- Dr. Ulich Rohde on EMI/RFI receiver design requirements
- optical FM receiver
- time domain reflectometer
- modern communication receiver design
- time and frequency standards
- weekend project: simple shortwave broadcast receiver
 focus
on
communications technology

ICOM 271A/471A The New Generation of Base Stations

25 watts / switchable AGC / 32 full-function memories / 2-color fluorescent display / subaudible tones / CW monitor / and RIT readout make the IC-271A and IC-471A all-mode base stations the most advanced on the market.

32 Full Function Memories. Each memory holds frequency. offset, offset direction, mode, and subaudible tones. Frequency. tones and offset are selected by rotating the main tuning knob.

Subaudible Tones. Subaudible tones are selected by rotating the main tuning knob. These tones may then be stored into memory along with the frequency, offering ease of operation.

Dual VFO's. ICOM's dual VFO system is now even more versatile with the ability to transfer from memory to VFO. This allows frequencies from the tunable memories to transfer directly into another memory without moving a VFO to the new frequency first.

Phase Lock Loop. Extremely low noise and a good signal to noise ratio PLL design allows the IC-271A and 471A to lock to 10 Hz for extreme accuracy.

New Display. ICOM's new easy-to-read two color fluorescent transceiver situation display shows frequency, mode. offset direction, VFO in use. memory channel, and RIT offset direction and amount

Scanning. Scanning of memories, programmable band scan and mode scanning are available and easy to use.

New Size. Only $111 /{ }^{\prime}{ }^{\prime} \mathrm{W} \times$ $43 / 6^{\prime \prime} \mathrm{H} \times 10^{13 / 4}$ D the IC-271A and IC-471A are styled to look good and engineered for ease of operation

Other Fectures. To make the IC-271A / IC-471A functional and easy to use, ICOM has incorporated many asked for features: UP/DN buttons, dial lock switchable preamplifier (optional), duplex check, all mode squelch, receive audio tone control. S meter, center meter, and 7 year lithium battery memory backup.

300 WATT ANTENNA TUNER HAS SWR/WATTMETER, ANTENNA SWITCH, BALUN. MATCHES EVERYTHING FROM 1.8 to 30 MHz .

$\$ 99.95$
 MFJ-941D

NEW
FEATURES

MFJ's fastest selling tuner packs in plenty of new features!

- New Styling! Brushed aluminum tront. All metal cabinet.
- New SWR/Wattmeter! More accurate. Switch selectable $300 / 30$ watt ranges. Read forward/reflected power
- New Antenna Switch! Front panel mounted. Select 2 coax lines, direct or through tuner, random wire/balanced line or tuner bypass for dummy load.
- New airwound inductor! Larger more efficient 12 position airwound inductor gives lower losses and more watts out. Run up to 300 watts RF power output. Matches everything from 1.8 to 30 MHz : dipoles, inverted vee, random wires, verticals, mobile whips, beams, balanced and coax lines. Built-in $4: 1$ balun for balanced lines. 1000 V capacitor spacing. Black. $11 \times 3 \times 7$ inches. Works with all solid state or tube rigs. Easy to use, anywhere.

RTTY/ASCII/CW COMPUTER

 INTERFACE MFJ+1224\$99.95

Send and recolve computerized RTTY/ASCII/ CW with nearly any personal computer (VIC-20, Apple, TRS-80C, Atari, TI-99, Commodore 64, etc.). Ușe Kantronics or most other RTTY/CW software. Copies both mark and space, any shift (including $170,425,850 \mathrm{~Hz}$) and any speed ($5-100$ WPM RTTY/CW, 300 baud ASCII). Sharp 8 pole active filter for CW and 170 Hz shift. Sends 170 , 850 Hz shift. Normal/Reverse switch eliminates retuning. Automatic noise limiter. Kantronics compatible socket plus exclusive general purpose socket. $8 \times 11 / \times 6$ in. $12-15$ VDC or 110 VAC with adapter, MFJ-1312, \$9.95

RX NOISE BRIDGE

Maximize your antenna
 performance! Tells whether $\$ 59.95 \mathrm{MFj}^{202 \mathrm{~B}}$ Tells whether to shorten of lengthen antenna for minimum SWR. Measure resonant frequency. radiation resistance and reactance. New Fsatures: individually calibrated resistance scale, expanded capacitance range ($\pm 150 \mathrm{pf}$). Built-in range extender for measurements beyond scale readings. $1-100 \mathrm{MHz}$. Comprehensive manual. Use 9 V battery. $2 \times 4 \times 4 \mathrm{in}$.

INDOOR TUNED ACTIVE ANTENNA

"Worid Orabber" rivais or exceeds reception of outzide long wires! Unique tuned Active Antenna minimizes intermod, improves select ivity, reduces noise outside tuned band, even functions as preselector with external antennas. Covers $0.3-30 \mathrm{MHz}$. Telescoping antenna. Tune, Band, Gain. On-off bypass controls. $6 \times 2 \times 6$ in. Uses $9 V$ battery, 9-18 VDC or 110 VAC with adapter MFJ-1312, $\$ 9.95$.

POLICE/FIRE/WEATHER

 2 M HANDHELD CONVERTER Turn your synthesized scanning $\quad \$ 39.95$ 2 meter handheld into a hot Police/ Fire/Weather band scanner! $144-148 \mathrm{MHz}$ handhelds receive Police/Fire on 154 158 MHz with direct frequency readout. Hear NOAA maritime coastal plus more on $160-164 \mathrm{MHz}$. Converter mounts between handheld and rubber ducky. Feedthru allows simultaneous scanning of both 2 meters and Police/Fire bands. No missed calls. Crystal controlled. Bypass/Off switch allows transmitting (up to 5 watts). Use AAA battery. $21 / 4 \times 11 / 2 \times 11 / 2$ in. BNC connectors.
 a deluxe MFJ Keyer in a compacteonfiguration that fits right on the Bencher lambic paddle! MFJ Keyer - small in size, big in features. Curtis 8044 IC, adjustable weight and tone, front panel volume and speed controls (8-50 WPM). Builtin dot-dash memories. Speaker, sidetone, and push button selection of semi-automatic/tune or automatic modes. Solid state keying. Bencher paddle is fully adjustable; heavy steel base with non-skid feet. Uses 9 V battery or 110 VAC with optional adapter, MFJ-1305, \$9.95.

VHF SWR/WATTMETER

Low cost
MFJ-812 $\$ 29.95$
VHF SWR/ Wattmeter!
Read SWR (14 to 170 MHz) and forward/ reflected power

at 2 meters. Has 30 and 300 watts scales. Also read relative field strength. $4 \times 2 \times 3 \mathrm{in}$.

1 KW DUMMY LOAD
 Tune up fast, extend life of finals, reduce QRM! Rated 1 KW CW or 2 KWW PEP for 10 min utes. Half rating for 20 minutes, continuous at 200 W CW, 400 W PEP VSWR under 1.2 to 30 $\mathrm{MHz}, 1.5$ to 300 MHz . Oil contains no PCB. 50 ohm non-inductive resistor. Safety vent. Carrying handle. $71 / 2 \times 63 / 4 \mathrm{in}$.

24/12 HOUR CLOCK/ID TIMER

 MFJ-103
$\$ 34.95$

Switch to 24

hour GMT or
12 hour format! Battery backup maintains time during power outage. ID timer alerts every 9 minutes after reset. Switchable seconds readout. Elapsed timer. Just start clock from zero and note time of event up to 24 hours. Bright blue $6^{\prime \prime}$ digits. Alarm with snooze function. Synchronizable with WWV. Lock function prevents mis-setting. Power out, alarm on indicators. Black. $5 \times 2 \times 3$ in. 110 VAC, 60 Hz .

DUAL TUNABLE SSB/CW FILTER MFJ-752B \$89.95

Dual filters glve unmatched performancel The primary filter lets you peak, notch, low pass or high pass with extra steep skirts. Auxiliary filter gives 70 db notch, 40 Hz peak. Both filters tune from 300 to 3000 Hz with variable bandwidth from 40 Hz to nearly flat. Constant output as bandwidth is varied; linear frequency control. Switchable noise limiter for impulse noise. Simulated stereo sound for CW lets ears and mind reject QRM. Inputs for 2 rigs. Plugs into phone jack. Two watts for speaker Off bypasses filter, $9-18$ VDC or 110 VAC with optional adapter, MFJ-1312, \$9.95.

> ORDER ANY PRODUCT FROM MFJ AND TRY IT-NO OBLIGATION. IF NOT DELIGHTED, RETURN WITHIN 30 DAYS FOR PROMPT REFUND (LESS SHIPPING).
> - One year uncenditional guarantee - Made in USA.
> - Add $\$ 4.00$ each shipping/handling - Call or write
> for free catalog, over 100 products.

MFJ ENTERPRISES, INC. Box 494, Mississippl State, MS 39762

TO ORDER OR FOR YOUR NEAREST
DEALER, CALL TOLL-FREE
800-647-1800. Call 601-323-5869
in Miss, and outside continental USA Telex 53-4590 MFJ STKV

TS-930S

"DX-traordinary"...
superior dynamic range, auto. antenna tuner, QSK, dual NB, 2 VFO's, general coverage receiver.
A superlative, high-performance, all solid-state HF transceiver, that covers all Amateur HF bands, and incorporates a 150 kHz to 30 MHz general coverage receiver having an excellent dynamic range.
TS-930S FEATURES:

- 160-10 Meters, with $150 \mathrm{kHz}-30$ MHz general coverage receiver. Covers all Amateur frequencies plus WARC, on SSB. CW, FSK. and AM. UP conversion digital PLL circuit
- Excellent receiver dynamic range. Typical two-tone dynamic range, $100 \mathrm{~dB}(20$ meters, $50-\mathrm{kHz}$ spacing. 500 Hz 2 CW bandwidth).
- All solid-state 28 volt operated final amplifier. Lowest IM distortion. Power input 250 W on

SSB/CW/FSK. 80 W on AM. SWR/ Power meter.

- Available with AT-930 automatic antenna tuner built-in, or as an option. Covers 80-10 meters. including WARC bands.
- CW full break-in. CMOS logic IC, plus reed relay. Switchable to semi break-in.
- Dual digital VFO's. $10-\mathrm{Hz}$ steps. includes band information.
- Eight memory channels. Stores frequency and band data. Internal battery memory backup, est. 1 yr. life. (Battery not Kenwood supplied.)
- Dual mode noise blanker. NB-1.
with threshold control. for "pulse" noise. NB-2 for woodpecker:
- SSB IF slope tuning, allows independent adjustment of the low and/or high frequency slopes of the IF passband.
- CW VBT and pitch control. VBT tunes out interfering signals. CW pitch control shifts IF pass-band and beat frequency. "NarrowWide" filter switch.
- Tuneable. peak-type audio filter for CW.
- AC power supply built-in.
- Fluorescent tube digital display (100 Hz resolution, modifiable to $10 \mathrm{~Hz})$ with digitalized sub-scale. in $20-\mathrm{kHz}$ steps.
- RF speech processor.
- One year limited warranty.
- SSB monitor circuit.

Optional Accessories:

- AT-930 Auto. antenna tuner
- SP-930 External speaker with selectable audio filters.
- YG-455C-1 $(500 \mathrm{~Hz})$ or YG-455CN-1 (250 Hz) plug-in CW filters for 455 kHz IF.
- YK-88C-1 $(500 \mathrm{~Hz}) \mathrm{CW}$ plug-in filter for 8.83 MHz IF ,
- YK-88A-1 (6 kHz) AM plug-in filter for 8.83 MHz IF .
- SO-1 commercial grade TCXO.
- MC-42S UP/DOWN hand mic.
- MC-60A deluxe desk mic.
- MC-80 desk top UP/DOWN mic.
- MC-85 multi-function desk mic.

TS-430S

"Digital DX-terity". General coverage, Superior dynamic range, 2 VFO's, 8 memories, Scan, Notch,COMPACT!
Combines compact styling with state-of-the-art circuit design and performance.

TS-430S FEATURES:

- 160-10 meters, with $150 \mathrm{kHz}-30$ MHz general coverage receiver. Covers all Amateur frequencies. plus WARC. UP-conversion digital PLL circuit.
- USB, LSB, CW, AM, and FM (optional) all mode
- Compact lightweight design. Only 10-5/8 (270) W x 3-3/4 (96) H $\times 10-7 / 8$ (275) D, inches (mm): only 14.3 lbs (6.5 kg .).
- Superior receiver dynamic range with Dyna-Mix high sensitivity direct mixing system.

- $10-\mathrm{Hz}$ step dual digital VFO's. Operate independently, include band and mode information. Dial torque adjustable. Step switch for $10-\mathrm{Hz}$ or $100-\mathrm{Hz}$ steps. $A-B$ switch shifts " B " VFO to "A" VFO frequency and mode, or vice versa. VFO LOCK switch. RIT for VFO or memory. UP/ DOWN manual scan with optional UP/DOWN microphone. - Eight memories store frequency. mode, and band data. 8 th memory stores RX/TX fre quencies independently.
- Lithium battery memory back-up. (Est. 5 yr. life.)
- Memory Scan.
- Programmable automatic band scan width.
- IF shift circuit for minimum QRM. Optional accessories:
- Tuneable notch filter, built-in.
- Narrow-wide filter selection on SSB and CW (fitter optional).
- Speech processor, built-in.
- All solid state. Input rated 250 W PEP on SSB. 200 W DC on CW. 120 W on FM (optional), 60 W on AM. Operates on 12 VDC or on 120 VAC. or $220 / 240$ VAC with optional PS-430 AC power supply.
- Fluorescent tube digital display indicates frequency to 100 Hz (10 Hz modifiable).
- All-mode squelch circuit, built-in.
- Built-in noise blanker.
- RF attenuator (20 dB).
- VOX circuit, plus semi break-in with side-tone.
- PS 430, PS-30 or KPS-21 AC power supplies.
- SP-430 external speaker.
- MB-430 mobile mounting bracket.
- AT-250 automatic antenna tuner, $160-10 \mathrm{~m}$, incl. WARC.
- AT-130 compact antenna tuner. $80-10 \mathrm{~m}$. incl. WARC.
- FM-430 FM unit.
- YK-88C (500 Hz) or YK-88CN $(270 \mathrm{~Hz}) \mathrm{CW}$ filters.
- YK-88SN (1.8 kHz) SSB filter.
- YK-88A (6 kHz) AM filter.
- MC-42S UP/DOWN hand mic.
- MC-55 (8P) mobile mic.
- MC-60A deluxe desk mic.
- MC-80 desk top UP/DOWN mic.
- MC-85 multi-function desk mic.

nam radio magazine

contents

Rich Rosen, K2RR oditor-in-chiof and associate publisher

Dorothy Rosa Leeds assistant editor
editorial staff
Alfred Wilson, W6NIF Joseph J. Schroeder, W9JUV Leonard H. Anderson associate editors
Susan Shorrock editorial production

Cover photo:
Rick Littlefield, K1BOT
publishing staff
J. Craig Clark, Jr., N1ACH
assistant publisher
Rally Dennis, KA1JWF
director of advertising sales
Dorothy Sargent, KA1ZK advertising production manager

Susan Shorrock circulation manager

Therese Bourgaut circulation

hr om

 Grenville New Hampshire peoce-0useMI/RFI test receivers
Dr. Ulrich L. Ronde, DJ2LR

84 the weekender: build a simple shortwave broadcast receiver Ed Marriner, W6XM

118 advertisers index 105 new products and reader service 6 presstop
8 comments 105 book and
90 DX forecaster product review
116 flea market
114 ham mart
103 ham notebook

4 reflections
92 short circuits 95 technical forum

Thank You
Thank you for responding to the reader survey published in the September issue. I want you to know how very valuable your comments are to me . You are providing to us at ham radio an understanding of your needs, likes, and dislikes.

As we go to press, we have not yet "closed the books" on this survey; survey forms and letters continue to arrive daily in considerable quantity. In reviewing the forms that have been returned, I already see important trends which together with the survey compilation, will be detailed in a future issue. In general, readers are telling us to continue to provide a technically superior magazine and not to succumb to the temptation of trying to offer "something for everybody." This was clearly brought out in one of the many letters that accompanied the survey forms:

I cannot resist writing to tell you how grateful I am that you have gone back to the original aims of ham radio. I had originally subscribed to the magazine because of the technical content and I am so pleased to see a return to the more technically oriented articles. The fact is that there are already three other magazines devoted to operating news and 'beginner' type construction articles - we don't need one more. I am sure that your general reader response will confirm that there is a need for material that has some body to it and which can be used for future reference....

Taking all of the responses (so far) into account, I promise to follow a policy I adopted several years ago while editor of another magazine (rf design): a/ways try to inform, not impress. Now, I have to admit that some of our past articles did not exactly meet that criterion, and I plead guilty with explanation. In the publishing industry it's not unusual for an editor to be working with the content of four or more issues in various stages of development at the same time. But by pushing the schedule ahead with excellent material received from our readers, I'll be able to improve the quality of ham radio. I've just finished editing some exciting new material to be included in the early 1984 issues.

While on the subject of articles, I'd like to ask all prospective authors to remember that the most important reason for writing and publishing a manuscript is to communicate - be it an idea or a complete system down to the last diode. Sometimes it helps to ask a friend to read your manuscript with a critical eye. If there's something he or she doesn't understand, chances are that others will have the same problem. Before you start, I firmly believe that it's always a good policy to make a single-sided, single-page outline on the proposed subject. Don't write another word until you really like the outline. It's much easier to modify an outline than to cut and paste or start a manuscript all over after you've gotten into it. By all means, once you like the outline, stick with it, taking one section or thought at a time - in order. This makes the job considerably easier.

The kitchen sink. Yes, I've found a few of them in some of the manuscripts. There is a tendency among some of us (and I am not excluding myself) to try to squeeze everything you possibly can into a five-printed-page article. Please believe me, you can save some material for another article or a book or even an encyclopedia. We at ham radio can help out in many ways. Send for our well-written six page Author's Guide. It will provide you with many helpful hints for producing your manuscript (hint number 1: type your manuscript, double-spaced). Drop me a line with your outline and I will try to respond ASAP with suggestions.

Just a final word on artwork. Penciled sketches are fine. We normally redraw all schematics, block diagrams, etc., unless you happen to follow our drafting style and produce camera-ready artwork (some authors do). Photographs should be black and white, 35 mm or larger. Use the best photographic techniques you can master (clean backgrounds, good lighting, logical presentation) and don't hesitate to seek professional assistance. Remember, if accepted, your work will adorn the pages of a widely, worldy circulated magazine.

There we have it. I've thrown the kitchen sink into this editorial. Let me just say thanks again for your support. Please keep reading the magazine; we'll keep trying to improve and expand it to meet your needs.

Rich Rosen, K2RR editor-in-chief

Morse Keyers \& Trainers ${ }_{n} \mathcal{A}=A$

AEA produces the finest Morse keyers and trainers in the world. All AEA keyers operate with any standard keyer paddle and offer selectable monitor tone, selectable dot and dash ratios, full weighting and selectable dot and/or dash memory. In addition, all our keyers offer full, semiautomatic or straight key modes. The keyers and trainers are keypad controlled which significantly reduces the complexity of operation for all the features offered. Each keyer has separate + and - keyed outputs for keying any modern transmitter. All keyers and trainers operate from 12 VDC (or 117 VAC with optional model AC-1 wall adaptor) which makes them ideal for portable operation. AEA microcomputer-based products are all subjected to a full burnin and test prior to shipment, as well as being designed for maximum R.F. immunity.

NEW вт-1

The BT-1 Basic Trainer is a hand-held computerized unit which teaches the code one character at a time at 18 or 20 words per minute. The BT-1 contains a self-paced training program that allows serious students the possibility of learning Morse to 20 wpm in as little as one month! Each character represents a separate practice session in which the character is first introduced by itself, and then presented 50% of the time along with all previously learned characters. There are no tapes to memorize, wear out, or break. No programming skills are necessary; the BT-1 is very easy to use. The tone oscillator can also be keyed for sending practice. An earphone jack is provided for private listening. The BT-1 will go as high as 99 WPM in 1 WPM increments. A battery operated version, the BT-1P, is available with wall charger and internal NICAD batteries.

The KT-3 Keyer-Trainer unit uses the teaching program used in the BT-1 trainer. In addition, the KT-3 features a full function Morse automatic keyer for keying any modern transceiver, or for sending practice. Speed range is 18-99 wpm for transmitting and 1-99 wpm for training.
The KT-2 Keyer-Trainer is a computerized keyer with all the features shown above, plus

KT-2 Keyer Trainer
 a Morse proficiency trainer. It is designed to increase your existing code as quickly as possible. The unit can be set
 for beginning practice speed, ending practice speed, and duration of practice. The microcomputer does all the rest by gradually increasing the speed during the practice time selected. You can even select between fast code (Farnsworth) or slow code methods. The characters are sent in 5 letter groups, or random word lengths. Two levels of difficulty can be selected; common Morse characters or all English Morse characters. A 24,000 character answer book is provided for the 10 separate starting positions. There is also random practice mode for which no answers are available.

The CK-2 Contester" ${ }^{\text {T }}$ Keyer is the lowest cost automatic keyer available featuring an automatic serial number generator for contesting. The CK-2 keyer features a large 500 character message memory that can be softpartitioned into as many as 10 sections. An exclusive AEA edit mode makes it possible to correct mistakes made while entering messages or to insert words into previously established messages. Two different speeds can be set for fast recall in addition to

MM-2 MorseMatic ${ }^{\text {u }}$

 a stepped variable speed control. The CK-2 features an automatic message repeat mode with variable delay-before-repeat for automatic CQ transmissions or TVI testing.

CK-2 Contester ${ }^{\text {rw }}$

The MM-2 Morsematic Keyer represents the most sophisticated paddle keyer ever designed and features two powerful microcomputers. The Morsematic incorporates virtually all the features (except the preset and stepped variable speeds) of both the CK-2 and KT-2 shown above. In addition, the MM-2 offers an exclusive automatic beacon mode which is invaluable for meteor scatter, moonbounce scheduling, or beacon operation.

ADVANCED ELECTRONIC APPLICATIONS, INC.

prestop samave

THE VOLUNTEER EXAM PROGRAM FOR AMATEURS WAS ESTABLISHED officially September 22 , when the FCC acted on PR Docket 83-27. The biggest surprise was the Commissioners decision to use 13 regional Volunteer Examiner Coordinators instead of one national VEC, with a VEC in each U.S. call area plus one each for Alaska, the Pacific islands and the Caribbean. The decision to go with regional VECs is being widely interpreted as a direct slap at the ARRL, whose last-minute introduction of a demand that VECs be compensated for their efforts after assuring the FCC they could handle it gratis caused much consternation at the Commission.

Exam Administration Fees Are Specifically Prohibited by the Report and Order, in a section reportedly written by the FCC's legal staff and based on the enabling legislation. The League is lobbying on Capitol Hill for a bill that would legalize fee collection, but Senator Goldwater has come out strongly against such fees and without his support it's unlikely that it can receive much support in either house.

Three-Person Examining Teams Are Still Required for the Technician and higher class exams. All but Technician will require that all three team members be Extra Class. Specifically, 13 as well as 20 wpm code tests plus Elements 4 (A) (Advanced and Extra) and 4 (B) (Extra) must be administered by a team consisting of three Extra Class licensees.

Negotiations With Groups Wishing To Become Regional VECs will be opened by the FCC on December 1. Since some areas will respond more quickly and have an acceptable examiner organization in place more rapidly than others, it appears almost certain that the program will be up and running in some parts of the country long before it will be in others.

LAUNCH OF THE STS-9 SPACECRAFT IS STILL SET FOR OCTOBER 28 , with W5LFL due to begin his 2 meter operation from space a few days later as outlined in September Presstop. Latebreaking information will be made available via recorded messages on various special phone lines, including ARRL--(203) 666-0688, Westlink--(213) 465-5550, and the Johnson Spaceflight Center--(713) 483-2477. In addition, Electra (Bearcat) is making its toll-free line (800) SCA-NNER available as a mission progress hotline to Amateurs as well as other VHF listeners for the duration of the STS-9 mission.

The Most Up-To-Date STS-9 Information Will Probably Be From W5RRR, the Space Center Radio Club station. It will be on the air before and after working hours plus weekends, using 28600, 21375, 14280, and 3845 kHz , all $+/-\mathrm{QRM}$. Operation on OSCAR 10 is possible.

Retransmission of Space Shuttle Transmissions By Amateurs has been authorized by the FCC in response to several petitioners. However, Amateurs wishing to perform this service must first get permission from NASA.

FCC ACTION ON THE "NO-CODE" AMATEUR LICENSE is unlikely until early 1984 , according to Washington sources. There is also considerable speculation that the rebuff the League took on the Amateur licensing program is a harbinger of a pro No-Code decision when the Conmissioners do finally consider that thorny issue.

The Widely Heralded Air Force Letter Opposing No-Code was apparently only a statement by some Air Force MARS people that their MARS appointments (which do include HF band operations) would require CW ability, and was not a statement of official Air Force policy. In addition, no basis has been found for a recently circulated rumor that the CIA had told the FCC that a No-Code license "would not be in the national interest."

2-METER USE BY FISHING BOATS IN PUGET SOUND is concerning Amateurs in the Pacific Northwest. Reminiscent of similar episodes during the height of the CB boom, when some truckers discovered readily available 2 -meter rigs offered them a refuge from the bedlam of channel 19, the fishermen are using 2 meters for "private communications channels" to discuss matters inappropriate for the regular marine band or which they want kept secret from others not "in the know." It appears the operation was set up by someone knowledgeable, since the fishermen have pretty well avoided use of active Amateur frequencies.

The FCC Has Been Informed And Is Actively Monitoring the illegal operations. At least a dozen of the pirate stations seem to be active.

When The FCC's Program To Involve Amateurs In Enforcement will get under way seems up in the air at the moment. Despite earlier hopes it would be in operation by this fall, there has apparently been little progress on it in the last few months.
"WB23XYZ" AND "AB84C" WILL BE LEGITIMATE CALLSIGNS for California Amateurs during July and August, 1984 California Amateurs with "6" in their callsigns have been authorized by the FCC to use either " 23 " (for 23rd Olympiad) or " 84 " (for 1984) instead of " 6 " during the period of the $01 y m p i c$ games in California next year.

Amateur Involvement In The Olympics Is Progressing Well, with plans now firm to have Amateur HF stations operating from all three Olymplc villages. Tentative agreements are already well along with a number of countries to waive their restrictions on third-party traffic, to enable their Olympic athletes to keep in touch with home via Amateur Radio.

PIZZA ORDERING BY AMATEUR RADIO WAS BRIEFLY LEGALIZED by a recent, short lived FCC policy relaxation. The change, in effect for only a few weeks in September, was another effort to resolve on-going conficts over what constitutes prohibited communications. It has since been rescinded and the Part 97.114 (c) restrictions remain in effect.

WERETHENUMBEB EARTH SAAION ORDEAIRS.

WERE QUARIES SATIELITIE SYSTEMS.

hERE ARE SOME OFTHETOPNGIES IN THE NDOSTR MiAT WECARP:

- Prodelín
- Luxor
- Dexcel
- ACM
- KIM
- Praclipse
- Chaparial
- Tracker Systems
- Janel

Call Toll Free 1-800-845-6952
In South Carolina 1-800-922-9704

If you've never dealt with Quarles Satellite Systems before, you're in for a pleasant surprise. Because we provide exactly what the dealer is looking for: the best line of products in the industry, complete in-house inventory, authorized service, and competitive pricing.

So, to provide your customers a space-age adventure in the world of satellites, tune to Quarles Satellite Systems...We are the "\#1 Earth Station" for you.

Tomorrows Communications...Today

QUARIES S.TITITIE SYSTEMS
1616 CALHOUN ROAD GREENWOOD, SC 29646

Mr. Sanford's paragraph on using an anti-corrosion compound cannot be stressed too strongly. Failure to do so can cause the cable to self-destruct in less than a year in certain environments. (Contact an electrician or electrical supply house for the brand names available in your area.)

Results must be taken with a grain of salt. If a certain homebrew connector works for your particular project, by all means use it. Up to approximately 150 MHz , just about anything will work reasonably well and give a return loss of 14 dB (VSWR 1.5) or better. Commercial connectors readily achieve return losses of better than 25 dB and virtually immeasurable insertion loss. The 1 -inch cables that I am familiar with have a loss per 100 feet of from 0.4 to 0.5 dB at 150 MHz and 0.75 to 0.95 dB at 450 MHz . This can go a long way toward putting power where it belongs.

One final caution about the cable. Use only fresh cable, the source of which you are certain. If possible, find out the upper frequency limit of the CATV system in which it is used. Most new systems are operating to 400 MHz or higher and are using cable with excellent characteristics well past 500 MHz . There are, however, many varieties of older design cable that are being passed off to hams by unscrupulous individuals at fleamarkets. Many of those cables deliver horrible performance above about 200 MHz . When going up through the UHF bands, verifiable results require sophisticated test equipment and thorough attention to detail. Even more insidious is the type of cable that does not have the foam dielectric bonded to the sheath and inner conductor. Any water ingress will then migrate completely throughout the cable. This will quickly turn a kW station into ORP level ERP even at 20 meters! For high power, at least $3 / 4$-inch cable should be used to reduce the possibility of high-voltage RF flashover.

I am personally all for the use of 75ohm hardline and am designing my station for its use. It is produced by
the millions of feet, is reliable and reasonably priced even when new. Hams have been getting ripped off for years by sticking to 50 -ohm cable. If you don't have the time or mechanical dexterity to produce a connector, contact your local CATV engineer. You will probably be pleasantly surprised to find what is available for the asking.

Carl Huether, KM1H
 Pelham, New Hampshire

freebies

Response to our recent offers of supplementary materials has been tremendous - our thanks to all who wrote. Copies of the World Press List, the NASA Tech Brief, and the RTTY-AtariTM program are still available; send a large SASE (with 206 in stamps for the press list, 37C for the tech briet, and 54C for the programl for copies of one or all. A sampling of recent letters follows. - Editor

Dear HR:

I enjoyed the article "RTTY and the AtariTM Computer" by Dave King, K5VUV. Hopefully I can figure out a way to interface into the computer serial port on my Atari 400, rather than use the Atari interface module, which costs more than the computer!

Chuck Hastings, KB3QU
 Annapolis, Maryland

Dear HR:

I really enjoyed "RTTY and the AtariTM Computer." Although my recently-purchased computer is a TRS-80C' I believe I can use the interface. Please send the program listing.

> P.B. Johnson, VE7DHM
> Sooke, British Columbia

Dear HR:

Please send me a copy of the NASA tech brief.

Thank you for a fine publication. I am particularly interested in Forrest Gehrke's series on phased verticals, having used and worked with them with moderate success for some time. This is the first definitive article on the subject to appear in the Amateur literature.

Arthur J. Conebeer, W6DRL Laguna Beach, California

compact SSB receiver

Bigger isn't always better. Here's a small, easy-to-build unit that performs much like a full-sized receiver

This simple, compact receiver has a lot of grownup features: a built-in speaker, automatic gain control, good sensitivity, wide dynamic range, and the potential for excellent selectivity. Add a small voltage-probe antenna and you can cast off the feedline and take the receiver with you.

Most of the necessary components are readily available and inexpensive; modular design allows you to chose your own packaging. All board layouts, photos, and diagrams are provided, and any builder with modest experience should find construction no problem at all.

circuit description

In many respects, this circuit is similar to others described in recent Amateur literature. ${ }^{1,2}$ However, it has some practical features which offer a great deal of flexibility.

Fig. 1 shows the main receiver board. A switchable 20-dB attenuator provides RF gain control to prevent receiver overload. O 1 is a grounded-gate RF amplifier which provides 10 dB of gain ahead of mixer Q 2 . Q 2 is a single-ended MOSFET mixer. This stage is coupled to bandpass filter FL-1 by means of T1, a broadband matching transformer. Either a me-
chanical or crystal filter can be employed by choosing the appropriate turns-ratio. The filter's output is terminated by resistor R_{F}. Since the filter is not mounted on the circuit board, physical size is not a factor in filter selection.

Q3 is the receiver's gain IF stage. Gain is controlled by a simple audio-derived AGC system. Diodes replace O3's source resistor in order to bias gate-2 negative with respect to gate-1. This extends the AGC attenuation range. ${ }^{3}$ IF transformer $T 2$ is capacitively coupled to product detector Q4. The transformer's secondary is not used. A toroidal LC circuit can replace this transformer for non-standard IF frequencies. IF frequencies from 455 kHz to 9 MHz and beyond can be employed without board modification.

Product detector Q 4 is an active circuit which provides audio pre-amplification ahead of the gain control. U1, the audio amplifier, is an LM-386. This IC provides a voltage gain of 200 and delivers 400 mW of power into an 8 -ohm load. A 10 -ohm series resistor in the output line protects miniature 200 mW speakers from damage.

The AGC system is a simple audio-derived limiter. ${ }^{4}$ A diode samples the output of U1 and sends a negative voltage to dc amplifier Q5/O6. The output of Q6 is set for a resting bias of +4 volts under no-signal conditions. When a strong signal appears, this voltage drops to as low as +0.5 volts, reducing 03 's gain. Resistor R_{D} sets the AGC sampling level. The value of R_{D} is selected for best $A G C$ action. Capacitor C_{A} is optional, but recommended for SSB operation since it slows release time.

The VFO shown in fig. 2 is a near-copy of a W7ZOI/W5IRK circuit. ${ }^{5}$ This design provides excellent performance. The Hartley JFET oscillator drives a single MOSFET buffer/amplifier. VFO-output is coupled to the mixer through a broadband trans-

By Rick Littlefield, K1BQT, Box 114, Barrington, New Hampshire 03825

The completed receiver can be packaged to suit the builder. This 20 -meter version features a signal-strength meter and a built-in voltage probe antenna system. The illuminated frequency pointer is an LED that has been filed to shape and polished.
former. Builders desiring a thorough treatment of the design along with temperature compensation information should refer to current editions of the ARRL Handbook.

Figs. 3A, B, and C show BFO circuits. These provide plenty of output at the high input impedance presented by Q4. The 455 kHz version employs a ceramic resonator instead of a crystal. These devices are considerably cheaper, and much easier to "rubber." Frequency adjustment is accomplished with a small 60 pF trimmer. The high-frequency version uses standard crystals, and oscillates easily in the $3-12 \mathrm{MHz}$ range.

Fig. 4 shows an optional tuned voltage probe antenna circuit. The telescoping rod antenna is coupled directly to the Hi-Z end of L1. A dual-gate MOSFET provides pre-amplification and impedance matching for the rod. Pre-amp output is transformed to 50 ohms through a broadband transformer. The longer the rod antenna, the more broadband the response. On 20 meters, a 2 -foot ($60-\mathrm{cm}$) rod allows coverage of the entire phone band. On 75, a 4 -foot ($120-\mathrm{cm}$) rod covers around 50 kHz . The antenna and pre-amp can be mounted in a receiver case, or remoted from the exterior of a structure or vehicle.

Finally, fig. 5 shows a simple regulator and pilot

ALL ITEMS ARE GUARANTEED OR SALES PRICE REFUNDED. PRICES F.O.B. HOUSTON PRICES SUBJECT TO CHANGE WITHOUT NOTICE. ITEMS SUBJECT TO PRIOR SALE.

KENWOOD
TS930S . The best in its class TS430S Survivor of the Armadillo Run FM430 49.00 Filters . 60.00 We'll install accessories at no charge and check out the rig.
TS530S 639.00 MC60A 79.00 MC60A. NEW TS780 VHF-UHF TW4000A FC-10 Controller

ALPHA 76PA	\$1690.00
BENCHER ZA1A	17.00
ZA2A	21.00

SAMS CB Photofacts (stock only) 200
SAMS CB Photofacts (stock only) 2.00
TENTEC 2591 Handie Talkie ... 279.00
Corsair 1025.00
Argosy 519.00
AMPHENOL PL259 silverplate 1.25
UG176
.20
831J double female 2.00

ALPHA DELTA MACC
Transitraps -10% stock
VALOR $1 / 4+5 / 8$ Mag Mount
2M Ant..................... 25.00
BUGCATCHER All-band ant coil $\quad 45.00$
JANEL, WELZ, SHERWOOD.
FOX TANGO.
DRAKE TR5
SANTEC ST7T
SANTEC ST7T 239.00
SIGNAL ONE Milspec 1030
CK2.
4995.00
149.00

KT2/KT3
99.00 ea.

HAL STGK TOKYO HYPOWER
HC200 Tuner
HC2000 Tuner
HL10160V Amp
HL30160V Amp
KDK 2030 2MFM
SANTEC ST $144 \mu \mathrm{P}$
ST $440 \mu \mathrm{P}$
ST7T
ST7T.
MAXON $49 S$
TX FM Headset Vox 39.95 ea. SHERWOOD/WELZ 10% off lisi ROCKWELL KWM380 COAX SEAL, QSL holder BENCHER ST2
Chrome single lever BIRD 43 \& elements TY RG2
. 45.00 Stock RG8X $29 \mathrm{c} / \mathrm{ft}$
14 f . ft . 450 ohm open wire. 20c/ft. AMPHENOL PL259 silverplate . 1.25 AMN GORDON Dogbone insulator 50 c WORLD RADIO TV handbook ... 17.50 VIBROPLEX

8214 RG8 foam

8235300 Ohm kW twinlead .. 20c/ft.
800014 Ga . stranded ant. 12c/ft.
8267 RG213.
8448 rotorcable
9405 heavy rotor cable 49c/ft.
9888
PARTS
TCG 2.5A/1000 PIV epoxy diode 19 c
Sprague $500 \mathrm{pF} / 30 \mathrm{kv}$
doorknob capacitors 16.00
$1000 \mathrm{pF} / 500 \mathrm{~V}$ Feedthru
CDE . $001 / 20 \mathrm{kV}$
$6^{\prime \prime} \times 9^{\prime \prime}$ copper board
2.00

Resistors $1 / 4,1 / 2,1,2$ Watt. $10 ¢$ ea.
Caps to 1MFD, 100V 256 ea.
USED - Subject to prior sale
COLLINS 75A4
$75 \$ 1$.
32S1/AC.
DRAKE TR4C/AC4
RV4C
ALPHA 374
RF POWER LABS
A1000. C500X demos
COLLINS KWS1/75A4 partsCall
75S1/32S1 Parts

COMPUTERS

PACKAGES
\#1 AEA CP1, VIC 20 Computer, Kantronics
Hamsoft, with cables to fit your radio $\$ 325.00$
\#2 Above Package
with Kantronics Hamtext \qquad 375.00
\#3 MFJ 1224, Kantronics Hamsoft, VIC 20
Computer, and cables for your radio 225.00
AEA AMTOR + CW Receive 579.00
IRL FSK500 . 269.00
FSK 1000/1020A AFSK 575.00
AEA CP1 . 199.00
KANTRONICS interface 139.95
MFJ 1224 79.95
10% off on Software in Stock
YAESU
FT980 Transceiver

(Best receiver in HF) 1299.00
FT77 . 499.00
FT726R . 699.00
accessories in stock
FT208RA
269.00

hygain

NEW

ICOM IC-37 25W 220 Rig

TENTEC 2591
Handie Talkie
\$279.00

$4 \rightarrow \pm=\square$

FT-757

NEW Medium Price $\$ 829.00$ Retail

General coverage receiver, CW filter, AM/FM Module, Microphone, Full break-in CW, Keyer FC757 Automatic Antenna Tuner FP757 AC Supply
Available shortly

SSTV ROBOT

ANTENNAS

DB+Enterprises 2 element QUAD
in stock

HF6V.	125.00

2M CV-5 39.00
6BTV . 139.00
G7 144 . 108.00

Explorer $14 \ldots .279 .00$
HD73
99.00
Ham4 . 199.00

B\&W AV25 10-80 vert 85.00

A4	289.00

V2S Oscar . 39.00
435 16TB . 58.00
144-20T twist . 74.00
ARX2B . 38.00

HG52SS Hygain/Telex 52^{\prime} self supporting crank-up tower to hold 9.5 sq ft at 50 mph Rotator mount inside top section. Nested ht 20.5 feet
939.00

Big LCD Clock

DON'S CORNER: Our Hurricane Alicia left us with a batch of wet antenna boxes (usable antennas inside) One of the windows blew out right over the antenna department. Take the lowest nationally advertised price you can find, deduct 20%, add suitable shipping or call us with your charge card \& we'll check stock for you. Items are subject to prior sale, but we got a bunch of them!
We have a great line-up of repair techs. The crew looks like this
Tech \#1 Kenwood, Icom, Yaesu VHF-UHF + the new digitals
Tech \#2 Older tube Kenwoods, Yaesus and older transistor HFs
Tech \#3 Drake, C lines, Swan, Galaxy, Tempo Tech \#4 S line and KWM2
Tech \#5 KWM 380 and ETO ALPHA
Madisionote: The first Saturday of each month we have a sidewalk sale. Bring your surplus and try to sell it to fellow amateurs.

1508 McKINNEY HOUSTON, TEXAS 77010

We stock what we advertise, and much more.
TOLL FREE-ORDERS ONLY 1-800-231-3057


```
80-meter operation
C1,C2 100 pF
LT. 2 feet of No. 36 on a T37.2 core: tap 1/3 up
    romm grounded end,
    on ground sond
L2 same as L1 except omit tap and link
20-meter operation
C1,C2 not used
L1 }28\mathrm{ turms of No. 28 on T37.2 core: tap at 8 turns,
    add 2.turn link for antenna on grounded end
    add 2.turn link for antenna on ground
455-kHz Mechanical filter iff plan
455-kHz Mechamicalmer H- plam
        *S5.kHz mechanical fitter.Collins F455FD series,
        or Kokusai MF-455-ZL.21H(MHZ Electronics) Install
AF}\quad2.2\textrm{K}\mathrm{ for most filters
        1:1 turns ratio broadband transformer:lightly twis!
        together two 1.1/2.-oot lengths of No, 36, and
        wind on a F 137.43 core
        W. Muler No.2067, or virtually any 455 kHz
        miniature transformer from the iunk box (secondar)
molused)
FL.1 KVG XF.9B, Atlas 9.0 USB/CW (MHZ Electronics)
        McCoy, etc. Provide resistive termination pe:
        manutacturer's instructions. Terminate inpu
        Ifliter, terminate output by means of resistor
    On gate No. }1\mathrm{ of the it amplitier stage
    same value as tilter termination resistor,
    2:1 turns ratio broadband transformer: primary:
        S turns No. 28 on FT37-43 core; secondary,
        8 furas No.28
T2 any mimiature 10.7 MHz, i-1 transtormer (secondary
    ot usedy. Will need additional 15.22 pF across
        trimary to resonate at 9MHz}\mathrm{ Use pads provided
        on underside of the board
other variable component values.
Ca Sets AGC speed. Not needed for fant action,
    2.2-4.7 F For slower action
Aa Sets level of rf attenuation; 680 ohms
provides approximately 20 dB of attenuation
Rd Sets AGC drive. May vary from 10-50K, see
    test for set up information
As Sets meter sensitivity, 50 A movemen
    lequirs zok: less sensitive movements
    require less
```

 * dress coax as close to board
 AS POSSIBLE
 fig. 1B. Parts layout for main receiver board.

LED circuit. The LM-7812 holds the operating voltage at 12 volts, protects the modules from damage, and keeps noise out of the system.

construction

The entire receiver chain, RF amplifier through audio, is contained on one main circuit board. Because oscillators require shielding, they are built separately. Optional circuits such as the regulator and antenna pre-amp are also separate, since some builders may choose to omit them.

Original artwork for my boards was prepared on transparent acetate stock using Radio Shack rubons. Boards were prepared with the General Cement positive developer system and pre-sensitized board. You can use this same system by applying lift-film to pull the board patterns from this article. Pre-etched boards are also available from Radiokit. ${ }^{6}$

Component density is fairly high on all of these boards. Miniature parts should be used wherever possible to prevent crowding. Choosing small tantalum audio coupling capacitors, low voltage bypasses, $1 / 4$ - or $1 / 8$-watt resistors, and compact elec-

Good things can come in small packages. This 75 -meter net monitor is almost dwarfed by its AC adapter.

IM Suppression Panels

Receiver Multicoupling

The Problem Solvers

Duplexers \& Preselectors

Transmitter Combining $150-900 \mathrm{MHz}$

Bandpass, Pass-Reject and Notch Cavity Filters
COMPLETE SYSTEM ENGINEERING ASSISTANCE

2166 OLD MIDDLEFIELD WAY, MOUNTAIN VIEW, CA 94043 (415) 968-4400 • TWX 910-379-5055
trolytics will result in attractive and uncluttered boards. Shielded and unshielded wires should also be small in diameter and flexible. Most components are available at Radio Shack stores or by mail-order through Radiokit. ${ }^{6}$ I reduced construction costs considerably by drawing on a parts inventory built from junked circuit boards and surplus grab-bags.

Coils are much more difficult to prune after they

fig. 2A. VFO board schematic.

fig. 2B. VFO board and parts layout.
are installed on the circuit board. For that reason, all tuned circuits are wound, tacked together with solder, and checked for resonance with a grid-dip meter prior to actual board construction. A length of hook-up wire is used to link-couple the grid-dipper to the toroids. Each tuned circuit is then marked and set aside for later installation.

Oscillators are constructed first, since they are needed to test the main board. Special attention is given to mechanical stability, especially while constructing the VFO. Cement firmly in place anything that can move or vibrate. Upon completion, check for oscillation and proper output level.

When selecting a VFO main-tuning capacitor, look for a "ball-bearing" type with a good vernier drive (either built-in or added on). Variables and vernier drives are available from several sources including Radiokit and BCD Electro. ${ }^{7}$ Select fixed capacitors for the VFO tank with the main tuning capacitor mounted in the receiver case. This provides mechanical stability during component substitution. Values for $\mathrm{C} 1, \mathrm{C} 2$, and C 3 are juggled until the desired tuning range and dial linearity is obtained. During this process, a frequency counter and pocket calculator are very helpful. The counter provides an accurate measure of the oscillator frequency, and the calculator adds and subtracts the IF frequency to give the actual receive frequency. If a counter is not available, a good general coverage receiver will suffice.

fig. 3A. 455 kHz BFO board schematics.

After final installation of all frequency determining components, mount the VFO board in place and mark dial calibrations on the front panel. While full shielding of the VFO is desirable, this may be difficult in compact packages like the "Micro-75" shown in the photo on page 13. In practice, some VFO leakage does not appear to degrade performance.

Construction of either BFO board is simple. After assembly and testing, a "can" or small box is constructed to shield the board. Unlike the VFO, the BFO must be fully shielded to prevent birdies and common-mode detector noise. Tin flashing, twosided board, or aluminum all make good boxes. Two sinall holes are needed for the leads, plus an access hole for tuning the trimmer. Install the shielded BFO in the receiver case.

fig. 3B. Ceramic resonator 455 kHz BFO.

Since the main board is more complex than the others, it is constructed one stage at a time. Start with the audio and AGC sections, and work back to the RF amplifier. This keeps the process orderly, and allows stage-by-stage inspection. It also leaves installation of vulnerable toroid inductors until last.

A number of frequency plans are possible for this

With the exception of the oscillators, all receiver circuitry is contained on the main board. Interconnecting leads for the speaker, volume control, and DC power are salvaged rain-bow-wire.
receiver. Here are some construction tips for the two versions I have built.

The "Micro-75" receiver is based on a 455 kHz IF. Most 455 kHz designs use a mechanical filter. A 1:1 input transformer and a 2.2 K value for R_{F} matches most of these devices. If external resonating capacitors are required, install them at the filter. A data chart for most Collins filters appears in current editions of the ARRL Handbook. T2 can be any miniature 455 kHz can. Avoid using the 455 kHz IF above 40 meters, since insufficient image rejection will be available at the higher frequencies.

The 20 -meter portable uses a 9 MHz IF. High-frequency IF's generally employ a crystal filter. This requires a $4: 1$ input transformer and a 300 to 800 ohm output termination. When termination numbers are not available, use a 560 ohm resistor for R_{F}. For transformer T 2 , use any 10.7 MHz miniature can and add $15-22 \mathrm{pF}$ of padding to lower the resonant frequency. This capacitor can be installed beneath the board on the extra set of pads provided for this purpose.

Coil data is supplied for 80 - and 20 -meter operation. For operation on 40, 30, and 15 meters, a survey of other receiver articles will provide LC values close enough to get started. The T37-2 forms are quite small. Preparing the 20 -meter inductors is easy enough, but concentration and a steady hand are needed to wind the 75-meter versions. I used No. 36 wire for these because it was available, but there is room on the form to substitute No. 34. All toroid coils and transformers are glued to the board after installation to prevent excess movement and lead breakage. Note that the 100 pF padding capacitors are installed for the 75-meter front-end only.

Oscillator inputs and mounting pads for resistor R_{D} require solder-pins on the top side of the board. (Small flea-clips or discarded resistor leads are fine for this purpose.) After all components are mounted, wires for interconnections are installed. Cut all leads

Total shielding of the VFO may not be possible in small packages like this one. This does not seem to degrade performance. The BFO should always be fully shielded. Note the bandpass filter mounted on the rear panel to save interior space.
on the long side to facilitate dressing during final assembly. Ground-loops are always a possibility when modules are interconnected. To prevent this, ground shielding at one end only.

receiver check-out and alignment

Final assembly can begin after the main board is completed. In my prototypes, the bandpass filter is

fig. 4A. Voltage probe antenna board schematic.

fig. 4B. Parts layout for voltage probe antenna.
externally mounted on the back panel of the receiver case. This saves interior space and eliminates the need to fabricate a mounting bracket. All jacks, the RF attenuator, gain control, and speaker are mounted prior to board installation. The board itself is mounted on short spacers with No. 2-56 hardware. Leads are then trimmed to length and connected to their destinations.

Initial testing and alignment is quite simple. Connect a resistance substitution box or a calibrated 50 K pot to the terminals provided for resistor "Rd". A value of 10 K is fine for initial testing. Advance the receiver gain control to about $3 / 4$ volume, and apply power to all three modules. A very soft hiss from the speaker indicates that no serious shorts are present. Adjust the "bias-set" for a resting AGC voltage of +4 volts, as measured at the top end of the potentiometer. Tune the IF through its range, looking for a slight noise peak to indicate resonance. Finally, peak the RF amplifier. If everything is working and the band is open, the receiver will come to life. RF trimmers should show two signal-peaks as they are rotated through 360 degrees. This confirms that resonance is within the trimmer range, and not off to one

The main board, two oscillator boards, and a bandpass filter are the basic modules required to build one of these receivers. Interconnecting wires are salvaged rainbow-wire and mini-audio cable.
side. Stagger tune the RF stage to provide even sensitivity across the entire tuning range of the radio.

To determine the correct value for R_{D}, tune in an extremely strong signal and vary the resistance until AGC action is smooth. Too much AGC produces overshoot. This is a condition where the AGC overresponds, producing a "pumping" effect. Too little AGC allows the audio amplifier to go into distortion. The best value should fall somwhere between 10 K and 50K. Install the nearest standard-value resistor.

This design has one quirk that might cause alarm during the testing phase. Extremely strong signals will sound fuzzy at low volume, yet miraculously clear up when the gain is increased. This is because AGC is derived from the audio output, and the AGC's ability to control the IF is pre-empted by the manual gain control at very soft listening levels. Fuzziness at low volume indicates overloading. A $20-\mathrm{dB}$ RF attenuator is included in the receiver-chain to correct this condition. In practice, it becomes second nature to switch in the attenuator when the band is open and signals are strong.

options

The most important addition is the regulator circuit described earlier in fig. 5. This provides cheap insurance for a project well done, and cleans up dirty power sources like automotive electrical systems and inexpensive AC adapters. Since these are the sources I use most often, both of my receivers are regulated. Mount the LM-7812 on the interior of the back panel, and use the positive output lead as a tie point for all of the module power leads. If hum persists with your AC adapter, it could be that the ripple is dipping below the regulating range of the LM7812. If this happens, install a 10 -ohm resistor in series with adapter's plus-lead or get a new adapter with more output voltage.

Simplicity of design is reflected in the front panel of this 75 meter net monitor. In place of a signal-strength meter, an LED peak-indicator illuminates at full audio output to indicate AGC action.

fig. 5. Regulator schematic.

The optional meter circuit shown in fig. 1 is not a full blown S-meter, but does measure relative signal strength. Almost any sensitive movement can be adapted to this circuit with the appropriate value of $R_{\text {S }}$. Use care while experimenting, since accidently grounding the AGC line destroys the 2N3906.

The voltage probe antenna circuit is a great addition when the receiver is going to be taken along as a portable. This circuit board is mounted inside the cabinet of my 20-meter prototype and connected to a short collapsible whip that extends through the top of the case (the 75 -meter receiver uses one as an external accessory). The pre-amp components are very similar to those used in the receiver front-end, and the same techniques apply for construction. A DPDT switch on the back panel applies power and brings the pre-amp on line for portable use. The antenna trimmer is accessible through the back of the cabinet, since peaking is quite critical and may require readjusting from time to time. (It's a thrill to hear VK's and ZL 's rolling in on a 2 -foot $[60 \mathrm{~cm}$] whip while sipping coffee at the kitchen table!)

conclusion

This is a very functional receiver design, easy to construct from available parts. The unusually flexible circuit allows selection of alternate frequency-plans without board modification. Many of the features one would expect to find in a full-sized communications receiver are included.

references

1. Marriner, W6XM, "80-Meter Receiver for the Experimenter," ham radio, February, 1981, page 25.
2. Doug DeMaw, W1FB, "Build a Bare Bones CW Superhet," QST, June, 1982.
3. G. Woodward, W1RN, editor, The Radio Amateur's Handbook, 60th edition, ARRL, Newington, Connecticut, pages 8-33 to 8-37.
4. Rick Littlefield, K1BQT, "Construct an Audio Amplifier with AGC for Your Simple Receiver," OST, April, 1983.
5. G. Woodward, W1RN, editor, The Radio Amateur's Handbook, 60th edition, ARRL, Newington, Connecticut, pages 8-40 to 8-42.
6. Etched circuit boards, parts, and kit for the "Compact SSB Receiver" are available from Radiokit, Box 411, Greenville, New Hapmshire 03048.
7. Variable capacitors and other parts available from BCD Electro, P.O. Box 119, Richardson, Texas 75080.
ham radio

A fresh idea!

Our new crop of tone equipment is the freshest thing growing in the encoder/decoder field today. All tones are instantly programmable by setting a dip switch; no counter is required. Frequency accuracy is astonishing $\pm .1 \mathrm{~Hz}$ over all temperature extremes. Multiple tone frequency operation is a snap since the dip switch may be remoted. Our TS-32 encoder/decoder may be programmed for any of the 32 CTCSS tones. The SS- 32 encode only model may be programmed for all 32 CTCSS tones plus 19 burst tones, 8 touch-tones, and 5 test tones. And, of course, there's no need to mention our one day delivery and one year warranty.

426 West Taft Avenue, Orange, California 92667 (800) 854-0547/California: (714) 998-3021

1. Larry, N2NY, Lee, KA2RNV, Virginia, N2EGJ
2. In slow motion it's dazzling

3. Lee discharges cap

4. Wow. Can we see it again?

Yorive never seen this, fike this, before this!

And you can see it-in color-again and again when you own the N2NY Ham MasterTapes.

Ever see a cap discharge in slow motion? You will on Ham MasterTapes. Ham MasterTapes can perform the dozens of complicated demonstrations necessary for a beginner's understanding of Ham Radio Theory.

Finally, a step-by-step course in Ham Radio Theory is available on color videotape. The Larry Horne N2NY Ham MasterTapes video course is a unique, effective teaching technique expertly produced by New York's leading professionals in studio and field videotape.
\square Video Graphics highlight important details.
\square Carefully worked-out demonstrations on video avoid the problem of getting complex gadgets to work on command in front of a class.
\square Working examples of every ham radio component, device, or system covered in the FCC guide can be clearly understood.

Ham MasterTapes

THE N2NY HAM RADIO COURSE ON VIDEOTAPE

The N2NY Ham MasterTapes give you a basic grasp of concepts that build theory background-not only for passing the FCC tests, but for understanding electronics.

The hobby has long needed better, clearer, hightech teaching aids to help newcomers into our wonderful world of Ham Radio.

These six-hour tapes cover completely all the material needed to understand Novice and Tech/General Theory and operations, and include the new 200-question FCC syllabus used beginning September 1983.

Only \$199.95. Order direct and specify Beta or VHS format. Call or write: Larry Horne, N2NY or

Virginia Hamilton, N2EGJ at Ham MasterTapes 136 East 31st Street

NEW PRODUGT ANNOUNGEMENT

QUAD BAND
 BEAMS

7-14-21-28 MHz THE NEWEST INNOVATIVE ADDITIONS to the TET LINE FEATURE TRUE MULTIELEMENT PERFORMANCE ON 4, NOT 3, BUT 4 BANDS. ALL ON A SINGLE BOOM I!

HB433DX
All the usual TET multi-band beam features are included in these two models, including wide bandwidths. increased gain, low SWR, light weight and superior mechanical construction and easy assembly

Prellminary Specifications:
HB443DX
HB433DX
Active Elements 7 MHz
14 MHz
21 MHz
28 MHz
Gain 7/14/21/28
FB Ratio $9 / 14 / 21 / 28$
Power
VSWR 7.0-7.1
7.1-7.25
14.0-14.5 $\quad 21.0-21.45 \quad 28.0-29.0$

Boom Length m / ft.
Max. Element Length m / ft.
Weight kg/lb
Introductory Price

3
 4 4
 4
 6.2/9.8/9.1/8.8
 12.4/21.8/22.3/20.1
 1KW CW
 2.0:1 or better adjustable 2.0:1 or better adjustable 1.5:1 or better
 OR:
 TI NAR electronics

2
3
3
3
2.1/8.2/8.7/7.3 0/21.7/22.3/20.2 1 KW CW
4.0/13.2
$9.25 / 30.5$
14.6/32.
$\$ 325.00$

TET. SNSENEMA

AVAILABLE FROM YOUR AREA DISTRIBUTORS:
Available October. 1983

2775 Kurtz Street, Suite 11 San Diego, CA 92110-3171 Telephone (619) 299-9740 Telex 181747
Louis N. Anciaux WB6NMT

designing a modern receiver

Achieve high performance through careful selection of LO and IF frequencies using IMD charts

Most general-coverage receivers have, up till now, been designed around commercially available IF filters. The popular 9 MHz approach performs well but exhibits a variety of internally generated spurious products when used in a general coverage mode. The chart in table 1 shows some of these products and how they impact on received frequencies. (Products produced in the premixing schemes of local oscillators have not been considered in this example.)

While the design trend has been to use up-conversions with first IF's higher than the highest frequency to be received (typically 35 percent higher for improved image rejection), performing a system design for the frequency scheme of a multi-conversion receiver has been considered a complicated mathematical analysis beyond the ability of the average Amateur. This need not be so; this article provides the reader with the tools necessary for understanding the design process more fully.

In a receiver, mixers provide undesired output products in addition to their sum and difference frequencies. These products are called intermodulation products. This phenomenon is complicated by the increased front-end bandwidth requirement referred to as general coverage as well as by the IF bandwidth requirement. If a multi-mixer situation exists, such as in a multiconversion receiver, the problem is further aggravated, as initial unwanted products from one mixer combine with those of another, creating a multitude of "birdies" (unwanted interference that
sounds like the whistling of a bird) at the final IF output. Regardless of whether a receiver is dedicated or general coverage, the problem of intermodulation products has to be carefully understood and weighed against system parameters so that the fewest possible "birdies" are internally generated and heard within the passband of the receiver.

predicting IMDs

Let's look at some analytical tools the system designer uses to determine these products. Assume we're going to design a fixed-frequency receiver for 70 MHz (fig. 1). With a local oscillator of 90 MHz , the receiver will have a first IF of 160 MHz using an upconversion mixing technique. (The second conversion of this receiver is not discussed here in order to simplify this case.) To use the mixer product chart (fig. 2) normalized frequencies must be calculated. Dividing the design frequency by the local oscillator frequency generates the first normalized number:

$$
\frac{f_{1}}{f_{2}}=\frac{70}{90}=0.778
$$

Dividing the first IF by the local oscillator frequency generates the second normalized number:

$$
\frac{f_{i \cdot f}}{f_{2}}=\frac{160}{90}=1.778
$$

With this information and the mixer product chart, find the locus point (the intersection of a system of lines which satisfies one or more given conditions) for the two ratios, as shown in fig. 3. The chart in fig. 2 shows all products produced not only by the fundamentals, but also by multiples of the signal and oscillator frequencies present in the mixer stage, and correspond to the second, third, fourth, fifth, and sixth harmonics of the two mixed signals.

By Cornell Drentea, WB3JZO, 7140 Colorado
Avenue North, Brooklyn Park, Minnesota 55429

The order of the product is determined by the sum of the harmonic orders involved. For example, $5 f_{1} \pm 2 f_{2}$ is a seventh-order product (regardless of the mathematical operation involved) because it involves the fifth harmonic of f_{1} combined with the second harmonic of f_{2}. Higher-order products are also present, but they are usually of a sufficiently low level so as not to cause problems. Any line that crosses the locus point corresponds to a product which is identified on the edge of the chart.

fig. 1. Finding in-band intermodulation products dictates choice of If center frequency as well as the shape factor of the IF filter, in order to meet system requirements.

Values of f_{1} and f_{2} can be substituted and the interference can be anticipated and avoided. If the locus point is examined closely, one can be assured that there are no in-band products in this case, but analyzing the areas adjacent to the locus point indicates some out-of-band spurs (spurious, unwanted products) which will have to be suppressed by the IF filter to the level specified in the requirement. By knowing their order (given by the chart), their predicted amplitude can be found (in our case, 170 MHz). The seventh and ninth-order products $\left(5 f_{1}-2 f_{2}\right.$ and $5 f_{2}-4 f_{1}$) are predicted to be 81 dB below the IF level (typical manufacturer prediction). The IF filter will have to provide 9 additional dB of attenuation at 170 MHz to accomplish a system requirement of 90 dB as shown in fig. 1. A simpler method of finding these products can be achieved by using the charts in tables 2 and 3. The chart shown in table 2 is for mixers used in an additive mode $(B+A)$ where A and B are the mixing frequencies and $B>A$. The chart shown in table 3 is for mixers used in a subtractive mode $(B-A)$ with the same conditions applying. If using the same example, and substituting f_{l} for A and f_{2} for B, the same ratio can be obtained.

$$
\frac{f_{1}}{f_{2}}=\frac{A}{B}=\frac{70}{90}=0.778
$$

We then use table 2, since the mixer in our example operates in the additive mode, and find the corresponding products as indicated in fig. 4 (5A-2B and $5 B-4 A$). If the numerical values of A and B are inserted in these formulas, the same resultant values can
table 1. Examples of spurious frequencies present in receiver using $9 \mathbf{M H z}$ IF.

be obtained with this method, which is usually preferred. If this receiver were not designed for a fixed frequency, you can imagine what a job it would be to evaluate all the higher-order products generated by using this method.

computers speed the analysis

Today, computer programs are used successfully to help designers anticipate potential problems. In our example, a TI-59 programmable calculator is used to perform this tedious task. (A program listing is included in table 4 for those wishing to work out their own problems.)

This program finds all combinations of ($m \times$ LO) $\pm(\mathrm{n} \times \mathrm{RF})$ and prints those frequencies that fall in the center of the IF by actually indicating "IF" in the printout. Those frequencies that fall within the pre-
determined IF bandwidth but are not exactly in the center are also reported in the printout by the indication "BW" (fig. 6). The sample program in fig. 6 shows how our 70 MHz fixed-frequency receiver may be analyzed using this method. If the 90 MHz LO is entered into the user-defined key A, the 70 MHz RF into B , the 160 MHz IF into C , and the IF bandwidth we wish to analyze into $D(50 \mathrm{MHz})$, a report is obtained by depressing key E^{\prime}, indicating that we are ready to run the program with the entered data as shown in fig. 5. If a mistake occurred in the process of entering the information, new data can be entered by repeating the above process with no alteration to the actual program. We can now run our analysis by depressing key E. A complete list of products will be automatically printed as shown in fig. 6. The process takes approximately four minutes to analyze all cases

fig. 2. Intermodulation products chart.
of m and n within the 50 MHz bandwidth. This may seem to be a long time, but not if we compare the time expended in manually searching the product chart in fig. 2.

This program can be recorded on two magnetic cards. For those with a TI-59, table 4 shows the actual listing of the intermodulation products program. Partitioning (OP 17) is 479.59 . Table 5 lists the procedures necessary for running the program. The amplitude of the undesired products identified depends on their particular order number $(m+n)$. Most products of the seventh order or higher will be at least 60 dB down from the IF level, and are usually not considered to cause problems. Unless different instructions are entered, the program will automati-
table 2. Mixer IMD chart, additive mode.

cally calculate all products to the twelfth order $(6 \times \mathrm{LO}) \pm(6 \times \mathrm{RF})$ (no user inputs to A^{\prime} and B^{\prime} are required). If a different resolution is desired, the two keys should be addressed accordingly. The execution time of this program is a direct function of the product order and the IF bandwidth required by the user.

a system design for a general coverage communications receiver

In the following pages we will consider a system design for a general coverage HF receiver with a wide input bandwidth (28 MHz). Unlike the dedicated single frequency receiver analyzed in the above, this wideband receiver presents a considerably more
table 3. Mixer IMD chart, subtractive mode.

$R=\frac{A}{8}$	OROER														
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0.000	8	日	0 ± 24	103a	$18 \pm 4 \mathrm{~A}$	2 \pm 5A	10 \pm 6A	10	(0. ± 8	(8) 9A	EEIon	(0.114	8 ${ }^{\text {a }}$	B\#3a	A +14 A
0.063															15A
0.067														144	
0.072													13A		
0.077												12A			
0.083											IIA				28-304
0.091										104				28-124	
0.100									9 A				28.144		
0.111								BA				20-104			
0.125							7 A				28-9A				
0.133															14A-B
0.143						6A				20-8A				13A-E.	
0.154													12A-B		
0.167					${ }^{5} 4$				28-74			114-B			
0.182											10A-8				38-124
0.200				44				28-6A		9 ${ }^{-1}$				38-H1a	
0.214															3A-28
0.222									-8, -				$38-104$		
0.231														12A-28	
0.250			34				28.5A	7a-				38-9A	114-28		
0.273												10A-2B			
0.286							EA - - B				38.8 A				
0.300											9A-28				48-114
0.308															22A-30
0.333		2A				$\begin{array}{\|c\|} \hline 2 B-4 A \\ 5 A-E \mid \end{array}$				$\begin{array}{\|c\|} \hline 38-7 A \\ \hline 8 A-2 B \end{array}$				$\left\|\begin{array}{c} 4 B+104 \\ 11 A-3 E \end{array}\right\|$	
0.364													109-38		
0.375									74-28				4A-9A		
0.400					AA-B				30-6A			9A-38			
0.416															14A-4B
0.429								6A-28				4-8-8A			
0.445											0A-38				$50-104$
0.435														104-48	
0.500	4			34-83	28-3A		5A-283	38-5A		74-30)	46-74		94.48	58.94	
0.545															OA.5s
0.555												0A-4 4			
0.571									5A-38				58-8A		
0.600						4A-28				148-64				9A-58	
0.625											7a-4B				E8-9A
0.667			24-8				$3 \mathrm{~B} \cdot 4 \mathrm{~A}$	34-38				58-74	eA-58		
0.700															PA.68
0.715										SA-4B				68-84	
0.750					3A-28				4B-5A			7A-58			
0.778														3A-5B	
0.800							44-38				58-6A				
0.833									5A-48				68-7A		
0.858											6a-sb				70-64
0.875													74-68		
1.000				28-24		38-30]		$48 \cdot 44$		[$B^{8-5 A}$		\|AB-6A		78-7a	

AMTOR Terminal Unit

Call us for our best price

AMTOR is the system of error correcting RTTY which has been rapidly overtaking conventional RTTY in Europe, just as its marine equivalent, SITOR, has been taking over in ship to shore communications.
It was originated by Peter Martinez, G3PLX (see June 1981 QST, p. 25). He first interpreted the international marine CCIR 476-1 specification for amateur use. Virtually all of the $400+$ stations presently on AMTOR world wide are using software/hardware designs originated by Peter. The AMT-1 is a proven product which represents his tatest and most highly refined design. It represents the culmination of over three years of development and on the air testing, and sets the standard against which all future AMTOR implementations will be.judged.
Not only does it incorporate the latest AMTOR specification, but it gives superlative performance on normal RTTY, ASCII and CW (transmit only). As well as some fairly incredible real time microprocessor software, the AMT-1 boasts a four pole active receive filter, a discriminator type demodulator, a crystal controlled transmit tone generator, and a 16 LED frequency analyzer type tuning indicator, which is very easy to use.
Driven from a 12 volt supply, the AMT-1 connects to the speaker, microphone and PTT lines of an HF transceiver and to the RS-232 serial interface of a personal computer or ASCII terminal. All mode control is via ESCAPE and CONTROL codes from the keyboard (or computer program).
It used to be that C.W. was the ultimate mode for "getting through" when QRM and fading were at their worst. That's no longer true - AMTOR will get through with perfect error-free copy when all other conventional transmission modes become useless.
So join the swing to AMTOR now and the large number of satisfied AMT-1 users already on the air outside of the U.S.A. Choose the definitive product. You'll wonder why anyone uses normal RTTY! Send for details. Better yet, see your favorite AEA dealer.

C \& A ROBERTS, INC.

18511 Hawthorne Blvd., Torrance, CA 90504 213-370-7451 24 Hours call 213-834-5868

Brings you the Breakthrough!

fig. 3. The intersection of the vertical and horizontal lines corresponding to $\frac{f_{1}}{f_{2}}$ and $\frac{f_{I I F}}{f_{2}}$ (locus point of normalized fre-
quencies) indicates the in-band intermodulation products. The out-of-band spurious outputs that happen to be in the vicinity of the IF frequency can also be verified by looking at the products adjacent to the locus point.
complex product analysis problem, because of the many different cases that could be created within the input bandwidth. The problem is further increased if a double-conversion approach is used, since products generated in the first IF can multiply in the second IF. The designer should use good judgment in the initial choice of frequencies, since no computer or chart can take the place of good engineering procedures.

The design objectives are a communication receiver covering 2 to 30 MHz , with good image rejection, having a minimum of unwanted products. Looking at fig. 7, a double conversion approach is considered with an up-conversion first IF compatible with com-mercialiy-available monolithic crystal filters at 75 MHz . A phase-locked synthesizer used as the local

fig. 4. The same results can be obtained as with our previous example by using the intermodulation chart from table 2. Ratio $\frac{A}{B}=0.778$ which points to a 7th and 9th order product (5A-2B and 5B-4A).

YOU'LL NEVER GET A BETTER DEAL! CALL TOLL FREE 800-221-0860

HUSTLER ANTENNAS

HOT - EASY ON/OFF TRUNK MOUNT with $3 / 8 \times 24^{\prime \prime}$ Swivel Ball for CG144 \& SF-2

CG144
5.2 dB gain Collinear $\mathrm{w} / 3 / 8 \times 24^{\prime \prime}$
Threaded Base

s2395

 s6850G6144-6dB
Base Antenna

G7144-7dB -
Commercial Grade
Base Antenna \$9800

And many other Hustler Antennas \& Mounts

BBL144	25^{95}	MRK-1	13^{75}
BBLT144	35^{00}	SFM	24^{25}
BBLT440	24^{75}	THF	13^{95}
HLM	13^{95}	UHT-1	8^{95}

CECO STOCKS THE ENTIRE HUSTLER VHF/UHF \& COMMERCIAL LINE DEALER INQUIRIES INVITED

TC1109 MONITOR

$\$ 140^{00}$

TC1501 CAMERA

	SLOW/FAST SCAN SPECIAL
- TC1109	- 16 mm F1.6 Lens
- TC1501	- EEM1 Wallmount for Camera

WAHL SOLDER STATION 7 Watt DC
with Adjustable
Temperature Control

WAHL CORDLESS 7700
Quick Charge
Cordless Iron
with Charger

TOP BRAND Popular Receiving Tube Types FACTORY BOXED 75/80\% OFF LIST

SEMI-CONDUCTORS	
MRF 245/5D1416	\$30.00
MRF 454	\$18.95
MRF 455	\$12.50
MRF 644/5D1088	\$19.95
2N3055	
2N6084	\$12.50

3-400Z	\$85.00	6146B	\$6.50	8156	\$10.95
3-500Z	\$85.00	6360	\$4.25	8844	\$29.50
4-400A	\$80.00	6883 B	\$6.75	8873	\$175.00
$4 \mathrm{C} \times 250 \mathrm{~B}$	\$50.00	7360	\$9.15	8874	\$180.00
572B	\$39.50	7735A	\$29.50	8877	\$450.00
811 A	\$12.00	8122	\$98.00	8908	\$10.50
813	\$35.00				

RF CONNECTORS

PL 259	$10 / \$ 4.95$
PL 258	$10 / \$ 8.95$
UG 175/176	$10 / \$ 1.60$
UG 255/U	$\$ 2.50$ ea.
UG 273/U	$\$ 225 \mathrm{ea}$
M358	$\$ 2.50 \mathrm{ea}$
M359	$\$ 1.75 \mathrm{ea}$
Type "N" twist-on	
(RG\&/U)	

CeCD

COMMUNICATIONS, INC.

oscillator for the first mixer must be tunable in 10 kHz steps over this range. Fine tuning is achieved in the second conversion stages with another synthesizer which provides frequency resolution of 100 Hz within the 10 kHz steps.
A 9 MHz second IF was chosen because of the availability of good crystal-lattice filters at that frequency. Two sideband filters are used in this IF. The system will be analyzed using the previously described charts; the TI-59 computer program will be used to perform the calculations.

Fig. 8 shows the mathematical model for this re-

CONDITIONS		
6.	\times LO	
6.	\times RF	
90.	LO	
70.	RF	
160.	IF	
50.	BW	
fig. 5. Depressing Key E^{\prime} will print out all conditions		
entered by the operator.		

ceiver. An RF signal within a 2.000 to 30.000 MHz range is injected into the first mixer, where it subtracts from the first local oscillator frequency and
table 5. User instructions for the T1-59 intermodulation products program.

STEP	0escmpt		ENTER	Prest
1 2 3 4 5 6 7 8 Prog freq the -If	Input the higheat interest* Input the highest interest* INPUT LO FREOU INPUT IT FREQUE INPUT i-f FREQUE INPUT BANDWID Centered at i-f PRINT CONDITIO RUN PROGRAM m finds all combina oncies that are equal bandwidth (*BW). input, sixth order	harmonic of harmonic or NCY CY NY ENTERED ons of $m \times L O=$ the i-f chosen be automatic	m n LO f i-1 BW if and and tho alyzed.	
USER DEPMED KEYS				
A LO B r C $i-1$ D BW E RUN PROGRAM A^{\prime} m B^{\prime} n C^{\prime} NOT USED D^{\prime} NOT USED E^{\prime} CONDITIONS REPORT				

table 4. Listing of the TI-59 program for intermodulation products. Partitioning is $\mathbf{4 7 9 . 5 9 .}$

CONDITIONS		CONDITIONS	
3.	\times LO	0.	\times LO
6.	\times RF	2.	$\times \mathrm{RF}$
150.	* BW	140.	* BW
2.	\times LO	1.	\times LO
5.	$\times \mathrm{RF}$	1.	\times RF
170.	* BW	160.	$=\mathrm{IF}$
5.	\times LO	2.	\times LO
4.	\times RF	0.	$\times \mathrm{RF}$
170.	* BW	180.	* BW
4.	\times LO		
3.	$\times \mathrm{RF}$		
150.	* BW		

fig. 6. Depressing Key E on the Tl-59 will run the intermodulation product program within the specified conditions indicating the same problem areas 5RF-2LO and 5LO-4RF as previously determined with the intermodulation charts. Other problems are also indicated within the IF bandpass but are not considered in our example for reasons of simplicity.
produces a 75.000 MHz IF . This local oscillator is configured as a synthesizer operating from 77.000 to 105.000 MHz in 0.01 MHz (10 kHz) steps. This dictates the bandwidth of the first IF to be 10 kHz minimum, from 74.995 to 75.005 MHz in order for the second local oscillator to be able to provide fine tuning in the second IF. A 75 MHz tandem monolithic filter from Piezo-Technology Inc. can be used in this application. If $R F=A$ and $L O=B$, two ratios $\frac{A}{B}$
can be created: R minimum and R maximum.

$$
\begin{aligned}
R_{M I N} & =\frac{2.000}{77.000}-0.025 \\
R_{M A X} & =\frac{30.000}{105.00}=0.285
\end{aligned}
$$

We will use the mixing product chart (table 3) for subtraction since our IF is 75 MHz , and find the entire band between $R_{M I N}$ and $R_{M A X}$ as shown in fig. 8. Any product indicated within this band could be a potential problem for the corresponding received frequency.
A look at the chart indicates a series of problems (7A , 6A, 5A, 4A, 3A, 2B-5A, with the worst one at 3A). If the TI-59 program is used, we can verify this case as shown in fig. 8. At first we can say that the third harmonic of one of the two mixing signals could be quite powerful and could indeed produce a problem, but a closer look at the system indicates that the offending frequency A, is actually a received frequency and chances are very good that a distant 25 MHz station has a level of insignificant third harmonic ($75 \mathrm{MHz} \mathrm{)} \mathrm{appearing} \mathrm{at} \mathrm{the} \mathrm{antenna} \mathrm{of} \mathrm{our} \mathrm{receiver}$.

The problem is further diminished by our receiver's preselector, which greatly attenuates at 75 MHz . The same conditions apply to the other products indicated by the chart. They present even a better case since they are further removed from the received frequencies. This is a case where judgment is more important than all our tools, which are only used to warn of possible problems.

The case would be different, however, if the B signal were the offender, as $3 B$ would have been the third harmonic of the local oscillator, which can be of relatively high amplitude and cause interference.

fig. 7. Communications receiver block diagram. The first IF is 75 MHz with a second IF of 9 MHz . A two-loop synthesizer is used to provide coarse and fine tuning.

The filtered first IF range of 74.995 to 75.005 MHz is further mixed with the second local oscillator operating in $0.0001 \mathrm{MHz}(100 \mathrm{~Hz})$ steps over the 10 kHz range of 83.995 to 84.005 MHz , providing fine tuning for the receiver. If $R_{M I N}$ and $R_{M A X}$ are found for the second IF a new band of interest can be located on our chart, as shown in fig. 8.

$$
\begin{aligned}
& R_{M I N}=\frac{74.995}{83.995}=0.89285076 \\
& R_{M A X}=\frac{75.005}{84.005}=0.89286352
\end{aligned}
$$

Since the range to be covered is only 10 kHz , the
band is very narrow and in reality is expressed by the same number (0.892) because the chart extends to only three decimal places. The IF is centered at 9.000 MHz and its bandwidth is determined by the two sin-gle-sideband filters. For simplicity, the minimum corner frequency (-3 dB) of the lower filter and the upper corner frequency for the higher filter were chosen, determining a total bandwidth (-3 dB) of $0.0051 \mathrm{MHz}(5.1 \mathrm{kHz}$ for both sidebands). Fig. 8 clearly indicates that there is no problem except for a thirteenth order product which can be ignored. Since the band is so narrow and close to the 1.000 ratio which presents quite a few problems, the computer

fig. 8. System analysis for a double conversion, general-coverage communications receiver with a first IF at 75 MHz and a second IF at 9 MHz .

CONDITIONS	
7.	\times LO
7.	\times RF
83.995	LO
74.995	RF
9.	IF
0.0374	BW
1.	\times LO
1.	$\times R F$
9.	$=$

fig. 9. Tl-59 program indicates no intermodulation problem in the second IF of the double-conversion communications receiver. The -60 dB bandwidth $(0.0374 \mathrm{MHz})$ of the filters was used for a worst-case analysis.
is used to completely insure safety. Unless othewise instructed, the program will not point out the thirteenth product as it is programmed to only calculate products to the twelfth order. If the order is increased to 14, the computer will indicate that there is no case for a $7 \mathrm{~A}-6 \mathrm{~B}$ within the ratio range.
In analyzing the second IF in fig. 8, a total bandwidth of $0.0374 \mathrm{MHz}(37.4 \mathrm{kHz})$ is considered to insure complete freedom from intermodulation products within the slopes of the 8 -pole filters used in this IF (37.4 kHz is the -60 dB total bandwidth of the two filters), as shown in fig. 9. It can be seen from this analysis that the charts can be used only as a guideline. For a more in-depth analysis, the TI-59 program or some other means of calculation must be used to obtain precise answers.
Up to this stage no real interference problems have been encountered. The last conversion is from 9.000 $\mathrm{MHz} \pm 0.00255 \mathrm{MHz}$ to audio between 0.00045 to $0.00255 \mathrm{MHz}(450 \mathrm{~Hz}$ to 2.550 kHz$)$ in both singlesideband filter cases. The conversion takes place in a third mixer (product detector), as shown in the example (fig. 10).

$$
\begin{aligned}
& R_{M I N}=\frac{8.9985}{9.000}=0.999833 \\
& R_{M A X}=\frac{9.000}{9.0015}=0.999833
\end{aligned}
$$

These identical ratios locate the intermodulation band to be analyzed as very close to the 1.000 ratio in the chart and with a -3 dB bandwidth of 0.0021 $\mathrm{MHz}(2.1 \mathrm{kHz})$. No problems are found for either one of the single-sideband filters. However, if the -60 dB bandwidth (0.0374 MHz) of the 8 -pole filters is used for the TI-59 computer program, the 2B-2A problem circled in fig. 8 becomes evident at the 3 kHz point in the slopes of our filters. This is true for either sideband filter as shown in fig. 11 and the resulting audio distortion can be cured only by improving the shape factor of the filters, in our case by
doubling the number of poles to 16 for each one of the single-sideband filters.
Another way to cure this problem would be to introduce a lowpass filter in the audio portion of our receiver which will cut off all frequencies beyond the 2.55 kHz which is the highest frequency passed by the filters. A practical cut-off point would be at 2.8 kHz . The first method is preferred, however, because it also provides better adjacent-channel rejection, improving overall receiver selectivity.

conclusion

In performing this analysis for the design of a double-conversion general-coverage communica-

CONDITIONS		CONDITIONS	
6.	\times LO	6.	\times LO
6.	$\times \mathrm{RF}$	6.	$\times \mathrm{RF}$
9.	LO	9.	LO
8.9985	RF	9.0015	RF
0.0015	IF	0.0015	IF
0.0038	BW	0.0038	BW
2.	$\times \mathrm{LO}$	2.	\times LO
2.	$\times \mathrm{RF}$	2.	$\times \mathrm{RF}$
0.003	* BW	0.003	* BW
1.	\times LO	1.	\times LO
1.	\times RF	1.	\times RF
0.0015	$=\mathrm{IF}$	0.0015	$=\mathrm{IF}$
fig. 10. within filters.	59 prog dwidth	cates 8-pole	produ ideban

fig. 11. Bandwidth characteristics of the 8 -pole singlesideband filters used in the communications receiver. 16 pole filters could be used to eliminate a 2B-2A audio product as well as to improve the total selectivity of the receiver.

More reasons to call Calvert first: Lowest prices in America. Service you can depend on.

Now introducing the additional convenience of Mastercard or ${ }^{2}$

ALL OUR TUBES ARE NEW UNUSED. FULL FACTORY WARRANTY.

Minimum order $\mathbf{\$ 2 5 . 0 0}$ - Shipping charges extra F.O.B. East Rutheriord, NJ.

Prices and items subject to change or withdrawal without prior notice
TOLL FREE: 800-526-6362 (except from NJ)

GALVERT[G ELECTRONICS, INC.

tions receiver, we have shown that the design meets the requirements which introduces a minimum of intermodulation problems. We can now proceed with confidence to the circuit design of our receiver. All frequency mixing techniques used in communications receivers generate unwanted products within their outputs, and the fact remains that any configuration chosen is simply the best compromise in the opinion of the designer. The problem of intermodulation distortion within a receiver's scheme can be minimized by performing a careful analysis, such as explained in this article.

bibliography

Drentea, Cornell, Radio Communications Receivers, TAB Books, Inc., 1982.

Manassewitsch, Frequency Synthesizers: Theory and Design, A WileyInterscience Publication, 1976.
Nonlinear System Modeling and Analysis with Applications to Communications Receivers, Signatron, Inc., June, 1973, Prepared for Rome Air Development Center.

This article was adapted from the author's book, Radio Communications Receivers, published by Tab Books, Inc., and available from Ham Radio's Bookstore, Greenville, NH 03048, (\$14.95 ppd).

Artwork adapted or reprinted with permission from EDN Magazine, Cahners Publishing Company, copyright August 1967. Editor
ham radio

WHEN ONLY THE BEST WILL DO . . .

KR 500 ELEVATION ROTOR
THE WORLD STANDARD
AVAILABLE ONLY THROUGH FULL-TIME AMATEUR DEALERS

DISTRIBUTED BY

5717 N E 56th St Phone 206/382-2132 Seattle. Washington 98105 TLX DUFFINTLSEA

CHAMPAGNE RTTY/CW on a Beer Budget

CP-1 Computer Patch ${ }^{\text {m }}$ Interface

The AEA Model CP-1 Computer Patch ${ }^{\text {™ }}$ interface will let you discover the fastest growing segment of Amateur Radio: computerized RTTY and CW operation.
When used with the appropriate software package (see your dealer), the CP-1 will patch most of the popular personal computers to your transceiver for a complete full-feature RTTY/CW station. No computer programming skills are necessary. The CP-1 was designed with the RTTY neophyte in mind, but its sophisticated circuitry and features will appeal to the most experienced RTTY operator.

The CP-1 offers variable shift capability in addition to fixed 170 Hz dual channel filtering. Auto threshold plus pre and post limiter filters allow for good copy under fading and weak signal conditions.

Transmitter AFSK tones are generated by a clean, stable function generator. Plus (+) and minus (-) output jacks are also provided for CW keying of your transmitter. An optional low cost RS-232 port is also available. The CP-1 is powered with 16 VAC which is supplied by a 117 VAC wall adaptor included with the CP-1.

Brings you the Breakthrough!

time and frequency standards: part 1

Accurate measurement requires accepted standards, precision electronics, and an understanding of atomic physics

Abstract

Radio Amateurs are probably more concerned about frequency than about any other electrical parameter. However, when discussing frequency, it is important to remember that the reciprocal of frequency is period, and that this is expressed in units of time. Because of this relationship, accurate frequency standards must be based on accurate time standards. This two-part article gives a brief historical overview of this field, examines the more common methods of determining frequency and time standards, discusses the advantages and limitations of each, and also succinctly describes some commercial equipment employed in these areas. Part 1 addresses VLF single-frequency comparison techniques; part 2 will cover multiple-frequency VLF techniques and other more advanced systerns.

The World Administrative Radio Council (WARC) has set aside five bands for standard frequency and the time signal emissions as shown in fig. 1. The carrier frequencies for such broadcasts should be maintained accurately enough so that the average daily fractional frequency deviations from these internationally designated standards for measurement of time intervals do not exceed $\pm 1 \times 10^{-10}$. The map in fig. 2 shows numerous radio stations used for time-frequency determination (TFD). Stations that provide strong signal transmissions to North America are listed in table 1. Other stations that can be received elsewhere in the world are listed in table 2.

LF time and frequency systems

The majority of American and international "VLF" standards stations transmit within the VLF (10 to 30 kHz) and LF (30 to 300 kHz) bands, respectively.

In the early part of this century, both systems were used for long-range communication between colonies and parent countries, and by navies for general trans-oceanic communication. Then, as now, the advantages of VLF and LF systems included reliability with very little signal attenuation, even over vast distances.

In many instances these systems were replaced with HF systems that used smaller antennas. But many novel VLF antenna systems have been built; some consist of long cables strung across valleys or volcanic craters, from towers several hundred meters tall. One such system in Cutler, Maine, radiates 1 MW of power using a "top hat" supported by twenty-six masts, each approximately 300 meters in height. This installation covers over two square kilometers and has a radial ground system of buried copper wire that totals over three million meters in length.

Interest in LF band communications was revived

Band No.	Designation	Frequency Range
4	VLF (Very Low Frequency)	$20.0 \mathrm{kHz} \pm 50 \mathrm{~Hz}$.
7	MF (Medium Frequency)	$2.5 \mathrm{MHz} \pm 5 \mathrm{kHz}$. 9

fig. 1. International standard time and frequency radio assignments.
during World War II, with the evolution of the Radux navigational system, in which low-frequency carriers demonstrated exceptional stability.

Since the mid-1950s there has been great progress in the development of LF communications. Work by

Pierce, Mitchell, Essen, and Crombie showed a 100 to 1000 time improvement in frequency compared to existing HF techniques. Early in the 1960s, more stable atomic frequency standards began to take the
place of crystal oscillators, and confidence in the
table 2. Worldwide VLF stations.

station	frequency	Iocation
JG2AS	40.0 kHz	Kemingawa, Japan
OMA	50.0 kHz	Podebzady, Czechoslovakia
WWVB	60.0 kHz	Fort Collins, Colorado
MSF	60.0 kHz	Rugby, England
HBG	75.0 kHz	Pranginis, Switzerland
DCF-77	77.5 kHz	Mainflingen, Federal Republic of Germany
CYZ-40	80.0 kHz	Ottawa, Canada
FTA-91	91.15 kHz	St. Andre de Corcy, France

FTA-91 $\quad 91.15 \mathrm{kHz}$
St. Andre de Corcy, France
table 1. "Standard" VLF stations receivable in the United States ($10.0-30.0 \mathrm{kHz}$).

station	frequency	Iocation
GBR	16.0 kHz	Rugby, England
NAA	17.8 kHz	Cutler, Maine
NPG	18.6 kHz	Jim Creek, Washington
NPM	23.4 kHz	Laulaulei, Hawaii
WWVL	20.0 kHz	
	and 19.9 kHz	Fort Collins, Colorado
NSS	21.4 kHz	Annapolis, Maryland
NBA	24.0 kHz	Balboa, Canal Zone

fig. 2. Worldwide location of broadcasting stations useful for TFD.

fig. 3. A typical electromechanical VLF singlefrequency comparator.

fig. 4. The Fluke Model 207/205 VLF receiver/comparator.
constant voltage source, generates a voltage related to the phase shifter's position. The recorder shows the amount of phase shift experienced by the local synthesized signal and whether or not it agrees with the phase of the received signal. An early instrument that used this principle was the Fluke model 207/205 VLF receiver/comparator (see fig. 4). A more modern piece of equipment designed for the same purpose is the Tracor model 900A VLF/LF receiver shown in fig. 5, which operates in the VLF band from 20 to 25 kHz , and compares the phase of a local frequency standard with the received carrier of a fre-quency-stabilized transmitter. With this instrument, a local standard can be checked to within ten parts per billion.

A related instrument manufactured by Tracor is the model 527E frequency difference meter, shown in fig. 6. This solid-state instrument measures frequency differences instantly and has a built-in meter to provide signal-quality assessment regardless of whether the two signals (the reference and signal frequencies) are the same. Since this device is used in the calibration and determination of time and frequency, it is assumed that the two measured frequencies are relatively close to one another. The 527 E has a scale that determines signal difference magnitude in the parts per 10^{7} to 10^{11} range. An external recorder connector on the back of the instrument is available so that the internally generated dc voltage that is produced in proportion to frequency difference can be recorded. Consequently, this instrument can be used to adjust two oscillators to the same frequency, measure frequency differences between two oscillators, offset one oscillator from another by a given amount, and determine the short and long-term drift of an oscillator.

fig. 5. The Tracor VLF/LF receiver (Model 900A).

fig. 6. The Tracor frequency difference meter (Model 527E).

Please enter my gift subscriptions to HAM RADIO Magazine as follows: EACH GIFT JUST \$14.50 SAVE OVER 25\%

\square Start or \square Renew my own HR subscription
Enclosed is a check or money order for \$ \qquad for _ subscriptions (use separate envelope) VISA \square MasterCard Bill me later

Acct \# \qquad Expires \qquad MC Bank \#

My Name \qquad Call \qquad
Address
City \qquad State \qquad 210

Prices U.S. only

 olpped
 Postage Will Be Paid By Addressee
 First Class Permit No． 1 Greenville，NH
 ay৮ว 人าdヨy SSヨNISกg

SUPER GIFT IDEA GIVE HAM RADIO THIS YEAR!

It's simple and easy and

You save over 25\%.

That's right. You save over 25% off the regular one year rate of $\$ 19.50$. Just $\$ 14.50$ brings 12 big, fat, issues, jam-packed with all the latest from state-of-the-art electronics to easy-to-build projects. We will even send an attractive personalized gift card to the recipient(s) so they will know about your interest in their future as hams.
1984 is going to be an exciting year for Amateur Radio. The only way to stay on top of all of the late breaking developments is with a subscription to ham radio Magazine. There has never been a better time than now to "gift" ham radio to that hard-to-buy-for friend . . . or yourself.

One year, 12 issues Reg. $\$ 19.50$ SPECIAL PRICE \$14.50 SAVE OVER 25\%

Please send my hamradio gift subscriptions as indicated. Also send a handsome gift acknowledgement card. (Gift card will be sent if your order is received before Dec. 16, 1983.)

From
Name
Address
City \qquad State \qquad Zip \qquadPayment enclosed \$ \qquad
(check or money order)
\square Mastercard
VISA/BAC
Acct.\# Exp. Bank\#
(MC only)
\square Bill me after Jan. 1, 1984

FILL OUT AND MAIL TO: ham radio magazine Greenville, NH 03048 (603) 878-1441

SEND TO:
Name
Address
City \qquad State \qquad Zip
\square New Subscription \square Subscription Renewal
SEND TO:
Name
Address
City
State
Zip
\square New Subscription \square Subscription Renewal
SEND TO:
Name
Address
City
State Zip
\square New Subscription \square Subscription Renewal
PRICES U.S. Only. CANADA $\mathbf{\$ 2 1 . 5 0}$ per year.

fig. 7. The Tracor rubidium frequency standard, Model 308-A.

Many labs in which extremely accurate and driftfree frequency standards are required use the Tracor 308-A to determine rubidium 87 frequency standards. This instrument, shown in fig. 7, is set at the factory for 10 parts per billion accuracy and has a month-long drift stability term of better than 30 parts per billion. Used in astronomy, navigation, metrology and communications, this instrument has an MTBF (mean time between failures) of better than 25,000 hours; compare this to many airborne military electronic pieces of equipment with MTBFs of less than 500 hours.
With the advent of solid-state electronics and mass production techniques these seemingly exotic pieces of equipment are not unduly expensive, considering the cost of comparable units ten years ago. The VLF/LF receiver with antenna is priced at approximately $\$ 2500$; the frequency difference meter, $\$ 4800$; and the rubidium 87 frequency standard, $\$ 14,500$.

Why is the rubidium 87 standard so much more expensive than the others? First, let's take a look at atomic frequency standards in general.

atomic frequency standards

Atomic frequency standards employ an atomic resonance device with a frequency source such as a voltage-controlled oscillator phase-locked to it. These devices fall into two categories, active and
passive. Cesium beam tubes and rubidium vapor gas cells are passive devices, whereas hydrogen masers are active devices, or resonators.

The hydrogen maser. This - the most stable of all known sources - provides a frequency that is well defined without any need for comparison with an external standard, as we have done previously. (For a quick visual explanation of the operation of the hydrogen maser, see fig. 8.) Unfortunately, this piece of equipment is large, expensive, power consuming, and at best suited only to laboratory use at this time. Its use is consequently limited to specialized applications requiring extreme accuracy as well as extraordinary stability. The hydrogen maser uses a beam of hydrogen atoms directed through a highly nonhomogeneous magnetic field that selects atoms in states of higher energy and allows them to proceed into a quartz bulb. Here, a tuned microwave cavity allows atoms to make random transits; the atoms reflected at each encounter within the bulb walls. While undergoing many collisions with the walls, the atoms' effective interaction times with the microwave field is lengthened to about 1 second. During this interaction process, the atoms tend to "relax" and release energy to the microwave field within the tuned cavity. This field also stimulates more atoms to radiate, and a steady-state maser reaction is achieved.

fig. 9. Schematic of the cesium beam tube.

fig. 10. Rubidium vapor frequency standard assembly block diagram.

fig. 11. The Hewlett-Packard rubidium vapor frequency standard, Model 5065A.

Cesium beam standards. The basis for operation of the cesium beam standard is the Cesium 133 atom. This system yields an accurate frequency of $9,192,631,700.0000 \mathrm{~Hz}$ and is relatively impervious to external electric and magnetic field disturbances. (Refer to fig. 9 for a visual explanation of the cesium beam standards.) As the Cesium 133 atoms leave the "oven," they are beamed into a vacuum chamber, where they are subjected to excitation by microwave energy. For frequency control, the atoms are made to perform a resonant absorption of energy from the microwave signal; after passing through a second magnetic field, they are deflected toward a hot-wire ionizer. The atoms are then passed through a mass spectrometer that detects and helps remove any contaminants that could otherwise cause random electrical noise bursts. Ion current is converted to electric current by the electron multiplier, and the amplified current is passed through signal processing electronics, which in turn regulates the frequency of a voltage-controlled oscillator. The oscillator's output frequency is multiplied and fed back again to the cesium beam through a waveguide that closes the loop and provides feedback control.

Rubidium vapor standards. Rubidium vapor standards, like cesium beam standards, employ a passive resonator to stabilize a quartz oscillator. Rubidium standards, however, are not self-calibrating and must therefore be checked against a cesium standard during construction. But once built, they are relatively small and are easily transported. Operation (see fig. 10,) is based on the principle of the containment of rubidium vapor and an inert buffer gas in a cell illuminated by a beam of precisely filtered light. A photodetector monitors changes, near resonance, in the amount of light absorbed as a function of applied microwave frequencies. The microwave signal is de-
rived by multiplication of the quartz oscillator frequency. Resonance frequency is influenced by the inert buffer gas pressure. This is why rubidium must be calibrated against a cesium reference standard. The Hewlett-Packard model 5065A, shown in fig. 11, is one rubidium vapor frequency standard. It exhibits an extremely low drift-rate of less than 10 parts per billion per month and a short-term stability of better than 5 parts per billion averaged over a 1 -second period.

time standards

As stated previously, time and frequency are reciprocal quantities; therefore, in order for one to be accurate, its counterpart must likewise be accurate. But how is time precisely defined? This discussion examines several methods and demonstrates the inherent inaccuracies of each.

In 1958, Ephemeris Time (ET) based on orbital motion of the earth about the sun at the beginning of the year 1900, was established. But this is a difficult method, and comparisons to ET are impractical. In 1964 the General Conference of Weights and Measures tentatively adopted the "atomic second" based on the number of transitions of the Cesium 133 atom. The standard was fully adopted in 1967.

fig. 12. The seasonal wavy motion on the circular path of precession of the Earth's orbit.

The T.E.L.ModelCS-1100 Total Communication System.

AT LAST! There is a state-of-the-art CW/RTTY/ASCII communications system that meets the sophisticated operator's demands for a quality product.

Feature	Benefit
CMOS uprocessor based.	No RFI problems.
Membrane Switch front panel.	Insures reliability.
16 chr Intelligent LED display.	Readable to 12 feet.
Super Narrow Filters.	No tuning required.
Built-in 110 VAC supply.	No extras to buy.
500 chr Buffer (all modes).	Review received text.
Parallel Data Port.	Connect to any printer
	or computer.

CW Operation: Send/ Rcv 5-90 wpm with Automatic Speed Tracking, Four-99 chr memories with ability to insert text, will key any rig.
RTTY/ASCII: Receive at
 300 Baud with One Button Speed Selection.
A 30day unconditional guarantee and1yearparts/labor warrantee assure satisfaction. Dealer inquiries invited.
Send for a free data package and comparison sheet.

table 3. National Laboratories collaborating with BIH.

abbreviation	laboratory	atomic standards		
		qty.	mfr.	type
DHI	Deutsches Hydrographisches Institut, Hamburg, West Germany	1	HP	Cs Std
F	Commission National de l'Heure,	11	HP	CS Std
	Paris, France	1	HP	CS Tube with lab electronics
FOA	Research Institute of National Defence, Stockholm, Sweden	2	HP	Cs Std
IEN	Instituto Elettrotecnico Nazionale, Torino, Ittaly	4	HP	Cs Std
IGMA	Instituto Geographico Militar Buenos Aires, Argentina	1	E	Cs Std
ILOM	International Latitude Observatory, Mizusawa, Japan	1	HP	Cs Std
MSO	Mount Stromlo Observatory Canberra, Australia	1	$H P$	Cs Std
NBS	National Bureau of Standards,	8	HP	Cs Std
	Boulder, Colorado	1	LAB	Cs Std
NIS	National institute for Standards, Cairo, U. A. R.	1	HP	Cs Std
NPL	National Physical Laboratory	4	HP	Cs Std
	Teddington, U. K.	1	Lab	Cs Std
		1	Hydrogen Maser	
NPRL	National Physical Research Laboratory, Pretoria, South Africa	1	HP	Cs Std
NRC	National Research Council of Canada,	3	HP	Cs Std
	Ottawa, Canada	1	Lab	Cs Std

Apparent solar time is based on the rotation of the earth about its axis with respect to the sun. There are problems with this system because its unit of time derived would be valid only if the sun were to reappear over a fixed point of observation at uniform intervals; of course, it does not. Additionally, there are irregular variations in the rotational speed of the earth and the earth's orbit is elliptical, not circular (see fig. 12). The orbital plane, therefore, does not coincide with the plane of the equator. (Then too, the orbital speed of an object whose path describes an ellipse is constantly changing.)
Mean solar time is simply apparent time averaged to eliminate variations due to orbital eccentricity and the tilt of the earth's axis. In a leap year, we should have 365.25 days per year. But actually, we have 365.2444 mean solar days.

Universal time, as with mean solar time, is based on the rotation of the earth about its axis; the units UT were chosen so that on the average, local noon would occur when the sun was on the local meridian. The problem with this system is again that the rotation of the earth is not constant.

Coordinated universal time is corrected universal time which involves the frequency of a precision universal oscillator such as a cesium or rubidium clock being offset from its nominal frequency by an
amount which allowed for the clock rate to be nearly coincident with UT_{2}. UT_{2} is a type of universal time that uses correction factors for seasonal variations in the rotation of the earth.) On January 1, 1972, the UTC system was improved to allow UTC time to accumulate at the same rate as International Atomic Time and therefore eliminate the problem of operating systems adding offsets such as the so-called "leap second" that is added each year.

Laboratories that collaborate with the Bureau International de l'Heure (BIH), the French equivalent of our NBS (see fig. 13), are listed in table 3. In addition to the three hydrogen masers listed, it is likely that the U.S.S.R. has at least one maser, although this information is hard to obtain.

There are other systems, including apparent sidereal time, and mean sidereal time, but it is sufficient to say that these herculean attempts to establish accurate time intervals are made so that somebody can have an oscillator that is truly fine-tuned. Seriously though, if this area of time-keeping seems fascinating to you, as it does to me, then you may want to obtain map No. 76, depicting worldwide time zones, from the U. S. Navy Defense Mapping Agency. ${ }^{1}$ You may also wish to be placed on the mailing list of the NBS Time and Frequency Services Bulletin issued monthly by the Time and Frequency Division of the National Bureau of Standards. ${ }^{2}$

Anyway You Look At IT.... ADM HAS Your Antenna

ADM 11, ADM 13, ADM 16, ADM 20 Sturdy Aluminum \& Steel Construction
Easy Assembly \& Installation

ANTENNA DEVELOPMENT \& MANUFACTURING, INC.

P.O. Box 1178, Hwy. 67 South
Poplar Bluff, MO 63901
(314) 785-5988 686-1484

fig. 13. National Bureau of Standards frequency and time facilities.

acknowledgments

I would like to thank P. K. Weir of Hewlett-Packard and Lupe Lopez and Dick Rogers of John Fluke Mfg. and their respective companies as well as Tracor, Inc., for providing technical assistance and artwork for this article.

references

1. Address requests to MC2 Sales, U. S. Navy Defense Mapping Agency, Hydrographic Center, Washington, D. C. 20390. Enclose check or money order for $\$ 5.00$.
2. Frequency-Time Broadcast Services Center, Time and Frequency Division, National Bureau of Standards, Boulder, Colorado 80302.

bibliography

Sprang, Steve, Calibration-Philosophy in Practice, Application Note, John Fluke Manufacturing Co., Inc.
Fundamentals of Time and Frequency Standards, Hewlett-Packard Application Note 52-1. October, 1974.
Timekeeping and Frequency Calibration, Hewlett-Packard Application Note 52-3, August, 1974.
ham radio

Clean up the computer clutter.
 For less than \$250 you can make your investment in yourseff pay off!

Chances are you have spent a couple thousand dollars on setting up a computer system that gets a lot of your work done. But sometimes it gets to be work to work at it.
I know that when I have to move two program manuals and a pencil holder to boot up the disk drive, it is work. When there is an unlabeled floppy (that I am going to identify some day) on top of the monitor and the business checkbook is on top of the printer ... and I will remember (I hope) before the next "report" comes through ... that is work.

MICRO-OF WORK CENTER

I found the annoyance of my own "computer clutter" was even worse than the extra work the disorder created. And that is when I started looking for some practical furniture for my computer set up. Since I had already spent a lot of money on the system itself, I was really dismayed when I found out how much it would cost to get a decent-looking desk or even a data table for my equipment. $\$ 400 \ldots \$ 500$. . . even more for a sleasy unit that looked like junk! In fact, it was junk! And it took a long time for me to find something that was really worth the money . . . and more.
A lot of my working day is spent with my computer, and I will bet a lot of your time is too. So I figure a "home" for my sys-tem-a housing that is good looking as well as efficient to work at-will pay off two ways:

1. Less work: an efficient and orderly layout will save me time and energy.
2. Personal satisfaction: good quality furnishings look better; they just plain feel better to work at too.
So imagine how good I felt to find the "Micro-Office" Work Center! These are fine pieces of computer system furniture that make my office-at-home as pleasant a place to work as it ought to be. And the
biggest and best surprise is the low, low price for such good quality.
Here is what you get-all for only $\$ 249.50$ plus shipping.

- Mar-resistant work surface. Your choice of oak or walnut grained. Work surface height is adjustable to your keyboard, your chair, your height.
- Two shelves plus work surface extender. Both shelves tilt to lock in position so that monitor faces you-in a position that does away with screen glare squinting and neck craning forever. Retainer bar keeps equipment from sliding off shelf. Snap-in bookends hold reference manuals and programs.
- Strong, sturdy and steady. All-steel welded frame construction is concealed by top-quality wood grain surfaces with finished trim. Adjustable floor levelers included. The work center is really a piece of fine furniture.
- There is no risk in buying from us either. We will make a full refund of purchase
price plus shipping charges if you return the workcenter within 30 days for any reason whatsoever. In addition, the product is warrantied for any defects in materials or construction for a full year from date of purchase. This is a no-risk investment in your own productivity and work efficiency that will pay off for years to come-even if you do not yet have a microcomputer of your own.
- Take your choice for your own work center decor:
Order 48-inch unit in walnut, \#2KPO-945, or in oak, \#2KPO-947. Only \$249.50 for each unit plus $\$ 20.00$ shipping charge. On orders for two or more units at the same time, shipping charge applies to only the first unit ordered. Shipment made UPS, so we cannot ship to post office box. Illinois residents please add $\$ 15$ per unit sales tax. Please allow 10 extra days for personal checks to clear. Sorry-at these special offer prices we cannot ship c.o.d. or bill direct.

CALL TOLL FREE TODAY WHILE SUPPLIES LAST: 1-800/323-8064. In llinois call 1-312/251-5699. Or mail check with order to:

Micro-Mart Distributors

Dept. HR • 1131 Central Street • Wilmette, IL 60091

International Crystals Kits FOR THE EXPERIMENTER

${ }^{5} 7_{\text {ea }}^{80}$
.02\% Calibration
Tolerance
EXPERIMENTER CRYSTALS
(HC 6/U Holder)
Cat. No. Specifications
$031300 \quad 3$ to 20 MHz - For use in OF -1L OSC Specify when ordering
031310
20 to 60 MHz - For use in OF-1H OSC Specify when ordering.

CONDITIONS OF SALE: Sold on a cash basis. Shipping and postage inside U.S.A. will be prepaid by ICM if full remittance is received with order.
ORDERING INSTRUCTIONS: Order by catalog number. Enclose check or money order with your order. FOREIGN ORDERS: Prices quoted for U.S. orders only. Orders for shipment to other countries will be quoted on request. Prices subject to change. Minimum foreign order $\$ 25.00$.

The OF-1 oscillator is a resistor/capacitor circuit providing oscillation over a range of frequencies by inserting the desired crystal, 2 to 22 MHz , OF -1 LO. Cat. No. 035108 . 18 to 60 MHz . OF -1 HI, Cat. No. 035109. Specify when ordering

MXX-1 Transistor RF Mixer
3 to 20 MHz , Cat. No. 035105
20 to 170 MHz . Cat No 035106
SAX-1 Transistor RF Amp.
3 to 20 MHz , Cat. No. 035102
20 to 170 MHz Cat No. 035103
BAX-1 Broadband Amp
20 Hz to 150 MHz . Cat No, 035107 $\$ 8.00$ ea.

WRITE FOR BROCHURE

International Crystal Mfg. Co., Inc.
10 North Lee, P.O. Box 26330 Oklahoma City, OK 73126

Perfect for EME, aurora, meteor and tropo scatter, and other specialized communications modes.
These high performance state-of-the-art amplifiers come in two basic models: 500 watts output using either the 4 CX250 family or 8730 tetrode tubes. 1000 watts output using 8874 triode tubes. The amplifier is $12^{\prime \prime} \times 8^{\prime \prime} \times 6^{\prime \prime}$ and weighs just 14 lbs . excluding cooling blower.
Power supply kits for both triode and tetrode models available in kit form. Rated outputs are 2,000 VDC @ 500 ma; 7.6 VAC @ 6A for filament voltages; for tetrode models 300 VDC regulated at 40 mA screen and -120 VDC bias supply voltage. Power supply is $12^{\prime \prime} \times 8^{\prime \prime} \times 6^{\prime \prime}$ and weighs 37 lbs . Full line of accessories, rack or cabinet mounts, manufactured and kit options available. Contact factory for details.
Bash Books

UNR-Rohn

Hatry Electronics
Each kit comes with fully illustrated, easy-to-read instructions. Factory back-up assistance is available from trained technicians.

CALL FOR PRICING

The Elect in Electronics
500 LEDYARD STREET HARTFORD, CONN. 06114

Phone 203-527-1881

2775 Kurtz St., Suite 11 San Diego, CA 92110 (619) 299.9740

Combine a scope and

 an NE555 multivibrator to build an important diagnostic tool
a time domain reflectometer

Before I describe how to build a TDR and discuss how it works, consider this simple example of the theory behind time domain reflectometry. Assume you're standing some distance away from the front of a large building. Yell, and you'll hear your echo. If you know the speed of sound and measure the time it takes between your initial call and the return of your echo, you can determine the distance between yourself and the building. Just multiply the speed of sound by the time it took for you to first hear your echo and divide by two. (You divide by two because the sound wave goes to and from the building; all you need to know is the distance in one direction.)

Suppose, now, that you get a call from the local

repeater group saying the repeater cannot be heard. They believe the malfunction is in either the transmission line or the antenna, but they're not certain which it might be. With a time domain reflectometer, you can tell whether the problem is in the antenna or the line - and if the trouble is in the line, approximately where it is.

By sending a pulse or transition of levels down a transmission line, and then observing the reflected signal, you can determine whether the transmission line is open, shorted, or terminated by some value of resistance. If the termination resistance is different from the characteristic impedance of the line, its value can also be approximately determined.

setting up

The test setup is illustrated in fig. 1.
The more accurately you measure the time, the more accurately you'll be able to locate the fault in the transmission line or antenna. Consequently, your oscilloscope should be capable of measuring time periods down to $0.1 \mu \mathrm{~S}$ and have a reasonably accurate time base. The bandwidth of the scope is not critical, but should be at least 5 MHz . Vertical sensitivity is relatively unimportant; any scope capable of measuring video signals should be adequate.

By Bill Unger, VE3EFC, 431 North Syndicate,
Thunder Bay, Ontario, Canada P7C 3W9

fig. 2. Output of an NE555 multivibrator. Horizontal deflection is 5 microseconds per centimeter.

Some scopes have a terminal marked "Gate Output," a pulse that coincides with the sweep time; this can also be used to provide the signal. It is important, however, that the scope output have the same impedance as the line you want to measure.

A 555 IC wired as an astable multivibrator provides the pulse train as it oscillates at a frequency of 60 kHz (see fig. 2). Frequency here is not critical; if yours is slightly different, that's fine. The value of R1 in the circuit should match the impedance of the line being tested - generally 50 or 75 ohms (fig. 3).

This entire assembly can be built on a Radio Shack project board (No. 276-024), with a switch added for selection of either 50 or 75 ohms output.

interpreting results

If the line is properly terminated in its characteristic impedance, the trace will appear as a straight line, indicating that all of the forward signal has been dissipated in the resistance and no reflection exists (see fig. 4). If, however, there is a reflection and the trace goes up, this would indicate that the end of the line is either open or of higher impedance than the cable (see fig. 5). If the trace goes down, the line is either shorted or of lower impedance than the cable (see fig. 6). As an aid to remembering which is which, consider this: when measùring voltage, a short (or low impedance) lowers the voltage and an open allows the voltage to rise.

To determine the location of the fault, you must measure the time between the initial pulse and the pulse caused by the problem. The speed of radio
waves in free space is 983.5 feet per micro-second, so if you multiply the time it takes by the speed of light, the result will be the distance to the fault in feet. However, because the radio wave is slowed by the velocity factor of the coax, you must therefore multiply the previous distance by the velocity factor and then divide by two to determine location of the malfunction.

Perhaps the method will be clearer if we look at an example. Suppose we have a piece of RG-213, with a velocity factor of 0.66 . A problem exists at a point that measures $0.3 \mu \mathrm{~S}$ down the line. The distance to the malfunction is the speed of radio waves multiplied by the time $(983.5 \times 0.3)=295$ feet. Correc-

fig. 4. One hundred feet of RG-213 transmission line is terminated in 50 ohms. Note the basically flat response after the pulse arrives.

fig. 5. One hundred feet of RG-213 is now pulsed while an open exists at the far end (load end). The rapid rise in pulse height marks the location of the "fault" (open circuit). Horizontal deflection is 0.1 microseconds per centimeter.
ting for the velocity factor, we multiply 295 feet by 0.66 to obtain 194 feet. Since this is the total distance the signal traveled, dividing 194 by two determines the distance from the measuring point to the fault. In this case the distance is 97 feet.

I have prepared a graph (fig. 7) showing the distance in feet versus the time to the problem, on which the result can be read directly in feet. There are two lines, each representing a different velocity factor; the top line represents transmission lines with a velocity factor of 0.80 , which is typical of foamfilled lines, and the bottom one, a velocity factor of 0.66 , which would include coax such as RG-8, RG-58, and RG-213.

conclusion

If your oscilloscope doesn't have a calibrated time base you may still be able to employ this method by using a section of cable of a known length and then expressing the unknown cable in lengths of the known one. If a 100 -foot cable takes $0.3 \mu \mathrm{~S}$ to indicate a problem, then a measurement of $0.6 \mu \mathrm{~S}$ would indicate a cable 200 -feet long. (Be sure the cables you use have the same velocity factor; if they don't, the comparison will not be valid.)*

If you want to measure cables that are less than 40 feet in length, the task becomes rather difficult

[^0]
fig. 6. The same length of RG-213 is pulsed while a short exists at the free end. The rapid drop in pulse height marks the location of the "fault" (short circuit). Horizontal deflection is 0.1 microseconds per centimeter.

fig. 7. Chart enables rapid determination of the distance to a "fault" if elapsed time is known. Two cables with different velocity factors are considered.
because of the extremely short times involved. In this case it would be desirable to add a 100 -foot section of coax and then subtract 100 feet when you are calculating the distance.

Now back to that phone call from the repeater group. By taking the TDR you've built from a scope and an NE555 multivibrator to the base of the tower - and keeping the principles of time domain reflectometry in mind - you'll be able to tell the climbers roughly where and what the problem is.
ham radio

ATV TRANSMITTER/CONVERTER

Connect to the antenna terminals of any TV set, add a good 450 MHz antenna, a camera and there you are ... Show the shack, home movies, computer games, video tapes, etc.

ATV DOWNCONVERTER

For those who want to see the ATV action before they commit to a complete station, the TVC-4 is for you. Great for public serv. ice setups, demos, and getting a buddy interested. Just add an antenna and a TV set tuned to $\mathrm{CH} .2,3$, or 4 and plug in to 117 volts a.c. $\quad \$ 89.00$

TVC-4

TVC-4L extra low-noise version ... \$105 delivered in USA

MODULES

TXA5-4 Exciter/Modulator $\mathbf{\$ 8 9 . 0 0} \mathbf{~ p p d . ~}$ Wired and tested module designed to dive PAS 10 watt linear amplitier The 100 MHz crystal design keeps narmonics out of two meters tor taik back. Viceo modulato is a tull 8 MHz for computer graphics and color he-
quires 138 VDC reg 70 ma 80 mw output power quires 138 VDC reg 96 mad 80 mw output powe Dual trequency model availabie $\$ 115.00 \mathrm{ppd}$. TVC-2 ATV Downconverter $\$ 49.00$ ppd Stripline MRF 901 preamp and double balanced mixer digs out the weak ones and resists intermod and over load Connects between UHF antenna and TV set. Output channels 2 of 3 Varicap tunet 420 to 450 MHz Requires 12 to 18 VDC \& 20 ma
Extrasensitive TVC 2L with NE64535 preamp
 Supersensitive TVC 26 with GaAs Fet preamp (5 dB .
NF) ant. mount. NF) ant. mount $\$ 79.00$ ppd
Let P.C. put you on the air and SAVE! All four modules -
Complete System price $\$ 245.00$
SAVE $\$ 11.00$ over price if purchased individually

NOT JUST ANOTHER REGULATED POWER SUPPLY!

The FASTRAK ${ }^{*}$ model 2001 voltage regulator module is ideal for making reliable power supplies in a jiffy. Use it to power your mobile rig, other FASTRAK ${ }^{*}$ series modules or as a general purpose bench supply.

- Component selection sets output voltage (3.3 to 400 V dc) and current capability (5 mA to 100 A). Over voltage protection and remote shutdown included. Uses no ic's.
One evening assembly using 2×3.6 inch pc board and comprehensive instructions supplied.
Price: $\$ 10.80$

Price includes: glass-epoxy, etched, plated, drilled pc board; instruction manual; postage in U.S.A. (Ohio residents add 5% sales tax).
Send $\$ 1.00$ for illustrated $\mathrm{F} 4 \mathrm{~S}_{\text {TRak* }}$ product catalog and refund coupon.

Proham Electronics Incorporated 34620 LAKELAND BLVD EASTLAKE OH 44094 (21b) 951 -2110

FMA5 Audio Subcarrier Generator. $\$ 29.00$ ppd. Puts audio on your camera video just as broadcast does at 4.5 MHz . Puts out $1 \mathrm{~V} \mathrm{p}-\mathrm{p}$ to drive TXA5 Requires low 2 mike. 150 to 600 a and 12 to 18 VDC © 25 ma Works with any transmitter with 5 MHz video band
width

PA5 10 Watt ATV Power Amplifier. $\$ 89.00 \mathrm{ppd}$. The PA5 will put out 10 watts RMS power on sync tips when drven with 80 mw by the IXAS exciter 50 ohms in and out plus bandw. He mes 138 VDC linearity for color and sound Requires 13.8 VDC reg. ect 3 amps.

Call or write for our complete catalog of specifications, station setup diagrams, and optional accessories which include: antennas, modulators, test generators, cameras and much, much more. See Ch. 141983 ARRL Handbook.
TERMS: VISA or MASTERCARD by telephone or mail, or check or money order by mail. All prices are delivered in USA. Charge orders normally shipped within 24 hours. Personal checks must clear first
(213) 447-4565

P.C. ELECTRONICS
 2522 Paxson Lane Tom W6ORG Maryann WB6YSS Arcadia, California 91006

construct an optical FM receiver

"See" the entire FM band and detect each station independently and simultaneously

The ability to see - instantaneously - and detect a wide band of frequencies is possible using an electro-optical technique known as Bragg cell operation. ${ }^{1.2}$ A receiver providing this performance consists of an acoustic medium such as a slab of glass, a transducer bonded to the glass, a light source, optical elements and associated RF drive circuits. ${ }^{3}$ What is achieved is a series of position-modulated light spots in the output (plane), each representing a separate station with its own information content. The practical result of this device is an FM receiver achieving 200 kHz resolution, sufficient to separate and detect all FM band stations.

Low-light photograph shows lateral width of light beam traversing Bragg cell.

Bragg cell operation can be understood in terms of a few physical concepts. An RF signal when applied across the terminals is transformed into a traveling acoustic (sound) wave in the cell. The pressure in the sound wave creates a traveling wave of rarefaction and compression in the glass medium which in turn causes analogous changes in the index of refraction. The Bragg cell, as shown in fig. 1, acts as a phase diffraction grating with an effective grating line separation equal to the wavelength of sound Λ (which is related to the wavelength of the RF-injected signal). The deflection angle ϕ_{d} (measured outside the cell) between the incident and the first order light term equals
$\left.\frac{\lambda_{o}}{\lambda}=\lambda_{o} \bullet f / V_{s}\right)$ where f is the frequency and V_{s} the sound velocity.

Incident light is most efficiently diffracted when the incident angle equals $1 / 2 \cdot \frac{\lambda_{c}}{\lambda}$ where, λ_{c} refers to the center of the band. This angle, ϕ_{B}, known as the Bragg angle, may also be written as:

$$
\begin{equation*}
\phi_{B}=\lambda_{o} f_{c} / 2 V_{s} \tag{1}
\end{equation*}
$$

where f_{c} is the center frequency, and
V_{s} is the sound velocity
This design uses a Bragg cell made of glass ($V_{s}=$ $4000 \mathrm{~m} /$ second and the light source is a $\mathrm{He}-\mathrm{Ne}$ laser $\left[\lambda_{o}=6328 \AA\right.$ (Angstrom unit)]. Substituting these values in eq. 1 shows that the Bragg angle is equal to:

$$
\begin{align*}
& \phi_{B}=7.91 \times 10^{-5} f_{c}(\mathrm{MHz}) \text { radians }, \text { or } \\
& \phi_{B}=4.53 \times 10^{-3} f_{c}(\mathrm{MHz}) \text { degrees } \tag{2}
\end{align*}
$$

Denoting the incident angle by ϕ_{B}, the Bragg cell operation can be represented as shown in fig. 1. All

By Ting-Chung Poon and Ronald J. Pieper, The University of lowa, Department of Electrical \& Computer Engineering, lowa City, lowa 52242

fig. 1. Bragg cell shows relationship between incident and diffracted light rays.
angles have been exaggerated for clarity. The Bragg cell diffracts light rays into angles controlled by spectrum of acoustic frequencies f_{i}, where $i=1,2$, etc. This acoustic spectrum is identical to the frequency spectrum of the electrical signal. Though Bragg cells exhibit limited bandwidth, this design is sufficiently wide to accommodate the entire FM band.

system configuration

By definition, an electro-optical receiver contains both electronic circuits and optics (see fig. 2). The electronics are used as the input and output stages of the system with an optical medium in between. The input stages "condition" the received signal, providing compatibility with and driving the optics interface. The input stage electronics consists of an FM low-level amplifier, balanced mixer, local oscillator and RF power amplifier. Specifically an FM signal is amplified in the low-level stage (using a Radio Shack FM amplifier), mixed with a local oscillator in the HP 10514 A mixer, and further amplified by the RF power amplifier (Intra-Action EE-40), achieving a power level of 1-2 watts necessary to drive the Bragg cell. Since the Bragg cell (Intra-Action ADM-40) is tuned for operation at 40 MHz , with an effective bandwidth of 40 MHz , it is necessary to translate the FM band (center frequency 97 MHz) down to this center frequency. This is accomplished by mixing with a 57 MHz local oscillator. In addition, the associated Bragg angle for 40 MHz , according to eq. 2, is 0.181 degrees.

The optics, shown in fig. 2, include four lenses, two of which are identical spherical converging
lenses (L2 and L3, having a focal length of $F 2 \cong 20$ cm) and two are identical cylindrical lenses (L1 and L , having a focal length of $\mathrm{F} 1 \cong 3 \mathrm{~cm}$). The optical processing which precedes the Bragg cell is intended to spread the beam laterally (i.e., in the plane of the paper) which, for reasons to be explained later, en-

fig. 2. FM optical receiver block diagram.

Completed optical FM receiver.

Separated laser spots, each representing a different FM station. Large spot at right is zeroth order beam, schematically represented in fig. 1.

fig. 3. Acousto-optic Bragg cell with laser beam and sound field illustrated for clarity.
hances the frequency resolution. This situation is shown in fig. 3, and in the photograph above. The sound power is concentated in the cell along the center with a height of approximately 2 mm . Consequently, in order not to throw power away, the beam has been expanded in one direction only; this is accomplished by using a cylindrical lens for L1 instead of a spherical lens. The laterally diverging beam which follows L1 is collimated before entering the Bragg cell with a spherical lens L2. L2 is placed a distance equal to the sum of the focal lengths, F1 + F2, away from the cylindrical lens L1 so as to form a telescope configuration. A beam of fixed lateral width L, which is controlled by the ratio of F2/F1, is incident on the cell at the Bragg angle as shown in fig. 2.

Each FM carrier has an independent light beam dif-
fracted in a direction determined by the carrier frequency. For clarity, only a few of the diffracted light beams are shown in fig. 2. The second spherical lens, L3, is intended to focus the emerging beams in its back focal (output) plane. The second converging cylindrical lens, L4, is placed in such a way that the back focal plane of L3 is imaged in the plane of the knife edge in front of the photodiode (see figs. 2 and 4).

theory of operation

For the ith FM station the signal's instantaneous frequency is represented by

$$
\begin{equation*}
f_{F M_{i}}=f^{\circ}{ }_{F M_{i}}+\Delta f_{i}(t) \tag{3}
\end{equation*}
$$

which is the sum of a fixed carrier frequency $f_{F M_{i}}^{\circ}$ and a time varying frequency difference $\Delta f_{i}(t)$, the latter being proportional to the audio signal. The FM variation Δf_{i} is small compared to the carrier $f_{F}^{\circ} M_{i}$. Using eq. 3 the $i^{\text {th }} \mathrm{FM}$ station is beamed, on the average, in a direction given by
$\phi_{d i}=\left(\lambda f_{i} / V_{s}\right)$
$\cong 1.58 \times 10^{-4}\left[f_{F}^{\circ} M_{i}(M H z)-f_{m}(M H z)\right]$ radians,
or
$\cong 9.06 \times 10^{-3}\left[f_{F M_{i}}^{0}(M H z)-f_{m}(M H z)\right]$ degrees,
where f_{m} is the mixing frequency (57 MHz). This is illustrated in fig. 5. The actual instantaneous angle of deflection deviates slightly from the above angle due to the inclusion of $\Delta f_{i}(t)$ which causes a 'wobble,' $\Delta \phi_{d i}$, in the deflected beam:

$$
\begin{align*}
\Delta \phi_{d i} & =1.58 \times 10^{-4} \Delta f_{i}(M H z) \text { radians or } \\
& =9.06 \times 10^{-3} \Delta f_{i}(M H z) \text { degrees } \tag{5}
\end{align*}
$$

This relationship between the audio signal (as encoded in Δf_{i}) and the variation in the deflected angle is used to generate an electrical signal with an amplitude proportional to the strength of the signal. By placing a knife edge screen in front of a photodiode (see fig. 6) in the detection plane, the integrated light

fig. 4. Photodiode circuit used in FM receiver.
intensity varies with the wobble, $\Delta \phi_{d i}$, and hence provides a current proportional to Δf_{i}, i.e., proportional to the audio signal.

frequency resolution

Resolution is proportional to the lateral width of the light beam transversing the Bragg cell. The number of resolvable angles ${ }^{2}$ for a total frequency change, Δf, is given by:

$$
\begin{equation*}
\mathrm{N}=\left(d / V_{s}\right) \Delta f \tag{6}
\end{equation*}
$$

where d is the lateral width of the light beam. You may notice that $\left(d / V_{s}\right)$ is the transit time of the sound as it transverses the light beam. In our case, the laser beam width is increased from 1 mm to $20 \mathrm{~mm}(2 \mathrm{~cm})$, which is the lateral width L as shown in fig. 2. Since the full FM band ($88-108 \mathrm{MHz}$) is used, Δf is then 20 MHz . Substituting the velocity of sound for glass, 4 $\times 10^{3} \mathrm{~m} / \mathrm{sec}$ in the equation, the calculated transit time, $\left(0.02 \mathrm{~m} / 4 \times 10^{3} \mathrm{~m} / \mathrm{sec}\right)$, is 5×10^{-6} second. Direct substitution into eq. 6 results in 100 resolvable points over the FM band or a frequency resolution of 200 kHz . Therefore all FM stations are resolvable. Eq. 6 can be used to predict the resolution for any Bragg spectrum analyzer application.

In summary, the audio signal of the $i^{\text {th }}$ FM station, Δf_{i}, results in a wobbling diffracted beam, $\Delta \phi_{d i}$, which is then transferred to the electrical domain by using a photodiode positioned in the shadow of a knife edge.

where to get parts

Electronics obtainable from Radio Shack are:
Archer FM amplifier, Catalog No. 15-1122
Realistic stereo integrated-amplifier
SA-102, Catalog No. 31-1963
FM antenna, Catalog No. 15-1639

fig. 5. Diffracted beam paths that include audio signal modulation or "wobble."

fig. 6. Knife-edge technique for the detection of wobble in diffracted light beam.

Archer color matching transformer, Catalog No. 15-1140
Realistic Minimus speaker, Catalog No. 40-1996

The following optics are available from Edmund Scientific Co., 101 E. Gloucester Pike, Barrington, New Jersey 08007:
$\mathrm{He}-\mathrm{Ne}$ laser
Spherical converging lens $(F \cong 20$)
Cylindrical converging lens ($F \cong 3$)
The following are available from Intra-Action Co., 3719 Warren Avenue, Bellwood, Illinois 60104, telephone 312-595-3770:

RF amplifier - E-40
Bragg cell - ADM-40 or AOM-40

acknowledgments

We would like to thank Professor A. Korpel for his suggestions and critical review. The device discussed here represents an educational aspect of more fundamental research into acousto-optics supported by the National Science Foundation under grant \#ECS8121781.

references

1. T.R. Bader, "Acousto-Optics Spectrum Analysis," Applied Optics, Vol. 18, pages 1668-1672, June, 1979.
2. A. Korpel, "Acousto-Optics - A Review of Fundamentals," Proceedings of the IEEE, Vol. 69, \#1, pages 48-53, January, 1981.
3. C. Drentea, WB3JZO, "The Bragg-Cell Receiver," ham radio, February, 1983, pages 42-44.

-10 The Bearcat DX1000 makes tuning in London as easy as dialing a phone.

Direct access keyboard tuning brings a new level of simplicity to shortwave radio. With the Bearcat DX 1000, dialing in the BBC in London is as easy as dialing a telephone. And you can switch from the BBC to Peruvian Huayno music from Radio Andina instantly. Without bandswitching.

Featuring the innovative microprocessor digital technology made famous by Bearcat scanner radios, the DX 1000 covers 10 kHz to 30 MHz continuously, with PLL synthesized accuracy. But as easy as it is to tune, it has all the features even the most sophisticated "DXer" could want. 10 memory channels let you store favorite stations for instant recall-or for faster "band-
scanning" during key openings. The digital display measures frequencies to 1 kHz , or at the touch of a button, doubles as
frequencies. Plus a noise blanking a two time zone, 24-hour digital quartz clock. A built-in timer wakes you to your favorite shortwave station. Or, it can be programmed to activate peripheral equipment like a tape recorder to record up to ten different broadcasts-any frequency, any mode-while you are asleep or at work.

The DX 1000 also includes independent selectivity selection to help you separate highpowered stations on adjacent
 system that stops Russian pulse radar interference.

There's never been an easier way to hear what the world has to say. With the Bearcat DX 1000 shortwave radio, you have direct access to the world.

For the name of your nearest retailer dial toll-free... 1-800-SCANNER.

Frequency Range: 10 kHz to 30 MHz continuously Tuning: Direct keyboard entry, selectable 3 or 24 kHz per revolution knob luning, or manual step tuning in selectable 1.99 kHz steps. Sensitivity: $10 \mu \mathrm{~V}$ AM, $0.5 \mu \mathrm{~V}$ CW/SSB/FM , 1.6-30 MHz Image and IF Rejection: 70 dB or more. Memory: 10 frequency capacity Frequency Stability: Better than 100 Hz after warm-up Modes: AM/LSB/USB/CW/FM AGC: Selectable Fast / Slow release times. Filter Bandwidths: $2.7 \mathrm{kHz}, 6 \mathrm{kHz}$ and 12 kHz . Filter Selection Independent of Mode.

Bearcat DX 1000 shortwave radio.
 Direct Access To The World.

Electra Company

The Professionals' Choice.

상

Comfortable
Pistol Grip, Biomechanically, Balanced

3 Position Pilot Light Switch

ICOM IC730 ICOM's GoAnywhere HF Rig for Everyone's Pocketbook

Compact.

Only 3.7 in $(\mathrm{H}) \times 9.5$ in (W) $\times 10.8$ in (D) will fit into most mobile operations (compact car, airplane, boat, or suitcase)

Affordable.

Priced right to meet your budget as your main HF rig or as a second rig for mobile/portable operation.

Sonvenient.

- Unique tuning speed selection for quick and precise QSY, choice of $1 \mathrm{KHz}, 100 \mathrm{~Hz}$ or 10 Hz tuning.
- Electronic dial lock, deactivates tuning knob for lock on, stay on frequency operation.
- One memory per band, for storage of your favorite frequency on each band.
- Dual VFO system built in standard at no extra cost.

Full Featured.

- 200W PEP input-powerful punch on SSB/CW (40 W out on AM)
- Receiver preamp built-in - VOX built-in
- Noise blanker (selectable time constant) standard
- Large RIT knob for easy mobile operation
- Amateur band coverage $10-80 \mathrm{M}$ including the new WARC bands
- Speech processor-built-in, standard (no extra cost)
- IF shift slide tuning standard (pass band tuning optional)
- Fully solid state for lower current drain
- Automatic protection circuit for finals under high SWR conditions
- Digital readout - Receives WWV - Selectable AGC
- Up/down tuning from optional microphone
- Handheld microphone standard (no extra cost)
- Optional mobile mount available

CDICOM

2112 116th Avenue N.E., Bellevue, WA 98004
3331 Towerwood Dr., Suite 307, Dallas TX 75234

บoreबाqo so esinou inoutim 10 epjou ino4im
suoreailpads pue sapild
7VIDヨdS 77V \ddagger yno Inog＊YSV

910t－GZを－008－1

338 7701 77\％yo

 SVNNヨINV גヨาSOW 77V
sб！ p！os meu eut lot euuejue јеел6 \forall
euuepue 6u！tsn！pe 10 6u！unt łnoutim auoud गo MO サ」OM
pııom out punoıe pasn
sal bp
sal
sal
LG L9
$7.10^{.9 .91}$
$.210 . .2 / 1$
81
82
kejsow
jelreq 10 \＆ot 91
स40 29
dヨdMYZ
$M Y$ ！
im 6uldilus IM perquessy

5. snipey 6uluin azis jsew y）6ua7 moog IUewola ise6uot squawalg to jaqunN woisis 6uypiew əэuruosoy 1 H HMSA oәuepadw rulodpeot BSS MP бumer ramod oney yoeg oinwory ulés prewnos SNOIIVOIHOヨdS

ZHW ul Kournbald

THW 따 Couenbend

THW MI Cousonberd

」ełdepe ұsem ．．Z paepueis e mon
 peßinbe» unjeq ON Kiquesse to esez өлемpıey loəıs ssolu！eıs IIV jemod innt fuəuəן ε
yMS Guipueisino
แฺe6 ¡บə！əoัxヨ
olfer yoeq of luolt qiedns

¿SSヨ1 yO』 ヨ7॥1ヨS 人HM

©००००००० VNNEHNV \＆ELIEE V

introducing a new dimension...

finouriosinigh

For Contesters, DX'ers, Handicapped Operators and General Purpose Ham Operators:

The Most Advanced

 Antenna Control Available...- The Only

Computerized Unit

- The Only Talking Unit
- The Only Scanning Unit
- The Only

Programmable Unit

- The Only Automatic Braking Unit

Contesters:

Pro-Search seeks out a pre-programmed heading, plus stores various common headings and automatically scans for those rare multipliers, giving the operator hands-free operation and more time for contesting.

DX'ers:

Pro-Search loads in short path and long path headings and with the touch of a button, the system works between both headings. Plus you have all of the other features of the ProSearch to aid you in catching that rare DX station.

Handicapped Operators:
Pro-Search offers ease ot operation...control the entire system with just one touch. A talk loop...vocally calls out the headings, allowing blind operators to accurately program and רear their headings.

General Purpose Operators:

Tro-Search has numerous

 ises.Pre-set beam headings for SCEDS, VHR WORK, and many thers. Current headings can je read, by displaying the resent directions with LEDS. ?ro-Search also displays and itores the last station worked, which can be recalled by the futo-Locate system with the ouch of a button.

Amazing new solidstate oscilloscope... fits in the palm of your hand

CRT oscilloscopes just became

 obsolete! The revolutionary new solid-state digital LED Pocket-O-Scope does it all, in a 4 -ounce package you can put in your pocket.I Asy in usc. Ideal for the hobbyist or the technician. The Pocket-O-Scope is 100% solid-state, focus and brightness on the 210 point, high-intensity illuminated screen are electronically self-controlled. The trace is always in sharp focus. Zero and sweep positions are maintained automatically. Zero-reference, or cross-over line is always centered for full trace minimum on the screen. Automatic internal circuitry always assures a properly positioned wave form. f wohl-slatecomtrols do il all. The only knobs on the Pocket-O-Scope are for positive and negative sensitivity and for coarse and fine synchronization of the frequency of the incoming signal. The easiest to use, full capability scope available!
hears in devdopment. The Pocket-O-Scope is the culmination of years of development in high technology, microelectronic components and digital design.
I catrure: All solid-state, digital design * Hand-held or bench operation • High resolution 210 point, $1.5^{\prime \prime}$ square display \bullet Battery or A / C operation with adapter \bullet Factory calibrated - never requires recalibration \bullet Full function, single trace capability plus $1 / 2$ channel dual trace and signal
 inverter • Full overload protection to prevent damage to scope - Automatic zero voltage centering Automatic free run or locked image • Automatic full horizontal sweep circuit External input/output for add-on capability specification: 5 Megahertz bandwidth • Sensitivity vertical, 10MV • Accuracy $\pm 3 \%$ on wave forms sweep linearity \pm 5% • Time base -.1 microseconds to .5 seconds

- Vertical gain - 0 to 120 volts \bullet Continous free run to locked image response \bullet Power supply 9VDC - dual polarity (ourtin) Single or dual trace \bullet On-off, battery-A/C Sensitivity; separate pos. \& neg. controls • Sync C \& Sync F controls
Limiteal. $)(1-$ dias 56 arrants
No risk infoductory wfler. The revolutionary Pocket-OScope is a development of Calvert Instruments, Inc., for 25 years a manufacturer of electrical equipment. As an introductory offer for a limited time only, you can buy the Pocket-O-Scope including a carrying case, A / C adapter, 3 standard "grabber" probes and 2 high voltage probes for only $\$ 249.95$, a $\$ 321$ value. If you act now, you will also receive FREE Calvert's 200 -page Comprehensive Oscilloscope Training Manual, a $\$ 15.95$ value! Put your Pocket-O-Scope to the test for two weeks. And if you decide, for any reason, that the Pocket-O-Scope is not for you, return it within the 14 -day trial period for a prompt refund. The training manual will still be yours to keep.

Mail this coupen today, or call toll-free* while the introductory offer is still in effect.

[^1]

ALL MODELS HAVE I YEAR WARRANTY Optional factory installed rechargeable battery pack available

DIGIMAX instruments corr.

mODEL	Paice	FREquency RANGE	aCCURACY OVER TEMPERATUAE	$\begin{aligned} & \text { READ } \\ & \text { outs } \end{aligned}$	SENSITIVITY TYP.		POWER AEQ.
					30 Hr 25 Mili	23 Mhe- 350 MHF	
D500	\$148.95	50 Hz 512 MHz	1 PPM 17**35*	${ }_{8}$	15	20 to 50 MY	$8.15 \mathrm{VDC}$
0510	\$179.95	$50 \mathrm{~Hz}=1.0 \mathrm{GHz}$	TIME BASE			50.10 .100 MV to 1 GHz	AC12
0612	\$259.95	50 Hz 12 GHz	0.1 PPM 20 C-4O		15 to 50 MV	to 50	110 VAC
D1200	\$29995	10 Hz 1.2 GHz	10 MHz OVEN		15 to 50 MV		815 VOC 500 MA
AC-12 AC-ADAPTER $\$ 8.85$			T-1200 BNC-BASE 21: ANT. \$8.95			BAC12 $\$ 34.95$	C5 $\$ 29.95$

[^2]T-1200 BNC. BASE 2T ANT. 58.95

Precision tuned temperature stable filter circuit drives frequency indicating LED's to provide perfect SSTV, RTTY and FAX tuning.
No more missed contacts trying to tune by guess or "by ear":

- Wired and Tested
- Operates on 12 to 16 VDC
- Simple input connection to speaker
- 12 VDC wall adapter (Model 60) is available for $\$ 9.95$
- Warranteed for one full year

TimeKit

ham radio TECHINIOUES β^{μ}

I met Pat Hawker, G3VA, some years ago at an electronics trade show in New York, and since then, we've QSO'd from time to time. One of Pat's attributes is his ability to ferret out new ideas that otherwise could be lost in the noise of the day-to-day progress of the electronics world. I always enjoy reading Pat's column, "Technical Topics," in the magazine Radio Communication, the flagship publication of the Radio Society of Great Britain.

"absorbing yagi"

In his November, 1982, column, Pat described the "absorbing Yagi" antenna scheme of John Beech, G8SEQ. It appears that John has developed a new technique that improves the pattern of the conventional Yagi antenna, particularly in regard to the front-to-back ratio of this popular antenna (fig. 1). It's not difficult to achieve good gain with a Yagi; the antenna is most forgiving when it comes to adjustment and layout. The adjustment of front-to-back ratio, on the other hand, is both sensitive and crucial, and will vary greatly from one installation to the next. G8SEO has achieved very high front-to-back ratios by the addition of a new ele-

fig. 1. (A) Representation of field plot of a conventional Yagi showing side and rear lobes, and (B) Plot of "absorbing Yagi" showing reduction of unwanted lobes. The deep null to the rear of the array can be maximized by "fine tuning" the absorber element.
ment to the Yagi, which he calls an absorber element. He reports ratios as high as 75 dB for a 13 -element VHF array!

As the name suggests, the absorber element absorbs energy that would
otherwise be radiated to the rear of the array. In its simplest form it is an extra dipole element, resonant at the operating frequency of the Yagi, with a resistor placed at its center. The resistance is approximately equal to the center impedance of the driven element (fig. 2).

The absorber adjustments consist of varying the spacing to the reflector and adjusting the value of the center resistor until optimum front-to-back ratio is observed. If the Yagi has a reasonable front-to-back ratio to begin with, an absorber resistor power rating of 25 watts will suffice even at full legal power.

According to Hawker, "G8SEQ suggests that one can regard the Yagi array as a directional bandpass filter, and that the absorber is the element that has been missing for years. With the same thinking now sometimes being applied to absorptive lowpass TVI filters, the unwanted RF is safely dissipated in a dummy load rather than attempting merely to 'short circuit' it with a reflector."'

While no specific dimensions are given, G8SEQ suggests that the absorber element be self-resonant at the operating frequency and placed about 0.23 wavelength behind the re-

MICROWAVE TV ANTENNA SYSTEMS

ค 181

ELECTRONIGS CORPORATION

SEMICONDUCTOR PARTS \& PRODUCTS

FACTORY PRIME

DEVICES INCLUDE:

- Capacitors
all types \& styles
- Chokes \& Coils
- Connectors
- Digital \& Linear IC's
- Hardware \& Accessories
- IC Sockets
- Memory
- Microwave Semiconductors
- Resistors
fixed \& variable
- Transformers

- Transistors \& MORE!

MANUFACTURERS SUCH AS: Motorola. National, NEC. J.W. Miller, Texas instruments and more!

WE STOCK \& SUPPLY DEVICES FOR: OEM's, Distributors, Hobbiests, Magazine Projects, Engineers, Schools. Technicians \& You!

Call or Write for Quantity Pricing and FREE Catalog.

ค 162

CQ CQ HAMS

- SPECIAL OFFER TO LICENSED HAMS -

Do you think Ham Radio is the number 1 Amateur Publication?
Are you interested in Satellite Television? Then why not read Satellite TV Magazine?

Believe me - this is the number 1 Satellite TV Publication!
Now ... as a special offer to licensed amateurs only - we will send you a sample copy of Satellite TV Magazine for only \$1.00* (Reg. \$2.95) and offer you an annual subscription for only \$19.95* (Reg. \$24.95).

If you're still not convinced - QSX the Satellite TV Net each Sunday at 2:00 pm Eastern Time on 14.310 MHz and hear what the other HAMS are saying about Satellite TV Magazine.

Chris J. Schultheiss VE-2FRJ
Just give us your name and QTH
Editor \& Publisher
Name
Call
Address
State Zip
Please Enclose Check or Money Order or if you prefer we accept Visa* \& Mastercard ${ }^{*}$.
*All Prices in US Funds.
MasterCard

fig. 2. The G8SEQ absorbing Yagi for 144 MHz . The 12 -element beam has conventional dimensions plus the addition of an absorber element 17 inches behind the normal reflector. Absorber has same dimensions as driven element. Elements are made of 3/8inch diameter tubing.

fig. 3. (A) Representation of current distribution on 3/2-wavelength dipole, and (B) optimum-shaped dipole. (C) Current distribution in modified dipole causes radiation to increase in forward direction.
flector and that the center resistor be about 10 ohms, noninductive. I would guess that less spacing could be used, provided absorber length and resistance were varied.
I think this is a good idea and I would be pleased to hear from any experimenters who try this novel technique. In today's world of heavy interference, antenna front-to-back ratio may be of more importance than antenna gain.

optimum-shaped antenna element

For some time I have heard about a new antenna element design that
provided increased gain and improved operating characteristics. Again, Pat Hawker tracked it down and described it in his November column. The antenna, discussed at an International Conference on Antennas and Propagation in London in 1979, was developed by F. M. Landstorfer at the Technical University in Munich. Further work was done on the antenna by Cheng and Liang of Syracuse University in 1982.

For many years it was assumed that the "building block" of a beam antenna was a straight dipole element about a half-wavelength long. Landstorfer investigated the use of 3/2-
wavelength element, curved in a specific manner, to provide forward gain and directivity (fig. 3). Landstorfer's element has a forward gain of about 5 dBi .

The main disadvantage of this idea is simply the larger size of the basic element. Even so, this is compensated for by the fact that far fewer elements are needed to obtain equivalent gain.

A three-element Yagi using this technique (fig. 4) was tested. The gain was measured at 11.5 dBi (about 9.4 dB over a dipole), with a front-toback ratio of 26 dB . Sidelobe attenuation was better than 20 dB .

G3VA points out that the optimized shape of the elements is related to element diameter, and until more specific information is available, the cut-and-try technique is recommended for those wishing to experiment with this novel antenna.

the terminated, traveling-wave antenna

A final note before we leave Pat Hawker, G3VA. Pat wrote about an interesting antenna development originally described in the IEEE Transactions on Antenna and Propagation, ${ }^{2}$ by Matsuzuka and Nagasawa of Nihon University (home of the famous Dr. Yagi of Yagi antenna fame), Tokusuda, Japan. Matsuzuka

fig. 4. Top view of experimental Yagi using gain-optimized elements, each approximately $3 / 2$-wavelengths long. VHF array of this design provided 11.5 dBi gain and a front-to-back ratio of about 26 dB .

PATENT PENDING
and Nagasawa described a rectangular loop antenna, fed at the center of one side and terminated with a resistor placed in the opposite side (fig. 5). The loop provides a unidirectional pattern with the approximate dimensions shown. A very high (unspecified) front-to-back ratio is achieved over a significant bandwidth. Dimensions and resistor value are relatively non-critical.

fig. 5. The terminated, traveling wave loop antenna provides good directivity. front-to-back ratio and bandwidth. Value of terminating resistor is not critical. RF energy reaching far end of antenna is dissipated in the resistor rather than being reflected back to the feedpoint. Wattage rating of resistor is equal to about one-half the power output of the transmitter.

VCR RFI: more problems for hams

I've heard that some Amateurs are experiencing RFI problems with their transmissions interfering with video cassette recorders (VCRs). I have a VCR myself, and have had no problems with it, perhaps because I'm not on the air when I'm watching it. However, I would appreciate hearing from any readers who have had VCR RFI and solved the problem (if they did). I have also heard that video disc recorders are RFI-prone, especially to signal in the region of the forthcoming 800 MHz Amateur band and the forthcoming mobile communication band.

As solid-state electronics invades our lives more and more, the RFI problem will become more severe.

Unfortunately, even though Public Law 97-256 requires manufacturers to produce RFI free equipment, the FCC favors voluntary standards, rather than imposed standards. This leaves the door wide open to abuse and circumvention of the law, leaving the Radio Amateur to take the blame for RFI caused by poorly designed products.

the $4-1000 \mathrm{~A}$ linear amplifier

There's a considerable amount of interest in using the $4-1000 \mathrm{~A}$ tetrode as a cathode-driven, linear amplifier, and it is a popular tube for "home brew" equipment. In grounded grid service, the tube will operate well at plate potentials between 3 and 5 kV and can easily provide up to the legal 1.5 kW PEP output limit. Typical operation of this tube at 3 kV is as follows:

DC plate voltage	3 kV
zero-signal plate current	55 mA
single-tone plate current	700 mA
single-tone grid current	275 mA
single-tone driving power	120 watts
load impedance	2350 ohms
driving impedance	104 ohms
plate input power	2100 watts (PEP)
useful output power	1320 watts (PEP)
3rd order distortion	-34 dB
5th order distortion	-36 dB

Note: Single-tone grid current is sum of grid one and grid two currents. Useful power output is power delivered to the load. Plate power output is 1500 watts PEP.

For full information on the 4-1000A and other glass tubes suited for grounded grid service, write to me at EIMAC, 301 Industrial Way, San Carlos, California 94070. (Enclose two first-class stamps or two IRCs for postage.)

Circuit design and additional information on linear amplifiers may be found in the 22nd edition of The Radio Handbook, published by Howard W. Sams and available from Ham Radio's Bookstore, Greenville, New Hampshire 03048.

references

[^3]ham radio

EMI/RFI test receivers

Specialized receivers demand tighter design requirements

This article was prepared from a paper originally delivered at Electro 82, an electronic show and convention held in Boston on May 25-27, 1982. Editor

Many electrical devices - from computers to hair dryers - generate electrical noise. This noise is either conducted along power cables to other electrical devices, or radiated through the unit's enclosure, keyboard, or screen to the world outside, thereby producing interference that affects still other electrical instruments.
A receiver able to detect and measure this interference and,relate it to precise (accepted) international standards must necessarily be based upon a different

fig. 1. Manually operated EMI/RFI test receiver, type ESH. Frequency range, 10 kHz to 30 MHz .
design than that of a communications receiver. The latter type normally covers the 10 kHz to 1000 MHz frequency range and is primarily designed to receive and decode selected transmissions. Conversely, an EMI receiver must include the following design features:

A greater instantaneous dynamic range than that of a communications receiver, since the energy of incoming pulses can be higher than several intelligencebearing signals or constant carriers
A circuit that monitors the maximum allowable voltage at different stages, to prevent short-term overload

Detector time constants that conform to internationally agreed-upon standards

Appropriate IF bandwidths
Precise amplitude calibration over the operating frequency range (Attainment of this normally requires the use of either a spectrum generator or tracking generator.)

If active antennas are used to measure the field in the low frequency range, they must have the necessary dynamic range and proper antenna correction factor.

The different requirements of test receivers and normal communications receivers will be discussed in this article, with special attention paid to the relative advantages or disadvantages of manual and automatic measuring capability.

dynamic requirements

Before specific EMI/RFI receivers - such as the Rohde \& Schwartz ESH2 manually-operated

fig. 2. Microprocessor-controlled EMI/RFI test receiver, type ESH3, features built-in intelligence. Frequency range, 10 kHz to 30 MHz .

fig. 3. Comparison of EMI/RFI receiver and spectrum analyzer to evaluate usable dynamic range.

EMI/RFI 10 kHz to 30 MHz receiver (fig. 1) or the ESH3 computer-controllable EMI/RFI test receiver with built-in intelligence (fig. 2) - were introduced, spectrum analyzers were generally used to detect and characterize emitted noise spectrums. There has been some controversy as to whether spectrum analyzers that employ special "quasi-peak" detectors (CISPR/ANSI) can provide the necessary information. This is an important issue and should be clarified. ${ }^{\text {' }}$

The spectrum analyzer, while quite capable of rapidly providing data on CW and various sinusoidal signals, is not as suited to measure pulse spectrum parameters with the same facility. To understand why, a discussion on spectrum and bandwidth requirements is called for.

Electrical pulses of short duration possess considerable energy over a wide frequency range. When this signal is introduced into a bandpass filter, the output peak voltage (of the pulse) is proportional to the pulse bandwidth (which is approximately the 6 dB bandwidth of the filter).

$$
\begin{equation*}
E_{\text {peak }} \alpha B W(6 d B) \tag{1}
\end{equation*}
$$

If a signal having a pulse spectrum is introduced into two cascaded bandpass filters with different bandwidths, $B W 1$ and $B W 2$ (with $B W 1>B W 2$), the ratio of the output peak voltage is equal to the ratio of the filter bandwidths or:

$$
\begin{gather*}
\frac{E_{\text {lpeak }}}{E_{2 \text { peak }}}=\frac{B W 1}{B W 2} \text { or, } \tag{2a}\\
\Delta E(d B)=20 \log \frac{B W 1}{B W 2} d B \tag{2b}
\end{gather*}
$$

significance of different bandwidths

Here, the question of RF preselection (input RF bandwidth) comes into play. If no preselection exists (as in the case with a spectrum analyzer), the measured output levels (analyzer and receiver) are different. Assume you are testing in the $30-1000 \mathrm{MHz}$ range. Typical input filter bandwidths are

$$
\begin{array}{ll}
\text { measuring receiver } & B W 1=\quad 30 \mathrm{MHz} \\
\text { spectrum analyzer } & B W 1=1800 \mathrm{MHz}
\end{array}
$$

Consequently, the voltage E1 presented to the first mixer of the device is 48 dB and 83.5 dB higher, respectively, than the output (indicated) voltage E2. Therefore, the narrower RF filter of the measuring receiver lowers the required mixer dynamic range by $35.5 \mathrm{~dB}(83.5-48=35.5)$.

Let us apply these facts to the measuring receiver and spectrum analyzer. We have assumed that each device uses the same mixer (with equal maximum input voltages), and the receiver has an approximately 10 dB lower noise figure. (This is typical, though the difference may even be greater, as in fig. 3.)

fig. 4. Pulse response curve for the frequency range 10 kHz to 150 kHz (per CISPR Publication No. 16, 1977).

BASIC PROGRAM MANUAL
FOR AMATEURS
Programs Design: Quads, beams. trap dipoles. antenna wind load, filters, pads, striplines. op amps. microwave, RF coils. calc. Ohms law L. C. power, log OSO's. global distances and much more.

All FOR
$\$ 9.95$ NCLUDES SHIPPING ATTENTION YAESU FT-207R OWNERS AUTOMATIC SCAN MODULE
15 minutes to install; scan restarts when carrier drops off; busy switch controls automatic scan on-off; includes module and instructions. Model AS-1 $\$ 25.00$
BATTERY SAVER KIT
Model BS-1 $\quad \mathbf{\$ 1 4 . 9 5}$

- No mcre dead batteries due to memory backup
- 30% less power drain when squelched
- Simple to install, step-by-step instructions and parts included
- 4 mA memory backup reduced to $500 \mu \mathrm{~A}$
- 45 mA receiver drain reduced to 30 mA
- Improved audio fidelity and loudness

ENGINEERING CONSULTING

 P.O. BOX 216 DEPT. H BREA, CALIFORNIA 92621

NUTS \& VOLTS
The Nation's \#1 Electronic Shopper Magazine
PO BOX IIII-H • PLACENTIA, CA 92670 (714) $632-7721$

Join 1000's of Readers Nationwide Each Month
U.S.A. SUBSCRIPTIONS
$\$ 7.00$ - I YEAR 3RD CLASS MAIL
$\$ 12.50$ - I YEAR IST CLASS MAIL
$\$ 25.00$ - LIFETIME - 3RD CLASS MAIL
visi
With Free Classified Ad

This tower is ready for shipment to one of our customers, or is it? If we were an ordinary tower company, this tower would have already been sent.
We are not an ordinary tower company and that is why this tower did not go out.

We have the best quality control in the business and we are not afraid to say so. That is why when John Pasillas
found a $1 / 8^{\prime \prime}$ clearance on the swedged guide, he placed a red tag of rejection on this tower and made sure it was corrected to $1 / 16^{\prime \prime}$ before he stamped his final approval for shipment.

Every

 employee at Tri-Ex knows that the reputation you establish in an industry is what will make or break his company. That is why Tri-Ex has been in business continually since 1955.When you purchase your tower from Tri-Ex, you can be assured that all welds have been done by certified welders, all construction and galvanizing has met ASTM standards, all towers have been constructed in precision jigs, all steel has been tested for carbon content and tensil strength.

When it goes to shipping, John is ready.

When you decide on Tri-Ex you have many models to choose from.

STACKED:

Light, medium, heavy duty 10 feet and up.

CRANK UPS:

Light, medium, heavy duty 25 feet to 88 feet standard.

SPECIAL TOWERS:

Sky needle, Clementower 37 feet to 180 feet \& higher

Introducing Tri-Ex's new DX-86 -86 feet tall, 25 square feet in a 50 mph wind.
Call you local dealer for details.
FOR ADDITIONAL INFORMATION WRITE TO:

TOWER CORPORATION
7182 Rasmussen Ave. Visalia, Calif. 93291
P.O. Box 5009

Visalia, California 93278
(209) 651-2171

Therefore, one can see that when making "peak" measurements with a spectrum analyzer the usable dynamic range is so limited that the measurement must be monitored carefully to assure the linear operation of the mixer. This can be accomplished by switching in a small amount of attenuation and comparing this value to the drop in measured output. However, this is time-consuming, and definitely not in line with the requirements for rapid automated testing.

fig. 5. Pulse response curve for the frequency range 150 kHz to 30 MHz (per CISPR Publication No. 16, 1977).

fig. 6. Pulse response curve for the frequency range 30 $\mathbf{M H z}$ to 1000 MHz (per CISPR Publication No. 16, 1977).

problem with quasi-peak detectors

The most serious flaw in the application of spectrum analyzers is in the use of a "quasi-peak" detector. A "quasi-peak" detector is simply a weighting network that gives a weighted indication based on the PRF (pulse repetition frequency) of the incoming pulse spectrum. (The curves for this weighting are shown in figs. 4, 5, and 6). The variation in weighting in the VHF/UHF range is 39.5 dB . It is impossible for a measuring device with a usable dynamic range of only 7.5 dB to give a correctly weighted output over a 39.5 dB range. (Remember, the weighting circuitry is at the IF, after the "damage" is done.)

The final conclusion is that, based on the simple physics of the measurement, it is difficult to measure pulse spectra peaks with a spectrum analyzer, and the use of "quasi-peak" circuitry at the IF of an analyzer is impossible without appropriate RF preselection. (Fig. 7 shows overall selectivity as a function of frequency range required for the EMI/RFI test receiver to meet specifications.)

high-dynamic range required

Fig. 8 shows the block diagram of a modern RFI test receiver. It consists of an RF attenuator, a builtin calibrator, a tracking input filter, a mixer, IF stages, and the detector for demodulation, as well as the required weighting filter and rectifiers.

It becomes immediately apparent that the major difference between this block diagram and the block diagram of a typical communication receiver is the RF attenuator, the calibrator, and the lack of preamplification ahead of the mixer.

Assume that a high level double-balanced mixer is used, and that both the RF attenuator and the bandpass filter do not introduce any intermodulation distortion. In this case, the large signal performance of the receiver is determined by the mixer and the stage immediately following the mixer, most likely a termination amplifier with a crystal filter immediately following it.
The mixer, typically a passive device, introduces 5.5 to 6 dB of loss to the next stage (an amplifier). Most likely, these two stages determine the overall intermodulation distortion performance of the receiver. The high level double balanced mixer and the post-amplifier probably have a +30 dBm intercept point.

The presence of the input filter not only reduces the number of signals but also improves the second order intermodulation distortion substantially, relative to a wide-open front end.

prevention of overload

The receiver can saturate if the combined signal level present at the output of the input tracking and IF crystal filters is excessive. While it may not be possible to prevent such an overload condition initially, it is important to detect the condition. The input RF attenuator can then be used to reduce the overload.

The automatic and computer controllable EMI/RFI receiver ESH3 automatically switches in the required

$\begin{aligned} & \text { RF RANGE } \\ & \text { MHI } \end{aligned}$	MIN	0.010	0.15	30	M Hz_{2}
	MAX	0.150	30	1000	M $\mathrm{Hz}^{\text {I }}$
$1{ }_{1}=10 \pm$		0.05	1	10	* $\mathrm{Hz}^{\text {I }}$
$f_{2}=f_{0} \pm$		0.05	2	20	kHz
$\mathrm{f}_{3}=10 \pm$		0.085	4	30	${ }_{\text {kHz }}$
$14=10 \pm$		0.1	4.5	60	HHz
$15=10 \pm$		0.11	5	70	* Hz
$7_{6}-10 \pm$		0.22	10	140	* Hz

fig. 7. Required selectivity of the EMI/RFI receiver as a function of frequency range.
attenuation to make sure that this overload condition does not occur while providing a 60 dB dynamic range at the IF.

The microprocessor-controlled receiver has its own intelligence and combines the proper RF and IF attenuation for optimum dynamic range. It is theoretically possible to increase the IF attenuation rather than the RF attenuation. As in the manually operated receiver, the two functions are not tied together, and the inexperienced operator may not be aware that the intermodulation distortion products can only be reduced by using the RF attenuator.

In order to monitor the actual overload, special detectors are placed after the mixers, because modern receivers use a first IF approximately twice the maximum receiving frequency, the first IF of the test receivers can be expected to be in the vicinity of 70 to 80 MHz . The second IF is then substantially lower (between 9 and 11 MHz), depending upon the receiver, and sometimes even a third IF $(30 \mathrm{kHz})$ for the very narrow bandwidth requirements is used. This design requires two monitoring stages after the mixers to make sure no overload occurs.

time constants

EMI receivers are also distinguished by specific values of detector attack and decay time constants, with typical values being 1 and 160 milliseconds, respectively, in the $0.15-30 \mathrm{MHz}$ frequency range. A good communications receiver uses totally different time constants. In the SSB/CW mode, the attack time would probably vary between 3 and 15 mS , depending upon the manufacturer, and the discharge time constant would be in the vicinity of 200 mS to 10 seconds selectable. The 1 mS attack time for the pulse receiver is too fast and will result in a "quasipeak" reading, which for the EMI receiver is desirable

fig. 8. Block diagram of an EMI/RFI receiver.

SELF STANDING, FULLY INTELLIGENT, RS 232 COMPUTER TERMINAL only $\$ 289.00$

Another super deal by Meshna! We acquired a limited number of these beautifully made, super intelligent computer terminals. They were made by one of the largest computer companies in the world. The name bas been witheld by request of the manufacturer, but you will recognize it when you see the terminal. Each terminal comes with its own 106 key keyboard and monitor which bouses 2 of the systems micro-processors, memory system, and 115 vac switching power supply. There are far too many features to list bere, but bere are just a few : 3 micro-processors (2 in the monitor \& 1 in the keyboard), 16 K RAM, 48 K ROM, EAROM (which is programmable by the keyboard), serial RS 232 asynchronous communications (synchronous optional), selectable baud rates ($75-19.2 \mathrm{~K}$ BPS), bigh resolution, green screen display with reverse video option, 80×25 line scrolling display, expandable cbaracter font (40×25 lines), built in 115 vac regulated, switching power supply, and much, much more. Most units are new in original factory cartons, but sold "as is." Each system comes with an operators manual. At our ridiculously low price, bow can you lose ?
UPS shpg. wt. 55 lb. no. MT 686 \$289.00
We offer the following as options : schematic pac. $3 \mathrm{lb} . \$ 10.00$
25 ft. RS 232 cable w/ 2 DB 25 connectors (1 male, 1 female) $\$ 20.00$
USRT for syncbronous data comm. w/ installatinn instructions $\$ 10.00$
For more data, send $\$ 3.00$ for a brochure. The $\$ 3.00$ is applicable to your order for a terminal.

RECEIVER/TRANSMITTER PRC $509 \& 510$

We just purchased a nice, clean lot of surplus Canadian military PRC 509 \& PRC 510 radios. They are similiar to US PRC 9A \& 10A. 900 milliwatt output will transmit an average of 5 miles over a tuneable range of $27-39 \mathrm{MHz}$ (PRC 509) and 3855 MHz (PRC 510). For best operation the handset and antenna listed below should be used with the radio, but you can always j'ry rig your own. Radios are whole, untested and sold as is. Each one comes with free battery box (batteries not included) and schematic. Front panel controls marked for easy operations. Accessories available $\mathrm{H}-33$ handset (mic \& ear,hone) $\$ 12.00$, semi-rigid anatenna $\$ 5.00,4300 \mathrm{MHz}$ calibration crystal $\$ 3.00$ (not necessary for normal operation), \& military operations handbook $\$ 3.00$ PRC 509 or $5109 \mathrm{lb} . \$ 20.00$ @
'HONE ORDERS accepted on MC, VISA, or AMEX vo COD's. Sbpg. extra on above. iend for free 72 page catalogue jam packed w/ bargains.

PDR- 27 NAVY RADIATION METER
Just released by the US Navy. They appear to be in excellent condition and include the fitted aluminum transit case. Batteries not furnished but are available in most electronic supply houses. 4 ranges 0.5 to $500 \mathrm{mr} / \mathrm{hr}$. Removeable hand probe, detection of Beta and Gamma radiation. With todays world conditions and perhaps proximity to a nuke power station, it might provide a little insurance to own one of these instruments. With no facilities to check or test, we offer AS IS, visually OK Schematic provided with each. We have some accessories and offer as an option although not required for operation. Shipping wgt. 22 lb . PDR-27 Rad Meter $\$ 50.00$
PDR-27 phones $\$ 7.00 \quad$ Approx. 100 page instr. Book $\$ 10.00$ Hi Sensitivity GM tube $\$ 10.00 \quad$ Low Sensitivity GM tube $\$ 5.00$

The above listed tubes are already installed in the meter.
We are offering these as spares if desired.

∇ BUILD THIS SSB TRANSCEIVER FROM OUR MODULES

EXPERIMENT - LEARN ELECTRONICS; BUILD AND DESIGN YOUR OWN AM, FM, CW, OR SSB RECEIVERS, TRANSMITTERS AND ETC. WITH OUR MINI-LINEAR CIRCUIT KITS

All kits Come Complete With Etched and Drilled Circuit Boards and All Parts Needed To Function As Described

AFA-1 AUDIO AMP. LM-380 1-2 Wars 4.16 OHM Output	\$4.95	MBA-1	FREQ. MULT. Tuned Ouput Eutor-MuL-Ampitiee To 250 M -	55.95
AFP-1 AUDIO PREAMP. Dual Audio Preamp - For Mike Etc	\$3.95	OSC-1	CRYSTAL OSC. $100 \mathrm{kHz}-20 \mathrm{MHz}$ Not Tuned	\$3.95
BMD-1 BAL. MIX. LM 1496 Mixer - S.B. Modulato Tuned Output	\$9.95	OSC-2	CRYSTAL OSC. or 18-200 mHz Tuned Output	\$4.95
DET-1 AM DET. Am Envelope Detector wher AGC Output	\$3.95	OSC-3	VARIABLE FREQ OSC Varactor Tuned 455 kHz	\$5.95
DET-2 FM DET. LM 3065 FM Detectio (455 KHZ O ($4 \cdot 11 \mathrm{MHZ}$)	\$7.95	OSC-4	VARIABLE FRFY OSC Varactor Tuneed 4.11 MHz	\$5.95
DET-3 SSB DET. LM 1496 SSE Detector (Needs OSC-1 \% OSC-4)	\$9.95	PSV-1	POWER SUPPLY LM 723 Win Pass Transistor, 3 amps mar	\$7.95
IFA-1 IF AMP, CA 302830 dB Gain, Optional AGC (455 kHz or 9.11 MHz)	\$6.95	PLL-2	TONE DETECTOR LM567 PLL Tone Detector	\$5.95
-9 SSB FILTER $9 \mathrm{mHz} / 2.1 \mathrm{kHz}$ eW mat USB XAL $10 \mathrm{OSC} \mathrm{O}-1$	\$49.95	RF/	RF-AMP/MIXER CA 3028 - Tun	\$7.95
	\$6.95			\$7.95

SEND $\$ 2.00$ FOR FULL CATALOG
WITH CIRCUIT DIAGRAMS AND
TYPICAL RECEIVER AND
TRANSMITTER HOOK-UPS

ADD ${ }^{2}{ }^{\infty}$ SHIPPING \& HANDLING

MORNING DISTRIBUTING CO.
P.O. BOX 717. HIALEAH, FLA. 33011

COMPLETE SET OF MODULES TO BUILDA 1-WATT SSB/CW MONO-BAND TRANSCEIVER Less Case, conthols, pwe supply (12 VDC), SPK AND MIKE $\$ 149.95$ (Specify Band)

TUCSON AMATEUR PACKET RADIO

- ERROR-FREE DIGITRL COMMUNICATIONS
- COMPLETE TERMINAL-RRDIO INTERFACE SYSTEM
- CUSTOM TRANSFORMER AND POWER SUPPLY
- BUILT-IN MODEM (TU)
- 32K OF EPROM SOFTUARE INCLUDED
- full ax 25 and Vadcg protocols
- NONVOLATILE STORAGE OF CALL SIGN AND OTHER ADJUSTABLE PARAMETERS
- DESIGN FIELD TESTED BY 200 AMATEURS WORLDUIDE
- KIT INCLUDES PC BOARD, COMPONENTS AND MANUAL

ONLY $\$ 240$ plus $\$ 7$ Shipping and Hondling (5\% Soles Tox for Arizono Residents)

GOR FURTHER INFORMATION WRITE
Tucson Amoteur Pocket Rodio Corp. PO Bor 22888 Tueson AZ 85734 (A Non-Proftit Reseorch and Development Group 1

MANUAL RVFILRBLE SEPRRRTELY for $\$ 15$ plus $\$ 150$ Shipping (Monuol Price con be (redited toword Kit Purchose)

Computer Program Books for Beginners

Color Computer

101 Color Computer Programming Tips \& Tricks, learn-by-doing instructions, hints, secrets, shortcuts, techniques, insights, for TRS-80 Color Computer. 128 pages.
$\$ 7.95$ 55 Color Computer Prọgrams for Home, School \& Office, practical ready-to-run software with colorful graphics for TRS-80 Color Computer. 128 pages
$\$ 9.95$
55 MORE Color Computer Programs for Home, School \& Office, sourcebook of useful type-in-and-run software with exciting graphics, for TRS-80 Color Computer: 112 pages. $\mathbf{\$ 9 . 9 5}$

Pocket Computer

Pocket Computer Programming Made Easy, new fast ' n easy way to learn BASIC, make your computer work for you. For TRS-80, Sharp. Casio pocket computers. 128 pages. $\mathbf{\$ 8 . 9 5}$ 101 Pocket Computer Programming Tips \& Tricks, secrets, hints, shortcuts, techniques from a master programmer. 128 pages.

50 Programs in BASIC for Home, School \& Office, sourcebook of tested ready-to-type-in-and-run software for TRS-80 and Sharp pocket computers. 96 pages. $\$ 9.95$ 50 MORE Programs in BASIC for Home. School \& Office, ideal source for lots more useful software for TRS-80 and Sharp pocket computers. 96 pages.
$\$ 9.95$
Please add $\$ 2.00$ for shipping and handling.
Allow 2.4 weeks for delivery.
SEND TO: HAM RADIO'S BOOKSTORE GREENVILLE, NH 03048 (603) 878-1441
but would lock up the AGC in a communication receiver each time an unwanted noise spike occurred.

Some manufacturers have chosen to make the EMI/RFI receivers more universal by adding built-in detectors for the communication mode as well. The ESH2 and ESH3 have this flexibility.

IF bandwidth

Special IF bandwidths are needed in EMI/RFI receivers; 200 Hz is chosen for the lowest frequency range ($10 \mathrm{kHz}-150 \mathrm{kHz}$) 9 kHz for $0.15-30 \mathrm{MHz}$ and 120 kHz for $30-1000 \mathrm{MHz}$.

At 200 Hz , the bandwidth for the frequency range of 10 kHz to 150 kHz almost requires a triple conversion receiver in order to obtain narrow bandwidth with a good shape factor.

At 30 kHz , the 200 Hz bandwidth filter is more likely a mechanical filter than a crystal filter, as the cost otherwise would be prohibitive.

amplitude calibration

There are two ways to calibrate the receiver. One is to use a pulse generator, such as the ones manufactured by Schwarzbeck, (models IGM 2913, 10 kHz to 30 MHz , and IGU 2912, 25 MHz to 1000 MHz) which operate over a fairly wide pulse rate. With a calibrating pulse of 0.316 microvolts per second and a repetition frequency of 100 Hz , the frequency range of 150 kHz to 30 MHz can be covered. The particular calibration voltage should give a 0 dB reading on the meter.

Sine wave calibration is also possible. This requires a second generator which can be provided inside the instrument. The sine wave output is a good crossreference for the calibration of the pulse generator. ${ }^{2}$ As the calibration of the instrument depends upon these signal sources, it is important that these signal sources be built in such a way that aging effects, temperature, and voltage variations do not affect them. Modern special feedback circuits can solve this problem.

In the case of automated receivers, like Rohde \& Schwarz ESH3, the built-in microprocessor, together with the random access memory, allows the development of a scanning program in which the receiver is calibrated over the entire frequency range, and the actual error is stored in memory. As measurements are made, the receiver uses a "look-up" table to add the correction factor. This is convenient because the operator does not have to worry about the accuracy of the receiver.

A manually operated receiver has to be calibrated for each major frequency change, which can be timeconsuming since the values also have to be written down for future use. A word of caution: it should be remembered that the frequency synthesizer also is an

fig. 9. Loop antenna system recommended for EMI/RFI testing.
important factor in receiver performance. The noise sideband of the synthesizer and its inherent spurious performance have to be good enough to prevent any spurious frequencies or sidebands from appearing and giving erroneous readings. Therefore, the reference suppression and all mixing products have to be suppressed sufficiently.

antennas

The use of tuned antennas is rare at lower frequencies (between 10 kHz and 150 kHz). In this frequency range it is better to use loop antennas or active antennas. Again, it is important to make sure that the dynamic range of the active antennas are sufficient. While the test site has to be properly designed and reflections have to be avoided it should be mentioned here that if an active antenna is used, its dynamic range must be sufficient.

For frequencies above 20 or 30 MHz , reference dipoles or logarithmic periodic antennas may be used, depending upon the particular frequency. It would be best to look up the particular recommendations and

by K. Weiner, DJ9HO
instant European best seller. Now available in English

- only from Ham Radio Magazine. This hefty, 413 page
book is an absolute must for every VHF and UHF enthu-
siast. The UHF Compendium has been divided into 7
sections to fully cover theory and practical building in-
structions. Special emphasis has been placed on state-
of-the-art techniques such as GaAs Fet preamplifiers
and converters. Author Weiner also fully describes all
of the test equipment, alignment tools, power measur-
ing equipment and other handy gadgets that will be of
use to the UHF/VHF Amateur. All of the projects and
designs have been tested and proven and are not engi-
neer's pipe dreams. Antennas are also fully covered
with a number of easy-to-build designs as well as large
mega-element arrays. Noted VHF enthusiast, Joe
Reisert, W1JR, tells us that every ham interested in
UHF/VHF should have a copy of this book. Get yours
today - only from Ham Radio Magazine.
SKW-UHF
Softbound \$23.95
Please add \$2.50 shipping and handling
Ham RadiO'S BOOKStore
GREENVILLE, NH O3048

$\square]_{0} \frac{\text { ANTENNA }}{\text { SYSTEMS }}$		
"THE PERFECT MATE FOR YOUR SOLID-STATE"		
FEATURES - Dual-Drive For Total Broadband Machined		
Aluminum Boom-To-Mast And Element Mounts		
F/B Balun (Non Ferrite) Included - All Elements		
Active - Stainless Steel Electrical Hardware		
itors - Precision Machined Aluminum Alloy - Easy One Afternoon Assembly - Lower Wind		
Load - U.P.S. Shippable TRIBAND YAGIS		
HB33SP	3 El.-13'2" Boom-27 Lb. 3KW Max. Pwi. Compact	$\$ 189.95$ +ship.
HB43sp	$4 \mathrm{El} \cdot 19^{\prime \prime} 8^{\prime \prime}$ Boom-38 Lb.	249.85
	3 KW Big Signal Pertormance	+ship
H834D	$4 \mathrm{El}-16 " 5$ "Boom-34 Lb .	\$219.95
	3KW Slightly Larger Than 33SP	+ ship
HB35	5 El. $\cdot 24^{\prime} 7^{\prime \prime}$ Boom. 50 Lb . 3KW "THE ULTIMATE"	$\begin{array}{r} \$ 349.95 \\ + \text { inip } \end{array}$
	alsoavallable	
HB4ONL3	3 El. 40 M Monoband	\$379.95
HB40NL2	2 EI. 40M Monoband	\$254
	SPECIALS	
ThLS DM-TaIn		
The New EXPLORER 14 \$287.95i + shlp		
CD TCOM		
$1 \mathrm{C730}$ ($5585.001+$ h		
-CASH, CHECK, M.O. VISA \& MASTERCARD*		
"Swiss Quads". Thrust Bearings - Rotors Many Other Models Available Call Or Write For Complete Catalog:		
$\checkmark 199$		
15 Sexton Dr., Xenia, Ohio 45385		

A no frills directory of over 435,000 U.S. Radio Amateurs. $81 / 2 \times 11$, easy to read format. Completely updated.

Also available for the

first time ever-
(Alphabetically arranged-Sold separately) Geographical Index
by State, City and Street No. and Call Name Index
by Name and Call
Ordering Information:

- Directory-\$14.95
- Geographical Index-\$25.00
- Name Index-\$25.00
Add $\$ 3.00$ Shipping to all orders.

Dealer / Club inquiries welcome

Send your order-enclosing check or money order in U.S. dollars to
Buckmaster Publishing Whitehall
Mineral, VA 23117 U.S.A.

requirements by CISPR and VDE/FTZ. (To measure conducted interference, current probes and absorbing clamps can be connected to the receiver, but this will not be discussed here, since this article is limited to discussion of the receiver itself.)

Fig. 9 shows a loop antenna; fig. 10 shows an active rod antenna; fig. 11 shows a log-periodic antenna for VHF/UHF.

conclusion

The EMI/RFI receiver is a more sophisticated and, therefore, more expensive receiver than standard communication receivers. While it is possible to incorporate features to make the reception of communication transmission possible, which is useful for signal identification, then overall accuracy, special pulse response behavior, and the necessary preselector make the receiver more complicated and, thus more expensive. EMI/RFI receivers should be offered in both manual and automated versions to fit varying budgets. However, if large quantities of data must be handled, the automated version is the more logical choice.

references

1. K.O. Muller, International Standards on Electromagnetic Emissions, VDE/FTZ and Others, Requirements and Testing, R \& B Enterprises, P.O. Box 328, Plymouth Meeting, Pennsylvania 19462, 1981.
2. Models ESH2 and ESH3 instruction manuals by Rohde and Schwarz Co., GmbH \& Co., Munchen 80, KG Postfach 801469 D-8000, Federal Republic of Germany.

bibliography

Haffner, E., "The Effects of the Noise in Oscillators," Proceedings of the IEEE, Vol. 54, No. 2, February, 1966, pages 179-198.
Heywood, Wes and DeMaw, Doug, Solid State Design for the Radio Amateur, American Radio Relay League, Inc., Newington, Connecticut 06111. pages 91-94.

fig. 10. Rod antenna recommended for EMI/RFI testing for frequency range up to 30 MHz .

fig. 11. Logarithmic periodic antenna for EMI/RFI testing up to 1000 MHz .

Martin, M., "Rauscharmer UKW-Oszillator fuer einem Empfaengereingansteil mit grossem Dynamikbereich," cq-DL, October, 1977, page 387.
Martin, M., "Moderner Stoeraustaster mit hoher Intermodulationsfestigkeit," cq-DL, July, 1978, pages 300-302.
Martin, M., "Grossignalfester Stoeraustaster fuer Kurzwellenund UKW. Empfaenger mit grossem Dynamikbereich," part 1/2, UKW-Berichte, February, 1979, page 74 ff .
Rohde, Ulich L., "Zur Optimalen Dimensionierung von UKW, Eingangsteilen," Internationale Elektronische Rundschau, May, 1973, pages 103-108.
Rohde, Ulrich L., "Zur Optimalen Dimensionferung von KurzwellenEingangsteilen," Internationale Elektronische Rundschau, 1973, No. 11, pages 244-280.
Rohde, Ulrich L., "EK-56/4, The Receiver for $10 \mathrm{kHz} \ldots 30 \mathrm{MHz}$," Electronic Warfare, September/October, 1974, pages 83-88.
Rohde, Ulrich L., "Modern Design of Frequency Synthesizers," ham radio, July, 1976, pages 10-23.
Rohde, Ulrich L., "IF Amplifier Design," ham radio, March, 1977, pages 10-19.
Rohde, Ulrich L., "Effects of Noise in Receiving Systems," ham radio, November, 1977, pages 34-41.
Rohde, Ulrich L., "Mathematical Analysis and Design of an Ultra Stable Low Noise 100 MHz Oscillator," Proceedings of the 32nd Annual Symposium on Frequency Control, 1978, pages 400-425.
Rohde, Ulich L.. "Communications Receivers for the Year 2000," ham radio, Part 1, November, 1981; Part 2, December, 1981.
Rohde, Ulrich L., "Active Antennas," RF Design, May/June 1981, pages 38-42.
Rohde, Ulich L.. "Recent Developments in Shortwave Communication Receiver Circuits," NTC Conference Record, Vol. 2 IEEE Cat. (22.6.1/22.6.6); IEEE Cat. 796 H 1514.9.

Winn, R.F.A., "Synthesized Communications Receiver," Wireless World, October, 1974, page 413.
H.P. 3335A Synthesizer/Level Generator Operating \& Service Manual. Racal RA6790 Communication Receiver Operating \& Service Manual.
ham radio

THE MOST AFFORDABLE REPEATER

ALSO HAS THE MOST IMPRESSIVE PERFORMANCE FEATURES

(AND GIVES THEM TO YOU AS STANDARD EQUIPMENTI)

JUST LOOK AT THESE PRICES!

Band	Kit		Wired/Tested
		$\$ 880$	
$10 M, 6 M, 2 M, 220$	$\$ 880$		
440	$\$ 780$		$\$ 980$

Both kit and wired units are complete with all parts, modules, hardware, and crystals.
CALL OR WRITE FOR COMPLETE DETAILS.
Also available for remote site linking, crossband, and remote base.

FEATURES:

- SENSItivity second to none; TYpically 0.15 uV ON VHF, 0.3 uV ON UHF.
- SELECTIVITY THAT CAN'T BE BEAT! BOTH 8 POLE CRYSTAL FILTER \& CERAMIC FILTER FOR GREATER THAN 100 dB AT $\pm 12 \mathrm{KHZ}$. HELICAL RESONATOR FRONT ENDS. SEE R144, R220, AND R451 SPECS IN RECEIVER AD BELOW.
- OTHER GREAT RECEIVER FEATURES: FLUTTERPROOF SQUELCH, AFC TO COMPENSATE FOR OFF-FREQ TRANSMITTERS, SEPARATE LOCAL SPEAKER AMPLIFIER \& CONTROL.
- CLEAN, EASY TUNE TRANSMITTER; UP TO 20 WATTS OUT (UP TO 50W WITH OPTIONAL PA).

HIGH QUALITY MODULES FOR REPEATERS, LINKS, TELEMETRY, ETC.

HIGH-PERFORMANCE RECEIVER MODULES

- R144/R220 FM RCVRS for 2 M or 220 MHz . 0.15 uV sens.; 8 pole xtal filter \& ceramic filter in i-f, helical resonator front end for exceptional selectivity, more than -100 dB at $\pm 12 \mathrm{kHz}$, best available today. Flutter-proof squelch. AFC tracks drifting xmtrs. Xtal oven avail. Kit only \$138.
- R451 FM RCVR Same but for uhf. Tuned line front end, 0.3 uV sens. Kit only $\$ 138$.
- R76 FM RCVR for $10 \mathrm{M}, 6 \mathrm{M}, 2 \mathrm{M}, 220$, or commercial bands. As above, but w/o AFC or hel. res. Kits only $\$ 118$.
Also avail w/4 pole filter, only $\$ 98 /$ kit.
- R110 VHF AM RECEIVER kit for VHF aircraft band or ham bands. Only \$98.
- R110-259 SPACE SHUTTLE RECEIVER, kit only $\$ 98$.

TRANSMITTERS

- T51 VHF FM EXCITER for $10 \mathrm{M}, 6 \mathrm{M}, 2 \mathrm{M}$, 220 MHz or adjacent bands. 2 Watts continuous, up to $21 / 2 \mathrm{~W}$ intermittent. $\$ 68 / \mathrm{kit}$.

- T451 UHF FM EXCITER 2 to 3 Watts on 450 ham band or adjacent freq. Kit only $\$ 78$.
- VHF \& UHF LINEAR AMPLIFIERS. Use on either FM or SSB. Power levels from 10 to 45 Watts to go with exciters \& xmtg converters. Several models. Kits from \$78.
- A16 RF TIGHT BOX Deep drawn alum. case with tight cover and no seams. $7 \times 8 \times 2$ inches. Designed especially for repeaters. $\$ 20$.

ACCESSORIES

- COR KITS With Audio mixer, speaker amplifier, tail \& time out timers. Kit only \$38.
- CWID KITS 158 bits, field programmable, clean audio, rugged TTL logic. Kit only \$68.
- DTMF DECODER/CONTROLLER KITS. Control 2 separate on/off functions with touchtones*, e.g., repeater and autopatch. Use with main or aux. receiver or with Autopatch. Only $\$ 90$
- AUTOPATCH KITS. Provide repeater autopatch, reverse patch, phone line remote control of repeater, secondary control via repeater receiver. Many other features. Only \$90. Requires DTMF Module.

- HELICAL RESONATOR FILTERS available separately on pcb w/connectors.

$$
\text { HRF-144 for } 143-150 \mathrm{MHz} \$ 38
$$

HRF-220 for $213-233 \mathrm{MHz}$ \$38
HRF-432 for $420-450 \mathrm{MHz} \$ 48$

ham radFo Reader Service

For literature or more information, circle the appropriate number on this card, affix postage and send to us. We'll hustle your name and address to the companies you're interested in.
$\begin{array}{llllllllllllllllllllllllllll}101 & 113 & 125 & 137 & 149 & 161 & 173 & 185 & 197 & 209 & 221 & 233 & 245 & 257 & 269 & 281 & 293 & 305 & 317 & 329 & 341\end{array}$ $\begin{array}{llllllllllllllllllllllllllllllllllll}102 & 114 & 126 & 138 & 150 & 162 & 174 & 186 & 198 & 210 & 222 & 234 & 246 & 258 & 270 & 282 & 294 & 306 & 318 & 330 & 342\end{array}$ $\begin{array}{llllllllllllllllllllllllllllllllll}103 & 115 & 127 & 139 & 151 & 163 & 175 & 187 & 199 & 211 & 223 & 235 & 247 & 259 & 271 & 283 & 295 & 307 & 319 & 331 & 343\end{array}$ $\begin{array}{llllllllllllllllllllllllllllllllllll}104 & 116 & 128 & 140 & 152 & 164 & 176 & 188 & 200 & 212 & 224 & 236 & 248 & 260 & 272 & 284 & 296 & 308 & 320 & 332 & 344\end{array}$ $\begin{array}{llllllllllllllllllllllllllll}105 & 117 & 129 & 141 & 153 & 165 & 177 & 189 & 201 & 213 & 225 & 237 & 249 & 261 & 273 & 285 & 297 & 309 & 321 & 333 & 345\end{array}$ $\begin{array}{lllllllllllllllllllllllllllllllllll}106 & 118 & 130 & 142 & 154 & 166 & 178 & 190 & 202 & 214 & 226 & 238 & 250 & 262 & 274 & 286 & 298 & 310 & 322 & 334 & 346\end{array}$ $\begin{array}{llllllllllllllllllllllllllllllllll}107 & 119 & 131 & 143 & 155 & 167 & 179 & 191 & 203 & 215 & 227 & 239 & 251 & 263 & 275 & 287 & 299 & 311 & 323 & 335 & 347\end{array}$ $\begin{array}{lllllllllllllllllllllllllllll}108 & 120 & 132 & 144 & 156 & 168 & 180 & 192 & 204 & 216 & 228 & 240 & 252 & 264 & 276 & 288 & 300 & 312 & 324 & 336 & 348\end{array}$ $\begin{array}{lllllllllllllllllllllllllllllllllllll}109 & 121 & 133 & 145 & 157 & 169 & 181 & 193 & 205 & 217 & 229 & 241 & 253 & 265 & 277 & 289 & 301 & 313 & 325 & 337 & 349\end{array}$ $\begin{array}{lllllllllllllllllllllllllllllll}110 & 122 & 134 & 146 & 158 & 170 & 182 & 194 & 206 & 218 & 230 & 242 & 254 & 266 & 278 & 290 & 302 & 314 & 326 & 338 & 350\end{array}$ $\begin{array}{lllllllllllllllllllllllllllllllllll}111 & 123 & 135 & 147 & 159 & 171 & 183 & 195 & 207 & 219 & 231 & 243 & 255 & 267 & 279 & 291 & 303 & 315 & 327 & 339\end{array}$ $\begin{array}{llllllllllllllllllllllllllllllllll}112 & 124 & 136 & 148 & 160 & 172 & 184 & 196 & 208 & 220 & 232 & 244 & 256 & 268 & 280 & 292 & 304 & 316 & 328 & 340\end{array}$

Limit 15 inquiries per request.
NAME \qquad CALL \qquad ADDRESS
CITY \qquad STATE \qquad ZIP

November 1983

ATTN: Reader Service Dept.
R.O. BOX•358
ARLINGTON, MA 02174
ATADER SERVICE CENTER

New low-noise microwave transistors make preamps in the 0.9 to 1.0 dB noise figure range possible without the fragility and power supply problems of gas-fet's. Units furnished wired and tuned to ham band. Can be easily retuned to nearby freq.

Models LNA(),
P30, and P432
shown

Tunable

Model	Freq Range	Noise Figure	Gain	Price
LNA 28	20-40	0.9 dB	20 dB	\$39
LNA 50	$40-70$	0.9 dB	20 dB	\$39
LNA 144	120-180	1.0 dB	18 dB	\$39
LNA 220	180-250	1.0 dB	17 dB	\$39
LNA 432	380-470	1.0 dB	18 dB	\$45
LNA 800	470-960	1.2dB	15 dB	\$45

ECONOMY PREAMPS

Our traditional preamps, proven in years of service. Over 20,000 in use throughout the world. Tuneable over narrow range. Specify exact freq. band needed. Gain 16-20 dB. NF = 2 dB or less. VHF units available 27 to 300 MHz . UHF units available 300 to 650 MHz .

$$
\begin{array}{ll}
\text { - P30K, VHF Kit less case } & \$ 18 \\
\text { : P30W, VHF Wired/Tested } & \$ 33 \\
\text { : P432K, UHF Kit less case } & \$ 21 \\
\text { - P432W, UHF Wired/Tested } & \$ 36
\end{array}
$$

P432 also available in broadband version to cover $20-650 \mathrm{MHz}$ without tuning. Same price as P432; add "B" to model \#.

HELICAL RESONATOR PREAMPS

Our lab has developed a new line of low-noise receiver preamps with helical resonator filters built in. The combination of a low noise amplifier similar to the LNA series and the sharp selectivity of a 3 or 4 section helical resonator provides increased sensitivity while reducing intermod and cross-band interference in critical applications. See selectivity curves at right. Noise figure $=1$ to 1.2 dB . Gain $=12$ to 15 dB .

Model	Tuning Range	Price
HRA-144	$143-150 \mathrm{MHz}$	\$49
HRA-220	213-233 MHz	\$49
HRA-432	$420-450 \mathrm{MHz}$	\$59
HRA-()	$150-174 \mathrm{MHz}$	\$69
HRA-()	$450-470 \mathrm{MHz}$	\$79

Models to cover every practical if \& if range to listen to SSB, FM, ATV, etc. NF $=2 \mathrm{~dB}$ or less.

	Antenna Input Range	Receiver Output
VHF MODELS	$28 \cdot 32$	144-148
Kit with Case \$49	$50-52$ $50-54$	$28-30$ $144-148$
Less Case \$39	144-146	$28-30$
Wired \$69	145-147	28.30
	144-144.4	27-27.4
	$146-148$	28-30
	144-148	50-54
	220-222	28-30
	220-224	144-148
	222-226	144-148
	220-224	50.54
	222-224	28-30
UHF MODELS	432-434	28-30
Kit with Case \$59	435-437	28-30
Less Case \$49	432-436	14.148 50.54
Wired \$75	439.25	61.25

SCANNER CONVERTERS Copy 72-76, 135-$144,240-270,400-420$, or $806-894 \mathrm{MHz}$ bands on any scanner. Wired/tested Only $\$ 88$.

SAVE A BUNDLE ON VHF FM TRANSCEIVERS!

FM-5 PC Board Kit - ONLY \$178 complete with controls, heatsink, etc. 10 Watts, 5 Channels, for 2 M or 220 MHz .

Cabinet Kit, complete with speaker, knobs, connectors, hardware. Only $\$ 60$.

RE

IMPORTANT REASONS WHY YOU SHOULD BUY FROM THE VALUE LEADER:

1. Largest selection of vht and uht kits in the world.
2. Exceptional quality and low prices due to large volume.
3. Fast delivery, most kits shipped same day.
4. Complete, professional instruction manuals.
5. Prompt factory service available and free phone consultation.
6. In business 21 years.
7. Sell more repeater modules than all other mfrs. and have for years. Can give quality features for much lower cost.
For SSB, CW, ATV, FM, etc. Why pay big bucks for a multi mode rig for each band? Can be linked with receive converters for transceive. 2 Watts output vhf, 1 Watt uhf.

VHF \& UHF LINEAR AMPLIFIERS. Use with above. Power levels from 10 to 45 Watts. Several models, kits from $\$ 78$.

LOOK AT THESE ATTRACTIVE CURVES!

Typical Selectivity Curves of Receivers and Helical Resonators.

While supply lasts, get \$60 cabinet kit free when you buy an FM-5 Transceiver kit. Where else can you get a complete transceiver for only \$178

- Call or Write for FREE CATALOG
- (Send \$1.00 or 4 IRC'c for overseas mailing)
- Order by phone or mail © Add \$3 S \& H per order (Electronic answering service evenings \& weekends) Use VISA, MASTERCARD, Check, or UPS COD.

65-C MOUL RD. • HILTON NY 14468 Phone: 716-392-9430
Hamtronics ${ }^{*}$ is a registered trademark

a simple shortwave broadcast receiver

Most Amateur transceivers just cover the ham bands. Because I wanted something with which I could listen to international shortwave newscasts, I constructed this simple shortwave broadcast receiver that tunes the 6 and $9 \mathrm{MHz} S W$ bands and is inexpensive to build. Building it takes a little skill and you'll need a few test instruments to get it going, but I'm sure you'll enjoy listening to something you've built completely on your own.

To keep construction simple and costs down, I based the circuit on the J.W. Miller 8901-B and 8902-B IF amplifier and detector (mechanical assemblies are illustrated in figs. 1A and 1B). This unit contains three stages of IF amplification and a diode detector inside the capsule. The output is more than enough to drive a 2 N 2222 audio stage, which in turn drives an LM380N audio chip at several watts output. This in turn drives a 12 -inch loudspeaker.

In order to keep the circuit simple and eliminate self-oscillation problems which would require decoupling and shielding, no RF stage was used. The antenna just goes through a double-tuned circuit directly into the 40673 mixer. The large capacity 365-365 gang-tuning condenser eliminates the need for bandswitching for the input stage since it tunes the entire 6 to 9 MHz band. The only drawback is that it has very sharp tuning, and care must be used to make sure the input tuning is on the station you are listening to. With this broad tuning range, it is possible to tune on an image station 455 kHz away. If the panel is marked, there should be no trouble making the tuned circuits track and tune to the same frequency, once the two input slugs are adjusted as described in the following section.

All of the coils in the receiver are wound on Na -

[^4]
fig. 1. (A) 8901-B module mechanical assembly: (B) 8902-B module mechanical assembly.
tional XR-50 coil forms; the number of turns indicated is only approximate, since lead length to the bandswitch can vary. I used a two-position tone control switch for bandchanging.

The receiver was built on a California chassis (No. 122) that measures 4.5×8.5 inches $(11.43 \times 21.59$ $\mathrm{cm})$. Using etched boards, everything fits on the top of the chassis, making it easier to work on. Spacers are needed to keep the printed circuit board high enough to prevent the RG-174/U from being punctured by wires projecting from below.

The variable oscillator could probably be made without the emitter follower. However, experience suggests that the isolation between stages is necessary to prevent oscillator pulling. Finally, the oscillator is mechanically tuned using a Jackson Ball 5:1 drive. A schematic of the completed receiver is provided in fig. 2.

construction and alignment

The power supply was built first, followed by the audio section. Once I knew the audio section was working I added the IF and mixer stage. The anten-na-tuned circuit was last and perhaps the most difficult to adjust. Here a grid dip oscillator is a must. I unsoldered the 7 pF coupling capacitor and tuned each coil separately on 6 MHz for best tracking. The 15 pF trimmer was primarily used to reduce any 'mistracking" when different antennas were attached.
table 1. Abbreviated list of stations that transmit in the 6 and 9 MHz bands.

frequency $(\mathbf{k H z})$	station	frequency $(\mathbf{k H z)}$
5955	Voice of Nicaragua	9360
5975	BBC - London	9410
5985	Radio China	9510
6005	BBC	9540
6020	Habana, Cuba	9545
6030	Voice of America	9565
6040	Voice of America	9580
6050	HCJB - Quito, Ecuador	9590
6060	Radio Haban, Cuba	9630
6065	Radio Madrid, Spain	9635
6070	WYFR ('Family Radio')	9650
6075	WYFR ('Family Radio')	9670
6095	HCJB - Quito, Ecuador	9700
6115	Radio Moscow	9720
6115	Voz de Llanos, Colombia	9735
6120	BBC	9745
6125	BBC and Voice of America	9755
6140	Radio Canada	9780
6155	Voice of America	9810
6165	Radio Nederland	9825
6170	BBC	9835
6175	BBC	9915
6195	Radio Canada	

station

Radio Madrid, Spain BBC
BBC Northern Ireland
Radio Nederland
Radio Germany
Voice of America
Radio South Africa
Radio Nederiand
Radio Spain
Radio Moscow
Voice of America
Voice of America
Voice of America
HCJB - Quito, Ecuador
BBC
HCJB - Quito, Ecuador
Voice of America
Radio Moscow
Radio Moscow
BBC
Radio Budapest BBC

fig. 2. Two shortwave band receiver schematic diagram.

Two great ways to get Q5 copy
 Ask:

G4HUW	KB5DN	WA4FNP	WD5DMP
KJ2E	K61MV	WD4BKY	WD8QHD
K4XG	K8MKH	WD4CCI	WB9NOV
KA4CFF	KB $9 T M$	WD4CCZ	WD9DYR
KA5DXY	W4YPL	W5GAI	

444D SSB/FM

Base-Station Microphone

Shure's most widely used basestation microphone is a ham favorite because it really helps you get through ... with switchselectable dual impedance low and high for compatibility with any rig! VOX/NORMAL switch and continuous-on capability make the 444D easy to use even under tough conditions. If you're after more Q5's, you should check
 it out.

526T Series II SUPER PUNCH Microphone

 Truly a microphone and a half! Variable output that lets you adjust the level to match the system. The perfect match for virtually any transceiver made, regardless of impedance. Turns mobile-NBFM unit into an indoor base station! Super for SSB operation, too. These and many other features make the 526 T Series II a must-try unit.
the weekender

fig. 3. Frequency scale template for the broadcast receiver.

If you have a signal generator modulated by an audio tone it helps to align the 455 kHz IF and approximately calibrate the main frequency dials. If your signal generator is not accurate, then the dial should be checked against another receiver and recalibrated if necessary. (A frequency scale template is provided in fig. 3.)

Since only the 6 and 9 MHz bands are used, adjusting the receiver should not be much of a problem. For daytime listening, a coil could be wound for the 11 MHz band.

operation

This receiver is appropriate for language practice and for listening to the news, which most shortwave stations give on the hour. Several religious stations also come in strong: two are WYFR "the Family Radio station," and HCJB in Quito, Ecuador. In the early morning the Japanese stations are particularly strong. I have listed some of the stations active on the two bands and actually heard all those listed in table 1.

where to get parts

Be sure to include an SASE when writing for catalogs or information. Transistors and other parts may be obtained from:

Circuit Specialists
Box 3047
Scottsdale, AZ 85257
BCD Radio Parts Co.
P.O. Box 06017

Fort Myers, FL 33906-6017
Radio Shack

Knapp Inc. 4750 96th St. N.
St. Petersburg, FL 33708
J.W. Miller/Bell Industries 19070 Reyes Avenue
P.O. Box 5825

Compton, CA 90224

A useful reference for sources of electronic parts is Radio Electronics Buyers Guide ($\$ 6.95$ postpaid), available from Ham Radio's Bookstore, Greenville, New Hampshire 03048.
ham radio

KDK Repair

By former KDK Service Manager, Mark Thomas, with over 5 years experience servicing KDK's. You know you will get qualified service, usually for less than $\$ 60.00$, If you send your KDK with a note describing the problem to us. We accept M. C. and Visa, and can send C.O.D.

HIGH TECHNOLOGY SERVICE CENTER 8825 S. W. 129 TERR, MIAMI, FL 33176. (305) 255-7660

Mobilize your H.T.!

The unique MOBILE ENERGIZER will both charge the batteries in your hand-held trancever and provide $\mathrm{AX}-\mathrm{TX}$ operating power at the same time' it is housed in a rugged metal case that plugs into the cigarette lighter jack of your car. It uses a buil- in requlator circuit and comes with a 90 day warranny. It works with the tollowing hand heids Azden PCS. 300 . Yeasu FT-207. and FT-208. Kenwood TR- 2400 Tempo S1 through S-5, all Santec models and all VHF versions of the above Specity model when ordering

CATCH THE EXCITEMENT!

Without catching all the noise.

With the new
NXL line of noise-killer Indoor antennas

There is a world full of exciting communication action out there just waiting for you to listen in on! But you are not going to hear much of it if your receiver is plagued by man-made noise. And you are not going to hear any of it if you can't put up an outdoor antenna.
Now you don't have to worry about any of these problems anymore because now there is the new NXL series of active indoor antennas. Both the NXL-250 and the NXL-1000 utilize a Faradayshielded loop antenna, one foot in diameter, for reception. This antenna inherently cancels most man-made noise, and, by using it's special turnable and tiltable mounting, can null out strong interfering noise sources. It can also null out local signals and most skyway-propagated signals too. The noise-free signals picked up by this antenna are fed into the unit, first to go through a tuned circuit which adds selectivity to help reduce overload and image interference to your receiver, then through a high-gain amplifier, and then into your receiver.
The NXL-250 gives you this performance from 25 MHz all the way down to 150 kHz . The NXL1000, intended for shortwave listeners, has less coverage, from 30 MHZ to 1.5 MHz , but offers a 100 kHz and 1 MHz crystal claibrator, switch-selectable.

And now for the best news. Even though the NXL antennas offer noise-rejection and directionality that none of the other indoor active antennas have, and offer sensitivity in most locations comparable to a long-wire outdoor antenna, they are priced lower than the comptetition! The NXL-250 is only \$59.95, and the NXL-1000 is only $\$ 69.95$! So whether you are looking for an indoor, amplified antenna or are just fed up with battling the noise, get one of the new NXL-250 or NXL-1000 noise-killer antennas and catch the excitement

C1B PAGKET RMDO

Now you can get in on the fun on packet radio!

- Low cost'
- Adaptable to any transceiver
- Easy to learn. easy to use
- Nearly 50 commands
- Built-in packet Modem and

CW identifier
MODEL PK1

- Use with teletype machines computers terminals
- RS232 serial intertace - 45 to 9600 baud

- Uses both ASCII and Baudot
(shown with 14K RAM
- Vancouver protocol-Ax 25 to De released soon
- Stores received messages until requested at a later time
- Operates in connected and general modes
- Activates teletype motor to print messages
- Board accepts up to 14 K of RAM
- Model PK1 can be customized for Commercial Systems

Protocol can be changed by swapping ROM chips. Board de signed to accept 6264° s for up to 56 K of RAM with minor modification
Dimensions: 4.5×9.5 inches; $1^{\prime \prime}$ vertical clearance
Power requirement: + 12 VDC, approx. 20 ma
Standard equipment includes 4 K of RAM (expandable to 14 K),
Model PK1, wired \& tested - $\$ 149.95$ additional memory, installed \& tested (up to 10K) $\quad \$ 10 / 2 \mathrm{~K}$ RTTY adaptor board
$\$ 9.95$
Connecting cables \& enclosure-optional Request our FREE catalog MC \& Visa welcome Allow \$2 tor UPS shipping.

1952 Clinton St. Buffalo, NY 14206 716-824.7936. 9 to 4

The old reliables at old fashioned prices with the new look. Shurite Panel Meters.

Rugged and reliable from as far back as 1904 They got even better. And better-looking And today, there are many more to choose from.
For both OEM* and end-user applications, write or phone for the new quick-selection guide for low cost panel meters from Shurite. Or see your local distributor.

8200

Z-80
2.5 Mhz

4.0 Mhz

DISC CONTROLLERS

UARTS

INTERFACE

VOLTAGE REGULATORS

7805 T	. 74	7905 T	. 84
78MOSC	. 34	7908T	. 84
7808T	. 74	7912T	. 84
7812T	. 74	7915T	. 84
7815T	. 74	7924T	. 84
7824 T	. 74	7905K	1.44
7805K	1.34	7912 K	1.44
7812 K	1.34	7915K	1.44
7815K	1.34	7924K	1.44
7824 K	1.34	79L05	. 78
$78 \mathrm{LO5}$. 68	79L12	. 78
78 L 12	. 68	79L. 15	. 78
78 L 15	. 68	LM323K	4.90
78H05K	9.90	UA78S40	1.90
78H12K	9.90		
C, $\mathrm{T}=\mathrm{TO-220}$		TO-3	TO-92

	DIP SWITCHES
$\begin{aligned} & \text { 4position } \\ & \text { Sposition } \\ & \text { cosition } \end{aligned}$	84
$\underset{\substack{\text { chesition } \\ \text { TPOSTION }}}{ }$	
8position	

IC SOCKETS

	1-99	100
8 pin ST	. 12	. 10
14 pin ST	. 14	. 11
16 pin ST	. 16	. 12
18 pin ST	. 19	. 17
20 pin ST	. 28	. 26
22 pin ST	. 29	. 26
24 pin ST	. 29	. 26
28 pin ST	. 39	. 31
40 pin ST	. 48	. 38
64 pin ST	4.20	call
ST $=$ SOLDERTAIL		
8 pin WW	. 58	. 48
14 pin WW	. 68	. 51
16 pin WW	. 68	. 57
18 pin WW	. 98	. 89
20 pin WW	1.04	. 97
22 pin WW	1.34	1.23
24 pin WW	1.44	1.30
28 pin WW	1.64	1.44
40 pin WW	1.94	1.75
WW = WIREWRAP		
16 pin ZIF	6.70	call
24 pin ZIF	9.90	call
28 pin ZIF	9.95	call
ZIF = TEXTOOL (Zero Insertion Force)		
CRYSTALS		
32.768 khz		1.90
1.0 mhz		4.90
1.8432 2.0		4.90
2.097152		3.90 3.90
2.4576 .		3.90
3.2768		3.90
3.579535		3.90
4.0 .		3.90
5.0		3.90
5.0688		3.90
5.185		3.90
5.7143		3.90
6.0		3.90
6.144		3.90
6.5536		3.90
8.0		3.90
10.0		3.90
10.738635		3.90
14.31818		3.90
15.0		3.90
16.0		3.90
17.430		3.90
18.0		3.90
18.432		3.90
20.0		3.90
22.1184		3.90
32.0 ..		3.90

RESISTORS
1/4 WATT 5. CARBON FILM ALL STANDARD VALUES FROM 1 OHM TO 10 MEG OHM

APPLE ACCESSORIES

Column Ca	129.95
16 K Card	42.50
Fan	38.95
Power Supply	84.95
RF Mod	24.95
Joy Stick (Apple II)	29.95
Paddles Apple	9.95
z80 Card	129.95
SCRG Switch-A-Slot	19.95
Paddle Adapple	24.95
Extend-A Slot	19.95
Disk Drive	224.95
Controller Card	69.95

51/4" DISKETTES
ATHANA OR NASHUA

SSSD.	95
SSDD	22.95
DSDD	27.9

PERISOFT
ACCESSORIES FOR APPLE II \& Ile ALL WITH 1 YEAR WARRANTY BY

PRINTERLINK
CENTRONICS
PARALLEL INTERFACE

- Simple to use - No configuring required
- Use with any centronics printer - EPSON, OKIDATA, etc.
- Includes Cable \& Manual $\$ 58^{00}$
MESSENGER
SERIAL INTERFACE
- Connects to any RS-232 serial device
- 8 switch selectable drivers for printers, terminals and modems - Includes Cable \& Manual $\$ 98^{\circ 0}$
TIMELINK
REAL TIME CLOCK
- Applications in file management, word processing, communications, etc.
- Exclusive Alarm Clock feature
- Battery recharges automatically $\$ 83^{00}$
NEW BUFFERLINK ADD-ON PRINTER BUFFER
- No more waiting for printed output - Connects easily to any parallel interface
- Expandable from 16 K to 64 K $\$ 138^{00}{ }^{(16 K)}$

The Flip Sort ${ }^{\text {TM }}$
The new Flip Sort ${ }^{\text {TM }}$ has all the fine qualities of the original Flip Sort ${ }^{T M}$, with some added benefits. Along with a new design, capacity has increased 50%, to hold 75 diskettes and the price is more reasonable than ever. $\$ 19.95$ ea.

The Flip Sort Plus ${ }^{\text {TM }}$
The Flip Sort Plus ${ }^{\text {TM }}$ adds new dimensions to storage. Designed with similar elegant lines as the original Flip Sort ${ }^{\text {TM }}$, in a transparent smoked acrylic. The Flip Sort Plus ${ }^{\text {TM }}$ has a storage capacity of over 100 diskettes and has all the outstanding features you have come to expect from the flip sort Family. 24.95 each

2100 De La Cruz Blvd. Santa Clara, CA 95050

DX FORECASTER

Garth Stonehocker, K0RYW

The proximity of November to the winter solstice, a time when the geomagnetic field is quiet, normally means undisturbed conditions. But because this year is one of several in the sunspot decline, many disturbances can be expected this month. Therefore, we can expect unusual propagation conditions to occur, with the emphasis on the following days: November 7th through 12th, 17th through 20 th, and on the 25 th and 30th.

vhf-ers take note

Many days of meteor showers will occur between October 26th and November $22 n d$, with a shower maximum from the 3rd through the 10th at a rate of ten per hour. This shower is known as the Taurids. Lunar perigee is on the 1st and 26th, and the full moon on the 20th.

winter season DX

November through February constitutes the winter $D X$ season. Because the D and E regions of the ionosphere receive less energy from the sun in the northern hemisphere during this time, less ionization occurs. Therefore the daytime attenuation of radio signals in winter is lower than during the rest of the year. At the same time, ion production each day is better able to drift and diffuse up into the F region of the ionosphere. The result is an increased range of operating frequencies between the lowest and the maximum usable frequencies (LUF-MUF). The maximum usable frequency rises rapidly as the sun rises each day, peaking just after noontime. The frequency diminishes
in the late afternoon, evening, and through the night to a low value just before dawn the next day. The exception to this situation is for locations nearer to the equator, where the F region ionization continues to drift and diffuse up during the afternoon and evening to become the transequatorial maximums described in last month's column. The maximum usable frequency peak reached each day and the depth of the predawn minimum frequency of the next morning are related to the solar flux each day. The higher the flux during the day, the higher the frequency and the lower the dip the next morning.

Wintertime DX provides openings with these characteristics:

- Better daytime signal strengths on the lower frequencies
- Nighttime DX openings earlier each day in the evenings
- More frequent transequatorial paths toward the south
- Higher signal strengths on all bands most of the time.

band-by-band summary

Ten and fifteen meters will be open for F_{2} long skip and transequatorial one-long-hop propagation. Worldwide DX is prevalent from after sunrise until well after sunset most days, especially during periods of high solar flux conditions and moderate geomagnetic field disturbances.
Twenty meters will be open most days and nearly throughout the night to some areas of the world. This mode follows the sun across the sky:
east, south, then west with long skip of 1000-2500 miles.

Thirty meters is a day and night band. The day portion should be similar to 20 meters; signal strengths, however, may decrease during midday on some days of higher solar flux values. This band will also be usable well into the night and often through the night. Problem nights will probably follow high solar flux days and be related to the deep dip of MUF an hour or so before dawn. The distances covered on this band might exceed 80 -meter nighttime paths while being less than 20-meter daytime paths.

Forty meters, like 30 meters, is a transition band with all-night propagation as well as some short-skip conditions during the daytime. Most areas of the world can be worked from darkness until just after sunrise. Hops shorten to about 2000 miles on this band, but the number of hops can increase since the signal attenuation is low at night.
Eighty meters, traditionally the ragchewing band, is also good for distant operation. The band operates much like 40 meters, except in that the hop distances shorten to around 1500 miles at night and even less during the daytime. Because the noise is so low, this band is a pleasure to work during this time of year. The path direction follows the darkness across the earth - east, south, then west. Lots of QRM can be expected, however. (Remember, the DX window is $3790-3800 \mathrm{kHz}$.)
One-sixty meters will be similar to 80 meters, with skip hops reduced to

[^5]*Look at next higher band for possible openings.

RADIO WAREHOUSE

NO FRILLS - JUST LOW PRICES - KENWOOD

TS 430 HF \$Call

TR 2500
$2 \mathrm{~m} \quad 285.00$

TW 4000 UHF/VHF \$Call

- YAESU FT 980 HF \$Call
We also carry computer hardware/software
EPSON RX-80 \$395.00 GEMINI-15 \$495.00
EPSON FX-80 565.00
C. Itoh 8510
495.00

For information on our other lines . . .

CALL TOLL FREE

1-800-433-3203
IN TEXAS CALL 817-496-9000 P.O.'BOX 50155 FT. WORTH, TEXAS 76105

ALUMA TOWER COMPANY BOX 2a03HR
VEAO BEACH, FLA. 32960-2806 (305) 567-3423 TELEX 80-3405

C-1000-DW $\mathbf{\$ 3 3 7 . 5 9}$

Organize your shack with a CLUTTERFREE MODULAR CONsOLES

Prices start at $\$ 169.92$

- 9 Models to choose from
- Large, 42" H X 57" W X 30" D
- Strong groove - construction
- Mar-resistant wood grain finish
- Options, drawers \& face plate
- For ham or home computer
- Visa and Master Charge

CLUTTERFREE MODULAR CONSOLES

P.O. Box 5103 Tacoma, WA. 98405 (206) 2720713
about 1000 miles. It will provide good DX for late night and early morning DXers. Stations in many areas of the country can now run higher power. (Once again, please keep the DX windows - $1825-1830 \mathrm{kHz}$ and $1850-$ 1855 kHz - free of local contacts.)

last-minute forecast

During November expect the higher frequency bands -10 through 30 meters - to be best during the middle of the month; a solar radio flux maximum is expected during that time. Maximum flux is also possible on the 25 th which would mean a good, long DX holiday weekend. (Monitor radio station WWV for geophysical data at 18 minutes after the hour on $2.5,5,10,15$ or 20 MHz to update this forecast.) The lower frequency bands are expected to be good throughout the month, but somewhat better during the predawn hours at the beginning and end of the month.
ham radio

short circuits

building blocks

In KBØCY's article, "Audio Filter Building Blocks", (July, 1983), fig. 2 (page 76) should show all +12 V connections going to pin 7 of the four LF356's. One LF356 (upper center) shows pin 1 as the +12 V connection; this is incorrect.

briefcase bobtail

In the directions for a "Briefcase Bobtail" given by Paul M. Rich (Comments, July, 1983, page 12), the twelve turns of No. 14 wire should be spaced $1 / 4$ inch apart, not one inch apart. The call sign HH2KR was incorrectly given as HH2DR.

Bobtail curtain

In part one of the Bobtail curtain series by W6BCX (February, 1983, page 82), an article on the Bobtail is referred to in the April, 1948, issue of $C Q$. The correct date of publication is March, 1948.

MAGGIORE ELECTRONIC LAB.

Manufacturers of Quality Communications Equipment

MAGGIORE ELECTRONIC LAB.
590 Snyder Ave..
Phone (215) 436-6051
West Chester, PA 19380 Telex 4990741 MELCO
WRITE OR CALL FOR OUR COMPLETE CATALOG
$\vee 170$

PROTOTYPE FORMING

TRIOK

24" SHEAR / BRAKE / ROLL DUCTILEIRON CASTINGS. PRICED FROM $\mathbf{\$ 1 , 1 2 5 . 0 0}$

IN-LINE BRAKE

> 14" PRESS BRAKE INCLUDING BOX FORMING DIES. PRICE \$225.00

(ask about the special combination offers).

SHEAR-NOTCHER

CONTINUOUS. 150" SLOTTING, NO DISTORTION,
STRAIGHT OR TAB NOTCHING.
PRICE WITH TABLES $\mathbf{\$ 5 8 . 5 0}$
Capacity all units 20 GA Mild Steel or .060" aluminum. Prices are F.O.B. Los Angeles.
PACIFIC ONE CORPORATION

513 Superior Avenue, Suite K313 Newport Beach, CA 92663 (714) 645-5962

MODEL
MF.9A
XF-9B
XF-9B-01
XF-98B-02
XF-9B-10
XF.9C
XF.9D
XF.9E
XF.9M
XF.9NB
XF.9P
XF910

Appli- cation	Band- width
SSB	2.4 kHz
SSB	2.4 kHz
LSB	2.4 kHz
USB	2.4 kHz
SSB	2.4 kHz
AM	3.75 kHz
AM	5.0 kHz
FM	12.00 kHz
CW	500 Hz
CW	500 Hz
CW	250 Hz
IF noise	15 kHz

Poles	Price
5	$\$ 53.15$
8	72.05
8	95.90
8	95.90
10	125.65
8	77.40
8	77.40
8	77.40
4	54.10
8	95.90
8	131.20
2	17.15

10.7 MHz CRYSTAL FILTERS

XF107.A	NBFM	12	kHz	8	\$67.30
XF107-B	NBFM	15	kHz	8	67.30
XF107-C	WBFM	30	kHz	8	67.30
XF107-D	WBFM	36	kHz	8	67.30
XF107.E	Pix/Data	40	kHz	8	67.30
XM107-SO4	FM	14	kHz	4	30.15
Export Inquir	ed.				S3.50

MICROWAVE MODULES VHF \& UHF EQUIPMENTS
Use your existing HF or 2 M rig on other VHF or UHF bands.
LOW NOISE RECEIVE CONVERTERS

1691 MHz	MMk1691-137	$\$ 224.95$
1296 MHz	MMk1296-144	119.95
$432 / 435$	MMc432-28(S)	74.95
$439-\mathrm{ATV}$	MMc439-Ch x	84.95
220 MHz	MMc220-28	69.95
144 MHz	MMc144-28	54.95
Options: Low NF (2.0 dB max., 1.25 dB max. $)$, other bands \& IF's available		

Options: Low NF (2.0 dB max., 1.25 dB max.), other bands \& IF's available

LINEAR TRANSVERTERS

1296 MHz	1.3 W output. 2M in	MMt1296-144	$\$ 339.95$
$432 / 435$	10 W output. 10 M in	MMt432.28(S)	269.95
144 MHz	10 W output. 10 M in	MMt144-28	179.95

Other bands \& IFs available.
$\begin{array}{lr}\text { MMt432.28(S) } & 269.95 \\ \text { MMt144.28 } & 179.95\end{array}$
179.95

LINEAR POWER AMPLIFIERS

1296 MHz	10 W output	MML 1296 -10-L	\$ ask
$432 / 435$	100 W output	MML432-100	399.95
	50 W output	MML432-50-S	214.95
	30 W output	MML432-30-LS	189.95
144 MHz	100 W output	MML144-100-LS	254.95
	50 W output	MML144-50-S	214.95
	30 W output	MML144-30-LS	109.95
	25 W output	MML144-25	99.95
All models include VOX T/R switching. "L" models 1 or 3W drive, others 10W drive.			
Shipping: F	cord, Mass.		

420.450 MHz MULTIBEAMS

48 Element	70/MBM48 15.7 dBd	\$75.75
88 Element	$70 / \mathrm{MBM} 8818.5 \mathrm{dBd}$	105.50
$144-148 \mathrm{MHz}$ J-SLOTS		
8 over 8 Hor. pol	D8/2M 12.3 dBd	\$63.40
8 by 8 Vert. pol	D8/2M-vert 12.3 dBd	76.95
$8+8$ Twist	$8 \mathrm{XY} / 2 \mathrm{M} \quad 9.5 \mathrm{dBd}$	ask
UHF LOOP YAGIS		
1250-1350 MHz 29	9 loops 1296-LY 20 dBi	\$44.95
1650-1750 MHz 29	9 loops 1691-LY 20 dBi	55.95
Order Loop-Yagi	connector extra:	Type N \$14.95, SMA \$5.95

Order Loop-Yagi connector extra:
Type N \$14.95, SMA \$5.95

Send 40¢ (2 stamps) for full detatls of all your VHF \& UHF equip-
ment and KVG crystal product requirements
(617) 263-2145 SPECTRUM INTERNATIONAL, INC. Post Office Box 1084 Concord, MA 01742, U.S.A.

U.S. Orders TOLL FREE
1-800-431-7777

CALL ANY TIME, DAY OR NIGHT paramount

COMMUNICATIONS ELECTRONICS

506 Burnett Ave., Dalton, OH 44618

Bina
 STOCKING DISTRIBUTORS䀼 OPTOELECTRONICS, INC.
 FREQUENCY COUNTERS VoCom
 Antennos
 LRE PRODUGTS PRO•Q11

INTERSPACE POWER SUPPLY

Prepayment (Certified check) 5\% discount and we pay shipping costs
(FसाHHOSTVD

Iron Powder and Ferrite TOROIDAL CORES

Shielding Beads, Shielded Coil Forms

technical forum

Have a technical question? Ask your fellow Amateurs through Technical Forum. You'll reach knowledgeable readers ready to help you find the answer you're looking for. Have an answer? Send it in. Every month we'll award a specially selected book from Ham Radio's Bookstore to the writer of the best response to a question previously posed in this column. Address your questions and answers (typewritten, if possible) to Technical Forum, ham radio magazine, Greenville, New Hampshire 03048.

bunny hunt

In the May, 1983, Technical Forum, N3BEK raised the problem of RFI on 160 meters from a local broadcast station.
May I suggest he try using the station's field intensity meter to go on a low-frequency "bunny hunt." It is not unusual for the down guys on utility poles to unintentionally provide 60 Hz rectification at corroded joints and create fluorescent light-type noise in high-frequency receivers. Utility wires, down guys, grounds from pole-mounted transformers, and the like can all have partially corroded splices and connections that are good at power line voltages but act as semi-conductors when exposed to the 1-10 volts of RF (field intensity in V / M). This type of re-radiation is common in many AM antenna systems, and has to be tuned out at the source of re-radiation; that particular parasitic element has to be made non-resonant at the carrier frequency in order to make the antenna system of the station produce the desired radiation pattern.

It is entirely possible that a downguy, power drop messenger cable, or the ham antenna might have a discontinuity that would produce the "mystery station on 160 meters." The temperature/frequency relationship mentioned in the column would indicate a change in the resonant frequency as the element gets warm; it gets longer due to expansion, and the self-resonance lowers. The fact that the station uses asymmetrical modulation has no bearing on the situation other than developing 3 dB additional sideband power on modulation tips. Assuming mixing is taking place by the diode-type action mentioned above, at a non-linear portion of that diode, and the self-resonance of the
antenna producing the carrier and higher sideband energy, this would account for the unintelligible audio mentioned in the letter. The cure can be as simple as cleaning the connection or adding a resonant circuit to detune it from the 160 meter band or 1500 kHz station. Judging by the report of the station's engineering people and the intensity at N3BEK's QTH, my guess is that it's close to the shack. But, since you have to find the source to cure it, that's where the field intensity meter is helpful. It should be able to detect signals to fractions of a microvolt. Hope this helps. Good luck. - Ed Karl, K0KL

mysterious spur solved

In response to my letter to Technical Forum (May, 1983), I received a telephone call from Robert Schantz, a Los Angeles broadcast radio consultant. After determining that the local 50 kW transmitter was manufactured by Continental, he said he was familiar with the design of that particular asymmetrically-modulated transmitter. He has experienced the generation of spurs from transmitters of that design - in one case, 250 kHz in the broadcast band. He said the Continental transmitter includes a complex feedback circuit in the modulator that is critical to adjustment. When the adjustment allows the generation of a spur, the frequency of that spur depends on the characteristics of the antenna system.

It is his conjecture that small changes in antenna characteristics, along with changes in temperature, are causing the frequency of the spur to shift.

My money is on Mr. Schantz's solution. - Jack Geist, N3BEK

too many turns

Like WB2NTQ (June, 1983), I have also tried to create high impedance (above 100 ohms) transformers with powdered iron toroids and failed. Here is why.
The problem in WB2NTQ's transformer is in his secondary winding, which at 29 MHz , is operating above its natural resonant frequency. The usable bandwidth for a transformer on the high end is determined by the self resonance of the windings. This resonance occurs when a winding is effectively $1 / 4$-wavelength long. Due to the dielectric constants of wire insulation and core material, and the capacity between adjacent turns the total wire length in a resonant winding can be significantly less than 1/4 wavelength in air.

The low frequency limit of a transformer is determined by the inductive reactance of the transformer winding becoming lower than five or so times the source or load impedance. Small cores of high permeability material produce transformers with the greatest bandwidth.

The largest core I can find data on is a T200 size. Each turn is 1.85 inches on that core and could be longer on a larger toroid. Total length on WB2NTQ's high impedance winding is then about 135 inches (ignoring wire size and winding looseness). This is a quarter wave at 21.86 MHz , neglecting dielectric effects. Thus the capacitive reactive term is in parallel with the resistive component on the input side.

There are just too many turns on the transformer. The low permeability of the powdered iron core makes the design all the more difficult. I'd first cut the secondary length down to about $1 / 8$-wavelength at the maximum desired frequency. That would

ham
GififRadios int Eatal fine gift suggestions for everyone interested in Amateur Radio. Gift subscriptions, license study guides, state-of-the-art publications-all sure
to please! Gifts that will be used and enjoyed all year long.

THE UHF COMPENDIUM

by K. Weiner, DJ9HO

This 413 page book is an absolute must for every VHF and UHF enthusiast. Special emphasis has been placed on state-of the-art techniques Author Weiner fully describes test equipment, alignment tools, power measuring equipment and other handy gadgets. All of the projects and designs have been tested and proven and are not engineer's pipe dreams. Antennas are also fully covered with a number of easy-to-build designs as well as large mega-element arrays. (c) 1980.

$\square \mathrm{KW}-\mathrm{UHF}$

Softbound $\$ 23.95$

RF CIRCUIT DESIGN

by Chris Bowick, WB4UHY

This book has been written for those who desire a practical approach to the design of if amplifiers, impedance measuring devices and filters. Experts will find this book to be an invaluable reference source. Students will gain a way to bridge from classroom studies to practical application. The hobbyist will find plenty of practical projects and design deas. 7 chapters cover from basics to advanced deseign concepts. You get a complete design run down for multipie pole Butterworth, Chebyshev and Bessel filters. RF Circuit Design also includes a bibliography of books and technical papers to help further your knowledge of circuit design. (C) 1983, 176 pages, 1st edition.

$\square 21868$

Softbound $\mathbf{\$ 2 2 . 9 5}$

THE FCC RULE BOOK

A Guide to the FCC Regulations
 by Rick Paim, K1CE

This book is more than the FCC part 97 Amateur Rules and Regulations. It presents detailed explanations of rules and is written in an easy-to-read, conversational style. Author Palm gives you the insider's view of how FCC rules are made and how you can influence FCC decisions. You also get a broad overview of how international treaties and agreements impact your hobby. Every U.S. Amateur should have a copy of this most important and up-to-date book in their shack. (c) 1983. 1st edition.
\square AR-RB
Softbound $\$ 3.00$

RADIO ELECTRONICS BUYERS GUIDE

Have you ever found yourself stymied because you couldn't find a particular electronic part? If you had a copy of this handy buyer's guide in your library, you wouldn't have a problem at all. For ease of use, components are listed alphabetically by generic name with suppliers name. If applicable, part numbers are also included tor ease of identification. From Actuators to Zener diodes, you'll find this 95 page directory jampacked with important information. Suppliers are listed alphabetically with addresses and telephone numbers. If you do any building you've gol to have a copy of this book. (c) 1983, 4th edition, 125 pages \square HW-BG

Softbound \$5.95

HEIL HAM RADIO HANDBOOK

by Bob Heil, KgEID

Bob Heil is one of Ham Radio's most dynamic fellows. Dayton's Ham of the Year for 1982 and author of the best selling " 10 Meter FM Hand book, he has now come out with a handy handbook for all levels of Amateur Radio interest. 20 chapters cover every aspect of Ham Radio from Day \#1 as a new Novice through operating procedures to some basics on how to repair and troubleshoot equipment. Great pains were taken to ensure that 99% of the "most-otten-asked" questions are tully and clearly answered. Of particular interest are five chapters dedicated to the art of how to Homebrew. Tools, techniques, p.c. boards and much more. A great gift for a new ham. © 1983,168 pages. \square MP-HH

Softbound $\$ 9.95$

CONFIDENTIAL FREQUENCY LIST 5th Edition

by Oliver P. Ferrell

Enjoy tuning across the bands looking for who-knows-what? This book is jam-packed with frequencies and callsigns. Hundreds of stations are tisted first by frequency and then by callsign. You also get helpful hints and tips. Author Ferrell is known worldwide as one of the most knowledgeable folks around when it comes to SWLing. (c) 1983, 5th edition, 249 pages.
\square GL-CF
Softbound \$10.95

RADIO HANDBOOK 22ND EDITION

by Bill Orr, W6SAl
A best seller for over 45 years! The 22nd edition reflects state-of-the-art techniques in a comprehensive, single source reference book. Invaluable for Hams, technicians, and engineers alike. Chock-full of projects and other ideas that are of interest to all levels of electronics expertise. 1136 pages. © 1981. 22nd edition.
$\square 21874$ Hardbound Reg. $\$ 39.95$ SAVE $\$ 7$

NOW \$32.95

AMATEUR RADIO THEORY AND PRACTICE

by Robert Shrader, W6BNB

In response to requests from the Amateur commu nity, Mr. Shrader has extracted from his best sell er, Electronic Communication, just those parts necessary to pass all five classes of Amateur License. You save $1 / 3$ off the price of the larger book, too! A complete step-by-step guide to Amateur Radio including self-check quizzes and a final FCC-like exam tor each license class. © 1982 340 pages. Taken from 4th edition of Electronic Communication
\square MH-57146
Softbound \$22.95

GUIDE TO RTTY FREQUENCIES by Oliver P. Ferrell

Fully revised to reflect latest information available. Contains most shortwave military, commercial. press, aeronautical, embassy and weather broad casting RTTY stations. You also get shift, speed, power, schedules, formats, special ID's plus much more. Author Ferrell gives you the benefit of his years of experience in helpful hints and tips. He also tells you the secrets behind current trends in encoding signals and what it means to you the listener. © 1983.190 pages, 2nd edition
$\square G L-R F$
Softbound $\$ 9.95$

BRAND NEW

OFFICIAL ARRL CALL DIRECTORY 1983-84
Brand new, chockfull of all the latest callsigns and addresses from the FCC files and compiled by Buckmaster Publishing. 1090 pages of addresses are listed alphabetically by calisign for easy reference and location. Printed on easy-toread stock. This is a book you should have in your ham shack. (©) 1983, 1090 pages.
\square AR-CD
Softbound \$18.75
($\$ 15.75+\$ 3.00$ shipping $)$

RESERVE YOUR

 COPY NOW!
1984 U.S. RADIO AMATEUR CALLBOOK

This is the latest edition of the grand daddy of all the others. The Callbook is the only directory with an in-house editorial department that checks the FCC info as it comes in to ensure accuracy. U.S. and foreign hams swear this is the most important reference book in their files. Order your copy today. Ensure you have the very latest QSL information available at your fingertips. Over 410,000 listings. Also contains helpful and hard-to-find operating and station aids. (c) 1983 .
\square CB-US84
Softbound \$23.00
($\$ 19.95+\$ 3.05$ shipping)

1984 FOREIGN RADIO AMATEUR CALLBOOK

The only foreign callbook available! DXCC is the goal of many hams. To others, casual rag chews with foreign hams are the real joy of Amateur Radio. Whatever your interest, if you want a OSL, you should have a copy of the latest Foreign Cailbook in your shack. Fully up-dated with the latest book in your shack. Fully up-dated with the latest
lists direct from the overseas licensing authorities. (c) 1983.
\square CB-F84 Softbound $\$ 22.00$
BUY BOTH CALLBOOKS SAVE OVER $\$ 5.00$
\square CB-USF $\quad \$ 39.95$ Includes shipping U.S.A
Radio Amateur Callbooks will be ready for shipping the week of 12/1/83.

1984 ARRL RADIO AMATEUR'S HANDBOOK

Known worldwide as THE standard reterence for Radio Amateurs. Reserve your copy today and we will ship immediately as soon as it becomes available. Great for gift giving or tor yourself. This book is jam-packed with just about every possible fact and figure you will ever need. Also has plenty of up-to-date projects. (c) 1983.
\square AR-HB
\square AR-BB
Sottbound \$12.00
(available late November)
-AR-BB
Hardbound $\$ 15.75$
(available early January 1984)

NOVICE CLASS RADIO AMATEUR FCC TEST

This is the very first book written that is geared to the new FCC Novice exam program. Clear and concise answers are provided for each of the FCC sample questions. Answers are written assuming no technical background in Ameco's easy-to-understand style. This new book is cross-referenced derstand style. This new book is cross-referenced
to Ameco's Novice Theory Course, \#23-01 and Amateur Theory Course, \#102-01 for detailed explanations beyond the scope of a O\&A book. Every instructor and student should have this book. Why not a copy from Ameco, long known for their excellent study material. © 1983,64 pages, 1 st edition.
$\square 27-01$
Softbound $\$ 2.25$

NOVICE CLASS RADIO AMATEUR EXAM

Contains a sealed temper-proof envelope with 20 multiple choice questions selected by computer from a pool of hundreds of professionally written questions. At least 20 different exams will be available. You also get the exam answers in a sealed envelope, a volunteer examiner aftidavit and detailed instructions for both examiner and stu dent. This exam package ensures that administration of the Novice exam is uniform, professional and simple. (c) 1983, 1st edition.
$\square E N-1$
$\$ 1.25$
be about 49 inches and would wind twenty-six turns. I would wind these as thirteen turns bifilar connected series aiding. The center tap would be the ground side of the 50 ohm connection. This would be a simple 75 to 300 ohm transformer. To get 50 ohms I would tap one side of the bifilar winding at 10 or 11 turns out from the center tap. Ten turns would give a turns ratio of 10 to 26 or an impedance ratio of 50 to 338 ohms. Tapping at 11 turns would give a ratio of 50 to 279 ohms.

The low frequency end of this transformer would be at the frequency where the inductance of the 11 -turn section has an inductive reactance of $5 \times 50=250$ ohms. On a T200-2 this winding inductance is about 1.3 microhenries. To the limit of the accuracy with which I can read my Shure reactance rule, this happens at 30 MHz !

A larger core would give more inductance per turn but at the same time would have more wire in a turn. High impedance, large size and low permeability together prevent this core from performing adequately. The powdered iron toroid just is not appropriate for such a high impedance winding, but might function if constructed within these limits for a single band.
A better core for this application might be either an F-240 or F-114 in Q 1 (mix 61) or Q 2 (mix 62) ferrite. The smaller core in Q1 would require five turns on the 50 ohm section and twelve turns total on the 300 ohm winding for a minimum operating frequency of 14 MHz . I would wind this as six bifilar turns connected series aiding with the primary tap at five turns. The windings should be spread uniformly around the whole core. The impedance ratio would be 50 to 288 ohms. On this core a winding would have a length of about one inch per turn. Twelve secondary turns would be about 12 inches long and should work well beyond 50 MHz .

To achieve wide bandwidth it is necessary to use a high permeability core material to extend to low fre-
quency end of the pass band with a minimum winding conductor length. At the high frequency limit the core is practically uncoupled from the winding and only the core's dielectric constant is significant. The dielectric constant for ferrite can be high, so isolating the winding from the core can help extend the high frequency end as long as the winding conductor length does not grow too much at the same time. Thick wire insulation reduces the inductive coupling between adjacent bifilar turns at the high frequency end of the pass band. A better winding would be made of enameled wires twisted together for the bifilar winding and then covered with a heavy walled Teflon ${ }^{T M}$ insulating tubing. - Gerald A. Johnson, K0CO

standing-wave indicator

I have just bought a standing-wave indicator, type B812A, manufactured by FXR, Inc., of Woodside, New York. The unit is not functioning at present and I wonder whether anyone might have a circuit diagram or other information which would help me get the unit working.
After reading the interesting article on this type of unit by Bob Stein, W6NBI, in the January, 1977, issue of ham radio, I feel the device would be a very useful addition to my workshop. - Arthur Williams. GW8FKB

ANNUAL LAS VEGAS PRESTIGE CONVENTION

 SAROC

HACIENDA RESORT HOTEL

 Las Vegas, NevadaJANUARY 12-13-14-15, 1984

Cocktail Party hosted by ham radio MAGA. ZINE Friday evening for all SAROCI exhibitors and GAROCI Advance or Regular paid registered guests. Ladies' Program on Saturday included with GAROC Advance or Regular paid registration at no additional charge for ladies who register. Two HACIENDA RESORT HOTEL Breakfasts or Brunches in the Sunburst room are included with each Advance or Regular paid registration; one on Saturday and one on Sunday. Technical sessions, EXHIBITS, and SWAP TABLES open on Friday and Saturday to all GAROCI paid registered guests. One SWAP TABLE available free to [EAROCM non-commercial guests holding Advance or Regular paid registration. Main award drawing Saturday afternoon. You must be present to win and ownership of award does not pass until picked up. [AROCI Advance registration is only $\$ 17.00$ per person, if postmarked before January 1, 1984. After January 1, 1984, SAROC: Regular registration is only $\$ 19.00$ per person.

SAROCI fee of $\$ 2.00$ per person for those who want to attend only CAROCl technical sessions, visit EXHIBIT and SWAP TABLE area. No admission to any function without a GAROCl paid registration and wearing the GAROCI registration badge in plain view. EAROC coupon book and cellophane badge holder may be picked up at [SAROC] registration desk. Send check or money order to [AROCI P.O. Box 945, Boulder City, NV 89005-0945. Refunds will be made after SGROCD is over to those requesting same in writing and postmarked before January 12, 1984. Special [AROCI HACIENDA RESORT HOTEL room rate is $\$ 35.00$ (plus .50 for telephone and room tax), per night, single or double occupancy. HACIENDA RESORT HOTEL accommodations request via mail to HACIENDA RESORT HOTEL, P.O. Box 15566, Las Vegas, NV 89114 or call toll free $1(800) 634-6713$. Either way they request a FIRST NIGHT'S DEPOSIT TO BE ASSURED A RESERVATION. GAROCM 1985 scheduled Jan. 10-13.

Enclosed is \$ check or money order (no cash) for SAROC] Advance Registration(s) @ \$17.00 each: after Jan. 1, 1984 SAKOC Regular Registration is $\$ 19.00$ each. Extra drawing tickets for main drawing are $\$ 1.00$ ea., limit 5 with each SAROC Advance Registration, I want

FREE CRYSTAL FILTE
and 30-DAY MONEY-BACK GUARANTEE
Just buy your Ten-Tec Corsair between Sept. 15, 1983 and Jan. 15, 1984.
See your dealer for details.
ALABAMA
ACK Radio Supply. Birmingham
CALIFORNIA
Ham Radio Outlet. Anaheim
Ham Radio Outlet. Burlingame
Ham Radio Outlet, Oakland
Ham Radio Outlet, San Diego
Ham Radio Outlet. Van Nuys
Ham Radio Outlet, Van Nuys DELAWARE
Delaware Amateur Supply. New Castle
Amateur \& Advanced
Comm.. Wilmington FLORIDA
Amateur Electronic Supply. Clearwater
Mike's Electronic Dist. Co.,
Ft. Lauderdale
Amateur Electronic Supply. Orlando
GEORGIA
ACK Radio Supply. Atlanta
Doc's Communications. Rossville
Britt's 2-Way Radio, Smyrna IDAHO
RJM Electronics. Boise Ross Distributing Company. Presion
ILLINOIS
Erickson Communications. Chicago
INDIANA
Lakeland Electronic Supply. Angola
The Ham Shack, Evansville Electrocom Industries. South Bend
MARYLAND
The Comm Center, Laurel MICHIGAN
Purchase Radio Supply. Ann Arbor
Omar Electronics. Durand
Michigan Radio. Mt. Clemens MISSOURI
Ham Radio Center, Inc.. St. Louis
NEVADA
Amateur Electronic Supply. Las Vegas
NORTH CAROLINA
F \& M Electronics.
Greensboro OHIO
R \& L Electronics, Hamilton Ken-Mar Industries. North Canton
Amateur Electronic Supply. Wickliffe
OKLAHOMA
Radio Incorporated. Tulsa PENNSYLVANIA
Westech Electronics Co., Pittsburgh
Supina Electronics.
State College
TEXAS
Madison Electronic Supply. Inc.. Houston
Texas Towers, Plano VIRGINIA
EGE, Inc.. Woodbridge WISCONSIN
Amateur Electronic Supply. Milwaukee
CANADA
R \& S Electronics Ltd., Dartmouth. Nova Scotia
impressive in figl Excelle
physically
nt Re and rech

Read what owners about TEN-TEC Corsair:

Completing my 53rd year as an active Ham-DXer, Contester Rag Chewer etc. - the Corsair is an excellent transceiver and performs superbly for me on both CW and SSB W1BIH (P42J)
A fine piece of equipment-thanks for building it in America KV8Q
Radio is impressive in all ways. KA8RQK
Wonderful Rig! WB2RBA
Excellent Results!
VEICCK
Finally! A rig made for the RTTY
operator-Excellent gentlemen,
absolutely excellent!
N4EIV
Beautiful (physically and technically)
W4SFT
Thank you for an American radio \& the 1 year warranty. KA3KMK
Consistently get good audio reports on SSB.

N8BAR
The Folks at Ten Tec are reason enough to purchase their products. K4CJX
Corsair is everything I hoped for in a transceiver.

W8DRW
Extremely Ham oriented radio made for high performance and operating excellence.

KB4IL
Excellent equipment.
W2LOG
Outstanding Radio!
W9GIN
Engineering is Superb!!
W2ZSX
First QSO Report- " 5×9 Plus With
Beautiful Audio."
K5SP
A fine instrument.

I am "convinced!"
K5PXM
You have proved that Americans can still make the Best.

K8WYH
Nice, neat, not crowded. Receive section best I have used. Great on RTTY.

W0YFR
Superb receiver.
W9DWT
A perfect performer and a pleasure to operate.

W3LKA
I like the Ten-Tec quality and service.
W4DDK
Well-Built-EZ to Operate. VE3NZQ
It is a great pleasure to deal with a company which gives their customers some real attention and service. W4BW And our thanks to all the others whose comments we didn't have room to print.
CORSAIR features include: - All solid state, broadband design • All 9 hf bands

- Triple conversion receiver with $0.25 \mu \mathrm{~V}$ sensitivity on all bands and better than 90 dB dynamic range \bullet Variable bandwidth plus Passband tuning • Dual range, Triple mode, Offset tuning • Variable Notch filter • Built-in Speech Processor • Built-in Noise Blanker • 200 W input, 100% duty cycle • Dual-speed QSK (full or semi).
See Corsair at your TEN-TEC dealer, or write for full details.
TEN-TEC, Inc., Sevierville, TN 37862

Orake Essi24 soliil stale salellile Ty receiver

DRAKE ESR24 satellite TV receiver
The ESR24 is a full performance receiver designed with the private earth station owner in mind. It uses the latest concepts in solid state techniques for cable head-in quality. You get clear, noise-free video with drift-free reception, thanks to its PLL descriminator and high gain AFC circuitry. A downconverter is included for remote installation near the antenna and features "imageless mixer" design for purity of signal. Receiver features digital tuning with LED readout and fine tuning control, AFC and video invert switch. Separate tuning meters for signal strength and center tune. Transponder scan for finding the different satellites. Variable audio tuning from 5 to 8.5 MHz . Optional RF modulator available.

List Price $\mathbf{7 4 5 . 0 0}$ Item No. DRAESR24
Add 3.35 shipping \& handling

RF modulator
Mounts inside the ESR24 receiver. Crystal controlled for drift-free performance. Selectable outputs for channel 3 or 4. Power supplied from receiver.

SPH-24 splash-proof housing
Necessary when mounting the ESR24 downconverter outdoors. Protects your downconverter from the elements.
L List Price 30.00
27.00 tem No. DRASPH24 Add 1.59 shipping \& handiling

TM-24 remote tuning meter
Eliminates the need for a TV monitor while adjusting your antenna's position. Cable from meter connects to terminal on rear of ESR24 satellite receiver. Large, easy to read meter. Makes one-man adjustments possible.
38.95 若

Complete 10 ft . satellite TV system featuring Drake
 ESR-24 receiver with digital LED's
 10 FT. PARABOLIC

ESR 24

List Price 2795.00
Item No. SAT4492
Shipped Motor Freight Collect

What the system will do:

Brings you up to 60 channels of satellite television via your home receiver. Movies, sporting events, news, religious programs, other TV stations and much more.

What the system includes:

1. A 10 ft . dish antenna made of reflective metal bonded with fiberglass. Weather-resistant and virtually maintenance-free. Comes in 4 sections for compact shipment. Our model 43 or 48 antenna.
2. Polar mount complete with azimuth and eleva: tion adjustments for accurate satellite-to-satellite tracking. Special linkage allows antenna to travel from horizon to horizon. Available with slab or earth mounts.
3. Tripod LNA mount complete with rotor and control console. Tubing for mount legs not included.
4. Drake ESR-24 satellite receiver with downconverter. Outdoor mounted downconverter linked to receiver via coax cable. Receiver features LED transponder indicator, pushbuttons for up/down channel selection, scan tuning and variable audio tuning from 5-8.5 MHz . Separate meters for signal strength and center tuning. Optional RF modulator available. 5. Amplica low noise amplifier. Rated at $120^{\circ} \mathrm{K}$. uncooled. Uses GaAs FET transistors for maximum performance. Powered through the coax feed line. Weatherproof, cast aluminum housing. 6. Scalor feed horn. Delivers 0.5 dB more gain than conventional types. Virtually eliminates system noise.
Note: A VCR's RF modulator will work with this system, otherwise one will be needed (approximate cost $\$ 59$. Connecting cables between receiver and antenna not included.

Call
 Toll Free
 1-800.633.

1984 HANDBOOK

Another super edition of the standard manual of if communication! Each year, The Handbook is revised to reflect changes in the state-of-the-art and this 61st edition is no exception. The chapter on Specialized Communications Systems has been completely revised with new material on Packet Radio, AMTOR, Spread Spectrum, etc. The Interference chapter has been reorganized and updated and you will find a new and better index. There are new tables for low and high pass filters, updated section on amplifier operation, a new kilowatt amplifier for 160, 80, and 40 meters, a 4-1000 amplifier for 6 meters and a refined version of the Deluxe Audio Filter. In 640 pages and 23 chapters, The Handbook presents everything from electrical laws and circuits to sophisticated communications techniques including packet radio and spread spectrum. Order your copy today! Paper edition: $\$ 12$ in the U.S., $\$ 13$ in Canada, and $\$ 14.50$ elsewhere. Cloth edition: $\$ 17.75$ in the U.S. and $\$ 20$ elsewhere. Payment must be in U.S. funds.

ANTENNA BOOK
 14th EDITION

Here is the most comprehensive and up-to-date antenna book available. It's chock-full of theory and practical information and includes proven designs for: Yagis, quads, wires, verticals or the more specialized designs: Beverage, curtain arrays and fish-bone antennas. It also has a chapter that covers UHF and VHF antenna design. You'll find antennas for any kind of real estate from the apartment dweller to the true antenna farm. The Antenna Book covers in complete, easy-to-understand language, antenna and transmission line theory and includes the most complete explanation available of the SMITH CHART*. Finally there is a thorough discussion of the phenomena of radio wave propagation. 328 pages 14th edition. Softbound Price $\$ 8.00$ in the US. Elsewhere $\$ 8.50$. Clothbound $\$ 12.50$, US; $\$ 13.50$ elsewhere. (US FUNDS). Available from your local dealer or direct from ARRL.

Please include $\$ 1.00$ per title for shipping and handling.

> THE AMERICAN RADIO RELAY LEAGUE, INC. 225 MAIN STREET NEWINGTON, CT 06111

improved stability and dial calibration for the Heathkit HW-8

The HW-8 transceiver exhibits approximately 1500 Hz drift in transmit and receive frequency when the supply voltage varies over a range of 10 to 13.5 VDC. This results in CW chirp when using a poorly regulated supply, such as a weak, dry battery. Additionally, even with a well-regulated supply, the VFO dial calibration is in error on all but the 7 MHz band.

Most of the drift and chirp problem is caused by the Heterodyne Oscillator (Q6). The reverse-biased switching diodes in the tuned circuits of all but the selected band exhibit a capacitance which varies with supply voltage. This capacitance, essentially in parallel with the selected crystal, causes pulling of the oscillator frequency. The solution is to regulate the supply voltage to Q 6 . The small amount of shift which still remains after Q6 is stabilized is caused by the inability of the Zener diode (ZD-1) to fully stabilize the voltage for the Variable Frequency Oscillator (O2). This can be corrected by replacing the Zener-diode regulator circuit with a Motorola MC7808CP three-terminal regulator integrated circuit.

The VFO dial calibration problem is a matter of fine tuning the VFO and HFO in accordance with the procedure described here. The Heathkit procedure does not calibrate the frequency of the HFO; it also does not switch in the offset capacitor (C55) during VFO calibration so that the dial will read transmit frequency.

modification procedure

Remove the following resistors: R78, R81, R82, R84, R85, R87, R88, and R91 (see fig. 1).

Install 7.5 -volt, 1-watt (SK-3059) or equivalent, Zener diodes (anode lead to ground) in the positions formerly occupied by R81, R84, R87, and R91 (100k resistors).
Install 470 ohm, 1/4-watt resistors in the positions formerly occupied by R78, R82, R85 and R88 (1 k resistors).
Install a $0.01 \mu \mathrm{~F}, 25 \mathrm{VDC}$ ceramic capacitor on the foil side of the main PC board. Solder one lead to the junction of R36 and the yellow wire which attaches to point B. Solder the other lead of the capacitor to a nearby ground foil.

Remove ZD-1 and R33 (470 ohm). Drill a $1 / 32$ inch hole midway between the two holes from which R33 was removed. Install the MC7808CP voltage regulator as follows:

Input B lead to R33 hole which ties to 13.4 -volt line; insert common C lead through the drilled hole and output E lead to R33 hole which ties to C52 and R3 (47 ohm).

fig. 1. Component drawing indicates modifications to be made.

fig. 2. 2-turn pick up loop is used for fine alignment.

25 WATTS...IN THE PALM OF YOUR HAND!

MASTER CARD OR VISA
Signature \qquad
Send me \qquad PA25 unitsat\$94.50ea + taxif applicable
To/Name \qquad Phone
Address
City,State, Zip
(Ohio residents add $51 / 2 \%$ sales tax or $5.20 /$ unit)

ham industries, inc.

835 E. Highland Road • Macedonia, Ohio 44056 (216) 467-4256 • TWX 810-427-9217

ALL BAND TRAP ANTENXAS:

Custom Mailing Lists on Labels! Amateur Radio Operator NAMES Custom lists compiled to your specifications

- Geographic by ZIP and/or State
- By License Issue or Expiration Date
- On Labels of Your Choice

Total List: 435,000 Price: $\mathbf{\$ 2 5} /$ Thousand
Buckmaster Publishing
Whitehall, Mineral VA 23117

FREE CATALOG
HARD-TO-FIND PRECISION TOOLS
Lists more than 2000 items: pliers, tweezers. wire strippers, vacuum systems, relay tools, optical equipment, tool kits and cases. Send for your free copy today!

JENSEN TOOLS INC. 7815546 Th STREET Phoenix AZ B5O40

Solder and clip the excess from the B and E leads. Slip a piece of insulation over the C lead and solder the lead to a nearby ground foil. Be sure that it does not short to other foil leads.

fine alignment procedure

Make a pick-up loop as shown in fig. 2 and place it around L19/21. Connect the opposite end to the antenna terminals of a calibrated receiver capable of tuning 12 to 30 MHz .*

Press the 3.5 MHz bandswitch.
Tune the calibrated receiver to 12.395 MHz .

Adjust L17 (bottom slug) for zerobeat.
Press the 7.0 MHz bandswitch.
Tune the calibrated receiver to 15.895 MHz .

Adjust L18 (top slug) for zero-beat. Press the 14.0 MHz bandswitch.
Tune the calibrated receiver to 22.895 MHz .

Adjust L19 (bottom slug) for zerobeat.
Press the 21.0 MHz bandswitch.
Tune the calibrated receiver to 29.895 MHz .

Adjust L21 (top slug) for zero-beat.
Temporarily attach a 10 -inch piece of wire to the end of R29 (22k) which connects to point WW. Connect the other end of the wire to one of the ON/OFF switch terminals. This will cause the antenna relay to close and the receiver to mute.
Realign the VFO as described in the Heathkit instruction manual, page 62.

Remove the temporary wire and reinstall the cabinet cover. This completes the modification and alignment.

Robert W. Lewis, W3HVK

- If a calibrated receiver for this frequency range is not available, a frequency counter can be used. The output of the heterodyne oscillator can be picked off at the emitter of Q7, preferably through a 0.001 to 0.01 $\mu \mathrm{F}$ coupling capacitor. The pick-up loop described for use with a receiver likely will not provide enough signal to drive a frequency counter. - Editor

A뿌여요 product

 REVIEW

 REVIEW}
Soar model 5025 digital multimeter

A number of different multimeters have crossed my desk in recent months and I must admit it has been fascinating to see and use the latest stafte-of-the-art equipment. The newest unit on my desk for review, however, is quite different from the others.

The Soar Model 5025 is not just a nuts-andbolts measuring device. It incorporates a unique comparator circuit that can be used in a number of different ways.

One of the greatest advantages of the "new breed" of multimeters is extensive use of specially designed chips. The Soar 5025 has a unique 80 pin LSI chip that keeps overall parts count down while ensuring long term stability and accuracy. Only by examining the schematic can one fully appreciate how LSI has changed the complexion of equipment design and utilization.

general specifications

The 5025 has an easy-to-read, low current consumption, LCD readout with a maximum reading of 1999. The readout also has annunciators to audibly alert for function, unit polarity, decimal, low battery, continuity and diode test. The unit is mounted in a rugged ABS plastic case with a U-bracket handle/tilt stand and is fully shielded from RFI/EMI. The probes are designed for safety to reduce the chance of an accidental shock when being used. One of the "neatest" innovations of this new breed of multimeters is the automatic ranging feature. When doing a number of different voltage or resistance readings, this feature is quite a time saver.

Battery life is estimated at >300 hours with alkaline batteries and >200 hours with regular zinc carbon batteries. Four size "C" batteries or a portable AC adapter may be used. The model 5025 also incorporates a built-in overload protection for all ranges with surge protection up to 6000 volts.

comparator circuit

Besides standard ohms, volts, and current measurements, the Soar Model 5025 also has a built-in comparator circuit. The comparator can be used on all measurement ranges and was designed with production and QC testing in mind.

To use the comparator circuit, you select the designed high and low figure on the thumb-
wheel switches above the LCD readout, punch in the proper range to be tested, and press the "compare" switch. The 5025 will then measure the parameter in question. If the value being measured is within the limit set, the beeper will sound and the value will appear in the LCD readout. If the value is either above or below the preset limits, the beeper will not sound.

use

I had occasion to use the Soar 5025 while troubleshooting a broken radio. I found the U-bracket to be invaluable in getting the multimeter into a position that was easy to see. I also found the $1 / 2$ inch LCD readouts to be a nice feature. I also used it outside to make a number of continuity checks on a vertical antenna ground system. The LCD readouts are easy to read in the sun and the handy beeper assured that there was circuit continuity without the need of looking at the unit.
Specifications

Size: \begin{tabular}{c}
$7.25^{\prime \prime} \times 2.25^{\prime \prime} \times 7.125^{\prime \prime}(186 \times$

$57 \times 180 \mathrm{~mm})$

Weight: \quad| 1.9 pounds $(850 \mathrm{~g})$ less |
| :--- |
| batteries |

Cp. Temp $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$

Accuracy guaranteed for 1 year

DCV $\pm .25 \%$

ACV $\pm .5 \%$

Resistors $200-200 \mathrm{kilohms}$

$\pm .25$

$2000 \mathrm{~K} \pm 1 \%$

$20 \mathrm{M} \pm 2 \%$
\end{tabular}

200μ to 200 mA
DCA $10 \mathrm{~A} \pm 1.0 \%$

ACA $200 \mu-20 \mathrm{~mA} \pm 1 \%$
$200 \mathrm{~mA}-10 \mathrm{~A} \pm 1.2 \%$

For more information contact NA Soar, 1126 Cornell Avenue, Cherry Hill, New Jersey 08002. RS\#313

N 1 ACH

ICOM transceiver

ICOM's new IC-471A is a 20 MHz coverage base station transceiver for $430-450 \mathrm{MHz}$. It

RF TRANSISTORS

FRESH STOCK - NOT SURPLUS

Homedrew

Amphenol connectors
B\&W coils, switches, antennas
Hammond and LMB enclosures
Jackson diais and drives
J.W. Miller parts lambic paddies
Wire and cable
Knobs and shaft couplers
Millen components
Multronics roller inductors
Padders and trimmer capacitors
Resistors, capacitors, inductors
Toroids, cores, beads, baluns
Transmitting/Receiving Capacitors
Air Variables: Cardwell - E.F. Johnson
Hammarlund - Millen
Doorknob: Centralab - Jennings

PROJECT PACKS

Direct trom England, Featured in Radio \& Electronic Worid GaAs FET 2 Meter Mast Head Pre-Amplitier 123.50
2 Meter Pre-Amplifier 6.50
2 Meter Converter 37.50
UHF $(70 \mathrm{~cm})$ Pre-Amplitier 9.50
UHF (70 cm) Converter 38.50
UHF (70 cm) to VHF (TV) Converter 60.50
23 cm Converter 43.50
Air Band Receiver 162.00
FET Dip Oscillator 52.50

OTHER KITS

CPP1 Code Practice Processor/Electronic Keyer 47.00 General Coverage for Drake R4C. B, A Receivers
Split Band Speech Processor 69.95
Smart Squelch 49.95
R-X Noise Bridge 33.45
L. Meter 25.50

40 Meter QRP Transceiver 101.95

- Shippitig \& Handing \$2.50*

1983 Catalog 50 cents
RADIO
Box 411H, Greenville, NH 03048 (603) 878-1033

THE AFFORDABLE REPEATER
FROM THE MANUFACTURER OF COMMERCIAL \& MILITARY EQUIPMENT MADE IN USA AT OUR MIAMI, FLORIDA PLANT

OPTIONS

- Helical Filter Installed \$65.00.
- 8 Pole Filter Installed \$20.00
- Cooling Fan Installed \$30.00.
- Duplexer
- Deluxe Cabinets
- Timer
- Tone Panel

OTHER PRODUCTS

- Simplex and Full Duplex
- VHF/UHF Mobiles and Bases
- Rural Radio Telephone
- Auto Patch
- HF SSB Transceiver
- Catalogues available upon request
DEALER INQUIRIES INVITED
ITS International Telecommunications Systems Florida Inc.

```
8416 N.W. 61 ST. / MIAMI, FLORIDA 33166
TEL: (305) 593-0214/TELEX: 525834
```


CABLE TV
 CONVERTERS VIDEO ACCESSORIES

BUY DIRECT \& SAVE

40 CHANNEL

 CONVERTER \$38 Regular \$69Advanced Solid State design and circuitry allows you to receive mid \& super band channels. Restores programming to Video Recorders.

36 CHANNEL REMOTE CONTROL CABLE CONVERTER $\$ 88.00$
DIAMOND D. 56 WIRELESS THE ULTIMATE CABLE T.V. CONVERTER

56 CHANNEL
INFRARED
REMOTE CONTROL $\$ 139.00$

Send \$1 for Complete Catalog VISA - MASTERCARD • COD

> DIRECT V/DEO SALES P.O. BOX 1329

> JEFFERSONVILLE, INDIANA 47130 CALL
> 1.800-626-5533

features 10 watt output, 32 full function memories, and built-in sub-audible tone selectable from the main tuning dial

ICOM system accessories work with the IC471A. This unit features ICOM's new two-color display, showing frequency digits in white and control functions in red, for easy visibility under all lighting conditions. With the IC-471A, it is possible to scan all frequencies, memories, or modes

For information, contact ICOM America, Inc., 2112-116th Ave., NE, Bellevue, Washington 98004. RS\#311

RTTY/CW interface

The ROM-116 is now distributed and sold exclusively by the Flesher Corporation. The ROM-116 interfaces the Radio Shack TRS-80* models I, III, and IV, and comes with features that include two serial ports, fourteen buffers, split-screen (formatted or unformatted) vertically displayed status, automatic CW/ID, PTT control, Sel-Cal, error correction, text editor, quick break with word mode, word wrapping, preload, two independent callsign buffers (one for user and one for station called), repeat transmission, right hand justification on transmit from the main buffer, time and date with automatic update, and adjustable line length. It also will support a computer printer for hard copy, receive and send RTTY at all standard Baudot and ASCII rates up to 1200 baud; it is TTL compatible, will receive and transmit CW with full break-in mode, CW preload (cassette or disk versions), and cassette or disk save messages or pictures. Several software packages, such as a MAILBOX program (1.4MBO or 3.4 MBO) and LOAD HEX (for receiving/

sending disk files on RTTY), are also available. Two versions are marketed; prices will range from $\$ 225.00$ for the older units to $\$ 325.00$ for the newer units
For information, contact Flesher Corporation, at P.O. Box 976, Topeka, Kansas 66601. RS\#309
*A trademark of the Tandy Corp

power center

Ultima Electronics announces the immediate availability of a new state-of-the-art electronic outlet power center designed for fail-safe industrial, residential, and commercial use.

Designated "Surgefree," the new unit features all solid-state electronic circuitry. Compact in size, it can be plugged into any 120 VAC outlet to instantly sense and suppress destructive effects of high-voltage transient spikes and surges to sensitive electronic equipment. It is rated at 15 amps (1875 watt), 125 VAC, with a resettable circuit breaker that protects against accidental power overloads.

Model SF-200, with two sockets, sells for $\$ 69.95$; Model SF-600, with six sockets, \$89.95; Model SF-1000, with ten sockets, \$99.95.

For further information, contact Ultima Electronics Ltd., 59-7 Central Avenue, Farmingdale, New York. RS\#308

compact mobile

transceivers

Trio-Kenwood Communications has announced the addition of two new ultra-compact models to their line of mobile transceivers.
The 2-meter version, model TM-201A, incorporates microprocessor-controlled operating features in a new lightweight slim-line design. Features include 25 watts of RF output, dualdigit VFO's, five memories, priority alert scan, memory and band scans, lithium battery memory back-up (estimated 5 -year life), high-visibility yellow LED display, external speaker, and a 16 -key autopatch UP/DOWN microphone. An audible "beeper" confirms operation of selected functions. An optional FC-10 frequency

RF POWER WATTS

Your One Stop Source for RF Power Tubes and Transistors CHRISTMAS TUBE SPECIALS

MINIMUM ORDER $\$ 30.00$
Add \$3.00 for UPS charges CALL TOLL-FREE 800-645-2322
(N.Y. State 516-536-8868)

Export And Dealer Inquiries Invited Call for Types Not Listed 116 S. Long Beach Road Rockville Centre, New York 11570

TWX 510-225-7508

- Covers 100 to 185 MHz in 1 kHz steps with thumb wheel dial - Accuracy 1 part per 10 million at all trequencies • Internal FM adjustable from 0 to 100 kHz at a 1 kHz rate - Spurs and noise at least 60 dB be low carrier - RF output adjustable from 5.500 mV at 50 ohms • Operates on 12 Vdc (a) $1 / 2$ Amp • Avail able for immediate delivery • $\$ 349.95$ plus shipping - Add-on Accessories available to extend trea range, add infinite resolution, voice and sub-audible tones. AM. precision 120 dB calibrated attenuator - Call for details - Dealers wanted worldwide

[^6]TUBES, SEMICONDUCTORS, IC'S DIODES AT SUPER LOW PRICES IN DEPTH INVENTORY EIMAC, SYLVANIA, GE, CETRON

Full line of Sylvania ECG Replacement Semiconductors Always in Stock. All Major Manufacturers Factory Boxed, Hard To Get Receiving Tubes At Discount Prices.
Minimum Order $\$ 25.00$. Allow $\$ 3.00$ For UPS Charges. Out of Town, Please Call Toll Free: 800-221-5802 and Ask For

1365 39th STREET, BROOKLYN. N. Y. 11218 H Tel. 212-633-2800/Wats Line 800-221-5802 TWX 710-584-2460 ALPHA NYK.

WARC for FT-101/901

Modernize any model of the original FT-101 Series by adding all three WARC bands for RX and TX!

- Use 10 MHz now; be ready for the others.
- Increase resale value of your rig.
- Easy installation, detailed instructions.
- Includes all crystals, relays, etc.
- Tested, fool-proof design for all but 'ZD. FT-101 WARC Kit \#4N

ONLY \$25.
FT- 901 WARC Kit \#4J (30M only) ONLY $\$ 10$. Shipping \$3 (Air \$5). Florida sales tax 5%. GO FOX TANGO - TO BE SURE!

Order by Mail or Telephone

$$
143
$$

For other great Yaesu modifications get the top-rated FT Newsletter. Still only \$8 per calendar year (US), \$9 Canada, \$12 Overseas.
FOX TANGO CORPORATION
Box 15944 H, W. Palm Beach, FL 33416
(305) 683.9587

PARTIAL CONTENTS:
aEsonant circuits LOADEDG- MSERTION LOSS-
COUPLING-TOROLOS
filter design

Impedance matching The L Ano me ne twors
swith Chant as a tool
mF amplifier oesign
 POWER AMPLIFIER DESIGN
 thansfonmers POWEA
TRANSiston CHRACHERSICS ANO MUCH MUCH wont
\qquad
TO ORDEA YOUR COPY SEND CHECK OR MONEY OROER FOR 12235 to CHRIS BOWICK, WD4C 200 ABRI PLACE
LILBURN, GA. 3024

RADIO DIRECTION FINDER The SuperDF

Inexpensive kit and assembled units for use with Hand-Held, Mobile, or Base Station. 100 to 260 MHz or 200 to 550 MHz with one antenna. Non-ambiguous. No overloading. Use with unmodified HT, scanner, or transceiver. No attenuator or " S " meter needed. Can DF signals below the noise. Averages out local reflections while mobile-in-motion. Used by FCC, US Army, State of California, Coast Guard Aux. Prices start at $\$ 125$. For details send SASE to; BMG Engineering, 9935 Garibaldi Ave, Temple City, Cal, 91780

products

controller allows remote control of frequency, VFO selection, memory recall, and memory channel selection. An optional TU-3 two-frequency tone encoder permits operation on repeaters having different sub-audible tones.

A 70 cm version, the TM-401A, is similar to the TM-201A in features and appearance, and is available with a maximum of 12 watts RF output.

For additional information, contact TrioKenwood Communications, 1111 West Walnut Street, Compton, California 90220.

modular dish antenna

The new modular aluminum X - 11 satellite TV antenna developed by KLM Electronics, Inc., was named one of the most innovative products for 1983 in the Design \& Engineering Exhibition of the Summer Consumer Electronics Show at Chicago's McCormick Place.

The $\mathrm{X}-11$ is the first satellite TV antenna to be selected for recognition at the Exhibition. Because of its size, it was displayed outside the exhibition hall.

The X-11 is designed to reduce dealer setup time by 60 to 70 percent and to permit easy assembly by the consumer. It handles 100 mph winds and can be shipped by United Parcel Service.

For more information, contact KLM Electronics, Inc., 16890 Church Street, Morgan Hill, California 95037. RS \#307

panel discussion

Two new photovoltaic panels, the SX-10 and SX-20, are available from ENCON. Rated at 10 watts; the SX-10 features different current/voltage selections (8 VDC at 1.05 amperes, 13.3 VDC at 0.52 amperes) the ham can wire himself. The SX-20, rated at 20 watts, offers a choice of 8.6 VDC at 2.09 amperes and 17.3 VDC at 1.05 amperes.

The SX-10 and SX-20 can be used for mobile QRP operations or can be permanently mounted for charging batteries. Their life expectancy is 30 years or more, and they're said to be able to withstand a wind load of over 160 MPH and golfball-size hailstones. They're both waterand moisture-proof.

For complete information, contact ENCON, 27600 Schoolcraft Road, Livonia, Michigan 48150. RS\#306

precision tips

Six new precision soldering iron tips have been introduced for use with the recently introduced Ungar Series 9000 soldering iron and systems. The new tips are $1 / 16$ and 0.090 -inch spade, $1 / 32$ and $3 / 64$-inch screwdriver, $1 / 32$ inch short spade and the 0.020 conical. The list price of each tip is $\$ 3.75$. All are interchangeable with the modular Ungar System 9300 and System 9000 and 9100 variable-temperature systems.

For further information, contact Ungar, P.O. Box 6005, Compton, California 90220. RS\#305

elevation rotators

The entire Kenpro product line is again available to Amateurs in the United States. Distributed to local dealers by Spectrum West, the Kenpro line includes the KR 500 elevation rotor, said to be the only dedicated elevation rotator available to retail consumers. The line also includes the KR 2000 RC, described as the strongest azimuth rotator available, with over $10,000 \mathrm{~kg} / \mathrm{cm}$ torque and the ability to hold over 30 square feet of wind load in a tower configuration.

For more modest applications, Kenpro

MICA COMMUNICATIONS CONSOLE

Complete, Ready To Install Your Station

1' to 8' Wide
"L" \& "U" set up's are possible Casters
Optional draw-book shelf combination 1000 Optional mica's

Send for information/application package

B
Buak
Communications Systems, Inc.

5817 S.W. 21st Street
Hollywood, FL 33023
Phone (305) 989-2371

DESIGN NARROWBAND MICROWAVE AMPLIFIERS WITH YOUR PERSONAL COMPUTER

\section*{| for | |
| :---: | :---: |
| 4 | 0 |}

* Maximum Gain Designs

Minimum Noise Designs

- Gain and Noise Compromise Designs Gain and Stability Analysis
- 50 Ohm Stub Circuits
* Quarter Wave Transformer Circuits Microsoft BASIC

Manval with listing 516.95 pod. Check or money order drawn on U.S. bank ONLY

Phillip roung
1209 Sunset Road SW
Albuquerque. New Mexico 87105

\section*{VK-ZL-3D2-KH6-VK-ZL-3D2-KH6-VK-ZL-3D2-KH6-VK-ZL

HAVING LOADING PROBLEMS ?

Because of the great variation in cassetie recorders used with the Z080/61/TSIO00 (some in very poor shape) you may be having a hard time loading cassette prograrms The (2 Dubber) connects beTween the cassetle recorder and the computer and ds circuitry pro
duces a much betler signai for the compuler lo read The (Z.Dubber)
 $\frac{\text { padd Ada } 5250 \text { lot tuppring outude the us Canoada or Moxce }}{\text { CHIDGE OR COD ORDEPS CAII }}$ (206)236-BYTE
: $7 / \mathrm{E} / \mathrm{ST} / 2 \mathrm{E}$ PO BOX 12309 DEPPT AQ11 MICAO TFCMMOLOMY (206) 236-BYTE CALI OR WRITE FOR DENLER ENTORMLATION

products

makes the smaller KR 400 and KR 600, which measure 12 and 14 square feet, respectively. A full line of accessories is also available.

The KR 2000 RC lists for $\$ 495.95$; the KR 400, \$149.95; the KR 600, \$259.95.

For further information, contact Spectrum West, 5717 N.E. 56th Street, Seattle, Washington 98105. RS\#304

packet radio TNC

The Model PK1 TNC from GLB Electronics has a self-contained MODEM and requires only a 12 -volt power supply, a data terminal and a radio transceiver for packet operation. The data terminal can be a personal computer, a

"dumb" terminal (keyboard and display), or even a mechanical teletype machine. The terminal interface is RS-232 compatible and selfadapts to ASCII or Baudot and at data rates ranging from 45 to 9600 baud. An adaptor is available for converting mechanical teletype machines to the RS-232 interface. Standard Bell 202 tones are used, with a data rate of 1200 baud, making it compatible with both Vancouver (VADC) and Tucson systems.

Utilizing a Z80A microprocessor, the Model PK1 has 8 K of ROM and 4 K of RAM as standard equipment. RAM can be readily expanded to 14 K , using 2 K "byte-wide" memory chips and to 56 K via modification using 8 K chips. The VADC protocol is available now, and AX. 25 is to be released by the end of the year. Conversion to AX .25 is accomplished by means of exchanging ROM's at nominal cost.

The Model PK1 is a printed-circuit assembly, measuring 4.5×9.4 inches. It's priced at

$\stackrel{\text { CommAudioProcessor }}{\circ}$

- 9th order cw filter boohz wide at 750 Hz - tone-tag at binaural cross-over on cw - voice filter - supplies filter bandos at 300 TO 400 HZ AND 1500 TO 2500 HZ FOR SUPERB selectivity on voice.
- binaural synthesis that supples two output Channeis with cross oover at 750 Hz operational with all functions.
- AUDIO WHITE-NOISE GENERATOR - SEE JAN'8o HR ARTICLE OR SEND SASE FOR COPY-
- BROCHURES ON CAP ANE OTHER PYOD

Hildreth Engineering

P.O. Box 60003 Sunnyvale,CA 94088 $\checkmark 156$

NEW EGBERT II RTTY - CW for

THE APPLE COMPUTER SOFTWARE ONLY no TU REQUIRED
Many Standard and UNIQUE FEATURES (ALL ON ONE DISK)
any MARK and SPACE frequency 500 Hz to 3000 Hz
TRANSMIT OR RECEIVE
ALSO ACCEPTS TTL INPUT TO GAME I/O C.W. VERSION AVAILABLE

W.H. NAIL COMPANY

Free Tool Catalog

Thousands of hard-to-find products for building, testing, and repairing electronics. Everything is easy to order by phone or mail, ready for immediate delivery Contact East-Dept. 0227 7 Cypress Drive, Burlington, MA 01803 In a hurry to receive your catalog? Call (617) 272-5051.
 increased T/R range, RF PRODUCTS has the low cost solution.
Remove your BNC antenna from the HT and mount on the RF PRODUCTS BNC magnet mount, install the magnet mount on the roof top and connect the BNC co-ax connector.
The magnet mount (part no. 199-445) has 10 feet of small (5/32") co-ax with BNC connector attached and is priced at $\$ 15.95$ (including shipping by UPS to 48 states) TO ORDER - send \$15.95 money order or cashiers check only Fla. residents add 5\% tax, for air UPS add \$1.50

LOW COST ACCESSORY ANTENNAS

2M helical full length BNC connector

PART NO.
194.214
194.254
194.814
194.854
194.944
195.914

196-214
196-244 2 M helical stubby type BNC connector $11 / 4 \mathrm{M}$ helical full length BNC connector $\$ 7.95$
8.95 7.95 $11 / 4 M$ helical stubby type BNC connector 8.95 $3 / 4 M$ helical stubby type BNC connector $3 / 4 \mathrm{M}$ flexible $1 / 4$ wave BNC connector 2 M telescopic $1 / 4$ wave BNC connector $2 \mathrm{M}-3 / 4 \mathrm{M}$ whip $1 / 4$ wave BNC connector

RF PRODUCTS

P.O. Box 33, Rockledge, FL 32955, U.S.A. (305) 631.0775

CALL LONG DISTANCE ON YOUR HANDHELD

The Model 335A will deliver 35 watts of power using the latest state-of-the-art circuitry. The amplifier will operate SSB or FM and is compatible with most handheld transceivers, including the TR2400, TR2500, IC-2AT, Yaesu, Santec, and TenTec. Only 300 mw input will deliver 5 watts out; 3 watts in will deliver 35 watts out. Maximum input drive level

Our products are backed by prompt factory service and technical assistance. To become familiar with our other fine products in the amateur radio market, call or write for our free product and small parts catalog.

Model 335
Kit \$69.95
Wired \& Tested \$89.95 is 5 watts.

@) AlV

WARNING

Base plates, flat roof mounts, hinged bases, hinged sections, etc., are not Basend to support the weight of a single man. Accidents have occurred because individuals assume situations are safe when they are not.

Installation and dismantling of towers is dangerous and temporary guys of sufficient strength and size should be used at all times when individuals are climbing towers during all types of installations or dismantlings. Temporary guys should be used on the first 10^{\prime} or tower during erection or dismantling. Dismantling can even be more dangerous since the condition of the tower, guys, anchors, and/or roof in many cases is unknown.

The dismantling of some towers should be done with the use of a crane in order to minimize the possibility of member, guy wire, anchor, or base failures. Used towers in many cases are not as inexpensive as you may think if you are injured or killed.

Get professional, experienced help and read your Rohn catalog or other tower manufacturers' catalogs before erecting or dismantling any tower. A consultation with your local, professional tower erector would be very inexpensive insurance.

$\$ 149.95$, wired and tested, with documentation and instructions. Power required is a single +12 volt supply at $1 / 4$ amperes. Connecting cables are also available. Documentation is available for $\$ 5$, refundable on purchase.

For complete information, contact GLB Electronics, 1952 Clinton Street, Buffalo, New York 14206. RS\#310

ham clock

The BHC Big Ham Clock features two large 5/8 inch tall LCD modules, one for local time (12 or 24 hour type) and one for GMT. Each clock module can be programmed for the desired combination of month/day, hours/minutes, seconds, and set to WWV.

Each module will run from one to three years on the replaceable battery; the two modules are mounted in a black anodized desk top frame. The price is $\$ 29.95$, plus $\$ 1.50$ for shipping.

For more information, contact BHC, Inc., 1716 Woodhead, Houston, Texas 77019. RS\#303

test mount adapter

The new Larsen Electronics test mount adapter simplifies tracing problems in antenna or radio. It can be used to check the antenna feedline VSWR and the radio power output simultaneously by simply screwing the adapter onto the mount and applying a dummy load. Other uses include use as a coax extension.

For further information, contact Larsen Electronics, P.O. Box 1799, Vancouver, Washington 98668. RS\#312

GO MOBILE WITH YOUR HT.!

 Model I-Icom IC-2ATT, Etc. Model K- 1 for TR- 2500 -slides on bottom of radio
 Guaranteed!
 Model K - TR -2400

 -powered thru battery plug Model N-FT 208R Model T -Simple mod for Tempo and all Santec
 NOW FOR FT -208R \& TR- 2500
 Model Y - FT-207R, Wilson - Hits into battery compartment - A unique battery eliminator* HANDI-TEK Regulator allows constant hand-held operation from auto DC or base supply with no nicad drain and WITHOUT RADIO MODIFICA ION: $\$ 24.95$ PPD in USA. Calif. add $\$ 1.50$ Sales Tax.
 - 153
 HANDI-TEK
 P.O. BOX 2205, LA PUENTE, CA 91746

Amateur Radio operators in the 1980's ate discovering the fascinating "World of Amateur Television" Be it Fast Scan TV in between. Video communications modes are growing at an casting pace:

New advancement are raking place in High-Kesolution/Color SSTV and the use of personal computers for ATV graphics. SSTV-FAX-KTTY communications. Interest is even growing IT MICROWAVE and TVRO applications
As ATV MAGAZINETM has supported these modes of Amateur Specialized Communications since 1967 - over 17 rats! And now, under guidance of the UNITED STATES ATV Send SASE for "free" information brochures today" special six month TRIAL One year subscription (12 issues) (12 (uses) 820.00 As ATV MAGAZINE ${ }^{\text {TM }}$ POO. BOX H
LOWDEN, IOWA 52255 113

```
            l13
```

```
            l13
```


easy-to-operate
 shortwave radio

The new Bearcat DX-1000 features direct access keyboard tuning and covers the 10 kHz to 30 MHz spectrum. Ten memory channels allow storage of favorite frequencies for instant recall or for faster "band scanning" during important openings. The digital display measures ferequencies to 1 kHz and doubles as a two-time zone, 24 -hour digital quartz clock. A built-in timer can be programmed to activate peripheral equipment. Other important features inclaude independent selectivity selection, with 12,6 , and 2.7 kHz IF filters to help separate high-powered stations on adjacent frequencies, plus a two-position noise blanking system that stops Russian interference. It also features an RF attenuator, FM squelch control, tone control, battery backup system, LED indicators for modes and functions, front mounted speaker, "fast" and "slow" AGC, and separate

The price of each is $\$ \mathbf{2 4 . 7 5}$. For more information, contact Microwave Filter Co., Inc., 6743 Kinne Street, East Syracuse, New York 13057. RS \#302

"maxi" baluns

The Unadilla/Reyco/Inline W2DU-(6) and W2DU-(2) baluns handle 3.5 kW power. Model W2DU-(6) is used for $160-6$ meter applications while the W2DU-(2) handles those in the 6-1 $1 / 4$ meter range. Pull-apart tensile strength is rated at more than 600 pounds.
The baluns are adaptable to dipoles, invert-ed-vee, quads and Yagi antennas. Both are contained in weatherproof housing and have built-in lightning arresters.

products

push buttons for selecting AM, LSB, USB, CW, or FM modes. The unit comes with a built-in telescoping antenna for portable use, and includes an SO-239 antenna connector for 50 ohm leads, and a screw connector for " High Z.
The suggested retail price is $\$ 599.95$. For furtheir information, contact Electra Company, 300 East County Line Road, Cumberland, Indiana 46229. RS \#301

PRECISIOn PROCESSING

 The E-CLIPS Model III
 Provides total dynamic range control with very low distortion
 - Selectable processing modes-
 envelope compression or peak limiting
 Variable high and low frequency
 - Five segment LED display
 - Easy to install and use with any transmitter/transceliser
 Introductory price-\$189.95 ppd.
 For brochure with complete technical specifications contact ANALOG TECHNOLOGY P.O. Box 8964 - Fort Collins. CO 80525

109

FCC LOWERS REQUIREMENTS GET YOUR RADIO TELEPHONE LICENSE

FCC changes make obtaining a High-level Radio Telephone License much easier now. Eliminate unnecessary study with our shortcuts and easy to follow study material. Obtaining the General Radio Telephone License can be a snap! Sample exams, also section covering Radar Endorsement.
A small investment for a high-paying career in electronics.
$\$ 19.95$ ppd.
Satisfaction Guaranteed
SPIRO DISTRIBUTING
P.O. Box 1538

Hendersonville, N. C. 28793

Ham Radio's guide to help you find your loca.

California

C \& A ROBERTS, INC.
18511 HAWTHORN BLVD.
TORRANCE, CA 90504
213-370-7451
24 Hour: 213-834-5868
Not The Biggest, But The Best -
Since 1962.

FONTANA ELECTRONICS

8628 SIERRA AVENUE
FONTANA, CA 92335
714-822-7710
714-822-7725
The Largest Electronics Dealer in San Bernardino County.

JUN'S ELECTRONICS
3919 SEPULVEDA BLVD.
CULVER CITY, CA 90230
213-390-8003
619-463-1886 San Diego
800-882-1343 Trades
The Home of the One Year Warranty

- Parts at Cost - Full Service.

Habla Espanol
SHAVER RADIO, INC.
1378 S. BASCOM AVENUE
SAN JOSE, CA 95128
408-998-1103
Azden, Icom, Kenwood, Tempo,
Ten-Tec, Yaesu and many more.

Connecticut

HATRY ELECTRONICS

500 LEDYARD ST. (SOUTH)
HARTFORD, CT 06114
203-527-1881
Call today. Friendly one-stop shopping at prices you can afford.

Delaware

DELAWARE AMATEUR SUPPLY
71 MEADOW ROAD
NEW CASTLE, DE 19720
302-328-7728
800-441-7008
Icom, Ten-Tec, Microlog, Yaesu, Azden, Santec, KDK, and more. One mile off I-95, no sales tax.

Florida

AMATEUR ELECTRONIC SUPPLY
1898 DREW STREET
CLEARWATER, FL 33575
813-461-4267
Clearwater Branch
West Coast's only full service Amateur Radio Store.

AMATEUR ELECTRONIC SUPPLY 621 COMMONWEALTH AVE.
ORLANDO, FL 32803
305-894-3238
Fla. Wats: 1 (800) 432-9424
Outside Fla: 1 (800) 327-1917
AMATEUR RADIO CENTER, INC.
2805 N.E. 2ND AVENUE
MIAMI, FL 33137
305-573-8383
The place for great dependable names in Ham Radio.
RAY'S AMATEUR RADIO
1590 US HIGHWAY 19 SO.
CLEARWATER, FL 33516
813-535-1416
Your complete Amateur Radio and Computer Store.

Illinois

ERICKSON COMMUNICATIONS, INC. 5456 N. MILWAUKEE AVE.
CHICAGO, IL 60630
312-631-5181
Hours: 9:30-5:30 Mon, Tu, Wed \& Fri; 9:30-8:00 Thurs; 9:00-3:00 Sat.

Indiana

THE HAM SHACK

808 NORTH MAIN STREET
EVANSVILLE, IN 47710
812-422-0231
Discount prices on Ten-Tec, Cubic, Hy-Gain, MFJ, Azden, Kantronics, Santec and others.

Kansas

ASSOCIATED RADIO

8012 CONSER, P. O. BOX 4327
OVERLAND PARK, KS 66204
913-381-5900
America's No. 1 Real Amtateur Radio Store. Trade - Sell - Buy.

Kentucky

L \& S RADIO

307 McLEAN AVENUE
HOPKINSVILLE, KY 42240
502-885-8071
Ten-Tec, Azden, Ameritron Sales and Service.

Maryland

THE COMM CENTER, INC.
LAUREL PLAZA, RT. 198
LAUREL, MD 20707
800-638-4486
Kenwood, Drake, Icom, Ten-Tec,
Tempo, Microlog, AEA, Ameritron.

Massachusetts

TEL-COM, INC.
675 GREAT ROAD, RTE. 119
LITTLETON, MA 01460
617-486-3040
617-486-3400 (this is new)
The Ham Store of New England You Can Rely On.

Minnesota

MIDWEST AMATEUR RADIO SUPPLY 3452 FREMONT AVE. NO.
MINNEAPOLIS, MN 55412
612-521-4662
It's service after the sale that counts.

Nevada

AMATEUR ELECTRONIC SUPPLY
1072 N. RANCHO DRIVE
LAS VEGAS, NV 89106
702-647-3114
Dale Porray "Squeak," AD7K
Outside Nev: 1 (800) 634-6227

JUN'S ELECTRONICS

460 E. PLUMB LANE - 107
RENO, NV 89502
702-827-5732
Outside Nev: 1 (800) 648-3962
Icom - Yaesu Dealer

New Hampshire

POLCARI'S ELECTRONICS CENTER
61 LOWELL ROAD
HUDSON, NH 03051
603-883-5005
Southern New Hampshire's only Ham
Store. Call today for quotes.

New Jersey

RADIOS UNLIMITED

P. O. BOX 347

1760 EASTON AVENUE
SOMERSET, NJ 08873
201-469-4599
800-526-0903
New Jersey's only factory authorized Yaesu and Icom distributor. New and used equipment. Full service shop.

ROUTE ELECTRONICS 46

225 ROUTE 46 WEST
TOTOWA, NJ 07512
201-256-8555

PARTNER WANTED

Imateur Radio Dealer

ROUTE ELECTRONICS 17
777 ROUTE 17 SOUTH PARAMUS, NJ 07625 201-444-8717
Drake, Cubic, DenTron, Hy-Gain Cushcraft, Hustler, Larsen, MFJ, Butternut, Fluke \& Beckman Instruments, etc.

New York

BARRY ELECTRONICS

512 BROADWAY
NEW YORK, NY 10012
212-925-7000
New York City's Largest Full Service Ham and Commercial Radio Store.

GRAND CENTRAL RADIO

155 EAST 45 STREET
NEW YORK, NY 10017
212-682-3869
Drake, Kenwood, Yaesu, Ten-Tec, DenTron, Hy-Gain, in stock.

RADIO WORLD

ONEIDA COUNTY AIRPORT TERMINAL BLDG.
ORISKANY, NY 13424
TOLL FREE 1 (800) 448-9338
NY Res. $\quad 1$ (315) 337-0203
Authorized Dealer - ALL major
Amateur Brands.
We service everything we sell! Bob WA2MSH.

VHF COMMUNICATIONS

915 NORTH MAIN STREET
JAMESTOWN, NY 14701
716-664-6345
Call after 7 PM and save! Supplying all of your Amateur needs. Featuring ICOM "The World System." Western New York's finest Amateur dealer.

Ohio

AMATEUR ELECTRONIC SUPPLY 28940 EUCLID AVE.
WICKLIFFE, OH (CLEVELAND AREA) 44092
216-585-7388
Ohio Wats: 1 (800) 362-0290
Outside Ohio: 1 (800) 321-3594

[^7]
Pennsylvania

HAMTRONICS,

DIV. OF TREVOSE ELECTRONICS

4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215.357-1400

Same Location for 30 Years.

LaRUE ELECTRONICS

1112 GRANDVIEW STREET SCRANTON, PENNSYLVANIA 18509 717-343-2124
Icom, Bird, Cushcraft, Beckman, Larsen, Hustler, Belden, Antenna Specialists, W2AU/W2VS, AEA, B\&W, Amphenol, Saxton, J.W. Miller/Daiwa, Vibroplex

THE VHF SHOP

BOX 349 RD 4
MOUNTAINTOP, PA 18707
717-868-6565
Lunar, Microwave Modules, ARCOS, Astron, KLM, Tama, Tonna-F9FT, UHF Units/Parabolic, Santec, Tokyo Hy-Power, Dentron, Mirage, Amphenol, Belden

Texas

MADISON ELECTRONICS SUPPLY 1508 McKINNEY
HOUSTON, TX 77010
713-658-0268
Christmas?? Now??

Virginia

ELECTRONIC EQUIPMENT BANK 516 MILL STREET, N.E.
VIENNA, VA 22180
703-938-3350
Metropolitan D.C.'s One Stop
Amateur Store. Largest Warehousing of Surplus Electronics.

Wisconsin

AMATEUR ELECTRONIC SUPPLY
4828 W. FOND DU LAC AVE.
MILWAUKEE, WI 53216
414-442-4200
Wisc. Wats: 1 (800) 242-5195
Outside Wisc: 1 (800) $558-0411$
M-F 9-5:30
Sat 9-3

Effective Sales

Producer Needed

by
New Ham Radio Equipment Maker

We need you to set up and monitor a dealer network, and generally promote the product. Initial four VHF power amplifiers will be followed, in a few months, by additional products.
We'll convince you we can ship viable products. You convince us you will make us successful.

Our initial thoughts are:

- Age (high or low), sex, race, etc. not important. Ability is.
- You will be a partner. No initial investment. Your income depends on sales.
- You must be a ham.
- In this electronic world we communicate many ways. Operate out of your home, with only periodic trips to the factory, or set up an office.
- Product is first quality and priced accordingly.
- Dialogs with established companies are welcomed.

All responses acknowledged.
WRITE TO:
COMMUNICATIONS
2995 Woodside Road Suite 400-550
Woodside, CA 94062
market

RATES Noncommercial ads 10c per word; commercial ads 60¢ per word both payable in advance. No cash discounts or agency commissions allowed.

HAMFESTS Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing) on a space available basis only. Repeat insertions of hamfest ads pay the non-commercial rate.

COPY No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

DEADLINE 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

QSL CARDS

OSLs \& RUBBER STAMPS - Top Quality! Card Samples and Stamp info - 504 - Ebbert Graphics 5R, Box 70, Westerville, Ohio 43081.

TRAVEL.PAK OSL KIT - Converts post cards, photos to QSLs. Stamp brings circular. Samco, Box 203-c, Wynantskill, New York 12198.

ROHN TOWERS: Wholesale direct to users. All products available. Write or call for price list. Aiso we are wholesale distributors for Antenna Specialists, Regency, HyGain and Wilson. Hill Radio, P.O. Box 1405, 2503 G.E. Road, Bloomington, IL 61701-0887. (309) 663-2141.

CABLE TV EQUIPMENT, Channel 3 or 4 notch filter $\$ 20.00$. Information $\$ 1.00$. Goldcoast, F.O. Box $63 / 6025 \mathrm{G}$, Margate, FL 33063. (305) 752-9202.
NEED TO CONTACT James Navarchi concerning Yabsu gear. C.T. Huth, 146 Schonhardt St., Tiffin, OH 44883.
CHASSIS and cabinet kits. SASE K3IWK.

Foreign Subscription Agents for Ham Radio Magazine

Ham Radio Austria Karin Ueber Postfach 2454 D. 7850 Loerrach West Germany	Ham Rartio Holland Postbus 413 NL. 7800 Ar Emmen Holiand
Ham Aadio Belgium Stereohouse Brusselsesteenweg 416 B. 9218 Gent Beigium	Ham Ratio ltaly Via Porclenone 17 1.20132 milano ttaly
Ham Radıo Canada Box 400. Goderich Ontario Canada N7A 4C? Ham Radio Europe Box 2084 S-194 02 Upplands vasby Sweden	Ham Radio Switzerlano Karin Ueber Postfach 2454 D-7850 l. Derrach west Germany
Ham Radio France SM Electronic 20bis, Ave des Clarions F-89000 Auxerre France	Ham Radio UK P.O. Box 63 . Harrow Middiesiax HA36HS England
Ham Radio Germany Postlach 2454 D. 7850 Loerrach West Germany	Hollancl Radio 143 Greenway Greenside, Johannesburg Republic of South Alrica

TRADE general radio frequency and deviation meter model 1124-A for set of machinist tools from retired machinist, toolmaker. Sell Drake R4-C receiver with filters only $\$ 285.00$. Collection of over 35 years boxed receiving tubes most at one dollar each. Send your list of needs for availability. W5QJT, 314 N. Resler Or., EI Paso, TX 79912, Apt. One. Tel: 915-581-2017.

VLF.LF preamps, coupler, Loran-C boards. SASE. Burhans Electronics, 161 Grosvenor St., Athens, Ohio 45701.

ELECTRON TUBES: Receiving, transmitting, microwave all types available. Large stock. Next day detivery most cases. Daily Electronics, 14126 Willow Lane, Westminster, CA 92683. (714) 894-1368.

WANTED: Kenwood TS-700SP transceiver and MARS-7600 adapter. C.T. Huth, 146 Schonhardt, Tiffin, OH 44883.
HEARD THE LATEST? You will if you read The Westlink Report (formerly HR Report). Only $\$ 22.50$ for 26 issues. Fewer words - more facts. Send $\$ 1$ for two sample issues (refundable for $\$ 3$ if you subscribe). Poco Press, Offer \#811, 11119 Allegheny St., Sun Valley, CA 91352.
PRE-1946 TELEVISION SETS wanted for substantial cash. Finder's fee paid for leads. Also interested in spinning disc, mirror in-the-lid, early color sets, 9AP4 picture tubes. Arnold Chase, 9 Rushleigh Road, West Hartford, Conn. 06117. (203) 521-5280.

TRANSMITTER, Hallicrafter BC-610-I, $2.18 \mathrm{MHz}, 400 \mathrm{~W}$, good condition $\$ 225$ or best offer. Gienn, 3748 Yosemite, San Diego, CA 92109 (619) 272-7538.
MOBILE IGNITION SHIELDING. Estes Engineering, 930 Marine Dr., Port Angeles, WA 98362.
DRAKE L4B with P.S. Pickup only $\$ 475.00$. Wanted: TenTec 2591. Hal, W6LXZ. (714) 679-7837.

CABLE CONVERTERS, decoders. Catalog $\$ 1$ refundable. APS, POB 263 HR, Newport, RI 02840.
FOR SALE: HW- 101 with CW filter, power supply, speaker, Shure 444 microphone. Mint condition, all for $\$ 350.00$. Paul D. Dilliard, WA8IBT, 1313 East Wheeling St., Lancaster, Ohio 43130. (614) 653-5268.

RTTY-EXCLUSIVELY for the Amateur Teleprinter. One year $\$ 7.00$. Beginners RTTY Handbook $\$ 8.00$ includes journal index. P.O. Box RY, Cardiff, CA 92007.
RACAL RA. 17 Military/Commercial grade communications receiver. The original up conversion design with continuous coverage from .5-30 MHz. Selectivity in 6 steps from 100 Hz to 13 kHz . North American model of British performance equivalent of Collins R390 without mechanical bandswitching. Complete set of replacement tubes. $\$ 450$. John Harding, 1029 Sunset Drive, Blue Bell, PA 19422.
SATELLITE TELEVISION SYSTEM. Order the 2 -year warranted Dexcel/Gould $\$ 100-01$ receiver/L.N.C. with precision 9^{\prime} spun aluminum antenna and ball-bearing polar mount at our call-for-current lowest price (approximately $\$ 1695.00$) and we'll complete the system with a Chaparral Polarotor Ucontrol, hook-up assembly, 125^{\prime} line and installation instructions and assistance. Videosat, Inc., (602) 445-0383, Box 449, Prescott, Arizona 86302.
"KT5B" MULTI-BAND Antenna $160-10 \mathrm{~m} \$ 59.95$, SO239/ PL259 weather boot kit $\$ 5.95$, 2m DDAR mobile antenna $\$ 39.95$, 2 KW roller inductor $28 \mathrm{mh} \$ 47.50$ plus more! KlloTec, P.O. Box 1001, Oakview, CA 93022. Tel: 805. 646-9645.
ham holiday Sri Lanka. Write to Spangles Traveis, 84 Templers Road, Mount Lavinia, Sri Lanka. Enclose 5 IRCs.

COSMOPHONE 1000: Who can send me a copy of schematic diagram/manual of this old transceiver (1959)? Please write to DL.9WW, Kurt Bergmann, Koenigsbergerstr 62, 5100 Aachen, Germany.
HALLICRAFTERS SSs Serious collector needs Hallicrafter and other Ham equipment manufactured before 1940 for restoration and eventual museum exhibit. Need Hallicratters, National, Hammarlund, Patterson, RCA, RME, Grebe, etc. Condition not important. Also need QST mags Vols. I \& II and old tubes. All letters answered. Write Dave Medley, WA5YXA, 6621 Duffield Drive, Dailas, Texas 75248.

GALAXY 5 MK2 Xcvr, p.s., manual, four extra finals, Turner plus 2 mic, Hallicrafters T.O. Keyer, Vibroplex paddle \$250. WB7NRE (401) 822-1943.

WANTED: Cash paid for used Speed Radar equipment. Write or call: Brian R. Esterman, P.O. Box 8141, Northfield, Illinois 60093. (312) 251 -8901.
WANTED: Pre- 1950 bugs for my collection. Vibroplex, Martin, Albright, Melehan, Boulter, etc. K5RW, 1158 Midway, Richardson, TX 75081.

WANTED: OId RCA, Western Electric tubes. (713) 728-4343. Maury Corb, 11122 Atwell, Houston, Texas 77096.

PARABOLIC ANTENNA, spun aluminum, 6 ft . with mount $\$ 325.00 .408 \cdot 730-2500$. Norman, 2225 Sharon Rd., *224, Menlo Park, CA 94025. (415) 854-0266.

WANTED: Early Hallicratter "Skyriders" and "Super Skyriders" with silver panels, also "Skyrider Commercial", early transmitters such as HT-1, HT-2, HT-8, and other Hallicratter gear, parts, accessories, manuals. Chuck Dachis, WO5EOG, The Hallicrafter Collector, 4500 Russell Drive, Austin, Texas 78745.
WANTED: Boonton/HP type 250B RX meter also service manual for ex USN receiver type R1051B/URR. Write: Gill, 72 Elgin Street, Gordon, 2072, Australia.

COLLINS KW- 1 parts wanted. Chuck, Box 766, Dahlgren, Virginia 22448.
RADIO AMATEUR CALLBOOK special $\$ 17.95$ U.S., $\$ 16.95$ Foreign, $\$ 33.90$ both. Add $\$ 3.60$ for Map Library. Shipping $\$ 2$ (1 book) $\$ 2.50$ (2 books) (add $\$ 1$ zone $6-8$). From the CB to 10 ; wire and cable; Copperweld ${ }^{\top} \mathrm{M}$ and more people! Certified Communications, 4138 So. Ferris, Fremont, M1 49412.
RADIO WEST! High quality coverage communications receivers with Collins filters and other DX modifications! Catalog 50 c (refundable). Radio West, 3417 Purer Rd., Dept. HR, Escondido, CA 92025. (619) 741-2891.

WANTED, MILITARY SURPLUS RADIOS. We need COIlins 618T, ARC-72, ARC-94, ARC-102, RT-712/ARC-105, ARC-114, ARC-115, ARC-116, RT-823/ARC-131, or FM622, RT-857/ARC-134 or Wilcox 807A, ARC-159, RT-1167 or RT-1168/ARC-164, RT-859/APX-72, APX-101, APN-153, APN-155, APN-171, MRC-95, MRC-107, MRC-108, 671U, Collins antenna couplers type 490T-1, 4901-3, 490T-9, CU-1658A/ARC, CU-1669/GRC, $4908-1,6900-1, \mathrm{CU}-1239 /$ ARC-105. Top dollar paid or trade for new amateur gear. Write or phone Bill Slep 704-524-7519, Slep Electronics Co., Hwy. 441, Otto, N. C. 28763.
VERY in-ter-est-ing! Next 4 issues $\$ 2$. Ham Trader "Yellow Sheets", POB356, Wheaton, IL 60189.

ANNIE'S EASY. Analyze dipoles, slopers, verticals, in-verted-vees and arrays; any orientation, position, phasing, weight or combination with Annie Antenna Analysis Software. Include REAL GROUND (conductivity, dielectric constant). Superb hi-res plotting. Annie's incredibly friendly and with 100% machine language, she's FAST! For Apple $11+$ (language card required) or Ile, DOS3.3, $\$ 49.95+\$ 2.00$ postage, NY add sales tax. include full name and cail. S.A.S.E. for info. Commercial, library, etc., call for quote (315) 622-3641. Sonnet Software, Dept. HR, 4397 Luna Course, Liverpool, NY 10388.
WE GOT OUR CHRISTMAS PRESENT - Super reviews on "MUFPLOT," a band opening predictor for Commodore computers. Get yours at a good price! Free details from Base(2) Systems, 2534 Nebraska, Saginaw, Michigan 48601. (517) 777-5613.

INDEPENDENT REP. ORGANIZATION wishes to sell out or merge. Good knowledge of two way Radio systems and test equipment necessary. Sales ability a must. Top notch lines. Territory all of New England. Respond to: Box O. Greenville, NH 03048.

Coming Events Activities
 \section*{"Places to go..."}

ILLINOIS: RA-CQM '83 sponsored by the Mt. Prospect Amateur Radio Club and Tri-County Emergency, November 13, Prospect High School, 801 W. Kensington, Mt. Prospect. Doors open 8 AM. Large indoor flea market, exhibits, seminars and more. Talk in on 146.52. For information, flea market or booth reservations: SASE to RACOM, P.O. Box 452, Mt. Prospect, IL 60056.

MASSACHUSETTS: The Honeywell 1200 Radio Club sponsor of 147.72/12 repeater and the Waltham Amateur Radio Association, sponsor of 146.04/64 repeater, will hold their annual Amateur Radio and electronics auc tion, Saturday, November 19, Honeywell Plant, 300 Con cord Road, Billerica. Exit 27 off Route 3. Doors open 10 AM. Free admission and parking. Snack bar and bargain parts store. Talk in on both repeaters. For information: Doug Curdy, N1BUB, 3 Visco Road, Burlington, MA 01803.

MICHIGAN: The Oak Park High School Electronics Club presents the 14th annual Swap 'N Shop, Sunday, Novembet 27, Oak Park High School, Oak Park. 8 AM to 4 PM. Admission $\$ 2.00,8 \mathrm{ft}$. tables $\$ 6.00$. Refreshments available. For information/reservations: SASE to Herman Gardner, Oak Park High School, 13701 Oak Park Blvd., Oak Park, MI 48237. (313) 968-2675.

MINNESOTA: The annual Handi-Ham Winter Hamfest, Saturday, December 3, Eagles Club, Faribault. Registraton 9 AM. There will be a Handi-Ham equipment auction, dinner at noon followed by a program. Talk in on 19/79. For information: Don Franz, WøFIT, 1114 Frank Avenue, Albert Lea, MN 56007.

NEW YORK: Radio Central ARC presents the 5 th annual "Ham-Central" All Inside flea market and Hamfest, Sun day, November 27, Temple Isaiah's main social hall, 1404 Stony Brook Road, Stony Brook, Long Island. Doors open 7:30 AM for sellers/dealers; 9 AM general admission. Tickets $\$ 3.00$ (OM or XYL and kids under 12 free). $\$ 7.00$ for 8 ft . table space includes one free admission. Free parking. Nearby shopping. For information or reservations: Scotty Policastro, KA2EQW (516) 589-2557, 80 7th Street, Bohemia, NY 11716 or Bob Yarmus, K2RGZ (516) 981-2709, 3 Haven Ct., Lake Grove, NY 11755.

NORTH CAROLINA: The Guilford Amateur Radio Club's annual Hamfest/Computerfest, November 26 and $27, \mathrm{Na}$ tional Guard Armory, Greensboro. 9 AM each day. Admission $\$ 3.50$ advance; $\$ 5.00$ at gate. Tailgating allowed with price of admission. Food and free parking. Talk in on $144.65 / 145.25$ and 146.52 simplex. An equipment check-out booth with test equipment and a technician available free for those wishing to check equipment prior to purchase. For information or advance tickets SASE to GARC, P.O. Box 7007, Greensboro, NC 27407. Please make checks payable to GARC

OHIO: The Great Lakes/Ohio Valley Satellite Technical Show and Consumer Fair will be held November 19-20 at the University Hilton, Columbus, Ohio. Brought to you by Satellite Reception Systems, Athens, Ohio. Consumer Ticket Price $\$ 3.50$. 1-800-592-1956 National, 1-800-592-1957 in Ohio.

OHIO: The Massillon Amateur Radio Club, W8NP, will present "Auctionfest ' 83 " Sunday, November 13, 8 AM to 5 PM, Massillon K of C Hall, 988 Cherry Road N.W., Mas sillon. Flea market setup 7 AM ; auction at 11 AM . Ad vance tickets $\$ 2.50, \$ 3.00$ at door. Tables $\$ 5.00$ per 8 ft . space. Talk in on 147.78/.18. For information and reservaions SASE to MARC, 920 Tremont Avenue S.W., MassilIon, Ohio 44646.

PENNSYLVANIA: The Foothills ARC's 15th annual Hamfest, Saturday, November 5, St. Bruno's Church, South Greensburg. Tickets $\$ 2.00$ or $3 / \$ 5.00$. Indoor flea market tables $\$ 5.00$. Mobile check-in on 146.07/67. For information, tickets or tables: WA3HOL or write FARC, P.O. Box 236, Greensburg. PA 15601.

OPERATING EVENTS

"Things to do..."

NOVEMBER 3 TO 6: The NBS-BRASS of Gaithersburg. Maryland, will operate K3AA to observe the dedication of the first active Amateur Radio Club station at the Nation al Bureau of Standards. Multi-op activities on CW, Phone and RTTY near low end of 80 to 10 meter Novice and General class bands. Certificate available for SASE to BRASS, coo National Bureau of Standards, Mailroom Washington, DC 20234.

NOVEMBER 5 AND 6: Radio Central ARC, Rocky Point, New York, will operate WA2UEC from the former RCA HF Radio station called "Radio Central" to commemorate the 62 nd year of the now silent station. 2-160 meters up 10 kHz from edge of General band and on 2 meters on 146.52 and $144.550 / 145.150$ repeater. Novice band operation 7.110 kHz . For a special QSL card showing a photo of the former station send your QSL with large SASE to Radio Central ARC, P.O. Box 680, Miller Place, NY 11764 or QSL to Callbook address.

NOVEMBER 11, 12 AND 13: The Armored Force Amateur Radio Nationwide Emergency Team (A FAR NET) will help commemorate Veteran's Day by operating a special event station, 1200 UTC and 2400 UTC on all three days. 40 meters: 7280 to 7290 kHz .20 meters: 14,320 to 14,330 kHz . 15 meters: 21,370 to $21,380 \mathrm{kHz}$. Those making contact with member stations can obtain a commemorative certificate by sending $\$ 1.00$ to Harry \mathbf{B}. Thomsen, W2PJH, 348 Jefferson Avenue, Apt. 15, Canadaigua, NY 14424. Indicate call letters of station contacted, the stalion's A FAR number, date, time and bands. Include call, name and address.

NOVEMBER 24: Thanksgiving Day. A special events staion sponsored by the Whitman ARC and Plimoth Plantation will operate from the Plimoth Plantation's 1627 Pisgram Village museum. Call WA1NPO, 1300 GMT to $2000+$ GMT. This event will be supported by members of the Plymouth (Devon, England) Radio Club operating G3PRC from a site overlooking Plymouth Sound from which the original "Mayflower" set sail in 1620. To receive a certificate, send proof of contact and $\$ 1.00$ or 3 IRC's to: Whitman ARC, P.O. Box 48, Whitman, MA 02382. For additional information: KA1CZS (617) 826 4772; WB1CNM (617) 586-7524; Rosemary Carroll, Pimoth Plantation, P.O. Box 1620, Plymouth, MA 02360 (617) 746-1622; or Peter Jackson, G3ADV, 32 Brown Avenue, Parkfield, Nantwich, Chesshire, UK, Phone 0270-626149.

NOVEMBER 26 TO JANUARY 8: The Niagara Falls Radio Club will operate special event station W2QYV during the Festival of Lights from Niagara Falls, New York, 1500 UTC to 0300 UTC in the General portion of 20,40 and 80. For a color photograph award send QSL and $\$ 2.00$ donatimon along with $81 / 2 \times 11$ SASE (55c postage) to Angelo Lino, WA2UJR, Awards Manager, 16 Council St., Niagara Falls, NY 14304.

DECEMBER 3: The Connecticut DX Association will operate KO1R, 1300 to 2000 Z, from the home of Mark Twain, Mark Twain Memorial, Hartford, CT. Frequencies for Phone and CW will be lower portion of General and upper portion of Advanced bands. For a full color QSL send your QSL and SASE to: Conn. DX Assn., P.O. Box 181. Columbia, CT 06237.

DECEMBER 3 TO 5: The Telephone Pioneer Radio Amateurs, John D. Burlie Chapter No. 89, 19th annual QSO Party. T.P.A.R. Operators in U.S. and Canada are invited to participate, Starting 1900 UTC, Saturday, December 3 to 0500 UTC, Monday, December 5 . Suggested phone frequencies: $3.895 \cdot 3.935 ; 7.255-7.295 ; 14.265 \cdot 14.305$; $21.355-21.395 ; 28.685-28.725 ; 50.10-554.00 ; 144.100-$ 148.00. Contacts via repeater or simplex are valid. Suggested CW Frequencies: $3.555-3.595 ; 7.055-7.095 ; 14.055-$ 14.095; 21.055-21.095; 28.055-28.095; 50.00-54.00 (Novice/Tech): 3.725, 7.125, 21.125, 28.125. RTTY use customary freq. Scoring: contact points times chapters contacted. Only one multiplier taken for each chapter worked. Maximum multiplier is 98 (TPA chapters 1-98) plus no more than 10 ITPA chapters. Exchange: Contact and chapter numbers. Return log sheets via your ARC Coordinator showing date, time, station worked, chapter name and number, contact number and claimed score. Post-marked no later than January 15, 1984. Send to: Ted Phelps, W8TP, John D. Burlie Chapter No. 89, Telephone Pioneers of America, clo Western Electric, Dept. 45430, 6200 East Broad Street, Columbus, Ohio 43213.

The Key Element
 SSB clarity starts at the microphone.

If you are not satisfied with the 'sound of your station'-it's no wonder-most "com munications" mics you use were designed for industrial paging or p.a., not for the sophisticated SSB techniques. The HC-3 response gives maximum articulation for get ting through DX pile-ups and has set the new standard for all.

You can easily install this small, advance ed Hell element into your present old mic or order the new Hell HM-5 SSB mic using the high quality HC-3.

For more details or to order the Heil HC-3 element at \$19.95, the HM-5 SSB Mic at $\$ 54.95$, contact HEIL. LTD.. Marissa, IL 62257 (618) 295-3000 (add $\$ 3.00$ shipping)

- 155

Best

Dentormanact Best Price

SEND \$2.00
FOR CATALOG OF PHOTOVOLTAICS, WIND AND WATER EQUIPMENT INVERTERS, DC POWERED LIGHTS, STEREOS AND MUCH MORE
alternative ENERGY
ENGINEERING
P.O. BOX 339 DEPT. HR

REDWAY, CA 95560 (707) 923-2277

- 104

MULTICHANNEL MICROWAVE

Complete Antenna Systems from ${ }^{2} 69^{95}$ Full 800 Mhz Range Tune 1.9-2.7 Ghz Includes all ITFS Channels

DEALERS WANTED
COO's and Credit Card Orders call TOLL FREE
1-800-247-1151
Galaxy
ELECTRONICS
6009 N. 61 Avenue
Glendale, AZ 85301
1-602-247-1151

Adverifisers check-off

.. for literature, in a hurry - we'll rush your name to the companies whose names you "check-off"

Place your check mark in the space petween name and number. Ex: Ham Radio 234

| I. C. M | 159 |
| :--- | :--- | :--- |
| 1. T. S. | 160 |
| Jensen | 161 |
| KCS Elec. | 162 |
| KLM Elec. | 160 |
| Kantronics | 163 |
| Kenpro | 164 |
| Kenwood: | |
| Larsen | 312 |

$\begin{array}{ll}\text { Larsen } & 312 \\ \text { Long's } & 165\end{array}$ Lunar Elec.-166, 167 $\begin{array}{ll}\text { MFJ } & 168 \\ \text { Madison } & 169\end{array}$ Maggiore $\quad 170$ Meshna Micro-Mart Microwave
Morning Dist. 02 Morning Dist.
Mosley 172 Mosley
W.H. Nai W.H. Nail 17
Nampa Satellite 175

Nemal Elec. 176 | N. American Soar |
| :---: |
| Nuts $\&$ Volts |
| 177 |
| P. Elec. |
| | 13 Nuts $\&$ Voits

P.C. Elec. | P.C. Elec. |
| :--- |
| Pacific One | Paramount Comm, 180 Phillips-Tech Proham Elec.- 182 Pro-Search 183, 211 Quarles Electric 184 RF Gain

RF Products
R 185 Callbook Radiokit - 188 Radio Warehouse Random Access $\quad 190$
S \& T Elec S \& T Ele
SAROC.
SAROC
Satellite TV Mag193

Shure Brot. 194 Shurite Meters 195 Spectronics ${ }^{\text {S }}$ Spectrum Inter __ 196
Spectrum
$\begin{array}{lr}\text { West 197, } 304 \\ \text { Spi-Ro Dist } & 198\end{array}$ $\begin{array}{ll}\text { Spi-Ro Dist. } 198 \\ \text { Sultronics } & 199\end{array}$ Sultronics
Tayco Comm. 199200 Tayco Comm.
Telewave
201 200 Tenekit
TimeKit 202 $\begin{array}{lr}\text { Transleteronic } & 203 \\ \text { Tri-Ex Tower } & 204\end{array}$ Tri-Ex Tower _- 204
Tucson Radio _ 205 Ultima Elec. 308 Ungar 206, 215,305 $\begin{array}{ll}\text { UNR-Rohn } \\ \text { Vanguard Labs } & 207 \\ & 208\end{array}$ $\begin{array}{ll}\text { Vanguard Labs } & 208 \\ \text { Westcom Eng. } & 209\end{array}$ $\begin{array}{lr}\text { Westcom Eng. } & 209 \\ \text { Western Elec. } \quad 210\end{array}$ Western Elec. $\begin{array}{ll}\text { Yeesu } & 212 \\ \text { Young _ } 213\end{array}$
lcom - 157, 158, 311

November 1983

Please use before December 31, 1983
Tear off and mail to
HAM RADIO MAGAZINE - "check off"
Greenville, N. H. 03048-0498

Adverifisers iNdex

Lunar Electronics
MFJ Enterprises
Madison Electronics
Maggiore Electronic Lab
John J. Meshna Jt, Co., Inc
Micro-Mart Distributors
Morning Distributing
Mosley Electronics
W. H. Nail Co.

Nampa Satellite Receiver Systems
Nemal Electronics
Nuts \& Volts Magazine
Pacific One Corp.
Pacific One Corp
Paramount Communications
Phillips-Tech Electronics
Proham Electronics, inc
Quarles Electric.
RF Gain Ltd.
RF Products
Radio Amateur Callbook, Inc
Radiokit
Radio Warehous
Random Access, inc
S\&TElectronics
SAROC
Satellite TV Magazine
Shure Brothers
Shurite Meters
Shurite Meters
Spectrum International
Spectrum West
Spi-Ro Distributing
Sultronics.
Tayco Communications
Teiewave, Inc
Ten-Tec
TimeKit
Transieteronic, Inc
Tri-Ex Tower Corp
Tucson Amateur Packet Radio
UNR R
Vanguard Labs
Westcom Engineerin
Western Electronics.
Western Electronics
Yaesu Elect
Phil Young

Box 2000•Peoria. Illinois 61656 U.S.A.

LISTEN TO THIS!

U.2M is a FM Transmitter that plugs into the phone jack of most H.F., V.H.F. and U.H.F. radios. You can now monitor your favorite H.F., V.H.F. or U.H.F. frequency up to 100° away using the U.2M and your H.T.

The U.2M is a XTAL controlled F.M. transmitter built inside a standard $1 / 4^{\prime \prime}$ phone plug. The U2M will transmit the audio from your H.F., V.H.F. or U.H.F. radio to your H.T.

The U.2M requires your H.F., V.H.F or U.H.F. radio to have a $1 / 4^{\prime \prime}$ phone jack and output impedance of $3.2,8$ or 16 ohms. For radio having an $1 / 8^{\prime \prime}$ headphone jack, use a $1 / 8^{\prime \prime}$ to $1 / 4^{\prime \prime}$ adaptor.

When ordering specify operating frequency of your
H.T.

ONLY \$19.95

To order, send check or money order to:

S and T Electronics 1401 Rae Lane Madison, WI 53711 For C.O.D. order call Carol at 608/274-2599.
satisfaction guaranteed or full refund.

```
CABLE CONUERTER SALE
MAGNAVOX FV-25 - 26 CHANNEL WITH
REMOTE CONTROL - VHF-MIDBAND-
SUPERBAND - REG \(\$ 59.95\) - NOW \$49 - 95
JERROLD JSX-3DIC - 36 CHANNEL
WITH IN BAND GATED SYNC
DECODER
JERROLD SB-3 - IN BAND GATED
GATED SYNC bECODER - USE WITH
ANY CONVERTER WITH OUTPUT ON
CHANNEL 3 REG \(\$ 149.95\) ON
UHF BLOCK CONVERTER - CONVERTS
MIDBAND AND SUPERBAND
TO UHF - REG \(\$ 39.95\) - NOW
SEND *1.0 (REFUNDABLE) FOR CATALOG
ADD 24. 25 SHIPPING/HANDL ING
FOR EACH UNIT ORDERED
NYS ADD SALES TAX -C.O.D.'S OK
24 HOUR ORDER LINE
(667) 962-7313
ORDER DIRECT FROM
TAVCD COMMIINICATIGNS R3-146A NARROWS CREEK ROAD CORNING. NEW YORK 14839
```


1296 \& PHASE III MAKI UTV 1200- s49995 2M or 6MI.F./3 WATTS

MICROWAVE MODULES 432 / PHASE III UNITS
 \$269.95

J-BEAM/LOOP YAGIS AND ACCESSORIES

SEE US IN HOUSTON

5717 NE 56th, SEATTLE, WA 206-382-2132 $197 \quad 98105$

BUY! SELL! TRADE!

 COMPUTER \& HAM EQUIPMENT [COMPUTER ${ }^{*}$ TRADER ANNUAL SUBSCRIPTION $\$ 15.00$Low Ad Rates - Mailed Monthly
Foreign Subscriptions - $\$ 30.00$ Year FREE 50 Wort Classilied Ad with Subseripition Order COMPUTER TRADER* Chet Lambert, W4WDR
1704 Sam Drive • Birmingham, AL 35235 (205) 854.0271

Sample Copy $\mathbf{-} \mathbf{\$ 1 . 0 0}$

IF YOU'RE STILL USING AN
OLD STYLE ROTOR
CONTROL MAYBE YOU
SHOULD CONSIDER THIS.

BUY THE ANTENNA CONTROLLER OF THE FUTURE TODAY!
A PRO-SEARCHIM

DIGITAL

ANTENNA CONTROL FULLY COMPUTERIZED

SMALL
in SIZE
$31 / 4 " H \times 5 \% " W \times 6$ "D
10 MEMORIES
FOR STORING
YOUR FAVORITE HEADINGS
ONE YEAR FULL WARRANTY
PRO-SEARCH Is Adaptable To Many
Systems, Simple To Install.

No Modifications Are Necessary.

Presently we're having our Fall and Christmas Special. A PSE-1, used with the CDE Series, Now only $\$ 315.00$ plus shipping. Regular retail price $\$ 419.91$. Offer good until November 15, 1983. Order Early we expect a back order problem due to demand and availability of parts.
Also ask about our Fall Rotor. Antenna and Unit Special.

CALL NOW 1-800-325-4016

Controllers also available for other rotors
Prices and specifications subject to change without notice or obligation.
U.S. and Foreign Patents

Pro:Search Electronics Co
1344 Baur Boulevard St Louls Mo 63132 1.314.994.7872

Blueprint for Success

THE INTERFACE

THE INTERFACE][

EsKantronics TITLE: THE INTERFACE - INTERFACE I I PROPOSAL

THE INTERFACE is the original Kantronics terminal unit that broke through the barrier of multi-computer compatibility. THE INTERFACE is an amateur modem for transceiver-to-computer communication. With THE INTERFACE and Hamsoft or Hamtext for your computer you can send and receive Morse Code, Radioteletype, and ASCII. THE INTERFACE is also compatible with our new software for AMTOR communication, AMTORSOFT. THE INTERFACE is our most popular unit combining active filtering, easy tuning, six-computer compatibility, and low price for an unbeatable package.
Suggested Retail
\$139.95

INTERFACE I[is the new Kantronics transceiver-to-computer interface. INTERFACE If features a new highly sensitive front end with mark and space filtering and a unique new tuning system. Even the most discerning operator will be surprised with the INTERFACE $]$ ['s ability to dig out signals in poor band conditions, and our new tuning system even displays signal fading.
$X-Y$ scope outputs and dual interface outputs for VHF and HF connections make INTERFACE I[compatible with almost any shack. All three standard shifts are selectable and INTERFACE I[is compatible with the industry standard Kantronics programs: Hamsoft, Hamtext, and Amtorsoft. Step up to state of the art in computer-amateur communications with INTERFACE It.
Suggested Retall
\$269.95

For more information see your Kantronics dealer, or contact: EeKantronics 1202 E. 23rd Street Lawrence, KS 66044

YAESU FTT 726 R TRIBANDER NEW GALAXIES OF PERFORMANCE ON VHF AND UHF

The New Yaesu FT-726R Tribander is the world's first multiband, multimode Amateur transceiver capable of full duplex operation. Whether you're interested in OSCAR, moonbounce, or terrestrial repeaters, you owe yourself a look at this one-of-a-kind technological wonder!

Multiband Capability
Factory equipped for 2 meter operation, the FT-726R is a three-band unit capable of operation on 10 meters, 6 meters, and/or two segments of the 70 cm band ($430-440$ or $440-450 \mathrm{MHz}$), using optional modules. The appropriate repeater shift is automatically programmed for each module. Other bands pending.

Advanced Microprocessor Control
Powered by an 8 -bit Central Processing Unit, the ten-channel memory of the FT-726R stores both frequency and mode, with pushbutton transfer capability to either of two VFO registers. The synthesized VFO tunes in 20 Hz steps on SSB/CW, with selectable steps on FM. Scanning of the band or memories is provided.

Full Duplex Option
The optional SU-726 module provides a second, parallel IF strip, thereby allowing full duplex crossband satellite work. Either the transmit or receive frequency may be varied during transmission, for quick zero-beat on another station or for tracking Doppler shift.

High Performance Features
Borrowing heavily from Yaesu's HF transceiver experience, the FT-726R comes equipped with a speech processor, variable receiver bandwidth, IF shift, all-mode squelch, receiver audio tone control, and an IF noise blanker. When the optional XF-455MC CW filter is installed, CW Wide/ Narrow selection is provided. Convenient rear panel connections allow quick interface to your station audio, linear amplifier, and control lines.

Leading the way into the space age of Ham communications, Yaesu's FT-726R is the first VHF/UHF base station built around modern-day requirements. If you're tired of piecing together converters, transmitter strips, and relays, ask your Authorized Yaesu Dealer for a demonstration of the exciting new FT-726R, the rig that will expand your DX horizons!

Scan the World.

SSB, CW, AM, FM, digital VFO's, 10 memories, band and memory scan, optional 118-174 MHz coverage...

The $\mathbf{R - 2 0 0 0}$ is an innovative all-mode SSB, CW, AM, FM receiver that covers $150 \mathrm{kHz}-30 \mathrm{MHz}$, with an optional VC-10 VHF converter unit to provide coverage of the $118-174 \mathrm{MHz}$ frequency range. New microprocessor controlled operating features and an "UP" conversion PLL circuit assure maximum flexibility and ease of operation to enhance the excitement of listening to stations around the world.

R-2000 FEATURES:

- Covers $150 \mathrm{kHz}-30 \mathrm{MHz}$ in 30 bands. Uses innovative UP-conversion digitally controlled PLL circuit. UP/DOWN band switches ($1-\mathrm{MHz}$ step), VFO's continuously tuneable across the band and from band to band.
- Optional 118-174 MHz coverage.

Through use of innovative microprocessor technology, frequency, band, and mode data of stations in the $118-174 \mathrm{MHz}$ range may be tuned, displayed (full frequency. ie., 146.000.0), stored in memory, recalled, and scanned, using the R-2000 front panel controls and frequency display, allowing maximum convenience and ease of operation.

The optional VC-10 VHF converter unit may be easily installed on the rear panel of the R-2000.

- All mode: USB, LSB, CW, AM, FM.

Provides expanded flexibility in receiving various signal types. Front panel mode selector keys, with LED indicators.

- Digital VFO's for best stability.
$50-\mathrm{Hz}$ step, switchable to $500-\mathrm{Hz}$ or $5-\mathrm{kHz}$.
F. LOCK switch provided.
- Ten memories store frequency, band, and mode data.
Complete information on frequency, band, and mode is stored in memory, assuring maximum ease of operation. Each memory may be tuned as a VFO. Original memory frequency may be recalled. AUTO. M switch for automatic storage of current operating data, or, when off, selective storage of data using M. IN switch.
- Lithium battery memory back-up. (Est. 5 yr. life.)
- Programmable memory scan. Scans all memories, or may be programmed to scan specific memories. HOLD switch interrupts scanning. Frequency, band, and mode are automatically selected in accordance with the memory channel being scanned. The scanning time is approximately 2 seconds per channel.
- Programmable band scan.

Scans automatically within the programmed bandwidth. Memory channels 9 and 0 establish upper and lower scan limits. HOLD switch interrupts scanning. Frequency may be adjusted, using the tuning control, during scan HOLD.

- Fluorescent tube digital display ($100-\mathrm{Hz}$ resolution).
Built-in 7 digit fluorescent tube digital display indicates frequency or time. plus memory channel number. DIM switch provided. The display may be switched to indicate CLOCK-2, FREQUENCY, CLOCK-1, and timer ON or OFF by the front panel FUNCTION switch.
- Dual 24-hour quartz clocks, with timer.
- Three built-in IF filters with NARROW/ WIDE selector switch. (CW filter opt.) $6-\mathrm{kHz}$ wide or $2.7-\mathrm{kHz}$ narrow on AM. $2.7-\mathrm{kHz}$ automatic on SSB. $2.7-\mathrm{kHz}$ wide
on CW, or, with optional YG-455C filter installed, $500-\mathrm{Hz}$ narrow. $15-\mathrm{kHz}$ automatic on FM.
- Squelch circuit, all mode, built-in, with BUSY indicator.
- Noise blanker built-in.
- Large front mounted speaker.
- Tone control.
- RF step attenuator. (0-10-20-30 dB.)

Four step attenuator, plus antenna fuse.

- AGC switch. (Slow-Fast.)
- "S" meter, with SINPO "S" scale.
- 100/120/220/240 VAC, or 13.8 VDC
operation (with opt. DCK-1 cable kit).

Other features.

- RECORD output jack.
- Audible "beeper" (through speaker).
- Carrying handle.
- Headphone jack.
- External speaker jack.

Optional accessories:

- VC-10 118 -174 MHz converter.
- HS-4, HS-5, HS-6. HS-7 headphones.
- DCK-1 DC cable kit.
- YG-455C $500-\mathrm{Hz}$ CW filter.
- HC-10 World digital quartz clock.
- AL-2 Surge Shunt

More information on the R-2000 is available from all authorized dealers of Trio-Kenwood Communications 1111 West Walnut Street
Compton, California 90220.

KENWOOD
 pacesetter in amateur radio

[^0]: *Even if the velocity factors differ, the fault can still be located as long as the ratio of velocity factors is known. While this method cannot be used to measure complex impedances, it is useful in determining problems along the line. Keep in mind that the antenna at the end of the line may be either open or shorted; this wouldn't be a fault on the line itself. Editor

[^1]:

[^2]: for dealer locations OR PHONE ORDEAS 800-854-1566 5625 Kearny vills Rond San Diego, CA 92123 Calltornia Call 619-569-6582 Tolex $4697120-$ DATAMAX-103

 EXPORT AGENT: MAGNUS 3500 Devon Avenue Chicago, IL 60659 Telex \#253503 MAGNUS CGO

[^3]: 1. Pat Hawker, G3VA, "Technical Topics," Radio Communication, November, 1982, page 959.
 2. IEEE Transactions on Antennas and Propagation, Vol. AP-30, No. 4, July, 1982.
[^4]: By Ed Marriner, W6XM, 528 Colima Street, La Jolla, California 92037

[^5]:

[^6]: VANGUARD LABS
 196-23 Jamaica Ave., Hollis, NY 11423 Phone: (212) 468-2720

[^7]: UNIVERSAL AMATEUR RADIO, INC.
 1280 AIDA DRIVE
 REYNOLDSBURG (COLUMBUS), OH 43068
 614-866-4267
 Featuring Kenwood and all other Ham gear. Authorized sales and service. Shortwave headquarters. Near I-270 and airport.

