• amplifying your ht
• vacuum tube substitution
• 1750 meter operation
• rf synthesizers
• vertical phased arrays
• hybrid types explained

BACK TO BASICS: DEFINING AMPS, VOLTS, AND OHMS
10 watts / 5 memories / 2 scanning systems in a 2"H x 3½"W x 7"D size / optional tone encoder / touchtone microphone make the IC-45A the most popular 440-449.995 MHz mobile transceiver.

Dual VFO's. Dual VFO's give an extra stored frequency for scanning (memory scan scans 5 memories plus 2 VFO's) and each VFO has a different tuning rate for easy QSY.

Optional Encoder. Plug-in to allow easy access. Field programmable.

5 Memories. Instant access to most used frequencies. VFO A information is transferred to the selected memory by pushing the W/CK button.

Priority Channel. Any memory channel may be monitored for activity on a sample basis, every 5 seconds, without disruption of a QSO conducted on a VFO frequency.

LED Bar Meter. Shows strength of received signal as well as relative transmitter output from the fully protected final RF amplifier. APC (automatic power control) is used to detect SWR and adjust the power output to a safe level.

Simplex/Duplex Operation. Standard 600KHz offset initializes into radio at turn on. Offset may be changed by pressing the priority button while in VFO mode. Rotating the main tuning knob will now change the offset up or down and the offset will be displayed on the frequency readout.

Adjustable Power Levels. Pulling the squelch knob out places the unit into low power. Both the high and low power may be independently set to accommodate your simplex/book requirements or amplifier input characteristics.

Nor/Rev Capability. Use of the W/CK button in the duplex mode, allows one touch monitoring of the repeater input frequency. If simplex operation is possible you will know instantly.

Scanning. Pushing the S/S button initiates the scan circuitry. With the mode switch in a memory position the unit will scan all 5 memories plus the 2 VFO frequencies.

With the mode switch in a VFO position, the unit will scan the band defined by memories 1 and 2. Full band scan or program band scan is selected internally.

The IC-45A has internally switched scanning choices of adjustable delay period after a carrier is received then resume scan, or resume on carrier drop.

A Compact FM Mobile. Fits in the smallest of places. Stacking, matching Mobile Mounts for UHF and VHF units make a complete mobile communications system for your car.

Memory Backup. When the optional IC-BU1 backup power unit is installed on the back of the IC-45A, memory will be maintained while transferring the unit from power source to power source. If the unit is not removed from power, it will maintain memory even when turned off with or without the IC-BU1.

IC-RP3010 FM Repeater

Now a 10 watt 440MHz FM repeater from the leader in VHF communications. The IC-RP3010 features high stability crystal controlled channels, CTCSS system, ID'er, remote control through a DTMF decoder and microprocessor controlled circuitry.

ICOM The World System

ICOM America Inc., 2112-116th Ave NE, Bellevue, WA 98004/(206)454-8155 / 3331 Towerwood Drive, Suite 307, Dallas, TX 75234/(214)620-2275

All stated specifications are approximate and subject to change without notice or obligation. All ICOM radios significantly exceed FCC regulations limiting spurious emissions.
MFJ RTTY / ASCII / CW COMPUTER INTERFACE

Lets you send and receive computerized RTTY/ASCII/CW. Copies all shifts and all speeds. Copies on both mark and space. Sharp 8 Pole active filter for 170 Hz shift and CW. Plugs between your rig and VIC-20, Apple, TRS-80C, Atari, TI-99, Commodore 64 and most other personal computers. Uses Kantronics software and most other RTTY/CW software.

- Copies on both mark and space tones.
- Plugs between rig and VIC-20, Apple, TRS-80C, Atari, TI-99, Commodore 64 and most other personal computers.
- Uses Kantronics software and most other RTTY/CW software.

This new MFJ-1224 RTTY/ASCII/CW Computer Interface lets you use your personal computer as a computerized full featured RTTY/ASCII/CW station for sending and receiving.

- It plugs between your rig and your VIC-20, Apple, TRS-80C, Atari, TI-99, Commodore 64, and most other personal computers.
- It uses the Kantronics software which features split screen display, 1024 character type ahead buffer, 10 message ports (255 characters each), status display, CW-ID from keyboard, Centronic type printer compatibility, CW send/receive 5-99 WPM, RTTY send/receive 60, 67, 75, 100 WPM, ASCII send/receive 110, 300 baud plus more.
- You can also use most other RTTY/CW software with nearly any personal computer.
- A 2 LED tuning indicator system makes tuning fast, easy and positive. You can distinguish between RTTY/CW without even hearing it.
- Once tuned in, the interface allows you to copy any shift (170, 425, 850 Hz and all shifts between and beyond) and any speed (5 to 100 WPM on RTTY/CW and up to 300 baud on ASCII).
- Copies on both mark and space, not mark only or space only. If either the mark or space is lost the MFJ-1224 maintains copy on the remaining tone. This greatly improves copy under adverse conditions.
- A sharp 8 pole active filter for 170 Hz shift and CW allows good copy under crowded, fading and weak signal conditions. Uses FET input op-amps.
- An automatic noise limiter helps suppress static crashes for better copy.
- A normal/reverse switch eliminates returning while stepping thru various RTTY speeds and shifts.
- The demodulator will even maintain copy on a slightly drifting signal.
- A +250 VDC loop output is available to drive your RTTY machine. Has convenient speaker output jack.
- Phase continuous AFSK transmitter tones are generated by a clean, stable Exar 2206 function generator. Standard space tones of 2125 Hz and mark tones of 2295 and 2975 Hz are generated. A set of microphone lines is provided for AFSK out, AFSK ground, PTT in and PTT ground.
- FSK keying is provided for transceivers with FSK.
- High voltage grid block and direct outputs are provided for CW keying of your transmitter. A CW transmit LED provides visual indication of CW transmission. There is also an external keyer key or electronic keyer input jack.
- In addition to the Kantronics compatible socket, an exclusive general purpose socket allows interfacing to nearly any personal computer with most appropriate software. The following TTL compatible lines are available: RTTY demod out, CW demod out, CW-ID input, +5 VDC ground. All signal lines are buffered and can be inverted using an internal DIP switch.
- For example, you can use Gallo software with Apple computers, or RAK software with VIC-20's. Some computers with some software may require some external components.
- DC voltages are IC regulated to provide stable AFSK tones and RTTY/ASCII/CW reception.
- Aluminum cabinet. Brushed aluminum front panel. 8 x 1 1/4 x 6 inches. Uses 12-15 VDC or 110 VAC with optional adapter, MFJ-1312. $9.95.

RTTY / ASCII / CW Receive Only

SWL Computer Interface

$69.95

Order now!

MFJ ENTERPRISES, INC.
Box 494, Mississippi State, MS 39762

1-800-647-1800

More Details? CHECK—OFF Page 111

October 1983
TS-830S

"Top-notch"...VBT, notch, IF shift, wide dynamic range

The TS-830S has every conceivable operating feature built-in for 160-10 meters (including the three new bands). It combines a high dynamic range with variable bandwidth tuning (VBT), IF shift, and an IF notch filter, as well as very sharp filters in the 455-kHz second IF.

FEATURES:
- LSB, USB, and CW on 160-10 meters, including the new 10, 18, and 24-MHz bands. Receives WWV on 10 MHz.
- Built-in digital display (six digits, fluorescent tube), with analog dial.
- Wide receiver dynamic range, Junction FETs in the balanced mixer, MOSFET RF amplifier at low level, and dual resonator for each band.
- Variable bandwidth tuning (VBT). Varies IF filter passband width.
- Notch filter high-Q active circuit in 455-kHz second IF.
- IF shift (passband tuning).
- Noise-blanker threshold level control.
- RIT and XIT (transmitter incremental tuning).
- Built-in digital display, (fluorescent tube), with analog dial.
- 6146B final with RF negative feedback. Runs 220 W PEP (SSB/180 W DC) input on all bands.
- Built-in RF speech processor.
- Narrow/Width filter selection on CW.
- SSB monitor circuit.
- RIT and XIT (transmitter incremental tuning).

Optional accessories:
- SP-230 external speaker.
- VFO-230 external digital VFO with five memories, digital display.
- VFO-240 external analog VFO.
- AT-230 antenna tuner.
- YG-455C (500 Hz) or YG-455CN (250 Hz) CW filter for 455 kHz IF.
- YK-88C (500 Hz) or YK-88CN (270 Hz) CW filter for 8.83 MHz IF.
- KB-1 deluxe heavyweight knob.

TS-530S

"Cents-ational"...IF shift, digital display, narrow-wide filter switch

The TS-530S SSB/CW transceiver covers 160-10 meters using the latest, most advanced circuit technology, yet at an affordable price.

FEATURES:
- LSB, USB, CW, and 160-10 meters, including the new 10, 18, and 24 MHz bands. Receives WWV on 10 MHz.
- IF shift tunes out interfering signals.
- Built-in digital display (six digits, fluorescent tube), with analog dial.
- Narrow/Width filter selector switch for CW and/or SSB.
- Built-in speech processor, for increased talk power.
- Wide receiver dynamic range, with greater immunity to overload.
- Two 6146B's in final, allows 220W PEP/180 W DC input on all bands.
- Advanced single-conversion PLL, for better stability, improved spurious characteristics.
- Adjustable noise-blanker, with front panel threshold control.
- RIT/XIT front panel control allows independent fine-tuning of receive or transmit frequencies.

Optional accessories:
- SP-230 external speaker with selectable audio filters.
- VFO-240 remote analog VFO.
- VFO-230 remote digital VFO.
- AT-230 antenna tuner/SWR/power meter.
- MC-50 desk microphone
- KB-1 deluxe VFO knob
- YK-88C (500 Hz) or YK-88CN (270 Hz) CW filter.
- YK-88SN (1.8 kHz) narrow SSB filter.

TS-660

The TS-660 "QUAD BANDER" covers 6, 10, 12, 15 meters.

- Multiband SS10 (USI%1.
- VFO-230 external digital VFO with five memories, digital display.
- VFO-240 external analog VFO.
- AT-230 antenna tuner.
- YG-455C (500 Hz) or YG-455CN (250 Hz) CW filter for 455 kHz IF.
- YK-88C (500 Hz) or YK-88CN (270 Hz) CW filter for 8.83 MHz IF.
- KB-1 deluxe heavyweight knob.

KENWOOD
TRIO-KENWOOD COMMUNICATIONS
1111 West Walnut, Compton, California 90220
October 1983
volume 16, number 10

T. H. Tenney, Jr., W1NLB
publisher
Rich Rosen, K2RR
editor-in-chief
and associate publisher
Dorothy Rosa Leeds
assistant editor
ditorial staff
Alfred Wills, W6N/4
Joseph J. Schroeder, W9UYV
Leonard H. Anderson
associate editors
Susan Shorrock
editorial production
Cover photo courtesy
John Fluke Mfg. Co.
publishing staff
J. Craig Clark, Jr., N1ACH
assistant publisher
Ralph Dennis, KA1JWF
director of advertising sales
Dorothy Sargent, KA1DK
advertising production manager
Susan Shorrock
circulation manager
Therese Bourgault
circulation

Ham Radio magazine is published monthly by
Communications Technology, Inc.
Greenwich, New Hampshire 03048-0488
Telephone: 802-881-1411

subscription rates
United States: one year, $19.50
two years, $35.00
Canada and other countries: Surface Mail
one year, $32.50; two years, $60.00
three years, $85.00
Europe, Japan, Africa via Air
Forwarding Service: one year, $28.00
All subscription orders payable in
United States funds, please.

foreign subscription agents
Foreign subscription agents are
listed on page 102

Microfilm copies are available from
University Microfilms, International
Ann Arbor, Michigan 48106
Order publication number 3079
Cassette tapes of selected articles
from Ham Radio are available to the
blind and physically handicapped
from Recorded Periodicals
919 Walnut Street, 8th Floor
Philadelphia, Pennsylvania 19107
Copyright 1983 by
Communications Technology, Inc.
This registrated at U.S. Patent Office
Second-class postage
paid at Greenville, N.H. 03048-0488
and at additional mailing offices
ISSN 0148-5989
Postmaster send Form 3579 to Ham radio
Greenville, New Hampshire 03048-0488

Ham Radio magazine

contents

10 electrical calibration standards
Vaughn D. Martin

17 rf synthesizers for hf communications: part 3
Craig Corsetto, WA6OAA

34 vertical phased arrays: part 4
Forrest Gehrke, K2BT

50 a one-weekend, 2-meter amplifier
James A. Sanford, WB4GGS

58 vacuum tube substitution
Carleton F. Maylott, W2YE

64 ham radio techniques
Bill Orr, W6SAI

71 VMOS on 1750 meters
S.J. DeFrancesco, K1RGO

80 hf hybrids: a second look
Henry S. Keen, W5TRS

111 advertisers index

92 new products
6 presstop

8 comments
90 product reviews
4 reflections

87 DX forecaster
76 technical forum

102 flea market
70 short circuits

100 ham mart

78 ham notes
“The Old Man” lives

I don’t know how many of you remember “T.O.M.” I’m not old enough myself to have read the column when it first came out (1916-1932?) but I sure became another avid fan of his while pouring through old volumes of QST. For those of you who have never had the pleasure, let me introduce you to one of the greatest cynical voices of Amateur Radio to have ever existed.

“T.O.M.” was a pseudonym assumed by an individual who was gutsy enough to call it as he saw it. He recognized situations for what they were and freely voiced his opinion. Usually the subjects were associated with either poor operating techniques or poorly functioning equipment. The comments in the form of a letter to the magazine would mysteriously appear on the editor’s desk without any knowledge of who wrote it or where it had come from. There are those who believe it was written by Hiram Percy Maxim himself. In honor of the fine gentleman, whoever he may have been, I dedicate the following short piece and actively solicit comments.

Rotten operating. At the top of my list are LISTS. Hate is a strong word, but it sure approaches how I feel about self-appointed “gods” who believe it is their inalienable right to “manage” a DX station’s callers when they themselves have a hard time understanding the DX station because of low signal level at their location or a language “barrier.” A case in point is a well known French-speaking DX station on 20 meters who puts an excellent signal into the East Coast at least. One of the MC’s in this case had a hard time hearing and understanding the station while others were copying him Q5. What sense does it make to take a list of 100 calls when the band is dropping out? What sense does it make to have two or three MC’s trading off calls on the same frequency while the DX station just waits? I’m not talking just seconds — I’m talking many minutes — precious minutes as the vagaries of propagation does its thing.

In defense of list operation there are those who say that the DX station requested help and couldn’t handle the ensuing pile-up alone. I used to feel that way. But come on, folks! What is the real value of that contact if your call has been retransmitted by a more powerful station and perhaps even your signal report? It cheapens the process and product. (Incidentally, what is the product? I won’t get into that now. I’m not done with list operation yet.)

Dear “rare” DX station: If you have a hard time sorting out the horde and want to use an MC, why don’t you tell him to repeat the following: “The DX station requests all callers to listen carefully, keep all calls short and only answer if your letters are acknowledged.” Listen to Arild, 3X4EX, some day and see how he handles pile-ups — extremely effectively, I might add. If the DX station must have an MC, how about interspersing the list operation with “free” periods during which anyone NOT on the list may call in? The DX station just might be very surprised to see how many more stations he can work and also gain some confidence in the process. By the way, DX station, if there is some persistent Amateur calling out of turn and you just want to get him off your back, acknowledge him and just forget to log the contact, or more directly, say so at the time. (That’ll either straighten everyone up or create pandemonium.)

I have to admit that on the lower bands there’s more of a temptation to assist a friend or “twenty friends.” (I’ve done it myself and have been helped also.) But I’ve tried to do it right in a rapid fire manner as possible, not retransmitting calls, and I have been extremely sensitive to even one dissenting voice on the frequency.

There, I’ve said it. There are many other areas of rotten operating that I can and will address as the need arises. Remember folks — this is our hobby — with a stress on the word hobby. Let’s go back to basics, recalling that it’s a privilege to use the frequencies and try to communicate a little more.

Rich Rosen, K2RR
Editor-in-Chief

P.S. You still have an opportunity to express your opinions. Just grab your copy of the September issue, find the survey on the editorial page and go for it. Preliminary returns have been fantastic. I know it’s impossible, and too much to wish for, but if everyone could just take the time to fill out the survey what a well-rounded poll that would make. It would help us provide to you the best ham radio magazine of the 80’s.
From our latest line of NPN epitaxial power transistors, NEC now introduces the NEL1300 range of linear power bipolar devices. The series is available in a low cost metal-ceramic stripline package offering linear power output levels of 6 watts and 20 watts. Designed primarily for mobile and base station operation in the 1300 MHz band, the series is compatible with single sideband and other popular modulation modes requiring high linearity combined with high output power and gain.
AMATEUR RADIO-CABLE TV CONFRONTATION CONTINUES TO HEAT UP, with the ARRL filing a Motion for Expedited Action on its previous petition to have cable channels E (2 meters) and K (220 MHz) taken away from the echolocaters. That earlier petition, RM-4940, was filed in January, 1982, and cited numerous problems Amateurs throughout the country were having with cable system leakage. Attempts to resolve the problem through discussions with the National Cable TV Association have met with frustration, hence the latest League action to push the Commission toward a workable solution. The NCTA received an extension of time to file comments on the League's petition, so its response wasn't available at press time.

Extra-Long Leaks Will Cost A California CATV Firm a $3000 fine, according to the FCC. Times-Mirror Cable Television was cited for leakage problems with its Encinitas (near San Diego) system, which was found to have high signal leakage on many frequencies including the Amateur bands. That system had been investigated previously by the FCC, but had claimed to have cleared up its leakage problems.

OCTOBER 28 IS THE NEW DATE FOR STS-9'S LAUNCH with W5FL/S/Space/Mobile aboard, after delays in checking out some of the mission systems. W5FL'S hand-held Motorola, which passed NASA's rigorous compatibility checks after a minor interference problem with a telemetry system was found to be due to cable routing. W5FL'S Primary Transmit Frequency Will Be 145.550 MHz, with 145.250, 145.530 and 145.570 as back-ups. He'll listen on 144.650, 144.700-144.850 (25-kHz channels), 144.910-145.090 (20-kHz channels), plus 143.350 and 143.450. The 25-kHz channel spacing is to conform with 2-meter usage in other parts of the world. In all cases he should specify the frequencies to which he'll be listening, as well as any special instructions such as call areas or states he's looking for, during his "even minute" transmit period.

EXTENSION OF AMATEUR LICENSE TERMS TO 10 YEARS should be the first Commission action for Amateur Radio following the August recess. Present licenses will not be extended, but all new licenses and renewals will be for the longer period. It's also expected that the present five-year grace period for renewal after expiration will be trimmed to two years.

Some Other Pending FCC Actions May Be Delayed, however, since the Commission has been reduced by law to five commissioners and only four are presently serving, following Anne Jones' departure. Few controversial issues are likely to be resolved until another Commissioner is on board, to avoid the possible stalemate of a two-two split.

OSCAR 10'S MODE B TRANSPONDER WORKS BEAUTIFULLY following turn on August 6. Users from all corners of the world appeared in the first few days, leading to comments that the down-link sounded more like 20 meters than 2—complete with pileups! Signals have improved steadily, and with the final position tweaking at the end of August, it's possible to work through OSCAR 10 well, with an ERP well under 100 watts.

Some Excessively Strong Signals Have Been Noted, as much as 20 to 30 dB above the beacon. Such signals cut down transponder gain, knocking weaker signals out completely. Users should limit power so their down-link signals are no stronger than the beacon.

ARRL CW Bulletins Are Now Carried On OSCAR 10, 145.840 downlink. Both the AMSAT Tuesday night net and Westlink have also been relayed by the new bird.

Mode L Tests Are Set For Early September; listen for the 70 cm downlink signals Thursdays and Saturdays (GMT) plus one hour from OSCAR 10's orbital apogee.

Two Russian Satellites, 125.840 and 144.700-144.850 (25-kHz channels), plus 450. The 25-kHz channel spacing is to conform with 2-meter usage in other parts of the world. In all cases he should specify the frequencies to which he'll be listening, as well as any special instructions such as call areas or states he's looking for, during his "even minute" transmit period.

ARRL WILL ADMINISTER "NO-CODE" LICENSE EXAMS if the FCC adopts no-code and the ARRL becomes the exam program administrator. Responding to questioners at the Pacific Division Convention, League President W4KFC also stated that membership status and privileges of no-code Amateurs would be decided by the League membership.

BEACON POWER HAS BEEN INCREASED TO 100 WATTS OUt in an addendum to the FCC's recent revision of the rules on Amateur power. Beacons had been limited to 100 watts input.

BELGIAN AMATEURS FACE LOSS OF MANY MICROWAVE BANDS if a bill proposed for the Belgian Parliament becomes law. According to G3WDG, 432-434 MHz plus the 23, 13, 9 and 6 cm bands are all involved. ON6AT/RKT solicits messages of support from other amateurs.

LOG-KEEPING IS NO LONGER REQUIRED OF CANADIAN AMATEURS, after their Department of Communications deleted that part of its rules in a surprise move. However, a log showing CW activity will still be required in applying for some license endorsements.

NO MORE REPEATERS WILL BE COORDINATED ON TO 2 METERS in southern California. Following the lead of the Northern Amateur Relay Council, which recently ended its attempts to coordinate 2 meters due to overcrowding, the 2-Meter Area Spectrum Management Association (TASMA) agreed that the band could accommodate only a few limited coverage repeaters in remote areas. Any uncoordinated machines that appear could be subject to the sanctions against intentional interference cited by former FCC Private Bureau Chief Jim McKinney.

OCTOBER 28 IS THE NEW DATE FOR STS-9'S LAUNCH with W5FL/S/Space/Mobile aboard, after delays in checking out some of the mission systems. W5FL/S's hand-held Motorola, which passed NASA's rigorous compatibility checks after a minor interference problem with a telemetry system was found to be due to cable routing. W5FL/S's Primary Transmi...
HF, VHF, UHF, Across the spectrum. VARIAN EIMAC.

Ham operators know that EIMAC started in power tube development with the 150T in 1934. While the 150T is now a collector's item, EIMAC, a division of Varian, still holds leadership in power tube design with its 4CX250B, 8874, 3-500Z, 8877 and 3CX400U7; modern examples of EIMAC's continuing, innovative solutions to tough communication requirements.

EIMAC's proven power tubes are used in amateur service for heavy-duty, reliable performance in traffic; RTTY, SSTV, DX operation; VHF/UHF work; moonbounce, and exploration of the outer limits of communication techniques across the spectrum.

High quality and long life make EIMAC tubes the favorite choice of operator and equipment builder, amateur and professional alike.

For communication and research worldwide, choose EIMAC. For information on VARIAN EIMAC power tubes, call or write today. Or contact the nearest Varian Electron Device Group sales office.

VARIAN EIMAC
301 Industrial Way
San Carlos, California 94070
415-592-1221

VARIAN EIMAC
1678 S. Pioneer Road
Salt Lake City, Utah 84104
801-972-5000

VARIAN AG
Grienbachstrasse 17
Postfach
CH-6300 Zug, Switzerland
Tel: (042) 31 66 55
Telex: 84578789

More Details? CHECK --- OFF Page 111
to use call abbreviations example, the following:

omitting the prefix and using only the

spent listening to the radio services standards will convince anyone that

could use improvement; consider, for

Amateurs are doing a good job.)

operating practices we can all be

line of Amateur Radio operators has

beginning and end of a

that do not have stringent licensing

body of their call. This is certainly un-

made itself evident.

fan suggested by Ed. Marriner,

radio,

lawful and confusing to the listener.

Dear HR:

repeater etiquette

Dear HR:

The spectacular growth in the

number of repeaters has resulted in

operating practices we can all be

proud of — as usual, the self-disci-

pline of Amateur Radio operators has

made itself evident. (A few minutes

spent listening to the radio services

that do not have stringent licensing

standards will convince anyone that

Amateurs are doing a good job.)

Some aspects of repeater use

could use improvement; consider, for

example, the following:

Overuse and underuse of call signs.

Once every ten minutes and at the

beginning and end of a QSO does the

trick. Some Amateurs are beginning
to use call abbreviations — typically,

omitting the prefix and using only the

body of their call. This is certainly un-

lawful and confusing to the listener.

Non-substantial communications — some repeaters are monopolized by Amateurs who talk by the hour and say very little. They usually break politely when asked to by a “call please” request but return to their meaningless gabbling as soon as the interruption has cleared. Another problem occurs when people continuously update each other on their whereabouts without apparent reason. In one case overheard recently, this type of never-ending QSO involved a man and wife who continually embellished their conversation with expressions of endearment.

The foregoing applies doubly to phone patch conversations. This is an important privilege; it should be guarded carefully.

It should be apparent that we are

judged by what we say. I have two

non-Amateur associates who ride to and from work with me. Their comments on conversations we overhear suggest what the public thinks. If we expect the public’s support in matters of tvi, rfi, and antenna erection, we must at least convince them that we use our privileges meaningfully. There are hundreds of acceptable subjects for discussion, both related to and not related to Amateur Radio; before you push the microphone button, ask yourself if you really have something to say!

Inconsiderate operation — how many times have you heard a station break into a QSO and take over, ignoring one or more of the original participants? I was testing an antenna not long ago with the help of another very cooperative station. Without any warning, a friend of the other operator broke in and interrupted the tests for several minutes. He signed off as if I were not even there. Eventually the tests were completed. Remember, when you are impolite, a lot of people are listening and forming their opinion of you (and Amateur Radio).

There are those who talk only to a

fixed group and make the newcomer feel he did something wrong by just trying to say “hello.” Single-purpose repeaters and nets and closed repeaters may have to be accepted. How-

ever, those who use repeater time and exclude others for no good reason ought to think twice: none of us has the exclusive right to any Amateur frequency.

On the whole, in my opinion, repeater operation deserves a very high mark. With a little more effort, it could get itself into the “straight A” class!

George A. Wilson, Jr., W1OLP Walpole, Massachusetts

high spirits

Dear HR:

I don’t know when I ever enjoyed ham radio as much as I did the May, 1983 issue on antennas. I’m in the process of mounting a vertical atop a 70-foot tower; I don’t know how well it will work, but I’ll try.

The article on “Log-Yagis Simplified” was really great; it was a big help to me. I just had to write and let you know about it.

Keep the good articles coming. I’ll be looking for one soon on vertical antennas mounted above the beams on a tower.

Fred Jones, WA4SWF Louisa, Kentucky

free QSL’s

Dear HR:

Help! My poor secretary is being buried in a pile of coupons from ham radio readers who’ve requested the free QSL cards offered in our August advertisement.

We’re making every effort to fill all requests as quickly as possible. But because of the tremendous response to our offer, some hams will have to wait.

If you’ve requested QSL cards but not yet received them, please be patient; we’ll mail yours as soon as the next print order is received.

Thanks.

Tom Bluesteen Advertising Manager RCA Government Communications Systems Camden, New Jersey 08102

Fred J. Norvik, W2GH Albany, New York
NEW from BARKER & WILLIAMSON!

1.8 - 30 MHz. Continuous Coverage Antenna for Commercial and Amateur Service

Model AC 1.8 - 30
The AC 1.8 - 30 Antenna uses only 80 feet horizontally, and, when space is limited, can be shortened even further with only slight loss of radiation efficiency.

Patent Pending

$149.50

SHIPPING AND HANDLING ADD $4.00

BARKER & WILLIAMSON
Quality Communication Products Since 1932
All Our Products Made in USA

WR & ALL C4L4R PRODUCTS
MADE IN US4

NCG WORLD BAND COMMUNICATIONS

Just Slightly Ahead

15M
Tested and Proven 15 Meter Mobile Transceiver USB and CW
Power-High 10 watts, Low 2 watts
VFO Tuning, Noise Blanker
Fine Tune ± 1 kHz
Digital Frequency Counter
13.8 VDC @ 3A Neg. Ground
9.5” L x 9” W x 2.5” H
All this PLUS the freedom of DXing

Regular Price: $305.00
SPECIAL PRICE: NOW $279.00

160/10M
ALL NEW, with the features you have been waiting for
HF 160-10 meters SOLID STATE Transceiver 200 watt PEP
All 9 HF Bands ready to go
AC/DC Power supply built in
3-Step Tuning 1 kHz/100Hz/25Hz
4 memories, Auto Scan
Automatic Up/Down Tuning Advanced Systems
Dual VFO, Solid State-Adjustment Free, IF Tuning, IF Offset
Noise Blanker, Mic. Compressor
VOX, CW Side tone, AC 120V DC 13.8 RTTY-Fax operation
USB-LSB CW (Narrow CW filter optional).

Regular Price: $1075.00
SPECIAL PRICE: NOW $949.50

Prices and specifications subject to change without notice or obligation.

Calif. Res. add Sales Tax
Back to basics: the fundamentals of measurement

electrical calibration standards

fig. 1. Traceability to NBS (National Bureau of Standards) means the stated accuracy of an instrument has been established through calibration with equipment whose accuracies have been established directly or indirectly by NBS certified references.

Calibration - whether it be checking the butcher's scales or fine tuning in a radio station - always involves certain principles and goals. These are to achieve accuracy and precision and to permit interchangeability in mass-produced items. Along with metrology, the science of measurement, calibration gives us confidence in the units of measure we use daily.

Before delving into the specifics of determining the five basic electrical quantities (the farad, ampere, volt, henry, and ohm), let's discuss and define some calibration philosophies. Calibration is the process of comparing the readings obtained on test and measurement instruments to those of carefully defined references or standards of usually far greater accuracy in order to determine and then correct any deviations in the instrument. Two benefits result - uncertainty about the particular instrument under test is minimized and the instrument meets the requirements for traceability.

"Traceability" means that measurements can be traced back to the National Measurement System. (See figs. 1 and 2.). It exists on seven levels, all traceable to the NBS (National Bureau of Standards):

By Vaughn D. Martin, 114 Lost Meadows, Cibolo, Texas 78108
The Tertiary Level includes instruments used for production work, quality control, maintenance, and general measurement purposes. Local Secondary Standards are used for calibration work and as references in certain production and engineering areas.

Transfer and Inter-laboratory Standards maintain or represent the basic electrical units locally and are sometimes referred to as Local Primary Standards.

NBS Working Standards are used to calibrate and certify local standards.

NBS Secondary Standards include Transfer, Check, and Scaling Standards. They are used to compare NBS Working Standards to the Legal Electrical Reference Units, the values of which are embodied in the NBS Primary Standards.

NBS Primary Standards are derived from the basic "SI" Units.

The International System of Units (SI) is the "glue" that holds the whole structure together.

what is a standard?

It is possible to build a rugged platinum and iridium standard, but that standard would change, over time, as it became affected by its environment. While a standard could be arbitrarily defined without regard to the physical environment, such a standard would never be more than arbitrary. We could say that it was a standard derived or based upon a previous standard, or carefully examine the physical properties and elements of nature and advantageously base the standards on these properties. In actuality, the determination and derivation of each of the various standards employs some or all four of these techniques.

Consider this. The two most basic units of measurement, length and time, are derived as follows:

fig. 2. All measurements can be "traced" back to NBS National Measurement System.

Courtesy of the Copyright Owner, John Fluke Manufacturing Co., Inc.
and Lampard, contrived a technique of precisely measuring the lengths of two parallel metal rods in a special configuration, measuring the speed of light, and then calculating the value of the permittivity of free space. (See figs. 3 and 4.) Extensive work at the NBS followed, and these techniques were refined to the point where we now know the value of a farad to within ±2 ppm (parts per million). Now that the farad, the unit of capacitance, is known, determination of all other electrical units can follow. Impedance to the flow of AC is based on capacitive reactance formulas, and other electrical parameters such as current can be defined from this.

It is known that a quadrature or four-element bridge is an electronic circuit that can be used to compare the impedance of capacitors, inductors, and resistors. (Refer to the lower left portion of fig. 5.) A stable source of known ac frequency is all that is left to power the bridge. Since frequency is the inverse of time and since time is quite well defined by the atomic clock in the NBS facility in Boulder, Colorado, we are home free. Realizing also that there is one frequency, called the resonant frequency, at which inductive and capacitive reactances cancel one another, we can now define the henry from the farad, since the farad is already known. In addition,

length is based on the meter, which is a set number of wavelengths of radiation of the Krypton 86 atom. Measurement of time is based on the second, which is defined as a certain number of cycles of radiation of the Cesium 133 atom in the NBS atomic clock.

In electronic communications, one of the most vital concerns is with the propagation of electromagnetic waves, the maximum velocity of which is limited only by the speed of light. Now that we know the exact value of length and time, it is possible — through the use of Maxwell's equations in electrodynamics and electrostatics — to precisely realize the relationships existing between permeability and permittivity of free space.* We can now derive one electrical standard from another (a technique mentioned earlier), and we do precisely this in the definition of the farad, the standard of electrical capacitance. Once we define the farad, all other electrical parameters fall into place.

defining the farad

The farad was really not very precisely defined until 1956 when two Australian physicists, Thompson

\[c (\text{velocity of light}) = \frac{1}{\mu_0 \varepsilon_0} \]

where \(\mu_0 \) equals free space permeability and \(\varepsilon_0 \) equals free space permittivity, respectively. Editor

fig. 3. Basic structure of the first operating calculable capacitor, built at NBS in 1960. The calculated “cross capacitor” is the average of the capacitance (per meter of length) of the capacitor formed by rods A and C and that formed by B and D. When the “guard” sections a, are kept at the same voltage as A b, b at the same voltage as B, etc., then A, B, C, and D are very nearly as if parts of infinitely long rods.

fig. 4. Basic structure of the variable cross capacitor used as standard of farad and ohm. The capacitance calculated is the change in cross capacitance when the movable shield rod is displaced through a measured distance along the axis. (Most of the rod D has been removed so the shield rod can be better seen. Note that the variable cross capacitor does not need guard sections. Omitted from this and the preceding figure is the metal shield that encloses the entire device.)

* Courtesy of the Copyright Owner, John Fluke Manufacturing Co., Inc.
through an AC-DC transfer technique, the ohm has been defined to better than \(\pm 0.06 \text{ ppm} \). In other words, the ohm was derived by calculating the inductance of a carefully designed coil, taking into account all physical dimensions and the number of turns and type of wire used.

An ac source was then applied to the coil, and by knowing its frequency and being able to calculate the coil’s inductance, the third quantity in the formula for inductance reactance (the resistance in ohms) was then derived.

the ampere

In Ampere’s equation, current and its conductors are defined with respect to magnetic force. But first — in this hair-splitting business of defining absolute standards — *force itself* has to be very well defined. You will recall from physics that force is equivalent to mass times acceleration. The mass standard in the form of a kilogram bar of iridium and platinum already exists (in the BPIM, the French equivalent to our NBS). Next, we concern ourselves with acceleration — a special kind of acceleration, or the acceleration at local gravity at the site of the experiment. We derive acceleration by performing a drop test and measuring the distance traveled and the time elapsed.

Having now established force and inductance from previous work on the quadrature bridge arrangement as a result of first knowing capacitance and time, we can proceed in defining the ampere absolutely by placing one free coil inside a fixed coil and attaching the free coil to the arm of a balance. Current is run through the coils; this counterbalances the gravitational force, attracting a known mass which has been placed on the other arm of the balance. By opposing the downward force of local gravity on our known mass with magnetic fields resulting from the solenoid or magnetic ‘pulling’ of our two coils and through Ampere’s equation, an absolute determination of the unit of current, the ampere, is made.
The last unit to determine in the set of electrical standards is the volt. This unit can be determined in one of two ways. First, a very precise one-ohm resistor could have one ampere of current passed through it; as a result of Ohm’s law, a one-volt drop would exist across this one-ohm resistor. This very precisely determined volt would then be compared to some standard saturated cells and the results of this comparison would then be the nominal mean value assigned to this reference group. By having a number of standard saturated cells, the drifting of one cell to a few millionths of a volt above an actual volt would be offset by another cell drifting a few millionths of a volt in the other direction and collectively averaging all readings, a mean or average would then be obtained. But there are two problems with this technique, which the NBS used until most recently. First, the cells drifted; and second, since the volt was defined as a result of first determining the ampere, the problem was compounded by the practice of precisely redetermining the ampere only once or twice per decade.

The second method of determining the volt was much better and resulted from the work of a British physicist, Brian Josephson. In 1962, he published a paper entitled “Possible New Effects in Superconductive Tunneling” and won a Nobel Prize for what was later to be known as the “AC (alternating current) Josephson Effect.” This discovery offers the computer industry semiconductor switching speeds approaching the speed of light and probably more importantly, offers a means by which the absolute volt can be very accurately determined.

To understand this wonderful discovery, let’s first examine what a Josephson junction is and how it is used. In its simplest terms, the Josephson junction is a frequency-to-voltage converter. The frequency/voltage ratio is precisely equal to two times the elementary electron charge divided by Planck’s Constant. The NBS places a resonant thin-film tunnel junction in an environment approaching absolute zero (0 degrees Kelvin or -273.15 degrees C) (see fig. 7). The result is a superconductor. Next, they interface the Josephson junction to an external voltage comparator which is connected to a Reference Standard Cell and then apply a stable dc supply voltage to the junction. This junction is irradiated with microwave energy from a Klystron tube that is phase-locked or precisely tuned by being locked to WWVB, the radio station at the NBS in Boulder, Colorado, that broadcasts the atomic time signals. (The atomic clock’s quartz crystal oscillator is extremely accurate, with a short-term frequency stability of 1 part per 10^9.) The Josephson junction then generates a DC voltage between 1 and 10 millivolts, depending on the microwave frequency. The beauty of the system is that the resulting DC voltage has an accuracy approaching that of the Atomic Time Standard; furthermore, this can be reproduced anywhere in the world where WWVB or its equivalent can be received by radio and then processed for phase-lock control. The total system uncertainty in this voltage determining scheme is less than five parts per 108.

The resulting junction voltage is transferred up to the 1-volt level and then used as a check standard on a reference group of saturated cells. This small group then serves as a check on the working standards used for the Bureau’s voltage calibration services.
Morse Keyers & Trainers by AEA

AEA produces the finest Morse keyers and trainers in the world. All AEA keyers operate with any standard keyer paddle and offer selectable monitor tone, selectable dot and dash ratios, full weighting and selectable dot and/or dash memory. In addition, all our keyers offer full, semi-automatic or straight key modes. The keyers and trainers are keypad controlled which significantly reduces the complexity of operation for all the features offered. Each keyer has separate + and - keyed outputs for keying any modern transmitter. All keyers and trainers operate from 12 VDC (or 117 VAC with optional model AC-1 wall adaptor) which makes them ideal for portable operation. AEA microcomputer-based products are all subjected to a full burn-in and test prior to shipment, as well as being designed for maximum R.F. immunity.

NEW BT-1

The BT-1 Basic Trainer is a hand-held computerized unit which teaches the code one character at a time at 18 or 20 words per minute. The BT-1 contains a self-paced training program that allows serious students the possibility of learning Morse to 20 wpm in as little as one month! Each character represents a separate practice session in which the character is first introduced by itself, and then presented 50% of the time along with all previously learned characters. There are no tapes to memorize, wear out, or break. No programming skills are necessary; the BT-1 is easy to use. The tone oscillator can also be keyed for sending practice. An earphone jack is provided for private listening. The BT-1 will go as high as 99 WPM in 1 WPM increments. A battery operated version, the BT-1P, is available with wall charger and internal NICAD batteries.

The KT-3 Keyer-Trainer unit uses the teaching program used in the BT-1 trainer. In addition, the KT-3 features a full function Morse automatic keyer for keying any modern transceiver, or for sending practice. Speed range is 18-99 wpm for transmitting and 1-99 wpm for training.

The KT-2 Keyer-Trainer is a computerized keyer with all the features shown above, plus a Morse proficiency trainer. It is designed to increase your existing code as quickly as possible. The unit can be set for beginning practice speed, ending practice speed, and duration of practice. The microcomputer does all the rest by gradually increasing the speed during the practice time selected. You can select between fast code (Farnsworth) or slow code methods. The characters are sent in 5 letter groups, or random word lengths. Two levels of difficulty can be selected; common Morse characters or all English Morse characters. A 24,000 character answer book is provided for the 10 separate starting positions. There is also a random practice mode for which no answers are available.

The CK-2 Contest™ Keyer is the lowest cost automatic keyer available featuring an automatic serial number generator for contesting. The CK-2 keyer features a large 500 character message memory that can be soft-partitioned into as many as 10 sections. An exclusive AEA edit mode makes it possible to correct mistakes made while entering messages or to insert words into previously established messages. Two different speeds can be set for fast recall in addition to a stepped variable speed control. The CK-2 features an automatic message repeat mode with variable delay-before-repeat for automatic CQ transmissions or TVI testing.

The MM-2 Mornemic Keyer represents the most sophisticated paddle keyer ever designed and features two powerful microcomputers. The Mornemic incorporates virtually all the features (except the preset and stepped variable speeds) of both the CK-2 and KT-2 shown above. In addition, the MM-2 offers an exclusive automatic beacon mode which is invaluable for meteor scatter, moonbounce scheduling, or beacon operation.

AEA Brings you the Breakthrough!

ADVANCED ELECTRONIC APPLICATIONS, INC.
P.O. Box C-2160, Lynnwood, WA 98036
206/775-7373 Telex: 152571 AEA INTL

More Details? CHECK—OFF Page 111

October 1983 15
TRANSMITTING TUBES

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Current</th>
<th>Voltage</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>0A2</td>
<td>304TH</td>
<td>2.00</td>
<td>650A</td>
<td>$6.50</td>
</tr>
<tr>
<td>0B2</td>
<td>304TL</td>
<td>2.00</td>
<td>688A</td>
<td>7.35</td>
</tr>
<tr>
<td>1A0</td>
<td>572B1160L</td>
<td>9.50</td>
<td>560</td>
<td>100.00</td>
</tr>
<tr>
<td>2C6</td>
<td>307</td>
<td>45.00</td>
<td>650A</td>
<td>28.00</td>
</tr>
<tr>
<td>2D4</td>
<td>304TH</td>
<td>2.45</td>
<td>304TL</td>
<td>5.00</td>
</tr>
<tr>
<td>22C</td>
<td>304TL</td>
<td>9.50</td>
<td>304TL</td>
<td>4.00</td>
</tr>
<tr>
<td>33C</td>
<td>304TL</td>
<td>7.50</td>
<td>304TL</td>
<td>5.75</td>
</tr>
<tr>
<td>3-400Z</td>
<td>304TL</td>
<td>88.00</td>
<td>304TL</td>
<td>5.00</td>
</tr>
<tr>
<td>3-500Z</td>
<td>304TL</td>
<td>88.00</td>
<td>304TL</td>
<td>6.00</td>
</tr>
<tr>
<td>3-600Z</td>
<td>304TL</td>
<td>367.00</td>
<td>304TL</td>
<td>6.75</td>
</tr>
<tr>
<td>3B2</td>
<td>304TL</td>
<td>12.50</td>
<td>304TL</td>
<td>3.67</td>
</tr>
<tr>
<td>3C4</td>
<td>304TL</td>
<td>265.00</td>
<td>304TL</td>
<td>6.00</td>
</tr>
<tr>
<td>3C8</td>
<td>304TL</td>
<td>250.00</td>
<td>304TL</td>
<td>12.00</td>
</tr>
<tr>
<td>3C1000Z</td>
<td>304TL</td>
<td>367.00</td>
<td>304TL</td>
<td>6.75</td>
</tr>
<tr>
<td>3D2</td>
<td>304TL</td>
<td>12.50</td>
<td>304TL</td>
<td>3.67</td>
</tr>
<tr>
<td>3E2</td>
<td>304TL</td>
<td>265.00</td>
<td>304TL</td>
<td>6.00</td>
</tr>
<tr>
<td>4-65A</td>
<td>304TL</td>
<td>59.00</td>
<td>304TL</td>
<td>8.50</td>
</tr>
<tr>
<td>4-125A</td>
<td>304TL</td>
<td>70.00</td>
<td>304TL</td>
<td>6.00</td>
</tr>
<tr>
<td>4-250A</td>
<td>304TL</td>
<td>80.00</td>
<td>304TL</td>
<td>14.00</td>
</tr>
<tr>
<td>4-480A</td>
<td>304TL</td>
<td>99.00</td>
<td>304TL</td>
<td>16.00</td>
</tr>
<tr>
<td>4-1000A</td>
<td>304TL</td>
<td>452.00</td>
<td>304TL</td>
<td>11.00</td>
</tr>
<tr>
<td>4CS2</td>
<td>304TL</td>
<td>180.00</td>
<td>304TL</td>
<td>115.00</td>
</tr>
<tr>
<td>4CX250C</td>
<td>304TL</td>
<td>65.00</td>
<td>304TL</td>
<td>7.00</td>
</tr>
<tr>
<td>4CX250B</td>
<td>304TL</td>
<td>73.00</td>
<td>304TL</td>
<td>11.00</td>
</tr>
<tr>
<td>4CX350A</td>
<td>304TL</td>
<td>110.00</td>
<td>304TL</td>
<td>11.00</td>
</tr>
<tr>
<td>4CX1000A</td>
<td>304TL</td>
<td>395.00</td>
<td>304TL</td>
<td>11.00</td>
</tr>
<tr>
<td>4CX1000B</td>
<td>304TL</td>
<td>500.00</td>
<td>304TL</td>
<td>11.00</td>
</tr>
<tr>
<td>4E227A</td>
<td>304TL</td>
<td>150.00</td>
<td>304TL</td>
<td>14.00</td>
</tr>
<tr>
<td>4X150D</td>
<td>304TL</td>
<td>58.00</td>
<td>304TL</td>
<td>7.80</td>
</tr>
<tr>
<td>4X150</td>
<td>304TL</td>
<td>50.00</td>
<td>304TL</td>
<td>39.00</td>
</tr>
<tr>
<td>4X1500A</td>
<td>304TL</td>
<td>75.00</td>
<td>304TL</td>
<td>105.00</td>
</tr>
<tr>
<td>4X150</td>
<td>304TL</td>
<td>75.00</td>
<td>304TL</td>
<td>105.00</td>
</tr>
<tr>
<td>4X150</td>
<td>304TL</td>
<td>75.00</td>
<td>304TL</td>
<td>105.00</td>
</tr>
</tbody>
</table>

Minimum order $25.00 • Shipping charges extra
F.O.B. East Rutherford, N.J.
Prices and items subject to change or withdrawal without prior notice.

COAST TO COAST TOLL FREE NUMBERS:
To call NJ office 800-526-6362 (except from NJ)
To call CA office 800-421-7549 (except from CA)

CALVERT ELECTRONICS, INC.
One Branca Rd., E. Rutherford, N.J. 07073
201-460-8800 ♦ TWX 710-999-0116
1355 Redondo Ave., Suite 6
Long Beach, CA 90804
213-498-3504

UNGAR Professional Heat Gun
$99.50
- Weighing only 28 ounces
- Temperature is 975°F at nozzle
- The unit has a 6 ft. 3-wire cord
- 750 watts at 120 volts

The T.E.L. Model CS-1100 Total Communication System.

AT LAST! There is a state-of the-art CW/RTTY/ASCII communications system that meets the sophisticated operator's demands for a quality product.

Feature
CMOS uprocessor based.
Membrane Switch front panel.
16 chr Intelligent LED display.
Super Narrow Filters.
Built-in 110 VAC supply.
500 chr Buffer (all modes).
Parallel Data Port.

Benefit
No RFI problems.
Insures reliability.
Readable to 12 feet.
No tuning required.
No extras to buy.
Review received text.
Connect to any printer or computer.

CW Operation: Send/Recv 5-90 wpm with Automatic Speed Tracking. Four 99 chr memories with ability to insert text, will key any rig.
RTTY/ASCII: Receive at 60, 67, 75, 100 wpm and 110, 300 Baud with One Button Speed Selection.
A 30 day unconditional guarantee and 1 year parts/labor warrantee assures satisfaction. Dealer inquiries invited.
Send for a free data package and comparison sheet.

Random Access Inc.
P.O. Box 61177 Raleigh, N.C. 27661
Design and build a 5 to 5.5 MHz synthesizer

The first two parts of this series discussed the basic PLL. This third section applies the developed theory to the design and construction of a 5.000 to 5.500 MHz synthesizer that steps in 1 kHz increments, demonstrates synthesizer design, and provides some solutions to problems that may occur in synthesizer design.

synthesizer specifications

Loop performance specifications in a communications application such as an LO in a receiver or transmitter are phase noise, spurious content, and lock time. The best phase noise performance can be obtained with multi-PLL synthesizers if space, complexity, and design time are not a problem. But because a simple single-loop synthesizer can be made more inexpensively and compactly than a multi-PLL synthesizer, design and construction of a simple single-loop synthesizer will be discussed here.

As a receiver LO, any spurs around the carrier can create spurious responses in the audio output. These spurs usually appear as reference feedthrough, power line (and harmonic) modulation of the VCO, and spurious oscillations in the VCO itself. Spurious oscillations in the VCO and power line modulation of the VCO are prevented by proper oscillator design, which includes good shielding and filtering. Reference feedthrough is largely a product of proper choice of loop parameters (f_n, ξ, etc.) and type of phase detector.

In the design loop, -70 dBc was chosen as a reasonable reference feedthrough limit, and -40 dBc for any spurs created by power line 60 Hz (and harmonics). Since spurs at 60 Hz (and odd harmonics) originate largely from the power lines coupling into the VCO, shielding is an effective technique for reducing them. 120 Hz spurs are usually the result of power supply ripple modulating the VCO and can be suppressed by filtering.

Lock time happens to be not only a function of loop bandwidth, but of frequency step size as well as the amount of frequency error, the designer considers acceptable for the "lock" state. Lock time for frequency synthesizers is usually specified as to within some Δf of the desired frequency before some specified time. Our loop must be within 1 Hz in less than 100 ms with a 1 kHz step in VCO frequency. A very rough equation for lock time for much less than 1 percent frequency error (relative to frequency step taken) is:

$$t_{\text{lock}} = \frac{10}{f_\beta}$$

which is about 100 ms for a loop bandwidth of 100 Hz.

the phase detector

The design loop with an $f_{\text{REF}} = 1$ kHz requires a very narrow bandwidth to reduce reference feedthrough, while a wide loop bandwidth is required for a fast lock time. This design uses a relatively wide loop bandwidth ($f_\beta = 100$ Hz) for rapid lock time. To achieve the -70 dBc reference feedthrough requirement, a sample and hold (or an approximation of it) phase detector was used.

The phase detector is part of Motorola's MC145151 PLL IC. This phase/frequency detector goes tri-state (open circuit) with zero phase error at its inputs. As long as zero phase error is maintained, there will be no reference feedthrough. However, there is always a small amount of reference feedthrough, since zero phase error cannot be maintained indefinitely because of VCO drift, etc., which causes the phase detector to generate occasional corrective pulses (at an f_{REF} pulse rate).

programmable divider

The MC145151 PLL IC contains a programmable divider usable to at least 15 MHz at a supply voltage of 5 volts and a signal voltage of 500 mV peak-to-peak. The maximum division ratio is 16,383. It uses a straight binary input (not BCD), which facilitates linking to a computer, though not thumbwheel switches.

By Craig Corsetto, WA6OAA, 4312 Marlowe Drive, San Jose, California 95124
fig. 1. The linearizer that is used in conjunction with the VCO to achieve a linear f_{VCO} versus V_L transfer function.

fig. 2. VCO transfer function showing f_{VCO} versus V_i and f_{VCO} versus V_L.

Because a short lock time is required and f_{REF} is close to the loop bandwidth, then K_{VCO} must be fairly constant across the VCO frequency range in order to hold the loop bandwidth close to its designed value (and therefore reference feedthrough). Usually all that is required is to use the most linear section of the VCO tuning curve; its size dependent upon an acceptable value of nonlinearity. If the section of the VCO tuning curve used is small, this means a higher K_{VCO}, and the VCO will be more sensitive to unwanted signals on its tune line. The approach chosen here is to use a linearizer in combination with the VCO (fig. 1) to very closely approximate a linear VCO tuning curve (constant K_{VCO}).

the VCO linearizer

Fig. 2 shows the tuning curve for the VCO used in the design loop, with its 4.3:1 variation in K_{VCO}. Since this is significantly more than the 1.1:1 variation in K_N, (across the synthesizer frequency range) the effects of K_N on loop gain can be neglected in the following analysis.

With K_{VCO} the major cause of loop gain variations, its effects on f_n and ξ can be calculated:

$$\Delta K = \frac{\sqrt{K_{\text{MAX}}}}{\sqrt{K_{\text{MIN}}}} = \sqrt{\frac{4.3}{1}} = 2.07 \ (1)$$

Assuming that the loop bandwidth is 100 Hz and the damping factor equals 2 when the loop gain is greatest (i.e. K_{VCO} is at its maximum), then the effect of the 4.3:1 variation of K_{VCO} can be calculated:

$$f_n = \frac{f_0}{\sqrt{\frac{\sqrt{2\xi^2 + 1} + \sqrt{2\xi^2 + 1}} + 1}}$$

$$= \frac{100}{4.25} = 23.53 \text{ Hz} \quad (2)$$

And $f_n (\text{MIN}) = f_n (\text{MAX}) / \Delta K$

$$f_n (\text{MIN}) = \frac{23.53}{2.07} = 11.37 \text{ Hz}$$

$$\xi(\text{MIN}) = \frac{\xi(\text{MAX})}{\Delta K} = 2 / 2.07 = 0.97$$

fig. 3. Adding the linearizer transfer function to that of the VCO to achieve a linear transfer function.

the VCO

In this narrow-loop bandwidth synthesizer design low spurious content and good phase noise performance directly relate to the VCO physical and electrical design. In addition it is also important that the VCO has a low frequency drift rate (to reduce reference feedthrough), linear transfer function (to keep loop bandwidth and damping reasonably constant), and be well filtered and shielded (to reduce modulation of the VCO by power supply ripple and induced 60 Hz from power wiring).

VCO frequency drift can increase reference feedthrough by forcing the phase detector to generate correction pulses (which are not completely filtered by the loop filter) which in turn modulate the VCO. This is especially important when the reference frequency is close to the loop bandwidth, as is the case in this loop. Common contributors to frequency drift are the varactor diodes, toroidal core inductors in the resonator (if used), or excessive power in the resonator (unfortunately one of the requirements for a high signal-to-noise floor ratio for the oscillator).
\[f_\beta = f_n \sqrt{\xi^2 + 1} + \sqrt{(\xi^2 + 1)^2 + 1} \]
\[= 11.37 \text{ Hz} \ (2.44) = 27.74 \text{ Hz} \] \hspace{1cm} (3)

which results in a 100/27.74 (3.6:1) change in loop bandwidth with its resulting effect on lock time.

The linearizer is designed to have a response that is the inverse of the VCO (nonlinear) transfer function so that when the linearizer is added to the VCO it will have the effect of producing a linear VCO tuning curve with constant \(K_{VCO} \) (fig. 3).

The linearizer is implemented (fig. 4) using resistor/diode sections and a voltage divider network in order to individually modify the slope of the linearizer transfer function as each resistor/diode section is forward biased. (As \(V_L \) decreases, successive diodes are turned on modifying the slope of the \(V_L \) versus \(V_t \) curve).

The linearizer is designed to have a response that is the inverse of the VCO (nonlinear) transfer function so that when the linearizer is added to the VCO it will have the effect of producing a linear VCO tuning curve with constant \(K_{VCO} \) (fig. 3).

The method used to design the linearizer required the following steps:

1. plotting \(K_{VCO} \) versus \(V_t \) and then determining the VCO range to be linearized,
2. calculating the quantity of resistor/diode sections required for the maximum allowed variation in \(K_{VCO} \) (realizing that this is only a segmented approximation of the required transfer function to achieve a linear VCO tuning curve),
3. calculating the voltages for the voltage divider,
4. calculating the resistor values for the resistor/diode sections.

The VCO frequency range to be linearized is roughly 4.92-5.6 MHz which allows for some drift in frequency. The \(K_{VCO} \) at these two frequencies are 1070 \((10^3)\) and 250 \((10^3)\) rad/sec/volt. The number of resistor/diode sections needed for the linearizer are approximately:

\[n = \frac{\log K_{VCO} \text{(MAX)}}{\log K_{VCO} \text{(MIN)}} \]

\[\Delta K_{VCO} = 1.3. \] (Once again, neglecting \(K_N \), if \(K_{VCO} \) is the only source of loop gain variation, it varies only by 30 percent, then \(f_n \) and \(\xi \) will vary only by the square root of this, or 14 percent. This is acceptable.)

Therefore the number of resistor diode pairs needed are:

\[n = \frac{\log 1070 \ (10^3)}{\log 1.3} = 5.54 \]

It is decided to use 5 resistor/diode pairs instead of 6 even though this means a slightly higher error. This error is approximately:

\[\Delta K_{VCO} = \frac{\log K_{VCO} \text{(MAX)}}{n} K_{VCO} \text{(MIN)} \]

\[= 10 \log \frac{4.3}{5} = 1.337 \] \hspace{1cm} (5)

Knowing \(\Delta K_{VCO} \) the voltage divider voltages can be calculated. In fig. 5 a mark for every 33.7 percent increase in \(K_{VCO} \) (starting at the low end of the \(K_{VCO} \) plot, or 250 \((10^3)\) in the example) corresponds to a voltage on the VCO tune line, \(V_t \). If all the calculations are computed correctly, then the last computed point should correspond to the maximum \(K_{VCO} \) of the range over which the linearizer was designed to work \((1070 \cdot 10^3) \).

\[K_{VCO} \ (A) = 1.337 K_{VCO} \ (A) = 1.337 \cdot (250 \cdot 10^3) = 334.25 \cdot 10^3 \]
\[K_{VCO} \ (C) = 1.337 K_{VCO} \ (B) = 1.337 \cdot (334.25 \cdot 10^3) = 446.89 \cdot 10^3 \]
\[K_{VCO} \ (D) = 1.337 K_{VCO} \ (C) = 1.337 \cdot (446.89 \cdot 10^3) = 597.5 \cdot 10^3 \]
\[K_{\text{VCO}}(E) = 1.337 \times K_{\text{VCO}}(D) \]
\[= 1.337 \times (597.5 \times 10^3) = 798.8 \times 10^3 \]

and for a check
\[K_{\text{VCO}}(F) = 1.337 \times K_{\text{VCO}}(E) \]
\[= 1.337 \times (798.8 \times 10^3) = 1068 \times 10^3 \]

which is very close to \(1070 \times 10^3 = K_{\text{VCO}}(\text{MAX}) \).

The corresponding trip voltages (where the resistor/diode combination starts conducting) are:

- \(V_A = 12.25 \text{ volts} \)
- \(V_D = 6.05 \text{ volts} \)
- \(V_B = 9.35 \text{ volts} \)
- \(V_E = 4.60 \text{ volts} \)
- \(V_C = 7.70 \text{ volts} \)
- \(V_F = 3.50 \text{ volts} \)

The voltage divider component values are chosen such that the current through them is much higher than the maximum current through the diodes to keep the voltages \(V_A \) through \(V_C \) constant.

To calculate the resistor values \(R_1 \) through \(R_5 \) and \(R_D \), the voltage \(V_L \) that corresponds to the voltage \(V_t \) (especially at the trip voltages \(V_A \) through \(V_E \)) must be determined. This is done by letting \(V_A' \) equal \(V_A \) and then linearly scaling the voltages \(V_B' \) through \(V_E' \) such that these voltages are always less than their corresponding voltages \(V_B \) through \(V_F \) (fig. 2). This means that \(V_L \) will swing through a larger range of voltages (\(-9.25 \text{ to } 12.25\)) than \(V_t \) (3.5-12.25) as detailed below:

- \(V_A' = 12.25 \) (\(V_A' = V_A \))
- \(V_B' = 8.2 \) (\(V_B' < V_B \))
- \(V_C' = 4.9 \) (\(V_C' < V_C \))
- \(V_D' = 1.4 \) (\(V_D' < V_D \))
- \(V_E' = -3.25 \) (\(V_E' < V_E \))
- \(V_F' = -9.2 \) (\(V_F' < V_F \))

By assuming perfect diodes (i.e., no forward voltage drop), resistors \(R_1 \) through \(R_5 \) can be determined. To keep the current through the diodes at a minimum \(R_D \) should be fairly high (46.4k chosen here). By knowing what voltage the linearizer requires at its input \(V_L \) to generate a corresponding voltage at the output, \(V_t \) (fig. 2) resistors \(R_1 \) through \(R_5 \) can be calculated (fig. 6).

Power supply ripple is kept off the VCO tune line by using a Darlington transistor with a large RC time constant in its base that buffers the voltage to the linearizer voltage divider.

Ideally, the linearizer provides a perfectly constant \(K_{\text{VCO}} \) across the VCO tuning range. Because the linearizer is synthesized using linear segments (and these linear segments are really nonlinear due to the imperfect diodes), there will still be a non-constant \(K_{\text{VCO}} \) (non-linear VCO tuning curve), though vastly improved. Fig. 7 shows the measured \(K_{\text{VCO}} \) versus \(V_L \) using the linearizer and is compared to fig. 5 to show the improvement. The error appears to be very close to the calculated value of 33.7 percent.
TU-470
• Full featured RTTY to 300 baud plus CW terminal unit.
• 3 Shifts, active filters, remote control, xtal AFSK, FSK, plus much more.
Suggested retail price . . . $499.95

TU-170A
• Single shift RTTY terminal unit.
• Xtal AFSK, FSK, active-filters and more.
Kit $189.95
wired $289.95

TU-170
• Single shift RTTY terminal unit.
• Low cost, AFSK, active-filters. $149.95
KIT only

TRS-80* RTTY/CW

TRADMARK OF TANDY CORP.

FOR MORE INFORMATION AND SALES ONLY PLEASE CALL

1-800-HAM-RTTY
Flesher Corporation
P.O. BOX 976
TOPEKA, KS. 66601

The Circular Advantage

KLM's Circular Polarized antennas have been specifically designed to optimize OSCAR 10 and Russian satellite operation. Quality workmanship and superior design, yield virtually perfect circular patterns over the satellite operational bandwidth. Enjoy less Multi-Path Distortion, less Flutter, Fade, and better S/N Ratios, with comparable performance on transmit.

Both the 2M-14C and 435-18C sport virtually unbreakable 3/16" rod parasitic elements anchored thru the boom, folded dipole driven elements produce excellent physical and electrical symmetry for years of constant performance.

Specifications: (2M-14C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>144-150 MHz</td>
</tr>
<tr>
<td>Gain</td>
<td>11 dBc</td>
</tr>
<tr>
<td>Beamwidth</td>
<td>0.28</td>
</tr>
<tr>
<td>Feed IMP</td>
<td>50 ohm unbal.</td>
</tr>
<tr>
<td>Balun</td>
<td>4.1K</td>
</tr>
<tr>
<td>Circularity Switcher</td>
<td>Included</td>
</tr>
</tbody>
</table>

The 435-18C is a star performer, an optional CS-2 circularity switcher puts left, and right-hand circular control in your shack, and doubles as a two port divider/impedance transformer for single feed line convenience.

Specifications: (435-18C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth</td>
<td>420-450 MHz</td>
</tr>
<tr>
<td>Gain</td>
<td>12 dBc</td>
</tr>
<tr>
<td>Beamwidth</td>
<td>7.3 ft.</td>
</tr>
<tr>
<td>Feed IMP</td>
<td>50 ohm unbal.</td>
</tr>
<tr>
<td>Balun</td>
<td>2-4:1 1K</td>
</tr>
<tr>
<td>Circularity Switcher</td>
<td>(CS-2) Optional</td>
</tr>
</tbody>
</table>

See your local KLM dealer or write for our complete catalog.
A new challenge in the amateur radio world...
Introducing 2m & 6m SSB/CW QRP Transceiver kit...

MX 2 (144 MHz band) and MX-62 (50 MHz band) SSB/CW QRP Transceivers offer the user unlimited challenges in QRP. It creates a new dimension in amateur radio operation and lots of fun to play with. The major circuits are factory assembled and tested to insure superior performance. Just solder a few wires to switches and connectors and you are in operation. No special tools are needed, only about one hour of time assembling, and you are ready to challenge the amateur world...

FEATURES
- 200mW for MX-2 and 250mW for MX-62
- MOS FET receiver front-end
- Noise blanker built in
- Single conversion receiver
- Built-in CW keyer
- VXO controlled (+50kHz per channel)
- External microphone and speaker jacks
- High quality crystal filter (7.8MHz)
- Provision for external DC operation
- 6 x AAA dry-cell or 9V transistor battery

SPECIFICATIONS
- Model MX-2 144MHz band SSB/CW Transceiver
- Model MX-62 50MHz band SSB/CW Transceiver
- Operating Mode: A3J (USB), A1 (CW)
- Maximum Output Power: 200mW (MX-2), 250mW (MX-62)
- Spurious Output: Greater than 40db down
- Sideband Suppression: Greater than 40db
- Receiver Sensitivity: Less than 0.5uV for 15db S/N
- Frequency Tuning Range: Maximum +50kHz per channel
- No. of Channels: 2

$129.95 semi-knock-down kit with channel crystal (one channel) and assembly instructions.

Order today direct or from HENRY RADIO (800) 421-5631. To order direct include $3.00 shipping/handling. From California add sales tax. VISA/AMEX orders welcome. We will pay shipping/handling charge for all prepaid orders. NO C.O.D. PLEASE.

ACE communications, inc.
2802-D WALNUT AVENUE, TUSTIN, CALIFORNIA 92680 (714) 544-8281
TELEX 655-306

ALL BAND TRAP ANTENNAS!

QUALITY MICROWAVE TV ANTENNAS

1.9 to 2.6 GHz Frequency Range
Complete System (Pictured)

20' Fiberglass Dish
Pre-Assembled Probe with Down Converter, Power Supply and Tuner Switch, 60 ft. RG58U Coax with Connector, Transformer for 75 to 300 Ohms. All Mounting Hardware for Fast and Easy Installation

Suggested Retail $259.00
Special $74.95

2 Year Warranty

S&W ELECTRONICS
145 North Main
Bountiful UT 84010
(801) 295-1166
Dealers Wanted - CGO'S

Each Check of Money Order to: European Management Corp.
5012 Proprietary Way
Dallas, Texas 75219

PHONE: (214) 739-1044

 136
The values for $K_{N(MAX)}$ and $K_{N(MIN)}$ were as stated before:

$K_{N(MAX)} = 200 \times 10^{-6}$
$K_{N(MIN)} = 181.82 \times 10^{-6}$
$K_P = 0.398$ volts/radian

Assuming $K_{VC0}(MAX)$ occurs at $K_{N(MAX)}$ and $K_{VC0}(MIN)$ at $K_{N(MIN)}$ (for worse case open loop gain variation) then:

$K_f(MAX) = 19.9$
$K_f(MIN) = 13.75$

Variations in f_n and ξ are:

$$\Delta_K = \sqrt{\frac{19.9}{13.75}} = 1.2$$

It was decided to have a damping factor of approximately one, but since it will vary by $\Delta_K = 1.2$ the lower value of ξ will be set at $\xi = 0.95$ and the maximum value will then be $\xi = 0.95 (1.2) = 1.14$, which, as discussed before, corresponds to the maximum loop bandwidth of 100 Hz. Using this information both $f_n(MAX)$ and $f_n(MIN)$ can be calculated:

$$f_n(MAX) = \frac{f_a(MAX)}{\sqrt{2\xi^2 + 1 + \sqrt{(2\xi^2 + 1)^2 + 1}}}$$

and

$$f_n(MIN) = f_n(MAX)/\Delta_K = 36.92/1.2 = 30.77 \text{ Hz}$$

With maximum values of damping, loop natural frequency, and loop gain known, the two time constants for the loop filter can now be determined.

$$t_1 = \frac{K_f}{(\omega_n)^2}$$

$$t_2 = \frac{2\xi}{\omega_n}$$

At $f_{VCO} = 5.00 \text{ MHz}$ the loop gain is at its maximum corresponding to maximum values for f_n, f_B, and ξ. Using these maximum values the time constants are:

$$t_1 = \frac{19.9}{(2\pi 36.92)^2} = 369.8 \mu s$$

$$t_2 = \frac{2(1.14)}{2\pi 36.92} = 9.828 \text{ ms}$$

Using minimum values of K_f, f_n, and ξ should produce the similar results:

$$t_1 = \frac{13.75}{(2\pi 30.77)^2} = 367.8 \mu s$$

$$t_2 = \frac{2(0.95)}{2\pi 30.77} = 9.83 \text{ ms}$$

Although the loop filter components could now be calculated using t_1 and t_2, there are two areas that will restrict the values of R_1 and C_1 and should be examined (fig. 8). These areas are leakage currents and phase detector output current.

With the loop in lock the phase detector is in an open-state mode and does not "source" or "sink" current to the integrator, thereby allowing the integrator to hold its charge. Therefore the voltage out of the loop filter is constant. However, leakage currents will either add or subtract charge from the integrator capacitor causing the loop filter output voltage to the VCO to vary, changing its frequency. The loop then corrects for this frequency shift during the next reference frequency clock cycle. This means that a signal, at a frequency equal to the reference frequency and of an amplitude dependent on the leakage current, will be on the VCO tune line and thus modulate it (reference feedthrough).

Given the equation for the integrator: $\Delta V_{OUT} = I/C (\Delta t)$, where I is the leakage current, $\Delta t = 1/f$, and C is the integrator capacitor (C_1). C is really the only variable available to the designer. (f_{REF} is fixed, and I is the leakage current of both the phase detector in its open circuit mode and the bias currents of the (LF-356) op-amp used in the integrator. The leakage current for the phase detector is 1 nanoampere and for the op-amp is about 10 pico ampere. The phase detector leakage predominates and so the op-amp leakage can be neglected.)

With maximum acceptable spur level of -70 dBC, and knowledge of $K_{VC0}(MAX)$, the maximum reference feedthrough voltage on the VCO tune line can be approximated, then the smallest value of C_1 for that reference feedthrough voltage can be calculated (given the leakage current).

$$V_L (p-p) = \frac{8\pi f_m 10^{20} P_{SSB}}{K_{VC0}(MAX)}$$

$$= \frac{8\pi (1kHz) 10^{-20}}{250 \times 10^3} = 31.8 \mu V (p-p) \approx 32 \mu V (p-p)$$

where $V_L (p-p)$ reference feedthrough signal voltage
P_{SSB} single sideband spur level in dBC
f_m reference feedthrough signal frequency

The minimum value of C_1 is:

$$C_1(MIN) = (I) \frac{\Delta V}{\Delta V_L} = (I) \frac{1/f_{REF}}{\Delta V_L}$$

$$= 1 \text{ nA} \left(\frac{1 \text{ ms}}{32 \mu V} \right) = 0.031 \mu F$$
fig. 8. Phase detector (in its open-circuit mode) plus loop filter.

where \(i \) is the leakage current and \(V \) is the calculated reference feedthrough voltage for a \(-70 \) dBc spur level.

The smallest value of \(R_1 \) is determined by the maximum current the phase detector can develop which, for the MC145151 is about 500 \(\mu A \). With the maximum phase detector voltage of approximately +5V and the other extreme at (a virtual) 2.5V then:

\[
R_1(\text{MIN}) = \frac{(5-2.5)}{500 \mu A} = 5000 \text{ ohms}
\]

The loop filter components can now be calculated by letting \(R_1 = 5000 \) and solving for \(C_1 \):

\[
C_1 = \frac{t_1}{R_1} = \frac{367.8 \mu s}{5000} = 0.0736 \mu F
\]

which fortunately happens to be greater than the minimum value for \(C_1 \) calculated before. Letting \(C_1 \) take on a more practical value, \(C_1 = 0.068 \mu F \), \(R_1 \) can be recalculated:

\[
R_1 = \frac{367.8 \mu s}{0.068 \mu F} = 5410 \text{ ohms}
\]

Calculating for \(R_2 \):

\[
R_2 = \frac{t_2}{C_1} = \frac{9.83 \text{ ms}}{0.068 \mu F} = 144.5 K
\]

where \(I \) is the leakage current and \(V \) is the calculated reference feedthrough voltage for a \(-70 \) dBc spur level.

The smallest value of \(R_1 \) is determined by the maximum current the phase detector can develop which, for the MC145151 is about 500 \(\mu A \). With the maximum phase detector voltage of approximately +5V and the other extreme at (a virtual) 2.5V then:

\[
R_1(\text{MIN}) = \frac{(5-2.5)}{500 \mu A} = 5000 \text{ ohms}
\]

The loop filter components can now be calculated by letting \(R_1 = 5000 \) and solving for \(C_1 \):

\[
C_1 = \frac{t_1}{R_1} = \frac{367.8 \mu s}{5000} = 0.0736 \mu F
\]

which fortunately happens to be greater than the minimum value for \(C_1 \) calculated before. Letting \(C_1 \) take on a more practical value, \(C_1 = 0.068 \mu F \), \(R_1 \) can be recalculated:

\[
R_1 = \frac{367.8 \mu s}{0.068 \mu F} = 5410 \text{ ohms}
\]

Calculating for \(R_2 \):

\[
R_2 = \frac{t_2}{C_1} = \frac{9.83 \text{ ms}}{0.068 \mu F} = 144.5 K
\]

or 147K, a common value in 1 percent resistors. Both \(R_1 \) and \(C_1 \) are within the desired limits.

For prefiltering ahead of the loop filter \(R_1 \) is split into two series resistors and a capacitor is tied between their common points and ground.

A unity gain inverter using a low noise op-amp follows the loop filter for required signal inversion.

fig. 9. Synthesizer schematic. The physical dimension of the completed synthesizer is 2 by 4 inches.
for negative feedback in the phase-locked loop. Another filter pole is added to the loop by the addition of a 0.01 μF capacitor across the inverters' feedback resistor. Like the pre-filter ahead of the loop filter, this pole is located at a frequency well outside the loop bandwidth.

Loop performance

This synthesizer (fig. 9) performed according to specifications immediately after completion. The only problem was excessive 60 Hz (and its odd harmonics) spurs which were solved with proper shielding. A Hewlett-Packard HP8568 spectrum analyzer was used to measure phase noise and spurious responses. Fig. 10 uses a wide-frequency sweep to show the general “cleanliness” of the synthesizer output for large frequency offsets from the carrier. The noise pedestal around the carrier is that generated by the spectrum analyzer.

Fig. 11 is a SSB phase (and amplitude) noise plot of the synthesizer output using a 5-kHz linear sweep. The spurs are caused by the phase detector; examined closely, they can be seen to be two noise peaks centered around where the reference feed-through spur should be. Upon close examination the reference feed-through was greater than –70 dBc, as designed. Unfortunately temperature effects on phase detector leakage current were not taken into account (as well as the variations in leakage current among MC145151's) and the –70 dBc spur requirement is exceeded as the MC145151 heats.

Fig. 12 is a narrow spectrum view of the synthesizer using a 500 Hz sweep. This shows what reasonable shielding and filtering can do to minimize spurs. The 60 Hz spurs, originally only –30 dBc, were reduced an additional 15 dB by optically shielding the varactor diodes, and by more than 30 dB through magnetic shielding of the synthesizer. The 120 Hz spurs were taken care of by using a Darlington transistor as an active filter for supply lines to sensitive parts of the synthesizer (i.e., VCO, linearizer, etc.).

Fig. 13 is a phase noise plot of the synthesizer at 5 MHz. Since the phase noise past the loop bandwidth (offset frequencies greater than \(f_\beta = 100 \text{ Hz} \)) is equivalent to that of the open loop VCO, while loop bandwidth and damping are held fairly constant, then the phase noise plot taken at any other frequency within the synthesizer range will be essentially identical.

The lock time was examined by changing the programmable divider by one (\(\Delta f_{VCO} = 1 \text{ kHz} \)) and measuring the voltage settling time at \(V_L \) for a
roughly 1 percent frequency error. This turned out to be about 30 ms, much less than the 10/fβ calculated (which shows just how rough an estimate of 10/fβ is).

using the Bode plot

Another method used in designing the loop filter, as well as a check and debugging aid, is by using the Bode plot. This is done by plotting the transfer function of \(K_t = K_\phi K_{VCO} K_N \), then plotting the desired transfer function of \(K_{φ} K_F K_{VCO} K_N \). Subtracting the two gives the required transfer function of the loop filter from which the time constants for it can be derived.

In the example loop, \(K_t = 19.9 \) (at \(f_{VCO} = 5.0 \) MHz). A plot of \(K_t \) would have a 6 dB/octave slope crossing zero at a frequency of:

\[
f = K_t/2\pi = 19.9/2\pi = 3.2 \text{ Hz}
\]

The desired open-loop response, \(K_φ K_F K_{VCO} K_N \) (fig. 14) crosses the desired bandwidth \(f_β = 100 \) Hz with a 6 dB/octave slope at unity gain, then intersects and assumes the 12 dB/octave slope of a line that crosses unity gain at:

\[
f_n = \frac{f_β}{\sqrt{2(\xi^2 + 1) + \sqrt{(2\xi^2 + 1)^2 + 1}}} = 39.4 \text{ Hz}
\]

where the desired value of damping is one.

Subtracting \(K_t \) from \(K_φ K_F K_{VCO} K_N \) (the desired total open-loop response) gives \(K_F \) as shown in fig. 14. The 6 dB/octave slope of \(K_F \) levels off at \(f_2 \) at \(A = 30 \) dB. The resistor ratios for the loop filter (fig. 8) are:

\[
\frac{R2}{R1} = Y = 10^{A/20} = 10^{30/20} = 31.62
\]

The time constants are:

\[
t_2 = 1/(2\pi f_2) = 1/(2\pi 15.5 \text{ Hz}) = 10.27 \text{ ms}
\]

\[
t_1 = t_2/Y = 10.27 \text{ ms}/31.67 = 324.2 \mu\text{s}
\]

As expected, these are very close to the earlier designed values.

This plot could further include all poles and zeros in the loop to spot potential problems (i.e., too much phase shift where it may cause loop instability).

conclusion

This synthesizer should work fairly well as an LO for a receiver or transmitter if a 1 kHz step is small enough. For a synthesizer requiring smaller frequency steps a different configuration may be used, in-loop mixing with a VXO being a good choice.

It is important to realize that this synthesizer wanted a fast lock time with low reference feedthrough, and paid a rather high price — i.e., inclusion of the linearizer — for it. If a longer lock time is acceptable (lower \(f_β \) to accommodate variations in loop gain), the linearizer can be left out of the circuit, simplifying the design. However, in the application for which this synthesizer will be used (frequency scanning), a rapid lock time is desirable. It also must be mentioned that as \(f_β \) decreases, the loop will have increasing difficulty in tracking mechanical vibrations, and even its own VCO drift.

references

ham radio
Star Performers!
ICOM's VHF/UHF Pairs for Satellite Communications

Oscar 10—are you ready? Join the future of amateur satellite communications with ICOM VHF and UHF transceivers. Read why ICOM is simply the best for satellite communications.

IC-271A/471A Twins
This new series of VHF/UHF base stations offers a combination of features and flexibility found in no other transceivers anywhere. For receiving MODE A down-link, the IC-371A features a less than 0.5 microvolt for 10dB quieting SSB receiver plus an optional mast mounted GaAs FET preamplifier with 10dB gain.

Thirty-two tunable memories keep the IC-471A ready to go on frequency and to monitor the beacon frequencies. A good noise blanker plus all-mode squelch make listening a real pleasure. 10Hz variable speed selects and 10Hz shift to 10Hz, when needed, and a low-noise PLL that locks to 10Hz makes the frequency resolution of the ICOM twins second to none.

For MODE B use, the IC-471A features a 10W SSB transmitter with variable power control.

The same basic features of the IC-471A apply to the IC-271A and an optional internal preamplifier with front panel switch is available. The IC-271A transmitter features 25W of transmitter power.

The IC-471A and the IC-271A both have options for computer interfacing. The ICOM BUS is brought out through an optional interface to the back of the radio. From this point it may be routed to the ICOM computer interface terminal mounted in a matching box that will convert the ICOM BUS to RS232C standard. Allowing computer control of both transceiver units this capability, plus the antenna-tracking programs available for Oscar 10 will make the IC-271A and 471A twins the ultimate for computer control of your satellite operations.

IC-290H/IC-490A Twins
ICOM's IC-290H and IC-490A mount together as a stackable mountable pair that offers versatility, portability and satellite capability in an incredibly small size. These units are easily tuned from your ham shack bench taken on portable operations or used mobile.

Each features multiple tuning rates, memories, FM/SSB/CW, programmable scan and priority function and an all-mode squelch. The IC-290H has a 25W transmitter the IC-490A 10W. Both of these transceivers are high quality designs by ICOM and offer all the flexibility needed for satellite operations.

ICOM
The World System

ICOM America Inc., 2152-115th Ave NE Bellevue, WA 98004 (206) 454-8185 FAX 454-8185
ICOM America Europe, 10000 Greenway Drive, Suite 307, Dallas, TX 75243 (214) 720-1141

All stated specifications are approximate and subject to change without notice or obligation. All ICOM products significantly exceed FCC requirements for interference.
The Bearcat® DX1000 makes tuning in London as easy as dialing a phone.

Direct access keyboard tuning brings a new level of simplicity to shortwave radio. With the Bearcat® DX 1000, dialing in the BBC in London is as easy as dialing a telephone. And you can switch from the BBC to Peruvian Huayno music from Radio Andina instantly. Without bandswitching.

Featuring the innovative microprocessor digital technology made famous by Bearcat scanner radios, the DX 1000 covers 10 kHz to 30 MHz continuously, with PLL synthesized accuracy. But as easy as it is to tune, it has all the features even the most sophisticated “DXer” could want. 10 memory channels let you store favorite stations for instant recall—or for faster “band-scanning” during key openings. The digital display measures frequencies to 1 kHz, or at the touch of a button, doubles as a two time zone, 24-hour digital quartz clock. A built-in timer wakes you to your favorite shortwave station. Or, it can be programmed to activate peripheral equipment like a tape recorder to record up to ten different broadcasts—any frequency, any mode—while you are asleep or at work.

The DX 1000 also includes independent selectivity selection to help you separate high-powered stations on adjacent frequencies. Plus a noise blanking system that stops Russian pulse radar interference.

There’s never been an easier way to hear what the world has to say. With the Bearcat DX 1000 shortwave radio, you have direct access to the world.

For the name of your nearest retailer dial toll-free ... 1-800-SCANNER.

Frequency Range: 10 kHz to 30 MHz continuously. Tuning: Direct keyboard entry; selectable 3 or 24 kHz per revolution knob tuning, or manual step tuning in selectable 1.99 kHz steps. Sensitivity: 1.0 µV AM, 0.5 µV CW/SSB/FM. 1.6-30 MHz. Image and IF Rejection: 70 dB or more. Memory: 10 frequency capacity. Frequency Stability: Better than 100 Hz after warm-up. MODES: AM/LSB/USB/CW/FM. AGC: Selectable Fast/Slow release times. Filter Bandwidths: 2.7 kHz, 6 kHz and 12 kHz. Filter Selection Independent of Mode.

Bearcat® DX 1000 shortwave radio.

Direct Access To The World.
CRT oscilloscopes just became obsolete! The revolutionary new solid-state digital LED Pocket-O-Scope does it all, in a 4-ounce package you can put in your pocket.

Easy to use. Ideal for the hobbyist or the technician. The Pocket-O-Scope is 100% solid-state, focus and brightness on the 210 point, high-intensity illuminated screen are electronically self-controlled. The trace is always in sharp focus. Zero and sweep positions are maintained automatically. Zero-reference, or cross-over line is always centered for full trace minimum on the screen. Automatic internal circuitry always assures a properly positioned waveform.

The only knobs on the Pocket-O-Scope are for positive and negative sensitivity and for coarse and fine synchronization of the frequency of the incoming signal. The easiest to use, full capability scope available!

The Pocket-O-Scope is the culmination of years of development in high technology, microelectronic components and digital design.

Features: All solid-state, digital design • Hand-held or bench operation • High resolution 210 point, 1.5" square display • Battery or A/C operation with adapter • Factory calibrated - never requires recalibration • Full function, single trace capability plus ½ channel dual trace and signal inverter • Full overload protection to prevent damage to scope • Automatic zero voltage centering • Automatic free run or locked image • Automatic full horizontal sweep circuit • External input/output for add-on capability

Specifications: 5 Megahertz bandwidth • Sensitivity - vertical, 10MV • Accuracy ± 3% on wave forms - sweep linearity ± 5% • Time base − .1 microseconds to .5 seconds

Vertical gain − 0 to 120 volts • Continuous free run to locked image response • Power supply 9VDC - dual polarity

Controls: Single or dual trace • On-off, battery-A/C • Sensitivity; separate pos. & neg. controls • Sync C & Sync F controls

Limited, 90-day warranty

No risk introductory offer. The revolutionary Pocket-O-Scope is a development of Calvert Instruments, Inc., for 25 years a manufacturer of electrical equipment. As an introductory offer for a limited time only, you can buy the Pocket-O-Scope including a carrying case, A/C adapter, 3 standard "grabber" probes and 2 high voltage probes for only $249.95, a $321 value. If you act now, you will also receive FREE Calvert's 200-page Comprehensive Oscilloscope Training Manual, a $15.95 value! Put your Pocket-O-Scope to the test for two weeks. And if you decide, for any reason, that the Pocket-O-Scope is not for you, return it within the 14-day trial period for a prompt refund. The training manual will still be yours to keep.

Mail this coupon today, or call toll-free* while the introductory offer is still in effect.

Calvert Instruments, Inc.
19851 Ingersoll Dr., Cleveland OH 44116 • 216-356-2155

Please send me:
Pocket-O-Scope, including carrying case, A/C adapter, standard and high voltage probes, and FREE training manual. (Batteries not included) all for $249.95 plus $5 for postage and insurance. Ohio residents add 6.5% sales tax.
Pocket-O-Scope only with standard probes: $179.95 plus $5 postage. Ohio Residents add 6.5% sales tax.

My check is enclosed.

Please charge the credit card account checked below. (Fill in all account number digits of the one credit card you wish to use.)

MasterCard

Expiration
Date

Interbank

Name

(MasterCard only)

Full signature

Address

Apt

City

State

ZIP

*CALL TOLL-FREE 800-835-2246 EXT. 118 to order by phone; request further information or to inquire about becoming a distributor.

In Kansas, call 800-362-2421 Ext. 118. Allow 6 - 8 weeks for delivery.
THE SANTEC TRIO

144, 440, and now 220 MHz!

The Santec ST series of handheld transceivers is now complete! With the introduction of the new ST-220/µP which covers 220.000 — 224.995 MHz in 5 kHz steps, Santec brings its unparalleled technology and quality to a third complete band. Now you can get it right on three bands with Santec.

All of the little Santec ST radios are identical in form and features, varying only in power output and individual band characteristics. All share: 10 memories with stored offsets; priority memory scan; 24 hr. format clock; three output power levels; wide band operation; low “quiet time” standby drain; three modes of bandscan; and a full two year extended service plan. Now there are three great handsets which get it right the Santec way!

Distributed by
Encomm, Inc.
2000 Avenue G, Suite 800, Plano, Texas 75074
Phone (214) 423-0624 TX 79-4783 ENCOMM DAL

YOU’LL NEVER GET A BETTER DEAL

HUSTLER ANTENNAS

SF2 - “Buck Buster” 5/8” Wave
2 Meter Antenna w/3/8 x 24”
Threaded Base - 3dB gain
$8.95

CG144 — $23.95
5.2dB gain
Collinear w/3/8 x 24”
Threaded Base

G6144 - 6dB
Base Antenna $68.50
Commercial Grade Base Antenna

G7144 - 7dB

And many other Hustler Antennas & Mounts

BBL144 25 5/8’
BBLT144 25 5/8’
BBLT440 27 5/8’
HLM 13 5/8’

CECO STOCKS THE ENTIRE HUSTLER VHF/UHF & COMMERCIAL LINE DEALER INQUIRIES INVITED

Tell ’em you saw it in HAM RADIO!
Please enter my gift subscriptions to HAM RADIO Magazine as follows:

EACH GIFT JUST $14.50
SAVE OVER 25%

REG. $19.50

First

Name ______________________ Call. __________
Address __________________________
City _______ State _______ Zip _______

☐ new ☐ renewal

Second

Name ______________________ Call. __________
Address __________________________
City _______ State _______ Zip _______

☐ new ☐ renewal

Third

Name ______________________ Call. __________
Address __________________________
City _______ State _______ Zip _______

☐ new ☐ renewal

☐ Start or ☐ Renew my own HR subscription
☐ Enclosed is a check or money order for $_______ for _____ subscriptions (use separate envelope)
☐ VISA ☐ MasterCard ☐ Bill me later
Acct # _______ Expires _______ MC, Bank # _______
My Name ______________________ Call. __________
Address __________________________
City _______ State _______ Zip _______

Prices U.S. only

Prices U.S. only
SUPER GIFT IDEA
GIVE HAM RADIO THIS YEAR!

It's simple and easy and
You save over 25%.

That's right. You save over 25% off the regular one-year rate of $19.50. Just $14.50 brings 12 big, fat, issues, jam-packed with all the latest from state-of-the-art electronics to easy-to-build projects. We will even send an attractive personalized gift card to the recipient(s) so they will know about your interest in their future as hams.

1984 is going to be an exciting year for Amateur Radio. The only way to stay on top of all of the late breaking developments is with a subscription to *ham radio* Magazine.

There has never been a better time than now to "gift" *ham radio* to that hard-to-buy-for friend . . . or yourself.

One year, 12 issues
Reg. $19.50
SPECIAL PRICE $14.50
SAVE OVER 25%

Please send my *ham radio* gift subscriptions as indicated. Also send a handsome gift acknowledgement card. (Gift card will be sent if your order is received before Dec. 16, 1983.)

From:
Name __
Address ___
City __________ State _____ Zip __________

☐ Payment enclosed $ ____________________________
☐ Mastercard ☐ VISA/BAC
Acct.# __________ Exp. ______ Bank# ________

FILL OUT AND MAIL TO:
HAM RADIO MAGAZINE
Greenville, NH 03048
(603) 878-1441

SEND TO:
Name ___
Address ___
City __________ State _____ Zip __________
☐ New Subscription ☐ Subscription Renewal

SEND TO:
Name ___
Address ___
City __________ State _____ Zip __________
☐ New Subscription ☐ Subscription Renewal

SEND TO:
Name ___
Address ___
City __________ State _____ Zip __________
☐ New Subscription ☐ Subscription Renewal

PRICES U.S. Only. CANADA $21.50 per year.
Use Handy Bind-in Card or this Form.
vertical phased arrays: part 4

Feed network design using L-match circuits, \(\pi \) and tee coax-equivalent circuits

Previous articles of this series on vertical phased arrays\(^1\), \(^2\), \(^3\) concentrated on the design of the physical aspects of arrays: element length, radius, spacing and ground planes. The latest article\(^3\) dealt with electrical measurements of the arrays and calculation of driving-point impedances. Knowing the required drive current amplitude and phase for each element of the array pattern selected, and knowing the measured values of self- and mutual impedances, we can calculate the driving-point impedance of these elements. The importance of this cannot be over-emphasized; because of mutual impedance effects between elements, driving-point impedances of elements in an array are not fixed entities. Each element’s driving-point impedance depends upon the amplitude and phase of the drive currents — not just upon its own drive current, but upon the amplitude and phase of the drive current of every element in this array. A change of the current amplitude or phase to any element results in a driving-point impedance change of every element together with a change in all current amplitudes and phases. Examination of the set of simultaneous equations defining these driving-point impedances illustrates this relationship:

\[
Z_n = \frac{E_n}{I_n} = \frac{I_1 Z_{1n}}{I_1} + \frac{I_2 Z_{2n}}{I_2} + \frac{I_3 Z_{3n}}{I_3} + \ldots + \frac{I_n Z_{n}}{I_n}
\]

where \(Z_1, Z_2, \ldots, Z_n \) are element driving-point impedances

\(E_1, E_2, \ldots, E_n \) are element impressed voltages

\(I_1, I_2, \ldots, I_n \) are element drive currents

\(Z_{11}, Z_{22}, \ldots, Z_{nn} \) are element self impedances

\(Z_{12}, Z_{13}, Z_{23}, \ldots, Z_{1n}, Z_{2n}, Z_{3n} \) are mutual impedances between pairs of elements

(All terms can be complex.)

For example, suppose the drive current \(I_2 \) to element 2 changes. Since \(I_2 \) appears in the equation for every element, all driving-point impedances, currents and voltages are affected. The self and mutual impedances do not change, even though it is the mutual impedances that cause this interaction.

An array is a coupled system, automatically adjusting to any change with a new set of currents and phases, which again simultaneously satisfies all the equations. There is an infinite number of such solutions, but only a few result in useful array patterns. A feed network must be designed that when connected to the terminals of each element, applies the proper voltage amplitude and phase, causing the required drive currents to flow. If this condition is met, then all conditions are met. (It may now be clearer why I have been emphasizing the importance of physical and electrical symmetry of the elements.) As the array direction is switched, each port of the feed network continues to "see" the same driving-point impedance it was designed for, even though each port is now feeding a different element. Exact symmetry is probably the most difficult condition to meet in practice because it depends upon more than just simple duplication of physical elements; it also depends on duplication of the environment adjacent to each element: for example, ground planes or other nearby conductors that might act as antennas.

By Forrest Gehrke, K2BT, 75 Crestview Road, Mountain Lakes, New Jersey 07046
feed networks

Just as there are an infinite number of solutions to the set of equations defining the driving-point impedances of an array, there are almost as many ways to design networks fitting the one solution required. Some designs are better than others, resulting in more bandwidth for usable F/B (front-to-back) ratio or low SWR. As a general rule, the simpler (that is, the fewer stages in the network), the better, but there are exceptions.

For superior F/B performance, for all network designs, the designer must know the driving-point impedance of each element. In this respect, vertical phased arrays are more critically affected by element variations than Yagis are by height variations. For multiple-element arrays, cookbook recipe duplication attempts are almost guaranteed to miss optimum current drive conditions by 10 percent. This is enough to reduce the F/B performance by 50 percent or more.

basic design objectives

Some basic design decisions must first be made: what type of circuit elements should be used? Should the design have the objective of a 1:1 SWR match to the array feedline? Feed networks may be devised using coaxial cables as circuit elements. Although simple in construction, there may be technical and cost drawbacks. Series or stub coaxial cable sections, provided one has a wide enough selection of different characteristic impedances and lengths, could be used for a network that matches to the feedline. The cost would be high and bandwidth narrower than the array’s intrinsic F/B capability.

As a special case, for arrays operating with 90-degree current phase multiples and equal current amplitude ratio element pairs, an approach suggested by W7EL makes use of the unique characteristic of a 1/4-wavelength line to produce a constant 90-degree phase displacement between input voltage and output current, independent of the load termination. If two such lines are connected to a common feedpoint, equal current will flow into the loads regardless of their termination impedances. The current phase displacement between the two loads is 0 degrees, but this may be changed to 180 degrees by insertion of a 1/2-wavelength line in series with one of the lines. (The phase displacement of a 1/2-wavelength line also is independent of the load impedance.) A 90-degree current phase displacement, as was pointed out earlier in this series, cannot be obtained by insertion of a 1/4-wavelength line when the termination is reactive. Therefore, instead of inserting an additional 1/4-wavelength line, a lumped-constant phase correction circuit based upon the calculated driving-point impedances is inserted. It provides a drive current phase of 90 degrees and the correct amplitude at the element(s). The input voltage amplitude and phase to the correction circuit must be designed to be the same as that of the common connection point of the array. SWR of the array can be minimized by proper choice of the characteristic impedance of the coaxial cable feeder lines but cannot be designed for a 1:1 condition. This approach, based upon this unique characteristic of 1/4-wavelength lines, which are also the element feedlines, is limited to arrays where this length is able to physically reach the directional switch. If not possible, a further 1/2-wavelength line has to be added to each feedline to maintain the basis of the design concept.

This article provides sufficient information to enable the reader to design a feed network for any conceivable array. There are no restrictions on array spacings, current amplitude ratios or phase displacements. The elements must be alike, but they need not be resonant. Conventional or not, if the array you’ve been able to fit onto your property has a useful pattern, a feed network can be designed to drive it at the needed conditions. Such versatility requires complete design freedom — freedom to use any characteristic impedance, to transform to any input resistance, regardless of reactive load impedances. Coax is an excellent means for transmission of RF energy between physically separated points. If it also fills a role as a specific circuit element, so much the better. But as a circuit element where the physical spacing does not require it, coax is confining; with only two characteristic impedance choices commonly available (there are perhaps two more, but neither is easy to find), one is constantly making compromises and designing around this limitation. Furthermore, ease of circuit adjustment is not notable. On the other hand, π and tee coax-equivalent lumped-constant circuits may be designed for any exact characteristic impedance or any electrical length, whether lagging or leading phase, and are easily adjusted. And surprisingly, low impedance lumped constant circuits of the same levels as coaxial transmission lines display comparable characteristics, even when designed for fairly large single increments of phase displacement. Table 1 compares coaxial cable with a 45-degree π circuit cascaded with a 45-degree tee circuit operated as a 1/4-wavelength transformer. Off-frequency phase variation and development of input reactance compares very favorably with coaxial transmission line.

Rounding out the list of network building blocks are the shunt and series input L-match transforming circuits. Included are the two special cases of this circuit, where the series or shunt branch is absent, which I will call a Parallel and a Series impedance circuit, respectively. Figs. 1A through 1F are schematics of all of these circuits.

October 1983 35
why a 1:1 SWR?

For multi-element arrays the objective of a 1:1 match to the array feedline does not stem from an obsession with SWR. A low SWR provides no significant measure of an array's efficiency or usable F/B bandwidth. Designing for an SWR of 1:1 simplifies network design calculations and electrical tests. However, the real value is the instant array condition conveyed every time an SWR measurement is made. A failing relay in a directional switch or a network malfunction is quickly detected, even if this circuit is to an element requiring very little power. Such a failure may raise the SWR from 1:1 to 1.1:1, for example, while the same failure in an array normally showing 2:1 will not be noticed. At "smoke" test time it removes uncertainty; a 1:1 SWR represents an unambiguous confirmation of the accuracy of array measurements, network design, and construction.

As an illustration of the step-by-step design procedure for an array feed network, I will use the popular 2-element array. The same array will be used to show the error that arises in many 2-element vertical array feed arrangements. From Part 3 of this series, the driving-point impedances of two 1/4-wavelength resonant elements spaced 1/4-wavelength apart with unity current ratio and 90 degree phase displacement, are:

Element 1

\[Z_1 = 21.4 - j15 \]

Element 2

\[Z_2 = 51.4 + j15 \]

\[I_1 = 1 / 90^\circ \]

\[I_2 = 1 / -90^\circ \]

Assuming 50 ohm 1/4-wavelength feedlines, using a Smith Chart or by calculation, the element driving-point impedances rotated to the input ends of the feeders are:

\[Z_1 = 78.3 + j54.91 \]

\[Z_2 = 44.82 - j13.08 \]

At element drive conditions of 1 ampere with a phase displacement of -90 degrees between elements, the voltages and currents that must be applied to the inputs of these feeders in polar form are:

\[I_1 = 0.52 / 55.0^\circ \]

\[I_2 = 1.07 / 16.3^\circ \]

\[E_1 = 50 / 90^\circ \]

\[E_2 = 50 / 0^\circ \]

Notice that the current phase change in the two equal 1/4-wavelength feeders are 55 degrees and 106.3 degrees (90 degrees + 16.3 degrees). Next a 1/4-wavelength 50-ohm delay line is added to the feedline from element 2. Rotating the impedance to the end of the delay line we find these conditions:

\[Z_2 = 51.4 + j15 \]

\[I_2 = 1 / 90^\circ \]

\[E_2 = 53.54 / 106.3^\circ \]

These are the conditions that must exist at the input ends of the feeders from each element for the assumed drive conditions. The current phase delay through the delay line is less than 90 degrees, (90 degrees - 16.3 degrees, or 73.7 degrees, the difference between the input and output angle). Observe that the input voltage amplitudes and phases are not alike at the input ends of the coaxial lines from the two elements. But these two terminals are normally connected together; clearly two different voltages can't coexist here. Since the difference is fairly small, the actual drive conditions that result if connected anyway will be acceptable, though the F/B ratio will diminish. The choice of 1/4-wavelength element feeders just happened to provide this fair agreement. I estimate the actual phase displacement between elements to be about 115 degrees and the current amplitude ratio about 1.15. The 1/4-wavelength delay line didn't produce a 90-degree delay and the delays in the two equal length feeder lines were unequal; these are all quite different results from what is often assumed to occur.

Some writers have assured us we can use any
Computer Program Books for Beginners

Everything you need to know to get started programming your own computer. These handy books of programs, each jam-packed with easy-to-understand info for beginners, are crammed with hundreds of tips, tricks, secrets, hints, shortcuts, techniques, plus hundreds of tested ready-to-run programs. For the TRS-80 Color Computer. For the TRS-80 Pocket Computer and Sharp PC-1211, PC-1500 pocket computers.

Color Computer

101 Color Computer Programming Tips & Tricks, learn-by-doing instructions, hints, secrets, shortcuts, techniques, insights, for TRS-80 Color Computer. 128 pages $7.95
55 Color Computer Programs for Home, School & Office, practical ready-to-run software with colorful graphics for TRS-80 Color Computer. 128 pages $9.95
55 MORE Color Computer Programs for Home, School & Office, sourcebook of useful type-in-and-run software with exciting graphics, for TRS-80 Color Computer. 112 pages $9.95

Pocket Computer

Pocket Computer Programming Made Easy, new fast 'n easy way to learn BASIC, make your computer work for you, for TRS-80, Sharp, Casio pocket computers. 128 pages $8.95
101 Pocket Computer Programming Tips & Tricks, secrets, hints, shortcuts, techniques from a master programmer. 128 pages $7.95
50 Programs in BASIC for Home, School & Office, sourcebook of tested ready-to-type-in-and-run software for TRS-80 and Sharp pocket computers. 96 pages $9.95
50 MORE Programs in BASIC for Home, School & Office, ideal source for lots more useful software for TRS-80 and Sharp pocket computers. 96 pages $9.95

Allow 2-4 weeks for delivery. SHIPPING & HANDLING $2.00

TOTAL

FROM:
Name ___________________ Call ___________________
Address ___________________ State ____ Zip ________
□ Check or Money Order Enclosed
□ VISA □ MasterCard
Acct. # ___________________ MC Bank # ____________

SEND TO: HAM RADIO'S BOOKSTORE
GREENVILLE, NH 03048

GLB PACKET RADIO CONTROLLER

Now you can get in on the fun on packet radio!

- Low cost!
- Adaptable to any transceiver
- Easy to learn, easy to use.
- Nearly 50 commands
- Built-in packet modem and CW identifier
- Use with teletype machines, computers, terminals
- V.23bis serial interface—45 to 9600 baud!
- Uses both ASCII and Baudot
- Vancouver protocol—AX 25 to be released soon
- Optionally write your own protocol on host computer
- Stores received messages until requested at a later time
- Operates in "connected" and "general" modes
- Activates teletype motor to print messages
- No work required. Board accepts up to 14K of RAM
- Model PK1 can be customized for Commercial Systems

Protocol can be changed by swapping ROM chips. Board designed to accept 6264s to 56K of RAM with minor modification

Dimensions: 4.5 x 8.5 inches; 1" vertical clearance
Power requirement: + 12 VDC, approx. 200 ma.
Standard equipment includes 4K of RAM (expandable to 14K)
Model PK1, wired & tested—$149.95 additional memory, installed & tested (up to 12K) $10/2K RTTY adaptor board $9.95
Connecting cables & enclosure—optional $141

We offer a complete line of transmitters and receivers, strips, preselector-preamps, CWID'ers & synthesizers for amateur & commercial use. Request our FREE catalog. MC & Visa welcome. Allow 2 for UPS shipping.

GLB ELECTRONICS
1952 Clinton St., Buffalo, NY 14206
716-824-7936, 9 to 4

HATRY ELECTRONICS

Hi we're Hatry Electronics
length feeders as long as lengths are kept equal. Let's see how we fare following this advice using 3/8-wavelength 50-ohm feeders for the same array:

Element 1

\[
Z_1 = 21.4 - j15 \\
I_1 = 1 / 0^\circ \\
E_1 = 26.13 / -35.03^\circ
\]

Element 2

\[
Z_2 = 51.4 + j15 \\
I_2 = 1 / -90^\circ \\
E_2 = 53.54 / -73.73^\circ
\]

135° Feeder

\[
Z_3 = 63.58 - j53.98 \\
I_3 = 0.58 / 148.56^\circ \\
E_3 = 48.39 / 108.22^\circ
\]

135° Feeder

\[
Z_4 = 37.43 + j2.67 \\
I_4 = 1.17 / 51.66^\circ \\
E_4 = 43.97 / 55.75^\circ
\]

1/4 wavelength delay line

\[
Z_5 = 66.46 - j4.75 \\
I_5 = 0.88 / 145.75^\circ \\
E_5 = 58.60 / 141.66^\circ
\]

Note: all impedances, voltages, and currents are input conditions — that is, looking towards the load.

Using 3/8-wavelength feeders, the input voltages required to be applied to each chain are very different. If these terminals are tied together the drive conditions to the elements will be far from intended. Conclusion: element feeders are an integral part of the feed network for a phased array; their circuit characteristics must be taken into account.

designing for optimum drive

While it is possible to solve for the undesirable drive conditions that would result from making this connection, why bother? It is better to start with the correct design. While doing so, suppose a 1:1 SWR match to a 50-ohm array feedline is included. This would require that the paralleled input impedances of the networks from each element be 50 ohms pure resistance. Assuming lossless conditions, we can go back to the resistive components of the element driving-point impedances for this determination. These are 21.4 and 51.4 ohms, respectively. At 1 ampere to each element the total drive power is the sum of the \(I^2R\) inputs, or 72.8 watts. Using the relationship \(E^2/R = W\), and substituting 50 ohms (the characteristic impedance of the array feed-line) for \(R\):

\[
E^2 = 50(72.8), \text{ or } E = \sqrt{3640} = 60.33 \text{ volts}
\]

Having established the array feedline voltage amplitude for this drive power, we can calculate the required resistive inputs for each element's network. Rearranging, \(R = E^2/W\):

\[
R_1 = 3640/21.4 = 170.09 \text{ ohms for network, No. 1 input} \\
R_2 = 3640/51.4 = 70.82 \text{ ohms for network, No. 2 input}
\]

As a check on calculations it is useful to do the parallel conductance calculation:

\[
1/R_1 + 1/R_2 + \cdots + 1/R_n = 1/Z_0 \quad (2)
\]

Starting again at the end of the 3/8-wavelength feeder to element 1, one possibility is an L-match network, transforming directly to 170.09 ohms pure resistance. L-match circuit component calculations involve a square root extraction, guaranteeing at least two solutions. (Under certain circumstances, there may be four solutions.) While all solutions produce the intended transformation, they do so with differing phase displacements, with at least one of those displacements being a leading phase. Remembering that element 2 is starting 90 degrees behind the first, fewer stages in the network usually result if a leading phase L-match is chosen for element 1.

Shown in **table 2**, beginning with the driving-point impedances and working forward to the common

fig. 2. Matching network for a 2-element array using 3/8 λ coaxial feeders at a 3.8 MHz design frequency.
connection of the array, are the input parameters of each circuit. Fig. 2 shows the schematic and component values at the design frequency of 3.8 MHz.

At the inputs of each network chain, E_1 and E_2 are equal in amplitude and phase; the two inputs may be connected together without disturbing drive conditions. Their paralleled resistive inputs represent a 50-ohm resistive load, as designed. The π coaxial-equivalent network was added to the element 2 chain only to show how this type of network circuit is used to match the voltage phase at the common connection of the array network. In this example the agreement that happened to be achieved at the input to the 2 element shunt L-match is sufficient; the π network can be omitted.

4-terminal networks. The design procedure for producing exact matching at the required array conditions has been demonstrated. Before proceeding with other examples, the design equations for these circuits are presented. All network circuit components are reactances and assumed to be lossless. Subscript a denotes the series load termination components, $R_a + jX_a$, instead of the more commonly used $R_L + jX_L$, to avoid any confusion with jX_L, as an inductive reactance.

L-match circuit. This circuit can take two forms (see fig. 1A and 1B), termed **Shunt Input and Series Input** L-matches. Though this circuit consists of only two components, its analysis is relatively complex. The calculations for either form include a square root extraction, resulting in two possible sets of component values at the design frequency of 3.8 MHz. Their paralleled resistive inputs represent a 50-ohm resistive load, as designed. The π coaxial-equivalent network was added to the element 2 chain only to show how this type of network circuit is used to match the voltage phase at the common connection of the array network. In this example the agreement that happened to be achieved at the input to the 2 element shunt L-match is sufficient; the π network can be omitted.

Shunt input L-match. The series arm component X_2, must be calculated first, since its value is used in the calculation for the second component:

$$X_2 = -X_a \pm \sqrt{R_a (R_{in} - R_a)} \text{ ohms} \quad (3)$$

$$X_1 = -\left[R_a^2 + (X_2 + X_a)^2\right] X_2 + X_a \text{ ohms} \quad (4)$$

where R_a and X_a are the series equivalents of the load termination and R_{in} is the desired input (pure) resistance.

Close attention must be paid to signs. A positive result indicates an inductance, while a negative sign is a capacitance.

Series input L-match. X_2 must be calculated first. Note that X_2 is the shunt arm of this circuit, however.

$$X_2 = \frac{-R_{in}X_a \pm \sqrt{R_{in}R_a (R_a^2 + X_a^2 - R_{in} R_a)}}{R_{in} - R_a} \text{ ohms} \quad (5)$$

$$X_1 = \frac{-X_2 [R_a^2 + X_a (X_2 + X_a)]}{R_a^2 + (X_2 + X_a)^2} \text{ ohms} \quad (6)$$

Which form should be used? Usually, the shunt input L-match is the only form possible if R_{in} is equal to or greater than R_a. Besides, the arithmetic is easier! The series input L-match is used when R_{in} is less than R_a. There is a set of circumstances, however, in which the series form can be used even if R_{in} is greater than R_a. Inspection of the equation for the series form calculation of X_2 will show this case when R_{in} is greater than R_a and when $(R_a^2 + X_a^2 - R_{in} R_a)$ is equal to or greater than zero. Four solutions, two series and two shunt L-matches, then result. These additional options, if available, are often useful, allowing a smaller phase displacement or more (physically) realizable set of components as a result.

π coaxial-equivalent circuit (fig. 1C). The π circuit and the shunt input L-match will be found to be the most frequently used circuits for vertical phased array feed networks. The type used here is set up as a reversible network — that is, the input and output can be interchanged without affecting operation, just as with coaxial cable. Reactances X_1 and X_3 are always equal and if capacitive, then X_2 is inductive. At the design frequency this particular configuration shows the same properties as coax. As the frequency is varied, the phase displacement starts differing from that obtained with coax, the difference being larger the greater the equivalent “length” of the circuit. If, instead, multiple sections, each an equal increment of the total phase displacement, are cascaded, the combined network approaches coaxial cable characteristics. This should be expected since the equivalent circuit of coax is a series of infinitesimally small π sections. The design equations are relatively simple:

$$X_2 = Z_0 \sin \theta \text{ ohms} \quad (7)$$

$$X_1 = X_3 = -\frac{Z_0 \sin \theta}{1 - \cos \theta} \text{ ohms} \quad (8)$$

where Z_0 is the required characteristic impedance $	heta$ is the electrical length in degrees.

A positive sign indicates an inductance while a negative sign indicates capacitance. If a leading phase, say 30 degrees, is desired, this would be equivalent to 330 degrees in electrical...
length if coaxial cable were used. Substituting 330 degrees in these equations causes \(X_2 \) to be negative and \(X_1 \) and \(X_3 \) to be positive; the appropriate capacitance and inductances can then be calculated from the relations:

\[
C = \frac{1}{\omega X} \quad \text{and} \quad L = \frac{X}{\omega}
\]

where \(\omega = 2\pi f \), \(f = \text{frequency in Hz} \)

Half-wave section (180 degree electrical length) \(\pi \) circuits are taboo, since the calculated circuit values are physically unrealizable. At the least, two separate 90-degree sections are suggested to achieve this "electrical length."

Tee coaxial-equivalent circuit (fig. 1D). This circuit is used in the same applications as the \(\pi \) circuit. Alternated with \(\pi \) networks in equal increments of electrical length, network characteristics can be made to equal or exceed coax (assuming coax of the same characteristic impedance is available for comparison). For applications requiring a leading phase displacement only one inductance (for the shunt arm) is necessary, sometimes simplifying construction. The design equations are:

\[
X_2 = -\frac{Z_0}{\sin \theta} \text{ ohms} \quad (10)
\]

\[
X_1 = X_3 = \frac{Z_0 (1 - \cos \theta)}{\sin \theta} \text{ ohms} \quad (11)
\]

where \(Z_0 = \text{required characteristic impedance} \)

\(\theta = \text{electrical length required in degrees} \)

As with the \(\pi \) network, a positive sign indicates inductive reactance and a negative sign, capacitive reactance. Also, 180 degree sections cannot be physically realized and require at least a 2-section cascaded network to achieve that displacement.

Series impedance circuit (fig. 1E). This circuit is used when \(R_{in} \) is equal to \(R_a \) and the load has a reactance \(X_a \). The series matching impedance is simply the reactance of the opposite sign.

\[
X = -X_a \text{ ohms} \quad (12)
\]

Parallel impedance circuits (fig. 1F).

\[
X = - \left(X_a + \frac{R_a^2}{X_a} \right) \text{ ohms} \quad (13)
\]

The parallel matching reactance has the opposite sign of the parallel equivalent reactance of the load. The series and parallel circuits can be thought of as a shunt input L-match — with one of its circuit branches either equal to infinity or zero impedance, respectively. These conditions occur when \(R_{in} = R_a \) or

\[
X_a = \sqrt{R_a (R_{in} - R_a)}
\]

Either circuit should be considered, particularly when the load has a relatively large reactance compared to its resistive component. The circuit is simple, and cascaded with a following L-match circuit, results in a broader bandwidth network.

design limitation and other considerations

Some design hints may be helpful to understanding the use of these circuits:

1. The L-match circuits first require selection of the input resistance wanted, transforming from any output impedance. Phase displacement, however, cannot be pre-defined, though the direction, lead or lag, may be chosen.

2. Single L-match impedance transformation ratios exceeding 5-to-1 should be avoided. Above that ratio, expect to see increased frequency sensitivity and resultant reduction in bandwidth. For high ratios, consider transforming in step increments of resistance using several L-matches or combinations of L-match and \(\pi \) or tee circuits (the latter as 1/4-wavelength transformers).

3. In this particular application, \(\pi \) and tee circuits are always designed for pure resistance terminations. These circuits are designed to act as a 1/4-wavelength transformer, or as a specific coaxial-equivalent length, leading or lagging, of transmission line. Choose any characteristic impedance, but keep in mind that large (more than \(\pm 90 \) degree) increments of angular displacement, especially at high impedances, reduce bandwidth.

4. Cascaded circuits may each have a capacitor at their common connection points, which are then in parallel. For example, see fig. 3 showing a 567 pF and 392 pF capacitor at a common connection point. The two values may be added and a single capacitor placed at that junction. However, until the network has been tested, it is useful to keep the circuits independent for separate adjustment.

designing networks for multi-element arrays

Armed with the design equations for simple 4-terminal networks, we can now examine feed networks for arrays consisting of several elements. If the array is one requiring a phase angle multiple, for example, 0, 90, and 180 degrees, or 0, 100 and 200 degrees, and all feedlines are equal in length, the simplest network may result if the middle element is treated as if it were the reference element of the array. The respective networks for the array end elements are designed to lead and to lag the middle element. Then neither has to be designed to span a large angular displacement, and fewer stages result.
And you can see it—in color—again and again when you own the N2NY Ham MasterTapes.

The N2NY Ham MasterTapes give you a basic grasp of concepts that build theory background—not only for passing the FCC tests, but for understanding electronics.

The hobby has long needed better, clearer, high-tech teaching aids to help newcomers into our wonderful world of Ham Radio.

These six-hour tapes cover completely all the material needed to understand Novice and Tech/General Theory and operations, and include the new 200-question FCC syllabus used beginning September 1983.

Only $199.95. Order direct and specify Beta or VHS format. Call or write: Larry Horne, N2NY or Virginia Hamilton, N2EGJ at Ham MasterTapes
295 Park Avenue South
New York, N.Y. 10010 212-673-0680.

More Details? CHECK—OFF Page 111
3-element in-line array. This array has a particularly deep F/B ratio extending over a wide azimuthal sector. We should be especially interested in taking advantage of this capability. Since the middle element has the same drive-point impedance regardless of array direction, there is no need to make its feeder equal in length to other feeders. Assuming the directional switch is located five feet from the middle element, equal length end element feeders are brought to the center area. At 3.8 MHz, using 0.66 velocity factor coax, these are 66 feet (139.1 degrees) and for the center element, 5 feet (10.5 degrees) with a Z_0 of 50 ohms. Assuming an array of 3 resonant 1/4-wavelength elements, spaced a quarter-wavelength apart, with current amplitude ratios of 1,2,1 and phase relationships of 0, -90, and -180 degrees, respectively, the driving point impedances are $Z_1 = 15.4 - j17$, $Z_2 = 36.2 + j0$ and $Z_3 = 75.4 + j43$. (Part 3 showed these values incorrectly). As was done with the 2-element array example, the feed network is matched to the 50-ohm array feedline. The sum of the I^2R input power terms, assuming 1 ampere to the first and third elements and 2 amperes to the middle element, is 235.6 watts. Using the $E^2/R = W$ relationship, this establishes an amplitude of 108.54 volts at the array feedline connection. At that point the input impedances for each element’s network are the pure resistances:

$$Z_1 = 764.94 + j0$$

$$Z_2 = 81.25 + j0$$

$$Z_3 = 156.23 + j0$$

The sequence of input parameters at each junction of the networks is shown in Table 3.

The resulting network is shown in Fig. 3. Illustrated in this example is the application of the parallel circuit and the use of leading and lagging phase L-match circuits. Here, element 1 is used as the reference element of the feed network. A parallel impedance circuit is used to transform the impedance seen at the input end of the feeder to a pure resistance. This is then transformed to the pure resistance required for the chain with a shunt input L-match chosen to produce a leading phase change. The resulting input voltage then becomes the objective for the other two network chains.

Triangular array. The triangular array feed network demonstrates still another technique for simplifying a feed network. Since elements 2 and 3 operate at identical conditions, the inputs of their transmission line feeders may be paralleled and fed from a common network. Fig. 4 shows the two feeders connected to a shunt input L-match, and being transformed directly to a resistive input. This is then cascaded with a tee circuit having a sufficiently leading phase displacement to equal the voltage amplitude and phase of the element 1 network. The array termination is designed to match a 50-ohm transmission line. Part 3 incorrectly showed the driving-point impedance of element 1. The correct impedance is $Z_1 = 20.4 - j10$. Table 4 shows the sequence of input parameters at each network junction.

4-square array. The 4-square array obviously requires a more complicated drive network. The look-
alike middle elements present the opportunity to connect their feedlines in parallel, simplifying the design somewhat. The 4-square element driving-point impedances are highly reactive, making any drive network more frequency dependent. There is the further question of the directions the driving-point impedances take as frequency is changed from design center. The relatively small amount of measurements I have taken to examine this question indicate a not unexpected similarity to Yagis. Array performance falls apart more rapidly on the low-frequency side of design center than on the high side. Whether a drive...
table 1. Comparison of impedance, voltage and current phase, and SWR variations with frequency, of 90 degree length of coax and a cascaded 45 degree \pi circuit and 45 degree tee circuit, both acting as a 50-ohm characteristic impedance 1/4-wavelength transformer. Load termination is 75 ohms pure resistance; the center design frequency is 3.75 MHz.

<table>
<thead>
<tr>
<th>frequency MHz</th>
<th>coax</th>
<th>\pi and tee</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z_{in}</td>
<td>33.46 + j2.33</td>
<td>33.45 + j1.96</td>
</tr>
<tr>
<td>I_{o}/I_{i}</td>
<td>0.67 / -86.8°</td>
<td>0.67 / -86.33°</td>
</tr>
<tr>
<td>E_{o}/E_{i}</td>
<td>1.49 / -82.82°</td>
<td>1.50 / -83.15°</td>
</tr>
<tr>
<td>SWR</td>
<td>1.5</td>
<td>1.498</td>
</tr>
</tbody>
</table>

3.65		
Z_{n}	33.37 + j1.16	33.36 + j0.91
I_{o}/I_{i}	0.67 / -90°	0.67 / -90°
E_{o}/E_{i}	1.5 / -90°	1.5 / -90°
SWR	1.5	1.5

3.75		
Z_{n}	33.33 + j0	33.33 + j0
I_{o}/I_{i}	0.67 / -90°	0.67 / -90°
E_{o}/E_{i}	1.5 / -90°	1.5 / -90°
SWR	1.5	1.5

3.85		
Z_{n}	33.37 + j1.16	33.36 + j0.88
I_{o}/I_{i}	0.67 / -91.6°	0.67 / -91.88°
E_{o}/E_{i}	1.5 / -93.6°	1.5 / -93.39°
SWR	1.5	1.5

3.95		
Z_{n}	33.46 + j2.33	33.45 + j1.72
I_{o}/I_{i}	0.67 / -93.2°	0.67 / -93.79°
E_{o}/E_{i}	1.49 / -97.18°	1.5 / -96.74°
SWR	1.5	1.498

Note: I_{o}, E_{o} equal input current and voltage, respectively. I_{i}, E_{i} equal output current and voltage, respectively.

network can be designed to reduce this tendency is a question. Perhaps the best alternative is to set the design center frequency on the low end of the intended operating range, recognizing that the optimum F/B bandwidth is a narrow frequency band of about 2 to 3 percent.

Using the driving-point impedances from Part 3 for a 4-square consisting of 1/4-wavelength resonant elements, spaced a quarter-wavelength apart, and phased 0, -90, -90, -180 degrees with current amplitude ratios 1,1,1,1, respectively, input parameter sequences of a suggested drive network are

<table>
<thead>
<tr>
<th>element 1</th>
<th></th>
<th>element 2</th>
<th></th>
<th>element 3</th>
<th></th>
<th>element 4</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Z_{1}</td>
<td>3.4 - j12</td>
<td>Z_{2}</td>
<td>39.4 - j17.5</td>
<td>Z_{3}</td>
<td>39.4 - j17.5</td>
<td>Z_{4}</td>
<td>63.4 + j47.5</td>
</tr>
<tr>
<td>I_{1}</td>
<td>1 / 0°</td>
<td>I_{2}</td>
<td>1 / -90°</td>
<td>I_{3}</td>
<td>1 / -90°</td>
<td>I_{4}</td>
<td>1 / -180°</td>
</tr>
<tr>
<td>E_{1}</td>
<td>12.47 / -74.18°</td>
<td>E_{2}</td>
<td>43.11 / -113.95°</td>
<td>E_{3}</td>
<td>43.11 / -113.95°</td>
<td>E_{4}</td>
<td>79.22 / -143.16°</td>
</tr>
</tbody>
</table>

100° coax
Z_{1}	403.97 + j387.1	Z_{2}	62.39 + j22.57	Z_{3}	62.39 + j22.57	Z_{4}	22.73 - j11.37
I_{1}	0.09 / 46.98°	I_{2}	0.79 / -12.43°	I_{3}	0.79 / -12.43°	I_{4}	1.67 / -74.97°
E_{1}	51.33 / 90.66°	E_{2}	52.73 / -74.86°	E_{3}	52.73 / -74.86°	E_{4}	42.44 / -74.97°

100° coax

<table>
<thead>
<tr>
<th>element 2 83 paralleled</th>
<th>element 3 83 paralleled</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-match</td>
<td>L-match</td>
</tr>
<tr>
<td>Z_{2}, Z_{3}</td>
<td>Z_{2}, Z_{3}</td>
</tr>
<tr>
<td>92.39 + j0</td>
<td>92.39 + j0</td>
</tr>
<tr>
<td>I_{2}, I_{3}</td>
<td>I_{2}, I_{3}</td>
</tr>
<tr>
<td>0.92 / 42.04°</td>
<td>0.92 / 42.04°</td>
</tr>
<tr>
<td>E_{2}, E_{3}</td>
<td>E_{2}, E_{3}</td>
</tr>
<tr>
<td>85.32 / 42.04°</td>
<td>85.32 / 42.04°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\pi circuit</th>
<th>\pi circuit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z_{2}, Z_{3}</td>
<td>Z_{2}, Z_{3}</td>
</tr>
<tr>
<td>114.83 + j0</td>
<td>114.83 + j0</td>
</tr>
<tr>
<td>I_{4}</td>
<td>I_{4}</td>
</tr>
<tr>
<td>0.74 / 42.04°</td>
<td>0.74 / 42.04°</td>
</tr>
<tr>
<td>E_{4}</td>
<td>E_{4}</td>
</tr>
<tr>
<td>85.32 / 42.04°</td>
<td>85.32 / 42.04°</td>
</tr>
</tbody>
</table>
the solution of problems doesn’t necessarily depend upon a complete understanding of the underlying theory. It is a tool simplifying what is otherwise a tedious process. The calculation procedures are struc-
given in table 5 with the schematics shown in fig. 5.

Reaching the center area of a 4-Square array whose elements are spaced 1/4 wavelength with 1/4 wavelength feeders is a problem. Coax with a velocity factor greater than 0.71 is required. Unfortunately, most foam dielectric cables have velocity factors around 0.71, allowing little or no slack for placement of and connections to a directional switch and the feed network. Since a lumped-constant network imposes no restriction on element feeder lengths, I have chosen 100°0 for these feeders (at 3.8 MHz, 47.45 feet), which is more than sufficient.

The input ends of the feeders to the two middle elements are paralleled and a shunt input L-match is used to transform this combined load directly to the desired pure resistance at the common connection to the array. The input voltage for this chain is the voltage phase required at the common connection of other elements to their required pure resistances (equalling 50 ohms when all networks are paralleled), coax-equivalent π circuits are used to match the voltage phase required at the common connection of the array.

coming soon

In a forthcoming article in this series I shall cover in detail a method of calculating simple 4-terminal networks based on matrix algebra. As with many mathematical procedures, application of the procedures to the solution of problems doesn’t necessarily depend upon a complete understanding of the underlying theory. It is a tool simplifying what is otherwise a tedious process. The calculation procedures are struc-

Table 2. Network input parameters for a 2-element array.

<table>
<thead>
<tr>
<th>Element 1</th>
<th>Element 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z₁ = 21.4 - j16</td>
<td>Z₂ = 51.4 + j15</td>
</tr>
<tr>
<td>I₁ = 1 / 90°0</td>
<td>I₂ = 1 / -90°0</td>
</tr>
<tr>
<td>E₁ = 26.13 1 / -35.03°</td>
<td>E₂ = 53.54 1 / -73.73°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element 1</th>
<th>Element 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z₁ = 63.58 - j53.98</td>
<td>Z₂ = 37.43 + j2.67</td>
</tr>
<tr>
<td>I₁ = 0.68 1 / 186.66°</td>
<td>I₂ = 1.77 1 / 61.66°</td>
</tr>
<tr>
<td>E₁ = 48.39 1 / 105.22°</td>
<td>E₂ = 43.97 1 / 56.75°</td>
</tr>
</tbody>
</table>

Table 3. Network input parameters for a 3-element in-line array.

<table>
<thead>
<tr>
<th>Element 1</th>
<th>Element 2</th>
<th>Element 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z₁ = 15.4 - j17</td>
<td>Z₂ = 36.2 + j0</td>
<td>Z₃ = 75.4 + j43</td>
</tr>
<tr>
<td>I₁ = 1 / 0°0</td>
<td>I₂ = 2 / 90°0</td>
<td>I₃ = 1 / -180°0</td>
</tr>
<tr>
<td>E₁ = 22.94 1 / -47.83°</td>
<td>E₂ = 72.4 / -90°0</td>
<td>E₃ = 86.80 / -150°3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element 1</th>
<th>Element 2</th>
<th>Element 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z₁ = 47.42 - j67.6</td>
<td>Z₂ = 36.71 + j4.35</td>
<td>Z₃ = 27.77 + j20.68</td>
</tr>
<tr>
<td>I₁ = 0.57 / 159.27°</td>
<td>I₂ = 1.98 / 382.33°</td>
<td>I₃ = 1.65 / 36.83°</td>
</tr>
<tr>
<td>E₁ = 47.06 / 104.32°</td>
<td>E₂ = 73.49 / 75.59°</td>
<td>E₃ = 56.98 / 90°0</td>
</tr>
</tbody>
</table>

Table 4. Network input parameters for a triangular array.

<table>
<thead>
<tr>
<th>Element 1</th>
<th>Element 2</th>
<th>Element 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z₁ = 76.94 + j0</td>
<td>Z₂ = 81.35 + j0</td>
<td>Z₃ = 156.23 + j0</td>
</tr>
<tr>
<td>I₁ = 0.14 / 40.01°</td>
<td>I₂ = 1.33 / 34.59°</td>
<td>I₃ = 0.69 / 28.24°</td>
</tr>
<tr>
<td>E₁ = 108.54 / 40.01°</td>
<td>E₂ = 108.54 / 34.59°</td>
<td>E₃ = 108.54 / 28.24°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element 1</th>
<th>Element 2 & 3 paralleled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z₁ = 146.08 - j0</td>
<td>Z₂, Z₃ = 76.02 + j0</td>
</tr>
<tr>
<td>I₁ = 0.37 / 29.22°</td>
<td>I₂, I₃ = 0.72 / 65.70°</td>
</tr>
<tr>
<td>E₁ = 54.59 / 29.22°</td>
<td>E₂, E₃ = 54.59 / 65.70°</td>
</tr>
</tbody>
</table>

Table 5. Network input parameters for a 4-element in-line array.

<table>
<thead>
<tr>
<th>Element 1</th>
<th>Element 2</th>
<th>Element 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z₁ = 104.32°</td>
<td>Z₂ = 108.54</td>
<td>Z₃ = 104.32°</td>
</tr>
<tr>
<td>I₁ = 0.14 / 40.01°</td>
<td>I₂ = 1.33 / 34.59°</td>
<td>I₃ = 0.69 / 28.24°</td>
</tr>
<tr>
<td>E₁ = 108.54 / 40.01°</td>
<td>E₂ = 108.54 / 34.59°</td>
<td>E₃ = 108.54 / 28.24°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Element 1</th>
<th>Element 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z₁ = 81.35 - j0</td>
<td>Z₂ = 139.1°</td>
</tr>
<tr>
<td>I₁ = 1.33 / 34.59°</td>
<td>I₂ = 54.59 / 65.70°</td>
</tr>
<tr>
<td>E₁ = 108.54 / 40.01°</td>
<td>E₂ = 108.54 / 34.59°</td>
</tr>
</tbody>
</table>

Table 6. Network input parameters for a 5-element in-line array.

<table>
<thead>
<tr>
<th>Element 1</th>
<th>Element 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z₁ = 1159.27°</td>
<td>Z₂ = 139.1°</td>
</tr>
<tr>
<td>I₁ = 0.69 / 28.24°</td>
<td>I₂ = 56.98 / 90°0</td>
</tr>
<tr>
<td>E₁ = 108.54 / 40.01°</td>
<td>E₂ = 108.54 / 34.59°</td>
</tr>
</tbody>
</table>

reference

5. See “Short Circuits,” ham radio, October, 1983.
AMT-1
The Definitive
AMTOR Terminal Unit

AMTOR is the system of error correcting RTTY which has been rapidly overtaking conventional RTTY in Europe, just as its marine equivalent, SITOR, has been taking over in ship to shore communications.

It was originated by Peter Martinez, G3PLX (see June 1981 QST, p. 25). He first interpreted the international marine CCIR 476-1 specification for amateur use. Virtually all of the 400+ stations presently on AMTOR world wide are using software/hardware designs originated by Peter. The AMT-1 is a proven product which represents his latest and most highly refined design. It represents the culmination of over three years of development and on the air testing, and sets the standard against which all future AMTOR implementations will be judged.

Not only does it incorporate the latest AMTOR specification, but it gives superlative performance on normal RTTY, ASCII and CW (transmit only). As well as some fairly incredible real time microprocessor software, the AMT-1 boasts a four pole active receive filter, a discriminator type demodulator, a crystal controlled transmit tone generator, and a 16 LED frequency analyzer type tuning indicator, which is very easy to use.

Driven from a 12 volt supply, the AMT-1 connects to the speaker, microphone and PTT lines of an HF transceiver and to the RS-232 serial interface of a personal computer or ASCII terminal. All mode control is via ESCAPE and CONTROL codes from the keyboard (or computer program).

It used to be that C.W. was the ultimate mode for "getting through" when QRM and fading were at their worst. That's no longer true — AMTOR will get through with perfect error-free copy when all other conventional transmission modes become useless.

Order Toll Free: 1-800-558-0411
AMATEUR ELECTRONIC SUPPLY
4828 W. Fond du Lac Avenue; Milwaukee, WI 53216 - Phone (414) 442-4200

In Wisconsin (outside Milwaukee Metro Area)
1-800-242-5195
The AEA Model CP-1 Computer Patch™ interface will let you discover the fastest growing segment of Amateur Radio: computerized RTTY and CW operation.

When used with the appropriate software package (see your dealer), the CP-1 will patch most of the popular personal computers to your transceiver for a complete full-feature RTTY/CW station. No computer programming skills are necessary. The CP-1 was designed with the RTTY neophyte in mind, but its sophisticated circuitry and features will appeal to the most experienced RTTY operator.

The CP-1 offers variable shift capability in addition to fixed 170 Hz dual channel filtering. Auto threshold plus pre and post limiter filters allow for good copy under fading and weak signal conditions.

Transmitter AFSK tones are generated by a clean, stable function generator. Plus (+) and minus (-) output jacks are also provided for CW keying of your transmitter. An optional low cost RS-232 port is also available. The CP-1 is powered with 16 VAC which is supplied by a 117 VAC wall adaptor included with the CP-1.
State of the Art

by K.V.G.

- **9 MHz CRYSTAL FILTERS**
 - **MODEL**
 - **APPLICATION**
 - **BANDWIDTH**
 - **POLES**
 - **PRICE**
 - **XF-9A**
 - SSB
 - 2.4 kHz
 - 5
 - $53.15
 - **XF-9B**
 - SSB
 - 2.4 kHz
 - 6
 - 72.05
 - **XF-9F-01**
 - LSB
 - 2.4 kHz
 - 8
 - 90.90
 - **XF-9F-02**
 - USB
 - 2.4 kHz
 - 8
 - 90.90
 - **XF-9D-10**
 - SSB
 - 2.4 kHz
 - 10
 - 123.65
 - **XF-9C**
 - AM
 - 3.75 kHz
 - 8
 - 77.40
 - **XF-9D**
 - AM
 - 5.0 kHz
 - 8
 - 77.40
 - **XF-9E**
 - FM
 - 12.0 kHz
 - 8
 - 77.40
 - **XF-9M**
 - CW
 - 500 kHz
 - 4
 - 54.10
 - **XF-9NB**
 - CW
 - 500 kHz
 - 8
 - 95.90
 - **XF-9P**
 - CW
 - 250 kHz
 - 8
 - 131.20
 - **XF-910**
 - IF noise
 - 15 kHz
 - 2
 - 17.15

- **10.7 MHz CRYSTAL FILTERS**
 - **MODEL**
 - **APPLICATION**
 - **BANDWIDTH**
 - **POLES**
 - **PRICE**
 - **XF-107-A**
 - NBFM
 - 12 kHz
 - 8
 - $57.30
 - **XF-107-B**
 - NBFM
 - 15 kHz
 - 8
 - 67.30
 - **XF-107-C**
 - WBFM
 - 30 kHz
 - 6
 - 67.30
 - **XF-107-D**
 - WBFM
 - 36 kHz
 - 8
 - 67.30
 - **XF-107-E**
 - PixE Data
 - 40 kHz
 - 8
 - 67.30
 - **XM107-S04**
 - FM
 - 14 kHz
 - 4
 - 30.15

Export Inquiries Invited. Shipping: $3.50

MICROWAVE MODULES VHF & UHF EQUIPMENTS

Use your existing HF or 2M rig on other VHF or UHF bands.

LOW NOISE RECEIVE CONVERTERS

- **1691 MHz**
 - MM1691-137
 - $224.95
- **1296 MHz**
 - MM1296-144
 - 119.95
- **432 MHz**
 - MM432-28(S)
 - 84.95
- **220 MHz**
 - MM220-28
 - 89.95
- **144 MHz**
 - MM144-28(S)
 - 54.95

Options: Low NF (2.0 dB max., 1.25 dB max.), other bands & IF's available.

LINEAR TRANSVERTERS

- **1296 MHz**
 - 1.3 W output, 2M in
 - MM1296-144
 - $339.95
- **432 MHz**
 - 10 W output, 10M in
 - MM432-28(S)
 - 299.95
- **144 MHz**
 - 10 W output, 10M in
 - MM144-28
 - 179.95

Other bands & IF's available.

LINEAR POWER AMPLIFIERS

- **1296 MHz**
 - 10 W output
 - MML1296-10-L
 - $ ask
- **432 MHz**
 - 100 W output
 - MML432-100
 - 399.95
- **1296 MHz**
 - 30 W output
 - MML432-50-S
 - 214.95
- **144 MHz**
 - 100 W output
 - MML144-100-LS
 - 254.95
- **144 MHz**
 - 50 W output
 - MML144-50-S
 - 214.95
- **25 W output
 - MML144-25
 - 99.95

All models include VOX T/P switching.

Shipping: FOB Concord, Mass.

ANTENNAS

- **420-450 MHz MULTIBEAMS**
 - 48 Element
 - 70/5M45 15.7 dBi
 - $75.75
- 86 Element
 - 70/5M8818.5dBi
 - 105.50
- **144-148 MHz J-SLOTS**
 - 8-over-8, Yagi type, port.
 - DB2M
 - 12.3 dBi
 - $63.40
- 8 Yagi Vert.
 - DB2M
 - 12.3 dBi
 - 76.95
- 8 - 8 Twist
 - DB2M
 - 9.5 dBi
 - ask

UHF LOOP YAGIS

- 1250-1350 MHz 29 loops
 - 1296LY 20 dB
 - $44.95
- 1650-1750 MHz 30 loops
 - 1691-1Y 20 dB
 - 55.95

Order Loop-Yagi connector extra:

Type N $14.95, SMA $5.95

Send 40c (2 stamps) for full details of all your VHF & UHF equipment and KVE crystal product requirements.

(617) 263-2145
SPECTRUM INTERNATIONAL, INC.
Post Office Box 1084
Concord, MA 01742, U.S.A.

KR 500 ELEVATION ROTOR

THE WORLD STANDARD

AVAILABLE ONLY THROUGH FULL-TIME AMATEUR DEALERS

DISTRIBUTED BY SPECTRUM WEST

5717 N E, 56th St.
Seattle, Washington 98105
Phone 206/382-2132

ORR BOOKS

BEAM ANTENNA HANDBOOK

by Bill Orr, W6SAI

SIMPLE LOW-COST WIRE ANTENNAS

by Bill Orr, W6SAI

Learn how to build simple, economical wire antennas. Apartment dwellers take note! Fool your landlord and your neighbors with some of the "invisible" antennas found here. Well-documented. 192 pages. ©1972

THE RADIO AMATEUR ANTENNA HANDBOOK

by William I. Orr, W6SAI and Stuart Cowen, W2LX

Contains lots of well illustrated construction projects for vertical, long wire, and HF/VHF beam antennas. There is an honest judgment of antenna gain figures, information on the best and worst antenna locations and heights, a long look at the quad vs. the yagi antenna, information on baluns and how to use them, and new information on the popular Sloper and Delta Loop antennas. The text is based on proven data plus practical on-the-air experience. The Radio Amateur Antenna Handbook will make a valuable and often consulted reference. 190 pages. ©1978

ALL ABOUT CUBICAL QUAD ANTENNAS

by Bill Orr, W6SAI

The cubical quad antenna is considered by many to be the best DX antenna because of its simple, lightweight design and high performance. You'll find quad designs for everything from the single element to the multi-element monster quad, plus a new, higher gain expanded quad (X-Q) design. There's a wealth of supplementary data on construction, feeding, tuning, and mounting quad antennas. 112 pages. ©1977

HAM RADIO'S BOOKSTORE

GREENVILLE, NH 03048

Tell 'em you saw it in HAM RADIO!
HAL is proud to announce the ARQ1000 code converter. This terminal not only supports the AMTOR amateur codes, but meets ALL of the commercial requirements of CCIR Recommendation 476-2. The ARQ1000 can be used with present and previous generation HAL RTTY products. In fact, any Baudot or ASCII full duplex terminal at data rates from 45 to 300 baud may be used with the ARQ1000. Some of the outstanding features of the ARQ1000 are:

- Send/receive error-free ARQ, FEC, and SEL-FEC modes
- Automatic listen mode for ARQ, FEC, and SEL-FEC
- Meets commercial requirements of CCIR 476-2
- By-pass mode for normal RTTY without changing cables
- Programmable ARQ access code, SEL-CAL code and WRU
- Programmable codes stored in non-volatile EEPROM
- Keyboard control of normal send/receive functions
- 30 Front panel indicators and 11 control switches
- Interfacing for loop, RS232, or TTL I/O
- “Handshaking” control for printer and keyboard or tape
- Self-contained with 120/240V, 50/60 Hz power supply
- Cabinet matches style and size of HAL CT2200
- Table or rack mounting
- Built-in M1700 modem option available
- Encryption option available for commercial users
- 3½" x 17" x 10½"

The ARQ1000 is commercial-quality equipment that will give you the outstanding performance you expect from a HAL product. Write for full details and specifications of the ARQ1000.

By popular request – the new CT2200. Our slogan is "When Our Customers Talk, We Listen" – and we have been listening. The CT2200 includes these often requested features:

- New AMTOR connections for use with ARQ1000
- Keyboard programming of all 8 “brag-tape” messages
- Programmable selective call code
- Expanded HERE IS storage for a total of 88 characters
- Non-volatile storage of HERE IS, “brag-tape,” and SEL-CAL code
- 3½" x 17" x 10½"

All of the proven CT2100 features are retained. Some of these features are:

- Tuning scope outputs (a MUST for AMTOR)
- Built-in demodulator for high tones, low tones, “103”, or “202” modem tones
- 36 or 72 character display lines
- 2 pages of 72 character lines or 4 pages of 36 character lines
- Split screen or full screen display
- Baudot or ASCII, 45 to 1200 baud
- Full or half duplex
- Morse code send/receive at 5 to 99 wpm
- Send/receive loop connection
- Automatic transmit/receive control (KOS)
- Audio, RS232C, or Loop I/O
- On-screen tuning and status indicators
- Clearly labeled front panel switches, not obscure keyboard key combinations
- Separate convenient lap-size keyboard
- Internal 120/240, 50/60 Hz power supply
- Attractive shielded metal cabinet

In addition, an update kit is available so that all CT2100 owners can update their CT2100’s to include CT2200 features. The kit even includes a new CT2200 front panel! Rather than making a proven product obsolete, HAL put even more behind the buttons. Pick up a CT2200 at your favorite HAL dealer and join the RTTY fun. Write for our full RTTY catalog.

HAL COMMUNICATIONS CORP.
Box 365
Urbana, IL 61801 (217) 367-7373 TWX 910-245-0784
After years of operating on two-meter FM with a tube-type radio, I decided it was finally time to replace it with something less demanding on the car's electrical system. My purchase of a synthesized hand-held transceiver spurred me to develop an amplifier which would provide a mobile system with the same capabilities as the tube rig, but with lower power consumption. That amplifier is described here.

Evolution of the Amplifier

I've never seen an amplifier design that is quite what I needed to meet these design requirements: 1-watt drive for full output (30 to 40 watts), low cost, ease of construction, and long-term reliability. I decided to build one based on a two-transistor circuit.

The 2N6080 and MRF238 transistors were readily available at low cost. This particular combination provided an excess of drive power between stages; however, this helps make the amplifier wideband, and ensures continued operation near rated output under low-battery conditions. The power consumption consequently is slightly higher than necessary, but still much less than that of an equivalent tube-type radio.

To make the amplifier easy to duplicate and tune, I decided to use printed-line inductors instead of discrete coils. The next step was to calculate the impedance-matching networks. Motorola's excellent application notes were used to do this. Once calculated, the networks were verified using "The Electronic Breadboard." Data for the inductors was obtained from references 3 and 4. Once built, the matching networks were modified empirically.

The resulting circuit is shown in fig. 1. The input-matching network consists of C_1, C_2, C_3, C_{13}, and L_1. The interstage network uses C_4, C_5, and L_2, and the output network is made up of L_3, C_6, C_7, C_8 and C_{14}. Power-supply decoupling is very important and is achieved by C_9, C_{12}, RFC2, RFC4, and feed-through capacitor C_{15}.

The 1N540 diode serves two functions. It protects the amplifier by clipping inductive spikes from things like starter motors. It also protects the amplifier against reverse polarity of the power supply, by causing the line fuse to blow.

Once the amplifier was constructed and working, some means of transmit/receive switching was needed. PIN diodes are state-of-the-art and small, but not readily available. The alternative was to modify an open-frame relay, as described in reference 5. The relay circuit is actuated by RF from the exciter. Its driver circuit is shown in fig. 2.

Construction

Once the design is completed, the circuit board must be constructed. I used a 9-1/4 x 2-3/4 inch (23.5 x 7 cm) piece of G-10 board with copper on both sides. Orr highly recommends short, direct paths, and this philosophy was followed. The inductor and RF-transistor connecting pads must be laid out first. It is important to realize that these are printed inductors and not transmission lines; therefore, the copper material on the reverse side of the board must be removed under the inductors. If this is not done, the amplifier will not work.

Although straight-line inductances are shown in fig. 3, this is not mandatory. The important parameters are average path length and the path width. Next, lay out the power-supply line — remember it carries several amperes and must not have any appreciable resistance. Finally, allocate an area for the modified T/R relay and its driver circuit, and lay this out. The layout that I used is shown in fig. 3.

This layout is simple enough to reproduce directly on the board, using ordinary electrical tape and trimming it to size with a sharp blade. After the layout is completed and verified, etch the board using standard techniques. (I used ferric chloride.)

By James A. Sanford, WB4GCS, 509 Forest Drive, Casselberry, Florida 32707
After the board is made and drilled, mount it to the heatsink using 1/16 inch (0.32 cm) spacers 5/16 inch (0.79 cm) in diameter. Mount the RF transistors to the heatsink, using a thermal compound to ensure good heat transfer. If a torque wrench is available, torque the hardware to six inch pounds (0.68 N·m). Otherwise, tighten it until a moderate resistance is felt, using a wrench no longer than three inches. Make sure you hold the stud to prevent it from moving. Avoid overtightening the stud on the transistors or they could be damaged. Also, be sure that the top and bottom ground planes are connected together in at least six places.

After the transistors are mounted to the heatsink, solder them to the PC board. The transistors are mounted before soldering to avoid excessive (damaging) stresses on the leads during mounting to the heatsink.

Next, mount the capacitors and chokes, keeping the lead lengths as short as possible. Follow the parts layout in fig. 4. Mount the relay, using either metal hardware or epoxy glue. Wire the input and output coax lines to the relay, and then install the relay-driver components. The input and output coax connectors can be mounted directly on the PC board, or made part of the cabinet and connected by short lengths of coax. This completes the actual construction.

Carefully check the wiring against the circuit diagram. Pay close attention to transistor orientation and placement of the variable capacitors. The amplifier is now ready for a “smoke test.”

testing

Connect the amplifier to a 12-volt source through a fuse of 10 amperes, a 50-ohm load, and a driver. Apply power and monitor the idling current — it should be low (a few mA). With some means of measuring output to the load, apply drive to the amplifier. The relay should switch to the transmit position. If it doesn’t, check the relay-control circuit and try again.

Once the relay transfers, you should see some RF output. If not, adjust the input tuning until you see some low value of output. Then peak the output network for maximum output. Next, peak the interstage and input networks for maximum output. Repeat the entire procedure until no further increase in output...
This tower is ready for shipment to one of our customers, or is it? If we were an ordinary tower company, this tower would have already been sent. We are not an ordinary tower company and that is why this tower did not go out. We have the best quality control in the business and we are not afraid to say so. That is why when John Pasillas found a 1/8” clearance on the swaged guide, he placed a red tag of rejection on this tower and made sure it was corrected to 1/16” before he stamped his final approval for shipment.

Every employee at Tri-Ex knows that the reputation you establish in an industry is what will make or break his company. That is why Tri-Ex has been in business continually since 1955.

When you purchase your tower from Tri-Ex, you can be assured that all welds have been done by certified welders, all construction and galvanizing has met ASTM standards, all towers have been constructed in precision jigs, all steel has been tested for carbon content and tensil strength.

When it goes to shipping, John is ready.

When you decide on Tri-Ex you have many models to choose from.

STACKED:
Light, medium, heavy duty 10 feet and up.

CRANK UPS:
Light, medium, heavy duty 25 feet to 88 feet standard.

SPECIAL TOWERS:
Sky needle, Clementower 37 feet to 180 feet & higher

Introducing Tri-Ex’s new DX-86 – 86 feet tall, 25 square feet in a 50 mph wind.

Call your local dealer for details.

For additional information write to:

Tri-Ex
TOWER CORPORATION
7182 Rasmussen Ave.
Visalia, Calif. 93291
P.O. Box 5009
Visalia, California 93278
(209) 651-2171

New CMOS DTMF Chip Kit
Teltone’s TRK-957 Kit makes it easier and less expensive to breadboard a low-power, central office quality DTMF detection system. All you need is a power source from 5 to 12 VDC. The sensitivity, wide dynamic range, noise immunity, and low-power consumption make the TRK-957 ideal for telephone switching, computer, and remote control applications. The TRK-957 DTMF Kit is only $24.75. To order call:
(800) 227-3800, ext. 1130.
In CA. (800) 792-0990, ext. 1130.

Our 4th Year
BUY • SELL
TRADE
ELECTRONICS
IN
NUTS & VOLTS
The Nation’s #1 Electronic Shopper Magazine
PO BOX 1111-H • PLACENTIA, CA 92670
(714) 632-7721

Join 1000’s of Readers Nationwide Each Month

U.S.A. SUBSCRIPTIONS
$7.00 • 1 YEAR 3RD CLASS MAIL
$12.50 • 1 YEAR 1ST CLASS MAIL
$25.00 • LIFETIME • 3RD CLASS MAIL

With Free Classified Ad

1296 & PHASE III
MAKl UTV 1200 - $499.95
2M or 6M I.F. / 3 WATTS

MICROWAVE MODULES
432 / PHASE III UNITS
$269.95

J-BEAM / LOOP YAGIS
AND ACCESSORIES

SEE US IN HOUSTON

SPECTRUM WEST
5717 NE 56th, SEATTLE, WA
206-382-2132

178
98105

The Nation’s
Electronic
Shopper Magazine
PO BOX 1111-H • PLACENTIA, CA 92670
(714) 632-7721

Join 1000’s of Readers Nationwide Each Month

U.S.A. SUBSCRIPTIONS
$7.00 • 1 YEAR 3RD CLASS MAIL
$12.50 • 1 YEAR 1ST CLASS MAIL
$25.00 • LIFETIME • 3RD CLASS MAIL

With Free Classified Ad

1296 & PHASE III
MAKl UTV 1200 - $499.95
2M or 6M I.F. / 3 WATTS

MICROWAVE MODULES
432 / PHASE III UNITS
$269.95

J-BEAM / LOOP YAGIS
AND ACCESSORIES

SEE US IN HOUSTON

SPECTRUM WEST
5717 NE 56th, SEATTLE, WA
206-382-2132

178
98105

The Nation’s
Electronic
Shopper Magazine
PO BOX 1111-H • PLACENTIA, CA 92670
(714) 632-7721

Join 1000’s of Readers Nationwide Each Month

U.S.A. SUBSCRIPTIONS
$7.00 • 1 YEAR 3RD CLASS MAIL
$12.50 • 1 YEAR 1ST CLASS MAIL
$25.00 • LIFETIME • 3RD CLASS MAIL

With Free Classified Ad

52 October 1983
can be seen. The output should be between 30 and 40 watts, depending on drive level and power-supply voltage. The input SWR should be very close to 1:1. Measure the power supply current, which should be between 4 and 6 amps. Keep in mind that the duty cycle should be kept low until the tuning has been completed. Pay close attention to transistor temperatures — they will get warm, and excessive temperature can result in catastrophic failure.

final assembly

The enclosure is up to you. I soldered together double-sided circuit board to make a simple, cheap, and RF-tight enclosure. After the amplifier is placed in the enclosure, recheck the output — there should be little change.

Amateurs often ignore a basic fact of heat transfer and fluid flow: hot air rises. The heatsink needs to be mounted in such a way that the hot air can flow un-

results

I installed the amplifier in my car and it has been working well for several months. Output power and gain as a function of frequency are shown in fig. 5. Though not perfect, the bandwidth is certainly acceptable for use on the two-meter band. During several months of operation, no degradation in performance or change in tuning has been noted. This attests to the long-term stability and reliability of the amplifier.

One aspect all too often neglected by Amateurs is that of spurious outputs. This amplifier was checked on a spectrum analyzer with gratifying results. There were no measurable outputs other than the one desired. As close as could be measured, the output was a faithful reproduction of the input. When modulated with a single tone, the TR-2400-and-amplifier combination exhibited textbook response, clean and symmetrical, with no hint of instability or distortion. The insertion loss in the receive mode is negligible.

The total time needed to build and test this amplifier was less than one weekend, including fabricating the circuit board. The final product was a reliable 30-watt amplifier capable of being driven to full output by a 1-watt hand-held transceiver.

parts

One of my pet peeves is people who describe equipment that is very nice to build, but uses hard-to-find, or outrageously expensive, custom-manufactured components. This amplifier uses readily available components, and I will cite my sources for non-

fig. 3. (A) Layout of the top (component) side of the printed circuit board; (B) Layout of the bottom side of the printed circuit board.

fig. 4. Parts placement on the component side of the printed circuit board.

fig. 5. Plot of output power and amplifier gain as a function of frequency. Note that the response is useful over much of the two-meter band.
junk-box parts. The transistors came from Semiconductor Surplus. I obtained the circuit board and ceramic trimmers from a local surplus outlet, but these are seen at every hamfest and in the advertising pages of ham radio. The choke came from the junk box and are not critical. The ferrite beads are available from Amidon and others, and also at hamfests. I have modified several types of junk-box relays, and all worked well in this circuit.

You can make some substitutions. The choke is not critical; just be sure to use ferrite beads to lower the Q and prevent low-frequency oscillations. I used ceramic trimmer capacitors, although compression or piston types would probably also work. Whatever type is used, it must be capable of withstanding the rf currents involved. This is especially important in the output circuitry. If you have access to a good capacitance meter, you can build the amplifier using various capacitors, and then substitute fixed-value chip capacitors, such as those made by Unelco. This will provide maximum reliability.

The most critical part is the heatsink — if it is not adequate, the transistors will not survive. I used one 6 x 3-3/4 inches (15.24 x 9.83 cm). If you have a bigger one, so much the better. The more area available for heat transfer, the cooler the transistors will run.

To ensure adequate cooling in the hot Florida sun, I placed a fan on the heatsink to help keep temperatures low. This may not be necessary, but is good insurance to help the amplifier last. To date there have been no thermal problems, even with temperatures inside the car higher than 100 degrees F.

acknowledgements

Several people contributed in different ways to the success of this project. I am grateful for the assistance of W4MJJ, W4RJV, WA4HSY, and WD4LWL.

conclusion

I would welcome any comments or suggestions. Please include an SASE if a reply is desired. Printed circuit boards may be available. Contact the author for details.

references

YOU CAN'T BEAT THE SYSTEM

8' FIBERGLASS
- One piece construction
- Reflector weight 80 Lbs.
- Focal point of 27\(\frac{3}{4}''\)
- F/D of .275
- Gain of 37.8 dB
- Noise at 50° elevation 30°K
- Mount complete with 3\(\frac{1}{2}''\) pole
- Polorotor I standard

GILLASPIE 9600
- Infra-red wireless remote control
- Digital tuning
- Polarity reverse (Satcom/Westar)
- On/off switch on remote
- Built in A/B switch
- Large signal strength meter
- Automatic polarity control
- Attractive wood cabinet
- Built in channel ¾ modulator

CAL AMP LNA'S
120° 100° 85°

SAT-PAK
LNA CABLES

ECLIPSE I
PROGRAMABLE ACTUATORS

YOU CAN'T BEAT THE PRICE

ORDER NOW
(800) 221-6535
(212) 345-8000

TTENTION DEALERS: This is the system that you have been waiting for. An 8' Delta Gain antenna with low noise temperature at low angles, a wireless remote receiver that looks good and works great and has the features the others forgot. Quality LNA's, cables and accessories. This system is complete. You don't have to buy pipe, wire or connectors. It's light weight and can be installed by one man. CALL FOR DEALER PRICES THAT CAN'T BE BEAT 800-221-6535.

RITON MARKETING corp. 79 Remsen Avenue rooklyn, New York 11236

WHOLESALE DISTRIBUTORS (800) 221-6535 (212) 345-8000
MORE FROM PRO-SEARCH™ ELECTRONICS

NOW THREE MODELS OF OUR
DIGITAL ANTENNA CONTROL
Your Choice Of Center, North Or South

GOOD
PSE-1A, 3A

The “CONTESTER” provides the least expensive DIGITAL CONTROL UNIT WITH COMPLETE COMPUTERIZED CONTROL BUT WITH LESS FEATURES than the “DXER” and “DELUX”.

This unit gives you the current position of your antenna digitally in 5 steps. It has 2 memories and the command mode, plus single button operation. The PSE-1A, "CONTESTER" comes with a 120 amp continuous duty motor supply, PSE-3A has a 12 amp power pack.

It is not capable of being modified to talk or accept the computer interface or remote interface. It is completely shielded and made of the same quality components as the other models.

The warranty on our unit is one year on materials and labor, and ninety days on parts.

This unit is a very inexpensive way to have the best of both worlds. A real time saver during contests. Hands off operation will save many hours of hanging on the rotor. Just a few dollars more than the manual control box, but worlds apart in state-of-the-art and operation. PRICE $29.95*

BETTER
PSE-1, PSE-3

The “DXER” is the top of the line of the non-voice synthesized units, and is for the ham who is in need of more features on their controller. It has “2” digital readouts, one to show the antenna’s current position, plus a storage readout which holds a heading or digitally displays your last position. This is valuable for switching between long path or short path, or checking from front to back, or working between two different stations, a real time saver and just a nice convenience.

The “DXER” also has “5” scan functions: 0-90, 90-180, 180-270, 270-360, and D360. This is a real aid in looking for that dogleg opening or peaking a weak signal.

It can be expanded to talk, and does have the hardware necessary to use with the computer interface.

It can be remotely keyed, where verbal confirmation isn’t required. PRICE $362.95*

BEST
PSE-2, PSE-4

This is the ultimate in rotor controls. Nothing tops this one. It has all the features of the other models, plus it talks...Yes, it talks!

The “DELUX” has a voice synthesizer which confirms your entries, plus tells you your heading as you enter it and when your antenna arrives.

All commands are spoken, plus as your antenna turns you hear a 400Hz tone going in one direction and a 80Hz tone in the other. This gives you positive verification of movement.

This unit, as the others, will combine with the HAM IV, T2X, and HDR-300, giving you the best antenna rotor combination you could ever want at any price. PRICE $469.00*

INTRODUCING THE ULTIMATE PACKAGE...FROM PRO-SEARCH™ NINE COMBINATIONS OF OUR CONTROL UNIT AND THE TELEX/HYGAIN™ ROTOR MOTORS...FOR JUST A FEW DOLLARS MORE YOU CAN BE THE CONTROLLER OF THE FUTURE TODAY!

#1 The “Contester” Package...try one of these TELEX/HYGAIN rotors with our PSE-1A/3A. A system which is low in cost, high in performance.

HAM IV*
T2X*
HDR-300*

PSE-1A will save you lots of time in your favorite contests. No more hanging on the rotor control. Gives you positive control with DIGITAL readout plus 10 memories, command positioning, and single button manual movement.

PSE-1A + HAM IV $369.95
PSE-1A + T2X 415.95
PSE-3A + HDR-300 544.95
* Printed with permission of TELEX/HYGAIN
Tele Communications, Inc.

The “DXER” Package...Couple this unit with a rotor and you have the best non talking control we make. Expandable, plus has 5 scan functions, 2 DIGITAL displays and RED/LAST to check long path or short path. Has all internal hardware to plug into our computer interface. Can be remotely controlled from accessory jack.

Try this with any of the TELEX/HYGAIN™ Rotor! This will give you the broadest of functions with a mid-range price.

Package Special
PSE-1 + HAM IV $509.95
PSE-1 + T2X 549.95
PSE-3 + HDR-300 677.95

The “Deluxe” is the most sophisticated antenna control unit ever made. With the “Deluxe” you have all the functions of our other units, plus it talks...Yes, it talks. Not only do you have your headings digitally displayed, but it is also said as your antenna stops. All commands are spoken, plus as your antenna turns you hear a 400Hz tone in one direction and an 80Hz in the other, giving you positive verification of movement. This unit, when combined with the HAM IV, T2X or HDR-300 gives you the best buy anywhere at any price.

Package Special
PSE-2 + HAM IV $809.95
PSE-2 + T2X 855.00
PSE-4 + HDR-300 784.00

Controllers also available for other rotors.
Prices and specifications subject to change without notice or obligation.
U.S. and Foreign Patents
* For PSE, 3A, 3 add $24.50 for 12 amp power pack.

© Copyright 1983
Write or Call for our Catalog • Pro-Search Electronics Co., Suite 305, 10411 Clayton Rd., St. Louis, Mo. 63131, 1-314-994-7872 (Missouri) 1-800-325-4016
WHY SETTLE FOR LESS?
LOOK WHAT THE MOSLEY TA-33 OFFERS

- 3 Element full power
- All stainless steel hardware
- Ease of assembly
- No balun required
- Now a 2 year limited warranty
- Now a standard 2" mast adapter
- Built to last

- Expandable to 30 or 40 meters
- Superb front to back ratio
- Excellent gain
- Outstanding SWR

SPECSIFICATIONS:
- Forward gain
- Front-to-Back Ratio
- Power rating: CW 1KW, SSB 2KW P.E.P.
- Feedpoint Impedance: 52 ohm
- VSWR NRG Resonance: 1:1 to 1:1 better
- Matching System: Mosley
- Number of Elements: 3
- Longest Element: 20'
- Boom Length: 14'
- Mast Size: 1 1/2" or 2"
- Turning Radius: 15'
- Wind surface area (in. sq. ft.): 5.7
- Wind load (IEA standard 80 mph): 114 lbs.
- Assembled Wt.: 39 lbs.
- Shipping Wt.: 44 lbs.

- Used around the world
- Work CW or phone without tuning or adjusting antenna
- A great antenna for the new solid state rigs

ALL MOSLEY ANTENNAS
AND CATALOGS AVAILABLE
AT QUALITY DEALERS
OR CALL TOLL FREE
1-800-325-4016

ASK ABOUT OUR FALL SPECIAL
Prices and specifications subject to change without notice or obligation.

REMEMBER WHETHER YOU USE TRAPS OR LINEAR LOADING, 8db GAIN IS 8db GAIN
YOUR RECEIVER CAN'T TELL THE DIFFERENCE... MOSLEY... TRAP MASTERS QUALITY STILL SETTING THE PACE...

Mosley Electronics,
A DIVISION OF WURDACK & ASSOCI core INC. 1344 BAUR BOULEVARD ST. LOUIS, MO. 63132 1-314-994-7872
vacuum tube substitution

Using one tube in place of another saves time, trouble

Radio Amateurs always keep a supply of spare parts and vacuum tubes on hand, but when a vacuum tube fails and an exact replacement is unavailable, the Amateur has two choices: either to buy a new tube — which may be expensive or scarce — or find a substitute.

Because a substitute tube may be cheaper than the original, and perhaps easier to obtain, this article discusses tube substitution in general and rectifier tubes in particular.

Unfortunately, tube substitution handbooks aren’t always very useful. This would not be so if most of the substitutes were listed, but this is seldom the case. For some tubes, no substitutes are listed; for others, suggested substitutes denoted by suffixes such as G, GT, and GTA may differ only slightly from the original and be as costly or as difficult to obtain. Sometimes substitutes may be as hard to find as the originals themselves. (Receiving tube manuals may be more helpful in that they list many tubes which have identical base diagrams and are thus interchangeable if they have similar or superior characteristics.)

Tubes with the same kind of base but with different terminal diagrams require only minor changes in socket wiring for substitution. Tubes with the same kind of base and known terminal diagrams, but different filament or heater voltage, may also be used; a higher voltage requires a different filament transformer or secondary winding, and a lower voltage requires a dropping resistor in series with either one of the two socket terminals. The resistance of the dropping resistor is determined by Ohm’s law: the drop in voltage is divided by the current in amperes. The power rating must exceed the product of these factors, or $E*I$ watts. Current differences are seldom important.

If a substitute tube has a different base than the original, it requires a very different socket unless a suitable adapter is available. It is both difficult and impractical to change bases on old tubes; the absence of separate bases permits only socket rewiring for substitution.

tube-base history

Early vacuum tubes were often baseless or had only bases for filaments. Candelabra bases, Edison medium screw bases, and Ediswan bases were common. From 1915 to 1927 various 4-pin bases and sockets were tried, with varying success. In 1923 the famous UV199 and UV201A triodes were introduced. Their UV bases had solder-filled brass pins which made butt-end contacts with flat socket contacts. The solder tips often corroded badly, so some tips were gold-plated and later, in 1925, UV bases were superseded by UX bases with long pins for side-wiping contacts with ordinary metals.

In 1927 the 27-triode detector-amplifier was introduced to avoid hum in new AC receivers. It had a unipotential or heater-type cathode and required a 5-pin base. The then-new 24A screen-grid tube or tetrode, also of heater-type, needed a 5-pin base and a top cap for connection to the control grid. The advent of pentodes, beam power tubes, and multifunction tubes led to 6- and 7-pin bases and often top caps. The use of 4- to 7-pin bases practically ended in 1935 when octal-base tubes were introduced.

Most tubes required no more than seven active

By Carleton F. Maylott, W2YE, 279 Cadman Drive, Williamsville, New York 14221
pins, but the 6L7 pentagrid mixer required all eight pins plus a top cap, for a total of nine connections. Miniature baseless tubes, which began to replace octal tubes in about 1950, are usually 7-pin or 9-pin types. Some multi-unit tubes have ten or twelve pins.

The first vacuum tube rectifiers on the market were the half-wave UV216 in 1921, (replaced by the UX216B in 1925), and the full-wave UX213 in 1925, which was superseded by the UX280, (now simply 80), in 1927. These tubes, sold by RCA, were developed by GE and Westinghouse, respectively. Unlike other types, rectifier tubes largely survived the trend to more than 4-pin bases from 1927 to 1935. Octal-base rectifier tubes have endured over the years, as demonstrated by the presence of approximately fifty rectifier tubes in the octal-base list (table 1). Notable exceptions to the 4-pin and 8-pin rectifier preference are the 5-pin 841624, which had a heater-type cathode, and the 6-pin 2525, which had a heater, two cathodes and two plates, and provided doubler operation. Half-wave rectifiers need only three connections, of which two are for filament and one is for plate — usually a top cap, so only two base pins are wired. Full-wave filament-type rectifiers need four pins — two for filament and two for plates.

Table 1. Rectifier tube base diagrams. Commas signify common connections. Column K dashes signify filament/heater-only type tubes, with no cathode employed; column K numbers indicate cathode element pin connection(s). (M) signifies mercury vapor; TC, top cap plate connections (half-wave).

<table>
<thead>
<tr>
<th>Pins</th>
<th>Diagram</th>
<th>Tube Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4AB</td>
<td>2X2A, 2Y2</td>
</tr>
<tr>
<td></td>
<td>4AD</td>
<td>83V</td>
</tr>
<tr>
<td></td>
<td>4AT</td>
<td>872A/872 (M)</td>
</tr>
<tr>
<td></td>
<td>4B</td>
<td>222/G84, 886 Jr. (M)</td>
</tr>
<tr>
<td></td>
<td>4C</td>
<td>5X3, 523, 80, 82 (M), 83 (M)</td>
</tr>
<tr>
<td></td>
<td>4G</td>
<td>6Z3</td>
</tr>
<tr>
<td></td>
<td>4P</td>
<td>3B28, 816, 836, 866A, AX, B(M)</td>
</tr>
<tr>
<td>5</td>
<td>5D</td>
<td>84/6Z4</td>
</tr>
<tr>
<td>6</td>
<td>6E</td>
<td>25Z5</td>
</tr>
<tr>
<td>7 (none)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Rectifier tube base diagrams. Commas signify common connections. Column K dashes signify filament/heater-only type tubes, with no cathode employed; column K numbers indicate cathode element pin connection(s). (M) signifies mercury vapor; TC, top cap plate connections (half-wave).
CQ CQ HAMS
-SPECIAL OFFER TO LICENSED HAMS-

Do you think Ham Radio is the number 1 Amateur Publication?
Are you interested in Satellite Television?
Then why not read Satellite TV Magazine?
Believe me – this is the number 1 Satellite TV Publication!

Now ... as a special offer to licensed amateurs only – we will send you a sample copy of Satellite TV Magazine for only $1.00* (Reg. $2.95) and offer you an annual subscription for only $24.95* (Reg. $29.95).

If you’re still not convinced - QSO the Satellite TV Net each Sunday at 2:00 pm Eastern Time on 14.310 MHz and hear what the other HAMS are saying about Satellite TV Magazine.

Chris J. Schultheiss VE-2FRJ
Editor & Publisher

Just give us your name and QTH

Name ____________________________
Address __
State __________________ ZIP ______

Please Enclose Check or Money Order or if you prefer we accept Visa® & Mastercard®.

Card Number ____________________________
Exp. Date ____________

*All Prices in US Funds.

Satellite TV Magazine
P.O. Box 2384
Shelby, North Carolina 28150

1-800-438-2020

DIRECTION FINDING?

* Doppler Direction Finding
* No Receiver Mods
* Mobile or Fixed
* Kits or Assembled Units
* 135-165 MHz Standard Range

New Technology (patent pending) converts any VHF FM receiver into an advanced Doppler Direction Finder. Simply plug into receiver's antenna and external speaker jacks. Use any four omnidirectional antennas. Low noise, high sensitivity for weak signal detection. Kits from $270. Assembled units also available. Call or write for full details and prices.

DOPPLER SYSTEMS
5540 E. Charter Oak
Scottsdale, AZ 85254
(602) 998-1151

UP YOUR ERP

For HT owners operating inside a vehicle and wanting increased T/R range, RF PRODUCTS has the low cost solution.

Remove your BNC antenna from the HT and mount on the RF PRODUCTS BNC magnet mount, install the magnet mount on the roof top and connect the BNC co-ax connector. The magnet mount (part no. 199-445) has 10 feet of small (5/32") co-ax with BNC connector attached and is priced at $15.95 (including shipping by UPS to 48 states).

TO ORDER: send $15.95 money order or cashiers check only.

LOW COST ACCESSORY ANTENNAS

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>DESCRIPTION</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>194-214</td>
<td>2M helical full length BNC connector</td>
<td>$7.95</td>
</tr>
<tr>
<td>194-254</td>
<td>2M helical stubby type BNC connector</td>
<td>8.95</td>
</tr>
<tr>
<td>194-814</td>
<td>1 1/4 M helical full length BNC connector</td>
<td>7.95</td>
</tr>
<tr>
<td>194-854</td>
<td>1 1/4 M helical stubby type BNC connector</td>
<td>8.95</td>
</tr>
<tr>
<td>194-944</td>
<td>4M helical stubby type BNC connector</td>
<td>8.95</td>
</tr>
<tr>
<td>195-914</td>
<td>4M flexible 1/4 wave BNC connector</td>
<td>7.95</td>
</tr>
<tr>
<td>196-214</td>
<td>2M telescopic 1/4 wave BNC connector</td>
<td>6.95</td>
</tr>
<tr>
<td>196-244</td>
<td>2M-YM whip 1/4 wave BNC connector</td>
<td>7.95</td>
</tr>
</tbody>
</table>

RF PRODUCTS
P.O. Box 33, Rockledge, FL 32955, U.S.A. (305) 631-0775

Barry Electronics
Your One-Stop Electronic Supermarket

Barry is New York City's largest stocking Ham Dealer. From accessories to transceivers – Barry has it all. Barry also carries commercial and business band radio equipment and systems.

When in town, come on down. Barry is easy to get to by either subway or bus. Don't pay uptown prices!

Barry is also as close as your phone or telex machine. Contact us today for the best buys in Amateur Radio.

BARRY ELECTRONICS CORP.
512 BROADWAY
NEW YORK CITY, NY 10012

212-925-7000 TELEX 12-7670
OPEN 7 DAYS A WEEK.
Monday Friday 9 to 6:30 PM
Saturday & Sunday 10 to 5 PM
Lead (K or F) must be connected to three specific pins in the desired tube base. Solder in the base pins must be melted so as to pass the leads, which may be No. 18 solid copper wire; the pins must then be resoldered.

It is seldom necessary to use diodes in parallel because their current ratings usually exceed those of rectifier tubes. If two or more diodes must carry the load current, each diode should be in series with an equalizing resistor of about 33 to 47 ohms and 2 watts minimum rating. Without series resistors, one of several nonlinear devices in parallel may take most of the current and burn out.

A limiting resistor of at least 10 watts and 47 to 100 ohms rating may be connected in series with a rectifier output or a transformer center-tap connection. The resistor may burn out under overload conditions, but it will protect the diodes and cost less to replace. A well-chosen fuse may be used instead of, or in addition to, the resistor.

rectifier design data

The following facts deserve consideration in rectifier design:

1. Half-secondaries of plate transformers usually have about 50- to 200-ohms resistance, and power-line inputs to transformerless rectifiers have negligible resistance.

2. Choke-input and resistive input filters usually have more than 100-ohms input resistance, and capacitor-input filters have negligible input resistance until the capacitors are charged.

3. Vacuum-tube diodes usually withstand high peak currents caused by short circuits and starting transients because their plate resistance exceeds 500 ohms and their plate current is limited by filament emission and space charge. Solid-state diodes, on the other hand, may fail because they usually have less than 100 ohms resistance and no current-limiting saturation phenomena.

4. Peak current in all rectifiers may be limited to safe values by adding series resistance of high enough value to make the total resistance adequate but low enough value to avoid an excessive voltage drop under normal load.

5. In order to avoid abnormally-high peak currents and peak inverse voltages, as well as poor ripple reduction, in choke-capacitor filters, the product of the choke inductance in henrys and the capacitor capacitance in microfarads must be greater than the resonant value of 7.08 for a half-wave filter (60 Hz ripple) and 1.77 for a full-wave filter (120 Hz ripple).

solid-state rectifier substitution

It is unnecessary to substitute tubes or to change socket wiring or sockets if solid-state parts are mounted in an old vacuum-tube base or a similar plug foundation. (The bases of defunct tubes are easily removed by hack-sawing them about midway or by crushing the glass in a vise. A cloth wrapper will help prevent the hazard of flying glass particles.)

Each leg of a full-wave rectifier circuit must withstand a peak inverse voltage of 1.4 times the RMS voltage to center-tap of the transformer secondary. This voltage usually exceeds the PIV rating of a single diode, so two or more diodes must be used in series. Each diode should be shunted by a small capacitor in order to minimize voltage spikes, and by a resistor to equalize PIV drops. Capacitors should be rated at 400 to 600 volts and 0.002 to 0.01 μF capacitance. Resistors should be rated at one-half watt minimum and 500 to 1000 ohms per volt of PIV. Values of 330k, 390k, and 470k, are suitable at 200 to 400 volts per diode.

These parts should be chosen carefully and connected properly, according to the diagram of fig. 1 and the pin numbers of Table 1. The two anode or plate leads (P1 and P2) and one cathode or filament lead (K or F) must be connected to three specific pins in the desired tube base. Solder in the base pins must be melted so as to pass the leads, which may be No. 18 solid copper wire; the pins must then be resoldered.
BUILD THIS SSB TRANSCEIVER FROM OUR MODULES

EXPERIMENT — LEARN ELECTRONICS; BUILD AND DESIGN YOUR OWN AM, FM, CW, OR SSB RECEIVERS, TRANSMITTERS AND ETC., WITH OUR MINI-LINEAR CIRCUIT KITS

All kits Come Complete With Etched and Drilled Circuit Boards and All Parts Needed To Function As Described

AFA-1 AUDIO AMP., LM-380 1-2 Watts 4-16 OHM Output $4.95
AFA-1 AUDIO PREAMP. Dual Audio Preamp — For Mike Etc. $3.95
BMD-1 BAL. MIX. LM 1496 Mixer — S.B. Modulator Tuned Output $9.95
DET-1 AM DET. Am Envelope Detector With AGC Output $3.95
DET-2 FM DET. LM 3065 FM Detector (455 KHz or 4-11 MHz) $7.95
DET-3 SSB DET. LM 1496 SSB Detector (Needs OSC-1 or OSC-4) $9.95
IFA-1 IF AMP. CA3028 30 DB Gain. Optional AGC (456 KHz or 9-11 MHz) $6.95
IFA-2 IF AMP. CA3028 30 DB Gain 1-100 MHz Optional AGC $6.95

SEND $2.00 FOR FULL CATALOG WITH CIRCUIT DIAGRAMS AND TYPICAL RECEIVER AND TRANSMITTER HOOK-UPS

COMPLETE SET OF MODULES TO BUILD A $149.95 (Specify Band)

ADD 2ND SHIPPING & HANDLING $165

FREQUENCY MULT.
AFA-1
IFA-1
FLS-9
IFA-1
DET-3
IFA-1

BASED PROGRAM MANUAL
FOR AMATEURS

Programs Design: Quads, beams, trap dipoles, antenna wind load, filters, pads, striplines, ep amps, microwave, RF coils, calc. Ohms law. L, C, power, log 500's, global distances and much more. INCLUDES SHIPPING AND HANDLING

ATTENTION YAESU FT-207R OWNERS

All FOR $9.95

ATTENTION YAESU FT-207R OWNERS

All FOR $9.95

BATTERY SAVER KIT
Model BS-1 $14.95

MANY OTHER MODULES AVAILABLE

SEND $2.00 FOR FULL CATALOG

COMMENTS FOR THE PATIENTS

VANGUARD LABS
196-23 Jamaica Ave., Hollis, NY 11423 Phone: (212) 488-2720

GROTH-Type
COUNTS & DISPLAYS YOUR TURNS
- 99.99 Turns
- One Hole Panel Mount
- Handy Logging Area
- Spnner Handle Available
Case: 2x4"; shaft ½"x3"

TC2 $12.50
TC3 $13.50
Spnner Handle Add $1.50

R. H. BAUMAN SALES
P.O. Box 122, Itasca, IL 60143

SYNTHESIZED SIGNAL GENERATOR

MODEL $199.50
plush shipping

- Covers 100 Hz to 185 MHz in 1 kHz steps with thumbwheel dial
- Accuracy 1 part per 10 million at all frequencies
- Internal FM adjustable from 0 to 100 kHz at a 1 kHz rate
- Spurs and noise at least 60 dB below carrier
- RF output adjustable from 5-500 mV at 50 ohms
- Operates on 12 Vdc @ 1/2 Amp
- Available for immediate delivery
- 4 mAh battery memory reduced to 500 mA
- 45 mA receiver drain reduced to 30 mA
- Improved audio fidelity and loudness

ENGINEERING CONSULTING
P.O. BOX 226 DEPT H
BREA, CALIFORNIA 92621

SAY YOU SAW IT IN HAM RADIO

BASIC PROGRAMS FOR AMATEURS

Programs Design: Quads, beams, trap dipoles, antenna wind load, filters, pads, striplines, ep amps, microwave, RF coils, calc. Ohms law. L, C, power, log 500's, global distances and much more. INCLUDES SHIPPING AND HANDLING

ATTENTION YAESU FT-207R OWNERS

All FOR $9.95

BATTERY SAVER KIT
Model BS-1 $14.95

PARTS AVAILABLE

VANGUARD LABS
196-23 Jamaica Ave., Hollis, NY 11423 Phone: (212) 488-2720

ADD 12" SHIPPING & HANDLING
MORNING DISTRIBUTING CO.
P.O. BOX 177, HIALEAH, FLA 33011

SPECTRONICS INC.
1099 GARRIE ST OAK PARK, IL 60304

(312) 488-6777

AMATEUR RADIO
HOURS
MON TUES WED
9:30-6:00 PM
THURS FRI
9:30-9:00 PM
SAT 9:30-3:00 PM
CLOSED SUN,
HOLIDAYS

AMATEUR RADI0
SHORTWAVE SCANNERS

Specialists in Amateur Radio, Short-Wave Listening And Contemporary Electronic Gear.

DEALER WANTED

New and Used Equipment
Specialists in Amateur Radio, Short-Wave Listening And Contemporary Electronic Gear.

GROTH-Type
COUNTS & DISPLAYS YOUR TURNS
- 99.99 Turns
- One Hole Panel Mount
- Handy Logging Area
- Spnner Handle Available
Case: 2x4"; shaft ½"x3"

TC2 $12.50
TC3 $13.50
Spnner Handle Add $1.50

R. H. BAUMAN SALES
P.O. Box 122, Itasca, IL 60143

SYNTHESIZED SIGNAL GENERATOR

MODEL $199.50
plush shipping

- Covers 100 Hz to 185 MHz in 1 kHz steps with thumbwheel dial
- Accuracy 1 part per 10 million at all frequencies
- Internal FM adjustable from 0 to 100 kHz at a 1 kHz rate
- Spurs and noise at least 60 dB below carrier
- RF output adjustable from 5-500 mV at 50 ohms
- Operates on 12 Vdc @ 1/2 Amp
- Available for immediate delivery
- 4 mAh battery memory reduced to 500 mA
- 45 mA receiver drain reduced to 30 mA
- Improved audio fidelity and loudness

ENGINEERING CONSULTING
P.O. BOX 226 DEPT H
BREA, CALIFORNIA 92621

SAY YOU SAW IT IN HAM RADIO
KANTRONICS SOFTWARE
Hamsoft,™ Hamtext,™ and Amtorsoft™

Kantronics has led the amateur community in software and total computer communications systems with our original program, HAMSOFT. With five-computer compatibility and reasonable prices HAMSOFT has become the industry standard. HAMSOFT includes split screen display, type ahead buffer, message ports, and complete keyboard control for Morse Code, Radioteletype, and ASCII communications. With THE INTERFACE or INTERFACE II, HAMSOFT can make any of five computers a complete amateur communications terminal. All programs are on a ROM board, except the Apple diskette.

<table>
<thead>
<tr>
<th>Computer</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIC-20</td>
<td>$49.95</td>
</tr>
<tr>
<td>ATARI</td>
<td>$49.95</td>
</tr>
<tr>
<td>APPLE</td>
<td>$29.95</td>
</tr>
<tr>
<td>TRS-80C</td>
<td>$59.95</td>
</tr>
<tr>
<td>TI-99/4A</td>
<td>$99.95</td>
</tr>
</tbody>
</table>

HAMTEXT is our advanced CW/RTTY/ASCII program for the VIC-20, COMMODORE 64, and APPLE computers. HAMTEXT gives you the ability to store incoming messages in the computer's memory, transmit files directly from tape or disk, and use your computer to its fullest potential. Features like Diddle, Time Transmission, Text Transmission, Printer Outputs, and Word Wraparound, make HAMTEXT the program for the serious amateur. HAMTEXT was created with input from our users as guidelines, and with total use of the computer in mind. Suggested Retail .. $99.95

On January 27th, 1983, AMTOR, Amateur Radio Tele-type Over Radio, became a legal mode for the amateur service. AMTOR is an essentially error-free radioteletype form of communication. AMTORSOFT, Kantronics' newest software package, gives your computer the ability to become an AMTOR communications terminal when used with The Interface or Interface II. AMTORSOFT is currently available for the Apple, VIC-20, and COM-64 computers. AMTORSOFT brings you the newest in computer-amateur communications at an affordable price. Suggested Retail ... $89.95

For more information see your Kantronics dealer, or contact: Kantronics 1202 E. 23rd Street Lawrence, KS 66044
Today's popular all-solid-state transmitters would make yesterday's old timers' eyes pop out. What fun to work a modern rig with all the bells and whistles!

Owners of today's transmitters, however, find that many of them require matching to an antenna with an SWR less than 2:1. This is no problem on the higher bands, since most antennas meet this requirement, but 80 meter operators discover that they cannot cover the whole band with a single simple antenna and are therefore restricted to operating within a small portion of the band.

Some heroic attempts have been made to solve this problem but the "broadband" 80-meter antenna solution still seems in doubt — or has it already been solved?

let's not reinvent the wheel

The basic 80 meter, center-fed dipole, mounted in close proximity to ground, has a feedpoint resistance in the neighborhood of 30 ohms. I say "in the neighborhood" advisedly, as the measured resistance varies with height above ground, the conductivity of the soil in the vicinity of the antenna and the degree of coupling between the antenna, the outer shield of the feedline and any other conductors (such as house wiring, telephone lines, etc.) in the vicinity of the antenna.

As a result of these variables, SWR measurements made on one 80-meter dipole may vary considerably from those made on an identical antenna at a different location.

Because of the antenna environment, some "lucky" 80-meter operators find their dipole has an extremely broad frequency response and they can operate their solid-state transmitter over nearly the whole band! But their buddy across town with the same antenna is limited in operation to a small segment of the band, since the SWR quickly departs from low values when he operates his antenna away from the design frequency.

Improving ground conductivity is a difficult task. An extensive ground screen is called for in the case of vertical polarization and it is not known if such a ground installation would be cost-effective with horizontal polarization. I would doubt it, myself. It would, at the minimum, better define the "array" (antenna plus image) elevation pattern. — Editor

decoupling the antenna from the environment

Meaningful SWR measurements are difficult to achieve when the transmitting antenna is coupled to nearby conducting objects. In my case, the SWR measurements on an 80-meter dipole changed radically when I turned on the ceiling light fixture in the living room. The dipole was parallel to the wires leading from the utility box at one end of the house to the light fixture. Placing a 0.01, 1.6-kV ceramic capacitor across the connections of the fixture seemed to detune the house wiring sufficiently so that meaningful SWR numbers could be obtained.

The first step was to determine if the dipole was coupled to the outside of the outer shield of the coaxial feedline. This was tested by adding an extra length of line at the station end and noting if the SWR reading changed from the original measurements at different frequencies.

Since I knew there was unwanted coupling, I was not surprised when I was able to plot a new SWR curve that had only a vague resemblance to the old one after my line-splicing experiment. It looked as if I could move
the resonant frequency at will within
the band by merely changing the
length and position of the coaxial line
with respect to the dipole!

The second step was to bring the
coaxial line directly down to the sur-
facing of the ground under the center
of the dipole and run it along the
ground to the station. Before, it had
looped through the air at about a 45
degree angle to the dipole.

Repeating the SWR measurements
showed that by varying line length
the SWR changed but not nearly as
much as in the previous situation. It
looked as if I were proceeding in the
right direction.

The next step was to try to decouple
the outer shield of the coax a bit
more. I wound the line up into a
choke coil just under the center of the
antenna (fig. 1). This helped, but it
seemed as if more isolation were re-
quired. Luckily, I had a 2.5 MHz to 15
MHz air-wound balun available (fig.
2). I placed this device at the dipole
feedpoint and was successful in de-
coupling the coaxial shield from un-
wanted antenna-induced currents.

a balun transformer
for 80 and 160 meters

The balun design shown in fig. 2 is
useful for both 80 and 160 meters.

Since it has an air core, it will not
saturate at a high power level as the
ferrite core design might do; and
because the windings have more
turns (inductance) than the more
common design, this balun performs
better at the lower frequencies.

The balun is wound on a plastic
(PVC) form 3-1/2 inches (9.0 cm) in
diameter. The design consists of 10
trifilar turns on No. 14 Formvar™ (or
enamel) insulated wire. The ends are
held in place by 4-40 hardware. The
windings are interconnected by short
lengths of wire run between the ap-
propriate terminals. The common con-
nection of two of the windings is used
as the ground point at one end of the
balun and is attached to the coaxial
shield. When completed, a plastic
bottle is cut to fit over the balun as a
rain shield. The balun is attached di-
rectly to the center insulator of the di-
pole and the coaxial line dropped
down directly beneath it.

Take care that the top end of the
coaxial line is sealed from moisture.
Water can seep into the line by capil-
ary action of the shield but a good
care of sealant (RTV, for example)
will waterproof the end of the line.
(Make sure your sealant does not
contain acetic acid, or it will corrode
the copper wires of the coax. Read
the label before you buy.)

matching the antenna
to the line

I was now in a position to make a
meaningful SWR measurement of
the antenna. As expected, a mini-
num of 1.56:1 occurred at resonance
corresponding to an antenna imped-
ance of 32 ohms. The easiest way to
achieve a better match between an-
tenna and line is to make the antenna
form a portion of a network whose in-
put impedance over a small range is
50 ohms by simple network made up of
R, L and C. The L/C ratio determines transformation ratio when LC is resonant at op-
erating frequency. (See Beam Antenna
Handbook, Radio Publications, Box
149, Wilton, Connecticut 06897.)
points? Alas, the correctly-designed dipole still will not cover the whole 80-meter band, falling within the desired SWR ratio limits over only about 220 kHz. But this exercise provides a clue that may help solve the bandwidth problem.

broadband dipoles

The previous discussion illustrates a method of feeding and matching a centered 80-meter antenna system. It applies equally well to a broadband antenna as to a conventional antenna.

The fan dipole shown in fig. 4 provides good bandwidth on 80 meters when properly matched to the transmission line. It is only 110 feet (33.53m) long at resonance (3.75 MHz). When the length of the arms and the center matching coil are properly adjusted, the antenna exhibits an SWR of less than 2:1 over the complete 80-meter band.

A second broadband antenna design similar to the fan dipole is shown in fig. 5. This scheme consists of two parallel-fed dipoles placed at right angles to each other. The dipoles are cut for opposite ends of the band. (I haven't tried this idea, but I am waiting for a report from someone who has.) The dipole's SWR follows a W curve with points of minimum SWR occurring near the band edges. The dipoles have to be physically separated by at least 60 degrees; otherwise, the broadband response is lessened.

Again, as in the case of the simple dipole, the input impedance of the antenna is quite low and a matching coil has to be placed across the feedpoint to provide a step-up transformation to 50 ohms.

The idea looks like a good one and with sufficient separation between the dipoles, it should work.

the W6TC two-frequency dipole

George, W6TC, wrestled with the problem of using a dipole across the 80-meter band and finally came up with a classic solution so simple that I wish I had thought of it myself!

George's idea is shown in fig. 6. This illustrates a dipole cut for 3800 kHz and used for SSB operation. To
operate at 3500 kHz, George first placed a single loading coil in series with one leg of the dipole. The unbalance caused by not splitting the coil and putting half of it in each leg was unnoticeable.

Now, the problem is that the dipole has to be raised and lowered to insert or remove the loading coil for a QSY from one end of the band to the other. George solved this problem by moving the coil a half-wavelength down the coaxial feedline, placing the loading coil right at the operating position.

Physically, the coil is placed in a box as shown in fig. 7. A ceramic switch is connected across the loading coil and instant QSY between the ends of the band is possible — right from the operating position. The two SWR curves for the antenna are shown in fig. 8.

another easy way

In microwave antennas, a device known as a "double-stub tuner" can be used to reduce the SWR on a feed system. Simpler versions of this tuner have become known as "line flatteners" and one that will work on 80 meters is shown in fig. 9.

Using the line flattener, an 80-meter dipole cut for one portion of the band can be made to work anywhere in the band with near-unity SWR presented to the transmitter. Under the worst of circumstances, the SWR on the line could go as high as 5:1 if a dipole cut for one end of the band were used at the opposite end of the band. Even so, the line flattener can readily take care of the problem. In most instances, the dipole is cut for some frequency within the band and maximum SWR excursions run closer to 3:1 at the band edges. No matter. The line flattener does the job.

The device is easy to adjust. The capacitors and inductors are adjusted until the SWR at the transmitter is unity. If you run out of capacitance range in one unit, a 1250 working volt mica capacitor placed in parallel with the fully meshed capacitor will help.

any ideas from the field?

Well, I've heard of the scheme of making the 80-meter dipole out of steel wire to introduce a little loss and thereby lower the circuit Q and improve the bandwidth. And it might work, but I don't have feedback from anybody who has tried the idea.

But I would like to hear from those who have any original thoughts on an 80-meter broadband antenna system that will show a low value of SWR to the new solid-state rigs.

computerania!

In my April, 1983, column I discussed short, loaded dipole antennas and showed a simple computer program that would aid in the fast design of a short dipole for any amateur band. Missing from the program was the section required to design the impedance matching coil. The program was modified by Dick, W6EDE, for a TRS-80 (II), and has been further refined by John McComic, K4KAJ (fig. 5). John's program covers the complete antenna design, plus matching coil, for any frequency. The result is a half-length dipole, perfect for cramped locations.

A copy of the missing section of the program is available directly from ham radio. Be sure to enclose a stamped (20c) business-size envelope (9-1/2 x 4-1/8) with your request.

(My thanks to the following who also provided interesting and useful antenna programs: Lloyd Phillips, WB6WCA; Warner Thompson, N7WT; and I. L. McNally, K6WX.)

references

ham radio

October 1983

67
New low-noise microwave transistors make preamps in the 0.9 to 1.0 dB noise figure range possible without the fragility and power supply problems of gas-fet's. Units furnished wired and tuned to ham band. Can be easily retuned to nearby freqs.

Models LNA1, P30, and P432 shown.

Models to cover every practical rf & if range to listen to SSB, FM, ATV, etc. NF = 2 dB or less.

- **NEW LOW-NOISE PREAMPS**

<table>
<thead>
<tr>
<th>Model</th>
<th>Tunable</th>
<th>Freq Range</th>
<th>Noise Figure</th>
<th>Gain</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNA 28</td>
<td>25-40</td>
<td>0.9 dB</td>
<td>20 dB</td>
<td>$39.95</td>
<td></td>
</tr>
<tr>
<td>LNA 50</td>
<td>40-70</td>
<td>0.9 dB</td>
<td>20 dB</td>
<td>$39.95</td>
<td></td>
</tr>
<tr>
<td>LNA 144</td>
<td>120-180</td>
<td>1.0 dB</td>
<td>18 dB</td>
<td>$39.95</td>
<td></td>
</tr>
<tr>
<td>LNA 220</td>
<td>180-250</td>
<td>1.0 dB</td>
<td>17 dB</td>
<td>$39.95</td>
<td></td>
</tr>
<tr>
<td>LNA 432</td>
<td>380-470</td>
<td>1.0 dB</td>
<td>18 dB</td>
<td>$44.95</td>
<td></td>
</tr>
</tbody>
</table>

- **ECONOMY PREAMPS**

 Our traditional preamps, proven in years of service. Over 20,000 in use throughout the world. Tuneable over narrow range. Specify exact freq, band needed. Gain 16-20 dB, NF = 2 dB or less. VHF units available 27 to 300 MHz.

 - **UHF MODELS**

Model	Tunable	Freq Range	Noise Figure	Gain	Price
LNA	28-30	0.9 dB	20 dB	$39.95	
P30K, VHF Kit less case	$14.95				
P30C, VHF Kit with case	$20.95				
LNA	28-30	0.9 dB	20 dB	$39.95	
P432K, UHF Kit less case	$18.95				
P432C, UHF Kit with case	$24.95				
LNA	28-30	0.9 dB	20 dB	$39.95	
P432W, UHF Wired/Tested	$33.95				

 P432 also available in broadband version to cover 20-650 MHz without tuning. Same price as P432; add "B" to model #.

- **HEXICAL RESONATOR PREAMPS**

 Our lab has developed a new line of low-noise mixer preamps with helical resonator filters built in. The combination of a low noise amplifier similar to the LNA series and the sharp selectivity of a 3 or 4 section helical resonator provides increased sensitivity while reducing intermod and cross-band interference in critical applications. See selectivity curves at right. Noise figure = 1 to 1.2 dB. Gain = 12 to 15 dB.

<table>
<thead>
<tr>
<th>Model</th>
<th>Tuning Range</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRA-144</td>
<td>143-150 MHz</td>
<td>$49.95</td>
</tr>
<tr>
<td>HRA-220</td>
<td>213-233 MHz</td>
<td>$49.95</td>
</tr>
<tr>
<td>HRA-432</td>
<td>420-450 MHz</td>
<td>$59.95</td>
</tr>
</tbody>
</table>

- **REPEATE OF A SELLOUT!**

 While supply lasts, get $59.95 cabinet kit free when you buy an FM-5 Transceiver kit. Where else can you get a complete transceiver for only $159.95?

- **SAVE A BUNDLE ON VHF FM TRANSCEIVERS!**

 FM-5 PC Board Kit - **ONLY $159.95** complete with controls, heatsink, etc. 10 Watts, 5 Channels, for 6M, 2M, or 220

 - **SCANNER CONVERTERS**

 Copy 72-76, 135-144, 240-270, 400-420, or 806-894 MHz bends to VHF and UHF models. Kits from $69.95.

 - **SPECIAL FREQUENCY CONVERTERS**

 made to custom order $119.95. Call for details.

 - **VHF & UHF LINEAR AMPLIFIERS.** Use with above. Power levels from 10 to 45 Watts. Kits from $69.95.

 - **LOOK AT THESE ATTRACTIVE CURVES!**

- **CALL or Write for FREE CATALOG**

 (Send $1.00 or 4 IRC's for overseas mailing)

- **Order by phone or mail • Add $2 S & H per order**

 (Electronic answering service evenings & weekends)

 Use VISA, MASTERCARD, Check, or UPS COD.

 hamtronics, inc.

 65-Y MOUL RD. • HILTON NY 14468

 Phone: 716-392-9430

 Hamtronics is a registered trademark
For years, Hamtronics* Modules have been used by individual hams and manufacturers to make repeaters. Now, in the Hamtronics tradition of top quality and superb value, we are proud to offer a complete repeater package.

FEATURES:

- **SENSITIVITY SECOND TO NONE; TYPICALLY 0.15 uV ON VHF, 0.3 uV ON UHF.**
- **SELECTIVITY THAT CAN'T BE BEAT! BOTH 8 POLE CRYSTAL FILTER & CERAMIC FILTER FOR GREATER THAN 100 dB AT ±12KHZ. HELICAL RESONATOR FRONT ENDS. SEE R144, R220, AND R451 SPECS IN RECEIVER AD BELOW.**
- **OTHER GREAT RECEIVER FEATURES: FLUTTER-PROOF SQUELCH, AFC TO COMPENSATE FOR OFF-FREQ TRANSMITTERS. SEPARATE LOCAL SPEAKER AMPLIFIER & CONTROL.**
- **CLEAN, EASY-TUNE TRANSMITTER; UP TO 20 WATTS OUT.**

HIGH QUALITY MODULES FOR REPEATERS, LINKS, TELEMETRY, ETC.

INTRODUCING — NEW 1983 RECEIVERS

- **R144/R220 FM RCVR** for 2M or 220 MHz. 0.15uV sens.: 8 pole xtal filter & ceramic filter in i-f, helical resonator front end for exceptional selectivity (curves at left). AFC incl., xtal oven avail. Kit only $119.95.
- **R451 FM RCVR** Same but for uhf. Tuned line front end, 0.3 uV sens. Kit only $119.95.
- **R76 FM RCVR** for 10M, 6M, 2M, 220, or commercial bands. As above, but w/o AFC or hel. res. Kits only $109.95. Also avail w/4 pole filter, only $94.95/ kit.

- **R110 VHF AM RECEIVER** kit for VHF aircraft band or ham bands. Only $54.95
- **R110 UHF AM RECEIVER** for UHF uses, including special 259 MHz model to hear SPACE SHUTTLE. Kit $94.95

- **HELICAL RESONATOR FILTERS** available separately on pcb w/ connectors.
 - HRF-144 for 143-150 MHz $34.95
 - HRF-220 for 213-233 MHz $34.95
 - HRF-432 for 420-450 MHz $44.95
 (See selectivity curves at left)

- **COR KITS** With audio mixer and speaker amplifier. Only $29.95.
- **CWID KITS** 156 bits, field programmable, clean audio. Only $59.95.
- **DTMF DECODER/CONTROLLER KITS.** Control 2 separate on/off functions with touchtones®, e.g., repeater and autopatch. Use with main or aux. receiver or with Autopatch. Only $89.95.
- **AUTOPATCH KITS.** Provide repeater autopatch, reverse patch, phone line remote control of repeater, secondary control via repeater receiver. Many other features. Only $89.95. Requires DTMF Module.
- **A16 RF TIGHT BOX** Deep drawn alum. case with tight cover and no seams. 7 x 8 x 2 inches. Only $18.00.

TRANSmitters and ACCESSORIES

- **T51 VHF FM EXCITER** for 10M, 6M, 2M, 220 MHz or adjacent bands. 2 Watts continuous. Kits only $59.95
- **T451 UHF FM EXCITER** 2 to 3 Watts on 460 ham band or adjacent. Kits from $69.95.
- **VHF & UHF LINEAR AMPLIFIERS.** Use on either FM or SSB. Power levels from 10 to 45 Watts to go with exciters & xmtg converters. Kits from $69.95.

R144 Shown

More Details? CHECK — OFF Page 111
THE UHF COMPENDIUM
by K. Weiner, DJ9HO
First published in German in 1980 — this book was an instant European best seller. Now available in English — only from Ham Radio Magazine. This hefty, 413 page book is an absolute must for every VHF and UHF enthusiast. The UHF Compendium has been divided into 7 sections to fully cover theory and practical building instructions. Special emphasis has been placed on state-of-the-art techniques such as GaAs Fet preamplifiers and converters. Author Weiner also fully describes all of the test equipment, alignment tools, power measuring equipment and other handy gadgets that will be of use to the UHF/VHF Amateur. All of the projects and designs have been tested and proven and are not engineer’s pipe dreams. Antennas are also fully covered with a number of easy-to-build designs as well as large mega-element arrays. Noted VHF enthusiast, Joe Reisert, W1JR, tells us that every ham interested in UHF/VHF should have a copy of this book. Get yours today — only from Ham Radio Magazine.

Please add $2.50 shipping and handling
Ham Radio’s Bookstore
GREENVILLE, NH 03048

KW-UHF
Softbound $23.95

short circuits

vertical phased arrays
The following corrections should be made to part 3 of K2BT’s article, “Vertical Phased Arrays” (July, 1983):

Eq. 3 (p. 30) should read:

\[Z_{12} = \pm \sqrt{Z_{22} (Z_{11} - Z_1)} \]

The polar notation in the upper left-hand column of page 32 should include the angle symbol and read:

\[20.4^\circ / 132.2^\circ \]

The following lines identifying the driving point impedances in table 3 (page 33) should be corrected as indicated.

3-element in-line array, \(\lambda/4 \) spacing:

\[Z_1 = 6.6 - j21 \text{ should read } 15.4 - j17 \]
\[Z_2 = 51.4 + j0 \text{ should read } 36.2 + j0 \]
\[Z_3 = 79.4 - j39 \text{ should read } 75.4 + j43 \]

triangular array, 0.289\(\lambda \) spacing:

\[Z_1 = 28.4 - j10 \text{ should read } 20.4 - j10 \]

panoramic adapter
The following corrections should be made to “Design Notes on a Panoramic Adaptor/Spectrum Analyzer” by Rick Ferranti, W68NCX, (February, 1983):

In fig. 4 (page 30), the connection shown between the transistor’s collector and the 3.3k resistor is erroneous. The collector lead is still attached to T1.

In reference to the 31 MHz band-pass filter in fig. 8 (page 31) the notation “space coils 1/2 inch apart . . .” refers to the distance between \(T_1 \) and \(T_2 \) (centers); the 2-turn windings on the coil should be over the 12-turn windings on each form at the cold end.

A small variable capacitor across the 4.7k resistor was deleted from fig. 9 (page 32), but not from the text. Because the capacitor pulled the oscillator only slightly in frequency, it is not necessary in this circuit.
VMOS on 1750 meters

A CW or beacon transmitter for 160 kHz

Many interesting experiments and enjoyable QSOs can be your reward for operating on the 1750-meter band. No license is required to use the slice of radio spectrum between 160 and 190 kHz, and it requires only simple equipment to provide the legal maximum of 1-watt input to the transmitter. Enthusiasts have made contacts over distances of 700 miles in spite of the antenna-size limit of 50 feet.

I've used my VMOS transmitter to make a contact from East Haven, Connecticut to Owings, Maryland—a span of 250 miles. It can be done consistently as long as very noisy conditions do not exist. Many schedules have successfully been kept with stations in New Jersey, New York, Maryland, and Massachusetts. My beacon signal has been heard as far north as New Hampshire and as far south as Maryland. Receiving equipment for this band is not at all difficult to build.1

D-layer reflection and groundwave propagation modes dominate the band and best results are obtained by installing a good ground system and by keeping antenna coupling-losses low. Radiation resistance for the 50-foot antenna is on the order of 0.02 ohms and the radiation efficiency is therefore very low. Nevertheless, a few milliwatts of effective radiated output does give you usable communications.

By S. J. DeFrancesco, K1RGO, 17 Jeffrey Road, East Haven, Connecticut 06512
The transmitter

The transmitter circuit diagram shown in fig. 1 uses a 600-800 kHz negative-resistance oscillator consisting of Q1 and Q2. L1 is a variable inductor of 90-150 μH. The 470 pF capacitor can be made variable, and an old BC loop stick can be used for L1 instead. Stability is excellent — only a few hertz of drift were observed one hour after the unit was turned on. Isolation is provided by Q3, a source-follower circuit which drives U1. U1 is a CMOS 4013 type-D dual flip-flop used to divide the 600-800 kHz from the oscillator down to 150-200 kHz. The output of U1 drives the VMOS amplifier. The output of Q4 is coupled to the antenna tuning network through a 0.1 uF capacitor. The antenna tuning network consists of a 250 pF variable capacitor and a 3.7 mH coil wound on a ferrite rod. This high Q L/C arrangement resonates the 50-foot vertical antenna to 160-190 kHz.

Transmitter keying is accomplished by gating U1 on and off at pin 10. Q6 is an LED driver connected to indicate keying. S1 is set to key position for manual CW operation, or BEACON position for continuous-message operation.

identifier

Three 4021 CMOS universal eight-bit shift registers are used in the identifier for minimum power consumption. In fig. 2, U3, U4, and U5 clock inputs are connected in parallel. U2 is a square-wave clock-pulse generator which drives the other ICs. The 100k potentiometer can be adjusted to obtain the desired code speed. The P0-P7 parallel inputs are programmed to provide identification. R* and C* are somewhat critical and should be selected for the code speed used. R*, shown in fig. 2, is 30k for 15 wpm or less, or 20k for 20-30 wpm. C* is 30 μF for this same range of code speeds.

When power is first turned on, P0-P7 parallel inputs are loaded in serial with pin 9 on U3, U4, and U5 in a logic-high state. As C* equalizes, and pin 9 goes low, the serial-loop mode is activated and the program is stored. It then circulates in a continuous loop. The output (pin 2 of the U5) pulse train is fed to

fig. 2. Three universal shift registers and a clock-pulse generator make up a programmable, 24-bit, closed-loop identifier. U2 is an NE555. U3, U4, and U5 are 4021 eight-bit shift registers.

fig. 3. The identifier circuit is shown programmed for the letters SD. Calculate the number of bits you need for your identifier, and start at U4. Allow at least three space bits to separate the character start.
U1 in the transmitter, providing CW transmission in the beacon mode. Code speed is varied by changing the output frequency of U2.

programming

A dash is equal to three bits (zero) and a dot is equal to one bit (zero). Spacing between dots and dashes to form a character is one bit (zero). Spacing between characters is two bits (1). The identification I use is “SD,” consisting of four bits with ten bits to spare. The program is shown in fig. 3, using the P0-P7 parallel inputs. A 0 is an on bit and a 1 is an off, or space, bit. Once the program is wired in, no other preprogramming is needed. If your program appears to drop a bit or two, shut off the power for a few seconds and then switch it back on again; this will reset the program.

operation

I monitored the transmitter on an RBA-5 low-frequency receiver, and adjusted the VFO to the desired frequency (185 kHz). When I keyed the transmitter, I heard very little key clicking, and a nice, chirp-free signal was generated. I tuned the output capacitor for maximum indication on my field strength meter. An NE-2 neon bulb glowed brightly when touched to the antenna terminal. I then tuned the 250-pF loading capacitor and found that no shift in frequency was being caused by the antenna tuning. I turned the switch to the BEACON mode to evaluate the IDer, and it worked fine.

This system has run twenty-four hours at a time and has been very reliable. Total current drain is 100 mA, of which 86 mA is used by the VMOS power amplifier. Input to the final is around 1 watt, the legal unlicensed limit.

construction notes

The complete unit can be made very small, including the power supply — it is possible to fit everything except the antenna loading circuit into a 2 × 4 × 2-inch (50 × 103 × 50 mm) Minibox.

The 3.7 mH antenna coil can be air core or low-loss ferrite core. I close-wound 138 turns of No. 26 wire and have been very reliable. Total current drain is 100 mA.

January, 1983

ham radio

references

Apple Accessories

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 Column Card</td>
<td>129.95</td>
</tr>
<tr>
<td>16 K Card</td>
<td>129.95</td>
</tr>
<tr>
<td>Fan</td>
<td>129.95</td>
</tr>
<tr>
<td>Power Supply</td>
<td>129.95</td>
</tr>
<tr>
<td>RF Mod</td>
<td>129.95</td>
</tr>
<tr>
<td>Joy Stick (Apple II)</td>
<td>129.95</td>
</tr>
<tr>
<td>Paddles Apple</td>
<td>129.95</td>
</tr>
<tr>
<td>Z80 Card</td>
<td>129.95</td>
</tr>
<tr>
<td>SCRG Switch-A-Slot</td>
<td>129.95</td>
</tr>
<tr>
<td>Paddle Adapater</td>
<td>129.95</td>
</tr>
<tr>
<td>Extend-A- Slot</td>
<td>129.95</td>
</tr>
<tr>
<td>Disk Drive</td>
<td>129.95</td>
</tr>
<tr>
<td>Controller Card</td>
<td>129.95</td>
</tr>
</tbody>
</table>

DISC CONTROLLERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>AV-3</td>
<td>6.00</td>
</tr>
<tr>
<td>AV-5</td>
<td>6.00</td>
</tr>
<tr>
<td>AV-7</td>
<td>6.00</td>
</tr>
<tr>
<td>AV-8</td>
<td>6.00</td>
</tr>
<tr>
<td>AV-10</td>
<td>6.00</td>
</tr>
<tr>
<td>AV-12</td>
<td>6.00</td>
</tr>
<tr>
<td>AV-14</td>
<td>6.00</td>
</tr>
<tr>
<td>AV-16</td>
<td>6.00</td>
</tr>
<tr>
<td>AV-18</td>
<td>6.00</td>
</tr>
<tr>
<td>AV-20</td>
<td>6.00</td>
</tr>
<tr>
<td>AV-22</td>
<td>6.00</td>
</tr>
<tr>
<td>AV-24</td>
<td>6.00</td>
</tr>
<tr>
<td>AV-26</td>
<td>6.00</td>
</tr>
<tr>
<td>AV-28</td>
<td>6.00</td>
</tr>
</tbody>
</table>

VOLTAGE REGULATORS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>7805T</td>
<td>0.97</td>
</tr>
<tr>
<td>7806K</td>
<td>1.57</td>
</tr>
<tr>
<td>7808T</td>
<td>0.97</td>
</tr>
<tr>
<td>7811T</td>
<td>0.97</td>
</tr>
<tr>
<td>7815T</td>
<td>0.97</td>
</tr>
<tr>
<td>7824T</td>
<td>0.97</td>
</tr>
<tr>
<td>7825K</td>
<td>0.97</td>
</tr>
<tr>
<td>7829T</td>
<td>0.97</td>
</tr>
<tr>
<td>7830T</td>
<td>0.97</td>
</tr>
<tr>
<td>7831T</td>
<td>0.97</td>
</tr>
<tr>
<td>7835T</td>
<td>0.97</td>
</tr>
<tr>
<td>7836K</td>
<td>0.97</td>
</tr>
</tbody>
</table>

IC SOCKETS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 pin ST</td>
<td>0.97</td>
</tr>
<tr>
<td>16 pin ST</td>
<td>0.97</td>
</tr>
<tr>
<td>20 pin ST</td>
<td>0.97</td>
</tr>
<tr>
<td>22 pin ST</td>
<td>0.97</td>
</tr>
<tr>
<td>24 pin ST</td>
<td>0.97</td>
</tr>
<tr>
<td>32 pin ST</td>
<td>0.97</td>
</tr>
<tr>
<td>64 pin ST</td>
<td>0.97</td>
</tr>
</tbody>
</table>

CRYSTALS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2768K</td>
<td>0.97</td>
</tr>
<tr>
<td>5.0328</td>
<td>0.97</td>
</tr>
<tr>
<td>5.0688</td>
<td>0.97</td>
</tr>
<tr>
<td>5.185</td>
<td>0.97</td>
</tr>
<tr>
<td>5.928</td>
<td>0.97</td>
</tr>
<tr>
<td>6.000</td>
<td>0.97</td>
</tr>
<tr>
<td>6.144</td>
<td>0.97</td>
</tr>
<tr>
<td>6.296</td>
<td>0.97</td>
</tr>
<tr>
<td>6.434</td>
<td>0.97</td>
</tr>
<tr>
<td>6.576</td>
<td>0.97</td>
</tr>
<tr>
<td>6.712</td>
<td>0.97</td>
</tr>
<tr>
<td>7.000</td>
<td>0.97</td>
</tr>
<tr>
<td>7.160</td>
<td>0.97</td>
</tr>
<tr>
<td>7.372</td>
<td>0.97</td>
</tr>
<tr>
<td>8.000</td>
<td>0.97</td>
</tr>
<tr>
<td>8.192</td>
<td>0.97</td>
</tr>
<tr>
<td>8.384</td>
<td>0.97</td>
</tr>
<tr>
<td>8.640</td>
<td>0.97</td>
</tr>
<tr>
<td>9.000</td>
<td>0.97</td>
</tr>
</tbody>
</table>

RESISTORS

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4 Watt Carbon Film</td>
<td>0.97</td>
</tr>
<tr>
<td>1/8 Watt Carbon Film</td>
<td>0.97</td>
</tr>
<tr>
<td>1/2 Watt Carbon Film</td>
<td>0.97</td>
</tr>
<tr>
<td>1 Watt Carbon Film</td>
<td>0.97</td>
</tr>
</tbody>
</table>

INTERFACE

- **8200**: 23.95
- **8203**: 28.95
- **8205**: 28.95
- **8214**: 28.95
- **8241**: 28.95
- **8224**: 28.95
- **8226**: 28.95
- **8237**: 28.95
- **8337**: 28.95
- **8338**: 28.95
- **8339**: 28.95
- **8385**: 28.95
- **8386**: 28.95

DISKETTES

- **51/4” Diskettes**: 18.95
- **SSSD**: 22.95
- **SDSS**: 27.95

PERISOFT ACCESSORIES FOR APPLE IIe

- **ALL WITH 1 YEAR WARRANTY**
- **PRINTERLINK CENTRONICS PARALLEL INTERFACE**
 - Simple to use — No configuring required
 - Use with any centronics printer — EPSON, OKIDATA, etc.
 - Includes Cable & Manual
 - **$58**
- **MESSENGER SERIAL INTERFACE**
 - Connects to any RS-232 serial device
 - 8 switch selectable drivers for printers, terminals and modems
 - Includes Cable & Manual
 - **$98**
- **TIMELINK REAL TIME CLOCK**
 - Applications in file management, word processing, communications, etc.
 - Exclusive Alarm Clock feature
 - Battery recharges automatically
 - **$83**
- **NEW BUFFERLINK ADD-ON PRINTER BUFFER**
 - No more waiting for printed output
 - Connects easily to any parallel interface
 - Expandable from 16K to 64K
 - **$138** (16K)

The Flip Sort™

The new Flip Sort™ has all the fine qualities of the original Flip Sort™, with some added benefits. Along with a new design, capacity has increased by 50%, to hold 75 diskettes and the price is more reasonable than ever. **$19.95 ea.**

The Flip Sort Plus™

The Flip Sort Plus™ adds new dimensions to storage. Designed with similar elegant lines as the original Flip Sort™, in a transparent smoked acrylic. The Flip Sort Plus™ has a storage capacity of over 100 diskettes and has all the outstanding features you have come to expect from the flip sort Family. **24.95 each**
pacemakers and RFI: safety first

We read Edwin M. Hollis’s letter (Technical Forum, June, 1983) concerning the use of transmitting equipment by a ham with an implantable cardiac pacemaker.

There is a general misconception that everyone with a pacemaker will “expire” when exposed to an RF field or a microwave oven. The twenty-five or more manufacturers of pacemakers worldwide are concerned about the response of their products to electromagnetic interference and do extensive testing on the products before release. These tests are done by the manufacturer and by independent testing organizations. Virtually all manufacturers include filters and/or shielding of the electronic circuit.

Pacemakers are prescribed for patients who have some abnormality in the normal electrical activity of the heart. Without this normal electrical activity, the heart will slow down or skip beats entirely. The pacemaker monitors this activity and generally puts out a stimulating impulse only when needed. The stimulating impulse “shocks” the heart muscle, causing the muscle to contract and the heart to beat.

The circuit that monitors the heart activity also looks for interfering signals (EMI, RFI, etc.). If interfering signals are detected, the pacemaker’s stimulating pulses will be turned on, instead of shutting off completely. There is a remote possibility of the pacemaker’s being inhibited (turned off) if the field is intense. (This warning is included in the patient handbooks and physician manuals.) If this were to occur, the patient might experience dizziness or fainting spells. As soon as the interfering signals were removed, the pacemaker would return to normal operation. No permanent damage would be done to the pacemaker’s electronic circuit.

In recent literature, there have been no reported deaths due to RFI exposure of patients with implanted pacemakers. There have been reported cases of patients experiencing fainting spells or dizziness with older pacemaker models that are no longer manufactured.

If a patient is concerned about exposure to RF fields, the pacemaker manufacturer should be contacted.

concern at high levels

I have some information for Ed Hollis, K4CN, on the effects of RFI on pacemakers (Technical Forum, June, 1983).

It depends on the type of pacemaker. Some are RFI powered externally (fig. 1); in these, a secondary coil rectifies the induced voltage to power the pacemaker. There are also nuclear-powered long-term pacemakers, employing a shielded radioactive source, which are implanted in the patient. The most popular pacemakers at present contain a lithium...
battery which can last up to ten years.

Basically, a pacemaker simulates the periodic electrical pulse which stimulates the heart muscle to a state of contraction. Its circuitry can be a monolithic multivibrator or a blocking oscillator of either the asynchronous or the more complex-demand type used in synchronous pacemaker. The latter depends on ventricular contractions' return pulses which automatically adjust the pulse rate with variations in physical activity. The pulse width for pacemakers varies from 0.5 to 2 ms with amplitudes of 5 to 9 volts.

In the normal ham shack you need not worry about any disruption of the pacemaker operation. But very high levels of RFI can override the pulsed output, especially affecting the demand type synchronized pacemaker, which is controlled from the heart muscle. Avoid standing under a broadcast station antenna (running kilowatts), stay away from high ERP microwave dishes, and when adjusting your beam antenna's gamma match, shut your transmitter off. — Salvatore J. DeFrancesco, K1RGO

heartwarmer

Dear HR:

I can think of no adequate way of thanking ham radio for printing the item "pacemakers and RFI" for me in your June issue (Technical Forum, page 98). The response to the item has been just overwhelming; the value of information gained from the data and letters cannot be adequately measured. The many letters describing personal experiences and offering technical advice were incredible.

It proved several things: first of all, that a lot of Amateurs subscribe to ham radio; and what is more important, they read it. If one ever did have any doubts about the type of person the Amateur is, such a response from so many who have taken their time and money to inform another ham (who they never even knew) about a subject which might make the difference between life or death was heartwarming, to say the least.

From the mail I received it is apparent that the pacemaker, along with other forms of medicine and electronics, has come a long way in the past few years. Even though an Amateur himself is not wearing one of the gadgets, it is nice to know that he will not be endangering a neighbor who might come too close to a transmitting antenna, causing an unexpected problem . . . please thank all the readers who spent their time and money to respond to my question.

The tremendous response to the item also proves without a doubt that there has been and just may still be a vital problem in this area. I'm sorry if I gave the impression that the experience I had in the hospital was recent. It was, in fact, quite some time ago and I have been convinced that many changes have been made since then, as well one could expect. In spite of that I found many not convinced as to the reliability of pacemakers in the presence of RFI; I was also unable to find a recent schematic, which is understandable.

Edwin M. Hollis, K4CN

--

ham radio has prepared a list of recent articles on possible RFI interference with pacemaker operation. We would be happy to make that list available to concerned readers or their physicians. Address requests to: PACEMAKERS, ham radio magazine, Greenville, New Hampshire 03048 (Enclose large SASE.) — Editor

SAY YOU SAW IT IN ham radio!

TUBES, SEMICONDUCTORS, IC'S DIODES AT SUPER LOW PRICES IN DEPTH INVENTORY

<table>
<thead>
<tr>
<th>TUBE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>OA2</td>
<td>$2.75</td>
</tr>
<tr>
<td>3-400Z</td>
<td>115.00</td>
</tr>
<tr>
<td>3-500Z</td>
<td>99.00</td>
</tr>
<tr>
<td>4CX250B/270S</td>
<td>68.00</td>
</tr>
<tr>
<td>4CX100A/8168</td>
<td>430.00</td>
</tr>
<tr>
<td>4PR66C/8252W</td>
<td>295.00</td>
</tr>
<tr>
<td>4X150B/304A</td>
<td>58.00</td>
</tr>
<tr>
<td>5AR4</td>
<td>4.73</td>
</tr>
<tr>
<td>5C22</td>
<td>165.00</td>
</tr>
<tr>
<td>5R4B</td>
<td>3.35</td>
</tr>
<tr>
<td>6AKS</td>
<td>5.29</td>
</tr>
<tr>
<td>6AL5</td>
<td>5.65</td>
</tr>
<tr>
<td>6AS5</td>
<td>5.65</td>
</tr>
<tr>
<td>6CA7</td>
<td>5.65</td>
</tr>
<tr>
<td>6DJ6</td>
<td>5.65</td>
</tr>
<tr>
<td>6GA6</td>
<td>5.65</td>
</tr>
<tr>
<td>6GSC</td>
<td>10.00</td>
</tr>
<tr>
<td>6KD6</td>
<td>10.00</td>
</tr>
<tr>
<td>6KD8</td>
<td>10.00</td>
</tr>
<tr>
<td>6KG8</td>
<td>10.00</td>
</tr>
<tr>
<td>6KV6A</td>
<td>10.00</td>
</tr>
<tr>
<td>6LF6</td>
<td>10.00</td>
</tr>
<tr>
<td>6L6C</td>
<td>10.00</td>
</tr>
<tr>
<td>6M6J6</td>
<td>10.00</td>
</tr>
<tr>
<td>12AT7</td>
<td>2.25</td>
</tr>
<tr>
<td>12AX7A</td>
<td>2.25</td>
</tr>
<tr>
<td>572B/110L</td>
<td>48.00</td>
</tr>
<tr>
<td>756A</td>
<td>10.00</td>
</tr>
<tr>
<td>811A</td>
<td>13.50</td>
</tr>
<tr>
<td>813</td>
<td>20.00</td>
</tr>
<tr>
<td>829B</td>
<td>40.00</td>
</tr>
<tr>
<td>832A</td>
<td>40.00</td>
</tr>
<tr>
<td>833A</td>
<td>40.00</td>
</tr>
<tr>
<td>866A</td>
<td>9.50</td>
</tr>
<tr>
<td>872A</td>
<td>9.50</td>
</tr>
<tr>
<td>M-2057</td>
<td>15.00</td>
</tr>
<tr>
<td>5670</td>
<td>4.40</td>
</tr>
<tr>
<td>5684</td>
<td>4.40</td>
</tr>
<tr>
<td>5687</td>
<td>4.40</td>
</tr>
<tr>
<td>5751</td>
<td>4.40</td>
</tr>
<tr>
<td>5814A</td>
<td>3.75</td>
</tr>
<tr>
<td>5879</td>
<td>5.75</td>
</tr>
<tr>
<td>5894</td>
<td>65.00</td>
</tr>
<tr>
<td>6005</td>
<td>5.25</td>
</tr>
<tr>
<td>6146B</td>
<td>7.50</td>
</tr>
<tr>
<td>6300</td>
<td>6.50</td>
</tr>
<tr>
<td>6528A</td>
<td>75.00</td>
</tr>
<tr>
<td>6550A</td>
<td>7.50</td>
</tr>
<tr>
<td>6883B</td>
<td>9.00</td>
</tr>
<tr>
<td>7360</td>
<td>12.25</td>
</tr>
<tr>
<td>7558</td>
<td>7.00</td>
</tr>
<tr>
<td>7551A</td>
<td>4.70</td>
</tr>
<tr>
<td>7868</td>
<td>3.75</td>
</tr>
<tr>
<td>8072</td>
<td>3.75</td>
</tr>
<tr>
<td>8417</td>
<td>6.87</td>
</tr>
<tr>
<td>8574</td>
<td>190.00</td>
</tr>
<tr>
<td>8875</td>
<td>210.00</td>
</tr>
<tr>
<td>8877/3CX150A7</td>
<td>475.00</td>
</tr>
<tr>
<td>8908</td>
<td>12.95</td>
</tr>
<tr>
<td>8950</td>
<td>11.95</td>
</tr>
<tr>
<td>MFR-453</td>
<td>19.95</td>
</tr>
<tr>
<td>MFR-454A</td>
<td>19.95</td>
</tr>
<tr>
<td>MFR-455A</td>
<td>19.95</td>
</tr>
<tr>
<td>2N6084</td>
<td>15.00</td>
</tr>
</tbody>
</table>

Full line of Sylvania ECG Replacement Semiconductors Always in Stock. All Major Manufacturers Factory Boxed. Hard To Get Receiving Tubes At Discount Prices. Minimum Order $25.00. Allow $3.00 For UPS Charges. Out of Town, Please Call Toll Free: 800-221-5802 and Ask For ABE.

Transleronic Inc.
1365 39th Street, Brooklyn, N Y 11214
Tel: 212-633-2800/Watts Line 800-221-5802
TWX 710-584-2480 ALPHA NYK.
zero-beat indicator for RTTY

I built the ST-5 demodulator described in *ham radio* but had difficulty finding the zero beat of the incoming signal on my receiver. The ST-5 has a meter for tuning. When the meter reading is identical for MARK and SPACE, the Model 19 machine provides solid print. However, I found it quite difficult to tune in the signal so that the meter would indicate this condition.

Dave, N2DS, our local solid-state wizard, suggested I make a device using the LM3914 chip* with its ten-LED output. The LM3914 has ten positions for the LEDs, and the resistors for them are built into the chip. The LM3914 is known as a “bar analog generator.”

I developed a plan to have two vertical columns of ten LEDs each. One column would be for MARK and one for SPACE. Required were two LM3914s, a 5-volt regulated power supply, twenty red LEDs, and two resistors, R1 and R2 (fig. 1).

Resistor R1 is 1.21k. I made this resistor using 1k, 200 ohms, and 10 ohms in series (watch tolerances). Resistor R2 is 3.83k. I used a 3k resistor plus an 800-ohm and a 30-ohm resistor in series. You’ll need two R1 and two R2 resistors.

Turning this idea into a construction project resulted in a nice visual device to tune in an RTTY signal. The circuit is more economical and better than an oscilloscope with the high voltage involved and its many controls.

construction

Only three wires are needed to connect the zero-beat indicator to the ST-5. The control circuit (fig. 1) can be built on perf or PC board, which is mounted inside the ST-5 cabinet.

Mount the following components onto the control board: two 2N3904s, two 5k trim pots, two 1k ¼-watt resistors, two 1N4148 silicon diodes, and two 0.068-µF disc ceramic caps. Mount the control board in the ST-5 demodulator so that you can adjust

*Radio Shack part #276-1767. LEDs are part #276-1622.
the trim pots easily. In fig. 2 you'll note that I've mounted the LM3914 chips between the vertical columns of LEDs. No big deal. Perhaps you would like to have the LEDs running horizontally. In any event, if you want to use the vertical display, a better way of mounting the LM3914s is to the left of the LEDs, as shown in fig. 1. This makes for easier wiring.

adjustment

With an input signal, adjust the MARK trim pot so that eight of the ten MARK LEDs light up. Then, with a SPACE signal, adjust the SPACE trim pot so that eight of the SPACE LEDs light. Another method is to tune in W1AW on 3625 kHz. Then make your adjustments, as you'll have a good MARK and SPACE signal. Be sure you get the first 15 minutes of W1AW's transmission; it changes to ASCII during the second 15 minutes.

I'd like to thank Dave Schmarder, N2DS, for his help in completing this project.

reference

Jim Dates, W2QLI
Hybrids are generally four-port devices used in UHF and microwave designs, where they are easily fabricated as part of stripline or microstrip assemblies. They usually fall into one of two general classes: the 90 degree or quadrature hybrid, and the 180-degree hybrid. Examples of the quadrature type are the side-coupled directional coupler, the branch coupler, and capacitively coupled hybrid. The 180-degree type is probably best exemplified by the ring or “rat race” coupler.

As one might imagine, the quadrature hybrid divides its signal between two outputs which are 90 degrees out of phase with respect to each other. The rat race, on the other hand, provides two outputs which are in phase opposition.

A major difference between the two classes, other than the phase relationship of their output signals, is that in order to obtain a null at the fourth port, the quadrature hybrid requires that the two loads must both match the impedance level for which the device was designed. The 180 degree variety, on the other hand, requires only that the two output loads match each other.

why?

If we replace our hybrid with another and simpler form, a center-tapped transformer, with loads on opposite ends of the secondary coil, (fig. 1A), then as long as the two loads are equal, no signal is present at the center tap, which becomes our fourth port. But suppose we require a quadrature phase relationship between the two output signals. We then introduce a quarter wavelength of line between one output and its load. This quarter wavelength of line inverts the impedance of that load, so that unless both loads match the impedance of that section of line, no balance will exist, and a signal will appear at the center tap (fig. 1B).

This simple exercise demonstrates why quadrature hybrids must match the loads to the design impedance, while 180 degree hybrids need only to match one load against the other.

The transformer form of hybrid is found to have numerous applications in the high-frequency range. With appreciable power levels, the signal may be introduced into the center tap of the transformer. Dividing into two paths, with opposing magnetic fields, saturation of a ferrite core would be avoided, while the other coil (now the secondary), will show, at its output, any unbalance between the two loads.

The use of such transformer-type hybrids in the high-frequency range has not been generally exploited, but would seem to offer much for compact power dividers, combiners and phase shifting devices.

reference

ham radio

By Henry S. Keen, W5TRS, Fox, Arkansas 72051
For literature or more information, circle the appropriate number on this card, affix postage and send to us. We'll hustle your name and address to the companies you're interested in.

| 101 | 113 | 125 | 137 | 149 | 161 | 173 | 185 | 197 | 209 | 221 | 233 | 245 | 257 | 269 | 281 | 293 | 305 | 317 | 329 | 341 |
|-----|
| 102 | 114 | 126 | 138 | 150 | 162 | 174 | 186 | 198 | 210 | 222 | 234 | 246 | 258 | 270 | 282 | 294 | 306 | 318 | 330 | 342 |
| 103 | 115 | 127 | 139 | 151 | 163 | 175 | 187 | 199 | 211 | 223 | 235 | 247 | 259 | 271 | 283 | 295 | 307 | 319 | 331 | 343 |
| 104 | 116 | 128 | 140 | 152 | 164 | 176 | 188 | 200 | 212 | 224 | 236 | 248 | 260 | 272 | 284 | 296 | 308 | 320 | 332 | 344 |
| 105 | 117 | 129 | 141 | 153 | 165 | 177 | 189 | 201 | 213 | 225 | 237 | 249 | 261 | 273 | 285 | 297 | 309 | 321 | 333 | 345 |
| 106 | 118 | 130 | 142 | 154 | 166 | 178 | 190 | 202 | 214 | 226 | 238 | 250 | 262 | 274 | 286 | 298 | 310 | 322 | 334 | 346 |
| 107 | 119 | 131 | 143 | 155 | 167 | 179 | 191 | 203 | 215 | 227 | 239 | 251 | 263 | 275 | 287 | 299 | 311 | 323 | 335 | 347 |
| 108 | 120 | 132 | 144 | 156 | 168 | 180 | 192 | 204 | 216 | 228 | 240 | 252 | 264 | 276 | 288 | 300 | 312 | 324 | 336 | 348 |
| 109 | 121 | 133 | 145 | 157 | 169 | 181 | 193 | 205 | 217 | 229 | 241 | 253 | 265 | 277 | 289 | 301 | 313 | 325 | 337 | 349 |
| 110 | 122 | 134 | 146 | 158 | 170 | 182 | 194 | 206 | 218 | 230 | 242 | 254 | 266 | 278 | 290 | 302 | 314 | 326 | 338 | 350 |
| 111 | 123 | 135 | 147 | 159 | 171 | 183 | 195 | 207 | 219 | 231 | 243 | 255 | 267 | 279 | 291 | 303 | 315 | 327 | 339 |
| 112 | 124 | 136 | 148 | 160 | 172 | 184 | 196 | 208 | 220 | 232 | 244 | 256 | 268 | 280 | 292 | 304 | 316 | 328 | 340 |

Limit 15 inquiries per request.

NAME ___________________________ CALL ___________________________
ADDRESS ___________________________
CITY ___________________ STATE _______ ZIP _______

Please use before December 31, 1983

November 1983
JPC/AZDEN

4000 SERIES
FM TRANSCEIVERS
10 METERS & DOWN

COMMERCIAL-GRADE
QUALITY AT AMATEUR PRICES

EXCLUSIVE 1 YEAR LIMITED WARRANTY! COMPARE!

THE 4000 SERIES

PCS-4300 70-cm FM Transceiver

PCS-4500 6-m FM Transceiver

PCS-4800 10-m FM Transceiver

COMING SOON
PCS-4200 1½-m FM Transceiver

PCS-300
2m Handheld
FM Transceiver
142-149.995 MHz

- WIDE FREQUENCY COVERAGE: PCS-4000 covers 142.000-149.995 MHz in selectable steps of 5 or 10 kHz, PCS-4200 covers 220.000-224.995 MHz in selectable steps of 5 or 20 kHz, PCS-4300 covers 440.000-449.995 MHz in selectable steps of 5 or 25 kHz, PCS-4500 covers 500.000-53.995 MHz in selectable steps of 5 or 10 kHz, PCS-4800 covers 28.000-29.990 MHz in selectable steps of 10 or 20 kHz.

- CAP/MARS BUILT IN: PCS-4000 includes coverage of CAP and MARS frequencies.

- TINY SIZE: Only 2½" H x 5.5" W x 6.8" D. COMPARE!

- MICROCOMPUTER CONTROL: At the forefront of technology!

- UP TO 8 NONSTANDARD SPLITS: Ultimate versatility. COMPARE!

- 16-CHANNEL MEMORY IN TWO 8-CHANNEL BANKS: Retains frequency and standard simplex or plus/minus offsets. Standard offsets are 600 kHz for PCS-4000, 1.6 MHz for PCS-4200, 5 MHz for PCS-4300, 1 MHz for PCS-4500, and 100 kHz for PCS-4800.

- DUAL MEMORY SCAN: Scan memory banks either separately or together. COMPARE!

- TWO RANGES OF PROGRAMMABLE BAND SCANNING: Limits are quickly reset. Scan the two segments either separately or together. COMPARE!

- FREE AND VACANT SCAN MODES: Free scanning stops 5 seconds on a busy channel; auto-resume can be overridden if desired. Vacant scanning stops or unoccupied frequencies.

- DISCRIMINATOR SCAN CENTERING (AZDEN EXCLUSIVE PATENT): Always stops on frequency.

- TWO PRIORITY MEMORIES: Either may be instantly recalled at any time. COMPARE!

- NICAD MEMORY BACKUP: Never lose the programmed channels!

- FREQUENCY REVERSE: The touch of a single button inverts the transmit and receive frequencies, no matter what the offset.

- FULL 16-KEY TOUCHTONE® PAD: Keyboard functions as autopatch when transmitting (except in PCS-4800).

- PL TONE: Optional PL tone unit allows access to private-line repeaters. Deviation and tone frequency are fully adjustable.

- TRUE FM: Not phase modulation. Unsurpassed intelligibility and audio fidelity.

- HIGH/LOW POWER OUTPUT: 25 or 5 watts selectable in PCS-4000; 10 or 1 watt selectable in PCS-4200, PCS-4300, PCS-4500, and PCS-4800. Transmitter power is fully adjustable.

- SUPERIOR RECEIVER: Sensitivity is 0.2 μV or better for 20-dB quieting. Circuits are designed and manufactured to rigorous specifications for exceptional performance, second to none. COMPARE!

- REMOTE-CONTROL MICROPHONE: Memory A-1 call, up/down manual scan, and memory address functions may be performed without touching the front panel! COMPARE!

- OTHER FEATURES: Dynamic microphone, rugged built-in speaker, mobile mounting bracket, remote speaker jack, and all cords, plugs, fuses, and hardware are included.

- ACCESSORIES: CS-7R 7-amp ac power supply, CS-4.5R 4.5-amp ac power supply, CS-AS remote speaker, and Communications Specialists SS-32 PL tone module.

- ONE YEAR LIMITED WARRANTY!
NEW PRODUCT ANNOUNCEMENT

QUAD BAND BEAMS

7-14-21-28 MHz

The newest innovative additions to the TET line feature true multi-element performance on 4, not 3, but 4 bands. All on a single boom!!

All the usual TET multi-band beam features are included in these two models, including wide bandwidths, increased gain, low SWR, lightweight and superior mechanical construction and easy assembly.

TET ANTENNA SYSTEMS

Available from your area distributors:

Available October, 1983

PREVENT HI-TECH HEADACHES

Our isolators eliminate equipment interaction, clean up interference, curb damaging power line spikes and lightning bursts.

ISO-1 Isolator

3 isolated sockets; quality spike suppression; basic protection... $76.95

ISO-3 Super-Isolator

3 dual isolated sockets; suppressor; commercial protection... 115.95

ISO-17 Magnum Isolator

4 quad isolated sockets; suppressor; laboratory grade protection... 200.95

TUNE IN THE WORLD OF HAM-TV!

Amateur Radio operation in the 1980’s are discovering the fascinating “World of Amateur Television: Be it Fast Scan TV (FSVT) slow scan TV (SSTV), Facsimile (FAX) or somewhere in between. Video communications modes are growing at an exciting pace!”

Now advancements are taking place in High Resolution Color SSTV and the use of personal computers for TV graphics. SSTV-FAX-RTTY communications interest is even growing in Microwaves and TVRO applications.

A5 ATV MAGAZINE® has supported these modes of Amateur Specialized Communications since 1967 — for 17 years! And now, under guidance of the United States ATV Society, HAM-TV will continue to grow rapidly. Interested? Send SASE for “free” information bulletin today.

Special six month TRIAL subscription only $16.00

One year subscription (12 Issues) “The ATV’S Journal” $28.00

Sample issue available for $2.50 ppd

A5 ATV MAGAZINE®

P.O. BOX H

L LOWDEN, IOWA 52255

113

SAY YOU SAW IT IN HAM RADIO!
Food for thought.

Our new Universal Tone Encoder lends its versatility to all tastes. The menu includes all CTCSS, as well as Burst Tones, Touch Tones, and Test Tones. No counter or test equipment required to set frequency—just dial it in. While traveling, use it on your Amateur transceiver to access tone operated systems, or in your service van to check out your customers' repeaters; also, as a piece of test equipment to modulate your Service Monitor or signal generator. It can even operate off an internal nine volt battery, and is available for one day delivery, backed by our one year warranty.

- All tones in Group A and Group B are included.
- Output level flat to within 1.5db over entire range selected.
- Separate level adjust pots and output connections for each tone Group.
- Immune to RF
- Powered by 6-30vde, unregulated at 8 ma.
- Low impedance, low distortion, adjustable sinewave output, 5v peak-to-peak
- Instant start-up.
- Off position for no tone output.
- Reverse polarity protection built-in.

Group A

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Group A</th>
</tr>
</thead>
<tbody>
<tr>
<td>67.0 XZ</td>
<td>91.5 ZZ</td>
</tr>
<tr>
<td>71.9 XA</td>
<td>94.8 ZA</td>
</tr>
<tr>
<td>74.4 WA</td>
<td>97.4 ZB</td>
</tr>
<tr>
<td>77.0 XB</td>
<td>100.0 ZD</td>
</tr>
<tr>
<td>79.7 SP</td>
<td>103.5 ZA</td>
</tr>
<tr>
<td>82.5 YZ</td>
<td>107.2 ZB</td>
</tr>
<tr>
<td>85.4 YA</td>
<td>110.9 ZZ</td>
</tr>
<tr>
<td>88.5 YB</td>
<td>114.8 ZA</td>
</tr>
<tr>
<td>97.4 JR</td>
<td>118.8 ZB</td>
</tr>
<tr>
<td>100.0 P</td>
<td>123.0 ZE</td>
</tr>
<tr>
<td>103.5 QA</td>
<td>127.3 ZA</td>
</tr>
<tr>
<td>107.2 QB</td>
<td>131.8 ZB</td>
</tr>
<tr>
<td>110.9 QC</td>
<td>136.5 ZA</td>
</tr>
<tr>
<td>114.8 QD</td>
<td>141.3 ZA</td>
</tr>
<tr>
<td>118.8 ZF</td>
<td>146.2 ZB</td>
</tr>
<tr>
<td>123.0 ZE</td>
<td>151.4 ZS</td>
</tr>
<tr>
<td>127.3 ZA</td>
<td>156.7 ZA</td>
</tr>
<tr>
<td>131.8 ZB</td>
<td>162.2 ZB</td>
</tr>
<tr>
<td>136.5 ZA</td>
<td>167.9 ZA</td>
</tr>
<tr>
<td>141.3 ZA</td>
<td>173.8 ZA</td>
</tr>
<tr>
<td>146.2 ZB</td>
<td>179.9 ZA</td>
</tr>
<tr>
<td>151.4 ZS</td>
<td>186.2 ZA</td>
</tr>
<tr>
<td>156.7 ZA</td>
<td>192.8 ZA</td>
</tr>
<tr>
<td>162.2 ZB</td>
<td>203.5 ZA</td>
</tr>
</tbody>
</table>

- Frequency accuracy, ± 0.1 Hz maximum - 40°C to + 85°C
- Frequencies to 250 Hz available on special order
- Continuous tone

Group B

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Group B</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>697 1209</td>
</tr>
<tr>
<td>1000</td>
<td>770 1336</td>
</tr>
<tr>
<td>1500</td>
<td>852 1477</td>
</tr>
<tr>
<td>2175</td>
<td>941 1633</td>
</tr>
<tr>
<td>2805</td>
<td>114.8 ZA</td>
</tr>
<tr>
<td>1600</td>
<td>1850 2150 2400</td>
</tr>
<tr>
<td>1650</td>
<td>1900 2250 2450</td>
</tr>
<tr>
<td>1700</td>
<td>1950 2250 2500</td>
</tr>
<tr>
<td>1750</td>
<td>2000 2300 2550</td>
</tr>
<tr>
<td>1800</td>
<td>2100 2350</td>
</tr>
<tr>
<td>1600</td>
<td>1850 2150 2400</td>
</tr>
<tr>
<td>1650</td>
<td>1900 2250 2450</td>
</tr>
<tr>
<td>1700</td>
<td>1950 2250 2500</td>
</tr>
<tr>
<td>1750</td>
<td>2000 2300 2550</td>
</tr>
<tr>
<td>1800</td>
<td>2100 2350</td>
</tr>
</tbody>
</table>

- Frequency accuracy, ± 1 Hz maximum - 40°C to + 85°C
- Tone length approximately 300 ms. May be lengthened, shortened or eliminated by changing value of resistor

Model TE-64 $79.95

Communications Specialists

426 West Taft Avenue, Orange, California 92667
(800) 854-0547/ California: (714) 998-3021
COMPLETE READY-TO-USE SYSTEMS

ATV TRANSMITTER/CONVERTER

$399

- High resolution and color video
- 10 watts output
- Broadcast standard sound
- Tunable downconverter and preamp

Connect to the antenna terminals of any TV set, add a good 450 MHz antenna, a camera and there you are ... Show the shack, home movies, computer games, video tapes, etc.

TOWERS by ALUMA

HIGHEST QUALITY ALUMINUM & STEEL

60 ft. Aluminum Telescoping, Crank-Up

-- 50% OFF --

EXCELLENT FOR AMATEUR COMMUNICATIONS

TOLL FREE ORDERS 1-800-826-5432

MINIATURE TOGGLE SWITCHES

ALL ARE RATED 5 AMPS @ 125 VAC

S.P.D.T.

ON-(on)

ON-(off-on)

ON-(on-off-on)

S.P.D.T.

ON-(off)

ON-(on-off)

ON-(off-on-off)

ON-(on-off-off)

S.P.D.T.

ON-(off-off)

ON-(off-off-off)

ON-(off-off-off-off)

MINIATURE 6 VDC RELAY

6 VDC RELAY

S P N

10 AMP @ 120 VAC

FMA5 Audio Subcarrier Generator ... $29.00 ppd.

Put audio on your camera video just as broadcast does at 4.5 MHz. Puts out 1 V p-p to drive TF5G. Requires row 2 mix. 150 to 800 Hz and 12 to 18 VDC, pr. 25 ma Works with any transmitter with 5 MHz video bandwidth.

SAY YOU SAW IT IN HAM RADIO
trans-equatorial DX

The autumnal equinox — with its promise of winter DX conditions to come — also signals the return of trans-equatorial openings, with their 5000 to 7000 mile (8000-11,200 km) paths.

A cross-section representation of the ionosphere along the 75-degree west meridian is shown in fig. 1. Data for this drawing was obtained by ionosonde returns off the bottom half of the ionosphere. Note a concentration of contour lines near the center and right (southern latitude) side. The thick line is a ray of energy transmitted from the earth at 20 degrees north with a low take-off (elevation) angle. This ray just grazes the middle maximum and does not return through the lower ionospheric layers or earth bounce before it grazes the second southern maximum; it then bends enough to return to the earth at 30 degrees south. This layer-to-layer reflection accounts for less signal loss (10-15 dB) than the “normal” intermediate earth reflection type transmission. This low loss makes trans-equatorial propagation very effective in providing excellent DX QSOs with our southern friends.

The maximums are located on both sides of the geomagnetic equator (+20 degrees). The electrons drift-diffuse up the geomagnetic field lines each afternoon until about 2200 local time, mainly during the winter half of the year. Geomagnetic disturbances tend to enhance the electron upward drift from the trough just south of the auroral zone. The dotted lines in the drawing are representative geomagnetic field lines.

Although lower MUFs are now being experienced because of the diminishing solar cycle, one can still expect the 15- and 10-meter bands to have some trans-equatorial propagation openings this winter during the high solar flux days in which geomagnetic disturbances occur. Listen to WWV on 2.5, 5, 10, 15, or 20 MHz at 18 minutes after the hour for solar flux, geomagnetic A and K indices, as well as for the solar activity and geomagnetic condition report and forecast. If the solar flux exceeds 150 and A is greater than 30, with K greater than 4, expect very good trans-equatorial openings.

last-minute forecast

On the higher frequency bands (10-30 meters) DX conditions should improve with rising solar flux and flare activity during the two middle weeks of the month. This leaves the first and last weeks for operation on the improving lower bands (30-160 meters). Both night and day DX should be very good this time of the year.

Expect disturbances during the following days in October: 1st, 2nd, 9-15th, 19-21st, 24-30th. This is still the equinox period when the solar wind particles are very effective in producing ionospheric effects and still within those years of maximum solar coronal holes to feed the solar wind. All in all, that’s a double dose of interesting DX conditions.

In October the Orionid meteor showers are visible from the 15th to the 25th. The maximum rate will be between ten to twenty per hour on the 20-21st of the month. The moon is full on the 21st and perigee occurs on the 4th of the month.

In most parts of the country, October represents the last opportunity of the year for antenna repair and maintenance. How are your antennas? Are
<table>
<thead>
<tr>
<th>OCTOBER</th>
<th>0900</th>
<th>1000</th>
<th>1100</th>
<th>1200</th>
<th>1300</th>
<th>1400</th>
<th>1500</th>
<th>1600</th>
<th>1700</th>
<th>1800</th>
<th>1900</th>
<th>2000</th>
<th>2100</th>
<th>2200</th>
<th>2300</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASIA FAR EAST</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>EUROPE</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>S. AFRICA</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>S. AMERICA</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>ANTARCTICA</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>NEW ZEALAND</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>OCEANIA AUSTRALIA</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>JAPAN</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>20</td>
<td>30</td>
<td>20</td>
</tr>
</tbody>
</table>

The italicized numbers signify the bands to try during the transition and early morning hours, while the standard type provides the MUF during ‘normal’ hours.

*Look at next higher band for possible openings.

88 October 1983
they in sufficiently good condition to last through winter? Do they need to be custom-tailored to your specific DX operating goals? Now's the time to check.

band-by-band summary

Ten to thirty meters will be open for the entire twenty-four hour period on most days of the month. The bands will peak toward the west, in a south-west direction across the Pacific area.

Forty and eighty meters will be the most usable nighttime DX bands. Most areas of the world will be workable from dusk until sunrise. Hops shorten on these bands to about 2500 miles for 40 meters and to 1500 miles for 80 meters, but the number of hops can increase since signal absorption in the ionosphere's D region is low during the night. The path follows the direction of darkness across the earth, similar to the way the higher bands follow the sun. Vertical antennas over good ground systems give the lowest take-off angles for long skip on these bands during darkness.

One-sixty meters will be similar to 80 meters, providing good working conditions for enthusiastic DXers who like to work the night and early morning hours. In terms of QRN, this band will be quieter now.

ham radio
Cushcraft 32-19: 19-element 2-meter Boomer

If you’ve been paying attention to the results of VHF/UHF antenna gain contests, you’ll know that the Cushcraft Boomer has been a pretty successful design. In a few instances, Boomers have been able to walk away with top honors for each band in which they were entered.

Using the latest in computer design techniques, Cushcraft engineers optimized spacing and element length to ensure maximum performance. (See table 1.) The Boomer also uses a T-match driven element with a 1:1 coaxial balun to provide coaxial decoupling and a low VSWR. One unique new feature on the Boomer is the Trigon three-element reflector assembly. The Trigon design enhances the front-to-back ratio and gives the antenna a sharper forward pattern.

Assembling this antenna is a very easy job taking less than two hours to complete. All of the elements are measured and precut for ease of assembly. Fasteners are stainless steel to eliminate the problems caused by corrosion. Since the Model 32-19 uses such a long boom (22 feet) Cushcraft has added a supporting truss to provide an extra measure of mechanical stability and to keep the antenna level. All of the aluminum used is a special heat-treated tubing that is designed to take the strongest of storms without damage and keep on performing.

As many of you know, my interest in ham radio has been, for many years, 160 meters. But using the 2-meter Boomer during this June’s VHF contest was a real joy. I couldn’t help comparing operation on the two different bands; as I carefully and patiently pieced together the calls of stations I worked (there was fading and other propagation anomalies) I felt that my time spent ferreting calls out of the muck on 160 meters had been excellent preparation for two-meter contesting. It was a relief not to have to fight any thunderstorm QRM. I had a lot of fun during the contest and was able to take advantage of the excellent Aurora Sunday night, June 12. Being limited to just 10 watts hurt; plans are now underway to get at least 100 watts cooking in time for the next contest. For information, contact Cushcraft, P.O. Box 4680, Manchester, New Hampshire 03108. RS#301

The best way to describe this 80-meter broadband wire antenna is simple. For those who want to operate anywhere between 3.500 and 4.000 MHz without having to adjust wire lengths or a tuner, this 80-meter version of the Snyder product line is an answer.

From the moment of unpacking to final installation, less than 15 minutes is involved. (This assumes that a skyhook at 45 or more feet is available and the coaxial cable is already dressed.) At my location, a heavily wooded area of New Hampshire (for those of you who don’t live here, it’s all heavily wooded), a tree limb at 45 foot height was used as the support. However, telescoping masts, towers, tall poles can all serve that same function.

How does the antenna achieve broadband operation without tuning? It uses a patented technique that achieves this performance by combining a sealed center unit that weighs about one pound (0.46 kg) and contains no reactive elements, according to Snyder, with a middle cable assembly (that looks like a sleeve) and outer lengths of copperweld wire.

Snyder antenna: model FB 75/80

This antenna has an SWR curve that has the shape of the letter W (see fig. 1). Feeding a small amount of power into this antenna at every 25 kHz from 3.5 to 4.0 MHz and using a Bird thru-line wattmeter basically confirmed the manufacturer’s specifications. This antenna “wants” to be in the clear away from all large conducting and dielectric objects or obstructions to provide best performance.

On the air comparisons between this antenna in an inverted-v configuration and a 50-foot apex high sloping delta loop revealed the expected results. Using a rapid switching arrangement it compared favorably (same report) with the Delta loop antenna for most U.S. contacts. The sloping delta loop has the edge for Europe and longer paths. In all fairness it must be mentioned that the sloping delta loop performs as well as my full size 80-meter Bobtail curtain in its favored directions.

Conclusion

The Snyder Antenna Company has accomplished its goal in providing Amateurs with a non-tune broadband basic antenna. It is a pleasure to install and operate with any transceiver and especially complements any of the modern “instantaneous” frequency change solid-state units. In addition to base station use, it is well suited for portable operation be it emergency, field day, or DXpedition. For information about Snyder products, contact the company at 250 East 17th Street, Costa Mesa, California 92627. RS#303

N1ACH

K2RR
BBC Metrawatt model MA3E multimeter

There’s no doubt about it: digital readouts are definitely in vogue. So it came as some surprise when an analog multimeter appeared on my desk for review the other day.

BBC Metrawatt entered the American market fairly recently when it introduced a rather complete line of both digital and analog meters. Model MA3E represents a moderately-priced unit that offers a number of appealing features.

My first impression was that this is a very European unit, with its gracefully curved lines in a very neat and functional design. (No wonder — its unique case was designed by Porsche.) To protect the meter when not in use, the unit folds to make a convenient, easy-to-transport package. The high-impact plastic case is built to withstand industrial use or abuse without compromise in performance.

The MA3E incorporates an electronic amplifier providing a combined total of 35 measuring ranges that include 18 for AC and DC voltages up to 1000 volts; 12 for AC and DC currents up to 10 amperes; and five resistances up to 20 megohms, including a battery check — all while providing a constant input resistance of 10 megohms.

All measuring ranges are manually selected by use of a switch located on the main frame. The viewing angle of the meter can be varied to meet the needs of the user.

The unit operates from an internal 9-volt battery or from an external power supply. Low power consumption ensures long battery life.

The test leads are recessed into the meter and specially shielded to prevent accidental shorting while plugged into the meter. The leads are also threaded to accept alligator clips and other accessories.

The MA3E measures approximately 5-3/4 x 4-1/2 x 1-3/4 inches (146 x 118 x 44 mm) and weighs less than one pound (0.45 kg), without battery.

Luckily the MA3E arrived for review while we were rebuilding WB1AHV, the ham radio Amateur station. While crawling up and down connecting power lines and antenna leads, I found the MA3E to be a real joy to use. The adjustable meter made reading voltages or determining continuity a snap. Being a bit ham-fisted, I accidentally knocked the meter off the operating table, but the rugged case wasn’t damaged at all, to my relief.

This is a useful meter that, at under $200, should find wide acceptance in both Amateur Radio and industrial applications.

Detailed information on the MA3E and other models in the product line are available from BBC-Metrawatt, 6901 West 117th Avenue, Broomfield, Colorado 80020, RS#302.

N1ACH

Advanced Receiver Research

Box 124 • Burlington CT 06013 • 203 582-9409

Communication Concepts Inc.

2648 North Aragon Ave • Dayton, Ohio 45420 (513) 296-1411

TIDBITS

THE PRACTICAL HANDBOOK OF AMATEUR RADIO FM & repeaters

by Bill Pasternak, WAGITF

Comprehensive handbook covers just about every facet of FM operation in a simple, easy to understand manner. 45 chapters plus all kinds of FM and Repeater topics within easy reach. You get a solid background in FM theory, control devices for repeaters, how to build a repeater, ATV and RTTY application ideas and more. This huge, fact-filled repeater book is a must for anyone interested in FM communication. 1980, 536 pages, 1st edition.

T-1212 Softbound $12.95

Please add $1.00 for shipping and handling.

HAM RADIO'S BOOKSTORE

Greenville, NH 03048

TIDBITS

MORSE CODE, BREAKING THE BARRIER

by Phil Anderson, W0X1

Learning the Morse Code does not have to be the painful experience many folks make it out to be. This little booklet is chockfull of helpful and highly recommended hints and tips on how to learn the Morse Code. Uses the high/low method to eliminate the dreaded 10 wpm plateau. ©1982, 1st edition.

PA-MC Softbound $1.50 each

Please add $1.00 for shipping and handling.

HAM RADIO'S BOOKSTORE

Greenville, NH 03048
THE AFFORDABLE REPEATER
FROM THE MANUFACTURER OF COMMERCIAL & MILITARY EQUIPMENT MADE IN USA AT OUR MIAMI, FLORIDA PLANT

$699. Basic Price

FEATURES:
- Several Frequency Ranges
 - 30-50 MHz, 132-172 MHz,
 - 200-240 MHz, 380-480 MHz.
- Sensitivity .3 Microvolt 12 DB S/N
- Power Output 30 Watts.
- Four Pole IF Filter.
- Complete separate transmitter and Receiver
- 13.6 VDC or 115/220 UAC Power Supply.
- 19" Rack Mounting.

OPTIONS
- Helical Filter Installed $65.00.
- 8 Pole Filter Installed $20.00.
- Cooling Fan Installed $30.00.
- Duplexer
- Deluxe Cabinets
- Timer
- Tone Panel

OTHER PRODUCTS
- Simplex and Full Duplex
- VHF/UHF Mobiles and Bases
- Rural Radio Telephone
- Auto Patch
- HF SSB Transceiver
- Catalogues available upon request

PAYMENT TERMS:
- Domestic Orders 50% with order
- Foreign Orders Letter of Credit or Advance Payment.
- Allow 2 to 6 weeks for delivery.

DEALER INQUIRIES INVITED
ITS International Telecommunications Systems Florida Inc.
8416 N.W. 61 ST. / MIAMI, FLORIDA 33166
TEL: (305) 593-0214 / TELEX: 525834

WARNING
SAVE YOUR LIFE OR AN INJURY

Base plates, flat roof mounts, hinged bases, hinged sections, etc., are not intended to support the weight of a single man. Accidents have occurred because individuals assume situations are safe when they are not.

Installation and dismantling of towers is dangerous and temporary guys of sufficient strength and size should be used at all times when individuals are climbing towers during all types of installations or dismantlings. Temporary guys should be used on the first 10' or tower during erection or dismantling. Dismantling can be even more dangerous since the condition of the tower, guys, anchors, and/or roof in many cases is unknown.

The dismantling of some towers should be done with the use of a crane in order to minimize the possibility of member, guy wire, anchor, or base failures. Used towers in many cases are not as inexpensive as you may think if you are injured or killed.

Get professional, experienced help and read your Rohn catalog or other tower manufacturers' catalogs before erecting or dismantling any tower. A consultation with your local, professional tower erector would be very inexpensive insurance.

RTTY/CW terminal

The new Flesher Corp. TU-470 RTTY/CW terminal unit receives up to 300 baud on all three shifts and provides TTL and RS-232 compatible I/O, including bi-polar CW and PTT outputs, for complete remote control and isolation of computer level I/O keying.

Each TU-470 RTTY filter board is a high-sensitivity, high Q, 3 stage, 6 pole active bandpass filter said to provide excellent stability and sharpness. A signal balance restorer circuit has been incorporated to allow reception of non-standard RTTY shifts on mark only. The CW filter/demodulator has a 3 stage, 6 pole filter centered at 750 Hz for CW reception.

The unit also provides crystal controlled AFSK, FSK, 170 Hz narrow preselector filter, built-in 20 or 60 mA loop supply, autostart, threshold control, 5 LED indicators, bar graph tuning, scope outputs, reverse receive, reverse transmit, and much more.

The TU-470 RTTY/CW terminal unit is available wired and tested for $499.95.

For more information, contact Flesher Corporation, P.O. Box 976, Topeka, Kansas 66601. RS#304

lightning protector

The new IS-RCT from PolyPhaser relies on fast 50 nanosecond three-element crowbar gas tubes to provide effective protection from lightning for the hamshack rotor control box.

Designed to be mounted on a ground pipe or grounded tower leg, with terminals down to keep snow and rain off connectors, the unit is housed in a heavy duty stabilized plastic case. All grounding hardware is stainless steel.
keyer trainer

The AEA Basic Trainer Model KT-3 is a computerized Morse code instructor. Character speeds are given at 20 WPM with a three-second interval between letters or letter groups. This method of learning helps eliminate the plateau so many Morse code students encounter between 10 and 12 WPM. This system does not encourage the student to learn a “dot-dot-dash-dot” for F, but rather one cohesive sound (at the character speed of 20 WPM). As a result, the student does not have to unlearn bad habits such as counting dots and dashes in order to copy code.

Because the sound of any given letter does not change from 0 to 20 WPM, it is easier for the student to increase copying speed if he or she has learned code at a rate of 20 WPM. To facilitate this learning technique, the minimum programmable speed on the Basic Trainer is 18 WPM character speed. After learning the code, the user can progress up to 99 WPM with the KT-3. Each character is taught separately by repetition. The student progresses only after he is confident he knows the letters being presented by the KT-3.

After the first letter (F, in this case) is learned, a student may progress to the letter K. After learning K, the student activates the computer to present the letters F and K in random sequence at a 20 WPM character speed. This technique continues as the student learns each subsequent letter in the alphabet.

Easy to operate, the KT-3 requires no computer programming skills. An earphone monitor jack is provided for private practice sessions. The KT-3 operates from 12 Vdc (or 117 Vac with optional AC-1 Wall Adaptor). For details, contact Advanced Electronic Applications, Inc., 2006-196th St. SW, Lynwood, Washington 98036-0918.

For information, contact PolyPhaser Corporation, 1500 West Wind Boulevard, Kissimmee, Florida 32741. RS#305

six-band high-frequency vertical

Hustler has announced the availability of its new 6-BTV six-band trap vertical for the high-frequency ham bands.

Based on the popular 4-BTV, the new 6-BTV offers full band coverage of 10, 15, 20, 30, and 40 meters with a VSWR of under 1.6:1 at band edges and up to 100 kHz on 75 or 80 meters.

According to the manufacturer, fiberglass reinforced high Q traps, extra-strength aluminum components, and stainless steel hardware combine to make the new 6-BTV the most rugged, high performance, high-frequency vertical available.

The 6-BTV lists for $199.95. For additional information, contact Hustler, Inc., 3275 North B Avenue, Kissimmee, Florida 32741. RS#307

fm dual band

Trio-Kenwood has announced the release of a compact new combination 2-meter and 70-centimeter FM radio, model TW-4000A. Among its features are a large, easy-to-read LCD display, ten channels of memory with offset recall, lithium battery memory back-up, dual digital VFO’s, priority watch, common channel, programmable memory scan, band scan, and a full 25 watts of RF output on each band.

An optional accessory available for use with the TW-4000A is the VS-1 voice synthesizer unit that announces the operating frequency, VFO “A” or “B”, repeater offset, and the memory channel number when the unit is turned on. When another frequency is selected, or when a memory is recalled. The VS-1 is designed to be easily installed inside the TW-4000A.

Additional information is available from Trio-Kenwood Communications, 1111 West Walnut Street, Compton, California 90220.

AMTOR terminal

The ARQ1000 is a full send-receive terminal for the AMTOR ARQ code. All features of the CCIR 476-2 Recommendation are supported. Modes include: ARQ, FEC, SEL-FEC, and MONITOR. The ARQ1000 may be used with the HAL DS3100 and ST6000, CT2200, CT2100, or CRW6850 terminals or any ASCII or Baudot terminal at baud rates from 45 to 300 baud. Non-volatile keyboard-programmable

Crimp and/or solder lugs are included. The introductory price is $29.95.

For information, contact Advanced Electronic Applications, Inc., 2006-196th St. SW, Lynwood, Washington 98036-0918. RS#306
Be BIG on 40 or 80!

Make this the year where you hear and are heard! The sun spot number is dropping fast and there is still time to install your new INSTANTARRAYTM system before the temperature dives. Order now and "own" your frequency during the fall CQ WW tests. Run JA's on 80 in the late afternoons this December and join them for breakfast the next AM. Achieving the 80 & 40 portions of the 5BWAZ & DXCC awards should be fun, not a chore.

ColTMatchTM will sell you any individual component we make or a whole system! Start off with a single 40 or 80 meter ¼ wave vertical radiator or purchase a ready-to-erect two or four element INSTANTARRAYTM. The complete INSTANTARRAYTM system includes the verticals, their mounts, insulated guys. SS hardware galore, our attractive LOBE SELECTOR control box with self contained DC supply, a relay box which distributes the power to the vertical radiators. Our 4-40 and 4-80 systems provide low angle 360 degree coverage in 90 degree segments with exceptional rejection of signals from the rear and sides. All of this in milliseconds.

Trying to show you all this in an HR ad is virtually impossible. Hence we have produced a dynamite VHIS demo video tape which tells it all. We will loan you this tape upon receipt of a $3.50 deposit which will be either refunded when you return our tape or will credit against your first order.

Yes, we also do have a brand new brochure with diagrams, pictures, specs, etc. which we will send you gratis. We accept both MASTERCARD and VISA.

P.O. BOX 230, CARLISLE, MA 01741
(617) 371-1242

ARQ access code, SEL-CAL code, and WRU answer-back codes are included. The ARQ1000 is housed in a cabinet that matches the CT2200 and CT2100. Available options include the DM170 internal demodulator and ARQ10X encryption module.

single chip code-practice processor

The world’s first single chip code-practice processor, the CPP1, is a true 8-bit microcomputer containing all the tables and timing necessary to learn Morse code. By adding a simple dot clock and tone generator to this processor, it is possible to practice Morse code at rates from 1 WPM to over 100 WPM.

The CPP1 is said to eliminate the frustrations of trying to learn code by tape, and promises to put an end to searching for a particular practice group, stopping and rewinding, and having to learn at whatever speeds the tape offers. For further information, contact Micro Digital Technology, P.O. Box 1139, Mesa, Arizona 85201. RS#309

base station transceiver

ICOM has announced the introduction of a new base station transceiver for 2 meters, the IC-271A. Covering the entire 2 meter ham band, it features fM/upper sideband/lower sideband and CW modes, has a 25 watt output standard, with an optional built-in power supply available. It has 32 full function memories. Built-in sub-audible tones selectable from the main tuning dial provide ease of operation. Frequencies, modes, tones and offset may be written into each memory. Scanning is possible with the IC-271A; either the whole band, memories or selected modes may be scanned. The IC-271A features ICOM’s new high contrast, two-color display, showing frequency digits in white and control functions in red.

For further information, contact ICOM America, Inc., 2112-116th Ave., NE, Bellevue, Washington 98004. RS#310

miniature soldering iron

An industrial grade precision miniature soldering iron that heats up quickly, has a non-melt handle and is suited for students, hobbyists, and professionals is available from M.M. Newman Corporation.

The Antex Model G Soldering Iron features a wide range of slide-on tips. Designed for delicate circuitry, the tips are directly grounded and heat up in only 45 seconds. Compact and fully portable, the Antex Model G Soldering Iron weighs only 3/4 ounce without cord. Built for continuous or intermittent use, the tip slides directly over the heating element and heats up to 700-750 degrees F. Complete with a premium grade pretinned 3/32 inch tip, the Model G sells for $15.95.

For more information, contact M.M. Newman Corporation, 7 Hawkes Street, P.O. Box 615A, Marblehead, Massachusetts 01945. RS#312

multi-outlet panel

A new multi-outlet panel from Flexiduct provides four circuit-breaker-protected outlets for safe use where too few electrical outlets exist. The new outlet-extender panel features 4 grounded outlets, an on/off switch, a circuit breaker with a push-button reset (to protect from overloads) and a double-insulated cord with a three-prong end plug. It is rated at 15 amps, 125 volts, 1875 watts and is UL listed.

Other Flexiduct safety products include 4 and 6 outlet multi-outlet strips, a plug-in surge suppressor, a multi-outlet surge suppressor,
two more Kulduckies

Larsen Electronics has added two new antennas to its Kulduckie line. Both the Helical Quarter Wave and the Stout are designed to work with most hand-held radios.

The Helical Quarter Wave antenna combines the best features of the helical and full quarter wave antenna. It is said to deliver better performance with a shorter, more stable antenna than a full quarter wave VHF. The Stout antenna series features a slightly larger diameter helix with a closer pitch for applications in which space is a problem. Both new antennas are available in VHF frequencies 136-142, 142-150, 150-162, and 162-174 MHz.

For more information, contact Larsen Electronics, P.O. Box 1799, Vancouver, Washington 98668. RS#314

new dish

A satellite TV antenna made by an entirely new method of production has been announced by Total Television, Inc.

The design of the 12 foot diameter dish consists of a heavy-duty expanded aluminum mesh reflective surface supported by twenty-four injection molded ribs connected to an injection molded main support.

The material from which the dish structure is molded is a sophisticated plastic formulated to endure all kinds of weather. Products molded from the plastic material have been used for nearly twenty years to replace concrete in exterior and underground applications. The manu-
NEW! MULTI-CHANNEL MICROWAVE

Complete Antenna Systems from $699.50

Full 800 Mhz Range
Tune 1.9-2.7 Ghz
Includes all ITFS Channels

DEALERS WANTED

COD’s and Credit Card
Orders call TOLL FREE
1-800-247-1151

GALAXY ELECTRONICS
6009 N. 61 Avenue
Glendale, AZ 85301
1-602-247-1151

NEW 1984 RADIO AMATEUR CALLBOOKS

READY DECEMBER 1st!

Known throughout the world for accuracy, the 1984 Callbooks are a better value than ever before. The U.S. Callbook contains over 430,000 listings; the Foreign Callbook has over 400,000. More than 75,000 changes have been made in each edition since last year. Special features include call changes, Silent Keys, census of amateur licenses, world-wide QSL bureaus, international postal rates, prefixes of the world, and much more. You can't beat this value! Order your 1984 Callbooks now for earliest delivery.

<table>
<thead>
<tr>
<th>Each</th>
<th>Shipping</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Callbook</td>
<td>$19.95</td>
<td>$23.00</td>
</tr>
<tr>
<td>Foreign Callbook</td>
<td>18.95</td>
<td>22.00</td>
</tr>
</tbody>
</table>

Keep your 1984 Callbooks up to date.
The U.S. and Foreign Supplements contain all activity for the previous three months including new licenses. Available from the publisher in sets of three (March 1, June 1, and September 1) for only $12.00 per set including shipping. Specify U.S. or Foreign Supplements when ordering. Illinois residents add 5% sales tax. Offer void after November 1, 1984.

WARC for FT-101

Modernize any model of the original FT-101 Series by adding all three WARC bands for RX and TX:
- Use 10 MHz now; be ready for the others.
- Increase resale value of your rig.
- Easy installation, detailed instructions.
- Includes all crystals, relays, etc.
- Tested, fool-proof design for all but ‘ZD.

FT-101 WARC Kit #4N......ONLY $25.
Shipping $3 (Air $5). Florida sales tax 5%.

GO FOX TANGO — TO BE SURE!

For other great Yaesu modifications get the top-rated FT Newsletter. Still only $5 per calendar year (US), $9 Canada, $12 Overseas.

FOX TANGO CORPORATION
Box 15944 H. W. Palm Beach, FL 33416
(305) 683-9587

Facturer says that the material, Structuralite,™
will be unaffected by temperatures ranging
from minus 55 degrees to plus 255 degrees F.
The mesh reflective surface is suitable for 4
GHz microwave signals used in all current U.S.
domestic satellites, yet will allow the wind to
pass and permits the background to be seen
through it.
For further information, contact Total Tele
vision, Inc., 17537 N. Umpqua Highway, Rose
burg, Oregon 97470. RS#315
dipole
The new K75B multi-band dipole antenna
from Kilo-Tec is designed for use on the 1.8
MHz through 30 MHz amateur radio bands. It
uses no loading coils or traps and will handle 2
kW PEP. The price is $59.95.
For further information, contact Kilo-Tec,
P.O. Box 1001, Oak View, California 93022.
RS#316

SAY YOU SAW IT IN HAM RADIO
plate frames

License plate frames personalized with individual call signs are now available from BHC, Incorporated. Molded from black ABS plastic—the same material used for trim on many new cars, a set of HAM-TAGS consists of two black frames with white, permanent vinyl letters in the large imprint area. (License plates differ from state to state so drivers would have to check their plates to see if their calls would go at the top or bottom of the frame.) In states that issue only one plate, BHC will furnish a frame for the rear and a plate for the front. HAM-TAGS are $12.95 per set plus $1.50 shipping; information is available from BHC, Incorporated, 1716 Woodhead, Houston, Texas 77019. RS#317

scaleable ac voltmeter

The Slimline II ac voltmeter from Nationwide Electronic Systems, Inc. (NES), scales ac voltage input signal to any desired unit, mounts quickly, and features a large (0.9 inch) LED display which can be easily scaled to read out directly in the engineering units. The Slimline will accept the output from a voltage transformer, ac tach generator, or any device with an ac voltage output.

Examples of use include scaling 34.52 Vac from a potential transformer to read directly as 1.726 kV; 0.825 Vac from a current-to-voltage transformer to read directly as 165 ac amps; and 43.5 Vac from an ac tach generator to read directly as 783 rpm.

All adjustments and controls for this meter are accessible under the flip-up door located beneath the display. Models are available for ranges from 0 to 200 Vac.

Also available from NES are scaleable dc voltmeters, scaleable ammeters, clocks, counters, process meters, and the unique ASCII Bustle® (BCD/ASCII converter). All NES products are backed by a solid 3-year warranty.

For more information or a copy of the NES Condensed Catalog, contact NES, Inc., 1536 Bustle’, 1716 Woodhead, Houston, Texas 77019. RS#317

field-strength element

An extremely sensitive relative field-strength element, Model 4030, expands the usefulness of the thousands of Thruline wattmeters in the field by helping to optimize the radiated signal of any transmitter from 2 to 1000 MHz.

Model 4030 employs modern broad-band circuitry instead of the highly reactive resonant networks of most field-strength meters, which limit their utility. The element consists of a flexible receiving antenna, a single high-pass network and a variable gain rf amplifier/detector. A battery-saving feature turns everything off when the element is removed from the wattmeter. Typically full scale deflection is obtained from a one watt CW source at 150 MHz through a quarter wave antenna 8 feet distant. Dynamic range is at least 30 dB and battery life is 100 hours or more.

For more information, contact Bird Electronic Corporation, 30303 Aurora Road, Cleveland (Solon), Ohio 44139. RS#319

Heil Sound, the company that pioneered proper audio equalization techniques for major performing groups and communicators, invites you to be part of one of the biggest advancements in Single Sideband transmission since the ‘Donald Duck’ vs. AM days.

If you are not satisfied with the “sound of your station”—it’s no wonder—most “communications” microphones used today were designed for “public address” use, not for sophisticated SSB techniques.

No one microphone can be all things to all Hams, so this new HC-3 element and HM-5 mic were developed only for maximum clarity on SSB transmissions.

The response of this tiny ceramic element rolls off sharply below 350 Hz and above 3100 Hz with a peak at 2400 Hz for high articulation in the speech range.

Hams who care about maximum results in getting over, around and through DX pile-ups now have another weapon in their arsenal... The Key Element!

Heil Sound, the company that pioneered proper audio equalization techniques for major performing groups and communicators, invites you to be part of one of the biggest advancements in Single Sideband transmission since the ‘Donald Duck’ vs. AM days.

If you are not satisfied with the “sound of your station”—it’s no wonder—most “communications” microphones used today were designed for “public address” use, not for sophisticated SSB techniques.

No one microphone can be all things to all Hams, so this new HC-3 element and HM-5 mic were developed only for maximum clarity on SSB transmissions.

The response of this tiny ceramic element rolls off sharply below 350 Hz and above 3100 Hz with a peak at 2400 Hz for high articulation in the speech range.

Hams who care about maximum results in getting over, around and through DX pile-ups now have another weapon in their arsenal... The Key Element!

Heil Sound, the company that pioneered proper audio equalization techniques for major performing groups and communicators, invites you to be part of one of the biggest advancements in Single Sideband transmission since the ‘Donald Duck’ vs. AM days.

If you are not satisfied with the “sound of your station”—it’s no wonder—most “communications” microphones used today were designed for “public address” use, not for sophisticated SSB techniques.

No one microphone can be all things to all Hams, so this new HC-3 element and HM-5 mic were developed only for maximum clarity on SSB transmissions.

The response of this tiny ceramic element rolls off sharply below 350 Hz and above 3100 Hz with a peak at 2400 Hz for high articulation in the speech range.

Hams who care about maximum results in getting over, around and through DX pile-ups now have another weapon in their arsenal... The Key Element!

You can easily install this small, advanced HC-3 element, with its broad-range impedance-matching characteristics, into virtually any microphone case you own, or purchase the custom HM-5 mic with HC-3 installed.

...Have not yet heard an FT-101 sound any better than when used with The Key Element... —Paul, G3AWP

...I now have a comfortable feeling that my audio is better than the rig was originally capable of... —Ken, W9UBS

“...Thank you for the fine report; All reports to date have been excellent...” —Lee, W1SE

For those who desire the ultimate audio into and out of your transmitter/ transceiver, consider the ideal combination of the Heil EQ-200 audio equalizer and HM-5 microphone.

For more information, or to order the HC-3 cartridge element at $19.95 the HM-5 SSB microphone at $54.95, or the EQ-200P at $59.95, contact Heil Ltd., Marissa, IL 62257. 618-295-3000.

“affordable” repeaters

A new line of repeaters in several frequency ranges is available from International Telecommunications Systems Florida Inc. Ranges include 30-50 MHz, 132-174 MHz, 200-240 MHz, 380-480 MHz, or any band combination. The power output is 30 watts; the unit operates from 13.6 VDC or 115/220 Vac and costs $499.

For further information, contact International Telecommunications Systems Florida Inc., 8416 N.W. 61st Street, Miami, Florida 33166. RS#320
handheld DMM

Keithley Instruments, Inc., has introduced the Model 132 Handheld DMM as their top of the line 3-1/2 digit meter. The unit combines the field service capabilities of Keithley Handheld DMM’s with the two most often required additional measurement capabilities, TRMS ac and temperature.

The 132 features unique characteristics: according to Keithley, it is the only handheld DMM which incorporates TRMS and TEMP; carries the lowest price of any handheld TRMS DMM available; and is the only one with an integral TC connector and full probe selection.

Available in both a degree F version (132F) and a degree C version (132C), the 132 has a complete dc voltage range from 200 mV to 1000V with 0.25 percent accuracy, current ranges from 2 mA to 2 A and resistance ranges from 200 ohms to 20 megohms. The 132C measures temperature from -20 degrees to 1370 degrees C, the 132F from 0 degrees F to 2000 degrees F using optional type K thermocouple sensors or probes.

For complete information, contact Keithley Instruments, Inc., 28775 Aurora Road, Cleveland, Ohio 44139. RS#321

fm transceivers

Amateur-Wholesale Electronics has announced the new PCS-4000 series of FM transceivers. The familiar PCS-4000 covers the 2-meter band plus adjacent CAP and MARS frequencies, from 142 to 149.995 MHz, with 25 watts output. Three new units are now available for 10 meters, 6 meters, and 70 centime-
The PCS-4800 covers 28 to 29.99 MHz in steps of 10 or 20 kHz. The PCS-4500 covers 50 to 53.995 MHz in steps of 5 or 10 kHz. The PCS-4300 covers 440 to 449.995 MHz in steps of 5 or 25 kHz. A 220-MHz unit will soon be available.

The new PCS-4800, PCS-4500, and PCS-4300 employ the same advanced microcomputer chip found in the PCS-4000, providing the versatility and ease of operation found in the 2-meter Azden transceiver. Standard repeater splits, 16 memory channels in two separate banks, up to eight odd splits, dual memory scan, dual programmable band scan, free and vacant scanning modes, and frequency reverse are but some of the features. Each unit has 10 watts or 2 watt selectable output, discriminator scan centering, a digital S/R meter, busy-channel and transmit LED indicators, and a full 16-key autopatch pad (except for the PCS-4800).

All units come with dynamic remote-function microphone, built-in speaker, mobile mounting bracket, remote speaker jack, and all hardware. The size is 2 inches high by 5-1/16 inches wide by 6-3/4 inches deep. The bright green LED frequency display and illuminated keyboard provide visibility under a variety of ambient conditions. All are designed for mobile or fixed station use.

For further information, contact Amateur-Wholesale Electronics, 8817 S.W. 129 Terrace, Miami, Florida 33176. RS#322

SSTV/RTTY/CW/FAX tuner

The new “Blinky” Model 959 is a SSTV tuning unit consisting of an op-amp limiter amplifier and six active precision tuned, temperature stable bandpass filters, providing a visual blinking LED indication when a received SSTV, RTTY, FAX, or CW signal is perfectly tuned. The user simply tunes until all six LED’s are blinking at the same time and the SSTV is tuned. For RTTY, FAX, or CW, the user tunes until the first two LED’s are blinking (low tones) or the last two LED’s (high tone).

“Blinky” Model 959 is made in the United States and sells for $99.95. For more information, contact TimeKit, P.O. Box 22277, Cleveland, Ohio 44122. RS#324

digital military time clock

The Model 193A Digital Military Time Format Wall Clock from Benjamin Michael Industries, Inc., features a 1-inch digital display for excellent visibility. It also features quartz accuracy, total immunity to power line failures and disturbances, and all solid-state construction. The clock will operate for well over one year on a single AA battery.

Housed in a hand-made solid walnut case, the model 193A is priced at $129.95 plus $3.00 shipping. For more information, contact Benjamin Michael Industries, Inc., 65 East Palatine Road, Prospect Heights, Illinois 60070. RS#323

WEBSTER ASSOCIATES

115 BELLARMINE
ROCHESTER, MI 48063

CALL TOLL FREE
800-521-2333
IN MICHIGAN 313 - 375-0420

IN STOCK QUICK DELIVERY

MODEL 4381 RF POWER ANALYST

This new generation RF Wattmeter with nine-mode system versatility reads...

AUTHORIZED DISTRIBUTOR

CALL TOLL FREE
1-800-654-0795
for info or ordering
312 12th Avenue South
Nampa, Idaho 83651

WB6TOC (208) 466-6727 KI7D

Nampa Satellite

SYSTEMS

HAMS SERVING HAMS

Lowest prices in TVRO INTRODUCING
The NSS 80A

.45 F/D Spun Aluminum Dish weighs only 60# - True polar- mount - Quadpod Feed.

SAT-TEC
KLM Sky Eye IV
Universal Comm. DL2000
AUTO-TECH GLR 500
DRAKE ESR 224
DEXCEL DXP 1100-stereo
DRAKE ESR 24
Luxor-Stereo

PRODELIN
10' Dish - 3/4 F/D - B panels - The Ultimate in TVRO Dishes.

SAT-TEC
KLM Sky Eye IV
Universal Comm. DL2000
AUTO-TECH GLR 500
DRAKE ESR 224
AUTO-TECH GLR 520
DRAKE ESR 24
DEXCEL DXR 1100
LUXOR STEREO, Infra-Red remote control

DEALERSHIPS AVAILABLE
NATIONAL FINANCING
AVAILABLE WITH AS LITTLE AS 10% DOWN (O.A.C.)
CALL TOLL FREE 1-800-654-0795
for info or ordering
312 12th Avenue South
Nampa, Idaho 83651

WB6TOC (208) 466-6727 KI7D

October 1983
Ham Radio’s guide to help you find your local dealer.

California

FONTANA ELECTRONICS 8628 SIERRA AVENUE FONTANA, CA 92335 714-822-7710 714-822-7725 The Largest Electronics Dealer in San Bernardino County.

JUN'S ELECTRONICS 3919 SEPULVEDA BLVD. CULVER CITY, CA 90230 213-390-8003 619-463-1886 San Diego 800-822-1343 Trades The Home of the One Year Warranty — Parts at Cost — Full Service. Habla Español

Connecticut
HATRY ELECTRONICS 500 LEODYARD HT. (SOUTH) HARTFORD, CT 06114 203-527-1881 Call today. Friendly one-stop shopping at prices you can afford.

Delaware
DELAWARE AMATEUR SUPPLY 71 MEADOW ROAD NEW CASTLE, DE 19720 302-328-7728 800-441-7008 Icom, Ten-Tec, DenTron, Yaesu, Azden, SanteC, KDK, and more. One mile off I-95, no sales tax.

Florida
AMATEUR ELECTRONIC SUPPLY 1898 DREW STREET CLEARWATER, FL 33755 813-461-HAMS Clearwater Branch West Coast’s only full service Amateur Radio Store.

Illinois
ERICKSON COMMUNICATIONS, INC. 5456 N. MILWAUKEE AVE. CHICAGO, IL 60630 312-631-5181 Chicago — 312-631-5181 Outside Illinois — 800-621-5802 Hours: 9:30-5:30 Mon, Tu, Wed & Fri; 9:30-8:00 Thurs; 9:00-3:00 Sat.

Indiana
THE HAM SHACK 808 NORTH MAIN STREET EVANSVILLE, IN 47710 812-422-0231 Discount prices on Ten-Tec, Cubic, Hy-Gain, MFJ, Azden, Kantronics, Santec and others.

Kansas
ASSOCIATED RADIO 8012 CONSER, P. O. BOX 4327 OVERLAND PARK, KS 66204 913-381-5900 America’s No. 1 Real Amateur Radio Store. Trade — Sell — Buy.

Kentucky

Maryland
THE COMM CENTER, INC. LAUREL PLAZA, RT. 198 LAUREL, MD 20707 800-638-4466 Kenwood, Drake, Icom, Ten-Tec, Tempo, Microlog, AEA, Ameritron.

Massachusetts

Minnesota
MIDWEST AMATEUR RADIO SUPPLY 3452 FREMONT AVE. NO. MINNEAPOLIS, MN 55412 612-521-4662 It’s service after the sale that counts.

Nevada
AMATEUR ELECTRONIC SUPPLY 1072 N. RANCHO DRIVE LAS VEGAS, NV 89106 702-647-3114 Dale Porray “Squeak,” AD7K Outside Nev: 1 (800) 634-6227

New Hampshire
POLCARI'S ELECTRONICS CENTER 61 LOWELL ROAD HUDSON, NH 03051 603-883-5005 Southern New Hampshire’s only Ham Store. Call today for quotes.

New Jersey
ROUTE ELECTRONICS 46 225 ROUTE 46 WEST TOTOWA, NJ 07512 201-256-8555

New York
ROUTE ELECTRONICS 17 777 ROUTE 17 SOUTH PARAMUS, NJ 07625 201-444-8717 Drake, Cubic, DenTron, Hy-Gain, Cushcraft, Hustler, Larsen, MFJ, Butternut, Fluke & Beckman Instruments, etc.
Radio Dealer

New York

BARRY ELECTRONICS
512 BROADWAY
NEW YORK, NY 10012
212-925-7000
New York City's Largest Full Service
Ham and Commercial Radio Store.

GRAND CENTRAL RADIO
124 EAST 44 STREET
NEW YORK, NY 10017
212-569-2630
Drake, Kenwood, Yaesu,
Ten-Tec, DenTrom, Hy-Gain,
Mosley in stock.

HARRISON RADIO CORP.
20 SMITH STREET
FARMINGDALE, NY 11735
516-293-7990
"Ham Headquarters USA" since
1925. Call toll free 800-645-9187.

RADIO WORLD
ONEIDA COUNTY AIRPORT
TERMINAL BLDG.
ORISKANY, NY 13424
TOLL FREE 1 (800) 448-9338
NY Res. 1 (315) 337-0203
Authorized Dealer — ALL major
Amateur Brands.
We service everything we sell!
Bob WA2MSH.

Pennsylvania

HAMTRONICS,
DIV. OF TREVOSE ELECTRONICS
4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215-357-1400
Same Location for 30 Years.

LaRUE ELECTRONICS
1112 GRANDVIEW STREET
SCRANTON, PENNSYLVANIA 18509
717-343-2124
Icom, Bird, Cushcraft, Beckman,
Fluke, Larsen, Hustler, Astron,
Antenna Specialists, W2AUW2VS,
AEA, B&W, CDE, Sony, Vibroplex.

Texas

MADISON ELECTRONICS SUPPLY
1508 MCKINNEY
HOUSTON, TX 77010
713-658-0268
Christmas?? Now??

Virginia

ELECTRONIC EQUIPMENT BANK
516 MILL STREET, N.E.
VIENNA, VA 22180
703-933-3350
Metropolitan D.C.'s One Stop
Amateur Store. Largest Warehousing
of Surplus Electronics.

Wisconsin

AMATEUR ELECTRONICS SUPPLY
4829 W. FOND DU LAC AVE.
MILWAUKEE, WI 53216
414-442-4200
Wisc. Wats: 1 (800) 242-5195
Outside Wisc: 1 (800) 558-0411
Wisc. Wats: 1 (800) 242-5195
Outside Wisc: 1 (800) 558-0411

DX TOUR

THREE WEEKS
OCTOBER 11 thru 31, 1984
Departs from Los Angeles
For Hams, Spouses and Friends
Meet and greet your ham friends in
their own countries. Welcoming
events by local hams and clubs.
Tour directors: Jean (WAGAKP) and
Bill (W6UFS) Thompson
Write for brochure:

DX TOURS
81 Fashion Island
Newport Beach, CA 92663
or
Call Jean (714) 640-0821

December 1984

TEXAS RESIDENTS
CIA recruiters
will be at the
ARRL "Com-Vention"
in Houston
October 7-9, 1983.
ICOM $211, $350.00. Excellent condition. WS5K, 1732 Wil-
low Point, Shreveport, LA 71119.

KLM PA-15/28L2 2 meter amplifier. 10W-in/60W-out, mul-
tiplier, mint cond. $10, MO, bank check. Rich Tash-
ner, N2EO, 163-342 A Road, Whitneyville, NH 37115.

FOR SALE: Collins KWM2, PM-2 Collins lightweight AC
power supply, Collins mobil motor. Contact by mail
Harry E. Lampit, 809 Grim Street, Texarkana, Arkansas
75502.

CHASSIS and cabinet kits. SASE K3WJW.

WANTED: 4X12A, 4X21, 2X26, 6145A tubes. GE 4EP43A
P5, W4B2Z, 1703 Verdon Drive, Rt. 11, Greensboro, NC
27410.

FLEAMARKET — Antenna noise bridge — out-performs others,
accurate, costs less, satisfaction guaranteed. Send details
for stamp, W2UR, 1025A Wildwood Road,
Quincy, MI 49082.

TELE-PAK QSL KIT

and Stamp info - 504 - Ebbert Graphics
Westerville, Ohio 43081

QSLs.

3110 Evelyn Street,
Roseville, CA 95678

TRAVEL-PAK QSL KIT

and Stamp info - 504 - Ebbert Graphics
Westerville, Ohio 43081

QSLs.

Foreign Subscription Agents

for Ham Radio Magazine

Holland: Mr. R. van der Linden, P.O. Box 122, Aalsmeer,
14469.

HARDWARE, SOFTWARE andhra
tics

and 10W-in/60W-out, multi-
plier, mint cond. $10, MO, bank check. Rich Tash-
ner, N2EO, 163-342 A Road, Whitneyville, NH 37115.

FOR SALE: Collins KWM2, PM-2 Collins lightweight AC
power supply, Collins mobil motor. Contact by mail
Harry E. Lampit, 809 Grim Street, Texarkana, Arkansas
75502.

CHASSIS and cabinet kits. SASE K3WJW.

WANTED: 4X12A, 4X21, 2X26, 6145A tubes. GE 4EP43A
P5, W4B2Z, 1703 Verdon Drive, Rt. 11, Greensboro, NC
27410.

FLEAMARKET — Antenna noise bridge — out-performs others,
accurate, costs less, satisfaction guaranteed. Send details
for stamp, W2UR, 1025A Wildwood Road,
Quincy, MI 49082.

TELE-PAK QSL KIT

and Stamp info - 504 - Ebbert Graphics
Westerville, Ohio 43081

QSLs.

3110 Evelyn Street,
Roseville, CA 95678

TRAVEL-PAK QSL KIT

and Stamp info - 504 - Ebbert Graphics
Westerville, Ohio 43081

QSLs.

Foreign Subscription Agents

for Ham Radio Magazine

Holland: Mr. R. van der Linden, P.O. Box 122, Aalsmeer,
14469.
MAILING LIST

For a mailing list of events and sponsors, please contact the editor at the address above.
ANNUAL LAS VEGAS PRESTIGE CONVENTION

HACIENDA RESORT HOTEL
Las Vegas, Nevada
JANUARY 12-13-14-15, 1984

Cocktail Party hosted by hamradio MAGAZINE Friday evening for all SAROCC exhibitors and SAROC advance or regular paid registered guests. Ladies' Program on Saturday included with SAROCC advance or regular paid registration at no additional charge for ladies who register. Two HACIENDA RESORT HOTEL Breakfasts or Brunches in the Sunburst room are included with each advance or regular paid registration; one on Saturday and one on Sunday. Technical sessions, EXHIBITS, and SWAP TABLES open on Friday and Saturday to all SAROC paid registered guests. One SWAP TABLE available free to SAROC non-commercial guests holding advance or regular paid registration. Main award drawing Saturday afternoon. You must be present to win and ownership of award does not pass until picked up. SAROC advance registration is only $17.00 per person, if postmarked before January 1, 1984. After January 1, 1984, SAROC regular registration is only $19.00 per person.

SAROC fee of $2.00 per person for those who want to attend only SAROC technical sessions, visit EXHIBIT and SWAP TABLE area. No admission to any function without a SAROC paid registration and wearing the SAROC registration badge in plain view. SAROC coupon book and cellophane badge holder may be picked up at SAROC registration desk. Send check or money order to SAROC, P.O. Box 945, Boulder City, NV 89005-0945. Refunds will be made after SAROC is over to those requesting same in writing and postmarked before January 12, 1984. You must be present to win and ownership of award does not pass until picked up. SAROC advance registration is only $17.00 per person, if postmarked before January 1, 1984. After January 1, 1984, SAROC regular registration is only $19.00 per person.

Enclosed is $ check or money order (no cash) for SAROC advanced registration(s) $17.00 each; after Jan. 1, 1984 SAROC regular registration is $19.00 each. Extra drawing tickets for main drawing are $1.00 ea., limit 5 with each advance registration. I want .

OM Call License Class
YL Call License Class
Address City
State Zip Telephone No./AC

☐ Yes, I want a SWAP Table space (limit one free table per registered guest for Friday and Saturday).

I have attended SAROC times. ☐ Yes, I plan to attend Ham Radio Magazine Cocktail Party.

I am interested in Antenna, ARRL, Cocktail Party, Computers, CW, DX, FCC, MARS, RTTY, TV, other I receive: CQ, Ham Radio Magazine, QST, QCWA, RTTY, 73, Westlink, Worldradio, other

SAROC™

P.O. BOX 945, BOULDER CITY, NEVADA 89005-0945

October 1983
A new publication from the league which lists in callsign order the addresses of all FCC licensed radio amateurs in the United States and possessions. It also includes a separate listing of all club stations.

ONLY $15.75 POSTPAID
($19.75 in Canada and Elsewhere including shipping by surface mail)

Enclosed is $ in U.S. funds or charge MasterCard American Express for copies of the ARRL Amateur Radio Call Directory(s).

Name
Address
City State/Prov
Zip/Postal Code or Country
Charge Number Good from to
Signature

Call COLLECT
LIBERTY ELECTRONICS, INC.
(212) 925-6048

NEW, EASY-TO-USE DESIGN
GET TRANSI-TRAP™ LIGHTNING PROTECTION

WANTED
HIGHEST PRICES PAID FOR:
HARRIS RF-301 & ASSOCIATED EQUIPMENT

CALL COLLECT:
LIBERTY ELECTRONICS, INC.
(212) 925-6048

NEW, EASY-TO-USE DESIGN
GET TRANSI-TRAP™ LIGHTNING PROTECTION

Protect your valuable equipment from antenna voltage surges caused by nearby lightning, high wind, and static build-up. Keeps harmful ARC energy off equipment by safely shunting it to ground. Uses tested, field proven, and replaceable ARC PLUG™ gas filled ceramic cartridge.

Model LT 200 watts @ 500 $19.95
Model HT 5 kw @ 500 $92.95
Ruggedized Super Low Loss (.108 @ 500 MHz)
Model RT 200 watts @ 500 $29.95
Model HV 5 kw @ 500 $32.95

See your local dealer or order direct. Please include $2 for shipping and handling. MC and VISA accepted.

ALPHA DELTA COMMUNICATIONS
P.O. Box 571, Centerville, Ohio 45459
(513) 435-4772

October 1983
SUPER BUYS ON

SAVE $260!

YAESU FT-102 high performance HF transceiver
Top of the line from YAESU at reasonable cost! Covers 160-10 meters including the new WARC bands. Six-digit digital readout, variable bandwidth plus IF shift, variable noise blanker and separate ALC meter with peak hold switch. Built-in speech processor. Built-in power supply for 100, 117, 200 or 234V AC at 50/60 Hz.

889.00 List Price 1149.00 Item No. YAEFT102
Add 9.96 shipping & handling

CLIPPERTON QR07 full power linear HF amplifier
This hefty amplifier offers the best watts-per-dollar buy! Top of the line from YAESU at reasonable cost! Covers 160 through 15 meters and most MARS frequencies. Features 2000 watts PEP input on SSB, adjustable ALC and high/low power switching. Bypass switch also included. Built-in power supply with forced air cooling. Works on 117V or 234V, AC. Uses four 572 triodes (packed separately).

599.00 List Price 799.00 Item No. DENGQR07
Add 9.90 shipping & handling

SAVE $49!

YAESU FRG-7700 all mode communications receiver
Covers 0.15 to 29.999 MHz. All mode capability SSB (USB, LSB) CW/AM/FM. Features calibrated S-meter, built-in front panel speaker, noise blanker, record jack, built-in on/off timer, selectable AGC, memory, fine tuning and FM squelch. Operates on 100/200/220/240V AC.

449.10 List Price 499.00 Item No. YAEFRG7700
Add 4.28 shipping & handling

SAVE $60!

KENWOOD TW-4000A mobile 2m/70cm FM transceiver
This new dual band rig covers 142-149.995 and 400.000-449.995 MHz. Features twin digital VFO's, digital frequency display, scannable 10-channel memory plus programmable bandscan. GaAs FET RF amplifier, memory backup, and comes with 16-key autopatch up/down mic and mobile mounting bracket. 25 watts RF output. 13.8V DC required.

539.95 List Price 599.95 Item No. KENTW4000A
Add 2.95 shipping & handling

SAVE $200!

KENTWOOD TR-8400 UHF FM mobile transceiver
Covers 440-450 MHz in 25 kHz steps and features LED frequency display, twin VFO's and 5 memories with memory scan. Fully synthesized operation. Compact, only 5.9" x 2.1" x 7.7" and comes with mounting bracket and mic with up/down scan. RF output 10 watts. Requires 13.8V DC. Now sale priced at Long's!

299.95 List Price 499.95 Item No. KENTR8400
Add 9.00 shipping & handling

ICOM IC-2AT handheld 2m transceiver
Measures only 2.6" x 1.4" x 6.5" and weighs only 490 grams including batteries and flexible antenna. Provides 800 channels coverage in the 144-148 MHz range with 1.5 or 15W output. Features built-in speaker and mic, plus touch tone pad. Comes with NiCad pack, wall charger, flexible antenna and belt clip.

219.00 List Price 299.50 Item No. ICOM2AT/MICD
Add 1.96 shipping & handling

Long's Electronics

MAIL ORDERS: 2700 CRESTWOOD BLVD. BIRMINGHAM, AL. 35210 SHOWROOM: 3131 4TH AVENUE SOUTH, BIRMINGHAM, AL. 35233

Tell 'em you saw it in HAM RADIO!
HAM RADIO GEAR!

SAVE $50!

YAESU FT-708R 70cm handheld FM transceiver
Features LCD display, 10 memories with memory scan and 440-450 MHz coverage. Built-in keyboard for frequency entry and autopatch functions. Scans up or down in 25 or 50 kHz steps. Hi/low power switch for 200mW or 1W, memory back-up and comes with flexible antenna and rechargeable battery pack.

List Price 318.00 Item No. YAEFT708R Add 1.95 shipping & handling

CUSHCRAFT R3 20/15/10 meter vertical antenna
Offers full performance, yet requires only 1 sq. ft. of mounting space without radials. Covers 20, 15 and 10 meters and comes complete with high Q stabilized traps, all hardware and remote console. Height is 29.9 ft. VSWR 1.2:1 or less.

List Price 329.95 Item No. CUSR3 Add 4.32 shipping & handling

CUSHCRAFT A144-20T Oscar antenna
Offers true circular polarization and 12.2 dB forward gain for extra punch in your signal. You get 38° beam width and the median frequency is 145.9 MHz. Boom length 130 inches. Front to back ratio 20 dB.

List Price 99.95 Item No. CUSA14420T Add 3.15 shipping & handling

CUSHCRAFT A432-20T UHF Oscar antenna
Designed to watch with the A-144-10T in mode J or B and features 10 vertical and 10 horizontal elements for 12.3 dBi circular gain. Boom length 57". Longest element 14". Wind area 0.37 sq. ft. Comes with matching harness for selectable 3-way polarity.

List Price 64.95 Item No. CUSA43220T Add 2.37 shipping & handling

MFJ 941C Versa Tuner II antenna tuner
Accepts up to 300 watts of RF output. Designed to match any type antenna configuration in the 1.8 to 30 MHz range. Features built-in 1:4 balun, SWR and dual range wattmeter and multiple position antenna switch.

List Price 349.95 Item No. MFJ941C Add 2.14 shipping & handling

BEARCAT 210XL crystalless scanner & get a $15 rebate!
This 18 channel scanner covers the six most popular bands. (Low 32-50, High 148-174, 2m Ham 144-148, 70 cm Ham 420-450, UHF 450-470 and "T" 570-512 MHz). Features scanning speeds of 5/15 channels per second and AC/DC operation. Buy before Oct. 15, 1983 and get a $15 rebate from Bearcat.

List Price 229.95 Item No. BEABC210XL Add 2.24 shipping & handling

Call Toll Free 1-800-633-3410

IN ALABAMA CALL 1-800-292-8668 9 AM TIL 5:30 PM CST, MONDAY THRU FRIDAY

More Details? CHECK OFF Page 111
RC-85 REPEATER CONTROL BOARD

SPEECH SYNTHESIS,
REMOTE PROGRAMMING,
AUTOPATCH/AUTODIAL,
LINKING, AND MORE ... ALL ON ONE BOARD!

Now any repeater budget can afford the benefits of an ACC controller. We've pioneered modern repeater control, and continue to lead the way in performance, reliability, and value.

Call or write for detailed specifications on the RC-85 Repeater Control Board.
10816 Northridge Square • Cupertino, CA 95014
(408) 749-8330

25 WATTS...IN THE PALM OF YOUR HAND!
The Perfect Power Booster for your Hand Held

This compact unit comes complete with dashboard mounting brackets, cigarette lighter power adapter and manual. The unit weighs only 8 oz. and is ready to go!

M aster Card or Visa

Card No. ____________ Exp. Date ____________
Signature __________________________
Send me PA25 units at $94.50 ea. + tax if applicable
To/Name ____________________________ Phone ____________
Address _________________________________
City, State, Zip ____________________________

(Ohio residents add 5 1/2% sales tax or 5.20/unit)

Ham industries, Inc.
835 E. Highland Road • Macedonia, Ohio 44056
(216) 467-4256 • TWX 810-427-9217

Coming in NOVEMBER
HAM RADIO

SPECIAL RECEIVER ISSUE

Chock-full of state-of-the-art technology.

Includes:

Single Sideband Receiver
Receiver System Design
EMI Receiver
Bill Orr, Propagation
And much more.

Stay tuned for this super special issue.

Ham radio magazine
Greenville, NH

MOVING?
KEEP HAM RADIO COMING...

If possible let us know four to six weeks before you move and we will make sure your HAM RADIO Magazine arrives on schedule. Just remove the mailing label from this magazine and affix below. Then complete your new address (or any other corrections) in the space provided and we'll take care of the rest.

Ham radio Magazine
Greenville, NH 03048

Thanks for helping us to serve you better.

Affix label here

Here's my new address:
Name ____________________________
Address ____________________________
City ____________________________
State ____________________________
Zip ____________________________

Tell 'em you saw it in HAM RADIO!
MICROWAVE TV ANTENNA SYSTEMS
Freq. 2.1 to 2.6 GHz • 34 db Gain +
COMPLETE SYSTEMS
(as Pictured)
Commercial 40" Rod Style $ 89.95
Parabolic 20" Dish Style $ 79.95
COMPONENTS
Down Converters
(bboth types) $ 34.95
Power Supplies
(12V to 16V) $ 24.95
Data Info (Plans) $ 9.95
CALL OR WRITE FOR
KITS, PARTS, INDIVIDUAL
COMPONENTS
We Repair All Types Down
Converters & Power Supplies
Phillips-Tech
Electronics
P.O. Box 34772
Phoenix, AZ 85067
(602) 285-6565
Special Quantity Pricing
Dealers Wanted

KCS ELECTRONICS CORPORATION
SEMICONDUCTOR PARTS & PRODUCTS
FACTORY PRIME
DEVICES INCLUDE:
• Capacitors
 all types & styles
• Chokes & Coils
• Connectors
• Digital & Linear IC's
• Hardware & Accessories
• IC Sockets
• Memory
• Microwave Semiconductors
• Resistors
 fixed & variable
• Transformers
• Transistors & MORE!
MANUFACTURERS SUCH AS: Motorola, National, NEC, J.W. Miller, Texas Instruments and more!
WE STOCK & SUPPLY DEVICES FOR: OEM's, Distributors, Hobbists, Magazine Projects, Engineers, Schools, Technicians & You!
Call or Write for Quantity Pricing
and FREE Catalog.
P.O. Box 33205
Phoenix, AZ 85067 (602) 274-2885

Plan Now To Attend The Most “OUT OF THIS WORLD” Event In The History Of Ham Radio!
COME TO THE ARRL 1984 NATIONAL CONVENTION IN NEW YORK, the world’s greatest city, at the New York Statler July 20-22. Along with the convention’s fantastic parties, technical and operating seminars, League committee meetings, banquet, DX gatherings and manufacturers’ displays, you and your family can enjoy all there is to do in New York, the cultural capital of the world!
FOR A TRULY “OUT OF THIS WORLD” EXPERIENCE we’ll be celebrating both the 15th Anniversary of man’s first moon landing AND the first off-world amateur radio operation during the STS-9 Spacelab-1 mission. Our special guest will be astronaut DR. OWEN GARRIOTT, W5LFL, first ham to operate from space! You can meet W5LFL in person, at the Moon Landing Anniversary Party on Friday evening, July 20th, AND hear him speak at the Banquet on Saturday evening, July 21st.
IMAGINE, THE MOST IMPORTANT ARRL NATIONAL EVER HELD...AND YOU CAN BE THERE! Register now to assure your room and banquet reservations. For detailed information and registration forms, SASE to Mike Troy, AJ1J, R.R. 4—Box 19C, Pound Ridge, NY 10576.

HARC
AMATEUR RADIO — THEORY AND PRACTICE

By Robert L. Shradner, W6BNB

W6BNB’s Electromagnetic Communication has been considered the absolute “Cadillac” of radio license manuals. But the high price of this superb book has kept many from owning a copy. Now Mr. Shradner has come out with a book which presents just those parts of the electromagnetic communication which are necessary to pass all five classes of Amateur licenses. You save 1/3 off the price of the larger book. A complete guide to Amateur Radio including self-check examinations and quizzes. © 1982. 340 pages taken from 3rd Edition Electronic Communication.

ARRL ANTENNA BOOK

14th Edition

The Amateur antenna bible. Includes just about every bit of information you’d ever want to know about antenna design, construction and theory. Starts with wave propagation, antenna fundamentals and transmission line theory, progresses through coupling the transmitter and antenna to the feedline to 9 bit, inclusive chapters on how to build different antennas. New large magazine style. © 1982, 14th Edition, 200 pages.

PACKET RADIO

by Robert Beaulieu, VE2PY and Ian Hodgson, VE2BN

Packet Radio could be one of the most important technological developments in Amateur Radio this decade. You should make yourself aware of all the amazing things that can be done with a packet radio. This comprehensive source book explains all the principles of packet radio in a non-technical language. You’ll learn about Modems, bandwidths, polling, random access, data rates and more. Plus there’s an overview of how the computer is integrated into the packet concept with discussions on the software and peripheral equipment. Finally, the authors give you a detailed description of a packet system in current use. © 1981, 1st Edition, 304 pages.

HEIL HAM RADIO HANDBOOK

by Bob Heil, K9EID

Bob Heil is one of Ham Radio’s most dynamic fellows. Dayton’s Ham of the Year for 1982 and author of the best selling “10 Meter FM Handbook”™, he has now come out with a handy handbook for all levels of Amateur Radio interest. 20 chapters cover every aspect of Ham Radio from Day One #1 as a new Novice through operating procedures to some basics on how to repair and troubleshoot equipment. Great pains were taken to ensure that 99% of the “most -often-asked” questions are fully and clearly answered. Of particular interest are five chapters dedicated to the art of antenna building. Tools, techniques, p.c. boards and much, much more. A great gift for a new ham. © 1983, 188 pages.

HAM RADIO LOGBOOK

A real Ham Radio bestseller. Lies flat just like the other one. But uses both sides of each page to give you twice as many entries per book! Plenty of “e-k-i-t-a” features make this the Logbook for you. 8 1/2” x 11”. © 1982-86. Spiralbound $ 2.95 ea. SPECIAL 3 Logs for $4.95

THE UHF COMPREHEND

by K. Weiner, DJ9HO

Brand New English Edition

First published in German in 1980 — this book was an instant European best seller. Now available in English, only from Ham Radio Magazine. This hefty, 413 page book is an absolute basic study of all everything UHF and UHF enthusiast. The UHF Compendium has been divided into 7 sections to fully cover theory and practical training instructions. Special emphasis has been placed on the state-of-the-art techniques such as Galatet preamplifiers and converters. Author Weiner also fully describes all of the test equipment, alignment tools, power measuring equipment and other handy gadgets that will be of use to the UHF/UHF Amateur. All of the projects and designs have been tested and proven and are not engineer’s pipe dreams. Antennas are also fully covered with a number of easy-to-build designs as well as large mega element arrays. Nored UHF enthusiast, Joe Resler, W7JR, tells us that every ham interested in UHF/VHF should have a copy of this book. Get yours today — only from Ham Radio Magazine.

THE FCC RULE BOOK

by Rick Palm, K1CE

This book is more than the FCC part 97 Amateur Rules and Regulations. It presents detailed explanations of rules and is written in an easy-to-read, conversational style. Author Palm gives you the insider’s view of how FCC rules are made and how you can influence FCC decisions. You also get a broad overview of how international treaties and agreements impact your hobby. Every U.S. Amateur should have a copy of this most important and up-to-date book in their shack. © 1983. 1st edition.

MICROCOMPUTERS IN AMATEUR RADIO

by Joe Kasser, G3ZCZ

Isn’t it time to find out how computers can help you in Amateur Radio? You can use the computer for logging, receiverkeeping and many operating aids. Hardware and software compatibility is covered along with how to select the right computer. 302 pages. © 1981. 1st edition.

2ND OP

by Jim Rafferty, N6BJ

RF CIRCUIT DESIGN

by Chris Bowick, WB4UHY

This book has been written for those who desire a practical approach to the design of RF amplifiers and UHF circuits. This book is jam-packed with information needed to design RF circuits. It’s designed for radio amateurs who want a practical approach to the design of RF amplifiers and UHF circuits. This book is jam-packed with useful information. The book is divided into 7 sections: 1) RF Circuits Fundamentals; 2) Amplifier Design; 3) RF Filters; 4) Frequency Synthesizers; 5) RF Oscillators; 6) RF Circuits and 7) Advanced Topics. The book is divided into 7 sections: 1) RF Circuits Fundamentals; 2) Amplifier Design; 3) RF Filters; 4) Frequency Synthesizers; 5) RF Oscillators; 6) RF Circuits and 7) Advanced Topics.
October 1983

Please use before November 30, 1983

Tear off mail to
HAM RADIO MAGAZINE — "check off"
Greenville, N. H. 03046-0498

NAME

ADDRESS

STATE

ZIP

SIGNAL ONE Milpitas 1030 $4995.00

BMA MM2 149.00

2K2KT 129.00

HAL STERE OBER 224.00

TOKYO HYPOVOR

HC2200 Tuner 89.00

HC2200 Tuner 289.00

HL100V0 Amp 289.00

HL100V0 Amplifier 289.00

KDD 2000 MFM 259.00

SANTEC ST1450P 279.00

ST1450P 299.00

SUNBEACON 230.00

MAXON 495 TX FM Headset Vox 39.95

Every club should have a pair!

SHERWOOD/VELZ 10% off list

ROCKFELL KM980 3995.00

COAX SEAL 2.00

BENCHER ST2

Chrome single lever 45.00

BREWSTER 1/2" Stock 249.00

JERSEY SPECIALTY RG213 46.00

RG8X 450 ohm open wire 204.00

AMPHENOL PL259 silverplate 1.25

VAN GORDON Dogphone insulation 5.00

WORLD RADIO TV handbook 15.70

VIROBREX 10% off list

Belden Cable

SC-610 RG6 194.00

8214 RG8 foam 396.00

8237 RG6 235.00

300 Ohm twin lead 204.00

1422 Coax standard size 249.00

2627 RG213 464.00

4440 rotatable 274.00

9405 heavy rotor cable 344.00

SUNPLUGS

TCG 2.5A/1000 PIV epoxy die 19

Sprague 500 pF/30kV 16.00

door knob capacitors 1.95

1000pF/500V Feedthrough 1.95

C06 01/20KV 1.95

6"x9" copper board 20.00

Resistors 1/4, 1/2, 1, 2 Watt 10.00 ea.

Caps to 1MF, 100V 25.00 ea.

USED - Subject to prior sale

COLLINS 75A4 249.00

75S1 200.00

3011/4 AC 350.00

DRAKE TRAC/AC 210.00

R4VAC 100.00

HARRY 3K 1295.00

KENWOOD TS550S (Gem) 395.00

RF POWER LABS

A1000, C500X demos 995.00

COLLINS KWS1/7544 parts Call

7551/3521 parts Call

MADISON - We talk trades on new

equipment, and our used equipment

is backed by our reputation. Don't hesitate to

try us. We answer our own phones and will
deal with our customers one on one the

only way we do business.

Call on Tentec trades

October 1983
New Para-Sleeve Design
The Explorer 14 is a new antenna design we call PARA-SLEEVE which uses an "open-sleeve" dipole optimized for maximum bandwidth and directivity. Here is the concept. A central dipole, driven directly by the transmission line, has a 3/4 wave resonance on the lowest operating frequency. Two shorter sleeve elements, tightly coupled to the central dipole, modify its impedance to create a 3/4 wave resonance on the highest operating frequency. This para-sleeve system is expanded by the addition of 15 meter traps and 20 meter element tips. A revolutionary new concept for HF tribanders. So unique, we've applied for a patent.

Broadband Performance
The Explorer 14 will load solid state transceivers to maximum output with VSWR below 2:1, eliminating the need for an antenna tuner. You'll have edge to edge broadband performance on 20, 15 and 10 meters with gain and front-to-back ratio competitive to giant tribanders that cost twice as much or more. You'll be able to work stations you cannot even hear with a dipole antenna. And, the Explorer 14 handles maximum continuous legal power with a respectable safety margin.

Short Boom Save Space and Money
If your space or budget was too limited for a long boom tribander, chances are the Explorer 14 will fit both. The boom is only 14' (4.3 m) long and the turning radius requires only 17'3" (5.2 m). The compactness of the Explorer 14 reduces its overall weight and windload surface so you can mount it on a roof tripod, a mast or a tower. For example, the Hy-Gain CD-480 rotator and HG52 tower are a perfect match for the Explorer 14. This saves you the cost of an extra heavy duty rotator and tower.

Superior Construction
The Explorer 14 includes passivated stainless steel hardware and heavy gauge, pre-formed element and mast brackets. High grade 6063-T632 thick wall swaged aluminum tubing is used throughout. A BN86 balun is included and a new Beta Multi-Match provides DC ground to reduce lightning hazard and precipitation static. It's a rugged, easily assembled antenna that survives winds to 100 mph (160 km/h).

Quad Band Option
You can add a fourth band, either 30 meters or 40 meters to the Explorer 14 with the QK-710 kit. A kit that attaches to the central dipole and is easily adjusted for either 30 meters (WARC) or 40 meters at minimal extra cost.

Lew McCoy, W1JK, is among the most authoritative writers in amateur radio. For over 30 years he served on the ARRL technical staff with his last post as assistant senior technical editor. Presently he is the technical writer for CO magazine. Here is what he had to say about the Explorer 14:

"In my opinion, with Explorer 14, Hy-Gain produced a truly high gain, high performance antenna in a small package. The "para-sleeve" design provides the amateur a whole new ball game, particularly in the area of broadbanding. I was really surprised when I actually verified the gain, front-to-back and bandwidth during my recent visit to the Hy-Gain labs and antenna range in Lincoln, Nebraska. The Explorer 14 is a winner."

Specifications:

Electrical

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>20M</th>
<th>15M</th>
<th>10M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum SWR Radio (dB)</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>Maximum Gain (dB)</td>
<td>7.5</td>
<td>8.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Maximum Power</td>
<td>800 W</td>
<td>800 W</td>
<td>800 W</td>
</tr>
</tbody>
</table>

Mechanical

Boom Length	14'1" (4.3 m)
Turning Radius	17'3" (5.2 m)
Net Weight	43 lbs (19.5 kg)
Wind Surface Area	7.5 sq ft (0.69m²)
FT-230R: QUITE A SIGHT! (AND EASY TO SEE, TOO!!)

Sporting an all-new Liquid Crystal Display, the FT-230R is Yaesu’s high-performance answer to your call for a very affordable 2 meter mobile rig with an easy-to-read frequency display! The FT-230R combines microprocessor convenience, a sensitive receiver, a powerful yet clean transmitter strip, and the new dimension of LCD frequency readout. See your Authorized Yaesu Dealer today — and go home with your new FT-230R!

- LCD five-digit frequency readout with night light for high visibility day or night.
- Two VFOs for quick QSY across the band.
- Ten memory slots for storage and recall of favorite channels.
- Selectable synthesizer steps (5 kHz or 10 kHz) in dial or scanning mode.
- Priority channel for checking a favorite frequency for activity while monitoring another.
- Unique VFO/Memory Split mode for covering unusual repeater splits.
- Up/Down band scan plus memory scan for busy or clear channel. Scanning microphone included in purchase price.
- Full 25 watts of RF power output from extremely compact package.
- Built-in automatic or manual tone burst.
- Optional synthesized CTCSS Encode and Encode/Decode boards available.
- Lithium memory backup battery with estimated lifetime of five years.
- Now available: FT-730R 10 watt 440-450 MHz FM Mobile Transceiver

And don’t forget! Yaesu has a complete line of VHF and UHF handheld and battery portable transceivers using LCD display!!!

FT-290R - 2 Meters
SSB/CW/FM Portable
FT-690R - 6 Meters
USB/CW/AM/FM Portable
FT-790R - 70 cm
SSB/CW/FM Portable
430-440 MHz

Price and Specifications Subject To Change Without Notice or Obligation
FM “Dual-Bander”

2 m & 70 cm in single compact package, LCD, 25 W, optional voice synthesizer.

TW-4000A

KENWOOD's TW-4000A FM “Dual-Bander” provides new versatility in VHF and UHF operations, uniquely combining 2 m and 70 cm FM functions in a single compact package.

TW-4000A FEATURES:
- 2 m and 70 cm FM in a Compact Package
- Covers the 2 m band (142.000-148.995 MHz), including certain MARS and CAP frequencies, plus the 70 cm FM band (440.000-449.995 MHz), all in a single compact package. Only 6-3/8 x 2-5/8 x 1-17/16 inches (161) times (217) D inches (mm), and 4.4 lbs. (2.0 kg).
- Large, Easy-to-Read LCD Display
 - A green, multi-function back-lighted LCD display for better visibility. Indicates frequency, memory channel, repeater offset, “S” or “RF” level, VFO A/B, scan, busy, and “ON AIR” Dimmer switch.
- 25 Watts RF Power on 2 m/70 cm.
- Hi/Lo power switch.
- Optional “Voice Synthesizer Unit”
 - Installs inside the TW-4000A. Voice announces frequency, band, VFO A or B, repeater offset, and memory channel number.
- Front Panel Illumination
- 10 Memories with Offset Recall and Lithium Battery Backup
 - Stores frequency, band, and repeater offset. Memory 0 stores receive and transmit frequencies independently for odd receiver offsets, or cross-band operation.
- Programmable Memory Scan
 - Programmable to scan all memories, or only 2 m or 70 cm memories. Also may be programmed to skip channels.
- Band Scan in Selected 1-MHz Segments
 - Scans within the chosen 1-MHz segment (ie., 144.000-144.995 or 440.000-440.995, etc.). The scanning direction may be reversed by pressing either the “UP” or “DOWN” buttons on the microphone.
- Priority Watch Function
 - Unit switches to memory 1 for 1 second each 10 seconds, to monitor the activity on the priority channel.
- Common Channel Scan
 - Memory 8 and 9 are alternately scanned every 5 seconds. Either channel may be recalled instantly.
- Dual Digital VFO’s
 - Selectable 5-kHz or 10-kHz for 2 m, and 5-kHz or 25-kHz for 70 cm. Depress “UP” or “DOWN” key on the front panel for band change in 1-kHz steps.
- 16-Key Autopatch UP/DOWN Microphone (Supplied)
- Repeater Reverse Switch
- High Performance Receiver/Transmitter
- GaAs FET RF amplifiers on both 2 m and 70 cm, high performance MCF’s in the IF section, provide high receive sensitivity and excellent dynamic range. The high reliability RF power modules assure clean and dependable transmissions on either band.
- Rugged Die-cast Chassis
- Optional Two-Frequency CTCSS Encoder
 - Easily mounted inside the radio, allows DIP switch programming of two different tone frequencies, for 2 m and 70 cm.
- “BEEPER” sounds through speaker.
- Easy-to-Install mobile mount
- TW-4000A accessories:
 - VS-1 Voice Synthesizer
 - TU-4C Two-Frequency Programmable CTCSS Encoder
 - KPS-7A Fixed station power supply
 - SP-40 Compact mobile speaker

More information on the TW-4000A and TS-780 is available from all authorized dealers of Trio-Kenwood Communications, 111 West Walnut Street, Compton, California 90220.

All mode “Dual-Bander”

TS-780

2 m & 70 cm all mode, dual digital VFO’s, 10 memories, scan, IF shift...

TS-780 FEATURES:
- USB, LSB, CW, FM all mode, covering the 2 m band (144.000-148.995 MHz) and the middle 70 cm band (430.000-440.995 MHz). UP/DOWN band switch.
- Dual digital VFO’s with normal/ tight drag switch. VFO steps in 10 Hz, 200 Hz, 5-kHz, or 12.5-kHz, plus “FM CH” channelized tuning. Split (cross) frequency operation possible. F. LOCK switch provided.
- 10 memories include band and frequency data, backed up by internal batteries (not supplied). Battery life exceeds one year. Memories 9 and 10 for priority instant recall.
- Band scan, with selectable 0.5, 1, 3.5, and 10-MHz scan bandwidth.
- Memory scan selectable for all memories, or 2 m or 70 cm only.
- IF shift circuit rejects adjacent interference.
- High sensitivity and wide dynamic range • 7 digit fluorescent tube digital display • 10 watt RF output • 2 m ±600-kHz TX offset switch with reverse switch • Tone switch for optional TU-4C two frequency tone encoder unit • VOX and semi-break-in CW built-in • FM center-tune meter • Noise blanker for SSB, CW. Subject to FCC approval.