ICOM UHF Transceiver

IC-471H

For Maximum UHF Base Station Performance

Whether your interest is simplex, repeater operation, or satellite work, the IC-471H 430-450MHz base station transceiver will give you maximum UHF operation.

75 Watts: The IC-471H provides 10 to 75 watts of adjustable power in all modes. This enables adjusting the drive level to a linear amplifier for higher power uses such as moonbounce. For a portable UHF station, the optional IC-PS35 internal power supply is available.

Compare these exceptional Standard Features:

- 430 - 450MHz
- Variable tuning steps, FM 5KHz and 1 KHz; SSB 10Hz, 50Hz and 1KHz
- 32 full-function Memories with lithium battery backup
- 75 Watts, fully adjustable on all modes
- 32 built-in Subaudible Tones
- High visibility display
- Scanning systems
- Memories, Modes or Programmable Band
- RIT/XIT with separate readout
- S-Meter and Center Meter
- IC-HM12 Microphone with Up/Down Scan
- 11 1/4”W x 4 3/8”H x 12 3/4”D

Optional Features: AG-35 switchable mast-mounted GaAsFET preamp, UT-155 CTCSS encoder/decoder (encoder is standard), IC-EX310 voice synthesizer, IC-SMB two-cable desk mic and IC-SM6 desk mic. PLUS a variety of power supplies...the IC-PS35 internal power supply, the IC-PS30 system power supply or the IC-PS15 external power supply.

The IC-471A: The 25 watt IC-471A is also available and has the same outstanding features as the IC-471H, plus an optional IC-PS25 internal power supply for portable operation.

To complete your VHF/UHF base station, the IC-471's 2-meter companions, the 100 watt IC-271H and the 25 watt IC-271A are also available.

See the IC-471H and other ICOM equipment at your local authorized ICOM dealer.

ICOM America, Inc., 2380-116th Ave NE, Bellevue, WA 98004 / 3331 Towerwood Drive, Suite 307, Dallas, TX 75234

All stated specifications are approximate and subject to change without notice or obligation. All ICOM radios significantly exceed FCC regulations limiting spurious emissions. 471H-TOP

ICOM First in Communications
**What To Look For In A Phone Patch**

The best way to decide what patch is right for you is to first decide what a patch should do. A patch should:

- Give complete control to the mobile, allowing full break-in operation.
- Not interfere with the normal operation of your base station. It should not require you to connect and disconnect cables or flip switches every time you wish to use your radio as a normal base station.
- Not depend on volume or squelch settings of your radio. It should work the same regardless of what you do with these controls.
- You should be able to hear your base station speaker with the patch installed. Remember, you have a base station because there are mobiles. ONE OF THEM MIGHT NEED HELP.
- The patch should have standard features at no extra cost. These should include programmable toll restrict (flip switches), tone or rotary dialing, programmable patch and activity timers, and front panel indicators of channel and patch status.

**ONLY SMART PATCH HAS ALL OF THE ABOVE.**

**How To Use SMART PATCH**

Placing a call is simple. Send your access code from your mobile (example: '73). This brings up the Patch and you will hear dial tone transmitted from your base station. Since SMART PATCH is checking about once per second to see if you want to dial, all you have to do is key your transmitter, then dial the phone number. You will now hear the phone ring and someone answer. Since the enhanced control system of SMART PATCH is constantly checking to see if you wish to talk, you need to simply key your transmitter and then talk. That's right, you simply key your transmitter to interrupt the phone line. The base station automatically stops transmitting if you wish to talk, you need to simply key your transmitter and then talk. Since the enhanced control system of SMART PATCH is constantly checking to see if you wish to talk, you need to simply key your transmitter and then talk. That's right, you simply key your transmitter to interrupt the phone line. The base station automatically stops transmitting if you wish to talk, you need to simply key your transmitter and then talk. That's right, you simply key your transmitter to interrupt the phone line. The base station automatically stops transmitting after you key your mic. SMART PATCH does not require any special tone equipment to control your base station. It samples very high frequency noise present at your receiver's discriminator to determine if a mobile is present. No words or syllables are ever lost.

**SMART PATCH Is All You Need To Automatically Patch Your Base Station To Your Phone Line.**

Use SMART PATCH for:

- Mobile (or remote base) to phone line via Simplex base. (see fig. 1.)
- Mobile to Mobile via interconnected base stations for extended range. (see fig. 2.)
- Telephone line to mobile (or remote base).

**SMART PATCH** uses SIMPLEX BASE STATION EQUIPMENT. Use your ordinary base station. SMART PATCH does this without interfering with the normal use of your radio.

**WARRANTY?**

YES. 180 days of warranty protection. You simply can't go wrong.

An FCC type accepted coupler is available for SMART PATCH.

**Communications Electronics Specialties, Inc.**

P.O. Box 2930, Winter Park, Florida 32790

Telephone: (305) 645-0474 Or call toll-free (800)327-9956
The Smallest HT!

TH-21AT/31AT/41AT

Kenwood's advanced technology brings you a new standard in pocket/handheld transceivers!

- High or low power. Choose 1 watt high-enough to "hit" most local repeaters; or a battery-saving 150 mW low.
- Pocket portability! Kenwood's TH-series HTs pack convenient, reliable performance in a package so small, it slips into your shirt pocket! It measures only 57 (2.24) W x 120 (4.72) H x 28 (1.1) D mm (inch) and weighs 260 g (.57 lb) with batteries!
- Expanded frequency coverage (TH-21AT/A). Covers 141.000-150.995 MHz in 5 kHz steps, includes certain MARS and CAP frequencies.
  TH-31AT/A: 220.000-224.995 MHz in 5 kHz steps.
  TH-41AT/A: 440.000-449.995 MHz in 5 kHz steps.

- Easy-to-operate, functional design. Three digit thumbwheel frequency selection and handy top-mounted controls increase operating ease.

- Repeater offset switch. TH-21AT/A: ±600 kHz, simplex.
  TH-31AT/A: ±1.6 MHz, reverse, simplex.
  TH-41AT/A: ±5 MHz, simplex.
- Standard accessories: Rubber flex antenna, earphone, wall charger, 180 mAH NiCd battery pack, wrist strap.
- Quick change, locking battery case. The rechargeable battery case snaps securely into place. Optional battery cases and adapters are available.
- Rugged, high impact molded case. The high impact case is scuff resistant, to retain its attractive styling, even with hard use.

See your authorized Kenwood dealer and take home a poectful of performance today!

Optional accessories:
- HMC-1 headset with VOX
- SMC-30 speaker microphone
- PB-21 NiCd 180 mAH battery
- DC-21 DC-DC converter for mobile use
- BT-2 manganese/alkaline battery case
- EB-2 external C manganese/alkaline battery case
- SC-8 soft case for TH-21A/31A/41A
- SC-8T soft case for TH-21AT/31AT/41AT
- TU-6 programmable sub-tone unit
- AJ-3 thread-loc to BNC female adapter
- Service manual

More information on the TH-series HTs is available from authorized Kenwood dealers.

KENWOOD

TRIO-KENWOOD COMMUNICATIONS
1111 West Walnut Street
Compton, California 90220
MAY 1985
volume 18, number 5

T. H. Tenney, Jr., W1NLB
publisher
Rich Rosen, K2RR
editor-in-chief
and associate publisher
Dorothy Rosa, KA1LBO
assistant editor
Joseph J. Schroeder, W9UV
Alfred Wilson, W6NIF
associate editors
Susan Shorrock
director of advertising sales

editorial review board
Peter Bertini, K1ZJH
Forrest Gehrke, K2ET
Michael Grischka, P.E.
Bob Lewis, W2EB5
Mason Logan, KAMT
Ed Wetzerhold, W3NQG

publishing staff
J. Craig Clark, Jr., N1ACH
assistant publisher
Rally Dennis, KA1JWF
director of advertising sales
Dorothy Sargent, KA1ZK
advertising production manager
Susan Shorrock
circulation manager
Theresa Bourgault
circulation

ham radio magazine is published monthly by
Communications Technology, Inc.
Greenville, New Hampshire 03048 (048)
Telephone: 603 878 1441

subscription rates
United States
one year, $19.95; two years, $32.95; three years, $44.75
Canada and other countries (air surface mail)
one year, $32.95; two years, $51.00; three years, $78.00
Europe, Japan, Africa (via air forwarding service)
one year, $82.00
All subscription orders payable in U.S. funds, via international postal money order or check drawn on U.S. bank

international subscription agents: page 140

Microfilm copies are available from
University Microfilms, International
Ann Arbor, Michigan 48106
Order publication number 3075

Copyright 1985 by Communications Technology, Inc.
Title registered at U.S. Patent Office
Second class postage paid at Greenville, New Hampshire 03048-0486
and at additional mailing offices

Send change of address to ham radio
Greenville, New Hampshire 03048-0486

contents

18 stacking Yagis is a science
Steve Powilsen, K1FO
37 active antenna covers 0.5-30 MHz
Peter Bertini, K1ZJH
46 control your take-off angle: the JR vari-lobe antenna
R.R. Schellenbach, W1JF
53 the end-fed 8JK: a switchable vertical array
R.R. Schellenbach, W1JF
58 feeding phased arrays: an alternative method
Al Christman, KB8I
66 ham radio techniques
Bill Orr, W6SAI
71 a sloping terminated vee beam
Robert Ross
87 160-meter transmission line antenna
Ted S. Rappaport, N9NB
95 VHF/UHF world: stacking antennas, part 2
Joe Resiert, W1JR
106 RF transmission cable for microwave applications
Howard Weinstein, K3HW
113 balun chop suey
John J. Nagle, K4KJ
125 tilt-over conversion of a fixed antenna tower
Dick Rollemo, PA0SE
165 the Guerr report
Ernie Guerri, W6MGI

166 advertisers index
157 new products
11 presstop
79 DX forecaster
4 reflections
140 flea market
121 short circuits
144 ham mart

May 1985
the readers speak . . .

We asked — and you answered our call for solutions to the problems facing our hobby today (see "Reflections," February, 1985, page 5. Each and every one of your letters was read, and we’re proud to act as a clearinghouse for your many ideas and suggestions.

Foremost you recognized that Amateur Radio has changed, and that hams have to accept that fact before any effective improvements can be made.

Here are some of your comments on the problems, followed by some suggested solutions:

"The challenge is gone. Want to hear China? Just turn on the TV."

"Equipment is just too expensive and complex for us to do our own repairs."

"Our kids are into computers, not radio."

"Hams are boring and don’t know how to communicate any more."

"Consumer electronics and RFI — what a nightmare!"

"Enforcement, what a joke — the FCC’s a paper tiger."

Can we expect the general public to help? I doubt it. Many of them see us as "the ham down the block with the ugly tower and wires all over." Don’t expect too much sympathy from the neighbors — especially if their brand-new VCR is carrying our conversations as well as their programming. So what do we do?

SCHOOLS. Talk to your local school board. Could some space and time — say an hour a week — be set aside for a Novice course taught by local hams? What about high school science teachers? Would they be interested in having guest speakers address classes on Amateur Radio subjects? Radio clubs, how about sponsoring radio-related science fairs, with prizes or scholarships awarded for the best projects? How about donating software — morse code tutors and technical Q&A’s, for example — to school libraries? Besides the school environment, summer camps and community centers would also be logical places for reaching and teaching prospective hams.

PUBLICITY. We need more of it — the good kind, that is. Make a personal effort to contact and provide details of Amateur Radio events to your local newspaper and radio or TV stations. Every little bit helps.

There’s a move afoot to produce and distribute a brochure describing the "fun" aspects of our hobby. When it becomes available, get some and hand them out to the neighborhood kids. Do any of you work in the media or public relations? How about using your skills to help improve our image?

PARTICIPATION. This means all of us. No contribution is too small. Participate by helping out at the club, helping newcomers to the hobby after they’re licensed. (This in itself might help reverse the "dropout" rate.) How about being an Elmer and forming a "ground wave net" to bring together new hams in a local net designed to help them overcome their initial shyness? I’m sure we can all remember how we felt during those first few weeks on the air.

Dear Senior Citizens, you have the time, the knowledge, and the political clout. Your active leadership and participation are essential.

What would happen if, for the good of Amateur Radio, we set aside our individual concerns and pooled our talents in a single "umbrella" organization dedicated solely to protecting and preserving our hobby? Perhaps then it would be more difficult for commercial interests to nibble away at our spectrum. We have to lobby from a position of unity and strength.

PERSONAL GROWTH. Hams used to be interesting people to talk to. We could converse on diversified subjects at length. Now too many of us appear to be overly involved in contesting and card-collecting — i.e., doing the same old thing all the time, when we should be advancing our knowledge, experimenting with different modes, and searching for new frontiers.

Perhaps we can act on some of the advice offered by our readers and help improve the hobby.

Rich Rosen, K2RR
Editor-in-Chief
300 WATT ANTENNA TUNER HAS SWR/WATTMETER, ANTENNA SWITCH, BALUN. MATCHES VIRTUALLY EVERYTHING FROM 1.8 TO 30 MHZ.

MFJ's fastest selling tuner packs in plenty of new features!
- New Styling! Brushed aluminum front. All metal cabinet.
- New SWR/Wattmeter! More accurate. Switch selectable 300/30 watt ranges. Read forward/reflected power.
- New Antenna Switch! Front panel mounted. Select 2 coax lines, direct or through tuner, random wire/balanced line or tuner bypass for dummy load.
- New airwound inductor! Larger more efficient 12 position airwound inductor gives lower losses and more watts out. Run up to 300 watts RF output! Matches everything from 1.8 to 30 MHZ dipoles, inverted vee, random wires, verticals, mobile whip, beams, balanced and coax lines. Built-in 4 1/2 digit meter for balanced lines. 1000V capacitor spacing. Black. 11x3x7 inches. Works with all solid state or tube rigs. Easy to use. anywhere.

$99.95 MFJ-941D

RTTY/ASCII/CW COMPUTER INTERFACE
MFJ-1224 $99.95

Free MFJ RTTY/ASCII/CW software on tape and cable for VIC-20 or C-64. Send and receive computerized RTTY/ASCII/CW with nearly any personal computer (VIC-20, Apple, TRS-80C, Atari, T-99, Commodore 64, etc.). Use Kantronics or most other RTTY/CW software. Copies both mark and space, any shift (including 170, 425, 850 Hz) and any speed (5-500 WPM RTTY/CW. 300 baud ASCII). Sharp 8 pole active filter for CW and 170 Hz shift. Sends 170, 850 Hz shift. Normal/reverse switch eliminates retuning. Automatic noise limiter. Kantronics compatible socket plus exclusive general purpose socket. 8x14x6 in. 12-15 VDC or 110 VAC with adapter. MFJ-1312, $9.95.

POLICE/FIRE/WEATHER 2 M HANDHELD CONVERTER
$39.95 MFJ-313

Turn your synthesized scanning 2 meter handheld into a hot Police/Fire/WB band scanner! 144-148 MHz handhelds receive Police/Fire on 154-158 MHz with direct frequency readout. Hear NOAA maritime coastal plus more on 160-164 MHz. Converter mounts between handheld and rubber ducky. Feeds thru allows simultaneous scanning of both 2 meters and Police/Fire bands. No missed calls. Crystal controlled. Bypass/Off switch allows transmitting (up to 5 watts). Use AAA battery. 2x4x1½ inch. BNC connectors.

$99.95 MFJ-2026

SWR/METER HAS $9.95

1 KW DUMMY LOAD MFJ-250 $39.95

Tune up fast, extend life of finals, reduce QRM! Rated 1 KW CW or 2KW PEP for 10 minutes. Half rating for 20 minutes, continuous at 200 W CW, 400 W PEP. VSWR under 1.2 to 3.0, 2000 Hz, 1.5 to 3000 MHz. Oil contains no PCB. 50 ohm non-inductive resistor. Safety vent. Carrying handle. 7½x9x9 in.

24/12 HOUR CLOCK/ID TIMER MFJ-106 $19.95 NEW

Switch to 24 hour UTC or 12 hour format! Battery backup maintains time during power outage. ID timer alerts every 9 minutes after reset. Red LED shows time. Minute set, hour set switches. Time set prevents mis-setting. Power out, alarm on indicators. Gray and black cabinet. 5x2½ x 3 inches. 110 VAC, 60 Hz.

DUAL TUNABLE SSB/CW/RTTY FILTER MFJ-752B $99.95

Dual filters give unmatched performance. The primary filter lets you peak noteh low pass or high pass with extra steep skirts. Auxiliary filter gives 70 db notch. 40 Hz peak. Both filters turn on 300 to 3000 Hz with variable bandwidth from 40 Hz to 15 kHz.Constant output as bandwidth is varied. Linear frequency control. Switchable receive filter for impulse noise. Simultaneous stereo sound. CW led ear and mind. Repeat filter for CW. Plug into phone jack. Two watts for speaker off. Bypasses filter 9.18 VDC to 110 VAC with optional adapter. MFJ-1312, $9.95.

TO ORDER OR FOR YOUR NEAREST DEALER, CALL TOLL-FREE 800-647-1800. Call 501-323-5869 in Miss. and outside continental USA. Telex 53-4500 MFJ STKV

300 WATT ANTENNA TUNER HAS SWR/WATTMETER, ANTENNA SWITCH, BALUN. MATCHES VIRTUALLY EVERYTHING FROM 1.8 TO 30 MHZ.

MFJ's fastest selling tuner packs in plenty of new features!
- New Styling! Brushed aluminum front. All metal cabinet.
- New SWR/Wattmeter! More accurate. Switch selectable 300/30 watt ranges. Read forward/reflected power.
- New Antenna Switch! Front panel mounted. Select 2 coax lines, direct or through tuner, random wire/balanced line or tuner bypass for dummy load.
- New airwound inductor! Larger more efficient 12 position airwound inductor gives lower losses and more watts out. Run up to 300 watts RF output! Matches everything from 1.8 to 30 MHZ dipoles, inverted vee, random wires, verticals, mobile whip, beams, balanced and coax lines. Built-in 4 1/2 digit meter for balanced lines. 1000V capacitor spacing. Black. 11x3x7 inches. Works with all solid state or tube rigs. Easy to use. anywhere.

$99.95 MFJ-941D

RTTY/ASCII/CW COMPUTER INTERFACE
MFJ-1224 $99.95

Free MFJ RTTY/ASCII/CW software on tape and cable for VIC-20 or C-64. Send and receive computerized RTTY/ASCII/CW with nearly any personal computer (VIC-20, Apple, TRS-80C, Atari, T-99, Commodore 64, etc.). Use Kantronics or most other RTTY/CW software. Copies both mark and space, any shift (including 170, 425, 850 Hz) and any speed (5-500 WPM RTTY/CW. 300 baud ASCII). Sharp 8 pole active filter for CW and 170 Hz shift. Sends 170, 850 Hz shift. Normal/reverse switch eliminates retuning. Automatic noise limiter. Kantronics compatible socket plus exclusive general purpose socket. 8x14x6 in. 12-15 VDC or 110 VAC with adapter. MFJ-1312, $9.95.

POLICE/FIRE/WEATHER 2 M HANDHELD CONVERTER
$39.95 MFJ-313

Turn your synthesized scanning 2 meter handheld into a hot Police/Fire/WB band scanner! 144-148 MHz handhelds receive Police/Fire on 154-158 MHz with direct frequency readout. Hear NOAA maritime coastal plus more on 160-164 MHz. Converter mounts between handheld and rubber ducky. Feeds thru allows simultaneous scanning of both 2 meters and Police/Fire bands. No missed calls. Crystal controlled. Bypass/Off switch allows transmitting (up to 5 watts). Use AAA battery. 2x4x1½ inch. BNC connectors.

$99.95 MFJ-2026

SWR/METER HAS $9.95

1 KW DUMMY LOAD MFJ-250 $39.95

Tune up fast, extend life of finals, reduce QRM! Rated 1 KW CW or 2KW PEP for 10 minutes. Half rating for 20 minutes, continuous at 200 W CW, 400 W PEP. VSWR under 1.2 to 3.0, 2000 Hz, 1.5 to 3000 MHz. Oil contains no PCB. 50 ohm non-inductive resistor. Safety vent. Carrying handle. 7½x9x9 in.

24/12 HOUR CLOCK/ID TIMER MFJ-106 $19.95 NEW

Switch to 24 hour UTC or 12 hour format! Battery backup maintains time during power outage. ID timer alerts every 9 minutes after reset. Red LED shows time. Minute set, hour set switches. Time set prevents mis-setting. Power out, alarm on indicators. Gray and black cabinet. 5x2½ x 3 inches. 110 VAC, 60 Hz.

DUAL TUNABLE SSB/CW/RTTY FILTER MFJ-752B $99.95

Dual filters give unmatched performance. The primary filter lets you peak noteh low pass or high pass with extra steep skirts. Auxiliary filter gives 70 db notch. 40 Hz peak. Both filters turn on 300 to 3000 Hz with variable bandwidth from 40 Hz to 15 kHz. Constant output as bandwidth is varied. Linear frequency control. Switchable receive filter for impulse noise. Simultaneous stereo sound. CW led ear and mind. Repeat filter for CW. Plug into phone jack. Two watts for speaker off. Bypasses filter 9.18 VDC to 110 VAC with optional adapter. MFJ-1312, $9.95.

TO ORDER OR FOR YOUR NEAREST DEALER, CALL TOLL-FREE 800-647-1800. Call 501-323-5869 in Miss. and outside continental USA. Telex 53-4500 MFJ STKV
YOUR VERY BEST SOURCE
FOR ANY AND ALL AMATEUR RADIO ITEMS
• 6 STORE BUYING POWER ASSURES TOP VALUE
• BIG, COMPLETE STOCKS. GET WHAT YOU WANT WHEN YOU WANT IT.
• MORE SAVINGS BY FREE DELIVERY MOST ITEMS

KENWOOD
TS-930S
PAY REGULAR PRICE OF $1599
RECEIVE FREE
AT-930 and MC-60A
ANT. TUNER MICROPHONE
Reg. $199.95 Reg. $79.95
PLUS FREE UPS

IOM
IC-37A
YOUR BEST 220MHz EQUIPMENT BUY!
REGULAR $449
SALE! $299.95
SPECIAL BUY... LIMITED QUANTITIES

YAESU
FT-209RH
FT-757GX
NEW!
2M/70CM TRANSCEIVER
CALL FOR GREAT PRICES

MIRAGE
AMPLIFIER SALE

Tri-Ex
SALE!
W-51 SALE $899
LM-354 SALE $1599
IMMEDIATE DELIVERY

EU TOWER
Formerly Trias Tower Co.

BIRD
MODEL 43
THE LONG TIME STANDARD FOR ACCURACY
SLUGS
MOST ITEMS IN STOCK

FREE SHIPMENT
UPS SURFACE (Continental U.S.) (MOST ITEMS)

Store addresses/Phone numbers are given on opposite page.

Tell 'em you saw it in HAM RADIO!

Your Best 220MHz Equipment Buy!
Regular $449
Sale! $299.95
Special Buy... Limited Quantities

Kenwood
TW-4000A
Pay Regular Price of $599.95
Receive Free
All the Following:
1) VS-1 Voice Synthesizer
$39.95 Value
2) TU-4-C Sub-Audible
$39.95 Value
3) MA-4000 Duo-Band Mobile Ant
$44.95 Value
PLUS FREE UPS

Point-
Compared
to

BIRDS
MODEL 43
THE LONG TIME STANDARD FOR ACCURACY
SLUGS
MOST ITEMS IN STOCK

FREE SHIPMENT
UPS SURFACE (Continental U.S.) (MOST ITEMS)

Store addresses/Phone numbers are given on opposite page.

Tell 'em you saw it in HAM RADIO!

May 1985
<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Original Price</th>
<th>Special Price</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC-37A</td>
<td>220 MHz’s BEST BUY!</td>
<td>REGULAR $799</td>
<td>REGULAR $449</td>
<td>INCLUDING ALASKA AND HAWAII</td>
</tr>
<tr>
<td>IC-735</td>
<td>A BRAND NEW HF TRANSCEIVER</td>
<td>PLUS FREE UPS</td>
<td>PLUS FREE UPS</td>
<td>WITH ALL THE FEATURES THAT MAKE IT A TRULY OUTSTANDING BUY!</td>
</tr>
<tr>
<td>IC-751</td>
<td>TODAY’S MOST ADVANCED TRANSCEIVER</td>
<td>REGULAR $1399</td>
<td>SALE! CALL FOR SPECIAL PRICE</td>
<td>COVERS BOTH 2 METERS and 70CM</td>
</tr>
</tbody>
</table>

**ICOM HAND-HELD'S**

**IC-3000A DUAL BANDER**

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC-02AT</td>
<td>AT GREAT LOW SUMMER PRICES</td>
<td>CALL NOW!</td>
</tr>
<tr>
<td>IC-04AT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC-2AT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC-4AT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IC-3AT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**FREE SHIPMENT**

**UPS SURFACE** (Continental U.S.) (MOST ITEMS)

**TOLL-FREE PHONE**

**INCLUDING ALASKA AND HAWAII**

**800-854-6046**

**CALIF AND ARIZONA CUSTOMERS CALL OR VISIT NEAREST STORE**

**PHONE HOURS:** 9:30 AM to 5:30 PM PACIFIC TIME.

**STORE HOURS:** 10 AM to 5:30 PM Mon. through Sat.

**ANHEIM, CA 92801**

2600 W. La Palma
(714) 761-3033, (213) 860-2040,
Between Disneyland & Knotts Berry Farm.

**BURLINGAME, CA 94010**

999 Howard Ave
(415) 342-5757,
5 miles south on 101 from San Francisco Airport.

**OAKLAND, CA 94609**

2811 Telegraph Ave.
(415) 451-5757,
Highway 24 Downtown. Left 27th off-ramp.

**PHOENIX, AZ 85015**

1702 W. Camelback Road.
(602) 242-3515,
East of Highway 17.

**SAN DIEGO, CA 92123**

5375 Kearny Villa Road.
(619) 560-4900,
Highway 163 and Claretmore Mesa Boulevard.

**VAN NUYS, CA 91401**

6255 Sepulveda Blvd.
(818) 989-2212.
San Diego Freeway at Victory Boulevard.

**HAM RADIO OUTLET**

**AMATEUR RADIOTECHNICAL CORPORATION**

**PHONE HOURS:** 9:30 AM to 5:30 PM PACIFIC TIME.

**STORE HOURS:** 10 AM to 5:30 PM Mon. through Sat.

**ANHEIM, CA 92801**

2600 W. La Palma
(714) 761-3033, (213) 860-2040,
Between Disneyland & Knotts Berry Farm.

**BURLINGAME, CA 94010**

999 Howard Ave
(415) 342-5757,
5 miles south on 101 from San Francisco Airport.

**OAKLAND, CA 94609**

2811 Telegraph Ave.
(415) 451-5757,
Highway 24 Downtown. Left 27th off-ramp.

**PHOENIX, AZ 85015**

1702 W. Camelback Road.
(602) 242-3515,
East of Highway 17.

**SAN DIEGO, CA 92123**

5375 Kearny Villa Road.
(619) 560-4900,
Highway 163 and Claretmore Mesa Boulevard.

**VAN NUYS, CA 91401**

6255 Sepulveda Blvd.
(818) 989-2212.
San Diego Freeway at Victory Boulevard.

**HAM RADIO OUTLET**

**AMATEUR RADIOTECHNICAL CORPORATION**

**PHONE HOURS:** 9:30 AM to 5:30 PM PACIFIC TIME.

**STORE HOURS:** 10 AM to 5:30 PM Mon. through Sat.

**ANHEIM, CA 92801**

2600 W. La Palma
(714) 761-3033, (213) 860-2040,
Between Disneyland & Knotts Berry Farm.

**BURLINGAME, CA 94010**

999 Howard Ave
(415) 342-5757,
5 miles south on 101 from San Francisco Airport.

**OAKLAND, CA 94609**

2811 Telegraph Ave.
(415) 451-5757,
Highway 24 Downtown. Left 27th off-ramp.

**PHOENIX, AZ 85015**

1702 W. Camelback Road.
(602) 242-3515,
East of Highway 17.

**SAN DIEGO, CA 92123**

5375 Kearny Villa Road.
(619) 560-4900,
Highway 163 and Claretmore Mesa Boulevard.

**VAN NUYS, CA 91401**

6255 Sepulveda Blvd.
(818) 989-2212.
San Diego Freeway at Victory Boulevard.

**HAM RADIO OUTLET**

**AMATEUR RADIOTECHNICAL CORPORATION**

**PHONE HOURS:** 9:30 AM to 5:30 PM PACIFIC TIME.

**STORE HOURS:** 10 AM to 5:30 PM Mon. through Sat.

**ANHEIM, CA 92801**

2600 W. La Palma
(714) 761-3033, (213) 860-2040,
Between Disneyland & Knotts Berry Farm.

**BURLINGAME, CA 94010**

999 Howard Ave
(415) 342-5757,
5 miles south on 101 from San Francisco Airport.

**OAKLAND, CA 94609**

2811 Telegraph Ave.
(415) 451-5757,
Highway 24 Downtown. Left 27th off-ramp.

**PHOENIX, AZ 85015**

1702 W. Camelback Road.
(602) 242-3515,
East of Highway 17.

**SAN DIEGO, CA 92123**

5375 Kearny Villa Road.
(619) 560-4900,
Highway 163 and Claretmore Mesa Boulevard.

**VAN NUYS, CA 91401**

6255 Sepulveda Blvd.
(818) 989-2212.
San Diego Freeway at Victory Boulevard.

**HAM RADIO OUTLET**

**AMATEUR RADIOTECHNICAL CORPORATION**

**PHONE HOURS:** 9:30 AM to 5:30 PM PACIFIC TIME.

**STORE HOURS:** 10 AM to 5:30 PM Mon. through Sat.

**ANHEIM, CA 92801**

2600 W. La Palma
(714) 761-3033, (213) 860-2040,
Between Disneyland & Knotts Berry Farm.

**BURLINGAME, CA 94010**

999 Howard Ave
(415) 342-5757,
5 miles south on 101 from San Francisco Airport.

**OAKLAND, CA 94609**

2811 Telegraph Ave.
(415) 451-5757,
Highway 24 Downtown. Left 27th off-ramp.

**PHOENIX, AZ 85015**

1702 W. Camelback Road.
(602) 242-3515,
East of Highway 17.

**SAN DIEGO, CA 92123**

5375 Kearny Villa Road.
(619) 560-4900,
Highway 163 and Claretmore Mesa Boulevard.

**VAN NUYS, CA 91401**

6255 Sepulveda Blvd.
(818) 989-2212.
San Diego Freeway at Victory Boulevard.

**HAM RADIO OUTLET**

**AMATEUR RADIOTECHNICAL CORPORATION**

**PHONE HOURS:** 9:30 AM to 5:30 PM PACIFIC TIME.

**STORE HOURS:** 10 AM to 5:30 PM Mon. through Sat.
THE ULTIMATE CONTACT . . .
MAKE IT WITH ROBOT™ COLOR SSTV

Step aboard the Shuttle from your shack with the world's most advanced slow scan video system!

YES! Tell me about how I can participate in SSTV aboard the Space Shuttle.

<table>
<thead>
<tr>
<th>NAME</th>
<th>CALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDRESS</td>
<td></td>
</tr>
<tr>
<td>CITY/STATE</td>
<td>ZIP</td>
</tr>
</tbody>
</table>
ELECTRO-SCAN

The most trouble free Dish Positioner on the market today.

Features
- Economical
- Lock and Key
- 36 volt DC motor
- Precise positioning
- Analog Micro Systems
- 1 year limited warranty
- State-of-the-art circuitry
- LED to indicate dish movement
- Available in 18" or 24" ball actuators
- Modern, attractively styled control box
- Dial control always showing dish location
- Dial channels same as in program listings

Your wisest choice in automatic dish positioners.
To learn more about the finest in low cost, high performance dish positioners, contact...

ELECTRO-COM
DIST. SALES

8459 North Main Street • Suite 112 • Dayton, Ohio 45415 • Phone (513) 454-0232

More Details? CHECK—OFF Page 166
For the Best

HF, VHF, UHF, SSB, FM, RTTY, PACKET, CW, ASCII & AMTOR

IC-37A 220 MHz COMPACT MOBILE
25 Watts, 32 PL Frequencies Standard Built-in, 9 Memories with Offset and PL Storage, 10 KHz/5 KHz Dial Steps, Memory Scan, Band Scan, and Priority Scan, Dual VFO's and Standard HM-23 Touchtone.

IC-27A COMPACT MOBILE
A breakthrough in 2-meter mobile communications! Most compact on the market (5½"W x 1½"H x 7"D), contains internal speaker for easy mounting, 25 watts, 32 PL frequencies, scanning and touchtone microphone.

4' LIGHTWEIGHT FLEXIBLE ANTENNA ADAPTOR CABLE

IC-02AT HANDHELD
The IC-02AT 2-meter LCD readout handheld features 10 memories, 32 PL tones, scanning keyboard frequency entry, dial lock, 3W standard, 5W optional, DTMF.

Bencher PADDLE
This is the paddle that provides the perfect interface between the CW operator and his rig. Smooth, instantly responsive and fully adjustable to suit your own touch. From the gold plated solid silver contacts to the heavy leaded steel base, it truly is the ultimate.

THE R3 NO RADIAL VERTICAL FOR 10-15-20 METERS

C & A ROBERTS INC.
18511 HAWTHORNE BOULEVARD TORRANCE, CALIFORNIA 90504
(213) 370-7451 (Calif.) ● (800) 421-2258

REMEMBER WE SHIP
(UPS Brown - Cont. U.S.A.)

STORE HOURS: 10:00 a.m. - 5:30 p.m. MONDAY THRU SATURDAY

10 May 1985
THE 2-METER CHANNEL SPACING ISSUE MAY RESULT IN A CONFRONTATION that could leave Amateur Radio with some bad long-term wounds. Repeater operators from the mid-Atlantic and New England states met March 2 to strongly endorse 15 kHz spacing not only for 146-148 MHz, but even possibly for 144.5-145.5 MHz as well, thus picking up another six channels. In a similar action southern California's 2-Meter Area Spectrum Management Association met March 23 to also endorse 15 kHz spacing across the whole band, despite serious interest in northern California in shifting to 20 kHz as their neighbors in Oregon and Washington have done. By their action the southern group's decision puts them in direct conflict with Mexican Amateurs, whose government has mandated 20 kHz on the 2-meter band. It's believed that Mexican representatives who attended that meeting may even ask their government to lodge a formal objection with the U.S. State Department.

20 kHz Proponents Seem Equally Determined In Their Choice, with Texas the latest in a number of western states to endorse the change. Michigan was the first state east of the Mississippi to adopt 20 kHz, and it's under heavy pressure to reconsider. Alabama is reported to have voted to implement 20 kHz by July 1, but Missouri opted to stay at 15 kHz at a February meeting. Midwestern repeater representatives plan to meet at Dayton for further discussions.

Despite The FCC's Strong Desire For A National Coordinator, formalized in PR Docket 85-22, the repeating in this 20 kHz conflict seems to offer little hope for simple or early resolution of the increasing number of repeater conflicts that led to that NPRM. Indeed, the FCC may even be asked to endorse 15 kHz through a Petition for Rule Making. Such a move was considered by the East Coast group at its recent meeting in support of 15 kHz. However, it is hard to see how such a petition would find any support at all within the Commission, which is trying very hard to get away from regulating details of Amateur operations. Furthermore, in this case such an FCC mandate would put it in direct conflict with the Mexican government and thus risk diplomatic repercussions.

AMATEUR RADIO PROBABLY WON'T FLY ON THIS SUMMER'S SPACE SHUTTLE, according to late word from NASA. The official reason is problems of integrating the exotic Amateur equipment that Tony England, WØORE, was to use on Flight 51F with shuttle equipment. Though strong last-ditch efforts are being made to salvage the Amateur operation, at pre-strike it looks very much like there won't be an Amateur operating from space this year.

AMATEUR RADIO VS CABLE TV IS YET ANOTHER CONFRONTATION that seems to be escalating. In late February the FCC proposed in Mass Media Docket 85-38 that cable TV radiation limits be relaxed by another 8 db, to 50 microvolts per meter, and that various other restrictions including the requirement for annual system inspections be dropped. In view of the number of Amateurs who've had problems with cable leakage interfering with their 164 or 220 MHz operations, this proposal presents a real threat to Amateur Radio. Comments were due in late March. Amateurs have a strong ally against the proposal in the broadcast industry. Amateurs Have Been Shut Down Due To Cable Interference in two recent unrelated cases. In the first, WB20TK was ordered off the air by the Engineer-In-Charge of the FCC Atlanta Field Office for interference with the Greenville, S.C., cable system. FCC Amateur rule 97.73(d) on interference to other stations was cited, despite checks that showed the cable system was not maintaining that a 150 m hand-held's signal caused problems for viewers. The FCC inspected WB20TK's station but did not even contact the cable operator in an apparent violation of the FCC's own rules requiring a cable system to take responsibility for resolving interference problems. In the other case, WB4NMA was shut down, again by the Atlanta Field Office for interfering with cable viewers in Gainesville, Georgia.

2-Meter Privileges Were Restored To Both Operators following the intervention of the ARRL through its General Counsel Chris Inlay, N3AKD. However, the Commission's proposed cable rules relaxation combined with the kind of FCC Field Office attitude that led to these two cases could spell serious trouble for future Amateur Radio VHF/UHF operation.

BASH EDUCATIONAL SERVICES IS OUT OF BUSINESS. Writing to subscribers to his FCC Rules Part 97 update service, Dick Bash, KL7IHP, stated that his FCC exam study materials business had subsidized the rules updating service but, under the volunteer exam program, there was no longer a unique niche in training for him to fill. Bash was very controversial for his publishing of word-for-word correct answers to all FCC-administered Amateur exams.

A SUGGESTION THAT ARRL ASSUME ASSIGNMENT RESPONSIBILITY is receiving some interest in Washington, as the FCC looks at tighter budgets. It's likely, however, that callsign responsibility would be delegated only as part of a total program that would include the entire licensing function now done by FCC's Gettysburg facility.

THE ANTENNAS VS LOCAL RESTRICTIONS ISSUE seems to be heading toward an FCC Notice of Proposed Rule Making, which will probably consider it from the private satellite dish viewpoint. Just what this means for PRB-1 and Amateur Radio remains to be seen.

NEW WARC BAND AVAILABILITY HAS BEEN DELAYED by at least three months. An extension of the Reply Comment period, requested by the Personal Radio Steering Group, bumped expected action on the 10, 24, and 902 MHz bands off the FCC's first quarter agenda. The PRSG is believed to be pushing for allocation of part of 902-928 MHz to a Personal Radio Service.

A NATIONAL VEC NET IS OPERATING on 20 meters Sundays, starting at 1700Z. The 40-meter midwestern VEC net has moved to 1800Z, still on 7280 kHz. DeVry is now officially a national VEC.
Nothing matches the MACC in voltage surge protection and component-by-component on-off control

- compact, attractive desk-top console
- eight clean AC power outlets
- individual and master on-off control
- superior three-stage auto-restore circuit with manual reset circuit breaker
- individually lighted rocker switches

Lightning striking miles away, electric motors running on the same power line, fluorescent lighting and even wind-driven snow static buildup can cause problems with delicate circuits and miniature electronic chips. But the MACC, within nanoseconds, can recognize the current disturbance, then clip it off and dissipate it, while maintaining clean current flow to your system's equipment. The MACC protects all semi-conductor, solid-state circuitry.

The MACC is designed with three 2000-amp surge discharge protection circuits — one between each of the AC input's hot, neutral and ground lines. Other surge devices may use a single 100-amp surge protector between the hot and neutral lines only. Its resettable circuit breaker adds further protection.

MACC gives you control convenience, too. It provides 8 plug-in "U" ground outlets for your components — including one "hot" outlet for a continuously powered application such as your clock. Seven "on/off" rocker switches let you control individual components. And you can turn your entire system on or off with a single master rocker switch.

**ALPHA DELTA'S MASTER AC CONTROL CONSOLE PROTECTS AGAINST ALL THESE DAMAGING SURGE PROBLEMS**

Problems caused in circuitry by surging and transient voltages:
- Melting of "hot spots" within semi-conductor devices
- Thermal runaway of transistors
- Welding, pitting and metal transfer on switch contacts
- Switch contact corrosion
- Insulation breakdown causing arcing of components
- Shortening of component life

The MACC is tested to IEEE pulse standards and rated at 15A, 125V-AC, 60 Hz, 1875 watts continuous duty total for the console. A label on the unit describes the surge protection limitations.

**MACC Specs**

<table>
<thead>
<tr>
<th>Description</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha Delta Master AC Control</td>
<td></td>
</tr>
<tr>
<td>Console</td>
<td></td>
</tr>
<tr>
<td>Amperage</td>
<td>15</td>
</tr>
<tr>
<td>Volt (AC)</td>
<td>125</td>
</tr>
<tr>
<td>Hertz</td>
<td>60</td>
</tr>
<tr>
<td>Total Wattage</td>
<td>1875</td>
</tr>
<tr>
<td>Size</td>
<td>MACC 11&quot; x 2-3/4&quot; x 2-3/4&quot;</td>
</tr>
<tr>
<td></td>
<td>MACC-4 5-1/2&quot; x 2-3/4&quot; x 2-3/4&quot;</td>
</tr>
<tr>
<td>Shipping</td>
<td>Weight 4-1/2 lbs. approximately</td>
</tr>
</tbody>
</table>

Alpha Delta Model MACC Systems are designed to reduce the hazards of lightning-induced surges. These devices, however, will not prevent fire or damage caused by a direct stroke to an AC line or a structure. Specifications, availability and price are subject to change without notice.

Warranted against defects in materials or workmanship.

**current solutions to current problems**
The MACC is unique in voltage surge/transient suppression and convenient, desk-top individual component control. Nothing matches the MACC in value and performance. Put one on duty on your AC line.

MACC only $79.95
MACC-4 only $59.95

At your Alpha Delta dealer. Or in U.S., order direct, adding $4 for postage/handling to check or money order. (Approx. shipping wt.: 4-1/2 lbs. each) MasterCard and VISA accepted. Ohio residents add Sales Tax. Sorry no C.O.D.'s

The MACC-4 is a four clean-line output version of the MACC with all the same features. It gives you a cost- and space-saving solution for your application, without sacrificing performance. Rated a full 1875 total wattage. Includes master rocker switch, three independently switchable lines, one "hot" line and resettable circuit breaker.
Polaroid DS-34

Now you can get an instant picture in black & white or color from any oscilloscope screen. Includes CRT hood. *Large hoods also available to fit computer terminals and CAD/CAM screens.

$369.00

POWER SUPPLIES

GLOBAL SPECIALTIES

TRIPLE OUTPUT POWER SUPPLY

MODEL 1301

- Fully regulated triple output
- Fixed 5VDC, 1A
- V1 +5 VDC to 18 VDC .5A
- V2 -5 VDC to 18 VDC .5A
- Fully automatic current limiting

$198.00

MODEL 3002 A/0-30 VDC/0-2A

DC POWER SUPPLY

$125.00

BK PRECISION

TRIPLE OUTPUT POWER SUPPLY

MODEL 1650

- Functions as three separate supplies
- Exclusive tracking circuit
- Fixed output 5 VDC, 5A
- Two 0 to 25 VDC outputs at 0.5A
- Fully automatic, current-limited overload protection
- + and - terminals of each output are fully isolated, in all modes
- All three outputs may be connected in series or parallel for higher voltage or current

$319.00

VIS

MULTI-FUNCTION COUNTER

MODEL WD-755

- 5Hz to 125 MHz
- 8 Digit LED Display
- Period Measurement 5 Hz to 2 MHz
- Totallizes to 9,999,999 Plus Overflow
- Frequency Ratio Mode
- Time Interval Mode
- Switchable Attenuator & Low Pass Filter

$259.00

STACO

VARIABLE TRANSFORMER

MODEL 3PN1010V

RAG CARRIES THE COMPLETE STACO VARIABLE TRANSFORMER LINE CALL US WITH YOUR REQUIREMENTS.

$145.00

DIGITAL CAPACITANCE METER

- Battery operated
- 3½ digit LCD display
- Range 1 PF to 2,000 UF
- 0.2% basic accuracy

GLOBAL MODEL 3000

$139.00

CALL US TOLL FREE

1-800-732-3457

IN CALIFORNIA TOLL FREE

1-800-272-4225

RAG ELECTRONICS, INC. / 21418 Parthenia Street / Canoga Park, CA 91304 / 1-818-998-6500
PORTABLE OSCILLOSCOPES

**MODEL V-212**
DC to 20 MHz, 1 mV/div, Dual Trace
Features 6" Rectangular CRT
Full 2 year parts and labor warranty (w/two X10 probes).

$461.00

**MODEL V-222**
DC to 20 MHz, 1 mV/div, Dual Trace, D.C. offset for
DMM Output, Vertical Mode Trigger
6" CRT (w/two X1/X10 probes).

$536.00

**MODEL V-422**
DC to 40 MHz,
other features same as V-222 (w/two X1/X10 probes)

$694.00

**MODEL V-1050F**
DC to 100 MHz, 5 mV/div, Quad Trace, Delayed
Sweep, Full T.V. Triggering, alternate time base
(w/two X10 probes)

$1276.00

**MODEL V-5705**
DC to 40MHz
Vertical and horizontal deflection
accurate within ±2%. CRT acceleration
voltage 12KV. 3 channels,
6 traces. High precision calibrator
(±1%). Fastest sweep rate: 10 ns.
- High sensitivity 1 mV/div
- CH1 signal output
- Beam finder
- Delayed sweep
- Alternate time base
- 2 ea. X1/X10 Probes

$899.00

**MODEL 5711**
DC to 100MHz (typically over
120 MHz), 5 mV/div, True 4 channel input,
eight trace. Delayed sweep, alternate time base, CRT acceleration
voltage 20 KV, (w/saddle bag, front cover, 2 ea. X10 probes)

$1695.00

**MODEL 5711D**
'5711 with counter and DMM)

$2495.00
EIMAC celebrates its 50th Anniversary with an extensive line of FM Broadcast Cavity Amplifiers.

Varian EIMAC celebrates 50 years of service to the broadcast industry with a spectrum of FM from a powerful 60 kW to a mini power 150 W solid state IPA.

The cost-effective path to a modern FM transmitter.

No one knows more about broadcast tubes and cavities than EIMAC. Our strong cavity development capability reduces RF engineering problems. EIMAC cavities are inexpensive and simple to use.

For more information call or write Varian EIMAC or contact any Varian Electron Device Group sales office worldwide.

EIMAC FM BROADCAST CAVITY PRODUCT LINE

<table>
<thead>
<tr>
<th>POWER</th>
<th>CAVITY</th>
<th>EIMAC TUBE</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 kW</td>
<td>CV-2230</td>
<td>4CX30,000G</td>
</tr>
<tr>
<td>30 kW</td>
<td>CV-2202</td>
<td>4CX20,000C</td>
</tr>
<tr>
<td>25 kW</td>
<td>CV-2200</td>
<td>4CX20,000A</td>
</tr>
<tr>
<td>15 kW</td>
<td>CV-2210</td>
<td>4CX12,000A</td>
</tr>
<tr>
<td>10 kW</td>
<td>CV-2228</td>
<td>4CX7500A</td>
</tr>
<tr>
<td>5 kW</td>
<td>CV-2225</td>
<td>4CX3500A</td>
</tr>
<tr>
<td>1.5 kW</td>
<td>CV-2220</td>
<td>3CX1500A7</td>
</tr>
<tr>
<td>150 W</td>
<td>AM-2215A</td>
<td>Solid State</td>
</tr>
</tbody>
</table>

Varian EIMAC
301 Industrial Way
San Carlos, California 94070
Telephone: 415-592-1221

Varian AG
Steinhauserstrasse
CH-6300 Zug, Switzerland
Telephone: 042-23 25 75
When we set out to make the best amateur radio equipment in the world, we had some pretty tough standards to live up to ...

... yours

... and ours.

So we designed the RC-850 Repeater Controller, the industry's top of the line repeater control system. Now in it's "third wave" of innovation, thanks to its designed for the future architecture and new software releases. The '850 defines the industry standard in repeater control systems.

- Fully remotely programmable with Touch-Tone commands or computer terminal
- Front panel LED display, or terminal based display
- Over 300 word customized male and female speech synthesis vocabulary
- Time/day of week Scheduler with 10 set-up states, 30 changeovers and events, over 100 scheduled items for hands off operation and automatic remotes.
- Full or half duplex autopatch, autodial (200 numbers), emergency autodial, reverse autopatch, autodialer, toll restrict including telephone exchange tables, supports remote and multiple phone lines
- Informative remotely programmable ID's (17), tail messages (13), bulletin boards (5)
- 16 channel voice response analog metering, automatic storage of min/max values on each channel, values may be read back on command or may be included in any programmable messages
- Supports synthesized remote base transceivers and full duplex links
- Individual user access codes to selectable features
- Mailbox for user-to-user, and system-to-user messages
- Paging - two-tone, 5/6-tone, DTMF, CTCSS, HS-D, GSC digital display, user commandable and may be included in programmable messages (i.e. alarms)
- Logical to physical I/O mapping and internal "toolbox" for easy customizing of the controller to meet your needs and minimize external wiring
- Easy hookup to any repeater

Our new Digital Voice Recorder lets you remotely record ID's, tail messages, and various other response messages for automatic playback through your repeater. Audio is stored digitally with no-compromise reproduction quality in up to eight megabits of memory. The DVR can support up to three independent repeaters for a low per-channel cost. Its Touch-Tone activated voice mailbox lets your users easily record messages for other users when they aren't around.

QST: Attention All Hams

If you own a shack, you should know about ShackMaster*!

ShackMaster lets you carry your home station with you in the palm of your hand. It acts as your gateway to the world, linking your handheld transceiver to your high performance HF station. Now, instead of your valuable home equipment being available to you 1% of the time, it's available 99% of the time! Whether around the house, in the yard, or across town, ShackMaster lets you take it with you.

But that's just part of ShackMaster's story. It lets you communicate with the family by handling third party traffic - its electronic mailbox and intercom let you keep in touch. And a simplex patch lets you place important calls directly through your home phone.

- Crossband linking - VHF/UHF to HF
- Telephone access to your home station
- BSR Home Control interface
- Electronic Mailbox
- ShackPatch™ intercom into the shack
- PersonalPatch™ simplex autopatch

If your repeater budget can't afford the '850, we offer the RC-850 Repeater Controller, which we like to call the "second best repeater controller in the world." It's a scaled down, simplified version of our '850, but overall, it offers more capability and higher quality than anyone else's control equipment at any price.

- Remotely programmable with Touch-Tone commands
- Over 175 word customized male speech synthesis vocabulary
- Selectable "Macro sets" for easy control operator selection
- Autopatch, autodial (200) numbers, emergency autodial, reverse patch
- Remotely programmable informative ID's (7), tail messages (3), bulletin board (2)
- Supports synthesized remote base transceiver, control receiver, alarm
- Selectable, informative courtesy tones
- Talking S-meter, Two-tone paging
- Easy hookup to any repeater

For those who like to "roll their own", we can get you off to a rolling start with our ITC-32 Intelligent Touch-Tone Control Board. Much more than just a decoder, it's a micro-control system of its own, with the basic repeater and remote base functions built-in. And it can be tailored by you with its Personality Prom.

- 28 remotely controllable latched or pulsed logic outputs
- 4 alarm or remote sensed logic inputs
- Response messages to confirm command entry
- Repeater functions including COR, IDer, timers, courtesy tone, etc.
- Remote base functions including control of synthesized transceiver

All our products are designed and manufactured with industrial grade reliability. Little things that many people don't notice, like machine contact IC sockets for all ICs, gold on gold signal connectors, high performance CMOS for minimum power drain, and transient suppression. And the products are documented with high quality, easy to read manuals. Our goal is to advance the state of the repeater art. But most of all, our products put the FUN back into the FUN MODE!

To order one of these advanced control products, call 408-749-8330 and speak with Tim or Catherine. Visa and Mastercard accepted.

Technical manuals are available for purchase and the amount paid is applied as a deposit on the equipment. For specifications and a copy of our ACC Notes newsletter, just write or send in your QSL card to:
Several years ago I began a project designed to develop a means of determining gain of a particular 144 MHz Yagi. Knowing that number, I would be able to calculate the aperture. Once the aperture was known, I would know the correct stacking distance and would then be able to build the perfect 144-MHz array.

As one might expect, things didn’t quite work out as planned. But eleven years and seven EME arrays later, I believe I have found an improved method of determining the optimum stacking distances for multiple Yagi VHF and UHF arrays.

what is optimum stacking?

“Best array performance” is a matter of opinion, and depends on how the antenna is used; an array can be optimally stacked, for example, to deliver maximum gain, or for a controlled azimuthal pattern that produces a deep null in the direction of interference. This

<table>
<thead>
<tr>
<th>object</th>
<th>144 MHz degrees K</th>
<th>432 MHz degrees K</th>
</tr>
</thead>
<tbody>
<tr>
<td>cold sky</td>
<td>175</td>
<td>10</td>
</tr>
<tr>
<td>hot sky</td>
<td>3,200</td>
<td>190</td>
</tr>
<tr>
<td>earth</td>
<td>290</td>
<td>290</td>
</tr>
<tr>
<td>arcing power line</td>
<td>100,000</td>
<td>6,000</td>
</tr>
</tbody>
</table>

For EME and other weak-signal VHF/UHF work, optimum stacking distance can be defined as that distance which yields the greatest array gain versus lowest array temperature. Used by professional space communications engineers, this definition refers to maximizing the G/T ratio. With Yagis, the best G/T usually never occurs at the distance which yields maximum stacking gain. It normally occurs at significantly closer spacing. In simpler terms, optimum stacking distance is that stacking distance which yields the greatest array gain increase while simultaneously keeping all sidelobes at an acceptable level.

the effect of antenna temperature

Several good sources of information are available for those unfamiliar with the concept of antenna temperature. To review, antenna temperature is the temperature of the object at which the main lobe of the antenna is pointed — i.e. the Earth, Moon, Sun, hot sky, or cold sky. However, if the array has sidelobes of significant area and amplitude, unwanted noise can be picked up from noise sources in the direction in which the sidelobes are pointed. This unwanted noise reception will increase the net antenna temperature. (Table 1 lists typical temperatures of several “objects” at 144 MHz and 432 MHz.) A 432-MHz array with large sidelobes pointed at the Earth will suffer a significant receive signal-to-noise loss because of the reception of Earth noise; likewise, a 144-MHz array with sidelobes directed toward a hot sky or a leaky power line will experience a similar degradation in receive performance.

By Steve Powlishen, K1FO, 816 Summer Hill Road, Madison, Connecticut 06443
As a point of reference, commercial satellite Earth station antennas that use parabolic dish antennas with Cassegrain or Gregorian subreflector systems have antenna temperatures as low as 18 degrees K. In comparison, an Amateur dish using a simple dipole or horn feed at 432 or 1296 MHz has a typical antenna temperature of 65 degrees K, while a 16-Yagi 432-MHz array with the Yagis spaced for maximum gain may have an array temperature over 170 degrees K (or even worse if low-loss phasing lines are not used). Conversely, stacked 432-MHz EME Yagi arrays incorporating optimized stacking distances have been built to provide array temperatures lower than 85 degrees K — including phasing line losses. These antenna temperatures were measured by pointing the antenna at the Earth and then at the cold sky and comparing the noise ratios. The noise contribution due to the receiver can then be factored out if the receiver system noise temperature is accurately known. The significance of the lower array temperature cannot be overstated. If we assume a high performance receiver with a 0.45 dB system noise figure, lowering a 432 MHz array temperature from 170 degrees K to 85 degrees K results in a receive signal-to-noise improvement of about 2.3 dB or almost the equivalent of doubling the array size! These results have been obtained using standard Yagi designs such as the NBS Yagis and the K2RIW 19-element Yagi. I expect further improvements can be obtained when Yagis designed with best G/T in mind are available to Amateurs.

methods of determining optimum stacking distances

There are three methods of determining optimum stacking distances. The first method to be examined briefly, is based on classic antenna theory. The second, which will be emphasized, is experimental. Computer analysis, currently used by the professional community is the third, and will not be discussed here. With programs for Yagi analysis now readily available to the Amateur, it is hoped that the more mathematically inclined and computer-knowledgeable Amateurs will carry on where this article leaves off and extend computer modeling to include optimum stacking.

The concept of antenna directivity, (fig. 1), put forth by Kraus3 and introduced to Amateurs by Orr and Johnson, holds that all antennas have an effective capture area, or area around the antenna that "captures" or extracts the electromagnetic energy from space. The higher the gain of the antenna, the
larger the area from which energy will be extracted. Behind the antenna there will be a shadow area, or space where the field strength of the incident wave is reduced in magnitude. (This concept is analogous to putting an object in front of a light source and creating a shadow behind it.) In mathematical terms the capture area is directly proportional to gain and is defined in eq. 1.

\[ A_{em} = 0.13 \cdot 10^{dBd/10} \]  

Where \( A_{em} \) is the effective capture area in wavelengths squared and \( dBd \) is the gain of the antenna in decibels over a half wave dipole. For antennas such as Yagis, which have an elliptically shaped aperture, the size of the effective aperture will be slightly different between the E and H planes. The aperture dimensions in wavelengths squared can be calculated by using eqs. 2 and 3.

\[ A_H = 2 \sqrt{\frac{A_{em} \cdot \theta_E}{\pi \cdot \theta_H}} \]  
\[ A_E = 2 \sqrt{\frac{A_{em} \cdot \theta_H}{\pi \cdot \theta_E}} \]  

Where \( A_E \) is the E-plane aperture dimension, \( A_H \) is the H-plane aperture dimension, \( \theta_E \) if the E-plane half power beamwidth, and \( \theta_H \) is the H-plane half power beamwidth.

There are two problems with using these formulas to calculate stacking distances. First, an antenna’s aperture is not an ellipse with a clearly defined boundary, with radio waves being extracted on one side of the boundary and nothing happening on the other side. Instead, an antenna progressively extracts less and less energy from space continuously. In addition, the half power beamwidths of an antenna are merely a point on the field strength gradient of the antenna. Therefore, proper stacking distance becomes a question of determining where two unclearly defined volumes separate. It is not a solid boundary like a brick wall.

The second problem, largely self-inflicted by Amateurs eager to believe they could defy the laws of physics and discover something that antenna engineers could not, is that of believing inflated gain figures produced by both Amateurs and some manufacturers of Amateur antennas. (In defense of Amateur equipment manufacturers, their claims are restrained in comparison to their CB and home TV counterparts). Using these optimistic gain claims, which in some cases are typically 3-dB high, leads to arrays which have grossly oversized stacking dimensions. The gain figures shown in the recommended stacking distance table (table 2) represent hundreds of hours of antenna measurements I have performed, the compilation of data from ten years of antenna gain contests, and finally, computer analysis of almost all the antennas listed in the table. The result is a listing of gain figures closer to reality, I believe, than anything previously available. (For further discussion of how much gain can be expected from a given boomlength Yagi, reading DL6WU’s article is suggested.)

![fig. 2. Four stacked 12-element Swan 2-wavelength LPY array E-plane pattern with 10-foot (1.5 wavelength) E and H-plane spacing.](image1)

![fig. 3. Four stacked 12-element Swan 2-wavelength LPY array E-plane pattern with 12 foot 0 inch (1.76 wavelength) E-plane and 11 foot 4 inch (1.66 wavelength) H-plane spacing.](image2)
measuring antenna gain

As part of my experiments to measure antenna gain and determine proper stacking distances, a telescoping H frame was constructed on my 60-foot (18.3 meters) tower to measure the 144-MHz antenna. This arrangement allowed for rapid placement of Yagis along with a simple method of adjusting the spacing to any separation of up to 16 feet (4.9 meters). A smaller frame (6 feet/1.9 meters) was used to measure the 432-MHz Yagis.

The next step was to figure out a relatively accurate means of making pattern measurements. Over the years I tried a variety of measurement techniques, including use of strip chart recorders, spectrum analyzers, and RF voltmeters. Out of all this came a relatively simple and reasonably accurate method that is within the reach of most serious VHF/UHF experimenters.

The basic requirements for pattern measurement are:

- an accurate direction indicator;
- a receiver with a calibrated signal strength indicator; and
- a signal source located so as to minimize reflection problems.

Satisfying each requirement was surprisingly simple. The direction indicator I used was a selsyn readout* with close to 1 degree accuracy. Alternatively, the digital readout system using 10 turn pots and popularized by many EMERs could be used. The availability of signal generators such as the Hewlett-Packard 608 series (or their military counterparts, the TS-510 series)* solves the receiver calibration problem. My method of measurement consisted of connecting a digital voltmeter (DVM) to the AGC (automatic gain control line) of the station receiver (an R-4C and TR-7). Care must be taken to keep signal strengths high enough above the noise (floor) to eliminate signal-to-noise plus noise ratio correction problems. The signal level must not be so high that it causes gain compression problems. The quick way to get a pattern was to run the antenna through 360 degrees while recording the AGC voltage readings on the DVM. The antenna was then replaced with the signal generator and the AGC readings were converted to a dB scale. (A 10 dB attenuator was placed between the converter and antenna or signal generator to eliminate impedance problems.) This "calibration" of the receiver was done after every measurement to eliminate receiver gain drift errors.

The signal source presented the trickiest problem, but again a simple solution was found. A number of signal sources were tried including locating signal sources in my back yard, in the woods about 1000 feet (305 meters) away, and at a local ham’s QTH about 2 miles (1.3 km) away. All of these solutions gave marginally repeatable results. That is, an antenna would look different from day to day and from source to source. Because I believed the problem to be reflections from various objects, I decided to try a signal source located above the clutter. My location at that time was 105 feet (32 meters) above sea level. The antennas were located at 65 feet (20 meters), well above the nearby trees. My location was surrounded by hills up to 1200 feet (366 meters) high, 10 to 12 miles (16 to 19.2 km) away. The ground between my location and the hills dropped in elevation, which made the tops of the hills a completely clear shot at about a 0.5 degree elevation angle. A fellow ham located on one of the hills was called upon; by using high gain source antennas (stacked 3.2 wavelength NBS Yagis on 144 MHz and RIW19s on 432 MHz), repeatable pattern measurements became a reality. After performing many measurements I was able to "calibrate" my range such that I could see how different antennas gave the same false lobes or left to right unbalance. The patterns shown in this article have been cleaned up to eliminate known range errors. Various NBS antennas were constructed and their patterns measured. My measured patterns correlated very well with the NBS published patterns and offered proof of the method's validity.

It was also found that accurate relative gain measurements were possible. Gain measurement calibration was made by putting two identical antennas on the frame and measuring the relative signal level between them. The antennas were then switched in position and the measurement repeated. In this manner any differences in signal strength could be factored out before a test antenna was measured. Results were found to be repeatable to within 0.2 dB over the two-year period the gain tests were made. A similar method was used to measure the gain increases to be had from stacking antennas.

the effects of antenna spacing

To get an indication of what happens when the spacing of Yagi arrays is changed, an array of four 12-element LPY (log periodic Yagis, as introduced by Oliver Swan and later produced by KLM) was set up on the telescoping H-frame. Pattern measurements were made at one foot (0.3 meter) spacing increments from 10 feet (3.0 meters) up to 16 feet (4.9 meters) (1.4 to 2.3 wavelengths). The resultant patterns are

*Available from Fair Radio Sales, P.O. Box 1105, Lima, Ohio 45802
typical of all two-wide Yagi arrays. As the spacing between Yagis is increased, the main lobe beamwidth narrows, the sidelobes increase in amplitude and the nulls get much deeper. The E-plane pattern at 10 feet (3.0 meters), 12 feet (3.7 meters) and 14 feet 4 inches (4.4 meters) spacings is illustrated in figs. 2, 3, and 4. Looking at the sample patterns, it can be seen that the beamwidth of the first sidelobes is close to that of the main lobe for each spacing and that its amplitude increases rapidly at larger separations. Other minor lobes start to have significant amplitudes at the greater separations.

The question of which distance is the proper one still remained to be answered. Gain and individual pattern measurements on the 12-element LPY indicated an actual gain of about 11.2 dB over a half-wave dipole (dBi). By using eq. 1, 2, and 3 (single antenna pattern of 36 degrees E-plane by 40 degrees H-plane), stacking distances of 10 feet 8 inches E-plane (3.3 meters) 9 feet 7 inches (2.9 meters) H-plane were calculated. The 10 foot 8 inch (3.3 meter) E-plane spacing gave a pattern similar to fig. 2, but with first sidelobes down 14 dB. Next relative gain measurements were attempted between one and two antennas. Resultant gain curves showing stacking gain versus spacing are shown in fig. 5. The general shape of the curves are similar to those given in the now-famous NBS Technical Note 688, (fig. 6) except I did not see any gain decrease as the spacing was increased to large distances, only a flattening of the gain curve. I also saw an apparent larger gain increase in the E rather than the H-plane. This is again indicated in NBS Note 688. As illustrated in fig. 5, the knee in the gain increase occurs at about 2.7 to 2.8 dB in the E-plane and at 2.5 to 2.6 dB in the H-plane. (When phasing line losses are factored out.)

Next, I attempted to relate first sidelobe levels to position on the gain increase curve and found that the gain increase started to flatten out when the first sidelobes were -12 to -13 dB down. It should be pointed out that at the time these measurements were made,
WITH PRIVATE PATCH II YOU SPEND YOUR TIME COMMUNICATING . . . NOT WAITING TO TAKE CONTROL

PRIVATE PATCH II allows communications to proceed back and forth as rapidly as on a telephone. There is no waiting for sampling circuits to acquire each time the mobile transmits.

The PRIVATE PATCH II VOX system offers a substantial improvement over sampling autopatches in time spent waiting for control!

EXAMPLE: Suppose you made 10 phone calls — 9 completed, 1 busy — assume the completed calls average 20 talk exchanges each, 180 total.

You would spend 360 seconds (6 minutes) waiting for control if you were using a sampling patch that samples every two seconds (180 waits x 2 seconds = 360 seconds). It is a severe inconvenience to have to press the button for a seeming eternity before you can be heard on each and every mobile reply.

With PRIVATE PATCH II there is no lost time waiting for control on all 9 completed calls. However, the busy call would cause a 15 second wait for the control interrupt timer to return control to the mobile.

<table>
<thead>
<tr>
<th>SUMMARY</th>
<th>CONTROL WAITS</th>
<th>TIME WAITED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Private Patch II</td>
<td>1</td>
<td>15 seconds</td>
</tr>
<tr>
<td>Sampling</td>
<td>180</td>
<td>6 minutes</td>
</tr>
</tbody>
</table>

If the sampling patch has a circuit that “slows the sample rate when telephone audio is present,” the speed of acquisition is made even slower. The wait time increases, and the phone party can say perhaps 25 or more words before they can be cut off.

WHY LAND MOBILE_professionals AVOID_SAMPLING PATCHES . . .

The majority of radios on the market (especially synthesized and relay switched types) do not T/R quickly enough to give acceptable results. Often engineering level modifications are required to improve T/R response time.

The slower the T/R response time, the longer the sample must last. And of course no telephone audio is heard during the sample. Just noise. The result is lost words and syllables which are proportional to T/R response.

Acquiring and maintaining control (in order to communicate) becomes erratic when the mobile is less than full quieting. This causes a severe loss of range.

The base station radio can not be equipped with a linear amplifier, and operation through repeaters (that have hangtime) is not possible with a noise sampled patch.

VOX autopatches overcome each of these shortcomings. In fact, nearly all simplex patches sold in commercial service are the VOX type.

Could these be some of the reasons that the competition refers to their VOX patch as “our favorite commercial simplex patch”?

FORGET AMATEUR GRADE SAMPLING AND STEP UP TO A COMMERCIAL GRADE PATCH. PRIVATE PATCH III!
very wide spacing was very popular and many Amateurs, including myself, thought the NBS report with its relatively close spacings was in error. The correlation between my measurements to the NBS curves was truly amazing, especially considering that I was intent on proving NBS wrong.

The additional rule of thumb used by Amateurs was to stack Yagis so that the first sidelobes were 13 dB down. This seemed to correspond to where the gain increase curves flattened out; however, when the sidelobes were -13 dB, the main lobe was less than one half that of a single antenna. When I attempted to find out where the -13 dB rule of thumb came from, the only explanation I could find was that two sidelobes at -13 dB were, in total, -10 dB from the main lobe and anything 10 dB down (or 1/10 amplitude) was insignificant. This seemed plausible except that the H-plane should have a pattern similar to the E-plane — and if it also had two sidelobes 13 dB down (with similar beamwidth to the main lobe), the sum of just those four lobes would be -7 dB relative to the main lobe or 20 percent of the amplitude of the main lobe. Thus if all four sidelobes were looking at noise sources 10 times stronger (in reality, it is not very likely all the sidelobes would be facing similar noise sources) than the background noise the main lobe was looking at, the array would suffer a 6 dB signal-to-noise loss on receive.

**improving a 144-MHz EME array**

With this information in mind, I began to look at the 144-MHz EME array I was using at that time. It consisted of 4 Cushcraft A32-19, 19-element 3.2-wavelength 22 foot (6.7 meter) long Yagis patterned after the NBS 17-element Yagi, with a tri-reflector added. The gain of a single A32-19 is about 13.2 dBd with -3 dB beamwidths in the E and H-plane of approximately 28 by 33 degrees. By using the previously defined aperture calculation method, spacings of 2.1 by 1.75 wavelength or 14 feet (4.3 meters) E-plane by 12 feet (3.7 meters) H-plane were calculated. The manufacturer of the antenna was recommending the same spacings, so it seemed reasonable to use them when constructing the array.

The performance of the array seemed acceptable. I usually received good signal reports, but on receive, signals always were poorer than expected. I easily dismissed the lack of hearing on a noisy urban environment. Looking at the NBS stacking curves, NBS was recommending 2.0 by 1.6 wavelength spacing for the 15-element 4.2 wavelength Yagi, an antenna with about 0.8 dB more gain than the A32-19. I then made some sidelobe measurements and found that the first E-plane sidelobes were down about 12 dB and the H-plane sidelobes were down only 10 dB. A quick decision was made to move the antenna spacing in to 1.9 by 1.6 wavelengths or 13 by 11 feet (4.0 by 3.4 meters) E by H-plane, respectively. The results were startling. During the first two months of operation at the closer spacing, about 20 new stations were worked on EME.
many of them stations I had tried to work in the past without success.

After that I obtained four more A32-19 Yagis. I modified them to standard NBS dimensions and removed the tri-reflectors. I then set them up on the telescoping H-frame and set out to find what was going on. The E-plane pattern of the 17-element 3.2\(\lambda\) NBS array spaced at 13 feet (4.0 meters) E-plane is shown in fig. 7. The pattern looks very good, with first sidelobes down 14 to 15 dB and all other lobes down 25 to 30 dB. H-plane patterns are usually more difficult to measure. Reflections from objects such as trees and utility poles, which are essentially vertically polarized, complicate the problem. Tilting the array back causes changes in ground reflections, which can induce errors if that method is used. Because of that I did not make a complete H-plane pattern measurement, but I did check the first H-plane sidelobes and found them to be only 12 dB down at the 11 foot (3.4 meter) spacing. The aperture calculations indicated that the spacing was already too close — however, NBS had indicated that 1.6-wavelength or 11-foot (3.4 meter) spacing was correct for the higher gain 15-element Yagi. To explain this wide discrepancy between calculated spacings and measured patterns, the patterns of the individual Yagis were examined. Figure 8 is a computer-generated plot of the E and H-plane patterns of the 3.2 wavelength NBS Yagi. The H-plane pattern is noticeably less directive than the E-plane with larger sidelobes over the entire pattern. The array pattern of a number of Yagis is the resulting interference pattern of the individual Yagi patterns interacting with each other. It follows that the resulting array pattern of multiple Yagis will have larger sidelobes in the H-plane.

While measuring the four 3.2-wavelength NBS Yagi array, it was decided to attempt to relate array main lobe beamwidth to sidelobe level and array gain increase. The 3.2 wavelength NBS Yagis reacted similarly to the 12-element LPY antennas previously meas-
ured. When the first sidelobes were −13 dB, the main lobe was narrower than one half that of a single Yagi. Likewise, the main lobe was approximately one half the beamwidth of a single Yagi when the first sidelobes were −14 to −15 dB. This relationship of first sidelobes at −14 to −15 dB when the main lobe beamwidth is half that of a single Yagi has held up in all subsequent arrays I have measured. This also includes arrays that are three and four Yagis wide where the array −3 dB beamwidth is approximately equal to the beamwidth of a single Yagi divided by the number of Yagis in that plane. As an example, my 144-MHz array was expanded to six 3.2 wavelength Yagis. The vertical spacing was kept at 11 feet (3.4 meters). The array’s H-plane pattern is shown in fig. 9. The number of major sidelobes in an array is equal to the number of elements in a plane minus 1. Thus the six-Yagi array will have two major H-plane sidelobes. In this case, the first sidelobe is −13 dB down and the second is −12 dB down. As expected, the main lobe is narrower than one third that of a single Yagi at 10 degrees. Note that as the number of elements in an array are increased (and consequently the number of major sidelobes increase) it becomes much more important to keep the sidelobe amplitudes under control. A look at a 16 Yagi 432-MHz EME array will expand on this point.

more dramatic results at 432 MHz

Frank Potts, WA1RWU, had erected a 432 MHz EME array consisting of 16 Cushcraft 424B 24-element 7.6 wavelength Yagis. The instruction sheet for the 424B recommended 66-inch E-plane by 60-inch H-plane spacing. This was considerably closer than the spacings determined from calculating the aperture. Based on actual antenna gain of 15.8 dBd and a pattern of 20 degrees by 22 degrees (E by H), the spacings were calculated to be 72 inches (1.8 meters) by 65 inches (1.7 meters) E-plane by H-plane. When Dave Olean, K1WHS, of Cushcraft was contacted, he recommended the use of even closer spacings for an EME array — as close as 60 inches (1.5 meters) by 54 inches (1.4 meters). Because of mechanical considerations, the array was assembled using 60-inch (1.7 meter) horizontal (E-plane) by 58-inch (1.5 meter) vertical (H-plane) spacing. Phasing lines consisted of 1/2-inch and 7/8-inch hardline and were cut on a return loss bridge known to be accurate. The performance of the array had a familiar ring to it; Frank would receive excellent signal reports, but on receive, signals were far poorer than expected. Checking into the 432-MHz EME activity, Frank found that there had been a considerable number of other hams who had erected 16-Yagi EME arrays for 432 MHz that never worked well, and as a result, their stations had disappeared from the EME ranks.

At this point I began helping Frank to improve the array. The first priority, I decided, was to obtain a pattern measurement. The height of the array, 20 feet (6.1 meters) above ground, made the likelihood of taking accurate measurements remote. However, with the amount of array gain available (close to 26 dBd) I decided it should be possible to make adequate measurements by using Sun noise.8,9 The E-plane pattern looked excellent, with the three major sidelobes down over 15, 25, and 17 dB, respectively
Six stacked NBS 17-element, 3.2 wavelength Yagi 144-MHz EME array.

(fig. 10). The main lobe beamwidth was close to 6 degrees or greater than one quarter that of a single antenna. The H-plane was a shock with the -3 dB beamwidth of 4 degrees or much narrower than the expected 5.5 degrees. The major sidelobes were very large, at only 9.5, 11.5, and 14 dB below the main lobe (fig. 11). No EME signals had ever been copied when the array elevation was below 18 degrees. The fact that this angle was the same as the second sidelobe direction was no coincidence.

Some tests with a pair of K2RIW 19-element Yagis were run to measure changes in H-plane sidelobe levels. It was found that the first sidelobes changed at about 1 dB for every 2 inches of spacing change. Since the gain of the RIW19 (15.1 dBi) is close to the 4248 it was felt that the results would be similar with the 4248. The vertical spacing was moved in by 6 inches (15 cm) to 52 inches (1.3 meters). The first sidelobes were expected to drop down to -12.5 dB. The results of that spacing change were amazing. The major sidelobes were now -12.3, -20.7, and -14.4 dB (fig. 12). Sun noise was up over 2 dB.* The on-the-air performance improvement was even more spectacular, with 41 QSOs made with 34 different stations during the first ten days of operation at the new spacing. Fewer than 20 QSOs were made in over two months of operation at the wider spacing. Most of the contacts were on random operation (as opposed to pre-arranged schedules) and included several 8 Yagi and one 4 Yagi stations. EME signals, including echoes, were now consistently copied down to 2 degrees elevation (the elevation angle where the main lobe would be clearing the earth). The main lobe beamwidth was still narrower than one quarter that of a single 4248 at 5 degrees. This again supports previous measurements which indicated that a 1/4 beamwidth (5.5 degrees) would not occur until the first sidelobes are down 14 to 15 dB. The pattern indicates that the array has not yet been optimized. It is estimated that the best performance would occur at 62

*Sun noise is measured by pointing the array at cold sky, noting the noise level, and then pointing the array at the sun and measuring the noise increase. Sun noise is a combination measurement of overall receiver temperature and array gain.
The reason for this dramatic improvement can be explained by looking at the approximate Earth noise pickup from the major sidelobes when the array was operated at low elevation angles. The main lobe at 432 MHz may typically see a sky temperature less than 20 degrees K. The sum of the first three sidelobes at −9.5, −11.5, and −14 dB would be equivalent to a single lobe 6.5 dB below the main lobe. Pointed at Earth (290 degrees K), those lobes would contribute about 65 degrees K of noise or cause a 5.1 dB degradation in signal-to-noise ratio. With the reduced sidelobes at the closer spacing, the sum of the three major sidelobes is about −9.8 dB and would cause about a 1.8 dB signal-to-noise degradation. This represents a 3.3 dB receive improvement, which is quite significant on EME. The actual array noise is much more complicated; to calculate it would require summing all the sidelobes and accounting for the strength of the noise sources toward which they pointed. The over-2 dB Sun noise improvement nonetheless confirms the performance improvement.

An alternative method for checking system temperature without taking array gain into account is to measure Earth noise. This is done by pointing the array at cold sky and then at the Earth and then comparing the noise levels. A well-performing 432-MHz EME system should see over a 4 dB ratio. Since this measurement does not take array gain into account it should not be used for array optimization because doing so could result in significant gain loss. Figure 13 is a graph of typical array temperature versus stacking gain increase. The temperatures are not “real world” because they are quite different for the various Amateur frequencies.

**easier method for measuring array beamwidths**

Measuring the −3 dB beamwidths on high gain arrays with very sharp beamwidths can be a difficult task. WA1RWU’s 16-Yagi 432-MHz array uses a prop-pitch motor for an azimuth rotator and has a 360-degree rotation time of over 3 minutes. The elevation leadscrew drive takes over 2 minutes to run 90 degrees. Even with such a rotating system, attempting to measure a 5 degree beamwidth can be a taxing experience. With a conventional commercial rotator it appears to be impossible to get an accurate measurement. It was discovered very early on that the half-power beamwidth was always equal to slightly less than 1/2 the spacing of the first nulls on either side of the main lobe. Interestingly, DL6WU has said that the beamwidth of a single Yagi is equal to 0.485 times the first null spacing. The measurement of the first nulls provides a much easier and most likely more accurate means of determining antenna half-power beamwidths.

The H-plane pattern measurements on the RIW19 Yagi provided yet another surprise. A pair of RIW19s had first H-plane sidelobes down 13 dB at a spacing of 54 inches (1.37 meters). The 424B8s had first H-plane
CALL US LAST!

We just might beat that "unbeatable" deal

Talk with everyone else. Then call us. We're hams with over 50 years of combined experience. We know communications and equipment. We also listen to what you want. And at what price. Then we work with you to put it all together.

We specialize in a total systems approach to communications. It's a concept that takes you to the top in operating performance.

Call us. We don't mind being your last chance to save.

We carry all the top names in amateur equipment.

Hours: Tuesday-Saturday, 10 am-6 pm. Closed Mondays.

800/845-6183
803/366-7157 Inside SC

Service Department
803/366-7158

THE NEW!

GISMO
1039 Latham Drive
Rock Hill, SC 29730
THE MOST AFFORDABLE REPEATER
ALSO HAS THE MOST IMPRESSIVE PERFORMANCE FEATURES

(AND GIVES THEM TO YOU AS STANDARD EQUIPMENT)

<table>
<thead>
<tr>
<th>Band</th>
<th>Kit</th>
<th>Wired</th>
</tr>
</thead>
<tbody>
<tr>
<td>10M,6M,</td>
<td>$880</td>
<td>$880</td>
</tr>
<tr>
<td>2M,220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>440</td>
<td>$780</td>
<td>$980</td>
</tr>
</tbody>
</table>

FEATURES:
- SENSITIVITY SECOND TO NONE; 0.15 uV (VHF), 0.2 uV (UHF) TYP.
- SELECTIVITY THAT CAN'T BE BEAT! BOTH 8 POLE XTAL FILTER & CERAMIC FILTER FOR > 100 dB AT 12KHZ. HELICAL RESONATOR FRONT END TO FIGHT DEENSE & INTERMOD.
- OTHER GREAT RECEIVER FEATURES: FLUTTER-PROOF SQUELCH, AFC TO COMPENSATE FOR OFF-FREQ TRANSMITTERS, SEPARATE LOCAL SPEAKER AMPLIFIER & CONTROL.
- CLEAN, EASY TUNE TRANSMITTER, UP TO 200 WATTS OUT (UP TO 50W WITH OPTIONAL PA).

RECEIVING CONVERTERS
Models to cover every practical rf & hf range to listen to SSB, FM, ATV, etc. NF = 2 db or less.

<table>
<thead>
<tr>
<th>Antenna Input Range</th>
<th>Receiver Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>28-32</td>
<td>144-148</td>
</tr>
<tr>
<td>20-52</td>
<td>28-32</td>
</tr>
<tr>
<td>14-64</td>
<td>20-52</td>
</tr>
<tr>
<td>10-30</td>
<td>14-64</td>
</tr>
<tr>
<td>12-50</td>
<td>28-32</td>
</tr>
<tr>
<td>10-30</td>
<td>12-50</td>
</tr>
<tr>
<td>8-30</td>
<td>12-50</td>
</tr>
<tr>
<td>6-30</td>
<td>8-30</td>
</tr>
<tr>
<td>5-30</td>
<td>6-30</td>
</tr>
<tr>
<td>4-30</td>
<td>5-30</td>
</tr>
<tr>
<td>3-30</td>
<td>4-30</td>
</tr>
<tr>
<td>2-30</td>
<td>3-30</td>
</tr>
<tr>
<td>1-30</td>
<td>2-30</td>
</tr>
<tr>
<td>0.5-30</td>
<td>1-0.5</td>
</tr>
<tr>
<td>0.3-30</td>
<td>0.5-0.3</td>
</tr>
<tr>
<td>0.2-30</td>
<td>0.3-0.2</td>
</tr>
<tr>
<td>0.1-30</td>
<td>0.2-0.1</td>
</tr>
<tr>
<td>0.05-30</td>
<td>0.1-0.05</td>
</tr>
<tr>
<td>0.02-30</td>
<td>0.05-0.02</td>
</tr>
<tr>
<td>0.01-30</td>
<td>0.02-0.01</td>
</tr>
</tbody>
</table>

LOW-NOISE PREAMPS

Hamtronics Breaks the Price Barrier!

No Need to Pay $80 to $125 for a GaAs FET Preamp.

FEATURES:
- Very Low Noise: 0.7 dB VHF, 0.8 dB UHF
- High Gain: 18 to 26 dB, Depending on Freq.
- Wide Dynamic Range for Overload Resistance
- Latest Dual-gate GaAs FET, Very Stable

MODEL | TUNING RANGE | PRICE
------|--------------|------
LNG-28 | 26-30 MHz    | $49  |
LNG-50 | 46-56 MHz    | $49  |
LNG-144| 137-150 MHz  | $49  |
LNG-160| 150-172 MHz  | $49  |
LNG-220| 210-230 MHz  | $49  |
LNG-432| 400-470 MHz  | $49  |
LNG-800| 800-960 MHz  | $49  |

ACCESSORIES

- MO-202 FSK DATA MODULATOR. Run up to 1200 baud digital or packet radio signals automatically on any FM transmitter. Automatically keys transmitter and provides handshakes. 1200/2200 Hz tones. Kit only $45.
- DE-202 FSK DATA DEMODULATOR. Use with any FM receiver to detect packet radio or other digital data in "202" modem format. Provides audio conditioning and handshakes. Kit only $38.
- COR-KIT With audio mixer, local speaker amplifier, tail & time-out timers. Only $38.
- COR-3 KIT as above, but with "courtesy beep". Only $58.
- CWID KITS 158 bits, easily field programmable, clean audio. Kit only $68.
- A16 RF TIGHT BOX Deep drawn alum. case with tight cover and no seams. 7 x 8 x 2 inches. Designed especially for repeaters. $20.
- DTMF DECODER/CONTROLLER KITS. Control 2 separate onoff functions with touchtones*, e.g., repeater and autopatch. Use with main or aux. receiver or with Autopatch. Only $90.
- SIMPLEX AUTOPATCH. Use with your FM transceiver. System includes DTMF & Autopatch modules above and new Timing module to provide simplex autopatch and reverse autopatch. Complete patch system only $200/kit. Call or write for details.

SCANNER CONVERTERS Copy 900 MHz band on any scanner. Wired tested ONLY $88.

TRANSMIT CONVERTERS
For SSB, CW, ATV, FM, etc. Why pay big bucks for a multi mode rig for each band? Can be linked with receiver convertors for transceive. 2 Watts output vhf, 1 Watt uhf.

<table>
<thead>
<tr>
<th>Exciter Input Range</th>
<th>Antenna Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>26-30</td>
<td>144-148</td>
</tr>
<tr>
<td>28-30</td>
<td>145-145</td>
</tr>
<tr>
<td>28-30</td>
<td>147-147</td>
</tr>
<tr>
<td>28-30</td>
<td>149-149</td>
</tr>
<tr>
<td>28-30</td>
<td>151-151</td>
</tr>
<tr>
<td>28-30</td>
<td>153-153</td>
</tr>
<tr>
<td>28-30</td>
<td>155-155</td>
</tr>
<tr>
<td>28-30</td>
<td>157-157</td>
</tr>
<tr>
<td>28-30</td>
<td>159-159</td>
</tr>
<tr>
<td>28-30</td>
<td>161-161</td>
</tr>
<tr>
<td>28-30</td>
<td>163-163</td>
</tr>
<tr>
<td>28-30</td>
<td>165-165</td>
</tr>
<tr>
<td>28-30</td>
<td>167-167</td>
</tr>
<tr>
<td>28-30</td>
<td>169-169</td>
</tr>
</tbody>
</table>

HELICAL RESONATOR PREAMPS

Low-noise preamps with helical resonators reduce intermod and cross-band interference in critical applications. 12 dB gain.

<table>
<thead>
<tr>
<th>Model</th>
<th>Tuning Range</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRA-144</td>
<td>143-150 MHz</td>
<td>$49</td>
</tr>
<tr>
<td>HRA-220</td>
<td>213-233 MHz</td>
<td>$49</td>
</tr>
<tr>
<td>HRA-432</td>
<td>420-450 MHz</td>
<td>$59</td>
</tr>
<tr>
<td>HRA-144</td>
<td>150-174 MHz</td>
<td>$54</td>
</tr>
<tr>
<td>HRA-432</td>
<td>450-470 MHz</td>
<td>$64</td>
</tr>
</tbody>
</table>

- Call or Write for FREE CATALOG
(Send $2.00 or 4 IRC's for overseas mailing)
- Order by phone or mail • Add $3 S & H per order
(Electronic answering service evenings & weekends)
- Use VISA, MASTERCARD, Check, or UPS COD.
Sixteen stacked Cushcraft 424B Yagis in a 432-MHz EME array.

The effect of having antennas for different bands located in close proximity has not received much attention. The interaction between antennas can be understood by looking again at fig. 1. If another antenna is located in the shadow of the first, it will not be able to extract as much energy as the first simply because the field strength is reduced behind the first antenna. To quantify the effect of having different antennas located nearby can be complicated. To evaluate the effect of a 144-MHz antenna on a nearby 432-MHz antenna, the aperture of the 144-MHz antenna at 432 MHz would have to be calculated in order to see how much of the capture areas overlapped. Next it would have to be determined who had “first dibs” on the signal or which antenna was in the other’s shadow.

The only conclusive measurement I have been able to make has been to measure the Sun noise of a given array by itself and then add the other antennas and again measure Sun noise. I have found a consistent degradation in Sun noise by having arrays interlaced. Surprisingly, in most cases it is the lower frequency array that suffers. A side effect also appears to be the occurrence of stray sidelobes. The explanation of that phenomenon is that the unused antenna is re-radiating signals it had captured. Although not conclusive, terminating the unused antennas in a 50-ohm load appears to minimize the effect.

To be on the safe side, antennas should be located such that their apertures do not overlap. This can sometimes lead to very large spacings. As a practical matter the casual VHF/UHF operator may never see the performance degradation. The EME operator or enthusiastic weak signal worker who is looking for the last bit of performance is advised to either not mix arrays or to maintain sufficient spacing between them.

alternate stacking arrangements

This article has addressed only arrays with the Yagis arranged in uniform rows and columns. It may be possible to obtain additional stacking gain while controlling sidelobes by using other arrangements such as circle or diamond configurations. This would be due to the lower amount of aperture overlap required for sidelobe level control. I have not examined these alternative arrangements because of the difficulty in adapting them to an array with elevation control.

conclusions

Since most readers are likely to be more interested in a guide to how far apart to stack various antennas than in duplicating my work, table 2 is provided. It covers a number of popular 144 MHz and 432 MHz antennas and their recommended stacking distances.
Although a few tenths of a dB additional gain may be obtainable at larger spacings, the added size, weight, and windload would most likely not justify the wider spacing even if EME or satellite communications are not anticipated.

It should be emphasized that gain alone does not

---

**Table 2. Measured performance of 144 and 432 MHz antennas.**

<table>
<thead>
<tr>
<th>TYPE</th>
<th>GAIN</th>
<th>PATTERN</th>
<th>BOOMLENGTH</th>
<th>SIDELOBES</th>
<th>STACKING</th>
</tr>
</thead>
<tbody>
<tr>
<td>144 MHz ANTENNAS</td>
<td></td>
<td></td>
<td></td>
<td>E x H -dB</td>
<td>E x H</td>
</tr>
<tr>
<td>6 el NBS</td>
<td>10.2</td>
<td>10 x 20</td>
<td>1.2</td>
<td>8.2</td>
<td>17 x 9</td>
</tr>
<tr>
<td>9 el F9FT</td>
<td>10.6</td>
<td>10 x 20</td>
<td>1.6</td>
<td>10.8</td>
<td>17 x 9</td>
</tr>
<tr>
<td>11 el Swan/KLM</td>
<td>10.8</td>
<td>10 x 20</td>
<td>1.8</td>
<td>12.3</td>
<td>17 x 9</td>
</tr>
<tr>
<td>11 el Cushcraft</td>
<td>10.8</td>
<td>10 x 20</td>
<td>1.7</td>
<td>11.8</td>
<td>17 x 9</td>
</tr>
<tr>
<td>12 el Swan/KLM</td>
<td>11.2</td>
<td>10 x 20</td>
<td>2.0</td>
<td>14.1</td>
<td>17 x 9</td>
</tr>
<tr>
<td>14 el Cushcraft</td>
<td>11.8</td>
<td>10 x 20</td>
<td>2.9</td>
<td>17.4</td>
<td>17 x 9</td>
</tr>
<tr>
<td>14 el Cushcraft</td>
<td>12.2</td>
<td>10 x 20</td>
<td>3.0</td>
<td>20.7</td>
<td>17 x 9</td>
</tr>
<tr>
<td>16 el F9FT</td>
<td>12.2</td>
<td>10 x 20</td>
<td>3.3</td>
<td>23.3</td>
<td>17 x 9</td>
</tr>
<tr>
<td>16 el KLM 11X</td>
<td>12.2</td>
<td>10 x 20</td>
<td>3.4</td>
<td>24.0</td>
<td>17 x 9</td>
</tr>
<tr>
<td>16 el F9FT</td>
<td>12.2</td>
<td>10 x 20</td>
<td>3.5</td>
<td>25.2</td>
<td>17 x 9</td>
</tr>
<tr>
<td>16 el LUNAR</td>
<td>12.6</td>
<td>10 x 20</td>
<td>3.6</td>
<td>26.2</td>
<td>17 x 9</td>
</tr>
<tr>
<td>13 el KLM LBA</td>
<td>13.0</td>
<td>10 x 20</td>
<td>3.7</td>
<td>27.3</td>
<td>17 x 9</td>
</tr>
<tr>
<td>15 el Cushcraft</td>
<td>13.1</td>
<td>10 x 20</td>
<td>3.8</td>
<td>28.5</td>
<td>17 x 9</td>
</tr>
<tr>
<td>17 el NBS</td>
<td>13.1</td>
<td>10 x 20</td>
<td>3.9</td>
<td>29.7</td>
<td>17 x 9</td>
</tr>
<tr>
<td>19 el Cushcraft</td>
<td>13.1</td>
<td>10 x 20</td>
<td>4.0</td>
<td>30.9</td>
<td>17 x 9</td>
</tr>
<tr>
<td>13 el W2NLY</td>
<td>13.4</td>
<td>10 x 20</td>
<td>4.1</td>
<td>32.2</td>
<td>17 x 9</td>
</tr>
<tr>
<td>15 el Telex</td>
<td>13.5</td>
<td>10 x 20</td>
<td>4.2</td>
<td>33.4</td>
<td>17 x 9</td>
</tr>
<tr>
<td>14 el K1FO</td>
<td>13.7</td>
<td>10 x 20</td>
<td>4.3</td>
<td>34.6</td>
<td>17 x 9</td>
</tr>
<tr>
<td>15 el NBS</td>
<td>13.9</td>
<td>10 x 20</td>
<td>4.4</td>
<td>35.8</td>
<td>17 x 9</td>
</tr>
<tr>
<td>16 el KLM LBA</td>
<td>14.3</td>
<td>10 x 20</td>
<td>4.5</td>
<td>37.0</td>
<td>17 x 9</td>
</tr>
<tr>
<td>16 el KLM LBA</td>
<td>14.5</td>
<td>10 x 20</td>
<td>4.6</td>
<td>38.2</td>
<td>17 x 9</td>
</tr>
<tr>
<td>432 MHz ANTENNAS</td>
<td></td>
<td></td>
<td></td>
<td>E x H -dB</td>
<td>E x H</td>
</tr>
<tr>
<td>11 el Tilton</td>
<td>11.8</td>
<td>10 x 20</td>
<td>2.6</td>
<td>6.0</td>
<td>17 x 9</td>
</tr>
<tr>
<td>13 el W2QKI</td>
<td>13.3</td>
<td>10 x 20</td>
<td>2.8</td>
<td>7.0</td>
<td>17 x 9</td>
</tr>
<tr>
<td>13 el K2R1W</td>
<td>13.5</td>
<td>10 x 20</td>
<td>3.0</td>
<td>8.0</td>
<td>17 x 9</td>
</tr>
<tr>
<td>15 el NBS</td>
<td>13.9</td>
<td>10 x 20</td>
<td>3.2</td>
<td>9.0</td>
<td>17 x 9</td>
</tr>
<tr>
<td>16 el KLM LBA</td>
<td>14.4</td>
<td>10 x 20</td>
<td>3.3</td>
<td>10.0</td>
<td>17 x 9</td>
</tr>
<tr>
<td>19 el K2R1W</td>
<td>15.1</td>
<td>10 x 20</td>
<td>3.5</td>
<td>11.0</td>
<td>17 x 9</td>
</tr>
<tr>
<td>21 el F9FT</td>
<td>15.2</td>
<td>10 x 20</td>
<td>3.6</td>
<td>12.0</td>
<td>17 x 9</td>
</tr>
<tr>
<td>26 el DL9KR</td>
<td>15.5</td>
<td>10 x 20</td>
<td>3.7</td>
<td>13.0</td>
<td>17 x 9</td>
</tr>
<tr>
<td>24 el Cushcraft</td>
<td>15.8</td>
<td>10 x 20</td>
<td>3.8</td>
<td>14.0</td>
<td>17 x 9</td>
</tr>
<tr>
<td>22 el DL6UU</td>
<td>15.8</td>
<td>10 x 20</td>
<td>3.9</td>
<td>15.0</td>
<td>17 x 9</td>
</tr>
<tr>
<td>24 el K1FO</td>
<td>16.6</td>
<td>10 x 20</td>
<td>4.0</td>
<td>16.0</td>
<td>17 x 9</td>
</tr>
<tr>
<td>28 el W1JR/DL6U</td>
<td>17.0</td>
<td>10 x 20</td>
<td>4.1</td>
<td>17.0</td>
<td>17 x 9</td>
</tr>
<tr>
<td>30 el KLM LBX</td>
<td>17.3</td>
<td>10 x 20</td>
<td>4.2</td>
<td>18.0</td>
<td>17 x 9</td>
</tr>
<tr>
<td>31 el W1JR/DL6U</td>
<td>17.5</td>
<td>10 x 20</td>
<td>4.3</td>
<td>19.0</td>
<td>17 x 9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>TYPE</th>
<th>dBd</th>
<th>PATTERN</th>
<th>BOOMLENGTH</th>
<th>SIDELOBES</th>
<th>STACKING</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 el</td>
<td>Tilton</td>
<td>11.8</td>
<td>10 x 20</td>
<td>2.6</td>
<td>6.0</td>
<td>17 x 9</td>
</tr>
<tr>
<td>13 el</td>
<td>W2QKI</td>
<td>13.3</td>
<td>10 x 20</td>
<td>2.8</td>
<td>7.0</td>
<td>17 x 9</td>
</tr>
<tr>
<td>13 el</td>
<td>K2R1W</td>
<td>13.5</td>
<td>10 x 20</td>
<td>3.0</td>
<td>8.0</td>
<td>17 x 9</td>
</tr>
<tr>
<td>15 el</td>
<td>NBS</td>
<td>13.9</td>
<td>10 x 20</td>
<td>3.2</td>
<td>9.0</td>
<td>17 x 9</td>
</tr>
<tr>
<td>16 el</td>
<td>KLM LBA</td>
<td>14.4</td>
<td>10 x 20</td>
<td>3.3</td>
<td>10.0</td>
<td>17 x 9</td>
</tr>
<tr>
<td>19 el</td>
<td>K2R1W</td>
<td>15.1</td>
<td>10 x 20</td>
<td>3.5</td>
<td>11.0</td>
<td>17 x 9</td>
</tr>
<tr>
<td>21 el</td>
<td>F9FT</td>
<td>15.2</td>
<td>10 x 20</td>
<td>3.6</td>
<td>12.0</td>
<td>17 x 9</td>
</tr>
<tr>
<td>26 el</td>
<td>DL9KR</td>
<td>15.5</td>
<td>10 x 20</td>
<td>3.7</td>
<td>13.0</td>
<td>17 x 9</td>
</tr>
<tr>
<td>24 el</td>
<td>Cushcraft</td>
<td>15.8</td>
<td>10 x 20</td>
<td>3.8</td>
<td>14.0</td>
<td>17 x 9</td>
</tr>
<tr>
<td>22 el</td>
<td>DL6UU</td>
<td>15.8</td>
<td>10 x 20</td>
<td>3.9</td>
<td>15.0</td>
<td>17 x 9</td>
</tr>
<tr>
<td>24 el</td>
<td>K1FO</td>
<td>16.6</td>
<td>10 x 20</td>
<td>4.0</td>
<td>16.0</td>
<td>17 x 9</td>
</tr>
<tr>
<td>28 el</td>
<td>W1JR/DL6U</td>
<td>17.0</td>
<td>10 x 20</td>
<td>4.1</td>
<td>17.0</td>
<td>17 x 9</td>
</tr>
<tr>
<td>30 el</td>
<td>KLM LBX</td>
<td>17.3</td>
<td>10 x 20</td>
<td>4.2</td>
<td>18.0</td>
<td>17 x 9</td>
</tr>
<tr>
<td>31 el</td>
<td>W1JR/DL6U</td>
<td>17.5</td>
<td>10 x 20</td>
<td>4.3</td>
<td>19.0</td>
<td>17 x 9</td>
</tr>
</tbody>
</table>

a These NBS yagis have gain peaks 2 percent high in frequency.
b Gain peak is 11.1 dB at 146 MHz, 38 x 44 degree pattern.
c Has incorrect balun length. With stock balun gain is 12.4 dBd.
d Figures are for 0.125 inch taper version with 20 in. reflector spacing.
e Is tuned to 440 MHz. Retuned to 432 MHz gain would be 12.6 dBd.
f Design based on Greenblum / Tilton information.
g Is designed for 435 MHz. Gain peak is 15.9 dBd at 436 MHz.
h Uses 8 element screen reflector.
i Is a modified 424B using a single reflector and 22 directors.
j Is designed for 439 MHz. Gain peak is 16.0 dBd at 436 MHz.
k Design based on DL6UU information.

---

May 1985
tell the whole story. A Yagi with a cleaner pattern may be a better choice for an EME array than one with higher gain and a "messy" pattern. The highest gain Yagi in the world is of little use if it splits into 5 pieces the first time a storm passes by.

Finally, the following summary should serve as a guideline in building multiple Yagi arrays:

- Optimum stacking distance is a compromise between gain increase and sidelobe level (G/T).
- Array -3 dB beamwidth will be equal to single element beamwidth divided by the number of elements in a plane when the first sidelobes are -14 to -15 dB. This usually represents optimum stacking or best G/T.
- The H-plane’s inherently less directive pattern requires substantially closer spacing than the E-plane to achieve optimum sidelobe levels.
- Negating phasing line losses, doubling the number of elements in an array at optimum spacing will give approximately 2.7 to 2.8 dB gain increase in the E-plane and 2.5 to 2.6 dB in the H-plane.
- The greater the number of elements in an array, the more critical it is to have that array optimally spaced.
- The higher the frequency of operation, the more critical it is to have an array with small sidelobes (i.e. optimally stacked).
- The cleaner the pattern of an individual Yagi, the greater the optimum stacking distance will be — hence the greater the array gain.
- Although spacings closer than the maximum gain distance can cause the loss of a few tenths of a dB in array gain, the closer spacing can result in several dB of signal-to-noise ratio improvement on receive.
- If you are going to make a mistake, put your antennas “too close together” rather than “too far apart.”
- Placing different band antennas in close proximity can degrade performance.

references
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>LS00 .20</td>
<td>LS163 .45</td>
<td>1.25</td>
</tr>
<tr>
<td>LS01 .20</td>
<td>LS164 .65</td>
<td>1.25</td>
</tr>
<tr>
<td>LS02 .20</td>
<td>LS165 .90</td>
<td>1.25</td>
</tr>
<tr>
<td>LS03 .20</td>
<td>LS166 .125</td>
<td>1.25</td>
</tr>
<tr>
<td>LS05 .20</td>
<td>LS174 .54</td>
<td>1.25</td>
</tr>
<tr>
<td>LS08 .20</td>
<td>LS175 .11</td>
<td>1.25</td>
</tr>
<tr>
<td>LS10 .20</td>
<td>LS191 .90</td>
<td>1.25</td>
</tr>
<tr>
<td>LS11 .20</td>
<td>LS192 .80</td>
<td>1.25</td>
</tr>
<tr>
<td>LS12 .35</td>
<td>LS193 .65</td>
<td>1.25</td>
</tr>
<tr>
<td>LS13 .40</td>
<td>LS195 .60</td>
<td>1.25</td>
</tr>
<tr>
<td>LS15 .32</td>
<td>LS196 .70</td>
<td>1.25</td>
</tr>
<tr>
<td>LS21 .25</td>
<td>LS221 .85</td>
<td>1.25</td>
</tr>
<tr>
<td>LS27 .28</td>
<td>LS240 .100</td>
<td>1.25</td>
</tr>
<tr>
<td>LS30 .20</td>
<td>LS241 .80</td>
<td>1.25</td>
</tr>
<tr>
<td>LS32 .25</td>
<td>LS242 .100</td>
<td>1.25</td>
</tr>
<tr>
<td>LS33 .40</td>
<td>LS243 .100</td>
<td>1.25</td>
</tr>
<tr>
<td>LS37 .33</td>
<td>LS244 .100</td>
<td>1.25</td>
</tr>
<tr>
<td>LS38 .35</td>
<td>LS245 .50</td>
<td>1.25</td>
</tr>
<tr>
<td>LS42 .24</td>
<td>LS251 .50</td>
<td>1.25</td>
</tr>
<tr>
<td>LS51 .24</td>
<td>LS253 .50</td>
<td>1.25</td>
</tr>
<tr>
<td>LS54 .25</td>
<td>LS257 .50</td>
<td>1.25</td>
</tr>
<tr>
<td>LS74 .24</td>
<td>LS278 .2000</td>
<td>1.25</td>
</tr>
<tr>
<td>LS73 .35</td>
<td>LS259 .2000</td>
<td>1.25</td>
</tr>
<tr>
<td>LS74 .30</td>
<td>LS260 .50</td>
<td>1.25</td>
</tr>
<tr>
<td>LS85 .60</td>
<td>LS261 .40</td>
<td>1.25</td>
</tr>
<tr>
<td>LS86 .25</td>
<td>LS273 .100</td>
<td>1.25</td>
</tr>
<tr>
<td>LS90 .10</td>
<td>LS279 .40</td>
<td>1.25</td>
</tr>
<tr>
<td>LS93 .55</td>
<td>LS280 .100</td>
<td>1.25</td>
</tr>
<tr>
<td>LS107 .37</td>
<td>LS283 .85</td>
<td>1.25</td>
</tr>
<tr>
<td>LS112 .30</td>
<td>LS293 .85</td>
<td>1.25</td>
</tr>
<tr>
<td>LS112 .45</td>
<td>LS298 .150</td>
<td>1.25</td>
</tr>
<tr>
<td>LS123 .55</td>
<td>LS299 .150</td>
<td>1.25</td>
</tr>
<tr>
<td>LS124 .275</td>
<td>LS301 .250</td>
<td>1.25</td>
</tr>
<tr>
<td>LS125 .40</td>
<td>LS348 .75</td>
<td>1.25</td>
</tr>
<tr>
<td>LS126 .49</td>
<td>LS364 .100</td>
<td>1.25</td>
</tr>
<tr>
<td>LS128 .35</td>
<td>LS365 .40</td>
<td>1.25</td>
</tr>
<tr>
<td>LS130 .35</td>
<td>LS366 .50</td>
<td>1.25</td>
</tr>
<tr>
<td>LS132 .45</td>
<td>LS373 .100</td>
<td>1.25</td>
</tr>
<tr>
<td>LS135 .45</td>
<td>LS375 .50</td>
<td>1.25</td>
</tr>
<tr>
<td>LS136 .50</td>
<td>LS377 .100</td>
<td>1.25</td>
</tr>
<tr>
<td>LS137 .50</td>
<td>LS378 .85</td>
<td>1.25</td>
</tr>
<tr>
<td>LS138 .45</td>
<td>LS380 .100</td>
<td>1.25</td>
</tr>
<tr>
<td>LS139 .45</td>
<td>LS381 .50</td>
<td>1.25</td>
</tr>
<tr>
<td>LS140 .30</td>
<td>LS382 .50</td>
<td>1.25</td>
</tr>
<tr>
<td>LS140 .50</td>
<td>LS387 .50</td>
<td>1.25</td>
</tr>
<tr>
<td>LS150 .65</td>
<td>25LS2569 .300</td>
<td>1.25</td>
</tr>
<tr>
<td>LS162 .65</td>
<td>25LS2569 .300</td>
<td>1.25</td>
</tr>
</tbody>
</table>

**74LS**

**8000**

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z8002 .20</td>
<td>LS805 .475</td>
<td>1.25</td>
</tr>
<tr>
<td>8035 .45</td>
<td>LS806-2 .245</td>
<td>1.25</td>
</tr>
<tr>
<td>8035 .45</td>
<td>LS807-3 .149</td>
<td>1.25</td>
</tr>
<tr>
<td>8080A .125</td>
<td>LS808 .150</td>
<td>1.25</td>
</tr>
</tbody>
</table>

**8200**

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z8202A .20</td>
<td>LS825-5 .50</td>
<td>1.25</td>
</tr>
<tr>
<td>Z8224 .150</td>
<td>LS825A .20</td>
<td>1.25</td>
</tr>
<tr>
<td>Z8214 .20</td>
<td>LS825C-5 .50</td>
<td>1.25</td>
</tr>
<tr>
<td>Z8216 .175</td>
<td>LS8275 .145</td>
<td>1.25</td>
</tr>
<tr>
<td>Z8228 .125</td>
<td>LS8275-5 .75</td>
<td>1.25</td>
</tr>
<tr>
<td>Z8237 .75</td>
<td>LS8284 .320</td>
<td>1.25</td>
</tr>
<tr>
<td>Z8250 .95</td>
<td>LS8286 .75</td>
<td>1.25</td>
</tr>
<tr>
<td>Z8251 .42</td>
<td>LS8288 .75</td>
<td>1.25</td>
</tr>
<tr>
<td>Z8253-5 .675</td>
<td>1.25</td>
<td></td>
</tr>
</tbody>
</table>

**Z80**

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 MHz CPU</td>
<td>1.25</td>
</tr>
<tr>
<td>Z80DAMA-DMA</td>
<td>1.25</td>
</tr>
<tr>
<td>Z80PIO</td>
<td>1.25</td>
</tr>
<tr>
<td>Z805I/O/O</td>
<td>1.25</td>
</tr>
<tr>
<td>Z804-MHz CPU</td>
<td>1.25</td>
</tr>
<tr>
<td>Z80A-CTC</td>
<td>1.25</td>
</tr>
<tr>
<td>Z80A-DART</td>
<td>1.25</td>
</tr>
<tr>
<td>Z80A-DMA</td>
<td>1.25</td>
</tr>
<tr>
<td>Z80A-PIO</td>
<td>1.25</td>
</tr>
<tr>
<td>Z80A-SIO/O</td>
<td>1.25</td>
</tr>
</tbody>
</table>

**2114 SPECIAL**

**F.D. CONTROLLERS**

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-300 kHz</td>
<td>1.25</td>
</tr>
<tr>
<td>400-500 kHz</td>
<td>1.25</td>
</tr>
<tr>
<td>500-600 kHz</td>
<td>1.25</td>
</tr>
<tr>
<td>600-700 kHz</td>
<td>1.25</td>
</tr>
</tbody>
</table>

**CONTROL SYSTEM**

**SOCKETS**

<table>
<thead>
<tr>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Profile SOLDER</td>
<td>1.25</td>
</tr>
<tr>
<td>6 Pin</td>
<td>1.25</td>
</tr>
<tr>
<td>8 Pin</td>
<td>1.25</td>
</tr>
<tr>
<td>14 Pin</td>
<td>1.25</td>
</tr>
<tr>
<td>16 Pin</td>
<td>1.25</td>
</tr>
<tr>
<td>18 Pin</td>
<td>1.25</td>
</tr>
<tr>
<td>20 Pin</td>
<td>1.25</td>
</tr>
<tr>
<td>22 Pin</td>
<td>1.25</td>
</tr>
<tr>
<td>24 Pin</td>
<td>1.25</td>
</tr>
<tr>
<td>28 Pin</td>
<td>1.25</td>
</tr>
<tr>
<td>40 Pin</td>
<td>1.25</td>
</tr>
</tbody>
</table>

**TERMS** Unless specified elsewhere: Add $1.50 postage, per-pan profit. Orders over $50.00 add 5% for insurance. No COD. Texas Res. add 1/2%. Tax 900 Day Money Back Guarantee on all items. All items subject to prior sale. Prices subject to change without notice. Foreign order - US funds only. We cannot ship to Mexico. Countries other than Canada, and add $2.50 shipping and handling.

Tell 'em you saw it in HAM RADIO!
Big Computer Manufacturer Does It Again!!!

DISK DRIVE BONANZA — DOUBLE SIDED 5¼"
DOUBLE DENSITY FACTORY NEW DISK DRIVES

MANUFACTURED IN JAPAN BY CANON.
THESE ARE PROBABLY THE MOST BEAUTIFUL
5¼" DISK DRIVES WE HAVE EVER SEEN
ON THE SURPLUS MARKET!!

BRAND NEW: UNUSED!

$49.95 EA. 2 FOR $85.00

ADD $1.50 EACH FOR POSTAGE

SPECS: DOUBLE SIDED — 40 TRACK
SINGLE OR DOUBLE DENSITY
TWO THIRDS HEIGHT (SPACE SAVER!!)
INDUSTRY STANDARD PIN OUT
DIRECT DRIVE — NO BELT TO BREAK!
FAST ACCESS — 6MS
LATEST HEAD & DRIVE TECHNOLOGY

The same poor purchasing agent who nearly got lynched for over buying so many D.C.
switchers has gotten carried away again. The Big Boss found another hiding place crammed
with a truckload of the brand new precision manufactured 5¼" disk drives. Fortunately for us,
the Big Boss remembered us from the switchers deal and he gave us an opportunity to make
the "Second Best" surplus buy of the decade. Even though we bought a huge quantity, please
order early to avoid disappointment. Please do not confuse these sleek, 2/3 height, high
quality Japanese disk drives with the flimsy domestic units sold by others.

SERIAL ASCII KEYBOARD

$14.95 Each

This is the same mistake!

Maxi Switch 67 Key (includes 10 function keys)
QWERTY serial keyboard. Number KYBD2185010
keyboard which uses a CMOS 8048 single chip
microprocessor for super low power consumption.
Very high quality with an exceptionally smooth feel.
Originally designed for use in a portable computer.
Simple serial interface — complete documentation
included — Size: 12" x 5¼"
These won’t last long at this price!!!!

ATARI HEX KEYBOARD

$7.95

3 for $20.00

Originally designed for use with an Atari Home
Computer. Brand new in box. Encoded using the
popular National Semi 74C923. Full schematic
included. Originally sold for many times our price.
Many applications besides computer use.

TERMS: (Unless specified elsewhere) Add $1.50 postage, we pay balance. Orders over $50.00 add 85¢ for insurance. No C.O.D. Texas Res. add 6-1/8%. Tax. 90 Day Money Back Guarantee on all items. All items subject to prior sale. Prices subject to change without notice. Foreign order — US funds only. We cannot ship to Mexico, Countries other than Canada, add $3.50 shipping and handling.
Active antennas have been available commercially for several years, but relatively little practical information about them has appeared in the Amateur journals. This article illustrates how to build a simple one covering from 500 kHz to at least 30 MHz using commonly available components. As an added bonus, the antenna works as an omnidirectional 2-meter antenna when not in use for HF reception. It will also meet the needs of SWL's for casual monitoring on the HF bands.

First, some clarification is in order. True active antennas (sometimes referred to as voltage probe antennas) use circuitry somewhat more sophisticated than what is presented here. Antenna probe lengths of 2 inches have been used in some commercial models intended for military markets. Their circuitry does not match impedances in the usual sense, as does the simple approach used here. Instead, their reactive components are made small in comparison to the extremely high source-follower FET input impedance, effectively swamping out the reactive component. A short probe antenna, at the lower HF frequencies, may have a capacitive reactance in the millions of ohms, while its effective radiation resistance is only a very small fraction of an ohm. Despite its lack of eloquence the antenna presented here works well, and can be built in a weekend for very little cost.

General coverage antenna needed

Amateur Radio manufacturers have caught on to the market for general-coverage reception — today many transceivers will receive from the lower LF ranges continuously up to 30 MHz and beyond. While the benefits of general-coverage receivers are obvious, some problems await those seeking a single antenna capable of spanning several octaves.

The simple link-coupled LC preselector circuits used in vintage tube-type receivers were capable of matching to a wide variety of loads, and an "antenna" tuning control served in tweaking the most out of any antenna. But the situation is somewhat different today. Modern receivers are carefully designed for proper gain distribution. The tracking preselectors and high-gain front ends are gone; in their place are mod-

Internal view of unit shows the construction details of the active antenna. The ASP-677 commercial antenna was used. Because of the softness of the minibox aluminum, the 3/8-inch snap-mount washer was removed and installed on the inside wall of the minibox. This washer is part of the ASP snap-mount assembly.

By Peter J. Bertini, K1ZJH, 20 Patsun Road, Somers, Connecticut 06071
ern electronically-switched broadband filters. But these filters are not tolerant. If the load is not 50 ohms, their performance is no longer predictable and losses can become excessive. Consider the use of an 80-meter antenna for shortwave reception in the 40-meter region. An 80-meter dipole at 40 meters is virtually unusable because as the feedpoint impedance soars to a very high value the shunt capacity of the coax greatly attenuates incoming signals.

**impedance transformation needed**

Did you ever wonder how an automobile’s AM antenna could work effectively on FM and yet be so short? The answer lies in the special high-impedance coax and special front-end design used in these receivers. (If you’ve ever tried to replace this coax with RG-58 you’ve quickly learned a lesson in capacitive losses.)

If a short antenna will work at 550 kHz, it will work elsewhere as well. All that’s needed is an impedance transformation network to change the extremely high termination impedance of our short “probe” antenna into a usable 50-ohm impedance for our receiver, across a range of several octaves. The size of an antenna has little bearing on its performance — full-size antennas do offer 50-ohm feedpoint impedances and low enough resistance losses to allow efficient RF radiation. For receiving applications, many Amateurs have found that antennas such as the Beverage, ferrite-loop, and active antenna often out-perform full-size transmitting antenna arrays because of their lower susceptibility to noise pickup — and in some cases, their excellent directivity in the lower HF regions.

A JFET source-follower stage provides the desired high-to-low impedance transformation. (While a 2N5486 was used here, an MPF102 will also work.)
The antenna is a length of wire, about 48 inches (1.22 meters) long. A length of stainless-steel wire salvaged from an old VHF whip or automobile antenna or even a section of aluminum tubing may be used for the antenna probe.

Two versions of this antenna were built and tested; one was designed for indoor use and the other for outdoor mounting. The indoor unit was built in a small enclosure. The exact dimensions are not critical, providing all components can be comfortably mounted inside. The only difference between the indoor and outdoor models is in the packaging — the outdoor model uses a remote weather-proof housing for the preamp and antenna probe. Everything is self-contained in the indoor version.

Referring to fig. 1, for the schematic for the indoor model, note the back-to-back diode protection from the JFET gate to ground. I found that the static discharge generated from shuffling across the shack floor was responsible for the untimely demise of several 2N5486 devices before I realized what was going on. These diodes do not guarantee total protection — the best safeguard is to avoid touching the antenna probe. To prevent generation of an insidious form of TVI in the outdoor antenna caused by diode rectification of RF radiated from nearby HF or VHF transmitters, a small reed relay is used to disconnect the antenna probe from the preamp stages when the antenna is not in use. This also offers some protection to the JFET during electrical storms, when static charges might build up on the antenna. The reed relay should be used in the indoor model as well for protection against static discharges. The reed relay is used only in the HF model — for 2-meter operation a more involved switching scheme using DPDT relays is needed. (This will be addressed in greater detail below).

The schematic shown in fig. 2 serves as the basis for the outdoor HF active antenna. The only difference is in the power feed arrangement. In the outdoor model, power for the preamp head is fed through the coax from the indoor power supply.

additional gain needed

Following the JFET device, which does not provide voltage gain, is a class-A bipolar stage using a 2N3866 transistor. (A 2N5109 could be used here instead.) “Hotter” transistors such as the TRW LT1001 might offer some improvement, especially at higher frequencies, but they might also require some circuit revisions to prevent self-oscillation. This stage does provide gain, building up the very small signals captured by the short antenna. The transistor must be heatsunk; the stage draws about 25 mA resulting in considerable
“I LEFT PLACES WITHOUT POWER FOR MAN TO CREATE”

And the people at Photocomm are creating this needed power. Their solution is being the best in Photovoltaic engineering and design to service all your remote electrical energy needs from design to installation in a multitude of areas:
- Telecommunications
- Navigational Aids
- Water Pumping
- Railroad Signalling
- Cathodic Protection

Photocomm has the total service and professionalism that those of higher authority demand.

PHOTOCOMM INC.
PHOTOVOLTAIC SYSTEMS
7735 E. Redfield Rd.
Scottsdale, AZ 85260
(602) 948-8003
TELEX 6835043
fig. 3. The changes allowing 2-meter operation for the active antenna while not in use on HF. The 15-VDC power source is the one shown in fig. 2. Two DPDT relays bypass the active antenna preamp stages for straight-through operation on 2 meters. Six-volt relays will work, providing the coils are wired in series. Component values are not shown if unchanged from previous diagrams.

device dissipation. Shunt feedback sets the stage gain and insures stable operation. A series choke in the feedback network allows greater gain at higher frequencies, this is necessary because the $f_T$ (the gain-bandwidth product, or the frequency at which the current gain reduces to unity) of the 2N3866 is only 500 MHz. A broadband interstage matching transformer is used between the source follower and bipolar amplifier. Using 20 bifilar turns allows enough inductive reactance for operation through the AM broadcast band. If AM broadcast band coverage is not desired, the windings may be reduced to nine bifilar turns. This will cause gain to start rolling off below 1800 kHz, while yielding a slight improvement above 30 MHz.

All models were constructed and tested using point-to-point wiring techniques on double-sided PC board material. Phenolic soldering strips provide the mechanical support needed for components and wiring. While the results are not overly photogenic, the circuit works as intended. Etched printed-circuit construction is not needed here.

The outdoor model works best. Mounted high and in the clear, it is not subjected to the man-made noises carried and radiated on the home’s wiring. Many common home appliances will generate copious amounts of broadband hash across the HF spectrum: vacuum cleaners, television horizontal-sweep circuits, fluorescent lights, light dimmers, computers, and numerous other devices will cause grief for the serious HF operator. While the antenna can be side-mounted to an existing tower leg, it is best to mount it away from nearby metal objects. If at all possible the antenna should be top-mounted on the tower mast. Lead-in coax can be either RG-59 or RG-58 type cable. RG-8 coaxial cable can be used with the outdoor combination 2-meter/HF model to limit the VHF losses.

use for 2 meters as well

Since the antenna probe is 48 inches long, we have the basic foundation for a 5/8-wavelength vertically polarized antenna for 2 meters. All that’s required is a matching transformer (fig. 4) to match the

---

**Table:**

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC3</td>
<td>20 turns No. 26 wire on Amidon 1750-61 core material</td>
</tr>
<tr>
<td>RL2.3</td>
<td>miniature hemi-magnet-relay, DPDT 12 VDC coil, 6 VDC coils</td>
</tr>
<tr>
<td>RL3.3</td>
<td>miniature hemi-sealed relay, DPDT 12 VDC coil, 6 VDC coils</td>
</tr>
<tr>
<td>No 26</td>
<td>assembly, (6 VDC hemi-relays available from All Electronics Corp., P.O. Box 20408, Los Angeles, California 90026)</td>
</tr>
<tr>
<td>S2</td>
<td>miniature DPDT toggle switch, Radio Shack No. 275-636 or equivalent</td>
</tr>
</tbody>
</table>

---

**Diagram:**

See fig. 4.
5/8-wavelength radiator to 50 ohms. Given a length of stainless steel antenna rod, it is possible to make the coil and whip one continuous piece. A commercial 5/8-wavelength antenna, such as the Antenna Specialists model ASP-677, could serve here as well, and was my choice for my outdoor HF/VHF combination antenna. Note that the ASP whip is cut for about 46 inches (1.17 meters); this is because of the added length introduced by the spring assembly. Half-wave or 5/8-wavelength antenna designs using grounded, tapped matching transformers will not work. The extremely small inductances will short circuit HF signals.

Three or four ground radials are needed for the 2-meterHF combination active antenna. These should be a little longer than a quarter-wavelength, 20-inch lengths of stainless steel antenna whip wire or aluminum tubing will serve here. SWR is adjusted by trimming the radiator length; 48 inches will be about optimum for the upper 2 MHz of the band. If trimming the antenna does not yield an SWR under 1.5 to 1, compressing or expanding the transformer coil should provide a good match. The radials must make good electrical contact to the metal enclosure housing the antenna. A Radio Shack catalog No. 270-238 mini-box houses my unit. Its 5-1/4 × 2-1/8 × 3 inches (13.34 × 7.62 × 5.52 cm) size is roomy enough to comfortably mount the preamp components. The PC board used for mounting the active antenna components must also make a good low-impedance RF ground connection to the enclosure. This provides the needed RF ground path for the 2-meter antenna. If the ASP antenna is used, a short length of RG-58 coax should be used between the 3/8-inch snap-mount and preamp changeover relay. Use short coax lead connections to the relay and ground.

Figure 3 outlines the electrical details for the dual-purpose antenna. Two miniature hermetically sealed relays are used to bypass the preamp stages, allowing straight-through operation for 2 meters when the power is removed from the antenna. Metal-can 6 VDC hermetic relays can be used, providing the coils are connected in series. Six-volt relays are often more easily available, and cheaper, than their 12-volt counterparts. A 1N4007 silicon power diode protects the amplifier from reversed supply voltages; and from the counter-EMF generated by the relay coils as power is removed. Depending on the length of coax used, the power supply voltage may have to be increased to compensate for voltage drops in the coax cable. The 2-meter version draws over 100 mA; at least 12 volts should be available at the antenna preamp.

Short leads are mandatory for good VHF operation. The straight-through 2-meter operation uses a short piece of coax cable between the relays. RG-174 is okay for this, but extremely short ground and center wire connections must be made at the relays. The shack-mounted power supply unit should be as carefully constructed, to keep the losses at a minimum. Note the use of the DPDT switch; it does "double-duty" in switching the power to the antenna preamp and also changing the feedline between the HF receiver and

The finished dual-purpose active antenna. Note the installation of the 1/4-wave 2-meter radials. (See W6SAI's November, 1984, column in ham radio for a timely discussion on improving radial performance for 5/8-wave 2-meter antennas used in this fashion.)
2-meter FM rig. Very short leads are used for the coax connections at the switch terminals, avoiding severe impedance bumps at 146 MHz. Use care in soldering; overheating the center insulation may result in a short to the coax braid. The outdoor antenna enclosure should be weatherproofed. (Silicone bathroom caulk will do well for this purpose.) Be sure to allow for condensation; a small drain hole on the bottom of the enclosure is needed. Also spray the PC board and components with clear acrylic spray to prevent corrosion. Anti-moisture and fungicidal varnish, carried by some electronic suppliers, is what I used, and it is also ideal for sealing the coax connections after they have been taped.

**what to expect**

Although performance of either model is adequate for casual monitoring, it is difficult to evaluate these antennas unless an antenna test range equipped with full-size antennas for all of the frequencies involved is available. S-meter comparisons alone can be deceptive. A higher S-meter reading may be obtained with an active antenna with excessive internal gain, while the signal-to-noise ratio may be best on the comparison antenna. This lesson was demonstrated some years ago when I tried using an old RME preselector ahead of a 51J3 Collins receiver. Above 15 MHz the S-meter was very "busy." Switching off the preselector often dropped S-9 signals to an S-1 or less, even though the readability increased dramatically.

With the active antenna connected to your HF receiver and turned on, a slight increase in receiver noise should be heard. Disconnecting the whip antenna from the preamp should cause a noticeable reduction in receiver noise. This is a good indication that everything is working as it should. The gain of this active antenna is not as great as some commercial units I've used in the past. Do not expect signals to produce the same S-meter readings as a full-size antenna.

Some variations of the design are possible. SWL's with a need for coverage in the LF ranges below 500 kHz might consider eliminating the interstage matching transformer. However, without the matching transformer, 60-cycle cross-modulation from strong nearby AC powerline fields will be an annoying problem. This can be especially troublesome in the indoor model where the probe and preamplifier stages are near to the power transformer. The limiting factor for LF performance is the choke values used to isolate the DC supply voltages. They will have to be increased to allow operation below 500 kHz. There is no magic in the antenna probe length — antennas as short as 20 inches might prove adequate. The 48-inch length was selected to allow 518-wave 2-meter operation. An 18-inch (45.7 mm) probe could serve as a 1/4-wave 2-meter radiator and eliminate the need for the 2-meter matching transformer.

A few words of caution: the 2-meter antenna will handle about 25 watts. More than this invites damage to the 1-μH chokes. When using the antenna on an HF transceiver, never transmit into the antenna. Always disconnect the mike and key and set the drive and mike controls at minimum before connecting to the active antenna!

There you have it, all in one package: an all-band HF antenna for SWL'ing on your transceiver and a 2-meter antenna for your FM rig. Considering the obstacles facing many Amateurs — lot size, restrictive zoning regulations, and unsympathetic landlords — this antenna will offer a lot of performance in a small, inexpensive and inconspicuous design.

**references**


---

**GLB ELECTRONICS, INC.**

Dept H, 151 Commerce Pkwy., Buffalo, NY 14224

**GLB ELECTRONICS, INC.**

151 Commerce Pkwy., Buffalo, NY 14224

716-875-6740 9 to 4

SEE YOU AT DAYTON
### 9 MHz Crystal Filters

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Application</th>
<th>Bandwidth</th>
<th>Poles</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>XF-9B</td>
<td>SSB</td>
<td>2.4 kHz</td>
<td>5</td>
<td>$91.15</td>
</tr>
<tr>
<td>XF-9B1</td>
<td>SSB</td>
<td>2.4 kHz</td>
<td>5</td>
<td>$92.05</td>
</tr>
<tr>
<td>XF-9B2</td>
<td>LSB</td>
<td>2.4 kHz</td>
<td>5</td>
<td>$95.90</td>
</tr>
<tr>
<td>XF-9B10</td>
<td>SSB</td>
<td>2.4 kHz</td>
<td>10</td>
<td>$125.65</td>
</tr>
<tr>
<td>XF-9SC</td>
<td>AM</td>
<td>3.7 kHz</td>
<td>8</td>
<td>$74.40</td>
</tr>
<tr>
<td>XF-9D</td>
<td>FM</td>
<td>12.3 kHz</td>
<td>4</td>
<td>$74.40</td>
</tr>
<tr>
<td>XFP-9M</td>
<td>CW</td>
<td>500 kHz</td>
<td>4</td>
<td>$54.10</td>
</tr>
<tr>
<td>XFP-9NB</td>
<td>CW</td>
<td>500 kHz</td>
<td>8</td>
<td>$95.90</td>
</tr>
<tr>
<td>XFP-9P</td>
<td>CW</td>
<td>250 kHz</td>
<td>8</td>
<td>$131.20</td>
</tr>
<tr>
<td>XFP10</td>
<td>IF Noise</td>
<td>15 kHz</td>
<td>2</td>
<td>$17.15</td>
</tr>
</tbody>
</table>

### 10.7 MHz Crystal Filters

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Application</th>
<th>Bandwidth</th>
<th>Poles</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>XFP10-7A</td>
<td>NBFM</td>
<td>12 kHz</td>
<td>8</td>
<td>$67.30</td>
</tr>
<tr>
<td>XFP-10B</td>
<td>NBFM</td>
<td>15 kHz</td>
<td>8</td>
<td>$67.30</td>
</tr>
<tr>
<td>XFP-10C</td>
<td>WBFM</td>
<td>30 kHz</td>
<td>8</td>
<td>$67.30</td>
</tr>
<tr>
<td>XFP-10D</td>
<td>WBFM</td>
<td>36 kHz</td>
<td>8</td>
<td>$67.30</td>
</tr>
<tr>
<td>XFP-10E</td>
<td>Pre/Data</td>
<td>40 kHz</td>
<td>8</td>
<td>$67.30</td>
</tr>
<tr>
<td>XFP-10SO4</td>
<td>FM</td>
<td>14 kHz</td>
<td>4</td>
<td>$30.15</td>
</tr>
</tbody>
</table>

### Low Noise Receive Converters

- 1691 MHz: MM1691-137, $294.95
- 1296 MHz: GQA5FEU, $149.95
- 432 MHz: 8421432, $74.95
- 439 MHz: MM8-439, $64.95
- 220 MHz: MM1220-28, $69.95
- 144 MHz: MM144-28, $54.95

Options: Low NF (2.0 dB max., 1.25 dB max.), other bands & IFs available.

### Linear Transverters

- 1296 MHz: 1 W output, 2 W input, $229.95
- 432 MHz: 432-10, W output, $259.95
- 144 MHz: 10 W output, 10 M input, $169.95

Other bands & IFs available.

### Linear Power Amplifiers

- 1296 MHz: 20 W output, $439.95
- 432 MHz: 432-100, $369.95
- 144 MHz: 50 W output, $199.95
- 144 MHz: 30 W output, $209.95
- 144 MHz: 200 W output, $374.95
- 144 MHz: 100 W output, $239.95
- 144 MHz: 50 W output, $149.95
- 30 W output, $109.95

All models include VOX T/R switching.

### Antennas

#### MultiBeams

<table>
<thead>
<tr>
<th>Element</th>
<th>70/80MM8B</th>
<th>15.7 dbd</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 Element</td>
<td>$39.95</td>
<td>$39.95</td>
</tr>
<tr>
<td>48 Element</td>
<td>$59.95</td>
<td>$59.95</td>
</tr>
</tbody>
</table>

#### 144-148 MHz J-Slots

<table>
<thead>
<tr>
<th>8 or 6 dBi</th>
<th>82/2M</th>
<th>12.3 dbd</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 or 12 Tw</td>
<td>82/4M</td>
<td>9.3 dbd</td>
</tr>
</tbody>
</table>

### UHF Loop Yagis

<table>
<thead>
<tr>
<th>Model</th>
<th>1290-1350 MHz</th>
<th>29 loops</th>
<th>1296-LY 20 dbi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1650-1750 MHz</td>
<td>29 loops</td>
<td>1691-LY 20 dbi</td>
<td></td>
</tr>
</tbody>
</table>

Order Loop-Yagi connector extra.

Price: $41.95, SMA $5.95

### Microwave Modules VHF & UHF Equipments

Use your existing HF or 2M rig on other VHF or UHF bands.

### Switching

- Variable Switching
  - 8 in. x 8 out. $129.95
  - 16 in. x 16 out. $299.95

- Dual Mode Switching
  - 8 in. x 8 out. $129.95
  - 16 in. x 16 out. $299.95

- TR Switching
  - 8 in. x 8 out. $129.95
  - 16 in. x 16 out. $299.95

- RF Switching
  - 8 in. x 8 out. $129.95
  - 16 in. x 16 out. $299.95

- 4-way PPG, $299.95

**Hal-Tronix, Inc.**
P.O. Box 1101, Dept. HR
Southgate, Mich. 48195
Phone (313) 285-1782

**Indiana State ARRL Convention**
Marion County Fairgrounds
July 13-14, 1995

**Indianapolis State Fairgrounds**
Commercial Exhibitors
June 30 - July 2, 1995
Large Flea Market
July 13-14, 1995
Hourly Price Drawings
June 28 - July 15, 1995
Woman's Price Drawings
June 28 - July 15, 1995

**Indianapolis State Fairgrounds**
Commercial Exhibitors
June 30 - July 2, 1995
UHF Band
July 13-14, 1995
Large Flea Market
July 13-14, 1995
Hourly Price Drawings
June 28 - July 15, 1995
Woman's Price Drawings
June 28 - July 15, 1995
**NEW RAMSEY 1200 VOM MULTITESTER**

Check transistors, diodes and LEDs with this professional quality meter. Other features include: decimal scale • 200V volt metering system • 3½ digit accuracy • polarity switch • 20 measuring ranges • safety probes • high impact plastic case.

**$249.95** test leads and battery included

---

**NEW RAMSEY 1200 VOM MULTITESTER**

Check transistors, diodes and LEDs with this professional quality meter. Other features include: decimal scale • 200V volt metering system • 3½ digit accuracy • polarity switch • 20 measuring ranges • safety probes • high impact plastic case.

**$249.95** test leads and battery included

---

**RAMSEY D-1100 VOM MULTI-TESTER**

Compact and reliable, designed to service a wide variety of equipment. Features include: mirror back scale • double jeweled precision moving coil • double overlaid protection • an ideal low cost unit for the beginner or as a spare back-up unit.

**$19.95** test leads and battery included

---

**CT-70 7 DIGIT 525 MHz COUNTER**

The most versatile for less than $300. Features: 3 selectable gate times • 9 digit display • display field • 25MHz/150 MHz typ. sensitivity • 10 MHz timebase for WWY calibration • 1 ppm accuracy.

**$149.95** wired includes AC adapter

---

**CT-125 9 DIGIT 1.2 GHz COUNTER**

A 9-digit counter that will outperform units costing hundreds more • gate indicator • 26MHz/150 MHz typ. sensitivity • 9 digit display • 1 ppm accuracy • display field • dual inputs with preamp.

**$169.95** wired includes AC adapter

---

**DM-700 DIGITAL MULTIMETER**

*Digital multimeter at a breakthrough price.* Features include: 20 different ranges and 5 functions • 9½ digit • dual LED display • automatic decimal placement • automatic polarity.

**$119.95** wired includes AC adapter

---

**PS-2 AUDIO MULTIPLIER**

The PS-2 is handy for high resolution audio measurements, multipole LIP • in frequency • 9½ digit display • 9½ digit resolution & built-in signal generator/conditioner.

**$49.95** wired includes AC adapter

---

**PR-2 COUNTER PREAMP**

For IF or RF signal board for measuring audio signals to 10 to 100 MHz • flat 25 dB gain • BNC connectors • great for filtering • ideal receiver-TV preamp.

**$44.95** wired includes AC adapter

---

**PS-18 600 MHz PRESCALER**

Extends the range of your present counter to 600 MHz • 2 stage prescaler • divider by 10 circuitry • sensitivity: 250µV @ 100 MHz • BNC connectors • drives any counter.

**$59.95** wired includes AC adapter

---

**ACCESSORIES FOR RAMSEY METER**

- Telescopic whip antenna—BNC plug...
- High impedance probe, light loading...
- Low pass probe, audio use...
- Direct probe, general purpose use...
- Test baffle, for CT-70, 90, 125...

---

**PHONE ORDERS CALL 716-586-3950 TELEX 466735 RAMSEY CI**

---

**TERMS:** Satisfaction guaranteed • exam for 10 days. If not pleased, return in original form for refund or add 6% for shipping and insurance to a maximum of $10.00 • returns still 15% for out of stock • add 5% sales tax • 90 day parts warranty on all kits • 1 year parts & labor warranty on all wired units.
control your take-off angle: the JR vari-lobe antenna

Dial in your skip distance and maximize your signals

Most Radio Amateurs, I'm sure, are quite familiar with the directional properties of simple halfwave antennas. In these antennas, the majority of radiation is broadside to the radiating element, in the case of a horizontal type antenna. Some Amateurs may be familiar with, or may have experienced, the effect of raising or lowering an antenna and have seen how its launch angle, as well as its impedance, was significantly affected by the change in height. In this respect, a lower angle of vertical radiation usually produces a stronger signal further out in distance than one that has an extremely high angle of radiation when the communication path is governed by sky waves. This path distance versus launch angle phenomenon is very noticeable on the lower frequency Amateur bands of 160, 80, and 40 meters, where both high and low angles of radiation are useful in radio communications.

Given the fact that a half-wave antenna generally radiates most of its signal broadside to the antenna, what would you think of a simple modification that would permit controlled selection of its radiation angle? This would allow the Amateur station to take advantage of the prevailing ionospheric conditions, night or day, and therefore enhance signals to and from a particular distant location. Such an antenna system is feasible.

The basic idea for the variable lobe system was developed fifty years ago by the legendary John L. Reinartz, W1QP.1

In developing this new concept and publishing the results of his experiments Reinartz discovered he truly had a multiband antenna system as well as one providing versatile radiation angle control allowing him to maximize signal strengths at different locations. Reinartz also found out he could compensate for time-varying propagation conditions, especially when the

By R.R. Schellenbach, W1JF, 12 Whitehall Lane, Reading, Massachusetts 01867
reflective layer was in the process of changing heights, thereby requiring a different radiation angle while he was communicating.

The ability to alter an antenna's vertical lobe characteristics is one solution to the thought-provoking question, why does it often seem that signal reports appear to differ drastically between individual stations, even when the stations are located only a few miles apart in the same general direction?

The causes for inconsistencies between signal reports include a myriad of possibilities such as polarization differences, vagaries of the ionospheric reflective layers, multi-hop propagation, launch radiation, and receiving station antenna angle differences, to name a few. Because of the large number of variables affecting sky-wave propagation, the solutions to these problems are complex. However, if a radio station possesses the capability to adjust to any potential condition, the inconsistencies are not at all important — only the corrective measure capability matters.

Reinartz recognized the same perplexing propagation differences between the station he worked and proposed that if he were to vary the vertical angle pattern of his antenna, he should maintain a maximum signal strength at both ends of the communication path. In his model, Reinartz developed an antenna system which is basically a simple current-fed Hertz type antenna with one quarter-wave horizontal section and another sixth-wave feeder section, the latter consisting of two normal operating feeders and a third, vertical wire carried into his ham shack for tuning and compensation control. The original Reinartz version of the controlled radiation angle antenna is shown in fig. 1. The model as shown, operating on the 80-meter band, proved to be capable of operating under vertical angle of radiation control at twice or even four times its fundamental design frequency.

In spite of the antenna's multiband capability, it was used primarily on the 80-meter band, where daily and seasonal propagation effects were more pronounced and allowed Reinartz to do a lot of experimentation during variable band conditions.

how it works

Referring again to fig. 1, illustrating the original Reinartz antenna system, it should be mentioned that the variable capacitor C2 was found to be unnecessary in the 80-meter application and that all vertical angle lobe changing was affected by varying C1 while maintaining resonance of the parallel L/C network against ground for each particular operating frequency. Reinartz used an RF current reading ammeter to determine resonance in the third (vertical) feeder wire, but the meter is deemed unnecessary, as other means are available to determine proper resonance of the vertical wire section.

More details of the mechanism for changing the antenna's vertical field pattern is shown in figs. 2A and 2B, where on the 80-meter band these figures indicate the voltage and current distributions on the model and the method employed to change the radiating current points on the system. The horizontal wire section of the antenna in fig. 2A is only one-sixth wavelength above the ground and hence, most of its radiation is directed upward — a real "cloud burner." During nighttime conditions, for example, this pattern would produce strong local signals because of the high angle and short distance skip zone; if we were to move the current point from the top of feeder number 3 downward, however, then the radiation characteristic would be reversed and the antenna's radiation would become predominately low angle — good for DX.

The change in vertical radiation pattern with relationship to the RF current maximum point on the third (vertical) wire section is illustrated in fig. 3. As one may surmise, the third vertical wire section of the antenna functions to provide the vertically polarized and low angle lobe control for the system. By controlling the current distribution by altering capacitor C1 in the series tuning circuit of fig. 2, the Vari-Lobe antenna changes from a high vertical angle radiator to a low vertical angle radiator quite simply. When capacitor C1 is slowly tuned, the antenna's vertical pattern may be finely adjusted anywhere between the two extremes depicted in fig. 3. This tuning control
effectively allows the operator to "tune in" the required skip distance to another station for maximum signal strength. Large departures in current control by changes in capacitor C1 will require slight readjustment to the resonance of the parallel tuned circuit between the vertical section wire number 3 and ground.

According to tests by Reinartz in which he instrumented the vertical wire from top to bottom with small pilot lamps to indicate antenna current distributions, the further downward the current maximum was toward the one-eighth wavelength point, the greater the low angle effect and the further out the skip became.

It is interesting to note that Reinartz performed many of his early experiments and collected data on the shifting field strength patterns on the 10-meter band. Later, actual on-the-air tests using a full-scale 3.5 MHz (80 meter) model was used to communicate with a number of Amateurs up and down the east coast of the United States.

Concluding remarks by Reinartz indicate that his repeated tests showed that compensation for the advance of time from early evening to past midnight must be made by a change in the location of the maximum current point on the vertical section in order to maintain maximum signal strength at the receiving station. During daytime operation, he noticed that although there was one generally satisfactory setting of C1, slight changes could be made in the lobe adjustment to provide a maximum signal at some particular receiving station. He noticed too, that some stations were always consistent in the antenna's lobe setting for obtaining a maximum signal strength.

**a modern version of the JR antenna**

By carrying Reinartz's ideas further and adding modern improvements, the JR Vari-Lobe antenna came into being. The new system offers more operating frequencies with ease of controlled radiation from either the ham shack or by remote control. The modern version is shown in fig. 4 and its control section in fig. 5. I prefer the remote tuning method because it keeps the necessary radiating elements away from the surrounding objects such as houses, trees, telephone and power lines, etc. The JR Vari-Lobe antenna's performance could be adversely influenced by such local obstructions because the antenna is a relatively low height system and it utilizes low angle vertical polarization.
As an additional feature of modernization, I incorporated a 15-meter "high gain" capability by using the "JF Array" principally on the horizontal section. When used, the JF Array mode is automatically invoked when the system is tuned up on the 15-meter band. On this frequency, the antenna acts as a two-element, wide-spaced collinear array producing a good 3-dB gain broadside to the horizontal sections. Vertical angle selectivity is not used on this higher frequency band because the system is operated in its "Zepp" mode, in which feeders A and B are used and B and C are tied together as shown in figs. 4 and 5.

The reader will notice that there are small differences between the original Reinartz antenna and the modern version. Most of the recent changes were brought about by the addition of the JF Array feature and a more compatible feeder length to handle multiband applications. In a departure from the original antenna system, we have taken advantage of using a multiband tuning network to implement the third wire to ground resonance of the system. This expedient is in keeping with modernization of the compensation tuning, since in practice, only one adjustment needs be made for each operating band segment, and one that holds for a bandwidth of 40 to 60 kHz on the 80-meter band and greater than 60 kHz on the 40-meter band.

The coaxial transmission line to the radio station equipment may be provided by either a 50 or 75-ohm coaxial cable through a 1:1 balun transformer connected across a few turns at mid-point on inductor L of fig. 5. As discussed previously, capacitor C1 of fig. 5 is the vertical lobe angle control, where decreasing its effective capacity corresponds to raising the current maximum point on the vertical wire number 3 corresponding to a high lobe angle for the antenna. Conversely, an increase in capacitance by C1 results in lowering the current maximum point on the vertical wire number 3 corresponding to a low angle of radiation for the antenna. Each extreme capacitance change of C1 must be followed by an adjustment of the parallel tuned resonance circuit, especially if the operating frequency has also been changed beyond the bandwidth restrictions previously mentioned.

**performance**

Because the JR Vari-Lobe antenna system is intended to be used primarily on the 80 and 40-meter bands with infrequent excursions to 15 meters, it is important to have a good ground in order for the system to work well. Ground radials should be employed beneath the horizontal section of the antenna and extend outward in a fan shape from the third (vertical) wire section. A good ground system will not only enhance the lobe selectivity feature, but will also significantly diminish ground losses surrounding the radiating system, especially on the lower frequency bands.

On-the-air tests were conducted on the 80, 40, and 15-meter bands over a period of three months. Based on these tests, it may be stated that the JR Vari-Lobe radiation characteristics on the 80 and 40-meter bands successfully proved to correspond to Reinartz's theory. The variable angle selectivity feature has enabled maximum signal strength adjustment over different path distances both during night and daytime conditions. While operation on the 15-meter band does not include variable angle control, it has proven to be an effec-
AMATEUR TELEVISION
NEW 70 CM ATV TRANSCIVER
ALL YOU NEED IN ONE BOX

$299 delivered
TC70-1

- FULL COLOR, SOUND, & LITE ACTION just like broadcast TV. Get on this exciting amateur video mode at our affordable ready to go price.
- WHAT IS REQUIRED FOR A COMPLETE OPERATING SYSTEM? The TC70-1s downconverter outputs to any TV on ch 3 for receiving. Connect a good 70 cm antenna and low loss coax. Plug in any composite video source you want to transmit. Camera, VCR, computer, etc. Plug in any low Z dynamic mic or use color camera mic for Standard 4.5 mHz TV sound. Connect to 13.8 vdc for base, mobile, or portable. See chap. 20 1985 ARRL Handbook. That's it!
- WHAT CAN YOU DO WITH THE TC70-1 ATV TRANSCIVER? Show the shack, projects, computer program listings, home video tapes, repeater Space Shuttle audio and video if you have a TVRO, repeat SSTV or RTTY, Weather Radar, do public service events such as parades, marathons, races, CAP searches and rescues... The list goes on. DX depends on antennas and terrain, typically 1 to 40 miles. We have video compensated RF linear amps for 20 ($119) or 50 ($199) watts pep for greater DX.
- FEATURES: Small 7x7x2.5". Push to Look (PTL) T/R switching. GaAsFet downconverter tunes whole 420-450 mHz band. Two switch selected video & audio inputs... RCA phone jacks and 10 pin color camera jack. Xmit video monitor output. Over 1 watt pep RF output on one or two (add $15) selected crystal controlled frequencies. 439.25, 434.0, or 426.25 mHz.
- CALL OR WRITE FOR OUR CATALOG for more info or who is on in your area. We stock antennas, modules, and everything you need on ATV.
- TERMS: Visa, MC, or cash only UPS CODs by phone or mail. Checks must clear bank before shipment. Price includes UPS surface shipping in cont. USA, others add 3%. Transmitting equipment sold only to licensed Tech class or higher amateurs, verifiable in 1985 call book or copy of new license.

(818) 447-4565 m-f 8am-6pm pst.
P.C. ELECTRONICS
Tom W60RG Maryann W66YS
2522 Paxson Lane
Arcadia CA 91006

---

YOU WANT IT? DAN'S GOT IT!

YAESU

KENWOOD

ALL OF THESE GOODIES AND MANY MORE
AT A SUPER SAVINGS!

CALL TODAY
1 (800) 241-2027
BRITT'S 2-WAY RADIO
Sales & Service
2508 Atlanta Street
SMYRNA, GA. 30080
(404) 432-8006

---

tive radiating system of modest size and relative simplicity. Although tests were not performed on the 10 and 20-meter bands, Reinartz has shown the antenna system will operate as a conventional Zepp on all bands and if desired, with variable angle control as well. Conventional Zepp configurations do not require the parallel tuning network to ground for the third (vertical) wire. Thus, the simple expedient of tying together feeders B and C of fig. 5 changes the antenna into a Zepp configuration. The Zepp mode may be used on all bands higher than 80 meters, providing a flexible multiband antenna system if you don't mind the coupling adjustments and tuning of two feeder wires. The system is a natural for the Amateur who has limited antenna space but would like something different and more versatile than other systems.

resonance tuning features

The original Reinartz antenna system used an RF ammeter in series with the ground connection to determine resonance of the antenna when excursions were made in lobe angle and frequency. A diode detector probe positioned near the top of the parallel tuning network will work as well and could be remoted quite easily if desired. However, it is also possible to tune the system "by ear." When the parallel tuned circuit is tuned to the correct resonant point, a noticeable increase in received signal strength or background noise is apparent, thereby dispensing with the requirement for remote meter reading.

The multiband tuner operates satisfactorily over all of the harmonically related Amateur Radio bands to maintain resonance of the system. Obviously, if only limited operation is contemplated on 80 or 40 meters, then the multiband tuning function may be eliminated and a single-band network would serve as well. In my installation, using remote controlled tuning proved to make the operation of the Vari-Lobe a joy to use. Small 24-VAC furnace valve control motors were coupled to the shafts of both tuning capacitors to provide remote tuning control from the shack. These small, economical motors rotate slow enough to allow sufficient tuning resolution and accuracy even though they are turning only in one direction. An alternative to these AC-type control motors are surplus stepping motors featuring bi-directional incremental DC pulse control with 3.65 degree/step resolution. These devices are available from a number of sources for a nominal price. Some even include additional gearing for slower response.

references


ham radio
SAVE $10.00* with home delivery

*(One year newsstand cost $30.00)

Here's my address label, enter my subscription.

- 1 Year ........ 12 issues ........ $19.95
- 2 Years ....... 24 issues ......... $32.95
- 3 Years ....... 36 issues ......... $44.95  U.S. prices only

Payment enclosed
Bill me later

Name
Address
City
State
Zip

Check here if this is your renewal (attach label)

Subscribe to **ham radio magazine**

Please allow 4-6 weeks for delivery of first issues.

**Foreign rates:** Europe, Japan and Africa, $28.00 for one year by air forwarding service. All other countries $22.95 for one year by surface mail.
the end-fed 8JK: a switchable vertical array

30/40-meter antenna radiates at low angles and requires little space

This array was developed to provide maximum gain in a compact, convenient low-vertical angle antenna system. The 40-meter version requires only 1225 square feet of area, and the 30-meter version, less than half that amount.

The 30- and 40-meter bands were selected because of the increased activity on those bands — especially for DX — resulting from the diminishing MUF caused by declining solar activity. The selectable directivity and low radiation angle of this system should offer significant performance advantages as interference and competition on these bands increase. While the gain of this phased array is modest, the system will effectively double the RF radiated power of a single vertical in the preferred direction. The array also provides deep nulls spaced 90 degrees apart on each side of the main beam pattern, thus improving rejection of unwanted signals.

theory of operation

The 2 x 2 phased array is a pair of two parallel-element end-fire vertically polarized matched arrays, each of which is similar to W8JK's single section beam, with elements fed 180 degrees out of phase and spaced 1/8 wavelength apart. A composite simplified view of the array is shown in fig. 1. By folding the top and bottom 1/16-wavelength end sections of each element, a useful height reduction results without significantly effecting similar normal full-size array characteristics caused by element folding. Because each connecting wire at the base and the elevated end sections are only 1/16 wavelength long and carry very little current, little radiation and pattern distortion result from these folded sections.

construction and implementation

Figure 2 depicts the 2 x 2 phased array configuration; table 1 provides the element lengths and spacing as well as mast height requirements. Figure 3 illustrates the matching 1/4-wavelength stub and

fig. 1. Composite — simplified view of 2 x 2 phased array.

By R.R. Schellenbach, W1JF, 12 Whitehall Lane, Reading, Massachusetts 01867
NOTE
I ALL WIRE IS NO.14-NO.12 COPPER OR COPPER CLAD STEEL.
2 ACTUAL DIMENSIONS FOR EACH BAND ARE SHOWN IN TABLE 1.

fig. 2. 2 x 2 phased array configuration; single element shown.

remote relay switching scheme including a balun for mating with coaxial cable. The length and physical positioning of the coaxial cable into the station are not critical.

Because the 2 x 2 phased array consists of two identical two-element arrays crossing at right angles to each other, a simple DPDT relay controls the selection of the array to be connected to the common 1/4-wavelength stub and hence through the balun transformer and coaxial cable into the station.

Once the 1:1 balun transformer tap position has been adjusted for a low VSWR at the desired operating frequency, no tuning or matching are required between the station and the system. The actual tap position depends on the stub line impedance and interwiring characteristics of the relay switching.

In order to reduce difficulties in array matching as much as possible, each element on an array — as well as the overall symmetry of the arrays — should be made as identical as possible to preserve balance and uniformity when changing directivity. Because a common 1/4-wavelength stub is used for matching into the antenna system, it is important that all wire connections to the DPDT relay be made equal in length. In placing the tap point for the balun transformer, you will find that with 75-ohm coaxial cable, the tap loca-

tion will be a few inches higher toward the relay end than that of 50-ohm coaxial cable. More detail on proper matching is provided later, but the process is simple and provides wide bandwidth on either band of operation.

site and space requirements

Four poles, preferably wooden, are required to sup-

<table>
<thead>
<tr>
<th></th>
<th>40-meter operation</th>
<th>30-meter operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>8.75 feet</td>
<td>5.80 feet</td>
</tr>
<tr>
<td>L2</td>
<td>43.00 feet</td>
<td>29.00 feet</td>
</tr>
<tr>
<td>L3 (stub)</td>
<td>34.00 feet*</td>
<td>23.25 feet*</td>
</tr>
<tr>
<td>S</td>
<td>17.50 feet</td>
<td>11.60 feet</td>
</tr>
<tr>
<td>overall length</td>
<td>35.00 feet</td>
<td>23.25 feet</td>
</tr>
<tr>
<td>pole height (min.)</td>
<td>45.00 feet</td>
<td>31.00 feet</td>
</tr>
</tbody>
</table>

*May be laid horizontal as required.

fig. 3. Matching quarter-wave stub, relay and balun transformer installation.
Port the array. While they are oriented as shown in fig. 4, the distance between them can be increased to meet individual requirements. Figure 4 also indicates the principal beam directions with respect to the DPDT relay position that is controlled from the station end. Using this directivity characteristic of the array, the individual beam patterns may be oriented in the most favorable compass directions.

To assure maximum low angle radiation and deep null beam pointing performance — and to eliminate effects of pattern distortion and RF absorption — the array should be located in an area free of structures or power lines for at least 250 feet from its center on 40 meters and 190 feet on 30 meters.

**technical performance**

The 2 x 2 phased array provides approximately 4 dB gain over conventional 1/2-wavelength dipoles and 6 dB gain over 1/4-wavelength ground mounted single verticals. The azimuthal bi-directional beam pattern, although relatively broad, (approximately 80-degree half-power beamwidth) has quite deep nulls, better than 20 dB down from the main lobe maximum. The nulls are also bi-directional in either case and are located at right angles (90 degrees) to the two major beam lobes produced by each active array.

In operation, these nulls may be used to advantage to eliminate strong interference coming from an undesired direction. The major radiating point on each active element occurs at a point 42 percent up from the bottom end of each vertical. The distance between the bottom horizontal 1/16 wavelength interconnecting wires and earth ground should be no more than 2 to 3 feet for proper performance.

**remote switching and balun tap alignment**

The simple arrangement of a common 1/4-wavelength stub switching to activate either array provides controlled directivity for both transmitting and receiving. The length of the 1/4-wavelength stub for either band is given in table 1 as a starting point for the balun tap position.

The tap should be made progressively upward from this overall dimension. Each time the tap location is changed a few inches at a time, the operator should observe an in-line measurement of SWR. The proper tap point will result in the lowest VSWR reading when matching into appropriate coaxial cable using a 1:1 ratio type balun transformer. The use of a balun in this array application is highly recommended to maintain a complete balance of the array system and to minimize beam pattern distortions as well as deterioration of noise pick-up immunity so characteristic of poorly matched or unbalanced feed systems.

The coaxial cable, whose length is not critical, may be buried and its outer shield grounded for further immunity from noise pick-up in severe cases.

Because of weather considerations for rain or snow, the DPDT relay should be mounted inside a waterproof enclosure. This may be combined with supporting the four bottom horizontal 1/16 wavelength wires if the enclosure is elevated by a post at the recommended 2 to 3 feet above the ground level.

*ham radio*
VECTOR
VT-3B and VT-4B
MOBILE HOME
NEW COMPACT DESIGN WITH 10-segment LED tuning indicator

* VT-4B INSTALLS DIRECTLY AT THE ANTENNA FEEDPOINT WHERE YOU CAN REALLY "TUNE" THE ANTENNA.
* DESIGNED FOR HALF WAVE DIPOLES, INVERTED V'S, AND QUARTER WAVE VERTICALS USING 50 OHM COAX FEED-LINES.
* OPERATES WITH SINGLE BAND OR MULTIBAND ANTENNAS, TRAP TYPE OR PARALLEL ELEMENT TYPES.
* WORKS ALL BANDS FROM 10 THROUGH 160 METERS.
* FULL BAND COVERAGE WITH MAXIMUM EFFICIENCY AND VERY LOW VSWR, TYPICALLY LESS THAN 1:2 TO 1.
* FINGER TIP CONTROL FROM THE HAM SHACK FOR EXACT RESONANCE AND IMPEDANCE MATCH.
* FOR MOBILE OPERATORS THE VECTOR VT-3B INSTALLS IN THE TRUNK AND TUNES STANDARD TYPE MOBILE ANTENNAS FOR FULL BAND COVERAGE. (All of 75M phone band), WITH TYPICAL VSWR LESS THAN 1:2 TO 1.

EITHER MODEL
$169.00

VT-3B

WRITE FOR INFORMATION.

VECTOR RADIO CO., P.O. BOX 1166, CARDIFF, CA 92007

---

LISTEN TO THE WORLD

$89.95

WITHOUT THE ANTENNA HASSLE!

Arcomm’s AP4 active tuned antenna/preselector is ideal for those who want to listen but cannot put up outdoor antennas. Covers 540 to 32 MHz in 4 bands and incorporates a low noise, up to 18 dB gain preamp. Intermod is reduced by using Hi-Q toroidal inductors. Will switch four antennas and three receivers. Ideal for all general coverage receivers. 8-1/4" x 6-1/8" x 2". weight 4 lbs.

To order, send check or money order plus $3 shipping. PA res. add 6% sales tax. Dealer inquiries invited.

ARCOMM
24 Valley Street
Lewistown, PA 17044

---

AZOTIC INDUSTRIES
2026 W. BELMONT
CHICAGO, IL 60618
312-975-1290

ELECTRONIC COMPONENTS & SUPPLIES
- RF CONNECTORS
- UG CONNECTORS
- AUDIO CONNECTORS
- LINEAR IC'S
- DIGITAL IC'S
- TRANSFORMERS
- METERS
- COMPUTER CABLES
- DISKETTES

WRITE FOR FREE CATALOG
VISIT OUR RETAIL STORE
HRS. MON-FRI 10-5 SAT 10-2
PHONE ORDERS WELCOMED
312-975-1290

---

FREE CATALOG!

Features Hard-to-Find Tools and Test Equipment

Jensen's new catalog features hard-to-find precision tools, tool kits, tool cases and test equipment used by ham radio operators, hobbyists, scientists, engineers, laboratories and government agencies. Call or write for your free copy today.

JENSEN TOOLS INC.
7815 E. 46th Street
Phoenix, AZ 85040
(602) 968-6231

---

Iron Powder and Ferrite

TOROIDAL CORES

Shielding Beads, Shielded Coil Forms
Ferrite Rods, Pot Cores, Baluns, Etc.

Small Orders Welcome
Free 'Tech-Data' Flyer

AMIDON
Since 1963

12033 Otsego Street, North Hollywood, Calif. 91607

In Germany: Elektro-Vakuum, Wilhelm - Metzler Str. 88, 4930 Detmold 18, West Germany
In Japan: Toyomura Electronics Company, Ltd. 7-9, 2-Chome Sota Kanda, Chiyoda-Ku, Tokyo, Japan

---

May 1985
Uncle Ben says...

"I give you much more than just the lowest price...

When you get that exciting new piece of equipment from me, you know you are going to be completely happy... I see to it, personally! I also give you earliest delivery, greatest trade-in allowances, my friendly assistance in every possible way.

Just ask any of the many thousands of hams all over the world who have been enjoying my friendly good service for over a half a century. 73, Uncle Ben, W2SOH

CALL ME...
(516) 293-7995

HARRISON
HAS THEM ALL!
KENWOOD

Kenwood TL-922A
Kenwood TS-940S
Kenwood TS-430S
Kenwood TS-711A
Kenwood TR-2600, TR-3600

WRITE ME...
For my prompt, personal reply.

SEE ME...
At one of the world's largest Ham Supply Centers!

Kenwood TH-21A, TH-41A

"HAM HEADQUARTERS, USA®" Since 1925!

2263 Route 110 (at Smith St.)
E. Farmingdale, NY 11735
1-(516) 293-7995
feeding phased arrays: an alternative method

Carefully chosen feeder lengths provide good match

This article describes a method of feeding a two-element phased-array antenna without using impedance-matching or phase-delay networks at each element. The method requires determining the length of the feedline from each antenna to the "common point" (the point at which the feedlines are combined) and installing a matchbox or antenna tuner at this location (or in the shack) in order to transform the paralleled impedance to 50 ohms.

Network method of matching

As was clearly pointed out by Forrest Gehrke, K2BT, in his extensive series of articles on phased arrays, the insertion of a 90-degree delay line into a feeder will, in most cases, not guarantee a 90-degree phase shift in the feeder current.1 If the actual driving-point impedance of each element is known (for a specified current amplitude and phase), then the voltage amplitude and phase at any point on that feeder can be calculated. The technique given by K2BT allows one to choose any convenient length for the antenna feeders and then design suitable networks to alter the feeder voltages so that they are all transformed to the same value of voltage amplitude and phase. These terminals can then be safely and correctly joined together (at the "common point") since they are all at the same voltage. The impedance-matching and phase-delay networks are used to force all the voltages to be the same. Any convenient length of 50-ohm transmission line (the main feeder) can then be utilized to span the distance from the common point to the shack. The main feedline will be "flat" (the SWR will be low) because the networks at the ends of the antenna feeders are designed to present a combined impedance of 50 + j0 ohms (pure resistance) when "looking" into the common point toward the antennas (see fig. 1A).

The method shown in this article calculates the voltages that must exist at various points along the antenna feeders. When a point is found on one antenna feeder where the voltage (both amplitude and phase) is identical to the voltage at some point on another antenna feeder, then those two points can be connected together without altering the relationship of the currents at the driving points of the two antennas. Rarely will the impedance seen looking toward the antennas from this common point be 50 ohms.* Thus, the main feedline running from this point into the shack will not be flat (the SWR will be high) and a matchbox or tuner will be needed at the operating position to present a well-matched load to the transmitter, (see fig. 1B). Note: the matchbox could be

By Al Christman, KB8I, Department of Electrical and Computer Engineering, Ohio University, Clippinger Lab, Athens, Ohio 45701-2979
placed into this circuit at the common point if desired. Then the main feeder into the shack would be “flat” as in fig. 1A. Of course, the matchbox would then be “dedicated” to the array and could not be used for other purposes unless removed.

**calculations are simple**

Only one formula, used repeatedly, is needed to calculate the voltages at all points along the antenna feedlines. It’s best to utilize a personal computer or programmable calculator to reduce the drudgery of this task.

\[ E_{IN} = I_{OUT} (A \bar{Z}_L + B) \]  

(1)

where \( E_{IN} \) = voltage at the input end of the antenna feeder

\( I_{OUT} \) = current at the output or load end of the antenna feeder

\( \bar{Z}_L \) = impedance at the output or load end of the feeder

\( A = \cos \theta \)

\( B = jZ_0 \sin \theta \)

\( Z_0 \) = characteristic impedance of the antenna feeder

\( \theta \) = electrical length of the antenna feeder, in degrees (360 degrees = \( \lambda \))

Note that \( E_{IN}, I_{OUT}, \) and \( \bar{Z}_L \) are all complex numbers; that is, they have both magnitude and phase. The equation therefore requires the use of complex, or vector, arithmetic. \( A \) and \( B \) are two of the “ABCD” parameters discussed by K2BT in Part 5 of his series. In addition, both “\( A \)” and “\( B \)” can be complex numbers as well. “\( A \)” is complex if the cable attenuation is taken into account.

The goal is to find a place on the antenna No. 1 feeder where the voltage is identical to the voltage somewhere on the antenna No. 2 feeder. To do this, make a list for each antenna, labeling one column for “feeder length in degrees” and the other “voltage at end of feeder.” Then calculate and record the voltage on each feeder at 10 degree intervals. After finding 10 or 15 values for each feeder, stop calculating and compare the lists. It is better to record the voltages in polar form (amplitude and phase angle) for easier comparison. Also, keep all the angles less than or equal to ±180 degrees. (For example, an angle of −230 degrees is equivalent to +130 degrees. Always use the smaller number.) When two amplitude values are found that are close to each other, check the angles to see if they are similar. If both amplitude and phase are “in the ballpark,” redo the calculation at 1 degree or 1/2 degree increments until two lengths are found where the voltages are identical, or nearly so. If none of the recorded values on one list are comparable to those on the other list, continue the calculations and add more data points to the lists — in other words, make the antenna feeders longer. It should be possible to find the required line lengths within a reasonable amount of time.

**cutting the coax**

After the required length of each antenna feeder has
The Problem Solvers

- R.F. Power Monitoring
- IM Suppression Panels
- Receiver Multicoupling
- Duplexers & Preselectors
- Bandpass, Pass-Reject and Notch Cavity Filters
- Transmitter Combining 150 – 900 MHz

*COMPLETE SYSTEM ENGINEERING ASSISTANCE*

TELEWAVE, INC.
1155 TERRA BELLA, MOUNTAIN VIEW, CA 94043
(415) 968-4400 • TWX 910-379-5055

May 1985
been calculated, it’s time to actually cut the coax, remembering to take the velocity factor of that particular cable into account. It’s a good idea to actually measure the velocity factor of the cable, rather than relying upon the manufacturer’s data. Since the electromagnetic fields travel more slowly inside the cable than they do in free space, the physical length of the cable will be shorter than the electrical length:

\[ L = 2.734 \left( \frac{L_e}{V_F} \right) \frac{f}{\theta} \]

(2)

where \( L \) = physical length of antenna feeder, in feet (1 meter = 3.281 feet)

\( L_e \) = electrical length of antenna feeder, in degrees

\( V_F \) = velocity factor of the cable, as a decimal (i.e., 0.66)

\( f \) = operating frequency, in Megahertz

**Switching Directions**

For a two-element array, the pattern may be reversed by interchanging the antenna feeder cables at the antenna terminals. One way to do this, shown in fig. 2, is to cut the longer of the two antenna feeders into two pieces, one of which is the same length as the shorter antenna feeder. These two equal-length cables are then connected directly to the antenna feedpoints and the remaining third piece of cable is switched back and forth from one antenna feeder to the other using a DPDT relay. For best results when building a switchable array, the lengths of the radiators and the ground systems under each antenna should be adjusted until both antennas have the same self-impedance.

### 20-meter Array

I became interested in phased arrays while accumulating the contacts necessary for WAS on 20 meters. A home-brew three-element wire beam suspended from trees at 18 feet (5.5 meters) seemed to be performing satisfactorily, and I was working new states at a good pace. However, a phone call revealed that I was also “quite strong” on my neighbor’s (just to the west) color TV set. I wasn’t too surprised because his portable TV — equipped only with rabbit ears for an antenna — was less than 50 feet (15.2 meters) from my wire beam, and I was running the legal limit. It became vitally important that I construct an antenna that would concentrate all the RF energy toward the east and place a big null right over my neighbor’s living room — he is, after all, not only my neighbor, but my landlord.

My backyard was too small for a two-element array with 1/4 wavelength spacing, but the literature revealed that 75 degree spacing (0.208 wavelength) combined with 105-degree phasing would yield the desired cardioid end-fire pattern. Measurements showed that I could squeeze this array into the yard without the radials protruding onto the property of my neighbor to the east. Two tri-band trap verticals were

---

**Table 1. Voltages at various points along the antenna feeders.**

<table>
<thead>
<tr>
<th>( \theta ) (degrees)</th>
<th>( E_{IN} ) (volts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 15.56</td>
<td>/1.45 degrees</td>
</tr>
<tr>
<td>10 11.04</td>
<td>/1.23 degrees</td>
</tr>
<tr>
<td>20 12.35</td>
<td>/3.32 degrees</td>
</tr>
<tr>
<td>30 18.17</td>
<td>/8.4 degrees</td>
</tr>
<tr>
<td>40 25.17</td>
<td>/70.4 degrees</td>
</tr>
<tr>
<td>50 32.02</td>
<td>/77.2 degrees</td>
</tr>
<tr>
<td>60 38.2</td>
<td>/81.7 degrees</td>
</tr>
<tr>
<td>70 43.4</td>
<td>/86 degrees</td>
</tr>
<tr>
<td>80 47.37</td>
<td>/87.7 degrees</td>
</tr>
<tr>
<td>90 50</td>
<td>/90 degrees</td>
</tr>
<tr>
<td>100 51.19</td>
<td>/92.1 degrees</td>
</tr>
<tr>
<td>110 50.89</td>
<td>/94.2 degrees</td>
</tr>
<tr>
<td>120 49.11</td>
<td>/96.4 degrees</td>
</tr>
<tr>
<td>130 45.92</td>
<td>/98.96 degrees</td>
</tr>
<tr>
<td>140 41.43</td>
<td>/101.7 degrees</td>
</tr>
<tr>
<td>150 35.82</td>
<td>/105.4 degrees</td>
</tr>
<tr>
<td>160 29.32</td>
<td>/110.6 degrees</td>
</tr>
<tr>
<td>170 22.32</td>
<td>/119 degrees</td>
</tr>
<tr>
<td>180 15.56</td>
<td>/135 degrees</td>
</tr>
</tbody>
</table>

---

For the east antenna (I = 1 / -105 degrees):

<table>
<thead>
<tr>
<th>( \theta ) (degrees)</th>
<th>( E_{IN} ) (volts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 49.68</td>
<td>/ -64.9 degrees</td>
</tr>
<tr>
<td>10 54.92</td>
<td>/ -57.95 degrees</td>
</tr>
<tr>
<td>20 59.16</td>
<td>/ -52.13 degrees</td>
</tr>
<tr>
<td>30 62.14</td>
<td>/ -46.98 degrees</td>
</tr>
<tr>
<td>40 63.69</td>
<td>/ -42.2 degrees</td>
</tr>
<tr>
<td>50 63.74</td>
<td>/ -37.53 degrees</td>
</tr>
<tr>
<td>60 62.27</td>
<td>/ -32.77 degrees</td>
</tr>
<tr>
<td>70 59.37</td>
<td>/ -27.65 degrees</td>
</tr>
<tr>
<td>80 55.19</td>
<td>/ -21.87 degrees</td>
</tr>
<tr>
<td>90 50</td>
<td>/ -15 degrees</td>
</tr>
<tr>
<td>100 44.18</td>
<td>/ -6.41 degrees</td>
</tr>
<tr>
<td>110 38.31</td>
<td>/ 4.83 degrees</td>
</tr>
<tr>
<td>120 33.26</td>
<td>/ 19.84 degrees</td>
</tr>
<tr>
<td>130 30.18</td>
<td>/ 39.02 degrees</td>
</tr>
<tr>
<td>140 30.09</td>
<td>/ 60.32 degrees</td>
</tr>
<tr>
<td>150 33.02</td>
<td>/ 79.71 degrees</td>
</tr>
<tr>
<td>160 37.99</td>
<td>/ 94.96 degrees</td>
</tr>
<tr>
<td>170 43.84</td>
<td>/ 106.39 degrees</td>
</tr>
<tr>
<td>180 49.68</td>
<td>/ 115.10 degrees</td>
</tr>
</tbody>
</table>
erected, each atop a 15-foot (4.6 meter) mast. They were spaced 75 degrees apart (14.4 feet or 4.4 meters at 14.25 MHz) on an east-west line, and each had twenty 1/4 wavelength radials. The feed system would be designed so that each antenna received the same current amplitude, but the east antenna would lag the west antenna by 105 degrees, placing the null directly on my landlord's living room.

After everything was built, I used an antenna noise bridge and calculator to analyze the system according to the procedure described by K2BT. I measured the self-impedance and driving-point impedance of each vertical at the end of a known length of coax, and then "rotated" each of these values to the antenna feedpoint. This may be done on a Smith chart or through the use of the following formula:

\[ Z_L = \frac{DZ_{IN} - B}{A - CZ_{IN}} \]  
(3)

where

- \( Z_L \) = load impedance at the output end of the transmission line
- \( Z_{IN} \) = impedance measured at the input end of the transmission line
- \( A = D = \cos \theta \)
- \( B = jZ_0 \sin \theta \)
- \( C = j \sin \theta / Z_0 \)

\( Z_0 \) = characteristic impedance of the transmission line

\( \theta \) = electrical length of the line, in degrees

While it's better to measure all the impedances right at the antenna feedpoint, I didn't enjoy the prospect of standing on tiptoe perched 10 feet (3 meters) above the ground. I opted for the easier way, and the data obtained enabled me to calculate the mutual impedance between the two verticals. I used this figure to determine the actual driving-point impedance of each element when fed by the currents I had specified for the array. The product of the driving-point impedance and current gives the actual voltage at the feedpoint of each antenna:

**west antenna:**

- \( I_1 = 1/0 \) degrees amperes
- \( Z_1 = 11-j11 \) ohms
  = \( 15.56 / -45 \) degrees ohms
- \( E_1 = I_1Z_1 = 15.56 / -45 \) degrees volts

**east antenna:**

- \( I_2 = 1/-105 \) degrees amperes
- \( Z_2 = 38 + j32 \) ohms
  = \( 49.7 / 40.1 \) degrees ohms
- \( E_2 = I_2Z_2 = 49.7 / -64.9 \) degrees volts

The antenna currents were assumed to have a magnitude of 1 ampere for ease of calculation. The actual current magnitudes will be determined by the amount of drive power. What is important is that the actual currents be equal in magnitude, and that the east antenna current lags the west antenna current by 105 degrees.

My lists of the voltages that will occur at various points along each antenna feedline are shown in table 1. Scanning the table, we can see that the voltage on the west antenna feeder at a point 50 degrees from the antenna is 32.02/77.2 degrees volts, while the voltage on the east antenna feeder at a point 150 degrees from the antenna is 33.02/79.71 degrees volts. These two values are close to each other, and we can now calculate more voltages, this time at 1 degree intervals centered around 50 degrees for the west feeder and 150 degrees for the east feeder. This information is shown in table 2. Comparing the voltages on the two feeders, we can see that the values are nearly identical for a 51-degree west feeder (32.67/77.77 degrees volts) and a 149-degree east feeder (32.61/77.95 degrees volts).
table 2. Voltages at 1 degree intervals along the antenna feeders.

<table>
<thead>
<tr>
<th>θ (degrees)</th>
<th>E_IN (volts)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>30.02 /75.53 degrees</td>
</tr>
<tr>
<td>48</td>
<td>30.69 /76.12 degrees</td>
</tr>
<tr>
<td>49</td>
<td>31.36 /76.7 degrees</td>
</tr>
<tr>
<td>50</td>
<td>32.02 /77.2 degrees</td>
</tr>
<tr>
<td>51</td>
<td>32.67 /77.77 degrees</td>
</tr>
<tr>
<td>52</td>
<td>33.32 /78.27 degrees</td>
</tr>
</tbody>
</table>

west antenna (I = 1/0 degrees)

east antenna (I = 1/ -105 degrees)

<table>
<thead>
<tr>
<th>θ (degrees)</th>
<th>E_IN (volts)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>31.87 /74.29 degrees</td>
</tr>
<tr>
<td>148</td>
<td>32.23 /75.14 degrees</td>
</tr>
<tr>
<td>149</td>
<td>32.61 /77.95 degrees</td>
</tr>
<tr>
<td>150</td>
<td>33.02 /79.7 degrees</td>
</tr>
<tr>
<td>151</td>
<td>33.45 /81.43 degrees</td>
</tr>
<tr>
<td>152</td>
<td>33.89 /83.11 degrees</td>
</tr>
</tbody>
</table>

table 3. Theoretical front-to-back ratio of the 2-element phased vertical array.

<table>
<thead>
<tr>
<th>elevation angle, θ (degrees)</th>
<th>front-to-back ratio (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>∞</td>
</tr>
<tr>
<td>10</td>
<td>39.72</td>
</tr>
<tr>
<td>20</td>
<td>27.68</td>
</tr>
<tr>
<td>30</td>
<td>20.61</td>
</tr>
<tr>
<td>40</td>
<td>15.56</td>
</tr>
<tr>
<td>50</td>
<td>11.59</td>
</tr>
<tr>
<td>60</td>
<td>8.26</td>
</tr>
<tr>
<td>70</td>
<td>5.31</td>
</tr>
<tr>
<td>80</td>
<td>2.80</td>
</tr>
</tbody>
</table>

Notice that the driving-point currents are 105 degrees out of phase, yet the points on the feeders where the voltages are in phase are only (149 degrees - 51 degrees = ) 98 degrees apart. Also notice that the east feeder, which has the lagging feed-point current, is longer than the west feeder, which one would expect.

Measurements on the RG8X cable used for the antenna feeders showed that its actual velocity factor was 0.725 rather than the advertised value of 0.81. Using eq. 2, the actual lengths of coax needed were 7.094 feet (2.162 meters) and 20.726 feet (6.317 meters). These two antenna feeders were cut to length and installed. A piece of RG-8 about 30 feet (9.1 meters) long extended from the Tee connector, where the antenna feeders were joined, to the matchbox in the shack.

The array performed as expected. State number 50 (Delaware) was worked shortly thereafter, along with contacts in Africa. There were almost no contacts to the west — but there also were no further TVI problems. The major azimuthal and elevation-plane radiation patterns are shown in figs. 3 and 4; the front-to-back ratio in the main elevation plane is provided in table 3. Notice that the front-to-back ratio is infinite only on the horizon (0 degree elevation angle) and deteriorates to just one or two S-units at high angles. There is actually a fairly large rear lobe whose maximum occurs at an elevation angle of about 60 degrees. Thus, there will be a fair amount of radiation and signal pickup off the back of the array if propagation favors this high angle.
STUMPED FOR A GIFT IDEA?

I.D. BADGES
No ham should be without an I.D. badge. It's just the thing for club meetings, conventions, and get-togethers, and you have a wide choice of colors. Have your name and call engraved in either standard or script type on one of these plastic laminated I.D. badges. Wear it with pride!
Available in the following color combinations (badge/engraving): white/red, woodgrain/white, blue/white, white/black, yellow/blue, red/white, green/white, metallic gold/black, metallic silver/black.

UD Engraved I.D. Badge $2.50

HERE'S A GIFT IDEA!
How about an attractive BASEBALL style cap that has name and call on it. It's the perfect way to keep eyes shaded during Field Day, or when worn at Hamfests and it is a great help for friends who have never met to spot names and calls for easy recognition. Great for birthdays, anniversaries, special days, whatever occasion you want it to be. Hats come in the following colors: GOLD, BLUE, RED, KELLY GREEN. Please send call and name (maximum 8 letters per line).

UFBC-81 $2.50

REGULAR PRICE HAT AND BADGE $8.50 ($7.50 + $1.00 shipping)

SPECIAL $7.50
SAVE $1.00

ham radio
GREENVILLE, NH 03048 603-878-1441

NEW from BARKER & WILLIAMSON!

1.8 - 30 MHz. Continuous Coverage Antenna for Commercial and Amateur Service

Model AC 1.8 - 30
The AC 1.8 - 30 Antenna uses only 80 feet horizontally, and, when space is limited, can be shortened even further with only slight loss of radiation efficiency. Patent Pending

- SWR Maximum 2:1, 1.4:1 Average
- Handles 1 KW input ICAS
- Can be installed in approximately 80 feet of space
- Higher power models available (contact factory)

$149.50

SHIPPING AND HANDLING ADD $4.00

BARKER & WILLIAMSON
Quality Communication Products Since 1932
All our Products Made in USA
At your Distributors write or call, 10 Canal Street, Bristol PA 19007
(215) 788-5581

conclusion
A technique has been demonstrated for feeding two-element phased arrays based upon the premise that the feeders from individual radiating elements may be directly connected together if the voltages at the point of connection are identical in magnitude and phase. A method was shown for determining the voltage at any point on an antenna feeder when the impedance and current at the driving-point of the antenna are given. Using these ideas, an actual 2-element array can be built and operated successfully on the air.

acknowledgements
The author would like to thank Forrest Gehrke, K2BT, for his encouragement, especially during the early stages of this project in 1983. Appreciation is also expressed to Margaret Shields in the Department of Electrical and Computer Engineering at Ohio University for typing the manuscript.

references

ham radio

ham radio

ham radio
RF TRANSISTORS

FRESH STOCK - NOT SURPLUS TESTED — FULLY GUARANTEED

P/N  Rating Ea Price
MRF406 20W $14.50 $32.00
MRF412 80W 18.00 40.00
MRF412A 80W 18.00 40.00
MRF421 100W 25.00 54.00
MRF421C 110W 27.00 58.00
MRF421D 135W 32.00 62.00
MRF426 25W 17.00 40.00
MRF426A 25W 17.00 40.00
MRF432 150W 42.00 90.00
MRF449 30W 12.00 27.00
MRF449A 30W 12.00 27.00
MRF450 50W 12.00 27.00
MRF450A 50W 12.00 27.00
MRF453 60W 15.00 33.00
MRF453A 60W 15.00 33.00
MRF454 80W 16.00 35.00
MRF454A 80W 16.00 35.00
MRF455 100W 20.00 40.00
MRF455A 100W 20.00 40.00
MRF458 120W 24.00 48.00
MRF460 120W 24.00 48.00
MRF465 150W 35.00 70.00
MRF475 12V 3.00 9.00
MRF476 12V 3.00 9.00
MRF477 40W 13.00 29.00
MRF479 15V 10.00 23.00
MRF485 15V 10.00 23.00
MRF492 90W 18.00 39.00
MRF2072 75W 15.00 33.00
CD2545 24.00 55.00

Selected High Gain Matched Quads Available

VHF TRANSISTORS

<table>
<thead>
<tr>
<th>Type</th>
<th>Rating</th>
<th>Ea</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRF221</td>
<td>15W</td>
<td>$10.00</td>
<td></td>
</tr>
<tr>
<td>MRF222</td>
<td>12W</td>
<td>$12.00</td>
<td></td>
</tr>
<tr>
<td>MRF224</td>
<td>40W</td>
<td>$13.50</td>
<td>$32.00</td>
</tr>
<tr>
<td>MRF231</td>
<td>3.5W</td>
<td>$10.00</td>
<td></td>
</tr>
<tr>
<td>MRF234</td>
<td>75W</td>
<td>$15.00</td>
<td>$39.00</td>
</tr>
<tr>
<td>MRF237</td>
<td>1W</td>
<td>$2.50</td>
<td></td>
</tr>
<tr>
<td>MRF238</td>
<td>30W</td>
<td>$12.00</td>
<td></td>
</tr>
<tr>
<td>MRF239</td>
<td>35W</td>
<td>$15.00</td>
<td></td>
</tr>
<tr>
<td>MRF240</td>
<td>40W</td>
<td>$16.00</td>
<td></td>
</tr>
<tr>
<td>MRF245</td>
<td>80W</td>
<td>$25.00</td>
<td>$59.00</td>
</tr>
<tr>
<td>MRF247</td>
<td>80W</td>
<td>$25.00</td>
<td>$59.00</td>
</tr>
<tr>
<td>MRF260</td>
<td>5W</td>
<td>$6.00</td>
<td></td>
</tr>
<tr>
<td>MRF264</td>
<td>30W</td>
<td>$13.00</td>
<td></td>
</tr>
<tr>
<td>MRF422</td>
<td>70W</td>
<td>$18.00</td>
<td>$39.00</td>
</tr>
<tr>
<td>MRF607</td>
<td>1W</td>
<td>$2.60</td>
<td></td>
</tr>
<tr>
<td>MRF627</td>
<td>0.5W</td>
<td>$9.00</td>
<td></td>
</tr>
<tr>
<td>MRF641</td>
<td>15W</td>
<td>$18.00</td>
<td></td>
</tr>
<tr>
<td>MRF644</td>
<td>25W</td>
<td>$23.00</td>
<td></td>
</tr>
<tr>
<td>MRF646</td>
<td>40W</td>
<td>$24.00</td>
<td>$59.00</td>
</tr>
<tr>
<td>MRF648</td>
<td>60W</td>
<td>$29.50</td>
<td>$69.00</td>
</tr>
<tr>
<td>SD1416</td>
<td>80W</td>
<td>$29.50</td>
<td></td>
</tr>
<tr>
<td>SD1477</td>
<td>125W</td>
<td>$37.00</td>
<td></td>
</tr>
<tr>
<td>2N4427</td>
<td>1W</td>
<td>$1.25</td>
<td></td>
</tr>
<tr>
<td>2N5945</td>
<td>4W</td>
<td>$10.00</td>
<td></td>
</tr>
<tr>
<td>2N5946</td>
<td>10W</td>
<td>$12.00</td>
<td></td>
</tr>
<tr>
<td>2N6800</td>
<td>4W</td>
<td>$6.00</td>
<td></td>
</tr>
<tr>
<td>2N6801</td>
<td>15W</td>
<td>$7.00</td>
<td></td>
</tr>
<tr>
<td>2N6802</td>
<td>25W</td>
<td>$9.00</td>
<td></td>
</tr>
<tr>
<td>2N6803</td>
<td>30W</td>
<td>$9.50</td>
<td></td>
</tr>
<tr>
<td>2N6804</td>
<td>40W</td>
<td>$12.00</td>
<td>$29.00</td>
</tr>
</tbody>
</table>

MOS FET

<table>
<thead>
<tr>
<th>Type</th>
<th>Rating</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRF127</td>
<td>30W</td>
<td>$22.50</td>
</tr>
<tr>
<td>MRF128</td>
<td>35W</td>
<td>$35.00</td>
</tr>
<tr>
<td>MRF140</td>
<td>150W</td>
<td>$92.00</td>
</tr>
<tr>
<td>MRF150</td>
<td>80W</td>
<td>$80.00</td>
</tr>
<tr>
<td>MRF172</td>
<td>80W</td>
<td>$65.00</td>
</tr>
<tr>
<td>MRF174</td>
<td>125W</td>
<td>$88.00</td>
</tr>
</tbody>
</table>

Technical Assistance & cross-reference information on CD, PT, RF, SRF, SD P/Ns
Call Engineering Dept. (619) 744-0728

RF Parts Catalog Available
OEM & Quantity Discounts

Minimum Order $20. Add $3.50 Shipping
WE SHIP SAME DAY C.O.D./VISA/AMERICAN EXPRESS

ORDERS ONLY: 800-854-1927

The DX EDGE®: Now for your COMMODORE 64™

- Fabulous graphics for the great DX aid
- Long path/Gray Line/Sunrise/Sunset on a fine map
- Automatic Gray Line updating simulates earth's rotation
- Keyed to DXCC list and 40 Zones

It's fantastic! Daylight and darkness paths in real time on your computer. As simple as can be. Price: $34.95, on a disk, p.p.d. in U.S. and Canada. Add $2.25 tax in N.Y.S. Add $4.00 elsewhere, air mail. U.S. funds only. The original plastic DX EDGE, in large slide rule format, is still only $16.95 (plus $4.00 outside U.S. and Canada). Great Circle Slides are $3.00 with DX EDGE. $10.00 without. Specify your Latitude.

The DX EDGE, P.O. Box 834, Madison Square Stn., New York, N.Y. 10015
An Information flyer is available free of charge.
A product of Kanteek, Inc. © Kanteek, Inc. 1985
COMMODORE 64 is a trademark of Commodore Electronics Ltd

May 1985

Westcom
1320 Grand Ave. San Marcos
California 92069
(619) 744-0728

VISA"
the first Radio Amateur

The world in 1900 was a far different place than the world we know. No one had heard of credit cards or ball point pens; time sharing meant together-ness, not computers. There were no fluorescent lights, instant coffee, antibiotics, Frisbees or frozen foods. There was no television, no radio — and no Amateur Radio.

Into this late Victorian era there stepped a Giant. In 1896 a young Italian arrived in England with some mysterious scientific apparatus in his luggage. The Customs officials, who had seen nothing like it before, examined it so thoroughly that the delicate apparatus was completely wrecked. This was the inauspicious beginning of a venture destined to remold the pattern of 20th-century living.

Guglielmo Marconi, at 26, had come to England to seek aid in developing his latest invention, a means of signalling at a distance without wires. The hub of a great Empire, Britain possessed the world’s greatest mercantile fleet and the mightiest Navy — and it was in shipping that Marconi could see his dream come true. For once a ship left the sight of land it was isolated from the world. When disaster struck — as it often did — some form of communication between ship and shore was sorely needed.

Marconi demonstrated his equipment to the War Office and the British Post Office. The War Office was interested, but the idea of an alternative means of communication seemed to be unpleasant to the Post Office; it was unenthusiastic.

By 1898 Marconi had successfully demonstrated overland and ship-to-shore communication and had formed the Wireless Telegraph and Signal Company Limited. From time to time, communication across distances of up to 100 miles could be established. Yet therein lay an enigma. Hertz’s early experiments showed that the invisible “wireless” waves obeyed the laws of light and travelled in straight lines. How, then, could Marconi communicate beyond the visible horizon?

The scientific community regarded Marconi’s experiments with caution. The Post Office monopoly on long distance telegraph communication and other restrictions made it impossible for Marconi to set up a revenue-earning inland wireless telegraph service. His company was rapidly going bankrupt. What to do?

the transatlantic gamble

Marconi had two ambitions: one, to prove his system offered dependable long-range capability and two, to compete directly with the Post Office, breaking its monopoly, and maintaining a profitable wireless telegraph service. He conceived a bold stunt to draw attention to his plan: he would send a wireless signal across the Atlantic! Marconi proposed a station of breathtaking power, size, cost, and complexity. It was like proposing to build a cathedral in a world which had seen nothing more grandiose than a log hut. The directors of his company objected to taking such a risk. His grand idea was met with scorn and disdain.

But Marconi convinced his colleagues to go along with his plan. The station, to be built in Poldhu, Wales, was staggering in concept; a 25 kilowatt power plant would drive a two-stage spark transmitter (fig. 1) connected to a 400-wire antenna supported by 20 masts, each 200 feet high.

By early 1901 the station began to take shape. Preliminary tests indicated a range of at least 225 miles. Despite a myriad of troubles, the station could be heard as far away as Ireland. It had already proven that wireless waves followed the curvature of the globe; Marconi was certain that his signal could be extended to North America.

In March, 1901, Marconi sailed for America and chose the site for a second station: South Wellfleet, a small town on the eastern shore of Cape Cod, Massachusetts. Leaving his chief engineer there, Marconi returned to England.
A alternator
C1, C2 capacitors
i1, i2 E-shaped adjustable iron cores
K Morse key
L1, L2 high inductance chokes
S1, S2 adjustable spark gaps
T1 step-up transformer
T2, T3 oscillation transformer

fig. 1. Marconi spark transmitter at Poldhu.

fig. 2. The temporary antenna used at Poldhu for the transatlantic tests.

Catastrophe struck in September when a vicious gale hit the coast of Wales, breaking one of the many guy wires. All 20 masts collapsed into a shambles of broken timber and tangled wire. Just a month later a second storm destroyed the antenna system at South Wellfleet.

The directors of the Marconi Company were appalled. Over a quarter million dollars had been spent with nothing to show for it but chaos. Marconi would not give up; he cleared away the wreckage, erected a temporary antenna (fig. 2) and had the station back on the air in 11 days.

Because of the diminished capacity of the makeshift station, Marconi decided to abandon the Wellfleet site and set up temporary receiving equipment in Newfoundland, the point of landfall nearest to Wales. In great secrecy he set sail for St. John, with a small stock of kites and balloons to keep a single wire aloft in the stormy weather.

A site was chosen on Signal Hill, and on December 9 the apparatus was assembled in an abandoned military hospital. The balloon was prepared for inflation and ground plates were buried. A cable was sent to Poldhu requesting that the Morse letter “S” be transmitted continuously from 3 to 7 PM. Marconi chose his message wisely. He knew the fragile state of his equipment, and that the transmission of dashes, rather than dots, would have imposed too great a strain on the keyer and the transformers.

On December 10th the weather was fair. A balloon-supported kite antenna was sent aloft. The transmissions started at a power level of about 10 kilowatts and on a wavelength of about 366 meters (820 kHz). Since there was no means of measuring frequency, the actual wavelength remained a matter of speculation.

As the wind picked up, the balloon bobbed and weaved about in the sky above Signal Hill. Marconi adjusted his new “syntonic receiver” — a glass tube within which a globule of mercury was held between two iron or carbon rods, forming a crude semiconductor. Nothing which could be identified as the letter “S” could be heard amid the static. The wind picked up and the antenna crashed to earth as the balloon was swept away.

December 12, 1901

On the 12th the wind increased in intensity. A kite was launched bearing a 510-foot wire. The wind carried it away. A second kite was launched with a 500-foot wire attached. Because he had observed that the buffeting of the antenna by the wind made it impossible to keep the newer receiver in tune, Marconi sat listening intently at an older, untuned receiver (fig. 3). Time slipped by. Suddenly, at 12:30 PM, Newfoundland time, he handed the earphone to George Kemp, his
assistant, and quietly asked, “Can you hear anything, Mr. Kemp?”

George Kemp took the headphone. Through the static crashes he could hear, faintly, the unmistakable rhythm of three clicks, followed by a pause, then three more and a pause, and so on, until — all too soon — the signals were lost once more in static. Marconi, a cool-headed man if there ever was one, wrote in his laboratory notebook: Sigs at 12.20, 1.10 and 2.20.

Marconi a fraud?

Marconi was in a quandry. What conclusive proof did he have? He and Kemp were not exactly unbiased. Should he make a public statement? Finally on December 14th Marconi cabled his company the news. It was made public on December 16th, 1901.

The first reaction came from the lawyers of the Anglo-American Telegraph Company, whose cable line had carried the message to England two days previously. It was sharp and to the point. Marconi was told that the company had a monopoly on communication in Newfoundland and it forbade any future infringement of their rights under pain of legal action.

The public interest, however, was aroused and both the Canadian and American governments expressed interest in the experiment. The technical journals treated the incident with a combination of skepticism and indignation. Marconi had no proof to substantiate his claim, which challenged the fundamental laws of physics and the proven knowledge of Newton, Maxwell, Hertz, and others. It was not until later, when the reception of signals across the Atlantic was demonstrated beyond any shadow of doubt, that Marconi’s achievement was recognized.

Even today, it is difficult to believe that the 366-meter signals could actually have been heard. The receiving equipment after all, consisted of an inefficient antenna coupled to an untuned receiver which had no means of amplification whatsoever and was even less sensitive than crystal detectors, which evolved a few years later. If, in fact, the wavelength was 366 meters, the tests took place at the worst possible time of day because the entire path would have been in daylight. Today we know that radio signals can travel across the Atlantic and far beyond. But in 1901, anyone who believed that they could, and did, believed so as an act of faith based upon the integrity of one man — Marconi.

Marconi at the World’s Fair

It was 1932. Marconi, an internationally acclaimed scientist, inventor, and businessman was in the United States. He was scheduled to make an official visit to the Chicago World’s Fair, a breathtaking exhibition of the modern world of technology. Fair officials were in a dither as Marconi arrived in the company of other important dignitaries. The Great Man toured the Fair, expressing great interest in the scientific exhibits. News photographers crowded around Marconi and he was followed by a large gathering, all craneing their necks to see the Father of radio communication.

As he was about to leave, Marconi expressed a wish to visit the Amateur Radio station at the Fair. So, Marconi’s big, black limousine, with colorful American and Italian flags flying from the fenders, drew up in front of a building on the edge of the fairground, followed by a horde of officials and newsmen. Marconi was escorted up the stairs to the World’s Fair Amateur station, W9USA.

The young operators of W9USA appeared thunderstruck as the famous visitor strode into the station, introduced himself, and studied the homemade kilowatt transmitter and the superheterodyne receiver. He examined the station log book. The Fair officials were mystified by the incomprehensible collection of equipment that seemed to fascinate Marconi.

One of the operators apologized to Marconi, saying that the equipment had been built by mere Radio Amateurs. Marconi nodded and smiled, shaking the hand of the operator warmly. “Yes, yes,” he said. “I understand — after all, I am a Radio Amateur myself.”

radio silence

Marconi died in July, 1937. On the evening of the following day, at the state funeral in Italy, the Italian Radio Service observed an official period of radio silence. In England, and throughout the world, thousands of radio stations — broadcast, commercial, and Amateur — fell silent. The radio silence which Marconi had broken when he switched on his first transmitter came down in sorrow at his passing.
Shortly before he died, Marconi, in an address at St. Andrews University in Edinburgh, Scotland, stressed his original intention to make the high seas safe by giving ships a means of communication. Then, perhaps talking more to himself than to his audience, he added, "Have I done the world good — or have I added a menace?"

in retrospect

Much speculation has taken place during the decades following Marconi’s famous transatlantic experiment. Ionospheric studies and a review of the sunspot cycle suggest that propagation across the Atlantic at that time of day, in that month and year, was highly unlikely on 820 kHz.

What, then, might Marconi and his assistant have heard? A few clues exist. Marconi’s spark transmitter emitted a rough wave, high in harmonic content. He used a broadband (untuned) receiver. Perhaps Marconi was not hearing the fundamental transmitter signal, but instead a harmonic of the signal, in particular the fourth harmonic on about 3280 kHz. If that is so, then a few hundred watts of harmonic power would have easily made the transatlantic journey.

Of course, with a broadband receiver, Marconi could have heard many harmonics at the same time! So we shall never really be sure what transpired on that stormy day in Newfoundland. It is interesting, however, to think that if Marconi had elected to listen to his tuned receiver, used in the previous day’s unsuccessful tests, he might have heard nothing at all!

acknowledgements

Thanks to the Official Historian of the Marconi Company (England) for the background information on Marconi’s early experiments. The story of Marconi’s visit to the Chicago World’s Fair appeared in the November, 1932 issue of OST.

*Drawings adapted from A History of the Marconi Company by W.J. Baker, Methuen & Co., Ltd., London, 1970. (Distributed by the Marconi Co., Ltd.)

Ham radio
Look to Cayson Electronics for durable and accurate satellite antennas. We are pioneers in the business and still growing. Here are two 10’ antennas that you can be sure are winners.

The four-piece fiberglass features a highly reflective aluminum foil material for superior reception. The heavy duty polar mount utilizes a 3½ OD ground pole. This antenna has been around since 1979.

The 10’ aluminum mesh antenna is becoming more popular for those who value attractive satellite equipment. The two-tone reflector features black mesh and aluminum ribs. The mount has declination adjustment and also uses a 3½ OD ground pole.
This is the antenna that every ham has probably dreamed about: a beam antenna that works on every Amateur band and on all the spaces in between... an antenna that’s cheap and requires just a single tree or pole for support... an antenna that doesn’t require precision measurements, special tuning instruments, or almost anything else out of the ordinary. Everything needed can be purchased inexpensively or built at home, and the hardest part will be building a toroid transformer with about 25 turns of wire.

This is the same antenna used as a back-up by the Voice of America, so you know it works.

According to transmission line theory, a single conductor placed a few feet above and parallel to the ground can be used as an antenna. If the wire is raised more than a few feet above ground, the impedance approaches a value of 400 ohms according to the following formula:

$$Z_0 = 83.7 \log_{10} (4H/d) \quad (1)$$

where $Z_0$ = impedance of single wire above ground

$H$ = height of the wire above ground in any units

$d$ = diameter of the wire in the same units

The nonresonant “vee” antenna and a large family of similar antennas such as rhombics are based on transmission line theory. When used as an antenna, however, the transmission line has spacing which is large compared with normal lines. As a result it is leaky and can be used as an antenna. The radiation field from a single wire transmission line may be calculated and the two maximum gain lobes discovered by the equation:

$$E(a) = \frac{60 \sin a \cdot \sin \left[ \frac{\pi L}{W} (1 - \cos a) \right]}{1 - \cos a} \quad (2)$$

where $E(a)$ = normalized field strength at angle $a$

$a$ = the angle from the axis of the wire

$\pi$ = 3.1416

$L$ = length of the wire in any units

$W$ = one full wavelength in the same units

If two terminated transmission lines are aligned so that the major lobes of each wire are additive, the lines then become a “vee” antenna. (Two vees placed end-to-end form a rhombic.) Because the line is terminated in a matching impedance, the wires are nonresonant — just like any correctly matched, well-behaved transmission line — and the antenna will accept power at any frequency.

Several good things happen with terminated transmission line antennas. One desirable result is broadbanding operation; another is that the reverse lobes (toward the pointed side of the vee) are cancelled or greatly reduced. The resulting antenna can be used to both transmit and receive at every frequency within its range, much like a log periodic antenna. But, it will

By Robert Ross, 17904 Muncaster Road, Derwood, Maryland 20855
A maximum lobe gain of 5.1 dBi is achieved with a 1-wavelength leg length 68-degree apex angle, non-resonant vee beam.

A maximum lobe gain of 5.7 dBi is achieved with a 1.5-wavelength leg length 56-degree apex angle, non-resonant vee beam.

A maximum lobe gain of 6.1 dBi is achieved with a 2-wavelength leg length 48-degree apex angle, non-resonant vee beam.

### Table 1. Relationship between vee beam leg lengths, apex angles, and gains.

<table>
<thead>
<tr>
<th>vee leg length in half waves</th>
<th>apex angle in degrees</th>
<th>gain in dBi</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>68</td>
<td>5.1</td>
</tr>
<tr>
<td>3</td>
<td>56</td>
<td>5.7</td>
</tr>
<tr>
<td>4</td>
<td>48</td>
<td>6.1</td>
</tr>
<tr>
<td>5</td>
<td>44</td>
<td>6.4</td>
</tr>
<tr>
<td>10</td>
<td>32</td>
<td>7.4</td>
</tr>
<tr>
<td>20</td>
<td>22</td>
<td>8.4</td>
</tr>
</tbody>
</table>

produce its best gain only over a relatively narrow frequency range where the major lobes align for best gain. This frequency range depends on the angle of the apex of the vee and the length of the legs. For many purposes, +100 percent to −50 percent frequency excursion is reasonable, (see table 1). The worst thing that happens is that the beam splits and you find a null in the center with the gain lobes on either side.

In this case the vee has been optimized for the 14 to 15 MHz band — but it also works reasonably well from 40 to 10 and even radiates modestly on 160 and 80 meters. Optimization can be done for any band by calculating the major lobes and adjusting the apex angle for that band. Ordinarily, however, not much is gained by changing the apex angle of such a short vee. Figures 1 through 6 illustrate the azimuthal pattern of vee beams with leg lengths from 1 to 10 wavelengths.

**Construction is easy**

The vee is probably the simplest of all wide band beam antennas to build. A single support roughly 65 feet (20 meters) tall is required for the high end and two supports about 3 feet (1 meter) tall for the low ends. The only critical item is the pointing of the
antenna. The position of the two low point anchor poles must be selected to direct the antenna at your target by using a compass bearing corrected for local magnetic variations. In Washington, D.C., the variation is 8 degrees west; thus 8 degrees must be added to the compass reading to get a true bearing. The legs must be located so that they are 22 degrees on either side of the great circle line of bearing to your target and to make the open end of the vee point toward the target. For example, on my globe London and Europe are 48 true (not magnetic) degrees from Washington, D.C.

**materials are inexpensive**

The wire and insulators can be of almost any kind. However, I prefer No. 14 AWG copperweld wire and No. 500 strain insulators (also known as guy wire insulators). Strain insulators are particularly good if you use a tree for your antenna pole because they won’t break when the tree sways in the wind. I also advise soldering all antenna connections to avoid long-term problems from corrosion and the resulting bad connections.

The transformer can be purchased from at least one company for about $150, but building your own transformer is not difficult. Only a few turns of wire on a 2-inch diameter RF toroid core will do the job. Generally the largest RF toroid core which the manufacturer says will cover the desired frequency range will work reasonably well. On my transformer I used 20 turns of soft No. 12 AWG enameled copper wire for the secondary, spacing it evenly around the core and making sure that there were at least a few millimeters between the two wire ends to prevent RF voltage flash-over. If you leave the ends of the secondary about two feet long you can also use them for antenna connections later. Anchoring the wire in place with silicone rubber is a messy but a very effective measure. Then slip
POCKET SIZE FAST CHARGER
Fast charge your hand held radio battery packs to full capacity in as little as 45 minutes. Example: Fully charge I-COM BP-3 in 30 to 45 minutes.

VERSATILE - Works on 115V. A.C. or 12V. to 24V. D.C. and turns itself off automatically when battery reaches full capacity. Use at home or in auto, airplane, boat, R.V. or anywhere there is house current or 12V. to 24V. D.C. available.

FEATURES -
1. New Hybrid thick film integrated circuit developed for this charger contains all measuring and control circuitry in a single chip. Laser trimmed precision resistors.
2. Small size - can be carried in your pocket.
3. High impact molded plastic case
4. Reverse polarity protection built in.
5. Internally fused.
6. Full 1 year warranty.
7. Completely solid state circuit measures charge constantly and turns off automatically when cells reach full capacity.
8. Charges at optimum rate without any perceptible heating of cells.

Price $65.00
19780 Temescal Canyon
Corona, Calif. 91719
Mail orders to:
P.O. Box 2679
Corona, Calif. 91718
(714) 734-6179

---

ORR BOOKS

BEAM ANTENNA HANDBOOK
by Bill Orr, WSSAI

SIMPLE LOW-COST WIRE ANTENNAS
by Bill Orr, WSSAI

THE RADIO AMATEUR ANTENNA HANDBOOK
by William I. Orr, WSSAI and Stuart Cowan, W2LX
Contains lots of well illustrated construction projects for vertical, long wire, and HFVHF beam antennas. There is an honest judgment of antenna gain figures, information on the best and worst antenna locations and heights, a long look at the quad vs. the yagi antenna, information on baluns and how to use them, and new information on the popular Sloper and Delta Loop antennas. The text is based on proven data plus practical, on-the-air experience. 190 pages. ©1979. 1st edition.

ALL ABOUT CUBICAL QUAD ANTENNAS
by Bill Orr, WSSAI - New 3rd Edition
Includes NEW data for WARC bands
The cubical quad antenna is considered by many to be the best DX antenna because of its simple, lightweight design and high performance. You'll find quad designs for everything from the single element to the multi-element monster quad. There's a wealth of data on construction, feeding, tuning, and mounting quadruple antennas. 112 pages. ©1983. 3rd edition.

---

references


2. The vee antenna feeding transformer, 1.8 to 30 MHz, is available from Apcom Inc., 625 Loffstrand Lane, Rockville, Maryland 20850, (301-294-9060). Note: this company and others will supply the complete antenna, mast, ground rods, earth anchors and everything else, optimized for your frequency and adjusted to fit various larger pieces of land. This is a good deal for commercial stations, but the cost is very high by ham standards.

3. Type F240-Q1 toroid core to cover 1.8 to 30 MHz is available from Amidon Associates, 12033 Otsego Street, North Hollywood, California 91607, or Palomar Engineers 1924-F W. Mission Road, Escondido, California 92025.

4. Carbonbundum Co., Graphite Products Division, Box 339, Niagara Falls, New York 14302. Please note that this is a manufacturer, not a retail outlet. If you can put together a large order, then request noninductive resistor type 8915P, 390 ohms (2 for each antenna). If more power is required, order type 8915P, 450 ohms (2 for each antenna).

---

some tube insulation over a second piece of the No. 12 AWG enameled wire and wrap five primary turns evenly over the outside of the first twenty turns. Getting even a semblance of a smooth wrap will be the hardest thing you'll have to do for this antenna. Again, use some silicone rubber to tack down the primary and give it at least twenty-four hours to harden. After stripping the enamel from the ends of toroid primary wire, solder on the coax connector of your choice. Resist the urge to use the hole through the middle of the toroid to hold up the high end of the antenna or attach the coax — powdered iron cores are brittle and are subject to breaking at the most inconvenient times.

The 390-ohm termination resistors, are noninductive resistors made specially for terminating antennas, and are available from electronic wholesalers, at ham fests (your best chance) or at surplus houses. On the other hand, you can also make a 200-watt terminating resistor out of one-hundred, 2-watt, 39 kilohm, carbon composition resistors. A simple way to do this is to lay out two tinned No. 12 AWG wires spaced the width of the resistor body and solder the 100 resistors to them.

Operating this antenna is pure joy. It loads my transmitter well from one end of the short wave bands to the other. My antenna also shows a maximum of about 1.5:1 SWR on 15 meters and about 1.2:1 maximum on all other bands. Adding or subtracting a turn or two on the transformer optimizes the SWR for any desired frequency.

At last I have an antenna that works smoothly from 160 to 10 meters and even works as an effective all-band antenna for my general coverage short-wave receiver. For cost and coverage, it's hard to beat this nearly foolproof sloping vee beam.

---

Ham Radio's Bookstore
Greenville, NH 03048

---

May 1985
Kantronics Packet Communicator™

Kantronics wants you to join one of the fastest growing segments of Amateur Radio today... Packet Radio. With the Kantronics Packet Communicator we've made getting on Packet as easy as getting on RTTY.

The Kantronics Packet Communicator is a fully assembled and programmed terminal node controller ready for operation. Simply connect the Packet Communicator to the Serial TTL or RS232 port of your computer, and the microphone and external speaker jacks of your transceiver. The power supply, cables, and most connectors are included.

The Kantronics Packet Communicator has both the AX.25 and Vancouver protocols, making it compatible with most existing Packet terminal node controllers. Added features include both Bell 103 and 202 tones, and the ability to use the unit as a 1200 baud radio modem without special protocols.

Error free data communication via computer makes Packet Radio technology exciting, and the Kantronics Packet Communicator lets you get in on the action.

For more information contact your local Kantronics dealer, or write Kantronics.

Suggested Retail $389.95
DO YOU HAVE AN HEIRLOOM RADIO?

Well... they might not last forever. However, there are certainly many older model KDKs out there in 'Ham Radio-land' just chuggin away. Every day calls come from all over asking for information and advice on care and feeding of an FM-144sx or a '2015 and there are even a few older than that but some of them do seem to be in disrepair. That's a tribute to the folks who design and make the KDK. They care about building a radio to last longer because their name and their pride are on the front of each one.

BUT... What we are really getting to is we would really like for all you folks who have known and loved your KDK's all these years to go and update yourselves by purchasing a newer KDK, one like, say, the FM-2033 or maybe an FM-7033 UHF. That way you can start your own collection of heirloom KDK radios. Right there in your own hometown. Take a look at the chart of available models and visit your nearest KDK dealer and check them out. We think you will drive home with one.

<table>
<thead>
<tr>
<th>SPECIFICATION</th>
<th>FM-2033 144 MHZ</th>
<th>FM-4033 220 MHZ</th>
<th>FM-7033 440 MHZ</th>
<th>FM-6033 50 MHZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>MEMORY SCANNING</td>
<td>10 Memories + CALL CHANNEL organized as two banks of 5 channels each. (CH 1-5, CH 6-10, CALL.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BAND SCANNING</td>
<td>Programmable band scan between values loaded into memories 5 and 10, step size set in INIT module.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FREQUENCY RANGE</td>
<td>142.000-149.999 MHZ</td>
<td>220-224.999 MHZ</td>
<td>440-449.975 MHZ</td>
<td>10/2 Watts</td>
</tr>
<tr>
<td>OUTPUT POWER HI/LO</td>
<td>25/2.5 Watts</td>
<td>25/2.5 Watts</td>
<td>10/2 Watts</td>
<td>50.00-53.995 MHZ</td>
</tr>
<tr>
<td>REPEATER OFFSET</td>
<td>600 kHz UP or Down</td>
<td>1.6 MHz UP or Down</td>
<td>5 MHz UP or Down</td>
<td>10/2 Watts</td>
</tr>
<tr>
<td>SUB AUDIBLE TONE</td>
<td>103.5 @ 500 Hz Dev</td>
<td>0.35 uV @ 12 dB SINAD</td>
<td>Dipswitch Select</td>
<td>600 kHz UP or Down</td>
</tr>
<tr>
<td>SENSITIVITY</td>
<td>±5 kHz @ -6 dB</td>
<td>±5 kHz @ -6 dB</td>
<td>±5 kHz @ -6 dB</td>
<td>600 kHz UP or Down</td>
</tr>
<tr>
<td>BANDWIDTH</td>
<td>±12.5 kHz @ -60 dB</td>
</tr>
<tr>
<td>SELECTIVITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TEAM THL LINE-UP FOR '85 SEASON

TEAM THL brings competition class performance to everyday operation. Whether you're looking for a little more performance or a "super-charger" boost, TEAM THL products can get you out of the pits and back in the race better and faster almost every time. Three different power performance classes in either VHF or UHF band capability give the TEAM THL a broad spectrum of performance options. So remember the next time you get beat in the race, soup-up yourself with a product from TEAM THL.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Amp Type</td>
<td>N/A</td>
<td>Gaas-FET</td>
<td>Gaas-FET</td>
<td>Gaas-FET</td>
<td>Gaas-FET</td>
<td>Gaas-FET</td>
<td>Gaas-FET</td>
<td>MOS-FET</td>
<td>MOS-FET</td>
<td>MOS-FET</td>
<td>MOS-FET</td>
</tr>
<tr>
<td>Power Metering</td>
<td>N/A</td>
<td>LED</td>
<td>LED</td>
<td>Meter</td>
<td>Meter</td>
<td>Meter</td>
<td>Meter</td>
<td>Meter</td>
<td>Meter</td>
<td>Meter</td>
<td>Meter</td>
</tr>
<tr>
<td>Input (Watts)</td>
<td>.25-5</td>
<td>.25-5</td>
<td>.25-5</td>
<td>10-14</td>
<td>3-14</td>
<td>3-14</td>
<td>3-14</td>
<td>1-4</td>
<td>1-4</td>
<td>1-4</td>
<td>1-4</td>
</tr>
<tr>
<td>Output (Watts)</td>
<td>2.5-30</td>
<td>2.5-30</td>
<td>2.5-30</td>
<td>90-90</td>
<td>140-160</td>
<td>140-160</td>
<td>140-160</td>
<td>16-22</td>
<td>45-60</td>
<td>90-110</td>
<td>45-60</td>
</tr>
<tr>
<td>SSB Mode</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Sugg. Retail</td>
<td>$69.95</td>
<td>$79.95</td>
<td>$89.95</td>
<td>$169.95</td>
<td>$239.95</td>
<td>$349.95</td>
<td>$349.95</td>
<td>$299.95</td>
<td>$114.95</td>
<td>$129.95</td>
<td>$229.95</td>
</tr>
</tbody>
</table>

TEAM THL
AMPLIFIERS • PREAMPS • COUPLERS

TEAM THL brings competition class performance to everyday operation. Whether you're looking for a little more performance or a "super-charger" boost, TEAM THL products can get you out of the pits and back in the race better and faster almost every time. Three different power performance classes in either VHF or UHF band capability give the TEAM THL a broad spectrum of performance options. So remember the next time you get beat in the race, soup-up yourself with a product from TEAM THL.
These new compact HF/VHF/UHF meters from WELZ provide multi-mode operation in auto or home station. Utilizing the WELZ toroidal core based wide-band sensor technology, these VSWR/POWER meters are the next generation of accuracy and reliability. Pictured here is the model SP-420 covering the VHF/UHF band from 140-525 MHz. In addition there is the SP-220 covering 1.8 to 200 MHz and the SP-122 covering 1.6-60 MHz with PEP peak hold mode. All three of these new models are ready for PEP output measurement with either the “PEP Monitor” function or the “Instantaneous PEP HOLD” function, back-lighted easy-to-read meters, high sensitivity and very attractive styling. Check your favorite dealer and check out the new WELZ COMPACT VSWR/POWER meters.

<table>
<thead>
<tr>
<th>MODEL</th>
<th>SP-122</th>
<th>SP-220</th>
<th>SP-420</th>
<th>SP-230</th>
<th>SP-430</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freq. Range</td>
<td>1.6-60MHz</td>
<td>1.8-200MHz</td>
<td>140-525MHz</td>
<td>6-1400MHz</td>
<td>1.8-150MHz</td>
</tr>
<tr>
<td>Sensor Mnt.</td>
<td>FIXED</td>
<td>FIXED</td>
<td>FIXED</td>
<td>DETACHABLE</td>
<td>DETACHABLE</td>
</tr>
<tr>
<td>Pwr Ranges</td>
<td>20/200/2KW</td>
<td>2/200</td>
<td>2/200/200</td>
<td>15W/150W</td>
<td>5W/60W</td>
</tr>
<tr>
<td>No. Meters</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Peak Mode?</td>
<td>YES+HOLD</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Impedance</td>
<td>50 OHMS</td>
<td>50 OHMS</td>
<td>50 OHMS</td>
<td>50 OHMS</td>
<td>50 OHMS</td>
</tr>
<tr>
<td>Functions</td>
<td>PWR/VSWR</td>
<td>PWR/VSWR</td>
<td>PWR/VSWR</td>
<td>PWR/VSWR</td>
<td>PWR/VSWR</td>
</tr>
<tr>
<td>Accuracy</td>
<td>10% READING</td>
<td>10% READING</td>
<td>10% READING</td>
<td>10% READING</td>
<td>10% READING</td>
</tr>
</tbody>
</table>

These results are made In and radical Price.

The new compact meters are the next generation of reliability. Pictured here is the model SP-420 covering the VHF/UHF band from 140-525 MHz. In addition there is the SP-220 covering 1.8 to 200 MHz and the SP-122 covering 1.6-60 MHz with PEP peak hold mode. All three of these new models are ready for PEP output measurement with either the “PEP Monitor” function or the “Instantaneous PEP HOLD” function, back-lighted easy-to-read meters, high sensitivity and very attractive styling. Check your favorite dealer and check out the new WELZ COMPACT VSWR/POWER meters.
Doctor QSO™ is a plug-in cartridge for the Commodore 64 computer that provides a very realistic simulation of on-the-air two-way Morse Code ragchew contacts (QSOs). AEA, the undisputed leader in Morse training, has introduced Doctor QSO to amateur radio for the purpose of making Morse skill upgrading fun and easy. With Doctor QSO you can look forward to practicing your Morse Code skills in a non-confusing manner. Forget about all the drudgery you associated with Morse Code in the past; Doctor QSO ushers in a totally new era in Morse Code learning.

Doctor QSO is based on the same technology that has made the Doctor DX™ contest trainer so famous. The Doctor QSO simulator is so realistic that most skilled operators find it every bit as rewarding as the real thing. You can operate anytime you want; the only extra equipment you need is a Commodore 64 and a TV set.

Doctor QSO also removes the mystery of the CODE BEHIND THE CODE. Many people go so far as to learn the Morse Code characters, only to be frightened of getting on the air the first time because the QSO format is so confusing. With Doctor QSO, you will be a pro before you turn on your first transmitter. The Doctor QSO trainer/simulator is ideal for the aspiring Amateur Radio operator with little or no contact with helpful hams.

With Doctor QSO you will become familiar with all the U.S. call areas and associated call letter prefixes. The standard international QSO format is observed along with all the common amateur radio abbreviations which are explained thoroughly in the operator’s manual. All Morse skill levels are addressed by Doctor QSO, from the person who has not yet learned the Code, to the person comfortable with sending and receiving at 40 + WPM.

Who says Morse Code can’t be fun? You can even have fun with Doctor QSO before you have learned the Code. To begin with, the operator can view the messages being sent by the computer generated stations in real-time. The operator can also send Morse with the keyboard. In addition, the operator can select simulation of static interference (QRN) and adjacent CW interference (QRM). Normally, the beginner would operate in the novice band where stations will be sending as slow as 3 WPM. Later as the user becomes more skilled, he can move down the band to faster speeds, and he has the choice of using a key or keyer for sending.

If you have tried every other method known to learn the Morse Code and failed, then Doctor QSO has just the prescription for you. Now you can upgrade your Amateur Radio license in record time. Doctor QSO is more than the written word can describe. To fully appreciate all the merits of this trainer, see your dealer for a demonstration or contact AEA for more information.
what's this Sporadic E?

In these minimum years of the 10.7-year sunspot cycle when the 10-meter band is at best open only a few hours per day and only to the southern directions for long skip, it's still possible for propagation modes to exist on 6 meters and occasionally even the 2-meter band for short-skip openings. Signals appear suddenly, out of nowhere, and frequently rise to amazing strength. They may stay in for just a few minutes at a time — or the band may remain open for hours. Occasionally in June or July DX signals might be heard around the clock. Signals can be received from distances of 500 to 1200 miles and occasionally, due to multiple reflections, from distances as far away as 2500 miles.

How do you recognize such Es openings? Say you're monitoring a beacon. The band is quiet. Suddenly you hear a buildup of "antenna noise." Almost instantly there are DX stations all over the band. Signal levels fluctuate rapidly as the session opens and as it declines. When the signal is there it usually pegs your S-meter, but it is also subject to rapid fades on the order of 60 dB or more that chop it into a garbled mess.

One way to recognize the probable opening of Es on 6 meters was reported by George Jacobs, W3ASK, in the June, 1962 issue of CQ. Working a lower frequency band, say 15 or 10 meters, listen to the stations being worked. If the minimum skip distance is decreasing, the skywave geometry is such that the maximum usable frequency will be increasing by reflection from an Es (more dense than F2 and lower height) cloud. W3ASK's rule of thumb states that when stations are heard less than 500 miles away on 10 meters, or less than 350 miles on 15 meters, the chances are good that 6 meters will open in that same direction. It's worth a try! (More on Es DXing next month.)

last-minute forecast

DX conditions on the higher HF bands, 10 through 30 meters, are expected to be very good the first two weeks of the month and also again during the last week of this five-week month. The propagation at these times can be via long-skip if the radio flux is very high — above about 85 units. Sporadic E (Es) short-skip is expected to occur occasionally, with the probability of occurrence increasing as the month goes by. The middle two weeks of the month will offer the best nighttime DXing. Geomagnetic disturbances are expected to occur around the 4th through the 8th and again on or about the 15th. Concurrently, the thunderstorm noise background level will also be higher on the lower bands.

Moonbounce DXers can take advantage of the lunar perigee (and full moon) that will occur on the 3rd and 4th of this month. An Aquarid meteor shower of interest to meteor-scatter and meteor-burst DXers peaks between May 4th and 6th with rates of 10 and 25 per hour for the Northern and Southern Hemisphere, respectively.

Two eclipse events are calculated to occur in May. The first is a total eclipse of the moon on May 4 from 1817 to 2135 UTC. The path of its shadow starts near New Zealand and travels west through Australia, Asia, Africa and into the Atlantic Ocean. The width extends from the Antarctic to Europe. The second event, partial eclipse of the sun, (with 84 percent coverage) will occur on May 19 from 1925 to 2342 UTC. Its path begins at Greenland, travels across Canada and then moves on to Alaska and Japan. The second eclipse provides an opportunity to evaluate propagation effects on the path between the United States and Europe. Schedule contacts for the day before the day of the eclipse and the day after. Compare signal strengths and quality on each band used (suggestion: try 40, 30, 20 and 15 meters). A club-coordinated effort is a good way to cover the bands needed.

band-by-band summary

Six meters may provide an occasional opening to South Africa and South America by short-skip Es. These will occur around local noontime, toward the end of the month.

Ten and fifteen meters will provide a few short skip Es openings and many long-skip openings, especially during high solar flux conditions, to most areas of the world during daylight. Some transequatorial (TE) openings, associated with a mildly disturbed geomagnetic field may occur in the evening hours. This is about the last month that affords many good TE openings until next fall.

Twenty, thirty, and forty meters will support DX propagation from most areas of the world during the daytime and into the evening hours almost every day. Forty meters has joined this daytime DX group because of lower signal absorption, lower LUF (lowest usable frequency) during these sunspot minimum years. During unusually high 27-day solar flux days 40 meters may not be usable and both 30 and 40 meters may not be usable in the predawn hours after a high flux day. The DX on these bands may be either long-skip to 2500 miles (4000 km) or short-skip Es to 1250 miles (2000 km) per hop. The length of daylight is approaching maximum, providing many hours of good DXing.

Thirty, forty, eighty, and one-sixty are all good for nighttime DX. Although the background thunderstorm noise is beginning to be noticeable these bands are still quiet enough to provide good DX working conditions. Sporadic-E propagation may be a contributing factor toward enhanced conditions at local sunset and will occur more often during the next three months.

May 1985

79
New From Butternut®

HF2V

DX The 80 & 40 Meter Bands

The HF2V is the perfect complement for the Ham who already has a beam antenna for 10-15-20 meters. Add 80 and 40 meters (160 meters with an optional resonator kit) with a trim-looking vertical that can be mounted almost anywhere.

With the decline in sunspot activity, the HF2V’s low angle of radiation will get you DX on the low bands - even when 10-15-20 meters are “dead.”


40 Meters: Full CW & Phone band
80 Meters: 90 KHz

Add-on resonator kits available for 160-30-20 meters.

Write for our FREE CATALOG.

BUTTERNUT ELECTRONICS
405 East Market Street
Lockhart, Texas 78444
(512) 398-9019

2.3 GHz

MICROWAVE EQUIPMENT

RMLA-I $36.00

2.3 GHz LWA. 14 Dc gain. 50 ohm (BNC). Input transistor typical NF 2-6 Db. Requires +12 VDC. 3.5’ x 2’ x 1.25”, without enclosure.

RMMX-I $20.00

2.3 GHz double balanced mixer. 50 ohm (BNC). 2.5’ x 2.5’ x 1”, without enclosure. 2.3-3.5 GHz voltage controlled oscillator. 10 MW output. Requires +12 VDC bias and -1 to -12 VDC tuning. 2.25’ x 2.25’ x 1”, may be FM modulated with 8 ohm speaker as microphone.

Also Antennas, Mast Mountable VCO/antennas, Detectors, Signal Generators, Attenuators, and Line Stretcher.

ROENSCHE MICRO WAVE
R.R. 1, Box 156B
BROOKFIELD, MISSOURI 64628

Please send all reader inquiries directly.
### May 1985

<table>
<thead>
<tr>
<th>MAY</th>
<th>0000</th>
<th>0100</th>
<th>0200</th>
<th>0300</th>
<th>0400</th>
<th>0500</th>
<th>0600</th>
<th>0700</th>
<th>0800</th>
<th>0900</th>
<th>1000</th>
<th>1100</th>
<th>1200</th>
<th>1300</th>
<th>1400</th>
<th>1500</th>
<th>1600</th>
<th>1700</th>
<th>1800</th>
<th>1900</th>
<th>2000</th>
<th>2100</th>
<th>2200</th>
<th>2300</th>
<th>0000</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. AFRICA</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>15</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>ANTARCTICA</td>
<td>20</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>NEW ZEALAND</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>15</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

**Notes:**

- The italicized numbers signify the bands to try during the transition and early morning hours, while the starred type provides the MUF during "normal" hours.

- Look at next higher band for possible openings.

---

**May 1985**

*ham radio*
Your Ham Tube Headquarters!

TUBES BOUGHT, SOLD AND TRADED
SAVE $$$—HIGH $$$ FOR YOUR TUBES

Call Toll Free 800-221-0860

Tubes
3-400Z............$85.00  7360......$10.00
3-500Z............85.00  7735A......27.50
4-400A............80.00  8122......110.00
4CX250B...........50.00  8156......12.50
572B..............55.00  8643......82.50
611A..............12.00  8844......26.50
813..............30.00  8873......175.00
6146B.............6.50  8874......195.00
6360..............45.00  8877......500.00
683B..............6.75  8908......12.50

MAJOR BRANDS ON RECEIVER TUBES
75% off list

Semiconductors
MRF 245/SD1416...$30.00  SD1088......19.95
MRF 454...........14.95  2N3055......75.00
MRF 455...........10.95  2N6084......12.50

RF Connectors
PL259.............10/$4.95  M358........2.50 ea.
PL258.............10/$8.95  M359........1.75 ea.
UG 175/176........10/$1.60  Type "N" Twist on
UG255/u..........2.50 ea.  (RGB/u)..............$4.75 ea.
UG273/u...........2.25 ea.  Minimum Order $25.00

Allow $3.00 min. for UPS charges

CeCo
COMMUNICATIONS, Inc.
2115 Avenue X  Brooklyn, NY 11235
SERVING THE INDUSTRY SINCE 1922
Phone (212) 646-6300
Call CeCo For Your CCTV Security And Color Production Requirements

MICROWAVE TV ANTENNA SYSTEMS
Freq. 2.1 to 2.7 GHz . 34 db Gain +

COMPLETE SYSTEMS:
(as pictured)
Commercial 40"  Rod Style $99.95
Parabolic 20"  Dish Style $79.95

COMPONENTS
Down Converters (either style) $34.95
Power Supplies $24.95
(12V to 16V DC+)
Data Info (Plans) $ 9.95

CALL OR WRITE FOR
KITS, PARTS, OR MORE
INFORMATION
Shipping & Handling Add $5.00
We Repair Most Types Down
Converters & Power Supplies

PHILLIPS-TECH
ELECTRONICS
P.O. Box 34772
Phoenix, AZ 85087
(602) 947-7700
Special Quantity Pricing
Dealers Wanted

The monthly magazine with a natural blending of two popular hobbies — Ham Radio and Computers
★ Articles on Ham Radio & Most Personal Computers
★ Hardware & Software Reviews
★ Various Computer Languages
★ Construction Articles
★ Much Much More...

...received my moneys worth with just one issue...

— J. Trenbick

...always stop to read CTM, even though most other magazines I receive (and write for) only get cursory examination...

— Fred Blechman, K6UGT

U.S.A. ......................... $15.00 for 1 year
Mexico, Canada ............... $25.00
Foreign ....................... $35.00 (land) - $55.00 (air)
(U.S. funds only)
Permanent (U.S. Subscription) $100.00
Sample Copy ................... $3.50

Circulation Manager
1704 Sam Drive
Birmingham, Alabama 35235
Phone 205/854-0271

Name ___________________________________
Call Sign _______________________________
Address ___________________________________
City __________________ State ____________
Zip ________________ Phone _______________
Date ____________________
Signature ____________________________

151
Take home a world champion.

$85* gets you a technical knockout.
The Fluke 70 Series.
Winners of the digital vs. analog battle.
Since their debut, they’ve become the worldwide champions of the industry.

Never before have such tough, American-made meters offered so many professional features at such unbeatable prices.
Each comes with a 3-year warranty, 2,000+ hour battery life, and instant autoranging.
You also get the extra resolution of a 3200-count LCD display, plus a responsive analog bar graph for quick visual checks of continuity, peaking, nulling and trends.

Choose from the Fluke 73, the ultimate in simplicity. The feature-packed Fluke 75. Or the deluxe Fluke 77, with its own protective holster and unique "Touch Hold" function** that captures and holds readings, then beeps to alert you.

So don’t settle for just a contender. Take home a world champion.

For your nearest distributor or a free brochure, call toll-free anytime 1-800-227-3800, Ext. 229. From outside the U.S., call 1-402-496-1350, Ext. 229.

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.

FLUKE 73
FLUKE 75
FLUKE 77

<table>
<thead>
<tr>
<th>Feature</th>
<th>FLUKE 73</th>
<th>FLUKE 75</th>
<th>FLUKE 77</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog/digital display</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volts, ohms, 10A, diode test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auto-range</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7% basic accuracy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000+ hour battery life</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-year warranty</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auto-range range hold</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.7% basic accuracy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000+ hour battery life</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-year warranty</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Suggested U.S. list price, effective July 1, 1984
** Patent pending
COMMUNICATIONS EQUIPMENT SALE!

ICOM IC-751A  LIST PRICE $1399
CALL FOR SPECIAL SALE PRICE!

KENWOOD

TS-930S  LIST PRICE $1799
CALL FOR SPECIAL SALE PRICE!

ICOM IC-745  LIST PRICE $999
CALL FOR SPECIAL SALE PRICE!

IC-27A, IC-27H, IC-37A, IC-47A
All Now Available
Call For Special Sale Price!
Save $$$!

TW-4000A
With FREE VSI Voice
Synthesizer and MA-4000
Dual-Band Antenna
Only $599.95 Save $85

FT-757GXM  LIST PRICE $829
CALL FOR SPECIAL SALE PRICE!

FT-209RH
NEW High Tech
2mtr HT
5 Watt Output
NOW IN STOCK
CALL FOR YOUR SPECIAL PRICE

IOM-211A/411A
25 Watt FM Mobile
Call For Your Special Price

TR-2600
NEW!
High Tech
Compact 2 mtr HT
Now In Stock!

CALL For Your Special Price!

ASTRON POWER SUPPLIES
Heavy Duty High Quality Rugged Reliable
- Input Voltage 105-125VAC Output 13.8VDC ± 0.5V
- Fully Electronically Regulated -5Vu Maximum Ripple
- Current Limiting & Crowbar Protection Circuits
- M Series with Meter - A Series Without Meter

Model  Cont Amps  ICS Amps  Price
R6OA  5  7  49
R61A  6  12  99
R62A  8  15  129
R63A  10  17  149
R64A  15  25  219
R65A  20  35  319
R6OA  16  20  259
R61A  18  25  379
R62A  22  30  459
R63A  24  35  559
R64A  28  50  659
R65A  32  60  749

ASTRONIC 1 Remote Control for all ASTRON Replaces $24
MP 1 and MP 2 Peak Reading Wattmeter $99

DUAL-BAND ANTENNA

CRI-100 List $249 SALE $229.95!
CRI-200 List $299 SALE $269.95!

ICOM IC-95A
All New
Induver
Call For Your Special Price

TRADE-8800
RTTY/CW TERMINAL

NEW!
HIGH TECH
NEW RTTY/CW COMPUTER INTERFACES

CRI-100 List $249 SALE $229.95!
CRI-200 List $299 SALE $269.95!

ICOM IC-95A
All New
Induver
Call For Your Special Price

CALL FOR SPECIAL PRICE

TEN-TEC

NEW HT-200 Two MHz H.T. Full Featured!!!
List $319 Sale $279.95!!
4229 2KW Tuner Kit $189.95

KDK FM2033
List $339.95 Sale $299.95

SALE!
NEW RTTY/CW COMPUTER INTERFACES

BF-1000
All New
Induver
Call For Your Special Price

BM-20 BKB.- 20 MHz
All New
Induver
Call For Your Special Price

Call For Special Sale Prices!

CALL FOR SPECIAL SALE PRICE!

Texas Towers

Div. of Texas RF Distributors Inc. 1108 Summit Ave., Suite 4 Plano, Texas 75074

Monday-Friday 9 AM - 5 PM Saturday 9 AM - 1 PM

Tell `em you saw it in HAM RADIO!
Crankup Sale! All Models Shipped Factory Direct — Freight Paid!* Check these features:
* All Steel construction.
* Hot dip galvanized after fabrication.
* Complete with base and rotor plate.
* Totally self-supporting — no guys needed.

Model | Height | Lead | Price
---|---|---|---
H3755 | 35 ft | 9 sq. ft | $479
H5255 | 52 ft | 9 sq. ft | $1099
H5450 | 45 ft | 16 sq. ft | $1699
H7650 | 76 ft | 16 sq. ft | $2699

Masts — Thru Shaft — Optional Accessories Available.

*Your Total Delivered Price Anywhere in Continental U.S.A.*

**CUSHCRAFT**

Model | Height | Lead | Price
---|---|---|---
HBA40 | 40 ft | 10 sq. ft | $479
HBA41 | 41 ft | 10 sq. ft | $489
HBA50 | 50 ft | 10 sq. ft | $509
HBA51 | 51 ft | 10 sq. ft | $529
HBA52 | 52 ft | 10 sq. ft | $549

*HF/UHF/BEAMS* Mode | Height | Lead | Price
---|---|---|---
AS0-5 | 5 | 79 | $1,179
2ASB-5 | 5 | 95 | $1,479
2ASB-6 | 6 | 95 | $1,479

**OSCAR/TWIN BEAMS** Mode | Height | Lead | Price
---|---|---|---
1A4-10T | 10 | 83 | $1,417B
1A4-29 | 29 | 20P | $59

**HF/UHF FM ANTENNAS** Mode | Height | Lead | Price
---|---|---|---
1A7F-4 | 4 | 29 | $1,147
214F | 4 | 29 | $228B
4A69 | 9 | 45 | $339

**HARDLINE/Helix™** Mode | Height | Lead | Price
---|---|---|---
A5 | 5' W/Alum. Jacket | $79.95
A10 | 10' W/Alum. Helix Jacket | $109.95
A20 | 20' W/Alum. Helix Jacket | $229.95
A40 | 40' W/Alum. Helix Jacket | $499.95

**HARLINE & HELIX™ CONNECTORS** Mode | Height | Lead | Price
---|---|---|---
VGA | 100 ft | 50 ft | $224
GCA | 100 ft | 50 ft | $224

**APWENCO CONNECTORS** Mode | Height | Lead | Price
---|---|---|---
Silver Plz-250 | $125 | UGW200 Female | $29.52
UG12BA Male | $2.95

**ANTENNA WIRE & ACCESSORIES** Mode | Height | Lead | Price
---|---|---|---
14 Ga. Stranded Copperclad | $10.95 | 100 ft | $10.95
450 Ohm K.D. Line | $10.95 | 100 ft | $10.95
16 Ga. Copper-coated insulated | $10.95 | 100 ft | $10.95

**HUSTLER** Mode | Height | Lead | Price
---|---|---|---
60180 10-100 mtr Vert | $129
4818 40-100 mtr Vert | $199
6614 40-100 mtr Vert | $199

**MOBILE TELESCOPES** Mode | Height | Lead | Price
---|---|---|---
15m | 35 m | $199
52m | 75 m | $299
75m | 100 m | $299

**RMS** Mode | Height | Lead | Price
---|---|---|---
HD4x4-7 4x7-10 mtr Tram Beam | $729
HD3x3-7 3x7-10 mtr Tram Beam | $329
TA-33-7 3x7-10 mtr Tram Beam | $249
TA-33-10 3x10-10 mtr Tram Beam | $249
TA-400R 400 mtr Kit | $119

**SOUTHERN RIVER ROOF TOPPES** Mode | Height | Lead | Price
---|---|---|---
HDT-3 3 ft Tripod | $199
HDT-5 5 ft Tripod | $299
HDT-10 10 ft Tripod | $299

**GALVANIZED STEEL MASTS** Mode | Height | Lead | Price
---|---|---|---
12 in Wall | $29 | $49 | $59
15 in Wall | $59 | $79 | $89
25 in Wall | $219 | $249 | $249

**TEXAS TOWERS**

Div. of Texas RF Distributors Inc. 1108 Summit Ave., Suite 4 • Plano, Texas 75074

**ROHN GUYED TOWERS**

10 ft Stick Sections
20G $39.50
25G $49.50
35G $51.50
50G $64.50

**ALL 206, 256, 456 AND 550 Accessories In Stock At Discount Prices!**

**DOF 30-6000 Guy Kit** Mode | Height | Lead | Price
---|---|---|---
45F Elevation Guy Kit | $219

**ALPHA DELTA COMMUNICATIONS**

Twin-Trap™ Surge Protectors — In Stock Now!

Model L1 200W UHF Type | $42
Model L2 200W UHF Type | $42
Model L3 200W UHF Type | $42

**RATORS & CABLES**

Alliance AD71D (3.5 ft) | $109
Alliance AD71D (3.5 ft) | $109
Telcom HAM (15 ft) | $79.95
Telcom HAM (30 ft) | $79.95

**PHILLSTANA GUY CABLE**

HPTG2100 Guy Cable (2100 ft) | $29.95
HPTG3000 Guy Cable (3000 ft) | $49.95
HPTG6000 Guy Cable (6000 ft) | $99.95
991DL 1/16 in Cable (9100 ft) | $79.95
991LD 1/16 in Cable (9180 ft) | $99.95
Scootert4 Cable (7140 ft) | $99.95

**GALVANIZED STEEL MASTS**

**MINI-PRODUCTS HD-1** LIST $182.50 SALE $150

**TOWER/GUY HARDWARE**

3/16" T/H Guy Wire (3900 lb rating) | $7.95
5/32" 7 x 7 Aircraft Cable (2700 lb rating) | $15.95
3/16" C/M Cable Clamp (3/16" or 5/32") | $4.50
3/16" C/M Cable Clamp (3/16" x 3/16") | $4.50
10' Thimble Thimbles (3/4") | $4.95
3/8" Eye & Eye Turnbuckle (6") | $6.95
5/8" Eye & Eye Turnbuckle (10") | $13.95
1/2" Eye & Eye Turnbuckle (10") | $10.95
1/2" Eye & Eye Turnbuckle (10") | $10.95
1/4" Preferred Guy Grill | $2.99
6" Diam 4 ft (long Earth Screw Anchor) | $19.95
2" Diam 8 ft (Cu Clad Ground Nut) | $12.95

**CROSSHATCH**

Model | Height | Lead | Price
---|---|---|---
A57-4 | 4 | 91B79
2A47-6 | 6 | 91B79
2A48-8 | 8 | 91B79

**DF3000**

Model | Height | Lead | Price
---|---|---|---
3D000 | 3 | 91B79
4D000 | 4 | 91B79

**SHEILA®**

Model | Height | Lead | Price
---|---|---|---
SHEILA® | 10 ft | 5 | 1999

**BTWERN ELECTRONICS CO.**

HF6V $129 Delivered (Cont. USA)

- Full Legal Power 80/10 Meters
- Optional STB Tuned Radiol Kit
- Model STR-2 FLF
- No Additional Cost (Free Shipping to Butterurn Antennas Also When Purchased with Antenna)

**PULLEN TELEPHONE**

214-422-7306

**BUTTERN RELEVANCES CO.**

New 80/40 Meter Vertical Antenna

HF2V $129 Delivered

- Optional 160 Meter Resonator Kit
- Model TBR 160VD $49

Delivery Anywhere In The Continental USA At No Additional Cost. (Free Shipping On Buttern Antennas Also When Purchased With Antenna.)

May 1985
Dalbani Corporation offers the finest in audio, video, computer and home electronics, for the professional retailer or home specialist.
To obtain a copy of our 88 page full-line 1985 catalog please call: 1-800-DALBANI®
160-meter transmission line antenna

If you're like me, you don't have adequate yard space to put up a half-wave dipole on the 160-meter band or a tower to load as a short vertical. In the past, I tried not to let this discourage me from getting on 160, but the RF burns and unanswered calls that resulted from loading up a 40-meter dipole forced me to come up with a better antenna!

Short transmission line antennas have been used at UHF and microwave frequencies for quite some time. Small slots carved into the bodies of fast-moving vehicles (airplanes and rockets) have been used to effectively radiate RF energy using transmission line principles. In fact the folded dipole, commonly used with FM receivers, uses these same principles to receive RF signals. Other types of transmission line antennas include the “low-profile” type used on trains and emergency vehicles, where the antenna structure protrudes just fractions of a wavelength above the vehicle body. These antennas are advantageous when antenna size and height are extremely limited.

I live in an apartment complex. The tallest structures are a couple of 30-foot trees in my small backyard. I have also found that good grounding is a problem, making the use of an “RF-free” tuner difficult. After attempting to work the top band with my existing 20-meter and 40-meter dipoles (none too successfully), I decided to give these transmission line ideas a try. The results have been gratifying, to say the least. I now have a resonant 160-meter antenna that requires no tuner, is directly coax-fed, has given no trace of RF in the shack, and provides enhanced reception due to very low noise pick-up.

how it works

Many people associate the term “transmission line” with the coaxial cable or ladder line that feeds their antenna — something that “carries power to the antenna,” and not something that should, itself, radiate RF. Of course, it is undesirable to have our feedline radiate, but many successful antennas, such as the longwire, the rhombic, and the Beverage are indeed unbalanced (radiating) transmission line extensions of their feed systems. By configuring these lines properly, resulting current distributions along the wires enable these transmission line extensions to emit and receive far-field RF energy. By analyzing a familiar transmission line antenna, the half-wave folded dipole, we can get a feel for how and why a transmission line antenna works.

Consider a folded dipole made of twin-lead transmission line (fig. 1). This type of feedline typically has a 300-ohm characteristic impedance. We can think of this antenna as being driven by our transmitter, an unbalanced RF source voltage. A common and useful technique used to analyze transmission lines is the superposition principle, where the original source voltage is replaced by several different sources which, when combined, add to give the equivalent voltage of the original source. Superposition is used to reconfigure the folded dipole as shown in fig. 2. By breaking down the superposition model, it is possible to construct and identify distinctive modes that characterize the behavior of the antenna. Figure 3A shows “push-push” or even-mode feeding, in which both wires in the twin-lead transmission line are excited by the same voltage, and have currents traveling in phase. Figure 3C illustrates “push-pull,” or odd-mode feeding, where the two wires of the twin-lead have currents traveling in opposite directions at any time. The impedances presented by the even and odd modes in terms of the excitation voltage and currents are easily found with the superposition model.

By Ted S. Rappaport, N9NB, Box 283, Electrical Engineering, Purdue University, West Lafayette, Indiana 47907

May 1985 87
For the even mode case:

\[ Z_{\text{even}} = \frac{V}{I_{\text{even}}} = \frac{V}{2I_{\text{even}}} \quad \text{(even mode)} \tag{1} \]

Since the pair of voltage sources in push-push are similar to just a single source voltage V/2 driving two parallel strands of wire (assuming the twin-lead spacing is much less than a wavelength), the even-mode impedance is that of a "wide" dipole \( Z_{\text{even}} = 50 \text{ to } 75 \text{ ohms} \). This simplification is shown in fig. 3B. Because the even (push-push) mode does the radiating, it is sometimes called the antenna mode. Note that the value of current in each of the transmission line wires is half of the total even-mode current.

For the push-pull case, the odd mode impedance is given by:

\[ Z_{\text{odd}} = \frac{V}{I_{\text{odd}}} = \frac{V}{2I_{\text{odd}}} \quad \text{(odd-mode)} \tag{2} \]

\( Z_{\text{odd}} \) is the parallel combination of the impedances of each of the short-circuited ends of the folded dipole, reflected 1/4 wavelength back to the center feedpoint. Recall that a short-circuited transmission-line offers a near infinite impedance when the source is placed one-quarter wavelength from the short. The odd mode (sometimes known as the transmission line mode) impedance is made very high in this manner. Instead of short circuits, resistors can be placed at various nodes to alter even and odd mode impedances, as well as current distributions. This is sometimes done with rhombic antennas and vee beams. For our folded dipole example, we can observe that the antenna mode offers an impedance to RF on the order of a dipole antenna, whereas the transmission line mode offers extremely high resistances to RF.

Specifically, the input impedance to the antenna is easily computed (using superposition) as:

\[
Z_{\text{in}} = \left( \frac{V_{\text{in}}}{I_{\text{in}}} \right) = \frac{V_{\text{in}}}{(I_{\text{even}}/2) + I_{\text{odd}}} \\
= \left[ \frac{V_{\text{in}}}{4Z_{\text{even}}} + \left( \frac{V_{\text{in}}}{2Z_{\text{odd}}} \right) \right] \\
= \frac{4Z_{\text{even}}Z_{\text{odd}}}{2Z_{\text{even}} + Z_{\text{odd}}} 
\]

Observe that for \( Z_{\text{odd}} \) very large (as is the case here):

\[ Z_{\text{in}} = 4Z_{\text{even}} = 300 \text{ ohms} \]

We find that not only does this transmission-line antenna radiate, but it also has an input impedance of four times that of a conventional dipole. Conveniently, this structure can be fabricated out of 300-ohm twin-lead, and can also be fed with 300-ohm twin-lead, providing a good match to a 300-ohm receiver. In the case of Yagi antennas, where the mutual impedance effects drop the antenna feedpoint to below 20 ohms, a folded driven element can be used to increase feedpoint resistance by roughly a factor of four.²

Using the ground as an image

By using the ground to electrically provide half of the antenna system, we can think in terms of a single wire above ground. Figure 4 shows something that looks like a folded-dipole using an image. Note that the wire height must be much less than a wavelength for the transmission line principles to hold. Since horizontal image currents always travel in opposite directions as do the wire currents, the horizontal portion of this structure, unlike the original folded dipole, will tend to cancel out in the far-field (i.e., the even mode impedance for this antenna is extremely high). The vertical shorting segments, however, will provide a vertical radiation pattern, enabling this antenna to emit and receive RF energy.

Closer inspection reveals that the antenna of fig. 4A is identical to the odd-mode excitation of the original folded dipole. Recall that the odd-mode impedance was calculated by considering the parallel combination of the two transmission lines transferred back to the feedpoint. By this technique, it is easy to predict that the input impedance of the structure in fig. 4A will be very high, and the radiation will be due primarily to the short vertical segments at the ends of the structure.
Now suppose instead of folding both sides of the antenna to ground, we open one of them and move the feedpoint to a "strategic" location fig. 4B). This type of antenna is known as a low-profile antenna, and has effectively been used at low frequency (LF) and medium frequency (MF) bands, as well as at microwave frequencies.  

**low profile antenna**

To calculate the input impedance of the low profile antenna at a particular feedpoint we need only deal with the odd mode, since, as was the case for the antenna in fig. 4A, the even mode offers an extremely high impedance because of image current cancellation.

Again, we must combine in parallel the impedances of the open and shorted (folded) sides of the structure. For any transmission line, input impedance values may be found by:

$$Z_{\text{short}}(x) = Z_0 \operatorname{Tanh}(\gamma x) \quad \text{and} \quad Z_{\text{open}}(y) = Z_0 \operatorname{Coth}(\gamma y)$$  

where \(\operatorname{Tanh}()\) and \(\operatorname{Coth}()\) are hyperbolic trigonometric functions, \(Z_0\) is the characteristic impedance of the transmission line, \(x\) is the distance from the feedpoint to a short-circuit termination, \(y\) is the distance from the feedpoint to an open-circuit termination, and \(\gamma\) is the complex propagation constant of the transmission line, made up of a real attenuation factor, \(\alpha\), and imaginary term, \(j\beta\), representing the emission wavelength of the source \((\gamma = \alpha + j\beta)\).

The characteristic impedance of the single wire (and its image) is dependent upon many factors. These include height above ground, ground conductivity, and moisture of the air, to cite just a few. At 1.8 MHz, an approximate value for the characteristic impedance of a wire 6 meters above ground is about 600 ohms. The value of \(Z_0\) is really not important, though. The success of this antenna lies in the parameter \(\gamma\).

Naturally occurring losses in the ground and in the wire cause some slight attenuation in electromagnetic waves as they propagate through the line. This attenuation, \(\alpha\), is expressed in units of relative voltage decrease per unit length (dB/m), and yields the real part of \(\gamma\). It is instructive to compare a lossy and lossless model of the low-profile antenna to see exactly how it loads.

For lossless transmission lines, where \(\gamma = j\beta\), the expressions for short-circuit and open-circuit transmission lines simplify to:

$$Z_{\text{short}}(x) = jZ_0 \operatorname{Tanh}(\beta x) \quad \text{and} \quad Z_{\text{open}}(y) = -jZ_0 \operatorname{Coth}(\beta y)$$  

where \(\operatorname{Tanh}()\) and \(\operatorname{Coth}()\) are trigonometric functions, and \(j\) is the imaginary operator, or a 90-degree phase shift. For this ideal case, the parallel combination of the open and short-circuited line yields an imaginary result for any value of \(x\) or \(y\) ! Since it is impossible to deliver power to a purely reactive load the SWR is infinity for the ideal case. However, when losses are considered, it is possible to solve for values of \(x\) and \(y\) which yield a purely real \(\gamma\). This indicates that we are using the naturally occurring losses of a transmission line to provide a purely resistive RF load for our transmitter! The end result is an antenna that can be made to resonate at any real impedance, provided the correct lengths of open and short-circuited transmission line are used.

**implementation**

Solving for the lengths \(x\) and \(y\) is much too impractical because of the many variables that exist at an antenna site. Trial and error is the easiest way to "zero in" on the particular lengths needed for a desired impedance and a given configuration. For a 50-ohm antenna impedance, I wound up with the dimensions shown in fig. 5. Only four tries were required to get the SWR below 1.5:1 in the 1800 kHz to 1850 kHz band, pruning only the longer (open) length of wire. I also discovered that other configurations are possible, at the expense of some bandwidth (fig. 5B). Since different locations will use slightly different configurations, it is impossible to derive explicit formulas for the
wire lengths; however, it is safe to say that the open-circuit length will not exceed 40 meters (0.24 λ), and the short-circuit length should not exceed 9 meters (0.06 λ). To tune the antenna, start with these lengths and trim the longer wire (open-circuited transmission-line) by removing 0.5 meter lengths of wire until the SWR approaches 3:1 at the frequency of interest. Then, very finely prune both the open and short-circuit lines for best SWR. Small lengths of wire may have to be re-inserted after course pruning to optimize the match to the transmitter. It is important to be sure that all antenna SWR measurements are made with the antenna at its operating height, as the wire height above ground critically effects the tuning (in fact, this is another parameter that can be varied in the pruning process to provide the best match). It should be possible to achieve an SWR well below 1.5:1 if patience is exercised in trimming the antenna.

Wire heights from 2 to 8 meters make the transmission line approximation valid, although I would think that heights greater than this could also be made to resonate. The antenna feed system is simply a random length run of RG-58U coaxial cable. The open-circuit wire is connected to the coax center conductor, while the coax braid is soldered to the short-circuit wire, which is terminated at a ground stake (fig. 6).

**antenna performance**

I was able to obtain an SWR of less than 2.0:1 from 1800 kHz to 1900 kHz using the configuration shown in fig. 5A while obtaining the same SWR over a 70 kHz bandwidth for the set-up shown in fig. 5B.

My first evening on 160 meters with this antenna was most enjoyable, as I rag-chewed with stations from Delaware to California! Never before have I been able to call CQ and get an answer. It sure beat the RF burns and weak signals I had been used to!

I’ve worked over 30 states and several DX stations (including two Europeans) in the past month using only a 1-meter long ground pipe and 100 watts of transmitter power. Also incredible is the low receiver noise level. There have been many times when I could copy DX stations, while many other stateside operators could not. This antenna may be of interest to those who don’t have room for Beverage antennas but want to get away from the received noise characteristics of verticals and dipoles.

The antenna seems to exhibit a moderately high angle of radiation and has a radiation pattern similar to that of a short dipole combined with a short verti-
cal. The short-circuit line provides a vertical pattern, making this structure similar to a short vertical antenna. The open circuit wire provides some horizontal radiation, and is effective in tuning the antenna to resonance. The efficiency of this antenna is determined primarily by the ground conductivity at the antenna site. Unfortunately, soil is a very imperfect conductor. Ground radials may be used to increase efficiency, although they are not essential. In fact, a poor ground may actually be beneficial as it would prohibit complete cancellation of the horizontal current components in the far-field.

KS9J and WA2JQW have reproduced this structure at their locations using wire heights as low as 6 feet (1.9 meters) and short-circuit wire lengths as short as 8 feet (2.6 meters). They have indicated that low SWR is obtainable using an arbitrary wire configuration, at an arbitrary height, as long as care is taken to prune the antenna patiently.

**conclusion**

After many frustrating attempts to work the 160-meter band without an adequate antenna, I have finally found something that keeps both me and my transmitter happy. The low SWR allows for operation without an antenna tuner, and the direct coax feedline minimizes RF in the shack. Most gratifying, though, are the many new friends I have made on 160 meters and the enjoyment that contacts on the “gentleman’s band” can bring!

Those who are fortunate enough to have plenty of yard space, tall trees, or a tower might not want to use this type of antenna for 160-meter operation. But those of you who think you don’t have the room to get on “top band,” may want to give this tuner-less, trap-less transmission line antenna a try.

**references**

PICK A COMPUTER INTERFACE TO MATCH YOUR NEEDS

COMPUTER PATCH™ MODEL CP-1
The AEA Model CP-1 Computer Patch has earned a solid reputation for being the best overall interface value on the market today. We at AEA have now reaffirmed what our competitors already know; for the money, the CP-1 cannot be beat! That is why we have chosen to leave the popular CP-1 in our product line and to introduce new computer interface/terminal units with differing features and performance at different prices.

MICROPATCH™ MODEL MP-1
The new AEA model MP-1 Micropatch represents the best features and performance available for under $140.00. Featuring true dual-channel filtering of Mark and Space tones with an AM detector and Automatic Threshold Correction (ATC) circuit, the MP-1 is in a totally different performance class than competitive units that often have only a single channel filter or no filtering at all.

The MP-1 also offers a high performance CW capability. With respect to the CP-1, overall performance is nearly as good; but the CP-1 offers a few more advanced features such as variable shift tuning, RS-232 option, and a more advanced tuning indicator.

COMPUTER PATCH MODEL CP-100
The new CP-100 Computer Patch offers all the following exciting features in addition to the CP-1 features:
- 170, 425, 850 Hz Calibrated Shifts for Transmit and Receive
- 75 to 1000 Hz Variable Receive Shift Range
- Normal and Reverse FSK Outputs
- Input AGC
- Direct Coupled Automatic Threshold Control
- Front Panel Squelch
- Discriminator Style Tuning Indicator
- Current Loop Option
- Built-in Monitor Speaker
- Baud Rate Switch
- Improved AM Detector

AEA Brings you the Breakthrough!
ATU-1000™
Advanced Terminal Unit

More Hardware Features And Performance Than Any Other Morse, Baudot, ASCII, AMTOR, SITOR, or H.F. Packet Terminal Unit Anywhere At Any Price.

We recognize that there are few amateurs who can appreciate or afford the outstanding value of the ATU-1000, but those who can are in for some very pleasurable operating. The ATU-1000 is a commercial/military unit with all the performance and flexibility that is attainable from today's technology. Just check out the features below.

- 32 poles, active filtering
- Morse/Baudot/ASCII/AMTOR/SITOR/H.F. Packet
- Set receive filters to one Hz accuracy
- Set receive MARK & SPACE filters independently from 1000 to 3000 Hz
- All shifts, 170 Hz fixed or 0 to 2000 Hz adjustable
- Set AFSK output tones independently from 1000 to 3000 Hz to one Hz
- 5mV to 5V AGC
- Front-panel squelch control
- Built-in 4 digit counter
- CW filter adjustable 700 to 2500 Hz
- D.C. coupled automatic threshold correction
- Twin full-wave detectors
- Built-in TTL/RS-232/and loop keyer I/O
- Discriminator-type tuning indicator
- FSK, AFSK, and scope outputs
- 13 VDC operation, 110 VAC adaptor supplied
- TTL I/O logic inversion for use with virtually any software
- Optional 19 inch rack mount kit

Ask your favorite dealer for a demonstration of the world's finest RTTY/CW advanced terminal unit/computer interface—the AEA model ATU-1000. If you cannot see your dealer, send for our latest specification sheet.

Prices & Specifications Subject To Change Without Notice Or Obligation.

Henry Radio 2068 S. BUNDY DRIVE LOS ANGELES, CA 90025 (213) 820-1234 TOLL FREE OUTSIDE CALIF. (800) 421-6631 931 N. Euclid, Anaheim, CA 92801 (714) 772-9200 • Butler, MO 64730 (816) 679-3127
ICOM's three ultra compact mobiles...the IC-27A 2-meter, the IC-37A 220MHz and the IC-47A 440MHz...are the smallest mobiles available.

Even in such a small package the 25 watt mobiles contain an internal speaker which makes them fully self-contained and easy to mount.

Size. The ICOM compacts measure only 5½"W x 1½"H x 7"D (IC-47A is 9" deep)...which allows them to be mounted in various "compact" locations. Yet the compacts have large operating knobs which are easy to use in the mobile environment.

More Features. Other IC-27A/37A/47A standard features include a mobile mount, IC-HM23 DTMF mic with up/down scan and memory scan, and internally adjustable transmit power. An optional IC-PS45 slim-line external power supply and IC-SPI0 external speaker are also available.

32 PL Frequencies. The IC-27A/37A/47A come complete with 32 PL frequencies.

9 Memories. The compact mobiles have 9 memories which will store the receive frequency, transmit offset, offset direction and PL tone. All memories are backed up with a lithium battery.

Speech Synthesizer. To verbally announce the receive frequency, an optional UT-16 voice synthesizer is available.

Scanning. The ICOM compacts have four scanning systems...memory scan, band scan, program scan and priority scan. Priority may be a memory or a VFO channel...and the scanning speed is adjustable.

Stacking Mobile Mounts. The IC-27A/37A/47A can be stacked to provide a three band mobile station. Each band is full featured and will operate even when another band is in use.

The IC-27A/37A/47A provide superb performance in the mobile radio environment. See them at your local ICOM dealer.

First in Communications

ICOM America, Inc., 2380-116th Ave NE, Bellevue, WA 98004 / 3331 Towerwood Drive, Suite 307, Dallas, TX 75234

All stated specifications are approximate and subject to change without notice or obligation. All ICOM radios significantly exceed FCC regulations limiting spurious emissions.
stacking antennas, part 2

Last month's column discussed the theoretical aspects of stacking antennas. It was pointed out that the optimum stacking distance for two antennas occurs when the beamwidth in the stacking plane is reduced to approximately 50 percent of the original antenna beamwidth and grating lobes are about 13 dB below the main lobe. It was further stressed that the antenna to be stacked should be "clean" (low side-lobe) in order to achieve effective stacking since the 13 dB grating lobe level can't be obtained if the antenna to be stacked has 13 dB or poorer side-lobe levels to start with!

Finally, it was shown that if everything were done correctly, a gain increase of 2.5 dB, instead of 3 dB, would be a realistic figure every time the number of antennas was doubled.

Several tables and graphs were also presented to enable you to determine the optimum stacking distance for any antenna. While all the electrical parameters are necessary, the practical feeding and physical aspects of stacking antennas are also important. Therefore, this month's column will try to tie the subject of stacking together so that you can choose the optimum configuration for your particular application.

While working on part 2 of this article I noticed that there is one caveat I neglected to point out in part 1. All the information presented on stacking is based on having no ground reflections (antennas in theoretical space). However, once an antenna is over 2 to 3 wavelengths above ground (a typical situation on 2 meters and above), the antenna is, for all practical purposes, in free space. At 6 meters there may be a problem since the lower antenna should be at least 40 feet (12 meters) above ground.

stacking configuration

There are literally dozens of ways that antennas can be stacked. However, only a few configurations are typically used by Amateurs. Some of these are shown in fig. 1. (For clarity, the mechanical considerations have been omitted from the illustrations.) The simplest stacking configuration places two Yagis in either the horizontal (fig. 1A) or vertical (fig. 1B) plane. The optimum spacing between the Yagis was discussed in last month's column. I'm often asked the reference point for measuring the spacing: it is the distance between the current points - usually the boom on a Yagi. In the special case of the loop Yagi, it is the center-to-center spacing between the loops.

One of the most popular stacking configurations for higher antenna gain is the "quad" or "box" shown in fig. 1C. This is usually a simple mechanical arrangement and has almost identical beamwidth in both the vertical and horizontal planes.

An often-overlooked configuration is an array of six Yagis (fig. 1D), which yields a theoretical improvement of 1.75 dB and a typical increase of 1.6 dB over a four-Yagi array. This is only about 1 dB below an eight-Yagi array but with a 33 percent smaller area! This configuration is only recommended using vertical stacking as shown and has a more complex mechanical structure. However, it is particularly recommended for those who can't double their arrays but could expand a four-bay array to six antennas with minimum cost and mechanical impact. Other common high-gain configurations especially popular with EME'ers are shown in figs. 1E, 1F, and 1G.

These arrangements are usually the easiest to realize mechanically when very high gains are required.

vertical versus horizontal stacking

Last month's column discussed the problems associated with the side lobes in the H-plane (vertical) of a typical Yagi antenna and showed that they are normally 2 to 3 dB worse than in the E (horizontal) plane. Hence, Yagi antennas must often be stacked closer than desired in the vertical plane to control the vertical grating lobes. Consequently, vertical stacking may yield slightly less gain increase than horizontal stacking.

However, despite these negatives, there are reasons for stacking Yagis vertically. First, there is sometimes only one vertical mast available. Secondly, when very high gain is needed such as for EME, four or more antennas may be required and hence stacking some or all of the antennas vertically is often desirable. Remember that the array beamwidth decreases only in the plane of the stacking.

Hence, if antennas are stacked verti-
cally, the horizontal beamwidth remains the same. This is particularly desirable when you don’t want to “miss” stations that are slightly off the main beam such as when using tropospheric propagation. Likewise, vertical stacking is especially desirable when the signals may be up to 5 or 10 degrees off the great circle path such as in meteor scatter communications. Conversely, horizontal stacking is desirable for auroral propagation since the signal returning from the auroral curtain is usually elevated above the horizon. Horizontal stacking does not affect the vertical beamwidth of the antenna being stacked.

Finally, when high gain is required it is almost impossible to not stack in both planes as shown in figs. 1C-1G. If six or eight Yagis are used, you can still tailor the pattern by choosing which plane requires the greater beamwidth.

**electrical considerations**

After choosing the stacking configuration, there are some important electrical considerations such as choice of feed line and the placement of the power splitter/combiner(s). As mentioned in part 1, losses in the feed harness can severely reduce the gain when stacking antennas. The total loss in antenna gain due to the phasing harness is the sum of the insertion losses from the input of the first power splitter/combiner to the final antenna feed point on the individual antennas (see fig. 2). Generally speaking the major losses are in the transmission lines in the phasing harness. Note that the overall antenna gain loss shown in fig. 2 will only be 0.5 dB, not 2.0 dB as I sometimes hear! However, while 0.5 dB may sound low, remember that this loss reduces the stacking gain. Furthermore, a 0.5 dB phasing line loss can decrease the receiver signal-to-noise ratio by 2 or more dB when looking at a “cold” sky on 70 cm EME!

From the above discussion, you can see another reason why I get so upset when I see antennas stacked too far.
apart. The additional spacing not only increases the grating lobes and decreases the beamwidth unnecessarily but the hoped for gain increase of 0.1-0.2 dB by stacking wider than optimum may easily be offset by the extra phasing line loss. And that isn’t all. The clincher against using unnecessarily greater spacing is the increased load that is placed on the rotator and structure.

feeding the array

When stacking antennas, it is common practice to have a separate phasing line on each antenna. This line is then connected to a common splitter/combiner for each 2, 4, or 6 antennas being stacked. Eight-way splitters/combiners are sometimes seen, but I personally feel that they are more difficult to use and can add additional phasing line losses. If coax phasing lines are used, each is usually run down the antenna boom to a common power splitter/combiner which is centrally located on the main mast or boom. This method is mechanically sound but often adds excessive feedline losses.

A more recent trend popular with EMEers is to use a “back plane” feed system. In this arrangement each phasing line is routed to the rear of the array rather than down the boom. The power splitter/combiner is then mounted behind the antennas, usually on a separate small boom extending from the main mast. This allows very short low loss phasing lines. The main feedline(s), which are fewer in number, can now be made from a more expensive but low-loss air or foam dielectric coax.

phasing line requirements

For best results all phasing lines should have the same overall electrical length within 22.5 degrees or 1/16 wavelength. This works out to be approximately 1.7 inches (4.3 cm) at 432 MHz. The longer the physical length of the phasing lines, the greater chance of having an unequal electrical length in these lines.

From my personal experience, I can offer the following suggestions. Always make all phasing lines from the same roll or piece of feedline. Stay away from small diameter (e.g., RG-58/U) and low-cost feedlines. If foam dielectric coax is used in a phasing harness, it should be treated carefully; it can “cold flow” when sharp bends are made and is more susceptible to variations with ambient temperature changes.

From practical phasing line measurements I have conducted at 70 cm using a slotted line, I have found that a physical tolerance of 0.25 inch (6mm) on 20 feet (6.5 meters) of 50-ohm RG-213 type coax cable is more than adequate when using the same spool or length of coaxial feedline.

I offer another important observation. Always lay feedlines out in a straight line and measure them in a cool place such as a garage or cellar out of the direct rays of the sun. In some tests I conducted in my backyard, it was impossible to hold the null on a slotted line constant long enough to take an accurate reading since the sun kept changing the temperature of my coax line and hence varying the length!

open wire lines

I’m frequently asked, “Why not use open wire lines since they are low cost and low loss?” I will not argue with this statement but add the following caveat: open wire line is a fair weather feedline. Whenever deposits (water, snow, ice, or industrial wastes) build up on the spacers, the impedance and hence the VSWR changes.

If you decide to use open wire lines, try to keep a low VSWR on all the lines. The extended expanded collinear has a problem in this regard because the VSWR on the feedlines is very high. An array of Yagis with a resistive (non-reactive) impedance is a good open wire candidate. However, use a “Q” or quarter-wave matching section at each point where the impedance changes. A recommended example using 200-ohm antennas and feed point is shown in fig. 3.

Low impedance (less than 250 ohms) open wire lines are not easy to realize since spacing is close and the conductors have a large diameter. Always use the fewest number of spacers possible and still maintain the mechanical integrity of the line. My experience with extended expanded collinear arrays showed that the maximum power split for open wire lines should be two per junction since four ways can pose symmetry problems and congestion of lines which often leads to unequal splitting and lower gain.
phasing line lengths

Finally, I am often asked, “Should the length of the phasing lines be a multiple of half-wavelengths?” This practice apparently started on 2 meters when two antennas were closely spaced and the feedlines were also acting as an impedance transformer.

Ideally speaking, the feedline length is unimportant if the antennas to be stacked have a reasonably low VSWR. However, when antennas are stacked, there is always some mutual impedance. It has been pointed out by Roy Lewallen, W7EL, that whenever any mutual impedance exists between antennas, the ideal phasing line length should be an odd multiple of quarter wavelengths.

The isolated type shown in fig. 4A is often referred to as the Wilkinson power divider.\(^5\) It uses quarter-wavelength lines between a floating resistor. The resistor doesn’t consume power unless the loads are unequal or missing. This type of power splitter/combiner is not too popular with Amateurs since the resistors must be able to dissipate high power (at least half the power entering the splitter/combiner) and isolated from ground. Lewallen also indicated that this type of splitter/combiner is not recommended for antenna phasing especially when mutual impedances are present.\(^6\) One of the most popular types of power splitter/combiners used by Amateurs with coax phasing lines is the quarter wave coaxial matching section shown in fig. 4B. Its impedance is the geometric mean between the input and output impedances and can be easily calculated using the following equation:

\[ Z_{\text{LINE}} = \sqrt{Z_{\text{IN}} Z_{\text{OUT}}} \] (1)

where \(Z_{\text{IN}}\) is usually 50 ohms and \(Z_{\text{OUT}}\) is the parallel impedance of the loads. This method can easily be used to split or combine two, three, or four ways. For instance, the impedance of the line should be 25 ohms for a four-way split in a 50-ohm system since the source is 50 ohms and the load is 12.5 ohms (50/4). Likewise a two-way split would require a 35.36 ohm impedance. Both of these impedances are easy to realize using standard square 1 inch (2.54 cm) tubing and hobby shop brass tubing.\(^7\)\(^8\)\(^9\)

An important attribute of well designed air dielectric splitter/combiners is that they have inherently low loss. There is no reason why they can’t be extended internally as described in reference 9. Also, it is often forgotten that most quarter-wave type of power splitters are usable at the third harmonic. Therefore, a good 2-meter power splitter may be also usable at 70 cm and a 70 cm splitter at 23 cm.

Let us not forget to mention the so-called half-wave power splitter/combiner. Actually it is still a quarter-wave type since it consists of two quarter-wave sections back to back as shown in fig. 4C. It has the added advantage that as a four-way splitter/combiner, the internal impedance is 50 ohms.

mechanical aspects of stacking

In general, try to use symmetrical
“Digital DX-terity!”

TS-430S

Digital DX-terity—that outstanding attribute built into every Kenwood TS-430S lets you QSY from band to band, frequency to frequency and mode to mode with the speed and ease that will help you earn that dominant DX position from the shack or from the mobile!

- Covers all Amateur bands 160 through 10 meters, as well as the new 30, 17, and 12 meter WARC bands. High dynamic range, general coverage receiver tunes from 150 kHz to 30 MHz. Easily modified for HF MARS operation.
- Superb interference reduction Eliminate QRM with the IF shift and tuneable notch filter. A noise blanker suppresses ignition noise. Squelch, RF attenuator, and RIT are also provided. Optional IF filters may be added for optimum interference reduction.
- Reliable, all solid state design. Solid state design permits input power of 250 watts PEP on SSB, 200 watts DC on CW, 120 watts on FM (optional), or 60 watts on AM. Final amplifier protection circuits and a cooling fan are built-in.
- Memory channels. Eight memory channels store frequency, mode and band data. Channel 8 may be programmed for split-frequency operation. A front panel switch allows each memory channel to operate as an independent VFO or as a fixed frequency. A lithium battery backs up stored information.
- Programmable, multi-function scan. Speech processor built-in.
- Dual digital VFOs.
- VOX circuit, plus semi break-in with sidetone.

Optional accessories:
- PS-430 compact AC power supply
- SP-430 external speaker
- MB-430 mobile mounting bracket
- AT-130 compact antenna tuner covers 80-10 meters, incl. WARC bands
- AT-250 automatic antenna tuner covers 160-10 meters, incl. WARC bands
- AT-230 base station antenna tuner
- FM-430 FM unit
- YK-88C (500 Hz) or YK-88CN (270 Hz) CW filters
- YK-88SN (1.8 kHz) narrow SSB filter
- YK-88A (6 kHz) AM filter
- MC-42S UP/DOWN hand mic.
- MC-60A deluxe desk mic., with UP/DOWN switch
- SW-2000 SWR/power meter
- SW-100A SWR/power/volt meter
- PC-1A phone patch

TRIO-KENWOOD COMMUNICATIONS
1111 West Walnut Street
Compton, California 90220

Complete service manuals are available for all Trio-Kenwood transceivers and most accessories. Specifications and prices are subject to change without notice or obligation.
Enter SOAR Corp.

Menu of Instruments

Featuring — Superb Performance, Great Accuracy, Rugged Construction, Meticulous Quality, Incomparable Prices

Resistance Substitution Box

- 1Ω to 11 MΩ in 1Ω steps.
- ±1% accuracy.
- 1 watt resistors.
- Size: 4" x 6" x 2".

MODEL RD-111
$49.00

3½ Digit Multimeter

- 30 ranges, 8 functions, full overload protection.
- 10 Amperes AC and DC ranges.
- Super fast continuity beeper (<0.4 sec. response).
- Diode test plus transistor hFE.
- Large bold 1/2 LCD readout with low battery indicator.
- Complete with test leads, battery and spare fuse.
- Optional carrying case CC531, $9.90; transistor test extension leads UP-11, $4.50.

MODEL 8050
$76.50

20k Ohm/V VOM

- Measures AC/DC volts, resistance, decibels, capacitance, battery test and continuity buzzer, also temperature scale with optional temperature probe TP-150 for $19.50.
- 10 ampere DC range.
- Size: 3½" x 5⅛" x 1¼".

MODEL SX-220
$29.95

20 MHz Dual Trace Oscilloscope with Component Tester

- 5 mV to 20V on 12 ranges.
- 20 sweep ranges from 0.2 μs to 0.5 s/div plus ×5 mag.
- Built-in component tester. Ideal for trouble-shooting in cold circuits.
- Complete with 2 probes, spare fuse.

MODEL MS-6022
$599.00

DC Power Supply

- Fully regulated 0 to 25V and 0 to 1.5A.
- LED 3 digit readout.
- Size: 6⅛" x 4¼" x 13¼".
- Other units 0 to 36V at 0 to 3A.
- Duals, triples also available.

MODEL 7400
$235.00

Auto-Ranging AC Clamp Tester

- Measures 0.1A to 1000A; 0.1 VAC to 1000 VAC; resistance, 0.1Ω to 2 kΩ.
- 3½ digit LCD readout.
- Has data hold switch, continuity beeper.
- Model 2210 with temp. meas., $110.00.
- Model 2220 with temp. meas. and peak hold $135.00.
- Complete with carrying case, probes and battery.

MODEL 2200
$85.00

3½ Digit Bench Multimeter Auto/Manual Ranging

- Measures DC volts 0.1 mV to 1000V; ACV, 1 mV to 1000V; resistance, 0.1Ω to 20 MΩ; DCA, 0.1 μA to 10A; ACA, 0.1 μA to 10A; diode test, with continuity beeper.
- Supplied with batteries, test leads, spare fuse.
- AC adaptor Model MQ-62 available separately for $12.00.
- Size: 2½" x 7⅛" x 7⅛".

MODEL 5030
$169.00

150 MHz Frequency Counter

- Measures 5 Hz to 150 MHz on 2 ranges; sensitivity, 30 mV.
- Crystal frequency 3.2768 MHz.
- Accuracy at 0.01 sec 100 PPM ± 1 dgt.
- Battery portable or AC optional.
- Size: 1¼" x 4" x 4½".

MODEL FC-845
$149.00

All prices shown are for 1 to 3 pieces of a type. Discounts are available for larger quantities. All models shown and over 70 other SOAR manufactured instruments are available from selected distributors in the USA.

SOAR Corporation

NORTH AMERICAN

JAPAN
SOAR CORP.
Sakaki Machi, Nagano, Pref.
Phone (02688) 2-4191

EUROPE
SOAR EUROPA
Munich, W. Germany
Phone (099) 6997094

SINGAPORE
SOAR ELECTRONICS
Singapore Pte. Ltd.
Phone 7796111

CANADA
WATERGLOW
Montreal, Quebec
Phone 514-389-6039

1126 CORNELL AVENUE
CHERRY HILL, NJ 08002
PHONE (609) 488-1060

EUROPE
SOAR EUROPA
Munich, W. Germany
Phone (099) 6997094

SINGAPORE
SOAR ELECTRONICS
Singapore Pte. Ltd.
Phone 7796111

CANADA
WATERGLOW
Montreal, Quebec
Phone 514-389-6039
Stacking configurations because they are less likely to be distorted by sagging resulting from wind or ice loading and are able to return to their intended shape after any external forces or loads are removed. Furthermore, in symmetrical configurations twisting moments are more likely to only cause a moderate decrease in performance if the mechanical structure varies more than $\frac{1}{16}$ wavelength or 22.5 electrical degrees (as discussed earlier). Several configurations are shown in fig. 5. Stacking frames should be strong mechanically. Excessive weight should be avoided at all cost because it can cause mechanical distortion. The materials used — as well as their diameter and weight — should be carefully examined. The

![fig. 5. Typical stacking frame configurations for large Yagi arrays. A) recommended four-way for a quad of Yagi antennas; B) this is not a recommended arrangement since only a single boom connection is used; C) recommended six-way stacking frame; D) recommended eight-way stacking frame; and E) recommended sixteen-way.](image)
TIME FOR AN
BREAKTHROUGH

The high quality of AEA products is appreciated long after the price paid is forgotten.

**THE FANTASTIC DOCTOR DX™**
CW Band Simulation That Is So Real! You Won’t Believe It!

- Will improve the operating skills of ANY CW operator!
- More fun than ANY Morse Code trainer yet devised.
- Use with a C-64, TV set, and key (or keyer).
- Experience the thrill of a “DXpedition!” to anywhere in the world.
- Operate anytime you want, ideal for travelers.
- Impressive award certificates available for verified performance.
- On-going contests: 8-hour sprint and 24-hour marathon.

**HOT ROD™**
½ Wave Telescope Antenna

- Fewer telescopic sections than any ½ wave whips.
- Shorter and lighter than all ½ wave whips.
- Special matching network designed by Professor D.K. Reynolds (co-inventor of Iso-
  pole™ antenna) makes Hot Rod competitively priced.

PKT-1 Packet Controller

- First commercially available packet controller for Amateur Radio.
- Uses TAPR circuitry and firmware.
- Digital radio communications for computer to computer.
- Easy to use—five usual commands.

**ELECTRONIC KEYERS**

- Multiple conversations on simplex channel.
- EVERY PKT-1 is a digipeater.
- Send computer files error free.
- Operates from 9-15 VDC for portable or fixed operation.

**Unmatched Software For C-64**
And VIC-20 Computers

- MBE-TORT™—The most advanced software written for Morse-Baudot-ASCI
  IMORSE code reversal included.
- MARSTEXT™—A special Morse-Baudot-ASCII package written especially for the
  MARS and other traffic operators.
- SVLTEXT™—The most sophisticated software available for the shortwave list-
  ening enthusiast. Automatic data analysis: Morse, Baudot, ASCII, AMTOR,
  and SITOR.

AAE also offers Morse, Baudot, and ASCII software for the following comput-
  ers: Apple II, II+, Ile; IBM-PC.

VHF COMMUNICATIONS

915 N. Main St., Jamestown, New York 14701 (716) 664-6345


<table>
<thead>
<tr>
<th>Outside Diameter (inches)</th>
<th>Wall Thickness (inches)</th>
<th>Section Modulus</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.250</td>
<td>0.050</td>
<td>0.00134</td>
</tr>
<tr>
<td>0.375</td>
<td>0.050</td>
<td>0.00368</td>
</tr>
<tr>
<td>0.500</td>
<td>0.062</td>
<td>0.00639</td>
</tr>
<tr>
<td>0.750</td>
<td>0.062</td>
<td>0.01810</td>
</tr>
<tr>
<td>1.000</td>
<td>0.062</td>
<td>0.02140</td>
</tr>
<tr>
<td>1.250</td>
<td>0.125</td>
<td>0.06710</td>
</tr>
<tr>
<td>1.500</td>
<td>0.125</td>
<td>0.06990</td>
</tr>
<tr>
<td>2.000</td>
<td>0.125</td>
<td>0.07200</td>
</tr>
<tr>
<td>2.500</td>
<td>0.125</td>
<td>0.28450</td>
</tr>
<tr>
<td>3.000</td>
<td>0.125</td>
<td>0.32500</td>
</tr>
<tr>
<td>3.500</td>
<td>0.125</td>
<td>0.33610</td>
</tr>
<tr>
<td>4.000</td>
<td>0.125</td>
<td>0.41490</td>
</tr>
<tr>
<td>4.000</td>
<td>0.062</td>
<td>0.67493</td>
</tr>
</tbody>
</table>

ARRL Antenna Book has an excellent table listing the weight per unit length of most popular aluminum tubing sizes. Furthermore, to prevent bending moments, it is often better to use a slightly thinner wall larger diameter tubing than vice-versa.

The “section modulus” is an excellent way to compare the relative bending moment of various tubing diameters with different wall thicknesses.

\[
\text{Section Modulus} = \frac{0.098 ((D^4 - d^4)}{D} \quad (2)
\]

where \( D \) is the outside and \( d \) is the inside diameter of the tubing. Typical values of section moduli on some popular tubing sizes are shown in Table 1. Note, for example, that a 3 inch (7.6 cm) diameter tube with a 0.050 inch (1.27 mm) wall has a higher section modulus and is lighter weight than a 2 inch (5 mm) diameter tubing with a 0.125 inch (3.2 mm) wall thickness. Other values not listed on the table can be easily calculated using eq. 2.

Mechanical symmetry of the stacking frame also tends to keep all antenna pattern blockages equal. Likewise, wherever possible, the phasing and feedlines should be neatly and symmetrically dressed and secured to a boom. Stacking frames should have several points of support. Sometimes tower sections are used for the main boom on large arrays! Judicious use of guy wires preferably at right angle to each other with adjustable turnbuckles is also recommended.

Finally, try to pass booms and masts at a mid-point between antennas rather than adjacent to them. If the material or boom used in the stacking frame passes through an antenna pattern, it will have little effect as long as it is at right angles to the plane of polarization and/or is less than 1/10 wavelength in diameter when passing through in the plane of polarization.

**Other Configurations**

So far I have been discussing the common arrays. There are many other possibilities. When really high gain is required, a large array of antennas may be constructed. Amateur arrays using 24 Yagis are already in use on 2 meters and 70 cm and a 32-Yagi 2-meter array is under construction! Basically, these arrays are configured using combinations already mentioned. For instance, a 24-bay array can be constructed by stacking three eight-Yagi bays per fig. 1E along a main boom. A single three-way splitter/combiner at the center of the array combines the three eight-bay sub-arrays.

Besides the monstrous mechanical problems associated with very large arrays, feedline losses and phasing errors are probably the biggest source of performance degradation. Always try to use the largest and lowest loss phasing lines available. Finally, before constructing a large array, consider whether you are willing to accept all the mechanical risks — it will be large enough! Failure to do so may reduce performance to the point that you may have no more gain than with a smaller array.

**Final Checkout**

Whenever stacking is employed, each item should be checked in a methodical fashion. First off, the VSWR of each antenna in the array should be low, preferably 1.2:1 maximum. If coaxial lines are used, each antenna should be VSWR tested after the antennas are mounted in the array.

Next, connect the individual antennas into the associated power splitter/combiner in each grouping and test the VSWR again. Then, if applicable, test the entire array.

*Be absolutely certain that all antennas are fed on the same side of the array so that 180-degree phase reversals do not occur. Preferably, mount all antennas the same way. If you decide to mount some upside down, make sure to reverse the feed attachment point. Recently, one major antenna manufacturer had a connector plate reversed on some of their antennas.*

This did not affect performance until two antennas were stacked. Phase reversals of this type can cause radiation patterns to skew or even produce nulls where radiation would normally be present.

Finally, after final assembly and testing, measure antenna azimuthal and elevation patterns, if possible, using the methods described in reference 11. If the antenna pattern does not peak right on boresight (within 1 to 2 degrees) or if the anticipated beamwidth or level of the side lobes is not the value anticipated, as discussed earlier, recheck all electrical and mechanical parameters to find the problem.
FOR SALE
EPSILON RECORDS INTERNATIONAL: A small business ideally suited for Ham radio Operators OR established company desir- ing to expand present operations. Founded in 1957 by famed educator (late) Russ Farnsworth. Epsilon produces educational tapes and records, teaching a course in the international Morse Code by the patented “Word Method”. Customers include Elec- tronic dealers (wholesale) on an established basis and private individuals (retail) on a mail-order basis through advertising in trade magazines. Gross dollar in-take can be expanded in excess of $125,000 with present equipment. Operations require small area (home or studio) in any geo- graphical location. Firm price of $45,000

MULTI-BAND TRAP ANTENNAS

Completely assembled & ready to use - Commercial quality, built to last! Lightweight, sealed, weatherproof traps - Automatic band switching - Low loss end insulators - Handles up to 2000 watts PE. - For all transmitters. Receivers & transceivers - Tuner usually never required. Deluxe center inductor - with built in lightning arrester, accepts PL-259 coax connector - May be used as inverted "V" - Excellent for all class amateurs - Instructions included - 10 day money back guarantee!

4-Band,40,20,15,10 meters (55) - 2 traps $425 95 15PPD
3-Band,40,20,15,10 meters (55) - 2 traps $325 95 15PPD
90 ft. RG-58U, 50 ohm coax cable, with PL-259 connector on each end - Add $12.00 to above price.

We accept VISAMC-Give Card #. Exp. Date. Signature

SPI-RO DISTRIBUTORS
Room 103, P.O. Box 1538
Hendersonville, N.C. 28793

summary

In this two-part series, I have tried to cover the major electrical and mechanical considerations required for properly stacking antennas for increased gain. Stacked antennas should be used only when the gain required is beyond that attainable using a single antenna. Remember at the outset that you will be lucky to achieve 2.5 dB of gain increase for every doubling of the area size.

Before building an array that requires stacking, plan carefully. Review both parts of this article several times. Many alternative configurations have been discussed, with pros and cons. Stacking antennas is not a simple job and there are many pitfalls. Both electrical and mechanical decisions must be made. If properly executed, the results can be rewarding. Hopefully the material presented will be useful in building your new super-high-gain array!

acknowledgements

I would like to thank C.J. Beanland, G3BVU, for introducing me to the use of section modulus when comparing different tubing sizes.

references

6. Private Correspondence with Roy Lewallen, W7EL.

important VHF/UHF coming events

May 1: ARRL 70-cm Sprint Contest
May 3-5: West Coast VHF Conference, Sunnyvale, California, (Contact W6RXT for information)
May 4: EME perigee
May 4: 1300 UTC, predicted peak of the Eta Aquarids meteor shower
May 9: ARRL 23-cm Sprint Contest
May 17-19: Eastern VHF/UHF Conference, Nashua, New Hampshire, (Contact W1EI for information)
May 19: ARRL 6-Meter Spring Contest (tentative date)
June 1: EME perigee
June 5: 1930 UTC, predicted peak of Arietids meteor shower
June 8-9: ARRL VHF QSO Party
June 29-30: SMIRK 6-Meter Contest
June 25: 0400 UTC, predicted peak of June Lyrids meteor shower
June 21: Mean date of the two-month annual peak of sporadic-E propagation
June 29: EME perigee

ham radio

Propagation by Mufplot

MUFPLT is being used by amateurs from HONG KONG to BAGHDAD, SOUTH AFRICA to ALASKA, by sailors, comemrical companies and people who know the need of propagation forecasting at its best. MUFPLT will give you HPF, MUF, FOT with LUF plus distance and bearing (and time) to any target. You can select over 400 listed targets by DX or ARRL prefix, lat/long, or state. The database will let you enter target data by what ever you want to call it and you can change it anytime.

MUFPLT will keep track of the stations you have worked for WAS, DXCC or for any other award. MUFPLT gives you a video graph (and/or table) and printer display of band conditions. (A special DX function lets you see world conditions. You select the number of and locations you want.) Band coverage for the C-64 is 6 to 30MHz video and less than 1 more then 30MHz printer. The APPLE is 2 to 34MHz. You enter your QTH lat/long only once but you can change it anytime.

(1) denotes for the (C-64) only.
C-64 MUFPLT V2 disk only $32.95
APPLE MUFPLT disk only $37.95
North American orders add $2.00 for S/H all others $5.00.
VISA, M.C., personal checks accepted.
APPLE is the trade mark of APPLE Computer Co.
C-64 is a trade mark of Commodore Co.
MUFPLT is a trade mark of BASE (2) SYSTEMS.
DRAKE R-4/T-4X OWNERS AVOID OBsolescence

Plug-In Solid State Tubes!
Get state-of-the-art performance. Most types available!
INSTALL KITS TO UPGRADE PERFORMANCE!
• BASIC Improvement
• Audio Bandpass Filter
• Audio IC Amplifier

TUBES $23 PPD KITS $25 PPD
OVERSEAS AIR $7
SARTORI ASSOCIATES, W5DA
BOX 832085
RICHARDSON, TX 75083
214-494-3093

Need A Storage Scope?

The Model 601 Scope Memory converts your oscilloscope into a storage scope. With the Scope Memory you can capture & display transients, pulses and low frequency signals. Stores both analog & digital signals in a single sweep. Features a 1.4 MHz sample rate, 2K memory, pre and post trigger capabilities. Price $515

Sibex, Inc.
2340 State Road 560 Suite 241
Clearwater, FL 33755
(813) 797-9589

7 MILLION TUBES

FREE CATALOG
Includes all Current, Obsolete, Antique, Hard-To-Find Receiving, Broadcast, Industrial, Radio/TV types. LOWEST PRICES, Major Brands, In Stock.

UNITY Electronics Dept. H
P.O. Box 213
Elizabeth, NJ 07206

A quarter-wave antenna is great for range. But it's too tall for most VHF handheld applications. So Larsen® has cut the quarter-wave down to size, without taking any shortcuts in design or construction.

The Larsen HQ (helical-quarter-wave) Külduckie® antenna stands just slightly taller than a helical type, but measures up to almost full quarter-wave performance. The helical design below gives it stability and keeps it short—nine to twelve inches. The flexible quarter-wave on top extends the range and allows it to bend 180°.

Larsen offers ten different VHF HQ series antennas in the 136 to 174 MHz range, to work with most popular handheld radios. So whether you're calling for help, or just shooting the breeze, you can be sure that Larsen Külduckie antennas will never run short on performance.

Larsen Antennas
The Amateur's Professional ™

See your favorite amateur dealer or write for a free amateur catalog.
RF transmission cable for microwave applications

Detailed discussion examines all aspects of the vital link between radio and antenna.

The correct selection of RF transmission cable requires proper analysis of the electrical and physical parameters of the system.

The amateur microwave enthusiast should be aware that even though materials and dimensions specified by manufacturers are usually accurate, changes in physical and environmental conditions as well as different types of manufacturing equipment or different manufacturing conditions can lead to cable with substantially different performance characteristics.

VSWR uniformity

The VSWR of a cable assembly is the summation of reflections due to the connectors, the connector termination technique and the cable. The VSWR of the cable is the summation of random and periodic reflections within the cable, most commonly caused by variations within the processing equipment. The VSWR will vary with frequency. A common occurrence is the VSWR "spike" which is illustrated in fig. 1.

characteristic impedance

The characteristic impedance of a coaxial cable is determined by the ratio of the inner diameter of the outer conductor to the outer diameter of the inner conductor and by the dielectric constant of the insulating material between the conductors. Select impedance to match your system requirements.

The most common values for coaxial cables are 50, 75, and 95 ohms. Other impedances from 35 to 185 ohms are available in coaxial configurations, but these are normally of interest only to the industry.

Note that the actual input impedance at a particular frequency may be quite different from the characteristic, or surge impedance of the cable due to reflections in the line. The VSWR of a particular length of cable is an indicator of the difference between the actual input impedance of the cable and its average characteristic impedance.

The impedance will vary along the length of the cable. Variations of 5 percent are common and some mil spec cables are manufactured to 2 percent tolerance.

capacitance

Capacitance values for standard coax lines depend only on cable impedance and dielectric material.

<table>
<thead>
<tr>
<th>nominal capacitance pF/foot</th>
<th>cable types</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.8</td>
<td>50 ohm solid polyethylene</td>
</tr>
<tr>
<td>25.4</td>
<td>50 ohm foam polyethylene</td>
</tr>
<tr>
<td>29.4</td>
<td>50 ohm solid PTFE (Teflon)</td>
</tr>
<tr>
<td>20.6</td>
<td>75 ohm solid polyethylene</td>
</tr>
<tr>
<td>16.9</td>
<td>75 ohm foam polyethylene</td>
</tr>
<tr>
<td>19.5</td>
<td>75 ohm PTFE</td>
</tr>
<tr>
<td>16.3</td>
<td>95 ohm solid polyethylene</td>
</tr>
<tr>
<td>13.5</td>
<td>95 ohm air space polyethylene</td>
</tr>
<tr>
<td>15.4</td>
<td>polyethylene RG62B</td>
</tr>
<tr>
<td>10.0</td>
<td>125 ohm air space polyethylene</td>
</tr>
<tr>
<td>6.5</td>
<td>polyethylene RG63B</td>
</tr>
<tr>
<td></td>
<td>185 ohm air space polyethylene</td>
</tr>
</tbody>
</table>

capacitance and impedance stability

The capacitance and impedance of long lengths of cable will exhibit very little change over their operating temperature ranges (less than 2 percent). Semi-flexible foam dielectric cables normally exhibit the least change in short cable lengths at frequencies over 1 GHz, although the VSWR can vary significantly if dielectric movement at the connector interface occurs.

average CW power rating

Coaxial cable power ratings must be derated by correction factors for the ambient temperature, altitude (admittedly not of much concern to the Radio Amateur) and VSWR encountered in a particular application. High ambient temperature and high altitude reduce the power rating of a cable by impeding the

By Howard Weinstein, K3HW, 15 Lakeside Drive, Marlton, New Jersey 08053
heat transfer out of the cable. VSWR reduces power ratings by causing hot spots.
To select the cable construction for a particular requirement, determine the average input power at the highest frequency from your station’s requirements.

Then determine the effective average input power with the following formula:

\[
\text{effective power} = \text{average power} \times (\text{VSWR correction}) \times (\text{Temp. correction}) \times (\text{Alt correction})
\]

Temperature and altitude corrections are illustrated in figs. 2 and 3.

**VSWR correction factor**

\[
VSWR\text{ correction factor} = 1/2(VSWR + 1/VSWR) + 1/2K'\times (VSWR-1/VSWR)
\]

*K' is shown in fig. 4.*

**maximum AC operating voltage**
A cable cannot operate continuously with corona because it causes noise generation, dielectric damage and eventual breakdown. The maximum operating voltage must be less than the corona level (extinction voltage) of the cable. This is not to be confused with the dielectric strength of the cable, which is the test voltage applied for one minute during manufacture.

Maximum operating AC (RMS) voltage levels or peak voltages are given for each type of cable in many manufacturer’s catalogs. Usually the maximum permissible DC voltage level is 2.5 to 3 times the AC level.
To determine the actual RMS value, divide peak voltage by 1.4. To determine the peak voltage, multiply RMS by 1.4. Then determine the effective input voltage by multiplying the actual input voltage by the square root of VSWR.

The cable you select should have a maximum operating voltage specification greater than the effective RMS voltage.

**attenuation**

The attenuation of any cable may not change uniformly as the frequency changes. Random and periodic impedance variations give rise to different attenuation responses. Narrow band attenuation spikes can occur.

The attenuation of braided cables can increase with time and flexure. The change with time can be caused by corrosion of the braided shield, by contamination of the primary insulation caused by chemicals in the cable jacket, and by moisture penetration through the jacket. Attenuation degradation is more pronounced at frequencies above 1 GHz. Cables having bare copper and tinned copper braids exhibit far greater attenuation degradation than do cables having silver plated copper braids. Refer to figs. 5, 6, and 7.

The following “rules of thumb” apply in Amateur service:

**Tin-plated braids.** Below 1 GHz, cables manufactured with tin-plated braids have at least 20 percent more attenuation than copper braids in the “as manufactured” condition, but are more stable than bare copper-braided cables.

**Foam polyethylene.** Flexible braided cables with foam polyethylene dielectrics have approximately 15 percent less attenuation that solid polyethylene cables of the same core size and impedance. However, as many of us have discovered, the attenuation of foam cables will increase if moisture is absorbed. In high humidity environments I suggest that foam cables not be used above 148 MHz. All of these problems can be eliminated by the use of semi-flexible cables; semi-
Table 1. Formulas common to all coax cable.

\[
\text{Capacitance (C)} = \frac{7.36E}{\text{LOG}(D/d)} \text{ Picofarads/ft}
\]

\[
\text{Inductance (L)} = 0.140 \text{ LOG}(D/d) \text{ Microhenries/ft}
\]

\[
\text{Impedance (Z_0)} = \sqrt{\frac{L}{C}} = \frac{138}{\sqrt{E}} \text{ LOG } (D/d) \text{ ohms}
\]

Velocity of propagation as percentage of speed of light = \[
\frac{100}{\sqrt{E}}
\]

Time delay = 1.016 \sqrt{E} \text{ nanoseconds/ft}

Cutoff frequency = \[
\frac{7.50}{\sqrt{E}} (D + d) = F_{co} (GHz)
\]

Reflection coefficient = \[\Gamma\]

\[
\Gamma = \frac{Z_r - Z_0}{Z_r + Z_0} = \frac{\text{VSWR} - 1}{\text{VSWR} + 1}
\]

\[
\text{VSWR} = \frac{1 + \Gamma}{1 - \Gamma}
\]

Peak voltage = \[
1.15 S \times d \times (\text{LOG } D/d) K
\]

\[
\alpha = \frac{0.435}{Z_0(D)} \left[ \frac{D}{d} \times K_1 + K_2 \right] \sqrt{F}
\]

\[
+ 2.78 \sqrt{E} (P.F.) (F)
\]

where: \(\alpha\) = attenuation in dB/100 ft

\(d\) = the outside diameter of inner conductor in inches

\(D\) = the inside diameter of outer conductor in inches

\(S\) = the maximum voltage gradient of the cable insulation in volts per mil (thousandth of inch)

\(E\) = the dielectric constant of the insulation of the cable

\(\text{LOG}\) = logarithm to base 10

\(K\) = safety factor

\(K_1\) = strand factor

\(K_2\) = braid factor

\(F\) = frequency in MHz

\(P.F.\) = power factor


<table>
<thead>
<tr>
<th>material</th>
<th>dielectric constant “E”</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFE</td>
<td>2.1</td>
</tr>
<tr>
<td>polyethylene</td>
<td>2.3</td>
</tr>
<tr>
<td>cellular polyethylene</td>
<td>1.4-2.1</td>
</tr>
<tr>
<td>polyvinylchloride</td>
<td>3.00-8.00</td>
</tr>
<tr>
<td>silicone rubber</td>
<td>2.08-3.50</td>
</tr>
<tr>
<td>ethylene propylene</td>
<td>2.24</td>
</tr>
</tbody>
</table>

Flexible cable is generally not available to the average ham. Its price is also prohibitive, rising into the dollars-per-foot price range.

It is possible however, to use foam polyethylene cable up to 12 GHz. The only catch is that it must be protected from the environment by either running it through a conduit with forced dry air pumped under pressure or sheathing it in a seamless metallic tube.

**Velocity of Propagation**

The velocity of propagation of cable is determined primarily by the dielectric constant of the insulating material.
<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC-02AT</td>
<td>Deluxe model</td>
<td>$349.00</td>
</tr>
<tr>
<td>IC-4AT</td>
<td>Deluxe model</td>
<td>$440.00</td>
</tr>
<tr>
<td>IC-04AT</td>
<td>Deluxe model</td>
<td>$389.00</td>
</tr>
<tr>
<td>IC-1AT</td>
<td>Standard model</td>
<td>$239.00</td>
</tr>
<tr>
<td>IC-2AT</td>
<td>Standard model</td>
<td>$249.00</td>
</tr>
<tr>
<td>IC-3AT</td>
<td>Standard model</td>
<td>$299.00</td>
</tr>
<tr>
<td>IC-4AT</td>
<td>Standard model</td>
<td>$299.00</td>
</tr>
</tbody>
</table>

For a Limited Time! With the purchase of IC-271A/H or IC-471A/H get the matching Preamp for just $1 extra.}

Common accessories for IC-271A/H and IC-471A/H:
- Options continued
  - CF-1 Cooling fan for IC-15...
  - EX-106 FM option
  - EX-115 Memory back-up
  - EX-12 Relay box with timer
  - AG-210 1000W 8-band automatic antenna tuner
  - AG-25 Mast mounted preampfilter* 84.95
  - AG-27 IC-271H 250W FM/SSB/CW/CW
  - AG-28 AG-25 Mast mounted preampfilter* 84.95
  - AG-29 IC-271H 250W SSB/CW/CW
  - AG-30 AG-25 Mast mounted preampfilter* 84.95

For spare parts and accessories:

**Accessories for Deluxe models**
- BP-7 425MHz/12.4V DC Pack - use BC-35 67.50
- BP-8 800kHz/8.4V DC Pack - use BC-35 62.50
- BC-35 Drop in desk charger for all batteries 65.00
- BC-40 AC adapter for desk charger, all models 359.95
- BC-16 Wall charger for BP/BP 10.00
- IC-11 Vinyl case 17.95
- IC-14 Vinyl case for DXT using BP-7/8 17.95
- IC-02AT Leather case for DXM models w/BP/8 19.95

**Accessories for both models**
- BP-2 425MHz/2.7V DC Pack - use BC-35 39.50
- BP-3 Extra Std. 250 mah/3.4V DC Pack 29.50
- BP-4 Alkaline battery case 15.50
- BP-5 425MHz/10.8V DC Pack - use BC-35 49.50
- CA-2 Telescoping 32mm antenna 10.00
- CA-3 5/8 wave telescoping 32mm antenna 18.95
- CA-4 Extra flexible antenna 10.00
- CP-1 Gig lighter plug/cond for BPS or DXT 5.50
- DC-1 DC operation pack for standard models 34.95
- IC-2AT Leather case for standard models 34.95
- RB-1 Vinyl waterproof radio bag 30.00
- HS-15 Handheld shoulder strap 29.95
- HS-15 Handheld strap 29.50
- HM-9 Speaker microphone 34.50
- HS-103A Vox unit for HS-15 Deluxe only 59.50
- HS-103B PIT unit for HS-103F 19.50
- ML-1 2.3m 10khz 10m wide output filter 79.95
- SS-32 Commspec 32-tone encoder 29.95

**Shortwave receivers**
- R-71A 100 kHz-30 MHz digital receiver $799.00
- FL-35 300 kHz CW filter 59.50
- EX-30 Voice synthesizer 39.95
- RC-11 Wireless remote controller 59.95
- RC-64 High stability oscillator xtal 56.00
- R-70 100-30 MHz digital receiver 479.00
- EX-257 FM unit 65.00
- IC-707 Transceiver interface 72.00
- FL-44A SSB filter (2nd IF) 159.00
- FL-63 250 Hz CW filter (1st IF) 48.50
- SP-3 External speaker 49.50
- SP-7 (6EX32) 12V DTX 9.50
- MB-12 Mobile mount 29.00

**Order Toll Free: 1-800-558-0411**

**AMATEUR ELECTRONIC SUPPLY, Inc.**
4828 W. Fond du Lac Avenue, Milwaukee, WI 53216 - Phone (414) 442-4200

**AES BRANCH STORES**

**WICKLIFFE, Ohio**
28940 Euclid Avenue
Phone (216) 385-7398
Ohio WATS 1-800-962-0290
Outside Ohio 1-800-321-3594

**ORLANDO, Fla.**
32803
621 Commonwealth Ave.
Phone (305) 894-3238
Outside Florida 1-800-321-9174

**CLEARWATER, Fla.**
33575
1809 Drew Street
Phone (813) 461-4267
No In State WATS

**LAS VEGAS, Nev.**
89106
1072 N. Rancho Drive
Phone (702) 674-3114
No In State WATS

**Associate Store**

**CHICAGO, Illinois**
56063
ERICKSON COMMUNICATIONS
5456 N. Milwaukee Avenue
Phone (312) 631-5161

**HOURS**
Mon. thru Fri. 9:30-3:00, Sat. 9-3

**Please use WATS lines for Ordering**

**In Wisconsin (outside Milwaukee Metro Area)** 1-800-242-5195

**110 May 1985**
materials between the conductors. This property is expressed as a percentage of the velocity of light in free space.

<table>
<thead>
<tr>
<th>cable dielectric</th>
<th>time delay</th>
<th>velocity percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>solid polyethylene</td>
<td>1.54</td>
<td>65.9</td>
</tr>
<tr>
<td>foam polyethylene</td>
<td>1.27</td>
<td>80.0</td>
</tr>
<tr>
<td>foam polystyrene</td>
<td>1.12</td>
<td>91.0</td>
</tr>
<tr>
<td>air space polyethylene</td>
<td>1.17</td>
<td>86.0</td>
</tr>
<tr>
<td>solid teflon</td>
<td>1.46</td>
<td>69.4</td>
</tr>
<tr>
<td>air space teflon</td>
<td>1.16</td>
<td>87.5</td>
</tr>
</tbody>
</table>

cable noise

An area often overlooked by Amateurs is self-generated cable noise, a phenomenon noted whenever a cable is flexed. Both acoustical and electrical noise are generated. This problem can be minimized by properly securing cable to rigid physical structures during antenna system installation.

Most prevalent in the “RG” series cables (RG-8, RG-213, RG-58, etc.) and should be carefully considered by hams who are concerned with feedline performance.

environmental resistance

The life of a coaxial cable depends on many factors other than the materials used in manufacture. The following factors all contribute to cable failure.

UV exposure. Polyethylene-jacketed cable has twice the life expectancy when exposed to direct sunlight as cable manufactured with PVC (Polyvinyl chloride) jackets.

Humidity. All cables experience vapor transmission through their plastic jackets. In Amateur applications it is advisable to install cable where it will not lie in or pass through an area where standing or running water is present.

Salt-water immersion. The electrical characteristics of cable will be rapidly affected if the conductors are exposed to salt water. If you live near a large body of salt water inspect your coax regularly for salt build-up. If your cable should become immersed, try to test the cable with a TDR (time-domain reflectometer) or find someone who can “sweep it” over the frequency range that your antenna system operates.

Underground burial and galvanic action. If you are going to install antenna cable underground, use armored/waterproof coaxial cable or regular “RG” cable installed in conduit or similar protective pipe or tubing.

selection guide

For the Amateur interested in communications through 50-MHz, RG-58 and RG-59 are prudent and inexpensive choices, though their power handling capability is limited to 250 watts for RG-58 and 450 watts for RG-59.

A station designed to operate through 148 MHz should incorporate RG-8 or RG-213 coaxial cable. Unfortunately, the 3-dB roll-off point is just below 200 MHz. 220-MHz operation is possible, but 50 percent of transmitted power will be lost in a typical 100 foot run.

Many exotic transmission lines are available for 220 MHz and above. Flexible foam dielectric cable (FM-8 or FM-11, similar to RG-8 and RG-11) is useful up to 450 MHz but very susceptible to moisture penetration.

Flexible low loss cables are manufactured with braids of flat strips of silverplated copper. This helps to lower the VSWR and reduce attenuation above 1 GHz. Type SF-226, for example, is good through 10 GHz and its outside diameter is not much larger than that of RG-8.

For operation above 10 GHz I suggest using corrugated tubular aluminum with foam teflon dielectric, which is available in 3/8-inch OD for operation through 15 GHz. This cable is similar in appearance to the “BX” type of electrical conduit. The bend radius of this cable is 2.0 inches — an important fact to remember during installation.

The most popular coaxial cable among microwave enthusiasts is “hardline” or semi-flexible foam dielectric cable. It is available in various ODs, but for coverage through 22 GHz 1/4-inch OD is your best choice. Although this cable is quite expensive, CATV companies will occasionally discard it because of minor imperfections or oxidation on the outer jacket. This
KPA5 1 WATT 70 CM ATV TRANSMITTER BOARD

- APPLICATIONS: Cordless portable TV camera for races & other public service events, remote VCR, etc. Remote control of RC airplanes or robots. Show home video tapes, computer programs, receive SSTV to local ATVers. DX depends on antennas and terrain typ. 1 to 10 miles.
- FULL COLOR VIDEO & SOUND on one small 3.25x4" board.
- RUNS ON EXTERNAL 13.8 VDC at 300 ma supply or better.
- TUNED WITH ONE CRYSTAL on 426.25, 434.0, or 439.25 mHz.
- 2 AUDIO INPUTS for a low Z dynamic and line level audio input found in most portable color cameras, VCRs, or home computers.
- APPLICATION NOTES & schematic supplied for typical external connections, packaging, and system operation.
- PRICE ONLY $159; delivered via UPS surface in the USA. Technician class amateur license or higher required for purchase and operation.

WHAT IS REQUIRED FOR A COMPLETE OPERATING SYSTEM? A TV set with a TWC-2 or TWC-4 430-450 kHz to channel 3 downconverter, 70 cm antenna, and coax cable to receive. Package up the KPA5, add 12 to 14 vdc, antenna, and any TV camera, VCR, or computer with a composite video output. Simple, eh?

CALL OR WRITE FOR OUR COMPLETE CATALOG & more info on ATV downconverters, antennas, cameras, etc., or who is on in your area.

TERMS: Visa, Mastercard, or cash only UPS COD by telephone or mail. Telephone orders & postal MO usually shipped within 2 days; all other checks must clear before shipment. Transmitting equipment sold only to licensed amateurs verified in 1984. Calif. part of Calif. Sales Tax.

(818) 447-4586 m-f 8am-6pm pst
P.C. ELECTRONICS
Tom W6ORG Maryann WB6YSS
2522 Paxson Lane
Arcadia CA 91006

discarded cable is suitable for Amateur service. The only real problem with its use and installation is the proper attachment of connectors; this task should be farmed out to your local Amateur microwave expert or your local cable connector technician!

For use above 22 GHz, tubular copper teflon dielectric cable has no radiation loss except at the connector interface. An example is CL-50087T, which is good through 60 GHz. Difficult to work with and very expensive, this type of cable is used in military avionics.

conclusion

Considering the many electrical and physical characteristics that must be analyzed, selection of RF coaxial cable is really quite complicated. Knowing these parameters is important when attempting to design a communications system for optimum performance.

I am willing to provide additional information on cable, connectors, and installation procedures. Please send requests to my home address, which appears at the beginning of this article. (Please be sure to enclose a legal-size SASE with 3 first-class stamps or IRCs; only inquiries with SASEs can be answered.)

ham radio
In San Francisco's famous Chinatown, I learned a secret: the words "chop suey" mean "odds and ends," which is apparently what that familiar Chinese dish is composed of. This article, a collection of odds and ends about 1:1 transmission-line baluns, is based on comments and questions I have been asked as a result of my previous balun articles. None of the individual comments is long enough to warrant separate articles — hence the peculiar title. These odds and ends also refer to balun articles presented by other writers. I hope this discussion will interest balun users and designers alike.

**Introduction**

First, to establish a frame of reference, I plan to discuss transmission-line baluns with input-output impedance ratios of 1:1. The transmission line is wound into an inductance, usually on a ferrite form, either a rod or a toroid.

A balun serves two purposes: first, to provide equal and opposite voltages to a balanced load, and second, to provide isolation between the coax outer conductor and the half of the balanced antenna connected to the outer conductor. Because the second is the more difficult problem, I will limit my discussion to it.

The isolation requirement of a balun has been well defined qualitatively by Walter Maxwell, W2DU.¹

Maxwell's article was the first to describe, in the Amateur literature, the concept of separate currents flowing on the inside and outside of the outer conductor, representing the signal current and unbalanced currents, respectively. I have found this concept helpful in describing the isolation function of a balun, both in a previous article² and in this one. I will expand on Maxwell's comments by giving some numbers to specify isolation quantitatively.

**Isolation**

The isolation function of a balun is to provide a high impedance between the outside of the outer conductor, and that half of the dipole antenna connected to the outer conductor, without affecting the current flowing on the inside of the outer conductor to its half of the dipole. Very little appears to have been published, at least in the Amateur literature, either quantitatively or qualitatively, on the isolation property of a balun.

Briefly, isolation is necessary to ensure that the signal current flowing on the inside of the outer conductor flows into the antenna, not back down the outside of the outer conductor to ground. Lack of sufficient isolation is one reason antenna currents become unbalanced.

By John J. Nagle, K4KJ, 12330 Lawyers Road, Herndon, Virginia 22071

---

¹ Williamson, J., W4ABB, QST, Apr. 1983
² Nagle, J. J., QST, Oct. 1984
SUPER ANTENNA SALE

**CUSHCRFT**
- MULTI-BAND: $215.00
- A4: 269.95
- A743/A744: 75.00
- RD Multi Tuned Vert: 270.00
- A5 80-10M Vertical: 99.00
- VHF-UHF: 215WB 2M Wide Band: 78.00
- 230WB Series 215's: 219.00
- 32-19 Bohne 19ELE 2M: 95.00
- A147-4: 32.95
- A449-6: 34.00
- A449-11: 44.00
- Ringo Rangers 2M, 6M, 220, 450 OSCAR TWIST: 39.95

**KLM**
- KT-34: $335.00
- KT-34X: 485.00
- 414C 2M/30 Rf Circ: 85.00
- 435-18C 440 Circular: 65.00
- 2M 10LBX 2 Mtr: 105.00
- 2M 22C Circular: 120.00
- 2M2C Stacking Frame: 79.95
- 435-40C Circular: 149.95

**SPECIALS**
- BUTTERNUT: HF6V 80-10M Vertical: $119.95
- 2M/B 2M Vertical: 56.00
- TBN-160 160M Resonator: 49.00
- MK-10 Roof Feeder Mount: 49.00
- STR-8 Sub Tuned Radials: 29.95

**SUPER ANTEENNASALE**
- 220MHZ: $99.00
- 2M: 399.95
- 6M: 749.95
- Band 7-14: 219.00

**CABLE**
- Standard 6 Cond.: 25 ft: 50.40
- Heavy Duty 6 Cond.: 35 ft: 74.95
- RG6X 97%: 25 ft: 50.40
- RG213: 35 ft: 50.40

**FOR OSCAR 10**
- Much More in Stock: 53.95

**NEW YORK**
- All Stock At Discounts Prices — For Orders & Quotes Call 1-800-523-7731 & C.O.D.S. Welcome — Freight. F.O.B. Evansville — Prices & Availability Subject to Change

**PLUS RIGS RIGS RIGS**

**ICOM**
- New IC 735: Call for Your Special Price

**TEN-TEC**
- Corsair List: $1169.00 Call for Discount Price

**ENCOM**
- KDK 2033: List $339.00 — Sale $265.00

**YEASU**
- FT775GX: Call for Special Price

**ASTRON POWER SUPPLIES**
- RSA7-5 Amp: 49.00
- RSA7 5-10 Amp: 59.00
- RSA20 9-12 Amp: 69.00
- RSA20 16-20 Amp: 89.00
- RS20M 10-20 Amp w/meter: 109.00
- RS25A 25-35 Amp: 135.00
- RS25M 25-35 Amp w/meter: 149.00
- RS50A 37-50 Amp: 175.00
- RS50M 37-50 Amp w/meter: 225.00
- VS20M Dual Mtrs. Adj Voltage: 175.00
- VS55M Dual Mtrs. Adj Voltage: 250.00

**DAILA**
- CN50 1B-60 MHZ: $63.00
- CN50 140-145 MHZ: 72.00
- CN20B 1-50 MHZ: 81.00
- CN20B 1-50 MHZ: 81.00
- CN20B 1-50 MHZ: 110.00
- CN630 140-450 MHZ: 130.00
- C3370 1A-50 MHZ: 129.95
- CS201 2-Pos. Switch: 23.00
- CS401 4-Pos. Switch: 62.00

**NEW CUSTOMER?**
- May 1985
- 114
In its simplest terms, the situation can be considered as a circuit problem. To ensure that the transmission-line current flows into the antenna and not back down the outside of the outer conductor, the impedance provided by the path down the outside of the outer conductor should be many times that of one-half the dipole antenna. For example, if the impedance of the dipole antenna is assumed to be 70 ohms, the impedance of one-half the dipole will be 35 ohms. By making the impedance of the balun to these “outside” currents 10 times this impedance, or 350 ohms in this case, at least 90 percent of the transmission-line current will flow into the antenna and less than 10 percent back down the outside of the coax.

A balun impedance of five times the load impedance (as used above) is an arbitrary figure, although I feel it should be adequate for a general-purpose balun. For a precision balun, one might prefer an isolation of, say, 10 or more times the impedance presented by one-half the total load. In a transmission-line balun, the isolation is provided by the inductive reactance of the winding. The isolation actually provided by a given balun can be determined by measuring the inductive reactance as described in reference 2.

Assuming a linear inductor, as long as the operating frequency is well below the self-resonant frequency of the inductor, the inductive reactance will be directly proportional to frequency. Therefore, there will be a frequency below which the inductive reactance will not be sufficient to provide the required isolation between the antenna and the coax feedline. This determines the low frequency limit of the balun.

The maximum usable frequency of a balun is limited by the stray capacitance across the winding. As the operating frequency increases, a frequency will be reached where the stray capacitance across the balun resonates with the inductance of the winding so that the winding is in parallel resonance. At this frequency the impedance of the balun, and hence its isolation, is the maximum it will be, so that this is a desirable frequency at which to operate. As the operating frequency is further increased, the reactance of the balun becomes capacitive and decreases with frequency until the balun becomes series-resonant. At this frequency the balun impedance is very low and the balun provides virtually no isolation at all. The upper useful frequency limit of the balun is usually between the parallel and series resonant frequencies. The actual frequencies are a function of the construction techniques, the object being to maximize the inductance and minimize the stray capacitance across the winding. (This problem is a subject in itself.)

Fig. 1 shows the inductive reactance versus frequency of a typical transmission-line balun. From a graph such as this, the useful frequency range of the balun can be easily determined for any value of load impedance. The assumed isolation impedance of five times the load impedance, based on VSWR considerations, has been arrived at by others.

To put the isolation property of a balun on a sound technical basis from the user’s point of view, I believe balun manufacturers should specify the minimum ratio of the balun winding impedance to the characteristic impedance over the specified frequency range.

**testing core saturation**

The methods used for testing a balun for core saturation are simple; one method is to wrap a few turns of insulated wire around the balun, as shown in fig. 2, and then connect this winding to an oscilloscope to observe the waveform. Gradually increase the output power of the transmitter until a distorted waveform appears. Then back off the power until the waveform again becomes sinusoidal. This represents the maximum peak power a given balun can handle.

A more sensitive version of this method involves connecting the test winding to a spectrum analyzer, instead of an oscilloscope, and measuring the amplitude of the various harmonics. Care must be taken here, however, to make certain the harmonics measured are generated by the balun and not by the transmitter.

An even more sensitive test is to use the RF equivalent of the two-tone test used to measure intermodulation distortion on high-fidelity audio equipment or receiver front-ends. Here two transmitters operating on slightly different frequencies are connected to the balun (and a dummy load) through a diplexer. This test
was proposed by Rich Rosen, K2RR, editor-in-chief of *ham radio*; I have not tried it myself.

If saturation is present, it can be corrected by increasing the number of turns, or by using a larger core (cross section), or both.

Increasing the number of turns will also have the effect of improving the performance of the balun at the low end of the frequency range. It will also lower the high-frequency end of the range by reducing the self-resonant frequency of the winding.

If the existing winding efficiently uses the available winding area, it will be necessary to increase the size of the core to accommodate the additional turns unless it is possible to use smaller wire. However, in a transmission-line balun the wire size may be dictated by the desired (or required) characteristic impedance of the winding; the wire diameter and spacing — being parameters — determine the characteristic impedance of the winding.

While the equipment needed and the procedures are relatively simple, the practical problems of testing baluns can be substantial. First, it takes a high-power transmitter and a high-power, preferably balanced, dummy load. Most Amateurs, however, will probably use an unbalanced load because this type is the most readily available. Care must be taken that the load case is well insulated from ground because the case will be at one-half the unbalanced line voltage when used as a balanced load.

The transmitter must be capable of providing the highest power level at which the balun is expected to operate. The balanced dummy load, of course, must be capable of dissipating this amount of power.

A more convenient load, at least if you are testing the balun for your own use, is to use the regular station antenna. (Choose a time when the band is dead!) The problem here is that the balun will be high in the air, requiring long test leads in a high-power antenna field, because RF can be picked up by the line and result in inaccurate measurements.

### transformers or inductors?

One of the principal sources of confusion in balun design, construction, and use seems to be the belief that all baluns are transformers. One well-respected writer recently stated “It is important to recognize that a 4:1 or a 1:1 balun . . . is essentially a broadband transformer.” If he had stopped to think about it, I’m sure this writer would have known better. Strictly speaking, any device or collection of components which transforms a balanced line to an unbalanced line can be called a transformer; in electronics the expression “transformer” is usually reserved for one particular type of device where all, or part, of the energy passes from input to output by means of magnetic induction. The usual two-winding or three-winding 1:1 transmission-line balun, however, is not a transformer because none of the energy is transmitted from input to output by magnetic induction. This type of balun should not be designed, tested, or used as a transformer. A 1:1 transmission-line balun is an inductor wound with a transmission line and must be designed, tested, and used as an inductor wound with a transmission line. Failure to recognize this difference in design or application is almost certain to lead to disappointment in the use.

Further complicating the situation is the fact that a transmission-line balun can be constructed with impedance transformation ratios other than 1:1, although I have not seen this done in Amateur applications. The common 4:1 balun is really an auto-transformer and not a transmission line device.

A broadband transformer, on the other hand, must be designed in accordance with well-known transformer equations relating the number of turns, the peak voltage, and the allowable maximum magnetic flux density in the core.

A second means of distinguishing between transformer and transmission-line baluns is that with a transformer balun, the relationship between the load impedance and input impedance is the turns ratio squared. With a transmission-line balun, the load-to-input impedance ratio is calculated using the more complex transmission-line equation:

\[
Z_{in} = \frac{Z_{ch} (Z_r \cos \theta + jZ_{ch} \sin \theta)}{(Z_{ch} \cos \theta + jZ_r \sin \theta)}
\]  

There are two problems in designing transmission-line baluns. The principal problem is designing a wide-band inductor, i.e., an inductor whose reactance is above a given value — usually five to ten times the load impedance — over the desired range of frequencies. The second problem is designing a suitable trans-
For literature or more information, locate the Reader Service number at the bottom of the ad, circle the appropriate number on this card, affix postage and send to us. We'll hustle your name and address to the companies you're interested in.

Limit 15 inquiries per request.

NAME ___________________________ CALL ____________
ADDRESS __________________________
CITY ___________________________ STATE ___________ ZIP ____________
mission line, with the required characteristic impedance, capable of being wound on a ferrite core.

Briefly summarizing, because of the similarity in the appearance and circuit configuration of different types of baluns and transformers, both of which use magnetic cores, there is considerable confusion about their operating characteristics. This in turn leads to improper design and application of the devices. Before criticizing a device, one should make certain it has been properly designed and used.

the super-toroid

The super-toroid balun design was introduced to the Amateur community by Reisert in his article on the two-winding transmission-line balun. The concept of a super-toroid, however, was developed by Tom Gross in the early 1960’s; Gross is a designer of precision magnetic components who specializes in devices operating at supersonic frequencies — 20 kHz to 500 kHz and up. The purpose of the super-toroid design is to reduce the sensitivity of the conventional toroidal coil to external magnetic fields.

Contrary to popular belief, a single-layer toroidal inductor is sensitive to external magnetic fields because of what is known as the one-turn effect. With a conventional, single-layer toroid, the winding is spirally wound around the core, as seen in fig. 3. Each turn is composed of two winding components: one component is aligned with the center of the toroid. The other component is at a right angle to the radial component and is known as the circumferential component. These two components are emphasized in fig. 4. The circumferential component provides the progression of the winding around the core. If there were no circumferential component, each turn would lie on top of the preceding turn.

The circumferential components constitute a single-turn loop antenna which, as is well known, has a response to extraneous signals originating in the plane of the toroid, as shown in fig. 5. This is known as the “one turn” effect of a toroidal winding. If the winding has more than one layer, the single-turn effect becomes an N-turns effect, where N is the number of layers.

The super-toroid design eliminates the one-turn effect by winding half the turns in one direction, then running the winding across the diameter of the core to the opposite side and winding the other half of the core in the opposite direction. The voltages induced in the circumferential components are therefore equal and opposite and therefore cancel. The photo shows a core wound in this manner. The winding in this case is clothesline rope to show up better in the photograph.

This technique assumes that the external magnetic field is uniform through the diameter of the core and the core material is homogeneous. If both these conditions are not met, even more complex types of windings must be used to provide isolation from external magnetic fields.

A secondary advantage of the super-toroid design, and one that is much more important to balun designers, is the fact that the effective capacitance across the winding is reduced, which increases the usable bandwidth of the device.

Any inductor consists of stray capacitance as well as inductance. In the design of an inductance, the object, of course, is to maximize the inductance and minimize the capacitance. As seen in fig. 6, this capacitance consists of an infinitely large number of incremental capacitances such as the capacitance between adjacent turns, capacitance between turns that are not adjacent, and between the ends of coil. From an engineering standpoint, it is not practical to evaluate an infinite number of small capacitances. Therefore, the “effective capacitance” of an inductor is defined as that of a physical capacitor connected across the ends of the inductor, which stores the same amount of energy as that stored by the incremental capacitors.

The energy stored in a capacitor is proportional to the product of the physical capacitance and the voltage across the capacitor squared: Energy = \( \frac{1}{2} CV^2 \). If the two plates of a capacitor are at the same potential, the energy stored by the capacitor is zero.
CIRCUMFERENTIAL COMPONENTS

EOUlVALENr

TO I TURN IN AN
EXTERNAL MAGNETIC FIELD

LADIAL

COMPONENTS NOT
SENSITIVE TO EXTERNAL
MAGNETIC FIELDS

fig. 4. A conventionally wound toroid equivalent to fig. 3 but emphasizing the 1-turn effect.

and the effectiveness of the capacitor is nil. It is, therefore, important that the portions of an inductance that are at the greatest potential difference have the lowest possible physical capacitance. The ends of the winding are at the greatest potential difference, hence they should have the greatest separation to minimize the physical capacitance.

A super-toroid has the ends of the windings at opposite ends of the core diameter, which is about as far apart as it is possible to place them. A conventionally wound balun, on the other hand, has the ends of the windings adjacent to each other, where they have the highest capacitance. It is, therefore, easy to see why the super-toroid winding would have a lower effective capacitance and hence a greater bandwidth. Then why not use the super-toroid winding exclusively?

For a two-winding balun, the super-toroid winding is preferable. For a three-winding balun, the situation is complicated by the tertiary interconnections between the opposite ends of the two main windings. With a continuously wound toroid, these interconnections can be short and can have a low impedance. With a super-toroid winding, the two leads of the tertiary winding come out on opposite sides of the core, so that both tertiary leads must cross the core. This greatly increases the leakage reactance between the main winding and the tertiary winding and will prove detrimental to proper balun operation above 20 MHz.

Thus, even though the super-toroid winding inherently gives greater bandwidth, it should not be used for a three-winding balun. For three-winding baluns, it is necessary to use a continuous winding to ensure short, low impedance interconnections between the tertiary and main windings.

wide bandwidth?

Numerous ham radio readers have questioned the desirability, or necessity, of the wide bandwidths advertised for commercial baluns — typically 3.5 to 30 MHz, and more recently, 1.5 to 56 MHz. Are bandwidths this wide really necessary? Or desirable? The argument is that since few, if any, Amateurs use the same antenna for 80 through 10 meters, much less 160 through 6 meters, why insist that a balun cover a greater, wider bandwidth than the antenna?

My own opinion is that these wide bandwidths are unnecessary and may not be desirable. The antenna installation for a typical Amateur active in the HF region might be a dipole on 80/75 meters or 40 meters plus a triband beam for 20, 15, and 10 meters. If space permits, maybe a 6-meter beam, too. Therefore, a balun that gave high performance, say, from 3.5 to 10 MHz and a second balun optimized for 14 to 30 MHz could be designed to provide higher performance at the extreme edges of these bands than a single wideband balun covering the entire frequency range.

This has been substantiated by my own experience in building and measuring baluns. Wideband baluns — 80 through 10 meters — gave marginal but acceptable performance at the low end of 80 meters and at the high end of 10 meters. The isolation impedance was just barely equal to five times the characteristic impedance of the transmission line.
fig. 6. The effective capacitance, $C_{\text{EFF}}$, of an inductor stores the same amount of energy as the sum of the incremental capacitors, $C_{\text{INC}}$.

By adding one or two turns to the winding I could dramatically improve the performance at the low end of 80 meters, but the series resonant frequency occurred in the middle of the 10-meter band. Similarly, by removing a turn or two I could improve the isolation at 10 meters, but only at the expense of the 80-meter band.

In my opinion, the bandwidth performance of presently available baluns is limited by the following factors:

- State-of-the-art in presently available core materials — for example, higher permeabilities at the higher frequencies.
- The limitations imposed on the design by having to wind the core with a transmission line of a specified characteristic impedance rather than a single conductor as with the usual inductor.
- The need to handle an appreciable amount of power.

The reasons commercial baluns for Amateur applications are all wideband devices may include:

- Competition: no manufacturer can afford to offer a balun with less bandwidth than any other manufacturer.
- Lack of published specifications concerning isolation impedance, balance, and isolation make it impossible to tell how effective a given balun may be at the band edges.
- Economy: it is much less expensive for manufacturers and distributors alike to stock a single balun than several different "sizes."

For these reasons, I believe that if Amateurs want high-performance baluns optimized for particular bands, they will have to wind the balun themselves.

**final comments**

Physically, transmission-line baluns are very simple devices. This simplicity often causes some of the more subtle characteristics to be overlooked during design or use. Recognizing these subtleties may be the biggest problem in designing and using baluns.

**reference**


**short circuits**

Ham radio

In "Digital HF Radio: A Sampling of Techniques" (April, 1985) the author’s name was misspelled. "Dr. Ulrich L. Rhode," as it appears on page 18, should be corrected to read, "Dr. Ulrich L. Rohde." Ham radio regrets the error.

**harmonic mixer**

In fig. 2 of K1ZJH’s "Harmonic Mixer for VHF Signal Generation" (March, 1985, page 40), T1 should be identified as a T37-6 toroid available from Amidon Associates, Inc., 12033 Otsego Street, North Hollywood, California 91607.

**low-voltage power supplies**

In fig. 9 of the March article, "Designing Low-Voltage Power Supplies," Q1, Q2, and Q3 are shown incorrectly wired. The base leads of Q1 and Q2 should be connected to the collector of Q3, not its base.

**SALE SAVE $2.55**

**READY REFERENCE**

by John Markus

<table>
<thead>
<tr>
<th>Digital Circuits</th>
<th>MH-40457</th>
</tr>
</thead>
<tbody>
<tr>
<td>Popular Circuits</td>
<td>MH-40458</td>
</tr>
<tr>
<td>Electronics Projects</td>
<td>MH-40459</td>
</tr>
<tr>
<td>Communications Circuits</td>
<td>MH-40460</td>
</tr>
<tr>
<td>Special Circuits</td>
<td>MH-40461</td>
</tr>
</tbody>
</table>

Each book is dedicated to one subject area and includes references from hundreds of hobby and professional publications. Originally appeared in Modern Electronics Circuits Reference Manual © 1980. We find the five separate volumes easier to use than the original. Of special interest to hams is Communications Circuits. 15 chapters include antennas, code, receiving and transmitting circuits as well as modulator, telephone, intercom and television circuits. © 1982, 2nd edition.

Softbound Reg. $12.50 each
May Special Price $9.95 each

Please enclose $3.50 shipping and handling

**ham radio BOOKSTORE**

GREENVILLE, NH 03048

May 1985
ROBOT KITS!
Piper-Mouse

Controlled by sound sensor and 1-channel electronic circuit. Use the whistle in this kit and Piper-Mouse follows your commands, turning left or right, stopping and starting. Uses 2 AA and 1 9V battery (not included).

MV-915 $44.95

RIBBON CABLE

APPLE & IBM
ACCESSORIES

80 Column Apple IlI+ 149.95
80 Column Apple IIE 119.95
Z80 Apple II+ 89.00
Z80 Apple IIE 89.00
16K Card 39.95
Cooling Fan 38.95
Power Supply 74.95
Joystick 29.95
RF Modulator 13.95
Disk Drive 169.95
Controller Card 59.95
Paddles 7.95

MICROMAX
INNOVATORS IN MICRO COMPUTER TECHNOLOGY

VIEWMAX-80 149.95
80-Column card for Apple II series
- Video Soft Switch
- Inverse Video
- VIDEOn's Videoterm compatible

VIEWMAX-80e 119.95
80-Column extended video card for Apple IIe
- 64K RAM, expandable to 128K
- Double High-resolution circuit
- Compatible with Pascal & CP/M

PRINTMAX
59.95
Parallel printer card, Apple IlI series
- Centronics compatible
- Variable print widths
- Up to 5000 characters/second

APPLE & IBM Compatible DISK DRIVES

APPLE or IBM JOYSTICK $29.95
Compatible for either: APPLE II and APPLE IIE OR
IBM-PC, JR., & IBM-XT
MULTIFUNCTION CARD

- 64K to 384K RAM
- Parallel Port
- Serial Port
- Clock Calendar
- Software included
- 1-Year Warranty

$249.95

MEMORY CARD

- Expandable to 512K
- Fully compatible with IBM software
- Fully compatible w/IBM diagnostic utilities
- Serial Port Available
- 1-Year Warranty

$199.95

MEMORY EXPANSION KIT $4164 200ns
9 for $19.98

DISKETTES 51/4"

ATHANA: (Soft Sector w/HUB Ring )
25 per package
SS/DD ....... 29.75 or 1.19 ea.
DS/DD ....... 34.75 or 1.39 ea.
LIFETIME WARRANTY ON ALL ATHANA DISKETTES

NO LABEL: (Soft Sector w/HUB Ring)
25 per package
SS/DD ....... 24.75 or .99 ea.
DS/DD ....... 29.75 or 1.19 ea.
2-YEAR WARRANTY ON ALL BULK DISKETTES

KEYBOARD (99/4)

48 keys 4" x 10" $6.95

TERMS: Minimum order $10.00. For shipping and handling, include $2.50 for UPS ground or $3.50 for UPS Blue (air). For each additional pound, add $1 for UPS Blue shipping and handling. California residents must include 6.5% sales tax. Bay area and LA residents include 6.5% sales tax. Prices are subject to change without notice. We are not responsible for typographical errors.

ALLY IN VOLUME Quotes
HOURS: Mon.-Fri. 7:30 to 5:00
Saturdays 10:00 to 3:00
VISIT OUR RETAIL STORE
2100 De la Cruz Blvd.
Santa Clara, CA 95050
(408) 988-0697

ALL MERCHANDISE IS 100% GUARANTEED

178

DOKay
### Quick Weather Protection Products & Antenna Accessories

**See Us at the Dayton Hamvention**

Use covers with "Flo Thru" air vents for humidity control.

<table>
<thead>
<tr>
<th>PRODUCT &amp; DESCRIPTION</th>
<th>MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>QIK-ON</strong></td>
<td>Polaro...</td>
</tr>
<tr>
<td><strong>QIK-PRO</strong></td>
<td>Motor Boots</td>
</tr>
<tr>
<td><strong>QIK COVER</strong></td>
<td>Universal Loop Switch</td>
</tr>
<tr>
<td><strong>QIK PRO</strong></td>
<td>Universal Loop Switch</td>
</tr>
<tr>
<td><strong>QIK LIMIT</strong></td>
<td>Universal Loop Switch</td>
</tr>
<tr>
<td><strong>QIK ALIGN</strong></td>
<td>Feed Horn Alignment Tool</td>
</tr>
</tbody>
</table>

### Down Converter

- **LNA S**
- **LNA A**
- **LNA-DCB**
- **LNA DCI**
- **LNA DCP**
- **LNA DCE**

- **Black**
- **Regular**
- **Regular with "Limit Switch"**
- **Basic System**
- **25 to 47**
- **Boxed**

A UV resistant rubber boot designed to cover the polarizer LNA and terminals and also seals tight enough to keep out bees, birds or hornets. Vented to relieve condensation. The exclusive QIK-PRO pleated end is for easy installation and tight seal (lock band included). The boot hides equipment and improves overall looks. No signal loss.

### QIK Mount (Universal) Down Converter Plate & Boot | **Black**

- **Charcoal Master**
- **Sagamore Bur**
- **Mariner Hydr**
- **Internal MTI**
- **Ganges Basic S**

**Accepts most Down Converters**
- **Keeps A.C. and terminals dry**
- **Prevents grounding**
- **Universal mounting plate is rubber covered perforated metal and a tight sealing rubber cover with wire exits**

### UHF Power AMP

**AM-6155/6GR** (ITT 3212) 225-400 MHz RF amp. 50W output from 4-10W input. Uses Elmac X6512, silver-plated cavity in removable drawer. Requires 115/230 VAC & 20 VDC. 7x19"x15". LU 5 lbs. Used. **$209.50**

**AM-6154/6GRT** same as AM-6155 except covers 116-149 MHz range. **Used: $190.50**

**CU-872** HF Antenna Coupler for up to eight 2-32 MHz receivers; 70 ohm output, N connections, test meter, and 20,692 tubes. **7x9x15.5 lbs. Used.**

**Price: $25,000**

**Prices effective 11-84**

### GEM-QUAD FIBRE-GLASS ANTENNA FOR 10, 15, AND 20 METERS

- **Two Elements** **$235.00**
- **Extra Elements** **$164.00**

Price is F.O.B. Transcona.

**Includes U.S. Customs Duty**

**KIT COMPLETE WITH**
- **SPIDER ARMS**
- **WIRE**
- **BALUN KIT**
- **BOOM WHERE NEEDED**

**Winner of Manitoba Design Institute Award of Excellence**

**Ask for our new 2m Quad Kit when you order your Gem Quad. It's FREE for the asking!**

**Get maximum structural strength with low weight, using our "Trident" arms. Please inquire directly to:**

**GEM QUAD PRODUCTS LTD.**

Box 53
Transcona, Manitoba
Canada R2C 2Z5
Tel. (204) 866-3338

### UHF Power AMP

**AM-6155/6GRT** (ITT 3212) 225-400 MHz RF amp. 50W output from 4-10W input. Uses Elmac X6512, silver-plated cavity in removable drawer. Requires 115/230 VAC & 20 VDC. 7x19"x15". LU 5 lbs. **Used: $190.50**

**AM-6154/6GRT** same as AM-6155 except covers 116-149 MHz range. **Used: $190.50**

**CU-872** HF Antenna Coupler for up to eight 2-32 MHz receivers; 70 ohm output, N connections, test meter, and 20,692 tubes. **7x9x15.5 lbs. Used.**

**Price: $25,000**

**Price F.O.B. London.**

**VISA, MASTERCARD Accepted.**

**Allow for Shipping.**

**Fair Radio Sales**

1016 E. Eureka • Box 1105 • Lima, Ohio 45802

### Fair Radio Sales

Custom Mailing Lists on Labels

Amateur Radio Operator NAMES

Custom lists compiled to your specifications.
- Geographic by ZIP and/or State.
- By License Issue or Expiration Date.
- Self stick 1x3 labels.

**Total List 453,000. Price: $25,000**

**Buckmaster Publishing**

Quakertown, PA 18951

(215) 343-7777

### Price Slash on 2nd OP

**Price: $16.95**

**2nd OP: $9.95**

**Price: $2.95**

**Total: $5.95**

**Price: $16.95**

**2nd OP: $9.95**

**Price: $2.95**

**Total: $5.95**

**You can either buy one or buy both and save.**

### 124 May 1985
tilt-over conversion
of a
fixed antenna tower

Don't like climbing?
Try this.

Since 1973 I have been the proud owner of a self-supporting triangular steel lattice antenna tower. But because I'm afraid of heights, climbing this tower is out of the question. Changing antennas means engaging helpers, and even then it's not easy because the mast has an additional 10-foot (3 meter) long tube on top, making the rotator and antennas almost inaccessible.

It took a long time before I realized how I could convert my mast to a tilt-over. The 40-foot (12 meter) tower consists of two sections, each 20 feet (6 meters) long. (With the 10-foot, 3 meter tube on top, the total height comes to 50 feet, or 15 meters.) As shown in fig. 1 the two sections are connected by three flanges with three bolts each; this division appeared to be the logical place for a hinge that would permit the upper section to pivot and be lowered to ground level.

The next problem to be solved was how to effect the tilt-over action by means of a winch and hoist line.

fig. 1. The tower before conversion. Hinge plates will be attached between the flanges connecting the upper and lower part of the tower.

Sketches of the parts constructed by PAQDON are available from the author. Send a large self-addressed envelope, enclose three IRCs.

By Dick Rollema, PA0SE, v.d. Marckstraat 5, 2352 RA Leiderdorp, Netherlands
SPACE/STTI TULSA SHOW '85!

TULSA CONVENTION CENTER
TULSA, OKLAHOMA
JUNE 21-22-23, 1985

Join the Thousands of Others Here To See
the Fantastic World of Satellite TVRO!

- 700 Booths Displaying Latest Equipment for '85!
- 300 Operating Satellite TV Antennas!
- Intensive Seminar Programming!
- Plus Fun for Everyone!

FOR DETAILS: Call STTI at 1-800-654-9276 or (405) 396-2574
or Write STTI, P.O. Box G, Arcadia, OK 73007
I first thought of using a method such as the one shown in fig. 2, similar to the cranes used by building contractors. But with the tower positioned immediately behind our house, outriggers $AB$ and $AC$ would have to be short enough to clear the structure. This would lead to high tension in the hoist line and cause too much stress on the overall system. So the idea was dropped.

The breakthrough occurred when I visited PABWCW, who has a similar tower that had been converted into a tilt-over. PABWCW used two adjacent gin poles permanently fixed to the tower. A pulley is mounted on top of each pole. Two hoist lines in parallel run from the winch over the pulleys to a point halfway up the upper section of the mast.

My final design is shown in fig. 3. Here a single gin pole ($BE$) is fixed to the tower at the lower end $E$ and in the middle at $C$. A few calculations showed that bending moment at $C$ is so large that no pipe of acceptable size could endure this stress, so two stays designed to bear most of the load were introduced.

These are fastened to the gin pole at both ends and pushed away from the middle of the pole by a triangular outrigger. Figure 4 shows the finished system.

**calculation is a must**

Before working out a project such as this, it is absolutely essential to determine the forces exerted on the different parts. Calculating stresses in mechanical construction projects is definitely not part of my daily routine, but after consulting some textbooks — and with some professional advice from PABTO — I managed to do the job. It was not very difficult after all. I quickly discovered that the most critical point is at $A$ in fig. 3 where the pipe top mast leaves the tower. The bending moment here should not exceed a certain maximum value set by the resistance moment and the tensile strength of the material.

My starting point is a pipe mast of 2-inch (50.8 mm) inner diameter with a resistance moment of 0.63 inches$^4$ (10.25 cm$^3$) that protrudes 10 feet (3 meters) out from the lattice mast. From a maximum admissible
stress of 23,205 pounds/inch² (160 N/mm²) it follows
that the maximum admissible lateral force at the top
of the pipe is 123 pounds (547 N). This is the max-
imum wind load on antenna plus rotator, if we neglect
the wind load on the pipe itself for just a moment.

A second limitation occurs when the mast has been
tilted to a horizontal position. Again at A, a bending
moment occurs as the result of the gravitational force
on the top mast, rotator, and antenna. Taking into
account the mass of the top mast itself, we find a max-
imum admissible mass of about 99 pounds (45 kg) for
the rotator plus antenna. With these numbers, the
forces in the different parts of the system can be com-
cuted. Rather than bore you with the results, only the
maximum force in the hoist line will be mentioned:
almost 1,034 pounds (4,600 N), which represents the
static load. During tilting of the tower, shocks can
easily occur that considerably increase the force in the
line.

**Construction**

As already mentioned, a hinge has been installed
at the 20-foot (6 meter) level where the lower and
upper parts of the tower are joined by flanges. The
flanges are bolted to steel plates that carry the hinge
at one edge.

**Figure 5** shows the lower plate and **fig. 6** the upper.
The hinge is fabricated from a piece of 2-inch
(50.8 mm) steel tube sawed into four parts. These
were welded, two by two, to both plates. Extra
strength was provided by welding strips of steel to
both pipe and plates, as can be seen in **fig. 6**. The
hinge pivots around a 1-inch (25-mm) diameter shaft
with bushings at both ends. One is permanently fixed
to the shaft; the other is fitted after mounting and
secured by a bolt and nut that traverse the shaft and
bushing.

In the resting position, the two hinge plates are held
together by four 25/32-inch (20-mm) bolts that have
been welded to the upper plate and pass through
oblong holes in the lower plate. Pieces of tubing are
welded around these holes to keep the plates at the
proper distance.

Before tilting the tower, the four nuts must be re-
moved from the bolts on the bottom side of the lower
plate.

In my original design one plate lay directly on top
of the other without any distance in between. To pre-
vent the bolt heads in the upper and lower plates from interfering with each other, the upper part of the tower was rotated 60 degrees with respect to the lower part. This allowed the bolt heads of one plate to fall directly into holes drilled in the opposite plate. That 60-degree rotation has been maintained, though it is not necessary in the present construction. But while it presents neither advantage nor disadvantage, it does lead to an optical illusion: from whatever side the tower is viewed, it always seems that the center lines of the upper and lower part do not coincide.

The tower is hinged so that the top mast can be reached from the roof of the barn in the back of our garden, so it is easy to work on rotator or antenna. Figure 7 shows the tower and hinge in its normal position. Figure 8 shows it tilted over about 90 degrees.

The gin pole is a seamless steel tube 20 feet (6 meters) long and 2.5 inches (60.3 mm) outer diameter; its inner diameter is 2 inches (53 mm). The lower end is supported by the parts shown in the lower section of fig. 9. Figure 10 shows the lower end in position on the tower.

The legs of the tower have a wall thickness of only 1/16 inch (1.5 mm). To spread the forces exerted by the U-bolts, my friend PA0DON fitted half-cylinder-shaped shells between the U-bolts and the tower legs. On the angle-iron bracket, a piece of tubing was welded over which the gin pole was placed. After mounting, a hole was drilled for a long bolt that pierces the gin pole and prevents turning.

On top of the gin pole a pulley was mounted by means of the method shown in figs. 11 and 12. As shown, precautions have been taken above and behind the pulley to prevent the hoist line from running off. The pulley, made of Novotex™, has an outer diameter of 4.7 inches (120 mm). It rotates around a piece of steel tubing of 1.3 inches (32 mm) diameter. The steel strips that hold the pulley on top of the gin pole also carry bolts for the stays. At the lower end the stays are connected with stainless steel turnbuckles with a breaking strength of 4,271 pounds (19,000 N). The lower hinge plate carries a triangular outrigger that keeps the stays at the proper distance from the middle of the gin pole (fig. 7). To prevent chafing, stainless steel tubes have been inserted in the outrigger that guides the stays. A nylon bushing inside the tubes provides extra protection.

Stays and hoist line consist of stranded stainless
SATELLITE HANDBOOKS

INTRODUCTION TO SATELLITE TV by Chris Bowick, WD4DC and Tim Kearney, N2A4

Forty years ago, the most sophisticated piece of electronics in the average home was an AM radio. Today, many homes are set up with state-of-the-art receivers designed to pick signals from satellites orbiting 23,000 miles in space. Instead of getting into a nuts and bolts approach with TVRO, this book gives you a broad overview of TVRO in general with emphasis on home use. Chapter 1 covers TVRO background and gives a generalized explanation of what TVRO is all about. Chapters 2-4 give you a broad overview of the equipment used to transmit and receive TVRO signals. Three appendixes also cover DBC, locating satellites and a glossary of TVRO terms. 1st edition. ©1983 142 pages.

21978 Softbound $9.95

Foreign orders shipped FOB Greenville.

THE SATELLITE TV HANDBOOK by Anthony T. Easton

Answers virtually any question you might have on satellite TV. This new book gives you a complete overview of the satellite service, how satellites work, how programming is available, who operates the various satellites, networks and stations, how to engineer and install a system, and the legal background of TVRO. For the "homebrewer", there is a section on building your own TV dish and receiver for around $600. You also get a section on the non-television services from satellites — radio feeds, teletext, newspaper and information on DXing international satellites. ©1983 438 pages. First edition

22055 Softbound $16.95

Please enclose $3.50 for shipping

HAM RADIO’S BOOKSTORE
Greenville, NH 03048

COVER NOTE:
is BIGGER better?

Weighing in at 8 tons, covering 5.9-30 MHz, the Allgon (of Sweden) 128-foot long Model 601 log periodic dish provides 500,000 watts of RF while providing continuous coverage and tilt capability for optimum takeoff angle control.

Speaking of BIG, this is the largest issue of ham radio ever published. Our thanks to our readers and advertisers for your continued support and encouragement. — Editor

HAM RADIO OUTLET, INC.

Is seeking a manager for two new retail stores: Nashua, New Hampshire and Atlanta, Georgia.

Please send resumes, in confidence, to Ham Radio Outlet, #1 Camino Sobrante — #14, Orinda, California 94563.

Full benefits offered to the right applicant, salary reflected by experience.

Act now. Don't delay.

This publication is available in microform from University Microfilms International.

□ Please send information about these titles:
Name
Company/Institution
Address
city
State Zip
Phone
Call toll free 800-821-3944. In Michigan, Alaska and Hawaii call collect 313-761-4700. Or mail inquiries to University Microfilms International, 300 North Zeeb Road, Ann Arbor, MI 48106.
steel cable measuring 0.2 inch (5 mm) in diameter and having a breaking strength of 3,147 pounds (14,000 N). The hoist line ends in a winch with a capacity of 1,200 pounds (5,338 N) and a reduction of 4.1:1. (If I were to build this system again I would select a larger reduction). The tower rests on a concrete block, and the winch is fitted to this block by three "chemical" anchors measuring 0.31 inch (8 mm) (fig. 13). The upper end of the hoist line ends halfway up the top section of the tower. A bracket of angle iron is shown in the upper half of fig. 9. This bracket is mounted to the tower legs with U-bolts, and half-cylinder shells are installed to distribute the pressure more evenly. The hole in the bracket is for a 0.625-inch (16 mm) bolt. (The hoist line is fitted to this bolt with parts purchased at a marine shop; I am, unfortunately, unable to translate their names into English.)

The hinge plates and all parts visible in figs. 9 and 11 have been treated with zinc epoxy followed by two coats of aluminum paint. The gin pole, galvanized by the manufacturer, was given a coat of rust-preventive primer and two coats of aluminum paint. Although the tower was also galvanized, some traces of rust were visible at the upper end, so the whole thing was also treated with rust-preventer and aluminum paint.
NAMPA SATELLITE SYSTEMS, INC.
TWO LOCATIONS
312 12th Ave. So.
Nampa, Idaho 83651
(208) 466-6727
6103 W. 34th St.
Houston, Texas 77092
(713) 957-5140
1-800-654-0795
For Service ONLY (208) 467-3204

NEW LOW, LOW PRICES!
NATIONAL FINANCING AVAILABLE THROUGH NAMPA SATELLITE
FOR MORE INFORMATION CALL 208-466-6727

ALL SYSTEMS FREIGHT PRE-PAID FROM NAMPA, IDAHO OR HOUSTON, TEXAS

EACH OF THE FOLLOWING SYSTEMS CONSIST OF: Receiver, 100° LNA, LNB, or LNC, Wilson MD-9 Dish, 100 Ft. Cable Pack, LNA Cover, Polarmatic I Feedhorn, NSS Dish Drive, All Connectors and Instructions

<table>
<thead>
<tr>
<th>System</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilson YM1000 System</td>
<td>$1648</td>
</tr>
<tr>
<td>Uniden UST 3000 System</td>
<td>$1772</td>
</tr>
<tr>
<td>10% Down Payment-$164.80</td>
<td>36 payments of $54.00/mo.</td>
</tr>
<tr>
<td>Wilson YM400 System</td>
<td>$1442</td>
</tr>
<tr>
<td>Uniden UST 1000 System</td>
<td>$1571</td>
</tr>
<tr>
<td>10% Down Payment-$144.20</td>
<td>36 payments of $46.00/mo.</td>
</tr>
<tr>
<td>Little Wil LW5</td>
<td>$1099</td>
</tr>
<tr>
<td>Sigma Mark 2A</td>
<td>$1438</td>
</tr>
<tr>
<td>10% Down Payment-$109.90</td>
<td>36 payments of $36.00/mo.</td>
</tr>
<tr>
<td>Little Wil RV5</td>
<td>$1399</td>
</tr>
<tr>
<td>Sigma Mark 3 block dc</td>
<td>$1662</td>
</tr>
<tr>
<td>10% Down Payment-$139.90</td>
<td>36 payments of $45.00/mo.</td>
</tr>
<tr>
<td>Drake 240 A + APS24</td>
<td>$1995</td>
</tr>
<tr>
<td>Sigma Mark 5 block dc</td>
<td>$2049</td>
</tr>
<tr>
<td>10% Down Payment-$199.50</td>
<td>36 payments of $65.00/mo.</td>
</tr>
<tr>
<td>Luxor Mark 2 System block dc</td>
<td>$2512</td>
</tr>
<tr>
<td>M/A Com HI block dc</td>
<td>$2282</td>
</tr>
<tr>
<td>10% Down Payment-$251.20</td>
<td>36 payments of $75.00/mo.</td>
</tr>
<tr>
<td>Dexcel 1300-01 System</td>
<td>$1988</td>
</tr>
<tr>
<td>M/A Com TI block dc</td>
<td>$2182</td>
</tr>
<tr>
<td>10% Down Payment-$198.80</td>
<td>36 payments of $63.00/mo.</td>
</tr>
<tr>
<td>Dexcel 1200-01 System</td>
<td>$1633</td>
</tr>
<tr>
<td>STS MBS-SR-AA</td>
<td>$2349</td>
</tr>
<tr>
<td>10% Down Payment-$163.30</td>
<td>36 payments of $54.00/mo.</td>
</tr>
</tbody>
</table>

OPTIONS WITH SYSTEM

PM 9' Dish.............................$ 60
UM 10' Mesh Dish.....................$180
Prodelin 10' Dish..................$400
Continental Mesh Dish 10'.........$400
85° LNA.............................$ 80
NSS Memory Tracker..................$100
MTI 2100.............................$225
MTI 4100.............................$345
Houston Tracker IV..................$325
Houston Tracker IV +.............$425
Final assembly and rigging of the tilt-over conversion occurred in mid-May, 1984, under more favorable weather conditions. Everything fit exactly, and it was a real pleasure to see the converted tower come together step by step (fig. 14).

acknowledgement

My sincere thanks to Ber van Dongeren, PA0DON, for his superb realization of my design. No operation like this can be performed without helpers: Piet de Bondt, PA3BGP; Jos Disselhorst, PA3ACJ; Ton Verberne, PA2ABV; Ben van Capel, PE1KCG; Gerrit van Zwam, PE1KAX, and SWLs Jo Chin-Chan-Sen, Bert Kraan and Ed Wassenburg helped disassemble the original tower and erect the new one.

ham radio

Invitation to Authors

*ham radio* welcomes manuscripts from authors all around the world. If you have an idea for an article you’d like to have considered for publication, send for a free copy of the *ham radio* Author’s Guide. Address your request to *ham radio*, Greenville, New Hampshire 03048 (SASE appreciated).
J.I.L. SX-400

Uninterrupted Frequency Coverage
100 kHz to 1400 MHz with Optional Converters

- A professionally created scanner for the serious listener
- Wide frequency coverage 26 to 520 MHz (with optional converters 100 kHz to 1400 MHz)
- Continuous coverage. You’ll hear everything.
- Birdie-Free, no internal ‘signals’ to interfere with scanning
- 20 Channel memory, AM-FM Mode memory, Priority memory
- Carrier Operated Relay (COR) permits automatic start/stop of a recorder
- Four low-noise front end converters for optimum performance
- 12 Volt DC operation (120 Volt AC power supply optional)
- Check JIL's ad in this issue for further details

Sale Price $549.95 List $739.90
P-1A Power Supply $34.95

Other options call

Electronic Equipment Bank
516 Mill Street 800-368-3270
Vienna, Virginia 22180 (703) 936-3350

Free Antenna Accessories Catalog

- Coaxial Antenna Relays
  Remotely select up to 9 antennas from your transmitter, using only one coaxial cable. Environmentalized, high power and low loss.

W2AU and W2DU Baluns

Our baluns, center insulators and insulators have been preferred for 20 years by Hams, industry, and the armed forces. Protect against TVI and lightning 1.8-200 MHz.

W2VS Antenna Traps

Add these traps to your dipole and get low SWR on 2 to 6 bands, depending on how many you add. Antenna wire and custom kits also available.

Send For Yours Today

Don’t delay. Call or write today, and we will send you free literature which fully describes our Ham antenna accessory product line. Dealer inquiries also welcome.

6743 Kinne St. East Syracuse, NY 13057
Toll Free 1-800-446-1666 TWX 710-541-0383
NY/MAK/Canada (Collect) 315-437-3933

DO YOU KNOW WHERE TO FIND REAL BARGAINS on NEW and USED ELECTRONIC Equipment?

You’ll Find Them in the Nation’s No. 1 Electronic Shopper Magazine

NUTS & VOLTS

Now in Our 5th Year

Nuts & Volts is published MONTHLY and features:
- NEW STATE-OF-THE-ART PRODUCTS
- SURPLUS EQUIPMENT • USED BARGAINS
- LOW COST AD RATES • PRIVATE AND COMMERCIAL CLASSIFIEDS • NATIONAL CIRCULATION • NEW PRODUCT NEWS SECTION • AND A FREE CLASSIFIED AD WITH YOUR SUBSCRIPTION

SUBSCRIPTION RATES

□ One Year - 3rd Class Mail ...................... $10.00
□ One Year - 1st Class Mail ...................... $15.00
□ One Year - Canada & Mexico (in U.S. Funds) ........ $18.00
□ Lifetime - 3rd Class Mail (U.S. Only) ........ $35.00

ORDER NOW!

SEND: □ CHECK □ MONEY ORDER □ VISA □ MASTERCARD

TO: NUTS & VOLTS MAGAZINE
P.O. BOX 1111-H
PLACENTIA, CALIFORNIA 92670
(714) 632-7721

NAME______________________________________________________________________________
Address _________________________________________________________________
City __________________________ State ______ Zip ______
Card No. ______________________ Exp. Date __________

IF YOU'RE INTO ELECTRONICS, THIS MAGAZINE WILL SAVE YOU MONEY!

Dealer Inquiries Invited

134 \ May 1985
Courses offered are:

- Oak
- Learn
- cellenl

Over 25 years of successful teaching experience

Your vacation is spent in

- accommodations.

Instructors

- students

TAKE A VACATION WITH

A PURPOSE THIS YEAR

Join students from around the world at

OAK HILL ACADEMY

AMATEUR RADIO SESSION

Instructors CERTIFIED VE's

Over 25 years of successful teaching experience means upgrading is as easy as 1-2-3.

Your vacation is spent in the beautiful Blue Ridge Mountains of Virginia with expert instructors in friendly surroundings and with excellent accommodations.

Oak Hill also has a ham lab set up for all to use.

Courses offered are:

- Novice to General
- General or Tech to Advanced
- Advanced to Extra

Learn — don't just memorize the answers to the exam questions.

C. L. PETERS, K4DNJ, Director
Oak Hill Academy Amateur Radio Session
Box 43
Mount Airy, VA 24363

CALL

Address

City/State/Zip

July 27 thru Aug. 9, 1985

Our 26th year

TOWERS by ALUMA

highest quality aluminum

- telescoping (crank-up)
- guyed (stack-up)
- tilting models

Easy to install. Low Prices.

Crank-ups to 100 ft.

EXCELLENT FOR AMATEUR COMMUNICATIONS

ALUMA TOWER CO.
BOX 2906HR
VERO BEACH, FLA. 32960-2806
(305) 567-3423 TELEX 80-3405

Crystal T filters

CW/SSB/AM For most
KENWOOD - YAESU - HEATHKIT
Also DRAKE R-44C, TL-2, COLLINS 755-3BIC, and ICOM (FL-44A Type)

FOX TANGO filters with center frequencies to match your set range in bandwidths from 125Hz for needle sharp CW to 600Hz for hi-fi AM. Use them to fill your optional filter spots, to replace inferior ceramic or monolithic stock units, or to add more I-F filtering for super-selectivity. Most are drop-in plug-in type, if patch-in, all needed parts and instructions are supplied. Get genuine FT matched-pair filter sets (2.1 SSB and/or 400 CW) for your R820, TS830/930 or FT-980. Or a Filter Cascading kit for your TS430, TS520, TS 820, FT-101, 102Z, 109, 301, 901-2; or Heath SB-104A. Or supervise your R44C with our QF-1, 2 units. All kits include top-rated 8 pole discrete crystal FOX TANGO filters. For complete details and prices send a business-size SASE marked with your rig’s Make and Model Number. To save time, phone for information and order directly. We accept VISA/MC or ship C.O.D. in US.

FOX TANGO not only will meet or beat any currently advertised price for comparable units, but also offers quantity discounts. Order with confidence — our filters are guaranteed for ONE YEAR. Why not check us out over the air? You’ll learn that FOX TANGO filters are best.

GO FOX TANGO — TO BE SURE!

FOX-TANGO Corp.
P.O. Box 15944, Dept. H
W. Palm Beach, FL 33416
Telephone: (305) 683-9587

special

SPECIAL

90 DAY WARRANTY ON ALL TRANSCEIVERS - DIRECT FROM NCG OR YOUR DEALER

WE HAVE 1.2 GHZ BASE/REPEATER & MOBILE ANTENNAS

NOTE: PRICES AND SPECIFICATIONS SUBJECT TO CHANGE WITHOUT NOTICE OR OBLIGATION
Join AMSAT...Today

Amateur Radio Satellite OSCAR 10 provides:

- A New Worldwide DX Ham Band open 10 hours a day.
- Rag Chew With Rare DX Stations in an uncrowded, gentlemanly fashion.
- Popular Modes In Use: SSB, CW, RTTY, SSTV, Packet
- Full Operating Privileges open to Technician Class licensee or higher.

Other AMSAT Membership Benefits:

ORBIT Magazine Subscription:
Dependable technical articles, satellite news, orbital elements, product reviews, DX news, and more.

Satellite Tracking Software
Available for most popular PCs.

QSL Bureau, AMSAT Nets, Area Coordinator Support, Forum Talks

Construction of Future Satellites For Your Enjoyment!

AMSAT Membership is $24 a year, $26 outside North America. VISA and MC accepted.

AMSAT
P.O. Box 27
Washington, DC 20044
301 589-6062
Dual 8" F. D. D. Case by SMS w/ POWER ONE Power Supply & Cooling Fans

We were very fortunate to find these beautifully designed & constructed rack mount disc drive cases in the surplus field. These cases were made for Scientific Micro Systems for their FT Series of equipment. They are manufactured from heavy gauge steel w/ a cast metal designer bezel. They were designed to house 2 8" floppy or hard drives. We offer you the case with the following components & features: hinged cover with restraining cable for simplified servicing of the interior components, 2 muffin fans for assured cool operation, studs for mounting the controller card listed below, and a heavy duty Power One power supply (their model no. CP 281A). The outputs of the power supply are as follows: +5 vdc 11 amps, +24 vdc 3.5 amps, +12 vdc .25 amps, -12 vdc .25 amps, & -5 vdc .25 amps. The input to the power supply is 115/230 vac 50/60 Hz. and is both filtered and fused. This assembly must have originally sold for well over $300.00 each! Only 25 on hand, so order early or be left out on this super bargain! Shpg. wt. 38 lb. SPL-479-35 $135.00 each

Scientific Micro Systems IBM 3740 Compatible 8" FDD Controller Card

The SMS FD 0502 8" floppy disc drive controller is a complete preprogrammed controller for single or double density recording on either single or dual headed disc drives. It performs control functions required to transfer data between 1 to 4 drives and a host system, performs all formatting functions required to read and write data and utilizes both IBM single and double density standards to achieve up to 630 Kilobytes of storage per disc surface. Some features are: programmable sector size, 128, 256, 512, or 1024 bytes, jumper selectable drive type, block transfer mode, sector buffer, overlapped head seek, on board General Purpose Host Interface with asynchronous 19 TTL signal lines for eight bit host system and input of only 5 vdc 6 amps. This board provides a direct interface to the following drives: Shugart 800 - 2/850, Pertec 511, Memorex 550/552, MFE 751B, Qume Data Trak and similar drives. These boards were removed from the above cabinets which were in service prior to our reception of them. The manufacturers price on these IBM compatible boards is currently $900.00 each. These boards all appear to be in excellent condition. If more information is needed, please call us. Shpg. wt. 3 lb. SPL 480 $150.00

SEAGATE TECHNOLOGY ST 506 5¼" HARD DRIVES

The Seagate Technology ST 506 hard disc drive utilizes proven Winchester technology for reliable storage of up to 5 megabytes of formatted data. Some features of this very popular drive are: 5 megabit/second data transfer rate, simple floppy like interface, high speed band actuator & stepper head positioning, requires only +5 & +12 vdc and same physical size and mounting parameters as a mini floppy drive. This Shugart compatible drive is the same as used on many home personal computers. Each drive is checked out prior to shipment. Comes with data. Only a few on hand, so order early.

Shpg. wt. 8 lb. ST-506 $225.00

5½" HARD DRIVE CONTROLLER CARD

Finally, affordable, intelligent disc drive controllers are available at low, low surplus prices. The OMTI 2DC controller boards we offer are unused, late style, surplus from a now defunct system house. OMTI is a division of Scientific Micro Systems. These boards will handle up to (2) 5½ inch Winchester type hard drives that utilize a standard 34 pin SAST interface. Perfect for using with the above Seagate ST 506 drive, or other hard drives from 5 megabytes of storage on up. The controllers have buffered slewseek modes, overlapped seeks, auto seek & verify, extensive fault detection, auto head & cylinder switching, full sector buffering, 256/512 bytes/sector, 53 or 18 sectors/track (jumper selectable), programmable disc parameters and much more. The board runs on +5 vdc & +12 vdc. We supply users manual & pinout data. Guaranteed O. K.

Shpg. wt. 3 lb. OMTI 20 C $150.00 each 2/$275.00 Qty. pricing available.

5 VDC 25 AMP SWITCHING POWER SUPPLY

We just got in a small lot of ruggedly built, lightweight (4 lb.), compact (11" x 5" x 1½"), fully enclosed (cover removed for pic.), regulated, switching, power supplies made by RO Industries. Input of 115/230 vac is attached thru convenient, clearly marked screw terminals. The hefty 5 vdc 25 amp output is via heavy duty, brass lugs with a Red LED status indicator. All appear to be unused and in excellent condition.

Shpg. wt. 6 lb. PS-8 $50.00

Free 72 page catalogue available or send $1.00 for 1st class service to P. O. Box 62 E. Lynn, Ma. 01904.

Phone (617) 595-2275 to place your order by phone. MC, VISA or American Express charge cards accepted.
Use Your Wireless Control
FROM ANY ROOM!!!
Works with most infrared remote control receivers.

LIKE HAVING A SATELLITE RECEIVER, VCR, CABLE TV, AND VIDEO DISC IN EVERY ROOM!

- Remote control Satellite Receiver, VCR, Cable TV, and Video Disc can now be used long distance.
- Install on any TV to access all your remote control video components.
- Makes non-remote TVs remote controllable with remote control VCR, Cable Selector, or Satellite Receiver.
- No fancy wiring needed: uses existing coaxial wiring between TVs.
- No extra controls to buy! Uses the handheld remote controllers you already have.
- No tools required. Easily installed in minutes.

$79.95
Plus $3.00 shipping & handling

608-493-2291

DEALER INQUIRIES WELCOME

MERRIMAC SATELLITE
327 Palisade St. Merrimac WI 53561

WHAT’S REALLY HAPPENING IN HOME SATELLITE TV?

A monthly of 100-plus pages, has all you need to know about where to find equipment, how it performs, how to install it, legal viewpoint, & industry insights.

- $24.95 per yr. (12 monthly issues)
- $ 2.00 for Sample Issue

MONEY BACK GUARANTEE if not satisfied (subscription orders only). Keep first issue with our compliments.

If you already have a dish, then you need

OnSat
—the best in satellite TV programming.

★ Weekly Updated Listings
★ All Scheduled Channels
★ Complete Movie Listing
★ All Sports Specials
★ Prime Time Highlights

- $39.00 per yr. (52 weekly issues)
- $ 1.00 for Sample Copy

Visa® MasterCard® accepted (subscription orders only). All prices in US funds only. Write for foreign rates.

Send this ad along with your order to:

STV™/OnSat™
P.O. Box 2384 - Dept. PS
Shelby, NC 28151-2384
Subscription calls only
Toll Free 1-800-438-2020

ARRL TEXAS STATE CONVENTION
MAY 31-JUNE 2, 1985
DALLAS NORTH PARK INN
Exhibitor Inquiries: (214) 521-9430
SEMI-CONDUCTORS:  
MRF-206 ... 12.00  MHW-352 ... 53.00  
MRF-240 ... 18.40  MHW-710-1 ... 61.00  
MRF-247 ... 34.80  MIPSH-81 ... 50  
MRF-309 ... 33.80  MV2206 ... 58  
MRF-422 ... 41.40  78L08CP ... 50  
MRF-454 ... 20.00  2N4401 ... 75  
MRF-501 ... 1.75  2N190 ... 1.50  
SBL-1 Double-Balance Mixer ... .65  

CAMBION RF CHOICE: 15 pF, 22 pF, 33 pF, 47 pF, 10 pF ... 1.20 ea.  
BROADBAND TRANSFORMERS PER MOTOROLA BULLETINS:  
AN-762 ... 14.00  EB-27A ... 14.00  AN-791 ... 10.00  
EB-63 ... 14.00  EB-67 ... 14.00  
680 pF, 1000 pF ... 55 ea.  
5600 pF, 6800 pF, 1 fF ... 1.00 ea.  
33 pF ... 1.90 ea.  
90 ea.  

We also carry a line of VHF, UHF amplifiers and ATV equipment.  
Call or write for our free catalog.  

WHERE'S THE TURKEY?  
* Synthesized Voice  
Doppler Direction  
Finding  
* VHF and UHF  
Coverage  
* RS232C Computer  
Interface  
* No Receiver Mods  
* Mobile or Fixed  
* 12 VDC Operation  
* Digital and  
Circular Display  
* 90 Day Warranty  

New Technology (patent pending) converts any VHF or UHF FM receiver into an advanced Doppler shift radio direction finder. Simply plug into receiver's antenna and external speaker jacks. Uses four omnidirectional antennas. Low noise, high sensitivity for weak signal detection. Call or write for full details and prices.

SPEC-COM™  
Amateur Radio Specialized  
Communication Journal  
P.O. Box H  
Lowden, Iowa 52255  
(319) 944-7689 (Membership Services)  

NOW published "monthly" 10 times per year, SPEC-COM™ readers are kept up-to-date in a world of fast moving modern technology.  

Why not give us a try? Back issue samples are available for just $2.00 ppd. (Master Article Indexes add $1.00).  

Special Six Month Trial Subscription -$10.00. U.S./Canada/Mexico Annual Subscription $20.00. (Foreign Subscriptions slightly higher).  

Special Doppler Shift Radio  
Direction Finder  

Now published "monthly" 10 times per year, SPEC-COM™ readers are kept up-to-date in a world of fast moving modern technology.  

Why not give us a try? Back issue samples are available for just $2.00 ppd. (Master Article Indexes add $1.00).  

Special Six Month Trial Subscription -$10.00. U.S./Canada/Mexico Annual Subscription $20.00. (Foreign Subscriptions slightly higher).  

NEW!  
Special North  
American Edition  
As an added bonus, the 1985 U.S. Callbook also lists the amateurs in Canada and Mexico! You get the complete and accurate U.S. listings (prepared by our own editorial staff), all the usual up-to-date Callbook charts and tables, PLUS Canada and Mexico. Now that's real value!  

The best just got better!  
Of course, Canadian and Mexican amateurs are also listed in the 1985 Foreign Callbook. Don't delay! The great new 1985 Callbooks were published December 1, 1984.  

Order your copies now!  

Each  Shipping  Total  
U.S. Callbook  $21.95  $3.05  $25.00  
Foreign Callbook  20.95  3.05  24.00  

Order both books at the same time for $45.00 including shipping within the USA.  

Order from your dealer or directly from the publisher. Foreign residents add $4.55 for shipping. Illinois residents add 6% sales tax.  

Keep your 1985 Callbooks up to date.  
The U.S. and Foreign Supplements contain all activity for the previous three months including new licenses. Available from the publisher in sets of three (March 1, June 1, and September 1) for only $15.00 per set including shipping. Specify U.S. or Foreign Supplements when ordering. Illinois residents add 6% sales tax. Offer void after November 1, 1984.  

RADIO AMATEUR  
DEPT. F  
925 Sherwood Dr., Box 247  
Lake Bluff, IL 60044, USA  
Tel: (312) 234-6600  

AWARDS DIRECTORY $1.00 brings information, refundable. Updated monthly. Computerized. Worldwide. List your awards from. Over 1000 now in files. KB22P, RY1#1, Cumming, GA 50061


TI 99/4A random, text, keyboard, send, receive code practice programs. Dr Code "General" sends international Morse code and prints on screen: you choose: space, tone, character. You also send TI Code "Speech" as same as "General" with speech: you choose how many characters before speech check. For cassette of both copyrighted materials and conditional copying privileges, send $10.00 plus $3.00 shipping and handling to NSSR. Rt 1, Box 1326, Lake Charles, LA 70601. Phone (318) 436-2048, no collect calls please. Satisfaction or money back.


DEADLINE 15th of second preceding month.

SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.


C7X REPORTS 414-549-9210.

LETTERING and text for GAST, lettering and text for GIAS. PO Box 412, W. Sand Lake, NY 12196.

CABLE TV EQUIPMENT: Jerrold, Hamlin, Zenith, many others. Factory units/lowest dealer prices. Complete Illustrated catalog. 0.00, Pacific Cable Co., Inc., 73251 Rives Blvd., Dept. 1001, Reedsa, CA 92335. (818) 346-5071.

ELECTRONIC CMS keyer pkg & parts only $9.95 plus $1.50 shipping. WR res. add 5% tax. Send for free information. Bell-Tek, PO Box 125H, Beloit, WI 53511.


RATES Noncommercial ads 10¢ per word; commercial ads 60¢ per word payable in advance. No cash discounts or agency commissions allowed.

HAMFESTS Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing) on a space available basis only. Repeat insertions of hamfest ads pay non-commercial rate.

COPY no special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for contents of any material limited to corrected ad in next available issue.

Coming Events

Activities

Places to go...

INDIANA: Hamfest and Computer Show, Sunday, June 9. Sponsored by the Muncie Area Amateur Radio Club. 8 AM to 3 PM at 224 E. 17th St. Admission $2.00 advance, $3.00 at door. Large Flea Market. Overnight camping on grounds. Hookups $5.00. Talk on in 146.250 kHz. For tickets, table reservations or information, call AMS, PO Box 2102, Muncie, IN 47302.

OHIO: The Athens County Amateur Radio Association’s sixth annual Hamfest and Computerfest. Sunday, May 19. City Recreation Center, East St. Free flea market from 8 AM to 3 PM. Admission $3.00. Frees. outdoor tailgating or bringing your own tables. Indoor space by advanced registration only. Contact Joe Fiodor, NKF, 15 Roy Ave. Middletown, OH 45750, (513) 797-4874. This year there will be a license level exams. For more information, call FCC Form 610 and $4 check payable to $430.00. Advance sales $10 advance. Ticket books $2.00 extra. For tickets, call 735-2122.

OHIO: The 5th annual Columbus Hamfest sponsored by the Battelle Amateur Radio Club, Sunday, June 2, 8 AM to 3 PM. Gas City Building on Franklin County Fairgrounds. Admission $2 advance and $3 at the door. Advance tickets $4.50, talk on in 146.375 kHz. For information, call 419-779-3797.

OHIO: The Sandusky- Ottawa Counties Amateur Hamfest, May 19, 8 AM to 3 PM. Ottawa County Fairgrounds, St. Rt. 163 east of Oak Harbor. Advance tickets $2 and purchase $3 at the door. Information: 419-726-3025.

OHIO: The Sandusky- Ottawa Counties Amateur Hamfest, May 19, 8 AM to 3 PM. Ottawa County Fairgrounds, St. Rt. 163 east of Oak Harbor. Advance tickets $2 and purchase $3 at the door. Information: 419-726-3025.
COLORADO: The Longmont Amateur Radio Club’s annual Boulder Spring Hamfest, Sunday, May 5, 9 AM to 2 PM rain or shine, Colorado National Guard Armory, 4750 North Broadway, Boulder. Door charge $3 per family. No sellers charge bring your own tables... Hamswap, plus tech demonstrations and seminars. Food and drink available. Talk in on 146.1876 or 146.52 for information. W0NJD, 232 East Fourth Ave., Longmont, CO 80501. (303) 776-2829.

NEW YORK: Long Island Hamfest sponsored by ULMARC, Sunday, June 9, 9 AM to 4 PM, Electricians Hall, 41 Pheasant Lane, Melville, Long Island. General admission $3.00 2 PM after 4 PM. Table space in advance from Harry Emanuel, W2BALW, 53 Sheerard St., East Hills, NY 11771-1712. 4 x 6 table space $10.00 or your own for $5.00. Contact Hank at (516) 484-6322 evenings to 11 PM.

INDIANA: The 39th Annual Dayton sponsored by the Wabash Valley ARA, Sunday, June 2, Vigo County Fairgrounds, Terre Haute. For information SASE to WVARA, PO Box 81, Terre Haute, IN 47808.

CONNECTICUT: Flea market sponsored by the Newington Amateur Radio League, June 9, Newington High School, 9 AM to 2 PM. Admission $2.00. Tailgating $5.00. Talk in on 146.52 or W1AW 145, 224, 840.

NEW YORK: The Rome Radio Club’s 33rd annual Ham Family Day, Sunday, June 2, Beck’s Grove in Rome. Games, contests and large Flea Market. Good food and beverages available throughout the day. Educational and scientific presentations. The day will end with dinner and the presentation of ‘Ham of the Year Award’. For further information Rome Radio Club, PO Box 721, Rome, NY 13440.

NEW YORK: The 26th annual Southern Tier Amateur Radio Club’s Hamfest; Saturday, May 4, 3rd, Bedway Inn, Owego. Flea market opens 8 AM. Vendor displays and sales. Dinner at 6:30 PM Talk in on 146.52 or W1AW 145, 224, 840. For further information SASE to K2FX, RD 1, Box 144, Vestal, NY 13850.

NEW YORK: The Antique Radio Club of America will hold an international conference—Fleas, Dvks, DX Peding, and much more—Sunday, June 9 5 to 10 lunch available, and the presentation of ‘Ham of the Year Award’. The club has 1,000 members who collect and restore antique wireless and radio equipment and who study and record the history of early radio. For information on the conference or membership in ARCA please write WNFW, PO Box 68, Central Park Station, Buffalo, NY 14215.

WASHINGTON: The Yakima Amateur Radio Club will hold their annual Hamfest the Washington State Hamfest, May 18 and 19. Hobby DXpedition. Saturday 7 to 2 with lunch and breakfast available. Registration $4.00, $5.00 at the door. Free swap and shop with plenty of tables. Talk in on 146.081 and 146.349/349. For pre-registration contact Tom Plassance, PO Box 9211, Yakima, WA 98909.

OPERATING EVENTS: Things to do...

MAY AND MAY 5: The Mason County ARC will operate commemorative stations K7MTU and W7MTU on Packet to celebrate the Shelton, Washington, Centennial. Certificates will be exchanged for a QSL card and a 12 SASE. Send to Loren Mercer, K7GSD, 2213 Olympic Hwy., North Shelton, WA 98584.

JUNE 2: SRRC Hamfest, Princeton, Illinois. Plans include FCC/VE exams. Registrations $2.50 before May 20, $3.00 June 2. For advanced registrations and complete information, contact W9ZCH, 1701 S. Sheridan, Joliet, IL 60435.

JUNE 1: The Southside Amateur Radio Club will operate station K4HYJ on Packet in honor of President Harry Truman’s 101st birthday. The station will operate near the old Truman farm home in Grandview, MO during the annual ‘Harry’s Day’ celebration. For a commemorative QSL send 10 x 12 SASE with 33 postcard to Southside ARC, PO Box 412, Grandview, MO 64030.

MAY 4: The Sand Hills Amateur Radio Club will operate K2GM during a DXpedition to Moscow, KS to commemorate May 1985 141.

MAY 25: The Bay Area Amateur Radio Society, Pasadena, Maryland, will operate K3HMK and K3AMS to commemorate ‘Samuel F B Morse Day’. For a special certificate send QSL to ARRL, 225 Main Street, Newington, CT 01111.

CO CONTEST: VHF’ers please note! The first annual CO World Wide VHF WPX Contest is July 20-22, 50 MHz 1296.
Keep those valuable issues of Ham Radio like new. Prevent smears, tears and dog ears. Bind 'em together and enjoy for years to come. You'll be happy you did!

**HAM RADIO BINDERS**

Beautiful buckram bound, rich brown material with gold embossing. These binders will really dress up your collection of Ham Radio. Year stickers included.

**HR-BDL**

$6.95 ea.

3 for $17.95

Please add $2.50 for shipping and handling. U.S. only

HAM RADIO'S BOOKSTORE

GREENVILLE, NH 03048

If possible let us know four to six weeks before you move and we will make sure your HAM RADIO Magazine arrives on schedule. Just remove the mailing label from this magazine and affix below. Then complete your new address or any other corrections in the space provided and we'll take care of the rest.

*MOVING? KEEP HAM RADIO COMING...*

**ham radio**

Magazine

Greenville, NH 03048

Thanks for helping us to serve you better.

**MOBILE HANDHELD SYSTEMS**

CALL 800-HAM-7373 or (603) 878-1441

Here's my new address:

Name

Address

City

State

Zip

AFFIX LABEL HERE

Tell 'em you saw it in HAM RADIO!
**Ham Radio’s guide to help you find your local ham store**

### California

<table>
<thead>
<tr>
<th>Dealer</th>
<th>Address/Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>C &amp; A ROBERTS, INC.</td>
<td>18511 HAWTHORN BLVD. TORRANCE, CA 90504 213-370-7451</td>
</tr>
<tr>
<td>The Largest Electronics Dealer in San Bernardino County.</td>
<td></td>
</tr>
<tr>
<td>FONTANA ELECTRONICS</td>
<td>8628 SIERRA AVENUE FONATNA, CA 92335 714-822-7725</td>
</tr>
<tr>
<td>The place for great dependable names in Ham Radio.</td>
<td></td>
</tr>
<tr>
<td>JUN’S ELECTRONICS</td>
<td>3919 SEPULVEDA BLVD. CULVER CITY, CA 90230 800-882-1343 Trades Habla Espanol</td>
</tr>
<tr>
<td>HATRY ELECTRONICS</td>
<td>500 LEDYARD ST. (SOUTH) HARTFORD, CT 06114 203-257-1881</td>
</tr>
<tr>
<td>Call today. Friendly one-stop shopping at prices you can afford.</td>
<td></td>
</tr>
<tr>
<td>Delaware</td>
<td></td>
</tr>
<tr>
<td>AMATEUR &amp; ADVANCED COMMUNICATIONS</td>
<td>3208 CONCORD PIKE WILMINGTON, DE 19803 (302) 478-2757 Delaware’s Friendliest Ham Store.</td>
</tr>
<tr>
<td>DELAWARE AMATEUR SUPPLY</td>
<td>71 MEADOW ROAD NEW CASTLE, DE 19720 302-328-7728</td>
</tr>
<tr>
<td>Icom, Ten-Tec, Microlog, Yaesu, Kenwood, Santec, KDK, and more. One mile off I-95, no sales tax.</td>
<td></td>
</tr>
<tr>
<td>Florida</td>
<td></td>
</tr>
<tr>
<td>AMATEUR ELECTRONIC SUPPLY</td>
<td>1898 DREW STREET CLEARWATER, FL 33575 813-461-4267</td>
</tr>
<tr>
<td>Clearwater Branch West Coast’s only full service Amateur Radio Store.</td>
<td>Hours M-F 9-5:30, Sat. 9-3</td>
</tr>
<tr>
<td>AMATEUR ELECTRONIC SUPPLY</td>
<td>621 COMMONWEALTH AVE. ORLANDO, FL 32803 305-894-3238</td>
</tr>
<tr>
<td>Flav. Wats: 1 (800) 432-9424 Outside Flav: 1 (800) 327-1917 Hours M-F 9-5:30, Sat. 9-3</td>
<td></td>
</tr>
<tr>
<td>AMATEUR ELECTRONIC SUPPLY</td>
<td>2805 N. E. 2ND AVENUE MIAMI, FL 33137 305-573-8833</td>
</tr>
<tr>
<td>The place for great dependable names in Ham Radio.</td>
<td></td>
</tr>
<tr>
<td>HONOLULU ELECTRONICS</td>
<td>819 KEEAUMOKU STREET HONOLULU, HI 96814 (808) 949-5564</td>
</tr>
<tr>
<td>Serving Hawaii &amp; Pacific area for 51 years. Complete lines of Amateur equipment, accessories and parts.</td>
<td></td>
</tr>
<tr>
<td>ERICKSON COMMUNICATIONS, INC.</td>
<td>5456 N. MILWAUKEE AVE. CHICAGO, IL 60630 312-631-5181</td>
</tr>
<tr>
<td>Hours: 9:30-5:30 Mon, Tu, Wed &amp; Fri; 9:30-8:00 Thurs; 9:00-3:00 Sat.</td>
<td></td>
</tr>
<tr>
<td>THE HAM STATION</td>
<td>808 NORTH MAIN STREET EVANSVILLE, IN 47710 812-422-0231</td>
</tr>
<tr>
<td>Discount prices on Ten-Tec, Cubic, Hy-Gain, MFJ, Azden, Kantronics.</td>
<td></td>
</tr>
<tr>
<td>James Millen Components by ANTEENNAS ETC. 16 HANSON ROAD ANDOVER, MA 01801 617-475-7831 Bezels, binding posts, capacitors, condensers, chokes, coils, ceramics, H.V. connectors, plate caps, hardware knobs, dials, scopes and grid dippers. Inquire SASE or visit.</td>
<td></td>
</tr>
<tr>
<td>Tel-Com, Inc.</td>
<td>675 GREAT ROAD, RTE. 119 LITTLETON, MA 01460 617-486-3400 617-486-3040 The Ham Store of New England You Can Relly On.</td>
</tr>
<tr>
<td>Nevada</td>
<td>1072 N. RANCHO DRIVE LAS VEGAS, NV 89106 702-647-3114</td>
</tr>
<tr>
<td>JUN’S ELECTRONICS</td>
<td>460 E. PLUMB LANE — 107 RENO, NV 89502 702-827-5732 Outside Nev: 1 (800) 648-3962 Icom — Yaesu Dealer</td>
</tr>
<tr>
<td>BARRY ELECTRONICS</td>
<td>512 BROADWAY NEW YORK, NY 10012 212-925-7000 New York City’s Largest Full Service Ham and Commercial Radio Store.</td>
</tr>
</tbody>
</table>

**Dealers:** YOU SHOULD BE HERE TOO! Contact Ham Radio now for complete details. 144 May 1985
Amateur Radio Dealer

Ohio

AMATEUR ELECTRONIC SUPPLY
28940 EUCLID AVE.
WICKLiffe, OH (CLEVELAND AREA) 44092
216-585-7388
Ohio Wats: 1 (800) 362-0290
Outside Ohio: 1 (800) 321-3594
Hours M-F 9-5:30, Sat. 9-3

UNIVERSAL AMATEUR RADIO, INC.
1280 AIDA DRIVE
REYNOLDSBURG (COLUMBUS), OH 43068
614-866-4267
Featuring Kenwood, Yaesu, Icom, and other fine gear. Factory authorized sales and service. Shortwave specialists. Near 1-270 and airport.

Pennsylvania

HAMTRONICS, DIV. OF TREVOSE ELECTRONICS
4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215-357-1400
Same Location for 30 Years.

LaRUE ELECTRONICS
1112 GRANDVIEW STREET
SCRANTON, PENNSYLVANIA 18509
717-343-2124

THE VHF SHOP
BOX 349 RD 4
MOUNTAINTOP, PA 18707
717-868-6658
Lunar, Microwave Modules, ARCONS, Astron, KLM, Tama, Tonna-F9FT, UHF Units/Parabolic, Santec, Tokyo Hy-Power, Dentron, Mirage, Amphenol, Belden

Texas

MADISON ELECTRONICS SUPPLY
1508 MCKINNEY
HOUSTON, TX 77010
713-658-0268
Christmas?? Now??

Wisconsin

AMATEUR ELECTRONIC SUPPLY
4828 W. FOND DU LAC AVE.
MILWAUKEE, WI 53216
414-442-4200
Wisc. Wats: 1 (800) 242-5195
Outside Wisc: 1 (800) 362-0290
Hours M-F 9-5:30, Sat. 9-3

TUBES and IC’s
FAST DELIVERY
LOWEST PRICES

Say you saw it in ham radio!
## TUBES

<table>
<thead>
<tr>
<th>TYPE</th>
<th>PRICE</th>
<th>TYPE</th>
<th>PRICE</th>
<th>TYPE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2C39/7289</td>
<td>$34.00</td>
<td>1162/4600A</td>
<td>$500.00</td>
<td>ML7815AL</td>
<td>$60.00</td>
</tr>
<tr>
<td>2E26</td>
<td>7.95</td>
<td>4600A</td>
<td>500.00</td>
<td>7843</td>
<td>107.00</td>
</tr>
<tr>
<td>2K28</td>
<td>200.00</td>
<td>4624</td>
<td>310.00</td>
<td>7864</td>
<td>130.00</td>
</tr>
<tr>
<td>3-500Z</td>
<td>102.00</td>
<td>4657</td>
<td>84.00</td>
<td>ML7855KAL</td>
<td>125.00</td>
</tr>
<tr>
<td>3-1000Z/8164</td>
<td>400.00</td>
<td>4622</td>
<td>100.00</td>
<td>7904</td>
<td>14.95</td>
</tr>
<tr>
<td>3B28/666A</td>
<td>9.50</td>
<td>4665</td>
<td>500.00</td>
<td>8072</td>
<td>84.00</td>
</tr>
<tr>
<td>3CX4000/7861</td>
<td>255.00</td>
<td>4687</td>
<td>P.O.R.</td>
<td>8106</td>
<td>5.00</td>
</tr>
<tr>
<td>3CX1000/7826</td>
<td>526.00</td>
<td>5675</td>
<td>42.00</td>
<td>8117A</td>
<td>225.00</td>
</tr>
<tr>
<td>3CX3000F1/8239</td>
<td>567.00</td>
<td>5721</td>
<td>250.00</td>
<td>8121</td>
<td>110.00</td>
</tr>
<tr>
<td>3CW3000H7</td>
<td>1700.0</td>
<td>5768</td>
<td>125.00</td>
<td>8122</td>
<td>110.00</td>
</tr>
<tr>
<td>3X2500A3</td>
<td>473.00</td>
<td>5819</td>
<td>119.00</td>
<td>8134</td>
<td>470.00</td>
</tr>
<tr>
<td>3X3000F</td>
<td>567.00</td>
<td>5836</td>
<td>232.50</td>
<td>8156</td>
<td>12.00</td>
</tr>
<tr>
<td>4-65A/8165</td>
<td>69.00</td>
<td>5837</td>
<td>232.50</td>
<td>8233</td>
<td>60.00</td>
</tr>
<tr>
<td>4-125A/4D21</td>
<td>79.00</td>
<td>5861</td>
<td>140.00</td>
<td>8236</td>
<td>35.00</td>
</tr>
<tr>
<td>4-250A/5D22</td>
<td>98.00</td>
<td>5867A</td>
<td>185.00</td>
<td>8295/PL172</td>
<td>500.00</td>
</tr>
<tr>
<td>4-400A/8438</td>
<td>98.00</td>
<td>5868/AX9902</td>
<td>270.00</td>
<td>8458</td>
<td>35.00</td>
</tr>
<tr>
<td>4-400B/7527</td>
<td>110.00</td>
<td>5876/A</td>
<td>42.00</td>
<td>8462</td>
<td>130.00</td>
</tr>
<tr>
<td>4-1000A/8166</td>
<td>444.00</td>
<td>5861/6L6</td>
<td>8.00</td>
<td>8506A</td>
<td>95.00</td>
</tr>
<tr>
<td>4C5250/7203</td>
<td>54.00</td>
<td>5893</td>
<td>60.00</td>
<td>8533W</td>
<td>136.00</td>
</tr>
<tr>
<td>4CX250G/945</td>
<td>55.00</td>
<td>5894/A</td>
<td>54.00</td>
<td>8560/A</td>
<td>75.00</td>
</tr>
<tr>
<td>4CX150/945</td>
<td>125.00</td>
<td>5946</td>
<td>54.00</td>
<td>8560AS</td>
<td>100.00</td>
</tr>
<tr>
<td>4CX100/7580W</td>
<td>90.00</td>
<td>6036/AZ9909</td>
<td>395.00</td>
<td>8608</td>
<td>38.00</td>
</tr>
<tr>
<td>4CX2300/A167</td>
<td>170.00</td>
<td>6146/A</td>
<td>95.00</td>
<td>8624</td>
<td>100.00</td>
</tr>
<tr>
<td>4CX2350A/8321</td>
<td>110.00</td>
<td>6146B/8298</td>
<td>8.50</td>
<td>8637</td>
<td>70.00</td>
</tr>
<tr>
<td>4CX2350F/8322</td>
<td>115.00</td>
<td>6146W/7212</td>
<td>10.50</td>
<td>8643</td>
<td>93.00</td>
</tr>
<tr>
<td>4CX2350FJ/8904</td>
<td>140.00</td>
<td>6156</td>
<td>17.95</td>
<td>8647</td>
<td>168.00</td>
</tr>
<tr>
<td>4CX600J/8809</td>
<td>835.00</td>
<td>6159</td>
<td>110.00</td>
<td>8683</td>
<td>95.00</td>
</tr>
<tr>
<td>4CX1000/8168</td>
<td>242.50*</td>
<td>6159B</td>
<td>13.85</td>
<td>8877</td>
<td>465.00</td>
</tr>
<tr>
<td>4CX1000/8168</td>
<td>485.00</td>
<td>6161</td>
<td>23.50</td>
<td>8908</td>
<td>13.00</td>
</tr>
<tr>
<td>4CX1500/8660</td>
<td>555.00</td>
<td>6280</td>
<td>325.00</td>
<td>8950</td>
<td>13.00</td>
</tr>
<tr>
<td>4CX5000/8170</td>
<td>1100.00</td>
<td>6291</td>
<td>42.50</td>
<td>8930</td>
<td>137.00</td>
</tr>
<tr>
<td>4CX10000/8171</td>
<td>1255.00</td>
<td>6293</td>
<td>180.00</td>
<td>6L6 Metal</td>
<td>25.00</td>
</tr>
<tr>
<td>4CX15000/8281</td>
<td>1500.00</td>
<td>6326</td>
<td>24.00</td>
<td>6L6GC</td>
<td>5.03</td>
</tr>
<tr>
<td>4CX8000F</td>
<td>710.00</td>
<td>6360/A</td>
<td>24.00</td>
<td>P.O.R.</td>
<td>5.35</td>
</tr>
<tr>
<td>4D32</td>
<td>240.00</td>
<td>6399</td>
<td>5.75</td>
<td>6L6</td>
<td>3.50</td>
</tr>
<tr>
<td>4E27A/5-125B</td>
<td>240.00</td>
<td>6550/A</td>
<td>540.00</td>
<td>6L8J</td>
<td>2.50</td>
</tr>
<tr>
<td>4PR60A</td>
<td>200.00</td>
<td>6883B/8032A/8552</td>
<td>10.00</td>
<td>6L9F</td>
<td>6.58</td>
</tr>
<tr>
<td>4PR60B</td>
<td>345.00</td>
<td>6897</td>
<td>10.00</td>
<td>6F5</td>
<td>5.85</td>
</tr>
<tr>
<td>4PR65A/8187</td>
<td>175.00</td>
<td>6907</td>
<td>160.00</td>
<td>6GJ5A</td>
<td>6.20</td>
</tr>
<tr>
<td>4PR1000A/8189</td>
<td>590.00</td>
<td>6922/6L08</td>
<td>79.00</td>
<td>6GK6</td>
<td>6.00</td>
</tr>
<tr>
<td>4X150A/7034</td>
<td>60.00</td>
<td>6939</td>
<td>5.00</td>
<td>6H6S</td>
<td>6.00</td>
</tr>
<tr>
<td>4X1500/7609</td>
<td>95.00</td>
<td>7094</td>
<td>22.00</td>
<td>6H5F</td>
<td>8.73</td>
</tr>
<tr>
<td>4X250B</td>
<td>45.00</td>
<td>7117</td>
<td>250.00</td>
<td>6G6A</td>
<td>6.28</td>
</tr>
<tr>
<td>4X250F</td>
<td>45.00</td>
<td>7203</td>
<td>38.50</td>
<td>6J4M</td>
<td>6.00</td>
</tr>
<tr>
<td>4X500A</td>
<td>412.00</td>
<td>7211</td>
<td>P.O.R.</td>
<td>6J6N</td>
<td>6.00</td>
</tr>
<tr>
<td>4CX1500A</td>
<td>660.00</td>
<td>7213</td>
<td>100.00</td>
<td>6J5C</td>
<td>7.25</td>
</tr>
<tr>
<td>5CX1500A</td>
<td>27.50</td>
<td>7214</td>
<td>300.00*</td>
<td>6K6D</td>
<td>8.25</td>
</tr>
<tr>
<td>5K5785</td>
<td>45.00</td>
<td>7271</td>
<td>135.00</td>
<td>6L6</td>
<td>7.00</td>
</tr>
<tr>
<td>5L28/7160L</td>
<td>49.95</td>
<td>7289/2C39</td>
<td>34.00</td>
<td>6L6 G.E.</td>
<td>7.00</td>
</tr>
<tr>
<td>5N23/200A3</td>
<td>211.00</td>
<td>7350</td>
<td>13.50</td>
<td>6L6/6L66 Sylvania</td>
<td>9.00</td>
</tr>
<tr>
<td>4G57</td>
<td>8.50</td>
<td>7377</td>
<td>85.00</td>
<td>12A77</td>
<td>3.50</td>
</tr>
<tr>
<td>4G51</td>
<td>15.00</td>
<td>7408</td>
<td>2.50</td>
<td>12AX7</td>
<td>3.00</td>
</tr>
<tr>
<td>4G62</td>
<td>29.00</td>
<td>7609</td>
<td>95.00</td>
<td>12BY7</td>
<td>5.00</td>
</tr>
<tr>
<td>4G13</td>
<td>50.00</td>
<td>7735</td>
<td>36.00</td>
<td>12J6GA</td>
<td>6.50</td>
</tr>
</tbody>
</table>

NOTE * = USED TUBE
NOTE P.O.R. = PRICE ON REQUEST

"ALL PARTS MAY BE NEW, USED, OR SURPLUS. PARTS MAY BE SUBSTITUTED WITH COMPARABLE PARTS IF WE ARE OUT OF STOCK OF AN ITEM.

NOTICE: ALL PRICES ARE SUBJECT TO CHANGE WITHOUT NOTICE.

For information call: 602-265-0731

MHZ electronics
3802 North 27th Ave., Phoenix, AZ 85017

PRICES SUBJECT TO CHANGE WITHOUT NOTICE
"FILTERS"

COLLINS Mechanical Filter #526-9724-010 MODEL F455Z32F

455KHz at 3.2KHz wide. May be other models but equivalent. May be used or new. $15.99

ATLAS Crystal Filters

5.595-2.7/8/LSB, 5.595-2.7/LSB
8 pole 2.7KHz wide Upper sideband. Impedance 8000ohms 15pf In/8000ohms 0pf out. 19.99
5.595-2.7/8/U, 5.595-2.7/USB
8 pole 2.7KHz wide Upper sideband. Impedance 8000ohms 15pf In/8000ohms 0pf out. 19.99
5.595-500/4, 5.595-500/4/8
4 pole 500 cycles wide CW. Impedance 8000ohms 15pf In/8000ohms 0pf out. 19.99
9.0USB/OW
6 pole 2.7KHz wide at 6dB. Impedance 6800ohms 7pf In/300ohms 8pf out. CW-1599Hz 19.99

KOKUSAI ELECTRIC CO. Mechanical Filter #MF-455-ZL/ZU-21H

455KHz at Center Frequency of 453.5KC. Carrier Frequency of 455KHz 2.36KC Bandwidth. Upper sideband. (ZU) 19.99
Lower sideband. (ZL) 19.99

CRYSTAL FILTERS

NHKO FX-07800C 7.8KHz $10.00
TFO FFC-101-2 10.6935MHz 10.00
SDK S6C-113A 11.2735MHz 10.00
TOKA TF-311250 CP 3179.3KHz 19.99
TYCO/CD 001019880 10.7MHz 2pole 15KHz bandwidth 5.00
MOTOROLA 4884B3B01 11.7MHz 2pole 15KHz bandwidth 5.00
PTI 5350C 12MHz 2pole 15KHz bandwidth 5.00
PTI 5426C 21.4MHz 2pole 15KHz bandwidth 5.00
PTI 1479 10.7MHz 8pole bandwidth 7.5KHz at 3dB, 5KHz at 6dB 20.00
CONTIGA A10300 45MHz 2pole 15KHz bandwidth 6.00
FRC ERX-15700 20.6MHz 36KHz wide 10.00
FILTRON 213L 5.7825MHz 10.00

CERAMIC FILTERS

AXEL AF449 12.6KC Bandpass Filter 3dB bandwidth 1.6KHz from 11.8-13.4KHz 10.00
CLEMITE TO-01A 455KHz+2KHz bandwidth 4-7% at 3dB 5.00
KOKUSAI ELECTRIC CO. TC64-12D36A 455KHz+1KHz bandwidth 6dB min 12KHz, 60dB max 36KHz 10.00
MURATA BF455B 455KHz 2.50
BF455L 455KHz 3.50
CF4555E 455KHz+5.5KHz at 3dB ,+8KHz at 6dB ,-16KHz at 50dB 6.65
CF4555D 455KHz+7KHz at 3dB ,+10KHz at 6dB ,+20KHz at 50dB 6.65
CF4555E 455KHz+5.5KHz at 3dB ,+8KHz at 6dB ,-16KHz at 50dB 8.00
CF4555B 455KHz+2KHz bandwidth+15KHz at 3dB ,+30KHz at 40dB 2.90
CF4555C 455KHz+2KHz bandwidth+12.5KHz at 6dB ,+24KHz at 40dB 2.90
CF4555G 455KHz+15KHz bandwidth+4.5KHz at 10dB ,+10KHz at 40dB 2.90
CF4555H 455KHz+1KHz bandwidth+3KHz at 6dB ,+9KHz at 40dB 2.90
CF4555I 455KHz+1KHz bandwidth+2KHz at 6dB ,+6KHz at 40dB 2.90
CF4555D 455KHz+10KHz at 6dB ,+20KHz at 40dB 2.90
CF4555H 455KHz+3KHz at 6dB ,+9KHz at 40dB 2.90
CF45558 455KHz 2.50
CF4555D 455KHz+2KHz , 3dB bandwidth 4.5KHz+1KHz 5.00
CF4555D 10.7MHz 280KHz+50KHz at 3dB , 650KHz at 20dB 2.50
CF4555D 10.7MHz 230KHz+50KHz at 3dB , 570KHz at 20dB 2.50
CF45558 10.7MHz 10.00

NIPPON LF-B4/CF455I 455KHz+1KHz 2.90
LF-B6/CF455HI 455KHz+1KHz 2.90
LF-B8 455KHz 2.90
LF-B18 455KHz 10.00

OKIN CF455A/AB455K 455KHz+2KHz 5.00

NATSUGHI EFC-145SK 455KHz 7.00

SPECTRA PHYSICS INC. Model 088 HeNe LASER TUBES

POWER OUTPUT 1.6MW, BEAM DIA .75MM , BEAM DIR. 2.7MR , 8KV STARTING VOLTAGE DC 59.99
68K OHM 1WATT BALLAST 1000VDC +1000VDC At 3.7mA

ROTTRON MUFFIN FANS Model MARK4/MUZAI

115 VAC 14WATTS 50/60CPS IMPEDANCE PROTECTED-F 88CFM at 50CPS $7.99
105CFM at 60CPS 115VAC 14WATT 50/60CPS IMPEDANCE PROTECTED-F 88CFM at 50CPS $7.99

Toll Free Number 800-528-0180 (For orders only)

All parts may be new or surplus, and parts may be substituted with comparable parts if we are out of stock of an item.

3802 North 27th Ave., Phoenix, AZ 85017

Prices subject to change without notice For information call: 602-265-0731

May 1986
**RF TRANSISTORS**

<table>
<thead>
<tr>
<th>TYPE</th>
<th>PRICE</th>
<th>TYPE</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2N1561</td>
<td>$25.00</td>
<td>2N5920</td>
<td>$ 70.00</td>
</tr>
<tr>
<td>2N1562</td>
<td>25.00</td>
<td>2N5921</td>
<td>80.00</td>
</tr>
<tr>
<td>2N1563</td>
<td>25.00</td>
<td>2N5922</td>
<td>10.00</td>
</tr>
<tr>
<td>2N2857</td>
<td>1.55</td>
<td>2N5923</td>
<td>25.00</td>
</tr>
<tr>
<td>2N2857JAN</td>
<td>4.10</td>
<td>2N5941</td>
<td>23.00</td>
</tr>
<tr>
<td>2N2857JANTX</td>
<td>4.50</td>
<td>2N5942</td>
<td>40.00</td>
</tr>
<tr>
<td>2N2876</td>
<td>13.30</td>
<td>2N5944</td>
<td>10.35</td>
</tr>
<tr>
<td>2N2947</td>
<td>18.35</td>
<td>2N5945</td>
<td>10.00</td>
</tr>
<tr>
<td>2N2948</td>
<td>13.00</td>
<td>2N5946</td>
<td>12.00</td>
</tr>
<tr>
<td>2N2949</td>
<td>15.50</td>
<td>2N5947</td>
<td>9.20</td>
</tr>
<tr>
<td>2N3118</td>
<td>5.00</td>
<td>2N6800</td>
<td>6.00</td>
</tr>
<tr>
<td>2N3156</td>
<td>4.00</td>
<td>2N6804</td>
<td>7.00</td>
</tr>
<tr>
<td>2N3317</td>
<td>1.15</td>
<td>2N6808</td>
<td>12.00</td>
</tr>
<tr>
<td>2N3375</td>
<td>17.10</td>
<td>2N6809</td>
<td>10.00</td>
</tr>
<tr>
<td>2N3478</td>
<td>2.13</td>
<td>2N6995</td>
<td>21.70</td>
</tr>
<tr>
<td>2N3553</td>
<td>1.55</td>
<td>2N6997</td>
<td>21.70</td>
</tr>
<tr>
<td>2N3553JAN</td>
<td>2.90</td>
<td>2N6105</td>
<td>21.85</td>
</tr>
<tr>
<td>2N3632</td>
<td>15.50</td>
<td>2N6136</td>
<td>40.24</td>
</tr>
<tr>
<td>2N3733</td>
<td>11.00</td>
<td>2N6267</td>
<td>140.00</td>
</tr>
<tr>
<td>2N3818</td>
<td>5.00</td>
<td>2N6304</td>
<td>1.50</td>
</tr>
<tr>
<td>2N3866</td>
<td>1.30</td>
<td>2N6306</td>
<td>30.00</td>
</tr>
<tr>
<td>2N3866JAN</td>
<td>2.20</td>
<td>2N6307</td>
<td>55.31</td>
</tr>
<tr>
<td>2N3866JANTX</td>
<td>3.80</td>
<td>2N6439</td>
<td>55.00</td>
</tr>
<tr>
<td>2N3866JANTXV</td>
<td>4.70</td>
<td>2N6439</td>
<td>18.00</td>
</tr>
<tr>
<td>2N3866JANTXV</td>
<td>5.30</td>
<td>2N6507</td>
<td>10.05</td>
</tr>
<tr>
<td>2N3892</td>
<td>3.35</td>
<td>2N6604</td>
<td>13.50</td>
</tr>
<tr>
<td>2N3926</td>
<td>16.10</td>
<td>2N6604</td>
<td>13.50</td>
</tr>
<tr>
<td>2N3927</td>
<td>17.25</td>
<td>2N6609</td>
<td>44.00</td>
</tr>
<tr>
<td>2N3948</td>
<td>1.75</td>
<td>2N6680</td>
<td>80.00</td>
</tr>
<tr>
<td>2N3950</td>
<td>25.00</td>
<td>3C05</td>
<td>40.00</td>
</tr>
<tr>
<td>2N3959</td>
<td>3.85</td>
<td>01-80734</td>
<td>65.00</td>
</tr>
<tr>
<td>2N4012</td>
<td>11.00</td>
<td>102-1</td>
<td>28.00</td>
</tr>
<tr>
<td>2N4041</td>
<td>14.00</td>
<td>103-CA</td>
<td>28.00</td>
</tr>
<tr>
<td>2N4072</td>
<td>1.60</td>
<td>260-44</td>
<td>18.00</td>
</tr>
<tr>
<td>2N4080</td>
<td>4.53</td>
<td>407P1</td>
<td>24.00</td>
</tr>
<tr>
<td>2N4127</td>
<td>21.00</td>
<td>163P1</td>
<td>30.00</td>
</tr>
<tr>
<td>2N4144</td>
<td>2.25</td>
<td>181-12</td>
<td>18.00</td>
</tr>
<tr>
<td>2N4147</td>
<td>1.25</td>
<td>210-2</td>
<td>28.00</td>
</tr>
<tr>
<td>2N4148</td>
<td>1.69</td>
<td>269-1</td>
<td>15.00</td>
</tr>
<tr>
<td>2N4430</td>
<td>11.80</td>
<td>281-1</td>
<td>30.00</td>
</tr>
<tr>
<td>2N4597</td>
<td>3.45</td>
<td>482</td>
<td>7.50</td>
</tr>
<tr>
<td>2N4599</td>
<td>2.30</td>
<td>564-1</td>
<td>25.00</td>
</tr>
<tr>
<td>2N5016</td>
<td>18.40</td>
<td>698-3</td>
<td>15.00</td>
</tr>
<tr>
<td>2N5026</td>
<td>15.00</td>
<td>703-1</td>
<td>15.00</td>
</tr>
<tr>
<td>2N5070</td>
<td>18.60</td>
<td>707-1</td>
<td>4.00</td>
</tr>
<tr>
<td>2N5090</td>
<td>13.80</td>
<td>709-2</td>
<td>11.00</td>
</tr>
<tr>
<td>2N5108</td>
<td>3.45</td>
<td>711</td>
<td>4.00</td>
</tr>
<tr>
<td>2N5109</td>
<td>1.70</td>
<td>733-2</td>
<td>15.00</td>
</tr>
<tr>
<td>2N5160</td>
<td>3.65</td>
<td>792-6</td>
<td>25.75</td>
</tr>
<tr>
<td>2N5177</td>
<td>21.62</td>
<td>3421</td>
<td>13.00</td>
</tr>
<tr>
<td>2N5179</td>
<td>1.94</td>
<td>3683P1</td>
<td>30.00</td>
</tr>
<tr>
<td>2N5216</td>
<td>56.00</td>
<td>3992</td>
<td>25.00</td>
</tr>
<tr>
<td>2N5260</td>
<td>75.00</td>
<td>4164P1</td>
<td>28.00</td>
</tr>
<tr>
<td>2N5583</td>
<td>3.45</td>
<td>4243P1</td>
<td>28.00</td>
</tr>
<tr>
<td>2N5589</td>
<td>9.77</td>
<td>4304P3</td>
<td>18.00</td>
</tr>
<tr>
<td>2N5590</td>
<td>10.92</td>
<td>4308P1</td>
<td>27.50</td>
</tr>
<tr>
<td>2N5591</td>
<td>13.80</td>
<td>710-1</td>
<td>28.00</td>
</tr>
<tr>
<td>2N5596</td>
<td>99.00</td>
<td>7269-1</td>
<td>10.50</td>
</tr>
<tr>
<td>2N5636</td>
<td>12.00</td>
<td>728-1</td>
<td>37.50</td>
</tr>
<tr>
<td>2N5637</td>
<td>13.50</td>
<td>736-1</td>
<td>30.00</td>
</tr>
<tr>
<td>2N5641</td>
<td>12.42</td>
<td>775-1</td>
<td>30.00</td>
</tr>
<tr>
<td>2N5642</td>
<td>14.03</td>
<td>779S</td>
<td>15.00</td>
</tr>
<tr>
<td>2N5643</td>
<td>25.50</td>
<td>7795-1</td>
<td>15.00</td>
</tr>
<tr>
<td>2N5645</td>
<td>13.80</td>
<td>7796-1</td>
<td>24.00</td>
</tr>
<tr>
<td>2N5666</td>
<td>20.70</td>
<td>775-5</td>
<td>36.00</td>
</tr>
<tr>
<td>2N5667</td>
<td>11.05</td>
<td>40081CA</td>
<td>5.00</td>
</tr>
<tr>
<td>2N5691</td>
<td>18.00</td>
<td>40279CA</td>
<td>10.00</td>
</tr>
<tr>
<td>2N5764</td>
<td>27.00</td>
<td>40280CA</td>
<td>4.62</td>
</tr>
<tr>
<td>2N5836</td>
<td>3.65</td>
<td>40281BC</td>
<td>10.00</td>
</tr>
<tr>
<td>2N5842</td>
<td>8.45</td>
<td>40282CA</td>
<td>20.00</td>
</tr>
<tr>
<td>2N5847</td>
<td>19.90</td>
<td>40290CA</td>
<td>2.80</td>
</tr>
<tr>
<td>2N5849</td>
<td>20.90</td>
<td>40292CA</td>
<td>13.05</td>
</tr>
<tr>
<td>2N5913</td>
<td>3.25</td>
<td>40295CA</td>
<td>2.50</td>
</tr>
<tr>
<td>2N5916</td>
<td>36.00</td>
<td>40341CA</td>
<td>21.00</td>
</tr>
</tbody>
</table>

**DROP LEAD TYPES**

- 2N5691 40279CA
- 2N5764 40280CA
- 2N5836 40281BC
- 2N5842 40282CA
- 2N5847 40290CA
- 2N5849 40292CA
- 2N5913 40295CA
- 2N5916 40341CA

**Laser Parts**

- All parts may be new or surplus, and parts may be substituted with comparable parts if we are out of stock of an item.

**PRICES SUBJECT TO CHANGE WITHOUT NOTICE**

Mhz electronics

3802 North 27th Ave., Phoenix, AZ 85017

Toll Free Number
800-528-0180
(For orders only)

**Tell 'em you saw it in HAM RADIO!**
E.F. JOHNSON ROLLER INDUCTORS

MODEL 229-0201-01 $36.99
10UH at 3AMPS MAX.

MODEL 229-0202-01 $44.99
18UH at 5AMPS MAX.

NI-CAD BATTERY CHARGERS

UNIVERSAL CHARGER $19.99

MALLORY CHARGER $23.99

EVEREADY CHARGER $9.99

UNELCO, SEMCO, ARCO METAL CLAD MICA CAPACITORS

<table>
<thead>
<tr>
<th>Standard Size</th>
<th>Micro Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3.9</td>
<td>5</td>
</tr>
<tr>
<td>4.7</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>5.1</td>
<td>8</td>
</tr>
<tr>
<td>6.8</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
</tr>
<tr>
<td>8.2</td>
<td>11</td>
</tr>
<tr>
<td>9.1</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>13</td>
</tr>
</tbody>
</table>

********NOTE ALL VALUES LISTED IN PICO FARAD********

PRICE INFORMATION
1 to 10 $.90ea. 11 to 51 $.80ea. 52 to 102 $.70ea.
103 and up call

GOULD NI-CAD BATTERIES
AA size 1.25v at 500mahr new a $1.99
D size 1.25v at 4 AMPHR new h 7.49

GENERAL ELECTRIC NI-CAD BATTERIES
AA size 1.25v at 500mahr new a 2.99
195194 3.75v at 100mahr new 1.99
AA size 3.75v at 100mahr new a 2.99
AA size pack of 10 12.5v at 450mahr used a 5.99
Sub C Pack of 10 12.5v at 2.5Ampr new c 9.99

UNION CARBIDE NI-CAD BATTERIES
193817 3.75v at 225mahr new a 2.99

GLOBE GEL-CELL BATTERIES
2v at 8AMPHR GC280 new g 5.99
12v at 20AMPHR GC12200 new g 49.99
12v at 23AMPHR GC12300 new g 54.99

EAGLE PICHET GEL-CELL BATTERIES
12v at 1.5AMPFR CF12V1.5 new d 11.99

GATES SEALD RECHARGEABLE LEAD ACID BATTERIES AND PACKS
2v at 2.5AMPFR D Cell new b 5.99
8v at 5AMPFR 4 X Cell used f 14.99
12v at 2.5AMPFR 6 D Cells new f 24.99
18v at 2.5AMPFR 9 D Cells new f 29.99

GENERAL ELECTRIC SEALEO RECHARGEABLE LEAD ACID BATTERIES AND PACKS
6v at 2.5AMPFR 3 D Cells used e 10.00
12v at 2.5AMPFR 6 D Cells used e 19.99
12v at 5AMPFR 6 X Cells used e 24.99

** Prices SUBJECT TO CHANGE WITHOUT NOTICE **

MH z electronics
3802 North 27th Ave., Phoenix, AZ 85017

PRICES SUBJECT TO CHANGE WITHOUT NOTICE

For information call: 602-265-0731

Tell 'em you saw it in HAM RADIO!
RF Transistors (continued)

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S02102</td>
<td>$19.00</td>
<td>3000A-8</td>
</tr>
<tr>
<td>S02107</td>
<td>$29.00</td>
<td>300A-8</td>
</tr>
<tr>
<td>S02113-14</td>
<td>$39.00</td>
<td>300B-8</td>
</tr>
<tr>
<td>S02123-16</td>
<td>$49.00</td>
<td>300C-8</td>
</tr>
<tr>
<td>S02144-7</td>
<td>$59.00</td>
<td>300D-8</td>
</tr>
<tr>
<td>S02154-7</td>
<td>$69.00</td>
<td>300E-8</td>
</tr>
<tr>
<td>S02162-7</td>
<td>$79.00</td>
<td>300F-8</td>
</tr>
<tr>
<td>S02164-7</td>
<td>$89.00</td>
<td>300G-8</td>
</tr>
<tr>
<td>S02168-7</td>
<td>$99.00</td>
<td>300H-8</td>
</tr>
<tr>
<td>S02180-7</td>
<td>$109.00</td>
<td>300I-8</td>
</tr>
<tr>
<td>S02190-7</td>
<td>$119.00</td>
<td>300J-8</td>
</tr>
<tr>
<td>S02195-7</td>
<td>$129.00</td>
<td>300K-8</td>
</tr>
<tr>
<td>S02199-7</td>
<td>$139.00</td>
<td>300L-8</td>
</tr>
<tr>
<td>S02205-7</td>
<td>$149.00</td>
<td>300M-8</td>
</tr>
<tr>
<td>S02215-7</td>
<td>$159.00</td>
<td>300N-8</td>
</tr>
<tr>
<td>S02225-7</td>
<td>$169.00</td>
<td>300O-8</td>
</tr>
<tr>
<td>S02227-7</td>
<td>$179.00</td>
<td>300P-8</td>
</tr>
<tr>
<td>S02237-7</td>
<td>$189.00</td>
<td>300Q-8</td>
</tr>
<tr>
<td>S02247-7</td>
<td>$199.00</td>
<td>300R-8</td>
</tr>
<tr>
<td>S02257-7</td>
<td>$209.00</td>
<td>300S-8</td>
</tr>
<tr>
<td>S02267-7</td>
<td>$219.00</td>
<td>300T-8</td>
</tr>
</tbody>
</table>

Relays

BNC To Banana Plug Coax Cable RG-58 36 inch or BNC to 8 Coax Cable RG-58 36 inch.

$7.99 or 2 For $13.99 or 10 For $50.00

RFX Part # 300-11182

120Vac Type BNC DC to 4 Ghz.

FSN 5985-543-1223

$39.99

Amphenol

Part # 316-10102-8

115Vcge Type BNC DC to 3 Ghz.

$29.99

Cable 7.50

1.00

2.50

1.00

2.50

2.50

$50.00

85017 (For Arizona, Nevada, Utah and New Mexico orders only.)

For orders only, call 620-265-0731.

All RELAYS and CABLES are taking on (602) 242-8918 or notifying us by post card. Return authorizations will not be given out on our 800 number.

SALES TAX: Arizona residents must add 5% sales tax, unless a signed Arizona resale tax card is current on file with us. All orders placed by persons outside of Arizona, but delivered to persons in Arizona are subject to the 5% sales tax.

SHORTAGE OR DAMAGE: All claims for shortages or damages must be made within 5 DAYS of receipt of package. Claims must include a copy of our invoice, along with a return authorization number. We will credit at rate of 80% of invoice for shortage or 25% of invoice for damage. If you have shipped the damaged product, the shipping cost on the damaged product is also our responsibility. Packages must be properly packed. If items are not properly packed, contact the carrier so that they can be re-shipped and examine the package before it is returned to us. Customers who do not notify us within this time period will be held responsible for the written order as we will consider the location of an order.

OUR BID NO. IS STRICTLY FOR ORDERS ONLY (602) 528-0180 INFORMATION CALLS ARE TAKEN ON (602) 242-8918 OR (602) 242-3037.

More Details? CHECK—OFF Page 166

RFX Part # 300-11173

120Vac Type BNC Same

FSN 5985-543-1850

$39.99

POSTAGE: Minimum shipping and handling in the U.S., Canada, and Mexico is $3.00 for ground shipping without any minimums, all other orders are $5.00. All rates are available at the time of your order. All foreign orders please include 25% of the amount for shipping and handling. C.O.D.'s are shipped only.

PREPAID ORDERS: Orders must be accompanied by a check.

PRICES: Prices are subject to change without notice.

PURCHASE ORDERS: We accept purchase orders only when they are accompanied by a check.

RESTOCK CHARGES: If part is returned to MHZ ELECTRONICS, INC. due to customer error, the customer will be held responsible for all fees incurred and will be charged a 15% RESTOCK CHARGE, with the remainder in CREDIT ONLY. The following must accompany any return; A copy of our invoice, return authorization number which must be obtained prior to shipping the merchandise back to us. All returns must be returned within 10 DAYS of receipt of part. Return authorization numbers can be obtained by calling (602) 242-8918 or notifying us by post card. Return authorizations will not be given out on our 800 number.

TOLL FREE NUMBER

800-528-0180

(PRICES SUBJECT TO CHANGE WITHOUT NOTICE)

MHZ ELECTRONICS

3802 North 27th Ave., Phoenix, AZ 85017

For information call: 602-265-0731

May 1985
TOUCHTONE™ CODEC KIT
MODEL TTK
- $22.95

WIRED & TESTED
- MODEL TTK
- $59.95

Now Available
For IC-BAT

ICOM IC-BAT USER'S
"AUDIO BLASTER" MODULE

Model AB-1
$19.95

Price includes postage and handling. USA CA residents add 6%

Send check or money order to
ENGINEERING CONSULTING
583 CANDLEWOOD ST., BREA, CA 92621
(714) 671-2009

TOUCHTONE™ DTMF
to RS-232-C
300 BAUD INTERFACE

NOW INCLUDES ANSWERS TO FCC/VEC EXAM QUESTIONS
ARRL LICENSE MANUAL
Here's the latest up-to-date licensing guide from the ARRL. Plenty of theory and
detailed explanations take most of the pain out of studying to upgrade your
license. © 1984 8th edition 216 pages
Softbound $4.00
Please add $2 shipping & handling

HAM RADIO'S BOOKSTORE
Greenville, NH 03048

1. It's BRAND NEW
2. It's BIGGER. Over 1024 pages.
3. It's EXPANDED. Covers everything from basic
electronics to esoteric radio gear.
4. It's chockfull of NEW PROJECTS.
5. It's the COMPLETE reference text available.
6. Get your copy TODAY.

ORDER YOURS TODAY

SAMS COOKBOOKS
MODERN DICTIONARY OF ELECTRONICS —
6th Edition by Rudolf Graf
This book should be in every ham's library. It has over 20,000 unique terms to electronics
and other closely related fields. 3000 additions to the 5th edition and twice the size of
the 1st edition! From A to Z to zoom tech, you'll find it in this updated
dictionary. 6th edition. ©1984 1152 pages
Hardbound $39.95

CMOS COOKBOOK by Don Lancaster
CMOS is today's state-of-the-art! It's low cost, widely available and uses an absolute
minimum of power. It's also fun to work with and easy to use. The CMOS
Cookbook is written to help you use CMOS and is check full of practical circuits and does
not dwell on math or heavy theory. Projects include high-performance op-amps, TV
type-white digital instruments, music synthesizers, video games and more. ©1977, 1st edi-
tion. 414 pages
Softbound $13.95

IC OP AMP COOKBOOK by Walter Jung
This second edition is broadly updated in terms of device coverage. It includes the latest
in state-of-art developments such as JFET and MOST devices in both single and multiple
forms. This cookbook is divided into these basic parts. Part I introduces the IC op amp
and discusses general considerations. Part II covers practical circuit applications. Part III
is an appendix consisting of manufacturer's data sheets and other pertinent information.
You'll find a wealth of information, as well as over 200 practical circuit applications.
©1979, 2nd edition, 480 pages
Softbound $15.95

TTL COOKBOOK by Don Lancaster
Despite the advent of CMOS, there is still design work being done with TTL circuitry.
This book gives you a broad overview of exactly what TTL is, how it works and is full of
design ideas and practical circuits. Areas that receive attention include: flip-flops, clocked
logic, latches, counting techniques, noise generators and much more. You also get a
complete discussion of practical TTL applications including digital counters, event coun-
ters, counters and oscillator circuits. ©1974, 1st edition. 584 pages
Softbound $12.95

Please enclose $3.50 for shipping and handling.

Ham Radio's Bookstore
Greenville, NH 03048

SOLD OUT
MOSLEY...A BETTER ANTENNA...
Antennas For 40 Meters...
*ALL STAINLESS HARDWARE
*NO MEASURING
*2 YEAR WARRANTY
*5 KW P.E.P.
*NO BALUN NEEDED

Easy as... 1 - S-401 M. A 40 Meter Rotatable Dipole which gives you excellent bandwidth and performance. MOSLEY's S-401 M is the best 40 Meter Dipole ever built. All stainless hardware is standard. We have made it even stronger than before! We have added 9 extra insulator blocks and 2 feet more rectangle. The center of the elements are reinforced with an unbreakable non-conductive rod which makes it just about indestructible. Our link coupled feed system provides for an efficient match which enables you to direct feed the antenna with no need for a balun. This is why we give a 2 year warranty on parts, material, and workmanship.

2 - Our S-402 M is now on a 24 foot boom and has all of the new improved structural changes. This antenna will give you years of outstanding mechanical and electrical performance in any climate. We feel this is the best performing maintenance free, 2 element 40 Meter beam built anywhere in the world. Check it out! We believe you will agree. The elements are heavier constructed than other brands and only reduces to 1/2 of the original width at all points. Compare this to the other manufacturers. The S-402 M also comes with our 2 year warranty!

3 - The S-403 is the killer of the three models. This antenna gives you full size performance and is built to last. Our 36 foot boom is made out of 2.5" x 104 wall with a 24 foot sleeve of 1.75x1.75 wall. This gives you a wall thickness of 0.029 over 24 feet of the boom. The S-403 is spaced to give you the best front to back and forward gain. It will give you the whole 40 Meter band to chase DX or rag chasers. Our S-403 also comes with our 2 year warranty.

If you are a new ham and are not familiar with MOSLEY, ask an older ham about us or call the PRESIDENT of MOSLEY. He will be glad to explain why MOSLEY IS A BETTER ANTENNA.

These and other MOSLEY products are available through your favorite DEALER. Or write or call MOSLEY for the DEALER nearest you.

ARRL TECH-GENERAL LICENSE MANUAL

Written in an easy to read and understand style, this is the guide you need for your Tech/General studying. FCC questions with complete answers ©1985. 1st edition. AR-TG Softbound $5.00

Please add $2.50 for shipping and handling.
SSI-202P CMOS
WE OVER PURCHASED
Our over supply can be your gain.
We've just got to try and get even so we are going to let our ham friends share in some of these great circuits, for a great price.

FEATURES
- Central office quality
- Band-splitting filters included on chip
- Single, low-tolerance, 5-volt supply
- Detects either 12 or 16 standard DTMF digits
- 18-pin DIP package
- Output in either 4-bit hexadecimal code or binary coded 2 of 8. Use 74159 decoder for 1 of 16 output
- Uses inexpensive 3.579545-MHz color-burst crystal for reference (Radio Shack P/N 272-1310 $1.69)
- Excellent speech immunity

All you need is a color-burst XTAL from Radio Shack & 1 meg resistor to make a C.O. Quality Touch Tone decoder.
SSI-202 is a 5V part and unlike the older 201 is TTL compatible and will directly interface to personal computers.
These won't last long and are limited to available supply. so HURRY!!

$18 INCLUDING SPECS. & SCHEMATICS
In Wash. add 7.9% sales tax

R.M. FULLER CO.
902 Industry Dr., Seattle, WA 98188
1-800-626-6662
In Wash. Call (206) 575-8640

The Problem Solver...

The RF Wattmeter Model 81000-A from Coaxial Dynamics, Inc. does more than provide accurate RF measurements. Testing of transmission lines, antennas, connectors, filters and related components can reveal unknown problems and assure optimum equipment performance.
The 81000-AK Wattkit features this easy-to-read RF Wattmeter (pictured here), with its optional carrying case and an array of elements and accessories. Coaxial Dynamics elements can be purchased separately for use in other manufacturer’s Wattmeters. For more information on the 81000-A Wattmeter or any of the complete line of Coaxial Dynamics RF products and OEM components please contact Coaxial Dynamics, Inc.

SEE US AT
OUR BOOTH
IN DAYTON

COAXIAL DYNAMICS, INC.
15210 Industrial Parkway, Cleveland, OH 44135 • (216) 267-2233
Outside Ohio, WATS: (800) Coaxial, Tele: 980-630
new IC-735 HF transceiver

ICOM has announced the IC-735 ultra compact all-band HF transceiver and general coverage receiver, said to be the most compact and advanced HF SSB unit on the market. Measuring only 3.7 inches high by 9.5 inches wide by 9 inches deep, the IC-735 is suited for mobile, marine, or base station operation.

To enhance receiver performance, the IC-735 has built-in receiver attenuator and preamp. It also has a 105-dB dynamic range and a new low-noise phase locked loop for rock-solid reception.

The IC-735 is suited for ultra compact all-ham band HF transceiver and general coverage receiver, said to be the most compact and advanced HF SSB unit on the market. Measuring only 3.7 inches high by 9.5 inches wide by 9 inches deep, the IC-735 is suited for mobile, marine, or base station operation.

A removable printed circuit board has been incorporated to simplify servicing and repairs; spare boards can also be purchased separately. These regulators now have a 30-amp load handling capability that allows for up to 12 40-watt solar modules in parallel to be controlled simultaneously. This benefit helps to lower overall system cost by using fewer regulators.

Other standard features include temperature compensation, low voltage disconnect, analog meter package, transient protection and adjustable voltage setpoints. The controller in housed in a NEMA 3R weather-proof enclosure. 12 and 24 volt units are available off the shelf; other voltage units (36, 48, and 120 volts) can be provided upon request. Special options include Array Power Diversion, Manual Array Switching and a Severe Environment Package.

For further information, contact Photocomm, Inc., 7735 E. Redfield Road, Scottsdale, Arizona 85260.

Circle 302 on Reader Service Card.

multi-mode tuning

Get on frequency quickly and accurately with the new HAL SPT-1 “Spectra-Tune” multi-mode tuning indicator. The SPT-1 may be used in the following modes of operation: RTTY (high tones) and RTTY (low tones), FSK (FAX), Slow-Scan Television (SSTV) and Morse Code (CW).

The frequency spectra of the received signal is displayed on a calibrated linear 40-segment red LED bar graph. The front panel calibration control allows the selection of which 1000 Hz range
Wouldn't you like to use one of the popular, inexpensive home computers to handle a variety of your Amateur Radio chores? N6NB and KC6A have come up with a host of valuable computer programs and background information which are just the ticket to help you computerize such duties as logging, duping contest logs, awards record keeping, calculating Gray line and beam headings to name just a few examples. You can either enter the programs from the book by hand or you can buy the programs already loaded onto easy-to-use disks for the four most popular home computers: C-64, TRS-80, Apple II or the IBM-PC. In fact, the complete package of this 367 big, page book and program disk costs no more than many of the game programs that your kids are now using. Without a doubt, this is the real bargain in Amateur Radio software. See how much easier your home computer can make your hamming activities. © 1984 1st edition. 327 pages.

**Program Listing**

1) Demo
   * MiniLogger*
2) Data Base Mgmt.
   * Logbook*
   * Radio Awards Data Base*
   * Setup Program for Awards Data Base*
3) Latitude/Longitude Programs
   * Data File*
   * Beamheading chart*
   * DX Display*
   * Sunrise Chart*
   * Grayline*
   * DX Anywhere*
   * DX Checker*
4) Contest and Duping
   * Dupechecker (& Print)*
   * General Contest Logger*
   * Field Day Logger*
   * Sweepstakes Logger*
5) Antenna Programs
   * Antenna Scaler*
   * Antenna Matching Evaluator*
   * Vertical Pattern Plotter*
6) To the Moon and Beyond
   * EME System Calculator*
   * Sky locator*
   * Moontracker*

Program disks available for: IBM PC-DOS, Apple II (DOS 3.3), TRS-80 Model I and III and Commodore C-64.

| HA-0657        | Softbound $16.95 |
| HA-0657 with disk | SAVE $6.95 — $29.95 |

(1) Please make sure you indicate which machine (purchased separately $36.95)

**NEW!**

**C-64 + DX Edge = Fun**

**USE THE INEXPENSIVE COMMODORE C-64**

Now generate your own Grayline display.

Now that Commodore has reduced the price of the C-64 computer to $150, there is little reason why you don't own one for your ham station. Xantek has adapted their best selling DX Edge to the computer world and it comes at a very reasonable price. Just $34.95 brings into your ham shack the ability to know and predict when and where DX is going to appear. The DX Edge shows you the sun's path across the earth. When you are using the program, the computer will automatically update the information as the sun progresses across the face of the Earth. To make the computerized DX Edge even easier to use, the display is keyed to the DXCC list and the 40 QO zones. Disk and documentation are just $34.95. This is something you've GOT to have! ©1985.

[XN-C64] $34.95

Please enclose $3.50 for shipping and handling. Prices U.S. Funds only.
from 300 Hz to 3000 Hz is to be displayed. Best of all, hookup is very simple — and audio input line from the receiver/transceiver and a +12 VDC line are all that’s required for operation. The SPT-1 comes with a one-year limited warranty. The SPT-1 Spectra Tune is priced at $169.00. For more information, contact HAL Communications Corporation, P.O. Box 365, Urbana, Illinois 61801. Circle #303 on Reader Service Card.

**KENPRO rotator products**

The KENPRO brand line of rotators and accessories — including the KR-400 and KR-500 pair of rotators for satellite and space communications — are now available from Encomm, Inc. Also available are the KR-600RC medium-duty and the KR-2000RC heavy-duty units for use on the U.S.A. voltage system.

For further details, contact Encomm, Inc., Suite 800, 2000 Avenue ‘G’, Plano, Texas 75074. Circle #304 on Reader Service Card.

**VHF and UHF transmitter and receiver modules**

Hamtronics, Inc. recently announced commercial versions of its popular high-band and UHF FM transmitter and receiver modules, FCC Type Accepted under parts 15, 22, 74, and 90. The TA-51 VHF transmitter and the TA-451 UHF transmitter are each capable of operating at 2 watts continuous duty and up to 3 watts intermittent service. The companion R144 and R451 receivers feature high sensitivity and superior front-end and IF selectivity, automatic frequency control, and hysteresis squelch to lock onto drifting or fading signals.

The Hamtronics® transmitter and receiver modules are supplied as printed circuit board assemblies that can be housed in a variety of ways and adapted to many applications. The low-cost units are suitable for use in voice and data links to replace phone lines, for remote control, for wireless alarm systems, for telemetry, for monitor receivers, and for many other applications.

Other Hamtronics® products of interest include “202” type FSK modulators and demodulators to provide digital data operation with FM transmitters and receivers, low-noise receiver preamps, 806-MHz band scanner converters, VHF AM receivers, repeater CORs, CWIDs, simplex and duplex autopatches, DTMF control and many other products related to VHF and UHF transmission and reception.

For a copy of Hamtronics’ new 40-page catalog, contact Hamtronics, Inc., 65-F Moul Road, Hilton, New York 14468-9535. (For overseas mailing, send $2 or 4 IRCs.) Circle #118 on Reader Service Card.

---

**NEW products**

**Barry Electronics Corp.**

Worldwide Amateur Radio Since 1950

Your one source for all Radio Equipment

**Barry Squeal**

- Fits inside most HF-SSB transceivers.
- Requires human voice to activate.
- Ignores static, noise and heterodynes.
- On/off switch only — no adjustments.
- Connects to audio leads and 9/12 VDC.
- Fully assembled and tested $99.95.
- Complete with comprehensive manual.
- Used worldwide in commercial and military transceivers.

**CME COMMUNICATIONS**, 5479 Jetport, Tampa, FL 33614 • (813) 885-3996

May 1985
ATTENTION TECHNICIANS

Two-Way Radio Technician Wanted

Trio-Kenwood Communications is seeking an experienced technician to service state-of-the-art Amateur Radio Communications equipment, HF-UHF. A qualified candidate should be familiar with PLL synthesizers, microprocessors, transistorized RF, and must be able to service to the component level.

We have a well-equipped service shop and parts department. Our service manuals are acknowledged as the best in the industry. We offer a competitive, comprehensive benefits package. If you would like to work with the industry's pace setter, contact:

Trio-Kenwood Communications
Att: Service Department
1111 West Walnut Street
Compton, CA 90220
WHY SETTLE FOR LESS?
LOOK WHAT THE MOSLEY TA-33 OFFERS

- 3 Element full power
- All stainless steel hardware
- Ease of assembly
- No balun required
- Now a 2 year limited warranty
- Now a standard 2" mast adapter
- Built to last

- Expandable to 30 or 40 meters
- Superb front to back ratio
- Excellent gain
- Outstanding SWR

SPECIFICATIONS:
Forward gain 1KW 2KW P.E.P.
Front-to-Back Ratio 5:1 to 1 or better
Power rating CW Mosley
SSB
Feedpoint Impedance 50 ohm
VSWR HT Resonance
Matching System
Number of Elements 3
Longest Element 28'
Boom Length 14'
 Mast Size 15/8" or 2"
Tuning Radius 15/6' 
Wind surface area (in. sq. ft.) 5.7
Wind load (EIA standard 80 mph) 114 lbs.
Assembled Wt. 39 lbs.
Shipping Wt. 44 lbs.

- Used around the world
- Work CW or phone without tuning or adjusting antenna
- A great antenna for the new solid state rigs

ALL MOSLEY ANTENNAS AND CATALOGS AVAILABLE AT QUALITY DEALERS OR CALL TOLL FREE
1-800-325-4016

This antenna is UPS shippable
Prices and specifications subject to change without notice or obligation.

REMEMBER WHETHER YOU USE TRAPS OR LINEAR LOADING. 8db GAIN IS 8db GAIN
YOUR RECEIVER CAN'T TELL THE DIFFERENCE... MOSLEY... TRAP MASTERS QUALITY STILL SETTING THE PACE...

1344 BAUR BOULEVARD ST. LOUIS, MO. 63132 1-314-994-7872
**YOU GET MORE "BANG FOR YOUR BUCK" AT TNT RADIO SALES!**

- Kenwood
- Icom
- Bencher
- AEA
- Kantronics
- Mirage
- KLM
- Telex Hygain
- Nye Viking
- Larsen
- MFJ
- Astron
- Alpha/Delta
- Bearcat
- Regency
- Welz
- Azden
- Santec
- KDK
- Ameritron

**SALES AND SERVICE AT PRICES YOU CAN AFFORD!**
**CALL OUR WATS LINE FOR LOW LOW PRICES!**

**SPECIAL OF THE MONTH: LARSEN MAG MOUNT 2M % PKG—$36.95**

**VISA/MASTER CARD**
**FREE SHIPPING**
**ON MOST RIGS FOR CASH!**

**S.A.S.E. FOR OUR**
**"BENCH-TESTED"**
**USED EQUIPMENT LISTING**

**MON-FRI 9 AM - 6 PM CENTRAL TIME**
**SATURDAY 9 AM - 5 PM**

4124 West Broadway, Robbinsdale, MN 55422 (Mpls./St. Paul)

---

**here is the next generation Repeater**

**MARK 4CR**

The only repeaters and controllers with REAL SPEECH!

Create messages just by talking. Speak any phrases or words in any languages or dialect and your own voice is stored instantly in solid-state memory. Perfect for emergency warnings, club news bulletins, and DX alerts. Create unique ID and tail messages, and the ultimate in a real speech user mailbox — only with a Mark 4.

No other repeaters or controllers match Mark 4 in capability and features. That's why Mark 4 is the performance leader at amateur and commercial repeater sites around the world. Only Mark 4 gives you Message Master™ real speech • voice readout of received signal strength, deviation, and frequency error • 4-channel receiver voting • clock time announcements and function control • 7-helical filter receiver • extensive phone patch functions. Unlike others, Mark 4 even includes power supply and a handsome cabinet.

Call or write for specifications on the repeater, controller, and receiver winners.

**SEE US AT DAYTON**
**BOOTHs 225, 226 & 227**

**MICRO CONTROL SPECIALTIES**
Division of Kendecom Inc.
23 Elm Park, Groveland, MA 01834 (617) 372-3442

---

Tell 'em you saw it in HAM RADIO!
**Accuracy DigiMax Performance**

- **10 MHz Oven Oscillator**: 9 x 8.5 x 3.5
- **10 Hz to 1.2 GHz, 1 PPM Accuracy**

All models have a 1 year warranty.

Optional factory installed rechargeable battery pack available.

**DigiMax Instruments Corp.**

<table>
<thead>
<tr>
<th>Model</th>
<th>Price</th>
<th>Frequency Range</th>
<th>Accuracy Over Temperature</th>
<th>Read Outs</th>
<th>Sensitivity Typ</th>
<th>Power Req</th>
</tr>
</thead>
<tbody>
<tr>
<td>D500</td>
<td>$149.95</td>
<td>50 Hz - 512 MHz</td>
<td>1 PPM, 17-35°C TCXO Time Base</td>
<td>8</td>
<td>15 to 50 MV</td>
<td>8.15 VDC 300 MA</td>
</tr>
<tr>
<td>D510</td>
<td>$179.95</td>
<td>50 Hz - 10 GHz</td>
<td>1 PPM, 17-35°C TCXO Time Base</td>
<td>8</td>
<td>15 to 50 MV</td>
<td>8.15 VDC 300 MA</td>
</tr>
<tr>
<td>D612</td>
<td>$269.95</td>
<td>50 Hz - 12 GHz</td>
<td>0.1 PPM, 20-40°C Proportional 10 MHz Oven</td>
<td>9</td>
<td>15 to 50 MV</td>
<td>110 VAC</td>
</tr>
<tr>
<td>D1200</td>
<td>$399.95</td>
<td>50 Hz - 12 GHz</td>
<td>1 PPM, 17-35°C TCXO Time Base</td>
<td>8</td>
<td>15 to 50 MV</td>
<td>8.15 VDC 300 MA</td>
</tr>
</tbody>
</table>

AC/12 AC-ADAPTER $8.95 T-1200 BNC-BASE 21" ANT. $6.95 DAC12 $34.95 BACS $29.95

---

**Only One Antenna Rotation System is Truly Complete and Simple to Install: The DR10**

The DR10 System offers a compact, single control unit with dual scale indicators; single, eight wire control cable interconnect; and will easily handle a 50 pound balanced antenna array and up to 8 sq. feet of wind load.

One Rotor,

One Controller,

One Installation

The DR10 Dual Axis Antenna Rotor System

**Dynetic Systems**

Call or Write for More Information.

Dealer Inquiries Invited

19128 Industrial Blvd.

Elk River, MN 55330 (USA)

612-441-4303 Telex 756135

---

More Details? CHECK – OFF Page 166
May the Morse Be With You

Look for us at Rochester, NY

Kenwood

HF Transceivers

FT 982 HF CAT System
1439.00
AGC Power Supply, Full Break in CW
1421.90
SSB/AM/FM/1SK Speech Processor

Handhelds

IC 041 400 Hz/Touchtone
309.95
IC 2AT 2m/Touchtone
199.95
IC 3AT 700 Hz/Touchtone
299.95
IC 4AT 440 MHz/Touchtone
229.95

Swarf/IF

R7 100KHz-30MHz
629.00
All Mode Transceiver

VHF/UHF

NEW IC 2200 2m/440
711.00
IC 271 100 watt-2m CVXR
732.95
IC 27A 2m compact mobile
319.15
IC 260 K9 w all mode CVXR 479.95

HF Transceivers

FT 757 HFCVXR with mic
769.95
with general Coverage RCVR

antenna accessories

IC 011 2m/800 Hz/Touchtone
309.95
IC 2AT 2m/Touchtone
199.95
IC 3AT 700 Hz/Touchtone
299.95
IC 4AT 440 MHz/Touchtone
229.95

VHF/UHF

NEW FT 210Dm 45watt
379.95
Very small mobile rig

IC 745
759.95
HFCVXR/Cen Gen RCVR

IC 751 HFCVXR/Cen Gen RCVR
1729.00
with RS63 installed

MARINE

MT 12 12 Programmable Hi
219.95
MT 12 channel Synthesized HT
361.95
MT 12 low watt-all channel Scanner 387.26

Mode 8 compact HT
325.95

RY 464 45watt Base
219.95
RY 464 45watt Base
299.95
RY 464 50 watt Base
275.95
RY 464 50 watt Base
299.95

AERY

AE 8A
859.95
AE 4A
959.95
AE 8E
699.95
AE 4E
699.95

TELEX HEADPHONES

M 10 Headset
99.95
H HCXG-211 Headset
49.95

MFJ Products

B & W
375 6 position Cowl Switch
22.50
375 V position Cowl Switch
22.50
425 1 Watt Low Pass Filter
25.00

Daiwa/MCM/J.W. Miller

CL 520 CL 540 5/8" plus 100.00
369.95
CL 7118 CL 7118 3/4" plus 100.00
129.00

AMPERCOM

D 100 D 1800 Watt Power Ratings
250 Watt Power Ratings

Radio HAM

R7 100KHz-30MHz
299.95
R7 100KHz-30MHz
319.95
R7 100KHz-30MHz
319.95

New VHF/UHF Amps

From TE Systems

with Low Noise

GaAs FET Preamp
Call for Quotes
a busy signal from space

For over twenty-five years various nations have been launching satellites of one type or another. Many of the early satellites were experimental in nature, primarily intended to develop and test space hardware. However, the past fifteen years have been devoted to the more utilitarian aspects of space. Because our only link to satellites has been through RF paths, the amount of the spectrum devoted to this purpose has grown dramatically.

The geosynchronous equatorial orbits are particularly popular. This is because satellites placed in this position appear to remain in one place all the time, and can illuminate a large portion of the earth’s surface. Because of the desirability of this location, it has become imperative that there be global cooperation with respect to the placement of satellites in the general equatorial area. Current agreements allow satellites to be positioned every 2 degrees over the populous equatorial coverage areas.

The resulting proliferation in the number of equatorial satellites puts a significant burden on antenna designers. The 2-degree equatorial spacing requires that antennas have very narrow beams, in addition to low side-lobes, in order to prevent interference to transponders on adjacent satellites. The transmitters and receivers used in these satellites are very sophisticated, and must utilize adaptive techniques in order to maintain predetermined signal-to-noise ratios without interference problems.

The RF spectrum assigned to satellites includes band segments from 400 MHz to over 30 GHz. The most densely used portions are in the region between 1.5 and 12.5 GHz. Because of the limited availability of electric power, satellite transmitters tend to be limited to about 50 to 100 watts, but antenna gains of 20 dB or more are not uncommon. Obviously, satellites intended to provide broad geographic coverage cannot employ highly directive antennas. Some key applications for modern satellites include the following:

Earth resources and position location. Most of us have seen some of the dramatic photographs taken from earth resources satellites showing crops, earthquake faults, volcanoes, and of course, daily weather patterns. These satellites rely on a wide variety of sensors employing optical, thermal, and radar techniques to form images of the earth’s surface. In most cases the resolution is sufficient to reveal major highways, airports, and other key land-based features.

Most of these satellites operate in the 137 MHz and 1.6 GHz portions of the spectrum. Fairly simple receiving equipment will permit the home experimenter to receive exciting weather photographs from the APT and GOES satellites.

An important additional function of this general class of satellites is mapping and position location. Virtually any satellite with high resolution sensors can function as an excellent mapping satellite since its orbit can be precisely determined and its position accurately known at any given time. Twenty continuous years of this process has resulted in highly accurate mapping of the earth’s entire surface, permitting significant improvements in the efficiency and safety of commercial shipping and aviation. A series of Global Positioning Satellites (GPS) is being developed by the United States; when its 18 satellites are completed and in place a few years from now, the signals from these satellites will enable appropriately equipped vessels to determine their exact position on the earth’s surface to within about 100 feet (30 meters).

Telecommunications. It is the telecommunications function performed by modern satellites with which most of us are familiar. Telephone communications, data transmission, video links, and broadcast television now unite the world in a massive satellite-linked network. Satellites designed for this purpose do not originate signals, but are simply repeaters in the sky. They typically consist of a number of channels, called “transponders,” that repeat signals in a 24 or 36 MHz band.
### ADVERTISER'S INDEX AND READER SERVICE NUMBERS

Listed below are the page number and reader service number for each company advertising in this issue. To get more information on their advertised products, use the bind-in card found elsewhere in this issue, select the correct reader service number from either the ad or this listing, check off the numbers, fill in your name and address, affix a postage stamp and return to us. We will promptly forward your request to the advertiser and your requested information should arrive shortly. If the card is missing, send all the pertinent information on a separate sheet of paper to: ham radio magazine, Attn: Reader Service, Greenville, N.C. 29648.

**READER SERVICE # / PAGE #**

<table>
<thead>
<tr>
<th>Reader Service #</th>
<th>Page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>2</td>
</tr>
<tr>
<td>135</td>
<td>4</td>
</tr>
<tr>
<td>163</td>
<td>8</td>
</tr>
<tr>
<td>165</td>
<td>12</td>
</tr>
<tr>
<td>180</td>
<td>16</td>
</tr>
<tr>
<td>210</td>
<td>20</td>
</tr>
<tr>
<td>240</td>
<td>24</td>
</tr>
</tbody>
</table>

*Please contact this advertiser directly.

**READER SERVICE # / PAGE #**

<table>
<thead>
<tr>
<th>Reader Service #</th>
<th>Page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>28</td>
</tr>
<tr>
<td>201</td>
<td>32</td>
</tr>
<tr>
<td>202</td>
<td>36</td>
</tr>
<tr>
<td>203</td>
<td>40</td>
</tr>
<tr>
<td>204</td>
<td>44</td>
</tr>
<tr>
<td>205</td>
<td>48</td>
</tr>
<tr>
<td>206</td>
<td>52</td>
</tr>
<tr>
<td>207</td>
<td>56</td>
</tr>
<tr>
<td>208</td>
<td>60</td>
</tr>
<tr>
<td>209</td>
<td>64</td>
</tr>
<tr>
<td>210</td>
<td>68</td>
</tr>
<tr>
<td>211</td>
<td>72</td>
</tr>
<tr>
<td>212</td>
<td>76</td>
</tr>
<tr>
<td>213</td>
<td>80</td>
</tr>
<tr>
<td>214</td>
<td>84</td>
</tr>
<tr>
<td>215</td>
<td>88</td>
</tr>
<tr>
<td>216</td>
<td>92</td>
</tr>
<tr>
<td>217</td>
<td>96</td>
</tr>
<tr>
<td>218</td>
<td>100</td>
</tr>
<tr>
<td>219</td>
<td>104</td>
</tr>
<tr>
<td>220</td>
<td>108</td>
</tr>
<tr>
<td>221</td>
<td>112</td>
</tr>
<tr>
<td>222</td>
<td>116</td>
</tr>
<tr>
<td>223</td>
<td>120</td>
</tr>
<tr>
<td>224</td>
<td>124</td>
</tr>
<tr>
<td>225</td>
<td>128</td>
</tr>
<tr>
<td>226</td>
<td>132</td>
</tr>
<tr>
<td>227</td>
<td>136</td>
</tr>
<tr>
<td>228</td>
<td>140</td>
</tr>
<tr>
<td>229</td>
<td>144</td>
</tr>
<tr>
<td>230</td>
<td>148</td>
</tr>
<tr>
<td>231</td>
<td>152</td>
</tr>
<tr>
<td>232</td>
<td>156</td>
</tr>
<tr>
<td>233</td>
<td>160</td>
</tr>
<tr>
<td>234</td>
<td>164</td>
</tr>
<tr>
<td>235</td>
<td>168</td>
</tr>
<tr>
<td>236</td>
<td>172</td>
</tr>
<tr>
<td>237</td>
<td>176</td>
</tr>
<tr>
<td>238</td>
<td>180</td>
</tr>
<tr>
<td>239</td>
<td>184</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Product Review/New Product</th>
<th>Page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encomm, Inc.</td>
<td>20</td>
</tr>
<tr>
<td>HAL Communications Corp.</td>
<td>24</td>
</tr>
<tr>
<td>Harmonic Electronics, Inc.</td>
<td>28</td>
</tr>
<tr>
<td>ICOM America, Inc.</td>
<td>32</td>
</tr>
<tr>
<td>KITek, Inc. (DXEdge)</td>
<td>36</td>
</tr>
<tr>
<td>Nansen Associates</td>
<td>40</td>
</tr>
<tr>
<td>PhoComm, Inc.</td>
<td>44</td>
</tr>
</tbody>
</table>

Each satellite can have as many as ten transponders. This means that a single satellite may handle as many as 50,000 phone calls simultaneously. The availability of these high quality RF links has dramatically improved intercontinental voice and data communications. These links can now reliably transmit a page of FAX data to another part of the world in just a few seconds. Satellites enable commercial broadcasters to bring us important events from virtually every corner of the earth as they occur; the societal ramifications of this news immediacy are still developing.

**Defense**. Not to be upstaged, the military establishments have also been busy in space. Since profitability, in the commercial sense, is not an issue for military users, some of the tasks which satellites are called upon to perform are indeed exotic. These include such things as very high-speed data links (1 Gbit/sec.) and very high resolution imagery for reconnaissance purposes. Charged coupled sensors, cooled with liquid helium to increase sensitivity and mounted at the focal plane of precision lenses, provide orbital images with stunning detail. The ability of radar to penetrate cloud coverage and provide high resolution images is particularly attractive to military users. In some cases, the orbital path of the satellite is used to synthesize an antenna of large aperture and provide a simulated very narrow beam. This technique, called "synthetic aperture radar" (SAR), is capable of revealing subtle details, not visible by any other means, hidden in the earth's surface. Techniques of this type are used by defense organizations to locate submarines concealed below the ocean's surface.

Next time you look at the evening sky, be sobered by the thought that at that very instant, there are probably more conversations being repeated through satellites than if all the world's stars were on the air at the same time. The pros do it without QRM. Now that's what I call a band plan!
The world of CW, RTTY, and new DUAL AMTOR* is as close as your fingertips with the new brilliantly innovative state-of-the-art microcomputer controlled EXL-5000E.

Automatic Sender/Receiver: Due to the most up to date computer technology, just a console and keyboard can accomplish complete automatic send/receive of Morse Code (CW), Baudot Code (RTTY), ASCII Code (RTTY) and new ARQ/FEC (AMTOR).

Code: Morse (CW includes Kana), Baudot (RTTY), ASCII (RTTY), JIS (RTTY), ARQ/FEC (AMTOR).

Characters: Alphabet, Figures, Symbols, Special Characters, Kana.

Built-in-Monitor: 5" high resolution, delayed persistence green monitor — provides sharp clear image with no jiggie or jitter even under fluorescent lighting. Also has a provision for composite video signal output.

Time Clock: Displays Month, Date, Hour and Minute on the screen.

Time/Transmission/Receiving Feature: The built-in timer enables completely automatic TX/RX without operator's attendance.

Select (Selective Calling) System: With this feature, the unit only receives messages following a preset code. Built-in Demodulator for High Performance: Newly designed high speed RTTY demodulator has receiving capability of as fast as 300 Baud. Three-step shifts select either 170Hz, 425Hz or 850Hz shift with manual fine tune control of space channel for odd shifts. HIGH (Mark Frequency 2125Hz)/LOW (Mark Frequency 1275Hz) (one pair select). Mark only or Space only copy capability for selective fading. ARQ/FEC features incorporated.

Crystal Controlled AFSK Modulator: A transceiver without FSK function can transmit in RTTY mode by utilizing the high stability crystal-controlled modulator controlled by the computer.

Photocoupler CW, FSK Keyer-built-in: Very high voltage, high current photocoupler keyer is provided for CW, FSK keying.

Convenient ASCII Key Arrangement: The keyboard layout is ASCII arrangement with function keys. Automatic insertion of LTR/FIG codes makes operation a breeze.

Battery Back-up Memory: Data in the battery back-up memory, covering 24 characters x 8 channels and 24 characters x 8 channels, is retained even when the external power source is removed. Messages can be recalled from a keyboard instruction and some particular channels can be read out continuously. You can write messages into any channel while receiving.

Large Capacity Display Memory: Covers up to 1,280 characters.

Screen Display Type-Ahead Buffer Memory: A 160-character buffer memory is displayed on the lower part of the screen. The characters move to the left eraseing one by one as soon as the are transmitted. Messages can be written during the receiving state for transmission with battery back-up memory or SEND function.

Function Display System: Each function (mode, channel number, speed, etc.) is displayed on the screen.

Printer Interface: Centronics Parallel interface enables easy connection of a low-cost dot printer for hard copy.

Wide Range of Transmitting and Receiving: Morse Code transmitting speed can be set from the keyboard at any rate between 5-100 WPM (word per minute). AUTOTRACK on receive. For communication in Baudot and ASCII Codes, rate is variable by a keyboard instruction between 12-300 Baud when using RTTY Mode and between 12-600 Baud when using TTL level. The variable speed feature makes the unit ideal for amateur, business and commercial use.

Pre-load Function: The buffer memory can store the messages written from the keyboard instead of sending them immediately. The stored messages can be sent with a keyboard command.

"RUB-OUT" Function: You can correct mistakes while writing messages in the buffer memory. Misspelling can also be erased while the information is still in the buffer memory.

Automatic CR/LF: While transmitting, CR/LF automatically sent every 64, 72 or 80 characters.

WORD MODE operation: Characters can be transmitted by word groupings, not every character, from the buffer memory with keyboard instruction.

LINE MODE operation: Characters can be transmitted by line groupings from the buffer memory.

WORD-WRAP-AROUND operation: In receive mode, WORD-WRAP-AROUND prevents the last word of the line from splitting in two and makes the screen easily read.

"ECHO" Function: With a keyboard instruction, received data can be read and sent out at the same time. This function enables a cassette tape recorder to be used as a back-up memory, and a system can be created just like telex which uses paper tape.

Cursor Control Function: Full cursor control (up/down, left/right) is available from the keyboard. Test Message Function: "RY" and "OB" test messages can be repeated with this function.

MARK-AND-BREAK (SPACE-AND-BREAK) System: Either mark or space tone can be used to copy RTTY.

Variable CW weights: For CW transmission, weights (ratio of dot to dash) can be changed within the limits of 1:3-1:6.

Audio Monitor Circuit: A built-in audio monitor circuit with an automatic transmit/receive switch enables checking of the transmitting and receiving state. In receive mode, it is possible to check the output of the mark filter, the space filter and AGC amplifier prior to the filters.

CW Practice Function: The unit reads data from the hand key and displays the characters on the screen. CW keying output circuit works according to the key operation.

CW Random Generator: Output of CW random signal can be used as CW reading practice. Bargraph LED Meter for Tuning: Tuning of CW and RTTY is easy with the bargraph LED meter. In addition, provision has been made for attachment of an oscilloscope to aid tuning.

Built-in AC/DC: Power supply is switchable as required: 100-120 VAC; 220-240 VAC/50/60Hz + 15.8VDC.

Color: Light grey with dark grey trim matches most current receivers.

Dimensions: 365(W) x 121(H) x 351(D) mm; Terminal Unit.

Warranty: One Year Limited

Specifications Subject to Change

EXCLUSIVE DISTRIBUTOR: DEALER INQUIRIES INVITED FOR YOUR NEAREST DEALER OR TO ORDER: TOLL FREE...800-327-3102

AMATEUR-WHOLESALE ELECTRONICS
8817 S.W. 129th Terrace, Miami, Florida 33176

Telephone (305) 233-3631 Telenx: 80-3356

MANUFACTURER:
TONO CORPORATION
9B Motosoko Machi, Maebashi-Shi, 371, Japan

*Dual Amtor: Commercial quality, the EXL-5000E incorporates two completely separate modems to fully support the amateur Amtor codes and all of the CCIR recommendations 476-2 for commercial requirements.
We just struck gold with a miniature, high quality and very reliable DTMF decoder at a rock bottom price of $59.95. Our DTD-I will decode 5040, 4 digit codes with the security of wrong digit reset. It contains a crystal controlled, single chip DTMF decoder that works great in bad signal to noise environments and provides latched and momentary outputs. Why carry that heavy gear when its size is only 1.25 x 2.0 x .4 inches and it comes with our etched in stone, legendary, one year warranty.

Instead of sifting through the field...searching, use our super quick one day delivery and cash in on a rare find.
Presenting two small cases for a lot of mobile power.

You won’t find a 45-watt, 2-meter FM mobile rig that’s built smaller than the Yaesu FT-270RH.

Nor will you find a dual-band FM mobile that offers the crossband full-duplex capability found in the 25-watt Yaesu FT-2700RH.

It shouldn’t be surprising. We’ve been coming up with a lot of innovative concepts lately.

The FT-270RH measures just 2 x 6 x 7 inches. Conveniently fitting its high-power punch into many small spaces of your car. Places where other 45-watt mobiles just won’t fit.

The FT-2700RH is small too. Smaller than other dual-banders. But with one big difference: a “DUP” button. Push it, and you’re operating full duplex, 2 meters on one VFO, 440 MHz on the other. Each at 25 watts. So you can simultaneously transmit and receive in true telephone style.

Once installed, you’ll find the FT-270RH and the FT-2700RH equally simple to operate. Just turn the rig on, dial up a frequency, select offset or duplex split, and you’re on the air.

Each rig gives you 10 memories for storing your favorite frequencies. Dual VFO capability. A clean, uncluttered LCD display for easy readout. Push-button jumps through the band in 1 MHz steps. Band scanning with programmable upper and lower limits. And priority channel operation.

You don’t even have to take your eyes off the road to determine your operating frequency and memory channel. An optional voice synthesizer announces them both at the push of a button on the microphone. The FT-2700RH announces both your 2-meter and 440 MHz operating frequencies.

Also, tone encode and encode/decode capability is programmable from the front panel, using an optional plug-in board.

So when you need a lot of power in a compact mobile radio, discover Yaesu’s FT-270RH and FT-2700RH. There’s nothing else like them on the road.

---

Yaesu Electronics Corporation
6851 Waithall Way, Paramount, CA 90723
(213) 633-4007

Yaesu Cincinnati Service Center
9070 Gold Park Drive, Hamilton, OH 45011
(513) 874-3100

Prices and specifications subject to change without notice.
"DX-cellence!"

TS-940S
The new TS-940S is a serious radio for the serious operator. Superb interference reduction circuits and high dynamic range receiver combine with superior transmitter design to give you no-nonsense, no compromise performance that gets your signals through! The exclusive multi-function LCD sub display graphically illustrates VBT, SSB slope, and other features.

- Low distortion transmitter. Kenwood's unique transmitter design delivers top "quality Kenwood" sound.
- Keyboard entry frequency selection. Operating frequencies may be directly entered into the TS-940S without using the VFO knob.
- Graphic display of operating features. Exclusive multi-function LCD sub display panel shows CW VBT, SSB slope tuning, as well as frequency, time, and AT-940 antenna tuner status.
- QRM-fighting features. Remove "rotten QRM" with the SSB slope tuning, CW VBT, notch filter, AF tune, and CW pitch controls.

Optional accessories:
- AT-940 full range (160-10 m) automatic antenna tuner
- SP-940S external speaker with audio filtering: YG-455C-1 (500 Hz), YG-455CN-1 (250 Hz), YK-88C-1 (500 Hz) CW filters: YK-88A-1 (6 kHz) AM filter
- VS-1 voice synthesizer
- SO-1 temperature compensated crystal oscillator
- MC-42S UP/DOWN hand mic
- MC-60A, MC-80, MC-85 deluxe base station mics
- PC-1A phone patch
- TL-922A linear amplifier
- SM-220 station monitor
- BS-B pan display
- SW-200A and SW-2000 SWR and power meters

More TS-940S information is available from authorized Kenwood dealers.

KENWOOD
TRIO-KENWOOD COMMUNICATIONS
1111 West Walnut Street
Compton, California 90220

Kenwood's unique transmitter design delivers top "quality Kenwood" sound.