Ham Radio magazine

computer-aided

INTERDIGITAL

bandpass filter
design

simplified gamma matching • EME'ers: find the moon
• sensitive field strength meter • IC low-pass filters
• full-performance Delta loop • high power RF switching
with pin diodes • W1JR on VHF/UHF high power amplifiers
• plus W6SAI, KØRYW, and THE GUERRI REPORT
The IC-745 is a full-featured, high performance HF base station transceiver with a 100dB dynamic range receiver. PLUS features usually found only in more expensive units.

Compare these exceptional Standard Features:
- 100KHz - 30MHz Receiver
- 100 Watt RF output / 100% Duty Cycle
- Passband Tuning AND IF Shift
- Adjustable Noise Blanker (width and level)
- Adjustable AGC
- Receiver Preamp
- 16 tunable Memories with lithium battery backup

- Wide selection of filters and filter combinations (opt.)
- Continuously adjustable transmit power
- 10Hz/50Hz/1kHz Tuning rates with 1MHz band steps
- IC-HM12 Microphone with Up/Down Scan

Options... IC-EX310 speech synthesizer, internal IC-PS35 power supply, external IC-PS15 or IC-PS30 system supply. IC-SM8 two-cable desk mic, EX241 marker, EX242 FM module, EX243 electronic keyer, IC-SM6 desk mic, and a variety of filters.

Other Standard Features. Included as standard are many of the features most asked for by experienced ham radio operators: dual VFO's, RF speech compressor, tunable notch filter, program band scan, memory scan, all-mode squelch and VOX.

The IC-745 is the only transceiver today that has so much flexibility at a suprisingly low price...see it at your local ICOM dealer.
With SMART PATCH
You are in CONTROL

With CES 510SA Simplex Autopatch, there’s no waiting for VOX circuits to drop. Simply key your transmitter to take control.

SMART PATCH is all you need to turn your base station into a personal autopatch. SMART PATCH uses the only operating system that gives the mobile complete control. Full break-in capability allows the mobile user to actually interrupt the telephone party. SMART PATCH does not interfere with the normal use of your base station. SMART PATCH works well with any FM transceiver and provides switch-selectable tone or rotary dialing, toll restrict, programmable control codes, CW ID and much more.

To Take CONTROL with Smart Patch - Call 800-327-9956 Ext. 101 today.

How To Use
SMART PATCH

Placing a call is simple. Send your access code from your mobile (example: "73"). This brings up the Patch and you will hear dial tone transmitted from your base station. Since SMART PATCH is checking about once per second to see if you want to dial, all you have to do is key your transmitter, then dial the phone number. You will now hear the phone ring and someone answer. Since the enhanced control system of SMART PATCH is constantly checking to see if you wish to talk, you need to simply key your transmitter and then talk. That’s right, you simply key your transmitter to interrupt the phone line. The base station automatically stops transmitting after you key your mic. SMART PATCH does not require any special tone equipment to control your base station. It samples very high frequency noise present at your receivers discriminator to determine if a mobile is present. No words or syllables are ever lost.

SMART PATCH
Is All You Need To Automatically Patch Your Base Station To Your Phone Line.

Use SMART PATCH for:
- Mobile (or remote base) to phone line via Simplex base, (see fig 1)
- Mobile to Mobile via interconnected base stations for extended range, (see fig 2)
- Telephone line to mobile (or remote base).

SMART PATCH uses SIMPLEX BASE STATION EQUIPMENT. Use your ordinary base station. SMART PATCH does this without interfering with the normal use of your radio.

WARRANTY?
YES, 180 days of warranty protection. You simply can’t go wrong.
An FCC type accepted coupler is available for SMART PATCH.

Communications Electronics Specialties, Inc.
P.O. Box 2930, Winter Park, Florida 32790
Telephone: (305) 645-0474 Or call toll-free (800)327-9956
Digital Code Squelch...

TR-2600A

Kenwood's TR-2600A introduces DCS (Digital Code Squelch) circuitry, a signaling concept developed by Kenwood. DCS allows each station to have its own "private call" code or to respond to a "group call" or "common call" code. There are 100,000 different 5-digit ASCII code combinations possible. You can program in call signs up to 6 digits in the ASCII code. When operating in the DCS mode, this information can then be automatically transmitted each time the transmit key is depressed. This revolutionary feature is only the beginning! The TR-2600A also sports a high-impact plastic case, that is extra rugged and scuff-resistant. The molded-in color adds to the attractive appearance. The large L.C.D. display is easy to read in direct sunlight or in the dark with a convenient lamp switch. It displays transmit/receive frequencies, memory channels, and five arrow indicators for "F LOCK", frequency lock, "REV" repeater reverse, "PROG.S" programmed scan, "MS" memory scan, "ALERT.S" alert scan. A star indicates "MEMORY LOCK-OUT" is activated, and repeater offset indicated by "-", "=", "S" and "M". The TR-2600A has 10 memories, nine for simplex or transmit with frequency offset ±600 kHz and one (memory 0) for non-standard split frequencies. Memory scan and programmable band scan have the added convenience of "Time operated Resume" that stops on busy channel and holds for approximately 5 seconds, then resumes scanning, or "Carrier Operated Resume" that stops on busy channel and resumes when signal ceases. Memory scan, scans only those memories in which data is stored, and memory lock-out allows you to skip selected memory channels without loss of data previously stored! Manual Scanning UP/DOWN in 5-kHz steps and programmable automatic band scan are also useful features. The TR-2600A has a built-in "S" meter on the top panel which also indicates battery level when in transmit mode. Extended frequency coverage, 142.000-148.995 MHz allows transmit capability in 5-kHz steps for simplex or repeater operation on most MARS and CAP frequencies. Receive frequency coverage includes 140.000-159.995 MHz.

These features only tell part of the story. The TR-2600A also has keyboard frequency selection, built-in 16-key autopatch encoder, "TX STOP" switch, HI (2.5)/LOW (300 mw) power switch, REV switch, "SLIDE-LOC" battery pack, high efficiency speaker, BNC antenna terminal, and all of this in an extremely compact and lightweight package!

Kenwood's TR-2600A, with D.C.S., leads the way in high technology handheld transceivers!

Optional accessories:
- TU-35B built-in programmable sub-tone encoder
- ST-2 Base Stand
- MS-1 Mobile Stand
- PB-26 Ni-Cd Battery
- DC-26 DC-DC Converter
- HMC-1 Headset with VOX
- SM-30 Speaker Microphone
- LH-3 Deluxe Leather Case
- SC-9 Soft Case
- BT-3 AA Manganese/Alkaline Battery Case
- EB-3 External C Manganese/Alkaline Battery Case
- RA-3, 5, Telescoping Antenna
- CD-10 Call Sign Display

More information on the TR-2600A is available from authorized dealers of Trio-Kenwood Communications, 1111 West Walnut Street, Compton, CA 90220.

Specifications and prices are subject to change without notice or obligation.
JANUARY 1985
volume 18, number 1

T. H. Tenney, Jr., W1NLB
publisher
Rich Rosen, K2RR
editor-in-chief
and associate publisher
Dorothy Rosa, K1LBO
assistant editor
Joseph J. Schroeder, W9JUV
associate editors
Alfred Wilson, W6NIF
associate editors
Susan Shorrock
editorial production
editorial review board
Peter Beirne, K1ZJH
Forrest Germaine, K2B1
Michael Giuchala, P. E.
Bob Lewis, W2ES
Mason Logan, K4MT
Ed Weisbord, W3NON

publishing staff
J. Craig Clark, Jr., N1ACH
assistant publisher
Rally Dennis, KA1JWF
director of advertising sales
Dorothy Sargent, K12Z
advertising production manager
Susan Shorrock
circulation manager
Therese Bourgault
circulation
Anne Fleming
cover

ham radio magazine is published monthly by
Communications Technology, Inc.
Greenville, New Hampshire 03048 U.S.A.
Telephone 603 878 1441

subscription rates
United States
one year, $19.95; two years, $35.95; three years, $44.95.
Canada and other countries (post surface mail):
one year, $22.95; two years, $44.00; three years, $60.00.
Europe, Japan, Africa, Asia, and Australia: one year, $29.00.
All subscription orders payable in U.S. funds, via international
giro money order or check drawn on U.S. bank.

international subscription agents: page 122

Microfilm copies are available from
University Microfilms, International
300 North Zeeb Road
Ann Arbor, Michigan 48106
Order publication number 3076.

Copies of selected articles from ham radio
are available to the blind and physically handicapped
from Recorded Periodicals,
919 Walnut Street, Philadelphia, Pennsylvania 19107.
Copyright 1984 by Communications Technology, Inc.
Title registered at U.S. Patent Office.
Second class postage paid
at Greenville, New Hampshire 03048 U.S.A.
and at additional mailing offices.
ISSN 0148-5889.

Send change of address to ham radio
Greenville, New Hampshire 03048 U.S.A.

contents

12 computer-aided interdigital
bandpass filter design
Jerry Hinshaw, N6JH, and Shahrokh Monemzadeh

29 basic gamma matching
Richard A. Nelson, WB6OKN

38 determining basic moon coordinates
Warren Butler, W2WD

51 a sensitive field strength meter
William Vissers, K4KI

59 an integrated circuit low-pass filter
Robert L. Martin, WB2KTN

67 the reduced-size, full-performance,
corner-fed delta loop
V.C. Lear, G3TKN

75 ham radio techniques
Bill Orr, W6SAI

82 high power RF switching with pin
diodes
J.R. Sheller, KN8Z

97 VHF/UHF world:
power amplifiers, part 1
Joe Reisert, W1JR

124 the Guerri report
Ernie Guerri, W6MGI

128 advertisers index
126 ham mart
114 and reader service
128 new products
92 DX forecaster
8 presstop
122 flea market
5 reflections

January 1985
ElMAC celebrates its 50th Anniversary with an extensive line of FM Broadcast Cavity Amplifiers.

Varian ElMAC celebrates 50 years of service to the broadcast industry with a spectrum of FM from a powerful 60 kW to a mini power 150 W solid state IPA.

The cost-effective path to a modern FM transmitter.

No one knows more about broadcast tubes and cavities than ElMAC. Our strong cavity development capability reduces RF engineering problems. ElMAC cavities are inexpensive and simple to use.

For more information call or write Varian ElMAC or contact any Varian Electron Device Group sales office worldwide.

EIMAC FM BROADCAST CAVITY PRODUCT LINE

<table>
<thead>
<tr>
<th>POWER</th>
<th>CAVITY</th>
<th>ElMAC TUBE</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 kW</td>
<td>CV-2230</td>
<td>4CX30,000G</td>
</tr>
<tr>
<td>30 kW</td>
<td>CV-2202</td>
<td>4CX20,000C</td>
</tr>
<tr>
<td>25 kW</td>
<td>CV-2200</td>
<td>4CX20,000A</td>
</tr>
<tr>
<td>15 kW</td>
<td>CV-2210</td>
<td>4CX12,000A</td>
</tr>
<tr>
<td>10 kW</td>
<td>CV-2228</td>
<td>4CX7500A</td>
</tr>
<tr>
<td>5 kW</td>
<td>CV-2225</td>
<td>4CX3500A</td>
</tr>
<tr>
<td>1.5 kW</td>
<td>CV-2220</td>
<td>3CX1500A7</td>
</tr>
<tr>
<td>150 W</td>
<td>AM-2215A</td>
<td>Solid State</td>
</tr>
</tbody>
</table>

Varian ElMAC
301 Industrial Way
San Carlos, California 94070
Telephone: 415-592-1221

Varian AG
Steinhauserstrasse
CH-6300 Zug, Switzerland
Telephone: 042-23 25 75
Once again, Amateur Radio faces a major threat. We recently lost 80 MHz of the 2300-MHz band to aeronautical telemetry. We lost the bottom 10 MHz of 450 MHz within 75 miles of the Canadian border. We lost 25 MHz of the 1200 MHz band to a NAVSAT (navigation satellite) service. We may yet lose the 220-MHz band.* Now the 160-meter band is threatened. There’s a very real possibility that a proposal to allocate the top half of 160 (1.900 — 2.000 MHz, Amateur exclusive) to the offshore navigation service will be adopted by the FCC.

If you haven’t been on 160 during the past few years, you might be surprised by what you would hear now. On any given evening you’ll find plenty of stations conducting both CW and SSB ragchews. Later, the DX’ers appear.

Maybe you think 160 is not very important because you never operate there. But consider this: for every two stations on 160, there’s that much more space available on one of the other bands for you to use. Ten years ago, 160 was considered the AMers’ band and there was little activity on it. Not much commercial equipment covered the band. But now, try 160 during any major contest weekend; you’ll find plenty of stations on and plenty of DX to be worked.

The FCC’s proposal to move the offshore navigation service from 1.6-1.8 MHz to 1.9-2 MHz is predicated on the WARC decision to expand the AM broadcast band up to 1.705 MHz. Industry pundits have suggested that this expansion may end up being more of a boondoggle than a benefit to the consumer and the broadcast industry. There are millions of AM radios around — few cover the entire 1.6-1.750 MHz band!

Some serious questions need to be answered. Can the broadcast industry and the general business community financially support additional AM stations? Competition is tough enough now. Will other users of the spectrum be adversely affected in any way? It’s been said that the proposed expansion is the result of some political debt being repaid. Whatever the motive, the proposal seems to be a foolhardy and unnecessary exercise.

Now what about the offshore navigation interests? Serious questions have been raised about this service. Why is it necessary to have an MF radiolocation service when there are other, more precise methods of radiolocation such as LORAN-C and NAVSAT? How about using technology similar to that of the new microwave landing system currently being integrated into airports by the FAA? The bottom line is that offshore navigation has few, if any, credible reasons to be moved into the 1.9-2 MHz slot. If the broadcast band is to be expanded only as far as 1.705 MHz, can anyone explain why, with selective receivers and stable transmitters, the offshore navigation interests cannot be accommodated between 1.705 and 1.8 MHz? It’s almost the same size as the allocation proposed, and offshore navigation already operates there. Furthermore, if offshore navigation interests are allowed to get their way, what’s to stop other services from claiming Amateur frequencies on the basis of equally flimsy justification? The ultimate result would surely be a major disruption in Amateur Radio as we know it. Don’t kid yourself. This could be just the beginning!

If you haven’t already filed your comments with the FCC on the proposed 160-meter reallocation, now is the time to do so. Your comments must be received by the FCC before January 24, 1985. Be reasonable and concise. Give solid technical and operational reasons as to why this proposal should not be accepted. Write “Docket 84-874” at the top of each page of your comments, include five additional copies (eleven if you wish each commissioner to have one), and send them to THE SECRETARY, FCC, Washington, D. C. 20554.

It is a unique privilege that we have to be able to be included in the decision-making process proposals such as this. If you don’t sit down right now, write up your comments, and send them in, then when the FCC accepts the offshore navigation proposal because of a lack of adequate opposition from the Amateur community, all that can be said is “Quityergripen!”

J. Craig Clark, N1ACH
Assistant Publisher

*See “Reflections,” ham radio, October, 1984 (page 6) and this month’s Presstop (page 8).
THE MOST AFFORDABLE REPEATER

ALSO HAS THE MOST IMPRESSIVE PERFORMANCE FEATURES
(AND GIVES THEM TO YOU AS STANDARD EQUIPMENT!)

JUST LOOK AT THESE PRICES!

<table>
<thead>
<tr>
<th>Band</th>
<th>Kit</th>
<th>Wired/Tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>10M, 6M</td>
<td>$680</td>
<td>$880</td>
</tr>
<tr>
<td>2M, 220</td>
<td>$780</td>
<td>$980</td>
</tr>
</tbody>
</table>

Both kit and wired units are complete with all parts, modules, hardware, and crystals.

CALL OR WRITE FOR COMPLETE DETAILS.

Also available for remote site linking, crossband, and remote base.

FEATURES:
- SENSITIVITY SECOND TO NONE; TYPICALLY 0.15 uV ON VHF, 0.3 uV ON UHF.
- SELECTIVITY THAT CAN'T BE BEAT! BOTH 8 POLE CRYSTAL FILTER & CERAMIC FILTER FOR GREATER THAN 100 dB AT ± 12KHz. HELICAL RESONATOR FRONT ENDS.
- OTHER GREAT RECEIVER FEATURES: FLUTTER-PROOF SQUELCH, AFC TO COMPENSATE FOR OFF-FREQ TRANSMITTERS, SEPARATE LOCAL SPEAKER AMPLIFIER & CONTROL.
- CLEAN, EASY TUNE TRANSMITTER: UP TO 20 WATTS OUT (UP TO 50W WITH OPTIONAL PA).

CALL OR WRITE FOR COMPLETE DETAILS.

HIGH QUALITY MODULES FOR REPEATERS, LINKS, TELEMETRY, ETC.

HIGH-PERFORMANCE RECEIVER MODULES

- R144/R220 FM RCVRS for 2M or 220 MHz. 0.15uV sens.; 8 pole xtal filter & ceramic filter in H, helical resonator front end for exceptional selectivity, more than -100 dB at ± 12 kHz, best available today. Flutter-proof squelch. AFC tracks drifting xmrts. Xtal oven avail. Kit only $138.
- R451 FM RCVR Same but for uhf. Tuned line front end. 0.3 uV sens. Kit only $138.
- R76 FM RCVR for 10M, 6M, 2M, 220, or commercial bands. As above, but w/o AFC or hel. res. Kits only $118. Also avail w/4 pole filter, only $98/kit.
- R110 VHF AM RECEIVER kit for VHF aircraft band or ham bands. Only $98.
- R110-259 SPACE SHUTTLE RECEIVER, kit only $98.

TRANSMITTERS

- T51 VHF FM EXCITER for 10M, 6M, 2M, 220 MHz or adjacent bands. 2 Watts continuous, up to 2½ W intermittent. $68/kit.
- T451 UHF FM EXCITER 2 to 3 Watts on 450 ham band or adjacent freq. Kit only $78.
- VHF & UHF LINEAR AMPLIFIERS. Use on either FM or SSB. Power levels from 10 to 45 Watts to go with exciters & xmtg converters. Several models. Kits from $78.
- A16 RF TIGHT BOX Deep drawn alum. case with tight cover and no seams. 7 x 8 x 2 inches. Designed especially for repeaters. $20.

ACCESSORIES

- HELICAL RESONATOR FILTERS available separately on pcb w/connectors.
 - HRF-144 for 143-150 MHz $38
 - HRF-220 for 213-233 MHz $38
 - HRF-432 for 420-450 MHz $48
- COR-2 KIT With audio mixer, local speaker amplifier, talk & time-out timers. Only $38.
- COR-3 KIT as above, but with "courtesy beep". Only $58.
- CWID KITS 158 bits, field programmable, clean audio, rugged TTL logic. Kit only $68.
- DTMF DECODER/CONTROLLER KITS. Control 2 separate on/off functions with touchtones, e.g., repeater and autopatch. Use with main or aux. receiver or with autopatch. Only $90
- NEW – SIMPLEX AUTOPATCH Use with any transceiver. System includes DTMF & autopatch modules above and new Timing module to provide simplex autopatch and reverse autopatch. Complete patch system only $200/kit. Call or write for details.

Tell 'em you saw it in HAM RADIO!
Hamtrons Breaks the Price Barrier!

* No Need to Pay $80 to $125 for a GaAs FET Preamp.

FEATURES:
- Very Low Noise: 0.7 dB VHF, 0.8 dB UHF
- High Gain: 18 to 28 dB, Depending on Freq.
- Wide Dynamic Range for Overload Resistance
- Latest Dual-gate GaAs FET, Stable Over Wide Range of Conditions
- Rugged, Diode-protected Transistors
- Easy to Tune
- Operates on Standard 12 to 14 Vdc Supply
- Can be Tower Mounted

MODEL	TUNES RANGE	PRICE
LNG-28 | 26-30 MHz | $49
LNG-50 | 46-56 MHz | $49
LNG-144 | 137-150 MHz | $49
LNG-220 | 210-230 MHz | $49
LNG-432 | 400-470 MHz | $49
LNG-40 | 30-46 MHz | $64
LNG-160 | 150-172 MHz | $64

ECONOMY PREAMPS

Our traditional preamps, proven in years of service. Over 20,000 in use throughout the world. Tuneable over narrow range. Specify exact freq. band needed. Gain 16-20 dB. NF = 2 dB or less. VHF units available 27 to 300 MHz. UHF units available 300 to 650 MHz.

- P30K, VHF Kit less case | $18
- P30W, VHF Wired/Tested | $33
- P432K, UHF Kit less case | $21
- P432W, UHF Wired/Tested | $36

HELICAL RESONATOR PREAMPS

Our lab has developed a new line of low-noise receiver preamps with helical resonator filters built in. The combination of a low noise amplifier and the sharp selectivity of a 3 or 4 section helical resonator provides increased sensitivity while reducing intermod and cross-band interference in critical applications. See selectivity curves at right. Gain = approx. 12 dB.

- HRA-144 | 143-150 MHz | $49
- HRA-220 | 213-233 MHz | $49
- HRA-432 | 420-450 MHz | $57
- HRA () | 150-174 MHz | $59
- HRA () | 450-470 MHz | $79

NEW LOW-NOISE PREAMPS

For VHF, CW, ATV, FM, etc. Why pay big bucks for a multi mode rig for each band? Can be linked with receiver converters for transceive.

2 Watts output vhf, 1 Watt uhf.

<table>
<thead>
<tr>
<th>Antenna Input Range</th>
<th>Receiver Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>VHF MODELS</td>
<td></td>
</tr>
<tr>
<td>Kit with Case $49</td>
<td>28-32</td>
</tr>
<tr>
<td>Less Case $39</td>
<td>30-54</td>
</tr>
<tr>
<td>Wired $69</td>
<td>144-148</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UHF MODELS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kit with Case $59</td>
<td>33-43</td>
</tr>
<tr>
<td>Less Case $49</td>
<td>33-43</td>
</tr>
<tr>
<td>Wired $75</td>
<td>432-434</td>
</tr>
</tbody>
</table>

SCANER CONVERTERS Copy 72-76, 135-144, 240-270, 400-420, or 806-894 MHz bands on any scanner. Wired/tested Only $88.

SAVE A BUNDLE ON VHF FM TRANSCEIVERS!

FM-5 PC Board Kit - ONLY $178
complete with controls, heatsink, etc.
10 Watts, 5 Channels, for 2M or 220 MHz.

Cabinet Kit, complete with speaker, knobs, connectors, hardware, Only $60.

LOOK AT THESE ATTRACTIVE CURVES!

Typical Selectivity Curves of Receivers and Helical Resonators.

IMPORTANT REASONS WHY YOU SHOULD BUY FROM THE VALUE LEADER:

1. Largest selection of vhf and uhf kits in the world.
2. Exceptional quality and low prices due to large volume.
3. Fast delivery; most kits shipped same day.
4. Complete professional instruction manuals.
5. Prompt factory service available and free phone consultation.
6. In business 21 years.
7. Sell more repeater modules than all other mfrs. and have for years. Can give quality features for much lower cost.

Call or Write for FREE CATALOG
(Send $1.00 or 4 IRC’s for overseas mailing)
Order by phone or mail Add $3 S & H per order (Electronic answering service evenings & weekends)
Use VISA, MASTERCARD, Check, or UPS COD.
COMMERCIAL PRESSURE ON THE 220-MHZ BAND HAS BEEN RELIEVED by the FCC's assignment of
the Land Mobile reserve frequencies between 806 and 947 MHz to that and other services
November 21. In its far-reaching action, the Commission rejected both Mura's proposal
for a new Personal Radio Service for 8 MHz and a commercial proposal to allocate 896-898
and 941-943 MHz to an air-ground telephone service; GE's proposal for a Personal Radio
Service in the 900 MHz region was dropped just a few weeks earlier.

12 MHz For Land Mobile And 12 MHz For Cellular Were Proposed in the November 21 meet-
ing, while 6 MHz was reallocated to government and non-government fixed services and
frequencies in the 944-947 MHz band were reallocated for broadcast links and relays. As
the "220 Grab" was already in trouble from a variety of directions, this action is likely
to effectively remove 220 from Land Mobile's sights. However, it's also just as likely to
create a whole new set of user pressures on 220 MHz as well as other Amateur bands.

The Failure To Establish Any Form Of A "Personal" Radio Service in the Land Mobile
reserve frequencies is regarded as a severe defeat by would-be users and suppliers alike.
The concept had been strongly supported by the GMRS* community. The next logical targets
for a Personal Radio Service could now be 902-928 MHz, and (repeating history) 220 MHz!
The air-to-ground telephone proponents could, on the other hand, decide to go after
420-430 MHz for their new service since that band has already gone to Land Mobile in
Canada and is being protected for Canadian benefit along the Canadian border.

Whether Or Not These Fears Materialize, pressure on Amateur frequencies is expected
to continue. The recent loss of the Amateur secondary allocation of 2310-2390 MHz to
flight telemetry is a case in point. The current stagnation of Amateur growth, coupled
with apparent FCC coolness toward the Amateur Service, could spell trouble ahead.

TWO LONG-TERM ARRL DIRECTORS WERE UNSEATED in the League elections. In the New England
Division Tom Frenaye, K1KI, soundly beat John Sullivan, W1HHR. In a closer race Linda
Ferdinand, N2YL, beat out incumbent George Diehl, W2THA, in the Hudson Division. Incum-
bents won in all other races in which they ran; however two new Vice Directors, Rush
Drake, W7RM, (Northwestern Division) and Wayne Overbeck, N6NB, (Southwestern Division)
were both also elected.

EXTENSIVE AMATEUR OPERATION DURING A 1985 SPACE SHUTTLE mission now seems certain,
according to word from NASA; It's to be on mission 51-F, now scheduled for next April,
though delays in the Shuttle schedule could push that back to July or even later. Two
Amateurs are scheduled for mission 51-F, and it appears likely there'll be operation on
a variety of modes and frequencies with some sort of repeater also possible.

ARRL'S LEAVING NEWINGTON AND A MAJOR PUSH FOR AMATEUR GROWTH were just two of the many
significant items covered by the League's directors at their fall meeting. As for moving,
the Management and Finance Committee was directed to conduct a study of possible sites,
costs, timing, and impact on the membership and staff. Though not specified in the board
minutes, Washington, D.C. is believed to be what's in mind. A growth of 50,000 new Amateurs
a year for the next five years is the goal of a new plan devised by the League's General
Manager, for implementation in 1985. (The number of individual U.S. licensed Amateurs
has held almost steady at just over 400,000 for the past several years.) He's also been
instructed to develop a parallel program to increase ARRL membership by 25,000 in 1985,
and by 20% per year thereafter. Other items included an apparent endorsement of simplex
autopatches, a membership survey of further phone expansion on 7 MHz, and a Plans and
Programs Committee study on the League becoming involved with maintenance of Amateur
licensing records and "especially in the administration of special call sign requests...."

ARRL'S REQUEST FOR FCC PREEMPTION OF ANTENNA REGULATIONS, PRB-1, has been drawing a
lot more favorable—and effective—Amateur comment. November 9 the FCC extended the
comment cutoff date to December 24, and indications are that the flow of comments from
Amateurs describing the problems they've had with local restrictions is continuing at a
good rate.

What The Outcome Will Be, However, Remains To Be Seen. There have also been some well
presented arguments from the other side of the fence, and the issue is one which does have
two valid sides. Which side, if either, the Commissioners will take cannot be predicted.

FCC's PROPOSAL TO REALLOCATE 1900-2000 KHz TO RADIO DIRECTION FINDING IS STILL OPEN
for comment. Just after last month's Pressstop went to press, the Commission granted an
ARRL request for an extension of the Comment Due date to January 24, 1985, with Reply Com-
ments due March 11. An original and five copies sent to the Secretary, FCC, are needed
for a formal filing; refer to PR Docket 84-874. (See "Reflections," page 5.)

440-450 MHz IS FULL IN SOUTHERN CALIFORNIA, according to the Southern California Repeater
and Remote Base Association (SCRRBA), with all repeater channels filled. Unless SCRRBA's
review of activity turns up some inactive systems, would-be repeater operators will have to
go to 23 cm since 2 meters and 220 have long been filled in that area.

*General Mobile Radio Service. Formerly "Class A" CB, GMRS has developed into a sophisticated Personal FM
Radio Service with frequencies in the 460-MHz band.
NEW FROM MFJ

MFJ'S MOST ADVANCED RTTY/ASCII/AMTOR/CW COMPUTER INTERFACE HAS FM, AM MODES, LED "SCOPE" TUNING ARRAY, RS-232 INTERFACE, VARIABLE SHIFT TUNING, 170/850 Hz TRANSMIT, TRUE MARK-SPACE DETECTION.

MFJ-1229
FREE MFJ RTTY/ASCII/CW software for C-64/VIC-20. Complete package includes MFJ-1229, software on tape, cables for C-64/VIC-20. Built-in RS-232 interface, no extra cost. Variable shift tuning lets you copy any shift between 100 and 1000 Hz and any speed (5-100 WPM RTTY/CW and up to 300 baud ASCII). Push button for 170 Hz shift. Sharp multi-pole mark and space filters give true mark-space detection. Ganged pots give space passband tuning with constant bandwidth. Factory adjusted trim pots for optimum filter performance. Multi-pole active filters are used for pre- limiter, mark, space and post detection filtering. Has automatic threshold correction. This advanced design gives good copy under DRM, weak signals and selective fading.

MFJ ELECTRONIC KEYER

MFJ-407
$69.95
MFJ-407 Deluxe Electronic Keyer sends lamiac, automatic, semi-auto or manual. Use squeeze, single lever or straight key. Plus/minus keying, 8 to 50 WPM, Speed, weight, tone, volume controls. On/Off, Tune, Semi-auto switches. Speaker. RF proof. 7x2x6 inches. Uses 9 V battery, 6-9 VDC or 110 VAC with AC adapter. MFJ-1305, $9.95.

MFJ-24 HOUR LCD CLOCKS

MFJ-108
$19.95
MFJ-107
$9.95
Huge 5/8 inch bold black LCD numerals make these two 24 Hour LCD clocks a must for your ham shack. Choose from a dual clock unit that features separate UTC and local time display or the single clock unit that displays 24 Hour time. Mounted in a brushed aluminum frame, these clocks feature huge 5/8 inch LCD numerals and a sloped face for easy access to the room reading. Both clocks also feature easy set month, day, hour, minute and second functions and can be operated in an alternating time/date display mode. MFJ-108, 4.5x2x2 inches. MFJ-107, 2.4x1.4x2 inches. Battery included.

TO ORDER OR FOR YOUR NEAREST DEALER, CALL TOLL-FREE 800-647-1800. Call 601-332-5869 in Miss. and outside continental USA. Telex 53-4590 MFJ STKV

January 1985
YOUR VERY BEST SOURCE FOR

ICOM

• 6 STORE BUYING POWER ASSURES TOP VALUES.
• BIG, COMPLETE STOCKS. GET WHAT YOU WANT WHEN YOU WANT IT.
• MORE SAVINGS BY FREE SHIPMENT, MOST ITEMS THAT CAN BE SHIPPED UPS SURFACE (Continental U.S.A.)
• TOLL-FREE PHONE (Except California and Arizona).

IC-751
IC-751, ICOM's brilliant transceiver, sets a new high standard of comparison with high-tech advancements and the superior quality essential for competitive-grade performance.

NEW!! IC-27A
SUPER-COMPACT 2 METER MOBILE
An important breakthrough in compact mobile equipment. Only 1½ x 5½" but full-featured including internal speaker, 25W of power, 19 full-function tunable memories, memory and band scan, priority scan. Includes mic. w/16 button Touchtone.

IC-745
• 9 ham bands • General coverage receiver
• 16 memories • Scanning • Pass band tuning
• Variable NB and AGC • Eight accessories and options are also available.

IC-730
MOBILE TRANSCEIVER
SMALL! only 3.7" high, 9.5" wide and 10" deep. Provides 10 to 80 meter coverage.

THE IDEAL PAIR FOR OSCAR
IC-271A* IC-471A*
2M • 25 WATTS • ALL MODE 430-450MHz • ALL MODE RETAIL PRICE $699.00 RETAIL PRICE $799.00
* 100W MODEL AVAILABLE CALL FOR YOUR SPECIAL PRICE

IC-745
• 9 ham bands • General coverage receiver
• 16 memories • Scanning • Pass band tuning
• Variable NB and AGC • Eight accessories and options are also available.

FREE SHIPMENT, ALL OF THE ABOVE ITEMS, UPS (Surface).
HERE'S WHERE YOU GET THOSE LOW, LOW PRICES ON KENWOOD
PLUS FREE SHIPMENT
MOST ITEMS UPS SURFACE (Continental U.S.A.)
CALL NOW OR DROP INTO ANY OF OUR SIX LOCATIONS

TRISTAO SALE
MA-40 SALE $549
40 2 SECT TUBULAR TOWER
MA-550 SALE $899
55 3 SECT TUBULAR TOWER
IN STOCK

PERSONALIZED SERVICE
BOB FERRERO, W6RJ
President
JIM RAPPERTON, N6RJ
VP, So. Calif. Div. Anaheim
Managers:
GEORGE, WB6DSV Burlington
GREG, N6PO Oakland
BOB, K7RDH Phoenix
GLENN, N6NA San Diego
ALL HOUYS Van Noy
and other active amateurs

FREE SHIPPING
UPS SURFACE (Continental U.S.) (MOST ITEMS)
TOLL-FREE PHONE
INCLUDING ALASKA AND HAWAII
800-854-6046
(California residents please phone or visit local stores)
PHONE HOURS: 9:30 AM TO 5:30 PM PACIFIC TIME
STORE HOURS: 10 AM TO 5:30 PM Mon. through Sat.

SAN DIEGO, CA 92123
5375 Kearny Villa Rd.,
(619) 560-4900,
Hwy 163 & Clairemont Mesa Blvd.

ANAHEIM, CA 92801
2620 W. La Palma,
(714) 761-3033, (213) 860-2040,
Between Disneyland & Knotts Berry Farm.

OAKLAND, CA 94609
2811 Telegraph Ave.,
(415) 451-5757,
Hwy 24 Downtown. Left 27th off-ramp

BURLINGAME, CA 94010
999 Howard Ave.,
(415) 342-5757,
5 miles south on 101 from S.F. Airport.

PHOENIX, AZ 85015
1702 W. Camelback Rd.,
(602) 242-3515,
East of Highway 17

More Details? CHECK OFF Page 128
January 1985
One of the more challenging difficulties facing the Amateur experimenter in UHF and microwave communications is to construct good bandpass filters at these high frequencies. Good filters are especially important in those bands where the Amateur frequency allocation is shared with or is near high power services, such as radar, which can cause ruinous interference. And although a number of articles have appeared in Amateur publications describing specific bandpass filter types and specific construction techniques, none has provided a simple means of designing filters for different requirements.

This article describes a flexible computer program that makes it possible for Amateurs to design and build their own bandpass filters, custom-tailored to their specific needs. The program performs the design tasks for interdigital filters, a common bandpass type. The article also shows, step by step, how to proceed from the computer printout to the building and testing of a working filter. In addition, two different examples are used to illustrate two different construction methods.

Filter design

The design of narrowband bandpass filters — that is, of filters that have passbands of approximately 10 percent of the center frequency or less — is often based on the well-known work of Matthaei, Young, and Jones, which provides a wealth of analytical and practical design methods for many types of RF and microwave filters. Among the most common types are filters that use comb or interdigitated coupled resonators. These two types are mechanically similar, but this article discusses only the interdigital form.

Interdigitated bandpass filters have been widely used in the microwave electronics industry for many years. These filters are commonly used because they provide reasonably good passband characteristics, moderate loss, and fairly high attenuation in the stopbands. Furthermore, they are simple to build and tune.

A typical interdigitated bandpass filter, such as shown in fig. 1, consists of a number of resonator elements or rods, each approximately a quarter wavelength long at the center frequency of the filter, which are electrically coupled together between two conducting ground planes. Each rod is shorted to ground at one end and open-circuited at the other end. The rods alternate, with one rod’s shorted end opposing the next rod’s open end. It is this alternating structure, which looks somewhat like interlaced fingers, that gives the interdigital filter its name. At the ends of the filter some form of impedance matching, either a transmission line transformer or a tap on the end rods, is used to couple energy into and out of the filter.

Interdigitated filters are most useful in the low microwave frequency range of about 0.5 to 5 GHz. In this region, lumped element filters are difficult to build, and waveguide filters are mechanically large. The inter-
digital filter handily fills this gap between low frequency “coil and capacitor” filters, and microwave waveguide “plumbing.” Thus, interdigital filters are of interest for frequencies up to at least several GHz, and down at least as low as the 420 MHz ham band.

The traditional design of interdigitated filters described by Matthaei, Young, and Jones calls for both the spacing and sizes of the rectangular resonant elements to be variables. While there is no problem with this theoretically, in practice it is often simpler to use round rods of equal diameter in place of rectangular ones of various sizes. In the 1960’s, Dishal described a method of designing narrow bandwidth filters using equal diameter round rods. His method provides a simple and accurate design guide which results in bandpass filters of straightforward mechanical construction and good electrical performance.

In addition to using uniform round rods in place of rectangular elements of various sizes, Dishal questioned the common practice of using additional elements, one at each end of the filter structure, whose only purpose was to match the filter to the desired input and output connections when a simple tap on the first and last element would serve as well. Taking it
table 1. Interactive program calculates expected electrical performance and computes mechanical dimensions of filter.

14 January 1985
a step further, he showed how to determine these tap locations. A computer program, described below, is developed around this design approach.

program description

The BASIC listing is given in table 1. This program follows in loose form a program originally written in Fortran IV by Rook and Taylor.\(^3\) We translated into BASIC, modified it for use on a personal computer, and added additional plotting output. The program uses an interactive approach to request design information from the user, and then calculates the expected electrical performance and computes the mechanical dimensions of the filter. It is written in BASIC in its IBM PCTM version, but it is structured so that conversion into other versions of BASIC for different computers should not be difficult.

The first portion of the program sets up the required variable dimensions and types. Next, an interactive question sequence collects the input data for the design. Once the required data are available to the program, it computes the expected electrical performance and computes the mechanical dimensions of the filter. It is written in BASIC in its IBM PCTM version, but it is structured so that conversion into other versions of BASIC for different computers should not be difficult.

The first step in the choice of filter parameters is to determine the required passband loss limit, passband ripple, and out-of-band rejection that can be tolerated. An interactive computer-aided design program makes these tradeoffs considerably simpler to evaluate. The designer begins by entering a first estimate, or guess, of the approximate number of elements and passband ripple. From these inputs, the computer program quickly determines the approximate loss and plots the pass and reject bands. In the course of a few minutes' work, several different configurations can be tried out. From these it is easy to select the optimum design.

As an example of this interactive optimization, fig. 3 lists a number of different 440 MHz filter configurations tested by the program. These designs differ mainly in the number of elements and in their passband widths. Filters with from 2 to 6 elements and ripple bandwidths of from 1 to 4 MHz are compared. In each case, the loss at the center frequency, 440 MHz, and at the transmitter frequency to be rejected, 445 MHz, are listed for comparison.

The results of this scan of various possible designs

<table>
<thead>
<tr>
<th>number of elements</th>
<th>ripple dB</th>
<th>bandwidth MHz</th>
<th>loss at 440</th>
<th>loss at 445</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.25</td>
<td>2</td>
<td>1.2</td>
<td>21.6</td>
</tr>
<tr>
<td>2</td>
<td>0.25</td>
<td>3</td>
<td>0.8</td>
<td>14.4</td>
</tr>
<tr>
<td>3</td>
<td>0.25</td>
<td>2</td>
<td>2.5</td>
<td>41.4</td>
</tr>
<tr>
<td>3</td>
<td>0.25</td>
<td>3</td>
<td>1.7</td>
<td>30.5</td>
</tr>
<tr>
<td>3</td>
<td>0.25</td>
<td>4</td>
<td>1.3</td>
<td>22.6</td>
</tr>
<tr>
<td>4</td>
<td>0.50</td>
<td>1</td>
<td>7.9</td>
<td>88.8</td>
</tr>
<tr>
<td>4</td>
<td>0.50</td>
<td>3</td>
<td>2.7</td>
<td>50.0</td>
</tr>
<tr>
<td>4</td>
<td>0.25</td>
<td>3</td>
<td>2.4</td>
<td>46.8</td>
</tr>
<tr>
<td>6</td>
<td>0.25</td>
<td>3</td>
<td>4.2</td>
<td>79.4</td>
</tr>
<tr>
<td>6</td>
<td>0.25</td>
<td>4</td>
<td>3.2</td>
<td>63.4</td>
</tr>
</tbody>
</table>

table 1. Elements dB

- **440 MHz bandpass filter**

 The first example is a front-end filter for a 440 MHz FM receiver in a linear translator system. A linear translator, like a repeater, retransmits what it receives on a frequency 5 MHz (the 440 MHz spacing) away from the input channel. In order to prevent receiver overload or excessive intermodulation distortion in the presence of the strong transmitted signal, the rejection of the near-by repeater transmitter at 445 MHz must be approximately 50 dB. At the same time, the filter's passband loss should be moderate, less than about 3 dB, or the receiver sensitivity will be degraded excessively. These two considerations dictate the choice of filter type and design.

 An interdigital bandpass filter turns out to be a good choice for this application. It can be simply and inexpensively built, and has relatively low passband losses together with good out-of-band rejection. And while it is true that a cavity diplexer filter of the sort often seen in amateur repeaters can give still lower losses and greater rejection, its good electrical performance can be accomplished only at the expense of increased mechanical complexity, larger size, and higher cost. Here, the required performance does not absolutely dictate the use of a multiple cavity diplexer, so we should definitely consider using the much simpler interdigital filter. If still less skirt rejection and somewhat greater loss can be tolerated, a helical resonator filter might be a good choice, for it would provide less rejection and probably would have higher passband losses, but it would also be much smaller mechanically than an equivalent interdigital bandpass filter. This size reduction is possible because the inductances in a helical filter are coils and because the inter-element couplings are not dependent only on the physical spacing of elements.

 The first step in the choice of filter parameters is to determine the required passband loss limit, passband ripple, and out-of-band rejection that can be tolerated. An interactive computer-aided design program makes these tradeoffs considerably simpler to evaluate. The designer begins by entering a first estimate, or guess, of the approximate number of elements and passband ripple. From these inputs, the computer program quickly determines the approximate loss and plots the pass and reject bands. In the course of a few minutes' work, several different configurations can be tried out. From these it is easy to select the optimum design.

 As an example of this interactive optimization, fig. 3 lists a number of different 440 MHz filter configurations tested by the program. These designs differ mainly in the number of elements and in their passband widths. Filters with from 2 to 6 elements and ripple bandwidths of from 1 to 4 MHz are compared. In each case, the loss at the center frequency, 440 MHz, and at the transmitter frequency to be rejected, 445 MHz, are listed for comparison.

 The results of this scan of various possible designs
OF ELEMENT $P-P$ RIPPLE IN PASSBAND (DB)? 4.25

INPUT FILTER CENTER FREQ. (GHZ), BW (MHZ) & LOAD IMPEDENCE Z_0? .440, 3.50

INPUT GROUND PLANE SPACING, ROD DIAMETER

& DISTANCE TO CENTER OF FIRST AND LAST ROD? 1, .38, .5

NO. OF FREQ. REJECTION PTS AND STEP SIZE (MHZ)? 38, .5

DESIGN DATA FOR 4 POLE INTERDIGITAL FILTER

.44 GHZ BAND PASS RIPPLE .25 DB

CENTER FREQ. .44 GHZ

CUTOFF FREQ. .4385 (GHZ) AND .4415 GHZ

RIPPLE BW. $3.000021E-03$ GHz

3 DB BW. $3.419328E-03$ GHz

FRACTIONAL BW. $6.81823E-03$

FILTER Q 128.6803

EST QU 1459.315

LOSS BASED ON THIS QU 2.422713 DB

DELAY AT BAND CENTER 294.6652 NANOSECONDS

FREQUENCY REJECTION INFORMATION

QUARTER WAVELENGTH = 6.706136 INCHES

THE LENGTH OF INTERIOR ELEMENTS = 6.418164 INCHES

LENGTH OF END ELEMENTS = 6.438183 INCHES

GROUND-PLANE SPACE = 1 INCHES

ROD DIAMETER = .38 INCHES

END PLATES .5 INCHES FROM C/L OF END ROD

TAP EXTERNAL LINES UP .2294638 INCHES FROM SHORTED END

LINE IMPEDANCES: END ROD 67.31341, OTHER 72.49873, EXT. LINES 50 OHM

DIMENSIONS

<table>
<thead>
<tr>
<th>EL. NO.</th>
<th>END TO C</th>
<th>C TO C</th>
<th>G(K)</th>
<th>Q/COUPLING</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.5</td>
<td>1.378239</td>
<td>1.570873</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.394495</td>
<td>1.894495</td>
<td>1.269327</td>
<td>.5431323</td>
</tr>
<tr>
<td>2</td>
<td>4.364437</td>
<td>1.894495</td>
<td>2.055808</td>
<td>.6633376</td>
</tr>
<tr>
<td>3</td>
<td>6.258931</td>
<td>.8509719</td>
<td>1.570873</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>6.758931</td>
<td>1.1500873</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

fig. 4. Computer printout for the 440-MHz filter.
ICOM 2-Meter Handhelds

If you want a 2-meter handheld with exceptional features, quality built to last and a wide variety of interchangeable accessories, take a look at the ICOM IC-02AT and IC-2AT handhelds.

Frequency Coverage. The IC-02AT covers 140.000 through 151.550MHz and the IC-2AT, 141.500 through 149.994MHz... both include frequencies for MARS operation.

IC-02AT Features. ICOM's top-of-the-line IC-02AT handheld has the following outstanding features:
- DTMF direct keyboard entry
- LCD readout
- 3 watts standard, 5 watts optional (with IC-BP7 battery pack)
- 10 memories which store duplex offset and PL tone (odd offset can be stored in last 4 memories)
- Frequency dial lock
- Three scanning systems: priority, memory and programmable band scan (selectable increments of 5, 10, 15, 20 or 25KHz)

IC-2AT Features. The IC-2AT is ICOM's most popular handheld on the market. The IC-2AT features a DTMF pad, 1.5 watts output and thumbwheel frequency selection. The IC-2A is also available and has the same features as the IC-2AT except DTMF.

Accessories. A variety of slide-on battery packs are available for the IC-02AT and IC-2AT, including the new long-life 800mAh IC-BP8 which can be used with both handhelds. Other accessories include the HS-10 boom headset, HS-10SB PTT switchbox, HS-10SA VOX unit (for IC-02AT) and an assortment of battery pack chargers.

The IC-02AT and IC-2AT come standard with an IC-BP3 NiCd battery pack, flexible antenna, AC wall charger, belt clip, wrist strap and ear plug. See the IC-02AT and IC-2AT 2-meter handhelds at your local ICOM dealer.
CALL LONG DISTANCE ON 2 METERS

Only 10 watts drive will deliver 75 watts of RF power on 2M SSB, FM, or CW. It is biased Class AB for linear operation. The current drain is 8-9 amps at 13.6 Vdc. It comes in a well constructed, rugged case with an oversized heat sink to keep it cool. It has a sensitive C.O.R. circuitry, reliable SO-239 RF connectors, and an amplifier IN/OUT switch. The maximum power input is 15 watts.

Our products are backed by prompt factory service and technical assistance. To become familiar with our other fine products in the amateur radio market, call or write for our free product and small parts catalog.

Model 875
Kit $109.95
Wired & Tested $129.95

Suggested Retail $199.95

Now, with UTU, any computer with an RS232 port and a terminal program can interface with any transceiver. Because of an internal microcomputer, UTU requires no additional decoding software. A short terminal program is used to link the computer to UTU. Sample programs for UTU's manual. UTU offers the following features:

- Ten-segment LED BAR GRAPH displays Mark and Space. Additional LED's show Lock Mark and Space during AMTOR operation.
- Send/Receive CW (6-99 WPM), RTTY (60, 75, 100, 132 WPM), ASCII (110, 150, 200, 300 baud), and AMTOR modes A, B, and L.
- RS232 or TTL level compatible.

For more information contact your Kantronics dealer or write:
KANTRONICS 1202 E. 23 St.
LAWRENCE, KS 66046

NEMAL ELECTRONICS
Dept. H, 122-40 N.E. 14th Ave., N. Miami, FL 33161
Telephone (305) 893-3924

107

148
quickly reveals some expected trends. For instance, it is clear that filters that are too narrow (i.e., filters that have passband widths well under 1 percent of their center frequency) have increasingly higher passband losses. Also, filters with wide passbands have lower loss at the center frequency but decreased out-of-band rejection. These are fundamental tradeoffs. Next, it is also apparent that increasing the number of elements increases both the passband loss and the desired rejection of out-of-band signals, and that a filter with a relatively wide passband and many elements will have low in-band losses and good rejection. However, the number of elements cannot be increased arbitrarily because experience has shown that filters with many elements are less easily built and tuned, and that for Amateur construction and tuning techniques it is best to avoid the use of more than about five or six elements.

With all this in mind, we selected a four-section filter with passband ripple of 0.25 dB (VSWR = 1.62) and a bandwidth of 3 MHz. For our application, these choices resulted in approximately the desired loss and rejections, namely 2.4 dB loss at 440 MHz and a rejection of about 46.8 dB at 445 MHz. Note that this rejection is relative to the passband loss, so that the filter’s total loss at 445 MHz is estimated to be approximately 49.2 dB.

Computer output

The computer program’s output for this filter design is shown in fig. 4. The printout contains information on both the electrical performance estimates as well as mechanical information in detail sufficient to fully describe the filter.

After the “RUN” command is entered, the program asks for some electrical design information such as the number of sections, or elements, in the filter and the passband ripple in decibels. Enter these two numbers, separated by a comma, followed by the “return” key, and the computer will respond with the next questions. These are the center frequency, expressed in gigahertz, the ripple bandwidth of the filter in megahertz, and the desired load impedance in ohms (usually 50). As before, these three entries should be separated by commas and followed by a return.

Next, the program requests some mechanical information. The spacing between the top and bottom ground planes, the diameter of the resonant rods and the desired spacing between the end of the filter and the first rod are entered in response to the questions. All of these dimensions should be entered in decimal inches because the design formulas within the program contain constants in inches.

The third and last section of input data concerns the plotter output. The operator must specify how many plot points and the spacing in megahertz between each point. The maximum number of plot points is 40. It is usually convenient to specify a step size of somewhat smaller than the passband width to give a good picture. In this example, the filter is 3 MHz wide and the plot with a one-half MHz resolution shows the rejection skirts clearly.

After these last bits of information are entered, the computer program proceeds without further intervention. It first prints out some of the calculated parameters of the filter. Then the computer graphically plots the pass and reject bands on the screen and on a printer if one is selected.

The last block of computer printout gives the mechanical details of the filter. The quarter wavelength listed is the inside dimension of the filter cavity. The length of the interior elements is listed, followed by the length of the two end elements. All of the interior elements have the same length, but the two end elements may have a different length from the end rods. The tap point is the point on the end element at which the external connection is made, and it is measured from the “cold” or grounded end of the rods. A tabular summary of the filter’s dimensions appears at the end of the printout. It lists the end to center dimensions, the element center to center dimensions, and two coupling coefficients. The mechanical dimensions are easily translated into a sketch of the filter. Naturally, the designer must have certain dimensions and construction materials in mind before the computer program can be run. The ground plane spacing and rod diameter must be entered as constants to permit the completion of the design. These variables depend on the materials used to build the filter, and on the construction technique.

Construction

Now that the computer program has been used to select an optimized filter and it has printed the mechanical dimensions of the filter’s structure, it is time to consider how to translate the filter design into a form that can be realized. The mechanical structure must be sufficiently sound to produce the expected performance.

The table of numbers at the end of the computer printout, fig. 4, gives fairly complete information on the dimensions of the filter structure. The first column gives the element number, with zero indicating the first edge of the filter and a number one greater than the total number of rods denoting the other edge of the structure. The second column gives dimensions in inches from the end of the housing to the center of the rod indicated. For example, in our design, the second element is to be located a distance of 2.39 inches from the end of the housing. The total length of the filter will be the dimension listed opposite the final entry which is, in this case, 6.759 inches (17.168 cm).
TIME FOR AN BREAKTHROUGH

The high quality of AEA products is appreciated long after the price paid is forgotten.

No Antenna
- Tuning Aid
 - CW Band Simulation That Is So Real You Won’t Believe It!
 - Will improve the operating skills of ANY CW operator!
 - More fun than ANY Morse Code trainer yet devised.
 - Use with a C-64, TV set, and key or keyer.
 - Experience the thrill of a “DXpedition” to anywhere in the world.
 - Operate anytime you want, ideal for travelers.
 - Impressive award certificates available for verified performance.
 - On-going contests: 8-hour sprint and 24-hour marathon.

THE FANTASTIC DOCTOR DX™
- Spectral Instant indication of.“The paid is forgotten.
- Speaker with RANGES.
- High quality of AEA products is appreciated long after the price.

HOT ROD™
- Wave Telescope Antenna
 - Fewer telescopic sections than any % wave whips.
 - Shorter and lighter than all % wave whips.
 - Special matching network designed by Professor D.K. Reynolds (co-inventor of Iso.

PKT-1 Packet Controller
- First commercially available packet controller for Amateur Radio.
- Uses TAPR circuitry and firmware.
- Digital radio communications for computer to computer.
- Easy to use—five usual commands.

PACKET TRANSMITTERS
- Multiple conversations on simplex channel.
- Every PKT-1 is a digipeater.
- Send computer files error free.
- Operates from 9-15 VDC for portable or fixed operation.

ELECTRONIC KEYERS
- Electronic keyers available from 9-15 VDC (power supply not included) and offer many more advanced features than can be listed here. It is no accident that AEA keyers are regarded as the best in the world.

Unmatched Software For C-64 And VIC-20 Computers
- MBA-TORM™—The most advanced software written for Morse-Baudot-ASCII—AMTOR including mail drop.
- MARGTEX™—A special Morse-Baudot-ASCII packet written especially for MARS and other traffic operators.
- SWLTEX™—The most sophisticated software available for the shortwave listening enthusiast. Automatic data analysis: Morse, Baudot, ASCII, AMTOR, and SITOR.

Henry Radio
2050 S. BUNNY DRIVE
LOS ANGELES, CA 90025
(213) 820-1234
TOLL FREE OUTSIDE CALIF. (800) 421-6631
931 N. Euclid, Anaheim, CA 92801 (714) 772-9200 • Butler, MO 64730 (816) 679-3127

56 YEAR OF SERVICE
Although the printout gives information on how to size the filter, it is probably a good idea to make a drawing to fix in your mind just how the box is to be assembled. **Figure 5** is a mechanical sketch of the 440 MHz filter. It is clear that the dimensions on this drawing have been taken directly from the computer printout, but the sketch also shows how the walls of the box are to be joined together. The dimensions on the printout are for the electrical housing, which consists of the copper conductor inside the box, and not the outside, mechanical dimensions. Keep in mind that the external dimensions of the box are not the critical factors.

One of the more popular amateur construction materials is copper clad printed circuit board. It is widely available at low cost, is strong and stable, and it can be easily joined together by regular soldering techniques to make boxes and circuit housings of any given size. It can be cut with a sheet metal shear or tin snips to fairly close tolerances, and so it is a good choice as the basic "building block" material for a custom bandpass filter. Furthermore, copper is one of the best conductors for use at high frequencies as its electrical resistivity is quite low. Of the more common materials, only silver has better high-frequency conductivity, and it is considerably more expensive.

To construct the filter housing of this example, we used $\frac{11}{16}$ inch double-clad fiberglass epoxy board throughout. The top, bottom, sides and end pieces of the filter's housing were cut to shape with a sheet metal shear, drilled to accept the resonator rods, and soldered together with "tack" joints, that is with small flows of solder at intervals along the edges of the pieces to be joined. The pieces need not be soldered with a continuous seam, but a soldered tack should be used about every inch. This dimension corresponds to only about 5 percent of a wavelength, and so it ensures good electrical interconnection at all points along the copper.

The most critical dimensions of the housing are the width of the filter, which is usually a quarter wavelength, and the inside height of the cavity. A small piece of wood or metal with perpendicular faces is a good "jig" to help solder the housing walls accurately. If you work carefully, you should be able to build a housing that's both nearly square and accurate enough to take advantage of the custom design made possible with the computerized design aid described in this article.

Because we want to hold all of the parts of this filter together with regular tin-lead solder, all of the parts obviously should be solderable. A good material for the filter rods is common copper tubing which is available in a number of sizes in hardware and plumbing supply stores. For the design of this 440 MHz filter we chose 3/8 inch tubing. The "3/8 inch" refers to the outside dimension of the tubing, so the filter rod diameter measures approximately 0.375 inches.

The choice of rod diameter is not entirely arbitrary, although it is not very critical, either. As a rule of thumb, the rod diameter should be roughly 1/3 the housing height. In general, large diameter rods have lower losses than smaller rods. This is because skin effect losses predominante at radio frequencies. A larger diameter rod has greater surface area and, hence, less resistive loss than a smaller diameter rod. However, using a larger rod diameter can lead to mechanical difficulties. In this filter, for example, it was difficult to solder the large 3/8 inch diameter copper rods. These rods have fairly large masses and good thermal conductivity, so a regular soldering iron, intended for lighter duty circuit board work, just wouldn't provide enough heat. In the end, it took the greater heat of a propane torch to solder the rods to the copper walls.

The rods should be cut a bit longer than the correct length given by the printout. Then they are fit through holes drilled in the housing wall and soldered on both sides of the double clad circuit board, as shown in **fig. 6**. A good solder joint on each side increases the mechanical strength and improves grounding. The interior lengths of the rods and the center-to-center spacings between the rods are among the most critical dimensions affecting the frequency re-
sponse of the filter, so measure them as carefully and precisely as possible. In spite of all the care you use in construction, however, it will almost certainly be necessary to peak tune the filter response.

One simple way to tune the filter rod lengths is to load their open-circuited ends with variable capacitors. If the rods are just a bit shorter than the design calls for, then the small capacitance of a tuning screw at the open end will tune that element’s resonant frequency. This tuning compensates for the minor inaccuracies which inevitably occur in construction.

These tuning screws need good grounds at the points where they penetrate the wall. It is important to realize that it is the inside grounded surface that matters most, because the inside copper cladding forms the conductive boundary that contains the filter’s electric fields. For this reason the tuning screws are supported by brass nuts soldered to the inside surface of the box. These nuts are visible in the overall photograph of the filter and especially in the close-up view, fig. 7. The nut makes a simple threaded support for the screw and serves as the low impedance path from the screw body to the ground plane. On the outside of the filter housing a second nut holds the screw firmly in place. This nut is tightened after all of the filter tuning is completed, and it ensures that the screw is tightly bound to the soldered-down nut and prevents it from moving and thereby detuning the filter.

The computer program also lists the tap point distance, which is the position at which the external connectors pass through the walls and are coupled to the filter. The distance is given relative to the shorted end of the rods. This junction should be by a short length of wire or cable. The closeup view shown in fig. 7 shows how the connector’s center pin has been joined to the end rod with a short length of solid wire. The actual tap point distances may need to be adjusted for best performance, but if the design value is used it will serve for most cases without change.

tuning

After the filter has been fully assembled, which means after all of the soldered joints are fully completed and the top is well secured electrically to the sides, it is time to test and tune.

Tuning microwave filters can be done in a number of ways. Several methods are described in reference 1, but the simple procedure of “sight tuning,” or tuning by eye, is adequate for amateur filters, especially for filters with fewer than five or six sections. The basic principle involved is to tune for maximum signal at the center frequency, a process sometimes called synchronous tuning. The tuning is interactive, which means that one adjustment affects the tuning of adjacent elements, so it is necessary to return to each element once or twice to achieve peak performance.

A basic test set that can be used to peak the performance of any of the filters described here is shown in fig. 8. Inject a signal at the center frequency of the filter, detect or monitor the output power level, and tune for maximum. If the center frequency is within the ham bands, the input signal can be a transmitter or exciter. A signal generator can also be used. Harmonics of lower frequency sources or crystal oscillators can be useful as well. For example, the third harmonic of a 2-meter transmitter falls within the 420 to 450 MHz band and could be used to tune this filter. The signal detector can be a receiver with a signal level meter, a diode detector, a sensitive power meter or signal analyzer. Reference 6 describes many good low-cost UHF test methods in detail.
Apply the test signal to one of the filter’s connectors and connect the signal detector to the other and tune each of the screws to achieve the maximum output signal. The tuning range of this type of filter design is rather limited, which helps prevent tuning to the wrong harmonic, as can happen with broadly resonant circuits. This is a useful feature if the simple test set, with its potentially low spectral purity, is to be used.

If the filter is properly designed and carefully constructed, the slight tuning range afforded by the tuning screws should be sufficient. Each tuning screw should show a definite maximum. If it does not, this is an indication that the element which you are tuning is not properly resonant. In such a case, the rod length must be corrected before the filter will operate properly.

Once you’ve adjusted each tuning screw to yield the maximum output signal, go back and readjust each screw again slightly to peak the filter. If the filter response is not as calculated, and if the passband losses seem high even though each of the resonators gives a good peak tuning point, it may be necessary to adjust the tap points at the two end resonators. If no means of carefully measuring the losses is available, it is probably better to stay with the calculated tap dimensions. At this point the tuning is done.

A more sophisticated measuring system is useful for measuring the actual performance of the filter. Figure 9 is a diagram of the test set which produced the swept frequency response of the filter examples. The input signal from a sweep generator scans across the frequency range in regular sweeps. A spectrum analyzer measures the output signal from the bandpass filter, and provides a graphic plot of the filter’s output signal across the frequency range swept by the signal generator. Because the power from the generator to the filter input is constant, the spectrum analyzer’s display is a direct representation of the filter’s attenuation at various frequencies.

Figure 10 is the response of the 440-MHz filter. This graph is the plotter output from the test set described above. The filter was tuned using the simple single-frequency method of peaking all adjustments for maximum signal at 440 MHz. With the aid of such sophisticated test equipment it is possible to tune for improved passband flatness or for more precise centering if desired, but this clearly was not necessary in this case.

In summary, the 440 MHz bandpass filter example fully met its design goals of low cost, simple construction and easy adjustment, and it produced the desired electrical performance. The filter is physically small enough and sufficiently sturdy to be used in a fixed base system, although mechanical improvements would be needed for mobile service. This general construction technique using copper clad board and tubular copper or brass resonators has been applied to successfully build filters for the amateur bands from 440 to 2304 MHz.

1296 MHz filter

The second example of the use of this program is a bandpass filter centered at 1296 MHz with a desired ripple bandwidth of 20 MHz, a passband ripple of 0.25 dB and rejection points of 35 dB and 50 dB specified. Using these data, a few iterations with the program revealed that a four-section filter would again meet the requirements.
If the construction techniques used to build the 440-MHz filter seemed spartan, then this 1296 MHz filter is by contrast decidedly upscale. In order to prove that close tolerance construction could give good agreement with the computed data, a machined aluminum housing was used for this filter. Machining a housing using a metal milling machine gives precise control of the housing dimensions. This housing is considerably more accurate than the hand-made structure described in the first example.

The mechanical data supplied by the program were used to make a sketch, shown in fig. 11, of a housing that could be manufactured simply on a metal milling machine. The elements, machined from 0.125 inch brass rod stock (a standard size) were tightly "press fit" into holes in the housing walls. The rods are held tightly in position with a small setscrew once the exact interior lengths were determined. At the input and output ends of the filter SMA type connectors were installed so that their center pins contacted the rods at the tap point calculated by the computer program. Small diameter tuning screws were installed in the threaded holes in the walls opposite the open circuit end of each resonator rod. These screws, as in the 440-MHz filter, make it possible to fine-tune the filter passband. A top cover of 0.06-inch aluminum sheet was attached by eight screws that go into the threaded holes along the top edge of the housing. The photographs of this filter, figs. 12 and 13, show the construction details clearly. (Note: while 0-80 screws are specified in the construction drawings, 2-56 screws could be used as well.)

The housing was manufactured by machinists in a small shop, working from a simple sketch of the housing and cutting the aluminum stock with hand-operated machinery. In order to reduce costs, we
asked the shop to produce only a blank housing. They machined away the cavity to the precise 0.500 inch depth and drilled locating holes for the resonator rods, the tuning screws, the end connectors and the cover mounting screws, but they did not tap any of the holes. We were then able to finish the mechanical work by doing the time-consuming hand-tapping of all of the threaded holes. This reduced the cost of the housing by more than a third. Even so, the cost was in the $50.00 range, which may be justifiable only when precise results are essential.

However, the care and expense expended on the precise housing produced a filter that was nearly on frequency at first try, with precisely the initial resonator length settings that the computer predicted. Fine adjustments of the trimmer screws centered the passband precisely. Figure 14 shows a plot of the swept RF response of the filter. Superimposed on the plot are circles that indicate the expected response calculated by the computer prediction. The calculated and actual values are in close agreement throughout the passband, and the rejection skirts are close to the computed values as well.

As before, the filter was peaked using the simple, single-frequency approach in order to illustrate the results obtainable with simple equipment. The test set used to make the swept frequency response plot was the same as that used in the 440 MHz filter tests.

This 1296 MHz filter, with its careful and precisely machined construction, shows the power and accuracy of the computer routine. The construction technique is a good one, and a simple metal milling machine, and perhaps even a drill press, can be used to make housings such as this one.

The use of 0.125 inch brass stock for the resonator rods was a bit of a compromise. It would have been better to use a somewhat larger diameter rod to reduce skin effect losses, but the 0.125-inch stock was on hand. Also, although brass rod is a good choice from a mechanical viewpoint, it is not a very good conductor of RF energy because its resistivity is about four times worse than copper’s. Aluminum rods would be better than brass, because aluminum is both stronger and a better conductor, but with aluminum rods the tap point connections couldn’t be easily soldered. Tradeoffs, as always, seemed to abound.

conclusion

This program is a powerful tool that greatly simplifies the selection and design of bandpass filters. The interdigital structure is useful from UHF to microwave frequencies, and provides good selectivity, low loss, small size, and an ease of construction that makes it suitable for many applications. The ease with which many different designs can be evaluated in software means that Amateurs can custom-design filters for specific applications and need not merely copy published designs that only approximate their re-
requirements. The widespread use of home computers together with software written specifically for Radio Amateurs should make possible a new generation of home-built equipment designs.

references

MOSFET REPEATER AMPLIFIERS

4111: 2 Meter Power Amplifier
2 Watt Input - 30 Watt Output
20 Watt Input - 100 Watt Output

4112: 220 MHz Power Amplifier
2 Watt Input - 25 Watt Output
25 Watt Input - 100 Watt Output

4114: 2 Meter Power Amplifier
2 Watt Input - 100 Watt Output

These basic amplifiers, with the low noise advantages of MOSFETs, require a 12–16 Vdc power source. Mounted on an 8 ⅜” rack panel with a large heat sink, they are designed for continuous duty at full power output when cooled with a small, customer supplied, fan. Mounting provisions and control thermostat are supplied.

(415) 851-8779
P.O. Box 620625
Woodside, CA 94062

ALSO SEE US FOR YOUR MOBILE AMPLIFIER NEEDS

January 1985
FREQUENCY COUNTERS
6 MODELS • RANGES TO 1.3 GHz

Certified Calibration • Metal Cases • LSI Circuitry
With no custom IC's • AC/DC or battery
Operation • Precision time bases • Exclusive LED
Bar graph signal strength indicator
On models 8010-S & 8013-S
Made in USA

<table>
<thead>
<tr>
<th>MODEL</th>
<th>PRICE</th>
<th>NI-CAD BATTERY OPTION</th>
<th>TIME BASE OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>#K-7000-AC</td>
<td>$150.</td>
<td>$25.</td>
<td>N/A</td>
</tr>
<tr>
<td>#7010-S/600 MHz</td>
<td>$125.</td>
<td>$25.</td>
<td>N/A</td>
</tr>
<tr>
<td>#7010-S/1 GHz</td>
<td>$310.</td>
<td>$25.</td>
<td>$75. N/A</td>
</tr>
<tr>
<td>#8007-S</td>
<td>$350.</td>
<td>$25.</td>
<td>$75. N/A</td>
</tr>
<tr>
<td>#8010-S</td>
<td>$435.</td>
<td>$25.</td>
<td>$75. N/A</td>
</tr>
<tr>
<td>#8013-S</td>
<td>$499.</td>
<td>$25.</td>
<td>$75. N/A</td>
</tr>
</tbody>
</table>

Available option

ACCESSORIES

LPF-1110
Measure audio frequencies faster with increased resolution. Multiples low frequency signals by 10, 100 or 1000. Built-in low-pass filtering and signal amplification. (Pictured 3rd from top) $150.

AP-8015-5
1-1300 MHz preamplifier for reading extremely low level signals. Compact aluminum enclosure can be coupled directly to BNC input connector on counter. Supplied with AC adapter. Can also be powered from accessory power output on 80XX-S series front panels. 25 dB gain to 1 GHz, 10 dB gain at 1.3 GHz $195.

TR-100
RF pick-up antenna, telescope-swivel elbow $72.

P-100
Direct 50 Ohm probe $18.

P-101

P-102

CC-20

CC-40
Carry case, large for 80XX-S series $12.

CALL FACTORY TOLL FREE
1-800-327-5912
From Florida (305) 771-2660
TELEX 614649

OPTOelectronics inc.
5821 N.E. 14th Avenue Ft. Lauderdale, Florida 33334

To US and Canada add 5% to max of $10 per order for shipping/handling.
Foreign orders add 15%
NEW REMOTE CONTROLLED ANTENNA TUNERS

NEW COMPACT DESIGN WITH 10-segment LED tuning indicator

- VT-4B Installs directly at the antenna feedpoint where you can really "tune" the antenna.
- Designed for half wave dipoles, inverted V's, and quarter wave verticals using 50 Ohm coax feedlines.
- Operates with single band or multiband antennas, trap type or parallel element types.
- Works all bands from 10 through 160 meters.
- Full band coverage with maximum efficiency and very low VSWR, typically less than 1.2 to 1.
- Finger tip control from the ham shack for exact resonance and impedance match.
- For mobile operators, the vector VT-3B installs in the trunk and tunes standard type mobile antennas for full band coverage, (All of 75M phone band), with typical VSWR less than 1.2 to 1.

EITHER MODEL
$169.00

Vector Radio Co., P.O. Box 1166, Cardiff, CA 92007

FREE CATALOG!
Features Hard-to-Find Tools and Test Equipment

Jensen's new catalog features hard-to-find precision tools, tool kits, tool cases and test equipment used by ham radio operators, hobbyists, scientists, engineers, laboratories and government agencies. Call or write for your free copy today.

Jensen Tools Inc. 7815 S. 46th Street Phoenix, AZ 85040 (602) 968-6231

DRAKE R-4/T-4X OWNERS AVOID OBSOLESCENCE
PLUG-IN SOLID STATE TUBES!
Get state-of-the-art performance. Most types available
INSTALL KITS TO UPGRADE PERFORMANCE!
- BASIC Improvement
- Audio Bandpass Filter
- Audio IC Amplifier
TUBES $23 PPD KITS $25 PPD OVERSEAS AIR $7
Sartori Associates, W5DA Box 832085 Richardson, TX 75083 214-494-3093
basic gamma matching

Simplify antenna matching with this BASIC program and your microcomputer

Antenna homebrewers have found the gamma match to be an ideal choice for matching a coaxial feedline to an all-metal radiator. It is simple to build, adds little weight and wind loading, is very strong mechanically, and allows you to match an unbalanced transmission line to either an unbalanced or balanced antenna.

Unfortunately, it isn't always easy to obtain a good match, and many have aborted their attempts in frustration. The problem is that initial gamma match dimensions are generally chosen arbitrarily. Sometimes you may be lucky and choose a reasonable starting point, but just as often your initial dimensions won't even be close. In this case you may spend hours on the tower going in circles looking for a match.

Formulas that allow you to generate gamma match designs are available. However, the math involved is tedious, especially if several iterations must be performed. A home computer can simplify these calculations, allowing a variety of gamma matching networks to be examined in just a few minutes. A program that will design a gamma match for practically any Yagi or vertical antenna is presented here. While designed for the Apple II+, the program will work equally well with any microcomputer with only a few modifications.

background

The design of the gamma match is represented in fig. 1, and the schematic of the equivalent electrical circuit in fig. 2. The circuit consists of a gamma rod and a resonating capacitor. The gamma rod of diameter d and length L runs parallel to the driven element of diameter D, separated by the center to center spacing S. It provides the desired resistance transformation, but at the same time introduces inductive reactance at the feed point. The gamma capacitor compensates for the inductive reactance, leaving only a resistive component.

Any of several gamma capacitors may be used. An air variable with adequate plate spacing for the anticipated power level is the usual choice. It may be mounted in a small weather resistant enclosure and connected to the gamma rod by means of a feed-through insulator. Another method is to construct a coaxial capacitor within the gamma rod. This technique has been successfully applied by many commercial manufacturers and basement engineers.

The shorting bar that determines length L generally takes the form of a strap, bent to conform to the driven element and gamma rod and secured with screws. When very long gamma rods are required, as when shunt feeding towers on the lower frequencies, a wire may be used for the gamma rod. If the diameter

By Richard A. Nelson, WB0IKN, Analog Technology, P.O. Box 8964, Fort Collins, Colorado 80525

fig. 1. A representation of the mechanical design of the gamma match.

fig. 2. Schematic diagram of the gamma match. The antenna impedance $R + jX$ is transformed to the feedline resistance Z_g by the gamma rod X_p and gamma capacitor $-X_g$.
HOME : CLEAR
PRINT "GAMMA MATCH DESIGN"
PRINT "BY RICHARD A. NELSON - WBØIKN"
PRINT
DEF FN CSH(X) = LOG (X + SQR (X * X - 1))
PRINT "ENTER <M> FOR MONOPOLE"
PRINT "ENTER <D> FOR DIPOLE > " ; DM$
IF DM$ = "D" OR DM$ = "M" THEN GOTO 100
GOTO 60
INPUT "ENTER FREQ IN MHZ > " ; F
INPUT "ENTER FEEDPOINT RESISTANCE > " ; RA
IF DM$ = "D" THEN RA = RA / 2
INPUT "ENTER FEEDPOINT REACTANCE > " ; XA
IF DM$ = "D" THEN XA = XA / 2
INPUT "ENTER FEEDLINE RESISTANCE > " ; RO
PRINT :
PRINT
THE FOLLOWING ARE IN INCHES"
INPUT "ENTER DRIVEN ELEMENT DIAMETER ? " ; DE
INPUT "ENTER GAMMA ROD DIAMETER > " ; DG
INPUT "ENTER GAMMA ROD SPACING > " ; S
HZ = (1 + ((FN CSH((4 * S * S - DE * DE + DG * DG) / (4 * S * DG)))
/ (FN CSH((4 * S * S + DE * DE - DG * DG) / (4 * S * DE))))^2
Z0 = 60 * FN CSH((4 * S * S - DE * DE - DG * DG) / (2 * DE * DG))
T = HZ / Z0
A = ((RO * XA) / (HZ * RA - RO))
B = (RO * ((RA) ^ 2 + (XA) ^ 2)) / (HZ * RA - RO)
Q = A + SQR (A * A + B)
XS = HZ * (((RO * XA + SQR ((RO * XA) ^ 2 + RO * (HZ * RA - RO) * ((
RA) ^ 2 + (XA) ^ 2))) / (HZ * RA - RO))
LDGA = ATN (Q * T)
LDG = (LDGA * 360) / (2 * 3.14159)
E = (RO / RA) * (((RA) ^ 2 + (XA) ^ 2) / Q)
G = (RO / RA) * XA
CR = 1000000 / (2 * 3.14159 * (E + G) * F)
HOME
IF DM$ = "D" THEN RA = RA * 2: IF DM$ = "D" THEN XA = XA * 2
PRINT
IF DM$ = "D" THEN PRINT "DIPOLE ANTENNA"
IF DM$ = "M" THEN PRINT "MONOPOLE ANTENNA"
PRINT "GAMMA ROD DIAM = " ; DG
PRINT "GAMMA ROD SPACING = " ; S
PRINT "DRIVEN ELEMENT RESISTANCE = " ; RA
PRINT "DRIVEN ELEMENT REACTANCE = " ; XA
PRINT "FEEDLINE RESISTANCE = " ; RO
PRINT "GAMMA LENGTH (DEGREES) > " ; LDG
FT = (948 / F) * (LDG / 360): PRINT "GAMMA LENGTH (FEET) > " ; FT
IN = FT * 12: PRINT "GAMMA LENGTH (IN) > " ; IN
CM = IN * 2.54: PRINT "GAMMA LENGTH (CM) > " ; CM
PRINT "GAMMA CAP IN PF > " ; CR
PRINT : PRINT "TYPE ANY KEY TO CONTINUE >": GET T$: GOTO 10

fig. 3. A listing of the program for an Apple II+ computer. Simple modifications will allow the program to be used with practically any home computer.
is too small to provide a match, a "cage" may be constructed, using several wires to effectively create a cylinder at the required radius. Variations in gamma match design are limited only by the mechanical and electrical integrity of the structure. This versatility greatly adds to the gamma's usefulness.

about the program

A listing of the program for the Apple II+ computer is shown in fig. 3. Although written specifically for the Apple, I tried to keep the number of commands unique to Applesoft to a minimum. It should be easy for owners of other brands of microcomputers to translate the program for use on their machine.

Lines 10 through 40 clear the memory and the screen, and print the heading. Line 50 defines the inverse hyperbolic cosine function needed in the calculations. Lines 60 through 150 input data regarding the antenna and feedline, and lines 180 through 200 input the driven element diameter and anticipated gamma match constants (gamma rod diameter and spacing).

Lines 210 through 320 perform the calculations of gamma rod length and capacitance. Note that since a gamma match essentially loads into only one side of a dipole, the feedpoint impedance of a dipole antenna must be divided in half before performing calculations. This is done by lines 120 and 140. Line 340 restores the original impedance value before outputting data. Line 330 clears the screen and lines 360 through 510 output the specified and calculated data. Line 520 returns the program to the beginning.

Once you have the program running, you may wish to add custom features. For example, you could change line 520 to allow you to either return to the beginning, or to line 180 if you want to evaluate a different gamma match design without changing the antenna parameters. If you'd like hard copy of the data, you could add the appropriate "printer on" and "printer off" commands between lines 330 and 340, and 510 and 520 respectively. For an Apple II the commands would look like this:

335 PR#1
515 PR#0

Another possibility is a "WILL NOT MATCH" message in response to a divide-by-zero error (for Apples, use ONERR GOTO), indicating that a different design should be tried. I included all of these in my
The STANDARD of EXCELLENCE

The world of CW, RTTY, and new DUAL AMTOR® is as close as your fingertips with the new brilliantly innovative state-of-the-art microcomputer controlled EXL-5000E.

Automatic Sender/Receiver: Due to the most up to date computer technology, just a console and keyboard can accomplish complete automatic send/receive of Morse Code (CW), Baudot Code (RTTY), ASCII Code (RTTY) and new ARQ/FECC (AMTOR).

Code: Morse (CW includes Kana), Baudot (RTTY), ASCII (RTTY), JIS (RTTY), ARQ/FECC (AMTOR)

Characters: Alphabet, Figures, Symbols, Special Characters, Kana.

Built-in Monitor: 5" high resolution, delayed persistence green monitor — provides sharp clear image with no jiggly or jitter even under fluorescent lighting. Also has a provision for composite video signal output.

Time/Date Displays Month, Date, Hour and Minute on the screen.

Time/Transmission/Receiving Feature: The built-in timer enables completely automatic TX/RX without operator's attendance.

Select (Selective Calling) System: With this feature, the unit only receives messages following a preset code. Built-in Demodulator for High Performance: Newly designed high speed RTTY demodulator has receiving capability of as fast as 300 Baud. Three-step shifts select either 170Hz, 425Hz or 850Hz shift with manual fine tune control of space channel for odd shifts. HIGH (Mark Frequency 2125Hz) LOW (Mark Frequency 1275Hz) tone pair select. Mark only or Space only copy capability for selective fading. ARQ/FECC features incorporated.

Crystal Controlled AFSK Modulator: A transceiver without FSK function can transmit in RTTY mode by utilizing the high stability crystal-controlled modulator controlled by the computer.

Photocoupler CW, FSK Keyer built in: Very high voltage, high current photocoupler keyer is provided for CW, FSK keying.

Convenient ASCII Key Arrangement: The keyboard layout is ASCII arrangement and function keys. Automatic insertion of LTR/Fig code makes operation a breeze.

Battery Back-up Memory: Data in the battery back-up memory, covering 72 characters x 7 channels and 24 characters x 8 channels, is retained even when the external power source is removed. Messages can be recalled from a keyboard instruction and some particular channels can be read out continuously. You can write messages into any channel while receiving.

Large Capacity Display Memory: Covers up to 1,280 characters.

Screen Display Type-Ahead Buffer Memory: A 160-character buffer memory is displayed on the lower part of the screen.

The characters move to the left erasing one by one as soon as they are transmitted. Messages can be written during the transmitting state for transmission with battery back-up memory or SEND function.

Function Display System: Each function (mode, channel number, speed, etc.) is displayed on the screen.

Printer Interface: Centronics Para Compatible interface enables easy connection of a low-cost dot printer for hard copy.

Wide Range of Transmitting and Receiving: Morse Code transmitting speed can be set from the keyboard at any rate between 5-100 WPM (word per minute) AUTOTACK on receive. For communication in Baudot and ASCII Codes, rate is variable by a keyboard instruction between 12-300 Baud when using RTTY Modem and between 12-600 Baud when using RTTY level. The variable speed feature makes the unit ideal for amateur, business and commercial use.

Pre-load Function: The buffer memory can store the messages written from the keyboard instead of sending them immediately. The stored messages can be sent with a keyboard command.

"RUB-OUT" Function: You can correct mistakes while writing messages in the buffer memory. Misspellings can also be erased while the information is still in the buffer memory.

Automatic CR/LF: While transmitting CR/LF automatically sent every 64, 72 or 80 characters.

WORD MODE operation: Characters can be transmitted by word groupings, not every character, from the buffer memory with keyboard instruction.

LINE MODE operation: Characters can be transmitted by line groupings from the buffer memory.

WORD-WRAP-AROUND operation: In receive mode, WORD-WRAP-AROUND prevents the last word of the line from splitting in two and makes the screen easily read.

"ECHO" Function: With a keyboard instruction, received data can be read and sent out at the same time. This function enables a cassette tape recorder to be used as a back-up memory, and a system can be created just like telex which uses paper tape.

Cursor Control Function: Full cursor control (up/down, left/right) is available from the keyboard. Test Message Function: "RY" and "QR" test messages can be repeated with this function.

MARK-AND-BREAK (SPACE-AND-BREAK) System: Either mark or space trace can be used to copy RTTY.

Variable CW weights: For CW transmission, weights (ratio of dot to dash) can be changed within the limits of 1:3 to 1:6.

Audio Monitor Circuit: A built-in audio monitor circuit with an automatic transmit/receive switch enables checking of the transmitting and receiving state. In receive mode, it is possible to check the output of the mark filter, the space filter and AGC amplifier prior to the filters.

CW Practice Function: The unit reads data from the hand key and displays the characters on the screen. CW keying output circuit works according to the key operation.

CW Random Generator: Output of CW random signal can be used as CW reading practice.

Bargraph LED Meter for Tuning: Tuning of CW and RTTY is very easy with the bargraph LED meter. In addition, provision has been made for attachment of an oscilloscope to aid tuning.

Built-in AC/DC: Power supply is switchable as required: 100-120 VAC, 220-240 VAC 50/60Hz + 13.8VDC.

Color: Light grey with dark grey trim — matches most current transceivers.

Dimensions: 363(W) x 121(H) x 351(D) mm: Terminal Unit.

Warranty: One Year Limited

Specifications Subject to Change

$595.00 Everything built in — nothing else to buy!

EXCLUSIVE DISTRIBUTOR: DEALER INQUIRIES INVITED FOR YOUR NEAREST DEALER OR TO ORDER: TOLL FREE...800-327-3102

AMATEUR-WHOLESALE ELECTRONICS Telephone (305) 233-3631 Telex: 80-3356

8817 S.W. 129th Terrace, Miami, Florida 33176

MANUFACTURER:

TONO CORPORATION

98 Motosoa Machi, Maebashi-Shi, 371, Japan

* Dual AMTOR: Commercial quality, the EXL-5000E incorporates two completely separate modems to fully support the amateur AMTOR codes and all of the CCIR recommendations 476-2 for commercial requirements.
original program, but they were eliminated in the version presented here in order to simplify program entry and translation.

The hardest part of using this program will be determining the driven element impedance. Fortunately, the feedpoint characteristics of most common antennas are sufficiently documented to provide good data. The error introduced by “guesstimating” will in many cases be better than typical homebrew construction tolerances. If you have a noise bridge or impedance meter you should have no trouble determining the feedpoint impedance. Refer to any of the standard antenna texts if you are unsure about a particular antenna.

Once you have the impedance data — assuming that you know the diameter of your driven element and gamma rod — select an arbitrary gamma rod spacing. Start with an estimate based on mechanical and “eyeballed” electrical considerations. Three inches is a bit small for a shunt-fed tower, and a foot is obviously too big for a 2-meter Yagi.

Load and run the program. It will begin by asking whether you are evaluating a dipole or a monopole. Then it will request the values of a number of constants — feedpoint impedance, design frequency, etc. After all data has been entered, the computer will calculate and display the gamma rod length and the value of the gamma capacitor. If these values are not acceptable, run the program again, trying a different gamma rod diameter (if practical). You can vary the feedpoint impedance by slightly changing the length of the driven element. By examining a variety of alternative designs you can find the best combination, with reasonable mechanical and electrical parameters. If the antenna is not suitable for gamma matching, you can learn this quickly, without wasting hours in hands-on experimentation.

design examples

To demonstrate program operation, and to allow you to check operation once the program is keyed in, I will present several design examples.

Figure 4 shows the screen display on a run for a computer generated six-element, 20-meter Yagi design by Lawson. The calculated feedpoint impedance of the antenna is 20 + j7.5 ohms. In this example, I’ve assumed 1.5-inch (38.1-mm) diameter element centers, a gamma rod diameter of 0.25 inch (6.35 mm), and a gamma rod spacing of 3 inches (76.2 mm).

Figure 5 shows the results of two additional gamma match designs for this antenna. In **fig. 5A** the gamma rod spacing has been increased to 6 inches (152.4 mm), and in **fig. 5B** the gamma rod diameter has been increased to 0.5 inch (12.7 mm).

Figure 6 shows the results for a monopole approximately 1/4-wavelength high. In this case the gamma rod is a length of No. 10 wire (approximate diameter 0.1 inch or 2.54 mm). Run A is for a 60-foot (18.3-meter) tower used as vertical radiator on 3.8 MHz. Computer analysis shows its impedance to be approximately 33 + j1.3 ohms. Run B is for a 55-foot (16.8-meter) tower operated on the same frequency. The results show how a smaller gamma capacitor may be used if the radiator is made capacitively reactive by reducing its overall height.

I have used this program to design gamma matching networks for a 20-meter Yagi and a 2-meter cubical quad. In both cases the results were superb. No trimming of the gamma rod was necessary. Adjustment of the variable capacitors was all that was needed to achieve a 1:1 VSWR. The normal trial and error process was totally eliminated.

references

MONOPOLE ANTENNA

<table>
<thead>
<tr>
<th>FREQUENCY (MHz)</th>
<th>3.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRIVEN ELEMENT DIAM</td>
<td>12</td>
</tr>
<tr>
<td>GAMMA ROD DIAM</td>
<td>.1</td>
</tr>
<tr>
<td>GAMMA ROD SPACING</td>
<td>12</td>
</tr>
<tr>
<td>DRIVEN ELEMENT RESISTANCE</td>
<td>25</td>
</tr>
<tr>
<td>DRIVEN ELEMENT REACTANCE</td>
<td>-38</td>
</tr>
<tr>
<td>FEEDLINE RESISTANCE</td>
<td>50</td>
</tr>
<tr>
<td>GAMMA LENGTH (DEGREES)</td>
<td>> 44.8174331</td>
</tr>
<tr>
<td>GAMMA LENGTH (FEET)</td>
<td>> 31.0576949</td>
</tr>
<tr>
<td>GAMMA LENGTH (IN)</td>
<td>> 722.692339</td>
</tr>
<tr>
<td>GAMMA LENGTH (CM)</td>
<td>> 946.638541</td>
</tr>
<tr>
<td>GAMMA CAP IN PF</td>
<td>> 122.616005</td>
</tr>
</tbody>
</table>

MONOPOLE ANTENNA

<table>
<thead>
<tr>
<th>FREQUENCY (MHz)</th>
<th>3.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRIVEN ELEMENT DIAM</td>
<td>12</td>
</tr>
<tr>
<td>GAMMA ROD DIAM</td>
<td>.1</td>
</tr>
<tr>
<td>GAMMA ROD SPACING</td>
<td>12</td>
</tr>
<tr>
<td>DRIVEN ELEMENT RESISTANCE</td>
<td>25</td>
</tr>
<tr>
<td>DRIVEN ELEMENT REACTANCE</td>
<td>-38</td>
</tr>
<tr>
<td>FEEDLINE RESISTANCE</td>
<td>50</td>
</tr>
<tr>
<td>GAMMA LENGTH (DEGREES)</td>
<td>> 53.7315208</td>
</tr>
<tr>
<td>GAMMA LENGTH (FEET)</td>
<td>> 37.2350012</td>
</tr>
<tr>
<td>GAMMA LENGTH (IN)</td>
<td>> 446.820015</td>
</tr>
<tr>
<td>GAMMA LENGTH (CM)</td>
<td>> 1134.92284</td>
</tr>
<tr>
<td>GAMMA CAP IN PF</td>
<td>> 76.9934529</td>
</tr>
</tbody>
</table>

fig. 6. Results of two runs on a 75-meter vertical monopole antenna.
AEA BRINGS YOU ANOTHER BREAKTHROUGH THE TI-1 RTTY TUNING INDICATOR

- TRUE SPECTRAL DISPLAY SHOWS BOTH MARK AND SPACE TONES
- 10Hz RESOLUTION FOR THE TUNING ACCURACY OF A SCOPE
- WITHOUT THE EXPENSE OF A SCOPE
- ALLOWS FAST AND EASY TUNING OF RTTY SIGNALS
- IDEAL FOR DIFFICULT TO TUNE AMTOR SIGNALS
- DISPLAYS 170, 425 AND 850Hz STANDARD SHIFTS
- SHOWS NON-STANDARD SHIFTS FOR EASY TUNING
- AUDIO DRIVEN - EASY TO HOOK UP - COMPACT SIZE
- BUILT IN SPEAKER - CAN BE SWITCHED ON OR OFF
- WORKS WITH ANY INTERFACE
- DOES NOT REQUIRE SCOPE OUTPUTS
- REQUIRES 12vdc AT LESS THAN 60ma
- COMPLETE WITH MANUAL AND CONNECTORS
- SUGGESTED RETAIL $119.95

C & A ROBERTS, INC.
18511 Hawthorne Blvd., Torrance, CA 90504
213-370-7451 24 Hours call 213-834-5868

Tell 'em you saw it in HAM RADIO!
SAVE $10.00* with home delivery

*(One year newsstand cost $30.00)

Here's my address label, enter my subscription.

☐ 1 Year 12 issues $19.95 ☐ Payment enclosed
☐ 2 Years 24 issues $32.95 ☐ Bill me later
☐ 3 Years 36 issues $44.95 ☐ U.S. prices only

Name ____________________________

Address ____________________________

City ___________ State ___________ Zip ___________

☐ Check here if this is your renewal (attach label)

Subscribe to ham radio magazine

Please allow 4-6 weeks for delivery of first issues.

Foreign rates: Europe, Japan and Africa, $28.00 for one year by air forwarding service. All other countries $22.95 for one year by surface mail.
The most trouble free Dish Positioner on the market today.

Features
- Economical
- Lock and Key
- 36 volt DC motor
- Precise positioning
- Analog Micro Systems
- 1 year limited warranty
- State-of-the-art circuitry
- LED to indicate dish movement
- Available in 18" or 24" ball actuators
- Modern, attractively styled control box
- Dial control always showing dish location
- Dial channels same as in program listings

Your wisest choice in automatic dish positioners. To learn more about the finest in low cost, high performance dish positioners, contact...

ELECTRO-COM
DIST. SALES
8459 North Main Street • Suite 112 • Dayton, Ohio 45415 • Phone (513) 454-0232

More Details? CHECK – OFF Page 128
determining basic moon coordinates

Track the moon
with this
computer program

Serious EME (Earth-Moon-Earth) communication requires a way of accurately determining the position of the moon. Of the several ways this can be done, moon-tracking by computer is one of the more convenient.

The program described here runs on TRS-80 models I/III with a minimum of 16K RAM and either level II/III or disk BASIC; it should run on other computers as well with only minimal changes. With your QTH as the point of reference, it provides readings of azimuth, elevation, GHA, declination, and right-ascension of the moon as well as relative path loss, local time of day and local sidereal time (LST). The positional data are expressed in topocentric values — i.e., they’ve been corrected for your location on the surface of the earth. (Many other moon tracking programs provide geocentric data referenced to the center of the earth.)

To output the above information, you simply input your latitude and longitude and the day(s) and time(s) in GMT (Greenwich Mean Time). The computer displays the information on the CRT monitor, and/or sends it to the printer. Figure 1 shows a sample output for W2WD (40 degrees 39 minutes North, 74 degrees 22.5 minutes West) on June 8, 1983. Although this output came from the printer, the CRT display was similar; the data appears on the printer at the same time it’s displayed on the CRT.

keyboard input data

Figure 2 shows a screen printout of the inputs required to produce the output data discussed above.

After loading, RUN "MOON" < ENTER > starts the program from either level II or disk BASIC. Once initiated, the logo appears and suggests a listing of lines 1000-1360 if you need a short description of the program. If you hit < ENTER > to go on, the computer asks, WHAT ARE THE STATION CALL LETTERS? (As shown, I entered W2WD.) Next, the computer asks WHAT IS YOUR LOCAL TIME (EST, EDT, PST, etc.)? (The reply was EST.) and then, HOW MANY HOURS/MINUTES DIFFERENCE FROM GMT? USE + IF EARLIER, – IF LATER (e.g., EST would be – 0500). (The answer was –0500.) Next it asks, YOUR LATITUDE (DEGREES, MINUTES) + NORTH/– SOUTH? (In my case this was 40,39 for 40 degrees and 39 minutes north latitude. If you are in the southern hemisphere, you must use a negative sign, e.g., –40,39.) Longitude is entered in a similar fashion. (My input was 74,22.5 for 74 degrees and 22.5 minutes west longitude.) Use a negative sign (–) for east longitude.

The accuracy of the final calculations depends on the precisely accurate determination of your geodetic location. Your town manager or city engineer may be able to help. If not, you can use maps sold by the U.S. Geological Survey, especially those drawn to 1:24,000 scale. Some automotible road maps may show sufficient detail to allow fairly close determination of your location.

The next information to be inputted is the DESIRED PRINTING INCREMENT IN MINUTES (1-60). I used 20 minutes between each line of output data, but this can be anything between 1 and 60 minutes. Positions can be determined for time intervals of less than 1 minute apart, but the displays and printouts, as the program is now written, will round the results to increments of full minutes — i.e., if you need data every 6 seconds (0.1 minutes), you can input 0.1 as the print-

By Warren Butler, W2WD, 2305 Morse Avenue, Scotch Plains, New Jersey 07076
<table>
<thead>
<tr>
<th>GMT</th>
<th>GHA</th>
<th>DEC</th>
<th>LST</th>
<th>EST</th>
<th>AZ</th>
<th>EL</th>
</tr>
</thead>
<tbody>
<tr>
<td>0800</td>
<td>337.2</td>
<td>+10.5</td>
<td>2006</td>
<td>0300</td>
<td>77.4</td>
<td>1.4</td>
</tr>
<tr>
<td>0820</td>
<td>342.0</td>
<td>+10.5</td>
<td>2026</td>
<td>0320</td>
<td>80.5</td>
<td>5.1</td>
</tr>
<tr>
<td>0840</td>
<td>346.8</td>
<td>+10.6</td>
<td>2046</td>
<td>0340</td>
<td>83.5</td>
<td>8.7</td>
</tr>
<tr>
<td>0900</td>
<td>351.7</td>
<td>+10.7</td>
<td>2106</td>
<td>0400</td>
<td>86.5</td>
<td>12.5</td>
</tr>
<tr>
<td>0920</td>
<td>356.5</td>
<td>+10.8</td>
<td>2126</td>
<td>0420</td>
<td>89.6</td>
<td>16.2</td>
</tr>
<tr>
<td>0940</td>
<td>1.4</td>
<td>+10.9</td>
<td>2147</td>
<td>0440</td>
<td>92.7</td>
<td>19.9</td>
</tr>
<tr>
<td>1000</td>
<td>6.2</td>
<td>+10.9</td>
<td>2207</td>
<td>0500</td>
<td>95.9</td>
<td>23.6</td>
</tr>
<tr>
<td>1020</td>
<td>11.1</td>
<td>+11.0</td>
<td>2227</td>
<td>0520</td>
<td>99.2</td>
<td>27.4</td>
</tr>
<tr>
<td>1040</td>
<td>15.9</td>
<td>+11.1</td>
<td>2247</td>
<td>0540</td>
<td>102.7</td>
<td>31.0</td>
</tr>
<tr>
<td>1100</td>
<td>20.8</td>
<td>+11.2</td>
<td>2307</td>
<td>0600</td>
<td>106.4</td>
<td>34.6</td>
</tr>
<tr>
<td>1120</td>
<td>25.7</td>
<td>+11.3</td>
<td>2327</td>
<td>0620</td>
<td>110.4</td>
<td>38.2</td>
</tr>
<tr>
<td>1140</td>
<td>30.6</td>
<td>+11.3</td>
<td>2347</td>
<td>0640</td>
<td>114.7</td>
<td>41.7</td>
</tr>
<tr>
<td>1200</td>
<td>35.5</td>
<td>+11.4</td>
<td>0007</td>
<td>0700</td>
<td>119.4</td>
<td>45.0</td>
</tr>
<tr>
<td>1220</td>
<td>40.3</td>
<td>+11.5</td>
<td>0027</td>
<td>0720</td>
<td>124.6</td>
<td>48.2</td>
</tr>
<tr>
<td>1240</td>
<td>45.2</td>
<td>+11.6</td>
<td>0047</td>
<td>0740</td>
<td>130.3</td>
<td>51.2</td>
</tr>
<tr>
<td>1300</td>
<td>50.1</td>
<td>+11.6</td>
<td>0107</td>
<td>0800</td>
<td>136.8</td>
<td>54.0</td>
</tr>
<tr>
<td>1320</td>
<td>55.0</td>
<td>+11.7</td>
<td>0127</td>
<td>0820</td>
<td>144.1</td>
<td>56.4</td>
</tr>
<tr>
<td>1340</td>
<td>59.9</td>
<td>+11.8</td>
<td>0147</td>
<td>0840</td>
<td>152.1</td>
<td>58.5</td>
</tr>
<tr>
<td>1400</td>
<td>64.8</td>
<td>+11.9</td>
<td>0207</td>
<td>0900</td>
<td>161.0</td>
<td>60.0</td>
</tr>
<tr>
<td>1420</td>
<td>69.7</td>
<td>+11.9U</td>
<td>0227</td>
<td>0920</td>
<td>170.5</td>
<td>61.0</td>
</tr>
<tr>
<td>1440</td>
<td>74.6</td>
<td>+12.0U</td>
<td>0247</td>
<td>0940</td>
<td>180.4</td>
<td>61.4</td>
</tr>
<tr>
<td>1500</td>
<td>79.5</td>
<td>+12.1U</td>
<td>0307</td>
<td>1000</td>
<td>190.4</td>
<td>61.1</td>
</tr>
<tr>
<td>1520</td>
<td>84.4</td>
<td>+12.2U</td>
<td>0327</td>
<td>1020</td>
<td>200.0</td>
<td>60.2</td>
</tr>
<tr>
<td>1540</td>
<td>89.3</td>
<td>+12.2U</td>
<td>0348</td>
<td>1040</td>
<td>208.9</td>
<td>58.7</td>
</tr>
<tr>
<td>1600</td>
<td>94.2</td>
<td>+12.3U</td>
<td>0408</td>
<td>1100</td>
<td>217.1</td>
<td>56.7</td>
</tr>
<tr>
<td>1620</td>
<td>99.1</td>
<td>+12.3W</td>
<td>0428</td>
<td>1120</td>
<td>224.4</td>
<td>54.4</td>
</tr>
<tr>
<td>1640</td>
<td>103.9</td>
<td>+12.4W</td>
<td>0448</td>
<td>1140</td>
<td>231.0</td>
<td>51.7</td>
</tr>
<tr>
<td>1700</td>
<td>108.8</td>
<td>+12.5W</td>
<td>0508</td>
<td>1200</td>
<td>236.8</td>
<td>48.7</td>
</tr>
<tr>
<td>1720</td>
<td>113.7</td>
<td>+12.5W</td>
<td>0528</td>
<td>1220</td>
<td>242.1</td>
<td>45.6</td>
</tr>
<tr>
<td>1740</td>
<td>118.6</td>
<td>+12.6W</td>
<td>0548</td>
<td>1240</td>
<td>246.9</td>
<td>42.3</td>
</tr>
<tr>
<td>1800</td>
<td>123.5</td>
<td>+12.7W</td>
<td>0608</td>
<td>1300</td>
<td>251.3</td>
<td>38.9</td>
</tr>
<tr>
<td>1820</td>
<td>128.3</td>
<td>+12.7W</td>
<td>0628</td>
<td>1320</td>
<td>255.3</td>
<td>35.4</td>
</tr>
<tr>
<td>1840</td>
<td>133.2</td>
<td>+12.8J</td>
<td>0648</td>
<td>1340</td>
<td>259.1</td>
<td>31.8</td>
</tr>
<tr>
<td>1900</td>
<td>138.1</td>
<td>+12.8J</td>
<td>0708</td>
<td>1400</td>
<td>262.6</td>
<td>28.2</td>
</tr>
<tr>
<td>1920</td>
<td>142.9</td>
<td>+12.9J</td>
<td>0728</td>
<td>1420</td>
<td>266.0</td>
<td>24.6</td>
</tr>
<tr>
<td>1940</td>
<td>147.7</td>
<td>+12.9J</td>
<td>0748</td>
<td>1440</td>
<td>269.3</td>
<td>21.0</td>
</tr>
<tr>
<td>2000</td>
<td>152.6</td>
<td>+13.0J</td>
<td>0808</td>
<td>1500</td>
<td>272.5</td>
<td>17.3</td>
</tr>
<tr>
<td>2020</td>
<td>157.4</td>
<td>+13.1J</td>
<td>0828</td>
<td>1520</td>
<td>275.6</td>
<td>13.7</td>
</tr>
<tr>
<td>2040</td>
<td>162.3</td>
<td>+13.1</td>
<td>0848</td>
<td>1540</td>
<td>278.7</td>
<td>10.1</td>
</tr>
<tr>
<td>2100</td>
<td>167.1</td>
<td>+13.2</td>
<td>0908</td>
<td>1600</td>
<td>281.8</td>
<td>6.5</td>
</tr>
<tr>
<td>2120</td>
<td>171.9</td>
<td>+13.2</td>
<td>0928</td>
<td>1620</td>
<td>284.9</td>
<td>3.0</td>
</tr>
</tbody>
</table>

R.A. OF MOON = 0308

PATH-LOSS INCREASE + 1.3 DB

fig. 1. Moon coordinate printout for W2WD on 8 June 1983.
WHAT ARE THE STATION CALL LETTERS? W2WD
WHAT IS YOUR LOCAL TIME (EST, EDT, PST, ETC.)? EST
HOW MANY HOURS/MINUTES DIFFERENCE FROM GMT?
 USE + IF EARLIER, - IF LATER
 (E.G., EST WOULD BE -0500)? -0500
WHAT IS YOUR LATITUDE (DEGREES, MINUTES)
 + NORTH / - SOUTH ? 40, 39.0
WHAT IS YOUR LONGITUDE (DEGREES, MINUTES)
 + WEST / - EAST ? 74, 22.5
WHAT IS THE DESIRED PRINTING INCREMENT IN MINUTES (1-60)? 20
DO YOU ONLY WANT PRINTOUT WHEN THE MOON IS NEAR THE HORIZON
 (YES/NO)? NO
DO YOU WANT HARDCOPY (YES/NO)? YES

INPUT - GMT MONTH, DAY, YEAR, TIME BEGINNING, TIME ENDING
USE 4-DIGITS FOR YEAR AND 24-HOUR CLOCK
ENTER DATA FOR UP TO 31 DAYS.
HIT <ENTER> AFTER LAST ENTRY

DATE 1 (MM, DD, YYYY, TTTT, TTTT) ? 6, 8, 1983, 0, 2400
DATE 2 (MM, DD, YYYY, TTTT, TTTT) ? 0_

fig. 2. Screen printout of input commands.

Program has an option to print or display data only when the moon is near the horizon. In this case you answer YES to DO YOU ONLY WANT PRINTOUT WHEN THE MOON IS NEAR THE HORIZON (YES/NO)? (I operate with a polar-mounted antenna so I answer NO to this question.) If you answer YES, you will be asked to reply to BELOW WHAT ELEVATION IN DEGREES DO YOU WANT PRINTOUT? You then enter the maximum elevation angle you're interested in.

If you don't have a printer or don't want hard copy, answer NO to DO YOU WANT HARDCOPY (YES/NO)? If you have a printer and answer YES but the printer is not turned on, the computer will reply PRINTER NOT READY. The program won't hang up, but will repeat the question until you either answer NO or turn on the printer.

At this point, you specify the date-time periods for the output data. These must be entered in GMT format. It is necessary to use four digits for the year; don't use 85, if you mean 1985! Similarly, time is inputted with four digits using a 24-hour clock for both the starting and ending points. You don't have to start the data at 0000 and end at 2400; they can be set according to your operating requirements. For the low-elevation-only option, you don't have to enter time spans because the computer will print only data meeting your criteria of when the elevation of the moon is below the angle you have specified earlier.

You can enter up to 31 dates for any given run. The dates do not have to be consecutive or in any given order, nor does the data requested have to be uniform from day to day. In fact, each entered date is a separate request. You may repeat the same dates with different start/end times if you wish.

Program operation

Keep in mind that the calculations are relatively slow. Compiling data for 31 days could require hours of computer time. The actual time will vary greatly according to the time increments you specify, the printer speed, and other factors.

When you've completed the entry of all start/end times, hit <ENTER> to terminate the data input phase. The program prints the heading information and begins calculations. Each line of data requires roughly 15 seconds, even though the result of that calculation may be below the horizon and therefore not printed out. If you've asked for data every 20 minutes following midnight on a day when the moon does not rise until 0800 GMT, the computer will calculate the position of the moon 24 times before any results appear on the CRT or printer. Therefore, the program may seem to be hung up for several minutes even though it's actually hard at work calculating data that ends up below the horizon and is consequently not displayed.
fig. 3. Enhanced version moon coordinate program listing for TRS-80.

1000 '************ MOON COORDINATES ************
1010 'PRIMARILY FOR USE IN EARTH-MOON-EARTH
1020 'TIME COMMUNICATIONS BY RADIO AMATEURS.
1030 'DAY
1040 'BASED ON PROGRAMS BY LANCE COLLISTER (WAIJX/WAS6PL)
1050 'AND JAY LIEBMANN (K5SL).
1070 'VARIAN, EIMAC DIVISION
1080 'AND INDUSTRIAL WAY
1090 'SAN CARLOS, CA 94070.
1100 'OR
1110 'MODIFIED FOR MODEL I TRS-80 LEVEL II AND DISK BASIC
1120 'WITH ENHANCED DISPLAYS AND ADDITIONS OF SIDEREAL TIME,
1130 'RIGHT ASCENSION AND DISTANCES TO THE MOON (CONVERTED
1140 'TO PATH-LOSS VARIATIONS IN DECIBELS)
1150 'BY WARREN BUTLER (W2WD).
1160 'INPUT DATA: LATITUDE, LONGITUDE, GMT DATE/TIME AT SITE.
1170 'FOR UP TO 31 DIFFERENT DAYS CAN BE INPUTTED AT
1180 'ONE TIME. ENTER DATA IN THE FORMAT REQUESTED. AFTER
1190 'THE LAST INPUT, INSERT ZEROS OR HIT <ENTER>.
1200 'DIFFERENCE
1210 'OUTPUT DATA: GHA, DECLINATION, AZIMUTH AND ELEVATION OF
1220 'MOON, SIDEREAL TIME (ST) AND LOCAL TIME, UNIVERSAL
1230 'WINDS FOR EME COMMUNICATION. RIGHT ASCENSION OF MOON.
1240 'PATH-LOSS VARIATIONS (DB).
1250 'THE LAST INPUT, INSERT ZEROS OR HIT <ENTER>.
1260 'UNIVERSAL EME WINDOWS ARE SHOWN BY LETTERS FOLLOWING DEC.
1270 'WINDOW
1280 'HARD COPY OUTPUT CAN BE SELECTED IF PRINTER IS AVAILABLE.
1290 'PRODUCT
1300 'UNIVERSAL EME WINDOWS ARE SHOWN BY LETTERS FOLLOWING DEC.
1310 'U = EUROPEAN UNIVERSAL WINDOW
1320 'W = U.S. UNIVERSAL WINDOW
1330 'J = J/VK/ZL UNIVERSAL WINDOW
1340 'BE PATIENT, THE CALCULATIONS CAN TAKE SEVERAL MINUTES.
1350 'PRINT
1360 'PRINT
1370 PRINT
1380 PRINT
1390 CLEAR 500
1400 DIM F(31), (31), Y(31), O(31), S(31)
1410 P$="2.00000000000+3.1415926535"
1420 D5=360.0000000000/PS
1430 D5=PS/360.0000000000
1440 CLS
1450 -GOTO 1730
1460 PRINT $ 0, STRING$(64, 170)
1470 PRINT $ 148, "MOON COORDINATE PROGRAM"
1480 PRINT $ 279, "WARREN BUTLER (W2WD)"
1490 PRINT $ 343, "2502 MORSE AVENUE"
1500 PRINT $ 404, "SCOTCH PLAINS, NJ 07076"
1510 PRINT $ 473, "(201) 223-4400"
1520 PRINT $ 576, STRING$(64, 170)
1530 PRINT $ 833, "INPUT DATA: LATITUDE, LONGITUDE, GMT DATE/TIME AT SITE.
1540 PRINT $ 979, "ELSE HIT <ENTER> TO CONTINUE"
1550 INPUT Iz
1560 CLS
1570 REM: BEGIN INPUT DATA SEQUENCE
1580 PRINT $ "WHAT ARE THE STATION CALL LETTERS?"
1590 INPUT $WH
1600 PRINT $ "WHAT IS YOUR LOCAL TIME (EST, EDT, PST, ETC.)?"
1610 PRINT $ "HOW MANY HOURS/MINUTES DIFFERENCE FROM GMT?"
1620 PRINT $ "USE + IF EARLIER, - IF LATER"
1630 PRINT $ "EG., EST WOULD BE -0500"
1640 IF TD--1200 OR TD=1200 THEN 1610
1650 PRINT $ "WHAT IS YOUR LATITUDE (DEGREES, MINUTES)"
1660 PRINT $ "NORTH / SOUTH"
1670 INPUT LS, US
1680 IF LS>90 OR LS<90 OR US>90 OR US<90 THEN 1650
1690 PRINT $ "WHAT IS YOUR LONGITUDE (DEGREES, MINUTES)"
1700 PRINT $ "WEST / EAST"
1710 INPUT L6, U6
1720 IF L6>180 OR L6<180 OR U6>90 OR U6<90 THEN 1690
1730 W="W2WD"; LS=40; US=39; L6=74; U6=22.5; TLE="EST"; TD=0500
1740 L6=L5=WUS/60: R5
1750 L6=LS/L6*WUS/60: R5
1760 INPUT $ "WHAT IS THE DESIRED PRINTING INCREMENT IN MINUTES (1-60)?"
1770 IF 1=0 OR 1=00 THEN 1760
1780 IF "YES/NO"="Y" THEN 1760
(continued on page 43)
This happens in the example shown in fig. 1. On June 8, 1983, the moon rose at about 0800 GMT. The computer did not start printing out data until six minutes after the input phase had been completed and the <ENTER> key had been pressed. From that point the printing continued until moonset had been reached at about 2120 GMT. However, the program did not stop calculations until the specified ending time of 2400 GMT. The program required about 15 minutes to generate the data shown in fig. 1.

Similarly, if data ends above the maximum angle selected in the low-elevation mode, the program will also appear to be “hung-up.” If you already know the times of moonrise and moonset, the start and end times can be set accordingly and much time can be saved in the printout process.

printouts and displays

Now let’s look at the output data (fig. 1) in more detail. After the GMT time column, the GHA, or Greenwich Hour Angle, is shown. It is the angle subtended by the moon and the Greenwich meridian. This angle can be translated to your geographical meridian (Local Hour Angle) by adding your longitude if east, or subtracting if west. The third column provides the declination of the moon or its position north (+) or south (−) of the celestial equator. Using the GHA and declination information, the polar-mounted EME antenna can be kept trained on the moon.

Note that some of the values for declination are followed by the letter U, W, or J. These are indicators that the moon is in one of the universal EME windows established to allow use of fixed antenna arrays. This was intended to permit large antennas to be built at lower cost by eliminating the need to position the array in azimuth or elevation. The U, or universal window, was set up for contacts between European and USA stations. The W window is better situated for USA/USA and the J window is for JA/VK/W contacts.4

The next two columns show local time readouts. Standard or daylight-savings time needs no further discussion. LST (Local Sidereal Time) is tied to the stars and used primarily by astronomers. It is included here to help readers locate some of the stellar noise sources for checking EME systems performance. Or, for that matter, to locate a “cold” area of the sky for the same purpose. Many EME operators use the sun as a noise source to check antenna and system performance. When system performance is improved beyond the norm, smaller noise sources in the heavens such as Cassiopeia A, Cygnus A, and others can prove useful.

Knowing the R.A. (right ascension of the moon) and declination of these sources and your LST can help in training your antenna to the proper direction in the sky.

For EME operators using AZ-EL antenna mounts, the computer calculates the azimuth and elevation angles to the moon from their QTH. Azimuth is the angle with respect to true north, (not magnetic north as would be indicated with a compass); elevation is the angle above the local horizon.

Below the positional data in fig. 1 are two other useful parameters for EME operation. The first is the R.A., which indicates where the moon is in relation to other objects in the sky. Some of the stars are noise sources that can reduce the signal-to-noise ratio of the communication path when they are in line with the moon at the time of a QSO. Earlier, I suggested that these same kinds of noise sources could be useful for system calibration. For better EME contacts, however, they should be avoided. Reference 1 contains radio sky maps over the frequency range of 64 to 910 MHz. These show the noise temperature of the sky as a function of right ascension and declination. It should be mentioned that the right ascension of the moon given at the bottom of the printout listings is the first calculated value. The R.A. varies about one hour over a 24-hour day, but this usually provides sufficient accuracy to judge whether noise sources from behind the moon are going to be a problem.2

Because the moon is traveling in an elliptical path around the earth, its distance from the earth varies. At apogee it is roughly 407,000 kilometers from the earth; at perigee, 356,000 km. The variation in range is sufficient to add about 2 dB of additional path loss at apogee as compared to when the moon is at the perigee position. Apogee to perigee time spans are roughly 13 days. For each day of a printout, the path-loss difference in dB, as compared to the perigee position, is printed at the bottom of the listing. Equations used for calculating the earth-to-moon distances were taken from reference 3.

accuracies

Considering the number and types of calculations this program processes, it is reasonable to ask whether the results obtained on a personal computer are sufficiently accurate for use by the typical Amateur EME station. To answer this question, I compared the output data to the most accurate, reliable data available to me.

For GHA and declination I was unable to locate a suitable source of topocentric values to confirm the output of this program. However, the Nautical Almanac provides geocentric data with errors less than 0.0005 degrees and thus served as a satisfactory standard for data referenced to the center of the earth.5,6 In order to compare “oranges to oranges,” I had to bypass the translational calculations I had inserted to convert from geocentric to topocentric coordinates. I then used the random number generator of the
...
TOUCHTONE DECODER KIT

DTMF Receiver Kit

- Complete DTMF Receiver [50s/1701]
- Receive all 16 standard DTMF digits
- No front end filters needed
- Output: audio or RC format
- CMOS low power (29mA @ 10V D.C.)
- Excellent speech immunity
- Includes 35MHz crystal 2pin IC socket
- Batteries included (2x1.5V)
- Digit valid detection. "0" gives high after a valid tone past is sensed
- Make your own "DIAL" type decoder
- Quantity discounts available

$22.95 Includes U.S./Canada shipping (Discounts for volume orders)

 TOUCHTONE DECODER KIT

SYNTHESIZED SIGNAL GENERATOR

MODEL 50-50B
$429.55 delivered

- Covers 100 MHz to 199.999 MHz in 1 kHz steps with sweepwheel dial
- Accuracy +/-. 1 part per 10 million at all frequencies
- Internal FM adjustable from 0 to 100 kHz at a 1 kHz rate
- External FM input accepts tones or voice
- Spurious and noise at least 60 dB below carrier
- Output adjustable from 5-500 mV at 50 Ohms
- Operates on 12 Vdc @ 12 Amp

VANGUARD LABS
196-23 Jamaica Ave., Hollis, NY 11423
Phone: (718) 468-2720

ALL BAND TRAP VERTICAL

Great for DX

- Completely assembled and ready to use!
- Commercial quality, built to last
- Lightweight, sealed, weatherproof traps
- Low loss end insulator. Handles up to 2000 watts PEP
- Automatic band switching as per instructions
- Tuner usually never required
- Deluxe end feed connector, with built-in lightning arrester, accepts PL-259 coax connector
- Use as splicer or vertical Permanent or portable use
- Easy to install. Can be used without radials
- -10 day money-back guarantee!
- 4 Band - 40, 20, 15, 10 meters (27) trap $54.95
- 5 Band - 40, 20, 15, 10, 6 meters (52) traps $54.95
- $8.00 to 12 Amp
- We accept VISA/MC - give Card Exp. date Signature

SPI RD DISTRIBUTORS,
Ripon, P. O. Box 1358
Hendersonville, N.C. 28793

fig. 3. continued

2660 C1=0
2610 IF M=9 THEN 2650
2620 IF N=11 THEN 2650
2630 C2=G
2640 GOTO 2660
2650 C2=I
2660 J1=3568 (-8152) + 304 (M-3) + INT (M-2)/2
2670 J2=INT (-8152) + 4C1+C2
2680 J3=J1+J2
2690 JD=J3+297547.5
2700 GOSUB 4450 FOR MOON DISTANCE CALCULATIONS
2710 T1.=-17427.5
2720 REM: MAIN CALCULATIONS BEGIN
2730 D9=(B+INT(B/100)) INT(B/100)
2740 D6=INT(E1/100) + INT(E1/100) + E6
2750 D7=D9-D6
2760 D8=D7-1
2770 IF D7=0 THEN 2790
2780 GOTO 2820
2790 IF D8=0 THEN 4250
2800 IF E1=0 THEN 2710
2810 REM: CALCULATION OF LATITUDE AND LONGITUDE OF MOON
2820 B=(INT(B/100) + INT(B/100))/24
2830 T5=INT(T)
2840 K1=(7.51213-0.36460102157-INT(7.51213-0.36460102157)) INT(7.51213-0.36460102157)
2850 K2=(0.36291645715-INT(0.36291645715)) INT(0.36291645715)
2860 K5=(9.95756-0.027377782552-INT(9.95756-0.027377782552)) INT(9.95756-0.027377782552)
2870 K7=(7.974271-0.33862192251-INT(7.974271-0.33862192251)) INT(7.974271-0.33862192251)
2880 K8=(0.3132525-0.006748195745-INT(0.3132525-0.006748195745)) INT(0.3132525-0.006748195745)

(continued on page 45)
fig. 3, continued

2460 IF A2=0 THEN 3490
2470 A=A+A

2480 GOTO 3520
2490 A=A+A/2
2500 GOTO 3530
2510 IF A2=0 THEN 3550
2520 A=A+A/2
2530 RETURN
2540 IF (T-11)/(2*11)/1440 THEN 3560
2550 GOTO 3580
2560 PRINT

2570 IF W%="YES" THEN LPRINT**
2580 Z1=INT(A#10.5)/10
2590 Z2=INT(B#10.5)/10
2600 Z3=INT(C#10.5)/10
2610 Z4=INT(D#10.5)/10

2620 IF Z4=0 THEN 3750
2630 IF Z2=61 THEN 3750
2640 IF Z3=62 THEN 3660
2650 GOTO 2690
2660 IF Z3=63 THEN 5710
2670 IF Z2=64 THEN 3750
2680 GOTO 3770
2690 Y2="*
2700 GOTO 3760
2710 Y2="*
2720 GOTO 3760
2730 Y2="*
2740 GOTO 3760
2750 Y2="*
2760 ATN="9000"
2770 BTH="9000"
2780 CH1=0

2790 RS=int((*,1.5)
3800 IF BS<10 THEN BS=ATN+RIGHT$(STR$(BS), 1): GOTO 3840
3810 IF BS<10 THEN BS=ATN+RIGHT$(STR$(BS), 1): GOTO 3840
3820 IF BS<10 THEN BS=ATN+RIGHT$(STR$(BS), 1): GOTO 3840
3830 BS=RIGHT$(STR$(BS), 1)
3840 IF TD<OX OR TD<100=INT(TD/100) TC=TD: GOTO 3850
3850 TC=TC-2560
3860 ES=RT(0.72)
3870 IF ES<2400 THEN ES=ES-2400
3880 IF ES<0 THEN ES=ES-2400
3890 IF ES<0 THEN ES=ES-2400
3900 IF ES<0 THEN ES=ES-2400
3910 IF ES<0 THEN ES=ES-2400
3920 ES=RIGHT$(STR$(ES), 4)
3930 IF LA<0 THEN LA=0
3940 IF LA=24 THEN LA=LA-24
3950 LB=100*INT(LA)
3960 LC=60*(LA-INT(LA))
3970 IF LC=LC=INT(LC)+1 ELSE LC=INT(LC)
3980 IF LC<60 LC=60: LB=LB+100
3990 LD=LR=R
4000 IF LD<2400 THEN LD=LD-2400
4010 LB=STR$(LD)
4020 IF LD<10 THEN LB=RT$(17$)$+RIGHT$(LB)$, 1: GOTO 4060
4030 IF LD<10 THEN LB=RT$(17$)$+RIGHT$(LB)$, 1: GOTO 4060
4040 IF LD<10 THEN LB=RT$(17$)$+RIGHT$(LB)$, 1: GOTO 4060
4050 LB=RIGHT(LB), 4
4060 Z1=**
4070 Z2=*
4080 Z3=*
4090 Z4=*
4100 PRINT USING"% 2BS;
4110 PRINT TAB(7)USING Z3$: Z3$
4120 PRINT TAB(16)USING Z4$: Z4$
4130 PRINT Y1$
4140 PRINT TAB(27)LB$
4150 PRINT TAB(37)USING"% 2ES;
4160 PRINT TAB(45)USING Z1$: Z1$
4170 PRINT TAB(55)USING Z2$: Z2$
4180 IF W%="YES" THEN LPRINT USING"% 2BS; LPRINT TAB(7)USING
4200 IF Z4<0 THEN RX=RX+24
4210 IF RX24 THEN RX=RX-24
4220 RB=R+100*INT(RX)
4230 RB=60*(RX-INT(RX))
4300 IF RB<INT(RB)-0.6 RB=INT(RB)+1 ELSE RB=INT(RB)
4310 IF RB=60 RB=0: RA=RA+100

(continued on page 47)
optimizing the program

The program as presented is arranged for universal use. For frequent use at one location, it should be streamlined to eliminate the time-consuming task of keying in the repetitive portions of the input data. To do this, the following changes should be made:

- **At line 1450**, remove the apostrophe (‘). This has the effect of activating this GOTO 1730, which bypasses the repetitive input data requirements.
- **At line 1730**, remove the apostrophe (‘) and activate this line, replacing my standard input data with your standard input data:

 W$ = "your call letters" (use quotation marks)
 L5 = your latitude, degrees [negative (−) for south latitude]
 U5 = your latitude, minutes
 L6 = your longitude, degrees [negative (−) for east longitude]
 U6 = your longitude, minutes
 TL$ = "your time zone" (use quotation marks)
 TD = time differential from GMT to your zone [negative (−) for zones west of GMT]

When these changes have been made, the program, when called up, will immediately go to the question "WHAT IS THE DESIRED PRINTING INCREMENT IN MINUTES (1-60)?" Thus, you have avoided the logo, the need to input your call letters, local time, time differential, latitude, longitude. This saves a lot of data entry time. I use two tailored programs . . . one set for Eastern Standard Time, for which I use the filespec "MOONEST" and the other "MOONEDT" for Eastern Daylight Savings Time. If you never use the low-elevation mode, this section can be bypassed. If you do not have a printer, then that question can likewise be skipped. With some knowledge of BASIC programming, making changes to suit your individual requirements are not difficult.

The program was rewritten for the level II dialect of the Model I TRS-80 from versions presented in reference 4 by Lance Collister (WA1JXN) and Jay Liebmann (K5JL). Enhancements have been added in the form of readouts for Local Sidereal Time, Right Ascension of the moon and path loss variations. Provisions have also been made for the direct inputting of time zones and time differentials. Keyboard input statements have been error-trapped to reduce the chance for "cockpit" errors.

For those wishing to avoid the task of manually keying in the 10,000-byte program listing (see fig. 3), a 500-baud, level II BASIC cassette tape is available from ham radio, Greenville, NH 03048. Send an SASE with two first-class stamps attached. Request W2WD Moon Coordinate Error Analysis.)
is a customized version which will be set to your station parameters if you include the necessary information. I will need your station call letters, your time zone, and the difference between your time and GMT. Also include whether you want the low-elevation and printing routines bypassed.

The two programs are also available on a diskette ($18.00) formatted to run on TRS-DOS compatible operating systems. It has been checked on single-density TRS-DOS 2.3, NEWDOS 2.1, NEWDOS-80 1.0, DOSPLUS 3.3 and LDOS 5.0. A double-density version will run on NEWDOS-80 2.0 or DBLDOS 4.23 and perhaps others using a Percom doubler with a Model I machine. Be sure to specify single or double-density and include the same information as specified in the paragraph above.

references
5. The Nautical Almanac for the Year 1978, issued by the U.S. Naval Observatory, for sale by the United States Government Printing Office.

REMINDERS

1. TRS-DOS 2.3
2. NEWDOS 2.1
3. NEWDOS-80 1.0
4. DOSPLUS 3.3
5. LDOS 5.0
6. DBLDOS 4.23

Fig. 3, continued

4320 RC=RA+RB
4330 RY=STRB(RC)
4340 IF RY10 THEN RY=ATS+RIGHTS(RY, 1)
4350 IF RY100 THEN RY=BT+RIGHTS(RY, 2)
4360 IF RY1000 THEN RY=CTS+RIGHTS(RY, 3)
4370 RY=RIGHTS(RY, 4)
4380 PRINT
4390 IF WW="YES" THEN LPRT=""
4400 PRINT "R.A. OF MOON = ";RY; " PATH-LOSS INCREASE +";DB; " DB"
4410 IF WW="YES" THEN LPRT "R.A. OF MOON = ";RY; " PATH-LOSS INCREASE +";DB; " DB"
4420 PRINT
4430 NEXT N
4440 END
4450 REM: CALCULATE DISTANCE TO THE MOON
4460 DB=JDB=64444236.5
4470 AA=99564733
4480 ED=3.76236
4490 MM=ATAN1+ED
4500 IF MS<30 THEN MS=360: GOTO 4500
4510 IF MS>360 THEN MS=360: GOTO 4510
4520 AE=1.0174533
4530 AP=1.0174533
4540 LS=AADDB+1.9157417551(0.0174533)-(3.76236)
4550 IF LS<360 THEN LS=360: GOTO 4550
4560 IF LS>360 THEN LS=360: GOTO 4560
4570 LL=(11.1763966+DD)#+64.975644
4580 IF LL<0 THEN LL=LL+360: GOTO 4580
4590 IF LL>360 THEN LL=LL-360: GOTO 4590
4600 CC=LL-LS
4610 MM=LL-(0.1114041*DDB)-549.385563
4620 IF MM<30 THEN MM=360: GOTO 4620
4630 IF MM>360 THEN MM=360: GOTO 4630
4640 EV=1.27395555(12CC)-MM*0.0174533
4650 MM=MM+HEVE-AF
4660 EC=6.28655671(0.0174533)
4670 MD=382342.41+(1*0.0596065+DDB*(MM*360)+0.017453392)
4680 REM: CONVERT DISTANCE VARIATION TO PATH-LOSS CHANGE (DB)
4690 DB=MD/236533
4700 DB=40LLOG(DB)/LOG(10)
4710 DB=INT(DB4+0.5)/10
4720 RETURN
4730 END
4740 REM: CORRECTIONS FOR PARALLAX
4750 H1=H
4760 R=MD=6378.16
4770 U=ATN(0.99647*ATN(LS))
4780 P=0.99647*ATN1
4790 P2=COS(U)
4800 HC=ATN1(P2*SIN(H))+(R1*COS(D1)-P2*COS(H))
4810 G=L6-H
4820 G=L6-H
4830 D1=ATN1(COS(H))+(R1*SIN1-D1-P1)\(R1*DS0(D1)*COS(H)-P2)
4840 RETURN

Keep your 1985 Callbooks up to date. The U.S. and Foreign Supplements contain all activity for the previous three months including new licenses. Available from the publisher in sets of three (March 1, June 1, and September 1) for only $15.00 per set. Including shipping. Specify U.S. or Foreign Supplements when ordering. Illinois residents add 6% sales tax.

Keep your 1985 Callbooks up to date. The U.S. and Foreign Supplements contain all activity for the previous three months including new licenses. Available from the publisher in sets of three (March 1, June 1, and September 1) for only $15.00 per set. Including shipping. Specify U.S. or Foreign Supplements when ordering. Illinois residents add 6% sales tax.

Order your copies now!

| U.S. Callbook | $15.00 | $15.00 |
| Foreign Callbook | $21.95 | $3.05 | $25.00 |

Order both books at the same time for $45.00 including shipping within the USA.

Order from your dealer or directly from the publisher. Illinois residents add $4.55 for shipping. Illinois residents add 6% sales tax.

WHAT THE COMPETITION CALLS "NO LOST WORDS OR SYLLABLES" WE CALL NOISE

THE COMPETITION: "HI HONEY I'M FIXING YOUR FAVORITE SUPPER... BARBECUE HAMBURGERS. THEY WILL BE READY AT 6:30. WILL YOU MAKE IT IN TIME?"

Samples (heard as bursts of noise) displace your phone party's audio for as long as it takes your transceiver to T/R. The above example assumes a transceiver T/R time of about 150 mS (typical)

PRIVATE PATCH II: "HI HONEY I AM FIXING YOUR FAVORITE SUPPER... BARBECUE HAMBURGERS. THEY WILL BE READY AT 6:30. WILL YOU MAKE IT IN TIME?"

Thousands of PRIVATE PATCH II owners are enjoying the commercial communications quality that only a VOX based, simplex autopatch can deliver.

PRIVATE PATCH II IS PRICED AT LESS THAN HALF OF OUR COMPETITORS "FAVORITE COMMERCIAL SIMPLEX VOX PATCH"

SAMPLING VS. PRIVATE PATCH II

The performance of a sampling patch is totally dependent on the T/R speed of your radio. Such is not the case with PRIVATE PATCH II. PRIVATE PATCH II will give excellent results with any radio. Synthesized and relay switched types included.

PRIVATE PATCH II requires only three connections to your radio (MIC, PTT and SPKR audio). If these connections are made inside your radio PRIVATE PATCH II does not interfere with the normal use of your radio. Otherwise for a quick and easy interface you may plug PRIVATE PATCH II into the MIC and SPKR jacks. A 10 minute job! Unlike sampling patches, connections are not required to the squelch, discriminator or power. And best of all, modifications are never required.

Controlling and talking through PRIVATE PATCH II is almost always quicker and easier than using a sampling patch. This is because you may talk or send control commands the instant you press the PPT button. The ability to break in or take control is assured by interrupt control logic. The interrupt controller creates a window (similar to sampling) but is seldom heard in normal quick back and forth communication. With a sampling patch you press the MIC button for one to five seconds before talking on each and every transmission. This is very frustrating for the mobile, and causes confusion for each party.

The sampling process reduces the effective range of your base radio. This is because if a sample, and a signal fade coincide, the sampling patch thinks the mobile is not transmitting. This causes a sampling patch to become erratic at ranges still very useable by PRIVATE PATCH II. PRIVATE PATCH II will not diminish the range of your system.

PRIVATE PATCH II has two more range extending tricks not available to a noise sampled autopatch.
1. You may use a linear amplifier with no loss of performance
2. You can operate through any repeater from your base station.

More Details? CHECK-OFF Page 128
YOU GET MORE “BANG FOR YOUR BUCK” AT TNT RADIO SALES!

Kenwood ▪ Mirage ▪ MFJ ▪ Welz
Icom ▪ KLM ▪ Astron ▪ Azlen
Bencher ▪ Telex Hygain ▪ Alpha/Delta ▪ Santec
AEA ▪ Nye Viking ▪ Bearcat ▪ KDK
Kantronics ▪ Larsen ▪ Regency ▪ Ameritron

Special—BUTTERNUT HF6V $107.00
SALES AND SERVICE AT PRICES YOU CAN AFFORD!
CALL OUR WATS LINE FOR LOW LOW PRICES!

VISA/MASTER CARD
FREE SHIPPING
ON MOST RIGS FOR CASH!

S.A.S.E. FOR OUR
“BENCH-TESTED”
USED EQUIPMENT LISTING

MONDAY - SATURDAY
9 AM to 6 PM CENTRAL TIME

4124 West Broadway, Robbinsdale, MN 55422 (Mpls./St. Paul)

MICROWAVE TV ANTENNA SYSTEMS
Freq. 2.1 to 2.7 GHz - 34 db Gain +
COMPLETE SYSTEMS:
(as Pictured)
Commercial 40” Rod Style $99.95
Parabolic 20” Dish Style $79.95
COMPONENTS
Down Converters (either style) $34.95
Power Supplies $24.95
(12V to 16V DC+)
Data Info (Plans) $ 9.95
CALL OR WRITE FOR
KITS, PARTS, OR MORE
INFORMATION
Shipping & Handling Add $3.00
We Repair Most Types Down
Converters & Power Supplies

PHILLIPS-TECH
Electronics
P.O. Box 34772
Phoenix, AZ 85007
(602) 967-8872

Special Quantity Pricing
Dealers Wanted

NORTH AMERICAN SOAR CORPORATION
PEN-STY I LE DIGITAL MULTIMETER
MODEL 3100
GREAT PRICE $49.00

Hand Held LCD Display - Fast One Hand Operation

SPECIFICATIONS:
Display: LCD 3½ digit maximum reading of 1999/continuity beeper built-in
Range: Auto ranging
Polarity: Automatic no indication for positive polarity, minus sign for negative polarity
Over Range Indication: “MISS” 1 or -1 indication
Data Hold: Data hold in all ranges with hold switch on
Low Battery Indication: “B” mark displayed when battery drops below operating voltage
Sampling: 2 Times/second
Power Supply: 9V-44 battery (1 55V) X2 (Included)
Power Consumption: 5.5mw
Size: 6”x1¾” LxWH (늘探e probe tips) includes ⅛” and ⅛” probes
Add $2.50 For Shipping

STOCKING DISTRIBUTOR
KCS ELECTRONICS CORPORATION
SEMICONDUCTOR PARTS AND PRODUCTS
1043 N. STADEM DR.
TEMPE, AZ 85281
(602) 967-6945

Call or Write for FREE
Semiconductor Parts & Products Catalog
Use this device to determine Yagi or other antenna patterns

a sensitive field strength meter

While attempting to make some meaningful relative field strength measurements on an antenna system some months ago, I found my years-old field strength meter to be quite inadequate. Its lack of sensitivity meant that measurements had to be made close to the antenna, where the induction field introduced error in the radiation field I was actually interested in. Its non-linearity was also a problem.

I decided to design a new unit that would include a stable, sensitive linear amplifier, provisions for remote monitoring, and a meter calibrated in decibels. The final results proved so satisfactory that it seemed other Amateurs would be interested in this project.

Figure 1 shows the schematic. The two-pole, five-position switch, coils and 365 pF variable capacitor cover a range from 1.5 to 30 MHz. (The combination of parts came from an old low-power transmitter.)

Almost all handbooks show coil-capacitor combinations that can be used for field strength meters, so Amateurs can build the kind of unit that best suits their needs. In addition, they can incorporate any kind of pickup coupling system for the pickup antenna of their choice. My own measurements were sufficiently satisfactory using a short antenna only a few feet long connected directly to the ANT binding post. When a longer antenna for pickup was desired, it was connected to CAP, binding post C, where it connected to C2, a small 50 pF variable capacitor.

The amplifier uses a couple of Darlington NPN transistors whose high beta, 5000, provides high sensitivity with S1 used as the amplifier ON/OFF switch. Switch S2 in the left position allows the output of the 1N34 diode to be fed directly into the 50 μA meter (M) for direct reading. When S2 is in the right position, the amplifier is switched into the circuit. Switch S3 is for LOCAL or REMOTE monitoring. At full GAIN setting the input signal is adjusted to give a full-scale reading of fifty microamperes on the meter. Then with the amplifier switched out of the circuit, the meter reading drops down to about half a microampere.

A 2.5 mH RF choke and capacitors C3, C4, and C5 effectively keep RF out of the amplifier circuit.

two balance adjustments are required

Because of the high sensitivity of the amplifier circuit, it's best to have two balancing controls, R7 (BAL, front panel adjustable) and R8 (an internal screwdriver-adjustable potentiometer). When initially setting R8, adjust it in conjunction with R7. Doing this allows the GAIN control to be varied from zero to full gain with the meter indication remaining at zero.

Because the amplifier circuit is basically a balanced bridge type, a zero-center meter could have been used. But none was available, so R3, an 82-ohm offset resistor, was added. Its function is to prevent the meter from swinging too hard to the left below zero, which might occur if the panel balance control were inadvertently turned fully counterclockwise with the amplifier gain turned fully on. The best safe operating procedure to employ is always to turn the gain con-

By William Vissers, K4KI, 1245 S. Orlando Avenue, Cocoa Beach, Florida 32931

January 1985
fig. 1. Field strength meter schematic.

calibrating is easy

The theoretical dB calibration curve can be best understood if, for example, we use full scale on the meter 50 μA as 0 dB with a given input signal. Now if the input signal were reduced so that the meter reads 30 μA, then the dB drop in signal level is dB = 20 log₁₀ (30/50) = 4.44 dB. This calculation is for a perfect linear system; and by using this mathematical procedure it is easy to calculate and develop the theoretical dB curve of fig.3 for different values of meter current.

This curve is very easy to use. For example, with the field strength meter set up away from your station, if you rotated your beam and saw that the maximum meter reading went over 50μA, just cut back on the GAIN control on the field strength meter, so that the maximum reading is either 50μA or somewhat lower. The maximum reading does not have to be exactly 50 μA, as shown by the following example.
If the maximum reading were 45 μA and the minimum reading 10 μA, then from fig. 3, 45 μA is equal to –0.915 dB, and 10 μA is equal to –13.98 dB and the numerical difference is –13.065 dB, which can be rounded off to –13.1 dB.

The reason that it is not necessary to have the microammeter set exactly at 50 μA when reading the maximum signal is that decibels can be added or subtracted from each other anywhere along the curve to give the correct dB difference.

It should be pointed out, however, that better accuracy is obtained if the maximum reading is set initially close to 50 μA. This is because, as in most metering systems, the percentage accuracy obtainable is less at the lower end of a scale than at the top. Also, the curve shown was not extended below 5 mA.

I happened to have a small variable 0-25 VDC power supply with a reasonably accurate built-in voltmeter. Almost any kind of variable supply with a voltmeter can be used, as the power supply voltage is factored into the calibration procedure to be described. The attenuator network is used to reduce the power supply voltage so that full scale on the microammeter could readily be obtained at full gain of the amplifier, with the power supply set at 25 volts.

Before beginning the calibration procedure, it is first necessary to isolate the resonant circuits from the input terminals; otherwise the coils would provide a DC short between the RF input binding posts D and E used for the calibration input voltage. This can be accomplished by temporarily opening the circuit between points X and Y of fig. 1. An alternate method is just to slip a piece of paper between the coil contact on the turret and the arm of the rotary switch.

The test unit is then connected to the input binding posts D and E, as shown, and R10 rotated to the counterclockwise, or zero-output position. The amplifier is now turned on, properly balanced to zero, and the GAIN control set to its maximum position. The balance should again be checked, and it should still be at zero. The power supply is turned on, and the voltage adjusted to read 25 volts. R10 is rotated in a clockwise direction until the field strength microammeter indicates a full scale reading of 50 μA. R10 should not be adjusted further, since its setting now has established the zero dB level.

The power supply voltage is now reduced until the microammeter reads 45 μA. The power supply voltage is now read and recorded. This procedure is again repeated for 40 μA, again reading and recording the power supply voltage. Similar successive steps, each 5 μA lower are done, until the final microampere reading of 5 μA is made and data recorded. The actual recorded data is indicated in fig. 3.

The actual calculated dB for a measured reading of voltage is done as follows: for example, at 30 μA, the power supply voltage was found to be 15.2 volts. The actual calculated dB for a measured reading of, for example, 30 μA, and a recorded power supply voltage of 15.2 volts is equal to 20 \(\log_{10} (15.2/25) = -4.32 \) dB. This is quite close to the theoretical value of –4.44 dB previously shown. The resulting data and curve is shown in figs. 3 and 4. Good correlation between theoretical and observed data shows that the amplifier had a good linear characteristic. Although the amplifier was calibrated using DC voltage, the results obtained showed the unit to be very useful as a device for measuring relative dB levels. And that is what most Amateurs are really interested in. The measure of absolute field strength normally requires extremely good...
commercial equipment and is not generally used in Amateur-type measurements.

Although the calibration curve was shown for the full maximum gain of the amplifier, several similar curves were run at lower gains, down to 20 percent of maximum gain, and no noticeable variations were encountered. This indicates that the curve shown can be used between the limits of full gain down to 20 percent of full gain. My own experience is that if your signal is very strong, just reduce the size of your pickup antenna or move your field strength meter further away from your transmitting antenna. Actually, the further you are away from your transmitting antenna, the better patterns you will obtain.

field testing

After experimentation at my own station, the unit was taken to the home of Russell Forsyth, K4YS, who had recently put up a large 20-meter beam. The azimuthal pattern in dB was readily obtained, with a front-to-back ratio measured at 14 dB, corresponding to a power ratio of a little over 25:1, which seemed reasonable for the beam he used. A rather interesting anomaly was observed, in that at a certain direction when the beam was rotated, the field strength meter showed a marked irregular intermittent variation. Shaking the tower seemed to aggravate the condition, indicating that perhaps one of the elements was loose, or perhaps the mast was not perfectly vertical, and at certain positions, perhaps loose bolts or something else was causing the problem. At the moment, we still do not know what the problem is, but it does show that the field strength meter can also be used as a diagnostic tool in problems of this type.

Other tests near my home, where we have a high-voltage line nearby, showed that there was some sort of pickup near the power poles on rainy days, particularly when corona could be heard. The noise was tunable and verified as line noise interference by using a small transformer and earphones connected to the REMOTE binding posts instead of a meter. Apparently the lightning protection system, which incorporates a ground at each pole and a overhead ground line, was being shock-excited by the corona discharge and causing those loop circuits to have induced noise oscillations. (At least that’s what it seemed to me.) Perhaps later I can use the meter to track down excessive line noise that occasionally is quite high on my Yaesu FT-101B.

There were no problems in the design or construction of the basic unit and its modifications. Though the field strength meter, as shown in the photograph, is quite large, it could certainly be reduced in size. I’m hoping that its use will provide Amateurs with a more sensitive method of making relative antenna measurements, so essential to good antenna experimentation. I’ll be glad to answer any questions or comments you might have. Just send an SASE to the author at the address indicated.

ham radio
A fresh idea!

Our new crop of tone equipment is the freshest thing growing in the encoder/decoder field today. All tones are instantly programmable by setting a dip switch; no counter is required. Frequency accuracy is astonishing ±.1 Hz over all temperature extremes. Multiple tone frequency operation is a snap since the dip switch may be remoted. Our TS-32 encoder/decoder may be programmed for any of the 32 CTCSS tones. The SS-32 encode only model may be programmed for all 32 CTCSS tones plus 19 burst tones, 8 touch-tones, and 5 test tones. And, of course, there's no need to mention our one day delivery and one year warranty.
19" HI-RESOLUTION COLOR X-Y DISPLAY

Thru a special purchase we got hold of 50 brand new 19" color displays. They were made by Wells Gardner for one of the largest arcade video game manufacturers in the world. The displays feature built in red, green and blue amplifiers, 19" color tube made by Wells Gardner. User supplied external horizontal and vertical scan oscillators which allows precise user control over screen resolution. A real plus! Requires 25 V - 0 - 25 V input for amps, available separately. Some spec's for you technical people: signal inputs "X", horizontal 16 V P-P ±8 V, "Y" vertical 12 V P-P ±6 V; "Z" beam drive, 4 V max brightness, 1.0 volt black level. Writing rates "X" amp is .05 inch/usec, "Y" amp is .0375 inch/usec. Great for making your own video games, oscilloscope monitors, or adapting for home computer use. Supplied with schematic. $199.00 ea.
Shpg. Wt. 45 Lbs. MOT-19C
Supplied with schematic. Quantity pricing available.
Shpg. Wt. 45 Lbs. MOT-19C $199.00 ea., $375.00/2
TRANSFORMER FOR ABOVE Shpg. Wt. 15 Lbs. $12.00

CAD CAM KEYBOARD

We only have a very limited quantity of these high reliability, beautifully laid out 8 bit, serial output keyboards. These were made by Keytronics for use in a Cad-Cam system. The board is made up of 3 sections. The typewriter format section has 2 control keys plus full upper and lower case alpha-numeric keys. The 42 key switch pad, when used with an appropriate logic, allows extensive, precise manipulations of displayed data such as close up, moving information, sketching, etc. The third section consists of 27 keys which include a numeric scratch pad, 4 way cursor control plus some command keys. On board are 3 LSI's including an Internal IM6402, INS8048, and NS2716 UV PROM which contains the programs for manipulating data, plus other circuitry and an alert beeper. The keyboard requires +6 V and -12 V. Each one will come with schematics. New and unused. Shpg. Wt. 4 Lbs. KYBD No. 6 $45.00
Less than 100 on hand - Order Now!

PHONE ORDERS for FASTEST SERVICE!
call (617) 595-2275 and Charge It!

Multi-Voltage MICROPROCESSOR POWER SUPPLY BOARD

This regulated multi-voltage switching power supply board is made by KEPCO (their part no. MRM 174 KF) and is still in production (. . . regular price $124.95). It was originally part of the Zorba portable PC. The four outputs are as follows: +5 VDC @ 5 A, +12 VDC @ 2.5 A, +12 VDC @ 2 A, and -12 VDC @ 5 A. The +12 VDC @ 2 A is very heavily filtered so it could be used on a glitch free monitor. The -12 VDC @ 5 A can be changed to -5 VDC just by changing the onboard 7912 regulator chip to a 7905. The board's lightweight and small size should make it perfect for many projects. All new and provided with a schematic. The input is jumper selectable 110/220. New, unused. Quantity prices available.
Shpg. Wt. 2 Lbs. ea. SPL-471-33B $49.95
2/$90.00

USER PROGRAMMABLE KEYBOARDS

A fantastic find and a super buy for the computer hobbyist. Brand new, user programmable keyboards made by Keytronics Corp. They are user programmable because the onboard encoding generator outputs hex codes to the user supplied 2716 or equivalent EPROM. The EPROM can be programmed by the user to virtually any encoding scheme: AECH, EBCDIC(C), EBCDIC: BAUDET or others just by setting the EPROM to the particular specification. The keyboard is well constructed and laid out. The board is laid out in an ASCII configuration with control codes, full numerics, upper and lower case with electronic shift lock, plus a numeric scratch pad to the right with 4 way cursor controls. Absolutely beautiful!! Each one comes with schematic, and data. This will be a fast seller, so order early!
Shpg. Wt. 4 Lbs. KYBD 7 $45.00 each

2716 EPROM's

These 2716 EPROM's run on a single 5 vdc power supply. They are "pulls" from little-used equipment and have been erased and checked OK. We got a super deal on these, which means YOU get a super deal on these! Each one with data.
Shpg. Wt. 1/4 Lb. SP-328 A-35 $2.00
Single 5 V 2716 EPROM, programmed for ASCII for use in the above keyboard (Kybd. 7) SP-328 B-35 $6.00

AAA Nicad Batteries
We have unused, AAA size, rechargeable, nicad batteries. They come in a shrink wrapped package, but can always be cut apart and used individually. The output is 1.2 V per cell (3.6 v/pack) at 180 mAh. SP-67 A-35 $3.50

Surplus Computer and Electronic Materials

Tell 'em you saw it in HAM RADIO!
DUAL FLOPPY DISC DRIVES

BRAND NEW, single sided, dual floppy disc drives made for Digital Equipment Corp. (DEC). This beautiful piece of computer hardware consists of 2 Shugart compatible TEAC 40 track, double density, 5% mini-floppy disc drives brand new in the case with their own regulated, switching power supply, cooling fan & on/off switch. Each unit also comes with a line cord & documentation. These were made for DEC, but are also compatible with other personal computers such as IBM, TRS 80 models I, II, & the Color Computer, and other Shugart compatible interfaces. Naturally, you supply the cables and disc controller card to suit your particular system. The RX-180 AB runs off of 115/230 VAC 50/60 Hz. w/out any modifications to the drives. Each system comes in the original factory box and are guaranteed functional. A blockbuster of a buy!!

SHPG. wt. 2 lbs. stock no. RX 180AB $250.00
RX 180 AB modified to run w/ the TI 99/4A $285.00
Disc drive cable for Radio Shack Model I $15.00

HIGH SPEED KSR PRINTER TERMINAL

World famous, high speed G. E. Terminet 1200 RS 232 KSR printer terminals are now in stock ready for shipment to you. This has to be one of the finest letter quality printers ever offered at a bargain price. These terminals can be used as an RS 232 asynchronous communications terminal or used in the local mode as a typewriter. The terminals were removed from service for upgrading. Highlights of these machines are: Standard RS 232, full duplex, asynchronous data comm., fully formed upper and lower case letters, 128 character ASCII set, selectable baud rates of 110, 300, or 1200 BPS, 80 columns on pin feed paper, and less weight & size than an ASR 36 teletype with far less racket. They are virtually electronically foolproof as every pc board is fuse protected. Should your machine not work, just check the on board fuses 9 out of 10 times that is where the problem lies. Schematics are provided w/ each machine sold. Current price of this machine new is over $2000.00 ! Our meager price for this fantastic printer is only 10% of this: $200.00 each!!! Visually inspected prior to shipment to insure completeness. SHPD. truck freight collect. $200.00

IBM 745 SELECTRIC BASED

TYPewriter PRINTERS

Send S.A.S.E. for free data sheet

These rugged, handsome printers were made for one of the giants of the computer industry. They can be used as a standard typewriter or as a printer in a word processing system for true letter quality printing. Solenoids were added to the selective mechanism which disabled the manual repeat function but still allows electronic repeat functions. It uses standard IBM typing balls. The voltage requirements are standard 115 VAC, 5 VDC at 100 ma, and 24 VDC at 4 amps. All are new in factory boxes, but may require adjustments. We provide literature and schematics with 1 ribbon and cleaning tools. With the addition of our Centronics to Selectric I/O adapter, you could easily interface this printer to almost any micro computer system. Typewriter Printer stock no. RE 1000 A $375.00, 745 manual $30.00
SHPD wt approx. 80 Lbs, ship by truck, collect.

CENTRONICS TO SELECTRIC INTERFACE

This interface will adapt a Redactron Selectric I/O typewriter mechanism to be used as a parallel ASCII compatible printer. The parallel input port provides compatibility to Centronics standards for both “busy” and “acknowledge” protocols. The interface requires only +5 VDC at 350 ma. This interface is fully built, less power supply, is guaranteed operational, and comes with data. SHPD wt. 15 lbs DE 201 A $245.00

REGULATED

LOGIC

POWER

SUPPLY

BOARD

for

TI 99/4A

These compact, lightweight switching power supply boards were originally made for the Texas Instrument 99/4A micro computer. It measures only 4-3/4 x 4-1/2 x 1-1/4" and puts out +5 VDC @ 1.2 A, -6 VDC @ 0.120 A, and +12 VDC @ .350 A. Input is 14.4 VAC to 21.6 VAC. A simple transformer or plug in the wall adapter will do. Our SPL 461-33 supply listed below is perfect for this board. Each one is new, individually packaged with data. For short money, you can get a nice little power supply or spare parts for your TI 99/4A. SHPD wt. 1 Lb.
Power Supply Board SP-55 A $10.00

AC Adapter for same, SHPD. Wt. 2 Lbs.
SP-461-33 $6.50

Phone Orders accepted on MC, VISA, or AMEX
No COD's.
Tel. 1-617-595-2275

Surplus Electronic Material

Send for our free 72 page catalogue jam packed with goodies.

January 1986
The Problem Solver...

The RF Wattmeter Model 81000-A from Coaxial Dynamics, Inc. does more than provide accurate rf measurements. Testing of transmission lines, antennas, connectors, filters and related components can reveal unknown problems and assure optimum equipment performance.

The 81000-AK Wattkit features this easy-to-read RF Wattmeter (pictured here), with its optional carrying case and an array of elements and accessories. Coaxial Dynamics elements can be purchased separately for use in other manufacturer's Wattmeters. For more information on the 81000-A Wattmeter or any of the complete line of Coaxial Dynamics RF products and OEM components please contact Coaxial Dynamics, Inc.

COAXIAL DYNAMICS, INC.
19210 Industrial Parkway, Cleveland, OH 44135 • (216) 267-2223
Outside Ohio, WATS: (600) Coaxial. Telex: 960-630

NCG Co. NEW-TECHNOLOGY HIGH-QUALITY
AFFORDABLE TRANSCEIVERS FOR ALL WINNERS IN COMPARISON HANDS DOWN!

10/160 M HF TRANSCEIVER
40-15-6 M NEW TRI-BANDER
15 M 15 METER MOBILE

JUST SLIGHTLY AHEAD!
WITH THE QUALITY YOU HAVE ALWAYS LOOKED FOR!

4 MEMORYS - 3 WAY AUTO SCAN, DUAL VFO, IF SHIFT, CW-W, 400 Hz. CW-N 200 Hz. 400 Hz. ALL 9 BANDS PLUS MARS. BUILT IN AC/DC POWER, SSB. CW OR RTTY. I.F. TUNE 3-STEP TUNING SPEED, 200 WATT PEP. MICROPHONE IMPEDANCE 600-50K OHM HAND MIC. INCLUDED.

40, 15 AND 6 METERS ARE YOUR BASE STATION OR MOBILE WITH AC/DC BUILT IN POWER SUPPLY CW-N 200 Hz OR USB, 2.50239 MHZ DETECTOR. HAND MIC. BUILT IN TVI FILTER LITTLE TO NO TV INTERFERENCE, 20 WATTS PEP. MARS ON 40 AND 6 METERS.

A GREAT ORP RIG WITH THE BIG RIG SIGNAL, 2 WATTS OR 10 WATTS OUT, BUILT IN CW SIDE TONE, DIGITAL DISPLAY, HAND MIC. TOP MOUNTED SPEAKER. MOBILE BRACKET, RIT OR FINE TUNE. TX&RX: ±4KHz, 21 TO 21 450 MHZ SIGNAL TO NOISE MORE THAN 10dB DOWN.

$849.50 $445.50 $249.50

90 DAY WARRANTY ON ALL TRANSCEIVERS - DIRECT FROM NCG OR YOUR DEALER
WE HAVE 1.2 GHz BASE/REPEATER & MOBILE ANTENNAS

NOTE: PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE OR OBLIGATION

1275 N. Grove Street, Anaheim, CA 92806 (714) 630-4541

58 January 1985
Modern design approach
cuts cost, reduces size,
and eliminates drift,
tuning, tweaking,
and passband loss

an integrated circuit
low-pass filter

Operational amplifiers, developed and popularized in the late 1960s, have all but eliminated audio amplifiers designed using discrete transistors, resistors, and capacitors. Amplifiers built with discrete components are usually designed for special applications. In an analogous manner, audio frequency filters have evolved. First came the LC filters. In widespread use since before 1920, they are characterized by large physical size and weight, complexity of design procedure, and critical component values. Next came the active filters. Active filters were first implemented using vacuum tubes, then discrete transistors, and today using integrated circuits — typically quad op amps. These circuits did away with bulky inductors and complicated design procedures. Any adjustments needed on an active filter could be accomplished by "tweaking a pot" or two. As manufacturers of integrated circuits saw large numbers of op amps being used to manufacture the same type of active filters again and again, they saw the opportunity to profit from the manufacture of dedicated filtering devices.

The use of one of these integrated circuit filters is the subject of this article.

The device discussed in this article is the S3528 programmable low-pass filter, manufactured by American Microcircuits, Inc., 3800 Homestead Road, Santa Clara, California 95051. Contained within one eighteen-pin dual inline package (DIP) is a complete seventh-order elliptical low-pass filter; its passband ripple is less than 0.1 dB, and its stopband attenuation is greater than 51 dB for frequencies greater than 1.3 f_c (cutoff frequency).

In addition, this IC contains two uncommitted operational amplifiers that can be used to provide additional filtering and gain. The device is also programmable for cutoff frequency. This means that the cutoff frequency is not fixed, but can be changed by providing switch or logic level inputs to the device. The S3528 also has a built-in oscillator for use with an external crystal,

By Robert L. Martin, WB2K TO, 45 Salem Lane, Little Silver, New Jersey 07739
such as the low-cost 3.58 MHz TV crystal. This feature allows very stable performance over a wide range of temperature and voltage. If desired, an external oscillator may be used. The frequency range of operation of this low-pass filter is 40 Hz to 20 kHz with the TV crystal, or 10 Hz to 20 kHz with an external oscillator. A block diagram and pin layout are shown in fig. 1. The six data inputs, D0-D5, are tied to either +5 VDC or GND to program the cutoff frequency into the device according to the coding shown in table 1. These data inputs, latched by an input buffer, are used to preset the internal divider to give the proper frequency to the switched capacitor filter.

In our demonstration circuit, a 6-position jumper “patch panel” provides the frequency selection. If you connect the D0 through D5 inputs to the buffered data bus of a microcomputer, the cutoff frequency can be varied by simply outputting the proper code per table 1.

switched capacitor filters

This integrated circuit filter uses CMOS op amps, CMOS transmission gates (switches), and CMOS capacitors to synthesize the required filtering function. The technique used is that of a switched capacitor filter. The following discussion will explain the functioning of a simple SCF circuit.

Figure 2 illustrates a simple RC active first order low-pass filter and fig. 3 an SCF version of the same circuit. If the switch in fig. 3 is in position “A,” the voltage on capacitor C_r becomes equal to the input voltage. If the switch is then changed to position “B,” the charge on C_r can be considered to have been transferred to capacitor C. The basic function illustrated being that of integration or low-pass filtering.

The value of the simulated resistor (C_r and the SPDT switch) depends only on the capacitance of C_r and the switching frequency. Since the ratio of capacitor sizes is proportional to their surface areas in an integrated circuit, the ratio remains stable over a wide temperature and voltage range. If the switching frequency is crystal controlled, or otherwise stabilized, a very frequency-stable filter results.
To prevent this from happening in our circuit, we apply a simple active RC low-pass filter to the input. We use the input op amp as shown in fig. 4.

To properly size R1, R2, and C1 the following method is used:

Determine the required amplification factor of the filter. For ease of application, limit gains to between 1 and 10. Assume $R_1 = 10$ kilohms. This establishes the input impedance of this filter. $R_2 = n \cdot R_1$ where n is the required gain.

Determine the desired cutoff frequency. Multiply this frequency by 2 and apply this to the following formula:

$$C = \frac{1}{6.28 \cdot f \cdot R_2} \quad (1)$$

For example:

Gain = 3.5

Cutoff frequency = 100 Hz

$R_2 = 35$ kilohms

<table>
<thead>
<tr>
<th>Table 1. Frequency vs. input coding for S3528.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Freq. (Hz)</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>200</td>
</tr>
<tr>
<td>300</td>
</tr>
</tbody>
</table>

one problem with SCFs

The S3528 filter uses a switching frequency approximately 80 times the programmed cutoff frequency. As long as the input signals are far removed, no greater than 10 percent of the switching frequency, there are no problems. If, however, some portion of the input signal contains energy at the switching frequency, a phenomenon known as “aliasing” will occur. An alias is a spurious signal that appears at the output, indistinguishable from the desired low-frequency signal.

One way to visualize what is happening is to think of the stroboscopic effect observed in a Western movie when the frame flicker rate is approximately equal to the rotational speed of the spoked wagon or stage coach wheels: the wheels may appear to be stationary, or even going backward. This is an example of visual aliasing.
The values of R and C calculated are not critical. You can use the nearest available device without significant performance degradation.

The output of the S3528, pin 9, should not be used directly to drive a load of less than 10 kilohms. To buffer the output and provide smoothing of the output signal, the op amp at pins 6 and 7 can be configured as a low-pass filter. Refer to fig. 5 for details.

To properly size R3, R4, and C2, use the following guidelines and example:

gain of output op amp/filter = 1
R3 = R4 = 10 kilohms
output low-pass filter corner frequency = 2 \cdot \text{elliptic filter cutoff frequency}

Calculate:

\[C = \frac{1}{6.28 \cdot R3 \cdot 2 \cdot f} \]

(0.1 \mu F is close enough)

For applications requiring a variable cutoff frequency over a 10:1 (or less) range, the input and output networks should be sized for the highest desired frequency. For applications over a wider range, external filtering or using switched filtering components may be required, depending on the nature of the signals being processed.

As with any new components, it is wise to experiment with the S3528 on a solderless breadboard or a prototype evaluation board prior to incorporating it into a new design.

Readers who wish to etch their own PC cards should refer to fig. 6 for a full-size copy of the negative artwork and components layout. Printed circuit cards and kits are available from the author; see page 63 for details.

\section*{circuit applications}

The circuit and PC card have been used in numerous applications around the ham shack and laboratory. As a low-pass filter for preprocessing the signals from the station microphone, it gives good performance while having extremely fast rolloff above the cutoff frequen-
As an audio output processor from the station receiver, it is capable of narrowing the effective width of the receiver's internal crystal filters without degrading the shape factor of the crystal filters.

In low-frequency signal processing, it can completely eliminate 60 Hz audio hum from low-level signals. It could be used in a modem or terminal unit for this purpose. Similarly, it can be used in biomedical or biofeedback circuits to eliminate hum and higher frequency products while extracting EEG or ECG signals.

Conclusion

The device described in this article is only one of many switched capacitor filter integrated circuits available for use as general-purpose SCF building blocks for producing literally any complex filtering function. Designers of commercial and military equipment are making good use of these devices for lower cost, higher reliability, reduced size, reduced weight, and ease of design.

Judgment must be used when using this filter with pulse or digital circuits. As with any high Q filter, ringing and pulse shape distortion may occur. Again, experiment with the filter before committing to a new design.

The following are available from Snivy Electronics, 45 Salem Lane, Little Silver, N. J. 07739.

Printed circuit card, glass epoxy $ 6.50
S3628 integrated circuit $12.50
Complete kit of all parts including capacitors C1, C2 for 100 Hz, 1000 Hz, 2000 Hz, 2500 Hz $22.50

N. J. residents please add 6 percent N. J. Sales Tax. All sales include a copy of the S3628 application and complete circuit data.

Ham Radio

If you combine 1.3 - 1296 and 249.95. What do you get? A combination that you can't beat.

1.3 IS THE FREQUENCY 1296 IS THE BAND $249.95 IS THE PRICE

- Frequency Range: 10 kHz to 1.3 Gs
- 4" 7 LED Display
- Automatic scanning
- Built-in pre-scaler
- 1 year warranty
- Input impedance 1 MΩ or 20 pt to 100 kHz - 50 ohm above 100 MHz

MASTER CARD OR VISA ACCEPTED CALL 716-874-5848 or WRITE:

DIGITAL Instruments Inc.
636 Sheridan Drive, Tonawanda, New York 14150 (716) 874-5848

9 MHz Crystal Filters

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Application</th>
<th>Band width</th>
<th>Poles</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>XF-9A</td>
<td>SSB</td>
<td>2.4 kHz</td>
<td>5</td>
<td>$53.15</td>
</tr>
<tr>
<td>XF-9B</td>
<td>SSB</td>
<td>2.4 kHz</td>
<td>8</td>
<td>72.05</td>
</tr>
<tr>
<td>XF-9B-01</td>
<td>LSB</td>
<td>2.4 kHz</td>
<td>8</td>
<td>95.90</td>
</tr>
<tr>
<td>XF-9B-02</td>
<td>USB</td>
<td>2.4 kHz</td>
<td>8</td>
<td>95.90</td>
</tr>
<tr>
<td>XF-9B-10</td>
<td>SSB</td>
<td>2.4 kHz</td>
<td>10</td>
<td>125.95</td>
</tr>
<tr>
<td>XF-9C</td>
<td>AM</td>
<td>3.75 kHz</td>
<td>8</td>
<td>77.40</td>
</tr>
<tr>
<td>XF-9D</td>
<td>AM</td>
<td>5.0 kHz</td>
<td>8</td>
<td>77.40</td>
</tr>
<tr>
<td>XF-9E</td>
<td>FM</td>
<td>12.0 kHz</td>
<td>8</td>
<td>77.40</td>
</tr>
<tr>
<td>XF-9F</td>
<td>CW</td>
<td>500 Hz</td>
<td>4</td>
<td>54.50</td>
</tr>
<tr>
<td>XF-9NB</td>
<td>CW</td>
<td>500 Hz</td>
<td>8</td>
<td>95.90</td>
</tr>
<tr>
<td>XF-9P</td>
<td>CW</td>
<td>250 Hz</td>
<td>8</td>
<td>131.20</td>
</tr>
<tr>
<td>XF-9T</td>
<td>IF noise</td>
<td>15 kHz</td>
<td>2</td>
<td>17.15</td>
</tr>
</tbody>
</table>

10.7 MHz Crystal Filters

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Application</th>
<th>Band width</th>
<th>Poles</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>XF-107-A</td>
<td>SSB</td>
<td>12 kHz</td>
<td>8</td>
<td>$67.30</td>
</tr>
<tr>
<td>XF-107-B</td>
<td>SSB</td>
<td>15 kHz</td>
<td>8</td>
<td>67.30</td>
</tr>
<tr>
<td>XF-107-C</td>
<td>SSB</td>
<td>20 kHz</td>
<td>8</td>
<td>67.30</td>
</tr>
<tr>
<td>XF-107-D</td>
<td>SSB</td>
<td>25 kHz</td>
<td>8</td>
<td>67.30</td>
</tr>
<tr>
<td>XF-107-E</td>
<td>SSB</td>
<td>30 kHz</td>
<td>8</td>
<td>67.30</td>
</tr>
<tr>
<td>XF-107-F</td>
<td>SSB</td>
<td>35 kHz</td>
<td>8</td>
<td>67.30</td>
</tr>
<tr>
<td>XF-107-G</td>
<td>SSB</td>
<td>40 kHz</td>
<td>8</td>
<td>67.30</td>
</tr>
<tr>
<td>XF-107-H</td>
<td>SSB</td>
<td>45 kHz</td>
<td>8</td>
<td>67.30</td>
</tr>
<tr>
<td>XF-107-I</td>
<td>SSB</td>
<td>50 kHz</td>
<td>8</td>
<td>67.30</td>
</tr>
</tbody>
</table>

LOW NOISE RECEIVE CONVERTERS

- **1691 MHz**
 - MM4 1691-137 $249.95
 - MM4 1691-14G $149.95
 - MM4 1691-28 $74.95
- **432 MHz**
 - MM4 432-28(5) $44.95
 - MM4 432-28(10) $69.95
- **144 MHz**
 - MM4 144-28 $54.95

LINEAR TRANSVERTERS

- **1296 MHz**
 - 1.8 W output, 2M in MM4 1296-144-G $299.95
 - 10 W output, 1M in MM4 1296-144-G $259.95
- **220 MHz**
 - 10 W output, 1M in MM4 220-144-G $169.95

LINEAR POWER AMPLIFIERS

- **1296 MHz**
 - 20 W output MM4 1296-20-L $439.95
 - 100 W output MM4 1296-100-L $369.95
- **432 MHz**
 - 50 W output MM4 432-50-L $199.95
 - 100 W output MM4 432-100-L $299.95
- **144 MHz**
 - 200 W output MM4 144-200-L $374.95
 - 500 W output MM4 144-500-L $299.95
 - 1000 W output MM4 144-1000-L $109.95

UHF LOOP YAGIS

- **1250-1350 MHz**
 - 29 loops 1250 MHZ $47.95
 - 29 loops 1250 MHZ $77.95

Order Loop-Yagi connector extra.

Shipping: FOB Concord, Mass.

Antennas

- **420-450 MHz Multibeam**
 - 26 Element 70/MBM28 12 dB $399.95
 - 46 Element 70/MBM48 15.7 dB $999.95
 - 66 Element 70/MBM118 15.5 dB $999.95

- **144-148 MHz J-Slots**
 - 8 over 8 Hor pol DBM2M 12.3 dB $563.40
 - 8 over 8 Vert pol DBM2M 12.3 dB $79.95
 - 10 + 10 Twiss 10X2M 11.3 dB $69.95

UHF Loop Yagis

- **1250-1350 MHz 29 loops 1250 MHZ $47.95**
 - 29 loops 1250 MHZ $77.95

Order Loop-Yagi connector extra.

Send 40/50 stamps for full details on all your VHIF & UHF equipment and KVG crystal product requirements.
Communications Equipment Sale

Kenwood
- TS-930S **List Price $1799**
- CALL FOR SPECIAL SALE PRICE!
- TS-430S **List Price $899.95**
- CALL FOR SPECIAL SALE PRICE!
- FT-757GX **List Price $289**
- CALL FOR SPECIAL SALE PRICE!
- FT-726R **List Price $289**
- CALL FOR SPECIAL SALE PRICE!

ICOM
- IC-751A **List Price $1399**
- CALL FOR SPECIAL SALE PRICE!
- IC-745 **List Price $999**
- CALL FOR SPECIAL SALE PRICE!
- IC-2AT **NEW 2 METER TOP OF THE LINE HT**
 - Digital LCD Headset
 - Scanning
 - Programmable PL Tones
 - Optional 5W Battery
 - 5-meter Function
 - 10 Memories
 - Offset Storage
 - Lithium Memory Backup
 - 13.8VDC Operation!
 - Sealed Case!

Alpha Sale!
- 76PA **$1899!**
- Model | List | Sale*
 - 76A | $1985 | CALL
 - 76PA | $2395 | CALL
 - 76CA | $2595 | CALL
 - 374A | $2595 | CALL
 - 78 | $3495 | CALL

Corsair
- List $1169
- Deluxe AC Supply List $199
- Both Items—Yours for $1169!
- All Ten-Tec Accessories in Stock for Fast Shipment!

Ten-Tec Sale!
- TEN-TEC New 2M HT
- Full Featured!
- List $319
- Sale $279.95!
- 4229 2KW Tuner Kit $189.95!

Hal Sale!
- NEW RTTY/CW COMPUTER INTERFACES
- NEW LIST PRICE $749.95!
- List $999 SALE $749.95!
- Other HAL Products On Sale
- CALL for Details!

Amplifier Sale!
- **$249**
- Model | Band | Pr | Input | Output | Price
 - 0106 | 6M | Yes | 100W | 150W | $249
 - B221 | 2M | Yes | 25W | 30W | $199
 - A105 | 2M | Yes | 100W | 150W | $159
 - A045 | 2M | Yes | 100W | 150W | $249
 - B220 | 2M | Yes | 20W | 25W | $199
 - C106 | 2M | Yes | 100W | 150W | $179
 - C105 | 2M | Yes | 100W | 150W | $179
 - D224 | 400 | No | 20W | 30W | $179
 - D220 | 2M | No | 100W | 150W | $179

Astro Power Supplies
- Heavy Duty, High Quality, High Output Reliable
- Input Voltage: 13.8VDC ± 0.1V
- Fully Electronically Regulated & 1% Maximum Ripple
- Linear Regulator Design
- Current Limiting &crowbar Protection Circuits
- All Models With Meter & All Series Without Meter

One-Computer Sale!
- **$89.95**
- Model | *Cont Amps | 10A | Price
 - 120t | 5 | 7.95
 - 121t | 5 | 8.95
 - 122t | 5 | 9.95
 - 123t | 5 | 10.95
 - 124t | 5 | 11.95
 - 125t | 5 | 12.95

Texas Towers

Div. of Texas RF Distributors Inc.

1108 Summit Ave., Suite 4 • Plano, Texas 75074

Monday-Friday 9 AM - 5 PM Saturday 9 AM - 1 PM

Telephone

(214) 422-7306

January 1985
No other repeaters or controllers match Mark 4 in capability and features. That's why Mark 4 is the performance leader at amateur and commercial repeater sites around the world. Only Mark 4 gives you Message Master™ real speech • voice readout of received signal strength, deviation, and frequency error • 4-channel receiver voting • clock time announcements and function control • 7-harmonic filter receiver • extensive phone patch functions. Unlike others, Mark 4 even includes power supply and a handsome cabinet.

Call or write for specifications on the repeater, controller, and receiver winners.
the reduced-size, full-performance, corner-fed delta loop

For broadband DX performance, try this one on for size

The full wave loop, whether in delta or quad form, has enjoyed popularity over many years. It forms the basis for the well-known and very effective 2-element quad antenna, the history of which can be traced back over 30 years.

A single loop in quad (diamond shape) or delta (apex up) has the following advantages: it requires only a single support, matches easily into low impedance coax, and offers broadband performance.

In May, 1974, L.V. Mayhead, G3AQC, published a very interesting article on the operation of loop antennas close to ground. By modelling the antennas at UHF, he found that the angle of radiation of a delta loop close to ground could be significantly lowered if it were fed at either side corner instead of at the center of its base leg. This had important and useful implications for the use of such antennas on the lower frequencies.

The corner-fed delta loop has also been mentioned as an effective DX antenna by ON4UN in his book 80-Meter DXing, and references to it have appeared in many popular Amateur journals over recent years.

Space for a full-sized 7 MHz delta loop was not available at my station in North Sydney, Australia. However, previous experiments carried out in England showed very little deterioration in performance of two-thirds size, side-loaded quads at HF compared to full-sized quads. I decided, therefore, to see whether a corner-fed, reduced-size delta loop for 7 MHz could be made to perform as efficiently as a full-sized loop.

14-MHz model first compared

Instead of experimenting at 7 MHz, I chose to first experiment by reducing the size of a full-sized 14-MHz corner-fed delta loop so that a standard of comparison would be available. The 14-MHz loop had been in use for some time and had shown itself to be an effective antenna despite a base height of only 6 feet (1.8 meters). In comparison tests with a half-wave dipole at 30 feet (9.2 meters), it would generally give a 1 S-point improvement in Europe on long path, and seemed about equal to the dipole on the short path to Europe (from Australia). Both antennas were broadside to Europe on long and short paths.

It is worth remembering that even when the delta loop and dipole delivered equal results, the dipole had the advantage of being nearly a half wavelength high on 14 MHz. To achieve the same effective height for a dipole operating on 7 MHz or 3.5 MHz would mean heights of over 60 feet (18 meters) and 130 feet (40 meters), respectively!

current distribution determines polarization

In the original article on the corner-fed delta loop, the loop was not an equilateral triangle, but instead had sides in the ratio 1:1:1.4, where 1.4 represents the base of the apex-up triangle. This configuration means that the two sloping sides meet at a right angle to each other, and the vertical height of the triangle formed is not as great as it would be if the triangle were equilateral in shape.

The current distribution of a delta loop fed in one corner is shown in fig. 1. The phase of the currents in the two sloping legs is such as to make it resemble two vertical antennas fed in phase so that maximum radiation would take place in a plane broadside to the plane of the antennas. Although the sloping sides of the delta loop are at 45 degrees to the horizontal, the

By V.C. Lear, G3TKN, 53 Chaplains Avenue, Cowplain, Portsmouth PO8 8QH England
phase of the currents in both sloping legs produces a predominately vertically polarized signal.

My objective with the smaller loop was to try to recreate a similar current distribution to that described for the full-sized loop.

A loop two-thirds the size of the normal 14 MHz loop was made. It had sides of 14 feet (4.27 meters), and a base of 20 feet (6.1 meters). However, before I made a serious attempt to load this loop to obtain the conditions of current distribution previously mentioned, I decided to simply series-load the loop with a coil at its feedpoint and observe the effects.

When the loop was loaded in this way, it was possible to lower its resonant frequency from 20.9 MHz to 16.5 MHz by adding small amounts of inductance. However, tuning the loop lower than 16.5 MHz required increasingly larger amounts of inductance, until finally a coil of 17 turns close wound on a 2-inch (5-cm) diameter form was needed for resonance at 14 MHz. This coil had a measured inductance of 17.1 microhenries, indicating that the antenna was 1500 ohms capacitive reactive at 14 MHz. The radiation resistance of the loop was too low to allow a good match into 75-ohm coax, and even with the feeder tapped into the coil to obtain a match, results were very poor. This was not really surprising, because by virtue of being placed at the feedpoint, the coil would have been carrying high current, introducing high loss into the system. The current distribution of the loop loaded in this way would not resemble the full-sized version. At best, then, the loop can be lowered in frequency by up to 20 percent of its natural resonant frequency by simple series loading with a coil. This is probably not the best way to load the antenna, but it may still give useful results. To bring the 20.9 MHz resonant loop to resonance on 14 MHz represents a 33 percent lowering of frequency.

the effects of base loading

The next experiment consisted of increasing the sides of the loop from 14 feet (4.27 meters) to 17 feet 9 inches (5.41 meters), but keeping the base at 20 feet (6.1 meters), and then trying to load the base wire. If the base could be loaded, maximum current would appear in both sloping sides, with a voltage point at the top of the loop. The sides of 17 feet 9 inches (5.41 meters) represent a quarter wave each on the loop at 14 MHz, since the loop circumference in feet is given by 1005/frequency in MHz (bear in mind that there is no end effect on the wire of a loop).

The objective with the loop in fig. 2 was to make the base look like an electrical half wavelength, with a voltage point in the middle of the base wire. This would then result in each leg carrying high currents in phase, and a low impedance point at each corner of the loop.

The loading of the base wire was quite easily achieved by connecting two five-foot (1.52-meter) lengths of 300-ohm twin ribbon feeder, shorted at their far ends, 5 feet (1.52 meters) in from each corner of the loop, as shown in fig. 2. The ribbon feeder was used instead of a coil because it was felt losses would be lower, and ribbon feeder proved easier to trim and was less bulky than a coil. A 3-foot 6-inch (1.07 meter) piece of stiff wire was connected at the voltage point midway along the base and brought the loop to resonance at 14.15 MHz.

The loop matched well to 75-ohm coax, with an SWR of less than 1.5:1 across the band. The performance of the loop compared well to the full-size version. However, the two hanging stubs would obviously present a problem when scaled up, so I decided to hang two wires from the middle of the base, and pull them back on themselves, as shown in fig. 3. This idea worked extremely well, and with each wire 9 feet 3 inches (2.82 meters) long, the loop was again brought to resonance at 14 MHz, but without the inconvenience of hanging stubs.

This method of loading has the advantages of low loss and ease of trimming. Performance was again similar to the full-sized loop.
reducing leg length

Now that the base had been successfully loaded so that it looked like an electrical half wavelength, an attempt was made to reduce the two sloping legs back to 14 feet (4.27 meters) by taking up the extra wire in the form of a closed stub at the top of the antenna. Various closed stubs using open wire line and 300-ohm ribbon feeder were tried, and although the antenna could be resonated each time, the radiation resistance at the feedpoint was too low to match into 75- or 50-ohm coax.

The stubs were dispensed with, and a single wire 7 feet (2.13 meters) in length connected to the apex of the loop, and hanging vertically brought the antenna to resonance. Although this proved to be a much simpler way of resonating the loop, the radiation resistance at the feedpoint was still too low.

A 4:1 matching transformer at the feedpoint connected in such a way so as to step up the impedance of the loop did provide a match, but the bandwidth of the loop was too narrow. It was felt that the introduction of a matching transformer would start to make the whole exercise rather cumbersome and introduce extra losses apart from the unacceptable bandwidth.

After some experimentation, the sides were increased to 16 feet (4.88 meters), with a 3-foot 6-inch (1.07-meter) wire hanging from the apex. This produced an SWR of less than 1.5 to 1 across the whole band even when the base of the loop was only 4 feet (1.2 meters) high.

Results with this loop were still comparable to the full-sized loop, and represented a reduction of the full-sized loop of 27 percent in terms of circumference, with a corresponding reduction in the perpendicular height of the triangle by 18 percent.

40-meter model

The final experiment was to double the dimensions for 7 MHz operation. This meant that the sides were each 32 feet (9.75 meters), base 40 feet (12.19 meters), apex vertical loading wire 7 feet (2.13 meters), and base loading wires each 18 feet 4 inches (5.59 meters). These dimensions resulted in resonance at around mid-band on 7 MHz with an SWR of no greater than 1.5 to 1 across the band.

A thin, light nylon cord was attached between the bottom of the apex loading wire and the midpoint on the base. This was necessary to keep the apex loading wire from blowing around and also to help prevent sag in the base wire, the latter which was also supporting the bottom loading wires. The loop was pulled slightly away from the mast so as to keep any interaction between the partially metal mast and itself to a minimum.

The results with the 7 MHz loop were good. I worked many continents—including America and Europe—with good reports.

It should be remembered, however, when assessing the performance of any antenna, there is no one antenna that will give excellent results on all paths, during all types of propagation, and over all distances. The corner-fed delta loop is a predominately low-angle radiator and as such should generally be at its best over longer distances. If one is only interested in working, for example, up to 1000 miles, a dipole with its higher angle of radiation could be expected to give better results. If a corner-fed delta loop is erected, this point should be remembered in any comparison checks.
fig. 4. The final loaded loop for 14 MHz. All dimensions are doubled for operation on 7 MHz. Base loading wires are each 18 feet 4 inches (5.59 meters). The top loading wire is made taut by securing to base with thin light nylon cord.

how about 80 meters?

There is no reason those with sufficient space and mast height could not assemble a 3.5 MHz version of this antenna by simply doubling the dimensions given. A 3.5 MHz version would require a mast height of 56 feet (17 meters), which would allow the base of the loop to be 6 feet (1.8 meters) above ground. The horizontal distance taken up would be 80 feet (24.4 meters). These dimensions represent a considerable saving on the full-sized loop and are feasible for many Amateurs.

Final trimming of the loop should be done by adjusting the lengths of the bottom loading wires simultaneously so that their respective lengths are always equal. The top vertical loading wire should not be trimmed. Any trimming should be carried out with the antenna at its normal height, because bringing the base wire closer to ground tends to reduce the resonant frequency of the antenna. The base wire should preferably be a minimum of 6 feet (1.8 meters) above ground. While good results have been achieved with lower positioning than this, it is not recommended; in the original article1 on the corner-fed delta loop, the base was 10 feet (3 meters) high and this, of course, would be a better height to aim for.

The radiation resistance of a loop antenna drops as it is reduced in size and also as its height above ground decreases. Consequently, 50-ohm coax is recommended for the feeder, although this is not critical. Good results have been obtained with 75-ohm cable.
further experimentation

I hope that by describing some of the experiments carried out, and results obtained, others might be encouraged to experiment further. There is no reason, for example, why those with a little extra space might not erect another similar loop 0.12 to 0.2 of a wavelength behind the driven loop, with this additional loop tuned to act as a reflector. To obtain reflector operation of this second loop, the bottom loading wires would have to be increased slightly to bring the loop to resonance some 5 percent lower in frequency from the driven loop.

It should be noted that any attempt to reduce the size of an antenna will be accompanied by a corresponding reduction in radiation resistance, bandwidth, and overall system efficiency. The corner-fed delta loop loaded in this way represents what I believe to be a reasonable compromise between these parameters and acceptable size.

references
The word amateur is a little misleading. There's nothing amateur about the way hams maneuver signals successfully through the airwaves.

It takes a unique blend of human skill and product excellence.

That's why so many amateurs gravitate toward Larsen amateur antennas.

Larsen antennas are designed by engineers who know amateur radio from the business end of the mike; who make it their business to see that every Larsen antenna goes the distance, or it doesn't go out the door.

As with our commercial products, every Larsen amateur antenna features our exclusive high efficiency platings—either Kuhlrod® chrome, or Kuhlrod T™ Teflon®. Both deliver extra miles and all-weather protection.

And they're backed by our no-nonsense warranty.

So wherever you operate—from 10 meters to 1.3 GHz—Larsen antennas will deliver strong performance . . . instead of blue sky.

Ask your favorite amateur dealer to tune you in to Larsen's professional quality, or write for a free amateur catalog.

Larsen Antennas
The Amateur's Professional

IN USA: LARSEN ELECTRONICS, INC.
1801 N.E. 50TH AVE. PO. BOX 1799
VANCOUVER, WA 98668
206-573-2722

IN CANADA: CANADIAN LARSEN ELECTRONICS, LTD.
2821 E. 11TH AVE. UNIT 101
VANCOUVER, B.C. V6T 2C4
604-872-8517

Larsen® Kuhlrod® and Kuhlducke® are registered trademarks of Larsen Electronics, Inc. Teflon® is a registered trademark of E.I. DuPont de Nemours.
SATELLITE TELEVISION RECEIVER
SEMIKIT

with dual conversion downconverter

FEATURES:
- Infrared remote control tuning
- AFC, SAW filter
- RF or video output
- Stereo output
- Polator controls
- LED channel & tuning indicators

Install six factory assembled circuit boards to complete.

SEMIKIT $400.00
Completed downconverter add 100.00
Completed receiver and downconverter add 150.00

JAMES WALTER SATELLITE RECEIVER
2697 Nickel, San Pablo, CA 94806 Tel. 415-724-0587

Versatile Lab Power Supply

MODEL 3002A
- 0-30 VDC at 0-2A
- Excellent Regulation
- Ripple & Noise – 500 uV RMS
- Built-in Short-Circuit and Overload Protection

Model 3002A features continuously adjustable current limiting and precision constant voltage/constant current operation with "automatic crossover." This lab-grade unit can also be used as a current regulated power source. Options: 10-Turn Voltage and Current Controls, $25.00 ea. (can be ordered individually).

Also available, TRIPLE MIGHTY-MITE LAB POWER SUPPLY: Three Fully Regulated DC Outputs; two 0-25V/0.5A and one fixed 5V/3A, Variable Tracking & Independent Modes, Dual Panel Meters. Other models to 60 VDC, to 12A.

TERMS: Check, Money Order or COD. COD's $2.00 extra. Add $3.50 for shipping & insurance in 48 states. Please contact our Sales Department for other shipping rates. Illinois residents add 7% sales tax.

Free Literature On Request

ELECTRO INDUSTRIES
4201 W. IRVING PARK BLVD., CHICAGO, IL 60641
312/736-0999

January 1985
INTRoDUCING NEMAL

ASTRO™ SERVICE

GUARANTEED SAME DAY SHIPMENT OR WE PAY THE FREIGHT ON ORDERS OF $100 OR MORE
FOR STOCK ITEMS RECEIVED PRIOR TO 12 NOON EASTERN TIME.

Factory Authorized Distributor for

COLUMBIA ELECTRONIC CABLES
DIVISION CAROL CABLE COMPANY

COAXIAL CABLES

Over 75 types in stock, available in full roll or cut to order. Nemal offers cable made to both military as well as commercial specifications including Teflon cables, Silver plated cables and high power RF cables.

MULTI CONDUCTOR CABLES

Large inventory of both shielded and non-shielded types from 2 to 120 conductor and from 10 to 24 Gauge. Jacket types available for specific applications including PVC, Polyethylene, and neoprene. Complete Columbia line.

SATELLITE CONTROL CABLE

5 TYPES AVAILABLE!

NEW!!! Lowest Loss

TYPE 1
(General Purpose)
1 - RG59/U 96% Copper Braid
2 @ 16-Gauge
5 @ 22-Gauge
3 @ 20-Gauge
Shielded plus Tinned Copper Drain Wire

TYPE 2 (Mini)
1 - RG59/U 96% Copper Braid
2 @ 12-Gauge
3 @ 18-Gauge
6 @ 18-Gauge
3 @ 20-Gauge
Shielded plus Tinned Copper Drain Wire

TYPE 3
(Intersat)
3 @ 22-Gauge Shielded plus Tinned Copper Drain Wire

TYPE 4
1 - RG6/U 18-Gauge, 96% Copper Shield
2 @ 12-Gauge
3 @ 18-Gauge
3 @ 20-Gauge
Shielded plus Tinned Copper Drain Wire

TYPE 5
2 - RG6/U 18-Gauge, 96% Copper Shield
3 @ 18-Gauge
3 @ 20-Gauge
3 @ 22-Gauge Shielded plus Tinned Copper Drain Wire

55¢
75¢
95¢
79¢
89¢

FT
FT
FT
FT
FT

Call for 1000 FT pricing

Only Nemal offers the quality construction RG59/U copper shielding made to mil spec Jan C-17, 12-gauge conductors, tinned copper drain wires, and a true direct burial polyethylene jacket.

ACTUATOR CABLES

ST-1 2 @ 16 gauge + 2 @ 22 gauge with foil shield and drain wire 24¢/FT
ST-2 2 @ 12 gauge + 3 @ 22 gauge with foil shield and drain wire 36¢/FT

Direct Burial Black Polyethylene Jacket

NEMAL ELECTRONICS INTL., INC.

12240 N.E. 14th Ave., No. Miami, FL 33161

Telephone: (305) 893-3924

TELEX 532362
*WE'LL BE GLAD TO CUT ANY OF OUR CABLES TO MEET YOUR EXACT LENGTH REQUIREMENTS

*Also available Complete line of top quality connectors and SMATV equipment
FRANCHISED DISTRIBUTOR — KINGS CONNECTORS
Authorized Distributor: Amphenol, Blonder-Tongue, Cable Wave Systems, Tyton, B&K

*Call or write for complete pricing

74 January 1985
the 5/8-wave VHF antenna revisited

In April, 1935, Gihring and Brown published their classic study on the field strength pattern along the ground for vertical antennas of different heights. Their work was part of an ongoing effort to develop a good anti-fade antenna for the broadcast band. One result of their experiments was the popularization of the 5/8-wave vertical antenna; its design combined high radiation efficiency with a power gain of nearly 3 dB over a 1/4-wave comparison vertical antenna.

Since these classic experiments, the 5/8-wave antenna, in combination with an extensive ground radial system, has become a broadcast industry standard antenna.

Amateurs, however, have used this interesting antenna on the HF and VHF bands with mixed results. When an elaborate ground system is used, the antenna performs as might be expected. But when used with a radial system (as is often the case on the VHF bands), the antenna often proves to be a disappointment.

I found this out last summer when, in an attempt to get into a distant 2-meter repeater, I switched from a 1/4-wave ground plane antenna to a 5/8-wave antenna. Any improvement in signal strength at the far-distant repeater was a product of the imagination.

Why didn’t it work? What happened to the 3 dB signal increase I was supposed to get from the bigger antenna? Good question.

the W8HXC tests

In my November column I reported on the tests that W8HXC (Ralph) and AF8B (Don) had run on various 2-meter vertical antennas. They found that under many circumstances the feedline became part of the antenna, despite attempts to make the radials isolate the antenna from the feedline, as they are supposed to do.

The simple 1/4-wave ground plane would provide good isolation between antenna and coax line if the line were wrapped into a two-turn RF choke coil about 1 1/2 inches (3.8 cm) in diameter. The coil was placed directly below the antenna. Examining the coaxial line with an “RF sniffer” revealed the line was “cold,” provided it dropped directly down beneath the antenna.

The 5/8-wave antenna exhibited current maxima along the outside of the coaxial line until (by cut-and-try) the quarter-wave radials were positioned about 3/8-wavelength below the base of the antenna.

The final conclusion of these tests...
was that radials could be placed any distance below the antenna as long as the sum of radial length and distance from the antenna base totalled 5/8-wavelength.

the W6SAI tests

This information sounded good to me, so I repeated the tests that Ralph and Don reported. What they said was borne out in fact, but the 5/8-wave vertical antenna still didn’t show any appreciable gain over a simple 1/4-wave ground plane antenna.

While I was debating whether I should relegate the antenna to the junk yard, I remembered something I’d read in an old edition of the ARRL Antenna Book. The example cited was a horizontal antenna, but the point was made that feeding an antenna in an asymmetrical manner tilted the pattern away from the feedpoint. This could be the clue I was looking for!

If the 1/4-wave ground plane is drawn with the radials in-line with the radiator, it transforms itself into a dipole, as shown in fig. 1. If the 5/8-wave vertical is drawn with the usual 1/4-wave radials in-line, it resembles fig. 2. The radiator portion of the antenna is really a 3/4-wave resonant section, with 1/8-wave wound into a coil so that the advantageous characteristics of the 5/8-wave radiator are retained. The feedpoint (F-F) feeds a lopsided antenna configuration!

Many years ago I had a horizontal “Zepp” antenna that consisted of exactly this configuration (fig. 3). I remember that it was impossible to balance the antenna currents and RF in the halves of the antenna. I solved the problem by making the short section the same length as the long one. All my loading problems went away.

Enough circumstantial evidence existed at this point for me to substitute 3/4-wavelength radials for the 1/4-wavelength radials on my 2-meter vertical antenna. This is quickly and easily done, as shown in fig. 4. This antenna provided improved performance over the 1/4-wavelength ground plane and also over the 5/8-wavelength extended antenna with 1/4-wavelength radials.

adjusting the 5/8-wavelength vertical

The new antenna was quite easy to adjust. The four radials were precut to 57 inches (145 cm) and the whip was cut two inches longer than estimated length to allow for some pruning. The feedpoint was arbitrarily tapped on the base coil and the antenna was temporarily erected in the air, free and clear of nearby objects.

An SWR check made across the band revealed that the SWR curve canted toward the low frequency end of the band and was quite constant between 1.9-to-1 and 1.7-to-1. The vertical whip was trimmed 1/4-inch (0.6 cm) at a time and the SWR curve checked after each “snip.” The SWR seemed to bottom out at about 1.5-to-1, with a very broad response, indicating good bandwidth performance.

Squeezing and expanding the bottom base coil helped a bit and the point of lowest SWR was zeroed in at 146.0 MHz. Unfortunately, the SWR was still too high for us (W6SAI, W6EMD, K6KCM).

The final step was to adjust the feedpoint tap, a quarter-turn along the coil at a time. Now, we were really getting somewhere! After two or three trials, a tap point was found where the SWR on the transmission line was 1.1-to-1, or better, at 146 MHz, rising to about 1.6-to-1 at the band edges.

We observed that the coil tap, number of turns, and vertical antenna length were interrelated. If the antenna was too short, increasing coil induc-
I job it was intended to do: provide a well-known historian has a wheel!

cept had been patented in Germany on the same antenna design issued earlier Telefunken in August, 1942.

come up with unusual and interesting items. The 5/8-wave vertical antenna popularized by Gehring and Brown in 1935, was patented in the United States by Andrew Alford on April 2, 1940. However, the same antenna concept had been patented in Germany on October 24, 1932, and even this was an extension of a previous patent on the same antenna design issued earlier in Russia.

To top it off, the popular coaxial balun (so-called “Collins Balun”) was patented by W.B. Bruene with U.S. patent 2,777,996 in 1954. An identical balun was patented in Germany by Telefunken in August, 1942.

It looks as if a great deal of effort has been expended in re-inventing the wheel!

My thanks to Dipl. Eng. A. Krischke, DJ6TR, OE8AK, for these details. This well-known historian has a private collection of over 1000 radio patents dating back to the early antenna patents of Marconi (1896), Lodge (1898), and Braun (1898).

who was first?

Amateur Radio historians often come up with unusual and interesting items. The 5/8-wave vertical antenna popularized by Gehring and Brown in 1935, was patented in the United States by Andrew Alford on April 2, 1940. However, the same antenna concept had been patented in Germany on October 24, 1932, and even this was an extension of a previous patent on the same antenna design issued earlier in Russia.

Antenna dimensions are given in fig. 5A. A view of the array is shown in fig. 5B. Wire length is critical and should be duplicated to within 2 inches (5 cm). Copper-clad steel wire is recommended, as pure copper wire will stretch over such a span. If kept reasonably in the clear, away from large metal objects, and thirty feet (9 meters) or higher above ground, the electrical characteristics will closely match those listed in the illustration. The antenna may be mounted on a mast or tower at the feedpoint and the three legs suspended in a flat-top or inverted-V configuration. The apex angles of the wire legs are not critical and the sum of the angles may be varied from 180 degrees to 120 degrees, or less.

lightning protection

Lightning is a problem in many areas of the country where frequent electrical storms occur. This antenna is no more vulnerable than other antennas of its size and it has the advantage of being easily protected. The balun (which can be destroyed by a nearby lightning strike) and coax are moved to the base of the tower and the antenna is fed with a 200 ohm open-wire line which can be switched to ground at the tower base when the antenna is not in use (fig. 6.)

The line is made up of parallel-connected lines. K4EF's line used two insulators: one at the top and the other at the bottom. Thirty-pound weights were attached to the bottoms of each wire to keep the whole line under tension. This eliminated intermediate insulators. Surplus, heavy-duty 208 ohm “ribbon” line can also be used for the transmission line.

receiver overload

The large capture area of the antenna results in large signal voltages (sometimes from unwanted stations) which may overload the front end of

<table>
<thead>
<tr>
<th>band (MHz)</th>
<th>electrical length (half wave)</th>
<th>physical length of radiating element (feet)</th>
<th>resonant frequency (MHz)</th>
<th>2:1 SWR antenna bandwidth (MHz)</th>
<th>ARRL design frequency (MHz)</th>
<th>Amateur band frequency allocation (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>5</td>
<td>241</td>
<td>10.105</td>
<td>25.523 to 29.305</td>
<td>10.12</td>
<td>10.100 to 10.15</td>
</tr>
<tr>
<td>16</td>
<td>9</td>
<td>241</td>
<td>18.270</td>
<td>17.995 to 18.544</td>
<td>18.11</td>
<td>18.068 to 18.168</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>254</td>
<td>25.080</td>
<td>24.707 to 25.460</td>
<td>24.94</td>
<td>24.890 to 24.990</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>254</td>
<td>28.950</td>
<td>28.523 to 29.305</td>
<td>28.60</td>
<td>28.000 to 29.700</td>
</tr>
</tbody>
</table>

fig. 5A. Dimensions and specifications of K4EF six-band long-wire array.

fig. 5B. Top view of K4EF antenna array.
1. fig. 6. Construction of a 200-ohm line. Diagonally opposite wires are joined at each end of line. Spacing to centers of wires on both sides of square is 2 inches (5 cm) for No. 10 wire. Base of line can be grounded when antenna is not in use.

2. fig. 7. Simple two-step attenuator.

3. The receiver. A simple RF attenuator will help, if your receiver does not have some sort of input protection. The circuit of fig. 7 is suggested.

protecting wooden masts at or below ground level

Fourteen years ago my friend Stu, W2LX, erected a wooden mast on a ground post sunk into moist soil. The post was a 4 x 4, about five feet long, with over 3 feet sunk into the ground. The problem was how to protect the portion of the post buried in the ground.

A previous mast had been treated heavily with wood preservative, but it has rotted out after a few years in the ground. This time, Stu had a better idea.

An untreated mast post was wrapped with three layers of aluminum foil — the heavy-duty type used in the kitchen. The layers of foil were arranged so that the seams did not overlap, and the foil was carefully folded around the base of the ground post. The foil was wrapped with vinyl tape at several points. The mast was then placed in the ground hole and the hole filled with dirt and tamped down.

The metal foil protruded a few inches above ground to protect the post from surface water.

This fall — fourteen years later — W2LX moved to a new location. Because the new owner of his home would have no use for the mast, it was taken down. When the ground post uprooted, Stu found the unusual protective technique had been an unqualified success! Once the soil had been washed from the post, the foil looked practically new. Carefully removing the tape and unwrapping the foil, he found that the wood also looked almost new. There was no sign of water damage, termites, or rot.

W2LX plans to use this technique when he erects his wooden mast at his new QTH and passes the idea along to other Amateurs who may be interested in erecting a wooden mast.

references

MAXUM
007

a good deal
more
for a good deal
less

MANUFACTURED BY WESTERN & EASTERN SATELLITE

WESTERN SATELLITE
916-337-6202
Orders only — 800-243-3019

EASTERN SATELLITE
904-224-8965
CONTENTS

INTRODUCTION
1. AMATEUR RADIO
2. ELECTRICAL FUNDAMENTALS
3. RADIO DESIGN TECHNIQUE
 AND LANGUAGE
4. SOLID STATE FUNDAMENTALS
5. VACUUM TUBE PRINCIPLES

RADIO PRINCIPLES
6. POWER SUPPLIES
7. AUDIO AND VIDEO
8. DIGITAL BASICS
9. MODULATION AND DEMODULATION
10. RADIO FREQUENCY OSCILLATORS
 AND SYNTHESIZERS
11. RADIO TRANSMITTING PRINCIPLES
12. RADIO RECEIVING PRINCIPLES
13. RADIO TRANSCEIVERS
14. REPEATERS
15. RF POWER AMPLIFIERS
16. TRANSMISSION LINES
17. ANTENNA FUNDAMENTALS

MODULATION METHODS
18. VOICE COMMUNICATION
19. DIGITAL COMMUNICATIONS
20. IMAGE COMMUNICATIONS
21. SPECIAL MODULATION TECHNIQUES

TRANSMISSION
22. RADIO FREQUENCIES AND PROPAGATION
23. SPACE COMMUNICATIONS

CONSTRUCTION AND MAINTENANCE
24. CONSTRUCTION TECHNIQUES
25. TEST EQUIPMENT AND MEASUREMENTS
26. TROUBLESHOOTING AND REPAIR
27. POWER SUPPLY PROJECTS
28. AUDIO AND VIDEO EQUIPMENT
29. DIGITAL EQUIPMENT
30. HF RADIO EQUIPMENT
31. VHF RADIO EQUIPMENT
32. UHF RADIO EQUIPMENT
33. ANTENNA PROJECTS
34. STATION ACCESSORIES
35. COMPONENT DATA

ON THE AIR
36. HOW TO BECOME A RADIO AMATEUR
37. ASSEMBLING A STATION
38. OPERATING A STATION
39. MONITORING AND DIRECTION FINDING
40. INTERFERENCE

ETCHING PATTERNS

1024 PAGES!
WIN!!

* In-store drawings each hour. Come and register to win!!
* Grand prize for in-store drawing:
 IC-02AT 2-Meter Digital Readout Handheld
* No purchase necessary to register for in-store drawings.
* Special in-store pricing.
* ICOM Personnel to demonstrate new equipment.
* Refreshments will be served.
* See the new line of ICOM equipment.
* New equipment available for your inspection and purchase.

ICOM

Presented by:
HAMTRONICS
4033 Brownsville Road
Trevose, PA 19047
(215) 357-1400

Saturday,
January 19, 1985
9:00 a.m. till 5:00 p.m.

Use Your Wireless Control
FROM ANY ROOM!!!

Works with most infrared remote control receivers

LIKE HAVING A SATELLITE RECEIVER, VCR, CABLE TV, AND VIDEO DISC IN EVERY ROOM!

- Remote control Satellite Receiver, VCR, Cable TV, and Video Disc can now be used long distance
- Install on any TV to access all your remote control video components
- Makes non remote TVs remote controllable
- Use existing coaxial wiring between TVs
- No fancy wiring needed
- No extra controls to buy
- Use the hand held remote controllers you already have
- No tools required
- Easy to install in minutes

$7995

Plus $3.00 shipping & handling

608-493-2291

Your Ham Tube Headquarters!

TUBES BOUGHT, SOLD AND TRADED
SAVE $$$—HIGH $$$ FOR YOUR TUBES

Call Toll Free 800-221-0860

Tubes
3-400Z $85.00 7360 $10.00
3-500Z 85.00 7735A 27.50
4-400A 80.00 8122 110.00
4CX250B 50.00 8156 12.50
572B 55.00 8643 82.50
811A 12.00 8844 26.50
813 30.00 8873 175.00
6146B 6.50 8874 195.00
6360 4.25 8877 500.00
6883B 6.75 8908 12.50

MAJOR BRANDS ON RECEIVER TUBES
75% off list

Semiconductors
MRF 245/SD1416 $30.00 SD1088 19.95
MRF 454 14.95 2N3055 75¢
MRF 455 10.95 2N6084 12.50

RF Connectors
PL259 10/$4.95 M359 2.50 ea.
PL258 10/$4.95 M359 1.75 ea.
UG 175/176 10/1.60 Type "N" Twist on
UG255/1088 2.50 ea. (RGG/8u) 4.75 ea.
UG273/1088 2.25 ea. Minimum Order $25.00

Allow $3.00 min. for UPS charges

CeCo

COMMUNICATIONS, Inc.
2115 Avenue X, Brooklyn, NY 11235
SERVING THE INDUSTRY SINCE 1922
Phone (212) 646-6300

Call CECo For Your CCTV Security And Color Production Requirements
high power RF switching
with pin diodes

Recent developments in PIN diode technology allow fast, silent switching at 1500 watts+

The PIN diode is a semiconductor device that operates in a manner similar to that of a variable resistor at RF frequencies. The amount of forward DC bias applied to the PIN diode determines its resistance (impedance) to the passage of RF signals.

PIN diodes are attractive for RF switching because they have no moving parts; can “hot switch” large RF currents; can control large amounts of RF current with a relatively small DC bias control current; and don’t introduce any significant RF waveform distortion.

PIN diodes are formed from three distinct types of silicon wafers: an intrinsic layer (pure, non-doped); a P doped layer, and an N doped layer. Figure 1 shows a typical PIN diode with its layers identified. A practical package for a PIN diode has the leads attached to the P and N layers and the whole unit encapsulated in either epoxy or glass. It is the thickness of the intrinsic layer which determines the “geometry” of the PIN diode and gives the diode manufacturer the ability to create PIN diodes with different characteristics for special applications.

The external physical appearance of PIN diodes is determined by their intended applications. Figure 2 shows two Unitrode PIN diodes: a 7300 series and a 4000D series. The 7300 series, about the same size as a 1N4148, is used for microwave attenuators because of its low internal capacitance (0.7 pF). The larger one, series 4000D, is an insulated stud mounted unit with ribbon leads. This unit is used for high power RF switching and certain applications at a 500 Kilowatts pulsed power level (1 µs pulse). Tests have shown that with proper heatsinking and DC biasing, the Unitrode 4000D series PIN diode can handle in excess of 3000 watts.*

PIN diode parameters and specifications

All PIN diodes, regardless of their application, share certain common characteristics. One is a forward resistance, R_f, that varies inversely with DC forward bias. This is usually shown in graphical form. (See fig. 3, a graph for a typical Unitrode UM4000 series PIN diode.) Note that at 1000 mA (1 amp) forward bias, the UM4000 R_f is approximately 0.1 ohm. At 1 mA the R_f rises to 20 ohms and at 1 µA forward bias, the R_f is in excess of 10 kilohms. The standard for rating most PIN diodes is to provide 100 mA forward bias current at 100 MHz.

Figure 4 shows a set of equivalent circuits for PIN diodes in both a forward and reverse bias state. The forward-biased PIN diode can be considered as equivalent to a series resistor (R_s) and inductor (lead inductance). The reverse-biased PIN diode is equivalent to a resistor (R_p-parallel resistance) in parallel with a capacitor (the C_T . . . total package capacitance) with both of these in series with an inductor (the

By J.R. Sheller, KN8Z, Design Electronics Ohio, 4925 S. Hamilton Road, Groveport, Ohio 43125

* By J.R. Sheller, KN8Z, Design Electronics Ohio, 4925 S. Hamilton Road, Groveport, Ohio 43125
PIN diodes consist of three distinct layers: P type, N type, and a pure non-doped (Intrinsic) layer.

When PIN diodes are reverse biased, they exhibit a blocking effect to RF as shown in the equivalent circuit of fig. 4. As the reverse DC bias is increased, \(R_p \) increases and \(C_T \) decreases. The limit of the reverse DC bias is determined by the value of \(V_r \) (reverse breakdown voltage) of the particular diode. Figure 5 shows a typical curve of reverse bias voltage \((V_r) \) versus parallel resistance \((R_p) \) for a Unitrode 7300 series PIN diode. Figure 6 shows a typical curve of reverse bias voltage \((V_r) \) versus total capacitance \((C_T) \) for a Unitrode 4300 series PIN diode.

power handling capability

The maximum power rating of a PIN diode is a function of the forward resistance, \(R_s \), and the amount of RF current flowing through the diode. A PIN diode rated to dissipate 12 watts at 25 degrees C can safely switch 1500 watts of RF. A typical calculation shows why this is so. Assume:

\[
\begin{align*}
RF \text{ load} &= 50 \text{ ohms} \\
R_s &= 0.2 \text{ ohm} \\
RF \text{ power level} &= 1500 \text{ watts} \\
I &= \sqrt{\frac{P}{R}} = \sqrt{\frac{1500}{50}} = 5.48 \text{ amperes}
\end{align*}
\]

The power dissipated by the diode is equal to forward resistance times current squared or:

\[
0.2 \cdot (5.48)^2 = 6 \text{ watts}
\]

The power dissipation of a PIN diode is therefore a function of the load impedance, the forward resistance and the RF current flowing. Consequently, a PIN diode rated to dissipate only 12 watts can, with proper heat sinking, easily handle RF in excess of 1500 watts.

PIN diodes versus vacuum relays

The use of vacuum relays for "high speed" RF switching has been well covered in the literature over the past 20 years (see bibliography). Several commercial amplifiers use vacuum relays for RF switching in order to obtain full break-in "QSK" operation. But using vacuum relays to obtain the high-speed switching times required for full QSK has several disadvantages. These include high cost; the inability to "hot switch"; the necessity for complex switching and protective circuitry; mechanical sound and vibration as the relay opens and closes on each character of CW

Tests performed at Design Electronics Ohio, Groveport, Ohio.

Figures:

- Fig. 1: PIN diodes consist of three distinct layers: P type, N type, and a pure non-doped (Intrinsic) layer.
- Fig. 2: One of the PIN diodes is used in microwave attenuators while the larger unit can actually handle 500 kW of pulsed power.
- Fig. 3: \(R_s \) versus current for UM4000 PIN diode.
IC-740 9,000-2,000 MHz PEP SSB xcvr w/mic | $1,099.00 869

*FREE PS-740 Internal Power Supply & $50 Factory Rebate - until gone!

PS-740 Internal power supply | $199.00 149
* 12V March unit | 50.00
* 24V FM unit | 39.00
* EX-243 Electronic keyer unit | 50.00
FL-45 500 Hz CW filter (1st If) | $59.50
FL-47 1500 Hz CW filter (1st If) | $59.50
FL-48 2700 Hz CW filter (1st If) | $59.50
FL-51 4500 Hz CW filter (1st If) | $69.50
FL-53A 250 Hz CW filter (2nd If) | $69.50 89
*FL-44A SSB filter (2nd If) | $159.00 149
SM-8 8-pin electret desk microphone | $59.00
SM-12 Mobile microphone | $19.50

*Options also for IC-745 listed below

IC-730 8-band 200 MHz PEP xcvr w/mic | $799.00 569
FL-30 SSB filter (passband tuning) | $59.50
*FL-44A SSB filter (2nd If) | $199.00
FL-45 500 Hz CW filter | $59.50
EK-195 Marker unit | 99.50
EK-202 LDD interface | $99.00
EK-203 Transverter switching unit | $99.00
SM-5 8-pin electret desk microphone | $39.00
HM-10 Scanning mobile microphone | $39.00
MB-12 Mobile microphone | $19.00

IC-720A 9-band xcvr | $1,399.00 1,199
FL-32 500 Hz CW filter | $59.50
FL-33 5 kHz AM filter | $49.50
SM-9 8-pin electret desk microphone | $39.00
SM-9A Mobile mount | $19.50
IC-745 9-band xcvr w/1.3 MHz xcvr | $999.00 799
PS-35 Internal power supply | $160.00 144
CFJ-45K5 2.8 kHz wide SSB filter | $50.00
HM-2 Head hand microphone | $39.50
SM-6 Desk microphone | $39.00

See IC-740 list above for other options ()

IC-751 9-band xcvr/1.3 MHz xcvr | $1,399.00 1,199
PS-35 Internal power supply | $160.00 144
FL-32 500 Hz CW filter (1st If) | $59.50
FL-33 5 kHz AM filter (1st If) | $49.50
FL-52A 500 Hz CW filter (2nd If) | $59.50 89
FL-53A 250 Hz CW filter (2nd If) | $69.50 89
SM-3 AM filter | 39.50
FL-70 2.8 kHz wide SSB filter | $49.50
HM-12 Hand microphone | $39.00
SM-6 Desk microphone | $39.00
CR-64 High stability reference xtal | $56.00
RC-10 External frequency controller | $35.00
MB-18 Mobile mount | $19.50

IC-721 9-band xcvr | $1,399.00 1,199
*Options also for IC-745 listed below

IC-751A 2m FM/SSB/CW xcvr | $749.00 495
*SSB Factory Rebate - until gone!

IC-551D 80 Watt 6m transceiver | $699.00 599
EX-106 FM option | $125.00 99
BC-10A Memory back-up | $199.00
SM-2 Electret desk microphone | $39.00
IC-271H 1000 MHz FM/SSB/CW xcvr | $899.00 759
PS-35 Internal power supply | $160.00 144
FL-350 9 kHz audio filter | $39.00
EX-144 PS-15/CC-1 fan adaptor | $59.00
AG-25 Mast. condenser | $89.50
AG-27A 25W xcvr | $299.00
IC-271A 1500 MHz SSB/CW/FM xcvr | $1,099.00 989
PS-35 Internal power supply | $160.00 144
EX-144 PS-15/CC-1 fan adaptor | $59.00
AG-25 Mast. condenser | $89.50
IC-271A 5W xcvr | $299.00
IC-271A 20W xcvr | $399.00
IC-271A 50W xcvr | $499.00
IC-271A 100W xcvr | $699.00
IC-271A 250W xcvr | $999.00
IC-271A 500W xcvr | $1,299.00
IC-271A 1000W xcvr | $1,999.00

Common accessories for 271A/H and FH-1/H:
SM-5 Desk microphone | $39.00
EX-310 Voice synthesizer | $39.00
TS-32 Commspec encoder/decoder | $59.00
UTC-151 UTC-155 | $79.50

Hand-held Transceivers

IC-220 10W 144 MHz digital receiver | $299.00
EX-199 Remote frequency selector | $35.00
IC-220B Compact 25W 2m FM/SSB/CW xcvr | $299.00
IC-220C Compact 25W 2m FM/SSB/CW xcvr | $299.00
AG-27A Compact 25W 2m FM/SSB/CW xcvr | $299.00
AG-27C Compact 25W 2m FM/SSB/CW xcvr | $299.00
EX-16/EX-388 Voice synthesizer | $29.50
IC-210 15W 2m FM transceiver | $499.00
MB-12 Mobile mount | $19.50

Assemblies available:
IC-505 3/15W 6 port. SSB/CW/SSTV | $449.00 399
BP-10 Internal Nicad battery pack | $79.50
BP-15 AC charger | $12.50
EX-248 Remote controller | $39.50
LC-10 Leather case | $39.50
SP-4 Remote speaker | $24.50

HOURS: Mon. thru Fri. 9:50; Sat 9-3
Milwaukee WATs line 1-800-558-011 answered evenings until 8:00 pm Monday thru Thursday Please use WATs line for Placing Orders for other information, etc. please use Regular line

Order Toll Free: 1-800-558-0411

AMATEUR ELECTRONIC SUPPLY Inc.
4828 W. Fond du Lac Avenue; Milwaukee, WI 53216 - Phone (414) 442-4200

In Wisconsin (outside Milwaukee Metro Area) 1-800-242-5195

Associate Store
CHICAGO, Illinois 60630
ERICKSON COMMUNICATIONS
5456 N. Milwaukee Avenue
Phone (312) 631-5181

MasterCard VISA

In Nevada (outside Las Vegas)

Order Toll Free: 1-800-634-6227
15 min. from O'Hare
or AMTOR; and maximum switching time of approximately 1-2 milliseconds. Amateur use of PIN diodes for RF switching is a relatively recent occurrence. However, nearly all currently available transceivers that offer full QSK use PIN diodes for their T/R function. Several articles have appeared in the literature over the past 10 years concerning the use of PIN diodes in “low power” T/R switching. Using PIN diodes to perform RF switching functions offers several advantages, including relatively low cost; the ability to be “hot switched”; silent operation; rugged construction; and no complex protective or peripheral circuitry are required. In addition, switching times less than 1 \(\mu s \) are possible.

Making PIN Diodes Work at HF

PIN diodes were designed for and operate best in the VHF and UHF regions. Their use below 30 MHz was delayed because of the need for high inductance and high current RF chokes. The need for capacitors capable of handling 5-10 amps of RF current, with values up to 100,000 pF was also a barrier. PIN diodes can be used at HF, however, and a detailed description of a commercial application that successfully utilizes PIN diodes for RF switching follows.

The QSK 1500

The QSK 1500 switch was developed to allow owners of QSK transceivers to operate full break-in CW or AMTOR at the legal power limit (1500 watts). It uses pin diodes to provide ALL the T/R switching functions associated with the relays in the existing amplifier, with no modifications to either the QSK transceiver or the RF amplifier needed. However, this unit is not intended to make a non-QSK transceiver operate in the QSK mode, nor will it work with a separate transmitter/receiver combination.

A block diagram of the QSK 1500 is shown in fig. 7 and the schematic of the RF switching section in fig. 8.

Receive Signal Path

The receive signal from the antenna travels through the OUTPUT RECEIVE LINE BLOCKER, the RECEIVE LINE PROTECTOR, and the INPUT RECEIVE LINE BLOCKERS, then into the front end of the QSK TRANSCEIVER. With the QSK...
ASTRON POWER SUPPLIES

• HEAVY DUTY • HIGH QUALITY • RUGGED • RELIABLE

RS and VS SERIES

SPECIAL FEATURES
- SOLID STATE ELECTRONICALLY REGULATED
- FOLD-BACK CURRENT LIMITING Protects Power Supply from excessive current & continuous shorted output.
- CROWBAR OVER VOLTAGE PROTECTION on all Models except RS-4A
- MAINTAIN REGULATION & LOW RIPPLE at low line input Voltage.
- HEAVY DUTY HEAT SINK • CHASSIS MOUNT FUSE
- THREE CONDUCTOR POWER CORD
- ONE YEAR WARRANTY • MADE IN U.S.A.

PERFORMANCE SPECIFICATIONS
- INPUT VOLTAGE: 105 - 125 VAC
- OUTPUT VOLTAGE: 13.8 VDC ± 0.05 volts
 (Internally Adjustable: 11-15 VDC)
- RIPPLE: less than 5mV peak to peak (full load & low line)

19" X 5 1/4 RACK MOUNT POWER SUPPLIES

<table>
<thead>
<tr>
<th>Model</th>
<th>Duty (AMPS)</th>
<th>ICS* (AMPS)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM-35A</td>
<td>25</td>
<td>35</td>
<td>3 1/4 x 19 x 12 1/2</td>
<td>38</td>
</tr>
<tr>
<td>RM-50A</td>
<td>37</td>
<td>50</td>
<td>3 1/4 x 19 x 12 1/2</td>
<td>50</td>
</tr>
</tbody>
</table>

RS-A SERIES

<table>
<thead>
<tr>
<th>Model</th>
<th>Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-4A</td>
<td>3</td>
<td>4</td>
<td>3 1/4 x 6 1/2 x 9</td>
<td>5</td>
</tr>
<tr>
<td>RS-7A</td>
<td>5</td>
<td>7</td>
<td>3 1/4 x 6 1/2 x 9</td>
<td>9</td>
</tr>
<tr>
<td>RS-7B</td>
<td>5</td>
<td>7</td>
<td>4 7/16 x 10 7/8</td>
<td>10</td>
</tr>
<tr>
<td>RS-10A</td>
<td>7.5</td>
<td>10</td>
<td>4 7/16 x 10 7/8</td>
<td>11</td>
</tr>
<tr>
<td>RS-12A</td>
<td>9</td>
<td>12</td>
<td>4 1/2 x 8 x 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-20A</td>
<td>16</td>
<td>20</td>
<td>5 9 x 10 7/8</td>
<td>18</td>
</tr>
<tr>
<td>RS-35A</td>
<td>25</td>
<td>35</td>
<td>5 11 x 11</td>
<td>27</td>
</tr>
<tr>
<td>RS-50A</td>
<td>37</td>
<td>50</td>
<td>6 x 13 3/4 x 11</td>
<td>46</td>
</tr>
</tbody>
</table>

RS-M SERIES

Switchable volt and Amp meter

<table>
<thead>
<tr>
<th>Model</th>
<th>Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-12M</td>
<td>9</td>
<td>12</td>
<td>4 1/2 x 8 x 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-20M</td>
<td>16</td>
<td>20</td>
<td>5 9 x 10 7/8</td>
<td>18</td>
</tr>
<tr>
<td>RS-35M</td>
<td>25</td>
<td>35</td>
<td>5 11 x 11</td>
<td>27</td>
</tr>
<tr>
<td>RS-50M</td>
<td>37</td>
<td>50</td>
<td>6 x 13 3/4 x 11</td>
<td>46</td>
</tr>
</tbody>
</table>

VS-M SERIES

Separate Volt and Amp Meters
- Output Voltage adjustable from 2-15 volts
- Current limit adjustable from 1.5 amps to Full Load

<table>
<thead>
<tr>
<th>Model</th>
<th>Continuous Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VS-20M</td>
<td>@13.8VDC</td>
<td>6 x 9 x 10 7/8</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>VS-35M</td>
<td>@13.8VDC</td>
<td>5 x 1 x 11</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>VS-50M</td>
<td>@13.8VDC</td>
<td>4 x 1 x 11</td>
<td>46</td>
<td>46</td>
</tr>
</tbody>
</table>

RS-S SERIES

Built in speaker

<table>
<thead>
<tr>
<th>Model</th>
<th>Duty (Amps)</th>
<th>ICS* (Amps)</th>
<th>Size (IN)</th>
<th>Shipping Wt. (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS-7S</td>
<td>5</td>
<td>7</td>
<td>4 7/16 x 10 7/8</td>
<td>10</td>
</tr>
<tr>
<td>RS-10S</td>
<td>7.5</td>
<td>10</td>
<td>4 7/16 x 10 7/8</td>
<td>12</td>
</tr>
<tr>
<td>RS-110L</td>
<td>7.5</td>
<td>10</td>
<td>4 9 x 13</td>
<td>13</td>
</tr>
<tr>
<td>RS-12S</td>
<td>9</td>
<td>12</td>
<td>4 1/2 x 8 x 9</td>
<td>13</td>
</tr>
<tr>
<td>RS-20S</td>
<td>16</td>
<td>20</td>
<td>5 x 9 x 10 7/8</td>
<td>18</td>
</tr>
</tbody>
</table>
1500, the "receive signal" never passes through the RF amplifier, but is instead always bypassed around it by the PIN diodes in the QSK 1500. The receive signal from the antenna, is prevented from seeing the tank circuit of the RF amplifier by PIN diode CR2, which is reverse biased. This diode prevents "suck out" or attenuation of the receive signal. PIN diodes CR3, CR4, and CR5 are forward biased and offer a very low impedance path for the receive signal to reach the QSK transceiver. Capacitors C1 and C4 are selected so that receive signal attenuation is typically less than 0.5 dB.

transmit signal path

The sequence of events is more complicated in the transmit mode. Let’s follow the progress of two transmitted “dots” of CW. (The same pattern also occurs for AMTOR.)

The initial key closure causes the following to happen:

- The timing circuit is triggered on the control board. (This timer is a retriggerable one-shot with a time out of 1.32 seconds.)
- The AMP RELAY OUT line closes and the relays in the RF amplifier are activated.
- The INPUT AND OUTPUT RECEIVE LINE BLOCKERS (PIN diodes CR3, CR4, CR5) are reverse biased with 525 volts DC.
- The input and output PIN diodes switch (CR1 and CR2) are forward biased. CR1 (the input PIN diode) is forward biased with 125 mA DC current, while CR2 (the output PIN diode) is forward biased with 950 mA DC current.
- The KEY OUT LINE from the QSK 1500 triggers the CW KEY JACK on the QSK transceiver and a “dot” of CW is generated.
- The RF from the QSK transceiver flows through C1,
WHAT’S REALLY HAPPENING IN HOME SATELLITE TV?

STV SATELLITE TELEVISION MAGAZINE

A monthly of 100-plus pages, has all you need to know about where to find equipment, how it performs, how to install it, legal viewpoint, & industry insights.

- $24.95 per yr. (12 monthly issues)
- $2.00 for Sample Issue

MONEY BACK GUARANTEE if not satisfied (subscription orders only). Keep first issue with our compliments.

If you already have a dish, then you need

---the best in satellite TV programming.

- Weekly Updated Listings
- All Scheduled Channels
- Complete Movie Listing
- All Sports Specials
- Prime Time Highlights

- $39.00 per yr. (52 weekly issues)
- $1.00 for Sample Copy

Visa® MasterCard® accepted (subscription orders only). All prices in US funds only. Write for foreign rates.

Send this ad along with your order to:

STV™/OnSat™
P.O. Box 2384 - Dept. PS
Shelby, NC 28151-2384
Subscription calls only
Toll Free 1-800-438-2020
and that all switching between transmit and receive occurred for 1.32 seconds. This assures that no RF reach the transceiver or the RF amplifier input in the
- The 525 volt DC reverse bias applied to PIN diodes CR3, CR4, and CR5 prevents any transmitted RF signal from passing through the RECEIVE LINE.

As soon as the “key” opens the following occurs:
- PIN diodes CR1 and CR2 switch state and go from a forward bias condition to a reverse bias condition.
- PIN diodes CR3, CR4, and CR5 also switch state and go from a reverse bias state to a forward state.
- With the reversal of the bias states of all five PIN diodes, we have now returned to the receive condition.

Figure 9, an oscilloscope photo of a CW waveform (58 WPM dots) inside the 500 volt blocking voltage, shows the “turn on”/“turn off” of the PIN diodes in relation to the blocking voltage.

With every key opening and closure a change of state of the PIN diodes occurs. The relays in the RF amplifier remain closed until no key closure has occurred for 1.32 seconds. This assures that no RF is being switched by the RF amplifier’s internal relays, and that all switching between transmit and receive is accomplished by the PIN diodes in the QSK 1500.

The RECEIVE LINE PROTECTOR ensures that no RF can reach the transceiver or the RF amplifier input in the unlikely event of an output blocker PIN diode (CR3 or CR4) failure.

Note: Photo shows transmission of a string of dots at 58 WPM. At this rate the receive time between pulses is 8 ms. The built-in delay time between turn-on of the 500V blocking voltage and the beginning of the CW envelope is 7 ms. The CW pulse (dot) is 21 ms in duration; the built-in delay between the end of the CW pulse and turn off of the 500V blocking voltage is 7.5 ms. The CW waveform shows no trace of distortion. Power level, 1390 watts; transmitter, TS930S; amplifier, Drake L7; QSK unit, QSK 1500; scope, Tektronix 556 dual trace; wattmeter, Bird-43 with scope coupler; load, Bird Terminals™ 2 kW; keyer, Accu-keyer II. Vertical scale = 200V/cm (x 10 probe with 20V scale); horizontal scale = 10 ms/cm.

The appearance of high power PIN diodes represents the dawn of a new era in RF switching. The vacuum relay — the former “king of RF switching” — will slowly but surely give way to the solid state PIN diode. PIN diodes now make possible relatively low-cost, ultra high-speed RF switches, which if properly designed and constructed can operate at power levels exceeding 1500 watts. A totally silent switch in a small package, the PIN diode is here to stay.

acknowledgement

Thanks are due to the technical and engineering staff at Unitrode for assistance with technical data and help with solving various problems that arose.

bibliography

ham radio

Fig. 9. CW waveform inside 500V blocking voltage. (See Note below.)

CR1, and CR2 into the RF amplifier, where it is amplified and then passed through C3, CR2, and C4 into the antenna.

- The 525 volt DC reverse bias applied to PIN diodes CR3, CR4, and CR5 prevents any transmitted RF signal from passing through the RECEIVE LINE.

As soon as the “key” opens the following occurs:
- PIN diodes CR1 and CR2 switch state and go from a forward bias condition to a reverse bias condition.
- PIN diodes CR3, CR4, and CR5 also switch state and go from a reverse bias state to a forward state.
- With the reversal of the bias states of all five PIN diodes, we have now returned to the receive condition.

Figure 9, an oscilloscope photo of a CW waveform (58 WPM dots) inside the 500 volt blocking voltage, shows the “turn on”/“turn off” of the PIN diodes in relation to the blocking voltage.

With every key opening and closure a change of state of the PIN diodes occurs. The relays in the RF amplifier remain closed until no key closure has occurred for 1.32 seconds. This assures that no RF is being switched by the RF amplifier’s internal relays, and that all switching between transmit and receive is accomplished by the PIN diodes in the QSK 1500.

The RECEIVE LINE PROTECTOR ensures that no RF can reach the transceiver or the RF amplifier input in the unlikely event of an output blocker PIN diode (CR3 or CR4) failure.

Note: Photo shows transmission of a string of dots at 58 WPM. At this rate the receive time between pulses is 8 ms. The built-in delay time between turn-on of the 500V blocking voltage and the beginning of the CW envelope is 7 ms. The CW pulse (dot) is 21 ms in duration; the built-in delay between the end of the CW pulse and turn off of the 500V blocking voltage is 7.5 ms. The CW waveform shows no trace of distortion. Power level, 1390 watts; transmitter, TS930S; amplifier, Drake L7; QSK unit, QSK 1500; scope, Tektronix 556 dual trace; wattmeter, Bird-43 with scope coupler; load, Bird Terminals™ 2 kW; keyer, Accu-keyer II. Vertical scale = 200V/cm (x 10 probe with 20V scale); horizontal scale = 10 ms/cm.
IN HOUSTON, TEXAS

PLUG-IN CONTROL BOARD
3 DIGIT LED READOUT
MANUAL EAST-WEST CONTROL
RESET TO -000
36 VOLT DC MOTOR
125' CONTROL CABLE
ZINC PLATED FINISH
COMPLETE UNIT
$125.90
YR5WUI
$199.00

CAYSON ELECTRONICS
RT 3 BOX 160
FULTON, MS 38843
(662) 854-8624

ALLIANCE U-110
TENNA ROTOR
CLOSE-OUT
$35.00
Home Satellite Manufacturer & Distributor

10 METER F.M.
29.310-29.700 MHz, 126 kHz Steps. 100 kHz Repeater Split Provided.
$219 MARKET COST $275

WE GOT IT ALL
- QUALITY ELECTRONIC COMPONENTS
- ELECTRONIC PROJECT KITS
- COMPUTER KITS

THIS MONTH'S SPECIALS
COMPUTER KITS
FOR VIC AND COMMODORE 64
CASSETTE INTERFACE KIT
$89.95
RS-232 INTERFACE KIT
$79.95
VIC 20 BUS EXPANDER KIT
$24.95
VIC 64 BUS EXPANDER KIT
$29.95

ELECTRONIC PROJECT KITS
CMOS MORSE KEYER KIT
$19.95
1-WATT AUDIO AMPLIFIER KIT
$11.95
FLUID LEVEL DETECTOR KIT
$17.95
AUDIO OSCILLATOR KIT
$12.95

COMPONENTS
1N4007 1kV 1A DIODES
25/$7.00
14 PIN IC SOCKETS
10/$1.00
28 PIN IC SOCKETS
5/$1.00
.01 DISC CAPACITORS
25/$1.00

SEND $1 FOR OUR NEW CATALOG
DEFENDABLE ON FIRST ORDER. NO CHARGE FOR CATALOG.
WITH ORDERS. DEALER INQUIRIES WELCOME. ADD $5.50
SHIPPING ON ORDERS OVER $5.00. ADD $1.00 SHIPPING ON
ORDERS UNDER $5.00.

INcredible code!!
Learn the International Morse Code by the patented
"WORD METHOD"

Books
Visual Aids
Gimmicks

Just listen and learn the "WORD METHOD" is based on the latest scientific and psychological techniques. You can read and write 25 W.M. in less than HALF THE USUAL TIME!!
The kit contains two cassette tapes, over 10 HOURS of instruction, and 200 sheets of writing paper.

Epsilon records
P.O. Box 71581
New Orleans, LA 70172

JRS Distributors
646 W. Market Street
York, PA 17404
(717) 854-8624

Friendly
Personalized Service

Full Line of
Amateur Radio Equipment.
Factory Authorized
Kenwood and ICOM dealer.
Call us today
Jim, K3IFL
Jean K30AU
Dale, KA3KOL

INcredible code!!
Learn the International Morse Code by the patented
"WORD METHOD"

Books
Visual Aids
Gimmicks

Just listen and learn the "WORD METHOD" is based on the latest scientific and psychological techniques. You can read and write 25 W.M. in less than HALF THE USUAL TIME!!
The kit contains two cassette tapes, over 10 HOURS of instruction, and 200 sheets of writing paper.

Epsilon records
P.O. Box 71581
New Orleans, LA 70172

JRS Distributors
646 W. Market Street
York, PA 17404
(717) 854-8624

Friendly
Personalized Service

Full Line of
Amateur Radio Equipment.
Factory Authorized
Kenwood and ICOM dealer.
Call us today
Jim, K3IFL
Jean K30AU
Dale, KA3KOL

RTTY TODAY
MODERN GUIDE TO
AMATEUR RADIOTELETYPE
by Dave Ingram, K4TWJ

This brand new book is the only RTTY handbook available that covers all facets of RTTY operation from the "green key" generation to personal computers. Author Dave Ingram, K4TWJ, noted RTTY enthusiast, writes in a personable, easy-to-understand style that will appeal to all levels of RTTY interest. RTTY TODAY is fully illustrated with photos, diagrams, RTTY station set ups and equipment to help familiarize the listener with the equipment and techniques used in RTTY operation. Operating parameters, home computers, equipment you can build, dedicated systems and complete chapters on RTTY SWLing with frequencies, codes and other helpful hints and tips. Old time RTTY users and novices alike will find this book extremely useful. 1984

Order yours today
$89.50
UNIVERSAL ELECTRONICS
4555 Groves Rd. • Suite 3 • Columbus, OH 43232
(614) 866-4605

Dealer Inquiries Invited

$175.00 + $12.00 shipping
$99.00
$88.00

Control your dish from your living room... rain or shine.

BRAND NEW

RTTY TODAY
MODERN GUIDE TO
AMATEUR RADIOTELETYPE
by Dave Ingram, K4TWJ

This brand new book is the only RTTY handbook available that covers all facets of RTTY operation from the "green key" generation to personal computers. Author Dave Ingram, K4TWJ, noted RTTY enthusiast, writes in a personable, easy-to-understand style that will appeal to all levels of RTTY interest. RTTY TODAY is fully illustrated with photos, diagrams, RTTY station set ups and equipment to help familiarize the listener with the equipment and techniques used in RTTY operation. Operating parameters, home computers, equipment you can build, dedicated systems and complete chapters on RTTY SWLing with frequencies, codes and other helpful hints and tips. Old time RTTY users and novices alike will find this book extremely useful. 1984

Order yours today
$89.50
UNIVERSAL ELECTRONICS
4555 Groves Rd. • Suite 3 • Columbus, OH 43232
(614) 866-4605

Dealer Inquiries Invited

$175.00 + $12.00 shipping
$99.00
$88.00

Control your dish from your living room... rain or shine.
TWO LOCATIONS TO SERVE YOU
In Idaho
312 12th Ave. So.
Nampa, Idaho 83651
(208) 466-6727
In Texas
6012 W. 34th St.
Houston, Texas 77092
(713) 957-5140

Nampa
Complete Satellite Television Systems

WILSON YM1000 SYSTEM
Consists of:
Wilson YM1000, 100° LNA, NSS Deluxe Feed, Wilson MD9 Dish, Feed Assembly, All Cables, Complete Hardware, NSS PB3 Motor Drive, and Instructions
OPTIONS WITH SYSTEM
9 ft. Wilson Mesh ADD .. $100
NSS Memory Tracker ADD $100
10 ft. Prodelin ADD $400 11 ft. Radarmesh dish ADD $250
Total $1623

WILSON YM400 SYSTEM
Consists of:
Wilson YM400, 100° LNA, NSS Deluxe Feed, Wilson MD9 Dish, Feed Assembly, All Cables, Complete Hardware, NSS PB3 Motor Drive, and Instructions
OPTIONS WITH SYSTEM
9 ft. Wilson Mesh ADD .. $100
NSS Memory Tracker ADD $100
10 ft. Prodelin ADD $400 11 ft. Radarmesh dish ADD $250
Total $1393

Call Toll Free
Nampa, Idaho
1-800-654-0795
Houston, Texas
1-800-521-8300
ionosphere matching

Over the years a few hams have tried to vary the height of horizontal antennas above ground in order to vary the take-off-angle (TOA). By varying the angle at which the signal reflects from the ionosphere, you can control the length of the hops (and consequently, distance) and by orienting the antenna (rotating the beam), the direction the signal takes. This is known as “matching to the ionosphere.”

If you can’t vary your antenna’s height above ground, then fix it permanently at a height that emphasizes your area of interest. (Antenna handbooks include graphs that relate take-off angle, ionospheric layer height, MUF and path length.)

* Table 1 shows a short BASIC program for calculating the take-off angle of a horizontal antenna given the height above ground.

last-minute forecast

The high probability of increased solar flux in the middle of January makes the second and third weeks of the month favorable for DX openings on the 10 through 30-meter bands. The openings may be transequatorial in nature, particularly if minor geomagnetic field disturbances occur at the same time as this greater solar activity. The lower frequency bands should be good during the first and last weeks of the month. Low noise and signal absorption during low solar flux periods account for good daytime openings on 40 and 80 meters this year. Geomagnetic field disturbances that produce ionospheric high latitude trough conditions (see December, 1984, *DX Forecaster*) should not be too significant this year except for periods around January 2, 11, 21 and 29.

Lunar perigee occurs on the 15th, with a full moon on the 7th this month. An intense but short-duration meteor shower, the Quadrantid, will reoccur between January 2nd and 4th and last a few hours.

band-by-band summary

Ten and fifteen meters will be open worldwide from sunrise until after sunset during the solar flux peaks this month. Skip distances of 2500 miles (4000 km) (or multiples) are possible, and will occur on the daylight paths.

Twenty meters will be open to some area of the world for the entire 24-hour period many days of the month with the band conditions peaking in all directions just after local sunrise and again toward the east and south during the late evening hours. During hours of darkness the band will peak toward the west in an arc from southwest through northwest, encompassing the Pacific areas.

*Thirty meters is a daytime and nighttime band. During the day it will re-

*Next month’s *DX Forecaster* will feature such a graph.*
For literature or more information, locate the Reader Service number at the bottom of the ad, circle the appropriate number on this card, affix postage and send to us. We'll hustle your name and address to the companies you're interested in.

Limit 15 inquiries per request.

<table>
<thead>
<tr>
<th>NAME</th>
<th>CALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDRESS</td>
<td></td>
</tr>
<tr>
<td>CITY</td>
<td>STATE</td>
</tr>
</tbody>
</table>

Please use before February 28, 1985

January 1985
<table>
<thead>
<tr>
<th>GMT</th>
<th>PST</th>
<th>N</th>
<th>NE</th>
<th>E</th>
<th>SE</th>
<th>S</th>
<th>SW</th>
<th>W</th>
<th>NW</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td></td>
<td>30</td>
<td>30</td>
<td>15</td>
<td>15*</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>0100</td>
<td></td>
<td>30</td>
<td>30</td>
<td>15</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>0200</td>
<td></td>
<td>30</td>
<td>30</td>
<td>15</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>0300</td>
<td></td>
<td>30</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>0400</td>
<td></td>
<td>30</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>0500</td>
<td></td>
<td>30</td>
<td>30</td>
<td>20</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>0600</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>0700</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>0800</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>0900</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>1100</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>1200</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>1300</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>1400</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>1500</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>1600</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>1700</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>1800</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>10</td>
<td>15</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>1900</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>2100</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>2200</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>2300</td>
<td></td>
<td>30</td>
<td>30</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>JANUARY</th>
<th>WESTERN USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASIA</td>
<td>FAR EAST</td>
</tr>
<tr>
<td>EUROPE</td>
<td>S. AFRICA</td>
</tr>
<tr>
<td>S. AMERICA</td>
<td>ANARCTICA</td>
</tr>
<tr>
<td>NEW ZEALAND</td>
<td>OCEANIA</td>
</tr>
<tr>
<td>JAPAN</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GMT</th>
<th>MST</th>
<th>N</th>
<th>NE</th>
<th>E</th>
<th>SE</th>
<th>S</th>
<th>SW</th>
<th>W</th>
<th>NW</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td></td>
<td>30</td>
<td>30</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>0100</td>
<td></td>
<td>30</td>
<td>30</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>20</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>0200</td>
<td></td>
<td>30</td>
<td>30</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>20</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>0300</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>15</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>0400</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>15</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>0500</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>0600</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>0700</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>0800</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>0900</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>1000</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>1100</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>1200</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>1300</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>1400</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>1500</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>1600</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>1700</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>1800</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>1900</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>2100</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>2200</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>2300</td>
<td></td>
<td>30</td>
<td>40</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EASTERN USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASIA</td>
</tr>
<tr>
<td>FAR EAST</td>
</tr>
<tr>
<td>S. AFRICA</td>
</tr>
<tr>
<td>S. AMERICA</td>
</tr>
<tr>
<td>ANTARCTICA</td>
</tr>
<tr>
<td>NEW ZEALAND</td>
</tr>
<tr>
<td>OCEANIA</td>
</tr>
<tr>
<td>JAPAN</td>
</tr>
</tbody>
</table>

The table above represents weather data for different regions. Each row and column corresponds to specific times and locations, providing insights into weather conditions such as temperature, humidity, and wind direction.
DESIGN ENGINEERS
CONSIDER OPPORTUNITIES IN THE SOUTHWEST

A rapidly expanding general aviation electronics manufacturer is seeking action-oriented, advancement-motivated engineers who are challenged by the exciting field of avionics.

Candidates with a BSEE and 2-5 years experience are sought for the design and development of avionics communication and navigation products. Successful applicants will be provided with an outstanding benefit package including educational assistance, profit-sharing and paid relocation.

Whether on the mountain slopes or on the courts and courses in the city, Albuquerques enjoy outdoor sports and recreation throughout the year.

We are a dynamic, growing Corporation

CONSIDER THE OPPORTUNITIES

Send resume to:
Vice President, Engineering
Terracorp
3520 Pan American Freeway N.E.
Albuquerque, N.M. 87107

AHEAD OF THE REST
WITH THE BEST
FOR LESS

MICRODYNE
MSE
CALIFORNIA AMP
AVANTEK
CHAPARRAL
LUXOR
DEXCEL
MTI
PRODELIN
N/A
GENERAL INSTRUMENTS
STS
TOKI
DRAKE
JANEIL

You benefit from Satellite Television’s vast experience in TVRO and SMATV components distribution. We’re the oldest Janeil master distributor in the U.S.A., and we’re direct distributors for the country’s leading antenna, receiver, LNA, actuator, and rotor manufacturers.

Call us first, you’ll get:
FACTORY DIRECT
LOW PRICES
MOST ORDERS SHIPPED WITHIN
24 HOURS
FULL FACTORY
WARRANTIES
NO MINIMUM PURCHASE

satellite television inc.
1108 S. Maple P.O. Box 6177/Pocatello, Idaho 83204 (208) 232-1926

COLLINS TUNER
Collins 1801-1 Antenna TUNER for 2-30 MHz has dual section air variable 50-1500 and 30-600 pf (0.005" min/0.15" max gap) and 2.5" dia. 14 turn roller inductor of 0.19" dia tubing, ceramic tap switch, 3/100 pf 7500 V doorknob capacitors. Controls C and L. Select, Var C and L: 7 x 12 x 16.8, 33 lbs. Used
$195.00

GRANGER AM 4531 Linear Amp. 120-152 MHz: 10 W out using 6122 tube in P.A. 115/230 VAC; 7 x 10 x 14, 50 lbs. Used-not tested
$199.95

JENNINGS UCS-300-7.5 Vacuum Variable Capacitor, 9-300 pf 7500 V max. 3 lbs. New
$99.95

Prices F.O.B. Lima, 0. + VISA. MASTERCARD Accepted. Allow for shipping + Send for New FREE CATALOG 84
Address Dept. HR • Phone 419/227-5573

FAIR RADIO SALES
1016 E. FURA • Box 1100 • LIMA, OHIO 45802

The night and often throughout the night. Once again exceptions to this are nights that follow very high solar flux values. The poor period is usually the hour or so before dawn (diurnal MUF minimum). The workable distance may be expected to be greater than that of 80-meter DX at night and less than that of 20 meters during the day.

Forty and eighty meters will be the most useful nighttime DX bands. Forty during the daylight hours will be like 30 meters, with lower midday signal levels, no predawn propagation failure, and shorter skip distances overall. At night most areas of the world will be workable from slightly before dusk until a little after sunrise. Hops shorten on these bands to about 2000 miles (3218 km) for 40 meters and 1500 miles (2414 km) for 80 meters, but the number of hops can increase because signal absorption in the D-region of the ionosphere is low during the night. The path follows the direction of darkness across the earth, similar to the way in which the higher bands follow the sun.

One-sixty meters will be similar to 80 meters, providing good working conditions for enthusiastic DXers who like to operate during the night and early morning hours, especially at local dawn.
VHF/UHF high power amplifiers: part 1

Until August 28, 1983, FCC Amateur Radio regulations limited transmitters to a maximum of 1000 watts DC plate input power on CW or 2000 watts PEP input on SSB. This was in contrast to most commercial radio regulations, which are specified in terms of output power. The regulations also specified that any drive power passed on to the amplifier output (such as in grounded grid or transistor amplifiers) had to be accounted for by lowering the DC input power to the final amplifier stage accordingly.

These archaic regulations particularly penalized VHF/UHF experimenters who wanted to take advantage of the maximum power limit for DX and for specialized communication modes such as EME. Klystron and transistor UHF amplifiers frequently have only 35 percent efficiencies; most UHF high power tube amplifiers have typical efficiencies of only 50 to 60 percent. Therefore, when the legal power limits were required, higher priced vacuum tubes were usually necessary in order to maximize efficiency — often at the expense of linearity!

These regulations are now history. On August 29, 1983 the FCC revised Part 97 of the Amateur Radio Rules and Regulations, authorizing the measurement of power in terms of maximum PEP (peak-envelope-peak) output, with 1500 watts the maximum limit (except in special subbands of the spectrum where other concerns may necessitate a lower power limit). SSB operation is not particularly affected because a 55 percent efficient VHF amplifier under the old regulations would have delivered up to 1100 watts of PEP output, only 1.35 dB down from 1500 watts. However, a 60 percent efficient CW amplifier would be, under the old regulations, about 4 dB below the new 1500 watts PEP output (CW and PEP output are the same power!)

If you want to run the new power limit in an Amateur VHF/UHF power amplifier, these regulatory changes have profound implications for the design of your next amplifier. Because most articles in the Amateur literature pertaining to VHF/UHF power amplifier design were written before the regulations were changed, this month's — and next month's — column address the broad subject of Amateur VHF/UHF high power amplifiers, with special emphasis on the effects of the new FCC regulations. (Many of the topics discussed will also apply to HF.) A list of recommended references will also be included so you can be sure your amplifier will be equal to the state-of-the-art. I'll concentrate on vacuum tube amplifiers because the typical solid-state devices available today can't economically furnish the maximum legal power in the VHF/UHF spectrum.

power tubes in general

Most high-power transmitting tubes used by Amateurs are technically classified as power grid tubes. Although some pentodes are used on 6 meters, most VHF/UHFers primarily use triode and tetrode power grid tubes. Some of the most popular types are listed, with some of their important specifications, in table 1.

Triodes are most often used when a single high voltage supply is desired. With triodes, circuitry is usually less complicated than with tetrodes, especially if a cathode-driven grounded-grid circuit is used. Gain is low to moderate in this type of configuration, but the amplifier is usually easier to stabilize. Tetrodes, on the other hand, require a more complex high voltage supply with a screen grid bias voltage and may require neutralization. However, they usually have higher power gain than triodes, especially if grid-driven.

Most modern power tubes come in either a glass envelope with an internal anode or a ceramic package with an external anode. (The latter are more prevalent on 2 meters and above.) The
table 1. Popular VHF/UHF power amplifier tubes and typical parameters listed in order of plate dissipation.

triodes

<table>
<thead>
<tr>
<th>Types</th>
<th>Dissipation</th>
<th>Maximum Power</th>
<th>PEP</th>
<th>IMD</th>
<th>Fmax</th>
<th>Fext</th>
<th>Other Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>8875</td>
<td>300</td>
<td>770</td>
<td>590</td>
<td>−35</td>
<td>500</td>
<td>900</td>
<td>cathode driven</td>
</tr>
<tr>
<td>3CX400A7/8874</td>
<td>400</td>
<td>770</td>
<td>590</td>
<td>−35</td>
<td>500</td>
<td>900</td>
<td>cathode driven</td>
</tr>
<tr>
<td>3-5002</td>
<td>500</td>
<td>1400</td>
<td>740</td>
<td>−40</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3CX800A7</td>
<td>800</td>
<td>1320</td>
<td>750</td>
<td>−36</td>
<td>30</td>
<td>450</td>
<td>cathode driven</td>
</tr>
<tr>
<td>3-10002/8164</td>
<td>1000</td>
<td>4800</td>
<td>1080</td>
<td>−29</td>
<td>110</td>
<td></td>
<td>cathode driven</td>
</tr>
<tr>
<td>3CX1500A7/8877</td>
<td>1500</td>
<td>4000</td>
<td>2050</td>
<td>−38</td>
<td>220</td>
<td>400</td>
<td>cathode driven</td>
</tr>
<tr>
<td>8938</td>
<td>1500</td>
<td>4000</td>
<td>2030</td>
<td>−44</td>
<td>500</td>
<td></td>
<td>cathode driven</td>
</tr>
</tbody>
</table>

tetrodes

<table>
<thead>
<tr>
<th>Types</th>
<th>Dissipation</th>
<th>Maximum Power</th>
<th>PEP</th>
<th>IMD</th>
<th>Fmax</th>
<th>Fext</th>
<th>Other Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4X150A (old)</td>
<td>150</td>
<td>375</td>
<td>200</td>
<td>−</td>
<td>500</td>
<td></td>
<td>discontinued</td>
</tr>
<tr>
<td>4X150A/7034</td>
<td>250</td>
<td>500</td>
<td>295</td>
<td>−25</td>
<td>500</td>
<td></td>
<td>new style anode</td>
</tr>
<tr>
<td>4CX250B/7203</td>
<td>250</td>
<td>500</td>
<td>295</td>
<td>−25</td>
<td>500</td>
<td></td>
<td>"Ruggedized"4CX250B</td>
</tr>
<tr>
<td>4CX250R/7580W</td>
<td>250</td>
<td>500</td>
<td>295</td>
<td>−25</td>
<td>500</td>
<td></td>
<td>poor efficiency at UHF</td>
</tr>
<tr>
<td>4CX300A/8167</td>
<td>300</td>
<td>500</td>
<td>350</td>
<td>−25</td>
<td>500</td>
<td></td>
<td>formerly DX393</td>
</tr>
<tr>
<td>4CX350A/8321</td>
<td>350</td>
<td>750</td>
<td>300</td>
<td>−30</td>
<td>30</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>8930</td>
<td>350</td>
<td>600</td>
<td>350</td>
<td>−27</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8122</td>
<td>400</td>
<td>660</td>
<td>380</td>
<td>−29</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-400A/8438</td>
<td>400</td>
<td>1400</td>
<td>495</td>
<td>−35</td>
<td>110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7650/5651</td>
<td>600</td>
<td>1500</td>
<td>680</td>
<td>−31</td>
<td>1215</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-1000A/8166</td>
<td>1000</td>
<td>4200</td>
<td>1540</td>
<td></td>
<td>110</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>4CX1000A/8168*</td>
<td>1000</td>
<td>3000</td>
<td>1400</td>
<td>−23</td>
<td>110</td>
<td>400</td>
<td>Improved in/out isolation</td>
</tr>
<tr>
<td>4CX1000K</td>
<td>1000</td>
<td>3000</td>
<td>1400</td>
<td>−23</td>
<td>110</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>7213/7214*</td>
<td>1500</td>
<td>2500</td>
<td>1250</td>
<td></td>
<td>1215</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GL5942</td>
<td>1500</td>
<td>2800</td>
<td>900</td>
<td></td>
<td></td>
<td></td>
<td>cathode driven</td>
</tr>
<tr>
<td>4CX1500B/8660</td>
<td>1500</td>
<td>2700</td>
<td>1160</td>
<td>−43</td>
<td>110</td>
<td>220</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Rated plate power dissipation in watts if adequately cooled.
2. Maximum CCS DC input power.
3. Maximum useful peak envelope output power in watts at a low frequency, typical 2-30 MHz.
4. Typical third-order intermodulation distortion level at rated PEP indicated, calculated in 2-30 MHz region.
5. Upper frequency at which the maximum ratings apply.
6. Upper useful frequency if plate voltage and input power are reduced.
7. The second tube listed is a pulsed rated version. It will probably perform the same as the first version.
8. No grid current allowed.

older glass-sealed transmitting tubes with external anodes (for example, the 4X150A) were very efficient if operated within their ratings but were not very rugged. However, the newer ceramic insulated tubes, though perhaps somewhat less efficient, will usually take more severe punishment.

Transmitting tubes are usually designed for a particular mode of operation such as Class C, linear, or pulse. Class C operation is preferred for CW operation when high efficiency is required. Linear operation is required for SSB operation. Amateur Radio pulse, a form of Class C, is not permitted below 2.3 GHz.

The tubes designed for Class C operation typically have high efficiency in Class C but will not always be very linear when biased for linear operation, especially when operated near their maximum ratings. Furthermore, Class C amplifiers usually have lower power gain than equivalent linear amplifiers and often generate key clicks.

A good example of a frequently misused VHF/UHF Class C tube is the popular 4CX250B tetrode. This tube was very popular under the old FCC regulations of 1000-watts input power because a pair could be operated efficiently (at 60 to 70 percent efficiency) through 70 cm, a requirement for most EMEers. However, they are also often used in linear service. At the maximum rating of 500 watts input power per tube, the IMD (intermodulation distortion) is typically only −25 dB (see table 1) — not very good if you want to be popular with other local operators.

Many high power tubes designed for linear service are costly or less efficient than the Class C-type tubes. This was a significant consideration, especially on EME, before the FCC changed the method of measuring power. That’s all different now, and we’re no longer penalized for using tubes with less efficiency. As a result, many less efficient tubes, especially those used in commercial television transmitters,
may now find their way into Amateur amplifiers after they’re removed from commercial service during routine maintenance.

In summary, it would probably be best to design any new power amplifier with linear operation in mind. The small change in efficiency may easily be recovered by higher gain with less likelihood of generating key clicks. Using tubes other than those presently in wide use may also be advisable. Table 1 and references 2, 3, and 4 should be consulted when choosing a suitable VHF/UHF transmitting tube.

configuration is important

One of the first considerations in designing a power amplifier is the tube type and quantity. Under the old FCC regulations, it was a common VHF/UHF practice to use two tubes in either a parallel or push-pull configuration. This was often done because efficient external anode tubes of moderate power (500 watts typical) were easily obtained, and usually at reasonable prices. Furthermore, many Amateur designs were already available in various publications. However, the new power limits are not easily achieved with the tubes that used to be popular — especially in linear operation.

If push-pull or parallel amplifiers are used, the tubes should be fairly well matched and from the same supplier. Extra metering and balancing circuitry are required to insure that both tubes properly share the load. If neutralization is used, this type of circuitry is doubly difficult. Therefore, it’s better to use a single large tube that will do the entire job rather than multiple tubes that will share the load.

gain

The average amplifier gain in the VHF region is between 15 to 20 dB and 10 to 16 dB at UHF. As mentioned, gain is usually higher in linear operation than in Class C. A typical grounded-grid amplifier has 3 to 5 dB less gain but is usually easier to stabilize and match at the input. For example, on 2 meters a typical pair of grid-driven 4CX250Bs operating in Class C will typically deliver 400 to 600 watts of output with 10 watts of drive power, but only 200 to 300 watts on 70 cm (432 MHz). This will increase to 600 to 700 and 300 to 400 watts respectively in linear service. Hence, it should be obvious that an additional low-gain intermediate driver amplifier may be required if a typical 10-watt transverter is used to drive a power amplifier with a kilowatt or higher output capability.

input circuits

The input circuit for typical VHF/UHF amplifiers is one of two major types: either cathode or grid-driven. The cathode type usually requires only some simple “L” or “T” matching section (fig. 1A). Grid-driven amplifiers usually require a step-up or transformer type of input circuit with additional tuning and matching components (figs. 1B and 1C).

If push-pull or parallel tube operation is used, circuitry should be designed to allow the drive to be tweaked for each tube (fig. 1D). If the input circuit doesn’t have RF balancing capability, the input grid-biasing circuit should be designed to allow for independent adjustment of the DC bias voltage for each tube so that the load is shared equally between the tubes. The principal thing to remember when designing the input circuit of a power amplifier is that the configuration chosen primarily performs an impedance match between the input driver (usually a 50-ohm device) and the grid or cathode of the tube being driven. If the network is properly designed, the power amplifier driver will see a low VSWR (2:1 maximum).

stabilization

The screen grids of tetrode amplifiers must be properly bypassed. Most manufacturers and suppliers offer specially designed tube sockets with built-in bypass capacitors. These are highly recommended and, although usually expensive, will justify their cost with improved amplifier stability and efficiency. Some of the more modern tube socket designs (for

Table 1

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel</td>
<td>2</td>
</tr>
<tr>
<td>Push-pull</td>
<td>3</td>
</tr>
<tr>
<td>Single-ended</td>
<td>4</td>
</tr>
</tbody>
</table>
20 MHz DUAL TRACE OSCILLOSCOPE

Unsurpassed quality at an unbeatable price, the Ramsey oscilloscope compares to others costing hundreds more. Features include a component testing circuit for resistor, capacitor, digital circuit and diode testing. TV video sync Mix. wide bandwidth & high sensitivity. Rear panel trace rotator - 7 axis * high sensitivity. x-y mode * regulated power supply * build-in calibrator. * Rack Safe Triggering. USA add $10.00 per unit for postage. Overseas orders add 15% of total order for insured surface mail.

$399.95

RAMSEY D-1100 VSM MULTITESTER

Compact and reliable, designed to serve a wide variety of equipment. Features include: front panel trace rotator - 7 axis * high sensitivity. Rack Safe Triggering. USA add $10.00 per unit for postage. Overseas orders add 15% of total order for insured surface mail.

$19.95

CT-70 7 DIGIT 525 MHZ COUNTER

- Frequency range to 525 MHz
- 7 digit display
- 10 MHz reference clock
- 160 MHz input

$119.95

DM-700 DIGITAL MULTIMETER

Professional quality at a breakthrough price. Features include: a 7-digit, 7-segment display; 3.5-digit 30-ohm LED display; automatic decimal point; automatic sensitivity; automatic range selection; self-calibration; automatic zero adjustment; and automatic range. USA add $10.00 per unit for postage. Overseas orders add 15% of total order for insured surface mail.

$119.95

PHONE ORDERS CALL

716-586-3950

TELEX 466735 RAMSEY CI

100 January 1985
example, the ElMAC SK-620 and SK-630 types) also offer more input to output isolation and are highly recommended for new designs.

Neutralization may be required if the amplifier gain is high and/or if the inter-electrode capacitance between the grid and plate of the tube is high. A typical bridge neutralization network is shown in fig. 2A. Push-pull operation requires a slightly more elaborate scheme (fig. 2B).

Many VHFers prefer to avoid neutralization by using grounded grid circuitry, which doesn't usually require neutralization if the inductance of the grid (and screen grid, if applicable) bypass capacitor assembly can be kept very low. Additional information on neutralization and amplifier stabilization techniques is available.1

output circuits

There seem to be as many stories about VHF/UHF transmitter output circuits as there are types. The principal types are the π network, the resonant 1/4, 1/2, or 3/4-wavelength tank, push-pull, the rectangular cavity, and variations on the latter.

On 6 meters the π network is still quite popular because it's versatile, matches a wide range of impedances, and has some inherent harmonic reduction capability (fig. 3A). The main problem in using this technique is that the minimum loaded Q in the tank circuit is determined by the output capacitance of the tube in parallel with the π network input capacitor, C1. At HF this is typically 25 to 250 pF of capacitance, but only 8 to 15 pF at 6 meters, the output capacitance of the typical tubes being used!

If a high (15) loaded Q is used, the input tuning capacitor, C1, should be kept to a minimum value. This requirement can best be met by using a flapper-type capacitor. Because of their inherent inductance, vacuum variables are not recommended; standard transmitting variables usually have too high a minimum value of capacitance. Some designers have circumvented this problem by choosing a loaded Q based on the tube's output capacitance and tuning the inductor, L1, with a shorted turn loop.5 6

On 2 meters through 70 cm, most Amateur amplifier designs typically use tank circuits employing either a 1/4, 1/2, or 3/4-wavelength coax, microstrip or stripline (figs. 3B through 3E). Sutherland points out that the 1/4-wavelength line is preferred because it exhibits the greatest bandwidth, and further recommends that the plate line impedance should be between one and two times the capacitive reactance (plus strays) of the tube in use.7

If the output capacitance of the tube is too high at the frequency of operation, a 1/4-wavelength line may be impractical because of its very short length. Then a 1/2- or 3/4-wavelength line would be usable. One advantage of the 1/2-wavelength line is that it need not be fed with the tube on one end, but may instead have the tube at the center, as shown in fig. 3D.8 9 10

In this configuration, the tube capacitance is effectively divided between each side of the line. This also makes tuning and loading easier. Another advantage of the balanced 1/2-wavelength line is that the current through the tube is more evenly distributed.

Because they offer a quick way to obtain higher power with smaller tubes,11 12 parallel amplifiers are also quite popular. However, they are often difficult to balance and are really no more efficient than a push-pull type amplifier with proper balance and output coupling.

Push-pull circuitry (see fig. 3F) used to be very popular, especially with the 500-watt ceramic tetrodes;13 17 it is easier to balance because each tube is fed separately. In addition, the symmetrical output configuration inherently suppresses the second harmonic.

One factor often ignored is the current flowing through the tube itself. With the typical single-ended microstrip line approach, there is often a concentration of current through one side of the tube. This can result in decreased tube life. Consequently, at UHF and microwave frequencies, the recommended configuration is the rectangular cavity (fig. 3G). This configuration is particularly useful at 70 cm and above.18 Multiple tubes can be easily paralleled for higher output power.19 The layout of the rectangular cavity usually assures that current is uniformly distributed throughout the tube.

Output tank circuits — of which there are many — are usually chosen according to the frequency of interest, the tube type used, and the number of tubes used. In a symmetrical output tank, the use of a single tube that can deliver the required output power is probably the best choice.

output coupling

As previously mentioned, the π network, sometimes used on 6 meters, is very easy to couple to the load (fig. 3A).
With the various types of tank circuits common in VHF/UHF amplifiers, output is often coupled by either an inductive link or by a series capacitor. While the former (fig. 4A) used to be popular, it has to be carefully designed and coupled to the tank circuit; this problem can be somewhat relieved by adding a series resonating capacitor in the loop (fig. 4B). If a loop \(Q \) of 2 to 5 is chosen, the capacitor will essentially operate as a loading capacitor, and the placement of the loop is not as critical. The resonant loop method is preferred because it reduces harmonic output.

Simple to design, use, and tune, the capacitance output coupling method shown in fig. 4C has become more popular for use in single-ended VHF/UHF amplifiers. But it can lead to problems, especially if the capacitance is increased beyond optimum, thereby causing overcoupling to the tank circuit. If this is done, harmonic output increases rapidly. Always use the least amount of coupling possible while maintaining acceptable output efficiency.

Let us not forget the push-pull configuration (fig. 3F). This is basically a balanced configuration, although its output network is frequently treated as unbalanced with the use of a series loop and capacitor, as just mentioned above. In fact, some users have claimed lower efficiency than expected. Efficiency can reportedly be increased by using capacitance output coupling in a balanced arrangement through a 4:1 half-wave balun.

The rectangular cavity often uses a probe which is either a loop or a rod properly shunted across the cavity (fig. 3G). Once the proper location is found, tuning and loading can be accomplished by varying the spacing between the tube and the cavity walls, as shown in reference 19.

Finally, with the present-day designs, the proliferation of high power, and a congested VHF/UHF communications spectrum, we must pay more attention to out-of-band radiation and especially harmonics. Although a low-pass filter may reduce output power slightly, FCC regulations must be complied with. Remember also that if your amplifier has too much harmonic output power, it will appear to increase VSWR and yield false readings. In this regard, the push-pull configuration is preferred. Many harmonic suppression techniques are used, but the simplest is probably a shorted 1/4-wavelength coax stub shunted across the amplifier output connector.

summary

In this month's column I've only scratched the surface of VHF/UHF power amplifier design, emphasizing the new FCC output power regulations. Next month's column will explore the subject in greater depth, with emphasis on practical applications and construction. In the meantime, I'd suggest a review of the references listed — especially reference 1, because it deals with most of the problems prevalent in high power amplifiers and of-

fig. 3. Typical output circuits. C1 is either a bypass or DC blocking capacitor. (A) \(\pi \) network, (B) 1/4 wavelength, (C) 1/2 wavelength, (D) 1/2 wavelength center-loaded, (E) 3/4 wavelength, (F) push-pull, and (G) rectangular cavity.
fers many suggestions on solving them.

references

2. EIMAC Power Grid Tubes Quick Reference Catalog No. 284, Varian EIMAC, 301 Industrial Way, San Carlos, California 94070 (15.00).

January VHF/UHF events

January 3: 0024 UTC, predicted peak of Quadrantid meteor shower
January 12: EME penege
January 12-13: ARRL VHF Sweepstakes Contest

short circuit

VHF/UHF world

In W1JR's column, "VHF/UHF world: high dynamic range receivers," (November, page 97) the source of the NE41632B transistor and the balun core was correctly identified as PROTO-FAB. Since publication of the November issue, however, PROTO-FAB has changed its name to PROTO-PARTS.

PROTO-PARTS regrets that no telephone inquiries can be accepted. Mail inquiries, however, are welcome; please include SASE. Inquiries and orders should be addressed to PROTO-PARTS, 74 Wedgemere Drive, Lowell, Massachusetts 01852.

In the November column, certain paragraphs on page 100 were transposed. For a corrected copy of that page, send an SASE to ham radio, Greenville, New Hampshire 03048.

In figs. 5 and 6 of W1JR's December column, a ground should be connected to the 5-volt, 3-terminal regulator.

SCOPE MEMORY

CONVERT ANY OSCILLOSCOPE INTO A HIGH PERFORMANCE DIGITAL STORAGE SCOPE WITH THE MODEL 601 SCOPE MEMORY

- Bi-st rectangular
- Internal external trigger
- 14 MHz max sample rate
- Trigger modes
- 16 selectable sample rates
- Free-running and Post-trigger
- Fast/Slow input range
- 128 RAM

$525

SIBEX INC.
2934 STATE ROAD 580 SUITE 2A1
CLEARWATER FL 33751
(813) 579-9588

AZOTIC INDUSTRIES
2026 W. BELMONT
CHICAGO, IL 60618
312-975-1290

- RF CONNECTORS
- I/O CONNECTORS
- D SUB MINIATURE
- AUDIO CONNECTORS
- TEST EQUIPMENT
- LINEAR IC'S
- TRANSISTORS
- DIGITAL IC'S
- TRANSFORMERS
- MEASURMENTS
- RELAYS
- COMPUTER CABLES
- SWITCHES
- DISKETTES

WRITE FOR FREE CATALOG
VISIT OUR RETAIL STORE
HRS. MON-FRI 10-5 SAT 10-2
PHONE ORDERS WELCOMED
312-975-1290
<table>
<thead>
<tr>
<th>TYPE</th>
<th>PRICE</th>
<th>TYPE</th>
<th>PRICE</th>
<th>TYPE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2C39/7289</td>
<td>$34.00</td>
<td>1182/4600A</td>
<td>$500.00</td>
<td>ML7815AL</td>
<td>$60.00</td>
</tr>
<tr>
<td>2E26</td>
<td>7.95</td>
<td>4600A</td>
<td>500.00</td>
<td>7843</td>
<td>107.00</td>
</tr>
<tr>
<td>2K28</td>
<td>200.00</td>
<td>4624</td>
<td>310.00</td>
<td>7854</td>
<td>130.00</td>
</tr>
<tr>
<td>3-500Z*</td>
<td>102.00</td>
<td>4657</td>
<td>84.00</td>
<td>ML7855KAL</td>
<td>125.00</td>
</tr>
<tr>
<td>3-1000Z/164</td>
<td>400.00</td>
<td>4662</td>
<td>100.00</td>
<td>7984</td>
<td>14.95</td>
</tr>
<tr>
<td>3B28/66A</td>
<td>9.50</td>
<td>4665</td>
<td>500.00</td>
<td>8072</td>
<td>84.00</td>
</tr>
<tr>
<td>3CX400U7/961</td>
<td>255.00</td>
<td>4667</td>
<td>42.00</td>
<td>8117A</td>
<td>5.00</td>
</tr>
<tr>
<td>3CX1000A/7263</td>
<td>526.00</td>
<td>5675</td>
<td>255.00</td>
<td>8121</td>
<td>225.00</td>
</tr>
<tr>
<td>3CX3000F/1239</td>
<td>567.00</td>
<td>5721</td>
<td>125.00</td>
<td>8122</td>
<td>110.00</td>
</tr>
<tr>
<td>3CW3000D7/5H7</td>
<td>1700.00</td>
<td>5769</td>
<td>119.00</td>
<td>8134</td>
<td>470.00</td>
</tr>
<tr>
<td>3X2500A3</td>
<td>473.00</td>
<td>5819</td>
<td>232.50</td>
<td>8156</td>
<td>12.00</td>
</tr>
<tr>
<td>3X3000F1</td>
<td>567.00</td>
<td>5836</td>
<td>8000</td>
<td>8233</td>
<td>60.00</td>
</tr>
<tr>
<td>4-65A/#165</td>
<td>69.00</td>
<td>5837</td>
<td>140.00</td>
<td>8236</td>
<td>35.00</td>
</tr>
<tr>
<td>4-125A/4021</td>
<td>79.00</td>
<td>5861</td>
<td>185.00</td>
<td>8295/PL172</td>
<td>500.00</td>
</tr>
<tr>
<td>4-250A/5022</td>
<td>98.00</td>
<td>5967A</td>
<td>270.00</td>
<td>8458</td>
<td>35.00</td>
</tr>
<tr>
<td>4-400A/4438</td>
<td>98.00</td>
<td>5868/AX9902</td>
<td>42.00</td>
<td>8462</td>
<td>130.00</td>
</tr>
<tr>
<td>4-400D/6567</td>
<td>110.00</td>
<td>5876/A</td>
<td>5.00</td>
<td>8505A</td>
<td>95.00</td>
</tr>
<tr>
<td>4-400C/6775</td>
<td>110.00</td>
<td>5881/6L6</td>
<td>6.00</td>
<td>853W</td>
<td>136.00</td>
</tr>
<tr>
<td>4-1000A/8166</td>
<td>444.00</td>
<td>5993</td>
<td>54.00</td>
<td>8560/A</td>
<td>75.00</td>
</tr>
<tr>
<td>4CX250B/7203</td>
<td>54.00</td>
<td>5894/A</td>
<td>54.00</td>
<td>8560AS</td>
<td>100.00</td>
</tr>
<tr>
<td>4CX250G/4621</td>
<td>75.00</td>
<td>5894B/8737</td>
<td>395.00</td>
<td>8608</td>
<td>38.00</td>
</tr>
<tr>
<td>4CX250K/6245</td>
<td>125.00</td>
<td>5916</td>
<td>95.00</td>
<td>8624</td>
<td>100.00</td>
</tr>
<tr>
<td>4CX250R/7580W</td>
<td>90.00</td>
<td>6003/A29909</td>
<td>180.00</td>
<td>6L6 Metal</td>
<td>25.00</td>
</tr>
<tr>
<td>4CX300A/8167</td>
<td>170.00</td>
<td>6146/6146A</td>
<td>24.00</td>
<td>6L6GC</td>
<td>5.03</td>
</tr>
<tr>
<td>4CX350A/8321</td>
<td>110.00</td>
<td>6146B/6298</td>
<td>8.50</td>
<td>6CA7/EL34</td>
<td>5.45</td>
</tr>
<tr>
<td>4CX350F/3322</td>
<td>110.00</td>
<td>6146W/7212</td>
<td>10.50</td>
<td>6CL6</td>
<td>3.50</td>
</tr>
<tr>
<td>4CX350FJ/6904</td>
<td>140.00</td>
<td>6156</td>
<td>17.95</td>
<td>6DJ8</td>
<td>180.00</td>
</tr>
<tr>
<td>4CX600J/8809</td>
<td>635.00</td>
<td>6159</td>
<td>110.00</td>
<td>6GK6</td>
<td>110.00</td>
</tr>
<tr>
<td>4CX1000A/8168</td>
<td>242.50*</td>
<td>6195</td>
<td>13.85</td>
<td>6HF5</td>
<td>168.00</td>
</tr>
<tr>
<td>4CX1000A/6165</td>
<td>485.00*</td>
<td>6198</td>
<td>23.50</td>
<td>7500</td>
<td>95.00</td>
</tr>
<tr>
<td>4CX1500B/8660</td>
<td>555.00</td>
<td>6199</td>
<td>325.00</td>
<td>8950</td>
<td>13.00</td>
</tr>
<tr>
<td>4CX5000A/8170</td>
<td>1100.00</td>
<td>6250</td>
<td>42.50</td>
<td>8930</td>
<td>137.00</td>
</tr>
<tr>
<td>4CX10000/8171</td>
<td>1255.00</td>
<td>6269</td>
<td>180.00</td>
<td>6L6 Metal</td>
<td>25.00</td>
</tr>
<tr>
<td>4CX1500A/6261</td>
<td>1500.00</td>
<td>6326</td>
<td>24.00</td>
<td>6L6GC</td>
<td>5.03</td>
</tr>
<tr>
<td>4CG200F</td>
<td>710.00</td>
<td>6350/A</td>
<td>5.75</td>
<td>6CA7/EL34</td>
<td>5.45</td>
</tr>
<tr>
<td>4D32</td>
<td>240.00</td>
<td>6399</td>
<td>5.00</td>
<td>6CL6</td>
<td>3.50</td>
</tr>
<tr>
<td>4E27A/5-125B</td>
<td>240.00</td>
<td>6500A</td>
<td>10.00</td>
<td>6DJ8</td>
<td>2.50</td>
</tr>
<tr>
<td>4P660A</td>
<td>200.00</td>
<td>6883B/8032A/8552</td>
<td>10.00</td>
<td>6D6</td>
<td>5.85</td>
</tr>
<tr>
<td>4P660B</td>
<td>345.00</td>
<td>6897</td>
<td>160.00</td>
<td>6DJ5A</td>
<td>6.20</td>
</tr>
<tr>
<td>4P665A/8167</td>
<td>175.00</td>
<td>6907</td>
<td>79.00</td>
<td>6DJ6</td>
<td>6.00</td>
</tr>
<tr>
<td>4PR1000A/8189</td>
<td>590.00</td>
<td>6922/6G4B</td>
<td>7.00</td>
<td>6D6</td>
<td>6.00</td>
</tr>
<tr>
<td>4X150A/7034</td>
<td>60.00</td>
<td>6939</td>
<td>22.00</td>
<td>6G5</td>
<td>8.73</td>
</tr>
<tr>
<td>4X150D/7609</td>
<td>95.00</td>
<td>7094</td>
<td>250.00</td>
<td>6G6A</td>
<td>6.28</td>
</tr>
<tr>
<td>4X250B</td>
<td>45.00</td>
<td>7117</td>
<td>38.50</td>
<td>7M6</td>
<td>6.00</td>
</tr>
<tr>
<td>4X250C</td>
<td>45.00</td>
<td>7203</td>
<td>5.00</td>
<td>7M6</td>
<td>6.00</td>
</tr>
<tr>
<td>4X500A</td>
<td>412.00</td>
<td>7211</td>
<td>100.00</td>
<td>6J56C</td>
<td>7.25</td>
</tr>
<tr>
<td>5CX1500A</td>
<td>660.00</td>
<td>7213</td>
<td>300.00*</td>
<td>6J6</td>
<td>5.05</td>
</tr>
<tr>
<td>KT88</td>
<td>27.50</td>
<td>7214</td>
<td>300.00*</td>
<td>6J6K</td>
<td>8.25</td>
</tr>
<tr>
<td>416B</td>
<td>45.00</td>
<td>7271</td>
<td>135.00</td>
<td>6L6F</td>
<td>7.00</td>
</tr>
<tr>
<td>416C</td>
<td>62.50</td>
<td>7289/2C39</td>
<td>34.00</td>
<td>6L6Q G.E.</td>
<td>7.00</td>
</tr>
<tr>
<td>572B/T60L</td>
<td>49.95</td>
<td>7325</td>
<td>P.O.R.</td>
<td>6L6Q/6M6 Sylvania</td>
<td>9.00</td>
</tr>
<tr>
<td>592/3-200A3</td>
<td>211.00</td>
<td>7360</td>
<td>13.50</td>
<td>6ME6</td>
<td>8.90</td>
</tr>
<tr>
<td>607/2-200A</td>
<td>83.00</td>
<td>7377</td>
<td>15.00</td>
<td>12AT7</td>
<td>3.50</td>
</tr>
<tr>
<td>811A</td>
<td>15.00</td>
<td>7408</td>
<td>2.50</td>
<td>12AX7</td>
<td>3.00</td>
</tr>
<tr>
<td>812A</td>
<td>29.00</td>
<td>7609</td>
<td>95.00</td>
<td>12BY7</td>
<td>5.00</td>
</tr>
<tr>
<td>813</td>
<td>50.00</td>
<td>7735</td>
<td>36.00</td>
<td>12JB6A</td>
<td>6.50</td>
</tr>
</tbody>
</table>

NOTE * = USED TUBE
NOTE P.O.R. = PRICE ON REQUEST

"All parts may be new, used, or surplus. Parts may be substituted with comparable parts if we are out of stock of an item."

NOTICE: ALL PRICES ARE SUBJECT TO CHANGE WITHOUT NOTICE.
“FILTERS”

COLLINS Mechanical Filter #526-9724-010 MODEL F455Z32F

455KHz at 3.2kHz wide. May be other models but equivalent. May be used or new. $15.99

ATLAS Crystal Filters

<table>
<thead>
<tr>
<th>Frequency Range</th>
<th>Impedance</th>
<th>15pf In/800ohms 0pf out.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.595-2.7/LSB, 5.595-2.7/LSB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 pole 2.7KHz wide Upper sideband. Impedance 800ohms 15pf In/800ohms 0pf out.</td>
<td>19.99</td>
<td></td>
</tr>
<tr>
<td>5.595-2.7/LSB, 5.595-2.7/LSB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 pole 2.7KHz wide Upper sideband. Impedance 800ohms 15pf In/800ohms 0pf out.</td>
<td>19.99</td>
<td></td>
</tr>
<tr>
<td>5.595-500/4, 5.595-500/4/LSB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 pole 500 cycles wide CW. Impedance 800ohms 15pf In/800ohms 0pf out.</td>
<td>19.99</td>
<td></td>
</tr>
<tr>
<td>9.0/LSB/USB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 pole 2.7KHz wide at 6dB. Impedance 800ohms 7pf In/300ohms 8pf out. CW-1599Hz</td>
<td>19.99</td>
<td></td>
</tr>
</tbody>
</table>

KOKUSAJ ELECTRIC CO. Mechanical Filter #MF-455-ZL/ZU-21H

455KHz at Center Frequency of 453.5KHz. Carrier Frequency of 455KHz 2.36KHz Bandwidth, Upper sideband. (ZL) $19.99

Lower sideband, (ZU) 19.99

CRYSTAL FILTERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>76C15</td>
<td>36.25MHz</td>
<td>$9.99</td>
</tr>
<tr>
<td>76C25</td>
<td>36.25MHz</td>
<td>$9.99</td>
</tr>
</tbody>
</table>

CERAMIC FILTERS

<table>
<thead>
<tr>
<th>Model</th>
<th>Frequency</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>76C15</td>
<td>36.25MHz</td>
<td>$9.99</td>
</tr>
<tr>
<td>76C25</td>
<td>36.25MHz</td>
<td>$9.99</td>
</tr>
</tbody>
</table>

Spectra Physics Inc. Model 088 HeNe Laser Tubes

- **Power Output**: 1.6mW, Beam Dia. .75mm
- **Beam Dir.**: 2.77m
- **6W Starting Voltage**: DC $59.99

Mhz Electronics

Prices Subject to Change Without Notice

Toll Free Number

800-528-0180 (For orders only)

For information call: (602) 242-3037

More Details? CHECK OFF Page 128

January 1985
<table>
<thead>
<tr>
<th>TYPE</th>
<th>PRICE</th>
<th>TYPE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N1561</td>
<td>125.00</td>
<td>2N5920</td>
<td>$ 70.00</td>
</tr>
<tr>
<td>2N1562</td>
<td>25.00</td>
<td>2N5921</td>
<td>80.00</td>
</tr>
<tr>
<td>2N1692</td>
<td>25.00</td>
<td>2N5922</td>
<td>10.00</td>
</tr>
<tr>
<td>2N2857</td>
<td>1.55</td>
<td>2N5923</td>
<td>25.00</td>
</tr>
<tr>
<td>2N2857 JANTX</td>
<td>1.75</td>
<td>2N5924</td>
<td>23.00</td>
</tr>
<tr>
<td>2N2876</td>
<td>13.50</td>
<td>2N5944</td>
<td>40.00</td>
</tr>
<tr>
<td>2N5945</td>
<td>18.35</td>
<td>2N5947</td>
<td>10.35</td>
</tr>
<tr>
<td>2N5946</td>
<td>13.00</td>
<td>2N7947</td>
<td>10.00</td>
</tr>
<tr>
<td>2N5949</td>
<td>15.50</td>
<td>2N7947</td>
<td>9.20</td>
</tr>
<tr>
<td>2N3118</td>
<td>5.00</td>
<td>2N6080</td>
<td>6.00</td>
</tr>
<tr>
<td>2N3119</td>
<td>4.00</td>
<td>2N6081</td>
<td>7.00</td>
</tr>
<tr>
<td>2N3136</td>
<td>1.15</td>
<td>2N6082</td>
<td>9.00</td>
</tr>
<tr>
<td>2N3184</td>
<td>4.90</td>
<td>2N6083</td>
<td>9.50</td>
</tr>
<tr>
<td>2N3288</td>
<td>4.40</td>
<td>2N6086</td>
<td>12.00</td>
</tr>
<tr>
<td>2N3309</td>
<td>4.85</td>
<td>2N6089</td>
<td>11.00</td>
</tr>
<tr>
<td>2N3375</td>
<td>17.10</td>
<td>2N6095</td>
<td>12.00</td>
</tr>
<tr>
<td>2N3478</td>
<td>2.45</td>
<td>2N6096</td>
<td>16.00</td>
</tr>
<tr>
<td>2N3553</td>
<td>1.55</td>
<td>2N6097</td>
<td>20.70</td>
</tr>
<tr>
<td>2N3553 JANTX</td>
<td>2.90</td>
<td>2N6103</td>
<td>21.00</td>
</tr>
<tr>
<td>2N3632</td>
<td>15.50</td>
<td>2N6136</td>
<td>21.85</td>
</tr>
<tr>
<td>2N3733</td>
<td>11.00</td>
<td>2N6166</td>
<td>40.24</td>
</tr>
<tr>
<td>2N3818</td>
<td>5.00</td>
<td>2N6267</td>
<td>142.00</td>
</tr>
<tr>
<td>2N3866 JANTX</td>
<td>2.20</td>
<td>2N6268</td>
<td>33.00</td>
</tr>
<tr>
<td>2N3866 JANTX</td>
<td>3.80</td>
<td>2N6495</td>
<td>55.11</td>
</tr>
<tr>
<td>2N3866 JANTX</td>
<td>4.70</td>
<td>2N6556</td>
<td>18.00</td>
</tr>
<tr>
<td>2N3866 JANTX</td>
<td>5.30</td>
<td>2N6603</td>
<td>10.06</td>
</tr>
<tr>
<td>2N3924</td>
<td>3.15</td>
<td>2N6604</td>
<td>13.50</td>
</tr>
<tr>
<td>2N3926</td>
<td>16.10</td>
<td>2N6605</td>
<td>13.04</td>
</tr>
<tr>
<td>2N3927</td>
<td>17.25</td>
<td>2N6679</td>
<td>44.00</td>
</tr>
<tr>
<td>2N3948</td>
<td>1.75</td>
<td>2N6680</td>
<td>80.00</td>
</tr>
<tr>
<td>2N3990</td>
<td>25.00</td>
<td>2Q1-1</td>
<td>15.00</td>
</tr>
<tr>
<td>2N3999</td>
<td>3.85</td>
<td>2Q3-7</td>
<td>15.00</td>
</tr>
<tr>
<td>2N4012</td>
<td>11.00</td>
<td>2Q5-9</td>
<td>16.00</td>
</tr>
<tr>
<td>2N4027</td>
<td>2.00</td>
<td>2Q10-2</td>
<td>28.00</td>
</tr>
<tr>
<td>2N4041</td>
<td>14.00</td>
<td>2Q3-7</td>
<td>28.00</td>
</tr>
<tr>
<td>2N4072</td>
<td>1.95</td>
<td>2Q4-1</td>
<td>28.00</td>
</tr>
<tr>
<td>2N4080</td>
<td>4.55</td>
<td>2Q4-7</td>
<td>18.00</td>
</tr>
<tr>
<td>2N4127</td>
<td>21.00</td>
<td>16P1</td>
<td>10.00</td>
</tr>
<tr>
<td>2N4146</td>
<td>2.25</td>
<td>181-3</td>
<td>15.00</td>
</tr>
<tr>
<td>2N442</td>
<td>1.25</td>
<td>210-2</td>
<td>10.00</td>
</tr>
<tr>
<td>2N452</td>
<td>1.85</td>
<td>269-1</td>
<td>15.00</td>
</tr>
<tr>
<td>2N458</td>
<td>1.18</td>
<td>281-1</td>
<td>15.00</td>
</tr>
<tr>
<td>2N459</td>
<td>3.90</td>
<td>282-1</td>
<td>30.00</td>
</tr>
<tr>
<td>2N475</td>
<td>3.45</td>
<td>482</td>
<td>7.00</td>
</tr>
<tr>
<td>2N479</td>
<td>2.30</td>
<td>564-1</td>
<td>25.00</td>
</tr>
<tr>
<td>2N5016</td>
<td>18.40</td>
<td>698-3</td>
<td>15.00</td>
</tr>
<tr>
<td>2N5026</td>
<td>15.00</td>
<td>703-1</td>
<td>15.00</td>
</tr>
<tr>
<td>2N5070</td>
<td>18.40</td>
<td>704</td>
<td>4.00</td>
</tr>
<tr>
<td>2N5090</td>
<td>13.80</td>
<td>709-2</td>
<td>15.00</td>
</tr>
<tr>
<td>2N5108</td>
<td>3.45</td>
<td>711</td>
<td>4.00</td>
</tr>
<tr>
<td>2N5109</td>
<td>1.70</td>
<td>733-2</td>
<td>15.00</td>
</tr>
<tr>
<td>2N5160</td>
<td>3.45</td>
<td>798-2</td>
<td>25.00</td>
</tr>
<tr>
<td>2N5177</td>
<td>21.62</td>
<td>342</td>
<td>20.00</td>
</tr>
<tr>
<td>2N5179</td>
<td>1.04</td>
<td>368F1</td>
<td>15.00</td>
</tr>
<tr>
<td>2N5216</td>
<td>56.00</td>
<td>3992</td>
<td>25.00</td>
</tr>
<tr>
<td>2N5250</td>
<td>75.00</td>
<td>416F1</td>
<td>25.00</td>
</tr>
<tr>
<td>2N5558</td>
<td>3.45</td>
<td>426P1</td>
<td>28.00</td>
</tr>
<tr>
<td>2N5589</td>
<td>9.77</td>
<td>4340P3</td>
<td>18.00</td>
</tr>
<tr>
<td>2N5590</td>
<td>10.92</td>
<td>438P1</td>
<td>27.50</td>
</tr>
<tr>
<td>2N5591</td>
<td>13.80</td>
<td>710-1</td>
<td>28.00</td>
</tr>
<tr>
<td>2N5596</td>
<td>99.00</td>
<td>724-1</td>
<td>10.50</td>
</tr>
<tr>
<td>2N5646</td>
<td>12.00</td>
<td>728-1</td>
<td>37.50</td>
</tr>
<tr>
<td>2N5677</td>
<td>15.50</td>
<td>736-1</td>
<td>30.00</td>
</tr>
<tr>
<td>2N5691</td>
<td>12.42</td>
<td>776-1</td>
<td>10.50</td>
</tr>
<tr>
<td>2N5742</td>
<td>14.03</td>
<td>779-1</td>
<td>15.00</td>
</tr>
<tr>
<td>2N5645</td>
<td>13.80</td>
<td>779-1</td>
<td>24.00</td>
</tr>
<tr>
<td>2N5650</td>
<td>20.70</td>
<td>779-7</td>
<td>36.00</td>
</tr>
<tr>
<td>2N5691</td>
<td>11.05</td>
<td>4088KCA</td>
<td>9.95</td>
</tr>
<tr>
<td>2N5764</td>
<td>18.00</td>
<td>4027RCA</td>
<td>10.00</td>
</tr>
<tr>
<td>2N5836</td>
<td>27.00</td>
<td>4082KCA</td>
<td>4.62</td>
</tr>
<tr>
<td>2N5842</td>
<td>3.45</td>
<td>4038KCA</td>
<td>10.00</td>
</tr>
<tr>
<td>2N5874</td>
<td>8.45</td>
<td>4028KCA</td>
<td>20.00</td>
</tr>
<tr>
<td>2N5897</td>
<td>19.90</td>
<td>4029KCA</td>
<td>2.80</td>
</tr>
<tr>
<td>2N5899</td>
<td>20.00</td>
<td>40292 KGA</td>
<td>13.05</td>
</tr>
<tr>
<td>2N5911</td>
<td>3.25</td>
<td>40294 KGA</td>
<td>2.50</td>
</tr>
<tr>
<td>2N5916</td>
<td>36.00</td>
<td>40341 KGA</td>
<td>21.00</td>
</tr>
</tbody>
</table>

RF TRANSISTORS

Toll Free Number
800-528-0180
(For orders only)

Prices Subject to Change Without Notice

Hz electronics

For information call: (802) 242-3037
RF TRANSISTORS (CONTINUED)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1107</td>
<td>MRF585</td>
<td>$20.70</td>
</tr>
<tr>
<td>M1131</td>
<td>MRF466</td>
<td>$18.97</td>
</tr>
<tr>
<td>M1312</td>
<td>MRF468</td>
<td>$18.97</td>
</tr>
<tr>
<td>M1334</td>
<td>MRF472</td>
<td>$1.50</td>
</tr>
<tr>
<td>M916</td>
<td>MRF475</td>
<td>$5.09</td>
</tr>
<tr>
<td>M947</td>
<td>MRF476</td>
<td>$20.95</td>
</tr>
<tr>
<td>M957</td>
<td>MRF477</td>
<td>$8.05</td>
</tr>
<tr>
<td>M958</td>
<td>MRF492</td>
<td>$23.00</td>
</tr>
<tr>
<td>M622</td>
<td>MRF502</td>
<td>$1.04</td>
</tr>
<tr>
<td>M623</td>
<td>MRF503</td>
<td>$6.95</td>
</tr>
<tr>
<td>M626</td>
<td>MRF504</td>
<td>$4.99</td>
</tr>
<tr>
<td>M625</td>
<td>MRF509</td>
<td>$5.00</td>
</tr>
<tr>
<td>M940</td>
<td>MRF511</td>
<td>$10.69</td>
</tr>
<tr>
<td>M971</td>
<td>MRF517</td>
<td>$2.90</td>
</tr>
<tr>
<td>M975</td>
<td>MRF525</td>
<td>$3.65</td>
</tr>
<tr>
<td>M980</td>
<td>MRF559</td>
<td>$1.76</td>
</tr>
<tr>
<td>M981</td>
<td>MRF587</td>
<td>$11.00</td>
</tr>
<tr>
<td>M9584</td>
<td>MRF605</td>
<td>$20.00</td>
</tr>
<tr>
<td>M9580</td>
<td>MRF618</td>
<td>$25.00</td>
</tr>
<tr>
<td>M9579</td>
<td>MRF626</td>
<td>$12.00</td>
</tr>
<tr>
<td>M9680</td>
<td>MRF628</td>
<td>$8.65</td>
</tr>
<tr>
<td>M9687</td>
<td>MRF629</td>
<td>$3.55</td>
</tr>
<tr>
<td>M9908</td>
<td>MRF661</td>
<td>$25.30</td>
</tr>
<tr>
<td>M9965</td>
<td>MRF644</td>
<td>$27.60</td>
</tr>
<tr>
<td>M9500</td>
<td>MRF646</td>
<td>$29.90</td>
</tr>
<tr>
<td>M9550</td>
<td>MRF647</td>
<td>$33.13</td>
</tr>
<tr>
<td>M9552</td>
<td>MRF816</td>
<td>$15.00</td>
</tr>
<tr>
<td>M9553</td>
<td>MRF823</td>
<td>$20.00</td>
</tr>
<tr>
<td>M9607</td>
<td>MRF846</td>
<td>$44.85</td>
</tr>
<tr>
<td>M9610</td>
<td>MRF592</td>
<td>$35.00</td>
</tr>
<tr>
<td>M9810</td>
<td>MRF894</td>
<td>$46.00</td>
</tr>
<tr>
<td>M9812</td>
<td>MRF901</td>
<td>$1.00</td>
</tr>
<tr>
<td>M9813</td>
<td>MRF904</td>
<td>$2.30</td>
</tr>
<tr>
<td>M9800</td>
<td>MRF905</td>
<td>$2.55</td>
</tr>
<tr>
<td>M9802</td>
<td>MRF906</td>
<td>$2.55</td>
</tr>
<tr>
<td>M9808</td>
<td>MRF965</td>
<td>$3.55</td>
</tr>
<tr>
<td>M9815</td>
<td>MRF902B</td>
<td>$7.00</td>
</tr>
<tr>
<td>M9817</td>
<td>MRF904</td>
<td>$2.30</td>
</tr>
<tr>
<td>M9813</td>
<td>MRF905</td>
<td>$2.55</td>
</tr>
<tr>
<td>M9816</td>
<td>MRF906</td>
<td>$2.55</td>
</tr>
<tr>
<td>M9818</td>
<td>MRF966</td>
<td>$3.55</td>
</tr>
<tr>
<td>M9820</td>
<td>MRF907</td>
<td>$7.00</td>
</tr>
<tr>
<td>M9822</td>
<td>MRF908</td>
<td>$22.00</td>
</tr>
<tr>
<td>M9824</td>
<td>MRF917</td>
<td>$12.50</td>
</tr>
<tr>
<td>M9827</td>
<td>MRF922</td>
<td>$2.10</td>
</tr>
<tr>
<td>M9830</td>
<td>MRF923</td>
<td>$2.00</td>
</tr>
<tr>
<td>M9831</td>
<td>MRF924</td>
<td>$2.00</td>
</tr>
<tr>
<td>M9832</td>
<td>MRF925</td>
<td>$2.00</td>
</tr>
<tr>
<td>M9834</td>
<td>MRF926</td>
<td>$2.00</td>
</tr>
<tr>
<td>M9836</td>
<td>MRF927</td>
<td>$2.00</td>
</tr>
<tr>
<td>M9838</td>
<td>MRF928</td>
<td>$2.00</td>
</tr>
</tbody>
</table>

###点缀部分

- ** Toll Free Number:** 800-528-0180
 (For orders only)

MHZ electronics

Prices subject to change without notice

--All prices may be new or surplus, and parts may be substituted with comparable parts if we are out of stock of an item--

January 1985

For information call: (602) 242-3037

More Details? CHECK—OFF Page 128
E.F. JOHNSON ROLLER INDUCTORS

NI-CAD BATTERY CHARGERS

100 H at 13 AMPS MAX. $36.99 180 H at 5 AMPS MAX. $44.99

UNIVERSAL CHARGER $19.99

MALLORY CHARGER $23.99

EEREADY CHARGER $9.99

EAGLE PICHÉR GEL-CELL BATTERIES

GATES SEALED RECHARGEABLE LEAD ACID BATTERIES AND PACKS

GENERAL ELECTRIC SEALED RECHARGEABLE LEAD ACID BATTERIES AND PACKS

Toll Free Number
800-528-0180
(For orders only)

MH z electronics

PRICES SUBJECT TO CHANGE WITHOUT NOTICE

January 1985
RF Transistors (continued)

Amphenol
Part # 316-10102-8
115Vac Type BNC DC to 3 GHz.
$29.99

POSTAGE: Minimum shipping and handling in the U.S., Canada, and Mexico is $3.00 for ground shipments; all other countries is $5.50. All rates are available at the time of your order. All foreign orders please include 25% of the ordered amount for shipping and handling. C.O.D.'s are shipped AIR ONLY.

PREPAID ORDERS: Orders must be accompanied by a check.

PRICES: Prices are subject to change without notice.

PURCHASE ORDERS: We accept purchase orders only when they are accompanied by a check.

RESTOCK CHARGES: If parts are returned to MHZ ELECTRONICS, INC. due to customer error, the customer will be held responsible for all fees incurred and will be charged a 15% RESTOCK CHARGE with the remainder in CREDIT ONLY. The following must accompany any return: a copy of our invoice, return authorization number which must be obtained prior to shipping the merchandise back. Returns must be done within 10 days of receipt of parcel. Return authorization numbers can be obtained by calling (602) 242-8916 or notifying us by post card. Return authorizations will not be given out on our 800 number.

SALES TAX: ARIZONA residents must add 5% sales tax, unless a signed ARIZONA resale tax card is currently on file with us. All orders placed by persons outside of ARIZONA, but delivered to persons in ARIZONA are subject to the 5% sales tax.

SHORTAGE OR DAMAGE: All claims for shortages or damages must be made within 5 DAYS of receipt of parcel. Claims must include a copy of our invoice, along with a return authorization number which can be obtained by contacting us at (602) 242-8916 or sending a post card. Authorization numbers cannot be on our 800 number. All items must be properly packed. If items are not properly packed we make sure to contact the carrier so that they can come out and inspect the package before it is returned to us. Customers who do not notify us within this time period will be held responsible for the entire order as we will consider the item sold.

OUR 800 NUMBER IS STRICTLY FOR ORDERS ONLY (800) 528-0180. INFORMATION CALLS ARE TAKEN ON (602) 242-8916 or (602) 242-3037.

For information call: (602) 242-3037

Toll Free Number
800-528-0180
(For orders only)

PRICES SUBJECT TO CHANGE WITHOUT NOTICE
8 POLE CRYSTAL FILTERS FOR
KENWOOD, ICOM, AND YAESU RADIOS

KENWOOD
2.1 kHz SSB for TS-930 or TS-830 matched set $149.99
400 Hz CW for TS-930 or TS-830 matched set $149.99
2.1 kHz SSB at end of cascade kit (6 extra poles) for the
TS-436, TS-120 and TS-130 $69.00
2.1 kHz 8 pole filter for the R-1000 $129.00
2.1 kHz 8 pole filter for the R-2000 $139.00
400 Hz CW (8 pole) filter for the R-2000 $99.00
TS-930 NEW FM Kit True fm, AK and acc 30 watts, no
better than 2 w sensitivity. Wired and tested $19.00

ICOM
2.1 kHz SSB and 400 Hz CW 8 pole filter for the
IC-704, 740, 745, 750 and RT1 radios $99.00

YAESU
2.1 kHz SSB 8 pole filter for the FT-850 Filter for
FT-757 available soon $99.00

ICOM, Kenwood newsletters 1 year $9.95 US ($12 first class
mail) $13 elsewhere. SASE for details.

When ordering please specify radio and crystal filter ordered.
Specify if for module only. We also stock 6 pole, 8 pole,
10 pole, 12 pole and 30 walls. For more details call (305)
335-5545

INTERNATIONAL RADIO, INC.
1532 SE Village Green Dr.
Port St. Lucie, Fl. 33452
(305) 335-5545

Available now
The 1985 ARRL Handbook

1. It's BRAND NEW
2. It's BIGGER. Over 350 pages.
3. It's EXPANDED. Covers everything from basic electronics
to esoteric radio gear.
4. It's chockfull of NEW PROJECTS.
5. It's the MOST COMPLETE reference text available.
6. Get your copy TODAY.

$14.95 (plus $3.50 shipping)
ORDER YOURS TODAY

Iron Powder and Ferrite
TOROIDAL CORES

Shielding Beads, Shielded Coil Forms
Ferrite Rods, Pot Cores, Baluns, Etc.

Small Orders Welcome
Free 'Tech-Data' Flyer

AMIDON
Since 1963
12033 Otsego Street, North Hollywood, Calif. 91607

In Germany: Elektronikladen, Wilhelm - Melles Str. 88, 4930 Detmold 18
West Germany
In Japan: Toyomura Electronics Company, Ltd. 7-9-2 Chome Sota Kanda
Chiyoda-Ku, Tokyo, Japan

8 Pole Crystal Filters for Kenwood, Icom, and Yaesu Radios

Kenwood
2.1 kHz SSB for TS-930 or TS-830 matched set $149.99
400 Hz CW for TS-930 or TS-830 matched set $149.99
2.1 kHz SSB at end of cascade kit (6 extra poles) for the
TS-436, TS-120 and TS-130 $69.00
2.1 kHz 8 pole filter for the R-1000 $129.00
2.1 kHz 8 pole filter for the R-2000 $139.00
400 Hz CW (8 pole) filter for the R-2000 $99.00
TS-930 NEW FM Kit True fm, AK and acc 30 watts, no
better than 2 w sensitivity. Wired and tested $19.00

Icom
2.1 kHz SSB and 400 Hz CW 8 pole filter for the
IC-704, 740, 745, 750 and RT1 radios $99.00

Yaesu
2.1 kHz SSB 8 pole filter for the FT-850 Filter for
FT-757 available soon $99.00

Icom, Kenwood newsletters 1 year $9.95 US ($12 first class
mail) $13 elsewhere. SASE for details.

When ordering please specify radio and crystal filter ordered.
Specify if for module only. We also stock 6 pole, 8 pole,
10 pole, 12 pole and 30 walls. For more details call (305)
335-5545

International Radio, Inc.
1532 SE Village Green Dr.
Port St. Lucie, Fl. 33452
(305) 335-5545

Available now
The 1985 ARRL Handbook

1. It's BRAND NEW
2. It's BIGGER. Over 350 pages.
3. It's EXPANDED. Covers everything from basic electronics
to esoteric radio gear.
4. It's chockfull of NEW PROJECTS.
5. It's the MOST COMPLETE reference text available.
6. Get your copy TODAY.

$14.95 (plus $3.50 shipping)
ORDER YOURS TODAY

Iron Powder and Ferrite
TOROIDAL CORES

Shielding Beads, Shielded Coil Forms
Ferrite Rods, Pot Cores, Baluns, Etc.

Small Orders Welcome
Free 'Tech-Data' Flyer

AMIDON
Since 1963
12033 Otsego Street, North Hollywood, Calif. 91607

In Germany: Elektronikladen, Wilhelm - Melles Str. 88, 4930 Detmold 18
West Germany
In Japan: Toyomura Electronics Company, Ltd. 7-9-2 Chome Sota Kanda
Chiyoda-Ku, Tokyo, Japan

8 Pole Crystal Filters for Kenwood, Icom, and Yaesu Radios

Kenwood
2.1 kHz SSB for TS-930 or TS-830 matched set $149.99
400 Hz CW for TS-930 or TS-830 matched set $149.99
2.1 kHz SSB at end of cascade kit (6 extra poles) for the
TS-436, TS-120 and TS-130 $69.00
2.1 kHz 8 pole filter for the R-1000 $129.00
2.1 kHz 8 pole filter for the R-2000 $139.00
400 Hz CW (8 pole) filter for the R-2000 $99.00
TS-930 NEW FM Kit True fm, AK and acc 30 watts, no
better than 2 w sensitivity. Wired and tested $19.00

Icom
2.1 kHz SSB and 400 Hz CW 8 pole filter for the
IC-704, 740, 745, 750 and RT1 radios $99.00

Yaesu
2.1 kHz SSB 8 pole filter for the FT-850 Filter for
FT-757 available soon $99.00

Icom, Kenwood newsletters 1 year $9.95 US ($12 first class
mail) $13 elsewhere. SASE for details.

When ordering please specify radio and crystal filter ordered.
Specify if for module only. We also stock 6 pole, 8 pole,
10 pole, 12 pole and 30 walls. For more details call (305)
335-5545

International Radio, Inc.
1532 SE Village Green Dr.
Port St. Lucie, Fl. 33452
(305) 335-5545

Available now
The 1985 ARRL Handbook

1. It's BRAND NEW
2. It's BIGGER. Over 350 pages.
3. It's EXPANDED. Covers everything from basic electronics
to esoteric radio gear.
4. It's chockfull of NEW PROJECTS.
5. It's the MOST COMPLETE reference text available.
6. Get your copy TODAY.

$14.95 (plus $3.50 shipping)
ORDER YOURS TODAY

Iron Powder and Ferrite
TOROIDAL CORES

Shielding Beads, Shielded Coil Forms
Ferrite Rods, Pot Cores, Baluns, Etc.

Small Orders Welcome
Free 'Tech-Data' Flyer

AMIDON
Since 1963
12033 Otsego Street, North Hollywood, Calif. 91607

In Germany: Elektronikladen, Wilhelm - Melles Str. 88, 4930 Detmold 18
West Germany
In Japan: Toyomura Electronics Company, Ltd. 7-9-2 Chome Sota Kanda
Chiyoda-Ku, Tokyo, Japan

Now there's a hardware magazine that's all about computers for people who like to build their own. Computer Smyth's premiere issue is coming in March 1985, providing all the pleasure, economy and satisfaction of building-it-yourself projects that Hams know so well.

Our authors take you inside the chips, talk about what they do and how they're controlled, and explain command options you may never have heard of before. Computer Smyth's first quarterly issue begins a series on a complete Z80 based computer on three 4x6½" boards, which lets you interface 3½, 5¼ and 8" floppy disks in all densities and track configurations. John Adams' series will include a switching power supply, a PROM burner, a modem and software options for this rack-mount system.

The first issue will also feature an X/Y plotter you can build, an inexpensive motorized wire-wrap tool and much more.

During its premiere year, Computer Smyth will survey the more than two dozen computer kits now available in the US. Kit builders will report on many of them from the simplest Z80 CPU offerings to some of the newest 68000, 32-bit machines.

Computer Smyth is published by Audio Amateur Publications, publishers of Audio Amateur and Speaker Builder magazines. All three are reader-centered, hardware-intensive publications whose editors believe that a magazine's primary job is satisfying the reader not consumer marketing. Our magazines are run by tech enthusiasts not MBAs looking for profits.

Computer Smyth's editors guarantee that if you are unhappy with Computer Smyth for any reason, your money will be refunded upon request.

☐ Yes, enter my subscription to Computer Smyth for one year at $15.
☐ Make that two years at $25.
☐ Check enclosed.
☐ Charge to credit card.

Name
Street & No.
Town State Zip
MC/VISA Card #
Expiration Date
Signature

Computer Smyth Magazine
PO Box 176 Peterborough, NH 03458
Charge card orders: (603) 924-9464

MATCH MOST ANTENNA-FEEDLINE COMBINATIONS TO YOUR RIG

MATCHES: dipoles, inverted vees, beam quads, verticals, mobile whips, random wire, etc. that are fed by coax, balanced line or single wire.

MAXIMUM POWER: 300 watts RF

INPUTS (selectable from front panel):
3-coax: 1-direct, 2-direct or thru tuner
1-balanced line (41 balun inc.) or single wire

IN-LINE CALIBRATED WATTMETER INCLUDED

ALSO IN STOCK

KITS: for HF, VHF, UHF & Test Equipment

COMPONENTS: Toroids, Rods & Beads, Resistors, Inductors, Capacitors, Antenna Components & Wire

1984-85 CATALOG 50c

ANTENNA TUNER

Viewstar — Mod. VS300A

Fully Assembled and Tested $89.95

Plus $3.00 Shipping & Handling

$79.95 SPECIAL
TROPICAL HAMBOREE & Southeastern Division Convention
FEBRUARY 2 - 3, 1985
FABULOUS FLAGLER DOG TRACK MIAMI, FLORIDA

- Antenna Presentation
- DX Forum & Dinner
- ARRL & CAVCE VE Programs
- Packet Radio Forum
- License Exams
- Organizational Meetings
- New Product Exhibits
- Hambooree Dealer Specials
- Mammoth Swap Shop
- Activities for Non-Hams
- QCWA Homestyle Hospitality
- International Displays

FREE OVERNIGHT RV PARKING AT HAMBOREE SITE (Advance Reservations Recommended)
SPECIAL HOTEL RATES AT HEADQUARTERS HOTEL
IF YOU HAVE ATTENDED HAMBOREE IN THE LAST THREE YEARS YOU WILL RECEIVE OUR BROCHURE IN LATE DEC. OR EARLY JAN. . . . otherwise drop us a line.

Registration: $4.00 Advance . . . $5.00 Door (Valid both days)
Swap Trables, 2 days: $14.00 Advance . . . $16.00 Door (plus regis. ticket)
Requests for same swap table location as 1984 will be honored until Dec. 15th, after that date tables will be assigned on a first come - first served basis.
(Advance price deadline on Registration & Tables, January 29th)

Make checks payable to: DADE RADIO CLUB, INC., P.O. Box 350045, Miami, FL 33135

Exhibit Booth Information: Evelyn D. Gauzens, W4WYR, Chairman 2780 N.W. 3 Street, Miami, FL 33125
Telephone: 305-642-4139

WARNING
SAVE YOUR LIFE OR AN INJURY

REMO A P AD Model RAP-1
Two FOUR DIGIT DTMF DECODERS PLUS 16 DIGIT KEYPAD CONTROL
TUNING THE WORLD FROM YOUR HANDHELD VHF/UHF RADIO

Model RAP-1
- Multi-band dscis (shortwave, cb, ham, etc.)
- Eight memories
- Select worldwide frequencies
- 80 channels
- Built-in headphones
- Easy to use
- Internal power supply

$149.95
Remote control interface board and DTMF decoder

ICOM IC-2AT User's "A U D I O B L A S T E R" MODULE

Model AB-1
123 $19.95
Price includes postage and handling, USA & CA res only

Send check or money order to:
ENGINEERING CONSULTING
583 CANDLEWOOD ST., BREA, CA 92621
[714] 671-2009

January 1985
frequency counter kit

The handheld frequency counter designed by Roger Ray, as published in the UK’s *Radio and Electronics World* in November, 1982, and imported and sold by RADIOKIT is a neat little project that shouldn’t take up too much time. A valuable piece of test equipment for your ham shack, it runs off an inexpensive 9-volt battery, is quite light and easy to carry around, covers 20 Hz to 150 MHz, and has a five digit LCD display with a resolution of 1 Hz to 10 kHz depending upon range selected.

design

Ray went to great lengths to design this meter with simplicity in mind. An FC-177 LCD readout module, which also contains an OKI MSM 5527 frequency counter, is used for the display. Combining these two functions into one package greatly simplifies the construction of the counter. The FC-177 is designed to measure and display frequencies from 20 Hz to 3.999 MHz. To measure frequencies higher than 3.999 MHz, a divide-by 10 or a divide-by 100 prescaler is incorporated. To keep power consumption low, a count-and-hold technique is used when measuring frequencies above 3.999 MHz. In the LF range, 20 Hz to 10 kHz, the unit has a 50 mV sensitivity; in the MF range (10 kHz to 4 MHz) a 20 mV sensitivity; in the HF range (100 kHz to 40 MHz) a 20 mV sensitivity; in the VHF range (10 MHz to 150 MHz) a 100 mV sensitivity. Users will find that this unit, while not designed for laboratory precision, will give more than adequate readings for nearly all of its measurements.

circuit description

The input frequency is switched by the frequency range selector to one of four buffer stages. For measuring in the LF range, the signal is amplified, its frequency is multiplied by 100, and then used to control a VCO that is a part of a PLL circuit. The frequency displayed is that of the VCO with the decimal point properly positioned to account for the X100 factor. For example, an 800 Hz input signal would be changed to 80 kHz through the VCO, but counted and displayed as 800 by the FC-177.

Measuring in the MF range is within the FC-177’s design. Signals are amplified and then directly fed to the display module. To measure in the HF range, signals are first amplified and then fed through a divide-by-10 prescaler (MSL-231RS) directly into the FC-177 for counting and display.

VHF range measurements are accomplished in a manner similar to that of HF signals, with the prescaler changed to divide-by-100.

As mentioned, this unit is designed for low current consumption. However, the MSL-231RS is designed with a current consumption of greater than 30 mA. To reduce current demand, a hold feature of the FC-177 is employed. Instead of constantly being counted, the incoming frequency is measured once every second. The designer calculates that this reduces consumption to below 15 mA, has little effect on accuracy, and adds several hours of battery life.

construction

The unit is built around a single-sided PC board and mounted to the enclosure by the four-way frequency switch. The FC-177 is mounted on the cover of the plastic equipment box. Parts placement is fairly straightforward, with connections to the FC-177 frequency counter module through short flexible wires. All IC’s are mounted on sockets so they can be replaced with a minimum of effort in the unlikely event of failure.

Careful attention to the location of the display, four-way switch, momentary on-off switch and BNC input connector is a must if the unit is to function properly.

I’d estimate that overall time to build shouldn’t be more than an evening or two, barring any unforeseen difficulties.

conclusion

At $74.95, it’s really hard to beat this unit for ease of construction and usefulness in the ham shack. RADIOKIT has a number of other projects from various amateur radio publications. For a free catalog, contact RADIOKIT, Box 411H, Greenville, New Hampshire 03048.

Circle 1179 on Reader Service Card.

— N1ACH

new products

microphone equalizer

Heath’s new HD-1986 Microlizer is designed to improve the quality of transmitted speech and provide a better match between microphone and transceiver. This battery powered microphone equalizer fits in series with a microphone and transceiver using a standard 4-pin microphone jack and 1/4-inch phono output jack. It has continuously variable frequency controls to provide a ± 12 dB (boost and cut) at 490 Hz and 2800 Hz. A gain control permits the user to increase or decrease the microphone signal fed to the transceiver for maximum efficiency and cleaner operation. The Microlizer can be bypassed to allow direct connection between microphone and transceiver by simply turning off the power switch.

For complete information and/or a copy of the current catalog, contact Heath Company, Department 150-405, Benton Harbor, Michigan 49022.

Circle 301 on Reader Service Card.

universal audio filter

Palomar Engineers has announced a new universal receiver audio filter. Model FL-4—for SSB, CW, and RTTY—features switched capacitor filters. A 10-pole low-pass and an 8-pole high-pass can be moved anywhere in the 200-3500 Hz range to form a sharp bandpass filter at any frequency and of any bandwidth. A notch filter is also included.

It connects to the receiver phone jack and provides 2 watts of audio to drive a speaker. The on-off switch bypasses the filter when not in use. It operates from 15 VDC. The price is $139.95 plus $4 shipping. An optional 115 VAC adapter is available at $9.95.

For further information, contact Palomar Engineers, Box 455, Escondido, California 92025.

Circle 302 on Reader Service Card.

COR module

Hamtronics, Inc., announced the COR-3, a new version of its popular COR module. Like the COR-2, the COR-3 has all the circuitry needed to control a transmitter and receiver to make a repeater, including an electronic relay to switch the transmitter on and off as a function of the receiver squelch, a tail timer, a time-out timer, an audio mixer, and a local speaker amplifier. The COR-3 also has a “courtesy beep” function, and an additional timer that allows the beep to be adjusted up to five seconds after the receiver squelch drops. Whenever a station using the repeater releases its microphone, a beep tone is heard after a short delay period. The beep indicates that the party has finished talking and the time-out timer is reset.

The price of the COR-3 kit is $58. For more information on this module and other transmitter, receiver, and control modules for building repeaters, contact Hamtronics, Inc., 65F Moul Road, Hilton, New York 14478-9535.

Circle 104 on Reader Service Card.
signal generator

A programmable, general-purpose signal generator base-priced at $4500, is said to meet or exceed the quality and performance of units costing over $6000. The Fluke 6060A Synthesized Signal Generator accurately tests a wide variety of RF receivers, filters, amplifiers, and mixers. It covers a frequency range of 0.1 to 1050 MHz (selectable with 10 Hz resolution) and has a switching speed less than 100 ms typical. Non-harmonic spurious products are less than -60 dBc, and harmonics are less than 50 dBc across the entire frequency range. Amplitude levels are selectable from -137 dBm to +13 dBm with 0.1 dB resolution.

For further information, contact John Fluke Manufacturing Co., Inc., P. O. Box C9090, Everett, Washington 98206.

1.3 GHz frequency counter

Digital Instruments Inc. (formerly David Electronics) of Tonawanda, New York, has announced its frequency counter (7216). The new counter has a range of 10 Hz to 1.3 GHz and a gate time of 100 MHz 0.1 and 1.0 second as well as 1.3 GHz 0.16 and 1.6 seconds. Its display consists of eight 0.04-inch LEDs with an automatic decimal point. The prescaler and built-in gate light all fit neatly into the small 5 1/2 x 6 x 2.5 inch all-metal case. Its power requirements are 105-125 volts 50-60 MHz at 3 watts with a safe input of 120 volts RMS to 10 MHz and 2 volts RMS above 50 MHz. The price is $249.95.

For additional information contact Digital Instruments, 636 Sheridan Drive, Tonawanda, New York 14450.

Circle 136 on Reader Service Card.

New From Butternut®

HF2V

DX The 80 & 40 Meter Bands

The HF2V is the perfect complement for the Ham who already has a beam antenna for 10-15-20 meters. Add 80 and 40 meters (160 meters with an optional resonator kit) with a trim-looking vertical that can be mounted almost anywhere.

With the decline in sunspot activity, the HF2V's low angle of radiation will get you DX on the low bands -- even when 10-15-20 meters are "dead."

Height: 32 ft. Self-supporting

Power rating: legal limit

VSWR: 2:1 or less

- 40 Meters: Full CW & Phone band
- 80 Meters: 90 kHz

Add-on resonator kits available for 160-30-20 meters.

Write for our FREE CATALOG.

BUTTERNUT ELECTRONICS

405 East Market Street
Lockhart, Texas 78644
(512) 398-9019

WHERE'S THE TURKEY?

- Synthesized Voice Doppler Direction Finding
- VHF and UHF Coverage
- RS232C Computer Interface
- No Receiver Mods
- Mobile or Fixed
- 12 VDC Operation
- Digital and Circular Display
- 90 Day Warranty

New Technology (patent pending) converts any VHF or UHF FM receiver into an advanced Doppler shift radio direction finder. Simply plug into receiver's antenna and external speaker jacks. Uses four omnidirectional antennas. Low noise, high sensitivity for weak signal detection. Call or write for full details and prices.

DOPPLER SYSTEMS, INC.

5540 E. Charter Oak, Scottsdale, AZ 85254
(602) 998-1151

January 1985
SUPER deal with the publisher allows us to drop the price of the Bill Orr RADIO HANDBOOK to the low, low price of just $12.95!

RADIO HANDBOOK by William Orr, W6SAI

Some selected subjects covered include:
- Electronic Fundamentals
- Semiconductor Devices
- Vacuum Tube Principles
- Special Microwave Tubes
- Radio Frequency Power Amplifiers
- SSB Transmission and Reception
- Amplification of RF Energy
- Frequency Synthesis
- FM and Repeaters
- RFI
- Equipment Design
- Transmitter Keying and Control
- Power Supplies
- Radiation and Propagation
- The Transmission Line
- Antenna Matching Systems
- HF General Purpose Antennas
- Fixed Directive Arrays
- Rotary Beam Antennas
- VHF & UHF Antennas
- Test Equipment
- The Oscilloscope
- Construction Practices
- Electronics Math and Calculations

This book certainly is one of the finest reference sources available today. The 22nd edition reflects the very latest in state-of-the-art techniques in a comprehensive single source reference book. Invaluable for hams, electronics technicians, design engineers, and hobbyists alike. Over 1,000 pages of information found in earlier editions plus more on antennas, amplifiers, theory, and semiconductors to name just a few of the updated sections. The Radio Handbook is chock-full of practical, tested projects that run from high powered RF amplifiers and state-of-the-art equipment to “Weekender” type projects to upgrade overall station performance. This book will be of interest to all levels of electronic expertise. At this special price, you can’t afford to pass up a value like this. Order yours today. 1,136 pages. ©1981. 22nd edition.

$12.95

Please add $3.50 to cover shipping & handling.

This is the very latest edition. No new edition is about to be issued. This is not a close out.
AMTOR code converter

The AMTOR-10A unit from HAL allows transmission and reception of radio teleprinter signals with the added feature of error correction. The AMTOR-10A is a code and speed (baud rate) converter unit that, when used with the CWR6850, allows 7-unit AMTOR code communications at 100 baud while retaining communications capability with the standard 5-unit BAUDOT code from 20 to 100 baud and the 8-unit ASCII code from 75 to 200 baud. The AMTOR-10A is designed to interface easily with the CWR6850 while retaining all the standard features of the unit, including CW operational capability. The price of the AMTOR-10A code converter is $395.00.

For further information contact HAL Communications Corporation, P.O. Box 365, Urbana, Illinois 61801.

Circle 133 on Reader Service Card.

 Microwave Test Equipment
RMSG Signal Generators
Manual tuning • 8-30
VDC input • 1 to 7 volt output to tuned detector • narrow band electrical tuning • 1, 3, 7-4.2 GHz.
$51.16 • 2, 2.3-2.45 GHz $61.16 • with battery clip and on off switch, 1-6, $35.95, $25.95.
RMVO Variable Attenuator
+12 VDC bias • 1 to -12 VDC tuning • 1"x1½" PCB • -1, 2, 1.25 GHz, $24.95 • -2, 1.8-2.1 GHz, $24.95.
RMVO Large Attenuator
10 to 60 DB, 1 to 6 GHz, $14.95. Also Test Antenna, Diode Detectors, Direct Proportional, and Line Stretches.
ROENSCHE MICRO WAVE
R.R. 1 Box 1666
915 North Main Street
January 1985
HOLIDAY CLEARANCE

I COM
HIGH QUALITY MODULES FOR REPEATERS, LINKS, TELEMETRY, ETC.

Hamtronic
117
Satellite T.V.

$895.00 complete

FACTORY DIRECT PRICING

Install it yourself and save $$$

- E-Z installation manual
- Pricing for our name brand equipment.
- How to find the birds in your area
- Dealer-Broker program, no investment, do not miss this money making opportunity

For complete info send $5.95 or call

PRECISION TECHNOLOGY
P.O. Box 852
Halesville, AL 35565
Phone: (205) 586-7919

This publication is available in microform from University Microfilms International.

Under the guidance of the "United States ATV Society," Amateur TV (FSTV-SSTV-FAX) is growing in activity. And, we've been promoting it now for over 18 years!

Sample Issue - Just $2.50 ppd.
Special Trial Subscription - $10.00.

Satellite T.V.

CADDELL COIL CORP.

35 Main Street
Poultney, VT 05764
802-287-4055

BALUNS

Get POWER to your antenna! Our Baluns are already wound and ready for installation in your transmatch or you may enclose them in a weatherproof box and connect them directly to the antenna. They are designed for 3.30 MHz operation. (See ARRL Handbook pages 199 or 620 for construction details.)

100 Watt (6.1, 9.1 or 11.1 impedance selectible) $8.50
Universal Transmatch KW (4.1 impedance) 12.50
Universal Transmatch KW (4.1 impedance) 15.00
Universal Transmatch KW (6.1, 9.1 or 11.1 selectible) 14.00
Universal Transmatch KW (6.1, 9.1 or 11.1 selectible) 16.50

Please send all reader inquiries directly.

Custom Making Lists on Listings of Amateur Radio Operator NAMES

Custom lists compiled to your specific location.
- Geographic by zip and/or state
- By license issue or expiration date
- Single site or tape

Total List 453,000 Price: $25/Thousand

Buckmaster Publishing

This publication is available in microform from University Microfilms International.

Tell 'em you saw it in HAM RADIO!
DO YOU KNOW WHERE TO FIND REAL BARGAINS on NEW and USED ELECTRONIC Equipment?
You’ll Find Them in the Nation’s No. 1 Electronic Shopper Magazine
NUTS & VOLTS
Now in Our 5th Year

Nuts & Volts is published MONTHLY and features:
NEW STATE-OF-THE-ART PRODUCTS • SURPLUS EQUIPMENT • USED BARGAINS • LOW COST AD RATES • PRIVATE AND COMMERCIAL CLASSIFIEDS • NATIONALcirculation • NEW product NEWS SECTION • AND A FREE CLASSIFIED AD WITH YOUR SUBSCRIPTION

SUBSCRIPTION RATES
☐ One Year - 3rd Class Mail ... $10.00
☐ One Year - 1st Class Mail ... $15.00
☐ One Year - Canada & Mexico (in U.S. Funds) ... $18.00
☐ Lifetime - 3rd Class Mail (U.S. Only) ... $35.00

ORDER NOW!
SEND: ☐ CHECK ☐ MONEY ORDER
☐ VISA ☐ MASTERCARD

TO: NUTS & VOLTS MAGAZINE
P.O. BOX 1111-H
PLACENTIA, CALIFORNIA 92670
(714) 632-7721

IF YOU’RE INTO ELECTRONICS, THIS MAGAZINE WILL SAVE YOU MONEY!

Free Antenna Accessories Catalog

☐ Coaxial Antenna Relays
Remotely select up to 9 antennas from your transmitter, using only one coaxial cable. Environmentalized, high power and low loss.

W2AU and W2DU Baluns
Our baluns, center insulators and insulators have been preferred for 20 years by Hams, industry, and the armed forces. Protect against TVI and lightning 1.8-200 MHz.

W2VS Antenna Traps
Add these traps to your dipole and get low SWR on 2 to 6 bands, depending on how many you add. Antenna wire and custom kits also available.

Send For Yours Today
Don't delay. Call or write today, and we will send you free literature which fully describes our Ham antenna accessory product line.
Dealer inquiries also welcome.

ORLANDO HAMCATION and COMPUTER SHOW
MARCH 8, 9, 10, ’85
AIR-CONDITIONED ORLANDO EXPO-CENTRE
500 WEST LIVINGSTON NEAR I-4 & HIGHWAY 50

REGISTRATION $5 advance, $7 at door under 14 free
SAT. FCC EXAMS, SAT. LADIES’ PROGRAM, HOURLY AWARDS

For swap tables, commercial booths, advance registration, or information, please send self addressed stamped envelope to:
HAMCATION CHAIRMAN
P.O. BOX 15142 • ORLANDO, FLORIDA • 32858

More Details? CHECK — OFF Page 128

January 1985 119
NO FRILLS—JUST LOW PRICES
CALL FOR SPECIAL PRICES ON—
KENWOOD
YAESU
ICOM
TEN-TEC

DAIWA METERS—KEYERS—AUDIO FILTERS
CUSHCRAFT LINE OF ANTENNAS

CALL TOLL FREE
1-800-433-3203

IN TEXAS CALL 817-496-9000
5635 EAST ROSEDALE
FT. WORTH, TEXAS 76112

TS830/930 FILTERS
We have received many unsolicited reports praising the performance of both the TS830s and the TS930S after installation of Fox Tango filters. In addition, these filters have received favorable Product Reviews in QST (9/83 and 4/83), were the subject of a major article: Strangle ORM in your TS830S in 73 Magazine (6/83); and many reports in other national publications. One of the major advantages of our 2.1 kHz SSB matched pair is that they improve VFT operation that the need for (and expense of) CW filters is eliminated for all but the most dedicated CW operators. For the latter, our 400 Hz CW matched pair is the finest available. Get the best from Fox Tango.

COMPLETE MATCHED PAIR FILTER KITS
WITH ALL NEEDED PARTS
FTK830.2.1 or FTK890.2.1 for SSB and CW $170/pair
FTK830.400 or FTK890.400 for dedicated CW users $170/pair
FTK830.2.1/400 or FTK890.2/1400 (both of above parts) $300/pair
IMMEDIATE SHIPMENT — One Year Warranty

FOX TANGO CORPORATION
Box 15944 H. W. Palm Beach, FL 33416
(305) 683-9567

TS830/930 FILTERS

TS830/930 FILTERS
Join AMSAT...Today

Amateur Radio Satellite OSCAR 10 provides:

- A New Worldwide DX Ham Band
 open 10 hours a day.

- Rag Chew With Rare DX Stations
 in an uncrowded, gentlemanly fashion.

- Popular Modes In Use:
 SSB, CW, RTTY, SSTV, Packet

- Full Operating Privileges
 open to Technician Class
 licensee or higher.

Other AMSAT Membership Benefits:

ORBIT Magazine Subscription:
Dependable technical articles, satellite news, orbital elements, product reviews, DX news, and more.

Satellite Tracking Software
Available for most popular PCs.

QSL Bureau, AMSAT Nets, Area Coordinator
Support, Forum Talks

Construction of Future Satellites For Your
Enjoyment!

AMSAT Membership is $24 a year, $26 outside North America. VISA and MC accepted.

AMSAT
P.O. Box 27
Washington, DC 20044
301 589-6062

POCKET SIZE FAST CHARGER
Fast charge your hand held radio battery packs to full capacity in as little as 45 minutes. Example: Fully charge I-COM BP-3 in 30 to 45 minutes.

VERSATILE - Works on 115V. A.C. or 12V. to 24V. D.C. and turns itself off automatically when battery reaches full capacity. Use at home or in auto, airplane, boat, R.V. or anywhere there is house current or 12V. to 24V. D.C. available.

FEATURES -
1. New Hybrid thick film integrated circuit developed for this charger contains all measuring and control circuitry in a single chip. Laser trimmed precision resistors.
2. Small size - can be carried in your pocket.
3. High impact molded plastic case.
4. Reverse polarity protection built in.
5. Internally fused.
6. Full 1 year warranty.
7. Completely solid state circuit measures charge constantly and turns off automatically when cells reach full capacity.
8. Charges at optimum rate without any perceptible heating of cells.

Price $65.00
Dealer inquires invited

19780 Temescal Canyon Mail orders to:
Corona, Calif. 91719 P.O. Box 2679
(714) 734-6179 Corona, Calif. 91718

PACKET RADIO THRU SOFTWARE
AX.25 Protocol

Synchronous Packet Radio Using the Software
Approach AX.25 Protocol TRS-80 Model 1,3 and 4

By Bob Richardson, W4UCH

You can get on Packet Radio two ways. One is with a sophisticated 'black box'. The other is by making your computer act like a 'black box' by programming it in a high level machine language code. W4UCH has written a machine language program for the Radio Shack TRS-80 Models 1, 3 and 4 computer (Model 4 works with Model 3 disk while in Model 3 mode). This book has twelve chapters plus seven appendices that take you step by step through the process of setting your computer to first convert the digital information into a usable format and then to decode the information.

© 1984 3rd edition

Softbound $21.95

Please add $3 for shipping

HAM RADIO'S BOOKSTORE
Greenville, NH 03048

January 1985
Meet your amateur radio friends from all over the world at the internationally famous Dayton HAMVENTION.

Seating will be limited for the Grand Banquet and Entertainment on Saturday evening so please make reservations early. Noted humorist Jean P. Sheperd, K2ORS, will return for his third appearance as Banquet Speaker. His presentation promises to be outstanding in an all new banquet program format.

If you have registered within the last 3 years you will receive a brochure in January. If not, write Box 44, Dayton, OH 45401.

Nominations are requested for Radio Amateur of the Year, Special Achievement and Technical Excellence Awards. Nomination forms are available from Award Chairman, Box 44, Dayton, Ohio 45401 and must be returned by April 1, 1985.

For special motel rates and reservations write to Hamvention Housing, Box 1288, Dayton, OH 45402. NO RESERVATIONS WILL BE ACCEPTED BY TELEPHONE.

FCC EXAMS

All elements to be administered. Advanced registration only. DEADLINE TO REGISTER: March 27, 1985.

- $4.00 check or money order made payable to ARRL/VEC
- Completed 610 form with copy of license
- Indicate preferred sitting time: Sat. 9 a.m., Sat. 1 p.m., Sun. 9 a.m.

Mail registration to: FCC Exams, 203 Bellewood St. Dayton, OH 45406

All other inquiries write Box 44, Dayton, OH 45401 or phone (513) 433-7720.

Flea Market spaces will be sold in advance ONLY. NO spaces sold at gate. Entrance for set-up available starting Thursday. Special Flea Market telephone (513) 223-0923.

Bring your family and enjoy a great weekend in Dayton.

Sponsored by
The Dayton Amateur Radio Association, Inc.
spectrum utilization: a challenge to technology

In almost every segment of the radio spectrum we’re faced with increasing demands for frequency assignments, greater bandwidths, and increased radiated power (range/reliability). Some specific segments groan under the burden: the AM and FM broadcast bands, the 40 and 20-meters Amateur bands, VHF and UHF business radio, and the 2 GHz microwave area. Spectrum conservation and improved utilization techniques have become a high priority for practically every user of the airwaves.

Until now the methods used to squeeze more signals into the same tight space have been relatively simple: use SSB, reduce FM deviation, improve antenna directivity, and so on. But more sophisticated techniques will be needed if we’re to make more efficient use of the spectrum.

Fortunately, in 1948 a thoughtful scientist — Claude Shannon at Bell Laboratories — developed a theory of information transmission that showed the relationship between speed, bandwidth, and time in a usable mathematical form. Dr. Shannon’s work made possible the coding concepts that permit more effective utilization of spectrum space. There are several ways in which RF signals can share the same “space”:

- time sharing
- frequency sharing
- different antenna polarizations
- coding

The goal of each of these techniques is to yield a signal-to-noise ratio that conveys information (a change of data) usable to the data sink — which is frequently a person, but could also be an unattended data terminal. Indeed, time, frequency, and polarity diversity are all forms of coding.

Modern computer technology gives us options with respect to code complexity, efficiency, and speed that were simply not available when our present modes of communications were being developed. The basic objective of data coding for spectrum efficiency is to omit as much data as possible while still conveying relevant information.

One of the more successful techniques for bandwidth reduction is being used by some computer manufacturers to permit very high resolution graphics on conventional RGB displays. This process is called bit-plane encoding. In this process a signal of 2^n possible amplitudes is transformed into n signals, each of which has only two amplitudes. The 2^n amplitudes subsequently consist of an n-bit binary word at the output of an appropriate quantizer. This process has demonstrated that it can reduce by six times the bandwidth needed to transmit high quality, full motion TV images. Manufacturers are now developing dedicated digital signal processing chips to perform the necessary bandwidth compression and S/N ratio enhancement functions.

If we remember that information requires a change of data, then even more bandwidth reduction is possible by further reducing, or eliminating, redundant data. AT&T adopted this technique, — called “conditional replenishment” — to make possible the “picture-phone.” In this approach, a TV frame is stored in a memory and compared against a subsequent frame. Only the parts that are different are transmitted. It was found that a bandwidth of less than 100 kHz could convey an acceptable moving picture using this method. If variable persistence and digital background refresh are available at the receiving end, the data needs to be sent even less frequently. Think of how much redundant data is conveyed in the Amateur bands — background noise, non-linear distortion, excess power when band conditions are good, and so on. If Amateur SSB/AM rigs just had some digital storage and “variable persistence” audio output stages . . . !

Some TV receivers utilizing these techniques may be available by next year, but the real challenge remains a general commitment by the electronic industry to more frequent implementation of modern techniques.

Since much of the processing needed to effect significant bandwidth reduction is very complex, most Amateurs will have to wait until the chips are readily available before they’ll be able to actually use these techniques in hardware.

Even more efficient than these techniques, but still years away from Amateur implementation, are mutually adaptive data links. This approach enables both ends of the link to regularly adjust their own performance to accommodate the predetermined acceptable data quality.

Although this column is reserved for discussions of technological trends
with implications for Amateur Radio, the need for better spectrum management is so urgent that I can’t help but offer a few comments about ways in which each of us can help assure better use of our present bands:

- **Use the minimum power necessary.** If conditions are good, settle for S9 on the other end. Remember that the mike gain is as useful as the volume control.
- **Use filters — keep out-of-band harmonics and spurious responses to a minimum.** Upgrade the internal filters (crystal/mechanical) in your rig to units with steeper skirts if they’re available. Audio filters and response shaping can be useful in both the microphone and speaker circuits at your station.
- **When possible, use directive antennas and keep the main lobe on the station you’re working.** Never mind proving that you can work Lonely Island off the back of your beam.
- **Operate your rig within its limits.** If you run a rig rated at 1 kW, keep it at 1 kW. Pushing it to 1500 watts will only generate distortion, won’t help you at the receiving end, and will probably cause the stations on either side of your frequency to miss the opportunity altogether.

Someday the electronic capabilities I’ve discussed will compensate for the effects of individual operating habits on the spectrum. Until that time comes, solving the problem of effective spectrum utilization will be up to us.

ham radio

WANTED: COVER ART

ham radio is looking for a freelance artist to prepare cover art on assignment. Must be licensed amateur. Send 3 samples of work (photocopy OK) to Dorothy Rosa, KALBO, Assistant Editor, *ham radio*, Greenville, N. H. 03048.

TIME TO TALK ON A TEN-TEC TALKIE

Made in the U.S.A. And it’s priced right.

The Ten-Tec 2591 offers everything you’ve ever wanted in a 2-meter handheld.

- Memory Lockout permits the scanner to temporarily bypass channels for quick lockout of busy frequencies, yet retain them in memory for normal operation on demand
- 10 Memories with stored offset. Channel 0 accepts any non-standard offset
- Modifiable Band Scan without complete reprogramming. Scan any section of the band within user defined upper and lower limits in steps of 5, 10, 15, 25, or 30 kHz.
- Change step size, upper and lower limits independently. Manual Scan also up or down, in 5 kHz steps • Selectable Skip or Hold • 2.5 Watts or 4 Watts • Covers 143.5-148.995 MHz • LCD Readout with Back Light • Quick-Release 450 mAh Ni-CAD Battery Back • 16-Key Dual Tone Encoder, built-in • LED shows battery status and transmit mode • Designed and Manufactured in Tennessee.

And it carries the famous TEN-TEC one year warranty. Put it to work for excellent 2 meter performance.

ANTECK, INC.

STAINLESS STEEL WHIP • FIBERGLASS LOADING COIL • PATENT APPLIED NO COILS TO CHANGE • LESS THAN 1.5 VSWR ENTIRE TUNING RANGE • TUNE 1.2 TO 30 MHZ FROM THE OPERATOR'S POSITION • FAST AND SLOW SCAN RATES

The Model M7-1RT mobile antenna tunes 3.2 to 30 MHz inclusive. 750 watts CW, 1500 watts PE PEP for hams, military, MARS, CAP, and commercial service. Center loaded for high efficiency. Enables tuning to exact resonance to wanted frequency. Allows full output from solid state transmitters. No worry about reduced output from shut down circuits. Output ion unaffected by moisture and the elements. Tuned by a control box at the operator's position. Main section contains a double action hydraulic cylinder driven by two miniature hydraulic pumps and 10 volt DC motors for positive control. No creeping during operation or mobile motion. Can be removed up to 500 ft. from antenna.

ANTECK, INC. Route 1, Box 415 Hansen, Idaho 83334 208-423-4100

ANALYSIS, INC.

Office Hours: Mon-Thurs 8-5 MST.

ANTECK, INC.

STAINLESS STEEL WHIP • FIBERGLASS LOADING COIL • PATENT APPLIED NO COILS TO CHANGE • LESS THAN 1.5 VSWR ENTIRE TUNING RANGE • TUNE 1.2 TO 30 MHZ FROM THE OPERATOR’S POSITION • FAST AND SLOW SCAN RATES

The Model M7-1RT mobile antenna tunes 3.2 to 30 MHz inclusive. 750 watts CW, 1500 watts PE PEP for hams, military, MARS, CAP, and commercial service. Center loaded for high efficiency. Enables tuning to exact resonance to wanted frequency. Allows full output from solid state transmitters. No worry about reduced output from shut down circuits. Output ion unaffected by moisture and the elements. Tuned by a control box at the operator's position. Main section contains a double action hydraulic cylinder driven by two miniature hydraulic pumps and 10 volt DC motors for positive control. No creeping during operation or mobile motion. Can be removed up to 500 ft. from antenna.

ANTECK, INC. Route 1, Box 415 Hansen, Idaho 83334 208-423-4100
California

<table>
<thead>
<tr>
<th>Store Name</th>
<th>Address</th>
<th>Contact Phone Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>C & A ROBERTS, INC.</td>
<td>18511 HAWTHORN BLVD. TORRANCE, CA 90504</td>
<td>213-370-7451</td>
</tr>
<tr>
<td>FONTANA ELECTRONICS</td>
<td>8628 SIERRA AVENUE FONATA, CA 92335</td>
<td>714-825-7725</td>
</tr>
<tr>
<td></td>
<td>714-825-7725 The Largest Electronics Dealer in San Bernardino County.</td>
<td></td>
</tr>
<tr>
<td>JUN'S ELECTRONICS</td>
<td>3919 SEPPLEDIVA BLVD. CULVER CITY, CA 90230</td>
<td>213-390-8003</td>
</tr>
<tr>
<td></td>
<td>800-882-1343 Trades Hablo Espanol</td>
<td></td>
</tr>
</tbody>
</table>

Connecticut

<table>
<thead>
<tr>
<th>Store Name</th>
<th>Address</th>
<th>Contact Phone Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>HATRY ELECTRONICS</td>
<td>500 LEDYARD ST. (SOUTH) HARTFORD, CT 06114</td>
<td>203-527-1881 Call today. Friendly one-stop shopping at prices you can afford.</td>
</tr>
</tbody>
</table>

Delaware

<table>
<thead>
<tr>
<th>Store Name</th>
<th>Address</th>
<th>Contact Phone Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMATEUR & ADVANCED COMMUNICATIONS</td>
<td>302 CONCORD PIKE WILMINGTON, DE 19803</td>
<td>(302) 478-2757 Delaware's Friendliest Ham Store.</td>
</tr>
<tr>
<td>DELAWARE AMATEUR SUPPLY</td>
<td>71 MEADOW ROAD NEW CASTLE. DE 19720</td>
<td>302-328-7728 800-441-7000 Icom, Ten-Tec, Microlog, Yaesu, Kenwood, Santecc, KDK, and more. One mile off I-95, no sales tax.</td>
</tr>
</tbody>
</table>

Florida

<table>
<thead>
<tr>
<th>Store Name</th>
<th>Address</th>
<th>Contact Phone Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMATEUR ELECTRONIC SUPPLY</td>
<td>1898 DREW STREET CLEARWATER, FL 33575</td>
<td>813-461-4267 Clearwater Branch West Coast's only full service Amateur Radio Store. Hours M-F 9-5:30, Sat. 9-3</td>
</tr>
</tbody>
</table>

Illinois

<table>
<thead>
<tr>
<th>Store Name</th>
<th>Address</th>
<th>Contact Phone Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMATEUR ELECTRONIC SUPPLY</td>
<td>621 COMMONWEALTH AVE. ORLANDO, FL 32803</td>
<td>305-894-3238 Fia. Wats: 1 (800) 432-9424 Outside Fia: 1 (800) 327-1917 Hours M-F 9-5:30, Sat. 9-3</td>
</tr>
<tr>
<td>AMATEUR RADIO CENTER, INC.</td>
<td>2805 N. E. 2ND AVENUE MIAMI, FL 33137</td>
<td>305-573-8383 The place for great dependable names in Ham Radio.</td>
</tr>
<tr>
<td>ERICKSON COMMUNICATIONS, INC.</td>
<td>5456 N. MILWAUKEE AVE. CHICAGO, IL 60650</td>
<td>312-631-5181 Hours: 9:30-5:30 Mon, Tu, Wed & Fri; 9:30-8:30 Thurs: 9:00-3:00 Sat.</td>
</tr>
</tbody>
</table>

Kentucky

<table>
<thead>
<tr>
<th>Store Name</th>
<th>Address</th>
<th>Contact Phone Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMATEUR ELECTRONIC SUPPLY</td>
<td>16 HANSOM ROAD ANDOVER, MA 01810</td>
<td>617-475-7831 Bezels, binding posts, capacitors, condensers, chokes, coils, ceramics, H.V. connectors, plate caps, hardware knobs, dials, scopes and grid dippers. Inquire SASE or visit.</td>
</tr>
</tbody>
</table>

Massachusetts

<table>
<thead>
<tr>
<th>Store Name</th>
<th>Address</th>
<th>Contact Phone Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMATEUR ELECTRONIC SUPPLY</td>
<td>16 HANSOM ROAD ANDOVER, MA 01810</td>
<td>617-475-7831 Bezels, binding posts, capacitors, condensers, chokes, coils, ceramics, H.V. connectors, plate caps, hardware knobs, dials, scopes and grid dippers. Inquire SASE or visit.</td>
</tr>
</tbody>
</table>

Michigan

<table>
<thead>
<tr>
<th>Store Name</th>
<th>Address</th>
<th>Contact Phone Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENCON PHOTOVOLTAICS</td>
<td>1000 SCHOOLCRAFT RD. LIVONIA, MI 48150</td>
<td>313-525-1860 Amateur Radio, Repeaters, Satellite, Computer applications. Call Paul WD8aho</td>
</tr>
</tbody>
</table>

New Hampshire

<table>
<thead>
<tr>
<th>Store Name</th>
<th>Address</th>
<th>Contact Phone Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMATEUR ELECTRONIC SUPPLY</td>
<td>1072 N. RANCHO DRIVE LAS VEGAS, NV 89106</td>
<td>702-647-3114 Dale Porray "Squeak." AD7K Outside Nev: 1 (800) 634-6227 Hours M-F 9-5:30, Sat. 9-3</td>
</tr>
<tr>
<td>JUN'S ELECTRONICS</td>
<td>460 E. PLUMB LANE — 107 RENO, NV 89502</td>
<td>702-827-5732 Outside Nev: 1 (800) 648-3962 Icom — Yaesu Dealer</td>
</tr>
</tbody>
</table>

New York

<table>
<thead>
<tr>
<th>Store Name</th>
<th>Address</th>
<th>Contact Phone Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>BARRY ELECTRONICS</td>
<td>512 BROADWAY NEW YORK, NY 10012</td>
<td>212-925-7000 New York City's Largest Full Service Ham and Commercial Radio Store.</td>
</tr>
</tbody>
</table>

Nevada

<table>
<thead>
<tr>
<th>Store Name</th>
<th>Address</th>
<th>Contact Phone Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMATEUR ELECTRONIC SUPPLY</td>
<td>1072 N. RANCHO DRIVE LAS VEGAS, NV 89106</td>
<td>702-647-3114 Dale Porray "Squeak." AD7K Outside Nev: 1 (800) 634-6227 Hours M-F 9-5:30, Sat. 9-3</td>
</tr>
<tr>
<td>JUN'S ELECTRONICS</td>
<td>460 E. PLUMB LANE — 107 RENO, NV 89502</td>
<td>702-827-5732 Outside Nev: 1 (800) 648-3962 Icom — Yaesu Dealer</td>
</tr>
</tbody>
</table>

New York

<table>
<thead>
<tr>
<th>Store Name</th>
<th>Address</th>
<th>Contact Phone Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>BARRY ELECTRONICS</td>
<td>512 BROADWAY NEW YORK, NY 10012</td>
<td>212-925-7000 New York City's Largest Full Service Ham and Commercial Radio Store.</td>
</tr>
</tbody>
</table>
Amateur Radio Dealer

Ohio

AMATEUR ELECTRONIC SUPPLY
28940 EUCLID AVE
WICKLIFFE, OH (CLEVELAND AREA)
44092
216-585-7388
Ohio Wats: 1 (800) 362-0290
Outside Ohio: 1 (800) 321-3594
Hours M-F 9-5:30, Sat. 9-3

UNIVERSAL AMATEUR RADIO, INC.
1280 AIDA DRIVE
REYNOLDSBURG (COLUMBUS), OH
43068
614-866-4267

Pennsylvania

HAMTRONICS,
DIV. OF TREVOS ELECTRONICS
4033 BROWNSVILLE ROAD
TREVOS, PA 19047
215-357-1400
Same Location for 30 Years.

LaRUE ELECTRONICS
1112 GRANDVIEW STREET
SCRANTON, PENNSYLVANIA 18509
717-343-2124

THE VHF SHOP
BOX 349 RD 4
MOUNTAIN TOP, PA 18707
717-868-6565
Lunar, Microwave Modules, ARCOS, Astron, KLM, Tama, Tonna-F9FT, UHF Units/Parabolic, Sancet, Tokyo Hy-Power, Dentron, Mirage, Amphenol, Belden.

Texas

MADISON ELECTRONICS SUPPLY
1508 McKinney
HOUSTON, TX 77010
713-658-0268
Christmas?? Now??

Wisconsin

AMATEUR ELECTRONIC SUPPLY
4628 W. FOND DU LAC AVE.
MILWAUKEE, WI 53216
414-442-4200
Wats: 1 (800) 242-5195
Outside Wats: 1 (800) 242-5195
M-F 9:30-3, Sat. 9-3

The VHF Shop

July 27 thru Aug. 9, 1985
Our 26th year
TAKE A VACATION WITH A PURPOSE THIS YEAR
Join students from around the world at
OAK HILL ACADEMY
AMATEUR RADIO SESSION
Instructors CERTIFIED VE's
Over 25 years of successful teaching experience means upgrading is as easy as 1-2-3.
Your vacation is spent in the beautiful Blue Ridge Mountains of Virginia with expert instructors in friendly surroundings and with excellent accommodations.
Oak Hill also has a ham lab set up for all to use.
Courses offered are:
Novice to General
General or Tech to Advanced
Advanced to Extra
Learn - Don't just memorize the answers to the exam questions.

G. L. Peters, K4ONZ, Director
Oak Hill Academy, Amateur Radio Session
Box 43
Mount of Wilson, VA 24363
Name ____________________________
Address ____________________________
City/State/Zip ____________________________

NEW FROM TEN-TEC
MODEL 425 LINEAR AMPLIFIER
FULL AMATEUR POWER
1500 WATTS OUTPUT

Uses new EIMAC 3CX800A7 triodes in a grounded grid configuration. Maximum output power of 3 KW requires only 100 watts drive. Full QSK for CW and AMTOR use. Covers 160 through 15 meters (export mode covers 10 meters). Uses highly efficient tape wound hyper-sil transformer for cool operation under full load. Available along with the rest of the exciting line of TEN-TEC products from THE HAM STATION. Call today for more information.

For orders and quotes (800) 523-7731
For other information (812) 422-8252
Indiana orders (812) 422-8231

the HAM STATION
220 N. Fulton Ave. • Evansville, IN 47710

NEW FROM TEN-TEC
MODEL 425 LINEAR AMPLIFIER
FULL AMATEUR POWER
1500 WATTS OUTPUT

Uses new EIMAC 3CX800A7 triodes in a grounded grid configuration. Maximum output power of 3 KW requires only 100 watts drive. Full QSK for CW and AMTOR use. Covers 160 through 15 meters (export mode covers 10 meters). Uses highly efficient tape wound hyper-sil transformer for cool operation under full load. Available along with the rest of the exciting line of TEN-TEC products from THE HAM STATION. Call today for more information.
ADVANCED ELECTRONIC APPLICATIONS, INC.
P.O. Box C-2160,
Lynnwood, WA 98036
(206) 775-7373
Telex: 152571 AEA INTL

AEA Brings you the Breakthrough!

Don't Be Left Out in the Cold with the Russian Woodpecker
GET A MOSCOW MUFFLER™

Another first from AEA. The Woodpecker Blanker, WB-1 really works. This unit effectively blankes the pulsing interference of the Russian Woodpecker. Two versions are available, the WB-1 for use with communication receivers and WB-1C for use with all popular transceivers.

While Supply Lasts

This extremely useful accessory is designed for direct insertion between your receiver (or transceiver) and the antenna. It is both MORE EFFECTIVE than I.F. type blankers and requires NO MODIFICATIONS to your receiver! The unit operates from a 13 VDC power source at less than 575 mA. (AEA AC wall unit AC-1 will operate the blanker.)

The blanker works well on both CW and SSB modes that are being interfered with by a woodpecker. Controls on the front panel include: four push button switches, a synchronize control and a width control. The WB-1 also features a low-noise untuned broadband 6 db gain pre-amplifier which can be selected with or without the blanker enabled. The WB-1C uses the same circuitry but includes a carrier operated relay (COR). This provides protection to the receiver section during transmissions from the attached transceiver.

For more details, write for our latest catalog or visit your favorite dealer.

Prices and Specifications subject to change without notice or obligation.

PRODUCT REVIEW/New PRODUCT

* Please contact this advertiser directly.

Limit 15 inquiries per request.

Please use before February 28, 1985.
Presenting two small cases for a lot of mobile power.

You won't find a 45-watt, 2-meter FM mobile rig that's built smaller than the Yaesu FT-270R.

Nor will you find a dual-band FM mobile that offers the crossband full-duplex capability found in the 25-watt Yaesu FT-2700R.

It shouldn't be surprising. We've been coming up with a lot of innovative concepts lately.

The FT-270R measures just 2 x 6 x 7 inches. Conveniently fitting its high-power punch into many small spaces of your car. Places where other 45-watt mobiles just won't fit.

The FT-2700R is small too. Smaller than other dual-banders. But with one big difference: a "DUP" button. Push it, and you're operating full duplex. 2 meters on one VFO, 440 MHz on the other. Each at 25 watts. So you can simultaneously transmit and receive in true telephone style.

Once installed, you'll find the FT-270R and the FT-2700R equally simple to operate. Just turn the rig on, dial up a frequency, select offset or duplex split, and you're on the air.

Each rig gives you 10 memories for storing your favorite frequencies. Dual VFO capability. A clean, uncluttered LCD display for easy readout. Push-button jumps through the band in 1 MHz steps. Band scanning with programmable upper and lower limits. And priority channel operation.

You don't even have to take your eyes off the road to determine your operating frequency and memory channel. An optional voice synthesizer announces them both at the push of a button on the microphone. The FT-2700R announces both your 2-meter and 440 MHz operating frequencies.

Also, tone encode and encode/decode capability is programmable from the front panel, using an optional plug-in board.

So when you need a lot of power in a compact mobile radio, discover Yaesu's FT-270R and FT-2700R. There's nothing else like them on the road.

Yaesu Electronics Corporation
601 W 11th Ave. Paramus, NJ 07652 (201) 660-8000
Yaesu Cincinnati Service Center
9010 Gulf Park Dr. Hamilton, OH 45011 (513) 874-3100

Prices and specifications subject to change without notice.
TM-211A DCS... a new turn in 2 meters/70 cm.

TM-211A/411A

The TM-211A 2 meter and the TM-411A 70 cm mobiles combine ultra compact size with the added feature of a 7 position adjustable front panel, allowing you maximum flexibility in both home and automotive installations! These compact transceivers also feature Kenwood's innovative DCS (Digital Code Squelch) circuit, that allows you to program your transceiver to respond only to transmissions from stations whose radios transmit a pre-selected digital code. Both radios deliver 25 big watts of R.F. power on Hi and 5 watts (approximately) on LO power. Dual digital VFO's, built-in, highly visible yellow LED display, five memories plus, COMM Channel and DCS add to this impressive array of features. The TM-211A and TM-411A each boast high performance receive and transmit specifications and an external high quality speaker that provides unsurpassed sound quality. Mounting flexibility is also a feature. Yes, all these features, plus priority watch, memory and programmable band scan, microphone test function, audible “beeper” for operation confirmation, repeater offset switch and reverse switch. The TM-211A and TM-411A offer you the best in 2 meters and 70 cm operations!

Optional accessories:
- CD-10 Call Sign Display
- PS-430 D.C. Power Supply
- KPS-7A Power Supply
- MC-55 Mobile Microphone with Time-Out Timer
- MA-4000 Dual Band Mobile Antenna with Duplexer
- SW-100A/B SWR/Powter meters
- PG-3A Noise Filter

More information on these products is available from authorized dealers of Trio-Kenwood Communications, 1111 West Walnut Street, Compton, CA 90220.

CD-10/DCS

The optional CD-10 helps maximize your use of Kenwood's revolutionary new signalling concept, DCS (Digital Code Squelch). DCS uses digital code information to open squelch on a receiver that has been programmed to accept the specific code being transmitted. Up to 100,000 different 5-digit codes are possible, allowing each station to have its own "private call" code or to respond to a "group call" or "common call" code. Program your call sign (up to 6 digits) in the ASCII code and it is automatically transmitted when the transmit key is depressed. The CD-10 stores the calling station's call sign in its memory.

for future reference, and it is also displayed on the L.C.D. readout. The CD-10 can store call sign data of up to 20 stations, allowing you to quickly check for calls if you have been absent from your station, and review your contacts for logging purposes. The DCS/call sign data transmission system uses mark and space frequencies within the normal speech band width (compatible w/most repeaters).

TM-201A/401A

The extremely popular TM-201A 2 meter FM (25 watts, 142.000 to 149.900 MHz) and the TM-401A 70 cm FM (10 watts, 440-450 MHz) ultra compact mobile transceivers are also available.

Specifications and prices are subject to change without notice or obligation.