ham

 magazine

$\boldsymbol{\eta}$
focus on communications technology
simplified gamma matching • EME'ers: find the moon - sensitive field strength meter •IC low-pass filters

- full-performance Delta loop • high power RF switching with pin diodes • W1JR on VHF/UHF high power amplifiers - plus W6SAI, KØRYW, and THE GUERRI REPORT

High Performance Maximum Flexibility

The IC-745 is a full featured, high performance HF base station transceiver with a 100 dB dynamic range recelver. PLUS features usually found only in more expensive units.

Compare these exceptional Standard Features:

- $100 \mathrm{KHz}-30 \mathrm{MHz}$ Receiver
- 100 Watt RF output / 100\% Duty Cycle
- Passband Tuning AND IF Shift
- Adjustable Noise Blanker (width and level)
- Adjustable AGC
- Receiver Preamp
- 16 tunable Memories with lithium battery backup

- Wide selection of filters and filter combinations (opt.)
- Continuously adjustable transmit power
- $10 \mathrm{~Hz} / 50 \mathrm{~Hz} / \mathrm{KKHz}$ Tuning rates with MMHz band steps
- IC-HM12 Microphone with Up/Down Scan

Other Standard Features. Included as standard are many of the features most asked for by experienced ham radio operators: dual VFO's, RF speech compressor, tunable notch filter, program band scan, memory scan, all-mode squelch and VOX.

Options. IC-EX310 speech synthesizer, internal IC-PS35 power supply, external IC-PS15 or IC-PS30 system supply. IC-SM8 two-cable desk mic, EX241 marker, EX242 FM module, EX243 electronic keyer, IC-SM6 desk mic, and a variety of filters.

	-6dB Fllter	Center Wldth
Freq. MHz		

The IC-745 is the only transceiver today that has so much flexibility at a suprisingly low price...see it at your local ICOM dealer.

What To

Look For In A

 Phone PatchThe best way to decide what patch is right for you is to first decide what a patch should do. A patch should:

- Give complete control to the mobile, allowing full break in operation.
- Not interfere with the normal operation of your base station. It should not require you to connect and disconnect cables (or flip switches!) every time you wish to use your radio as a normal base station.
- Not depend on volume or squelch settings of your radio. It should work the same regardless of what you do with these controls.
- You should be able to hear your base station speaker with the patch installed. Remember, you have a base station because there are mobiles. ONE OF THEM MIGHT NEED HELP.
- The patch should have standard features at no extra cost. These should include programmable toll restrict (dip switches), tone or rotary dialing, programmable patch and activity timers, and front panel indicators of channel and patch status.
ONLY SMART PATCH HAS ALL OF THE ABOVE.

Now Mobile

Operators Can
Enjoy An

Affordable

 Personal Phone Patch. . .- Without an expensive repeater.
- Using any FM tranceiver as a base station.
- The secret is a SIMPLEX autopatch. The SMART PATCH.

SMART PATCH

 Is Easy To Install To install SMART PATCH. connect the multicolored computer style ribbon cable to mic audio, receiver discriminator. PTT, and power. A modular phone cord is provided for connection to your phone system. Sound simple? IT IS!
 1

SMART PATCH is all you need to turn your base station into a personal autopatch. SMART PATCH uses the only operating system that gives the mobile complete control. Full break-in capability allows the mobile user to actually interrupt the telephone party. SMART PATCH does not interfere with the normal use of your base station. SMART PATCH works well with any FM transceiver and provides switch selectable tone or rotary dialing, toll restrict, programmable control codes, CW ID and much more.

> To Take CONTROL with Smart Patch -Call 800-327-9956 Ext. 101 today.

How To Use SMART PATCH

Placing a call is simple. Send your access code from your mobile (example: 73). This brings up the Patch and you will hear dial tone transmitted from your base station. Since SMART PATCH is checking about once per second to see if you want to dial, all you have to do is key your transmitter. then dial the phone number. You will now hear the phone ring and son'eone answer. Since the enhanced control system of SMART PATCH is constantly checking to see if you wish to talk, you need to simply key your transmitter and then talk. That's right, you simply key your transmitter to interrupt the phone line. The base station automatically stops transmitting after you key your mic. SMART PATCH does not require any special tone equipment to control your base station. It samples very high frequency noise present at your receivers discriminator to determine if a mobile is present. No words or syllables are ever lost.

SMART PATCH Is All You Need To Automatically Patch Your Base Station To Your Phone Line.

Use SMART PATCH for:

- Mobile (or remote base) to phone line via Simplex base. (see fig 1.)
- Mobile to Mobile via interconnected base stations for extended range. (see fig. 2.)
- Telephone line to mobiie (or remote base).
- SMART PATCH uses SIMPLEX BASE STA. TION EQUIPMENT. Use your ordinary base station. SMART PATCH does this without interfering with the normal use of your radio.

WARRANTY?

YES, 180 days of warranty protection. You simply can't go wrong.
An FCC type accepted coupler is available for SMART PATCH.

Digital Code Squelch...

TR-2600A

Kenwood's TR-2600A introduces DCS (Digital Code Squelch) circuitry, a signaling concept developed by Kenwood. DCS allows each station to have its own "private call" code or to respond to a "group call" or "common call" code. There are 100,000 different 5 -digit ASCII code combinations possible, You can program in call signs up to 6 digits in the ASCII code. When operating in the DCS mode, this information can then be automatically transmitted each time the transmit key is depressed. This revolutionary feature is only the beginning! The TR-2600A also sports a high impact plastic case, that is extra rugged and scuff-resistant. The molded-in color adds to the attractive appearance, The large L.C.D. display is easy to read in direct sunlight or in the dark with a convenient lamp switch. It displays transmit/receive frequencies, memory channels, and five arrow indicators for "F LOCK" frequency lock, "REV" repeater reverse, "PROG.S" programmed scan, "MS" memory scan, "ALERT.S" alert scan. A star indicates "MEMORY LOCK-OUT" is activated, and repeater offset indicated by "+, - S and M ". The TR-2600A has 10 memories, nine for simplex or transmit with frequency offset $\pm 600 \mathrm{kHz}$ and one (memory 0) for non-standard split frequencies. Memory scan and programmable band scan have the added convenience of "Time operated Resume" that stops on busy channel and holds for approximately 5 seconds, then resumes scanning, or "Carrier Operated Resume" that stops on busy channel and resumes when signal ceases. Memory scan, scans only those memories in which data is stored, and memory lock-out allows you to skip selected memory channels

without loss of data previously stored! Manual Scanning UP/ DOWN in $5-\mathrm{kHz}$ steps and programmable automatic band scan are also useful features. The TR2600A has a built-in "S" meter on the top panel which also indicates battery level when in transmit mode. Extended frequency coverage, $142.000-148.995 \mathrm{MHz}$ allows transmit capability in $5-\mathrm{kHz}$ steps for simplex or repeater operation on most MARS and CAP frequencies. Receive frequency coverage includes $140.000-159.995 \mathrm{MHz}$.

These features only tell part of the story. The TR-2600A also has keyboard frequency selection. built-in 16 -key autopatch encoder, "TX STOP" switch, HI (2.5)/LOW (300 mw) power switch. REV switch. "SLIDE-LOC" battery pack, high efficiency speaker, BNC antenna terminal, and all of this in an extremely compact and lightweight package!
Kenwood's TR-2600A, with
D.C.S., leads the way in high technology handheld transceivers!

Optional accessories:

- TU-35B built-in programmable sub-tone encoder
- ST-2 Base Stand
- MS-1 Mobile Stand
- PB-26 Ni-Cd Battery
- DC-26 DC-DC Converter
- HMC-1 Headset with VOX
- SMC - 30 Speaker Microphone
- LH-3 Deluxe Leather Case
- SC-9 Soft Case
- BT-3 AA Manganese/Alkaline Battery Case
-EB-3 External C Manganese/ Alkaline Battery Case
- RA-3, 5. Telescoping Antenna
- CD-10 Call Sign Display More information on the TR-2600A is available from authorized dealers of Trio-Kenwood Communications, 1111 West Walnut Street. Compton, CA 90220.

ham radio

volume 18, number 1
T. H. Tenney, Jr., W1NLB publisher

Rich Roses, K2RR
editor-in-chief and associate publisher

Dorothy Rosa, KA1LBO
assistant editor
Joseph J. Schroeder, WGJUV
Alfred Wilson, W6NIF
associate editors
Susan Shorrock editorial production
editorial review board
Peter Bertini, K1ZJH Forrest Gehrke, K2B Michael Gruchalla, P.E

Bob Lewis, W2EBS Mason Logan, K4M
Ed Wetherhold, W3NON
publishing staff
J. Craig Clark, Jr., N1ACH
assistant publisher Rally Dennis, KA1JWF
director of advertising sales
Dorothy Sargent, KA1ZK advertising production manager

Susan Shorrock
circulation manager
Therese Bourgault
circulation
Anne Fleming
cover
ham radio magazine is published monthly by Communications Technology tin Greenville, New Hampshire 03048-0498 Telephone 6038781441
subscription rates
: two years, $\$ 32.95$: three years, $\$ 44.95$
Canada and other countries iva surface marl:
one year, $\$ 22.95$; two years, $\$ 41.00$; three years, $\$ 58.00$ Europe, Japan, Africa (via Air Forwarding Service): one year, $\$ 28.00$ All subscription orders payable in U.S. Funds, via international postal money order or check drawn on US . bank
international subscription agents: page 122

Microfilm copies are available from University Microfilms, International

Ann Arbor, Michigan 48106 Order publication number 3076
Cassette tapes of selected articles from ham radio are available to the blind and physically handicapped 19 Walnut Street Philadelphia Pennsylvania 19107 Copyright 1984 by Communications Technology, Inc. Title registered at U.S Patent Office

Second-class postage paid at Greenville. New Hampshire 03048-0498 and at additional mating offices ASSN 01485989

Send change of address to ham radio Greenville. New Hampshire 03048-0498

contents

12 computer-aided interdigital
bandpass filter design
Jerry Hinshaw, N6JH, and Shahrokh Monemzadeh

29 basic gamma matching
Richard A. Nelson, WBOIKN
38 determining basic moon coordinates Warren Butler, W2WD

51 a sensitive field strength meter
William Vissers, K4KI
59 an integrated circuit low-pass filter Robert L. Martin, WB2KTG

67 the reduced-size, full-performance, corner-fed delta loop
V.C. Lear, G3TKN

75 ham radio techniques
Bill Orr, W6SAI
82 high power RF switching with pin diodes
J.R. Sheller, KN8Z

97 VHF/UHF world: power amplifiers, part 1
Joe Reisert, W1 JR

124 the Guerri report
Ernie Guerri, W6MGI

128	advertisers index
and reader service	114 ham mart
92 DX forecaster	8 presstop
122 flea market	5 reflections

EXCELLENCE 1984

EIMAC celebrates its 50th Anniversary with an extensive line of FM Broadcast Cavity Amplifiers.

Varian EIMAC celebrates 50 years of service to the broadcast industry with a spectrum of FM from a powerful 60 kW to a mini power 150 W solid state IPA.

The cost-effective path to a modern FM transmitter.
No one knows more about broadcast tubes and cavities than EIMAC. Our strong cavity development capability reduces RF engineering problems. EIMAC cavities are inexpensive and simple to use.

For more information call or write Varian EIMAC or contact any Varian Electron Device Group sales office worldwide.
EIMAC FM BROADCAST CAVITY
PRODUCT LINE

POWER	CAVITY	EIMAC TUBE
60 kW	CV- 2230	4 CX $30,000 \mathrm{G}$
30 kW	CV-2202	4 CX $20,000 \mathrm{C}$
25 kW	CV-2200	4 CX $20,000 \mathrm{~A}$
15 kW	CV-2210	4 CX $12,000 \mathrm{~A}$
10 kW	CV-2228	4 CX 7500 A
5 kW	CV- 2225	4 CX3500A
1.5 kW	CV-2220	3 CX1500A7
150 W	AM-2215A	Solid State

Varian EIMAC 301 Industrial Way San Carios, California 94070 Telephone: 415-592-1221
Varian AG
Steinhauserstrasse
CH-6300 Zug, Switzerland
Telephone: 042•23 2575

160 meters: spectrum under fire

Once again, Amateur Radio faces a major threat. We recently lost 80 MHz of the $2300-\mathrm{MHz}$ band to aeronautical telemetry. We lost the bottom 10 MHz of 450 MHz within 75 miles of the Canadian border. We lost 25 MHz of the 1200 MHz band to a NAVSAT (navigation satellite) service. We may yet lose the $220-\mathrm{MHz}$ band.* Now the $160-$ meter band is threatened. There's a very real possibility that a proposal to allocate the top half of 160 ($1.900-2.000 \mathrm{MHz}$, Amateur exclusive) to the offshore navigation service will be adopted by the FCC.

If you haven't been on 160 during the past few years, you might to surprised by what you would hear now. On any given evening you'll find plenty of stations conducting both CW and SSB ragchews. Later, the DX'ers appear.

Maybe you think 160 is not very important because you never operate there. But consider this: for every two stations on 160, there's that much more space available on one of the other bands for you to use. Ten years ago, 160 was considered the AMers' band and there was little activity on it. Not much commercial equipment covered the band. But now, try 160 during any major contest weekend; you'll find plenty of stations on and plenty of DX to be worked.

The FCC's proposal to move the offshore navigation service from $1.6-1.8 \mathrm{MHz}$ to $1.9-2 \mathrm{MHz}$ is predicated on the WARC decision to expand the AM broadcast band up to 1.705 MHz . Industry pundits have suggested that this expansion may end up being more of a boondoggle than a benefit to the consumer and the broadcast industry. There are millions of AM radios around - few cover the entire $1.6-1.750 \mathrm{MHz}$ band!

Some serious questions need to be answered. Can the broadcast industry and the general business community financially support additional AM stations? Competition is tough enough now. Will other users of the spectrum be adversely affected in any way? It's been said that the proposed expansion is the result of some political debt being repaid. Whatever the motive, the proposal seems to be a foolhardy and unnecessary exercise.

Now what about the offshore navigation interests? Serious questions have been raised about this service. Why is it necessary to have an MF radiolocation service when there are other, more precise methods of radiolocation such as LORAN-C and NAVSAT? How about using technology similar to that of the new microwave landing system currently being integrated into airports by the FAA? The bottom line is that offshore navigation has few, if any, credible reasons to be moved into the $1.9-2 \mathrm{MHz}$ slot. If the broadcast band is to be expanded only as far as 1.705 MHz , can anyone explain why, with selective receivers and stable transmitters, the offshore navigation interests cannot be accommodated between 1.705 and 1.8 MHz ? It's almost the same size as the allocation proposed, and offshore navigation already operates there. Furthermore, if offshore navigation interests are allowed to get their way, what's to stop other services from claiming Amateur frequencies on the basis of equally flimsy justification? The ultimate result would surely be a major disruption in Amateur Radio as we know it. Don't kid yourself. This could be just the beginning!

If you haven't already filed your comments with the FCC on the proposed 160-meter reallocation, now is the time to do so. Your comments must be received by the FCC before January 24, 1985. Be reasonable and concise. Give solid technical and operational reasons as to why this proposal should not be accepted. Write "Docket 84-874" at the top of each page of your comments, include five additional copies (eleven if you wish each commissioner to have one), and send them to THE SECRETARY, FCC, Washington, D. C. 20554.

It is a unique privilege that we have to be able to be included in the decision-making process proposals such as this. If you don't sit down right now, write up your comments, and send them in, then when the FCC accepts the offshore navigation proposal because of a lack of adequate opposition from the Amateur community, all that can be said is "Quityergripen!"

J. Craig Clark, N1ACH Assistant Publisher

[^0]
THE MOST AFFORDABLE REPEATER

ALSO HAS THE MOST IMPRESSIVE PERFORMANCE FEATURES
(AND GIVES THEM TO YOU AS STANDARD EQUIPMENT!)

JUST LOOK AT THESE PRICES!
$\frac{\text { Band }}{10 M, 6 M, 2 M, 220}$
440

$\frac{\text { Kit }}{\$ 680}$
$\$ 780$

Both kit and wired units are complete with all parts, modules, hardware, and crystals
CALL OR WRITE FOR COMPLETE DETAILS.
Also available for remote site linking, crossband, and remote base.

FEATURES:

- SENSITIVITY SECOND TO NONE; TYPICALLY 0.15 UV ON VHF, 0.3 UV ON UHF.
- SELECTIVITY THAT CAN'T BE BEATI BOTH 8 POLE CRYSTAL FILTER \& CERAMIC FILTER FOR GREATER THAN 100 dB AT $\pm 12 \mathrm{KHZ}$. HELICAL RESONATOR FRONT ENDS. SEE R144, R220, AND R451 SPECS IN RECEIVER AD BELOW.
- OTHER GREAT RECEIVER FEATURES: FLUTTERPROOF SQUELCH, AFC TO COMPENSATE FOR OFF-FREQ TRANSMITTERS, SEPARATE LOCAL SPEAKER AMPLIFIER \& CONTROL.
- CLEAN, EASY TUNE TRANSMITTER; UP TO 20 WATTS OUT (UP TO 50W WITH OPTIONAL. PA).

HIGH QUALITY MODULES FOR REPEATERS, LINKS, TELEMETRY, ETC.

HIGH-PERFORMANCE RECEIVER MODULES

- R144/R220 FM RCVRS for 2 M or 220 MHz . 0.15 uV sens.; 8 pole xtal filter \& ceramic filter ini-f, helical resonator front end for exceptional selectivity, more than -100 dB at $\pm 12 \mathrm{kHz}$, best available today. Flutter-proof squelch. AFC tracks drifting xmtrs. Xtal oven avail. Kit only \$138.
- R451 FM RCVR Same butfor uhf. Tuned line front end, 0.3 uV sens. Kit only $\$ 138$.
- R76 FM RCVR for $10 \mathrm{M}, 6 \mathrm{M}, 2 \mathrm{M}, 220$, or commercial bands. As above, but w/o AFC or hel. res. Kits only \$118.
Also avail w/4 pole filter, only $\$ 98 /$ kit.
- R110 VHF AM RECEIVER kit for VHF aircraft band or ham bands. Only \$98.
- R110-259 SPACE SHUTTLE RECEIVER, kit only $\$ 98$.

TRANSMITTERS

- 220 MHz . 220 MHz or adjacent bands. 2 Watts continuous, up to $21 / 2 \mathrm{~W}$ intermittent. $\$ 68 / \mathrm{kit}$.

- T451 UHF FM EXCITER 2 to 3 Watts on 450 ham band or adjacent freq. Kit only $\$ 78$.
- VHF \& UHF LINEAR AMPLIFIERS. Use on either FM or SSB. Power levels from 10 to 45 Watts to go with exciters \& xmtg converters. Several models. Kits from $\$ 78$.
- A16 RF TIGHT BOX Deep drawn alum. case with tight cover and no seams. $7 \times 8 \times 2$ inches. Designed especially for repeaters. \$20.

ACCESSORIES

- HELICAL RESONATOR FILTERS available separately on pcb w/connectors.

$$
\text { HRF-144 for } 143-150 \mathrm{MHz} \quad \$ 38
$$

HRF-220 for $213-233 \mathrm{MHz} \$ 38$ HRF-432 for $420-450 \mathrm{MHz} \$ 48$

- COR-2 KIT With audio mixer, local speaker amplifier, tail \& time-out timers. Only $\$ 38$.
- COR-3 KIT as above, but with "courtesy beep". Only $\$ 58$.
- CWID KITS 158 bits, field programmable, clean audio, rugged TTL logic. Kit only \$68.
- DTMF DECODER/CONTROLLER KITS. Control 2 separate on/off functions with touchtones*, e.g., repeater and autopatch. Use with main or aux. receiver or with Autopatch. Only $\$ 90$
- AUTOPATCH KITS. Provide repeater autopatch, reverse patch, phone line remote control of repeater, secondary control via repeater receiver. Many other features. Only \$90. Requires DTMF Module.
- NEW - SIMPLEX AUTOPATCH Use with any transceiver. System includes DTMF \& Autopatch modules above and new Timing module to provide simplex autopatch and reverse autopatch. Complete patch system only $\$ 200 / \mathrm{kit}$. Call or write for details.

NEW LOW-NOISE PREAMPS
 Hamtronics Breaks the Price Barrier!

*

No Need to Pay $\$ 80$ to $\$ 125$ for a GaAs FET Preamp.

FEATURES:

- Very Low Noise: 0.7 dB VHF, 0.8 dB UHF - High Gain: 18 to 28 dB , Depending on Freq. - Wide Dynamic Range for Overload Resistance
- Latest Dual-gate GaAs FET, Stable Over Wide Range of Conditions
- Rugged, Diode-protected Transistors
- Easy to Tune
- Operates on Standard 12 to 14 Vdc Supply
- Can be Tower Mounted

MODEL	TUNES RANGE		PRICE
LNG-28	26-30	MHz	\$49
LNG-50	46.56	MHz	\$49
LNG-144	137-150	MHz	\$49
LNG-220	210-230	MHz	\$49
LNG-432	400-470	MHz	\$49
LNG-40	30-46	MHz	\$64
LNG-160	150-172	MHz	\$64

ECONOMY PREAMPS

Our traditional preamps, proven in years of service. Over 20,000 in use throughout the world. Tuneable over narrow range. Specify exact freq. band needed. Gain $16-20 \mathrm{~dB} . \mathrm{NF}=$ 2 dB or less. VHF units available 27 to 300 MHz . UHF units available 300 to 650 MHz .

- P3OK, VHF Kit less case	$\$ 18$
P30W, VHF Wired/Tested	$\$ 33$
P. P432K, UHF Kit less case	$\$ 21$
- P432W, UHF Wired/Tested	$\$ 36$

- P30W, VHF Wired/Tested
- P432W, UHF Wired/Tested
$H E L \| A L E S O N A O R$ PREAMPS

Our lab has developed a new line of low-noise receiver preamps with helical resonator filters built in. The combination of a low noise amplifier and the sharp selectivity of a 3 or 4 section helical resonator provides increased sensitivity while reducing intermod and cross-band interference in critical applications. See selectivity curves at right. Gain = approx. 12 dB

Model	Tuning Range	Price
HRA-144	143.150 MHz	\$49
HRA-220	213-233 MHz	\$49
HRA-432	$420-450 \mathrm{MHz}$	\$59
HRA-()	150.174 MHz	\$69
HRA-()	$450-470 \mathrm{MHz}$	\$79

RECEIVING CONVERTERS TRANSMIT CONVERTERS

Models to cover every practical if \& if range to listen to SSB, FM, ATV, etc. NF $=2 \mathrm{~dB}$ or less

VHF MODELS	Antenna Input Range	Receiver Output
	28-32	144-148
	$50 \cdot 52$	28.30
Kit with Case $\$ 49$ Less Case \$39 Wired \$69	50.54	144.148
	144 -146	28.30
	145.147	28-30
	144-144.4	27-27.4
	$146 \cdot 148$	28-30
	$144 \cdot 148$	$50 \cdot 54$
	220-222	28.30
	220-224	$144-148$
	222-226	144.148
	220-224	50-54
	222-224	28-30
UHF MODELS	432-434	$28 \cdot 30$
Kit with Case \$59 Less Case \$49 Wired \$75	$435 \cdot 437$	$28 \cdot 30$
	$432 \cdot 436$	144.148
	$432-436$	50-54
	439.25	61.25

SCANNER CONVERTERS Copy 72-76, 135-$144,240-270,400 \cdot 420$, or $806-894 \mathrm{MHz}$ bands on any scanner. Wired/tested Only $\$ 88$.

SAVE A BUNDLE ON

 VHF FM TRANSCEIVERS!FM-5 PC Board Kit - ONLY \$178
complete with controls, heatsink, etc. 10 Watts, 5 Channels, for 2 M or 220 MHz .
 with speaker, knobs, connectors, hardware. Only $\$ 60$.

For SSB, CW, ATV, FM, etc. Why pay big bucks for a multi mode rig for each band? Can be linked with receive converters for transceive. 2 Watts output vhf, 1 Watt uhf.

VHF \& UHF LINEAR AMPLIFIERS. Use with above. Power levels from 10 to 45 Watts. Several models, kits from \$78.

LOOK AT THESE ATTRACTIVE CURVES!

Typical Selectivity Curves
of Receivers and Helical Resonators.

IMPORTANT REASONS WHY YOU SHOULD BUY FROM THE VALUE LEADER:

1. Largest selection of vhf and uht kits in the world.
2. Exceptional quality and low prices due to large volume.
3. Fast delivery, most kits shipped same day.
4. Complete, professional instruction manuals.
5. Prompt tactory service available and free phone consultation.
6. In business 21 years.
7. Sell more repeater modules than all other mirs. and have for years. Can give quality features for much lower cost.

- Call or Write for FREE CATALOG
- (Send \$1.00 or 4 IRC'c for overseas mailing)
- Order by phone or mail © Add \$3 S \& H per order (Electronic answering service evenings \& weekends) Use VISA, MASTERCARD, Check, or UPS COD.

65-E MOUL RD. • HILTON NY 14468 Phone: 716-392-9430 Hamtronics ${ }^{\text {a }}$ is a registered trademark

COMMERCTAL PRESSURE ON THE 220-MHZ BAND HAS BEEN RELIEVED by the FCC's assignment of the Land Mobile reserve frequencies between 806 and 947 MHz to that and other services November 21. In its far-reaching action, the Commission rejected both Mura's proposal for a new Personal Radio Service for 8 MHz and a comnercial proposal to allocate 896-898 and 941-943 MHz to an air-ground telephone service; GE's proposal for a Personal Radio Service in the 900 MHz region was dropped just a few weeks earlier.

12 MHz For Land Mobile And 12 MHz For Cellular Were Proposed in the November 21 meeting, while 6 MHz was reallocated to government and non-government fixed services and frequencies in the $944-947 \mathrm{MHz}$ band were reallocated for broadcast links and relays. As the " 220 Grab" was already in trouble from a variety of directions, this action is likely to effectively remove 220 from Land Mobile's sights. However, it's also just as likely to create a whole new set of user pressures on 220 MHz as well as other Amateur bands.

The Failure To Establish Any Form of A "Personal" Radio Service in the Land Mobile reserve frequencies is regarded as a severe defeat by would-be users and suppliers alike. The concept had been strongly supported by the GMRS* community. The next logical targets for a Personal Radio Service could now be $902-928 \mathrm{MHz}$, and (repeating history) 220 MHz ! The air-to-ground telephone proponents could, on the other hand, decide to go after $420-430 \mathrm{MHz}$ for their new service since that band has already gone to Land Mobile in Canada and is being protected for Canadian benefit along the Canadian border.

Whether Or Not These Fears Materialize, pressure on Amateur frequencies is expected to continue. The recent loss of the Amateur secondary allocation of $2310-2390 \mathrm{MHz}$ to flight telemetry is a case in point. The current stagnation of Amateur growth, coupled with apparent FCC coolness toward the Amateur Service, could spell trouble ahead.

TWO LONG-TERM ARRL DIRECTORS WERE UNSEATED in the League elections. In the New England Division Tom Frenaye, KlKI, soundly beat John Sullivan, WlHHR. In a closer race Linda Ferdinand, N2YL, beat out incumbent George Dieh1, W2IHA, in the Hudson Division. Incumbents won in all other races in which they ran; however two new Vice Directors, Rush Drake, W7RM, (Northwestern Division) and Wayne Overbeck, N6NB, (Southwestern Division) were both also elected.

EXTENSIVE AMATEUR OPERATION DURING A 1985 SPACE SHUTTLE mission now seems certain, according to word from NASA. It's to be on mission $51-F$, now scheduled for next April, though delays in the Shuttle schedule could push that back to July or even later. Two Amateurs are scheduled for mission $51-\mathrm{F}$, and it appears likely there'll be operation on a variety of modes and frequencies with some sort of repeater also possible.

ARRL'S LEAVING NEWINGTON AND A MAJOR PUSH FOR AMATEUR GROWTH were just two of the many significant items covered by the league's directors at their fall meeting. As for moving, the Management and Finance Committee was directed to conduct a study of possible sites, costs, timing, and impact on the membership and staff. Though not specified in the board minutes, Washington, D.C. is believed to be what's in mind. A growth of 50 , 000 new Amateurs a year for the next five years is the goal of a new plan devised by the League's General Manager, for implementation in 1985. (The number of individual U.S. licensed Amateurs has held almost steady at just over 400,000 for the past several years.) He's also been instructed to develop a parallel program to increase ARRL membership by 25,000 in 1985 , and by 20% per year thereafter. Other items included an apparent endorsement of simplex autopatches, a membership survey of further phone expansion on 7 MHz , and a Plans and Programs Committee study on the League becoming involved with maintenance of Amateur licensing records and "especially in the administration of special call sign requests...."

ARRL'S REQUEST FOR FCC PREEMPTION OF ANTENNA REGULATIONS, PRB-1, has been drawing a lot more favorable-and effective-Amateur comment. November 9 the FCC extended the comment cutoff date to December 24, and indications are that the flow of comments from Amateurs describing the problems they've had with local restrictions is continuing at a good rate.

What The Outcome Will Be, However, Remains To Be Seen. There have also been some well presented arguments from the other side of the fence, and the issue is one which does have two valid sides. Which side, if either, the Commissioners will take cannot be predicted.

FCC'S PROPOSAL TO REALLOCATE $1900-2000 \mathrm{KHZ}$ to radio direction finding is still open for comment. Just after last month's Presstop went to press, the commission granted an ARRL request for an extension of the Comment due date to January 24, 1985, with Reply Comments due March 11. An original and five copies sent to the Secretary, FCC, are needed for a formal filing; refer to PR Docket 84-874. (See "Reflections," page 5.)

440-450 MHZ IS FULL IN SOUTHERN CALIFORNIA, according to the Southern California Repeater and Remote Base Association (SCRRBA), with ali repeater channels filled. Unless SCRRBA's review of activity turns up some inactive systems, would-be repeater operators will have to go to 23 cm since 2 meters and 220 have long been filled in that area.
*General Mobile Radio Service. Formerly "Class A" CB, GMRS has developed into a sophisticated Personal FM Radio Service with frequencies in the $460-\mathrm{MHz}$ band.

MFJ'S MOST ADVANCED RTTY/ASCII/AMTOR/CW COMPUTER INTERFACE HAS FM, AM MODES, LED "SCOPE" TUNING ARRAY, RS-232 INTERFACE, VARIABLE SHIFT TUNING, $170 / 850 \mathrm{~Hz}$ TRANSMIT, TRUE MARK-SPACE DETECTION.

MFJ-1229
 :17995

FREE MFJ RTTY/ASCII/CW software tor C-64/VIC-20 Complete package includes MFJ-1229, software on tape cables for C-64/VIC-20.

Engineering, performance, value and features sets MFJ's most advaııced RTTY/ASCII/AMTOR/ CW computer interface apart from others.
FM (limiting) mode gives easy, trouble-free oper ation. Best for general use, oft-shift copy, drift ing signals, and moderate signal and QRM levels AM (non-limiting) mode gives superior performance under weak signal conditions or when there are strong nearby stations.
Crosshair mark-space LED tuning array simulates scope ellipse for easy, accurate tuning even under poor signal-to-noise conditions. Mark and space outputs for true scope tuning.
Transmits on both 170 Hz and 850 Hz shift.

Built-in RS-232 interface, no extra cost
Variable shift tuning lets you copy any shift between 100 and 1000 Hz and any speed (5-100 WPM RTTY/CW and up to 300 baud ASCII). Push button for 170 Hz shift.
Sharp multi-pole mark and space filters give true mark-space detection. Ganged pots give space passband tuning with constant bandwidth. Factory adjusted trim pots for optimum filter performance.
Multi-pole active filters are used for prelimiter, mark, space and post detection filtering. Has automatic threshold correction. This advanced design gives good copy under QRM. weak signals and selective fading

Has front panel sensitivity control. Normal/Reverse switch eliminates retuning while checking for inverted RTTY. Speaker jack +250 VDC loop output.
Exar 2206 sine wave generator gives phase continuous AFSK tones. Standard 2125 Hz mark and $2295 / 2975 \mathrm{~Hz}$ space. Microphone lines: AFSK out. AFSK ground, PTT out and PTT ground
FSK keying for transceivers with FSK input Has sharp 800 Hz CW filter, plus and minus CW keying and external CW key jack.
Kantronics software compatible socket.
Exclusive TTLRS-232 general purpose socket allows interfacing to nearly any personal computer with most appropriate software. Available TTL/RS-232 lines: RTTY demod out. CW demod out (TTL only), CW-ID in, RTTY in, PTT in, key in. All signal lines are buffered and can be in verted using an internal DIP switch.
Metal cabinet. Brushed aluminum front. 121/2x $21 / 2 \times 6$ inches. 18 VDC or 110 VAC with optional AC adapter, MFJ-1312, \$9.95.
Plugs between rig and C-64, VIC-20, Apple, TRS 80C. Atari. TI-99 and other personal computers. Use MFJ, Kantronics, AEA and other RTTY/ ASCII/AMTOR/CW software.

MFJ MULTI-FUNCTION MFJ-1221 TUNING INDICATOR
 $\$ 79.95$

Greatly improve your RTTY copying capabilities. Add a crosshair LED Tuning Indicator that makes tuning quick, easy with pin-point accuracy. Add mark and space outputs for scope tuning. Add LEDS that indicate $170,425,850 \mathrm{~Hz}$ shitts. Great for copying RTTY outside ham bands. Add sharp mark and space filters to improve copy under crowded/weak conditions. $170,425,850 \mathrm{~Hz}$ shifts. Add Normal/Reverse switch to check for inverted RTTY without retuning. Add output level control to adjust signal into your terminal unit. Add a limiter to even out signal variation for smoother copy Unit plugs between your tuner and receiver. Mark is 2125 Hz , space is 2295,2550 or 2975 Hz . Measures $10 \times 2 \times 6$ in. and uses floating 18 VDC or 110 VAC with AC adapter, MFJ-1312, $\$ 9.95$

24/12 HOUR CLOCK/ID TIMER

Switch to 24 hour UTC or 12 hour format! Battery backup. ID timer alerts every 9 minutes atter reset. Red 6 in. LEDs Synchronizable to WWV Alarm, Snooze MFJ-106
$\$ 19.95$
 function. PM, alarm on indicators. Gray/Black cabinet. $110 \mathrm{VAC}, 60 \mathrm{~Hz}$

MFJ ELECTRONIC KEYER

MFJ-407
$\$ 69.95$

MFJ-407 Deluxe Electronic Keyer sends iambic, automatic, semi-auto or manual. Use squeeze, single lever or straight key. Plus/minus keying. 8 to 50 WPM. Speed, weight, tone, volume controls. On/ Off, Tune, Semi-auto switches. Speaker, RF proof. $7 \times 2 \times 6$ inches. Uses 9 V battery, 6-9 VDC or 110 VAC with AC adapter, MFJ-1305, $\$ 9.95$.

MFJ 24 HOUR LCD CLOCKS

Huge $5 / 8$ inch boid black LCD numerals make these two 24 Hour LCD clocks a must for your ham shack. Choose from a dual clock unit that features seperate UTC and local time display or the single clock unit that displays 24 Hour time.
Mounted in a brushed aluminum frame, these clocks feature huge 5/8 inch LCD numerals and a sloped face for easy across the room reading. Both clocks also feature easy set month, day, hour, minute and second functions and can be operated in an alternating time-date display mode. MFJ-108, 41/2x 1×2 in., MFJ-107, $2 \frac{1}{4} \times 1 \times 2$ in. Battery included.

MFJ ANTENNA BRIDGEMFJ-204
 $\$ 79.95$
 Trim your antenna for optimum performance quickly and easily Read antenna resistance up to 500 ohms Covers all ham bands below 30 MHz Measure resonant frequency of antenna. Easy to use, connect antenna. set frequency. adjust bridge for meter null and read antenna resistance. Has frequency counter jack. Use as signal generator Portable, selt-contained $4 \times 2 \times 2$ in. 9 V battery or 110 VAC with adapter, MFJ-1312, $\$ 9.95$

MICROPHONE EQUALIZER

Greatly improves transmitted SSB speech for maxmum talk power. Evens out speech peaks and valleys due to voice, microphone and room characteristics that make speech hard to understand. Produces cleaner, more intelligible speech on receiving end. Improves mobile operation by reducing bassy peaks due to acoustic resonances. Plugs between mic and rig. 4 pin mic jack, shielded output cable. High. mid, low controls provide $\pm 12 \mathrm{db}$ boost or cut at $490,1170,2800 \mathrm{~Hz}$. Mic gain, on/ott/bypass switch. "On" LED. $7 \times 2 \times 6$ inches 9 V battery, 12 VDC or 110 VAC with adapter, MFJ-1312, $\$ 9.95$.

ORDER ANY PRODUCT FROM MFJ AND TRY IT- NO OBLIGATION. IF NOT DELIGHTED, RETURN WITHIN 30 DAYS FOR PROMPT REFUND (LESS SHIPPING)

- One year unconditional guarantee - Made in USA.
- Add $\$ 4.00$ each shipping/handling - Call or write for free catalog, over 100 products.

MFJ ENTERPRISES, INC.
Box 494. Mississippi State, MS 39762

TO ORDER OR FOR YOUR NEAREST DEALER, CALL TOLL-FREE
800-647-1800. Call 601 -323-5869 in Miss and outside contınental USA
Telex 53-4590 MFJ STKV

VISA

 ChaliowMowherCord

YOUR VERY BEST SOURCE FOR

- 6 STORE BUYING POWER ASSURES TOP VALUES.
- BIG, COMPLETE STOCKS. GET WHAT YOU WANT WHEN YOU WANT IT.
- MORE SAVINGS BY FREE SHIPMENT., MOST ITEMS THAT CAN BE SHIPPED UPS SURFACE (Continental U.S.A.)
- TOLL-FREE PHONE (Except California and Arizona).

PRICE REDUCTION	THE IDEAL PAIR FOR OSCAR
IC-730 MOBILE	
	IC-271A* IC-471A*
SMALLI only $3.7^{\prime \prime}$ high, $9.5^{\prime \prime}$ wide and $10^{\prime \prime}$ deep.	$\begin{array}{cc}2 \mathrm{M} \cdot 25 \text { WATTS • ALL MODE } & 430-450 \mathrm{MHz} \cdot \text { ALL MODE } \\ \text { RETAIL PRICE } \$ 699.00 & \text { RETAIL PRICE } \$ 799.00\end{array}$
	* 100W MODEL AVAILABLE
BIG VALUE! CHECK IT OUT!	CALL FOR YOUR SPECIAL PRICE

IC-751
IC-751. ICOM's brilliant transceiver, sets a new high standard of comparison with high-tech advancements and the superior quality essential for competitive-grade performance.

CALL NOW FOR YOUR LOW SALE PRICE

IC-745

- 9 ham bands - General coverage receiver - 16 memories • Scanning \bullet Pass-band tuning - Variable NB and AGC • Eight accessories and options are also available.

NEW!! IC-27A SUPER-COMPACT

 2 METER MOBILEAn important breakthrough in compact mobile equipment. Only $11 / 2 \times 51 / 2^{\prime \prime}$ but full-featured including internal speaker. 25 W of power, 10 full-function tunable memories, memory and band scan, priority scan. Includes mic. w/16 button Touchtone.
ALSO *IC-27H HIGH POWER VERSION AND IC-37A, 220MHz IC-47A, 70CM

SAVE!

HAND HELD

R-71A GENERAL COVERAGE RECEIVER

CHECK DOWN-TO-EARTH PRICES.

Superior grade receiver $\mathrm{w} / 100 \mathrm{kHz}$ to 30 MHz general coverage and features that include keyboard frequency entry.

computer-aided interdigital bandpass filter design

For reproducible customized design in the $0.4-5 \mathrm{GHz}$ frequency range

One of the more challenging difficulties facing the Amateur experimenter in UHF and microwave communications is to construct good bandpass filters at these high frequencies. Good filters are especially important in those bands where the Amateur frequency allocation is shared with or is near high power services, such as radar, which can cause ruinous interference. And although a number of articles have appeared in Amateur publications describing specific bandpass filter types and specific construction techniques, none has provided a simple means of designing filters for different requirements.

This article describes a flexible computer program that makes it possible for Amateurs to design and build their own bandpass filters, custom-tailored to their specific needs. The program performs the design tasks for interdigital filters, a common bandpass type. The article also shows, step by step, how to proceed from the computer printout to the building and testing of a working filter. In addition, two different examples are used to illustrate two different construction methods.

filter design

The design of narrowband bandpass filters - that is, of filters that have passbands of approximately 10
percent of the center frequency or less - is often based on the well-known work of Matthaei, Young, and Jones, ${ }^{1}$ which provides a wealth of analytical and practical design methods for many types of RF and microwave filters. Among the most common types are filters that use comb or interdigitated coupled resonators. These two types are mechanically similar, but this article discusses only the interdigital form.
Interdigitated bandpass filters have been widely used in the microwave electronics industry for many years. These filters are commonly used because they provide reasonably good passband characteristics, moderate loss, and fairly high attenuation in the stopbands. Furthermore, they are simple to build and tune.

A typical interdigitated bandpass filter, such as shown in fig. 1, consists of a number of resonator elements or rods, each approximately a quarter wavelength long at the center frequency of the filter, which are electrically coupled together between two conducting ground planes. Each rod is shorted to ground at one end and open-circuited at the other end. The rods alternate, with one rod's shorted end opposing the next rod's open end. It is this alternating structure, which looks somewhat like interlaced fingers, that gives the interdigital filter its name. At the ends of the filter some form of impedance matching, either a transmission line transformer or a tap on the end rods, is used to couple energy into and out of the filter.

Interdigitated filters are most useful in the low microwave frequency range of about 0.5 to 5 GHz . In this region, lumped element filters are difficult to build, and waveguide filters are mechanically large. The inter-

By Jerry Hinshaw, N6JH, and Shahrokh Monemzadeh, 4558 Margery Drive, Fremont, California 94538

fig. 1. Typical interdigital bandpass filter structure. This filter consists of a number of rods, each open circuited at one end and grounded at the other, which are electrically coupled together between ground planes.

fig. 2. A generalized bandpass filter response. The ripple in the passband is exaggerated for clarity.
digital filter handily fills this gap between low frequency "coil and capacitor" filters, and microwave waveguide "plumbing." Thus, interdigital filters are of interest for frequencies up to at least several GHz , and down at least as low as the 420 MHz ham band.

The traditional design of interdigitated filters described by Matthaei, Young, and Jones calls for both the spacing and sizes of the rectangular resonant elements to be variables. While there is no problem with this theoretically, in practice it is often simpler to use round rods of equal diameter in place of rectangular ones of various sizes. In the 1960's, Dishal ${ }^{2}$ described a method of designing narrow bandwidth filters using equal diameter round rods. His method provides a simple and accurate design guide which results in bandpass filters of straightforward mechanical construction and good electrical performance.
In addition to using uniform round rods in place of rectangular elements of various sizes, Dishal questioned the common practice of using additional elements, one at each end of the filter structure, whose only purpose was to match the filter to the desired input and output connections when a simple tap on the first and last element would serve as well. Taking it

defining terms

A bandpass filter is a device that permits the passage of signals within a certain range of frequencies only, but blocks out signals from above or below that range. The range of frequencies where signals can pass through the filter with low loss is called the passband. The frequencies outside the passband are variously referred to as the rejection bands, stop bands or "skirts" of the filter. (Figure 2 shows a general filter response.)

An ideal bandpass filter would have zero loss in the passband and infinite rejection of undesired signals in the stopbands. In real life, however, the situation is not as clear-cut: the passband of a real filter has a certain finite loss, even though it may be quite low. Likewise, a real filter's stopbands do not absolutely reject signals, but merely reduce their amplitudes. The attenuation depends mainly upon the separation, in frequency, of the undesired signal from the passband.

The loss in the passband may be nearly constant, or flat, as in a Butterworth design, or it may vary with regular undulations or "ripple" in the attenuation curve. In a Chebyshev type filter, this passband ripple is related to an increase in stopband rejection. For our purposes, it is enough to consider a Butterworth filter as a variation of the Chebyshev design, but with zero passband ripple. It is important to realize that we can obtain better stopband rejection if we're willing to trade off passband flatness and accept higher ripple and VSWR.

Since the transition from passband to stopband in a real (rather than ideal) filter is not abrupt, we must define its location. For a Chebyshev filter, the "edges" of the passband are defined as those points where the attenuation exceeds the maximum ripple amplitude. Thus the passband of a Chebyshev filter is often known as the ripple bandwidth. The bandwidth of a Butterworth design, which has no ripple, is traditionally defined at the 3 dB points. This measure is called the $3 d B$ bandwidth.

There are many good texts and articles dealing with filter topics, and the interested reader should refer to them if a better background is desired. A few of these sources are listed in the references. However, the terms and concepts introduced above are sufficient for a basic understanding of the design and construction of the bandpass filters we describe.
table 1. Interactive program calculates expected electrical performance and computes mechanical dimensions of filter.

```
10 REM
O REM DESIGNS INTERDIGITAL BPFs
R REM DESIGNS INTERDIGITAL, BPFS 
O DEF FNRJ(TA,B,C,D)=(B*C-TA*D)/(C*C+D*D)
O REM using equal diameter rods
60 REMg values based on ripple bw, q/coup on 3-bd
0 DIM G(200), C(200)
O PI=3.14159265#
OO INPUT"| OF ELEMENT $ P-P RIPPLE IN PASSBAND (DB)";N,RIP
10 REM
20 INPUT"INPUT FILTER CENTER FREQ.(GHZ),BW(MHZ)&LOAD IMPEDENCE
    ZO";FZGC,BWMC,R
REM
40 PRINT"INPUT GROUND PLANE SPACING ROD DIAMETER""
INPUT"& DISTANCE TO CENTER OF FIRST AND LAST ROD";H,D,E
60 REM
180 INPUT"NO. OF FREQ. REJECTION PTS AND STEP SIZE (MHZ)";NFR,STP
FOR IP=-NFR/2 TO NFR/2
    CONTER=CONTER+1
        FR(CONTER)=F2GC+(STP*.001*IP)
20 NEXT IP
30 IDAT=1
40 GOTO 250
50 Fl=FZGC-.0005*BWMC
F2=FZGC+.0005*BWMC
IF RIP>O THEN GOTO 330
BW3GC-F2-F1
MWRGG*
gosUB 1960
goto 390
B=1/SQR(10^(.1*RIP)-1)
CA=LOG(B+SQR(B*B-1))/(N)
CA=LOG(B+SQR(B*B-1))/(N)
GOSUB 1740
BWRGC=F2-F1
BW3GC=BWRGC*BW3
| REM
W=2*(F2-F1)/(F2+F1)
10 QF-FZGC/BW3GC
20 NFM=N-1
30 QWVL=11.8028/(4*FZGC)
440 FOR K=1 TO NFM
450 
NEXT K
AKO=G(1)*BW3
O AK(N)=ARO
00 AK(N+1)=0
O QS=G(1)*BW3*QF
20CANH=(EXP(2*PI*E/H)-1)/(EXP(2*PI*E/H)+1)
2 ZM=59.9585*LOG(4*H/(PI*D))
30 2M=59.9585*LOG(4*H/(PI*D))
S0 RKM=RK(1)*SQR(ZM/ZE)
60 Z=PI*D/(2*H)
70 COTH=(EXP}(Z)+1)/(EXP(Z)-1
Y=PI*RKM/4
T=COTH Y
00 C(1)-(H/PI)*LOG((T+1)/(T-1))
MFL=N-2
REM IF N-3<0 THEN AG=1 ELSE IF N-3=0 THEN AG=2 ELSE AG=3
ON (2+SGN(N)*1) GOTO 690,690,640
O FOR K=2 TO MFL
    Y=PI*RK(K)/4
    T=COTH*Y
    C(R)=(H/PI)*LOG((T+1)/(T-1))
NEXT K
C(N-I)=C(1)
k=SQR(PI*R/(4*2E*QS))
AQ=2*QWVL*ATN(X/SQR(1-X*X))/PI
l
SUMG=0
FOR J 1=1 TO N
    SUMG=SUMG+G(Jl)
NEXTJI
BLOSS=4.34*F2GC*SUMG/(QU*(F2-F1))
DELAY=SUMG/(2*PI*(F2-FI))
    PRINT"DESIGN DATA FOR ";N;" POLE INTERDIGITAL FILTER.
    PRINT"DESIGN DATA FOR ";N;" POLE INTERDIGITAL FILTER.
O GOTO 830
20 PRINT "DESIGN DATA FOR";N;"POLE INTERDIGITAL FILTER .BAND
    PASS RIPPLE";RIP;"DB"
PRINT"CENTER FREQ. ";FZGC ;"GHZ"
40 PRINT"CUTOFF FREQ. ";Fl;"(GHZ) AND ";F2;" GHZ"
O PRINT"RIPPLE BW. ";BWRGC;"GHZ"
O PRINT"3 DB BW. ";BH3GC;"GHZ,"
O PRINT"FRACTIONAL BW."';W
80 PRINT"FILTER Q ";OF
O PRINT"LOSS BASED ON THIS QU ";BLOSS;" DB"
PRINT"LOSS BASED ON THIS QU ";BLOSS;" DE"
    IF JK=1 THEN PRINT "FREQUENCY REJECTION INFORMATION "
    NFN=ABS(2*(FR(JK)-FZGC)/(W*FZGC))
    NFN=ABS(2*(FR(JK)-FZGC)
    ALOSS(JX)=10*LOG(I+NFN*(2*N))/LOG(10)
    GOTO 1040
    GOTO 1040
    ANG=N*LOG(NFN+SQR(NFN*NFN-1))
    ANG=N*LOG(NFN+SQR(NFN*NFN-1))
    ALOSS(JK)=10*LOG(1+(10*(.1*RIP)-1)*YAK*YAK)/LOG(10)
REM*************************************************
00
30 REM
60 R
90
```

1020 IF ALOSS (JK) $\mathbf{1 0 5}$ THEN ALOSS $=65$ ELSE ALOSS = ALOSS (JK)
$\begin{array}{ll}1030 & \text { FR=INT(FR(JK)*10000)/10000 : ALOS=INT(ALOSS(JK)) } \\ 1040 & \text { PRINT TAB(INT(ALOSS) }) * " ; T A B(66) F R ; T A B(73) A L O S\end{array}$
1050 NEXT JK
1060 WO $=2$ *PI*FZGC* 1 E +09
$1070 \mathrm{~F}=\mathrm{D} / \mathrm{H}$
$1080 \quad \mathrm{CF}=(-.0000422+.0857397 * F+.0067853 * F * F-9.092165 \mathrm{E}-$

02*F
1090 REM
1100 WH=WO*1E-12
1100 WW=WO*1E-12
1110
B2 $2=P I * A Q /(2 * Q W V L)$
$1110 \mathrm{B2}=\mathrm{PI}$ *
$1120 \mathrm{GG}=1 / \mathrm{R}$ (B2)/(ZE*SIN(B2))
$1130 \mathrm{BB}=-\operatorname{COS}(\mathrm{B} 2) /(\mathrm{ZE} * \operatorname{SIN}(\mathrm{~B} 2))$
$1140 \mathrm{ELI}=.8 * \mathrm{OWV} \mathrm{L}$
$1140 \mathrm{EL} 1=.8 * \mathrm{QWVL}$
1150 ANG*EL1*PI/(2*QWVL)
1150 ANG=EL1*P
1160 B1 * ANG-B2
1160 Bl=ANG-B2
1170 YL=-COS (ANG) $(2 M * S I N(A N G))$
$1170 \mathrm{YL=}=\operatorname{COS}($ ANG $) /(2 \mathrm{M} * \mathrm{SIN}(A N G))$
$1180 \mathrm{CP}=W W *(C F+.17655 * D * D /(\mathrm{QWVL-ELI}))$
1180 CP=WW*(CF
1190 Yl=CP + YL
1190 Y1 $=C P+Y L$
1200 EL2 $=87 * Q . \quad \mathrm{L}$
1210 ANG $=E L 2 * P I /(2 * Q W V L)$
1210 ANG=EL2*PI
1220 B4 $=$ ANG-B2
$\begin{array}{ll}1220 & B 4=A N G-B 2 \\ 1230 & Y \mathrm{~L}=-\operatorname{COS}(\mathrm{ANG}) /(Z M * \operatorname{SIN}(A N G))\end{array}$
$1230 \mathrm{YL}=-\operatorname{COS}(\mathrm{ANG}) /(2 \mathrm{Z} * \mathrm{SIN}(\mathrm{ANG}))$
$1240 \mathrm{CD}=\mathrm{WW}\left(\mathrm{CF}+.17655^{*} \mathrm{D}\right.$ D $/(\mathrm{QWVL}-\mathrm{EL} 2)$
$1240 \mathrm{CD}=\mathrm{WW}$ (CF+.
$1250 \mathrm{Y} 2=\mathrm{CD}+\mathrm{YL}$
1250 Y2=CD+YL
1260 EL $3=.95 *$ QWVL
1270 ANG $=E L 3 * P I /(2 *$ OWVL $)$
1270 ANG $=E L 3 * P I$
1280 B5 $=A N G-B 2$
$1290 \quad Y L=-C O S(A N G)$
1280 B5=ANG-B2 (2*QWVL)
$1290 \mathrm{YL=-COS}(A N G) /(Z M * S I N(A N G))$
1290 YL=-COS(ANG)/(ZM*SIN(ANG))
$1300 \mathrm{CQ}=\mathrm{WW}^{*}\left(\mathrm{CF}+.17655 * \mathrm{D}^{*} \mathrm{D} /(\mathrm{QWVL}-E L 3)\right)$
1300
1310
$\mathrm{CQ}=\mathrm{FWW}=\mathrm{CQ}+\mathrm{YL}$
$1310 \mathrm{Y}=\mathrm{CQ}+\mathrm{YL}$
$1320 \mathrm{ELEM} \mathrm{Y} 3 * Y 2 * E L 1 /((\mathrm{Y} 1-\mathrm{Y} 2) *(\mathrm{Y} 1-\mathrm{Y} 3))+\mathrm{Y} 1 * Y 3 * E L 2 /((\mathrm{Y} 2-\mathrm{Y} 1) *(Y 2-$
$E M=Y 3 * Y 2 * E L 1 /((Y 1-Y 2) *(Y 1-Y 3))+Y$
$Y 3))+Y 1 * Y 2 * E L 3 /((Y 3-Y 1) *(Y 3-Y 2))$
$N=S I N(B 1) / \operatorname{Cos}(B 1)$
$\operatorname{Yan}=\operatorname{SIN}(B 1) / \operatorname{COS}(B 1)(Y 3-Y 1) *(Y 3-Y 2))$
1330 TANN=SIN(B1)/COS(B1) $1340 \quad Y L=F N R J(G G, B B+T A N N / Z E, 1-Z E * B B * T A N N, 2 E * G G * T A N N)$
1340 YL=FNRJ(G
1350 Y $1=\mathrm{CP}+\mathrm{YL}$
1350 Y $1=C P+Y L$
1360 TANN=SIN(B4)/COS(B4)
1370 YLAFNRJ(GG, BB+TANN/ZE,1-ZE*BB*TANN, ZE*GG*TANN)
$\begin{array}{ll}1370 & Y L=F N R J \\ 1380 & Y \\ 2=C D+Y L\end{array}$
1380 Y2=CD+YL
1390 TANN 1400 SIN (B5) / $\operatorname{COS}(B 5$) (GG, BB+TANN/ZE, 1-ZE*BB*TANN, 2E*GG*TANN
$1400 \mathrm{Y}=\mathrm{FNRJ}$ (GG, BB+TANN/ZE,1-ZE*BB*TANN,2E*GG*TANN)
1400 YLEFNRJ (
$1420 \mathrm{ELEQ}=\mathrm{Y} 3 * Y 2 * E L 1 /((Y 1-Y 2) *(Y 1-Y 3))+Y 1 * Y 3 * E L 2 /((Y 2-Y 1) *(Y 2-$
$Y 3))+Y 1 * Y Z * E L 3 /((Y 3-Y 1) *(Y 3-Y 2))$
2430 REM
1440 PRINT"QUARTER WAVELENGTH =": QWVL ; "INCHES"
1440 PRINT"QUARTER WAVELENGTH =";QWVL ;"INCHES"
1450 PRINT"THE LENGTH OF INTERIOR ELEMENTS ="; ELEM;"

1480 PRINT"ROD DIAMETER $="$; D;"INCHES"
1480 PRINT"ROD DIAMETER $=" ; D ; "$ INCHES" 10 PRINT"END PLATES"; E;" INCHES FROM C/L OF END ROD "
1490 PRINT"END PLATES"; E;" INCHES FROM C/L OF END ROD "
1500 PRINT"TAP EXTERNAL LINES UP ";AQ;" INCHES FROM SHORTED END"
1490 PRINT""TAP EXTERNAL LINES UP ";AQ;"INCHES FROM SHORTED END"
1500 PRINT'"
1510 PRINTINE IMPEDANCES: END ROD";ZE;" OTHER ";ZM;" EXT.
LINES "; R;"OHM"
1520 PRINT"DISENSIONS"
1520 PRINT"DISENSIONS"
1530 PRINT"EL, NO. END TO C C TO C G(K) Q/COUP"
1530 PRINT
1540 VOM $=E$
1540 VOM $=\mathrm{E}$
$1550 \mathrm{GOO}=1$
$1550 \quad 600=1$
1550 GOO=1 "0":TAB(41)G00;TAB(55)AK0
1560 PRINT
1560 PRINT "0";TAB(41)GOO;TAB(55)AKO
1570 PRINT "1";TAB(16)E;TAB(41)G(1);TAB(55)AK(1)
1570 PRINT "1"; TAB(1
1580 FOR $K=1$ TO NFM
$1590 \quad 1=K+1$
$1590 \quad \mathrm{~L}=\mathrm{K}+1$
$\begin{array}{ll}1590 & L=K+1 \\ 1600 & \text { PRINT TAB(28)C(K) }\end{array}$
$1600 \quad$ PRINT TAB (28)
$1620 \quad$ PRINT $L ; T A B(16) D O M ; T A B(41) G(L) ; T A B(55) A K(L)$
1630 NEXT K
1630 NEXT K
$1640 \mathrm{LQ}=\mathrm{N}+1$
1650 PRINT LQ;TAB(41)G(LQ)
1650 PRINT LQ;T
1660 DOM=DOM+E
1670 PRINT TAB (16)DOM
1670 PRINT TAB(16)DOM
1680 IF IDAT $=1$ THEN GOTO 2070
1690 REM
1690 REM
1700 REM
1710 REM DEFINE FUNCTION
1720 DEF FNRI(TA, B,C, D) $=$
1710 REM DEFINE FUNCTION
1720 DEF FNRJ(TA,B,C,D) $=(B * C-T A * D) /(C * C+D * D)$
1720 DEF
1730 END
1730 END
1740 REM SUB CHEB
1740 REM
1750 REM
1740 REM SUB CHEB
1750 REM
1760 C=2*RIP/17.37
1760 C=2*RTP/17.37
1770 BETA=LOG($\left(\operatorname{EXP}^{(C)+1) /(E X P(C)-1))}\right.$
1780 GAMMA= $5 *(E X P(B E T A /(2 * N))-E X P(-$
1770 BETA $=\operatorname{LOG}((\operatorname{EXP}(C)+1) /(\operatorname{EXP}(C)-1))$
1780 GAMMA=.5*(EXP $($ BETA $/(2 * N))-E X P$
1790 FOR $K=1 \operatorname{TON} N$
$1800 \quad A(K)=\operatorname{SIN}(.5 *(2 * K-1) * P I / N)$
$\begin{array}{ll}1800 & A(K)=\operatorname{SIN}(.5 *(2 * K-1) * P I / N) \\ 1810 & B(K)=G A M M A * 2+S I N(K * P I / N) * 2\end{array}$
$1810 \quad \mathrm{~B}(\mathrm{~K})=$ GAMMA $^{2} 2+$ SI
1820 NEXT K
$1830 \mathrm{G}(1)=2 * \mathrm{~A}(1)$ /GAMMA
1820 NEXT K
$1830 G(1)=2 * A(1) /$ /FAMMA
1840 FOR $K=2$ TO N
$1830 G(1)=2 * A(1) / G A M M A$
1840 FOR $K=2$ TO N
1840 FOR $K=2$ TO N
$1850 \quad G(K)=4 * A^{(K}$
$1850 \quad G(K)=4 * A(K-1) * A(K) /(B(K-1) * G(K-1))$
$1850 \quad \mathrm{G}(\mathrm{K})=$
1860 NEXT X
1860 NEXT X
$1870 \mathrm{NN}=\mathrm{N} / 2$
$1870 N N=N / 2$
$1880 \mathrm{NN} N=(\mathrm{N}+1) / 2$
1880 NNN=(N+1)/2
1890 REM IF NNN-NN <0 THEN AGI-1 ELSE IF NNN-NN=0 THEN AG1=2 ELSE AGl-3
1890 REM IF NNN-NN<0 THEN AG1m1 ELSE IF NNN-NN=0 THEN AG1=2 ELSE AG1-3
1900 ON $(2+S G N(N N N \sim N N) * 1)$ GOTO $1910,1910,1930$
$1900 \mathrm{ON}(2+\operatorname{SGN}(N N N-N N) * 1) \operatorname{GOTO} 1910,1910,1930$
$1910 \mathrm{G}(N+1)=((\operatorname{EXP}(\mathrm{BETA} / 2)+1) /(\operatorname{EXP}(\mathrm{BETA} / 2)-1)) \times 2$
$1910 \mathrm{G}(\mathrm{N}+1)=((\operatorname{EXP}($ BETA/2 $)+1) /(\operatorname{EXP}($ BETA $/ 2)-1)) \times 2$
$1910 \mathrm{G}(\mathrm{N}+\mathrm{I})=$
$1930 \quad C(N+1)=1$
$1930 \mathrm{C}(\mathrm{N}+1)=$
1940 RETURN
1940 RETU
1950 END $\quad 1960$ REM SUB FOR BUT
1950 END 196 REM SUB FOR BUTT
1960 REM
1970 REM
1980 REM
1990 REM
1990 REM
1990 REM
2000 REM
2010 POV $2=1.57079633 \#$
2010 POV $2=1.570796$
2020 FOR $K=1 \quad$ TO N
$2020 \mathrm{FOR} \mathrm{K}=1 \mathrm{TON}$
$2030 \quad \mathrm{G}(\mathrm{K})=2 * \operatorname{SIN}(\operatorname{POV} 2 *(2 * K-1) / \mathrm{N})$
2030 G(K) $=$
2040 NEXTK
2050 G(N+1)
2040 NEXT K
$2050 \mathrm{G}(\mathrm{N}+1)=1$
$2050 \mathrm{G}(\mathrm{N}+1)=1$
2060 RE'TUR
2070 END

number of elements	ripple $d B$	loss bandwidth $M H z$	loss at 440 dB	at 445
2	0.25	2	1.2	21.6
2	0.25	3	0.8	14.4
3	0.25	2	2.5	41.4
3	0.25	3	1.7	30.5
3	0.25	4	1.3	22.6
4	0.50	1	7.9	88.8
4	0.50	3	2.7	50.0
4	0.25	3	2.4	46.8
6	0.25	3	4.2	79.4
6	0.25	4	3.2	63.4

fig. 3. Program tests various configurations for the $\mathbf{4 4 0}-\mathrm{MHz}$ bandpass filter. For comparison, all are for 0.38 inch diameter rods between groundplanes 1 inch apart, and all have a center frequency of 440 MHz .
a step further, he showed how to determine these tap locations. A computer program, described below, is developed around this design approach.

program description

The BASIC listing is given in table 1. This program follows in loose form a program originally written in Fortran IV by Rook and Taylor. ${ }^{3}$ We translated into BASIC, modified it for use on a personal computer, and added additional plotting output. The program uses an interactive approach to request design information from the user, and then calculates the expected electrical performance and computes the mechanical dimensions of the filter. It is written in BASIC in its IBM $P^{T M}$ version, but it is structured so that conversion into other versions of BASIC for different computers should not be difficult.

The first portion of the program sets up the required variable dimensions and types. Next, an interactive question sequence collects the input data for the design. Once the required data are available to the program, it computes the expected electrical performance and gives details of the filter's mechanical construction. Finally, the program prints a graph of the passband and rejection skirts of the filter.

Two different examples of filters for two different ham bands are given. Each example gives general mechanical details of construction techniques which have been proven to give good results. The examples are just that, examples, and serve as guides to help the reader design and build filters which are optimized for his own particular application. The explanations of these techniques give enough information so that the examples themselves can be duplicated without too much difficulty.

440 MHz bandpass filter

The first example is a front-end filter for a 440 MHz FM receiver in a linear translator system. A linear trans-
lator, like a repeater, retransmits what it receives on a frequency 5 MHz (the 440 MHz spacing) away from the input channel. In order to prevent receiver overload or excessive intermodulation distortion in the presence of the strong transmitted signal, the rejection of the near-by repeater transmitter at 445 MHz must be approximately 50 dB . At the same time, the filter's passband loss should be moderate, less than about 3 dB , or the receiver sensitivity will be degraded excessively. These two considerations dictate the choice of filter type and design.

An interdigital bandpass filter turns out to be a good choice for this application. It can be simply and inexpensively built, and has relatively low passband losses together with good out-of-band rejection. And while it is true that a cavity diplexer filter of the sort often seen in amateur repeaters can give still lower losses and greater rejection, its good electrical performance can be accomplished only at the expense of increased mechanical complexity, larger size, and higher cost. Here, the required performance does not absolutely dictate the use of a multiple cavity diplexer, so we should definitely consider using the much simpler interdigital filter. If still less skirt rejection and somewhat greater loss can be tolerated, a helical resonator filter might be a good choice, for it would 'provide less rejection and probably would have higher passband losses, but it would also be much smaller mechanically than an equivalent interdigital bandpass filter. This size reduction is possible because the inductances in a helical filter are coils and because the inter-element couplings are not dependent only on the physical spacing of elements.

The first step in the choice of filter parameters is to determine the required passband loss limit, passband ripple, and out-of-band rejection that can be tolerated. An interactive computer-aided design program makes these tradeoffs considerably simpler to evaluate. The designer begins by entering a first estimate, or guess, of the approximate number of elements and passband ripple. From these inputs, the computer program quickly determines the approximate loss and plots the pass and reject bands. In the course of a few minutes' work, several different configurations can be tried out. From these it is easy to select the optimum design.

As an example of this interactive optimization, fig. 3 lists a number of different 440 MHz filter configurations tested by the program. These designs differ mainly in the number of elements and in their passband widths. Filters with from 2 to 6 elements and ripple bandwidths of from 1 to 4 MHz are compared. In each case, the loss at the center frequency, 440 MHz , and at the transmitter frequency to be rejected, 445 MHz , are listed for comparison.

The results of this scan of various possible designs

```
# OF ELEMENT $ P-P RIPPLE IN PASSBAND (DB)? 4,. 25
INPUT FILTER CENTER FREQ.(GHZ),BW(MHZ)&LOAD IMPEDENCE Z0? .440,3,50
INPUT GROUND PLANE SPACING , ROD DIAMETER
& DISTANCE TO CENTER OF FIRST AND LAST ROD? 1,. 38,.5
NO. OF FREQ. REJECTION PTS AND STEP SIZE (MHZ)? 38,.5
DESIGN DATA FOR 4 POLE INTERDIGITAL FILTER . BAND PASS RIPPLE . }25\mathrm{ DB
CENTER FREQ. . }44\textrm{GHZ
CUTOFF FREQ. . 4385 (GHZ) AND . .4415 GHZ
RIPPLE BW. 3.000021E-03 GHZ
3 DB BW. 3.419328E-03 GHZ
FRACTIONAL BW. 6.81823E-03
FILTER Q 128.6803
EST QU 1459.315
LOSS BASED ON THIS QU 2.422713 DB
DELAY AT BAND CENTER 294.6652 NANOSECONDS
FREQUENCY REJECTION INFORMATION
```



```
QUARTER WAVELENGTH \(=6.706136\) INCHES
THE LENGTH OF INTERIOR ELEMENTS \(=6.418164\) INCHES LENGTH OF END ELEMENTS \(=6.438183\) INCHES
GROUND-PLANE SPACE = 1 INCHES
ROD DIAMETER = . 38 INCHES
END PLATES . }5\mathrm{ INCHES FROM C/L OF END ROD
TAP EXTERNAL LINES UP . }2294638 INCHES FROM SHORTED END
LINE IMPEDANCES: END ROD 67.31341 ,OTHER 72.49873 , EXT. LINES 50 OHM
DIMENSIONS
```


Kantronics UTU Solves Your Compatibility problems

$\$ 199.95$

- with RS232 port and a

Now, with UTU, any computer with with any transceiver. erminal program can interface microcomputer, UTU requires no Because of an internal mitware. A short terminal programs for additional decoding somputer to UTU. Samp il are included in used Kaypro. TRS-80 Models tollowing features UTU's manual. UTU offers the GAR GRAPH displays - Ten-segment LED BAR LED's show Lock Mark and Space. Adding AMTOR operation. and Valid status during AM WPM), RTTY (60,67 . Send/Receive CW (6 -SSCII (110, 150, 200,300 $75,100,132$ AMTOR modes A, B, and L. baud), and AMT level compatible. - RS232 or TTL

- NOW AVAILABLE! UTU TERMINAL PROGROW AVAILABLE IBM PC. IBM Compatibles, Kaypro \& CPM Compatibles. Suggested retail $\$ 19.95$. For more information contact your Kantronics dealer or write: KANTRONICS 1202 E. 23 St
LAWRENCE, KS 66046

CALL LONG DISTANCE ON 2 METERS

Only 10 watts drive will deliver 75 watts

 of RF power on 2 M SSB, FM, or CW. It is biased Class $A B$ for linear operation. The current drain is $8-9 \mathrm{amps}$ at 13.6 Vdc . It comes in a well constructed, rugged case with an oversized heat sink to keep it cool. It has a sensitive C.O.R. circuitry, reliable SO-239 RF connectors, and an amplifier IN/OUT switch. The maximum power input is 15Our products are backed by prompt factory service and technical assistance. To become familiar with our other fine products in the amateur radio market, call or write for our free product and small parts catalog.

Model 875
Kit \$109.95
Wired \& Tested \$129.95

TUBES and/c's FHST DELIVERY IIIII LOWESTPRICES cillollime 8001 2x-56B2
In-depth Inventory - Industrial \& Receiving Tubes Here are 2 dozen examples

$3.400 Z$	$\$ 85.00$	MRF455	$\$ 19.95$
$3-500 Z$	85.00	M2057	15.00
$4 C X 250 B$	60.00	$872 A$	24.00
$572 B$	53.00	4 X150A	35.00
$811 A$	12.00	$6 D J 8$	2.75
813	35.00	$6550 A$	7.50
$6146 B$	7.75	8072	95.00
6360	5.75	8121	95.00
$6883 B$	7.50	8874	215.00
7360	12.95	8877	520.00
8122	110.00	807	6.75
MRF454/A 19.95	8950	11.50	

Major Manulacturers Factory Boxed and Full line of Sylvania ECG Replacement Semiconductors

Minimum order $\$ 2500$ \qquad Allow $\$ 3$ UPS charge

TRANSLITERONIC INC.

 var ©1365 39th STREET, BROOKLYN, NY 11218
Tel. 718-633-2800/Wats Line 800-221-5802
TWX7 10-584-2460 ALPHA NYK.

NEMAL HAS MILLIONS OF FEET OF COAX IN STOCK JANUARY SPECIALS

1. RG-88 95% shield
$\$ 15.00 / 100 \mathrm{tt}$ or $17 \mathrm{c} / \mathrm{tt}$ 2 RG-8U 97\% sheid 11 gauge (like Beiden B214) 316/ft
3 RG-217 double shield 50 ohm, 5/8- 00 856/tt 4 PL. 259 (US made) $\quad 656$ each 10 for $\$ 5.90$
5 UG-210/U Amphenol Type N
$\$ 3.00$ each

CONNECTORS

(RF, BNC, N, UHF, SMA, TNC, LC, HN, F) KINGS, AMPHENOL
FACTORY AUTHORIZED DISTRIBUTOR

CABLE

(MULTI CONDUCTOR. COAX. SHIELDED,
COMPUTER. TEFLON. SATELLITE CONTROL)
Columbia, Nemal, Mil-Spec
SMATV
(SPLITTERS. SWITCHES, ADAPTERS, MATCHING TRANSFORMERS)
CABLE TIES. FIELD STRENGTH METERS AND MANY OTHER ACCESSORIES
Call or write for Free Catalog

shipping

Cable - $\$ 3.00$ per 100 ft
Connectors - add $10 \%, \$ 3.00$ minimum.
Orders under $\$ 20$ add $\$ 2$ additional plus shipping. COD add $\$ 2.00$. Florida Residents add 5%.

NEMAL ELECTRONICS

Dept. H, 12240 N.E. 14th Ave., N. Miami, FL 33161 Telephone: (305) 893-3924
quickly reveals some expected trends. For instance, it is clear that filters that are too narrow (i.e., filters that have passband widths well under 1 percent of their center frequency) have increasingly higher passband losses. Also, filters with wide passbands have lower loss at the center frequency but decreased out-of-band rejection. These are fundamental tradeoffs. Next, it is also apparent that increasing the number of elements increases both the passband loss and the desired rejection of out-of-band signals, and that a filter with a relatively wide passband and many elements will have low in-band losses and good rejection. However, the number of elements cannot be increased arbitrarily because experience has shown that filters with many elements are less easily built and tuned, and that for Amateur construction and tuning techniques it is best to avoid the use of more than about five or six elements.

With all this in mind, we selected a four-section filter with passband ripple of 0.25 dB (VSWR $=1.62$) and a bandwidth of 3 MHz . For our application, these choices resulted in approximately the desired loss and rejections, namely 2.4 dB loss at 440 MHz and a rejection of about 46.8 dB at 445 MHz . Note that this rejection is relative to the passband loss, so that the filter's total loss at 445 MHz is estimated to be approximately 49.2 dB .

computer output

The computer program's output for this filter design is shown in fig. 4. The printout contains information on both the electrical performance estimates as well as mechanical information in detail sufficient to fully describe the filter.

After the "RUN" command is entered, the program asks for some electrical design information such as the number of sections, or elements, in the filter and the passband ripple in decibels. Enter these two numbers, separated by a comma, followed by the "return" key, and the computer will respond with the next questions. These are the center frequency, expressed in gigahertz, the ripple bandwidth of the filter in megahertz, and the desired load impedance in ohms (usually 50). As before, these three entries should be separated by commas and followed by a return.

Next, the program requests some mechanical information. The spacing between the top and bottom ground planes, the diameter of the resonant rods and the desired spacing between the end of the filter and the first rod are entered in response to the questions. All of these dimensions should be entered in decimal inches because the design formulas within the program contain constants in inches.

The third and last section of input data concerns the plotter output. The operator must specify how many plot points and the spacing in megahertz be-
tween each point. The maximum number of plot points is 40 . It is usually convenient to specify a step size of somewhat smaller than the passband width to give a good picture. In this example, the filter is 3 MHz wide and the plot with a one-half MHz resolution shows the rejection skirts clearly.

After these last bits of information are entered, the computer program proceeds without further intervention. It first prints out some of the calculated parameters of the filter. Then the computer graphically plots the pass and reject bands on the screen and on a printer if one is selected.

The last block of computer printout gives the mechanical details of the filter. The quarter wavelength listed is the inside dimension of the filter cavity. The length of the interior elements is listed, followed by the length of the two end elements. All of the interior elements have the same length, but the two end elements may have a different length from the end rods. The tap point is the point on the end element at which the external connection is made, and it is measured from the "cold" or grounded end of the rods. A tabular summary of the filter's dimensions appears at the end of the printout. It lists the end to center dimensions, the element center to center dimensions, and two coupling coefficients. The mechanical dimensions are easily translated into a sketch of the filter. Naturally, the designer must have certain dimensions and construction materals in mind before the computer program can be run. The ground plane spacing and rod diameter must be entered as constants to permit the completion of the design. These variables depend on the materials used to build the filter, and on the construction technique.

construction

Now that the computer program has been used to select an optimized filter and it has printed the mechanical dimensions of the filter's structure, it is time to consider how to translate the filter design into a form that can be realized. The mechanical structure must be sufficiently sound to produce the expected performance.

The table of numbers at the end of the computer printout, fig. 4, gives fairly complete information on the dimensions of the filter structure. The first column gives the element number, with zero indicating the first edge of the filter and a number one greater than the total number of rods denoting the other edge of the structure. The second column gives dimensions in inches from the end of the housing to the center of the rod indicated. For example, in our design, the second element is to be located a distance of 2.39 inches from the end of the housing. The total length of the filter will be the dimension listed opposite the final entry which is, in this case, 6.759 inches (17.168 cm).

Although the printout gives information on how to size the filter, it is probably a good idea to make a drawing to fix in your mind just how the box is to be assembled. Figure 5 is a mechanical sketch of the 440 MHz filter. It is clear that the dimensions on this drawing have been taken directly from the computer printout, but the sketch also shows how the walls of the box are to be joined together. The dimensions on the printout are for the electrical housing, which consists of the copper conductor inside the box, and not the outside, mechanical dimensions. Keep in mind that the external dimensions of the box are not the critical factors.

One of the more popular amateur construction materials is copper clad printed circuit board. It is widely available at low cost, is strong and stable, and it can be easily joined together by regular soldering techniques to make boxes and circuit housings of any given size. It can be cut with a sheet metal shear or tin snips to fairly close tolerances, and so it is a good choice as the basic "building block" material for a custom bandpass filter. Furthermore, copper is one of the best conductors for use at high frequencies as its electrical resistivity is quite low. Of the more common materials, only silver has better high-frequency conductivity, and it is considerably more expensive.

To construct the filter housing of this example, we used 1/16 inch double-clad fiberglass epoxy board throughout. The top, bottom, sides and end pieces of the filter's housing were cut to shape with a sheet metal shear, drilled to accept the resonator rods, and soldered together with "tack" joints, that is with small flows of solder at intervals along the edges of the pieces to be joined. The pieces need not be soldered with a continuous seam, but a soldered tack should be used about every inch. This dimension corresponds to only about 5 percent of a wavelength, and so it ensures good electrical interconnection at all points along the copper.
The most critical dimensions of the housing are the width of the filter, which is usually a quarter wavelength, and the inside height of the cavity. A small piece of wood or metal with perpendicular faces is a good "jig" to help solder the housing walls accurately. If you work carefully, you should be able to build a housing that's both nearly square and accurate enough to take advantage of the custom design made possible with the computerized design aid described in this article.

Because we want to hold all of the parts of this filter together with regular tin-lead solder, all of the parts obviously should be solderable. A good material for the filter rods is common copper tubing which is available in a number of sizes in hardware and plumbing supply stores. For the design of this 440 MHz filter we chose $3 / 8$ inch tubing. The ' $3 / 8$ inch"' refers to the

fig. 5. Sketch showing the top view of the $440-\mathrm{MHz}$ filter. The end walls are deliberately cut longer so they can be soldered to both sides of the side walls.
outside dimension of the tubing, so the filter rod diameter measures approximately 0.375 inches.

The choice of rod diameter is not entirely arbitrary, although it is not very critical, either. As a rule of thumb, the rod diameter should be roughly $1 / 3$ the housing height. In general, large diameter rods have lower losses than smaller rods. This is because skin effect losses predominate at radio frequencies. A larger diameter rod has greater surface areqa and, hence, less resistive loss than a smaller diameter rod. However, using a larger rod diameter can lead to mechanical difficulties. In this filter, for example, it was difficult to solder the large $3 / 8$ inch diameter copper rods. These rods have fairly large masses and good thermal conductivity, so a regular soldering iron, intended for lighter duty circuit board work, just wouldn't provide enough heat. In the end, it took the greater heat of a propane torch to solder the rods to the copper walls.

The rods should be cut a bit longer than the correct length given by the printout. Then they are fit through holes drilled in the housing wall and soldered on both sides of the double clad circuit board, as shown in fig. 6. A good solder joint on each side increases the mechanical strength and improves grounding. The interior lengths of the rods and the center-to-center spacings between the rods are among the most critical dimensions affecting the frequency re-
sponse of the filter, so measure them as carefully and precisely as possible. In spite of all the care you use in construction, however, it will almost certainly be necessary to peak tune the filter response.

One simple way to tune the filter rod lengths is to load their open-circuited ends with variable capacitors. If the rods are just a bit shorter than the design calls for, then the small capacitance of a tuning screw at the open end will tune that element's resonant frequency. This tuning compensates for the minor inaccuracies which inevitably occur in construction.

These tuning screws need good grounds at the points where they penetrate the wall. It is important to realize that it is the inside grounded surface that matters most, because the inside copper cladding forms the conductive boundary that contains the filter's electric fields. For this reason the tuning screws are supported by brass nuts soldered to the inside surface of the box. These nuts are visible in the overall photograph of the filter and especially in the close-up view, fig. 7. The nut makes a simple threaded support for the screw and serves as the low impedance path from the screw body to the ground plane. On the outside of the filter housing a second nut holds the screw firmly in place. This nut is tightened after all of the filter tuning is completed, and it ensures that the screw is tightly bound to the soldered-down nut and prevents it from moving and thereby detuning the filter.

The computer program also lists the tap point distance, which is the position at which the external connectors pass through the walls and are coupled to the filter. The distance is given relative to the shorted

fig. 6. An overall view of the 4 section $440-\mathrm{MHz}$ bandpass filter. The top cover has been removed to show the internal detail.

fig. 7. Close-up view of the $440-\mathrm{MHz}$ filter showing details of the 50 -ohm coaxial connector tap and of a tuning screw.
end of the rods. This junction should be by a short length of wire or cable. The closeup view shown in fig. 7 shows how the connector's center pin has been joined to the end rod with a short length of solid wire. The actual tap point distances may need to be adjusted for best performance, but if the design value is used it will serve for most cases without change.

tuning

After the filter has been fully assembled, which means after all of the soldered joints are fully completed and the top is well secured electrically to the sides, it is time to test and tune.

Tuning microwave filters can be done in a number of ways. Several methods are described in reference 1, but the simple procedure of "sight tuning," or tuning by eye, is adequate for amateur filters, especially for filters with fewer than five or six sections. The basic principle involved is to tune for maximum signal at the center frequency, a process sometimes called synchronous tuning. The tuning is interactive, which means that one adjustment affects the tuning of adjacent elements, so it is necessary to return to each element once or twice to achieve peak performance.

A basic test set that can be used to peak the performance of any of the filters described here is shown in fig. 8. Inject a signal at the center frequency of the filter, detect or monitor the output power level, and tune for maximum. If the center frequency is within the ham bands, the input signal can be a transmitter or exciter. A signal generator can also be used. Harmonics of lower frequency sources or crystal oscillators can be useful as well. For example, the third harmonic of a 2-meter transmitter falls within the 420 to 450 MHz band and could be used to tune this filter. The signal detector can be a receiver with a signal level meter, a diode detector, a sensitive power meter or signal analyzer. Reference 6 describes many good lowcost UHF test methods in detail.

fig. 8. Simple test set block diagram. The signal source produces an output at the filter's center frequency. The filter is then tuned for maximum signal at the detector.

Apply the test signal to one of the filter's connectors and connect the signal detector to the other and tune each of the screws to achieve the maximum output signal. The tuning range of this type of filter design is rather limited, which helps prevent tuning to the wrong harmonic, as can happen with broadly resonant circuits. This is a useful feature if the simple test set, with its potentially low spectral purity, is to be used.
If the filter is properly designed and carefully constructed, the slight tuning range afforded by the tuning screws should be sufficient. Each tuning screw should show a definite maximum. If it does not, this is an indication that the element which you are tuning is not properly resonant. In such a case, the rod length must be corrected before the filter will operate properly.

Once you've adjusted each tuning screw to yield the maximum output signal, go back and readjust each screw again slightly to peak the filter. If the filter response is not as calculated, and if the passband losses seem high even though each of the resonators gives a good peak tuning point, it may be necessary to adjust the tap points at the two end resonators. If no means of carefully measuring the losses is available, it is probably better to stay with the calculated tap dimensions. At this point the tuning is done.
A more sophisticated measuring system is useful for measuring the actual performance of the filter. Figure 9 is a diagram of the test set which produced the swept frequency response of the filter examples. The input signal from a sweep generator scans across the frequency range in regular sweeps. A spectrum analyzer measures the output signal from the bandpass filter, and provides a graphic plot of the filter's output signal across the frequency range swept by the signal generator. Because the power from the generator to the filter input is constant, the spectrum analyzer's display is a direct representation of the filter's attenuation at various frequencies.
Figure 10 is the response of the $440-\mathrm{MHz}$ filter. This graph is the plotter output from the test set described above. The filter was tuned using the simple singlefrequency method of peaking all adjustments for maximum signal at 440 MHz . With the aid of such sophisticated test equipment it is possible to tune for im-

fig. 9. Test set used to produce the filter frequency response charts.

fig. 10. Swept frequency response of the four section $440-\mathrm{MHz}$ filter. The horizontal scale is 5 MHz per division and the vertical scale is 10 dB per division. The spectrum analyzer settings were recorded automatically at the top of the plot.
proved passband flatness or for more precise centering if desired, but this clearly was not necessary in this case.

In summary, the 440 MHz bandpass filter example fully met its design goals of low cost, simple construction and easy adjustment, and it produced the desired electrical performance. The filter is physically small enough and sufficiently sturdy to be used in a fixed base system, although mechanical improvements would be needed for mobile service. This general construction technique using copper clad board and tubular copper or brass resonators has been applied to successfully build filters for the amateur bands from 440 to 2304 MHz .

1296 MHz filter

The second example of the use of this program is a bandpass filter centered at 1296 MHz with a desired ripple bandwidth of 20 MHz , a passband ripple of 0.25 dB and rejection points of 35 dB and 50 dB specified. Using these data, a few iterations with the program revealed that a four-section filter would again meet the requirements.

fig. 11. Mechanical details of the $\mathbf{1 2 9 6 - M H z}$ filter housing. This housing is machined from aluminum stock. The top cover, not shown, is made from 0.06 sheet aluminum.

If the construction techniques used to build the $440-\mathrm{MHz}$ filter seemed spartan, then this 1296 MHz filter is by contrast decidedly upscaie. In order to prove that close tolerance construction could give good agreement with the computed data, a machined aluminum housing was used for this filter. Machining a housing using a metal milling machine gives precise control of the housing dimensions. This housing is considerably more accurate than the hand-made structure described in the first example.

The mechanical data supplied by the program were used to make a sketch, shown in fig. 11, of a housing that could be manufactured simply on a metal milling machine. The elements, machined from 0.125 inch brass rod stock (a standard size) were tightly "press fit" into holes in the housing walls. The rods are held tightly in position with a small setscrew once the exact interior lengths were determined. At the input and out-
put ends of the filter SMA type connectors were installed so that their center pins contacted the rods at the tap point calculated by the computer program. Small diameter tuning screws were installed in the threaded holes in the walls opposite the open circuit end of each resonator rod. These screws, as in the $440-\mathrm{MHz}$ filter, make it possible to fine-tune the filter passband. A top cover of 0.06 -inch aluminum sheet was attached by eight screws that go into the threaded holes along the top edge of the housing. The photographs of this filter, figs. 12 and 13, show the construction details clearly. (Note: while 0-80 screws are specified in the construction drawings, 2-56 screws could be used as well.)

The housing was manufactured by machinists in a small shop, working from a simple sketch of the housing and cutting the aluminum stock with handoperated machinery. In order to reduce costs, we

fig. 12. An overall view of the machined $1296-\mathrm{MHz}$ filter. The sheet metal cover has been removed to show the internal cavity and the 4 resonator rods.

fig. 13. Close-up details of the $1296-\mathrm{MHz}$ filter. The SMA connector center pin is clearly visible where it passes through the housing wall and contacts the end resonator rod. The small tuning screw at the end of the second resonator is also seen.
asked the shop to produce only a blank housing. They machined away the cavity to the precise 0.500 inch depth and drilled locating holes for the resonator rods, the tuning scews, the end connectors and the cover mounting screws, but they did not tap any of the holes. We were then able to finish the mechanical work by doing the time-consuming hand-tapping of all of the threaded holes. This reduced the cost of the housing by more than a third. Even so, the cost was in the $\$ 50.00$ range, which may be justifiable only when precise results are essential.

However, the care and expense expended on the precise housing produced a filter that was nearly on frequency at first try, with precisely the initial resonator length settings that the computer predicted. Fine adjustments of the trimmer screws centered the passband precisely. Figure 14 shows a plot of the swept RF response of the filter. Superimposed on the plot
are circles that indicate the expected response calculated by the computer prediction. The calculated and actual values are in close agreement throughout the passband, and the rejection skirts are close to the computed values as well.

As before, the filter was peaked using the simple, single-frequency approach in order to illustrate the results obtainable with simple equipment. The test set used to make the swept frequency response plot was the same as that used in the 440 MHz filter tests.

This 1296 MHz filter, with its careful and precisely machined construction, shows the power and accuracy of the computer routine. The construction technique is a good one, and a simple metal milling machine, and perhaps even a drill press, can be used to make housings such as this one.
The use of 0.125 inch brass stock for the resonator rods was a bit of a compromise. It would have been better to use a somewhat larger diameter rod to reduce skin effect losses, but the 0.125 -inch stock was on hand. Also, although brass rod is a good choice from a mechanical viewpoint, it is not a very good conductor of RF energy because its resistivity is about four times worse than copper's. Aluminum rods would be better than brass, because aluminum is both stronger and a better conductor, but with aluminum rods the tap point connections couldn't be easily soldered. Tradeoffs, as always, seemed to abound.

conclusion

This program is a powerful tool that greatly simplifies the selection and design of bandpass filters. The interdigital structure is useful from UHF to microwave frequencies, and provides good selectivity, low loss, small size, and an ease of construction that makes it suitable for many applications. The ease with which many different designs can be evaluated in software means that Amateurs can custom-design filters for specific applications and need not merely copy published designs that only approximate their re-

fig. 14. Frequency response curve of the $1296-\mathrm{MHz}$ four section bandpass filter. The circles indicate the response computed by the program.

AIR-WOUND INDUCTORS

$\mathrm{B} \& \mathrm{~W}$ Miniductors ${ }^{\oplus}$ and Air-Dux ${ }^{\circ}$ have been the industry standard for over 50 years, wherever radio-frequency coils are used.

- For the experimenter, the radio amateur, the manufacturer
- Available in diameters from $1 / 2^{\prime \prime}$ to $6^{\prime \prime}$
- Wire sizes from \#24 to \#8 AWG
- Also edge-wound and tubing coils for high-power applications.
Call or write for complete specifications.

ALL OUR PRODUCTS MADE IN USA

BAREER \& WILLIAMSON
Quality Communication Products Since 1932 At your Distributors. Write or Call. 10 Canal Street, Bristol PA 19007 Vद्यक (215) 788-5581
quirements. The widespread use of home computers together with software written specifically for Radio Amateurs should make possible a new generation of home-built equipment designs.

references

1. G. Matthaei, L. Young, and E.M.T. Jones, Microwave Filters, Impedance Matching Networks, and Coupling Structures, McGraw-Hill, New York, 1964. 2. M. Dishal, "A Simple Design Procedure for Small Percentage Bandwidth Round-Rod Interdigital Filters" IEEE Transactions on Microwave Theory and Techniques, MTT-13, Number 5, September, 1965, pages 696-698. 3. C.W. Rook, J.M. Taylor, "Intfil," 1970.
2. D.R.J. White, A Handbook on Electrical Filters Synthesis, Design and Application, Don White, Germantown, Maryland, 1963.
3. A.I. Zverev, Handbook of Filter Synthesis, John Wiley and Sons, New York, 1967.
4. K. Weiner, The UHF Compendium, Verlag Ruldolf Schmidt, Hot/Saale West Germany, 1982.
5. L. Young, Microwave Filters Using Parallel Coupled Lines, Artech House, Dedham, Massachusetts, 1972.
6. V.P. Leonchenko, A.L. Feldstein, and L.A. Shepelyanskii, Design of Inter digital Bandpass Filters, Svyaz, Moscow, 1975, (in Russian).
7. E.G. Crystal, "Coupled Circular Cylindrical Rods Between Parallel Ground Planes," IEEE Transaction on Microwave Theory and Techniques, MTT-12. Number 4, July, 1968, page 428-439.
8. R. Fisher, "Interdigital Bandpass Filters for Amateur VHF/UHF Applications," QST, March, 1968, page 32.
9. L. Anderson, "Top Coupled Bandpass Filter," ham radio, June, 1977. page 34 .
10. R. Cooper, "Interdigital Preamplifier and Combined Bandpass Filter for VHF and UHF," ham radio, August, 1970, page 6.
11. W. Hayward, WIZO1, "The Peaked Lowpass: A Look at the Ultraspherical Filter," ham radio, June, 1984, page 96

MOSFET REPEATER AMPLIFIERS

An Industry First! Power MOSFETs in American Made Amplifiers. Built For Those Who Demand Quality.

4111: 2 Meter Power Amplifier 2 Watt Input - 30 Watt Output 20 Watt Input - 100 Watt Output

4112: 220 MHz Power Amplifier 2 Watt Input - 25 Watt Output 25 Watt Input - 100 Watt Output

4114: 2 Meter Power Amplifier 2 Watt Input - 100 Watt Output

These basic amplifers, with the low noise advantages of MOSFETs, require a 12-16 Vdc power source. Mounted on an $83 / 4$ " rack panel with a large heat sink, they are designed for continuous duty at full power output when cooled with a small, customer supplied, fan. Mounting provisions and control thermostat are supplied.

- FALCON
(415) $851-8779$
P.O. Box 620625
Woodside, CA 94062

ALSO SEE US FOR YOUR MOBILE AMPLIFIER NEEDS

FREQUENCY COUNTERS 6 MODELS • RANGESTO 1.3 GHZ

CERTIFIED CALIBRATION - METAL CASES - LSI CIRCUITRY WITH NO CUSTOM IC'S • AC/DC OR BATTERY OPERATION - PRECISION TIME BASES - EXCLUSIVE LED BAR GRAPH SIGNAL. STRENGTH INDICATOR ON MODELS 8010-5 \& 8013-5 MADE IN USA
PRICE LIST

MODEL	PRICE	NI-CAD BATTERY OPTION	$\begin{array}{r} \text { TIME B } \\ \text { \#TCXO-80 } \\ \pm 0.1 \mathrm{PPM} \end{array}$	OPTIONS \#OCXO-80 $\pm 0.05 \mathrm{PPM}$
	\$150.	\$25.	N/A	N/A
\# $7010-5 / 600 \mathrm{MHz}$	\$235.	\$25.	575.	N/A
\#7010-5/1 GHz	5310.	525.	575.	N/A
\#8007-5	\$350.	\$60.	\$75.	S125.
\#8010-5	\$435.	\$60.	575.	\$125.
\#8013-5	\$499.	\$60.	\$75.	\$125.

ACCESSORIES

LFM-1110

Measure audio frequencies faster with increased resolution. Multiplies low frequency signais by 10 . 100 or 1000 . Built in low-pass filtering and signal amplification. (Pictured 3rd from top) $\$ 15$ $1-1300 \mathrm{MHz}$ preamplifier for reading extremely low level signals. Compact aluminum enclosure can be coupled directly to BNC input connector on counter. Supplied with AC adapter, can also be powered from accessory power output on BOXX-S series front paneis. 25 dB gain to $\mathrm{GHz}, 10 \mathrm{~dB}$ gain at 1.3 GHz RF pick-up antenna, telescope-swivel elbo 512.
P-100 Direct 50 Ohm probe $\mathbf{5 1 8 .}$ P-101 Low-pass probe. Attenuates RF frequencies s20.
p-102 H-Z probe. General usage, 2 X attenuation $\$ 20$.
CC-70 Carry case, small, for K-7000AC, 7010-S
$\$ 10$.
CC-80 Carry case, large for 80XX-5 series
 QPTDelectronics inc.
5821 N.E. 14th Avenue Ft. Lauderdale, Florida 33334

R

* VT-3B and VT-4B
 MOBILE HOME
 NEW REMOTE CONTROLLED ANTENNA TUNERS

NEW COMPACT DESIGN WITH 10 -segment LED tuning indicator

* VT-4B INSTALLS DIRECTLY AT THE ANTENNA FEEDPOINT WHERE YOU CAN REALLY "TUNE" THE ANTENNA.
* DESIGNED FOR HALF WAVE DIPOLES, INVERTED V's, AND QUARTER WAVE VERTICALS USING 50 OHM COAX FEEDLINES.
^ OPERATES WITH SINGLE BAND OR MULTIBAND ANTENNAS, TRAP TYPE OR PARALLEL ELEMENT TYPES.
* WORKS ALL BANDS FROM 10 THROUGH 160 METERS
* FULL BAND COVERAGE WITH MAXIMUM EFFICIENCY AND VERY LOW VSWR, TYPICALLY LESS THAN 1.2 TO 1.
\star FINGER TIP CONTROL FROM THE HAM SHACK FOR EXACT RESONANCE AND IMPEDANCE MATCH
* FOR MOBILE OPERATORS THE VECTOR VT-3B INSTALLS IN THE TRUNK AND TUNES STANDARD TYPE MOBILE ANTENNAS FOR FULL BAND COVERAGE, (All of 75 M phone band), WITH TYPICAL VSWR LESS THAN 1.2 TO 1

VECTOR RADIO CO., P.O. BOX 1166, CARDIFF, CA 92007

VOICE OPERATEDSQUELCH

- Fits inside most HF-SSB transceivers
- Requires human voice to activate
- Ignores sıatic, noise and hetrodynes
- On/off switch only-no adjustments!
- Connects to audio leads and 9/12 VDC
- Fully assembled and tested $\$ 99.95$
- Complete with comprehensive manual.
- Used worldwide in commercial and military transceivers
- 114

FNa COMMUNICATIONS, 5479 Jetport, Tampa. FL 33614 • (813) 885-3996

CALLMARK COMPUTERS
Presents two new programs for
Radio Shack Color \& IBM PC. (Specify Tape or Disk)

SATELLITE UTILITY
A very useful utility for anyone selling. constructing or designing TVRO systems Many useful calculations include some of the following: * Parabolic Dish Efficiency * Polar Antenna Offset * Margin tests * Geo-Sat tocations • Parabolic Dish Design, Beam width. side lobes - C / N and S / N noise ratio
This program is available for the TRS 80 Color computer for $\$ 34.95$ and the IBM PC clone will be available for $\$ 79.95$ U.S

SOLAR OUTAGES

This program determines the days at which a Solar outage occurs from any location on the earth. It also calculates the dish beamwidth. azimuth and elevation when the coordinates are imputed. This program is extemely useful for anyone using Satellite media for a commercial use. This program is available for the TRS-80 Color computer for $\$ 11.95$ and the IBM PC clone will be available for $\$ 29.95$ U.S.
Callmark Computing
Box 371, Nelson, B.C. Canada 115 V1L 5R2

FREE CATALOG!

Features Hard-to-Find Tools and Test Equipment

Jensen's new catalog features hard-tofind precision tools, tool kits, tool cases and test equipment used by ham radio operators, hobbyists, scientists, engineers, laboratories and government agencies. Call or write for your free copy today.
JENSEN TOOLS INC.

7815 S. 46th Street Phoenix, AZ 85040 (602) 968-6231

- 116

DRAKE R-4/T-4X OWNERS AVOID OBSOLESCENCE

PLUG-IN SOLID STATE TUBES!
Get state-of-the-art performance. Most types available INSTALL KITS TO UPGRADE PERFORMANCE!

- BASIC Improvement
- Audio Bandpass Filter
- Audio IC Amplifier

TUBES \$23 PPD KITS \$25 PPD OVERSEAS AIR $\$ 7$

SARTORI ASSOCIATES, W5DA BOX 832085
RICHARDSON, TX 75083 214-494-3093

basic gamma matching

Simplify antenna matching with this BASIC program and your microcomputer

Antenna homebrewers have found the gamma match to be an ideal choice for matching a coaxial feedline to an all-metal radiator. It is simple to build, adds little weight and wind loading, is very strong mechanically, and allows you to match an unbalanced transmission line to either an unbalanced or balanced antenna.

Unfortunately, it isn't always easy to obtain a good match, and many have aborted their attempts in frustration. The problem is that initial gamma match dimensions are generally chosen arbitrarily. Sometimes you may be lucky and choose a reasonable starting point, but just as often your initial dimensions won't even be close. In this case you may spend hours on the tower going in circles looking for a match.

Formulas that allow you to generate gamma match designs are available.' However, the math involved is tedious, especially if several iterations must be performed. A home computer can simplify these calculations, allowing a variety of gamma matching networks to be examined in just a few minutes. A program that will design a gamma match for practically any Yagi or vertical antenna is presented here. While designed for the Apple II + , the program will work equally well with any microcomputer with only a few modifications.

background

The design of the gamma match is represented in fig. 1, and the schematic of the equivalent electrical circuit ${ }^{2}$ in fig. 2. The circuit consists of a gamma rod and a resonating capacitor. The gamma rod of diameter d and length L runs parallel to the driven element of diameter D, separated by the center to center spacing S. It provides the desired resistance transformation, but at the same time introduces inductive reactance at the feed point. The gamma capacitor compensates for the inductive reactance, leaving only a resistive component.
Any of several gamma capacitors may be used. An air variable with adequate plate spacing for the anticipated power level is the usual choice. It may be
mounted in a small weather resistant enclosure and connected to the gamma rod by means of a feedthrough insulator. Another method is to construct a coaxial capacitor within the gamma rod. This technique has been successfully applied by many commercial manufacturers and basement engineers. ${ }^{3}$

The shorting bar that determines length L generally takes the form of a strap, bent to conform to the driven element and gamma rod and secured with screws. When very long gamma rods are required, as when shunt feeding towers on the lower frequencies, a wire may be used for the gamma rod. If the diameter

fig. 1. A representation of the mechanical design of the gamma match.

fig. 2. Schematic diagram of the gamma match. The antenna impedance $R+j X$ is transformed to the feedline resistance Z_{g} by the gamma rod X_{p} and gamma capacitor $-\mathrm{X}_{\mathrm{g}}$.

By Richard A. Nelson, WBOIKN, Analog Technology, P.O. Box 8964, Fort Collins, Colorado 80525

```
1\emptyset HOME : CLEAR
20 PRINT "GAMMA MATCH DESIGN"
3Ø PRINT "BY RICHARD A. NELSON - WB\emptysetIKN"
40 PRINT
50 DEF FN CSH (X) = LDG (X + SQR (X * X - 1))
60 PRINT "ENTER <M> FOR MONOPOLE"
70 INPUT "ENTER <D> FOR DIPOLE > ";DM$
8\emptyset IF DM& = "D" OR DM$ = "M" THEN GOTO 1@@
90 GOTO 60
10\emptyset INPUT "ENTER FREQ IN MHZ > ";F
110 INPUT "ENTER FEEDPOINT RESISTANCE > ";RA
120 IF DM$ = "D" THEN RA = RA / 2
130 INPUT "ENTER FEEDFOINT REACTANCE > ";XA
14@ IF DM$ = "D" THEN XA = XA / 2
150 INPUT "ENTER FEEDLINE RESISTANCE > ";RO
160 FRINT : FRINT
17\emptyset FRINT "(THE FOLLOWING ARE IN INCHES)"
1日G PRINT : INFUT "ENTER DRIVEN ELEMENT DIAMETER > ";DE
19\varnothing INPUT "ENTER GAMMA ROD DIAMETER > ";DG
200 INPUT "ENTER GAMMA ROD SPACING > ";5
210 HZ = (1 + (( FN CSH((4 * S * S - DE * DE + DG * DG) / (4 * 5 * DG)))
    / (FNCSH((4 * S * S + DE * DE - DG * DG) / (4 * S * DE))))) ^2
220 ZO = 6\emptyset * FN CSH((4 * 5 * 5 - DE * DE - DG * DG) / (2 * DE * DG))
230 T = HZ / ZO
249 A = ((RO * XA) / (HZ * RA - RO))
250 B = (RO * ((RA) ^2 + (XA) 人 2)) / (HZ * RA - RD)
26@Q = A + SQR (A * A + B)
27\emptyset XS = HZ * ((RO * XA + SQR ((RO * XA) ^ 2 + RO * (HZ * RA - RO) * ((
    RA) ^2 + (XA) ^2)))/(HZ *RA - RD))
2日\emptyset LDGA = ATN (Q * T)
290 LDG = (LDGA * 36(0) / (2* 3.14159)
3\emptyset\emptysetE=(RD/RA) * (((RA)^2 + (XA)^2) / Q)
310G=(RD/RA) * XA
32\emptysetCR = 10ø\emptyset\emptyset\emptyset\emptyset/(2 * 3.14159 * (E + G) * F)
33@ HOME
34@ IF DM$ = "D" THEN RA = RA * 2: IF DM$ = "D" THEN XA = XA * 2
350 PRINT
360 IF DM = "D" THEN FRINT "DIFOLE ANTENNA"
376 IF DM$ = "M" THEN PRINT "MONOPOLE ANTENNA"
380 PRINT
39\emptyset PRINT "FREQUENCY (MHZ) = ";F
4@\emptyset PRINT "DRIVEN ELEMENT DIAM = ";DE
410 PRINT "GAMMA ROD DIAM = ";DG
420 PRINT "GAMMA ROD SPACING = ";S
43@ FRINT "DRIVEN ELEMENT RESISTANCE = ";RA
440 PRINT "DRIVEN ELEMENT REACTANCE = ";XA
450 PRINT "FEEDLINE RESISTANCE = ";RO
460 FRINT
47@ FRINT "GAMMA LENGTH (DEGREES) > ";LDG
4Bø FT = (948 / F) * (LDG / उG@): PRINT "GAMMA LENGTH (FEET) > ";FT
49\emptyset IN = FT * 12: FRINT "GAMMA LENGTH (IN) > ";IN
500 CM = IN * 2.54: FRINT "GAMMA LENGTH (CM) > ";CM
510 FRINT "GAMMA CAF IN FF > ";CR
520 PRINT : FRINT "TYPE ANY KEY TO CONTINUE >": GET T$: GOTO 1@
```

fig．3．A listing of the program for an Apple II＋computer．Simple modifications will allow the program to be used with practically any home computer．

```
GAMMA MATCH DESIGN
BY RICHARD A. NELSON - WBOIKN
ENTER <M> FOR MONOPOLE
ENTER <D> FOR DIPOLE > D
ENTER FREQ IN MHZ > 14.200
ENTER FEEDPOINT RESISTANCE > 20.0
ENTER FEEDPOINT REACTANCE > +7.5
ENTER FEEDLINE RESISTANCE > 50
(THE FOLLOWING ARE IN INCHES)
ENTER DRIVEN ELEMENT DIAMETER > 1.5
ENTER GAMMA ROD DIAMETER > . 25
ENTER GAMMA ROD SPACING > 3.\varnothing
DIPOLE ANTENNA
FREQUENCY (MHZ) = 14.2
DRIVEN ELEMENT DIAM = 1.5
GAMMA ROD DIAM = . 25
GAMMA ROD SPACING = 3
DRIVEN ELEMENT RESISTANCE = 2@
DRIVEN ELEMENT REACTANCE = 7.5
FEEDLINE RESISTANCE = 50
GAMMA LENGTH (DEGREES) > 28.7984588
GAMMA LENGTH (FEET) > 5.340355927
GAMMA LENGTH (IN) > 64.0867112
GAMMA LENGTH (CM) > 162.780246
GAMMA CAP IN PF > 188.92213
```

TYPE ANY KEY TD CONTINUE >
fig. 4. The screen display for a sample run showing the sequence of data entry and output.
is too small to provide a match, a "cage" may be constructed, using several wires to effectively create a cylinder at the required radius. Variations in gamma match design are limited only by the mechanical and electrical integrity of the structure. This versatility greatly adds to the gamma's usefulness.

about the program

A listing of the program for the Apple II + computer is shown in fig. 3. Although written specifically for the Apple, I tried to keep the number of commands unique to Applesoft to a minimum. It should be easy for owners of other brands of microcomputers to translate the program for use on their machine.
Lines 10 through $\mathbf{4 0}$ clear the memory and the screen, and print the heading. Line 50 defines the inverse hyperbolic cosine function needed in the calculations. Lines 60 through 150 input data regarding the antenna and feedline, and lines 180 through 200 input the driven element diameter and anticipated gamma match constants (gamma rod diameter and spacing). Lines 210 through $\mathbf{3 2 0}$ perform the calculations of gamma rod length and capacitance. Note that since

DIFOLE ANTENNA

```
FREQUENCY (MHZ) = 14.2
DRIVEN ELEMENT DIAM = 1.5
GAMMA ROD DIAM = . 25
GAMMA ROD SPACING = 6
DRIVEN ELEMENT RESISTANCE = 2\emptyset
DRIVEN ELEMENT REACTANCE = 7.5
FEEDLINE RESISTANCE = 50
GAMMA LENGTH (DEGREES) > 25.3194033
GAMMA LENGTH (FEET) > 4.69538231
GAMMA LENGTH (IN) > 56.3445877
GAMMA LENGTH (CM) > 143.115253
GAMMA CAF IN FF > 241.894184
DIFOLE ANTENNA
FREQUENCY (MHZ) = 14.2
DRIVEN ELEMENT DIAM = 1.5
GAMMA ROD DIAM = . 5
GAMMA ROD SFACING = 3
DRIVEN ELEMENT RESISTANCE = 20
DFIVEN ELEMENT REACTANCE = 7.5
FEEDLINE RESISTANCE = 50
GAMMA LENGTH (DEGREES) > 38.3406199
GAMMA LENGTH (FEET) > 7.11011495
GAMMA LENGTH (IN) > 85.3213794
GAMMA LENGTH (CM) > 216.716304
GAMMA CAF IN PF > 262.100816
```

fig. 5. Calculated results for two additional runs on the antenna in fig. 4.
a gamma match essentially loads into only one side of a dipole, the feedpoint impedance of a dipole antenna must be divided in half before performing calculations. This is done by lines 120 and 140. Line 340 restores the original impedance value before outputting data. Line 330 clears the screen and lines 360 through 510 output the specified and calculated data. Line $\mathbf{5 2 0}$ returns the program to the beginning.

Once you have the program running, you may wish to add custom features. For example, you could change line 520 to allow you to either return to the beginning, or to line 180 if you want to evaluate a different gamma match design without changing the antenna parameters. If you'd like hard copy of the data, you could add the appropriate "printer on" and "printer off'" commands between lines 330 and 340 , and 510 and 520 respectively. For an Apple II the commands wouid look like this:

335 PR\#1
 515 PR\#0

Another possibility is a "WILL NOT MATCH" message in response to a divide-by-zero error (for Apples, use ONERR GOTO), indicating that a different design should be tried. I included all of these in my

THE STANDARD OF EXCELLENCE

The world of CW: RIIY, and new DUAL AMMOR** is as close as your fingertips with the new brilliantly innovative state-ofthe-art microcomputer controlled DXX 5000 E .

Automatic Sender/Receiver: Due to the most up to date computer technology, just a console and keyboard can accomplish complete automatic send/receive of Morse Code (CW), Baudot Code (RTTY), ASCII Code (RTTY) and new ARQ/FEC (AMTOR).
Code: Morse (CW includes Kana), Baudot (RTTY), ASCII (RTTY), IIS (RTTY), ARQ/FEC (AMTOR).
Characters: Alphabet, Figures, Symbols, Special Characters, Kana. Built-in Monitor: $5^{\prime \prime}$ high resolution, delayed persistence green monitor - provides sharp clear image with no jiggle or jitter even - under fluorescent lighting. Also has a provision for composite video signal output.
Time Clock: Displays Month, Date, Hour and Minute on the screen Time/Transmission/Receiving Feature: The built-in timer enables completely automatic TX/RX without operator's attendance. Selcal (Selective Calling) System: With this feature, the unit only receives messages following a preset code. Built-in Demodulator for High Performance: Newly designed high speed RTTY demodulator has receiving capability of as fast as 300 Baud. Three-step shifts select either $170 \mathrm{~Hz}, 425 \mathrm{~Hz}$ or 850 Hz shift with manual fine tune control of space channel for odd shifts. HIGH (Mark Frequency 2125 Hz)/LOW (Mark Frequency 1275 Hz) tone pair select. Mark only or Space only copy capability for selective fading. ARQ/FEC features incorporated. Crystai Controlled AFSK Modulator: A transceiver without FSK function can transmit in RTTY mode by utilizing the high stability crystal-controlled modulator controlled by the computer,
Photocoupler CW, FSK Keyer built-in: Very high voltage, high current photocoupler keyer is provided for CW, FSK keying.
Convenient ASCII Key Arrangement: The keyboard layout is ASCII arrangement with function keys. Automatic insertion of LTR/FIG code makes operation a breeze.
Battery Back-up Memory: Data in the battery back-up memory, covering 72 characters $\times 7$ channels and 24 characters $\times 8$ channels, is retained even when the external power source is removed. Messages can be recalled from a keyboard instruction and some particular channels can be read out continuously. You can write messages into any channel while receiving.
Large Capacity Display Memory: Covers up to 1,280 characters. Screen Format contains 40 characters $\times 16$ lines $\times 2$ pages. Screen Display Type-Ahead Buffer Memory: A 160-character buffer memory is displayed on the lower part of the screen. The characters move to the left erasing one by one as soon as they are transmitted. Messages can be written during the receiving state for transmission with battery back-up memory or SEND function. Function Display System: Each function (mode, channel number. speed, etc.) is displayed on the screen. Printer Interface: Centronics Para Compatible interface enables easy connection of a low-cost dot printer for hard copy.
 Wide Range of Transmitting and Receiving: Morse Code transmitting speed can be set from
the keyboard at any rate between 5-100 WPM (every word per minute). AUTOFRACK on receive, For communication in Baudot and ASCII Codes, rate is variable by a keyboard instruction between 12-300 Baud when using RTTY Modem and between 12-600 Baud when using TTL level. The variable speed feature makes the unit ideal for amateur. business and commercial use.
Pre-load Function: The buffer memory can store the messages written from the keyboard instead of sending them immediately. The stored messages can be sent with a keyboard command.
"RUB-OUT" Function: You can correct mistakes while writing messages in the buffer memory. Misspellings can also be erased while the information is still in the buffer memory.
Automatic CR/LF: While transmitting. CR/LF automatically sent every 64,72 or 80 characters.
WORD MODE operation: Characters can be transmitted by word groupings, not every character, from the buffer memory with keyboard instruction.
LINE MODE operation: Characters can be transmitted by line groupings from the buffer memory.
WORD-WRAP-AROUND operation: In receive mode, WORD-WRAP-AROUND prevents the last word of the line from splitting in two and makes the screen easily read.
"ECHO" Function: With a keyboard instruction, received data can be read and sent out at the same time. This function enables a cassette tape recorder to be used as a back-up memory, and a system can be created just like telex which uses paper tape.
Cursor Control Function: Full cursor control (up/down, lefuright) is available from the keyboard. Test Message Function: "RY" and "QBF" test messages can be repeated with this function.
MARK-AND-BREAK (SPACE-AND-BREAK) System: Either mark or space tone can be used to copy RTTY.
Variable CW weights: For CW transmission, weights (ratio of dot to dash) can be changed within the limits of 1:3-1:6.
Audio Monitor Circuit: A built-in audio monitor circuit with an automatic transmit/receive switch enables checking of the transmitting and receiving state. In receive mode, it is possible to check the output of the mark filter, the space filter and AGC amplifier prior to the filters. CW Practice Function: The unit reads data from the hand key and displays the characters on the screen. CW keying output circuit works according to the key operation. CW Random Generator: Output of CW random signal can be used as CW reading practice. Bargraph LED Meter for Tuning: Tuning of CW and RTTY is very easy with the bargraph LED meter. In addition, provision has been made for attachment of an oscilloscope to aid tuning. Built-in AC/DC: Power supply is switchable as required; $100-120 \mathrm{VAC}$; $220-240 \mathrm{VACl} 50 / 60 \mathrm{~Hz}+13: 8 \mathrm{VDC}$ Color: Light grey with dark grey trim - matches most current transceivers. Dimensions: 363(W) $\times 121(\mathrm{H}) \times 351(\mathrm{D}) \mathrm{mm}$: Terminal Unit. Warranty: One Year Limited Specifications Subject to Change
$\$ 595.00$
EXCLUSIVE DISTRIBUTOR:
DEALER INQUIRIES INVITED
AMATEUR-WHOLESALE ELECTRONICS
Telephone (305) 233-3631
YOUR NEAREST DEALER OR TO ORDER:
TOLL FREE ... 800-327-3102
8817 S.W. 129th Terrace, Miami, Florida 33176
Telex: 80-3356

MANUFACTURER:

(क) TONO CORPORATION

98 Motosoja Machi, Maebashi-Shi, 371, Japan
*Dual Amtor: Commercial quality, the EXL-5000E incorporates two completely separate modems to fully support the amateur Amtor codes and all of the CCIR recommendations 476-2 for commercial requirements.
original program, but they were eliminated in the version presented here in order to simplify program entry and translation.
The hardest part of using this program will be determining the driven element impedance. Fortunately, the feedpoint characteristics of most common antennas are sufficiently documented to provide good data. The error introduced by "guesstimating" will in many cases be better than typical homebrew construction tolerances. If you have a noise bridge or impedance meter you should have no trouble determining the feedpoint impedance. Refer to any of the standard antenna texts if you are unsure about a particular antenna.

Once you have the impedance data - assuming that you know the diameter of your driven element and gamma rod - select an arbitrary gamma rod spacing. Start with an estimate based on mechanical and "eyeballed" electrical considerations. Three inches is a bit small for a shunt-fed tower, and a foot is obviously too big for a 2-meter Yagi.

Load and run the program. It will begin by asking whether you are evaluating a dipole or a monopole. Then it will request the values of a number of constants - feedpoint impedance, design frequency, etc. After all data has been entered, the computer will calculate and display the gamma rod length and the value of the gamma capacitor. If these values are not acceptable, run the program again, trying a different gamma rod spacing, and/or a different gamma rod diameter (if practical). You can vary the feedpoint impedance by slightly changing the length of the driven element. By examining a variety of alternative designs you can find the best combination, with reasonable mechanical and electrical parameters. If the antenna is not suitable for gamma matching, you can learn this quickly, without wasting hours in hands-on experimentation.

design examples

To demonstrate program operation, and to allow you to check operation once the program is keyed in, I will present several design examples.

Figure 4 shows the screen display on a run for a computer generated six-element, 20-meter Yagi design by Lawson. ${ }^{4}$ The calculated feedpoint impedance of the antenna is $20+j 7.5$ ohms. In this example, I've assumed 1.5 -inch ($38.1-\mathrm{mm}$) diameter element centers, a gamma rod diameter of 0.25 inch (6.35 mm), and a gamma rod spacing of 3 inches (76.2 mm). Figure 5 shows the results of two additional gamma match designs for this antenna. In fig. 5A the gamma rod spacing has been increased to 6 inches $(152.4 \mathrm{~mm})$, and in fig. 5B the gamma rod diameter has been increased to 0.5 inch (12.7 mm).

Figure 6 shows the results for a monopole approximately $1 / 4$-wavelength high. In this case the gamma rod is a length of No. 10 wire (approximate diameter

MONDPOLE ANTENNA

```
FREQUENCY (MHZ) = 3.8
DRIVEN ELEMENT DIAM =12
GAMMA ROD DIAM = . 1
GAMMA ROD SPACING = 12
DRIVEN ELEMENT RESISTANCE = 33
DRIVEN ELEMENT REACTANCE = 1.3
FEEDLINE RESISTANCE = 50
GAMMA LENGTH (DEGREES) > 44.8174331
GAMMA LENGTH (FEET) > 31.0576949
GAMMA LENGTH (IN) > 372.6923.39
GAMMA LENGTH (CM) > 946.638541
GAMMA CAF IN PF > 122.616005
```


MONOFOLE ANTENNA

```
FREQUENCY (MHZ) = 3.B
DRIVEN ELEMENT DIAM = 12
GAMMA ROD DIAM = . 1
GAMMA ROD SPACING = 12
DRIVEN ELEMENT RESISTANCE =25
DRIVEN ELEMENT REACTANCE = -3B
FEEDLINE RESISTANCE = 50
```


fig. 6. Results of two runs on a $\mathbf{7 5 - m e t e r}$ vertical monopole antenna.
$=0.1$ inch or 2.54 mm$)$. Run A is for a 60 -foot (18.3-meter) tower used as vertical radiator on 3.8 MHz . Computer analysis shows its impedance to be approximately $33+j 1.3$ ohms. Run B is for a 55 -foot (16.8-meter) tower operated on the same frequency. The results show how a smaller gamma capacitor may be used if the radiator is made capacitively reactive by reducing its overall height.

I have used this program to design gamma matching networks for a 20-meter Yagi and a 2-meter cubical quad. In both cases the results were superb. No trimming of the gamma rod was necessary. Adjustment of the variable capacitors was all that was needed to achieve a 1:1 VSWR. The normal trial and error process was totally eliminated.

references

[^1]ham radio

AEA

BRINGS YOU ANOTHER
BREAKTHROUGH THE Til RTTY TUNING INDICATOR

SHOWN ACTUAL SIZE

- TRUE SPECTRAL DISPLAY SHOWS BOTH MARK AND SPACE TONES
- 1Ohz RESOLUTION FOR THE TUNING ACCURACY OF A SCOPE
- WITHOUT THE EXPENSE OF A SCOPE
- ALLOWS FAST AND EASY TUNING OF RTTY SIGNALS
- IDEAL FOR DIFFICULT TO TUNE AMTOR SIGNALS
- DISPLAYS 170, 425 AND 85Ohz STANDARD SHIFTS
- SHOWS NON-STANDARD SHIFTS FOR EASY TUNING
- AUDIO DRIVEN - EASY TO HOOK UP - COMPACT SIZE
- BUILT IN SPEAKER - CAN BE SWITCHED ON OR OFF
- WORKS WITH ANY INTERFACE
- DOES NOT REQUIRE SCOPE OUTPUTS
- REQUIRES 12vdc AT LESS THAN 6Oma
- COMPLETE WITH MANUAL AND CONNECTORS
- SUGGESTED RETAIL \$119.95

C \& A ROBERTS, INC.

18511 Hawthorne Blvd., Torrance, CA 90504
213-370-7451 24 Hours call 213-834-5868

Please allow 4-6 weeks for delivery of first
Foreign rates: Europe, Japan and Africa, $\$ 28.00$ for one year by air forwarding service. All other countries $\$ 22.95$ for one year by surface mail.

ELECTRO-SCAN85
 Features

- Economical
- Lock and Key
- 36 volt DC motor
- Precise positioning
- Analog Micro Systems
- 1 year limited warranty
- State-of-the-art circuitry
- LED to indicate dish movement
- Available in $18^{\prime \prime}$ or $24^{\prime \prime}$ ball actuators
- Modern, attractively styled control box
- Dial control always showing dish location
- Dial channels same as in program listings

Your wisest choice in automatic dish positioners. To learn more abqut the finest in low cost, high performance an pombens meat
ELECTRO-COM DIST. SALES

determining basic moon coordinates

Track the moon with this

 computer programSerious EME (Earth-Moon-Earth) communication requires a way of accurately determining the position of the moon. Of the several ways this can be done, moon-tracking by computer is one of the more convenient.
The program described here runs on TRS-80 models I/III with a minimum of 16 K RAM and either level II/III or disk BASIC; it should run on other computers as well with only minimal changes. With your QTH as the point of reference, it provides readings of azimuth, elevation, GHA, declination, and right-ascension of the moon as well as relative path loss, local time of day and local sidereal time (LST). The positional data are expressed in topocentric values - i.e., they've been corrected for your location on the surface of the earth. (Many other moon tracking programs provide geocentric data referenced to the center of the earth.)

To output the above information, you simply input your latitude and longitude and the day(s) and time(s) in GMT (Greenwich Mean Time). The computer displays the information on the CRT monitor, and/or sends it to the printer. Figure 1 shows a sample output for W2WD (40 degrees 39 minutes North, 74 degrees 22.5 minutes West) on June 8, 1983. Although this output came from the printer, the CRT display was similar; the data appears on the printer at the same time it's displayed on the CRT.

keyboard input data

Figure 2 shows a screen printout of the inputs required to produce the output data discussed above.

After loading, RUN "MOON" < ENTER > starts the program from either level II or disk BASIC. Once initiated, the logo appears and suggests a listing of lines 1000-1360 if you need a short description of the program. If you hit $<E N T E R>$ to go on, the computer asks, WHAT ARE THE STATION CALL LETTERS? (As shown, I entered W2WD.) Next, the computer asks WHAT IS YOUR LOCAL TIME (EST, EDT, PST, etc.)? (The reply was EST.) and then, HOW MANY HOURS/MINUTES DIFFERENCE FROM GMT? USE + IF EARLIER, - IF LATER (e.g., EST would be -0500). (The answer was -0500.) Next it asks, YOUR LATITUDE (DEGREES, MINUTES) + NORTH/ - SOUTH? (In my case this was 40,39 for 40 degrees and 39 minutes north latitude. If you are in the southern hemisphere, you must use a negative sign, e.g., $-40,39$.) Longitude is entered in a similar fashion. (My input was $74,22.5$ for 74 degrees and 22.5 minutes west longitude.) Use a negative sign (-) for east longitude.

The accuracy of the final calculations depends on the precisely accurate determination of your geodetic location. Your town manager or city engineer may be able to help. If not, you can use maps sold by the U.S. Geological Survey, especially those drawn to 1:24,000 scale. Some automotible road maps may show sufficient detail to allow fairly close determination of your location.

The next information to be inputted is the DESIRED PRINTING INCREMENT IN MINUTES (1-60). I used 20 minutes between each line of output data, but this can be anything between 1 and 60 minutes. Positions can be determined for time intervals of less than 1 min ute apart, but the displays and printouts, as the program is now written, will round the results to increments of full minutes - i.e., if you need data every 6 seconds (0.1 minutes), you can input 0.1 as the print-

By Warren Butler, W2WD, 2305 Morse Avenue, Scotch Plains, New Jersey 07076

GMT	GHA	DEC	LST	EST	$A Z$	EL
0800	3 ± 7.2	$+10.5$	2006	0300	77.4	1.4
0820	342.0	$+10.5$	2026	0.20	80.5	5.1
0840	346.8	$+10.6$	2046	0340	83.5	8.7
0900	351.7	$+10.7$	2106	0400	86.5	12.5
0920	356.5	$+10.8$	2126	0420	89.6	16.2
0940	1.4	$+10.9$	2147	0440	92.7	19.9
1000	6.2	$+10.9$	2207	0500	95.9	23.6
1020	11.1	$+11.0$	2227	0520	99.2	27.4
1040	15.9	$+11.1$	2247	0540	102.7	31.0
1100	20.8	+11.2	2307	0600	106.4	34.6
1120	25.7	+11.	2327	0620	110.4	38.2
1140	50.6	+11. 3	2347	0640	114.7	41.7
1200	35.5	+11.4	0007	0700	119.4	45.0
1220	40.3	+11.5	0027	0720	124.6	49.2
1240	45.2	+11.6	0047	0740	130.3	51.2
1300	50.1	+11.6	0107	0800	136.9	54.0
1320	55.0	+11.7	0127	0820	144.1	56.4
1340	59.9	+11.8	0147	0840	152.1	58.5
1400	64.8	$+11.9$	0207	0900	161.0	60.0
1420	69.7	$+11: 94$	0227	0920	170.5	61.0
1440	74.6	$+12.04$	0247	0940	180.4	61.4
1500	79.5	+12.1U	0307	1000	190.4	61.1
1520	84.4	$+12.2 \mathrm{U}$	$0 \leq 27$	1020	200.0	60.2
1540	89.	+12.2U	$0 \geq 48$	1040	208.9	58.7
1600	94.2	+12.	0409	1100	217.1	56.7
1620	99.1	+12.3W	0428	1120	224.4	54.4
1640	103.9	$+12.4 W$	0449	1140	231.0	E1.7
1700	108.8	+12.5W	0508	1200	236.8	48.7
1720	113.7	+12.5W	0528	1220	242.1	45.6
1740	118.6	+12.6W	0548	1240	246.9	42. 3
1800	123.5	+12.7W	0608	1300	251.	צ. 8
1820	128.3	+12.7W	0628	1320	255.	-5. 4
1840	15.3.2	$+12.8 \mathrm{~J}$	0648	1340	259.1	≤ 1.8
1900	138.1	$+12.8 \mathrm{~J}$	0708	1400	262.6	28.2
1920	142.9	$+12.9 \mathrm{~J}$	0728	1420	266.0	24.6
1940	147.7	$+12.9 \mathrm{~J}$	0748	1440	269.	21.0
2000	152.6	+15.0J	0808	1500	272.5	17.3
2020	157.4	$+13.1 \mathrm{~J}$	0828	1520	275.6	13.7
2040	162. 3	+13.1	0848	1540	278.7	10.1
2100	157.1	+1-2	0908	1600	281.8	6.5
2120	171.9	+13.2	0929	1620	284.9	3.0

F.A. OF MOON $=0.308$ FATH-LOSS INCFEASE +1.3 DE
fig. 1. Moon coordinate printout for W2WD on 8 June 1983.
ing increment. You'll get ten different lines of data for every minute of readout, but the GMT, LST, and your local time will not change until the data for the following minute appears, etc. If this is an important use,
you can modify the program to print out the time(s) to the resolution needed.

For EME operators who use ground reflection for added gain or cannot elevate their antennas, the pro-

```
WHAT ARE THE STATION CALL LETTERS ? WZWD
WHAT IS YOUR LOCAL TIME (EST, EDT, PST, ETC.) ? EST
HOW MANY HOURS/MINUTES DIFFERENCE FROM GMT?
    USE + IF EARLIER, - IF LATER
    (EG., EST WOULD BE -0500)? -0500
WHAT IS YOUR LATITUDE (DEGREES,MINUTES)
+ NORTH / - SOUTH ? 40,39.0
WHAT IS YOUR LONGITUDE (DEGREES,MINUTES)
+ WEST / - EAST ? 74,22.5
WHAT IS THE DESIFED FRINTING INCREMENT IN MINUTES (1-60)? 20
DO YOU ONLY WANT PFINTOUT WHEN THE MOON IS NEAR THE HORIZON
(YES/ND)? NO
DO YOU WANT HARDCOFY (YES/NO)? YES
```

INFUT - GMT MONTH, DAY, YEAR, TIME EEGINNING, TIME ENDING
USE 4-DIGITS FOR YEAR AND 24-HOUR CLOCK
ENTER DATA FDR UP TD 31 DAYS.
HIT «ENTER` AFTER LAST ENTFY

DATE 1 (MM, DD, YYYY,TTTT,TTTT) $76,8,1983,0,2400$
DATE 2 (MM, DD, YYYY,TTTT,TTTT) ? O_
fig. 2. Screen printout of input commands.
gram has an option to print or display data only when the moon is near the horizon. In this case you answer YES to DO YOU ONLY WANT PRINTOUT WHEN THE MOON IS NEAR THE HORIZON (YES/NO)? (I operate with a polar-mounted antenna so I answer NO to this question.) If you answer YES, you will be asked to reply to BELOW WHAT ELEVATION IN DEGREES DO YOU WANT PRINTOUT? You then enter the maximum elevation angle you're interested in.
If you don't have a printer or don't want hard copy, answer NO to DO YOU WANT HARDCOPY (YES/ NO)? If you have a printer and answer YES but the printer is not turned on, the computer will reply PRINTER NOT READY. The program won't hang up, but will repeat the question until you either answer NO or turn on the printer.
At this point, you specify the date-time periods for the output data. These must be entered in GMT format. It is necessary to use four digits for the year; don't use 85 , if you mean 1985! Similarly, time is inputted with four digits using a 24 -hour clock for both the starting and ending points. You don't have to start the data at 0000 and end at 2400; they can be set according to your operating requirements. For the low-elevationonly option, you don't need to enter time spans because the computer will print only data meeting your criteria of when the elevation of the moon is below the angle you have specified earlier.

You can enter up to 31 dates for any given run. The dates do not have to be consecutive or in any given order, nor does the data requested have to be uniform from day to day. In fact, each entered date is a separate request. You may repeat the same dates with different start/end times if you wish.

program operation

Keep in mind that the calculations are relatively slow. Compiling data for 31 days could require hours of computer time. The actual time will vary greatly according to the time increments you specify, the printer speed, and other factors.
When you've completed the entry of all start/end times, hit <ENTER> to terminate the data input phase. The program prints the heading information and begins calculations. Each line of data requires roughly 15 seconds, even though the result of that calculation may be below the horizon and therefore not printed out. If you've asked for data every 20 minutes following midnight on a day when the moon does not rise until 0800 GMT , the computer will calculate the position of the moon 24 times before any results appear on the CRT or printer. Therefore, the program may seem to be hung up for several minutes even though it's actually hard at work calculating data that ends up below the horizon and is consequently not displayed.
fig．3．Enhanced version moon coordinate program listing for TRS－80．

1000 •＊＊＊＊＊＊＊＊＊＊＊＊MODN COORDINATES＊＊＊＊＊＊＊＊＊＊＊＊
1010
1020 ＇FRIMARILY FOR USE IN EARTH－MOON－EARTH
1030 ：（EME）COMMUNICATIONS BY RADIO AMATEURS．
1040°
1050 ＂BASED ON PROGRAMS EY LANCE COLLISTEF（WAIJXN／WAJGFL）
1060 ＇AND JAY LIEGMANN（KEJL）．
1070^{\prime} SEE EIMAC PUBLICATIONS AS－49－6，AS－49－17 AND AS－49－24．
1080 ＇VARIAN，EIMAC DIVISION
1090 3． 301 INDUSTRIAL WAY
1 too＇SAN CAFLLOS，CA 94070.
1110°
1120 MODIFIED FOR MODEL I TRS－8O LEVEL II AND DISK EASIC
1130 ，WITH ENHANCED DISFLAYS AND ADDITIONS OF SIDEREAL TIME，
1140 •RIGHT ASCENSION AND DISTANCES TO THE MOON（CONVEFTED
1150 －TO PATH－LOSS VARIATIONS IN DECIEELS）
1160 ＇ BY WARREN EUTLER（W2WD）．
1170 ．
1180° INPUT DATA：LATITUDE，LONGITUDE，GMT DATE／TIME AT SITE．
1190 ＇DATA FOR UP TO 31 DIFFERENT DAYS CAN EE INFUTTED AT
1200 ＇ONE TIME．ENTER DATA IN THE FORMAT FEQUESTED．AFTER
1210 ＊THE LAST INFUT，INSERT ZEFOS OR HIT 〈ENTER．．
1220 ，
12 EGO DUTPUT DATA：GHA，DECLINATIDN，AZIMUTH AND ELEVATION DF
1240 ＇MODN，SIDEFEAL TIME（ST）AND LDCAL TIME，UNIVERSAL
1250 ＇WINDOWS FOR EME COMMUNICATION，RIGHT ASCENSION OF MOON，
1260° PATH－LOSS VARIATIONS（DB）．
1270 ．
1280 ＇ HARDCOPY DUTFUT CAN BE SELECTED IF FRINTER IS AVAILABLE．
1290°
1300 ，UNIVERSAL EME WINDOWS ARE SHOWN GY LETTERS FOLLOWING DEC．
$1310^{\circ} \mathrm{U}=$ EUROFEAN UNIVERSAL WINDOW
$1320^{\prime} W=W / V E$ UNIVERSAL WINDOW
1330 ：J＝J／VK／ZL UNIVERSAL WINDOW
1346，
1350 EE PATIENT，THE CALCLIATIONS CAN TAKE SEVERAL MINUTES．
1360°
1370 PRINT
$13 B O$ PRINT
1390 CLEAR 500
1400 DIM $F(31), V(31), Y(31), Q(31), S(31)$
1410 PS $=2.0000000000 * 3.1415926535$
$1420 \mathrm{DS}=360.00000000000 / \mathrm{PS}$
$1430 \mathrm{RS}=\mathrm{F} 5 / 360.0000000000$
1440 CLS
1450 GOTD 1730
1460 FRINT 盾 0 ，STKING $\$(64,170)$
1470 FRINT f 148 ，＂MOON COORDINATE FROGRAM＂
1480 FFINT 278，＂WARREN EUTLER（WZWD）＂
1490 PRINT G $343, " 2305$ MORSE AVENUE＂
1500 PFINT＠404，＂SCOTCH FLAINS，NJ 07076＂
1510 PRINT 9 473，＂（201）233－4460＂
1520 FRINT E 576，STRING $\$(64,170)$
1530 PRINT 日 83 ，＂IF YOU NEED A DESCRIPTION OF PROGRAM，LIST LINES 1000－1360＂
1540 FRINT＠978，＂ELSE HIT 〈ENTEF〉 TO CDNTINLE＂：
1550 INPUT I\％
1560 CLS
1570 REM：EEGIN INPUT DATA SEQUENCE
1580 PRINT＂WHAT ARE THE STATION CALL LETTERS＂；
1590 INFUT W\＄
1600 INFUT＂WHAT IS YOUF：LOCAL TIME（EST，EDT，FST，ETC．）＂：TI－\＄
1610 FFINT＂HOW MANY HOURS／MINUTES DIFFERENCE FROM GMT？＂
1620 FFINT＂USE＋IF EAFLIER，－IF LATEF＂
1630 INPUT＂（EG．，EST WOULD EE－0500）＂；TD
1640 IF TD -1200 OF TD 1200 THEN 1610
1650 FFINT＂WHAT IS YOUR LATITUDE（DEGREES，MINUTES）＂
1660 PRINT＂+ NORTH／－SQUTH＂：
1670 INFUT LS，U5
1680 IF LSYOO OF LS－90 OF U5 60 THEN 1650
1690 FRINT＂WHAT IS YOUR LONGITUDE（DEGREES，MINUTES）＂
1700 FRINT＂＋WEST／－EAST＂：
1710 INFUT L6，U6
1720 IF L6 180 OR L6：－180 OF U6：60 THEN 1690
1730 ＂W\＄＝＂WZWD＂：L5＝40：U5＝39．0：L6＝74：U6＝22．5：TL\＄＝＂EST＂：TD＝－0500
$1740 \mathrm{~L} 5=(\mathrm{L} 5+\mathrm{US} / 60) * \mathrm{~F} 5$
$1750 \mathrm{~L}=(\mathrm{L} 6+\mathrm{U6} / 60)$ \＃R5
1760 INFUT＂WHAT IS THE DESIRED FFIINTING INCREMENT IN MINUTES（1－60）＂：I
1770 IF $I=0$ OF I >60 THEN 1760
$17 \mathrm{BO} \mathrm{B}=$＝＂1
1790 INFUT＂DO YOU ONL Y WANT FRINTOUT WHEN THE MODN IS NEAF THE HORIZON （YES／NO）＂：B\＄

$2.30 \mathrm{MHz} \mathrm{12V}\left({ }^{\circ}=28 \mathrm{~V}\right)$			
P／N	Rating	Ea	Match Fir
MRF 406	20W	\＄14．50	\＄32．00
MRF412	80 W	18.00	40.00
MRF412A	80W	18.00	40.00
MRF421	100W	25.00	54.00
MRF421C	110W	27.00	58.00
MRF422＊	150W	38.00	82.00
MRF426＊	25W	17.00	40.00
MRF426A＊	25W	17.00	40.00
MRF433	13W	14.50	32.00
MRF435＊	150W	42.00	90.00
MRF449	30W	12.00	27.00
MRF449A	30W	11.00	25.00
MRF450	50W	12.00	27.00
MRF450A	50W	12.00	27.00
MRF453	60W	15.00	33.00
MRF453A	60W	15.00	33.00
MRF 454	80W	16.00	35.00
MRF454A	80W	16.00	35.00
MRF455	60W	12.00	27.00
MRF455A	60W	12.00	27.00
MRF458	80W	18.00	40.00
MRF460	60W	16.50	36.00
MRF475	12 W	3.00	9.00
MRF476	3W	2.50	8.00
MRF477	40W	13.00	29.00
MRF 479	15W	10.00	23.00
MRF 485＊	15W	6.00	15.00
MRF492	90W	18.00	39.00
SRF2072	75W	15.00	33.00
CD2545	50W	24.00	55.00
Selected High Gain Maticherd Ouads；Avaliath			
VHF TRANSISTORS			
Type	Rating	ta	Matk $\mathrm{n}^{\text {a }}$ ：
MRF221	15W	\＄10．00	－
MRF222	12W	12.00	－
MRF224	40 W	13.50	\＄32．00
MRF231	3.5 W	10.00	－
MRF234	25W	15.00	39.00
MRF237	1 W	2.50	－
MRF238	30 W	12.00	－
MRF239	30 W	15.00	－
MRF240	40W	16.00	－
MRF245	80 W	25.00	59.00
MRF247	80 W	25.00	59.00
MRF260	5W	6.00	－
MRF264	30 W	13.00	－
MRF492	70W	18.00	39.00
MRF607	1.8 W	2.60	－
MRF627	0．5W	9.00	－
MRF641	15W	18.00	－
MRF644	25W	23.00	－
MRF646	40W	24.00	59.00
MRF648	60W	29.50	69.00
SD1416	80W	29.50	－
SD1477	125W	37.00	－
2N4427	1 w	1.25	－
2N5945	4W	10.00	－
2N5946	10W	12.00	－
2N6080	4W	6.00	－
2N6081	15 W	7.00	－
2N6082	25 W	9.00	－
2N6083	30 W	9.50	－
2N6084	sow	12.00	29.00
	TM		
MRF137	30W	\＄22．50	－
MRF138	30W	35.00	
MRF140	150W	92.00	
MRF150	150W	80.00	－
MRF172	80W	65.00	－
MRF174	125W	88.00	－

Technical Assistance \＆cross－teterence information on CD，PT．RF．SRF．SD P／NS Call Engineering Dept （619） $744-0728$
RF Parts Catalog Available
OEM \＆Quantity Discounts 29
Minirrum Order $\$ 20$ Add $\$ 350$ Shipping
WE SHIP SAME DAY
C．O．D．IVISAIMC
ORDERS ONLY：800－854－1927

This happens in the example shown in fig. 1. On June 8, 1983, the moon rose at about 0800 GMT. The computer did not start printing out data until six minutes after the input phase had been completed and the <ENTER $>$ key had been pressed. From that point the printing continued until moonset had been reached at about 2120 GMT. However, the program did not stop calculations until the specified ending time of 2400 GMT. The program required about 15 minutes to generate the data shown in fig. 1.

Similarly, if data ends above the maximum angle selected in the low-elevation mode, the program will also appear to be "hung-up." If you already know the times of moonrise and moonset, the start and end times can be set accordingly and much time can be saved in the printout process.

printouts and displays

Now let's look at the output data (fig. 1) in more detail. After the GMT time column, the GHA, or Greenwich Hour Angle, is shown. It is the angle subtended by the moon and the Greenwich meridian. This angle can be translated to your geographical meridian (Local Hour Angle) by adding your longitude if east, or subtracting if west. The third column provides the declination of the moon or its position north $(+)$ or south (-) of the celestial equator. Using the GHA and declination information, the polar-mounted EME antenna can be kept trained on the moon.

Note that some of the values for declination are followed by the letter U, W, or J . These are indicators that the moon is in one of the universal EME windows established to allow use of fixed antenna arrays. This was intended to permit large antennas to be built at lower cost by eliminating the need to position the array in azimuth or elevation. The U, or universal window, was set up for contacts between European and USA stations. The W window is better situated for USA/USA and the J window is for JA/VK/W contacts. ${ }^{4}$

The next two columns show local time readouts. Standard or daylight-savings time needs no further discussion. LST (Local Sidereal Time) is tied to the stars and used primarily by astronomers. It is included here to help readers locate some of the stellar noise sources for checking EME systems performance. Or, for that matter, to locate a "cold" area of the sky for the same purpose. Many EME operators use the sun as a noise source to check antenna and system performance. When system performance is improved beyond the norm, smaller noise sources in the heavens such as Cassiopeia A, Cygnus A, and others can prove useful. Knowing the R.A. (right ascension of the moon) and declination of these sources and your LST can help in training your antenna to the proper direction in the sky.

For EME operators using AZ-EL antenna mounts, the computer calculates the azimuth and elevation angles to the moon from their QTH. Azimuth is the angle with respect to true north, (not magnetic north as would be indicated with a compass); elevation is the angle above the local horizon.

Below the positional data in fig. 1 are two other useful parameters for EME operation. The first is the R.A., which indicates where the moon is in relation to other objects in the sky. Some of the stars are noise sources that can reduce the signal-to-noise ratio of the communication path when they are in line with the moon at the time of a QSO. Earlier, I suggested that these same kinds of noise sources could be useful for system calibration. For better EME contacts, however, they should be avoided. Reference 1 contains radio sky maps over the frequency range of 64 to 910 MHz . These show the noise temperature of the sky as a function of right ascension and declination. It should be mentioned that the right ascension of the moon given at the bottom of the printout listings is the first calculated value. The R.A. varies about one hour over a 24 -hour day, but this usually provides sufficient accuracy to judge whether noise sources from behind the moon are going to be a problem. ${ }^{2}$
Because the moon is traveling in an elliptical path around the earth, its distance from the earth varies. At apogee it is roughly 407,000 kilometers from the earth; at perigee, $356,000 \mathrm{~km}$. The variation in range is sufficient to add about 2 dB of additional path loss at apogee as compared to when the moon is at the perigee position. Apogee to perigee time spans are roughly 13 days. For each day of a printout, the pathloss difference in dB , as compared to the perigee position, is printed at the bottom of the listing. Equations used for calculating the earth-to-moon distances were taken from reference 3.

accuracies

Considering the number and types of calculations this program processes, it is reasonable to ask whether the results obtained on a personal computer are sufficiently accurate for use by the typical Amateur EME station. To answer this question, I compared the output data to the most accurate, reliable data available to me.

For GHA and declination I was unable to locate a suitable source of topocentric values to confirm the output of this program. However, the Nautical Almanac provides geocentric data with errors less than 0.0005 degrees and thus served as a satisfactory standard for data referenced to the center of the earth. ${ }^{5,6}$ In order to compare "oranges to oranges," I had to bypass the translational calculations I had inserted to convert from geocentric to topocentric coordinates. I then used the random number generator of the

fig. 3, continued

1800 IF LEFTB (B\%, 1) $=$ "Y" THEN 1830
1810 16=100
1820 GOTO 2030
1830 INPUT"BELOW WHAT ELEVATION IN DEGREES DO YOU WANT PRINTOUT"; 16
1840 WW\$ =" "
1850 INPUT"DO YOU WANT HARDCOFY PRINTOUT (YES/ND)"; WW
1860 IF LEFT\$(WWs, 1)="Y" WW\$="YES"
1870 IF WW $=$ ="YES" AND PEEK $(14312)>127$ THEN PRINT "PRINTER NOT READY": WWs="": GOTO 1850
1880 PRINT
1890 PRINT"WHAT ARE THE GMT MONTH, DAY, YEAR DESIRED"*

1910 PRINT"ENTER DATA FOR UR TO 31 DAYS"
1920 PRINT"HIT <ENTER> AFTER LAST ENTRY"
1930 PRINT
$1940 \mathrm{~N}=0$
1950 FOR $N=1$ TO 31
1960 PRINT"DAY ";N;" (MM, DD, YYYY)";
1970 1NFUT $F(N), V(N), Y(N)$
1980 IF $F(N)=0$ THEN 2220
1990 IF $F(N)<1$ OR $F(N)>12$ OR $V(N)<1$ OR $V(N)>31$ OR $Y(N)<1900$ OR $Y(N)>2000$ THEN 1960
2000 IF $\mathrm{N}=31$ THEN 2220
2010 NEXT N
2020 GOTO 1950
2030 WW $\$=\cdots "$
2040 INPUT"DO YOU WANT HARDCOPY (YES/NO)";WW\$
2050 IF LEFT (WW\%. 1) ="Y" WW\%="YES"
2060 IF WW $=$ "YES" AND PEEK $(14312)>127$ THEN PRINT "PRINTER NOT READY": WWs="": GOTO 2040
2070 PRINT
2080 PRINT"INPUT - GMT MONTH, DAY, YEAR, TIME BEGINNING, TIME ENDING"
2090 PRINT"USE 4-DIGITS FOR YEAR AND 24-HOUR CLOCK"
2100 PRINT"ENTER DATA FOR UP TO 31 DAYS."
2110 PRINT"HIT (ENTER) AFTER LAST ENTRY
2120 FRINT
$2130 \mathrm{~N}=0$
2140 FOR $N=1$ TO 31
2150 PRINT"DATE"; $\mathrm{N}:$ " (MM, DD, YYYY, TTTT, TTTT) ";
2160 INPUT $F(N), V(N), Y(N), O(N), S(N)$
2170 IF $F(N)=0$ THEN 2220
2180 IF $F(N)<1$ OR $F(N)>12$ OR $V(N)<1$ OR $U(N)>31$ OR $Y(N)<1900$ OR $Y(N)>2000$ OR $Q(N)<0$ OR $Q(N)>2359$ OR $S(N)<0001$ OR $S(N)>2400$ THEN 2150
2190 IF $\mathrm{N}=31$ THEN 2220
2200 NEXT N
2210 GOTO 2140
2220 IF $\mathrm{N}=31$ THEN NS=N ELSE $\mathrm{NS}=\mathrm{N}-1$
2230 FOR $\mathrm{N}=1$ TO NS
2240 IF LEFTS (BS, 1) $=$ "Y" THEN 2260
2250 GOTO 2290
2260 E1=2400
$2270 \mathrm{~B}=0$
2280 GOTO 2310
$2290 E_{1=S}(\mathrm{~N})$
$2300 \mathrm{~B}=\mathrm{Q}(\mathrm{N})$
$2310 \mathrm{M}=\mathrm{F}(\mathrm{N})$
$2320 \mathrm{D}=\mathrm{V}(\mathrm{N})$
$2330 \quad \mathrm{Y}=\mathrm{Y}(\mathrm{N})$
2340 Y $1=Y-($ INT $(Y / 100) * 100)$
2350 REM: SETUF DUTPUT FQRMAT
2360 PRINT
2370 IF WW\$="YES" THEN LPRINT""
2380 PRINT
2390 IF $N=1$ THEN CLS
2400 IF WWs ="YES" THEN LPRINT""
2410 PRINT"POSITION OF THE MOON ON ":M;"/";D;"/";Y;" GMT FROM"....
W\$
2420 IF WW\$="YES" THEN LPRINT"POSITION OF THE MOON ON ";M;"/";D;"/";Y;" GMT FROM"." " W\&
2430 PRINT
2440 IF WW\& ="YES" THEN LPRINT""
2450 PRINT"GMT" TAB (8) "GHA" TAB (17)"DEC" TAB(27)"LST" TAB (37)TL\& TAB (47) "AZ" TAB (56) "EL"
2460 IF WW\% = "YES" THEN LPRINT"GMT" TAB (8) "GHA" TAB (17) "DEC" TAB (27) "LST" TAB (37)TLs TAB(47)"AZ" TAB (56) "EL"
2470 11 $=2$
2480 REM: CALCULATION OF JULIAN DATE
2490 IF $M>=3$ THEN 2570
2500 IF INT $((Y-1853) / 4)<11$ THEN 2530
2510 C1=-1
2520 GOTO 2540
$2530 \mathrm{C} 1=0$
$2540 \mathrm{~J} 1=365 *(Y-1853)+D+30 *(M+9)+$ INT $((M+10) / 2)$
$2550 \mathrm{JZ}=$ INT $((Y-1853) / 4)+1+C 1$
2560 GOTO 2680
2570 IF INT $((\gamma-1852) / 4)<11$ THEN 2600
$2580 \mathrm{C} 1=-1$
2590 GOTO 2610
(continued on page 44)

EASE OF INSTALLATION
ROHN "Fold-Dver" Towers are quickly and easily installed. The "Fold-Over" is sale and easy to service.

ADAPTABILITY

ROHN has several sizes to fit your applications or you can purchase the "Fold-Over" components to convert your ROHN tower into a "Fold-Over".

HOT DIP GALVANIZED

All ROHN towers are hot dip galvanized after fabrication.

REPUTATION

ROHN is one of the leading tower manufacturers, with over 25 years of experience.

Write today for complete details.

[^2]SICNATHESIZED
SIGNAL GENERATOR

MADE IN USA

 MODEL SG-100F $\$ 429.95$ delivered

- Covers 100 MHz to 199.999 MHz in 1 kHz steps with thumbwheel dial Accuracy $+/-1$ part per 10 million at all frequencies - Internal FM adjustable from 0 to 100 kHz at a 1 kHz rate - External FM input accepts tones or voice - Spurs and noise at least 60 dB below carrier - Output adjustable from $5-500 \mathrm{mV}$ at 500 hms - Operates on 12 Vdc (a) $1 / 2 \mathrm{Amp}$ Available for immediate delivery - \$429.95 delivered - Add-on accessories available to extend freq range, add infinite resolution, AM , and a precision 120 dB attenuator - Call or write for details - Phone in your order for fast COD shipment.

VANGUARD LABS
196-23 Jamaica Ave., Hollis, NY 11423
Phone: (718) 468-2720

ALL BAND TRAP VERTICAL Great for DX
 Completely assembled and ready to use! - Commercial quality, built to last Lightweight, sealed, weatherproof trap(s) -Low loss end insulator Handles up to 2000 watts PEP. Automatic band switching For all transmitters, receivers \& transceivers -Tuner usually never re-quired-Deluxe end feed connector, with buift in lightning arrestor, accepts PL - 259 coax connector - Use as sloper or vertical - Permanent or portabie use - Easy to install -Can be used without radials. Atstall -Can be used without radials to almost any support Excelient taches to almost any support Excelient for all class amateurs - Instructions infor all ciass amateurs - Instructions in- cluded 10 day money-back guarantee!

 4-Band -40.20,15,10 meters (27) 1 traprVS-41
 $\$ 39.95$ plus $\$ 4.00$ shipping
 5-Band -80, 40,20, 15, 10 meters (52^{\prime}) 2 traps MVS-52
 $\$ 54.95$ plus $\$ 4.00$ shipping
 50 ft RG. 58 U . 52 ohm coax cabie with PL- 259 connector on each end -add $\$ 8.00$ to above price
 We accept VISAMC - give Card", Exp date. Sionature 122

 SPI-RO DISTRIBUTORS, Room 103. P O Box 1538
Hendersonville. NC 28793 VITS Hendersonville, NC 28793
fig. 3, continued
3460 IF AZ 00 THEN 3490
$3470 \quad A=P 5+A$
3480 GOTO 3530
$3490 A=P 5+(A-P 5 / 2)$
3500 GOTO 3530
3510 IF $A 2=>0$ THEN 3530
3520 A=A+P5/2
3530 RETURN
3540 IF $(T-11) \geqslant(211) / 1440$ THEN 3560
3550 GOTO 3580
3560 PR1NT
3570 IF WW\& = "YES" THEN LPRINT""
$3580 \quad 21=$ INT $(A * D 5 * 10+.5) / 10$
$3590 \quad Z 2=$ INT (EADS* $10+.5) / 10$
$3600 \quad \mathrm{ZS}=\mathrm{INT}(\mathrm{G}$:DS $: 10+.5) / 10$
$3610 \quad 24=1$ NT (D1:D5 $: 10+$. 5) $/ 10$
3620 IF $24<0$ THEN 3750
3630 IF $23<61$ THEN 3750
3640 IF $23>G 2$ THEN 3660
3650 GOTO 3690
3660 IF $23<G 3$ THEN 3710
3670 IF Z3>64 THEN 3750
3680 GOTO 3730
3690 Y $8=" \mathrm{U"}$
3700 GOTO 3760
3710 ys="w"
3720 GOTO 3760
3730 Ys="J"
3740 GOTO 3760
3750 Y $==$ "
3760 ATt $=$ "OOO"
3770 BTs="OO"
3780 CTz="O"
$3790 \mathrm{BS}=$ INT $(\mathrm{B}+.5)$
3800 IF BS 10 THEN BSs=ATs+RIGHT\&(STRs(RS), 1): GOTO 3840
38:0 IF BS 200 THEN BSI=BT4+RIGHT4 (STR4 (BS). 2): GOTO 3840
3820 IF BS 1000 THEN BS 10 CT\& +R1GHTz(STRz (BS), 3): GOTO 3840
3830 BSt =RIGHTs (STR (BS) , 4)
3840 IF TD 0 OR TD $/ 100=$ INT (TD $/ 100$) TC=TD: GOTO 3860
3850 TC=TD +2360
3860 ES=BS+TC
3870 IF ES >2400 THEN ES=ES-2400
3880 IF ES $<=0$ THEN ES $=E S+2400$
3890 IF ES< 10 THEN ESs=AT $\$+$ RIGHTs(STR\& (ES), 1): GOT0 3930
3900 IF ES< 100 THEN ES\&=BT4+RIGHTs (STRz (ES), 2): GOTO 3930
3910 IF ES<1000 THEN ES\$=CT\$+RIGHT\& (STRz (ES) , 3): GOTO 3930
3920 ES\$=RIGHT (STRT (ES), 4)
3930 IF LACO THEN LA $=L A+24$
3940 IF LA>24 THEN LA $=$ LA -24
3950 LB $=100$ INT (LA)
3960 LC=60: (LA-INT (LA))
3970 IF LC-INT $(L C)=10.5 \quad L C=1 N T(L C)+1 \quad E L S E \quad L C=1 N T(L C)$
3980 IF $\mathrm{LC}=>60 \mathrm{LC}=0: \mathrm{LB}=\mathrm{LE}+100$
3990 LD=LB+LC
4000 IF LD >2400 THEN LD $=L D-2400$
4010 LB $4=$ STR (LD)
4020 IF LD 10 THEN LBs $=$ AT + FIGHT (LE\& (1): GOTO 4060
4030 IF LD 100 THEN LB\& 10 BT $\$+$ RIGHTs (LEs, 2) : $50 T 04060$
4040 IF LDC 1000 THEN LE\$ $=$ CT\& + RIGHTs(LEs. 3): GOTO 4060
4050 LB\$=RIGHT? (LBS, 4)

4070 22s="\#\#.""
4080 23s="\#\#\#.\#"
4090 24s="+\#\#. \#"
4100 PRINT USING"\% \%": BS\&;
4110 PRINT TAB (7)USING 234: Z3;
4120 PRINT TAB(16)USING 248: 24;
4130 PRINT Y F ;
4140 PRINT TAB (27)LES;
4150 PRINT TAB(37)USING"\% \%";ES4;
4160 PRINT TAB(45)USING Z1s: Z1:
4170 PRINT TAB (55) USING 22\%; 22
41BO IF WWs ="YES" THEN LPRINT USING"\% \%": ESs: : LFRINT TAB(T)USING 238; 23;: LPRINT TAB(16)USING 248: 24;: LFRINT Ys;: LFRINT TAB(27)LB3: : LPRINT TAB(37)USING"\% \%":ES*:: LFRINT TAB(4S)USING 21\%; 21:: LPRINT TAB(55)USING 228; 22
$4190 \quad 11=\mathrm{T}$
$4200 \mathrm{~B}=\mathrm{B}+1$
$4210 \mathrm{Z}=(\mathrm{B}-\mathrm{INT}(\mathrm{B} / 100): 1(00)-60$
4220 IF $2 \leqslant 0$ THEN 2730
$4230 \mathrm{~B}=\mathrm{INT}(\mathrm{B} / 100): 100+100+2$
4240 GOTO 2730
$4250 \mathrm{RX}=\mathrm{R} 2$
4260 IF $\mathrm{RX}<0$ THEN $\mathrm{RX}=\mathrm{RX}+24$
4270 IF $R X>24$ THEN $R X=R X-24$
$4280 \quad R A=100 * 1 N T(R X)$
4290 RB=60: (RX-INT (RX))
4300 IF $\mathrm{RE}-1 \mathrm{NT}(\mathrm{RB})=20.5 \mathrm{RB}=1 \mathrm{NT}(\mathrm{RB})+1 \quad \mathrm{ELSE} \quad \mathrm{RB}=1 \mathrm{NT}(\mathrm{RE})$
4310 IF $\mathrm{RB}=60 \quad \mathrm{RB}=0: \quad \mathrm{RA}=\mathrm{RA}+100$

TRS-80 to select days and months for 1978 and 1983. Why did I select those particular years? 1983 was the current year; 1978 is 5 years before. In addition, copies of the Nautical Almanac for each of those years were easily available. I printed out the moon coordinates to three decimal places for the selected dates. Then I modified an existing statistical program so that I could efficiently use the TRS-80 to calculate the average, or arithmetical means, standard deviations, and ranges of errors.

Average errors of less than 0.01 degree were obtained with maximum errors under 0.2 degree in sample sizes approaching 100. This inherent accuracy of the basic program equations should be adequate for many Amateur EME stations.

The above analysis is for geocentric GHA and declination data with the Nautical Almanac used as an accurate standard for comparison. I could find no comparable standard for azimuth and elevation error analysis. However, at least one checkpoint each day can be used to gain some confidence in the AZ/EL calculations. When the moon's GHA equals your longitude, the azimuth should be 180 degrees. At that same time the elevation should be equal to 90 degrees minus your latitude (+north/-south) plus the declination (+ north/ - south). Checking these points for the days used in the preceding analysis, it was found that the azimuth differences at 180 degrees were less than 0.011 degrees and elevation under 0.001 degrees, maximum. Average errors were 0.00037 and 0.00013 , respectively. (These are for geocentric values.)

Having gained confidence in the ability of the fundamental equations to provide accurate results, the parallax corrections which had been bypassed for the above analyses were reinstated to provide output values referred to the surface rather than the center of the earth. These are given in lines 4750 through 4850 and were based on information found in reference 3. Again, the lack of an accurate standard precludes a statistical error analysis but a straight comparison of GHA, declination, azimuth and elevation values before and after the parallax corrections may be useful.

When this was done, all corrections were less than 1.0 degree. Those for azimuth were "in the noise level," i.e., less than 0.005 degree. At moonset and moonrise, the elevation correction factors were very close to 1 degree and at azimuths near 180-degrees about 0.6 degree. (A detailed error analysis is available from ham radio, Greenville, NH 03048. Send an SASE with two first-class stamps attached. Request W2WD Moon Coordinate Error Analysis.)

optimizing the program

The program as presented is arranged for universal use. For frequent use at one location, it should be streamlined to eliminate the time-consuming task of
keying in the repetitive portions of the input data. To do this, the following changes should be made:

- At line 1450, remove the apostrophe ('). This has the effect of activating this GOTO 1730, which bypasses the repetitive input data requirements.
- At line 1730, remove the apostrophe (') and activate this line, replacing my standard input data with your standard input data:
W\$ = "your call letters" (use quotation marks)
$\mathrm{L} 5=$ your latitude, degrees [negative (-) for south latitude]
U5 = your latitude, minutes
L6 =your longitude, degrees [negative (-) for east longitude]
U6 = your longitude, minutes
TLS = "your time zone" (use quotation marks)
TD = time differential from GMT to your zone [negative (-) for zones west of GMT]
When these changes have been made, the program, when called up, will immediately go to the question WHAT IS THE DESIRED PRINTING INCREMENT IN MINUTES (1-60)? Thus, you have avoided the logo, the need to input your call letters, local time, time differential, latitude, longitude. This saves a lot of data entry time. I use two tailored programs . . . one set for Eastern Standard Time, for which I use the filespec "MOONEST" and the other "MOONEDT" for Eastern Daylight Savings Time. If you never use the low-elevation mode, this section can be bypassed. If you do not have a printer, then that question can likewise be skipped. With some knowledge of BASIC programming, making changes to suit your individual requirements are not difficult.

The program was rewritten for the level II dialect of the Model I TRS-80 from versions presented in reference 4 by Lance Collister (WA1JXN) and Jay Liebmann (K5JL). Enhancements have been added in the form of readouts for Local Sidereal Time, RightAscension of the moon and path loss variations. Provisions have also been made for the direct inputting of time zones and time differentials. Keyboard input statements have been error-trapped to reduce the chance for "cockpit" errors.

For those wishing to avoid the task of manually keying in the 10,000-byte program listing (see fig. 3), a 500-baud, level II BASIC cassette tape is available from the author for $\$ 15.00$ including postage. For Disk BASIC the taped program may be "cloaded" into memory after first shutting off the interrupts with the CMD"T" command. From memory it may then be "saved" onto a disk for future use. Two versions are on the tape. The first is the version as presented in this article. It was stretched out to make it easier to list and modify to your own requirements. The second
fig. 3, continued
4320 RC=RA+RB
4330 RY\$ $=$ STR $\$(R C)$
4340 IF RCく10 THEN FYY $\$=A T \$+$ FIGHT $\$$ (KY $\$$, 1)
4350 IF RC <100 THEN RY $\$=$ BT $\$+$ RIGHT $\$(R Y \$, 2)$
4360 IF RC <1000 THEN RY $\$=C T \$+$ RIGHT $\$(R Y \$$, 3)
4370 RY\$=RIGHT\$(RY\$, 4)
4380 FRINT
4390 IF WW $\$=" Y E S "$ THEN LPRINT""
4400 PRINT"R.A. OF MOON = ";RY\$; " FATH-LOSS INCREASE +";DB " DB"
4410 IF WW\$ ="YES" THEN LPFINT "R.A. OF MODN = ";RY\$;" FATH-LOSS INCREASE +";DB;" DE"
4420 PRINT
4430 NEXT N
4440 END
4450 REM: CALCULATE DISTANCE TO THE MOON
4460 DD\#\#JD\#-2444238. 5
4470 AA $=0.98564733$
$4480 \mathrm{ED}=-3.76286$
$4490 \mathrm{MS}=(\mathrm{AA} * D D *)+E D$
4500 IF MS<O THEN MS $=M 5+360:$ GOTO 4500
4510 IF MS >360 THEN MS=MS-360: GOTO 4510
4520 AE $=0.1858$ (SIN (MS*O.0174533)
4530 AF $=0.37 \%$ SIN(MS $\% 0.01745 .33$)
4540 LS = (AA*DD\#) +(1.9157417*SIN(0.0174533* ((AA*DD*) +(-3.76286)))) $+278.833540$
4550 IF LS<0 THEN LS=LS+360: GOTO 4550
4560 IF LS >360 THEN LS=LS-360: GOTO 4560
$4570 \mathrm{LL}=(13.1763966 * D D *)+64.975464$
4580 IF LL <O THEN LL=LL+360: GOTO 4580
4590 IF LL >360 THEN LL=LL-360: GOTO 4590
4600 CC=LL-LS
4610 MM $=$ LL- $(0.1114041$ *DD\# $)-349.383063$
4620 IF MM <9 THEN MM=MM+360: GOTO 4620
4630 IF MM 360 THEN MM=MM-360: GOTO 4630
4640 EV $=1.2739 * S I N((2 * C C)-(M M)) * 0.01745 * 3)$
$4650 \mathrm{MN}=\mathrm{MM}+E V-A E-A F$
4660 EC=6.2886*SIN(MN*O.0174533)
$4670 \mathrm{MD}=383242.41 /(1+0.054900 * \operatorname{COS}((\mathrm{MN}+E C) * 0.017453292))$
4680 FEM: CONVERT DISTANCE VARIATION TO PATH-LOSS CHANGE (DE)
$4690 \mathrm{DE}=\mathrm{MD} / 356334$
$4700 \mathrm{DE}=40 * \operatorname{LDG}(\mathrm{DE}) / \mathrm{LOG}(10)$
$4710 \mathrm{DE}=\mathrm{INT}(\mathrm{DE} * 10+0.5) / 10$
4720 RETURN
4730 END
4740 REM: CORRECTIONS FOR PARALLAX
4750 H1 $=\mathrm{H}$
4760 R\#=MD/6378.16
4770 U=ATN(0.996647*TAN(L.5))
$4780 \mathrm{~F} 1=0.996647$ *SIN(U)
4790 P2=COS (L)

$4810 \mathrm{H}=\mathrm{H}+\mathrm{HC}$
$4820 \mathrm{G}=\mathrm{L} 6-\mathrm{H}$
$4830 \mathrm{D} 1=\mathrm{ATN}\left((\operatorname{COS}(\mathrm{H})) *\left((\mathrm{R} * * \operatorname{SIN}(\mathrm{D} 1))-\mathrm{F}_{1}\right) /\left(\left(\mathrm{R} \# * \operatorname{COS}(\mathrm{D} 1) * \operatorname{COS}\left(\mathrm{H}_{1}\right)\right)-\mathrm{F} 2\right)\right)$ 4840 RETURN
is a customized version which will be set to your station parameters if you include the necessary information. I will need your station call letters, your latitude, your longitude, your local time zone, and the difference between your time and GMT. Also include whether you want the low-elevation and printing routines bypassed.
The two programs are also available on a diskette $(\$ 18.00)$ formatted to run on TRSDOS compatible operating systems. It has been checked on single-density TRSDOS 2.3, NEWDOS 2.1, NEWDOS-80 1.0, DOSPLUS 3.3 and LDOS 5.0. A double-density version will run on NEWDOS-80 2.0 or DBLDOS 4.23 and perhaps others using a Percom doubler
with a Model I machine. Be sure to specify single or double-density and include the same information as specified in the paragraph above.

references

1. H.C. Ko, "The Distribution of Cosmic Radio Background Radiation," Proceedings of the IRE, January, 1958, pages 206-215.
2. C.R. Somerlock. W3MCP, "Sky Temperature Behind the Moon," OST, October, 1964.
3. Peter Duffett-Smith, Practical Astronomy With Your Calculator, Second edition, Cambridge University Press, 1981.
4. EIMAC Publications AS-49-6 and AS-49-17. Varian EIMAC, Inc., 301 Industrial Way, San Carlos, California 94270.
5. The Nautical Almanac for The Year 1978, issued by the U.S. Naval Observatory, for sale by the United States Government Printing Office.
6. The Nautical A/manac for The Year 1983, issued by the U.S. Naval Observatory, for sale by the United States Government Printing Office.
ham radio

As an added bonus, the 1985 U.S. Callbook also lists the amateurs in Canada and Mexico! You get the complete and accurate U.S listings (prepared by our own editorial staff), all the usual up-to-date Callbook charts and tables, PLUS Canada and Mexico. Now that's real value!

The best just got better!

Of course, Canadian and Mexican amateurs are also listed in the 1985 Foreign Callbook. Don't delay! The great new 1985 Callbooks were published December 1, 1984.

Order your copies now!

		Each	Shipping	Total
OU.S. Callbook	$\$ 2.95$	$\$ 3.05$	$\$ 25.00$	
aForelgn Callbook	20.95	3.05	24.00	

Order both books at the same time for $\$ 45.00$ including shipping within the USA.

Order from your dealer or directly from the publisher. Foreign residents add $\$ 4.55$ for shipping. llinois residents add 6% sales tax.

Keep your 1985 Callbooks up to date.

 The U.S. and Foreign Supplements contain all activity for the previous three months including new ficenses. Avaliabie from the publisher in sets of three (March 1, June 1 , and September 1) for only $\$ 15.00$ per set Including shipping. Specify U.S. or Foreign Supplements when ordering. Illinois resldents add 6\% sales tax. Offer void after November 1, 1985.

Tel: (312) 234.6600 \qquad ∞

CALL FOR QUOTES 1.800.231.3057 1.713-658-0268 Inside Texas All Items Are Guaranteed Or Sales Price Refunded.

MADISON Electionics supply 1508 McKinney

EQUIPMENT
SANTEC ST142 $\ldots \ldots++$ FREE GOODS $++\ldots299 .95$ KENWOOD TR2600 Give us a ring TENTEC 2594. MiRAGE amps ...ess 12\%
DENTRON GLT4000C funer IKW PEP............ 175.00
WM. NYE MB-V 3 KW tuner \& ant switch..... 489.00
WM NYE 46-6 phone potch
for ICOM (8 wire)
. 82.00
bearcal DX-1000. 449.95

SIGNAL ONE MILSFEC 103O..................... 6595.00
ACCESSORIES AVAILABLE.CAlL
KENWOOD TH21AT 2 mtr HT, shirl pockel sizell STOCK
KENWOOD TH41AT 70 cm HL , shirt pocket sizell STOCK THESE ARE REALLY NICE - MOST ACCESSORIESIN STOCK Soon a 220 MHZ HT from KENWOOD WACH FOR DETAALS
KENWOOD TS741A 2 m all mode 25 wott super rigCAll
KENWOOD TS670 40. 15, 10 \& 6 meters.......CALL BOTH THE TS711A \& TS670 MATCH THE TS430 IN SIZZ AND STYING. A GREAT WAY IO ADD COVERAGE TO YOUR STATON
KENWOOD SM220 station monitor................CALL KENWOOD IR-7950...TM-201A. TM-401ACALI KENWOOD NEWMI..TM211 and TM-411CAll KENWOOD IS-830S. IS-530SPCAll KENWOOD R2000...R4000...R600.R11CALI
CES SIOSA SMART PAICH...in stock CAll

nCCESSORES

FWKKE 77 autoranging digitial multimeter... $\mathbf{4 1 5 . 0 0}$ ALPHA DELUA MACC-8 surge protector........ 73.00 EENCHER ...ess 10% MHMOUND paddles and keys.................less 10% VBROPLEX SHURE 444D Desk Microphone............................ 49.95 EURD Wattmeter * 43 \& elements in stock.....CAll AMECO preamps Less 10\% DANWA.. NEW MEIERS CAll CN-4101M $3.5-150 \mathrm{MHZ} 150$ wotl bock lif meter 64.00 trappute pres Regulated PS....25A/46.... 99.95 TEIPMTE PR40.....40A int..... 25 A cont...... 149.95 CORDON WEST CODE TAPES......(GREA)...... 9.95 COUNS F455J05 500 hz CW FILER.NEW... 95.00

HELL SOUND PRODUCTS
HC 3 mic el. The Key Element 17.95

HC-4 The DX-Dream Machine Element.. 20.50
HC-5 The ICOM Fix Element.
HMFS Desk Microphone..
\$5-2 Powered Speaker (Great Product).
BMSO Boom micheadset.
20.50
49.50

HCS Control boxinterface.

49.50

53.95
89.95

TUBES

GE 6146B.. GE5728. Eimac 3-50	

Eimac $3-5002$...........
GE INDUSTRIAL TUBES
62.00 CALL

BELDEN

9913 low loss, solid center conductor, foil \& braid shield - excellent product 50 ct 8214 RG8 foam. 43 ctit
8237 RG8 40 ct
8267 RG213
8262 RG-58 du milspec 52 cht 200 R 5 du milspec. 16 en
8000 14ga stranded copper ant. wire. 130f 84488 conductor rotor cable 3 ch 9405 as above but HD-2-40ga, 6-18ga........ 52 off 8403 Mic cable 3 condctr \& shield....... 80 \&it 100 teet 8214 wends installed.

POUCIES-MASTERCARDS, VISA Or COL
All prices FOB Houston. Texas, except as noted. Prices subject to change without notica subject to prior sale Used gear sale price refunded if not satistied. Call anytime to check slatus of your order. Texas residents add sales tax.

ANTENNAS - PLEASE CALL FOR FICES

COHN FK2548.

.prepaid.
899.00

SURPWS

CDE 2 POLE D R RELAY 10 amp Enclosed..(New).5.00 2.5A1000PIV epoxy diode...29cea. or $19.00 / 400$ SANYO
AA NICADS.
2.00

AA NICADS with SOLDER TABS \qquad2.50

MIC CONNECTORS 4 pin, 5 pin. 6 pin \& 8 pin 4.00 CELULLAR...YOU BEII We stock the WESTERN UNION celluiar phone made by E.F. JOHNSON. Price includes LARSEN antenna...
1995.00 BE SURE TO CALL FOR OTHER ROHN PACKAGES AND INFORMAIION ON ROHN PRODUCIS
$1 / 4^{\prime \prime}$ E.HS. GUY CABLE Rohn US. $1000 \mathrm{ft} . . .250 .00$ 3/16" E.HS CABLE.. 240.00 $1 /{ }^{\text {" }}$ GUY CABLE $6100^{\circ} 7 \times 7$ strand.................. 15eff $3 / 16^{\prime \prime}$ GUY CABLE $3700^{\circ} 7 \times 7$ strand............... 12eff PREMAX GROUND RODS . HEAVY COPPER PLATING $3 / 8,1 / 2,5 / 8,3 / 4$ inch diameter, 4 to 8 ft . in length

GENUINE ROHN ACCESSORES

Allance HD-73.
U410.

RTTY SALE

AEA PMCKAEE SPECINLS
The best VIC-20C-64 system for the money.
MORSE, BAUDOT, ASCII and AMTOR OPERAIION
AEA CR1.
retall......... 239.95
AEA TH.
retall........... 149.95
AEA MBA-TOR software............. retail............... 119.95
AEA AC-1 12VDC PS.......
5 feet BELDEN mic cable..
MIC CONNECTOR 4 or 8 pin.
retail. 19.95

TOTail.
4.95

This system has all the sottware features that the best sytem includes but in a self-contained unit that plugs into the back of the computer
AEA MAP $64 / 2$......................... relail......... 239.95
AEA TH-1...fail............ 119.95

AC-1 12VDC PS........................ retail............ 19.95
AC-1 12VDC PS....................... retail 19.95 MIC CONNECTOR 4 or 8 pin... refail................... 4.95 SALE PRICE \$309.9 TOTAL YOU SME \$ 404.75 KANTRONICS PMCKNAE SPECIAL
The UTU works with any computer with RS-232 port. RTTY, ASCII, MORSE and AMIOR.
UTU....................................... retail.......... 199.95
TERMINAL software. PC or CPM retall....................... 19.95 AC-1 12VDC PS...
elail.
19.95

5 feet BELDEN mic cable. retall............. 5.00
MIC CONNECTOR 4 or 8 pin.... refail............. 4.95
SALE PACE \$219.93 YOU SME \$NS*

HAL MCRACE SNECLAL

CF-2200 terminal...................... refail.......... 945.00 ARQ-1000 AMIOR option........ retail.......... 749.00 KB-2100 keyboard................... retail 175.00 RS-2100 scopelloop supply..... refall......... 329.00

TOTAL \$2.198.00 YOU SAVE S\$S\$S
 sale moce \$1,819.98 VOU sAVE \$\$\$\$

ALIIEME AMELABE INDMDUAIMCAI FOR PRICE
MADISON sloclat the onllpe product llines of AEA
MAL, KANTRONICS and part of the MFJ equipment.

CAH FO2 FUCES ON TIS建 AND ONE COMPNTER

 COMMUNICANON PNODUCREMCROHOS. We have a used ACT-1 and a DEMO ACT-1 availabie . the used unit SALE PRICE... 600.00 DEMO ACF-1............................SALE PRICE ... 650.00 HAL.We have some USED HAL EQUIPMENT availabla
CF-2200 ferminal with KB-2400 KBD.
.699 .95
KB-2100.
125.95

ROHOT

We have a few of the ROBOT 800 RTTY UNITS left: 800 RTV UNIT.

800 with 800 C updale ktt .
500.00

1200 C SSTV high resolution color system. 1439.00
COMPUTE BOONB-20\% DISCOUNT ON STOCK ITEMS.

CALL WITH ITILE \& PUBLISHER

DON'S CORNER

Another year has gone by. I would like to thank all of our customers, new and old, for keeping us in mind this past year. I hope that Santa is good to you this Christmas and that the New Year brings prosperity to you and your family.

MEREY CHRISTMAS AND HAPF NEW YEAR FROM DON AND THE CREW

WHAT THE COMPETITION CALLS "NO LOST WORDS OR SYLLABLES" WE CALL NOISE

 IT IN TIME? (NOISE)"
Samples (heard as bursts of noise) displace your phone party's audio for as long as it takes your transceiver to T/R. The above example assumes a transceiver T/R time of about 150 mS (typical)

PRIVATE PATCH II: " HI HONEY I AM FIXING YOUR FAVORITE SUPPER...BARBECUE HAMBURGERS. THEY WILL BE READY AT 6:30. WILL YOU MAKE IT IN TIME?"

Thousands of PRIVATE PATCH II owners are enjoying the commercial communications quality that only a VOX based, simplex autopatch can deliver.

PRIVATE PATCH II IS PRICED AT LESS THAN HALF OF OUR COMPETITORS "FAVORITE COMMERCIAL SIMPLEX VOX PATCH"

SAMPLING VS. PRIVATE PATCH II

The performance of a sampling patch is totally dependent on the T/R speed of your radio. Such is not the case with PRIVATE PATCH II. PRIVATE PATCH II will give excellent results with any radio. Synthesized and relay switched types included.

PRIVATE PATCH II requires only three connections to your radio (MIC, PTT and SPKR audio). If these connections are made inside your radio PRIVATE PATCH II does not interfere with the normal use of your radio. Otherwise for a quick and easy interface you may plug PRIVATE PATCH II Into the MIC and SPKR jacks. A 10 minute job! Unlike sampling patches, connections are not required to the squelch, discriminator or power. And best of all, modifications are never required.

Controlling and talking through PRIVATE PATCH II is almost always quicker and easier than using a sampling patch. This is because you may talk or send control commands the instant you press the PTT button. The ability to break in or take control is assured by interrupt control logic. The interrupt controller creates a window (similar to sampling) but is seldom heard in normal quick back and forth communication. With a sampling patch you press the MIC button for one to five seconds before talking on each and every transmission. This is very frustrating for the mobile, and causes confusion for each party.

The sampling process reduces the effective range of your base radio. This is because if a sample, and a signal fade coincide, the sampling patch thinks the mobile is not transmitting. This causes a sampling patch to become erratic at ranges still very useable by PRIVATE PATCH II. PRIVATE PATCH II will not diminish the range of your system.

PRIVATE PATCH II has two more range extending tricks not available to a noise sampled autopatch.

1. You may use a linear amplifier with no loss of performance
2. You can operate through any repeater from your base station.

FEATURES

- CW ID (free ID chip) • Selectable tone or pulse dialing • User programmable toll restrict • Five digit access code - Ringback (reverse patch) - Busy channel ringback inhibit (will not transmit on top of someone) • Three/six minute "time-out" timer is resettable from the mobile - 115 VAC power supply - Modular phone jack and seven foot cord. . . and many more.

ALSO

- 14 day return privilege - when ordered factory direct.
- One year warranty - compare to their six months.

CONTACT A LOCAL DEALER TODAY

AMATEUR ELECTRONIC SUPPLY
AMATEUR ELECTRONIC SUPPLY
Milwaukee WI, Wickilfe OH. Milwaukee WI, Wicklifte OH.
Ortando FI, Clearwater FL Las Vegas NV
COLES COMMUNICATIONS San Antonio TX ERICKSON COMMUNICATIONS Chicago it
HAM RADIO OUTLET
Anaheim CA, Burlingame CA
Oaktand CA, San Diogo CA.
Van Nuys CA, Phoenix AZ

HENRY RADIO
Los Angeles CA, Anaheim CA. Butler MO
JUNS ELECTRONICS
Culver City CA, Reno NV
MIAMI RADIO CENTER CORP Miami FL
MIKES ELECTRONICS Ft. Lauderdale

NEG DISTAIBUTING CORP Miami FL PACE ENGINEERING Tucson AZ THE HAM SHACK THE HAM SHACK
Evansvile IN CANADA: DOLLARD ELECTRONICS Vancouvet, BC

NORTH AMERICAN SOAR corporation PEN-STYLE DIGITAL MULTIMETER MODEL 3100
GREAT PRICE
$\$ 4900$

Hand Held LCD Display - Fast One Hand Operation specifications:
Display: LCD 3\% digits maximum reading of 1999/continuity beeper built-in Range: Auto ranging
Polarity: Automatic no indication for positive polarity, minus sign for negative polarity Overrange Indication: MBS 1 or -1 indication
Data Hoid: Data hold in all ranges with hold switch on
Low Battery Indication: "B" mark displayed when battery drops below operating voltage Sampling: 2 Times second
Power Supply: SR-44 battery (155 V) $\times 2$ (Included)
Power Consumption: 55 mW
Size: $6^{\circ} \times 1 \%^{\prime \prime}$ LWH (less probe tips) includes $/^{\prime \prime}$ and $2^{\prime \prime}$ probes
Add $\$ 2.50$ For Shipping

(1) \sim ELECTRONICS ($\ddagger)$ ELECTRONICS SEMICONDUCTOR PARTS AND PRODUCTS 1043 N. STADEM DR.
TEMPE, AZ 85281
(602) 967-6945

Call or Write for FREE
Semiconductor Parts \& Products Catalog

Use this device to determine Yagi or other antenna patterns

a sensitive field strength meter

While attempting to make some meaningful relative field strength measurements on an antenna system some months ago, I found my years-old field strength meter to be quite inadequate. Its lack of sensitivity meant that measurements had to be made close to the antenna, where the induction field introduced error in the radiation field I was actually interested in. Its non-linearity was also a problem.

I decided to design a new unit that would include a stable, sensitive linear amplifier, provisions for remote monitoring, and a meter calibrated in decibels. The final results proved so satisfactory that it seemed other Amateurs would be interested in this project.

Figure 1 shows the schematic. The two-pole, fiveposition switch, coils and 365 pF variable capacitor cover a range from 1.5 to 30 MHz . (The combination of parts came from an old low-power transmitter.)

Almost all handbooks show coil-capacitor combinations that can be used for field strength meters, so Amateurs can build the kind of unit that best suits their needs. In addition, they can incorporate any kind of pickup coupling system for the pickup antenna of their choice. My own measurements were sufficiently satisfactory using a short antenna only a few feet long connected directly to the ANT binding post. When a longer antenna for pickup was desired, it was connected to CAP, binding post C, where it connected to C 2 , a small 50 pF variable capacitor.

The amplifier uses a couple of Darlington NPN transistors whose high beta, 5000 , provides high sensitivity with S1 used as the amplifier ON/OFF switch. Switch S2 in the left position allows the output of the 1N34
diode to be fed directly into the $50 \mu \mathrm{~A}$ meter (M) for direct reading. When S2 is in the right position, the amplifier is switched into the circuit. Switch S3 is for LOCAL or REMOTE monitoring. At full GAIN setting the input signal is adjusted to give a full-scale reading of fifty microamperes on the meter. Then with the amplifier switched out of the circuit, the meter reading drops down to about half a microampere.
A 2.5 mH RF choke and capacitors $\mathrm{C} 3, \mathrm{C} 4$, and C5 effectively keep RF out of the amplifier circuit.

two balance adjustments are required

Because of the high sensitivity of the amplifier circuit, it's best to have two balancing controls, R7 (BAL, front panel adjustable) and R8 (an internal screw-driver-adjustable potentiometer). When initially setting R8, adjust it in conjunction with R7. Doing this allows the GAIN control to be varied from zero to full gain with the meter indication remaining at zero.

Because the amplifier circuit is basically a balanced bridge type, a zero-center meter could have been used. But none was available, so R3, an 82 -ohm offset resistor, was added. Its function is to prevent the meter from swinging too hard to the left below zero, which might occur if the panel balance control were inadvertently turned fully counterclockwise with the amplifier gain turned fully on. The best safe operating procedure to employ is always to turn the gain con-

By William Vissers, K4KI, 1245 S. Orlando Avenue, Cocoa Beach, Florida 32931

fig. 1. Field strength meter schematic.
trol down to zero before turning the power switch ON, and then initially balance the circuit while slowly advancing the gain control. This is a common precaution used in all sensitive bridge circuits.

additional features

The addition of binding posts A and B allows the amplifier to be used by itself as a high impedance, high gain amplifier, where binding posts A and E are used for a + input and ground.

Switch S3, a remote metering circuit in my original field strength meter, was also incorporated in the new, more sensitive unit. However, it was found necessary to add the RF filter circuit to help eliminate RF pickup from the remote metering wires to the unit. This remote metering feature is not really necessary, but is handy if you want to elevate the field strength meter a few feet when making beam antenna measurements. Care should be taken that the remote meter wires are both shielded and properly grounded, because it doesn't take much RF getting back into the field strength meter to upset the initial balance.
Although the meter readings by themselves are a good indication of relative field strength, it was
thought desirable to provide a theoretical calibration curve relating meter deflection to dB change, and then to do an actual calibration using the test circuit shown in fig. 2.

calibrating is easy

The theoretical dB calibration curve can be best understood if, for example, we use full scale on the meter $50 \mu \mathrm{~A}$ as 0 dB with a given input signal. Now if the input signal were reduced so that the meter reads $30 \mu \mathrm{~A}$, then the dB drop in signal level is $\mathrm{dB}=20$ $\log _{10}(30 / 50)=4.44 \mathrm{~dB}$. This, calculation is for a perfect linear system; and by using this mathematical procedure it is easy to calculate and develop the theoretical dB curve of fig. 3 for different values of meter current.
This curve is very easy to use. For example, with the field strength meter set up away from your station, if you rotated your beam and saw that the maximum meter reading went over $50 \mu \mathrm{~A}$, just cut back on the GAIN control on the field strength meter, so that the maximum reading is either $50 \mu \mathrm{~A}$ or somewhat lower. The maximum reading does not have to be exactly $50 \mu \mathrm{~A}$, as shown by the following example.

fig. 2. Calibration test unit.

If the maximum reading were $45 \mu \mathrm{~A}$ and the minimum reading $10 \mu \mathrm{~A}$, then from fig. $3,45 \mu \mathrm{~A}$ is equal to -0.915 dB , and $10 \mu \mathrm{~A}$ is equal to -13.98 dB and the numerical difference is -13.065 dB , which can be rounded off to -13.1 dB .

The reason that it is not necessary to have the microammeter set exactly at $50 \mu \mathrm{~A}$ when reading the maximum signal is that decibeis can be added or subtracted from each other anywhere along the curve to give the correct dB difference.

It should be pointed out, however, that better accuracy is obtained if the maximum reading is set initially close to $50 \mu \mathrm{~A}$. This is because, as in most metering systems, the percentage accuracy obtainable is less at the lower end of a scale than at the top. Also, the curve shown was not extended below 5 mA .
I happened to have a small variable $0-25$ VDC power supply with a reasonably accurate built-in voltmeter. Almost any kind of variable supply with a voltmeter can be used, as the power supply voltage is factored into the calibration procedure to be described. The attenuator network is used to reduce the power supply voltage so that full scale on the microammeter could readily be obtained at full gain of the amplifier, with the power supply set at 25 volts.

Before beginning the calibration procedure, it is first necessary to isolate the resonant circuits from the input terminals; otherwise the coils would provide a DC short between the RF input binding posts D and E used for the calibration input voltage. This can be accomplished by temporarily opening the circuit between points X and Y of fig. 1. An alternate method is just to slip a piece of paper between the coil contact on the turret and the arm of the rotary switch.
The test unit is then connected to the input binding posts D and E, as shown, and R10 rotated to the counterclockwise, or zero-output position. The amplifier is now turned on, properly balanced to zero, and the GAIN control set to its maximum position. The balance should again be checked, and it should still be at zero. The power supply is turned on, and the

fig. 3. Measured data showing close correlation to theoretical values indicates good amplifier linearity.
voltage adjusted to read 25 volts. R10 is rotated in a clockwise direction until the field strength microammeter indicates a full scale reading of $50 \mu \mathrm{~A}$. R10 should not be adjusted further, since its setting now has established the zero dB level.
The power supply voltage is now reduced until the microammeter reads $45 \mu \mathrm{~A}$. The power supply voltage is now read and recorded. This procedure is again repeated for $40 \mu \mathrm{~A}$, again reading and recording the power supply voltage. Similar successive steps, each $5 \mu \mathrm{~A}$ lower are done, until the final microampere reading of $5 \mu \mathrm{~A}$ is made and data recorded. The actual recorded data is indicated in fig. 3.
The actual calculated dB for a measured reading of voltage is done as follows: for example, at $30 \mu \mathrm{~A}$, the power supply voltage was found to be 15.2 volts. The actual calculated dB for a measured reading of, for example, $30 \mu \mathrm{~A}$, and a recorded power supply voltage of 15.2 volts is equal to $20 \log _{10}(15.2 / 25)=-4.32$ dB . This is quite close to the theoretical value of -4.44 dB previously shown. The resulting data and curve is shown in figs. 3 and 4. Good correlation between theoretical and observed data shows that the amplifier had a good linear characteristic. Although the amplifier was calibrated using DC voltage, the results obtained showed the unit to be very useful as a device for measuring relative dB levels. And that is what most Amateurs are really interested in. The measure of absolute field strength normally requires extremely good

MICROAMPERES	THEORE TICAL AB	TEST POWER SUPPLY YOLTAGE	CALCULATED MEASURED dB
50	0	25	0
45	-0.915	22.4	-0.954
40	-1.94	19.7	-2.07
35	-3.10	17.6	-3.05
30	-4.44	15.2	-4.32
25	-6.02	12.5	-6.02
20	-7.96	10.1	-7.67
15	-10.46	7.6	-10.34
10	-13.98	5.3	-13.47
5	-20	2.6	-19.66
0	\propto	-	-

fig. 4. Measured and theoretical data.
commercial equipment and is not generally used in Amateur-type measurements.

Although the calibration curve was shown for the full maximum gain of the amplifier, several similar curves were run at lower gains, down to 20 percent of maximum gain, and no noticeable variations were encountered. This indicates that the curve shown can be used between the limits of full gain down to 20 percent of full gain. My own experience is that if your signal is very strong, just reduce the size of your pickup antenna or move your field strength meter further away from your transmitting antenna. Actually, the further you are away from your transmitting antenna, the better patterns you will obtain.

field testing

After experimentation at my own station, the unit was taken to the home of Russell Forsyth, K4YS, who had recently put up a large 20 -meter beam. The azimuthal pattern in dB was readily obtained, with a front-to-back ratio measured at 14 dB , corresponding to a power ratio of a little over 25:1, which seemed reasonable for the beam he used. A rather interesting anomaly was observed, in that at a certain direction when the beam was rotated, the field strength meter showed a marked irregular intermittent variation. Shaking the tower seemed to aggravate the condition, indicating that perhaps one of the elements was loose, or perhaps the mast was not perfectly vertical, and at certain positions, perhaps loose bolts or something
else was causing the problem. At the moment, we still do not know what the problem is, but it does show that the field strength meter can also be used as a diagnostic tool in problems of this type.

Other tests near my home, where we have a highvoltage line nearby, showed that there was some sort of pickup near the power poles on rainy days, particularly when corona could be heard. The noise was tunable and verified as line noise interference by using a small transformer and earphones connected to the REMOTE binding posts instead of a meter. Apparently the lightning protection system, which incorporates a ground at each pole and a overhead ground line, was being shock-excited by the corona discharge and causing those loop circuits to have induced noise oscillations. (At least that's what it seemed to me.) Perhaps later I can use the meter to track down excessive line noise that occasionally is quite high on my Yaesu FT-101B.
There were no problems in the design or construction of the basic unit and its modifications. Though the field strength meter, as shown in the photograph, is quite large, it could certainly be reduced in size. I'm hoping that its use will provide Amateurs with a more sensitive method of making relative antenna measurements, so essential to good antenna experimentation. I'll be glad to answer any questions or comments you might have. Just send an SASE to the author at the address indicated.
ham radio

A fresh idea!

Our new crop of tone equipment is the freshest thing growing in the encoder/decoder field today. All tones are instantly programmable by setting a dip switch; no counter is required. Frequency accuracy is astonishing $\pm .1 \mathrm{~Hz}$ over all temperature extremes. Multiple tone frequency operation is a snap since the dip switch may be remoted. Our TS- 32 encoder/decoder may be programmed for any of the 32 CTCSS tones. The SS- 32 encode only model may be programmed for all 32 CTCSS tones plus 19 burst tones, 8 touch-tones, and 5 test tones. And, of course, there's no need to mention our one day delivery and one year warranty.

426 West Taft Avenue, Orange, California 92667 (800) 854-0547/California: (714) 998-3021

26x

John J. Meshna Jr, Inc:

This regulated multi-voltage switching power supply board is made by KEPCO (their part no. MRM 174 KF) and is still in production (. . regular price $\$ 124.95$). It was originally part of the Zorba portable PC. The four outputs are as follows: \& +5VDC@5A,+12VDC@2.8 A, +12 VDC 92 A , and $-12 \mathrm{VDC} @ .5 \mathrm{~A}$. The $+12 \mathrm{VDC} @ 2 \mathrm{~A}$ is very heavily filtered so it could be used on a glitch free monitor. The -12 VDC@ $@ \mathrm{~A}$ can be changed to -5 VDC just by changing the onboard 7912 regulator chip to a 7905 . The board's lightweight and small size should make it perfect for many projects. All new and provided with a schematic. The input is jumper selectable $110 / 220$. New, unused. Quanity prices available.
$\$ 49.95$
Shpg. Wt. 2 Lbs. ea.
SPL-471-33 B
$2 / \$ 90.00$
Thru a special purchase we got hold of 50 brand new 19" color displays. They were made by Wells Gardner for one of the largest arcade video game manufacturers in the world. The displays feature built in red, green and blue amplifiers, 19 " color tube made by Wells Gardner. User supplied external horizontal and vertical scan oscillators which allows precise user control over screen resolution. A real plus! Requires $25 \mathrm{~V}=0-25 \mathrm{~V}$ input for amps, available separately. Some spec's for you technical people: signal inputs " X " horizontal 16 V P-P $\pm 8 \mathrm{~V}$, "Y" vertical 12 V P-P $\pm 6 \mathrm{~V}$: " Z " beam drive, 4 V max brightness, 1.0 volt black level. Writing rates " X " amp is .05 inch/usec, " Y " amp is .0375 inch/usec. Great for making your own video games, oscilloscope monitors, or adapting for home computer use. Supplied with schematic.
$\$ 199.00$ ea.
Shpg. Wt. 45 Lbs.
MOT-19C
2/\$375.00
Supplied with schematic. Quantity pricing available.
Shpg. Wt. 45 Lbs. MOT-19C $\$ 199.00$ ea, $\$ 375.00 / 2$
TRANSFORMER FOR ABOVE Shpg. Wt. 15 Lbs. $\$ 12.00$

CAD CAM KEYBOARD

We only have a very limited quantity of these high reliability, beautifully layed out 8 bit, serial output keyboards. These were made by Keytronics for use in a Cad-Cam system. The board is made up of 3 sections. The typewriter format section has 2 control keys plus full upper and lower case alpha-numerics. The 42 keyswitch pad, when used with appropriate logic, allows extensive, precise manipulations of displayed data such as close up, moving information, sketching, etc. The third section consists of 27 keys which include a numeric scratch pad, 4 way cursor control plus some command keys. On board are 3 LSI's including an Intersir IM6402, INS8 048 , and NS2 716 UV PROM which contains the programs for manipulating data, plus other circuitry and an alert beeper. The keyboard requires +5 V and -12 V . Each one will come with schematics. New and unused. Shpg. Wt. 4 Lbs. KYBRD No. $6 \quad \$ 45.00$ Less than 100 on hand - Order Now!
PHONE ORDERS for FASTEST SERVICE!
call (617) 595-2275 and Charge It!

A fantastic find and a super buy for the computer hobbyist. Brand new, user programmable keyboards made by Keytronics Corp. They are user programmable because the onboard encoding generator outputs hex codes to the user supplied 2716 or equivalent EPROM. The EPROM can be programmed by the user to virtually any encoding scheme: ASCII: EBCDIC(C): EBCDIIC: BAUDET or others just by setting the EPROM to the particular specification. The keyboard is well constructed and layed out. The board is layed out in an ASCII configuration with control codes, full numerics, upper and lower case with electronic shift lock, plus a numeric scratch pad to the right with 4 way cursor controls. Absolutely beautiful!! Each one comes with schematic, and data. This will be a fast seller, so order early!.
Shpg. Wt. 4 Lbs, KYBD 7
$\$ 45.00$ each

2716 EPROM's

These 2716 EPROM's run on a single 5 vdc power supply. They are "pulls" from little-used equipment and have been erased and checked OK. We got a super deal on these, which means YOU get a super deal on these! Each one with data.
Shpg. Wt. 1/4 Lb.
SP-328 A-35
$\$ 2.00$

Single 5 V 2716 EPROM, programmed for ASCII for use in the above keyboard (Kybd. 7) SP-328 B-35
$\$ 6.00$

AAA Nicad Batteries

We have unused, AAA size, rechargeable, nicad batteries. They come 3 in a shrink wrapped package, but can always be cut apart and used individually. The output is 1.2 v per cell ($3.6 \mathrm{v} / \mathrm{pac}$) at 180 mAH . SP-67 A-35

19 Allerton Street •Lvnn. MA 01904•Tel: (617) 595-2275

DUAL FLOPPY DISC DRIVES

BRAND NEW, single sided, dual floppy disc drives made for Digital Equipment Corp. (DEC). This beautiful piece of computer hardware consists of 2 Shugart compatible TEAC 40 track, double density, $51 / 4^{\prime \prime}$ mini-floppy disc drives brand new in the case with their own regulated, switching power supply, cooling fan \& on/off switch. Each unit also comes with a line cord \& documentation. These were made for DEC, but are also compatible with other personal computers such as IBM, TRS 80 models I, II, \& the Color Computer, and other Shugart compatible interfaces. Naturally, you supply the cables and disc controller card to suit your particular system. The RX180 AB runs off of $115 / 230 \mathrm{VAC} 50 / 60 \mathrm{~Hz}$, w/out any modifications to the drives. Each system comes in the original factory box and are guaranteed functional. A blockbuster of a buy !!
Shpg. wt. 21 lb . stock no. RX 180AB $\$ 250.00$
RX 180 AB modified to run w/ the TI 99/4A $\$ 285.00$
Disc drive cable for Radio Shack Model I $\$ 15.00$

HIGH SPEED KSR PRINTER TERMINAL

World famous, high speed G. E. Terminet 1200 RS 232 KSR printer terminals are now in stock ready for shipment to you. This has to be one of the finest letter quality printers ever offered at a bargain price. These terminals can be used as an RS 232 asynchronous communications terminal or used in the local mode as a typewriter. The terminals were removed from service for upgrading. Highlights of these machines are: Standard RS 232, full duplex, asynchronous data comm., fully formed upper and lower case letters, 128 character ASCII set, selectable baud rates of 110, 300, or 1200 BPS, 80 columns on pin feed paper, and less weight \& size than an ASR 35 teletype with far less racket. They are virtually electronically foolproof as every pe board is Pico fuse protected. Should your machine not work, just check the on board fuses \& 9 out of 10 times that is where the problem lies. Schematics are provided w/ each machine sold. Current price of this machine new is over $\$ 2000.00$! Our meager price for this fantastic printer is only 10% of this: $\$ 200.00$ each!!! Visually inspected prior to shipment to insure completeness. Shpd. truck freight collect. $\$ 200.00$

IBM 745 SELECTRIC BASED TYPEWRITER PRINTERS

Send S.A.S.E. for free data sheet

These rugged, handsome printers were made for one of the giants of the computer industry. They can be used as a standard typewriter or as a printer in a word processing system for true letter quality printing. Solenoids were added to the selectric mechanism which disabled the manual repeat function but still allows electronic repeat functions. It uses standard IBM typing balls. The voltage requirements are standard $115 \mathrm{VAC}, 5 \mathrm{VDC}$ at 100 ma , and 24 VDC at 4 amps . All are new in factory boxes, but may require adjustments. We provide literature and schematics with 1 ribbon and cleaning tools. With the addition of our Centronics to Selectric I/O adapter, you could easily interface this printer to almost any micro computer system. Typewriter Printer stock no. RE 1000 A $\$ 375.00,745$ manual $\$ 30.00$ Shpg wt approx. 80 Lbs, shpd by truck, collect.

CENTRONICS TO SELECTRIC INTERFACE
This interface will adapt a Redactron Selectric I/O typewriter mechanism to be used as a parallel ASCII compatible printer. The parallel input port provides compatibility to Centronics standards for both "busy" and "acknowledge" protocols. The interface requires only +5 VDC at 350 ma . This interface is fully built, less power supply, is guarenteed operational, and comes with data. Shpg wt. 15 lbs DE $201 \mathrm{~A}, \$ 245.00$

These compact, lightweight switching power supply boards were originally made for the Texas Instrument $99 / 4 \mathrm{~A}$ micro computer. It measures only $4-3 / 4 \times 4-1 / 8 \times 1-1 / 4$ " and puts our $+5 \mathrm{VDC} @ 1.2 \mathrm{~A},-5 \mathrm{VDC} @ 0.120 \mathrm{~A}$, and $+12 \mathrm{VDC} e .350 \mathrm{~A}$. Input is 14.4 VAC to 21.6 VAC . A simple transformer or plug in the wall adapter will do. Our SPL 46 1-33 supply listed below is perfect for this board. Each one is new, individually packaged with data. For short money, you can get a nice little power supply or spare parts for your TI $99 / 4 \mathrm{~A}$. Shpg. Wt. 1 Lb .
Power Supply Board
SP-53A $\$ 10.00$

The Problem Solver. .

The RF Wattmeter Model 81000-A from Coaxial Dynamics, Inc. does more than provide accurate if measurements. Testing of transmission lines, antennas, connectors, filters and related components can reveal unknown problems and assure optimum equipment performance.

The 81000-AK Watikit features this easy-to-read RF Wattmeter (pictured here), with its optional carrying case and
 an array of elements and accessories. Coaxial Dynamics elements can be purchased separately for use in other manulacturer's Wattmeters. For more information on the 81000-A Wattmeter or any of the complete line of Coaxial Dynamics RF products and OEM components please contact Coaxial Dynamics, Inc.

NGCGO_ NEW-TECHNOLOGY HIGH-QUALITY

AFFORDABLE TRANSCEIVERS FOR ALL. WINNERS IN COMPARISON HANDS DOWN'

10/160 M HF TRANSCEIVER

40-15-6 M NEW TRI-BANDER

15 M
 15 METER MOBILE

JUST SLIGHTLY AHEAD!
4 MEMORYS - 3 WAY AUTO SCAN. DUAL VFO, IF SHIFT, CW-W, 400 Hz CW -N 200 Hz . ALL 9 BANDS PLUS MARS. BUILT IN AC/DC POWER. SSB CW OR RTTY I.F TUNE 3-STEP TUNING SPEED, 200 WATT PEP MICROPHONE IMPEDANCE 600-50K OHM HAND MIC. INCLUDED

WITH THE QUALITY YOU HAVE ALWAYS LOOKED FOR!

40, 15 AND 6 METERS ARE YOUR BASE STATION OR MOBILE WITH AC/DC BUILT IN POWER SUPPLY CW-N 200 Hz OR USB, 2. S0239 ANTENNA CONNECTORS, HAND MIC. BUILT IN TVI FILTER LITTLE TO NO TV INTERFERENCE, 20 WATTS PEP, MARS ON 40 AND 6 METERS

A GREAT QRP RIG WITH THE BIG RIG SIGNAL, 2 WATTS OR 10 WATTS OUT, BUILT IN CW SIDE TONE, DIGITAL DISPLAY, HAND MIC TOP MOUNTED SPEAKER. MOBILE BRACKET, RIT OR FINE TUNE TX\&RX $\pm 4 \mathrm{KHz}, 21$ TO 21.450 MHz SIGNAL TO NOISE MORE THAN 10dB DOWN

Modern design approach cuts cost, reduces size, and eliminates drift, tuning, tweaking, and passband loss

an integrated circuit low-pass filter

Operational amplifiers, developed and popularized in the late 1960s, have all but eliminated audio amplifiers designed using discrete transistors, resistors, and capacitors. Amplifiers built with discrete components are usually designed for special applications. In an analogous manner, audio frequency filters have evolved. First came the LC filters. In widespread use since before 1920, they are characterized by large physical size and weight, complexity of design procedure, and critical component values. Next came the active filters. Active filters were first implemented using vacuum tubes, then discrete transistors, and today using integrated circuits - typically quad op amps. These circuits did away with bulky inductors and complicated design procedures. Any adjustments needed on an active filter could be accomplished by "tweaking a pot" or two. As manufacturers of integrated circuits saw large numbers of op amps being used to manufacture the same type of active filters again and again, they saw the opportunity to profit from the manufacture of dedicated filtering devices.

The use of one of these integrated circuit filters is the subject of this article.

The device discussed in this article is the S3528 programmable low-pass filter, manufactured by American Microcircuits, Inc., 3800 Homestead Road, Santa Clara, California 95051. Contained within one eighteenpin dual inline package (DIP) is a complete seventhorder elliptical low-pass filter; its passband ripple is less than 0.1 dB , and its stopband attenuation is greater than 51 dB for frequencies greater than $1.3 f_{\mathrm{C}}$ (cutoff frequency).

In addition, this IC contains two uncommitted operational amplifiers that can be used to provide additional filtering and gain. The device is also progammable for cutoff frequency. This means that the cutoff frequency is not fixed, but can be changed by providing switch or logic level inputs to the device. The S3528 also has a built-in oscillator for use with an external crystal,

By Robert L. Martin, WB2KTG, 45 Salem Lane, Little Silver, New Jersey 07739

Block Diagram

fig. 1. S3528 programmable low-pass filter. (Courtesy American Microsystems, (nc., 1984.)
such as the low-cost 3.58 MHz TV crystal. This feature allows very stable performance over a wide range of temperature and voltage. If desired, an external oscillator may be used. The frequency range of operation of this low-pass filter is 40 Hz to 20 kHz with the TV crystal, or 10 Hz to 20 kHz with an external oscillator. A block diagram and pin layout are shown in fig. 1.

The six data inputs, $\mathrm{D} \emptyset$-D5, are tied to either +5 VDC or GND to program the cutoff frequency into the device according to the coding shown in table 1. These data inputs, latched by an input buffer, are used to preset the internal divider to give the proper frequency to the switched capacitor filter.

In our demonstration circuit, a 6-position jumper "patch panel" provides the frequency selection. If you connect the $\mathrm{D} \emptyset$ through D5 inputs to the buffered data bus of a microcomputer, the cutoff frequency can be varied by simply outputting the proper code per table 1.

switched capacitor filters

This integrated circuit filter uses CMOS op amps, CMOS transmission gates (switches), and CMOS capacitors to synthesize the required filtering function. The technique used is that of a switched capacitor filter. The following discussion will explain the functioning of a simple SCF circuit.

Figure 2 illustrates a simple RC active first order

fig. 2. Simple RC-active low-pass filter.
low-pass filter and fig. 3 an SCF version of the same circuit. If the switch in fig. 3 is in position " A," the voltage on capacitor C_{r} becomes equal to the input voltage. If the switch is then changed to position " B ," the charge on C_{r} can be considered to have been transferred to capacitor C. The basic function illustrated being that of integration or low-pass filtering.

The value of the simulated resistor (C_{r} and the SPDT switch) depends only on the capacitance of C_{r} and the switching frequency. Since the ratio of capacitor sizes is proportional to their surface areas in an integrated circuit, the ratio remains stable over a wide temperature and voltage range. If the switching frequency is crystal controlled, or otherwise stabilized, a very frequency-stable filter results.

fig. 3. Switched capacitor equivalent to fig. 2.

fig. 4. Input anti-alias low-pass filter.

fig. 5. Output smoothing low-pass filter.

one problem with SCFs

The S3528 filter uses a switching frequency approximately 80 times the progammed cutoff frequericy. As long as the input signals are far removed, no greater than 10 percent of the switching frequency, there are no problems. If, however, some portion of the input signal contains energy at the switching frequency, a phenomenon known as "aliasing" will occur. An alias is a spurious signal that appears at the output, indistinguishable from the desired low-frequency signal.

One way to visualize what is happening is to think of the stroboscopic effect observed in a Western movie when the frame flicker rate is approximately equal to the rotational speed of the spoked wagon or stage coach wheels: the wheels may appear to be stationary, or even going backward. This is an example of visual aliasing.

To prevent this from happening in our circuit, we apply a simple active RC low-pass filter to the input. We use the input op amp as shown in fig. 4.

To properly size R1, R2, and C1 the following method is used:

Dêtermine the required amplification factor of the filter. For ease of application, limit gains to between 1 and 10. Àssume R1 $=10$ kilohms. This establishes the input impedance of this filter. $\mathrm{R} 2=\mathrm{n} \cdot \mathrm{R} 1$ where n is the required gain.

Determine the desired cutoff frequency. Multiply this frequency by 2 and apply this to the following formula:

$$
\begin{equation*}
C=\frac{1}{6.28 \cdot f \cdot R 2} \tag{1}
\end{equation*}
$$

For example:

$$
\begin{aligned}
\text { Gain } & =3.5 \\
\text { Cutoff frequency } & =100 \mathrm{~Hz} \\
\mathrm{R} 2 & =35 \mathrm{kilohms}
\end{aligned}
$$

table 1. Frequency vs. input coding for S 3528.			
Nominal Cuttif (Hz)		RIVIDER	
		$2{ }^{2049}$ atociol 	

fig. 6. (A) shows parts layout; (B), wiring diagram; (C). 1:1 negative PC layout.

$$
\begin{aligned}
& \text { item description } \\
& \text { C1,C2 } \\
& \text { C3,C4 } \\
& \text { ICI } \\
& \text { R1,R2,R3,R4 } \\
& \text { R5 } \\
& \text { socket } \\
& \text { Y1 } \quad 18 \text { pin, solder tab type } \\
& 3.58 \mathrm{MHz} \text { "color burst" crystal, } \\
& \text { HC-6-U holder } \\
& \text { Either printed circuit card or perforated wiring board } \\
& \text { Miscellaneous: solder, } 12 \text {-inch tinned, bare jumper wire }
\end{aligned}
$$

$$
C=\frac{l}{6.28 \cdot 200 \cdot 35000}=0.02 \mu F
$$

The values of R and C calculated are not critical. You can use the nearest available device without significant performance degradation.
The output of the S3528, pin 9, should not be used directly to drive a load of less than 10 kilohms. To buffer the output and to provide smoothing of the output signal, the op amp at pins 6 and 7 can be configured as a low-pass filter. Refer to fig. 5 for details.
To properly size R3, R4, and C2, use the following guidelines and example:
gain of output op amp/filter $=1$
R3 $=$ R4 $=10$ kilohms output low-pass filter corner frequency $=2 \cdot$ elliptic filter cutoff frequency

Calculate:

$$
C=\frac{l}{6.28 \cdot R 3 \cdot 2 \cdot f}=0.079 \mu F
$$

($0.1 \mu \mathrm{~F}$ is close enough)
For applications requiring a variable cutoff frequency over a 10:1 (or less) range, the input and output networks should be sized for the highest desired frequency. For applications over a wider range, external filtering or using switched filtering components may be required, depending on the nature of the signals being processed.
As with any new components, it is wise to experiment with the S3528 on a solderless breadboard or a prototype evaluation board prior to incorporating it into a new design.

Readers who wish to etch their own PC cards should refer to fig. 6 for a full-size copy of the negative artwork and components layout. Printed circuit cards and kits are available from the author; see page 63 for details.

circuit applications

The circuit and PC card have been used in numerous applications around the ham shack and laboratory. As a low-pass filter for preprocessing the signals from the station microphone, it gives good performance while having extremely fast rolloff above the cutoff frequen-
cy. As an audio output processor from the station receiver, it is capable of narrowing the effective width of the receiver's internal crystal filters without degrading the shape factor of the crystal filters.

In low-frequency signal processing, it can completely eliminate 60 Hz audio hum from low-level signals. It could be used in a modem or terminal unit for this purpose. Similarly, it can be used in biomedical or biofeedback circuits to eliminate hum and higher frequency products while extracting EEG or ECG signals.

conclusion

The device described in this article is only one of many switched capacitor filter integrated circuits available for use as general-purpose SCF building blocks for producing literally any complex filtering function. Designers of commercial and military equipment are making good use of these devices for lower cost, higher reliability, reduced size, reduced weight, and ease of design.

Judgment must be used when using this filter with pulse or digital circuits. As with any high Q filter, ringing and pulse shape distortion may occur. Again, experiment with the filter before committing to a new design.

The following are available from Snivvy Electronics, 45 Salem Lane, Little Silver, N. J. 07739.

Printed circuit card, glass epoxy $\$ \mathbf{6 . 5 0}$
S3528 integrated circuit $\quad \mathbf{\$ 1 2 . 5 0}$
Complete kit of all parts
including capacitors C1, C2
for $100 \mathrm{~Hz}, 1000 \mathrm{~Hz}$,
$2000 \mathrm{~Hz}, 2500 \mathrm{~Hz}$
\$22.50
N. J. residents please add 6 percent N. J. Sales Tax. All sales include a copy of the S3528 applications brief and complete circuit data.
ham radio

ANTEMMA/TOWER SALE!

hy-gain CRANKUP SALE!

All Models Shipped
Factory Direct -
Freight Paid*!
Check these features:

- All steel construction
- Hot dip galvanized after fabrication
- Complete with base and rotor plate
- Totaily self-supportingno guys needed
Model Helght Loed Price HG37SS 37 ft . 9 sq Hf . i 718 HC52ss 52 fL - sa H. $\$ 1049$ HG54HD $54 \mathrm{HI} 16 \mathrm{sq.H}, \mathbf{5 1 6 2 9}$ HG70HD $70 \mathrm{ft} 16 \mathrm{sq} . \mathrm{H}$, 22599 Masts - Thrust Bearings Other Accessories Available - Call! Prices Shown Are Your Total Delivered Price In Continental U.S.A.!
- RG-213/U-95\% Bare Copper Shieid
- Mil-Spec Non-contaminating Jacket for longer
life than RG8 cables. life than RG8 cables.
- Our RG-213/U uses virgin materials. - Guaranteed Highest Quality! RG-8X

\$. 19/ft $\$ 179 / 1000 \mathrm{ft}$

RG8X-95\% Bare Copper Shield - Low LossNon-contaminating Vinyl Jacket Foam Dielectric					
Coaxial Cable Lest Characteristica (08/100 fi)					
ablo Type	Impod.	10 MH	M		50 M
रG-213/U	50	6	9	2.3	5.2
2G8X	52	8	12	35	6.8
26.58/U	52	1.4	1.9	6.0	12.5
h^{*} Alum	50	3	. 5	1.2	2.2
h^{*} Heliax	50	2	4	9	1.6
$\%^{*}$ Heliax	50	1	2	5	9

habdune/helaatim

ROHN Self Supporting Towers On SALE! FREIGHT PREPAID

- All Steel ConstructionRugged
- Galvanized Finish-Long Life
- Totally Free Standing-No Guy Wires
- America's Best Tower BuyCompare Save \$
- Complete With Base and Rotor Plate
- In Stock Now-Fast Delivery

Model	Height	Ant. Load	Weight	Dellivered
Price				

- Your Total Deliverad Price Anywhere in Continental 48 States. Antenna Load Based on 70 MPH Wind.

CUSHCRAFT

MULTI-BAND HF ANTENNAS
13 3-eil tribander $\$ 219$ A44-ei Tribander $\$ 289$ (3) 20/15/10mtr Vert 5279 A743/A744 40 mtt Kit $\$ 75$ hF mono-band antennas

10-3CD	\$ 95	10.4 CD	\$109
15.3CD	\$119	15-4CD	\$129
$20 \cdot 3 \mathrm{CD}$	\$199	$20 \cdot 4 \mathrm{CD}$	\$279
40-2CD	\$289	040	\$149
VHF/UHF BEAMS			
A50.5	\$ 79	6178	\$199
1148	\$ 79	3219	\$ 95
2208	\$ 95	4248	579

$\begin{array}{lll}\text { A144-10T } & \$ 52 & \text { A144-20T }\end{array}$ A147-20T $\$ 63$ 416TB A14TMB $\$ 29$ PS4 VHF/UHF FM ANTENNAS
$\begin{array}{lll}\text { A147.4 } & \text { \$ } 29 & \text { A147.11 } \\ 214 F B & \text { S } 79 & 228 F B\end{array}$

	$\$ 279$	$228 F 8$	$\$ 219$
A449.6	$\$ 29$	ARX2B	$\$ 39$

HY-GAIN

Discoverer 2-el 40 -mtr Beam.

iscoverer 3-el Conversion Kit.
Explorer-14
DK710 30/40 mtr. Add-On-Kit V2S 2 -mtr Base Vertical
TH5MK2S Broad Band 5 -el Triband Beam
TH7DXS 7 -el Triband Beam
IH3JRS 3 -el Triband Beam.
TH2MK3S 2-el Triband Beam
RO5BAS 5 -el $20-\mathrm{mtt}$ Beam
155BAS 5-el 15 -mtr Beam
105BAS 5 -el $10-\mathrm{mtr}$ Beam
204BAS 4 -el $20-\mathrm{mtr}$ Beam
54BS 4-el 6 -mtr Bearm
18HTS $80 \cdot 10 \mathrm{mtr}$ Hy. Tower Vertical
C-160 160 -mtt Coil Kit for 18HTS
214BS 14 -el 2 -mtr Beam
2BDO 80/40 mtr Trap Dipole
SBDO 80-10 mtr Trap Dipole
BN86 80-10 mtt KW Balun W/Coax Seal

MOSLEY
Pro37 7-el Triband Beam CL- $33 \mathrm{e}-$ el Triband Beam A-333-el Triband Beam A-33JR 3-el TriDand Beam A40KR 40 mtr Kit for TA33

$$
\begin{aligned}
& \text { These rugged crankup tow- } \\
& \text { ers now avaliable from Texas } \\
& \text { Towers! All models avallable } \\
& \text { On Sale for tremendous sav- } \\
& \text { Ings to you! } \\
& \text { Tosave on freight costs, all } \\
& \text { towers are shipped directly } \\
& \text { Irom the Tri-Ex factory to you! } \\
& \text { Check these features: }
\end{aligned}
$$

MINI-PRODUCTS HO-1 LIST $\$ 182.50$ SALE $\$ 159$

- Wing Span - 11 ft - Wind Area - 1.5 sq ft - Boom - 54 in. long • 1200W P.E.P. Input

ALPHA DELTA COMMUNICATIONS Transi- Trap ${ }^{\text {TM }}$ Surge Protectors-in Stock Now! Model LT 200W UHF Type $\$ 19$ Model HT 2 KW UHF Type $\$ 29$ Model LT/N 200W N Type. $\$ 39$ Modei HT/N 2KW N Type $\$ 44$ Modei R-T 200W Deluxe $\$ 29$ Model HV 2KW Deluxe

KLM

KT34A 4-el Broad Band Triband Beam KT $34 \times$ XA 6 -el Broad Band Triband Beam $80 \mathrm{~m}-180$-mtr Rotatable Dipole $40 \mathrm{~m}-140$-mtr Rotatable Dipole $40 \mathrm{~m}-22$-el $40-\mathrm{mtr}$ Beam
$40 \mathrm{~m}-33$-el 40 - mtr Beam

$$
\begin{aligned}
& 40 \mathrm{~m}-44-\mathrm{el} 40-\mathrm{mtr} \text { Beam } \\
& 2 \mathrm{~m}-13 \mathrm{~L} \text {-BA } 13 \text {-el } 2 \text {-mtr Beam }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2m-13LBA 13-el 2-mtr Beam } \\
& 2 \mathrm{~m}-14 \mathrm{C} \text { 14-el 2-mtr Satelite Antenna }
\end{aligned}
$$

$$
2 \mathrm{~m}-16 \mathrm{~L} \mathrm{LX} \text { NEW-16-el } 2 \cdot \mathrm{mtr} \text { Beam }
$$

$$
2 \mathrm{~m}-22 \mathrm{CNEW}-22 \text {-el } 2 \text {-mtr Satellite Antenna }
$$

432-30LBX NEW-30-el-432 MHz Antenna

$$
\text { 435-18C } 435 \mathrm{MHz} \text { Satelife Antenna W/CS-2 }
$$

$$
432 \text { - } 16 \mathrm{LB} \text { 16-el } 432 \mathrm{MHz} \text { Beam }
$$

ROTORS \& CABLES
Alliance HD73 (10.7 sq ft rating) Alliance U110 (3 sq ft rating) Telex HAM 4 (15 sq ft rating) Telex Tailtwister (20 sq It rating) Telex HDR300 Heavy Duty (25 sq ft rating) Kenpro KR-500 Heavy duty elevation rotor Kenpro KR-500 Heavy duty elevation rotor
KLM EL-3000 Moon Tracker Elevation Rotato Standard 8 cond cable $\$.19 / \hbar$ (vinyl jacket $2 \cdot \boldsymbol{- 1 8} \& 6-\mathbf{e 2 2} \mathrm{ga}$) Heavy Duty 8 Cond cabie $\$ 36 / \mathrm{ft}$ (vinyl jacket 2- 116 \& 6- 18 ga)

SOUTH RIVER ROOF TRIPODS

HDT-3 3 HT Tripod. $\$ 19$ HDT- 55 ft Tripod. $\$ 29$ HDT-10 10 It Tripod. $\mathbf{\$ 4 9}$ HDT-15 15 II Tripod. $\$ 69$ Heavy Duty Tripods include mtg hdw-UPS Shippable

ECOCOCO

bUTTERNUT ELECTRONICS CO.

- Designed to operate on all Amateur Bands at "FULL" Lega Power Input.
- Automatic Band Switching (80/10 meters).
- Automatic Band Switching (160/10 meters) with optional model TBR-160 HD
- IN STOCK for IMMEDIATE

DELIVERY \& LOOK at very
SPECIAL PRICES

- New Model HF6V \$129.00
- New Model TBR-160HD (High

Power 160 meter Base
Resonator) \$49.00
Model RMK-11 (roof mount kit with multiband radial kit $\$ 39.00$ Model STR-2 (Stub Tuned Radial Kit) $\$ 29.00$.
Delivery Anywhere in The Continental USA At No Additional Cost. (Free Shipping On Butternut Accessories Also When Purchased With Antenna.)

ROHN GUYED TOWERS

10 \#t Stack Sections

$20 \mathrm{G} \$ 37.50 \quad 25 \mathrm{G} \$ 46.50$
45G \$107.50 55G \$127.50
All 20G, 25G, 456 and 556 Accessories
In Stock at Discount Prices - CALL!

TOWER/GUY HARDWARE				
3/16 ${ }^{\text {E EHS Guywire (} 3990 \mathrm{lb} \text { rating) }}$				S. $13 / 71$
				\$.16/th
$1 / 4^{\circ}$ EHS Guywire (6000 ID rating)				\$.12/th
$3 / 16{ }^{\circ} \mathrm{CCM}$ Cable Clamp (3/16 ${ }^{\circ}$ or 5/32 ${ }^{\circ}$ Cable				\$ 35
$1 / 4^{\circ}$ CCM Cable Clamp (1/4* ${ }^{\circ}$ Cable)				\$.45
$1 / 4{ }^{\text {-TH }}$ Thimble (fits all sizes)				5.30
3/8EE (3/8 ${ }^{\circ}$ Eye 8 Eye Turnbuckle)				\$5.95
$3 / 8^{\circ} \mathrm{EJ}\left(3 / 8^{*}\right.$ Eye 8 Jaw Turnbuckie)				\$6.95
$1 / 2^{\circ}$ EE (1/2* Eye 8 Eye Turnouckie)				\$8.95
				\$9.95
3/16. Pretormed Guy Grip				$\$ 1$
1/4 ${ }^{\text { Pretormed Guy Grip }}$				\$2.49
6. Diam - 4 ft Long Earth Screw Anc				\$12.
5000 Guy Insulator ($5 / 32^{\circ}$ or $3 / 16^{\circ} \mathrm{Cab}$				\$1.39
502 Guy Insulator ($1 / 4^{\circ}$ Cable)				\$2.49
				\$12.95
Phillystran guy cable				
HPTG2100 Guy Cabie (2100 lb rating)				$\$ 2$
HPTG4000 Guy Cable (4000 lb rating)				\$. 4
HPTG6700 Guy Cable (6700 it ratinn)9901 L0 Cable End (for 2100/4000				5.69/71
				\$6.95
9902L. Cable End (for 6700 cable)				\$795
GALVANIZED STEEL MASTS				
Heary Duty	vel Ma	in 0		
Longth	5 FT	10 FT	15 FT	FFT
12 in Wail	\$25	\$49	\$59	\$79
18 in Wall	\$39	\$69	599	12
25 in Wall	\$69	\$129	\$189	\$249

CD ICOM

ICOM IC.751A LIST PRICE $\$ 1399$ CALL FOR SPECIAL SALE PRICE!

ICOM IC. 745 LIST PRICE $\$ 999$ CALL FOR SPECIAL SALE PRICE!
IC-02AT
\rightarrow NEW 2 METER
有 要
TOP OF THE LINE HT

- Digital LCD Readout
- Scanning
- Programmable PL Tones - S.meter Function
- 10 Memories
- 10 Memories
- Lithium Memory Backup - 13.8VDC Operationt - Sealed Case SUGGESTED LIST PRICE S349 CALLFOR SALE PRICES! call for sale paices FACTORY AUTHORIZED DEALER FOR ALL MAJOR AMATEUR LINES

ITALPHA SALE!

76PA
\$1899!

Model	List	Sale
76A	$\$ 1985$	CALL
76PA	$\$ 2395$	CALL
76CA	$\$ 2695$	CALL
374A	$\$ 2595$	CALL
78	$\$ 3495$	CALL

-Sale Prices Too Low To PrintCALL \& SAVE \$S!

7 For reme

 SALE!

CORSAIR List $\$ 1169$
Deluxe AC Supply List $\$ 199$ Both Items - Yours for \$1169! All Ten-Tec Accessories in Stock for Fast Shipment!

$1 .+$	TEN-TEC New 2M HT
	Full Featured!
	List \$319
	Sale \$279.95!
	4229 2KW Tune

ASTRON POWER SUPPLIES
Heavy Duty - High Quality Rugged Reliable

- input Votrage $105-125 \mathrm{VaC}$ Output 138 VDC ? 05 V
- Fully Eiectroncally Regulated-5mv Maumum Rippie
- Current Luming \& Crowbar Protection Carcuits
- M. Series With Meter - A. Series Without Meter

Modet	Cont Amps	ICS Amps	Price
RSAA	3	1	539

Model	Cont Ampa	ics Ampe	Price
RSAA	3	,	539 49
RSTAAA	3	12	69
	16	8	${ }^{69}$
Asjsa	3	3	138 149
RS33 assoa a	$\stackrel{3}{3}$	50	19
RSSOM	3	so	229

pc. s

FT.757GX LIST PRICE $\$ 829$ CALL FOR SPECIAL SALE PRICE

FT-726R LIST PRICE $\$ 829$ CALL FOR SPECIAL SALE PRICE!

209 RH
NEW
5W 2M HT
NOW IN STOCK
CALL FOR
SPECIAL PRICE

SALE!
NEW RTTYICW COMPUTER INTERFACES

CRI-100 List \$249 SALE \$229.95 CRI-200 List \$299 SALE \$269.95

List $\$ 999$ SALE $5749.95!$
Other HAL Products On Sale

$\begin{array}{lllll}\text { WRF6700 } & \$ 43996 & \text { DS3100ASA } & \$ 16999 \\ \text { CWR6750 } & \$ 6995 & \text { MPT3100 } & \$ 219995\end{array}$

$A \Delta$ List $\$ 239.95$ SALE $\$ 189.95$ $\begin{array}{llll} & & \$ 219 & \text { CP1.64 }\end{array} \quad \$ 219$ $\begin{array}{llll} & \$ 129 & \text { MP- } 64 & \\ \text { MP-20 } & \$ 129 \\ \text { VIC-20 MBA Text } \\ \$ 79 & \text { C-64 MBA Text } \\ \$ 79\end{array}$ All AEA Keyers, Antennas \& Accessories in Stock!

MFJ 1224 COMPUTER INTERFACE $\$ 89.95$
202 B Noise Bridge 250 2KW Oil Load 901 300W Tuner 941C 300 W Tuner 989 Deluxe 2KW

$\$ 59.95$ $\$ 35.95$ | $\$ 89.95$ |
| :--- | $\begin{array}{r}\$ 59.95 \\ \hline\end{array}$ $\$ 89.95$

$\$ 89.95$ $\$ 299.95$

SNNTEC

NEW ST142 $\mu \mathrm{P}$ 2M HT

- 3.5W/1W/0.1W
- 142 -149.995 MHz
- LCD Display
- Programmable PL Option

List 339.95
SALE \$299.95!

ST144رP $\$ 259.95$
ST222 P .
CALL!
ST442 ${ }^{\mathrm{P}} \mathrm{P}$
CALLI

SANTEC Accessories
SM3 Speaker Mic \$34.95
ST-LC Leather Case\$34.95
ST-500 NiCad Battery . $\$ 29.95$
ST-4QC Base Charger . . $\$ 69.95$

TOKYO
HY-POWER LABS
HL-30V Reg. \$69.95 SALE $\$ 59.95$
HL-82V \$139.95 HL-90U . $\$ 329.95$ HL-160V \$289.95 HC-200. \$89.95 HC-2000 \$289.95

KDK FM2033
List \$339.95 Sale \$299.95

EKantronics

The Interface Reg. $\$ 169.95$ Sale $\$ 129.95$ The Interface II Reg. $\mathbf{\$ 2 6 9 . 9 5}$ Sale $\mathbf{\$ 2 3 9 . 9 5}$ Apple Amtor

Sofl/Hamtext... $\$ 139$ VIC-20 Hamsoft 49 VIC-20 Amtor Soft. 89 Hamtert VIC-20 99 Model 64 Hamtext Model-64.. 99 Amtor Soft......... 89 Atari Hamsofl 49 Apple Hamsoft....... 29 TRS-80C Hamsoft... 59
METRON
MA1000B
AMPLIFIER
Solid State

- No Tuning \quad IKW Amplifier
- Remote Bandswitching • Compact
- Heavy-Duty Construction
List Price \$995 SALE PRICE \$895.95

Telephone

(214) 422.7306
Div. of Texas RF Distributors Inc. 1108 Summit Ave., Suite 4 - Plano, Texas 75074

Monday-Friday 9 AM - 5 PM Saturday 9 AM - 1 PM

here is the next generation Repeater

MARK 4CR

No other repeaters or controllers match Mark 4 in capability and features. That's why Mark 4 is the performance leader at amateur and commercial repeater sites around the world. Only Mark 4 gives you Message Mastertm real speech - voice readout of received signal strength, deviation, and frequency error - 4channel receiver voting - clock time announcements and function control $\bullet 7$ helical filter receiver - extensive phone patch functions. Unlike others, Mark 4 even includes power supply and a handsome cabinet.

Call or write for specifications on the repeater, controller, and receiver winners.

The only repeaters and controllers with REAL SPEECH!

Create messages just by talking. Speak any phrases or words in any languages or dialect and your own voice is stored instantly in solid-state memory. Perfect for emergency warnings, club news bulletins, and DX alerts. Create unique ID and tail messages, and the ultimate in a real speech user mailbox - only with a Mark 4.

MICRO CONTROL SPECIALTIES

23 Elm Park, Groveland, MA 01834 (617) 372-3442

KPA5 1 WATT 70 CM ATV TRANSMITTER BOARD

- APPLICATIONS: Cordless portable TV camera for races $\&$ other public service events, remote VCR, etc. Remote control of R/C airplanes or robots. Show home video tapes, computer programs, repeat SSTV to local ATVers. DX depends on antennas and terrain typ. 1 to 40 miles.
- FULL COLOR VIDEO \& SOUND on one small 3.25×4 " board
- RUNS ON EXTERNAL 13.8 VDC at 300 ma supply or battery.
- TUNED WITH ONE CRYSTAL on $426.25,434.0$, or 439.25 mHz
- 2 AUDIO INPUTS tor a low Z dynamic and line level audio input found in most portable color cameras, VCRs, or home computers.
- APPLICATION NOTES \& schematic supplied tor typical external connections. packaging, and system operation
- PRICE ONLY $\$ 159$ delivered via UPS surface in the USA. Technician class arnateur license or higher required for purchase and operation

WHAT IS REQUIRED FOR A COMPLETE OPERATING SYSTEM? A TV set with a TVC-2 or TVC-4 $420-450 \mathrm{mHz}$ to channel 3 downconverter. 70 cm antenna, and coax cable to receive Package up the KPA5, add 12 to 14 vdc , antenna and any TV camera. VCR, or computer with a composite video output. Simple, eh?

CALL OR WRITE FOR OUR COMPLETE CATALOG \& more into on atv downconverters, antennas, cameras, etc, or who is on in your area
TERMS Visa, Mastercard, or cash only UPS COD by telephone or mail Telephone orders \& postal MO usually shipped within 2 days, allother checks must clear before shipment. Transmitting equipment sold only to licensed amateurs veritied in 1984 Callbook Calit include sales tax
(818) 447-4565 m-f 8am-6pm pst.
P.C. ELECTRONICS

Tom W60RG
Maryann WB6YSS

the reduced-size, full-performance, corner-fed
 delta loop

For broadband DX performance, try this one on for size

The full wave loop, whether in delta or quad form, has enjoyed popularity over many years. It forms the basis for the well-known and very effective 2 -element quad antenna, the history of which can be traced back over 30 years.

A single loop in quad (diamond shape) or delta (apex up) has the following advantages: it requires only a single support, matches easily into low impedance coax, and offers broadband performance.

In May, 1974, L.V. Mayhead, G3AQC, published a very interesting article on the operation of loop antennas close to ground.' By modelling the antennas at UHF, he found that the angle of radiation of a delta loop close to ground could be significantly lowered if it were fed at either side corner instead of at the center of its base leg. This had important and useful implications for the use of such antennas on the lower frequencies.

The corner-fed delta loop has also been mentioned as an effective DX antenna by ON4UN in his book 80-Meter DXing, ${ }^{2}$ and references to it have appeared in many popular Amateur journals over recent years.
Space for a full-sized 7 MHz delta loop was not available at my station in North Sydney, Australia. However, previous experiments carried out in England showed very little deterioration in performance of twothirds size, side-loaded quads at HF compared to fullsized quads. I decided, therefore, to see whether a corner-fed, reduced-size delta loop for 7 MHz could be made to perform as efficiently as a full-sized loop.

14-MHz model first compared

Instead of experimenting at 7 MHz , I chose to first experiment by reducing the size of a full-sized $14-\mathrm{MHz}$ corner-fed delta loop so that a standard of comparison would be available. The $14-\mathrm{MHz}$ loop had been in use for some time and had shown itself to be an effective antenna despite a base height of only 6 feet $(1.8$ meters). In comparison tests with a half-wave dipole at 30 feet (9.2 meters), it would generally give a 1 S -point improvement in Europe on long path, and seemed about equal to the dipole on the short path to Europe (from Australia). Both antennas were broadside to Europe on long and short paths.

It is worth remembering that even when the delta loop and dipole delivered equal results, the dipole had the advantage of being nearly a half wavelength high on 14 MHz . To achieve the same effective height for a dipole operating on 7 MHz or 3.5 MHz would mean heights of over 60 feet (18 meters) and 130 feet (40 meters), respectively!

current distribution determines polarization

In the original article on the corner-fed delta loop, the loop was not an equilateral triangle, but instead had sides in the ratio $1: 1: 1.4$, where 1.4 represents the base of the apex-up triangle. This configuration means that the two sloping sides meet at a right angle to each other, and the vertical height of the triangle formed is not as great as it would be if the triangle were equilateral in shape.

The current distribution of a delta loop fed in one corner is shown in fig. 1. The phase of the currents in the two sloping legs is such as to make it resemble two vertical antennas fed in phase so that maximum radiation would take place in a plane broadside to the plane of the antennas. Although the sloping sides of the delta loop are at 45 degrees to the horizontal, the

By V.C. Lear, G3TKN, 53 Chaplains Avenue, Cowplain, Portsmouth $\mathrm{PO8} 8 \mathrm{OH}$ England

fig. 1. Current distribution for a full size 14 MHz cornerfed delta loop. The inner conductor of coax connects to sloping leg.
phase of the currents in both sloping legs produces a predominately vertically polarized signal.

My objective with the smaller loop was to try to recreate a similar current distribution to that described for the full-sized loop.

A loop two-thirds the size of the normal 14 MHz loop was made. It had sides of 14 feet (4.27 meters), and a base of 20 feet (6.1 meters). However, before I made a serious attempt to load this loop to obtain the conditions of current distribution previously mentioned, I decided to simply series-load the loop with a coil at its feedpoint and observe the effects.

Wheri the loop was loaded in this way, it was possible to lower its resonant frequency from 20.9 MHz to 16.5 MHz by adding small amounts of inductance. However, tuning the loop lower than 16.5 MHz required increasingly larger amounts of inductance, until finally a coil of 17 turns close wound on a 2 -inch ($5-\mathrm{cm}$) diameter form was needed for resonance at 14 MHz . This coil had a measured inductance of 17.1 microhenries, indicating that the antenna was 1500 ohms capacitive reactive at 14 MHz . The radiation resistance of the loop was too low to allow a good match into 75 -ohm coax, and even with the feeder tapped into the coil to obtain a match, results were very poor. This was not really surprising, because by virtue of being
placed at the feedpoint, the coil would have been carrying high current, introducing high loss into the system. The current distribution of the loop loaded in this way would not resemble the full-sized version. At best, then, the loop can be lowered in frequency by up to 20 percent of its natural resonant frequency by simple series loading with a coil. This is probably not the best way to load the antenna, but it may still give useful results. To bring the 20.9 MHz resonant loop to resonance on 14 MHz represents a 33 percent lowering of frequency.

the effects of base loading

The next experiment consisted of increasing the sides of the loop from 14 feet (4.27 meters) to 17 feet 9 inches (5.41 meters), but keeping the base at 20 feet (6.1 meters) and to try loading the base wire. If the base could be loaded, maximum current would appear in both sloping sides, with a voltage point at the top of the loop. The sides of 17 feet 9 inches (5.41 meters) represent a quarter wave each on the loop at 14 MHz , since the loop circumference in feet is given by 1005 /frequency in MHz (bear in mind that there is no end effect on the wire of a loop).

The objective with the loop in fig. 2 was to make the base look like an electrical half wavelength, with a voltage point in the middle of the base wire. This would then result in each leg carrying high currents in phase, and a low impedance point at each corner of the loop.

The loading of the base wire was quite easily achieved by connecting two five-foot (1.52-meter) lengths of 300 -ohm twin ribbon feeder, shorted at their far ends, 5 feet (1.52 meters) in from each corner of the loop, as shown in fig. 2. The ribbon feeder was used instead of a coil because it was felt losses would be lower, and ribbon feeder proved easier to trim and was less bulky than a coil. A 3-foot 6 -inch (1.07 meter) piece of stiff wire was connected at the voltage point midway along the base and brought the loop to resonance at 14.15 MHz .

The loop matched well to 75 -ohm coax, with an SWR of less than $1.5: 1$ across the band. The performance of the loop compared well to the full-size version. However, the two hanging stubs would obviously present a problem when scaled up, so I decided to hang two wires from the middle of the base, and pull them back on themselves, as shown in fig. 3. This idea worked extremely well, and with each wire 9 feet 3 inches (2.82 meters) long, the loop was again brought to resonance at 14 MHz , but without the inconvenience of hanging stubs.

This method of loading has the advantages of low loss and ease of trimming. Performance was again similar to the full-sized loop.

reducing leg length

Now that the base had been successfully loaded so that it looked like an electrical half wavelength, an attempt was made to reduce the two sloping legs back to 14 feet (4.27 meters) by taking up the extra wire in the form of a closed stub at the top of the antenna. Various closed stubs using open wire line and 300 -ohm ribbon feeder were tried, and although the antenna could be resonated each time, the radiation resistance at the feedpoint was too low to match into 75 - or 50-ohm coax.

The stubs were dispensed with, and a single wire 7 feet (2.13 meters) in length connected to the apex of the loop, and hanging vertically brought the antenna to resonance. Although this proved to be a much simpler way of resonating the loop, the radiation resistance at the feedpoint was still too low.

A 4:1 matching transformer at the feedpoint connected in such a way so as to step up the impedance of the loop did provide a match, but the bandwidth of the loop was too narrow. It was felt that the introduction of a matching transformer would start to make the whole exercise rather cumbersome and introduce extra losses apart from the unacceptable bandwidth.

After some experimentation, the sides were increased to 16 feet (4.88 meters), with a 3 -foot 6 -inch (1.07-meter) wire hanging from the apex. This produced an SWR of less than 1.5 to 1 across the whole band even when the base of the loop was only 4 feet (1.2 meters) high.

Results with this loop were still comparable to the full-sized loop, and represented a reduction of the fullsized loop of 27 percent in terms of circumference, with a corresponding reduction in the perpendicular height of the triangle by 18 percent.

40-meter model

The final experiment was to double the dimensions for 7 MHz operation. This meant that the sides were each 32 feet (9.75 meters), base 40 feet (12.19 meters), apex vertical loading wire 7 feet (2.13 meters), and base loading wires each 18 feet 4 inches (5.59 meters). These dimensions resulted in resonance at around midband on 7 MHz with an SWR of no greater than 1.5 to 1 across the band.

A thin, light nylon cord was attached between the bottom of the apex loading wire and the midpoint on the base. This was necessary to keep the apex loading wire from blowing around and also to help prevent sag in the base wire, the latter which was also supporting the bottom loading wires. The loop was pulled slightly away from the mast so as to keep any interaction between the partially metal mast and itself to a minimum.

The results with the 7 MHz loop were good. I

fig. 2. Initial method of loading loop using lengths of 300 -ohm ribbon teeder shorted at far end.

fig. 3. Improved method of loading using wires connected to center of base and pulled out as shown. Light nylon cord is used to secure their ends.
worked many continents-including America and Europe - with good reports.

It should be remembered, however, when assessing the performance of any antenna, there is no one antenna that will give excellent results on all paths, during all types of propagation, and over all distances. The corner-fed delta loop is a predominately low-angle radiator and as such should generally be at its best over longer distances. If one is only interested in working, for example, up to 1000 miles, a dipole with its higher angle of radiation could be expected to give better results. If a corner-fed delta loop is erected, this point should be remembered in any comparison checks.

COUPUTER ThIDER CAGMZIIE

The monthly magazine with a natural blending of two popular hobbies -- Ham Radio and Computers

* Articles on Ham Radio \& Most Personal Computers
* Hardware \& Software Reviews
* Various Computer Languages
* Construction Articies
* Much Much More.
- FREE Classified Ads for subscribers, nonsubscribers - 10\% a wordinumber (used equipment only)
- Excellent display ad rates

Join the CTW^{*} readership family by subscribing NOW, during our Baker's Dozen Special.

USA
$\$ 12.00$ for 13 issues
Mexico, Canada
$\$ 25.00$
Foreign
$\$ 35.00$ (land) - $\$ 55.00$ (air)
(U.S. funds only)

Permanent (U.S. Subscription) \$100.00
Sample Copy
$\$ 2.50$

GIM

Circulation Manager 1704 Sam Drive Birmingham, Alabama 35235

Phone (205) 854-0271

Name \qquad
Call Sign \qquad
Address \qquad
City \qquad State \qquad
Zip \qquad Phone \qquad
Date \qquad
Signature

fig. 4. The final loaded loop for 14 MHz . All dimensions are doubled for operation on 7 MHz . Base loading wires are each 18 feet 4 inches (5.59 meters). The top loading wire is made taut by securing to base with thin light nylon cord.

how about 80 meters?

There is no reason those with sufficient space and mast height could not assemble a 3.5 MHz version of this antenna by simply doubling the dimensions given. A 3.5 MHz version would require a mast height of 56 feet (17 meters), which would allow the base of the loop to be 6 feet (1.8 meters) above ground. The horizontal distance taken up would be 80 feet (24.4 meters). These dimensions represent a considerable saving on the full-sized loop and are feasible for many Amateurs.

Final trimming of the loop should be done by adjusting the lengths of the bottom loading wires simultaneously so that their respective lengths are always equal. The top vertical loading wire should not be trimmed. Any trimming should be carried out with the antenna at its normal height, because bringing the base wire closer to ground tends to reduce the resonant frequency of the antenna. The base wire should preferably be a minimum of 6 feet (1.8 meters) above ground. While good results have been achieved with lower positioning than this, it is not recommended; in the original article' on the corner-fed delta loop, the base was 10 feet (3 meters) high and this, of course, would be a better height to aim for.
The radiation resistance of a loop antenna drops as it is reduced in size and also as its height above ground decreases. Consequently, 50 -ohm coax is recommended for the feeder, although this is not critical. Good results have been obtained with 75 -ohm cable.

further experimentation

I hope that by describing some of the experiments carried out, and results obtained, others might be encouraged to experiment further. There is no reason, for example, why those with a little extra space might not erect another similar loop 0.12 to 0.2 of a wavelength behind the driven loop, with this additional loop tuned to act as a reflector. To obtain reflector operation of this second loop, the bottom loading wires would have to be increased slightly to bring the loop to resonance some 5 percent lower in frequency from the driven loop.

It should be noted that any attempt to reduce the size of an antenna will be accompanied by a corresponding reduction in radiation resistance, bandwidth, and overall system efficiency. The corner-fed delta loop loaded in this way represents what I believe to be a reasonable compromise between these parameters and acceptable size.

references

1. L.V. Mayhead, G3AOC, "Loop Aerials Close to Ground," Radio Com munication, May, 1974, page 298.
2. J. Devoldere, ON4UN, 80 -meter Dxing. Communications Technology. Inc., Greenville, New Hampshire, 1978.
ham radio

The word amateur is a little misleading. There's nothing amateur about the way hams maneuver signals successfully through the airwaves.

It takes a unique blend of human skill and product excellence.

That's why so many amateurs gravitate toward Larsen amateur antennas.

Larsen antennas are designed by engineers who know amateur radio from the business end of the mike; who make it their business to see that every Larsen antenna goes the distance, or it doesn't go out the door.

As with our commercial products, every Larsen amateur antenna features our exclusive high efficiency platings - either Kūlrod ${ }^{\circledR}$ chrome, or Külrod $\mathrm{T}^{\text {TM }}$ Teflon ${ }^{\circledR}$

Both deliver extra miles and all-weather protection. And they're backed by our no-nonsense warranty.

So wherever you operate-from 10 meters to 1.3 GHz - Larsen antennas will deliver strong performance . . . instead of blue sky.

Ask your favorite amateur dealer to tune you i Larsen's professional quality, or write for a free ama catalog.

Corsen Antennos
The Amateur's Professional
IN USA: LARSEN ELECTRONICS, INC. IN CANADA: CANADIAN LARSEN ELECTRONICS, LTD. 11611 N.E SDTH AVE PO. 80×1799 283 E. 11TH AVE UNIT 101
VANCOUVER B C VST VANCOUVER, WA 98668
$206-573-2722$ 604-872-8517

MISSOURI RADIOCENTER

JANUARY SPECIAL
ICOM 02AT \$279.00

CALL FOR SPECIAL SALE PRICES

```
- AEA
- ALLIANCE
- ANIXTER MARK
- ASTRON
- AVANTI
- AZDEN
- B & W
- BEARCAT
```

- HUSTLER
- HYGAIN
- ICOM
- KANTRONICS
- KENWOOD
- KLM
- LARSEN
- DAIWA
- BENCHER
- BUTTERNUT
- CENTURION
- CES
- COMM SPEC
- CUSHCRAFT
- MFJ
- MICROLOG
- MIRAGE
- SANTEC
- VANGORDON
- WELZ
- YAESU

CALL TOLL FREE 1-800-821-7323
MASTERCARD, VISA \& C.O.D's WELCOME

2900 N.W. VIVION RD. KANSAS CTTY, MISSOURI 64150 816-741-8118

SATELLITE TELEVISION RECEIVER SEMIKIT

with dual conversion downconverter
FEATURES:

- Infrared remote control tuning
- AFC, SAW filter
- RF or video output
- Stereo output
- Polorator controls
- LED channel \& tuning indicators

Install six factory assembled circuit boards to complete.

SEMIKIT	$\$ 400.00$
Completed downconverter add	100.00
Completed receiver and downconverter add	150.00

JAMES WALTER SATELLITE RECEIVER
2697 Nickel, San Pablo, CA 94806 - 146 Tel. 415-724-0587

Versatile Lab Power Supply

- 0-30 VDC at 0-2A - Excellent Regulation - Ripple \& Noise - 500 uV RMS - Built-in Short-Circuit and Overload Protection
Model 3002A features continuously adjustable current limiting and precision constant voltage/constant current operation with "automatic crossover." This lab-grade unit can also be used as a current regulated power source. Options: 10-Turn Voltage and Current Controls, $\$ 25.00$ ea. (can be ordered individually).
Also available...TRIPLE MIGHTY-MITE LAB POWER SUPPLY: Three Fully Regulated DC Outputs; two $0-25 \mathrm{~V} / 0.5 \mathrm{~A}$ and one fixed $5 \mathrm{~V} / 3 \mathrm{~A}$, Variable Tracking \& Independent Modes, Dual Panel Meters. Other models to 60 VDC , to 12 A .
TERMS: Check, Money Order or COD. COD's $\$ 2.00$ extra. Add $\$ 3.50$ for shipping \& insurance in 48 states. Please contact our Sales Department for other shipping rates. Illinois residents add 7\% sales tax.

Free Literature On Request
(7.7.) ELECTRO INDUSTRIES

4201 W. IRVING PARK BLVD., CHICAGO, IL 60641 312/736-0999

INTRODUCING NEMAL
 ASTRO" SERVICE
 GUARANTEED SAME DAY SHIPMENT OR WE PAY THE FREIGHT ON ORDERS OF $\$ 100$ OR MORE FOR STOCK ITEMS RECEIVED PRIOR TO 12 NOON EASTERN TIME.

Factory Authorized Distributor for COLUMBIA ELECTRONIC CABLES

COAXIAL CABLES

Over 75 types in stock, available in full roll or cut to order. Nemal offers cable made to both military as well as commercial specifications including Teflon cables, Silver plated
 cables and high power RF cables.

MULTI CONDUCTOR CABLES

Large inventory of both shielded and non-shielded types from 2 to 120 conductor and from 10 to 24 Gauge. Jacket types available for specific applications including PVC, Polyethylene, and neoprene. Complete Columbia line.

Only Nemal offers the quality construction RG59/U copper shielding made to mil spec Jan C-17, 12-gauge conductors, tinned copper drain wires, and a true direct burial polyethylene jacket.

ACTUATOR CABLES

ST-1 $2 @ 16$ gauge + $2 @ 22$ gauge with foilshield and drain wire 24C/FT ST-2 $2 @ 12$ gauge + $3 @ 22$ gauge with foilshield and drain wire 36C/FT
Direct Burial Black Polyethylene Jacket

NEMAL ELECTRONICS INTL., INC.

12240 N.E. 14th Ave., No. Miami, FL 33161 Telephone: (305) 893-3924

- COMPLETE

MULTICONDUCTOR
LINE

- PRICING

AVAILABLE FOR
ALL OUANTITIES
*Also available Complete line of top quality connectors and SMATV equipment
FRANCHISED DISTRIBUTOR - KINGS CONNECTORS
Authorized Distributor: Amphenol, Blonder-Tongue, Cable Wave Systems, Tyton, B\&K
*Call or write for complete pricing

TELEX 532362

- WE'LL BE GLAD TO CUT ANY OF OUR CABLES TO MEET YOUR EXACT LENGTH REQUIREMENTS

ham radio TECHINIOUES Ru Firsi

the 5/8-wave VHF antenna revisited

In April, 1935, Gihring and Brown published their classic study on the field strength pattern along the ground for vertical antennas of different heights. ${ }^{1}$ Their work was part of an ongoing effort to develop a good antifade antenna for the broadcast band. One result of their experiments was the popularization of the $5 / 8$-wave vertical antenna; its design combined high radiation efficiency with a power gain of nearly 3 dB over a $1 / 4$-wave comparison vertical antenna.

Since these classic experiments, the $5 / 8$-wave antenna, in combination with an extensive ground radial system, has become a broadcast industry standard antenna.
Amateurs, however, have used this interesting antenna on the HF and VHF bands with mixed results. When an elaborate ground system is used, the antenna performs as might be expected. But when used with a radial system (as is often the case on the VHF bands), the antenna often proves to be a disappointment.
I found this out last summer when, in an attempt to get into a distant 2 -meter repeater, I switched from a $1 / 4$-wave ground plane antenna to a $5 / 8$-wave antenna. Any improvement in signal strength at the fardistant repeater was a product of the imagination.
Why didn't it work? What happened

fig. 1. Quarter-wave ground plane, radials collapsed and mounted on its side, transforms itself into a half-wave horizontal dipole.

fig. 2. The " $5 / 8$-wave" vertical consists of an electrical 3/4-wavelength element and four $1 / 4$-wavelength radials. With radials collapsed and mounted on its side it transforms itself into an asymmetrical antenna.
to the 3 dB signal increase I was supposed to get from the bigger antenna? Good question.

the W8HXC tests

In my November column 1 reported on the tests that W8HXC (Ralph) and AFBB (Don) had run on various 2 meter vertical antennas. They found that under many circumstances the feedline became part of the antenna, despite attempts to make the radials isolate the antenna from the feedline, as they are supposed to do.

The simple $1 / 4$-wave ground plane would provide good isolation between
antenna and coax line if the line were wrapped into a two-turn RF choke coil about $11 / 2$ inches $(3.8 \mathrm{~cm})$ in diameter. The coil was placed directly below the antenna. Examining the coaxial line with an "RF sniffer" revealed the line was "cold," provided it dropped directly down beneath the antenna.
The $5 / 8$-wave antenna exhibited current maxima along the outside of the coaxial line until (by cut-and-try) the quarter-wave radials were positioned about $3 / 8$-wavelength below the base of the antenna.

The final conclusion of these tests
was that radials could be placed any distance below the antenna as long as the sum of radial length and distance from the antenna base totalled $5 / 8$-wavelength.

the W6SAI tests

This information sounded good to me, so I repeated the tests that Ralph and Don reported. What they said was borne out in fact, but the $5 / 8$-wave vertical antenna still didn't show any appreciable gain over a simple $1 / 4$ wave ground plane antenna.

While I was debating whether I should relegate the antenna to the junk yard, I remembered something I'd read in an old edition of the ARRL Antenna Book. ${ }^{2}$ The example cited was a horizontal antenna, but the point was made that feeding an antenna in an asymmetrical manner tilted the pattern away from the feedpoint. This could be the clue I was looking for!

If the $1 / 4$-wave ground plane is drawn with the radials in-line with the radiator, it transforms itself into a dipole, as shown in fig. 1. If the $5 / 8$-wave vertical is drawn with the usual $1 / 4$-wave radials in-line, it resembles fig. 2. The radiator portion of the antenna is really a $3 / 4$-wave resonant section, with $1 / 8$-wavelength wound into a coil so that the advantageous characteristics of the $5 / 8$-wave radiator are retained. The feedpoint ($F-F$) feeds a lopsided antenna configuration!

Many years ago I had a horizontal "Zepp" antenna that consisted of exactly this configuration (fig. 3). I remember that it was impossible to balance the antenna currents and RF in the halves of the antenna. I solved the problem by making the short section the same length as the long one. All my loading problems went away.

Enough circumstantial evidence existed at this point for me to substitute $3 / 4$-wavelength radials for the $1 / 4$ wavelength radials on my 2 -meter vertical antenna. This is quickly and easily done, as shown in fig. 4. This antenna provided improved performance over the $1 / 4$-wavelength ground plane and also over the $5 / 8$-wavelength extended antenna with $1 / 4$-wavelength radials.

fig. 3. This old "Zepp" antenna at W6SAI laoked good on papar but never tuned up properly.

adjusting the
 5/8-wavelength vertical

The new antenna was quite easy to adjust. The four radials were precut to 57 inches (145 cm) and the whip was cut two inches longer than estimated length to allow for some pruning. The feedpoint was arbitrarily tapped on the base coil and the antenna was temporarily erected in the air, free and clear of nearby objects.

An SWR check made across the band revealed that the SWR curve canted toward the low frequency end of the band and was quite constant between 1.9-to-1 and 1.7-to-1. The vertical whip was trimmed $1 / 4$-inch $(0.6 \mathrm{~cm})$ at a time and the SWR curve checked after each "snip." The SWR seemed to bottom out at about 1.5-to- 1 , with a very broad response, indicating good bandwidth performance.

Squeezing and expanding the bottom base coil helped a bit and the point of lowest SWR was zeroed in at 146.0 MHz . Unfortunately, the SWR was still too high for us (W6SAI, W6EMD, K6KCM).

The final step was to adjust the feedpoint tap, a quarter-turn along the coil at a time. Now, we were really getting somewhere! After two or three trials, a tap point was found where the SWR on the transmission line was 1.1 -to- 1 , or better, at 146 MHz , rising to about 1.6 -to- 1 at the band edges.

We observed that the coil tap, number of turns, and vertical antenna length were interrelated. If the antenna was too short, increasing coil induc-

fig. 4. The W6SAI $5 / 8$-wave expanded ground plane for 144 MHz .*

[^3]| $\begin{aligned} & \text { band } \\ & (M H z) \end{aligned}$ | antenna
 electrical length
 (half wave) | physical length of radiating element (feet) | resonant frequency (MHz) | 2:1 SWR antenna bandwidth (MHz) | $\begin{gathered} \text { ARRL } \\ \text { design } \\ \text { frequency } \\ \text { (MHz) } \end{gathered}$ | Amateur band frequency allocation (MHz) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 30 | 5 | 241 | 10.105 | 9.953 to 10.256 | 10.12 | 10.100 to 10.15 |
| 20 | 7 | 241 | 14.188 | 13.975 to 14.400 | 14.17 | 14.000 to 14.350 |
| 16 | 9 | 241 | 18.270 | 17.995 to 18.544 | 18.11 | 18.068 to 18.168 |
| 15 | 11 | 254 | 21.210 | 20.892 to 21.528 | 21.22 | 21.000 to 21.450 |
| 12 | 13 | 254 | 25.080 | 24.707 to 25.460 | 24.94 | 24.890 to 24.990 |
| 10 | 15 | 254 | 28.950 | 28.523 to 29.305 | 28.60 | 28.000 to 29.700 |
| | | | | | 29.20 | |
| | fig. 5A. Dimensions and specifications of K4EF six-band long-wire array. | | | | | |

tance brought it back into resonance. The whole thing was very forgiving and, when an extra-eager "snip" cut the antenna too short, a slight compression of the base coil brought the SWR back to where it had been before.

No antenna gain measurements were made as no antenna range was available at the time. On-the-air tests indicate that the antenna is doing the job it was intended to do: provide a good signal at distant repeaters that could not be triggered with a conventional ground plane antenna.

who was first?

Amateur Radio historians often come up with unusual and interesting items. The 5/8-wave vertical antenna popularized by Gehring and Brown in 1935, was patented in the United States by Andrew Alford on April 2, 1940. However, the same antenna concept had been patented in Germany on October 24, 1932, and even this was an extension of a previous patent on the same antenna design issued earlier in Russia.

To top it off, the popular coaxial balun (so-called "Collins Balun") was patented by W.B. Bruene with U.S. patent $2,777,996$ in 1954. An identical balun was patented in Germany by Telefunken in August, 1942.

It looks as if a great deal of effort has been expended in re-inventing the wheel!

My thanks to Dipl. Eng. A. Krischke, DJOTR, OE8AK, for these details. This well-known historian has a private collection of over 1000 radio patents

fig. 5B. Top view of K4EF antenna array.
dating back to the early antenna patents of Marconi (1896), Lodge (1898), and Braun (1898).

the K4EF antenna for $10-30 \mathrm{MHz}$

This simple antenna has consistently outperformed a straight long-wire antenna on long distance DX contacts. It was developed by Ev (K4EF) to cover the new ham bands at 18 and 24 MHz , as well as the regular $30,20,15$, and 10 meter bands. The feedpoint impedance is close to 200 ohms on all bands, so a good quality 4 -to-1 balun provides a convenient match to a 50 -ohm transmission line. No antenna tuner is necessary, except on the low (CW) end of the 10-meter band.

Antenna dimensions are given in fig. 5A. A view of the array is shown in fig. 5B. Wire length is critical and should be duplicated to within 2 inches $(5 \mathrm{~cm})$. Copper-clad steel wire is recommended, as pure copper wire will stretch over such a span. If kept reasonably in the clear, away from large metal objects, and thirty feet
(9 meters) or higher above ground, the electrical characteristics will closely match those listed in the illustration. The antenna may be mounted on a mast or tower at the feedpoint and the three legs suspended in a flat-top or inverted- V configuration. The apex angles of the wire legs are not critical and the sum of the angles may be varied from 180 degrees to 120 degrees, or less.

lightning protection

Lightning is a problem in many areas of the country where frequent electrical storms occur. This antenna is no more vuinerable than other antennas of its size and it has the advantage of being easily protected. The balun (which can be destroyed by a nearby lightning strike) and coax are moved to the base of the tower and the antenna is fed with a 200 ohm open-wire line which can be switched to ground at the tower base when the antenna is not in use (fig, 6.)

The line is made up of parallelconnected lines. K4EF's line used two insulators: one at the top and the other at the bottom. Thirty-pound weights were attached to the bottoms of each wire to keep the whole line under tension. This eliminated intermediate insulators. Surplus, heavy-duty 208 ohm "ribbon" line can also be used for the transmission line.

receiver overload

The large capture area of the antenna results in large signal voltages (sometimes from unwanted stations) which may overload the front end of

fig. 6. Construction of a 200 -ohm line. Diagonally opposite wires are joined at each end of line. Spacing to centers of wires on both sides of square is 2 inches $(5 \mathrm{~cm})$ for No. 10 wire. Base of line can be grounded when antenna is not in use.
the receiver. A simple RF attenuator will help, if your receiver does not have some sort of input protection. The circuit of fig. 7 is suggested.

protecting wooden masts at or below ground level

Fourteen years ago my friend Stu. W2LX, erected a wooden mast on a ground post sunk into moist soil. The post was a 4×4, about five feet long, with over 3 feet sunk into the ground. The problem was how to protect the portion of the post buried in the ground.

A previous mast had been treated heavily with wood preservative, but it has rotted out after a few years in the

fig. 7. Simple two-step attenuator.
ground. This time, Stu had a better idea.

An untreated mast post was wrapped with three layers of aluminum foil the heavy-duty type used in the kitchen. The layers of foil were arranged so that the seams did not overlap, and the foil was carefully folded around the base of the ground post. The foil was wrapped with vinyl tape at several points. The mast was then placed in the ground hole and the hole filled with dirt and tamped down.

The metal foil protruded a few inches above ground to protect the post from surface water.

This fall - fourteen years later W2LX moved to a new location. Because the new owner of his home would have no use for the mast, it was taken down. When the ground post uprooted, Stu found the unusual protective technique had been an unqualified success! Once the soil had been washed from the post, the foil looked practically new. Carefully removing the tape and unwrapping the foil, he found that the wood also looked almost new. There was no sign of water damage, termites, or rot.

W2LX plans to use this technique when he erects his wooden mast at his new OTH and passes the idea along to other Amateurs who may be interested in erecting a wooden mast.

references

1. H. Gihring and G. Brown, "General Considerations of Tower Antennas," Proceedings of the IRE, April, 1935.
2. The ARRL Antenna Book, 12th Edition, 1970.
ham radio

MAXUM
 DISTRIBUTORS

UNITED STATES
A-TECH
Kansas 913-582-5819
BROOKS (Franchise)
201-583-2800
CAYSON ELECT.
Mississippi
601-862-2132
DULANEY's
Oklahoma
405-528-0511
ECHOSPHERE
Sacramento, Ca.
880-338-5477
Englewood, Co. 800-521-9282
Dallas, Tx. 800-521-9282
Knoxville, Tn. 880-223-1507

HOOSIER

ELECTRONICS, INC.
Terre Haute, In. 800-457-3330
I.Z.C.C.

Arkansas 501-771-2800
KAUL-TRONICS
Wisconsin 608-647-8902

NAT'L MICRO DYNAMICS Tennessee 615-892-3901

SATELLITE DATA

Florida
813-823-7669

SAT-VIEW DISTRIBUTORS

New York 315-822-6900

SATELLITE EARTH STATIONS

Louisiana 800-762-2110

Texas
512-385-0738

D.H. SATELLITE

T.V. INC.

Prairie Du Chien, Wi.
608-326-8406
S.R.C. INDUSTRIES

Ontario, Or. 503-889-7261
SATELLITE MARKETING
Douglasville, Ga. 800-438-2807

TENN-SAT

Tennessee
415-349-7180
M \& M VIDEO
Carson City, Nv. 702-882-5786

CANADA

STARSCAN

Kelowna, B.C
604-763-4266

C.L. BLUE

Saskatoon, Sask. 306-242-5133
CANADIAN MICRO-TECH
Ontario
Manufactured by
WESTERN and
EASTERN SATELLITE

a good deal more for a good deal less

nkTulime voro nectiven

MANUFACTURED BY WESTERN \& EASTERN SATELLITE

WESTERN SATELLITE 916-337-6202

EASTERN SATELLITE

Orders only - 800-243-3019

■ 376 MORE PAGES THAN LAST YEAR $\square 17$ MORE CHAPTERS ■ OVER 1700 CIRCUIT DIAGRAMS AND ILLUSTRATIONS

The ARRL 1985 HANDBOOK FOR THE RADIO AMATEUR is the largest ever! Besides the new name and cover, this edition contains new typesetting throughout. There are more construction projects than ever before. A separate section has been added containing PC etching patterns on special paper which can be used as positive film. Compare the contents of this book with an older edition and see how much material really has been added. The 1985 HANDBOOK is the biggest and best ever!.

Price: Paper edition: $\$ 15$ in the U.S., $\$ 16$ in Canada and elsewhere. Cloth edition: $\$ 22.50$ in the U.S., $\$ 24.00$ in Canada and elsewhere. Payment in U.S. funds, checks must be drawn on a bank in the U.S. Available from your radio store or from:

ARRL, $\mathbf{2 2 5}$ MAIN STREET
NEWINGTON, CT 06111 U.S.A.

CONTENTS

INTRODUCTION

1. AMATEUR RADIO
2. ELECTRICAL FUNDAMENTALS
3. RADIO DESIGN TECHNIQUE AND LANGUAGE
4. SOLID STATE FUNDAMENTALS
5. VACUUM TUBE PRINCIPLES

RADIO PRINCIPLES
6. POWER SUPPLIES
7. AUDIO AND VIDEO
8. DIGITAL BASICS
9. MODULATION AND DEMODULATION
10. RADIO FREQUENCY OSCILLATORS AND SYNTHESIZERS
11. RADIO TRANSMITTING PRINCIPLES
12. RADIO RECEIVING PRINCIPLES
13. RADIO TRANSCEIVERS
14. REPEATERS
15. RF POWER AMPLIFIERS
16. TRANSMISSION LINES
17. ANTENNA FUNDAMENTALS

MODULATION METHODS
18. VOICE COMMUNICATION
19. DIGITAL COMUNICATIONS
20. IMAGE COMMUNICATIONS
21. SPECIAL MODULATION TECHNIQUES

TRANSMISSION
22. RADIO FREQUENCIES AND PROPAGATION
23. SPACE COMMUNICATIONS

CONSTRUCTION AND MAINTENANCE
24. CONSTRUCTION TECHNIQUES
25. TEST EQUIPMENT AND MEASUREMENTS
26. TROUBLESHOOTING AND REPAIR
27. POWER SUPPLY PROJECTS
28. AUDIO AND VIDEO EQUIPMENT
29. DIGITAL EQUIPMENT
30. HF RADIO EQUIPMENT
31. VHF RADIO EQUIPMENT
32. UHF RADIO EQUIPMENT
33. ANTENNA PROJECTS
34. STATION ACCESSORIES
35. COMPONENT DATA

ON THE AIR
36. HOW TO BECOME A RADIO AMATEUR
37. ASSEMBLING A STATION
38. OPERATING A STATION
39. MONITORING AND DIRECTION FINDING 40. INTERFERENCE

ETCHING PATTERNS

1024

PAGES!

Works with most infrared remote control receivers
LIKE HAVING A SATELLITE RECEIVER, VCR. CABLE TV, AND VIDEO DISC IN EVERY ROOM!

Your Ham Tube Headquarters ! TUBES BOUGHT, SOLD AND TRADED SAVE SSS-HIGH SSS FOR YOUR TUBES

Call Toll Free 800-221-0860 Tubes

3-400Z	\$85.00	7360	\$10.00
3-500Z	85.00	7735A	27.50
4-400A	80.00	8122.	110.00
4 CX 250 B	50.00	8156	12.50
572B	55.00	8643.	82.50
811A.	12.00	8844	26.50
813	30.00	8873.	175.00
6146B	6.50	8874.	195.00
6360	4.25	8877.	. 500.00
6883B.	. 6.75	8908	12.50

MAJOR BRANDS ON RECEIVER TUBES 75\% off list
Semiconductors

| MRF $245 /$ SD1416 | $\$ 30.00$ | SD1088 |
| :--- | :--- | :--- |19.95

high power RF switching with pin diodes

Recent developments in

 PIN diode technology allow fast, silent switching at 1500 watts +The PIN diode is a semiconductor device that operates in a manner similar to that of a variable resistor at RF frequencies. The amount of forward DC bias applied to the PIN diode determines its resistance (impedance) to the passage of RF signals.

PIN diodes are attractive for RF switching because they have no moving parts; can "hot switch" large RF currents; can control large amounts of RF current with a relatively small DC bias control current; and don't introduce any significant RF waveform distortion.

PIN diodes are formed from three distinct types of silicon wafers: an /ntrinsic layer (pure, non-doped); a P doped layer, and an N doped layer. Figure 1 shows a typical PIN diode with its layers identified. A practical package for a PIN diode has the leads attached to the P and N layers and the whole unit encapsulated in either epoxy or glass. It is the thickness of the intrinsic layer which determines the "geometry" of the PIN diode and gives the diode manufacturer the ability to create PIN diodes with different characteristics for special applications.

The external physical appearance of PIN diodes is determined by their intended applications. Figure 2 shows two Unitrode PIN diodes: a 7300 series and a 40000 series. The 7300 series, about the same size as a 1 N4148, is used for microwave attenuators because of its low internal capacitance (0.7 pF). The larger one, series 4000D, is an insulated stud mounted unit with ribbon leads. This unit is used for high power RF switching and certain applications at a 500 Kilowatts pulsed power level ($1 \mu \mathrm{~s}$ pulse). Tests have shown that with proper heatsinking and DC biasing, the Unitrode 4000 D series PIN diode can handle in excess of 3000 watts.*

PIN diode parameters and specifications

All PIN diodes, regardless of their application, share certain common characteristics. One is a forward resistance, R_{S}, that varies inversely with DC forward bias. This is usually shown in graphical form. (See fig. 3, a graph for a typical Unitrode UM4000 series PIN diode.) Note that at $1000 \mathrm{~mA}(1 \mathrm{amp})$ forward bias, the $U M 4000 R_{s}$ is approximately 0.1 ohm . At 1 mA the R_{S} rises to 20 ohms and at $1 \mu \mathrm{~A}$ forward bias, the R_{s} is in excess of 10 kilohms. The standard for rating most PIN diodes is to provide 100 mA forward bias current at 100 MHz .

Figure 4 shows a set of equivalent circuits for PIN diodes in both a forward and reverse bias state. The forward-biased PIN diode can be considered as equivalent to a series resistor (R_{s}) and inductor (lead inductance). The reverse-biased PIN diode is equivalent to a resistor (R_{p}-parallel resistance) in parallel with a capacitor (the C_{T}. . . total package capacitance) with both of these in series with an inductor (the

By J.R. Sheller, KN8Z, Design Electronics Ohio, 4925 S. Hamilton Road, Groveport, Ohio 43125

fig. 1. PIN diodes consist of three distinct layers: P type, N type, and a pure non-doped (/ntrinsic) layer.
leads). When PIN diodes are reverse biased, they exhibit a blocking effect to RF as shown in the equivalent circuit of fig. 4. As the reverse DC bias is increased, R_{p} increases and C_{T} decreases. The limit of the reverse DC bias is determined by the value of V_{r} (reverse breakdown voltage) of the particular diode. Figure 5 shows a typical curve of reverse bias voltage $\left(V_{\mathrm{r}}\right)$ versus parallel resistance $\left(R_{p}\right)$ for a Unitrode 7300 series PIN diode. Figure 6 shows a typical curve of reverse bias voltage $\left(\mathrm{V}_{\mathrm{r}}\right)$ versus total capacitance (C_{T}) for a Unitrode 4300 series PIN diode.

power handling capability

The maximum power rating of a PIN diode is a function of the forward resistance, R_{s}, and the amount of RF current flowing through the diode. A PIN diode rated to dissipate 12 watts at 25 degrees C can safely switch 1500 watts of RF. A typical calculation shows why this is so. Assume:

$$
\begin{aligned}
& R F \text { load }= 50 \text { ohms } \\
& R_{s}=0.2 \mathrm{ohm} \\
& R F \text { power level }=1500 \text { watts } \\
& I=\sqrt{P / R}=\sqrt{1500}=5.48 \text { amperes }
\end{aligned}
$$

The power dissipated by the diode is equal to forward resistance times current squared or:

$$
0.2 \cdot(5.48)^{2}=6 \mathrm{watts}
$$

The power dissipation of a PIN diode is therefore a function of the load impedance, the forward resistance and the RF current flowing. Consequently, a PIN diode rated to dissipate only 12 watts can, with proper heat sinking, easily handle RF in excess of 1500 watts.

PIN diodes versus vacuum relays

The use of vacuum relays for "high speed" RF

[^4]
fig. 2. One of the PIN diodes is used in microwave attenuators while the larger unit can actually handle 500 kW of pulsed power.

fig. 3. $\mathrm{R}_{\mathbf{s}}$ versus current for UM4000 PIN diode.
switching has been well covered in the literature over the past 20 years (see bibliography). Several commercial amplifiers use vacuum relays for RF switching in order to obtain full break-in "QSK" operation. But using vacuum relays to obtain the high-speed switching times required for full OSK has several disadvantages. These include high cost; the inability to "hot switch"; the necessity for complex switching and protective circuitry; mechanical sound and vibration as the relay opens and closes on each character of CW

IC-751 9-band xcvr/.1-30 MHz rcvr \$1399.00 1199

PS-35 Internal power supply FL-32 500 Hz CW filter (1st IF) FL. 63250 Hz CW filter (1st IF) FL-52A 500 Hz CW filter (2nd IF). FL-53A 250 Hz CW filter (2nd IF) FL. 33 AM filter FL-70 2.8 Khz wide SSB filter HM-12 Hand microphone SM-6 Desk microphone CR-64 High stability reference xtal RC-10 External frequency controller MB-18 Mobile mount. Options: 720/730/740/745/751 PS-15 20A external power supply. EX-144 Adaptor for CF-1/PS-15
160.00144^{93} 59.50 48.50 96.50 8993 $96.50 \quad 89^{95}$ 31.50 46.50 39.50 39.00 56.00 35.00 19.50 egular SALE $\$ 149.00134^{95}$ 6.50

Options - continued CF-1 Cooling fan for PS-1 EX-310 Voice synth for 751, R-71A Regular SALE 45.00 SP-3 External base station speaker 39.95 Speaker/Phone patch - specify radio 49.50 BC-10A Memory back-up... EX-2 Relay box with marker AT-100 100 w 8 -band automatic ant tuner AT-500 500 w 9 -band automatic ant tuner AH 500 w 9 -band automatic ant tuner 449.00 3999s AH-1 5 -band mobile antenna w/tuner 289.00259^{93} PS-30 Systems p/sw/cord, 6 -pin plug 259.95233^{95} OPC Optional cord, specify 2 or 4 -pin GC-4 Worid clock HF linear amplifier Regular SALE fier
5.50 IC-2KL w/ps $160 \cdot 15 \mathrm{~m}$ solid state amp 1795.001299 VHF/UHF base multi-modes Regular SALE IC-251A* 2 m FM/SSB/CW transceiver $\$ 749.00499^{95}$ * 550 Factory Rebate - until gone!

IC-551D 80 Watt 6 m transceiver...... $\$ 699.00$ 5999s EX-106 FM option. 699.00 5993 BC-10A Memory back-up 125.00112^{9}SM-2 Electret desk microphone89.00
IC-271H 100 w 2 m FM/SSB/CW xcvr39.00PS-35 Internal power supply
160.00144^{3}
PS. 15 external power supply
149.00134^{9}

CF-1 Cooling fan for PS-15.. 45.00

EX-144 PS-15/CF-1 fan adaptor 6.50 AG- 25 Mast mtd. GaSFET preamp 84.95 IC-471H 75w $430-450$ SSB/CW/FM xcvr 1099.00 9899s PS-35 Internal power supply 160.00 144ss PS-15 20A power supply
149.00134^{35} CF-1 Cooling fan for PS-15 $\ldots .$. .
EX-144 PS-15/CF-1 fan adaptor 45.00 AG-35 Mast mounted preamp..... IC-271A 25 w 2 m FM/SSB/CW xcvr.. PS-25 Internal power supply.

AG-20/EX-338 2 m preamplifier
84.95

AG-20/EX-338 2m preampinier $\quad 56.95$
IC-471A $25 \mathrm{w} 430-450$ SSB/CW/FM xcvr 799.00 699ss AG-1 Mast mounted 15 dB preamp PS-25 Internal power supply 89.00

PS-25 internal power supply.......- $99.00 \quad 89$ ss Common accessories for $271 \mathrm{~A} / \mathrm{H}$ and $471 \mathrm{~A} / \mathrm{H}$ SM-6 Desk microphone
EX-310 Voice sythesizer 39.95 IS-32 CommSpec encode/decoder UT-15 Encoder/decoder interface 59.95 UT-15S UT-15S w/TS-32 installed 12.50 79.95 VHF/UHF mobile multi-modes IC-290H 25 w 2 m SSB/FM xcvr, TTP mic 549.0048995 IC-490A 10w $430-440$ SSB/FM/CW xcvr 649.00579^{95} VHF/UHF/1.2 GHz FM \qquad Regula IC-22U 10w 2 m FM non-digital xcvr $299.00249^{\text {s }}$ EX-199 Remote frequency selector 35.00 IC-27A Compact 25w 2m FM w/TTP mic 369.0032995 IC-27H Compact 45 w 2m FM w/TTP mic 409.00 369ss IC-37A Compact 25 w 220 FM, ITP mic 449.00 3599s IC-47A Compact 25 w 440 FM, TTP mic $469.00419{ }^{35}$ UT-16/EX-388 Voice synthesizer. . IC-120 1w 1.2 GHz FM transceiver. ML-12 10w amplifier 29.95 IC-505 3/10w 6 m port. SSB/CW xCvr $\$ 449.00$ 399ss BP-10 Internal Nicad battery pack 79.50 BP-15 AC charger..................... 12.50 EX- 248 FM unit. LC-10 Leather case SP-4 Remote speake

Hand-held Transceivers Deluxe models Regular SALE IC-02AT for $2 \mathrm{~m} \ldots349 .00$ 299ss IC-04AT for $440 \mathrm{MHz} 379.00339{ }^{5}$
Standard models Regular SALE
IC-2A for 2 m 239.50 1895s IC-2AT with TP....... 269.50 199ss
IC-3AT 220 MHz , TTP 299.952399^{53}
IC-4AT 440 MHz , TTP 299.95 2395s

Accessories for Deluxe models Regular BP-7 425mah/13.2V Nicad Pak - use BC-35 67.50 BP-8 $800 \mathrm{mah} / 8.4 \mathrm{~V}$ Nicad Pak - use BC- $35 \ldots . .62 .50$ BC-35 Drop in desk charger - all batteries 69.00 BC-60 6 -position gang charger, all batts SALE 359.95 BC-16U Wall charger - BP7/BP8..
10.00

Accessories for both models Regular
BP-2 425mah/7.2V Nicad Pak - use BC35..... 39.50 BP-3 Extra Std. 250 mah/8.4V Nicad Pak..... 29.50
BP-4 Alkaline battery case.
BP-5 425mah/10.8V Nicad Pak - use BC35 49.50
CA-2 Telescoping 2 m antenna..................... 10.00
CA-5 \%.wave telescoping $2 m$ antenna 18.95
FA-2 Extra 2 m flexible antenna 10.00
CP-1 Cig. lighter plug/cord. BP3 or Dix. DC-1 DC operation pak for standard models 1750 LC-02AT Leather case for Dix models w/BP-7/8 39.95 LC-2AT Leather case for standard models...... 34.95 LC-11 Vinyl case for standard models 17.95
LC-14 Vinyl case for Deluxe models w/BP-7/8 17.95
RB-1 Vinyl waterproof radio bag 30.00
HH-SS Handheld shoulder strap................... 14.95
HM-9 Speaker microphone
HS10 Boom microphone/headset.
... 19.50
IS-IOSA Vox unit for HS-10 (deluxe only) HS-10SB PTI unit for HS-10.......... 19.50 ML-1 2 m 23 w in/ 10 w out amplifier...... SALE 79.95 ML-25 2m 2.3w in 20w out amplifier SALE 179.95 SS-32M Commspec 32-tone encoder 29.95

Reguiar SALE
Shortwave receivers
R-71A $100 \mathrm{Khz}-30 \mathrm{Mhz}$ digital receiver $\$ 799.00689^{94}$ FL- 32500 Hz CW filter.
59.50

EX-310 Voice synthesizer 39.95

RC-11 Wireless remote controller... 59.95
CR-64 High stability oscillator xtal 56.00
R-70 $100 \mathrm{Khz}-30 \mathrm{Mhz}$ digital receiver 749.00 569"s EX-257 FM unit.
38.00

IC-7072 Transceive interfaçe, 720A 112.50
FL-44A SSB filter (2nd IF)........... 159.00144^{93}
FL-63 250 Hz CW filter (1st IF)..... 48.50
SP-3 External speaker 49.50

CK-70 (EX-299) 12v DC option..... 9.95
MB-12 Mobile mount.
19.50
\square
MasterCard
VISA ${ }^{-}$

HOURS: Mon. thru Fri. 9-5:30; Sat 9-3 Milwaukee WATS line 1-800-558-0411 answered evenings until 8:00 pm Monday thru Thursday Please use WATS line for Placing Orders For other information, etc. please use Regular line

fig. 4. PIN diode equivalent circuits, (A) forward bias, and (B) reverse bias.
or AMTOR; and maximum switching time of approximately 1-2 milliseconds. Amateur use of PIN diodes for RF switching is a relatively recent occurrence. However, nearly all currently available transceivers that offer full QSK use PIN diodes for their T/R function. Several articles have appeared in the literature over the past 10 years concerning the use of PIN diodes in "low power" T/R switching. Using PIN diodes to perform RF switching functions offers several advantages, including relatively low cost; the ability to be "hot switched"; silent operation; rugged construction; and no complex protective or peripheral circuitry are required. In addition, switching times less than $1 \mu \mathrm{~s}$ are possible.

making PIN diodes work at HF

PIN diodes were designed for and operate best in the VHF and UHF regions. Their use below 30 MHz was delayed because of the need for high inductance and high current RF chokes. The need for capacitors capable of handling 5-10 amps of RF current, with values up to $100,000 \mathrm{pF}$ was also a barrier. PIN diodes can be used at HF, however, and a detailed description of a commercial application that successfully utilizes PIN diodes for RF switching follows.

the OSK 1500

The OSK 1500 switch was developed to allow owners of OSK transceivers to operate full break-in CW or AMTOR at the legal power limit (1500 watts). It uses pin diodes to provide ALL the T/R switching functions associated with the relays in the existing

fig. 5. Parallel resistance of a Unitrode UM7300 PIN diode versus reverse voltage over the 100 MHz to 3 GHz frequency range.

fig. 6. Unitrode 4300 series PIN diode capacitance versus reverse voltage response.
amplifier, with no modifications to either the QSK transceiver or the RF amplifier needed. However, this unit is not intended to make a non-QSK transceiver operate in the QSK mode, nor will it work with a separate transmitter/receiver combination.

A block diagram of the QSK 1500 is shown in fig. 7 and the schematic of the RF switching section in fig. 8.

receive signal path

The receive signal from the antenna travels through the OUTPUT RECEIVE LINE BLOCKER, the RECEIVE LINE PROTECTOR, and the INPUT RECEIVE LINE BLOCKERS, then into the front end of the OSK transceiver. With the OSK

2852 Walnut Ave., Unit E
Tustin, CA 92680
(714) $832-7770$

Canadian Distributor
Eastcom Industries, LId.
4511 Chesswood Dr.
Downsview, Ontario, Canoda M3J 2V6
(416) 638-7995

1500, the "receive signal" never passes through the RF amplifier, but is instead always bypassed around it by the PIN diodes in the OSK 1500. The receive signal from the antenna, is prevented from seeing the tank circuit of the RF amplifier by PIN diode CR2, which is reverse biased. This diode prevents "suck out" or attenuation of the receive signal. PIN diodes CR3, CR4, and CR5 are forward biased and offer a very low impedance path for the receive signal to reach the OSK transceiver. Capacitors C1 and C4 are selected

fig. 7. Block diagram of OSK 1500.
so that receive signal attenuation is typically less than 0.5 dB .

transmit signal path

The sequence of events is more complicated in the transmit mode. Let's follow the progress of two transmitted "dots" of CW. (The same pattern also occurs for AMTOR.)
The initial key closure causes the following to happen:

- The timing circuit is triggered on the control board.
(This timer is a retriggerable one-shot with a time out of 1.32 seconds.)
- The amp relay out line closes and the relays in the RF amplifier are activated.
- The input and output receive line blockers (PIN diodes CR3, CR4, CR5) are reverse biased with 525 volts $D C$.
- The input and output PIN diodes switch (CR1 and CR2) are forward biased. CR1 (the input PIN diode) is forward biased with 125 mA DC current, while CR2 (the output PIN diode) is forward biased with 950 mA DC current.
- The KEY OUT LINE from the OSK 1500 triggers the CW KEY JACK on the QSK transceiver and a "dot" of CW is generated.
- The RF from the QSK transceiver flows through C1,

fig. 8. Schematic of RF switching section of OSK 1500.

$1-2-60$

Nominate A Winner For DajuOn IMMWaNMION:85

1. For Radio amateur of the year

This person should be an all-around outstanding radio amateur who has made significant contributions to our hobby over an extended period of time.
2. For SPECIAL ACHIEVEMENT

This person should be a radio amateur of any rank who has accomplished a one-time outstanding achievement such as in emergency work, DXpedition, moon bounce, QRP, etc.
3. For TECHNICAL EXCELLENCE

This person should be an amateur who has made some outstanding accomplishments in a technical area of our hobby.

Deadfine for submission is April 1, 1985.
For additional information write:
AWARDS COMMMr's
1985 Dayton HAMVENTION
PO. Box 44
Dayton, Ohio 45401

ORR BOOKS

BEAM ANTENNA HANDBOOK

by Bill Orr, W6SAI
Recommended reading. Commonly asked questions like: What is the best element spacing? Can different yagi antennas be stacked without losing performance? Do monoband beams outperform tribanders? These questions and more are fully answered. Lots of construction projects, diagrams, and photos. 198 pages. c)1983. Sth edition.
\square RP-BA
Sottbound \$7.95

SIMPLE LOW-COST WIRE ANTENNAS

by Bill Orr, W6SAI

Learn how to build simple, economical wire antennas. Apartment dwellers take note! Fool your landlord and your neighbors with some of the "invisible" antennas found here. Well diagrammed. 192 pages. 1972. 2nd edition.

TRP-WA

Softbound \$7.95

THE RADIO AMATEUR ANTENNA HANDBDOK

by William I. Orr, W6SAI and Stuart Cowan, W2LX
Contains lots of well illustrated construction projects for vertical, long wire, and HFNHF beam antennas. There is an honest judgment of antenna gain figures, information on the best and worst antenna locations and heights, a long look at the quad vs. the yagi antenna, information on baluns and how to use them, and new information on the popular Sloper and Delta Loop antennas. The text is based on proven data plus practical, on-the-air experience 190 pages. 1978. Ist edition

1.]PP-AH

Softbound \$7.95

ALL ABOUT CUBICAL QUAD ANTENNAS

by Bill Orr, W6SAI - New 3rd Edition

Includes NEW data for WARC bands

The cubical quad antenna is considered by many to be the best OX antenna because of its simple, lightweight design and high performance. You'll find quad designs for everything from the single element to the multi-element monster quad There's a wealth of data on construction, reeding, tuning and mounting quad antennas. 112 pages. ©) 1982 . 3rd edition. $\square \mathbf{R P}$.CQ

Sottbound \$6.95
Please add $\$ 1.50$ tor one book, $\$ 2.50$ tor two or more books to cover shipping and handling

WHAT'S REALLY HAPPENING IN HOME SATELLITE TV?

A monthly of 100-plus pages, has all you need to know about where to find equipment, how it performs, how to install it, legal viewpoint, \& industry insights.

- $\$ 24.95$ per yr. (12 monthly issues)
- \$ 2.00 for Sample Issue

MONEY BACK GUARANTEE if not satisfied (subsription orders only). Keep first issue with our compliments.

If you already have a dish, then you need

-the best in satellite TV programming.
\star Weekly Updated Listings
\star All Scheduled Channels
\star Complete Movie Listing
\star All Sports Specials
\star Prime Time Highlights

- $\$ 39.00$ per yr. (52 weekly issues)
- \$ 1.00 for Sample Copy

Visa(®) MasterCard ${ }^{\circledR}$ (B) accepted (subscription orders only). All prices in US funds only. Write for foreign rates.

Send this ad along with your order to:

> STV ${ }^{\text {M }} /$ OnSat ${ }^{\text {M }}$
> P.O. Box 2384 -Dept. PS

> Shelby, NC 28151-2384
> Subscription calls only
> Toll Free 1-800-438-2020

fig. 9. CW waveform inside 500 V blocking voltage. (See Note below.)

CR1, and CR2 into the RF amplifier, where it is amplified and then passed through C3, CR2, and C4 into the antenna.

- The 525 volt DC reverse bias applied to PIN diodes CR3, CR4, and CR5 prevents any transmitted RF signal from passing through the RECEIVE LINE.

As soon as the "key" opens the following occurs: - PIN diodes CR1 and CR2 switch state and go from a forward bias condition to a reverse bias condition. - PIN diodes CR3, CR4, and CR5 also switch state and go from a reverse bias state to a forward state. - With the reversal of the bias states of all five PIN diodes, we have now returned to the receive condition.

Figure 9, an oscilloscope photo of a CW waveform (58 WPM dots) inside the 500 volt blocking voltage, shows the "turn on"/"turn off" of the PIN diodes in relation to the blocking voltage.

With every key opening and closure a change of state of the PIN diodes occurs. The relays in the RF amplifier remain closed until no key closure has occurred for 1.32 seconds. This assures that no RF is being switched by the RF amplifier's internal relays, and that all switching between transmit and receive is accomplished by the PIN diodes in the QSK 1500.

The RECEIVE LINE PROTECTOR ensures that no RF can reach the transceiver or the RF amplifier input in the unlikely event of an output blocker PIN diode (CR3 or CR4) failure.

[^5]
conclusion

The appearance of high power PIN diodes represents the dawn of a new era in RF switching. The vacuum relay - the former "king of RF switching" - will slowly but surely give way to the solid state PIN diode. PIN diodes now make possible relatively low-cost, ultra high-speed RF switches, which if properly designed and constructed can operate at power levels exceeding 1500 watts. A totally silent switch in a small package, the PIN diode is here to stay.

acknowledgement

Thanks are due to the technical and engineering staff at Unitrode for assistance with technical data and help with solving various problems that arose.

bibliography

Boomet, James K., W9KHC, "PIN Diode Transmit Receive Switch," ham radio, May, 1976, page 10
Sheller, Dr, J.R., Operating Manual for QSK 1500, Design Electronics Ohio, Groveport, Ohio, March, 1984.
PIN Diode Designers' Handbook, Unitrode Corp., 5 Forbes Road. Lexington. Massachusetts 02173, 1982.
The Radio Amateurs Handbook, American Radio Relay League, Newington, Connecticut, 1984, pages 4-14, 4-15/11-13 through 11-18.
ham radio
$\$ 149.95$
$10.00 / 2 \mathrm{~K}$

Additional memory (up to 14 K total)	$10.00 / 2 \mathrm{~K}$
Manual only-credited with purchase	9.95

(add $\$ 2.00$ for shipping)
RTTY adapter board
Custom cabinet kit - includes on/off switch, LED
power indicator, reset button \& power jack
34.95
Dimensions: $4.5 \times 9.5 \times 1.5$ inches
Pwr required: +12 VDC, approx. 200 ma.
Contact GLB for additional info and available options.
We offer a complete line of transmitters and receivers, strips.
preselector preamps. CWID'ers \& synthesizers for amateur \& commercial use Request our FREE catalog MC \& Visa welcome

NAMPA SATELLITE SYSTEMS

312 12th Ave. So. Nampa, Idaho 83651 (208) 466-6727

1-800-654-0795
IN HOUSTON, TEXAS (713) 957-5140 1-800-521-8300

NSS PB3 MOTOR DRIVE

CONTROL CONSOLE ONLY $\$ 150.00$ \$125.00

CONTROL CONSOLE ONLY (in kit form)

- PLUG-IN CONTROL BOARD
- 3 DIGIT LED READOUT
- MANUAL EAST-WEST CONTROL
- RESET TO -000
- 36 VOLT DC MOTOR
- 125^{\prime} CONTROL CABLE
- ZINC PLATED FINISH

COMPLETE UNIT

\$250.00 \$199.00

Control your dish from your living room . . . rain or shine.

RTTY TODAY

MODERN GUIDE TO
AMATEUR RADIOTELETYPE
by Dave Ingram, K4TWJ
This brand new book is the only RTTY handbook available that covers all facets of RTTY operation from the "green key" generation to personal computers. Author Dave Ingram, K4TWJ, noted RTTY enthusiast. writes in a personable, easy-to-understand style that will appeal to all levels of RTTY interest. RTTY TODAY is fully illustrated with photos, diagrams, RTTY station set ups and equipment to help ensure full understanding of the material. 11 chapters cover: an overview of RTTY operation, operating parameters, home computers, equipment you can build, dedicated systems and complete chapters on RTTY SWLing with Irequencies, codes and other helpful hints and tips. Old time RTIY users and novices alike will find this book extremely useful. 1984 95 illustrations. 1 st edition. $81 / 2 \times 11$.

> Order yours today

\$895

plus $\$ 175$ shipping
UNIVERSAL ELECTRONICS
4555 Groves Rd. • Suite 3 • Columbus, OH 43232 (614) 866-4605

Dealer Inquiries Invited

WE GOTITALL

- QUALITY ELECTRONIC COMPON
- COMPUTER KITS

THIS MONTH'S SPECIALS COMPUTER KITS
FOR VIC AND COMMODORE 64

CASSETIE INTERFACE KIT
RS-232 INTERFACE KIT
VIC 20 BUSS EXPANDER KIT COM 64 BUSS EXPANDER KIT
ELECTRONIC PROJECT KITS
CMOS MORSE KEYER KIT I WATT AUDIO AMPLIFIER KIT FLUID LEVEL DETECTOR KIT AUDIO OSCILLATOR KIT

COMPONENTS

1N4007 1KV 1A DIODES $\quad 25 / \$ 2.00$
14 PIN IC SOCKETS
28 PIN IC SOCKETS
01 DISC CAPACITORS
$\$ 15.95$

SEND SI FOR OUR NEW CATALOG
(REFUNDABLE ONFIRST OHOER) NO CHARGE FOR CATALOG WITH ORDEAS DEALER INQUIRIES WELCOME ADD $\$ 250$ SHIPPING ON ORDERS OVEA $\$ 500$ ADD $\$ 100$ SHIPPING ON ORDERS UNDER $\$ 500$
CHECKS MASTER CARD VISA C.O.D.
Daytapro Electronics. Inc. 312-870-0555

OPEN EVENINGS

INCREDIBLE CODE!!

Learn the International Morse Code by the patented 'WORD METHOD'

Just listen and learn! the "WORD METHOD" is based on the latest scientific and psychological techniques. You can zoom past 13 WPM in less than HALF THE USUAL TIME!!
The kit contains two cassette tapes, over TWO HOURS of unique instruction by internationally famed educator Russ Farnsworth. Complete satistaction guaranteed.
Available at local Electronic Dealers, or send check or money order for $\$ 18.50$ plus $\$ 1.50$ for postage and handling to:

EPSILON RECORDS P.O. Box 71581
 New Orleans, LA 70172 , 162

JRS
 Distributors

646 W. Market Street
York, PA 17404
(717) 854-8624

Friendly
Personalized Service
Full Line of
Amateur Radio Equipment.
Factory Authorized Kenwood and ICOM dealer.

Call us today
Jim, K3JFL Jean K3OAU

\therefore TWO LOCATIONS TO SERVE YOU
 In Idaho
 In Texas
 6012 W. 34th St. Houston, Texas 77092
 (713) 957-5 140

 ampa

 ampa Complete Satellite Television Systems

MD9 - 9' Dish

YM1000

YM400,

DX FORECASTER

Carth Stonehocker, KORYW

ionosphere matching

Over the years a few hams have tried to vary the height of horizontal antennas above ground in order to vary the take-off-angle (TOA). By varying the angle at which the signal reflects from the ionosphere, you can control the length of the hops (and consequently, distance) and by orienting the antenna (rotating the beam), the direc-
tion the signal takes. This is known as "matching to the ionosphere."

If you can't vary your antenna's height above ground, then fix it permanently at a height that emphasizes your area of interest. (Antenna handbooks include graphs that relate takeoff angle, ionospheric layer height, MUF and path length.)* Table 1 shows a short BASIC program for cal-

```
table 1. BASIC program for calculating take-off angle of a horizontal antenna given height above ground. (This program was written for the IBM 4341 in IBM's BASIC/VS
110 R1 \(=180 / \& P I\)
120 REM GET INPUT DATA
130 PRINT "ANYENNA HEIGHT ABOVE GROUNO, FEETM
140 INPUT HI
150 PRINT "FREQUENCY TO BE USED, MHZ"
160 INPUT FI
170 rem calculate a full wavelength, li, at this freq.
\(180 \mathrm{Ll}=984 / \mathrm{Fl}\)
190 REM CALCULATE FIRST LOBE ANGLE, Al
200 AL=ASNILI/(4*H1))
210 Al=AI*R1
220 PRINT "ANGLES OF MAXIMUM RADIATION fRUM THIS ANTENNA" 230 PRINT
240 PRINT MFIRST LOBE ANGLE, DEG. \(=\) ", AI
250 PRINT
260 REM CALCULATE 2NO LOBE ANGLE. AL
270 (F (4*HI)<(3*(1) GO TO 500
280 A2=ASN( 3 * 1.1 )/(4*H1))
290 A \(2=A 2\) * \(R 1\)
300 PRINT "SECOND LOBE ANGLE, DEG。=",A2
310 PRINT
320 REM CALCULATE 3RD LOBE ANGLE, A3
330 IF (4*HL)<(5*LI) GO TO 500
340 A \(3=A S N(15 * L 1) /(4 * H 1)\) )
350 A \(3=A 3\) * \(R 1\)
360 PRINT "THIRD LOBE ANGLE, DEG. \(=\) ", A3
370 PRINT
380 REM Calculate 4 th lobe angle, as
390 IF (4*H1)<(7*L1) GO TO 500
400 A4 \(=A S N(17 * L 1) /(4 * H 1))\)
410 A4 =A4*R1
420 PRINT "FOURTH LOBE ANGLE, DEG.=", A4
430 PRINT
500 PRINT "NO OTHER SIGNIFICANT LOBESM
510 ENO
```

culating the take-off angle of a horizontal antenna given the height above ground.

last-minute forecast

The high probability of increased solar flux in the middle of January makes the second and third weeks of the month favorable for DX openings on the 10 through 30-meter bands. The openings may be transequatorial in nature, particularly if minor geomagnetic field disturbances occur at the same time as this greater solar activity. The lower frequency bands should be good during the first and last weeks of the month. Low noise and signal absorption during low solar flux periods account for good daytime openings on 40 and 80 meters this year. Geomagnetic field disturbances that produce ionospheric high latitude trough conditions (see December, 1984, DX Forecaster) should not be too significant this year except for periods around January 2, 11, 21 and 29.

Lunar perigee occurs on the 15th, with a full moon on the 7 th this month. An intense but short-duration meteor shower, the Quadrantid, will reocccur between January 2 nd and 4th and last a few hours.

band-by-band summary

Ten and fifteen meters will be open worldwide from sunrise until after sunset during the solar flux peaks this month. Skip distances of 2500 miles (4000 km) (or multiples) are possible, and will occur on the daylight paths.

Twenty meters will be open to some area of the world for the entire 24-hour period many days of the month with the band conditions peaking in all directions just after local sunrise and again toward the east and south during the late evening hours. During hours of darkness the band will peak toward the west in an arc from southwest through northwest, encompassing the Pacific areas.

Thirty meters is a daytime and nighttime band. During the day it will re-

[^6]
ham
 radio Reader Service

For literature or more information, locate the Reader Service number at the bottom of the ad, circle the appropriate number on this card, affix postage and send to us. We'll hustle your name and address to the companies you're interested in.

 $\begin{array}{lllllllllllllllllllllllllll}104 & 116 & 128 & 140 & 152 & 164 & 176 & 188 & 200 & 212 & 224 & 236 & 248 & 260 & 272 & 284 & 296 & 308 & 320 & 332 & 344\end{array}$

 $\begin{array}{llllllllllllllllllllllllllll}107 & 119 & 131 & 143 & 155 & 167 & 179 & 191 & 203 & 215 & 227 & 239 & 251 & 263 & 275 & 287 & 299 & 311 & 323 & 335 & 347\end{array}$
 $\begin{array}{lllllllllllllllllllllllllll}109 & 121 & 133 & 145 & 157 & 169 & 181 & 193 & 205 & 217 & 229 & 241 & 253 & 265 & 277 & 289 & 301 & 313 & 325 & 337 & 349\end{array}$
 $\begin{array}{llllllllllllllllllllllllllllllllll}111 & 123 & 135 & 147 & 159 & 171 & 183 & 195 & 207 & 219 & 231 & 243 & 255 & 267 & 279 & 291 & 303 & 315 & 327 & 339\end{array}$
$\begin{array}{lllllllllllllllllllllllllll}112 & 124 & 136 & 148 & 160 & 172 & 184 & 196 & 208 & 220 & 232 & 244 & 256 & 268 & 280 & 292 & 304 & 316 & 328 & 340\end{array}$

Limit 15 inquiries per request.
NAME \qquad CALL
ADDRESS
CITY \qquad STATE \qquad ZIP

FFIX POSTAGE OR POST OFFICE WILL NOT
 DELIVER

(1)

ATTN: Reader Service Dept.

	안	앗	잇	은	융	m	－	m	m	$\stackrel{\circ}{\mathrm{m}}$	m	8	8		안	8	8	8	\％	안	안	산	은	앗	은	NVd
3	莡	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	\sim	$\stackrel{\sim}{\square}$	든	은	은	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{2}$	2		$\stackrel{*}{\mathrm{*}}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	앙	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{-}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{n}{\sim}$	$\stackrel{n}{-}$	
	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\sim}$	$\stackrel{\square}{\square}$	\sim	$\stackrel{\sim}{\sim}$	－	근	를	\bigcirc	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	N	m		$\stackrel{\sim}{\sim}$	是	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\square}{-}$	$\stackrel{\square}{\square}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\sim}$	$\stackrel{n}{\square}$	$\stackrel{n}{\sim}$	anvivazm
	$\stackrel{\sim}{\sim}$	$\stackrel{\square}{\square}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\square}$	$\stackrel{*}{\sim}$	$\stackrel{\sim}{\sim}$	\bigcirc		$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	근	안	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\square}$	$\stackrel{1}{\square}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\square}$	Hวyy						
	$\stackrel{\sim}{n}$	안	$\stackrel{\sim}{N}$	인	$\stackrel{\sim}{N}$	은	$\stackrel{\sim}{\sim}$	$\stackrel{\text {～}}{ }$	～	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	～	\sim		$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\sim}$	$\stackrel{n}{\sim}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	$\stackrel{n}{\sim}$	$\stackrel{\square}{-}$	
－9		$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\sim}$	N	$\stackrel{\sim}{\sim}$	응	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	\bigcirc		$\stackrel{\square}{\square}$	$\stackrel{1}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	윽	\bigcirc	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\square}$	ชัชง
	¢	－	¢	－	M	m	8	\square	\square_{1}	$\%$	$)_{7}$	8	\％		$\stackrel{\sim}{\sim}$	은	ㅇ	－	은	$\stackrel{\sim}{\sim}$	$\stackrel{\text { 간 }}{ }$	$\stackrel{\sim}{\sim}$	운	$\stackrel{\sim}{\sim}$	$\stackrel{\text { 간 }}{ }$	コdot
	¢	¢	\％	\％	\％	$\stackrel{7}{7}$	$\stackrel{\square}{7}$	\％	8	m	안	\％	－		용	응	N	O	$\stackrel{\sim}{\sim}$	운	¢	¢	\％	¢	－	\checkmark
出	8	8	8	8	$\stackrel{8}{2}$	帯	8	$\stackrel{8}{\sim}$	8	8	8	8	$\stackrel{ }{2}$		8	8	$\stackrel{8}{0}$	8	$\stackrel{8}{\text { ¢ }}$	8	8	8	8	8	8	
氖	$\stackrel{8}{6}$	$\stackrel{8}{\sim}$	8	8	$\stackrel{8}{9}$	$\stackrel{8}{7}$	¢	8	$\stackrel{8}{\sim}$	$\stackrel{8}{i}$	$\stackrel{8}{7}$	8	$\stackrel{8}{6}$		$\stackrel{8}{\sim}$	$\stackrel{8}{\infty}$	8	\％	$\stackrel{\circ}{=}$	$\stackrel{\sim}{\sim}$	8	8	8	8	8	
	곤	$\stackrel{\text { 사 }}{ }$	은	$\stackrel{\text { N }}{ }$	은	m	$\stackrel{m}{2}$	m	m	m	m	\％	－		8	악	8	9	7	¢	앙	읏	ㅇ	$\stackrel{\sim}{N}$	$\stackrel{\sim}{\sim}$	NVd
	\bigcirc	은	$\stackrel{\sim}{\square}$	\sim	$\stackrel{\sim}{\square}$	오	오	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	N	ก	$\stackrel{\sim}{\sim}$	N		$\stackrel{\sim}{\sim}$	$\stackrel{8}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	은	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\square}$	$\stackrel{\square}{\square}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	vin
	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{-}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\square}$	은	읏	－	$\stackrel{\text { N }}{ }$	N	～	$\stackrel{\sim}{\sim}$	2		$\stackrel{\sim}{\sim}$	$\stackrel{1}{\sim}$	$\stackrel{n}{\sim}$	$\stackrel{1}{\square}$	$\stackrel{\sim}{\sim}$	ONv7\％32 M						
	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	N	아	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	N	윾	2		$\stackrel{\sim}{\sim}$	사	오	은	$\stackrel{\sim}{\sim}$	$\stackrel{1}{\sim}$	$\stackrel{\square}{\square}$	$\stackrel{\square}{\square}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	ช11วuvi
，	$\stackrel{\sim}{\sim}$	소	사	$\stackrel{\text { N }}{ }$	$\stackrel{\text { N }}{ }$	사	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	～	$\stackrel{8}{\sim}$	\sim		$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\sim}$	아－	\bigcirc	\bigcirc	\bigcirc	윽	윽	$\stackrel{\sim}{\sim}$	ชัษョ＊
$\cdots \uparrow$	，	$\stackrel{\sim}{\square}$	N	$\stackrel{\sim}{\sim}$	응	$\stackrel{\text { N }}{ }$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	～	$\stackrel{\sim}{\sim}$	2		$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\sim}$	악	\bigcirc	앗	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{n}$	${ }^{318}$
	¢	m	¢	m	$\stackrel{\sim}{8}$	\bigcirc	$\stackrel{\square}{7}$	${ }_{4}$	${ }_{7}$	7	$\stackrel{\square}{7}$	8	8		$\stackrel{7}{7}$	ले	¢	¢	슨	사	산	근	안	앙	¢	эı04
	－	m	악	O	7	7	7	${ }_{7}$	8	¢	\％	\％	O		O	안	은	읏	$\stackrel{\text { ® }}{ }$	은	응	$\stackrel{\sim}{m}$	$\stackrel{\circ}{\mathrm{m}}$	¢	안	
点	8	8	8	8	8	$\stackrel{8}{\stackrel{\circ}{-}}$	$\stackrel{8}{\square}$	$\stackrel{8}{8}$	8	$\stackrel{8}{\sim}$	8	8	8		8	$\stackrel{8}{8}$	8	8	8	8	$\stackrel{8}{\text { ¢ }}$	8	8	8	8	

$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	앙	안	슨	옥	$\stackrel{\text { 간 }}{ }$	～	$\stackrel{\sim}{\sim}$	$\stackrel{\text { 강 }}{ }$	m	～					\sim	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\square}$	$\stackrel{\square}{\square}$	$\stackrel{\square}{-}$	$\stackrel{\square}{-}$	$\stackrel{\square}{\square}$	\xrightarrow{n}	vituv s
	¢	¢	¢	\％	m	\％	8	\％	\％	8	7	\％	8	－		m	¢	안	앙	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$			эхочп
¢	근	안	$\stackrel{\sim}{\sim}$	$\stackrel{1}{2}$	ㅇ	$\stackrel{\sim}{\sim}$	－	\％	\％	¢	m	\％	\％			8	아	8	\％	8	8	¢	\％	¢	

AHEAD OF THE REST WIIH THE BEST FOR LESS

MICRODVNE

DESIGN ENGINEERS

CONSIDER OPPORTUNITIES IN THE SOUTHWEST

A rapidly expanding general aviation electronics manufacturer is seeking actionoriented, advancement-motivated engineers who are challenged by the exciting field of avionics.

Candidates with a BSEE and $2-5$ years experience are sought for the design and development of aviation communication and navigation products. Successful applicants will be provided with an outstanding benefit package including educational assistance, profit-sharing and paid relocation.

Whether on the mountain slopes or on the courts and courses in the city. Albuquerqueans enjoy outdoor sports and recreation throughout the year.

We are a dynamic, growing Corporation
CONSIDER THE OPPORTUNITIES
Send resume to:
Vice President, Engineering
Terra Corporation
3520 Pan American Freeway N.E.
Albuquerque, N.M. 87107

00000

corporation
semble 20 meters, although signal strengths may decrease during midday during days of high solar flux values. This band will also be useful well into the night and often throughout the night. Once again exceptions to this are nights that follow very high solar flux value days. The poor period is usually the hour or so before dawn (diurnal MUF minimum). The workable distance may be expected to be greater than that of 80 -meter DX at night and less than that of 20 meters during the day.

Forty and eighty meters will be the most useful nighttime DX bands. Forty during the daylight hours will be like 30 meters, with lower midday signal levels, no predawn propagation failure, and shorter skip distances overall. At night most areas of the world will be workable from slightly before dusk until a little after sunrise. Hops shorten on these bands to about 2000 miles $(3218 \mathrm{~km})$ for 40 meters and 1500 miles $(2414 \mathrm{~km})$ for 80 meters, but the number of hops can increase because signal absorption in the D-region of the ionosphere is low during the night. The path follows the direction of darkness across the earth, similar to the way in which the higher bands follow the sun.

One-sixty meters will be similar to 80 meters, providing good working conditions for enthusiastic DXers who like to operate during the night and early morning hours, especially at local dawn.
ham radio

[^7]
VHFUHF WORID

VHF/UHF high power amplifiers: part 1

Until August 28, 1983, FCC Amateur Radio regulations limited transmitters to a maximum of 1000 watts DC plate input power on CW or 2000 watts PEP input on SSB. This was in contrast to most commercial radio regulations, which are specified in terms of output power. The regulations also specified that any drive power passed on to the amplifier output (such as in grounded grid or transistor amplifiers) had to be accounted for by lowering the DC input power to the final amplifier stage accordingly.
These archaic regulations particularly penalized VHF/UHF experimenters who wanted to take advantage of the maximum power limit for DX and for specialized communication modes such as EME. Klystron and transistor UHF amplifiers frequently have only 35 percent efficiencies; most UHF high power tube amplifiers have typical efficiencies of only 50 to 60 percent. Therefore, when the legal power limits were required, higher priced vacuum tubes were usually necessary in order to maximize efficiency - often at the expense of linearity!
These regulations are now history. On August 29, 1983 the FCC revised Part 97 of the Amateur Radio Rules
and Regulations, authorizing the measurement of power in terms of maximum PEP (peak-envelope-peak) output, with 1500 watts the maximum limit lexcept in special subbands of the spectrum where other concerns may necessitate a lower power limit). SSB operation is not particularly affected because a 55 percent efficient VHF amplifier under the old regulations would have delivered up to 1100 watts of PEP output, only 1.35 dB down from 1500 watts. However, a 60 percent efficient CW amplifier would be, under the old regulations, about 4 dB below the new 1500 watts PEP output (CW and PEP output are the same power)!

If you want to run the new power limit in an Amateur VHF/UHF power amplifier, these regulatory changes have profound implications for the design of your next amplifier. Because most articles in the Amateur literature pertaining to VHF/UHF power amplifier design were written before the regulations were changed, this month's -- and next month's - column address the broad subject of Amateur VHF/UHF high power amplifiers, with special emphasis on the effects of the new FCC regulations. (Many of the topics discussed will also apply to HF.) A list of recommended references will also be included so you can be sure your amplifier will be equal to the state-
of-the-art. I'll concentrate on vacuum tube amplifiers because the typical solid-state devices available today can't economically furnish the maximum legal power in the VHF/UHF spectrum.

power tubes in general

Most high-power transmitting tubes used by Amateurs are technically classified as power grid tubes. Although some pentodes are used on 6 meters, most VHF/UHFers primarily use triode and tetrode power grid tubes. Some of the most popular types are listed, with some of their important specifications, in table 1.'
Triodes are most often used when a single high voltage supply is desired. With triodes, circuitry is usually less complicated than with tetrodes, especially if a cathode-driven grounded-grid circuit is used. Gain is low to moderate in this type of configuration, but the amplifier is usually easier to stabilize. Tetrodes, on the other hand, require a more complex high voltage supply with a screen grid bias voltage and may require neutralization. However, they usually have higher power gain than triodes, especially if grid-driven.

Most modern power tubes come in either a glass envelope with an internal anode or a ceramic package with an external anode. (The latter are more prevalent on 2 meters and above.) The
table 1. Popular VHF/UHF power amplifier tubes and typical parameters listed in order of plate dissipation.

types	dissipation ${ }^{1}$	maximum power ${ }^{2}$	PEP ${ }^{3}$	IMD ${ }^{\text {4 }}$	$F_{\text {MAX }}{ }^{5}$	$\mathrm{F}_{\text {EXT }}{ }^{6}$	other notes
8875	300	770	590	- 35	500	900	cathode driven
3CX400A7/8874	400	770	590	-35	500	900	cathode driven
3-5002	500	1400	740	-40	110	-	cathode driven
$3 \mathrm{CX800A7}$	800	1320	750	-36	30	450	cathode driven
3-1000Z/8164	1000	4800	1080	-29	110	-	cathode driven
3CX1500A7/8877	1500	4000	2050	-38	220	400	cathode driven
8938	1500	4000	2030	-44	500	-	cathode driven
tetrodes							
4×150A (old)	150	375	200	-	500	-	discontinued
4X150A/7034	250	500	200	-	150	500	new style anode
4CX250B/7203	250	500	295	-25	500	-	
4CX250R/7580W	250	500	295	-25	500	-	"'Ruggedized'4CX250B
4CX300A/8167	300	500	350	--25	500	-	
4CX350A/8321	350	750	300	-30	30	220	poor efficiency at UHF
8930	350	600	350	-27	500	-	formerly DX393
8122	400	660	380	-29	500	-	
4-400A/8438	400	1400	495	-- 35	110	-	
7650/7651 ${ }^{7}$	600	1500	680	-- 31	1215	-	
4-1000A/8166	1000	4200	1540		110	-	
$4 \mathrm{C} \times 1000 \mathrm{~A} / 8168{ }^{8}$	1000	3000	1400	--23	110	220	
$4 \mathrm{CX1000K}$	1000	3000	1400	-- 23	110	400	Improved in/out isolation
7213/7214 ${ }^{7}$	1500	2500	1250		1215	-	
GL6942	1500	2800			900	-	cathode driven
4CX1500B/8660	1500	2700	1160	-43	110	220	

Notes:

1. Rated plate power dissipation in watts if adequately cooled.
2. Maximum CCS DC input power.
3. Maximum useful peak envelope output power in watts at a low frequency, typical $2-30 \mathrm{MHz}{ }^{2}$
4. Typical third-order intermodulation distortion level at rated PEP indicated, calculated in 2.30 MHz region. ${ }^{2}$
5. Upper frequency at which the maximum ratings apply.
6. Upper useful frequency if plate voltage and input power are reduced
7. The second tube listed is a pulsed rated version. it will probably perform the same as the first version.
8. No grid current allowed.
older glass-sealed transmitting tubes with external anodes (for example, the 4X150A) were very efficient if operated within their ratings but were not very rugged. However, the newer ceramic insulated tubes, though perhaps somewhat less efficient, will usually take more severe punishment.

Transmitting tubes are usually designed for a particular mode of operation such as Class C, linear, or pulse. Class C operation is preferred for CW operation when high efficien$c y$ is required. Linear operation is required for SSB operation. Amateur Radio pulse, a form of Class C, is not permitted below 2.3 GHz .

The tubes designed for Class C
operation typically have high efficiency in Class C but will not always be very linear when biased for linear operation, especially when operated near their maximum ratings. Furthermore, Class C amplifiers usually have lower power gain than equivalent linear amplifiers and often generate key clicks.

A good example of a frequently misused VHF/UHF Class C tube is the popular 4CX250B tetrode. This tube was very popular under the old FCC regulations of 1000-watts input power because a pair could be operated efficiently (at 60 to 70 percent efficiency) through 70 cm , a requirement for most EMEers. However, they are also often
used in linear service. At the maximum rating of 500 watts input power per tube, the IMD (intermodulation distortion) is typically only -25 dB (see table 1) - not very good if you want to be popular with other local operators.

Many high power tubes designed for linear service are costly or less efficient than the Class C-type tubes. This was a significant consideration, especially on EME, before the FCC changed the method of measuring power. That's all different now, and we're no longer penalized for using tubes with less efficiency. As a result, many less efficient tubes, especially those used in commercial television transmitters,
may now find their way into Amateur amplifiers after they're removed from commercial service during routine maintenance.
In summary, it would probably be best to design any new power amplifier with linear operation in mind. The small change in efficiency may easily be recovered by higher gain with less likelihood of generating key clicks. Using tubes other than those presently in wide use may also be advisable. Table 1 and references 2, 3, and 4 should be consulted when choosing a suitable VHF/UHF transmitting tube.

configuration is important

One of the first considerations in designing a power amplifier is the tube type and quantity. Under the old FCC regulations, it was a common VHF/ UHF practice to use two tubes in either a parallel or push-pull configuration. This was often done because efficient external anode tubes of moderate power (500 watts typical) were easily obtained, and usually at reasonable prices. Furthermore, many Amateur designs were already available in various publications. However, the new power limits are not easily achieved with the tubes that used to be popular - especially in linear operation.
If push-pull or parallel amplifiers are used, the tubes should be fairly well matched and from the same supplier. Extra metering and balancing circuitry are required to insure that both tubes properly share the load. If neutralization is used, this type of circuitry is doubly difficult. Therefore, it's better to use a single large tube that will do the entire job rather than multiple tubes that will share the load.

gain

The average amplifier gain in the VHF region is between 15 to 20 dB and 10 to 16 dB at UHF. As mentioned, gain is usually higher in linear operation than in Class C. A typical groundedgrid amplifier has 3 to 5 dB less gain but is usually easier to stabilize and match at the input. For example, on 2 meters a typical pair of grid-driven

4CX250Bs operating in Class C will typically deliver 400 to 600 watts of output with 10 watts of drive power, but only 200 to 300 watts on 70 cm (432 MHz). This will increase to 600 to 700 and 300 to 400 watts respectively in linear service. Hence, it should be obvious that an additional low-gain intermediate driver amplifier may be required if a typical 10 -watt transverter is used to drive a power amplifier with a kilowatt or higher output capability.

input circuits

The input circuit for typical VHF/UHF amplifiers is one of two major types: either cathode or grid-driven. The cathode type usually requires only some simple " L " or " T " matching section (fig. 1A). Grid-driven amplifiers usually require a step-up or transformer type of input circuit with additional tuning and matching components (figs. 1B and 1C).

If push-pull or parallel tube operation is used, circuitry should be designed to allow the drive to be tweaked for each tube (fig. 1D). If the input circuit doesn't have RF balancing capability, the input grid-biasing circuit should be designed to allow for independent adjustment of the DC bias voltage for each tube so that the load is shared equally between the tubes. The principal thing to remember when designing the input circuit of a power amplifier is that the configuration chosen primarily performs an impedance match between the input driver lusually a 50 -ohm device) and the grid or cathode of the tube being driven. If the network is properly designed, the power amplifier driver will see a low VSWR (2:1 maximum).

stabilization

The screen grids of tetrode amplifiers must be properly bypassed. Most manufacturers and suppliers offer specially designed tube sockets with built-in bypass capacitors. These are highly recommended and, although usually expensive, will justify their cost with improved amplifier stability and efficiency. Some of the more modern tube socket designs (for

fig. 1. Typical input circuits used on high powerVHF/UHFamplifiers. (A) grounded grid, cathode-driven, (B) single ended, grid-driven. (C) single ended $1 / 2$ wavelength line, and (D) push-pull. C_{A} and C_{B} are balancing capacitors.

 THE FIRST NAME IN ELEGTRONIC TEST GEAR

20 MHz DUAL TRACE OSCILLOSCOPE
Unsurpassed quality at an unbeatable price, the Ramsey oscilloscope
compares to others costing hundrods more Featues incluve a com.
ponent testing circuit tor revistor, capacitor, digital circuit and diode ponent lesting circuif ror tewsior, capacior, digtal circuif and diode ternal graticule * tront panel trace rotator * Z axis * high sensitivity x-y mode * requiated power supply - built-in calibrator * rock solid triggering. "USA - add $\$ 10.00$ per unit for postage. overseas orders
add 15% of total order for insured surface mail
add 15% of total order for insured surface mail

RAMSEY D-1100 VOM MULTITESTER Compact and reliabie, dosigned to
service a wide variety ot equipmen Features include - mirror back scale * double-jeweled precision moving coul - double overload pro tection * an ideal low cost unit for
the beginner or as a spare back-up
\qquad test leads and
battery included

SASEY 1200 VOM MULTITESTER
 meter Other features include.
decibel scale - 20 K volt metering system $\bullet 3 h^{-}$mirtored scale -
polarity switch -20 mesuring polarity switch - 20 measuring
ranges * satety probes * high impact plastic case
s2495 bankerainimeded

RAMSEY D-3100 DIGITAL MULTIMETER
 cost - in-line color coded push buttons, speeds range selection

- abs plastic tilt stand * recessed - abs plastic tilt stand * recessed on all ranges - 3% digit LCD display with auto zero, auto polarity \$
$\mathbf{\$ 4 9 9 5}$ batloos ine

CT-70 7 DIGIT 525 MHz
COUNTER
Lab quaity at a breakthrough price Features solectable gate times - gate activity indicator - 50 mV (i) 150 MHz typical sensitivity - wide $\$ 1495$ wired includes

DM-700 DIGITAL MULTIMETER
Professional quaity at a hobbyist price Fea-
tutes include 26 different ranges and 5 tunctions * 3 y digit. if inch LED display * auto-
matic decimal piacement * automatic potanty $\$ 11995$ wired include
AC adapler
DM-700 kat
MP-1 probe sel.

CT-90 9 DIGIT 600 MHz COUNTER
The most versatile for less than $\$ 300$ Features 3 seiectatie gate times * 9 digits * gate indicator

- dispiay hold $* 25 \mathrm{mV}$ (1) 150 MH : typical sen dispiay hold 25 mV @ 150 MHiz typical sen-
sitivity $.10 \mathrm{MH} z$ umetase for WWV calibration
S14995

PS-2 AUDIO MULTIPLIER
The PS-2 is handy for high resolution audio
resolution measurements, multiples UP in frequency * great for PL tone measurements * multiplies by 10 or $100=001 \mathrm{~Hz}$ resolution S
$\$ 4995$
95

CT-125 9 DIGIT 1.2 GHz COUNTER
A 9 dight counter that will outpertorm units cost.

$\$ 16995 \begin{gathered}\text { mired inctudes } \\ \text { Act adaplet }\end{gathered}$
BP.4 nicad pack. 8.95

CT-50 8 DIGIT 600 MHz COUNTER
A versatile lab bench counter with optonal
tecorve triquency adapert, which turns the
 ${ }^{-25} \mathrm{mV}$ e 150 MHz Iypical sensilvily $\cdot 8$ dig $\$ 16995$
\qquad

PR-2 COUNTER PREAMP
The Pa-2 2 siceatror moasunng woak signais connectors \cdot great or tshiting Rf \cdot idoai

$\mathbf{\$ 4 4 9 5} \begin{gathered}\text { Ared includes } \\ \text { Achapler }\end{gathered}$

PS-1B 600 MHz PRESCALER
 cuily - senstivity 25 mV O 150 MHz \bullet BNC connectors * drives any countes
$\$ 5995 \begin{aligned} & \text { wired includes } \\ & \mathrm{AC} \text { adapter }\end{aligned}$ AC adapter

ACGESSORIES FOR RAMSEY COUNTERS
Telescopic whip antenna-BNC plug . . \$8.95
High impedance probe, light loading . . . 16.95
Low pass probe, audio use 16.95
Direct probe, general purpose use
Tilt bail, for CT-70, 90, 125

VISH N Nivecos PHONE ORDERS GALL 716-586-3950 TELEX 466735 RAMSEY CI

TERMS: • satisfaction guaranteed • examine for 10 days: II not pleased. return in original form lor relund • add 6\% for shipping and insurance to a maximum of $\$ 10.00$ • overseas add 15% for surlace mail • COD add $\$ 2.50$ [C0D in USA only] - orders under $\$ 15.00$ add $\$ 1.50$ - NY residents add 7\% sales lax • 90 day parts warranty on all kits - I year parts \& labor warranty on all wired units.

RAMSEY ELECTRONICS, INC. 2575 Baird Rd.
Penfield, N.Y. 14626
example, the EIMAC SK-620 and SK-630 types) also offer more input to output isolation and are highly recommended for new designs.

Neutralization may be required if the amplifier gain is high and/or if the inter-electrode capacitance between the grid and plate of the tube is high. A typical bridge neutralization network is shown in fig. 2A. Push-pull operation requires a slightly more elaborate scheme (fig. 2B).

Many VHFers prefer to avoid neutralization by using grounded grid circuitry, which doesn't usually require neutralization if the inductance of the grid (and screen grid, if applicable) bypass capacitor assembly can be kept very low. Additional information on neutralization and amplifier stabilization techniques is available. ${ }^{1}$

output circuits

There seem to be as many stories about VHF/UHF transmitter output circuits as there are types. The principal types are the π network, the resonant $1 / 4,1 / 2$, or $3 / 4$-wavelength tank, push-pull, the rectangular cavity, and variations on the latter.

On 6 meters the π network is still quite popular because it's versatile, matches a wide range of impedances, and has some inherent harmonic reduction capability (fig. 3A). The main problem in using this technique is that the minimum loaded Q in the tank circuit is determined by the output capacitance of the tube in parallel with the π network input capacitor, C1. At HF this is typically 25 to 250 pF of capacitance, but only 8 to 15 pF at 6 meters, the output capacitance of the typical tubes being used!
If a high (>15) loaded Q is used, the input tuning capacitor, C 1 , should be kept to a minimum value. This requirement can best be met by using a flapper-type capacitor. Because of their inherent inductance, vacuum variables are not recommended; standard transmitting variables usually have too high a minimum value of capacitance. Some designers have circumvented this problem by choosing a loaded Q based on the tube's out-

fig. 2. Typical VHF/UHF neutralization techniques. (A) single-ended "Bruene" circuit.' C 1 should ideally be equal to the tube's input capacitance. C_{N} balances out the tube's feedback capacitance. (B) push-pull version.
put capacitance and tuning the inductor, L1, with a shorted turn loop. ${ }^{5.6}$

On 2 meters through 70 cm , most Amateur amplifier designs typically use tank circuits employing either a $1 / 4$, $1 / 2$, or $3 / 4$-wavelength coax, microstrip or stripline (figs. 3B through 3E). Sutherland points out that the 1/4-wavelength line is preferred because it exhibits the greatest bandwidth, and further recommends that the plate line impedance should be between one and two times the capacitive reactance (plus strays) of the tube in use. ${ }^{7}$

If the output capacitance of the tube is too high at the frequency of operation, a 1/4-wavelength line may be impractical because of its very short length. Then a $1 / 2$ or $3 / 4$-wavelength line would be usable. One advantage of the $1 / 2$-wavelength line is that it
need not be fed with the tube on one end, but may instead have the tube at the center, as shown in fig. 3D. ${ }^{8.9 .10}$ In this configuration, the tube capacitance is effectively divided between each side of the line. This also makes tuning and loading easier. Another advantage of the balanced $1 / 2$-wavelength line is that the current through the tube is more evenly distributed.

Because they offer a quick way to obtain higher power with smaller tubes, ${ }^{11.12}$ parallel amplifiers are also quite popular. However, they are often difficult to balance and are really no more efficient than a push-pull type amplifier with proper balance and output coupling.
Push-pull circuitry (see fig. 3F) used to be very popular, especially with the 500 -watt ceramic tetrodes; ${ }^{13-17}$ it is easier to balance because each tube is fed separately. In addition, the symmetrical output configuration inherently suppresses the second harmonic.

One factor often ignored is the current flowing through the tube itself. With the typical single-ended microstrip line approach, there is often a concentration of current through one side of the tube. This can result in decreased tube life. Consequently, at UHF and microwave frequencies, the recommended configuration is the rectangular cavity (fig. 3G). This configuration is particularly useful at 70 cm and above. ${ }^{18}$ Multiple tubes can be easily paralleled for higher output power. ${ }^{19}$ The layout of the rectangular cavity usually assures that current is uniformly distributed throughout the tube.

Output tank circuits - of which there are many - are usually chosen according to the frequency of interest, the tube type used, and the number of tubes used. In a symmetrical output tank, the use of a single tube that can deliver the required output power is probably the best choice.

output coupling

As previously mentioned, the π network, sometimes used on 6 meters, is very easy to couple to the load (fig. 3A).

fig. 3. Typical output circuits. C_{B} is either a bypass or $D C$ blocking capacitor. $(A) \pi$ network. (B) $1 / 4$ wavelength, (C) $1 / 2$ wavelength, (D) $1 / 2$ wavelength center-loaded, $(E) 3 / 4$ wavelength, (\mathcal{F} push-pull, and (G) rectangular cavity.
amount of coupling possible while maintaining acceptable output efficiency.

Let us not forget the push-pull configuration (fig. 3F). This is basically a balanced configuration, although its output network is frequently treated as unbalanced with the use of a series loop and capacitor, as just mentioned above. In fact, some users have claimed lower efficiency than expected. Efficiency can reportedly be increased by using capacitance output coupling in a balanced arrangement through a $4: 1$ half-wave balun. ${ }^{20}$
The rectangular cavity often uses a probe which is either a loop or a rod properly shunted across the cavity (fig. 3G). Once the proper location is found, tuning and loading can be accomplished by varying the spacing between the tube and the cavity walls, as shown in reference 19.

Finally, with the present-day designs, the proliferation of high power, and a congested VHF/UHF communications spectrum, we must pay more attention to out-of-band radiation and especially harmonics. Although a low-pass filter may reduce output power slightly. FCC regulations must be complied with. Remember also that if your amplifier has too much harmonic output power, it will appear to increase VSWR and yield false readings. In this regard, the push-pull configuration is preferred. Many harmonic suppression techniques are used, but the simplest is probably a shorted $1 / 4$-wavelength coax stub shunted across the amplifier output connector.

summary

In this month's column I've only scratched the surface of VHF/UHF power amplifier design, emphasizing the new FCC output power regulations. Next month's column will explore the subject in greater depth, with emphasis on practical applications and construction. In the meantime, I'd suggest a review of the references listed - especially reference 1 , because it deals with most of the problems prevalent in high power amplifiers and of-

fig. 4. Typical output coupling techniques. (A) link coupling. (B) resonant link, and (C) capacitance probe.
fers many suggestions on solving them.

references

1. Robert 1. Sutherland, Care and Feeding of Power Grid Tubes, Radio Publications Inc., Box 149, Wilton, Connecticut 06897, 1967, ($\$ 6.95$ PPD).
2. EIMAC Power Grid Tubes Quick Reference Catalog No, 284, Varian EIMAC, 301 Industrial Way, San Carlos, California 94070 ($\$ 5.00$).
3. RCA Transmitting Tube Manual, Technical Manual TT-5 (out of print).
4. The Radio Amateur's Handbook, 61st edition, American Radio Relay League, Newington, Connecticut. See Chapter 23. "Vacuum Tubes and Semiconductors." (1985 edition available from Ham Radio's Bookstore, Greenville, New Hampshire 03048. Price: $\$ 15.00$ plus $\$ 2.50$ shipping and handling.)
5. Robert I. Sutherland, W6UOV, " 2 -Kilowatt Linear Amplifier for 6 Meters," ham radio, February, 1971, page 16.
6. Donald Cook, K1DPP, "Inductively-Tuned 6-Meter Kilowatt," ham radio, September, 1975, page 8
7. Robert I. Sutherland, W6UOV, "Design Data for a 2-Kilowatt VHF Linear," ham radio, March, 1969, page 6.
8. H.C. Barber, W6GQK, et. al., "Modern Circuit Design for VHF Transmitter, 2 kW PEP on 144 Mc -
Part 1." CQ, November, 1965, page 30.
9. H.C. Barber, W6GQK, et al., "Modern Circuit Design for VHF Transmitter, 2 kW PEP on 144 Mc - Part 2," CO. December, 1965, page 40.
10. Robert I. Sutherland, W6PO, "High Performance 144 MHz Power Amplifier," ham radio. August. 1971. page 22.
11. Richard T. Knadle, K2RIW, "A Strip-Line Kilowatt Amplifier for 432 MHz - Part 1," OST. April, 1972, page 49. Also "Feedback," QST, July, 1972, page 47. 12. Richard T. Knadle, "K2RIW, "A Strip-Line Kilowatt Amplifier for 432 MHz - Part 2," QST, May, 1972, page 59.
12. Louis D. Breyfogle, W0MOX, "Top Efficiency at 144 Mc with 4CX250Bs,"OST, December, 1961, page 44.
13. Ed Tilton, W1HDO, "The W1QWJ 432-Mc Kilowatt Amplifier," QST. February, 1966, page 11.
14. Edward P, Tilton, W1HDQ, "Kilowatt Amplifiers for 50 and 144 Mc ," QST, February, 1964, page 11. 16. Edward P. Tilton, W1HDO, "A High Efficiency, 2-Meter Kilowatt," QST, February, 1960, page 30. Also "Feedback," QST, April, 1960, page 35, and many subsequent ARRL handbooks.
15. Thomas F. McMullen, Jr., W1QVF, and Edward P. Tilton, W1HDQ, "New Ideas for the 2-Meter Kilowatt," OST, February, 1971, page 24.
16. Robert I. Sutherland, W6PO, and William I. Orr, W6SAI, "A High-Power Amplifier for the New $900 \cdot \mathrm{MHz}$ Band," QST, November, 1982, page 14.
17. R.E. Fisher, W2COH, et al., "A Power Amplifier for 1296 MHz ," ham radio, March, 1970, page 43. 20. Ian White, G3SEK, "Modifications to the $144 . \mathrm{MHz}$ Plumber's Special Amplifier," QST, December, 1980. page 56.
January VHF/UHF events
January 3: 0024 UTC, predicted peak of Quadrantid meteor shower
January 12: EME perigee
January 12-13: ARRL VHF Sweepstakes Contest
ham radio

short circuit

VHF/UHF world

In W1JR's column, "VHF/UHF world: high dynamic range receivers," (November, page 97) the source of the NE41632B transistor and the balun core was correctly identified as PROTO-FAB. Since publication of the November issue, however, PROTOFAB has changed its name to PROTOPARTS.
PROTO-PARTS regrets that no telephone inquiries can be accepted. Mail inquiries, however, are welcome; please include SASE. Inquiries and orders should be addressed to PROTO-PARTS, 74 Wedgemere Drive, Lowell, Massachusetts 01852.
In the November column, certain paragraphs on page 100 were transposed. For a corrected copy of that page, send an SASE to ham radio, Greenville, New Hampshire 03048.
In figs. 5 and 6 of W1JR's December column, a ground should be connected to the 5 -volt, 3 -terminal regulator.

Introducing the MICRO REPEATER CONTROLLER RPT-2A, a new concept in microcomputer that adds NEW FEATURES. HIGH RELIABILITY LOW POWER. SMALL SIZE, and FULL DOCUMENTATION to your system Direct interface (drop in) with most repeaters Detailed in terface information included Original MICAO REPEATER CONTROL
article featured in OST Dec 1983

- Two CW 10 Messages - Tane Oui timer
- Hogh Cutrent PII Intertace - Pre fimeout Warning MSG - Sine Wave Tone Generalot
 - Counest Beem

RPT-2A Kit Only $\$ 119$
PROCESSOR CONCEPTS
PO BOX 185
FORT ATKINSON, WI 53538
(414) 563-4962 7pm-10pm evenings

CALL OR WRITE FOR FREE CATALOG AND SPECIFICATIONS

SCOPE MEMORY

CONVERT ANY OSCILLOSCOPE INTO A HIGH PERFORMANCE DIGITAL STORAGE SCOPE WITH THE MODEL 601 SCOPE MEMORY

- stitresouton - mernal extema andath
- i $\mathbf{V}+\mathrm{Z}$ mar sampec cate troger moces
- is sectab samperates e Pre-trigger ano Post trigge
- serectab emputtanges storace
- I K RAM

S525

SIBEXINC
2340 STATE ROAD 580 SUITE 241 CLEARWATER FLA 33516 (813) 797-9589

167

AZOTIC INDUSTRIES 2026 W. BELMONT
 CHICAGO. IL 60618
 312-975-1290

ELECTRONIC COMPONENTS \& SUPPLIES

```
- rI CONNECTORS - IDC GONNECIOR
```

- uG CONNECTORS - D-SUBMINIATURE
- audio connectonc - Test eoulp
- linearics - thansistors
- digital ics - brodes
- iransformers - irimcaps
- meteras - relays
- computer cabies - Switches
- DISKETTES - TOOLS

WRITE FOR FREE CATALOG VISIT OUR RETAIL STORE HRS MON-FRI 10-5 SAT 10-2 PHONE ORDERS WELCOMED 312-975-1290

TUBES

TYPE	PRICE	TYPE	PRICE	TYPE	PRICE
2039/7289	34.00	1182/4600A	\$500.00	ML7815AL	\$ 60.00
2 E 26	7.95	4600A	500.00	7843	107.00
2×28	200.00	4624	310.00	7854	130.00
3-5002	102.00	4657	84.00	ML 7855 KAL	125.00
3-10002/3164	400.00	4662	100.00	7984	14.95
3828/866A	9.50	4665	500.00	8072	84.00
$30 \times 400 \cup 7 / 8961$	255.00	4687	P.O.R.	8106	5.00
$3 \mathrm{Cx} 1000 \mathrm{~A} / 8283$	526.00	5675	42.00	8117A	225.00
$3 \mathrm{CX3000F1/8239}$	567.00	5721	250.00	8121	110.00
3 CW 30000 H 7	1700.00	5768	125.00	8122	110.00
$3 \times 2500 \mathrm{~A} 3$	473.00	5819	119.00	8134	470.00
$3 \times 3000 \mathrm{~F} 1$	567.00	5836	232.50	8156	12.00
4-65A/:i165	69.00	5837	232.50	8233	60.00
4-125A/4021	79.00	5861	140.00	8236	35.00
4-250A/5022	98.00	5867A	185.00	8295/PL172	500.00
4-400A/8438	98.00	5868/AX9902	270.00	8458	35.00
4-4008/7527	110.00	5876/A	42.00	8462	130.00
$4.4000 / 6775$	110.00	5881/6L6	8.00	8505A	95.00
4-1000A/8166	444.00	5893	60.00	8533W	136.00
$4 \mathrm{C} \times 2508 / 7203$	54.00	5894/A	54.00	8560/A	75.00
4CX250FG/8621	75.00	58948/8737	54.00	8560AS	100.00
$4 \mathrm{CX250k} / 8245$	125.00	5946	395.00	8608	38.00
$4 \mathrm{C} \times 250 \mathrm{R} / 7530 \mathrm{~W}$	90.00	6083/AZ9909	95.00	8624	100.00
$4 \mathrm{C} \times 300 \mathrm{~A} / \mathrm{S} 167$	170.00	6146/6146A	8.50	8637	70.00
$4 \mathrm{C} \times 350 \mathrm{~A} / 8321$	110.00	61468/8298	10.50	8643	83.00
$4 \mathrm{C} \times 350 \mathrm{~F} / 8322$	115.00	$6146 \mathrm{~W} / 7212$	17.95	8647	168.00
$4 \mathrm{C} \times 350 \mathrm{FJ} / 8904$	140.00	6156	110.00	8683	95.00
$4 \mathrm{C} \times 600 \mathrm{~J} / 3809$	835.00	6159	13.85	8877	465.00
$4 \mathrm{C} \times 1000 \mathrm{~A} / 3160$	242.50*	61598	23.50	8908	13.00
$4 \mathrm{C} \times 1000 \mathrm{~A} / 816 \%$	485.00	6161	325.00	8950	13.00
$4 \mathrm{C} \times 1500 \mathrm{~B} / 8660$	555.00	6280	42.50	8930	137.00
$4 \mathrm{C} \times 5000 \mathrm{~A} / 8170$	1100.00	6291	180.00	6 L 6 Metal	25.00
$4 \mathrm{C} \times 100000 / 8171$	1255.00	6293	24.00	6L6GC	5.03
$4 \mathrm{C} \times 15000 \mathrm{~A} / 8281$	1500.00	6326	P.O.R.	6CAT/EL34	5.38
4CW800F	710.00	6360/A	5.75	6CL6	3.50
4032	240.00	6399	540.00	6DJ8	2.50
4E27A/5-125B	240.00	6550 A	10.00	60Q5	6.58
$4 \mathrm{PR60A}$	200.00	6883B/8032A/8552	10.00	6GF5	5.85
4PR608	345.00	6897 (160.00	6GJ5A	6.20
4PR65A/:187	175.00	6907	79.00	6GK6	6.00
4PR1000A/E1\%9	590.00	6922/60J8	5.00	$6 \mathrm{HB5}$	6.00
4×150A/7034	50.00	6939	22.00	6HF5	8.73
4×1500/7609	95.00	7094	250.00	6JG6A	6.28
4×2508	45.00	7117	38.50	6JM6	6.00
$4 \times 250 \mathrm{~F}$	45.00	7203	P.O.R.	6JN6	6.00
$4 \times 500 \mathrm{~A}$	412.00	7211	100.00	6JS6C	7.25
$5 \mathrm{Cx1500A}$	660.00	7213	300.00*	6KN6	5.05
KT88	27.50	7214	300.00*	$6 \mathrm{KD6}$	8.25
416 B	45.00	$7<71$	135.00	6LF6	7.00
416 C	62.50	7289/2039	34.00	6L06 G.E.	7.00
$572 \mathrm{~B} / \mathrm{T} 160 \mathrm{~L}$	49.95	7325	P.O.R.	6LQ6/6MJ6 Sylvania	9.00
592/3-20043	211.00	7360	13.50	6ME 6	8.90
807	8.50	7377	85.00	12AT7	3.50
811 A	15.00	7408	2.50	$12 \mathrm{AX7}$	3.00
812 A	29.00	7609	95.00	12 BY 7	5.00
813	50.00	7735	36.00	12.JB6A	6.50
NOTE * = USED TUBE		NOTE P.O.R. : PRICE ON REQUEST			
'ALL PARTS MAY ARE OUT OF STOC	EW, USED, AN ITEM.	SURPLUS. PART'S MAY	SUBSTITUT	WITH COMPARABLE PA	TS If WE

notice: all prices are subject to change without notice.
For information call: (602) 242-3037

Toll Free Number 800-528-0180 (For orders only)

- All parts may be new or surplus and parts may be substituted with comparable parts if we are out of stock of an item."

"FILTERS"

COLLINS Mechanical Filter \#526-9724-010 MODEL F455z32F

455 KHz at 3.2 KHz wide. May be other models but equivalent. May be used or new. $\$ 15.99$ ATLAS Crystal Filters
5.595-2.7/8/LSB, 5.595-2.7/LSB

8 pole 2.7 KHz wide Upper sideband. Irpedence 8000 hrns 15 pf In $/ 8000 \mathrm{hms}$ Opf out. 19.99
$5.595-2.7 / 8 / \mathrm{U}, 5.595-2.7 / \mathrm{USB}$
8 pole 2.7 Khz wide Upper sideband. Irpedence 8000 mms 15 pf In/8000hms Opf out. 19.99
5.595-. 500/4, 5.595-.500/4/CW

4 pole 500 cycles wide CW. Inpedance $8000 \mathrm{hms} 15 \mathrm{pf} \mathrm{In} / 800 \mathrm{ohms}$ Opf out.
19.99
9. OUSB/CW

6 pole 2.7 KHz wide at 6dB. Impedance 6800hms 7pf In/300ohms 8pf out. CW-1599Hz 19.99
KOKUSAI ELECTRIC CO, Mechonical Filter \#MF-455-ZL/ZU-21H
455 KHz at Center Frequency of 453.5 KC . Carrier Frequency of 455 KHz 2.36 KC Bandwidth.
Upper sideband. (ZU) 19.99
Iower sideband. (ZL)
RYSTAL FILTERS

NIKKO	FX-07800C	7.8.112	\$10.00
TEW	FEC-103-2	10.6935 MIz	10.00
SDK	SCH-113A	11.2735 MHz	10.00
TAMA	TF-31H250	CF 3179.3 KHz	19.99
TYCO/CD	001019880	10.7MHz 2 pole 15 KHz bandwidth	5.00
MOTOROLA	$4884863 \mathrm{BO1}$	11.7MHz 2pole 15 KHz bandwidth	5.00
PTI	5350 C	12 MHz 2 pole 15 FHz bandwidth	5.00
PTI	5426 C	21.4 MHz 2 pole 15 ktz bandwidth	5.00
Mr	1479	10.7Miz spole bandwidth 7.5 KHz at 3 dB , 5 KJzz at 6 ddB	20.00
cramecr	A10300	45Mtz 2pole 15\%Hz bandwidth	6.00
FPC	ERXF-15700	20.6 MHz 36 kHz wide	10.00
FILITECH	2131	CF 7.825 MHz	10.00

CERAPIIC FILTERS
NTH $4 F 449$
CIEVITE TO-01A
12.6KC Bandpass Filter 3dB bankwidth 1.6 kIz from $11.8-13.4 \mathrm{Kliz} 10.00$

TCF4-12D36A
$455 \mathrm{KHz}+2 \mathrm{KHz}$ kendwidth $4-78$ at $3 \mathrm{~dB} \quad 5.00$
\therefore RPMTA
RFB455B
$455 \mathrm{Klz}+1 \mathrm{KHz}$ lxandwidth 5 diB min $12 \mathrm{KHz}, 60 \mathrm{~dB}$ max 36 WHz
10.00

455 KNlz 2.50
455 KHz
3.50

CFM455E $\quad 455 \mathrm{KHz}+5.5 \mathrm{kIz}$ at $3 \mathrm{~dB},+8 \mathrm{KHz}$ at $6 \mathrm{XdB},+16 \mathrm{KHz}$ at $50 \mathrm{~dB} \quad 6.65$
CFM455D $\quad 455 \mathrm{KIIz}+7 \mathrm{KHz}$ at $3 \mathrm{~dB},+-10 \mathrm{KHz}$ at $6 \mathrm{ABB},+20 \mathrm{KHz}$ at $50 \mathrm{~dB} \quad 6.65$
CFR455E $\quad 455 \mathrm{KIz}+5.5 \mathrm{kJz}$ at $3 \mathrm{~dB},+8 \mathrm{KHz}$ at $6 \mathrm{~dB},+16 \mathrm{KIz}$ at $60 \mathrm{~dB} \quad 8.00$
CFU455B $\quad 455 \mathrm{KHz}+-2 \mathrm{KHz}$ bandwidth +-15 KHz at $6 \mathrm{~dB},+30 \mathrm{KHz}$ at $40 \mathrm{~dB} \quad 2.90$
CFU455C $\quad 455 \mathrm{KHz}+2 \mathrm{KHz}$ bandwidth +12.5 KHz at $6 \mathrm{~dB},+24 \mathrm{KHz}$ at $40 \mathrm{~dB} \quad 2.90$
CFU455G $\quad 455 \mathrm{KHz}+-1 \mathrm{KHz}$ bandwidth +-4.5 KHz at $6 \mathrm{~dB},+-10 \mathrm{KHz}$ at $40 \mathrm{~dB} \quad 2.90$
CFU455H $\quad 455 \mathrm{kHz}+1 \mathrm{KHz}$ bandwidth +-3 kHz at $6 \mathrm{~dB},+9 \mathrm{KHz}$ at $40 \mathrm{~dB} \quad 2.90$
CFU455I $\quad 455 \mathrm{kHz}+1 \mathrm{KHz}$ bandwidth +2 KHz at $6 \mathrm{~dB},+6 \mathrm{KHz}$ at $40 \mathrm{~dB} \quad 2.90$
CFW455D $\quad 455 \mathrm{KHz}+-10 \mathrm{KHz}$ at $6 \mathrm{~dB},+20 \mathrm{KHz}$ at $40 \mathrm{~dB} \quad 2.90$
CFW455H $455 \mathrm{KHz}+3 \mathrm{KHz}$ at $6 \mathrm{KBB},+-9 \mathrm{KHz}$ at 40 CBB 2.90
$\begin{array}{lll}\text { SFB455D } 455 \mathrm{KHz} & 2.50\end{array}$
SFIT 55D $\quad 455 \mathrm{KHz}+2 \mathrm{KHz}$, 3dB bandwidth $4.5 \mathrm{KHz}+1 \mathrm{KHz} 5.00$
SFE10.7MA $\quad 10.7 \mathrm{MHz} 280 \mathrm{KHz}+50 \mathrm{KHz}$ at $3 \mathrm{~dB}, 650 \mathrm{KHz}$ at $20 \mathrm{~dB} \quad 2.50$
SFEIO.7MS $\quad 10,7 \mathrm{MIIz} 230 \mathrm{KHz}+50 \mathrm{KHz}$ at $3 \mathrm{~dB}, 570 \mathrm{KHz}$ at $20 \mathrm{~dB} \quad 2.50$
MTPRON SFG10.7MA $\quad 10.7 \mathrm{MLz}$

	LF-B6/CFU455	$455 \mathrm{kHz}+1 \mathrm{KHz}$	2.90
	LF-B8	455 KHz	2.90
	LF-C18	455 kHz	10.00
TKI:	(F455NT1FOC455K	$455 \mathrm{KILz}+2 \mathrm{KHz}$	5.00

FiTSUSHTPA FFC-LA55K 455 KHz K 7.00
SPECIRA PHYSICS INC, Model 088 HeNe LASER TUBES

E85: OIM IWATT BALLAST IODOVDC +100VDC At 3.7MA $\$ 59.99$
ROTRON MUFFIN FANS MODEI MARK4/MU2A1
115 VAC 14WATIS 50/60CPS LMPEDENCE PROTECTED-F 88CFM at 50CPS 7.99
105CPM at 60CPS

TYPE	PRICE	TYPE	PRICE	TYPE	PRICE	TYPE	PRICE
2N1561	\$25.00	2N5920	\$ 70.00	40608 RCA	\$ 2.48	BFY90	\$ 1.50
2N1562	25.00	2N5921	80.00	40673 RCA	2.50	BLW60C5	15.00
2N1692	25.00	2N5922	10.00	40894 RCA	1.00	BLX67	12.25
2N2857	1.55	2N5923	25.00	60247 RCA	25.00	BLX67C3	12.25
2N2857JAN	4.10	2N5941	23.00	61206 RCA	100.00	BLX93C3	22.21
2N2857JANTX	4.50	2N5942	40.00	62800A RCA	60.00	BLY87A	7.50
2N2876	13.50	2N5944	10.35	62803 RCA	100.00	BLY88C3	13.08
2N2947	18.35	2N5945	10.00	430414/3990RCA	50.00	BLY89C	13.00
2N2948	13.00	2N5946	12.00	3457159 RCA	20.00	BLY90	45.00
2N2949	15.50	2N5947	9.20	3729685-2 RCA	75.00	BLY92	13.30
2N3118	5.00	2N6080	6.00	3729701-2 RCA	50.00	BLY94C	45.00
2N3119	4.00	2N6081	7.00	3753883 RCA	50.00	BLY351	10.00
2N3134	1.15	2N6082	9.00	615467-902	25.00	BLY568C/CF	30.00
2N3287	4.90	2N6083	9.50	615467-903	40.00	C2M70-28R	92.70
2N3288	4.40	2N6084	12.00	2SC568	2.50	C25-28	57.00
2N3309	4.85	2N6094	11.00	2SC703	36.00	C4005	2.50
2N3375	17.10	2N6095	12.00	2SC756A	7.50	CD1659	20.00
2N3478	2.13	2N6096	16.10	2SC781	2.80	CD1899	20.00
2N3553	1.55	2N6097	20.70	25 Cl 1018	1.00	CD1920	10.00
2N3553JAN	2.90	2N6105	21.00	2SC1042	24.00	CD2188	18.00
2N3632	15.50	2N6136	21.85	2SC1070	2.50	CD2545	24.00
2N3733	11.00	2N6166	40.24	2SC1216	2.50	CD2664A	16.00
2N3818	5.00	2N6267	142.00	2SC1239	2.50	CD 3167	92.70
2N3866	1.30	2N6304	1.50	2SC1251	24.00	CD3353	95.00
2N3866.JAN	2.20	2N6368	30.00	2SC1306	2.90	CD3435	26.30
2N3866JANTX	3.80	2N6439	55.31	25C1307	5.50	CD3900	152.95
2N3866JANTXV	4.70	2N6459	18.00	2SC1424	2.80	CM2 5-12	20.00
2N3866AJANTXV	5.30	2N6567	10.06	25C1600	5.00	CM40-12	27.90
2N3924	3.35	2N6603	13.50	2SC1678	2.00	CM40-28	56.90
2N3926	16.10	2N6604	13.50	2SC1729	32.40	CME50-12	30.00
2N3927	17.25	2N6679	44.00	$2 \mathrm{SC1760}$	1.50	CTC2001	42.00
2N3948	1.75	2N6680	80.00	2SC1909	4.00	CTC2005	55.00
2N3950	25.00	021-1	15.00	2SC1945	10.00	CTC 3005	70.00
2N3959	3.85	01-80703T4	65.00	25 Cl 1946	40.00	CTC 3460	20.00
2N4012	11.00	$35 \mathrm{C05}$	15.00	$2 \mathrm{SC1947}$	10.00	DV2820s	25.00
2N4037	2.00	102-1	28.00	2SC1970	2.50	DKL1003P70	22.00
2N4041	14.00	103-1	28.00	2SC1974	4.00	DXL2001P70	19.00
2N4072	1.80	103-2	28.00	2SC2166	5.50	DXL2002P70	14.00
2N4080	4.53	104 Pl	18.00	2 SC 2237	32.00	DXL 3501 AP 100 F	47.00
2N4127	21.00	163 Pl	10.00	$2 \mathrm{SC2695}$	47.00	EFJ4015	12.00
2N4416	2.25	181-3	15.00	A2X1698	POR	EFJ4017	24.00
2N4427	1.25	210-2	10.00	A3-12	14.45	EFJ4021	24.00
2N4428	1.85	269-1	18.00	A50-12	24.00	EFJ4026	35.00
2N4430	11.80	281-1	15.00	A209	10.00	EN15745	20.00
2N4927	3.90	282-1	30.00	A283	0.00	FJ9540	16.00
2N4957	3.45	482	7.50	A283B	6.00	FSX52WF	58.00
2N4959	2.30	564-1	25.00	A1610	19.00	G65739	25.00
2N5016	18.40	698-3	15.00	AFl02	2.50	C,65386	25.00
2N5026	15.00	703-1	15.00	AFY 12	2.50	GM0290A	2.50
2N5070	18.40	704	4.00	AR7115	20.00	HEP76	4.95
2N5090	13.80	709-2	11.00	AT41435-5	6.35	HEPS 3002	11.40
2N5108	3.45	711	4.00	B2-82	10.70	HEPS 3903	30.00
2N5109	1.70	733-2	15.00	B3-12	10.85	HEPS3005	10.00
2N5160	3.45	798-2	25.00	B12-12	15.70	HEPS3006	19.90
2N5177	21.62	3421	28.00	BALO204125	152.95	HEPS 3007	25.00
2N5179	1.04	3683P1	15.00	BF25-35	56.25	HEPS3010	11.34
2N5216	56.00	3992	25.00	B40-12	19.25	HF8003	10.00
2N5470	75.00	4164 Pl	15.00	370-12	55.00	HFET2204	112.00
2N5583	3.45	4243 Pl	28.00	BF272A	2.50	HP 35821	38.00
2N5589	9.77	434093	18.00	BF!85	2.50	HP 35826 B	32.00
2N5590	10.92	4387 Pl	27.50	BFR21	2.50	HP35826E	32.00
2N5591	13.80	7104-1	28.00	BFR90	1.00	HP 35831 E	30.00
2N5996	99.00	7249-2	10.50	BFR91	1.65	HP35832E	50.00
2N5636	12.00	7283-1	37.50	BFR99	2.50	HP 35833 E	50.00
2N5637	15.50	7536-1	30.00	BFT 12	2.50	HP 35859E	75.00
2N5641	12.42	7794-1	10.50	BFW 16 A	2.50	HP 35866 E	44.00
2N5642	14.03	7795	15.00	BFW17	2.50	HXTR2101	44.00
2N5643	25.50	7795-1	15.00	BFW92	1.50	Hxtr3101	7.00
2N5645	13.80	7796-1	24.00	BFX44	2.50	HXTR5101	31.00
2N5646	20.70	7797-1	36.00	BFX48	2.50	HXTR6104	68.00
2N5651	11.05	40081 RCA	5.00	BFX65	2.50	HXTR6105	31.00
2N5691	18.00	40279 RCA	10.00	BFX84	2.50	HXTR6106	33.00
2N5764	27.00	40280 RCA	4.62	BFX85	2.50	J310	1.00
2N5836	3.45	40281 RCA	10.00	BFX86	2.50	J02000	10.00
2N5842	8.45	40282 RCA	20.00	BFX89	1.00	J02001	25.00
2N5847	19.90	40290 RCA	2.80	BFY 11	2.50	J04045	24.00
2N5849	20.00	40292 RCA	13.05	BFY 18	2.50	KD5522	25.00
2N5913	3.25	40294 RCA	2.50	BFY 19	2.50	KJ5522	25.00
2N5916	36.00	40341 RCA	21.00	BFY 39	2.50	M1106	13.75

Toll Free Number

All parts may be new or

RF TRANSISTORS (CONTINUED)

M1107	\$16.75	MRF458	\$20.70	NE02160ER	\$100.00	SD1009	\$15.00
M1131	5.15	MRF464	25.30	NEO21350	5.30	SD1009-2	15.00
M1132	7.25	MRF466	18.97	NE13783	61.00	SD1012	10.00
M1134	13.40	MRF472	1.50	NE21889	43.00	SDI012-3	10.00
M9116	29.10	MRF475	3.10	NE57835	5.70	SD1012-5	10.00
M9579	6.00	MRF476	3.16	NE64360ER-A	100.00	SD1013	10.00
M9580	7.95	MRF477	20.00	NE64480 (B)	94.00	SD1013-3	10.00
M9587	7.00	MRF479	8.05	NE73436	2.50	SD1013-7	10.00
M9588	5.20	MRF492	23.00	NE77362ER	100.00	SD1016	15.00
M9622	5.95	MRF502	1.04	NE98260ER	100.00	SD1016-5	15.00
M9623	7.95	MRF503	6.00	PRT8637	25.00	SD1018-4	13.00
M9624	9.95	MRF504	7.00	PT3127A	5.00	SD1018-6	13.00
M9625	15.95	MRF509	5.00	PT3127B	5.00	SD1018-7	13.00
M9630	14.00	MRF511	10.69	PT3127C	20.00	SD1018-15	13.00
M9740	27.90	MRF515	2.00	PT3127D	20.00	SD1020-5	10.00
M9741	27.90	MRF517	2.00	PT3127E	20.00	SD1028	15.00
M9755	16.00	MRF525	3.45	PT3190	20.00	SD1030	12.00
M9780	5.50	MRF559	1.76	PT3194	20.00	SD1030-2	12.00
M9827	11.00	MRF587	11.00	PT3195	20.00	SD1040	5.00
M9848	35.00	MRF605	20.00	PT3537	7.80	SD1040-2	20.00
M9850	13.50	MRF618	25.00	PT4166E	20.00	SD1040-4	10.00
M9851	20.00	MRF626	12.00	PT4176D	25.00	SD1040-6	5.00
M9860	8.25	MRF628	8.65	PT4186B	5.00	SD1043	12.00
M9887	2.80	MRF629	3.45	PT4209	25.00	SD1043-1	10.00
M9908	6.95	MRF641	25.30	PT4209C/5645	25.00	SD1045	3.75
M9965	12.00	MRF644	27.60	PT4556	24.60	SD1049-1	2.00
MM1500	25.00	MRF646	29.90	PT4570	7.50	SD1053	4.00
MM1550	10.00	MRF648	33.35	PT4577	20.00	SD1057	10.00
MM1552	50.00	MRF816	15.00	PT4590	5.00	SD1065	4.75
MM1553	50.00	MRF823	20.00	PT4612	20.00	SD1068	15.00
MM1607	8.45	MRF846	44.85	PT4628	20.00	SD1074-2	18.00
MM1614	10.00	MRF892	35.50	PT4640	20.00	SD1074-4	28.00
MM1810	15.00	MRF894	46.00	PT4642	20.00	SD1074-5	28.00
MM1810	15.00	MRF901 3 Lead	1.00	PT5632	4.70	SD1076	18,50
MM1943	1.80	MRF901 4 Lead	2.00	PT5749	25.00	SD1077	4.00
MM2608	5.00	MRF902/2N6603JAN	15.00	PT6612	25.00	SD1077-4	4.00
MM3375A	17.10	MRF902B	18.40	PT6619	20.00	SD1077-6	4.00
MM4429	10.00	MRF904	2.30	PT6708	25.00	SD1078-6	24.00
MM8000	1.15	MRF905	2.55	PT6709	25.00	SD1080-7	7.50
MM8006	2.30	MRF911	2.50	P'T6720	25.00	SD1080-8	6.00
MM8011	25.00	MRF965	2.55	PT8510	15.00	SD 1080-9	3.00
MPSU31	1.01	MRF966	3.55	PT8524	25.00	SD1084	8,00
MRA2023-1.5	42.50	MRF 1000 MA	32.77	PT8609	25.00	SD1087	15.00
MRF134	10.50	MRF1004M	31.05	PT8633	25.00	SD1088	22.00
MRF136	16.00	MRF2001	41.74	PT8639	25.00	SD1088-8	22.00
MRF171	35.00	MRF2005	54.97	PT8659	25.00	SD1089-5	15.00
MRF208	11.50	MRF5176	24.00	PT8679	25.00	SD1090	15.00
MRF212	16.10	MRF8004	2.10	PT8708	20.00	SD1094	15.00
MRF221	10.00	MSC1720-12	225.00	PT8709	20.00	SD 1095	15.00
MRF223	13.00	MSC1821-3	125.00	PT8727	29.00	SD1098-1	30.00
MRF224	13.50	MSC1821-10	225.00	Pr8731	25.00	SD1100	5.00
MRF227	3.45	MSC200 1	30.00	PT8742	19.10	SDI 109	18.00
MRF230	2.00	MSC2010	93.00	PT8787	25.00	SD1115-2	7.50
MRF231	10.00	MSC2223-10	245.00	PT8828	25.00	SDI115-3	7.50
MRF232	12.07	MSC2302	POR	PT9700	25.00	SD1115-7	2.10
MRF237	3.15	MSC 3000	35.00	PT9702	25.00	SD1116	5.00
MRF238	13.80	MSC3001	38.00	PT9783	16.50	SD1118	22.00
MRF239	17.25	MSC72002	POR	PT9784	32.70	SDI119	5.00
MRF245	35.65	MSC73001	POR	PT9790	56.00	SD1124	50.00
MRF247	31.00	MSC80064	35.00	PT31083	20.00	SD1132-1	15.00
MRF304	36.00	MSC80091	10.00	PT31962	20.00	SDI 132-4	12.00
MRF306	50.00	MSC80099	3.00	PTX6680	20.00	SD1133	9.50
MRF313	11.15	MSC80593	POR	RE 3754	25.00	SD1133-1	10.00
MRF314	29.21	MSC80758	POR	RE3789	25.00	SD1134-1	2.50
MRF3I5	28.86	MSC82001	33.00	RF35	16.00	SD1134-4	12.00
MRF316	55.43	MSC82014	33.00	RF85	17.50	SD1134-17	12.00
MRF317	63.94	MSC82020M	130.00	RF110	21.00	SDI135	10.25
MRF412	18.00	MSC82030	33.00	S50-12	23.80	SD1135-3	12.00
MRF420	20.12	MSC83001	40.00	S3006	15.00	SD1136	12.50
MRF421	25.00	MSC83003	82.00	S3007	10.00	SD1136-2	12.50
MRF422	38.00	MSC83005	70.00	S3031	22.00	SD1143-1	10.00
MRF427	17.25	MSC83026	POR	SCA3522	5.00	SD1143-3	17.00
MRF428	63.00	MSC83303	POR	SCA3523	5.00	SD1144	4.00
MRF433	12.07	MSC84900	60.00	SD345	5.00	SDI 145-5	15.00
MRF449/A	12.65	MT4150	14.40	SD445	5.00	SD1146	15.00
MRF450/A	14.37	MT5126	25.00	SD1004	15.00	SD1147	15.00
MRF452/A	17.00	MT5596(2N)	99.00	SD1007	15.00	SD1188	10.00
MRF453/A	18.40	MT5768(2N)	95.00	SD1007-2	15.00	SDII89	24.00
MRF454/A	20.12	MT8762	25.00	SD1007-4	15.00	SD1200	1.50
MRF455/A	16.00	NEO2136	2.00	SD1007-5	15.00	SD1201-2	15.00

Toll Free Number 800-528-0180 (For orders only)

All parts may be new or surplus, and parts may be substituted with comparable parts if we are out of stock of an itern.

MODEL 229-0201-01 10UH at 3AMPS MAX.
$\$ 36.99$

MODEL 229-0202-01
$180 H$ at 5AMPS MAX.
$\$ 44.99^{*}$

UNELCO, SEMCO, ARCO METAL CLAD MICA CAPACITORS

- Standard Size

Star	size					
3.9	14	33	62	175	5	25
4.7	15	34	68	180	6	27
5	18	36	75	200	7	33
5.1	20	38	80	220	8	36
6.8	22	39	82	240	9	51
7	24	40	100	250	12	62
8.2	25	43	110	300	15	
9.1	27	44	120	360	16	
10	27.5	47	123	470	18	
11	28	50	125	500	20	
12	30	51	140	820	22	
13	32	56	150	1000	24	

(IN PICO FARAD********
PRICE INFORMATION
1 to 10 §.90ea. 11 to 51 \$.80ea. 52 to 102 \$.70ea.

Toll Free Number 800-528-0180 (For orders only)
¢) ${ }^{\circ} \mathbf{H}$ z electronics
PRICES SUBJECT TO CHANGE WITHOUT NOTICE

RF Transistors (continued)

Sbl202	\$10.00	Sp1304-8	32.50
¢01712-8	4.45	spises	3.00
SD1212-11	4.95	\$51307	3.06
5D1212-16	4.93	S0t308	3.00
s 81214 -7	8.00	501311	1.00
SD1214-11	8. 00	SDI317	8.00
SD1216	12.00	\$81319	2.50
501219-4	15.00	501 14s-6	5.00
sp1219-5	15.00	3b1347-1	1.00
\$01219-8	15.00	Sit 363-1	2.50
SD1220	5.00	S0136-5	2.50
\$51220-1	9.50	581313	7. 30
SD1220-9	8.00	spisis-6	1. 50
SDiz22-6	16.00	Sbilic	15.00
501222-11	7. 50	551360-1	1.00
\$01224-10	18.00	Sb1380-1	1.00
sb1225	18.00	351360-7	1.00
541223-1	15.00	silatas	21.00
\$01229-7	10, 43	\$D1408	25.00
\$81229-16	10.95	S01409	16.00
\$D1232	4.00	5 L 1610	18.00
sin260-8	15.00	5b1410-3	21.00
SD1264-1	14.00	simitio-6	21.00

315.00
20.00
26.00
20.00
68,00
31.00
21,00
37.00
1. 50
1, 30
1.50
1,se
22.85
28.00
27,00
26,00
16.00
29,00
18,00
11.00
24.00
\$6.00
16.00

[8571427	550.00	501266412
585143	60,00	501262
5kris)	*0.00	58(26)
E623053-3	60.00	(15126)-1
56Y209\%	30.00	\$31272
546216)	22.00	5512ク2-1.
SEM2725	13.00	S11272-2
firy266	25,00	St1272-4
818236)	100.00	\$v127a
(6)\%281	5.00	351278-1
\$8F2171	15.00	s81276-3
5192347	\$0,00	Sxi279-1
1832336	38.00	381274-3
serysida	Iti.00	5b12at-z
50123)2	25.00	SD128)
5422586	40,00	581283-2
5042597	25.00	sp123)-3
karz741	40.00	
5E274)	60,00	Sbl2er-1
$581276 / 18$	40,00	S81290-6
58P2021	25.00	Spl290-1
5812822/286003	13. 0_{0}	501300
[82785!	75.00	501 101-7

25.00	stib10-6
15.00	501613-1
15.00	581616
15.00	5161422-7
10.93	514288
10.75	Satars- mons
(0.7)	501429-3
10.95	sp1629-3
13.75	S61429-3
13.13	381630
13.13	S01430-7
16.00	881634
15.00	sb14)4-3
A,00	sp1636-9
10.00	Spi4) ${ }^{\text {a }}$
10.60	splest
10.00	\$01462
10.00	SD1466
15.00	SDIt66-5
13.00	131666-9
15.00	$5 \mathrm{SD1646}$
1.2)	301450-1
3.00	sp1431

Relays

BNC To Banana Plug Coax Cable RG-58 36 inch or BNC to N Coax Cable RG-58 36 inch.

TERMS: DOMESTIC Prepaid. COD or Crodil Card
FOREIGN Propaid Ontr, US Funds, Money Order, or Cashier's Check Onily

CONFIRMMGG ORDERS: We would preter that contirming odders not be sent atter a teleptone order nas boen placed it compary
 sitock charge on the returned parts
CREDIT CARDS: We ale now accepting MASTERCARD, VISA. AND AMERICAN EXPRESS
DATA SHEETS: When we have data sheets in stock on denices we will supply theen with the order
OEFECTVE MATEELNES: All claims for defective matenials muat be made within 30 DAYS atter rocept of the parcel Al claims

 ping and handling Aharomes incurrod.
DeLuvtar: Orders are unuality shipped the same day they are placed or the next butiness day, uniuss we ave out of stock on an
 tra coements have ceen made and approved
 ntomation is avaiabie on request
HOURS. Mondar thru Friday 8.30 am . to $500 \mathrm{p} . \mathrm{m}$. Saturdays 8.50 am . to 400 pm .
 suance
pen accounts we mop
ORDEA FORMS: New order forms are included with each order tor your commenience Addtional order torms are arailabie on
PARTS: We reserve the right to substitute or replace any item with a part of equal or comparabie specification

POSTAGE: Minimum shipping and handling in the U.S., Canada, and Mexico is $\$ 3.00$ for ground shipments. all other countries is $\mathbf{5 5 . 5 0 \text { . Air rates are availabie at the time of your order. All foreign orders }}$ ONLY.
PREPAID ORDERS: Orders must be accompanied by a check.
PRICES: Prices are subject to change without notice.
PURCHASE ORDERS: We accept purchase orders only when they are accompanied by a check
RESTOCK CHARGES: If parts are returned to MHZ ELECTRONICS, INC. due to customer error, the Custorner will be heid responsible for all fees incurred and will be charged a 15% RESTOCK our invoice, return authorization number which must fowing must accompany any return, Achapise back. Returns must be done within 10 DAYS of receipt of parcel. Aeturn authorization numbers can be obtained by calling (602) $242-8916$ or notifying us by post card. Return authorizations will not be given out on our 800 number.
SALES TAX: ARIZONA residents must add 6% sales tax, uniess a signed ARIZONA resale tax card currently on file with us. All orders placed by persons outside of ARIZONA. but delivered to persons in ARIZONA are subject to the 6% sales tax
SHORTAGE OR DAMAGE: All claims for shortages or damages must be made within 5 DAYS of receipt of parcel. Claims must include a copy of our invoice, along with a return authorization receipt of parcel. Claims must include a copy ot (602) 242.8916 or sending a post card. Authorizations cannot be on our 800 number. All items must be properiy packed. If items are not properiy packed make sure to contact the carrier so that they can come out and inspect the package before is returned to us. Customers which do not notify us within this time period will be held responsible for the entire order as we will consider the order complete.

OUR 800 NUMBER IS STRICTLY FOR ORDERS ONLY (800) $528-0180$. INFORMATION CALLS ARE TAKEN ON (602) 242.8916 or (602) 242.3037

All parts may be new or surplus, and parts may be substituted with comparable parts If we are out of stock of an item.

For information call: (602) 242-3037

Toll Free Number 800.528.0180 (For orders only)

8 POLE CRYSTAL FILTERS FOR

KENWOOD, ICOM, AND YAESU RADIOS
KENWOOD
2.1 kHz SSB tor TS-930 of TS-830 matched set $\$ 14999$ 400 Hz CW lot IS 930 of TS 830 matched set $\$ 14999$ 21 kHz SSB tail end if cascade kot (8 extra poles) for the IS 430. TS-120 and TS-130 $\$ 7900$
21 kHz 8 pole xtal fitter for the R-1000 $\quad \$ 12900$ 21 kHz 8 pole xtal fiter for the R-2000 $\quad \$ 13900$ 400 Hz CW (8 pole) xtal filter for the R-2000 $\$ 9900$ TS 930 NEW FM KIT True tm, xmit $\& \mathrm{icv} .30$ watts. ix is-930 New FM kIT Tue tm, xmit \& icv 30 watts. IX ICOM
21 kHz SSB and 400 Hz CW 8 pole xtal filter for the C. $730,740,745$, R70 and R71 radios

YaESU
21 kHz SSB 8 pole xtal titer for the FT-980 Filter for E1. 757 avallable soon

ICOM, Kenwood newsletters 1 year $\$ 9.00$ US ($\$ 12$ first class mail) $\$ 13$ elsewhere. SASE for details.
When ordening please specity radio and ciystal fitter ordered Please add $\$ 3$ tor shipping and handing USA. $\$ 5$ ar mail. COO add $\$ 1.75$. $\$ 10$ overseas FL residents add 5% sales tax

INTERNATIONAL RADIO, INC.

1532 SE Village Green Dr
Port St. Lucie, FL 33452 (305) 335-5545

sss giant savings sss

 HIGH OUALITY AT LOW PRICESECHO' DISKETTES
Each recording surface is individually certitied and guaranteed to be 100% error free...with a LIFETIME WARRANTYI
\$1 ${ }^{35}$.g. ssivi $\$ 185$
Echo head cleaning kit no harsh abrasives no fluids to apply (30 applications) $5 \mathbf{5}^{*}$ " $\mathbf{5 6 9 5}$

OYSAN ${ }^{*}$ DISKETTES PREMIUM QUALITY AT HUGE SAVINGS S2 $36 \begin{gathered}45 \% \text { SS/DD } \\ 5 \%-D S / D D\end{gathered}$

All diskettes are in boxes of 10 with labels. envelopes and reinforced hubs

DISK STOR holds 50 5\%" Diskettes $\$ 1295$ +
$\$ 200$ shipping
SHIPPING: $5 \%^{*}$ DISKETTES Add $\$ 3.00$ per 100 or less PAYMENT VISA M/C or check with order COD orders add $\$ 200 \quad \$ 1.50$ credit on long distance phone orders TAXES
Illinois customers add 8%.
SCAMP SYSTEMS, INC. BOX 59451 - CHICAGO, ILLINOIS 60859 1-312-267-9858

VIC 20 \& CGA USERS A Powerful mSO!

Now you can own your own MSO! Your computer and any interface plus our menu driven, machine language Radio Bulletin Board Service software will give you and your MSO users a powertul maibox with the following features:

- Read, write \& delete messages
- List a directory of all messages
- Scan directory of messages
- User selectable baud rates
- Automatic date and time keeping
- Automatic time out feature
- Automatic ID of your call
- Automatic indication of memory used
- 3 modes - MSO. SYSOP \& Direct RTTY
- Works with or without disk drive
- Specifically tor VIC 20 (8 k min) or C64 Software package includes - manual, program diskette or cassette and interface cable

$\mathbf{\$ 5 9 . 9 5}$ plus $\mathbf{\$ 1 . 9 0}$ postage

(Kantronics interfaces add \$8.95)
Ph. (818) 957-7550

Vid-Cam

Communication
3131 Foothill Bivd. \#H - La Crescenta. CA 91214

AVAILABLE NOW

 THE 1985 ARRL HANDBOOK1. It's BRAND NEW
2. It's BIGGER. Over 350 pages.
3. It's EXPANDED. Covers everything from basic electronics to esorteric radio gear.
4. It's chockfull of NEW PROJECTS.
5. It's the MOST COMPLETE reference text available.
6. Get your copy TODAY.

\$14.95

(plus $\$ 3.50$ shipping)

ORDER YOURS TODAY

Iron Powder and Ferrite TOROIDAL CORES

Shielding Beads, Shielded Coil Forms Ferrite Rods, Pot Cores, Baluns, Etc.

Small Orders Welcome Free 'Tech-Data' Flyer

AMID\& \mathbf{N}
 - sociates

Since 1963

12033 Otsego Street, North Hollywood, Calif. 91607
In Germany Elextronikiaden. Witheim - Meilies Sit 884930 Detmold 18 West Germany
In Japan Toyomura Electronics Company. Lid. 7.9 2 Chome Sota-Kanda Chiyoda-Ku. Tokyo. Japan

Completely assembled 8 ready to use - Commercial quality. built to last Lightweight, seaied, weatherproof traps -Automatic band switching-Low loss end insulators - Handies up to 2000 watts PEP. For all transmitters, receivers \& transceivers - Tuner usually never required -Deluxe center insuiator, with buitt in lightring arrestor, accepts PL. 259 coax connector May be used as inverted "V" - Excellent for all class amateurs - Instructions included - 10 day money back guarantee!
4-Band-40,20,15,10 meters (55^{\prime}) 2 traps $\quad 0.242 \$ 55.95$ PPD 5-Band-80,40.20,15,10 meters (105') 2 traps H052 $\$ 59$ 95PPD SHIPPED POSTPAIDI READY TO USEI
90 ft . RG-58U, 52 ohm coax cable, with PL- 259 connector on each end. Add $\$ 12.00$ to above price

We accept VISA/MC-Give Card \%. Exp. Date, Signature

7 MILLION TUBES

FREE CATALOG

Includes all Current, Obsolete, Antique, Hard-To-Find Receiving, Broadcast. Industrial, Radio/TV types. LOWEST PRICES, Major Brands, In Stock.
UNITY Electronics Dept. H P.O. Box 213

Elizabeth, NJ 07206

HI TECH KITS
 fAOM
 MICROBYTE SYSTEMS
 \section*{THIS MONTH'S SPECIRLS}

CMOS KEYER KI

battery operated self completing small enough TO MOUNT ON KEY BOARO $\$ 9.95$ COMPLETE KIT $\$ 24.95$

RS-232 UNE MONITOR KIT

MONITOR SEVEN SIANDARD DATA LINES AND TWO OPTIONAL BOARO $\$ 9.95$ COMPLETE KII $\$ 19.95$

CRT BLANKER KIT

PREVENTS PHOSPHER BURN - RESTORES SCREEN DATA WITH FIRSI KEYSIROKE BOARD $\$ 9.95$ COM PLETE KIT $\$ 19.95$
DRIVE MOTOR CONTROL KIT
SAVES WEAR AND TEAR ON 8 INCH DRIVES NO LOSI DATA ONLY FOUR CONNECTIONS BOARD $\$ 12.95$ COMPLEIE KIT $\$ 29.95$

COMMODORE 20/64 RS-232

CONVERTS VIC TTL LEVELS TO RS-232 STANDARDS BOARD \$14.95 COMPLETE KIT \$29.95

MANY MORE KITS AVAILABLE

SEND SI LO FOR NEW CATALOG IAEFUNDABLE ON FIASI DADERI NOT REOUIRED WITH OROERS

VISA MASTEA CARD CHECKS C.O.D.
DEALER INOUIRIES WELCOME ADO \$3.00 SHIPPING ANO HANDLING: ILL RES ADO 8^{2} - SALES TAX CHICAGO IL 60646 $\downarrow 177$, coneon

Now there's a hardware magazine that's all about computers for people who like to build their own. Computer Smyth's premiere issue is coming in March 1985, providing all the pleasure, economy and satisfaction of build-it-yourself projects that Hams know so well.

Our authors take you inside the chips, talk about what they do and how they're controlled, and explain command options you may never have heard of before. Computer Smyth's first quarterly issue begins a series on a complete Z80 based computer on three $4 \times 61 / 2^{\prime \prime}$ boards, which lets you interface $3^{1 / 4}, 5^{1 / 4}$ and 8^{*} floppy disks in all densities and track configurations. John Adams' series will include a switching power supply, a PROM burner, a modem and software options for this rack-mount system.

The first issue will also feature an X/Y plotter you can build, an inex-
pensive motorized wire-wrap tool and much more.

During its premiere year, Computer Smyth will survey the more than two dozen computer kits now available in the US. Kit builders will report on many of them from the simplest Z80 CPU offerings to some of the newest 68000, 32-bit machines.

Computer Smyth is published by Audio Amateur Publications, publishers of Audio Amateur and Speaker Builder magazines. All three are reader-centered, hardware-intensive publications whose editors believe that a magazine's primary job is satisfying the reader not consumer marketing. Our magazines are run by tech enthusiasts not MBAs looking for profits.

Computer Smyth's editors guarantee that if you are unhappy with Computer Smyth for any reason, your money will be refunded upon request

Yes. enter my subseription to Compu ter $S m$ yth for one year at $\$ 15$.
Check enclosed.
\square Make that two years at $\$ 25$
\square Charge to credit card.

Name

Street \& No.

Town		
MC/VISA Card $\#$	State	Zup

Expire Signature

Computer Smyth Magazine
 PO Box 176 Peterborough, NH 03458 - 178
 Charge card orders: (603) 924-9464

Viewstar - Mod. VS300A
Fully Assembled
and Tested
$\$ 89.95$
Plus $\$ 300$ Stupping \& Handing
\$79.95 SPECIAL

MATCH MOST ANTENNA-FEEDLINE COMBINATIONS TO YOUR RIG

MATCHES: dipoles, inverted vees, beams quads verticals, mobile whips, random wire, etc. that are fed by coax, balanced line or single wire
MAXIMUM POWER: 300 watts RF
INPUTS (selectable from front panel):
3-coax: 1-direct, 2-direct or thru tuner
1-balanced line ($4: 1$ balun inc.) or single wire
IN-LINE CALIBRATED WATTMETER INCLUDED
ALSO IN STOCK
KITS: for HF, VHF, UHF \& Test Equipment
COMPONENTS: Toroids, Rods \& Beads, Resistors.
Inductors. Capacitors, Antenna Components \& Wire
1984-85 CATALOG 50C

Box 411H, Greenville, NH 03048 (603) 878 -1033, telex 887697

TROPICAL HAMBOREE

 \& Southeastern Division Convention FEBRUARY 2-3, 1985FABULOUS FLAGLER DOG TRACK
MIAMI, FLORIDA

- Antenna Presentation
- DX Forum \& Dinner
- ARRL \& CAVEC VE Programs
- Packet Radio Forum
- License Exams
- Organizational Meetings
- New Product Exhibits
- Hamboree Dealer Specials
- Mammoth Swap Shop
- Activities for Non-Hams
- QCWA Homestyle Hospitality
- International Displays

FREE OVERNIGHT RV PARKING AT HAMBOREE SITE (Advance Reservations Recommended) SPECIAL HOTEL RATES AT HEADQUARTERS HOTEL

IF YOU HAVE ATTENDED HAMBOREE IN THE LAST THREE YEARS YOU WILL RECEIVE OUR BROCHURE IN LATE DEC. OR EARLY JAN.

Registration: \$4.00 Advance . . . \$5.00 Door (Valid both days)
 Swap Trables, 2 days: $\$ 14.00$ Advance . . . \$16.00 Door (plus regis. ticket)
 Requests for same swap table location as 1984 will be honored until Dec. 15th, after that date tables will be assigned on a first come - first served basis.
 (Advance price deadline on Registration \& Tables, January 29th)

Make checks payable to: DADE RADIO CLUB, INC., P.O. Box 350045, Miami, FL 33135
Exhibit Booth Information:
Evelyn D. Gauzens, W4WYR, Chairman
Telephone:
2780 N.W. 3 Street, Miami, FL 33125
305-642-4139

WE HAVE QUALITY PARTS. DISCOUNT PRIGES AND FAST SHIPPING!

TRANSFORME

5.6 VOLTS @ 950 MA 6 VOLTS @ 150 MA $12 \mathrm{VCT} @ 200 \mathrm{MA}$ 18 V @ @ 65 MA 18 VOLTS @ 1 AMP 24 volts @ 250 MA 24 VCT @ 1 AMP
 TRANSFORMER WALL

ALL ARE 115 v
PLUG IN
$4 \mathrm{VDC} @ 70 \mathrm{MA}$
6 VDC @ 100 MA
$\mathbf{6 V V C} @ 500 \mathrm{MA}$
$\mathrm{gVAC} @ 1$ AMP
$25 \mathrm{VAC} @ 300 \mathrm{MA}$
16.5 VAC@10 VA

SPRING LEVER TERMINALS

TWO COLOR CODED TERMINALS ONA STUROY GAKEGTE PLATE GREAT FOR SPEA OR POWER SUPP	
\$1.00 EACH	10 FOR 5900

MIKE CONNECTOR (2) 20 6

5 CONDUCTOAIN-LINE PLUG AND CHASSIS MOUNT JACK. TWIST LOCK STYLE SAMEA SWITCHCRAFT $12 C L 5 M$.
\$2.50 PER SET

METER
 NON-INTERLOCKING
 SPECTRA STRIP RED MARKER
STRIP $28 G A S T R A N D O D$ WRE STR PR 28 GA STRANDED WIRE
S5.00 PER ROLL (100 FT.)

REVERBERATION UNIT

$\$ 7.50 \mathrm{EACH}$
ACCUTRONICS COIL SPRING TYPE UNITS. USED IN
ELECTRONIC ORGANS TO PROVIDE ACOUSTIC DELAY
SOUND EFFECTS. INPUTIMPEDANCE 8 OHMS OUTPU SOUND EFFECTS. INPUT IMPEDANCE 8 OHMS OUTPUT
SOUND AND VIDEO MODULATOR (17) FOR T.I. COMPUTER

WITH T.I. COMPUTERS CAN BE USED WITH VIOEO SOURCES BULTTIN A/B SWITCH. CHANNEL 3 OR 4 SELECTION SWITCH.
OPERATES ON $12 \mathrm{VDC}$. HOOK UP DIAGRAM incluoed. $\$ 10.00$ EACH

ROTARY SWITCH

DOUBLE POLE POWER SWITCH
PUSH-GN, PUSH-OFF.
$\$ 1.00$ EACH

SWITCHES
MINI-PUSH BUTTON S.P.S.T. MOMENTARY NOAMALLY OPEN 14" BUSHING
$35 ¢$ EACH
10 FOR $\$ 3.25$
100 FOR $\$ 30.00$
SPECIFY COLOR
RED, BLACK, WHITE
GREEN. YELLOW.

48 KEY ASSE	Y FOR
	T.I. COMPUTER
	NEW TEXAS INSTRUMENTS KEYBOARD UNENCODED. 48 S.PS.T. MECHANICAL SWITCHES TERMINATES TO 15 PIN CONNECTOR. SOLIO METAL FRAME $4^{\prime \prime} \times 9^{\prime \prime}$
	\$6.50 EACH 2 FOR \$11.00
ONNECTORS	120 V INDICATOR
(5)	
ALL ARE $156^{\prime \prime}$ SPACING	NEON INDICATOR RATED $120 \mathrm{~V} / 3 \mathrm{~W}$ MOUNTS IN
10 PIN EDGE	5/16" HOLE ... RED LENS.
CONNECTOR	754 EACH
RW $+50-10-4.20$ \$2.00 EACH	00 FOR $\$ 65.00$
18/36 GOLD OLDER EYELET $\$ 2.00$ EACH	GEL CE
22/44 TIN	BATTERY
C. STYLE: NO MOUNTING EARS \$1.50 EACH 10 FOR $\$ 14.00$	$x[\cdots=\infty$
22/44 GOLD	
PC. STYLE $\quad \$ 2.00$ EACH 10 FOR $\$ 18.00$	2v.1, AM
28/56 GOLD	12VDC@12AMP HOUR
$28 / 56$ GOLD PLATED CONTACTS 156 CONTACT SPACING	$4^{\prime \prime} \times 113 / 16^{\prime \prime} \times 2$ 2 $1 / 8$.
\$2.50 EACH 10FOR \$22.00	\$15.00 EACH

48 PAGE CATALOG FREE! FREE! FREII

TOLL FREE ORDERS ONLY
1.800-826-5432
(IN CALIFORNIA. 1-800-258-6666
ALASKA. HAWAII.
OR INFORMATION
(213) 380-8000
 LINE CORDS

TWO WIRE 18ga TWO WIRE 3 FOR $\$ 1.00$
THREE WIRE 18 NCH 18ga THREE WIRE
2 for $\$ 1.00$ 18 ga THREE $\$ 2.00$ EACH

SOLDERING IRON STAND

$\mathbf{5 5 . 0 0}$ EACH

TRANSISTORS

$\begin{array}{ll}\text { 2N706 } & \text { 2NOR } \$ 1.00 \\ \text { 2N2222A }\end{array}$
PN22222 3 FOR $\$ 1.00$
$\begin{array}{ll}\text { PN2222 } & 4 \text { FOR } \$ 1.00\end{array}$
2N2904 3 FOR $\$ 1.00$
$\begin{array}{ll}\text { 2N2905 } & \text { 3FOR } \$ 1.00 \\ \text { 2N2907 } & \text { 3FOR } \$ 1.00\end{array}$

POWER SUPPLY W/PRE-AMP

TO POWER AN 8 TRACK/CASSETTE UNIT IT INCLUDES A SMALL PRE-AMP TO BOOST SHGNAL LEVEL GCA PLUGS FOR LINE INOUT $\$ 4.50$ EACH

product

REVIEW

frequency counter kit

The handheld frequency counter designed by Roger Ray, (as published in the UK's Radio and Electronics World in November, 1982, and imported and sold by RADIOKIT) is a neat little project that shouldn't take up too much time. A valuable piece of test equipment for your ham shack, it runs off an inexpensive 9 -volt battery. is quite light and easy to carry around, covers 20 Hz to 150 MHz , and has a five digit LCD display with a resolution of 1 Hz to 10 kHz depending upon range selected.

design

Ray went to great lengths to design this meter with simplicity in mind. An FC-177 LCD readout module, which also contains an OKI MSM-5527 frequency counter, is used for the display. Combining these two functions into one package greatly simplifies the construction of the counter. The FC-177 is designed to measure and display frequencies from 20 Hz to 3.999 MHz . To measure frequencies higher than 3.999 MHz , a divideby 10 or a divide by 100 prescaler is incorpo-

microphone equalizer

Heath's new HD-1986 Microlizer is designed to improve the quality of transmitted speech and provide a better match between microphone and transceiver. This battery-powered microphone

equalizer fits in series with a microphone and transceiver using a standard 4-pin microphone jack and $1 / 4$-inch phono output jack. It has continuously variable frequency controls to provide a $\pm 12 \mathrm{~dB}$ (boost and cut) at 490 Hz and 2800 Hz . A gain control permits the user to increase or decrease the microphone signal fed to the
rated. To keep power consumption low, a count-and-hold technique is used when measuring frequencies above 3.999 MHz , In the LF range, 20 $\mathrm{Hz}=10 \mathrm{kHz}$, the unit has a 50 mV sensitivity: in the MF range (10 kHz .4 MHz) a 20 mV sensitivity; in the HF range ($100 \mathrm{kHz}-40 \mathrm{MHz}$) a 20 mV sensitivity; in the VHF range $(10 \mathrm{MHz}$ 150 MHz) a 100 mV sensitivity. Users will find that this unit, while not designed for laboratory precision, will give more than adequate readings for nearly all of their measurements.

circuit description

The input frequency is switched by the frequency range selector to one of four buffer stages. For measuring in the LF range, the signal is amplified, its frequency is multiplied by 100 , and then used to control a VCO that is a part of a PLL circuit. The frequency displayed is that of the VCO with the decimal point properly positioned to account for the $\times 100$ factor. For example, an 800 Hz input signal would be changed to 80 kHz through the VCO, but counted and displayed as 800 by the FC- 177.

Measuring in the MF range is within the FC-177's design. Signals are amplified and then directly fed to the display module. To measure in the HF range, signals are first amplified and then fed through a divide-by-10 prescaler (MSL-231RS) directly into the FC-177 for counting and display.

VHF range measurements are accomplished in a manner similar to that of HF signals, with the prescaler changed to divide-by- 100.

As mentioned, this unit is designed for low current consumption. However, the MSL-231RS
is designed with a current consumption of greater than 30 mA . To reduce current demand, a hold feature of the FC-177 is employed. Instead of constantly being counted, the incoming frequency is measured once every second. The designer calculates that this reduces consumption to below 15 mA , has little effect on accuracy, and adds several hours of battery life.

construction

The unit is built around a single-sided PC board and mounted to the enclosure by the fourway frequency switch. The FC-177 is mounted on the cover of the plastic equipment box. Parts placement is fairly straightforward, with connections to the FC-177 frequency counter module through short flexible wires. All IC's are mounted on sockets so they can be replaced with a minimum of effort in the unlikely event of failure.

Careful attention to the location of the display, four-way switch, momentary on-off switch and BNC input connector is a must if the unit is to function properly.

I'd estimate that overall time to build shouldn't be more than an evening or two, barring any unforeseen difficulties.

conclusion

At $\$ 74.95$, it's really hard to beat this unit for ease of construction and usefulness in the ham shack. RADIOKIT has a number of other projects from various amateur radio publications. For a free catalog, contact RADIOKIT, Box 411 H , Greenville, New Hampshire 03048.

Circle 1179 on Reader Service Card.

- N1ACH
transceiver for maximum efficiency and cleaner operation. The Microlizer can be bypassed to allow direct connection between microphone and transceiver by simply turning off the power switch.
For complete information and/or a copy of the current catalog, contact Heath Company, Department $150-405$, Benton Harbor, Michigan 49022.

Circle 1301 on Reader Service Card.

universal audio filter

Palomar Engineers has announced a new universal receiver audio filter. Model FL. 4 - for SSB, CW, and RTTY - features switched capacitor filters. A 10 -pole low-pass and an 8 -pole high-pass can be moved anywhere in the $200-3500 \mathrm{~Hz}$ range to form a sharp bandpass filter at any frequency and of any bandwidth. A notch filter is also included.

It connects to the receiver phone jack and provides 2 watts of audio to drive a speaker. The on-off switch bypasses the filter when not in use. It operates from 15 VDC. The price is $\$ 139.95$ plus $\$ 4$ shipping. An optional 115 -VAC adapter is available at $\$ 9.95$.

For further information, contact Palomar Engineers, Box 455, Escondido, California 92025.

Circle $\$ 302$ on Reader Service Card.

COR module

Hamtronics, Inc., has announced the COR-3, a new version of its popular COR module. Like the COR-2, the COR-3 has all the circuitry needed to control a transmitter and receiver to make a repeater, including an electronic relay to switch the transmitter on and off as a function of the receiver squelch, a tail timer, a time-out timer, an audio mixer, and a local speaker amplifier. The COR-3 also has a "courtesy beep" function, and an additional timer that allows the beep to be adjusted up to five seconds after the receiver squelch drops. Whenever a station using the repeater releases its microphone, a beep tone is heard after a short delay period. The beep indicates that the party has finished talking and the time-out timer is reset.

The price of the COR-3 kit is $\$ 58$. For more information on this module and other transmitter, receiver, and control modules for building repeaters, contact Hamtronics, Inc., 65F Moul Road, Hilton, New York 14468-9535.

Circle 1104 on Reader Service Card.

products

signal generator

A programmable, general-purpose signal generato base-priced at $\$ 4500$, is said to meet or exceed the quality and performance of units costing over $\$ 6000$. The Fluke 6060A Synthesized Signal Generator accurately tests a wide variety of RF receivers, filters, amplifiers, and mixers. It covers a frequency range of 0.1 to 1050 MHz ; (selectable with 10 Hz resolution) and has a switching speed less than 100 ms typical. Non-harmonic spurious products are less than 60 dBc , and harmonics are less than -30 dBc across the entire frequency range. Amplitude levels are selectable from -137 dBm to +13 dBm with 0.1 dB resolution.

For further information, contact John Fluke Manufacturing Co., Inc., P. O. Box C9090, Everett, Washington 98206.

1.3 GHz frequency counter

Digital Instruments Inc. (formerly David Electronics) of Tonawanda, New York, has announceed its frequency counter (7216). The new counter has a range of 10 Hz to 1.3 GHz and a gate time of 100 MHz 0.1 and 1.0 second as well as 1.3 GHz 0.16 and 1.6 seconds. Its display consits of eight 0.04 -inch LED with an automatic

1300.104E

DHGIAL ...
decimal point. The prescaler and built-in gate light all fit neatly into the small $5-1 / 2 \times 6 \times 2$-inch all-metal case. Its power requirements are $105-125$ volts $50 / 60 \mathrm{MHz}$ at 3 watts with a safe input of 120 volts RMS to 10 MHz and 2 volts RMS above 50 MHz . The price is $\$ 249.95$.

For additional information contact Digital Instruments, 636 Sheridan Drive, Tonawanda, New York 14450.

Circle f136 on Reader Service Card.

New From Butternut ${ }^{\circledR}$ HF2V DX The 80 \& 40 Meter Bands

The HF2V is the perfect complement for the Ham who already has a beam antenna for 10-15-20 meters. Add 80 and 40 meters (160 meters with an optonal resonator kit) with a trim-looking vertical that can be mounted almost anywhere.

With the decline in sunspot activity, the HF2V's low angle of radiation will get you DX on the low bands .- even when 10-15-20 meters are "dead."

Automatic bandswitching. No lossy traps. Double wall tubing on the bottom section. Stainless steel hardware. Full $1 / 4$ wavelength on 40 meters.
Height: 32 ft . --Self supporting
Power rating: legal limit
VSWR: 2:1 or less
40 Meters: Full CW \& Phone
band
80 Meters: 90 kHz

Add-on resonator kits available for 160-30-20 meters.

Write for our FREE CATALOG.

BUTTERNUT ELECTRONICS
405 East Market Street
Lockhart, Texas 78644
(512) 398-9019

New Technology (patent pending) converts any VHF or UHF FM receiver into an advanced Doppler shift radio direction finder. Simply plug into receiver's antenna and external speaker jacks. Uses four omnidirectional antennas. Low noise, high sensitivity for weak signal detection. Call or write for full details and prices.

DOPPLER SYSTEMS, INC. 5540 E. Charter Oak,
Scottsdale, AZ 85254
(602) 998-1151

SUPER deal with the publisher allows us to drop the price of the Bill Orr RADIO HANDBOOK to the low, low price of just $\$ 12.95$!

RADIO HANDBOOK by William Orr, W6SAl

Some selected subjects covered include:

Electronic Fundamentals
Semiconductor Devices Vacuum Tube Principles Special Microwave Tubes Radio Frequency Power Amplifiers SSB Transmission and Reception Amplification of RF Energy Frequency Synthesis

FM and Repeaters
RFI
Equipment Design
Transmitter Keying and Control
Power Supplies
Radiation and Propagation
The Transmission Line
Antenna Matching Systems

hF General Purpose Antennas
Fixed Directive Arrays
Rotary Beam Antennas
VHF \& UHF Antennas
Test Equipment
The Oscilloscope
Construction Practices
Electronics Math and Calculations

This book certainly is one of the finest reference sources available today. The $22 n d$ edition reflects the very latest in state-of-the-art techniques in a comprehensive single source reference book. Invaluable for hams, electronics technicians, design engineers, and hobbyists alike. Over 1,000 pages of information found in earlier editions plus more on antennas, amplifiers, theory, and semiconductors to name just a few of the updated sections. The Radio Handbook is chock-full of practical, tested projects that run from high powered RF amplifiers and state-of-the-art equipment to "Weekender" type projects to upgrade overall station performance. This book will be of interest to all levels of electronic expertise. At this special price, you can't afford to pass up a value like this. Order yours today. 1136 pages. © 1981. 22nd edition.

This is the very latest edition. No new edition is about to be issued. This is not a close out.

INEW
 products

AMTOR code converter

The AMTOR-10A unit from HAL allows transmission and reception of radio teleprinter signals with the added feature of error correction. The AMTOR-10A is a code and speed (baud rate) converter unit that, when used with

the CWR6850, allows 7 -unit AMTOR code communications at 100 baud while retaining communications capability with the standard 5 -unit BAUDOT code from 20 to 100 baud and the 8 -unit ASCII code from 75 to 200 baud. The AMTOR-10A is designed to interface easily with the CWR6850 while retaining all the standard features of the unit, including CW operational capability. The price of the AMTOR-10A code converter is $\$ 395.00$.
For further information contact HAL Communications Corporation, P.O. Box 365, Urbana, Illinois 61801.
Circle /303 on Reader Service Card.

ALL BAND TRAP VERTICAL ANTENNAS!

FULL 1/4th WAVE - All Bandst Automatic Selection with
proven HI-Q Traps 5 Models-ALL self supporting - Ground proven HI-Q Traps 5 Models-ALL self supporting -Ground
or roof mount. HI STRENGTH FIBERGLASS TUBING OF RER -ALL. NO WOBBLY, LUMPYTRAPS - NO UNSIGHTLY CLAMPS needed. Size $11 / 4^{-1}$ all the way up: Traps hidden inside. You can use hin a ' Ht sa Backyardt
FOR APARTMENTS. MOBILE HOMES. CONDOS etc. FOR APARTMENTS, MOBILE HOMES. CONDOS etc.
where minimum space and neat appearence is MAND. ATORYI Instant "Drive in" oround mount (included). Use with or whithout radials (included) (All angle root mount. Extra)
COMPLETELY PRETUNED. NO ADJUSTMENTS NEED. COMPLETELY PRETUNED - NO ADJUSTMENTS NEED-
ED EVERI NO TUNER NEEDED FOR MOST TRANSCEIVERSI Use-RGEU feedine any length! 2000 Watt CEIVERS Pie- RGBU reedine. AAID IN USA. Assembles in 10 min using only screwdriver. WEA THERPROOFI

No.-AVT BO-10- 5 Band $-25^{\prime} 6^{\circ}$
No. AVT $40-10-4$ Band
$18^{\circ} 9^{\circ}$

$\$ 149.95$ No.- AVT 40-10- -4 Band
No. AVT 20-10- 3 Band $114^{11} 4^{-}$ \qquad $\$ 119.95$
$\$ 199.95$ (2-30 Meter Models - Write tor Int.)
SEND FULL PRICE FOR PP DEL IN USA (Canada is VISA, MASTER CARD or AMER-EXP Ph $1-308$ -236-5333 9AM-6PM weekdays. We ship in 2-3 days. All Antennas Guaranteed for 1 year -10 day
monoy back wial. Frre Int. money back trial Free int.
WESTERN ELECTRONICS Dept. AR Kearney Ne. 68847

Microwave Test Equipment
RMSG Signal Generators
Manual tuning • 8.30
VDC input - 1 to .7 volt output to tuned detector - narrow band electrical tuning $\bullet-1,3.7-4.2 \mathrm{GHZ}$,
$\$ 51.16 \cdot 5.23-2.45 \mathrm{GHZ} \$ 61.16 \cdot$ with battery clip and on off switch, -2, -6, \$53.95, \$63.95.
RMVO Voltage Tuned Oscillators +12 VDC bias - 1 to - 12 VDC tuning • $1^{11} \times 11 / 2^{\prime \prime}$ PCB $-1,2.1-2.5 \mathrm{GHZ}$, \$24.95 - $2,1.8-2.1 \mathrm{GHZ}, \$ 24.95$

RMVA Variable Attenuator
10 to 60 DB . 1 to 6 GHZ . \$14.95 Also: Test Antennas, Diode Detectors, Dual Directional Couplers, and Line Stretchers.
ROENSCH MICROWAVE A.R. 1. Box 156B, PH: 816.963-2550 BROOKFIELD. MISSOURI 64628 r 195

MAIL ALL ORDERS TO BARRY ELECTRONICS CORP., 512 BROADWAY, NEW YORK CITY. NY 10012.
New York City's $\begin{aligned} & \text { LARGESTSTIOCCING MAM DELEA } \\ & \text { COMPLETE REAR }\end{aligned}$
"Aqui So Habla Espanol" BARRY INTERNATIONAL TELEX 12.7670 TOP TRADES GIVEN ON USED EQUIPMENT Mondar. Fnday ${ }^{2} A \mathrm{AM}$ to 630 PM
Thunday to
Sam
AUTHORIZED DISTS MCKAY DYMEK FOR AUTHORIZED DISTS MCKAY DYMEK FOR
 EMT"-Prince St. Station" IND "F"Train- Bwy Station"
Bus: Broadway 16 to Spring St.
Path-9th Sisen Are: Station

We Stock. AEA. ARRL, Alpha, Ameco, Antenna Specialists, Astatic,
Aston, B \& K, B \& W, Bash, Bencher, Bird, Butternut, CDE, CES Collins, Aston, 8 \& K, B \& W, Bash, Bencher, Bird. Butternut, CDE, CES, Collins,
Communications Spec. Connectors, Covercrath. Cubic ISwani. Cushcrat!, Daiwa, Dentron, Dipimax, Drake, ETO (Alpha). Eimac, Encomm, Heil Sound, Henry Hustier (Niewtronicsi. Hy-Gain, Icom. KLM, Kantronics.
Larsen, MCM (Daiwa), MFJ, IW Miller, Mini.Ptoducts. Mirage. Larsen, MCM (Daiwa), MFJ, JW Mitler, Mini.Products. Mirage.
Newtronics, Nye Viking. Palomar, AF Products, Radio Amateur CCalibooke Nowtronics, Nye Vaking. Palornar, RF Products, Aadio Amateur Cailbook,
Robot, Rockwell Colins. Saxton, Shure, Swan, Telex, Tempo, Ten Tec,
Tokyo Hi Powet, Trionyy TUBES, W2AU, Waber, Willson, Yaesu Harn and Tokyo Hi Power Triony TUBES, W2AU, Waber, Wilson, Yasou Ham and
Commercial Radios, Vocom. Vibropies, Curtis. To Ex. Wacom Duplexers. Commercial Radios, Vocom, Vibropiles Curtis, TriEx Wacom Duplexers
Repeaters, Phelps Dodge, Fanon Intercoms. Scanners. Crystats. Radio Pubilcations.

WE NOW STOCK COMMERCIAL COMMUNICATIONS SYSTEMS EALERINOUIRIES INVITED PHONE IN YOURORDER S BE REIMBURSED COMMERCIAL RADIOS stoeked a serviced on premises.
Amateur Radio Courses Given On Our Premises, Call
Export Order: Shlpped Immediately. TELEX 12.7670

QUADS - TOWERS - QUADS - TOWERS - QUADS -

Satellite T.V.

- E.Z installation manual
- Pricing for our name brand equipment
- How to find the burds in your area
- Dealer-Broker program, no investment. do not miss this money making opportunity

IT'S INCREDIBLE!

Master code or upgrade in a matter of days Code Quick is a unique breakthrough which simplifies learning Morse Code Instead of a confusing maze of dits and dahs, each letter will magically begin to call out its own name' Stop torturing yourself? Your amazing kit containing 5 power packed cassettes, visual breakthrough cards and onginal manual is only $\$ 39.95$! Send check or money order today to WHEELER APPLIED RESEARCH LAB PO Box 3261. City of Industry. CA 91744 Ask for Code Quick $\# 103$. Califorma residents add 6° t sales tax

One User Comments:
"First new idea in code study and the darn thing works' So much fun you don't realize how much you re learning
MS Greneda, Miss

Hundreds of satisfied customers! You can't lose' Follow each simple step. You must succeed or return the kit for a total immediate refund!

TUNE IN THE WORLD OF HAM-TV!

Hams should be "seen" as well as heard! Thousands of ATV operators across the country are sending great looking color TV pictures (with sound) to each other. FSTV-DX can go hundreds of miles. There are now over 80 Ham Television "Repeaters" relaying these video signals over rough terrain.

Ham Radio UHF.TV is as simple as hooking up a 2 meter rig and antenna. Our "Everything You Always Wanted To Know About ATV" 112-page manual will teach you how to do it (\$9.95).

- 185

Under the guidance of the "United States ATV Society," Amateur TV (FSTV-SSTV-FAX) is growing in activity. And, we've been promoting it now for over 18 years!

Sample Issue - Just $\$ 2.50$ ppd.
Special Trial Subscription - $\$ 10.00$.

Published Monthly)
A5 ATV Magazine
P.O. Box H,

Lowden, lowa
52255
A Division of
(YCD Publications. Its

Please send all reader inquiries directly

Amateur Radio Operator NAMES

- Geographic by ZIP and or State
- By License issue or Expiration Date Sell stick 1×3 labels
Total List 453,000 Price: $\$ 25 /$ Thousand Buckmaster Publishing 186

This publication is

 available in microform from University

DO YOU	Nuts a voits
KNOW	Mamex
WHERE	
TO FIND	
REAL	
BARGAINS	
on NEW and	USED
ELECTRON	Equipme

You'll Find Them

 in the Nation's No. 1 Electronic Shopper Magazine
NUTS \& VOLTS

Now in Our 5th Year

Nuts \& Volts is published MONTHLY and features: NEW STATE-OF-THE-ART PRODUCTS • SURPLUS EQUIPMENT • USED BARGAINS - LOW COST AD RATES • PRIVATE AND COMMERCIAL CLASSIFIEDS • NATIONAL CIRCULATION • NEW PRODUCT NEWS SECTION • AND A FREE CLASSIFIED AD WITH YOUR SUBSCRIPTION SUBSERIPTIOM RATES
\square One Year - 3rd Class Mail
$\$ 10.00$
\square One Year - Ist Class Mail.
$\$ 15.00$
\square One Year - Canada \& Mexico (in U.S. Funds)
$\$ 18.00$
\square Lifetime - 3rd Class Mail (U.S. Only)
$\$ 35.00$

ORDER MOW!

SEND:	\square CHECK
	\square VISA

TO: NUTS \& VOLTS MAGAZINE P.O. BOX IIII-H

PLACENTIA, CALIFORNIA 92670
(714) 632-7721

Name
Address
City
State \qquad
CardNo
Exp Date
IF YOU'RE INTO ELECTRONICS. THIS MAGAZINE WILL SAVE YOU MONEY!

Dealer Inquiries Invited
-187

Free Antenna Accessories Catalog

4Coaxial Antenna Relays
Remotely select up to 9 antennas from your transmitter, using only one coaxial cable. Environmentalized, high power and low loss

W2AU and W2DU Baluns

Our baluns, center insulators and insulators have been preferred for 20 years by Hams, industry, and the armed forces. Protect against TVI and lightning 1. $8-200 \mathrm{MHz}$

4 W2VS Antenna Traps

Add these traps to your dipole and get low SWR on 2 to 6 bands, depending on how many you add. Antenna wire and custom kits also available

Send For Yours Today,

Don't delay. Call or write today, and we will send you free literature which fully describes our Ham antenna accessory product line.

Dealer inquiries also welcome.

188

ORLANDO HAMCATION and COMPUTER SHOW

 MARCH 8, 9, 10, '85AIR-CONDITIONED ORLANDO EXPO-CENTRE
500 WEST LIVINGSTON
NEAR I-4 \& HIGHWAY 50
REGISTRATION \$5 advance, $\$ 7$ at door under 14 free
SAT. FCC EXAMS, SAT. LADIES' PROGRAM, hourly awards

For swap tables. commercial booths, odvance registration or information. please send self addressed stamped envelope to:

HAMCATION CHAIRMAN
P.O. BOX 15142 - ORLANDO, FLORIDA - 32858

RADIO WAREHOUSE

 Division of HARDIN Electronics
NO FRILLS—JUST LOW PRICES

 CALL FOR SPECIAL PRICES ONKENWOOD YAESUICOM
TEN-TEC

DAIWA METERS-KEYERS - AUDIO FILTERS

 CUSHCRAFT LINE OF ANTENNAS CALL TOLL FREE 1-800-433-3203
IN TEXAS CALL 817-496-9000 5635 EAST ROSEDALE FT. WORTH, TEXAS 76112

TS830/930 FILTERS

We have received many unsolicited reports praising the performance of both the TS830S and the TS930S after installation of Fox Tango fitters. In addition, these filters have received favorable Product Reviews in QST (9/83 and 4/83); were the subject of a major article: Strangle QRM in your TS830S in 73 Magazine (6/83); and many reports in other national publications. One of the major advantages of our 2.1 kHz SSB matched pair is that they so improve VBT operation that the need for (and expense of) CW filters is eliminated for all but the most dedicated CW operators. For the latter, our 400 Hz CW matched pair is the finest available. Get the best from Fox Tango.

COMPLETE MATCHED PAIR FILTER KITS
WITH ALL NEEDED PARTS
FTK830-2 1 ot FTK930-2 1 for SSB and CW \$170/pair FTK830-400 or FTK930-400 for dedicated CW users \$170/pair FTK830-2 1/400 or FTK930-2 1/400 (both of above pars!
$\$ 300 /$ fout
Specity Rig and Bandwidth desured when ordering Shipping Surface \$3 (C00 add \$1). Air \$5. Overseas \$10 FL Res 5\% Saies lax

IMMEDIATE SHIPMENT - One Year Warranty

Go FOX-TANGO - To Be Sure' We accept VISA/MASTERCARD

FOX TANGO CORPORATION Box 15944 H, W. Palm Boach, FL 33416 (305) 683-9587

Handsome 14 karat

gold tie tacks with your call Individually handwrought in white or yellow gold with a satin finish and antiqued background When ordering please specify white or yellow gold large or small (shown actual size) and carefully print your call

Small $\$ 41.00 \quad$ Large $\$ 57.00$
Please add $\$ 300$ to tover shipping and insurance

Send check or money order to

Robert S Schurmann, KA2UXR 5031 River Road. Pennsauken. NJ 08110 (609) 488-2266

New Jersey Residents add 6% sales tax
191

FCC changes make obtaining a High-level Radio Telephone License much easier now Eliminate unnecessary study with our shortcuts and easy to follow study material. Obtaining the General Radio Telephone License can be a snap! Sample exams, also section covering Radar Endorsement.
A small investment for a high-paying career in electronics.
$\$ 19.95$ ppd.
Satisfaction Guaranteed

SPI-RO DISTRIBUTING

P.0. Box 1538

Hendersonville, N. C. 28793 ~ 175
We now accept MC and VISA VISA
Give card $\#$, exp. date, and signature

Join AMSAT...Today

Amateur Radio Satellite OSCAR 10 provides:

- A New Worldwide DX Ham Band open 10 hours a day.
- Rag Chew With Rare DX Stations in an uncrowded, gentlemanly fashion.
- Popular Modes In Use: SSB, CW, RTTY, SSTV, Packet

- Full Operating Privileges

 open to Technician Class licensee or higher.Other AMSAT Membership Benefits:
ORBIT Magazine Subscription:
Dependable technical articles, satellite news, orbital elements, product reviews, DX news, and more.

Satellite Tracking Software
Available for most popular PCs.

QSL Bureau, AMSAT Nets, Area Coordinator Support, Forum Talks

Construction of Future Satellites For Your Enjoyment!

AMSAT Membership is $\$ 24$ a year, $\$ 26$ outside North America. VISA and MC accepted.

AMSAT
 P.O. Box 27
 Washington, DC 20044

301 589-6062

POCKET SIZE FAST CHARGER
Fast charge your hand held radio battery packs to full capacity in as little as 45 minutes. Example: Fully charge I-COM $\mathrm{BP}-3$ in 30 to 45 minutes.
VERSATILE - Works on 115V. A.C. or 12 V . to 24 V . D.C. and turns itself off automatically when battery reaches full capacity. Use at home or in auto, airplane, boat, R.V. or anywhere there is house current or 12 V. to 24 V. D.C. available.
FEATURES -

1. New Hybrid thick film integrated circuit developed for this charger contains all measuring and control circuitry in a single chip. Laser trimmed precision resistors.
2. Small size - can be carried in your pocket
3. High impact molded plastic case.
4. Reverse polarity protection built in
5. Internally fused.
6. Full 1 year warranty.
7. Completely solid state circuit measures charge constantly and turns off automatically when cells reach full capacity. 8. Charges at optimum rate without any perceptible heating of cells.

Synchronous Packet Radio Using the Software Approach AX. 25 Protocol TRS-80 Model 1,3 and 4
By Bob Richardson, W4UCH
You can get on Packet Radio two ways. One is with a sophisticated "black box". The other is by making your computer act like a "black box"' by programming it in a high level machine language code. W4UCH has written a machine language progam for the Radio Shack TRS-80 Models 1. 3 and 4 computer (Model 4 works with Model 3 disk while in Model 3 mode). This book has twelve chapters plus seven appendices that take you step by step through the process of setting your computer to first convert the digital information into a usable format and then to decode the information.
(c) 1984 3rd edition
-] RE-AX
Softbound \$21.95
PROGRAM NOW AVAILABLE IN DISK FORM

[7RE-MI	Model 1 Disk	\$29.00
[]RE-MIII	Model III \& 4 Disk	\$29.00
RE-BD	BOOK AND DISK	\$49.95
(Specify	1 or Mod. III) SA	

Please add \$3 for shipping
HAM RADIO'S BOOKSTORE
Greenville, NH 03048

fle market

RATES Noncommercial ads 100 per word; commercial ads $60 \llbracket$ per word both payable in advance. No cash discounts or agency commissions allowed.

HAMFESTS Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing) on a space available basis only. Repeat insertions of hamfest ads pay the non-commercial rate.

COPY No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.

DEADLINE 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenvilie, N. H. 03048.

WANTED for my hobby. Old or new foreign paper money. Will accept tor free or will buy or trade. Hincke (WA6LFJ). 1854 East Bay Drive, North Bend, OR 97459.
IBM-PC RTTY ASCI/BAUDOT/CW send and receive. Split screen, buffers and features beaucoup. SASE to: E. Alline, 773 Rosa, Metairie, LA 70005.

CX7 REPAIRS. 415-549-9210.

ELECTRONICS Technology Course 34 credit, excellent for FCC license prep. $\$ 50$. Johnson $6 \$ 2 \$ 50$, RCA volt ohmyst $\$ 30$. RF signal Gen. $\$ 20$. AF signal gen. $\$ 20$. K6KZT, 2255 Alexander, Los Osos, CA 93402.
TRAVEL-PAK QSL KIT - Converts post cards, photos to QSLs. Stamp brings circular. Samco, Box 203-c, Wynantskill. New York 12198.
WANT old antenna books, handbooks, CQ. pre-1940 OST Tad Cook, KT7H, 5519 - 12th N.E.. Seattle, WA 98105.
CUSTOM MADE embroidered patches. Any size, shape, colors. Five parch minimum. Free sample, prices and ordering information. Hein Specialties, Inc., Dept 301, 4202 N. Drake. Chicago, IL 60618.
REALISTIC 5 -band solid state communications receiver, short wave and domestic, with speaker, efficient plastic dipole room wave and domestic, with speaker, efficient plastic dipole room
antenna, with calibration charts and manual. Four years old. Used very little and has excellent world wide reception. $\$ 70$ or best offer. Paul S. Bassett, Jr., RFD \#2, Sutton Center, MA 01527.

HEATHKIT VF7401 - 2 meter FM digital scanning transceiver. Checked out by Heath. Asking $\$ 225$. Call (217) 344-4265. Tim Lazaro, W9OEN, 203 S. Birch St., Urbana, IL 61801

Foreign Subscription Agents for Ham Radio Magazine

FOR SALE: Auto Connect Private patch simplex club no longer needs. Mint condition - works great $\$ 225.00$ we ship KGEVU, 1228 Lincoln Blvd., Muscatine, 52761. (319) 263-5316.

TENNATEST -- Antenna noise bridge -- out-performs others, accurate, costs less, satisfaction guaranteed, $\$ 41.00$. Send stamp for details. WBUUR, 1025 Wildwood Road, Quincy. MI 49082.

RUBBER STAMPS: 3 lines $\$ 4.50$ PPD. Send check or MO to G.L. Pierce, 5521 Birkdale Way, San Diego, CA 92117. SASE brings information.
DIGITAL AUTOMATIC DISPLAYS for Collins, Drake. TS-520S (functional DG-5 replacement) and Swan 350C through 700 CX . No installation. Plugs into existing jacks and tube sockets (using extenders). FT-101's and TS-520 models are easily installed. No drilling. Six red $1 / 2^{\prime \prime}$ digits in a $5^{\prime \prime}$ by $1-1 / 2^{\prime \prime}$ by $9^{\prime \prime}$ deep cabinet! Write for information. Grand Systems, PO Box 2171, Blaine, WA 98230. (604) 530-4551.
REPAIR, ALIGNMENT, calibration Collins written estimates $\$ 25$; non Collins $\$ 50$. K1MAN. (207) 495-22 15 .
ATLAS 350XL owners group. Send QSL card with s/n your rig. Know anyone who repairs them? Have any technical information to share? Any questions? Rod, N5NM, Box 2169. Santa Fe , NM 87504
CHASSIS and cabinet kits SASE K3IWK
SCHEMATICS: Radio receivers 1920/60's. Send name brand, model, SASE, Scaramella. PO. Box 1, Woonsocket. Ri 02895-0001. (602) 897-2534.
AMATEUR RADIO's newspaper - Worldradio. Latest info. One year subscription (12 issues) only $\$ 10$. Worldradio, 2120-8 28th St. Sacramento, CA 95818.

SELLING forty year collection of vacuurm tubes from one dollar up. Send list of your requirements for availability and quotes. M. Levy, W5QJT, 4141 Krupp Dr., El Paso, TX 79902.

CUSTOM embroidered emblens - Cloisonne enameled pins, your design, low minimum, excellent quality, free booklet. A.T Patch Co., Dept. 65. Litteton, NH 03561. (603) 444-3423.

HAM RADIO Magazine collection: Bound volumes 1972, 1973, 1974 and 1975. In HR binders 1976, 1977, 1978 and 1979. $\$ 120$ for lot plus UPS shipping. US only W4UCH, Box 1065 , Chautauqua, New York 14722 (716) 753-2654.
WANTED: Cash paid for used speed radar equipment. Write or call: Brian R. Esterman, PO Box 8141, Northfield. llinois 60093. (312) $251-8901$.

SSSS SUPER SAVINGS on electronics parts, components, supplies, and computer accessories. Free 40-page catalog for SASE. Get on our mailing list. BCD Electro. PO Box 830119. Richardson, TX 75083. Or call (214) 690-1102.

WANTED: Old microphones, remote mixers other misc related items. All pre-1935. Box Paquelte, 107 E. National Avenue. Milwaukee, WI 53204.
WANTED: Used microwave equipment. D. Mitchell, K8URL. 1 Cider Mill Lane. Upton, MA 01568. (617) 529-4638.
RECONOITIONED TEST EQUIPMENT $\$ 1.00$ for catalog. Walter, 2697 Nickel, San Pablo, CA 94806.

RTTY-EXCLUSIVELY for the Amateur Teleprinter. One year $\$ 700$. Beginners RTTY Handbook $\$ 8.00$ includes journal index. P.O. Box RY, Cardiff, CA 92007.
"HAMS FOR CHAIST." Reach other Hams with a gospel tract sure to please Clyde Stanfield. WA6HEG. 1570 N . Albright, Upland, CA 91786.
VHF, UHF, ATC kits high quality professional kits from Wood \& Douglas, England. Designs tor RX's, TX's, Xcvr's, preamps. Catalog. Lance Lyman, K8IXZ, Tactical Electronics Corp., PO Box 1743, Melbourne, FL 32902.
WANTED: Early Hallicrafter "Skyriders" and "Super Skyriders" with silver panels, also "Skyrider Commercial", early transmitters such as HT-1, HT-2, HT-8, and other Hallicrafter gear. parts. accessories, manuals. Chuck Dachis, WDSEOG, The Hallicratter Collecior, 4500 Russell Drive, Austin, Texas 78745
VERY in-ter-est-ing! Next 4 issues $\$ 2$. Ham Trader "Yellow Sheets', POB356. Wheaton, IL 60189.
GENERAL RADIO 650A impedance bridge $\$ 75$. 650-P1 oscillator amplifier $\$ 75$. WA3WHR. 4109 Oueen Mary Drive. Olney, MD 20832 (301) 774-9131.
SCHOTTKY mixer diodes HP-2800, 8/\$1 + 254 postage. Koempel, Box 335, Keansburg, NJ 07734.
SOLAR ELECTRIC panels at drastically reduced prices! Offspec and surplus modules from major manufacturers. Up to 50% off list. Styles, outputs vary. Call FREE for details -800-638-8304. Major credit cards welcome.

ELECTRON TUBES: Receiving, transmitting, microwave all types available. Large stock. Next day delivery most cases Daily Electronics, PO Box 5029, Compton, CA 90224. (213) 774-1255

COMING EVENTS

Activities - "Places to go .

INDIANA: South Bend Hamfest Swap \& Shop, January 6, first Sunday atter New Year's Day at Century Center downtown on US 33 Oneway North between St. Joseph Bank Building and river. Industrial history Museum in same building. Carpeted half acre room. Open tables $\$ 1$ per ft . Four lane highways to door from all directions. Talk-in freq: 52-52, 99-39, $93-33,781 / 218,69-09,14529$.

AFCEA Amateur Radio Luncheon sponsored by the Armed Forces Communications and Electronics Association al their 6 th Western Conference held at the Disneyland Hotel in Anaheim, California, 29 through 31 January 1985. Admission free to all registrants. There is a nominal charge for luncheon tickets. Following the meal, a panel of distinguished leaders will participate in a forum on "Amateur Radio Support tor the National Communications System', For additional information: John W. Browning, W6SP. 6202 Lochvale, Palos Verdes, CA 90274. (213) 544-2543.
ARIZONA: The Eastern AZ Amateur Radio Society will hold Amateur Radio license exams, Saturday, January 26, 9 AM to 3 PM, National Guard Armory, 4001 First Avenue, Safford. Prior registration deadline January 21. Send completed form 610. copy of license and $\$ 4.00$ registration tee to EAARS, PO Box 402, Thatcher, AZ 85552 . For information: Richard, N7DZH (602) 428-6560 7 AM to 3:30 PM.
MASSACHUSETTS: The Mount Tom Amateur Repeater Association will host its first annual indoor Flea Market, March 3, 9 AM to 4 PM, Knights of Columbus Hall, Elder Council 69, Granby Road, Chicopee. General admission $\$ 1.00$. Kids and spouse free. Tables $\$ 8.00$ door; $\$ 7.00$ ad vance. Set up 8-9 AM. Food and drink. Contact Mickey Yale, NiCDR, 6 Laurel Terrace, Westfield. MA 01085. (413) 562-1027.

NEW YORK: Yonkers Electronics Auction, Sunday, January 27, 9 AM to 3 PM, sponsored by the Yonkers Amateur Radio Club. All indoors at Lemko Hall, 556 Yonkers Avenue. Admission $\$ 3.00$. Children under 8 free Inspection from 9-10 AM. Club commission on successful sales only 10% first $\$ 100$: 5% remainder. Hams computer and electronic wizards. CBers bring equipment (new and used) you want to auction off. Unlimited free coffee all day. Talk in: 146.265T/146.865R, 52 direct. $440.150 T / 445.150$ R. For information: YARC, 53 Hayward Street, Yonkers. NY 10704. (914) 969-1053.
LOUISIANA: The Southeastern LA University ARC (SLUARC) and the Southeast LA ARC (SELARC) are jointly sporsoring a Hamfest, Saturday. January 19. 9 AM to 3 PM at the old men's gym on the Southeastern LA University Campus. Free admission.

THE VOLUNTEER EXAMINERS of the Grand Rapids Amateur Radio Association in cooperation with ARRL will conduct Amateur Radio exams in Grand Rapids, Michigan on the following dates: Friday, February 15, Friday, June 21, Friday, October 18, 1985 and Friday, February 21, 1986. Mail FCC Form 610, check/MO for $\$ 4.00$ made out to ARRLIVEC to: ARRL/FCC Amateur Testing, c/o Mike Bottema, K8EX, 930-92nd Street, SE, Byron Center, MI 49315
Operating Events - "Things to do
January 26: West Virginia QSO Party, 1700 Z Jan. 26 to 1700 Z Jan. 27. Single operator only. Exchange signal report, serial number and OTH (county for WV stations; state or country for others). Mail logs by Feb. 11 (include large SASE for results) to KBDS. PO Box 1694, Charleston, WV 25326
YL-OM CONTEST. Phone: Start St. February 9, 1800 UTC ends Sun. Feb. 101800 UTC. CW start Sat. Feb. 23 at 1800 UTC ends Sun. Feb. 24 at 1800 UTC. Ali licensed men and women operators throughout the world are invited to participate. Exchange station worked, OSO number, RS or RST, ARRL section or country. Entries in log must also show time, band. date and transmitter power. Logs must show claimed score and be postmarked by March 15, 1985 and received no later than April 5, 1985. Please send logs to: Marty Silver, NY4H, 3118 Eton Road, Raleigh. NC 27608, USA
VT OSO PARTY 19850001 Z February 2 to 24002 February 3. Exchange VT stations send RS(T) and county (CW) twoletter county designators. Other stations send RS(7) and state, province or ARRL country. Send SASE now for official score and \log sheets. Send logs/facsimiles, name, address, county (V7). nit March 1, 1985 to: D. Nevin, KK1U, W. Hill, Northfield. VT 05663.
1985 NEW HAMPSHIRE QST PARTY, $1900 Z$ February 2 to 07002 February 3 and 14002 February 3 to 0200Z February 4. Work stations once per band and mode. NH to NH OSO's allowed. Exchange signal report and QTH (county for NH stations, state, VE province or OXCC country for others). Logs must be postmarked by March 15 Include large SASE for results. Mail logs to: Great Bay Radio Assoc., PO Box 911. Dover, NH 03820
WEST COAST 160 BULLETIN SSA CONTEST, February 9 0000 GMT to February 102359 GMT. Single operator only. Exchange RST, QTH. Subscribers/non subscribers. Score 10 points per OSO. Multipliers: states, VE Prov Country Log info: date, time, rst, QTH Send logs to: R. Koziomkowski, 5 Watson Drive, Portsmouth. RI 02871. Logs must be postmarked before March 31. 1985.

April 26, 27, 28, 1985
Hara Arena and Exhibition Center Dayton, Ohio

\star Giant 3-Day Flea Market Starting Noon Friday All Day Saturday and Sunday
\star Technical Forums
\star ARRL and FCC Forums
\star FCC Examinations
\star New Products and Exhibits
\star Grand Banquet
\star Alternative Activities
\star Electrical Safety Forum
\star Special Group Meetings
\star YL Forum
\star Personal Computer Forum

* Int'l. VHF/UHF Conference
\star CW Proficiency Awards
\star Amateur of Year Award
\star Special Achievement Awards

Meet your amateur radio friends from all over the world at the internationally famous Dayton HAMVENTION.

Seating will be limited for the Grand Banquet and Entertainment on Saturday evening so please make reservations early. Noted humorist Jean P. Sheperd. K2ORS, will return for his third appearance as Banquet Speaker. His presentation promises to be outstanding in an all new banquet program format.

If you have registered within the last 3 years you will receive a brochure in January. If not, write Box 44, Dayton, OH 45401.

Nominations are requested for Radio Amateur of the Year, Special
ADMISSION
$\$ 8$ in advance. $\$ 10$ at door.
(Valid for all 3 days)
BANQUET
\$14 in advance. $\$ 16$ at door.
FLEA MARKET SPACE
$\$ 17$ in advance.
(Valid for all 3 days)
Checks for advance registration to
Dayton HAMVENTION
Box 2205, Dayton. Ohio 45401
Registration processing
starts Jan. 1, 1985. Achievement and Technical Excellence Awards. Nomination forms are available from Award Chairman, Box 44. Dayton, Ohio 45401 and must be returned by April 1, 1985.
For special motel rates and reservations write to Hamvention Housing. Box 1288, Dayton. OH 45402. NO RESERVATIONS WILL BE ACCEPTED BY TELEPHONE.

FCC EXAMS

All elements to be administered. Advanced registration only. DEADLINE TO REGISTER: March 27, 1985.

- $\$ 4.00$ check or money order made payable to ARRL/VEC
- Completed 610 form with copy of license
- Indicate preferred sitting time: Sat. 9 a.m.. Sat. 1 p.m., Sun. 9 a.m.
Mail registration to: FCC Exams, 203 Bellewood St. Dayton, OH 45406

All other inquiries write Box 44, Dayton, OH 45401 or phone (513) 433-7720.
Flea Market spaces will be sold in advance ONLY. NO spaces sold at gate. Entrance for set-up available starting Thursday. Special Flea Market telephone (513) 223-0923.

Bring your family and enjoy a great weekend in Dayton.

Sponsored by
The Dayton Amateur Radio Association, Inc.

A free slide and cassette show is available for your meetings. Request "Slide Application" from DARA, Box 44. Dayton. OH 45401

spectrum utilization: a challenge to technology

In almost every segment of the radio spectrum we're faced with increasing demands for frequency assignments, greater bandwidths, and increased radiated power (range/reliability). Some specific segments groan under the burden: the AM and FM broadcast bands, the 40 and 20 -meters Amateur bands, VHF and UHF business radio, and the 2 GHz microwave area. Spectrum conservation and improved utilization techniques have become a high priority for practically every user of the airwaves.

Until now the methods used to squeeze more signals into the same tight space have been relatively simple: use SSB, reduce FM deviation, improve antenna directivity, and so on. But more sophisticated techniques will be needed if we're to make more efficient use of the spectrum.

Fortunately, in 1948 a thoughtful scientist - Claude Shannon at Bell Laboratories - developed a theory of information transmission that showed the relationship between speed, bandwidth, and time in a usable mathematical form. Dr. Shannon's work made possible the coding concepts that permit more effective utilization of spectrum space. There are several ways in which RF signals can share the same "space":

- time sharing
- frequency sharing
- different antenna polarizations
- coding

The goal of each of these techniques
is to yield a signal-to-noise ratio that conveys information (a change of data) usable to the data sink - which is frequently a person, but could also be an unattended data terminal. Indeed, time, frequency, and polarity diversity are all forms of coding.

Modern computer technology gives us options with respect to code complexity, efficiency, and speed that were simply not available when our present modes of communications were being developed. The basic objective of data coding for spectrum efficiency is to omit as much data as possible while still conveying relevant information.

One of the more successful techniques for bandwidth reduction is being used by some computer manufacturers to permit very high resolution graphics on conventional RGB displays. This process is called bit-plane encoding. In this process a signal of 2^{n} possible amplitudes is transformed into n signals, each of which has only two amplitudes. The 2^{n} amplitudes subsequently consist of an n-bit binary word at the output of an appropriate quantizer. This process has demonstrated that it can reduce by six times the bandwidth needed to transmit high quality, full motion TV images. Manufacturers are now developing dedicated digital signal processing chips to perform the necessary bandwidth compression and S/N ratio enhancement functions.

If we remember that information requires a change of data, then even more bandwidth reduction is possible by further reducing, or eliminating, redundant data. AT\&T adopted this technique, - called 'conditional
replenishment" - to make possible the "picture-phone." In this approach, a TV frame is stored in a memory and compared against a subsequent frame. Only the parts that are different are transmitted. It was found that a bandwidth of less than 100 kHz could convey an acceptable moving picture using this method. If variable persistence and digital background refresh are available at the receiving end, the data needs to be sent even less frequently. Think of how much redundant data is conveyed in the Amateur bands - background noise, non-linear distortion, excess power when band conditions are good, and so on. If Amateur SSB/FM rigs just had some digital storage and "variable persistence" audio output stages . . .!

Some TV receivers utilizing these techniques may be available by next year, but the real challenge remains a general commitment by the electronic industry to more frequent implementation of modern techniques.

Since much of the processing needed to effect significant bandwidth reduction is very complex, most Amateurs will have to wait until the chips are readily available before they'll be able to actually use these techniques in hardware.

Even more efficient than these techniques, but still years away from Amateur implementation, are mutually adaptive data links. This approach enables both ends of the link to regularly adjust their own performance to accommodate the predetermined acceptable data quality.

Although this column is reserved for discussions of technological trends
with implications for Amateur Radio, the need for better spectrum management is so urgent that I can't help but offer a few comments about ways in which each of us can help assure better use of our present bands:

- Use the minimum power necessary. If conditions are good, settle for S9 on the other end. Remember that the mike gain is as useful as the volume control.
- Use filters - keep out-of-band harmonics and spurious responses to a minimum. Upgrade the internal filters (crystal/mechanical) in your rig to units with steeper skirts if they're available. Audio filters and response shaping can be useful in both the microphone and speaker circuits at your station.
- When possible, use directive antennas and keep the main lobe on the station you're working. Never mind proving that you can work Lonely Island off the back of your beam.
- Operate your rig within its limits. If you run a rig rated at 1 kW , keep it at 1 kW . Pushing it to 1500 watts will only generate distortion, won't help you at the receiving end, and will probably cause the stations on either side of your frequency to miss the opportunity altogether.

Someday the electronic capabilities I've discussed will compensate for the effects of individual operating habits on the spectrum. Until that time comes, solving the problem of effective spectrum utilization will be up to us.
ham radio

California

C \& A ROBERTS, INC.
18511 HAWTHORN BLVD.
TORRANCE, CA 90504
213-370-7451
24 Hour: 800-421-2258
Not The Biggest, But The Best -
Since 1962
FONTANA ELECTRONICS
8628 SIERRA AVENUE
FONTANA, CA 92335
714-822-7710
714-822-7725
The Largest Electronics Dealer in San Bernardino County.

JUN'S ELECTRONICS
3919 SEPULVEDA BLVD
CULVER CITY, CA 90230
213-390-8003
800-882-1343 Trades
Habla Espanol

Connecticut

hatry electroonics

500 LEDYARD ST. (SOUTH) HARTFORD, CT 06114
203-527-1881
Call today. Friendly one-stop shopping at prices you can afford.

Delaware

AMATEUR \& ADVANCED

COMMUNICATIONS
3208 CONCORD PIKE
WILMINGTON, DE 19803
(302) 478-2757

Delaware's Friendiest Ham Store.
DELAWARE AMATEUR SUPPLY
71 MEADOW ROAD
NEW CASTLE, DE 19720
302-328-7728
800-441-7008
Icom, Ten-Tec, Microlog, Yaesu, Kenwood, Santec, KDK, and more One mile off l-95, no sales tax

Florida

AMATEUR ELECTRONIC SUPPLY 1898 DREW STREET
CLEARWATER, FL 33575
813-461-4267
Clearwater Branch
West Coast's only full service
Amateur Radio Store
Hours M-F 9-5:30, Sat. 9-3

AMATEUR ELECTRONIC SUPPLY
621 COMMONWEALTH AVE.
ORLANDO, FL 32803
305-894-3238
Fia. Wats: 1 (800) 432-9424
Outside Fla: 1 (800) 327-1917
Hours M-F 9-5:30, Sat. 9-3
AMATEUR RADIO CENTER, INC.
2805 N. E. 2ND AVENUE
MIAMI, FL 33137
305-573-8383
The place for great dependable names in Ham Radio.

Hawaii

HONOLULU ELECTRONICS
819 KEEAUMOKU STREET
HONOLULU, HI 96814
(808) 949-5564

Serving Hawaii \& Pacific area for 51 years. Complete lines of Amateur equipment, accessories and parts.

Illinois

ERICKSON COMMUNICATIONS, INC.
5456 N. MILWAUKEE AVE
CHICAGO, IL 60630
312-631-5181
Hours: 9:30-5:30 Mon, Tu, Wed \& Fri; 9:30-8:00 Thurs; 9:00-3:00 Sat

Indiana

THE HAM STATION

808 NORTH MAIN STREET
EVANSVILLE, IN 47710
812-422-0231
Discount prices on Ten-Tec, Cubic, Hy-Gain, MFJ, Azden, Kantronics
Santec and others.

Kentucky

L\&SRADIO
307 McLEAN AVENUE
HOPKINSVILLE, KY 42240
502-885-8071
Ten-Tec, Azden, Ameritron Sales and Service.

Massachusetts

James Millen Components by
ANTENNAS ETC.
16 HANSOM ROAD
ANDOVER, MA 01810
617-475-7831
Bezels, bindng posts, capacitors, condensers, chokes, coils, ceramics, H.V. connectors, plate caps, hardware knobs, dials, scopes and grid dippers. Inquire SASE or visit.

TEL-COM, INC.
675 GREAT ROAD, RTE. 119
LITTLETON, MA 01460
617-486-3400
617-486-3040
The Ham Store of New England
You Can Rely On

Michigan

ENCON PHOTOVOLTAICS
Complete Photovoltaic Systems
27600 Schoolcraft Rd.
Livonia, Michigan 48150
313-523-1850
Amateur Radio, Repeaters, Satellite, Computer applications
Call Paul WD8AHO

Nevada

AMATEUR ELECTRONIC SUPPLY
1072 N. RANCHO DRIVE
LAS VEGAS, NV 89106
702-647-3114
Dale Porray ''Squeak,'" AD7K
Outside Nev: 1 (800) 634-6227
Hours M-F 9-5:30, Sat. 9-3

JUN'S ELECTRONICS
460 E. PLUMB LANE - 107
RENO, NV 89502
702-827-5732
Outside Nev: 1 (800) 648-3962
Icom - Yaesu Dealer

NEW YORK

ADIRONDACK ELECTRONICS, INC.
1991 CENTRAL AVENUE
ALBANY, NY 12205
518-456-0203
Amateur Radio for the Northeast since 1943.

BARRY ELECTRONICS

512 BROADWAY
NEW YORK, NY 10012
212-925-7000
New York City's Largest Full Service
Ham and Commercial Radio Store

VHF COMMUNICATIONS

915 NORTH MAIN STREET
JAMESTOWN, NY 14701
716-664-6345
Call after 7 PM and save! Supplying all of your Amateur needs. Featuring ICOM
"The World System." Western New
York's finest Amateur dealer

Amateur Radio Dealer

Ohio

AMATEUR ELECTRONIC SUPPLY 28940 EUCLID AVE
WICKLIFFE, OH (CLEVELAND AREA) 44092
216-585-7388
Ohio Wats: 1 (800) 362-0290
Outside Ohio: 1 (800) 321-3594
Hours M-F 9-5:30. Sat 9-3

UNIVERSAL AMATEUR RADIO, INC

 1280 AIDA DRIVEREYNOLDSBURG (COLUMBUS). OH 43068
614-866-4267
Featuring Kenwood, Yaesu, Icom. and other fine gear. Factory authorized sales and service. Shortwave specialists. Near I-270 and airport.

Pennsylvania

HAMTRONICS.

DIV. OF TREVOSE ELECTRONICS

4033 BROWNSVILLE ROAD
TREVOSE. PA 19047
215-357-1400
Same Location for 30 Years

LaRUE ELECTRONICS

1112 GRANDVIEW STREET SCRANTON, PENNSYLVANIA 18509 717-343-2124
Icom, Bird, Cushcraft, Beckman, Larsen. Hustler, Astron, Belden, Antenna Specialists. W2AU/W2VS, AEA, B\&W, Amphenol, Saxton. J.W Miller/Daiwa, Vibroplex

THE VHF SHOP

BOX 349 RD 4
MOUNTAINTOP. PA 18707
717-868-6565
Lunar, Microwave Modules, ARCOS, Astron, KLM, Tama, Tonna-F9FT UHF Units/Parabolic, Santec. Tokyo Hy-Power, Dentron, Mirage,
Amphenol, Belden

Texas

MADISON ELECTRONICS SUPPLY
1508 McKINNEY
HOUSTON. TX 77010
713-658-0268
Christmas?? Now??

Wisconsin

AMATEUR ELECTRONIC SUPPLY

4828 W. FOND DU LAC AVE
MILWAUKEE, WI 53216
414-442-4200
Wisc Wats: 1 (800) 242-5195
Outside Wisc: 1 (800) 558-0411
M-F $\quad 9.5: 30$
Sat $\quad 9.3$

10 GHz
 GUNNPLEXER transceiver

- Complete ready to use 10 GHz fm voicelcw ransceiver - 10 mW power output - Typical frequency coverage $10.235-10.295 \mathrm{GHz}$ - Full duplex operation - Internal Gunnplexer for portable operation - Gunnplexer removable for tower mounting in fixed location service - three shielded cables required for interconnection - Powered by 13 volts dc nominal at 250 mA - 30 MHz iff -10 -turn potentiometer controlled VCO tuning - 220 kHz ceramic i-f filter - Extra diode switched filter position for optional filter • Dual polarity afc • Rugged two-tone grey enclosure - Full one year warranty - $\$ 389.95$ with 10 mW Gunnplexer
- $\$ 269.95$ without Gunnplexer

Advanced Receiver Rescarch

Box 1242 • Burlington CT 06013

203 582-9409

Postpaid for U.S. and Canada. CT Residents
add $7.1 / 2 \%$ sales tax. C.O.D. orders add $\$ 2.00$.
Air mall to foreign countries add 10%

July 27 thru Aug. 9, 1985 Our 26th year
TAKE A VACATION WITH A PURPOSE THIS YEAR
Join students from around the world at OAK HILL ACADEMY AMATEUR RADIO SESSION Instructors CERTIFIED VE's
Over 25 years of successful teaching experience means upgrading is as casy as 1-2.3.
Your vacation is spent in the beautiful Blue Ridge Mountains of Virginia with expert instructors in friendly surroundingsand withexcellent accommodations
Oak Hill also has a ham lab set up for all to use. Courses offered are:

Novice to General
General or Tech to Advanced
Advanced to Extra
I earn - don't just memorize the answers to the exam questions
C L PETERS, K4ONJ, Director
Oak Hill Academy Amateut Radio Sesston
Box 43
Mouth of Wilson, VA 24363
Name
Call
Address
City/State/Zip

1-196

NEW FROM TEN-TEC MODEL 425 LINEAR AMPLIFIER FULL AMATEUR POWER 1500 WATTS OUTPUT

Uses new EIMAC 3CX800A7 triodes in a grounded grid configuration Maximum output power of 3 KW requires only 100 watts drive Full QSK for CW and AMTOR use Covers 160 through 15 meters (export model covers 10 meters.) Uses highly efficient tape wound hypetsil transtormer for cool operation under full load Available along with the rest of the exciting line of TEN-TEC products from THE HAM STAIION Call today for more information.
For orders and quotes (800) 523.7731 For other intormation (812) 422.0252 Indiana orders (812) 422-0231

220 N Fulton Ave • Evansville, IN 47710
VISA and Mastercard welcoine Freight FOB Evansvile Prices and avalability subject to change

Don't Be Left Out in the Cold with the Russian Woodpecker

GET A MOSCOW MUFFLER ${ }^{\text {n }}$

Another first from AEA. The Woodpecker Blanker, WB-1 really works. This unit effectively blanks the pulsing interference of the Russian Woodpecker. Two versions are available, the WB-1 for use with communication receivers and WB-1C for use with all popular transceivers.

This extremely useful accessory is designed for direct insertion between your receiver (or transceiver) and the antenna. It is both MORE EFFECTIVE than I.F. type blankers and requires NO MODIFICATIONS to your receiver! The unit operates from a 13 VDC ± 2 VDC power source at less than 575 mA . (AEA AC wall unit AC-1 will operate the blanker.)
The blanker works well on both CW and SSB modes that are being interfered with by a woodpecker. Controls on the front panel include; four push button switches, a synchronize control and a width control The WB-1 also features a low-noise untuned broadbanded 6 db gain pre-amp which can be selected with or without the blanker enabled. The WB-1C uses the same circuitry but includes a carrier operated relay (COR). This provides protection to the receiver section during transmissions from the attached transceiver.

For more details, write for our latest catalog or visit your favorite dealer

Prices and Specifications subject to change without notice or obligation.

> ADVANCED ELECTRONIC APPLICATIONS, INC.
> P.O. Box C-2160,

> Lynnwood, WA 98036
> (206) 775-7373

> Telex: 152571 AEA INTL

READER SERVICE PAGE
138 - Micro Control Specialties 66
188- Microwave Filter, Inc 119
145 - Missouri Radio Center. 73
157 Nampa Satellite Systems 90, 91
134. NCG 58
148 - Nemal Electronics 18, 74
187 Nuts \& Volts 119
Oak Hill Academy ARS 127
112 Optoelectronic 27
192 . Orbit Magazine 121
Orlando Hamcation 119
139 P. C. Electronics 66
129 Phillips Tech Electronics 50
184 . Precision Technology 118
166 - Processor Concepts 103
125 Radio Amateur Callbook 47
179 Radiokit 111
Radio Warehouse 120
169 Ramsey Electronics 100
193 RND Design Corp. 121
195 Roensch Microwave 117
117 - Sartori Associates 28
164. Satellite Television 96
156 - Satellite TV Magazine 88
172 Scamp Systems, Inc 110
191 - Robert S Schurmann, KAZUXR 120
167 SIBEX 103
183 Skylane Products 118
160 - South Midlands Communications, Ltd, 90
135 . Spectrum International 63
122. Spi Ro Distributing 44, 111, 120
Ten Tec 125
Terra Corporation 96
137 - Texas Towers 64, 65
128 TNT Radio Sales 50
109. Transleteronic. Inc 18
Tropical Hamboree 112
UNR Rohn 43. 112
176 Unity Electronics 111
158 - Universal Electronics 90
University Microfilms International 118
121 Vanguard Labs 44
103 Varian/Eimac 4
113 Vector Radio 28
182 VHF Communications 117
173 Vid Com Communications 110
146 James Walter Test Equipment 73
299 Westcom Engineering 41
194 -Western Electronics 79
149 Western Satellite 78, 79
Wheeler Applied Research Labs. 118
197 Yaesu Electronics Corp Cover III
PRODUCT REVIEW/NEW PRODUCT
136 Digital Instruments 115
John Fluke Manufacturing Co. Inc 114
303 HAL Communication Corp 117
104 Hamtronics, NY 115
301 Heath Company 114
302 Palomar Engineers 114
179 Radioki 114

Limit 15 inquiries per request.

Presenting two small cases for a lot of mobile power.
 2 -meter and 440 MHz operating

You won't find a 45-watt. 2-meter FM mobile rig that's built smaller than the Yaesu FT-270RH.

Nor will you find a dual-band FM mobile that offers the crossband full-duplex capability found in the 25-watt Yaesu FT-2700RH

It shouldr't be surprising. Weve been coming up with a lot of innovative concepts lately

The FT-270RH measures just $2 \times 6 \times 7$ inches. Conveniently fitting its high-power punch into many small spaces of your car Places where other 45 -watt mobiles just won't fit.

The FT-2700RH is small too. Smaller than other dual-banders. But with one big difference: a "DUP" button. Push it, and you're operating full duplex. 2 meters on one VFO, 440 MHz on the other Each at 25 watts. So you can simultaneously
transmit and receive in true telephone style.

Once installed, you'll find the FT-270RH and the FT-2700RH equally simple to operate. Just turn the rig on, dial up a frequency, select offset or duplex split. and you're on the air:

Each rig gives you 10 memories for stoning your favonite frequencies. Dual VFO capability. A clean, uncluttered LCD display for easy readout. Push-button jumps through the band in 1 MHz steps. Band scanning with programmable upper and lower limits. And prionity channel operation.

You don't even have to take your eyes off the road to determine your operating frequency and memory channel. An optional voice synthesizer announces them both at the push of a button on the microphone. The FT-2700RH announces both your
frequencies

Also, tone encode and encode decode capability is programmable from the front panel, using an optional plug-in board.

So when you need a lot of power in a compact mobile radio, discover Yaesu's FT-270RH and FT-2700RH. There's nothing else like them on the'road.

YAESU

Yaesu Electronics Corporation
6851 Walthall Way. Paramount. CA 90723 (213) 633-4007

Yaesu Cincinnati Service Center

9070 Gold Park Drive. Hamiton: OH 45011 (513) 874-3100

Prices and specifications subject to change without notice.

TM-211A DCS... a new turn in 2 meters $/ 70 \mathrm{~cm}$.

TM-211A/411A

The TM-211A 2 meter and the TM-411A 70 cm mobiles combine ultra compact size with the added feature of a 7 position adjustable front panel, allowing you maximum flexibility in both home and automotive installations! These compact transceivers also feature Kenwood's innovative DCS (Digital Code Squelch) circuit, that allows you to program your transceiver to respond only to transmissions from stations whose radios transmit a pre-selected digital code, Both radios deliver 25 big watts of R.F.
power on H , and 5 watts (approz mately) on LO power. Dual digital VFO's, built-in, highly visible yellow LED display, five memories plus COMM Channel add to this impressive array of features. The TM-211A and TM-411A each boast high performance receive and transmit specifications and an external high quality speaker that provides unsurpassed sound quality. Mounting flexibility is also a feature. Yes, all these features, plus priority watch. memory and programmable band scan, microphone test function, audible "beeper" for operation confirmation, repeater offset switch and reverse switch. The TM-211A and

TM-411A offer you the best in 2 meters and 70 cm operations!

Optional accessories:

- CD-10 Call Sign Display
- PS-430 D.C. Power Supply
- KPS-7A Power Supply
- MC-55 Mobile Microphone with Time-Out Timer
- MA-4000 Dual Band Mobile Antenna with Duplexer
- SW-100A/B SWR/Power meters
- PG-3A Noise Filter

More information on these products is available from authorized dealers of Trio-Kenwood Communications, 1111 West Walnut Street, Compton, CA 90220.

CD-10/DCS

The optional CD-10 helps maximize your use of Kenwood's revolutionary new signalling concept. DCS (Digital Code Squelch). DCS uses digital code information to open squelch on a receiver that has been programmed to accept the specific code being transmitted. Up to 100,000 different 5 -digit codes are possible, allowing each station to have its own "private call" code or

to respond to a "group call" or "common call" code. Program your call sign (up to 6 digits) in the ASCII code and it is automatically trans-
mitted when the transmit key is depressed. The CD-10
stores the calling station's
call sign in its memory
for future reference, and it is also displayed on the L.C.D. readout. The CD-10 can store call sign data of up to 20 stations, allowing you to quickly check tor calls if you have been absent from your station, and review your contacts for logging purposes. The DCS/call sign data transmission system uses mark and space frequencies within the normal speech band width (compatible w/most repeaters).

TM-201A/401A

The extremely popular TM-201A 2 meter FM (25 watts, 142.000 to 149.000 MHz) and the TM-401A 70 cm FM (10 watts, $440-450 \mathrm{MHz}$) ultra compact mobile transceivers are also available.
Specifications and prices are subject to change without notice or obligation

[^0]: *See "Reflections," ham radio, October, 1984 (page 6) and this month's Presstop (page 8).

[^1]: 1. Harold F. Tolles, W7ITB, "How to Design Gamma Matching Networks," ham radio, May, 1973, page 46.
 2. D.J. Healey, III, W3PG, "An Examination of the Gamma Match," OST, April, 1969, page 13.
 3. Fred Reynolds, W2VS, "Simple Gamma Match Construction," QST, July, 1957, page 30.
 4. James L. Lawson, W2PV, "Yagi Antenna Design," ham radio, July, 1980, page 19.
[^2]: QUALITY STEEL PRODUCTS BY
 ROHN
 Box $2000 \cdot$ Peoria. Illinois 61656 U.S.A.

[^3]: *Note: Elements are built from lengths of 5/16 inch (7.9 mm) diameter aluminum tubing. The vertical whip section is $51-1 / 4$ inches (130.2 cm) long, with 50-1/2 inches exposed above the coil mount. Each radial is 59 inches (150 cm) long, with $58-1 / 4$ inches $(148.0 \mathrm{~cm})$ protruding from the aluminum slug. The coil form and support are cut on a lathe from a single block of LEXAN, a polycarbonate material having good resistance to ultra-violet light (sunlight). It is drilled at the top to accept the whip and at the bottom (4 places) to fit the aluminum mounting slug. The base coil is wound on the top portion of the form. The coil consists of $6-1 / 2$ turns. No. 14 bare copper wire, spaced to $1-1 / 8$ inch $(2.86 \mathrm{~cm})$ length. Bottom of the coil is grounded to the aluminum mount. Top end of the coil is attached to the vertical whip by a short strap which encircles the base of the whip and is held in place with $4-40$ hardware. Feedline is tapped on the coil 2-1/3 turns from the grounded end. A coaxial receptacle is mounted on the bottom of the mounting slug and the whole antenna is mast-mounted by means of an L-shaped bracket.

[^4]: - Tests performed at Design Electronics Ohio, Groveport, Ohio.

[^5]: Note: Photo shows transmission of a string of dots at 58 WPM. At this tate the receive time between pulses is 8 ms . The built in delay time between turn-on of the 500 V blocking voltage and the beginning of the CW envelope is 7 ms . The CW pulse (dot) is 21 ms in duration; the built-in delay between the end of the CW pulse and turn off of the 500 V blocking voltage is 7.5 ms . The CW waveform shows no trace of distortion. Power level, 1380 watts; transmitter, TS930S: amplifier, Drake L7: QSK unit, QSK 1500; scope, TEK 556 dual-trace; wattmeter, Bird 43 with scope coupler: load, Bird Termaline ${ }^{\text {IW }}$ 2 kW ; keyer, Accu-keyer II. Vertical scale $=200 \mathrm{~V} / \mathrm{cm}$ ($\times 10$ probe with 20 V scale): horizontal scale $-10 \mathrm{~ms} / \mathrm{cm}$.

[^6]: *Next month's $D \times$ Forecaster will feature such a graph.

[^7]: COLLINS TUNER
 Collins 180Y-1 Antenna TUNER for 2-30 MHz, has dual section air variable $50-1600$ and $30-600 \mathrm{pf}$ (0.065" min $/ 0.156^{\prime \prime} \max$ gap) and 2.9' dia 14-turn roller inductor of $0.19^{\prime \prime}$ dia tubing, ceramic tap switch, $3 / 100$ pt 7500 V doorknob capacitors. Controls C and L Select, Var C and $\mathrm{L}: 7 \times 12.5 \times 16.8,33$
 lbs. Used GRAINGER AM 4531 Linear Amp, $120-152 \mathrm{MHZ}, 10 \mathrm{~W}$ in, 50 W out using 8122 tube in P-A. 115/230 VAC; $7 \times 19 \times 14.5,50 \mathrm{lbs}$. Used-not tested $\$ 195.00$ JENNINGS UCS-300-7.5 Vacuum Variable Capacitor, $9-300$ pf 7500 V max: 3 lbs sh. Unused..... $\$ 99.95$
 Prices F. O.B. Lima, 0. - VISA, MASTERCARD Accepted. Allow for Shipping - Send tor New FREE CaTalog 84 Address Dept. HR - Phone: 419/227-6573
 FARR RADAO SALES 1016 E. EUREKA - BOX 1105 - IIMA, OHIO - 45802

