ICOM IC-751
The New Standard of Comparison

The IC-751 is the most advanced amateur HF transceiver available on the market today—the new standard of comparison.

Receiver. ICOM's 100kHz—30MHz general coverage receiver with a specially designed DFM (Direct Feed Mixer) utilizes FETS in the receiver front end which gives extremely low intermodulation distortion, 19dBm intercept point, and a high dynamic range, 105dB. With cascaded filters, the IC-751 is virtually immune to distortion. The Fl-4A 8-pole crystal in the third IF is standard and provides exceptional receiver selectivity.

Transmitter. An extremely low-noise PLL and conservative transmitter design give extremely low distortion products (-38dBm, third order) for a crystal clear transmit signal. A microphone tone control is provided to personalize the set to your particular voice. The 9 band solid-state transmitter is also a full 100% duty cycle (internal cooling fan standard) rated: For the CW operator, semi break-in or full QSK is possible.

32 Memories. An ultra versatile memory system allows storage of frequency and mode in each of the 32 memories. Data may be transferred from VFO to memory or from memory to VFO.

Standard Features. FM, FL-4A 455kHz high-grade SSB filter, SSB and FM squelch, built-in marker unit, convenient large controls, a new high-visibility fluorescent display and HM-12 Hand Mic.

Options and Accessories. Voice synthesizer, high stability master reference crystal, a wide range of CW filters, an external IC-PS15 or PS30 power supply, an internal IC-PS35 power supply, CT-10 computer interface unit, RC10 keyboard frequency controller, IC-2KL solid-state linear amplifier (160 – 15 meters), IC-AT500 automatic antenna tuner, IC-SP3 external speaker and IC-SM6 desk mic.

ICOM America, Inc., 2112-116th Ave NE, Bellevue, WA 98004 / 3331 Towerwood Drive, Suite 307, Dallas, TX 75234

All stated specifications are approximate and subject to change without notice or obligation. All ICOM radios significantly exceed FCC regulations limiting spurious emissions. 75.14B
What To Look For In A Phone Patch

The best way to decide what patch is right for you is to first decide what a patch should do. A patch should:

- Give complete control to the mobile, allowing full break in operation.

- Not interfere with the normal operation of your base station. It should not require you to connect and disconnect cables (or flip switches!) every time you wish to use your radio as a normal base station.

- Not depend on volume or squelch settings of your radio. It should work the same regardless of what you do with these controls.

- You should be able to hear your base station speaker with the patch installed. Remember, you have a base station because there are mobiles. ONE OF THEM MIGHT NEED HELP.

- The patch should have standard features at no extra cost. These should include programmable toll restrict (dip switches), tone or rotary dialing, programmable patch and activity timers, and front panel indicators of channel and patch status.

ONLY SMART PATCH HAS ALL OF THE ABOVE.

Now Mobile Operators Can Enjoy An Affordable Personal Phone Patch...

- Without an expensive repeater.
- Using any FM transceiver as a base station.
- The secret is a SIMPLEX autopatch. The SMART PATCH.

SMART PATCH IS EASY TO INSTALL

To install SMART PATCH, connect the multicolored computer style ribbon cable to mic audio, receiver discriminator, PTT, and power. A modular phone cord is provided for connection to your phone system. Sound simple? IT IS!

SMART PATCH is all you need to turn your base station into a personal autopatch. SMART PATCH uses the only operating system that gives the mobile complete control. Full break-in capability allows the mobile user to actually interrupt the telephone party. SMART PATCH does not interfere with the normal use of your base station. SMART PATCH works well with any FM transceiver and provides switch selectable tone or rotary dialing, toll restrict, programmable control codes, CW ID and much more.

To Take CONTROL with Smart Patch
- Call 800-327-9956 Ext. 101 today.

With CES 510SA Simplex Autopatch, there’s no waiting for VOX circuits to drop. Simply key your transmitter to take control.

How To Use SMART PATCH

Placing a call is simple. Send your access code from your mobile (example: “73”). This brings up the Patch and you will hear dial tone transmitted from your base station. Since SMART PATCH is checking about once per second to see if you want to dial, all you have to do is key your transmitter, then dial the phone number. You will now hear the phone ring and someone answer. Since the enhanced control system of SMART PATCH is constantly checking to see if you wish to talk, you need to simply key your transmitter and then talk. That’s right, you simply key your transmitter to interrupt the phone line. The base station automatically stops transmitting after you key your mic. SMART PATCH does not require any special tone equipment to control your base station. It samples very high frequency noise present at your receivers discriminator to determine if a mobile is present. No words or syllables are ever lost.

SMART PATCH IS ALL YOU NEED TO AUTOMATICALLY PATCH YOUR BASE STATION TO YOUR PHONE LINE.

Use SMART PATCH for:

- Mobile (or remote base) to phone line via Simplex base. (see fig. 1.)
- Mobile to Mobile via interconnected base stations for extended range. (see fig. 2.)
- Telephone line to mobile (or remote base).
- SMART PATCH uses SIMPLEX BASE STATION EQUIPMENT. Use your ordinary base station. SMART PATCH does this without interfering with the normal use of your radio.

WARRANTY?

YES, 180 days of warranty protection. You simply can’t go wrong. An FCC type accepted coupler is available for SMART PATCH.

Communications Electronics Specialties, Inc.
P.O. Box 2930, Winter Park, Florida 32790
Telephone: (305) 645-0474 Or call toll-free (800)327-9956
TS-930S “DX-traordinary”

We call it “DX-traordinary” because the TS-930S has now become the favorite rig of the serious contester! Its superior capability for full break-in split-frequency operation, the speed and convenience with which its eight memory channels can be accessed, its unsurpassed receiver dynamic range and its remarkable ability to select the desired signal during periods of heavy QRM, utilizing VBT, Slope tuning, IF Notch filtering, and tuneable audio filtering, have all combined to make this the rig that gives you the EXTRA EDGE!

The TS-930S is loaded with all the special features that you always wanted in an HF transceiver. Full coverage of the 160 through 10 meter bands, including the new WARC frequencies, (easily modified for HF MARS), plus a general coverage receiver that can tune any frequency from 150 kHz to 30 MHz. Operation in the SSB, CW, FSK, and AM modes, with selectable full or semi CW break-in. All solid-state, with 250 watts PEP input on SSB, CW, FSK, and 80 watts input on AM. SWR/power meter, Triple final protection circuits plus two cooling fans built-in. 10-Hz step synthesized frequency control. Available with optional automatic antenna tuner built-in, another industry first! Dual digital VFO’s. Eight memory channels that store both frequency and band information, with internal battery back-up, (batteries not supplied). Dual mode adjustable noise blankers, especially effective in eliminating “woodpecker” type interference. SSB IF slope tuning, for maximum rejection of interference. CW variable bandwidth, with pitch and sidetone control, IF notch filter. Tuneable audio peaking filter. Unique six digit white fluorescent tube digital display is easy-on-the-eyes during those long contests. RF speech processor, for higher average “talk-power” SSB monitor circuit. 4-step RF attenuator. VOX. 100-kHz marker. AC power supply built-in, 120, 220, or 240 VAC.

TS-930S Optional Accessories:

- AT-930 automatic antenna tuner, SP-930 external speaker, with selectable audio filters, YG-455C-1 (500 Hz), YG-455CN-1 (250 Hz), YK-88C-1 (500 Hz) CW filter, YK-88A-1 (5 kHz) AM filter, all plug-in type.
- SO-1 commercial stability TCXO, MC-60A deluxe desk microphone, MC-80 and MC-85 communications microphones, MC-42S mobile hand microphone, TL-922A linear amplifier (not for CW QSK), SM-220 station monitor, PC-1A phone patch, SW-2000 SWR/power meter, 160 ~ 6 meter, SW100A SWR/power/volt meter 160-2m HS-4, HS-5, HS-6, and HS-7 headphones.
- Isn’t it about time you stepped into the winner’s circle?
- More information on the TS-930S is available from authorized dealers of Trio-Kenwood Communications, 1111 West Walnut Street, Compton, California 90220.

Specifications and prices are subject to change without notice or obligation.
November 1984
volume 17, number 11

T. H. Tenney, Jr., W1NLB
publisher

Rich Rosen, K2RR
editor-in-chief
and associate publisher

Dorothy Rosa, KA1LBO
assistant editor

Joseph J. Schroeder, W5UUV
Alfred Wilson, W6NIP
associate editors

Susan Shorrock
editorial production

editorial review board
Forrest Gehke, K2BT
Bob Lewis, W2EBQ
Mason Logan, K4MF
Ed Werthember, W3QGN

publishing staff
J. Craig Clark, Jr., N1ACH
assistant publisher

Rally Dennis, KA1JWF
director of advertising sales

Dorothy Sargent, KA1ZX
advertising production manager

Susan Shorrock
circulation manager
Therese Bourgault
circulation
Wayne Pierce, K3SUK
cover art

ham radio magazine is published by
Communications Technology, Inc.
Greenville, New Hampshire 03048 0468
Telephone: 603-878-1441

subscription rates
United States:
one year, $19.95; two years, $32.95; three years, $44.95
Canada and other countries via surface mail:
one year, $22.95; two years, $41.00; three years, $68.00
Europe, Japan, Africa via Air Forwarding Service:
one year, $28.00
All subscription orders payable in U.S. funds, via international postal money order or check drawn on U.S. bank.

international subscription agents: page 154

Microfilm copies are available from
University Microfilm, International
Ann Arbor, Michigan 48106
Order publication number 3076

Cassette tapes of selected articles from ham radio are available to the blind and physically handicapped from Recorded Periodicals, 919 Walnut Street, Philadelphia, Pennsylvania 19130
Copyright 1984 by Communications Technology, Inc.
Title registered at U.S. Patent Office
Second-class postage paid
at Greenville, New Hampshire 03048 0468
and at additional mailing offices
ISSN 0748-1089
Postmaster send form 3579 to ham radio
Greenville, New Hampshire 03048 0468

contents

14 quiet! preamp at work
H. Paul Shuch, N6TX

23 a pulsewidth noise discriminator
Don E. Hildreth, W6NRW

28 IMD and intercept points of cascaded stages
William Richardson, W3IMG

37 the Russian Woodpecker:
a continuing nuisance
Bradley Wells, KR7L

48 a double conversion portable SW receiver
Jack Perel, PY2PEIC

54 NEW: THE GUERRI REPORT
Ernie Guerrer, W6MGI

57 extending the modular 2-band receiver
James J. Forkan, WA3TFS

67 receiving signals from space
Dennis Mitchell, K8UR

75 ham radio techniques
Bill Orr, W6SAI

83 make your own PC boards
using silk screen techniques
Keats A. Pullen, Jr., W3QOM

96 VHF/UHF world
Joe Reisert, W1JR

113 design superhet coilsets
with a microcomputer
Frithjof A. S. Sterrenberg

124 receiver sweep alignment system
Cliff Klinert, WB6BIH

8 comments 146 ham mart
158 advertisers index 108 ham notebook
and reader service 141 new products
99 DX forecaster 6 presstop
154 flea market 5 reflections
MFJ ENTERPRISES, INC.
Box 494, Mississippi State, MS 38762

4/4 November 1984

NEW FROM MFJ

MFJ'S MOST ADVANCED RTTY/ASCII/AMTOR/CW COMPUTER INTERFACE HAS FM, AM MODES, LED "SCOPE" TUNING ARRAY, RS-232 INTERFACE, VARIABLE SHIFT TUNING, 170/850 Hz TRANSMIT, TRUE MARK-SPACE DETECTION.

MFJ-1229
$179.95
FREE MFJ RTTY/ASCII/CW software for C-64/VIC-20. Complete package includes MFJ-1229, software on tape, cables for C-64/VIC-20.

Geography, performance, value and features sets MFJ's most advanced RTTY/ASCII/AMTOR/CW computer interface apart from others. FM (limiting) mode gives easy, trouble-free operation. Best for general use, offset-shift copy, drifting signals, and moderate signal and QRM levels. AM (non-limiting) mode gives superior performance under weak signal conditions or when there are strong nearby stations. Crosshair mark-space LED tuning array simulates scope ellipse for easy, accurate tuning even under poor signal-to-noise conditions. Mark and space outputs for true scope tuning. Transmits on both 170 Hz and 850 Hz shift.

Built-in RS-232 interface, no extra cost. Variable shift tuning lets you copy any shift between 100 and 1000 Hz and any speed (5-100 WPM RTTY/CW and up to 300 baud ASCII). Push button for 170 Hz shift. Sharp multi-peak mark and space filters give true mark-space detection. Ganged pots give space passband tuning with constant bandwidth. Factory adjusted trim pots for optimum filter performance. Multi-peak active filters are used for pre-filter, mark, space and post detection filtering. Has automatic threshold correction. This advanced design gives good copy under AM, weak signals and selective fading.

Has front panel sensitivity control. Normal/Reverse switch eliminates retuning while checking for inverted RTTY. Speaker jack. +250 VDC loop output. External sine wave generator gives phase continuous AFSK tones. Standard 2125 Hz mark and 2295/2795 Hz space. Microphone lines: AFSK out, 495 kHz space, PTT out and PTT ground. FSK keying for transceivers with FSK input. Has sharp 800 Hz CW filter, plus and minus CW keying and external CW key jack. Kantronics software compatible socket. Exclusive TTL/RS-232 general purpose socket allows interfacing to nearly any personal computer with most appropriate software. Available TTL/RS-232 lines. RTTY demod out, CW demod out (TTL only), CWID in, RTTY in, PTT in, PTT out (TTL only). All signal lines are buffered and can be inverted using an internal DIP switch. Metal cabinet. Brushed aluminum front. 12 5/8x21 1/2x6 inches. 18 VDC or 110 VAC with optional AC adapter. MFJ-1312, $9.95.

Plugs between rig and C-64, VIC-20, Apple, TRS-80C, Atari, TI-99 and other personal computers. Use MFJ. Kantronics, AEA and other RTTY/ASCII/AMTOR/CW software.

MFJ ELECTRONIC KEYER

MFJ-407 Deluxe Electronic Keyer sends iambic, automatic, semi-auto or manual. Use squeeze, single lever or straight key. Plus/minus keying. 8 to 50 WPM. Speed, weight, tone, volume controls. On/Off, Tune, Semi-auto switches. Speaker. RF proof. 7x2x6 inches. Uses 9 V battery. 6-9 VDC or 110 VAC with AC adapter. MFJ-1305, $9.95.

MFJ PORTABLE ANTENNA

MFJ's Portable Antenna lets you operate 40, 30, 20, 15, 10 meters from apartments, motels, camp sites, vacation spots, nearly any electrically clear location where space for a full size antenna is a problem. A telescoping whip (extends to 54 in.) is mounted on self-standing 6x6x6 inch aluminum case. Built-in antenna tuner, field strength meter, 50 feet RG-58 coax. Complete multi-band portable antenna system that you can use nearly anywhere. Up to 300 watts EIP.

MFJ PORTABLE ANTENNA

MFJ-1621
$79.95

MFJ ANTENNA BRIDGE

MFJ-304
$79.95

MFJ Antenna Bridge. Trim your antenna for optimum performance quickly and easily. Read antenna resistance up to 500 ohms. Covers all bands below 30 MHz. Measure resonant frequency of antenna. Tells when or when antenna is shorted. Easy to use, connect antenna, set frequency, adjust bridge for meter null and read antenna resistance. Has frequency counter jack. Use as signal generator. Portable, self-contained. 4x2x2 in. 9 V battery or 110 VAC with adapter. MFJ-1312, $9.95.

MICROPHONE EQUALIZER

MFJ-550
$49.95

Greatly improves transmitted SSB speech for maximum talk power. Even out speech peaks and valleys due to voice, microphone and room characteristics that makes speech hard to understand. Produces cleaner, more intelligible speech on receiving end. Greatly improves mobile operation by reducing bassy peaks due to acoustic resonances. Plugs between mic and rig, 4 pin mic jack, shielded output cable. High, low controls provide 12 db boost or cut at 490, 1170, 2800 Hz, 495 kHz. Microphone. on/off/bypass switch. "On" LED. 7x2x6 inches. 9 V battery, 12 VDC or 110 VAC with adapter. MFJ-1312, $9.95.

TO ORDER OR FOR YOUR NEAREST DEALER, CALL TOLL-FREE
800-847-1800. Call 601-323-5669 in Ms. and outside continental USA
Telex 53-4509 MFJ STKV

ORDER ANY PRODUCT FROM MFJ AND TRY IT-NO DELIBERATE. IF NOT DELIGHTED, RETURN WITHIN 30 DAYS FOR PROMPT REFUND (LESS SHIPPING).
- One year unconditional guarantee
- Made in USA
- Add $4.00 each shipping/handling
- Call or write for free catalog, over 100 products.

7-IN-1 RTTY OPERATING AID

MFJ-1221
$79.95

24/12 HOUR CLOCK/ID TIMER

MFJ-106
$19.95
Switch to 24 hour UTC or 12 hour format. Battery backup. 12 hour timer defaults to 0000 after reset. Red 6 in. LEDs. Synchronizable to WWV, Alarm, Snooze function. Minute, hour set switches, PM, alarm on indicators. Gray/Black cabinet. 5x2x3 in. 110 VAC, 60 Hz.
It was a lazy afternoon. The air was warm, the sky was blue, and a soft sea breeze wafted gently across the deck. The place was Martinique, and a young radio operator from the SS Brasil — me — had the afternoon free. In those days my call sign was WMDT (all ships used four letters for identification), and I was at the halfway point in my fourth trip out to sea as a radio operator in the U.S. Merchant Marines.

Thinking back now, I recall the slow, undulating motion of the ship, the immense expanse of ocean, and the fresh smell of sea breeze created by the water splashing against the fantail. It was a wonderful experience for a lad of 19 to be able to visit many foreign ports, operate a high-power shipboard radio station (with four receivers), to receive room and board — and be paid — for the privilege!

On that lazy afternoon I decided to visit my counterparts (radio operators) aboard the SS France (FNRR). I suppose it was natural to want to see what equipment and antennas they had, what operating procedures they used, and in general, what their life was like aboard ship.

While the radio room on the France was larger than the Brasil's, they had about the same complement of transmitters and receivers as we had aboard our vessel, plus a high-resolution TV system used to pipe signals throughout the ship. Although our working conditions seemed similar, our feelings seemed to be quite different. The radio operators (there were about six, I believe) all appeared to be good, close friends, and they obviously enjoyed each other's company. I couldn't help but compare the atmosphere aboard my ship with that of the France. Though we were all friendly while on duty, we went our separate ways immediately after docking — I guess you could call our style "rugged individualism." I found myself preferring, however, the camaraderie shown by my new-found friends aboard this "foreign" liner.

What is a visit to France (or a French ship) without tasting the food? I was invited to lunch. In the cafeteria we enjoyed an excellent meal, several glasses of good wine, and amicable conversation. But suddenly my attention focused on one of the kitchen workers. I couldn't help noticing the considerable effort he was applying to the polishing of his equipment. Summoning up my best French, I went over to him and asked why he worked so hard. Were they that strict aboard the ship?

First he laughed. Then he became quite serious and said something that I'll probably never forget: "This is my job. I want to do the best I can at it. If I thought it were 'beneath me' to do this job, I'd get another."

I couldn't help thinking how many people I knew and had known who had what might be considered very good jobs, yet complained, for one reason or another, that they should have been doing something else. We have so much in this wonderful country of ours. We have resources and resourcefulness. Our children have the opportunity to acquire an excellent education, and we have the facilities to train them — and ourselves — for many different interesting jobs.

In Amateur Radio it's no different. We have the equipment, spectrum, technical resources, and obviously the time (just listen to some of our lengthy rag chews!) and yet I often come away from an evening on the air with the feeling that something's missing. We're all, it appears, "rugged individuals" diligently protective of our own frequencies and thoughts, content to do the same thing day after day. (For those who know my operating habits, perhaps I'm a fine one to talk . . . I do zero in on chasing quite a bit of DX.) I guess what I'm trying to say is that I'd be very happy to see what we have appreciated more and used more fully.

For my part I'm going to continue my experiments in antenna development and propagation studies, my two favorite technical subjects. But first I'm going to work on a more pressing problem — how to squeeze just two more hours into a 24-hour day. I don't think that's asking for too much.

Rich Rosen, K2RR
Editor-in-Chief

November 1984
AN NPRM TO IMPLEMENT VARIOUS WARC BANDS IS DUE FOR FCC release very soon, possibly before this sees print. It's expected to include 24 and 902 MHz as well as 10 MHz (still operating under temporary authorization), and probably other WARC changes as well.

REALLOCATION OF THE TOP HALF OF 160 METERS TO RADIOLOCATION could take place in the very near future. In a mid-September Notice of Proposed Rule Making, the Commission has proposed moving non-government radiolocation operations from their present slot between the top end of AM broadcast and the bottom of 160 up to 1900-2000 kHz. The shift is based on the WARC '79 upward expansion of AM broadcast, displacing present radiolocation operation. Ironically, The Importance Of Medium Frequency Radiolocation is being questioned in a Petition for Reallocation filed by the ARRL. Just the day before the FCC's NPRM was released, in it the League asks that the actual spectrum requirements of the individual radioLocation users be specified along with the actual number of such stations that might be active in any geographical area. Though the ARRL petition addressed the needs of all non-government radioLocation, it specifically asked the Commission to consider whether radioLocation's real needs are sufficient to justify taking over the 1900-2000 kHz slot.

The League Has Now Petitioned The FCC To Withhold Consideration of the reallocation docket until after it considers the League's Inquiry Procedure petition.

RELIEF OF AMATEUR OPERATIONS FROM STATE AND LOCAL REGULATION is being sought by the ARRL. The League has asked the FCC to issue a "Declaratory Ruling of Limited Federal Preemption of State and Local Regulation of Amateur Radio Station Installation and Operation," to spell out differing limitations on local and state authorities could place over federally-licensed Amateurs. A similar request regarding local regulation of TVRO satellite dishes was filed some time ago by United States Communications, Inc.

Comments From Concerned Amateurs, Particularly Those who've had problems with local regulators, are being sought by the Commission. An original and four copies should go to the Secretary, FCC, 1919 M St., NW, Washington, D.C. by November 9; refer to PRB-1. A copy of those Comments, along with any supporting documentation, would also be very helpful to the ARRL in its efforts. USCI's proposal on behalf of TVRO owners has generated strong opposition from a number of governmental organizations, and it's almost certain they'll resist the League's request with equal fervor.

THOUGH THERE'S BEEN NO REAL CHANGE IN THE 220 MHZ SITUATION since last month's Pressstop, there have been some interesting developments. "220 Notes" Publisher K9XI has requested a Congressional investigation of the FCC's Office of Science and Technology, based on concerns that the OST may have been improperly involved in the STI petition that asked for reallocation of the 220-222 MHz slot to ACSB. "Westlink" reports Congress is getting plenty of mail on the subject, with Sen. Goldwater's office receiving about a thousand letters from concerned Amateurs and California Senator Pete Wilson almost 400.

WAZMC'T's Petition To Permit Novices All-Mode 220 Privileges has been denied and dismissed by the FCC. In denying the petition Private Radio Bureau Chief Bob Foosaner noted the FCC's National Telecommunications Information Administration (NTIA) are conducting on-going studies of future 216-225 MHz uses, so it is "not appropriate to consider petitions which could have a major impact on the 220 MHz band..." at this time.

A SPREAD SPECTRUM FREQUENCY HOPPING 2-METER BEACON IS NOW ON THE AIR from Falls Church, Virginia. Start and stop frequencies are 144.5 and 147.7 MHz, on a 25-kHz spaced pseudorandom pattern. It's transmitting MCW on narrow band FM with a hop rate of 10 hops per second, sending a series of Vs followed by the station ID. Contact N4EZV for details.

EXTENSIVE CHANGES IN THE VEC PROGRAM HAVE BEEN PROPOSED by W6NLG on behalf of the Sunnyvale VEC Amateur Radio Club, the newly appointed California VEC. They include the prior notification requirement relaxed, and more leniency with respect to the exams Advanced class VE's can administer. They'd also limit any VEC to a maximum of 3 call areas, to provide for local control. An RM number has not been assigned at the present time.

ARIZONA IS ADOPTING 20 KHZ SPACING ON 2 METER'S TOP END, effective immediately. No more odd digit coordination for either new repeaters or for changes in existing machines will be permitted, and a statewide program to move all odd digit systems will begin soon.

AN NPRM TO IMPLEMENT VARIOUS WARC BANDS IS DUE for FCC release very soon, possibly before this sees print. It's expected to include 24 and 902 MHz as well as 10 MHz (still operating under temporary authorization), and probably other WARC changes as well.

THE FUTURE OF SPACING ON 2 METER'S TOP END, effective immediately. No more odd digit coordination for either new repeaters or for changes in existing machines will be permitted, and a statewide program to move all odd digit systems will begin soon.

AN NPRM TO IMPLEMENT VARIOUS WARC BANDS IS DUE for FCC release very soon, possibly before this sees print. It's expected to include 24 and 902 MHz as well as 10 MHz (still operating under temporary authorization), and probably other WARC changes as well.
The new Kantronics Challenger makes you the winner with superior performance at a knockout price. The Challenger terminal unit is designed for RTTY/ASCII/AMTOR operation with any of the Kantronics software programs. Compare our specifications with the competition, then check the price.

Challenger's four pole switched capacitance filter gives sensitivity and selectivity found in units costing much more. And with only 5mVRMS of audio required to drive Challenger, you can really chase the weak signals. With features like Scope Outputs, Direct FSK or Crystal Controlled AFSK, and an Extruded Aluminum Case, you know this is Kantronics quality.

Kantronics Quality at a Knockout Price

$99.95

If you really want to work RTTY/ASCII/AMTOR without breaking the budget, get Challenger and a Kantronics software program. Kantronics currently offers programs for Apple, Atari, TRS-80C, VIC-20, TI-99, and Commodore 64 computers.

Kantronics Software

Hamsoft — Send/Receive CW, RTTY, ASCII * Split Screen Display * Message Ports * Type-Ahead Buffer * Printer compatibility.

Hamtext — Includes all features of Hamsoft plus Text

Supertap — Receive Only CW, RTTY, ASCII, AMTOR * Decode inverted, bit inverted, and unusual bit order * Multiple line display * “SCOPE” feature for baud rate measure.

Hamssoft/Amtor — Includes all features of Hamsoft plus communication in all three modes of AMTOR.

Amtorsoft — Includes all the features of Hamtext but is for use with AMTOR ONLY. The Apple program is available only as a Hamtext/Amtorsoft combination.

Specifications

Input Filter — Four pole Switched Capacitance Filter with 170Hz Shift RTTY bandwidth of 260Hz nominal. Copies any shift.

Audio Input — Minimum level 5mVRMS. Input impedance is 600 ohms unbalanced. Accepts baudot or ASCII code up to 300 baud. Max input level is 12VRMS.

AFSK Output — Crystal controlled. Mark = 1255Hz; Space = 2253Hz (170 shift). Level 100mvpp (35mVRMS) standard. Optional 500mvpp (175mVRMS). Output impedance 600 ohm unbalanced.

FSK Output — Open Collector +40 VDC Max. Polarity can be reversed.

Scope Output — 10K ohm output impedance.

PTT Output — Open Collector +40 VDC Max.

Computer Connection — TTL Compatible. Inputs also RS232 level compatible.

Power Requirements — 11 to 15 VDC (12VDC nominal) 75ma

Construction — Precision Extruded Aluminum Alloy Case

Dimensions — 1.9"H x 5.9"W x 7"D

Weight — 1½ lbs.
wait for the mailman

Dear HR:

Thanks for bringing VHF and UHF out of the dark ages and into the daylight. As I sat here carefully cutting out W1JR’s article on propagation, (July, 1984) it occurred to me that it’s the best primer I’ve ever read. The article now has a home on my research bookshelf right next to authorities such as Natural Electromagnetic Phenomena, Electronic Density Profiles in the Ionosphere and Exosphere, and other noteworthy journals and papers.

WB3BGU’s series on VHF and UHF Antenna Design (May-October, 1984) helps clear the smoke screen on design that has smothered hams for years. I have built and put up some large arrays over the years; Stan’s notes are the best guide ever written for hams.

Since Rich Rosen took over as Editor-in-Chief, ham radio has moved to the number 1 position on my to-do list. Keep up the great work.

Sid Liberman, WA2FXB
Woodbridge, New Jersey

Model 28 printer

Dear HR:

I have a TRS-80 Color Computer,™ Kantronic Software, and an MFJ TU-1224. I’d like to use my Model 28 as a printer. Can someone out there show me how?

John L. Gill
6000 Duda Road
House Springs, Missouri 63061

cheers

Dear HR:

Regarding your July, 1984 editorial, “The Number 1 Question,” thanks! Not exactly for spelling out how to write a magazine article, but for announcing the birth of the “Superduper Louden-Boomer Metal Noodle.” We in this area are using the “new and improved” version with extraordinary results and will shortly — yesterday, I believe — come out with an even more versatile one — the DASH 2 — on which I would be glad NOT to write a technical paper.

Seriously, though, I enjoy ham radio very much. Keep up the good work!

Frank Brumett, WB4CIZ
Lexington, Kentucky

wideband VCO design

Dear HR:

Your July, 1984, issue came just in time. I was showing my students how to use the Smith chart for finding the length of a transmission line to act as an inductor and I wanted a circuit to build. Alan Victor’s article on wideband VCO design was just what I needed.

The circuit was easy to build, and because the resonator is shielded, it was immune to handling by the students. I was able to vary the frequency of the Colpitts oscillator throughout the FM radio band for the students to hear. This circuit helped my students in applying theory to a practical application.

Joe Avampato, W8DKR
Fort Mill, South Carolina

In the May, 1984, article, “Remote-controlled 40, 80, and 160-meter Vertical,” reference was made to 4-inch O.D. irrigation pipe. Local inquiries produced the following information: 4-inch aluminum irrigation pipe with 0.050 inch wall is available in lengths up to 40 feet from Larchmont Engineering, P.O. Box 66, 11 Larchmont Lane, Lexington, Massachusetts 02173. The price is $2.38 per foot; other sizes are available. (Check your local phone book for additional sources.) For additional sources of Ledex, also specified in W7LRJ’s article, send an SASE to ham radio, Greenville, New Hampshire 03048.

Editor
Varian EIMAC continues to commit its development of reliable tubes for HAM radio.

The new, rugged 3CX800A7 power triode provides 2 kW PEP input for voice service or 1 kW cw rating up to 30 MHz. Two tubes will meet the new, higher power ratings authorized by the FCC.

Designed for today's low profile, compact linear amplifiers, the 3CX800A7 powerhouse is only 2½ inches (6.35 cm) high. Cooling requirements are modest and a matching socket, air chimney and anode clamp are available.

A data sheet and more information is available from Varian EIMAC. Or the nearest Electron Device Group sales office. Call or write today.

Varian EIMAC
301 Industrial Way
San Carlos, California 94070
Telephone: 415-592-1221

Cards and plaque courtesy W6TC
TS-430S “Digital DX-terity!”

TS-430S

Digital DX-terity...that outstanding attribute built into every KENWOOD TS-430S that lets you QSY from band to band, frequency to frequency, and from mode to mode with the speed and ease that will give you a dominant position in DX operations.

KENWOOD's TS-430S, a revolutionary, ultra-compact, HF transceiver has already won the hearts of radio Amateurs the world over. It covers 160-10 meters, including the new WARC bands (easily modified for HF MARS). Its high dynamic range receiver tunes from 150 kHz-30 MHz. It utilizes an innovative UP conversion PLL circuit for superior frequency stability and accuracy. Two digital VFO's allow fast split-frequency operations. A choice of USB, LSB, CW, or AM, with FM optional, are at the operators fingertips. All Solid-state technology permits inputs of 250 watts PEP on SSB, 200 watts DC on CW, 120 watts on FM (optional), or 60 watts on AM. Final amplifier protection circuits and a cooling fan are built-in.

Eight memories store frequency, mode, and band data, with Lithium battery memory back-up. Memory scan and programmable automatic band scan help speed up operations. An IF shift circuit, a tuneable notch filter, and a Narrow-Wide switch for IF filter selection help eliminate QRMs. It has a built-in speech processor. A fluorescent tube digital display makes tuning easy and fast. An all-mode squelch circuit, a noise blanker, and an RF attenuator control help clean up the signal. And there's a VOX circuit, plus semi-break-in, with side-tone. All-in-all, it just could be that the expression “Digital DX-terity” is a bit understated.

TS-430S Optional Accessories: In typical KENWOOD fashion, there are plenty of optional accessories for this great HF transceiver. There is a special power supply, the PS-430. An external speaker, the SP-430, is also available. And the MB-430 mounting bracket is available for mobile operation. The AT-250 automatic antenna tuner was designed primarily with the TS-430S in mind, and for those who prefer to "roll their own," the AT-130 antenna tuner is available. The FM-430 FM unit is available for FM operations. The YK-88C (500 Hz) or YK-88CN (270 Hz) CW filters, the YK-88SN SSB filter, and the YK-88A AM filter may be easily installed for serious DX-ing. An MC-60A deluxe desk microphone, MC-80, MC-85 communications microphones, an MC-42S mobile hand mic., and an MC-55 8-pin mobile microphone, are available, depending on your requirements. TL-922A linear amplifier (not for CW QSK), SM-220 station monitor, FC-1A phone patch, SW-2000 SWR/power meter 160-6 meter, SW100A SWR/power/volt meter 160-2m, HS-4, HS-5, HS-6, HS-7 headphones, are also available.

More information on the TS-430S is available from authorized dealers of Trio-Kenwood Communications, 1111 West Walnut Street, Compton, California 90220.
TS-711A

TS-711A Multi-function all-mode 2 m transceiver.

The TS-711A 2 m all-mode transceiver is the perfect base station unit. It features Kenwood's innovative D.C.S. circuitry that allows your TS-711A to respond only to signals that include a pre-selected, digital code. The system recognizes 100,000 different 5-digit codes, making it possible for each station to have its own "private call," "group call," or "common call" code. Built-in digital VFO's provide commercial-grade frequency stability through the use of a TCXO (Temperature Compensated Crystal Oscillator). The new fluorescent multi-function display shows frequency, RIT shift, VFO A/B, SPLIT, ALERT, repeater offset, digital code, call sign code, and memory channel. 40 multi-function memories store frequency, mode, repeater offset and tone. It has programmable scan, memory scan, and mode scan. The Auto-mode function automatically selects the correct mode for the frequency being used. When a mode key is depressed, an audible "beeper" announces mode identification in International Morse Code.

The TS-711A has all-mode squelch, noise blanker, speech processor (SSB, FM), IF shift, RF power control, alert, and a unique channel Quick-Step tuning that varies tuning characteristics from conventional VFO feel, to stepping action when CH-Z switch is depressed.

Optional accessories:
- CD-10 Call Sign Display
- TU-5 CTCSS Tone Unit • VS-1 Voice Synthesizer • MC-60A Deluxe Desk Mic • MC-80 Desk Mic • MC-85 Desk Mic • SP-430 External Speakers • MB-430 Mobile Mount • PG-2J DC Cable

TS-670

TS-670 All-mode "Quad Bander"

The TS-670 "Quad Bander" is a unique all-mode transceiver that covers the 6 meter VHF band and the 10, 15 and 40 meter HF bands. FM operation may be added with the optional FM-430. Key features include dual digital VFO's, 80 memory channels, memory scan, and programmable band scan. Direct keyboard frequency selection allows you to enter a frequency to either VFO or to a memory channel using the 10-button key-pad on the front panel. The 2-color fluorescent tube display indicates frequency to the nearest 100 Hz (10 Hz modifiable) and includes LED indicators that signal the specific functions in use. The optional GC-10 general coverage receiver unit allows continuous tuning from 500 kHz to 30 MHz. The VS-1 voice synthesizer unit is another popular option available. All this plus IF shift, all-mode squelch, CW semi-break-in with side tone, narrow-wide filter selection, noise blanker, and R.F. attenuator make the TS-670 "Quad Bander" the next transceiver you should own!

Optional accessories:
- GC-10 General Coverage Unit, 500 kHz to 30 MHz • VS-1 Voice Synthesizer • FM-430 FM Unit • YK-86C 500 Hz CW Filter • YK-88CN 270 Hz CW Filter • YK-88A 5 kHz AM Filter • PS-430 DC Power Supply • KP-7A DC Power Supply • MC-60A Deluxe Desk Mic • MC-80 Desk Mic • MC-85 Multi-Function Desk Mic • VOX-4 VOX Unit

More information on the TS-711A and TS-670 is available from authorized dealers of Trio-Kenwood Communications, 1111 West Walnut Street, Compton, CA 90220.

Specifications and prices are subject to change without notice or obligation.
$129* gets you the world's first handheld digital/analog multimeter with "Touch Hold."

The Fluke 77

Its unique "Touch Hold"** function automatically senses and holds readings, leaving you free to concentrate on positioning test leads without having to watch the display.

Then, when you have a valid reading, it signals you with an audible beep.

The Fluke 77 is perfect for those test situations where accessibility is a problem, or when extra care is needed for critical measurements.

It's the top model in the world champion Fluke 70 Series line — the first industrial quality autoranging multimeters to combine digital and analog displays. These tough, American-made meters feature a three-year warranty and 2000+ hour battery life.

So call now for the complete story on the Fluke 77 with "Touch Hold." Because if you don't deserve the world's first, who in the world does?

For the name of your distributor or a free brochure, call our toll-free hotline anytime 1-800-227-3800, Ext. 229.

From outside the U.S., call 1-402-496-1350, Ext. 229.

* Suggested U.S. list price, effective July 1, 1984
** Patent pending

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.
Your wisest choice in automatic dish positioners.

To learn more about the finest in low cost, high performance dish positioners, contact...

ELECTRO-COM

5512 Savina Avenue • Dayton, Ohio 45415 • Phone (513) 832-2937
quiet! preamp at work

Understanding preamplifiers means understanding all the important parameters of receiver performance.

For years, the standard technique employed by Radio Amateurs to improve receiver sensitivity has been to precede their receivers with one or more stages of preamplification. Invariably a preamplifier that performs well on the bench will actually degrade the actual on-the-air system sensitivity. This article explores the relationship between gain, noise figure, bandwidth, distortion, and sensitivity in an attempt to answer the classic preamp question, “If a little is good, is a lot better?”

sensitivity

Sensitivity is a measure of the weakest input signal that will produce a specified output signal-to-noise ratio. We can quantify receiver performance in terms of *minimum discernible signal* sensitivity, which is the input level producing an output signal-to-noise ratio of unity; *tangential signal sensitivity*, which generally refers to the input level needed to produce an output signal-plus-noise to noise ratio of 6 dB or the RF level required to produce a detected signal which is 8 dB above the RMS noise level; or *threshold*, which refers to the input amplitude required to produce a specified level of receiver quieting and is frequently employed in FM systems. All of these sensitivity measures are a function of the receiver circuitry's internally generated noise, bandwidth, and distortion.

Of these three parameters, the receive bandwidth can be considered fixed for a given application, and would ideally be wide enough to pass all the modulation sidebands of the desired signal, yet sufficiently narrow to exclude both background noise and any adjacent-channel signals. Because the response bandwidth of modern receivers is established primarily in the IF stages, it is relatively independent of the parameters of any preamplifier employed.

Both noise and distortion, on the other hand, are very much influenced by preamplifier performance. Most Radio Amateurs are now aware that preamplifier gain, by itself, does not necessarily assure an improvement in receiver sensitivity. Rather, to be beneficial in a system, the preamplifier must generate an internal noise level significantly lower than that generated by the receiver it precedes. The noise relationships in a cascade of stages are quantified by the now-familiar Friis Equation. A well-known rule of thumb derived from the Friis Equation is that if a preamp’s gain exceeds by at least 10 dB the noise figure of the receiver it precedes, the noise performance of the preamplifier will dominate the cascade.

Yet the above relationship serves merely to confuse the Amateur who measures a new preamp at a regional VHF Conference at, say, 3 dB noise figure for 15 dB gain, brings it home, installs it in front of a 10 dB noise-figure receiver, and finds its sensitivity actually degraded. What has been overlooked? Probably the effects of distortion.

distortion

A linear amplifier is one whose output signal is an exact replica of the input signal, measured in either

By H. Paul Shuch, N6TX, 14908 Sandy Lane, San Jose, California 95124
the time or frequency domains, differing only in its increased amplitude. Try as we might, we cannot build truly linear amplifiers in the real world. Any non-linearity introduced by an amplifier will manifest itself as a deviation from sinusoidal response when viewed in the time domain, or as the generation of new frequencies when measured in the frequency domain.

In a receive preamplifier, as in any non-linear device, the distortion products generated are integer multiples (harmonics) of the input frequency, plus their various sums and differences. Normally these distortion products would not degrade receiver sensitivity, as they would fall outside of the receiver’s passband. Rare, however, is the receiver to which only a single input signal is applied. In our crowded spectra, we can anticipate countless signals of varying amplitudes within the passbands of our preamplifiers, only one of which (at a time) can be said to constitute “signal.” All potentially interfering waveforms must, from a communications standpoint, be classified as noise.

It is these multiple input signals that give rise to both intermodulation (mixing of in-band signals) and cross-modulation (mixing of signals from in-band with out-of-band) distortion. When the harmonics of one signal mix with the harmonics of another, the resulting distortion products can fall within the receiver passband, degrading sensitivity.

dynamic range

Neglecting distortion effects, the weakest signal to which a receiver can respond is a function of its bandwidth and noise performance. If the multiple input signals applied to a receive system are all relatively low in amplitude, their distortion products may fall below this sensitivity limit, and be negligible. But if the input signals are of sufficient amplitude, their distortion products may appear strong enough to degrade reception of the desired signal. Thus, noise figure of a receiver generally determines the weakest signal to which it can respond. Maximum spuriously free input signal, a function of a receiver’s linearity, establishes an upper limit for the range of signal amplitudes to which the receiver can respond without generating perceptible distortion. The difference between sensitivity and maximum spur-free input levels is called spuriously-free dynamic range, and represents a primary limitation in receiver performance.

Dynamic range is generally degraded by the addition of a preamplifier in front of a receiver. Although the low inherent circuit noise of a preamplifier may significantly improve minimum discernible signal sensitivity, degradation occurs because any additional gain in a system increases the amplitude of the desired signal, but increases the amplitude of the distortion products at an even greater rate, diminishing the maximum spuriously-free input signal level. Thus, at least with respect to preamplifier gain, the old axiom, “If a little is good, a lot is better” can get us into trouble. Preamplifiers should be used only when actually necessary to improve weak-signal performance, and then only with as much gain as is actually necessary to establish the required system noise performance.

Even so, preamplifiers can result in a net degradation in system sensitivity. Some preamps are worse than others in this respect; as far as dynamic range is concerned, not all preamps are created equal. We need to measure and quantify their dynamic range, as well as their noise figure, in order to accurately predict their impact on system performance.
Inferences about an amplifier’s dynamic range can be drawn by applying to its input a single signal of varying amplitude and observing the amplitude present at the output. In its linear region, the amplifier will produce a 1-dB change in output signal amplitude for every 1-dB change in the applied signal. That is, the gain of the amplifier is independent of applied signal level. But as the upper limit of dynamic range is approached, output signal changes will be unable to keep pace with the input. That is, the gain of the amplifier compresses at the upper end of its dynamic range. The output level at which the amplifier is exhibiting 1 dB less gain that it was under weak-signal conditions is referred to as its output 1-dB compression point, and is an indicator of the amplifier’s immunity to intermodulation and cross-modulation distortion.

For a given noise figure, the preamplifier with the highest compression point will offer the greatest spurious-free dynamic range. But correlating the two parameters directly is difficult because the relationship between compression and distortion varies between active devices, and between circuit configurations.

Another indicator of dynamic range relates to the fact that if you continue to increase the drive level to an amplifier beyond the compression point, the gain further decreases. Eventually, the amplification of the desired signal is degraded to a point at which its amplitude at the output of the amplifier, and those of the intermodulation distortion products, would be the same. The output level at which this should occur is called the output intercept point.* Intercept point is more readily correlated to dynamic range than compression point, but is difficult to measure directly. To best quantify dynamic range limitations, it is necessary to test the preamplifier in its actual operating environment — that is, under multiple-signal conditions.

two-tone testing

In the method of dynamic range testing prevalent in industry, two sinusoidal signals of equal amplitude are applied to the input of the device under test, and the resulting output spectrum monitored in the frequency domain. The two input signals, or tones, may be generated by summing the outputs of the two signal generators in a power combiner, or by applying a single RF source to the LO input of a balanced mixer.

*For many amplifier circuits, this is a theoretical, rather than an attainable, level, because the active device may burn out before this output level is reached.

fig. 3. CP/M BASIC language program listing to determine spurious-free dynamic range from spectrum analyzer two-tone IMD measurements.

fig. 4. IMD analysis of a double-balanced mixer with a +7 dBm injected LO level.

INTERMODULATION ANALYSIS BY MICROCOMM

- **SYSTEM GAIN** = -6.0 dB
- **SYSTEM NOISE FIGURE** = 7.0 dB
- **SYSTEM BANDWIDTH** = 2.4 kHz

<table>
<thead>
<tr>
<th>OUTPUT THIRD ORDER INTERCEPT POINT</th>
<th>-4.0 dBm</th>
</tr>
</thead>
<tbody>
<tr>
<td>MINIMUM DISCERNIBLE INPUT SIGNAL</td>
<td>-133.2 dB</td>
</tr>
<tr>
<td>MAXIMUM SPURIOUS-FREE INPUT SIGNAL</td>
<td>-57.7 dB</td>
</tr>
<tr>
<td>SPURIOUS-FREE DYNAMIC RANGE</td>
<td>95.5 dB</td>
</tr>
</tbody>
</table>

INTERMODULATION ANALYSIS

- **SYSTEM BANDWIDTH** = 2.4 kHz
- **SYSTEM NOISE FIGURE** = 7.0 dB
- **SYSTEM GAIN** = -6.0 dB
- **MINIMUM DISCERNIBLE INPUT SIGNAL** = -133.2 dB
- **MAXIMUM SPURIOUS-FREE INPUT SIGNAL** = -57.7 dB
- **SPURIOUS-FREE DYNAMIC RANGE** = 95.5 dB

For many amplifier circuits, this is a theoretical, rather than an attainable, level, because the active device may burn out before this output level is reached.
THE BEST JUST GOT BETTER

ADM - 10'
ANTENNA DEVELOPMENT & MANUFACTURING INC.

A 10' aluminum sectional that is optimized for your feed system. The hub, petal and truss construction are the ultimate in durability. The best doesn’t have to cost more.

Contact Antenna Development & Manufacturing 314-686-1484 or your nearest distributor.

Echosphere Corporation
2250 South Raritan Bldg. A
Englewood, CO 80110
303-933-1909

Echosphere East
10536 Lexington Drive
Knoxville, TN 37922
615-966-4114

Echosphere West
5671 Warehouse Way
Sacramento, CA 95826
916-381-5084

Heifner Communications
1805 Burlington
Columbia, MO 65202
314-474-6414

Hoosier Electronics
P.O. Box 3300
Terre Haute, IN 47803
812-236-1456

Nat'l Satellite Communication
21st Century Park
Clifton Park, NY 12065
518-383-2211

National Satellite
10779 Satellite Blvd.
Orlando, FL 32819
305-851-4738

Arcom of Virginia, Inc.
500 Southlake Blvd.
Richmond, VA 23236
804-794-2300

Video Specialties, Inc.
417 Chambers Drive
Booneville, MS 38829
601-728-7700
AWARDED FOR STAYING ON THE JOB
With tens of thousands of 8050's presently in use in all types of service and environment, returns for any reason are well under a hundred units. That's Staying Power! Our built-in overload protection was designed to keep the 8050 on the job, not in the repair shop.

AWARDED FOR STAYING ACCURATE
The accuracy of the 8050's shipped to date, far exceeds our published specifications. We took 5 units out of our stock at random and tested them using the latest NBS traceable DMM Calibrator* Here are the Results...

<table>
<thead>
<tr>
<th>Calibrated Output DCV</th>
<th>190 mV</th>
<th>1.904</th>
<th>19.94</th>
<th>199.2</th>
<th>999.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMM Range Setting DCV</td>
<td>190 mV</td>
<td>1904</td>
<td>19.94</td>
<td>199.2</td>
<td>999.3</td>
</tr>
<tr>
<td>Unit #1</td>
<td>0.316</td>
<td>0.211</td>
<td>0.201</td>
<td>0.101</td>
<td>0.003</td>
</tr>
<tr>
<td>% Accuracy</td>
<td>190.6</td>
<td>1.904</td>
<td>19.94</td>
<td>199.2</td>
<td>999.3</td>
</tr>
<tr>
<td>Unit #2</td>
<td>0.263</td>
<td>0.263</td>
<td>0.302</td>
<td>0.050</td>
<td>0.262</td>
</tr>
<tr>
<td>% Accuracy</td>
<td>190.5</td>
<td>1.905</td>
<td>19.97</td>
<td>199.1</td>
<td>999.1</td>
</tr>
<tr>
<td>Unit #3</td>
<td>0.263</td>
<td>0.263</td>
<td>0.302</td>
<td>0.050</td>
<td>0.262</td>
</tr>
<tr>
<td>% Accuracy</td>
<td>190.3</td>
<td>1.901</td>
<td>19.92</td>
<td>199.3</td>
<td>999.3</td>
</tr>
<tr>
<td>Unit #4</td>
<td>0.156</td>
<td>0.156</td>
<td>0.101</td>
<td>0.151</td>
<td>0.202</td>
</tr>
<tr>
<td>% Accuracy</td>
<td>190.4</td>
<td>1.902</td>
<td>19.92</td>
<td>199.4</td>
<td>999.4</td>
</tr>
<tr>
<td>Unit #5</td>
<td>0.156</td>
<td>0.156</td>
<td>0.101</td>
<td>0.151</td>
<td>0.202</td>
</tr>
<tr>
<td>% Accuracy</td>
<td>190.5</td>
<td>1.901</td>
<td>19.92</td>
<td>199.4</td>
<td>999.4</td>
</tr>
</tbody>
</table>

And we guarantee accuracy for 1 full year.

AWARDED FOR KEEPING UP WITH OUR ADVANCING TECHNOLOGY
The 8050 measures DC and AC voltage from 0.1 mV through 1000V DC, 750V AC; DC and AC current 0.1 µA through 10 Amps; Resistance from 0.1 ohm through 20M ohms, test diodes, measures PNP and NPN transistor hFE, and has a super fast continuity beeper. This DMM was designed to respond to your testing needs now and in the future.

AWARDED FOR EASE OF OPERATION, READABILITY AND SIZE
The single knob rotary switch is easy to set, yet provides full contact wiping action just like the time proven VOM's. The lens protected LCD readout with its bold 3-1/2 digit display makes it easy to read, even in dimly lit areas. The ideal size (6-1/4" x 3-1/2 x 1") it fits comfortably in one hand, and can be slipped into most shop coat pockets. Our optional Carrying Case (Model CC-099.90) was designed to allow in-case, no hands on meter use, and contains a separate probe storage compartment as well.

AWARDED FOR PRICE/PERFORMANCE
The 8050 now costs less than ever before, just $76.50 in quantities of 1-3, $72.00 for 4-9 pieces and $67.00 for 10 or more units, with no sacrifice in quality construction, accuracy and field maintainability.

SOAR CORP. is the Prime Manufacturer of all it sells. For more information on the 8050 or any of our other Digital Multimeters, VOM's, Oscilloscopes, DC Power Supplies, Digital Temperature Meters, Pulse Generators, Frequency Counters, AC Current Meters and Energy Monitors. Write or call:

NORTH AMERICAN SOAR CORP.
1126 Cornell Avenue
Cherry Hill, New Jersey 08002
(609) 488-1060

NORTH AMERICAN SOAR CORPORATION
INTERMODULATION ANALYSIS BY MICROCOMM

-7.0 dBm
-65.0 dBm

SYSTEM GAIN = 7.0 dB
SYSTEM NOISE FIGURE = 8.0 dB
SYSTEM BANDWIDTH = 2.4 kHz
OUTPUT THIRD ORDER INTERCEPT POINT = 22.0 dBm
MINIMUM DISCERNIBLE INPUT SIGNAL = -132.2 dBm
MAXIMUM SPURIOUS-FREE INPUT SIGNAL = -24.7 dBm
SPURIOUS-FREE DYNAMIC RANGE = 107.5 dB

fig. 5. IMD analysis of a double-balanced mixer with a +17 dBm injected LO level.

er, a suitable audio signal generator to the mixer’s IF input, and applying to the device under test the double-sideband (two-tone) signal appearing at the mixer’s RF port. In either case, the two tones must be separated in frequency sufficiently to be individually resolved on the spectrum analyzer’s display, yet sufficiently close in frequency to both fall within the response bandwidth of the device under test.

A typical interconnection of instruments for two-tone dynamic range analysis is shown in fig. 1, and a typical resulting spectrum is displayed in fig. 2. Note that the distortion products of greatest amplitude (in this case, the pair of signals immediately adjacent to the two applied tones) are roughly two divisions, or 20 dB, below the amplitude of the desired output tones. The intermodulation distortion level of this particular amplifier, measured at this particular signal level, is thus -20 dB.

If the vertical axis of the spectrum analyzer is calibrated in absolute amplitude (typically in dBm), the output power per tone, the PEP output power (6 dB above the level of each individual tone), and power of the individual distortion products can be readily determined. And from these values, with minimal number crunching, we can determine the dynamic range of the preamplifier.

data analysis

The mathematical relationships applied next are, as is said in college texts, “beyond the scope of this course.” However, I have included in fig. 3 a listing of a Micro-soft TM BASIC program that performs the complete analysis. Although written to run under the CP/M TM operating system, the program can likely be modified to run on any of the popular home computers using their version of BASIC. Figures 4 through 8 are sample executions of the IMD program for various receiver configurations. Comparing these printouts will enable us to draw some significant conclusions with regard to the utility of preamplifiers in VHF and UHF communications systems.

mixer design considerations

As a rule, balanced mixers offer excellent dynamic range and intermodulation distortion performance, although their weak-signal sensitivity leaves something to be desired. Mixers are designed to operate at different levels of local oscillator injection, and generally, the higher the LO level employed, the higher will be the mixer’s compression level. However, raising the LO injection above perhaps 5 milliwatts tends to degrade mixer conversion efficiency and noise figure. Nonetheless, as figs. 3 and 4 indicate, so-called high level mixers offer sufficiently improved dynamic range to override the considerations of slightly degraded sensitivity, in most applications.

Not shown in the computer runs, but worthy of consideration, are the so-called “starved LO” mixers. These devices use an extremely low LO injection level with external DC bias of their mixer diodes, and excel in low-noise performance. Their dynamic range, however, is severely degraded, typically 12 to 15 dB below that of even the “low-level” balanced mixer shown in fig. 3. Thus, except in those applications in which it is impractical to generate 5 milliwatts or more of LO injection, starved LO operation should be avoided.

The same is true for harmonic mixers. These devices are extremely popular in microwave TV receive converters, and employ LO injection at half the normal frequency, with the mixer diodes serving double duty as frequency multipliers. Obviously, the more frequencies we generate within a mixer, the more spurs will be available to bite us later. I recommend multiplying in a stage separate from that doing the heterodyne conversion.

preamp design considerations

Most receive preamplifiers operate with their active devices drawing relatively low quiescent current. This is done because high device current generates high thermal activity, which degrades noise performance significantly. Unfortunately, biasing any active device
MOS devices cite their higher gain and stable operation, which eliminates the need for neutralization. Figures 6 and 7 seem to indicate that neither device holds a clear advantage as far as overall system performance is concerned. The two representative amplifiers I tested in preparing this manuscript exhibited identical dynamic range.

Gallium-Arsenide Field Effect Transistors, on the other hand, are the undisputed winner in all areas of VHF and UHF performance. As indicated in fig. 8, the GaAs FET offers exceptional high gain, low noise, and wide dynamic range performance. If only they weren’t so expensive!

Summary

In evaluating receiver performance, it is necessary to consider dynamic range limitations, as well as noise figure, to select the combination of devices and circuits that will yield the best overall sensitivity. Table 1 summarizes the results of testing various competing mixer and preamplifier technologies. Although the tests were performed at 2 meters, we can generalize the results to other VHF and UHF bands as well.

It appears that best receiver performance will be achieved by cascading a GaAs FET preamplifier with a high-level doubly-balanced mixer. Two-tone analysis confirms that such a combination has considerable immunity to intermodulation and cross-modulation interference, while maintaining an impressively low-noise figure.

References

This article was adapted from a paper originally presented at the 18th Conference of the Central States VHF Society, held in Cedar Rapids, Iowa, on 28 July, 1984, and appeared in the Proceedings of that conference.

Table 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Table 1</th>
<th>Table 2</th>
<th>Table 3</th>
<th>Table 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Bandwidth (MHz)</td>
<td>3 MHz</td>
<td>5 MHz</td>
<td>7 MHz</td>
<td>9 MHz</td>
</tr>
<tr>
<td>Input Power (dBm)</td>
<td>-40 dBm</td>
<td>-39 dBm</td>
<td>-38 dBm</td>
<td>-37 dBm</td>
</tr>
<tr>
<td>Input Sensitivity (dBm)</td>
<td>-140 dBm</td>
<td>-139 dBm</td>
<td>-138 dBm</td>
<td>-137 dBm</td>
</tr>
<tr>
<td>Noise Figure (dB)</td>
<td>3 dB</td>
<td>3 dB</td>
<td>3 dB</td>
<td>3 dB</td>
</tr>
<tr>
<td>Dynamic Range (dB)</td>
<td>84 dB</td>
<td>84 dB</td>
<td>84 dB</td>
<td>84 dB</td>
</tr>
<tr>
<td>IMD</td>
<td>-112 dBm</td>
<td>-111 dBm</td>
<td>-110 dBm</td>
<td>-109 dBm</td>
</tr>
<tr>
<td>Spurious-Free Dynamic Range (dB)</td>
<td>78.5 dB</td>
<td>78.5 dB</td>
<td>78.5 dB</td>
<td>78.5 dB</td>
</tr>
</tbody>
</table>

NOTE: Measurements were performed at 144 MHz, with representative devices. Results at other frequencies will vary, but comparisons will be similar.
Advanced Computer Control

... for your repeater

The RC-850 provides the most advanced technology available in repeater control. With "designed for the future" architecture that allows upgrade through software so that it will never be obsolete. Complete remote programmability with E²PROM via Touch-Tone™ or your personal computer. Offering unique features including the highest quality synthesized speech and fully automatic scheduled operation. Plus voice response metering, synthesized remote base operation, paging, mailbox, and the most advanced autopatch available — anywhere! Designed for reliable, consistent, enjoyable operation in any system. Field proven in hundreds of commercial and amateur repeater installations. The RC-850 will always be the leader in high performance repeater control.

Available from $1195**

The RC-85 Repeater Controller
The RC-850's "little brother"!
Remotely programmable ID's, command codes, auto-dial numbers, timers, and more.
The RC-85 controller includes many of the features pioneered by ACC such as synthesized speech, remote base, paging, and more. Now any repeater budget can afford the benefits of an ACC controller! All just $895 (board) or $995 (rack mount).*

The ITC-32 Intelligent Touch-Tone Control Board
Remote control at your fingertips with 28 commandable outputs, plus alarms, repeater and remote base control functions, response messages, and more. An ideal building block for your repeater. An easy way to add a remote base to your system. Or even to remotely control your home.

Only $389

NEW PRODUCTS

DVR 128 • Digital Voice Recorder — Solid state voice storage and playback for remote recording of ID's and announcements, voice mail, and user diagnostics.
IVS 6/12 • Intelligent Voting System — Six or twelve channel voting with DTMF remote control. In-band signal quality evaluation, audio equalization, and activity logging.
ShackMaster™ — Remotely control your home station using Touch-Tone commands over the air or over the telephone. Patch yourself through your home equipment onto the HF bands, and to VHF and UHF frequencies.

*Includes a one year limited warranty
**Includes a two year limited warranty

Call us for more information on our complete line of amateur and commercial repeater control products.

10816 Northridge Square, Cupertino, CA 95014 (408) 749-8330
DIXIE ELECTRONICS
IS LOUISIANA’S ONE STOP ELECTRONICS STORE. THERE
ARE NO TURKEY DEALS. JUST SUPER GOOD PRICES AND
PROMPT DELIVERY. CALL ROBIN, WB5UXA, TODAY AND
GET ALL THE DETAILS ON THE LINES IN STOCK.

AMATEUR RADIO EQUIPMENT

SATELLITE EQUIPMENT

TEN-TEC
MFJ
MIRAGE
HUSTLER
HY-GAIN
JPC AZDEN
CUSHCRAFT
SODOM
STS
LOWRANCE
PenTec
MTI
Nampa
WILSON
TRACKER

WE TALK TURKEY
NO TURKEY DEALS

HOLIDAY SPECIALS
Whistler Radar Detectors

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q 1200</td>
<td>$109</td>
</tr>
<tr>
<td>Q 2000</td>
<td>$149</td>
</tr>
<tr>
<td>Spectrum</td>
<td>$199</td>
</tr>
<tr>
<td>Spectrum Remote</td>
<td>$209</td>
</tr>
</tbody>
</table>

Dixie Electronics
Robin Hudson, WB5UXA
LA WATS (800) 272-8293
Out of state WATS (800) 535-8134
2418 S. Philippe Avenue • Gonzales, LA 70737

November 1984
I think most hams would agree that the best impulse-noise squelch would be one that stopped each noise burst at its source. Unfortunately there are too many noise bursts arriving from too many directions to make such a thing possible. It’s usually difficult to locate a local source; even if you do, the person responsible for the noise is often unwilling or unable to cooperate. Once launched, these disturbances seem determined to enter our receiving systems; when they do, they’re repeatedly amplified, modified, and stretched as they race from antenna terminals to speaker. In short, once admitted, these unfriendly signals are actually made worse — often much worse — by your receiver’s own circuits.

What happens at the output after a burst of noise arrives at your receiver’s input is quite predictable. Some of the fast-changing wave front is absorbed by the first tuned circuit, then released in the form of ringing at this filter’s natural resonant frequency. The resulting damped oscillation is then translated by a local oscillator, resulting in a rapid rise at the input of the IF filter, which absorbs some of the energy and then releases it in the form of ringing at its resonant frequency . . . and so on.

basic noise control methods

Over the years a great many circuits have been tried in an effort to control impulse noise. Successful methods have been of two basic types: the noise blanker and the noise limiter. The well known Lamb filter (often called a hole-puncher, noise silencer, or noise blanker) takes a sample of each noise pulse from a receiver stage as near to the antenna as possible and, using fast circuits, forms a blanking pulse that momentarily blocks the receiver’s IF stage just before the ringing pulse of noise energy arrives. The blanking pulse is designed to embrace the ringing time caused by the filter characteristic. Some rise and fall time is usually added so the blanking function will not itself generate audible clicks at the receiver’s output. This system has been around for a long time; properly designed, it works very well. But one problem with this technique is that it must be designed to go into action only on noise pulses that are significantly larger than desired signals in order to avoid the creation of excessive distortion.

Another form of impulse noise control is called the “peak limiter” system. Again, this method is restricted to noise signals whose peak amplitudes are above that of desired signals. When a noise burst is received, the desired signal is momentarily suppressed and the interference is limited in peak amplitude. Perhaps the best features of this noise control system are its simplicity and its ability to reduce possible damage to our ears caused by otherwise nearly unlimited sharp audio sound transients.

Neither method is effective in removing noise bursts of low to moderate amplitude, or of durations of greater than a few microseconds, which usually includes those “woodpecker” style noise disturbances. The majority of disturbances fall in the latter category, with high amplitude disturbances in the minority.

pulsewidth noise discriminator

This article is about a third method that effectively handles a wide range of impulse noise amplitude levels and can be used either by itself or in conjunction with the more familiar methods described above. Furthermore it can be added at the audio output of any receiver. I have called this method the PND — Pulsewidth Noise Discriminator. Rather than working on peak amplitudes, this system makes use of time duration differences between the character of almost all desired signals and impulse noise. Impulse noise bursts at their origin exist for only a few nanoseconds to

By Don E. Hildreth, W6NRW, P.O. Box 60003, Sunnyvale, California 94088
microseconds, but they are then transformed by receiver circuits into ringing bursts lasting from a little less than one millisecond up to as much as ten milliseconds, depending on the shape and bandwidth of the narrowest filter being used. Concurrently, the vowel parts of desired SSB voice signals are fractions of a second long; even the shortest parts of CW are typically of 50 to 100 milliseconds duration for the "dit" and "space" lengths.

Using this data, a basic pulse width discriminator is designed to ignore any signal until it has existed for a selectable period of time — 10 milliseconds, for example — and will consequently block a noise pulse stretched by a typical 100 Hz bandwidth filter.

The circuit of fig. 1 is the basis of this system. When no signal is present, Q1 and Q2 are ON and Q3 is OFF. When a signal arrives, the precision rectifier formed by U1 and U2 develops a negative gate that turns off Q1 and Q2. However, Q3 remains off until the no-signal reverse charge of a nominal -2 volts on C, Q3's base to emitter capacitor, is bled off and reversed to the required level of approximately +0.7 volts by charging through R, which is made up of 1K + 39K + the 500K pot setting. When Q3 goes on, its collector voltage drops. It is this signal that is used to accept a desired signal or to reject those that are too short for completion of the timing cycle as determined by the effective value of R. A second and very desirable feature of the basic pulsewidth discriminator part of the circuit is that it resets very quickly, thereby avoiding the integration of noise pulses provided they are not too close together (equal to or less than the selected time discrimination period). This feature makes the full-wave rectification provided by U1 and U2 plus a small amount of filtering necessary to avoid a functional dropout between the cycles of a desired signal. Using the specified circuit values, a minimum of 1 volt RMS is required for normal operation.

Fig. 2 shows what happens as a function of time. Since the pulsewidth discriminator circuit would ig-
nore a ringing or sinusoidal signal of any period, the incoming signal is transformed into a negative gate. An ideal gate pulse is shown for clarity. This use of an oscilloscope is convenient at the Q2 and Q3 emitter junction, to observe and measure the time discrimination performance.

a PND application

Fig. 3 shows an application in which an audio filter feeds the pulse noise discriminator and the output of the discriminator is used to key an audio white-noise generator for listening to CW. (Of course you can have it key a tone oscillator if you prefer.) The mixer control is arranged to enable listening to CW directly through the filter, or to the noise generator, or to any mixture of the two. By connecting the control in this experimental way, you can test and experience how well this idea works: simply compare a non-noise discriminated 750 Hz CW output to the processed audio-noise CW output that is driven by the PND.

In operation, the +10 volt level at Q3's collector is used to squelch noise output from the dual op-amp noise generator shown in fig. 3 or in the SSB output of fig. 4. When the PND system recognizes a signal, the Q3 collector level drops, opening the transistor switch Q2 of fig. 3 or Q1 of fig. 4. One undesirable feature of this noise control system relates to operating convenience: your receiver's output is normally OFF until a qualified signal appears. If you like to be aware of the noise floor, as I do, this can be a disadvantage, so I usually run the mixer control midway when looking for DX. Then, depending on conditions, I decide which way to twist this control. If I want to avoid the tinkling roar present when listening to a low-level signal through a narrow CW filter, I turn the control to admit only the keyed-noise signal with its silence between characters. But if I want to make use of the ear-brain filter capabilities (when there is more than one signal in the filter passband) then I turn the control to allow only the signal through the 750 Hz filter to reach the power amplifier.

With the mixer control set toward keyed-noise operation, and with the delay control set at minimum, slowly increase the receiver gain at a no-signal spot.

fig. 3. A PND application.

Note: Values of capacitance are in microfarads (µF); others are in picofarads (pF); resistances are in ohms. k = 1,000; M = 1,000,000.
on the dial until the noise function starts to be heard sporadically. Increase the delay until the noise stops, then increase the delay just a bit more. This will match the delay to your filter bandwidth. If you are in a location that is too radio-quiet at the time, set the 500K pot at about mid-range for a nominal 12 millisecond delay. This will usually enable the rejection of noise pulses as they are stretched by a typical 100 Hz bandwidth filter. For best operation, the amplitude of a signal being received should be adjusted by your receiver’s output level control to just a little above that required for reliable keying of the noise generator. Once this is done, the control at the output of the filter is set so that either the perceived level of keyed noise or the tone level are about the same when the mixer control is in any position. Adjust the volume control for the overall listening level desired. Once all of these settings are made, you will usually work with only your receiver’s output control and the mixer control.

single sideband

Although the electronic switch as driven by the PND system can follow code quite well, its use on SSB would result in choppy voice reception. To use PND on sideband it is best to insert a delay circuit between the PND circuitry and the electronic switch to keep the controlled audio stage ON for a short time after the PND has shut off. This technique was used with my laryngeal squelch3 and that part of the circuit is included in fig. 4. If you use the voice-filter system, you can either use PND to open both channels, or you can feed a sample of the vowel filter to PND and control the consonant filter with the delay/switch combination. If you use the vowel filter, the delay setting is about the same as that used for CW. However, if the normal 3 kHz voice bandwidth is used the delay may usually be reduced to its minimum. The PND system, in its basic form shown here, is not as effective for SSB as it is when used to key the noise generator for CW, for although noise is rejected between a voice signal’s ON times, it can appear in addition to the desired signal during the ON periods. Circuit development to improve on this problem is being studied, but requirements are much more complex.

general considerations

Although PND can handle most impulse noise problems unaided by the more prevalent noise silencers, it is still best to have a Lamb-type noise blanker in addition. Since the basic noise blanker blocks out noise bursts early in the receiver, it reduces the probability that strong pulses will drive one or several amplifier stages into heavy saturation, which can block a receiver for periods much longer than the offending noise-pulse length, and this is something that PND cannot help. Also, the front-end blanker system can suppress auto ignition pulses produced by an engine at moderately high RPMs, while PND is limited to rejecting auto ignition at idling RPMs when a 100 Hz bandwidth is used and at higher RPMs only when the bandwidth is increased. At the same time, PND can wipe out those woodpecker noise sources while their ON periods are too long for the Lamb blanker to handle. PND can be most effective when it is used in conjunction with either a blanker or a limiter, but use with a blanker is my first choice.

Because we are accustomed to using noise floor as a guide — and with PND you lose this reference — it’s easy to run up your receiver gain much too high. Unfortunately, when the gain is too high, the noise-floor itself, even without an antenna, creates what amounts to a constant ringing level as it is stuff through filters. Moreover, since the noise-floor in linear receivers is not limited, amplitude variations on this ringing can make a weird form of noise-floor-generated CW by the PND. When you hear this, just back off on the gain control a little to achieve silence.

references

ham radio

A printed circuit board (fig. 3) is available for $59.95 postage paid; the PC board plus parts (no controls) is available for $32.95 postage paid. Contact the author, Don Hildreth, W6NRW, P.O. Box 60003, Sunnyvale, California 94088.
Join the New Industry Leader... Uniden®

UST 1000
Uniden’s standard Satellite Receiver is a durable, low-cost, user-friendly satellite receiver that’s a great value.
- Built-In Modulator
- Automatic Polarity Selector
- Video Fine Tuning
- Polarity Indicator Light
- Antenna Polarity Mode Switch
- Channel Scan
- Signal Strength Meter
- Weather-Sealed Down Converter

UST 3000
Uniden’s top-of-the-line unit gives you maximum performance capabilities along with the latest infrared circuitry.
It features:
- Digital LED Channel Indicator
- Built-In Modulator
- Automatic Polarity Selector
- Video Fine Tuning
- Both Fixed and Variable Audio Tuning
- Polarity Indicator Light
- Antenna Polarity Mode Switch
- TV/SAT Selector and Indicator
- Channel Scan
- Signal Strength Meter
- Optional Remote Control
- Weather-Sealed Down Converter
- Limited One Year Warranty

For low competitive prices on our Uniden receivers and our complete line of Uniden products, call Precision Satellite Systems at 1-800-HOT-DISH

Dealers only please.
Precision Satellite Systems, Inc.
715 Grove Street
Clearwater, FL 33751

CALL 800-HOT-DISH
IMD and intercept points of cascaded stages

Use this program to determine performance parameters.

Intercept point is a useful concept in predicting the spurious intermodulation products generated by components, systems, or subsystems. Only the second-order and third-order products are significant. The intercept point is the power level at which the spurious response equals the fundamental response. The value may be referred to the input or output. Usually the output is referenced for amplifiers and mixers, and the input for receivers. The intercept points for the second-order and third-order products may be the same or different, depending on the circuit of the device. Typically the responses are plotted using log-log scales with the values in dBm as shown in figs. 1 and 2.

Assuming two signals at frequencies f_A and f_B, and $f_A > f_B$, the second-order products are: $f_A + f_B$, $f_A - f_B$, $2f_A$, and $2f_B$. The second harmonics are not strictly intermodulation products, but may be predicted in the same manner except that their amplitudes are 6 dB less than the sum and difference products. If the two fundamental frequencies are almost equal, the $f_A - f_B$ term is near zero frequency and the remaining product is at about twice the fundamental frequencies. Half-octave filters can be used to attenuate the second-order products. Refer to fig. 3 for the worst case with f_A and f_B at the band edges of a half-octave filter.

Third-order intermodulation products present the most serious problem for devices having bandwidths less than one-half octave. For two signals at frequencies f_A and f_B, the third-order products are: $2f_A + f_B$, $2f_A - f_B$, $2f_B + f_A$, and $2f_B - f_A$. For a narrow-band device centered at 20 MHz, two signals, $f_A = 20.50$ MHz and $f_B = 20.25$ MHz, will generate the third-order product $2f_B - f_A$ at exactly 20 MHz. For three signals at frequencies f_A, f_B, and f_C, the third-order products are: $\pm f_A \pm f_B \pm f_C$. Third-order products of three signals are seldom considered except for multi-frequency systems such as cable TV.

Measurement techniques

For single or cascaded components, intercept point is measured by driving the device with two equal amplitude signals and measuring the fundamental outputs and intermodulation products on a spectrum analyzer.

The concept of intercept point for a receiver is usually limited to the RF front end. It is meaningless for the IF passband because of the nonlinearities of detection

By William Richardson, W3IMG, 1003 Wagner Road, Baltimore, Maryland 21204
and gain control, as well as the high overall gain. Two equal level signals, outside the IF passband but within or as close as possible to the RF passband, are selected so that an intermodulation product is at the receiver center frequency. Their levels are simultaneously increased until an output (intermod) signal of about 10 dB signal-to-noise is observed. Record the level of the signals. Then the two signals are removed, and a single signal at the receiver center frequency is adjusted in level to produce the same output. Its level is also recorded. For third-order products the two signals are usually placed within the RF passband. However, for second-order products the signals fall out of the RF passband if the RF bandwidth is less than an octave. Refer to fig. 3. The most important second-order product in a receiver comes from a signal at one-half center frequency that doubles into the center frequency. This latter measurement is made by increasing the amplitude of a signal at one-half the receiver center frequency until an output signal of about 10 dB signal-to-noise is observed. Record the input level. This signal source must be well filtered so that its second harmonic is well below the second-order response. Next the input signal is tuned to the receiver center frequency and its level is adjusted to produce the same output, and this level is recorded.

When connecting two signals to the input, the insertion loss of the combiner must be subtracted from each generator output. A second precaution is to make all measurements at least 10 dB below the 1 dB compression point. Otherwise the device will be operating in its large signal area.

second-order products

Refer to fig. 1. The slope of the second-order response is 2. As the fundamental output decreases by 1 dB, the second-order intermodulation products decrease by 2 dB. For two equal signals, the function may be expressed as:

\[IP = P + IMR \]

\(IP \) is the second-order intercept point in dBm, \(P \) is the fundamental response in dBm, and \(IMR \) is the ratio between the fundamental and second-order responses in dB. In the case of a receiver, \(P \) is the level of the two signals or half-frequency input, and \(IMR \) is the ratio of \(P \) to the level of the signal at center frequency.

For example, if the fundamental outputs of an amplifier are \(-10\) dBm and the second-order intermodulation products are \(-45\) dBm, the second-order intercept point is:

\[IP = -10 + 35 = +25 \text{ dBm} \]

Knowing the intercept point, this equation will predict the second-order intermodulation products for known signal levels. For a single input signal, the same methods can be used to calculate the intercept point if the second harmonic is measured, or to predict the second harmonic if the intercept point is known. However, the second-harmonic response is \(6\) dB less than a second-order intermodulation product.

The levels of the second-order intermodulation products are proportional to the product of the levels of the fundamental signals. For signals of unequal levels, the level of equal signals that produce the same intermodulation products can be calculated. If the levels are in dBm, add the two and divide by one-half. For two signals, one at \(-20\) dBm and the other at \(-26\) dBm, the equivalent equal amplitude signals are
NOW 28 FT 75/80M ROTATABLE "SLOPER"

Remotely tunes to VSWR of less than 1.3:1 from 3.5 to 4MHz.

- Remote controlled, motor-driven tuning system optimizes "sloper" at any frequency in the 75-80M band!
- Sloping configuration can result in FB ratios up to 20dB depending upon ground conductivity and propagation angle.
- Low-angle forward lobe for DX plus high angle for short-haul skip.
- Requires no ground (except for lightning protection).
- 50 ohm coax feed plus 8 conductor control cable (not supplied).
- Outperforms some full size dipoles, inverted vee's and verticais.
- Light in weight (only 12 lbs). Complete system requires only supporting mast and TV-type rotator (8 sq. ft. rating).
- 40 meter model also available. Same characteristics.

AMATEUR TELEVISION

KP5A 1 WATT 70 CM ATV TRANSMITTER BOARD

- APPLICATIONS: Cordless portable TV camera for races & other public service events, remote VCR, etc. Remote control of R/C airplanes or robots. Show home video tapes, computer programs, repeat SSTV to local ATVers. DX depends on antennas and terrain types 1 to 40 miles.
- FULL COLOR VIDEO & SOUND on one small 3.25 x 4" board.
- RUNS ON EXTERNAL 13.8 VDC at 300 ma supply or battery.
- TUNED WITH ONE CRYSTAL on 426.25, 434.0, or 439.25 MHz.
- 2 AUDIO INPUTS for a low Z dynamic and line level audio input found in most portable color cameras, VCRs, or home computers.
- APPLICATION NOTES & schematic supplied for typical external connections, packaging, and system operation.
- PRICE ONLY $159 delivered via UPS surface in the USA. Technician class amateur license or higher required for purchase and operation.

WHAT IS REQUIRED FOR A COMPLETE OPERATING SYSTEM? A TV set with an ATV-2 or YWC-4 420-450 MHz to channel 3 downconverter, 70 cm antenna, and coax cable to receive. Package up the KP5A, add 12 to 14 vdc, antenna, and any TV camera, VCR, or computer with a composite video output. Simple, eh?

CALL OR WRITE FOR OUR COMPLETE CATALOG & more info on ATV downconverters, antennas, cameras, etc., or who is on in your area.

TERMS: Visa, Mastercard, or cash only UPS COD by telephone or mail. Telephone orders & postal MO usually shipped within 2 days; all other checks must clear before shipment. Transmitting equipment sold only to licensed amateurs verified in 1984 Callbook. Calif. include sales tax.

(818) 447-4585 m-f 8am-6pm pst.

P.C. ELECTRONICS
Tom W6ORG Maryann WB6YSS
2522 Paxson Lane Arcadia CA 91006

SATELLITE TELEVISION RECEIVER SEMIKIT

with dual conversion downconverter

FEATURES:
- Infrared remote control tuning
- AFC, SAW filter
- RF or video output
- Stereo output
- Polorator controls
- LED channel & tuning indicators

Install six factory assembled circuit boards to complete.

SEMIKIT
$400.00
Completed downconverter add 100.00
Completed receiver and downconverter add 150.00

JAMES WALTER SATELLITE RECEIVER
2697 Nickel, San Pablo, CA 94806 (619) 944-1063
If the levels are in milliwatts, the equivalent equal signal levels are each:

\[A = \frac{A_A}{A_B} \]

where \(A_A \) and \(A_B \) are individual signal levels.

If the second-order intercept point and gain of each stage are known, the overall intercept point of the cascaded stages may be found from the following formula:

\[
\frac{1}{\Delta IP} = \frac{1}{IP_1 \cdot G_2 \cdot G_3} + \frac{1}{IP_2 \cdot G_3 \cdot G_4} + \frac{1}{IP_3 \cdot G_4} + \frac{1}{IP_4}
\]

Each term of the formula has the intercept point of the stage multiplied by the gain of all of the following stages. The terms are numerical ratios, not dB or dBm. A look at each term will indicate the contribution of each stage to the overall system intercept point.

Another method of calculating the overall intercept point of cascaded stages is to use the formula:

\[
\Delta IP = 20 \log \left[1 + \sqrt{\frac{100 \cdot 0.25}{G_1 \cdot G_2}} \right]
\]

The \(\Delta IP \) is in dB and is subtracted from the second stage intercept point to give the overall intercept point of the two cascaded stages. For more than two stages, this formula is used for the first two stages, and that result is then used with the third stage and so forth.

Both formulas assume the worst case in which the intermodulation products within each stage \textit{add in phase}. If a linear stage is part of the system, it must be included with its actual gain (or loss) and an infinite intercept point.

Refer to fig. 4 for sample calculations of the intercept point of three cascaded stages. The output intercept point is calculated. The input intercept point

Table: Gain and IP for Stages

<table>
<thead>
<tr>
<th>Stage</th>
<th>dB</th>
<th>Ratio</th>
<th>dB</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+20</td>
<td>100</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>+13</td>
<td>20</td>
<td>-6</td>
<td>0.25</td>
</tr>
<tr>
<td>3</td>
<td>+30</td>
<td>1000</td>
<td>20</td>
<td>100</td>
</tr>
</tbody>
</table>

Using cascaded stage equation:

\[
\frac{1}{\Delta IP} = \frac{1}{100 \cdot 0.25 \cdot 100} + \frac{1}{20 \cdot 100} + \frac{1}{1000}
\]

\[
= 0.00040 + 0.00050 + 0.0010 = 0.0019
\]

\[
\Delta IP = 526 = 27.2 \text{ dBm}
\]

Alternate method

\[
\Delta IP = 10 \log \left[1 + \frac{100 \cdot 0.25}{G_1 \cdot G_2} \right]
\]

For stages 1 and 2:

\[
\Delta IP = 10 \log \left[1 + \frac{20}{100 \cdot 0.25} \right] = 10 \log 1.80 = 5.5 \text{ dB}
\]

Combining stages 1 and 2

\[
\Delta IP = 20 \log \left[1 + \frac{100 \cdot 0.25}{G_1 \cdot G_2} \right] = 20 \log 2.34 = 7.4 \text{ dB}
\]

\[
\Delta IP = 10 \log \left[1 + \frac{20}{100 \cdot 0.25} \right] = 10 \log 1.80 = 5.5 \text{ dB}
\]

Combining stages 1 and 2

\[
\Delta IP = 30 - 7.4 = 22.6 \text{ dBm}
\]

Input intercept point = 22.6 - 34.0 = -11.4 dBm

Fig. 4. Example shows two methods of calculating cascaded stages second-order intercept point.
FULL BREAK-IN
WITH ANY AMPLIFIER

IF YOU OWN A
QSK TRANSCEIVER

Don’t be limited to
low power operation with your
expensive full break-in transceiver. You can run high
power QSK CW and high power AMTOR.

The DEO QSK 1500 is designed using the latest in solid
state switching technology and will give you full break-in
operation with any one of the currently available com-
cmercial amplifiers, homebrew too! Pin diodes provide
ultra high speed, noiseless switching. All you need to
do is connect two RF cables and two control cables,
turn it on and you are ready to go, up to 1500 watts
at 1.5-1 VSWR. Fully automatic bandswitching, 1.8-
30 MHz and mode selection, either CW or SSB, no
cables to change. The QSK 1500 eliminates amplifier
damage due to “hot switching” and gives you full
receiver performance with an insertion loss less than
.7 dB, typically .2 dB.

90 day limited warranty. For More Info Send QSL
$299.00

DEO
DESIGN ELECTRONICS OHIO
4925 S. HAMILTON RD. GROVEPORT, OHIO 43125

Free Antenna Accessories Catalog

< Coaxial Antenna Relays
Remotely select up to 9 antennas from your transmitter, using only one
coaxial cable. Environmentalized, high
power and low loss.

W2AU and W2DU Baluns+
Our baluns, center insulators and insulators have been preferred for 20
years by Hams, industry, and the armed
forces. Protect against TVI and lightning
1.8–200 MHz.

W2VS Antenna Traps
Add these traps to your dipole and
get low SWR on 2 to 6 bands, depend-
ing on how many you add. Antenna
wire and custom kits also available.

Send For Yours Today†
Don’t delay. Call or write today, and
we will send you free literature which
fully describes our Ham antenna ac-
cessorry product line.
Dealer inquiries also welcome.

† For dealer inquiries.

For More Info Send QSL

SHIPING & HANDLING COSTS

FREE

USPS

315-437-3953

$299.00

For More Info Send QSL

DEO
DESIGN ELECTRONICS OHIO
4925 S. HAMILTON RD. GROVEPORT, OHIO 43125

Free Antenna Accessories Catalog

< Coaxial Antenna Relays
Remotely select up to 9 antennas from your transmitter, using only one
coaxial cable. Environmentalized, high
power and low loss.

W2AU and W2DU Baluns+
Our baluns, center insulators and insulators have been preferred for 20
years by Hams, industry, and the armed
forces. Protect against TVI and lightning
1.8–200 MHz.

W2VS Antenna Traps
Add these traps to your dipole and
get low SWR on 2 to 6 bands, depend-
ing on how many you add. Antenna
wire and custom kits also available.

Send For Yours Today†
Don’t delay. Call or write today, and
we will send you free literature which
fully describes our Ham antenna ac-
cessorry product line.
Dealer inquiries also welcome.

† For dealer inquiries.

For More Info Send QSL

SHIPING & HANDLING COSTS

FREE

USPS

315-437-3953

$299.00

For More Info Send QSL

DEO
DESIGN ELECTRONICS OHIO
4925 S. HAMILTON RD. GROVEPORT, OHIO 43125

Free Antenna Accessories Catalog

< Coaxial Antenna Relays
Remotely select up to 9 antennas from your transmitter, using only one
coaxial cable. Environmentalized, high
power and low loss.

W2AU and W2DU Baluns+
Our baluns, center insulators and insulators have been preferred for 20
years by Hams, industry, and the armed
forces. Protect against TVI and lightning
1.8–200 MHz.

W2VS Antenna Traps
Add these traps to your dipole and
get low SWR on 2 to 6 bands, depend-
ing on how many you add. Antenna
wire and custom kits also available.

Send For Yours Today†
Don’t delay. Call or write today, and
we will send you free literature which
fully describes our Ham antenna ac-
cessorry product line.
Dealer inquiries also welcome.

† For dealer inquiries.

For More Info Send QSL

$299.00

For More Info Send QSL

DEO
DESIGN ELECTRONICS OHIO
4925 S. HAMILTON RD. GROVEPORT, OHIO 43125

Free Antenna Accessories Catalog

< Coaxial Antenna Relays
Remotely select up to 9 antennas from your transmitter, using only one
coaxial cable. Environmentalized, high
power and low loss.

W2AU and W2DU Baluns+
Our baluns, center insulators and insulators have been preferred for 20
years by Hams, industry, and the armed
forces. Protect against TVI and lightning
1.8–200 MHz.

W2VS Antenna Traps
Add these traps to your dipole and
get low SWR on 2 to 6 bands, depend-
ing on how many you add. Antenna
wire and custom kits also available.

Send For Yours Today†
Don’t delay. Call or write today, and
we will send you free literature which
fully describes our Ham antenna ac-
cessorry product line.
Dealer inquiries also welcome.

† For dealer inquiries.

For More Info Send QSL

$299.00

For More Info Send QSL

DEO
DESIGN ELECTRONICS OHIO
4925 S. HAMILTON RD. GROVEPORT, OHIO 43125

Free Antenna Accessories Catalog

< Coaxial Antenna Relays
Remotely select up to 9 antennas from your transmitter, using only one
coaxial cable. Environmentalized, high
power and low loss.

W2AU and W2DU Baluns+
Our baluns, center insulators and insulators have been preferred for 20
years by Hams, industry, and the armed
forces. Protect against TVI and lightning
1.8–200 MHz.

W2VS Antenna Traps
Add these traps to your dipole and
get low SWR on 2 to 6 bands, depend-
ing on how many you add. Antenna
wire and custom kits also available.

Send For Yours Today†
Don’t delay. Call or write today, and
we will send you free literature which
fully describes our Ham antenna ac-
cessorry product line.
Dealer inquiries also welcome.

† For dealer inquiries.

For More Info Send QSL

$299.00

For More Info Send QSL

DEO
DESIGN ELECTRONICS OHIO
4925 S. HAMILTON RD. GROVEPORT, OHIO 43125
equals the output intercept point reduced by the total gain.

third-order products

Refer to fig. 2. The slope of the third-order response is 3. As the fundamental output decreases by 1 dB, the third-order intermodulation products decrease by 3 dB. For equal signals, the curve may be expressed as:

\[IP = P + 1/2(\text{IMR}) \]

(4)

\(IP \) is the third-order intercept point in dBm, and \(\text{IMR} \) is the ratio between the fundamental and third-order responses in dB. For the case of a receiver, \(P \) is the level of the two input signals and \(\text{IMR} \) is the ratio of \(P \) to the level of the signal at center frequency.

For example, if the fundamental outputs of an amplifier are \(-10 \text{ dBm}\) and the third-order intermodulation products are \(-50 \text{ dBm}\), the third order intercept point is:

\[IP = -10 + 1/2(-40) = +10 \text{ dBm} \]

Knowing the intercept point, the equation will predict the third-order intermodulation products for known signal levels.

The levels of the third-order intermodulation products are proportional to (1) the cube root of the product of three signals or (2) in the case of two signals, the cube root of the square of the higher level signal times the other. For signals of unequal levels, the equivalent equal level signals that produce the same intermodulation products can be calculated. If the levels are in dBm, for the two signals add 2/3 of the larger to 1/3 the smaller. If one signal is at \(-20 \text{ dBm}\) and the other at \(-32 \text{ dBm}\), the equivalent equal level signals are at \(-24 \text{ dBm}\). For three signals, add 1/3 of each level in dBm. If the levels are in milliwatts, the equivalent levels are

\[\frac{1}{3} \sqrt[3]{A_A \cdot A_B \cdot A_C} \text{ or } \frac{1}{3} \sqrt[3]{A_A^2 \cdot A_B} \]

where \(A_A \) is the highest level.

If the third-order intercept point and gain of each stage are known, the overall intercept point of cascaded stages may be found from the following formula:

\[\frac{1}{IP} = \frac{1}{IP_1 \cdot G_2 \cdot G_3 \cdot G_4} + \frac{1}{IP_2 \cdot G_3 \cdot G_4} + \frac{1}{IP_3 \cdot G_4} + \frac{1}{IP_4} \]

(4)

Each term of the formula has the intercept point of the stage multiplied by the gain of all the following stages. The terms are numerical ratios, not dB or dBm. A look at each term indicates the contribution of each stage to the overall system intercept point.

Another method of calculating the overall intercept point of cascaded stages is to use the formula:

\[\Delta IP = 10 \log \left[1 + \frac{IP_2}{IP_1 \cdot G_2} \right] \]

(5)

The \(\Delta IP \) is in dB and is subtracted from the second-

fig. 6. TRS-80 Model III program listing determines the intercept point of cascaded stages.

```
10 PRINT "INTERCEPT POINT OF CASCaded STAGES"
20 PRINT
30 PRINT "SECOND-ORDER INTERMODULATION"
40 PRINT "THIRD-ORDER INTERMODULATION"
50 PRINT "SELECT 2 OR 3? 3"
60 ENTER NUMBER OF STAGES? 3
70 ENTER INTERCEPT POINT FOR STAGE 1 IN DBM?
80 ENTER GAIN OF STAGE 1 IN DB
90 ENTER INTERCEPT POINT FOR STAGE 2 IN DBM?
100 ENTER GAIN OF STAGE 2 IN DB
110 ENTER INTERCEPT POINT FOR STAGE 3 IN DBM?
120 ENTER GAIN OF STAGE 3 IN DB
130 IP(DBM) GAIN(DB)
20 10
13 -6
30 20
140 IF DATA OK Y/N? Y
150 PRINT "THIRD-ORDER INTERCEPT POINT IS 27,2191 DBM"
```

fig. 7. Three-stage device IMD intercept point calculation is simple with user-friendly program.

Note differences between eqs. 2 and 4 and 3 and 5. – Editor.
Stage intercept point to give the overall intercept point of the two cascaded stages. For more than two stages, this formula is used for the first two stages, and the result is then used with the third stage and so forth.

Both formulas assume the worst case in which the intermodulation products within each stage add in phase. If a linear stage is part of the system, it must be included with its actual gain (or loss) and an infinite intercept point.

Refer to fig. 5 for a sample calculation of third-order intercept point for three cascaded stages. The output intercept point is calculated. The input intercept point equals the output intercept point reduced by the total gain.

Computer program aids calculation

Figure 6 lists the steps of a typical BASIC language computer program for calculating the second-order and third-order intercept points of cascaded stages if the values for the individual stages are known.

Figure 7 is a TRS-80 Model III™ printout showing a typical calculation of third-order IMD intercept point of a three-stage device.
HOME SATELLITE EARTH STATIONS!

LEWIS ELECTRONICS STOCKS ITEMS FROM OVER 80 MANUFACTURERS

We invite you to compare our PRODUCTS, PRICES and SERVICE.

COMPLETE SYSTEMS AS LOW AS $869!

** Receivers: **
- Arunta
- Astron
- Auto-Tech.
- Boman
- El-Tech
- Gen. Inst.
- Gillaspie
- Janeil
- Keytronics
- KLM
- Locom
- Luxor
- MA/Com
- Regency
- Sat-Tec
- S.T.S.
- Toki
- Uniden
- Wilson

** LNA's: **
- Avantek
- Boman
- Gardiner
- Gillaspie
- Hytek
- M.S.E.
- Locom
- MA/Com
- Regency
- Winegard

** Antennas: **
- Alpine
- Cinci. Fib.
- Conifer
- Continental
- D. H.
- Janeil
- Laux
- M & L
- Paraclipse
- Prodelin
- Raydx
- Regency
- Wilson
- Winegard

** Antenna Drives: **
- Pro-Sat
- Gen. Inst.
- Houston Tracker
- Gillaspie
- Janeil
- Luxor
- M.T.I.
- M.C.M.
- T.D.F.
- S.T.S.
- Vector

** Stereo Processors: **
- Arunta
- Drake
- Janeil
- Sat-Tec

** Antenna Feeds: **
- Boman
- Chaparral
- MA/Com
- International

** Accessories: **
- Aim
- Amphenol
- Arunta
- Avantek
- Beldon
- Belmoor
- Blonder-Tongue
- Brown Electronics
- Calif. Amplifier
- Com Scope
- Drake
- Fuji
- General Inst.
- ITT
- Ideal
- Ikko
- Intermagnetics
- International
- International
- Itera
- Lindsay
- M & M
- MA/Com
- Marshall Electric
- Mayes Brothers
- Microwave Consul.
- Microwave Filter
- Newton
- Nexus
- P.C.M.
- Panasonic
- Pfandiehl
- R.C.A.
- Radio Shack
- Regency
- S.G.C.
- Saxton
- Sharp
- Stand-By
- Swire Mag.
- Tru-Spec
- Walden
- Winegard
- Xtra-Link

LEWIS ELECTRONICS COMPANY
P.O. BOX 100 WEST ELM STREET
HUMBOLDT, TENNESSEE 38343
(901) 784-2191

More Details? CHECK-OFF Page 158 176 November 1984 35
HIGH PERFORMANCE PRESELECTOR-PREAMP
The solution to most interference, intermod, and desense problems in AMATEUR and COMMERCIAL systems.
- 40 to 10000 MHz - tuned to your frequency
- 5 large helical resonators
- Low noise - high overload resistance
- 7 dB gain - ultimate rejection > 80 dB
- 10 to 15 volts DC operation
- Size: 1.6 x 2.6 x 4.75" exc. connectors
- FANTASTIC REJECTION!

Typical rejection:
- 600 Khz@144 Mhz: - 28dB
- 1.6 Mhz@220 Mhz: - 60dB
- 5 Mhz@450 Mhz: - 50dB

Price $89.95 bipolar w/RCA jacks
Connector options: BNC $5, UHF $6, N $10
SUPER HOT! GaAs Fet option $20

AUTOMATIC IDENTIFIERS
- For transceivers and repeaters: AMATEUR and COMMERCIAL
- Automatic operation - adjustable speed and amplitude
- Small size - easy installation: 7 to 15 volts DC
- 8 selectable, reprogrammable messages - each to 2 min. long
- Wired, tested, and programmed with your message(s)

Model ID-1 - $49.95
Model ID-2 w/10 minute timer - $69.95

We offer a complete line of transmitters and receiver strips and synthesizers for amateur and commercial use.

Request our free catalog. Allow $2 for UPS shipping. Mastercard and VISA welcome.

GLB ELECTRONICS
1952 Clinton St., Buffalo, NY 14206
716-824-7936, 9 to 4

Use Your Wireless Control FROM ANY ROOM!!!
Works with most infrared remote control receivers.
LIKE HAVING A SATELLITE RECEIVER, VCR, CABLE TV, AND VIDEO DISC IN EVERY ROOM!
- Remote control Satellite Receiver, VCR, Cable TV, and Video Disc can now be used long distance.
- Install on any TV to access all your remote control video components.
- Makes non-remote TVs remote controllable with remote control VCR, Cable Select, or Satellite Receiver.
- No fancy wiring needed - uses existing coaxial wiring between TVs.
- No extra controls to buy! Uses the hand-held remote controllers you already have.
- No tools required. Easily installed in minutes.

$7995
Plus $3.00 shipping & handling

608-493-2291

DO YOU KNOW WHERE TO FIND REAL BARGAINS on NEW and USED ELECTRONIC Equipment?
You'll Find Them in the Nation's No. 1 Electronic Shopper Magazine
NUTS & VOLTS Now in Our 5th Year
Nuts & Volts is published MONTHLY and features:
- NEW STATE-OF-THE-ART PRODUCTS
- SURPLUS EQUIPMENT • USED BARGAINS
- LOW COST AD RATES • PRIVATE AND COMMERCIAL CLASSIFIEDS
- NATIONAL CIRCULATION • NEW PRODUCT NEWS SECTION • AND A FREE CLASSIFIED AD WITH YOUR SUBSCRIPTION

SUBSCRIPTION RATES
- One Year - 3rd Class Mail $10.00
- One Year - 1st Class Mail $15.00
- One Year - Canada & Mexico (in U.S. Funds) $18.00
- Lifetime - 3rd Class Mail (U.S. Only) $35.00

ORDER NOW!
SEND: □ CHECK □ MONEY ORDER
□ VISA □ MASTERCARD
TO: NUTS & VOLTS MAGAZINE
P.O. BOX 1111-H
PLACENTIA, CALIFORNIA 92670
(714) 632-7721

Name: ____________________________
Address: __________________________
City: ____________________________
State: __________________ Zip: ________
Card No: __________________ Exp. Date __________

IF YOU'RE INTO ELECTRONICS, THIS MAGAZINE WILL SAVE YOU MONEY!
Dealer Inquiries Invited

MERRIMAC SATELLITE
327 Palsade St., Merrimac, WI 53941

NUTS & VOLTS BUY • SELL • TRADE ELECTRONICS
HAM GEAR
COMPUTERS
SOFTWARE
SCANNERS • OPTICS
TEST EQUIPMENT
MICROWAVE
SATELLITE AUDIO • VISUAL
NEW PRODUCTS
COMPONENTS • KITS
ANTIQUES ELECT.
PUBLICATIONS
PLANS • SERVICES

NEW STATE-OF-THE-ART PRODUCTS • SURPLUS EQUIPMENT • USED BARGAINS • LOW COST AD RATES • PRIVATE AND COMMERCIAL CLASSIFIEDS • NATIONAL CIRCULATION • NEW PRODUCT NEWS SECTION • AND A FREE CLASSIFIED AD WITH YOUR SUBSCRIPTION

SUBSCRIPTION RATES
- One Year - 3rd Class Mail $10.00
- One Year - 1st Class Mail $15.00
- One Year - Canada & Mexico (in U.S. Funds) $18.00
- Lifetime - 3rd Class Mail (U.S. Only) $35.00

ORDER NOW!
SEND: □ CHECK □ MONEY ORDER
□ VISA □ MASTERCARD
TO: NUTS & VOLTS MAGAZINE
P.O. BOX 1111-H
PLACENTIA, CALIFORNIA 92670
(714) 632-7721

Name: ____________________________
Address: __________________________
City: ____________________________
State: __________________ Zip: ________
Card No: __________________ Exp. Date __________

IF YOU'RE INTO ELECTRONICS, THIS MAGAZINE WILL SAVE YOU MONEY!
Dealer Inquiries Invited

MERRIMAC SATELLITE
327 Palsade St., Merrimac, WI 53941

NUTS & VOLTS BUY • SELL • TRADE ELECTRONICS
HAM GEAR
COMPUTERS
SOFTWARE
SCANNERS • OPTICS
TEST EQUIPMENT
MICROWAVE
SATELLITE AUDIO • VISUAL
NEW PRODUCTS
COMPONENTS • KITS
ANTIQUES ELECT.
PUBLICATIONS
PLANS • SERVICES

NEW STATE-OF-THE-ART PRODUCTS • SURPLUS EQUIPMENT • USED BARGAINS • LOW COST AD RATES • PRIVATE AND COMMERCIAL CLASSIFIEDS • NATIONAL CIRCULATION • NEW PRODUCT NEWS SECTION • AND A FREE CLASSIFIED AD WITH YOUR SUBSCRIPTION

SUBSCRIPTION RATES
- One Year - 3rd Class Mail $10.00
- One Year - 1st Class Mail $15.00
- One Year - Canada & Mexico (in U.S. Funds) $18.00
- Lifetime - 3rd Class Mail (U.S. Only) $35.00

ORDER NOW!
SEND: □ CHECK □ MONEY ORDER
□ VISA □ MASTERCARD
TO: NUTS & VOLTS MAGAZINE
P.O. BOX 1111-H
PLACENTIA, CALIFORNIA 92670
(714) 632-7721

Name: ____________________________
Address: __________________________
City: ____________________________
State: __________________ Zip: ________
Card No: __________________ Exp. Date __________

IF YOU'RE INTO ELECTRONICS, THIS MAGAZINE WILL SAVE YOU MONEY!
Dealer Inquiries Invited

MERRIMAC SATELLITE
327 Palsade St., Merrimac, WI 53941
the Russian Woodpecker: a continuing nuisance

What it is and what can be done

It never fails . . . you’re working some choice DX on 20 meters for your 300th country or you’re in one of the Area traffic nets, trying to pass a message to another ham a thousand miles away. Suddenly, without warning, the band is shattered by something that sounds like a cross between a machine gun and a jackhammer. No, it’s not the neighbor’s power saw or the family microwave oven . . . it’s the Russian Woodpecker in full operation. With the interference level running 10 to 20 dB over S9, your much-needed contact is buried under this avalanche of QRM and heard no more. The only solution is to turn off the rig and cool down with a tall, cold 807.

What is the Woodpecker? Why is it in operation? And why does the Soviet Union persist in creating this level of interference worldwide? What can we do about it? And what have other radio services and users of the spectrum done? This article will explore the aspects of this problem and suggest some possible solutions.

Basically, the Russian Woodpecker is an extremely powerful over-the-horizon radar system. It operates over most of the HF band, with effective radiated power levels of some 10 to 50 megawatts. To understand the nature of this problem, we need to have a basic understanding of how OTHB (Over-The-Horizon-Backscatter) radar operates, some sense of the history of experimentation and operation in this field, and an educated awareness of Soviet diplomatic response to complaints about the interference their system is generating.

basic radar operation

It has long been recognized that radar can be operated on any frequency. The earliest radar systems — built by the British and responsible for much of that nation’s success during the Battle of Britain — were operated at a frequency around 30 MHz. This was due, in part, to 30 MHz being the highest frequency at which significant levels of power could be generated. Later radar systems were operated at much higher frequencies as technology developed tubes capable of generating multi-kilowatt levels of power at shorter and shorter wavelengths. Moving through the spectrum from VHF to UHF and finally into the microwave regions, radar engineers have traditionally sought the highest possible frequency of operation for several reasons. Shorter wavelengths bring increased target resolution and give the system, as a whole, increased immunity to interference, either natural or man-made. In addition, highly directional antennas become physically smaller, making possible the design of mobile radar units with greater target discrimination.

Unfortunately, all these radar systems suffer from a single common defect: they can operate only on line-of-sight. This means that at greater distances, the target must be at higher altitudes in order to be detected. Aircraft or cruise missiles flying at very low altitudes can escape radar detection.

By Bradley Wells, KR7L, 5053 37th Avenue, S.W., Seattle, Washington 98126
until they are almost on top of the radar transmitter. Thus, several aircraft flying at tree-top level could approach and neutralize radar installations undetected, leaving a blind spot through which an enemy could pour aircraft or missiles. This scenario, dealing with the problem of low level detection, has left many a defense planner, both American and Soviet, in a cold sweat.

lower frequencies provided new opportunities

It had been recognized by many that some form of high-frequency radar, utilizing backscatter techniques, could detect these low-level targets. Since the radar signal would be reflected off the ionosphere and illuminate the target from above, there would be no escape from this type of detection system. It was also recognized that there were several inherent problems in this approach. First, the ionosphere was thought to be in a state of continuous flux, unable to provide stable refraction characteristics for any length of time; second, there would be continuous interference both to and from other users of the HF spectrum; and, finally, the reception of backscattered signals would require extremely complex detection systems.

By the early 1970's, scientific inquiry and experiments brought new light to this gloomy picture. The widespread use of ionospheric sounders, both ground-based and satellite, had shown the ionosphere to be more stable than previously thought. It was discovered that the refractive characteristics of the ionosphere changed very little in the short term — that is, for periods of approximately 30 minutes, the ionosphere is remarkably homogeneous. During the course of a day, these characteristics change in response to shifts of solar flux and geomagnetic activity. This meant a radar system would have to be capable of operating over much of the HF band to provide coverage of selected areas. Simply put, the radar would have to be frequency-agile to follow these changes in the Maximum Usable Frequency (MUF).

The explosion of computer technology made possible the correlation and analysis of weak backscattered signals on a real-time basis. Using cross-correlation reception techniques coupled with the development of magnetic drums for data storage, high-speed computers were used to sort out interference in the system. These computers could not only discern a weak target signal from ground clutter but also selectively filter out other users of the HF spectrum.

early OTHBs

In the 1950's, the United States Naval Research Laboratory and other groups began small-scale experiments with OTHB radar. These early experiments led to the solution of some of the major problems in designing a functional HF radar. Among these problems were the following:

- The return from prospective targets would be 40 to 80 dB weaker than the ground return (i.e., ground clutter).
- It was not known whether sufficient angular resolution could be developed at HF wavelengths to permit accurate target identification.
- Extremely precise doppler techniques would have to be used to permit identification.

The magnitude of this doppler problem may be seen in the following equation:

$$fd = \frac{2 V_r f_0}{C}$$

fd represents the doppler shift, f_0 represents the radar carrier frequency, V_r is the target relative velocity, and C is the speed of light. For aircraft type targets, the doppler shift varies from tenths of a Hertz upward to 50 Hz. This is dependent upon the operating frequency. The development of technologies to deal with these and other problems have resulted in the operation of both American and Soviet OTHB radar systems.

Both the American CONUS OTH-B (Continental United States Over-The-Horizon Backscatter — see sidebar, page 43) and the Soviet Woodpecker share characteristics common to all HF radars. The interaction of these characteristics may be seen from an examination of the radar range equation:

$$R_{MAX} = \frac{P_{AV} G_T G_R \lambda^2 \sigma F_P T_C}{(4\pi)^3 N_o (S/N) L_S}$$

where R_{MAX} = maximum range

P_{AV} = average power

G_T = gain of transmitting antenna

G_R = gain of receiving antenna

λ = wavelength

σ = target cross section

F_P = propagation effects factor

T_C = coherent processing time

N_o = noise power/unit bandwidth

S/N = signal to noise ratio required for detection

L_S = system losses

The major differences between HF and microwave radar systems are related to the following:

- Propagation effects — energy loss over ionospheric paths, polarization mismatch between transmitted and received signals, and gains or losses related to the dynamic nature of the transmission path.

- The amount of noise injected into the system by natural sources (i.e., distant thunderstorms) and, more importantly, by other users of the HF spectrum
(e.g., international broadcasting, Amateurs, Maritime mobile, etc.).

- Processing time (the number of hits integrated divided by the pulse-repetition frequency) — important since doppler radar requires a dwell time of \(T_c \) seconds to realize a frequency resolution of \(1/T_c \) Hertz. The transmitted waveform for HF radar systems is similar to that of microwave systems. It can be CW, pulse, FM-CW, or some other coded mode of transmission. OTHB radar have different problems with detection at minimum ranges than do microwave radars. This is because of the existence of a skip zone — that region, familiar to all hams, from which no signal is received. This skip zone accounts for HF radar's inability to detect targets closer than 1000 km to the transmitter.

A long pulse is used in HF radar to increase the sensitivity of the system and may reduce to interference levels associated with pulse modulation. In addition, the pulse repetition frequency is normally low to avoid range ambiguities. A PRF of 50 Hz will yield an unambiguous range of some 3000 km. Individual pulse widths may range from tens of microseconds to several milliseconds depending upon the sensitivity desired and the desire to reduce interference to other services.

antenna requirements are severe

OTHB radar places more demands upon the antenna system than do other types of radar. The antenna must be physically large because of the low frequencies involved, be capable of handling very large amounts of power, exhibit gain and directivity over a wide range of frequencies, and be steerable in both elevation and azimuth. Typically the antenna consists of phased arrays of vertical bowtie driven elements in front of screen reflectors. The antenna lobes are steered in azimuth and elevation by shifting the phase relationships between individual active elements. Normally, separate antennas are used for transmitting and receiving. While this increases the problems of synchronizing the transmitter with the receiver, it is more than offset by the simplification of antenna construction. To place the first lobe as near horizontal as possible, an extended ground screen is placed in front of the array. This ground screen may extend up to 3000 meters in front of and be as wide as the antenna array.

Changes in the ionosphere bring about changes in the MUF. HF radar adapts to these changing conditions by shifting its operating frequency. The ionosphere is probed with a sounder and the profiles are updated constantly. This gives real-time information as to what the best operating frequency for coverage of a particular area of interest will be. The relationship between vertical profiles and transmission paths can be seen from figs. 1 and 2. As the transmission frequency approaches the MUF, the paths lengthen, providing the maximum distance in a single hop transmission. Operating at or near the MUF greatly reduces path losses. Since these radar systems are not limited to a few discrete bands of frequencies, as are other services (including hams), they can follow the MUF quite closely.

The reliability of HF radar is related to antenna size, radiated power, and the range of frequencies used. These factors can overcome shortcomings in the reliability of the ionospheric paths. The ionosphere places limits on operation in both summer and winter, but for different reasons. In summer, ionization extends well into the lower regions, which normally contain neutral particles. Thus strengthened, the D-layer causes increased path loss. During the winter, decreased solar radiation creates lower electron densities in the F-layer and results in lower frequencies being required for reliable transmission. Several other problems exist because of changes within the ionosphere. These problems include the following:

- Propagation velocity is frequency dependent which places lower limits on pulse length and range resolution.
- The refractive characteristics of the ionosphere allow specific areas to be covered only by a narrow range of frequencies at any given moment.

the solar jammer

At frequencies in the high HF and low VHF range, natural extra-terrestrial sources of interference can play havoc with radar systems. During the height of the Battle of Britain, for example, British radars operating around 30 MHz were suddenly jammed by a strange, unknown signal. The interference became so severe that the British High Command felt sure it was some new and very effective form of German jamming. A group of engineers and astronomers, led by Stanley Hey, was detailed to locate the source and develop countermeasures. Together they determined that the interference appeared to originate in the area of the Sun. After photographs revealed a large sunspot group on the surface of the Sun, Hey concluded that the intensity of interference was related to the size and position of the sunspots on the solar surface. This discovery, confirmed by other investigators, led to the post-war development of solar radio astronomy.
You can DX and receive weather charts from around the world.

Tune in on free, worldwide government weather services. Some transmitting sites even send weather satellite cloud cover pictures!

You've heard those curious facsimile sounds while tuning through the bands — now capture these signals on paper!

Assemble ALDEN's new radiofacsimile Weather Chart Recorder Kit, hook it up to a stable HF general-coverage receiver, and you're on your way to enjoying a new hobby activity with many practical applications. Amateurs, pilots, and educators can now receive the same graphic printouts of high-quality, detailed weather charts and oceanographic data used by commercial and government personnel.

Easy to assemble — Backed by the ALDEN name.

For over 40 years, ALDEN has led the way in the design and manufacture of the finest weather facsimile recording systems delivered to customers worldwide. This recorder kit includes pre-assembled and tested circuit boards and mechanical assemblies. All fit together in a durable, attractive case that adds the finishing professional touch.

Buy in kit form and save $1,000!

You do the final assembly. You save $1,000. Complete, easy-to-follow illustrated instructions for assembly, checkout, and operation. And ALDEN backs these kits with a one-year limited warranty on all parts.

Easy to order.

Only $995 for the complete ALDEN Weather Chart Recorder Kit. To order, fill out and mail the coupon below. For cash orders enclose a check or money order for $995. Add $5 for shipping and handling in the U.S. and Canada, plus applicable sales tax for CA, CO, CT, IA, MA, NY, WI. (Export price is $1250 F.O.B. Westborough, MA. Specify 50 or 60 Hz.) To use your MasterCard or Visa by phone, call (617) 366-8851.

ALDENELECTRONICS
Washington Street, Westborough, MA 01581

NAME:

ADDRESS:

CITY: STATE: ZIP:

Charge to: □ MasterCard □ Visa

ACCOUNT # (ALL DIGITS)

EXPIRATION DATE

SIGNATURE REQUIRED IF USING CREDIT CARD

Buy in kit form and save $1,000!
Table 1. Current capabilities of United States and USSR OTHB radars.

<table>
<thead>
<tr>
<th>Capability</th>
<th>United States</th>
<th>USSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range coverage</td>
<td>1000-4000 km</td>
<td></td>
</tr>
<tr>
<td>Angle coverage</td>
<td>360 degrees</td>
<td></td>
</tr>
<tr>
<td>Range resolution</td>
<td>As low as 2 km</td>
<td></td>
</tr>
<tr>
<td>Absolute range accuracy</td>
<td>Determined by beamwidth</td>
<td></td>
</tr>
<tr>
<td>Doppler resolution</td>
<td>Generally resolution of 1/10 Hz is possible.</td>
<td></td>
</tr>
<tr>
<td>Level of interference</td>
<td>Dependent upon such factors as frequency of operation, antenna design, power level, type of modulation, area of illumination, and duration of operation at any particular frequency.</td>
<td></td>
</tr>
</tbody>
</table>

- The propagation medium is filled with unwanted clutter from meteor and auroral ionization in addition to other areas of scattering that compete with target returns.

present OTHBs

The current capabilities of OTHB radars, both American and Soviet, are shown in **table 1**.

it all started with Ivan The Terrible

The initial evidence of Soviet OTHB radar capability surfaced in mid-1976. The first of these radar units, nicknamed "The Kiev Buzzsaw" or "Ivan The Terrible" was a 2-million watt transmitter operating near the city of Kiev, augmented by a smaller installation near the Black Sea town of Nikolayev. From these initial efforts, the Soviets have expanded their system into a fully functional early-warning high-frequency radar. Most of the early information concerning the Russian Woodpecker, as it is now known, came from the worldwide efforts of Amateur Radio operators. Even today, little hard information is available concerning the physical make-up of these radar installations. Western intelligence reports remain classified and, of course, the Russians appear reluctant to volunteer anything.

The Woodpecker is part of some 7000 surveillance radar systems deployed at over 1200 sites across the length and breadth of the USSR. While it was initially thought that the Woodpecker was designed for aircraft or ship detection, recent information indicates that it is actually a ballistic missile early warning system. There are currently three of these OTHB radars in operation. Two of them pointed at the United States and the other was directed at central China. These radar systems operate in conjunction with satellite detection systems to provide upwards of 30 minutes warning of an ICBM strike launched from sites within the United States or China. This HF radar launch detection system is not as accurate or reliable as a satellite system, but the two working together give 24 hour-a-day coverage of missile silos.
Since its beginning in 1976, the Soviet OTHB systems have increased their power and currently operate at the 20 to 50 megawatt level. Their system utilizes pulse modulation, in contrast to the American CONUS OTHB, which transmits FM-CW. The PRF (Pulse Repetition Frequency) is normally 10 per second, although additional analysis has suggested each pulse actually consists of a pulse train of up to twenty different square wave pulses with some less than two milliseconds long, giving an effective PRF of 800 pps. The modulation scheme employed by the Russians has undergone some evolutionary changes since the inception of this radar system. Currently, the modulation, though still a pulse system, causes the radar signal to be spread in frequency. This permits frequency compression on the receiving end and results in “processing gain” for the system as a whole. In addition, this spread-spectrum technique allows the detection system to more easily discriminate against other stations on frequency. Unfortunately, these wide-band signals have further increased the interference levels to other, legitimate users of the HF band.

Currently, the radar signals no longer sit on one frequency for extended periods of time, as they once did. This is due, in part, to the protests of other users of the HF spectrum, but also to the Soviets’ efforts to utilize the optimum transmission frequency. At the present time, the signals move up and down the band in 100 kHz steps at intervals of 30 seconds to 10 minutes.

Why hams are most affected

It is also noteworthy that the Woodpecker chooses parts of the HF spectrum with low rates of RF occupancy. Certain portions of the band have few users per unit time and those users operate with low levels of radiated power. These areas of the spectrum are a natural for radar operation, placing less stringent requirements on the detection system. As can be seen in fig. 3, the Amateur bands fit nicely into this category. This helps to explain why hams have suffered the most. In addition, Amateurs tend to have limited political “pull” with their governments and, thus, are less able to bring pressure to bear to curb this interference than are other users of the spectrum. Other services, such as international broadcasting, can overcome the Woodpecker by raising their effective radiated power into the megawatt range and thereby swamping out the Russian radar.

Worldwide response to the Woodpecker arose almost immediately after its first transmission. In July, 1976, the Federal Communications Commission sent a telegram — prompted by complaints from ham operators about interference levels on the 20-meter band — to the Soviet Ministry of Post and Telecommunications. With no response from the USSR, the FCC sent three more cables. Still there was no response. In October, the FCC filed a formal complaint with the International Frequency Registration Board.

Additional complaints poured in from Amateur, Maritime, and aeronautical operators in other countries. In addition to the United States, and European nations, countries in the region of the Baltic Sea as well as Australia and New Zealand voiced strong protests. Early in 1977, the Soviet Union admitted that their experiments might cause some interference to other radio facilities for short periods of time. As worldwide pressure mounted, the USSR agreed to cut back on these radar transmissions. In reality, the Woodpecker remained on the air for the same amount of time, but its signals moved back and forth through the HF band rather than staying in one spot for extended periods of time.

In 1979, this issue surfaced, but was never pressed, at the World Administrative Radio Conference. In retrospect, this was probably for the best. This conference resulted in substantial gains for the Amateur community that might never have come about if the Conference had been disrupted over the Woodpecker issue.

Soviets ignore treaty

The USSR is signatory to international telecom-
communications treaties that spell out, in detail, the allocations for broadcasting. However, the Soviets have made full use of an escape clause included in all of these treaties. Simply put, a nation may ignore the treaty if such action is deemed to be in the best interests of its national defense. In addition, telecommunications treaties are only as good as a nation’s willingness to abide by them. There is no practical way to force compliance by other countries. Most nations observe these treaties rather closely, however, realizing that compliance is in the best interest of the world community.

The current position of the United States was recently stated by Dr. William Schneider, Under Secretary of State for Security Assistance, Science and Technology. In an interview, Schneider commented, “We are making every effort to encourage the USSR to comply with their treaty obligations. In this regard, I hope we will be more effective in the future than we have been in the past.” In reality, this means that the Soviets will continue to use the Woodpecker as long as it suits their needs or until they develop a completely accurate and reliable satellite surveillance system for ICBM launch detection.

what can we do?

So what can you do the next time the Woodpecker blows the 20-meter band apart? There’s no point in complaining to the FCC or Department of State — they’re not interested. They have literally thousands of complaints on file and don’t need any more. They are fully aware of the problem and realize how little they can do to change it. Cranking your keyer up to 99 WPM and shooting a string of pulses in the direction of the Soviet Union is equally futile. Because the radar is designed to ignore this type of interference, all this accomplishes is additional QRM for other hams.

Perhaps the best solution to Woodpecker interference lies in the field of electronics. The technology is available to eliminate this pest at the receiver. The newer transceivers, such as the Kenwood TS-930, the ICOM IC-751, and the Yaesu FT-1, among others, have dual noise blankers, one of which is designed to eliminate long pulse noise such as that from the Woodpecker. This trend is likely to continue until most new rigs have this capability.

All this doesn’t help those of us who aren’t quite ready to buy a new state-of-the-art transceiver. What can we do? We have two choices. The first is to build a custom noise blanker for our existing rigs. Circuits to eliminate the Woodpecker have been published in Amateur magazines and in the ARRL’s *Radio Amateur’s Handbook*. The second choice is the purchase of a “Moscow Muffler,” a Woodpecker noise blanker manufactured by AEA (Advanced Electronics Applications) of Lynnwood, Washington. Installed between the transceiver and antenna, this unit effectively blanks out the Woodpecker by means of an RF sensing unit that automatically takes it out of the circuit when the transmitter is keyed. The blanking width and synchronization are both adjustable. The basic sync rate may be switched between 10 and 16 Hz to allow for blanking when both OTHB radars are in operation.

It does not appear that the Woodpecker will dis-

interference not inevitable

The USA’s CONUS OTH-B radar has received widespread publicity in technical, professional, and Amateur publications. At the onset of operation, the project’s organizers actually solicited interference reports from all users of the HF spectrum. A committee was set up to handle the expected deluge of complaints; after two years of operation, only eight reports had been received. Of these, seven were disallowed because the radar had not been in operation at the time the alleged interference occurred or because the radar was operating on a frequency far removed from the one specified in the complaint. The eighth report was not a complaint at all, but rather a report from an SWL looking for confirmation. This absence of interference to other services is due to the nature of the American radar and the care exercised in the selection of clear frequencies.

![Figure 4](image-url)
\[fig. 4. Spectral distribution of signal from the Russian Woodpecker (assuming 50 Mw carrier ERP, note that the Woodpecker still has 5000 watts ERP 50 kHz either side of center frequency).\]
appear within the near future. The Soviet Union will continue operation despite world opinion, as long as it deems the practice necessary. The ultimate practical solution will be the inclusion into Amateur equipment of noise blankers capable of removing this interference. Advancing electronic technology will provide the solution to a worldwide problem that apparently cannot be resolved by diplomatic methods.

Reference

The MOSCOW MUFFLER™ by Advanced Electronics Applications, Inc. This transceiver accessory is capable of removing interference from the Woodpecker.

bibliography

ham radio

SHORT CIRCUIT HOTLINE
Building a current ham radio project? Call the Short Circuit Hotline any time between 9 AM and Noon, or 1 to 3 PM — Eastern time — before you begin construction. We’ll let you know of any changes or corrections that should be made to the article describing your project.
(See "Publisher’s Log," April, 1984, page 6, for details.)

603-878-1441
THE MOST AFFORDABLE REPEATER

ALSO HAS THE MOST IMPRESSIVE PERFORMANCE FEATURES

(AND GIVES THEM TO YOU AS STANDARD EQUIPMENT!)

JUST LOOK AT THESE PRICES!

<table>
<thead>
<tr>
<th>Band</th>
<th>Kit</th>
<th>Wired/Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>10M, 6M, 2M, 220</td>
<td>$680</td>
<td>$880</td>
</tr>
<tr>
<td>440</td>
<td>$750</td>
<td>$980</td>
</tr>
</tbody>
</table>

Both kit and wired units are complete with all parts, modules, hardware, and crystals.

CALL OR WRITE FOR COMPLETE DETAILS.

Also available for remote site linking, crossband, and remote base.

FEATURES:
- SENSITIVITY SECOND TO NONE; TYPICALLY 0.15 uV ON VHF, 0.3 uV ON UHF.
- SELECTIVITY THAT CAN'T BE BEAT! 8 POLE CRYSTAL FILTER & CERAMIC FILTER FOR GREATER THAN 100 dB AT ± 12KHz. HELICAL RESONATOR FRONT ENDS. SEE R144, R220, AND R451 SPECS IN RECEIVER AD BELOW.
- OTHER GREAT RECEIVER FEATURES: FLUTTER-PROOF SQUELCH. AFC TO COMPENSATE FOR OFF-FREQ TRANSMITTERS, SEPARATE LOCAL SPEAKER AMPLIFIER & CONTROL.
- CLEAN, EASY TUNE TRANSMITTER; UP TO 20 WATTS OUT (UP TO 50W WITH OPTIONAL PA).

HIGH QUALITY MODULES FOR REPEATERS, LINKS, TELEMETRY, ETC.

HIGH-PERFORMANCE RECEIVER MODULES

- R144/R220 FM RCVRS for 2M or 220 MHz, 0.15uV sens.; 8 pole xtal filter & ceramic filter in H, helical resonator front end for exceptional selectivity, more than ~100 dB at ±12 kHz, best available today. Flutter-proof squelch. AFC tracks drifting xmrts. Xtal oven avail. Kit only $138.
- R451 FM RCVR Same but for uhf. Tuned line front end. 0.3 uV sens. Kit only $138.
- R76 FM RCVR for 10M, 6M, 2M, or commercial bands. As above, but w/o AFC or hel. res. Kits only $118. Also avail w/4 pole filter, only $98/kit.
- R110 VHF FM RECEIVERS kit for VHF aircraft band or ham bands. Only $98.
- R110-259 SPACE SHUTTLE RECEIVER, kit only $98.
- T51 VHF FM EXCITER for 10M, 6M, 2M, 220 MHz or adjacent bands. 2 Wats continuous, up to 2½ W intermittent. $68/kit.
- T451 UHF FM EXCITER 2 to 3 Watts on 450 ham band or adjacent freq. Kit only $78.
- VHF & UHF LINEAR AMPLIFIERS. Use on either FM or SSB. Power levels from 10 to 45 Watts to go with exciters & xmtg converters. Several models. Kits from $78.
- A16 RF TIGHT BOX Deep drawn alum. case with tight cover and no seams. 7 x 8 x 2 inches. Designed especially for repeaters. $20.

ACCESSORIES

- HELICAL RESONATOR FILTERS available separately on pcb w/connectors.
 - HRF-144 for 143-150 MHz $38
 - HRF-220 for 213-233 MHz $38
 - HRF-432 for 420-450 MHz $48
- COR-2 KIT With audio mixer, local speaker amplifier, tail & time-out timers. Only $38.
- COR-3 KIT as above, but with "courtesy beep". Only $58.
- CWID KITS 158 bits, field programmable, clean audio, rugged TTL logic. Kit only $68.
- DTMF DECODER/CONTROLLER KITS. Control 2 separate on/off functions with touchtones*, e.g., repeater and autopatch. Use with main or aux. receiver or with Auto-patch. Only $90
- NEW - SIMPLEX AUTOPATCH Use with any transceiver. System includes DTMF & Autopatch modules above and new Timing module to provide simplex autopatch and reverse autopatch. Complete patch system only $200/kit. Call or write for details.
Hamtronics Breaks the Price Barrier!

* No Need to Pay $80 to $125 for a GaAs FET Preamp.

FEATURES:
- Very Low Noise: 0.7 dB VHF, 0.8 dB UHF
- High Gain: 18 to 28 dB, Depending on Freq.
- Wide Dynamic Range for Overload Resistance
- Latest Dual-gate GaAs FET, Stable Over Wide Range of Conditions
- Rugged, Diode-protected Transistors
- Easy to Tune
- Operates on Standard 12 to 14 Vdc Supply
- Can be Tower Mounted

MODEL	TUNES RANGE	PRICE
LNG-28 | 26-30 MHz | $49
LNG-50 | 46-56 MHz | $49
LNG-144 | 137-150 MHz | $49
LNG-220 | 210-230 MHz | $49
LNG-432 | 400-470 MHz | $49
LNG-40 | 30-46 MHz | $64
LNG-160 | 150-172 MHz | $64

ECONOMY PREAMPS
Our traditional preamps, proven in years of service. Over 20,000 in use throughout the world. Tuneable over narrow range. Specify exact freq. band needed. Gain 16:20 dB. NF = 2 dB or less. VHF units available 27 to 300 MHz. UHF units available 300 to 650 MHz.

- P30K, VHF Kit less case | $18
- P30W, VHF Wired/Tested | $33
- P432K, UHF Kit less case | $21
- P432W, UHF Wired/Tested | $36

HELICAL RESONATOR PREAMPS
Our lab has developed a new line of low-noise receiver preamps with helical resonator filters built in. The combination of a low-noise amplifier and the sharp selectivity of a 3 or 4 section helical resonator provides increased sensitivity while reducing intermod and cross-band interference in critical applications. See selectivity curves at right. Gain = approx. 12 dB.

Model	Tuning Range	Price
HRA-144 | 143-150 MHz | $49
HRA-220 | 213-235 MHz | $49
HRA-432 | 420-450 MHz | $59
HRA() | 150-174MHz | $69
HRA() | 450-470 MHz | $79

SAVE A BUNDLE ON VHF FM TRANSCIEVERS!
FM-5 PC Board Kit – ONLY $178
Complete with controls, heatsink, etc. 10 Watts, 5 Channels, for 2M or 220 MHz.

- Cabinet Kit, complete with speaker, knobs, connectors, hardware. Only $60.
- Repeat of a Sellout!
- While supply lasts, get $60 cabinet kit free when you buy an FM-5 Transceiver kit.
- Where else can you get a complete transceiver for only $178.

More Details? CHECK-OFF Page 158

Hamtronics, Inc.
65-E MOUL RD. • HILTON NY 14468
Phone: 716-392-9430
Hamtronics is a registered trademark

For SSB, CW, ATV, FM, etc. Why pay big bucks for a multi mode rig for each band? Can be linked with receive converters for transceive. 2 Watts output vhf, 1 Watt uhf.

EXCITER ANTENNA

<table>
<thead>
<tr>
<th>Input Range</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-30</td>
<td>144-148</td>
</tr>
<tr>
<td>28-29</td>
<td>105-146</td>
</tr>
<tr>
<td>28-29</td>
<td>50-52</td>
</tr>
<tr>
<td>27-27.4</td>
<td>144-144.4</td>
</tr>
<tr>
<td>28-30</td>
<td>220-224</td>
</tr>
<tr>
<td>144-146</td>
<td>50-52</td>
</tr>
<tr>
<td>144-146</td>
<td>28-30</td>
</tr>
</tbody>
</table>

For UHF:

<table>
<thead>
<tr>
<th>Input Range</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-30</td>
<td>432-434</td>
</tr>
<tr>
<td>28-30</td>
<td>435-437</td>
</tr>
<tr>
<td>50-54</td>
<td>432-436</td>
</tr>
<tr>
<td>Kit S99</td>
<td>61.25</td>
</tr>
<tr>
<td>Wired $169</td>
<td>439.25</td>
</tr>
</tbody>
</table>

VHF & UHF LINEAR AMPLIFIERS. Use with above. Power levels from 10 to 45 Watts. Several models, kits from $78.

LOOK AT THESE ATTRACTIVE CURVES!

IMPORTANT REASONS WHY YOU SHOULD BUY FROM THE VALUE LEADER:
1. Largest selection of vhf and uhf kits in the world.
2. Exceptional quality and low prices due to large volume.
3. Fast delivery; most kits shipped same day.
4. Complete, professional instruction manuals.
5. Prompt factory service available and free phone consultation.
6. In business 21 years.
7. Sell more repeater modules than all other mfrs. and have for years. Can give quality features for much lower cost.

VHF Kit less case
FM-5 PC Board Kit - ONLY $178
- Cabinet Kit, complete with speaker, knobs, connectors, hardware. Only $60.
- Repeat of a Sellout!
- While supply lasts, get $60 cabinet kit free when you buy an FM-5 Transceiver kit.
- Where else can you get a complete transceiver for only $178.

- Call or Write for FREE CATALOG
- (Send $1.00 or 4 IRC’s for overseas mailing)
- Order by phone or mail • Add $3 S & H per order
- (Electronic answering service evenings & weekends)
- Use VISA, MASTERCARD, Check, or UPS COD.

More Details? CHECK-OFF Page 158

November 1984 47
Modify an earlier design for additional coverage, built-in frequency counter

Good converter design calls for an examination of all mixing by-products for each choice of local oscillator and desired input signal range and minimizes in-band spurious responses. The frequency conversion scheme finally decided upon extends front-end coverage to include signals in the 9.3 to 10 MHz range. The incoming signal is downconverted to 3.3 to 4.0 MHz using a crystal oscillator and active mixer. The digital display is made to “track” by converting the “3” MHz readout to “9” MHz simply by switching the “F” LED segment, thereby eliminating the need for elaborate frequency readout conversion schemes. To accomplish this a 4-pole, 2-position C&K miniature switch performs the following functions:

• supplies +12 VDC to the converter board
• bandswitches the converter input
• bandswitches the converter output
• switches the “F” LED between “3” and “9”

The converter has been designed for a broadband response and the RF and MIX trimmers should be stagger-tuned for flatest front-end response. The converter schematics and the wiring of the CONV bandswitch are detailed in fig. 4.

construction details

In addition to the schematics and photos shown, the following information should be useful.

Power transformer. This should supply 14 volts at 120 mA. A 15-volt unit would probably be better to use because it would deliver (under load) a DC voltage closer to that of a car battery. Presently, power drain...
fig. 2. Top view. At top left is the 4-digit display, wired to the frequency counter below it. At top center is the S-meter, with CBK switches to its right. The input 9 MHz trap is at top right. The IF strip is below the S-meter, shielded with 1/16 inch aluminum sheet. At bottom left is the 60:1 ratio Muffett gear reducer connected with flexible coupling to the 104 pF variable capacitor. To the right of the variable capacitor is the power transformer, followed by the 9 MHz crystal filter. The back panel has provisions for two AF output jacks, DC power (12 volt) input jacks, and a 110 VAC connector (see fig. 3).

is 120-125 mA with the 9 MHz converter on, dropping to about 100-105 mA with the converter off. (Saw off the original brackets; use a bolted pillar and pressure holder to keep it in place.)

Space-saving techniques. In order to make room for the converter and power transformer, a new layout was developed. The audio strip PC board was redesigned and reduced in size, with all components vertically mounted. This reduced it from 1.57 x 2 inches (40 x 50 mm) to 1.18 x 1.57 inches (30 x 40 mm).

The PC board that houses the audio strip also includes the power supply, the zener diodes, and the front-end converter. The 1/16 inch thick epoxy board measures 2-3/8 x 3-1/2 inches (60 x 90 mm). Separate diodes were used in the supply to avoid confusion in case 110 VAC and external power were left on at the same time.

Gear reducer. Zero backlash, Muffett size 1 with gear ratio 60:1. Available in the U.K. for $75.00.

Cabinet. 2 x 6 x 6 inches (50 x 150 x 150 mm) HWD.

fig. 3. Bottom view. At top left are the audio frequency potentiometer and 5-24 pF Jackson RF trimmer. S-meter is at top center; below the S-meter is the PC board for power supply. AF strip and the front-end converter. The power supply electrolytic capacitors are at its right. At left is the RF/Mixer PC; notice shield between it and the front-end converter. The 110 VAC connector is at bottom. At bottom right is the VFO PC board, with electronic bandswitching circuitry, shielded from both the RF PC and front end converter PC; the VFO PC board ends near the gear reducer, seen at bottom right. All RF transistors are mounted in sockets to ease replacement in case of failure.

ham band options

The 80-meter band, covered in the earlier project, is included in the current version. The 40-meter band can be covered by the direct method or by the converter method. Using the direct method extends the coverage of the basic receiver to 7 MHz. (The MHz digit of the display must be read.) The converter option would employ a 4 MHz crystal; the digit problem appears to be easier to solve, but some spurious signals are likely to appear within the band. Coverage on 30 and 20 meters can be implemented by modifying the front-end conversion using a single set of coils and electronically bandswitching the parallel capacitors and the oscillator crystal. One can cover 7, 10, and 14 MHz with the same basic converter by increasing PC board size slightly.

The frequency counter can easily handle the fifth digit (tens of MHz) because the 7207 IC has provisions for it, but the power supply must be sized accordingly for the extra load. Care should also be taken in the layout and design of the front panel, which is presently
very crowded: the addition of an extra digit would require widening the panel.

acknowledgement

Thanks go to Fernando, PY2DQU, for his support and encouragement on this project.

references

Ham Radio
Please enter my gift subscriptions to HAM RADIO Magazine as follows:

EACH GIFT JUST $14.95
SAVE 25%

Prices U.S. only

<table>
<thead>
<tr>
<th>SAVE 25% $AVE 25% $AVE 25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name: _____________________ Call: __________</td>
</tr>
<tr>
<td>Address: __________________</td>
</tr>
<tr>
<td>City: _____________________ State: _________ Zip: _________</td>
</tr>
<tr>
<td>☐ new ☐ renewal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAVE 25% $AVE 25% $AVE 25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name: _____________________ Call: __________</td>
</tr>
<tr>
<td>Address: __________________</td>
</tr>
<tr>
<td>City: _____________________ State: _________ Zip: _________</td>
</tr>
<tr>
<td>☐ new ☐ renewal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAVE 25% $AVE 25% $AVE 25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name: _____________________ Call: __________</td>
</tr>
<tr>
<td>Address: __________________</td>
</tr>
<tr>
<td>City: _____________________ State: _________ Zip: _________</td>
</tr>
<tr>
<td>☐ new ☐ renewal</td>
</tr>
</tbody>
</table>

☐ Start or ☐ Renew my own HR subscription
☐ Enclosed is a check or money order for $__________ for _________ subscriptions (use separate envelope)
☐ VISA ☐ MasterCard ☐ Bill me later
Acct # ________ Expires ________ MC Bank # ________
My Name: __________________ Call: __________
Address: ________________________________
City: __________________ State: _________ Zip: _________

Prices U.S. only
MONTH AFTER MONTH...

Ham Radio gives you the very best in state-of-the-art Radio Technology. It's a super gift idea for that hard-to-buy-for ham friend or yourself. It's simple and easy to do. And you save 25% on each subscription you order.

One year, 12 issues, Reg. $19.95

SPECIAL PRICE $14.95

Please send my hamradio subscription as indicated. Also send a handsome gift acknowledgment card. (Gift card will be sent if your order is received before Dec. 16, 1984.)

From:

Name __
Address __
City_________________________ State__________ Zip__________

☐ Sign me up, extend my subscription
☐ Payment enclosed $ ____________________________ (check or money order)
☐ Mastercard _______ VISA/BAC ________

Acct.# ____________ Exp.__________ Bank# ____________ (MC only)

FILL OUT AND MAIL OR CALL YOUR ORDER IN TODAY
HAM RADIO MAGAZINE
Greenville, NH 03048 (603) 878-1441

SEND TO:

Name __
Address __
City_________________________ State__________ Zip__________

☐ New Subscription ☐ Subscription Renewal

SEND TO:

Name __
Address __
City_________________________ State__________ Zip__________

☐ New Subscription ☐ Subscription Renewal

SEND TO:

Name __
Address __
City_________________________ State__________ Zip__________

☐ New Subscription ☐ Subscription Renewal

PRICES U.S. only. CANADA $22.95 per year. Foreign $28.00
Use Handy Bind-in Card or this Form.
computer technology: fast, fast, FAST!

Some of the most dramatic changes in computer technology are taking place in architecture — that is, in the way computer logic is organized. This is necessary because electronic speeds are now so fast that the physical distance between circuit elements has become a major limitation. To alleviate this problem, the Cray supercomputer features logic bays arranged in a circle so that all interconnects are not more than one circle diameter away.

NASA has developed a design called the Massively Parallel Computer — and massive it is: over 16,000 identical processors are arranged in parallel. This approach allows an image processing task that takes 8 hours on a conventional large mainframe to be reduced to only 17 minutes! Companies such as Cray, ETA, and Fujitsu are developing computers that will be 10,000 times faster than an IBM PC by 1987 or 1988. The implications of this kind of progress make exciting news for hams. Might it someday be possible to contain a basic HF receiver on a single chip? A complete SSB receiver could actually consist of part of the HF spectrum under control. Such a unit could represent the ultimate in interference avoidance and MUF agility!

cooling high-speed circuits

Ever since the beginning of the electronic era, heat has been a problem. The absence of effective ways to remove it at the device level continues to be a major limitation to present large-scale integration. Designers are now examining methods by which an IC substrate can be bonded to a porous metal carrier, with coolant circulated through the porous metal, then evaporated and recovered in a closed system. Using this method, thermal transfer can be improved to a rate 100 times better than with conduction alone, with each LSI circuit containing its own refrigeration system.

Also significant is the interest in running VLSI circuits at the temperature of liquid nitrogen (77 degrees K). At this temperature electron mobilities go up, speed increases, and thermal efficiency improves. With modern techniques, even the cryogenic problems aren't too difficult. Look for examples of this approach to appear in commercial products before too long.

Even more exotic are super-cold devices called Josephson junctions (JJ's). These are thin film devices that operate at 4 degrees K (the temperature of liquid hydrogen), exhibit picosecond (one millionth of a microsecond) speed, and consume nearly zero power because they operate at superconducting temperatures. After spending nearly twenty years developing JJ's for supercomputer applications, IBM recently threw in the towel. It is now being observed that many antenna types don't exhibit adequate pulse response for present and contemplated data links. The problem is not an easy one to resolve. In order to radiate, antennas must depart from the distributed characteristics that give transmission lines their good pulse response. Much attention is now being given to measuring the pulse/transient response of various antennas, and the relevant journals abound with complex math as a result. Perhaps all this effort will lead to new antennas that will couple the desired energy into space without acting as if they had all kinds of L & C hung across them.

low-noise digital VHF receivers with direct conversion to digital information at the front end. Although very low temperature devices have many attractive characteristics, they may be difficult to put to use — except in space, where the necessary low temperature is free. But the benefits are great enough to warrant a substantial continued effort around the world. We should see some exciting breakthroughs in the near future.

faster antennas, too

Take a look at what's happening in telecommunications. More and more information is being sent over each circuit; system bandwidths are being increased, and most data is now digitized before transmission. All this wideband data eventually goes to an antenna that radiates the signal. This means that the antenna has to have some measure of frequency independence — that is, be broadband. As data rates and information density increase, the pulse response of the system also becomes a consideration.

It is now being observed that many antenna types don't exhibit adequate pulse response for present and contemplated data links. The problem is not an easy one to resolve. In order to radiate, antennas must depart from the distributed characteristics that give transmission lines their good pulse response. Much attention is now being given to measuring the pulse/transient response of various antennas, and the relevant journals abound with complex math as a result. Perhaps all this effort will lead to new antennas that will couple the desired energy into space without acting as if they had all kinds of L & C hung across them.
meet Ernie Guerri, W6MGI

Ernie Guerri, W6MGI, comes to the pages of ham radio with a background that includes 32 years as a licensed Amateur, and 27 years in the development and management of advanced technology. He is a Senior Member of the IEEE and a life member of ARRL.

Ernie was educated in Physics at the University of Maine, Semiconductor Electronics at the University of California, and in Business at Stanford. He has held engineering and management positions at IBM, Raytheon, and General Dynamics. Each of these positions involved work at the leading edge of aerospace technology, telemetry, and deep space communications. Most recently he has been President and General Manager of the Advanced Technology Center of Gould Inc., one of America’s large (1.5B) electronics companies. In October, 1983 he left Gould to form his own technology consulting firm, which he now operates from offices in Chicago.

Ernie will be commenting on technological developments that will shape the equipment of tomorrow. Some will have direct relationship to Amateur Radio; others will hopefully encourage implementation of new technologies in yet unexplored areas of our hobby.

Two great ways to get Q5 copy
Ask:

G4HUW KB5DN WA4FNP WD5DMP
KJ2E K61MV WD4BKY WD8QHD
K4XG K8MHK WD4CCZ WD9DVR
K4CCF KB9TM WD4CCZ WD9DVR
K4XG K8KSL WB9NOV
K3DXY W4YFL W5GAI

444D SSB/FM
Base-Station Microphone
Shure’s most widely used base-station microphone is a ham favorite because it really helps you get through...with switch-selectable dual impedance low and high for compatibility with any rig! VOX/NORMAL switch and continuous-on capability make the 444D easy to use even under tough conditions. If you’re after more Q5’s, you should check it out.

526T Series II
SUPER PUNCH® Microphone
Truly a microphone and a half! Variable output that lets you adjust the level to match the system. The perfect match for virtually any transceiver made, regardless of impedance. Turns mobile-NBFM unit into an indoor base station! Super for SSB operation, too. These and many other features make the 526T Series II a must-try unit.

FREE! Amateur Radio Microphone Selector Folder. Write for AL645.

THE SOUND OF THE PROFESSIONALS...WORLDWIDE
Shure Brothers Inc., 222 Hartrey Ave., Evanston, IL 60204

November 1984
Ham MasterTapes presents: The Only Ham Radio Course on Videotape

Ham MasterTapes brings the best possible personalized Ham Radio license preparation right into your own living room. If you, a friend or family member wants the best help available to get past the FCC test hurdle, it's available now in Beta or VHS home video format.

Larry Horne, N2NY brings his 33 years of Ham Radio teaching experience right to your home. Each of the 26 video lessons has close-up details of components and systems along with superb graphic drawings. Each lesson has important points superimosed over the action and reviewed at the end of each section. This makes note-taking a snap!

Larry's classroom is a real ham shack. Lee, a 13-year-old boy, and Virginia are led through the learning process. The questions that they ask are the ones Larry knows you would ask if you were there in person. You soon feel like you're part of an ideal small class.

The topics covered will not only get you through the Novice test—General class theory is covered also. By the time you study the 700 possible FCC questions, the answers will be obvious.

Larry doesn't stop with just test-passing. All the proper techniques of operating practices and courtesy are demonstrated. The instruction manual for that new rig won't be a mystery! Larry becomes your own personal instructor to help you on that first set-up and contact!

The Ham MasterTapes series is produced in one of New York City's top commercial studios. Not only is the production crew made up of real professionals but many of them are also licensed amateurs. Everybody puts in obvious extra effort to make the production a classic.

The 6-hour course is available on three 2-hour Beta II or VHS-SP cartridges for $199.95, for individual, home or nonprofit Ham Club use. (High schools or colleges must order our Scholastic licensed version, $499.95 for Beta or VHS and $750 for 3/4" U-matic.)

To order, call or write Larry Horne, N2NY at Ham MasterTapes, 136 East 31st Street, New York NY 10016. Phone 212-685-7844 or 673-0680 MasterCard and Visa accepted. New York state residents add appropriate sales tax.

Some of the topics covered include:

- Amplitude Modulation
- Double Sideband
- Single Sideband
- Frequency Modulation
- Phase Modulation
- SSB
- Bands and Frequency Limits
- Envelope Deviation
- Overmodulation
- Speech
- Frequency Translation
- Antennas and Feedlines
- Tuning Antennas
- Quad Antennas
- Polarization
- Feedpoint Impedance
- Half-Wave Dipole
- Quarter-Wave Vertical
- Radiation Patterns
- Directivity
- Major Names
- Component Impedance
- Standing Waves
- Antenna
- Antenna Feeding
- Mismatch
- Station ID
- CALL Signs
- Loading Requirements
- Frequency Limitation
- Control of Requirements
- Frequency Reporting System
- Telegraphy Speed
- Zero-Beat Testing
- Transmitter TUNE-UP
- Telegraphy Abbreviations
- Radio Wave Propagation
- Sky Wave and Skip Ground Wave
- Harmonic Interference
- Signals
- Radio
- Radiation
- Backwave
- Key Clicks—Chirps
- Superimposed NR
- Spurious Emissions
- Computers
- Oscilloscope
- ATV-SSTV
- OPERATING COURTESY
- RULES AND REGULATIONS
- OPERATING PROCEDURES
- RADIO PROPAGATION
- AMATEUR RADIO PRACTICE
- ELECTRICAL PRINCIPLES
- CIRCUIT COMPONENTS
- POWER SOURCES
- SIGNALS AND EMISSIONS
- RADIO WAVE PROPAGATION
- COMMUNICATIONS
- TRANSMITTER POWER LIMITS
- OPERATION REQUIREMENTS
- THIRD-PARTY PARTICIPATION
- FREQUENCY BANDS
- SELECTION OF FREQUENCIES
- R.C. MODELS
- PROHIBITED PRACTICES
- RADIO TELEGRAPHY
- RADIO TELEPRINTING
- VOX
- TRANSMITTER CONTROL
- BREAK-IN TELEGRAPHY
- VOX CIRCUITS
- INTERNATIONAL COMMUNICATION
- EMERGENCY-REQID DRILLS
- Stratospheric Layers 0-1000
- Maximum Useable Frequency
- Longwave
- Disturbances
- Sunspots
- Microwave
- DIRECTORS
- LENSES
- Microwave Antennas
- Marine Communication Systems
- Microwaves
- Transmitters
- Receiver
- Automatic Tuning Units
- S-Meters
- Wattmeters
- Oscilloscopes
- Multimeters
- SIGNAL GENERATORS
- SIGNAL TRACERS
- AUDIO REPRODUCTION
- ELECTRONIC MEMORY
- W.S.T.
- Speech Processors
- Audio Output Units
- Modulators
- Receiver
- DIRECTIVITY
- IMPEDANCE MATCHING
- OHM'S LAW
- D.C. and V.O.LTS DIVIDERS
- POWER CALCULATIONS
- SERIES AND PARALLEL FILTERS

Ham MasterTapes

The N2NY Ham Radio Course on Videotape

136 East 31st Street
New York, New York 10016
(212) 685-7844 • 673-0680

extending the modular 2-band receiver

Add two boards — and build yourself an HF transceiver for SSB and CW

In the July, 1983, issue of ham radio I presented a design for a practical, easy-to-use HF receiver with digital readout. The simple addition of a converter to the front end extends the receiver’s frequency coverage to VHF; the addition of just two more boards turns the unit into an SSB/CW transceiver as well, see fig. 1.

design concept

Simply stated, an SSB transmitter amplifies voice, mixes it with a carrier frequency in such a way as to balance out the carrier, removes one sideband, and mixes the result up or down in frequency to the desired output frequency.

In this design, see fig. 2, the audio from the microphone is amplified by a two-stage speech amplifier and applied to a simple two-diode balanced modulator that removes the carrier, providing a signal that contains two sidebands and a suppressed carrier. The carrier source is the BFO. By selecting either USB or LSB, the operating mode for the transmit signal is also selected. To remove one of the sidebands, the signal is passed through the same crystal filter used for receive. Just as the unwanted sideband is removed on receive, the output from the crystal filter contains only one sideband. Because this sideband signal, however, is too low in level to allow the transmitting mixer to function properly, an IF amplifier must be used to increase the signal to an effective level. The output of this stage is injected into the MC1496 double-balanced mixer IC, where it again mixes with the VFO to produce outputs at 14 and 4 MHz (9 + 5 = 14 and 9 - 5 = 4). The same filters as those used for receive are used here to remove the undesired output. The 20-meter filter removes the 80-meter signal and vice-versa.

The SSB signal present at the output of the band-pass filter is clean but at a very low level. A two-stage broadband amplifier has been designed for an output of about 10 watts (see fig. 3). The driver transistor is a 2N3866 which in turn drives a 2N5590 operating in class AB. The output at this power level is “clean” (low spurious/harmonic content) and requires no additional filtering. However, if you wish to drive a much higher output broadband amplifier, I would recommend adding low-pass filters for each band. Several articles on this subject have been published in this and other magazines.

operation

The same mixing scheme used for SSB transmission can be used to generate CW. A twin-T oscillator serves the dual purpose of generating both a sine wave tone, used for monitoring, and the CW signal. When a clean tone of a single frequency is applied to an SSB transmitter, a single output frequency, separated from the removed carrier frequency by the frequency of the applied tone, is produced from the transmitter. For example, if a 1 kHz tone is injected into the SSB transmitter, a CW output offset by 1 kHz is generated. Conversely, if tuning in another station produces a 1 kHz CW tone on receive, your transmitter will be on the exact transmitting frequency of the other station when you answer. (A similar method was used to produce CW in the old Heathkit SB/HW series of transceivers.)

To send CW it’s necessary to activate the transmitter by either manually switching to transmit or, more easily, using the included 555 timer circuit. This keeps the transmitter on between the dots and dashes. The twin-T oscillator and the timer circuit are keyed at the same time; only the 555 timer is keyed in SSB. This timer stage switches all stages into transmit for a period determined by the adjustable time constants. In addition, the AGC for the IF amplifier must be disabled while in the transmit mode by grounding the AGC control pin 5 on the MC1350, through a 4.7 kilohm resistor.

By James J. Forkin, WA3TFS, 3210 Shadyway Drive, Pittsburgh, Pennsylvania 15227
construction

The transmit modification is accomplished through the addition of two PC boards. One consists of the two-stage amplifier described above. (Component layout and printed circuit board artwork are detailed in figs. 4, and 5, respectively.) The other board, however, is the actual transmit conversion. Shown on the board, (component layout and printed circuit board artwork are detailed in figs. 6 and 7), from left to right, is the 1 kHz sidetone oscillator coupled through a panel switch to the speech amplifier stage in the CW mode. Next is the 555 timer stage, which holds the rig in transmit for a period of time adjusted by the trimmer pot. To the right of the timer is the transistor, used to switch the relays used in the various stages of the receiver. Next in line is the two-stage speech amplifier; note that the two stages are coupled by a jumper wire to simplify the addition of audio companders, processors, or other components later. The balanced modulator is next. Be careful to wind the toroid core exactly as shown, keeping all leads as short as possible. It is this stage that determines the ultimate level/amount of carrier suppression the transceiver will offer. The double-balanced mixer completes the board.

switching

It is important to switch the crystal filter and IF amplifier stage when going from receive to transmit. A single-pole, double-throw miniature relay mounted close to the input and output of this stage does this. Use shielded wire to and from the transmit board. (RG-174 miniature coax works well.) The front end filters must also be modified by adding two relays or alternatively, replaced with new filters exactly like those used for receive for the transmitter, thus eliminating the need for relay switching here. The only
disadvantage to the latter approach is the need to allow for weight and additional space; despite these disadvantages, replacing the filters rather than adding relays does simplify the modification. Use coax for the filters — keep the RF where it belongs! And don’t forget that to pull the AGC voltage below 5 volts for maximum gain, you’ll have to use another relay or add an extra set of contacts to one of the other relays to ground pin 5 of the IF amplifier through a 4.7 kilohm resistor. Should you choose to use diode switching instead of relays, you may wish to consult several articles that have been published on the subject for help with the design.

For simplicity’s sake, you may decide, as I did, to use relays. Several types of 5- and 12-volt DC relays are available on the surplus market. Use 12-volt relays if you can find them at a reasonable price, or wire three 5-volt relays in series; they’ll key reliably on 12 volts. Mount your relays to the board with double-sided foam tape or glue. Place a diode across each relay coil to prevent voltage spikes.

initial adjustments

After completing the modification, make sure that the receiver still works. Realign it and check the BFO frequencies. When you’re convinced that the receiver is working as well as it did before the modification, connect a dummy load to the antenna terminal and key the transmitter in the CW position. Check that all relays switch as they should and adjust the 555 for a hold-in time of about 1 second. Check that the AGC voltage at pin 5 of the MC1350 is in fact dropping below 5 volts on transmit. Put the rig into SSB and

fig. 2. The schematic diagram of the transmitter board.

fig. 3. The schematic diagram for the final amplifier board. The driver section is similar to the VFO buffer in the receiver and the final stage is patterned after the original design.

November 1984 / 59
VHF COMMUNICATIONS
NOW FEATURING STATE-OF-THE-ART
MOSFET REPEATER AMPLIFIERS

All above amplifiers designed
for 13.8 VDC operation.

SEE US ALSO FOR
YOUR MOBILE AMPLIFIER NEEDS

ALSO FEATURING: ICOM, AEA, LARSEN, VAN GORDEN, VIBROPLEX, NYE-VIKING, LEADING EDGE, ARRL PUBLICATIONS,
KAGLO, HAMTRONICS, PROWRITER, ELEPHANT DISKS, DEBCO, TRIONYX.

915 N. Main St., Jamestown, New York 14701 (716) 664-6345

DESIGN EVOLUTION IN RF P.A.'s

Now with
GaAs FET
Preamp

- Linear (all mode) RF power amp with automatic T/R switching (adjustable delay)
- Receive preamp option, featuring GaAs FETS (lowest noise figure, better IMD). Device NF typically 0.5 dB.
- Thermal shutdown protection incorporated
- Remote control available
- Rugged components and construction provide for superior product quality and performance
- Affordably priced offering the best performance per dollar
- Designed to ICAS ratings, meets FCC part 97 regulations
- 1 year transistors warranty
- Add $5 for shipping and handling (Cont. U.S.). Calif. residents add applicable sales tax.
- Specifications/price subject to change

Specifications/pricing subject to change

TE SYSTEMS
P.O. Box 29845
Los Angeles, CA 90025
(213) 478-0591

TOWERS
by ALUMA
HIGHEST QUALITY
ALUMINUM

- TELESCOPING (CRANK-UP)
- GUEDED (STACK-UP)
- TILT OVER MODELS
Easy to install. Low Prices. Crank-ups to 100 ft.

SPECIAL
Four Section 50 ft.
Van Mounted Crank-Up
Aluma Tower

ALUMA TOWER CO.
BOX 29845
VERO BEACH, FLA. 32960-2806
(305) 567-3423 TELEX 80-3405
adjust the output stage for a resting current of 80 mA. With the rig in SSB there will be no drive to the final stage. Put the switch back in CW. When keying, adjust the trim pot in the oscillator stage for sidetone level. Increase the drive level with the other trim pot until no increases in output level from the transmitter are noted. Back off the adjustment slightly. CW tune-up is completed.

fig. 4. The parts layout for the RF amplifier board. Positive 12 volts is applied only on transmit. Set bias adjustment for an idle current in the final stage of 75 to 80 mA with no drive applied to the board.

fig. 5. The foil side layout for the RF amplifier board. All parts on this board are mounted on the foil side.
NEW! SPECIAL
North American Edition

As an added bonus, the 1985 U.S. Callbook also lists the amateurs in Canada and Mexico! You get the complete and accurate U.S. listings, all the usual up-to-date Callbook charts and tables, PLUS Canada and Mexico.

THE BEST JUST GOT BETTER!

Of course, Canada and Mexico are also included in the 1985 Foreign Callbook. And our editorial staff has checked and corrected all new information before use to bring you the most accurate listings possible. But that's just what you'd expect from the people who invented Callbooks.

Want to keep your 1985 Callbooks up-to-date throughout the year? Optional supplements are published March 1, June 1, and September 1; each contains all activity for the preceding 3 months. Thousands of new licenses, call changes, and address changes are included in each issue.

COMPARE!
WHY SETTLE FOR LESS THAN THE BEST?
ORDER YOUR COPIES NOW.

- 433,000 current U.S. Listings
- 413,000 current Foreign Listings
- Great Circle Bearings
- Then & Now call changes
- Silent Keys
- Census of Amateur Licenses in all countries
- Standard Time Charts
- International Postal Information
- World-wide QSL Bureaus
- Table of Amateur Prefix Allocations
- Prefixes of the World
- Plus many other features.

Publication: December 1, 1984

<table>
<thead>
<tr>
<th>Order Option</th>
<th>U.S.</th>
<th>Illinois</th>
<th>Foreign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single 1985 U.S. Callbook</td>
<td>$25.00</td>
<td>$26.35</td>
<td>$26.50</td>
</tr>
<tr>
<td>Single 1985 Foreign Callbook</td>
<td>24.00</td>
<td>25.30</td>
<td>25.50</td>
</tr>
<tr>
<td>SPECIAL OFFER: Order both 1985 Callbooks at the same time for shipment to one address.</td>
<td>45.00</td>
<td>47.50</td>
<td>49.50</td>
</tr>
<tr>
<td>Set of 3, U.S. Supplements for 1985</td>
<td>15.00</td>
<td>15.95</td>
<td>15.00</td>
</tr>
<tr>
<td>Set of 3, Foreign Supplements for 1985</td>
<td>15.00</td>
<td>15.95</td>
<td>15.00</td>
</tr>
</tbody>
</table>

Name ____________________________
Address __________________________

Amount enclosed ________________

radio amateur
callbook

925 Sherwood Dr., Box 247,
Lake Bluff, IL 60044, USA
Tel: (312) 234-6600
Next attach a microphone to the input. (A CB replacement microphone will be sufficient.) If the CW/SSB switch has been wired correctly, the microphone will be connected to the input of the speech amplifier and the twin-T oscillator will be disconnected. When you press the PTT and whistle into the microphone, the RF output should increase. The level should be about the same as when transmitting CW, but may vary because of different output levels of various microphone elements.

Disconnect the microphone and while still in SSB, key the transmitter with a jumper wire. While checking the output with a meter, or better still, an oscilloscope, adjust the trim pot in the balanced mixer for minimum output and, consequently, maximum carrier suppression. If you can't see any change in the meter reading as you make this adjustment, you'll know you've either wound the coil in the balanced modulator incorrectly or caused some stage to oscillate because of poor wiring layout or failure to ground something. Check your construction step by step. You should see a definite null in output power. If everything
appears to be in order, go back and readjust everything until no further change occurs. Your new transceiver is now ready to be connected to the antenna.

Conclusion

This complete transceiver will operate reliably and efficiently as long as care is taken to attach a matched 50-ohm load. The output stage will not self-destruct if you have high SWR or forget to attach the antenna, but output power will be low. The rig should run about 8 to 10 watts out into a matched antenna. I have worked all states on 20-meter sideband and find I require no more power from the home station.

A kit is available from the author to make the modification described in this article. For details, please send an SASE to me at the address shown at the beginning of this article.

Your Ham Tube Headquarters!

TUBES BOUGHT, SOLD AND TRADED

SAVE $$$—HIGH $$$ FOR YOUR TUBES

Call Toll Free 800-221-0860

<table>
<thead>
<tr>
<th>Tubes</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-400Z</td>
<td>10</td>
<td>$8.50</td>
</tr>
<tr>
<td>3-500Z</td>
<td>10</td>
<td>$8.50</td>
</tr>
<tr>
<td>4-400A</td>
<td>10</td>
<td>$10.00</td>
</tr>
<tr>
<td>4CX250B</td>
<td>10</td>
<td>$12.50</td>
</tr>
<tr>
<td>572B</td>
<td>10</td>
<td>$82.50</td>
</tr>
<tr>
<td>811A</td>
<td>10</td>
<td>$26.50</td>
</tr>
<tr>
<td>617B</td>
<td>10</td>
<td>$175.00</td>
</tr>
<tr>
<td>6360</td>
<td>10</td>
<td>$500.00</td>
</tr>
<tr>
<td>6882B</td>
<td>10</td>
<td>$1250.00</td>
</tr>
</tbody>
</table>

MAJOR BRANDS ON RECEIVER TUBES

75% off list

<table>
<thead>
<tr>
<th>Semiconductors</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRF 245/SD1416</td>
<td>10</td>
<td>$30.00</td>
</tr>
<tr>
<td>MRF 454</td>
<td>10</td>
<td>$75.00</td>
</tr>
<tr>
<td>MRF 455</td>
<td>10</td>
<td>$25.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RF Connectors</th>
<th>Quantity</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL259</td>
<td>10</td>
<td>$2.50 ea.</td>
</tr>
<tr>
<td>PL258</td>
<td>10</td>
<td>$1.75 ea.</td>
</tr>
<tr>
<td>UG 175/176</td>
<td>10</td>
<td>Type “N” Twist on</td>
</tr>
<tr>
<td>UG255/u</td>
<td>2.50 ea.</td>
<td>(RGB/u)</td>
</tr>
<tr>
<td>UG273/u</td>
<td>2.25 ea.</td>
<td>Minimum Order $25.00</td>
</tr>
</tbody>
</table>

Allow $3.00 min. for UPS charges

CeCo

COMMUNICATIONS, Inc.

2115 Avenue X

Brooklyn, NY 11235

(Phone) (212) 646-6300

Serving the Industry Since 1927

Call CeCo For Your CCTV Security And Color Production Requirements.
ICOM Introduces the IC-R71A
The Best Just Got Better

ICOM introduces the IC-R71A 100kHz to 30MHz superior-grade general coverage receiver with innovative features including keyboard frequency entry and wireless remote control (optional).

This easy-to-use and versatile receiver is ideal for anyone wanting to listen in to worldwide communications. Demanding no previous shortwave receiver experience, the IC-R71A will accommodate an SW (shortwave listener), Ham (amateur radio operator), maritime operator or commercial operator.

With 32 programmable memory channels, SSB/AM/RTTY/CW/FM (optional), dual VFO's, scanning, selectable AGC and noise blanker, the IC-R71A's versatility is unmatched by any other commercial grade unit in its price range.

Superior Receiver Performance.
Utilizing ICOM's DFM (Direct Feed Mixer), the IC-R71A is virtually immune to interference from strong adjacent signals, and has a 100dB dynamic range.

Passband tuning, a deep IF notch filter, adjustable AGC (Automatic Gain Control) and noise blanker provide easy-to-adjust clear reception, even in the presence of strong interference or high noise levels. A programmable AGC allows improved reception of weak signals.

Passband tuning allows easy-to-adjust reception of weak signals.

Keyboard Entry. ICOM introduces a unique feature to shortwave receivers... direct keyboard entry for simplified operation. Precise frequencies can be selected by pushing the digit keys in sequence of frequency. The frequency will be automatically entered without changing the main tuning control. Memory channels may be called up by pressing the VFO/M (memory) switch, then keying in the memory channel number from 1 to 32.

VFOs/Memories. A quartz-locked rock solid synthesized tuning system provides superb stability. Three tuning rates are provided: 10Hz / 50Hz / 1kHz.

32 Tunable Memories. Thirty-two tunable memories, more than any other general coverage receiver on the market, offer instant recall of your favorite frequency. Each memory stores frequency, VFO and operating mode, and is backed by an internal lithium memory backup battery to maintain the memories for up to five years.

Options. FM synthesized voice frequency readout (activated by SPEECH button), RC11 wireless remote controller, IC-CX70 DC adapter for 12 volt operation, MB12 mobile mounting bracket, two CW filters FL32 — 500Hz, and FL63 — 250Hz, and high-grade 45kHz crystal filter FL44A.

ICOM America, Inc. 2112-116th Ave NE, Bellevue, WA 98004 (206)454-8155 / 3331 Towerwood Drive, Suite 307, Dallas, TX 75234 (214)620-2780
All stated specifications are approximate and subject to change without notice or obligation. All ICOM radios significantly exceed FCC regulations limiting spurious emissions.
The Problem Solver...

The RF Wattmeter Model 81000-A from Coaxial Dynamics, Inc. does more than provide accurate rf measurements. Testing of transmission lines, antennas, connectors, filters and related components can reveal unknown problems and assure optimum equipment performance.

The 81000-A Wattkit features this easy-to-read RF Wattmeter (pictured here), with its optional carrying case and an array of elements and accessories. Coaxial Dynamics elements can be purchased separately for use in other manufacturer's Wattmeters. For more information on the 81000-A Wattmeter or any of the complete line of Coaxial Dynamics RF products and OEM components please contact Coaxial Dynamics, Inc.

NORTH AMERICAN SOAR corporation

PEN-STYLE DIGITAL MULTIMETER

MODEL 3100 GREAT PRICE $49.00

Hand Held LCD Display - Fast One Hand Operation

SPECIFICATIONS:
Display: LCD 3½ digits maximum reading of 1999/continuity beeper built-in
Range: Auto ranging
Polarity: Automatic no indication for positive polarity, minus sign for negative polarity
Overrange Indication: MBS 1 or -1 indication
Data Hold: Data hold in all ranges with hold switch on
Low Battery Indication: “B” mark displayed when battery drops below operating voltage
Sampling: 2 Times/second
Power Supply: 9V-44 battery (1.55V) X2 (Included)
Power Consumption: 5.5mW
Size: 6” x 1” x 1” LWH (less probe tips) includes ¾” and 2” probes

Add $2.50 For Shipping

STOCKING DISTRIBUTOR

KCS ELECTRONICS CORPORATION
SEMICONDUCTOR PARTS AND PRODUCTS
1043 N. STADEM DR.
TEMPE, AZ 85281
(602) 967-6945

Call or Write for FREE
Semiconductor Parts & Products Catalog
receiving signals from space

How to locate geostationary satellites from your QTH

With the price of TV-Receive Only (TVRO) terminals on its way down and the availability of channels expanding, interest in geostationary satellites is increasing. This article describes how to locate these satellites from any given latitude and longitude in terms of azimuth, elevation, and range.

Two programs are included — one in BASIC for the TRS-80TM (level II or similar) and the other for the Hewlett-Packard 67 or equivalent. While the mathematics are the same for each program, some minor changes have been made to accommodate the specific programming language used and the functions available on each machine. For example, (cos/sin) is substituted for (cot) because of the absence of the cotangent function on the HP-67 and in TRS-80 Level II BASIC.

celestial mechanics

For a satellite to always appear stationary above a particular point on earth, it must have the same period as the Earth — that is, 23 hours, 56 minutes, 4.09 seconds or 86164.09 seconds. In order to have a period that matches that of the earth, the geostationary satellite must be a specific height above earth. This measurement can be found by using the Newtonian law stating that the square of the velocity of an object (satellite in this case) is equal to the universal gravitational constant times the mass attracting the object (the Earth), divided by the distance of the object from the center of the mass (Earth).

\[V^2 = \frac{GM_E}{D} \] (1)

where \(V \) = velocity of satellite
\(G \) = universal gravitational constant
\[6.673 \times 10^{-11} \text{ Newtons-meter}^2 \text{ kilogram}^{-2} \]
\(M_E \) = Mass of Earth = \(5.975 \times 10^{24} \) kg
\(D \) = distance from center of earth to satellite
\(R + H \) = radius of earth + height of satellite above earth

\(G \) and \(M_E \) are constants and can be combined:

\[G' = GM_E = 3.987 \times 10^{14} \text{ meters}^3/\text{sec}^2 \]
\[= 3.987 \times 10^5 \text{ km}^3/\text{sec}^2 \] (2)

which results in

\[V = \frac{G'}{R + H} = \frac{G'}{D} \] (3)

or \(V_{SAT} = \sqrt{\frac{G'}{D}} \) (4)

The period of one complete revolution of the satellite is equal to the distance it travels in orbit divided by its velocity or:

\[P_{SAT} = \frac{2\pi D}{V_{SAT}} = \frac{2\pi D}{\sqrt{\frac{G'}{D}}} = 2\pi \sqrt{\frac{D}{G'}} \] (5)

But this is equal to 86,164 seconds (approximately 24 hours) for it to be a geostationary satellite as explained above.

By Dennis Mitchell, K8UR, 1 Cider Mill Lane, Upton, Massachusetts 01568
fig. 1. Angles involved in calculating satellite's azimuth, elevation and range.

fig. 2. Napier’s rule illustrates the relationship between the satellite and the observer.

Rearranging terms and solving for D:

$$D = 3\sqrt{\left(\frac{P_{SAT}}{2\pi}\right)^2} G'$$

$$= 42,168 \text{ km}$$

$$H \text{ (height of satellite above earth)} = 42,168 - 6378 = 35,790 \text{ km}$$

$$= 22,239 \text{ miles}$$

$$V_{SAT} = \sqrt{\frac{G'}{D}} = \frac{398,700}{42,168} = 3.075 \text{ km/sec}$$

$$= 3075 \text{ meters/sec}.$$
spherical trigonometry and some trigonometric identities, the equations for azimuth, elevation, and range are:

\[\theta = \cos^{-1} [\cos(\text{lat}) \cdot \cos(\Delta \text{long})] \]
(7)

\[Az = \cos^{-1} [-\tan(\text{lat}) \cdot \cos(\theta) / \sin(\theta)] \]
(8)

If \(\sin(\Delta \text{long}) > 0 \) then \(Az = 360 - Az \) and the

\[\text{elevation angle} = \tan^{-1} [\cos(\theta) / 0.151] / \sin(\theta)] \]
(9)

where: \(R/(R + H) \) = 6378/42168 = 0.151 and:

\[\text{Range} = \sqrt{(R + H)^2 + R^2 - 2 \cdot (R + H) \cdot R \cdot \cos \theta} \]

program hints

In the HP-67 program, the observer's latitude and longitude are replaced in decimal form. (Latitude is replaced in lines 3 through 7; longitude in lines 9 through 13.) Don't forget to use your own numbers — not mine — in these steps. The only other entry is the satellite longitude taken from table 1; after entry, hit key (A). Outputs are elevation, azimuth, and range in that order.

The BASIC program, which should need no explanation, prompts the user for all inputs. As shown in table 2, outputs provide satellite name, azimuth, elevation, and range in kilometers.

Locating the geostationary satellite you're looking for among the many orbiting the Earth in the crowded "satellite belt" is getting more difficult, but with a computer program such as this and some good microwave gear, they can be found.

Table 1. List of the current C-band (3.7-4.2 GHz) geosynchronous satellites and their longitude.

<table>
<thead>
<tr>
<th>Satellite Name</th>
<th>Longitude</th>
<th>Azimuth</th>
<th>Elevation</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>AURORA I</td>
<td>143</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>ANIK B</td>
<td>109</td>
<td>-</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>ANIK C2</td>
<td>105</td>
<td>-</td>
<td>-</td>
<td>22</td>
</tr>
<tr>
<td>ANIK D</td>
<td>104.5</td>
<td>-</td>
<td>-</td>
<td>23</td>
</tr>
<tr>
<td>COMSTAR I</td>
<td>128</td>
<td>-</td>
<td>-</td>
<td>22</td>
</tr>
<tr>
<td>COMSTAR II</td>
<td>95</td>
<td>-</td>
<td>-</td>
<td>22</td>
</tr>
<tr>
<td>COMSTAR III</td>
<td>87</td>
<td>-</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>COMSTAR IV</td>
<td>127</td>
<td>-</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>GALAXY I</td>
<td>128</td>
<td>-</td>
<td>-</td>
<td>19</td>
</tr>
<tr>
<td>GALAXY II</td>
<td>119</td>
<td>-</td>
<td>-</td>
<td>18</td>
</tr>
<tr>
<td>SATCOM 1-R</td>
<td>139</td>
<td>-</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>SATCOM 1-R</td>
<td>72</td>
<td>-</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>SATCOM 1-R</td>
<td>83</td>
<td>-</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>SBS I</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>13</td>
</tr>
<tr>
<td>SBS II</td>
<td>97</td>
<td>-</td>
<td>-</td>
<td>13</td>
</tr>
<tr>
<td>SBS III</td>
<td>95</td>
<td>-</td>
<td>-</td>
<td>13</td>
</tr>
<tr>
<td>TELSTAR 301</td>
<td>96</td>
<td>-</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>USAT I</td>
<td>85</td>
<td>-</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>WESTAR I</td>
<td>99</td>
<td>-</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>WESTAR II</td>
<td>85</td>
<td>-</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>WESTAR III</td>
<td>91</td>
<td>-</td>
<td>-</td>
<td>12</td>
</tr>
<tr>
<td>WESTAR IV</td>
<td>99</td>
<td>-</td>
<td>-</td>
<td>11</td>
</tr>
<tr>
<td>WESTAR V</td>
<td>123</td>
<td>-</td>
<td>-</td>
<td>11</td>
</tr>
</tbody>
</table>

Table 2. Sample calculation of geosynchronous satellite azimuth, elevation, and range for an observer in Upton, Massachusetts.

<table>
<thead>
<tr>
<th>Satellite Name</th>
<th>Longitude</th>
<th>Azimuth</th>
<th>Elevation</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>AURORA I</td>
<td>143</td>
<td>-</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>ANIK B</td>
<td>109</td>
<td>-</td>
<td>-</td>
<td>28</td>
</tr>
<tr>
<td>ANIK C2</td>
<td>105</td>
<td>-</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>ANIK D</td>
<td>104.5</td>
<td>-</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>COMSTAR I</td>
<td>114</td>
<td>-</td>
<td>-</td>
<td>25</td>
</tr>
<tr>
<td>COMSTAR II</td>
<td>128</td>
<td>-</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>COMSTAR III</td>
<td>96</td>
<td>-</td>
<td>-</td>
<td>36</td>
</tr>
<tr>
<td>COMSTAR IV</td>
<td>137</td>
<td>-</td>
<td>-</td>
<td>38</td>
</tr>
<tr>
<td>GALAXY I</td>
<td>128</td>
<td>-</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>GALAXY II</td>
<td>143</td>
<td>-</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>SATCOM 1-R</td>
<td>139</td>
<td>-</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>SATCOM 1-R</td>
<td>72</td>
<td>-</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>SATCOM 1-R</td>
<td>83</td>
<td>-</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>SBS I</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td>33</td>
</tr>
<tr>
<td>SBS II</td>
<td>97</td>
<td>-</td>
<td>-</td>
<td>34</td>
</tr>
<tr>
<td>SBS III</td>
<td>95</td>
<td>-</td>
<td>-</td>
<td>35</td>
</tr>
<tr>
<td>TELSTAR 301</td>
<td>96</td>
<td>-</td>
<td>-</td>
<td>35</td>
</tr>
<tr>
<td>USAT I</td>
<td>85</td>
<td>-</td>
<td>-</td>
<td>39</td>
</tr>
<tr>
<td>WESTAR II</td>
<td>79</td>
<td>-</td>
<td>-</td>
<td>40</td>
</tr>
<tr>
<td>WESTAR III</td>
<td>91</td>
<td>-</td>
<td>-</td>
<td>37</td>
</tr>
<tr>
<td>WESTAR IV</td>
<td>99</td>
<td>-</td>
<td>-</td>
<td>33</td>
</tr>
<tr>
<td>WESTAR V</td>
<td>123</td>
<td>-</td>
<td>-</td>
<td>19</td>
</tr>
</tbody>
</table>

Join AMSAT...Today

Amateur Radio Satellite OSCAR 10 provides:

- A New Worldwide DX Ham Band open 10 hours a day.

- Rag Chew With Rare DX Stations in an uncrowded, gentlemanly fashion.

- Popular Modes In Use: SSB, CW, RTTY, SSTV, Packet

- Full Operating Privileges open to Technician Class licensee or higher.

Other AMSAT Membership Benefits:

ORBIT Magazine Subscription:
Dependable technical articles, satellite news, orbital elements, product reviews, DX news, and more.

Satellite Tracking Software
Available for most popular PCs.

QSL Bureau, AMSAT Nets, Area Coordinator Support, Forum Talks

Construction of Future Satellites For Your Enjoyment!

AMSAT Membership is $24 a year, $26 outside North America. VISA and MC accepted.

AMSAT
P.O. Box 27
Washington, DC 20044
301 589-6062
HAL is proud to announce the ARQ1000 code converter. This terminal not only supports the AMTOR amateur codes, but meets ALL of the commercial requirements of CCIR Recommendation 476-2. The ARQ1000 can be used with present and previous generation HAL RTTY products. In fact, any Baudot or ASCII full duplex terminal at data rates from 45 to 300 baud may be used with the ARQ1000. Some of the outstanding features of the ARQ1000 are:

- Send/receive error-free ARQ, FEC, and SEL-FEC modes
- Automatic listen mode for ARQ, FEC, and SEL-FEC
- Meets commercial requirements of CCIR 476-2
- By-pass mode for normal RTTY without changing cables
- Programmable ARQ access code, SEL-CAL code and WRU
- Programmable codes stored in non-volatile EEPROM
- Keyboard control of normal send/receive functions
- 30 Front panel indicators and 11 control switches
- Interfacing for loop, RS232, or TTL I/O
- "Handshaking" control for printer and keyboard or tape
- Self-contained with 120/240V, 50/60 Hz power supply
- Cabinet matches style and size of HAL CT2200
- Table or rack mounting
- Built-in M1700 modem option available
- Encryption option available for commercial users
- 3⅞” x 17” x 10½”

The ARQ1000 is commercial-quality equipment that will give you the outstanding performance you expect from a HAL product. Write for full details and specifications of the ARQ1000.

By Popular Request

By popular request—the new CT2200. Our slogan is “When Our Customers Talk, We Listen” — and we have been listening. The CT2200 includes these often requested features:

- New AMTOR connections for use with ARQ1000
- Keyboard programming of all 8 “brag-tape” messages
- Programmable selective call code
- Expanded HERE IS storage for a total of 88 characters
- Non-volatile storage of HERE IS, “brag-tape,” and SEL-CAL code
- 3⅞” x 17” x 10½”

All of the proven CT2100 features are retained. Some of these features are:

- Tuning scope outputs (a MUST for AMTOR) • Built-in demodulator for high tones, low tones, “103”, or “202” modem tones • 36 or 72 character display lines • 2 pages of 72 character lines or 4 pages of 36 character lines • Split screen or full screen display • Baudot or ASCII, 45 to 1200 baud • Full or half duplex • Morse code send/receive at 5 to 99 wpm • Send/receive loop connection • Automatic transmit/receive control (KOS) • Audio, RS232C, or Loop1/0 • On-screen tuning and status indicators • Clearly labeled front panel switches, not obscure keyboard key combinations • Separate convenient lap-size keyboard • Internal 120/240, 50/60 Hz power supply • Attractive shielded metal cabinet

In addition, an update kit is available so that all CT2100 owners can update their CT2100’s to include CT2200 features. The kit even includes a new CT2200 front panel! Rather than making a proven product obsolete, HAL put even more behind the buttons. Pick up a CT2200 at your favorite HAL dealer and join the RTTY fun. Write for our full RTTY catalog.

HAL COMMUNICATIONS CORP.
Box 365
Urbana, IL 61801 (217) 367-7373 TWX 910-245-0784

More Details? CHECK-OFF Page 158

November 1984
YOUR VERY BEST SOURCE FOR

ICOM

• 6 STORE BUYING POWER ASSURES TOP VALUES.
• BIG, COMPLETE STOCKS. GET WHAT YOU WANT WHEN YOU WANT IT.
• MORE SAVINGS BY FREE SHIPMENT, MOST ITEMS THAT CAN BE SHIPPED UPS SURFACE (Continental U.S.A.)
• TOLL-FREE PHONE (Except California and Arizona).

PRICE REDUCTION

IC-730
MOBILE TRANSCEIVER

SMALL! only 3.7" high, 9.5" wide and 10" deep.
Provides 10 to 80 meter coverage.

BIG VALUE! CHECK IT OUT!

IC-751

IC-751, ICOM's brilliant transceiver, sets a new high standard of comparison with high-tech advancements and the superior quality essential for competitive-grade performance.

THE IDEAL PAIR FOR OSCAR

IC-271A*
2M • 25 WATTS • ALL MODE
RETAIL PRICE $699.00

IC-471A*
430-450MHz • ALL MODE
RETAIL PRICE $799.00

* 100W MODEL AVAILABLE
CALL FOR YOUR SPECIAL PRICE

SALE

IC-745

IC-745

• 9 ham bands • General coverage receiver
• 16 memories • Scanning • Pass-band tuning
• Variable NB and AGC • Eight accessories and options are also available.

NEW!! IC-27A
SUPER-COMPACT 2 METER MOBILE

An important breakthrough in compact mobile equipment.
Only 1½ x 5½" but full-featured including internal speaker.
25W of power, 10 full-function tunable memories, memory and band scan, priority scan. Includes mic. w/16 button Touchtone.
ALSO *IC-27H HIGH POWER VERSION
AND IC-37A, 220MHz
IC-47A, 70CM

SAVE!

R-71A
GENERAL COVERAGE RECEIVER

CHECK DOWN-TO-EARTH PRICES.

Superior grade receiver
w/100kHz to 30MHz general coverage and features
that include keyboard frequency entry.

HAND HELD

PLUS COMPLETE LINE OF ACCESSORIES

IC-2AT
IC-3AT
IC-4AT

LOW PRICES!
CALL!

FREE SHIPMENT, ALL OF THE ABOVE ITEMS, UPS (Surface).

Store addresses/Phone numbers are given on opposite page.

Tell 'em you saw it in HAM RADIO!
HERE'S WHERE YOU GET THOSE LOW, LOW PRICES ON
KENWOOD
PLUS FREE SHIPMENT
MOST ITEMS UPS SURFACE (Continental U.S.A.)
CALL NOW OR DROP INTO ANY OF OUR SIX LOCATIONS

I COM
R-71A
GENERAL
COVERAGE
RECEIVER

SALE!
IC-751

SALE!
IC-745
SUPER SAVINGS!
CALL!

KLM
SALE
t-34A SALE $329
KT-34A SALE $469
40M-2 SALE $309
CALL FOR LOW, LOW PRICES
80 THRU 11M KLM ANTENNAS

ALLIANCE
ROTOR SALE
HD-73
U-110
FREE SHIPMENT
UPS SURFACE (Continental U.S.) (MOST ITEMS)
TOLL-FREE PHONE
INCLUDING ALASKA AND HAWAII
800-854-6046
(California and Arizona customers please phone or visit listed stores)
PHONE HOURS: 9:30 AM to 5:30 PM PACIFIC TIME
STORE HOURS: 10:00 AM to 5:30 PM Mon. through Sat.

FREE SHIPMENT
UPS SURFACE (Continental U.S.) (MOST ITEMS)
TOLL-FREE PHONE
INCLUDING ALASKA AND HAWAII
800-854-6046
(California and Arizona customers please phone or visit listed stores)
PHONE HOURS: 9:30 AM to 5:30 PM PACIFIC TIME
STORE HOURS: 10:00 AM to 5:30 PM Mon. through Sat.

HAM RADIO OUTLET

TRISTAO SALE
MA-40 SALE $549
40' 2 SECT TUBULAR TOWER
MA-550 SALE $899
55' 3 SECT TUBULAR TOWER
IN STOCK

PERSONALIZED SERVICE
BOB FERRERO, W8RF
President
JIM RAFFERTY, N6RJ
VP. So Calif Div. Anaheim
Manager
GEORGE WBBSDV, Burlingame
GREG N6PO, Oakland
BOB K7ROH, Phoenix
OLEN K7BA, San Diego
AL K7YR, Van Nuys
and other active amateurs

FREE SHIPMENT
UPS SURFACE (Continental U.S.) (MOST ITEMS)
TOLL-FREE PHONE
INCLUDING ALASKA AND HAWAII
800-854-6046
(California and Arizona customers please phone or visit listed stores)
PHONE HOURS: 9:30 AM to 5:30 PM PACIFIC TIME
STORE HOURS: 10:00 AM to 5:30 PM Mon. through Sat.

ANAHiem, CA 92801
2620 W. La Palma,
(714) 761-3033, (213) 860-2040.
Between Disneyland & Knotts Berry Farm.

BURLINGAME, CA 94010
2811 Telegraph Ave.,
(415) 342-5757.
5 miles south on 101 from S.F. Airport.

SAN DIEGO, CA 92123
5375 Karmey Villa Rd.,
(619) 560-4900,
Hwy 163 & Clairmont Mesa Blvd.

VAN NUYS, CA 91401
6265 Sepulveda Blvd.,
(818) 988-2212.
San Diego Fwy at Victory Blvd.

Prices, specifications, descriptions subject to change without notice. Calif. and Arizona residents please add sales tax.
WHAT THE COMPETITION CALLS
"NO LOST WORDS OR SYLLABLES"
WE CALL NOISE

THE COMPETITION: "HI HONEY (NOISE) I'M FIXING YOUR (NOISE) FAVORITE SUPPER... BARBECUE HAMBURGERS. THEY WILL BE READY AT 6:30. WILL YOU MAKE IT IN TIME?"

The above example assumes a transceiver T/R time of about 150 mS (typical)

PRIVATE PATCH II: "HI HONEY I AM FIXING YOUR FAVORITE SUPPER... BARBECUE HAMBURGERS. THEY WILL BE READY AT 6:30. WILL YOU MAKE IT IN TIME?"

Thousands of PRIVATE PATCH II owners are enjoying the commercial communications quality that only a VOX based, simplex autopatch can deliver.

PRIVATE PATCH II IS PRICED AT LESS THAN HALF OF OUR COMPETITORS "FAVORITE COMMERCIAL SIMPLEX VOX PATCH"

SAMPLING VS. PRIVATE PATCH II

The performance of a sampling patch is totally dependent on the T/R speed of your radio. Such is not the case with PRIVATE PATCH II. PRIVATE PATCH II will give excellent results with any radio. Synthesized and relay switched types included.

PRIVATE PATCH II requires only three connections to your radio (MIC, PTT and SPKR audio). If these connections are made inside your radio PRIVATE PATCH II does not interfere with the normal use of your radio. Otherwise for a quick and easy interface you may plug PRIVATE PATCH II into the MIC and SPKR jacks. A 10 minute job! Unlike sampling patches, connections are not required to the squelch, discriminator or power. And best of all, modifications are never required.

Controlling and talking through PRIVATE PATCH II is almost always quicker and easier than using a sampling patch. This is because you may talk or send control commands the instant you press the PTT button. The ability to break in or take control is assured by interrupt control logic. The interrupt controller creates a window (similar to sampling) but is seldom heard in normal quick back and forth communication. With a sampling patch you press the MIC button for one to five seconds before talking on each and every transmission. This is very frustrating for the mobile, and causes confusion for each party.

The sampling process reduces the effective range of your base radio. This is because if a sample, and a signal fade coincide, the sampling patch thinks the mobile is not transmitting. This causes a sampling patch to become erratic at ranges still very usable by PRIVATE PATCH II. PRIVATE PATCH II will not diminish the range of your system.

PRIVATE PATCH II has two more range extending tricks not available to a noise sampled autopatch.
1. You may use a linear amplifier with no loss of performance
2. You can operate through any repeater from your base station.

CONNECT SYSTEMS
INCORPORATED

23731 MADISON ST., TORRANCE, CA 90505
PHONE: (213) 373-6803
more about radials

Antenna experimentation is one field in which the enthusiast doesn't need an advanced degree in electronics and a room full of expensive test equipment. Sometimes a twenty-five cent "instrument" can provide meaningful results for the investigator.

A case in point: the experiments of Ralph, W8HXC, and Don, AF86, which were designed to determine the effectiveness of quarter-wave radials on various 2-meter vertical antennas. The tests, conducted intermittently over a period of 5 years, pointed out some interesting aspects of radials that help to remove some of the mystery of VHF antennas.

The original investigation was designed to determine the best way to decouple the shield of a coaxial feedline from the field of the VHF antenna. The goal was to make the antenna do all the work, and to prevent the feedline from becoming part of the antenna. Only by making the feedline "inert" to the field of the antenna could the antenna do its job of laying down a low-angle signal.

To determine the degree of RF on the outer surface of the coaxial line, the simple "RF-sniffer" shown in fig. 1 was built. It was used to detect current loops on the antenna elements, the feedline, and supporting mast and structure. Made out of junk box parts, the simple device worked well with transmitter powers as low as 7 watts.

The "sniffer" consisted of a 144-MHz resonant circuit with a pilot lamp indicator, all mounted on a wooden handle. The capacitor was adjusted for maximum glow of the lamp (resonance) when held near the RF source used in the experiments.

The first experiments conducted were on a homebrew 1/4-wave groundplane antenna. It was found that the outside of the coax line, which dropped down beneath the groundplane antenna, was "hot" and exhibited a standing wave of energy along it that could be detected with the "sniffer." Excellent feedline isolation was achieved by simply wrapping the RG-58/U feedline into a two-turn coil 1-1/2 inches in diameter directly below the antenna. This little RF choke decoupled the feedline so that it was isolated from the antenna.

The next experiment was with an extended half-wave vertical antenna. RF was found on the feedline, and adding the choke in the feedline accomplished little. The outside of the line was still coupled to the antenna. Four quarter-wave radial rods were added to the antenna immediately below the matching coil (fig. 2). It was necessary to readjust the antenna for best SWR; however, the feedline isolation was not improved, and the radials did not seem "hot" with RF energy.

The last experiment, which was more meaningful, used a 5/8-wave-length antenna (48-inch long radiator) and a two-turn base matching coil (fig. 3). The feedline was carried down inside the metal supporting mast and a set of four quarter-wave radials with a clamping arrangement that allowed the radials to be placed anywhere on the mast was added.
sure indication they were not doing their job.

Further experimentation proved that moving the radials down the mast, away from the antenna base, changed the SWR reading and required feedpoint readjustment. By cut-and-try a combination of feedpoint adjustment and radial position yielded excellent SWR, radials "hot" with RF and no detectable current loops on either the feedline or the supporting mast below the radials. Measurement placed this optimum radial position 3/8-wavelength below the base of the antenna. The radial angle was finally set at 45 degrees to the horizontal for best SWR.

Further tests with this antenna and with a car-mounted antenna of the same general type led to the interesting discovery that 5/8-wavelength long radials attached to the base of the 5/8-wavelength antenna provided the same excellent feedline isolation as did 1/4-wavelength radials attached 3/8-wavelength down the structure. A final experiment showed that radials could be attached to the mast at any point up to 3/8-wavelength beneath the antenna base provided that the sum of radial length and distance from the antenna base totalled 5/8-wavelength.

Don, AF8B, points out that the 5/8-wavelength vertical antenna plus the 5/8-wavelength long radial system is the same overall electrical length as an extended double-Zepp antenna.

The conclusion of the experiments is that radial length cannot be taken for granted and, in the case of an extended antenna, may not be 1/4-wavelength long. The important dimension is the overall length of antenna plus radial. The test to determine radial length is to use a "Sniffer" to make sure the RF remains in the radials and not on the outside of the coaxial feedline. (Thanks to Don, AF8B, for supplying data on the W8HXC and AF8B experiments.)

the Australian wideband dipole

Reader interest has been aroused by my description of the so-called "Australian dipole" wideband antenna (January, 1983, page 67). It seems that there is a whole family of wideband HF antennas and other related products of this type manufactured by Antenna Engineering Australia PTY. Ltd., Box 191, Croydon, Victoria 3136, Australia. Contact Ian R.H. Wade, Sales Manager, for further information. The correct name of the antenna described in my January column is Model 632 Travelling Wave Dipole.

the K4EF "all-band" antenna

Several years ago Ev Brown, K4EF, described a wire antenna that would cover all HF Amateur bands between 80 and 10 meters (Ham Radio, May 1977, page 10). Since then he's done a lot of work on his design and has devised a new configuration that has several advantages over the old one. The new antenna covers the 160-meter band, uses four support points instead of five, and occupies less space. In addition, because the elements are arranged in a V-configuration, it provides some signal gain on the higher frequency bands.

A plan view of the new antenna design is shown in fig. 4. The array consists of five long wires arranged in a semicircle. The antenna is fed at points F-F with a 4-to-1 balun and a 50-ohm transmission line. In actual use, one of the two elements at the left of the illustration is used with one of the three wires at the right. The wires can be selected from the operating position with a remote switch. For example, if the 353-foot wire is added to the 313-foot wire, an element 666 feet long is produced. An odd number of half waves is required to produce approximately 200 ohms feedpoint impedance at or near the element center.

The chart of table 1 shows the odd-halfwave resonances in this combination. As can be seen, the bandwidth coverage is enormous (see column 3), and when you consider that the 666-foot combination is merely one of six, the complete configuration provides wide spectrum coverage with very low SWR. A simple computer program could calculate all of the resonances and bandwidths for all elements. The results could then be combined to determine what frequency gaps (if any) exist in the complete array coverage.

As Ev says, "... it is difficult to convey to a ham who has never used an all-band, broadband antenna just how convenient it is. During contests, changing bands is accomplished by flipping the bandswitch. Checking band conditions is done in an instant.
My FOC friends frequently ask to get credit for another band and find me waiting for them. Perhaps the most important aspect of the idea is that it encourages the operator to use the whole spectrum available.”

the W2TBZ quad-loop beam antenna

I had not seen Sid, W2TBZ, for over 15 years and our QSOs on the air were few and far between. “Keep in touch,” I had said, and just recently I heard from him — with a new antenna idea that he was using with great success on 15 and 20 meters.

To stay in touch with his friends, Sid needed an inexpensive wire beam that could be easily erected and would provide a modest amount of gain and a low angle of radiation. Various antennas were tried, and the final version, a 2-loop Quad beam is shown in fig. 5. Estimated gain of this bidirectional array is about 4.5 dB over a dipole.

The antenna consists of two side-by-side Quad loops, horizontally polarized and driven in phase. The feed system consists of two equal lengths of 300-ohm TV line and a 1-to-1 balun. The feedpoint impedance of a single loop in this configuration runs about 120 ohms, so parallel-connected loops provide a terminal impedance close to 60 ohms. This provides a good match to a 50-ohm transmission line system.

The 40-foot masts support the antenna. The figure-8 radiation pattern is at right angles to the plane of the array. The pattern is sharper than that of a dipole, being about 60 degrees between the half-power (-3 dB) points.

table 1. Odd halfwave resonances in 666 feet of wire.

<table>
<thead>
<tr>
<th>band</th>
<th>electrical length</th>
<th>resonant frequency (MHz)</th>
<th>bandwidth to 2:1 SWR points</th>
</tr>
</thead>
<tbody>
<tr>
<td>meters</td>
<td>halfwaves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>3</td>
<td>2.179</td>
<td>2.142 to 2.216</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>3.657</td>
<td>3.597 to 3.717</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>5.134</td>
<td>5.057 to 5.211</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>6.612</td>
<td>6.512 to 6.712</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>8.089</td>
<td>7.969 to 8.209</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>9.567</td>
<td>9.427 to 9.707</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>11.044</td>
<td>10.879 to 11.184</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>12.522</td>
<td>12.342 to 12.702</td>
</tr>
<tr>
<td>20</td>
<td>19</td>
<td>13.999</td>
<td>13.789 to 14.209</td>
</tr>
<tr>
<td>22</td>
<td>21</td>
<td>15.477</td>
<td>15.244 to 15.709</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>16.954</td>
<td>16.989 to 17.208</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>18.432</td>
<td>18.155 to 18.709</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>19.909</td>
<td>19.610 to 20.207</td>
</tr>
<tr>
<td>31</td>
<td>31</td>
<td>22.864</td>
<td>22.521 to 23.206</td>
</tr>
<tr>
<td>33</td>
<td>33</td>
<td>24.341</td>
<td>23.975 to 24.706</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td>25.819</td>
<td>25.431 to 26.206</td>
</tr>
<tr>
<td>37</td>
<td>37</td>
<td>27.296</td>
<td>26.886 to 27.705</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td>28.774</td>
<td>28.342 to 29.205</td>
</tr>
<tr>
<td>41</td>
<td>41</td>
<td>30.251</td>
<td>29.797 to 30.704</td>
</tr>
</tbody>
</table>

Note: The 666-foot element (summarized above) is only one of six element combinations. Single element switch will provide enormous coverage of HF spectrum with low SWR.

fig. 5. The W2TBZ loop beam. The phasing lines are made of 300-ohm TV line. Length of phasing line = 468/fMHz x velocity factor of 300-ohm line. Balun is supported at center of lower nylon rope.
Brings You The PACKET Breakthrough!

PACKET RADIO lets you share a simplex channel error-free with up to 20 simultaneous users at 1200 Baud.

AEA introduces the MODEL PKT-1 PACKET CONTROLLER. Through an arrangement with TAPR (Tuscon Packet Radio, Inc.), AEA brings you the proven performance of the TAPR kit board and software in a rugged metal package, fully wired and tested with a full year's warranty and with all the free applications assistance you can stand.

Using only your existing radio and RS232 terminal (or computer), you can join the rapidly expanding packet radio community. Operate on VHF, HF or satellite and talk to more than 1000 existing packet users. Store messages addressed to you automatically and read them from your printer or monitor later. Easy to hook-up!! Easy to use!!

Call today for the rest of the story: 206-775-7373!!

Better yet, see your favorite AEA dealer.

Advanced Electronic Applications
P.O. Box C-2160
Lynnwood, WA 98036

All right, AEA, send me info fast!

To: AEA, P.O. Box C-2160,
Lynnwood, WA 98036

Name
Address
City, State, Zip
Phone

interesting reading!

From time to time I like to recommend interesting books or periodicals that provide information that otherwise may be unobtainable, and that are of general interest to Radio Amateurs.

This month's recommendation is The Monitoring Times, published monthly by Grove Enterprises, Inc., 140 Dog Branch Road, Brasstown, North Carolina 28902. The subscription rate is $10.50 for one year.

The Monitoring Times is full of timely information about what's going on in the HF/VHF spectrum. The editor and publisher is Bob Grove, WA4PYQ. This newspaper covers items of interest not generally found in Amateur publications. I look forward with interest to each issue! The latest information on the mysterious "beacon" and "numbers" stations may be found in this publication, as well as up-to-date information and interesting stories of other aspects of radio communication.

Some of the columns in Monitoring Times are "High Seas Radio," "Signals from Space," "Utility Intrigue," "RTTY/FAX," and "Pirate Radio." There's also a good review of some of the new communications receivers in the present issue of this interesting publication.

Good luck, Bob - you have a winner!
Look hear...

Satellite TV and stereo sound.

Now you can enjoy the fullness of stereo sound via satellite. Stereo is standard on the GLR-868...and, so is top quality video.

Features:
- Priority 6.8 mono audio plus narrow-band direct stereo and wide-band matrix stereo
- Automatic volume compensation for wide/narrow band signals
- Crystal synthesized tuning and built-in terrestrial filter
- Automatic polarity seeking control plus 100° or better LNF
- Wireless, infrared remote for changing channels
- Single cable convenience for all power and control wiring

The GLR-868 connects with your stereo and your television set to turn your den into a theater. You get stereo sound separate from the video on selected subcarriers and with video on other subcarriers. Your choice...for your enjoyment. Take a look at the GLR-868, and hear the difference of stereo sound. At your local satellite TV dealer.

We make technology affordable.

Automation Techniques, Inc.
1550 North 105th East Avenue • Tulsa, OK 74116 (918) 836-2584
ANTENNA/TOWER SALE!

CRANKUP SALE!
All Models Shipped
Factory Direct—
Freight Paid!!!

Check these features:
 All steel construction—
Hot dip galvanized after
fabrication—
Complete with base and
rotor plate—
Totally self-supporting—

no guys needed!

CRANKUP TOWS!
These rugged crankup
tows are now available from Texas
Towers! All models available
On Sale for tremendous sav-
ings to you.

To save on freight costs, all
towers are shipped directly from
the Tri-Ex factory to you.

Check these features:
 All steel construction—
Hot dip galvanized after
fabrication—
Complete with base and
rotor plate—
Totally self-supporting—

no guys needed!

HO-140
40 ft 10 48 $199

HO-140
50 ft 10 62 $259

HO-150
50 ft 10 68 $199

HO-150
60 ft 10 75 $199

HO-150
80 ft 10 90 $199

HO-150
90 ft 10 105 $199

HO-150
100 ft 10 120 $199

HO-150
110 ft 10 130 $199

HO-150
120 ft 10 140 $199

HO-150
130 ft 10 150 $199

HO-150
140 ft 10 160 $199

HO-150
150 ft 10 170 $199

HO-150
160 ft 10 180 $199

HO-150
170 ft 10 190 $199

HO-150
180 ft 10 200 $199

HO-150
190 ft 10 210 $199

HO-150
200 ft 10 220 $199

HO-150
210 ft 10 230 $199

HO-150
220 ft 10 240 $199

HO-150
230 ft 10 250 $199

HO-150
240 ft 10 260 $199

HO-150
250 ft 10 270 $199

HO-150
260 ft 10 280 $199

HO-150
270 ft 10 290 $199

HO-150
280 ft 10 300 $199

HO-150
290 ft 10 310 $199

HO-150
300 ft 10 320 $199

HO-150
310 ft 10 330 $199

HO-150
320 ft 10 340 $199

HO-150
330 ft 10 350 $199

HO-150
340 ft 10 360 $199

HO-150
350 ft 10 370 $199

HO-150
360 ft 10 380 $199

HO-150
370 ft 10 390 $199

HO-150
380 ft 10 400 $199

HO-150
390 ft 10 410 $199

HO-150
400 ft 10 420 $199

HO-150
410 ft 10 430 $199

HO-150
420 ft 10 440 $199

HO-150
430 ft 10 450 $199

HO-150
440 ft 10 460 $199

HO-150
450 ft 10 470 $199

HO-150
460 ft 10 480 $199

HO-150
470 ft 10 490 $199

HO-150
480 ft 10 500 $199

HO-150
490 ft 10 510 $199

HO-150
500 ft 10 520 $199

HO-150
510 ft 10 530 $199

HO-150
520 ft 10 540 $199

HO-150
530 ft 10 550 $199

HO-150
540 ft 10 560 $199

HO-150
550 ft 10 570 $199

HO-150
560 ft 10 580 $199

HO-150
570 ft 10 590 $199

HO-150
580 ft 10 600 $199

HO-150
590 ft 10 610 $199

HO-150
600 ft 10 620 $199

HO-150
610 ft 10 630 $199

HO-150
620 ft 10 640 $199

HO-150
630 ft 10 650 $199

HO-150
640 ft 10 660 $199

HO-150
650 ft 10 670 $199

HO-150
660 ft 10 680 $199

HO-150
670 ft 10 690 $199

HO-150
680 ft 10 700 $199

HO-150
690 ft 10 710 $199

HO-150
700 ft 10 720 $199

HO-150
710 ft 10 730 $199

HO-150
720 ft 10 740 $199

ROTHS & CABLES
Alliance H103 (7 1/2 sq. ft. rating)
$55.00

Alliance H104 (3 sq. ft. rating)
$49.00

Telex HAM-4 (5 sq. ft. rating)
$49.00

Telex Talkwinder (20 sq. ft. rating)
$49.00

Kenpro KR-500 Heavy duty elevation rotor
$199.00

KLM EL 3000 Monitor Tracker Elevation Rotor
$149.00

Standard 8 code cable $149.00

Heavy Duty 8 code cable $149.00

Heavy Duty 9 code cable $149.00

SOUTH RIVER ROOF TRIPUDS
HDH-3 3/4 Tripod $49.00

HDH-5 5/8 Tripod $49.00

HDH-5/8 Tripod $49.00

HDH-15 1 3/4 Tripod $49.00

Heavy Duty Tripods include mfg w/USPS Shipping

TOWER/GUY HARDWARE
3/16" rhino wire (1990 lb rating) $ 2.50

1/4" rhino wire (1990 lb rating) $ 2.50

3/16" rhino wire (1990 lb rating) $ 2.50

3/8" rhino wire (1990 lb rating) $ 2.50

3/16" rhino wire (1990 lb rating) $ 2.50

3/8" rhino wire (1990 lb rating) $ 2.50

3/16" rhino wire (1990 lb rating) $ 2.50

3/8" rhino wire (1990 lb rating) $ 2.50

3/16" rhino wire (1990 lb rating) $ 2.50

3/8" rhino wire (1990 lb rating) $ 2.50

3/16" rhino wire (1990 lb rating) $ 2.50

3/8" rhino wire (1990 lb rating) $ 2.50

3/16" rhino wire (1990 lb rating) $ 2.50

3/8" rhino wire (1990 lb rating) $ 2.50

3/16" rhino wire (1990 lb rating) $ 2.50

3/8" rhino wire (1990 lb rating) $ 2.50

3/16" rhin...
ICOM IC-751A LIST PRICE $1399
CALL FOR SPECIAL SALE PRICE!

ICOM IC-745 LIST PRICE $999
CALL FOR SPECIAL SALE PRICE!

TR-2500 2.5W/300 MW
Handheld Transceiver
Small Size - Small Price -
Big Performance!
• LCD Readout
• Ten Memories
• All Memory Functions
• Band and Memory Scan
• Built-in Memory Encoder
• Built-in Key

CALL FOR SPECIAL PRICES!

TS-930S LIST PRICE $1799
CALL FOR SPECIAL SALE PRICE!

FT-756GX LIST PRICE $829
CALL FOR SPECIAL SALE PRICE!

FT-726R LIST PRICE $829
CALL FOR SPECIAL SALE PRICE!

FT-208R 2M HT
List $319
FT-708R 440 MHz
List $319
• LCD Display
• 10 Memories

CALL FOR SPECIAL PRICES!

TS-430S LIST PRICE $899.95
CALL FOR SPECIAL SALE PRICE!

3.5W 1W WIO

CALL FOR SPECIAL SALE

R-757GX LIST PRICE $829

CALL FOR SPECIAL SALE

FT-708R 440 MHz
List $319

CALL FOR SPECIAL PRICES!

CORSAIR List $1169
Deluxe AC Supply List $199
Both Items – Yours for $1169!

All Ten-Tec Accessories in Stock
for Fast Shipment!

TEN-TEC
New 2M HT
Full Featured!

List $319
Sale $279.95!

4229 2KW Tuner Kit $189.95!

ASTRON POWER SUPPLIES
Heavy Duty - High Quality - Reliable
• Input voltage 10-125 Vac Input: 13.8VDC - 35V
• Fully electronically regulated - 5v Maximum Ripple
• Current limiting Circuit Protection Circuits
• M Series With Meter – 4 Series Without Meter

MODEL RS-50A

MICROTECH

New ST142/P 2M HT
• 3.5W/1W 0.1W
• 142-149.995 MHz
• LCD Display
• Programmable PL Option

List 339.95
SALE $299.95!

KANTRONICS

Alpha Sale!

TEN-TEC Sale!

SALE!
NEW RTTY/CW COMPUTER INTERFACES

HAL

SALE!
NEW RTTY/CW COMPUTER INTERFACES

CRI-160 List $249 SALE $229.95!
CRI-200 List $299 SALE $289.95!

CWR8850 RTTY/CW TERMINAL

List $999 SALE $749.95!

Other HAL Products On Sale

KDK FM203

List $339.95 Sale $299.95

New ST142/P 2M HT

ST-142/P $259.95
ST-222/P CALL!
ST-442/P CALL!

SANTEC Accessories

SM3 Speaker Mic. $34.95
ST-NC Leather Case $34.95
ST-500 NiCad Battery $29.95
ST-40C Base Charger $59.95

KANTRONICS

The Interface Reg. Sale $196.95
The Interface II Reg. Sale $209.95

Apple Amper
Soft Hamsoft $139 VIC-20 Hamsoft $49
VIC-20 Amper Soft $89 Hamsoft VIC-20 $99
Model 64 VIC-20 Hamsoft Model 64 $99
Amper Soft $89 Atari Hamsoft $49
Apple Hamsoft $29 TRS-80 Hamsoft $59

MORE DETAILS? CHECK-OFF PAGE 158

TEXAS TOWERS
Div. of Texas RF Distributors Inc. 1108 Summit Ave., Suite 4 Plano, Texas 75074
Monday-Friday 9 AM - 5 PM Saturday 9 AM - 1 PM

Telephone (214) 422-7306

More Details? CHECK-OFF Page 158

November 1984
As a leading manufacturer of precision motor drive systems, we believe the newly developed DR10 is the finest dual drive system for satellite antennas. To provide you the highest level of performance and convenience, the DR10 Dual Axis Rotor features:

- COMPACT CONTROL UNIT WITH SELF CONTAINED AC POWER SUPPLY
- SINGLE DUAL SCALE METER (AZIMUTH/ELEVATION)
- SINGLE 8 WIRE CONTROL CABLE (BELDEN TYPE)
- STANDARD TOWER TOP MOUNTING
- ACCEPTS 1½ INCH ANTENNA BOOM
- SERVICEABLE WITHOUT ANTENNA REMOVAL
- DYNETIC SYSTEMS' HIGH TORQUE, PRECISION GEARMOTORS

NOW AVAILABLE

for immediate delivery

Our DR10 will out-perform any combination of conventional rotors popularly used, and is supplied ready to mount, including the rotor, control unit, and all stainless steel mounting hardware. (less cable)

For immediate ordering information, individuals and dealers call or write

612-441-4303
make your own PC boards using silk screen techniques

A step-by-step guide to easy, inexpensive duplication of simple circuits

At least two silk-screen approaches to PC board duplication will work for reproducing relatively simple circuits. One is based on the use of printing film, and the other is based on the use of a photo-sensitizing material that can be applied directly to a silk screen or to a board. I have found both of these techniques to be quite satisfactory, and I consider them to be superior to the usual board photo-sensitizing approach for all but the most sophisticated circuit configurations. The screen-sensitization technique can be used with "LIFT-IT™ Patterns" or by applying sensitizer directly on the board if one is certain replication will not be necessary. The printing-film approach is suitable for relatively simple circuits such as those used for RF voltmeter probes.

In order to produce a conductive pattern on a circuit board it is necessary to transfer a drawn pattern to the copper on a board. This requires the application of material that will protect the desired conductor area from an etchant. Of the various methods available, silk-screen techniques are probably the least expensive and most convenient solution to the typical multi-board problems encountered by hams. (Where only single boards are required, the photo-sensitizing method can be applied directly to the board.)

board preparation

I buy my copper-clad material (copper one side) at hamfests, usually for less than one cent per square inch, far less than the 20 cents or more charged for sensitized boards.

First I cut the board to size with a bandsaw. Metal shears or a pair of tinsnips can also be used. The board may also be scored with a linoleum knife and separated. After the boards have been cut to size, the edges and corners should be deburred to avoid cutting the silk in the process of inking. If the board is badly corroded the copper surface should be scoured with 600 grit emery, and finally with a cleaning powder such as "Old Dutch Cleanser," one that is free of chlorides and phosphates. An all-over clean copper lustre is required to assure efficient etching.

mounting frame preparation

Two kinds of mounting frames can be used. Because the boards I use are seldom larger than 3 by 5 inches, I purchased some 3/4-inch square wood strips and cut them into 6- and 8-inch lengths. Using picture frame clamps, I assembled these pieces into frames having outer dimensions of about 7 by 9 inches, gluing the pieces of wood together with white glue and inserting 2-inch long wood screws through the joints and reinforcing the joints with flat L brackets measuring 1-1/2 inches on each side (see fig. 1). After assembly, the forms should be protected with shellac to improve their resistance to water. I use these frames for board applications having continuous use, such as power supply configurations.

It is difficult to get enough tension on the screen to minimize under-flow with this arrangement. I have found it convenient to attach 7-inch pieces of flat aluminum stock about 3/4 of an inch wide on the inside of the long sides. These can be used to stretch the screen tightly. Beware of sharp corners on the tensioning bars; any burrs or sharp edges or corners will cut the silk. I cut slots in the bars and use screws to hold them in place. Much less underflow results.

By Keats A. Pullen, Jr., W3QOM, 2807 Jerusalem Road, Kingsville, Maryland 21087
fig. 1. Wood silk-screen printing frame with pattern. The irregular outer edge of the wood frame is caused by the silk. I didn’t use the cardboard reinforcement with this frame.

fig. 2. The metal screen printing frame. The cardboard reinforcement is used here.

The second kind of frame can be made from ordinary aluminum stock available in most hardware stores. I use 3/4-inch angle and 3/4-inch flat stock. One clamping surface for holding the screen is fixed; the other is moveable. There are two fixed elements, the second being used for application of the required tension. One of the fixed angle pieces is reinforced to the flat bars with corner braces for additional stiffness. The moveable angle is coupled to the second angle piece with 1/4 x 20 inch threaded rod; wing nuts are used for adjusting tension on the silk.

The one fixed angle element and the moveable one are arranged so that the two ends of the screen, supported by cardboard as explained in the next section, can be clamped tightly to the two members. In this way, ample tension can be applied to the screen for use in printing (see fig. 2).

screen preparation

The silk screen is prepared by washing, again with the cleanser, and thorough rinsing. A monofilament nylon screen material of the finest possible mesh is best and will give the finest resolution and minimum problem from etch-through resulting from blockage of ink penetration by the screen material itself. The screen must be stretched as tightly as possible when used, since only then can sufficient contact of the pattern and the copper be achieved, minimizing “run-under.”

To protect twisting the thread pattern of the screen material, use cardboard bracing strips on each tension edge, leaving enough silk to wrap around the strip. The silk can then be stapled to the cardboard strip and the combination tacked on the frame or clamped as required. This way the stress can be distributed uniformly on the silk.

using printing film

Since there are two possible ways the screen master can be used, each method is considered separately. I have found orange printing film to be useful and easy to prepare for simple circuits. In using it, one simply marks off and removes narrow ribbons of film to form conductors, lifting them from the backing material. The material removed represents a current path. Care should be taken to minimize the cutting of the backing, a plastic, nylon-type material, as the transfer of the film to the silk is most easily accomplished if the film has been cut through without scoring the backing.

I have made some simple tools for preparing the film. One type, for cutting conductor paths, consists of two halves of a double-edged razor blade mounted on opposite sides of a piece of used copper-clad (see fig. 3). This will cut both sides of a conductor path at one time, and help in making sure that the length of the cut is correct. These cuts can extend to about a hundredth of an inch into an adjacent pad or across an intersecting path to simplify the removal of the material. This ribbon is then picked up with an Xacto™ knife or a pin and removed. Pads can be cut with a tool made by taking a short length of 1/4-inch rod, center-drilling it on a lathe or drill press, and cutting down its outside diameter to the size of the pad required.

When the pattern has been prepared, it may be attached to the silk screen material by stretching the screen tightly over the pattern and patting the screen with a piece of cheesecloth wetted with lacquer thinner (use a gentle push, not a sliding motion). You will be able to see where the attachment is satisfactory.
You will want to go back and redo any imperfectly imbedded areas. When the combination has dried completely, carefully peel off the backing, resticking if required.

photo-sensitized silk screen

The silk can also have the required pattern applied to it by the use of a photographic sensitizing technique. The sensitizer I have used is the Hunt Manufacturing Company Printing Photo Emulsion Kit No. 4533. This contains two components which are mixed just prior to use. Instructions are provided with the package. A leaflet on screen printing is also available.

To prepare the photo screen, mount the screen material on the frame you have chosen and apply the mixed sensitizer in a thin, smooth layer on both sides of the screen. (You can expedite drying by blowing cool air from a hair dryer on to the screen.) After mixing, handle the coated screen in semi-darkness only. If the image to be transferred is closest to the back of your image master, you expose with that surface adjacent to the sensitive surface and expose through it. (Lift-it masters are exposed from the top, whereas drafted masters will be exposed from the bottom; see figs. 4 and 5). The master should be between the light and the sensitive layer, and the image as viewed from the top should be as required. A transparent cover should be placed on top of the master and weighted so as to assure close contact between the master and the screen. (I use a No. 2 photoflood in a reflector about 14 inches from the work, for about six minutes.) The exposed silk is then washed and rinsed immediately.

inking

After the circuit board has been scoured and prepared for use, and the screen with the appropriate pattern is in tight contact with it, the inking can be begun. The ink must be reasonably thick, yet it must spread through the open areas of the screen. At the same time it must be able to be completely removed from the stencil screen without leaving residues or damaging the screen. It must dry "hard" — that is, it must, after drying, be resistant to the etchant.

A bead of ink is spread along the short length of the circuit to be printed, and then spread along the image of the circuit. I use a piece of Plexiglass™ or other transparent acrylic as a spreading tool. It should be an inch wide or wider, and can be wide enough to cover the entire width of small boards. (All burrs and sharp edges should be removed from the spreader prior to use. To re-use, simply peel off the dried ink.) Acrylic inks such as the Hunt Permanent Acrylic Screen Printing Ink or the Liquitex Permanent Acrylic Ink are suitable.

After the printed board is dry, the image can be touched up by using pin or a needle to repair breaks,
or an Xacto knife to scrape away any rununders that may have occurred. I usually use a hair dryer with heat to speed the drying in this phase of production.

I print as many boards as I need in rapid succession and then wash out the screen master with a thorough spray of water. (Printing inks are soluble in water until they dry; after drying, they become impervious to water but can be peeled or scraped off.)

initial artwork preparation

When the photographic screen method is used, it is necessary to work from some kind of master. These masters may be those printed in a magazine (either positive or negative) or some you have prepared from any of the various commercial materials. Each approach is discussed here.

A complex circuit or one available as a circuit pattern in an article can be made into a screen by combining a photocopy of the layout with the silk-screen process. The photocopy can provide increased contrast, if necessary, and eliminate the need to cut the magazine. If the original is positive, make a Lift-it from the photocopy and use it to expose the screen. If the original is a negative, make the Lift-it copy and then print it directly onto a piece of high-contrast 4 x 5 inch cut film. This will give a positive that can be used to sensitize the screen again. (With a negative, the print may be made directly from the Lift-it to the board using the Hunt preparation if you prefer. This works, particularly if the hardener is used as described later.)

I make some of my masters on tracing vellum using extremely thin transfer materials such as those made by Vector. Ruled India ink lines are suitable for conductors. Transfers used for pads and IC sockets finish the circuit layout. The result is a simple, direct step-by-step process.

washing and etching

Washing must be done at several points in this process. The boards should be washed thoroughly and carefully after scouring. The screen material should be washed thoroughly from both sides to remove any sizing and acrylic ink. With the photo-sensitization process, it is spray-washed from both sides to remove the filler from the pattern.

With both the exposed photo-screen and the inked screen, I use a discarded spray bottle for washing, which must be done immediately after completion. A fine but fairly hard spray is best.

I generally use ferric chloride as an etchant. Either plastic or glass trays may be used with it; I use Pryex® glass trays so I can heat the etchant and thereby speed the operation. My heater is an electric plate warmer with two switches added to the line cord, one with a diode connected across its points for the convenience of two heat levels.

After etching, the board should be washed thoroughly. You'll find the ink softened enough to peel off, leaving the copper with the dull appearance of cuprous oxide. If you wish to apply tinning solution, the copper must be made bright once again by the use of 600 grit paper used lightly as needed and scouring. Hardened ink can be dissolved in lacquer thinner.

hardening

The photo-emulsion image on the screen can be hardened by treating it with Hunt's "Permanizer®" No. 4529. The developed and dried image on the silk screen is painted with this material, and the combination dried with cool air. The use of a water spray wash with cold water once again opens the mesh where the pattern is.

acknowledgement

I am deeply indebted to A. L. Spizzo of Hunt Manufacturing Company for his assistance in solving various technical problems I have encountered.

bibliography

Hi we're

Haty Electronics

Hatry Electronics

The Elect in Electronics

500 LEDYARD STREET
HARTFORD, CONN. 06114

Phone 203-527-1881

86 November 1984
EXCLUSIVE 1 YEAR LIMITED WARRANTY! COMPARE!

THE 4000 SERIES

- WIDE FREQUENCY COVERAGE: PCS-4000 covers 142,000-149,995 MHz in selectable steps of 5 or 10 kHz. PCS-4200 covers 220,000-224,995 MHz in selectable steps of 5 or 20 kHz. PCS-4300 covers 440,000-449,995 MHz in selectable steps of 5 or 25 kHz. PCS-4500 covers 50,000-53,995 MHz in selectable steps of 5 or 10 kHz. PCS-4800 covers 28,000-29,990 MHz in selectable steps of 10 or 20 kHz.
- CAP MARS BUILT-IN: PCS-4000 includes coverage of CAP and MARS frequencies.
- TINY SIZE: Only 2.1” x 5.5” x 6.8” D. COMPARE!
- MICROCOMPUTER CONTROL: At the forefront of technology!
- UP TO 8 NONSTANDARD SPLITS: Ultimate versatility. COMPARE!
- 16-CHANNEL MEMORY IN TWO 8-CHANNEL BANKS: Retains frequency and standard simplex or plus/minus offsets. Standard offsets are 600 kHz for PCS-4000, 1.5 MHz for PCS-4200, 5 MHz for PCS-4300, 1 MHz for PCS-4500, and 100 kHz for PCS-4800.
- DUAL MEMORY SCAN: Scan memory banks either separately or together. COMPARE!
- TWO RANGES OF PROGRAMMABLE BAND SCANNING: Limits are quickly reset. Scan the two segments either separately or together. COMPARE!
- FREE AND VACANT SCAN MODES: Free scanning stops 5 seconds on a busy channel; auto-resume can be overridden if desired. Vacant scanning stops on unoccupied frequencies.
- DISCRIMINATOR SCAN CENTERING (AZDEN EXCLUSIVE PATENT): Always stops on frequency no matter what the offset.
- ILLUMINATED KEYBOARD WITH ACQUISITION TONE: Unparalleled ease of operation.
- BRIGHT GREEN LED FREQUENCY DISPLAY: Easily visible, even in direct sunlight.
- DIGITAL S-RF METER: Shows incoming signal strength and relative power output.
- BUSY-CHANNEL AND TRANSMIT INDICATORS: Bright LEDs show when a channel is busy and when you are transmitting.
- FULL 16-KEY TOUCHTONE PAD: Keyboard functions as autopatch when transmitting (except in PCS-4800).
- PL TONE: Optional PL tone unit allows access to private-line repeaters. Deviation and tone frequency are fully adjustable.
- TRUE FM: Not phase modulation. Unsurpassed intelligibility and audio fidelity.
- HIGH/LOW POWER OUTPUT: 25 or 5 watts selectable in PCS-4000; 10 or 1 watt selectable in PCS-4200, PCS-4300, PCS-4500, and PCS-4800. Transmitter power is fully adjustable.
- SUPERIOR RECEIVER: Sensitivity is 0.2 uV for better than dB quieting. Circuits are designed and manufactured to rigorous specifications for exceptional performance, second to none. COMPARE!
- REMOTE-CONTROL MICROPHONE: Memory A-1 call, up/down manual scan, and memory address functions may be performed without touching the front panel! COMPARE!
- OTHER FEATURES: Dynamic microphone, rugged built-in speaker, mobile mounting bracket, remote speaker jack, and all cords, plugs, fuses, and hardware are included.
- ACCESSORIES: CS-7R 7-amp ac power supply, CS-4 SR 5-amp ac power supply, CS-AS remote speaker, and Communications Specialists SS-32 PL tone module.
- ONE YEAR LIMITED WARRANTY!

SALE

PLEASE CALL FOR SPECIAL PRICE

PCS-300 2m Handheld FM Transceiver 142-149.995 MHz

PCS-4000 2m FM Transceiver

PCS-4300 70-cm FM Transceiver

PCS-4500 6-m FM Transceiver

PCS-4800 10-m FM Transceiver

JPC/AZDEN
4000 SERIES FM TRANSCEIVERS
10 METERS & DOWN

COMMERCIAL-GRADE QUALITY AT AMATEUR PRICES

EXCLUSIVE 1 YEAR LIMITED WARRANTY! COMPARE!

EXCLUSIVE DISTRIBUTOR: AMATEUR-WHOLESALE ELECTRONICS
8817 S.W. 129th Terrace, Miami, Florida 33176
TOLL FREE...800-327-3102
Telephone (305) 233-3631
Telex: 80-3356

MANUFACTURER: JAPAN PIEZO CO., LTD.
1-12-17 Kamirenjaku Mitaka, Tokyo, 181 Japan
Tel: 781-2822452

DEALER INQUIRIES INVITED
For the active CW operator, there is nothing more fun than operating with the "Doctor DX" CW DX simulator. For the person who has never liked CW, Doctor DX will show you what real fun is. Doctor DX has something for everyone from the aspiring Novice to the experienced Amateur Extra Class licensee. And you need no FCC license to operate Doctor DX!

With Doctor DX, all you need is a Commodore-64 computer, a key (or keyer), and a TV set. There is no need for an expensive transceiver, amplifier and antenna farm to enjoy the thrill of working "rare DX." No more TVI or dead bands! Doctor DX is more than the most sophisticated CW trainer ever developed, it is your DXpedition ticket to anywhere in the world at a very affordable price.

Doctor DX simulates real H.F. CW band conditions. All the stations you will work are generated by the computer. As you tune up and down the particular band you have selected, you will hear realistic sounding stations in contact with other stations (some within your skip zone). There is also the normal QRN and QRM one would expect to hear in the real world. All call letters heard are totally random (subject to the country's callsign assignment rules). The prefixes are weighted according to the Amateur Radio population density, with 304 possible countries represented. The speed of stations operating in the lower portion of the bands is much faster than those operating in the upper band segments. The "operators" are also more polished in the lower portion of the bands.

Radio propagation (programmed for each band) represents what you would expect to hear on a good propagation day at the peak of the sunspot cycle. The propagation follows the internal real-time clock that you set before beginning operation. All the simulated stations you hear (with proper prefixes) are at distances you would expect to hear for the time of day and band selected.

You can learn and enhance your CW operating skills with Doctor DX. Doctor DX will not reward bad habits. AEA even offers an awards program to owners of Doctor DX that work all zones, 100 countries, 5 band Dr DXCC, or Doctor DX Honor Roll.

The Doctor DX CW trainer is a totally new concept in Amateur Radio. See what all the excitement is about. Send for full details, and see your dealer for a demonstration.
For good clean, competitive fun, Doctor DX™ shows your score and QSO rate for continuous monitoring of your improved CW operating skills. The DDX-64 can be a vehicle for fairly settling those club rivalries by competing with your friends under identical operating conditions.

AEA also has two on-going CW contests that you can enter with Doctor DX as your own schedule permits. The AEA SPRINT CONTEST is a timed non-stop eight hour event and the AEA MARATHON CONTEST is a timed 24 hour non-stop event. The top 5 contest scores will be published in our future advertisements and upgraded periodically as new higher scores are achieved.

In addition to the two AEA contests, we are offering award certificates for achieving certain milestones. You will be automatically alerted when you have achieved these milestones by a display at the bottom of the monitor screen.

AEA DrDXCC is achieved when you have worked 100 different countries, regardless of the frequency band or the amount of time operated. DOCTOR DX WAZ can be earned by working all 40 CQWW zones of the world, without regard to the band or duration of operating time. The DOCTOR DX HONOR ROLL is reserved for top notch operators capable of working 250 countries without regard for band or operating time. Additional endorsement awards are available for each additional 10 countries worked up to 300 (out of 304 possible) countries. AEA 5 BAND DrDXCC is a very difficult award to achieve. It requires working 100 countries on each of five different bands, without regard for the amount of operating time.

Each award can be obtained by filling out a photocopy of the award application form (supplied) along with the score information and qualifying check sum from your screen display. Please enclose $3.00 to cover handling costs for each certificate ($1.00 for Honor Roll endorsements). Awards will only be granted to owners having a Doctor DX warranty card on file.

There is no need to ever be bored with your hobby again just because the bands are dead or you are apartment bound. Try Amateur Radio’s own version of Solitaire - DOCTOR DX.

MIDWEST AMATEUR RADIO SUPPLY
3456 Fremont Avenue, North
Minneapolis, MN 55412
Store Hours: Mon.-Fri. 9-6, Saturday 9-3
For service call: (612) 521-4662
For orders call: 1-800-328-6365
Down Converter

Actuator Boots

- Universal Limit Switches
- Universal Limit Switches

Semiconductors:

- MRF-208: 12.00 MMW-252 53.00
- MRF-246: 18.40 MMW-710 61.00
- MRF-247: 34.80 MP6-61 50
- MRF-309: 33.80 MV205 58
- MRF-422: 41.40 88L06CP 50
- MRF-454: 20.00 2N4401 75
- MRF-901: 2N3904 1.75
- SBL-1 Double-Balance Mixer: 6.50

P.C. Boards for Motorola Bulletins:

- AN-762: 1.00
- AN-791: 1.00

越來越 popular: RFI VISOR

- 8140
- 8145

- MADE IN JAPAN

Life Time Warranty - 100% Certified

$180 ea. 5.4" "SSDD $200**

Outlet Model

- 67$195 MM-5 51.55

Free shipping on Continental US if order over $25, else add $5.00 COD add $3.00

VISA and MasterCard

- Personal checks take 10 days to clear

Florida residents add 5%

Call or write for our free catalog.

IF YOU COMBINE 1.3 - 1296 and 249.95 WHAT DO YOU GET?

A COMBINATION THAT YOU CAN'T BEAT.

IF YOU COMBINE 1.3 - 1296 and 249.95 WHAT DO YOU GET?

IF YOU COMBINE 1.3 - 1296 and 249.95 WHAT DO YOU GET?

NO BOOKS CARDS VISUAL AIDS GIMMICKS

Just listen and learn the "WORD METHOD" is based on the latest scientific and psychological techniques. You can zoom past 12 WPM in less than HALF THE USUAL TIME! The kit contains two cassette tapes, over TWO HOURS of unique instruction by internationally famed educator Russ Farnsworth. Complete satisfaction guaranteed.

Available from local Electronic Dealers, or send check or money order for $18.95 plus $1.50 for postage and handling to:

Epsilon Records

P.O. Box 71531
New Orleans, LA 70172

Communications Concepts Inc.

2648 North Aragon Ave. • Dayton, Ohio 45420 • (513) 296-1411

COMMUNICATIONS CONCEPTS INC

1984 November 1984
Delaware Amateur Supply

71 Meadow Road, New Castle, Del. 19720 302-328-7728
Factory Authorized Dealer! 9-5 Daily, 9-8 Friday, 9-3 Saturday

KENWOOD YAESU ICOM TENTEC MICROLOG KDK SANTEC KANTRONICS

800-441-7008
Order & Pricing
New Equipment

Large Inventory

All Other Calls
302-328-7728

No Sales Tax in Delaware!
One mile off I-95

More Details? CHECK OFF Page 158
winter DX

The winter DX season is here. One characteristic of winter is a steep rise in the daily MUF peak followed by an early decline to a deeper predawn minimum. This makes for shorter daytime DX operating time in the higher HF bands, but for more nighttime DX on the lower frequency bands. Signal strengths are higher because of lower absorption of energy and less propagated or local atmospheric noise (by this time of year, thunderstorms are fewer and more distant).

Absorption is a result of the loss of energy from the signal as it collides with ions on its path through the D region (about 100-120 miles, or 60-80 km, above the earth). How much energy is absorbed per transit of the D region depends on the location of the sun, and is a function of cosine X, the zenith angle to the sun. Maximum absorption occurs at the subsolar point (directly under the sun); absorption decreases as the signal transit moves away from the subsolar point in any direction. In our winter the subsolar point moves down to 23 degrees south latitude, resulting in less absorption. At the same time the earth is closer to the sun by 2 percent. The net result is still less absorption in winter. The degree of absorption is related to and follows the changes in the ultraviolet output of the sun. (It takes slightly over 8 minutes for a change on the sun to begin affecting our ionosphere.) A measure of this is the daily solar flux at 2800 MHz recorded in Ottawa, Canada, and broadcast at 18 minutes after the hour by radio station WWV. Another source of absorption, caused by increased particle influx during geomagnetic storms, occurs on propagation paths through or along the auroral zone (60-80 degrees latitude). An indication of this cause is an increase in the geomagnetic K (greater than 4) and A (greater than 30) indices, also broadcast from WWV.

On any propagation path, absorption increases with the number of transits of the D region and also varies inversely with frequency. Therefore in working DX it pays to use the higher frequency bands to obtain more distance per hop (resulting in fewer transits) and less signal loss. This is why we generally think of 6, 10, or 15 meters for DXing. But in winter, we have the opportunity to work DX on the lower frequency bands with less QRN and lower signal loss than at any other time of the year.

Lower signal loss is something to look forward to, but you can't count on it. Sometimes in winter, signals are poor for several days at a time. This is caused by anomalous absorption, which will be discussed in next month's column.

last-minute forecast

The low HF bands, 160 through 30 meters, are expected to be the favored bands of operation during the first two weeks of November, with higher bands providing the best DX during the last two weeks of the month. The solar radio flux should be about the same as last year's values, yet higher than it's been in the last month or two. Some possibility of recurrent geomagnetic storms still exists, with greatest probability of occurrence on November 4, 9, 14, 18, and 28. Remember: even though disturbances affect signal strength and produce fading conditions for some paths, conditions on other paths may actually improve.

November is the month during which numerous meteor showers occur. Shower activity should begin on October 26 and last until November 22. A shower maximum of ten per hour is expected during the Taurids meteor shower from the 3rd through the 10th. Lunar perigee is on the 20th; full moon is the 8th.

A total eclipse of the sun will occur on November 22 and 23 in the south Pacific, starting at 2013 UT in the Philippines and New Zealand, traveling east to Antarctica, and ending at 0133 UT. You might want to schedule some contacts with ZL and KC4 land for some unusual DX.

band-by-band summary

Ten, fifteen, and twenty meters will be open from morning to early evening almost every day, and to most areas of the world. The openings on the higher of these bands will be shorter and will occur closer to local noon. Transsequatorial propagation on these bands will more likely occur toward evening during conditions of high solar flux and a disturbed geomagnetic field. Absorption effects are not too noticeable.

Thirty and forty meters will be useful almost 24 hours a day. Daytime conditions will resemble those on 20 meters. Skip distances and signal strength may decrease during midday on those days that coincide with high solar flux values. Nighttime DX will be good except after days of very high MUF conditions and the winter anomaly. The usable distance is expected to be somewhat greater than that achieved on 80 at night.

Eighty and one-sixty meters are the nighttime DXer's bands. The bands open just before sunset and last until the sun comes up on the path of interest. Except for daytime short-hop signal strengths, high solar flux values don't affect these bands much. The anomaly will affect day and night signal strength on some days.

Garth Stonehocker, K0RYW

92 November 1984
The italicized numbers signify the bands to try during the transition and early morning hours, while the standard type provides the MUF during "normal" hours.

"Look at next higher band for possible openings"
RADIO WAREHOUSE
Division of HARDIN Electronics

NO FRILLS—JUST LOW PRICES
CALL FOR SPECIAL PRICES ON—
KENWOOD
YAESU
ICOM
TEN-TEC

DAIWA METERS—KEYERS—AUDIO FILTERS
CUSHCRAFT LINE OF ANTENNAS

CALL TOLL FREE
1-800-433-3203

IN TEXAS CALL 817-496-9000
5635 EAST ROSEDALE
FT. WORTH, TEXAS 76112

VHF COMMUNICATIONS

ICOM COMMUNICATIONS

END OF SUMMER CLEARANCE
IC-745 HF Base
SUPER SAVINGS !!!

915 North Main Street
Jamestown, New York 14701
PH. (716)664-6345

MICA COMMUNICATIONS CONSOLES

- 4 x 6 Wide - 1 to 3 Wide optional
- L & U L Circular set-up - with optional center table
- Replaceable Front Panel - for station changes
- Precisely cut panel holes - by computerized wood cutter
- High station density - because no shelves are used
- Hidden accessory shelf - for power supplies, dummy load
- Puppets of all your equipment - for easy station layout

OPTIONAL ITEMS
- Drawer/Bookshelf combination - hangs under desk
- 1000 Mica s to select from - to match your decor
- Desk recessed for keyboard - optimum 26" typing height
- Desk top extensions into panel - for Apple computer or storage
- Matching dolly for floor amp s - with concealed casters
- Shelf under desk quick access - for headphones, key, Mic
- Exhaust cooling fan system - thermostatically controlled
- Wire duct, wire labels, etc.

DISTRIBUTORS

UNITED STATES

A-TECH
Kansas
913-582-5819

BROOKS (Franchise)
201-583-2800

CAYSON ELECT.
Mississippi
601-862-2132

DULANEY's
Oklahoma
405-528-0511

ECHOSPHERE
Sacramento, Ca.
880-338-5477
Englewood, Co.
800-521-9282
Dallas, Tx.
800-521-9282
Knoxville, Tn.
880-223-1507

HOOSIER ELECTRONICS, INC.
Terre Haute, In.
800-457-3330

I.Z.C.C.
Arkansas
501-771-2800

KAUL-TRONICS
Wisconsin
608-647-8902

NATIONAL MICRO DYNAMICS
Tennessee
615-892-3901

SATELLITE DATA
Florida
813-823-7669

SATELLITE VIEW DISTRIBUTORS
New York
315-822-6900

SATELLITE EARTH STATIONS
Louisiana
800-762-2110
Texas
512-385-0738

D.H. SATELLITE
T.V. INC.
Prairie Du Chien, Wi.
608-326-8406

S.R.C. INDUSTRIES
Ontario, Or.
503-889-7261

SATELLITE MARKETING
Douglasville, Ga.
800-438-2807

TENN-SAT
Tennessee
415-349-7180

M & M VIDEO
Carson City, Nv.
702-882-5786

CANADA

STARSCAN
Kelowna, B.C.
604-763-4266

C.L. BLUE
Saskatoon, Sask.
306-242-5133

CANADIAN MICRO-TECH
Ontario
WESTERN and EASTERN SATELLITE

Tell 'em you saw it in HAM RADIO!
SANTEC presents the smarter handhelds
FOR 144 VHF, 220 VHF & 440 UHF

SANTEC Handhelds just got a little smarter, with new computer-control software designed by U.S. Hams who are also professional programmers. Now SANTEC Handhelds, which were the first to offer you varactor diode tuning in a handheld, first to offer you thick-film technology, first to provide 3.5W as a selectable handheld option and first to give you the time of day on a handheld read-out, have made another user-friendly leap forward in the logical progression of computer-controlled handhelds.

Now three SANTEC Handhelds can lock out selected memory channels from the memory scan, allowing you to check your favorite frequencies much faster, without interruption from less commonly used ones or from unprogrammed memory channels. SANTEC Handheld's new operating programs now allow you to store variable offset values in all 10 user-written memory channels; and, as always with SANTEC Handhelds, your stored offset automatically comes back when you select a channel through the memory mode, and the plus or minus indication shows on the LCD display.

Other new features are the provision in Memory 9 for split memory offset operation, for those really unusual offset situations, and the capacity for hardware storage of a special PL tone for each memory channel (requires an optional encoder, available December, 1983). The new SANTEC Handhelds will also accept the keyboard input of all frequencies as either short, fast, 4-digit numbers or the familiar 6-digit versions: your SANTEC Handheld is smart enough to know what you want, either way.

The handhelds with the most now have more for you. Don't you dare settle for anything less: get your hands on a SANTEC Handheld today!
high dynamic range receivers

Mention high dynamic range and you'll really get a discussion going. Everyone has a story and a solution. We'd all like to believe that our receivers or transmitters are always clean, and that any splatter or other obnoxious noise has to be coming from somebody else's poor receiver or dirty or overdriven linear amplifier. Because all aspects of the situation, both on the transmit and receive side, are seldom separated, the problem is rarely resolved.

A few years ago, after lots of arm-twisting by Jim Stitt, WA80NO, I tackled this dilemma. The main goal was to improve Jim's 6-meter receiver sufficiently so he could be sure it wasn't the culprit in these situations. Then his station could be more competitive in the VHF contests and he'd be able to operate alongside the strong local transmitters - assuming they were also clean (more on this later).

The end product was a high dynamic range 6-meter receive converter with an extra transmitter LO (local oscillator) output. Since this month's ham radio emphasizes receivers, I decided to discuss this subject in some detail and examine some of the problems, limitations, and solutions for such a design. Typical recommended circuits for a 6-meter receive converter will then be shown.

high dynamic range

What is high dynamic range? One answer is that it describes transmitter or receiver design that allows copying weak DX signals in close proximity to strong signals. It sounds simple enough, but how strong is that local? Let's assume that a big 6-meter station is only 1 mile (1.6 km) distant and runs the legal limit of 1.5 kW PEP output through a feedline with a 1 dB loss to a 10 dB gain antenna pointed at your receiving antenna. If you're using a dipole receiving antenna broadside to this signal and have no feedline loss, the signal at the input to your receiver will be approximately 0 dBm or 1 milliwatt, about 130 dB above the noise floor in a typical VHF receiver! If you also have a 10 dB gain antenna, the signal received (when aimed at this source) will be +10 dBm (10 milliwatts) - more power than is used for the LO in most Amateur receivers! If the distance between stations is doubled, the signal will drop by 6 dB but still be quite respectable.

Recently I tested the dynamic range of a well-designed Amateur 6-meter converter that uses a single JFET preamplifier and a standard level (+7 dBm or 5 milliwatts) DBM (doubly-balanced mixer). When two equal signals of -20 dBm (23 millivolts or 10 microwatts) were present at the input to the converter, spurious signals or IMD (intermodulation distortion) were generated and only 30 dB below the desired outputs. This is hardly high dynamic range! These spurs or IMD products usually appear as sidebands or additional signals spaced equally above and below the normal signals by the difference between the input frequencies (see fig. 1). When the IMD gets worse, additional spurs appear alongside the first sidebands as is also seen in the photo in fig. 1.

All is not lost. The antennas can be part of the solution. If you use a directional antenna with a clean pattern, moving your antenna back and forth can place a null on a strong signal. If overload is still present, one solution is to place an attenuator at your receiver input (more on this later); on VHF, especially on 6 meters, where the local ambient noise is usually high, the weak signal will still be good copy while the local (interfering signal) will have been "knocked" down.

is the receiver at fault?

Before proceeding, it may be worth mentioning the transmitter. Typically speaking, it would be desirable for all Amateurs to transmit a clean signal. But what is a clean transmitted signal? Typical Amateur linears call for IMD products to be at least 30 dB below the desired signals. However, if the received signal is 130 dB above the noise, 30 dB IMD isn't going to be much help 3 kHz from the other station's frequency. You'll just have to QSY further away.

Therefore, before you accuse the other station of "hitting it too hard," perform one simple test. *First observe the splatter several kHz away on a relative basis or on your receiver "S" meter. Next, place an appropriate attenuator (10 dB recommended, see fig. 2) at the input to your receiver or converter (or use the internal attenuator if one is an integral part of your receiver) and then recheck the splatter level. If the received level drops by approximately the insertion loss of the attenuator, the transmitter is the culprit and the transmitting station is
either overdriving its equipment or your frequency is just too close for comfort. However, if the splatter drops by more than the attenuator value (it could be up to 3 times less!), your receiver is surely part of the problem.

Assuming that the problem is the receiver (maybe in some future column we'll examine transmitter and power amplifier requirements in greater detail), there are design approaches that will enhance receiver performance.

general receiver design requirements

The old saw “If you can’t hear them, you can’t work them” still applies to high dynamic range receivers. Low noise figure, sufficient RF selectivity to reject images and undesired out-of-band signals plus a clean local oscillator are still required.

In order to obtain low noise figure, a preamplifier is usually required ahead of the first mixer. Herein lies the problem. Any gain ahead of the mixer will decrease the dynamic range. Therefore, the preamplifier gain must be kept as low as possible, consistent with obtaining the desired noise figure. The desired or total system noise figure can be determined from:

\[
NF_{(total)} = \frac{NF1}{G} + \frac{(NF2 - 1)}{G} + \frac{(NF3 - 1)}{G} + \frac{1}{G2}, \text{ etc.} \tag{1}
\]

where \(G\) is gain and \(NF\) is noise factor (a numeric—not dB) for each stage in succession.

For example, a 3 dB noise figure preamplifier with 9-10 dB of gain feeding a mixer with a 10 dB noise figure will yield an overall system noise figure of less than 5 dB. Fortunately, we can live with lower sensitivity receivers, especially on 6 meters, where a noise figure less than 5 to 10 dB is usually wasted since the typical ambient noise is usually very high.* At 2 meters the problem is more acute, but the level and number of signals are usually somewhat less of a problem. For the computer-minded Amateur, a computer program is available for eq. 1 so that you can quickly iterate various combinations of gain and noise figure to determine your own optimum case.² Before leaving the subject, remember that a preamplifier must have high output power capability in order not to distort the signals prior to the first mixer (more on this later).

For good performance you need adequate RF selectivity ahead of the mixer, which means additional losses that further increase the noise figure. Again, these losses can be handled (as we shall soon see) by the proper choice of RF filter characteristics and by optimizing the location of the filters in the receiver chain.

Let’s not forget the choice of IF and its effect on selectivity, images and spurious responses. For 6 meters I personally favor a 28 MHz IF with a 22 MHz LO, rather than a 14 MHz IF with the 36 MHz LO used on some of the older converters. Spurious signal analysis reveals that a 28 MHz IF is slightly less susceptible to “birdies.”³ Also, a 28 MHz IF is far less likely to respond to IF breakthrough. The latter term refers to leakage at the IF frequency that permits normal signals in this spectrum to also be received. The 20-meter band is a good example since propagation yields signals of high intensity, especially during the days when 6 meters is hot. Although 10-meter IF breakthrough can be a

*Everybody’s relative Joe, who also operates 160 meters, would probably agree that in contrast, 6 meter ambient noise is low.

² Editor
problem, the number and strength of stations present is usually less, especially below 28.3 MHz.

High dynamic range mixers that require moderate LO power (10-100 milliwatts) are usually required. Also the LO must be very clean with low phase noise (more on this later) and should be followed by an amplifier to boost the level high enough to adequately drive the mixer.

Finally, if the overall system noise figure is to be realized, the mixer must usually be followed by a low noise figure postamplifier with a high dynamic range. The IF receiver should also have high dynamic range and a moderate (10 dB or so) noise figure.

preamplifiers

Surely the preamplifier is one of the most important aspects of a good receiver. However, obtaining high dynamic range and low noise figure simultaneously and with a reasonable input and output VSWR is difficult. Devices (transistor, FET, etc.) with low inherent noise figure are common. However, increasing preamplifier dynamic range usually requires increased device current or a device with greater current-carrying capacity. This, in turn, usually increases the noise figure and the overall gain, the exact opposite of the desired effect!

Before discussing different preamplifiers in detail, it may be well to mention the subject of the linearity in an active device. Just because an amplifier is operated in class “A” doesn't mean it is free from distortion. Every amplifier, regardless of its type and power, has a point beyond which the output signal will no longer be an exact replica of the input signal. Hence distortion will occur.

Over the years various methods have been devised to measure distortion. The most frequently used test is for 1 dB compression. This is defined as the CW power level where the output signal increases 9 dB for an input power increase of 10 dB. Most class “A” amplifiers can only increase output power by 2-6 dB beyond this level, as shown in fig. 3. Amplifiers often are heavily distorting a signal 5-10 dB before it reaches compression levels; consequently, this is not a good point for referencing distortion. Furthermore, some devices are more non-linear than others, especially when approaching the compression point.

In 1967, McVay wrote his classic reference paper on the third-order intercept point, a new method of measuring dynamic range.\(^4\) Basically, what this method does is to determine distortion based on a two-signal IMD test performed in a similar manner to that used to specify single sideband linear amplifiers. The third-order intercept point is then determined either mathematically or by use of nomograph (see fig. 3). The distortion can then be calculated or read off the nomograph for any power level on any device if the third-order intercept point is known. Suitable nomographs are available in reference 4 and from most commercial amplifier manufacturers.

In most of the work I have done on high dynamic range, I have used the intercept point test method. Several things are immediately apparent. The IMD products increase at three times the rate of the desired output signal level change. Hence, the ratio between the output signal level and distortion will change on a 2 for 1 basis. For example, if the IMD products from two equal level signals are 60 dB below the desired output signal level and the signal level is increased by 1 dB, the IMD products will now be only 58 dB below the desired output level. A 10 dB input signal increase will decrease the IMD difference by 20 dB. This can be seen graphically in fig. 3. Therefore, once IMD becomes apparent, it will usually degrade very rapidly, perhaps even on a greater than 2-to-1 basis, with increased signal level! This is common on many active devices whenever the IMD is less than 60 dB below the output levels.

A search was launched for the ideal preamplifier. First a low-gain (12-13 dB) grounded-gate J310 JFET preamplifier was designed (after all, FETs are supposed to have such great dynamic range and low noise figures). The results were fair. On a typical circuit the output compression point was + 14 dBm (250 milliwatts). The IMD was down 60 dB for –3.5 dBm (0.45 milliwatts) output per signal for an output third-order intercept point of + 26.5 dBm (450 milliwatts). However, the noise figure was over 4 dB with no input matching. When input noise figure matching was added, the gain increased and the input impedance match degraded — both detrimental to the desired results. Also, the overall selectivity for this preamplifier was inadequate for the final converter.

Before proceeding with the next preamplifier design, some re-examination was in order. Previous experience with modular circuits led to the conclusion that in a high dynamic range receiver all circuits should have good input and output VSWR at a common impedance such as 50 ohms.\(^5\) This would allow easy interchange between filters, amplifiers, mixers, and LOs, as well as facilitate any future improvements or changes, especially when new or improved devices became available.

With this in mind, the search for a low-noise high dynamic range pre-
A high dynamic range 14 dB gain preamplifier using RF feedback for wide bandwidth. (See text for complete specifications.)

for −60 dB IMD were −4 dBm (0.4 milliwatts) for an output intercept point of +26 dBm (400 milliwatts). Higher output power could be obtained with still higher Ic. Unfortunately, when high feedback and high Ic are used, the noise figure also increases. In this case the noise figure was already about 4 dB for an Ic of 25 mA. Adding more current or a 4:1 output transformer would have resulted in an undesirable increased noise figure and equally undesirable increased gain.

Not being totally content with this amplifier, I tried one of the less expensive (approximately $8.25 each) broadband hybrid amplifiers, a Motorola MWA 130, which exhibits a +19 dBm (95 milliwatts) compression point. For 60 dB IMD, the outputs were +4.77 dBm (3 milliwatts) for an output intercept point of +34.8 dBm (3 watts), a substantial improvement over the home-brew circuit. However, the current drain was 60 mA and the noise figure was about 6.5 dB at 50 MHz, similar to the performance of the 2N5109 circuit just described, when its current was raised to the same level. Also, the gain — over 15 dB — was too high for this application.

I finally tested one of my favorite preamplifiers, a single transformer lossless feedback type using a common base circuit similar to the one designed by Norton. Although it is more complex to construct, the results are well worth the effort. Using a medium gain (9 dB) configuration, the output power and IMD were outstanding, provided the emitter current was moderate (17 mA). Output compression was typically +20 dBm (100 milliwatts). IMD was down 60 dB for +9 dBm (8 milliwatts) output, for an output intercept point of +39 dBm (8 watts)! The typical IMD versus input and output for this circuit is shown in fig. 3 and a typical two-tone spectrum display is shown in fig. 5. As a bonus, if the preamplifier is properly constructed, the bandwidth is greater than 1.8 to 200 MHz with a 2:1 maximum VSWR and 10-150 MHz for a 1.2:1 VSWR! Truly this was the circuit I was searching for (fig. 6).

A big key to the success of a high dynamic range preamplifier is the type of transistor chosen. Many RF devices will work well but not always have the same noise figure, bandwidth, or IMD. In the lossless feedback case, the noise figure was typically 1.5 to 2 dB maximum when using the NEC NE41632B transistor, but a 2N5109 had a noise figure of 2.5 to 3 dB in the same circuit. In addition, previous work showed that the most linear transistors were those which were specifically designed for CATV and class “A” linear operation with a very constant DC current gain (hfe) over a wide range of collector current. In the CATV business, which is particularly interested in IMD, these devices are frequently referred to as large area multiple emitter structures. The NE41632B and the 2N5109 are both included in this category. (For those who do not have easy access to the NE41632B transistor or the balun core shown in fig. 6B, I have made arrangements for PROTO-FAB,
RF filtering

It goes without saying that high dynamic range cannot be obtained if spurious frequencies or high power out-of-band signals are present in the receiver. Hence RF filtering is very important. It was pointed out in a prior article that the type of input filtering chosen can lessen the chances of destruction from HF signals or lightning entering the first preamplifier of a receiver. 5

In my August column I discussed the problems of multiple pole filtering such as VSWR distortion and increased losses. Hence it was decided to use a simple low-loss single pole bandpass filter with a pseudo-highpass response at the input to the receiver. 7 In this case a 5 MHz bandwidth was chosen because it would allow reception of 48 MHz European video carriers as well as 52 MHz VK/ZL DX with little degradation at either frequency, but still reject other services. This filter has a nominal insertion loss of 0.75 dB, less than a multi-section type. The schematic is shown in fig. 7, with its typical frequency response in fig. 8. The input filter chosen doesn’t have sufficient out-of-band rejection by itself. Hence a post filter (fig. 9) with the same bandwidth (5 MHz) but higher insertion loss (2 dB typical) is required. Its frequency response is shown in fig. 10. The filter topography may be somewhat new; it was developed by this author and William K. Talley while at the Mitre Corporation in an effort to obtain a symmetrical attenuation versus frequency response. 7 This filter design is available in computer-aided design form in reference 2. Since this filter is placed after the preamplifier, the loss has a minimal impact on overall system noise figure. As a bonus, the extra insertion loss of the filter will improve the overall system dynamic range accordingly.

mixers

In prior work I had experienced poor dynamic range with the more common Amateur type of mixers such as dual-gate MOSFETs and single-ended bipolar and JFET mixers. However, despite conversion loss, DBMs have always performed very well in my circuit designs. 5, 8, 9 Hence, when striving for high dynamic range, I decided from my prior experience that DBMs “are the only way to fly.” They are easy to drive with a reasonable 50-ohm impedance match at all ports, a goal stated earlier. Also, because of their balanced structure, they tend to cancel any AM present on the local oscillator, a problem which is particularly prevalent if phase-locked LOs are used.

However, when striving for high dynamic range, DBMs must be treated properly. Attenuator pads on the RF and LO ports are a must to terminate undesired mixer generated products and the LO as well as to terminate any
in-line filters in their proper impedances. Likewise, a diplexer should be added to the IF output port if low IMD is to be maintained.

Many DBMs were tested, with the Mini-Circuits Labs TAK-1H selected as the best overall mixer on a cost-versus-performance basis. For comparison, some of the data taken on this and some other popular DBMs are summed up on Table 1. The final circuit using the TAK-1H is shown in Fig. 11. This mixer requires higher LO power (+17 dBm or 50 milliwatts) than the more common DBMs usually seen in Amateur equipment, but this is a definite need if high dynamic range is to be obtained. Due to the 3 dB pad on the LO port of the DBM, the LO power required by the overall circuit in Fig. 11 is +20 dBm (100 milliwatts). The RF and LO bandwidth are 2 to 500 MHz. Hence, this circuit has considerably more capability than meets the eye.

A few final remarks on DBMs are in order. Although the so-called high dynamic range mixers (those specified for use with +17 dBm or 50 milliwatts LO), are recommended, the typical DBMs specified with a +7 dBm (5 milliwatts) LO can be used, but with 5 to 10 dB lower LO and dynamic range. Sometimes DBMs are not readily available in single quantity. This can often be handled by getting a group of persons together to buy the minimum quantity. PROTO-FAB, as mentioned earlier, has also agreed to make the TAK-1H DBM available at a reasonable price. Finally, many DBMs are now showing up at flea markets at some pretty good prices, so shop around. You may not find the exact DBM desired but you may be willing to accept slightly lower performance as a compromise. If you adopt the modular approach suggested, it will be easy to upgrade performance at a later date.

Local Oscillators

My favorite crystal oscillator is the overtone Colpitts. The frequency of the LO is determined by the IF chosen, as discussed above. It has great stability and low phase noise, a requirement...
of any high-performance receiver. Phase noise, caused by poor design in the phase lock loops employed, is typically poor in many of the transceivers presently available. Phase noise generates noise on the LO, which, in turn, causes strong signals to be heard several kHz away.

As shown in reference 8, the output of this LO is only about +10 dBm (10 milliwatts). Therefore, an amplifier is required if a high level DBM is used. It was decided not to fight the class “C” type of amplifier, but to go class “A” because there would be improved linearity and less possibility of generating LO noise. Since design of the 2N5109 feedback amplifier had already been completed (fig. 4), the bias values were modified slightly for use as the LO amplifier. A simple 1/2 λ low-pass filter followed this amplifier to keep any harmonics from reaching the mixer circuitry.7

When the preliminary design was completed for WA8ONQ, it was decided to take the LO output through a two-way power splitter for use on both the receive and transmit mixer. This was more power than required by the transmit mixer, and also dropped the output power substantially on the receive side. So a unique connection was made at the output of the oscillator in conjunction with the attenuator usually used at this point.8 The result is a secondary output sufficient to drive a standard level DBM (+7 dBm) in a transverter similar to those designs in reference 9. If this output is not needed, terminate it with 51 ohms for possible future use and to insure that the oscillator is seeing the proper match. The final LO schematic is shown in fig. 12 and delivers +20 dBm (100 milliwatts) at the output connector, the power required by the mixer circuit in fig. 11.

postamplification

As already stated, the DBM type of mixer has conversion loss and, therefore, must be followed by a low-noise postamplifier if the system noise figure is to be preserved. The signal levels at this point are about equal to those present at the input to the preamplifier. Therefore, the preamplifier already used is an excellent candidate for this amplifier since it has a good impedance match, low noise figure and high dynamic range. This is also a recommended circuit for HF, 10-meter OSCAR reception, interface with existing VHF/UHF converters, or other applications where moderate gain, low noise figure and high dynamic range are required over a broad bandwidth.

In my shack, I have a DPDT coax switch which allows me to bypass the postamplifier when strong signals are present, thereby increasing dynamic range.
IF requirements

At this point it must be obvious that the converter presented has to be followed by a high dynamic range IF receiver if the true capabilities are to be realized. Bypassing the postamplifier or inserting an adjustable attenuator after the receive converter can also help improve dynamic range, but the ultimate limits will probably be limited by the IF receiver. Fortunately, the commercial manufacturers are improving the HF gear that is now being marketed. Furthermore, a converter of the type just described, in conjunction with one of the more modern HF receivers, will definitely outperform any presently available equipment that is solely devoted to the VHF or UHF spectrum.

construction

The 6-meter converter was designed using a modular approach. The final block diagram is shown in fig. 13. Each circuit was placed in a cast aluminum box such as the Pomona 2417, Bud CU 123/124 or equivalent with BNC type input/output connectors and feedthrough-type capacitors on the power supply lines. Each box has a piece of double-clad PC board attached to the cover for point-to-point wiring and grounded, as previously discussed in reference 8. The final
result is a versatile unit with no apparent RF pickup or interaction between modules.

Construction of the circuits is quite straightforward. Leads should be kept short, especially on the filters. High-quality trimmers with low lead inductance such as the ceramic, mylar, or teflon types should be used. The transformer construction hints (fig. 6B) for the preamplifier should be followed carefully and the leads on the capacitors, especially on the base bypass, should be kept as short as possible. If a different DBM is used, check the pin designations as some manufacturers use different pin-outs.

tune-up and performance

Very little tuning is required. The input filter can be easily aligned by tuning for maximum signal at 50.1 MHz. The second filter may require more effort. It is best tuned with a sweep setup. However, on the tests I conducted, it was very close to nominal if all capacitors are tuned for maximum signal at 50 MHz in a matched test setup and then inserted in the chain. All the LO requires is to be tuned for maximum output. Properly aligned, the converter described has typically a 5 MHz bandwidth, a gain of about 4 to 6 dB and a noise figure less than 6 dB.

future designs

The state of the art is constantly improving. If a modular approach is used on this receive converter, new or improved circuits can be easily added or changed as prices decrease or parts become available. If you don't change the IF frequency, you'll probably never have to build another LO. If a lower LO power is required, just add an appropriate attenuator on the output. Higher dynamic range mixers are slowly decreasing in price while increasing in performance. Table 1 can be used as a guide to selection of DBMs.

Finally, our IF receivers must be improved, especially on dynamic range and phase noise. Ultimately, I think that the best receiver will be one that uses a high dynamic range converter directly feeding a narrow bandwidth crystal filter. However, this will require a variable LO and some additional design to prevent phase noise and birdies.

Again, I have rambled on and written a more lengthy column than I intended. However, I feel that the material presented is broad enough in scope and should be worthwhile regardless of frequency. As stated earlier, even using more conventional circuits such as standard level DBMs and JFETs, a substantial improvement can be made over most existing receive convertors. After all, the principles discussed are usable at any frequency if time and money are no object!

I hope this material will encourage you and others to try to improve receiver dynamic range and thereby make life more enjoyable. The cost to build such a high dynamic range receive converter is really not that much more than that of a conventional converter. If the dynamic range of the receive circuits is improved, transmitters can be evaluated more effectively. Who knows, you may too find a way to improve these circuits! (Is there any interest in designs for higher bands?)

acknowledgements

I would like to thank Dr. David Norton for his advice and reference material on the lossless feedback amplifier and Jim Reisert, AD1C, for his constructive comments and suggestions on this column. I'd also like to thank Jim Stitt, WA80NO, for his encouragement and comments on the performance of the converter circuits as they evolved.

references

2. "RF Computer-Aided Design Package," Heath User's Group, 885-8020(37)CP/M.
RTTY TODAY

MODERN GUIDE TO
AMATEUR RADIO TELETYPE
by Dave Ingram, K4TWJ

This brand new book is the only RTTY handbook available that covers all facets of RTTY operation from the "green key" generation to personal computers. Author Dave Ingram, K4TWJ, noted RTTY enthusiast, writes in a personable, easy-to-understand style that will appeal to all levels of RTTY interest. RTTY TODAY is fully illustrated with photos, diagrams, RTTY station set-ups and equipment to help ensure full understanding of the material. 11 chapters cover: an overview of RTTY operation, operating parameters, home computers, equipment you can build, dedicated systems and complete chapters on RTTY SWLing with frequencies, codes and other helpful hints and tips. Old time RTTY users and newcomers alike will find this book extremely useful. 1984.

95 illustrations. 1st edition. 8½ x 11

Order yours today $895

$1.75 shipping

UNIVERSAL ELECTRONICS
4555 Groves Rd. • Suite 3 • Columbus, OH 43232
(614) 866-4605

Dealers Inquiries Invited
TWO LOCATIONS TO SERVE YOU

In Idaho
312 12th Ave. So.
Nampa, Idaho 83651
(208) 466-6727

In Texas
6012 W. 34th St.
Houston, Texas 77092
(713) 957-5140

Nampa
Complete Satellite
Television Systems

Consists of:
- Wilson YM1000, 100° LNA, NSS Deluxe Feed, Wilson MD9 Dish, Feed Assembly, All Cables, Complete Hardware, NSS PB3 Motor Drive, and Instructions

OPTIONS WITH SYSTEM
- 9 ft. Wilson Mesh ADD: $100
- NSS Memory Tracker ADD: $100
- 10 ft. Prodelin ADD: $400

Total: $1628

Call Toll Free

Nampa, Idaho
1-800-654-0795

Houston, Texas
1-800-521-8300
the half-wave transmission line in bridge measurements

With the increasing availability of inexpensive, accurate RF impedance bridges, Amateurs are discovering how useful such a bridge can be in building and understanding antenna systems. However, unless bridge measurements are taken directly at the antenna, which is generally impractical, the effect of line length has to be taken into consideration when making calculations to determine the actual antenna impedance. This can be accomplished rigorously (by exact mathematical solution) or in this case, simplified as in eq. 1. The transmission line is considered lossless, which for short lines is a valid assumption.

$$Z_{\text{ANT}} = \frac{Z_{\text{in}} - jZ_0 \tan \phi}{Z_0 - jZ_{\text{in}} \tan \phi} \cdot Z_0 \quad (1)$$

where Z_{ANT} = antenna impedance

Z_{in} = transmission line impedance measured at bridge terminals

Z_0 = characteristic transmission line impedance

ϕ = electrical length of transmission line in degrees

Now as everyone knows, regardless of the antenna or transmission line impedance, measurements made in multiple half-wavelengths repeat — i.e. the same value is seen regardless of whether measurements are taken directly at the antenna terminals or at an electrical half-wavelength along a transmission line. This is where I got into trouble. I measured the antenna impedance through a transmission line that was exactly one-half wavelength (180 degrees) at 3.75 MHz. Then I performed the same measurement (of the antenna) at 4.0 MHz without changing the transmission line length. How much difference could that make?

First off, my 180 degree half-wavelength line at 3.75 MHz is actually $(4.0)(180)/3.75 = 192$ degrees electrical length at 4.0 MHz. And my measured impedance at the end of the line at 4 MHz was $175 + j100$ ohms impedance.

Substituting the values in eq. 1, I found:

$$Z_{\text{ANT}} = \frac{175 + j100 - j(50)(0.213)}{50 - j(175 + j100)(0.213)} \quad (50)$$

$$Z_{\text{ANT}} = 70.8 + j99.7 \text{ ohms impedance}$$

Well, my bridge had measured $175 + j100$ ohms, and my true calculated antenna impedance actually was $70.8 + j99.7$ ohms! That’s really a large difference, and yet the electrical length of the line was only 12 degrees longer, or 6.7 percent longer.

So don’t be fooled as I was into thinking that if you use an electrical half wavelength line at mid-band, your band end measurements will be close unless you actually correct for the few degrees as I first neglected to do.

Naturally, all antenna measurement calculations could have been done using a Smith chart, but to me the equation shows the impedance relationships involved more clearly.

Although the example was given for the 80-meter band, the same equation can be used for other bands, either for a band center half wavelength line, or as a general equation for use with any length of coax line, as long as you know the electrical length. And after I applied the technique just described, my previously measured data was much more meaningful.

reference

William Vissers, K4KI
For literature or more information, locate the Reader Service number at the bottom of the ad, circle the appropriate number on this card, affix postage and send to us. We'll hustle your name and address to the companies you're interested in.

Limit 15 inquiries per request.

<table>
<thead>
<tr>
<th>NAME</th>
<th>CALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDRESS</td>
<td></td>
</tr>
<tr>
<td>CITY</td>
<td>STATE</td>
</tr>
</tbody>
</table>

Please use before December 31, 1984

November 1984
NEW PS-740 Internal Power Supply & $50 Factory Rebate - until gone!

<table>
<thead>
<tr>
<th>Model</th>
<th>Type</th>
<th>Frequency</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS-740</td>
<td>Deluxe</td>
<td>2 meters</td>
<td>$319.00</td>
</tr>
<tr>
<td></td>
<td>IC-02A</td>
<td></td>
<td>$289.95</td>
</tr>
<tr>
<td></td>
<td>SP-3</td>
<td>Base</td>
<td>$139.00</td>
</tr>
<tr>
<td></td>
<td>IC-02AT</td>
<td></td>
<td>$259.95</td>
</tr>
<tr>
<td>IC-04A</td>
<td>Deluxe</td>
<td>440 MHz</td>
<td>$349.00</td>
</tr>
<tr>
<td></td>
<td>IC-04AT</td>
<td></td>
<td>$319.00</td>
</tr>
<tr>
<td></td>
<td>IC-04AT</td>
<td></td>
<td>$319.00</td>
</tr>
<tr>
<td>IC-02A</td>
<td>Deluxe</td>
<td>2 meters</td>
<td>$239.00</td>
</tr>
<tr>
<td></td>
<td>IC-2AT</td>
<td></td>
<td>$219.95</td>
</tr>
<tr>
<td></td>
<td>IC-3AT</td>
<td></td>
<td>$219.95</td>
</tr>
<tr>
<td></td>
<td>IC-4A</td>
<td></td>
<td>$219.95</td>
</tr>
</tbody>
</table>

Standard models

<table>
<thead>
<tr>
<th>Model</th>
<th>Type</th>
<th>Frequency</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS-2A</td>
<td>Deluxe</td>
<td>2 meters</td>
<td>$229.95</td>
</tr>
<tr>
<td></td>
<td>IC-202</td>
<td></td>
<td>$199.95</td>
</tr>
<tr>
<td></td>
<td>IC-202</td>
<td></td>
<td>$199.95</td>
</tr>
<tr>
<td>IC-2A</td>
<td>Deluxe</td>
<td>200 MHz</td>
<td>$229.95</td>
</tr>
<tr>
<td></td>
<td>IC-202</td>
<td></td>
<td>$199.95</td>
</tr>
<tr>
<td></td>
<td>IC-202</td>
<td></td>
<td>$199.95</td>
</tr>
<tr>
<td>IC-3A</td>
<td>Deluxe</td>
<td>440 MHz</td>
<td>$229.95</td>
</tr>
<tr>
<td></td>
<td>IC-302</td>
<td></td>
<td>$219.95</td>
</tr>
<tr>
<td></td>
<td>IC-302</td>
<td></td>
<td>$219.95</td>
</tr>
<tr>
<td>IC-4A</td>
<td>Deluxe</td>
<td>440 MHz</td>
<td>$229.95</td>
</tr>
<tr>
<td></td>
<td>IC-402</td>
<td></td>
<td>$219.95</td>
</tr>
</tbody>
</table>

HF Equipment

<table>
<thead>
<tr>
<th>Model</th>
<th>Type</th>
<th>Frequency</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC-740</td>
<td>9-band 200W PEP xcvr x/mic</td>
<td>1099.00</td>
<td>$899.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$899.00</td>
</tr>
</tbody>
</table>

Options - continued

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC-201</td>
<td>$259.95</td>
</tr>
</tbody>
</table>

Closeout item

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC-25H</td>
<td>$399.00</td>
</tr>
<tr>
<td>BU-1H</td>
<td>$50.00</td>
</tr>
<tr>
<td>BU-1H</td>
<td>$50.00</td>
</tr>
<tr>
<td>BU-1H</td>
<td>$50.00</td>
</tr>
<tr>
<td>BU-1H</td>
<td>$50.00</td>
</tr>
</tbody>
</table>

Accessories for Deluxe models

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP-7 8000mah/12V Nichia</td>
<td>$67.50</td>
</tr>
<tr>
<td>BP-8 8000mah/12V Nichia</td>
<td>$62.50</td>
</tr>
<tr>
<td>BC-15 Under seat charger</td>
<td>$69.00</td>
</tr>
<tr>
<td>BC-16A Wall charger</td>
<td>$10.00</td>
</tr>
</tbody>
</table>

Accessories for both models

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP-7 8000mah/12V Nichia</td>
<td>$50.00</td>
</tr>
<tr>
<td>BP-8 8000mah/12V Nichia</td>
<td>$50.00</td>
</tr>
<tr>
<td>BC-15 Under seat charger</td>
<td>$50.00</td>
</tr>
</tbody>
</table>

Hand-held Transceivers

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC-102</td>
<td>$349.00</td>
</tr>
<tr>
<td>IC-104</td>
<td>$349.00</td>
</tr>
<tr>
<td>IC-104</td>
<td>$349.00</td>
</tr>
</tbody>
</table>

Shortwave receivers

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-71A 100 kHz-30 MHz digital receiver</td>
<td>$799.00</td>
</tr>
<tr>
<td>FL-30 500 kHz digital receiver</td>
<td>$112.50</td>
</tr>
<tr>
<td>FL-30 500 kHz digital receiver</td>
<td>$112.50</td>
</tr>
</tbody>
</table>

Conclusion

- TollFree: 1-800-558-0411
- AES Branch Stores:
 - WELCOME ELECTRONIC SUPPLY
 - ORLANDO, Florida
 - CLEARWATER, Florida
 - LAS VEGAS, Nevada
 - CHICAGO, Illinois
 - ERICKSON COMMUNICATIONS
- Associate Store
 - InWisconsin (outside Milwaukee Metro Area): 1-800-242-5195

HOURS: Mon. thru Fri. 9-5:30; Sat. 9-3
Milwaukee WATS line 1-800-558-0411 answered evenings until 8:00 pm, Monday thru Thursday.
Please use WATS line for Placing Orders.
For other information, etc. please use Regular line

10 feared from O'Hare!

More Details? CHECK—OFF Page 158

November 1984
ASTRON POWER SUPPLIES

- **HEAVY DUTY**
- **HIGH QUALITY**
- **RUGGED**
- **RELIABLE**

RS and VS SERIES

SPECIAL FEATURES
- SOLID STATE ELECTRONICALLY REGULATED
- FOLD-BACK CURRENT LIMITING Protects Power Supply from excessive current & continuous shorted output.
- CROWBAR OVER VOLTAGE PROTECTION on all Models except RS-4A.
- MAINTAIN REGULATION & LOW RIPPLE at low line input Voltage.
- HEAVY DUTY HEAT SINK + CHASSIS MOUNT FUSE
- THREE CONDUCTOR POWER CORD
- ONE YEAR WARRANTY • MADE IN U.S.A.

PERFORMANCE SPECIFICATIONS
- INPUT VOLTAGE: 105 - 125 VAC
- OUTPUT VOLTAGE: 13.8 VDC ± 0.05 volts (Internally Adjustable: 11-15 VDC)
- RIPPLE: Less than 5mv peak to peak (full load & low line)

19" x 5½ RACK MOUNT POWER SUPPLIES

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty (AMPS)</th>
<th>ICS* (AMPS)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM-35A</td>
<td>25</td>
<td>35</td>
<td>5½ x 19 x 12½</td>
<td>38</td>
</tr>
<tr>
<td>RM-50A</td>
<td>37</td>
<td>50</td>
<td>5½ x 19 x 12½</td>
<td>50</td>
</tr>
</tbody>
</table>

RS-A SERIES

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-4A</td>
<td>3</td>
<td>4</td>
<td>3½ x 6½ x 9</td>
<td>5</td>
</tr>
<tr>
<td>RS-7A</td>
<td>5</td>
<td>7</td>
<td>3½ x 6½ x 9</td>
<td>9</td>
</tr>
<tr>
<td>RS-7B</td>
<td>5</td>
<td>7</td>
<td>4 x 7½ x 10⅞</td>
<td>10</td>
</tr>
<tr>
<td>RS-10A</td>
<td>7.5</td>
<td>10</td>
<td>4½ x 8 x 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-12A</td>
<td>9</td>
<td>12</td>
<td>5 x 9 x 10½</td>
<td>18</td>
</tr>
<tr>
<td>RS-20A</td>
<td>16</td>
<td>20</td>
<td>5 x 11 x 11</td>
<td>27</td>
</tr>
<tr>
<td>RS-35A</td>
<td>25</td>
<td>35</td>
<td>6 x 13½ x 11</td>
<td>46</td>
</tr>
<tr>
<td>RS-50A</td>
<td>37</td>
<td>50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RS-M SERIES

- Switchable volt and Amp meter

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-12M</td>
<td>9</td>
<td>12</td>
<td>4½ x 8 x 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-20M</td>
<td>16</td>
<td>20</td>
<td>5 x 9 x 10½</td>
<td>18</td>
</tr>
<tr>
<td>RS-35M</td>
<td>25</td>
<td>35</td>
<td>5 x 11 x 11</td>
<td>27</td>
</tr>
<tr>
<td>RS-50M</td>
<td>37</td>
<td>50</td>
<td>6 x 13½ x 11</td>
<td>46</td>
</tr>
</tbody>
</table>

VS-M SERIES

- Separate Volt and Amp Meters
- Output Voltage adjustable from 2-15 volts
- Current limit adjustable from 1.5 amp to Full Load

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS-20M</td>
<td>16</td>
<td>9</td>
<td>5 x 9 x 10½</td>
<td>20</td>
</tr>
<tr>
<td>VS-35M</td>
<td>25</td>
<td>15</td>
<td>5 x 11 x 11</td>
<td>29</td>
</tr>
<tr>
<td>VS-50M</td>
<td>37</td>
<td>22</td>
<td>6 x 13½ x 11</td>
<td>46</td>
</tr>
</tbody>
</table>

RS-S SERIES

- Built in speaker

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-7S</td>
<td>5</td>
<td>7</td>
<td>4 x 7½ x 10⅞</td>
<td>10</td>
</tr>
<tr>
<td>RS-10S</td>
<td>7.5</td>
<td>10</td>
<td>4 x 7½ x 10⅞</td>
<td>12</td>
</tr>
<tr>
<td>RS-10L (For LTR)</td>
<td>7.5</td>
<td>10</td>
<td>4 x 7½ x 10⅞</td>
<td>13</td>
</tr>
<tr>
<td>RS-12S</td>
<td>9</td>
<td>12</td>
<td>4½ x 8 x 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-20S</td>
<td>16</td>
<td>20</td>
<td>5 x 9 x 10½</td>
<td>18</td>
</tr>
</tbody>
</table>

112 November 1984
The design of superhet coilsets to ensure tracking for correct simultaneous tuning of preselector and oscillator circuits has taken on an undeserved air of mystery. Some receiver designers have avoided the problem by resorting to pre-peaked narrow-band circuits (not exactly ideal) or separate tuning of the pre-selector circuits, a throwback to the 1920s.

The project that led to this article was a receiver for 150-1560 kHz and 2.5-20 MHz in 6 bands with an IF of 1650 kHz. All the parts, including a zero-temperature coefficient (Invar) three-section tuning capacitor, were available. The specifications for the coilset — involving 18 coils, 18 trimmers, and 6 padders — had to be calculated. But how?

the one-minute solution

Years ago I found a set of formulae in the literature that seemed practical to use, although their derivation was not entirely clear to me. Using them, I wound and trimmed coilsets for my home-brew receivers. Because the receivers had worked well I hoped they would also track reasonably well. The problem was that calculating a single set took a whole day using a slide-rule and even after the advent of the pocket calculators, several hours. Half the time was spent in making mistakes and a quarter of the time in wondering if I had discovered all of them. I decided to write a design program based on the existing formulae to produce faster and more reliable results. Written in BASIC, the program reduced the chore to less than a minute!

Thereafter, I added a subprogram for plotting the actual tracking curve on the screen. Such a curve shows the difference between the sum of signal and intermediate frequency on the one hand and the oscillator frequency on the other, for an entire tuning range. Ideally, it should be a straight line of zero error value. Without the aid of a computer, this would have taken me many hours to do. With the computer, the task took only a few seconds. As I watched, aghast, the errors ran off the screen as the program kept crashing for all types of designs.

After much thought, I concluded that the algorithms (published in a reliable journal) did not include the effect of stray capacitances such as coil winding capacitances. Even a few pF caused substantial tracking errors, up to 200 kHz or more.

An exhaustive search of the international literature led me to believe that tracking equations are avoided like the plague. Perhaps the subject is thought to be too boring and too difficult for Amateurs. I did find, however, two articles that were not over my head, but neither one could pass the computer test! A third article used complex math such as Vieta’s theorem and
higher order polynomials, but the values given in the examples did not check with the formulae supplied! For instance, a trimmer of 46.36 pF in parallel with a tuning capacitor of 20-500 pF was said to give a tuning range of 1.5-5.0 MHz, whereas the actual value would be 1.5-4.3040 MHz. I almost gave up, but finally — in the absence of any information I could both understand and trust — I decided to try to work out the whole thing from the beginning. This is the result, but as you can imagine, I sometimes wonder how many published superhet designs really track.

the principle

In a superhet all signals \(f_s\) are mixed with a variable oscillator frequency \(f_o\) to produce a fixed intermediate frequency \(f_i\). The better solution is to choose an LO frequency higher than the incoming signals \(f_o = f_s + f_i\) as this reduces spurious responses due to oscillator harmonics. We will consider this case only; the alternative \(f_o < f_s\) is analogous with the proviso that the signal and oscillator coils are exchanged in the equations. The tuning capacitor will have identical sections; this is the reason tricks are necessary — with different sections for the tuning capacitor good tracking can be obtained, but such components are not readily available. The general equation for resonance is:

\[f^2 = \frac{25330}{L \cdot C} \text{ (MHz, pF and \mu H) } \quad (1A) \]

and from this it is clear that tuning is not a linear function. If the oscillator coil (LO) were given less inductance than the signal coil \(L_s\) to obtain a high \(f_o\), the rate of change of \(f_c\) and \(f_o\) would never yield a constant difference \(f_i\). Fig. 1 shows the ideal tracking curve and the error resulting from using a smaller \(L_o\) only. If the receiver is made to track near the center of the tuning range (point C), \(f_o\) will be too high at the high end and too low at the low end. This could mean attenuation of the signal by 30 dB if you were using potted inductors in the 150-1600 kHz range.

A technique that solves this tracking problem, patented as far back as 1924 by W.T. Runge, is shown in fig. 2; a trimmer, \(C_t\) curtails the tuning capacitor and has the greatest effect at the high frequency end of the tuning range while the padder capacitor, \(C_p\), does the same thing for the low end. This you know if you have ever aligned a receiver, but it is less widely known that adjustment of \(C_t\) and \(C_p\) only is not enough. Fig. 3 shows a situation in which perfect tracking is obtained at both ends of the tuning range with nevertheless a substantial error in the middle, in this case because \(L_o\) is too small. Tracking, therefore, requires the determination and adjustment of \(C_t\), \(L_o\), and \(C_p\) at three frequencies and the curve will then approach a straight line with zero error at three points. Residual errors can be further reduced by shifting the outer two tracking points to the middle which will then result in a curve similar to that in fig. 4.

The circuits shown in fig. 2 represent an idealized case; fig. 5 represents the actual situation including stray capacitances. As indicated by the vertical lines, a clear distinction should be made between the left half (all circuit elements associated with the coils) and the right half (all capacitances associated with the tuning capacitors and the receiver — for example, input capacitance of the active elements).

circuit elements

Both for practical and theoretical considerations all right half receiver sections must be identical. One important case to be considered is a Colpitts-type oscillator with capacitive divider, indicated by \(C_x\) and \(C_y\) in fig. 5. An equivalent capacitor, \(C_e\), is therefore added to the signal sections, where

\[C_e = (C_x \cdot C_y)/(C_x + C_y) \quad (2) \]

The winding capacitance of the coils, \(C_w\), is a problem because it is largely unpredictable (depending on
winding technique) and is different for L_s and L_{o}. I solved the problem by combining C_w with C_t to form "coil capacitances" C_{cs} and C_{co}. The computer will ask you whether that value seems realistic; you can find out by simply winding a trial coil that resonates at the desired frequency with the tuning capacitor used. Then find its self-resonant frequency (without the tuning capacitor) with a dipper and from this derive its C_w. The same applies to the minimum and maximum capacitance of the tuning capacitor, C_{min} and C_{max}, and the wiring stray capacitance C_e. These are the known and unknown values of the circuit elements we shall work with.

Calculating the values for the signal coils

These are easy to calculate. They are tuned by the combination on the right, which varies with tuning from a high to a low value:

$$C_H = C_{max} + C_s + C_e \tag{3}$$
$$C_L = C_{min} + C_s + C_e \tag{4}$$

Using the general resonance formula, it is seen that if a tuning range starts at f_L low frequency, an idealized coil without C_{cs} would tune to maximum frequency.

$$f_m = \sqrt{(C_H/C_L) \cdot f_L} \tag{5}$$

Let the desired top frequency by f_H and let $R = f_H/f_L$ then:

$$R = \frac{25330/\sqrt{L_s \cdot (C_L + C_{cs})}}{25330/\sqrt{L_s \cdot (C_H + C_{cs})}} \tag{6A}$$

Therefore: $R^2 = (C_H + C_{cs})/(C_L + C_{cs}) \tag{6B}$

or: $C_H + C_{cs} = R^2 \cdot (C_L + C_{cs}) \tag{6C}$

and from this it follows that the maximum allowed total capacitance across the signal coil (trimmer plus winding capacitance) can be

$$C_{cs} = (R^2 \cdot C_L - C_H)/(1-R^2) \tag{6D}$$

Allowing a reasonable value for the trimmer, you'll have to determine whether this leaves enough for the winding capacitance, by employing the procedure mentioned above — using a trial coil and dipper — if you're not sure.

Example

Design a coil set for the medium wave band that tunes from 520-1620 kHz and incorporates a non-Colpitts oscillator. The tuning capacitor to be used provides from 15-500 pF capacitance and the stray capacitance is 15 pF. C_{cs} when evaluated turns out to be 25.7 pF which is a low value for this range. The medium wave band, with a frequency ratio of over 1:3 requires an approximate 1:10 capacitance ratio and this leaves little leeway for strays.

The value of the signal coil is:

$$L_s = \frac{25330/f_L^2 \cdot C_H}{\sqrt{L_s \cdot (C_L + C_{cs})}} \tag{1B}$$

and in this example $L_s = 173.25 \mu H$
The signal circuits are now completely defined; additional preselector circuits must be identical.

determining the tracking points

One tracking point must be at the center of the range. This can be found by taking the geometric means of the two end frequencies: \(\sqrt{f_L \cdot f_H} \). The outer tracking points must be shifted slightly toward the center. The amount will vary with the tuning range. Empirically, the following factor gives good results:

\[
Q = 1 + (f_H/40 \cdot f_L)
\]

You can easily change this factor in the program and observe the result on the display. The greatest deviation will occur at the high end, which is acceptable because the bandwidth of the signal coils is also a maximum there. The tracking (and trim-) points are:

\[
f_1 = f_L \cdot Q \quad \text{(low end)}
\]

\[
f_2 = \sqrt{f_L \cdot f_H} \quad \text{(center)}
\]

\[
f_3 = f_H/Q \quad \text{(top end)}
\]

which calculates to be 560, 918, and 1503 kHz, respectively in the example outlined earlier. As the operator tunes to these frequencies, he will set the tuning capacitor to values that can be calculated from the resonance formula after subtracting \(C_{cs} \). These values (for the right half of the signal sections) are:

\[
C1 = 25330/f_1^2 \cdot L_s - C_{cs}
\]

\[
C2 = 25330/f_2^2 \cdot L_s - C_{cs}
\]

\[
C3 = 25330/f_3^2 \cdot L_s - C_{cs}
\]

In the oscillator section, the total capacitance to the right will be the same as above \((C_3 \text{ and } C_e \text{ are identical}) \), so with the three capacitances \(C1, C2, \text{ and } C3 \) the oscillator must tune to \(f_1 + f_i, f_2 + f_i \text{ and } f_3 + f_i \).

determining the oscillator circuit elements

Taking into account the total coil capacitance for the oscillator circuit and the padder, gives the following three equations:

\[
f_1 + f_i = 25330/\sqrt{C_{co} + \frac{C_p \cdot C_1}{C_p + C_1} \cdot L_o}
\]

\[
f_2 + f_i = 25330/\sqrt{C_{co} + \frac{C_p \cdot C_2}{C_p + C_2} \cdot L_o}
\]

\[
f_3 + f_i = 25330/\sqrt{C_{co} + \frac{C_p \cdot C_3}{C_p + C_3} \cdot L_o}
\]

The solution to these equations means that the tracking error is indeed made equal to zero at these points.

Let's tackle the padder first. Define the ratio \((f_1 + f_i)/(f_2 + f_i) \) as "A" and call \((f_2 + f_i)/(f_3 + f_i) \) as "B," then by dividing eq. 14/eq. 16 we find that:

\[
C_{co} = \frac{A^2 \cdot C_p \cdot C_1/(C_p + C_1) - (C_p \cdot C_2)/(C_p + C_2)}{I - A^2}
\]

Similarly, division of eq. 15 by eq. 16 yields:

\[
C_{co} = \frac{B^2 \cdot C_p \cdot C_2/(C_p + C_2) - (C_p \cdot C_3)/(C_p + C_3)}{I - B^2}
\]

These two equations can be used to solve for \(C_p \):

\[
\]

(This looks neater when the terms in parentheses are called \(X, Y, \text{ and } Z \) respectively, as in the program.)

\[
L_o = \frac{25330}{(f_2 + f_i)^2 \cdot \left(C_{co} + \frac{C_p \cdot C_2}{C_p + C_2}\right)}
\]

This completes the coilset design. In this example: \(C_p = 585.7 \text{ pF}, C_{co} = 41.9 \text{ pF}, L_o = 84.66 \mu \text{H for } f_i = 450 \text{ kHz.} \)

tracking curve

Plotting the tracking curve on the screen depends on the graphic capability of your microcomputer. High resolution plotting in assembly language is definitely not necessary: what you want to see is the general trend and the peak errors, not an accurate graph. The method used in plotting the tracking curve is described below.

First the tuning range is divided into as many equal sections as the micro has columns. Because of rounding off, the range must be extended above \(f_H \); otherwise, the plot sometimes won't reach this value. For a 40-column machine and half a column extra margin the command would be:

for \(f = f_L \) to \(f_H + (f_H - f_L)/80 \) step \((f_H - f_L)/40 \)

For each \(f \) calculate the total capacitance across the signal coil:

\[
C = 25330/(L_s \cdot f^2)
\]

So the capacitance to the right of the lines is equal to \(C_v = C - C_{cs} \). From this we can calculate the oscillator frequency corresponding to \(f \):

\[
f_o = \sqrt{\frac{25330}{L_o(C_{co} + \frac{C_p \cdot C_v}{C_p + C_v})}}
\]

Then print \(f_o - f - f_i \) together with \(f \) for a tracking table or use \(f_o - f - f_i \) as the row- and \(f \) as the
AEA BRINGS YOU ANOTHER BREAKTHROUGH THE TI-1 RTTY TUNING INDICATOR

SHOWN ACTUAL SIZE

- TRUE SPECTRAL DISPLAY SHOWS BOTH MARK AND SPACE TONES
- 10Hz RESOLUTION FOR THE TUNING ACCURACY OF A SCOPE
- WITHOUT THE EXPENSE OF A SCOPE
- ALLOWS FAST AND EASY TUNING OF RTTY SIGNALS
- IDEAL FOR DIFFICULT TO TUNE AMTOR SIGNALS
- DISPLAYS 170, 425 AND 850Hz STANDARD SHIFTS
- SHOWS NON-STANDARD SHIFTS FOR EASY TUNING
- AUDIO DRIVEN - EASY TO HOOK UP - COMPACT SIZE
- BUILT IN SPEAKER - CAN BE SWITCHED ON OR OFF
- WORKS WITH ANY INTERFACE
- DOES NOT REQUIRE SCOPE OUTPUTS
- REQUIRES 12vdc AT LESS THAN 60mA
- COMPLETE WITH MANUAL AND CONNECTORS
- SUGGESTED RETAIL $119.95

C & A ROBERTS, INC.
18511 Hawthorne Blvd., Torrance, CA 90504
213-370-7451 24 Hours call 213-834-5868

AEA Brings you the Breakthrough!
column parameter. To avoid crashing from incorrect row data, first display the table and examine the size of the error values, then enter a corrective multiplication factor via an INPUT command if necessary.

For this example, the errors (rounded off) were

\[-3.2, +4.26, -6.97 \text{ and } +8.5 \text{ kHz} \]

This indicates excellent tracking and implies that everything is correct — an assurance I never had before.

the program

The program listing in Table 1 was written for the TI-99/4A which is suitable for this application because of its upper and lower case capability, which makes for easy reading, its wide choice of variables, and high degree of precision in mathematics. Note that when the program runs, very small values are subtracted from other very small values so that you may have to use double precision. I have left out everything that is not essential and used the simplest BASIC commands for easy translation. One version I have drawn all coils and capacitors in HiRes and inserts their values next to them for added fineness. The listing takes less than 4K of memory, and can still be adapted for your particular machine. A printer is not necessary; the program warns you to “NOTE” the values displayed.

bandspraying

As supplied, the program almost already includes parallel bandspraying, because parallel capacitance is added in the form of \(C_{SS} \) by your independent choice of \(f_H \). But let’s look at bandspraying in more detail (fig. 6).

Parallel bandspraying with \(C_{bp} \) improves the tuning curve. Ordinary tuning capacitors provide logarithmic coverage, with compression at the high end. For straight-line frequency coverage you need a tuning capacitor with pointed plates (the BC-221 has one), but these are exceptionally rare. Adding \(C_{bp} \) reduces the top end compression. The disadvantage of adding parallel capacitance is that the L/C ratio of the tuned circuit is lowered and \(Q \) is reduced, especially at the high end. You may assume that the effect on the \(Q \) is acceptable if \(C_{bp} \) is smaller than:

\[2 \cdot \left\{ C_L + \text{reasonable value for trimmer (e.g. 15 pF)} \right\} + \text{value found for } C_W \]

Series bandspraying \(C_{bs} \) raises the L/C ratio, but...
A LIMITED INTRODUCTORY
FREE OFFER
FOR HAMS ONLY
DURING NOVEMBER 1984

For only $12 (one-third off our regular price) we’ll send you one year (4 issues) of Audio Amateur and a free gift—a pair of self-powered speaker overload indicator kits worth $10. Just for trying Audio Amateur! And we guarantee your satisfaction. Money back if you’re not satisfied for any reason. Keep the kits, keep the magazines. You can’t lose.

At Audio Amateur we’re just as serious about high quality sound as you are about clean transmissions.

For 15 years now we’ve been publishing very high quality audio system circuits that are fun to build, outstanding in performance and low cost. Plus lots of mod articles on updating old gear for superior performance. If you like building ham projects, you’ll like Audio Amateur magazine.

Send one year of Audio Amateur at $12 and my free kits. I enclose □ check □ MC □ Visa.

NAME _________________________________
ADDRESS ________________________________
CITY __________ STATE __________ ZIP __________
CARD NUMBER ________________________________
CARDHOLDER SIGNATURE ____________________________ EXPIRE DATE __________

Audio Amateur, Peterborough, N. H. 03458
Outside USA add $4.00 per year for postage.

tuning at the top end is even more compressed. Series and parallel bandspread techniques can, of course, be combined. For series bandspread, a series capacitor C_{bs} is added to the right hand side and this is identical for all tuning capacitor sections. In fact, we construct a new tuning capacitor with different C_{min} and C_{max} and then run the program as normally.

To determine C_{bs} for a desired range we define new constants. Let $C_{cs} = j$, desired range $k = f_H/f_L$, $m = C_H$, $n = C_L$ and the unknown bandspread capacitor = b. Then starting with the equation for the tuning range:

$$k^2 = \frac{j + b \cdot m}{b + m} \quad (21A)$$

you will arrive at this:

$$(b \cdot m) \cdot (b + n) - (b + m) \cdot [k^2 \cdot n + (k^2 - 1) \cdot j] \cdot b + (k^2 - 1) \cdot j \cdot n = 0 \quad (21B)$$

Now let’s call $k^2 \cdot n + (k^2 - 1) \cdot j = p$ and $(k^2 - 1) \cdot j \cdot n = q$, then:

$$b^2 \cdot m + b \cdot m \cdot n - (q \cdot b^2 + p \cdot b + q \cdot m \cdot b + p \cdot m) = 0 \quad (21C)$$

or

$$b^2 + \frac{m \cdot n - p - q \cdot m}{m - q} \cdot b - \frac{p \cdot m}{m - q} = 0 \quad (21D)$$

If we call the two fractions “r” and “s” respectively, this is the common equation $b^2 + r \cdot b - s = 0$.

One root is negative, the other is the value of the bandspread capacitor:

$$C_{bs} = -\sqrt{r^2 + 4 \cdot s} \quad (22)$$

Although all bandspread capacitors have been lumped with the right hand half of the circuits in this derivation, they are switched for other ranges and will therefore be physically present in the left hand half (in the coil cans, for instance). In the end, you can properly combine all the capacitances calculated.

conclusion

Although any coilset can now be designed in a few minutes, the main value of this project was something else. For the first time, I could plot tracking curves, and these showed that all the literature I could lay hands on gave unreliable formulas! The microcomputer freed me from the nightmare of calculating, so I could begin to think and rediscover a bit of neglected theory for myself. A microcomputer may have its practical uses, but above all, it’s a powerful tool for learning!

ham radio
We bought a large quantity of 2708s from a computer manufacturer who redesigned their boards. We removed them from sockets, erased and verified them, and now we offer the savings to you. Complete satisfaction guaranteed. 2708 $1.49 for 10/$12.00

SPECIAL

ALWAYS LOW PRICES

UART

<table>
<thead>
<tr>
<th>TR16628 (COM 2017)</th>
<th>2.20</th>
</tr>
</thead>
<tbody>
<tr>
<td>163 +5v</td>
<td>2.95</td>
</tr>
</tbody>
</table>

IM6402-5V High speed

UAR-T/AV51-1013 pin out 2.95

INS 8250B 9.95

Z80

<table>
<thead>
<tr>
<th>Z80 2.5 MHZ CPU</th>
<th>3.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z80CTC</td>
<td>3.75</td>
</tr>
<tr>
<td>Z80DMA-DMA</td>
<td>9.95</td>
</tr>
<tr>
<td>Z80PIO</td>
<td>3.55</td>
</tr>
<tr>
<td>Z80MIO-594</td>
<td>1.49</td>
</tr>
<tr>
<td>Z80A-4MHZ CPU</td>
<td>4.00</td>
</tr>
<tr>
<td>Z80A DART</td>
<td>5.65</td>
</tr>
<tr>
<td>Z80A MIO</td>
<td>4.00</td>
</tr>
</tbody>
</table>

F.D. CONTROLLERS

1771 Single Density 15.00

1793 Double Density 22.00

1797 24.40

1793 24.40

CONTROLLER SET

THREE CHIP SET

1797, 2143-03, 1961 by W.D. Compare at up to 86.85. B.G. SPECIAL

All 3 for only $29.95

8000

<table>
<thead>
<tr>
<th>28002</th>
<th>29.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>8050</td>
<td>5.00</td>
</tr>
<tr>
<td>8050</td>
<td>5.00</td>
</tr>
</tbody>
</table>

8020

<table>
<thead>
<tr>
<th>8020A</th>
<th>15.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>8212</td>
<td>1.50</td>
</tr>
<tr>
<td>8214</td>
<td>2.00</td>
</tr>
<tr>
<td>8216</td>
<td>1.75</td>
</tr>
<tr>
<td>8226</td>
<td>3.25</td>
</tr>
<tr>
<td>8237-5</td>
<td>10.50</td>
</tr>
</tbody>
</table>

2825B 9.95

4K STATIC RAMS

LESS THAN 50¢ EACH

MK4104J-4 - 250 N.S. 18 Pin Ceramic Computer Mfg.

Surplus. PRIME, Fully Usable. Easy to Use. Has Same Pin Out as

TMS4044 (McCUMMEE C-25)

4K×1 250 n.s. 8/6.00

5101 - 256X4 - CMOS $1.00

6116P-4×256 8/37.50

6501-5×256X4 1.00

TERMS (Unless specified elsewhere) Add $1.50 postage, we pay balance. Orders over $50.00 add $.05 for insurance. No C.O.D. Texas Res. add 9%. Tax. 90 Day Money Back Guarantee on all items. All items subject to prior sale. Prices subject to change without notice. Foreign order - US funds only. We cannot ship to Mexico. Countries other than Canada, add $3.50 shipping and handling.

B. G. MICRO

P.O. Box 280298, Dallas, Texas 75228

214-271-5546

2116 SPECIAL!

COMPUTER MANUFACTURERS EXCESS INVENTORY SALE!

PRIME! 2114-300 n.s. INCREASIBLE PRICE! YOU SAVE!

8/$9.00 GUARANTEED

CRYSTALS

<table>
<thead>
<tr>
<th>32,768 Khz SPECIAL</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>1.75</td>
</tr>
<tr>
<td>158</td>
<td>1.25</td>
</tr>
<tr>
<td>8216</td>
<td>1.50</td>
</tr>
<tr>
<td>300</td>
<td>1.25</td>
</tr>
<tr>
<td>70</td>
<td>1.25</td>
</tr>
<tr>
<td>25</td>
<td>1.25</td>
</tr>
<tr>
<td>10</td>
<td>1.50</td>
</tr>
<tr>
<td>5</td>
<td>1.50</td>
</tr>
</tbody>
</table>

6000

<table>
<thead>
<tr>
<th>6502</th>
<th>4.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>6552</td>
<td>6.95</td>
</tr>
</tbody>
</table>

5600

<table>
<thead>
<tr>
<th>6500</th>
<th>6.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>6551</td>
<td>7.50</td>
</tr>
</tbody>
</table>

STATIC RAM

<table>
<thead>
<tr>
<th>2016-2KX 200 n.s.</th>
<th>8/32.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>2101-1 - 256X4 500 n.s.</td>
<td>75</td>
</tr>
<tr>
<td>210L2-1 350 n.s.</td>
<td>.65</td>
</tr>
<tr>
<td>2016-2L-4 L.P. 450 n.s.</td>
<td>.49</td>
</tr>
<tr>
<td>2111-1 - 256X4 500 n.s.</td>
<td>2.50</td>
</tr>
<tr>
<td>2114-4L-1 300 n.s.</td>
<td>1.50</td>
</tr>
<tr>
<td>2125A-2 1KX 70 n.s.</td>
<td>2.20</td>
</tr>
<tr>
<td>2125A-1 1KX 250 n.s.</td>
<td>1.50</td>
</tr>
<tr>
<td>TMS4044 (CMCCMEE 25)</td>
<td>6/8.00</td>
</tr>
</tbody>
</table>

5101 - 256X4 - CMOS $1.00

6116P-4×256 8/37.50

6501-5×256X4 1.00

More Details? CHECK - OFF Page 158

November 1984

121
Big Computer Mfg. Makes $900,000 Goof!!

COMPUTER/DISK DRIVE SWITCHING POWER SUPPLY

ORIGINALLY DESIGNED TO RUN A Z-80 BASED SINGLE BOARD COMPUTER WITH TWO 5-1/4 IN. DISK DRIVES AND CRT MONITOR.

BRAND NEW: UNUSED! $37.50 EA

3 FOR $95.00

ADD $1.50 PER UNIT FOR UPS

SPECS:
+ 5VDC 5 AMPS MAX
#1 + 12 VDC 2.8 AMPS MAX
#2 + 12 VDC 2.0 AMPS MAX
- 12 VDC .5 AMPS MAX

INPUT: 115 or 230 VAC 60Hz

SMALL SIZE: 6-1/8 x 7-3/8 In.
HIGH EFFICIENCY SWITCHER MFG. BY CAL. DC IN USA!

The poor Purchasing Agent bought about 10 times as many of these DC switchers as his company would ever use! We were told that even in 10,000 piece lots they paid over $72 each for these multi-output switchers. When this large computer manufacturer discontinued their Z-80 Computer, guess what the Big Boss found in the back warehouse; several truckloads of unused $72.00 power supplies. Fortunately we heard about the deal and made the surplus buy of the decade. Even though we bought a huge quantity, please order early to avoid disappointment. Please do not confuse these high quality American made power supplies with the cheap import units sold by others.
Z80* SINGLE BOARD COMPUTER!
64K RAM — 80 x 24 VIDEO DISPLAY — FLOPPY DISK CONTROLLER RUNS CP/M* 2.2!

$29.95
(BLANK BOARD WITH DATA AND ROM'S.)

NEW PRICE

GROUP SPECIAL:
BUY 6 FOR $165!

USES EASY TO GET PARTS!

BOARD MEASURES
11½" x 12½"

NEW PRICE!

$159.95

GIANT COMPUTER MANUFACTURER’S SURPLUS!
UNBELIEVABLE LOW PRICE!!!

Recently Xerox Corp. changed designs on their popular 820* computer. These prime, new, 820-1 PC boards were declared as surplus and sold. Their loss is your gain! These boards are 4 layers for lower noise, are solder masked, and have a silk screened component legend. They are absolutely some of the best quality PC boards we have seen, and all have passed final vendor QC. Please note, however, these surplus boards were sold by Xerox to us on an AS IS basis and they will not warranty nor support this part.

We provide complete schematics, ROM’S, and parts lists. If you are an EXPERIENCED computer hacker, this board is for you! Remember, these are prime, unused PC boards! But since we have no control over the quality of parts used to populate the blank board, we must sell these boards as is, without warranty. You will have to do any debugging, if necessary, yourself!!

ADD $2 PER PC BOARD FOR SHIPPING. (USA and Canada)

RELATED

- 40 Track per side
- Double-sided, double density
- Same as SA455
- Latest head & drive technology
- Fast access time

Two of these Half Size Drives will Fit in the Same Space as 1 Full Size Drive!

$159.95
Compare at up to $349 ea.
ADD $3.90 UPS PER DRIVE

TERMS: Orders over $50 add 8% insurance. No COD. Tex. Res. Add 6% Sales Tax. Subject to prior sale. Foreign orders: US funds only. We cannot ship to Mexico. Foreign countries other than Canada add $6 per board shipping.

More Details? CHECK — OFF Page 158

November 1984

123
receiver sweep alignment system

No sweep generator? Try these handy throwaway circuits

When a circuit just "doesn't sound right," the obvious solution is to use a sweep generator to evaluate and align the filters. But a sweep generator may not be available; for most of us, it's too expensive a piece of equipment for the occasional use it receives.

This article describes how I approached this problem in the development of an SSB receiver by adding a few extra circuits during construction, then removing and discarding them after use. A separate signal generator and oscilloscope were also required.

sweep measurement basics

Fig. 1 illustrates a typical sweep measurement system. The sawtooth oscillator generates a voltage "ramp" which tunes the voltage controlled oscillator frequency across the filter passband. For small frequency changes, the voltage controlled oscillator often uses a varactor ("varicap") diode to change circuit capacitance. The amplitude of the RF/IF signal coming through the filter varies with (and helps define — Ed.) the filter's frequency response, and is detected by the diode detector. The detector output is displayed by the oscilloscope vertical channel while the sawtooth oscillator drives the oscilloscope horizontal channel in step. The resulting display plots the filter's amplitude versus frequency response. This display is used to align filters since it gives an instant indication of circuit adjustment results. This is very handy when a large number of interrelated circuit manipulations must be made.

The proposed minimal sweep alignment system uses the existing receiver local oscillator as the voltage controlled oscillator. This is similar to a panoramic receiver with a much smaller sweep range. Fig. 2 shows this scheme as implemented in an HF SSB receiver project. Three new circuits are added; a varactor tuning diode, a diode AM detector, and a sawtooth oscillator circuit.

detailed circuit description

By Cliff Klinert, WB6BIH, 1126 Division Street, National City, California 92050
carded after use, careful consideration was given to parts availability. The familiar 1N4000-series of silicon rectifiers make good "varactor" diodes when biased in the linear region. Fig. 3 shows the varactor tuning circuit using a 1N4007 connected to a typical 5 MHz oscillator tank circuit. The circuit was tested by applying an adjustable DC bias voltage and measuring the corresponding frequency with a counter. Fig. 4 shows the results of this experiment for DC bias voltages from 14 to almost 28 volts. Note that the curve is almost linear. Good linearity throughout the sweep system is required to provide an undistorted picture of the filter's passband response.

The sawtooth oscillator, the heart of the system, generates a periodic linearly increasing voltage ramp waveform. If the oscilloscope used in this project had provided a sweep output connection, the external oscillator might not have been required. The varactor circuit requires a linear sawtooth voltage providing a 14 to 24 volt ramp per frequency sweep. Simple sawtooth

![Fig. 3. The varactor diode acting as a voltage variable capacitor changes the resonant frequency of an LC circuit in step with a varying DC bias.](image)

![Fig. 4. Varactor diode tuning curve is a plot of actual data taken from the circuit of fig. 3. The range of the swept frequency is adequate for the SSB filter tested.](image)

![Fig. 5. The sawtooth oscillator uses an inexpensive IC (MC1458) to both generate the ramp waveform and buffer its output. Mylar capacitors are used for best results.](image)
oscillator circuits are normally designed around uni-
junction transistors and in this case, to keep costs
down, a less expensive IC, an MC1458, (U1 of fig. 5),
was used. The 0.22 μF capacitor is charged by a
2N2222 constant current source until the MC1458
"triggers" and briefly shorts the capacitor back to the
positive supply voltage line. The cycle is then im-
mediately repeated. Since the 2N2222 collector cur-
cent is determined by its base and emitter bias circuit,
it is nearly constant while charging the 0.22 μF capac-
itor. This constant current ensures a linear capacitor
voltage rise with time. The other half of the MC1458,
U1B, is used as a voltage follower and provides a low
impedance, higher current version of the sawtooth
voltage at its output. The 2.5 Megohm potentiometer
controls the amount of frequency excursion, while the
25 kilohm potentiometer tunes the voltage controlled
oscillator frequency.

The diode detector provides a DC voltage that is
proportional to the RF swept signal output amplitude.
A hot carrier diode such as a 1N5711, shown in fig.
6A, can be used. If a hot carrier diode is not available,
an inexpensive germanium diode that is slightly for-
ward biased can be used in its place as shown in fig.
6B. A DC return is required for the biased diode, and
the diode impedance decreases as the current in-

fig. 7. Oscilloscope photographs. Unless otherwise noted, the sweep speed is 5 milliseconds per division and vertical sensitivity is 0.1 volt per division. The unit under test is a 9.0 MHz SSB IF amplifier using an MC1350 and surplus crystal filter.

fig. 7A. This shows a typical frequency sweep about 3.5 kHz wide.

fig. 7B. The second channel is used to display the sawtooth signal showing its relationship to the frequency sweep.

fig. 7C. The sweep speed is too low (10 milliseconds per division). This indicates that the speed should be adjusted to provide the desired display.

fig. 7D. The IF amplifier is "flat topping." The gain or input signal must be reduced to remove the distortion at the top of the display.
creases. A high impedance tuned circuit will be "shorted out" by the biased diode. Adjusting the diode bias control will produce a sharp peak in the detected signal output. Reducing the control's resistance near zero will, of course, destroy the diode. A silicon diode such as a 1N914 works very poorly as a detector.

construction and installation proceed smoothly

The circuit requires 24 volts DC which can be provided by either a bench power supply or batteries. Connect the varactor circuit (fig. 3) to the receiver local oscillator. Apply a variable DC bias voltage and adjust the varactor-tuned circuit to achieve results similar to those in fig. 4. Make a notation of the voltage variation required to obtain the full frequency sweep.

Assemble the sawtooth oscillator (fig. 5) and check the results with the oscilloscope. The output voltage should be capable of a swing nearly equal to the power supply limits with a period of approximately 50 milliseconds. The circuit can be assembled on a circuit board, but for temporary use, just solder the components together by their leads on the bench. Stray noise pickup may be a problem, but the large signal makes this unlikely. The varactor diode circuit is quite sensitive because of its high impedance, but no problems were encountered when connected to the sawtooth oscillator output.

Connect the detector probe (fig. 6) to the receiver IF amplifier output at a point of maximum available signal. Some experimentation is necessary with a signal generator and oscilloscope to obtain the maximum detected output without saturating the IF amplifier.

fig. 6. The diode detector is connected between the IF or filter output coupling link and the oscilloscope vertical input. The detector can also be used at the audio output.

fig. 7E. Crystal filter load impedance is too low, resulting in a noticeable loss of audio frequency response and confusion in setting the BFO frequency.

fig. 7F. The crystal filter load impedance is high, about 6000 ohms.

fig. 7G. The best response was obtained with approximately 3000 ohms load impedance. This is an unusually high load impedance for a crystal filter, and may indicate some problem in the filter.
WHAT'S REALLY HAPPENING IN HOME SATELLITE TV?

STV
SATELLITE TELEVISION MAGAZINE

A monthly of 100-plus pages, has all you need to know about where to find equipment, how it performs, how to install it, legal viewpoint, & industry insights.

- $24.95 per yr. (12 monthly issues)
- $2.00 for Sample Issue

MONEY BACK GUARANTEE if not satisfied (subscription orders only). Keep first issue with our compliments.

If you already have a dish, then you need

OnSat
—the best in satellite TV programming.

- Weekly Updated Listings
- All Scheduled Channels
- Complete Movie Listing
- All Sports Specials
- Prime Time Highlights

- $39.00 per yr. (52 weekly issues)
- $1.00 for Sample Copy

Visa®, MasterCard® accepted (subscription orders only). All prices in US funds only. Write for foreign rates.

Send this ad along with your order to:

STV™/OnSat™
P.O. Box 2384 - Dept. PS
Shelby, NC 28151-2384
Subscription calls only
Toll Free 1-800-438-2020

The oscilloscope must be DC coupled with at least 0.1 volt per cm sensitivity.

Connect the sawtooth oscillator output to the varactor circuit. It’s easier to start with a relatively low sweep amplitude when finding the frequency, so reduce the sweep signal amplitude in the beginning. Connect the diode detector output to the oscilloscope vertical input and synchronize the oscilloscope sweep from the sawtooth oscillator signal. The sawtooth signal could also be connected to the oscilloscope horizontal amplifier input if access is available. Tune the receiver to the signal generator frequency and make adjustments as required. Slowly increase the sawtooth signal amplitude until a sweep display indication is obtained. Fig. 7 shows the results obtained from an SSB crystal filter sweep. In this case, the crystal filter output impedance was varied with a potentiometer in series with the filter output. The photographs show IF sweeps, but similar results were obtained by connecting the detector to the outputs of the product detector and audio amplifier. This provides analysis of other points in the receiving system that would be useful for troubleshooting or design evaluation.

conclusions

This article presented the concept of using expendable circuits as built-in test equipment for use during project construction. A handy sawtooth oscillator was presented for those who collect simple circuits for afternoon projects. This oscillator will find many applications in oscilloscope or spectrum analysis projects. No construction details were presented, since the concept was to show that circuits can be assembled without circuit boards for prototype or temporary use and discarded later.

ham radio

COMPUTER PROGRAMS FOR THE RADIO AMATEUR
by Wayne Overbeck, N6NB, and Jim Steffen, KC6A
NOW WITH DISKS
Here’s the first source book of computer programs for the Radio Amateur. Besides covering computer basics, this book gives you programs that will help you log, determine sunrise/sunset times, track the Moon’s path across the sky, use Greyline propagation and set up record systems for WAS, DXCC and VUCC, or any other award. You can either buy the book alone or you can buy the book with the programs already on disk. Take full advantage of your computer with this well written source book! ©1984, 1st edition, 327 pages.

HA-0657 Softbound $16.95
HA-0657 with program $29.95
Program disk alone $19.95

Programs available for: Apple II (DOS and CP/M), IBM (DOS), TRS-80 Model I and Model III and Commodore C-64. Please mark your order with the program disk you want.
Uncle Ben says...

"I give you much more than just the lowest price..."

When you get that exciting new piece of equipment from me, you know you are going to be completely happy... I see to it, personally! I also give you earliest delivery, greatest trade-in allowances, my friendly assistance in every possible way.

Just ask any of the many thousands of hams all over the world who have been enjoying my friendly good service for over a half a century. 73, Uncle Ben, W2SOH

"Uncle Ben" Snyder, W2SOH the head man of

"HAM HEADQUARTERS, USA" ...Since 1925!

CALL ME...
(516) 293-7995

WRITE ME...
For my prompt, personal reply.

SEE ME...
At one of the world's largest Ham Supply Centers!

KENWOOD
HAS THEM ALL!

NEW
KENWOOD TS-930
KENWOOD TH-21A
KENWOOD TH-2600
KENWOOD TS-830
KENWOOD TS-711A

NEW
KENWOOD TS-430S
KENWOOD TH-41AT
KENWOOD TH-21AT

"HAM HEADQUARTERS, USA"
2263 Route 110 (at Smith St.)
E. Farmingdale, NY 11735
1-(516) 293-7995

November 1984
LIMITED QUANTITY!

19" Hi-Resolution Color X-Y Display

Thru a special purchase we got hold of 50 brand new 19" color displays. They were made by Wells Gardner for one of the largest arcade video game manufacturers in the world. The displays feature built in red, green and blue amplifiers, 19" color tube made by Wells Gardner. User supplied external horizontal and vertical scan oscillators which allows precise user control over screen resolution. A real plus!

Requires 25 V - 0 - 25 V input for amps, available separately. Some spec's for you technical people: signal inputs "X" horizontal 16 V P-P, "Y" vertical 12 V P-P, "Z" beam drive, 4 V max brightness, 1,0 volt black level. Writing rates "X" amp is .0375 inch/ usec, "Y" amp is .0004 inch/ usec. Great for making your own video games, oscilloscope monitors, or adapting for home computer use. Supplied with schematic. Shpg. Wt. 4.5 Lbs. 2/$375.00

Supplied with schematic. Quantity pricing available. Shpg. Wt. 4.5 Lbs. 2/$375.00

Transformer for Above Shpg. Wt. 3 Lbs. $12.00

CAD CAM Keyboard

We only have a very limited quantity of these high reliability, beautifully layed out 8 bit, serial output keyboards. These were made by Keytronic for use in a Cad-Cam system. The board is made up of 3 sections. The typewriter format section has 2 control keys plus full upper and lower case alpha-numerics. The 42 keyswitch pad, when used with appropriate logic, allows extensive, precise manipulations of displayed data such as close up, moving information, sketching, etc. The third section consists of 27 keys which include a numeric scratch pad, 4 way cursor control plus some command keys. On board are 3 LSI's including an Intersil IM6402, INS8045, and NS2716 UV PROM which contains the programs for manipulating data, plus other circuitry and an alert beeper. The keyboard requires +5 V and -12 V. Each one will come with schematics. New and unused. Shpg. Wt. 4 Lbs. $45.00. Less than 100 on hand - Order Now!

PHONE ORDERS for FASTEST SERVICE! call (617) 595-2275 and Charge It!

Surplus Computer and Electronic Materials

Multi-Voltage Microprocessor Power Supply Board

This regulated multi-voltage switching power supply board is made by KEPCO (their part no. MRM 174 KF) and is still in production (. . . regular price $124.95). It was originally part of the Zorba portable PC. The four outputs are as follows: $ +5 VDC @ 5 A, +12 VDC @ 2.8 A, +12 VDC @ 2 A, and -12 VDC @ .5 A. The +12 VDC @ 2 A is very heavily filtered so it could be used on a glitch free monitor. The -12 VDC @ .5 A can be changed to -5 VDC just by changing the onboard 7912 regulator chip to a 7905. The board's lightweight and small size should make it perfect for many projects. All new and provided with a schematic. The input is jumper selectable 110/220. New, unused. Quantity prices available. $49.95

Shpg. Wt. 2 Lbs. ea. SPL-477-33 $2/ $90.00

Epson Printers

Two surplus printers made for the computer industry by Shimshu Seiki/Epson. One prints alpha-numeric characters and the other prints numeric characters plus other symbols. These may have been intended for use in cash registers but other uses come to mind. Good enough to print program listings, using hard copy verification on timing devices or just for parts. Heck, the price is right. Runs on +5 V and 12 V. With pinout data. Shpg. Wt. 8 Lbs. (either printer).

Alpha numeric type SPL-465-33 A $17.50
Numeric only SPL-466-33 A $15.00

Logic and Disc Drive Power Supplies

2 New surplus power supplies made by N. J. E. Both feature 115/230 50/60 Hz inputs, fully regulated and filtered d. c. outputs, built-in adjustable overvoltage protection, and built-in adjustable current limiting. The supplies are enclosed and come with data. 2 models listed below.

Dual Outputs: +12 or +15 vdc 3 amps and -12 or -15 vdc 3 amps shpg. weight 6 lbs. Model no. PS6 A $30.00
Triple Outputs: 5 vdc 6 amps, +12 or +15 vdc 1 amp and -12 or -15 vdc 1 amp. Shpg. wt. 6 lbs. Model no. PS6 A $55.00

Send for our free 72 page catalogue jam packed with goodies.

Tell 'em you saw it in HAM RADIO!
DUAL FLOPPY DISC DRIVES
BRAND NEW, single sided, dual floppy disc drives made for Digital Equipment Corp. (DEC). This beautiful piece of computer hardware consists of 2 Shugart compatible TEAC 40 track, double density, 5¼" mini-floppy disc drives brand new in the case with their own regulated, switching power supply, cooling fan & on/off switch. Each unit also comes with a line cord & documentation. These were made for DEC, but are also compatible with other personal computers such as IBM, TRS 80 models I, II, & the Color Computer, and other Shugart compatible interfaces. Naturally, you supply the cables and disc controller card to suit your particular system. The RX-180 AB runs off of 115/230 VAC 50/60 Hz. w/out any modifications to the drives. Each system comes in the original factory box and are guaranteed functional. A blockbuster of a buy !!
Shpg. wt. 21 lb. stock no. RX 180AB $250.00
RX 180 AB modified to run w/ the TI 99/4A $285.00
Disc drive cable for Radio Shack Model I $15.00

HIGH SPEED KSR PRINTER TERMINAL
World famous, high speed G. E. Terminet 1200 RS 232 KSR printer terminals are now in stock ready for shipment to you. This has to be one of the finest letter quality printers ever offered at a bargain price. These terminals can be used as an RS 232 asynchronous communications terminal or used in the local mode as a typewriter. The terminals were removed from service for upgrading. Highlights of these machines are: Standard RS 232, full duplex, asynchronous data comm., fully formed upper and lower case letters, 128 character ASCII set, selectable baud rates of 110, 300, or 1200 BPS, 80 columns on pin feed paper, and less weight & size than an ASR 35 teletype with far less racket. They are virtually electronically foolproof as every pc board is fuse protected. Should your machine not work, just check the on board fuses 9 out of 10 times that is where the problem lies. Schematics are provided asim. Each one is new, individually packaged with data. For short money, you can get a nice little power supply or spare parts for your TI 99/4A. Shpg. Wt. 1 Lb.
Power Supply Board SP-53A $10.00
AC Adapter for same, Shpg. Wt. 2 Lbs. SP-461-33 $6.50

IBM 745 SELECTRIC BASED TYPEWRITER PRINTERS
These rugged, handsome printers were made for one of the giants of the computer industry. They can be used as a standard typewriter or as a printer in a word processing system for true letter quality printing. Solenoids were added to the selectric mechanism which disabled the manual repeat function but still allows electronic repeat functions. It uses standard IBM typing balls. The voltage requirements are standard 115 VAC, 5 VDC at 100 ma, and 24 VDC at 4 amps. All are new in factory boxes, but may require adjustments. We provide literature and schematics with 1 ribbon and cleaning tools. With the addition of our Centronics to Selectric I/O adapter, you could easily interface this printer to almost any micro computer system. Typewriter Printer stock no. RE 1000 A $375.00, 745 manual $30.00 Shpg wt approx. 80 Lbs, shpd by truck, collect.

CENTRONICS TO SELECTRIC INTERFACE
This interface will adapt a Redactron Selectric I/O typewriter mechanism to be used as a parallel ASCII compatible printer. The parallel input port provides compatibility to Centronics standards for both "busy" and "acknowledge" protocols. The interface requires only +5 VDC at 350 ma. This interface is fully built, less power supply, is guaranteed operational, and comes with data. Shpg wt. 15 lbs DE 201 A,$245.00

Surplus Electronic Material
Send for our free 72 page catalogue jam packed with goodies.
TUBES

<table>
<thead>
<tr>
<th>TYPE</th>
<th>PRICE</th>
<th>TYPE</th>
<th>PRICE</th>
<th>TYPE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2C39/7289</td>
<td>$34.00</td>
<td>1182/4600A</td>
<td>$500.00</td>
<td>ML7815AL</td>
<td>$60.00</td>
</tr>
<tr>
<td>2E26</td>
<td>7.95</td>
<td>4600A</td>
<td>500.00</td>
<td>7843</td>
<td>107.00</td>
</tr>
<tr>
<td>2K28</td>
<td>200.00</td>
<td>4624</td>
<td>310.00</td>
<td>7854</td>
<td>130.00</td>
</tr>
<tr>
<td>3-500Z</td>
<td>102.00</td>
<td>4667</td>
<td>84.00</td>
<td>ML78556AL</td>
<td>125.00</td>
</tr>
<tr>
<td>3-1000Z/8164</td>
<td>400.00</td>
<td>4662</td>
<td>100.00</td>
<td>7984</td>
<td>14.95</td>
</tr>
<tr>
<td>3B28/866A</td>
<td>9.50</td>
<td>4665</td>
<td>500.00</td>
<td>8072</td>
<td>84.04</td>
</tr>
<tr>
<td>3CX4000U/8861</td>
<td>255.00</td>
<td>4687</td>
<td>42.00</td>
<td>8106</td>
<td>5.00</td>
</tr>
<tr>
<td>3CX1000A/8283</td>
<td>526.00</td>
<td>5675</td>
<td>125.00</td>
<td>8117A</td>
<td>225.00</td>
</tr>
<tr>
<td>3CX3000F/8239</td>
<td>567.00</td>
<td>5721</td>
<td>119.00</td>
<td>8121</td>
<td>110.00</td>
</tr>
<tr>
<td>3CW30000H7</td>
<td>1700.00</td>
<td>5768</td>
<td>232.50</td>
<td>8122</td>
<td>110.00</td>
</tr>
<tr>
<td>3X250OA3</td>
<td>473.00</td>
<td>5819</td>
<td>350.00</td>
<td>8134</td>
<td>470.00</td>
</tr>
<tr>
<td>3X300OF1</td>
<td>567.00</td>
<td>5836</td>
<td>140.00</td>
<td>8156</td>
<td>12.00</td>
</tr>
<tr>
<td>4-65A/8165</td>
<td>69.00</td>
<td>5837</td>
<td>232.50</td>
<td>8232</td>
<td>60.00</td>
</tr>
<tr>
<td>4-125A/4021</td>
<td>79.00</td>
<td>5861</td>
<td>185.00</td>
<td>8236</td>
<td>35.00</td>
</tr>
<tr>
<td>4-250A/5022</td>
<td>98.00</td>
<td>5867A</td>
<td>185.00</td>
<td>8295/PL172</td>
<td>500.00</td>
</tr>
<tr>
<td>4-400A/8438</td>
<td>98.00</td>
<td>5868/Ax9902</td>
<td>270.00</td>
<td>8458</td>
<td>35.00</td>
</tr>
<tr>
<td>4-400B/7527</td>
<td>110.00</td>
<td>5876/A</td>
<td>42.00</td>
<td>8462</td>
<td>130.00</td>
</tr>
<tr>
<td>4-400C/7675</td>
<td>110.00</td>
<td>5881/6L6</td>
<td>8.00</td>
<td>8505A</td>
<td>95.00</td>
</tr>
<tr>
<td>4-1000A/8166</td>
<td>444.00</td>
<td>5893</td>
<td>60.00</td>
<td>8553W</td>
<td>136.00</td>
</tr>
<tr>
<td>4CX250B/7203</td>
<td>54.00</td>
<td>5894/A</td>
<td>54.00</td>
<td>8560A/</td>
<td>75.00</td>
</tr>
<tr>
<td>4CX250F/6621</td>
<td>75.00</td>
<td>5946B/8737</td>
<td>54.00</td>
<td>8560AS</td>
<td>100.00</td>
</tr>
<tr>
<td>4CX250K/8245</td>
<td>125.00</td>
<td>6038/AZ2999</td>
<td>95.00</td>
<td>8605</td>
<td>38.00</td>
</tr>
<tr>
<td>4CX250R/7580W</td>
<td>90.00</td>
<td>6164/6146A</td>
<td>8.50</td>
<td>8624</td>
<td>100.00</td>
</tr>
<tr>
<td>4CX300A/8167</td>
<td>170.00</td>
<td>6164/6146B</td>
<td>10.50</td>
<td>8643</td>
<td>83.00</td>
</tr>
<tr>
<td>4CX350A/8321</td>
<td>110.00</td>
<td>6164/6146C</td>
<td>17.95</td>
<td>8647</td>
<td>168.00</td>
</tr>
<tr>
<td>4CX350F/8322</td>
<td>115.00</td>
<td>6146/6146D</td>
<td>110.00</td>
<td>8683</td>
<td>95.00</td>
</tr>
<tr>
<td>4CX350F/78604</td>
<td>140.00</td>
<td>6156</td>
<td>23.50</td>
<td>8877</td>
<td>465.00</td>
</tr>
<tr>
<td>4CX600U/8809</td>
<td>835.00</td>
<td>6159B</td>
<td>35.00</td>
<td>8890</td>
<td>13.00</td>
</tr>
<tr>
<td>4CX1000A/8168</td>
<td>242.50</td>
<td>6161</td>
<td>325.00</td>
<td>8905</td>
<td>13.00</td>
</tr>
<tr>
<td>4CX1000A/8168</td>
<td>485.00</td>
<td>6161</td>
<td>41.50</td>
<td>8930</td>
<td>137.00</td>
</tr>
<tr>
<td>4CX1500A/8860</td>
<td>555.00</td>
<td>6280</td>
<td>180.00</td>
<td>6L6 Metal</td>
<td>25.00</td>
</tr>
<tr>
<td>4CX5000A/8170</td>
<td>1100.00</td>
<td>6291</td>
<td>24.00</td>
<td>6L6GC</td>
<td>5.03</td>
</tr>
<tr>
<td>4CX10000D/8171</td>
<td>1255.00</td>
<td>6293</td>
<td>24.00</td>
<td>6L6GC</td>
<td>5.03</td>
</tr>
<tr>
<td>4CX15000A/8281</td>
<td>1500.00</td>
<td>6326</td>
<td>5.75</td>
<td>6CA7/EL34</td>
<td>5.38</td>
</tr>
<tr>
<td>4CW80OF</td>
<td>710.00</td>
<td>6360/A</td>
<td>5.75</td>
<td>6C6L</td>
<td>3.50</td>
</tr>
<tr>
<td>4D32</td>
<td>240.00</td>
<td>6399</td>
<td>540.00</td>
<td>6DJ8</td>
<td>2.50</td>
</tr>
<tr>
<td>4E27A/5-1258</td>
<td>240.00</td>
<td>6550A</td>
<td>10.00</td>
<td>6DS5</td>
<td>6.58</td>
</tr>
<tr>
<td>4P660A</td>
<td>200.00</td>
<td>6883B/8032A/8552</td>
<td>10.00</td>
<td>6D15</td>
<td>9.58</td>
</tr>
<tr>
<td>4P660B</td>
<td>285.00</td>
<td>6897</td>
<td>160.00</td>
<td>6G5A</td>
<td>6.20</td>
</tr>
<tr>
<td>4P665A/8187</td>
<td>175.00</td>
<td>6907</td>
<td>79.00</td>
<td>6K6</td>
<td>6.00</td>
</tr>
<tr>
<td>4PR1000A/8189</td>
<td>590.00</td>
<td>6922/6DJ8</td>
<td>5.00</td>
<td>6H55</td>
<td>6.00</td>
</tr>
<tr>
<td>4X150A/7034</td>
<td>60.00</td>
<td>6939</td>
<td>22.00</td>
<td>6H5F</td>
<td>8.73</td>
</tr>
<tr>
<td>4X150D/7609</td>
<td>95.00</td>
<td>7094</td>
<td>250.00</td>
<td>6J6A</td>
<td>6.68</td>
</tr>
<tr>
<td>4X250B</td>
<td>45.00</td>
<td>7117</td>
<td>38.50</td>
<td>6J6</td>
<td>6.00</td>
</tr>
<tr>
<td>4X250F</td>
<td>45.00</td>
<td>7203</td>
<td>P.O.R.</td>
<td>6J5N6</td>
<td>6.00</td>
</tr>
<tr>
<td>4X500A</td>
<td>412.00</td>
<td>7211</td>
<td>100.00</td>
<td>6J5C</td>
<td>7.25</td>
</tr>
<tr>
<td>5CX100A</td>
<td>560.00</td>
<td>7213</td>
<td>300.00*</td>
<td>6K6</td>
<td>5.06</td>
</tr>
<tr>
<td>KT88</td>
<td>27.50</td>
<td>7214</td>
<td>300.00*</td>
<td>6K6</td>
<td>8.25</td>
</tr>
<tr>
<td>416B</td>
<td>45.00</td>
<td>7271</td>
<td>135.00</td>
<td>6L6F</td>
<td>7.00</td>
</tr>
<tr>
<td>416C</td>
<td>62.50</td>
<td>7289/2C39</td>
<td>34.00</td>
<td>6L6G G.E.</td>
<td>7.00</td>
</tr>
<tr>
<td>5728/T160L</td>
<td>49.95</td>
<td>7325</td>
<td>P.O.R.</td>
<td>6L6/6MW6 Sylvania</td>
<td>9.00</td>
</tr>
<tr>
<td>592/3-200A3</td>
<td>211.00</td>
<td>7360</td>
<td>13.50</td>
<td>6ME</td>
<td>8.90</td>
</tr>
<tr>
<td>807</td>
<td>8.50</td>
<td>7377</td>
<td>85.00</td>
<td>12AT7</td>
<td>3.50</td>
</tr>
<tr>
<td>811A</td>
<td>15.00</td>
<td>7406</td>
<td>2.50</td>
<td>12AX7</td>
<td>3.00</td>
</tr>
<tr>
<td>812A</td>
<td>29.00</td>
<td>7609</td>
<td>95.00</td>
<td>12BY7</td>
<td>5.00</td>
</tr>
<tr>
<td>813</td>
<td>50.00</td>
<td>7735</td>
<td>36.00</td>
<td>12JB6A</td>
<td>6.50</td>
</tr>
</tbody>
</table>

NOTE * = USED TUBE

NOTE P.O.R. = PRICE ON REQUEST

"ALL PARTS MAY BE NEW, USED, OR SURPLUS. PARTS MAY BE SUBSTITUTED WITH COMPARABLE PARTS IF WE ARE OUT OF STOCK OF AN ITEM.

NOTICE: ALL PRICES ARE SUBJECT TO CHANGE WITHOUT NOTICE.

For information call: (602) 242-3037

MHZ electronics

PRICES SUBJECT TO CHANGE WITHOUT NOTICE

132 November 1984
“FILTERS”

COLLINS Mechanical Filter #526-9724-010 MODEL F455Z32F

455KHz at 3.2kHz wide. May be other models but equivalent. May be used or new. $15.99

ATLAS Crystal Filters
5.595-2.7/8/LSB, 5.595-2.7/LSB
8 pole 2.7kHz wide Upper sideband. Impedence 800ohms 15pf In/800ohms 0pf out. 19.99
5.595-2.7/8/U, 5.595-2.7/USB
8 pole 2.7kHz wide Upper sideband. Impedence 800ohms 15pf In/800ohms 0pf out. 19.99
5.595-.500/4, 5.595-.500/4/CW
4 pole 500 cycles wide CW. Impedence 800ohms 15pf In/800ohms 0pf out. 19.99
9.0USB/CW
6 pole 2.7kHz wide at 6dB. Impedence 680ohms 7pf In/300ohms 8pf out. CW-1599Hz 19.99

KOKUSAI ELECTRIC CO, Mechanical Filter #MF-455-ZL/ZU-21H
455KHz at Center Frequency of 453.5KC. Carrier Frequency of 455KHz 2.36KC Bandwidth. Upper sideband. (ZU) 19.99
Lower sideband. (ZL) 19.99

CERAMIC FILTERS

AXEL
4F449 12.6KC Bandpass Filter 3dB bandwidth 1.6kHz from 11.8-13.4kHz 10.00

CLEVITE
TO-01A 455KHz+2kHz bandwidth 4-7% at 3dB 5.00
TCF4-12D36A 455KHz+1KHz bandwidth 6dB min 12KHz, 60dB max 36KHz 10.00

MURATA
BF455B 455KHz 2.50
BF455L 455KHz 3.50

CMF455E 455KHz +5.5kHz at 3dB, +8kHz at 6dB, +16kHz at 50dB 6.65
CMF455D 455KHz +7kHz at 3dB, +10kHz at 6dB, +20kHz at 50dB 6.65
CMF455E 455KHz +5.5kHz at 3dB, +8kHz at 6dB, +16kHz at 60dB 8.00
CMF455B 455KHz +2kHz bandwidth +15kHz at 6dB, +30kHz at 40dB 2.90
CMF455C 455KHz +2kHz bandwidth +12.5kHz at 6dB, +24kHz at 40dB 2.90
CMF455G 455KHz +1kHz bandwidth +4.5kHz at 6dB, +10kHz at 40dB 2.90
CMF455H 455KHz +1kHz bandwidth +3kHz at 6dB, +9kHz at 40dB 2.90
CMF455I 455KHz +1kHz bandwidth +2kHz at 6dB, +6kHz at 40dB 2.90
CMF455D 455KHz +1kHz at 6dB, +20kHz at 40dB 2.90
CMF455H 455KHz +3kHz at 6dB, +9kHz at 40dB 2.90
SF455D 455KHz 2.50
SF455E 455KHz +2kHz, 3dB bandwidth 4.5kHz+1KHz 5.00
SFE10.7MA 10.7MHz 280kHz+50kHz at 3dB, 650kHz at 20dB 2.50
SFE10.7MS 10.7MHz 230kHz+50kHz at 3dB, 570kHz at 20dB 2.50
SFG10.7MA 10.7MHz 10.00

NIPPON
LF-4B/CF455I 455KHz +1kHz 2.90
LF-4B/CF455H 455KHz +1kHz 2.90
LF-B 455KHz 2.90
LF-C18 455KHz 10.00

TOKIN
CF455A/CU455K 455KHz +2kHz 5.00

NAYASUGIRA

SPECTRA PHYSICS INC, Model 088 HeNe LASER TUBES

POWER OUTPUT 1.6MW, BEAM DIA. .75MM, BEAM DIA. 2.7MM, 8KV STARTING VOLTAGE DC 68K OHM 1WATT BALLAST 1000VDC +1000VDC At 3.7MA $59.99

ROTRON MUFFIN FANS Model MARKS/MU2A1

115 VAC 14WATTS 50/60CPS IMPEDANCE PROTECTED-F 88CFM at 50CPS $7.99
105CFM at 60CPS THESE ARE NEW

MHz Electronics

Prices Subject to Change Without Notice

Toll Free Number 800-528-0180
(For orders only)

For information call: (602) 242-3037

November 1984 133
RF TRANSISTORS

<table>
<thead>
<tr>
<th>Type</th>
<th>Price</th>
<th>Type</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N1561</td>
<td>$25.00</td>
<td>2N5920</td>
<td>$76.00</td>
</tr>
<tr>
<td>2N1562</td>
<td>25.00</td>
<td>2N5921</td>
<td>80.00</td>
</tr>
<tr>
<td>2N1692</td>
<td>25.00</td>
<td>2N5922</td>
<td>10.00</td>
</tr>
<tr>
<td>2N5857</td>
<td>1.55</td>
<td>2N5923</td>
<td>25.00</td>
</tr>
<tr>
<td>2N5837JAN</td>
<td>4.10</td>
<td>2N5941</td>
<td>23.00</td>
</tr>
<tr>
<td>2N5837JANTX</td>
<td>4.50</td>
<td>2N5942</td>
<td>40.00</td>
</tr>
<tr>
<td>2N5876</td>
<td>11.50</td>
<td>2N5944</td>
<td>10.35</td>
</tr>
<tr>
<td>2N5947</td>
<td>18.35</td>
<td>2N5945</td>
<td>10.00</td>
</tr>
<tr>
<td>2N5948</td>
<td>13.00</td>
<td>2N5946</td>
<td>12.00</td>
</tr>
<tr>
<td>2N5949</td>
<td>15.50</td>
<td>2N5947</td>
<td>9.20</td>
</tr>
<tr>
<td>2N3118</td>
<td>5.00</td>
<td>2N6080</td>
<td>6.00</td>
</tr>
<tr>
<td>2N3119</td>
<td>4.00</td>
<td>2N6081</td>
<td>9.00</td>
</tr>
<tr>
<td>2N3134</td>
<td>1.15</td>
<td>2N6082</td>
<td>7.00</td>
</tr>
<tr>
<td>2N3208</td>
<td>4.90</td>
<td>2N6083</td>
<td>12.00</td>
</tr>
<tr>
<td>2N3288</td>
<td>4.40</td>
<td>2N6084</td>
<td>12.00</td>
</tr>
<tr>
<td>2N3309</td>
<td>4.85</td>
<td>2N6094</td>
<td>11.00</td>
</tr>
<tr>
<td>2N3375</td>
<td>17.10</td>
<td>2N6095</td>
<td>12.00</td>
</tr>
<tr>
<td>2N3378</td>
<td>2.11</td>
<td>2N6096</td>
<td>20.70</td>
</tr>
<tr>
<td>2N3551</td>
<td>1.55</td>
<td>2N6097</td>
<td>12.00</td>
</tr>
<tr>
<td>2N3553JAN</td>
<td>2.90</td>
<td>2N6105</td>
<td>21.00</td>
</tr>
<tr>
<td>2N3632</td>
<td>15.50</td>
<td>2N6116</td>
<td>21.85</td>
</tr>
<tr>
<td>2N3678</td>
<td>11.60</td>
<td>2N6166</td>
<td>44.50</td>
</tr>
<tr>
<td>2N3681</td>
<td>5.00</td>
<td>2N6267</td>
<td>142.00</td>
</tr>
<tr>
<td>2N3866</td>
<td>1.30</td>
<td>2N6304</td>
<td>1.50</td>
</tr>
<tr>
<td>2N3866JANX</td>
<td>2.20</td>
<td>2N6318</td>
<td>30.00</td>
</tr>
<tr>
<td>2N3866JANTX</td>
<td>3.80</td>
<td>2N6349</td>
<td>55.30</td>
</tr>
<tr>
<td>2N3866JANTXV</td>
<td>4.70</td>
<td>2N6567</td>
<td>18.00</td>
</tr>
<tr>
<td>2N3924</td>
<td>3.35</td>
<td>2N6604</td>
<td>13.50</td>
</tr>
<tr>
<td>2N3926</td>
<td>16.10</td>
<td>2N6605</td>
<td>13.50</td>
</tr>
<tr>
<td>2N3927</td>
<td>17.25</td>
<td>2N6667</td>
<td>44.00</td>
</tr>
<tr>
<td>2N3948</td>
<td>1.75</td>
<td>2N6880</td>
<td>80.00</td>
</tr>
<tr>
<td>2N3950</td>
<td>25.00</td>
<td>2O11-1</td>
<td>15.00</td>
</tr>
<tr>
<td>2N3959</td>
<td>3.85</td>
<td>02A070374</td>
<td>65.00</td>
</tr>
<tr>
<td>2N4012</td>
<td>11.00</td>
<td>3CD05</td>
<td>15.00</td>
</tr>
<tr>
<td>2N4037</td>
<td>2.00</td>
<td>102-1</td>
<td>28.00</td>
</tr>
<tr>
<td>2N4041</td>
<td>14.00</td>
<td>103-1</td>
<td>28.00</td>
</tr>
<tr>
<td>2N4072</td>
<td>1.80</td>
<td>103-2</td>
<td>28.00</td>
</tr>
<tr>
<td>2N4080</td>
<td>4.51</td>
<td>104-1</td>
<td>18.00</td>
</tr>
<tr>
<td>2N4127</td>
<td>21.00</td>
<td>143P1</td>
<td>10.00</td>
</tr>
<tr>
<td>2N4146</td>
<td>2.25</td>
<td>181-1</td>
<td>15.00</td>
</tr>
<tr>
<td>2N4147</td>
<td>1.25</td>
<td>210-2</td>
<td>12.00</td>
</tr>
<tr>
<td>2N4152</td>
<td>1.85</td>
<td>321-1</td>
<td>25.00</td>
</tr>
<tr>
<td>2N4340</td>
<td>1.18</td>
<td>869-2</td>
<td>15.00</td>
</tr>
<tr>
<td>2N4347</td>
<td>1.90</td>
<td>869-3</td>
<td>15.00</td>
</tr>
<tr>
<td>2N4357</td>
<td>4.35</td>
<td>408-1</td>
<td>15.00</td>
</tr>
<tr>
<td>2N4359</td>
<td>3.00</td>
<td>684-1</td>
<td>15.00</td>
</tr>
<tr>
<td>2N5026</td>
<td>15.00</td>
<td>703-1</td>
<td>15.00</td>
</tr>
<tr>
<td>2N5070</td>
<td>18.60</td>
<td>707-1</td>
<td>11.05</td>
</tr>
<tr>
<td>2N5090</td>
<td>13.80</td>
<td>707-2</td>
<td>32.50</td>
</tr>
<tr>
<td>2N5108</td>
<td>3.55</td>
<td>772-1</td>
<td>4.00</td>
</tr>
<tr>
<td>2N5109</td>
<td>1.70</td>
<td>773-2</td>
<td>4.00</td>
</tr>
<tr>
<td>2N5160</td>
<td>1.85</td>
<td>798-2</td>
<td>4.00</td>
</tr>
<tr>
<td>2N5177</td>
<td>2.62</td>
<td>345-1</td>
<td>25.00</td>
</tr>
<tr>
<td>2N5179</td>
<td>1.04</td>
<td>388P1</td>
<td>25.00</td>
</tr>
<tr>
<td>2N5216</td>
<td>56.00</td>
<td>3992</td>
<td>25.00</td>
</tr>
<tr>
<td>2N5270</td>
<td>75.00</td>
<td>416P1</td>
<td>25.00</td>
</tr>
<tr>
<td>2N5583</td>
<td>4.55</td>
<td>430P3</td>
<td>18.00</td>
</tr>
<tr>
<td>2N5589</td>
<td>7.77</td>
<td>430P3</td>
<td>18.00</td>
</tr>
<tr>
<td>2N5590</td>
<td>10.92</td>
<td>438P1</td>
<td>27.50</td>
</tr>
<tr>
<td>2N5591</td>
<td>3.10</td>
<td>710-14</td>
<td>28.00</td>
</tr>
<tr>
<td>2N5592</td>
<td>9.00</td>
<td>728-1</td>
<td>18.00</td>
</tr>
<tr>
<td>2N5593</td>
<td>12.00</td>
<td>728-3</td>
<td>37.50</td>
</tr>
<tr>
<td>2N5637</td>
<td>15.50</td>
<td>736-1</td>
<td>30.00</td>
</tr>
<tr>
<td>2N5641</td>
<td>12.42</td>
<td>779-1</td>
<td>28.00</td>
</tr>
<tr>
<td>2N5642</td>
<td>14.03</td>
<td>779-2</td>
<td>15.00</td>
</tr>
<tr>
<td>2N5643</td>
<td>25.50</td>
<td>779-5</td>
<td>24.00</td>
</tr>
<tr>
<td>2N5665</td>
<td>13.80</td>
<td>779-6</td>
<td>36.00</td>
</tr>
<tr>
<td>2N5675</td>
<td>1.05</td>
<td>408P1 RGA</td>
<td>15.00</td>
</tr>
<tr>
<td>2N5691</td>
<td>18.00</td>
<td>40279 RGA</td>
<td>10.00</td>
</tr>
<tr>
<td>2N5764</td>
<td>27.00</td>
<td>40280 RGA</td>
<td>6.50</td>
</tr>
<tr>
<td>2N5836</td>
<td>3.45</td>
<td>40281 RGA</td>
<td>10.00</td>
</tr>
<tr>
<td>2N5852</td>
<td>6.51</td>
<td>40282 RGA</td>
<td>20.70</td>
</tr>
<tr>
<td>2N5867</td>
<td>19.90</td>
<td>40290 RGA</td>
<td>2.80</td>
</tr>
<tr>
<td>2N5969</td>
<td>20.00</td>
<td>40292 RGA</td>
<td>13.05</td>
</tr>
<tr>
<td>2N5913</td>
<td>3.25</td>
<td>40294 RGA</td>
<td>2.50</td>
</tr>
<tr>
<td>2N5916</td>
<td>36.00</td>
<td>40341 RGA</td>
<td>21.00</td>
</tr>
</tbody>
</table>

Toll Free Number
800-528-0180
(For orders only)

All prices are new or surplus, and parts may be substituted with comparable parts if we are out of stock of an item.

For information call: (602) 242-3037

PRICES SUBJECT TO CHANGE WITHOUT NOTICE

MHz electronics

November 1984

Tell 'em you saw it in HAM RADIO!
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price 1</th>
<th>Price 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>M021401</td>
<td>MRF22</td>
<td>1.25</td>
<td>1.25</td>
</tr>
<tr>
<td>M021402</td>
<td>MRF315</td>
<td>1.75</td>
<td>1.75</td>
</tr>
<tr>
<td>M021403</td>
<td>MRF314</td>
<td>1.20</td>
<td>1.20</td>
</tr>
<tr>
<td>M021404</td>
<td>MRFL4</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>M021405</td>
<td>MRF22</td>
<td>1.25</td>
<td>1.25</td>
</tr>
<tr>
<td>M021406</td>
<td>MRF315</td>
<td>1.75</td>
<td>1.75</td>
</tr>
<tr>
<td>M021407</td>
<td>MRF314</td>
<td>1.20</td>
<td>1.20</td>
</tr>
<tr>
<td>M021408</td>
<td>MRFL4</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

RF TRANSISTORS (CONTINUED)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price 1</th>
<th>Price 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>M021409</td>
<td>MRF22</td>
<td>1.25</td>
<td>1.25</td>
</tr>
<tr>
<td>M021410</td>
<td>MRF315</td>
<td>1.75</td>
<td>1.75</td>
</tr>
<tr>
<td>M021411</td>
<td>MRF314</td>
<td>1.20</td>
<td>1.20</td>
</tr>
<tr>
<td>M021412</td>
<td>MRFL4</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

FOR INFORMATION CALL:
(602) 242-3037

Toll Free Number
800-528-0180
(For orders only)

"All parts may be new or surplus, and parts may be substituted with comparable parts if we are out of stock of an item."

PRICES SUBJECT TO CHANGE WITHOUT NOTICE

More Details? CHECK - OFF Page 158

November 1984
RF Transistors (continued)

Amphenol Part # 316-10102-8
115Vac Type BNC DC to 3 Ghz.
$29.99

Analog Switches SPDT

POSTAGE: Minimum shipping and handling in the U.S., Canada, and Mexico is $3.00 for ground shipments, all other countries is $5.00. Air rates are available at the time of your order. All foreign orders please include 25% of the ordered amount for shipping and handling. C.O.D.'s are shipped AIR ONLY.

PREPAID ORDERS: Orders must be accompanied by a check.

PRICES: Prices are subject to change without notice.

PURCHASE ORDERS: We accept purchase orders only when they are accompanied by a check.

RESTOCK CHARGES: If parts are returned to MHZ ELECTRONICS, INC. due to customer error, the customer will be held responsible for all fees incurred and will be charged a 15% RESTOCK CHARGE with the remainder in CREDIT ONLY. The following must accompany any returns. A copy of the purchase order, the authorization number which is required to issue a credit, invoice #, part numbers, UPS mailing label, and names and addresses of the people receiving the credit. Returns must be done within 10 DAYS of receipt of parcel. Return authorization numbers can be obtained by calling (602) 242-8916 or notifying us by post card. Return authorizations will not be given on our 800 number.

SALES TAX: ARIZONA residents must add 6% sales tax, unless a signed ARIZONA resale tax card is currently on file with us. All orders placed by persons outside of ARIZONA, but delivered to persons in ARIZONA are subject to the 6% sales tax.

SHORTEST OR DAMAGE: All claims for shortages or damages must be made within 5 DAYS of receipt of parcel. Claims must include a copy of our invoice, along with a return authorization number which can be obtained by contacting us at (602) 242-8916 or sending a post card. Authorization numbers cannot be given on our 800 number. All items must be properly packed. If items are not properly packed make sure to contact the carrier so that they can come out and inspect the package before it is returned to us. Customers which do not notify us within the time period will be held responsible for the entire order as we will consider the order complete.

C.R. 800 NUMBER IS STRICTLY FOR ORDERS ONLY (800) 528-0180. INFORMATION CALLS ARE TAKEN ON (602) 242-8916 or (602) 242-3037.

For information call: (602) 242-3037

Tell Free Number
800-528-0180
(For orders only)

PRICES SUBJECT TO CHANGE WITHOUT NOTICE

Relays

RF No-Brand Plug-Cable RF-36 36 inch or No BNC-36 36 inch.

$7.99 or 2 For $13.99 or 10 For $50.00

$9.99 or 2 For $15.99 or 10 For $60.00

Coaxial Relay Switches SPDT

FXR Part # 300-11182
120Vac Type BNC DC to 4 Ghz.
FSN 5985-543-1223

$39.99

FXR Part # 300-11173
120Vac Type BNC Same
FSN 5985-543-1850

$39.99

MHZ electronics

2111 W. CAMBELLBACK ROAD
PHOENIX, ARIZONA 85015

Tell 'em you saw it in HAM RADIO!
SUPER deal with the publisher allows us to drop the price of the Bill Orr RADIO HANDBOOK to the low, low price of just $9.95!

RADIO HANDBOOK by William Orr, W6SAI

Some selected subjects covered include:

- Electronic Fundamentals
- Semiconductor Devices
- Vacuum Tube Principles
- Special Microwave Tubes
- Radio Frequency Power Amplifiers
- SSB Transmission and Reception
- Amplification of RF Energy
- Frequency Synthesis
- FM and Repeaters
- RFI
- Equipment Design
- Transmitter Keying and Control
- Power Supplies
- Radiation and Propagation
- The Transmission Line
- Antenna Matching Systems
- HF General Purpose Antennas
- Fixed Directive Arrays
- Rotary Beam Antennas
- VHF & UHF Antennas
- Test Equipment
- The Oscilloscope
- Construction Practices
- Electronics Math and Calculations

This book certainly is one of the finest reference sources available today. The 22nd edition reflects the very latest in state-of-the-art techniques in a comprehensive single source reference book. Invaluable for hams, electronics technicians, design engineers, and hobbyists alike. Over 1,000 pages of information found in earlier editions plus more on antennas, amplifiers, theory, and semiconductors to name just a few of the updated sections. The Radio Handbook is chock-full of practical, tested projects that run from high powered RF amplifiers and state-of-the-art equipment to “Weekender” type projects to upgrade overall station performance. This book will be of interest to all levels of electronic expertise. At this special price, you can’t afford to pass up a value like this. Order yours today. 1136 pages. ©1981. 22nd edition.

□21874 Hardbound Limited quantities are available. Order now. $9.95

Please add $3.00 to cover shipping & handling.

This is the very latest edition. No new edition is about to be issued. This is not a close out.
THE FIRST NAME IN ELECTRONIC TEST GEAR

NEW

20 MHz DUAL TRACE OSCILLOSCOPE

$399.95*

45 MHz DUAL SWEEP OSCILLOSCOPE

$799.95*

The Ramseyn D-600 is a dual input, remote sweep unit that includes a button digital delay line to permit clear viewing during very short test times of high frequency waveforms. Other features include variable trigger levels, 20 calibrated sweep time ranges from 50 usec to 6 sec, plus inputs for external triggering. 33 sweep magnifications. 5 trigger sources. CH1, CH2, LINE EXT and INT. Frequencies up to 10 MHz. 3.5" color display. Built in disk drive. 19" wide cabinet. 1.5" deep front panel displays. Remote sweep. Sweep gate and sweep output. Auto focus. Single sweep. USA - add $10.00 per unit for postage, overseas orders add 15% of total order for insured surface mail.

RAMSEY D-1100 VOM MULTITESTER

$199.95 test leads and battery included

RA-M-1200 VOM MULTITESTER

$249.95 test leads and battery included

CT-70 7 DIGIT 525 MHz COUNTER

$119.95 wired includes AC adapter

CT-90 9 DIGIT 600 MHz COUNTER

$149.95 wired includes AC adapter

CT-125 9 DIGIT 1.2 GHz COUNTER

$169.95 wired includes AC adapter

PR-2 COUNTER PREAMP

$44.95 wired includes AC adapter

PS-1B 600 MHz PRESCALER

$59.95 wired includes AC adapter

DM-700 DIGITAL MULTIMETER

$199.95 wired includes AC adapter

PS-2 AUDIO MULTIPLIER

$49.95 wired

ACCESSORIES FOR RAMSEY COUNTERS

Telescopic whip antenna - BNC plug ... $8.95
High impedance probe, flush mounted ... 16.95
Low pass probe, audio use ... 16.95
Direct probe, general purpose use ... 13.95
Tilt ball, for CT-70, 90, 125 ... 3.95

PHONES FOR CALLS (

716-586-3950

TELEX 466735 RAMSEY CI

138 November 1984

209

TERMS: Satisfaction guaranteed, examine for 10 days, if not pleased return in original form for refund, add $8.95 for shipping. Component magazine, minimum of 10.90 x average 15% for surface mail + COD add $2.50 (COD in USA only). Bull sales tax + 50% flat charge add on all kits. 1 year parts & labor warranty on all units. RAMSEY ELECTRONICS, INC. 2576 Baird Rd. Penfield, N.Y. 14626
the Century 22

Ten-Tec has announced the return of the Ten-Tec Century transceiver. The Century 22 is a 50-watt, 6-band CW transceiver that features a variable audio filter, automatic gain control, an SWR bridge, automatic level control, and an electronically switched "S" meter.

The Century 22 measures 4 x 10 x 10.5 inches (25 x 101 x 29 cm), weighs 6 pounds (2.7 kg), and is priced at $389.

7-band scanning radio

Heath Company has introduced the only kit-built scanner to cover aircraft, marine and public service bands, all in one unit. The GR-740 40-Channel Scanning Radio covers all seven UHF/VHF radio bands, scans 40 user-selected frequencies and provides direct access to any frequency in the seven bands.

The 24-key keyboard is divided into program and operate sections for simplified operation. Forty different channels (frequencies) are easily programmed into the two 20-channel memory banks. Either bank can be scanned at five or 15 channels per second; the GR-740's search can be programmed or changed at the touch of a button. A priority channel can be sampled every two seconds, with interruption when a signal is detected.

Patented track tuning permits receiving frequencies across the full band without adjustments; circuitry is automatically aligned to each monitored frequency. A large digital, front-panel display shows the channels and features selected. All circuit boards are factory-assembled and pre-aligned to ensure that even the first-time kit builder can build and operate one of the world's best scanning radios, with a minimum of time and at a substantial savings.

For more information about the GR-740 40-Channel Scanning Radio, contact Heath Company, Dept. 150-315, Benton Harbor, Michigan 49022.

Circle #301 on Reader Service Card.

TAPR packet radio controller

Advanced Electronic Applications, Inc. has announced the introduction of the Model PKT-1, packet radio controller, through an arrangement with Tucson Amateur Packet Radio, Inc. (TAPR), Tucson, Arizona. While the end user price is $699.95, Amateur Radio operators can take advantage of a discounted price of $499.95 through participating AEA dealers.

The PKT-1 is a packaged and warranted version of the well-known do-it-yourself TAPR kit board with version 3.1 software. The purchase price includes application assistance and a year's conditional warranty.

Packet Radio is a burst mode of data or text transmission utilizing AFSK, FSK, or PSK modulation. On VHF it runs at 1200 Baud typically and uses CRC error checking, ensuring an extremely low error rate. Multiple users may share a simplex or duplex channel simultaneously on a timeshare multiplexed basis.

Any packet station using the PKT-1 may operate as a store-and-forward repeater (Digipeater) for someone else's transmission while concurrently functioning as a regular packet station. Up to 8 Digipeating stations may be used between two terminal stations. Digipeating allows routing the transmission path around physical obstacles blocking a line-of-sight radio path and allows extending the link beyond line-of-sight distances.

For detailed information, contact Advanced Electronic Applications, Inc., P.O. Box C2160, Lynnwood, Washington 98036-0918

Circle #304 on Reader Service Card.

For more information, contact Ten-Tec, Inc., Sevierville, Tennessee 37862.
NEW SHORTWAVE

+ New + advanced Doppler shift radio direction finder. Simply plug into receiver's antenna and external speaker jacks. Uses four omnidirectional antennas. Low noise. high

+ Broadband + Technology

+ Computer

+ VHF or UHF FM receiver

+ Conversion + to FM or UHF + without + any + compromise + quality. + Our + prices + are + lower + than + any + comparable + system + or + tower. + Info + on + quads + and + a + buck, + and + info + on + BOTH + towers + without + a + buck. + Charge + due + to + increased + cost + of + postage + and + printing.

SATELLITE TRACKING

+ Automatic Antenna Tracker

+ Now + Available + $149.95

+ SASE + for + full + details

1296 + & + PHASE + III

+ MAKI + UTV + 1200 - $499.95

+ MAKI + 20W + AMP + $430.00

+ For + the + best + buys + in + town + call: + 212-925-7000

+ Los + Precios + Mas + Bajos + en + Nueva + York

+ We + Ship + Worldwide

Barry Electronics Corp.
WORLD WIDE AMATEUR RADIO SINCE 1950
Your one source for all Radios & Equipment!

For + the + best + buys + in + town + call: + 212-925-7000

+ Los + Precios + Mas + Bajos + en + Nueva + York

+ We + Ship + Worldwide

Barry Electronics Corp.
WORLD WIDE AMATEUR RADIO SINCE 1950
Your one source for all Radios & Equipment!

+ We + Ship + Worldwide
NEW products

TVRO cable

Nemal Electronics International of North Miami, Florida, has introduced a new addition to its line of direct burial combination cable for use in TVRO installations. Nemal type-4 satellite control cable is the first combination cable available to the satellite industry containing an RG-6/U, 18 gauge, 95 percent copper shielded signal cable. SCC-4 also contains two conductors of 12 gauge, three conductors of 18 gauge, three conductors of 20 gauge shielded plus drain wire, and three conductors of 22 gauge shielded plus drain wire.

![TVRO Cable Image]

All Nemal satellite control cables utilize a patented direct-burial polyethylene jacket as well as tinned copper drain wires. Nemal also offers a complete line of over 500 types of cable, connectors, and SMATV products.

For additional information, contact Nemal Electronics International, Inc., 12240 N.E. 14th Avenue, North Miami, Florida 33161.

Circle 1303 on Reader Service Card.

outdoor scanner antenna

Hamtronics, Inc. has announced a new antenna for scanner and monitor buffs. The compact ACT-1 Power Antenna, which may be installed easily on the side of a house, outside a window, in an attic, etc., without any special masts or brackets, is a broadband whip antenna with a low-noise preamplifier in its base. Although smaller than a full-size outdoor antenna (only 25 inches tall), the ACT-1 provides good coverage of distant signals and often outperforms larger antennas because of its active booster amplifier. A low-noise microwave transistor in the preamp provides excellent results from 30 MHz right up through the new 800-MHz band, and covers low-band, high-band, and UHF.

The ACT-1 Power Antenna is mounted to any flat or vertical surface with four wood screws. The 50-foot cable plugs directly into the "antenna" and "12V" jacks on the rear of most scanner radios. If your particular scanner doesn’t have jacks on the rear, Centurion offers an antenna harness with adapter plugs for the rear and antenna jacks on the front of your scanner.

![Outdoor Scanner Antenna Image]

Choosing the Best Antenna is... DUCK SOUP!

There are a lot of companies claiming to have the best rubber duck antennas, but when all the claims are boiled down, one rises to the top, CENTURION.

Besides having the advantage of peak performance and reliable quality assurance management backed by the most sophisticated RF testing equipment, Centurion gives you the quality visual appearance so important in the sale of your radio.

Centurion is the most popular original equipment antenna among leading manufacturers of hand-held radios, and variety of styles is another reason.

Centurion has created many different models with nine standard styles to choose from, including 1/4 wave models designed for high and low band VHF and UHF, 1/2 wave gain models for UHF and 5/8 wave telescopng models for VHF. Featured in the standard line are miniature models for UHF and VHF and pagers. Twenty-five different connectors are now available. And in the event the connector you need has not yet been invented, Centurion will design and manufacture it to meet your specifications.

Every antenna is factory-tuned. Field-tunable models are also available. When you want the best looking, best performing antenna for your radios, it's DUCK SOUP when you specify Centurion.

CENTURION

800/228-4563
P.O. Box 82846 Lincoln, NE 68501-2846

DESIGN ENGINEERS

CONSIDER OPPORTUNITIES IN THE SOUTHWEST

A rapidly expanding general aviation electronics manufacturer is seeking action-oriented, advancement-motivated engineers who are challenged by the exciting field of avionics.

Candidates with a BSEE and 2-5 years experience are sought for the design and development of aviation communication and navigation products. Successful applicants will be provided with an outstanding benefit package including educational assistance, profit-sharing and paid relocation.

Whether on the mountain slopes or on the courts and courses in the city, Alburque-queans enjoy outdoor sports and recreation throughout the year.

We are a dynamic, growing Corporation . . .

CONSIDER THE OPPORTUNITIES

Send resume to:

Vice President, Engineering
Terra Corporation
3520 Pan American Freeway N.E.
Albuquerque, N.M. 87107

November 1984

141
In November 1984, Hi tech from Europe never before available a receiver with so much Price range $800-$1500 Delivery Dec. 1984 Free SWL Catalog Dealer inquiries invited

FLUKE

ESKA

NEW

RX99PL

Professional Receiver PLL-Synthesized AM/SSB 99 Memories - AM PL DET.

Hi tech from Europe never before available a receiver with so much Price range $800-$1500 Delivery Dec. 1984 Free SWL Catalog Dealer inquiries invited

BIRD

Electronics East Coast's #1 Distributor

Complete Line Available

Call for quotes on all your Bird needs Dealer inquiries invited

ECC TRIMMER

Electronic Equipment Bank

(703) 938-3350

516 Mill Street N.E.

Vienna, VA 22180

ALL BAND TRAP ANTENNAS

PRETUNED - ASSEMBLED FOR ALL MAKES AM

ONLY ONE NEAT SMALL ANTENNA FOR ALL BANDS GUARANTEED FOR 200 YEARS WATT INPUT FOR 300 WATTS NO NOISE AMATEURS!!

COMPLETE with 30 ft. RG-58U-52 thin feeding, and PL-259 connector. Insulators, 30 ft. 300 ft. test feeder and supports, center connector with built-in lightning arrestor and electric discharge. LOW SWR for all bands. 180 V. - simper - in出击, so building tops or narrow lots. THE ONLY ANTENNA YOU WILL EVER NEED FOR ALL BANDS NO BALUNS NEEDED!!

30-40-20-15-10-2 m-trap 30 ft. Model 1004B $95

30-40-20-15-10-2 m-trap 30 ft. Model 1007B $195

SEND FULL PRICE FOR POSTPAID INSURED. DEL. IN USA (Canada is $100 extra for postage and other customs etc.) in order using VISA - MASTER CARD - AMER EXPRESS. Give name and address, State, Ph. (206-236-3331) DAM - 100 week days. We ship in 2-3 days. ALL PRICES MAY INCREASE WITH NO NOTICE.

CADDELL COIL CORP.

35 Main Street

Poultney, VT 05764

802-287-4055

BALUNS

Get POWER to your antenna! Our Baluns are already wound ready for installation in your transmatch or you may enclose them in a weatherproof box and connect them directly at the antenna. They are designed for 3.30 MHz operation. (See ARRL Handbook pages 19-9 or 68-20 for construction details.)

TUNE IN THE WORLD OF HAM-TV!

Hams should be "seen" as well as heard! Thousands of ATV operators across the country are sending great looking color TV pictures with sound) to each other. FSTV-DX can go hundreds of miles. There are now over 80 Ham Television "Repeaters" relay these video signals over rough terrain.

Ham Radio UHF-TV is as simple as hooking up a 2 meter rig and antenna. Our "Everything You Always Wanted To Know About ATV" 112-page manual will teach you how to do it ($9.95).

Under the guidance of the "United States ATV Society." Amateur TV (FSTV-SSTV-FAX) is growing in activity. And, we've been promoting it now for over 18 years!

Sample Issue - Just $2.50 ppd.

Special Trial Subscription - $10.00.

(Published Monthly)

AS ATV Magazine

P.O. Box H, Lowden, Iowa 52225

A Division of QCD Publications, Inc.
a 12V terminal, a simple 12 VDC plug-in adapter is available.

The price of the ACT-1 Power Antenna is only $79 plus $3 for shipping and handling.

For more information, contact Hamtronics, Inc., 65 Moul Road, Hilton, New York 14468-9535.

Circle F305 on Reader Service Card.

RTTY interface

HAL Communications RTTY Personal Computer Interface, PCI-2000, is a real RTTY modulator/demodulator, not a "computer compromise." All three shifts (170-425-850) transmit and receive. The full "103 type" modem for up to 300 baud may be set for either FDX (answer or originate) or HDX (either set on tones). The "202 type" modem may be used HDX up to 1200 baud, and may be jumper-selected for either "COM1" or "COM2" operation. Compatible with existing PC communications software (external DAA required for phone line connections, the PCI-2000 offer the multimode features of the CT2100 and CT2200 plus companion software that includes features such as split screen, TX and RX buffers, HERE IS storage, and disk message storage and retrieval. Of course, all PCI-2000 modes are set with the Personal Computer's FN keys.

For further information, contact HAL Communications Corporation, P.O. Box 305, Urbana, Illinois 61801.

Circle F302 on Reader Service Card.

150-MHz mini-catalog

Sinclair Radio Laboratories has issued a new mini-catalog describing its line of 150-MHz products, which includes base station antennas, transmitter combiners, duplexers, receiver mult couplers and ferrite isolators.

Featured in this line-up is the Q-Circuit Base Station Duplexer, Model Q-201G, a six-cavity unit that provides high attenuation at close frequency separations in the 132-174 MHz band. Its Q-Circuit design provides 100 dB isolation at 300 kHz spacing with 50 dB mid-band isolation.

For a copy, contact Sinclair Radio Laboratories, 122 Rayette Road, Concord, Ontario, Canada L4K 2G3.

Circle F308 on Reader Service Card.

New Products

Time to talk on a Ten-Tec Talkie

Made in the U.S.A. And it's priced right.

The Ten-Tec 2591 offers everything you've ever wanted in a 2-meter handheld.

- Memory Lockout permits the scanner to temporarily bypass channels for quick lockout of busy frequencies, yet retain them in memory for normal operation on demand
- 10 Memories with stored offset
- Modifiable Band Scan without complete reprogramming
- Scan any portion of the band within user defined upper and lower limits in steps of 5, 10, 15, 25, or 30 kHz.
- Change step size, upper and lower limits independently
- Manual Scan also up or down, in 5 kHz steps
- Selectable Skip or Hold
- 2.5 Watts or .4 Watts
- Covers 143.5-148.995 MHz
- LCD Readout with Back Light
- Quick-Release 450 mAH NI-CAD Battery Back
- 16-Key Dual Tone Encoder, built-in + LED shows battery status and transmit mode
- Designed and Manufactured in Tennessee. And it carries the famous TEN-TEC one year warranty.
- Put it to work for excellent 2 meter performance.

Homebrew Headquarters

MATCH MOST ANTENNA-FEEDLINE COMBINATIONS TO YOUR RIG

MATCHES: dipoles, inverted vees, beams quads, verticals, mobile whips, random wire, etc. that are fed by coax, balanced line or single wire

MAXIMUM POWER: 300 watts RF

INPUTS (selectable from front panel): 3-coax: 1-direct, 2-direct or thru tuner 1-balanced line (4:1 balun inc.) or single wire

IN-LINE CALIBRATED WATTMETER INCLUDED

ALSO IN STOCK

KITS: for HF, VHF, UHF & Test Equipment
COMPONENTS: Toroids, Rods & Beads, Resistors, Inductors, Capacitors, Antenna Components & Wire

1984-85 CATALOG 50¢

VIEWSTAR Mod. VS300A

ANTENNA TUNER

Fully Assembled and Tested $89.95

Plus $3.00 Shipping & Handling

Radio Kit

Box 411H, Greenville, NH 03048

(603) 878-1033, telex 887697

Nov 1 through Jan 31.
ICOM SPECIAL

IC-02AT 2 METER HT
and
IC-04AT 440 MHz HT

- Digital LCD Readout
- Scanning
- Programmable PL Tones
- Optional SW Battery
- S-Meter Function
- 10 Memories
- Offset Storage
- Lithium Memory Backup
- 13.8VDC Operation!
- Sealed Case

S.A.S.E. NOW! FOR FREE TNT HOT SHEET OF USED (AND NEW) EQUIPMENT—NOVICE TO EXTRA

FREE CP-1 MOBILE PWR/CHG CORD

- IC-02AT $299
- IC-04AT $339

WRITE FOR OUR "BENCH-TESTED" USED EQUIPMENT LISTING

MONDAY - SATURDAY
9 AM to 6 PM CENTRAL TIME

VISAMASTERCARD DISCOUNT—CASH

4124 West Broadway, Robbinsdale, MN 55422 (Mpls./St. Paul)

PRE-PUBLICATION SPECIAL

NOW'S THE TIME TO ORDER YOUR 1985 Radio Amateur Callbooks

U.S. CALLBOOK
All the latest calls, addresses and other important information. Fully up-to-date and edited to ensure accuracy. © 1984.

- CB-US85
 - Softbound $25
 - ($21.95 + $3.05 s & h)

1985 US and Foreign CALLBOOKS will be ready for shipping by early December. All orders received before Nov. 15, 1984 will be expedited direct from the printer.

Order Both and SAVE even more
Regular Price $45

HAM RADIO
PRE-PUBLICATION SPECIAL $39.95
SAVE $5

Tell 'em you saw it in HAM RADIO!
Tie Tacks

Handsome 14 karat gold tie tacks with your call individually handcrafted in white or yellow gold with a satin finish and antiqued background.

When ordering please specify white or yellow gold large or small (shown actual size) and carefully print your call.

Small $41.00 Large $57.00

Please add $3.00 to cover shipping and insurance.

Send check or money order to:
Robert S. Schurmann, KAZUXR
5031 River Road. Pennsauken, NJ 08110
(609) 488-2266

New Jersey Residents add 6% sales tax.

12240 N.E. 14th Ave.
No. Miami, FL 33161

Telephone: (305) 893-3924

R-T HV Mark II
LT

NEW, EASY-TO-USE DESIGN
GET TRANSI-TRAP™ LIGHTNING PROTECTION

Protect your valuable equipment from antenna voltage surges caused by nearby lightning, high wind and static electricity. Keeps harmful ARC- energy off equipment by safely shutting it to ground. Uses tested, field proven, and replaceable ARC-PLUG™ gas filled ceramic cartridge.

Model LT 200 watts @ 500 $19.95
Model HT 200 watts @ 500 $24.95
Ruggedized Super Low Loss (1 dB at 500 MHz)
Model LT 200 watts @ 500 $29.95
Model HT 200 watts @ 500 $32.95
See your local dealer or order direct. P.S. include $2 for shipping and handling. MC and VISA accepted.

ALPHA DELTA COMMUNICATIONS
P.O. Box 571, Centerville, Ohio 45459
(513) 435-4772

HI TECH KITS FROM MICROBYTE SYSTEMS

THIS MONTH'S SPECIALS
CMOS KEYS KIT
BATTERY OPERATED SELF CHEETING SMALL ENOUGH TO MOUNT ON KEYBOARD $9.95 COMPLETE KIT $24.95
AS-232 LINE MONITOR KIT
MONITOR SEVEN STANDARD DATA LINES AND TWO OPTIONAL BOARD $9.95 COMPLETE KIT $19.95
CRT BLANKER KIT
PREVENTS PRODUCER BURN - RESTORES SCREEN DATA WITH FIRST KEYSTROKE BOARD $9.95 COMPLETE KIT $19.95
DRIVE MOTOR CONTROL KIT
SAVES WEAR AND TEAR ON INCH DRIVES NO LOST DATA ONLY FOUR CONNECTIONS BOARD $12.95 COMPLETE KIT $29.95
COMMODORE 80/44 AS-232
CONVERTS PC TTL LEVELS TO 120232 STANDARDS BOARD $14.95 COMPLETE KIT $29.95

NOW MORE KITS AVAILABLE
SEND $1.00 FOR NEW CATALOG REFUNDABLE ON FIRST ORDER NOT REQUIRED WITH ORDERS

VISA

INTERNATIONAL MEDIA SERVICE
BOX 26 • TEWKSBURY, MA 01876

NOVEMBER 1984

70 cm GaAs FET Pre-Amp, 18 dB Gain

Since our first ad in May '84 many of your VHF/UHF colleagues have successfully installed this preamp.

- Low noise $0.75 dB
- 18 dB gain
- Dual gate GaAs FET
- N connectors
- Weatherproof mast mount

EVV-2000 GaAs FET Preamp $109.95 + $5 shipping
EVV-700 GaAs FET Preamp $29.95 + $2.50 shipping

INTERNATIONAL MEDIA SERVICE

12240 N.E. 14th Ave.
No. Miami, FL 33161

Telephone: (305) 893-3924

IN STOCK
OVER 500 ITEMS
COMPLETE LINES

110
Ham Radio's guide to help you find your local dealer.

California

AMATEUR ELECTRONIC SUPPLY
621 COMMONWEALTH AVE.
ORLANDO, FL 32803
305-894-3238
 Fla. Wats: 1 (800) 432-9424
Outside Fla: 1 (800) 327-1917
Hours M-F 9:00-5:30, Sat. 9-3

AMATEUR RADIO CENTER, INC.
2805 N. E. 2ND AVENUE
MIAMI, FL 33137
305-573-8383
The place for great dependable names in Ham Radio.

Hawaii

HONOLULU ELECTRONICS
819 KEEAUMOKU STREET
HONOLULU, HI 96814
(808) 949-5564
Serving Hawaii & Pacific area for 51 years. Complete lines of Amateur equipment, accessories and parts.

Illinois

ERICKSON COMMUNICATIONS, INC.
5456 N. MILWAUKEE AVE.
CHICAGO, IL 60630
312-631-5181
Hours: 9:30-5:30 Mon, Tu, Wed & Fri;
9:30-8:00 Thurs; 9:00-3:00 Sat.

Indiana

THE HAM SHACK
808 NORTH MAIN STREET
EVANSVILLE, IN 47710
812-422-0231
Discount prices on Ten-Tec, Cubic, Hy-Gain, MF Azden, Kantronics, Santec and others.

Kentucky

L & S RADIO
307 McLEAN AVENUE
HOPKINSVILLE, KY 42240
502-885-8071
Ten-Tec, Azden, Ameritron Sales and Service.

Massachusetts

TEL-COM, INC.
675 GREAT ROAD, RTE. 119
LITTLETON, MA 01460
617-486-3400
617-486-3040
The Ham Store of New England
You can Rely On.

Michigan

ENCON PHOTOVOLTAICS
Complete Photovoltaic Systems
27600 Schoolcraft Rd.
Livonia, Michigan 48150
313-523-1850
Amateur Radio, Repeaters, Satellite, Computer applications.
Call Paul WD8AHO

Nevada

AMATEUR ELECTRONIC SUPPLY
1072 N. RANCHO DRIVE
LAS VEGAS, NV 89106
702-647-3114
Outside Nev: 1 (800) 634-6227

NEW YORK

ADIRONDACK ELECTRONICS, INC.
1991 CENTRAL AVENUE
ALBANY, NY 12205
518-456-0203
Amateur Radio for the Northeast since 1943.

Dealers: YOU SHOULD BE HERE TOO!
Contact Ham Radio now for complete details.
Amateur Radio Dealer

Ohio

AMATEUR ELECTRONIC SUPPLY
29940 EUCLID AVE.
WICKLIFFE, OH (CLEVELAND AREA) 44092
216-585-7388
Ohio Wats: 1 (800) 362-0290
Outside Ohio: 1 (800) 321-3594
Hours M-F 9-5:30, Sat. 9-3

UNIVERSAL AMATEUR RADIO, INC.
1290 AIDA DRIVE
REYNOLDSBURG (COLUMBUS), OH 43068
614-866-4267

Pennsylvania

HAMTRONICS, DIV. OF TREVOSE ELECTRONICS
4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215-357-1400
Same Location for 30 Years.

LaRUE ELECTRONICS
1112 GRANDVIEW STREET
SCRANTON, PENNSYLVANIA 18509
717-343-2124

THE VHF SHOP
BOX 349 RD 4
MOUNTAIN TOP, PA 18707
717-668-6565
Lunar, Microwave Modules, ARCOS, Astron, KLM, Tama, Tonna-F9FT, UHF Units/Parabolic, Sanec, Tokyo Hy-Power, Dentron, Mirage, Amphenol, Belden

Texas

MADISON ELECTRONICS SUPPLY
1508 MCKINNEY
HOUSTON, TX 77010
713-658-0268
Christmas? Now??

Wisconsin

AMATEUR ELECTRONIC SUPPLY
4828 W. FOND DU LAC AVE.
MILWAUKEE, WI 53216
414-442-4200
Wisc. Wats: 1 (800) 242-5195
Outside Wisc: 1 (800) 258-0411
M-F 9-5:30
Sat 9-3

IMPROVE YOUR SELECTIVITY

Install Fox-Tango's top-quality 8-pole FL-44A 2.4KHz bandwidth 455KHz SSB filter. Guaranteed to equal or exceed Icom specifications. (Shape factor: 1.75)

EASY DROP-IN INSTALLATION
Complete instructions.

SAVE!
Reg. Icom price $159
Reg. Fox-Tango price ... $125
Fox-Tango SALE PRICE ... $100

Limited Quantities - Order Today - Write or Phone.
SHIPPING: $3, Air $5, COD add $1, Overseas $10 FL Residents add 5% Sales Tax.

FOX TANGO CORPORATION
Box 15944 H, W. Palm Beach, FL 33416
(305) 683-9587

10GHz GUNNPLEXER transceiver

TR10GA

- Complete ready to use 10 GHz fm voice/cw transceiver
- 10 mW power output
- Typical frequency coverage 10.235-10.295 GHz
- Full duplex operation
- Internal Gunnplexer for portable operation
- Gunnplexer removable for tower mounting in fixed location service — three shielded cables required for interconnection
- Powered by 13 volts dc nominal at 250 mA
- 30 MHz IF
- 10-turn potentiometer controlled VCO tuning
- 220 kHz ceramic IF filter
- Extra diode switched filter position for optional filter
- Dual polarity etc
- Rugged two-tone grey enclosure
- Full one year warranty
- $389.95 with 10 mW Gunnplexer
- $269.95 without Gunnplexer

Advanced Receiver Research
Box 1242 - Burlington CT 06013 - 203 582-9409

Nov. 1984
THE 10/160M GIVES YOU THAT EXTRA BIT OF QUALITY THAT REALLY GETS YOU THROUGH TO THAT SPECIAL DX STATION, OR JUST ENJOYING A FULLY RELAXED QSO WITH ANOTHER AMATEUR THE OTHER SIDE OF THE COUNTRY. YOUR 10/160M GIVES YOU THE EASE OF OPERATION THAT YOU WANT WITH 4 MEMORIES OR THE 3 WAY AUTO SCAN, DUAL VFO, IF SHIFT, CW-W CW-N, HAND MIC AND BUILT IN AC/DC POWER. ALL BANDS ARE FULLY OPERATIONAL INCLUDING THE NEW WARC BANDS, YOUR CHOICE OF EASY OPERATING USB, LSB, CW OR RTTY IS AT YOUR FINGER TIPS. WITH A FULL 200 WATTS PEP OUTPUT YOUR FINALS ARE PROTECTED FROM HIGH SWR.

YOUR 10/160M IS ALL SOLID STATE WITH MODULAR BOARDS THAT ARE EASY ACCESSIBLE. A BRIGHT BLUE FLUORESCENT DIGITAL DISPLAY IS EASY TO READ AT ALL TIMES. BEST OF ALL THERE ARE NO EXTRA OPTIONS TO BUY TO GET YOU ON THE AIR, ITS ALL THERE. JUST TAKE YOUR 10/160M HOME AND 1. CONNECT A ANTENNA. 2. PLUG INTO 120V AC OUTLET. 3. TURN THE SWITCH ON. 4. SELECT THE BAND AND FREQUENCY AND YOUR ON THE AIR. YOUR RECEIVING AUDIO IS CRISP AND CLEAR. YOUR TRANSMITTED SIGNAL WILL GET YOU THE PRAISE FROM EACH CONTACT. THE 10/160M GIVES YOU A SUPERIOR TRANSCEIVER THAT IS UNCOMPARABLE.

MORE INFORMATION IS AVAILABLE FROM NCG CO.
1275 N. Grove St., Anaheim, CA 92806

15M-MOBILE IS YOURS TO CONTINUE YOUR QSO WITH THAT SPECIAL FRIEND WHEN YOU GO ON A VACATION OR JUST GOING TO OR FROM WORK. A TRULY QRP RIG WITH THE BIG RIG SIGNAL EITHER CW OR USB. THE DIGITAL FREQUENCY DISPLAY IS EASY TO READ AND YOUR 10 WATTS OR 2 WATTS ON USB OR CW WITH A BUILT IN SIDE TONE, HIGHLY EFFECTIVE NOISE BLANKER, AUDIO ALC GIVES DISTORTION FREE TRANSMISSION. THE VFO BAL WITH GEARS ALLOWS HIGH-PRECISION TUNING. DIGITAL DISPLAY OFFSET WHEN RIT IS IN OPERATION (A MODIFICATION THAT TAKES 5 MINUTES CHANGES THE RIT TO A FINE TUNING CONTROL). A LARGE S/RF METER IN THE CENTER AND A TOP 8 OHM .5W SPEAKER, YOU RECEIVE AUDIO IS DIRECTED UP.

EXTERNAL SPEAKER AND CW JACKS, MOBILE MOUNTING BRACKET AND A 400 OHM PT DYNAMIC MICROPHONE. FULL 15 METER BAND OPERATION FROM 21 to 21.450 MHZ, YOU OFFSET FREQUENCY RANGE OR FINE TUNE ±4 KHz. THE SIGNAL TO NOISE SENSITIVITE IS MORE THAN 10DB DOWN AT -6DB INPUT POWER SOURCE IS 13.8V DC, 3 AMPS. THE SMALL SIZE WILL ALLOW MOBILE OPERATION FROM EVEN THE SMALL CARS, ITS ONLY 8"H x 9.5D, THE LIGHT WEIGHT OF ONLY 5 LBS. MAKES THE 15M A POSSIBLE BAC PACKERS DREAM.

WITH YOUR 15M YOU WILL NOT HAVE A BIG EXPENSIVE PIECE OF EQUIPMENT SETTING IN YOUR VEHICLE. IT CAN BE UNDER THE DAS OUT OF SIGHT.

NOTE: PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE OR OBLIGATION.
1. It's BRAND NEW
2. It's BIGGER. Over 350 pages.
3. It's EXPANDED. Covers everything from basic electronics to esoteric radio gear.
4. It's chockfull of NEW PROJECTS.
5. It's the MOST COMPLETE reference text available.
6. Reserve your copy TODAY. Handbooks will be shipped as soon as they are received from the printer. (Scheduled for early November)

PRE-PUBLICATION SPECIAL

1985 HANDBOOK
Reg. Price $15.00 (plus $2.50 shipping)

NOW $12.95 (plus $2.50 shipping)

SAVE $2

OFFER EXTENDED EXPIRES DEC. 15, 1984

COLLINS TUNER

Collins 109Y-1 Antenna TUNER for 2-30 MHz; has dual section air variable 50-1600 and 30-600 pf (0.005 - 0.156" max gap) and 2.9" dia 14-turn roller inductor of 0.19" dia tubing, ceramic tap switch, 3100 of 7500 V air variable capacitors. Controls C and L. 7x12.5x16.8, 33 lbs. Used.

$99.50

GRAINGER

AM 4531 Linear Amp, 120-152 MHz; 10 W in, 50 W out using 8122 tube in P-A. 1151230 VAC; 7x19x14.5, 50 lbs. Used.

$195.00

JENNINGS

UCS-300-7.5 Vacuum Variable Capacitor, 9-300 pf 7500 V max; 3 lbs sh. Unused.

$99.95

FACSIMILE

COPY SATELLITE PHOTOS, WEATHER MAPS, PRESS!
The Facts Are Clear - on our full size (11x11/2" wide) fax recorder Free Fax Guide

TELETEX

RTTY MACHINES, PARTS, SUPPLIES

ATLANTIC SURPLUS SALES (212) 372-0149

MOSLEY...A BETTER ANTENNA...

Antennas For 40 Meters...

- ALL STAINLESS HARDWARE
- NO MEASURING
- BROAD BAND WIDTH
- 2 YEAR WARRANTY
- BUILT TO LAST
- 5 KW P.E.P.
- NO BALUN NEEDED

FAIR RADIO SALES

1016 E. EUREKA • Box 105 • LIMA, OHIO 45802

Buckmaster Publishing

Whitehall
Mineral, VA 23117 U.S.A. (703) 894-5777

VISA, MASTERCARD Accepted. Allow for Shipping

Send for Free Catalog

November 1984
INTRODUCING THE MICRO REPEATER CONTROLLER RPT-2A, A NEW CONCEPT IN LOW COST, EASY TO INTERFACE, MICROCOMPUTER REPEATER SYSTEM. Replaces old logic boards with a state of the art microcomputer that adds NEW FEATURES, HIGH RELIABILITY, LOW POWER, SMALL SIZE, AND FULL DOCUMENTATION to your system. Direct interface (drop in) with most repeaters. Detailed interface information included. Original MICRO REPEATER CONTROLLER article featured in QST Dec. 1983.

- Two CW ID Messages
- Time Out Timer
- Pre Time Out Warning MSG
- Post Time Out MSG
- Courtesy Beep
- Auxiliary Inputs
- Repeatable CDR Input
- Self Check PT Interface
- Tone Wave Tone Generator
- Low Power 9.15 VDC @ 200 ma
- Size 3.5" x 3.5"
- All connections included

RPT-2A Kit Only $19.95 plus $3.00 shipping

PROFESSIONAL CONCEPTS
P.O. BOX 185
FORT ATKINSON, WI 53538
(414) 563-4862 7pm-10pm Evenings

CALL OR WRITE FOR FREE CATALOG AND SPECIFICATIONS

FREE CATALOG

WE GOT IT ALL
- QUALITY ELECTRONIC COMPONENTS
- ELECTRONIC PROJECT KITS
- COMPUTER KITS

THIS MONTH'S SPECIALS

COMPUTER KITS

FOR VIC AND COMMODORE 64
CASSETTE INTERFACE KIT
$15.95
RS-232 INTERFACE KIT
$29.95
VIC 20 BUSS EXPANDER KIT
$24.95
COMM 64 BUSS EXPANDER KIT
$29.95

ELECTRONIC PROJECT KITS
CMOS MOBILE KEYER KIT
$9.95
1 WATT AUDIO AMPLIFIER KIT
$11.95
FLOW LEVEL DETECTOR KIT
$14.95
ADD-ON OSCILLATOR KIT
$12.95

COMPONENTS
1N4001 1A 1A DIODES
25/$2.00
14 PIN IC SOCKETS
10/$1.00
25 PIN IC SOCKETS
5/$1.00
01 DISC CAPACITORS
25/$1.00

SEND $1 FOR OUR NEW CATALOG
(PREPAID ON FIRST ORDER. NO CHARGE FOR CATALOG WITH ORDERS. DEALER QUOTE WELCOME. ADD $3.00 SHIPPING ON ORDERS UNDER $5.00)

CHECKS, MONEYORDERS, VISA, C.O.D.
Daytapro Electronics, Inc.
312-870-0555
OPEN EVENINGS
LEARN THE SECRETS!!

- "Spills the beans about operating"—DX Bulletin
- "A timeless work"—DX Bulletin
- "A first-class treatise"—Ham Radio
- "A solid gold treasure trove—a smash hit!"—73
- "Sure to increase competition for DX!"—QST

A complete course for the DX'er—beginner to Honor Roll. 192 pages of solid DX—no charts, graphs or other fillers. Available now at dealer for $10.95 or add $2.00 postage and handling.

170 Idiomi Press Dept. D Box 583 Deerfield, IL 60015
here is the next generation Repeater

MARK 4CR

The only repeaters and controllers with REAL SPEECH!

No other repeaters or controllers match Mark 4 in capability and features. That's why Mark 4 is the performance leader at amateur and commercial repeater sites around the world. Only Mark 4 gives you Message Master™ real speech • voice readout of received signal strength, deviation, and frequency error • 4-channel receiver voting • clock time announcements and function control • 7-helical filter receiver • extensive phone patch functions. Unlike others, Mark 4 even includes power supply and a handsome cabinet.

Call or write for specifications on the repeater, controller, and receiver winners.

MICRO CONTROL SPECIALTIES
Division of Kendecom Inc.
22 Elm Park, Groveland, MA 01834 (617) 372-3442

CB-10 FM SPECIAL

- Hy Gain 40-Channel Board
- 40-Channel Switch
- Volume & Squelch Control
- FM Detector Module
- Full Instructions Included

$14.95 Add $2.00 shipping & handling

QRP TRANSCEIVER SET $34.95

VHF CONVERTER SET $24.95

Add $2.00 For Shipping & Handling – Send For FREE Brochure

SEND $2.00 For FULL MANUAL WITH CIRCUIT DIAGRAMS

MANY OTHER MODULES AVAILABLE

MORNING DISTRIBUTING CO.
P.O. BOX 717, HIALEAH, FLA. 33011
(305) 684-8666

NOVEMBER 1984
152
MADISON Electronics Supply
1508 McKinney
Houston, Texas 77010

RTTY SALE!!!

MADISON has several RTTY systems on sale this month. If you don't see what you want, give us a call. We may have it on SALE.

AEA PACKAGE SPECIALS
This package allows full MORSE, BAUDOT, ASCII RTTY and AMTOR operations:
- AEA CP-1...$219.95
- AEA TI-1...$219.95
- AEA MB-1020 software...$219.95
- 5 ft. Belden mic cable...$5.00
- MIC Connector, 4 or 8 pin...$4.95

SPECIAL SALE PRICE...$279.95...YOU SAVE $50

This package is for those who don't need the software. It includes:
- AEA CP-1....$219.95
- AEA TI-1...$219.95
- AEA MB-1020 software...$219.95
- 5 ft. Belden mic cable...$5.00
- MIC Connector, 4 or 8 pin...$4.95

SPECIAL SALE PRICE...$259.95...YOU SAVE $50

All items available separately...CALL

AEA ATRA IN STOCK...SPECIAL PRICE...CALL

KANTRONICS
We have the entire KANTRONICS product line in stock at special prices this month. All KANTRONICS units work with any computer that has a RS-232 port. Includes:
- Terminal software (IBM-PC or CP/M)...$25.00

SPECIAL SALE PRICE...$199.95...YOU SAVE $40

KANTRONICS "CHALLENGER" terminal unit with NEW PRODUCT from Kantronics...$99.95

KANTRONICS INTERFACE...$239.95

These are our regular "Deal" prices, but we include the KANTRONICS SOFTWARE of your choice at a 20% DISCOUNT. TALK TO A DEALER!

GOSH, I almost forgot about the AEA PACKAGE...CALL for special prices on the AEA PACKAGE.

AEA PACKET, The new AEA PACKET SYSTEM...$495.00

All features of the AEA VADS SYSTEM and some extras...CALL for special prices on the AEA PACKET.

MICROLOGIC...We have a few ATR-1 units available and need to move them. NEW and USED...CALL

NEEDLESS TO SAY, BUT THESE ARE SPECIAL PRICES. THE PRICE WILL NOT HOLD IN DECEMBER. ALL PRICES ON OVERSTOCK ITEMS ONLY, UNTIL SUPPLIES ARE GONE. TAKE ADVANTAGE OF THESE DEALS NOW!!!

DON'S CORNER
There is a series of products everyone should look into - AEA MICROLOGIC. We have used and really enjoy these finds from the manufacturer. The two micro modules can turn your rig into a dream machine. It gives a lot more punch to your audio. The Headset/boom Mic setup is the best we have ever used and it's comfortable and light to weight. The SS-2 powered speakers allow you to carry signs much easier. It gives you a lot of CLEAN AUDIO. Give these a try, enjoy them.
RATES Noncommercial ads 60¢ per word; commercial ads 69¢ per word both payable in advance. No cash discounts or agency commissions allowed.

HAMFESTS Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing) on a space available basis only. Repeat insertions of hamfest ads pay the non-commercial rate.

COPY No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. **Ham Radio** cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad and include full name and address. We reserve the right to reject unsuitable copy. **Ham Radio** cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad.

DEADLINE 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

Flea Market

OSL & RUBBER STAMPS — Top Quality Card Supplies and Stamp info — 500 — Ebben Graphics 513, Box 70, Westerly, Ohio 43061.

C7X REPAIRS. 415-549-9210.

WANTED: General Radio 874MR mixer. Rudolf Six, KAO6LB, 30725 Tennessee, Rossville, GA 30740.

TRAVEL-PAK QSL KIT — Converts post cards, photos to QST, QRP, W4O, QRP, QRP. Send $3.50 to: E. Alline, 773 Rosa, Melville, NJ 07706.

**WANTED old antenna books, handbooks. CQ, pre-1940

CUSTOM MADE入ing

RATES Noncommercial ads 60¢ per word; commercial ads 69¢ per word both payable in advance. No cash discounts or agency commissions allowed.

HAMFESTS Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing) on a space available basis only. Repeat insertions of hamfest ads pay the non-commercial rate.

COPY No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. **Ham Radio** cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad and include full name and address. We reserve the right to reject unsuitable copy. **Ham Radio** cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad.

DEADLINE 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

RUBBER STAMPS: 3 lines $4.50 PPP. Send check or MO to G.L. Pierce, 6212 Bindleway, San Diego, CA 92117. SASE brings issue.

**COLLINS KWMX with all optional interfaces. Perfect 22495, WAWNP. 209-642-3603. 10932 RD 428, Oakhurst, CA 93644.

**KEYER/CODE trainer chip. One evening project. Great project for beginners, clubs or anyone who needs a good, low cost code trainer. $15 ea. IBM, PPI, VAC/MASTER accepted. Micro Digital Technology, PO Box 1139, Mesa, AZ 85201 (602) 897-2534.

**REPAIR, ALIGNMENT, calibration. Collins written estimates $25, non Collins $50. K1MAN (207) 495-2215.

**ATLAS 350XL owners send QSL card with $5 in your rig. Know anyone who repairs them? Have any technical information to share? Any questions? Rod, N6QNM, Box 2169, Santa Fe, NM 77054.

**CHASSIS and cabinet kits. SASE $3.00.

SCHEMATICS: Radio receivers 19006a's, SASE, Scaramella, P.O. Box 1, Woosocket, RI 02895-0001. (602) 897-2534.

AMATEUR RADIO's newspaper — Worldradio. Latest info. One year subscription (12 issues) only $10. Worldradio, 2120-B 28th St., Sacramento, CA 95817.

**TR-964A Random Code practice programs. Dr. Code. "General" sends instructional Morse code and prints on screen: you choose: speed, tone, which characters to be sent, spacing and more! Dr. Code "Speech" same as "General" with speech; you choose how many characters before speech check. For cassette of both copyrighted programs and conditional copying privileges, send $10.00 plus $3.00 shipping and handling to NSEF, Rt. 1, Box 1226, Lake Charles, LA 70601.

ENJOY SATELLITE TELEVISION. Save money with easy, guaranteed, do-it-yourself antenna planskits. Electronic knowledge not necessary. Send $1.00 or catalog or $8.50 for "Consumer Guide to Satellite Television". GFI-41, Box 9190, Missoula, MT 59807.

VHF, UHF, ATV KITS High quality professional kits from Wood and Douglas, England. Designs for PX's, TX's, VXV's, pre-amps. Catalog Lance Lyman, KBIXZ, Tactical Electronics Corp., P.O. Box 1743, Melbourne, FL 32902.

ELECTRONIC RUBIES: Receiving, transmitting, microwave all types available. Large stock. Next day delivery most cases. Daily Electronics, 14126 Willow Lane, Westminster, CA 92683. (714) 894-1369.

**S9 PLUS QTH. 59 acres for antena farm — elevation above Denver receiver $100. For sale — Crotch Mountain for wide propagation window, solar exposure and view — spacious 4-room lodge, appliance kitchen, sauna, bedroom, entertainment and guestroom addition — paved access — privacy — one hour from Nashua or Manchester. Owner retitling, must sell: "CW" Fart, W11MK, Broker, Greenfield, NJ 08340 (609) 547-2053.

**DIGITAL AUTOMATIC DISPLAYS for FT 101, and TS 520 (functional OG-5 replacement) Collins, Drake, Swan, Heath, and most others. 6½" digits. Write for literature. Grand Systems, P.O. Box 2171, Blaine, WA 98230 (604) 530-4551.

WANTED: Cash for used speed radar equipment. Write to: K1ST, 12th NE., Seattle, WA 98105. PENNSYLVANIA: The Foothills ARC's 16th annual Hamfest, St. Bride's Church, South Greensburg, Saturday, November 3. Tickets $2.00 or $3.00. Indoor flea market tables $5.00. Food, refreshments. 250 17th St. For information: Steve Tolf, K1ST, 12th Phylmor Drive, Westboro, MA 01581.

WANTED: The R.H. Fielder Amateur Radio Club's annual indoor Winterfest, Sunday, November 4, Sellersville National Guard Armory. Doors open 8 AM. Entry $2.00. Non-ham spouse and kids admitted free. Food on premises and near by restaurants. Vendors indoor space $6.00 each, outdoor space $4.00 each. Admits one free ticket. For reservations: PO Box 29, Comar, PA 18915 (215) 721-0278. Talk in on 145.19 (R). 146.68 (R) and 146.52 simplex.

WANTED: The Honeywell 1200 Radio Club, sponsor of 147.72/02 repeater and the Waltham Amateur Radio Association, sponsor of 146.00/449 repeater, will hold their annual amateur Radio and electronics auction, Saturday, November 17, Honeywell Plant, 300 Concord Road, Billerica. Doors open 10 AM. Free admission and parking. Snack bar and bargain parts store. Talk in on both repeaters. For information: Doug Purdy, N1BUB, 3 Veeso Road, Burlington, MA 01803.

WANTED: Honeywell 1200 Radio Club, sponsor of 147.72/02 repeater and the Waltham Amateur Radio Association, sponsor of 146.00/449 repeater, will hold their annual amateur Radio and electronics auction, Saturday, November 17, Honeywell Plant, 300 Concord Road, Billerica. Doors open 10 AM. Free admission and parking. Snack bar and bargain parts store. Talk in on both repeaters. For information: Doug Purdy, N1BUB, 3 Veeso Road, Burlington, MA 01803.

NEW YORK: Radio Central ARC "Ham-Central" Sunday, November 25, 1864, to 3 PM. Social Hall, Temple of Isaiah, 1404 Stony Brook Road, Stony Brook, NY. Seminars will be presented. For information contact W5Z, KPGZ (516) 981-2709 or write 3 Haven Ct., Lake Grove, NY 11755.

INDIANA: The 12th Fort Wayne Hamfest sponsored by the Allen County Amateur Radio Society, Sunday, November 11, Allen County Memorial Coliseum, Coliseum Blvd. Advance tickets $3.00, $3.50 at door. Tables $8.00. Premium tables
BEST BUY! EASY-TO-ASSEMBLE KIT only $660.00 freight prepaid in 48 states
40 ft. M-13 aluminum tower and FB-13 fixed concrete base (beautiful)

Other sizes at comparable savings. HAZER = Tower Tram System Lowers antenna with winch. Complete system comes to ground level in upright position.

HAZER your Rohn 20-25G
H-3 - 8 ft. sq. ft. $132.00 Ppa.
H-4 - 16 ft. sq. ft. $275.00 Ppa.
-5 - 12 ft. sq. ft. (for H-13 above) $302.00 Ppa.
All Hazers include winch, cable & how.

4-B2 - Thrust bearing $42.50
2-B2 - 6 forged steel eye and eye turnbuckle $10.75
3-D2 - 4 ft. long earth screw anchor $12.75
1-D2 - 7x7 Aircraft cable guy Wire 1700 lb. rating, 12 ft.
W-115 - 115 VAC winch - 1000 lb. load $239.95
W-1000 - Manual winch 1000 lb. capacity $235.00
W-1400 - Manual winch 1400 lb. capacity $29.95
P-3665 - Pulley block for 3/16" cable $55.00
5 M-18S - 18 inch face aluminum tower, stain slack holds HAZER, TB-25 bearing and hinged base system $152.00 (Free prepaid to Canada) 2580 - Martin Super Tower (nothing else compares 50 yrs. steel totally freestanding in 100 MPH wind with 30 sq. ft. antenna $2995.00)

Glen Martin Engr.
P.O. Box H-253
Boonville, Mo. 65233
616-882-2734

WARNING SAVE YOUR LIFE OR AN INJURY

Base plates, flat roof mounts, hinged bases, hinged sections, etc., are not intended to support the weight of a single man. Accidents have occurred because individuals assume situations are safe when they are not.

Installation and dismantling of towers is dangerous and temporary guys of sufficient strength and size should be used at all times when individuals are climbing towers during all types of installations or dismantling. Temporary guys should be used on the first 10 or 15' during erection or dismantling. Dismantling can even be more dangerous since the condition of the tower, guys, anchors, and/or roof in many cases is unknown.

The dismantling of some towers should be done with the use of a crane in order to minimize the possibility of member, guy wire, anchor, or base failures. Used towers in many cases are not as inexpensive as you may think. If you are injured or killed.

Get professional, experienced help and read your Rohn catalog or other tower manufacturers' catalogs before erecting or dismantling any tower. A consultation with your local, professional tower erector would be very inexpensive insurance.

For By the Following:
ROHN P.O. Box 2000
Pecora, IL 61565

Paid for by

RF Products
P.O. Box 33, Rockledge, FL 32955, U.S.A.
(305) 631-0775

November 15

MICHIGAN: The Oak Park High School Electronics Club presents a Swap & Shop, Thanksgiving Sunday, November 25, Oak Park HS, Oak Park. Donations $2.00. Tables $5.00. Refreshments. For information, SASE to Mr. G. Beutler, Oak Park HS, 13701 Oak Park Blvd., Oak Park, MI 48237.

OPERATING EVENTS

"Things to do...

NOVEMBER 25 AND 26: The BOMBE Squad (Best of Mt. Baldy) will operate W6HBP (Hollywood Christmas Parade) from 100 to 1600 GMT, November 25 to 0400 GMT, November 26. Frequencies: 7.284, 14.264, and 21.284 MHz SSB. SASE to W6VGY for special commemorative QSL.

NOVEMBER 22-23: THANKSGIVING DAY: A special events station (WA1NPO) will be operating from Pilmoth Plantation in the museum's 1872 Piligrim Village from 1300 GMT to 2000 GMT with permission of the UK Club Station GB0UST, GB0BST, GB0UW. To receive a certificate, send proof of contact and $1.00 domestic or US $2.00 foreign to 4 IRC's to Whiman ARC, PO Box 48, Whiting, IN 46394. For information: KAJECZ (617) 826-4772, W1BCU (617) 586-2754. Rosemary Carroll, Pilmoth Plantation, PO Box 1640, Plymouth, MA 02360. (617) 746-1022. Amateur Radio Fundamentals

NOVEMBER 10 AND 11: The Armed Force Amateur Radio Nationwide Emergency Team (A FAR NET) will sponsor a Veteran's Day special event station event station from 1200 GMT Saturday to 2400 GMT Sunday. Primary frequencies: 7.285, 14.325, 21.375 and 28.640 + QRM. For a certificate send QSL and large SASE to Alfred G. Beutler, 36 Manchester Road, East Aurora, New York 14052.

NOVEMBER 17 AND 18: VK versus the World Sponsored "Things to do..." by

NOVEMBER 10: The Armed Force Amateur Radio Nationwide Emergency Team (A FAR NET) will sponsor a Veteran's Day special event station event station from 1200 GMT Saturday to 2400 GMT Sunday. Primary frequencies: 7.285, 14.325, 21.375 and 28.640 + QRM. For a certificate send QSL and large SASE to Alfred G. Beutler, 36 Manchester Road, East Aurora, New York 14052.

DECEMBER 1 AND 2: The 20th annual Telephone Pioneer QSO Party starts 1900 UTC Saturday to 0500 UTC Monday. 1.8-2400 MHz + Exchange: Contact number and chapter name, TPA Club or chapter name. Send logs showing date, time station worked, chapter name and number, contact number and claimed score prior to January 15, 1985 to Ted Phelps, W6PBB, c/o John D. Clarke Chapter No. 89, TPA, 6200 East Broad St., Columbus, OH 43213.

DECEMBER 2: "Packet Radio Overview and Prospects" will be presented by the CW Operators Group Club. Contestants may work DX or own country for scoring. QRP stations may sign QRP for identification. 0000Z Nov. 17 to 2400Z Nov. 18. Exchange: All stations 8 digits comprise RST followed by serial number, commencing with 001 to 999 then commence again. For information SASE to Contest Manager, PO Box 109, Mt. Druid, N.S.W. 2770 Australia.

DECEMBER: 3. "Packet Radio Overview and Prospects" will be presented by the CW Operators Group Club. Contestants may work DX or own country for scoring. QRP stations may sign QRP for identification. 0000Z Nov. 17 to 2400Z Nov. 18. Exchange: All stations 8 digits comprise RST followed by serial number, commencing with 001 to 999 then commence again. For information SASE to Contest Manager, PO Box 109, Mt. Druid, N.S.W. 2770 Australia.

DECEMBER: 3. "Packet Radio Overview and Prospects" will be presented by the CW Operators Group Club. Contestants may work DX or own country for scoring. QRP stations may sign QRP for identification. 0000Z Nov. 17 to 2400Z Nov. 18. Exchange: All stations 8 digits comprise RST followed by serial number, commencing with 001 to 999 then commence again. For information SASE to Contest Manager, PO Box 109, Mt. Druid, N.S.W. 2770 Australia.

THE AMATEUR RADIO MOTORCYCLE CLUB NET has moved to 3.9 KHz each Thursday night at 0300Z. All brands of bikers and riders are welcome. For more info send large SASE to Gary McDuffe, Rte. 1 Box 464, Bayard, NE 69334.

VIRGINIA FONE NET 50th ANNIVERSARY CERTIFICATE commences 25 years of continuous operation on the 7-meter band passing traffic in Virginia is being offered by the VFN. Work 25 VFN members and send log to K4IIE with $10 SASE for certificate. Contacts must be made between 9/30/84 and 6/30/85.

November 15

15
rf enterprises

Route No. 7
(612) 255-0855
St. Cloud, Minnesota 56301

AMERICA

ANTENNAS & TOWERS

WIRE

TOROIDAL CORES

Toyomura Elektrodenstr. 25, North Street, North 25G.

Electronics N-2033 0.27/H.

245.00

HEX.

Powder and Ferrite 2-Chome Slacking

Melles Rotor cable-hvy. duty Rotor cable-standard

Slr 88 315.00 2-16) guaranteed.

ChlyWa.Ku. the

Germanv 450 ohm

HDR-300 HG-54HD HG-37s BUTTERNUT A14T-MB AIWIOT

Tokyo. you select.

320.00

BUTTERNUT

H6V H9V 100.00

HF2V 284CV

2MCV-5 5.00

30.50

35.00

29.50

30.00

20.50

36.95

47.95

19.95

46.00

39.99

39.99

18AV/WH-S $99.95

Rack cable-standard 450 ohm line $0.09/ft.

WD-22, 2-18) 14 ga. Copperweld

12 ga. Copperweld

(cpx) limited guarantie.

Let us bid the self-supporting

crack-up tower of your choice with the accessories you select.

Unarco-Rohn

We stock 25G, 45G, HBX, & HDRX towers. We also have other models.

25G $46/sect. HBX-40 $195.00

45G 109/sect. HBX48 250.00

HBX56 320.00

FOLD-OVERS: Get our freight pre-paid quote and save.

HDRX-40 230.00 HDRX48 315.00

Shipped freight paid. Order tower with Hy-Gain antenna, rotor, or other accessories. Receive free shipping on all.

ROTORS:

AR-40 599.95

CD-4511 136.95

HAM-IV 217.00

T2X 259.95

HDR-300 475.00

HY-GAIN

Unarco-Rohn

We stock 25G, 45G, HBX, & HDRX towers. We also have other models.

25G $46/sect. HBX-40 $195.00

45G 109/sect. HBX48 250.00

HBX56 320.00

FOLD-OVERS: Get our freight pre-paid quote and save.

HDRX-40 230.00 HDRX48 315.00

Shipped freight paid. Order tower with Hy-Gain antenna, rotor, or other accessories. Receive free shipping on all.

SANTEC

FM-2033 $275.00

ST-142 $275.00

KDK

Iron Powder and Ferrite

TOROIDAL CORES

Shielding Beads, Shielded Coil Forms

Ferrite Rods, Pot Cores, Baluns, Etc.

Small Orders Welcome

Free ‘Tech-Data’ Flyer

AMIDON Since 1963

12033 Otsego Street, North Hollywood, Calif. 91607

In Germany, Elektronik-Austen, Wilhelm — Melesis Str. 88, 4930 Detmold 18, West Germany

In Japan, Toyota Electronics Company, Ltd. 7-9 Chome Sola Kanda, Chiyoda Ku, Tokyo, Japan

CODE QUICK

IT’S INCREIBLE!

Master code or upgrade in a matter of days.

Code Quick is a unique breakthrough which simplifies learning Morse Code.

Instead of a confusing maze of dots and dashes, each letter will magically begin to call out its own name! Stop torturing yourself!

Your amazing kit containing 5 power-packed cassettes, visual breakthrough cards and original manual is only $39.95! Send check or money order today to WHEELER APPLIED RESEARCH LAB, P.O. Box 3261, City of Industry, CA 91744.

Ask for Code Quick #103; California residents add 6% sales tax.

One User Comments:

"First new idea in the study and the darn thing works! So much fun you don’t realize how much you’re learning."

M.S. Greenville, Mass.

Hundreds of satisfied customers!

You can’t lose! Follow each simple step. You must succeed or return the kit for a total immediate refund!

FCC LOWERS REQUIREMENTS — GET YOUR RADIO TELEPHONE LICENSE

FCC changes make obtaining a High-Level Radio Telephone License much easier now. Eliminate unnecessary study with our shortcuts and easy to follow study material. Obtaining the General Radio Telephone License can be a snap! Sample exams, also section covering Radar Endorsement.

A small investment for a high-paying career in electronics.

$19.95 ppc.

Satisfaction Guaranteed

SPL-RO DISTRIBUTING
P.O. Box 1538
Hendersonville, N.C. 28793

We now accept MC and VISA

Give card #, exp. date, and signature

DISKETTES

$55 GIANT SAVINGS $55 HIGH QUALITY AT LOW PRICES

ECHO DISKETTES

Each recording surface is individually certified and guaranteed to be 100% error free — with a LIFETIME WARRANTY!

$1 35 8y% SSRD $1 85

Echo head cleaning kit no harsh abrasives no fluids to apply (10 applications) $6.95.

DYSAN DISKETTES

PREMIUM QUALITY AT HUGE SAVINGS

$2 30 8y% SSRD $2 60

All diskettes are in boxes of 10 with labels, envelopes and reinforced hubs.

DISK STOR holds 50 8y%" diskettes $12.95 + $2.00 shipping.

SHIPPING 8y% DISKETTES: Add $3.00 per 100 or less. PAYMENT: VISA, M/C or check with order. CCD orders add $2.00 $1.50 credit on long distance phone orders. TAXES Illinois customers add 6%.

SCAMP SYSTEMS, INC.
BOX 59451 — CHICAGO, ILLINOIS 60660
1-312-267-9858
INTRODUCTION
1. AMATEUR RADIO
2. ELECTRICAL FUNDAMENTALS
3. RADIO DESIGN TECHNIQUE AND LANGUAGE
4. SOLID STATE FUNDAMENTALS
5. VACUUM TUBE PRINCIPLES

RADIO PRINCIPLES
6. POWER SUPPLIES
7. AUDIO AND VIDEO
8. DIGITAL BASICS
9. MODULATION AND DEMODULATION
10. RADIO FREQUENCY OSCILLATORS AND SYNTHESIZERS
11. RADIO TRANSMITTING PRINCIPLES
12. RADIO RECEIVING PRINCIPLES
13. RADIO TRANSCEIVERS
14. REPEATERS
15. RF POWER AMPLIFIERS
16. TRANSMISSION LINES
17. ANTENNA FUNDAMENTALS

MODULATION METHODS
18. VOICE COMMUNICATION
19. DIGITAL COMMUNICATIONS
20. IMAGE COMMUNICATIONS
21. SPECIAL MODULATION TECHNIQUES

TRANSMISSION
22. RADIO FREQUENCIES AND PROPAGATION
23. SPACE COMMUNICATIONS

CONSTRUCTION AND MAINTENANCE
24. CONSTRUCTION TECHNIQUES
25. TEST EQUIPMENT AND MEASUREMENTS
26. TROUBLESHOOTING AND REPAIR
27. POWER SUPPLY PROJECTS
28. AUDIO AND VIDEO EQUIPMENT
29. DIGITAL EQUIPMENT
30. HF RADIO EQUIPMENT
31. VHF RADIO EQUIPMENT
32. UHF RADIO EQUIPMENT
33. ANTENNA PROJECTS
34. STATION ACCESSORIES
35. COMPONENT DATA

ON THE AIR
36. HOW TO BECOME A RADIO AMATEUR
37. ASSEMBLING A STATION
38. OPERATING A STATION
39. MONITORING AND DIRECTION FINDING
40. INTERFERENCE

ETCHING PATTERNS

376 MORE PAGES THAN LAST YEAR
17 MORE CHAPTERS
OVER 1700 CIRCUIT DIAGRAMS AND ILLUSTRATIONS

The ARRL 1985 HANDBOOK FOR THE RADIO AMATEUR is the largest ever! Besides the new name and cover, this edition contains new typesetting throughout. There are more construction projects than ever before. A separate section has been added containing PC etching patterns on special paper which can be used as positive film. Compare the contents of this book with an older edition and see how much material really has been added. The 1985 HANDBOOK is the biggest and best ever!

Price: Paper edition: $15 in the U.S., $16 in Canada and elsewhere. Cloth edition: $22.50 in the U.S., $24.00 in Canada and elsewhere. Payment in U.S. funds, checks must be drawn on a bank in the U.S. Available from your radio store or from:
ARRL, 225 MAIN STREET
NEWINGTON, CT 06111 U.S.A.

1024 PAGES!
for literature, in a hurry — we'll rush your name to the companies whose names you "check-off".

Place your check mark in the space between name and number. Ex: Ham Radio V 234

MOSLEY...A Better Antenna...For New and Old

EASY ASSEMBLY...NO MEASURING...LOW SWR...ALL STAINLESS HARDWARE...BUILT TO LAST

Whether you are just starting out or trying to complete the Honor Roll, Mosley offers a Full Line of Tri-Banders which will mechanically and electronically outperform the competition. For the new ham with limited space and pocket book, start with our TA-31 Jr. rotatable dipole. You can make your TA-31 Jr. into a 2 or 3 element as your needs increase.

If you start with the need to run higher power, then the TA-31 Jr. is for you. This can also be made into a 2 or 3 element beam as you expand your station.

CL-33

For the ham that wants a little more performance out of a Tri-Bander but is limited in space, our CL-33 on a 18 foot boom is the way to go. For those that want MONO BAND performance out of a Tri-Bander, want to hear better, and be louder, the CL-36 is for you.

PRO 37

For the ham that wants to start right at the top, the PRO-37 is the antenna that will give you king of hill performance. It is the broadest banded, highest power, best performing Tri-Bander in our line.

Compare ours before buying any other antenna. All stainless steel, heavy seascooping aluminum elements which mean better quality and no measurement. Ease of assembly gives you a quality antenna with consistent performance. Our elements are pre-drilled so you will get the same performance as we do. All of our Tri-Banders come with a 2 year warranty.

If you are a new ham and are not familiar with MOSLEY, ask an old ham about us or call the PRESIDENT OF MOSLEY. He will be glad to explain why MOSLEY IS A BETTER ANTENNA.

These and other MOSLEY products are available through your favorite DEALER. Or write or call MOSLEY for the DEALER nearest you.

November 1984

Please use before December 31, 1984

 Tear off and mail to:

HAM RADIO MAGAZINE - "check off"

Greenville, N. H. 03048-0498

NAME

CALL

STREET

CITY

STATE

ZIP

Advertisers

Index

November 1984

158
SAROC NEWS

Due to an unavoidable scheduling problem, SAROC 1985 has been cancelled. Plans are presently being formulated for SAROC 1986. Details will be announced as soon as they are completed.

SAROC
P.O. BOX 945
BOULDER CITY, NV 89005

TS430S FILTERS

You can select 2 optional $60 Fox Tango filters for your TS430S: SSB Narrow (1.8 or 2.1KHZ bandwidth), CW Narrow (250 or 400Hz), and AM (6.0KHZ). To improve CW or AM reception, you must use one of the filters indicated. For SSB there is a choice: you can add one of the narrow filters, or you can use the improved Filter Cascading Kit.

We recommend the Cascading Kit because it is more effective. It benefits both SSB and CW reception without affecting the other modes or TX. When you just add a narrow SSB filter, the mode switch lets you select either the stock (2.4KHZ) or the narrow one. Either way, the signal passes through only one filter - the other is idle! In the Fox Tango Cascading Kit two filters are active: the signal first passes through the stock filter and near the end of the filter chain, a second filter - the high quality 8pole Fox Tango 2.1KHZ unit and its amplifier board. Here are the results:

BEFORE
After

300Hz Bandwidth
32 KHz
100Hz (50Hz Spacing)

AM Dynamic Range
12
9.5

SSB (Reference)
SSB (Reference)

The narrower bandwidth improves selectivity. The greater dynamic range reduces QRM. The reduced noise makes weak-signal reception easier. And, as a bonus, the Shift control works much better. Installation is inboard, instructions are complete, no drilling is required, and only a few soldered connections are needed. However, skill is necessary: your dealer can help if desired.

INTRODUCTORY MONEY-SAVING SPECIALS

FTK-430S CASCADING KIT (including filter board, instructions, etc.)
FTK-430S with one additional filter (CW or AM - reg. $80 ea.)
FTK-430S with two additional filters (CW and AM)

SHIPPING: $3, Air $5, COD add $1, Overseas $10, FL Resident add 5% Tax.

FOX TANGO CORPORATION
Box 15944 H. W. Palm Beach, FL 33416
(305) 683-9557

November 1984
Stuck with a problem?

Our TE-12P Encoder might be just the solution to pull you out of a sticky situation. Need a different CTCSS tone for each channel in a multi-channel Public Safety System? How about customer access to multiple repeater sites on the same channel? Or use it to generate any of the twelve tones for EMS use. Also, it can be used to access Amateur repeaters or just as a piece of versatile test equipment. Any of the CTCSS tones may be accessed with the TE-12PA, any of the audible frequencies with the TE-12PB. Just set a dip switch, no test equipment is required. As usual, we're a stickler for delivery with a full 1 year warranty.

- Output level flat to within 1.5db over entire range selected.
- Immune to RF.
- Powered by 6-30vdc, unregulated at 8 ma.
- Low impedance, low distortion, adjustable sinewave output, 5v peak-to-peak.
- Instant start-up.

TE-12PA

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Output Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>67.0 XZ</td>
<td>85.4 YA</td>
</tr>
<tr>
<td>71.9 KA</td>
<td>98.5 YB</td>
</tr>
<tr>
<td>74.4 WA</td>
<td>91.5 ZZ</td>
</tr>
<tr>
<td>77.0 XB</td>
<td>94.8 ZA</td>
</tr>
<tr>
<td>79.7 SP</td>
<td>97.4 ZB</td>
</tr>
<tr>
<td>82.5 YZ</td>
<td>100.5 IZ</td>
</tr>
</tbody>
</table>

- Frequency accuracy, ±1 Hz maximum - 40°C to +85°C
- Frequencies to 250 Hz available on special order.
- Continuous tone

TE-12PB

<table>
<thead>
<tr>
<th>Test-Tones</th>
<th>Touch-Tones</th>
<th>Burst-Tones</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>697</td>
<td>700</td>
</tr>
<tr>
<td>1000</td>
<td>770</td>
<td>1336</td>
</tr>
<tr>
<td>1500</td>
<td>852</td>
<td>1477</td>
</tr>
<tr>
<td>2175</td>
<td>941</td>
<td>1633</td>
</tr>
<tr>
<td>2805</td>
<td>1000</td>
<td>2100</td>
</tr>
</tbody>
</table>

- Frequency accuracy, ±1 Hz maximum - 40°C to +85°C
- Tone length approximately 300 ms. May be lengthened, shortened or eliminated by changing value of resistor

$89.95

COMMUNICATIONS SPECIALISTS

426 West Taft Avenue, Orange, California 92667
(800) 854-0547/California: (714) 998-3021
The Yaesu FT-209RH. 5 watts that your batteries can live with.

Have the power you need when you need it with Yaesu's new 5-watt, 2-meter handheld. Power to get out in situations where ordinary HT's just won't make it.

We designed our HT with a unique user-programmable Power Saver that puts the rig to "sleep" while you're monitoring and "wakes it up" when the squelch breaks. So you can listen for hours and still have plenty of power to hit those hard-to-reach repeaters when you need to.

With the FT-209RH there's no need to fiddle with knobs when you change from one memory channel to another. That's because you can independently store everything you need in each of the ten memories: receive frequency, standard or non-standard offset, even tone encode/decode with an optional module. And then recall any channel at the touch of a button.

It's easy to hear what's happening on your favorite repeaters or simplex frequencies. Just touch a button and scan all memory channels, or selected ones. Or all frequencies between any two adjacent memories. Use the priority feature to return automatically to your special frequency when it becomes active.

Bring up controlled-access machines with the optional plug-in subaudible tone encoder/decoder, independently programmed from the keyboard for each channel. Listen for tone-encoded signals on selected channels — without having to hear a bunch of chatter — by enabling the decode function.

The FT-209RH, which covers 10 MHz for CAP and MARS use, comes complete with a 500-mAh battery charger and soft case.

For those who want a basic radio without the bells and whistles, consider the compact, lightweight FT-203R. This economical HT features 2.5 watts of power and an optional DTMF keypad. Most all the accessories for the 209 work with the 203, including an optional VOX headset that gives you hands-free operation that's perfect for public service events.

So when you visit your dealer let him know you won't settle for anything but the best. A radio built by Yaesu.
Digital Code Squelch...

TR-2600A

Kenwood’s TR-2600A introduces DCS (Digital Code Squelch) circuitry, a signaling concept developed by Kenwood. DCS allows each station to have its own “private call” code or to respond to a “group call” or “common call” code. There are 100,000 different 5-digit ASCII code combinations possible. You can program in call signs up to 6 digits in the ASCII code. When operating in the DCS mode, this information can then be automatically transmitted each time the transmit key is depressed. This revolutionary feature is only the beginning! The TR-2600A also sports a high impact plastic case, that is extra rugged and scuff-resistant. The molded-in color adds to the attractive appearance. The large LCD display is easy to read in direct sunlight or in the dark with a convenient lamp switch. It displays transmit/receive frequencies, memory channels, and five arrow indicators for “F LOCK” frequency lock, “REV” repeater reverse, “PROG.S” programmed scan, “MS” memory scan, “ALERT.S” alert scan. A star indicates “MEMORY LOCK-OUT” is activated, and repeater offset indicated by “+, –, S and M.” The TR-2600A has 10 memories, nine for simplex or transmit with frequency offset ±600 kHz and one (memory 0) for non-standard split frequencies. Memory scan and programmable band scan have the added convenience of “Time Operated Resume” that stops on busy channel and holds for approximately 5 seconds, then resumes scanning, or “Carrier Operated Resume” that stops on busy channel and resumes when signal ceases.

Memory scan, scans only those memories in which data is stored, and memory lock-out allows you to skip selected memory channels without loss of data previously stored! Manual Scanning UP/DOWN in 5-kHz steps and programmable automatic band scan are also useful features. The TR-2600A has a built-in “S” meter on the top panel which also indicates battery level when in transmit mode. Extended frequency coverage, 142,000-148.995 MHz allows transmit capability in 5-kHz steps for simplex or repeater operation on most MARS and CAP frequencies. Receive frequency coverage includes 140,000-159.995 MHz.

These features only tell part of the story. The TR-2600A also has keyboard frequency selection, built-in 16-key autopatch encoder, “TX STOP” switch, Hi (2.5)/LOW (300 mw) power switch, REV switch, “SLIDE-LOC” battery pack, high efficiency speaker, BNC antenna terminal, and all of this in an extremely compact and lightweight package!

Kenwood’s TR-2600A with D.C.S., leads the way in high technology handheld transceivers!

Optional accessories:
- TU-356 built-in programmable sub-tone encoder
- ST-2 Base Stand
- MS-1 Mobile Stand
- PB-26 Ni-Cd Battery
- DC-26 DC-DC Converter
- HMC-1 Headset with VOX
- SMC-30 Speaker Microphone
- LH-3 Deluxe Leather Case
- SC-9 Soft Case
- BT-3 AA Manganese/Alkaline Battery Case
- EB-3 External C Manganese/Alkaline Battery Case
- RA-3, 5 Telescoping Antenna
- CD-10 Call Sign Display

More information on the TR-2600A is available from authorized dealers of Tri-Kenwood Communications, 1111 West Walnut Street, Compton, CA 90220.

Specifications and prices are subject to change without notice or obligation.