control logic and relays. See fig. 4 for its schematic. Note that space is available on the circuit board to fully remote the KWM-380.

This picture shows the frequency interface. It connects between the KWM-380 control interface connector and the Apple game port. See fig. 2 for its schematic.
subroutines, each of which can jump to its particular function when called. Lines 7000 through 7050 show how the Apple gets incoming data that is not from the keyboard.
For the Mute subroutine, enter 1; one beep sounds. This allows the \# key to silence the KWM-380 or * key to return the audio. The subroutine will automatically return to the menu.

For the Frequency Enter subroutine, enter 2; two beeps sound. This subroutine allows the operator to enter any frequency. A * is used for the decimal place and \#loads the KWM-380 and returns to the menu. An example for entering 14.225 MHz is 14*225\#.

For the Scan subroutine, enter 3; three beeps sound. Entering 1 makes the radio scan up. Entering 2 stops the radio from scanning. Entering 3 starts the radio scanning down. Entering * bumps the radio up 1 kHz ; 7 bumps it up 100 Hz . Entering \$bumps the radio down 1 kHz ; 9 bumps it down 100 Hz . To return back to the menu, enter 0 .

For the Control Option subroutine, enter 4; four beeps sound. The Control Option subroutine allows \# to reset the fm radio or * to shut off the primary power after you exit the program. This subroutine automatically returns to the menu.
fig. 9. BASIC program listing.

```
10 HONE : VTAB 12
20 PRINT - <<<<l REMOTE CONTROL \")\)"
30 hTAB 101 PRINT "URITTEN BY DICK SAMDER"
35 POKE 49358,1
40 FOR D = 1 TO 50I MEXT D
45 CALL - 198
50 POKE 49350,0
52 HOME
54 REM UNKEY,POXE 49357,!
5b POKE 49356, 1: POKE 49347,0
60 PRINT 'JMPUT ACCESS CODE (3 DIGITS)"
70 AX = 7:AY = 8:AZ =9
75 PRINT: PRINT "ACCESS CODE IS&'\ PRINT & PRINT
80 PRINT AX,AY,AL
90 60SUE 7000
100 IF B < AX OR B > AX THEN 80TO 90
110 60SuB 7000
120 IF B < AY OR B > AY THEN GOTO 90
130 605u8}700
140 IF B < AL DR B > AL THEN GOTO 90
150 PDKE 49358,1
160 POKE 49357,1
170 REK NUTE,POKE 49356,1
180 REM PUR ON:POKE 49347,0
400 REM MENU
410 HONE
```



```
40 PRINT I htAB 10
```

440 PRINT ' 1 , Emable receiver'
450 PRINT: htab 10
460 PRINT '2. ENTER FREQuency'
470 PRINT: htab 10
480 PRINT '3. sCAM frequency"
490 PRINT: hTAB 10
500 PRINT '4. CONTROL OPIIOMS"
510 PRINT: htas 10
520 PRINT '5. TRAMSMIT'
530 PRINT: htab 10
540 PRINT '6. EXIT"
$690 \mathrm{~A}=\mathrm{PEEK}$ (50176)
700 IF A く 128 THEN 690
710 A = A-128
720 IF $A=10$ THEN $A=0$
730 IF PEEX (50176) > 127 THEN 730
740 IF A (1 DR A) 6 THEN CALL - 198: 6070690
750 IF $A=1$ THEN 60TO 1000
760 IF A = 2 THEN 60702000
770 IF $A=3$ THEN \&OTO 3000
780 IF $A=4$ THEN 60T0 4000
790 IF $A=5$ THEN GOTO 5000
300 JF A = 6 THEW 80706000
1000 REM EMABLE RCVR
1010 CALL - 198
1020 hone: print "t emables acyr - idisables rcur -
1030 BOSUE 7000
1040 IF $\mathrm{B}=11$ THEN POKE 49356, 1 C CML -198 : 80 TO 410
1050 IF $8=12$ THEN POXE 49348,0: 8070410
1060 IF B > 12 THEN 60501000
1070 IF \& (11 THEN BOTO 1000
2000 REH IMPUT FREQUENCY
2010 COLL - 198 CAL - 199
2020 HOHE : PRINT 'ENTER FREQUENCY"
2025 SFI = - ${ }^{\circ}$
$2030 \mathrm{~F}=\mathrm{PEEK}$ (50176)
2040 JF F (128 THEN 2030
$2050 \mathrm{~F}=\mathrm{F}-128$
2060 IF $F=10$ THEN $F=0$
2070 IF PEEK (50176) > 127 THEK 2070

2090 JFF $=1$ THEN GOSUB 2280; 5Ft $=5 F 5+{ }^{1} 1$ '

2110 IF $F=3$ THEN GOSUB 2340 SF5 $=959+3$ '
2120 IF $F=4$ THEN 60SUB 23701 SFs $=55!+44$
2130 IF F = 5 THEN GOSUB 2400:SFI $=559+{ }^{2} 5$

2150 IF F $=7$ THEN GOSUB 2460: $95 \%=554+{ }^{\circ} 71$

2170 IF $\mathrm{F}=9$ THEN GOSUB 2520, SFs $=\mathrm{SFF}+\mathrm{Cq}$
2180 IF F = 11 THEN 60SUB 2590!SF: = SFi + "."
2190 IF F = 12 THEM 80 TO 2220
2200 PRINT F
2210 60T0 2030
2220 605u8 2550
2230 6050 400

2240	60702030	3200	JF $\boldsymbol{i}=1$ THEN GOTO 3225
2250	POKE 49241，01 POKE 49242，02 POKE 49245， 0 ：POXE 49247，0	3205	IF $T=2$ THEN 60TO 3180
2260	bosub 2610	3210	JF T－ 3 THEN 80T0 3285
2270	REfURM	3211	IF T $=7$ THEN 60703750
2280	POKE 49240， 01 PDKE 49242， 01 POKE 4924， 01 POKE 49246，0	3212	3F Y＝ 9 Then Goto 3750
2290	gosub 2610	3213	If $\mathrm{T}=11$ TMEN 60T0 3750
2300	REtURN	3214	IF $T=12$ THEN G0T0 3750
2310	POKE 49241，0：POKE 49242，01 POXE 49244，01 POKE 49246，0	3215	IF T： 0 THEN CALL－198： GOTO 410
2320	cosub 2610	3220	IF T ＞ 3 THEN CALL－198： 60 T0 3180
2330	月ETURN	3225	REK SCAM UP
2340	POKE 49240， 121 POKE 49243，01 POKE 49244，01 POKE 49246，0	3230	$x=$ VAL（5F0）
2350	60Sue 2610	3235	$y=x+100$
2360	RETUPN	3240	FOR $U=X$ TO Y STEP ．00030
2370	POKE 49240，O1 POXE 49242，01 POKE 49245，0：POKE 49246，0	3245	REM CHECK FDR MEM KEY
2380	60SUR 2610	3250	IF PEEX（50176）＜ 128 THEN 3260
2390	RETURN	3255	JF PEEK（50176）－ $128=2$ THEN HDME ：CALL－1981 60 T0 3140
2400	POKE 49241，01 POKE 49242，0：POKE 49245，0：POKE 49246，0	3260	viá 20：htab 10
2410	80Sue 2610	3265	PRINT UIJ $=U_{3}$ 605U8 3695
2420	RETURN	3270	SFI＝STR（U）
2430	POKE 49240，0：POKE 49243，01 POKE 49245，02 POKE 49246，0	3275	MEXT U
2440	GOSUE 2610	3280	60703140
2450	月ETURN	3285	REM SCAM DOWM
2460	POKE 49240，01 POKE 49242，01 POKE 49244，01 POXE 49247，0	3290	$\mathrm{X}=\mathrm{VAL}$（SFO）
2470	60Sub 2610	3295	$y=x-100$
2480	RETURM	3300	FOR DN＝X TO Y STEP－．00030
2490	PDKE 49241，01 POXE 49242，01 POXE 49244，01 POKE 49247，0	3305	REn CHECK FDR STOP KEY
2500	60SUB 2610	3310	IF PEEK（50176）＜ 128 THEN 6070 3320
2510	RETURM	3315	If PEEK（50176）－128－2 THEN HOHE：CALL－198： 6070 3140
2520	POKE 49240， 01 POKE 49243，01 POXE 49244，01 POKE 49247，0	3320	vtab 20：htag 10
2530	80SUE 2610	3325	PRIMT DMıJ＝DM：80SUB 3695
2540	AETURN	3330	SFt＝STRE（DN）
2550	POKE 49240，01 POKE 49243，01 POXE 49245， 01 POKE 49247，0	3335	MEXT DM
2560	gosue 2610	3340	80703140
2570	return	3345	FOR $1=1$ T0 9
2580	POKE 49240，01 POKE 49242，01 POXE 49245，01 POKE 49247，0	3350	
2590	80Sub 2610	3355	日：＝hlos（Ci，1，17：80Su8 3375
2600	RETUR	3360	IF Bs＝＇E＇THEN 3370
2610	ren strobe routime	3365	MEXT 1
2620	$\underline{~=~ P E E X ~(-16320) ~}$	3370	RETURK
2650	RETURM	3375	$k=$ VAL（BS）+1
3000	REM Scam freo	3380	IF X（ ）1 THEN 3395
3125	CALL－1988 CALL－1983 CML－ 198	3385	IF B8＝＂0＇THEN 3395
3130	Hone ；PRIMI－stamilme frequencyp ${ }^{\text {a }}$	3390	80703405
3135	PRINT ：PRINT	3395	OM K 80SU日 3440，3455，3470，3485，3500，3315，3530，3345，3560，3575
3140	HOME：VTAE 24：hTAE 20，PrINT 8F：	3400	RETURM
3145	vtal 5 l htab 10	3405	
3150	Paint PPush 1 to ImCREASE FREDUENCY＊	3410	IF Bf －＇8＇THEM 809UB 3605
3155	vtas 71 htab 10	3415	
3160	Print＇PUSH 2 to STOP SCanmime＇	3420	
3165	vtab it htab 10	3425	IF BS＝＇E＇THEN GOSUE 3650
3170	PRILT PPUSH 3 TO DECREASE FREMUENCY＇	3430	IF $\mathrm{BI}=9 . \mathrm{T}$ THEM 80SU日 3665
3175	PRIMT／PRIMT	3435	RETURM
3180	＝PEEK（30176）	3440	POKE 49241，01 POKE 49242，01 POXE 49245，01 POKE 49247，0
3185	IF 「＜ 128 THEN 3180	3445	60Su8 3680
3190	$\boldsymbol{=} \mathrm{T}-128$	3450	RETURM
3195	IF $T=10$ THEM $\boldsymbol{T}=0$	3455	POKE 49240，01 POKE 49242，01 POKE 49244，01 POKE 49246，0

SWD-I VIDED CONVERTER

FOR CABLE TV

 lized on cable TV systems to remove the KHz^{\prime} s signal from a distorted video (channel 3 in/ out) and also pass thru the normal undistorted/detected audio signal. Rocker switch selects operating mode to remove KHz^{\prime} 's nols normally. Simple to assemble-less than 30 minutes. Pre-tuned. Input/output Channel 3 Impedance 75 ofms. 117 VAC .SWD-1 Video Converter Kit

VTR ACEESSORIES

SIMPLE SIMON VIDEO STABILIZER
Simple Simon Video Stabilize Model VS-125, eliminates the vertical roll and jitter from "copy guard large screen projectors of through other VTR. Simple to use, just another VTR. Simple to use, just adjust the lock control for a stable picture. Once the control is set, the tape will play all the way through without further adjustments. Incl
12 V power supply.
\$PECIAL VS-125 Video Stabilizer, wired Aeg. 54.95 . . \$39.95

MDS-AMATEUR-ETV 32 ELEMENT YAGI ANTENNA
 - 23dB Average $\quad 1.9-2.5 \mathrm{GHz}^{-1} \quad 381 / /^{-1}$ Lon - Die Cast Waterproof Housing with $412^{-} \times 21 / h^{-}$ Arse for Electronics

- Includes P.C. Probe F. 51 Connector and Mounting Hardwars

MAE-2 32 Element YAGI Antenna
$\$ 23.95$
Kato Sons' Down Converter Kit $\begin{gathered}\text { ® } 1.9-2.56 \mathrm{~Hz} \star ~\end{gathered}$ Designed for Simple Simon by former Japanese C0 Amateur Magazine's UHF Edito/Engineet. Unit utblizes new ingenious Printed Circuit Probe for maximum gain. Circuit board fits inside MAE-2 antenna housing. Requires 1 hour assembly IC and capactors pre-soldered.
Model KSDC-KIT 1.9 - 2.56 Hz Down Corverter KAI $\$ 34.95$
Kato Sons' Regulated Varible DC Power Supply
For use with KSDC-KIT 1.9 - 2.5 GHz Down Converter. Complefely assembled with Atractive Cabinet. TV/Converter Mode Switch. Frequency Control and ED Indicator.
Model KSPS-1A Assembled Power Supply
ORDER ALL THREE ITEMS
 me-2 KSDC-KIT and KSPS-1A for Only. CO-AX CABLES ARE NOT INCIUDED ZYZZX VHF-UHF Wideband Antenna Amplifier

Revolutionary New HYBRID IC Broadhand Amplifiers $50 \mathrm{MHz}-900 \mathrm{MHz} \quad$ Model All-1 12 dB Gain

 apaction to thew or alpat

Our New STVA 14.5dB GAIN, 14 ELEMENT CORNER REFLECTOR YAGI ANTENNA

Switch to Bambi!!

Electronically

Bambi Electronic Video Switch makes switching of your VCR/VTR.
Pay TV Decoders, Cable TV, Video Discs, Video Games, Closed Circuit TV, Antennae and Microcomputer as easy as pushing buttons.
The Bambi Electronic Video Switch is an electronic riwitch ing network which can accept up to six different sources of video signals and provide the flexibility of directing the inputs to any or all of the three outputs.

Now you can eliminate... the drudgery of disconnecting and reconnecting your video equipment each time you use it the tangled mess of cables which are impossible to trace out ...not being able to use more than one function at a time.

Bambi lets you enjoy using your video equipment the way it should be ... electronically and on line at the push of a button.

Model BEVS-1 Completely Wired and Assembled. Includes comprehensive Instruction/Operation Manual and Decal Set for
customizing your Video Switch installation.
'129 ${ }^{\text {s }}$

Bambi's front panel was designed with the user in mind. Computer styled construction, with soff-touch keyboard (rated for over 10 million operations), arranged in matrix form allows easy input/output selection without refering to charts. Functions selected through the keyboard are immediately displayed on the 18 LED status indicators.

Check the quality of Bambi against that of much higher priced competition. All solid state electronic switching provides low attenuation (3dB), wide frequency response (40890 MHz), and excellent isolation between signal sources (each I/O section individually sheilded for 65 dB min isolation)

	75 ohm
signal Loss	$3 \mathrm{~dB} \pm 1 \mathrm{~dB}$
Noise	$4 \mathrm{~dB} \pm 1 \mathrm{~dB}$
input Return Loss	1208 min .
solation	6508 min
Power Req.	117 VaC 60 Hz .2 W
Dimensions	$10 \% \mathrm{~W} \times 6 \mathrm{ND} \times 316 \mathrm{H}$
Weight	4)/ lis

$7+11$ PWD PARTS KITS INTRODUCING OUR

$7+11$ PWD

PARTS KITS

 IVT1.PWD Varactor UHF Tuner
$\begin{array}{lll}2 & \text { 2CB1-PWD } & \text { Printed Circuit Boart, Pre-driled } \\ 3 & \text { 3TP11-PWO } & \text { PCB Potnetiometers 4-20K, 1-5K, 2-10K, 2-5K, }\end{array}$
1-1K, and 1-50K. (11 pieces)
Resiator Ka, 14W, 5\% 29-pcs, 1/ W 2-pcs Power Transformer, PRI-117VAC, SEC-24VAC at 500 ms
Panel Mount Potantionstars and Knobs, 1-1KBT
Panel Mount Potentiocieters and Knobs, 1-IKBT
and 1-5KAT with switch 7 7SS17-PWO IC's 7-pcs, Diodes 4-pcs, Regulators 2-pcs Transistons 2-pct. Heat Sinks 2-pcs Electrolytic Capacitar Kit, 14-pieces. 9. 9CC20-PWD Ceramic Diak Capacitot Kit 50 WV, 20-pCI 10 10CT5-PWO Varible Ceramic Trimme Capacitor, 5-65ptd, 5-pieces Coil Kic, 18mhs 3-pcs. 22μ ha 1 -piece (prewound inductors) and 2 137-12 Ferrite Torod cores with 6 t. ${ }^{\text {I }} 26$ wire.
IC Sochats, Tin inley. 8 pin 4 -pC1, 14 pin 1-px and 16 pin 2-pca.
Enclosure with PM Speaker and Pro-driled Backpanel for mounting PCB and Ant. Terms Misc. Parts Kit. Includes Hardware, (6/32. 8/32 Nuts \& Bolts), Hookvp Wins, Solder, Ant. Terms DPOT Aut. Switch. Fuse. Fureholder, ste. 8.95 Mrlar Capaciton, 14 -pct and Siver Mica Capaciton 2-piects
7.95
159.95

When Ordering All Items, (1-15), Tetal Price.
GTPT 1 ETME BUY WITH CONFIDENCE . . BEWARE OF LOW QUALITYIMITATORS. All of
 Operation, not factory seconds or stock close-outs. We service your comple
never get stuck with a BAG OF PARTS when ordering from Simple Simon.

SIMPLE SIMON ELECTRONIC KITS, ${ }^{\text {w }}$ Inc. 3871 S. Valley View, Suite 12, Dept. H. Las Vegas, NV 89103

Available by Mail Order Only
Send Check* or Money Order. Minimum Order: $\$ 16.95$. Add 10\% Shipping and Handling on orders under $\$ 40,00$. For orders over $\$ 40.00$, add 5%. Minimum Shipping and Handling \$2.00. Cat. \$1.00 Check orders will be heid 30 days before shipping

3465 RETURM
3470 POKE 49241，0：POKE 49242，01 POKE 49244，0：POKE 49246，0
3475 60SUB 3680
3480 RETURM
3495 POKE 49240,01 POXE 49243,01 POKE 49244,01 POKE 49246,0
3490 60SU日 3680
3495 RETURN
3500 POKE 49240,0z POKE 49242;01 POKE 49245,02 POKE 49246,0
3505 809U8 3680
3510 RETURN
3515 POKE 49241,01 POKE 49242,01 POKE 49245,01 PDKE 49246,0
3520 60548 3680
3525 RETURN
3530 POKE 49240,01 POKE 49243,0: POXE 49245,01 POKE 49246,0
3535 E0Su日 3680
3540 RETURN
3545 POKE 49240,01 POKE 49242,0: POKE 49244,0: POKE 49247,0
3550 GOSUB 3680
3555 RETURN
3565 605u8 3680
3570 RETUR
3575 POKE 49240,0: PQXE 49243,01 POKE 49244,0; POKE 49247,0
3580 s0Sus 3680
3585 RETURM
3590 POKE 49241,01 POXE 49243, O1 POXE 49244,01 POXE 49246,0
3595 60SU日 3680
3600 RETURM
3605 POKE 49241,01 POKE 49243,01 POKE 49245,01 POKE 49246,0
3610 G05us 3680
3615 RETURN
3620 POKE 49241, OI POKE 49243,01 POKE 49244,01 POKE 49247,0
3625 gosub 3680
3630 RETURM
3635 POKE 49241,01 POKE 49243,01 POKE 49245,01 POKE 49247,0
3640 BOSUB 3680
3645 RETURN
3650 PQKE 49240,0: POKE 49243,01 POKE 49245,0: POXE 49247,0
3655 60SU8 3680
3660 REPURN
3665 POXE 49240,01 POKE 49242,01 POKE 49245,01 PoXE 49247,0
3670 G0SU8 3680
3675 RETURM
3680 REN STRORE ROUTINE
22 = MEX (- 16320)
3695 C : STRT (N) + ${ }^{\circ} 000000000^{\circ}$
3700 IF J (1 THEN $X=6880703715$
3705 IF $~<~ 10$ THEN $X=7$: 80703715
$3710 \times=8$
3715 Ct = LEFT: (CS, X) + "§"
3720 6OSUB 3345
3725 RETURM
3750 REM BUMP FREO UP OR DOWM
3755 ST : VAL (EF\%)

3760 IF T ：II THEN OL＝．001
3765 IF T＝ 12 THEN $D=-.001$
3770 IF T $=7$ THEN DL $=.0001$
3780 J＝ST＋OL
3785 5Fs＝STRS（ S ）
3790 GDSUB 3695
579560703140
4000 REM CONTROL OPTIONS
010 CALL－1988 CALL－ 1981 CALL－1981 CALL－ 198

4025 PRINT＂CONTROL OPTIONS\＆＂：PRINT ：PRINT
4027 PRIMT－ENTER I TO MUTE FH RADIO＂
4028 PRINT－ENTER TO SHUT OFF POWER＇
4030 EOSUB 7000
4105 IF $\mathrm{B}=11$ THEN 60104110
1.07 IF D 12 THEN 109110

4110 POKE 49349，0
1120 FOR D $=1$ TO IOI MEXT D
4130 POKE 49357，1
4135 CALL－198： 6050400
1140 POXE 49355，1
4170 CALL－198：6070 400
5000 REH ENABLE XHTR
3010 CALL－198：CALL－ 1981 CALL－ 1981 CALL－ 1981 CALL－ 19
5020 HONE ：PRINT＂I XEYS XMTR－UWKEYS XMTR＂
5030 60SUB 7000
3040 IF ：＜ 11 THEN POKE 49351，01 CAL－198： 6070410
5050 IF $\mathrm{B}=11$ THEN GOSUB 5090
5060 IF $B=12$ THEN GOSUB 5120
5070 IF B＞ 12 THEN $80 T 0410$
5080 IF $=11$ THEN 5020
5085 IF $=12$ THEN 5020
HOME
5100 POKE 49359，1
lo herurn
Hone
30 POKE 49351，0
140－RETURN

6010 REM DISCOMNECT RCVR \＆PHOME
6020 PDKE 49350，0
6030 RER UNKEY XHTR
6040 POKE 49351，0
6050 REM 10 MH2 WUN
6060 GOSUB 2280
6070 EOSU8 2250
6080 GOSUB 2580
6090 B05UB 2550
6100607075
70008 ＝PEEK（50176）
7010 IF B 〈 129 THEN 7000
7020 E＝B－128

7040 IF PEEK（50176）） 127 THEN 7040
7050 RETURN

DEMO

SAVE $\$ \$ \$-Q U A N T I T I E S ~ L I M I T E D!~$

SONY

ICF 6800W 31-BAND PORTABLE WORLD RECEIVER
"The Best Under \$1,000.00...WRTV Handbook

SUPER DEMO PRICE! ${ }^{\text {s }} 469^{95}$ List ${ }^{\mathbf{s} 699.95-R e g u l a r l y ~}{ }^{\mathbf{s} 549.95}$

"DEMO" SPECIAL!

SAVE S80.00 MORE!
We have a limited number of factory demo ICF-6800W's. that are being offered at a saving of $\$ 80.00$ over the price of new models. These units were used by SONY sales people at Trade Shows, and are still in mint condition. The full 1 year SONY warrantee is also in force. This is a super deal, and is not available from any other dealer in the U.S.A.

ORDER NOW! LIMITED QUANTITY

SUB-AUDIBLE TONE HEADQUARTERS ENCODERS pins 1200 $\$ 29^{95}$ iscm icaniviusa om
pecialish 5532 and 5532 M incoders tor most any mohile of ing the very populat icom Handheids
AMECO
PREAMPS
Model PLF-2 352 35
ader PLF-2E (240V) is7 9s
Model PT 2E $(240 \mathrm{~V})$ s54.95

Put Your Computer "On-The-Air"
The Interface ${ }^{\text {TM }}$
Lut ${ }^{\text {s }} 169^{95}$
${ }^{5} 189.95$
Plus $\mathbf{5 3 . 0 0}$ Shipping

Your personal computer becomes a complete CWIRTTY/ASCI send and receive terminal with The Interface linking it to your transceiver.
If you own an Apple II or Apple II Plus, Atari 400 or 800 . TRS-80 Color Computer, or VIC-20, The interface will put your computer "On-
Software for each system features split screen display, buffered keyboard, status display, and message ports. Attach any Centronics compatible printer for hard copy. Software is available, on diskette for the Apple and program boards for the others, at additional cost

Apple	Atari	VIC-20
diskette	board	board

$\frac{\text { diskette }}{\$ 29.95}$	$\frac{\text { board }}{\$ 49.95}$	$\frac{\text { board }}{\$ 49.95}$	$\frac{\text { board }}{\$ 59.95}$

- Up to $1 / 2$ mile FM Transmifting - "Hands free vOX operation

Valuabie aid fot Amateut use in antenna in stalation, funingpruning, fieid day, etc Ousiness. sports and recteation Uses volt battery inot supplied

sfancat sc-100 mand.rele Paporam wasie scanme

1.ng Reg

S349an

SALE
s29995
pive 136

- 8 Band, 16 Channe Auto Scan * Channel Lockout - "Now Take I Nith You Anywhere
- VOCOM FAVORITES 5/8 WAVE TELESCOPING ANTENNA ${ }^{\$ 1} 9^{95}$ Pus 2000 Cont' US

ICR-4800
SONY 6-BAND POCKET WORLD RECEIVER
 SW band spreac oul easy luning - Tuning incocato

Ovick, essy mounting Tunes 26.10 , plue SW BC bands in some ranges 360 watts $5 s \mathrm{~S}^{2} \mathrm{CW} 2 \mathbf{n}^{\circ}$. whip en.
 ALEXANDER BP 4-W 500 MAH NICAD

TO ORDER:

CALL OR WRITE. MASTER CARD, VISA, MONEY ORDERS, PERSONAL CHECKS TAKE 3 WEEKS TO CLEAR, ACCEPTED. INTERNATIONAL ORDERS WELCOME, PLEASE REQUEST PRO FORMA INVOICE ILLINOIS RESIDENTS ADD 6\% SALES TAX, HOURS: MON THRU WED 9:30-6:00. THURS.FRI 9:30-8:00, SAT 9:30-3:00
STOP BY AND VISIT WHEN IN THE CHICAGOLAND AREA!!
Q Spectiondics,

Two great ways to get Q5 copy Ask:

G4HUW K8MKH KA5DXY W4YPL

444D SSB/FM

Base-Station Microphone
Shure's most widely used basestation microphone is a ham favorite because it really helps you get through ... with switchselectable dual impedance low and high for compatibility with any rig! VOX/NORMAL switch and continuous-on capability make the 444D easy to use even under tough conditions. If you're after more Q5's, you should check it out.

THE SOUND OF THE PROFESSIONALS ${ }^{*}$...WORLDWIDE Shure Brothers inc., 222 Hartrey Ave.. Evanston, IL 60204

This picture shows the primary power relay. Note the transient protection varistors and rfi filter. Relay K4, located inside the remote interface, controls power relay K1. See fig. 6 for its schematic.

For the Transmit subroutine, enter 5 ; five beeps sound. Entering * keys the transmitter; \# unkeys the transmitter. Any digit will return to the menu.

For the Exit subroutine, enter 6; the interface control will disconnect the telephone line, tune the radio to WWV, and wait for another call; and turn off power if the control option sets power to off.
There are several smaller projects within this project. I have just touched on each, but I feel there is enough information here to reconstruct my system. The program listing does not contain any voice synthesizer coding; my system does, and it also contains the proper card. I use the voice talker to echo back the frequency after l've entered it, or when I stop scanning.

The system described in this article works reliably without a voice synthesizer. The KWM-380's remote interface allows frequency control only; so for now, I only operate $10 / 15 / 20$ meters USB with the antenna connected to my tri-band beam. Fortunately, the engineers at Collins left the door open for full remotecontrol.

I'd like to mention what the future holds for this system. I will add mode selection for the KWM-380, to switch USB, LSB, or CW, along with the proper filter and passband tuning. Also, as an addition to this system or as a stand-alone project for the Apple, I will have an interface to my rotator for beam-heading control.

I really enjoy operating during my breaks at work; so far I've worked about twenty countries remotely. I've found one DX-pedition by using the scan mode.

I would also like to thank Tom McDermott, N5EG, for his technical assistance in this project.

RCA is a Leader in Communications Command and Control Systems

RCA Engineers Explore the Leading Edge of Technologỳ in:

- Frequency agile HF antenna couplers
- Very fast VLSI trequency synthesizers
- HF-VHF-UHF spread spectrum Communications radio design

If you share our commitment to HF long range communications and want to contribute to circuit and system designs of the future, contact:

Dr. U. L. Rohde (DJ2LR)

RCA Corporation.
Government Communications Systems
Mail Stop 13-4
Camden, NJ 08102
-

[HI

for your peace of mind.
Determine the total wind-load area of your antenna(s), plus any antenna additions or upgrading you expect to do. Now, select the matching rotator model from the capacity chart below. If in doubt, choose the model with the next higher capacity. You'll not only buy a rotator, you'll buy peace of mind.

	ANTENNA WIND-LOAD CAPACITY	
ROTATOR MODEL	$\begin{gathered} \text { MOUNTED } \\ \text { INSIDE } \\ \text { TOWER } \end{gathered}$	WITH STANDARD LOWER MAST ADAPTER
$\begin{aligned} & \text { AR22XL } \\ & \text { or AR40 } \end{aligned}$	$\begin{array}{r} 3.0 \mathrm{sq} . \mathrm{ft} . \\ (.28 \mathrm{sq} \cdot \mathrm{~m}) \end{array}$	$\begin{array}{r} 1.5 \mathrm{sq} . \mathrm{ft} \\ (.14 \mathrm{sq} . \mathrm{mi}) \\ \hline \end{array}$
CD45 II	$\begin{array}{r} 8.5 \mathrm{sq} . \mathrm{ft} \\ (.79 \mathrm{sq} . \mathrm{m}) \end{array}$	$\begin{gathered} 5.0 \mathrm{sq} . \mathrm{ft} \\ (.46 \mathrm{sq} . \mathrm{m}) \end{gathered}$
HAM IV	$\begin{aligned} & 15.0 \text { sq. } \mathrm{ft} \text {. } \\ & (1.4 \mathrm{sq} . \mathrm{m}) \end{aligned}$	N/A
$T^{2} \mathrm{X}$	$\begin{aligned} & 20.0 \mathrm{sq} . \mathrm{ft} \\ & 11.9 \mathrm{sq} . \mathrm{mi} \end{aligned}$	N/A
HDR300	$\begin{aligned} & 25.0 \mathrm{sq} . \mathrm{ft} . \\ & (2.3 \mathrm{sq} \cdot \mathrm{~m}) \end{aligned}$	N/A

For HF antennas with booms over $26^{\prime}(8 \mathrm{~m})$ use HDR300 or our industrial R3501.

Full details at better Amateur dealers or write:

TELEX COMMUNICATIONS. INC

technical forum

Welcome to the ham radio Technical Forum. The purpose of this feature is to help you, the reader, find answers to your questions, and to give you a chance to answer the questions of your fellow Radio Amateurs. Do you have a question? Send it in!

diesel generator repair

Our organization has a govern-ment-surplus $10-\mathrm{kW}$ diesel generator in need of repair. The battery recharging circuitry has been completely destroyed. The unit bears the following markings and information.
Unit markings:
Fermont Engine Generator plant
Division Dynamics Corp. of America
Bridgeport, Conn.
Model \# J-141-1 Contract \# J-141
Serial \# J-141-0018
$10 \mathrm{~kW} \quad 12.5 \mathrm{KVA}$
PF 80 120/208V 35 A
60 cy . 3 phase 1800 RPM
Temp. rise 70°
Generator markings:
General Electric \# LC7470B16 Type 6J
Model \# 5SJ4254P22Y12
Figure 2 generator
Dia/cen. 2261 Frame 254Y
Damaged unit markings:
Fermont \# 6064-0001
Please contact us if you have a unit like this. We are in great need of any schematics, manuals, or other information on this unit, and will gladly make arrangements to obtain copies of this information.

The Division of Disaster and Emergency Service is a volunteer search-and-rescue group. We would greatly appreciate any assistance that can be supplied by the readers of ham radio.

Wayne Richardson
Lebanon Junction Area Coord. Bullitt Co. Div. Disaster \&

Emergency Services
Main Street
Lebanon Junction, KY 40150

another 10-meter beacon

I am writing to inform you that I have designed and built a beacon controller and transmitter and that it is currently in (what I hope will be) permanent operation on 28.208 MHz . The beacon runs twenty-four hours a
day, seven days a week, with an input power of 75 watts CW. QSL information is transmitted along with the beacon transmission.
I hope that ham radio readers will find this a propagation aid; and the presence of this signal should indicate when the band is open into New England. The antenna is a ground plane at a height of 20 feet (6.1 meters) with 16 one-wavelength long radials.
(I am presently looking for donations of old Novice transmitters which might make a suitable replacement for my current transmitter, should the need arise. Keeping a transmitter on the air continuously can be quite taxing to transmitters designed for Amateur use. I would particularly like to find a Drake 2NT or a DX-60A.)

Leonard J. Umina, WA1IOB 607 Sudbury Street Marlboro, MA 01752

I am considering transistorizing my old Drake TR-3 transceiver. I do not wish to build or buy the plug-in units that operate from the 250 -volt supply in the TR-3. I propose to rectify and filter the 12.6 -valt ac originally used for the heaters.

The TR-3's i-f stages use 12BA6 tubes, with plate resistance of 1 megohm and transconductance of 4400 micromhos. I haven't found any single transistor which will match these characteristics, along with high input impedance. Of course I would like to use a single transistor, but I am willing to use two per stage if necessary. Can you help? - Farrell A. Buckley, AK7N

One solution to your question is to use the Solid State Tubes sold by Sartori Associates, P.O. Box 2085, Richardson, Texas 75080. They offer a replacement for the 12BA6. Other solutions are no doubt possible. Perhaps one of our readers can offer a suggestion?
ham radio

More kit quality

A triumph of price and performance Heath's new HW-5400 Synthesized HF SSB Transceiver kit makes high technology affordable. With more versatile, far-reaching capabilities, it puts the original skill and adventure back into Amateur Radio...

HW-5400 Transceiver
control when used with the Split Memory function. The matching HWA-5400-1 Power Supply/ Speaker \& Digital Clock (not shown) provides a double-
fused source of 13.8 VDC from 120 or 240 VAC.

Heath breaks the price barrier on sophisticated transceivers, offering the highest value for your hamshack dollar. The slim, new HW-5400 is a marvel of kit-form engineering that performs like a dream on 80-10 meters.

MORE ADVANCED IDEAS

Solid state and broadbanded, the HW-5400 incorporates more per-formance-improving features at a lower price than any comparable transceiver. It's fully synthesized for crystal stability and accuracy. Operating in USB, LSB and CW with automatic sideband selection, it has full break-in (QSK) for proficient keyers, two memories per band, power supply activation at the Transceiver, defeatable amplifier relay, reverse and over voltage protection as well as high VSWR forward power cut-back circuitry for the finals.

A custom microprocessor yields flexible, fingertip control over all phases of T/R operation.

MORE CONVENIENCE

This perfection-packed kit has many benefits. A unique dualspeed tuning system can extract new QSOs or fly through a band in 1 kHz increments with 50 Hz resolution! Split-Memory Access lets you review and change the transmit frequency while in receive, without missing a single word or fragment of code. With it, you can beat the QRM every time. Essential vox and sidetone controls are located behind the front panel nameplate. Seven mode and function symbols confirm transceiver status at a glance.
The HW-5400's Frequency Entry Keypad option allows directlysynthesized QSY to any point in the band, and permits fast DX

MORE ENJOYMENT

Novice or active pro, the HW-5400 is perfect for operators who want a Transceiver that's second to none, plus the pride, knowledge and satisfaction that come from building it yourself with our world famous step-by-step manuals. You may find it to be the first microprocessor-controlled rig with enough potential to match the level of professionalism in every radio amateur!

MORE DETAILS IN CATALOG

FREE! For complete details and specs, get a copy of
 the latest Heathkit catalog. Remove and mail the coupon today or write: Heath Company, Dept. 122-994. Benton Harbor, MI 49022 Visit your local Heathkit Electronic Center* for an exciting hands-on tryout.

There's more for the Ham at Heath

Also see our state-of-the-art SS-9000 Deluxe HF Synthesized Transceiver (pictured below), which can be controlled by a computer or ASCII terminal.

MAIL THIS CARD TODAY for your FREE Heathkit ${ }^{*}$ Catalogs

The new full-color Computer Catalog describes our complete line-including the new, 16 -bit/8-bit Z-100 computer! The latest Heathkit Catalog has over 400 easy-to-build kit products for home, car and hobby uses.

 122-019

HEATHKIT CATALOG Over 400 electronic kits

Name
Address

quality says it all...

oldover Towers

ROHN "fold-over" Towers offer unbeatable value. These towers let you work completely on the ground for antenna and rotator installation and servicing eliminating the need of climbing the tower. Send $\$ 2.00$ for complete calafog.

UNR-Rohn

Division of UNR, Inc.
P.O. Box 2000

6718 West Plank Road eoria, Illinois 61656

TERM/NAL

RADIO MODEM

- apple trs-80 ル ATARI

SEND \& RECEIVE CW \& RTTY

```
TERMINALL is a hardware and sotwware
ystem which converts your Personal Com
putar into a state of the art communications
terminal.
TerminatL is basy to use. Plug into yout
recever hoadphone jack and copy Morse
code or radrotobetype Plug into your CW
key ack and send Morse code Attach a
MMcrophone comnector and send Baudot or
Thar's all there s to hooking it up
- Fantastic Morse reception. No adustrre
av necessary to receve Morse code irs
fully automaticl Six stage active fliter
dymodulator and auto adaptve Morse
agonthm copies the weak and sloppy ones
Separate RTTY and CW dennoduators
M,
238 IN and OUT, hand kev irout and scde
tone output
* Built in paralei printer drver software aloms
hardcopy in all modes consere
```

Muitupte use detired Wru functions You quence, what to transmat hack and whethe to sove, on tape or disk
Word wrapping word mode editing, didje. agore camage returns, user programmable ind of line sequence, adjustabie carriape width, transmit delay flued, none or avito adaptivel, excelient docurrentation, bresk TERMINAL has capabil
dedicated terrinal systems. And snce in works on a general purpose computer, the majority of yout investrment fyout com putel)/s sprevd out over many diflerent ap pications You get more for yout money. diskete, assembied and tested hardware and extenswe instruction manual Call or white tor spectications on TEPMINALL to TRS 80 Model I or Model ill. Apple ATAR1 $400 / 800$ COMPUTERS 3499 . 15 day moner back thal penod One vear
parts and iabor imnted warranty on factory parts and labor ilmited warranty on factory
divect orders

To Order (209) 667-2888

Booth \#71
\$399

Have you tried it yet?

 ATV TRANSMITTER/CONVERTER
*10 Watts Output
*Standard Frequencies Available
-Broadcast Standard Sound

- High-resolution \& color video
- Regulated AC Supply Built In
*Tuneable Downconverter \& Preamp
Connect to the antenna terminals of any TV set, add a good 450 MHz antenna, a camera and there you are. . . Show the shack, home movies, computer games, video tapes, etc.

ATV DOWNCONVERTER

For those who want to see the ATV action before they commit to a complete station, the TVC-4 is for you. Great for public ser vice setups, demos, and getting a buddy interested. Just add an antenna and a TV set tuned to CH. 2.3. or 4 and plug in to 117 volts a.c. $\$ 89.00$

TVC-4
TVC-4L extra low-noise version HOMEBREWERS: ASK FOR OUR BASIC FOUR-MODULE PACKAGE
CALL OR WRITE FOR OUR COMPLETE LIST OF SPECIFICATIONS, station setup diagrams, and optional accessories which include antennas, modulators, detectors, test generators, cameras, etc. WE ARE A FULL. LINE SUPPLIER OF ALL YOUR ATV NEEDS.
TERMS: VISA or MASTER CARD by telephone or mail, or check or money order by
mail. All prices are delivered in USA. Allow three weeks after order for delivery

ค ㄷNTR (213) 447-4565
 P.C. ELECIRONICS 2522 Paxson Lane,
 Tom W6ORG Maryann WB6YSS
 Arcadia, California 91006

ham radio TECHNIOUES $\beta^{3 / 2}$

More and more Amateurs are faced with the problem of getting on the air from a location where a fullsize antenna cannot be erected. What's the answer? Stay on 2 meters and work the local repeater? If only the high-frequency antenna could be magically reduced in size!

Mini-antennas have been used on the high-frequency bands for a long time, the most compact type being the loaded whips for mobile service. While these ultra-short antennas do work, their efficiency is very low lof the order of one or two percent) and their bandwidth is very restricted. As the antenna shrinks in size, compared to the length of the radio wave, efficiency drops and bandwidth decreases. However, it is possible to strike a compromise and achieve good efficiency in an antenna that is smaller than the classic half-wave dipole.

the loaded antenna

Serious investigation of the coilloaded short antenna started about 1933 when the General Electric Company developed experimental radios for the new mobile police communications system working on the "ultra-
high" frequency of about 35 MHz . A summary of the results appeared in the September, 1934, issue of OST. The investigation was continued in

fig. 1. Loaded dipole program for the TRS-80.

1940 by the National Park Service. The N.P.S. wanted $2-4 \mathrm{MHz}$ mobile operation for the mountainous regions of the National parks, many of which exhibit VHF blind spots. ${ }^{2}$

The conclusions of both these investigations point up that a very short, loaded antenna could be made to work well provided it was properly designed. One of the main requirements of proper design was that a high- Q loading coil be used, and that it be placed near the center of the antenna section.

It was there that the matter rested until Jerry Hall, K1PLP, published a classic article in the September, 1974, issue of QST, giving a procedure for determining the inductance of a loading coil no matter where it was placed in an antenna. ${ }^{3}$ Jerry's example used a dipole instead of a mobile whip. This interesting mathematical exercise was converted into a computer program by Dick Sander, K5QY, and published in the December, 1981, issue of CQ. ${ }^{4}$ The short, loaded antenna had finally arrived.

loaded dipole program for the TRS-80

Dick's program was designed to be
used with an Apple II computer, but my good friend Dick Rasor, W6EDE, easily converted it for use with the TRS-80 (fig. 1). A little work with the program showed up some interesting aspects of the loaded dipole which previously had been obscured by the difficulty of the mathematics. These difficulties were now reduced to punching a few computer keys!

An illustration of the loaded dipole is given in fig. 2. For simplicity, the loading coils are located midway down the arms of the dipole: early ex-

periments indicated this was the best place to put a loading coil if the assembly was to avoid becoming mechanically too complex.

A computer run of the antenna design shows why coil placement is critical. Fig. 3 plots coil placement against coil inductance. One limit on where the coil can be placed is seen at point 1 , the feedpoint of the antenna. A feedpoint-loaded dipole places the coil at the point of maximum current, where the stored magnetic energy is high. A minimum value of inductance is required to establish resonance there, but - unfortunately the portion of the antenna that does the most radiating is the portion with the maximum current. Winding it up into a coil reduces the radiation resistance, reduces bandwidth drastically, and leads to high antenna losses, principally because the coil will have relatively high loss no matter how well it is built.

Farther out along the antenna, the stored magnetic energy decreases and the inductance required in any

fig. 3. Inductance increases as the coil moves outward from the center of the loaded element. The increase in inductance is linear until coil reaches the center point of the element, and then it increases rapidly approaching the tip. If the coil is placed at the tip, inductance would theoretically have to be infinite. Coil loss increases with inductance, and point 2 on curve represents a practical compromise. Point 1 is for base loading.
coil placed there increases. At the same time, more of the high-current center section of the antenna is permitted to radiate. Antenna efficiency rises and the radiation resistance increases. Good!

But observe what happens when the coil passes the center point of the dipole leg (point 2). Now instead of increasing somewhat linearly with distance, the coil inductance increases rapidly. When the coil is placed near the end of the antenna (0.3) the required inductance value is more than seven times the value required for center (base) loading, and more than three times the value required when the coil is placed near the midpoint of the element.

It is tempting to place the loading coil near the tip of the antenna element; then, the whole element section has a high value of current in it, and this is thought best for antenna efficiency. But imagine a $925-\mu \mathrm{H}$ inductor at 3.5 MHz . It would be four inches in diameter and have nearly two-hundred turns on it. The length would be over a foot, depending upon wire size. Placing such a coil at a high potential point in an antenna would result in fireworks: corona and brush discharge would occur with but a few watts of power applied. (And the coil would probably burn up after dust and dirt collected on it. In fact, all that would be required to do the job would be fog or rain.)

Fig. 4 shows the inductance of coils needed to make a half-size dipole for the various high-frequency bands. Although the antenna is not thereby reduced to its theoretically smallest size, this will show how an antenna can be cut fifty percent in size and still do a good job.

The computer printout that derived fig. 4 was based on an antenna using No. 16 wire for the coils and flattop. If a larger size wire is used, the tip sections of the antenna should be shortened a few inches (this is not critical).

With this data, a short dipole for 3.8 MHz works out to be about 61 feet 6 inches (18.94 m) long. The
loading coils are each $40.1 \mu \mathrm{H}$, and they are placed 15 feet $41 / 2$ inches $(4.69 \mathrm{~m})$ from the center of the insulator.

How do you wind a $40.1-\mu \mathrm{H}$ coil? There's a computer program for that, no doubt, but I don't have one at hand. However, the simple formula shown in fig. 5 will do the job.

feeding the loaded dipole antenna

With a portion of the antenna wound up into a loading coil (L_{1}), the radiation resistance of the antenna drops drastically. For this design, the feedpoint resistance (composed of the radiation resistance plus the loss resistance of the coils) is about 22 ohms. This figure varies with height of the antenna above ground. Taking this value as par, the inductor-match system (hairpin match) developed by Gootch, Gardner, and Roberts will do the job. ${ }^{5}$ For this antenna design, an inductor of about 44-ohms reactance $\left(L_{2}\right)$ is placed across the antenna feedpoint. At 3.8 MHz , this corresponds to a coil of $1.86 \mu \mathrm{H}$. The reactance of the coil is derived from the graph in fig. 6 .

Since the inducto-match is a simple L-network, the capacitive portion of the circuit is achieved by slightly shortening the antenna. Four inches off each end is about right, and the completed antenna is shown in fig. 7.

complete TRS-80 program for all bands

Using this information as a starting point, some smart computer programmer can develop a complete TRS-80 program which includes the design of the inducto-match coil. And, in addition, the program might be further expanded to include largediameter elements. This will permit vertical antennas composed of aluminum tubing to be quickly designed for the lower frequency bands. l'll be happy to hear from anyone who completes this task.

no-code ham license?

A lot of flak is flying around about the so-called no-code license proposed by the FCC. The arguments against a no-code license seem to fall into two categories:

1. I had to pass a code test, so why shouldn't the next guy?
2. A no-code license will open the door to CB operators, who will ruin the ham bands.

I won't comment on the first argument, or the accompanying argument over tradition; others can fight that battle. But I would like to discuss the second argument that a no-code license would open the door to CB operators, who will ruin the ham bands.

	total length feet	center to coil feet	coil inductance	wire diameter inches
1.82	128.57100	32.14290	91.88680	0.058
3.51	66.66670	16.66670	43.87170	0.058
3.80	61.57900	15.39470	40.10240	0.058
7.15	32.72730	8.18182	19.53040	0.058
10.11	23.14540	5.78635	13.12140	0.058
14.17	16.51380	4.12844	8.88137	0.058
18.11	12.92100	3.23026	6.67597	0.058
21.20	11.03770	2.75943	5.55306	0.058
24.95	9.37876	2.34469	4.58680	0.058
28.60	8.18182	2.04545	3.90515	0.058

fig. 4. Computer-derived table of the inductance values of coils needed to make a half-size dipole.

fig. 5. Formula for calculation of small close-wound coils for a given value of reactance, when f in MHz is known.

Perhaps this is true. But perhaps the CBers don't want to work in a VHF ham band! How about that!

It is very instructive to tune across the hf spectrum with an "all-wave" receiver. Anyone who does will note that there's a tremendous amount of illegal sideband activity between 26.2 MHz and 27.99 MHz . I believe there are more unlicensed stations in this portion of the spectrum than there are licensed stations in all the ham bands, at any one given time. This portion of the spectrum is jammed with thousands of signals.

These pirate operators are called "CBers." Perhaps this is an inaccurate epithet. I doubt if the majority of them have a CB license, and I prefer the term pirate. That does not imply CB operation. Be that as it may, the point I am bringing out is that these pirates operate wherever they wish, using modified ham gear. If they want to work on 144 MHz , or 220 MHz , they will do so - regardless of whether or not a no-code license exists.

When the sunspot count drops and the MUF falls, the 11 -meter region will be barren of long-distance contacts. What will the tens of thousands of pirate operators do then? Go to the new no-code ham license? I doubt it.

Already many pirate operators in Europe are using the 6.6 to 6.8 MHz portion of the spectrum for SSB operation. The pirates tend to avoid the ham bands. They operate in the large

ELECTRICAL $\lambda / 2$

fig. 6. The coil-loaded dipole forms a portion of a network whose input impedance over a small frequency range is close to 50 ohms. The loaded dipole, A, has a low value of radiation resistance and loss resistance, which appears at feedpoint A-B. This low impedance can be made part of an equivalent parallel resonant circuit in which the total feedpoint resistance appears in series with the reactive branch of the circuit. B: The input impedance of such a circuit varies nearly inversely with the radiation resistance of the dipole, thus the low value of feedpoint impedance can be transformed to a larger value to match the line impedance. C : The dipole appears as a capacitive reactance by shortening the element past its resonant length. The inductor L2 consists of a small coil placed across the terminals of the dipole. The reactance of the matching coil is a function of the feedpoint resistance of the antenna. D : The dashed line is the example given in the text. Apply reactance value to formula given in fig. 5.

fig. 7. Compact, coil-loaded dipole for 3.80 MHz . Tip length is adjusted for minimum SWR at design frequency. Coil is wound with No. 16 (M1.3) wire per data in fig. 5.
spaces in the commercial and point-to-point regions, where few if any signals exist.

I say that the fear that pirates might invade ham radio via the no-code license is unfounded. They will come in only if they want to, regardless of the license structure, and my prediction is that there are more attractive places in the radio spectrum for them to occupy than a ham band. So I don't see the foundations of ham radio crumbling because a no-code license is introduced.

As time goes on the number of pirate stations will increase, because the various communications authorities throughout the world seem powerless to stop them. A few pirates will inevitably invade the ham bands from time to time, but this will have nothing to do with the Amateur Radio licensing structure. The problem has been swept under the rug up to now, yet it increasingly involves all the radio services. Pirate radio includes illegal broadcasting on medium and shortwave and VHF. In Europe, pirate broadcasting clogs the fm band and the quieter broadcast band channels. There are pirate television stations in operation in Europe, and Central America is full of illegal broadcasting. So far, radio hams are lucky; little of this trash has fallen in their bands. The pirates prefer to go where they can operate under less scrutiny than in a busy ham band.

So don't worry about a VHF nocode license. The pirate operators have more alluring possibilities open to them than competing with hams in a short-range, line-of-sight service.

references

1. Dome, "Increased Radiating Efficiency for Short Antennas," QST, September, 1934, pages 9-13. 2. Hilgedick and Morgan, "Faising the Efficiency of Short Vertical Radiators," OST, December, 1940, pages 30-33.
2. Hall, "Off-Center Loaded Dipole Antennas," QST, September, 1974, pages 28-34.
3. Sander. "A Computer Designed Loaded Dipole Antenna," CQ, December, 1981, page 44.
4. Gootch, Gardner, and Roberts, "The Hairpin Match,' QST, April, 1962, pages 11-14.
ham radio

a microprocessor repeater controller

A versatile controller for two repeaters

Our radio club recently relocated its 2 -meter repeater to a site with a much higher antenna. The repeater committee decided to make major improvements in the control system to accommodate this move. We had a $220-\mathrm{MHz}$ repeater also under construction, and would need a controller for that system as well.

The original controller was a small, wire-wrapped board using 556 timers, some counters, and a ROM for the CW identification. Remote control was by phone line and was not sophisticated. Past experience with this system indicated that adding any simple function would be a major task. Microprocessor enthusiasts in the club had the solution: build one microprocessor-based controller for both bands!

The final design may be expanded upon easily. In addition to the hardware description, I would like to
share some of our thoughts and decisions that went into creating the final design.

the design approach

Deciding to use a microprocessor as a controller was easy. In the long run it would be cheaper, and it's easier to add features by reprogramming than to add separate pieces of specialized hardware. Some new circuitry would be needed as features were added, but such circuitry would be simple interfaces.

Reliability would be good, thanks to the high reliability of digital circuits and the lower parts count per function (compared with standard small and medium-scale integrated circuits). Two decisions had to be made: which microprocessor to use, and what features to include in the new controller.

selecting a microprocessor

The microprocessor we finally decided on would have to be easy to program in assembly language, have a simple input/output (1/O) structure, and be supported by good development software. The microprocessor instruction set should be able to handle reentrant programming, allowing one program module to share multiple data sets.

The Intel 8080, Zilog Z80, Motorola 6800, and Texas Instruments 9900 microprocessors were all candidates for our application. The 8080 or $\mathbf{Z 8 0}$ at first appeared to be the best choice. A friend had built an 8080 controller six years ago for the WR8ANW repeater in Columbus, Ohio. The program listing used for that controller was available and could have been converted for our needs. Several club members had 8080 systems that they used for software and hardware development. A major drawback of the 8080 was its I/O structure and the difficulty of writing clean, reentrant code for it.

The $\mathbf{Z 8 0}$ has few of the shortcomings of the 8080. It can set and test single bits in operands, has an indexed addressing mode, and allows I/O port addresses to reside in one of its internal registers. Reentrant programming is easier with it. Unfortunately, none of the club members had $\mathrm{Z80}$ support software at that time.

The 6800 was not really in the running. None of the club members were familiar with it; we would be starting from scratch. This doesn't mean the 6800 won't work for this application. The WR8ANW repeater group, mentioned earlier, has completed a 6800 -based controller.

The TMS9980 was our final choice. It is easy to write reentrant code for the 9900 family since any register may be an index. Interrupts are easily handied. Since all general purpose registers are in memory, the only registers saved on interrupt are the pro-

fig. 1. Overall system block diagram of the K5OJI double-frequency VHF repeater. New controller includes a keyboard/printer terminal for logging and maintenance. Original controller on-line for backup. Telephone remote shutdown disables entire system.
table 1. CRU address decodes in TMS9901 PSI. Addresses are in hexadecimal.

CRU hardware address	R12 contents	device
00	00	-
20	40	-
40	80	$9902(\mathrm{~A})$
60	$C 0$	$9902(\mathrm{~B})$
80	100	9901
A	140	-
CD	180	-
ED	1 CD	-

gram counter, status register, and workspace pointer. These three restore automatically after interrupt servicing, reducing the programming load. And, support software which became available to the club on a larger 990 minicomputer proved to be a valuable tool when it came time to assemble and edit the controiler programs.

a choice of features

A list of the minimum functions required for our application was drawn up. These included CW identification, a variable time-out timer, a beep to indicate time-out, timer reset, and a status-logging rou-

fig. 2. Block diagram of new microprocessor controller. Architecture allows expansion for future functions.
tine to print hourly status reports on a terminal. The time of day was added to the CW ID since there would be a counter keeping track of time in the program.

Keeping the original controller, modified to operate as a backup, would retain telephone line shutdown with the ability to disable the repeaters regardless of which controller was operational.

Fig. 1 is the repeater system block diagram. It was constructed so that adding new features would cause only a few hours of downtime. New programming may be installed while the backup controller handles the repeater. Some of the new features include a tone decoder, a modem for RTTY I/O and control, and even a voice synthesis module.

We had defined the general system; features were chosen and the microprocessor would use TMS9900 family components. This left only the hardware details to design.

build or buy?

Texas Instruments makes several single-board microcomputers. The TM990/100 and TM990/180 boards have a small prototyping area where additional interface circuitry can be built. Each has plenty of onboard EPROM and RAM for program operation.

The final program would be burned in the EPROM, but I wanted to put the program in RAM first to do the final debugging and possible patching. The temporary RAM test-space would be free after program verification. The free RAM could then be used for other functions, perhaps as a message storage area for RTTY users. The only way to get enough check-
out RAM with the TM990 boards is to add at least one additional board.

Designing and wire-wrapping a single board with enough memory and $1 / O$ components to meet the basic criteria seemed the best way to proceed. It would include enough circuitry to bring address, data, and control lines off the board for later additions. Later features could be added using separate boards.

Fig. 2 is the single-board controller block diagram. Memory and 1/O addressing are similar enough to the TM990 board series to allow using the TIBUG ${ }^{\text {TM }}$ monitor ROM for program check-out, and also allow the final debugged control program ROMs to be installed and run on the TM990 board.

solidifying the design

Figs. 3, 4, and 5 are the schematics for the controller board. Signal mnemonics connect the three main schematic groups. Two edge connectors, P1 and P2, connect the controller to the rest of the system. Details begin with fig. 3. The controller chassis is seen in photo 1.

The Central Processor Unit (CPU) is a TMS9980 with an 8-bit data bus and addressing to $16 \mathrm{~K}(16,384)$ bytes, more than sufficient for this application. CPU clock frequency is 10 MHz , from the crystal-controlled inverter oscillator in U8. External device clocking is available at $\cup 20-22$, marked $\overline{\emptyset 3}$.

The CPU resets by interacting with peripheral interfaces, shown in fig. 5. Power-on reset for these in-

[^0]

photo 1. Top view of controller chassis with power supply. New controller is long board in second slot. Stand-offs protect wire-wrap pins on IC sockets. First slot contains old controller, smaller board toward chassis rear. Small board in first slot toward front panel contains LED resistors and wire connections to front panel. Empty slots are for future expansion. Edge-connector socket pairs wired in parallel with P1/S1 toward front.
terfaces is provided by Schmitt-input gate U9A, R1, C1 through U8A and U10B to the $\overline{R S T I}$ line. A normally open reset switch may be added for testing. $\overline{\mathrm{RESET}}$ at $\mathrm{P} 1-20$ to reset future external circuits.

The failsafe timer one-shot at U21 is re-triggered by the program through $\overline{\text { FSSTRB }}$ every 16.7 milliseconds. As long as the controller is operational, $\overline{\text { RPTDIS }}$ at P1-41 remains low and disables the backup controller. Controller failure will make $\overline{\text { RPTDIS }}$ high and enable the backup; a TTL pull-up resistor is located in the backup controller.

Flip-flops U2 and U3 generate proper $\overline{L O A D}$ timing for the interface chips with the help of decoder U5 and gate U9B. The ready signal input to the CPU (U20-39) must be high for normal operation with memory; the low state causes a CPU wait mode, to allow for access with slow memory. AND gate U10C keeps the ready signal high via the failsafe one-shot and expansion signal EXTRDY.

RAM is organized in 1 K banks, chip-pairs selected by U12. ROM is in 2 K banks, selected by U13 and U14. $\overline{\mathrm{ENDB}}$ is a fourth 2 K bank select for expansion. U6 selects the interface chips and is wired for selecting one of three 32 -bit CRU I/O bit groups. Addressing is detailed in the last section.

memory and bus expansion

Fig. 4 is a simplified memory schematic. Static RAM uses 2114 devices having a 1 K by 4 -bit structure. Address lines A4 to A13 and write enable WE are common to all RAM chips, but data bus lines
must be split as indicated. RAM chip select lines $\overline{\text { RAM } \emptyset ~ t o ~} \overline{\text { RAM } 7 ~ m u s t ~ b e ~ c o m m o n ~ o n l y ~ t o ~ a ~ p a i r ~ o f ~}$ 2114s.

All ROM pins except chip selects $\overline{\text { ROM }}$ to $\overline{\text { ROM2 }}$ are common. Either a 2516 or $2716 \overline{\text { EPROM may be }}$ used for ROM, but there is a slight programming difference between the two. Both RAM and ROM may use 450 nanosecond access time devices.

A minimum system must have U25, U26, U31, and U32 installed. All memory sockets are wired for ease of check-out. The board in photo 2 shows 4 K RAM installed for program verification. The memory map is seen in fig. 4A.

Bus transceiver U24 and bus buffers U28 to U30 are needed only if expansion is considered. R21 must remain to hold EXTRDY high if U30 is removed.

talking to the rest of the system

The TMS9901 Programmable Systems Interface (PSI) is the key device in fig. 5. It provides interrupt masking, priority encoding, I/O ports, and an interval timer in one package. It also handles interrupts from the TMS9902 Universal Asynchronous Receiver/ Transmitter (UART) at U17 and U18.

The 9901 communicates with the CPU through the CPU's communications register unit (CRU), an internal serial interface within the 9980. (The CRU operation is covered briefly later in this article, but the reader is referred to the reference for detail.)

The open-collector buffers to the repeaters and

HEXADECIMAL

ADDRESS

fig. 4A. Memory map of controller. Monitor ROM located in $\$ 0000$ to $\$ 07 \mathrm{FF}$ address. Minimum RAM in address location \$3D00 to \$3FFF ($\$=$ hexidecimal).

fig. 5. Interface circuitry and power supply connections. UART in U18 used mainly for internal timer. RC filter for CW ID tone (IDOSC) should be isolated to minimize digital noise. A minimum of one $0.01 \mu \mathrm{~F}$ bypass per three ICs is recommended on entire board.
front panel controls are identical circuit groups to each repeater. Mnemonics for the signals have an A suffix for the 2 -meter repeater, a B suffix for the 220MHz repeater. Direct repeater controls are PTT (push to talk), IDOSC (ID tone or 'oscillator'), and SOOP (squelch open). Other signal lines in each group refer to the front panel controls and indicators shown in fig. 6A and in photo 3.
$\overline{\text { PTT }}$ is low to transmit. Pull-up for the open-collector buffers (U16E and U15D) is provided within the repeater chassis. The CW identification tone is provided by programming the first-level interrupt period of 512 microseconds for a square-wave frequency just under 1 kHz . RC filtering at the IDOSC output produces a triangular waveform with an amplitude of about 5 volts peak-peak.

Remote shutdown is common to both controllers, but the direct telephone interface is within the old controller. Two rings on the landline will cause SHUTDOWN to go low, disabling the main controller. SHUTDOWN is TTL-compatible but requires R18 to hold U19-20 high when the backup controller is removed.

photo 2. Photo of controller board made just before final circuit freeze. All ICs are socketed on prototype board. Except for supply bypass capacitors, all discrete components mounted on DIP plugs. Number labels were construction references.

photo 3. Front view of front panel controls and indicators.

The RS-232 terminal connections (completed in fig. 6 C) use high-voltage buffers in U22 and U23 for an ASR-733 terminal. Other devices can be used to interface the UART at U18. The terminal is connected directly to the new controller, and not used in the backup.
The power demand of the single-board controller is 3 A at $+5 \mathrm{Vdc}, 2 \mathrm{~mA}$ at $-5 \mathrm{Vdc}, 0.2 \mathrm{~A}$ at +12 Vdc , and 0.1 A at -12 Vdc . The +5 Vdc supply demand is dependent on the amount and type of memory. A well-regulated supply should be used, but the current should be calculated for your own configuration.

manual control and indication

The front panel controls are not an absolute requirement, but do provide local control for testing and a quick indication of operation.* The 2-meter control and indication is shown in fig. 6A; the 220 MHz arrangement is identical except for interconnecting pins.
The condition of the ENABLE switch is periodically read by the program. Switch status, shutdown signal, and a flag in memory will determine if the particular transmitter should be turned on when requested. The ENABLE status is displayed by the program as a check of all conditions.
The XMIT display lights up whenever a repeater is transmitting. The TEST switch controls two methods of transmit: manual - without microprocessor control - if the switch is held to the left, or simulation of squelch-open with processor control if it is held to the right. The SOOP display indicates the latter simulation, or normal squelch-open condition, of the repeater.
The ID LED is driven from the same source as the audio tone. Since this signal is a fifty-percent duty cycle, the current limiting resistor is smaller, creating a more uniform brightness.
Four keyboard commands are recognized. An operator can type U on the terminal to update the time, T to print current program time, M to modify the clock, and S to print the current system status. Other entries are ignored. The time correction is the number of seconds to be added to the internal clock each day; there is no provision for tweaking the system clock frequency.

construction

The controller was wire-wrapped on a prototype board, as shown in fig. 7 and photo 2. Bypass capacitors for the +5 V supply line were soldered directly on the board, one for every three ICs and one

[^1]New low-noise microwave transistors make preamps in the 0.9 to 1.0 dB noise figure range possible without the fragility and power supply problems of gas-fet's. Units furnished wired and tuned to ham band. Can be easily retuned to nearby freq.

Tunable

Model Freq Range Noise Figure Gain Price \begin{tabular}{llll}
LNA 28 \& $20-40$ \& 0.9 dB \& 20 dB

\hline

 $\mathbf{\$ 3 9 . 9 5}$

LNA 50 \& $40-70$ \& 0.9 dB \& 20 dB

\hline

$\$ 39.95$ $\begin{array}{llll}\text { LNA } 144 & 120-180 & 1.0 \mathrm{~dB} & 18 \mathrm{~dB}\end{array} \mathbf{\$ 3 9 . 9 5}$

LNA 220 \& $180-250$ \& 1.0 dB \& 17 dB

\hline
\end{tabular} $\mathbf{\$ 3 9 . 9 5}$ $\begin{array}{llll}\text { LNA } 432 & 380-470 & 1.0 \mathrm{~dB} & 18 \mathrm{~dB}\end{array} \mathbf{\$ 4 4 . 9 5}$

ECONOMY PREAMPS

Our traditional preamps, proven in years of service. Over 20,000 in use throughout the worid. Tuneable over narrow range. Specify exact freq. band needed. Gain $16-20 \mathrm{~dB} . \mathrm{NF}=$ 2 dB or less. VHF units available 27 to 300 MHz . UHF units available 300 to 650 MHz .

- P30K, VHF Kit less case \$14.95
- P30C, VHF Kit with case $\$ 20.95$
- P30W, VHF Wired/Tested \$29.95
- P432K, UHF Kit less case $\$ 18.95$
- P432C UHF Kit with case
- P432W, UHF Wired/Tested

P432 also available in broadband version to cover $20-650 \mathrm{MHz}$ without tuning. Same price as P432; add " B " to model \#.

HELICAL RESONATOR PREAMPS

Our lab has developed a new line of low-noise receiver preamps with helical resonator filters built in. The combination of a low noise amplifier similar to the LNA series and the sharp selectivity of a 3 or 4 section helical resonator provides increased sensitivity while reducing intermod and cross-band interference in critical applications. See selectivity curves at right. Noise figure $=1$ to 1.2 dB . Gain $=12$ to 15 dB .

Model	Tuning Range	Price
HRA-144	$143-150 \mathrm{MHz}$	\$49.95
HRA-220	$213-233 \mathrm{MHz}$	\$49.95
HRA-432	$420-450 \mathrm{MHz}$	\$59.9

HRA-144
HRA-432
$420-450 \mathrm{MHz}$

	$\begin{array}{c}\text { Models to c } \\ \text { listen to SS }\end{array}$

Price	
dB	$\begin{array}{l}\text { Models to c } \\ \text { listen to SS }\end{array}$
dB $\$ 39.95$	
dB $\$ 39.95$	
dB $\$ 39.95$	
dB $\$ 44.95$	

\& Kit \$44.95

\& Less Case

\& Wired \$59.9\end{aligned}\)
$\$ 49.95$ 49.95 $\$ 59.95$

Models to cover every practical if \& if range to listen to SSB, FM, ATV, etc. NF $=2 \mathrm{~dB}$ or less.

	Antenna Input Range	Receiver Output
VHF MODELS	28-32	144-148
VHF MODELS	50-52	28-30
Kit \$44.95	50-54	144.148
Less Case \$39.95	144-146	28-30
Wired \$59.95	145-147	28-30
	144-144.4	27-27.4
	146-148	28-30
	$144-148$	50-54
	220-222	28-30
	220-224	$144-148$
	222-226	$144-148$
	220-224	50.54
	222-224	28-30
UHF MODELS	432-434	28-30
	435-437	$28 \cdot 30$
Kit \$54.95	432-436	$144-148$
Less Case \$49.95	432.436	50-54
Wired \$74.95	439.25	61.25

SCANNER CONVERTERS Copy 72-76, 135 -$144,240-270,400-420$, or $806-894 \mathrm{MHz}$ bands on any scanner. Wired/tested Only \$79.95. SPECIAL FREQUENCY CONVERTERS made to custom order $\$ 119.95$. Call for details.

SAVE A BUNDLE ON

 VHF FM TRANSCEIVERS!FM-5 PC Board Kit - ONLY \$159.95 complete with controls, heatsink, etc. 10 Watts, 5 Channels, for 6M, 2M, or 220

Cabinet Kit, complete with speaker, knobs, connectors, hardware.

	$\begin{array}{l}\text { Models to co } \\ \text { listen to SSB }\end{array}$

EAT OF

cabinet kit free when you buy an FM-5 Transceiver kit. Where else can you get a complete transceiver for only \$159.95?

For SSB, CW, ATV, FM, etc. Why pay big bucks for a multi mode rig for each band? Can be linked with receive converters for transceive. 2 watts output.

LOOK AT THESE ATTRACTIVE CURVES!

R144 \& R220 Front Ends. HRA 144/220, 8 HRF-144/220

R451 Receiver Front End

Typical Selectivity Curves of Recelvers and Helical Resonators.

Rcvr I-F Selectivity

- Call or Write for FREE CATALOG (Send \$1.00 or 4 IRC'c for overseas mailing)
- Order by phone or mail 0 Add $\$ 2$ S \& H per order (Electronic answering service evenings \& weekends) Use VISA, MASTERCARD, Check, or UPS COD.

65-Y MOUL RD. • HILTON NY 14468 Phone: 716-392-9430

Hamtronics ${ }^{\text {© }}$ is a registered trademark

JUST LOOK AT THESE PRICES!

Band		Kit	
		Wired/Tested	
$6 M, 2 M, 220$		$\$ 595$	
440		$\$ 645$	

Both kit and wired units are complete with all parts, modules, hardware, and crystals. CALL OR WRITE FOR COMPLETE DETAILS.

Also available for remote site linking/crossband \& 10M.

FEATURES:

- SENSITIVITY SECOND TO NONE; TYPICALLY 0.15 uV ON VHF, 0.2 uV ON UHF,
- SELECTIVITY THAT CAN'T BE BEAT! BOTH 8 POLE CRYSTAL FILTER \& CERAMIC FILTER FOR GREATER THAN 100 dB AT $\pm 12 \mathrm{KHZ}$. HELICAL RESONATOR FRONT ENDS. SEE R144, R220, AND R451 SPECS IN RECEIVER AD BELOW.
- OTHER GREAT RECEIVER FEATURES: FLUTTERPROOF SQUELCH, AFC TO COMPENSATE FOR OFF-FREQ TRANSMITTERS, SEPARATE LOCAL SPEAKER AMPLIFIER \& CONTROL.
- CLEAN, EASY-TUNE TRANSMITTER; UP TO 20 WATTS OUT.

HIGH QUALITY MODULES FOR REPEATERS, LINKS, TELEMETRY, ETC.

INTRODUCING NEW 1983 RECEIVERS

- R144/R220 FM RCVRS for 2 M or 220 MHz . 0.15 uV sens.; 8 pole xtal filter \& ceramic filter in i-f, helical resonator front end for exceptional selectivity (curves at left). AFC incl., xtal oven avail. Kit only \$119.95
- R451 FM RCVR Same but for uhf. Tuned line front end, 0.2 uV sens. Kit only $\$ 119.95$.
- R76 FM RCVR for $10 \mathrm{M}, 6 \mathrm{M}, 2 \mathrm{M}, 220$, or commercial bands. As above, but w/o AFC or hel. res. Kits only \$109.95.
Also avail w/4 pole filter, only $\$ 94.95$ / kit.
- R110 VHF AM RECEIVER kit for VHF aircraft band or ham bands. Only $\$ 84.95$.
- R110 UHF AM RECEIVER for UHF uses, including special 296 MHz model to hear SPACE SHUTTLE. Kit $\$ 94.95$.

- HELICAL RESONATOR FILTERS available separately on pcb w/connectors. HRF-144 for $143-150 \mathrm{MHz} \$ 34.95$ HRF-220 for $213-233 \mathrm{MHz} \$ 34.95$ HRF-432 for $420-450 \mathrm{MHz} \$ 44.95$

- COR KITS With audio mixer and speaker amplifier. Only \$29.95.
- CWID KITS 158 bits, field programmable, clean audio. Only $\$ 59.95$.

- A16 RF TIGHT BOX Deep drawn alum. case with tight cover and no seams. $7 \times 8 \times 2$ inches. Only \$18.00.

TRANSMITTERS AND ACCESSORIES

- T51 VHF FM EXCITER for $10 \mathrm{M}, 6 \mathrm{M}, 2 \mathrm{M}$, 220 MHz or adjacent bands. 2 Watts continuous. Kits only \$59.95

- T451 UHF FM EXCITER 2 to 3 Watts on 450 ham band or adjacent. Kits only \$69.95.
- VHF \& UHF LINEAR AMPLIFIERS. Use on either FM or SSB. Power levels from 10 to 45 Watts to go with exciters \& xmtg converters. Kits from $\$ 69.95$.

صen rarn
for every two memory chips. All other discrete components mount on DIP plugs.

A $12 \times 17 \times 2$ inch $(30 \times 43 \times 5 \mathrm{~cm})$ Bud chassis is bracket-mounted to the rack panel. Two 7×11 inch ($18 \times 28 \mathrm{~cm}$) aluminum plates hold the power supply and four pairs of card edge connectors. All interface connectors, the line fuse, and switch are mounted on the rear face of the chassis.

programming and checkout

The program was coded in short routines, most containing less than fifty lines. The code is heavily commented to facilitate debugging and to provide good documentation. Documentation is essential if you want anyone, even the programmer, to understand the program at a later date.

The program was initially programmed into the EPROM and installed on the board. A short routine was executed to move the program from ROM into RAM. Execution from RAM was under control of the monitor, allowing correction and patching. The monitor used was TIBUG ${ }^{\top M}$.

The EPROMs are re-programmed after checkout so
the program can execute from a ROM address area rather than RAM.

Hardware and system checkout procedure used the front panel TEST switch to simulate the receiver squelch-open signal until most of the program bugs were found. Later, the $\overline{P T T A}$ line was jumpered to SQOPB and PTTB was jumpered to SQOPA; with both channels enabled, the controller would alternately transmit on 2 meters and 220 MHz . We ran the controller only in this mode for several days in the presence of the club's HF and repeater equipment to verify that the controller was if compatible. No interference was observed. A typical printout is seen in fig. 8.

history

Total construction time for this project was approximately four months. Most of the board wiring and program design was completed during a twoweek vacation. The most time-consuming task was packaging the controller.

The controller was installed in the K50JI repeater in January, 1981. Up to the time of this writing,

fig. 7. Location of ICs on controller board. Edge connections are double side, and pins etched in board. Letters and numbers used for construction reference. Two RAM chips in U31, U32 is the minimum requirement but photo indicates $4 K$ RAM population up to U38 for development purposes.
about two years, we had only one failure due to bad memory chips. Since the backup controller picked up when the main unit failed, the repeater was never off the air. The bad chips were quickly located and replaced.

The controller is reliable, expandable, and relatively simple. It can be made on a prototype board or it may be an adaptation of commercially available microprocessor boards. Hardware and software is designed so other features may be added easily.

Based on observation of microprocessor loading, the controller should be able to control three repeaters simultaneously. The Level 1 interrupt is the heaviest CPU load and provides the ID tone; a separate hardware oscillator will relieve much of the firstlevel interrupt handling.

This project would not have been possible without the help of WB8CEB for most of the program editing and N5JS and AJ5L who maintained the rf portions of the repeaters.

A listing of the control program is available on an 8-inch CPM $^{\text {TM }}$ compatible disk available from the author for $\$ 15.00$. This disk contains the program listing and an object file for programming EPROMs. The disk is single-sided, single-density and the program uses 26 sectors at 128 bytes per sector.

for the computer technician

Computer technology is a specialized area. Some

```
ENTEF ELIFFENT TIME HHMM: EIUA
FDII FFFT TIME IS El|⿻
```



```
TIME=\XiGतीG
```



```
TIME=OZO
```


fig. 8. Typical printout of part of one day's operation.
explanations and technical arguments follow which will serve the needs of the computer specialist who undertakes this project. ham radio cannot take sides in programming techniques, but a strong relationship between hardware and software is integral to the successful design of this system, and the computer technician should be aware of this before beginning the project. Editor.

Reentrant programming is sometimes confused with recursive programming; we offer the following abbreviated definition from Granino Korn's Microcomputers for Scientists and Engineers:
"A special case occurs where a subroutine is inter-
table 2. TMS9901 PSI bit assignments.

select bit	CRU read data
0	Control bit (1)
1	INT1-/CLK1 (2)
2	INT2-/CLK2
3	INT3-/CLK3
4	INT4-/CLK4
5	INT5-/CLK5
6	INT6-/CLK6
7	INT7-/CLK7
8	INT8-/CLK8
9	INT9-/CLK9
10	INT10-/CLK10
11	INT11-/CLK11
12	INT12-/CLK12
13	INT13-/CLK13
14	INT14-/CLK14
15	INT15-/NTREO
16	-
17	-
18	-
19	-
20	Remote shutdown
21	IO Ch A
22	-
23	SQ OP Ch A
24	-
25	ENABLE SW Ch B
26	ID Ch B
27	-
28	SQ OP Ch B
29	-
30	ENABLE SW Ch B
31	

(1) $0=$ interrupt mode, 1 clock mode
(2) Data present on INT pin (or clock value) will be read regardless of mask value.
(3) In interrupt mode writing a 1 into mask will enable interrupt; a 0 will disable the interrupt
(4) Writing a zero to bit 15 while in the clock mode executes a software reset of the $1 / O$ pins.
rupted and the interrupt calls the same subroutine. A program may fail on return from interrupt. Subroutines designed to work properly on interrupt and restoration from interrupt are called 'reentrant.' A good way to obtain reentrant subroutines is to provide temporary storage of addresses and register contents in 'stack' storage. Real-time computation with many interrupt-driven segments make reentrant programming desirable."

When many repeaters need be controlled, the only additional software necessary should be new parameter tables and calls to the routines handling data in these tables. Not only should the data manipulation instructions be reentrant, but so should I/O instructions; controlled devices will not always have the same I/O addresses.

The $1 / O$ structure of the 8080 does not lend itself to reentrant programming. I/O routines must be pro-
grammed once for each channel, and you must decide which piece of code to execute, or the code must be written to be self-modifying: the program modifies the instruction set about to be executed before entering the set. The instruction must reside in RAM to be self-modifying. The $1 / 0$ of the 8080 must transfer eight bits at once, which requires extra logical instructions. This means that the bits which control the repeater must be set, reset, and tested, or only one function can be assigned to each I/O port.

While you need subroutines to load and test an 8080 memory location, a single 9900 instruction performs the same function. The $9900 \mathrm{I} / \mathrm{O}$ structure lends itself to reentrant programming. The 9900, through its CRU, may transfer from one to sixteen bits with a single instruction. This makes it suitable for multiple-control applications.

The address bus I/O address is generated by add-
ing the CRU bit address in the instruction to the contents of the CRU base register, one of the useraccessible registers. By setting base register contents differently for each channel, the same I/O instructions can be used to control the same function on different channels.

Since all general purpose registers are in memory, only the CPU program counter, status register, and workspace pointer need be saved during an interrupt. These are saved and restored automatically. The programmer does not have to keep track of which registers to save or restore.

The TMS9980 CPU is part of the 9900 family and uses the same instruction set. This class of processor differs from earlier designs and readers should refer to the reference material for exact details. The following will help you understand the CRU and how it is used in the K50 JI repeater.

understanding the CRU

The communications-register-unit uses a dedicated bit-addressable interface for 1/O between the CPU and 9901, 9902 devices. The CRU interface in the system is the address bus and three signal lines: CRUCLK, CRUIN, and CRUOUT (multiplexed with address line A13 on the 9980). The 9901 and 9902s are enabled via U6 by address lines A0, A1, A5, A6, and A7 while address lines A8 through A12 select the single bit to be input or output. The CRU transfers data one bit at a time, serially, on the CRUIN and CRUOUT lines.

For output, the address lines are set to point to the desired output bit and that bit of data is put on the CRUOUT (A13) line. CRUCLK then clocks the data into the selected device. For input, the address lines are set to point at the desired input, then clocked into the CRU through the CRUIN line. There is no external signal to indicate when an input is read.

Table 1 lists the hardware and software addresses for the CRU. The 9901 occupies thirty-two bits of CRU input/output space and assignments are given in table 2. Table 3 is a complete parts list for the controller.

Table 2 needs further explanation: bit 0 controls the mode of bits 1 to 15 . If bit 0 is logic 0 , the 9901 is in interrupt mode. Writing to bits 1 to 15 sets an internal mask for passing or ignoring an interrupt level.

The 9901 is in clock mode (internal interval timer) if bit 0 is logic 1 . Writing to bits 1 to 14 loads a value into the timer's count decrementer. As the timer counts down to zero, an interrupt is issued and the timer resets to decrement value. Reading bits 1 to 14 will read the current value of the decrementer. Reading bit 15 inputs the status of the interrupt request while writing to bit 15 initiates a reset of input/output pins.
table 3. Controller parts list.

quantity	type	
1	TMS9980	U20
1	TMS9901	U19
2	TMS9902	U17, U18
2 min., 16 max.	2114	U31 to U46
2 min., 3 max.	2516	U25 to U27
1	74LS00	U4
1	74LS04	U11
1	7404	U8
3	7407	U7, U15, U16
2	74LS08	U10, U14
2	74LS74	U2, U3
1	74LS 123	U21
1	74LS 132	U9
4	74LS 138	U5, U6, U12, U13
3	74LS244	U28, U29, U30
1	74LS245	U24
1	75188	U22
1	75189	U23
	resistors	

(all resistors are $1 / 4 \mathrm{~W}, 10 \%$ unless otherwise specified)

1	220 K	R7
1	68 ohm	R2
2	82 ohm	front panel
6	120 ohm	front panel
2	$510 \mathrm{ohm}(5 \%)$	R4, R5
2	2.2 K	R19,R20
6	4.7 K	R1, R6, R8, R13, R18, R21
6	15 K	R9, R10,R12, R14, R15, R17
2	1 K	R11,R16
1 DIP array	1 K	R3 (Beckman 899-1-1.0 K)
1	220 K	R7

1220 K R7
capacitors
(all capacitors are disk, 25 V min unless other specified)

24	$0.01 \mu \mathrm{~F}$	$\mathrm{C} 2, \mathrm{C} 7, \mathrm{C}, \mathrm{C} 9, \mathrm{C} 11$ to C 30
2	$0.1 \mu \mathrm{~F}$	$\mathrm{C} 5, \mathrm{C} 6$
1	$1.0 \mu \mathrm{~F}$	C 4
1	10 pF mica	C 3
1	$33 \mu \mathrm{~F}$	C 1 (electrolytic, $10 \mathrm{Vmin)}$.
1	$47 \mu \mathrm{~F}$	C 10 (electrolytic, $10 \mathrm{Vmin}$.)
1	$\mathrm{CY}-18 \mathrm{Crystal}$,	
	10 MHz	Y 1
1	1 N 4001	CR 1
2	LED, green	front panel
2	LED, red	front panel
4	LED, yellow	front panel
2	switch, SPDT, momentary-	
2	off-momentary	front panel
2	switch, SPST	front panel

Bits 16 to 31 are for I/O, the majority directly interfacing with the repeaters. Writing a 0 and then a 1 to bit 16 will re-trigger failsafe one-shot U21. Re-triggering must occur at a 60 Hz rate.

Bits 17 to 20 are monitor output which indicates the level of interrupt processing. Entering an interrupt routine sets the appropriate bit for that interrupt level. Completing an interrupt resets the bit. Oscilloscope monitoring verifies the interrupt and indicates CPU loading for each interrupt time. The first three
interrupt levels are used here with the fourth level reserved for future use.

Bit 21 is an input for remote shutdown via telephone line through the old controller. The old controller will shut down through its own interface circuitry and a low state of SHUTDOWN will disable the new controller.

Bits 22 to 26 are 1/O control for the 2-meter repeater (" A " suffix mnemonics) while bits 27 to 31 are identical in function for the 220 MHz repeater (" B " suffix).

Interrupt level 3 is internal to the 9901 . Interrupt levels 4 and 5 are hardwired to the interrupt outputs on both 9902s. The 9901 will prioritize interrupts, outputting an interrupt code of 0 for highest priority and 15 for lowest priority. The 9980 CPU interprets levels 3,4 , and 5 as interrupt levels 1,2 , and 3 , respectively.

Each 9902 UART is assigned thirty-two bits of CRU and each may cause an interrupt from four separate events. Repeater control uses only the interval timer interrupt. The second 9902 (U18) is used solely for the timer, but could be used for a second serial interface.

software

Author Warner claims that packaging the controller was the most time-consuming task and that software design was second. Judging from the 51 pages of program listing available, we might reverse that statement. The final excerpt contains some details on the program package.

The software design was to include as many features as possible and to break the program into small, easy-to-follow modules. These modules can be called by the appropriate interrupt processor module, depending on the desired frequency of execution. It would not be difficult to add modules for new features.

Modules communicate with each other (on the same and different interrupt levels) via semaphores, flags set in specific memory locations. Seven ex-tended-operation (XOP) instructions are included for 1/O with a keyboard/printer. The hardware will support a total of 16 XOPs, so users may add their own XOP routines.

Hardware reset causes an entry into the initialization section of the program. This initializes certain memory locations, $1 / 0$ interfaces (including all interval timers), and the interrupt mask register in the 9901. Once accomplished, the program enables interrupts and begins execution of the program's polling loop.

The following program names are those included in the program. The interrupt level routines handle all the repeater control functions. Three levels of inter-
rupts are used. Level 1 is highest and occurs when the 9901 interval timer decrements to zero. Program segment C04 generates the CW ID tone on a Level 1 interrupt. This will generate a 1 kHz tone for each repeater.

Interrupt handlers are similar. First the appropriate CRU output bit is set to indicate initiation of processing at the particular interrupt. Register 1, used as an index register, is loaded with the address of the parameter table for one repeater. The proper routines for that repeater are then called to operate on the parameters. When processing for one repeater is complete, Register 1 is re-loaded with the address of the parameter table for the other repeater, and the same routines are called again. When all processing for the interrupt level is complete, interrupt hardware is enabled for the next interval timer decrement-through-zero. The CRU bit, indicating process in operation, is reset and control returns to the interrupted routine.

Level 2 interrupt is caused by the interval timer in the 9902 at U17. This timer is set to decrement through zero every 4.7 milliseconds. The routine labelled C01 is executed on a Level 2 interrupt and forms the ID tone length and beep.

Main repeater timing occurs at Level 3, generated every 16.7 milliseconds. Some system functions, such as time of day and checking for remote shutdown, are executed only once per interrupt. All other repeater routines must be executed once for each channel. Routines R00, R07, and R09 are called only once while repeater routines R01 through R05, R08 are called twice.

When no interrupts are being serviced, the polling loop at 103 is operating. This loop checks for keyboard inputs and checks flags that indicate printout of an hourly repeater status. Once each hour the interrupt level routines move the hourly status for each repeater to a print buffer, clear the next hour's status, and set a print request flag. The polling loop checks this flag and, if set, lists the status from the print buffer on the terminal. If both repeaters are enabled, 2-meter status is printed first.

Each status line printout includes the hour, the number of seconds of total transmission, the number of QSO periods, timeouts and IDs issued. For status purposes, a QSO is defined as a period of exchanges separated by no more than thirty seconds. The last printout column is the number of receptions too short to bring up the repeater.

reference

1. 9900 Family Systems Design, publication LCC4400, Texas Instruments, incorporated.

DESIGN MATE ${ }^{\text {TM }} 2 \mathrm{C}$ LOW COST， HAND HELD FUNCTION GENERATOR

SPECIFICATIONS

Frequency Range： 10 Hz to 100 KHz in four ranges； 50 increment $10 / 1$ cali－ brated dial calibrated within $\pm 5 \%$ of setting＠ $10 \mathrm{~Hz}, 1$ KHz and $100 \mathrm{KHz}, 10 \mathrm{KHz}$ ．
Waveforms：
Sine Wave：$\quad 2 \%$ THD over Frequence Range（Typical $1 \%)$ ；Triangle Wave：linearity better than 1% over fre－ quency range；Square Wave：rise and fall times 200 nsec（Typical 100 nsec ）．
Outputs： Sine／Triangle－switch selectable；amplitude 0．1V to 10 V peak to peak：impedance 600 Ohms ；Square Wave－amplitude $\quad 0.1 \mathrm{~V}$ to 10 V peak to peak： impedance 600 Ohms．
Power Req．：$\quad 105-125$ VAC， $50 / 60 \mathrm{~Hz}, 2.5$ Watts
Size：
$6.25^{\prime \prime} \times 3.75^{\prime \prime} \times 2^{\prime \prime}$

LOW COST FREQUENCY

METER MODULE DM－11＂ 5 Hz to 100 MHz ＂
Measure frequencies from
5 Hz to 100 MHz on your
digital Voltmeter with a
digital voltmeter with a easy to use－perfect for easy to use－pertect for
field service－lab testing －home hobbyist＇Connect the DM－11 to your DVM． set the DVM to the 2VDC range，connect a signal to the DM－11 via a BNC cable （not included）and
measure the frequency of any source．Hi Lo Range LEDs ensure fast＇accurate readings．

SPECIFICATIONS
〒 Frequency Range 5 Hz to 100 MHz
－Input Impedance 1 MegOhm －Input Sensitivity： $100 \mathrm{~Hz} \quad 100 \mathrm{~Hz} \quad 80 \mathrm{MV}$ 100 Hz 60 MHz 30 MV

60 MHz 70 MV
－Size $6.25^{\prime \prime} \times 3.75^{\prime \prime} \times 2^{\prime}$
－External 9V DC power supply included
－BNC input cable accessory Model PSA－2 Stock No： 110027 add $\$ 14.99$

MODEL NO．DM－11

LOW COST DM－8

 CAPACITANCE METER MODULEConnect this high quality low cost Capacitance Meter Module， DM－8 to your digital Volt Meter and turn it into a Digital Capacitance Meter－the Low Cost Way！

SPECIFICATIONS

－ 2 V output
－Accuracy better than 5%
－Push to read range（button）from 1 pF to 20，000 F
－Zero Calibration control
－In one easy to use，self－contained package．
－Battery powered，with＂push to read＂battery saver circuit
（ 9 V batteries not included）．

- Size $-6.25^{\prime \prime} \times 3.75^{\prime \prime} \times 2^{\prime \prime}$
－Includes Model 336 Test Clips
MODEL NO．DM－8
STOCK NO．15－0008

Includes

PAICES \＆SPECIFICATIONS SUBJECT TO CHANGE－SPECIAL ENDS MAY 3OTh

FOR FASTER SERVICE USE YOUR CREDIT CARD．

D FBiA 供

 44 KENDALL STREET NEW HAVEN，CT． 06512 MOST ORDERS SHIPPED NEXT DAY．CALL TOLL FREE 1－800－243－6953

6-meter amplifier

A companion unit to the 2-meter and $11 / 4$-meter amplifiers

This six-meter amplifier is a companion unit to the 2-meter and 1-1/4-meter amplifiers previously described in ham radio articles. ${ }^{1}$ All three amplifiers are built using the same chassis configuration originally described by K2RIW for a stripline kilowatt for 432 MHz . ${ }^{2}$ The $50-\mathrm{MHz}$ version uses a conventional pi-

fig. 1. Tetrode amplifier schematic.

Amateur bands have been successfully duplicated hundreds of times. They are rugged and offer a proven performance developed by thousands of hours of testing and use over the past eight years. They provide flexible and reliable high-power operation.

By initially drilling and punching a set of chassis boxes for all four models (432, 220, 144, and 50 MHz), an amplifier can be converted from one band to another. This might be achieved by using a quickchange mechanical procedure for the four separate frequency-sensitive circuit elements.

construction details

The essential dimensions for chassis drilling and punching are contained in the articles listed in reference 1 . This article covers only construction details peculiar to the $50-\mathrm{MHz}$ amplifier.

Referring to the schematic of the $50-\mathrm{MHz}$ tetrode amplifier (fig. 1), notice that the two grids are connected by a copper strap between the sockets. The
two anodes are paralleled by a brass or copper plate assembly which uses fingerstock for connection to the anodes, providing a mounting for the plate blocking capacitors and a connection point for the highvoltage RFC. The dc circuitry is similar to that found in the previously described amplifiers.
In the triode amplifier (fig. 2), the rf section is exactly the same as that shown in fig. 1 except that rf chokes are used in the filament leads and in the cathode bias lead. The cathode bias and metering circuitry is conventional for a grounded grid amplifier. Two meters are used with the grid current meter on a non-locking switch to read plate voltage.

control and safeguard options

The optional circuitry shown in fig. 2 provides examples of control and safeguard features which can be added to these amplifiers. The blower option provides 120 Vac on pins 2 and 4 of the cable connector. This permits powering the blower from a receptacle on the amplifier chassis, rather than running a lead

Tetrode amplifier - front view.
back to the power supply. An air switch is mounted in the blower air stream and connected via the blower connector to two power switches (one locking and one non-locking) and to pin 7 of the amplifier connector. Pin 7 is the power relay operate lead in the power supply. ${ }^{1}$

To turn the amplifier on, the locking-type power switch is switched to the on position and the nonlocking (push-button type-momentary) switch is pressed to operate the power relay. The power relay energizes the power supply and provides 120 Vac on pins 2 and 4 to start the blower. With the blower up to speed, the air switch keeps the power relay actuated. Once the push button is released, the power supply relay is under the control of the air switch.

fig. 2. Triode amplifier schematic.

Tetrode amplifier - rear view.

Tetrode amplifier - upper chassis.

Should the blower fail or not come up to speed, the power supply will automatically shut down, an important safeguard considering the two hundred dollar price tag on 8874s.

If excitation is applied with no plate voltage on the tubes, damage to the grid structure may result. The high-voltage fail-safe option provides a safeguard by using a transistor and a relay to open the bias control circuit if high voltage is not present. A 12 -volt power supply for this feature is provided by a voltage doubling circuit from the filament line.

The remaining option, shown in fig. 2, is used to operate a DPDT coaxial relay which can be mounted (with a coaxial adapter) on the output connector of the amplifier. The coil of the relay and a set of auxiliary make-contacts are connected to the amplifier chassis via a four-contact connector. The 12 -volt supply, auxiliary control relay circuitry, a power amplifier (PA) in/out switch, and a control jack com-
plete this feature. Note that a ground on transmit to the amplifier control jack will apply operating bias to the amplifier only if the antenna relay is operated and the auxiliary relay (in this optional circuit) is released. In receive, 12 volts is applied through the winding of the antenna relay to the auxiliary relay winding. The auxiliary relay operates, but the antenna relay, which requires more current than the auxiliary relay, does not operate with the PA switched to the in position. A ground on transmit from the exciter causes the antenna relay to operate immediately and the auxiliary relay to release after a slight delay. This prevents the amplifier from being "hot switched" and provides additional protection for the rf amplifier in the receiver. A layer or two of cellophane tape on the pole piece of the antenna relay is usually required to guarantee release. More sophisticated antenna relaycontrol circuitry is desirable, however, for EME amplifier applications.

Construction and mounting arrangements for the various options are covered in the construction infor-

fig. 3 A .50 MHz low-pass filter. ${ }^{3}$

Tetrode amplifier - lower chassis.

fig. 4. Upper chassis drilling chart.
mation for the triode amplifier. Which options are chosen, and whether they are mounted inside or outside the amplifier, is determined by the intended application and the builder's inclination. These options are also applicable to the $50-\mathrm{MHz}$ tetrode amplifier version as well as to the other models of these amplifiers, already described.

A lowpass filter or harmonic trap circuit is needed in the rf output to attenuate harmonics in the amplifier output. These amplifiers, even when operated in the linear mode, may have harmonic components no more than 40 dB down from the fundamental, a level
of harmonic attenuation which no longer meets modern RFI design requirements. A suitable LP filter design for this $50-\mathrm{MHz}$ amplifier is shown in the 1981 ARRL Handbook, pages 7-11 (fig. 3A). Harmonic trap circuit construction is shown in fig. 3B.

Information on the triode and tetrode amplifier power supplies has already been provided in the 220MHz amplifier article. ${ }^{1}$

construction - tetrode amplifier

If you do not intend to use the chassis for the 50 MHz amplifier on any of the other VHF/UHF bands, omit the following in its construction: five holes ($11 / 64$ inch or 4.4 mm) in the right side of the upper chassis used for mounting the 2-meter plate line, four holes ($7 / 64$ inch or 3 mm) and one hole ($5 / 8$ inch or 15.9 mm), on the rear of the upper chassis for mounting the if output connector; two holes (7/64 inch or 3 mm), one hole ($3 / 8$-inch or 9.5 mm) for the plate load control in the top plate, and the hole in the front of the lower chassis for the plate tune control. The remaining holes not used for 50 MHz can be drilled and disregarded or filled with 6-32 (M3.5) hardware.

Triode amplifier socket plate assembly - bottom view.

fig. 6. Toroid choke mounting detail.

Triode amplifier socket plate assembly - top view.

Fig. 4 shows the upper chassis drilling required for mounting the plate coil, variable load capacitor, rf choke, fixed load capacitor, and tune and load controls. Fig. 7 shows the drilling and punching for the rf output connector. This completes the chassis preparation.

Details of the inductive tuning ring are shown in fig. 5. Fig, 8 gives the dimensions for the plate line. Fig. 9 provides information on the plate rf choke.

The plate coil is wound with $1 / 4$-inch ($6.3-\mathrm{mm}$) copper tubing, four turns, 2 inches (50 mm) ID, 3-1/4 inches $(8.3 \mathrm{~cm})$ long. The ends of this coil are flattened, bent and drilled $11 / 64$ inch (4.4 mm), to mount the coil on $1-1 / 2$-inch $(3.8-\mathrm{cm})$ Teflon pillars midway between the top and bottom of the upper chassis. When construction is completed, the spacing between the turns of the plate coil is adjusted to provide the required tuning range. The tuning range with the inductive ring is in excess of 1 MHz . An accurate grid dip meter is useful for preliminary adjustment of turns spacing for the desired frequency range. The final adjustment of coil size to the desired range is made during the final if testing.

The assembly and wiring may be done in the same sequence used for the 144 - and $220-\mathrm{MHz}$ amplifier, by first assembling and wiring the lower chassis and
then assembling the upper chassis and grid box. Mount the sockets and install the plate line parts. Finally, join the upper and lower chassis, make filament and grid bias connections, and install the grid box parts to complete the assembly.

Cathode box of triode amplifier viewed from rear of amplifier (toward front of amplifier). Note that toroid choke mountings are not exactly the same as fig. 6 .

Bottom view of cathode box of triode amplifier.

construction - triode amplifier

Follow the directions for the tetrode amplifier construction for chassis drilling and punching, for the plate line and plate coil. The cathode tuned circuit for the triode amplifier is the same as that described for the grid circuit of the tetrode version. The holes in the grid box for the filament feed-through capacitors are relocated toward the bottom of the box to accommodate the toroid chokes (fig. 6). An additional meter hole is punched in the lower chassis front on the right side.

The tube sockets are mounted on a brass plate, as described for the $220-\mathrm{MHz}$ triode amplifier. This assembly (fig. 10) lets you solder the grid collet (EIMAC part \#882931) in position. Vent holes are provided around the base of the tube; it's a good idea to have this assembly silver plated. The assembly is bolted in place in the same position as the two 630A
sockets used for the tetrode amplifier. A brass strip (fig. 11) may be used to connect the cathode pins of the two sockets together. This strap is soldered in place after the socket plate has been mounted. Its position is such that the cathode socket pins protrude through the holes about $1 / 8$ inch (3 mm).

Alternatively, a small brass plate mounting a brass bushing (tapped 10-32) may be soldered to the cathode pins of each socket. This method of construction is more involved, but avoids soldering the grid strap in place after the socket plate is mounted. The grid strap is fastened by the $10-32$ screws on each mounting plate.

Triode amplifier bottom view to illustrate mounting of optional circuit features on terminal boards in lower chassis.

Material $1 / 8$ brass

All holes marked A (12) tap 5.32
Holes around periphery of socket (32) 7/64
These holes to be focated approximately
an shown on a radius 1.1715
Dimensions in inches
Other parts required for this assembly.
Socket Johnson No. 1240311 -100 EIMAC No. 154353
(6) $1 / 8$ inch 6.32 brass screws

fig. 10. Triode socket mount.

Barry Glectronics Corp.
 Your one source for all Radio Equipment!

COMMERCIAL RADIOS
stocked a serviced on promises.

KITTY SAYS: WE ARE NOW OPEN 7 DAYS A WEEK. Saturday \& Sunday 10 to 5 PM

Monday-Friday 9 to 6:30 PM
Come to Barry's for the best buys in town. For Orders Only Please Call: 1-800-221-2683.

FT-ONE, FT-980R FT-102, FT-101ZD. FT-707, FT-230R, FT-77, FT- 726 FT-480R, FT-720RU, FT-290R, FRG-7700, FT-625RD

IC-R70, IC-720A, IC-730, IC-740, IC-25A, IC-35A IC-251A, IC-2KL, IC-451A, IC-290H, IC-45A

YAESU ICOM Land-Mobile H / T FT-208R IC2AT Wilson Mini-Com II FT-708R IC3AT Yaesu FTC-2203, FT-4703 -4.9 IC4AT lcom IC-M12 (Marine)

DRAKE TR-5, TR-7A, R-7A, L.7, L.15, Earth Satellite Receiver ESR-24, THETA 9000E \& 500, Digital Multimeter Model \#8550-\$95.00

Metering and other circuitry is mounted in the lower chassis, as shown in the photos. The vitreoustype resistors are mounted to the chassis wall. Other resistors and parts are mounted on terminal boards secured to the chassis with mounting spacers.
The options shown on the triode amplifier schematic (fig. 2) are mounted as follows:

The antenna relay connector is located on the right side of the lower chassis (rear). The small relay associated with this option is located in any convenient spot in the lower chassis. The various resistors, capacitors, and other parts for the antenna relay control circuit, the $12-\mathrm{Vdc}$ supply, and the high voltage fail-safe circuitry are on terminal strips which are located in the lower chassis.
The blower connector is located on the left (side) rear of the lower chassis.

The PA'in/out switch, the power switch, and the non-locking switch to start the blower are located on the front of the lower chassis.
In assembling and wiring the triode amplifier, follow the same pattern described for the tetrode amplifier - lower chassis parts mounting and wiring first - upper chassis and cathode box, tube socket assembly, plate circuit parts, joining upper and lower chassis, cathode parts, and the final wiring steps.

automatic load control

An ALC circuit (fig. 12) has been added as an option to the triode amplifier. The parts within the grid box are mounted close to the rf input connector. A bias winding is required on the high-voltage transformer, or a separate small transformer is required to provide the +56 volts threshold control voltage. The bias voltage parts can be mounted in the power supply chassis on a terminal board.

Output harmonic trap assembly. Three series traps - 100 $\mathbf{M H z}, 150 \mathrm{MHz}$, and 200 MHz . Piston capacitor adjustment screws (3) protrude out the bottom of the box.

NEW TS830S for \$150?

Yes indeed! Just add a Matched Pair of top-
quality 2.1 kHz BW (bandwidth) Fox Tango quality 2.1 kHz BW (bandwidth) Fox Tango Filters. Here are a few quotes from users:
. Makes a new rig out of my old TS830St . .
VBT now works the way I dreamed it shouid. Spectacular improvement in SSB selectivity Completely eliminates my need for a CW filter Simple installation - excellent instructions .
The Fox Tango filters are notably superior to both original 2.7 kHz BW units but especially the modest ceramic 2nd IF; our substitutes are 8 -pole dis-crete-crystal construction. The comparative FT vs Kenwood results? VBT OFF - RX BW: 2.0 vs 2.4 ; Shape Factor: 1.19 vs $1.34 ; 80 \mathrm{~dB}$ BW: 2.48 vs 3.41, Uitimate Rejection: 110 dB vs 80 . VBT SET FOR CW at 300 Hz BW - SF 2.9 vs 3.33; Insertion Loss: 1 dB vs 10 dB .

AND NOW A NEW TS930S! Tests prove that the same filters improve the ' 930 even more than the '830. Don't buy CW filters - not even ours. You probably won't need them!

INTRODUCTORY PRICE: (Complete Kit) . . \$150
Includes Matched Pair of Fox Tango Filters, all needed cables, parts, detailed instructions Specify kit desired: FTK-830 or FTK-930 Shipping $\$ 3$ (Air \$5). FL. Sales Tax 5%
FA ONE YEAR WARRANTY GO FOX-TANGO - TO BE SURE! Order by Mail or Telephone. AUTHORIZED EUROPEAN AGENTS Scandinavia. MICROTEC (Norway) Other: INGOIMPEX (W. Germany)

FOX TANGO CORPORATION Box 15944 H. W. Palm Beach. FL 33406 Phone: (305) 683-9587
get super 2 meter performance plus a new level of quality and durability

Jaybeam 4, 6 and 8 element quads achieve a level of quality, durability and performance not previously available in amateur antennas.

Contact your ham radio dealer or one of the dealers listed below for Jaybeam Antennas. For further information, contact:

G.I.S.M.O. COMM. INC. COMMUNICATIONS ALIS ELECTRONICS

1-800-845-6183
Rock Hill, SC

CENTER

1-800-228-4097
Lincoin, NE

JASCO

INTERNATIONAL INC. P. Bo. Box 29184

Lincoln, Nebraska 68529

1296 \& PHASE III MAKI UTV 1200-539995 2M or 6M I.F./ 5 WATTS

- 4 TRANSVERTER MODELS
- TX/RX CONVERTERS
- PRE-AMPS, AMPS, FILTERS

LG. SASE FOR CATALOG SEE US AT DAYTON 83

SPEETRUMWEST
5717 NE 56 th, SEATTLE, WA 206-523-6167
(305) 997-5324 Boca Raton, FL

ค 144

State ofthe ant

 9 MHz CRYSTAL FILTERS

MODEL	Application	Ban wid	ddth	Poles	Price
XF-9A	SSB	2.4	kHz	5	\$50.60
XF-98	SSB	2.4	kHz	8	68.60
XF-9B-01	LSB	2.4	kHz	8	91.35
XF-9B-02	USB	2.4	kHz	8	91.35
XF-9B-10	SSB	2.4	kHz	10	119.65
XF-9C	AM	3.75	5 kHz	8	73.70
XF-90	AM	5.0	kHz	8	73.70
XF-9E	FM	12.0	kHz	8	73.70
XF.9M	CW	500	Hz	4	51.55
XFF.9NB	CW	500		8	91.35
XF.9P	CW	250		8	124.95
XF910	IF noise	15	kHz		16.35

10.7 MHz CRYSTAL FILTERS

LINEAR TRANSVERTERS

1296 MHz	1.3 W output, 2M in	MMt1296-144	$\$ 374.95$
$432 / 435$	10 W output, 10M in	MMt435-28(S)	299.95
144 MHz	10 W output, 10M in	MMt144-28	199.95

$144 \mathrm{MHz} \quad 10 \mathrm{~W}$ output, 10 M in
MM1144-28
299.95

LINEAR POWER AMPLIFIERS

1296 MHz	10 W output	MML 1296-10-L	\$ ask
432/435	100 W output	MML 432-100	444.95
	50 W output	MML 432-50-S	239.95
	30 W output	MML432-30-LS	209.95
144 MHz	100 W output	MML 144-100-S	264.95
	50 W output	MML 144-50-S	239.95
	30 W output	MML 144-30-LS	124.95
	25 W output	MML144-25	114.95
All models include VOX T/R switching. "L" models 1 or 3W drive, others 10W drive.			
Shipping: F	ncord, Mass.		

420.450 MHz MULTIBEAMS

48 Element	70/MBM48 15.7 dBd	\$79.95
88 Element	$70 / \mathrm{MBM} 8818.5 \mathrm{dBd}$	111.35
144-148 M Hz J-SLOTS		
8 over 8 Hor. pol	D8/2M 12.3 dBd	\$63.40
8 by 8 Vert. pol	D8/2M-vert 12.3 dBd	76.95
$8+8$ Twist	$8 \mathrm{CY} / 2 \mathrm{M} \quad 9.5 \mathrm{dBd}$	ask
UHF LOOP YAGIS		
$1250-1350 \mathrm{MHz} 2$	9 loops 1296-LY 20 dBi	\$44.95
$1650-1750 \mathrm{MHz} 2$	9 loops 1691-LY 20 dBi	55.95
Order Loop-Yagi	connector extra:	Type N \$14.95, SMA \$5.95

Send 40 e (2 stamps) for full details of all your VHF 8 UHF equip
ment and KVG crystal product requirements
Type N \$14.95, SMA $\$ 5.95$

table 1. Typical operation tetrode amplifier.

drive power	grid current	screen current	plate current	plate voltage	power output
0	0	0	0.100	2150	0
2.5	0	0	0.260	2010	177
5.0	0	-0.003	0.430	2000	470
10.0	0.002	0.027	0.600	2000	800
filament volts $=6.07$	grid volts $=64$	screen volts $=315$			

table 2. Typical operation triode amplifier.

drive power	grid current	plate current	plate voltage	power output
0	0	0.040	2300	0
2.5	0.002	0.210	2100	140
5.0	0.004	0.300	2050	285
10.0	0.025	0.380	2050	540

filament volts $=6.12$
Note: The triode amplifier may be driven to an output level of $1 \mathrm{~kW}(S S B$)

operation

The $50-\mathrm{MHz}$ amplifiers tune and load in a conventional manner. Make initial adjustments with low drive power. Final adjustment of the grid (or cathode) tuning is made for lowest SWR toward the drive source. Final adjustment of the plate tuning must be done at full power output in order that the load control may be set at its optimum position.

Tables $\mathbf{1}$ and 2 show typical operation of the tetrode and triode amplifiers.

references

[^2]ham radio

In 2 Moters Tocijy..
 coul Teads the Wayd

Man

ICOM has always been the amareur communications equipment industry's leader in 2 meter solid state digifal technology. ICOM continues its established leadership with the all new IC-251A 2 meter multi-mode base rransceiver. ICOM's advanced engineering incorporated a multi-memory system, 2
programmable scanning systems, 2 internal VFOs, and built in repeater offsets.

The New ICOM 251A is the most advanced, flexible 2 meter system on the market, incorporating features customers osk for most:
\square Memon $\mathrm{cc} \rightarrow$ to atically

E 3 memories built in (quick access: to your favorite frequencies)
\square Programmable band scan - scan the whole band, or any portion of it you desire (adjustable scanning speed). Automatically resumes scanning after 16 seconds if desired.
\square Squelch on SSBI The 251A will automatically and silently scan the SSB portion of the band seeking out the SSB activity on 2.
\square Multi-mode operation - USB, LSB, CW, FM. Great for getting inro Oscar, plus eajoying SSB rag chewing as well as repeater operation (including the new subband).
$\square 600 \mathrm{kc}$ Repearer offser built in. Easy repeater operation on the FM portion of the band.
\square Variable repearer split - with the 2 built in VFO's, it's possible to work the odd splits plus accommodate future repeater band plan changes.

The RF amplifier and first mixer circuits using MOS FET's, and other circuits provide excellent Cross Modulation and Intermodulation characteristics. The IC-251A hos excellent sensitivity demanded especially for mobile operation, high stability, and with Crystal Filters having the high shape factors, exceptional selectivity.

International Crystals \& Kits FOR THE EXPERIMENTER

${ }^{5} 7_{\text {ea }}^{80}$
.02\% Calibration Tolerance
EXPERIMENTER CRYSTALS
(HC 6/U Holder)
Cat. No. Specifications
$031300 \quad 3$ to 20 MHz - For use in OF-1L OSC Specify when ordering.
$031310 \quad 20$ to 60 MHz - For use in OF-1H OSC Specity when ordering.

CONDITIONS OF SALE: Sold on a cash basis. Shipping and postage inside U.S. will be prepaid by International ORDERING INSTRUCTIONS: Order by catalog number. Enclose check or money order with your order. FOREIGN ORDERS: Prices quoted for U.S. orders only. Orders for shipment to other countries will be quoted on request. Prices subject to change. Minimum foreign order $\$ 25.00$.

OF-1 OSCILLATOR

The OF-1 oscillator is a resistor/capacitor circuit providing oscillation over a range of frequencies by inserting the desired crystal, 2 to 22 MHz, OF-1 LO, Cat. No. 035108.18 to 60 MHz, OF-1 HI, Cat No. 035109. Specity when ordering

MXX-1 Transistor RF Mixer
MXX-1 Transistor RF Mixer
3 to 20 MHz , Cat. No. 035105 20 to 170 MHz . Cat. No. 035106 $\$ 8.00$ ea.
SAX-1 Transistor RF Amp. 3 to 20 MHz, Cat. No. 035102 20 to 170 MHz . Cat. No. 035103

BAX-1 Broadband Amp
20 Hz to 150 MHz . Cat No. 035107
$\$ 8.00$ ea.

International Crystal Mig. Co., Inc. 10 North Lee, P.O. Box 26330 Oklahoma City, OK 73126

ICommunications Design, Inc. 1504 E. Thompson St. West Memphis, AR 72301 MORSE ONE KEYER lambic Operation for Squeeze Keys Self Completing Dots \& Dashes Adjustable Volume \& Side Tone All CMOS Design
Relay Keying - Fast Acting Reed Keys Any Rig
Sturdy Black Anodized Aluminum Cabinet
Self Contained Power Supply (9 v Battery)
Call Or Write For Free Catalog Of Other CDI Products

		$\checkmark 122$
SYNTHESIZED SIGNAL GENERATOR		
MADE IN USA		

- Covers 100 to 185 MHz in 1 kHz steps with thumb wheel dial • Accuracy 1 part per 10 million al all tre quencies - Internal FM adjustable from 0 to 100 kHz at a 1 kHz rate - Spurs and noise at least 60 dB below catrier \bullet RF output adjustable trom 5.500 mV at 50 ohms • Operates on 12 Vdc @ $1 / 2$ Amp •Avail able for immediate delivery - $\$ 349.95$ plus shipping - Add-on Accessories available to extend trea range, add intinite resolution, voice and sub-audible tones. $A M$, precision 120 dB calibrated attenuator - Call tor details - Dealers wanted worldwide

Custom Mailing Lists on Labels! Amateur Radio Operator NAMES Custom lists compiled to your specifications -Geographic by ZIP and/or State; by Age or Birthdate; by Licence Issue or Expiration Date-on labels of your choice
Total List: $\mathbf{4 1 1 , 0 0 0}$ Price: $\mathbf{\$ 2 5 / T h o u s a n d}$ Call 203: 438-3433 for more information Buckmaster Publishing 70 Fiorida Hill Rd., Ridgefield, CT 06877 $\checkmark 116$

ALL BAND TRAP ANTENNAS:

The New Plus in Mobile Padio

Universal Communications is offering to you Wilson's Citi-Com Plus, the most versatile mobile radio ever designed. This 10 channel VHF synthesized radio is complete with scanning.
It's everything you'll ever need in a 10 channel VHF transceiver. For pricing and more information write or call Universal Communications.

1691 WEATHER FAX DOWNCONVERTER NOW AVAILABLE
 PLEASE CALL OR WRITE FOR DETAILS

KIT 1 \$49.95
SAVE $\mathbf{\$ 1 0 . 0 0}$
DOWNCONVERTER
VARIABLE POWER SUPPLY
CIGAR ANTENNA

SUPERVERTER I assembled only
aysal not included

KIT 2 \$79.95
SAVE $\$ 7.90$
DOWNCONVERTER VARIABLE POWER
SUPPLY
KD 44 DISH ANTENNA

SELECTIVE PREAMPLIFIER . . . $\$ 26.95$
DRIFT MODIFICATION

ASSMBLD SPECIAL $\$ 79.95$

SAVE $\mathbf{\$ 1 0 . 0 0}$

ASSEMBLED
DOWNCONVERTER
.$\$ 39.95$
ASSEMBLED VARIABLE
POWER SUPPLY
$\$ 29.95$
CIGAR ANTENNA $\$ 19.95$

HIGH GAIN TRANSISTOR
KD44 DISH ANTENNA

For Information, Ordering or a Product Brochure contact

UNIVERSAL COMMUNICATIONS
 A DIVISION OF INNOVATIVE LABS, INC.
 P.O. Box 339 - ARLINGTON. TEXAS 76010-0339 - (817) 860-1641 Metro (817) 265-6638

Other trequency conversions available. Specity requirements
2775 Kurtz St., Suite 11, San Diego, CA 92110
\qquad

Food for thought.

Our new Universal Tone Encoder lends its versatility to all tastes. The menu includes all CTCSS, as well as Burst Tones, Touch Tones, and Test Tones. No counter or test equipment required to set frequencyjust dial it in. While traveling, use it on your Amateur transceiver to access tone operated systems, or in your service van to check out your customers" repeaters; also, as a piece of test equipment to modulate your Service Monitor or signal generator. It can even operate off an internal nine volt battery, and is available for one day delivery, backed by our one year warranty

- All tones in Group A and Group B are included
- Output level flat to within 1.5 db over entire range selected.
- Separate level adjust pots and output connections for each tone Group.
- Immune to RF
- Powered by $6-30 \mathrm{vdc}$, unregulated at 8 ma .
- Low impedance, low distortion, adjustable sinewave output, $5 v$ peak-to-peak
- Instant start-up.
- Off position for no tone output
- Reverse polarity protection built-in.

Group A

67.0 XZ	91.5 ZZ	118.82 B	156.75 A
71.9 XA	94.8 ZA	123.03 Z	162.25 B
74.4 WA	97.4 ZB	127.33 A	167.96 Z
77.0 XB	100.01 Z	131.83 B	173.86 A
79.7 SP	103.51 A	136.54 Z	179.96 B
82.5 YZ	107.21 B	141.34 A	186.27 Z
85.4 YA	110.92 Z	146.24 B	192.87 A
88.5 YB	114.82 A	151.45 Z	203.5 MI

- Frequency accuracy, $\pm .1 \mathrm{~Hz}$ maximum $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Frequencies to 250 Hz available on special order
- Continuous tone

Group B

TEST-TONES:	TOUCH-TONES:		BURST TONES:			
600	697	1209	1600	1850	2150	2400
1000	770	1336	1650	1900	2200	2450
1500	852	1477	1700	1950	2250	2500
2175	941	1633	1750	2000	2300	2550
2805			1800	2100	2350	

- Frequency accuracy, $\pm 1 \mathrm{~Hz}$ maximum $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Tone length approximately 300 ms . May be lengthened, shortened or eliminated by changing value of resistor

Model TE-64 \$79.95

COMMUNICATIONS SPECIALISTS

426 West Taft Avenue, Orange, California 92667 (800) 854-0547/California: (714) 998-3021

* CAN BE PHASED WITH PHASING
KIT
(HJ-PHASING KIT)
WITHSTANDS EXTREME WEATHER
CONDITIONS
$\left(-60^{\circ}{ }^{\circ}\right.$ to $+150^{\circ}$ F)
* ONLY ONE MAIN SUPPORT NEEDED
FOR THE SHORTWAVE LISTENER AND HAM OPERATOR
(MADE FOR ANY FREQUENCY BETWEEN 1.7 MHZ AND 148.0 MHZ)
COAXIAL DIPOLE HJ-SERIES

FSK tone generator using an integrated tone dialer

Have you ever thought about redesigning or building an FSK (frequency shift keying) tone generator? If so, you are not alone. How many FSK

fig. 1. Schematic for the FSK tone generator.
generators have you seen that use an integrated circuit? To my knowledge there aren't very many.

Here is an easy way to build a circuit using a TouchTone ${ }^{\text {TM }}$ chip which generates the frequencies needed for FSK. This circuit is connected between the teleprinter and transmitter. There are four main areas in constructing this circuit: the integrated tone dialer chip, switching circuit, filter, and amplifier. See fig. 1.

frequencies

Both frequencies are generated by a Mostek MK 5086N IC chip. Pin 9 is used for space at 1.633 kHz , and pin 5 as mark at 1.47 kHz . A 3.579545 MHz television color-burst crystal is the frequency-determining element for the chip. To simulate keyboard operation, tie pins 14 and 13 to pin 5 and pins 12 and 11 to pin 9 . This makes the Mostek think it is being switched by a keyboard.

Transistors in a switching circuit determine if a space or a mark is sent.

filter and amplifier

An op amp provides a small amount of needed gain. A lowpass filter is used to reduce the harmonic content generated by the Mostek IC chip. This filter can be made by placing a capacitor across pins 2 and 6 of the op amp.

This circuit was constructed by Charles Aron, Ney Vew, and David Nagel at Northern Montana College in Havre, Montana. Special thanks are also given to Lee Barrett; without his time and advice this project would not have been possible.

David Nagel
Havre, Montana

diplexer mods

You can diplex high frequency to go above 28 MHz (refer to N6RY's article on page 71 in the December, 1980, issue of ham radio). By building up the VHF part of the two boxes and changing a couple of the capacitors in the high frequency side of the

capacitive-reactance meter multiplier

Recently I saw a large commercial type 0-150 Vac voltmeter in mint condition - just what I needed for my station control panel to monitor line voltage. However, the external series resistance was missing. Well, the owner sold it to me for $\$ 2.50$, as he admitted it didn't have too much value as it was. I discovered it would need an external 15-watt series resistance of about 1500 ohms. I decided to use a capacitor of the same reactance instead of using a resistance; reactances do not dissipate power and I would save energy.

The calculation for finding the required reactance is:
$C=1,000.000 /(6.28)(f)(X C)$
where f is the line frequency, in this case $60 \mathrm{~Hz}, X c$ is the desired reactance in ohms equal to 1500 ohms, and C is the required capacity in $\mu \mathrm{F}$.

$$
\begin{aligned}
C & =1,000,000 /(6.28)(60)(1500) \\
& =1.77 \mu F
\end{aligned}
$$

The theory and application worked fine. I used a good accurate ac voltmeter as my calibration standard. By paralleling a few small non-electrolytic fixed condensers from my junk box, it was easy to make my meter read the same. The real advantage of using condensers is that the power drain on the line is practically negligible. Naturally, the calibration is good only for the 60 Hz line voltage you are monitoring.

William Vissers, K4KI

fig. 2. The capacitor changes to the N6RY diplexer mods.
boxes, you can operate 10 and 2 or 10 and 220 , or 6 and 2 or 6 and 220 meters at the same time. You can also add 6 or 10 meters to your 2 or 220 repeater by adding a box and an antenna on top and a box and a repeater or remote base on the bottom. All additions use the same feed line. The capacitor changes are shown in fig. 2.

If you have a 6-meter rig and want to go mobile, but can't find a spot to mount another antenna, try a 5/8 wave 2 -meter antenna and check the SWR. If it is low on 6, just add the box between the 6 and 2 -meter rigs and connect it to the same antenna.

Robert McWhorter, K5PFE

simple diode tester

I recently had to check the peak inverse voltage of some surplus diode units. Searching for a suitable device, I decided to use a high-resistance transformer acquired at a flea market sale. This particular unit had a high resistance secondary (over 600 ohms) which precluded its use for service in a power supply unit supplying more than minimal power. This was hooked up as shown (fig. 3), in a simple fullwave doubler circuit, and provides over 1,000 volts dc from a secondary rated 400 volts ac.

There are two methods for checking diodes for PIV. One method is to increase the test voltage until there is $10 \mu \mathrm{~A}$ of reverse current (for a 1 ampere diode) and then to rate the diode at a safe peak inverse voltage of 20 percent lower. The method 1 prefer is to calibrate for a PIV of that value attained when $5 \mu \mathrm{~A}$ of reverse current flows. Either way gives a satisfactory rating for diode breakdown voltage, see fig. 4.

Any multimeter with a basic sensitivity of at least 5,000 ohms per volt can provide the needed test current, since the basic limiting resistance is present in the meter's multiplier resistance. A convenient method of checking voltage at the same setting is to simply short out - with an insulated screwdriver - the terminals across the diode being tested. The highresistance secondary precluded the need for any limiting resistors in the circuit, and the low-capacity filter capacitors cause the output voltage to drop sharply under load, tremendously reducing the hazard of testing with high voltage sources.

Neil Johnson, W2OLU

fig. 3. Simple tester for checking silicon diodes. To test diode, insert in circuit at x, and then raise input voltage from zero. Meter M is any sensitive voltmeter on 1,000 volt scale, having sensitivity of 5,000 ohms per volt or more. Alternate method is to utilize a $0-200$ microammeter and 5 megohms of resistance.

fig. 4. Sample rating chart. Safety is enhanced by limiting current by high impedance supply.

improved logic probe

I was considering buying or building a logic probe to complement my dual channel scope when troubleshooting my homemade microcomputer. The August, 1980, issue of ham radio finally convinced me to build my own version.

The following specs were essential: indication of high-low-open conditions; capture-stretching short-positive or negative pulses; operation at TTL (5 V) and at CMOS ($5-15 \mathrm{~V}$) levels; high and low should be indicated at the specified levels for each logic family and every voltage, that is, 0.8 and 2.5 V for TTL and $1 / 3 \mathrm{~V}_{\mathrm{cc}}$ and $2 / 3$ $V_{c c}$ for CMOS.

I took two ideas from N6UE's article 1 in the August issue on page 38: using the 555 timer and voltage regu-
lation for the display LEDs? I met the requirements of the first, third, and last specs by using National Semiconductors' 339 quad, single supply comparator ${ }^{3}$ | obtained the required reference levels from a voltage dividing network and a switch, which modifies the resistor values to suit TTL-CMOS levels. See fig. 5.

Comparators a and b serve as a window detector, both being high inside the forbidden voltage region, while going low at a high or low input. A low from comparators a and b is used to drive the high (red), and the low (green) LEDs. The negative transitions are differentiated and ORed by the remaining two comparators, and applied to the 555 for stretching. The timer drives the pulse (orange) LED. An LM309 TO-5 voltage regulator
provides protection for the LEDs against voltage rise.

I wired the prototype on a piece of Veroboard. As I lack a PC board production capability at home, I decided to stay with the prototype.
Tests indicate that the probe operates as required up to about 250 kHz square wave input. The minimum captured pulse width is about $4 \mu \mathrm{~s}$. These results are close enough to the specified delay through the comparators to indicate that speed-pulse width limitations could be reduced by using faster comparators.

references

1. R.S. Isenson, N6UE, "Digital Logic Probe," ham radio, August, 1980, page 38.
2. Signetics NE555V data sheet.
3. National Semiconductors LM339A data sheet.
J. Rozenthal

fig. 5. The improved logic probe.

a division of Electronic Emporium, Inc.
2822 North 32nd Street Unit 1

PHILIPS OSCILLOSCOPE
Model PM 3232 SOLID STATE Triggered Dual Beam BANDWIDTH: $0-10 \mathrm{MHZ}$ SENSITIVITY: 2 mV to $50 \mathrm{mV} / \mathrm{cm}$ 0.1 V to $10 \mathrm{~V} / \mathrm{cm}$

SWEEP RANGE: 0.2 us to 50 us 0.1 ms to 50 ms 0.1 sec to 0.5 sec .

10 selections for sweep
A-B Beam selector switches $8 \mathrm{~cm} \times 10 \mathrm{~cm}$ CRT Display PORTABLE MODEL $\$ 499.99$ each LAB MODEL $\$ 309.99$ each

Keying Relay \#M-7470182 type 78CCA101 28vdc coil SPDT Struthers-Durn Inc. $\$ 29.99$

Amphenol \#300-10099
Coax relay 26 vdc coil SPDT type (N) Connectors $\$ 49.99$

Transco \#1460-20 type SA-303U SPDT
28vdc coil type (N)
Connectors $\$ 69.99$
Amphenol \#327-10582-3
26 vdc coil SP3T type
BNC Connectors \$39.99
Magnecraft \#W120X-14
SPDT 100 ohm coil 12vdc
\$29.99
Transco \#16500NAU 12-15
28vdc coil SP3T
type (N) connectors $\$ 59.99$
Amphenol \#323-11506-3
26 vdc coil SP4T
BNC connectors $\$ 59.99$
RF Products \#DK300-11732
Amphenol \#300-11732
26 vdc coil SPDT $\$ 39.99$
Quantatron \#SA-70P10-1 22 to 30 vdc coil SPDT $\$ 39.99$

FXR \#300-11540
Amphenol \#300-11540
26 vdc coil
BNC Connectors \$39.99
Amphenol \#360-11891-48
26 vdc coll SPDT
BNC Connectors \$49.99
Vacuum Relay
Jennings \#RCSA5101A24
10KV 25kw @ 30MHz relay coil 19 to $29 \mathrm{vdc} \$ 139.99$

High Voltage Power Supply Solid State Model LU-15A mfd. by Venus Scientific Inc. output + 15 kvdc @ 300ua (4) 16vdc input © 800ma Focus voltage: +725 v @ 1 ma size $5^{\prime \prime}$ long $\times 3^{\prime \prime}$ deep $\times 13 / 4^{\prime \prime}$ high \$19.95

Lambda Power Supply

Model LXD-3-152R
Dual regulated power supply Input 105 to 132 vac
output 12 to 15 vdc @ 400 ma \$39.99

Pencil type Soldering Iron
30watts 110vac
Model 50B100 \$4.29
Computer Grade Capacitors
2400 mfd (1) 200vdc $\$ 2.00$ 30000 mfd (1) $60 \mathrm{vdc} \$ 1.00$ 22000 mfd (a 25vdc $\$ 1.00$
2100 mfd (1) 200vdc $\$ 2.00$
26000 mfd (a) $30 \mathrm{vdc} \quad \$ 1.00$
900 mfd @ $150 \mathrm{vdc} \quad \$ 2.00$
1800 mfd @ $450 \mathrm{vdc} \quad \$ 9.99$
6200 mfd © $150 \mathrm{vdc} \$ 3.00$
10000 mfd (6) 75vdc

Spectra-Strip
twisted pair wire
24 awg 300V style 1061
Ins. $009^{*} 80^{\circ} \mathrm{C} 1000 \mathrm{ft}$ for $\$ 28.00$
Columbia
22 awg 4 pair shielded
cable, grey jacket
style 2464 part \#91902
1000 ft for $\$ 100.00$
Motorola 3amp 1000piv
Rectifiers 10 for $\$ 1.20$
or 100 for $\$ 8.001000 \mathrm{ft}$ for $\$ 65.00$
Regulators IC
78H05 5V @ 5amps $\$ 3.00$
78H12 12V © 5amps $\$ 4.00$ 78M055V @ $1 / 2 \mathrm{amp} \quad .39$ 79M055V © $1 / 2 \mathrm{amp} .49$ 7808 8V (4) 1amp

AA Nickel Cad Battery Pk
(pack of 2) New \$2.00 ea.
1.2 V per cell 500 mah © cell

Optic Fiber cable
10 ft for $\$ 5.00$ or 100 ft for $\$ 30.00$
IC sockets solder type

8-pin	.07	22 -pin	.16
14-pin	.10	24 -pin	.17
16 -pin	.11	28 -pin	.19
18 -pin	.13	$40-$ pin	.27
$20-$ pin	.14		

IC sockets w/wrap
14-pin $30 \quad 40$-pin .90
16-pin . 35
Dip switches
4 position . 6010 position $\$ 1.60$
7 position . 80
12VDC lamps, 60 ma
$1 / 8^{\prime \prime}$ round $\times 1 / 2^{\prime \prime}$ long
w/12" leads 29 ea.
or 10 for $\$ 2.00$
Electrolytic Caps.
Mallory \#TCG1220U075N3C3P
1200uf 75VDC $\$ 1.39$ ea.
or 4 for $\$ 4.00$

Mallory \#TCG3720040N3L3P 3700uf 40VDC $\$ 1.00$ ea. or 10 for $\$ 8.00$

Nichion \#50ULB150-T
150uf 50VDC . 39 ea.
or 4 for $\$ 1.00$
Mallory \#TCG102U040J2C3P
1000uf 40VDC . 89 ea.
or 3 for $\$ 2.00$
Ayer Eng. \#85CX442U006GLY 4400uf 6VDC . 69 ea .
or 2 for $\$ 1.00$
MEM 631 Dual Gate Diode protected FET vds $=25 \mathrm{~V}$ Id $=30 \mathrm{ma}$ mhos $=800(\mathrm{~min}) .50 \mathrm{ea}$.

Temp. controlled Heating
Plate $4^{\prime \prime} \times 9^{\prime \prime}$ element size
hot plate size $5 \mathrm{~K}^{\prime \prime} \times 10^{\prime \prime}$
120vac (a) 120 watts $\$ 1.99$
Triad F23U 115 vac input
10vct © 7amps output $\$ 8.99$
SCR 25 amps 600 Volts stud mount $\$ 1.50$

Gould Nickel Cadmium Batteries pack of 2 part \#405408
2.4V © 600mah (new) $\$ 3.29$
G.E. Rechargeable Nickel

Battery pack 6 cells
a total of 14.4 vdc (a) 1ah
\#41B001LD5G1 (used) \$7.99
1N4148/1N914 Switching Diodes
30 for $\$ 1.00$ or 120 for $\$ 3.00$
NE/CA55V Timer IC's
.39 ea. or 10 for $\$ 3.00$
Dual Color Led's
.40 ea. or 10 for $\$ 3.29$
Trimpots Thumbwheel type
.30 ea. or 10 for $\$ 2.50$ sold not mixed
100 ohm 20 K ohm 150 ohm $\quad 25 \mathrm{~K} \mathrm{ohm}$ 200 ohm 200K ohm 250 ohm 250K ohm 500 ohm 500 K ohm 1 K ohm $\quad 750 \mathrm{~K}$ ohm 1.5 K ohm $\quad 2 \mathrm{meg}$ ohm 2 K ohm $\quad 2.2 \mathrm{meg}$ ohm 2.5 K ohm $\quad 3 \mathrm{meg}$ ohm 5 K ohm $\quad 5 \mathrm{meg}$ ohm 10 K ohm

5 pin din jack \& plug set 1 male \& 1 female $\$ 1.00 / \mathrm{set}$ or 10 sets for $\$ 6.50$

TO-3 Transistor sockets phenolic type .29 ea. or 6 for $\$ 1.00$

Cable ties \#T-18R 100 per bag mil. spec. \#MS-33685-4 4^{4} " long made by Tytor Corp. $\$ 2.00 / \mathrm{bag}$ of 100 or $10 \mathrm{bags} /$ 1000 for $\$ 15.00$

Triad F74U Transformer input 117vac output 28 vct @ 2amps \& output 28vct @ 2amps $\$ 19.99$

Sclott Corp. \#67069940 input 117vac output 26.8 vct © 800 ma
26.8 vct (3) 800 ma
21.9vct @ 1.1amp $\$ 9.99$

Triad F23U input 115vac
output 10vct @ 7amps $\$ 12.99$
NATA \#30468359 input 117vac
output 25.2 vct (a) 2.8amps $\$ 6.99$
Electro Vectro "E30554 input 117vac output 17v © 1.5amps
output 17 v (7) $1.5 \mathrm{amps} \$ 6.99$
Keystone \#PL-25-10 input 117vac
output 25 vct @ 20va
output 10vct @ 4va $\$ 5.99$
Stancor \#P8657 input 117vac
output 12v © 2amps $\$ 5.99$
Stancor \#P-8720 input 230vac
output 24 vct (9) $85 \mathrm{ma} \$ 2.99$
Plug in the wall \#Pitb-86 input 120vac output 6vac © $10 \mathrm{ma} \$ 2.99$

Plug in the wall \#2-2286 input 120vac output 5.8 vdc @ $125 \mathrm{ma} \$ 2.99$

Plug in the wall \#C-160 input 117vac output 3.6 vdc @ $60 \mathrm{ma} \$ 2.99$

Southern \#EX-1163-T input 110vac or 220vac output 17vct © 1amp $\$ 3.99$

Whistle Activated Switch $\$ 2.50$ ea. or 3 for $\$ 6.00$

IR 3E05 3amp 50piv Rectifier 10 for $\$ 1.00$ or 100 for $\$ 6.00$

4MHZ Crystals HC18/U \$1.00
8MHZ Crystals HC18/U \$1.00 100 KHZ Crystals HC33/U $\$ 3.99$

9Volt Battery Clips 10 for .99
40673 FET N-channel MOS FET
.79 ea. or 10 for $\$ 5.00$
MC6860L 0-600 bps Digital Modem $\$ 4.99$

95H90DC Hi-speed Divide 10/11 Prescaler \$6.00

Touch Tone Pad

This pad contains all electronics to produce standard touch-tone tones. It has an AMI S2559 digital tone. Generator has power Cmos IC. Uses TV crystal, standard (3.58 MHZ) to derive all frequencies thus providing very high mute drivers on chip. Interfaces directly to a standard telephone push-button or calculator type X-4 keyboard. The total harmonic distortion is below industry specification on chip generation of a reference voltage to assure amplitude stability of the dual tones over the operating voltage \& temperature range. Dual tone as well as single tone capability. $\$ 6.99$

Gates Rechargeable Lead Acid Batteries pack of 62 Volt 2.5AH D-Cells
(used) \$7.99

Presenting the Revolutionary

MONGOOSE 2000

\$279.95

200 CHANNEL 10 METER ALL MODE TRANSCEIVER

Specifications

General
Frequency composition PLL synthesizer
Frequency range $\quad 28000 \mathrm{MHz}$ to 30000 MHz
Channels
Frequency
Frequency space
Emission
10 kHz
Fower source AM/FM/USB/LSB/CW
Receiver
Sensitivity
Selectivity
Audio Output
Fine Tune range
Course Iune range
Squeich range
intermediate tie
intermediate treq
Transmitter
RF power output
AM - 1 micro. V (e $10 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$
FM - 1 micro V (a) $20 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$
FM - 1 microV a $20 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ $\mathrm{SSB} / \mathrm{CW}-05$ micto V (620 $20 \mathrm{~dB} 5 / \mathrm{N}$
50 dB 60 cg
2 W (it 8 Omm
$\pm 800 \mathrm{~Hz}$
$\pm 5 \mathrm{kHz}$
0.5 to 300 micio-V
$\mathrm{AM} / \mathrm{FM}-10695 \mathrm{MH} / 255 \mathrm{kHz}$ $\mathrm{SSB} / \mathrm{CW}-10695 \mathrm{MHz}$
\qquad
SSB generation

	High	Mid	Low
SSB $/ \mathrm{CW}$	12 W	8 W	2 W
AM	75 W	4 W	1 W
FM	10 W	7 W	2 W
Double - Datanced modulator with crystal			
Lathice furter			
+5 kHz			

Coarse tune range lattice filter
+5 kHz

Make Check or Money Order payable to: COININTL, INC.
2305 N. W. 107th Avenue, Miami Free Trade Zone Miami, FL 33172 • (305) 593-9300 VISA \& MASTER CARD ACCEPTED. Florida Residents please add 5% sales tax. Allow $6-8$ weeks tor delivery. 121

ATTENTION RADIO HOBBYISTS!

free electricity

 FROM SUNLICHT!

Solar electricity is here, and it can power everything from a portable radio to a complete Amateur station.
Solarex, the nations pioneer in practical photovoltaics, has a SOLAR WONDERBOOK catalog filled with p-v panels, mini-panels, batteries, ancillary equipment. 12-volt tools, scientific education items, books, and much more
Here's everything you need to add an exciting new dimension to your do-it-yourself projects. To get your WONDERBOOK, send $\$ 3$ (refunded on your first $\$ 15+$ order) to

ENERGY SCIENCES

Dept. 533, 832 Rockville Pike Rockville, MD 20852

The Interface

 Software Available for Six ComputersThe versatility of the personal com puter gives you a whole new world with the Kantronics Interface ** and Hamsoft ${ }^{* *}$ or Hamtext ${ }^{* *}$. The Interface ${ }^{*}$ connects to any of six popular computers with Hamsoft * or Hamtext ${ }^{\text {" }}$ giving you the ability to send and receive CW/RTTY/ASCII. An active filter and ten segment LED bargraph make tuning fast and easy. All programs, except Apple, are on program boards that plug directly into the computer.

Hamsoft'* Features

Split Screen Display
1026 Character Type Ahead Buffer
10 Message Ports-255 Characters each
Status Display
CW-ID from Keyboard
Centronics Type Printer Compatibility
CW send/receive 5-99 WPM
RTTY send/receive 60, 67, 75, 100 WPM
ASCII send/receive 110, 300 Baud

Hamtext ${ }^{\text {', }}$, our new program, is avail. able for the VIC-20 and Commodore 64, with all the features of Hamsoft ${ }^{\prime \prime}$ plus the ability to save received information to disc or tape, variable buffer sizes, VIC printer compatibility, and much more. Our combination of hardware and software gives you the system you want, with computer versatility, at a reasonable price.

Hamsoft'" Prices

Apple Diskette	$\$ 29.00$
Atari Board	$\$ 49.95$
VIC-20 Board	$\$ 49.95$
TRS-80C Board	$\$ 59.95$
TI-99 Board	$\$ 99.95$

Hamtext'* Prices

VIC-20 Board $\$ 99.95$
Commodore 64 Board
$\$ 99.95$

Suggested Retail \$169.95
For more information contact your local Kantronics Dealer or: Kantronics 1202 E. 23rd Street Lawrence, KS 66044

ค 147

TIDBITS
MORSE CODE, BREAKING THE SARRIER

by Phil Anderson, WGXI

Learning the Morse Code does not have to be the painful experience many tolks make it out to be. This little booklet is chockfull of helpful and highly recommended hints and tips on how to learn the Morse Code. Uses the high/low method to eliminate the dreaded 10 wpm plateau. (c) 1982, 1st edition.
PA-MC Softbound $\$ 1.50$ each Please add $\$ 1.00$ for shipping and handing. HAM RADIO'S BOOKSTORE Greenville, NH 03048

spring $D X$

The powerful DX months (around the equinox) are here for us to try again. Over the years March and April have provided excellent 6 -meter openings on transequatorial (TE) paths. Using 6 -meter openings as a criterion for the higher-frequencyband DX, last year didn't have as many openings as 1981, but the opening on March 4 was acclaimed the best in years in Westlink Report. The March 4 opening was a period of high solar flux and geomagnetic disturbance, which probably influenced the TE (one-long-hop) propagation. April was also roaring with TE openings from the southern U.S. to South Africa, South America, New Zealand, and Australia. The other openings in April were not so pronounced, as the solar flux was lower. However, four large disturbances (April 2, 11, 25, and 29) and two smaller disturbances (April 17 and 21) increased the ionization near the geomagnetic equator for high maximum-usable frequencies for TE.
This year's 6-meter openings may be fewer in number since we are already near the half-way point on the down-side of cycle 21. The sunspot number should be about 75 (123 flux units). The second maximum 1981-82-83) period of geomagnetic-ionospheric disturbance in cycle 21 is expected to be the dominating factor for openings this year. These disturbed periods during April are expected around the 5th, 15th, and 23 rd . The latter is the longer recurrent type (see February, 1982 DX Forecaster).

last minute forecast

The higher segment of the h-f bands ($6-30$ meters) will probably be
best during the middle of the month. Watch for the high radio flux and disturbance numbers from WWV at 18 minutes after the hour. On the lower bands ($30-160$ meters); night DX will be best during the first and last weeks of the month, particularly in-between the springtime frontal thunderstorms when ORN should be low. Your favorite TV weather forecaster will show these fronts moving across your QTH.

The perigee of the moon's orbit (for moon-bounce DX) is on the 21st at 2100 hours; the moon will be at full phase on the 27th at 0631 hours. There will be a short meteor shower, the Lyrid, on April 20-22. The rate is five per hour, hardly a real help for meteor-scatter DX. But a bigger shower, the Aquarid, starts before the end of the month, peaks on May 5 , and ends by mid-May. Its rate is 10 to 30 per hour.

band-by-band forecast

Six meters may provide occasional band openings with a peak during the late afternoon hours. Transequatorial north/south paths will be the best. Your guide to good conditions are strong openings on 10 meters with high values of solar flux and A and K geomagnetic indices.

Ten and fifteen meters will be open to many areas of the world from morning until early evening hours most days. Times of geomagnetic disturbances will limit the number of signals heard, but listen carefully - they can be from very unusual places. Fifteen meters should stay open later in the day than 10 meters. Operate 10 first and move down to 15. More hours of daylight means earlier band openings and longer periods of operation.

Twenty meters will be the main daytime DX bands, as it is almost always open to some part of the world. It opens to the east as the sun rises and extends into the late evening hours to the west. Geomagnetic disturbances do not affect this band as much as the higher ones, but look for unusual transequatorial DX propagation once in a while. One-hop transequatorial DX of 5,000 to 7,000 miles (8,000 to $11,200 \mathrm{~km}$) may be possible in the late evening hours during some of these unusual conditions.

Thirty meters is a day and night band. The day portion should be like 20 meters except the signal strengths may decrease during midday on some days. Days of decreasing strength should be those with high solar flux values. This band will also work well into the night, often through the night. Nights this doesn't hold true will most likely follow a day with a very high solar flux value. The problem time is usually the hour or so before dawn. The workable distance may be expected to be greater than 80 DX at night and less than 20 during the day.

Forty and eighty meters will exhibit short skip conditions during daylight hours and lengthen after dark. The bands will open to the east just before your sunset, swing more to the south toward Latin America about midnight, and end up in Pacific areas during the hour or so before dawn. On some nights these bands will be as good as during the winter DX season. The coastal regions usually have the edge for working rare DX on these bands.

One-sixty meters will probably bring many nights that will remind you of last summer's noise. However, many good nights are left for working DX before this summer's noise comes to stay. Propagation on 160 meters will approximate a shortened 80 -meter condition.

ham radio

[^3]

IL	8	${ }^{\text {g }}$					\％											$\overline{8}$		8	8	\％	8		8				
	G		G		ज	G 0_{0}	V			11	11	11	11	11		11	1	11		\bigcirc	哴	ज	7	ज	¢				
Europe	N	$\stackrel{N}{*}$	N		\％	$\stackrel{\sim}{0}$	O\％				11	11	11	11	1	1	1 a	B		O	\bigcirc	\％	\％	\％	\％	${ }^{\circ}$			
afeica	ज	ज	ज		ज	－	¢5	U			0		1			\％	¢	\bigcirc		－	N	\sim	\bigcirc		心				
MuE	\％		$\stackrel{\square}{\circ}$		－	5	5	$\stackrel{7}{7}$			\％$¢$	01	11			\％	－	\％	\sim	¢	ज	¢	ธ						
antaberica	cicticher	ज	G佰		ज	1	11	1				11	1 1	${ }^{1}$	\％	\％	\bigcirc	\bigcirc	O	\％	G	$\stackrel{\square}{5}$	\％	G					
newzeatano	\square	＇	－		5 ¢	ज	ज	I					\％	\％ 2	\％	访宁	G	－		$\stackrel{5}{5}$	－	¢	¢	¢					
	\bigcirc	¢	5		ज）		ज	1	1	11	12	2	02	\％	\％	\％	5	¢		¢	－	－	－		－	$\left\{\begin{array}{l} 1= \\ >=2 \end{array}\right.$			
japan	5		5		ज		1						11	12	N	\％	V	\％		v	¢	is	ज	5	b				
	है	8				${ }_{8}^{8}$	8											$\stackrel{\rightharpoonup}{8}{ }^{\text {g }}$		8	8	8	\％		8	，			
Aabast	1	1	11		11	\％	\％\％			0	\bigcirc	$\bigcirc 1$	11							1	O	二	¢	G		$\rightarrow 2$			
Europe	G	ज	ज		v	í	í				N 1	11	11			\％ 2	${ }^{\circ}$	\％	\％	\％	\％	\sim	\sim	\％		入			
Saflca	ir	i	ज		\bigcirc	－	－6	i	G	O	01	11	11	11	18	\％	\bigcirc	\bigcirc	－	$\stackrel{\omega}{\circ}$	－	\％	ज	G	$\stackrel{\square}{1}$	$\downarrow^{\prime \prime}$			
amenca	－	¢	－	－	5 －	－5	55	－	O	ज	जै	㐾	¢	11		\％ 2	\％	\％	乞	ज	ज	ज	－	－	－	－			
antactica	$\stackrel{\sim}{\square}$		¢		i		1	1	1	11	11	11	11	12	0	\％ 0	\sim	\bigcirc	$\stackrel{\sim}{0}$	\％	N		G	穴	G	$\sim \infty$			
newzeatano	$\stackrel{\circ}{\circ}$	\bigcirc	－		\％＇	ज	拧的	1	1	11	11		11	1	\sim	\sim	\sim	\％	ज	ज	ज	$\stackrel{\square}{\circ}$	－	－	－				
Oceana	$\stackrel{\rightharpoonup}{\circ}$	5	5 b		G	ज	ज）				11	11	11	11	1	\％ 0	\bigcirc	\bigcirc	\％	＇s	G	ज	－	－	5	$i=$			
uapan	$\stackrel{\rightharpoonup}{6}$				\checkmark	1	11											\sim		0	ज		ज			ノ交			
	8	8	8		8 8	8	8				88	\％ 8	8	8		88	8	${ }_{8}^{88}$		言	\％	8	8		18	$\stackrel{\square}{\square}$			
	8	8	88		8	8	88						8				8	8		${ }_{8}$	8	$\frac{8}{8}$	8			$\underline{\underline{g}}$			
	$\widetilde{\sim}$	\sim	O				18			\bigcirc	01	11	11						$\stackrel{\circ}{\circ}$	\％	\％	ज	ज		$\stackrel{\square}{0}$	$\overrightarrow{\rightarrow z}$			
Eveope	\％	\％	0		G	in	访它	促	He	\cdots	＇	ज1 1	11	1	11	15	¢	\％	O	B	B	－	\％	\％	0				
Manca	i	ज	ज		5	－	¢ 5	－	ir	勺	ज1	11	11	11	11	1 \％	－＇	ज	ज	－	W				ज	$\begin{aligned} & 10 \\ & 6 m \end{aligned}$			
CARIBBEAN S．AMERICA	－	¢	b 5		－	¢	¢ 6	－	\bigcirc	51	11	1	ज	ज	\％	80	3	\％	ज	$\stackrel{\sim}{4}$	G	\checkmark	，	b	－				
Tractican	ज	ज	ज		\cdots	ज	¢1	1	1	11	11	11	11	11	1	\bigcirc	－	－	$\stackrel{\sim}{\circ}$	0	\bigcirc	N	－	\％	－				
uzeauno	$\stackrel{\circ}{\circ}$	\bigcirc	－	¢	O	\％	N0\％						11	11		\％\％	L	\because	¢	＇	G	ज	¢						
cemin	5	5	5 －		－	ज＇	ज＇	促								\％	$\stackrel{\circ}{\circ}$	－		\％	－	－			－ $1=$				
an			ज				1													\％									

＊Look at next higher band for possible openings．

NCG WORLD BAND COMMUNICATIONS

15M
Tested and Proven 15 Meter Mobile Transceiver USB and CW
Power-High 10 watts, Low 2 watts
VFO Tuning. Noise Blanker
Fine Tune $\pm 1 \mathrm{kHz}$
Digital Frequency Counter
13.8 VCD @ 3A Neg. Ground
$9.5^{\prime \prime} \mathrm{L} \times 9^{\prime \prime} \mathrm{W} \times 2.5^{\prime \prime} \mathrm{H}$
All this PLUS the freedom of DXing
Regular Price: $\$ 305.00$
SPECIAL PRICE: NOW \$279.00
FREE 15 Meter Anixter Mark Antenna with factory direct purchase from this ad
Order Direct - or from your local dealer
Just

Slightly Ahead

160/10M
ALL NEW. with the features you have been waiting for HF 160-10 meters SOLID STATE Transceiver 200 watt PEP All 9 HF Bands ready to go
AC/DC Power supply built in
3-Step Tuning 1 kHz/ $100 \mathrm{~Hz} / 25 \mathrm{~Hz}$
4 memories. Auto Scan
Automatic Up/Down Tuning Advanced Systems
Dual VFO. Solid State-Adjustment Free. If Tuning. IF Offset
Noise Blanker, Mic. Compressor
V0X, CW Side tone. AC 120V DC 13.8 RTTY-Fax operation USB-LSB CW (Narrow CW filter optional).
Regular Price: $\$ 1075.00$
SPECIAL PRICE: NOW \$949.50

1275 North Grove Street Anaheim, CA 92806

Mail Order COD

SPEAKER QUALITY IS THE PRIMARY KEY TO YOUR STEREO SYSTEM'S SOUND

And speakers are easy to make-and very difficult to design. Speaker Builder, a new quarterly from the publishers of Audio Amateur, has all the design answers you novice-to-experts need to dramatically improve the quality of sound you're getting from your stereo system. The drivers are relatively cheap and the sources for them are all listed in Speaker Builder's pages. As an experienced ham, you probably know your way around your audio system already. Here's an easy way to make what you have sound a whole lot better at minimum cost.
Speaker Builder can save up to two thirds of the cost of the speakers-which translates to almost one third of your outlay for your stereo system. Over 110,000 Americans will build their own enclosures this year-and you can too! Your dream speaker is probably well within reach if you build it yourself. There's a lot of help around already and now, Speaker Builder brings it all together in an assortment of articles that are comprehensive and a mix of both simple and advanced projects to help you choose and build the best type for your listening room.
\star Bass Reflex $\quad \star$ Horns
\star Electrostatics \quad * Transmission Lines
\star Infinite Baffle
\star Specials: Ribbon, Air motion transformers
\star Basic data on passive and electronic crossovers.
There will be reports on building the many kit speakers and enclosures now available, and a roundup of suppliers for drivers, parts, and kits. Articles range from the ultimate (650 lbs . each) to tiny plastic pipe extension speakers. From time delayed multi-satellites to horn loaded subwoofers, as well as modifications of many stock designs.

SPEAKER BUILDER, P.O. Box 494H, Peterborough NH 03458.0494 USA
Enter my subscription to SPEAKER BUILDER for one year at the special rate of $\$ 10.00$.
\square Make that a two year subscription at $\$ 18.00$.
$\begin{array}{ll}\square \text { Check enclosed } & \square \text { Charge to my } \\ \# \\ \text { Expire } & \square \text { MasterCard }\end{array}$
Street \& No.
Town \qquad State ZIP
I understand that the unexpired portion of my subscription will be refunded after my first issue if the magazine is unsatisfactory for any reason. Make checks and money orders payable to Speaker Builder. Rates above are for USA only. Outside USA add $\$ 200$ per year
for postage. Non U.S. checks must be drawn in U.S. currency only.

STEREO CODE TAPES?

Don't laugh
It's about time.....code tapes that are fun to listen to, anywhere! Improve your code skills, in days, with these new Stereo Code Cassettes. Whether you are learning the code, or preparing to upgrade for a higher ticket, we have a RADIO SCHOOL course for you
In the car, practice with both channels turned on. You will hear the code, and voice answers, over your stereo system.
At home or work, practice with a pencil by turning off the voice channel and writing down the text.

Practice your sending by turning down the code channel and keying the letters after the voice command.

On regular monaural tape players, both channels play in equal volume.
Gordon West, WB6NOA, has trained thousands of students in his college classes with this method. These stereo tapes are now available nationally by popular demand.
Let's face it, most code tapes are tedious and dull. These are fun! They contain typical FCC type texts, and adhere exactly to FCC recommended code speed ratios and tone. When you take the ultimate code test from the new volunteer examiners, there will be no surprises.
By the way, RADIO SCHOOL produces volunteer examiner code test tapes too!
$\square \quad$ Learning Code in Stereo
4 @ $11 / 2$ hour stereo cassettes for learning the code to 6 WPM.

- General Class Code Course
$4 @ 1 / 2$ hour stereo tapes for $6-13$ WPM code speed increase plus practical FCC type tests.
\square XTAA Class Code Course
4 @ $11 / 2$ hour stereo cassettes for $13-20$ WPM speed increase plus practical FCC type tests.
- Volunteer Examiner's Code Course

4 @ $11 / 2$ hour stereo tapes for volunteer examiners to test 5 WPM, 10 WPM, 13WPM, and 20WPM speed skills.

Each course is $\$ 39.95$ from local dealers or from RADIO SCHOOL
Write for the RADIO SCHOOL Catalog of Code \& Theory Courses. Dealer, club and instructor quantity inquiries invited. Write:
hadio school, inc. 2414 College Drive, Costa Mesa, CA 92626, (714) 549-5000

REVIEW:

Daiwa CN520 SWR and power meter

About the only time we had a chance to use a dual needle SWR meter was when we used the TMC transmitter at W1AW. That was, until MCM Idistributors for selected Daiwa products), sent us their CN520 SWR and power meter.

The Daiwa meter comes in four different models: the CN150 for $1.8-60 \mathrm{MHz} \mathrm{20/200}$ watts, the CN520 for $1.8-60 \mathrm{MHz} 200 / 2 \mathrm{~kW}$, the CN530 for $50-150 \mathrm{MHz} 20 / 200$ watts, and the CN540 for $140-250 \mathrm{MHz} 20 / 200$ watts. Each of these units measures just 2.83×2.83 $\times 3.62$ inches ($72 \times 72 \times 96 \mathrm{~mm}$) and weighs less than a pound. Rf connectors on each are SO-239 and accuracy is listed at ± 10 percent.

Installing the SWR bridge is a matter of connecting it in-line between your transmitter and load. Setting the meter to the correct power position ensures that you will get an accurate SWR reading.' Two needies are used to measure SWR: the left needle measures forward power, the right needle measures reflected power. The point at which the two needles cross is the SWR reading. SWR is clearly marked on the meter face by a series of red lines. This is quite handy and allows the operator toknow instantly how well hisline is matched between transmitter and antenna.

The meter case has two brackets on the side for possible use as a mobile or remote mount.

This is a nice meter. When compared to a lab-type meter, its accuracy is quite good, well within the rated specifications. We find the CN520 to be a breeze to use and a very valuable addition to our ham shack. In fact, after using the dual reading meter it is very hard to use any other kind of unit.

Price is $\$ 69.95$ retail. For more information, contact your local dealer or MCM direct at 858 E. Congress Park Drive, Centerville, Ohio 45449. Reader Service Number 301.

N 1 ACH

slow-scan TV system

Commsoft has developed PhotoCaster ${ }^{\text {TM }}$, a slow-scan television system for the Apple II computer. PhotoCaster provides an easy way for hams who own Apple computers to get started on SSTV with a full-featured black and white and color system. PhotoCaster includes a circuit board to interface an Apple to a TV camera and a receiver/transmitter, plus a twodisk software package.

PhotoCaster can also add titles and graphics, create video special effects, enhance images, retrieve and store pictures on disk, and print high resolution pictures with an MX-80 printer,

Black and white pictures are processed with a resolution of 128 by 128 pixels and sixteen levels of gray. In the color mode, eight colors are available with sixteen saturation levels. Color pictures are taken with an unmodified black and white TV camera using a three-frame RGB sequence. Standard RGB transmission formats are available in addition to a unique Apple-toApple single-frame color mode which takes eight instead of the usual twenty-four (or more) seconds to transmit a color picture.

PhotoCaster requires an Apple II or Apple II Plus computer with 48 K RAM and one disk drive. The price of the PhotoCaster is $\$ 499.95$ for the basic system, including an assembled and tested circuit board and software. A com-

plete system, consisting of a Panasonic WV1400 camera, board and software, is available for $\$ 749.95$.

For more information, contact Commsoft, Inc., 665 Maybell Avenue, Palo Alto, California 94306. Reader Service Number 302.

radio teletype and CW

With the Super-Ratt radio teletype and CW program for the Apple II, you can have your own Radio Bulletin Board System (RBBS) station on-line quickly and easily.

The program will operate in ASCII as well as Baudot at any speed from 40 to 300 baud. CW speeds range from 5 to 100 WPM, with an automatic speed adjust on receive.

The program may be run in either manual or RBBS modes. Extensive use of disk files permits storage of canned material for manual operation. In the RBBS mode, the system automatically saves nearly one hundred user messages to the disk. There are thirty-five different, simple English word commands on the RBBS.

Almost any modern terminal unit or converter can be used with Super-Ratt, as well as devices such as the RADCOM card by AF6W. The program is not protected against copying. The BASIC portion may be listed and modified to suit your tastes. (The registered owner's call is installed in the machine code by the factory.)

A free one-year subscription to the user newsletter, The Ratt's Nest, is included in the purchase price of $\$ 54.95$. For more information, contact Universal Software Systems, Inc., 9 Shields Lane, Ridgefield, Connecticut 06877. Reader Service Number 303.

helical resonator amplifiers

Hamtronics, Inc., has developed a new line of low-noise receiver preamps with helical resonator filters built in. The HRA-144, HRA-220, and HRA-432 units cover the three major VHF and UHF ham bands. The combination of a low-noise amplifier and the sharp selectivity of a three or four section helical resonator increases receiver sensitivity and reduces crossband interference. The unit has a low 0.6 to 0.95 dB noise figure and 50 to 60 dB rejection of any signals out of the ham band.

The amplifier circuit uses some of the new microwave transistors developed for satellite TV service. Nominal gain is 26 dB on 2 meters, 22 dB on 220 MHz , and 16 dB on 420.450 MHz . A three-section helical resonator is used in the output circuit of the VHF units, a four-section resonator is used in the UHF unit. The VHF unit is only $11 / 2 \times 3$ inches, and the UHF unit is only $21 / 2 \times 3$ inches.

The HRA-144 or HRA-220 costs $\$ 49.95$, and the HRA-432 is $\$ 54.95$.

For further information contact Hamtronics, Inc., 65 Moul Road, Hilton, New York 14468 9535. Reader Service Number 304.

Ameco multimeters

Ameco Equipment Company announces preliminary specifications of its new line of Ameco multimeters. Multimeter Model M-300 (available immediately) features highly sensitive 20 K ohms/Vdc and 10 K ohms/Vac; gold-
plated switching contacts; overload protection by diodes and fuse; and carrying handle that can be used as adjustable stand.
Ranges for dc voltage: $0-0.25,1,2.5,10,25$, $100,250,1000 \mathrm{~V}$; ac voltage: $0-10,25,100$, $250,1000 \mathrm{~V}$; dc current: $0-50,500 \mu \mathrm{~A}, 5,50$, 500 mA ; resistance: 0.6 K ohms, 60 K ohms, 600 K ohms, 6 M ohms. Volume level: -22 dB to +22 dB to +62 dB in five ranges. Size and weight: 5.5 inches high $\times 4.3$ inches wide \times 1.6 inches deep.

Model M-300 is a high quality, highly sensitive, laboratory-type instrument. Its large, easy-to-read scale and excellent damping are usually found only in expensive meters. Parallax errots are eliminated by a mirror arc. This meter comes complete with battery, spare fuse, test leads, and instruction manual. Model M-300, completely wired and tested, $\$ 28.95$.

Ameco LCD digital multimeter, Model D-200, features high-contrast, large $1 / 2$ inch. 3-1/2 digit LCD display; automatic polarity;

automatic zero adjustment; over-range indication on all ranges; low-battery indication; full overload protection; , 10 -megohm input impedance; rugged anti-slip case with stand.
Ranges for dc voltage: $0.200 \mathrm{mV}, 2 \mathrm{~V}, 20 \mathrm{~V}$, 200 V , and $1,000 \mathrm{~V}$; ac voltage: $0-200 \mathrm{~V}$, and 750 V ; dc current: $0-200 \mu \mathrm{~A}, 2 \mathrm{~mA}, 20 \mathrm{~mA}, 200$ mA , and 10 A ; resistance: $0-200$ ohms, 2 K ohms, 20 K ohms, 200 K ohms, 2000 K ohms, and 20 M ohms. Size and weight: 7 inches high $\times 2.7$ inches wide $\times 1.6$ inches deep.
The latest IC and display technology insure reliability, accuracy, and stability. Dual slope integration provides fast, accurate, noise-free measurements. The same two jacks are used for all functions and ranges (except 10A dc). Model D-200 comes complete with battery. spare fuse, test probes, instruction manual, and an optional carrying case. Model D-200, completely wired and tested, \$69.95; optional carrying case, \$3.75.

For further information, contact Ameco Equipment Company, 275 Hillside Avenue, Williston Park, Long Island, New York 11596. Reader Service Number 305.

RT-1100 receive terminal

DGM Electronics has just introduced the RT-1100 Receive Terminal for Baudot, ASCII, and Morse. The RT-1100 converts the audio from your receiver, decodes it, and displays the words on a video monitor or TV set (using if modulator). The RT-1100 incorporates an active filter demodulator with scope tuning outputs. It will copy $170,425,850 \mathrm{~Hz}$ shift RTTY signals at speeds of $60,66,75$, and 100 WPM on Baudot and 110 baud on ASCII. The unit will copy $6-60$ wpm Morse signals using automatic or manual speed tracking.

The RT-1100 has a parallel ASCII printer output for hard copy. The video output provides sixteen lines of thirty-two characters per line with two pages. The second page is stored in memory and can be recalled by using the page $1-2$ switch on the front panel. The unit has a built-in 110 Vac power supply and is housed in an attractive $3 \times 10 \times 10$-inch case with brushed, anodized front and rear panels. The cover is a grey wrinkle finish. The unit comes with a one-year warranty on parts and labor.

For more information, contact DGM Electronics, Inc., 787 Briar Lane, Beloit, Wisconsin 53511. Reader Service Number 306.

encoder with ultra thin keyboard

Midian Electronics, Inc., has introduced the TTE-1 TouchTone ${ }^{\text {TM }}$ encoder with ultra-thin keyboard. The unit features the thinnest available keyboard/DTMF encoder assembly with automatic PTT and side tone. The keyboard mounts virtually flush on a flat surface. DTMF encoder on the back of the keyboard fits into a $1 \times 1-1 / 2$ inch hole for flush mounting. It produces digitally synthesized tones for accuracy and stability with adjustable audio output level and generates twelve standard Bell System TouchTones. Options include keyboard only, without encoder, and LED indicating when automatic PTT is activated.

For more information, contact Midian Electronics, Inc., 5907 East Pima Street, Tucson, Arizona 85712. Reader Service Number 307.

interchangeable antennas

Antenna Incorporated has recently introduced a complete line of interchangeable antennas for use on hand held transceivers and scanners. The Portasuader antennas let the user replace only the radiator section of the antenna while continually reusing the mountingadapter fitting for the transceiver. The radiators are all internal threaded (No. 10-32) to accept the male thread of the interchangeable mounting adapter. The outer portion of the

PB RADIO

1950 E. Park Row Arlington, Texas 76010 SPECIALIZING IN:
 MDS Receivers \& UHF Decoders

MDS COMPLETE COMMERCIAL UNIT $\$ 169.95$
MDS SLOTTED ARRAY ANTENNA KIT. $\$ 25.00$
MDS DOWN CONVERTER KIT. $\$ 28.50$
MDS COMPLETE POWER SUPPLY $\$ 35.00$
*SPECIAL NE64535 TRANSISTORS $\$ 6.50$
UHF DECODERS: FV 3 INSTRUCTIONS $\$ 5.00$
FV 3 BOARD $\$ 30.00$ FV 3 IC CHIP KIT $\$ 50.00$
ZENITH 9-151-03 TUNER $\$ 79.95$
BOX \$19.95 DELUXE BOX $\$ 24.95$
POWER SUPPLY KIT $\$ 24.95$
EDGE CONNECTORS \$2.95

SATELLITE T.V. SYSTEMS: PRODELIN DISHES, DEXCEL RECEIVERS, LNA'S \& CHAPARRAL POLOROTORS. SEND $\$ 1.00$ FOR MORE INFORMATION.

Your Ham Tube

 Headquarters!

TOP BRAND Popular Receiving Tube Types FACTORY BOXED $75 / 80 \%$ OFF LIST FREE LIST Available
Includes full line of RF Power Transistors. Minimum Order \$25
Allow $\$ 3.00$ Minimum for UPS Charges Write or phone for free catalog. TUBES-BOUGHT, SOLD AND TRADED

Premium Prices
Paid
For EIMAC Tubes
COMMUNICATIONS, Inc. 2115 Avenue X Brooklyn, NY 11235
Phone (212) 646.6300

products
socket is etched with the frequency range for that particular radiator. Ten mounts are available to be used with the five different radiator styles

The short 8 -inch whips for 25.54 MHz incor porate a wire-wound base-loading coil and heli-cal-style radiator in six different frequency steps. Tuning has been eliminated and fragile temperature-sensitive ferrite cores have also been eliminated. A distinct feature is the antenna length which is less than 8 -inches long, measured from mount to tip. In the 118-174 MHz frequencies, Portasuaders are available in standard tuned helical units, extra-fat helical units and $1 / 4$-wavelength stainless steel whips incorporating a spring section. The advantage of the fat Portasuader is its shorter length (about 2 inches shorter than helical). A secondary benefit in using the fat antenna is its lower Q , broadening the resonance curve and thus achieving a better match over the frequency range.

Also available is a $1 / 4$-wavelength 0.046 inch diameter 17-7PH stainless steel whip incorporating a novel spring construction above the base fitting. This spring allows the whip assembly to bend when the user sits down with his radio attached to his belt. The $1 / 4$-wavelength Portasuader was designed to replace the telescopic antennas, which bend or break or simply do not telescope properly. As a further advantage, the $1 / 4$-wavelength Portasuader antennas exhibit a practical 10 dB gain over the helical or fat helical antennas.

The frequency range is covered in seven frequency steps, thus again removing the need for field tuning. UHF stubby helical whips and $1 / 4$-wavelength speedometer cable antennas are available as radiators in five frequency ranges between $406-512 \mathrm{MHz}$. An 800 MHz $1 / 4$-wavelength speedometer cable antenna is currently available.

These Portasuaders are constructed from heavy copper-plated springsteel that isscrewed onto the base fitting and then soldered to ensure electrical contact. Both helical and speedometer styles are insulated by coating in a multi-stage process. The special process guarantees a solid section of material with minimum voids and high finish gloss. The coating is designed to remain flexible, retain its resilience at -40 degrees F and not to soften at 200 degrees F.

For further information, contact Randy Friedberg, Vice President, Antenna Incorporated, 26301 Richmond Road, Cleveland, Ohio 44146. Reader Service Number 308.

high resolution SSTV converter

High resolution slow scan television (SSTV) is available with the Videoscan 1000 by Microcraft Corporation. The unit is completely compatible with.Amateur-standard SSTV and firstgeneration equipment. Videoscan can convey high-resolution eight-second, 128 -line SSTV pictures to first generation scan converters using current standards. In two separate high resolution modes, the TV picture uses the full 256 TV lines and 256 picture elements (pixels) per line, resulting in pictures that rival commercial TV quality. The pixels are quantized to 64 levels of gray, four times better than first generation units. No contouring (false edges) is introducedto detract from the picture.

Some features of Videoscan are: Splitmode, a special mode that enables viewing four regular 8.5 -second SSTV pictures at one

time on the TV monitor as they are received; Stop motion, a single frame of video may be grabbed into memory from a TV camera manually or automatically, thus stopping motion; Cursor, a cursor dot appears on the screen to indicate the current line being transmitted; Gray scale, Call Sign, mode selector activates a gray scale and optional call sign which are superimposed on the picture in memory; Station switching, all necessary switching between transmitter, microphone, and tape recorder is included in Videoscan.

Microcraft is presently working on a computer input/output port and a color conversion of the Videoscan 1000.

PERFORMANCE VERSATILITY

CONVENIENCE

The HAL ST6000 has them all:

- performance to copy the weak and distorted signal
- versatility to match a variety of I/O interfaces
- convenience for simple but accurate operator use All this at half the price of comparable-performance units.

PERFORMANCE:

- Optimized active input, discriminator, and low-pass filters.
- Crystal tone keyers match discriminator filters.
- Hard-limiting FM or AM types of operation.

VERSATILITY:

- Interface current loop circuits; built-in loop supply.
- RS-232C and MIL-188 data I/O connections.
- CMOS pre- and post-autostart data I/O data connections.
- Available for low, high, marine-compatible, and special tones.

CONVENIENCE:

- Hard-limiting operation for simple but effective operation.
- Tuning oscilloscope for precise receiver tuning.
- ATC, DTH, KOS, autostart, and antispace features.
- Operate $120 / 220 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$; table or rack mount.
- Solid state design with proven field-tested dependability.

Write or call for more information on the HAL ST6000.

DIRECTION FINDIING?

\star Circular LED Display
\star Optional Digital Display
\star Optional Serial Interface
$\star 12$ VDC Operation
$\star 90$ Day Warranty

[^4]DOPPLER SYSTEMS,
5540 E. Charter Oak,
Scottsdale, AZ 85254
(602) 998-1151

How come you're not on 30 meters? There's no excuse with KLM's New 30M-2 and 30M-3 Antennas!

Two new antennas from KLM using their low loss linearly loaded elements. Small physical size with full size performance. Exclusive "Maxi-Match" for direct 50Ω coaxial feed.

KLM
PO Box 816 • Morgan Hill, CA 95037 • (408) 779-7363

The Videoscan 1000 is available as a complete kit for $\$ 595.00$ or wired and tested for $\$ 795.00$ plus $\$ 6.00$ for shipping.
For more information, contact Microcraft Corporation, P.O. Box 513, Thiensville, Wisconsin 53092. Reader Service Number 309.

improved $225-400 \mathrm{MHz}$ scanner converter

The CVR-1B Scanverter includes a built-in preamplifier for increased sensitivity. It allows complete coverage of the $225-400 \mathrm{MHz}$ military/federal government aircraft band when used with a standard aircraft band scanner. "Bandstacking" allows the entire $175-\mathrm{MHz}$ wide UHF aircraft band to be compressed into the $118-136 \mathrm{MHz}$ range tunable on any scanner capable of standard aircraft reception. No tuning or adjustments are necessary with the fully automatic converter.

Reception for hundreds of miles is possible when an outside antenna is used. Additional features include high sensitivity, low noise microstripline circuit; all-metal cabinet for superior shielding; double-balanced mixer to reduce images; nine-pole filter to suppress out-ofband interference; crystal oscillator to provide high stability; and Zener diode voltage regulation to limit drift. The scanner is powered by convenient 12 Vdc .

The Scanverter, CVR-1B, costs $\$ 89.00$ plus $\$ 2.00$ for shipping. Contact Grove Enterprises, 140 Dog Branch Road, Brasstown, North Carolina 28902. Reader Service Number 310.

the Z-Dubber

The Sinclair ZX81/Timex 1000 is a popular personal computer. One drawback is the diffi culty experienced in loading cassette programs. Bytesize Computer Products has introduced the Z Dubber, an interface between the Sinclair computer and its cassette recorder. which helps even the most difficult cassette program to load easily. Additionally, the Z

Dubber allows you to connect two cassette recorders together to create perfect back-up copies of your Sinclait programs. The Z-Dubber operates on two AAA cells, and is pack aged in an attractive black case. It is available for $\$ 29.95$ plus 3 percent for shipping

For more information, contact Bytesize Computer Products, P.O. Box 21123, Seattle, Washington 98111. Reader Service Number 311 .

Amateur data display, DTU-12

Get a clean, crisp computer-quality data display for your next ham project with a DTU- 12 from Dotronix, Inc., available in kit, chassis, or chassis/ac power versions, either P4 (white) or P31 (green) phosphor. It requires only 12 volts at 1.5 amperes, and standard TTL horizontal and vertical control signals with 2.5 volts video drive. The scan rate is $15,750 \mathrm{~Hz}$. Interface is made through ten-pin edge-card connector.

The kit costs $\$ 85.00$ (CRT/circuit only); chassis $\$ 95.00$; ac supply $\$ 35.00$ (for chassis version).

For additional information, contact Dotronix, Inc., 160 First Street S.E., New Brighton, Minnesota 55112. Reader Service Number 312.

programmable CTCSS encoder

A miniature encoder has been introduced by Ferritronics, Inc.. featuring quartz-accurate
stability and all thirty-seven EIA tones. Two variations are available: the FT303A, which is programmed by cutting wire loops; and the FT303B, which uses a dipswitch for programming. The encoder measures $0.9 \times 1 \times 0.4$ inch and draws less than 7 mA . Mounting holes and color-coded lead set make installation simple.

For further information, contact Tom Whitney at Ferritronics, Inc.. 222 Newkirk Road, Richmond Hill, Ontario L4C 3G7. Canada. Reader Service Number 313.

two-meter mobile transceiver

The TR-7950 and TR-7930 are identical in features except for if output: 45 watts for the TR-7950, and 25 watts for the TR-7930. Their

ATTENTION RADIO DEALERS

Send for our free catalog on commercial, industrial, marine. Amateur and CB products
(512) 734-7793

733-0334

2317 Vance Jackson San Antonio. TX 78213

Amateur Radio Today
 Mini-Magazine offering timely

 material on a professional basis for all active Radio Amateurs. A.R.T. is six full-size pages, produced bi-weekly on high quality stock using magazine production techniques. Money back guarantee for your $\$ 26 / \mathrm{yr}$. subscription or a quarterly trial (six issues) for $\$ 5$. Check what we've covered recently:- 10.1 MHz opens for Amateurs - How low should your transmitted wave angle be? CQWW phone and cw contests - Sweepstakes - Cordless telephones - FCC ideas on 1500 watts output - Manufacturer responses to 10.1 MHz equip. mods. - Six-meter openings How to calculate your system noise figure Worldwide network of 20 -meter beacons - 900 MHz ssb -160 -meter DXing $-\operatorname{Big}$ antennas at K2GL - Antenna heading calculations Review of Yaesu FT-102, ICOM-740, and others - How Packet Radio works - Meteor scatter - The Satellite Program Interview with Madison Electronics - and much, much more! Amateur Radio Today -107 Post Office Box 6243 H , Wolcott, CT 06716

NEW NEW NEW COMPUTER SAVER

Do you have 8 or more intertace cards you use occasionally but hate to keep tearing in to your computer to get at them and risk damaging them?
Then Switch-A-Slot is for you!
Switch-A-Slot lets you select up to 4 cards for each port. Select the card to run with the turn of a switch. NO new programming tricks to learn

Switch-A.Slot
SAVES wear and tear on cards and computer SAVES power (only the card that's on draws power)
PROTECTS cards trom being damaged by static electricity and scratches
Switch-A.Slot works with most cards
disk drives printers
modoms ciock cards ete
Models avariable for Apple If Apple lie Frankin
INTRODUCTORY PRICE $\$ 155$
(includes shippingi
Please send orders with payment to
BIT "O" BYTE
P0 Box 60972, Sunnyvale, CA 94088

REF Porta-Tenna 5/8

TELESCOPIC VHF \& UHF 5/8 WAVE FOR HTS

High Quality Maximum Performance

Gain (ref. $1 / 4$ wave helical)
6 dB min Bandwitth VHF (1.5:1 VSWR)
Bandwith UHF (1.5:1 VSWR) Maximum power
Connector type 3.5 MHz min 10 MHz min 5 watts 5 wats BNC

LENGTH W/BNC CONNECTOR

Band Extended
Collapsed
$34 \mathrm{M} \quad 44^{\prime} / 4^{\prime \prime}(1124 \mathrm{~mm}) \quad 8^{\prime} n^{\prime \prime}(207 \mathrm{~mm})$
$1 / 1 / \mathrm{M} \quad 32^{1 / \mathrm{s}}{ }^{\prime \prime}(815 \mathrm{~mm}) \quad 7 \mathrm{~T}^{\prime \prime}(197 \mathrm{~mm})$
$34 \mathrm{M} \quad 17316^{\prime \prime}(435 \mathrm{~mm}) 6516^{\prime \prime}(160 \mathrm{~mm})$

| Model No. | Band | Freq. $\mathbf{M H z}$ |
| :--- | :--- | :--- | :--- |
| $191-214$ | 2 M | $144-148$ |
| $191-814$ | $11 / 4 \mathrm{M}$ | $220-225$ |
| $191-914$ | $3 / 4 \mathrm{M}$ | $440-450$ |

Models also available for $148-174$ and $450-512 \mathrm{MHz}$

PRICE - $\$ 19.95 \mathrm{ppd}$. to 48 states via UPS For air delivery add \$1.50
Florida residents add $\$ 1.00$ sales tax Payment by M.O. or cashiers ck. only

Dealer Inquiries Invited

RF PRODUCTS

P.O. Box 33, Rockiedge, FL 32955
(305) 631-0775

R-4C+SHERWOOD STLL THE RNEST CONBNATION
600 HZ LOW LOSS ist IF CW FILTER. Improve early-stage selectivity. Eliminate high pitched leakage around 2nd IF filters Improve ultimate rejection to 140 dB . Eliminate strong signals
overioading 2 nd mixer, causing intermod and desensitization CF-600/6 $\$ 80.00$ New PC board relay switch kit: $\$ 45.00$ 1st-IF SSB FILTERS. 140 dB ult. re. CF $2 \mathrm{~K} / 8$: $\$ 150.00$ pair. 5 kHz Ist-IF FILTER. Reduces hi-pitched QRM. CF- $5 \mathrm{~K} / 8 ; \$ 80.00$ 16-POLE R 4C SSB! Plug-in filter. Best skirt selectivity. 1800 $\mathrm{Hz}, 6 \mathrm{~dB}: 2400 \mathrm{~Hz}, 60 \mathrm{~dB}$ CF. $2 \mathrm{~K} / 16$ (Alvo $1.6 \mathrm{~K} / 16$): $\$ 135.00$ 250, 500 and 1000 Hz 8-POLE 2nd-IF PLUG-IN FILTERS CF 250/8, CF. $500 / 8$ and CF-1.0K/8. $\$ 80.00$
PC Board mod. and switching kits. Special AM filters/detector Filters also for R.4 (B), R.7, TR.7. TR4, Signal/One, Atlas Add $\$ 3$ shipping per order. $\$ 6$ overseas air

Sherwood Engineering Inc.

1268 South Ogden St.
Denver, Colo. 80210
(303) 722-2257

notable features include 21 multi-function memories, automatic offset, programmable priority channel, memory and band scan, longlife lithium battery memory back-up, built-in 16-key autopatch.

The TR-7950 has a factory-suggested retail price of $\$ 399.95$; the suggested retail price for the TR-7930 is $\$ 359.95$.

Additional information may be obtained by contacting Trio-Kenwood Communications. 1111 West Walnut Street, Compton, California 90220. Reader Service Number 314.

3½-digit true rms DDM

John Fluke Mfg. Co., Inc., announces the addition of a $31 / 2$-digit true rms meter to its 8020B-series of handheld DMMs, called the 8026B. It's an eight-function handheld model featuring true rms ac capabilities while retaining all of the functions of the 8020B.
For further information, contact Frank Partin, John Fluke Mfg. Co.. P.O. Box C9090 Everett, Washington 98206. Reader Service Number 315.

Computer Program Books for Beginners

Everything you need to know to get started programming your own computer. These handy books of programs, each jam-packed with easy-tounderstand info for beginners, are crammed with hundreds of tips, tricks, secrets, hints, shortcuts, techniques, plus hundreds of tested ready-to-run programs. For the TRS-80 Color Computer. For the TRS-80 Pocket Computer and Sharp PC-1211, PC-1500 pocket computers.

Color Computer

101 Color Computer Prgramming Tips \& Tricks, learn-by-doing instrüctions, hints. secrets, shortcuts, techniques, insights, for TRS-80 Color Computer. 128 pages $\$ 7.95$ 55 Color Computer Programs for Home, School \& Office. practical ready to-run software with colorful graphics tor TRS 80 Color Computer. 128 pages $\$ 9.95$ 55 MORE Color Computer Programs for Home. School \& Office sourcebook of useful type-in-and-run software with exciting graphics for TRS-80 Color Computer, 112 pages
$\$ 9.95$

Pocket Computer

Pocket Computer Programming Made Easy new last n easy way to learn BASIC, make your computer work for you for TRS-80 Sharp. Casio pocket computers. 128 pages $\mathbf{\$ 8 . 9 5}$ 101 Pocket Computer Programming Tips \& Tricks. secrets, hints. shortcuts techniques from a mastet programmer 128 pages
$\$ 7.95$
50 Programs in BASIC for Home, School \& Office sourcebook of lested ready to type-in and run soltware tor TRS 80 and Sharp pocket computers. 96 pages
$\$ 9.95$
50 MORE Programs in BASIC for Home. School \& Office ideal source for lots more useful software for TRS. 80 and Sharp pocket computers, 96 pages
$\$ 9.95$

QTY.	Title	Price	Total
Allow 2.4 weeks for delivery.			

FROM:
Name \qquad Call \qquad
Address \qquad
City State \qquad Zip
\square Check or Money Order Enclosed
\square VISA
\square MasterCard
Acct. \#
Expires \qquad MC Bank \# \qquad

SEND TO: HAM RADIO'S BOOKSTORE

 GREENVILLE, NH 03048

- 101

SATELLITE

 TELEVISION SYSTEMSWE WILL NOT BE UNDERSOLD!!
Complete Systems, Antennas, Receivers, LNA's \& Accessories CALL US TODAY! 812-238-1456

"Nation's Largest Total Communications Distributor" P.O. BOX 3300 • TERRE HAUTE, INDIANA 47803

California

C \& A ELECTRONIC ENTERPRISES
22010 S. WILMINGTON AVE.
SUITE 105
CARSON, CA 90745
213-834-5868
Not The Biggest, But The Best Since 1962.

FONTANA ELECTRONICS
8628 SIERRA AVENUE
FONTANA, CA 92335
714-822.7710
714-822-7725
The Largest Electronics Dealer in San Bernardino County.

JUN'S ELECTRONICS

3919 SEPULVEDA BLVD.
CULVER CITY, CA 90230
213-390-8003 Trades
714-463-1886 San Diego
800-882-1343

- Parts at Cost - Full Service.

Habla Espanol
SHAVER RADIO, INC.
1378 S. BASCOM AVENUE
SAN JOSE, CA 95128
408-998-1103
Azden, Icom, Kenwood, Tempo,
Ten-Tec, Yaesu and many more.

Connecticut

HATRY ELECTRONICS

500 LEDYARD ST. (SOUTH)
HARTFORD, CT 06114
203-527-1881
Call today. Friendly one-stop shop-
ping at prices you can afford.

Delaware

DELAWARE AMATEUR SUPPLY
71 MEADOW ROAD
NEW CASTLE, DE 19720
302-328-7728
800-441-7008
Icom, Ten-Tec, DenTron, Yaesu, Azden, Santec, KDK, and more. One mile off I-95, no sales tax.

Florida

AMATEUR ELECTRONIC SUPPLY 1898 DREW STREET
CLEARWATER, FL 33515
813-461-HAMS
Clearwater Branch
West Coast's only full service
Amateur Radio Store.

AMATEUR ELECTRONIC SUPPLY
621 COMMONWEALTH AVE.
ORLANDO, FL 32803
305-894-3238
Fla. Wats: 1 (800) 432-9424
Outside Fla: 1 (800) 327-1917
AMATEUR RADIO CENTER, INC.
2805 N.E. 2ND AVENUE
MIAMI, FL 33137
305-573-8383
The place for great dependable names in Ham Radio.

RAY'S AMATEUR RADIO
1590 US HIGHWAY 19 SO.
CLEARWATER, FL 33516
813-535-1416
Your complete Amateur Radio and Computer Store.

Illinois

ERICKSON COMMUNICATIONS,INC.
5456 N. MILWAUKEE AVE.
CHICAGO, IL 60630
Chicago - 312-631-5181
Outside llfinois - 800-621-5802
Hours: 9:30-5:30 Mon, Tu, Wed \& Fri; 9:30-8:00 Thurs; 9:00-3:00 Sat.

Indiana

THE HAM SHACK
808 NORTH MAIN STREET
EVANSVILLE, IN 47710
812-422-0231
Discount prices on Ten-Tec, Cubic, Hy-Gain, MFJ, Azden, Kantronics, Santec and others.

Kansas

ASSOCIATED RADIO

8012 CONSER, P. O. BOX 4327
OVERLAND PARK, KS 66204
913-381-5900
America's No. 1 Real Amateur Radio
Store. Trade - Sell - Buy.

Maryland

THE COMM CENTER, INC.
LAUREL PLAZA, RT. 198
LAUREL, MO 20810
800-638-4486
Kenwood, Drake, Icom, Ten-Tec, Tempo, DenTron, Swan \& Apple Computers.

Massachusetts

TEL-COM, INC.

675 GREAT ROAD, RTE. 119
LITTLETON, MA 01460
617-486-3040
$617-486-3400$ (this is new) The Ham Store of New England You Can Rely On.

Minnesota

MIDWEST AMATEUR RADIO SUPPLY 3452 FREMONT AVE. NO.
MINNEAPOLIS, MN 55412
612-521-4662
It's service after the sale that counts.

Nevada

AMATEUR ELECTRONIC SUPPLY
1072 N. RANCHO DRIVE
LAS VEGAS, NV 89106
702-647-3114
Dale Porray "Squeak," AD7K
Outside Nev: 1 (800) 634-6227
JUN'S ELECTRONICS
460 E. PLUMB LANE - 107
RENO, NV 89502
702-827-5732
Outside Nev: 1 (800) 648.3962
Icom - Yaesu Dealer

New Hampshire

TUFTS ELECTRONICS
61 LOWELL ROAD
HUDSON, NH 03051
603-883-5005
New England's friendliest ham store.

New Jersey

RADIOS UNLIMITED
P. O. BOX 347

1760 EASTON AVENUE
SOMERSET, NJ 08873
201-469-4599
800-526-0903
New Jersey's only factory authorized Yaesu and Icom distributor. New and used equipment. Full service shop.
ROUTE ELECTRONICS 46
225 ROUTE 46 WEST
TOTOWA, NJ 07512
201-256-8555

ROUTE ELECTRONICS 17

777 ROUTE 17 SOUTH
PARAMUS, NJ 07625
201-444-8717
Drake, Cubic, DenTron, Hy-Gain, Cushcraft, Hustler, Larsen, MFJ, Butternut, Fluke \& Beckman Instruments, etc.

2.1 to 2.6 CHz Antennas 34 db Gain (or Greater)

lateur Radio Dealer

New York

BARRY ELECTRONICS

512 BROADWAY
NEW YORK. NY 10012 212-925-7000
New York City's Largest Full Service Ham and Commercial Radio Store.

GRAND CENTRAL RADIO

124 EAST 44 STREET
NEW YORK, NY 10017 212-599-2630
Drake, Kenwood, Yaesu.
Ten-Tec, DenTron, Hy-Gain, Mosley in stock.

HARRISON RADIO CORP.

20 SMITH STREET
FARMINGDALE, NY 11735
516.293-7990
"Ham Headquarters USA" since 1925. Call toll free 800-645-9187.

RADIO WORLD

ONEIDA COUNTY AIRPORT TERMINAL BLDG.
ORISKANY, NY 13424
TOLL FREE 1 (800) 448-9338
NY Res. $\quad 1$ (315) 337-0203
Authorized Dealer - ALL major Amateur Brands
We service everything we sell! Warren K21XN or Bob WA2MSH

Ohio

AMATEUR ELECTRONIC SUPPLY 28940 EUCLID AVE.
WICKLIFFE, OH (CLEVELAND AREA) 44092
216-585-7388
Ohio Wats: 1 (800) 362-0290
Outside Ohio: 1 (800) 321-3594

UNIVERSAL AMATEUR RADIO, INC.

1280 AIDA DRIVE
REYNOLDSBURG (COLUMBUS). OH 43068
614-866-4267
Featuring Kenwood and all other Ham gear. Authorized sales and service. Shortwave headquarters. Near 1-270 and airport.

Oklahoma

DERRICK ELECTRONICS, INC.

714 W. KENOSHA - P.O. BOX A
BROKEN ARROW, OK 74012
Your Discount Ham equipment dealer in Broken Arrow, Oklahoma
1.800-331-3688 or
1.918-251-9923

Pennsylvania

HAMTRONICS,

DIV. OF TREVOSE ELECTRONICS 4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215-357-1400
Same Location for 30 Years.

LaRUE ELECTRONICS

1112 GRANDVIEW STREET
SCRANTON, PENNSYLVANIA 18509 717-343-2124
Icom, Bird, Cushcraft, Beckman, Fluke, Larsen, Hustler, Astron, Antenna Specialists, W2AU/W2VS, AEA, B\&W. CDE, Sony, Vibroplex.

THE VHF SHOP

BOX 349 RD 4
MOUNTAINTOP, PA 18707 717-868-6565
Lunar, Microwave Modules, ARCOS, Astron, KLM, Tama, Tonna-F9FT, UHF Units/Parabolic, Santec, Tokyo Hy-Power, Dentron, Mirage, Amphenol, Belden

Texas

MADISON ELECTRONICS SUPPLY
1508 McKINNEY
HOUSTON, TX 77010
713-658-0268
Christmas?? Now?? See ad index page.

Virginia

ELECTRONIC EQUIPMENT BANK
516 MILL STREET, N.E.
VIENNA, VA 22180
703-938-3350
Metropolitan D.C.'s One Stop Amateur Store. Largest Warehousing of Surplus Electronics.

Wisconsin

AMATEUR ELECTRONIC SUPPLY
4828 W. FOND DU LAC AVE.
MILWAUKEE, WI 53216 414-442-4200
Wisc. Wats: 1 (800) 242-5195
Outside Wisc: 1 (800) 558-0411

Phillups-Tech Electronics R.O. BOX 33205 Phoenlx, az 85067 (602) 274-2885
C.O.D.'s Special Quantity Pricing

INCREDIBLE CODE!!

Learn the International Morse Code by the patented
"WORD METHOD

NO
B00KS
CARDS
VISUAL AIDS
gimmicks
Just listen and learn! The 'WORD METHOD' is based on the latest scientific and psychological techniques. You can zoom past 13 WPM in less than HALF THE USUAL TIME!!
The kit contains two cassette tapes, over TWO HOURS of unique instruction by internationally famed educator Russ Farnsworth. Complete satistaction guaranteed.
Available at local Electronic Dealers, or send check or money order for \$14.95 plus \$1.50 for postage and handling to:

EPSILON RECORDS
5002 W. McFadden - 773
Santa Ana, Ca. 92704

NEW

BASIC PROGRAM MANUAL FOR AMATEURS
Programs Design: Antennas, Op-amps, Smithcharts, R.F. Coils, Pads, Filters. Striplines. Microwave and more

All FOR
$\$ 9.95$

ATTENTION
 YAESU FT-207R OWNERS

 AUTOMATIC
SCAN MODULE

15 minutes to install; scan restarts when carrier drops off: busy switch controls automatic scan on-off; includes module and instructions.

- 4 mA memory backup reduced to $500 \mu \mathrm{~A}$
- 45 mA receiver drain reduced to 30 mA
- Improved audio fidelity and loudness

ENGINEERING CONSULTING

DXR 1100 Stereo Receiver, LNC and remote control 10 Prodelin fiberglass dish with Polarmount - Polatron II
 Electronic Polarizer and Cables

With Motor Drive ${ }^{\mathbf{3}} \mathbf{2 5 5 0} 0^{\circ 0}$
Universal
亡 Communications Package ${ }^{5} 1999^{\circ 0}$

Universal Communications DL-2000 •10' Prodelin fiber-
glass dish with Polarmount - Polatron II Electronic
Polarizer, Dexcel 100° LNA and 100° Cables With Motor Drive ${ }^{\text {S } 219900}$
THE VHF
PROPAGATION HANDBOOK by Jim Stewart, WA4MVI
Theory and practical application in VHF. Chapters on Scatter - Tropo - EME. Available through THE LUNAR LETTER MAGAZINE.
$\$ 3.95+\mathbf{\$ 1 . 5 0}$ postage.

D DRAKE ESR 24
 Package

Includes ESR-24 - 100° Dexcel LNA - 10' Prodelin Dish. Polarmount, Polatron II Polarizer, and all Cables. $\$ 2250^{00}$ With Motor Drive ${ }^{5} 2450$

Motor Drives from . . . ${ }^{5} 300^{00}$
"All systems are complete, nothing else to buy".
Electronics shipped UPS prepaid - Dish and Polarmount freight collect.
"HAMS SERVING HAMS"
24 Hour Phone Line for orders 7 days a week
(208) 466-6727

312 12th Ave. So. - Nampa, ID 83651

ANTENNAS FOR HF, VHF, UHF

Two Meter

"The Big John"* 13 Element Quad 22' Boom 16.5dBd gain F/B 30 dB Mast Size Up to 2 " Bandwidth $144-145 \mathrm{MHz}$ $\$ 129.95$
"The Little John"** 11 Element Quad 18' Boom 15.5 dBd gain F/B 30db Mast Size 2" Bandwidth 144-145 MHz 109.95
"PTG Special"*** 9 Element Quad 13' Boom 14.8 DBd F/B 30 dB Bandwidth $144-146 \mathrm{MHz} \$ 89.95$
Featuring The Wondermatch Driven Element

Six Meter

"6-PTG-4" 4 Element Yagi 13' Boom 12 dBi Mast Size 2" Longest Element 115 " $50-51 \mathrm{MHz} \mathbf{\$ 8 9 . 9 5}$
You've Heard About Us On The Air, So Call Collect Between 8AM-10PM Or Write For Details

- Measured at JWL Laboratories
* First Place Winner at Baton Rouge Gain Measuring Contest (7/31/82).
* * Second Place Winner at Baton Rouge Gain Measuring Contest (7/31/82).

COPYRIGHT 1982
(713) 464-7720 Dick-WB5JWL Gordy-KD5NQ

ORR BOOKS

BEAM ANTENNA HANDBOOK

by Bill Orr, W6SAI

Recommended reading. Commonly asked questions like: What is the best element spacing? Can different yagi antennas be stacked without losing performance? Do monoband beams outperform tribanders? Lots of construction projects, diagrams, and photos. 198 pages. ©(1977. ist edition. \square RP-BA

Softbound \$5.95

SIMPLE LOW-COST WIRE ANTENNAS

by Bill Orr, W6SAI
Learn how to build simple, economical wire antennas. Apartment dwellers take note! Fool your landlord and your neighbors with some of the "invisible" antennas found here. Well diagramed. 192 pages. © 1972. \square RP-WA Softbound $\mathbf{\$ 6 . 9 5}$
THE RADIO AMATEUR ANTENNA HANDBOOK by William I. Orr, W6SAI and Stuart Cowan, W2LX Contains lots of well illustrated construction projects for vertical, long wire. and HF/VHF beam antennas. There is an honest judgment of antenna gain figures, information on the best and worst antenna locations and heights, a long look at the quad vs. the yagi antenna, information on baluns and how to use them, and new information on the popular Sloper and Deita Loop antennas. The text is based on proven data plus practical, on-the-air experience. The Radio Amateur Antenna Handbook will make a valuable and often consulted reterence. 190 pages. (c) 1978.
$\square \mathrm{RP}$-AH
Softbound \$6.95
ALL ABOUT CUBICAL QUAD ANTENNAS by Bill Orr, W6SAI
The cubical quad antenna is considered by many to be the best DX antenna because of its simple, lightweight design and high performance. You'll find quad designs for everything from the single element to the multi-element monster quad, plus a new, higher gain expanded quad $(X-Q)$ design. There's a wealth of supplementary data on construction, feeding, tuning. and mounting quad antennas. 112 pages. (c) 1977. \square RP-CQ

Softbound \$5.95
Please add $\$ 1.00$ to cover shipping and handling.
HAM RADIO'S BOOKSTORE

CTCSS ENCODER

PROGRAMMABLE

- All 37 EIA Tones
- Quartz Accurate
- Less than 1 inch square

AVAILABLE FOR IMMEDIATE DELIVERY
For more information call TOLL-FREE (800) 828.6884

NY: (800) 462.7242
CANADA: (416) 884-3180

MOBILE DATA SYSTEMS
(716) 282.7470

| SEE YOU AT |
| :--- | :--- |
| DAYTON! |
| Booth \#71 |

new ${ }^{\text {HYBRID }}$ PHONE PATCH

(1
 NEW DESIGN
 Model P101

- VU meter for line level and null readings
- Separate receiver, transmitter, \& null controls
- Either PTI or Vox operation
- Pi-filters to eliminate RF feedback
- Simple phone line hook up
- Attractive blue panel, woodgrain cabinet
- Dimensions $8^{\prime \prime}$ wide $\times 53 / 4^{\prime \prime}$ deep $\times 2^{1 / 4^{\prime \prime}}$ high

PRICE $\$ 0500$
Plus $\$ 2.50$ Shipping and Handling

ALL OUR PRODUCTS MADE IN USA
BATTER \& WILLIAMEON
Quality Communication Products Since 1932 At your Distributors. write or call 10 Canal Street, Bristol, Pa. 19007
(215) 788-5581
\star Technical Forums
\star ARRL and FCC Forums
\star GIANT 2-day Flea Market Saturday and Sunday
\star New Products and Exhibits
\star Grand Banquet
\star Women's Activities
\star Home-Brew Equipment Forum
\star Special Group Meetings
\star YL Forum
\star Personal Computers Forum
\star CW Proficiency Awards
\star Amateur of Year Award
\star Special Achievement Awards

APRIL 29, 30, MAY 1, 1983
Hara Arena and Exhibition Center - Dayton, Ohio
Meet your amateur radio friends from all over the world at the internationally famous Dayton HAMVENTION.
Seating will be limited for Grand Banquet and Entertainment on Saturday evening so please make reservations early. Banquet speaker is Bill Leonard, W2SKE, former president of CBS News.
If you have registered within the last 3 years you will receive a brochure in late February. If not write Box 44, Dayton, OH 45401.

Nominations are requested for Radio Amateur of the Year and Special Achievement Awards. Nomination forms are available from Awards Chairman, Box 44, Dayton, OH 45401.
For special motel rates and reservations write to Hamvention Housing, 1406 Third National Bldg., Dayton, OH 45402. NO RESERVATIONS WILL BE ACCEPTED BY TELEPHONE.
All other inquiries write Box 44, Dayton, OH 45401 or phone (513) 849-1720.

Admission: $\$ 7.00$ in advance, $\$ 9.00$ at door. (Valid for all 3 days)
Banquet: $\$ 14$ in advance, $\$ 16$ at door
Flea Market Space: $\$ 15$ in advance. (Valid for both days)

[^5]Bring your family and enjoy a great weekend in Dayton. Sponsored by the Dayton Amateur Radio Association, Inc.

fle
 最 market 1 面回

RATES Noncommercial ads 10¢ per word；commercial ads 60¢ per word both payable in advance．No cash discounts or agency commissions allowed．

HAMFESTS Sponsored by non－profit organizations receive one free Flea Market ad（subject to our editing）on a space avail－ able basis only．Repeat insertions of ham－ fest ads pay the non－commercial rate．

COPY No special layout or arrange－ ments available．Material should be type－ written or clearly printed（not all capitals） and must include full name and address． We reserve the right to reject unsuitable copy．Ham Radio cannot check each advertiser and thus cannot be held respon－ sible for claims made．Liability for correct－ ness of material limited to corrected ad in next available issue．

DEADLINE 15th of second preceding month．
SEND MATERIAL TO：Flea Market，Ham Radio，Greenville，N．H． 03048.

QSL CARDS

QSLs \＆RUBBER STAMPS－Top Quality！Card Samples and Stamp Into－ 50 c－Ebbert Graphics 5R，Box 70 ． Westerville，Ohio 43081

TRAVEL．PAK QSL KIT－Converts post cards．photos to QSLs．Stamp brings circular．Samco，Box 203 －c，Wynant－ skill，New York 12198.

OSL SAMPLES： 25 c．Samcards， 48 Monte Carlo Drive， Pittsburgh，PA 15239.

DISTINCTIVE QSL＇s－Largest selection，lowest prices， top quality photo and completely customized cards． Make your OSL＇s truly unique at the same cost as a stan－ dard card，and get a better return rate！Free samples，cat alogue．Stamps appreciated．Stu K2RPZ Print，P．O．Box 412，Rocky Point，NY 11778 （516）744－6260．

OSL ECONOMY： 1000 for $\$ 13$ ．SASE for samples．W4TG， Box F，Gray，GA 31032
QSLS＇S：NO STOCK DESIGNS！Your art or ours：photos originais， 50 ．for samples \＆details（refundable）．Certi－ fied Communications， 4138 So．Ferris，Fremont，Michi－ gan 49412.

OSL CARDS： $500 / \$ 12.50 \mathrm{ppd}$ ．Free catalog．Bowman Printing， 743 Harvard，St．Louis，MO 63130.

Foreign Subscription Agents for Ham Radio Magazine

Ham Radio Austria
F Bast）
Hauptplatz 5
A． 2700 Wiener Neustadt
Ham Radio Beigium
Stereohouse
Brusselisesteenweg 416 Brussensert
8.9218 Gient Beigum

Ham Radio Canada
Box 400 ．Goderict
Box 400 ．Goderich
Ontario．Canada
Ontario．Canada N7A 4C
Bam Radio Eutope Box 444
$\$ 19404$ ST 19404 Upplands Vasby
Sweden

Ham Radio France
SMEIectronic
20 bis，Are des Clanons
E 89000 Auxerte

Karnin Ueber
Kand
Positach $245 a$
Rostrach 2454
P 7850 itract
D． 7850 Loerrach
West Germany

Harm Radio Holland
Postbus 413 NL 7600 Ar Emmen Motiand

Ham Radio Italy
Via Pordenone 17 Via Pordenone 17
1.20132 Milano Haly

\section*{Ham Radio Switzeriand} | Karin Ueber |
| :--- |
| Postlach 2454 | posnach 2454

$0 \cdot 1$ eso Loerrach O－78so Loersach
West Germany Ham Hadio UK
Po Box 63 Harrow
Middiesex HA36HS England

Holland Radio
143 Greenway 143 Greenway
Greenside $J 0$ Greenside Johannesturg
Aepublice of South Atrica

SELL：Icom 701 w／PS \＄550．00；Icom 211 \＄250．00；Bearca scanner $250 \$ 150.00$ All mint condition．Prices firm KB4XU（803）766－2831

CHASSIS and cabinet kits．SASE K3IWK．
YAESU FT．ONE General coverage transceiver with every option including FM，Curtis keyer and scanning micro phone，List $\$ 3700$ ．Tax sale $\$ 2250$ ．Yaesu FL．2100Z，80－10 meter linear $\$ 350$ ．Dentron MT2000A 3KW Ant／Tuner \＄200．N6ABE（415） 881.5429 any time．

KT5B Multi－Band Antenna $160-80 \mathrm{~m}$（WARC）$\$ 59.95$ ，in struction manual $\$ 3.00,2 \mathrm{KW}+$ center connector $\$ 8.50$ Kilo－Tec，PO Box 1001，Oak View，Cal．93022．Tel（805） 646－9645．

FOR SALE：Atlas 210X．Best offer gets it．Works good． Jerry Bayless， 316 S．Delmar，Decatur，IL（217）428－8218．

VIDEOSCAN 1000 Slow Scan TV－High resolution （Amateur，phone line，surveillance，teleconferencing）． Code＊Star－decode Morse，RTTY，ASCII，Large LEDs or connect computer／printer．Morse－A．Keyer－CW key－ board．Tri－voltage power supply．Kits／assembled．Free brochures．Microcraft Corporation，Box 513－HR，Thiens ville．WI 53092．（414）241－8144

ELECTRON TUBES：Receiving，transmitting，microwave
all types available．Large stock．Next day delivery most cases．Daily Electronics， 14126 Willow Lane，West minster，CA 92683．（714）894－1368．

BUY SELL TRADE－Next 6 issues \＄2．00．WA4OSR＇s Rigs \＆Stuft，Box 973－H，Mobile，AL 36601

COLLINS 75S3－B w／500 Hz CW filter， $32 \mathrm{~S} 3 \times \mathrm{mtr}, 516-\mathrm{F} 2$ power supply．Good condition，round emblem．N3CCW Larry Caracciolo， 1515 Lakeview Drive，Germansville，PA 18053

PRE－1946 TELEVISION SETS wanted for substantial cash．Finder＇s fee paid for leads．Also interested in spin． ning disc，mirror in－the－lid，early color sets，9AP4 picture tubes．Arnold Chase， 9 Rushleigh Road，West Hartford， Conn． 06117 （203） 521.5280

WANTED：Old bugs for my key collection．Need Vibro plex，Martin，Bunnell，McElroy，Electro，etc．Also need Spark keys，military，homebrew，and keys of historical significance．K5RS，Neal McEwen， 1128 Midway，Rich ardson，TX 75081

WANTED：Highest prices paid for Harris RF 301 and associated equipment．Call collect（212）925－6048

BUMPER STICKER－＂My favorite radio station is（your call sign here）．＂Display anywhere！\＄3．00．Arpress． 380（H）Wilbanks，Rome，GA 30161

RTTY AND ASCII for Atari．Plans and a drilled PC board to build your own modem．ASCII and RTTY programs on disk all for $\$ 25$ ．Robert Holsti，K7ZJD／KH2，Box 4426 AAFB Br．Yigo Guam 96912 （USA）

WANTED：Polarad schematics or copying privileges LPU．1，LKU－1，LDU－1，LTU．1，2，3．Maintenance manuals，if available， 9108 New Delaware Rd．，Mt．Vernon，Ohio 43050．W8PEN（614） 392.0841

TUBES，TUBES wanted for cashor trade．304TL，4CX1000A 4PR60C．WE300，7F7，7N7，53，6L6M．Any high power or special purpose tubes of Eimac／Varian．DCO， 10 Schuy． ler Avenue，No．Arlington，NJ 07032．（800）526－1270．

WANTED：National HRO．50，HRO－60，wkg condx． W8PEN， 9108 New Delaware Rd．，Mt．Vernon，Ohio 43050．（614）392－0841．

SATELLITE TELEVISION INFORMATION．Build or buy your own earth station．$\$ 4.00$ to Satellite Television，RD 43，Oxford，NY 13830．Parabolic antenna construction book also available．Send SASE for details．

WILL SELL to highest reasonable offer．Weston Model 537 AC and DC Radio test set．With original book and test leads．Have QST from January 1968 through Decem－ ber 1972．Otto Cordray， 801 N．Temple St．，Caldwell， Texas 77836

MARCONI WIRELESS TELEGRAPH CO．Stock Certifi－ cates．Authentic 1914 certificates，from the pioneering days of radio，are rare antiques and valuable invest－ ments．Suitable for framing．Only $\$ 38.95$ including his－ torical pamphlet．Satisfaction Guaranteed．Free informa－ tion：Tarlen，Box $7554-\mathrm{M}, \mathrm{N}$. Kansas City，MO 64116.

MOBILE IGNITION SHIELDING．Estes Engineering． 930 Marine Dr，Port Angeles，WA 98362.

RTTY－EXCLUSIVELY for the Amateur Teleprinter．One year $\$ 7.00$ Beginners RTTY Handbook $\$ 8.00$ includes journal index．PO Box RY，Cardift，CA 92007

MX330 Motorola factory touch tone pad with mother board and daughter board，all interconnecting wiring． Nothing to cut or glue．Complete $\$ 100.00$ ．N6GFE， 980 Wildcat Canyon Road，Berkeley，CA 94708．（415） 843－5253

Actual Size

CENTURION

Phone 409／467－4491
Telex 48－4377 CENTURION LCN
PO．Box 82846 Lincoln，NE $68501-2846$

CB TO TEN METER CONVERSION KITS

KITS for AM - SSB—FM 40 Channel PLL chassis conversions
DETAILED INSTRUCTIONS for easy installation with minimum time and equipment
BAND COVERAGE flexibility provides up to 1 MHz coverage for most PLL chassis.
PRICES Low cost prices range from $\$ 8.00$ to $\$ 50.00$

All kits are in stock including several different FM kits.
FREE CATALOG Write or call today.
INDEPENDENT
CRYSTAL SUPPLY COMPANY
P.O. Box 183

Sandwich, Ma. 02563-0183
(617) $888-4302$

- 140

FCC LOWERS REQUIREMENTS GET YOUR RADIO TELEPHONE LICENSE

FCC changes make obtaining a High-level Radio Telephone License much easier now. Eliminate unnecessary study with our shortcuts and easy to follow study material. Obtaining the General Radio Telephone License can be a snap! Sample exams, also section covering Radar Endorsement.
A small investment for a high-paying career in electronics.
$\$ 19.95$ ppd.
Satisfaction Guaranteed
SPI-RO DISTRIBUTING
P.O. Box 1538

Hendersonville, N. C. 28793

- 177

MANUALS for most ham gear made 1937/1970. Send $\$ 1.00$ for 18 page "Manual List", postpaid. HI-MANUALS, Box R802, Council Blufts, Iowa 51502.
SATELLITE TELEVISION - Howard/Coleman boards to build your own receiver. For more information write: Robert Coleman, Rt. 3, Box 58 -AHR, Travelers Rest, SC 29690.

WANTED: Schematics-Rider, Sams or other early publications. Scaramella, P.O. Box 1, Woonsocket. RI 02895-0001.
WANTED: Early Hallicratter "Skyriders" and "Super Skyriders" with silver panels, also "Skyrider Commercial", early transmitters such as $\mathrm{HT}-1, \mathrm{HT}-2, \mathrm{HT}-8$, and other Hallicrafter gear, parts, accessories, manuals. Chuck Dachis, WD5EOG, The Hallicrafter Collector, 4500 Russell Drive, Austin, Texas 78745.
RUBBER STAMPS: 3 lines $\$ 3.25$ PPD. Send check or MO to G.L. Pierce, 5521 Birkdale Way. San Diego, CA 92117. SASE brings information.

WANTED: New or used MS and coaxial connectors, synchros, tubes, components, military surplus equipment. Bill Willams, PO \#7057, Norfolk, VA 23509.
VERY in-ter-est-ing! Next 5 issues $\$ 2$. Ham Trader "Yellow Sheets", POB356, Wheaton, IL. 60189.

CB TO 10 METER PROFESSIONALS: Your rig or buy ours - AM/FM/SSB/CW. Certified Communications, 4138 So. Ferris. Fremont, Michigan 49412; (616) 924-4561.
HAMS FOR CHRIST - Reach other Hams with a Gospel Tract sure to please. Clyde Stanfield, WA6HEG, 1570 N. Albright, Upland, CA 91786.
"WEST COAST 160 METER BULLETIN" devoted to, for and by top band operators. Edited and published 6 times a year by N7CKD. Subscriptions $\$ 7.00$ U.S. and U.S. Possessions. Canada and Mexico $\$ 7.00$ U.S. Overseas rate $\$ 8.50$ U.S. dollars. To $4248^{~ " A " ~ S t . ~ S . E ., ~ B o x ~ 609, ~ A u b u r n, ~}$ WA 98002.
WANTED: Diagram for TPL VHF-FM 120W, 2 meter Amp. - 1002-S. It uses TRW. PT8780 which I have been unable to find. Any help would be appreciated. WA@OFO.

WANTED: Micor and Mstr II Base Stations 406-420 and $450-470 \mathrm{MHz}$. Also 2 and 6 GHz solid state microwave equipment. AK7B, 4 Ajax Place, Berkeley, CA 94708.
FOR SALE: Ten-Tec Argonaut 515, mint, $\$ 280.00$; Kenwood TR-7800, exc., $\$ 235.00$; Icom R-70 receiver, mint, $\$ 630.00$; R-392, exc., extras, $\$ 145.00$; add. UPS. Ham mags: SASE for list, details. WA7ZYQ. (208) 245-2070.

PLANS, CIRCUIT BOARDS, AND KIT PARTS (author approved) for Leach's construction projects. Power amps, preamps, pre-preamps and loudspeakers. Send SASE for information. Custom Components, Box 33193. Decatur, GA 30033

DXPREDICTOR: Computes MUF, FOT, LUF between any two QTHs. Documented; Easy to Use; Nice Graphicall Tabular output. Adapted from Algorithms currently used by USG agencies. Available for: Apple II + Ile (48 kmin) plus DOS 3.3 or cassette); PET/CBM ($16 \mathrm{kmin}, 8050$ disk or cassette); VIC20 (16k RAM Card, cassette); CBM 64 (cassette only). Program + Documentation: $\$ 40.00$ all except VIC20 ($\$ 30.00$). Documentation only: $\$ 5.00$ (refundable upon purchase of software). Checks to K.J. Flynn, PO Box 903, Mountain View, CA 94042. (CA residents add 6.5% tax).

SLEP SPECIALS, HP608F late model signal generator, 10 MHz thru $455 \mathrm{MHz}, 19^{*}$ panel with blue/gray cabinet, excellent for precision laboratory work $\$ 375.00$, URM- 25 signal generator 10 kHz thru $50 \mathrm{MHz} \$ 285.00$. URM- 26 signal generator 4 MHz thru $405 \mathrm{MHz} \$ 245.00$, USM-140 oscilloscope DC-25 MHz, dual trace, triggered sweep $\$ 295.00$, GRM-46 test set for ARC-27. ARC-55, $\$ 40.00$, Tektronix 3 S 76 dual trace plug-in $\$ 75.00$. Tektronix 1 L30 spectrum analyzer plug-in 925 MHz thru 10.5 GHz $\$ 495.00$, military SG-66/ARM-5 aircraft VOR signal generator equivalent to ARC H_{-14}, perfect for aircraft radio repair $\$ 295.00$. Add shipping. We accept M/C, Visa or check. Phone 704-524.7519, Slep Electronics Company, Highway 441, Otto, N. C. 28763.

Coming Events ACTIVITIES

"Places to go..."

CALIFORNIA: The 34th annual International DX Convention, a joint effort of the Northern California and Southern California DX Clubs, Friday, Saturday and Sunday, April 22, 23 and 24, at the Visalia Holiday Inn Hotel, Visalia. DXpedition reports, technical presentations, awards, contests, dining and hospitality rooms, slides, movies

THE CHAMP

BIRD MODEL 4304
NO ELEMENTS 25-1000 MHZ RF SAMPLING PORT aUTHORIzED Bintil Distributor

WEBSTER COMMUNICATIONS INC. 115 BELLARMINE ROCHESTER, MI 48063 313-375-0420
CALL TOLL FREE 800-521-2333 800-482-3610

July 30 thru August 12, 1983
Our 24th year
Learn why the answers are what they are Upgrade with electronics professionals. OAK HILL ACADEMY RADIO SESSION in the
Blue Ridge Mountains of Virginia
Theory and code together.

- Novice to General
- General or Technician to Advanced
- Advanced to Amateur Extra

Expert Instructors - Friendly Surround-
ings - Excellent Accommodations.
Ham Lab set up for all to use.
'A Vacation with a Purpose"
C. L. PETERS, K4DNJ, Director

Oak Hill Academy Amateur Radio Session Box 43
Mouth of Wilson, VA 24363
Name
Call
Address
City/State/Zip

AMATEUR RADIO UR CALL

Beautiful - Durable

These personalized decals will adhere to the inside of windows -
shack
home
office
boat anywhere
$\$ 5.50$ - $\mathbf{~} \quad \mathbf{\$ 9 . 5 0 - 2} \quad \$ 12.50-3$
Mich. Res add 4\% Sales Tax
Send sheek or money order with Ham Call. name and

DELCRAFT CO.

P0 Box 148. Westland, MI 48185
Clubs and organizations please write or call $313 \cdot 425-0009$ for special pricing

- 124

VOICE OF AMERICA

HAS OPPORTUNITIES IN WASH D C. FOR QUALIFIED RADIO BROADCAST TECHNICIANS
These positions require technical experience in prolessional radio, or the audio portion of television broadcasting
Applicants must qualify in two of the following areas

- Studio Control
- Tape Recording
- Field Operations
- Broadcast Equipment Maintenance

Starting salary: $\$ 11.93$ per hour
U.S. Citizenship Required

Submit Standard Federal Application Form SF-171 or resume to

VOICE OF AMERICA

Am. 1341. 330 Independence Ave.. S.W
Washington. D.C. 20547
Attention: RBT-83-1
Equal Opportunify Employer

- 111
and videotapes, open forums. Many overseas visitors expected. Manufacturers and distributors showing the latest in radio gear. For further information: Northern California DX Club, PO Box 608, Menlo Park, CA 94025

COLORADO: The Grand Mesa Repeater Society's fourth annual Western Slope Swapfest, Saturday, April 2, 10 AM to 4 PM, Plumbers and Steamfitters Union Hall, 2384 Highway 6 and 50, Grand Junction. Free admission. Swap tables $\$ 5.00$ each. Auction and refreshments. Talk in on 146.22 i .82 . For information SASE to Bill Brown, KQUK, 582 So. Maple St., Fruita, CO 81521 or call (303) 858-9661.

GEORGIA: Kennehoochee Hamfest, Sunday, April 17, 8 AM to 4 PM, Civic Center, Marietta, GA.

ILLINOIS: The 17th annual Rock River ARC Hamfest, Sunday, April 10, Lee County 4-H Center, one mile east of jct. 52 and 30, south of Dixon. Doors open 6:30 for dealers; 7:30 general public. 6 ft . tables available $\$ 5.00$. Advance ticket donation $\$ 2$, at gate $\$ 2.50$. Food. Camping available at nominal charge. Talk in on 37/97 re peater. For information and advance tickets: Ed Webb WD9CJB, 618 Orchard St., Dixon, IL 61021. (815) 284-3811.

LOUISIANA: The Baton Rouge Amateur Radio Club's annual Hamfest, Saturday, May 7 and Sunday, May 8 , Catholic High School, 855 Hearthstone Drive, Baton Rouge. Swap tables, dealers, tech forums and activities for non-hams and children. Talk in on 19/79 and 52 sim plex. For further information: BRARC, PO Box 4004 Baton Rouge, LA 70821.

MASSACHUSETTS: The Framingham Amateur Radio Association's 8th annual Spring Flea Market, Sunday April 10; the largest indoor Ham Flea Market in New England. Framingham Civic League Building, 214 Concord St. (Route 126) in downtown Framingham. Doors open at 10 AM, sellers setup starting at 8:30. Admission $\$ 2$. Tables $\$ 10$ (pre-registration required). Talk in on $75 / 15$ and 52 direct. Radio equipment, computer gear, bargains galore. For information, tables: Ron Egalka, K1YHM, 3 Driscoll Drive, Framingham, MA 01701.

MASSACHUSETTS: The Wellesley Amateur Radio Socie ty's annual auction, Saturday, April 16, First Congregational Church of Wellesley Hills, 207 Washington Street. Wellesley Hills, intersection of Routes 9 and 16. Doors open 9 AM ; auction starts 10 AM . (15% commission $\$ 1.00$ minimum, $\$ 30.00$ maximum). Talk in on 04:64 63:03; and 52. Contact: Kevin P. Kelly, WA1YHV, 7 Lawnwood Place, Charlestown, MA 02129.

MICHIGAN: S.E.M.A.R.A., The Southeastern Michigan Amateur Radio Association's 25th annual Hamfest Swap and Shop, April 10, 8 AM to 3 PM, Grosse Point North High School, Vernier Road between Mack and Lakeshore. Admission $\$ 1.00$ advance; $\$ 2.00$ at door. Good food, free parking. Talk in on $147.75 / .15$. For information SEMARA Swap, PO Box 646, St. Clair Shores, MI 48083 or phone Ray Ninness, WD8KXN (313) 777-0119.

MINNESOTA: The Arrowhead Radio Amateur Club's annual swapfest, Saturday, May 7, 10 AM to 3 PM, Holi day Inn, 207 West Superior St., downtown Duluth. Ad mission $\$ 2.50$ advance, $\$ 3.00$ door. Reserved 4 ft . tables $\$ 3.50$ advance, $\$ 4.00$ at door. Food, free parking, en closed shopping mall. Talk in on 34/94. For information reservations SASE to Jerry Frederick, N0BNG. 1127 104th Avenue West, Duluth, MN 55808

NEBRASKA: The 1983 Midwest ARRL Convention, April 15, 16 and 17, Marina Inn, South Sioux City. Seminars, displays, exhibits and large flea market all indoors. Fine entertainment during Saturday night banquet. QCWA breakfast, 3900 Club luncheon and an outstanding ladies' program Saturday. Convention costs $\$ 6.00$ for 3 days. Saturday night banquet $\$ 10.00$ advance; $\$ 12.00$ at door. To reserve flea market table contact Al Smith, WOPEX, 3529 Douglas St., Sioux City, IA 51104, Exhibi tors contact Jim Boise, KAgGZY, 22 LaSalle St., Sioux City, IA 51104. For general information contact Dick Pitner, wofZO, General Chairman, 2931 Pierce St., Sioux City, IA 51104. For advance banquet tickets and motel reservations contact Jerry Smith, WODUN, Akron, IA 51001.

NEW ENGLAND: The Hosstraders will hold their tenth annual Tailgate Swapfest, Saturday, May 7, sunrise to sunset, at Deerfield, NH, Fairgrounds. Admission $\$ 1.00$ including tailgaters and commercial. Friday night camping for self-contained rigs at nominal fee. None admitted before 4 PM Friday. Profits benefit Boston Burns Unit of Shriners' Hospital. Last year's donation \$2622.75. Ques tions or map to northeast's biggest ham flea market? SASE to Norm, WA1IVB, RFD Box 57, West Baldwin, ME 04091 or Joe, K1RQG, Star Route, Box 56, Bucksport, ME 04416 or Bob, W1GWU, North Walton Road, Seabrook, NH

NEW JERSEY: The Bth Trenton Computer Festival, Sat urday and Sunday. April 16 and 17, 10 AM to 5 PM, Tren ton State College, Trenton. Exhibits, electronics flea market, technical sessions, free short courses on Sunday. Admission $\$ 5$. ($\$ 3$ students). For further information: TCF-83, Trenton State College, Hillwood Lakes

YCS Electronics Corp. P. . 80133205 Phoenik, Arzzona 05067 (602) 274-2885

COD'S Special Quantity Pricing. Min. Credit Card Order $\$ 15.00$. No Min. on COD or Prepaid.
Prepaid Orders Add $\mathbf{\$ 2 . 5 0}$ Ship.. Ins.. Manding Prepaid Orders Add $\$ 2.50$ Ship.. Ins.. Handing

30M KITS \& MORE

aLL KARC BANDS PLUS MOST OF TiE GENERAL COVERAGE EANDS NI1
 YOU SAY ... WELL, WRITE FOR INFORMATION \& PRICES ON OUR NEK LINE OF GENERAL COVERAGE SYWTHESIZERS. YOU'L BE SUPPRISED! KEW 30 METER BAND! ! - GRANDKIT FT101 SERIES KITS GIVE 10 -

HANDIE OWNEFE II
HANDHELD PORTABLE RADIOS ...TOP QUALITY COWHIDE "QUICKDRAN"
BELT HOLSTER, YOUR RADIO SNUG AND STCUEF ON YOUN HIP-DLADY

SUPERCHARGER REVITALIZES YOUR DEAD HANDHELD IMMEDIAIFLY:II

IC2A/AI/E SERVICE MANUALS 8×12 W1TH LARGER DIAGRAKS. 812.00

ALT ITEMS PUSTPAID. CANDIANS ADD $20 t$ AND ORDER TROK B.CI
30 DAY RONEY PACY ON DISPIAYS, SMGHESIFRS, CHARGERS ANI

RELIABLE MICROWAVE TV ANTENNAS

2.1 to 2.6 GHz Frequency Range 34db System Gain (or Greater)

Complete System (as pictured)
Down Converter Probe Style
(Assembled and Tested)
$\$ 119.95$

Power Supply (12 V to 16 V DC+
(Assembled and Tested)
$\$ 39.95$

PETERSON ELECTRONICS

4558 Auburn Blvd Sacramento, CA 95841 (916) 486-9071

C.O.D.'s

SPECIAL QUANTITY PRICING
Dealers Wanted

QUALITY SPECIALS

MONSTER-SIZED MULTI.PAKS $\$ 10.95$ each

Bant s	Nect count 106	
man	\cdots	
\pm	sporte	
mour	-	
mose	sooren	
mox	*	,
	∞	
	me	
rese	m	
	\%	

MONSTER JR. MULTI-PAKS $\$ 2.95$ EACH.

SOPHISTICATED I.C.S

133

$\vee 106$
ince/country and QRP ARCI membership number, Non members give RS(T), state/province/country and power output. QSO points (total all bands) times total number of states/provinces/countries (may be worked on more than one band) times power multiplier times bonus mul tiplier (if any) equals claimed score. Send large SASE or IRCs to contest chairman for scoring summary sheet in advance of contest. Send full log data plus separate worksheet showing details and time off air. No logs re turned. For results and scores send large SASE with one ounce of U.S. postage or IRCs. Logs must be received by May 21, 1983. QRP ARCI Contest Chairman, William Dickerson, WA2JOC, 230 Mill St., Danville, PA 17821.

APRIL 23 AND 24: The Missouri Valley Amateur Radio Club's fourth annual Pony Express Day, 1000 CST to 1900 CST (Saturday) and 0900 CST to 1200 CST (Sunday) This event commemorates the original running of the Pony Express from St. Joseph, Missouri to Sacramento Calif. Operating frequencies: 10 kHz from bottom of the general phone bands on 15,20,40 and 75 meters. On 10 meters -28.575 . CW: 10 meters $-28.150 ; 15$ meters 21.150; 40 meters - 7.125. Anyone contacting Club sta tion W0NH is eligible for a special Pony Express certifi cate. Just send two first-class postage stamps and a QSL card to: Missouri Valley Amateur Radio Club, 401 N 12th Street, St. Joseph, MO 64501

APRIL 29-MAY 1: The first International VHFIUHF Con ference to be held as part of the Dayton Hamvention. Activities span all three days and include tech talks and forums; noise figure and antenna gain measuring con tests, a hospitality suite get-together with refreshments All this along with the rest of the Hamvention features For further information and to advise of participation in contests contact: Jim Stitt, WA8ONQ, 311 N. Marshall Road, Middletown, OH 45042, (513) 475-4444 business or (513) 863-0820 home.

MAY 7: Harry's Haydays. The Southside Amateur Radio Club will operate KA0HXU to commemorate President Harry Truman's 99th birthday. The station will operate at or near the old Truman farm home in Grandview, MO from 1500Z to 2400 Z on $21.355,14.290$ and 7.230 . Com memorative QSL's will be sent via the bureau unless otherwise requested. For information: Southside ARC PO Box 412, Grandview, MO 64030.

WORKSHOP: Personal Computer Interfacing and Scien tific Instrument Automation. \$395.00. Charlotte, NC June 2.4; Reston, VA, June 16-18; Charleston, SC, July 14-16; Williamsburg. VA, Aug, 11-13, and Greensboro NC, Sept. 8-10. These are hands-on workshops with each participant wiring and testing interfaces. For more infor mation, call or write Dr. Linda Leffel, C.E.C., Virginia Tech, Blacksburg, Virginia 24061. (703) 961-4848

AMP-LETTER

All new publication, new owner K8KXh
The AMP LETTER is devoted to the design, building. and mod fication of amplifiers
The AMP.LETTER will help you lower your building cost, pro vide sources for parts and information, keep you abreast of lates techniques and solid state design
Subscription cost $\$ 1800 / \mathrm{yr} \quad 12$ issues Sample issue $\$ 200$ VISA Master Charge
THE AMP LETTER
73 Maple Drive, Hudson, OH 42236 216-653-8157 D 10

When it comes to
QSL's...

it's the

ONLY BOOK!
US or Foreign Listings

1983 beake

Here they are! The latest editions of the world-famous Radio Amateur Callbook are avallable now. The U.S. edition features over 400,000 listings, with over 75,000 changes from last year. The Foreign edition has over 370,000 listings, over 50,000 changes. Each book lists calls and the address information you need to send QSL's. Special features include call changes, census of amateur licenses, world-wide QSL bureaus, prefixes of the worid, International postal rates, and much more. Place you order for the new 1983 Radio Amateur Callbooks, available now.

| | | Each | Snipping |
| :--- | ---: | :--- | :--- | Total | | $\$ 19.95$ | $\$ 3.05$ | $\$ 23.00$ |
| :--- | :--- | :--- | :--- |
| \square USCalibook | $\$$ Foreign | | |
| Callbook | | | |

Order both books at the same time for $\$ 41.95$ including shipping.
Order from your dealer or directly from the publisher. All direct orders add shipping shipping. Illinois residents add 5\% sales tax.

SPECIAL OFFER!
Amateur Radio
Emblem Patch
only $\$ 2.50$ postpaid
Pegasus on blue fleld, red lettering. $3^{\prime \prime}$ wide $\times 3^{\prime \prime}$ high. Great on Jackets and caps.

ORDER TODAY!

Radio AMATEUR\|book inc.

Dept. F F
925 Sherwood Drive Lake Bluff, IL 60044, USA
~ 166
April 1983 IW
115

FACIT 4555 SERIAL PAGE PRINTER

The Facit 4555 alphanumerical serial printer is complete. Equipped with RS232C Interface, printing mechanism, control electronics, drive electronics, power supply and character generator. The adaptation electronics can be modified in four versions:Bit-parallel data transfer, CCITT (EIA, RS232C) for bit-serial data transfer and the current loop (TTY) interface also for bit serial data transfer. The Facit 4555 prints on ordinary paper and is adjustable for different paper widths and formats, $9.5^{\prime \prime}$ paper width with 66 Ines per page or DIN A4 with 70 lines per page.

SPECIFICATIONS

Print speed	up to 60ch.s.	Char. spacing	$2.54 \mathrm{~mm} / 1 / 10^{\prime \prime} 80 \mathrm{ch} / 1$ ine
Printing mode	Incremental.		$1.55 \mathrm{~mm} / 0.06^{\prime \prime} 132 \mathrm{ch} / 1$ ine
Max. of ch/line	80 alt. 132.	Char. Code	ECMA-6 $7-\mathrm{bit}$ coded char. set
Matrix	7×5 dot matrix.	Char. Set	63 Char . various national
Char. Size Height	$2.7 \mathrm{~mm} / 1 / 8^{\prime \prime}$		versions.
Char. Size Width	$1.3 \mathrm{~mm} / 0.05^{\prime \prime} 132 \mathrm{ch} / 1$ ine	Feed mechanism	Sprocket feed.
	$2.1 \mathrm{~mm} / 0.083^{\prime \prime} 80 \mathrm{ch} / 1$ ine		

THESE UNITS WERE PULLED OUT OF SERVICE IN GOOD WORKING CONDITION. WE CHECK EACH UNIT ON A RADIO SHACK TRS -80 COLOR COMPUTER.

PRINTER ONLY $\$ 129.99$

Printer with linecord, box of paper, inter-connect cable for TRS-80 COLOR COMPUTER.

GENEVA CALCULATOR WATCH

This attractive watch has the following modes:
Normal Time Setting,
Calendar Setting,
Daily Alarm Time Setting,
Weekly Alarm Time Setting,
Chronograph,
Calculator.

Featured in Black Plastic $\$ 24.99$ or Featured in Stainless Steel $\$ 29.99$

SILICON DIODES					FEED THRU SOLDER RF CAPACTORS	
MR751	100vde	6Amps	10/\$5.00	100/\$38.00	470pf + -20\%	
MRS10	1000 vdc	3Amps	10/\$3.75	100/\$24.00		
HEP 170	1000 vdc	2 Amps	20/\$2.00	100/\$15.00	5/\$1.00 or 100	\$ $\$ 15.00$ or
1N3209	100 vdc	15 Amps	\$2.00	10/ \$15.00	1000/\$100.00	
BYX21/200	200 vdc	25 Amps	\$2.00	10/ \$15.00		
1N2138A	600 vdc	60Amps	\$5.00	10/ $\$ 40.00$	1000pf/.001u	+-10\%
DS85-04C	400 vdc	80Amps	\$10.00	10/ \$80.00		
1N3269	600 vdc	160 Amps	\$15.00	10/\$120.00	4/\$1.00 or 1	\$20.00 or
275241	300 vdc	250Amps	\$20.00	10/\$175.00	1000/\$150.00	
7-5754	300 vdc	400Amps	\$30.00	10/\$250.00		
RCD-15	15 KVDC	20 ma .	\$3.00	10/ \$20.00	E PROMS	
SMFR20K	20KVDC	20 ma .	\$4.00	10/ \$30.00	E PROMS	
1N4148	signal		30/\$1.00	100/\$3.00	27081024×1	\$2.00 each
FAIRCHILD 4116 16K DYNAMIC RAMS 200ns. Part \#16K75					27162048×8	\$4.00 each
25 For $\$ 25.00$ or 100 For $\$ 90.00$ or 1000 For $\$ 750.00$					27L32/25L32	\$10.00 each

HEWLETT PACKARD MICROWAVE DIODES

IN5711	$(5082-2800)$
1N5712	$(5082-2810)$
IN6263	(HSCH-1001)
5082-2835	
$5082-2805$	Quad Matched

Toll Free Number 800-528-0180 (For orders only)
"All parts may be new or surplus, and parts may be substituted with comparable parts if we are out of stock of an item."

"MIXERS"

WATKINS JOHNSON WJ-M6 Double Balanced Mixer

LO and RF 0.2 to 300 MHz
Conversion Loss (SSB)
Noise Figure (SSB)
Conversion Compression

IF DC to 300 MHz
6.5 dB Max. 1 to 50 MHz
8. 5 dB Max. . 2 to 300 MHz
same as above
8.5dB Max. 50 to 300 MHz
.3dB Typ.
$\$ 21.00$
WITH DATA SHEET

NEC (NIPPON ELECTRIC CO. LTD. NE57835/2SC2150 Microwave Transistor

UNELCO RF Power and Linear Amplifier Capacitors
These are the famous capacitors used by all the RF Power and Linear Amplifier manufacturers, and described in the RF Data Book.

FAIRCHILD / DUMONT Oscilloscope Probes Model 4290B

Input Impedance 10 meg., Input Capacity 6.5 to 12pf., Division Ratio (Volts/Div Factor)
10:1, Cable Length 4Ft. , Frequency Range Over 100 MHz .
These Probes will work on all Tektronix, Hewlett Packard, and other Oscilloscopes.
PRICE $\$ 45.00$

MOTOROLA RF DATA BOOK
Listsall Motorola RF Transistors / RF Power Amplifiers, Varactor Diodes and much much more.
PRICE $\$ 7.50$

> Toll Free Number $800-528-0180$ (For orders only)

RF TRANSISTORS, MICROWAVE DIODES

$\frac{\text { PART }}{\text { 1S2199 }}$
1S2200
2N 1561
2N 1562
2N2857JAN
2N2876
2N2947
2N2948
2N2949
2N2950
2N3375
2N 3553
2N 3632
2N 3818
2N3866
2N3924
2N 3927
2N3950
2N4072
2N4127
2N4427
2N4428
2N4957
2N4959
2N 5090
2N5108
2N5109
2N 5160
2N5177
2N5179
2N 5583
2N5589
2N5590
2N5591
2N5635
2N5637
2N5641
2N 5642
2N 5643
2N 5645
2N 5646
2N5691
2N 5764
2N 5836
2N 5842
2N5849
2N5913
2N5922
2N5923
2N5941
2N5942
2N 5944
2N 5945 2N5946 2N6080 2N6081
2N6082
$\frac{\text { PRICE }}{\$ 7.50}$
7.50
25.00
25.00

1. 55
2.55
11.00
18.35
15.50
3.90
4.60
8.00
1.57
13.80
5.00
1.30
3.35
17.75
25.00
1.80
21.00
1.30
1.85
3.45
2.90
2.30
13.90
4.00
1.70
3.45
21.62
1.00
4.00
8.65
10.35
13.80
10.95
15.50
9.20
10.95
15.50
13.80
20.70
18.00
27.00
5.45
8.00
20.00
3.25
10.00
25.00
23.00
40.00
9.20
11.50
19.00
9.20
10.35
11.50
$\frac{\text { PART }}{\text { 2N } 6083}$
2N6084
2N6094 /M9622
2N6095 /M9623
2N6096 /M9624
2N6097
2N6136
2N6166
2N6459
2N6603
2N6680
2SC756A
2SC781
2SC1018
2SC1042
2SC1070
$2 S C 1239$
$2 S C 1251$
2SC1306
2SC1307
$2 S C 1760$
2SC 1970

	5.50
8B1087 (M.A.)	25.00

A50-12 20.00
A283B
ALD 4200 N (AVANTEK)
AM123
AM688
BB105B
BD4/4JFBD4 (G.E.)
BFQ85
BFR90

BFX89 1.00
1.00
25.00
25.00
25.00
25.00
10.00
11.00
25.00
13.00
14.00
15.00
20.00
10.00
20.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00
25.00

PART	PRICE
CA2612 (TRW)	\$ 25.00
CA2674 (TRW)	25.00
CA2881-1 (TRW)	25.00
CA4101 (TRW)	25.00
CA4201 (TRW)	25.00
CA4600 (TRW)	25.00
CD1889	20.00
CD2545	20.00
CMD 514 AB	20.00
D4959	10.00
D4987M	20.00
D5147D	10.00
D5506	10.00
D5827AM	20.00
DMD6022	30.00
DMS-2A-250	40.00
HEP76	4.95
HEPS 3002	11.30
HEPS 3003	30.00
HEPS 3005	10.00
HEPS 3006	19.90
HEPS 3007	25.00
HEPS 3010	11.34
HTEF2204 H.P.	112.00
5082-0112 H.P.	14.20
5082-0253 H.P.	105.00
5082-0320 H.P.	58.00
5082-0386 H.P.	POR
5082-0401 H.P.	POR
5082-0438 H.P.	POR
5082-1028 H.P.	POR
5082-2711 H.P.	23.15
5082-3080 H.P.	2.00
5082-3188 H.P.	1.00
5082-6459 H.P.	POR
5082-8323 H.P.	POR
35826 E H.P.	POR
35831 E H.P.	29.99
35853 E H.P.	71.50
$35854 \mathrm{EH.P}$.	75.00
HPA0241 H.P.	75.60
HXTR3101 H.P.	7.00
HXTR3102 H.P.	8.75
HXTR6101/2N6617	H.P. 55.00
HXTR6104 H.P.	68.00
HXTR6105 H.P.	31.00
HXTR6106 H.P.	33.00
QSCH 1995 H.P.	POR
JO2000 TRW	10.00
J02001 TRW	25.00
J04045 TRW	25.00
K3A	10.00
MA450A	10.00
MA41487	POR
MA41765	POR
MA43589	POR
MA43636	POR
MA47044	POR
MA47651	25.50

PRICES SUBJECT TO Change Without notice

GaAs, TUNNEL DIODES, ETC.

PART	PRICE	PART	PRICE	PART	PRICE	
MA47100	\$ 3.05	MRF503	\$ 6.00	PT4186B	\$	POR
MA47202	30.80	MRF504	7.00	PT4209		POR
MA47771	POR	MRF509	5.00	PT4209C		POR
MA47852	POR	MRF511	8.65	PT4566		POR
MA49558	POR	MRF605	20.00	PT4570		POR
MB4021	POR	MRF629	3.47	PT4571		POR
MBD101	1.00	MRF644	23.00	PT4571A		POR
MD0513	POR	MRF816	15.00	PT4577		POR
MHW1171	42.50	MRF823	20.00	PT4590		POR
MHW1182	48.60	MRF901	3.00	PT4612		POR
MHW4171	49.35	MRF8004	2.10	PT4628		POR
MHW4172	51.90	MS 261 F	POR	PT4640		POR
MHW4342	68.75	MT4150 Fair.	POR	PT4642		POR
MLP 102	25.00	MT5126 Fair.	POR	PT5632		POR
MM1 500	32.32	MT 5481 Fair.	POR	PT5749		POR
MM1550	POR	MT5482 Fair.	POR	PT6612		POR
MM1 552	50.00	MT5483 Fair.	POR	PT6626		POR
MM1553	50.00	MT5596 Fair.	POR	PT6709		POR
MM1614	10.00	MT5764 Fair.	POR	PT6720		POR
MM2608	5.00	MT8762 Fair.	POR	PT8510		POR
MM3375A	11.50	MV109	. 77	PT8524		POR
MM4429	10.00	MV1401	8.75	PT8609		POR
MM8000	1.15	MV1624	1.42	PT8633		POR
MM8006	2.30	MV 1805	15.00	PT8639		POR
M0277L	POR	MV 1808	10.00	PT8659		POR
M0283L	POR	MV 1817B	10.00	PT8679		POR
M03757	POR	MV1863B	10.00	PT8708		POR
MP 102	POR	MV 1864A	10.00	PT8709		POR
MPN3202	10.00	MV1864B	10.00	PT8727		POR
MPN3401	. 52	MV 1864D	10.00	PT8731		POR
MPN3412	1.00	MV1868D	10.00	PT8742		POR
MPSU31	1.01	MV2101	. 90	PT8787		POR
MRA2023-1.5 TRW	42.50	MV2111	. 90	PT9790		41.70
MRF212/208	16.10	MV2115	1.55	PT31962		POR
MRF223	13.25	MV2201	. 53	PT31963		POR
MRF224	15.50	MV2203	. 53	PT31983		POR
MRF237	3.15	MV2209	2.00	PTX6680		POR
MRF238	12.65	MV2215	2.00	RAY-3		24.99
MRF243	25.00	MWA110	7.45	40081		POR
MRF245	34.50	MWA120	7.80	40281		POR
MRF247	34.50	MWA130	8.25	40282		POR
MRF304	43.45	MWA210	7.80	40290		POR
MRF315	23.00	MWA220	8.25	RF110		25.00
MRF420	20.00	MWA230	8.65	SCA3522		POR
MRF421	36.80	MWA310	8.25	SCA3523		POR
MRF422	41.40	MWA320	8.65	SD1065		POR
MRF427	16.10	MWA330	9.50	SS43		POR
MRF428	46.00	NEC57835	5.30	TP1014		POR
MRF450/A	13.80	ON382	5.00	TP1028		POR
MRF453/A	17.25	PPT515-20-3	POR	TRW-3		POR
MRF454/A	19.90	PRT8637	POR	UTO504 Avantek		70.00
MRF455/A	16.00	PSCQ2-160	POR	UT0511 Avantek		75.00
MRF458	19.90	PT3190	POR	V15		4.00
MRF463	25.00	PT3194	POR	V33B		4.00
MRF472	1.00	PT3195	POR	V100B		4.00
MRF475	2.90	PT 3537	POR	VAB801EC		25.00
MRF477	11.50	PT4166E	POR	VAB804EC		25.00
MRF502	1.04	PT4176D	POR	VAS21AN20		25.00

Toll Free Number 800-528-0180 (For orders only)

Electronic Specialty Co./Raven Electronics FSN 5985-556-9683 \$49.00 Part \# 25N28 Part \# SU-01 26 Vdc Type N Connector, DC to 1 GHz .

Amphenol
Part 316-10102-8
115 Vac Type BNC DC to 3 GHz .
$\$ 29.99$

EXR
Part f 300-11182
120 Vac Type BNC DC to 4 GHz . FSN 5985-543-1225

FXR
Part 300-11173
120Vac Type BNC Same FSN 5985-543-1850
$\$ 39.99$

$\$ 39.99$

BNC To Banana Plug Coax Cable RG-58 36 inch or BNC to N Coax Cable RG-58 36 inch.
$\$ 7.99$ or 2 For $\$ 13.99$ or 10 For $\$ 50.00$

SOLID STATE RELAYS
P\&B Model ECT1DB72
PRICE EACH $\$ 5.00$
Digisig, Inc. Model ECS-215
PRICE EACH $\$ 7.50$
Grigsby/Barton Model GB7400 5vdc turn on
PRICE EACH \$7.50
$\$ 8.99$ or 2 For $\$ 15.99$ or 10 For $\$ 60.00$

120 vac contact at 7 amps or 20 amps on a $10^{\prime \prime} \times 10^{\prime \prime} \times .124$ aluminum. Heatsink with silicon grease.
240 vac contact 14 amps or 40 amps on a $10^{\prime \prime} \times 10^{\prime \prime} \mathrm{x} .124$ aluminum. Heatsink with silicon grease.
240 vac contact at 15 amps or 40 amps on a $10^{\prime \prime} \times 10^{\prime \prime} \times .124$ aluminum. Heatsink with silicon grease.

NOTE: *** Items may be substituted with other brands or equivalent model numbers. ***
'All parts may be new or surplus, and parts may be substituted with comparable parts it we are out of stock of an item."

> Toll Free Number 800-528-0180 (For orders only)

The Recall Phone Telephone employs the latest state of art communications technology. It is a combination telephone and automatic dialer that uses premium-quality, solid-state circuitry to assure high-reliability performance in personal or business applications. $\$ 49.99$

TOUCH TONE PAD
This pad contains all the electronics to produce standard touch-tone tones. New with data.

$\$ 9.99$ or $10 / \$ 89.99$

MITSUMI UHF/VHF VARACTOR TUNER MODEL UVE $1 A$

Perfect for those unscrambler projects. New with data.

$\$ 19.99$ or $10 / \$ 149.99$

INTEGRATED CIRCUIT	1 to 10	11 up	
MC1372P	Color TV Video Modulator Circuit.	$\$ 4.42$	$\$ 2.95$
MC1358P	IF Amp., Limiter,FM Detector,Audio Driver, Electronic Attenuator.	5.00	4.00
MC1350P	IF Amplifier	1.50	1.25
MC1330A1P	Low Level Video Detector	1.50	1.15
MC1310P	FM Stereo Demodulator	4.29	3.30
MC1496P	Balanced Modulator/Demodulator	1.50	1.25
LM565N	Phase Locked Loop	2.50	2.00
LM380N14	2Watt Audio Power Amplifier	1.56	1.25
LM1889N	TV Video Modulator	5.00	4.00
NE564N	Phase Locked Loop	10.00	8.00
NE561N	Phase Locked Loop	10.00	8.00

FERRANTI ELECTRONICS AM RADIO RECEIVER MODEL ZN414 INTEGRATED CIRCUIT.
Features:
1.2 to 1.6 volt operating range., Less than 0.5 ma current consumption. 150 KHz to 3 MHz Frequency range., Easy to assemble, no alignment necessary. Effective and variable AGC action., Will drive an earphone direct. Excellent audio quality., Typical power gain of $72 \mathrm{~dB}, \mathrm{TO}-18$ package. With data. $\$ 2.99$ or 10 For $\$ 24.99$

NI CAD RECHARGEABLE BATTERIES

AA Battery Pack of 6 These are Factory New. $\$ 5.00$

SUB C Pack of $10 \quad 2.5 \mathrm{Amp} / \mathrm{Hr}$. $\$ 10.00$
Gates Rechargeable Battery Packs
12 vdc at $2.5 \mathrm{Amp} / \mathrm{Hr}$.
$\$ 11.99$
12 vdc at $5 \mathrm{Amp} / \mathrm{Hr}$.
$\$ 15.99$

We will be closed April 27th through May 2nd. . .

See you at the Dayton Hamvention!

Toll Free Number
800-528-0180
(For orders only)

PRICES SUBJECT TO CHANGE WITHOUT NOTICE

"SOCKETS AND CHIMNEYS"

EIMAC TUBE SOCKETS AND CHIMNEYS

SK110	Socket	SPOR
SK300A	Socket For $4 \mathrm{CX} 5000 \mathrm{~A}, \mathrm{R}, \mathrm{J}, 4 \mathrm{CXl} 0,000 \mathrm{D}, 4 \mathrm{CXl}, 000 \mathrm{~A}, \mathrm{~J}$	\$520.00
SK400	Socket For 4-125A, 250A,400A, 400C, 4PR125A, 400A, 4-500A, 5-500A	260.00
SK406	Chimney For $4-250 \mathrm{~A}, 400 \mathrm{~A}, 400 \mathrm{C}, 4 \mathrm{PR} 400 \mathrm{~A}$	74.00
SK416	Chimney For 3-4002	36.00
SK500	Socket For 4-1000A/4PR1000A/B	390.00
SK600	Socket For $4 \mathrm{CX} 250 \mathrm{~B}, \mathrm{BC}, \mathrm{FG}, \mathrm{R}, 4 \mathrm{CX} 350 \mathrm{~A}, \mathrm{~F}, \mathrm{FJ}$	51.00
SK602	Socket For $4 \mathrm{CX2} 20 \mathrm{~B}, \mathrm{BC}, \mathrm{FG}, \mathrm{R}, 4 \mathrm{CX} 350 \mathrm{~A}, \mathrm{~F}, \mathrm{FJ}$	73.00
SK606	Chimney For 4CX250B, BC, FG, R, $4 \mathrm{CX} 350 \mathrm{~A}, \mathrm{~F}, \mathrm{FJ}$	11.00
SK607	Socket For 4CX600J, JA	60.00
SK610	Socket For 4CX600J, JA	60.00
SK620	Socker For 4CX600J, JA	66.00
SK626	Chimney For 4CX600J, JA	10.00
SK630	Socket For 4CX600J, JA	66.00
SK636B	Chimney For 4CX600J, JA	34.00
SK640	Socket For 4CX600J, JA	36.00
SK646	Chimney For 4CX600J, JA	71.00
SK700	Socket For 4CX300A, Y, 4CX125C, F	225.00
SK711A	Socket For 4CX300A, Y, 4CX125C,F	225.00
SK740	Socket For 4CX300A, Y, 4CX125C,F	86.00
SK770	Socket For 4CX300A, Y, $4 \mathrm{CX} 125 \mathrm{C}, \mathrm{F}$	86.00
SK800A	Socket For 4CX1000A, $4 \mathrm{CX1500B}$	225.00
SK806	Chimney For 4CX1000A, 4 CX 1500 B	40.00
SK810	Socket For 4CX1000A, 4CX1500B	225.00
SK900	Socket For 4X500A	300.00
5K906	Chimney For 4X500A	57.00
SK1420	Socket For 5CX3000A	650.00
SK1490	Socket For 4CV8000A	585.00

JOHNSON TUBE SOCKETS AND CHIMNEYS

124-111/SK606	Chimney For 4Cx2508, BC, FG, R, 4CX350A, F, FJ	\$ 10.00
122-0275-001	Socket For 3-5002, 4-125A, 250A, 400A, 4-500A, 5-500A	(pair) 15.00
124-0113-00	Capacitor Ring	15.00
124-116/SK630A	Socket For 4CX250B, BC, FG, R, /4CX350A, F, FJ	55.00
124-115-2/SK620A	Socket For $4 \mathrm{CX} 250 \mathrm{~B}, \mathrm{BC}, \mathrm{FG}, \mathrm{R}, 14 \mathrm{CX} 350 \mathrm{~A}, \mathrm{~F}, \mathrm{FJ}$	55.00
	813 Tube Socket	20.00

Frequency range 3.6 to 4.2 GHz , Power ouput, Min. 10 dBm typical, 8 dBm Guaranteed.
Spurious output suppression Harmonic (nf_{o}), min. 20dB typical, In-Band Non-Harmonic, min. 60dB typical, Residual FM, pk to pk, Max. 5 KHz , pushing factor, Max. $8 \mathrm{KHz/V}$, Pulling figure (1.5:1 VSWR), Max. 60MHz, Tuning voltage range +1 to +15 volts, Tuning current, Max. -0.1 mA , modulation sensitivity range, Max. 120 to $30 \mathrm{MHz} / \mathrm{V}$, Input capacitance, Max. 100pf, Oscillator Bias $+15+-0.05$ volts 55 mA , Max.
'All parts may be new or surplus, and parts may be substituted with comparable parts if we are out of stock of an item.

TUBES

TYPE	PRICE	TYPE	PRICE	TYPE	PRICE
2E26	\$ 5.69	KT88	\$ 20.00	6562/6974A	\$ 50.00
2K28	100.00	DX362	50.00	6832	22.00
2X1000A	300.00	DX415	50.00	6883/8032A/8552	7.00
3B22	19.75	572B/T160L	49.00	6897	110.00
3B28/866A	7.50	592/3-200A3	144.00	6907A	75.00
3-5002	102.00	807	7.50	6939	15.00
3-10002	400.00	811	10.00	7094	125.00
$3 \mathrm{CX1000A/8283}$	428.00	811A	15.00	7117	17.00
3CX1 500A7/887	533.00	812A	35.00	7211	60.00
3x2500A3	200.00	813	50.00	7289/3CX100A5	34.00
3CX3000A7	490.00	829B	38.00	7360	11.00
4-65A/8165	45.00	832A	28.00	7377	67.00
4-125A/4D21	58.00	4624	310.00	7408	4.00
4-250A/5D22	75.00	4662	80.00	7650	250.00
4-400A/8432	90.00	4665	585.00	7695	8.00
4-400C/6775	95.00	5675/A	25.00	7843	58.00
4-1000A/8166	300.00	5721	200.00	7854	83.00
4B32	22.00	5768	85.00	7868	5.00
4E27A/5-125B	155.00	5836	100.00	7894	12.00
4CS250R	146.00	5837	100.00	8072	65.00
4X1.50A/7034	30.00	5861/ECS5	110.00	8117A	130.00
4X150D/7035	40.00	5876A	25.00	8121	60.00
4X150G/8172	100.00	5881/6L6W	6.00	8122	100.00
4X250B	30.00	5893	45.00	8236	30.00
4CX250B/7203	45.00	5894/A	50.00	8295/PL172	506.00
4CX250F/G/8621	55.00	5894/B	60.00	8462	100.00
4CX250K/8245	100.00	5946	258.00	8505A	73.50
4CX250R/7580W	69.00	6080	10.00	8533W	92.00
4CX300A/8167	140.00	6083/AX9909	89.00	8560/A	65.00
4CX350A/8321	83.00	6098/6AK6	14.00	8560AS	90.00
4CX350F/J/8904	95.00	6115/A	110.00	8608	34.00
4 X 500 A	282.00	6146	7.00	8637	38.00
4CX600J/8809	607.00	6146A	7.50	8643	100.00
4CW800F	625.00	6146B/8298A	8.50	8647	123.00
4CX1000A/8168	340.00	6146W	14.00	8737/5894B	60.00
4CX1500B/8660	397.00	6156	66.00	8873	260.00
4CX5000A/8170	932.00	6159	15.00	8874	260.00
$4 \mathrm{CX10000D} / 8171$	990.00	6161	233.00	8875	260.00
4CX15000A/8281	1260.00	6291	125.00	8877	533.00
4PR60A	100.00	6293	12.00	8908	12.00
4PR60B/8252	175.00	6360	5.00	8930/6512	71.00
4PR400A/8188	192.00	6524	53.00	8950	12.00
5CXI500A	569.00	6550	10.00		
6BK4C	6.00	6JM6	6.00	6LQ6 (Sylvania)	7.50
6DQ5	5.00	6JN6	6.00	6LU8	6.00
6FW5	6.00	6JS6B	6.00	6LX6	6.00
6GE5	6.00	6KG6/EL505	6.00	6ME6	6.00
6GJ5	6.00	6KM6	6.00	12BY7A	4.00
6HS5	6.00	6KN6	6.00	12JB6A	6.00
6JB5/6HE5	6.00	6LF6	6.00	6KD6	6.00
6JB6A	6.00	6LQ6 (GE)	6.00	6JT6A	6.00
				6KD6	6.00

NOTICE ALL PRICES ARE SUBJECT TO CHANGE WITHOUT NOTICE $1!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$ TUBES MAY EITHER BE NEW OR SURPLUS CONDITION !!!

GEAETESE

COLLINS Mechanical Filter \#526-9724-010 MODEL F455Z32F

455 hHz at 3.2 KHz wide. May be other models but equivalent. May be used or new, $\$ 15.99$ ATLAS Crystal Filters

KOKUSAl ELECTRIC CO, Mechonicol Filter \#MF-455-ZL/ZU-21H
455 KHz at Center Frequency of 453.5 KC . Carrier Frequency of 455 kHz 2.36 KC Bandwidth.
\qquad
Iower sideband. (ZL) 19.99
CRYSTAL FILTERS

NTFKO	FX-07800C	7.31Hz	\$10.00
TEW	FEC-103-2	10.6935 MHz	10.00
SDK	SCH-113A	11.2735 MHz	10.00
TAMA	TF-31H250	CF 3179.3 KHz	19.99
TYCO/CD	001019880	10.7 MHz 2 pole 15 KHz bandwidth	5.00
MOIOROLA	4884863B01	11.7 MHz 2 pole 15 KHz bandwidth	5.00
PTI	5350 C	12 MHz 2 pole 15 KHz bandwidth	5.00
PTI	5426C	21. 4 MHz 2pole 15 KHz bandwidth	5.00
PTI	1479	10.7MHz 8pole bandwidth 7.5 KHz at $3 \mathrm{~dB}, 5 \mathrm{KHz}$ at 6 dB	20.00
COMTECH	Al0300	45 MHz 2 pole 15 KHz bandwidth	6.00
ERC	ERXF-15700	20.6 MHz 36 KHz wide	10.00
EILTECH	2131	CF 7.825 MHz	10.00

CERAMIC FILTERS

AXEL	4F449	12.6KC Bandpass Filter 3dB bandwidth 1.6 KHz from $11.8-13.4 \mathrm{KHz}$	10.00
CTEVITE	TO-01A	$455 \mathrm{KHz}+2 \mathrm{KHz}$ bandwidth $4-78$ at 3 dB	5.00
	TCF4-12D36A	$455 \mathrm{Kriz}+1 \mathrm{KHz}$ bandwidth $6 \mathrm{~dB} \mathrm{~min} 12 \mathrm{KHz}, 60 \mathrm{BB}$ max 36 KHz	10.00
MURATA	BFB455B	455 KHz .	2.50
	BFB455L	455 KHz	3.50
	CFM455E	$455 \mathrm{KHz}+5.5 \mathrm{KHz}$ at $3 \mathrm{~dB},+8 \mathrm{KHz}$ at $6 \mathrm{~dB},+16 \mathrm{KHz}$ at 50 dB	6.65
	CFM455D	$455 \mathrm{KHz}+7 \mathrm{KHz}$ at $3 \mathrm{~dB},+-10 \mathrm{KHz}$ at $6 \mathrm{~dB},+-20 \mathrm{KHz}$ at 50 dB	6.65
	CFR455E	$455 \mathrm{KHz}+5.5 \mathrm{KHz}$ at $3 \mathrm{~dB},+8 \mathrm{KHz}$ at $6 \mathrm{~dB},+16 \mathrm{KHz}$ at 60 dB	8.00
	CFU455B	$455 \mathrm{KHz}+2 \mathrm{KHz}$ bandwidth +-15 KHz at $6 \mathrm{~dB},+30 \mathrm{KHz}$ at 40 dB	2.90
	CFU455C	$455 \mathrm{KHz}+2 \mathrm{KHz}$ bandwidth +12.5 KHz at $6 \mathrm{~dB},+24 \mathrm{KHz}$ at 40 dB	2.90
	CFU455G	$455 \mathrm{KHz}+-1 \mathrm{KHz}$ bandwidth +-4.5 KHz at $6 \mathrm{~dB},+-10 \mathrm{KHz}$ at 40 dB	2.90
	CFU455H	$455 \mathrm{KHz}+-1 \mathrm{KHz}$ bandwidth +3 KJz at $6 \mathrm{~dB},+9 \mathrm{KHz}$ at 40 dB	2.90
	CFU455I	$455 \mathrm{KHz}+1 \mathrm{KHz}$ bandwidth +2 KHz at $6 \mathrm{~dB},+6 \mathrm{KHz}$ at 40 dB	2.90
	CFW455D	$455 \mathrm{KHz}+10 \mathrm{KHz}$ at $6 \mathrm{~dB},+20 \mathrm{KHz}$ at 40 dB	2.90
	CFW455H	$455 \mathrm{KHz}+3 \mathrm{KHz}$ at $6 \mathrm{~dB},+9 \mathrm{KHz}$ at 40 dB	2.90
	SFB455D	455 KHz	2.50
	SFD455D	$455 \mathrm{KHz}+2 \mathrm{KHz}, 3 \mathrm{~dB}$ bandwidth $4.5 \mathrm{KHz}+-1 \mathrm{KHz}$	5.00
	SFEl0.7MA	$10.7 \mathrm{MHz} 280 \mathrm{KHz}+50 \mathrm{KHz}$ at $3 \mathrm{~dB}, 650 \mathrm{KHz}$ at 20 dB	2.50
	SFEl0.7MS	$10,7 \mathrm{MHz} 230 \mathrm{KHz}+50 \mathrm{KHz}$ at $3 \mathrm{~dB}, 570 \mathrm{KHz}$ at 20 dB	2.50
	SFG10.7MA	10.7 MHz	10.00
NIPPON	LF-B4/CFU455I	$455 \mathrm{KHz}+-1 \mathrm{KHz}$	2.90
	LF-B6/CFU455H	$455 \mathrm{KHz}+1 \mathrm{KHz}$	2.90
	LF-B8	455 KHz	2.90
	LF-C18	455 KHz	10.00
TOKIN	CF455A/BFU455K	$455 \mathrm{KHz}+-2 \mathrm{KHz}$	5.00
MATSUSHIRA	EFC-LA55K	455 KHz	7.00

SPECTRA PHYSICS INC, Model 088 HeNe LASER TUBES

PONER OUTPUT 1. 6MN.	BEAM DIA. .75 MM	BEAM DIR. 2.7 MR
68 K OHM IWATT BAIIAST	1000VDC + 100 VDC	At 3.7MA

ROTRON MUFFIN FANS MOdEI MARK4/MU2A1

115 VAC		
105 CFM at 60 CPS	$50 / 60 \mathrm{CPS}$	IMPEDENCE PROTECTED-F

"CHIPS"

FAIRCHILD VHF ANO UHF PRESCALER CHIPS
$95 \mathrm{H} 900 \mathrm{C} \quad 350 \mathrm{MC}$ Prescaler divide by $10 / 11$ 95H91DC $\quad 350 \mathrm{MC}$ Prescaler divide by $5 / 6$ 11C90DC 650 MC Prescaler divide by 10/11 650MC Prescaler divide by $5 / 6$
11C06DC UHF Prescaler 750MC D Type Flip Flop
11C05DC 1 GHz Counter Divide by 4 (Regular price $\$ 75.00$)

PRICE
$\$ 8.50$ 8.50
15.50
15.50
12.30
50.00

11C01FC High Speed Oual $5 / 4$ Input NOINOR Gate
82S90 Presettable High Speed Decade/Binary Counter used with the $11 \mathrm{C} 90 / 91$ or the $95 \mathrm{H} 90 / 91$ Prescaler can divide by 100 (Signetics)
11 C 24 DC This chip is the same as a Motorola MC4024/4324 Dual TTL Voltage Control Multivibrator.
3.37

11C44DC This chip is the same as a Motorola MC4044/4344 Phase Frequency Detector.

GENERAL ELECTRIC CO. GUNN DIODE MODEL Y. 2167
Freq. Gap (GHZ) 12 to 18. Output (Min.) 100 mW , Duty ($\%$)
CW, Typ. Bias (Vdc) 8.0. Type Oper. (MAdc) 550, Max. Thres (mAdc) 1000, Max. Bias (Vdc) 10.0.
$\$ 39.98$
VARIAN GALLIUM ARSENIDE GUNN DIODES MODEL VSX-9201S5
Freq. Coverage 8 to 12.4 GHz . Output (Min.) 100 mW . Bias Voltage (Max.) 14 vdc . Bias current (mAdc) Operating 550 Typ. 750 Max., Threshold 850 Tup. 1000 Max.
VARI-L Co. Inc. MODEL SS. 43 AM MODULATOR
Freq. Range 6010 150MC, Insertion Loss 13dB Nominal,
Signal Port Imp. 500 hms Nominal, Signal Port RF Power
+10 dBm Max, Modulation Port BW DC to 1 KHZ , Modulation
Port Bias Ima Nominal
$\$ 24.99$

AVANTEK CASCADABLE
MOOULAR AMPLIFIERS

Frequency Range
Gain
Noise Figure
Power Output
Gain Flatness
input Power Vdc mA

Model UTO.504	UTO.511
510500 MHz	5 to 500 MHz
6 dB	15 dB
11 dB	2.3 dB to 3 dB
+17 dB	-2 dB to
	-3 dB
1 dB	1 dB
+24	+15
100	
PRICE	$\$ 70.00$
	PRICE
	$\$ 75.00$

ordering instructions
DEFECTIVE MATERIAL: All claims for delective material must be made within sixiy (60) days atter receipt of parcel Ali claims must include the delective maletiat (for testing purposes), our invoice number, and the date of purchase All relurns must be packed properly or it will void all wartanties
DELIVEAY: Orders are normally shipped within 48 hours after receipt of customer's order. It a part has to be backordered the customer is notified Our normal shipping method is via First Class Mall or UPS depending on size and weight of the package. On test equipenent it is oy Alr only. FOB shipping point
FOREIGN OADERS: All forergn orders musi be prepaid with cashier's check or money order made out in US Funds we are sorey but C O. . is not avaliable to toreign countries and Letters of Credit are not an acceptabte form of payment either futher information is avalable on reques
MOURS: Monday thru Saturday: $\mathrm{B}: 30 \mathrm{am} 10500 \mathrm{p} . \mathrm{m}$
INSURANCE: Please incluce 25 f for mach additional $\$ 10000$ over $\$ 10000$. United Paicel oniy
ORDER FORMS: New order forms are included with each order for your convenience Additional forms are available on request
POSTAQE: Minimum shipping and handing in the US, Canada, and Mexico is $\$ 2.50$ all other countries is $\$ 5.00$ On toreign orders include 20% shipping and handing
PREPAID ORDERS: Order must be accompanied by a chech
PRICES: Prices are subject to change without notice
RESTOCK CHARGE: It parts are relurned to MHZ Electionics due to customer error customer will be held responimide for all extra tees. will be charged a 15% testocking teen. with the remainder in credit only. All returns must have acporova.
 MMZ Electionics. All orders placed by persons dutaide of Arizona. but delivered io persons in Arizona are bub loct to the 5% sales tax
SMORTAGE OR DAMAGE: All claims for shorlages or damages must be made within 5 days after receipt of parcel Clarms must include our invoice number and the date of purchase. Customers which do not notily us within this time period will be held responsible tor the entire order as we witl consider the order comptete OUR BOO NUMBER IS STRICTLY FOR ORDERS ONLY
NO INFORMATION WILL BE GIVEN $\$.800 .528 .0180$

HEWLETT PACKARD		
MIXERS MODELS	10514 A	10514 B
Frequency Range	2 MHz 10500 MC	$\begin{aligned} & 2 \mathrm{MHz} \text { to } \\ & 500 \mathrm{MC} \end{aligned}$
Input/Output Frequency L \& R	200 KHz to	200 KHz to
	500 MC	500 MC
X	DC to 500MC	DC to 500MC
Mixer Conversion Loss (A)	7 dB	7 dB
(B)	9 dB	9 dB
Noise Performance (SSB) (A)	7dB	7 dB
(B)	9dB	9 dB
PRICE	\$49.99 PRICE	\$39.99

FREQUENCY SOURCES, INC MODEL MS.7AX MICROWAVE SIGNAL SOURCE

MS.74X: Mechanically Tunable Frequency Range (MHz) 10630 to 11230 (10.63 to 11.23 GHz) Minimum Output Power (mW) 10, Overall Multiplier Ratio 108, Internal Crystal Oscillator Frequency Range (MHz) 98.4 to 104.0. Maximum Input Current (mA) 400.
The signal source are designed for applications where high stability and low noise are ol prime concern. these sources utilize fundamental transistor oscillators with high O coaxial cavities, followed by broadband slable step recovery diode multipliers. This design allows single screw mechanical adjustment of frequency over standard communications bands. Broadband sampling circuits are used to phase lock the oscillator to a high stability reference which may be etther an internal self-contained crystal oscillator, external primary standard or VHF synthesizer This unique technique allows for optimization of both FM noise and long term stability. List Price is $\$ 1158.00$ (THESE ARE NEW)

Our Price—\$289.

HEWLETT PACKARD 1N5712 MICROWAVE DIODE

This diode will replace the MBD101, 1N5711. 5082-2800. 5082.2835 etc. This will work like a champ in all those Down Converter projects
$\$ 1.50$ or $10 / \$ 10.00$
MOTOROLA MHW1172A LOW DISTORTION WIDEBAND AMPLIFIER MODULE.
Frequency Range: 40 to 300 MHz . Power Gain at 50 MHz $16.6 \mathrm{~m} ⿵ \mathrm{n}$ to 17.4 max., Gain Flatness ± 0.1 Typ ± 0.2
Max. dB., DC Supply Voltage - 28vdc, RF Voltage Input $+70 \mathrm{dBmV}$

PRICE $\mathbf{\$ 2 9 . 9 9}$

GENERAL ELECTRIC AA NICADS

Model \#41B905HD11-G1
Pack of 6 for $\$ 5.00$ or 60 Cells, 10 Packs tor $\$ 4500$
These may be broken down to individual cells.

TERMS: DOMESTIC: Prepaid. C.O.D or Credit Card

FOREIGN: Prepaid oniy. U.S. Funds - money order or cashier's check only check. We are sorry but we cannot accept personal checks for C.O.D.s.
CONFIRMING OROERS: We would preter that confirming orders not be sent after a telephone order has been placed If company policy necessitates a confurming order, please mark "CONFIRMING" boldly on the order. If problems or duplicate shipments occur due to an order which is not properly marked. customers will be held responsible tor any charges incurted, plus a 15% restock charge on returned parts CREDIT CARDS: WE ACCEPT MASTERCARD VISA AND AMERICAN EXPRESS.
DATA SHEETS: When we have data sheets in stock on devices we do supply them with the order

1983 HANDBOOK

Another super edition of the standard manual of of communication! Each year, The Handbook is revised to reflect changes in the state-of-the-art and this 60th edition is no exception. Expanded emphasis is given to the use of amateur satellites including RS and Phase III information. You will find computer and calculator programs for satellite tracking. There is also a new TVI troubleshooting flow chart and more coverage of amateur television. New construction projects include power supplies, 160 -meter kW amplifier, deluxe voice/cw audio filter, single-band superhets, UHF signal source and dip meter plus a universal logic translator for digital communications. In 640 pages and 23 chapters, The Handbook presents everything from electrical laws and circuits to sophisticated communications techniques including packet radio and spread spectrum. Order your copy today! Paper edition: $\$ 12$ in the U.S., $\$ 13$ in Canada, and $\$ 14.50$ elsewhere. Cloth edition: $\$ 17.75$ in the U.S. and $\$ 20$ elsewhere. Payment must be in U.S. funds.

Here is the most comprehensive and up-to-date antenna book available. It's chock-full of theory and practical information and includes proven designs for: Yagis, quads, wires, verticals or the more specialized designs: Beverage, curtain arrays and fish-bone antennas. It also has a chapter that covers UHF and VHF antenna design. You'll find antennas for any kind of real estate from the apartment dweller to the true antenna farm. The Antenna Book covers in complete, easy-to-understand language, antenna and transmission line theory and includes the most complete explanation available of the SMITH CHART*. Finally there is a thorough discussion of the phenomena of radio wave propagation. 328 pages 14 th edition. Softbound Price $\$ 8.00$ in the US. Elsewhere $\$ 8.50$ (US FUNDS). Available from your local dealer or direct from ARRL.

Please include $\$ 1.00$ per title for shipping and handling.

the american radio relay league, inc.
 225 MAIN STREET
 NEWINGTON, CT 06111

AdverTisers check-off

- Please contact this advertiser directly.

Limit 15 inquiries per request
NAME
ADDRESS
CITY \qquad STATE. \qquad
Please use before May 31, 1983
... for literature, in a hurry - we'll rush your name to the companies whose names you "check-off
Place your check mark in the space between name and number Ex:Ham Radio $\sqrt{234}$

Adverlisers check-off

.for literature, in a hurry - we'll rush your name to the companies whose names you "check-off"

Place your check mark in the space Detween name and number. Ex: Ham Radio 234

A C. C. 101	Jan Crystals _ 143
Alaska Microwave _ 102	Jasco Inter _ 144
Albia 103	KCS Elec 145
Alden Elec. 104	KLM 146
All Elec 105	Kantronics - 147
Aluma Tower 106	Kenwood * _ 314
Ama. Radio Today 107	Long's 148
Ameco Equip. 305	Lunar - 149
ARRL 108	MCM 301
Amp Supply 109	MFJ 150
Antenna inc. 308	MHZ Elec 151
Appliance G Equipment 110	Macrotronics \qquad 152 Madison Elec. \qquad 153
Atantic Surplus *	Microcraft $\quad 309$
ATV Magazine __ 111	Midian _ 307
Barker f	Mirage _ 154
Williamson __ 112	Morning Dist. 155
Barry *	NCG 156
Bauman Sales _ 113	Nampa Satellite _ 157
Betts 114	Nemal _ 158
Bit O Byte 115	N. American Soar _ 159
Buckmaster _116, 204	Nuts 6 Volts _ 160
Budwig 117	Oak Hill Academy A. R. S. *
Butternut*	P.B. Radio 161
Bytesize Computer 311	P.C.
Caddell Coil 118	Paiomar Eng. *
Ceco 119	Peterson Elec. 162
Centurion - 120	Phillips-Tech 163
Coin Inter_ 121	Pro-Search _ 164
Comm. Design 122	RCA *
Comm. Spec. 123	RF Products 165
Commsoft 302	Callibook 166
DGM 306	Radio School - 167
Dayton*	Semi. Surplus _ 168
Deicraft _ 124	Sherwood Eng _ 169
Doppler _- 125	Shure Brothers 170
Dotronix _ 312	Simple Simon _ 172
Elec. Spec. 126	Sinclair *
Energy Sciences - 127	Snyder 173
Eng. Consulting _ 128	Speaker Builder__ 174
Epsilon _ 129	Spectronics*
Ferritronics 130, 313	Spectrum Int __ 175
Fluke 315	Spectrum West 176
Fox-Tango 131	Spi-Ro 177
Galaxy 132	Telex
Goidsmith Scientific 133	TET _ 178
Grand Systems _ 134	The Comm Center __ 179
Grove _ 310	Tri-Ex 180
Hal Comm 135	Universal Comm. 181
H. R. B 188	Univ. Software _ 303
Hamtronics.	UNR-Rohn __ 182
N.Y. 136, 304	Vanguard Labs 183
Heath - 137	Varian __ 184
Hoosier 138	Voice of America *
Icom 139, 205	Webster 185
Ind. Crystal _ 140	Western Elec._ 186
Inter. Crystal _ 141	Yaesu _ 187
JWL 142	

- Please contact this advertiser directiy. Limit 15 inquiries per request.

April 1983

Please use before May 31, 1983

R-X Noise Bridge
 Advertisers indeX

Advanced Computer ControlsAlaska Microwave Labs

Buckmaster Publishing
Budwig Manufacturing Company
Butternut Electronics
Caddell Coil Corp.
Ceco.
Centurion International
Coin International
Communications Design, Inc
Communications Specialists.
Dayton Harnvention
Delcraft
Doppler Systems
Electronic Specialists, Inc
Electronic Specia
Energy Sciences
Energy Sciences
Engineering Consulting
Epsilon Records
Ferritronics Limited
Fox-Tango Corp.
Gataxy Electronics
Goldsmith Scientific Corporation
Grand Systems
Hal Communications Corp
Ham Radio's Bookstore.
Hamtronics, N. Y.
Heath Company
Hoosier Electronics
Icom America, Inc.
. 10 105
Independent Crystal Supply Company 112
International Crystal 84
JWL Electronics.
Jan Crystals
Jasco International
KCS Electronics
KLM Electronics, Inc
Kantronics, Inc
Trio-Kenwood Communications
Long's Electronics
Lunar Flectronics
MFJ Enterprises.
MFJEnterprises
MHZ Electronics
Macrotronics
Madison Electronics
Mirage Communications Equipment, Inc
Morning Distributing Co.
NCG.
Nampa Satelite Receiver Systems
Nernal Electronics
North American Soar
Nuts $日$ Volts Magazine
Oak Hill Academy Amateur Radio Session
P.B. Radio
P.C. Electronics

Palomar Engineers
Peterson Electronics
Phillips-Tech Electronics
Pro-Search
RCA Government Communications Systems
RF Products
Radio Amateur Callbook, Inc.
Radio School
Semiconductors Surplus
Sherwood Engineering .
Shure Brothers.
Simple Simon Electronic Kits, Inc
Sinclair Research Ltd.
Snyder Antennas
Speaker Builder
Spectronics
Spectrum International, Inc
Spectrum West
Spi-Ro Distributing
Telex Communications
TET Antennas
The Comm Center
Tri- Ex Tower Corp
Universal Communications
UNR-Rohn
Vanguard Labs
Varian, Eimac Division
Voice of America
Webster Communications, Inc
Western Electronics
Yaesu Electronics Corp

- Learn the truth about your antenna.
- Findits resonant frequency.
- Adjust it to your operating frequency quickly and easily.

If there is one place in your station where you cannot risk uncertain results it is in your antenna.
The Palomar Engineers R-X Noise Bridge tells you if your antenna is resonant or not and, if it is not, whether it is too long or too short. All this in one measurement reading. And it works just as well with ham-band-only receivers as with general coverage equipment because it gives perfect null readings even when the antenna is not resonant. It gives resistance and reactance readings on dipoles, inverted Vees, quads, beams, multiband trap dipoles and verticals. No station is complete without this up-todate instrument.

Why work in the dark? Your SWR meter or your resistance noise bridge tells only half the story. Get the instrument that really works, the Palomar Engineers R-X Noise Bridge. Use it to check your antennas from 1 to 100 MHz . And use it in your shack to adjust resonant trequencies of both series and parallel tuned circuits. Works better than a dip meter and costs a lot less.

The price is $\$ 59.95$ in the U.S. and Canada. Add $\$ 3.00$ shipping/handling. California residents add sales tax.

Send for FREE catalog describing the R-X Noise Bridge and our complete line of SWR Meters, Preamplifiers, Toroids, Baluns, Tuners, VLF Converters, Loop Antennas and Keyers.

Box 455. Escondido. CA 92025 Phone: (619) 747-3343

THE STAMP COLLECTOR
(i31) Inventory and store up to 600 SCOTT numbers in a single session showing quantity on hand, by major classification, and provide full want list support.

VU-CALC (ilit) This program constructs, generates, and calculates large tables for financial analysis, budget sheets, and projections. An immensely powertul analysis chart.

SUPERMAZE (i34) Navigate your way through a three-dimensional maze, with trapdoors, gold bars, marker stones, and compass. Ten separate mazes. Threedimensional graphics.

PERSONAL FINANCE PLAN

NER (/128) Perform calculations, finance a house, a car, keep savings accounts, repay loans and calculate an amortization schedule which can be generated for any of the financial programs.

SUPER MATH ("14) Drill yourself on addition, subtraction, multiplication, and division with five levels of difficilly. Each probiem graphically depicted.

THE HOME MMPROVEMENT PLANNER ("29) Store up to 20 room measurements (length, width, height). compute total area in each (wall, floor). estimate costs of painting, wall papering and carpets and draw house bluepints.

STATES AND CAPITOLS (132)
Test yourself on the fity states and their capitols. Three options of review are available. (1) States, you provide capitols. (2) Capitols, provide states. (3) A mix of states and capitols.

THE FLIGHT SIMULATOR (${ }^{(16)}$ Take control of highly maneuverable light aircrat. With full controls, instrumentation and navigational aids to avoid hazards in landing.

CHESS AND CHESS CLOCK
(ii7) Six levels. All the legal moves inclucing casting and enpassant. Keeps a separate record of plays made for easy relerence. Play another opponent or match wits with the computer.

BACKCAMMON AND DICE (*8) A perfect blend of cliance and stoili. Uses mactine code to choose its moves. Fult game including graphics board, rolling dice, and double cube. Play the computer or another opponent.

THE CUBE GAME ($/ 9$) The cube can be displayed in three views: (1) Solid; (2) Two-Dimensional (untolded); and (3) See-inru cube (3-D). You start with the cube solved, set it up any way you like, or pick up from a previous session.

REAL ESTATE INVESTMENT ANALYSIS ((i30) Iwo different imestment strategies. The first selection allows the user to choose between renting or buying. The second selection consists of a defailed analysis of the rental irvestment property.

Sinclair", the company that invented the world's most affordable computer, has invented a way for you to order the most affordable software-right from your home!
You've never had this wide a selection before. You can play games that challenge you, instead of bore you. You can learn new household applica tions and business programs that reduce work dramatically.
Only Sinclair offers this special software savings. Only 2X81 or Timex TS1000 owners are eligible.
The more you buy, the more you save. A serious Sinclair software offer.
The first cassette you buy, you buy at normal cost: $\$ 15.00$. But every cassette thereafter, you get at a savings.
The list below explains how much you save, based on how much you buy. It couldn't be easier. You were smart to buy the 2X81 or the TS1000. You'll be even smarter to take us up on this software offer. All cassettes listed at left work on both the ZX81 and the TS1000. All cassettes are 16 K , which means you need the 16 K Memory Module. (If you want more information on this component, please write Sinclair at the address listed below.)

But don't delay. This is a limited time software offer while supplies last.

How to order today!
Just call our toll-free number and use your MasterCard or VISA. Or send this ad with a check or money order. It's as easy as that.
Call toll-free: $800-5433000$. Ask for operator 509. In Canada call $513-7294300$, operator 509. Have your MasterCard or VISA ready when calling. Phones open 24 hours a day, 7 days a week.
These numbers are for orders only.
If you simply want information, please don't call, write Sinclair Research, Ltd., 2 Sinchair Plaza, Nashua, NH 03061.
(Sorry, no refunds on software. Defective cassettes will be replaced.)

Call toll free

Ad. code:	Mail to: Sinclair Research, Ltd.
One Sinclair Plaza, Nashua, NH	
B4HR	03061

(iV5) Timev/Sinclair version of the popular arcade games full of bombs and rockets and collisions with skyscrapers.

FROGCER (1337) Pligs like the arcade game. Hop the frog over traticic, snakes, crocodiles, and treacherous diving turtes belore time runs out.

T-77The Rig for AllSeasons!

Answering the call for an HF rig that goes everywhere, sounds great, and is cost-effective, Yaesu proudly introduces the FT-77 Compact HF Transceiver System.

Computerized Design and Manufacture
The FT-77 design engineers utilized the latest computerized circuit board layout methods, resulting in a compact, reliable transceiver with maximum utilization of available space. Automated insertion techniques are used in assembly, providing improved reliability and quality control over earlier desians.
Operating Versatility
The FT-77 is equipped for operation on all amateur bands between 3.5 and 29.7 MHz , including the three new WARC bands. Fully operational on SSB and CW, the FT-77 includes a dual width noise blanker (designed to minimize the "Woodpecker" or ignition noise), full SWR metering, R.I.T., and optional CW filter with wide/ narrow selection. The optional FM-77 permits operation on the FM mode, with front panel squelch sensitivity control.

Expandable Station Concept

Ideal for mobile operation because of its compact size and light weight, the FT-77 forms the nucleus of a versatile base station. Available as options for the FT-77 are the FP-700 AC Power Supply, FV-700DM Synthesized External VFO and Memory System, FTV-707 VHF/UHF Transverter, and FC-700 Antenna Coupler, providing top performance at an extraordinarily low price.

Best of All, It's a Yaesu!
With most experience in transceiver design and manufacture, the Yaesu trademark is your guarantee of quality and durability. We've got all-new technology and an all-new warranty policy to back it up.

See the FT-77 and the all new line of Yaesu HF, VHF, and UHF transceivers, receivers and accessories at your Yaesu Dealer today! It's time you tried a Yaesu!

General coverage, Superior dynamic range, 2 VFO's, 8 memories, Scan, Notch...COMPACT!
 - All solid-state technology

The TS-430S combines the ultimate in compact styling with advanced circuit design and performance. An all solidstate SSB, CW, and AM transceiver, with FM optional, covering the $160-10$ meter Amateur bands, it also incorporates a $150 \mathrm{kHz}-30 \mathrm{MHz}$ general coverage receiver having a superior dynamic range, dual digital VFO's, 8 memories, memory scan, programmable band scan, IF shift, notch filter, all-mode squelch, and builtin speech processor.

TS-430S FEATURES:

- 160-10 meter operation, with general

 coverage receiverWith 160-10 meter Amateur band coverage, including WARC 30,17 , and 12 meter bands, it also features a $150 \mathrm{kHz}-30 \mathrm{MHz}$ general coverage receiver. Innovative UPconversion digital PLL circuit, for superior frequency stability and accuracy. UP/ DOWN band switches for Amateur bands or $1-\mathrm{MHz}$ steps across entire 150 kHz 30 MHz range. Two digital VFO's continuously tuneable from band to band. Band information output on rear panel.

- USB, LSB, CW, AM, with optional FM Operates on USB, LSB, CW, and AM, with optional FM, internally installed. AGC time constant automatically selected by mode.

- Compact, lightweight design

Measures only $10-5 / 8(270) \mathrm{W} \times 3-3 / 4$ (96) $\mathrm{H} \times 10-7 / 8$ (275) D, inches (mm), weighs only $14.3 \mathrm{lbs} .(6.5 \mathrm{~kg}$.).

- Superior receiver dynamic range Use of 2SK125 junction-type FET's in the Dyna-Mix high sensitivity, balanced, direct mixer circuit provides superior dynamic range.
- $10-\mathrm{Hz}$ step dual digital VFO's
$10-\mathrm{Hz}$ step dual digital VFO's operate independently, include band and mode information. Different band and mode cross operation possible. Dial torque adjustable. STEP switch for tuning in $10-\mathrm{Hz}$ or $100-\mathrm{Hz}$ steps. $A-B$ switch quickly shifts "B" VFO
to the same frequency and mode as " A " VFO, or vice-versa. VFO LOCK switch provided. RIT control tunes VFO or memory. UP/DOWN manual scan possible using optional microphone.
- Eight memories store frequency, mode, and band data
Memories store frequency, mode, and band data. Eighth memory stores receive and transmit frequencies independently. M.CH switch for operation of memory as independent VFO, or fixed frequency.
- Lithium battery memory back-up Estimated five-year life.

- Memory scan

Scans memories in which data is stored.

- Programmable automatic band scan

Scans programmed band width. Scan speed adjustable. HOLD switch interrupts band or memory scan.

- IF shift circuit for minimum GRM. IF passband may be moved to place interferring signals outside the passband, for best interference rejection.
- Tuneable notch filter built-in Deep, sharp, tuneable, audio notch filter.
- Narrow-wide filter selection NAR-WIDE switch for IF filter selection on SSB, CW, or AM, when optional filters are installed. (2.4 kHz IF filter built-in.)
- Speech processor built-in Improves intelligibility, increases average "talk-power"
- Fluorescent tube digital display Indicates frequency to $100 \mathrm{~Hz}(10 \mathrm{~Hz}$ modifiable).

Input rated 250 W PEP on SSB, 200 W DC on CW, 120 W on FM (optional). 60 on AM. Built-in cooling fan, multi-circui final protection. Operates on 12 VDC, o 120 VAC, or $220 / 240$ VAC with optiona PS-430 AC power supply.

- All-mode squelch circuit, built-in
- Noise blanker, built-in
- RF attenuator (20 dB)
- Vox circuit, plus semi break-in with side-tone

Optional accessories:

- PS 430 compact AC power supply.
- PS-30 or KPS-21 AC power supplies.
- SP-430 external speaker.
- MB-430 mobile mounting bracket.
- AT-130 compact antenna tuner.
$80-10 \mathrm{~m}$ incl. WARC.
- AT-230 base antenna tuner.
$160-10 \mathrm{~m}$ incl. WARC.
- FM-430 FM unit.
- YK-88C $(500 \mathrm{~Hz})$ or YK-88CN $(270 \mathrm{~Hz})$ CW filters.
- YK-88SN (1.8 kHz) narrow SSB filter.
- YK-88A (6 kHz) AM filter.
- MC-42S UP/DOWN hand microphone.
- MC-60A deluxe desk microphone. UP/DOWN switch.

More information on the TS-430S is available from all authorized dealers of Trio-Kenwood Communications, 1111 We Walnut Street. Compton, California 9022

KENWOO
 pacesetter in amateur radio

[^0]: *TIBUG is the Texas instruments debugging utility.

[^1]: *User-friendly controls and terminal commands benefit the non-computerist in your repeater committee.

[^2]: 1. Fred Merry. W2GN, "Stripline Kilowatt For Two Meters," ham radio, October, 1977. Also, "Stripline Kilowatt for 220 MHz ," ham radio, April, 1982. 2. Richard T. Knadie. Jr., K2RIW, "A Stripline Kilowatt for 432 MHz ," QST, April, 1972, page 48; May, 1972, page 59
 2. ARRL Handbook, 1981, pp 7-11.
[^3]: *Editor's note: 30 meters because of its unique place in the h-f spectrum and characteristics is discussed in both sections (higher/lower segments) of the h-f band forecast.

[^4]: New Technology (patent pending) converts any VHF FM receiver into an advanced Doppler Direction Finder. Simply plug into receiver's antenna and external speaker jacks. Use any four omnidirectional antennas. Low noise, high sensitivity for weak signal detection. Kits from $\$ 270$. Assembled units and antennas also available. Call or write for full details and prices.

[^5]: Make checks payable to Dayton HAMVENTION, Box 2205, Dayton, OH 45401.

