SEPTEMBER 1984 / \$2.50

ham rolio magazine

CELEBRATING 70 YEARS OF PROGRESS: THE DEVELOPMENT OF SSB

$\boldsymbol{h r}^{2}$ focus on communications technovogy
specialized communications: work OSCAR 10 with your HT \bullet a software approach to packet radio • the FM advantage • interrupt-driven RTTY reader • ALSO: a short, efficient endfed dipole • improving ALC's • optimizing Yagi gain • an audio AGC•W6SAI's "shortwave circus" • W1JR on 220 MHz EME - and more

ICOM's IC-02A Digital Readout, Scanning, Memories and...

The IC-02A comes standard with IC-BP3 NiCd battery pack. BC-25U wall charger, flexible antenna, wrist strap and belt clip.

ICOM introduces the new top-of-the-line IC-02A and IC-02AT to compliment its existing line of popular handheld transceivers and accessories. The new direct entry microprocessor controlled IC-02A is a full-featured 2 -meter handheld.

Some of its many fealures are: Scanning. 10 memories, duplex offset storage in memory, odd offsets. 32 keyboard selectable PL tones which store in memory, and internal lithium battery backup.

Keyboard entry through the 16 button pad allows easy access of frequencies, duplex, memories, memory scan, priority, dial lock, PL tones and DTMF in the IC-02AT.

An easy-fo-read custom LCD readout indicates frequency. memory channel, signal strength and transmitter output, PL tone, and scanning functions.

The new IC-02A has a battery lock, frequency lock, and lamp
on/off switch. An aluminum case back is provided

ICOM's IC-2A(T) continues to be available... and its complete line of accessories work with the new IC-02A.

©
ICOM
The World System

hat To
 ook For In A hone Patch

e best way to decide at patch is right for you to first decide what a tch should do. A patch ould:
Give complete control to he mobile, allowing full oreak in operation.
Not interfere with the normal operation of your pase station. It should not require you to connect and disconnect cables (or flip switches!) every time you wish to use your radio as a normal base station.
Not depend on volume or squelch settings of your radio. It should work the same regardless of what you do with these controls.
You should be able to hear your base station speaker with the patch installed. Remember, you have a base station because there are mobiles. ONE OF THEM MIGHT NEED HELP.
The patch should have standard features at no extra cost. These should include programmable toll restrict (dip switches), tone or rotary dialing, programmable patch and activity timers, and front panel indicators of channel and patch status.
ONLY SMART PATCH HAS ALL OF THE ABOVE.

low Mobile

 perators Can njoy An ffordable ersonal Phone atch. . .Without an expensive repeater.
Using any FM tranceiver as a base station.
The secret is a SIMPLEX autopatch. The SMART PATCH.

SMART PATCH

 s Easy To Installo install SMART PATCH, onnect the multicolored omputer style ribbon cable , mic audio, receiver iscriminator, PTT, and ower. A modular phone ord is provided for conection to your phone sysem. Sound simple? T IS!

With Smart pateh

 You are in CONTROL> With CES 510SA Simplex Autopatch, there's no waiting for VOX circuits to drop. Simply key your transmitter to take control.

SMART PATCH is all you need to turn your base station into a personal autopatch. SMART PATCH uses the only operating system that gives the mobile complete control. Full break-in capability allows the mobile user to actually interrupt the telephone party. SMART PATCH does not interfere with the normal use of your base station. SMART PATCH works well with any FM transceiver and provides switch selectable tone or rotary dialing, toll restrict, programmable control codes, CW ID and much more.

> To Take CONTROL with Smart Patch - Call 800-327-9956 Ext. 101 today.

How To Use SMART PATCH

Placing a call is simple. Send your access code from your mobile (example: ${ }^{*} 73$). This brings up the Patch and you will hear dial tone transmitted from your base station. Since SMART PATCH is checking about once per second to see if you want to dial, all you have to do is key your transmitter, then dial the phone number. You will now hear the phone ring and sor.eone answer. Since the enhanced control system of SMART PATCH is constantly checking to see if you wish to talk, you need to simply key your transmitter and then talk. That's right, you simply key your transmitter to interrupt the phone line. The base station automatically stops transmitting after you key your mic. SMART PATCH does not require any special tone equipment to control your base station. It samples very high frequency noise present at your receivers discriminator to determine if a mobile is present. No words or syllables are ever lost.

SMART PATCH

 Is All You Need To Automatically Patch Your Base Station To Your Phone Line.Use SMART PATCH for:

- Mobile (or remote base) to phone line via Simplex base. (see fig 1.)
- Mobile to Mobile via interconnected base stations for extended range. (see fig. 2.)
- Telephone line to mobile (or remote base).
- SMART PATCH uses SIMPLEX BASE STATION EQUIPMENT. Use your ordinary base station. SMART PATCH does this without interfering with the normal use of your radio.

WARRANTY?

YES, 180 days of warranty protection. You simply can't go wrong.
An FCC type accepted coupler is available for SMART PATCH.

Pocket-size performers! TH-21AT/41AT

Kenwood's advanced electronic technology brings you a new standard in pocket/handheld transceivers! The TH-21AT/41AT features a high impact molded case and is designed to deliver convenient, reliable performance in a package so small, it will slip into your shirt pocket! It measures only 57 (2.24) W x $120(4.72) \mathrm{H}$ $\times 28$ (1.1) D mm (inch) and only weighs $260 \mathrm{~g}(0.57 \mathrm{lb})$ with batteries. In typical Kenwood fashion these transceivers provide superior transmit and receive performance.

Both the 2 meter and 70 cm versions deliver one watt R.F. output on HI power and 150 mW low, for really extended battery life! Functional design includes three digit thumb-wheel switch for easy frequency selection along with a built-in 5 kHz UP-Shift switch and repeater offset switch. ($\pm 600 \mathrm{kHz}$ or simplex, 2 m version and $\pm 5 \mathrm{MHz}$ or simplex 70 cm version.)

Both the 2 meter and 70 cm pocket/handheld transceivers are available in standard or 16-key autopatchDTMF encoder versions. Kenwood thread-loc antenna connector is also provided.
\qquad

See your authorized Kenwood dealer and take home a pocket full of 2 m or 70 cm performance today!

Optional accessories:

- HMC-1 headset with VOX
- SMC-30 speaker microphone
- PB-21 Ni-Cd 180 mAH battery
- DC-21 DC power supply
- BT-2 battery case
- EB-2 external C manganesel alkaline battery case
- SC- 8 soft case for TH-21A/41A
- SC-8T soft case for

TH-21AT/41AT

- TU-6 programmable sub-tone unit
- AJ-3 thread-loc to BNC female adapter

More information available from authorized dealers of TrioKenwood Communications, 1111 West Walnut Street, Compton, CA 90220.

KENMOOD 144MHZ FM TRANSCEIVER

Standard versions.

TH-21AT/4 IAT Subject to FCC approval Speciftications and prices are subject to change without notice or obligation

ham

SEPTEMBER 1984

volume 17, number 9
T. H. Tenrey, Jr., W1NLB

Rich Rosen, K2RR editor-in-chief and associate publisher
Dorothy Rosa, KA1LBO assistant editor

Joseph J. Schroeder, W9JUV associate editor Susan Shorrock editorial production
editorial review board

Forrest Gehrke, K2BT
Bob Lewis, W2EBS
Mason Logan, K4MI
Ed Wetherhold, W3NON

publishing staff
J. Craig Clark, Jr., N1ACH
assistant publisher
Rally Dennis, KA1JWF director of advertising sales

Dorothy Sargent, KA1ZK advertising production manager

Susan Shorrock
circulation manager
Therese Bourgault
Wayne Pierce, K3SUK cover art
ham radio magazine is pubished by
ham radio magazine is published by Greenville, New Hampshire 03048-0498 Telephone 6038781441
subscription rates

Youtouch.

It holds.

$\$ 129^{*}$
gets you the world's first handheld digital/analog multimeter with "Touch Hold."

The Fluke 77

Its unique "Touch Hold"** function automatically senses and holds readings, leaving you free to concentrate on positioning test leads without having to watch the display.

Then, when you have a valid reading, it signals you with an audible beep.

The Fluke 77 is perfect for those test situations where accessibility is a problem, or when extra care is needed for critical measurements.

It's the top model in the world champion Fluke 70 Series line - the first industrial quality autoranging multimeters to combine digital and analog displays. These tough, American-made meters feature a three-year warranty and 2000+ hour battery life.

So call now for the complete story on the Fluke 77 with "Touch Hold." Because if you don't deserve the world's first, who in the world does?

For the name of your distributor or a free brochure, call our toll-free hotline anytime 1-800-227-3800, Ext. 229.
From outside the U.S., call 1-402-496-1350, Ext. 229.

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.

FLUKE

taking care of business

There are some controversial arguments to be made in behalf of software piracy. These are some of the arguments we've heard:

> Software is overpriced. Piracy gets it into the hands of users at prices they can afford. Piracy encourages the development of new and improved programs to meet the rising expectations of a sophisticated land possibly saturated) market.
> As pirated programs circulate, product visibility and name recognition are enhanced. This helps manufacturers market current and future products.
> Software piracy is no more than a logical extension of the problem of trying to protect copyrights in the audio and video industries. As such, it can't be stopped.

One industry maverick even claims that by providing real competition to software manufacturers, piracy actually helps keep software prices down.'

It occurred to us that similar, even identical, arguments could be made in defense of burglary. Burglary, after all, provides part-time employment to some (the burglars) and full-time employment to many (the police). It supports free enterprise and R\&D - in security systems, insurance, medical care, and penology. It also gets consumer goods into the hands of users at a price they can afford.

We understand that nobody cares more about copyright law than those whose livelihood is directly affected by copyright infringement. Publishers - of books, music, software, and magazines - care very much, because illegal reproduction of thier product affects their ability to continue producing that product. Is it unreasonable to ask or expect the general public to care? Perhaps. But we think it's not unreasonable to ask the Amateur Radio fraternity to care.

We asked one software publisher how many hours his firm had invested in the development of a program for CW/RTTY/ASCII transmission and reception. "Thousands," he said, and explained that it had taken the firm's chief programmer six months of full-time effort to develop the program. Add to this the cost of support services and debugging; of developing associated hardware; of writing clear, comprehensive manuals; and of advertising and overhead. Suddenly the $\$ 29.95$ or even $\$ 99.95$ price tag on a package of Amateur Radio software becomes a little more understandable. The software pirate, on the other hand, needs nothing more than a computer, a disk drive, a supply of disks, and access to a photocopier for duplicating original documentation to go into business.

Some consumers don't know that unwrapping a package of software constitutes acceptance of a limited license to use the program inside. We'd like to think that anything we buy is ours, to do with what we will. After all, we can buy a Hershey ${ }^{\left({ }^{(1)}\right.}$ chocolate bar and share it with a friend, but we can't take it home, duplicate the recipe, pour our own chocolate bars, stamp them with Hershey's good name, and sell them as our own. The license to use isn't a license to steal.

The fact is that none of the manufacturers who serve the Amateur Radio market exclusively, or nearly so, are listed among the Fortune 500. Some are virtual mom-and-pop operations. Others are small groups of entrepreneurs. A few have grown and diversified. Many have prospered. But there's not one among them who can afford to keep fighting software piracy without sacrificing continued investment in new products.

Every dollar the Amateur Radio software industry spends fighting piracy is a dollar that can't be invested in R\&D. If we want products that can keep pace with our rapidly expanding interest and needs, we'd best put our money where it can help make the difference - not in some pirate's pocket.

Dorothy Rosa, KA1LBO Assistant Editor

[^0]ADDITIONAL PHONE BAND FREQUENCIES WILL BECOME AVAILABLE on September 1 , following the Commission's adoption of a further Report and Order on PR Docket 82-83 July 18. The new phone subbands will be exactly as proposed in the FCC's Further Notice of Proposed Rule Making that came out over a year ago: for 75 meters, $3750-3775 \mathrm{kHz}$, Extra; $3775-3850 \mathrm{kHz}$, Extra/Advanced; $3850-4000 \mathrm{kHz}$, Extra/Advanced/General. On $15,21200-21225 \mathrm{kHz}$, Extra; $21225-21300 \mathrm{kHz}$, Extra/Advanced; $21300-21450 \mathrm{kHz}$, General as well. For 10 , the phone band bottom edge was moved down to 28300 kHz for all three license classes.
$40-$ Meter Phone Was Unchanged For Continental U.S. Amateurs, but Amateurs in Alaska and the Pacific were given $7075-7100 \mathrm{kHz}$ to make their operation compatible with Amateurs in ITU Region 3 and avoid Region 3 short wave broadcasters on 40 meters' high end.

THE VULNERABILITY OF 220 MHZ TO TAKEOVER BY ANOTHER SERVICE was sharply underscored by FCC Private Radio Bureau Chief Bob Foosaner at the July 21 , NYC ARRL National Convention's FCC Forum. His remarks and responses to questions left listeners little doubt that Amateur use of part of the band, probably the bottom 2 MHz , could end in the very near future.

220 MHz For Commercial Users Was Also Addressed in a petition filed with the FCC in late June by the Land Mobile Communications Council. In its petition the LMCC, a trade group of 2 -way users and manufacturers, reviewed various spectrum options for the everincreasing needs of the land mobile service. $220-225 \mathrm{MHz}$ was cited due to its "relatively low" Amateur activity along with its availability to land mobile in ITU Region 2.

THE ARRL WAS APPOINTED A VEC IN ALL 13 DISTRICTS in a ceremony at the ARRL National Convention in New York July 21 . The proposal accepted by the FCC was actually the ARRL's second; its earlier proposal had raised questions about the "Chinese Wall" between League publishing efforts and its VEC administration, but the new one (submitted only July 20!) cited organizational changes which seem to adequately isolate the two League activities from each other. Now that exam fees are permitted, ARRL-sponsored hamfest exams are planned in September. However, League exams for individuals still won't be available until November.

Exam Fees Up To $\$ 4$ Were Authorized By The FCC July 12, when the Commissioners acted on Docket 84-265. Justification of VEC fee scheules will be required; in the beginning, VEC's must estimate the cost of their programs, then set their fees by dividing that cost by the projected number of examinees. They're then required to maintain proper expense records; if the fees later turn out to be higher than actual costs, the "excess" must be returned by adjusting fees for later applicants downward an appropriate amount. VEs as well as VECs will be permitted to recover their costs, with division to be settled between them. Fees may be collected after August 31, but there is no requirement that fees must be charged

DeVry Is Considering Applying For VEC Status In Seven More Districts, through DeVry Amateur Radio Society members on its campuses in those districts. The school has been well pleased with the results of the Society's VEC program on its Chicago campus, and feels the program would be a worthwhile addition for the other DeVry schools as well. The additional campuses are in Los Angeles, Phoenix, Kansas City (Missouri), Atlanta, Columbus (Ohio), Dallas, and Woodridge, New Jersey. The DeVry campuses in these cities would be able to offer regularly scheduled walk-in exams, as Chicago already does, plus support and even testing facilities for VECs already in place if they wished to use them. DeVry-administered VE groups are now giving exams in various parts of Illinois and Indiana, and DeVry gave its first Advanced Class exam in Chicago on July 24.

VEC District 13, The Pacific, Should Have A Resident VEC very shortly thanks to the Koolau (Hawaii) Amateur Radio Club. Now that the ARRL has also been certified, all 13 districts have at least one resident VEC.

New Identifiers For Amateurs Upgrading In The VEC Program have been adopted by the Commission for August 31 implementation. These are/KT for Technician, /AG for General, /AA for Advanced, and /AE for Extra. The unique session identifiers are being dropped.

PERMISSION TO BROADCAST ON 40 METERS FROM GUAM is being sought by Trans-World Radio Pacific, a religious broadcaster. Guam is in ITU Region 3, which allocates $7100-7300 \mathrm{kHz}$ to broadcasters, but the FCC has not previously licensed 40 -meter broadcasting in areas under its jurisdiction. Comments on the proposal, RM-2959, are due in mid-September

Clarification of Broadcasters' Use of Amateur And CB Communications is being sought in RM-28-30, proposed by the Commission July 12. The proposal would relax present Part 73 and 97 requirements that Amateurs and CBers give prior permission before their communications could be rebroadcast. Reporters, however, would still not be permitted to operate an Amateur station for news gathering. The Comment period ended in mid-August.

TWO AMATEUR RADIO OPERATIONS FROM SPACE SEEM LIKELY IN 1985, as W5LFL has been named a crew member for Space Shuttle Mission 51 H , scheduled for next November. WøORE is already scheduled for Mission 51F in March, and indications are that NASA is reacting favorably to the joint ARRL/AMSAT proposal that Amateurs on future shuttles be permitted to operate.

AN AMATEUR RADIO AUXILIARY HAS BEEN FORMED BY THE FCC'S FIELD OFFICE BUREAU, in conjunction with the ARRL's Communications Department. Assistance in monitoring and rules enforcement will be the major focus of the new Auxiliary, which, like the VEC program, i.s a result of Senator Goldwater's bill. Like the VEC program, coordination with the FCC will be through regional or national Amateur organizations. ARRL is the first such group to sign up. Individual Amateurs interested in joining the Auxiliary should contact John Lindholm at ARRL or Elliott Ours at the FCC, 1919 M Street N.W., Room 744, Washington, D.C. 20554 (202) 632-7090.

if yeribuensiot.3
 priced out of gertel telavision m ent

 syistembWorld View Electronics has made owning a satellite television receiving system affordable with a choice of products manufactured by the most reputable names in the satellite TVRO industry.
Now you can choose the system that fits your needs and your pocketbook by ordering directly from World View Electronics.

For your convenience, we've packaged five systems together (Systems 1 through $\mathbf{5}$). Or if you wish, you can mix and match components to your own specifications.
Worried about installation? Relax. Installation is simple because each system we sell includes an installation guide that makes installing your system a breeze.

So call us today. With World View Electronics you don't have to give up quality for price.

Nice Price \&Good Advice $1.502 .781 \cdot 6715$

 Uorld View Electronics
 $\checkmark 218$

May I suggest an improved method that we use aboard ship? First wrap the connector with self-adhering rubber tape (3M or similar), extending the tape approximately 2 inches past the connector end. Next, wrap in a similar fashion with regular plastic electrical tape. Then apply several coats of Scotchkote ${ }^{T M}$ (3M) weatherproofing.

This technique has proven very effective in this most demanding environment. Years later, it is a pleasure to remove this "cocoon" with one slice of a knife, and find a shiny connector as good as it was on the day of installation!

Scott W. Barber, WA2DRL USS Trenton (LPD-14)

ground plane loop

Dear HR:

I would like to call attention to a conflict in the details given in Bill Orr's February, 1983, column of the groundplane loop antenna. Both the drawing (fig. 1) and the text indicate that the semicircle is to be 0.2 wavelength long. In contrast, table 1 shows the dimension to be 0.1 wavelength. The article in CQ-DL doesn't clarify this either.

C.T. Atherton, WD6DUD
 Bell, California

Mr. Atherton is correct. This same conflict appears in all three references (ham radio, Radio Communication and CQ-DL). Do any readers know what the correct tap distance should be?

software piracy

Dear HR:

There is a problem in the Amateur Radio fraternity: software piracy. Whether by ignorance or simple disregard for the law, many Amateurs are stealing copyrighted programs. Most do not consider their theft a crime or a serious problem, but unless this practice is discontinued Amateur Radio will suffer.
With the influx of computers into the hobby a degree of software piracy was inevitable. Unfortunately the problem has become a blemish on

Amateur Radio. Thousands of dollars have been spent in litigation involving software piracy outside the hobby, and I had hoped Amateur Radio would police the problem internally and not require legal action. Sadly this is not the case.

I recently confronted two hamfest exhibitors who were selling copies of a Kantronics program. These people were copying and selling our programs to any Amateur willing to pay the price. I bought one of the programs for evidence and informed the seller that legal action would be taken. This seller was not a ham, but those buying the program were. We have several other examples of programs copied and sold.

There are a few simple steps we can all take as those interested in seeing the problem solved.

1. Never buy copied software.
2. Report pirates to the software manufacturer.
3. Don't allow illegal sales at your local hamfest.

Kantronics plans to prosecute those who steal our programs, as we have in the past. But without the assistance of the entire Amateur community the manufacturers will not be able to stop pirates from stealing their profits. If manufacturers are not able to sell enough products to make a profit other new and improved programs will not be written. Don't let the greed of a few deny the hobby of future expansion. Let's throw the bad apples out before they ruin the whole barrel.

Mike Forsyth Marketing Director Kantronics, Inc.
An Ohio-based dealer charged with selling pirated Amateur Radio and other types of software at a Michigan hamfest has been fined $\$ 2000$ for violation of United States copyright law. In its July 17 decision, the federal court in Toledo awarded damages to Kantronics, who initiated the suit, and issued a permanent injunction against further production and distribution of the illegal software.

- Editor

FREEMFJ $\rightarrow \infty$
 Free MFJ RTTY / ASCII/CW software for VIC-20 or C-64 with purchase of MFJ-1224, MFJ-1225 or MFJ-1228 from MFJ. Send/receive Baudot, ASCII, CW. Type ahead buffer. 24 hour clock. Supports VIC printer. Menu Driven. MFJ-1224/1225 cable. On tape. Available separately for $\mathbf{\$ 2 9 . 9 5}$.

FREE MFJ RTTY/ASCII/CW Software INCLUDES MFJ-1228. SOFTWARE ON TAPE. ADD VIC-20 OR C-64 AND RIG TO ENJOY COMPUTERIZED RTTY/ASCII/CW. ORDER MFJ-1228/MFJ1264 FOR VIC-20, MFJ-1228/MFJ-1265 FOR C-64.

Most versatlie RTTY/ ASCII/AMTOR/CW Inter face cartridge available for VIC-20 and Commodore 64. Gives you more teatures, more performance. more value for your money than any other interface cartridge available.
Same interface cartridge works for both VIC-20 and Commodore 64. Plugs into user's port.
Choose from wide variety of RTTY/ASCII/CW. even AMTOR software. Not married to one on-board software package. Use MFJ, Kantronics, AEA plus other software cartridge, tape or disk.
850 Hz and 170 Hz shifts on receive and transmit. Has mark and space outputs for scope tuning. Normal/Reverse switch eliminates retuning.
True dual channel mark and space active filters and automatic threshold correction gives good copy when one tone is obliterated by QRM or selective fading. Easy, positive tuning with twin LED indicators. Narrow 800 Hz active CW filter. Automatic PTT. Exar 2206 sine generator for AFSK output.
Shielded XCVR AFSK/PTT Intertace cable provided. Plus or minus CW keyed output. FSK out.
Powered by computer (few ma.), no power adapter to buy or extra wire to dangle or pick up/radiate RFI. Glass epoxy PCB. Aluminum enclosure, $41 / 2 \times 41 / 2 x 1^{\prime \prime}$

UNIVERSAL SWL RECEIVE ONLY COMPUTERINTERFACE

 FOR RTTY/ASCII/AMTOR/CW
MFJ-1225

FREE MFJ RTTY/ASCII/CW Software TAPE AND CABLE FOR VIC-20 OR C-64. ORDER MFJ-1225/ MFJ-1264 FOR VIC-20 OR MFJ-1225/MFJ-1265 FOR C-64.

Use your personal computer and communications receiver to receive commercial. military and amateur RTTY/ASCII/AMTOR/CW tratfic.
Plugs between recelver and VIC-20, Apple, TRS80C, Atarl, T1-99, Commodore 64 and most other personal computers. Requires appropriate software. Use MFJ, Kantronics, AEA and other RTTY/ ASCII/AMTOR/CW software.
Copies all shifts and all speeds. Twin LED indicators makes tuning easy, positive. Normal/Reverse switch eliminates tuning for Inverted RTTY. Speaker out jack. Includes cable to interface MFJ-1224 to VIC-20

UNIVERSAL RTTY/ ASCII/ AMTOR/ CW COMPUTER INTERFACE

Lets you send and receive computerized RTTY/ASCII/AMTOR/CW. Copies all shifts and all speeds. Copies on both mark and space. Sharp 8 pole active filter for 170 Hz shift and CW. Plugs between your rig and VIC-20, Apple, TRS-80C, Atari, TI-99, Commodore 64 or other personal computers. Uses MFJ, Kantronics, AEA software and other RTTY/CW software.

FREE MFJ RTTY/ASCII/CW Software COMPLETE PACKAGE INCLUDES MFJ-1224, SOFTWARE ON TAPE, CABLES. YOU NEED ONLY VIC-20 OR C-64 AND RIG TO ENJOY COMPUTERIZED RTTY/ASCII/CW. ORDER MFJ-1224/MFJ-1264 FOR VIC-20. MFJ-1224/MFJ-1265 FOR C-64.

New MFJ-1224 RTTY/ASCII/AMTOR/CW Computer Interface lets you use your personal computer as a computerized full featured RTTY/ASCII/ AMTOR/CW station for sending and receiving. Plugs between rig and VIC-20, Apple, TRS-80C, Atari, TI-99, Commodore 64 and most others.
Use MFJ software for VIC-20, Commodore 64 and Kantronics for Apple. TRS-80C, Atari, TI-99 and most other soltware for RTTY/ASCII/AMTOR/CW.
Easy, positive tuning with twin LED indicators.
Copy any shift $(170,425,850 \mathrm{~Hz}$ and all other shifts) and any speed ($5-100$ WPM RTTY/CW and up to 300 baud ASCII).
Coples on both mark and space, not mark only or space only, to improve copy under adverse conditions.
Sharp 8 pole 170 Hz shift/CW active filter gives good copy under crowded, fading and weak signal conditions. Automatic noise limiter suppress static crashes for better copy.
Normal/Reverse switch eliminates retuning. +250 VDC loop output drives RTTY machine. Speaker jack.

SUPER RTTY FILTER

$$
\begin{gathered}
\text { MFJ.725 } \\
\$ 3995
\end{gathered}
$$

Super RTTY

filter greatly
improves copy under
crowded, fading and weak signal conditions. Improves any RTTY receiving system. 8 pole bandpass active filter for 170 Hz shift ($2125 / 2295 \mathrm{~Hz}$ mark/space). 200 or 400 Hz bandwidths. Automatic noise limiter. Audio in, speaker out jacks. On/ott/bypass switch. "ON" LED. 12 VDC or 110 VAC with optional AC adapter, MFJ-1312, $\$ 9.95$. $3 \times 4 \times 1$ inch aluminum cabinet.
or Commodore $64.41 / 2 \times 11 / 4 \times 41 / 4$ inches. 12-15 VDC or 110 VAC with optional adapter, MFJ-1312, $\$ 9.95$.

Automatic tracking copies drifting signal.
Exar 2206 sine generator gives phase continuous AFSK tones. Standard 2125 Hz mark and 2295/2975 Hz space. Microphone line: AFSK out, AFSK ground, PTT out and PTT ground.
FSK keying output. Plus and minus CW keying CW transmit LED. External CW key jack.
Kantronics compatible socket.
Exclusive general purpose socket allows interfacing to nearly any personal computer with most appropriate software. Available TTL lines: RTTY demod out, CW demod out. CW-ID input, +5 VDC, ground. All signal lines are buffered and can be inverted using an internal DIP switch.
Use Galfo software with Apple, RAK with VIC-20, Kantronics with TRS-80C, T1-99, N4EU with TRS-80 III, IV. Some computers with some sottware may re quire some external components.
Metal cabinet. Brushed alum. front. $8 \times 11 / 4 \times 6$ in $12-15$ VDC or 110 VAC with adapter, MFJ-1312, $\$ 9.95$ MFJ-1223, $\mathbf{\$ 2 9 . 9 6}$, R $\$-232$ adapter for MFJ-1224.

CW INTERFACE CARTRIDGE FOR VIC-20/C-64

High pertormance CW

 Intertace cartridge. Gives excellent performanceMFJ-1226 under weak, crowded, noisy conditions. Works for both VIC-20 and Commodore 64. Plugs into user's port.

4 pole 100 Hz bandwidth active filter. 800 Hz center frequency. 3 pole active lowpass post detection filter. Exclusive automatic tracking comparator
Plus and minus CW keying. Audio in, speaker out jacks. Powered by computer.
Includes Basic listing of CW transmit/receive program. Available on cassette tape, MFJ-1252 (VIC-20) or MFJ-1253(C-64), $\$ 4.95$ and on software cartridge. MFJ-1254 (VIC-20) or MFJ-1255 (C-64), \$19.95.
You can also use Kantronics. AEA other software. Also copy RTTY with single tone detection.

> ORDER ANY PRODUCT FROM MFJ AND TRY IT-NO OBLGATION. IF NOT DEUGHTED, RETURN WITHIN 30 DAYS FOR PROMPT REFUND (LESS SHIPPING). One year unconditional guarantee - Made in USA. - Add $s 4.00$ each shipping/handling - Call or write for free catalog, over 100 products.

MFJ ENTERPRISES, INC Box 494. Mississippi State, MS 39762

TO ORDER OR FOR YOUR NEAREST DEALER, CALL TOLL-FREE 800-647-1800. Call 601-323-5869 in Miss. and outside continental USA Telex 53-4590 MFJ STKV

Kantronics Interface II The Interface For

 Apple, Atari, TI-99/4A, TRS-80C, VIC-20, and Commodore 64 Computers

Interface II is the new Kantronics transceivertocomputer interface. Interface II features a highly sensitive front end with mark and space filtering. Even the most discerning operator will be surprised with the Interface II's ability to dig out signals in poor band conditions. Our unique tuning system even displays signal fading.

X-Y scope outputs and dual interface outputs for VHF and HF connections make Interface II compatible with almost any shack. All three standard shifts are selectable, and Interface II is AMTOR compatible. Interface II is designed for use with Kantronics software.

Kantronics Software - The Industry Standard

Hamsoft

Our original program for reception and transmission of CWRTTY/ASCII. Features include Split Screen Display. Message Ports, Type-ahead buffer. and printer compatibility. Apple Diskette $\$ 29.95$. VIC-20 cartridge $\$ 49.95$. Atari board $\$ 49.95$. TRS-80C board $\$ 59.95$, T1-99 4 A cartridge $\$ 99.95$.

Hamtext

All the features of Hamsoft with the following additional capabilities: text editing, received message storage. variable buffer sizes, diddle, word wraparound, time transmission, and text transmission from tape or disc. The program is available on cartridge for the VIC-20 or Commodore 64, and diskette for the Apple. Suggested Retail \$99.95.

Hamsoft/Amtor

This program has Hamsoff features with the added ability of communteating in the newest coded amateur format-AMTOR. AMTOR offers error free low power communication. Hamsott/Amtor is available for the Atari, TRS-80C, VIC-20, and Commodore 64 computers. Suggested Retail \$79.95.

Amtorsoft

For the serious AMTOR operator using a VIC-20, Commodore 64, or Apple computer. This program is similar to Hamtext in capabilities, but can only be used for AMTOR. The Apple version includes both Hamtext and Amtorsoft on one diskette (\$139.95), while the Vic-20 and Commodore 64 cartridge is just Amtorsoft (\$89.95).

Kantronics UTU

The Universal Terminal Unit For Everyone Else

KANTRONICS SETS A NEW STANDARD WITH THE KANTRONICS UNIVERSAL TERMINAL UNIT.

UTU allows any computer with an RS232 port and a terminal program to interface with any transceiver. Additional software isn't necessary with UTU, as an internal microcomputer gives the unit data processing capabilities to send and receive in four coded amateur formats; Morse code, Radioteletype, ASCII, and AMTOR.

Sample terminal programs for IBM, TRS-80 Model III and IV, Kaypro, and other computers are included in the manual. Enhanced features can be user defined by altering the terminal program, giving you

For more information contact an

flexibility to program for your specific needs.
The Kantronics Universal Terminal Unit can send and receive CW at 6-99 WPM: RTTY 60, 67, 75, 100, and 132 WPM; ASCII 110, 150, 200, and 300 baud; and AMTOR. Dual tone detection and our unique bargraph tuning system make tuning fast and easy. Additional LEDs indicate Lock and Valid status during AMTOR operation. The RS232 port is TTL or RS232 level compatible.

If you've been waiting for a Kantronics system for your computer, the wait is over.

the development of Amateur SSB: a brief history

70 years of progress marks this familiar mode

Single-sideband radio telephone transmission in

 the Amateur bands - even well into the VHF region - is taken for granted these days. But it wasn't always so. Many Amateurs remember the days when amplitude modulation with full carrier (AM) reigned supreme. (For some it still does - Editor.)While the era of Amateur SSB is generally considered to have begun with an article published in 1948 by Arthur Nichols', much work was done well before; basic groundwork, in both theory and in hardware, was completed as early as 1933 by the ARRL and other groups. Unfortunately, much of this work was considered too complex for the Amateur community, and was consequently not published.

early history

The earliest written analysis of an amplitude modulated signal consisting of a carrier and upper and lower sidebands separated by the modulating frequency was made by Carl R. Englund, in a paper dated August 19, 1914. ${ }^{2}$ Englund who worked for the Bell System, recorded his analysis in his engineering notebook, but no record of what - if any - use was made of this information survives today. There is evidence that others were aware of the existence of sidebands, but Englund's analysis is apparently the earliest record to survive. In 1915, for example, H.D. Oliver, a telephone company engineer working transatlantic radio telephone at NAA, the then-new Navy radio station at Arlington, Virginia, considered the use of SSB for solving the problem of communications. Oliver proposed to tune the antenna to eliminate the carrier and one sideband, which would have been entirely practical because the transatlantic tests were
made at 5000 meters (60 kHz), where antenna $Q \mathrm{~s}$ are necessarily very high. But because the tests were carried out using $A M$, nothing appears to have come of this idea.

The fact that SSB, with or without a carrier, was considered as a means of transmitting information implies not only knowledge of the existence of sidebands, but also of the fact that information is contained therein.

No attempt was made to develop SSB for radio communication purposes at this time, probably because of the complexity of the receiver that would be required. State-of-the-art receivers in those days consisted of several stages of RF amplification - a detector followed by several stages of audio amplification. Likewise, filter design, too, was primitive by today's standards.

first SSB transmitted on a wire

The only organization to demonstrate interest in SSB was the Bell System, which developed the technique for long distance wire-line telephony. The first commercial wire carrier system using SSB was placed in service in 1918. SSB techniques were used exclusively for long distance telephone circuits until relatively recently, when they were replaced by pulse-code modulation (PCM).

The first application of SSB to radio was made in 1922, again by the Bell System. Bell set up an SSB transmitter, operating on 57 kHz , at Rocky Point, Long Island, and the British Post Office established a receiving station at New South Gate, England, near London. One-way communication was established in January 1923, proving the feasibility of SSB for transatlantic communication. The return message from England came by transatlantic telegraph cable. When a transatlantic radio telephone circuit was put into commercial operation on long wave (57 kHz) in 1927 , SSB was used. As the traffic increased and additional channels were needed, these were operated in the

By John J. Nagle, K4KJ, 12330 Lawyers Road, Herndon, Virginia 22071

fig. 1. Block diagram of 75-meter SSB transmitter developed by Robert Moore circa 1933.
short-wave band (HF, in today's terminology). Interestingly, short-wave circuits used AM because SSB techniques for HF were not perfected until 1936.

amateur SSB

As has often been the case in the history of Amateur Radio, one or two hams or rather groups of hams developed techniques for Amateur communications that closely paralieled work going on in industry. In the early 1930's, while Bell was adapting the SSB techniques used on wire-line to HF radio for transatlantic telephone circuits, two Amateur groups were working on Amateur SSB.

The first record of the development of an SSB transmitter for Amateur use that I have been able to find appeared in a series of three articles by Robert M. Moore, then W6DEI, in a magazine called $R / 9$; a block diagram of Moore's transmitter is shown is fig. 1. ${ }^{3}$ (Old-timers will remember R/9 as a first-rate technical magazine. In fact, one of the issues describing Moore's SSB transmitter also features an article on how to build a parabolic antenna - interesting reading even today! The name R/9 was lost when the monthly publication merged with Radio in January, 1936, after which Radio itself became a first-rate technical magazine.) Moore acknowledges having drawn on the published data of the Bell System "for a portion of the material used"' in his series.

The second group working on SSB was an ARRL team led by James J. Lamb, then Technical Editor of QST. At the Board of Directors' meeting held on May 12, 1933, Bernard J. Fuld, W2BEG, director of the Hudson Division, moved:
"That the technical staff of OST is instructed to investigate the feasibility, and, if feasible, is instructed to undertake the development at reasonable prices, of apparatus and methods of single-sideband and carrierless 'phone transmission'."
The motion passed unanimously. ${ }^{4}$

As a result of this motion, K.B. Warner, W1EH, who was secretary of the League as well as Editor-in-Chief and Business Manager of QST, sent a memorandum to James Lamb; because of its historical interest and the insight it provides into the personalities of the people involved, it is reproduced in fig. 2.

The memorandum was followed by a short ARRL inter-office memo (fig. 3) adding directional antennas to SSB and encouraging a "serious attempt to accomlish something." The list of names at the top of the memo is worth reviewing; how many of these people can you remember?

Lamb and his associates did go into a huddle, as requested; Lamb wrote a 12-page report, which he forwarded to Warner on September 25, 1933. While the report is too long to reproduce here, an excerpt (fig. 4) is included because A.L. Budlong (then ARRL Communications Manager) wrote some comments on this part of Lamb's report. Fig. 5 shows Budlong's comments on Lamb's SSB report.

Although Lamb's report was never published in QST as originally written, a later, revised version was published in the October, 1935 OST. ${ }^{5}$ This article was not listed in either the table of contents for that issue or in the annual index published in the December 1935 QST.

The decision of ARRL management not to pursue development of SSB as a means of reducing phone band interference was apparently based on the assumption that SSB equipment was too complicated for the average Amateur in 1933-34.

At that time, it was the policy of League officials, as well as the QST editorial staff, to do everything possible to encourage more people to become licensed Amateurs. This was believed necessary for the preservation of Amateur frequency allocations in the short-wave bands that were (and still are) essential for its continuation. In 1933-34 there were only about 20,000 licensed Amateurs - a small force in comparison to the highly organized, well-funded

JUL:

By vote of the Board of instructors, we are instructed to invesligate the feasibility of applying to amateur operation single-side-band and carrierless phone transmission, and if wo find it feasible wo are further instructed to produce cheapest-possible apparatus to accomplish $1 t$.
1 now place this matter in your hands. Suggest you and your cohorts do a bit of reading up on $1 t$ and then go into a huddle. I shall then need a written report of what you find and what you propose to do about it. i believe that that report will either state that there is ND and give definite reasons why not, or will find ND except in a limited extent in which you propose certain investigation and further report, or (theoretically at least, will find that there is good possibility of accomplishing something and that lab work 18 going to be undertaken along suoh-and-such lines, with a further report to come.

It is my instant impression that there is ND. I think that that will be the offhand opinion of all of you. I ask you-all, however, to put on your amateur thinking-caps and look at this from the traditional amateur point of view that there is always a new way to skin a cat. Without any doubt at all any such development would be of tremendous importance -- as an amateur achievement, as a commercial development of vast worth, as an 1 immense practical aid in congested amateur phone territory. To be acceptable, your report will have to show to the Board why it is not practicable to build such amateur phone stations, egg., because it mould have to have a filter that cannot be produced for less than $\$ 3000$.

1 do not know whether an autodyne receiver is capable of supplying the carrier for suppressed-carrier transmission or not. If it is not, and if it is not possible to use any local oscillator easily to supply the missing carrier, 1 should think that method of small interest to us.

1 also wish to suggest your consideration of partial-sideband transom suppression if you do not find it practicable to attempt fill suppression of one sideband. I mean, a method using a filter so as to cut off all frequencies above the value necessary for reasonably good speech, thus suppression unnecessarily high voice frequencies, harmonics, etc. \perp believe that a filter to do that can he built for a very small fraction of the cost of one necessary for eliminating one sideband neatly.

At this stage in my note-writing you and Hebie have used up my remaining time but I have just discovered that I have, compact in one booklet, all the studies made of this thing by the CoIR and I am going to conclude by handing you this publication of Opinions, calling your attention to pp. 59 to 74 relating to this subject. The booklet is to be returned to me, please.

Hi?

fig. 2. K.B. Warner, League secretary and Editor-in-Chief and Business Manager of OST, sent this memo to OST Technical Editor James Lamb.

Amarican Radio Relay League OFFICE MEMO

Beaudin	Hebert	Mr. Maxim
Peekley	Houghtrn	Mr. Stewart
Budlong	Houldson	Mr. Sezal
Chemberlain	Hul	
Ie soto	Last	
Gramme -	Rodimon	
Handy ${ }^{\text {c }}$	Scanlan	Mr.

Please note and return to me.
Returned noted; thanks.
Referred to you for necessary mation.
For your tiles.
Flease sive ine information an markei portion.
please note and rile.
What do you think about it?
For your znfozmetion.
When finished with your part, please pass an to

I have juat diacovered that it wat Fuld's intention to inolude in that motion re sideband suppreasion eto., the subjest of directional antonnain. lhat Is etparate and large order, but one that you might take look at in jour conferenoe.

I conc luded my not of wetorday without maying (av I moant to, that I mant jou follows to make a asious attempt to acompliah omething along the desired lines if it is feasible.
fig. 3. Briaf inter-office memo urged League staffers to make a "serious attempt to accomplish something."
entrepreneurs and industrialists representing commercial communications and international broadcasting. who wanted to take over the Amateur frequency assignments for their own use.

The League felt that the best way to increase the number of licensed operators was to describe equipment that was "sure-fire" in all League publications; that is, equipment that was easy to build with simple hand tools and certain to work without elaborate test equipment or much experience on the part of the builder. There was concern that if a newcomer started out in Amateur Radio by building the latest equipment - an SSB rig for example - he would probably be unable to make it work, and would become discouraged and leave Amateur Radio.

Because Amateur Radio is flourishing today, we can only speculate about what the outcome might have been if the Amateur community had actively pursued SSB in the early 1930s. If the Bell System, with all its resources, which were substantial even then, was not able to develop practical SSB equipment for HF radio until 1936, it seems likely that it would have been all but impossible for individual Amateurs to have done it in 1933 or 1934. (Even today, most Amateurs prefer to buy, rather than build, their SSB equipment.)

The League did stick to their "keep it simple" philosophy, despite the frustration of some technical people at ARRL headquarters who would have preferred to have been able to continue their pioneering developmental work in Amateur SSB for professional reasons.

Even though the ARRL did not pursue the develop-

-3-

The first of these, suppressed-carrier double-sideband transulssion, would eliminate the steady-type interference resulting from the heterodyning of undesired carriers with the and would reduce distortion fiom selective fadingly band-width as would normal (carrier and double-side-band) transmission. Simple suppressed-carrier transmission alsolmight have an economic advantage in that the full capability of a linear r.f. stage could be utilized for the intelligence-carrying sideband power to the exclugion of the carrler power thet normally is transmitted. In a $100 \$$ sinusoidally modulated wave, $2 / 3$ of the total power is represented by the carrier and $1 / 3$ by the sidebands. ${ }^{2,3}$ For instance, whereas a truly linear amplifier of 300-watt alaximun capabilits would have but 100-watt side-band output whth a normal 100% modulated wave, with the carrier suppressed the side-band power with the same amplifier theoretically could be as high as zou watts, representing three tias the intelligence-carrying power of the cerrier-and-1oubic-side-band capabillt.'. From the sinateur point of vien this advantage is more apparent than real, howeven, because a siven r.f. anjlirier when operiating Class-B and handliag only side-band jower has negigible adventage in side-bend outiut over the same anjlifier when oucrating clasi-C with plate modul tion in the syste": of carrier-ind-double-side-band transmission generally used by ala-

 other side-band suppressed, is technically less feasible than
suppression of the carrier and elimination of one sidemband because elininstion of one side band without affecting the carcier would be nore difficult than suppression of the carrier with elimization of one side-band. This syetell hardy merits consideration. Although it would seem to offer advantages in that the frefuencs band required would be lessened by the one set of sideband com;onents eliminated, it would offer no op;ortunity of reallzing greater intelligence-sarrying output from a transaitier of given peak-power rating than is obtained with carrier and double-side-band transmission. The gain would be negligible in view of the adaitional technical complexities involved. The heterodyne interference problem would be in no wise lessened.

Th thind systms,

mission with the carrier suppressed, appears to be not only the most ecsnoinical in frequency-band recuirement and in utilization of transialter capability, but also to hold loss technical complisation in reception than the first-aentioned type (double-sideband), and still less technical complication in transinission than V the second type (carrler and one side-band). The present object1ve must be priwarily the minimiaing of the interference problem, so far ss that may be possible, to the ena that greytar utilization of the avallable amateur 'phone bands may be hojed for. Hence, only single-side-band suppressed-carrier transmission warrants our scrious consicieration. This view is relnforced by the receiving constaeritions to be discussed later.

Carrier Suppression
Two means of suppressing the carrier-frequency comonent
are possible. One would be a filter having aharp attenuation at the carrier frequency and passing either one set or both sets
fig. 4. Excerpt from Lamb's 12 -page report, sent to Warner on September 25, 1933.

```
Bot tom p.3. top p.4. I do not agree. The sole aim of Board's hope is
to incresse effective width of fone bands by changing amateur radio to a
```



```
the point when he damns this system by saying it offers no opportunity
to increase output from given tubes. Nobody cares. Nobody cares even
if output is decreased -- If stations now occupy only half as much room.
Considering difficulty of replacing carrier, and of tuning at receiver with supnressed-carrier method, I hardiy can embrace it. I am most reluctant to accept.jim's top of page 4 that it is too difficult to sunpress just one 4 ideand He there makes bold statements with no supporting references. His language looks more like prejudice than \(\operatorname{logic}\) that the reader embraces because it is self-warranting.
At this moment I've read only first \(3 \frac{1}{2}\) pages, but \(I\) here make note that I'm pretty sure that the only feasible idea is suppression of one sidebaid.
Bottom of page 4 needs a statement to this effect: "All right, then, let's now have a look at methods that give this form of tr ansmission. The first thing to consider is suppressing the carrier...." Hiatus now.
----
Having read it,
It is too goddamnahly impartial. Too deep a subject for me to do my own deciding, I'm ready to accept the author's views, but I don't even know what he thinks. With almost no effort, he could make me think oither way. It needs just a bit of bias here, since it really is headed somewhere -- to prove something or other, -- isn't it? "Further in pronf of the futility of aspiring to so and so..... "Another example of the imnracticamility...."
(Imagine my urging bias here, condemning it in 2d paragraph)
```

fig. 5. A.L. Budlong, ARRL Communications Manager, added comments to this copy of Lamb's report.
ment of SSB in the 1930s, individual Amateurs did. James Lamb continued to think about it and proposed some interesting ideas - revolutionary in those days - including the transceiver concept of using the same oscillator for transmitting and receiving that is the backbone of all SSB transceivers today.

Fig. 6 shows an SSB generator using Lamb's crystal filter circuit. This sketch is dated June 18, 1933 - over 50 years ago. Notice the signatures of witnesses: F. Cheyney Beeklye, OST Advertising Manager, and Ross A. Hull, Associate Editor.

Another interesting and novel (in 1934) circuit for a modulator is shown in fig. 7. Here, two tubes are connected with the anodes in push-pull and their control grids in parallel. RF excitation is applied to the parallel connected control grids. This represents the carrier frequency, which is eliminated in the push-pull anode circuit. The audio information is connected, push-pull, into the suppressor grids. This circuit has the advantage that the RF and audio are kept
separated. (This disclosure was witnessed by Ross Hull.)

Probably Lamb's most dramatic development was the SSB transceiver sketched in fig. 8. This is basically the same block diagram as the SSB transceivers that began to appear on the market in the early 1970s. One slight difference may be interesting, however. Lamb perceived a receiver tuning problem with SSB. With AM, the practice was to tune to maximize the carrier. With SSB, this was no longer possible, because there is no carrier. To solve the receiver tuning problem, Lamb envisioned transmitting a 1 kHz tone; the receiver would be tuned until the 1 kHz tone was actually 1 kHz . When SSB systems came into actual use, the tuning problem was solved by Amateurs in a much simpler manner. Amateurs simply tuned the receiver until the voice sounded the most "natural."

Unfortunately, these developments in the use of SSB for Amateur communications were not publicized.

FULL EXPORT LICENSING \& SHIPPING SERVICES WE SHIP WORLDWIDE
foutheay y atelilite omemomer ispice
U.S. 1 NORTH, TALL PINES INDUSTRIAL PARK, P.O. BOX 3299 ST. AUGUSTINE, FLORIDA 32085, NAT. WATS 1 (800) 824-DISH

FL. WATS (800) 824-3300 • FOR TECHNICAL ASSISTANCE CALL (904) 824-1915/829-5434 TELEX 514030

Amateur SSB - phase two

The second phase in the development of Amateur SSB began during and immediately after World War II. O.G. Villard, then W6QYT, had become interested in SSB during the war. Although he was aware of Moore's work in 1934, he was intimidated by the filters required by Moore's rig. This apparent handicap led him to develop a phasing technique to generate SSB. As often happens to inventors, Villard discovered that the phasing technique had already been devised, and had been patented in the late 1920s.

The phasing technique offered the advantage of eliminating the need for elaborate filters and reducing
the number of frequency translations required. Filter technology was still in its infancy, and few Amateurs had access to the test equipment necessary for verifying a filter design. The biggest component problem lay in the design and construction of the required inductors, with adequate $Q s$ in the required frequency range.

As most readers will recall, with the phasing method of SSB generation, two components of the carrier 90 degrees apart in phase are developed; this was not difficult to do in the early 1940s. Similarly, two components of the audio voltage - also 90 degrees apart in phase - are developed. This posed much more of a problem for Villard, who attempted to use one phase
unmodified and to develop a wide band, a 10:1 ferequency range, and an audio channel shifted 90 degrees in phase. This proved to be a real problem because of the relative bandwidth required.
This problem was not solved until R.B. Dome ${ }^{6}$ showed that it was not necessary to actually shift the audio signal 90 degrees, but only to develop two audio voltages that were 90 degrees apart and then describe networks to do this. Fortunately, Dome's networks require only resistors and capacitors - no inductors. With this development, Villard was able to proceed with the actual construction of an SSB transmitter.
At the time, Willard was teaching electrical engineering at Stanford University. He and some of his students constructed an SSB transmitter using the phasing method and operated it on 20 meters from the Stanford Amateur Radio Club's station W6YX. ${ }^{7}$ Surprisingly, many Amateurs were able to copy SSB with their $A M$ receivers; their reports were extremely
positive. Willard's transmitter used four 813 tubes in the output stage and was capable of much more power output than the filter-type transmitters of the time. The SSB signals were generated at the operating frequency (20 -meter band) so that no frequency translations were required.

About ten days after Villard's group began transmuting, another SSB signal appeared on 20 meters. Arthur Nichols, then WOTOK, had built an SSB rig using the filter approach in only about five days, after hearing W6YX's SSB signal. This was a remarkable accomplishment, especially for that time; even today, most Amateurs would have difficulty building an SSB rig in five days.

filter approach to SSB

The January 1948 issue to QST featured an article by Nichols describing his SSB transmitter. Two related articles also appeared in this issue: one by Byron

 anodes in decrees (them opposition). Side-bend output with carrie component anppomal

R_{g} - Grid. leaks, for bias,
R_{t} - Audio loading resistor
$R_{R_{1}}^{g}+U_{2}$ - Panders. Tape doreen -G, Ind. Tubes
T_{1} - R.F. input transformer (coupled to suppressorGridis) $\left(F_{i}\right)$

T_{2} - Audio Coupling $T_{1 \text {-ansforma }}$.
T_{3} - R.F. OuTput Trusformer

C_{1}. Input Tuning Condenser

C_{2} - R.F. coupling condensers
C_{3} - R.F. By-pass condensers
C_{4}. R.E. by. pass condenser
fig. 7. Modulator circuit separates RF and audio.

fig. 8. Lamb's SSB transceiver.

Goodman, W1DX, ${ }^{8}$ who explained the theoretical aspects of SSB, and a second by Villard, ${ }^{9}$ in which he described the early SSB on-the-air tests from W6YX. A block diagram of Nichol's 1948 transmitter -
similar to Moore's 1933 rig - is shown in fig. 9. Nichols used a $10-\mathrm{kHz}$ filter to eliminate the carrier and undesired sideband with two frequency translations to 20 meters. Moore used two translations to 75

meters. From a cursory examination, it appears that Nichol's and Moore's filters used Bell System technology; both appear to have been based on telephone carrier filters, with Moore using the next lower carrier channel slot than Nichols. Nichols obtained his filter from the late Fred Berry, formerly W0MNN.

By this time SSB enjoyed the active support of the League and others: additional theoretical material and improved techniques and equipment appeared in rapid order. In fairness, it must also be pointed out that the level of technical sophistication of the Amateur community had been greatly raised by the rapid development of electronics during World War II and by the large number of people introduced to the new technology both at home and in the field. This - coupled with the increase in the ranks of Amateur Radio operators and the fact that work done by Amateur Radio operators was more widely recognized - improved the political posture of Amateur Radio in its struggle against commercial and international broadcast interests in the battle for frequency allocation.

final comments

Arthur Nichols designed and built his SSB transmitter independently of other workers in the field. First licensed in 1931, he has always been a home-brew type, and is currently W6EVL in Fallsbrook, California.

In addition to the SSB transmitter Nichols used himself, he built two more transmitters which he sold to the National Company of Malden, Massachusetts. At the time, National was one of the leading manufacturers of Amateur equipment. I assume Nichols' transmitters were to be prototypes for a National SSB transmitter; if so, National could have had an early lead in supplying SSB equipment to the Amateur community. But National was unfortunately having financial problems and chose not to take advantage of the opportunity.

Nichols' interest in SSB came about naturally. His father was the late Dr. H.W. Nichols, an engineer with the Bell System who worked on the development of SSB radio equipment for transatlantic radio telephony service. Dr. Nichols was sent to England in 1923 to work with the British Post Office on arrangements to receive the Bell System transmissions mentioned earlier. While in England, he presented a paper before the British Institution of Electrical Engineers on the transatlantic radio telephone problem. ${ }^{10}$ The elder Nichols died in 1925 and did not live to see the longterm results of his work.

I have not been able to locate Robert M. Moore, formerly W6DEI, and I believe, with regret, that he may be a silent key. I would be happy to hear from anyone who knows (or knew) Moore, and particularly from anyone familiar with his interest in SSB.

acknowledgements

My thanks to Professor O.G. Villard, W6YX, Arthur H. Nichols, W6EVL, and James Millen, W1HRX, who reviewed an early draft of this manuscript and suggested changes, many of which have been incorporated.

My special thanks to James Lamb, who made his engineering notebook available to me, thus arousing my interest in the history of SSB.

references

1. Arthur H. Nichols, formerly WפTQK, "A Single-Sideband Transmitter for Amateur Operation," OST, Volume XXXII, No. 1, January, 1948, page 19. 2. Taken from Arthur A. Oswald, "Early History of Single-Sideband Transmissions," Proceedings of IRE, (Single-Sideband issue), Volume 44, No. 12, 1956 pages 1676-1679.
2. Robert M. Moore, formerly W6DEI, "Single Sideband Transmission," R/9: Part I, July/August, 1933, page 7; Part II. December, 1933, page 18; Part III, January, 1934, page 25.
3. Minutes of Annual Meeting, (May 22, 1933), Board of Directors, American Radio Relay League, QST, Volume XVII, No. 7, July, 1933, page 24. 5. James J. Lamb, "Background for Single-Sideband 'Phone'," OST, Volume XIX, No. 10, October 1935, page 33.
4. R.B. Dome, "Wideband Phase Shift Networks," Electronics, Volume 19, No. 12, December, 1946, page 112.
5. O.G. Villard, Jr., "A High-Level Single-Sideband Transmitter," Proceedings of IRE, Volume 36, No. 12, November, 1948, page 1419.
6. Byron Goodman, W1DX, "What is Single-Sideband Telephone?" QST, Volume XXXIII, No. 1, January, 1948, page 13.
7. O.G. Villard, Jr., "Single-Sideband Operating Tests," QST, Volume XXXIII, No. 1, January, 1948, page 16.
8. H.W. Nichols, "Transoceanic Wireless Telephony," Journal of the (British) Institution of Electrical Engineers, Volume 61, No. 320, July. 1923, page 812.
ham radio

STUMPED FOR A GIFT IDEA?

I.D. BADGES

No ham should be without an I.D. badge It's just the thing for club meetings, conventions, and get-togethers, and you have a wide choice of colors. Have your name and call engraved in either standard or script type on one of these plastic laminated I.D. badges. Wear it with pride! Available in the tollowing color combinations (badge/lettering): white/red, woodgrain/white, blue/white, white/black, yellow/blue, red/white, green/white, metallic gold/black. metallic silver/black.
\square UID Engraved I.D. Badge

HERE'S A GIFT IDEA!
How about an attractive BASEBALL style cap that has name and call on it. It's the perfect way to keep eyes shaded during Fieid Day, it gives a jaunty air when worn at Hamtests and it is a great help for friends who have never met to spot names and calls for easy recognition. Great for birthdays, anniversaries, special days, whatever occasion you want it to be. Hats come in the following colors: GOLD, BLUE, RED, KELLY GREEN. Please send call and name (maximum 6 letters per line),
\square UFBC-81
REGULAR PRICE HAT AND BADGE $\$ 7.50+$ SHIPPING
SPECIAL
\$6.49
SAVE $\$ 1.00$
Please enclose $\$ 1$ to cover shipping and handling.

160 METER HALF-WAVE DIPOLE ONLY 90 FEET LONG !!

anto $a[\mathrm{c}, \mathrm{b}$

B \& W MODEL AES-160 AMATEUR ANTENNA

Now you no longer need a half-acre for a halfwave 160 meter center-fed dipole antenna! $B \& W$ Model AES-160 covers 160 and 30 meter bands in approximately 90 feet. Unique loading coils shorten antenna by more than 150 feet. Uses no traps. May be installed as flat-top, sloper or inverted V.

- SWR 1.2:1 AT RESONANCE
- 1 KW POWER (2 KW PEP)
- 75 KHZ BANDWDTH
- RUGGED CONSTRUCTION
- TERMINATES IN SO-239

ONLY
 59900

ADD $\$ 2.00$ SHIPPING AND HANDLING
SHIPPING WEIGHT 2 LBS

ALL OUR PRODUCTS MADE IN USA

BARITER \& WILTTABESON Quality Communication Products Since 1932 At your Distributors Write or Call.

Your Ham Tube

 Headquarters !TUBES BOUGHT, SOLD AND TRADED
SAVE SSS-HIGH SSS FOR YOUR TUBES
Call Toll Free 800-221.0860
Tubes

Tu			
$3-400 Z$	\$85.00	7360	\$10.00
3-500Z	. 85.00	7735A	27.50
4-400A	80.00	8122	105.00
4CX250B	50.00	8156	. 12.50
572B	48.50	8643	82.50
811A	12.00	8844	26.50
813	30.00	8873	175.00
6146B	. 6.50	8874	195.00
6360	. 4.25	8877	500.00
6883B.	. 6.75	8908	.. 12.50

MAJOR BRANDS ON RECEIVER TUBES 75\% off list
Semiconductors

RF Connectors
PL259 10/\$4.95 M358 250 ea
PL258...................10/8.95 M359......................1.75 ea.

UG 175/17610/1.60 Type " N " Twist on
UG255/u............... 2.50 ea. (RG8/u).............. $\$ 4.75 \mathrm{ea}$.
UG273/U..............2.25 ea. Minimum Order $\$ 25.00$ vza

- $127 \quad$ Allow $\$ 3.00 \mathrm{~min}$. for UPS charges
$\square Q \int$ COMMUNICATIONS, Inc. 2115 Avenue X Brooklyn, NY 11235 Phone (212) 646-6300
Call CECO For Your CCTV Security And Color Production Requirements

an audio automatic gain control

Circuit converts

 50 dB input dynamic rangeto constant output

In a recent ham radio column,' Bill Orr commented - correctly, I believe - on the relative lack of use, in Amateur Radio, of state-of-the-art developments in audio processing technology. Perhaps this is so because commercial audio processors are very expensive, or because the broadcast quality frequency response and distortion characteristics of commercial equipment represent a higher degree of precision than is really necessary in Amateur Radio applications a kind of technological "overkill."

This article describes an automatic gain control (AGC) amplifier that can be used in several Amateur Radio applications. Simple and inexpensive to build, it will maintain, at a maximum gain, a constant output level within $\pm 2 \mathrm{~dB}$ over an input level range of 50 dB .
As a broadcast engineer, I developed this circuit in hopes of eliminating the need for announcers to continually adjust levels for program material arriving by twisted pair. Amateur Radio applications could include autopatches, phone patches, and repeaters. (Imagine a repeater that is modulated to a constant level regardless of the received signal's deviation!) When used ahead of any transmitter, the AGC functions much like a compressor used in commercial broadcast operation.

circuit description

The AGC schematic is illustrated in fig. 1. An audio signal applied to U1, an MC3340P, is passed through to the 741 operational amplifier, U2. After being amplified, the output signal of U 2 is sampled and applied to a negative voltage doubler/rectifier circuit composed of diodes CR1 and CR2 along with capacitor C 1 . The resulting negative voltage is used as a control voltage that is applied to the gate of the 2N5485 JFET Q1. Capacitor C2 and resistor R2 form a smoothing filter for the rectified audio control voltage.

The JFET is connected from pin 2 of the MC3340P to ground through a 1 -kilohm resistor. As the voltage applied to the gate of the JFET becomes more negative in magnitude, the channel resistance of the JFET increases causing the JFET to operate as a voltage controlled resistor.

The MC3340P audio attenuator is the heart of the AGC. It is capable of 13 dB gain or nearly -80 dB of attenuation depending on the external resistance placed between pin 2 and ground. An increase of resistance decreases the gain achieved through the MC3340P. The circuit gain is not entirely a linear function of the external resistance but approximates such behavior over a good portion of the gain/attenuation range. ${ }^{2}$

An input signal applied to the AGC input will cause the gate voltage of the JFET to become proportionally negative. As a result the JFET increases the resistance from pin 2 to ground of the MC3340P causing a reduction in gain. In this way the AGC output is held at a nearly constant level.

Because a finite time is needed to generate the feedback to control the AGC gain, an abrupt change from soft to loud at the input will cause a short overshoot or "pop" sound. Capacitor C3 with resistor R3 form a low-pass filter in the feedback circuit of the 741 operational amplifier. This low-pass action minimizes the overshoot.

adjustments

There are three possible adjustments to the AGC. They are dynamic range, attack time, and recovery time.

The dynamic range is adjustable by selecting the value of resistor R3 in the feedback circuit of the 741. A 100 kilohm value for $R 3$ results in the maximum obtainable dynamic range, nearly 50 dB . Because this amount of gain will probably be too large for most Amateur Radio applications, R3 may be decreased to produce the dynamic range desired. If R3 is changed, C3 must also be changed. The product of R3 and C3 must remain the same constant value to preserve the low-pass filter characteristics of the stage.

The attack time is controlled by C 1 . The $0.33 \mu \mathrm{~F}$ value shown for C 1 produces the fastest possible at-

By Lee Barrett, K7NM, 525 North 2150 West, West Point, Utah 84015

fig. 1. AGC schematic diagram.
parts list for fig. 1

item	description
C1	$0.33 \mu F, 50$ volt mylar
C2	$22 \mu F, 25$ volt radial electrolytic
C3	$82 \mathrm{pF}, 500$ volt silver mica
C4	$0.1 \mu F .50$ volt ceramic disc
C5	$1 \mu \mathrm{~F}, 25$ volt radial electrolytic
C6, 77	$4.7 \mu \mathrm{~F}, 25$ volt radial electrolytic
C8	$680 \mathrm{pF}, 500$ volt silver mica
C9,C10	$100 \mu \mathrm{~F}, 25$ volt radial electrolytic
C11	$0.01 \mu F, 50$ volt ceramic disc
CR1, CR2	1N270 germanium diode
CR3	1N4742 12 volt, 1 watt zener diode
Q1	2N5485 N-channel JFET
R1,R5	1000 ohm
R2	1 megohm
R3	100,000 ohm
R4	18,000 ohm
R6,R7	$10,000 \mathrm{ohm}$
P8	470 ohm. 1/2 watt
U1	MC3340P voltage controlled aftenuator
U2	LM741CN operational amplifier
miscellaneous	
	PC board, IC sockets, optional transformers (see text). solder, wire, case, builder's choice of connectors, 24 volt or alternative power supply (see text)

Notes:
All resistors are $1 / 4$ watt, 5 percent unless otherwise noted. A printed circuit board with parts kit (\$26.00) or the printed circuit board alone ($\$ 15.00$) is available from the author, Lee Barrett, K7NM, 525 North 2150 West, West Point. Utah 84015. Please add $\$ 2.00$ shipping and handling.
table 1. AGC measured parameters with $\mathbf{0 - 8}$ bridging transformer input.
frequency response (-3 dB):
below AGC threshold (-40 dBm input): $200 \mathrm{~Hz}-12 \mathrm{kHz}$
in AGC range (-20 dBm input): $40 \mathrm{~Hz}-20 \mathrm{kHz}$
AGC threshold: $\quad-38 \mathrm{dBm}$
noise floor (input shorted): -42 dB maximum
input level (dBm) output $(0 \mathrm{~dB}=2 \mathrm{~V} p-\mathrm{p}) \quad$ distortion (percentage)

10	2	2.0
-20	0	0.5
-36	-2	0.5

tack time. In no case should C1 exceed this value or a low frequency oscillation will occur.

Capacitor C 2 is the main recovery time adjustment. I have found the best value for speech applications to be $22 \mu \mathrm{~F}$. This value can be decreased or increased to provide faster or slower recovery times, respectively.

connections

The AGC may be fed either directly with an unbalanced input or through a transformer by a balanced audio source. In broadcast applications, I used high grade transformers such as the TRW 0-8 or 0-30. In Amateur Radio applications where speech is the rule less expensive Calectro transformers have been used successfully.

The AGC output is normally unbalanced. Loads as low as 600 ohms have been driven by the AGC although a 1 kilohm or higher resistance termination is desirable. Again, a transformer could be used to create a balanced output condition if desired.

In Amateur Radio applications a level potentiometer will probably need to be added across the output to act as a level adjustment. The relatively high level output of the AGC can then be reduced to the drive level required by the intended load.

conclusion

Table 1 lists the test results of measurements made on the AGC.

The original AGC was designed to plug into the Collins/Autogram IC series broadcast mixers and operated on 24 volts DC. In your application, however, the zener may be adjusted or eliminated along with the series resistor to operate the AGC on voltages down to about 8 volts.

references

[^1]ham radio

THE MOST AFFORDABLE REPEATER

ALSO HAS THE MOST IMPRESSIVE PERFORMANCE FEATURES

(AND GIVES THEM TO YOU AS STANDARD EQUIPMENT!)

Band	Kit		Wired/Tested
		$\$ 680$	
$10 \mathrm{MM}, \mathbf{2 M}, \mathbf{2 2 0}$		$\$ 880$	
440		$\$ 780$	
	$\$ 980$		

Both kit and wired units are complete with all parts, modules, hardware, and crystals.
CALL OR WRITE FOR COMPLETE DETAILS.
Also available for remote site linking, crossband, and remole base.

FEATURES:

- SENSItivity second to none; typically 0.15 uV ON VHF, 0.3 uV ON UHF.

- SELECTIVITY THAT CAN'T BE BEATI BOTH 8 POLE CRYSTAL FILTER \& CERAMIC FILTER FOR GREATER THAN 100 dB AT $\pm 12 \mathrm{KHZ}$. HELICAL RESONATOR FRONT ENDS. SEE R144, R220, AND R451 SPECS IN RECEIVER AD BELOW.
- OTHER GREAT RECEIVER FEATURES: FLUTTERPROOF SQUELCH, AFC TO COMPENSATE FOR OFF-FREQ TRANSMITTERS, SEPARATE LOCAL SPEAKER AMPLIFIER \& CONTROL.
- CLEAN, EASY TUNE TRANSMITTER; UP TO 20 WATTS OUT (UP TO 50W WITH OPTIONAL PA).

HIGH QUALITY MODULES FOR REPEATERS, LINKS, TELEMETRY, ETC.

HIGH-PERFORMANCE

 RECEIVER MODULES

- R144/R220 FM RCVRS for 2 M or 220 MHz . 0.15 uV sens.; 8 pole xtal filter \& ceramic filter ini-f, helical resonator front end for exceptional selectivity, more than -100 dB at $\pm 12 \mathrm{kHz}$, best available today. Flutter-proof squelch. AFC tracks drifting xmtrs. Xtal oven avail. Kit only \$138.
- R451 FM RCVR Same but for uhf. Tuned line front end, 0.3 uV sens. Kit only $\$ 138$.
- R76 FM RCVR for $10 \mathrm{M}, 6 \mathrm{M}, 2 \mathrm{M}, 220$, or commercial bands. As above, but w/o AFC or hel. res. Kits only \$118. Also avail w/4 pole filter, only $\$ 98 /$ kit.
- R110 VHF AM RECEIVER kit for VHF aircraft band or ham bands. Only \$98.
- R110-259 SPACE SHUTTLE RECEIVER, kit only \$98.

TRANSMITTERS

- T51 VHF FM EXCITER for $10 \mathrm{M}, 6 \mathrm{M}, 2 \mathrm{M}$, 220 MHz or adjacent bands. 2 Watts continuous, up to $21 / 2 \mathrm{~W}$ intermittent. $\$ 68 / \mathrm{kit}$.

- T451 UHF FM EXCITER 2 to 3 Watts on 450 ham band or adjacent freq. Kit only $\$ 78$.
- VHF \& UHF LINEAR AMPLIFIERS. Use on either FM or SSB. Power levels from 10 to 45 Watts to go with exciters \& xmtg converters. Several models. Kits from $\$ 78$.
- A16 RF TIGHT BOX Deep drawn alum. case with tight cover and no seams. $7 \times 8 \times 2$ inches. Designed especially for repeaters. $\$ 20$.

ACCESSORIES

- HELICAL RESONATOR FILTERS available separately on pcb w/connectors.
HRF-144 for $143-150 \mathrm{MHz} \$ 38$ HRF-220 for $213-233 \mathrm{MHz} \$ 38$ HRF-432 for $420-450 \mathrm{MHz} \$ 48$
- COR-2 KIT With audio mixer, local speaker amplifier, tail \& time-out timers. Only $\$ 38$.
- COR-3 KIT as above, but with "courtesy beep". Only \$58.
- CWID KITS 158 bits, field programmable, clean audio, rugged TTL logic. Kit only \$68.
- DTMF DECODER/CONTROLLER KITS. Control 2 separate on/off functions with touchtones*, e.g., repeater and autopatch. Use with main or aux. receiver or with Autopatch. Only \$90
- AUTOPATCH KITS. Provide repeater autopatch, reverse patch, phone line remote control of repeater, secondary control via repeater receiver. Many other features. Only $\$ 90$. Requires DTMF Module.
- NEW - SIMPLEX AUTOPATCH Use with any transceiver. System includes DTMF \& Autopatch modules above and new Timing module to provide simplex autopatch and reverse autopatch. Complete patch system only $\$ 200 / \mathrm{kit}$. Call or write for details.

Hamtronics Breaks the Price Barrier!

No Need to Pay\$80 to $\$ 125$ for a GaAs FET Preamp.

FEATURES:

- Very Low Noise: 0.7 dB VHF, 0.8 dB UHF - High Gain: 18 to 28 dB , Depending on Freq. - Wide Dynamic Range for Overload Resistance
- Latest Dual-gate GaAs FET, Stable Over Wide Range of Conditions
- Rugged, Diode-protected Transistors
- Easy to Tune
- Operates on Standard 12 to 14 Vdc Supply
- Can be Tower Mounted

MODEL		TUNES RANGE		
			PRICE	
ENG-28		$26-30 \mathrm{MHz}$		$\$ 49$
LNG-50		$46-56 \mathrm{MHz}$		$\$ 49$
LNG-144		$137-150 \mathrm{MHz}$		$\$ 49$
LNG-220		$210-230 \mathrm{MHz}$		$\$ 49$
LNG-432		$400-470 \mathrm{MHz}$		$\$ 49$
LNG-40		$30-46 \mathrm{MHz}$		$\$ 64$
LNG-160		$150-172 \mathrm{MHz}$		$\$ 64$

ECONOMY PREAMPS

Our traditional preamps, proven in years of service. Over 20,000 in use throughout the world. Tuneable over narrow range. Specify exact freq. band needed. Gain $16-20 \mathrm{~dB} . \mathrm{NF}=$ 2 dB or less. VHF units available 27 to 300 MHz . UHF units available 300 to 650 MHz .

- P30K, VHF Kit less case $\$ 18$
- P30W, VHF Wired/Tested \$33
- P432K, UHF Kit less case \$21
- P432W, UHF Wired/Tested

Models to cover every practical if \& if range to listen to SSB, FM, ATV, etc. NF $=2 \mathrm{~dB}$ or less.

	Antenna Input Range	Receiver Output
VHF MODELS	28-32	144-148
VHF MODELS	50-52	28-30
Kit with Case \$49	50-54	144-148
Less Case \$39 Wired \$69	144.146	$28 \cdot 30$
	145-147	28-30
	$144-144.4$ $146-148$ 18	$27-27.4$ $28 \cdot 30$
	144-148	50-54
	220-222	28-30
	220-224	144-148
	222-226	$144-148$
	220-224	50.54
	222-224	28-30
UHF MODELS	432-434	28-30
Kit with Case \$59	435-437	28-30
Less Case \$49	432-436	-50-54
Wired \$75	439.25	61.25

SCANNER CONVERTERS Copy 72-76, 135-$144,240-270,400-420$, or $806-894 \mathrm{MHz}$ bands on any scanner. Wired/tested Only $\$ 88$.

SAVE A BUNDLE ON

 VHF FM TRANSCEIVERS!FM-5 PC Board Kit - ONLY \$178 complete with controls, heatsink, etc. 10 Watts, 5 Channels, for 2 M or 220 MHz .

Cabinet Kit, complete with speaker, knobs, connectors, hardware. Only $\$ 60$. curves at right. Gain = approx. 12 dB .

Model	Tuning Range	Price
HRA-144	$143-150 \mathrm{MHz}$	\$49
HRA-220	$213-233 \mathrm{MHz}$	\$49
HRA-432	$420-450 \mathrm{MHz}$	\$59
HRA-()	$150-174 \mathrm{MHz}$	\$69
HRA-()	$450-470 \mathrm{MHz}$	\$79

For SSB, CW, ATV, FM, etc. Why pay big bucks for a multi mode rig for each band? Can be linked with receive converters for transceive. 2 Watts output vhf, 1 Watt uhf.

VHF \& UHF LINEAR AMPLIFIERS. Use with above. Power levels from 10 to 45 Watts. Several models, kits from \$78.

LOOK AT THESE ATTRACTIVE CURVES!

Typical Selectivity Curves
Molical Resonators.

IMPORTANT REASONS WHY YOU SHOULD BUY FROM THE VALUE LEADER:

1. Largest selection of vhf and uhf kits in the world.
2. Exceptional quality and low prices due to large volume.
3. Fast delivery, most kits shipped same day.
4. Complete, professional instruction manuals.
5. Prompt factory service available and free phone consultation.
6. In business 21 years.
7. Sell more repeater modules than all other mfrs, and have for years. Can give quality features for much lower cost.

- Call or Write for FREE CATALOG
- (Send \$1.00 or 4 IRC'c for overseas mailing)
- Order by phone or mail © Add \$3 S \& H per order (Electronic answering service evenings \& weekends) Use VISA, MASTERCARD, Check, or UPS COD.

65-E MOUL RD. • HILTON NY 14468

 Phone: 716-392-9430Hamtronics ${ }^{\text {o }}$ is a registered trademark

AMATEUR RADOO IS POCE FOR AMATEURS.

The word amateur is a little misleading. There's nothing amateur about the way hams maneuver signals successfully through the airwaves.

It takes a unique blend of human skill and product excellence.

That's why so many amateurs gravitate toward Larsen amateur antennas.

Larsen antennas are designed by engineers who know amateur radio from the business end of the mike; who make it their business to see that every Larsen antenna goes the distance, or it doesn't go out the door.

As with our commercial products, every Larsen amateur antenna features our exclusive high efficiency platings-either Kūlrod ${ }^{\circledR}$ chrome, or Kūlrod $\mathrm{T}^{\text {TM }}$ Teflon. ${ }^{\circledR}$

Both deliver extra miles and all-weather protection. And they're backed by our no-nonsense warranty.

So wherever you operate - from 10 meters to 1.3 GHz - Larsen antennas will deliver strong performance ... instead of blue sky.

Ask your favorite amateur dealer to tune you in to Larsen's professional quality, or write for a free amateur catalog.

Larsen Antennos The Amateur's Professional

work OSCAR 10 with your HT

Use a local gateway to work the bird

Soon, working intercontinental DX may be as simple as picking up your 2 -meter HT. Using a local "gateway" facility* to relay signals to a satellite, thousands may soon sample the world of Amateur Radio space communications. How will this be possible? How can you participate?
AMSAT OSCAR 10 (AO-10) - the newest and most sophisticated Amateur Radio communications satellite ever - was launched in June, 1983, as a replacement for the ill-fated Phase IIIA. AO-10 (Phase IIIB prior to launch) has quickly established itself as the all-time DX champ of OSCARs; in the year or so since its launch, nearly 100 countries have become active on it. Intercontinental OSOs are now commonplace . . . in fact, some stations have worked over 90 countries already! Until the AO-10 was launched and operating, it took a moderately wellequipped VHF/UHF station to accomplish this; now intercontinental QSOs on modest equipment are commonplace.
AO-10 uses two linear transponders that receive inputs on one frequency and translate them downward to another band (see fig. 1). The transponders are functionally similar to a repeater with a wide frequency split. In the case of AO-10, a block of frequencies uplinked to it in the $435-\mathrm{MHz}$ range is repeated on a correspondingly wide block of frequencies in the $145.8-\mathrm{MHz}$ range; this is the Mode B transponder. A second, even broader transponder uses a $1269-\mathrm{MHz}$ uplink and a $436-\mathrm{MHz}$ downlink. (See table 1 for the exact frequencies.)

[^2]
the gateway station

A gateway station provides many of the functions that an ordinary OSCAR earth station might perform. Virtually any station that can reach a gateway can get a taste of satellite activity. Here's how it works.

Let's assume the gateway station is associated with your local repeater and uses part of the repeater's equipment. In this case the gateway will, on uplink, take the audio feed from the repeater's FM receiver; drive a moderately powerful SSB transmitter uplink with the audio from the repeater; point the uplink antenna; and derive control signals (transmit/receive) from the repeater.

On downlink, the gateway will preamplify the SSB downlink signal from the satellite; feed the signal to an SSB receiver; take the audio from this receiver to the repeater FM transmitter audio input; point the downlink antenna; and derive control signals (transmit/receive) from the repeater.

The system illustrated in fig. 2 can be considered as a standard OSCAR satellite station with multiple remote access.

As a broadband repeater, AO-10 takes a spectrum $150-\mathrm{kHz}$ wide on the uplink, translates the frequency down, and repeats the signals with the same relative amplitude in the downlink spectrum. The Mode L transponder provides a greater capacity of 800 kHz of spectrum in which to work. That's more than all the spectrum in the 20 and 15 meter bands combined. A second type of gateway uses a linear transponder similar to the linear transponder used on the sateilite, but with the frequency pairs reversed; in this manner several stations can simultaneously access AO-10 through this type of gateway. Both types of gateways have been tried successfully. WB3EYB in Harrisburg, Pennsylvania, has operated a gateway successfully in conjunction with a standard FM repeater. KE3D in

By Vern "Rip" Riportella, WA2LQQ, Executive Vice President, AMSAT, P.O. Box 177, Warwick, New York 10990
table 1. AO-10 uplink/downlink frequencies.* (Note: These do not represent "channels" per se, but show the relationship between inputs and outputs. Coverage is continuous from band edge to band edge.)

mode B	
uplink (MHz)	results in downlink (MHz)
435.032	145.972
435.050	145.955
435.070	145.935
435.090	145.915
435.110	
435.130	
435.150	
435.170	
435.175	
	general beacon

mode L

1269.050
1269.100
1269.150
1269.200
1269.250
1269.300
1269.350
1269.400
1269.450
1269.500
1269.550
1269.600
1269.650
1269.700
1269.750
1269.800
1269.850
general beacon
engineering beacon
436.950
436.900
436.850
436.800
436.750
436.700
436.650
436.600
436.550
436.500
436.450
436.400
436.350
436.300
436.250
436.200
436.150
436.020
436.040
*exclusive of Doppler shift

Boulder, Colorado, and DJ4ZC in Marburg, West Germany, are known to be working on the terrestrial, broadband linear transponder approach. The FM repeater approach is simplest and can be implemented quickly using existing equipment. The terrestrial linear transponder, on the other hand, requires special equipment and techniques.
There is nothing special about the choice of input/ output frequencies for the station connecting to the actual gateway. Two-meter repeaters will work as well as $6-$ meter or $440-\mathrm{MHz}$ versions. Suitable isolation techniques must be observed, however, because a strong 2-meter FM transmitter close to the gateway station 2-meter receiver is likely to be strongly affected (desensed) by the local FM signal. Remoting, cavity filtering, and other techniques are appropriate for this and similar situations where the repeater frequencies and the gateway frequencies are in the same band.

fig. 1. AO-10 modes and typical gateway operation.

operation

SSB and CW are the preferred modes of operation on AO-10. FM and full-carrier AM are discouraged because these continuous-power modes use precious solar-derived electrical power even in the absence of modulation; SSB does not. That's the reason FM inputs to the repeater are baseband converted to SSB via the audio circuitry. Under normal conditions, you should expect a received signal-to-noise ratio of 10 dB or more at the gateway. Under ideal, low-traffic conditions, the S / N ratio may approach 20 dB . The downlink power of the satellite transponder is shared among all the signals appearing in the uplink passband. A S/N ratio of 3 or 4 dB is normally sufficient for minimal copy. Thus, 10 to 18 dB will be heard, with intelligibility approaching good DX conditions on HF.

The gateway station operator needs to be especially sensitive to his or her responsibilities to both terrestrial communicators and to the manner in which the gateway "community" is introduced to the satellite community already using AO-10. The skill and courtesy of the operator are especially important when the uplinked spectrum is wider than normal, as with a terrestrial linear transponder 20 or 30 kHz wide. Future planning efforts will likely identify special gateway "zones" for uplinks to reduce the hazards of high traffic. AO-10 makes slightly more than two orbits per day. It travels in an elliptical orbit, which at times affords it a "view" of nearly one-third of the earth's surface. Its coverage area is extensive. Simply put, any station that can "see" the satellite can work any other that is simultaneously in view of AO-10, which will be in view for up to ten hours without interruption. Dur-

fig. 2. Typical narrowband (single channel) gateway plan using Mode B.
ing this period the satellite will move slowly across the field of view of the gateway station, whose antennas will track AO-10 either manually or under computer control. To the gateway user, however, operation will be "transparent"; that is, the gateway user does not need to know where the satellite is or the precise uplink/frequencies involved. The actual duration of gateway operation will be limited by a number of factors, including the gateway operator's schedule. For the present it appears that regulations require a fulltime control operator be present; in any case, a fully automated gateway station is beyond the reach of all but a few.

Operation through a gateway is not intended, and certainly cannot, replace the fun and flexibility of establishing and operating your own autonomous satellite station. Assembling a station and learning the techniques required to be successful in satellite communications is not particularly difficult; it does, however, require some understanding of the basics. AMSAT, the organization that built and operates

AO-10, invites the membership of interested individuals and orgánizations. One of AMSAT's main functions, aside from building and operating satellites, is instructing users and would-be users in their operation.
Whether working $D X$ or just chewing the rag, nothing can beat satellite operating. Gateway access to AO-10 offers the newcomer an opportunity to "fly before you buy," in the sense that AO-10 operations can be sampled, without the expense of upgrading an existing station to full AO-10 capability. And for apartment dwellers who may experience difficulties in erecting suitable antennas (although many have done just that using a well-situated balcony, for example), using a local gateway may afford the best opportunity ever for working international DX from the comfort of your own easy chair, with your HT firmly in hand.

Further information and guidance on the use of gateways and membership in AMSAT is available from AMSAT, P.O. Box 27, Washington, D.C. 20044.
ham radio

score first HT-to-HT QSO via OSCAR 10

de WA2LQQ

An important milestone in Amateur Radio was reached when two Amateurs in West Virginia and California became the first to QSO through an Amateur 'Radio satellite using 2-meter FM HT's. KB6DDQ in Camarillo, California, and KD8GL in Wheeling, West Virginia, established contact at 1458 UTC on May 28, 1984.

The historic event was facilitated by "gateway"stations that connected local terrestial repeater systems to the high-flying AMSAT OSCAR 10 (AO-10) satellite. Though CW QSO's in which one of the stations keyed the transmit switch of an HT as a crude key have been reported, it is believed that the May 28 QSO was the first in which both participants used HT's.

Operating from West Virginia, KD8GL used his HT to talk through the Triple States Radio Amateur Club Repeater, KD8GL/R. Signals from the repeater were picked up by the local gateway station, WB8ZTV, which converted from FM to SSB and to the 435 MHz OSCAR 10 uplink frequency. Signals were then beamed by WB8ZTV to OSCAR 10, high over the Western Hemisphere.

In Los Angeles, meanwhile, gateway station N6JFD tuned to the AO-10 downlink frequency and converted the SSB back to FM, retransmitting the signals to the WA60BT repeater, to which KB6DQ was tuned. The return path to Wheeling mirrored this path.

The repeaters and the gateway stations operated full duplex, and the QSO's were two-way. According to monitors, signals in both directions were excellent.

The W7LWE repeater/gateway in Lake Havasu City, Arizona, joined in later, making this the first three-way gateway operation and effectively linking Amateurs in three states via OSCAR 10's trunking capabilities.

Also participating in the May 28 linkups were KR3V, K8AN, K2QWD, N6IAW, W7MCF, and others.
Just one day before the 2-meter HT contact, the Wheeling gateway was linked for three continuous hours to the expert satellite station ZL1AOX in Christchurch, New Zealand, thereby confirming the longduration coverage expected from OSCAR 10.

AMSAT suggests that using gateway interconnects may be the best way to demonstrate the capabilities of OSCAR 10 to prospective users, at no cost to them.

Mike Henderson, N6JFD, at controls of his gateway station in Camarillo, California

Don Knollinger, WB8ZTV, at controls of his gateway station in Moundsville, West Virginia.

Karen Henderson, KB6DDQ, operated one end of the link with only her HT from Camarillo, California.

For a free information kit, send an SASE to AMSAT, Department GW, P.O. Box 27, Washington, D.C. 20044.

Photos courtesy of Asterisk Design.

Uplink/downlink at WB8ZTV uses array at center; 70 cm up, 2 meters down.

KB6DDQ tuned to the WA60BT/R repeater in Thousand Oaks, California, shown here with owner/operator Larry King.

Personally, I think that nothing can beat the flexibility of having your own OSCAR station, but for those just starting out, this seems to be a good way to taste the wine before you buy the bottle!
ham radio

9 MHz CRYSTAL FILTERS
MODEL
XF-9A
XF-9B
XF-9B-01
XF-9B-02
XF-9B-10
XF-9C
XF-9D
XF-9E
XF-9M
XF.9NB
XF.9P
XF910
Appli-
cation
SSB
SSB
LSB
USB
SSB
AM
AM
FM
CW
CW
CW
IF noise
Band
width
2.4 kHz
2.4 kHz
2.4 kHz
2.4 kHz
2.4 kHz
3.75 kHz
5.0 kHz
12.0 kHz
500 Hz
500 Hz
250 Hz
15 kHz

Price
$\$ 53.15$
72.05
95.90
95.90
125.65
77.40
77.40
77.40
54.10
95.90
131.20
17.15
10.7 MHz CRYSTAL FILTERS

XF107.A
XF 107 -B
XF 107. C
XF 107-C
XF 107-D
XF107-E XM107.SO4

NBFM	12	kHz	8	$\$ 67.30$
NBFM	15	kHz	8	67.30
WBFM	30	kHz	8	67.30
WBFM	36	kHz	8	67.30
PixiData	40	kHz	8	67.30
FM	14	kHz	4	30.15
Invited.			Shipping $\$ 3.50$	

MICROWAVE MODULES VHF \& UHF EQUIPMENTS
Use your existing HF or 2 M rig on other VHF or UHF bands.
LOW NOISE RECEIVE CONVERTERS

1691 MHz	MMk1691-137	$\$ 249.95$
1296 MHz GaAsFET	MMk1296-144G	149.95
$432 / 435$	MMc432-28(S)	74.95
$439 \cdot \mathrm{ATV}$	MMc439-Ch \times	84.95
220 MHz	MMc220-28	69.95
144 MHz	MMc144.28	54.95

Options: Low NF (2.0 dB max., 1.25 dB max. $)$, other bands \& IF's available
LINEAR TRANSVERTERS

1296 MHz	1.3 W output, 2 M in	MM11296-144.G	$\$ 29995$
$432 / 435$	10 W output, 10 M in	$\mathrm{MM1432-28(S)}$	259.95
144 MHz	10 W output, 10M in	$\mathrm{MM} 144-28$	169.95
Other bands \& IFs available.			

Other bands \& IFs available.

LINEAR POWER AMPLIFIERS

1296 MHz	20 W output	UT 1296 BL	ASK
432/435	100 W output	MML 432-100	369.95
	50 W output	MML 432 -50-S	199.95
	30 W output	MML.432-304S	179.95
144 MHz	100 W output	MML144-100-LS	249.95
	50 W output	MML 144 -50-S	199.95
	30 W output	MML 144-30-LS	109.95
	25 W output	MML.144-25	99.95
All models include VOX T/R switching. "L" models 1 or 3W drive, others 10W drive.			
Shipping: F	cord, Mass.		

$420-450 \mathrm{MHz}$ MULTIBEAMS

48 Element	70/MBM48	15.7 dBd	\$ $73>5$	\$59.95
88 Element	70/MBM88	18.5 dBd	105.50	89.95
$144-148 \mathrm{MHz} \mathrm{J}$-SLOTS				
8 over 8 Hor pol	D8/2M	12.3 dBd		\$63.40
8 by 8 Vert pol	D8/2M-vert	12.3 dBd		ASK
$10+10$ Twist	10XY/2M	11.3 dBd		79.95
UHF LOOP YAGIS				
1250-1350 MHz 29 loops 1296-LY 20 dBi1650-1750 MHz 29 loops 1691-LY 20 dBiOrder Loop-Yagi connector extra:				\$44.95
				55.95
			N \$14.95	A \$5.95

Order Loop-Yagi connector extra:
Type N \$14.95, SMA \$5.95

Send 40 c $(2$ stamps) tur full details of all your VHF 8 UHF equip
ment and KVG crystal product requirements
vish

(617) 263-2145 SPECTRUM INTERNATIONAL, INC. Post Office Box 1084 Concord, MA 01742, U.S.A.

Available NOW!

The Olympiad I

The New Olympiad I home satellite receiver rep sents a back-to-basics approach to carte performance design, that captures liger package. circuitry and in an inexpen id's simplistic internal circimum The Olympiad's interface allow for max ares include
 dependability and easy fully tunable (5.5-7.5 MHz) aud. a builtin modulator, fully tunable

PRONEER MEMBER Of
PASPNCE

AMATEUR TELEVISION

KPA5 1 WATT 70 CM ATV TRANSMITTER BOARD

- APPLICATIONS: Cordless portable TV camera for races $\&$ other public service events, remote VCR, etc. Remote control of R/C airplanes or robots. Show home video tapes, computer programs, repeat SSTV to local ATVers. DX depends on antennas and terrain typ. 1 to 40 miles
- FULL COLOR VIDEO \& SOUND on one small $3.25 \times 4{ }^{-}$board
- RUNS ON EXTERNAL 13.8 VDC at 300 ma supply or battery
- TUNED WITH ONE CRYSTAL on 426.25 .434 .0 . or 439.25 mHz
- 2 AUDIO INPUTS for a low Z dynamic and line level audio input found in most portable color cameras, VCRs, or home computers
- APPLICATION NOTES \& schematic supplied for typical external connections. packaging, and system operation.
- PRICE ONLY \$159 delivered via UPS surface in the USA. Technician class amateur license or higher required for purchase and operation

WHAT IS REQUIRED FOR A COMPLETE OPERATING SYSTEM? A TV set with a TVC-2 or TVC-4 $420-450 \mathrm{mHz}$ to channel 3 downconverter, 70 cm antenna. and coax cable to receive. Package up the KPA5, add 12 to 14 vdc , antenna, and any TV camera. VCR, or computer with a composite video output Simple, eh?

CALL OR WRITE FOR OUR COMPLETE CATALOG \& more info on atv downconverters, antennas. cameras, etc. or who is on in your area
TERMS: Visa, Mastercard, or cash only UPS COD by telephone or mail Telephone orders \& postal MO usually shipped within 2 days, all other checks must clear before shipment. Transmitting equipment sold only to licensed amateurs verified in 1984 Calibook Calif include sales tax
(818) 447-4565 m-f 8am-6pm pst.

2522 Paxson Lane
P.C. ELECTRONICS

Tom W60RG Maryann WB6YSS Arcadia CA 91006

Hatry Electronics

CDS

AMPHENOL
DAIWA
AMID ON Huciates
avanti"antennas

J. W. Miller

D) DRAKE

CD ICON

bushcraft

THE ANTENNA COMPANy
Bash Books
 Hatry Electronics ${ }^{\left\langle{ }^{\circ} s_{e_{n}}\right.}$

The Elect in Electronics 500 LEDYARD STREET VISA HARTFORD, CONN. 06114

Phone 203-527-1881~ 154

Please allow 4-6 weeks for delivery of first Foreign rates: Europe, Japan and Africa, \$28.00

8ャ0ع0 HN＇əા！＾uәə」
 ollped

әәSSəıpp甘 Kg pied əg ll！M әбeıSOd		
HN＇ə\｜！＾Uəə•	！ONIIUJOd	SSEIO1S11」
व\＆\％		

$\overline{\overline{\overline{\underline{\bar{y}}}}}$

hamºn

WAS $\$ 39.95$ retail

NOW $\$ 19.95$

RADIO HANDBOOK
by Bill Orr, W6SAI
The 22nd edition reflects the very latest in state-ot-the-art techniques. Over 1,000 pages of information tound in earlier editions plus more on antennas, amplifiers, theory, and semiconductors. The Radio Handbook is chock-full of practical, tested projects that run from high powered R amplifiers and state-or-the-att equipment to Weekender type projects afford to pass up a value like this. Order yours today 1136 pages. aft) 1981 . 22nd edition.
21874 Hardbound
This is the very latest edition. No new edition is about to be issued
This is not a close out. Quantities Limited.

RADIO COMMUNICATIONS RECEIVERS

 by Cornell Drentea, WB3JZOComplete and detailed history of receivers covering the coherer, the decoherer, Galena crystals. audion and regenerative designs and the tuned frequency receiver. It also includes single, multiple and direct conversions of the superheterodyne design. You get helpfut hints and tips on how to solve image problems, selectivity. crystal fitters. mechanical and ceramic fitters and much, much more. System design. J-fets and synthesizers - it's all here in one complete volume. 1982

1st

Softbound $\$ 13.95$

RF CIRCUIT DESIGN

by Chris Bowick, WB4UHY

This book has been written for those who desire a practical approach to the design of it amplifiers, impedance measuring devices and fitters. Plenty of projects and design ideas. 7 chapters cover from basics to advanced design concepts You get a complete design run down for multiple pole Butterworth. Chebyshev and Bessel fitters. RF Circuit Design also includes a bibliography of books and technical papers to help further your knowledge of circuit design. 1983, 176 pages, 1st edition.
$\square 21868$
Softbound \$22.95

- SPECIAL PRICE -

1984 U.S. RADIO AMATEUR CALLBOOK

This is the latest edition of the grand daddy of all the others The Callbook is the only directory with an in-house editorial department that checks the FCC info as it comes in to ensure accuracy. US. and for eign hams swear this is the most important reference book in their files. Order your copy today. Ensure you have the very latest OSL information available at your fingertips. Over 410,000 listings. Also contains helpful and hard-to-find operating and station aids 1983
CB-USS84
($\mathrm{S} 16.95+\mathrm{S} 3 \mathrm{~S} \& \mathrm{H}$)
Softbound $\$ 19.95$

1984 FOREIGN RADIO AMATEUR CALLBOOK

The only foreign callbook available! DXCC is the goal of many hams. To others, casual rag chews with foreign hams are the real joy of Amateur Radio. Whatever your interest, if you want a OSL, you should have a copy of the latest Foreign Calibook in your shack. Fully up-dated with the latest lists direct from the overseas licensing authorities. 1983 \square CB-F84 $\quad(\$ 15.95+\$ 3 \mathrm{~S} \& \mathrm{H}) \quad$ Softbound $\$ 18.95$

BUY BOTH CALLBOOKS SAVE
CB-USF
$\$ 32.90$

1984 38th EDITION WORLD RADIO AND TV HANDBOOK

The brand new 1984 edition is jam-packed with station addresses, frequencies, schedules and all the other information needed to get the most enjoyment out of SWL 'ing. Also includes latest equipment reviews, handy hints and tips on how to improve reception and much more. It's the only complete reference guide to international broad-
casting available today. (c) 1984.
DR-TV
Softbound $\$ 17.50$

RTTY TODAY

A Modern Guide to Amateur Radio Teletype

by Dave Ingram, K4TWJ

Brand New and Fully up-to-date. Dave Ingram's clear, concise writing style and a wealth of illustra tions, diagrams and photos, make RTTY as easy as 1.2 .3 ! Extensive coverage is given to using home computers for RTTY. Eleven chapters start with an overview of RTTY operation, then give you coverage of operating parameters, computers, equipment you can build, dedicated systems and four chapters on RTTY SWL'ing info. 135 pages 1984. 1st edition

UE-AR

Softbound $\$ 8.95$

THE SATELLITE
 EXPERIMENTER'S HANDBOOK

In 1961, a new era was begun in Amateur Radio with the launch of the first Orbiting Satellite Carrying Amateur Radio, OSCAR. Since then, thousands of electronic hobbyists, around the worid, have used OSCARs for communication, experimentation and for educational purposes. This new League publication also carnes information on Weather and TV Satellites. Subjects include information on satelites in orbit and satellite design as well as how to build a ground station and antennas. 1984. 1st edition
\square AR-SE
Softbound $\$ 10.00$

1984-85 ARRL REPEATER DIRECTORY

You could call this book the "repeater bible" Close to 8,000 listings include stations organized lirst by trequency then by state and region. All of the important details such as access tones, auto patch, etc. are also included. It you do any travel ing and take a two-meter nig with you, this is the
book to have! (o 1984 . \square AR-RD

Softbound \$2.00

GENERAL-CLASS RADIO AMATEUR FCC TEST MANUAL

Here is the first General-class study guide keyed to both the Volunteer and FCC administered exams. The 500 questions to be used for the Volunteer exam are fully covered with detailed, concise. answers, You also get ter pages of study material taken from the currently administered FCC exam. As a bonus, all questions are keyed to Ameco's Theory Course, 102-01, for a more detailed explanation of the study material. It you have mastered this book, you'll be ready to pass either an FCC or Volunteer administered exam. 1984 , ist edition. $\square 12-01 \quad$ Softbound $\$ 3.25$

COMPUTER PROGRAMS FOR AMATEUR RADIO

by Wayne Overbeck, N6NB, and James Steffen, KC6A
Here's a great source book of computer programs for the Radio Amateur. Besides covering the basic computer programs like Morse code generator, logging and general data processing, the authors show you how to speed up math calculations, determine sunrise-sunset times for any location on earth, set up a record system for DXCC, WAS, VUCC, or any other award, track the moon's path for EME work and much more. Programs included are written for most popular computers. Take full advantage of your computer's capabilities with this well written, easy-lo-use resource book. © 1984 . Ist edition. -HA-0657
$\$ 16.95$

THE COMPLETE DX'ER

by Bob Locher, W9KNI
DX'ing can be as simple as turning the radio on and searching across a band, or it can be hours spent studying propagation reports, sunspot figures and the DX newsletters looking for tidbits of information. The first part of the book is designed o teach the reader DX'ing fundamentals. Part two for the "over 200 countries worked" operator and has plenty of handy tips, aids and ideas. Part 3 is full of more esoteric hints for the "over 300 countries worked" operator. This book tells all and should be required reading before anyone and should be required reading before anyone starts their quest for DXCC. Even if you don't care bout DxCC, Bob's easy-to-read style of writing is ID-DY DID-DX

Softbound $\$ 10.95$

THE DX EDGE

This handy DX operating aid should be in every ham's shack! Twelve different month overlays are included to show the sun's path over the earth. To use the DX Edge, you simply align the hour printed on the top of the overlay with your local time. You instantly see the sun's relative position around the earth. Great for determining possible gray line and long path openings. Plastic slide rute format and large size make the DX Edge very easy-to-use. $\square \mathbf{X N}-\mathbf{D X}$
$\$ 16.95$

THE TAB HANDBOOK OF RADIO

 COMMUNICATIONSby Joe Carr, K4IPV
Starting with an overview of the basic building blocks of physical science, Joe Carr gives the reader a complete self-contained study course in basic electricity and electronics. Besides being an excellent electronics reference book, it's also an deal study cuide for both Amateur and commer dial license exams. All aspects of radio are covered: receivers, transmitters, operating modes covered, recevers, transmitis, operabing modes, adio-wave propagation, vansmission lines, and has, and more. OI mporiance lo beginers, Joe radio repair and troubleshooting. 1984, 1st T-1636

Softbound $\mathbf{\$ 2 9 . 5 0}$

THE AMATEUR RADIO VERTICAL HANDBOOK

by Cpt. Paul H. Lee, USN (Ret.), N6PL

This brand new, second edition of the only book dedicated to the verfical antenna, will be of interest to all those using or looking to use the vertical antenna. Based upon the author's years of work with a number of different vertical anterna designs, you'll get plenty of theory and design inforsigns, you li get plenty of theory and design intortion ideas. Included are designs for simple $1 / 4$ and 5/8-wave antennas as well as broadband and 5/8-wave antennas as well as broadoand and mult-element directional antennas. Paul Lee is an engineer and avid ham and is Amnateur Radio's esident expert on the vertical antenna -1984 CQ-VAH

Sottbound $\$ 9.95$

SYNCHRONOUS PACKET RADIO USING THE SOFTWARE APPROACH

Vol. 2 AX. 25 Protocol

by Bob Richardson, W4UCH
There are two basic ways to get into packet radio The first is the hardware approach and requires a sophisticated "black box." The second way is to use machine language programs that are specially designed for packet radio. W4UCH, author of The Gunnplexer Cookbook, will help you in getting your Model I or III TRS-80 Radio Shack computer on packet radio. Twelve chapters take you step by step through the process of getting your computer to first convert the digital information into a usable format and then to decode the information. You also get six appendices that can be used as a handy reference guide as you improve your computer skills. © 1983, 1st edition.
RE-AX
Softbound \$21.95

Callbooks shipped postpaid. Shipping \& handling for ARRL Repeater Directory and AMECO 12-01, $\$ 1.50$. All other books $\$ 2.50$.
Fadfon
GREENVILLE, NH 03048

the FM advantage

An Amateur's view of frequency-modulation theory

negotiated for the 2-meter band, and a whole new era began - channelized 2-meter FM. This concept has spread to all of the Amateur VHF bands.

But why is FM better than AM? Let's look at some basic ideas about modulation.

modulation theory

Modulation can be broadly defined as the transmission of data on an electromagnetic wave. For common telegraphy (A1 transmission or CW) the presence or absence of a signal with respect to time comprises the modulation. Conventional amplitude modulation imposes a modulating signal upon an RF carrier. The resultant summation of these two signals is the variance in amplitude of the RF carrier at a rate of change equal to that of the modulating signal. That is, the amplitude of the carrier physically changes from some minimum level to some maximum level in proportion with the amplitude of the modulating signal. The frequency of the RF carrier remains the same. In an FM system, the modulating signal does not vary the amplitude of the carrier. Instead, the frequency of the carrier changes. This is the basic difference between AM and FM transmission, (see fig. 11.

Now that we know what is being changed by the modulating signal in an AM or FM system, let's see why it makes a difference. Major Armstrong correctly theorized that manmade and atmospheric static, or "noise," was amplitude-specific in nature. A lightning stroke generates RF signals at many frequencies (typically the entire LF through VHF spectrum) which all have different random amplitudes. The result is that we hear a loud, scratchy sound on conventional AM broadcast receivers, and on most AM, CW, or SSB receivers as well, no matter how good they are! The reason for this is that the AM receiver has no means of discriminating between the desired transmitted AM

By R.J. Decesari, WA9GDZ/6, 3941 Mt. Brundage Avenue, San Diego, California 92111

fig. 1. Basic differences between $A M$ and $F M$ transmission.

fig. 2. Relationship between carrier center frequency, deviation, and variation.
signal and the undesired AM static crash. The receiver is amplifying and detecting both signals simultaneously (as it was designed to do) and putting them both in your ear!

Consequently, amplitude-specific noise is difficult to detect with an FM system because there is no amplitude detector in an FM receiver! An FM receiver is looking for changes in frequency, not amplitude; it is for this reason that there is a qualitative improvement over an equivalent AM system with respect to static and noise.

terms

With an FM transmitter, three terms must be addressed before we can proceed with this discussion: deviation, modulation index, and deviation ratio.

Deviation is defined as the amount of frequency change of the carrier when modulated by a signal of a unique frequency - that is, if we were to apply a 1 -volt peak-to-peak (e.g., +0.5 Vp and -0.5 Vp) signal of 700 Hz , it would cause the carrier to change frequency to plus and minus some specified amount at a rate equal to the modulating frequency, which is 700 Hz . This "specified amount" of frequency change is called the deviation. It is "specified" because the amplitude of the modulating signal is what specifies it; for example, a 2-volt p-p $700-\mathrm{Hz}$ modulating signal creates more frequency deviation than a 1-volt p-p signal. (The deviation is adjustable by the gain of the modulating circuit.) From 0 to +0.5 volt, the carrier will deviate in the "plus-frequency" direction; from 0 to -0.5 volt, the carrier will deviate in the "minus-frequency" direction. Therefore, the total change of frequency is 2 times the deviation (see fig. 2).

Now that we are deviating the carrier, let's talk about modulation index. As we've just seen, the deviation is related to the amplitude of the modulating signal. But what about the modulating frequency? It would appear to have some effect - and it does. The modulation index is defined as:

$$
\text { mod index }=\frac{\text { deviation }}{\text { modulating frequency }}
$$

In effect, then, the modulation index is a ratio, or a pure number - i.e., the units of the numerator and the denominator cancel each other. It can be thought of as simply a parameter that describes the operation of the system.

The deviation ratio is similar to the modulation index:

$$
\text { deviation ratio }=\frac{\text { maximum frequency deviation }}{\text { highest modulating frequency }}
$$

One may consider the deviation ratio as a "maximized" modulation index. For example, a 1 -volt $p-p, 1 \mathrm{kHz}$ modulating signal may deviate the transmitter plus and minus 25 kHz . Then:

$$
\bmod \text { index }=\frac{25 \mathrm{kHz}}{1 \mathrm{kHz}}=25
$$

But what about a 1 -volt p-p, 3 kHz signal?

The modulation index is not necessarily the same under all conditions. However, if we define the $3-\mathrm{kHz}$ tone as the highest modulating frequency that the transmitter will "see," and state that the 1 -volt p-p amplitude will give the greatest frequency deviation

50 dB GAIN OVER A $1 / 4$ WAVE WET NOODLE!

It sounds ridiculous. doesn't it? Amateur Radio advertising is not exempt from exaggeration. When facts are distorted by fabrication you may be induced to buy a product that ultimately is incapable of meeting the performance claimed by the manutacturer. Caveat Emptor (buyer beware)!
The AEA IsoPole ${ }^{\text {TM }}$ antenna has 3 dB gain over a dipole in free space. This is an honest and supportable claim. Yet other manufacturers claim as much as a 7 db gain for their antennas using no reference standard or a $1 / 4$ wave antenna as reference. The $1 / 4$ wave is not a recognized reference used by reputable antenna engineers because it is most difficult to properly decouple in a repeatable fashion.

The IsoPole antennas offer the maximum gain attainable for the length of antenna This is a bold statement and one we know we can stand behind!

For any linear array antenna to outperform the IsoPole by 3 db or more on-the-horizon gain, it would have to be at least 20 feet long! Anything less and you can bet that advertising deception is being used.

Before you buy a VHF or UHF base station antenna, get some good honest facts about VHF antenna design. Send for your FREE
copy of "Facts About Proper VHF Vertical Antenna Design' by Professor D.K. Reynolds, K7DBA. You'll be glad you did

In the meantime, we would like to expose you to some of the comments we have received frum customers that are using the IsoPole

Seattle, WA - Compact \& easy to install, quality \& keeps XYL happy -looks good!!
Half Moon Bay, CA - Found repeaters I only heard about before from my QTH - Excellent. Amazed at light weight and low cost
Sturgis, SD - The Isopole Antenna has exceeded my expectations.
Lumberton, NC - You really do what you say! The best 2 mt . antennal have ever owned!
La Habra, CA - Hooked up today, and it was a perfect match throughout the entire band. For the money, you can not go wrong.
Tok, AK - Truly a fine antenna, working better than the five element yagi it replaced.
Sacramento, CA - Assembly was remarkably easy, I needed an efficient, low profile aritenna \& your product fit the bill to a ' 'T'"
Warsaw, IND - AMAZED!!! Antenna ground mounted on required mast \& outperforming a (R.R.) at 55° on 100 of tower.

Loris, SC - I'm a commercial radio salesman, and the Isopole is THE antenna I recommend
Seattle, WA - Works well - excellent Had (R.R.) at 80'. With the Isopole at 20 ft . I now hear repeaters and simplex I never heard with (R.R.) The Isopole will soon be at 80°
Freehold, NJ - It is everything your ad says and more.
Great Neck, NY - Amazing difference between (R R), 10 db or better, raise rept. never heard before - SUPER, 73 and thanks
Richfield, OH - Works extremely well. broke a repeater at 100 mi using 150 mw '
Vernon, TX - (The dealer) said the antenna WAS THE BEST ON MARKET and I AGREE! It IS AN EXCELLENT antenna \& works to specs -Thanks.

Prices and Specifications subject to change without notice or obligation.

AEA

> Brings you the Breakthrough!
$(25 \mathrm{kHz})$, then we define a system parameter or constant. For this sample, then:

$$
\text { deviation ratio }=\frac{25 \mathrm{kHz}}{3 \mathrm{kHz}}=8.33
$$

Thus, the fine line between deviation ratio and modulation index has been established. But why is this important? Because the theory of FM improvement is based upon the modulation index (and deviation ratio) of the transmitted signal.

receiver noise

When there is no signal present at the input of a receiver, we hear "background noise" consisting of both ambient thermal noise generated by the movement of electrons in molecules of matter and noise generated within the components of the receiver. The magnitude of the noise may be calculated in terms of units of power - i.e., watts per Hertz. Specifically, the ambient noise power in any 1 Hz of spectrum can be calculated by the equation:

$$
\text { noise power } P_{n}=k T \text { (in watts } / \mathrm{Hz} \text {) }
$$

where K is Boltzman's constant $=1.3803 \times 10-23$ Joules/degrees Kelvin, and T is the absolute temperature (in degrees Kelvin) of the ambient surroundings. (Room temperature is about 290 degrees Kelvin.)

This formula can be expanded to determine the noise power of a specific range of frequencies by simply multiplying the power for 1 Hz by the total bandwidth to be analyzed:

$$
\text { noise power } P_{n}=k T B \text { (in watts) }
$$

where B, usually the receiver's IF selectivity value, is the bandwidth of spectrum under consideration in Hertz.

For a 2-meter receiver with 10 kHz of IF passband, the theoretical noise power is:

$$
\begin{aligned}
P_{n} & =1.3803 \times 10^{-23} \times 290^{\circ} \times 10,000 \mathrm{~Hz} \\
& =4.0029 \times 10^{-17} \mathrm{watts}
\end{aligned}
$$

Most communications engineers prefer to speak in terms of dB . This calculated power level will now be referenced to 1 watt:

$$
\begin{aligned}
P_{n} & =10 \log \frac{4.0029 \times 10^{-17} \text { watts }}{l \text { watt }} \\
& =163.97 \mathrm{dBW}
\end{aligned}
$$

This number is the theoretical natural noise power level in 10 kHz of the 2-meter Amateur band at about 62 degrees F (290 degrees Kelvin).

If we had a perfect receiver whose components did not generate noise, then the noise-power level at the receiver output speaker would be the same as the noise-power input at the antenna. As we know, this
is not the case; typically, our receiver might have a noise figure (the amount of internally generated noise) of, let's say, +10 dB . Then, with the noise power as calculated, the receiver would have a noise threshold of -153.97 dBW . That is, any carrier that arrives at the antenna terminal of the receiver with a power level of less than -153.97 dBW would be buried in the noise.

Continuing this example, if a carrier had a power level of -143.97 dBW , it would be +10 dB above the noise power level. Or, stated another way, the carrier-to-noise ratio is +10 dB . This is expressed as follows:

$$
\begin{aligned}
\frac{C_{I}}{\bar{N}_{I}} & =\frac{\text { carrier power at input }}{\text { noise power at input }} \\
& =\frac{-143.97 \mathrm{dBW}}{-153.97 \mathrm{dBW}}=+10 \mathrm{~dB}
\end{aligned}
$$

Remember, even though division is implied by C_{l} / N_{l}, because we are working in dB , the quantities are subtracted for division operations and added for multiplication operations. This +10 dB carrier-to-noise power is what is at the receiver's input. Now, if we listen to the output of the receiver, we have a signal coming out of the receiver at some level. If we remove that signal by, for example, turning off the transmitter, we then hear the noise level. This output relationship is defined as the output signal power divided by the output noise power:

$$
\frac{S_{o}}{N_{o}}=\frac{\text { output signal power }}{\text { output noise power }}
$$

fig. 3. Typical input and output responses for $A M$ and FM reception. Input numbers follow the example given in text.

This ratio, S_{o} / N_{o}, depends on the actual characteristics of the receiver. Obviously, a "quiet" receiver, for a given C_{l} / N_{l}, will have a relatively high corresponding S_{o} / N_{o}; if the receiver is of lesser quality, then N_{O} will be greater and the output S_{O} / N_{O} will consequently decrease.

AM and FM compared

This comparison between C_{I} / N_{I} and S_{0} / N_{0} is often referred to as the signal-to-noise performance of a receiver, (see fig. 3).

AM noise performance shows an approximate 1:1 correlation - i.e., if C_{I} / N_{I}, increases by one unit, so will S_{o} / N_{o}. However, at a specific power level above the noise, typically about 10 dB above the noise threshold (-153.97 dBW in our previous example), the FM system equals the AM response and starts shooting up more rapidly than the AM system. Therefore, for C_{l} / N_{l}, greater than about -143 dBW as in our example, we see a higher corresponding S_{o} / N_{o} with FM than with AM. The amount of improvement is called the FM-improvement ratio, and is directly related to the modulation index! The improvement ratio is:

$F M$ improvement ratio $=3(\bmod \text { index })^{2}$

Between - 153 dBW and approximately -143 dBW , an AM system is superior to FM. However, for practical purposes, this improvement is not really noticeable in the noise.

NBFM compared

Let's look at our Amateur NBFM signals and see how they compare to wideband FM, SSB, and AM. Fig. 4 illustrates this relationship between S_{O} / N_{0} and input signal/noise level, $S_{I} / N_{l} .{ }^{*}$ As can be seen from both fig. 4 and the FM-improvement formula, the actual amount of improvement is greater with high modulation indices. Notice that wideband FM systems (such as are used by commercial FM broadcasting stations, and which are restricted to $75-\mathrm{kHz}$ deviation by the FCC) provide the greatest amount of S_{o} / N_{o} improvement. It does this, however, at the expense of weak signal detection; in other words, your FM stereo receiver may not be as sensitive as your AM/SSB communications receiver. However, for signals just above the minimum-detection threshold level, the output level shoots up very quickly, and the FM stereo receiver provides a better S_{o} / N_{o} response to these weak signals than the AM/SSB equipment. The same is true for Amateur 2-meter NBFM transmissions (with

[^3]
fig. 4. Typical receiver response curves for common modulation techniques. Power levels are approximate.
$5-\mathrm{kHz}$ deviation), with the exception that the sensitivity is improved at the expense of the amount of FM improvement. In practice, the NBFM improvement becomes apparent at such significantly low signal levels that we perceive FM detection to be invariably superior to AM. This is why FM has effectively replaced AM transmission on the 2-meter Amateur band even though $A M$ is theoretically better at signal levels just slightly above the ambient noise level. Finally, we see that single-sideband suppressed-carrier systems offer a fixed improvement ratio over AM also. This can best be appreciated by realizing that the SSB voice channel is half of the bandwidth of a double-sideband AM system. Consequently, the ambient noise power in the SSB channel is less than in the AM voice channel. This results in a better S_{I} / N_{l} number and a correspondingly higher signal-to-noise output number.

This is why FM 2-meter rigs seem to provide such clear voice reproduction. Next time you operate on FM, square your modulation index and multiply it by 3; you'll then know exactly how much improvement over AM is possible.

bibliography

DeMaw, Doug, Editor, The Radio Amateur's Handbook, The American Radio Relay League, Newington, Connecticut, 1979.
Freeman, Roger L., Telecommunication Transmission Handbook, 2nd Edition, John Wiley \& Sons, New York, 1981.
Orr, William I., Radio Handbook, 21st Edition, Howard W. Sams and Co., Inc., Indianapolis, Indiana, 1978.
ham radio

ENGINEERING INC.

Announces.....

THE ADJUSTABLE BANDWIDTH

Why an adjustable filter? A notch filter is a notch filter. An IFP-1 is an adjustable bandwidth filter. You don't necessarily need the same filtering all the time. In situations of weak signal or terrestrial interference, the ad-

TI Filter

 justable IFP-1 allows you to selectively filter out just the unwanted noise. This allows you to maintain optimum video quality under varying conditions.

PHANTOM ENGINEERING leads the way in innovation with products like the IFP- 170 MHz IF signals processor, the SS-101 STV Security System, and the soon to be released SYMON, The simple stereo.

PHANTOM ENGINEERING
I6840 Joleen Way E3,
Morgan Hill. CA 95037
"The Breakthrough Specialists"

THE STANDARD OF EXCELLENCE

The world of CW, RITY, and new DUAL AMIOR* is as close as your fingertips with the new brilliantly innovative state-of-the-art microcomputer controlled EXL-5000D.

Automatic Sender/Receiver: Due to the most up to date computer technology, just a console and keyboard can accomplish complete automatic send/receive of Morse Code (CW), Baudot Code (RTIY), ASCII Code (RTTY) and new ARQ/FEC (AMTOR).
Code: Morse (CW includes Kana), Baudot (RTTY), ASCII (RTTY), IS (RTTY), ARQ/FEC (AMTOR).
Characters: Alphabet, Figures, Symbols, Special Characters, Kuna. Built-in Monitor: $5^{\prime \prime}$ high resolution, delayed persistence green monitor-provides shatp clear image with no jiggle or jitter even under fluorescent lighting. Also has a provision for composite video signal output.
Time Clock: Displays Month, Date, Hour and Minute on the screen. Time/Transmission/Receiving Feature: The built-in timer enables completely automatic TX/RX without operator's attendance.
Selcal (Selective Calling) System: With this feature, the unit only receives messages following a preset code. Built-in Demodulator for High Performance: Newly designed high speed RITY demodulator has receiving capability of as fast as 300 Baud. Three-step shifts select either $170 \mathrm{~Hz}, 425 \mathrm{~Hz}$ or 850 Hz shift with manual fine tune control of space channel for odd shifts. HIGH (Mark Frequency 2125 Hz) LOW (Mark Frequency 1275 Hz) tone pair select. Mark only or Space only copy capability for selective fading. ARQ/FEC features incorporated. Crystal Controlled AFSK Modulator: A transceiver without FSK function can transmit in RTTY mode by utilizing the high stability crystal-controlled modulator controlled by the computer.
Photocoupler CW, FSK Keyer built-in: Very high voltage, high current photocoupler keyer is provided for CW, FSK keying. Convenient ASCII Key Arrangement: The keyboard layout is ASCII arrangement with function keys. Automatic insertion of LTR/FIG code makes operation a breeze.
Battery Back-up Memory: Data in the battery back-up memory, covering 72 characters $\times 7$ channels and 24 characters $\times 8$ channels, is retained even when the external power source is removed. Messages can be recalled from a keyboard instruction and some particular channels can be read out continuously. You can write messages into any channel while receiving.
Large Capacity Display Memory: Covers up to 1,280 characters. Screen Format contains 40 characters $\times 16$ lines $\times 2$ pages. Screen Display Type-Ahead Buffer Memory: A 160 -character buffer memory is displayed on the lower part of the screen. The characters move to the left erasing one by one as soon as they are transmitted. Messages can be written during the receiving state for transmission with battery back-up memory or SEND function Function Display System: Each function (mode, channel number. speed, etc.) is displayed on the screen. Printer Interface: Centronics Para Compatible interface enables easy connection of a low-cost dot printer for hard copy. Wide Range of Transmitting and Receiving: Morse Code transmitting speed can be set from
the keyboard at any rate between 5-100 WPM (every word per munute) AUTOTRACK on receive. For communication in Baudot and ASCII Codes, rate is variable by a keyboard instruction between 12-300 Baud when using RTTY Modem and between 12-600 Baud when using TTL level. The variable speed feature makes the unit ideal for amateur, business and commercial use,
Pre-load Function: The buffer memory can store the messages written from the keyboard instead of sending them immediately. The stored messages can be sent with a keyboard command.
"RUB-OUT" Function: You can correct mistakes while writing messages in the buffer memory. Misspellings can also be erased while the information is still in the buffer memory.
Automatic CR/LF: While transmitting. CR/LF automatically sent every 64,72 or 80 characters.
WORD MODE operation: Characters can be transmitted by word groupings, not every character, from the buffer memory with keyboard instruction.
LINE MODE operation: Characters can be transmitted by line groupings from the buffer memory.
WORD-WRAP-AROUND operation: In receive mode, WORD-
WRAP-AROUND prevents the last word of the line from splitting in two and makes the screen easily read.
"ECHO" Function: With a keyboard instruction, received data can be read and sent out at the same time. This function enables a cassette tape recorder to be used as a back-up memory, and a system can be created just like telex which uses paper tape,
Cursor Control Function: Full cursor control (up/down, left/right) is available from the keyboard. Test Message Function: "RY" and "QBF" test messages can be repeated with this function.
MARK-AND-BREAK (SPACE-AND-BREAK) System: Either mark or space tone can be used to copy RTTY.
Variable CW weights: For CW transmission, weights (ratio of dot to dash) can be changed within the limits of 1:3-1:6.
Audio Monitor Circuit: A built-in audio monitor circuit with an automatic transmit/receive switch enables checking of the transmitting and receiving state. In receive mode, it is possible to check the output of the mark filter, the space filter and AGC amplifier prior to the filters.

CW Practice Function: The unit reads data from the hand key and displays the characters on the sereen. CW keying output circuit works according to the key operation. CW Random Generator: Output of CW random signal can be used as CW reading practice. Bargraph LED Meter for Tuning: Tuning of CW and RTTY is very easy with the bargraph LED meter. In addition, provision has been made for attachment of an oscilloscope to aid tuning. Built-in AC/DC: Power supply is switchable as required; $100-120 \mathrm{VAC}$,
$220-240 \mathrm{VAC} / 50 / 60 \mathrm{~Hz}+13: 8 \mathrm{VDC}$.
Color: Light grey with dark grey trim - matches most current transceivers. Dimensions: 363 (W) $\times 121(\mathrm{H}) \times 351$ (D) mm: Terminal Unit. Warranty: One Year Limited Specifications Subject to Change

Everyhing buth in - notaing else to hay:
EXCLUSIVE DISTRIBUTOR: DEALER INQUIRIES INVITED
AMATEUR-WHOLESALE ELECTRONICS

VISA

MANUFACTURER:

TONO CORPORATION

98 Motosoja Machi, Maebashi-Shi, 371, Japan
*Dual Amtor: Commercial quality, the EXL-5000E incorporates two completely separate modems to fully support the amateur Amtor codes and all of the CCIR recommendations $476-2$ for commercial requirements.

VHFJHF WORID

220-MHz EME requirements

The $\mathbf{2 2 0 - 2 2 5 ~ M H z ~ A m a t e u r ~ b a n d ~ h a s ~}$ long suffered from the " 1 'll look into that band later" attitude. This wasn't helped by the fact that many services, especially the citizens' band radio service, had designs on this spectrum. Radars were also prevalent in some parts of the USA mainland, particularly near the coasts. Little or no commercial equipment was available for this band.

These negatives have all been turned around. The FCC has said "no" to the CB'ers and others seeking to claim this valuable frequency range; the radars have ceased operation; and commercial equipment is now available up to the Amateur Radio legal power limit.

Many VHFers have "done their thing" on 2 meters and are now looking for a new challenge. The 220-225 MHz band has much to offer them. In many ways it is like 2 meters without all the QRM! Equipment is very similar to 2 meters with smaller antennas a big plus, and local ambient noise and sky noise temperature are usually less than on 2 meters. Propagation is also similar, with meteor scatter and EME gaining increased popularity, especially since the introduction of the ARRL VUCC (VHF/UHF Century Club) award on January 1, 1983.

As this issue went to press the first intense sporadic E contact on 220-225 MHz had yet to occur. ${ }^{1}$ The first few WAS certificates were recently awarded (in December, 1983), ironically several years after WAS was accomplished on a more difficult band, 70 cm (432 MHz). The first 220 MHz EME OSO didn't take place until 1970, well after it was accomplished on 2 meters, 70 cm , and $23 \mathrm{~cm}(1296 \mathrm{MHz}) .^{2}$ This
band has lagged behind the other bands, but that's changing fast.

With much of this month's issue dealing with specialized communications, I thought this would be a good time to review the EME (Earth-MoonEarth) capabilities and operational requirements of this band. This information, especially in regard to equipment selection, can also be applied for those who just want to update their present gear for normal propagation modes.

minimum requirements for 220 MHz EME

The basic EME strategy should be to build a station that has the capability of hearing your own echoes, because this will allow you to evaluate your equipment and any other changes or improvements that you make. ${ }^{3}$ Based on a $0-\mathrm{dB}$ signal-to-noise ratio and no Faraday rotation (a random change in polarity that occurs when a VHF/UHF signal passes through the ionosphere), compliance with the following 220MHz EME requirements will yield marginal echoes:

- path loss: $256 \pm 1 \mathrm{~dB}$
- minimum antenna gain: 22 dBi (approximately 20 dB over a dipole) maximum receiver noise figure: 2.0 $d B$ (referenced to the antenna feed)
- minimum transmit power: 500 watts output (at the antenna feedpoint)
- receiver bandwidth: 500 Hertz maximum

Improvements above these minimum requirements such as increased antenna gain or output power will improve results accordingly.

antennas

As pointed out in reference 3, the most important part of an Amateur station is the antenna system because every dB of improved antenna perfor-
mance yields a 2 dB system improvement: 1 dB on receive and 1 dB on transmit. This is especially important on $E M E$, where antennas are large in comparison to those used on other modes of communications. Good clean patterns are also desirable with side, rear, and grating lobes the lobes that result when two or more antennas are stacked) down at least 13-15 dB to get all the transmitted power aimed at the moon and to pick up the least amount of ambient or galactic noise (noise from outer space) on receive.

Yagi antennas, especially in this frequency range, are popular because they are easily constructed, easy to stack, and relatively small for the gain obtained. Hence, an array of high gain Yagis is presently the most common antenna used on $220-\mathrm{MHz}$ EME.

The 4.2 wavelength NBS Yagi is the most common design presently in use on $220-\mathrm{MHz}$ EME. ${ }^{4,5}$ Properly duplicated, its gain is about 14.2 dBd . It works best when stacked 8-1/2 feet (2.6 meters) apart in the " E " (horizontal) plane and 8 feet (2.44 meters) apart in the " H " (vertical) plane. If all feedlines are kept short with equal lengths and a good in-phase power divider is used, four of these Yagis will yield close to 22 dBi of gain, the minimum requirement for $220-\mathrm{MHz}$ EME communication as stated above. One commercial manufacturer offers this Yagi with a trigonal reflector.

Several $220-E M E$ stations are using these Yagis stacked 4 wide and 2 high or vice-versa, using the same spacings indicated above. The typical gain is now about 24 dBi ; this yields good echoes and improves the performance and ease of working the smaller stations who have met only the minimum EME requirements as specified above.
Some stations are using arrays of the 3.2 wavelength NBS Yagis, but
they are marginal unless at least six are used or the station scheduled has a larger setup to make up the difference for the 1 dB lower gain per Yagi. ${ }^{4,5}$ Proper stacking for this antenna is 8 feet (2.44 meters) and $61 / 2$ feet (2 meters) in the " E " and " H " planes, respectively.

Another antenna that has been used on $220-\mathrm{MHz}$ EME is the WB6NMT 11-element Yagi. ${ }^{6}$ This antenna, a result of the Greenblum designs, ${ }^{7}$ is also commercially available. WBØTEM has redesigned this particular antenna by extending the boom about 54 inches $(1.37$ meters) and adding 3 additional directors for increased gain. Each additional director is spaced 18 inches (45.72 cm) further down the boom and directors 4 through 11 are tapered slightly differently than they were in the original design. WBØTEM and W0SD each use arrays of 16 of these redesigned Yagis at their home stations and also have an 8 -antenna array which they have used very successfully on portable EME from over 15 states. ${ }^{8}$ Recommended stacking for this arrangement is 8 feet (2.44 meters) and $71 / 2$ feet (2.29 meters) in the " E " and " H " plane, respectively, and slightly closer (perhaps 6 inches or 15.25 cm) for the shorter version.

A more recent trend is to use the least number of antennas in the array by designing a Yagi with the longest boomlength possible. ${ }^{9}$ In this regard, the DL6WU designs are recommended. ${ }^{10}$ Indeed, one commercial antenna manufacturer has just announced the availability of a longboom (30 feet or 9.15 meters) Yagi from these designs.

A few $220-\mathrm{MHz}$ EME stations use parabolic dishes varying from 24 to 42 feet (7.3-12.8 meters) in diameter. Dishes are especially popular with operators who work EME on two or more bands because only the feed system has to be switched to change frequency. Furthermore, if the feed system is properly designed, it can be rotated or switched in polarity to offset the affects of Faraday rotation and thereby improve the chances of a completed EME QSO.

fig. 1. Antenna feed system used by K5FF/W5FF to feed their 30 -foot (9.15 meter) dish. (See text for dimensions.)

A 24 -foot (7 meter) diameter dish meets the minimum requirement for 22 dBi of antenna gain. As stated in reference 3, an F/D (focal length over diameter ratio) of 0.43 to 0.55 is recommended because it is the easiest to feed. At this frequency, the EIA reference feed is quite large ($41 / 2$ feet or 1.37 meters square) so other feed systems or variations have been used. WB5LUA modified the EIA reference feed by replacing the screen and driven elements with a pair of 2-element Yagis spaced $1 / 2$ wavelength and placed diagonally on the corners of his $70-\mathrm{cm}$ EIA feed. ${ }^{3}$ The reflectors, approximately 5 percent longer than the driven element, are placed $1 / 4$ wavelength behind it. His dish is 24 feet (7 meters) in diameter with a 0.49 F/D ratio. K5FF and W5FF use two circular loops spaced 14 inches (35.6 cm) apart, similar to a quad (fig. 1). Each element is made from $1 / 8$-inch $(3-\mathrm{cm})$ diameter wire with the driven element 54 inches (137 cm) and the reflector 56 $3 / 4$ inches (144 cm) long. A $1 / 4$ wave 92-ohm Bazooka type balun completes the match to the 170 -ohm feed point impedance. Their dish is 30 feet (9.15 meters) in diameter with a $0.43 \mathrm{~F} / \mathrm{D}$ ratio.

Typical half-power beamwidths for a 22 dBi gain antenna at 220 MHz are 12 to 13 degrees, so some of the medium sized rotators such as the HAM-M series are useable on the smaller antenna arrays. For temporary operation, setting circles and a protractor/level can serve very well for determining true elevation. The later
method was used on our recent New Hampshire 220-MHz EME DXpedition (fig. 2). However, larger Yagi arrays may require a commensurately stronger and more accurate rotator system such as a prop-pitch motor and selsyns. ${ }^{3}$

receivers

Most $220-\mathrm{MHz}$ EMEers use antennamounted very low-noise preamplifiers ahead of a crystal-controlled downconverter. The latter, usually located at the operating position, feeds a suitable high-frequency receiver. The converter should have a noise figure of $2-4 \mathrm{~dB}$ maximum with no less than 20 $d B$ image rejection, and should be reasonably free from overload la potential source of interference is from TV channels 12 and 13).

If you build your own converter, I recommend the use of a high dynamic range preamplifier, ${ }^{11}$ a doublebalanced mixer, ${ }^{12}$ and a 28.1 MHz IF . For 220.0 MHz , use a $191.9-\mathrm{MHz}$ local oscillator derived from a $95.95-\mathrm{MHz}$ crystal oscillator and doubler. ${ }^{12}$ There are many commercial converters available. The IF requirements such as stability and bandwidth, among others, are spelled out in detail in reference 3.

Many operators prefer to use transverters on 220 MHz . One of the most popular early arrivals on the $220-\mathrm{MHz}$ scene is the modified Microwave Modules MMT-220/28, available through VE3CRU on special orders. Other transverters are now available from commercial manufacturers. If you prefer to "roll your own" transverter, circuitry is available in references 12 and 13. If you are ambitious, W9SR has recently published a design of a complete transverter for the homebrewer. ${ }^{14}$

preamplifiers

Low-noise GaAs FET (Gallium Arsenide Field-Effect Transistor) preamplifiers are now in wide use on 220 EME operation. Noise figures of less than 1.0 dB are easily obtained even with low cost devices, and this is more than adequate with the sky temperatures prevalent on this band.

One of the most popular circuits is the W6PO design. ${ }^{15}$ His original GaAs FET circuits used devices selling for $\$ 25.00$, but devices such as the Mitsubishi MGF-1202 can easily provide a noise figure of 0.5 dB in this circuit at a cost of less than $\$ 10$. Other choices are the newer low-cost dual-gate GaAs FETs primarily aimed at the UHF TV market. They will operate in the same circuits providing that an extra intermediate voltage ($1.5-3$ volts) is applied to the second gate. Some typical low-cost devices are the Mitsubishi MGF 1100, NEC NE41137, Toshiba 3SK121 and the more recent arrival, Motorola MRF966 "sleeper" ($\$ 3.55$ in a single quantity). ${ }^{16}$

Preamplifier isolation is still a problem at 220 MHz . If you want long life for your input device, a dual relay protection scheme such as the one discussed in reference 3 is highly recommended! Reference 3 also points out that additional spacing is needed between the two cascaded relays if the ultimate isolation is to be obtained.

transmitters

Most 220 EMEers prefer to use an up-converter or transverter driven by a 28 or $50-\mathrm{MHz}$ exciter. This provides the necessary accuracy, flexibility, and stability required for EME. As pointed out in the receiver section of this article, designs are available in references 12, 13, and 14. Commercial transverters such as the Microwave Modules MMT 220/28 and others are available.
The majority of high-power amplifiers used on 220 MHz require greater than 10 watts if full output is required. Most operators either build or buy a moderate power (25-60 watt) solidstate driver. Many circuits have been published and many are available commercially.
Until recently, 4CX250B-type tubes were used in either a modified pushpull plumber's delight with tubing and flapper plates ${ }^{17}$ or in the parallel kilowatt unit similar to the K2RIW 70 cm design. ${ }^{18} 8930$ tubes can be substituted for the 4CX250Bs if greater power is required. $8874 \mathrm{~s}^{18}$ or the newly announced EIMAC 3CX800A7

fig. 2. Portable EME antenna system used by W1JR. Eight 4.2 λ NBS-type Yagis are mounted on an 11 -foot (3.35 meter) high tower. Main boom is a 30 -foot (9.15 meter), 3 -inch (7.6 cm) diameter irrigation tube.
tube should also work well in this design if the input matching network and the output tank circuit are redesigned accordingly, but they will require more drive ($40-60$ watts) than the 4 CX 250 Bs .

One worthwhile amplifier to consider now available on the surplus market is the AM-6155. Listed as a 50 -watt driver manufactured by ITT, it is available from Fair Radio Sales for approximately $\$ 150$. Included is a coaxial cavity amplifier complete with a tube (8930 typical) and 115 VAC power supply. With a few simple modifications, it will deliver 500-600 watts of output power - not a big EME amplifier, but one to start with and one that's surely more than sufficient for other modes of operation. ${ }^{19}$

The recent (September 1, 1983) FCC change from measuring input to output power and the tantalizing possibility of running legally up to 1500 watts output power has had a profound effect on EME operations. No longer is efficiency a primary requirement. This has led to the use of slightly less efficient but higher output tubes.

In this regard the 8877 is now becoming the most popular tube. It works well using either the W6PO ${ }^{20}$ or the ARRL Handbook circuit. ${ }^{21}$ (I have been unable to obtain sufficient data from the ARRL to clarify the use of the
design in reference 21.) W4WD, who has built it by scaling some of the missing information from the photographs shown, suggests that you extend the Teflon insulation on the plate tank to overlap at least $1 / 4$ inch $(6.35 \mathrm{~mm})$ to prevent breakdown. He also experienced some regeneration, but cured it by using the input matching circuitry in the W6PO design. Both of these amplifiers will deliver 1500 watts of output at good efficiency, but require 50 to 60 watts of drive, considerably more than required by typical 4CX250B designs. Finally, most $220-\mathrm{MHz}$ power amplifiers have harmonics that are typically only $25-30 \mathrm{~dB}$ below the fundamental. Therefore a harmonic filter such as a series-tuned circuit ${ }^{18}$ or a $1 / 4$ wave (at 220 MHz) shorted stub should be placed across the amplifier output connector.

feedlines

Suffice it to say that feedline losses should always be kept to a minimum, especially on EME. A 0.5 dB loss ahead of a $220-\mathrm{MHz}$ preamplifier is acceptable if a very low noise GaAs FET preamp such as the one just described is used. The transmitter feedline loss should be no greater than 1 dB unless you are running the new legal power limit.
Feedline loss is not such a problem
on 220 MHz . Losses are only about 66 percent of those on 70 cm and about 33 percent greater than on 2 meters. Hence, RG-213 coax cable is still usable for phasing lines in a Yagi array. However, $1 / 2$ inch (12.7 mm) or larger hardline is recommended for the transmitter line. Of course, Andrew Corporation Heliax ${ }^{\text {TM }}$ is recommended for the ultimate in low loss. The newly announced Belden 9914 is similar to RG-213 with lower loss (approximately 2.5 dB per 100 feet or 30.5 meters at 220 MHz). ${ }^{22}$ The Belden 9913 is even lower loss and is similar to RG-213 in size but uses an air dielectric. Either of these coax cables should be useable for phasing lines. A complete list of recommended feedlines is shown in table 1 of reference 3. As stated above, the 200 MHz line loss is approximately 66 percent of the loss listed in the table and the power handling capability is approximately 150 percent of that shown for 70 cm , while the velocity factor remains the same.

system checkout

Assuming that your station is now complete, it's time to go through a checkout to see if all your gear is working properly. The first step is to check VSWR. If it isn't below $1.5: 1$, and hopefully closer to 1.2:1, it's back to the drawing board. Assuming an acceptable VSWR, the output power should be measured both at the transmitter (to verify FCC requirements) and at the antenna to see that the transmitter feedline loss is low enough. At this point l'll reiterate the necessity of doing power and VSWR tests with an appropriate instrument such as a Bird Electronics model 43 or equivalent. Warning: do not stand in front of your antenna with high power applied because your body may absorb hazardous levels of RF radiation.

Next, check out the receiver. Depending on the noise figure and sky temperature, the audio output from your receiver should decrease from 1 to 2 dB as you elevate your EME antenna from the horizon to directly overhead. You may also move the overhead point several degrees one
way or the other to find a "cold" spot which will yield the maximum drop in receiver output noise. Next, aim your antenna at the sun after noting the receiver output on the cold sky. The noise level should increase from 7-10 dB depending on your antenna size, noise figure, and the conditions on the sun at the time of measurement. Check with another EMEer to compare figures that are presently being measured. (This procedure is described in more detail in reference 3 .)

Now you can check for echoes; don't get frustrated if you don't hear any. (The Faraday rotation may not be cooperating.) Remember that the round-trip path to the moon is just over 2.5 seconds, so long dahs or letters may be sent for test purposes. Also, doppler shift can be up to $\pm 750 \mathrm{~Hz}$ on 220 MHz . The maximum will be up to +750 Hz at moonrise and -750 Hz near moonset, with little or no doppler when the moon is directly south of your QTH. If Faraday is uncooperative, wait 30 minutes to an hour and try again. Better yet, get another EMEer to either listen for you or transmit a test signal for you to listen for.

scheduling

220 MHz EME operation is usually conducted between 220.005 and 220.050 MHz with 220.020 MHz as the calling or CQ frequency. DXpeditions usually operate on 220.035 MHz and listen $5-10 \mathrm{kHz}$ up. The activity is usually centered near perigee similar to the 70 cm EME weekend. To allow for those who work multiple bands, 220 MHz EME is usually conducted in the Saturday evening/Sunday morning time frame.

About a year ago, the 220 MHz EMEers decided to adopt the 70 cm scheduling and reporting system. Hence, the transmission/receiving periods are $21 / 2$ minutes long, with the westernmost station (and DXpeditions) transmitting the first $21 / 2$ minutes of each 5-minute block. A " T " report indicates signals or letters received. An " M^{\prime} " report means that positive identification (both call signs) has been received, and is therefore valid for a contact, while an " 0 " report
signifies "O5" copy. The usual acknowledgements both ways with " R " completes the exchange.

No formal 220 MHz scheduling is conducted as on 2 meters or 70 cm , so you will have to set up your own schedules until activity warrants more formal arrangements. However, the $70-\mathrm{cm}$ EME net is often used to set up $220-\mathrm{MHz}$ EME schedules. You can find this net between 1600-1700 UTC every Saturday and Sunday on 14.345 MHz . Many EMEers also meet to exchange schedules and information by using OSCAR 10 on a downlink frequency of 145.950 MHz when the satellite is in view.

summary

You too can join the fun on a frequency that in many ways is less critical or demanding than 2 meters or 70 cm yet still challenging. I have tried to sum up the state-of-the-art on 220 MHz and provide a recipe for simple EME success. Because $220-225 \mathrm{MHz}$ antenna systems are often smaller than those used on 2 meters, the lower sky temperature and the availability of suitable designs or commercial equipment make 220 MHz an ideal band for conducting EME schedules and experiments. There is also the challenge of attaining WAS on a band where this feat has only been recently accomplished. Good luck - see you on 220 soon.

acknowledgements

As in past columns, I have had to rely on many persons to provide some of the material needed to put this column together. I'd particularly like to thank Lewis Collins, W1GXT; Fred Merry, W2GN; Ron Barlow, N4GJV; Russ Wicker, W4WD; Lee Fish, K5FF; Fred Fish, W5FF; AI Ward, WB5LUA; Ed Gray, WDSD; and Marc Thorson, WBØTEM for all the help and encouragement they gave me to make this month's column possible.

references

[^4]3. Joe Reisert, W1JR, "Requirements and Recommendations for $70-\mathrm{cm}$ EME," ham radio, June, 1982. page 12.
4. Peter Viezbicke, "Yagi Antenna Design," NBS Technical Note 688, December, 1976. (Now out of print - see reference 5.)
5. Joseph H. Reisert, Jr., W1JR, "How to Design Yagi Antennas," ham radio, August, 1977, page 22. 6. Bill Smith, K0CER, "The World Above 50 Mc ," QST, May, 1972, page 112.
7. Carl Greenblum, "Notes on the Development of Yagi Arrays, Part 1," QST, August, 1956, page 11. 8. Ed Gray, W0SD, et al., "East Coast $220-\mathrm{MHz}$ EME DXpedition," QST, April, 1984, page 65.
9. Joe Reisert, W1JR, "VHF/UHF World: VHF/UHF Antennas and Antenna Systems," ham radio, February, 1984, page 46.
10. Gunther Hoch, DL6WU, "Extremely Long Yagi Antennas," VHF Communications, March, 1982, page 130. 11. Joe Reisert, W1JR, "VHF/UHF World: Improving Meteor Scatter Communications," ham radio, June, 1984, page 91.
12. Joe Reisert, W1JR, "VHF/UHF World: VHF/UHF Receivers," ham radio, March, 1984, page 42. 13. Joe Reisert, W1JR, "VHF/UHF World: VHF/UHF Exciters," ham radio, April, 1984, page 84.
14. Richard Stroud, W9SR/W9BRN, "Explore 220 with this State-of-the-Art Transverter," Part 1, QST, August, 1982, page 14; Part 2, QST, September, 1982, page 33.
15. Bob Sutherland, W6PO, "Some GaAs FET Preamplifiers," Eimac EME Note \#AS-49-31, available from Bill Orr, W6SAI, c/o Varian EIMAC, 301 Industrial Way, San Carlos, California 94070.
16. Gary Barbari, "UHF Preamplifier Centers on Budget Dual-gate FET." Microwaves and RF, February, 1984, page 141.
17. Wayne Overbeck, K6YNB/N6NB, "Shoes, Size A, B, or C," OST, November, 1978, page 29.
18. F.J. Merry, W2GN, "Stripline Kilowatt Amplifier for 220 MHz ," ham radio, April, 1982, page 12.
19. Jim Holt, N3AHI, "AM-6155 $225-400 \mathrm{MHz}$ Linear Amps," Fall and Winter issue of The Southeastern VHF Society Newsletter, page 10. (Edited by WD4MBK.) 20. Robert I. Sutherland, W6PO, "High-Performance Grounded-Grid $220-\mathrm{MHz}$ Kilowatt Linear," ham radio, June, 1980, page 12.
21. "A $220 \cdot \mathrm{MHz}$ High-Power Amplifier," The 1984 Radio Amateurs Handbook. American Radio Relay League, Newington, Connecticut, page 7.20. 22. "Belden Low-Attenuation Coax Cables," QST. January, 1984, page 29.

VHF/UHF coming events

September 8,9: ARRL VHF QSO Party September 25: EME perigee

DX news note

The $23 \mathrm{~cm}(1296 \mathrm{MHz})$ tropo record was broken on June 24, 1984, at 0035 UTC. N6CA at 1100 feet (335 meters) on the Palos Verdes Peninsula in Torrance, California, running 150 watts output and one 44 -element loop Yagi, worked KH6HME at 8200 feet (2500 meters) ASL on the eastern slope of Mauna Loa, Hawaii, running 20 watts output and four 25-element loop Yagis. The opening, while lasting several hours on 2 meters (where liason was conducted), lasted only about 10 minutes on 23 cm . This extends the DX record on this frequency to 2472 miles $(3977$ km).
ham radio

AUSTIN. When only the best will do!
Taking the leading role in custom antenna design comes easily to Austin. With over 25 years of engineering and consulting experience, how could we offer you less than the best?
And our high performance solutions go beyond our popular MULTIBAND antennas.
There's THE OMNI sidebander with horizontal and vertical polarization. Or the ALL BAND SCANNER with high gain that outperforms the competition. And THE STICK, a broad band design for operation from Amateur to Marine frequencies. Just a sampling of the choices available.
Whatever your antenna needs, the winner is Austin.
Call or write for product information.
Dealer inquiries invited.

NEW FROM

NEMAL

your one stop coax supplier!

hardline

Two styles, two sizes for all installation needs

- Aluminum Outer Conductor with Polyethylene Jacket $1 / 2$ inch loss $48 \mathrm{~dB} / 100 \mathrm{HI}$ @ 30 MHz $3.68 \mathrm{~dB} / 100 \mathrm{ft}$ @ 1000 MHz \qquad
 $\$ 1.25 / t t$
- Corrugated Copper Outer Conductor with Polyethylene Jackel
$1 / 2$ inch loss, $38 \mathrm{~dB} / 100 \mathrm{tt} @ 30 \mathrm{MHz}$
(FLC12-50J) 2.78 dB/ 100 tt .a 1000 MHz
$\$ 1.59 / \mathrm{tt}$
$7 / 8$ inch loss $.13 \mathrm{~dB} / 100 \mathrm{ft}$ a 30 MHz
\$3.92 It
COMPARE RG $213 \begin{array}{llll}13 & 1.25 \mathrm{~dB} / 100 & 80 & 30 \mathrm{MHz}, \\ & 8.5 & \mathrm{~dB} / 100 @ & 1000 \mathrm{MHz},\end{array}$
HARDLINE CONNECTORS
$1 / 2$ inch aluminum UHF M/F $\$ 19.00$ Type N M/F $\$ 22.00$
 $1 / 2$ inch copper UHF M/F $\$ 22.00$ Type N M/F $\$ 2200$ $7 / 8$ inch copper UHF M/F $\$ 49.00$ Type N M/F $\$ 49.00$

Call or write for Free Catalog

shipping

Cable - $\$ 6.00$ per 100 ft .
Connectors - $\$ 3.00$ per order.
Orders under $\$ 20$ add \$2 additional plus shipping COD add $\$ 2.00$. Florida Residents add 5%.

NEMAL ELECTRONICS

Dept. H, 12240 N.E. 14th Ave., N. Miami, FL 33161
Telephone: (305) 893-3924 Telephone: (305) 893-3924

- 181

The PACKET
Breakthrough!
PACKET RADIO lets you share a simplex channel error-free with up to 20 simultaneous users at 1200 Baud.
AEA introduces the MODEL PKT-1 PACKET CONTROLLER. Through an arrangement with TAPR (Tuscon Packet Radio, Inc.), AEA brings you the proven performance of the TAPR kit board and software in a rugged metal package, fully wired and tested with a full year's warranty and with all the free applications assistance you can stand.

Using only your existing radio and RS232 terminal (or computer), you can join the rapidly expanding packet radio community. Operate on VHF, HF or satellite and talk to more than 1000 existing packet users. Store messages addressed to you automatically and read them from your printer or monitor later. Easy to hook-up!! Easy to use!!
Call today for the rest of the story: 206-775-7373!!
Better yet, see your favorite AEA dealer.
Advanced Electronic Applications P.O. Box C-2160 Lynnwood, WA 98036

All right, AEA, send me info fast!
ITo: AEA, P.O. Box C-2160,
ILynnwood, WA 98036
1
1 Cuy. State zip
,
Phone

- - - - Date

¿RE Porta-Tenna

CALL LONG DISTANCE ON 2 METERS

Only 10 watts drive will deliver 75 watts of RF power on 2 M SSB, FM , or CW. It is biased Class AB for linear operation. The current drain is $8-9 \mathrm{amps}$ at 13.6 Vdc . It comes in a well constructed, rugged case with an oversized heat sink to keep it cool. It has a sensitive C.O.R. circuitry, reliable SO-239 RF connectors, and an amplifier IN/OUT switch. The maximum power input is 15 watts.

Our products are backed by prompt factory service and technical assistance. To become familiar with our other fine products in the amateur radio market, call or write for our free product and small parts catalog.

Model 875
Kit \$109.95
Wired \& Tested $\$ 129.95$

The Drake MN75 matching network will optimize your system performance with a surprising range of features and flexibility. From 1.8 to 30 MHz ., the MN75 matches balanced lines, coaxial lines, or random wires. (Optional B-1000 balun required for balanced lines.) RF output and VSWR readings are available at the push of a button. The rugged MN75 is rated at 200 watts continuous duty and features antenna switching as well as bypass capability. Get maximum power to your antenna system with the Drake MN75.

DRAKE SP75 SPEECH PROCESSOR

The Drake SP75 Speech
Processor packs the punch it takes to be heard! The SP75 is an RF type speech processor designed to give your signal that needed boost when the going gets tough. Connect the SP75 between your microphone and your Drake TR7 or TR5 - that's all! Front panel switching gives you a bypass option as well as phone patch or tape player input. Special muting circuitry even allows you to operate VOX while using the SP75. The clipping level is adjustable and the LED indicator shows the proper audio input level.

DRAKE CW75 ELECTRONIC KEYER

A no-nonsense keyer for the ' 80 's: the Drake CW75. Smooth iambic keying (grid block or direct) is at your fingertips with either a squeeze key, semi-automatic "bug", or straight key. 5 to 50 WPM capability with front panel speed control. Built-in side tone monitor with volume control. Operates from an external 7 to 14 volt supply or a nine volt optional internal battery.

DRAKE P75 PHONE PATCH
Use your station to its fullest! The Drake P75 Phone Patch puts you on the front lines of amateur radio public service. With the P75, your station can be that vital link between the remote location and the folks back home. The P75 is a hybrid patch for use with the Drake 7 -line or other transmitterl receiver combinations. Features such as in/out switching and adjustable RX/TX level controls make the P75 Phone Patch the choice you can count on.

improving amplifier ALC circuits: part 2

MLA-2500 input matching and tube protection circuits

The MLA-2500 has acquired a reputation as a tube eater, and it's no secret that the cost of replacing the final tubes in the MLA-2500 has risen from $\$ 75$ to $\$ 520$ in just ten years. This has left many MLA- 2500 owners nervous about - if not fearful of - tube loss. The ALC and driver matching circuit described in this article should significantly decrease the possibility of tube loss due to overdrive.

One problem that has plagued many MLA-2500 owners is the lack of an input matching circuit. A Kenwood TS-430, for example, is almost unusable with the MLA-2500. The success of the E.T.O. "Alpha" amplifier series has allowed several design ideas to be field-proven. I adapted the broadband, untuned input circuitry used in the small E.T.O. amplifiers to cure the

fig. 1. Toroid input transformer consists of 10 trifilar turns on a T94-2 core.
input mismatch problem. The matching circuit is simple to design and construct. Ten trifilar turns of No. 18 enameled wire are wound on a T94-2 core. An electric drill is used to twist three 15 -inch lengths of wire together. (The completed coil is shown in figs. 1 and 2. Fig. 3 shows the original input mounting around the input relay in an MLA-2500B. Fig. 4 shows the proper mounting of the input toroid. The wirewound "Non-inductive" swamping resistor used in the MLA-2500 was found to be too reactive to be of use and was removed. I constructed a 50 -ohm, 40 -watt non-inductive resistor suitable for swamping use from twenty 1 -kilohm, 2 -watt carbon resistors. I tightly packed the resistors into two groups of 7 and 13 respectively (shown in figs. 5 and 6) and then mounted them as shown in fig. 7. The interconnection is shown schematically in fig. 8.

The next step in stabilizing the input impedance involved moving the cathode RF choke, RFC-4, from the ALC board, PC-1004, to the cathode area. Some older MLAs use an unbypassed RF choke, RFC-7, already installed in series with the cathode line to the ALC board. If no RFC-7 exists, remove RFC-4 from the ALC board and reconnect it between the cathode line common and an empty terminal on the barrier strip mounted between the tube sockets. Install a jumper between the ALC board terminals from which RFC-4 was removed. Move the cathode return line to the barrier strip terminal and add a $0.01 \mu \mathrm{~F}$ bypass capacitor to ground as shown in fig. 8. After installation, the MLA-2500 will present less than a 1.3:1 VSWR to the exciter on all bands from 80 to 10 meters; on 160 meters the VSWR is $1.3: 1$. Although some variation in the value of the compensating capacitor, C_{c}, may be required, 100 pF connected as shown in fig. 2 has proven optimum in all retrofits completed to date. The use of different core material and/or core size is likely to necessitate some variation in the value finally selected and the connection terminal.

By J. Fred Riley, WA8AJN, 1721 Poplar Street, Kenova, West Virginia 25530

fig. 2. Toroid internal and external connections show position of compensating capacitor.

ALC

The final modification to the MLA-2500 may well be the most important and beneficial to improved performance. The technique employed is a modified version of the circuit used in the E.T.O. Alpha 77. It is a grid-current-derived ALC circuit that uses readily available Radio Shack parts. I could not use the original Alpha 77 circuit because it uses a positive sample voltage whereas negative is used in the MLA-2500. In installing the ALC circuit I also remounted the thermal sensor and increased the voltage to the cooling fan.

I remounted the thermal sensor, SW-3, shown in fig. 9, from behind the 40 -meter loading padder, C42, to behind the 80 -meter loading padder, C46. The final position is shown in fig. 10. Why the inside tube should run hotter is not obvious. Nevertheless, the inside tube does run hotter, and moving the thermal switch makes sense. Perhaps the bandswitch disturbs the airflow. You may wish to replace the cooling fan; after extensive evaluation of cooling fans, the Rotron WR2A1 "Whisper" is highly recommended. It is both quiet and efficient. I also removed R20, a 500 -ohm, 10 -watt resistor, from the thermal sensor circuit. When I removed R20 and rewired around it, I saved the thermal strip and remounted it to the bottom of the chassis below the 40 -meter loading capacitor, C42, using C42's mounting screw. This terminal strip is used in the ALC circuit and is shown at the top center of fig. 7. Fifty milliamperes, the new maximum grid current, represents only one-twentieth scale on the original MLA-2500 meter. By replacing the grid shunt, R19, with a 10 -ohm, 2 -watt resistor and adding a 1 -kilohm, 1/4-watt resistor in series with the grid meter line, the full-scale meter reading is increased to 100 mA . As a benefit, enough voltage is available across the new grid shunt to activate the new ALC circuit shown in

fig. 3. MLA-2500B input relay area before modification.

fig. 4. MLA-2500B input relay area shows toroid connections and mounting to ground lug and relay terminal. Compensating capacitor is visible at top of toroid.

fig. 5. Construction technique for seven-resistor pack.
fig. 5 of part 1. (Fig. 6 of Part One of this article shows the construction technique used and fig. 7 of Part One shows the mounting to the pushbutton mounting nuts.)

I used the ground lug on the remounted terminal strip to provide a ground for the new grid shunt, R19, and to provide a terminal point at which to connect

A User-Friendly Software Package Designed For Easy Operation of Morse,

MAIN MENU SCREEN

MBA-TOR ${ }^{\text {TM }}$
COPYRIGHT 1984 BY AEA
SELECT:
M. MORSE
A. ASCII
R. RTTY
T. AMTOR
U. AUTO AMTOR
X. AUTO CALL
C. COMMANDS
O. OPTIONS

Now Available for the Commodore 64 Computer in Two Versions. MBA-TOR 64 Software Package Only, at $\$ 119.95$ Suggested Retail. MAP-64/2 Software with Self-Contained Interface \$239.95 Retail.

Just Look At Some Of The Features:
\longrightarrow CW receive and transmit at 5 to 99 wpm , auto speed track on receive.
$\longrightarrow 8$ bit ASCII, receive and transmit at 110, 150 or 300 baud.
$\longrightarrow 5$ bit Baudot, receive and transmit at 60, 67, 75, 100 or 132 wpm.
\longrightarrow TOR, receive and transmit ARQ (Mode A) or FEC (Mode B) and listen.
\longrightarrow Beacon and WRU system, includes QRG check before XMT, won't QRM.
\longrightarrow Message forwarding system, AUTO-AMTOR still functions in this mode.
\longrightarrow Selects command menu.
\longrightarrow Selects options menu.

+ Complete precompose split-screen display with status information.
+ Complete printer control including SELCALL/WRU printer control.
OPTIONS MENU SCREEN
I. CALLSIGN
S. SELCALL ??????
????
T. ARQ TIMEOUT

30
U. USOS ON
M. MORSE FILL (BT) OFF
R. RTTY SYNC (NUL)

0FF
A. AUDIO FEEDBACK OFF
C. AUTO CR ON
L. AUTO LF ON
B. BEACON RECORD OFF
W. WRAP-AROUND ON
K. CW BREAK-IN OFF
O. OUTPUT MODE WORD

24-hour clock, shows time in hours, minutes and seconds.
Allows entry of your callsign for auto operations.
Derived from your callsign automatically, can be changed.
Sets ARQ phasing calls from 1 to 99 seconds.
Unshitt on space, toggles on or off.

- Transmits Morse idle character during breaks in KB activity.
- Transmits RTTY idle character during breaks in KB activity.
- Sends short beep through your audio as any key is depressed.
- Sends carriage return the first space after 65 characters.

Sends a line feed after each carriage return.
Allows the beacon to be recorded to the QSO buffer for logging.

- Sends CR/LF if there is a space in the last 5 positions on the line.

Automatic transmit/receive switching during QSO.
Transmit in word mode (text sent on space) or character mode.

COMMAND MENU SCREEN
hh:mm:ss

+ Break-in buffer on all modes, toggle QSO buffer on or off.
+ CW speed lock and Farnsworth low-speed CW.
+10 soft-partitioned ${ }^{\text {TM }}$ message buffers plus direct from disk or tape.
\longrightarrow Allows loading of message or OSO buffers from disk or cassette.
\longrightarrow Word processor type edit functions on message and QSO buffers.
\longrightarrow Allows transmission of QSO buffer without disk or cassette systems.
\longrightarrow Allows you to save message and QSO buffers to disk or cassette.
\longrightarrow Set the transmit pre-type buffer to any size you like.
\longrightarrow Chose between any of 16 colors for character, screen or border.
\longrightarrow Lets you set the time of day clock.
+ Insert QSO sfation's call into any buffer while still copying.
+ Includes a complete manual, keyboard overlays and cables for the AEA Computer Patch ${ }^{\text {M }}$ or Micropatch ${ }^{\text {TM }}$ Interface.
+ For more information call AEA, or see your AEA Dealer.
$\square 1$
Brings you the Breakthrough!

fig. 6. Construction technique used for thirteen-resistor pack.
the grid meter line to the new series metering resistor, a 1 -kilohm, 1/4-watt resistor. A new wire was added inside the wiring harness from the grid line to the area of the function switch mounting nuts. Using terminal strips modified in Dentron fashion and discrete components I constructed the basic circuit shown before. The -18 VDC required was obtained by a simple modification to the power supply board, PC-1002. Later model MLA-2500s do not have the 120 VAC winding shown on the schematic. If your unit has a black wire connected to pin No. 3 on the bottom of power supply board, PC-1002, unsolder the wire and tape it back. If your unit has a C32 capacitor installed, remove it. Remove the line going to pin No. 1 bottom - if it exists - and pull it back to the ALC circuit construction area. If no line exists between the ALC and power supply boards, run an additional wire in the harness to connect the ALC board to the new ALC circuit.

On the power supply board, PE-1002, install the new C32 capacitor, observing polarity. Diode CR16 may or may not be present. Use the old CR16 or any general purpose power diode. It may be most convenient to tack solder CR16 in from the $1 / \mathrm{T}, 2 / \mathrm{B}(12 \mathrm{VAC})$ trace on the power supply board to the 1/B terminal trace to which C32 is soldered, refer to part 1, Fig. 5 for schematic representation. Carefully locate the lines to the transmit light, $X-2$, and unsolder them from the power supply board. You may wish to use part of the excess wire connecting $X-2$ to the new ALC circuit for the new line connecting the $1 / \mathrm{B}(-18 \mathrm{VDC})$ terminal to the ALC circuit. After connecting X-2, the power supply board, and the new ALC circuit, only the ALC board, PC-1004, remains to be modified.

fig. 7. Schematic representation of connections from tube cathodes to new swamping resistor packs and remounted cathode choke.

fig. 8. Installation of resistor packs clearly shown in spaces between tube sockets and wiring harness. Note remounted terminal strip for grid shunt and meter multiplier at top right of photograph.

fig. 9. Original mounting of thermal sensor.

modifying the ALC board

Remove C22, RFC3 (if present), and R10 from the ALC board, PC-1004. Replace R12 with a 1 -kilohm,

Annonncing the birth of the Eaby \mathbb{Q}

FINALLY:

High quality reception on small dishes

The IBMBY \& Package includes an INTE:IRSNT
70° IXX. and down converter.

HABY Q THIS

- Built in Modulator tunes Channel 2 thru 6
- Composite Video
- Audio/Video/RF Outputs
- Single Conversion Down Converter
- Polarity Control
- Option Button

> Burtons Satellite Inc. 4995 HWY 35 • BIGFORK, MT 59911 (406) 837-5290

fig. 10. Remounted thermal sensor positioning.

1/4-watt resistor. Tack solder the old R12, a 27-kilohm, 1/4-watt resistor, from the input, pin No. 2, trace to ground. Using R10's terminals, correctly remount CR18 in the circuit. This completes the modifications. Check the ALC circuit by insuring that the transmit light, X-2, comes on at $55-60 \mathrm{~mA}$ of grid current; -8 VDC should appear at the ALC jack simultaneously with X-2's illumination. The new ALC circuit provides protection from accidental or transient overdrive when connected to the exciter. The input swamping and matching circuit helps limit the maximum grid current available. The increased sensitivity of the grid meter and X-2's visual indication prove powerful tools in preventing accidental or transient overdrive. The ALC circuit should act in concert with the change in cooling to protect the tubes under almost any operating conditions.
"Inadequate warm-up time is something these modifications cannot protect against. Four or five minutes has been found to be a practical minimum. Internal tube arcing can occur even though Eimac's specification sheet calls for sixty second minimum and the MLA provides seventy-five seconds. Increasing the time for warm-up can unquestionably save your tubes."

acknowledgment

I wish to thank Tom Keadle, W8EII, for the photographs and Rodger Miller, KC8DA, for the use of his amplifier.
ham radio

Advanced Computer Control . . . for your repeater

The RC-850 provides the most advanced technology available in repeater control. With "designed for the future" architecture that allows upgrade through software so that it will never be obsolete. Complete remote programmability with E^{2} PROM via Touch-Tone ${ }^{\text {w }}$ or your personal computer. Offering unique features including the highest quality synthesized speech and fully automatic scheduled operation. Plus voice
response metering, synthesized remote base operation, paging, mailbox, and the most advanced autopatch available - anywhere! Designed for reliable, consistent, enjoyable operation in any system. Field proven in hundreds of commercial and amateur repeater installations. The RC-850 will always be the leader in high performance repeater control.

Available from \$1195**

The RC-85

Repeater Controller

The RC-850's "little brother"! Remotely programmable ID's, command codes, auto-dial numbers, timers, and more. The RC-85 controller includes many of the features pioneered by ACC such as syn-
 thesized speech, remote base, paging, and more. Now any repeater budget can afford the benefits of an ACC controller! All just $\$ 895$ (board) or $\$ 995$ (rack mount).*

The ITC-32 Intelligent Touch-Tone

Control Board

Remote control at your fingertips with 28 commandable outputs, plus alarms, repeater and remote base control functions, response messages, and more. An ideal building block for your repeater. An easy way to add a remote base to your system. Or even to remotely control your home.

Only $\$ 389$

NEW PRODUCTS

DVR 128 - Digital Voice Recorder - Solid state voice storage and playback for remote recording of ID's and announcements, voice mail, and user diagnostics.

IVS 6/12 - Intelligent Voting System - Six or twelve channel voting with DTMF remote control. In-band signal quality evaluation, audio equalization, and activity logging.
ShackMaster" - Remotely control your home station using Touch-Tone commands over the air or over the telephone. Patch yourself through your home equipment onto the HF bands, and to VHF and UHF frequencies.
*Includes a one year limited warranty **Includes a two year limited warranty

Call us for more information on our complete line of amateur and commercial repeater control products.

ham radio

shortwave circus

As time goes by, more and more modern HF transceivers come off the production line with the capability to receive the range of 100 kHz to 30 MHz built right in. This has opened up a whole new world to Amateurs who thought that the shortwave spectrum ended at the edges of the ham bands.

It's fun to tune the spectrum; no wonder the SWL hobby has grown so rapidly over the past few years. There are lots of interesting signals to hear in the HF range!

The most obvious signals come from the shortwave broadcast stations; there are plenty of them, and most of them are listed by frequency and operating hours in the World Radio Handbook. ${ }^{1}$ Even the casual observer will find other signals: point-to-point transmissions, ship-to-shore, aircraft, military, RTTY, FAX, and so on. SWL magazines provide, on occasion, lists of these interesting transmissions.

In a few days' listening time, you can gain a good idea of what is going on outside the ham bands, as far as legal, recognized transmission goes. But an even more interesting field to explore is that category of transmissions that are undercover, clandestine, or modified in such a way that the casual listener cannot comprehend the transmitted information. And then, there are other signals . . .

things that go bump in the night

The shortwave spectrum is full of incomprehensible and confusing signals that whet the interest of the serious
listener. Some of these signals are quite loud and easily found.

Sweepers. One of the most common "mystery" signals is the sweeper. This is an unsteady carrier, loud and rough. It "sweeps" through your receiver quite rapidly, as though someone had tuned a wobbly VFO across your listening frequency. These signals, most noticeable in the 14 and 26 MHz regions of the spectrum, are in fact emitted from large, industrial heattreating machines used in the plastics industry, making water beds, furniture, dishes, and other sundries. These industrial RF oscillators run upwards of 100 kW and shift frequency as the manufacturing process advances. While they should be in the ISM (Industrial-Scientific and Medical) assignments at 13.56 MHz and 27 MHz , they seem to roam the spectrum at will.

I spoke to the operator of such an oscillator once. He told me that he was an avid CBer who made sure his oscillator never landed in the CB channels (that's a Goody Buddy, for you!).

Many other industrial RF oscillators exist for various purposes, and most of them radiate - sometimes badly. They're often operated by untrained personnel who have little concern for radiation. The minimal shielding on these machines is frequently removed to facilitate easy loading and unloading of the material they are designed to process.

Woodpeckers. Most hams are familiar with the obnoxious woodpecker signals that infest the Amateur bands. They exist in force too, on other frequencies. At least four such
signals exist; they are over-thehorizon, high power backscatter radars operated by the Soviet Union. With the United States as the target, the radars search for telltale missile trails and other interesting reflections of military importance to the Soviet radar operators.
Repeated protests about the disruptive effects of these long-distance radars have been lodged with the USSR. The extreme power of these devices, plus the sharp wavefront, make them a pest to all users of the HF spectrum.
Five-letter "numbers" groups. It won't take you long to find the 5 -letter mystery stations. These can be SSB, AM, or CW signals that transmit code groups at length, with no recognizable identification. On voice, the transmissions may be in English, Spanish, or German. The voice repeats 5 -letter code groups of numbers or letters. The most numerous are the "numbers" stations. A typical message sounds like:
"83457-90030-45089-10019-63345," and so on; often the message is repeated again and again. No station identification is ever given. Some stations repeat a series of letters in the phonetic alphabet instead of numbers, and others mix numbers and letters. Who are these stations? Where are they? And what are they doing?
"Spook" transmission. Harder to find are the two-way "spook" signals. (A good place to look for these is just above the 10 MHz Amateur assignment.) You'll hear two-way CW conversations at about 8 to 10 WPM (very
poorly sent, by the way). A typical transmission will run: "AJ23 AJ23 DE $64 Z$ QRK?" Then the other station will reply, " 642 DE AJ23 QRK 5 GA." Then the coded message will start. (Just after the 10 MHz assignment opened for Amateurs, I ran across a pair of spooks trying to work each other. They were both S 7 but they had a terrible time, stumbling around, trying to make contact. I couldn't resist, and broke in with a "ORK 5 GA PSE." This really upset the spooks. They frantically signalled each other, and in a burst of poorly sent CW, moved out of the Amateur assignment.) Careful listening will reveal a myriad of these signals, many of them coming from Central America.
Scientific sounders. You'll find a lot of more routine signals, too. lonospheric sounders run up and down the spectrum, sounding like a string of dots passing quickly across your listening frequency. Others are more sophisticated and have a more complex sound. An interesting trio of stations used to monitor potential earthquake activity in California can be found on $5.115 \mathrm{MHz}, 3.395 \mathrm{MHz}$, and 10.163 MHz . Located along a major fault, each station transmits a steady carrier (without identification), and the signals are observed at a monitoring point in Utah. When an earthquake occurs, the ionosphere above the quake area is disturbed; by closely observing the signals, investigators can learn much about the relationship between earthquakes and the accompanying ionospheric disturbance.

In this same vein, certain obscure data is transmitted by some AM broadcast stations that employ a 20 Hz FSK on their carrier. One station that does this is KNX in Los Angeles (1070 kHz).

The single-letter beacons (SLB). Of great interest to some listeners are the so-called single-letter beacons, which have been on the air for up to 20 years with little publicity. One or two of these are in the ham bands. ${ }^{2}$ On the west coast, in the early morning hours when conditions are good, the SLB on about 3979 kHz is quite loud. It simply
sends the Morse letter K about every four seconds in FSK. It can be quite annoying to early-morning nets on this channel.

Many other SLBs exist across the HF spectrum. Some are on-off keyed, others are FSK. Many of the latter use the Eastern European shift of 1 kHz , which suggests Soviet origin. The SLBs send different individual letters, and sometimes will send a short burst of five number code groups at about 20 WPM, then return to the carrier or the keyed letter. A large number of beacons, fading in and out with the skip, have been logged in the United States.

One set of beacons is particularly interesting, since they are well received on the west coast. This set comprises a number of K beacons. The beacons are keyed FSK simultaneously and are on 9.043, 11.156, 12.152, 14.478, $14.968,18.086$, and 18.349 kHz (approximately). Signal arrival indicates that the beacon set is located in Siberia, possibly on the Kamchatka penisula.

There are plenty of SLBs on the air, as the footnote indicates, and they seern to be heard all over the world. What is their purpose? Where are they? What messages do they convey? And who are the recipients? Your guess is as good as mine.
"Cut-number" stations. Some unidentified CW stations, in addition to sending coded messages, encode the numbers in the message. The transmissions sound like letter groups when they are really number groups. For example, the digit 1 is sent as A. 2 as $U, 3$ as $V, 5$ as E, and so on. This can be quite confusing to the casual listener.

Spread-spectrum signals. Various forms of wideband transmissions can be logged in the HF spectrum. One subtle form sounds like "white noise" on a receiver. This hiss occupies about 100 to 200 kHz of spectrum space. For some time such a signal was apparent in the high frequency end of the 20-meter phone band, but nobody seemed to notice it. Along with the

Swedish Amateur who first pointed it out to me, I ran a directional plot on it and found that it seemed to be coming from England, as far as we could determine. In recent years, the signal has moved out of the 20 -meter band.

Another form of spread-spectrum transmission is noticed by the perceptive observer as bits and pieces of voice transmission that occasionally pop up on your receiver. Each burst is very short; only fractions of words can be heard. The signal is obviously jumping around at a very fast rate!
"Junk" signals. A few minutes listening to the HF spectrum reveals an amazing quantity of sloppy signals. It seems as if all the old World War II surplus transmitters must be on the air somewhere. For years Amateurs on the west coast were plagued by slurpy, burpy coded CW signals that jammed the 80 -meter band during the early morning hours. Most of the transmissions were in Chinese. Some are still on the air. Many South and Central Americans use ham gear as telephone links between isolated locations. The 10-meter FM channels are occasionally blocked by Spanishlanguage signals carrying on tele-phone-type conversations.

A quiet scandal (seemingly ignored by the FCC) is the proliferation of illegal CB-type operations between 27 and 28 MHz . The casual listener will soon pick out loud signals, some of whom run kilowatts of SSB power into large beam antennas. Not long ago one such illegal operator boasted that he had worked over 90 countries with his illegal transmissions.

Another collection of "junk signals" exists just outside the low frequency end of the 160 -meter band. These are the wireless telephones which transmit frequency modulated signals in the span of 1650 kHz to 1800 kHz . Some of them operate right up into the low end of the 160-meter Amateur assignment. With a good antenna in a quiet location, a wireless phone can be heard for up to 10 miles. I wonder if the users of these phones know that they are
furnishing amusement to casual eavesdroppers?
"Free-radio" broadcasting. Do you like to play music on the air? Join the free-radio broadcasters and play hide-and-seek in the radio spectrum! One popular frequency for pirate broadcasters is 1605 kHz , just outside the top end of the broadcast band. Others pop up on various frequencies near the short wave broadcast bands, and a few operate in the $88-108 \mathrm{MHz}$ FM band. Although pirate broadcasters are quite rare in the United States, many exist in Europe. Because they vary frequency and time of broadcast, they are difficult to pinpoint, but many send QSLs for reception reports! The FCC is quick to crack down on pirate broadcasters, and it is not easy to spot one operating in the United States.

Soviet jammers. One of the major occupants of the international broadcasting bands transmits only noise, in a deliberate attempt to prevent listeners from hearing the program material on certain frequencies. It has been
estimated that there are more than 2,000 jamming transmitters, located principally in the USSR, Bulgaria, Czechoslovakia, and Poland, aimed at the local language broadcasts beamed behind the "Iron Curtain" from the west. Illegal or not, they are a reality. Some sound like a buzzsaw, others a rhythmic whine. Many are quite broad. The majority have identification signals, such as ZG or U7 which are sent in slow-speed Morse.
To make matters more interesting, Soviet broadcasts to China are jammed by the Chinese. Sometimes this jamming takes the form of taped music played backward! What next?
Illicit drug trade. Because HF radio is widely used by drug smugglers, the alert listener can occasionally run across transmissions dealing with this underground activity. These messages, mainly on SSB, are generally in English or Spanish. Nicknames are used instead of calls, and most of the traffic seems to occur between 4 MHz and 14.5 MHz, often just outside an Amateur band.

Good stuff, too! Aside from this long list of assorted follies and undesirables, there are many other interesting things to monitor outside the Amateur bands: point-to-point RTTY for the news services of the world, airline networks, weather broadcast, military, MARS (Military Affiliate Radio Stations), Coast Guard, and INTERPOL. The list goes on and on. The point is that there's plenty going on outside the Amateur bands. ${ }^{3}$ Exploring these regions is a fascinating undertaking. You'll be suprised at what you can hear! Good listening!

references

1. J.M. Frost, Editor, World Radio and TV Handbook, 38th Edition, available from Ham Radio's Bookstore, Greenville, N. H. 03048 ($\$ 20$ postpaid).
2. Observed frequencies of some of the SLBs heard on the west coast are (in MHz): 3.979, 4.006, 6.227, $7.512,7.557,8.138,8.146,8.646,9.043,9.058,10.645$, $11.156,12.152,12.185,12.329,13.329,13.638,14.478$, 14.968, 17.016, 18.016, and 18.349 (all frequencies plus or minus 2 kHz).
3. For more information on activity in the radio spectrum, see Popular Communications, published monthIy by Popular Communications Publishing Group, 76 North Broadway, Hicksville, New York 11801.
ham radio

THE "LITTLE" PROFIT FACTORY DISTRIBUTOR

We Sell In Volume At Low Down Factory Direct Prices LITTLE OVERHEAD. . LITTLE INVESTMENT. . .LITTLE PROFIT "'BU"' OUR BIG VOLUME MEANS LOWER PRICES TO YOU!

Full factory worranties on all components. Most shipments out in 24 hours of order. FOB Factory. NO MINIMUM PURCHASE REQUIRED.

DIRECT DISTRIBUTORS FOR:

RECEIVERS
\star JANEIL
\star Auto Tech
\star Luxor
\star Toki
\star KLM
\star Microdyne
\star Dexcel
\star General
Instruments
\star MWラCont
\star STS
\star Drake

RECEIVERS
\star JANEIL
« Luxor

* Toki
* KLM
* Microdyne
* Dexcel
\star General
Instruments
\star Mascent
* STS
\star Drake

LNA'S

* Dexcel
\star California Amp.
\star MSE
* Avantek
\star Macol

ACTUATORS

\star JANEIL SCOUT X16
\star MTI
\star Luxor

* Skywalker
\star STS

ROTORS

Morequality accessories for moreDMMs thananyone else intheworld.

Fluke has over thirty ways to expand the horizons of your DMM - even if your existing DMM is made by someone else.

Take our new, low-priced 80i-400 current clamp, for example. It's one of five different accessories offered by Fluke to let you take safer, more accurate current measurements in high energy circuits.

Or consider our universal temperature accessories. They convert your DMM into a thermometer for air, surface, and non-corrosive liquid temperature measurements.

Fluke also offers a variety of probes to measure high voltage and probes for high frequency ac measurements. Plus a complete selection of test leads, battery eliminators, carrying cases, and more.

It's the largest selection of DMM accessories available in the world.

So why spend a lot of money on new equipment, when all you may really need are new accessories.

To get the whole story, ask for a copy of our complete DMM accessories booklet. It's yours for free by contacting your local Fluke Distributor, or by calling tollfree 1-800-426-0361.

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.

IN THE U.S. AND NON-
EUROPEAN COUNTRIES
John Fluke Mig. Co., Inc.
P0. Box C9090. M/S 250C
Everett. WA 98206
(206) 356-5400. Tlx: 152662

IN EUROPE
Fluke (Holland) B.V.
PO. Box 5053. 5004 EB
Tilburg. The Netherlands
(013) 673973. Tx. 52237

FLபKE

(8)

WHAT THE COMPETITION CALLS "NO LOST WORDS OR SYLLABLES" WE CALL NOISE

 BARBECUE HAMB(IT IN TIME?($\left.\begin{array}{c}\text { (NUASE } \\ \text { BUST }\end{array}\right)$
Samples (heard as bursts of noise) displace your phone party's audio for as long as it takes your transceiver to T/R. The above example assumes a transceiver T/R time of about 150 mS (typical)

Abstract

PRIVATE PATCH II: " HI HONEY I AM FIXING YOUR FAVORITE SUPPER. . .BARBECUE

 HAMBURGERS. THEY WILL BE READY AT 6:30. WILL YOU MAKE IT IN TIME?"'Thousands of PRIVATE PATCH II owners are enjoying the commercial communications quality that only a VOX based, simplex autopatch can deliver.

PRIVATE PATCH II IS PRICED AT LESS THAN HALF OF OUR COMPETITORS "FAVORITE COMMERCIAL SIMPLEX VOX PATCH"

SAMPLING VS. PRIVATE PATCH II

The performance of a sampling patch is totally dependent on the T/R speed of your radio. Such is not the case with PRIVATE PATCH II. PRIVATE PATCH II will give excellent results with any radio. Synthesized and relay switched types included.

PRIVATE PATCH II requires only three connections to your radio (MIC, PTT and SPKR audio). If these connections are made inside your radio PRIVATE PATCH II does not interfere with the normal use of your radio. Otherwise for a quick and easy interface you may plug PRIVATE PATCH II Into the MIC and SPKR jacks. A 10 minute job! Unlike sampling patches, connections are not required to the squelch, discriminator or power. And best of all, modifications are never required.

Controlling and talking through PRIVATE PATCH II is almost always quicker and easier than using a sampling patch. This is because you may talk or send control commands the instant you press the PTT button. The ability to break in or take control is assured by interrupt control logic. The interrupt controller creates a window (similar to sampling) but is seldom heard in normal quick back and forth communication. With a sampling patch you press the MIC button for one to five seconds before talking on each and every transmission. This is very frustrating for the mobile, and causes confusion for each party.

The sampling process reduces the effective range of your base radio. This is because if a sample, and a signal fade coincide, the sampling patch thinks the mobile is not transmitting. This causes a sampling patch to become erratic at ranges still very useable by PRIVATE PATCH II. PRIVATE PATCH II will not diminish the range of your system.

PRIVATE PATCH II has two more range extending tricks not available to a noise sampled autopatch.

1. You may use a linear amplifier with no loss of performance
2. You can operate through any repeater from your base station.

FEATURES

- CW ID (free ID chip) • Selectable tone or pulse dialing • User programmable toll restrict • Five digit access code • Ringback (reverse patch) - Busy channel ringback inhibit (will not transmit on top of someone) - Three/six minute "time-out" timer is resettable from the mobile - 115 VAC power supply • Modular phone jack and seven foot cord . . and many more.

ALSO

- 14 day return privilege - when ordered factory direct.
v One year warranty - compare to their six months.

CONTACT A LOCAL DEALER TODAY

AMATEUR ELECTRONIC SUPPLY
Milwaukee WI, WICklifte OH,
Orlando FI, Clearwater FL.
Las Vegas NV
COLES COMMUNICATIONS
San Antonio TX
ERICKSON COMMUNICATIONS
Chicago IL
HAM RADIO OUTLET
Anaheim CA, Burlingame CA,
Oakland CA, San Diego CA,
Van Nuys CA, Phoenix AZ

HENRY RADIO Butier MO JUNS ELECTRONICS Culver City CA, Reno NV MIAMI RADIO CENTER CORP Miami FL
MIKES ELECTRONICS
FL. Lauderdale

NAG DISTRIBUTING CORP Miami FL PACE ENGINEERING Tucson $A Z$ THE HAM SHACK Evansville $\mathbb{I N}$ CANADA: DOLLARD ELECTRONICS Vancouver, BC

23731 MADISON ST., TORRANCE, CA 90505 PHONE: (213) 373-6803

packet radio: the software approach

AX.25, 1200 baud packet on the TRS-80 Models I and III

There have been a number of excellent articles ${ }^{1,2}$ published recently on the new Tucson Amateur Packet Radio (TAPR) AX. 25 protocol terminal node controller (TNC). This TNC communicates with a host microcomputer over an RS-232C or parallel interface and includes its own 6809 microprocessor, 32 K of EPROM, 8 K dynamic RAM, an SDLC/HDLC controller, an RS-232 UART, and a number of ancillary support chips. It is, in essence, a complete dedicated packet microcomputer.*

There is yet another approach to 1200 baud synchronous packet using the AX. 25 protocol: a software approach for the TRS-80 Model I or Model III that eliminates the TNC's dedicated 6809 microprocessor, SDLC/HDLC controller, 32 K of EPROM, 8 K of RAM, RS-232C UART, and all ancillary support chips.

Like the TAPR TNC, the software approach requires a 1200 baud modem using the EXAR 2206/2211 AFSK modulator/demodulator chips. It also requires a port zero encoder/decoder as an interface between the TRS-80 microcomputer and the outside world. Both the modem and port zero encoder/decoder may be homebrewed for a total cost for parts of approximately $\$ 25$ to $\$ 30$.
The balance of this article describes the three fundamental software subroutines used to do the following:

[^5]- convert the computer's parallel 8 -bit byte to a 1200 baud synchronous serial data stream with real-time zero insertion where necessary during transmission.
- convert the 1200 baud incoming synchronous data stream to parallel 8 -bit bytes with zero deletion in realtime during reception.
- virtual real-time cyclic redundancy checking (CRC) of incoming packet frames and CRC generation for transmitted packet frames.

1200 baud transmit parallel byte-to-serial bit conversion

This is illustrated in the relatively simple subroutine in fig. 1's commented source code. All opening and closing flags are generated by CALLing SN1A with the unique 126 decimal flag byte in the ' A ' register. Call SN1A at least 60 or 70 times for the first frame's opening flags, once for frame separator flags (in a multi-frame packet the closing flag for one frame serves as the opening flag for the next frame), and call it once for the entire packet's closing flag.
To transmit data between opening and closing flags that may require zero insertion, CALL SN1 with the data byte in the ' A ' register. Either SN1A or SN1 must be called sequentially with a maximum delay between calls of about 40 microseconds so as not to disrupt the timing of the serial synchronous data stream.

1200 baud receive serial bit-to-parallel byte conversion

Figure 2's commented source code shows the subroutine that converts the incoming 1200 baud synchronous bit stream to parallel 8 -bit data bytes with zero deletion where necessary. Most of the Z-80's regular and alternate registers are used by the IN1 routine (originally created by W2EUP). This routine is

By Robert M. Richardson, W4UCH, 22 North Lake Drive, Chautauqua Lake, New York 14722
fig. 1. 1200 baud SDLC/HDLC fundamental transmit subroutine.

$\begin{aligned} & 01250 \\ & 01260 \\ & 01270 \end{aligned}$		$\begin{aligned} & \text { XOR } \\ & \text { LD } \\ & \text { RET } \end{aligned}$	(${ }_{\text {A EROSP }) ~, ~ A ~}^{\text {a }}$	32ERO OUT 'A' REGISTER ;AND TERC SPACE COUNTER ; RETURN WHENCE U CAME +1
01280	MARK 1	LD	A, 1	: MARKY ONLY POR PLAG
01290		OUT	(0), A	; SEND MARK TONE
01300		ID	A, 5	; 1 - SPACE \& 5 = MARK
01310		LD	(LASONE) , A	: UPDATE LASTONE
01320		XOR	A	; ZERO OUT 'A' REGISTER
01330		LD	(ZEROSP), A	AAND ZERO SPACE COUNTER
01340		LD	A, (SPEED)	; COUNTDOWN VAlue
01350		2 D	HL, DECMK 1	; JP (HL) ADDRESS
01360	DECMK 1	DEC	A	;-1 COUNTDOWN VALUE
01370		RET	2	; RETURN WHENCE U CAME +1
01380		JP	(HL)	- Jump to dectik
01390	SN1A	LD	D,A	; SN1A ONLY FOR FLAG
01400		LD	E. 8	; NUMBPR OF gits Per byte
01410	SN2A	LD	A, (LASONE)	: 1 - SPACE \& 5 = MARK
01420		CP	1	; WAS IT A SPACE ?
01430		JP	z,LASSP	, IF SO, GOTO LAST SPACE
01440		BIT	$0, \mathrm{D}$	-SET Z FLAG POR BIT 2 ERO
01450		CALL	NE, MARK 1	; IF NOT ZERO SEND MARK
01460		BIT	$0, \mathrm{D}$; SET Z FLAG FOR BIT 2ERO
D1470		call	2,SPACE1	: IF 2 ERO SEND SPACE
01480		DEC	E	- -1 FROM BIT COUNTER
01490		RET	z	; IF EERO, GET NEXT BYTE
01500		RRC	D	PRICHT SHIFT ALL 1 EIT
01510		JP	SN2A	; GO BACK FOR NEXT BIT
01520	LASSP	BIT	$0, \mathrm{D}$; SET Z FLAG FOR BIT ZERO
01530		call	N2, SPACE 1	; IF NOT ZERO SEND SPACE
01540		BIT	0, D	;SET Z FLAG FOR BIT 2ERO
01550		CALL	2,MARK 1	; IF LERO SEND MARK
01560		DEC	E	;-1 FROM BIT COUNTER
01570		RET	2	-IF RERO, GET NEXT BYTE
01580		RRC	D	TRIGHT SHIFT ALL 1 BIT
01590		JP	5N2A	; GO EACK FOR NEXT BIT
01600	zerosp	DEFB	0	; SPACE COUNTER STASH
01610	zEROMK	DEFB	0	IMARK COUNTER STASH
01620	SPEED	DEFB	98	[MODEL 3 USE 115 DECIMAL
01630	- -	-	-	--------
01640	1 END	FUND	NTAL 1200	RANSMIT SYNC, CONVERSION

entered in line 560 with the first data byte in the ' A ' register after the last opening flag was received.

The software digital phase locked loop in lines 980 through 1330 is the author's favorite and is the one used in Volume I of Synchronous Packet Radio Using The Software Approach. This DPLL accommodates 1200 baud signals whose timing is off about plus or minus 10 percent from the norm.

software digital phase-locked loop

Figure 3 shows two 1200 baud, bit time frames where the incoming signal has changed from a space to a mark. In SDLC/HDLC it is not the absolute value of a mark or space that counts. It is only the relative change from the previous bit that determines whether it is a logical 1 or logical zero.

The software digital phase-locked loop is divided into quadrants much like its hardware counterpart, the Intel 8273 synchronous data link controller chip. But it is somewhat different in that there is no "dead band" between tyme 2 and tyme 3 . If the transition occurs during tyme 2, a bit early from the last PROCESSirfg, the countdown time delay from tyme 4 is decreased slightly so that the next PROCESSing between tyme 4 and tyme 1 will be closer to dead center. If the transition occurs during tyme 3, a bit late from the last PROCESSing, the countdown time delay for tyme 4 is increased slightly so that the next PROCESSing between tyme 4 and tyme 1 will be closer to dead center. Any transitions during tyme 1 or tyme 4 dramatically decrease or increase, respectively, the countdown time delay to quickly bring the software DPLL back into correct synchronization.

Ideally, the software DPLL countdown values for
fig. 2. Receive mode real-time SDLC/HDLC serial synchronous date stream to parallel decimal byte conversion.


```
01230 LD D,15
01240
01240 DEC }
01260
01280 INC1
01280
01290
01310 INC2
01310 INC
O1320
D,15
E,A
D,20
E,A
D.24
TYME4-
E,A
```

15
TYME2
E, A
D.20

E, A
tYME4-
E, A
D, 29
; WAY TOO LATE, SO SHORT ; EN LAST QUADRANT COUNT ; SAVE NEW BIT IN 'E' ; SHORTEN LAST QUADRANT ; SAVE NEW BIT IN 'E' :TINY BIT TOO SOON, SO : LENGTHEN LAST QUADRA ; SAVE NEW BIT IN 'E' ; LENGTHEN LAST QUADRANT.


```
01360 ; IDEALLY tHE DPLL WILL OSCILLATE BETWEEN DEC1 & INC1.
01370 ; IDEALLy the dPLL WILL oscillate between dec1 a inC1.
01380
01400 ; IN LINES 1010, 1060, AND 1110. ALL ELSE THE SAME.
```


fig. 3. $\mathbf{1 2 0 0}$ baud software digital phase-locked loop quadrants.
tyme 4 will oscillate between 20 and 24 , which is exactly what this software DPLL accomplishes. With the Model 3's faster clock, register B in TYME, TYME1, and TYME2 is set to 28 decimal.
The PROCESSing time between tyme4 and tyme1 should be held to less than 10 percent of the total 1200 baud 833.333 microsecond bit time so as not to further complicate the software DPLL's job.

virtual real-time CRC generation and checking

Figure 4 is the AX. 25 Volume 2 program's CRC subroutine with comments. It uses the 'byte-wise' look-up-table approach suggested by Aram Perez ${ }^{4}$ and converted by the author to the CRC polynomial used by both the Vancouver and AX. 25 protocols. It is incredibly fast. That is why we use the term 'virtual' to describe its almost real-time speed. It is exactly 27 times faster than the bit-by-bit CRC'ing described by the author in Volume 1 of Synchronous Packet Radio Using the Software Approach.

Unfortunately, there's no "free lunch." The price we have to pay for this lightning-fast speed is the 512 byte look-up table illustrated at the end of fig. 4. It is shown as a two-byte word table to conserve space. The label TABLE is in the upper left hand corner at
fig. 4. IBM SDLC CRC generation and CR checking subroutines.

location 1. The table resides sequentially in memory from location 1 through 256 anywhere you wish to put it.

adapting the software approach to non-TRS-80 computers

This is neither a simple nor impossible task if you are a professional assembly language programmer with access to a mini or mainframe computer with crossassemblers for the more popular microprocessors. Many of the software houses now use this accessory. The alternative is to create your own software approach packet program for your own favorite microcomputer. Hopefully this short article will inspire you to do so.
pigure 4 continued
him is the 512 bvte CRC lookup table printed out as 256 two

Abstract

| 2 DEFW 4832 |
| :--- | :--- | :--- |
| 3 DEFW 3644 |
| O | 4 DEFW 4091 OEFW 6027 OEFW 6027 6 DEFW 6423 17 OEFW 51 8 DEFW 40 DEFW DEFW 51 DEFW 52 DEFW \qquad

conclusion

Further information on the software approach can be found in Synchronous Packet Radio Using The Software Approach - Volume II: AX. 25 Protocol. ${ }^{3}$ This 253-page book is available for $\$ 22$ postpaid (overseas, add $\$ 10$ for airmail) from Richcraft Engineering Ltd., \#1 Wahmeda Industrial Park, Chautauqua, New York 14722, or from Ham Radio's Bookstore, Greenville, N. H. 03048.

If you wish to forego the pleasure of typing in approximately 5000 lines of source code, the program is available (from Richcraft) on disk for the Model I or Model III TRS-80 (specify) for an additional \$29, postpaid. If you wish to modify the program with your call letters or personalized prepared messages, you'll need a copy of the book, but no knowledge of assembly language, and no editor/assembler.

references

1. Margaret Morrison, KV7D, and Dan Morrison, KV7B, 'Amateur Packet Radio." Part 1, ham radio, July 1983, page 14; Part 2, ham radio, August, 1983, page 18.
2. Lyle Johnson, WA7GXD, "Join the Packet Radio Revolution," Part 1, 73 September, 1983, page 19; Part 2, 73, October, 1983, page 20.
3. Robert M. Richardson, WaUCH, Synchronous Packet Radio Using The Software Approach, Volumes I - III, Richcraft Engineering, Ltd., 1982. 4. Aram Perez, "Byte-wise CRC Calculations," IEEE Micro Journal, IEEE Computer Society (10662 Los Vaqueros Circle, Los Alamitos, California 90720), June, 1983, pages 41.50.
ham radio

Satellite TV and stereo sound.

Now you can enjoy the fullness of stereo sound via satellite. Stereo is standard on the GLR-868. . .and, so is top quality video.

Features:

- Priority 6.8 mono audio plus narrow-band direct stereo and wide-band matrix stereo
- Automatic volume compensation for wide/narrow band signals
- Crystal synthesized tuning and built-in terrestrial filter
- Automatic polarity seeking control plus 100° or better LNF
- Wireless, infrared remote for changing channels
- Single cable convenience for all power and control wiring

The GLR-868 connects with your stereo and your television set to turn your den into a theater. You get stereo sound separate from the video on selected subcarriers and with video on other subcarriers. Your choice. . for your enjoyment. Take a look at the GLR-868, and hear the difference of stereo sound. At your local satellite TV dealer.

We make technology affordable.

AUTOMATION EEHNIVUES,ING.

$\checkmark 205$

Free Antenna Accessories Catalog

4Coaxial Antenna Relays
Remotely select up to 9 antennas from your transmitter, using only one coaxial cable. Environmentalized, high power and low loss

W2AU and W2DU Baluns

Our baluns. center insulators and insulators have been preferred for 20 years by Hams, industry, and the armed forces. Protect against TVI and lightning $1.8-200 \mathrm{MHz}$

4 W2VS Antenna Traps

Add these traps to your dipole and get low SWR on 2 to 6 bands, depending on how many you add. Antenna wire and custom kits also availabl.

Send For Yours Today

Don't delay. Call or write today, and we will send you free literature which fully describes our Ham antenna accessory product line.

Dealer inquiries also welcome.

[^6]
ORR BOOKS

BEAM ANTENNA HANDBOOK
by Bill Orr, W6SAI
Recommended reading. Commonly asked questions like. What is the best element spacing? Can different yagi antennas be stacked without losing pertormance? Do monoband beams outpe:form tribanders? Lots of construc tion projects. diagrams and photos 198 pages. 1977 ist edition RP-BA Softbound $\$ 7.95$
SIMPLE LOW-COST WIRE ANTENNAS
by Bill Orr, W6SAI
Learn how to build simple. economical wire antennas Apartment dwellers take note' Fool your landiord and your neighbors with some of the invis ible antennas found here. Well diagramed 192 pages.

RP-WA
Softbound \$7.95
THE RADIO AMATEUR ANTENNA HANDBOOK
by William I. Orr, W6SAI and Stuart Cowan, W2LX
Contains lots of well illustrated construction projects tor vertical, long wire. and HF/VHF beam antennas thete is an honest fusgment of antenna gain figures. information on the best and worst antenna locations and heights, a long look at the quad vs the yagi antenna information on Daluns and how to use them, and new information on the popular Sloper and Delta Loop antennas. The text is based on proven data plus practical, on the-ar experience The Radio Amateur Antenna Handbook will make a valuable and often consulted reterence 190 pages 1978

RP-AH
Softbound \$7.95
ALL ABOUT CUBICAL QUAD ANTENNAS
by Bill Orr, W6SAI
The cubical quad antenna is considered by many to be the best DX antenna because of its simple, lightweight design and high performance You ll tind quad designs for everything from the single element to the mult-element monster quad, plus a new higher gain expanded quad ($X-Q$) design There's a wealth of supplementary data on construction teeding luning and mounting quad antennas 112 pages 1977

RP-CO
Softbound \$6.95
Please add \$1 00 to cover shipping and handling
HAM RADIO'S BOOKSTORE
GREENVILLE, NH 03048

taking

 out the
guess work...

ELECTRO-SCAN84
Features

- Economical
- Lock and Key
- On-Off Switch
- 36 volt DC motor
- Precise positioning
- 10 Turn potentiometer
- Analog Micro Systems
- 1 year limited warranty
- State-of-the-art circuitry
- 18" Saginaw Acme actuator
- LED to indicate dish movement
- Modern, attractively styled control box
- Dial control always showing dish location

Your wisest choice in automatic dish positioners.

To learn more about the finest in low cost, high performance dish positioners, contact...

ELECTRO-COM

MOSLEY...A BETTER ANTENNA.. Antennas For 40 Meters..
 *ALL STAINLESS HARDWARE
 *NO MEASURING
 -BROAD BAND WIDTH
 - 2 YEAR WARRANTY
 -BUILT TO LAST
 -5 KW P.E.P. *NO BALUN NEEDED

S. 401 M

Easy as... 1 - S-401 M. A 40 Meter Rotatable Dipole which gives you excellent bandwidth and performance. MOSLEY's S-401 M is the best 40 Meter Dipole ever built. All stainless hardware is standard. We have made it even stronger than betore! We have added 2 extra insulator blocks and 2 feet more rectangle. The center of the elements are reintorced with an unbreakable non-conductive rod which makes it just about indestructable. Our link coupled feed system provides tor an efficient match which enables you to direct feed the antenna with no need for a balun. This is why we give a 2 year warranty on parts, material, and workmanship.

2. Our S-402 M is now on a 24 toot boom and has all of the new improved structural changes. This antenna will give you years of outstanding mechanical and electrical performance in any climate. We feel this is the best performing. maintenance free. 2 element 40 Meter beam built anywhere in the world. Check it out! We believe you will agree. The elements are heavier constructed than other brands, and only reduces to $11 / 8 \times .058$ wall at their ends. Compare this to the other manufacturers. The S-402 M also comes with our 2 year warranty!

3-The S-403 *s the killer of the three models This antenna gives you full size performance and is built to last. Our 36 foot boom is made out of $2^{\prime \prime} \times .104$ wall with a 24 foot sleeve of $1.785 \times$.125 wall. This gives you a wall thickness of 229 over 24 teel of the boom. The S-403 is spaced to give you the best front to back and forward gain. It will give you the whole 40 Meter band to chase DX or rag chew. Our S-403 also comes with our 2 year warranty

If you are a new ham and are not tamiliar with MOSLEY, ask an older ham about us or call the PRESIDENT of MOSLEY. He will be glad to explain why MOSLEY is A BETTER ANTENNA.

These and other MOSLEY products are available through your favorite DEALER. Or write or call MOSLEY for the DEALER nearest you.

Known throughout the world for accuracy, the 1985 Callbooks list the names and addresses you need for your QSL's. Arranged for easy reference, the U.S. Callbook contains over 433,000 listings; the Foreign Callbook has over 413,000 . More than 100,000 changes have been made in each edition since last year. Special features include call changes, Silent Keys, census of amateur licenses, world-wide QSL bureaus, international postal rates, prefixes of the world, and much more. Why settle for less than the very best? Order your 1985 Callbooks now for earliest delivery.

םU.S. Callbook $\quad \$ 21.95 \quad \$ 3.05 \$ 25.00$ $\begin{array}{lllll}\square \text { OForeign Callbook } & 20.95 & 3.05 & 24.00\end{array}$ Order both books at the same time for $\$ 45.00$ including shipping within the USA.

Order from your dealer or directly from the publisher. Foreign residents add $\$ 4.55$ for shipping. Illinois residents add 6% sales tax.

Keep your 1985 Callbooks up to date. The U.S. and Foreign Supplements contain all activity for the previous three months including new licenses. Avallable from the publisher in sets of three (March 1, June 1, and September 1) for only $\$ 15.00$ per set including shipping. Specify U.S. or Foreign Supplements when ordering. Illinois residents add 6% sales tax. Offer void after November 1, 1985.

따밀llbook

Dept.
925 Sherwood Dr., Box 247 Lake Bluff, IL 60044, USA

- 192

Tel: (312) 234-6600 vish men

TOWERS

 by ALUMAHIGHEST QUALITY ALUMINUM

- TELESCOPING (CRANK-UP) 60 FL Alum
Crank-Up - GUYED (STACK-UP)
- TILT-OVER mODELS

Easy to install. Low Prices.
Crank-ups to 100 ft .
EXCELLENT FOR

AMATEUR COMMUNICATIONS

Over 36 types aluminum and steel towers madespecials designed and made-write for details

SPECIAL Four Section 50 Ft . Van Mounted Crank-Up Aluma Tower Fixed Base

ALUMA TOWER CO. BOX 2806HR
VERO BEACH, FLA. 32960-2806 (305) 567-3423 TELEX 80-3405

This Publication is available in Microform.

University Microfilms International

Pleac and addithonal intormatuen
Name
\qquad
\qquad

400 Nurth Zert Koad
Dept PR
Ann Athor

Thru a special purchase we got hold of 50 brand new 19" color displays. They were made by Wells Gardner for one of the largest arcade video game manufacturers in the world. The displays feature built in red, green and blue amplifiers, 19 " color tube made by Wells Gardner. User supplied external horizontal and vertical scan oscillators which allows precise user control over screen resolution. A real plus! Requires $25 \mathrm{~V}-0-25 \mathrm{~V}$ input for amps , available separately. Some spec's for you technical people: signal inputs " X " horizontal 16 V P-P $\pm 8 \mathrm{~V}$, "Y" vertical 12 V P-P $\pm 6 \mathrm{~V}$: " Z " beam drive, 4 V max brightness, 1.0 volt black level. Writing rates " X " amp is .05 inch/usec, " Y " amp is .0375 inch/usec. Great for making your own video games, oscilloscope monitors, or adapting for home computer use. Supplied with schematic.
$\$ 199.00$ ea.
Shpg. Wt. 45 Lbs.
MOT-19C
$2 / \$ 375.00$
Supplied with schematic. Quantity pricing available.
Shpg. Wt. 45 Lbs. MOT-19C $\$ 199.00$ ea, $\$ 375.00 / 2$
TRANSFORMER FOR ABOVE Shpg. Wt. 15 Lbs. $\$ 12.00$

CAD CAM KEYBOARD

We only have a very limited quantity of these high reliability, beautifully layed out 8 bit, serial output keyboards. These were made by Keytronics for use in a Cad-Cam system. The board is made up of 3 sections. The typewriter format section has 2 control keys plus full upper and lower case alpha-numerics. The 42 keyswitch pad, when used with appropriate logic, allows extensive, precise manipulations of displayed data such as close up, moving information, sketching, etc. The third section consists of 27 keys which include a numeric scratch pad, 4 way cursor control plus some command keys. On board are 3 LSI's including an Intersit IM6402, INS8 048 , and NS2 716 UV PROM which contains the programs for manipulating data, plus other circuitry and an alert beeper. The keyboard requires +5 V and -12 V . Each one will come with schematics. New and unused. Shpg. Wt. 4 Lbs. KYBRD No. 6 \$45.00 Less than 100 on hand - Order Now!

PHONE ORDERS for FASTEST SERVICE! call (617) 595-2275 and Charge It!

- 220

2 New, surplus power supplies made by N. J. E. . Both feature 115/230 $50 / 60 \mathrm{~Hz}$. inputs, fully regulated and filtered d. c. outputs, built-in adjustable overvoltage protection, and built-in adjustable current limiting The supplies are enclosed and come with data. 2 models listed below.
Dual Outputs: +12 or +15 vdc 3 amps and -12 or -15 vdc 3 amps shpg. weight 6 lb . Model no. PS.5 A $\$ 30.00$
Triple Outputs: 5 vdc $6 \mathrm{amps},+12$ or +15 vdc 1 amp and -12 or -15 vdc 1 amp. Shpg. wt. 6 lb. Model no. PS 6 A $\$ 35.00$

Send for our free 72 page catalogue jam packed with goodies.

EPSON PRINTERS

Two surplus printers made for the computer industry by Shimshu Seiki/ Epson. One prints alpha-numeric characters and the other prints numeric characters plus

This regulated multi-voltage switching power supply board is made by KEPCO (their part no. MRM 174 KF) and is still in production (. . regular price $\$ 124.95$). It was originally part of the Zorba portable PC. The four outputs are as follows: $\&+5 \mathrm{VDC} @ 5 \mathrm{~A},+12 \mathrm{VDC} @ 2.8 \mathrm{~A},+12 \mathrm{VDC}$ @ 2 A , and $-12 \mathrm{VDC} @ .5 \mathrm{~A}$. The $+12 \mathrm{VDC} @ 2 \mathrm{~A}$ is very heavily filtered so it could be used on a glitch free monitor. The -12 VDC @. 5 A can be changed to -5 VDC just by changing the onboard 7912 regulator chip to a 7905 . The board's lightweight and small size should make it perfect for many projects. All new and provided with a schematic. The input is jumper selectable $110 / 220$. New, unused. Quanity prices available.
$\$ 49.95$
Shpg. Wt. 2 Lbs. ea.
SPL-4 71-33 B
$2 / \$ 90.00$
other symbols. These
may have been intended for use in cash registers but other uses come to mind. Good enough to print program listings, using hard copy verification on timing devices or just for parts. Heck, the price is right. Runs on +5 V and 12 V . With pinout data. Shpg. Wt. 8 Lbs. (either printer).
Alpha numeric type
SPL-4 $65-33 \mathrm{~A}$
$\$ 17.50$
Numeric only

LOGIC and DISC DRIVE POWER SUPPLIES

interrupt-driven RTTY reader

Receive RTTY on your Apple while other programs run

This is a 6502 machine language program written for an Apple II equipped with a 6522 Versatile Interface Adapter chip (VIA).* (It should be simple to convert the program to other 6502 computers.) The unusual feature of this program is that RTTY reception is accommodated during interrupts that occur at 1000 Hz intervals. Thus, this program can easily be extended without concern about timing. This program will not work well on the Apple lle at 100 WPM because when the lle does a scrolling operation, it turns off the interrupts! This is because the lle allows the alternate 64 K to bank-select over the ROMs, which contain the IRQ vector. (This confirms my hunch that Apple did not really have interrupts in mind when they designed the lle.)

fig. 1. 170 volt current loop to TTL connector.

fig. 2. Program operation on a typical character.

A suitable terminal unit (TU) must be used between the radio receiver and the Apple's game port. The input is switch 0 (pin 2 of the game port). Five volts, or TTL high, should be applied when the TU detects mark condition and zero volts, or TTL low when a space is detected. This is the same input that is commonly used with other programs available for the Apple. Many late-model terminal units have TTL compatible outputs; fig. 1 shows a simple circuit to convert from current loop to TTL. Be careful with this circuit . . . you don't want to hook up the 170 -volt loop to your Apple or to yourself! The circuit uses an optoisolator that should protect your Apple from the high voltages.

The program listing is heavily commented. Here's how it works (see fig. 2):

STAGE 0. The program searches for a stop pulse, which is an uninterrupted mark at least as long as "MINSTOP."
STAGE 1. After finding a stop pulse, the program waits for a transition to space indicating a start pulse.
STAGE 2. The program reads in 5 data bits, waiting the proper amount of time between each bit.

Program operation is simple. Just assemble the program and 'BRUN' it from the disk. Values for different speeds are included in the listing. It supports 80 -column display boards and printers as well; just type "PR\#3" or "PR\#1" to turn on the board or printer before running the program.

Many enhancements are possible - for example, creating a larger text buffer so that the main program can do other tasks while still receiving RTTY, or for later transfer of the received text to disk or printer. Some non-ham TTY stations broadcast using inversion of one or more bits of the five-level code; this could be decoded by "exclusive-or" with various values until readable copy appears. It should be possible to add enhancements in basic because interrupts are used. Of course, a transmit function could be added, and this program could even form the basis for a powerful "MSO," or bulletin board.

[^7]

WHAT'S REALLY HAPPENING IN HOME SATELLITE TV?

A monthly of 100-plus pages, has all you need to know about where to find equipment, how it performs, how to install it, legal viewpoint, \& industry insights.

- $\$ 24.95$ per yr. (12 monthly issues)
- \$ 2.00 for Sample Issue

MONEY BACK GUARANTEE if not satisfied (subsription orders only). Keep first issue with our compliments.

If you already have a dish, then you need

-the best in satellite TV programming.
\star Weekly Updated Listings
\star All Scheduled Channels

* Complete Movie Listing
\star All Sports Specials
\star Prime Time Highlights
- \$39.00 per yr. (52 weekly issues)
- \$ 1.00 for Sample Copy

Visa ${ }^{\circledR}$ MasterCard® accepted (subscription orders only). All prices in US funds only. Write for foreign rates.

Send this ad along with your order to:

STV ${ }^{\text {" } / / O n S a t ~}{ }^{\text {™ }}$

P.O. Box 2384 - Dept. PS

Shelby, NC 28151-2384
Subscription calls only
Toll Free 1-800-438-2020

ham radio

HOBBY KITS ${ }^{\circledR}$

EXPERIMENT - LEARN ELECTRONICS BUILD AND DESIGN YOUR OWN AM,FM, CW, OR SSB RECEIVERS,TRANSMITTERS AND ETC. WITH OUR MINI-LINEAR CIRCUIT KITS
All kits Come Complete With Etched and Drilled Circuit Boards and All Parts Needed To Function As Described
AFA-1 AUDIO AMP. LM-380 1-2 Wats 4.16 OHM Outpu $\$ 4.95$
AFP-1 AUDIO PREAMP. Dual Audio Preamp - For Mixe Eic. $\$ 3.95$
BMD-1 BAL. MIX. LM 1496 Mixer - S.B. Madulator Tunec Output $\$ 9.95$
DET-1 AM DET. Am Envelope Detector With AGC Output $\$ 3.95$
DET-2 FM DET. LM 3065 FM Detector (455 KHZ or 4.11 MHZ) $\$ 7.95$
DET-3 SSB DET. LM 1496 SSB Detector (Needs OSC- 1 or OSC-4) $\$ 9.95$
DET-4 DETECTOR CW/SSB using a dual gate FET transistor $\$ 4.95$
IFA-1 IF AMP. CA 302830 DB Gan. Optional AGC (455 KHZ or 9-11 MHZ) $\$ 6.95$
FLS-9 SSB FILTER $9 \mathrm{mHz/2.1} \mathrm{kHz}$ BW with USB XAL for OSC-1 $\ldots .$.
IFA-2 IF AMP. CA 3028 30 dB Gain 1.100 MHZ Optional AGC. $\$ 6.95$
MBA-1 FREQ. MULT. Tuned Oupul Buther-Mult.-Amplither To 250 MHz $\$ 5.95$
OSC-1 CRYSTAL OSC. $100 \mathrm{KHZ}-20 \mathrm{MHz}$ Not Tuned $\$ 3.95$
OSC-2 CRYSTAL OSC. Ov 18-200 MHZ Tuned Output \$4.95
PSV-1 POWER SUPPLY LM 723 With Pass Transistor 3 amps max $\ldots \mathbf{\$ 7 . 9 5}$
PLL-2 TONE DETECTOR LM567 PLL Tone Detector $\mathbf{\$ 5 . 9 5}$
RF/MIX-1 RF-AMP/MIXER CA 3028 -- Tuned RF AMP/Mixer :-100 MHZ $\quad \mathbf{\$ 7 . 9 5}$
RF/MIX-2 RF-AMP/MIXER 3 N204 Tuned RF AM/Mixer 1 - $250 \mathrm{MHZ} \ldots . . \quad \$ 7.95$
VCO-3VARIABLE HI STAB.OSC. Varactor tuned 400 to 600 Khz output $\$ 7.95$
VCO-4 VARIABLE HI STAB OSC. Varactor tuned, 3 to 20 Mhz output $\$ 7.95$
Add \$2.00 For Shipping \& Handling - Send For FREE Brochure SEND $\$ 2.00$ FOR FULL MANUAL WITH CIRCUIT DIAGRAMS AND TYPICAL RECEIVER AND TRANSMITTER HOOK.UPS MANY OTHER MODULES AVAILABLE
MORNING DISTRIBUTING CO.

ICOM IC-730 Proven, Reliable HF Compact Transceiver

BUILT-IN
RECEIVE

PREAMP

> DUAL
> VFOs

> TUNING KNOB LOCK

LARGE RIT TUNING KNOB

BUILT-IN
SWR BRIDGE

ICOM's IC-730 go-anywhere HF all-band SSB/CW/AM transceiver, the best value on the market, has a proven record of high performance, ease of operation and durability. Compact in size, yet fullfeatured, the IC-730 has gained an uncomparable reputation.

Recelver Performance. Utilizing ICOM's DFM (Direct

Feed Mixer), the IC-730 obtains a dynamic range of 100 dB and an intercept point of 19.5 dBm .

Superior front-end receiver performance, coupled with a switchable preamplifier and IF shift or passband tuning (optional), gives the IC-730 receiver flexibility yet allows it to be easy to operate.

Compact. The IC-730 is sized to be used mobile - either in a car, airplane or boat - to be carried in a sultcase, or to be used as a base station. Only 3.7 inches high by 9.5 inches wide by 10.8 inches deep, the IC-730 is a very compact package. Still the IC-730 sports a large tuning knob, large RIT knob, and large bandswitching knob to make mobile operation easy. The RIT control is conveniently located in the lower right corner to make access by touch easy while operating the unit mobile.

Convenience Features.
The IC-730 has important features that make the unit easy to operate in a mobile environment. Two VFOs are easily accessed at the push of a button. Normal or split operation and three separate tuning rates for fast QSY or slow tuning are available. The dial lock deactivates the main tuning knob for rock-solid stability without the possibility of moving off frequency. One memory per band is provided to allow storage of net frequencies or favorite frequencies at the push of a button.

Full-Fectured. The IC-730 has additional features which make it a joy to operate. A full 200W PEP input transmitter provides a powerful signal on SSB and CW (40W carrier power on AM). Eighty through 10meter coverage is provided including the bands at 10, 18. and 24 MHz . A speech processor
is included as standard. Popular features such as digital readout, selectable AGC, VOX. SWR meter and noise blanker are aiso included as standard in the IC-730.

Complete. The IC-730 comes complete with a handheld microphone and power cord. The IC-730 is ready to use and ready to go when you are.

Affordable. Dollar-for-dollar, the ICOM 730 packs more punch and performance into a small package than ever thought possible.

Listen to IC-730s on the air and hear the sound of ICOM quality. The IC-730 is your best buy for a second rig for mobile portable aperation or for your main HF station. See the IC-730 at your local ham equipment supplier today!

ANTENMA/TOWER SALE!

- RG-213/U-95\% Bare Copper Shielid
- Mil-Spec Non-contaminating Jacket for longer life than RG8 cables.
- Guaranteed uses virgin materials.

RG-8X
\$. 19/ft \$179/1000 \#1

Self Supporting Towers

 On SALE! FREIGHT PREPAID- All Steel ConstructionRugged
- Galvanized Finish-Long Life Guy Wires
America's Best Tower BuyCompas Rotor Plate
In Stock Now-Fast Delivery

Model
W36
WT51
M354
M4700
(Mototized)
Mox
Motorized)

MINI-PRODUCTS HO-1 LIST \$182.50 SALE \$159

- Wing Span - $11 \mathrm{ft} \quad$ Wind Area - 1.5 sq ft
- Boom-54 in. long - 1200W P.E.P. Input
alpha delta communications
Tansi Trap Tu Surge Protectors-in Slock Now
Model LT 200W UHF Type $\$ 19$
Model LT/N 200W N Type $\$ 39$ Model HT/N 2KW N Type Model HV 2KW Deluxe

KLM

road Band Triband Beam
$80 \mathrm{~m}-180$-mtr Rotatable Dipole
40-mir Rotalable Dipole
$40 \mathrm{~m}-22$-el 40 -mtr Bear
$40 \mathrm{~m}-3$ 3-el 40 -mtr Bea
2m-13LBA 13-el2-mts Beam
el 2 -mtr Beam
$2 \mathrm{~m}-22 \mathrm{C}$ NEW-22-el 2 -mtr Satelite Antenna
432-30LBX NEW-30-el-432 MHz Antenna

432 MHz Beam

Aliance HD73 (10.7 sq It rating)
lex maM 4 (15 squraing
Telex Tailtwister (20 sq It rating)
Tefex HDR300 Heavy Duty (25 sq It rating)
Kenpro KR-500 Heavy duty elevation rotor
Standard 8 cond cable \$. 19/ft
(vinyl jacket 2-1 18 \& 6- $\boldsymbol{2} 22$ ga) Heavy Duty 8 Cond cable $\$ 36 / 4$

OOF TRIPODS
 Heavy Duty Tripods include mtg how-UPS Shippable
Div. of Texas RF Distributors Inc.

1108 Summit Ave., Suite 4 • Plano, Texas 75074

Cominumentors eoupreyt sane

ICOM IC-751A LIST PRICE $\$ 1399$ CALL FOR SPECIAL SALE PRICE!

ICOM IC. 745 LIST PRICE $\$ 999$ CALL FOR SPECIAL SALE PRICE! IC.02AT
NEW 2 METER
TOP OF THE LINE HT - Digital LCD Readout - Scanning

- Programmable PL Tones - Optional 5W Battery
- S-meter Function
- 10 Memories
- Ottset Storage
- Lithium Memory Backup - 13.8VDC Operation - Sealed Case

SUGGESTED LIST PRICE $\$ 349$
CALL FOR SALE PRICES! CALL FOR SALE PRICES!

KENWOOD

TS.930S
LIST PRICE $\$ 1799$
CALL FOR SPECIAL SALE PRICE!

TS-430S LIST PRICE $\$ 899.95$ CALL FOR SPECIAL SALE PRICE!

TR-2500 2.5W/300 mW (Switchable) 2 Meter Small Size - Small Price-
Big Performance!

- LCD Readout

Whtithium Back uD

- Band and Memoty 5can
- Built in Sub-tone Encode
- Built in 16 Key

Autopatch Encoder

- Slide Lock Battery Pack

TR-2500 List Price $\$ 329.95$ CALL FOR SPECIAL SALE PRICES

FT.757GX LIST PRICE $\$ 829$ CALL FOR SPECIAL SALE PRICE!

FT.726R
LIST PRICE $\$ 829$
CALL FOR SPECIAL SALE PRICE!

FT-208R 2M HT
List \$319
FT-708R 440 MHz HT List \$319

- LCD Display
- 10 Memories

CALL FOR
SPECIAL PRICES!

SANTEC

NEW ST142 ${ }^{\mu}$ P 2M HT

- 3.5W/1W/0.1W
- 142 - 149.995 MHz
- LCD Display
- Programmable PL Option

List 339.95

$\$ 259.95$
ST $144 \mu \mathrm{P}$
CALL!
ST $222 \mu \mathrm{P}$
CALL!

SANTEC Accessories
SM3 Speaker Mic $\$ 34.95$
ST-LC Leather Case $\$ 34.95$
ST-500 NiCad Battery. . $\$ 29.95$
ST.4QC Base Charger. . $\$ 69.95$

FACTORY AUTHORIZED DEALER FOR ALL MAJOR AMATEUR LINES

BTU ALPHA SALE!

76PA
\$1899!

Model	List	Sale*
76A	$\$ 1985$	CALL
76PA	$\$ 2395$	CALL
76 CA	$\$ 2695$	CALL
374A	$\$ 2595$	CALL
78	$\$ 3495$	CALL

- Sale Prices Too Low To PrintCALL \& SAVE \$\$!

$\square \Gamma$ TEN-TEC SALE!

CORSAIR List \$1169
Deluxe AC Supply List \$199 Both Items - Yours for $\$ 1169$! All Ten-Tec Accessories in Stock for Fast Shipment!
 Full Featured! List \$319
Sale \$279.95!
4229 2KW Tuner Kit \$189.95!
ASTRON POWER SUPPLIES
Heavy Duty - High Quality-Rugged - Reliable - input Voltage $105-125 \mathrm{VAC}$ Output $138 \mathrm{VDC}=05 \mathrm{~V}$ - Fully Electronically Reguialed-SmV Maximum Rippie - 4 Seres Win Clowbar Protection Circuts - M Series With Meler - A-Series Withoul Meler

Model

Model	Cont. Amps	ICS Amps	Price
RSAA	3	4	539
RS7A	3	7	49
RS12A	9	12	69
RS20A	16	20	89
RS20M	16	20	109
RS3SA	23	35	135
RS35M	25	35	149
RSS0A	37	50	199
RSSOM	37	50	229

TOKYO
HY-POWER LABS
HL-30V Reg. \$69.95 SALE $\$ 59.95$
HL-82V $\$ 139.95$ HL.90U $\$ 329.95$ HL-160V $\$ 289.95 \quad \mathrm{HC}-200 \quad \$ 89.95$ HL-20U . $\$ 99.95$ HC-2000 $\$ 289.95$

KDK FM2033
List \$339.95 Sale \$299.95

\&Kantronics

The interface Reg. $\mathbf{\$ 1 6 9 . 9 5}$ Sale $\mathbf{\$ 1 2 9 . 9 5}$ The interface il Reg. $\mathbf{\$ 2 6 9 . 9 5}$ Sale $\$ 239.95$ Apple Amtor
Sofl/Hamtext . $\$ 139$ VIC-20 Harnsoft 49 VIC-20 Amtor Soft.. 89 Hamtext VIC-20 99 Model 64 Hamtext Model-64. 99 Amtor Soft......... 89 Atari Hamsoff 49 Apple Hamsoft...... 29 TRS-80C Hamsoff... 59
Model Bar

$$
\begin{array}{lcccccc}
\text { Model } & \text { Band } & \text { Pre } & \text { Input } & \text { Output } & \text { PC } & \text { Saie } \\
\text { Pre } \\
\text { A } 1015 & 6 \mathrm{M} & \text { Yes } & \text { row } & \text { tsow } & 2 \mathrm{OA} & \$ 24
\end{array}
$$

8215
8101
81016
B3016
C22 C 22
C 106
C 1012
 RC 1 Remote Control for Mirage Amplitier MP. I and MP 2 Pesk Resding Wattmeter

SALE!
NEW RTTYICW COMPUTER
INTERFACES INTERFACES

CRI-100 List \$249 SALE \$229.95! CRI-200 List \$299 SALE \$269.95!

List \$999 SALE \$749.95!

 \begin{tabular}{llll}
CWRE770 \& $\$ 43995$ \& DS3100ASA \& $\$ 1699.95$

CWR6750 \& $\$ 62995$ \& MPTJ100 \& $\$ 299995$

\hline

CWR6750

C12100/KB2100

\hline
\end{tabular}

 (

t

$\triangle \quad$ CP. 1 COMPUTER PATCH

MP-20	$\$ 219$	CP1-64	$\$ 219$
129	MP-64	$\$ 129$	

MFJ 1224 COMPUTER INTERFACE $\$ 89.95$
202B Noise Bridge
250 2KW Oil Load
422 Keyer/Paddle
901 300W Tuner.
941 C 300 W Tuner
989 Deluxe 2 KW
$\$ 59.95$
$\begin{array}{r}\$ 35.95 \\ \hline\end{array}$

$\$ 89.95$

$\$ 59.95$
$\$ 89.95$
$\$ 8995$
$\$ 299.95$

Telephone (214) 422.7306
Div. of Texas RF Distributors Inc. 1108 Summit Ave., Suite 4 • Plano, Texas 75074

Monday-Friday 9 AM - 5 PM Saturday 9 AM - 1 PM

When you invest in a DRAKE Earth Station Receiver, you've chosen the very finest. Elegantly designed with the latest engineering concepts in solid-state techniques, every DRAKE is characterized by superb performance and versatility. DRAKE. . world-Class leader in satellite television reception.

ESR240 EARTH STATION REC EIVER

- Infrared Remote Contiol
- Digital Channel Readout
- Preset 6.2/6.8 and Variable Audio Tuning

ESES24 EAR/H STATION RECEIVER

- Digital Channel Readout
- Detent Channel Tuning
- Preset 6.8 and Variable Audio Tuning

...TheLast Word In Performance

DX FORECASTER

Garth Stonehocker, K0RYW

September is a special season of the year for propagation, and therefore DX. The reason for this is that during the equinox, with its nights and days of equal length, the sun is directly overhead at noon on the geographic equator. This causes solar radiation to hit the earth broadside, and because the equatorial planes of the sun and earth nearly coincide at this time, particles from the sun's eruptions (flares) and coronal holes (thin places in the sun's gases) have a bull's-eye path to the earth. These charged particles, called the solar wind, enter the earth's atmosphere in the polar regions; they also build up in the Van Allen belts around the earth above the equatorial region. When full, the belts release these particles into the polar auroral zone, (on the Canadian-U.S. side after about 2200 local time), causing geomagnetic storms.

Geomagnetic storms affect propagation - and DX - in three ways. First, the particles entering the auroral zone ionospheric D and E regions increase signal absorption, resulting in weak east-west path signals and few signals across the poles. Second, the particles form a reflective curtain along the equatorial side of the auroral zone (south side for us in North America), enhancing VHF auroral scatter propagation. Third, the F region of the ionosphere, once again looking at the auroral zone, but further south, becomes depleted of electrons, forms an electron density trough in which the maximum usable frequency (MUF) for a particular path through this area decreases by 30 to 50 percent.
However, still further south at ± 20 degrees from the geomagnetic equa-
tor, an equivalent-size enhancement of the F region occurs, resulting in evening TE (Trans-Equatorial) openings during the equinox and winter seasons. These three effects vary with time on a short to long basis (seconds through hours), causing what we experience as fading. These effects continue to occur each night for two to three days before ionospheric equilibrium is established. The closer to the equator these effects occur, the bigger the geomagnetic storm (higher K or A value).

Just as the particle density and speed of the solar wind vary, so do the characteristics of the geomagnetic field and ionosphere. Ionospheric variation causes signal focusing and defocusing, which simply means that the signals arriving at your OTH will vary in both strength and angle of arrival. Some directions and locations you haven't heard from in a long time may suddenly be workable, but this kind of surprise is what you can expect during the equinoxes.

last-minute forecast

The higher HF bands, 10 through 30 meters, are expected to be best just after the middle of the month as a result of high solar flux and activity on the sun. Some solar flares that may cause the earth's geomagnetic field to be disturbed for two to three days are possible. However, most of these disturbances will probably be the result of solar coronal hole activity during the extended periods of low solar flux during the first and second weeks of the month. These disturbances will occur on or near September 1, 5, 10, 14, 24,
and 30 . The highly disturbed period of the sunspot cycle will still be felt in 1984 and 1985. (The first peak of these disturbances occurred in September, 1982; a later peak of this cycle may occur this fall, (in September or October.) Despite these disturbances, DX on the lower frequency bands should be better than it was over the summer months, especially during the second week of September.
The full moon will be visible on the 9 th and be at perigee on the 23rd. The autumnal equinox will occur on September 22nd at 2033 UT.

band-by-band summary

Ten and fifteen meters will provide many short-skip E_{s} openings and long skip openings during the high solar flux periods to most areas of the world during daylight. Some trans-equatorial openings associated with disturbed ionospheric conditions may occur in the evening hours.

Twenty, thirty, and forty meters will support propagation from most areas of the world during the daytime and into the evening hours almost every day, either long-skip to 2500 miles (4000 km) or short-skip E_{s} to 1250 miles (2000 km) per hop.
Thirty, forty, eighty, and one-sixty meters are all good for nighttime DX. However, on many nights 30 and 40 meters will be the only usable bands because of the effect of thunderstorm QRN on 80 and 160 meters. Signal strength via short-skip E_{S} may overcome the static when E_{s} is available, even though E_{s} propagation does become more scarce in September.
ham radio

seprember				$\left.{ }^{81}\right]_{8}^{1}$									Ti			78	
man		\％ig			¢gy	\％gIg	8\％\％	¢ ${ }^{\text {¢ }}$	\％	［							
moer		88			－\％	\％	\％\％	\％\％									
mea		－			\％゙5	ज	5～5	二8	\％	\％	\％	8	8	－			
mean		－			MN				8ั		二5						
\％merea		ぢ5			\％${ }^{\circ}$	\％\％	：\％	\％	\％				®\％				
		\％ 5			5	5	8	\％				行	5				
		动家			5	\because	\％\％	\％	：	${ }^{\circ}$	\％	可尔	58	55		$5:$	＝

	8	合	H	N	$\stackrel{\rightharpoonup}{8}$	\vec{N} 8	$\stackrel{3}{8}$	$\stackrel{\stackrel{\rightharpoonup}{8}}{8}$	8	$\stackrel{\oplus}{8}$	8	8	$\stackrel{4}{8}$	88	$\stackrel{\omega}{8}$	N	$\stackrel{\rightharpoonup}{8}$	$\stackrel{\rightharpoonup}{\mathbf{Y}}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$	\＄	8	8	8	8	픅
$\begin{aligned} & \text { ASIA } \\ & \text { FAR EAST } \end{aligned}$	N	N	0	N	0	0	$\stackrel{N}{0}$	0	®	0	N	$\begin{aligned} & \mathrm{N} \\ & 0 \end{aligned}$	N	0	ω	ω	ω	ω	$\stackrel{\omega}{\bullet}$	ω	ω	ω	ω	ω	
EUROPE	N	0	0	0	0	0	N	0	0	0	\bigcirc	0	W	u	$\begin{aligned} & \omega \\ & 0 \end{aligned}$	ω	ω	ω	ω	ω	$\stackrel{N}{\bigcirc}$	0	\bigcirc	$\stackrel{N}{0}$	
S．AFRICA	\cdots	\cdots	\cdots	$\stackrel{\square}{\square}$	$\stackrel{1}{6}$	\pm	$\stackrel{\rightharpoonup}{\sim}$	\cdots	以7	$\stackrel{\square}{\square}$	M	0	$\begin{aligned} & N \\ & 0 \end{aligned}$	0	N	N	0	0	N	N	0	N	N	$\vec{\square}$	
S．AMERICA	\square	$\stackrel{\square}{\square}$	$\stackrel{\square}{6}$	$\stackrel{\square}{\square}$	$\stackrel{\square}{\square}$	$\stackrel{\square}{\square}$	$\stackrel{\rightharpoonup}{\bullet}$	\bigcirc	$\stackrel{\square}{\square}$	曰	\cdots	\mathfrak{V}	$\underset{\sim}{N}$	0	N	N	N 0	$\stackrel{N}{\bigcirc}$	N	∞	\bigcirc	N	$\underset{\sim}{\omega}$	$\stackrel{\square}{\sim}$	
ANTARCTICA	\square	\square	\cdots	$\stackrel{\rightharpoonup}{\square}$	$\stackrel{\square}{\square}$	\bigcirc	\checkmark	N	N	N	$\begin{aligned} & N \\ & 0 \end{aligned}$	ω	$\begin{aligned} & \omega \\ & 0 \end{aligned}$	ω	$\begin{aligned} & \omega \\ & 0 \end{aligned}$	N	N	\cdots	N	N	N	\cdots	凹	凹	0
NEW ZEALAND	$\stackrel{\square}{6}$	$\stackrel{\square}{\square}$	$\stackrel{\square}{\square}$	0	\cdots	凹	$\stackrel{\square}{\square}$	$\begin{aligned} & N \\ & 0 \end{aligned}$	0	0	$\begin{aligned} & N \\ & 0 \end{aligned}$	0	$\begin{aligned} & N \\ & 0 \end{aligned}$	0	0	0	$\stackrel{N}{0}$	N	\square	\square	凹	\cdots	$\stackrel{\rightharpoonup}{\bullet}$	■	
OCEANIA AUSTRALIA	$\stackrel{\square}{6}$	\because	\square	\cdots	\square	\cdots	N	0	0	$\begin{aligned} & N \\ & 0 \end{aligned}$	$\begin{aligned} & N \\ & 0 \end{aligned}$	10	$\begin{aligned} & N \\ & 0 \end{aligned}$	0	10	0	$\underset{\sim}{\square}$	\cdots	\cdots	$\stackrel{\square}{0}$	$\stackrel{\square}{\square}$	$\stackrel{\square}{0}$	$\stackrel{\square}{\square}$	$\stackrel{\square}{\square}$	
JAPAN	0	\bigcirc	0	0	\cdots	0	ω	1	W	ω 0	ω	ω	ω	ω	ω	0	$刃$	0	\circlearrowleft	0	N	0	0	N	

	\％	\％	\％	8	\％	\％	$\stackrel{\text { ¢ }}{8}$	${ }_{8}$	$\stackrel{\rightharpoonup}{8}$	$\stackrel{\square}{8}$	8	$\stackrel{\circ}{8}$	8	${ }_{8} 8$	\％	$\stackrel{\text { a }}{ }$	${ }_{8}^{\circ}$	\％				宫	\％	\％	！	
$\xlongequal[\substack{\text { asia } \\ \text { FAREAst }}]{ }$	¢	$\stackrel{1}{\circ}$	～	\％	\％	\％	$\stackrel{\square}{\circ}$	\％	O	O	\％	N	\％	$\%$	\sim	${ }_{0}^{\circ}$	－	\sim_{0}	－		－	${ }_{0}$	－	${ }^{\circ}$		
Eunope	\％	$\stackrel{0}{0}$	\％	$\widetilde{\sim}$	O	O	$\stackrel{0}{0}$	0	\％	0	\％	－	${ }_{0}^{\circ}$	${ }_{0}^{\circ}$	－	${ }_{0}^{\sim}$	${ }_{0}$	${ }_{-}^{*}$	W	¢	\bigcirc	\％	\％	\bigcirc		
s．africa	ज	穴	\bigcirc	－	$\stackrel{\square}{\circ}$	$\stackrel{\square}{\circ}$	－	品	ज	灾	，	जr	\％	\％	N	\％	\％	\％	\％	\％	\％	\％	促	宁		\％
$\begin{aligned} & \text { ZARIBBEAN } \\ & \text { S. AMERICA } \end{aligned}$	访	$\stackrel{\square}{\circ}$	${ }^{\circ}$	$\stackrel{\circ}{\circ}$	¢	$\stackrel{\square}{\circ}$	$\stackrel{\square}{\circ}$	－	$\stackrel{\square}{\circ}$	is	滣	ज	伿	\％	－	\％	N	\bigcirc	0	\bigcirc	\bigcirc	\bigcirc	G	$\stackrel{\rightharpoonup}{*}$		第
antaactica	碞	品	穴	宁	O	N	o	\％	N	\sim	\％	${ }_{\sim}^{\circ}$	$\stackrel{\sim}{\circ}$	\％	¢	\％	\％	\％	\bigcirc		O	T	O	G		$\underset{\sim}{2}$
new zealano	$\stackrel{\circ}{\circ}$	$\stackrel{\square}{-}$	$\stackrel{\circ}{\circ}$	$\stackrel{\square}{\circ}$	$\stackrel{\text { r }}{ }$	行	枵	ज	N	\％	\bigcirc	\％	\％	\％	\％	\％	\％	\bigcirc	ज	ज	ज	$\stackrel{ }{\circ}$	－	$\stackrel{\rightharpoonup}{\circ}$		$\stackrel{\bigcirc}{8}$
JCEANIA AUSTRALI	$\stackrel{\circ}{\circ}$	v	枵	ज	的	行	0	0	\sim	～	\cdots	$\stackrel{3}{0}$	\bigcirc	\bigcirc	$\stackrel{\sim}{\circ}$	\％	～	\checkmark	G	r			－	$\stackrel{\square}{-}$		
Pan		$\stackrel{\sim}{\circ}$	\％	\％	N		${ }^{\sim}$	\％	\％	－	w	\％	ω	\％	$\stackrel{ }{\circ}$	$\stackrel{\sim}{\circ}$				0	－	2	\bigcirc	0		

The italicized numbers signify the bands to try during the transition and early morning hours，while the standard type provides the MUF during＂normal＂hours．
＊Look at next higher band for possible openings．

Uncle Ben says...

"I give you much more than just the lowest price...

When you get that exciting new piece of equipment from me, you know you are going to be completely happy... I see to it, personally! I also give you earliest delivery, greatest trade-in allowances, my friendly assistance in every possible way.

Just ask any of the many thousands of hams all over the world who have been

"Uncle Ben" Snyder, W2SOH the head man of
"HAM HEADQUARTERS, USA ${ }^{\text {® }}$ "...Since 1925! enjoying my friendly good service for over a half a century. 73, Uncle Ben, W2SOH

When cost is a factor, don't sacrifice performance.

The ADM-10' satellite antenna system gives you the most for your investment. At the cost of an $\mathbf{8}^{\prime}$ dish, the ADM-10 provides performance mar gins to account for loss of signal due to satellite aging. Constructed of rugged steel or aluminum with fully adjustable polar mount. ADM•10'-the competitive edge in the private TVRO market.

For the competitive edge, call-
ANTENNA DEVELOPMENT \& Manufacturing, inc. O 63901 • (314) 785.5988

FULL BREAK-IN WITH ANY AMPLIFIER

IF YOU OWN A
QSK TRANSCEIVER

Don't be limited to low power operation with your expensive full break-in transceiver. You can run high power QSK CW and high power AMTOR.
The DEO QSK 1500 is designed using the latest in solid state switching technology and will give you full break-in operation with any one of the currently available commercial amplifiers, homebrew too! Pin diodes provide ultra high speed, noiseless switching. All you need to do is connect two RF cables and two control cables, turn it on and you are ready to go, up to 1500 watts at 1.5-1 VSWR. Fully automatic bandswitching, 1.8 30 MHz and mode selection, either CW or SSB, no cables to change. The QSK 1500 eliminates transceiver damage due to "hot switching" and gives you full receiver performance with an insertion loss less than .7 dB , typically .2 dB .
90 day limited warranty. - 137
Factory Direct

$\$ 279.00$
 Please add $\$ 6$ for shipping and handling

 (US only Foreign FOB Groveport)DO YOU KNOW WHERE TO FIND REAL BARGAINS

NUTS \& VOLTS

HAM GEAR COMPUTERS SOFTWARE
SCANNERS - OPTICS TEST EQUIPMENT MICROWAVE SATELLITE AUDIO VISUAL NEW PRODUCTS COMPONENTS • KITS ANTIQUE ELECT PUBLICATIONS PLANS • SERVICES

on NEW and USED
 ELECTRONIC Equipment?

You'll Find Them in the Nation's No. 1 Electronic Shopper Magazine

NUTS \& VOLTS

Now in Our 5th Year

Nuts \& Volts is published MONTHLY and features: NEW STATE-OF-THE-ART PRODUCTS • SURPLUS EQUIPMENT • USED BARGAINS - LOW COST AD RATES • PRIVATE AND COMMERCIAL CLASSIFIEDS • NATIONAL CIRCULATION • NEW PRODUCT NEWS SECTION • FREE CLASSIFIED AD WITH SUBSCRIPTION

SUBSCRIPTION RATES

\square One Year - 3rd Class Mail $\$ 7.00$
\square One Year - Ist Class Mail $\$ 12.50$
\square One Year - Canada \& Mexico (in U.S. Funds) . . \$15.00
\square Lifetime - 3rd Class Mail (U.S. Only) $\$ 25.00$
ORDER MOW! Rates Go Up in October!
SEND:
\square CHECK
\square MONEY ORDER
\square VISA
\square MASTERCARD

TO: NUTS \& VOLTS MAGAZINE
P.O. BOX IIII-H

PLACENTIA, CALIFORNIA 92670
(714) 632-772।

Name
Address
City
State Zip.

Card No
Exp. Date
IF YOU'RE INTO ELECTRONICS,
THIS MAGAZINE WILL SAVE YOU MONEY!
Dealer Inquiries Invited

- 183

tenna system.
Better than optimum full sized Dipole performance in an antenna which can be set up within the hour, needing a minimal support structure (existing tower, house, tree, etc.). The "Inverted-Vee" produces a low-angle "Balanced" Omni-Directional pattern, which increases the signal to noise, and signal to interference ratios. Complete simplified instructions are provided. NO TUNERS NEEDED!

Only Telrex provides!

- Easy assembly (within 2 hrs)
- 100 mph wind rating. .
- Heavy wall tubing.
- Stainless Steel electrical hardware.
- Exceptional Gain and F/B ratio.

YOUR PRICE
$\$ 465.00$ Value $\$ 555.00$

By the only test that means anything . . . on the air comparison . . . Telrex TriBands continue to support the fact that they are designed to out-perform all competition . . . as they have for over 3 decades. Here's why . . . Telrex uses a unique trap design employing $\mathrm{Hi}-\mathrm{Q} 7500 \mathrm{~V}$ ceramic condensers, 3 optimumtuned reflectors to provide maximum gain and true F/B Tri-Band performance.

Special N -type coaxial connectors, solid rod elements (driven thru the boom), tinned connecting lugs, and s / s electrical hardware provide you with peace of mind for many years!

If top 2 Meter performance is your requirement, the 2MVS814 kit consisting of 2 ea. phased 2 Meter "Balun" fed precision tuned 8 element Arrays outperform even quad stacked antennas of other makes.

A FEW OF THE WORLD'S FINEST!

MODEL 2M1528C	Description 2 Meter 15 element	$\begin{gathered} \text { GAIN } \\ (17 \mathrm{DBD}) \end{gathered}$	Value 175.00	PRICE 145.00
10M523	10 Meter 5 element	(13 DBD)	352.00	295.00
10 M 636	10 Meter 6 element	(14.6 DBD)	745.00	625.00
15M532	15 Meter 5 element	(13 DBD)	555.00	465.00
15M845	15 Meter 8 element	(15 DBD)	1120.00	925.00
20 M 536	20 Meter 5 element	(12 DBD)	660.00	550.00
20 M 646	20 Meter 6 element	(14 DBD)	1130.00	945.00
40M214	40 Meter 2 element	(5.6 DBD)	750.00	625.00
40M329	40 Meter 3 element	(8.3 DBD)	1145.00	965.00
40M346	40 Meter 3 element	(9 DBD)	2000.00	1675.00
TB4EC	10, 15, $20 \mathrm{M} \mathrm{Tri-Band}$	(5.5 DBD)	252.00	215.00
TB5ES	10, 15, $20 \mathrm{M} \mathrm{Tri-Band}$	(8.5 DBD)	408.00	340.00
TB6EM	10, 15, $20 \mathrm{M} \mathrm{Tri-Band}$	(10 DBD)	755.00	580.00

ANTENNAS DESIGNED TO LAST!

Communications Antennas Since 1921
Phone . . . 201-775-7252 (nights, weekends, holidays and leave your address) or write Telrex - P.O. Box 879, Asbury Park, N.J. 07712, for your free copy of the latest Telrex UHF, VHF, HF Antenna, and Rotator Catalog.

MOSLEY...A Botter Antenna...
For New and Old

EASY ASSEMBLY
 -NO MEAsuaing

-2 YEAR WARIRANTY -LOW SWR
-ALL STANLESS HARDWARE BUULT TO LAST

Wheiher you are just starting out or trying to complete the Honor Roll, Mosley offers a Fuil Line of Tri-Banders which will mechanically and electronically outperform the competition. For the new ham with limited space and pocket bock, start with our TA-31 Jr. rotatable dipole. You can make our TA-31 Jr. Into a 2 or 3 element as your needs increase.
If you start with the need to run higher power, then the TA-31 is for you. This also can be made into a 2 or 3 element beam as you expand your station
完
For the ham that wants a liftle more performance out of a Tri-Bander but is limited in room, then our CL-33 on a 18 foot boom is the way to go. For those that want MONO BAND performance out of a Tri-Bander, want to hear better, and be louder, the CL.33 is for you.

For the ham that wants to start right at the top. the PRO-37 is the antenna that will give you king of the hill performance. It is the breadest banded, highest power, best pertorming Tri-Bander in our line.
Compare ours betore buying any other antenna. All stainless standard, all heavy telescoping aluminum elements which means botter quality and no measurement. Ease of assembly gives you a quality antenna with consistent performance. Our elements are pre-drilled so you will get the same performance as we do. All of our Tri-Banders come with a 2 year warranty.
If you are a new ham and are not famillar with MOSLEY, ask an older ham about us or call the PRESIDENT of MOSLEY. He will be glad to explain why MOSLEY is A BETTER ANTENNA.
These and other MOSLEY products are available through your favorite DEALER. Or write or call MOSLE Y for the DEALER nearest you

1344 BAUR BLVD. ST LOUIS, MISSOURI 63132

DESIGN EVOLUTION IN RF P.A.'s

- Linear (all mode) RF power amp with automatic T/R switching (adjustable delay)
- Receive preamp option, featuring GaAs FETS (lowest noise figure, better IMD). Device NF typically .5 dB .
- Thermal shutdown protection incorporated
- Remote control available
- Rugged components and construction provide for superior product quality and performance
- Affordably priced offering the best performance per dollar
- Designed to ICAS ratings, meets FCC part 97 regulatiors
- 1 year transistors warranty
- Add $\$ 5$ for shipping and handling (Cont. U.S.). Calif. residents add applicable sales tax.
- Specifications/price subject to change

1. Models with G suffix have GaAs FET preamps. Non-G suffix units have no preamp. 2. Covers full amateur band. Specify 10 MHz Bandwidth for $420-450 \mathrm{MHz}$ Amplifier.
\star SEND FOR FURTHER INFORMATION \star TE SYSTEMS

> TE
> SYETEMS
P.O. Box 25845

Los Angeles, CA 90025 (213) 478-0591

Custom Mailing Lists on Labels!
Amateur Radio Operator NAMES
Custom lists compiled to your specifications

- Geographic by ZIP and/or State
- By License Issue or Expiration Date
- On Labels of Your Choice

Total List: 435,000 Price: $\$ 25 /$ Thousand Buckmaster Publishing 123

Whitehall
(703) 894.5777

FACSIMILE

COPY SATELLITE PHOTOS, 115 WEATHER MAPS, PRESS!
The Faxs Are Clear - on our full size (18-1/2)
wide) recorde
TELETYPE

RTTY MACHINES, PARTS, SUPPLIES	
ATLANTIC SUAPLUS SALES	
3730	I2121 3720349

3730 NAUTILUS AVE BROOKLYN. NY 11224

Mineral VA 23117 USA

P.O. Box 620625 Woodside, CA 94062 (415) 851-8779 The only manufacturer offering Amateurs the advantages of MOSFET RF Power Amps

MOSFET Mobile Power Amplifiers

4101 Complete 2 Meter Handie Talkie Accessory • All mode RF power amp., 2 Watts in $=25$ Watts out, 50 Watt max.. Regulated power supply, with adjustable current limit, for HT power or battery charge. 4 Watt speaker amplifier. Optional plug-in receive preamp. You must fabricate a cable to connect to HT ; plug supplied.

4102 ,Complete 2 Meter Handie Talkie Accessory - All mode RF power amp., 2 Watts in $=100$ Watts out. Regulated power supply, with adjustable current limit, for HT power or battery charge. 4 Watt speaker amplifier. Optional plug-in receive preamp. You must fabricate a cable to connect to HT; plug supplied.

4103 All Mode 100 Watt 2 Meter Amplifier $\cdot 10$ Watts in $=90$ Watts out, 2 Watts in $=30$ Watts out. No harm with 25 Watt transceivers. Optional plug-in receive preamp. Optional \#4106 remote control. \$245

4104 All mode 100 Watt 220 MHz amplifier $\cdot 10$ Watts in $=70$ Watts out, 2 Watts in $=25$ Watts out. No harm with 25 Watt transceivers. Optional plug-in receive preamp. Optional \#4106 remote control. \$245

4105 All mode 100 Watt 2 Meter amplifier -2 Watts in $=100$ Watts out. Optional plug-in receive preamp. $\$ 295$

Also come to FALCON for your MOSFET Repeater Amplifiers

ACCURACY DIGIMAX PERFORMANCE

BUY DIRECT FROM THE FACTORY AND SAVE CALL TOLL FREE 1-800-922-6898 OHIO RESIDENTS 1-419-298-2346

ANTENNA TUNERS

GLT-1000C
1 KW - Built in balun
$1.8 \cdot 30.0 \mathrm{MHz}$ continuous
Suggested retail $\$ 229.00$
FACTORY DIRECT $\$ 175.00$

MLT-2500
2 KW - Roller Inductor
$1.8-30.0 \mathrm{MHz}$ continuous
Suggested retail $\$ 449.00$
FACTORY DIRECT $\$ 375.00$

LINEAR AMPLIFIERS
CLIPPERTON QRO
$2 \mathrm{KW} / 4 / 572 \mathrm{~B}$ tubes and built-in supply w/tuned input
Suggested retail $\$ 849.00$
FACTORY DIRECT $\$ 737.50$
GLA-1000C
1 KW/4/6L06 tubes and built-in
supply w/tuned input
Suggested retail $\$ 449.50$
FACTORY DIRECT $\$ 400.00$
ACCESSORIES
DOUBLET ANTENNASuggested retail\$39.50
FACTORY DIRECT \$28.95
BIG DUMMY LOAD W/OIL
Suggested retail $\$ 29.50$
FACTORY DIRECT 24.95

RTTY oscilloscope input using line transformers

Here's how to use line transformers ("ouncers") for inputting an RTTY signal to a monitor scope without using any active stages, yet still provide enough gain to produce a picture one and a half inches high.

fig. 1. Small line transformers called "ouncers" provide sufficient amplification of RTTY signal to monitor scope input.

The lack of inexpensive monitor scopes for RTTY makes it worthwhile to modify some of the older one- and two-inch oscilloscopes. (Check the surplus market for bargains.) This circuit (fig. 1) was applied to an old Millen AM monitor scope. (Circuits for oscilloscopes can be found in the handbooks. ${ }^{1}$

reference

1. ARRL Handbook, American Radio Relay League, Newington, Connecticut, 1964, page 544.

Ed Marriner, W6XM

prerecorded messages help the hearing impaired

It's easy to devise a system that enables hearing-impaired persons to communicate with fire, police, ambulance, and other emergency services having TTY or TTY-type-equipment.

Using the TTY machine of the service to be addressed, and a portable cassette tape recorder, record the name, address, phone number, and nature of the emergency to be communicated. Record this data at least twice to ensure that all essential information will be transferred, and mark the tape and its container with the name of the emergency described: fire, burglary or assault, or medical emergency, and the phone number of the appropriate service. (If the individual has a particular medical condition, it might be a good idea to prepare an additional tape naming that condition, so that the service can be prepared to respond appropriately in the event of an emergency requiring specialized care.)

This is how it's done:

1. Enter the necessary data into the TTY machine at the headquarters of the emergency service.
2. Set your cassette recorder on "record' and dial the number of the telephone to which data from the TTY will be transmitted. (Do not use the telephone used on the TTY machine.)
3. Hold the microphone near the earphone of the telephone, or attach an inexpensive suction-cup pickup.

Record the data from the TTY machine.
4. After recording, send the data back to the TTY machine. Be sure to verify successful transmission.

In an emergency, all the hearingimpaired person needs to do is dial the number, hold the tape recorder to the mouthpiece of the phone and push the "PLAY" button as soon as the call is answered. (To confirm that the phone has been answered, the individual places a fingertip on the diaphragm of the mouthpiece and feels the vibrations of the rings.)

In areas in which TTY facilities are not yet available, the same system can be applied, using prerecorded vocal messages instead of TTY transmissions.

J.W. Dates, W2QLI

modified Bobtail

A modification of the standard Bobtail curtain shown in fig. 1A provides good performance on four bands (75,

fig. 1. Modified Bobtail curtain.

40, 20, and 15). Center fed with coax, it uses additional lengths of wire placed as shown in fig. 18. The center 66foot leg can be folded as required if the antenna is lower than 66 feet.

Modet HF6V Completely autornatic bandswitcherg 80 through 10 plus 30 meters Outperforms all 4 and 5 thand trap verticais of comparable size Thousands in use worldwide since December B11 160 meter option available now retrofit kits for remaining WARC bands coming soon Herght 26 fv 78 meters. guying not requared in most installations

Model 2 MCV Trombone - omndirectional colinear gain vertical for 2 meters having the same gain as -doubte-tid types but the patented trombone phasing section allows the radiator to remain unbroken by insulators for maximum strength in high winds No coits -plumber's delight construction and adustable garmma match for complete D C grounding and lowest possible SWR Height 98 t/2 98 meters

Model 2MCV-5 Super-Trombone - Same WVI advanced features as the basic 2MCV but a NEN MCr Trombone" phasurg secton for additiona omi Horgh is 75 iva 8 m

All BUTTERNUT ANTENNAS use stantess steel hardware and are quaranteed for a full vear For further information on these and other BUTTERNUT products write for our FREE CATALOG'

A Navy MARS version of this same antenna is shown in fig. 1C. The design - for 4.04, 7.375, 13.975, and 20.8 MHz - requires a height of at least 40 feet above ground. The 57.9 -foot radiator for 4.040 MHz , which must be folded at low heights, will require considerable adjustment to resonate on the desired frequency, with the folded portion supported just a few feet above ground level.
The advantage of this experimental antenna is a power gain much higher than a simple dipole on all frequencies above 75 meters, on which the 4.040 MHz radiator functions as a simple up-side-down quarter-wave vertical. The center radiators must be kept separated to avoid excessive interaction. The center radiator is fed with 52 -ohm coax, preferably through an antenna tuner.

Cliff Francis, W0MBP

fastening Trigon reflectors to VHF antennas

My EME array for two meters uses the method shown below to fasten the Trigon reflectors. It might be well to cut a small V in the rear of the main boom in areas subject to extreme winds. (This was not done on my antenna.) There is no indication of loosening after several windstorms.

The slots through which the hose clamp passes were cut with a saber saw; an ordinary hacksaw blade isn't quite thick enough to provide a slot wide enough to permit easy passage of the hose clamp.

George N. Chaney, W5JTL

VIC-20 printer

It's easy to build an inexpensive printer for the VIC-20 using an ASR-33 teletype machine and the interface illustrated in figs. 1A and 1B.

The printer, which produces type-writer-quality text, won't do everything that an expensive printer will do, but it will allow data listing and, in general, enhance your ability to communicate with your VIC-20. ASR-33's can be found for as little as $\$ 50$ to $\$ 75$; other

fig. 1A. Interface circuit uses multi-pin edge connector to match VIC- 20 requirements.
materials can be found in your junkbox or acquired at little cost. The cost of the entire project should not exceed $\$ 100.00$.

The interface is inserted into the user's port of the VIC-20, and joined to the ASR-33 by means of a four-wire cable. A simple program (fig. 2) provides instructions to the VIC-20.

 SIDE UNDEF COVFA

fig．18．Interface circuit that ties a VIC－20 to an ASR－33．

```
16 REM ASR 33 TTY
15REM FILEN>I28 FOR CR WITH LF
COREM 163=2 STOP,7 ASCII,110 EAUL
30REM 224=SPACE PARITY,FULL LUPLEX
1060PEN 1E9,を,う,CHRS(163)+CHRS(2己4)
11&GET#12G.AS
COGREN MAIN LOUP
ECUIF BS<>""'THEN IF ES=CHRS(13)THEN
PRINT*1EG,E&;CHRS(10);CHRS(0);CHR&(
@)::GOTO&う\hat{0}
2己5IF BS<>""ThEN PRINT#129,E$;
230GET#1&5,CS:IF C&<>"'THEN PRINT |lE9,CS;
24\tilde{OPRINT ES;CS;}
256SR=ST:IFSR=0THEN2OO
SODREM ERRORS
316PRINT "ERROR";
SE@IF SR GND 1 THEN PRINT"PARITY"
3j0IF SR AND & THEN PRINT"FRGME"
34घIF SR AND 4 THEN PRINT"RCUR EUF FULL"
356IF SR GNL 3 THEN PRINT"BREAK"
36&IF(PEEK(37151)ANL64)=1 ThEN 3ES
370CLOSE 1E9:ENL
```

fig．2．VIC－20／ASR－33 program listing．

FRESH STOCK－NOT SURPLUS
TESTED－FULLY GUARANTEED

P／N	Rating	Ea．	Match Pr
MRF406	20W	\＄14．50	\＄32．00
MRF412	80 W	18.00	40.00
MRF412A	80W	18.00	40.00
MRF421	100W	25.00	54.00
MRF421C	110W	27.00	58.00
MRF422＊	150W	38.00	82.00
MRF426＊	25W	17.00	40.00
MRF426A＊	25W	17.00	40.00
MRF433	13W	14.50	32.00
MRF435＊	150W	42.00	90.00
MRF449	30W	12.00	27.00
MRF449A	30 W	11.00	25.00
MRF450	50W	12.00	27.00
MRF450A	50W	12.00	27.00
MRF453	60W	15.00	33.00
MRF453A	60W	15.00	33.00
MRF454	80W	16.00	35.00
MRF454A	80W	16.00	35.00
MRF455	60W	12.00	27.00
MRF455A	60W	12.00	27.00
MRF458	B0W	18.00	40.00
MRF460	60W	16.50	36.00
MRF 475	12W	3.00	9.00
MRF476	3W	2.50	8.00
MRF477	40W	13.00	29.00
MRF479	15W	10.00	23.00
MRF 485＊	15W	6.00	15.00
MRF492	90W	18.00	39.00
SRF2072	75W	15.00	33.00
CO2545	50W	24.00	55.00

Selected High Gain Matched Ouads Avallable

VHF TRANSISTORS			
Type	Rating	Ea	Malch／Pr
MRF221	15W	\＄10．00	－
MRF222	12W	12.00	－
MRF224	40W	13.50	\＄32．00
MRF231	3．5W	10.00	－
MRF234	25W	15.00	39.00
MPF237	1W	2.50	－
MRF238	30W	12.00	－
MRF239	30 W	15.00	－
MRF240	40W	16.00	－
MRF245	80W	25.00	59.00
MRF247	80W	25.00	59.00
MRF260	5W	6.00	－
MRF264	30W	13.00	－
MRF492	70W	18.00	39.00
MRF607	1.8 W	2.60	－
MRF627	0．5W	9.00	－
MRF641	15W	18.00	－
MRF644	25W	23.00	－
MRF646	40W	24.00	59.00
MRF648	60W	29.50	69.00
SD1416	80W	29.50	－
SD1477	125W	37.00	－
2N4427	1W	1.25	－
2N5945	4W	10.00	－
2N5946	10W	12.00	－
2N6080	4W	6.00	－
2N6081	15W	7.00	－
2N6082	25W	9.00	－
2N6083	30W	9.50	－
2N6084	40W	12.00	29.00
	TM		
MRF137	30W	\＄22．50	－
MRF138	30W	35.00	－
MRF 140	150W	92.00	－
MRF150	150W	80.00	－
MRF172	80W	65.00	－
MRF174	125W	88.00	－

Technical Assistance \＆crossmeterence information on CD，PT．RF．SRF．SD P／Ns Call Engineering Dept．
（619）744－0728
RF Parts Catalog Available OEM \＆Quantity Discounts

214
Minimum Order $\$ 20$ Add $\$ 3.50$ Shipping WE SHIP SAME DAY C．O．D．IVISA／MC
ORDERS ONLY：800－854－1927

WE HAVE QUALITY PARTS. DISGOUNT PRIGES AND FAST SHIPPING!

8 TRACK RECORD/PLAY TAPE DECK

8 TRACK RECORD WITH AUTO STOP. NOT FULLY FUNC TIONAL. REMOVED FROM ASSEMBLY LINE FOR MINOR PROBLEMS. IDEAL FOR PARTS. EACH UNIT CONTAINS SWITCHES, LIGHTS, TAPE MOTOR, BELT, WHEELS, PULLEYS, PRE AMPS, TAPE HEADS, ETC.
SPECIAL PRICE $\$ 4.00 \mathrm{EACH}$
10 for $\$ 35.00$

2K 10 TURN
MULTI-TURN POT
SPECTROL (2) $\begin{gathered}\text { SPECTROL } \\ \$ \mathrm{MOD} 534-7161 \\ \$ 5.00 \mathrm{EACH}\end{gathered}$

EDGE

 CONNECTORS (ALL ARE . 156" SPACING 10 PIN EDGE CONNECTOR TRW \#50-10-A. $20 \quad \$ 2.00 \mathrm{EACH}$ 18/36 GOLD SOLDER EYELET $\$ 2.00$ EACH
22/44 TIN

STYLE: NO MOUNTING EARS $\$ 1.50$ EACH 10 FOR $\$ 14.00$

22/44 GOLD P.C. STYLE $\quad \$ 2.00$ EACH

28/56 GOLD 28/56 GOLD PLATED CONTACTS $\$ 2.50$ EACH \quad FFOR $\$ 2200$

SWITCHES
MINI-PUSH BUTTON
S.P.S.T. MOMENTARY NORMALLY OPEN

354 EACH
10 FOR $\$ 3.25$
100 FOR $\$ 30.00$
SPECIFY COLOR:
RED, BLACK, WHITE
SOLID STATE BUZZER STAR \#SMB-06L
TYLL COMPatBLE $\$ 1.00 \mathrm{EACH}$ 10 FOR $\$ 9.00$

SOLID STATE RELAY

HEINEMANN ELECTRIC \#101-5A-140-5 AMP CONTROL 3.32 VDC LOAD 140 VAC 5 AMPS SILE: $2^{\prime \prime} \times 1^{\prime \prime} \times 3_{4}{ }^{4}$ HIGH
$\$ 5.00$ FOR $\$ 45.00$

FREE! FREE! FREE! SEND FOR

48 PAGE CATALOG FREE! FREE! FREG!

The RF Wattmeter Model $81000-A$ from Coaxial Dynamics, Inc. does more than provide accurate if measurements. Tesing of transmission lines, antennas, connectors, filters and reated components can reveal unknown problems and assure optimum equipment performance.
The 81000-AK Watikit features this easy-10-read RF Wattmeter (pictured here), with its optional carrying case and an array of elements and
 accessories. Coaxial Dynamics elements can be purchased separately for use in other manutacturer's Wattmeters. For more information on the 81000-A Wattmeter or any of the complate line of Coaxial Dynamics RF products and OEM components please contact Coaxial Dynamics, Inc.

BEST BUY!

EASY-TO-ASSEMBLE KIT only ${ }^{\mathbf{~}} \mathbf{6 6 0} \mathbf{0}^{\mathbf{0 0}} \begin{aligned} & \text { treight prepa } \\ & \text { in } 48 \text { states }\end{aligned}$
40 ft . M-13 aluminum tower and FB-13 fixed concrete base (beautiful!)

Othersizes at comparable savings HAZER. Tower Tram System oowers antenna with winch. Complete system comes
level in upright position.

HAZER your Rohn 20-25G

$\mathrm{H}-3-8 \mathrm{sq} \mathrm{Ht}$ ant $\mathbf{\$ 2 1 3 . 0 0} \mathrm{PPd}$.
$\mathrm{H}-4-16$ sq H ant $\mathbf{\$ 2 7 8 . 0 0} \mathrm{PPd}$
$4.5-12$ sq th ant. (for $\mathrm{M}-13$ above) $\$ 302.00$ PPd. All Hazers include winch, cable \& hdw TB-25 - Thrust bearing $\$ 42.50$
3-8 EE - $\times 6$ torged steel eye and eye umbuckle $\$ 10.75$
5. diam - 4 H . long earth screw anchor $\$ 12.75$
$10 \mathrm{OD}-7 \times 7$ Aircratt cable guy wire 1700 lb ating. 12 ft .
W-115 - 115 VAC winch - 1000 ib load 3329.96

N-1000 - Manual winch 1000 ib capacity $\$ 23.96$
W-1400 - Manual winch 1400 ib capacity $\$ 29.95$
P-2068 - Pulley block for 3/16 cable $\mathbf{\$ 5 . 6 5}$ $50 \mathrm{M}-18 \mathrm{~S}-18$ inch tace aluminum tower hinged basesy tem $\$ 1523.00$ trelght prepaid hinged basesyst ins $25860-$ Martin super the in 100 MPH wind with 30 sall antenn \$2992.00
Glen Martin Engr. P.O. Box H-253 Boonville, Mo. 65233 vish VISA $\vee 166$

$\star \star$ VECTOR VT3 $/$ VT-4

 REMOTE CONTROLLED ANTENNA TUNERS* VT-4 INSTALLS DIRECTLY AT THE ANTENNA FEEDPOINT WHERE YOU CAN REALLY "TUNE" THE ANTENNA.
* DESIGNED FOR HALF WAVE DIPOLES, INVERTED V's, AND QUARTER WAVE VERTICALS USING 50 OHM COAX FEED. LINES.
* OPERATES WITH SINGLE BAND OR MULTIBAND ANTENNAS, TRAP TYPE OR PARALLEL ELEMENT TYPES.
* WORKS ALL BANDS FROM 10 THROUGH 160 METERS.
* FULL BAND COVERAGE WITH MAXIMUM EFFICIENCY AND VERY LOW VSWR, TYPICALLY LESS THAN 1.2 TO 1.
* FINGER TIP CONTROL FROM THE HAM SHACK FOR EXACT RESONANCE AND IMPEDANCE MATCH.
* FOR MOBILE OPERATORS THE VECTOR VT-3 INSTALLS IN THE TRUNK AND TUNES STANDARD TYPE MOBILE ANTENNAS FOR FULL BAND COVERAGE, (All of 75 M phone band), WITH TYPICAL VSWR LESS THAN 1.2 TO 1.

WRITE FOR INFORMATION.

- 212

VECTOR RADIO CO., P.O. BOX 1166, CARDIFF, CA 92007

ENGINEERING MAKES THE DIFFERENCE

Production Expertise And Service Integrity Form The Foundation For Your Long-Term Satisfaction

The fact that the Computer Patch Interface unit by Advanced Electronic Applications. Inc. is known as the best value on the market is no accident. The CP-1 was designed by Al Chandler, K6RFK (PHD-E.E.), an active RTTY user since 1963.

Given a cost per unit budget for the CP-1, Al designed as much performance as possible into the Computer Patch, including a unique new tuning indicator, referred to by one of our customers as the "Dead Eye Dick" tuning indicator. This indicator is ideal for RTTY and CW, in that it is both fast to tune and (within 10 Hz) as accurate as scope tuning. It also performs under poor signal to noise conditions in which, other indicators provide no useful data.

Al's variable shift tuning was designed to move the space filter center frequency from 2225 Hz to 3125 Hz without changing the bandwidth (by varying the Q of the filter). All this is accomplished using a precision ganged potentiometer to assure proper tracking of the multiple filter stages. We could have used a pot costing a tenth as much by simply using a two-pole filter design, but we feel the advantage of a sharper filter reduces the noise bandwidth significantly and allows the variable shift control to be used likè passband tuning for extra elimination of adjacent channel interference.

Some manufacturers are concerned that amateurs might try calibrating their own equipment and, therefore, have used non-adjustable components, which results in sub-optimal performance. Although more costly, trimpots used in AEA equipment allow factory adjustment for performance to design specifications. Competently designed active filter circuits need not be adjusted after leaving the factory; however, for specialized use the owner can easily change filter parameters.

Mindful of the fact that many of our customers are new to RTTY. Al made the CP-1 tuning as forgiving as possible, while providing the most critical operator a piece of equipment in which he could be proud. Even old "pro's" are surprised at the poor signal conditions under which the $\mathrm{CP}-1$ will still provide good copy.

You can now experience the BEST RTTY, CW, and AMTOR offered. Couple the CP-1 with our new AEASOFT ${ }^{\text {TM }}$ software packages designed for the MARS, SWL, or amateur radio operator, and you will feel a pride reminiscent of what "made in U.S.A." brought in years gone by. Please do not hold the low price of the CP-1 against us. This is one case where you get much more than you pay for relative to any of the competitive units. For more information send for our FREE catalog. Better yet, see your favorite dealer.

Adjust element spacings, lengths

to improve gain, F/B, pattern, and bandwidth

applied Yagi antenna design part 5:

 additional optimization techniques

 additional optimization techniques}

In the first four parts of this series, specific Yagi antenna designs were optimized for each of four VHF/UHF bands. ${ }^{1-4}$ At a designated frequency in each band's weak signal area, computer iterations provided calculated maximas for forward gain and F/B. Three well-known Yagi antenna design approaches formed the bases for these iterations, with comparisons being presented in reference to a standardized fourth approach, the NBS Yagis. ${ }^{5}$ For the same Yagi design approach at the same design frequency, some of the more significant findings from these iterations and comparisons include the following:

- Parasitic element lengths for maximum calculated forward gain and F/B are different, sometimes significantly so.
- Increasing the tapering of a given design approach requires a longer first director.
- Increases in tapering initially, but not always, result in some increase in calculated forward gain.
- Increased tapering almost always results in some increase in calculated F/B.
- Carefully selected arrangements of unequal director spacing result in more gain for a given boom length, as compared to carefully selected arrangements of equal director spacing, sometimes with fewer directors as well.

Before proceeding further with a general discussion of gain or F / B optimizing techniques, it should be
useful to consider why a Yagi antenna produces peaks and/or nulls in both desired and undesired directions.

pattern generation

The Yagi antenna serves to form a traveling wave whose shaping is a function of the amplitude and phasing of the currents in the parasitic elements. These currents result from driving one or more elements with an RF voltage at a given design frequency. Phase relationships are determined by the self impedance of each element and the mutual impedances among the elements. Self impedance is a function of an element's length and diameter, and mutual impedance is a function of the spacing between elements. A Yagi antenna is essentially a system of dipole elements whose resulting radiation patterns are combined into a single pattern. This combining process can be represented in terms of vector quantities that are based on the current flowing in each element. As it is dipole patterns that are being combined, there is usually some resemblance between the resulting Yagi pattern and a single dipole pattern. Some of these resemblances are a peak at zero degrees, a sharp null at 90 degrees, and a lesser peak at 180 degrees. As Yagi patterns are generally symmetrical, a null also occurs at 270 degrees. The patterns in references 1-4 are typical examples.

Forward gain is a measurement of the sharpness of the definition of the main lobe (zero degree lobe). F/B

By Stanley Jaffin, WB3BGU, 800 Stonington Road, Silver Spring, Maryland 20902
table 1. Design parameters for a six-element Yagi whose gain is spacing optimized from 11.21 dBi to 12.87 dBi , with a 1.5 dB increase in F / B.

	element initial spacing length optimized spacing from previous from previous		
element	(λ)	element (λ)	element (λ)
reflector	0.51	0.000	0.000
driven	0.50	0.250	0.250
director 1	0.43	0.310	0.336
director 2	0.43	0.310	0.398
director 3	0.43	0.310	0.310
director 4	0.43	0.310	0.407

table 2. Design parameters for a six-element Yagi whose gain is spacing optimized from 10.92 dBi to 12.89 dBi , with a 1.4 dB increase in F / B.

	element length (λ)	initial spacing from previous element (λ)	optimized spacing from previous element (λ)
element	(λ)	0.000	
reflector	0.51	0.000	0.250
driven	0.50	0.280	0.352
director 1	0.43	0.310	0.355
director 2	0.43	0.310	0.354
director 3	0.43	0.310	0.373
director 4	0.43	0.310	

table 3. Design parameters for a ten-element Yagi whose gain is spacing optimized from 13.07 dBi to 14.25 dBi.

	element length (λ)	initial spacing from previous element (λ)	optimized spacing from previous element (λ)
element	elem		
reflector	0.51	0.000	0.000
driven	0.50	0.250	0.250
director 1	0.43	0.310	0.319
director 2	0.43	0.310	0.357
director 3	0.43	0.310	0.326
director 4	0.43	0.310	0.400
director 5	0.43	0.310	0.343
director 6	0.43	0.310	0.320
director 7	0.43	0.310	0.355
director 8	0.43	0.310	0.397

Note: While the text in the original source gives the director spacing as 0.310 wavelengths, a table provided in that article gives a dimension of 0.330 wavelengths for director spacing. It is apparent, however, that this Yagi was meant to be an extension of the prior Yagis, with the extra four directors serving merely to show how the model worked with longer Yagis.
is a ratio of the amplitude of this main lobe and the amplitude of the 180 degree lobe. F / B is more critically affected by even slight changes in element current than is forward gain. Variances of many decibels of F/B are often accompanied by forward gain changes that are fractions of a decibel. Overall pattern structure, however, is also materially affected. This explains why forward gain and F/B, while the most popular and perhaps the most significant measures of Yagi performance, do not always accurately reflect a single

Yagi's performance or the comparative performances of two or more Yagis.

With three variables to determine current amplitudes and phases in the parasitic elements, it is possible to obtain virtually the same gain or F/B figures with different combinations of these variables. This explains why Yagis with what appear to be measurably different design approaches can have almost the same gain, F/B, or other measures of performance. It is also worth noting that element diameter is usually chosen for reasons of mechanical stability, and is therefore not iterated with the other variables.

Gain or F/B can be mathematically optimized by iterating a single variable, parasitic element length. ${ }^{1-4}$ The same results can be calculated by holding parasitic element length constant and iterating parasitic element spacing. For a system of given element lengths, optimum spacings could be found. This could be either in terms of a given number of elements or a given boom length. Likewise, optimal performance values can be calculated for different element lengths when either of these two spacing parameters are held constant. When a given Yagi is described in the Amateur literature as "optimal," it is necessary to ask what has been optimized - gain or F / B ? It also follows that whenever any of these parameters are changed, "optimal" must now be re-optimized. For example, a seven-element Yagi made by adding an element to an already "optimal" six-element Yagi is not an "optimal" seven element Yagi; the spacings of the other elements (and perhaps their lengths) need to be re-optimized. When two directors were added to the K2RIW Yagi, optimal director length (for gain) dropped from 11.75 to 11.50 inches. ${ }^{3}$ Failure to do so would have cost 0.737 dB of gain and 8.784 dB of F / B. It is also necessary to determine if the new boom length might be better served with five (or eight) elements, and if the resulting F / B is available across the entire weak signal area or is a function of single frequency vectorial cancellation.

It would seem logical that if all of these variables could be optimized at the same time, a Yagi antenna with truly phenomenal performance parameters might be designed. The Lawson model used in references 1-4 can easily be adapted to perform these calculations. One series of articles in the professional literature reporting the results of using another model for this same purpose is summarized below.

continuous Yagi antenna performance parameter optimization

A series of computer programs for this purpose has been prepared and apparently successfully executed. An existing Yagi design approach is described in the programs in terms of element spacing, length, and diameter, as well as operating frequency. The program
further iterates the design parameters to optimize the Yagi's gain. Cheng and Chen ${ }^{6}$ provide a highly mathematical description of a Yagi element spacing optimization procedure, and give three examples of its use. In the first example (summarized in table 1) a six-element Yagi with an initial gain of 11.21 dBi is element space optimized to 12.87 dBi . In the second example (summarized in table 2) another six-element Yagi with an initial gain of 10.92 dBi is similarly optimized to 12.89 dBi . In the third example (summarized in table 3) a 10 -element Yagi with an initial gain of 13.07 dBi is similarly optimized to 14.25 dBi .

For element length optimization, Chen and Cheng ${ }^{7}$ provide a description of the process and two examples. In the first example, summarized in table 4, a sixelement Yagi with an initial gain of 10.89 dBi is element length optimized to 12.15 dBi . In the second example, summarized in table 5, this same six-element Yagi is first space optimized to 12.83 dBi , and is then length optimized to 13.40 dBi . (Note: for the Yagis described in tables 1-5, element diameter is 0.006738 wavelengths and the booms are non-conductive. F/B calculations were not given, but this figure is derived from the plots provided in both articles.)

A combination of length and spacing optimization or a series of either of these individual optimizations can be continued. The rapid convergences described
table 4. Design parameters for a six-element Yagi whose gain is length optimized from 10.89 dBi to 12.15 dBi , with a 1.6 dB increase in F / B.

element	spacing from previous element (λ)	initial element length (λ)	optimized element length (λ)
reflector	0.000	0.510	$0.4 / 2$
driven	0.250	0.490	0.456
director 1	0.310	0.430	0.439
director 2	0.310	0.430	0.444
director 3	0.310	0.430	0.432
director 4	0.310	0.430	0.404

in both articles indicated that very little additional gain would be realized. If gain figures for various boom lengths are extrapolated from the NBS findings in reference 5, they can be used to arrive at very favorable comparisons with the Chen-Cheng results. Yagis whose gain figures were initially low for comparable NBS Yagis of equal boom lengths, were optimized to gain figures equal to or in excess of these same NBS figures. The accuracy of these results depends on a careful validation of the Chen-Cheng model against all of the NBS Yagis, or against some other equally validated reference. Unfortunately, this could not have been done because the NBS data was

fig. 1. E-plane plot of the zero-taper, gain optimized Kmosko-Johnson Yagi antenna.
table 5. Design parameters for a six-element Yagi whose initial gain of 10.89 dBi is space optimized to 12.83 dBi and then length optimized to 13.40 dBi , with a 0.4 dB increase in F / B.

	$\begin{array}{c}\text { initial design parameters } \\ \text { spacing from } \\ \text { previous element }\end{array}$		$\begin{array}{c}\text { element } \\ \text { length }\end{array}$	$\begin{array}{c}\text { optimized design parameters } \\ \text { element }\end{array}$
spacing from				

fig. 2. E-plane plot of the F/B maximized version of the zero-taper, gain optimized Kmosko-Johnson Yagi antenna.
not published until three years after Chen and Cheng's first article. Comparisons with the Lawson model on the Yagis contained in the two articles would not be a conclusive test. A Yagi model needs to be validated against a wide range of parasitic element numbers and spacings, not a select few that might fall through some mathematical "cracks."

Articles in the Amateur literature also describe techniques that have been shown to increase Yagi gain or F/B. These techniques involve adding another element or altering the length of an existing element. The following two examples given are from the sources cited in references 1-4.

F/B optimization for the Kmosko-Johnson Yagi

Reference 1 described an extensive analysis of the Kmosko-Johnson design approach for long Yagis. These computer iterations showed how increased director tapering resulting in increased gain and significantly increased F/B. Kmosko and Johnson's original article made mention of a rather unique method for increasing $F / B,{ }^{8}$ in which the last director is made shorter than its tapering schedule would normally require, resulting in a higher F / B ratio. While Kmosko and Johnson mentioned a very slight de-
crease in this director's length, computer iterations were made over a wide range of such decreases.

The last director of each of four gain optimized Kmosko-Johnson Yagis was continually decremented by 0.0625 inch. These Yagis had director tapering schedules of $0.000,0.0625,0.125$, and 0.1875 inch. The most dramatic results were obtained for the zero taper Yagi, giving further credence to these designers' belief (and the findings in reference 1) that their Yagi performed better with at least some degree of director tapering. Table 6 presents the results for the zero taper gain optimized Yagi, with the initial gain optimized performance parameters followed by those measured at 0.25 -inch decrements (every fourth 0.0625 decrement). Table 7 and 8 present comparisons between the original Yagi and the Yagi optimized for F/B by this process. Figs. 1 and 2 present the E-plane plots for these respective Yagis.

The newly optimized F/B derives from single frequency vectorial cancellation. There is nearly a 16 dB drop across the $144-\mathrm{MHz}$ weak signal area. The gain remains nearly constant, but at a level below that of the original Yagi. The newly optimized Yagi has a different lobe structure in its second quadrant (90-180 degrees). The overall reduction of signal pick-up is greater than that of the original optimized Yagi, and from 160-180 degrees, the nearly 23 dB increase in F / B becomes readily apparent. As is usually the case with antennas, the selection of either of these Yagis is a matter of the station operator's personal preference. Reference 1 provides the potential user of KmoskoJohnson Yagis with additional alternatives.

F/B optimization for the Tilton/Greenblum Yagi

References 2-4 described many Yagis based on this proven design. In Greenblum's first article, he mentions a method for increasing the F / B ratios of the Yagis described in his design tables. ${ }^{9}$ This involves adding another director, but only after determining its position by moving it down the boom to find the F/B maxima. The Greenblum design is based on finding the gain maxima, as Greenblum was obviously concerned about F / B and the overall pattern.

The 0.000 taper gain optimized Yagi from reference 2 was selected for the computer iterations used to illustrate this technique. With tapered directors there would be the additional problem of controlling for a second variable, the taper of the new director. All iterations were made at the Yagi's design frequency of 220.5 MHz .

In order to avoid having this extra director coincide with any of the existing directors, an initial spacing from the reflector of 0.15 wavelengths was selected. Increments were in steps of 0.01 wavelengths, with the last positioning of this director being 3.20
table 6. The effects of decreasing the length of the last director on the performance parameters of the gain optimized zero taper Kmosko-Johnson Yagi.

length of last director (inches)	gain $(\mathbf{d B i})$	\mathbf{F} / \mathbf{B} (dB)
36.625	15.601	17.729
36.375	15.604	19.090
36.125	15.605	20.525
35.875	15.604	22.054
35.625	15.602	23.702
35.375	15.599	25.509
35.125	15.595	27.531
34.875	15.592	29.851
34.625	15.587	32.588
34.375	15.583	35.840
34.125	15.579	39.164
33.875	15.575	40.005
33.625	15.571	37.681
33.375	15.567	35.048
33.125	15.563	32.923
32.875	15.559	31.249
32.625	15.555	29.905
32.375	15.552	28.800
32.125	15.548	27.873

table 7. Frequency response parameters for the initial zero taper gain optimized Kmosko-Johnson Yagi.

frequency	gain $(\mathbf{d B i})$	F / B $(d B)$
142.5	15.259	11.162
143.0	15.344	12.022
143.5	15.440	13.266
144.0	15.537	15.126
144.5	15.601	17.729
145.0	15.524	18.591
145.5	15.082	13.846
146.0	13.920	8.321
146.5	11.736	3.390

table 8. Frequency response parameters for the initial zero taper gain optimized Kmosko-Johnson Yagi after maximizing F / B by reducing the length of the last director.

frequency	gain $(\mathbf{d B i})$	F / B $(\mathbf{d B})$
142.5	15.301	14.600
143.0	15.404	16.310
143.5	15.500	19.015
144.0	15.570	24.302
144.5	15.575	40.005
145.0	15.434	20.942
145.5	15.013	13.968
146.0	14.137	9.146
146.5	12.653	5.125

wavelengths from the reflector. A five-page listing, detailing many undulating cycles of both gain and F / B results, was produced. Table 9 presents comparisons among the performance calculations for the original Yagi, a new gain optimized Yagi, and each of the Yagis at calculated F / B maximas. Tables 10, 11, and 12

fig. 3. E-plane plot of the zero-taper, gain optimized Tilton-Greenblum Yagi antenna.
table 9. Performance parameter comparisons among various gain optimized zero taper Tilton/Greenblum Yagis as a function of placement of an additional director.
spacing of extra

element from	gain	F / B
reflector (λ)	(dBi)	(dB)

	15.332	14.537	original Yagi
0.28	15.476	16.030	local F/B maxima
0.35	15.576	13.614	new gain maxima
0.69	14.482	21.392	local F/B maxima
1.17	14.551	23.888	local F/B maxima
1.67	14.878	19.850	local F/B maxima
2.12	14.872	21.325	local F/B maxima
2.61	14.611	29.760	global F/B maxima
3.07	15.116	19.931	local F/B maxima

present the frequency response characteristics for the original Yagi, the new gain optimized Yagi, and the F/B optimized Yagi resulting from this process. Figs. 3, 4, and 5 present these antenna's respective E-plane plots.
With the exception of the amplitude of some of the minor lobes, there are no real differences between the original and the new gain optimized Yagis. The F/B optimized Yagi has the minor lobes with the greatest

fig. 4. E-plane plot of the new zero-taper, gain optimized Tilton-Greenblum Yagi antenna.
table 10. Frequency response parameters for the initial zero taper gain optimized Tilton/Greenblum Yagi.

frequency	gain (dBi)	F / B $(\mathrm{~dB})$
216.5	14.737	16.075
217.5	15.007	16.472
218.5	15.194	16.169
219.5	15.301	15.425
220.5	15.332	14.537
221.5	15.295	13.695
222.5	15.201	13.003
223.5	15.065	12.515
224.5	14.903	12.266

amplitude, particularly from $100-160$ degrees. It is only from 165-180 degrees that the reduced signal pick-up associated with a higher F / B is apparent. All three Yagis display an F / B that increases at frequencies higher than the design frequency, a characteristic of a Yagi inherently optimized for something other than F / B. Specially placing an element to optimize F / B has not changed this Yagi's basic performance characteristics. While individual preferences are generally an important factor in Yagi selection, the 220 MHz operator desiring a high F/B may be better served with those Yagis presented in reference 2.

fig. 5. E-plane plot of the F/B maximized verison of the zero-taper, gain optimized Tilton-Greenblum Yagi antenna.

concluding comments

Throughout this series I have emphasized the use of the digital computer as an antenna design tool capable of providing the VHF/UHF Radio Amateur with a wealth of accurate information in a relatively short time. Gone are the days of tedious and seemingly endless iterations of element lengths, spacings, and resulting pattern measurements on antenna test ranges, all with the inherent possiblity for significant human error. With the computer, several "lifetimes" of Yagi design iterations can be performed accurately and painlessly by using a model that starts with specific designs. More importantly, the VHF/UHF operator can estimate the expected performance of any design more closely than has been possible in the past.
This series has shown how to identify Yagis whose overall performance parameters - a well defined main lobe, reduced side lobes, and a reasonable F / B ratio - are most desirable in the VHF/UHF station. Once again, Reisert has restated and illustrated the importance of emphasing these parameters. ${ }^{11}$ However, the operator with special needs, or with the age-old urge to tinker with antennas, can now do so with relative ease.
To further aid the knowledgeable antenna experimenter, the final article in this six-part series will pre-
table 11. Frequency response parameters for the new gain optimized zero taper Tilton/Greenblum Yagi with an additional director 0.35 wavelengths from the reflector.

frequency	gain $(\mathbf{d B}$ i)	F/B $(\mathbf{d B})$
216.5	14.850	14.071
217.5	15.171	14.322
218.5	15.391	14.215
219.5	15.521	13.920
220.5	15.576	13.614
221.5	15.573	13.441
222.5	15.528	13.529
223.5	15.451	14.025
224.5	15.330	15.149

table 12. Frequency response parameters for the new F/B maxima on a gain optimized zero taper Tilton/Greenblum Yagi with an additional director 2.61 wavelengths from the reflector.

frequency	gain (dBi)	F/B (dB)
216.5	14.322	16.928
217.5	14.504	19.378
218.5	14.613	22.262
219.5	14.650	25.709
220.5	14.611	29.760
221.5	14.491	33.654
222.5	14.279	33.505
223.5	13.958	28.425
224.5	13.493	22.647

sent a detailed explanation of the FORTRAN program that enables the mathematical model to be iterated on a digital computer. An NBS Yagi will be used to illustrate the program's logic, and a copy of the FORTRAN program will be made available at that time.

references

1. Stanley Jaffin, WB3BGU, "Applied Yagi Antenna Design, Part 1: A 2 meter Classic Revisited," ham radio, May, 1984, page 14.
2. Stanley Jaffin, WB3BGU, "Applied Yagi Antenna Design, Part 2: $220 \cdot \mathrm{MHz}$ and the Greenblum Design Data," ham radio, June, 1984, page 33.
3. Stanley Jaffin, WB3BGU, "Applied Yagi Antenna Design, Part 3:432 MHz with Knadle and Tilton," ham radio, July, 1984, page 73.
4. Stanley Jaffin, WB3BGU, "Applied Yagi Antenna Design, Part 4: The 50 MHz Tilton/Greenblum Designs," ham radio, August, 1984, page 103. 5. Peter Viezbicke, "Yagi Antenna Design," NBS Technical Note 688, Depart ment of Commerce, Washington, D.C., 1976.
5. David K. Cheng and C.A. Chen, "Optimum Element Spacings for Yagi Uda Arrays," IEEE Transactions on Antennas and Propagation, Volume AP-21. Number 5, September, 1973, pages 615-623.
6. C.A. Chen and David K. Cheng, "Optimum Element Lengths for YagiUda Arrays," IEEE Transactions on Antennas and Propagation, Volume AP-23, Number 1, January, 1975, pages 8-15
7. James A. Kmosko, W2NLY, and Herbert G. Johnson, W6OKI, "Long Long Yagis," OST, January, 1956, pages 19-24.
8. Carl Greenblum, "Notes on the Development of Yagi Arrays: Part 1," OST, August, 1956, pages 11-17, 114-116.
9. James L. Lawson, W2PV, "Yagi Antenna Design: Experiments Confirm Computer Analysis," harn radio, February. 1980, page 25.
10. Joe Reisert, W1JR, "VHF/UHF World," ham radio, May, 1984, page 110.
ham radio

STAYPUT

STAY-PUT IS NOW AVAILABLE in 24VDC and 115 VAC .
STAY-PUT is the remote-control, electric wind brace designed to work in conjunction with your dish actuator. The actuator holds one side of the dish and STAY-PUT holds the opposite side. Therefore, STAY-PUT eliminates sparkle caused by the wind and minimizes the wear to the actuator. Even the best actuators have play, and the action of the wind rocking the dish adds even more. Virtually all types of dishes (mesh, fiberglass and solid metal) can and do move during windy conditions. STAY-PUT stabilizes the dish and, therefore, protects your investment. STAY-PUT is constructed of heavy-wall steel pipe and operates quite simply. One pipe slides inside of the other to allow movement from east to west. There is a spring-loaded locking device attached to the larger pipe. When the power is off to STAY-PUT. the brake is put in the locked position. When you are ready to move your dish from one satellite to another, turn the power on to STAY-PUT which releases the brake, rotate your dish to the desired satellite and turn the power off to STAY-PUT, which once again locks the brake.

STAY-PUT has built-in safeguards to protect your system from accidental movement of the dish while the brake is in the locked position. STAY-PUT also has an indicator light to let you know when the brake is released. STAY-PUT is easy to install, inexpensive to operate, and is maintenance free. Even the most expensive and sophisticated systems can use the added insurance STAY-PUT offers.
STAY-PUT comes complete, with the exception of the wiring needed to connect the remote control box (inside the house) to the wind brace (outside the house) and two bolts and nuts. Detailed instructions for installation and use are provided with each STAY-PUT.
STAY-PUT is UPS shippable. Shipping weight is 20 lbs O/S. STAY-PUT has a full year warranty.
J. REED MANUFACTURING
P.O. BOX 1340

18295 SPRUCE GROVE ROAD EXT. MIDDLETOWN, CA 95461

Gillaspie 9600

Micro Processor Controlled Satellite Receiver

with wireless remote

- Clear sharp pictures
- Automatic Feed Rotation Control
- Built-in Satellite TV Switch
- Super Reliability
- Channel 3-4 Switchable Modulator
- Fine Wood Cabinet with Distinctive Styling

Gillaspie L.N.A.

Low Noise Amplifier

Model \# GLN-3742

- Compact Design 3.1" x $3.9^{\prime \prime} \times 8.4^{\prime \prime}$
- Hermetically sealed
- Replaces any TVRO LNA
- 1 Year Warranty
- Single "N" Female Connector for RF Output \& DC Bias

B. G. MICRO

P. O. Box 280298 Dallas, Texas 75228
(214) 271-5546

Big Computer Mfg. Makes $\$ 900,000$ Goof!! COMPUTER/DISK DRIVE SWITCHING POWER SUPPLY

BRAND NEW: UNUSED!

ORIGINALLY DESIGNED TO RUN A Z-80
 BASED SINGLE BOARD COMPUTER
 WITH TWO 5-1/4 IN. DISK DRIVES AND CRT MONITOR.

$$
\$ 3750_{\mathrm{EA}} \quad 3_{\mathrm{FOR}} \$ 9500
$$

ADD $\$ 1.50$ PER UNIT FOR UPS

SPECS:	$\begin{aligned} & \text { + 5VDC } 5 \text { AMPS MAX } \\ & \text { \#1 } 12 \text { VDC } 2.8 \text { AMPS MAX } \\ & \text { \#2 }+12 \text { VDC } 2.0 \text { AMPS MAX } \\ & -12 \text { VDC } .5 \text { AMPS MAX } \end{aligned}$
	: 115 or 230 VAC 60 Hz

SMALL SIZE: 6-1/8 $\times 7-3 / 8 \mathrm{In}$. HIGH EFFICIENCY SWITCHER MFG. BY CAL. DC IN USA!

The poor Purchasing Agent bought about 10 times as many of these DC switchers as his company would ever use! We were told that even in 10,000 piece lots they paid over $\$ 72$ each for these multi-output switchers. When this large computer manufacturer discontinued their Z-80 Computer, guess what the Big Boss found in the back warehouse; several truckloads of unused $\$ 72.00$ power supplies. Fortunately we heard about the deal and made the surplus buy of the decade. Even though we bought a huge quantity, please order early to avoid disappointment. Please do not confuse these high quality American made power supplies with the cheap import units sold by others.

Z80* SINGLE BOARD COMPUTER! 64K RAM - 80×24 VIDEO DISPLAY - FLOPPY DISK CONTROLLER RUNS CP/M* 2.2!

GIANT COMPUTER MANUFACTURER'S SURPLUS!

UNBELIEVABLE LOW PRICE!!!

Recently Xerox Corp. changed designs on their popular 820^{*} computer. These prime, new, 820-1 PC boards were declared as surplus and sold. Their loss is your gain! These boards are 4 layers for lower noise, are solder masked, and have a silk screened component legeind. They are absolutely some of the best quality PC boards we have seen, and all have passed final vendor QC. Please note, however, these surplus boards were sold by Xerox to us on an AS IS basis and they will not warranty nor support this part.
We provide complete schematics, ROM'S, and parts lists. If you are an EXPERIENCED computer hacker, this board is for you! Remember, these are prime, unused PC boards! But since we have no control over the quality of parts used to populate the blank board, we must sell these boards as is, without warranty. You will have to do any debugging, if necessary, yourself!.

ADD $\$ 2$ PER PC BOARD FOR SHIPPING. (USA and Canada)
-CP/M TM OF DIGITAL RESEARCH INC. (CALIF.) B20 TM OF XEROX CORP. Z80 TM OF ZILOG

ALL ORDERS WILL BE
PROCESSED ON A STRICT,
FIRST COME, FIRST SERVED
BASIS! ORDER EARLY!

USES EASY
TO GET PARTS!
GROUP SPECIAL: BUY 6 FOR \$165!
$11^{1 / 2^{\prime \prime}} \times 12^{1 / 2^{\prime \prime}}$

the SEED antenna a Short, Efficient End-fed Dipole

Achieve good efficiency while covering 80/160 meters

In 1978 I needed a very short antenna for the 80 and 160 meter bands. Because I was not satisfied with popular designs, I developed a very small antenna which, I hoped, might be better. For the last several years, the result of this effort has been my regular station antenna. I can find nothing like it described in the Amateur literature.

The antenna measures 20 feet (6 meters) long, and its center is 14 feet (4.2 meters) above the ground. Input SWR is less than $1.15: 1$ from 3.5 to 4.0 MHz (160 meter data is comparable).

If the interest in small antennas is as widespread as it appears to be, and if the numerous popular designs are as inefficient as I believe them to be, then the story of the SEED antenna, whether useful, amusing, or controversial - might be worth telling. My design considerations, measurement techniques, performance data, and evaluation are included: if they were flawed in any way, experts are welcome to set the record straight, but the antenna does work . . . and it has advantages l've never seen in any other ham antenna, large or small.

initial design

The first task was to decide what features were considered most important, and what their order or priority should be. They were:

- operation in the 80 and 160-meter bands
- small size
- efficiency
- feed point impedance of 50 ohms
- simplicity of operation

The first two would be mandatory; optimizing the others would be the job at hand.

Since short radiators have low radiation resistance, good efficiency requires even lower loss resistance. The possibilities of a vertical monopole antenna operated against ground were not explored because an adequate radial system is not small and, without one, ground losses are excessive. Similarly, capacitive end loading structures, to be effective, would also be too big. A short dipole, fed at its center, would require loading inductance, which would necessarily have too much resistance to be acceptable.

However, when viewed from its ends, a short dipole exhibits inductive reactance. This can be resonated with capacitance, and the losses in capacitors can be quite small.

The efficiency of such a short antenna could also be enhanced if the radiation resistances were maximized. This could be done by causing more current to flow in a greater part of the length of the radiator. The end-fed design would provide maximum current in the full length of the radiator and maximum radiation resistance for the length available. The antenna would then be a short, efficient, end-fed dipole.

With these thoughts in mind, a 20 -foot (6.1 m) piece of 1 -inch (25.4 mm) copper pipe was selected for the radiating element corresponding to a length of 0.08 wavelength or 29 degrees at 3.950 MHz , and half that at 1.9 MHz . A tapered transmission line of two 20 -foot pieces of $1 / 2$-inch (12.7 mm) copper pipe are used to end feed the driven element while providing closely spaced points for connection of the other parts. This approximates an equilateral triangle, with the narrow end of the transmission line separated by only a few inches. At this point the reactance would still be highly inductive.

Air dielectric tuning capacitors from each side of the transmission line establish resonance. By placing a low

By C.A. Baldwin, W4JAZ, 3406 Old Dominion
Blvd., Alexandria, Virginia 22305
reactance loading capacitor between them, the two connecting points provide a low impedance, balanced feed point. By proper selection of the loading capacitor value, this becomes a 200 ohm feedpoint, nonreactive when the system is tuned to resonance, and appropriate for a conventional $4: 1$ balun to match to 50 -ohm coaxial cable.

Inherent in this design philosophy is the distinction between the radiator and the transmission line functions. The radiator is a linear elementary dipole in which current is essentially the same at all points along its length, and voltages at its ends are equal and opposite in phase.

The transmission line section consists of two adjacent, straight conductors in which current and voltage are equal and opposite. It is tapered, and therefore its characteristic impedance varies throughout its length. Its center line is perpendicular to the radiator, and all elements lie in the same plane.

If the radiator is mounted vertically, its intrinsic radiation will be vertically polarized and maximum toward the horizon, while the center line of the transmission line will be horizontal, as will the polarization of its radiation.

The inductive reactance present at the open end of the transmission line section is the combination of that at the ends of the radiator and the effects of the line itself. This total was considered the inductive component of the resonant circuit, and no attempt to separate the factors appeared to be necessary.

construction

The antenna assembly is illustrated in fig. 1. The pipe was joined using standard soldered plumbing fittings to minimize junction losses. The ends of the transmission line were connected with half inch silver plated braid to rather large feedthrough insulators on the box containing the other parts. A wooden " T " frame supports the pipe and box, and is mounted on a 14 -foot (4.27 m) high wooden 4×4 inch ($100 \times$ 100 mm) pole. The copper pipe weighs about 18 pounds (8.16 kg) and is not self supporting.

A weatherproof box at the end of the transmission line houses the capacitors, balun, and selsyn. The circuit within the box is shown in simplified form in fig. 2.

The tuning capacitors, "ganged" by a shaft coupling, are controlled from the operating position by a pair of surplus selsyns connected by a multi-conductor cable. A small reversible, slow speed motor might have been a better choice. The loading capacitors are mounted and connected with copper strap and banana plugs.

The assembly is mounted with the radiating element vertical. The supporting boom is hinged at the top of the pole to allow it to be tilted 90 degrees to bring the control box down to shoulder level for substitution of capacitors during evaluation.

fig. 1. The structure of the SEED antenna and its mounting (not to scale)

After the initial selection, the loading capacitor does not require adjustment to provide a low SWR across a single band. However, a different value is required for each band. Because of the high current to be carried, use of relays or switches is avoided and plugin units are substituted when changing bands.

circuit description

The basic circuit as originally envisioned is a parallel resonant circuit as shown schematically in fig. 3A. The series resonating capacitors, $C_{S /}$ and $C_{S 2}$, and the loading capacitor, C_{L}, all in series, are across the inductance of the pipe structure, L. There is also a significant distributed capacitance, C_{D}, across the inductor. This is the capacitance between the sides of the pipe structure plus the stray capacitance of leads to and within the component box. The inductance is $20 \mu \mathrm{H}$ and the distributed capacitance is 19 pF . The resistance, R, is the sum of the radiation resistance and the loss resistance of the pipe (including joints) and capacitors.

Selection of the series resonating capacitors determines the operating frequency. The value required for the loading capacitor will depend, to some extent, on the physical characteristics of the antenna structure, its mounting and environment, and the adjacent ground. The balun is a standard commercial unit with a cylindrical core and an impedance ratio of 4:1, and is rated for full Amateur power.

The practical circuit now in use is shown in fig. 3B. $C_{S I}$ and $C_{S 2}$ are, in fact, series or parallel connected assemblies of fixed units, as required by band selec-

fig. 2. Simplified diagram of the contents of the control box on the boom of the antenna.

fig. 3. Circuit of the SEED antenna: (A) the elementary circuit originally envisioned, and (B) the practical circuit in use. (Component designations are explained in text.)
tion and parts availability. In early experiments, each of the variable tuning capacitors was connected in parallel with the related series resonating capacitor. This isolated the distributed capacitance, C_{D}, and facilitated its measurement. Under these conditions, SWR was $1.5: 1$ or less from 3.5 to 4.0 MHz . It later developed that connecting the tuning capacitors in series across the entire circuit, as shown, would significantly improve the SWR at the band edges.

Under operating conditions, the total resistance, R, also included the effects of ground and environment. This measured 0.64 ohms at 1.9 MHz and 2.21 ohms at 3.950 MHz .

The tuning capacitors are $10-100 \mathrm{pF}, 4500$ volt units. When each is paralleled with a fixed series capacitor of 680 pF at $C_{S 1}$ and $C_{S 2}$, the circuit tunes from 1.813 to 1.907 MHz . The optimum value of C_{L} was 7450 pF , and maximum SWR was $1.3: 1$ in this range. Bandwidth for an SWR of $2: 1$ without retuning was 3.75 kHz with a loaded Q of about 370 . At 200 watts to the antenna, the tuning capacitors each had 2000 volts, RMS, across them and the current in the circuit was 18 amperes, RMS. The benefits of the revised connection of the tuning capacitors had not yet been recognized when 160 meter tests were made.

Using the same tuning capacitors but in the revised circuit, and with fixed 100 pF units at $C_{S 1}$ and $C_{S 2}$, the circuit could be tuned from 3.300 to 4.095 MHz . The optimum value of C_{L} was 1250 pF for an SWR of less than $1.15: 1$ from 3.5 to 4.0 MHz . The bandwidth for an SWR of $2: 1$ without retuning was 14 kHz , with a Q of about 225 . At 200 watts to the antenna, each tuning capacitor had 2250 volts, RMS, across it, and current in the circuit was 9.5 amperes, RMS.

2-meter model

A $1: 36$ scale model of the design was made and operated in the 2-meter band in an effort to determine the free space radiating characteristics of the design. Under much less than ideal conditions, scans of 360 degrees of azimuth were made for both horizontally and vertically polarized radiation, with the antenna in three attitudes.

The most informative patterns occurred when the radiator was horizontal and the center line of the feedline section vertical, as shown in fig. 4A. This separated the horizontal radiation of the radiator from the vertical radiation of the feedline section, and facilitated consideration of each separately from the other. It emphasized that the maximum signal from the radiator was at right angles to it, whereas that from the feedline section was concentrated in the directions in the plane of the structure and perpendicular to its center line.

With the plane of the assembly horizontal, a plot of the horizontal radiation, as shown in fig. 4B, shows essentially a circular pattern, decreasing about 2 dB
off the ends of the radiator. Radiation from the feedline section nearly fills in the nulls at the ends of the radiator. Vertical radiation was not detectable in any direction.

With the radiating element vertical, the vertical radiation pattern, as shown in fig. 4C shows lobes in directions in the plane of the antenna which were about 6 dB above the nulls at 90 degrees from them (broadside). There was no measureable horizontal radiation.

orientation

The model tests simulated operation of the SEED antenna in free space. To that information must be added the effects of the proximity of ground. Even though they could not be measured with available facilities, the nature and relative magnitude of the distortions to be expected could be estimated.

Mounted horizontally, the SEED design might be an
excellent antenna if it were about 140 feet (42.67 m) above ground. At a height appropriate to its size, its radiation resistance would be reduced, decreasing efficiency. Very little low angle radiation would exist. Ground losses would be severe.
If it were mounted with the plane of the structure vertical and the radiator horizontal, the horizontal radiation would be degraded as described above. The feedline section would produce some vertically polarized radiation.

By mounting the SEED with the radiating element vertical, ground losses might be less and low angle radiation should be improved. Since selection of polarization could not be based on comparison of measurable losses, vertical polarization was chosen to favor lower vertical radiation angles.

initial observations

A unique feature of the SEED design is a feed point

fig. 4. Free space radiation patterns of the 2 -meter model SEED: (A) with plane of antenna vertical and radiator horizontal, (B) with plane of antenna horizontal, and (C) with radiating element vertical. Zero degrees in A is perpendicular to the plane of the antenna; in B and C, perpendicular to the radiator in the plane of the antenna, feed point at 180 degrees. Solid line shows horizontally polarized radiation, dashed line, vertical.
impedance of exactly 50 ohms, non-reactive. Other resistive or complex impedances may be obtained if desired. The resistive component is continuously variable by adjusting the value of the loading capacitor, and reactance may be introduced or eliminated by the main tuning control. With the loading capacitor optimized at mid-band, SWR did not exceed 1.15:1 from 3.5 to 4.0 MHz .

Since the loading capacitance is "set-and-forget," only one operating control is needed. A noise bridge or other low power indicator of resistance and reactance at the operating position will show when the antenina is resonant at the desired frequency, and causes no harmful interference. Under power, any device which will show maximum forward or minimum reflected power in the feed line will indicate proper tuning. But accurate tuning is critical to optimum antenna performance as well as feed point impedance. Error in tuning of 8 kHz at 3.950 MHz results in SWR of 2:1 and degrades efficiency, and at 160 meters much more care is necessary. CAUTION: A matching network or "antenna tuner" should not be used with the SEED antenna; neither it nor any controls in the transmitter can compensate for mis-adjustment of this antenna.

If a slow speed, reversible motor is used for remote tuning, a drive shaft speed of 1 RPM is a little too fast for convenience and accuracy, while a slower rate increases the time required for wide frequency excursions.

The very high loaded, operating Q of this circuit, 225 at 3.950 MHz and 370 at 1.900 MHz , probably attenuates harmonics and many other spurious emissions very effectively, but this effect could not be assessed. The resulting high current in the full length of the radiator is the good news. High current and voltage in the other parts of the circuit require special attention. Many hams may not be familiar with antenna parameters of 16,000 volts, peak, or 42 amperes of RF.
No inherent frequency limitations on the SEED design were observed. The 144 MHz model performed well, but both selection and adjustment of low loss, small capacitors were tedious. The total length of the radiator plus both elements of the feedline section should not exceed about 0.4 wavelength at the highest frequency to be used for fundamental operation.

At lower frequencies, through the broadcast band and below, it appears that a structure of this design, but still less than 0.1 wavelength long, would operate well and might have advantages. Elimination of the need for an extensive field of ground radials as an integral part of the circuit may be beneficial in some cases.

operational testing

The test site for the SEED is in a ravine nearly surrounded by ground 130 feet higher. The surface slopes
about 8 degrees and is completely covered by trees. There are seven houses within a half wavelength of the antenna. A full length horizontal dipole 35 feet high and a 48 -foot vertical are available for comparison. A single knob permits instant selection of any antenna and disabling of the others so they will not act as parasitic radiators. All antennas were matched to accept the same power. Most tests were conducted at frequencies near 3.950 MHz .
A lengthy effort was made to obtain dependable numerical comparative performance data, but results were inconclusive. Subjectively, less formal signal reports and innumerable listening tests over a three-year listening period were encouraging. At distances of less than 100 miles, the consistent superiority of the horizontal dipole confirmed the predominantly low-angle radiation of both the SEED and the vertical. At distances up to about 550 miles, the SEED and the horizontal dipole exceeded each other as conditions varied, while the vertical whip was consistently inferior. The immediate terrain prevents investigation of the probable superiority of the SEED and the vertical at greater distances, where predominantly low-angle radiation is most effective.
The antenna was resonated and matched in the 160 meter band and operated for about three weeks in early April. Power to the antenna was about 160 watts, PEP, on Single Sideband. Most contacts were made between 6 and 10 PM and at distances of 300 to 600 miles. No apology was offered for the size of the antenna and good reports were received. Those who asked and were told that the radiator was 20 feet long expressed surprise and curiosity.
The most frustrating aspect of these experiments was the inability to obtain satisfactory "on the air" performance data. It is hoped that someone with a suitable test site will investigate and report the low angle, long distance capability of the SEED which could not be determined at this location.

measurements

Several years of dredging at surplus outlets and hamfests had provided a supply of nondescript capacitors for this project. It soon became apparent that knowing the capacitance of those in the circuit would be necessary, and accuracy would be important. A Dynascan digital capacitance meter was obtained and used for measurements. A popular noise bridge was found to be inadequate for critical, repeatable, measurements. By modifying a published design, a noise bridge with suitable accuracy and resolution was made and calibrated. A secondary station receiver was dedicated to the project, and a signal generator and frequency counter provided signals of known amplitude and frequency.
One of the useful features of the SEED design is that it is a parallel resonant circuit with easily measurable

John J. Meshna Jr., Inc.

19 Allerton St reet • Lvnn. MA 01904 • Tel: (617) 595-2275

DUAL FLOPPY DISC DRIVES

BRAND NEW, dual floppy disc drives made for Digital Equipment Corp. (DEC model no. RX' 180 AB). This beautiful piece of computer hardware consists of 2 Shugart compatible TEAC 40 track, double density, $51 / 4$ " mini-floppy disc drives brand new in the case with their own regulated, switching power supply, cooling fan \& on/off switch. Each unit also comes with a line cord \& documentation. These were made for DEC, but are also compatible with other personal computers such as IBM, TRS 80 models I, II, \& the Color Computer, and other Shugart compatible interfaces. Naturally you supply the cables and disc controller card to suit your particular system. The RX 180 AB runs off of 115 $/ 230$ VAC $50 / 60 \mathrm{~Hz}$. w/out any modifications to the drives. Each system comes in the original factory box and are guaranteed functional. A blockbuster of a buy !! Shpg. wt. 20 lb . Stock no. RX 180 AB $\$ 250.00$
Modified to run with TI 99/4A personal computer system $\$ 285.00$

HIGH SPEED KSR PRINTER TERMINAL

World famous, high speed G. E. Terminet 1200 RS 232 KSR printer terminals are now in stock ready for shipment to you. This has to be one of the finest letter quality printers ever offered at a bargain price. These terminals can be used as an RS 232 asynchronous communications terminal or used in the local mode as a typewriter. The terminals were removed from service for upgrading. Highlights of these machines are: Standard RS 232, full duplex, asynchronous data comm., fully formed upper and lower case letters, 128 character ASCII set, selectable baud rates of 110, 300, or 1200 BPS, 80 columns on pin feed paper, and less weight \& size than an ASR 35 teletype with far less racket. They are virtually electronically foolproof as every pc board is Pico fuse protected. Should your machine not work, just check the on board fuses \& 9 out of 10 times that is where the problem lies. Schematics are provided w/ each machine sold. Current price of this machine new is over $\$ 2000.00$! Our meager price for this fantastic printer is only 10% of this: $\$ 200.00$ each!!! Visually inspected prior to shipment to insure completeness. Shpd. truck freight collect. \$200.00

IBM 745 SELECTRIC BASED TYPEWRITER PRINTERS

Send S.A.S.E. for free data sheet

These rugged, handsome printers were made for one of the giants of the computer industry. They can be used as a standard typewriter or as a printer in a word processing system for true letter quality printing. Solenoids were added to the selectric mechanism which disabled the manual repeat function but still allows electronic repeat functions. It uses standard IBM typing balls. The voltage requirements are standard $115 \mathrm{VAC}, 5 \mathrm{VDC}$ at 100 ma , and 24 VDC at 4 amps. All are new in factory boxes, but may require adjustments. We provide literature and schematics with 1 ribbon and cleaning tools. With the addition of our Centronics to Selectric I/O adapter, you could easily interface this printer to almost any micro computer system. Typewriter Printer stock no. RE $1000 \mathrm{~A} \$ 375.00,745$ manual $\$ 30.00$ Shpg wt approx. 80 Lbs , shpd by truck, collect.
CENTRONICS TO SELECTRIC INTERFACE
This interface will adapt a Redactron Selectric I/O typewriter mechanism to be used as a parallel ASCII compatible printer. The parallel input port provides compatibility to Centronics standards for both "busy" and "acknowledge" protocols. The interface requires only +5 VDC at 350 ma . This interface is fully buiit, less power supply, is guarenteed operational, and comes with data. Shpg wt. 15 lbs DE $201 \mathrm{~A}, \$ 245.00$

19" HI-RESOLUTION COLOR X-Y DISPLAY

Thru a special purchase we got hold of 50 brand new 19 " color displays. They were made by Wells Gardner for one of the largest arcade video game manufacturers in the world. The displays feature built in red, green and blue amplifiers, 19 " color tube made by Wells Gardner. User supplied external horizontal and vertical scan oscillators which allows precise user control over screen resolution. A real plus! Requires $25 \mathrm{~V}-0-25 \mathrm{~V}$ input for amps, available separately. Some spec s for you technical people: signal inputs "X" horizontal $16 \mathrm{~V} P-\mathrm{P}+8 \mathrm{~V}$, " Y " vertical $12 \mathrm{~V} \mathrm{P}-\mathrm{P} \pm 6 \mathrm{~V}$: " Z " beam drive, 4 V max brightness, 1.0 Volt black level. Writing rates " X " amp is .05 inch/usec, "Y" amp is .0375 inch/usec. Great for making your own video games, oscilloscope monitors, or adapting for home computer use. Supplied with shematics. Shpg. Wt. 45 Lbs.

MOT-19C $\$ 199.00$
TRANSFORMER FOR ABOVE Shpg. Wt. 15 Lbs,
Phone Orders accepted on MC, VISA, or AMEX Surplus Electronic Material No COD's. Tel. 1-617-595-2275

EASE OF INSTALLATION
ROHN "Fold-Over" Towers are quickly and easily installed. The "Fold-Over" is safe and easy to-service.

ADAPTABILITY

ROHN has several sizes to fit your applicafions or you can purchase the "Fold-Over" components to convert your ROHN tower into a "Fold-Over"

HOT DIP GALVANIZED
All ROHN towers are hot dip galvanized after fabrication.

REPUTATION

ROHN is one of the leading tower manufacturers, with over 25 years of experience.

Write today for complete details.

FREE CATALOG!
Features Hard-to-Find Tools and Test Equipment

Jensen's new catalog features hard-tofind precision tools, tool kits, tool cases and test equipment used by ham radio operators, hobbyists, scientists, engineers, laboratories and government agencies. Call or write for your free copy today.
JENSEN 7815 S. 46th Street Phoenix, AZ 85040 (602) $968-6231$

ค 157

EGBERT][+
 RTTY-CW - XFER
 for the Apple II, II+, IIe
 Transmit \& Receive with Software Only

NO TU REQUIRED

The Egbert][+ has RTTY/CW/XFER on the same disk! and features: split screen operation, type ahead buffer, se lectable mark, space, shift and speed, change modes and speeds from menu mailbox with selective call and save to disk. Provisions for up to 9 canned messages on each data disk, and much more.

FOR MOREINFO.ORORDER,CALLOR WRITE
W.H. NAIL COMPANY

275 Lodgeview Drive Oroville, Ca. 95965
M/C
(916) 589-2043

VISA
Egbert II $+=69.95$ includes program, back up \& documentation USA Residents add $\$ 2.50$ for shipping Allothers add $\$ 6.00 \mathrm{Ca}$ Res. add 6% sales tax

- 178

INCLUDE CALL SIGN WITH ORDER!

RADIO EXPO 84 HAMFEST

sponsored by
Chicago FM Club
September 22 \& 23
Lake County Fairgrounds Grayslake, IL Rts. 45 \& 120

Giant Outdoor Flea Market
Reserved Indoor Tables - $\$ 5.00$ ea/day Major Manufacturers Exhibits Tech talks - Seminars - Ladies' Programs
Tickets good for both days $\$ 3.00$ advance - $\$ 4.00$ at gate

SASE to RADIO EXPO 84 BOX 1532
Evanston, IL 60204
(312) 582-6923

THE UHF COMPENDIUM

by K. Weiner, DJ9H0
This 413 page book is an absolute must for every VHF and UHF enthusiast. Special emphasis has been placed on state-of-the-art techniques. Author Weiner fully describes test equipment, alignment tools, power measuring equipment and other handy gadgets. All of the projects and designs have been tested and proven and are not engineer's pipe dreams. Antennas are also fully covered with a number of easy-to-build designs as well as large megaelement arrays. (c) 1980 .
\square KW-UHF
Softbound \$23.95

VHF-UHF MANUAL

by G.R. Jessop, G6JP

This new, revised 4th edition is jam-packed with circuits, antennas, converters, cavity amplifiers and much, much more, Practical theory and construction projects cover from 70 MHz to 24 GHz . The chapter on Microwaves has been expanded to 83 state-of-the-art pages. Receiver and transmitters tor all VHF and UHF bands are covered in 181 pages. The balance of this book contains information on propagaion, tuned circuits, space communications, fitters, test equipment, antennas, plus a handy easy-to-use data section. Equipment designed for the British 4 meter band can be adapted tairly easily to the U.S 6 meter allocation. © 1983,512 pages, 4th edition \square RS-VH Hardbound \$17.50

VHF RADIO PROPAGATION

by J. D. Stewart

Battled by VHF propagation? It's not a mystery if you have a copy of this book. J.D. Stewart explains in detail propagation mechanisms such as atmospheric ducting. scattering, auroral reflections and ionized meteor trails. You also earn how to observe the Sun and evaluate weather conditions so you can predict favorable propagation conditions. (1982. 112 pages, 2nd edition.
NO-PH
Softbound \$4.95

VHF HANDBOOK

by W9EGQ and W6SAI

Contains all the latest information for VHF operation. Antenna design and construction trom $50-432 \mathrm{MHz}$ is fully covered with proven practical design information. You also get a complete rundown on FM theory. design and plenty of helpful hints and tips. In the construction section, the authors detail how to build low noise, high performance converters, transceivers, amplifiers and plenty of other pieces of interesting equipment. This book is a must for both the be ginner and expert in VHF communications, 1974 336 pages, 3rd edition.
\square RP-VH
Softbound $\$ 11.95$
Please add $\$ 2.50$ for shipping
HAM RADIO'S BOOKSTORE
Greenville, NH 03048
components. The series, loading and tuning capacitors can be measured directly. The value of the distributed capacitance and the inductance of the structure, including the connecting leads, can be computed directly from these measurements and the frequency of resonance, as explained in appendix \mathbf{A}.
With this data, it is possible to determine the series resistance of the antenna in position, as shown in appendix B. This is the sum of the radiation resistance, the loss resistance of the components, and the effects of absorption and reflection of adjacent ground and other objects. The loaded Q of the circuit can also be found, and measurement of the bandwidth for an SWR of 2:1 can be confirmed as in appendix \mathbf{C}.

efficiency

The books say that the radiation resistance at 3.950 MHz of the SEED antenna in free space would be about 5 ohms. Loss resistance in the primary circuit has been determined to be about 0.1 ohm. Under these conditions, efficiency would be $\frac{5}{5+0.1} \times$ $100=98$ percent. This shows success in obtaining some of the design and construction goals, but usefuiness of the figure is limited.
When the real secondary effects of ground and environment loss and reflection are added, the measured total resistance is 2.21 ohms at 3.950 MHz . Facilities were not available to divide this total between loss and radiation resistance, so a real efficiency percentage cannot be determined. However, the portion which represents total losses cannot exceed 2.21 ohms and must be somewhat less because useful radiation has been observed.
This justifies the original premise that even small amounts of loss resistance in the primary circuit could seriously degrade the output signal. As an example, substitution of No. 10 wire for the pipe which was
used would increase primary resistance by 1.1 ohms and would just about double the total loss of the operating antenna. In other words, the increased resistance of the wire would be more or less equivalent to the power of the radiated signal.

evaluation

The initial design goals were all satisfactorily met or exceeded. A 20 -foot radiator which can be operated without apology on either 160 or 80 meters is certainly small, and the SEED appears to be much more effective in use than would be expected. An SWR of less than 1.15:1 across the entire $3.5-4 \mathrm{MHz}$ band may be one of the best solutions available for modern transceivers with transistor output stages. Elimination of the usual "antenna tuner" in the shack, and a single control to resonate the system, is operating convenience which approaches the ultimate lautomatic sensing and resonating of the circuit could be provided).
However, CAB's Law is that "A problem solved is a problem created." At full legal Amateur power, a very short antenna must carry very high current, as do the associated capacitors. In the process of developing that current, high voltages are created. Ham-type handbooks and reference data available here provide very little theoretical or practical information about capacitors under conditions of high voltage, high current, high frequency, and high capacitance values.
The SEED antenna operates at 200 watts on either band with surplus capacitors that cost less than $\$ 25$. The air variables are currently advertised at about twice that, but all others are obsolete and not now available. The capacitors in SEED Mk IV, a rather different version, are more than is needed, but they will take a full kilowatt without strain. They could be bought new, now, but for well over $\$ 1,000$.

fig. 5. Transposition of the actual circuit of the SEED antenna (A); to the equivalent circuit (B); and to the simplified equivalent (C). as described in appendix B.

Maybe someone who reads this can publish information on how to economically obtain capacitors which can handle any of the following requirements:

$7500 \mathrm{pF}, 42$ amperes, at $680 \mathrm{pF}, 42$ amperes, at
500 volts RMS, at 2 MHz
4,700 volts RMS , at 2 MHz
$100 \mathrm{pF}, 24$ amperes, at
5,600 volts RMS , at 4 MHz

appendix A

With reference to fig. 3 A , the parallel tuned circuit consists of an inductance, L, a distributed capacitance, C_{D}, and a series combination of tuning and loading capacitors, $C_{S S}$. The values across $C_{S S}$ were measured as follows:

$$
\begin{array}{lr}
1.900 \mathrm{MHz} & 333 \mathrm{pF} \\
3.950 \mathrm{MHz} & 62.7 \mathrm{pF}
\end{array}
$$

In each case, the distributed capacity must be added to that measured to resonate with L.

The formula for resonance,

$$
f=\frac{1}{2 \pi \sqrt{L C}}
$$

can be rewritten:

$$
\frac{\binom{1}{2 \pi f}^{2}}{C}=L
$$

Substituting appropriate numbers,

$$
\begin{aligned}
& \frac{\left(\frac{1}{6.28 \times 1.9 \times 10^{6}}\right)^{2}}{333 \times 10^{12}+C_{D}}-L \\
& \frac{1}{\left.6.28 \times 3.95 \times 10^{6}\right)^{2}} \\
& \frac{\left(12+C_{D}\right.}{2}
\end{aligned}
$$

which can be solved for $C_{D}(18.67 \mathrm{pF})$ and then for L :
At $1.900 \mathrm{MHz}: 333 \mathrm{pF}+18.67 \mathrm{pF}$

$$
=351.67 \mathrm{pF} \text { or } 238.2 \mathrm{oh} \mathrm{~ms}
$$

and 238.2 ohms $=19.953 \mu H$ for L
at $3.950 \mathrm{MHz}: 62.7 \mathrm{pF}+18.67 \mathrm{pF}$
$=81.37 \mathrm{pF}$ or 495.2 ohm
and 495.2 ohms $=19.952 \mu \mathrm{H}$ for I

appendix B

With the antenna resonant at 3.950 MHz , the value of the loading capacitor was adjusted for $50+j 0$ ohms at the end of about a half wavelength of new RG 213/U cable. Subject to any imperfections in the balun, this indicated an impedance of $200+j 0$ ohms across the loading capacitor. The measured value of this capacitor was 1476 pF for a reactance of 27.3 ohms. The reactance across the series combination of $C_{51}, C_{\$ 2}$, and C_{1}, or C_{55}, was 643 ohms.

The ratio of $X_{C S S}$ to $X_{C /}$ is 643 to 27.3 or 23.553 to 1 . The impedance ratio is the reactance squared, or 554.75 to 1 . Therefore, the impedance across $C_{5 s}$. at resonance, is the impedance across C_{l}. 200 ohms, multiplied by 554.75 or 110,950 ohms. This is the impedance across the parallel tuned circuit and, at resonance, it is pureIy resistive. Since the relationship of the series resistance, r, to the parallel resistance, R, is:

$$
r=\frac{X^{2}}{R}
$$

where X is the reactance of either the inductor or total capacitance of $C_{S S}+C_{D}$, or 495.1 ohms. Then

$$
r=\frac{245,124}{110,950}=2.2093 \mathrm{ohms}
$$

or the total series resistance of the antenna is 2.21 ohms.
Alternatively, the circuit may be considered by transposing it as shown in fig. 5. The circuit was modified and measured at 3.950 MHz , as shown in fig. 5A. In the absence of C_{D}, the total of C_{D} and $C_{S S}$ would need to be combined to resonate at the same frequency. Retaining the same ratio between C_{S} and C_{l}, the values can be computed and would be as given in fig. 5B.

It can then be seen that the net reactance of $C_{S 1}, L, C_{S 2}$, in series, is inductive and equal to the capacitive reactance of C_{1}. Considering this combination, L^{\prime}, the circuit can be redrawn as in fig. 5C. This is a simple parallel tuned circuit, and it is known that its parallel impedance at resonance is $200+j 0$ ohms and may be expressed as R. Then, since the equivalent series resistance, r, is given by $r=X_{R}^{2}$ and X is the reactance of C_{l}, which is 21 ohms. Then $r=\frac{441}{200}=2.205$ ohms.

appendix C

The loaded Q of the antenna at 3.950 MHz can be found by dividing the reactance of L by the series resistance. Then $Q=$ $295=224$. It can be shown that for a Q of 224 , the bandwidth for an SWR of $2: 1$, would be 13.225 kHz at this frequency.

Tests of the SEED at 3.800 kHz , where the coax was electrically a half wavelength long, measured the bandwidth for a SWR of 2:1 of 13.950 MHz . This tends to corroborate other tests and computations.

ham radio

((g))

WHEN ONLY THE BEST WILL DO . . .

KR 500 ELEVATION ROTOR

THE WORLD STANDARD
AVAILABLE ONLY THROUGH FULL-TIME AMATEUR DEALERS

DISTRIBUTED BY

[^8]
electromagnetic interference and the digital era

Component selection, grounding and shielding solve common problem of digital design

Whatever happened to the good old days when unwanted radiation consisted of RF on the microphone cord or key line and relative output power was measured by the length of the arc drawn from the final caps to chassis? A high wattage soldering iron and a handful of large disk capacitors was always enough to solve any floating RF problems and the pulsing of the gas filled tubes served only as an "on-the-air" indicator.

As more electronic consumer equipment entered the home, Amateurs found it necessary to clean up their signals by adding shielding and lowpass filters to prevent interference with home entertainment products. New terms such as radio frequency interference (RFI), electromagnetic compatibility (EMC), and television interference (TVI) became more common and Amateurs were forced to become knowledgeable about quarterwave traps, hi-fi speaker bypassing, and other methods of preventing their signal from being received by their neighbor's equipment.

With the advent of home computers, the interference problem took a new turn. Now manufacturers were producing and mass marketing equipment capable of causing interference in radio and television reception. It didn't take the FCC long to determine that some new regulations were in order. The result of the FCC rulemaking was Docket 20780, which placed certain limits on both conducted and radiated interference, and Docket 80284, which outlined the testing requirements necessary to show compliance with 20780.

what are the requirements?

The FCC made two major decisions which set the schedule and defined technical requirements for industry. The first cutoff date, January 1, 1981, applied to personal computers and electronic games. All such equipment manufactured after this date was required to meet the new specifications. After October 1, 1981, all other subsequently produced computing equipment had to meet the new specifications, and after October 1, 1983, no devices could be sold, regardless of the date of manufacture, unless they were tested and certified to operate within the allowable interference limits.
Docket 20780 defines two different classes of equipment and specifies radiated and conducted limits for each. Class A includes commercial equipment, while Class B limits apply to home equipment. Table 1 outlines the allowable limits for both classes in the two interference categories.
There are, obviously, some questions which the manufacturer must settle before he will know if the product he makes falls under the new regulations. First of all, just what is classified as computing equipment and what is not? According to the definition in Docket 20780, any device that generates or uses signals or pulses in excess of 10 kHz is designated a computing device. Secondly, if the manufacturer produces a device which is used in both residences and businesses, which specification must be met? I don't know the legal ramifications of this question, but if a sizable portion of the market is for home use, I suspect the Class B specifications will have to be met. So, is your new Hi -Tech DX transceiver covered by this regulation? Well, if it contains or uses digital circuitry with clock frequencies in excess of 10 kHz ; memories, a CRT, or a switching power supply; disks, a tape-drive, printer, communications interface, or microprocessor, it probably is.

By F. Dale Williams, K3PUR, 1394 Old Quincy Lane, Reston, Virginia 22094

why the sudden interest?

Life in the analog lane was almost always predictable, with any interference problems easily isolated to a particular frequency and circuit. However, digital electronics has overwhelmed the RF environment with binary clocks that produce harmonics into the Gigahertz range, plastic equipment enclosures, wall plug power supplies, and unshielded ribbon cable that acts as an antenna to radiate both the signals it is meant to carry as well as any other signals near the circuit connection.

By the very nature of the binary format, digital pulses are rich in harmonics. As the signal switches from the minimum circuit value to the maximum, the potential interference at any frequency is dependent upon the waveform characteristics. Fig. 1 shows the parameters for a typical pulse waveform. If we assign values to these parameters for purposes of illustration:

$$
\begin{aligned}
A= & 4 \text { volts } \\
t_{r}= & 5 \text { nanoseconds }=0.005 \text { microseconds } \\
t= & 0.5 \text { microseconds } \\
T= & 1 \text { microsecond }(P R F=1 \mathrm{MHz} ; \\
& P R F=1 / T)
\end{aligned}
$$

PRF (Pulse Repetition Frequency) $=I / T$

Then calculate:
$A\left(t+t_{r}\right)=4(0.5+0.005)=2.02$ microsecond-volts
$A / t_{r}=4 / 0.005=800$ volts per microsecond
These values can then be plotted on a standard conducted interference graph for the particular waveform used. The resulting interference level for the above waveform parameters is shown in fig. 2(A). Now let's increase the rise time by a factor of 100:
$t_{r}=500$ nanoseconds $=0.5$ microseconds
$A\left(t+t_{r}\right)=4(0.5+0.5)=4$ microsecond-volts
$A / t_{r}=4 / 0.5=8$ volts per microsecond
table 1. Conducted and radiated interference limits.

conducted $(\mathbf{M H z})$	class $A(\mu \mathrm{v})$	class $B(\mu \mathrm{~V})$
$0.45-1.6$	1000	250
$1.6-30.0$	3000	250
radiated $(\mathbf{M H z})$	class $\mathbf{A}(\mu \mathrm{V} / \mathbf{m})^{*}$	class $\mathbf{B}(\mu \mathrm{V} / \mathbf{m})^{* *}$
$30-88$	30	100
$88-216$	50	150
$216-1000$	70	200

*measured at 30 meters
** measured at 3 meters

These values are plotted in fig. 2(B). As a final test, let's change the repetition or clock rate to 500 kHz in the first example:
$T=2$ microseconds $(P R F=0.5 \mathrm{MHz} ;$
$P R F=1 / T)$
$t=I$ microsecond
$A\left(t+t_{r}\right)=4(1+0.005)=4.02$ microsecond-volts
These values are shown as curve C in fig. 2. From the interference plots, it is obvious that the lower clock frequency produces slightly greater amplitude, while a decrease in rise/fall time produces less interference at the higher frequency ranges. The points marked as f_{1} denote the point where the envelope begins to drop

fig. 1. Pulse waveform parameters.

fig. 2. Conducted interference from symmetrical trapezoid.
off at the rate of 20 dB per decade. This point is determined by the pulse duration or period. Points shown as $\boldsymbol{f}_{\mathbf{2}}$ mark the frequency where the envelope drops off at a rate of 40 dB per decade. These points are determined by the rise and fall times. From this interference plot, it becomes clear that pulse shape, controlled by the rise and fall times, is the most important factor in reduction of the interference spectrum. This is further illustrated by fig. 3, which shows the relative interference levels of various waveshapes. It also becomes evident why operating a computer with poor electromagnetic interference protection precludes simultaneous use of everything from HF receivers and TV to the scanner.

conducted versus radiated interference

If we compare these two types of interference to a hot water heating system, the analogy may help us to understand the problem. The hot water radiator disperses heat to the room in proportion to the temperature of the water circulating through the system. If the water is not conducted to a particular radiator, no heat can be radiated from that radiator. Similarly, the interfering signals must be conducted from the source by means of circuit board traces, wiring, or components from which the interference can be radiated to a distance dependent upon signal strength.

Probably the only areas where conducted emissions are more important than radiated emissions are in the power line and grounding circuit. These areas become particularly important when switching type power supplies are used. With common power units, a multisection pi-type filter placed in a metal box, with $R F$ continuity to the shielded equipment enclosure, will prevent any signals generated in the circuitry from reaching the power line. This procedure will also protect against interference radiation by the power cable. Conductive interference caused by ineffective grounding circuits is caused by an unintended resistive circuit ground connection to true ground. Such a connection will cause an offset signal level from true ground to be circulated to other points of the circuit which are also attached to the common bus.

Radiated interference commonly refers to any interfering signal propagated via an electromagnetic field. This definition includes radiation from wires or cables acting as transmitting antennas and coupling by mutual inductance or capacitance. The electromagnetic field propagates in normal fashion where the strength of the signal is inversely proportional to the distance from the source.
Interference contained on a signal cable between two pieces of equipment is not normally considered a potential radiated emission problem unless the con-

fig. 3. Interference levels for various waveforms.
ducted interference affects the operation of the unit to which it is connected.

design considerations

One of the worst jobs in the industry is trying to modify a piece of equipment manufactured without regard to $\mathrm{EMC} / \mathrm{RFI}$ requirements to meet FCC regulations. In most cases, it is more economical to redesign, at least at the board or module level.
Good design practice dictates that EMI should be reduced as much as possible at every level. For circuit design, that means we must choose logic families with no greater bandwidth than necessary. For instance, CMOS has a lower bandwidth capability than other logic families. If a high speed clock is not required, use a lower speed clock instead of dividing down. Use waveforms with as long a rise and fall time and duration as possible within timing constraints.
When laying out the circuit board, use a minimum of one-eighth inch wide ground/common traces and place them at the edges of small boards, with additional traces down the center for larger boards. Ground traces should be connected at one end of the board only - the connector end. Ground returns should be as short as possible. If double-sided boards are used, interconnections between top and bottom surfaces should be frequent. Use of wiring to connect integrated circuits on different parts of the board should be avoided. When unavoidable, shielded cable, or at a minimum twisted pairs, should be used. Do not "float" any unused IC pins. Circuits employing clock frequencies on the order of 10 MHz and above are good candidates for double-sided boards. This procedure also acts to shield parallel boards in a vertical card slot configuration.

ham radF̈o Reader Service

For literature or more information, locate the Reader Service number at the bottom of the ad, circle the appropriate number on this card, affix postage and send to us We'll hustle your name and address to the companies you're interested in.
$\begin{array}{lllllllllllllllllllllllllll}101 & 113 & 125 & 137 & 149 & 161 & 173 & 185 & 197 & 209 & 221 & 233 & 245 & 257 & 269 & 281 & 293 & 305 & 317 & 329 & 341\end{array}$
 $\begin{array}{lllllllllllllllllllllllllllllllllll}103 & 115 & 127 & 139 & 151 & 163 & 175 & 187 & 199 & 211 & 223 & 235 & 247 & 259 & 271 & 283 & 295 & 307 & 319 & 331 & 343\end{array}$

 $\begin{array}{llllllllllllllllllllllllllllllllllll}106 & 118 & 130 & 142 & 154 & 166 & 178 & 190 & 202 & 214 & 226 & 238 & 250 & 262 & 274 & 286 & 298 & 310 & 322 & 334 & 346\end{array}$
 $\begin{array}{llllllllllllllllllllllllllllllllllllll}108 & 120 & 132 & 144 & 156 & 168 & 180 & 192 & 204 & 216 & 228 & 240 & 252 & 264 & 276 & 288 & 300 & 312 & 324 & 336 & 348\end{array}$
 $\begin{array}{lllllllllllllllllllllllllllllllllll}110 & 122 & 134 & 146 & 158 & 170 & 182 & 194 & 206 & 218 & 230 & 242 & 254 & 266 & 278 & 290 & 302 & 314 & 326 & 338 & 350\end{array}$

Limit 15 inquiries per request.
NAME CALL

ADDRESS
CITY \qquad STATE ZIP

Please use before October 31, 1984

Liberal use of bypass capacitors will help minimize stray emissions. When strategically placed in the circuit, they will do the job even better. Figure 4 shows the placement of various types and values of capacitors to suppress the complete range of frequencies.

Circuit board connectors present one of two locations where all signals are in close proximity to each other. If ribbon cable is used to parallel connectors, it should be mounted flat to the chassis and not run in close proximity and parallel to the component side of a circuit board. If various timing signals are to be carried on the same ribbon cable, alternate strands should be at ground potential. When using clock frequencies above 1 MHz , coaxial board connectors and cable should be considered.

The other location where the signal cables are in close proximity to each other is in the output connectors. If the output is a bus connection, it should be actively terminated rather than left to "float." This is one of the worst areas for emissions. If the outputs will not be continuously covered by an external connector, they must be covered by a shield (or metal shell) that prevents any leakage of RFI. External connectors must be metallic and use cables employing an overall shield that is continuous with the connector. For particularly bad cases, special chassis-mount connectors that incorporate filters as an integral part of each pin are manufactured. They operate much as DC feedthrough capacitors, as shown in fig. 5. Keep in mind that any filtering on signal lines will alter the waveform, much as a long length of cable would.

fig. 4. Bypassing for EMI suppression.

fig. 5. Typical attenuation for connector pin filters.

Therefore, if signal line filters are required, they must be selected by the effect they may have on the pulse shape, typically lengthening rise and fall times, but not necessarily by equal increments. If all else fails, fiber optics or optocouplers may be used.

grounding

Although no guide to a perfect grounding system exists, practical experience has shown that following certain standard procedures is the first step in establishing an effective grounding system.

If you have control of that part of the ground system to which the equipment being designed will be connected (such as in a home or business environment), you should consider this as an integral part of the overall system. If a ground system is to act as a common voltage reference point, it is important that a single point, low potential, true ground location be established and that all branches feeding this point are low resistance/impedance paths. A typical system configuration is shown in fig. 6. Within each piece of equipment, all circuit boards/modules should have only one ground lead to the internal ground bus; if such a lead would be too long (over one-quarter wave-

NCG co.

10/160M

THE 10/160M GIVES YOU THAT EXTRA BIT OF QUALITY THAT REALLY GETS YOU THROUGH TO THAT SPECIAL DX STATION, OR JUST ENJOYING A FULLY RELAXED QSO WITH ANOTHER AMATEUR THE OTHER SIDE OF THE COUNTRY. YOUR 10/160M GIVES YOU THE EASE OF OPERATION THAT YOU WANT WITH 4 MEMORY OR THE 3 WAY AUTO SCAN, DUAL VFO, IF SHIFT, CW-W CW-N, HAND MIC AND BUILT IN AC/DC POWER. ALL BANDS ARE FULLY OPERATIONAL INCLUDING THE NEW NARC BANDS. YOUR CHOICE OF EASY OPERATING USB, LSB, CW OR RTTY IS AT YOUR FINGER TIPS. WITH A FULL 200 WATTS PEP OUTPUT YOUR FINALS ARE PROTECTED FROM HIGH SWR.
YOUR 10/160M IS ALL SOLID STATE WITH MODULAR BOARDS THAT ARE EASY ACCESSIBLE. A BRIGHT BLUE FLUORESCENT DIGITAL DISPLAY IS EASY TO READ AT ALL TIMES.
BEST OF ALL THERE ARE NO EXTRA OPTIONS TO BUY TO GET YOU ON THE AIR, ITS ALL THERE. JUST TAKE YOUR 10/160M HOME AND 1. CONNECT A ANTENNA. 2. PLUG INTO 120V AC OUTLET. 3. TURN THE SWITCH ON. 4. SELECT THE BAND AND FREQUENCY AND YOUR ON THE AIR. YOUR RECEIVING AUDIO IS CRISP AND CLEAR, YOUR TRANSMITTED SIGNAL WILL GET YOU A PRAISE FROM EACH CONTACT. THE 10/160M GIVES YOU A SUPERIOR TRANSCEIVER THAT IS INCOMPARABLE.

MORE INFORMATION IS AVAILABLE FROM YOUR LOCAL DEALER, OR NOG. CO.
1275 N. Grove St., Anaheim, CA 92806

15M

15M-MOBILE IS YOURS TO CONTINUE YOUR QSO WITH THAT SPECIAL FRIEND WHEN YOU GO ON A VACATION OR JUST GOING TO OR FROM WORK. A TRULY QRP RIG WITH THE BIG RIG SIGNAL EITHER CW OR USB. THE DIGITAL FREQUENCY DISPLAY IS EASY TO READ AND YOUR 10 WATTS OR 2 WATTS ON USB OR CW WITH A BUILT IN SIDE TONE, HIGHLY EFFECTIVE NOISE BLANKER, AUDIO ALC GIVES DISTORTION FREE TRANSMISSION. THE VFO BALL WITH GEARS ALLOWS HIGH-PRECISION TUNING. DIGITAL DISPLAY OFFSET WHEN RIT IS IN OPERATION (A MODIFICATION THAT TAKES 5 MINUTES CHANGES THE RIT TO A FINE TUNE CONTROL). A LARGE S/RF METER IN THE CENTER AND A TOP 8 OHM . SW SPEAKER, YOUR RECEIVE AUDIO IS DIRECTED UP.
EXTERNAL SPEAKER AND CW JACKS, MOBILE MOUNTING BRACKET AND A 400 OHM PTT DYNAMIC MICROPHONE. FULL 15 METER BAND OPERATION FROM 21 to 21.450 MHZ , YOUR OFFSET FREQUENCY RANGE OR FINE TUNE IS $\pm 4 \mathrm{KHZ}$. THE SIGNAL TO NOISE SENSITIVITY IS MORE THAN 10DB DOWN AT -6DB INPUT. POWER SOURCE IS 13.8 V DC, 3 AMPS. THE SMALL SIZE WILL ALLOW MOBILE OPERATION FROM EVEN THE SMALL CARS, ITS ONLY 9"H x 2.5W x 9.5D, THE LIGHT WEIGHT OF ONLY 5.7 LBS. MAKES THE 15M A POSSIBLE BACK PACKERS DREAM.
WITH YOUR 15M YOU WILL NOT HAVE A BIG EXPENSIVE PIECE OF EQUIPMENT SETTING IN YOUR VEHICLE, IT CAN BE UNDER THE DASH OUT OF SIGHT.

fig. 6. Representative single-point ground system.

length at the clock frequency), this lead may be connected directly to the chassis, as shown in fig. 7. Additional pieces of equipment comprising part of a system - i.e., CPU, disks, CRT, and printer - normally receive ground continuity via shielded cables and no additional ground wire connection between the chassis should be made.

shielding

Shielding refers to the use of an electromagnetic barrier to separate electric or magnetic fields. When implemented as an equipment enclosure, with appropriate measures to secure any openings against discontinuties, it functions to maintain all signals generated within the case as well as keeping potential external interfering signals from entering the enclosure. The enclosure material may be any one of various metals, a mixture of metal elements, or a plastic impregnated with metal bits or coated with metallic paint.*
table 2. Conductivity and permeability relative to copper.

metal	conductivity	penetration	
		permeability	loss
		(150 kHz)	dB/mil
copper	1.00	1	1.29
aluminum	0.61	1	1.01
brass	0.26	1	0.66
tin	0.15	1	0.50
steel (SAE1045)	0.10	1000	12.90

When the electromagnetic wave impinges upon the enclosure surface, it is not completely reflected. Although part of the energy is, in fact, reflected, the balance of the energy is transmitted through the material with the degree of attenuation (absorption) depending upon the type of enclosure material, thickness of the material, and frequency of the electromagnetic energy. (If we were to consider the shield as a plane of glass through which we are attempting to shine a light, perhaps this analogy would clarify the concept. The glass will reflect some of the light, depending upon the angle of the beam, but some will also be transmitted to the other side, with the amount transmitted dependent upon the thickness and color of the glass. In addition, there will be secondary and higher orders of reflections from each side of the glass plane of lower amplitude, as shown in fig. 8. For practical purposes, we may neglect the secondary and higher functions since they are mainly applicable to magnetic fields, and state that the shielding effectiveness is the sum of the reflection and absorption losses.)

In the selection of a suitable material for shielded enclosures, we must know the attenuation required, the frequency range of the potential interference, and the limits of thickness of the material (10 gauge steel

fig. 8. Reflection and absorption of electromagnetic wave.

[^9]table 3. Metal thickness required for $\mathbf{6 0 ~ d B}$ absorption loss at 1 MHz .

metal	thickness
copper	15 mils
aluminum	20 mils
brass	25 mils
tin	35 mils
steel	1 mil

table 4. Plane wave reflection loss at $1 \mathbf{M H z}$.

metal	reflection loss
copper	108 dB
aluminum	104 dB
brass	102 dB
tin	100 dB
steel	77 dB

does not lend itself to easy preparation). Generally speaking, ferrous metals are more effective shields at very low frequencies than nonferrous materials; sheet steel has medium effectiveness at these frequencies; nonferrous metals and steel are suitable at higher frequencies. The thickness of the shielding material is a function of permeability and can be found by:

$$
t=\frac{A}{3.338 \times 10^{-3} \sqrt{f G \mu}} \text { mils }
$$

where $A=$ required attentuation
$f=$ frequency in Hertz of lowest interfering signal
$G=$ conductivity of shielding material chosen compared to copper
$\mu=$ the relative permeability of the shielding material

Conductivity and permeability values for various metals are given in table 2. Choosing the wrong material may require a shield thickness that is impractical. The thickness required for various metals to provide 60 dB absorption attenuation at 1 MHz is shown in table 3 . For reflection loss, table 4 lists the plane wave attenuation for the same metals at a frequency of 1 MHz . A tradeoff of skin thickness versus attenuation required can be made in cases where one area of circuitry is producing the strongest interference. By installing a shield around the offending components on the circuit board, the requirements for enclosure shielding are lessened.

Holes in the case for ventilation, connectors, switches, etc., will materially decrease the shielding effectiveness. The larger the diameter of the hole and the higher the frequency, the greater the leakage. Ventilation openings may be covered with wire mesh, but it must be directly bonded to the case for maximum effectiveness. Preformed metal cases with hole pat-
terns will decrease the attenuation in proportion to the hole diameter, depth, and size of the area containing the openings. Although the cutoff frequency of the openings can be determined from the diameter

$$
\begin{aligned}
& f_{c}=\frac{6.92}{d} \\
& f_{c}=1 \times 106=\frac{6.92}{d}
\end{aligned}
$$

solving for d, we obtain $d=0.000007$ inches
the depth or thickness of the material must be three times the diameter of the hole to produce 100 dB attenuation.

Where parts of the shielding enclosure must be bolted together, the opportunity for leakage is great. For example, with perfectly flush, bare metal contact between two pieces of one-half inch, 0.09 inch thick aluminum, shielding effectiveness decreases by 25 dB when mounting hole spacing is increased from one inch to five inches. Using woven knitted wire mesh gasket material in these areas, as well as around connectors, will maintain the shielding integrity of the enclosure. As a general rule of thumb, where RF gasketing is not used, or the enclosure contains discontinuities such as corner bend strain relief openings, multiple bolt-together sections, openings for switches, fuses, etc., the maximum expected attenuation is about 30 dB .

The same type of rationale applies to the use of coax cable. Leakage through the braided shield depends on the material used, the number of strands used, and the spacing or turns per inch. Cable is available with various values of shielding effectiveness to 95 percent for double shielding. The shielding effectiveness of coax cable is only as good as the connectors used at each end. A double-shielded cable yielding 95 percent effectiveness with 60 dB connectors will not provide more than 60 dB attenuation.

conclusion

Although we can estimate the required shielding for a given attenuation specification, it is impossible to forecast the interference level of the circuitry in the design stage. Therefore, it is imperative that procedures to minimize RFI be implemented at the circuit board level to lessen the system shielding requirements.

Now that Amateurs are more involved in designing their own digital circuitry for use with their other station equipment, we must put appropriate EMC procedures into practice or risk operational degradation to the companion units or even loss of use of the complete station because of RFI.

bibliography

Electromagnetic Compatibility Manual, NAVAIR 5335: NTIS AD-754 411 National Technical Information Service, United States Department of Commerce, 5285 Post Royal Road, Springfield, Virginia 22151.

ham radio

Ham MasterTapes

PRESENTS: THE ONLY HAM RADIOCOURSE ON VIDEOTAPE

Ham MasterTapes brings the best possible personalized Ham Radio license preparation right into your own living room. If you, a friend or family member wants the best help available to get past the FCC test hurdle, it's available now in Beta or VHS home video format.

Larry Horne, N2NY brings his 33 years of Ham Radio teaching experience right to your home. Each of the 26 video lessons has close-up details of components and systems along with superb graphic drawings. Each lesson has important points superimposed over the action and reviewed at the end of each section. This makes note-taking a snap! Miss something? Didn't get it the first time? Just back up the tape and run it again or freeze-frame it for detailed close-up study!

Larry's classroom is a real ham shack. Lee, a 13 -year-old boy, and Virginia are led through the learning process. The questions that they ask are the ones Larry knows you would ask if you were there in person. You soon feel like you're part of an ideal small class.

The topics covered will not only get you through the Novice test-General class theory is covered also. By the time you get your Novice license, you will be able to upgrade to General or Technician!

Larry's technique of involving the viewer with the demonstrations makes
the most difficult topics easy to understand. Understanding-not mere memorization-is what makes Ham MasterTapes so effective. When you study the 700 possible FCC questions, the answers will be obvious.
Larry doesn't stop with just testpassing. All the proper techniques of operating practices and courtesy are demonstrated. The instruction manual for that new rig won't be a mystery! Larry becomes your own personal instructor to help you on that first set-up and contact!
The Ham MasterTapes series is produced in one of New York City's top commercial studios. Not only is the production crew made up of real professionals but many of them are also licensed amateurs. Everybody puts in obvious extra effort to make the production a classic.

The 6 -hour course is available on three 2-hour Beta II or VHS.SP cartridges for $\$ 199.95$, for individual , home or nonprofit Ham Club use. (High schools or colleges must order our Scholastic licensed version, $\$ 499.95$ for Beta or VHS and $\$ 750$ for $3 / 4$ " U-matic.)
To order, call or write Larry Horne, N2NY at Ham MasterTapes, 136 East 31st Street, New York NY 10016. Phone 212-685-7844 or 673-0680. MasterCard and Visa accepted. New York state residents add appropriate sales tax.

solving the problems of RFI

A brief recollection of quirks and cures

Whenever there's an RFI problem with a piece of equipment, the instruction manual inevitably suggests connecting the equipment to a good ground. This is appropriate advice if the equipment is all in the basement, or at worst, on the first floor. But if your gear is spread around the house, obtaining a good ground at Amateur Radio frequencies may not be easy.
While some grounds are more effective than others, sometimes it's better not to use a ground at all, but to use other means - such as filters - instead. Those of you who've worked in broadcasting, and are familiar with the sensitive, low-level audio circuits found in studios close to the transmitting antenna, know that it's a common practice to ground only the shield at the input end of the audio circuit and leave the output end ungrounded. This prevents a ground loop that can aggravate a hum problem rather than alleviate it.
It's a mistake to tie everything to one ground lead. The more equipment connected to a ground lead, the greater the resulting current flow, creating more problems with interference. Better to keep all grounds, especially AC and RF grounds, separate. The feedthrough of RF power to the AC line will be much greater from a common junction than the AC line would pick up from direct radiation.

A classic case of RF power being fed through a common junction was a commercially built onekilowatt RF amplifier designed for Amateur use. Probing around with an RF meter fitted with a figureeight pickup loop showed plenty of RF current flowing in both the line cord and the house wiring. This was rather puzzling because the amplifier has a builtin AC line filter of good construction, consisting of sufficient turns of heavy wire on a half-inch ferrite rod, five inches long.
The amplifier had a built-in power supply with dual windings on the power transformer primary so that it
could be operated from either a 115 volt or 230 volt power line. Finally the words, "the neutral (green) wire of the line cord should be connected to the chassis at all times" caught my attention.

That phrase gave me the answer - an answer that for some reason, escaped the attention of the design engineer. The direct connection of the neutral wire to the chassis and to the AC ground nullified any filtering action of the $A C$ line filter. The cure was obvious.

If the amplifier had been operating on 230 volts, I would have had to wind a third coil over the line filter, or if that were too difficult, to wind a separate and suitable RF choke and connect it between the chassis and the neutral lead. Since I was operating the amplifier from the 115 volt line, all I had to do was to disconnect the neutral (green) lead from the chassis and tape it. This reduced the RF current flow in the cord and the house wiring to a barely noticeable flicker of the needle on the RF meter.

When bypassing flickering lights, "hot" outlet receptacles, transformers, and/or motors, instead of following the customary method of connecting a capacitor from each side to ground, I connect a capacitor across the line and then connect another capacitor from the hot side to ground.

This practice began when I installed a large fluorescent light above my workbench. It gave very good light but it also put out a lot of RF "hash," making it impossible to do any signal tracing or alignment work with the light on. The fixture had a ballast-type coil or transformer in the case and evidently connecting the bypass capacitors in the usual manner made the capacitors act like a voltage divider. Connecting the capacitors the second way cleared up the "hash."

This brings to mind a home-made power RF amplifier that was very unstable. Neutralizing it on 10 meters made it unstable on 20 or 40 . The suggested cure for such a condition is to try to achieve a low impedance path from the filament to ground by adding capacitors in parallel, but doing so only made things worse. The cure was to reverse my efforts.

By John Labaj, W2YW, 12 Park Place, Elsmere, New York 12054

Instead of loading more and more capacitors on the filament lead I removed all capacitors from the filament lugs and wired a small RF choke consisting of eight turns of No. 14 wire wound on a 2 -watt 220 -ohm carbon resistor in each filament lead directly at the socket. The other end of the choke that was connected to the filament transformer was bypassed with just one 0.001 $\mu \mathrm{F}$ capacitor.

The deliberate introduction of some negative feedback made the amplifier stable. The neutralization was effective on all bands. There was also a marked reduction in the amplitude of the harmonics coming out of the amplifier. The only change from normal was that the amplifier required a little more drive for full output on 10 meters.

When the interference cure you install does not provide the expected result, don't assume your idea wasn't good; perhaps the item or items you used simply failed to do the intended job. This was vividly demonstrated to me early in my struggle with television interference when I decided to feed all the television sets in the house through coaxial cable from a distribution amplifier. The results did not meet my expectations.

Noticing that some parts varied in performance, I made a deal with a helpful local distributor. He allowed me to charge out every make of every item that I'd need to do the job with the understanding that I could return for full credit anything I did not use. What a revelation!

Sometimes an item made by a well-known company gave very poor or even negative results, while the same item made by a lesser known company did a much better job. This applied to such items as distribution amplifiers, high-pass filters, matching transformers and AC line filters. So if your first choice doesn't work, don't give up; try using the same part, but from a different manufacturer.

In summary, remember that just because the wire is connected to earth ground doesn't mean that it's an effective ground at all frequencies. Run another ground lead even if it seems to be a needless duplication.

Keep AC ground and RF grounds separate. Also, if the cure you try doesn't work, don't remove it right away. Many times a combination of two or more remedies will be effective where the single cure is not.

It's been my observation that home-made AC line filters work better than the commercial variety because they can be made to fit the load and space. Low-pass filters never worked for me; they seemed to waste power, and if you cranked up the power, they went up in smoke. Use coax stubs cut for the affected channel.

If matching transformers don't have insulated windings, modify them by rewinding.
ham radio

GOMPUIER TAMDER WADMAITE

The monthly magazine with a natural blending of two popular hobbies - Ham Radio and Computers

* Articles on Ham Radio \& Most Personal Computers
* Hardware \& Soltware Reviews
* Various Computer Languages
* Construction Articles
* Much Much More.
- FREE Classified Ads for subscribers, nonsubscribers - 10f a word/number (used equipment only)
- Excellent display ad rates

Join the CIM ${ }^{\left({ }^{(2)}\right)}$ readership family by subscribing NOW, during our Baker's Dozen Special.

USA
$\$ 12.00$ for 13 issues
Mexico, Canada
$\$ 25.00$
Foreign \$35.00(land) - $\$ 55.00$ (air)
(U.S. funds only)

Permanent (U.S. Subscription) $\$ 100.00$
Sample Copy . $\$ 2.50$
GIM
Circulation Manager 1704 Sam Drive
Birmingham, Alabama 35235
Phone (205) 853-0271

Name

Call Sign \qquad

Address \qquad

City \qquad State \qquad

Zip \qquad Phone \qquad

Date \qquad
Signature
134

RADIO WAREHOUSE

Division of HARDIN Electronics
NO FRILLS—JUST LOW PRICES CALL FOR SPECIAL PRICES ONKENWOOD

YAESU

ICOM
TEN-TEC
DAIWA METERS-KEYERS - AUDIO FILTERS CUSHCRAFT LINE OF ANTENNAS

CALL TOLL FREE
1-800-433-3203

IN TEXAS CALL 817-496-9000 5635 EAST ROSEDALE FT. WORTH, TEXAS 76112

PRECISIOn PROCESSING

Provides total dynamic range control with very low distortion

- Selectable processing modesenvelope compression or peat
Variable
high and low trequensy
response equalization
- Easy to Install and use with an transmiltertiransceiver
Introductory price-\$189.95 ppd.
for hrochure with complete technikal specifications contact: ANALOG TECHNOLOGY
P.O. Box 8964 • Fort Collins CO 80525

- savno - sy3mol - savno - syamol-savno

DRAKE R-4/T-4X OWNERS AVOID OBSOLESCENCE

PLUG-IN SOLID STATE TUBES! Get state-of-the-art performance. Most types available
INSTALL KITS TO UPGRADE PERFORMANCE!

- BASIC Improvement
- Audio Bandpass Filter
- Audio IC Amplifier

TUBES \$23 PPD KITS \$25 PPD OVERSEAS AIR $\$ 7$
SARTORI ASSOCIATES, W5DA BOX 832085
RICHARDSON, TX 75083 214-494-3093

2852 Walnut Ave., Unit E
Tustin, CA 92680
(714) $832-7770$

Conodian Distributor
Eastcom Industries, LId.
4511 Chesswood Dr.
Downsview, Ontario, Conada M3J 2V6
(416) 638-7995

TYPE	PR
2N1561	25
2N1562	25
2N1692	
2N2957	
2N2857JANTX	
2N2857JANTXV	
2N2876	13
2N2947	
2N2948	
2N2949	
2N3375	
2N3553	
2N3632	
2N3733	
2N3818	
2N3866	
$2 N 3866 J$ AN	
2N3924	
2N3927	
2N3950	
2 N 4012	
2 N 4 O 41	
2N4072	
2N4080	
2N4127	
2 N 4427	
2N4428	
2N4430	
2N4957	
2N4959	
2N5090	
2N5108	
2N5109	
2N5160	
2N5177	
2N5179	
2N5216	
2N5583	
2N5589	
2N5590	
2N5591	
2N5637	
$2 \mathrm{NS641}$	
2N5642	
2N5643	
2N5645	
2N5646	
2N5651	
2N5691	
2N5764	
2N5836	
2N5842/MM1607	
2N5849	
2 N 5913	
2 N 9916	
2N5922	
2N5923	
2N5941	
2 S 9412	
$2 \mathrm{N5944}$	
2 N 9445	
$2 N 5946$	
$2 \mathrm{N6080}$ l 10	
2N6081 1	
$2 \mathrm{NGOS2} 2$	
2 N 6083	
2 N 6084	
$2 \mathrm{N6094}$	
$2 \mathrm{NGO95} 51$	
2 N 6096	
$2 \mathrm{NGO97} 20$	
N6105 21	
$2 \mathrm{N6136} 3$	
N6166 40	
2N6201	
2NG3041	
2 N 6459	
$2 \mathrm{NG567}$ (10	
2N6680 St	
2 Sc 703	
2 CL 756 A	
2 SC 781	
$25 C 1018$	
2义1042	
25×1070	
2SC123:	
$25 C 1251-12$	
2581304	
$\begin{aligned} & 25 \times 1307 \\ & 2 \times 1424 \end{aligned}$	

TYPE 2SC1678 $2 S C 1729$

$2 S C 1760$
$2 S C 1909$

\$
PRICE
$\$ 2.00$
3.00
4.00
4.00

TYPE PRICE \$

TYPE M1134
M9579
M9588

PRICE
$\$ 125.00$ 125.00
225.00

GaAs, TUNNEL DIODES, ETC.

TYPE	PRICE	TYPE	PRICE	TYPE	PRICE	TYPE	PRICE
THONLSON CSF							
SD345	\$ 5.00	SD1119	\$ 5.00	S1278-5	\$18,00	SD1453-1	\$48.00
S1445	5.00	SD1124	50.00	SD1281-2	8.00	SD1454-1	48.00
SD1004	15.00	SD1127	3.50	SD1283	10.00	SD1477	48.00
SD1009	15.00	SD1133	14.00	S11289-1	15.00	SD1478	21.00
ST1009-2	15,00	SU1133-1	14.00	SD1290-4	15.00	SD1480	60.00
SD1012	9.90	SD1134-1	3.00	S1290-7	15.00	SD1484	1.50
SD1012-3	9.90	SD1135	8.00	501300	3.00	SD1484-5	1.50
SD1012-5	9.90	SD1136	15.00	SD1301-7	3.00	SD1484-6	1.50
SD1013-3	13.50	SDI 136-2	15.00	501305	3.00	SD1484-7	1.50
SD1013-7	13.50	SDI 143-1	12.00	SD1307	3.00	SD1488	39.00
SD1014	11.00	S01143-3	17.(0)	ST13088	3.00	SD1488-1	28.00
SD1014-6	11.00	SD1144-1	3.00	501311	1.00	SD1488-7	27.00
SD1916	15.00	SD1146	15.00	SD1:317	10.00	SD1488-8	28.00
SD1016-5	15.00	SD1147	15.00	SI)1335	3.00	SD1499-1	39.00
SD1018-4	15.00	SD1188	10.00	SD1345-6	5.00	SD1520-2	18.00
ST1018-6	15.00	SU1189	24.00	SD136)5-1	2.50	SD1522-4	33.00
SD1018-7	15.00	SD1200	1.50	SD1365-5	2.50	SD1528-1	24.00
SU1018-15	15.00	SD1201-2	10.00	SD1375	7.50	SD1528-3	34.00
SD1020-5	10.00	SD1202	10.00	SD1375-6	7.50	SD1530-2	38.00
SD1028	15.00	SD1212-11	4.00	SI1:379	15.00	SD1536-1	41.00
SD1030-2	12.00	SD1212-12	4.00	SD1380-1	1.00	SD1545	34.00 79.00
SD1043	12.00	SD12 12-16	4.00	SD1380-3	1.00	SD1561	79.00
SD1043-1	10.00	SD1214-7	5.00	SD1380-7	1.00	SF4557 Mot.	25.00
SD1045	3.75	SD1214-11	5.00	SD1405	10.00	SK3048 RCA	5.00
SD1049-1	2.00	SO1216	12.00	SD1409	18.00	SK3177 RCA	15.00
SD1053	4.00	SO1219-4	15.00	SJ1410	22.00	SMS7714 Mot.	2.50
SD1065	4.75	SD1219-5	15.00	SD14 10-3	21.00	SRF750 Mot.	36,00
SD1068	15.00	S01219-8	15.00	SD1413-1	18.00	SRF1018 Mot.	5.00
SD1074-2	18.00	SD1220	8.00	SD1416	50.00	SRF2147 Mot.	22,00
SD1074-4	28.00	SD1220-9	8.00	SD1422-2	24.00	SRF2356 Mot.	38.00
SD1074-5	28.00	S01222-8	16.00	SD1428	33.00	SRF2378 Mot.	16.00
SD1076	20.00	SD1222-11	7.50	SD1429-2	15.00	SRF2584 Mot.	40.00
SD1077-4	4.00	SD1224-10	18.00	SD1429-3	15.00	SRF2821 Mot.	25.00 20.00
SD1077-¢	4.00	SD1225	18,00	SD1429-5	15.00	SRF2857 Mot.	20.00
SD1078-ti	24.00	SD1228-8	POR	SD1430	12.00	TA8894 RCA	15.00
SD1080-8	6.00	SD1229-7	13.00	SD1430-2	18.00	TIS 189/MRF966	3.55
SIJ1080-9	3.00	SD1229-16	13.00	SD1434-5	30.00	TP312 ${ }^{\text {TP1 }} 14$ TRW	2.50 5.00
SD1084	8.00	SD1232	4.00	SD1434-9	30.00	TP1014 TRW	5.00
SD1087	15.00	SJ1240-8	15.00	S01438	26.00	TP1028 TRW01-80703704/	
SD1089-5	15.00	SD1244-1	14.00	SD1441	91.00	458-949 Mot. Comm, 65.00	
SD1095	15.00	501262	12.00	SD 1442	15.00		
SO1100	5.00	SD1263	15.00	SD1444	6.00	TXVF2201 H.P.	450.00
SD1109	18.00	SD1263-1	15.00	SD1444-8	6.00	62803 RCA	100,00
SD1115-2	8.00	SD1272	13.00	SD1450-1	28.00	TA7205/2N5921	80.00 75.00
SD1115-3	8.00	SD1272-2	15.00	SD1451	18.00	TA7487/2N5920	75.00 150.00
SD1115-7	2.50	SD1272-4	15.00	SD1451-2	18.00	TA7995/2N6267	150.00
SD1116	5.00	SD1278	20.00	SD1452	20.00	SRF2092 Mot.	18.00
SD1118	22.00	SU1278-1	18.00	SD1452-2	20.00	MRF479	8.05

We Can Cross Reference Most RF Transistors, Diodes, Hybrid Modules And Any Other Type Of Semiconductor.

1N21	\$ 3.40	1N21B	\$ 3.40	1N218R	\$ 3.40	1 N 21 C	\$ 3.40
1N210	4.00	1N21DR	4.00	1 N 21 ER	6.00	1221RF	5.00
1N21WE	5.80	IN21WG	5.80	1N22	$5.00)$	1N23A	10.00
1N23B	3.40	1 N 23 C	3.40	1N23CR	3.40	1N235	+. 95
1 N 23 DR	4.00	1N23WE	5.00	1 N 25	7.50	1N25AR	18.00
N28WE	10.00	1 N 29	10.00	1N32	20.00	1N53A	55.50
1N76	26.00	1N76R	28.00	1N7*	26.00	1 N 78 A	20.00
1N78B	26.00	1N78D	28.00	1 N 78 LH	28.00	1N78R	28,00
1N149	6.00	1N150MR	18.00	1×415	4.00	1N415C	4.00
1N415C	15.00	1N416D	5.00	1N416E:	6.00	1/446	10.00
1N831.	10.00	1 N 833	10.00	1N950	4.00	1 N 1084	2.00
112930	15.00	1×2932	15.00	1N3540	15.00	1N3712	11.00
1 N3713	18.00	1N3714	11.00	1N3715	16.00	1N3716	10.00
1N3717	14.00	1N3718	10.00	1N3721	14.00	1N3733	10.00
1N3747	21.00	144386	20.00	1N4396	15.00	1N4785	11.00
1 N 4812 B	9.00	$1 \mathrm{~N} 5139 \mathrm{~A} / \mathrm{B}$	4.25	1N5140A/B	4.25	1NS141A/B	4.25
1N5142A/B	4.25	1N5143A/B	4.25	1N5144A/B	4.25	1N5145A/B	4.25
1N5146A/B	4.25	1N5147A/B	4.25	$1 \mathrm{~N} 5148 \mathrm{~A} / \mathrm{B}$	4.25	1N5167	5.50
1N5453	3.75	1N5465	7.65	1N5711	1.00	1 N 5711 JAN	2.00
1N5713	5.00	1N5767	2.00	1N6263	1.00	152199	15.00
152200	15.00	1S2208/9	1.00	8B1087/48R869558	65.00	8D3020	68.00
A2X116M Aertech	50.00	BB105B	1.00	BB105G	1.00	BD4/4JFBL4 G.E.	15.00
BLI61 Bomac	5.00	CMD514AB C. H .	HOFR	D4060 Alpha	POR	D4159 Alpha	POR
D4233B Alpha	POR	D4900 Alpha	POH	D4959 Alpha	POR	D4987M Alpha	POR
D5047C Alpha	POR	D5147D Alpa	POR	D5503 Alpha	POR	D5506 Alpha	POR
DGB6158-98 Alpha	POR	LMD6022 Alpha	POR	DMEA60A Alpha	POR	DP20054 Crumn	POR
CC1691-89 GHZ	31.35	CC1602-89 GH2	31.35	GC1607-40 GHZ	31.35	CC2531-88 GH2	37.40
GC2542-46 GHZ	37.40	GC3208-40 GHL	37.40	GC17044 CHE	50.00	HP33644A-HO1	125.00
HP5082-0112	14.20	HP5082-0241	75.60	HP5082-0053	105.00	HP5082-0320	58.00
HP5082-0375	POR	HP5082-0386	POR	HPS082-0401	POR	HP5082-0438	IOR
HP5082-1028	POR	HP5082-1332	POR	HP5082-2254	POR	HP5082-2302	10.70
HPS082-2303	5.20	HP5082-2696	POR	1P5082-2711	23.15	HP5082-2727	POR
HP5082-2800	1.00	HP5082-2805	4.45	HP5082-2835	1.00	HP5082-2884	POR
H25082-3039	6.70	HP5082-3040	36.00	HPT5082-3080	2.00	HP5082-3188	1.00
1195082-3379	1.50	HP5082-6459	POR	HF5082-6462	MPR	HP5082-6888	MOR
HPS082-8016	POR	[1 P5082-8323	POR	K3A Kerntron	7.00	MA950A	HR
MA475	POR	MA40008	POR	MA41487	POR	MA41765	ROR
MA41766	POR	MA43004	48.00	MA43589	POR	MA43622	POR
MA43636	POR	MA45104	27.00	MA47044	TOR	MA47051	25.50
MA47100	3.05	3447202	30.80	MA17771	POR	MA478.38*	10,
MA47852	POR	MA49106	37.95	MA49558	1YR	Ma86731	125.00

Amphenol
Part \# 316-10102-8
115 Vac Type BNC DC to 3 GHz .

FXR
Part ij 300-11182
120Vac Type BNC DC to 4 GHz .
FSN 5985-543-1225

EXR
Part \& 300-11173
120 Vac Type BNC Same FSN 5985-543-1850

$\$ 39.99$

$\$ 39.99$

BNC To Banana Plug Coax Cable RG-58 36 inch or BNC to N Coax Cable RG-58 36 inch.
$\$ 7.99$ or 2 For $\$ 13.99$ or 10 For $\$ 50.00$

SOLID STATE RELAYS
P\&B Model ECT1DB72
PRICE EACH $\$ 5.00$
Digisig, Inc. Model ECS-215 5vdc turn on PRICE EACH $\$ 7.50$

Grigsby/Barton Model GB7400 Svdc turn on PRICE EACH \$7.50
$\$ 8.99$ or 2 For $\$ 15.99$ or 10 For $\$ 60.00$

120 vac contact at 7 amps or 20 amps on a $10^{\prime \prime} \times 10^{\prime \prime} \mathrm{x} .124$ aluminum. Heatsink with silicon grease.
240 vac contact 14 amps or 40 amps on a $10^{\prime \prime} \times 10^{\prime \prime} \times .124$ aluminum. Heatsink with silicon grease.
240 vac contact at 15 amps or 40 amps on a $10^{\prime \prime} \times 10^{\prime \prime} \times .124$ aluminum. Heatsink with silicon grease.

NOTE: $\star \star \star$ Items may be substituted with other brands or equivalent model numbers. *kt
For information call: (602) 242-3037

Toll Free Number
800-528-0180
(For orders only)

TUBES

TYPE	PRICE	TYPE	PRICE	TYPE	PRICE
2C39/7289	\$ 34.00	1182/4600A	\$500.00	ML7815AL	\$ 60.00
2 E 26	7.95	4600A	500.00	7843	107.00
2K28	200.00	4624	310.00	7854	130.00
3-5002	102.00	4657	84.00	ML 7855 KAL	125.00
3-10002/8164	400.00	4662	100.00	7984	14.95
3B28/866A	9.50	4665	500.00	8072	84.00
3C×40007/8961	255.00	4687	P.O.R.	8106	5.00
3CX1000A7/8283	526.00	5675	42.00	8117A	225.00
$3 \mathrm{CX3000F1/8239}$	567.00	5721	250.00	8121	110.00
3 CW 30000 H 7	1700.00	5768	125.00	8122	110.00
$3 \times 2500 \mathrm{~A} 3$	473.00	5819	119.00	8134	470.00
$3 \times 3000 \mathrm{~F} 1$	567.00	5836	232.50	8156	12.00
4-65A/と165	69.00	5837	232.50	8233	60.00
4-125A/4D21	79.00	5861	140.00	8236	35.00
4-250A/5022	98.00	5867 A	185.00	8295/PL172	500.00
4-400A/8438	98.00	5868/Ax9902	270.00	8458	35.00
4-4008/7527	110.00	5876/A	42.00	8462	130.00
4-400C/6775	110.00	5881/6L6	8.00	8505A	95.00
4-1000A/8166	444.00	5893	60.00	8533W	136.00
$4 C \times 250 B / 7203$	54.00	5894/A	54.00	8560/A	75.00
$4 \mathrm{C} 250 \mathrm{FG} / 8621$	75.00	5894B/8737	54.00	8560AS	100.00
$4 \mathrm{CX250K} / 8245$	125.00	5946	395.00	8608	38.00
$4 \mathrm{CX250R} / 7580 \mathrm{~W}$	90.00	6083/AZ9909	95.00	8624	100.00
$4 \mathrm{C} \times 300 \mathrm{~A} / 8167$	170.00	6146/6146A	8.50	8637	70.00
4C $\times 350 \mathrm{~A} / 8321$	110.00	6146B/8298	10.50	8643	83.00
$4 C \times 350 F / 8322$	115.00	$6146 \mathrm{~W} / 7212$	17.95	8647	168.00
$4 \mathrm{CX} 350 \mathrm{FJ} / 8904$	140.00	6156	110.00	8683	95.00
$4 \mathrm{CX600J} / 8809$	835.00	6159	13.85	8877	465.00
$4 \mathrm{CX1000A/8168}$	242.50*	6159B	23.50	8908	13.00
$4 \mathrm{C} \times 1000 \mathrm{~A} / 8168$	485.00	6161	325.00	8950	13.00
$4 \mathrm{CX1500B} / 8660$	555.00	6280	42.50	8930	137.00
$4 \mathrm{CX5000A/8170}$	1100.00	6291	180.00	6 L 6 Metal	25.00
$4 \mathrm{C} \times 100000 / 8171$	1255.00	6293	24.00	6L6GC	5.03
4CX15000A/8281	1500.00	5326	P.O.R.	6CA7/EL34	5.38
4CW800F	710.00	6360/A	5.75	6CL6	3.50
4032	240.00	6399	540.00	6DJ8	2.50
4E27A/5-125B	240.00	6550A	10.00	6DQ5	6.58
4PR60A	200.00	$6883 \mathrm{~B} / 8032 \mathrm{~A} / 8552$	10.00	6GF5	5.85
APR60B	345.00	6897	160.00	6GJ5A	6.20
4PR65A/3187	175.00	6907	79.00	6GK6	6.00
4PR1000A/8189	590.00	6922/60J8	5.00	$6 \mathrm{HB5}$	6.00
4X150A/7034	60.00	6939	22.00	6HF5	8.73
4×1500/7609	95.00	7094	250.00	6JG6A	6.28
4×2508	45.00	7117	38.50	6JM6	6.00
$4 \times 250 \mathrm{~F}$	45.00	7203	P.O.R.	GJN6	6.00
$4 \times 500 \mathrm{~A}$	412.00	7211	100.00	6JS6C	7.25
$5 \mathrm{C} \times 1500 \mathrm{~A}$	660.00	7213	300.00*	6KN6	5.05
KT88	27.50	7214	300.00*	6K06	8.25
416 B	45.00	7271	135.00	6LF6	7.00
416 C	62.50	7289/2C39	34.00	6LQ6 G.E.	7.00
572B/T160L	49.95	7325	P.0.R.	6LQ6/6MJ6 Sylvania	9.00
592/3-200A3	211.00	7360	13.50	6ME 6	8.90
307	8.50	7377	85.00	$12 \mathrm{AT7}$	3.50
811 A	15.00	7408	2.50	$12 \mathrm{AX7}$	3.00
$812 A$	29.00	7609	95.00	12BY7	5.00
813	50.00	7735	36.00	12JB6A	6.50

NOTE * = USED TUBE
NOTE P.O.R. = PRICE ON REQUEST
"ALL PARTS MAY BE NEW, USED, OR SURPIUS. PARTS MAY BE SUBSTITUTED WITH COMPARABLE PARTS IF WE ARE OUT OF STOCK OF AN ITEM.

NOTICE: ALL PRICES ARE SUBJECT TO CHANGE WITHOUT NOTICE.
For information call: (602) 242-3037

Toll Free Number 800-528-0180 (For orders only)
"All parts may be new or surplus, and parts may be substituted with comparable parts if we are out of stock of an item.

HEWLETT PACKARD SIGNAL GENERATORS

 to 3 into into 50 ohms, Bullt-in crystal calibrator, $400-1000 \mathrm{~Hz}$ \$ 650,00 modulation.
606B Some as above but has frequency control feature to allom oderation with HP 8708A Synchronizer.
608C 10 MHz to $480 \mathrm{MHz}, 0-1 \mathrm{UV}$ - IV into 50 ohms, AM, CW, or Dulse modlomaz to $480 \mathrm{Mmz}, 0-1 \mathrm{lu}-1 \mathrm{l}$ into 50 ohms, AM, CW, or dulse mod-
ulotion, colldroted attenuator. 10 MHz to $420 \mathrm{MHz}, 0.1 \mathrm{~V}-0.5 \mathrm{~V}$ into 50 onms, $+0.5 \%$ accuracy, $608 \mathrm{D} / \mathrm{L}$
TS510 bullt-in crystal colibrator, AM-CN or puise output.
608E Improved version of popular 608C. UD to IV output. Inproved improved version olity, low residual FM.
$\$ 375.00$
$\$ 1450,00$
10 MHz to 455 MHz in 5 bonds +-12 frequency occuracy wI th built-in crystal calibrator. Con be used with HP $8708 A$
Synchronizer. Outbut continuously adjustable from. Iuv to 5 V into 50 onms. $\$ 1100.00$
$612 \mathrm{~A} \quad 450-1230 \mathrm{MHz}, 0.1 \mathrm{~V}-0.5 \mathrm{~V}$ into 50 ohms, collbrated output. \$ 750.00
$900-2100 \mathrm{MHz}$ with many features including calibrated output and all modulation characteristics.
$\begin{array}{ll}\text { 616A/ Direct regding and direct control from } 1.8 \text { to } 4.2 \mathrm{GHz} \text {, The } \\ \text { TS403 } & \text { H.P. } 616 \text { A features }+-1.5 \mathrm{SB} \text { calibroted output occuracy from }\end{array}$ -3127 dBm to -dBm . The output is directly calibroted in micro yolts and dBm with continuous monitoring. Simole operation freauency diad accuracy is t-12 and stamity exceeds 0.005: within t-1. 5dB over entire output band. 50 ohm impedance unit has internal pulse modulation with rep rote varioble fron 40 Hz to 4 KHz , vorlabie pulsewidth(i to lousec) ond variable pulse delay (3 to 300 usec). Externol modulating inputs increas ver-
satility.

UEX LABORATORIES THS-2 FLEXICOM IEADSET,
these heodsets care with doto to hook L^{D} to a ICMM rodios and mony other eoulpent. Perfect for Airplanes, Helicopters, Moblle Rodios, or Just the Telephone. These Are Foctory New In Sealed Boxes. Limited Supoly Only 569.95

なMभz electroŋcm

616 B Sane as above but later model.
618B
618 C
620A
6208
$626 \mathrm{~A} \quad 10$ to $156 \mathrm{~Hz}, 10 \mathrm{~mm}$ output power with cal lbrated output and
8708 A - Synchronizer used with 606B,608F. The synchronizer is a phase-lock frequency stabilizer which provides crystal oscillator frequency stability to 430 MHz in the 608 F signal generator. Phase locking eliminates microphonics and orifl
resulting in excelient frequency stobility, The 8708 includes of $t-0.25 z^{2}$ permitting frequency settobility to 2 parts in 10 to the seventh. Provides a very stoble signal that sotisfies many critical apdications.
(W|th HP 606B or 608F)
$\$ 350.00$
$\$ 450.00$
ELECTROMETRICS EMC-10 RF I/EMI RECEIVER 50 KHz frequency range. Extendable to 500 KHz in wideband mode. Empire Devices Fleld Intensity Meter.
Has NF-105/TA.NF-105/TX,NF-105/T1.NF-105/T2,NF-105/T3, $\$ 2500.00$ NF-105F Covers 14 KHz to 1000 MHz .
$\$ 2100.00$
ALL EQUIPMENT CARRY A 30 DAY GUARANTEE EQUIPMENT IS NOT CALIBRATED.

C.O.D. Acceptabie by telephone or mail Payment trom customer nill be by Cash, Maney Orden, or Cashiers Check. We aese sorry

 astock charge on the returned parts.
CREDIT CARDS: We are now accopting MASTERCARD, VISA, AND AMERICAN EXPRESS
OATA SHEETS: When we have data sheets in stock on devices we will supply them with the order
DEFECTVE MATERUNLS: Al claims for dotective materiais must De made wilthin 30 DAYS after receipt of the parcel All ciaims

 ainered in any way. All return items, handing charges incurrec.

OELVEAY. Ordors ane usualily ahipped the same day they are pleced or ine noxt buainoss day. uniess we are out of stock on an hail dhepending on size of the weight of the packape. Test Equipment is shipped onty by air and is froight collect, untess priot artangements have been made and approved.
FOREDON ORDERS: All foreion ordors must be propaid with a Cashiers Check, or Moneg Order made out in US. FUNDS ONLY.

Ouns: Monday
insupance. Please incluce 25e for each adorional 5100.00 orer s100.00. UPS ONCY. Aul insurad packages are shipped inru UPS surance

ORDE: reques.

PARTS: We reserve the right to substitute or replace any itern with a part of equal or comparable specification.

POSTAGE: Minimum shipping and handling in the U.S., Canada, and Mexico is $\$ 3.00$ for ground shippents, air other countries is 35.50 . Air rates are availiabie at the time or your order. Alt roreign ordep lease include 25% of

PREPAID ORDERS: Orders must be accompanied by a check.
PRICES: Prices are subject to change without notice.
PURCHASE ORDERS: We accept purchase orders only when they are accompanied by a check
RESTOCK CHARGES: If parts are returned to MHZ ELECTRONICS, INC. due to customer error, the customer will be held responsible for all fees incurred and will be charged a 15% RESTOCK CHARGE with the remainder in CREDIT ONLY. The following must accompany any return; A copy of our invoice, return authorization number which must be obtained prior to shipping the merchandise be obtained by calling (602) $242-8916$ or notitying us by post card. Return authorizations will not be given out on our 800 number.
SALES TAX: ARIZONA residents must add 6% sales tax, uniess a signed ARIZONA resale tax card is currently on file with us. All orders placed by persons outside of ARIZONA, but delivered to peris currently on file with us. All orders placed by per
sons in ARIZONA are subject to the 6% sales tax.

SHORTAGE OR DAMAGE: All claims for shortages or damages must be made within 5 DAYS of eceipt of parcel. Claims must include a copy of our invoic number which can be obtained by contacting us at (602) 242.8916 or sending a post card. Authoriza packed make sure to contact the carrier so that they can come out and inspect the package before it is returned to us. Customers which do not notity us within this time period will be heid responsible for the entire order as we will consider the order complete.
OUR 800 NUMBER IS STRICTLY FOR ORDERS ONLY (800) $528-0180$. INFORMATION CALLS ARE AKEN ON (602) 242-8916 or (602) 242-3037
"All parts may be new or surplus, and parts may be substituted with comparable parts if we are out of stock of an itern."

800-528-0180 (For orders only)
For information call: (602) 242-3037

PRICES SUBJECT TO CHANGE WITHOUT NOTICE.

Clean up the radio/computer clutter.

For less than $\$ 250$ you can make your investment in yourself pay off!
Chances are you have spent a couple thousand dollars on setting up a computer system that gets a lot of your work done. But sometimes it gets to be work to work at it.
I know that when I have to move two program manuals and a pencil holder to boot up the disk drive, it is work. When there is an unlabeled floppy (that I am going to identify some day) on top of the monitor and the business checkbook is on top of the printer ... and I will remember (I hope) before the next "report" comes through ... that is work.

I found the annoyance of my own "computer clutter" was even worse than the extra work the disorder created. And that is when I started looking for some practical furniture for my computer set up. Since I had already spent a lot of money on the system itself, I was really dismayed when I found out how much it would cost to get a decent-looking desk or even a data table for my equipment. \$400 . . \$500 . . . even more for a sleasy unit that looked like junk! In fact, it was junk! And it took a long time for me to find something that was really worth the money . . . and more.
A lot of my working day is spent with my computer, and I will bet a lot of your time is too. So I figure a "home" for my sys-tem-a housing that is good looking as well as efficient to work at-will pay off two ways:

1. Less work: an efficient and orderly layout will save me time and energy.
2. Personal satisfaction: good quality furnishings look better; they just plain feel better to work at too.
So imagine how good I felt to find the "Micro-Office" Work Center! These are fine pieces of computer system furniture that make my office-at-home as pleasant a place to work as it ought to be. And the
biggest and best surprise is the low, low price for such good quality.
Here is what you get-all for only $\$ 249.50$ plus shipping.

- Mar-resistant work surface. Your choice of oak or walnut grained. Work surface height is adjustable to your keyboard, your chair, your height.
- Two shelves plus work surface extender. Both shelves tilt to lock in position so that monitor faces you-in a position that does away with screen glare squinting and neck craning forever. Retainer bar keeps equipment from sliding off shelf. Snap-in bookends hold reference manuals and programs.
- Strong, sturdy and steady. All-steel welded frame construction is concealed by top-quality wood grain surfaces with finished trim. Adjustable floor levelers included. The work center is really a piece of fine furniture.
- There is no risk in buying from us either. We will make a full refund of purchase
price plus shipping charges if you return the workcenter within 30 days for any reason whatsoever. In addition, the product is warrantied for any defects in materials or construction for a full year from date of purchase. This is a no-risk investment in your own productivity and work efficiency that will pay off for years to come-even if you do not yet have a microcomputer of your own.
- Take your choice for your own work center decor:
Order 48-inch unit in walnut, \#2KPO-945. or in oak, \#2KPO-947. Only \$249.50 for each unit plus $\$ 20.00$ shipping charge. On orders for two or more units at the same time, shipping charge applies to only the first unit ordered. Shipment made UPS, so we cannot ship to post office box. Illinois residents please add $\$ 15$ per unit sales tax. Please allow 10 extra days for personal checks to clear. Sorry-at these special offer prices we cannot ship c.o.d. or bill direct.

CALL TOLL FREE TODAY WHILE SUPPLIES LAST: 1-800/323-8064. In Illinois call 1-312/251-5699. Or mail check with order to:

Micro-Mart Distributors

Dept. HR • 1131 Central Street • Wilmette, IL 60091

Computer Programs for Amateur Radio
 by Wayne Overbeck, N6NB, and James Steffan, KC6A

Amateur Radio is an "information intensive" avocation. Detailed and accurate records are imperative if you're working toward WAS, DXCC, or VUCC awards. Contesting, too, requires that accurate original and "dupe" logs be kept. And if you're a DXer, you also want to know such things as beam headings, distances to DX stations, sunrise and sunset times for grayline propagation, and much more. All this data can be stored in a home computer and retrieved with ease. But many hams use their home computers for nothing more than video games, RTTY, and Morse code applications because they don't have the programming skills to do more. No wonder - until now, there haven't been many programs available for Amateur Radio applications. Those that were available were usually written for just one machine and couldn't be used with others without extensive revision.

The authors of Computer Programs for Amateur Radio - who have over 50 years of Amateur Radio experience in all phases of operation, from contesting to electronic design were aware of this phenomenon and set about the task of writing progams for just about every aspect of radio operation. The programs will work with most popular home computers.

Chapter One gives the reader an overview of the programs contained in the book. Programs were selected according to two basic criteria: first, that they be useful in the hamshack and fully tested, and second, that they be compatible with the most popular brands of home computers. They can be used with the Apple II, IBM PC, TRS-80, Commodore C-64, and any other CP/M and Microsoft BASIC unit. Owners of the VIC-20 and Timex/Sinclair or Sinclair units will find that a number of the programs will also run on their machines.

You'll need at least 48 K of memory and a disk drive. A printer is optional but highly recommended. Chapter One also provides a listing and explanation for each program in the book. Programs include Logbook, Radio Awards Data Base, Grid Locator, Worldwide "Catalog File," Sunrise Chart, Sunrise Calculator, Grayline, Beamheading Chart, DX Display, DX Checker, Dupe Checker, Dupe Print, Contest Logger, Generalized Logger, Field Day Logger, Sweep-
stakes Logger, Log Print, Antenna Scaler, Antenna Evaluator, Phased Vertical Pattern Plotter, EME System Analyzer, Moontracker, and Skylocator.
Now that you know what you're going to get, are you ready to use it all? Anticipating that readers would need additional help, the authors devoted Chapters Two and Three to a discussion of microcomputers in general, including their evolution and associated hardware. Chapter Four provides an overview of some of the problems often encountered; it's not meant to discourage, but rather to prepare the user for the potential problems that can and will occur. Chapter Five is a rather complete discussion of BASIC (Beginners All-purpose Symbolic /nstruction Code) included for the purpose of providing a solid grounding in the most frequently used computer language. While BASIC is slower than assembly language, it is quite flexible and easy to write and revise. To illustrate how BASIC is used, the authors use a "Mini Logger" program as an example. A flow chart and full step-by-step description of the program assist the reader in learning the program.

The rest of the book, Chapters Six through Ten, are devoted specific programs. Each program is fully discussed, documented, and presented with hints to help the reader obtain maximum use of each.

The authors have gone to great lengths to provide all the information necessary to help readers get the most out of their home computers. Beginners and experts alike will find this book full of helpful information.

Computer Programs for Amateur Radio is available from Ham Radio's Bookstore, Greenville. New Hampshire 03048, for $\$ 16.95$ plus $\$ 2.50$ shipping and handling.

Circle 1301 Reader Service Card.
NIACH

Clandestine Confidential

A new book published by Universal Electronics, Inc., covers the world of clandestine broad-

casting yesterday and today. Subject areas covered include clandestine DX'ing, the history of clandestines, a listing of 30 active countries with their frequencies, discussion of where new clandestines may surface in the future, and clandestine OSLing. A list of clandestine station addresses is also provided.

The retail price of Clandestine Confidential is $\$ 8.95$ plus $\$ 1.75$ shipping and handling in the U.S. and Canada.

For further information, contact Universal Electronics, Inc., 4555 Groves Road, Suite 3, Columbus, Ohio 43232

Circle /321 on Reader Service Card.

ATV repeater transmitter

A new 40 -watt PEP ATV repeater transmitter is available from P.C. Electronics. The $7 \times$ 19 -inch rack panel RTX-4 transmitter comes crystalled for the normal ATV repeater output frequency of 421.25 MHz , but can be ordered for any other frequency in the 70 cm Amateur band between 420 and 440 MHz for transmitting weather watch or other emergency service bulletins, NASA space shuttle video, or even beacon and base station use.

The transmitter accepts the normal 1 -volt composite video, either color or black and white, and mike or line audio. Besides the video output from a color TV/monitor normally used in the repeater application, any device with a composite video output, such as a camera, VCR, computer, TVRO, etc., can simply be plugged into the front panel jacks and transmitted.

The RTX-4 contains the VOR (video operated relay) module, which keys the transmitter on only when a video signal containing the normal horizontal sync frequency around 15.75 kHz is sensed at its video input. This prevents false keying from military radars, commercial radio positioning, and other Amateur modes that may be sharing the repeater input frequency range.

Power requirements are a regulated 13.8 VDC at 8 amperes and 120 VAC at 0.1 ampere for operation. Notes on how to successfully assemble a complete basic ATV repeater system for under $\$ 2000$ and the technical considerations unique to ATV are included.

For more information on this ATV transmitter and other ATV products, contact P.C. Elec tronics, 2522 S. Paxson Lane, Arcadia, California 91006.

Circle 1302 on Reader Service Card.

ham gear protection

The new 40 -page catalog from Electronic Specialists includes a line of protection and interference control products designed to prevent costly damage from lightning or power line spikes ànd disruptions or interference from power line carried EMI and RFI. Protective devices include $A C$ line voltage regulators and conditioners, modem and phone line surge suppressors as well as equipment isolators and filter/ suppressors.

Ese Electronic Specialists inc

HI-TECH EQUIPMENT

PROTECTION \& INTERFERENCE CONTROL CATALOG
 Huxinvec Machilies - Home Fouple IH P Gutin • TI + STK

Typical protection and interference problems are described in the text, together with suggested solutions for various Amateur and other communications installations, as well as numerous applications for hi-tech equipment protection and interference control.

For more information, contact Electronic Specialists, Inc., 171 South Main Street, P.O. Box 389, Natick, Massachusetts 01760. Circle 1303 on Reader Service Card.

DMM/DCM

MCM Electronics has introduced the Temma Combination DMM/DCM meter with hFe transistor gain tester. The unit measures voltage, current, resistance, capacitance and hFe on the clear $1 / 2$-inch, 3-1/2 digit LCD display.

A capacitance measuring socket gives direct measurements of capacitors, along with a transistor hFe. The color-coded panel allows users easy identification of function and range settings.

Safety features include input overload protec tion, single fusing (with a spare fuse inside), and stress relief test leads. The Temma Combination DMM / DCM meter comes in a convenient carrying case, with alligator clip hFe leads and has

A 50-Watt, 6-Band CW Transceiver that combines excellent Performance, Reliability, Simplicity of Operation, and Low Cost.

THE RETURN OF THE CENTURY! THE NEW 22 IS BETTER THAN THE ORIGINAL - SMALLER, LIGHTER, MORE FILTERING, WITH AGC AND ALC. 12 Vdc OPERATION AT 5 AMPS, TRANSMITS FULL BREAK-IN CW WITH 50 WATTS INPUT. CENTURY/22 ONLY \$389. SEE YOUR TEN-TEC DEALER OR WRITE-

ANTENNA TUNER
Viewstar - Mod. VS300A
Fully Assembled and Tested
$\$ 89.95$
Plus $\$ 300$ Shipping $\&$ Handling

MATCH MOST ANTENNA-FEEDLINE COMBINATIONS TO YOUR RIG

MATCHES: dipoles, inverted vees, beams quads. verticals, mobile whips, random wire, etc. that are fed by coax, balanced line or single wire MAXIMUM POWER: 300 watts RF INPUTS (selectable from front panel):

3-coax: 1-direct. 2-direct or thru tuner
1-balanced line ($4: 1$ balun inc.) or single wire IN-LINE CALIBRATED WATTMETER INCLUDED

ALSO IN STOCK

KITS: for HF, VHF, UHF \& Test Equipment
COMPONENTS: Toroids, Rods \& Beads, Resistors, Inductors. Capacitors, Antenna Components \& Wire
1984-85 CATALOG 50C
SEE US AT
BOXBORO
RADIO
Box 411H, Greenville, NH 03048 (603) 878-1033, telex 887697

Whether you are just starting out or trying to complete the Honor Roll, Mosley offers a Full Line of Tri-Banders which will mechanically and electronically outperform the competition. For the new ham with limited space and pocket book, start with our TA-31 Jr. rotatable dipole. You can make our TA-31 Jr. into a 2 or 3 element as your needs increase.
If you start with the need to run higher power, then the TA-31 is for you. This also can be made into a 2 or 3 element beam as you expand your station.

For the ham that wants a liftie more performance out of a Tri-Bander but is limited in room, then our CL-33 on a 18 foot boom is the way to go. For those that want MONO BAND performance out of a Tri-Bander, want to hear better, and be louder, the CL-33 is for you.

For the ham that wants to start right at the top, the PRO-37 is the antenna that will give you king of the hill performance. It is the broadest banded, highest power, best performing Tri-Bander in our line.
Compare ours before buying any other antenna. All stainless standard, all heavy telescoping aluminum elements which means better quality and no measurement. Ease of assembly gives you a quality antenna with consistent performance. Our elements are pre-drilled so you will get the same performance as we do. All of our Tri-Banders come with a 2 year warranty.
If you are a new ham and are not familiar with MOSLEY, ask an older ham about us or call the PRESIDENT of MOSLEY. He will be glad to explain why MOSLEY is A BETTER ANTENNA.
These and other MOSLEY products are available through your favorite DEALER. Or write or call MOSLEY for the DEALER nearest you.

1344 BAUR BLVD. ST. LOUIS, MISSOURI 63132

a one-year warranty. Battery operated, the LCD display indicates low battery condition. The price is $\$ 74.95$.

For more information, contact MCM Electronics, Centerville, Ohio 45459.

Circle 1304 on Reader Service Card.

ShackMaster ${ }^{\text {TM }}$

A new product from Advanced Computer Controls, Inc., allows remote control of your shack and effective communication with family members over your home equipment.

ShackMaster's ${ }^{\text {TM }}$ crossband linking capability allows you to access your high performance home station from VHF/UHF, either by simplex or through repeaters. Telephone access permits remote control of your home station from any Touch-Tone telephone, and BSR X-10 shack control offers Touch-Tone remote control of 120 -volt devices with Touch-Tone commands, over the air or over the phone.

The ShackPatch ${ }^{\text {TM }}$ feature, a remotely controlled intercom, permits remote control of your home equipment, allowing third parties to participate. Based on the same principles as an autopatch, it leaves you in complete control of your station at all times. An electronic mailbox permits you and your family to leave messages for each other, to be retrieved when convenient. Finally, a simplex autopatch is available when it's necessary to make a phone call.

Based on ACC's proven repeater control technology, ShackMaster ${ }^{T M}$ includes electronic synthesized speech with a custom vocabulary, making it easy for anyone to use. It interfaces to up to three transceivers, the phone line, a local speaker, and microphone.

For more information, contact Advanced Computer Controls, Inc., 10816 Northridge Square, Cupertino, California 95014.

Circle 1305 on Reader Service Card.

RTTY/CW computer interface

DGM Electronics, Inc., has introduced their new DGM-1 RTTY/CW computer interface, which simply connects between any transceiver and computer and works with almost any RTTY/CW software on the market because of its versatile I/O circuitry.

The RTTY demodulator provides strong performance even on the weakest, noisest signals that can be found. This is because of the sensitive mark and space active filter demodulator, rather than a phase-locked loop, as found in other low cost interfaces. This unit copies both the mark and space tones, not just the space tone. The demodulator section is preceded by a bandpass filter to provide excellent adjacent signal rejection. A three-pole post detection filter provides optimum signal-to-noise reception of the RTTY signal. The 170,425 , and 850 Hz shift selector provides fast and accurate shift selection; shift can also be reversed with the use of a front panel pushbutton. An LED bargraph and mark/space LED indicators provide positive tuning indication. Scope outputs are also provided for the ellipse tuning. A function generator chip is used to provide a stable, sinewave AFSK output to your transmitter. This interface will also key your FSK input. Automatic or manual PTT control can also be selected by a front panel pushbutton.

The CW demodulator, centered around 800 Hz , includes bandpass filtering to reject nearby signals. Both positive and negative CW keyed outputs are provided on the rear panel.

The rear panel contains a standard 5-pin I/O connector for TTL level interfacing. These signals can be inverted so that just about any software can be used with the interface. An RS 232 connection is also included for use with computers requiring these voltage levels.

The DGM-1 RTTY/CW computer interface is housed in a compact $1-1 / 2 \times 7 \times 7$ inch aluminum enclosure to provide excellent RF immunity. The unit is powered by a 120 VAC wall transformer, included with the interface. The price of the DGM-1 is $\$ 149.00$.

For more information, contact DGM Electronics, Inc., 787 Briar Lane, Beloit, Wisconsin 53511.

Circle /306 on Reader Service Card.

coax checker

North American SOAR Corp.'s Model 1500 coaxial cable length checker was designed to meet the needs of cable manufacturers, users, and installers.

The length of coax and its termination whether on a reel or strung out - is essential information for anyone who works with it. Using the Model 1500 coax checker, damaged cable in plenum, conduit or in free air can be checked for shorts or opens. The device provides numerical indication to the short or open in feet or meters and indicates the state - either short
or open - on a 4 -digit LCD readout. This unit can measure all types of coaxial cable in lengths ranging from 10 feet to 6500 feet. The pulse reflection technique used as its measuring method allows for fast cable length indication.
Totally portable, the unit measures only $7-3 / 8$ $\times 2-1 / 4 \times 7$ inches and weighs only 3 pounds with batteries. Priced at $\$ 499$ in small quantities, it is supplied with 6 Ni -Cad rechargeable batteries, a battery recharger/AC adaptor and a car/truck cigarette lighter adaptor.
For more information, contact North American Soar Corp., 1126 Cornell Avenue, Cherry Hill, New Jersey 08002.
Circle 1307 on Reader Service Card.

Triplett hand-size tester

The new Model 310-T5 hand-held V O-M just introduced by Triplett Corporation offers an extended AC/DC voltage range up to 1200 volts for extra versatility in making laboratory or infield measurements on industrial, commercial, or consumer electronic/electrical equipment.

The tester has a sealed range switch for improved resistance to contaminants and new, safety-designed test leads to provide optimum user safety. The drop-resistant case is high impact thermoplastic to endure rugged use.

Only $2-3 / 4 \times 1-5 / 16 \times 4-1 / 4$ inches, the Model 310 -T5 has an easy-reading, 2.1/8-inch scale meter which is self-shielding and is protected against overload. Full scale accuracy is ± 3 percent DC and ± 4 percent AC
Ranges include: 0-1200 VDC and VAC in 5 ranges; 0-200 megohms in 4 ranges; 0-600 DC milliamperes in 4 ranges with a $0-600$ microampere (250 mV) range. A convenient single range selector switch is provided.

Tester sensitivity is 20,000 ohms/volt DC and 5,000 ohms/volt AC.

Priced at only $\$ 70$, the one-year warranteed Model 310-T5 tester is furnished complete with 42 inch safety test leads, screw-on alligator test clips, batteries and a comprehensive instruction manual. Optional accessories include the Model- 10 clamp-on AC ammeter, Model 101 line

, TOROIDAL CORES

Shielding Beads, Shielded Coil Forms Ferrite Rods, Pot Cores, Baluns, Etc.

Small Orders Welcome Free 'Tech-Data' Flyer
AMIOgN
H sociates
Since 1963

12033 Otsego Street, North Hollywood, Calif. 91607

[^10]
TROUBLESHOOTING MICROPROCESSOR-BASED EQUIPMENT AND DIGITAL DEVICES

Attend this *highly acclaimed seminar and master the essentials of microprocessor maintenance. Gain a firm understanding of microprocessor fundamentals and learn specialized troubleshooting techniques. $\$ 695.00$

1984 FALL/WINTER SCHEDULE

- Washington, DC - September 11-14
- Boston - September 18-21
- Phoenix - October 9-12
- Los Angeles - October 16-19
- Allanta - November 6-9
- Miami - November 13-16
- Newark - December 4.7
*References provided upon request.
MICRO SYSTEMS INSTITUTE
Garnett, Kansas 66032
(913) 898-3265

TUNE IN THE WORLD OF HAM-TV!

Amateut Radio operators in the 1980's are discovering the fasonating "World of Amateut Televison" Be it Fast Scan TV (FSTV). Slow Sran TV (SSTV). Farsmile (FAX) or somewhere in between. Video communications modet ate gtowing at an exciting pace
New advancements are taking place in High-Resolution/Colot SSTV and the use of personal compuress for ATV gaphics SSTV-FAX-RTTY communications Interes in even growing in MICROW AVE and TVRO applications
A) ATV MAGAZINETM has supported these modes of Amateut Specialized Communcations since 1067 - ovet 1 yean' And now, undet gurdance of the UNITED STATES ATV SOCIETY. HAM.TV will continue to grow rapidly Intetested: Send SASE for "free" information brochures today Special six month TRIA1 substription only
One year substiption 112 rssues of the "USATVS Journal" \$200 sample issur available for $\$ 2$ so ppd

A5 ATV MAGAZINE ${ }^{\text {rim }}$

PO. BOXH LOWDEN, IOWA 52253
 - 116

1296 \& PHASE III MAKI UTV 1200-549995 MAKI 20W AMP - $\mathbf{5 4 3 0}^{\circ 0}$

KT 200 ET

0-10 TRACKING PROG. TIMEX / ZX - 16K Vic-Basic $\quad \$ 12.95$ Also Avail. w/RS \& STS

SASE for full details on the Timex/ZX AUTOTRAK ROTOR CONTROLLER

separator, carrying cases and replacement test leads.

For additional information, contact Triplett Corporation, One Triplett Drive, Bluffton, Ohio 45817.

Circle 1308 Reader Service Card.

In-line coax relays

In-line coaxial relays can remotely select from up to nine antennas using a single coaxial cable to the radio.

The two and three-output relays can be arranged in systems to select from among multiple antennas, pair different antenna-radio combinations, or connect a series of radios to a single broadband antenna. The various relays cover some part of the $0-900 \mathrm{MHz}$ range, and feature high power handling, long life, and weatherization. These systems as relays, together with ancillary couplers, switches, and power supplies are described in catalog $\operatorname{IN} / 84$. They range in pricefrom $\$ 40$ to $\$ 66$, depending on configuration.

For more information, contact Microwave Fil ter Company, Inc., 6743 Kinne Street, East Syracuse, New York 13057.

Circle 1311 on Reader Service Card

solder kit

A new selection of solders for virtually any type of soldering job - including metal, aluminum, and electrical wiring - is available from Multicore Solders. The "All Purpose Solder Pak" contains an assortment of multiple-core construction wire solder for self-fluxing action. The

correct flux formulation and alloy composition provide the ideal combination for different soldering jobs: metal, aluminum, or electrical/ electronic. No pre-cleaning of surface is necessary. Each plastic dispenser has a convenient hook-eye cap for bench-top storage.

Included in the selection are Arax Solder for general metal repair, Alu-Sol Solder for aluminum, and Ersin Solder for electrical/electronic connections.

For complete information, contact Multicore Solders, Cantiague Rock Road, Westbury, New York 11590

Circle $/ 310$ on Reader Service Card.

Touch-Tone remote control board

TTC300, is a new DTMF (Touch-Tone) Controller Board that provides remote DTMF control of virtually any ON/OFF function via a radio or any type of link with audio output, such as wireline or phoneline. Typical applications include remote control of functions at a repeater site or any location with a radio link.

The controller uses a new high quality crystal controlled decoder IC, with high immunity to falsing, decodes all 16 digits, and features 3 ON/OFF functions per main card. Easily expandable to any number of functions with expan-
sion cards, the board can be field programmed using plug-in coded cards.

Its transistor switch outputs can directly trigger solid-state circuitry or relays for any type of control function.

For more details, contact Spectrum Communications Corp., 1055 W. Germantown Parkway, Norristown, Pennsylvania 19401-9616.

Circle 1312 on Reader Service Card.

code teacher program

Cynwyn now offers MC-10 owners Morse Code Teacher, a program requiring 4 K RAM. Available on cassette for $\$ 15$ plus $\$ 2$ shipping and handling, Morse Code Teacher is designed for the beginner. It features three different practice routines that promote familiarity with the code and can increase copying speed up to 5 WPM. In the introductory routine, whenever any letter or number on the computer keyboard is pressed, the program responds with the equivalent character in Morse Code. The second routine generates and sends characters one at a time from pre-determined letter/number groups and displays them on the screen for checking. In the final routine, random letters and numbers are sent at either 3 or 5 WPM for copying sessions of one minute and displayed on the screen at the end of each session.

For more information, contact Cynwyn, 4791 Broadway, Suite 2F, New York, New York 10034.

Circle 1313 on Reader Service Card.

CW keyboard

The HD-8999 UltraPro CW Keyboard is a third generation code computer designed to minimize keying errors and increase the ease and accuracy of sending high-speed CW. A 64 -character "type ahead" buffer permits typing faster than the keyboard is sending. Ten variable length buffers

eliminate waste when storing text, and messages stored in the buffers can be compiled, corrected, or transmitted with no more than one to three keystrokes. A large, four-digit LED display indicates many functions including speed, spacing, weighting, serial number, remaining message character space, input error, tune mode, sidetone on/off, keyclick and individual buffer protection. An 8 -segment bar graph indicates buffer protection. An 8 -segment bar graph indicates fullness of the type-ahead buffer. Parameters are easily set from the keyboard,

ANTENNAS \& TOWERS

THIS MONTH'S FEATURES:

SANTEC ST-142 - $\$ 279.00$ HIGH-GAIN DISCOVERER 7-2 - $\$ 312.00$ HIGH-GAIN DISCOVERER 7-I - $\$ 139.00$ KDK FM-2033 - $\$ 279.00$

HIGH-GAIN DIRECTOR 7-3 - $\$ 195.00$
0 (Accessories in stock)

cushoraft

A3	$\mathbf{\$ 2 0 5 . 0 0}$	A50-5
A4	$\mathbf{2 6 4 . 9 5}$	$617-$ B
A743	$\mathbf{6 7 . 9 5}$	$32-19$
A744	$\mathbf{6 7 . 9 5}$	214 B
R3	$\mathbf{2 5 4 . 9 5}$	220 B
AV3	$\mathbf{4 9 . 9 5}$	410 B
AV4	$\mathbf{8 7 . 9 5}$	424 B
AV5	$\mathbf{9 5 . 0 0}$	Stackin
40-2CD	$\mathbf{2 6 9 . 9 5}$	

\$74.95	ARX-2B
189.95	A147-11
88.00	A147-22
73.00	416 TB
88.00	Al44-207
54.95	Al44-10
74.95	A14T-MB

$\$ 34.95$
44.95
14.95
54.95
64.95
46.00
26.00
7.
hy-gain

TH7DXS	$\mathbf{S 4 1 9 . 9 5}$		
TH5Mk2S	364.95	18AVT/WB-S	$\mathbf{5 9 9 . 9 5}$
Explorer-14	295.00	14AVQ/WB-S	$\mathbf{6 4 . 9 5}$
QK-710 add-on	82.50	12AVQ-S	47.95
392S Conv. Kit	$\mathbf{1 4 2 . 9 5}$	14RMQ	$\mathbf{3 6 . 9 5}$
204BAS	245.00	18HTS	399.95
205BAS	339.95	V2S	$\mathbf{4 1 . 9 5}$

AR-40	$\mathbf{\$ 9 9 . 9 5}$
CD-45II	$\mathbf{1 3 6 . 9 5}$
HAM-IV	217.00

T2X HDR-300 475.00

WIRE \& CABLE

RG-213/U \quad S0.29/ft RG-8/U $\quad 0.28 / \mathrm{ft}$. RG-8/U foam $\quad 0.27 / \mathrm{ft}$. RG-8X
(Coax quality guaranteed. 95%-plus shielding)

Rotor cable-standard
(6-22, 2-18) $\quad \mathbf{~} 0.19 / \mathrm{ft}$.
450 ohm line $\quad \mathbf{5 0 . 0 9} / \mathbf{f t}$.

Rotor cable-hvy duty
(6-18, 2-16)
$0.33 / \mathrm{ft}$.
ga. Copperweld (solid)
ga. Copperweld
(U) Unarco-Rohn

We stock 25G, 45G, HBX, \& HDBX towers. All accessories available. FOLD-OVER towers shipped freight pre-paid to your QTH! 25G 546./sect. 45G 109/sect. \quad HBX56 $\quad 320.00$ FOLD-OVERS Get our quote \& save!
 (solid)

nuybin

Let us bid the self-supporting crank-up tower of yur choice with the accessories you select.
 HG-37SS $\quad \$ 700.00$ HG-52SS 1000.00 HG-54HD 1565.00 HG-70HD 2540.00
Shipped freight paid. Order tower with Hy -Gain antenna, rotor \& other accessories. Recieve free shipping on all.

A tower is a major investment of time, money, and sweat. To be certain you get what you want and need to complete your installation, first time around, we suggest you write us with your itemized needs and get our written proposal. A few extra days now can save weeks of frustration and waiting later.

MOSFET technology in American made mobile power amplifiers. Built for those who demand quality.

FALCON
COMMUNICATIONS

Contact us for all of your amateur radio needs.........
FEATURING:
ICOM, AEA, LARSEN, VAN GORDEN, VIBROPL.EX NYE-VIKING, FAL CON COMM, LEADING EDGE. ARRL PUBLICATIONS, KAGLO, HAMTRONICS, PROWRITER, ELEPHANT DISKS, DEBCO, TRIONYX

Full line of Sylvania ECG Replacement Semiconductors Always in Stock. All Major Manufacturers Factory Boxed, Hard To Get Receiving Tubes At Discount Prices.
Minimum Order $\$ 25.00$. Allow $\$ 3.00$ For UPS Charges. Out of Town, Please Call Toll Free: 800-221-5802 and Ask For "REUBEN."

1365 39in STREET, BROOKLYN, N. Y. 11218H
Tel. 212-633-2800/Wats Line 800-221-5802 TWX 710-584-2460 ALPHA NYK.

	SYNTHESIZED SIGNAL GENERA	
$\begin{gathered} \text { MADE } \operatorname{IN} \\ \text { USA } \end{gathered}$		$\begin{aligned} & \text { MODEL } \\ & \text { SG-100E } \\ & \text { \$399.95 } \\ & \text { plus shipping } \end{aligned}$

- Covers 100 MHz to 185 MHz in 1 kHz steps with thumbwheel dial - Accuracy $+/-1$ part per 10 million at all frequencies - Internal FM adjustable from 0 to 100 kHz at a 1 kHz rate - External FM input accepts tones or voice - Spurs and noise at least 60 dB below carrier • Output adjustable from $5-500 \mathrm{mV}$ at 500 hms • Operates on 12 Vdc @ $1 / 2$ Amp • Available for immediate delivery - $\$ 399.95$ plus shipping - Add-on accessories available to extend freq range, add infinite resolution, $A M$, and a precision 120 dB attenuator - Call or write for details - Phone in your order for fast COD shipment.

VANGUARD LABS

196-23 Jamaica Ave., Hollis, NY 11423 Phone: (212) 468-2720 211

VIC $20 \&$ C64 USERS A Powerful MSO!

Now you can own your own MSO! Your computer and any interface plus our menu driven, machine language Radio Bulletin Board Service software will give you and your MSO users a powerful mailbox with the following features:

- Read. write \& delete messages
- List a directory of all messages
- Scan directory of messages
- User selectable baud rates
- Automatic date and time keeping
- Automatic time out feature
- Automatic ID of your call
- Automatic indication of memory used
- 3 modes . MSO. SYSOP \& Direct RTTY
- Works with or without disk drive
- Specifically for VIC 20 (8 k min) or C64 Software package includes - manual. program diskette or cassette and interface cable
$\mathbf{\$ 4 9 . 9 5}$ plus $\mathbf{\$ 1 . 9 0}$ postage
(Kantronics interfaces add $\$ 5.00$)
Ph. (818) 957-7550

Vid-Com

- 213

Communication
3131 Foothill Blvd. \#H - La Crescenta, CA 91214

FCC LOWERS REQUIREMENTS GET YOUR RADIO TELEPHONE LICENSE

FCC changes make obtaining a High-level Radio Telephone License much easier now. Eliminate unnecessary study with our shortcuts and easy to follow study material. Obtaining the General Radio Telephone License can be a snap! Sample exams. also section covering Radar Endorsement.
A small investment for a high-paying career in electronics.
$\$ 19.95$ ppd.
Satisfaction Guaranteed
SPI-RO DISTRIBUTING
P.O. Box 1538 マ 20

Hendersonville, N. C. 28793
We now accept MC and VISA
Give card $\%$, exp. date, and signature

products
and battery back-up of the CMOS memory retains buffer contents and last-used parameters in the event of power failure or the keyboard's being turned off. Three different, four-level code practice modes are built in, as are turn-on circuit diagnostics, a sidetone oscillator, and speaker.

For more details, contact Heath Company, Benton Harbor, Michigan 49022.

Circle 1309 on Reader Service Card.

UHF fixed station antenna

The new G6-440 UHF antenna for fixed station or repeater use was recently announced by Hustler.

Based on the popular G7-144 VHF antenna, the new UHF antenna delivers 6 dBd gain through the use of stacked $5 / 8$-wave brass radiator sections, series phased, and sealed in an ultralight, tapered fiberglass radome.

Mechanical integrity is assured with the use of aluminum and stainless steel components. Coaxial cable termination is accomplished through the use of a hub-mounted, moisture resistant, "N" type connector.

The antenna is factory tuned at 440 MHz , with a typical VSWR of $1.15: 1$, and exhibits an 18 MHz bandwidth under $2: 1$. Its overall height is 88 inches, with a wind survival rating of 120 MPH .

For further information, contact Hustler, Inc., 3275 North B Avenue, Kissimmee, Florida 32758.

Circle /315 on Readef Service Card.

Touch-Tone decoder and encoder/decoder

Midian Electronics, Inc. has introduced the TTD-3 and TTC-3. The TTD-3 is priced at $\$ 59.95$, and the TTC- 3 is priced at $\$ 85$. The TTD- 3 is a 1 to 4 -digit diode snip programmable anti-falsing DTMF decoder. It can decode, A,B,D,D,* H, $1-0$. It has a $2400-\mathrm{Hz}$ ring tone, momentary horn output, latchng call light, and positive or negative squelch output. The unit measures 1.17×1.15 $\times 0.3$ inches.

The TTC-3 is a combination encoder/decoder with all the features of the TTD- 3 plus push-totalk, sidetone audio to the speaker and adjustable audio output, and all the 16 standard Bell System touch tones.

For additional information, contact Midian Electronics, Inc., 2302 East 22nd Street, Tucson Arizona 85713.

Circle 1314 on Reader Service Card.

code and theory tapes in stereo

Gordon West's Radio School offers over 30 individual 1-1/2 hour long code speed-building courses on stereo cassettes. There are also over 20 individual tapes covering theory for examination preparation, and 10 tapes dealing with Amateur Radio equipment installation techniques.

West's stereo technique allows students to play the tapes in a variety of ways to satisfy their individual learning requirements. Any tape player with a balance control can be used to fade out the voice channel as needed. Played on a monaural tape recorder, the student hears both channels.

Radio School also offers complete 4-cassette theory courses covering the new FCC questions from Novice to Extra class. These theory courses feature the "live sounds" of Amateur Radio operating to assist the student in recognizing some of the topics discussed on the tape.

All Gordon West Radio School tapes are available directly from Radio School, 2414 College Drive, Costa Mesa, California 92626.

Circle /316 on Reader Service Card.

all-plastic potentiometers

Mouser Electronics has announced the release of a new hi-rel potentiometer said to have been designed for safety.

The 31 N series pots are suitable for applications requiring both high voltage and high insulation resistance. Both body and shaft are made of flame-retardant nylon with a conductive plastic element. These pots can handle a working voltage up tò 315 VAC (630 VAC peak) with a minimum insulation resistance of 1000 megohms.

They are linear taper and are power rated at $1 / 4$ watts at 20 degrees C. Resistance tolerance is 20 percent and terminal resistance is a maximum of 5 ohms. Insulation voltage is 450 VDC. The pots measure $0.79 \times 0.6 \times 0.68$ inch shaft.

Production quantities are available from stock in values from 1 K to 1 M and come complete

FINEST WOODPECKER BLANKER AVAILABLE

AUTO - TRAK
FOR HANDS OFF OPERATION
ELIMINATES 2 WOODPECKERS AT ONCE

SASEFOR DATA SHEET

5717 NE 56TH SEATTLE, WA 98105 (206) 641.7461

MADISON
 Electronics Supply 1508 McKinney Houston, lexas 77010 Call for Quotes 713-658-0268

COMPUTER CORNER

This month Madison Electronics Supply has two package specials for those of you that are inierested in getting into The worid of RITY/AMTOR. Both of these packages include full function Morse Baudot. ASCll and AMTOR modes of operation.
Package 1 includes a self-contained unit that plugs directly Into your Commodore 64 and a spectrum analyzer fype tuning indicator that is as good as a scope for funing.
AEA MR64/2 TU \& Softwear AEA TH-1 funing indicator AEA AC-1 12VDC power supply One Mic Connector 4 or 8 pin
retall 239.95

PACKAGE SPECIALI $\$ 289.95$
retail 19.95 retail 19.95 TOTAL $\$ 384.80$

2 is the highly acciaimed CR1 TU with the age for the more serious operator.
AEA CR1 TU
AEA MBA-TOR Software for C-64 AEA Tl-1 Tuning Indicator One Mic Connector 4 or 8 pin

PACKAGE SPECIALI $\$ 369.95$ YOU SAVE $\$ \$ \$$ ANTENNAS

1-800-231-3057

WARC for FT-101/901

Modernize any model of the original FT. 101 Series by adding all three WARC bands for RX and FX !

- Use 10 MHz now; be ready for the others.
- Increase resale value of your rig.
- Easy installation, detailed instructions.
- Includes all crystals, relays, etc.
- Tested, fool-proof design for all but 'ZD.

FT. 101 WARC Kit \#4N ONLY $\$ 25$.
FT- 901 WARC Kit \#4J (30M only) ONLY $\$ 10$. Shipping $\$ 3$ (Air \$5). Florida sales tax 5%.

GO FOX TANGO - TO BE SURE!

Order by Mail

 or Telephone- 148

For other great Yaesu modifications get the top-rated FT Newsletter. Still only \$8 per calendar year (US), \$9 Canada, \$12 Overseas.

FOX TANGO CORPORATION Box 15944 H, W. Palm Beach, FL 33416 (305) 683.9587

THE WIREMAN
FOR ALL AMATEUR WIRE \& CABLE
Divect Pricing Fast Service

1-800-433-WIRE

CB to to LARSENANTENNAS UNADILLA

VISA MASTERCARD COD CASH
1-800-433-9473

6169244561 (Mich \& Ragchew)

CERTIFIED COMMUNICATIONS 4138 SOUTH FERRIS, FREMONT, MICHIGAN 49412

with hardware. Prices are as low as 99 cents in quantities of 500 .

For further information, contact Mouser Elec tronics, 11433 Woodside Avenue, Santee, Cali fornia 92071.

Circle 1317 on Reader Service Card.

receiver guard

Design Electronics Ohio (DEO) has announced the Receiver Guard 2000, a solid-state, RF-triggered protection device that prevents high power RF from damaging modern solid-state front ends.

The unit may be installed in any receiver antenna line, or with slight modifications, in the transverter jack of several popular transceivers. Once installed, the unit is totally passive until RF voltage on the antenna exceeds 1 volt (1000 millivolts). At this threshold voltage, the unit begins to activate, shunting excess voltage to ground while automatically increasing the resistance in the line to the receiver. This automatic increase in receiver line resistance continues until a fusible link inside the Receiver Guard 2000 opens.

Many Amateur Radio applications are possible. This unit is suited for use in the multi-transmitter contest station where great amounts of RF on several frequencies are present. The Radio Amateur who lives near a fellow ham operating at the 1500 -watt level will find the Receiver Guard 2000 to be a great insurance policy. Field day operators can now use their own rigs without fear of losing their front ends. Those Amateurs who use listening antennas (loops, beverages, etc.) can install the unit in the coax line from the listening antennas without fear of destroying the front end of their own radio when transmitting.

SWL'ers, who as a rule use very low Q antennas, need also to protect their expensive receiver front ends. With the ever-increasing density of RF signals, SWLers who do not protect their receivers from high power RF transmitters are clearly at risk.

The Receiver Guard 2000 has less than 0.3 dB insertion loss between 1.8 and 300 MHz . The unit is attractively packaged in a black die-cast
aluminum RF-tight box measuring 3.5×1.25 $\times 1.5$ inches. Three models are available: Model P, the standard protection unit with RCA type phono plugs, is priced at $\$ 29.95$. Model U, the standard protection unit with UHF (SO 239) fit tings, is also priced at $\$ 29.95$. Model CTT, the standard protection unit (Model U) with the addition of an Alpha Delta Transi-Trap ${ }^{\text {TM }}$ LT Lightning Protector is available only with UHF fittings, at $\$ 49.95$. (Add $\$ 4$ for shipping and handling to all prices.)

For further information, contact Design Electronics Ohio, 4925 South Hamilton Road, Groveport, Ohio 34125

Circle $/ 318$ on Reader Service Card.

multimode transceiver

ICOM has announced the IC-471H 430.450 MHz transceiver with 75 -watt transmitter and extremely low-noise PLL circuitry.

Standard features include $430-450 \mathrm{MHz}$ coverage; 75 watts RF output; FM, SSB, CW modes; 32 full-function tunable memories storing frequency, offset, offset direction and tones; and 32 built-in subaudible tones, all front-panel selectable. 10 Hz tuning increments, 1 MHz up/down buttons, scanning of memories, memory modes, or band, and all-mode squelch are all also standard. The compact unit features an easy-to-read fluorescent display.

The IC. 471 H uses 12 volt DC power and may be supplied from an external source (IC-PS 15 or IC-PS30, optional) or from an optional internal AC power supply (IC-PS35). Other optional features include an IC-AG35 switchable mastmounted preamplifier, UT15S encoder/decoder (PL encoder is standard), IC CT10 computer interface, IC-EX309 computer interface connector and IC-EX310 voice synthesizer. The suggest ed retail price is $\$ 1099$.

For more information, contact ICOM, 2112 116th Ave., N.E., Bellevue, Washington 98004. Circle 1319 on Reader Service Card.

digital VOM

The new Model 3550-A hand-held, pushbutton operated, digital VOM just introduced by Triplett Corporation offers ± 0.25 percent accuracy on all DC ranges, plus 10 amp test capability and audible continuity tone. Designed for 2000 hours of battery life, the Model 3550 A is suited for in-field measurements on industrial, commercial or consumer electronic/electrical equipment.

HY-GAIN

TH3RJS	\$169
TH5MK2S	\$355
TH7BX3S	\$410
EXPLORER 14	\$269
14AVQB	\$59
18AVT/WBS	\$95
V2S	\$37
V3	\$40
V4	\$49
66BS	\$109
CD45 II	\$125
HAM IV	\$199
T2X	\$245
ALLIANCE HD73	\$99

HY-GAIN TOWERS

HG37SS	\$629
HG50MT2	\$739
HG52SS	\$899
HG54HD	\$1449
HG70HD	\$2269
KLM	
KT34A	\$329
KT34XA	\$479
40M-2	\$290
2M-13LBA	\$77
2M-14C	\$85
435-18C	\$59
432-16LB	\$65

BUTTERNUT AEA CAIL

HF6V
 $\$ 109$

CUSHCRAFT

	$\mathbf{\$}$
A-3	$\$ 209$
A-4	$\$ 279$
40-2CD	$\$ 279$
R-3	$\$ 265$
AV5	$\$ 98$
$32 \cdot 19$	$\$ 91$
214B-FB	$\$ 77$
ARX-2B	$\$ 37$
A144-11	$\$ 46$

BC 350	$\$ 375.00$
BC 300	$\$ 339.00$
BC 20/20	$\$ 279.00$
BC 210XL	$\$ 219.00$
BC 200	$\$ 169.00$
BC 180	$\$ 159.00$
BC 260	$\$ 249.00$
BC 100	$\$ 279.00$
BC WA	$\$ 34.95$

LARSEN CALL NEW ALL SOFTWARE $\mathbf{\$ 3 9 . 9 5}$

HUSTLER CALL

2900 N.W. VIVION RD. / KANSAS CITY, MISSOURI 64150 / 816-741-8118

the Pipo touch tone'

 ENCODERAn ultra high quality encoder for absolute reliability and function. Positive touch key action with non-malfunction gold contacts, totally serviceable and self-contained. Easy level control, no frequency drift, operates in temp-
 eratures from -15° to 160°. Supplied with instructions, schematic, template and hardware. Call or write for free catalog, dealer's list and information guide.
PP-1 \$55./PP-1K, S.P.S.T. Adj. Relay \$62. P-3, 12 or 16 Key,for custom
PP-2, \$59./PP-2K S.P.S.T. Adj. Relay \$66. installation, flush mount, 3 different patented
M Series = Detached frame for irreg, install. circuits available-request P-3 info. -atat
Mail
$\begin{aligned} & \text { Mrder } \\ & \text { Or: }\end{aligned}$
$\begin{aligned} & \text { Emphasis is on Quality \& Reliability }\end{aligned}$
$\begin{aligned} & \text { (A) P.O. Box 3435 } \\ & \text { Hollywood. California } 90028 \\ & (213) 852-1515\end{aligned}$

RECEIVER GUARD 2000

TOTAL PROTECTION AGAINST RF BURN OUT OF SOLID STATE FRONT ENDS installs easily between the antenna and receiver input. When RF voltage to the receiver line exceeds 1 volt, the unit activates by shunting the over voltage to ground and increasing the resistance in the receiver line. If over voltage exceeds design parameters, an internal fuse lamp opens (easy to replace). Perfect for contest stations, field day operations, areas saturated with broadcast services and those who use separate transmit and receive antennas. Less than .3 dB insertion loss between 1.8 and 30 MHz .

3 Models available

P	with phone	\$29.95
U	(with so 239)	\$29.95
T	T (with SO 239 and Alpha Delta Transitrap tor RF and Transent protection	\$49.95

5717 NE 56TH SEATTLE. WA 98105 (206) $641.7461 \sim 106$

NAMPA SATELLITE SYSTEMS

312 12th Ave. So. Nampa, Idaho 83651 (208) 466-6727

1-800-654-0795
IN HOUSTON, TEXAS (713) 957-5140 1-800-521-8300

NSS PB3 MOTOR DRIVE

CONTROL CONSOLE ONLY $\$ 150.00$ CONTROL CONSOLE ONLY (in kit form) $\$ 99.00$

- PLUG-IN CONTROL BOARD
- 3 DIGIT LED READOUT
- MANUAL EAST-WEST CONTROL
- RESET TO -000
- 36 VOLT DC MOTOR
- 125^{\prime} CONTROL CABLE
- ZINC PLATED FINISH

COMPLETE UNIT $\$ 250.00$

Control your dish from your living room . . . rain or shine.

products

The tester features a new $2 \mathrm{amp}, 600$ volt fuse arrangement plus safety-designed test leads for optimum user protection.

Measuring only $3-1 / 2 \times 6-3 / 4 \times 1-1 / 2$ inches and weighing only 10 ounces, the Model 3550-A has a half-inch, 3-1/2 digit LCD with polarity and low battery indication. The new $2 \mathrm{amp}, 600$-volt fuse arrangement prevents nuisance fuse blows in volt and ohm ranges. Overrange and autopolarity are included.

Handy pushbuttons permit rapid selection of 6 tester functions. Ranges include: $0-1000$ VDC in five ranges; 0-750 VAC in five ranges; 0-10 amps DC or AC current in six ranges including a 200 microamp range; $0-20$ megohms in six ranges. Pushbutton selectable, hi-low power ohms and resistance diode check is included. Audible continuity is available on the 200 ohm range in the HIV mode of ohms operation.

The molded black, high-impact thermoplastic case has a sure-grip "finger tread" surface finish. An optional tilt stand facilitates bench use and easy external battery and fuse access. Other optional accessories include vinyl carrying case, battery cover, high-voltage probe, external shunt, temperature probe, clamp-on AC ammeter and line separator.

Priced at $\$ 85.00$, the new Model $3550-\mathrm{A}$ is warranteed for one year and is furnished complete with 9 volt (NEDA 1604) battery, 42 inch test leads, screw-on alligator clips, and a comprehensive instruction manual.

For further information, contact Triplett Corporation, One Triplett Drive, Bluffton, Ohio 45817.

Circle 1320 on Reader Service Card.

Compampatile Television Systems

MD9 - 9' Dish

YM1000

YM400,

NSS PB3 Motor Drive,

Consists of:

WILSON YM 1000 SYSTEM

Wilson YM1000, 100° LNA, NSS Deluxe Feed, Wilson MD9 Dish, Feed Assembly, All Cables, Complete Hardware, NSS PB3 Motor Drive, and Instructions. Total \$1628

OPTIONS WITH SYSTEM
9 ft . Wilson Mesh ADD
NSS Memory Tracker ADD $\$ 100$
$\$ 100$
10 ft . Prodelin ADD $\$ 400$
il ft . Radarmesh dish ADD
$\$ 250$

WILSON YM400 SYSTEM

Consists of:
Wilson YM400, 100° LNA, NSS Deluxe Feed, Wilson MD9 Dish, Feed Assembly, All Cables, Complete Hardware, NSS PB3 Motor Drive, and Instructions . Total \$1393

OPTIONS WITH SYSTEM
9 ft . Wilson Mesh ADD
NSS Memory Tracker ADD
10 ft . Prodelin ADD $\$ 400$
11 ft . Radarmesh dish ADD

Call Toll Free

Nampa, Idaho 1-800-654-0795

Houston, Texas
1-800-521-8300

RATES Noncommercial ads $10 \mathbb{4}$ per word； commercial ads $60 \$$ per word both payable in advance．No cash discounts or agency com－ missions allowed．

HAMFESTS Sponsored by non－profit or－ ganizations receive one free Flea Market ad （subject to our editing）on a space available basis only．Repeat insertions of hamfest ads pay the non－commercial rate．

COPY No special layout or arrangements available．Material should be typewritten or clearly printed（not all capitals）and must in－ clude full name and address．We reserve the right to reject unsuitable copy．Ham Radio can－ not check each advertiser and thus cannot be held responsible for claims made．Liability for correctness of material limited to corrected ad in next available issue．

DEADLINE 15th of second preceding month．
SEND MATERIAL TO：Flea Market，Ham Radio，Greenville，N．H． 03048.

OSLs \＆RUBBER STAMPS－Top Quality！Card Samples and Stamp info－ 504 －Ebbert Graphics 5R，Box 70 ．Wester－ ville，Ohio 43081.

NH ALL－BAND QTH．South slope Crotched Mountain，Green－ field．Lodge and bunkhouse， 920^{\prime} elevation，1200＇from high－ way and power mains， 59 acres privacy，paved access，base for future tennis court or heliport．$\$ 95.000$＂ CW ＂Farr． W1WMK，Broker，Greenfield，NH．（603）547－2053．
＂KT5S＂Super DX sloper 80－10M only \＄59．95．＂KT5B＂Multi－ band dipole $160-10 \mathrm{M}$ only $\$ 59.952 \mathrm{KW}$ roller inductor（28uh） $\$ 4750$ ．Weather boot kit（PL－259）$\$ 8.95 \mathrm{pp}$ ．Much more！Info available Kilo－Tec，PO Box 1001．Oakview．CA 93022 ．Tel． 805－646－9645．

IBM－PC RTTY ASCII／BAUDOT／CW send and receive．Split screen，buffers and features beaucoup．SASE to：E．Alline． 773 Rosa，Metairie，LA 70005

WANTED：Old RCA．Western Electric，łubes，speakers，amps． （713）728－4343，Corb， 11122 Atwell．Houston．Texas 77096.
ENJOY SATELLITE TELEVISION．Save money with easy， guaranteed．do－lt－yourself antenna plans／kits．Electronic knowledge not necessary．Send $\$ 1.00$ for catalog or $\$ 8.95$ for ＂Consumer Guide to Satellite Television＂GFI－41，Box 9808 ， Missoula．MT 59807.

CUSTOM EMBROIDERED EMBLEMS－Enameled pins，your design，low minimum，excellent quality，low prices，free book－ let．A．T．Patch Co．，Dept．65，Littleton，NH 03561．（603） 444－3423
THE US OSL SERVICE IS FREE．Send your OSLs to USA Hams via USOS／KM7Z，P．O．Box 814，Mulino，OR 97042. Send SASE for return QSLs and info．

TRAVEL－PAK QSL KIT－Converts post cards，photos to QSLs．Stamp brings circular．Samco，Box 203－c，Wynantskill， New York 12198.

AMATEUR RADIO＇S NEWSPAPER－WORLDRADIO． Latest info．One year subscription（ 12 issues）only $\$ 10$ ．World－ radio，2120－B－28th Street，Sacramento，CA 95818.
RADIO ITEMS before 1930 wanted．Buying battery operated radios，horn and cone speakers，radio tubes and parts，radio hiteralure－books，catalogs，magazines，radio advertising signs，posters．Gary Schneider， 6848 Commonwealth Blvd．， Parma Heights，Ohio 44130.
HELP！Have Model EBC－144 Jr．made by Emergency Beacon Corp．Need logics，schematics and／or maintenance manuals for this rig．Frank，WB4CIZ．
DIGITAL AUTOMATIC DISPLAYS for FT－101＇s TS－520＇s，and most others．Six $1 / 2^{\prime \prime}$ digits．Write for intormation Grand Sys－ tems，P．O．Box 2171，Blaine．Washington 98230．（604） 530－4551．
RUBBER STAMPS： 3 lines $\$ 4.50$ PPD．Send check or MO to G．L．Pierce， 5521 Birkdale Way．San Diego，CA 92117. SASE brings information．
NOTICE：Your ads seen daily on our Computer Bulletin Board． Very low rates．Ads run for 4 weeks．201－962－4956 to see ads． SASE for full details．Narwid BBS， 61 Bellot Road，Ringwood， NJ 07456.
－THE SWAP LIST＂has bargains galore．Subscribe now！ 6 months for $\$ 4.00 ; 1$ year only $\$ 6.50$ ．The Swap List，Box $988-\mathrm{H}$ ， Evergreen，CO 80439.
SCHEMATICS：Radio receivers 1920／60＇s．Send name brand， model，SASE．Scaramella，P．O．Box 1，Woonsocket．RI 02895－0001．
FOR SALE：Swan 350 transceiver w／ps $\$ 250$ ．SA2040 antenna tuner $\$ 125$ ．QF－1A audio filter $\$ 50$ ．Kantronics CW／RTTY in－ terface for vic－20 with programs board＋cables $\$ 135$ ．Ship－ ping included．Send money order．Package price $\$ 500$ ．Write Jim Howell，KA4EBW， 18 Dan St．，Salisbury，NC 28144．（704） $637-0313$ evenings．

3 KW ANTENNA TUNER WM．Nye MB－IV－01 $\$ 349.00$ ．New box unopened．Memary keyer SKM－001 \＄165．00．W4LNI， 3016 Cordelia，Tampa，FL 33607 ．（813） $876-5531$.
REPAIR，ALIGNMENT，calibration Collins written estimates $\$ 25$ ：non Collins $\$ 50$ ．K1MAN（207）495－2215．
INTERNATIONAL MORSE CODE TRAINER for your Com－ modore or unexpanded Vic Computer．Menu－driven＋ documentation＋random tests＋adjustable speed（1－25 WPM） and pitch＋enters characters and hear the Morse sound． 64 version has additional features： 9 detailed lessons＋user－defined tests + straight key simulator． 20 version $\$ 6.00$ tape only． 64 version $\$ 14.95$ tape or diskette．AC3L Software，Box 7 ．New Derry，PA 15671.
CHASSIS and cabinet kits SASE K3IWK
1985 CALLBOOKS：Prepublication orders this month．Either $\$ 1600$ Both $\$ 2900$ ．＂Low／Medium Frequency Scrapbook＂， Ken Cornell，4th edition，first printing，$\$ 7,2 / \$ 12$ ，dealers 10／\＄40．Postpaid 50 Century Prints， 6059 Essex Street，River－ side，CA 92504．（714）687－5910
NATIONAL RADIO CO equipment manuats price list SASE Dust covers，NCX 3 or NCX 5 plus NCX A，pair $\$ 8.95$ PP．Max－ imilian Fuchs， 11 Plymouth Lane，Swampscott．MA 01907.

WANTED：RTTY／CW Soltware for Osborne－I．Tom Yocom，
21 Bayberry Road，Acton，MA 01720.
ELECTRON TUBES：Receiving，transmitting，microwave all types available．Large stock．Next day delivery most cases．Daily Electronics， 14126 Willow Lane，Westminster．CA 92683．（714）894． 1368.
HAVE A－M CAPABILITY？Join S．P．A．M．（Society for Promo－ tion A－M）．Membership is free．Write S．P A．M．C／o F．Dunlap， 14113 Stoneshire．Houston．TX 77060.

WANTED：Cash paid for used speed radar equipment．Write or call：Brian R．Esterman，PO Box 8141，Northfield，Illinois 60093．（312） $251-8901$.
SELL：1850A Iconoscope，B．O．Filament．Radiotron 201A， brass ring base with short prongs．Raytheon 01A（1934）．Heath model IM5238 AC voltmeter．Hallicratters S38－C．G．E．table radio－M． 63 mfd by RCA．W．E． $417 \mathrm{~A}, 418$ and other tubes． Stan，W5TPS．（501）636－6404．
s\＄s SUPER SAVINGS on electronics parts，components． supplies，and computer accessories．Free 40－page catalog for SASE．Get on our mailing list．BCD Electro，PO Box 830119, flichardson，TX 75083．Or call（214）690－1102．

RCA Volt－Ohmysi WV－97A $\$ 30$ ．WV－77C $\$ 20$ ．Old HRO coil set $\$ 70$ ．Beckman PH meter $\$ 25$ ．K6KZT， 2255 Alexander， Los Osos，CA 93402.

WANTED：Old microphones，remote mixers other mic related items．All pre－1935．Box Paquette， 107 E．National Avenue， Milwaukee，WI 53204.

PORTABLE 2－meter Quads and J－Verticals．Write Radio Engineers， 3941 Mt．Brundage Avenue，San Diego，CA 92111.
RECONDITIONED TEST EQÜPMENT $\$ 1,00$ for catalog． Walter， 2697 Nickel，San Pablo，CA 94806.

FOX－TANGO Newsletters－Since 1972，the prime source of modifications，improvements，and repair of Yaesu gear，free to Club members．Calendar year dues still only $\$ 8$ U．S．，$\$ 9$ Canada，$\$ 12$ elsewhere．Includes five year cumulative index by model numbers，or send $\$ 1$ for index and sample Newslet－ ter．Fox Tango Club，Box 15944，W．Paim Beach، FL 33416.
RTTY－EXCLUSIVELY for the Amateur Teleprinter．One year $\$ 7.00$ ．Beginners RTTY Handbook $\$ 8.00$ includes journal index．P．O．Box RY，Cardiff，CA 92007.

IMRA International Mission Radio Assn．helps missioners－ equipment loaned；weekday net， $14.280 \mathrm{MHz}, 2-3$ PM Eastern． Br．Frey， 1 Pryer Manor Rd．，Larchmont，NY 10538.
＂HAMS FOR CHAIST．＂Reach other Hams with a gospel tract sure to please Clyde Stanfield，WA6HEG， 1570 N．Albright， Upland，CA 91786.

TENNATEST－Antenna noise bridge－out－performs others， accurate，costs less，satisfaction guaranteed，$\$ 41.00$ ．Send stamp for details．W8URR， 1025 Wildwood Road，Quincy，MI 49082.

WANTED：Early Hallicrafter＂Skyriders＂and＂Super Sky－ riders＂with silver panels，also＂Skyrider Commercial＇，early transmitters such as HT－1，HT－2，HT－8，and other Hallicrafter gear，parts，accessories，manuals．Chuck Dachis，WD5EOG， The Hallicratter Collector， 4500 Russell Drive，Austin，Texas 78745.

VERY in－ter－est－ing！Nexi 4 issues \＄2．Ham Trader＂Yellow Sheets＇＂．POB356，Wheaton，IL 60189.

Coming Events ACTIVITIES ＂Places to go．．．＂

RADIO EXPO＇ 84 sponsored by the Chicago FM Club，Satur－ day and Sunday，September 22 and 23，Lake County Fair－ grounds，Rt． $120 \& 45$ ，Grayslake，IL．Major manufacturers and gigantic outdoor flea market．Flea market opens 6 AM． Exhibits 9 AM．Free parking and overnight camping．Aeserved indoor flea market $\$ 5 /$ day．Tickets $\$ 3.00$ advance，$\$ 4.00$ at gate，good for both days．Seminars，technical talks and ladies＇ programs．Talk in on 146．16／76．SASE to Radio Expo＇84，Box 1532．Evanston，IL 60204 or（312）582－6923．
ONTARIO，CANADA：The Radio Society of Ontario＇s 16th annual Convention，October 5， 6 and 7，Westin Hotel，Ottawa． Friday night eyeball and dance．Saturday and Sunday tech－ nical sessions，demonstrations and commercial exhibits．Sat－ urday night banquet and dance．For information：RSO Con－ vention Committee，PO Box 15806 Station＂F＂，Ottawa， Ontario K2C 3S7．

MARYland：The Columbia Amateur Radio Association＇s 8th annual Hamfest，Howard County Fairgrounds，Sunday，Octo－ ber 7.8 AM to $3: 30 \mathrm{PM}$ ．Admission $\$ 3.00$ ．XYLs and children free．Reserved tables $\$ 6.00$ by September $30 . \$ 8.00$ after September 30．Outdoor tailgating $\$ 3.00$ ．Indoor tailgating $\$ 6.00$ ．Food availabie．Talk in on 147．735／135，146．52／52．For tables and information：Mike Vore，W3CCV， 9098 Lambskin Lane，Columbia，MD 21045．992－4953．

INDIANA：The 5 th annual Grant County ARC Hamfest，Satur－ day，September 8．McCarthy Hall，St．Paul＇s Catholic Church． Marion．Doors open 8 AM．Donation $\$ 2.00$ advance，$\$ 3.00$ gate．Refreshments，free parking． 8 ft ．tables $\$ 2.00$ ．Talk in on 146．19／79 and 146.52 simplex．For information／tickets SASE to：WD9EOI，Jim Allman． 1108 Spencer Avenue． Marion，IN 46952.

PENNSYLVANIA：The Mt．Airy VHF ARC（Pack Rats）invites all Amateurs and friends to the 8th annual Mid－Atlantic VHF Conference，Saturday．October 6，Warrington Motor Lodge， Rt．611，Warrington．And the 13th Pack Rat Hamarama，Sun－ day，October 7．Bucks County Drive－in Theater，Rt．611，War－ rington．Flea Market admission $\$ 3.00$ ．Selling spaces $\$ 5.00$ each．Gates open 6 AM．Rain or Shine．Bring your own tables．

Advance registration for the Conference including Hamarama admission \$4.00. Send to Hamarama '84, P.O. Box 311, Southampton, PA 18966 or Lee A. Cohen, K3MXM (215) 635-4942.

NEW YOAK: The EImira Amateur Radio Association's 9th annual International Hamfest, Saturday, September 29, Chemung County Fairgrounds. Gates open at 6 AM until 5 PM. Outdoor flea market. Indoor dealer displays of new equipment. Breakfast and lunch available on premises. Tickets available at the gate or in advance from Steve Zokkosky. 118 East 8th St. Elmira Heights, NY 14903.

GEORGIA: The 11th annual Lanierland ARC Hamfest. Sunday, September 23, 9 AM in the Holiday Hall of Holiday Inn. Gainesville. Flea market, left foot CW contest and many other activities. Free tables and inside display area for dealers reserving in advance. Doors open 8 AM for setup. Talk in on 146.07/.67. For information: Phil Loveless, KC4UC, 3574 Thompson Bend, Gainesville, GA 30506. (404) 532-9160.

TEXAS: Tornado Alley Hamfest. sponsored by the Wichita Amateur Fadio Sociely, September 22 and 23 , National Guard Armory, Wichita Falls. Saturday 9 to 5 ; Sunday 9 to 2. Dealer displays and demonstrations. Large inside flea market. Ladies' activities. Nearby museums, art center and shopping. Pre-registration $\$ 4.00$. $\$ 5.00$ at the door. Air Force MARS, OCWA meeting, QLF contest, homebrew contest and more. Talk in on 146.34/94, 147.75/15. 449.30/444.30 and 449.20/444.20. For information: Wichita Amateur Radio Society, P.O. Box 4363. Wichita Falls, TX 76308.
georgia: The Amateur Radio Club of Augusta'a annual Hamfest. Sunday, September 16, Julian Smith Casino Park. Refreshments, Bar-B-Q, entertainment. Dealers wetcome. Flea Market. Tickets $\$ 1.00 ; 6 / \$ 5.00 ; 13 / \$ 10.00$. Talk in on 145.49-600. Hospitality room Saturday evening, Ramada Inn West, Washington Road, Rm 108-110. For information SASE to: D.F. Miller, 4505 Shawnee Rd., Martinez. GA 30907. (404) 850.3700 .

PENNSYLVANIA: The Skyview Radio Society's annual Hamfest, Sunday, September 16, noon to 4 PM, Club Grounds, Turkey Ridge Road, New Kensington. Registration $\$ 2.00$. Vendors $\$ 4.00$.

NEW MEXICO: Northern New Mexico Hamtest, Sunday, October 7, 8 AM to 3 PM, Terrero Group Shelter along the Pecos River east of Santa Fe. Tailgate flea market, meetings, fishing, picnicking, family fun. Admission $\$ 3$. Children $\$ 1.50$ includes hot dogs, chips and free Saturday night camping. Talk in on local repeaters and 52 simplex. For information SASE to Northern New Mexico ARC, clo Bob, N5EPA, Rt. 3, Box 95-15, Santa Fe, NM 87501 or call on 3.939 MHz at 0100 UTC

ILLINOIS: The Peoria Area Amateur Radio Club's Superfest '84. September 15 and 16. Exposition Gardens. W. Northmoore Rd. Peoria. Gates open 6 AM, Commercial Building at 9 AM . Admission $\$ 3.00$ advance, $\$ 4.00$ gate. Children under 12 free. Amateur Radio and computer displays, huge flea market, free bus 10 Northwoods Mall on Sunday. Full camping facilities on grounds. Saturday night intormal get-together at Heritage House Smorgasboard. 8209 N. Mt. Hawley Rd.. Peoria. Talk in W9UVI on 146 16/76. For information and reservations SASE to Superfest '84, P.O. Box 3461, Peoria, IL 61614.

NEW YORK: Electronics Fair and Giant Flea Market, sponsored by the Yonkers ARC, Sunday, October 7.9 AM to 4 PM, rain or shine, Yonkers Municipal Parking Garage, Corner of Nepperhan Avenue and New Main Street. All day demonstrations; Amateur Radio, computers, electric car, satellite TV, SSTV and more Giant auction 2 PM. Refreshments, free parking, facilities. Free coffee all day. Admission $\$ 2.00$. Children under 12 free. Sellers $\$ 6.00$ per space admits one. Bring ables. For information: YARC, 53 Hayward Street, Yonkers, NY 10704. (914) 969-1053. Talk in on 146.265T-146865-A or 52 direct. CB channel 4.
VIRGINIA: ARRL Roanoke Division Convention and 9th annual Amateur Radio-Computer Fair, Saturday and Sunday, September 22 and 23, Virginia Beach Pavilion. 9 AM to 5 PM. Displays, forums, computer equipment, giant flea market. ladies' activities, movies for the kids. Admission $\$ 4.00$ advance (good for both days). $\$ 5.00$ at door. Flea market tables $\$ 5.00$ one day, $\$ 8.00$ both days. Plan a famity vacation at beautiful Virginia Beach. Visit the Waterside Festival Marketplace in Norfolk with its specialty shops and restaurants. For information/tickets: Jim Harrison, N4NV, 1234 Little Bay Avenue, Norfoik, VA 23503. (804) 587-1695.

CONNECTICUT: The Natchaug Amateur Radio Association's annual Giant Flea Market September 23, Elks Home, 198 Pleasant Street. Willimantic. Starts 9 AM. Dealers 8 AM. Admission $\$ 2.00$. Under 16 free. Advanced reserved tables $\$ 5.00$. \$7.00 at door. Plenty of food and drink. Talk in on 52 direct and $147.30 / 90$ repeater. For information: Ed Sadeski. KA1HR, 49 Circle Drive, Willimantic, CT 06226. (203) 456-7029 after 4 PM

NEW HAMPSHIRE: The Connecticut Valley FM Association's 8th annual Hamfest and Flea Market. September 16, King Ridge Ski Area, Sutton. 9 AM to 5 PM , rain or shine. Admis.
sion $\$ 2.00$. Dealers and Hea market $\$ 3.00$ per tailgate or table Food available on premises. Overnight camping for selfcontained units only. No hookups. Talk in on 146.16/76 or 146.52 simplex.

KENTUCKY: The 14th annual Greater Louisville Hamfest and Great Lakes Division Convention, Saturday and Sunday, Sep Great Lakes Division Convention, Saturday and Sunday, Sep-
tember 29 and 30, Kentucky Fair and Exposition Center. 8 AM to 5 PM both days. Air-conditioned indoor exhibitors' area and flea market. Meetings and forums. Hotels across from Hamfest site. Camping available on grounds. For information: Greater Louisville Hamfest Association, P.O. Box 34444, Louisville, KY 40232. (502) 368-6657

ALABAMA: Hospitality Hamfest sponsored by the Mobile ARC, September 15 and 16. Texas Street Recreation Center ofl 1-10, Mobile. Doors open 9 AM. Admission free. Activities for ladies, swap lables, parking, good food and fellowship Talk in on $146.22 / 82$. For information: Porter Chambers, KI4FE, 3320 Emelye Drive, Mobile, AL 36609. Call 661-1160.

TENNESSEE: The fourth annual Tri-Cities Hamtest, sponsored by the Johnson City, Kingsport and Bristol Amateur Radio Clubs, Saturday. October 20. Appalachian Fairgrounds, Gray. Forums, dealers, flea market and RV hookups. For information: Tri-Cities Hamfest, PO Box 3648 CRS, Johnson City, TN 37601.

NEW YORK: Ham-O-Rama and Computertest '84, Friday evening, September 7, 6 PM to 9 PM and Saturday. September 8, 7 AM to 5 PM, Erie County Fairgrounds, Buffalo Raceway, south of Buffalo. Indoor/outdoor flea markets, new equipmen and video displays, computer demonstrations, tech and non tech programs. Chicken barbeque, awards and more. Admis sion $\$ 3.50$ advance. After August 24 and at gate $\$ 4.50$. Out side flea market $\$ 3.00$; inside $\$ 10.00$. Talk in via W2EUPIR 146.31/91 and 146.52. For information: Nelson Oldfield, 126 Greenway Blvd., Cheektowaga, NY 14225.
CALIFORNIA: The Sonoma County Radio Amateur's second annual Ham Radio Flea Market, Saturday, September 15, 8 AM to 2 PM, Sebastopol Community Center, 390 Morris St. Sebastopot, 5 miles west of Santa Rosa. Admission and parking free. Tables $\$ 6$ at door or $\$ 5$ advance. Vendor set up 7 AM. Radio clinic, exhibits, refreshments, auction at noon. Talk in on 146.13/73. For tickets/information SCRA. Box 116 Santa Rosa, CA 95404.

TENNESSEE: Memphis Hamiest, sponsored by the Mid South Amateur Radio Association. Delta Radio Club and Memphis Radio Relay Club, October 13 and 14, Pipkin Building, Memphis Fairgrounds. 8 AM to 4 PM Saturday, 9 AM to 2 PM Sun day Forums, ladies' activities and large flea market atl inside in air-conditioned comfort. Flea market tables $\$ 500$ each per day. Trailer hookups available. For information: Clayton Elam. K4FZJ, 28 No Cooper, Memphis, TN 38104 (901) 274-4418 Days. (901) $743-6714$ Nights.

NEBRASKA: 8th annual 3900 Club Hamboree and lowa State Convention, October 12 and 13, Marına Inn, South Sioux City, Sponsored by the 3900 Club and Siouxland Amateur Radio Repeater Association. Flea markel, exhibils, ladies' programs. Air Force MARS, OCWA. UHF/VHF, ARRL, DX session, Nov ice session and QSL Bureau. Friday night get-together Saturday night banquet, Dr. Beverly Mead. speaker. Flea market and convention $\$ 6.00$. Banquet $\$ 10.00(\$ 12.00$ at the door) Flea market tables $\$ 4.00$ each. All indoor tacility. Talk in on 146.37/146.97. For advance reservations: Dick Pitner 2931 Pierce, Sioux City, IA. Advance flea market reservations: A Smith, 3529 Douglas, Sioux City, IA

MASSACHUSETTS: The 1979 Amateur Radio Association is sponsoring Novice and Technician/General classes starting September 18 at the Chelsea High School, Cheisea. MA. Admittance is free. Student pays cost of materials. For more in formation: Frank, K1BPN, 1979 ARA, PO Box 171 . Chelsea MA 02150 .

NEW ENGLAND: Hosstraders' Fall Tailgate Swaplest. Saturday, October 6, sunrise to sunset at Deerfield, NH Fair grounds Admission $\$ 2$ including tailgaters. Friday night camping at nominal fee after 4 PM. No reservations. Profits benefit Boston Burns Unit of Shriners Hospital. Last Spring's dona tion $\$ 5,813.00$. For map to northeast's biggest ham flea market SASE to Norm, WA1IVB, RFD Box 57, West Baldwin, ME 04091

OPERATING EVENTS

"Things to do...

SEPTEMBER 8: The Mark Twain ARA will operate WOKEM from $1400 Z$ to 23002. Sept. 8 and 9 to celebrate the dedication of the 20,000 acre Mark Twain Lake and Clarence Canon Dam in East Central Missouri. Phone lower 25 kHz of 40,20 and 15 meter General band Novice operation in 40 meter band. For a certificate send legal SASE to Mark Twain ARA P.O. Box 56, Center, MO 63436

SEPTEMBER 8 AND 9: "WE TALK SO THEY CAN WALK." The Ararat Shrine Radio Club of Kansas City, MO, will hold a taik in to benefit the crippled children's hospitals. We will
host a multi-band, mult-operator talk in from 10 AM to 6 PM each day. First 10 kcs of general portion of ham bands and first 10 kcs of 40 meter Novice band. For any contact with club station, WAONQA, you will receive a two-color centificate with name and call. Send $\$ 1.00$, QSL card and large SASE to: J.V. Foust, KAOGBK, 5240 N. Palmer, Kansas City, MO 64119 All monies will go to the crippled children's hospitals. Your QSL card will be displayed in the Kansas City Shrine Temple Radio room.

SEPTEMBER 8 AND 9: The Radio Association of Erie (W3GV) will commemorate Admiral Perry's victory at the Battle of Lake Erie during the War of 1812. 1200Z to 01002 Saturday and 12002 to 21002 Sunday. $7.235,14.235 \mathrm{MHz}$ (phone) and $7.090,14.090 \mathrm{MHz}$ (CW/RTTY). Special OSL and historical date on the flagship Niagara via W3GV, 4572 Southern Dr., Erie, PA 16506 or W3 QSL Bureau for DX stations. Please enclose business SASE.

SEPTEMBER 15: The McHenry County Wireless Association will sponsor the 2nd annual DXpedition to Cedar Island, Fox Lake, Illinois. Operation begins at 10000 CDT on lower 20 kHz of phone portion of 40 and 15 meters. An atrractive QSL card will be supplied for all confirmed contacts

SEPTEMBER 22: The Paul Bunyan Wireless Association and the Brainerd Area Amateur Radio Club will sponsor a special event station from the site of the Paul Bunyan Festival near Brainerd, MN, from 18002 on September 22 to 2100 Z on Sep. tember 23. Lower portion of the General class phone portion of 40-10 meters. Send QSL and SASE to KCOYG for a commemorative OSL.

SEPTEMEER 22: The Alford Memorial Radio Club of Stone Mountain, Georgia, will sponsor its first annual Pig Out from 0400 to 22002 SSB phone and CW, 10 kHz above bottom of General portion of 80-10 meters. For a commemorative QSL and special certificate for contact. SASE with intormation to: Alford Memorial Radio Club, P.O. Box 1282. Stone Mountain, GA 30086.

OCTOBER 13 AND 14: Columbus Day International DX Contest in commemoration of Columbus Day, sponsored by the Miami Havana Lions Club From 1200 GMT Saturday to 2400 GMT Sunday. Any Amateur station making five contacts with official Radio Club DX member operator during the 2 days will be eligible to apply for the Miami Havana Lions Club OSL award. Exchange $\operatorname{RS}(T)$ and QTH. For this special award. send QSL's or log and $\$ 2.00$ U.S. funds or 6 IRC's to Miami Havana Lions Club, Box 674, Miami, FL 33135. At the start of the contest. October 13, 1200 GMT, members of the Contest Commiltee will read the names and assigned numbers of the official operators in the following frequencies: $28.915,21.250$, $14.250,7.230$ phone.

A FAR NET AWARD CERTIFICATE offered by the Armored Force Amateur Radio Net. Non-member stations qualification requirements: For basic award, non-member stations must establish 2-way contact with a minimum of 15 different A FAR NET member stations. For endorsements, non-member stations must contact ten or thirty-five additional members, any band, any mode. Confirmation of required contacts through copy of log certified by two other Amateur radio operators Send application with $50 \uparrow$ minimum for postage, etc. $10:$ Alfred G Beutler, K2DWI. A FAR NET Certificate Manager, 36 Manchester Road, East Aurora, NY 14052.

SPACE SHUTTLE COMMENTARY VIA OSCAR SATELLITE. The Spaceport Amateur Repeater Club (SPARC) has been authorized by AMSAT to transmit Space Shuttle mission commentary for all missions on Special Services channel H2. 145.963 MHz of AMSAT OSCAR 10. All Amateur Radio operators are invited to submit reception reports to: SPARC, PO Box 672. Merritt Island, FL 32952.

AUGUST 31 AND SEPTEMBER 1: The Wireiess Institute of New Orleans (W.N.O.) will operate K5WF from the Louisiana World Exposition - World's Fair. 10 AM to 10 PM CDT daily on HF bands, all modes and 40 meters. LSB about 7.240 MHz Also 75 and 20 meters, propagation allowing. A special commemorative OSL/Certificate confirming contacts will be available for a SASE'W I.N.O Box 654 t. New Orleans, LA 70174

SAY YOU SAW IT IN ham radio!

California

C \& A ROBERTS, INC.

18511 HAWTHORN BLVD.
TORRANCE, CA 90504
213-370-7451
24 Hour: 800-421-2258
Not The Biggest, But The Best Since 1962.

FONTANA ELECTRONICS 8628 SIERRA AVENUE FONTANA, CA 92335
714-822-7710
714-822-7725
The Largest Electronics Dealer in San Bernardino County.

JUN'S ELECTRONICS 3919 SEPULVEDA BLVD. CULVER CITY, CA 90230 213-390-8003 800-882-1343 Trades Habla Espanol

Connecticut

HATRY ELECTRONICS

500 LEDYARD ST. (SOUTH)
HARTFORD, CT 06114
203-527-1881
Call today. Friendly one-stop shopping at prices you can afford.

Delaware

AMATEUR \& ADVANCED
COMMUNICATIONS
3208 CONCORD PIKE
WILMINGTON, DE 19803
Delaware's Friendliest Ham Store.
DELAWARE AMATEUR SUPPLY
71 MEADOW ROAD
NEW CASTLE, DE 19720
302-328-7728
800-441-7008
Icom, Ten-Tec, Microlog, Yaesu, Kenwood, Santec, KDK, and more. One mile off l-95, no sales tax.

Florida

AMATEUR ELECTRONIC SUPPLY 1898 DREW STREET CLEARWATER, FL 33575
813-461-4267
Clearwater Branch
West Coast's only full service
Amateur Radio Store.
Hours M-F 9-5:30, Sat. 9-3

AMATEUR ELECTRONIC SUPPLY

 621 COMMONWEALTH AVE.ORLANDO, FL 32803
305-894-3238
Fla. Wats: 1 (800) 432-9424
Outside Fla: 1 (800) 327-1917
Hours M-F 9-5:30, Sat. 9-3
AMATEUR RADIO CENTER, INC.
2805 N. E. 2ND AVENUE
MIAMI, FL 33137
305-573-8383
The place for great dependable names in Ham Radio.

Hawaii

HONOLULU ELECTRONICS

819 KEEAUMOKU STREET
HONOLULU, HI 96814
(808) 949-5564

Serving Hawaii \& Pacific area for 51 years. Complete lines of Amateur equipment, accessories and parts.

Illinois

ERICKSON COMMUNICATIONS, INC.
5456 N. MILWAUKEE AVE.
CHICAGO, IL 60630
312-631-5181
Hours: 9:30-5:30 Mon, Tu. Wed \& Fri; 9:30-8:00 Thurs; 9:00-3:00 Sat.

Indiana

THE HAM SHACK

808 NORTH MAIN STREET
EVANSVILLE, IN 47710
812-422-0231
Discount prices on Ten-Tec, Cubic, Hy-Gain, MFJ, Azden, Kantronics,
Santec and others.

Kentucky

L \& S RADIO

307 McLEAN AVENUE
HOPKINSVILLE, KY 42240
502-885-8071
Ten-Tec, Azden, Ameritron Sales and Service.

Massachusetts

TEL-COM, INC.

675 GREAT ROAD, RTE. 119
LITTLETON, MA 01460
617-486-3400
617-486-3040
The Ham Store of New England You Can Rely On.

Michigan

ENCON PHOTOVOLTAICS

Complete Photovoltaic Systems
27600 Schoolcraft Rd.
Livonia, Michigan 48150
313-523-1850
Amateur Radio, Repeaters, Satellite,
Computer applications.
Call Paul WD8AHO

Nevada

AMATEUR ELECTRONIC SUPPLY
1072 N. RANCHO DRIVE
LAS VEGAS, NV 89106
702-647-3114
Dale Porray "Squeak," AD7K
Outside Nev: 1 (800) 634-6227
Hours M-F 9-5:30, Sat. 9-3

JUN'S ELECTRONICS
460 E. PLUMB LANE - 107
RENO, NV 89502
702-827-5732
Outside Nev: 1 (800) 648-3962
icom - Yaesu Dealer

NEW YORK

ADIRONDACK ELECTRONICS, INC.
1991 CENTRAL AVENUE
ALBANY, NY 12205
518-456-0203
Amateur Radio for the Northeast since 1943.

BARRY ELECTRONICS
512 BROADWAY
NEW YORK, NY 10012
212-925-7000
New York City's Largest Full Service Ham and Commercial Radio Store.

VHF COMMUNICATIONS

915 NORTH MAIN STREET
JAMESTOWN, NY 14701
716-664-6345
Call after 7 PM and save! Supplying all of your Amateur needs. Featuring ICOM
"The World System." Western New
York's finest Amateur dealer.

Ohio

AMATEUR ELECTRONIC SUPPLY 28940 EUCLID AVE. WICKLIFFE, OH (CLEVELAND AREA) 44092
216-585-7388
Ohio Wats: 1 (800) 362-0290
Outside Ohio: 1 (800) 321-3594
Hours M-F 9-5:30, Sat. 9-3
UNIVERSAL AMATEUR RADIO, INC. 1280 AIDA DRIVE REYNOLDSBURG (COLUMBUS), OH 43068
614-866-4267
Featuring Kenwood, Yaesu, Icom, and other fine gear. Factory authorized sales and service. Shortwave specialists. Near 1-270 and airport.

Pennsylvania

HAMTRONICS,

DIV. OF TREVOSE ELECTRONICS 4033 BROWNSVILLE ROAD TREVOSE, PA 19047
215-357-1400
Same Location for 30 Years.

LaRUE ELECTRONICS

1112 GRANDVIEW STREET
SCRANTON, PENNSYLVANIA 18509 717-343-2124
Icom, Bird, Cushcraft, Beckman, Larsen, Hustler, Astron, Belden, Antenna Specialists, W2AU/W2VS, AEA, B\&W, Amphenol, Saxton, J.W. Miller/Daiwa, Vibroplex.

THE VHF SHOP

BOX 349 RD 4
MOUNTAINTOP, PA 18707
717-868-6565
Lunar, Microwave Modules, ARCOS,
Astron, KLM, Tama, Tonna-F9FT, UHF Units/Parabolic, Santec, Tokyo Hy-Power, Dentron, Mirage, Amphenol, Belden

Texas

MADISON ELECTRONICS SUPPLY

 1508 McKINNEYHOUSTON, TX 77010
713-658-0268
Christmas?? Now??

Wisconsin

AMATEUR ELECTRONIC SUPPLY
4828 W. FOND DU LAC AVE.
MILWAUKEE, WI 53216
414-442-4200
Wisc. Wats: 1 (800) $242-5195$
Outside Wisc: 1 (800) 558-0411
M-F $\quad 9-5: 30$
Sat 9-3

ALL BAND TRAP ANTENNAS:

NOW THERE ARE

THE ARRL AMATEUR RADIO CALL DIRECTORY

Whether you are DXCC Honor Roll bound or just beginning to collect QSL cards for the WAS award, you'll find the addresses you need quickly and easily. There are over 453,000 listings of U.S. Amateur Radio licensees listed alphabetically in callsign order. The section covering club stations is the most accurate to be found. Only $\$ 15.75$ in the U.S. and $\$ 19.75$ in Canada and elsewhere.

NAME INDEX

Have the name but need the Call? This handy book lists licensees alphabetically by last name, then gives their call, you can refer to the Call Directory for address information. $\$ 25.00$ in the U.S., $\$ 28.50$ in Canada and elsewhere. U.S. Listings.

GEOGRAPHICAL INDEX

Handy listing by State, City, Street and Call. Perfect for the travelling amateur. $\$ 25.00$ in the U.S., $\$ 28.50$ in Canada and elsewhere. U.S. Listings.

COMBINATION PRICES

ARRL AMATEUR RADIO CALL DIRECTORY AND NAME INDEX $O R$ GEOGRAPHICAL INDEX $\$ 36.50$ U.S., $\$ 44$ in Canada or elsewhere. ALL THREE: CALL DIRECTORY, NAME AND GEOGRAPHICAL INDICES: $\$ 50$ in the U.S., $\$ 61.00$ in Canada and elsewhere.

1984-85 EDITIONS HOT OFF THE PRESS

Enclosed is my check or money order for $\$$
() VISA () MasterCard () Am. Express

Signature \qquad
Acct. No.
\qquad Expires
Name
Address
City
State Zip

Payment in U. S. funds only. Prices subject to change without notice.

THE AMERICAN RADIO RELAY LEAGUE 225 MAIN ST
NEWINGTON. CT 06111
for literature, in a hurry - we'll rush your name to the companies whose names you "check-off'

Place your check mark in the space petween name and number. Ex: Ham Radio 234

-Please contact the advertiser directly.
Limit 15 inquiries per request.
September 1984
Please use before October 31, 1984

Tear off and man to
HAM RADIO MAGAZINE - "check off"
Greenville, N. H. 030480498

NAME

CALL
Street
city.
STATEZIP

IF YOU'RE STILL USING AN OLD STYLE ROTOR
CONTROL MAYBE YOU SHOULD CONSIDER THIS.

浲

BUY THE ANTENNA CONTROLLER
OF THE FUTURE TODAY!
A PRO-SEARCH ${ }_{\text {TM }}$

DIGITAL

ANTENNA CONTROL FULLY COMPUTERIZED

SMALL
IN SIZE
$31 / 4{ }^{\prime \prime} \mathrm{H} \times 5 \%^{\prime \prime} \mathrm{W} \times 6^{\text {" }} \mathrm{D}$
10 MEMORIES
FOR STORING
YOUR FAVORITE HEADINGS

ONE YEAR FULL WARRANTY
PRO-SEARCH Is Adaptable To Many Systems, Simple To Install.

No Modifications Are Necessary.
Presently we're having our Fall and Christmas Special. A PSE-1, used with the CDE Series. Now only $\$ 315.00$ plus shipping. Regular retail price $\$ 419.91$. Offer good until December 15, 1984. Order Early we expect a back order problem due to demand and availability of parts.
Also ask about our Fall Rotor, Antenna and Unit Special.

CALL NOW 1-800-325-4016

Controllers also available for other rotors.
Prices and specifications subject to change without notice or obligation.
U.S. and Foreign Patents

Pro-Search Electronics Co.
1344 Baur Boulevard St. Louis. Mo. 63132

Adverifisers iNdex

ADMAEA.	
Advanced Computer Controls. Advanced Receiver Research	
All Comm 141.	
All Electronics	
Alurna Iower Co,Amateur Wholesale Electronics	
American Radoo Relay League.	
Amidon Associates	
Analog Technotogy	
Applied Invention	
Astron Corp	
Arlantic Surplus Sales	
ATV Magazine	
Austin Custom Antenna	
Automation Techniques, Inc	
Barker \& Williamson	
Barry Electrorics	
B.G. Micro.	101. 102 ,
Buckmaster Publishing	
Burtons Satellite	
Butternut Electronics	
C \& A Roberts. Inc.	
Caddell Coil Corp.	
Ceco	
CES	
Certifed Communcations	
Chemtronics	
Coaxal Dynamics, tnc	
Communications Concepts, Inc	
Communications Specialists	
Computer Trader Magazine	
Connect Systems	
Dentron	
Design Electronics, Ohio (DEO1 82 .	
Digmax Instrument Corp.	
Discount Discs	
R L Drake Co	51
EGE, Inc	
Electro Com.	
Encomm. Inc	
Engineerng Consulting	126.
Fair Radio Sales	
Falcon Communications	
Fluke Manutacturing Co. Inc	
GLB Electronics	
Ham Master Tapes	
Ham Radio's BookstoreHamtronics NY	
Harrison Radio	
Hatry Electronics	
Icom America, Inc Jensen Tools, Inc	
KLM Electronics	
Kantronics	
Trio Kenwood Communications 2. Cover	2, Cover
Larsen Electronics	

MFJ Enterprises
Madison Electronics Supply $\quad 128,129,130,131$,
Gien Martin Engineeting
Merrimac Satelite.
John I Meshna, Jt. Co , Inc
Micio Mart Distrbutors
Microwave Filter
Microwave Fitter, Inc
Midwest Amateur Radio Supply
Missoun Radio Center
Morning Distributing
Mosley Electroracs
NCG
W. H. Nal Co.
Nampa Satellite Systems
Nemal Electronics
Nevada Sateline
Nuts $\&$ Vots
Paulhin industries
P. B Radio

Phantom Enqineut
Pipo Communications
Pro Search Electronics
RF Enterpises
RF Products
Radio Amatew Callibook
Radio Expo
Radiokit
Radiokit
Radio Warehouse
Ramsey Electronacs
J. Reed Manutacturn
Sarton Associates
Satellite Televrsion
Satellite TV Magazine
Skylane Products
Southeast Satelite
Southeast Satelite
Spectrum International
Spectrum Intern
Spectrum West
Spi Ro Distritutieg
E Systems
NT Radio Sa
Teltex Laboratomes
Ten Tec
Texas Towers.
UNR Rote
Universal Electronics

VHF Communications
Vanguard Latis
Vector Radio
Vid Com Communications
Westcom Engineering
Western Electionics
World Virw Electronics. Inc $\quad 142$
Yaesu Electronics Corp

FRONT COVER:

70 Years of SSB

An early single sideband receiver, designed by James Lamb in 1937, included provisions for duplex operation on 4 MHz and used the filter method of SSB generation. Shown within the schematic for Lamb's receiver is a state-of-the-art SSB receiver. Developed by RCA Corporation Government Communications Systems under the guidance of Dr. Ulrich L. Rohde, business area director of radio systems, the unit is a highly softwarebased experimental transceiver with frequency-hopping capabilities. It contains a special receiving system for noise blanking and uses a delay line to enable processing. The transceiver covers 1.5 to 30 MHz in transmit and 10 kHz to 30 MHz in receive in 100 Hz steps. Modes of operation include AM, CW, SSB, FSK, and frequency hopping. Particular software features are automatic FFT (Fast Fourier Transform) analysis of signals and tuning of SSB with an error of less than 1 Hz , frequency and memory scanning, realtime clock operation, and storage of 100 frequencies with all signal parameters. It utilizes a second alphanumeric display with a self-help feature that tells the user how to activate and use the software-based function. It has an intercept point of greater than +30 dBm and an SSB phase noise of - 140 dB at 25 kHz to -160 dB at 100 kHz , indicating dynamic performance. AGC is 0.2 microvalts to 1 volt, with a 4 dB audio change and linearized S-meter look-up table in ROM.
(These are just a few of the outstanding features/controls available on the front panel. - Ed.)

10GHz GUNNPLEXER transceiver

- Complete ready to use 10 GHz fm voicelcw transceiver - 10 mW power output - Typical frequency coverage 10.235-10.295 GHz - Full duplex operation - Internal Gunnplexer for portable operation - Gunnplexer removable for tower mounting in fixed location service - three shielded cables required for interconnection - Powered by 13 volts dc nominal at 250 mA - 30 MHz i-f $\bullet 10$-turn potentiometer controlled VCO tuning - 220 kHz ceramic i-f filter - Extra diode switched filter position for optional filter • Dual polarity afc • Rugged two-tone grey enclosure - Full one year warranty - $\$ 389.95$ with 10 mW Gunnplexer
- $\$ 269.95$ without Gunnplexer

Postpald for U.S. and Canada, CT Residents add $7.1 / 2 \%$ sales tax. C.O.D. orders add $\$ 2.00$. Air mail to foreign countries add 10%

- 103

UHF DECODER

ZENITH SSAVI-1 — \$199.95

M/C \& VISA SORRY NO C.O.D.

SAY YOU SAW IT IN ham radio!

Food for thought.

Our new Universal Tone Encoder lends its versatility to all tastes. The menu includes all CTCSS, as well as Burst Tones. Touch Tones, and Test Tones. No counter or test equipment required to set frequencyjust dial it in. While traveling, use it on your Amateur transceiver to access tone operated systems, or in your service van to check out your customers' repeaters; also, as a piece of test equipment to modulate your Service Monitor or signal generator. It can even operate off an internal nine volt battery, and is available for one day delivery, backed by our one year warranty.

- All tones in Group A and Group B are included.
- Output level flat to within 1.5 db over entire range selected.
- Separate level adjust pots and output connections for each tone Group.
- Immune to RF
- Powered by $6-30 \mathrm{vdc}$, unregulated at 8 ma.
- Iow impedance. low distortion. adjustable sinewave output, 5v peak-to-peak
- Instant start-up.
- Off position for no tone output
- Reverse polarity protection built-in.

Group A

67.0 XZ	91.5 ZZ	118.82 B	156.75 A
71.9 XA	94.8 ZA	123.03 Z	162.25 B
74.4 WA	97.4 ZB	127.33 A	167.96 Z
77.0 XB	100.01 Z	131.83 B	173.86 A
79.7 SP	103.51 A	136.54 Z	179.96 B
82.5 YZ	107.21 B	141.34 A	186.27 Z
85.4 YA	110.92 Z	146.24 B	192.87 A
88.5 YB	114.82 A	151.45 Z	203.5 MI

- Frequency accuracy, $\pm .1 \mathrm{~Hz}$ maximum $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Frequencies to 250 Hz available on special order
- Continuous tone

Group B

TEST-TONES	TOUCH-TONES	BURST TONES				
600	697	1209	1600	1850	2150	2400
1000	770	1336	1650	1900	2200	2450
1500	852	1477	1700	1950	2250	2500
2175	941	1633	1750	2000	2300	2550
2805			1800	2100	2350	

- Frequency accuracy, $\pm 1 \mathrm{~Hz}$ maximum $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Tone length approximately 300 ms . May be lengthened,
shortened or eliminated by changing value of resistor
Model TE-64 \$79.95

426 West Taft Avenue, Orange, California 92667
(800) 854-0547/ California: (714) 998-3021

YAESU FTT 726 B TRIBANDER

FULL DUPLEX!!

The New Yaesu FT-726R Tribander is the world's first multiband, multimode Amateur transceiver capable of full duplex operation. Whether you're interested in OSCAR, moonbounce, or terrestrial repeaters, you owe yourself a look at this one-of-a-kind technological wonder!

Multiband Capability
Factory equipped for 2 meter operation, the FT-726R is a three-band unit capable of operation on 10 meters, 6 meters, and/or two segments of the 70 cm band ($430-440$ or $440-450 \mathrm{MHz}$), using optional modules. The appropriate repeater shift is automatically programmed for each module. Other bands pending.

Advanced Microprocessor Control
Powered by an 8 -bit Central Processing Unit, the ten-channel memory of the FT-726R stores both frequency and mode, with pushbutton transfer capability to either of two VFO registers. The synthesized VFO tunes in 20 Hz steps on SSB/CW, with selectable steps on FM. Scanning of the band or memories is provided.

Full Duplex Option
The optional SU-726 module provides a second, parallel IF strip, thereby allowing full duplex crossband satellite work. Either the transmit or receive frequency may be varied during transmission, for quick zero-beat on another station or for tracking Doppler shift.

High Performance Features
Borrowing heavily from Yaesu's HF transceiver experience, the FT-726R comes equipped with a speech processor, variable receiver bandwidth, IF shift, all-mode squelch, receiver audio tone control, and an IF noise blanker. When the optional XF-455MC CW filter is installed, CW Wide/ Narrow selection is provided. Convenient rear panel connections allow quick interface to your station audio, linear amplifier, and control lines.

Leading the way into the space age of Ham communications, Yaesu's FT-726R is the first VHF/UHF base station built around modern-day requirements. If you're tired of piecing together converters, transmitter strips, and relays, ask your Authorized Yaesu Dealer for a demonstration of the exciting new FT-726R, the rig that will expand your DX horizons!

483

YAESU ELECTRONICS CORPORATION 6851 Walthall Way, Paramount, CA 90́723 • (213) 633-4007 YAESU CINCINNATI SERVICE CENTER 9070 Gold Park Drive, Hamilton, OH 45011 • (513) 874-3100

TS-430S "Digital DX-terity!"

TS-430S
Digital DX-terity ...that outstanding attribute built into every KENWOOD TS-430S that lets you QSY from band to band, frequency to frequency, and from mode to mode with the speed and ease that will give you a dominant position in DX operations.

KENWOOD'S TS-430S, a revolutionary, ultra-compact, HF transceiver has already won the hearts of radio Amateurs the world over. It covers 160-10 meters, including the new WARC bands (easily modified for HF MARS). Its high dynamic range receiver tunes from 150 kHz 30 MHz . It utilizes an innovative UP conversion PLL circuit for superior frequency stability and accuracy. Two digital VFO's allow fast splitfrequency operations. A choice of USB, LSB, CW, or AM, with FM optional, are at the operators fingertips. All Solid-state technology permits inputs of 250 watts PEP on SSB, 200 watts DC on CW, 120 watts on FM (optional), or 60 watts on AM. Final amplifier protection circuits and a cooling fan are built-in.

Eight memories store frequency, mode, and band data, with Lithium battery memory back-up. Memory scan and programmable automatic band scan help speed up operations. An IF shift circuit, a tuneable notch filter, and a Narrow-Wide switch for IF filter selection help eliminate QRM. It has a built-in speech processor. A fluorescent tube digital display makes tuning easy and fast. An all-mode squelch circuit, a noise blanker, and an RF attenuator control help clean up the signal. And there's a VOX circuit, plus semi-break-in, with side-tone. All-in-all, it just could be that the expression "Digital DX-terity" is a bit of an understatement.

TS-430S Optional Accessories:

In typical KENWOOD fashion, there are plenty of optional accessories for this great HF transceiver. There is a special power supply, the PS-430. An external speaker, the SP-430, is also available. And the MB-430 mounting bracket is available for mobile operation. The

AT-250 automatic antenna tuner was designed primarily with the TS-430S in mind, and for those who prefer to "roll their own," the AT-130 antenna tuner is available. The FM-430 FM unit is available for FM operations. The YK-88C $(500 \mathrm{~Hz})$ or YK-88CN (270 Hz) CW filters, the YK-88SN SSB filter, and the YK-88A AM filter may be easily installed for serious DX-ing. An MC-60A deluxe desk microphone, MC-80 and MC-85 communications microphones, an MC-42S mobile hand mic., and an MC-55 8-pin mobile microphone, are available, depending on your requirements. TL-922A linear amplifier (not for CW QSK), SM-220 station monitor, PC-1A phone patch. SW-2000 SWR/power meter 160~6 meter, SW100A SWR/power/volt meter 160-2m, HS-4, HS-5, HS-6, HS-7 headphones, are also available.

More information on the TS-430S is available from authorized dealers of Trio-Kenwood Communications, 1111 West Walnut Street, Compton, California 90220.

Specifications and prices are subject to change without notice or obligation.

[^0]: 1. "Can Software Makers Win the War Against Piracy?" Business Week, April 30, 1984.
[^1]: 1. William I. Orr, W6SAI, "Ham Radio Techniques - Ancient Modulation," ham radio, February, 1984, page 65.
 2. MC3340P Data Sheet No. DS9249R1, fig. 4, copyright 1975, Motorola Semiconductors, Box 20912, Phoenix, Arizona 85036.
[^2]: * A buffer between you and the satellite which reduces your equipment requirements by interfacing your station with AO-10.

[^3]: *When referring to SSB modulation, the term Ci (carrier input levell is misleading since the carrier has been suppressed. Signal input level (Si) is more accurate, and for this analysis is essentially the same as Ci .

[^4]: 1. Joe Reisert, W1JR, "VHF/UHF World: The VHF/UHF Primer - An Introduction to Propagation," ham radio, July. 1984, page 14.
 2. Bill Smith, KOCER, "The World Above 50 Mc ," OST, May, 1970, page 83.
[^5]: *Available in kit form from the TAPR group, $\$ 247$ prepaid. The kit is of superb quality and workmanship and may be assembled by the average Radio Amateur with modest kit building experience in eight to ten hours. Contact Tucson Amateur Packet Radio, Inc., P.O. Box 22888, Tucson, Arizona 85734 for information.

[^6]:
 6743 Kinne St., East Syracuse, NY 13057 Toll Free 1-800-448-1666 TWX 710-541-0493 NY/HIIAK/Canada (Collect) 315-437-3953

[^7]: By Scott D. Schram, KN4L, 225 LaPrado Place, Homewood, Alabama 35209.

[^8]: 5717 N E. 56th St.
 Phone 206-641-7461
 Seattle. Washington 98105 TLX DUFF INTL SEA

[^9]: *See Vaughn Martin's "EMI/RFI Shielding: New Techniques," ham radio, January and February, 1984.

[^10]: In Germany Elextronikladen. Witheim - Meilies Str 884930 Detmold 18 West Germany In Japan Toyomuta Electronics Company. Lid 7.92 Chome Sota-Kanda Chiyoda-Ku. Tokyo Japan

