ham ralio magazine

cirray analysis:

pattern vs. frequency

on
communications
technology

- Compact Size
- Simple to Operate - Large LCD Readout - 25 or 45 Watts - Packet Compatible - 21 Memory Channels

The $1 \mathrm{C}-28 \mathrm{H}$ has all the features you need for carefree 2 -meter mobile operation. The only thing it doesn't have is a big price.

45 Watts. The IC- 28 H provides a full 45 watts of powerful output. The IC-28A 25 -watt version is also available. Both units have a selectable low power.

Large LCD readout. A wide-view LCD readout can be easily read even in bright sunlight. An automatic dimmer circuit reduces the brightness for evening operation.

Wideband Coverage. The $\mathrm{IC}-28 \mathrm{H}$ performs from $138-174 \mathrm{MHz}$ ispecifications guaranteed from $144.00-148 \mathrm{MHz})$ and includes weather channels. Ideal for MARS and CAP operation.

Compact Size. The IC-28H measures only 2 inches high by $5 \frac{1}{2}$ inches wide by $7 \frac{1}{4}$ inches deep (IC-28A is $5 \frac{1}{4}$

The IC-27H 45 watt and IC-27A 25 watt ultra compact 2 -meter mobiles continue to be available.
inches deepl. Great for mobile installations where space is limited.

21 Memory Channels. Store 21 frequencies into memory, or lock out certain memory channels. All memories are backed up with a lithium battery.

Scanning. Scan the entire band or the memory channels from the provided HM-12 mic.

Easy to Operate. With only II front panel controls, the $\mathrm{IC}-28 \mathrm{H}$ is simole to operate.

Available Options. IC-HMI4 DTMF mic, PS-45 13.8 V 8 A power supply, UT-29 tone squelch unit, SP-10 external speaker. IC-HMI6 speaker mic and HS-15/HS-15SB flexible boom mic and PTT switchbox.

Speed up your local area network with the new 2400 TNC Modem ${ }^{\text {™ }}$. The 2400 TNC Modem is a PC-board that mounts directly above your existing TNC PC-board. By adding the 2400 TNC Modem to TNC-1 or 2, you gain 2400 baud while retaining 1200 baud operation, switch selectable.

Two 2400 TNC Modems will be available - one for TNC-1's, and another for

Speed Up Your TNC-1 Or

 TNC-2's. If you purchased a TNC-1 or TNC-2, manufactured or kit version, the 2400 TNC Modem should be compatible. If you have a home brew case, the installation may require case modification.
2400 BAUD

Trade In Your KPC-1 Or KPC-2 For a New KPC-2400

That's right - Now you can trade in your Packet Communicator (KPC-1), or KPC-2, and for just \$149.00, you'll receive a NEW KPC2400 !

It's easy. All you have to do is fill out the KPC-2400 EXCHANGE SCHEDULING FORM, and mail it to Kantronics with check, money order, Visa or MC number. You'll be scheduled for exchange and notified by mail when to return your KPC-1 or KPC-2 to Kantronics. Once we receive your unit, a new KPC-2400 will be shipped directly to you. You may also schedule your exchange by calling the Kantronics order desk and giving your Visa or MC number. Just call (913)842-7745 between 9-12, 1-4 (Central Standard

Time) Monday-Friday, and we'll take it from there.
To guarantee a quick turn-around time, Kantronics is scheduling $A L L$ exchanges, and assigning authorization numbers. Any unit returned to the factory without prior scheduling and authorization number will not be given priority placement.

Power-Full...70 Watts! TM-2570A/2550A/2530A/3530A
 - High performance GaAs FET tront end

- HIILOW Power switch (adjustable L.OW power)
- IM-3530A covers 220-225 MHz
- Digital Channel Link (optional)

Sophisticated FM transceivers

- 16-key DTMF pad, with audible monitor
- Center-stop tuning another Kenwood exclusive!
- Frequency lock switch
- New 5-way adjustable mounting system
- Unique offset microphone connector relieves stress on microphone cord

- Front panel programmable 38-tone CTCSS encoder includes 97.4 Hz (optional) 2-meter FM mobile transceiver. There is even an auto dialer which stores 15 telephone numbers! There are four versions to choose from: The TM-2570A 70-watt, TM- 2550A 45-watt, TM-2530A 25 -watt and the TM-3530A 220 MHz , 25-watt.
- First 70-watt FM mobile (TM-2570A)
- First mobile transceiver with telephone number memory and autodialer (up to 15 seven-digit phone numbers)
- Direct keyboard entry of frequency
- Automatic repeater offset selection a Kenwood exclusive!
- Extended frequency coverage for MARS and CAP (142-149 MHz: 141-151 MHz modifiable)
- 23 channel memory for offset. frequency and sub-tone
- Big multi-color LCD and back-lit controls for excellent visibility
Kenwood sets the pace again! The all-new " 25 -Series" brings the industry's first compact 70-watt the TM-2570A 70-watt, TM-2550A

DC/ Introducing...
 Digital Channel Link

Compatible with Kenwood's DCS (Digital Code Squelch), the DCL system enables yout rig to automatically QSY to an open channel. Now you can auto matically switch over to a simplex channel after repeater contact! Here's how it works
The DCL system searches for an open channel, remembers it, returns to the original frequency and transmits control information to another DCL equipped station that switches both radios to the open channel. Microprocessor control assures fast and reliable operation. The whole process happens in an instant!

Optional Accessories

- TU-7 38-tone CICSS Encoder
- MU-1 DCL modern urut
- VS-1 vnime svnithestzel
- PG-2K
- PG-3A DC line nomse filt.
- MB-10 extra mobile bracke-1
- CD-10 cail sign dispilay
- PS-430 DC power supply for TM 2550A/2530A/3530A
- PS-50 DC power supnly for TM. 2570 A

Actual size front panel

- MC-60A/MC-80/MC-85 desk muce
- MC-48 extra DTMF In1/ with UPDWN switch
- MC-42S
- MC-55 (8-pin) motile mac with time out timet
- SP-40 compast motile ;reikel
- SP-50 motile spe ake1
- SW-200A/SW-200B SW/R/power meters
- SW-100A/SW-100B
mpact SWR/power meters
-SWT-1 2 m anterna tum

KENWOOD

TRIO-KENWOOD COMMUNICATIONS

contents

10 analyzing 80-meter delta loop arrays Bill Myers, K1GO

30 NE5205 wideband RF amplifier Michael E. Gruchalla

42 ham radio techniques Bill Orr, W6SAI

48 remotely controlled stations: a look at a successful remote base Steve J. NoIl, WA6EJO

59 extended-range VU meter James Eagleson, WB6JNN

67 a very sensitive LF or HF field-strength meter
S. J. DeFrancesco, K1RGO

70 VHF Magi CAD on the C-64
Olin K. McDaniel, Jr., W4PFZ
77 VHF/UHF world
Joe Reisert, W1 JR
82 low-cost spectrum analyzer with kilobuck features
Robert M. Richardson, W4UCH

92 practically speaking
Joe Carr, K4IPV
109 the Guerri report
Microfilm copies are available from University Microfilms, International Ann Arbor. Michigan 48106
elected articles from ham man
Cassette tapes of selected articles form and hand from Recorded Periodicals. 919 Walnut Street. Philadelphia, Pemedsyania 19107 Copyright 1986 ty Cormumbations Technology, Inc. Title: registered at US. Patent Office

Second class postage paid 2, New Hampshire 030480498 and at additional mailing offices
ISBN 01485989

[^0] Greenville. New Hampshire 030480498

110 advertisers index	104 ham mart
and reader service	100 new products
9 comments	6 presstop
98 DX forecaster	4 reflections
106 flea market	9 short circuits

switch to safety

This is an editorial that I wish never had to be written.

This past Field Day, Mike Mankey, WBOTEE, ARRL North Dakota Section Manager, was killed when the antenna he was erecting came into contact with a power line. According to the news report, the site was unfamiliar to Mike's group, and they didn't see the power lines hidden behind the trees.

I'd like to report that this is the first time something like this has ever happened, but it isn't - and I'm afraid it won't be the last, either. Perhaps as we share, with Mike's family and friends, the sorrow of his loss, it would be appropriate to give some thought to the dangers we face in pursuit of our avocation.

We've all done foolish things while working with electricity. When I was wiring 220 volts for my amplifier, for example, I was certain the circuit was dead; I'd pulled the breaker to de-energize it. But when I clamped my wire cutters and squeezed them shut, POW! Sparks, smoke, a sudden dimming of the house lights, and a wife screaming down the stairs expecting to find the worst. I was stunned and ashamed by my stupidity - I'd pulled out the wrong circuit breaker!

As I calmed both myself and my wife down, I started to analyze what I'd done wrong. It was late. I was tired and in a hurry to get the work done. I thought I'd taken all precautions. . . if you pull the breaker, the circuit is dead - isn't it?

I've done other very stupid things over my almost 20 years as a ham. Although I'm not proud of these experiences, I do hope I've learned something from them. WBOTEE's untimely death serves as a reminder to us all that it's imperative to always, a/ways think safety, no matter where you are and no matter what you're doing.

If you're climbing a tower, make sure you're safely belted to it. If you're troubleshooting a live circuit, remove all rings, jewelry, and watches that could make you part of a complete circuit; keep one hand in your pocket. Make sure power supplies are properly built with the appropriate bleeder resistors. Don't stick your hand into your amplifier when it's turned on to "adjust" that bent plate choke. And watch out for power lines; they aren't always easy to see.

By the way, if you were to receive an incapacitating shock, would your family know what to do? Would they know not to touch you directly, but to pull you away from the electrical source with a stick or some other nonconductive tool and turn off the power ? Do they know CPR? Do they know how to get qualified emergency help as quickly as possible? Are the phone numbers posted by the phone - or better yet, on it?

We extend our deepest sympathy to Mike Mankey's family. Although we cannot lessen their loss, we can learn from it - and switch to safety.

Craig Clark, N1ACH
Assistant Publisher

HF

 Superiority!

 Superiority!}
TS-930S All band transceiver with general coverage receiver

Throughout the contest and DX world, the TS-930S is recognized as THE HF rig to own-with the most outstanding performance per dollar ratio!

- Easily modified for HF MARS and CAP operation.
- Excellent receiver dynamic range.
- All solid state, 28 volt final amplifier for lowest intermodulation distortion.
- Power input rated at 250 watts on SSB, CW, FSK, and 80 watts on AM. - Full break-in or semi-break-in CW.
- SSB slope tuning - Another Kenwood First!

- CW VBT and pitch controls.
- IF notch filter.
- Tunable audio filter built in.
- Dual mode noise blanker ("pulse" or "woodpecker") with threshold control.
- Eight memory channels.
- RF speech processor.
- High stability, dual digital VFOs.
- AC power supply built in.
- Fluorescent tube digital display.
- One year limited warranty on parts and labor.

TS-430S
Compact aH band transceiver with general coverage receiver
Kenwood engineering brings you "Digital DXterity"-QSY from band to band, mode-tomode, and frequency-to-frequency with ease!

- Easily modified for MARS operation
- 8 memories store mode, frequency, band. Each channel may be used as a separate VFO
- Programmable scanning
- Dual digital VFOs
- VOX, semi break-in CW with sidetone

[^1]
prestop

OSCAR 10 IS BACK ON THE AIR ON BOTH MODES B AND L, as a result of some masterful computer analysis and reprogramming! The sophisticated bird had shut down several months ago, apparently from radiation-induced memory damage. After extensive earlier efforts to regain control failed, it seemed almost certain OSCAR 10 would be off the air for good. However, analysis of the limited responses that could be induced by control station commands provided clues to what portions of its memory still seemed intact, and when DJ4ZC uploaded software written for those memory areas the satellite came back to life!

It Now Appears OSCAR 10 Hill Be Usable In Both Modes for the foreseeable future, but with some limitations; at this time the most important is a løØ-watt ERP limit on uplink signals. The CW/RTTY beacon is apparently gone for good, but attitude control has been restored so the control stations should be able to keep the batteries well charged. There's cautious hope that OSCAR 10 can be kept up and running at least until the Phase 3C satellite goes up, though recent problems with the French Ariane launch vehicle have pushed its launch well into 1987 Check the various AMSAT nets for further updates.

The Japanese JAS-1 Satellite's Launch. Scheduled For Late July, was also pushed back but at presstime was still expected during the first half of August. In addition the launch of two new Russian Amateur satellites, RS-9 and RS-10, is likely in September.

AMSAT Has A New Illustrated Catalak of Membership Supplies, software, and publications. It's available from the AMSAT office ($301589-6 \boxminus 62$) or at AMSAT hamfest booths.

MIAMISBURG, OHIO'S TOXIC TANK CAR FIRE THAT BEGAN JULY 8 SPARKED one of the nation's largest mass evacuations ever and once more proved conclusively Amateur Radio's value in emergency situations. Almost $40 \varnothing$ area Amateurs from about $2 \varnothing$ clubs took part during the four-day emergency, providing the essential interconnecting link for participating local, state, and federal agencies. Since most agencies are limited to their own unique frequencies, and those in many cases were jammed with the volume of communications, Amateurs rode police cars, fire trucks, and even a helicopter to provide those working the disaster with the only common communications network that could tie them all together.

In Addition. Amateurs Also Set Up Weather Tracking Nets that provided firefighters with precise rain shower and wind shift information, vital to plotting the toxic cloud's path. Amateurs also coordinated the evacuation of more than 300 nursing home residents to a safe location, monitored hospital emergency room loading, and arranged food shipments to the various evacualion centers. In the aftermath of the 100 -hour-long operation the Amateur communicators received very high marks from those they were assisting and as well as plenty of very positive media exposure. Congratulations to all for a very fine job!

ARRL HAS ASKED THE FCC FOR IMMEDIATE ACCESS TO THE 18 MHZ WARC band, based on belief that the U.S. government is no longer using that band. Unfortunately, the League's information wasn't accurate, so don't expect any favorable action on 18 MHz soon.

NEW EIA OPPOSITION TO THE COMMUNICATIONS PRIVACY ACT HAS RAISED HOPES that the bill may not make it through the Senate in its present form after all! In a well-thought out and strongly worded letter sent to all U.S. Senators, the Mobile Communications Divison of the Electronic Industries Association cited a number of reasons for opposing $\mathbf{S - 1 6 6 7}$. For example, with respect to radio communications, the letter says "..itis not reasonable to attempt to legislate privacy..." so that the bill would, in effect, "...instill a false expectation of privacy!" The letter then points out that the bill is inconsistent with the communications Act of 1934 , which recognizes that a prohibition against intercepting radio communications is impractical but establishes severe sanctions against the misuse of intercepted information. It further notes the bill is in itself inconsistent, since it admits that cordless telephone transmissions are easily intercepted -- so can't be protected -- but provides unqualified protection to cellular transmissions! "This discrimination," the letter continues, "certainly cannot be rationalized on a technical basis... There is no justification for this legislation to treat one mode of radio communications differently from others!" Another point: "There can be no true expectation of privacy with radio communications unless the message is encrypted (scrambled)." It concludes, "The nature of radio communications cannot be changed by legislation..." but concedes that the pxoblems cited could be changed by amendment.

Support For The Latter Is Far From Unanimous Within The EIA, and at least one land mobile manufacturer has sent key senators a followup letter stating its opposition to the EIA position. Nevertheless, the EIA makes valid points, and the letter's arrival appears to have seriously compromised the bill's hopes of the bill's supporters for quick Senate passage.

Amateurs And Others Tho Oppose S-1667 In Its Present Form should call or write their Senators to register support for the EIA Mobile Communications Division letter.
"CAPTAIN MIDNIGHT," WHO BROKE IN ON AN HBO MOVIE IN APRIL to object to scrambling of satellite TV, has been caught. He's John Mac Dougall, a 25 -year-old satellite TV dealer and a part-time operator for an Ocala, Florida uplink station. Unfortunately, he's also KA4WJA, so some news reporters have also been condemning Amateur Radio along with Mac Dougall! In a plea-bargaining agreement he's been fined $\$ 50 \Leftrightarrow B$ and sentenced to one year's probation with his Technician Class license suspended for a year.

KENWOOD

Handy Handful...

 TR-2600A/3600AKenwood's TR-2600A and TR-3600A feature DCS (Digital Code Squelch), a new signalling concept developed by Kenwood. DCS allows each station to have its own "private call" code or to respond to a "group call" or "common call" code. There are 100,000 different

DCS combinations possible.

- Simple to operate

Functional design is "user friendly". Built-in 16-key autopatch encoder. TX STOP switch, REVerse switch, KEYboard LOCK switch, high efficiency speaker.

- Large LCD

Easy to read in direct sunlight or in the dark with convenient dial light that also illuminates the top panel S-meter.

- Extended frequency coverage Allows operation 'on most MARS and CAP frequencies, Receive frequency range is $140-160 \mathrm{MHz}$. (TR-3600A covers $440-450 \mathrm{MHz}$.)
- Programmable scan Channel scan or band scan, search for open or busy channels.
- SLIDE-LOC battery case
- 10 Channels

10 memories, one for non-standard repeater offsets.

- 2.5 watts high power, 350 mW low TR-3600A has 1.5 watts high or 300 mW low.

The Kenwood TR-2600A and the TR-3600A pack "big rig" features into the palm of your hand. It's really a "handy handful"! Optional accessories: - TU-35B built in programmable sub-tone encoder

- VB-2530 2-m 25 W RF power amp.
- ST-2 base stand/charger
- MS-1 mobile stand/charger
- PB-26 Ni-Cd battery
- DC-26 DC-DC converter
- HMC-1 headset with VOX
- SMC-30 speaker microphone
- LH-3 deluxe leather case
- SC-9 soft case with belt hook
- BT-3 AA manganese/alkaline battery case
- EB-3 external C manganese/ alkaline battery case
- RA-3 2-m telescoping antenna
-RA-5 2-m/70-cm telescoping antenna
- AX-2 shoulder strap w/ant. base
- CD-10 call sign display
- BH-2A belt hook

More TR-2600A and TR-3600A information is available from authorized Kenwood dealers.

TR-2800A

KENWOOD

Compton. California 90220

This may be the world's most popular 3 KW roller inductor tuner because it's small, compact, rellable, matches virtually everything and glves you SWR/Wattmeter, antenna switch, dummy load and balun all at a great price!
Meet "Versa Tuner V', It has all the fastures you asked for, including the new smaller size to match new smaller rigs-only $103 / /^{\prime \prime} \mathrm{W} \times 41 / 2^{\prime \prime} \mathrm{Hx} 147 / 8^{\prime \prime} \mathrm{D}$.
Matches coax, balanced IInes, random wires- 1.8 to 30 MHz . 3 KW PEP -the power rating you won't outgrow (250pt-6KV caps).
Roller Inductor with a 3-diglt turns counter plus a spinner knob for precise inductance control to get that SWR down to minimum every time.
Bullt-In 300 watt, 50 ohm dummy load, bullt-in 4:1 ferrite balun.

Accurate meter reads SWR plus forward and reflected power in 2 ranges (200 and 2000 watts). Meter light requires 12 VDC. Optional AC adapter MFJ-1312 is available for $\$ 9.95$.
6 position antenna switch (2 coax lines, through tuner or direct, random/balanced line or dummy load). S0-239 connectors, ceramic feed-throughs, binding post grounds.
Deluxe aluminum low-profile cabinet with sub-chassis for RFI protection, black finish, black front panel with raised letters, tilt bail.

MFJ's Fastest Selling TUNER

MFL-9410 $\$ 99.95$

MFJ's fastest selling tuner packs in plenty of new features. New styling! Brushed aluminum front. All metal cabinet. New SWR/Wattmeter! More accurate. Switch selectable $300 / 30$ watt ranges. Read forward/reflected power.
New antenna switch! Front panel mounted. Select 2 coax lines, direct or through tuner, random wire/balanced line or tuner bypass for dummy load.
New airwound Inductor! Larger more efficient 12 position airwound inductor gives lower losses and more watts out. Run up to 300 RF power output. Matches everything from 2.8 to 30 MHz ! dipoles, inverted vee, random wires, verticals, mobile whips, beams, balanced and coax lines.
Bulli--In 4:2 balun for balanced lines. 1000 V capacitor spacing. Black. $11 \times 3 \times 7$ inches. Works with all solid state or tube rigs. Easy to use anywhere.
MFJ's 1.5 KW VERSA TUNER III MFJ.-962 $\$ 229.95$

Run up to 1.5 KW PEP and match any feediline continuously from 1.8 to 30 MHz : coax, balanced line or random wire.
Bullt-In SWR/Wattmeter has 2000 and 200 watt ranges, forward and reflected power. 2\% meter movement. 6 position antenna switch handles 2 coax lines (direct or through tuner), wire and balanced lines. $4: 1$ balun 250 pt 6 KV variable capacitors. 12 position inductors. Ceramic rotary switch All metal black cabinet and panel gives RFI protection, rigid construction and sleek styling. Flip stand tilts tuner for easy viewing. $5 \times 14 \times 14 \mathrm{in}$.

MFJ's Best VERSA TUNER
MFJ.-99C $\$ 149.95$

MFJ's best 300 watt tuner is now even better! The MFJ-949C all-in-one Deluxe Versa Tuner II gives you a tuner, cross-needle SWR/Wattmeter, dummy load, antenna switch and balun in a new compact cabinet. You get quality conveniences and a clutter-tree shack at a super price.
A new cross-needie SWR/Wattmeter gives you SWR, forward and reflected power-all at a single glance. SWR is automatically computed with no controls to set. Has 30 and 300 watt scale on easy-to-read 2 color lighted meter (needs 12 V).
A handsome new black brushed aluminum cablnet matches all the new rigs. Its compact size (10x 3×7 inches) takes only a little room.
You can run full transcelver power output-up to 300 watts RF output-and match coax, balanced lines or random wires from 1.8 thru 30 MHz . Use it to tune out SWR on dipoles, vees, long wires, verticals, whips, beams and quads.
A 300 watt 50 ohmi dummy load gives you quick tune ups and a versatile six position antenna switch lets you select 2 coax lines (direct or thru tuner). random wire or balanced line and dummy load. A large efficient alrwound inductor-3 inches in diameter-gives you plenty of matching range and less losses for more watts out. 100 volt tuning capacitors and heavy duty switches gives you sate arc-tree operation. A 4:1 balun is built-in to match balanced lines.
Order your convenience package now and enjoy.

2 KW COAX SWITCHES
 MFJ. 1702 $\$ 19.95$
 MFJ-1702, \$19.95. 2 positions.

60 dB isolation at 450 MHz .
Less than 2 dB loss. $\mathbf{\$ 2 9 . 9 5}$ MFJ-1701
SWR below 1:1.2. MFJ-1701, \$29.95. 6 positions. White markable surface for antenna positions.

MFJ's Smallest VERSA TUNER

MFJ's smallest 200 watt Versa Tuner matches coax, random wires and balanced lines continuously from 1.8 thru 30 MHz . Works with all solid state and tube rigs. Very popular for use between transceiver and final amplifier for proper matching. Efficient airwound inductor gives more watts out. $4: 1$ balun for balanced lines. $5 \times 2 \times 6$ inches. Rugged black all aluminum cabinet.
MFJ's Random WIre TUNER
MFJ-16010
$\$ 39.95$

MFJ's ultra compact 200 watt random wire tuner lets you operate all bands anywhere with any transceiver using a random wire. Great for apartment. motel, camping operation. Tunes $1.8-30 \mathrm{MHz}$. $2 \times 3 \times 4$ inches.

MFJ's Moblle TUNER

MFJ-945C
$\$ 79.95$

Designed for mobilie operation! Small, compact. Takes just a tiny bit of room in your car. SWR/dual range wattmeter makes tuning fast and easy. Careful placement of controls and meter makes antenna tuning safer while in motion.
Extends your antenna bandwidth so you can operate anywhere in a band with low SWR. No need to go outside and readjust your mobile whip. Low SWR also gives you maximum power out of your solid state rig-runs cooler for longer life. Handles up to 300 watts PEP RF output. Has efficient airwound inductor, 1000 volt capacitor spacing and rugged aluminum cabinet. $8 \times 2 \times 6$ inches. Mobile mounting bracket available for $\$ 5.00$.

ORDER ANY PRODUCT FROM MFJ AND TRY IT-NO OBLIGATION. IF NOT SATISFIED, RETURN WITHIN 30 DAYS FOR PROMPT REFUND (less shipping). - One year uncondilitional guarantee - Made in USA - Add $\$ 5.00$ each shipping/handling - Call or write for free catalog, over 100 products.

TO ORDER OR FOR YOUR NEAREST

 DEALER, CALL TOLL-FREE800-647-1800
Call 601-323-5869 in Miss. and outside

happy endings

Dear HR:

I've been meaning to write for some time now to let you know of the response to my letter published in the October, 1985, issue of ham radio. I started a letter several times, but didn't know exactly what I wanted to say. A simple "thank you" wasn't quite enough.

I received many nice cards and letters and have made many new friends. The greatest surprise came late one evening when I received a call from a representative of ICOM America who reported seeing my letter and asked whether I would be interested in an ICOM transceiver. Then she asked the question that left me speechless: if I had a choice of any ICOM radio, which would I choose? "A 751," I replied. When she told me one would be shipped the following day, I honestly didn't believe it. I thought it was some kind of joke.

When the UPS truck arrived with two large packages just two days later, I realized it was no joke, nor was it a dream. I opened the larger box and found a brand-new ICOM 751 complete with a factory-installed PS35 power supply, FL52A filter, voice synthesizer, hand mic, and all the power cables. WOW! In the other box was an ICOM 251A, 2meter, all-mode transceiver with all the accessories and an SM8 Duo Desk microphone. Double WOW!
Is this the end of the story? No, far from it. Many hams responded with other equipment and good wishes. I have tried and believe I have responded to each person who contacted me, but I'd still like to express my sincere and deep appreciation to everyone who assisted me in any way, whether it was with equipment or just a kind word of encouragement.

And of course, my sincerest, heartfelt thanks go to those caring people at ICOM America.

My dream, from the beginning, has been to provide phone patches for missionaries in foreign countries. I'm on the air now and able to provide assistance in handling written traffic, but two more items are needed: a phone patch and an amplifier. God has truly blessed me in enabling me to become part of the fraternity of Amateur Radio. I hope that by providing phone patches I'll be able to give someone a small token of pleasure or service they might not otherwise have had.

At 32, Idon't know what a toll MS will take on me, but I can assure you it will have a good fight. Somehow I feel that the day I give up or give into the limitations - if there really are any - will be the day my dream ends. That day must not come; I must not let it.

In the two years since I became disabled I've realized that I, like many, once found too many excuses for accepting limitations. But l've also disovered that a limitation is only an obstacle between you and your goal. If you can't go through it, then you'll just have to go around, under, or over it. The point is to reach your goal, any way you can ...

John Statham, N5HTO McComb, Mississippi 39648

no problem!

Dear HR:

How often have you purchased an item that later developed a problem - and then found out that getting the item fixed was an even bigger problem?

I bought a Mirage amplifier and was pleased with its performance. But one day, after a particularly long-winded QSO, the power amp in my B3016 2meter amplifier quit in a puff of smoke, despite its good heat sink and an attached blower.

I sent the unit, which was a couple of years old, back to Mirage for repair. Needless to say, I was surprised to have it returned promptly, with "NO CHARGE" marked on the invoice. I had expected a long exchange of purchase receipts, letters, charge card informa-
tion, and the like. What a surprise to have a warranty repair done quickly and without a quibble!
I use three Mirage amplifiers, two at home and one mobile, and have found them all to be well made and longlasting, even in the 100 percent duty cycle of ATV operation. I would recommend Mirage to anyone who wants a quality product.

Henry B. Ruh, KB9FO
Chicago, lilinois

narrowband filters

Dear HR:

Two versions of the program described in my March, 1986, article, "Build Narrowband RF Filters," are now available for computers other than those originally mentioned.

Atari owners may contact Marion D. Kitchens, K4GOK, 2709 Colt Run Road, Oakton, Virginia 22124. Marion will provide a copy (on disk). Owners of the Timex 1000 can contact Rudy Knaack, W7FGQ, 11415-28th S.W., Seattle, Washington 98146. Rudy will provide a listing for an SASE, or will copy the program on cassette tape for \$5.
I might add that both versions improve on my method of calculating Chebychev order and save program lines.

The ultimate line-saving version of the program comes from Ken Stringham, AE1X, who uses the equations that derive k and q values that 1 entered in table form (lines 1000-1500). Although Ken didn't mention that he'd provide listings or copies, he did send me a copy. Someone interested in adapting the program to another machine might be interested in getting this listing (written in C-64 BASIC) from me.
I have had inquiries from owners of the IBM PC (and clones), but as yet have no information for them. If anyone is working on translating my program to any other machine, I'd appreciate knowing. I'll act as a "clearing house" for information about the program and sources.

Bob Lombardi, WB4EHS
Melbourne, Florida 32935

Ground and aerial views of two element 80 m delta loop array supported by 46^{\prime} boom at 1155^{\prime}.

analyzing 80-meter delta loop arrays

> NEC program assesses performance in the presence of "real" ground

During the early part of 1985, I finally managed to complete the installation of a "gain" antenna for the 80 -meter band: a reflector-driver parasitic array with two equilateral triangular loop elements. Later in the year, I realized another ambition: the ability to analyze HF wire antennas over real ground with a trustworthy computer program. In this article, which describes the results of applying that capability to the analysis of my new antenna system, I'll show the behavior, over poor ground, of the peak gain and "average" front-to-back ratio across the band, along with a number of radiation patterns. I'll describe the antenna system itself in just enough detail to define the item under study.

Of course, the first question one always asks about any project is "How can I make it better?" Toward this end, I'll show, at a single frequency, the performance obtainable with a number of more-or-less feasible variations on the existing design, including the following:

- alternative feedpoints;
- higher boom:
- closer element spacing;
- both elements driven; and
- square loops.

I'll also discuss a few other "gain" parasitic antenna systems, including pairs of dipoles and inverted vees, and the half-wave sloper. Finally, I'll show the effect of a less convenient option - relocating to the seacoast - that provides the best results of all.

Assuggested above, this isn't a construction article. Neither is it intended to present a design procedure. Even with the power available in current microcomputers, the number of trials required to find an "optimum" design is prohibitive unless one narrows the scope at the outset. This is the purpose of this article: to provide data on which to base an informed selection of basic design choices.

the antenna

After years of careful deliberation (i.e., procrastination), I ultimately decided to build a system very similar to the W2PV array that I discussed in a previous article.' The two identical equilateral loops are supported, apex up, by a 46 -foot boom at the 115 -foot level on a 120 -foot guyed tower. The loop's circumference is 264 feet (88 feet per side). I used No. 10 AWG copper wire, primarily because it was already "in stock."

Figure 1, a diagram of the configuration, shows the coordinate system that I'll use in defining radiation patterns. The x axis is parallel to the boom from the reflec-

By Bill Myers, K1GQ, Box501, Hollis, New Hampshire 03049.

fig. 1. Delta loop array configuration. The perimeter of each equilateral loop is $\mathbf{2 6 4}$ feet. The horizontal side is $\mathbf{3 9}$ feet above ground.
tor end toward the driven element. The y axis lies in the ground plane and in the plane of the loops, and the z axis is positive upward.

The two loops are configured as a reflector plus driver parasitic array by adding a $4 \mu \mathrm{H}$ coil in series with the reflector element. An additional $12 \mu \mathrm{H}$ is connected in series with each loop to switch the center frequency from 3.8 to 3.5 MHz . The necessary switching is accomplished using relays in a small box at each loop apex.

Equal lengths of RG-11A/U connect these boxes to a third relay box at the center of the boom. I use chokes (patterned after the W2DU balun ${ }^{2}$) at these feedpoints to reduce currents on the outside of the feedlines. The central switchbox selects either or both loops to be connected to the main transmission line, which is 75 -ohm CATV cable.

On 80 meters, transmission line losses are very small, even when the line is operated at high SWR (i.e., mismatched at the antenna). For simplicity, I decided not to attempt any matching at the antenna. Instead I use lumped-reactance networks at the station end, with additional relays to select different networks so that I can instantly switch between matched parasitic or driven configurations.

fig. 2. Elevation radiation pattern at 3.8 MHz . Peak gain is 8.69 dBi at 36.5 degrees. Front to back averaged over 25 to 75 degrees (see text) is 11.49 dB . The x and z axes are illustrated in fig. 1.

the computer program

I'm fortunate to have access to the resources needed to run the complete Numerical Electromagnetics Code (NEC). ${ }^{3}$ This program is ideally suited to analyzing the performance of wire antennas up to a few wavelengths in size, with arbitrary shapes and excitations, in the presence of "real" ground. For those familiar with the method of moments, I modeled the six straight wires that make up the two-element array with 11 segments each. Excitation was applied at the centers of the two segments surrounding the apex, since the NEC models sources at the segment centers rather than at the segment junctions. The ground characteristics were dielectric constant, 4 , and conductivity, $0.001 \mathrm{~S} / \mathrm{m}$, the usual values for poor ground such as the rocky, hilly terrain behind my house.

radiation patterns

The NEC program produces an enormous listing of numbers that's difficult to fully assimilate. Fortunately, I've succeeded in compressing much of the information, without too much agony, into a more visual format namely, polar radiation pattern plots. It's important to understand these plots well, so I'll explain an example of each of the two types of pattern charts in some detail.
Figure 2 shows the chart I'll refer to as the elevation pattern. The thick curve on the inside of the grid is the ratio (in dB) of the total radiation intensity, in the direction defined by the angular coordinate of the chart, to the radiation intensity that would be obtained if the antenna input power were uniformly distributed over a sphere. Most folks simply call this ratio "gain relative to isotropic," with the notation "dBi" when the ratio is expressed in decibels. The angular coordinate for this chart is measured in the vertical plane containing the boom; that is, the $x z$ plane shown in fig. 1. The grid interval on the chart is 15 degrees, although the resolution for pattern data points is one degree.

The outermost radial of the elevation pattern grid corresponds to zero $d B$, relative to the peak gain in the $x z$ plane. The value of peak gain is noted in each figure caption. This normalization creates good detail in the pattern characteristics. Notice also that the radial coordinate is non-uniform, as was first recommended by K1TD4. My charts are drawn with the scaling:
radius $=10 \mathrm{G} / 40$
where G is the normalized gain in dB . This scaling expands variations near zero dB so that the $3-\mathrm{dB}$ beamwidth is easy to identify, without compressing variations in the sidelobe regions excessively.

The second type of radiation pattern plot is the azimuth pattern, as illustrated by fig. 3. Here the angular coordinate is measured in the horizontal plane - the $x y$ plane of fig. 1. Although the elevation chart shows only the above-ground hemisphere, the azimuth chart must show a full circle to allow for possible asymmetries in the radiation pattern (for example, those caused by feeding the loop array at one of the lower corners).

Each azimuth pattern corresponds to a particular value of the elevation angle. The obvious choice for the elevation angle is that corresponding to the peak gain on the elevation chart. This angle is 36.5 degrees at 3.8 MHz for my delta loop array, but it varies from case to case. In order to reduce the number of computer runs, I used 36 degrees for the elevation angle in all azimuth charts presented in this article.

Most readers will have encountered the terms " H plane" and "E-plane" in connection with radiation patterns. I'm avoiding these terms because their definition is more likely to cause confusion than illumination. Also, I've deliberately omitted labels for the angular coordinates in the radiation pattern charts because the standard coordinate system (as defined by the IEEE ${ }^{5}$) is coun-ter-intuitive for those of us who grew up in an azimuthelevation world.

peak gain

The peak gain of an antenna system is the value of the gain in the direction of its maximum value. For most of the results discussed here, the direction of the maximum occurs in the vertical plane containing the boom. Thus, unless otherwise noted, the values quoted for peak gain are to be understood as the peak in the $x z$ plane.

It is not my intent, in this article, to provide an exhaustive discussion of peak gains. There are two reasons for this. First, the number of interesting cases is overwhelming when one considers the range of applicable heights, frequencies, and ground characteristics in addition to the enormous variety of antenna designs. Second, there are many well-established myths that must be systematically dealt with in any such undertaking; doing so would expand the scope of this article substantially. Thus, the gains presented herein should not be extrapolated beyond the conclusions stated below.

fig. 3. Azimuth radiation pattern at 3.8 MHz for 36 degree elevation angle. The x and y axes are illustrated in fig. 1.

fig. 4. Two element delta loop array performance versus frequency for phone and CW modes. The phone-mode design frequency is 3.8 MHz . The CW-mode is created by series-loading each loop with a $12 \mu \mathrm{H}$ inductor.

average front-to-back ratio

The concept of front-to-back ratio needs some elaboration to provide a useful measure of 80-meter antenna performance. Assuggested by fig. 2, the elevation pattern can exhibit deep nulls at selected elevation angles, while showing large lobes at other angles off the back. Thus, the ratio of forward gain at a specified elevation angle to the backward gain at the same angle can vary dramatically for different elevation angles.

On the 80-meter band, all of the elevation angles are

When we set out to make the best amateur radio equipment in the world, we had some pretty tough standards to live up to ...

... yours
... and ours.

So we designed the RC-850 Repeater Controller, the industry's top of the line repeater control system. Now in it's "third wave" of innovation, thanks to its desigped for the future architecture and new sottware releases.
The ' 850 defines the industry standard in repeater control systems.

- Fully remotely programmable with Touch-Tone commands
- Front panel LED display
- Over 300 word customized male and female speech synthesis vocabulary
- Time/day of week Scheduler with 10 sel-up states, 30 changeovers and events, over 100 scheduled iterns for hands off operation and automatic reminders.
- Full or half duplex autopatch, autodial (250 numbers), emergency autodial, reverse autopatch, antidialer, toll restrict including telephone exchange tables, supports remote and multiple phone lines
- Informative remotely programmable ID's (17), tail messages (13). bulletin boards (5)
- 16 channel voice response analog metering, automatic storage of min/max values on each channel, values may be read back on command or may be included in any programmable messages
- Supports synthesized remote base transceivers and full duplex links
- Individual user access codes to selectable teatures
- Mailbox for user-to-user, and system-to-user messages
- Paging-two-tone, $5 / 6$ tone, DTMF, CTCSS, HSC display. user commandable and may be included in programmable messages (i.e. alarms)
- Easy hookup to any repeater

Our new Digital Voice Recorder lets you remotely record ID's, tail messages and various other response messages for automatic playback through your repeater. Audio is stored digitally with no-compromise reproduction quality in up to eight megabits of memory. The DVR can support up to three independent repeaters for a low per-channel cost. Its Touch-Tone activated voice mailbox lets your users easily record messages for other users when they aren't around.

If your repeater budget can't afford the ' 850 , we offer the RC-85 Repeater Controller, which we like to call the "second best repeater controller in the world" it's a scaled down, simplified version of our ' 850 , but overall, it ofters more capability and higher quality than anyone elses control equipment at any price

- Remotely programmable with Touch-Tone commands
- Over 175 word customized male speech synthesis vocabulary
- Selectable "Macro sets" for easy control operator selection
- Autopatch, autodial (200) numbers, emergency autodial, reverse patch
- Remotely programmable informative ID's (7), tail messages (3).
bulletin board (2)
- Supports synthesized remote base transceiver, control receiver, alarm
- Selectable, informative courtesy tones
- Talking S-meter, Two-tone paging
- Easy hookup to any repeater

For those who like to "roll their own", we can get you off to a rolling start with our ITC-32 Intelligent Touch-Tone Control Board. Much more than just a decoder, it's a mini-control systern of its own, with the basic repeater and remote base functions built-in. And it can be tailored by you with its Personality Prom.

- 28 remotely controllable latched or pulsed logic outputs
- 4 alarm or remote sensed logic inputs
- Response messages to confirm command entry
- Repeater functions including COR, IDer, timers, courtesy tone, etc.
- Remote base functions including control of synthesized transceiver
- Remotely recordable, variable length audio tracks, accessed from controller messages
- Top quality, no compromise audio reproduction
- Supports up to three repeaters for cost effective installation
- Expandable to roughly 6 minutes of speech in 8 megabits of memory
- Easy interface to RC-850, RC-85 controllers, or to any stand-alone repeater

QST: Attention All Hams

If you own a shack, you should know about ShackMaster"

ShackMaster lets you carry your home station with you in the palm of you hand It acts as your gateway to the world, linking your handheld transceiver to your high performance HF station. Now, instead of your valuable home equipment being available to you 1% of the time, if's avalable 99\% of the time! Whether around the house, in the yard. or across town, ShackMaster lers you take it with you
But that's just part of ShackMaster's story. It lets you communicate with the family by handling third party trattic - its electronic mailbox and intercom let you keep in touch. And a simplex patch lets you place important calls directly through your home phone.

[^2]advanced computer controls, inc.

Visa and Mastercard accepted.

To order one of these advanced control products call 408-727-3330 Technical manuals are available for purchase and the amount paid is applied as a deposit on the equipment For specifications and a copy of our ACC Notes newsletter, just write or send in your QSL card to

All our products are documented with high quality, easy to read manuals. Our goal is to advance the state of the repeater art. But most of all, our products put the FUN back into the FUN MODE!

fig. 5. Phone mode elevation patterns from 3.65 (A) through $3.95 \mathrm{MHz}^{(J)}$. See table 1.
significant, from the extremely low angles needed for very long DX paths to the nearly straight-up angles required for accepting (or rejecting) local signals. As far as I can determine, the question of which angles are most important, say for the path from New England to Western Europe, remains unanswered. G6XN ${ }^{6}$ claims that the only valid rule is "the lower the better." There seems to be ample evidence to the contrary, however. For example, many DXers in the Northeast have observed that high-angle antennas often perform better than low-angle antennas when the band first opens toward Europe in the evening. (The same observation applies to both 40 and 160 meters, as well.) In any case, 80 -meter antenna systems with poor gain near the horizon (such as the delta loop array described here) are good overall performers, suggesting that angles in, perhaps, the 20to 50 -degree region are indeed useful for medium-range DXing.

In assessing the radiation pattern, we're usually interested in the ability of the antenna system to reject strong signals coming from the backward direction, which are most likely to arrive at relatively high elevation angles (the lower angles corresponding to longer paths and thus to weaker signals). Thus, I've chosen to display the ratio of the peak forward radiation intensity to the backward radiation intensity averaged over the elevation angles from 25 to 75 degrees. This power ratio is presented in the customary dB . I'll abbreviate this performance characteristic as "averaged f / b," rather than "peak forward power to backward power averaged over 25 to 75 degrees in the $x z$-plane. "I believe this quantity is a more useful indicator of 80-meter antenna performance than the customary f / b ratio; furthermore, the values presented below seem to agree well with on-the-air observations.

impedance

Knowledge of the antenna input impedance is useful

Table 1. Phone-mode elevation patterns vs. frequency.

Frequency (MHz)	Peak Gain (dBi)	Angle (deg)	Average F/B (dB)
3.65	7.44^{*}	38.0	-5.35
3.7	7.62^{*}	36.0	-3.69
3.75	7.66	34.5	2.41
3.775	8.48	35.5	6.73
3.8	8.68	36.5	11.49
3.825	8.54	37.5	14.33
3.85	8.27	38.0	12.94
3.875	7.99	38.5	10.73
3.9	7.73	38.5	9.04
3.95	7.30	39.5	6.86
*In the backward direction			

fig. 6. Computed input impedence versus frequency for phone and CW modes. These do not correlate well with measurement (see text).
for two reasons. First, one can design a matching network to transform the input impedance to the characteristic impedance of the transmission line, thereby minimizing line losses due to mismatch. Second, the NEC calculation of gain requires an accurate value for the input impedance (in order to determine input power).

The fidelity of the NEC input impedance computation is affected by the number of segments specified for the antenna model. More segments improve the impedance result (up to the onset of numerical difficulties), but also increase the run time dramatically. However, if the segment length is held constant from case to case, then the relative results can be trusted even though the absolute values may be suspect. In all of the cases presented here, the number of segments per straight wire section was selected to yield approximately the same physical segment length (8 feet).

performance

Figure 4 shows the computed performance versus frequency for my two-element array. The phone-mode peak gain reaches its maximum (8.68 dBi) right at the design frequency, 3.8 MHz . The peak in the average f / b is about 25 kHz higher. The CW-mode gain reaches its maximum just above 3.5 MHz , and the offset to the f / b peak is also about 25 kHz . The overall response appears slightly narrower for the CW mode, as should be expected for loaded loops, but the difference in bandwidth between modes is unimportant. The maximum CW peak gain (8.40 dBi at 3.525 MHz) is slightly below the phone mode maximum.

The gain and f / b peaks can be aligned at the same frequency by at least two methods. The reflector loading

EIMAC Tubes Provide Superior Reliability at radio station KWAV over 112,000 hours of service!

Ken Warren, Chief Engineer at KWAV reports that their 10 kW FM transmitter went on the air in November, 1972, equipped with EIMAC power tubes. The original tubes are still in operation after over 13 years of continuous duty!
Ken says, "In spite of terrible power line regulation, we've had no problems with EIMAC tubes. In fact, in the last two years, our standby transmitter has operated less than two hours!"
Transmitter downtime means less revenue. EIMAC tube reliability gives you more of what you need and less of what you don't want. More operating time and less downtime!
EIMAC backs their proven tube
reliability with the longest and best warranty program in the business. Up to 10,000 hours for selected types.

Quality is a top priority at EIMAC, where our 50 -year charter is to produce long-life products.

Send for our free Extended Warranty Brochure which covers this program in detail.
Write to:

Varian EIMAC
301 Industrial Way
San Carlos, CA 94070
Telephone: (415) 592-1221
varian

fig. 7. CW-mode elevation patterns from 3.475 (A) through 3.6 (G) MHz. See table 2.
inductance can be varied. Or one can simply redefine the range of angles over which the average is computed. The point here is that the $25-\mathrm{kHz}$ offset is a silly amount to worry about.

A more significant result is the pattern reversal just below 3.75 MHz . Negative f / b ratio means that the direction of the peak gain is toward the reflector. This occurs because the parasitic element is electrically too short to act like a reflector. The potential for disaster caused by too-short loops is obvious; if l ever rebuild the loops I will probably increase the circumference 4 feet to move the design frequency down about 50 kHz .

Figure 5, a series of elevation radiation pattern plots at a number of frequencies surrounding the design frequency, shows the pattern reversal quite nicely (see also table 1). Note that the elevation angle of the main lobe is nearly the same at every frequency, increasing uniformly from 34.5 degrees at 3.7 MHz to 38.5 degrees at 3.9 MHz. If we define the effective height of an antenna system as the height of a horizontal half-wave dipole, above perfect ground, which yields the same elevation for the first lobe of the ground reflection pattern, then:

Table 2. CW-mode elevation patterns vs. frequency.			
Frequency	Peak Gain	Angle	Average F/B
$(\mathbf{M H z)}$	$(\mathbf{d B i})$	(deg)	(dB)
3.475	6.67	34.5	0.38
3.5	8.28	36.5	7.14
3.525	8.40	39.0	14.31
3.55	8.01	40.5	12.42
3.595	7.57	41.5	9.16
3.6	7.21	42.0	7.21

$$
h_{e}=\lambda /(4 \sin \theta)
$$

where θ is the elevation angle. The effective height for the parasitic array (at 3.8 MHz) is 0.42λ, or 109 feet. Thus, even though most of the antenna structure is well below the effective height, the array still yields a relatively low angle for the main lobe.

This rather surprising result comes about because of the supression of higher angle radiation by the array free-

fig. 8. Elevation patterns at 3.8 MHz for alternate feedpoints. Peak gains are 8.80 dBi and 5.48 dBi for (A) bottom and (B) corner feed, respectively. Corresponding average F / B ratios are 11.53 dB and 7.83 dB . The dashed pattern on these charts is for top feed.
space directivity. If the directions for the peak gains of the free-space pattern and the ground reflection pattern were aligned, we could expect gain in the neighborhood of $13 \mathrm{dBi}(7 \mathrm{dBi}$ from the array and 6 dB from the reflection). The actual peak gain is lower partly because the lobes are not aligned (the free-space array peak is on the horizon, where the ground reflection pattern has a null) and partly because the reflection isn't perfect.

The input impedances calculated by NEC for the delta loop array are plotted in fig. 6. The phone mode system is resonant near 3.815 MHz , with the resistive component equal to about 80 ohms. The CW mode resonance is about 3.535 MHz , at 65 ohms. These results don't correlate with SWR measurements or with admittance measurements at the transmission line input. This isn't too surprising, however, because the antenna model I provided as input to NEC isn't especially realistic in details that can influence impedance, such as adjacent towers and uneven terrain.

Figure 7 shows the CW mode elevation patterns for frequencies at the bottom of the band (see also table 2). The elevation angles for the gain peaks are slightly higher than for phone mode, but not enough to be of concern. The best pattern occurs a bit high in the band for an inveterate DXer, but l've found on-the-air performance to be excellent at the very bottom of the band.

In fact, in practice the apparent f / b ratio has been generally consistent with that indicated by the performance calculations. On both modes, S 5 stations in Europe disappear into the band noise when the array
direction is switched. Louder Europeans decrease in signal strength about 2 to 3 S-units, while US stations come up by the same amount. My receiver is a TS-930; I've checked the S-meter calibration and found it to be about 5 dB per S -unit. The array shows essentially no f / b at 3.75 MHz and is definitely backward (in the phone mode) at 3.7 MHz .
I currently have two other 80-meter antennas, a dipole at 120 feet parallel to the array boom, and a full-size quarter-wave vertical with 12 radials. Neither of these antennas should work well in the directions favored by the delta loop array . . . and they don't. On the other hand, the dipole is better to the Caribbean, South America, and Japan. While the loops do exhibit some rejection "off the side," it's not as much as the dipole exhibits off its ends. Overall, I'm quite pleased with the agreement between the theoretical results and actual performance, especially considering that the terrain surrounding my antenna system is far from planar.

bottom and corner feed

My loops are fed at the top. Full-wave loops can be fed anywhere on the circumference with no appreciable change in the input impedance or in the free space directivity. However, the selection of the feedpoint has a potentially devastating effect over real ground. Two interesting alternative feedpoints are at the center of the horizontal bottom side and at either of the two corners. The elevation patterns for these two cases, at 3.8 MHz , are shown in fig. 8. The bottom-fed pattern is indistinguishable from the top-fed pattern (the dashed curve) and the peak gains are nearly the same: 8.80 dBiversus 8.68 dBi , respectively. (This small difference may well

fig. 9. Azimuth pattern at 3.8 MHz with corner feed. The pattern is skewed towards the side of the boom containing the feedpoint. The dashed pattern is for top feed.

ST-8000 HF-MODEM

The ST-8000 HF MODEM is a high-performance, fully adjustable modulator/demodulator for use in high-frequency radio data systems. The HF Modem features fully adjustable frequencies and baud rates, memories, diversity, regeneration, print squelch, CRT tuning indicator, and multiple AM or FM detectors. The bandwidths of the input filter, Mark filter, Space filters, and post-detection filters are tracked with the selected data rate (10 to 1200 baud) to assure optimum signal recovery for all signals. Front panel parameters may be controlled from an external ASCII terminal or computer. A full complement of I/O interface options allows use of the ST-8000 with virtually any terminal and radio system. Install the HAL DS3100ASR CRT terminal and ST-8000 HF Modem in your communications system and enjoy the benefits of a data system designed for radio operators.
-Tuneable from 500 to 4000 Hz in 1 Hz steps
-Set 10 to 1200 Baud in 1 baud increments
-Four input band-pass filters

- 32 matched Mark and Space filter bandwidths
- Mark and Space 7-pole linear phase LP filters
- Filter BW and selection computed and set
by microprocessor front panel controls
-RTTY shifts from 40 to 3500 Hz
-Eight programmable non-volatile memories
- Split or transceive RX/TX tone selection
- FM or AGC-controlled AM signal processing
- -65 to +20 dBm dynamic range (AM or FM)
- Exclusive HAL Digital Multi-Path Correction (DMPC ${ }^{\text {TM }}$)
-M/S, Mark Only (MO) or Space Only (SO) detector modes using Adpative Threshold Detector (ATD ${ }^{\text {TM }}$)
-Adjustable Print Squelch and non-diversity Amplifude Squelch
- Exclusive HAL Infinite Resolution Diversity Control (IRDC ${ }^{\top M}$)
-Digital signal regeneration
-ASCII/Baudot code and speed conversion
*Quick Brown Fox and RYRY ... test message generator
- Programmable Selective-call (SEL-CAL) printer control
- Transmitter PTT KOS control
-Antispace
-RS232C, MIL-188C, or TTL Terminal I/O
-LP1200 Option for polar or neutral loop
-8, 600, or 10 K ohm input impedance
- 8 or 600 ohm output with adjustable level
-AFSK or FSK transmitter outputs
- Remote terminal or computer control of all demodulator parameters
-Exclusive HAL Spectra-Tune ${ }^{\text {TM }}$ and X-Y
Mark/Space CRT tuning indicators with automatic trace on/off control
-100-130/200-250 VAC, $44-440 \mathrm{~Hz}$ power
-3.5 " high rack mounting cabinet ($14^{\text {" }}$ deep)
- Shielded and filtered for radio system use

TM Infinite Resolution Diversity Control (IRDC), Spectra-Tune, Digital Multi-path Correction (DMPC), and Adaptive Threshold Detector (ATD) are trade marks of HAL Communications; patents pending.

Write or call for complete ST-8000 specifications. We think you will agree that it opens new frontiers in radio data communications. Contact the Government \& Commercial Products Division for price and delivery information.

CALL LONG DISTANCE ON 2 METERS

Only 10 watts drive will deliver 75 watts of RF power on 2M SSB, FM, or CW. It is biased Class $A B$ for linear operation. The current drain is 8-9 amps at 13.6 Vdc . It comes in a well constructed, rugged case with an oversized heat sink to keep it cool. It has a sensitive C.O.R. circuitry, reliable SO-239 RF connectors, and an amplifier IN/OUT switch. The maximum power input is 15

Our products are backed by prompt factory service and technical assistance. To become familiar with our other fine products in the amateur radio market, call or write for our free product and small parts catalog.

Model 875
Kit \$109.95
Wired \& Tested \$129.95 watts.

fig. 10. Elevation pattern at 3.8 MHz with the array raised to 145 feet. Peak gain is 9.97 dBi at $\mathbf{3 0 . 5}$ degrees and average F / B is 11.10 dB . The dashed pattern is for boom at 115 feet
be due to modeling errors that lead to small input impedance errors and thus to peak gain errors.) The corner-fed pattern, on the other hand, is clearly inferior in the backward direction; furthermore, the peak gain is dramatically reduced to 5.48 dBi . The corner-fed azimuth pattern (fig. 9) shows that the pattern is skewed and the side null is filled in on the side of the boom corresponding to the driven corner.

The explanation for the inferior performance of the corner-fed arrangement is simple. The amplitude of the reflection coefficient for poor ground is much lower for vertical polarization than for horizontal polarization. Thus, the "gain" produced by ground reflection is smaller for vertically-polarized radiated fields. The corner feed produces a substantial vertically-polarized component in the total field, whereas the top and bottom feeds produce entirely horizontal polarization, so the corner feed has less gain (see Appendix for additional discussion).

increased height

Another feasible modification to my delta loop array would be to raise the antenna. Since I guy my towers every 30 feet, the next "natural" boom height above 115 feet is 145 feet. Figures 10 and 11 show the elevation and azimuth patterns at 3.8 MHz for this configuration. Interestingly, while the depth of the rearward null is increased, the magnitude of the rearward lobe is also increased and the average f / b is almostunchanged. The peak gain is quite a bit higher, up 1.29 dB to 9.97 dBi , and the elevation angle at the peak is 6 degrees lower, at 30.5 degrees. The change in the angle is not too important, but the potential for increased gain, which is rather hard to come by, may be worth the challenge of constructing and maintaining a 150 -foot tower.

closer spacing

I chose an unusually wide spacing for my array because I guessed that the increase in radiation resistance

fig. 11. Azimuth pattern at 3.8 MHz with the array raised to 145 feet. The dashed pattern is for boom at $\mathbf{1 1 5}$ feet.

fig. 12. Elevation pattern at 3.8 MHz with spacing reduced to 32.4 feet. Peak gain is 8.70 dB at 36.5 degrees and average F / B is 16.07 dB . The dashed pattern is for $\mathbf{4 6}$-foot spacing

fig. 13. Elevation pattern at 3.8 MHz with both loops driven 180 degrees out-of-phase. Peak gain is 7.05 dB at 33 degrees

fig. 14. Elevation pattern at 3.8 MHz for square loops with the same perimeter as the triangular loops. Peak gain is 9.71 dBi at 31.5 degrees and average F / B is 16.52 dB . The dashed pattern is for triangular loops.

fig. 15. Azimuth pattern at 3.8 MHz for square loops. The dashed pattern is for triangular loops.
with increased spacing would partially offset the relatively lower value created by proximity to ground. Also, I expected that the bandwidth would be somewhat better at the larger spacing. Because the array is parasitic rather than driven, performance isn't terribly sensitive to spacing. Although I haven't verified all of these conjectures, I did examine performance for spacing reduced from 46 feet to 32.4 feet at $\lambda / 8(3.8 \mathrm{MHz})$. The elevation pattern shown in fig. 12 has nearly the same peak gain (8.70 versus 8.68 dBi) at the same elevation angle, but the backward pattern is significantly better. The input resistance drops 19 ohms while the input reactance increases 15 ohms.

both loops driven

As mentioned earlier, I designed the remotely controlled switches so that I could drive both loops together if I chose to. The feedpoint boxes are identical, and installed facing each other, so paralleling the feedlines at the center of the boom results in exactly out-of-phase drives to the two loops (with the feedlines from boom center to loop apex being equal in length).

A two-element array driven with 180-degree phase shift produces an end-fire pattern that's independent of spacing over a reasonable range near $\lambda / 8$. The elevation pattern has a very deep null straight up, as seen in fig. 13. I thought this null might produce good effectivef/b when listening to Europeans, assuming that signals from

fig. 16. Elevation patterns at 3.8 MHz for halfwave elements.

fig. 17. Azimuth pattern at 3.8 MHz for dipole elements. Patterns for inverted vee elements are virtually the same.
close-in W's would arrive at high elevation angles. However, in practice I found that the pattern of the parasitic array (fig. 2) rejected local signals better than the driven array.

The calculated peak gain for the driven array is 7.05 dBi . This is significantly below the gain of the parasitic array. Furthermore, the input resistance is much lower, so that the effect of losses in the CW loading coils becomes more significant (however, these coils aren't required for a driven array). I found that signals from Europe were never better with the driven arrangement, and occasionally were noticeably worse (note that 1.5 dB is generally not measurable except with laboratory instrumentation). I've abandoned this setup.

square loops

The mechanical challenges inherent in constructing an array of square loops in place of delta loops are severe but not outrageous. According to $\mathrm{G} 6 \times \mathrm{N}^{6}$, we can't expect that the change in the shape of the elements will yield any appreciable change in gain, but the pattern may be improved (i.e., the side lobes can be decreased) with increased mutual coupling. Changing to square loops with the top horizontal side at the same height as the apex of the delta loops raises the effective height, which will increase peak gain and decrease the elevation angle at the gain peak.

These conclusions are supported by the results. The peak gain for the elevation pattern shown in fig. 14 is 9.71 dBi , about 1 dB higher than the delta loop array. The elevation angle at the peak is 5 degrees lower, at 31.5

fig. 18. Elevation pattern at 3.8 MHz for a halfwave sloper plus 120 foot grounded tower. Peak gain is $\mathbf{1 . 5 6 ~ d B i}$ at 28.5 degrees and average F / B is 11.12 dB . Peak gain without the tower is 0.81 dBi at 31.5 degrees.

fig. 19. Azimuth pattern at 3.8 MHz for halfwave sloper plus 120 foot grounded tower.

fig. 20. Elevation pattern at 3.8 MHz for sea water ground conditions. Peak gain is $\mathbf{1 0 . 4 7} \mathbf{~ d B i}$ at $\mathbf{4 2 . 0}$ degrees and average F / B is 11.25 dB . The dashed pattern is for poor ground.

9 MHz CRYSTAL FILTERS

$\begin{aligned} & 10 \\ & -01 \\ & -02 \\ & -10 \\ & 8 \end{aligned}$	

Appli- cation	Band- width	Poles	Price
SSB	$2.4 ~ \mathrm{kHz}$	5	$\$ 53.15$
SSB	2.4 kHz	8	72.05
LSB	2.4 kHz	8	95.90
USB	2.4 kHz	8	95.90
SSB	2.4 kHz	10	125.65
AM	3.75 kHz	8	77.40
AM	5.0 kHz	8	77.40
FM	12.0 kHz	8	77.40
CW	500 Hz	4	54.10
CW	500 Hz	8	95.90
CW	250 Hz	8	151.20
IF noise	15 kHz	2	17.15

10.7 MHz CRYSTAL FILTERS
WRITE FOR FULL DETAILS OF CRYSTALS AND FILTERS Export inquiries Invited.
MICROWAVE MODULES EQUIPMENTS Use your existing HF or 2 M rig on other VHF or UHF bands.

RECEIVE
CONVERTERS

MMk	$1691-137$	259.95
MMk	$1296-144 \mathrm{G}$	189.95
MMc	$439-\mathrm{ATV}$	94.95
MMc	$432-28(\mathrm{~s})$	59.95
MMc	$144.28(\mathrm{HP})$	69.95
MMc	144.28	54.95

LINEAR
TRANSVERTERS
MMI $1296-144 \mathrm{G}$ G 369

$M M t$	$1296-144 \mathrm{G}$	36995
$M M x$	$1268-144$	28995
$M M t$	$432-28(\mathrm{~S})$	289.95
$M M 1$	$144-28(\mathrm{R})$	34995
$M M t$	$144-28$	189.95

MMI 435-28(S) 2999

LINEAR POWER AMPLIFIERS					
2 M (70 c					
MML	144-30-LS	14495	MML	432-30-L	189.95
MML	144-50-S	119.95	MML	432-50	229.95
MML	144-100-S	224.95	MML	432-100	439.95
MML	144-100-LS	249.95			
MML	144-200-S	439.95			
ANTENNAS					
2M					
10 XY -2M $\$ 74.95$ LOOP YAGIS					
70 cm			1268-L		\$49.95
$70 / \mathrm{MB}$	M28	\$44 95	1296-L		49.95
70/M	M488	64.95 94.95	1691-L		59.95
DY20	900 MHz	79.95	order	oop yagi c	extra

Send 664 (3 stamps) for full details of all our VHF 8 UHF equipments and KVG crystal products
Shipping: FOB Concord. Mass Concord, MA 01742, U.S.A.

BASEBALL CAP

How about an attractive BASEBALL style cap that has name and call on it. It gives a jaunty air when worn at Hamtests and it is a great help for friends who have never met to spot names and calls for easy recognition. Great for birthdays, anniver saries, special days, whatever occasion Hats come in the following colors: GOLD, BLUE, RED. KELLY GREEN.
Please send call and name (maximum 6 letters per line).
DUFBC-81

I.D. BADGES

No ham should be without an I.D. badge. It's just the thing for club meetings. conventions, and get-togethers, and you have a wide choice of colors. Have your name and call engraved in either standard or script type on one of these plastic laminated I.D badges. Available in the following color combinations (badge/lettering): white/red, woodgrain/white, blue/white, white/black, yellow/ blue, red/white, green/white, metalic gold/black, metallic silver/black \square UID Engraved ID. Badge
\$2.50
Ham Radio's Bookstore
degrees. And the pattern is outstanding; the average f / b for this case is 16.5 dB ! The azimuth pattern is shown in fig. 15; this pattern is also excellent.

half-wave elements

Erecting closed one-wavelength loops on a guyed tower can be a major hassle when there are trees within shouting distance of the tower. (By the way, I have ample experimental evidence that shouting at trees in hope of convincing them to release captured wires is ineffective.) Because half-wave elements are much simpler to handle, I examined the performance of three twoelement parasitic arrays with:

- horizontal half-wave elements at 115 feet;
- inverted-vee half-wave elements from 115 feet, with 120-degree apex angle; and
- inverted vee elements with 90 -degree apex angle.

Figure 16 shows the elevation pattern charts for these three cases. There's a tendency for the pattern null to fill in as the apex angle decreases. However, even the horizontal dipole array pattern is inferior to the delta loop pattern (fig. 2). It may be possible to "tune up" the pattern by changing the element spacing and the loading inductance for the reflector, but I haven't attempted this analysis. The azimuth pattern for the horizontal dipole case is given in fig. 17; the patterns for the two inverted vee cases are almost the same.
On the other hand, the peak gains are competitive with the delta loop array: $9.26,8.54$, and 8.04 dBi , respectively, versus 8.68 dB ifor the loops. It appears that the inverted vee array with wires as flat as possible is a good substitute for the delta loops as far as gain is concerned.

the half-wave sloper

My previous 80 -meter antenna system was a set of four half-wave slopers, slanting about 30 degrees from the vertical. Unfortunately, I had to dismantle this system before the delta loop array was operational, so I have no on-the-air comparison of the delta loops versus the slopers.
Figure 18 illustrates the elevation pattern for a single half-wave sloper (slanted 30 degrees from vertical), in the presence of a 120 -foot tower grounded at its base. The backward rejection is rather good - the average f / b is 11.1 dB . The corresponding azimuth pattern is included in fig. 19, even though it's unremarkable.
Now for the bad news: the peak gain (at 28.5 degrees) is a paltry 1.56 dBi . Compare this with a simple inverted vee from 120 feet with 120 -degree apex angle, which exhibits a peak gain of 6.18 dBiat 31 degrees. Once again, the source of this inferior performance is polarization. The field in the plane containing the sloper and the tower is entirely vertically polarized, which is disastrous over poor ground (see Appendix). In fact, the peak gain of the sloper over poor ground is less than the same antenna
in free space (2.16 dBi). One possible explanation might be that the proximity to ground distorts the nominallysinusoidal current distribution on the sloper so badly that the directivity is degraded. However, examination of the NEC printout for this case shows that the current is symmetrical about the feedpoint (the center) within a few percent in amplitude and within 1 degree in phase. Thus, the degradation must be due to destructive interference between the (attenuated) reflected field and the direct field.

Clearly, the sloper - like the corner-fed loop - is a poor choice for a transmitting antenna at sites with poor ground characteristics. I'm planning to reinstall one of my slopers to verify whether or not this computed 7-dB disadvantage appears in practice.

performance over good ground

I've disparaged the performance of verticallypolarized antennas over poor ground, but the fact is that poor ground degrades the performance of any type of antenna for 80 meters at other than grazing angles. Figures 20 and 21 show the radiation patterns for my delta loop array when moved to an island surrounded by salt water. The pattern nulls are filled in somewhat and the elevation angle for peak gain is increased to 42 degrees. However, the peak gain is considerably increased, by nearly 2 dB , to 10.47 dBi . This figure probably represents the maximum gain achievable with a two-element array of delta loops at 115 feet.

summary

I've presented polar plots, gains, and average f/b data for a number of 80 -meter antennas. Table 1 collects all of the results in one place and includes the input impedances computed by NEC. These latter data are not reliable because I did not follow the procedures needed to confirm that enough segments were provided to assure that this calculation had "converged" to the true value. However, all cases were run with comparable segment lengths, so the trends in impedance should be representative of the true behavior.

The significant column in table 3 is the peak gain; it's possible that the average f / b for any of the variations could be tweaked somewhat by modifyiing the reflector's resonant frequency and the element spacing.

The primary conclusions of this study of 80 -meter antennas over poor ground are:

- The delta loop array provides enough gain to be worth the effort, along with truly useful f / b ratios, even though the boom height is too low by conventional wisdom.
- Raising the boom 30 feet would add about 1.3 dB of gain at a slightly lower elevation angle.
- Changing from delta loops to square loops would increase gain about 1.0 dB and would improve the pattern.

fig. 21. Azimuth pattern at 3.8 MHz and 36 degree elevation angle for salt water ground. The dashed pattern is for poor ground.

fig. 22. Reflected field intensity amplitude versus angle of incidence for horizontal (solid curve) and vertical (dashed curve) polarization with poor ground $\left(\epsilon_{\rho}=4\right.$ and $\delta=0.001$ S / ml.

fig. 23. Reflected field intensity amplitude versus angle of incidence for horizontal (solid curve) and vertical (dashed curve) polarization with good ground ($\epsilon_{\rho}=80$ and $\delta=5$ $\mathrm{S} / \mathrm{m} \mathrm{l}$. The solid curve nearly coincides with the 0 dB arc at all angles.

YOU SUPPLY THE TALENT.

WE'LL SUPPLY THE TOOLS.

ISC Defense Systems, inc. is firmly committed to creating tomorrow's state-of-the art in such advanced technological areas as VHF/UHF and Microwave RF systems; Analog EngI neering: Communications; Electronic Packaging; Radar; and Signal Processing. That's why we're also committed to attract. ing more of this nation's best engineers . . and to providing them with the tools and the environment for success.

Our commitment begins with a newly constructed, 102,000 sq.ft. facility that offers room to advance and achieve. It con tinues with our ambitious capital equipment acquisition pro gram designed to give our engineers access to the latest in R\&D, Manufacturing, Test and QA tools. And it manifests itself in challenging systems engineering projects that allow our tech. nical protessionals to display their tatent and utilize their expertise to make their mark now on the future of the company as well as the future of technology

The detense community we serve demands absolute excellence in advanced engineering solutions. That's why we're looking for the best-engineers like you-to supply it.

We have immediate and on going requirements for the following, top level professionals:
> - Group Leader-VHF/UHF/ MICROWAVE
> - Staff Level-COMMUNICATIONS/ JAMMING SYSTEMS
> - Project Engineers-RADAR DESIGN
> - Sr. RF Engineer-RADAR \&

> COMMUNICATIONS
> - Sr. Analog Engineer-DESIGN \& ANALYSIS
> - Assoc. Engineer-RF SYSTEMS

```
EEsof - Touchetone - 9-JUL-1986 10113:1! - TOFILT
```


All positions require a BSEE or BSME and U.S. Citizenship. An advanced degree is highly desirable.

ISC Detense Systems, Inc. is located in Lancaster, PA where the quality of life adds to our environment for success. Situated in the heart of the famed Pennsyivania Dutch country, Lancaster features affordable housing, excellent schools, numerous colleges and universities, plus a tranquillifestyle. Major cities such as Philadelphia, New York, Washington, and Baltimore are all less than $21 / 2$ hours away.

In addition to competitive salaries, and relocation allowances, we offer benefits that include tuition assistance. an on-site Mas. ter's Degree program, a 401(k) Plan, and an employee fitness center as well as fully paid insurance, vacations, and holidays.

Please send resume to: William Van Anglen, Manager of Professional Resources, Dept. HRM, ISC Defense Systems, Inc., 3725 Electronics Way, P.O. Box 3025, Lancaster, PA 17604-3025. An Equal Opportunity Employer.

Table 3. Summary of Antenna Cases.

Description	Peak Gain (dBi)	Elevation Angle (deg)	Average f/b (dB)	Input Impedence (ohms)	
GQ Delta Loop Array	8.68	36.5	11.5	69.2	- 115.3
GQ at 3.5 MHz	8.28	36.5	7.1	37.0	- 5151.3
GQ bottom fed	8.80	36.0	11.5	129.2	- 23.6
GQ corner fed	5.48	33.0	7.8	71.4	- 557.3
GQ $30{ }^{\prime}$ higher	9.97	30.5	11.1	80.1	- 112.0
GQ on $32.4{ }^{\prime}$ boom	8.70	36.5	16.1	50.2	- j 0.0
GQ over salt water	10.47	42.0	11.3	55.5	-j11.5
GQ with square loops	9.71	31.5	16.5	119.5	$+i 41.0$
GQ with both driven	7.05	33.0	0.0	25.2	-j44.3
Two dipoles	9.26	28.5	6.9	78.2	$+120.1$
120 deg Inverted vees	8.54	31.0	6.6	64.6	+ 5.2
90 deg Inverted vees	8.04	32.0	6.5	45.8	+ 21.3
Sloper \& tower	1.56	28.5	11.1	103.1	$+i 22.3$

- Moving the feedpoint to the bottom center would have essentially no effect; moving it to a corner would be disastrous.
- Shortening the boom to $\lambda / 8$ would lower the radiation resistance and improve the pattern somewhat, but would not change the gain.
- Replacing the loops with dipoles or flat inverted vees would not affect gain very much, but the pattern would be degraded.
- My half-wave sloper system should not have worked.
- I should retire to an island off the coast of Maine.

acknowledgements

Many thanks are due John Kenny, W1RR, and Doug Grant, K1DG, who constructively reviewed this article.

references

1. Bill Myers, K1GQ, "The W2PV 80 Meter Quad," ham radio, May, 1986, page 56.
2. Walter Maxwell, W2DU, "Some Aspects of the Balun Problem," OST, March, 1983, page 38
3. G J. Burke, and A. J. Poggio, "Numerical Electromagnetics Code (NEC) - Method of Moments," Naval Ocean Sys tems Center, Technical Document 116, Volumes 1, 2, and 3, January, 1981.
4. G.L. Hall, K1TD.. "The New Look for OST's Antenna Patterns," QST, July, 1980, page 26.
5. IEEE Standard Test Procedures for Antennas, Institute of Electrical and Electronic Engineers, 1979.
6. L. A. Moxon, G6XN, HF Antennas for All Locations, Radio Society of Great Britain, 1982.
7. M. T. Ma, Theory and Application of Antenna Arrays, John Wiley and Sons, New York, 1974

appendix
 ground reflection amplitudes

The effects of real ground on Amateur antenna installations have been reported many times, so I don't propose to reiterate those analyses. However, I did develop an unusual polar plot which helps in clarifying some of those effects. To understand the chart, a bit of prefatory explanation is needed.

The presence of ground is modeled by constructing a reflected field that is vectorially summed with the direct field of the antenna. The reflected field from a given point on the ground is proportional to the field incident from the antenna; the proportionality constant is called the reflection coefficient. The reflection coefficient depends on polarization of the incident wave and on the angle of incidence, as well as the characteristics of the ground (which depend on frequency). This rather complicated modeling problem is simplified somewhat by decomposing the incident field into horizontal (parallel to the ground) and vertical (in a plane normal to the ground) components and applying separate horizontal and vertical reflection coefficients. Expressions for these coefficients are given in many texts; for example, Chapter 4 of Ma's Theory and Application of Antenna Arrays.?

The two reflection coefficients are complex numbers; that is, the reflected field components are modified in both amplitude and phase. The effect of phase shifts is a modification of the positions of peaks and nulls in the final pattern, which is developed by constructive and destructive recombina tions of the incident and reflected fields. The effect of amplitude modification is to change the

Our guaranteed savings plan.

Fluke 70 Series Analog/Digital multimeters are like money in the bank. Buy one, and youre guaranteed to save both time and money.

Money, because you get longer battery life and longer warranty coverage -3 years vs. 1 year or less on others.

And time, because 70 Series meters are easier to operate and have more automatic measurement teatures.

So before buying any meter, look beyond the sticker price. And take a closer look at the new low-priced $\$ 79$ Fluke 73 , the $\$ 99$ Fluke 75 , and the deluxe $\$ 139$ Fluke 77 . In the long run, they'll cost less, and give higher performance, too.

And that, you can bank on.
For a free brochure, and your nearest distributor, call toll-free 1-800-227-3800, ext. 229.

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.

AMATEUR TELEVISION

KPA5 1 WATT 70 CM ATV TRANSMITTER BOARD

- APPLICATIONS: Cordless portable TV camera for races \& other public service events, remote VCR, etc. Remote control of R/C airplanes or robots Show home video tapes, computer programs, repeat SSTV to local ATVers. DX depends on antennas and terrain typ. 1 to 40 miles.
- FULL COLOR VIDEO $\&$ SOUND on one small $3.25 \times 4^{4 "}$ board
- RUNS ON EXTERNAL $\mathbf{1 3 . 8}$ VDC at 300 ma supply or battery.
- TUNED WITH ONE CRYSTAL on $426.25,434.0$, of 439.25 mHz
- 2 AUDIO INPUTS for a fow Z dynamic and line level audio input found in most portable color cameras. VCRs, or home computers
- APPLICATION NOTES \& schematic supplied for typical external connections packaging, and system operation.
- PRICE ONLY $\$ 159$ delivered via UPS surface in the USA. Technician class amateur license or higher required for purchase and operation

WHAT IS REQUIRED FOR A COMPLETE OPERATING SYSTEM? A TV set with a TVC-2 or TVC-4 $420-450 \mathrm{mHz}$ to channel 3 downconverter. 70 cm antenna and coax cable to receive. Package up the KPA5, add 12 to 14 vdc, antenna, and anv TV camera VCR, or computer with a composite video output Simple, eh?

CALL OR WRITE FOR OUR COMPLETE CATALOG $\&$ more info
downconverters, antennas, cameras, etc, or who is on in your area
TERMS: Visa, Mastercard, or cash only UPS COD by telephone or mail Telephone orders \& postal MO usually shipped within 2 days. all other checks must clear betore shipment. Transmitting equipment sold only to licensed amateurs verified in 1984 Callbook Calit include sales tax
(818) 447-4565 m-f 8am-6pm pst.
P.C. ELECTRONICS

Tom W60RG Maryann wB6YSS

2522 Paxson Lane Arcadia CA 91006
levels of the peaks and nulls. For example, if the reflected wave amplitude is one-half of the incident wave, the combined field will have peaks no greater than 1.5 times the amplitude of the original field (+3.52 dB). The maximum combined field with perfect reflection is 2 times the original amplitude, or 6.02 dB , so 2.50 dB of "potential" gain has been lost.
The horizontal and vertical reflection coefficients are rather messy functions of angle of incidence, dielectric constant, conductivity, and frequency. To illustrate the behavior of these parameters at 3.8 MHz . I've plotted the reflection amplitude versus angle of incidence in the same format I used for the elevation patterns. That is, the radial coordinate represents the amplitude of the reflected radiation intensity (power) relative to the incident radiation intensity, and the angular coordinate corresponds to the elevation angle for the incident field. Figure $\mathbf{2 2}$ shows this chart for poor ground, with dielectric constant $=4$ and conductivity $=0.001 \mathrm{~S} / \mathrm{m}$. The solid curve is the amplitude for the horizontal reflection coefficient and the dashed curve is for the vertical reflection coefficient. Note that both are unity (zero dB) for grazing angle incidence, and both are equal for normal incidence. The very pronounced null in the vertical reflection coefficient amplitude shows graphically why vertical polarization is inferior to horizontal polarization over poor ground, except at extremely low angles. (To be fair, it must be noted that at low antenna heights, vertical polarization is superior - even though the amplitude of the vertical coefficient is always less than that of the horizontal component. This is because the phase shift for the horizontal polarization guarantees destructive recombination, whereas the recombination for vertical polarization is constructive in the region above the null.)
This situation changes dramatically over good ground. Figure 23 shows the same chart for salt water, with dielectric constant equal to 80 and conductivity equal to $5 \mathrm{~S} / \mathrm{m}$. Both coefficients are essentially unity for all angles of incidence, except for the narrow null near grazing incidence for the vertical coefficient. The advantage of horizontal over vertical polarization does not occur in this environment.
ham radio

NDWT BARKER \& WILLIAMSON!

1.8 - 30 MHz . Continuous Coverage Antenna for Commercial and Amateur Service

Model AC 1.8-30

The AC 1.8-30 Antenna uses only 80 feet horizontally, and, when space is limited, can be shortened even further with only slight loss of radiation efficiency.
U.S. Patent No. 4.511,898

- SWR Maximum 2:1, 1.4:1 Average - Handles 1 KW input ICAS
- Can be installed in approximately 80 feet of space - Higher power models available (contact factory)

25 to 35 F. HIGH

9 Autry
Irvine, CA 92718
Canadian Distributor:
Eastcom Industries, Ltd. 430 Signet Drive
(714) 458-7277

NE5205 wideband RF amplifier

Inexpensive IC functions as small-signal amplifier to 600 MHz

Simple, inexpensive, wideband RF amplifiers are always much-needed items when experimenting in RF and constructing RF projects. Because each project has its various unique requirements that must be satisfied - minimum cost, low operating current, maximum bandwidth, and high output power, for example - one can never have too many different configurations from which to choose. But the ideal amplifier that satisfies all potential needs has yet to be invented; consequently, a different approach or new design is always welcome.

This brief article describes the construction of a relatively high-performance RF amplifier that uses a Signetics NE5205 wideband RF amplifier. The NE5205 is an integrated wideband RF amplifier that serves as an excellent general-purpose RF gain block for applications from a few Hertz to above 600 MHz . It provides a non-inverting $20-\mathrm{dB}$ gain and, although not an LNA, its typical $6-\mathrm{dB}$ noise figure (50 -ohm input) is quite good and should be adequate for many RF projects.

The NE5205 is available in either a TO-46 metal package or an eight-pin small-outline (SO) package. Although samples were distributed in the conventional eight-pin mini DIP (" N " package), that package isn't shown in the NE5205 literature and doesn't appear to be available from distributor stock.

The SO package is a very inexpensive plastic unit with the same operating characteristics as the TO-46. A minor problem with the SO package, however, is size; it's about one-twentieth the volume of the more
common eight-pin mini DIP. The leads, on 0.05 -inch centers and bent at the ends in the form of small feet, are much too short to go through even a thin PC board. This is a surface-mount device (SMD) designed to be mounted on the trace side of the PC board or other substrate. The package is small, but it isn't difficult to handle; you will, however, have to be quite careful and you may have to buy a small tip for your soldering iron.

NE5205 features

The functional schematic for the NE5205, shown in fig. 1, is considerably more complex than typical integrated wideband RF amplifier gain blocks. The small die size, offering low propagation delays and low parasitic elements, in part give this component its good operational characteristics. A particularly useful feature is the use of several different feedback loops to stabilize the gain and operating point and provide good input and output impedance matching. While this is too lengthy a topic to be covered here, the NE5205 data sheet provides complete details. ${ }^{1}$

Don't try to build the circuit shown in fig. 1 from discrete components; such a construction might work to a few tens of megahertz, but in general its performance will be very poor at best. The success of this circuit design depends as much on the small die size and integrated construction as on the actual circuit configuration. In any event, it's much less expensive to use the NE5205 than to build a discrete version.

In a minimum basic circuit, the NE5205 needs only three external components: input and output coupling capacitors and a supply bypass capacitor. Adding a few inexpensive components, however, results in a more versatile amplifier with much better tolerance for the abuse of experimenting than a minimum partscount amplifier would offer.

fig. 1. NE5205 functional diagram.'
(Copyright 1985, Signetics Corporation used with permission.)

amplifier circuit

Figure 2 shows the schematic of the complete amplifier. The input diode, CR1, prevents reverse-bias damage to the input transistor of the NE5205. The input can generally tolerate short pulses of high forward bias since the input transistor is simply forwardbiased. However, even short pulses of reverse inegative) input bias as low as a few volts will avalanche the input emitter-base junction, totally destroying the part or seriously degrading its noise performance. When CR1 is included, it will conduct with a reverse input drive of about 1.4 volts, limiting the input level to the NE5205 to a safe value. This diode is reversebiased at about 1 volt by the input potential of the NE5205. Since the maximum usable input of the NE5205 is about 80 mV peak (-12 dBm), the 1 -volt reverse bias of CR1 prevents its conduction with normal signals and helps reduce the diode capacitance to minimize loading of the input. CR1 is a Schottky diode with a faster response speed than the NE5205 and it has minimum capacitance. If you can't find the 1N5711 device specified for CR1, a 1N4148 or 1N914
will work reasonably well; the high-frequency cutoff may be reduced, however. CR1 may simply be omitted, but the finished amplifier will then be quite sensitive to input damage.

Resistors R1, R2, and R3 form a Pi pad to allow a little adjustment of the amplifier gain and input impedance. They also provide some additional input protection. Similarly, R4, R5, and R6 form an output pad for gain and output impedance adjustment. These two pads may be omitted for maximum gain, but I find that keeping about a $0.5-\mathrm{dB}$ pad at each place provides better stability in general applications. The resistors should be a high-quality carbon composition type. Low-noise carbon film or metal film may be used if their highfrequency performance is adequate.

The coupling capacitors, C 1 and C 2 , must be dipped tantalums to minimize the physical size and provide good high-frequency performance. Don't try to use aluminum electrolytics; if you do, you're likely to end up with an oscillator. Capacitors C3 and C4 are supply bypass capacitors. High-frequency bypassing is provided by C3, with C4 providing low-frequency

THE MOST AFFORDABLE REPEATER ALSO HAS THE MOST IMPRESSIVE PERFORMANCE FEATURES (AND GIVES THEM TO YOU AS STANDARD EQUIPMENT:)

HIGH QUALITY XMTR \& RCVR MODULES FOR REPEATERS, LINKS. TELEMETRY, ETC.

- R144/R220 FM RCVRS for 2 M or 220 MHz . 0.15 uV sens.;8 pole xtal filter \& ceramic filter in i-f, helical resonator front end for exceptional selectivity, $>100 \mathrm{~dB}$ at $\pm 12 \mathrm{kHz}$, best available today. Flut-ter-proof squelch. AFC tracks drifting xmtrs. Xtal oven avail. Kit only $\$ 138$.
- R451 FM RCVR Same but for uhf. Tuned line front end, 0.3 uV sens. Kit only $\$ 138$.
- R76 FM RCVR for 10M, 6M, 2M, or 220. As above, but w/o AFC or hel. res. Kits only $\$ 118$. Also avail w/4 pole filter, only $\$ 98 / \mathrm{kit}$.
- R110 VHF AM RECEIVER kit for VHF aircraft or ham bands or Space Shuttle. Only $\$ 98$.
- TA51 VHF FM EXCITER for 10M, 6M, 2 M , or 220 MHz . 2 Watts continuous, up to $3 W$ intermittent. Kit only $\$ 68$
- TA451 UHF RM EXCITER $2 W$ cont., up to $3 W$ intermittent. Kits only $\$ 68$. Xtal oven avail.

- VHF \& UHF LINEAR AMPLIFIERS. For either FM or SSB. Power levels from 10 to 45 Watts to go with exciters \& xmtg converters. Several models. Kits from $\$ 78$.

NOW-FEC TVPE HGOEPTEB TRANSMITTERS, RECEIVERS, AND
 50W WITH OPTIONAL PA).

TRANSMIT CONVERTERS

For SSB, CW, ATV, FM, etc. Why pay big bucks for a multi mode rig for each band? Can be linked with receive converters for transceive. 2 Watts output vhf, 1 Watt uhf.

For VHF,	Exciter Input Range	Antenna Output
Model XV2	28.30	${ }^{144-146}$
	28-29	- $145-146$
Kit \$79	28-30 $27-27.4$	50-52 $144-144.4$
Wired \$149	28-30	$220-222^{\circ}$
(Specify band)	- $50-54$	$\underset{50-52}{20-224}$
	144-146	28-30
For UHF,	${ }^{28-30}$	432-434
Model XV4	28-30	435-437
Kit \$79	61.25 $144-148$	-439-436.

Wired \$139

- Add $\$ 20$ for 2 M input

VHF \& UHF LINEAR AMPLIFIERS. Use with above. Power levels from 10 to 45 Watts. Several models, kits from $\$ 78$.

LOW-NOISE PREAMPS

FEATURES:

- Very Low Nose: 0.7 dB VHF, 0.8 dB UHF
- High Gain: 13 to 20 dB , Depending on Freq.
- Wide Dynamic Range for Overload Resistance
- Latest Dual-gate GaAsFET, Very Stable

MODEL		TUNES RANGE		PRICE
	LNG-28		$26-30 \mathrm{MHz}$	
LNG-50		$46-56 \mathrm{MHz}$		$\$ 49$
LNG-144		$137-150 \mathrm{MHz}$		$\$ 49$
LNG-160		$150-172 \mathrm{MHz}$		$\$ 49$
LNG-220		$210-230 \mathrm{MHz}$		$\$ 49$
LNG-432		$400-470 \mathrm{MHz}$		$\$ 49$
LNG-800	$800-960 \mathrm{MHz}$		$\$ 49$	

HELICAL RESONATOR PREAMPS

Low-noise preamps with helical resonators reduce intermod and cross-band interference in critical applications. 12 dB gain.

MODEL	TUNING RANGE		PRICE
HRA-144	$143-150 \mathrm{MHz}$	$\$ 49$	
HRA-(*)	$150-174 \mathrm{MHz}$	$\$ 49$	
HRA-220	$213-233 \mathrm{MHz}$	$\$ 49$	
HRA-432	$420-450 \mathrm{MHz}$	$\$ 64$	
HRA-(*)	$450-470 \mathrm{MHz}$	$\$ 64$	
*Specify Center frequency desired			

MINIATURE PREAMPS

Model LNW-(*) Only $\$ 19 / \mathbf{k l t}$, $\$ 34$ wired Models available to tune the following bands: 25-35, 35-55, 55-90, 90-120, 120-150, $150-200,200-270$, and $400-500 \mathrm{MHz}$.
*Specify band

IN-LINE PREAMPS

NEW

GaAsFET Pre amp with fea. tures like LNG Automatically
switches out of line dur-
ing transmit. Use with base or mobile
transceivers up to 25 W . Tower mig nowr incl.

MODEL	TUNES RANGE	KI	WIRED
LNS-144	$120-175 \mathrm{MHz}$	\$59	\$79
LNS-220	200-240 MHz	\$59	\$79
LNS-432	$400-500 \mathrm{MHz}$	\$59	\$79

ACCESSORIES

- MO-202 FSK DATA MODULATOR. Run up to 1200 baud digital or packet radio signals through any FM transmitter.
- DE-202 FSK DATA DEMODULATOR
- COR-2 KIT With audio mixer, local speaker amplifier, tail \& time-out timers.
- COR-3 KIT with "courtesy" beep"
- DTMF DECODER/CONTROLLER KITS
- AUTOPATCH KITS. Provide repeater autopatch, reverse patch, phone line remote control of repeater, secondary control.
CWID KITS • SIMPLEX AUTOPATCH
- Order by phone or mail • Add \$3 S \& H per order (Electronic answering service evenings \& weekends)
- Use VISA, MASTERCARD, Check, or UPS COD.

fig. 2. Amplifier schematic diagram.
bypassing. The ferrite bead, FB1, prevents the lead inductance of C 4 from forming a parallel resonance with C 3 . Here the bead is acting like a very lossy inductance that totally destroys the Q of the $\mathrm{C} 3 / \mathrm{C} 4$ resonant circuit. Without the bead, the parallel resonant network formed by C3 and the leads of C4 will cause the effective power supply impedance to be high at the resonant frequency. This can cause an artifact in the frequency response and in some cases can cause instability (oscillation) due to coupling into the amplifier's internal circuitry through the power supply paths.

Resistor R7 helps to decouple high frequencies from the power supply pin, improving stability with cascaded amplifiers. With its associated components, regulator U 2 protects the amplifier from over-voltage damage and stabilizes operation with unregulated supplies. It too may be omitted if a good 5 - to 8 -volt regulated supply is available, but it's generally more convenient to provide regulation as part of the basic amplifier design.

Diode CR2 protects the amplifer from the application of a reversed power supply voltage, probably one of the more common types of damage to experimental circuits. The power input filter FL1 prevents noise from coupling into the amplifier from the power supply leads. Bead FB2 on the filter lead provides a little additional filtering of the power supply input.

choosing the correct PC board material

The 3:1 artwork for the amplifier is shown in fig. 3. This layout is tailored for installation in the enclosure discussed later; if you choose to use a different enclosure, you'll have to make some alterations to the mounting details, but don't change the basic circuitry unless you're experienced in RF PC board layout.

This board was designed for surface-mounting of all components even though only the SO-package NE5205 is a true surface-mount part. The PC board should be constructed of $1 / 32$-inch, 2 -ounce double-

Box	Pomona 3751 or similar (Newark Electronics No. 34F1260/\$18.50)
C1, 62	Capacitor, $10 \mu \mathrm{~F} / 25 \mathrm{~V}$ dipped tantalum
C4, C5	Sprague 196D or similar
C3	Capacitor, 1000 pF CK05 or disc
C6	Capacitor, $10 \mu F / 35 \mathrm{~V}$ dipped tantalum - Sprague 196D or similar
CR1	Schottky diode, 1N5711 (may substitute 1N914 or 1N4148 if the 1N5711 cannot be obtained)
CR2	Rectifier diode, 1 N4001 or equivalent
FB1, 2	Ferrite bead (Amidon FB-43-101 or equivale
FL1	Filter, Erie 1250-003 or equivalent (Newark Electronics No. 10F8145/\$3.13)
PCB	PC Board, per fig. 3
$R 1, R 3, R 4,$ $R 6$	Resistor, $2 k$, RC07 carbon composition - Allen Bradley or equivalent
R2, 25	Resistor, 2.7 ohm, RCO7 carbon composition - Allen Bradley or equivalent
$R 7$	Resistor, 10 ohms, RC07 carbon composition - Allen Brad ley or equivalent
R8	Resistor, 680 ohms, RCO7
R9	Resistor, 3.6 kilohms, RC07
U2	Regulator, LM317LZ
Terminal	Ground Terminal, (Newark Electronics No. 40F6026/\$15.00/100 each)
01	RF amplifier, Signetics Electronics, NE5205D
Note: Ja supply mos Receipt mums an	neco Electronics carries many of the above items and can ost of the components (except the PC board) on an "After Order" basis subject to their line-item and invoice minidistributor availability.
A comple Greenville	te kit for this project is available from Radiokit, Box 411H, Now Hampshire 03048. Contact Radiokit for details.

clad epoxy-glass material. Standard PC board doesn't make a good substrate for surface mounting because the pads will pull off easily, particularly during soldering. However, if you're careful, you can achieve quite adequate results. The only component holes necessary are those that tie to the ground plane. Since there are no component holes other than those grounded, there's no need to clear the ground plane from any of the component leads on the ground-plane side of the board. Only single-sided PC board construction is then required. A full ground plane is needed on the nontrace side, but no etching is required on the ground plane. This makes the board a bit easier to duplicate and consequently a little less expensive if you have it fabricated.
Though it's easier to have the PC board fabricated, it's actually simple enough to make using a cut-andpeel technique. A small hobby knife can be used to

SPECIFICATIONS

Electrical

- Band Width 1260-1300 MHz
- Gain
- VSWR Better than 1.5 to 1
- Feed Imp

50 Ohms

- Balun 4:1 Rigid Coax

Mechanical

- Beam Length 12 $2^{\prime \prime} 4^{\prime \prime}$
- Element Length 4.5"
- Mast. $2^{\prime \prime}$ O.D.
- Windload 1 sq. ft.

Mirage Communications Equipment, Inc.
P.O. Box 1000

fig. 3. 3:1 PC board artwork.

fig. 4. Component lead forming details for surface mounting
cut the trace outline through the cladding on one side of a precut piece of double-clad. PC board and a needle-nose or heavy tweezer used to peel the unwanted cladding from the board. While peeling, use a soldering iron to soften the adhesive and heat the cladding to be removed.

PC board assembly

As I indicated earlier, the only component of this circuit designed to be surface mounted is the NE5205. The leads of the other components must therefore be bent to allow them to be mounted. Figure 4 shows how to bend the leads of the various components so that they can be mounted. Try to follow this lead dress carefully since lead length is reasonably critical because of the high maximum frequencies of operation of this amplifier.

fig. 5. Amplifier assembly drawing.

Although assembly of the PC board is straightforward, some care is necessary because of the tight packing of the components. You'll need a soldering iron with a $1 / 16$ th-inch tip to prevent solder from bridging between pads. Also, be very careful when mounting the five capacitors and the regulator. These are large components and their pads can be lifted very easily from the board when soldering. Both during and after mounting these components, take care not to bend them out of position; this would put considerable stress on the mounting pad and could cause the

Table 1. Component mounting sequence.

1. NE5205 Pin 1 is at the Signetics " S ".
2. C3 Above the NE5205, solder ground plane.
3. C4 Observe polarity, remember the bead, solder ground plane.
4. R3 Solder ground plane.
5. R4 Solder ground plane.
6. CR1 Observe polarity, solder ground plane.
7. C1 Observe polarity.
8. C2 Observe polarity.
9. R1 Solder ground plane.
10. R6 Solder ground plane.
11. $R 2$
12. R5
13. R7
14. R8
15. R9
16. REG1
17. C5
18. C6
19. CR2

Solder ground plane.
Observe mounting orientation. Observe polarity, solder ground plane. Observe polarity, solder ground plane. Observe polarity, leave anode lead full length.
pad to become separated, particularly after soldering. When soldering to the ground plane, keep the solder buildup to a minimum, since there's very little space under the board in the enclosure.

Figure 5 shows the assembly drawing of the PC board. Because it's probably the most difficult of the board components to mount - and because it will be partly covered by other components - mount the NE5205 first. The pin next to the " S " in Signetics is pin 1. The other components must be mounted in the order shown in table 1 because of the tight packing. After mounting the amplifier, mount C3 over the top of the amplifier with its leads straddling the NE5205. Then mount the remaining components in the order shown in table 1, noting the associated comments.
When all the components have been mounted, bend four pieces of the resistor leads that were cut off during assembly into a " U " shape as shown in fig. 4 and insert them from the ground plane side into the four pairs of holes at the corners of the board and solder them to the ground-plane side of the board. Make sure that the portion of each of these leads that's on the ground-plane side of the board is flush against the ground plane. They will be used to ground the board and hold it in the box. Finally, solder pieces of cut-off resistor leads to the input and output pads lagain, bend as shown in fig. 4).
After the board is assembled, clean it in isopropyl alcohol; a 91 percent solution - probably available from your local drug store - works best. Don't use denatured ethanol because the denaturing agent isn't known. I prefer alcohol to trichloroethane for PC board cleaning because it presents no known health hazard. But it is flammable, so take appropriate precautions.
Figure 6 shows the assembled PC board before mounting in the enclosure.

fig. 6. Assembled PC board.

enclosure modifications

Enclosures for small RF projects are always a problem. The one I used for this amplifier was a small diecast chassis box. This is a reasonably convenient enclosure; only two additional holes must be added for the power entry filter and the ground terminal. Figure 7 shows the details of the modifications to the box, the two RF connectors, and the mounting screws. A word of caution here: don't try to cut the screws with a pair of diagonal cutters; the screws are very hard and trying to cut them will damage the cutters. The tips of the screws will break off easily enough if you use a pair of pliers to hold the tip while you bend the screw body with your fingers. Carefully lay out the holes using a precision scale and scribe. Center-punch the hole positions before drilling to prevent the drill from "walking." Tap the holes carefully; the tap is very brittle and will break with only slight side pressure.

fig. 8. Completed amplifier assembly. A) Internal view, B) with cover on.

While tapping, use plenty of oil on the tap to prevent binding. Every turn or two, back the tap out to clear the chips. This will also help prevent binding.

final assembly

Now for the final task of putting it all together. With the connectors and power filter removed from the box, place the assembled PC board into the box, component side up and oriented so that the regulator is at the side of the box with the power entry filter. Loosely mount the input and output connectors, using only the upper two holes and the two short screws provided with the enclosure. As you place the connectors on the enclosure, be sure that the input and output connecting leads fit inside the connector holes. Now insert the longer screws into the bottom holes and make sure that they're on the component side of the PC board and between the pairs of leads coming up from the ground plane. Tighten all the screws. Now, bend the pairs of leads near each lower screw over the screw, laying them in the relief at the end of the screw. Solder all four screws to the wires and PC board. You'll need a larger soldering iron than you used for the board assembly to get enough heat for a good solder joint. Make sure that the tip of each screw has a good solder bead to the PC board; the PC board is grounded to the box only at these four places. Try to avoid get-
ting solder in the screw threads so that the screws can be removed if you have to remove the board for repair later on. Solder the input and output leads to the connectors. Mount the ground terminal and power entry filter. If you cannot find a ground terminal, use a 4-40 brass screw about $1 / 2$ inch long. Place a nut on the screw and screw it into the box until it's just penetrating the inside by a thread or two. Then tighten the nut down against the box to lock the screw in place. Place the bead, FB2, over the filter lead and attach the lead of CR2 to the power filter. Hold the body of CR2 with needle-nose pliers while bending its lead to prevent stressing its PC board mounting pad. Trim off the excess filter and diode lead.

Do a final cleaning by filling the assembled box with alcohol and letting it sit for a few minutes. Place your hand over the open top and shake the unit to stir the alcohol. Pour it out. Rinse with a little more alcohol and pour that out. Let the alcohol evaporate for a few minutes and then fasten the cover.

fig. 9. Amplifier frequency response.

fig. 10. Input (S11) and output (S22) S-parameters.

Figure 8A shows the completed amplifier assembly with the cover removed; fig. 8B shows the completed assembly.

performance

Now for the proof test: how well does the amplifier work? If you followed the assembly instructions carefully, it should work rather well. Figure 9 shows the frequency response of the unit that I built. The gain was 20 dB with a lower $3-\mathrm{dB}$ point of 270 Hz and an upper of 608 MHz with usable gain to beyond 1.2 GHz . The bandpass flatness in the bandpass was better than $\pm 0.5 \mathrm{~dB}$. The wideband noise figure was about 5 dB - not an LNA but certainly quite good. The output power at the $1-\mathrm{dB}$ compression point at 100 MHz was +6.7 dBm , and the compression was reasonably constant with frequency up to about 600 MHz (the upper $3-\mathrm{dB}$ cutoff frequency). The total supply current was about 35 mA and the minimum operating potential about 10 V . Figure 10 shows the S-parameters S11 and S 22 for the completed unit. These parameters are a ratio of the forward and reflected power at a given port. In fig. 10 S 11 is below about -20 dB up to about 500 MHz . The $\mathbf{S} 11$ parameter in this measurement was made at the input port. The -20 dB value shows that the power reflected back from the input is 20 dB below the power incident at the input port. That implies that the input impedance is reasonably close to the 50 -ohm impedance of the test system; no power is reflected from a perfectly matched load. With a $20-\mathrm{dB}$ return
loss, the input impedance is within about 0.5 ohm of the characteristic 50 ohm impedance. S 22 is the output port measurement. Up to about 500 MHz the reflected power from the output port is more than about 20 dB below the incident power at the output port. In this S22 measurement, power is actually applied to the output and the reflected power measured. So the output impedance is also reasonably close to 50 ohms (within about 0.5 ohm).

conclusion

This amplifier, if carefully constructed, provides very good performance for general RF experiments and RF projects where a relatively low cost, stable, low-noise, wide-bandwidth gain block is needed. The characteristics of the NE5205 make it a good choice for this application and the recommended circuit design assures both RF and DC stability as well as protection from typical experimental abuse. The recommended packaging provides good RF shielding and isolation, assuring stable, noise-free operation in most common RF environments. It is also relatively easy to construct. This amplifier should be a very useful addition to your collection of general RF amplfier designs.

references

1. Signetics NE5205 data sheet, January, 1985, Signetics Corporation, 811 East Arques Avenue, P.O. Box 3409, Sunnvvale, California 94088-3409. 2. Newark Electronics, 277 Fairfield Road, Fairfield, New Jersey 07006. 3. Amidon Associates, Incorporated, 12033 Otsego Street, North Hollywood, California 91607.

ham radio

HUGE ANTENNA SALE

hugain REBATES

- Crank-up Towers - Rotators
- HF Beam Antennas
- Rebates are based on itemized proof of purchase dated July 1 to September 30, 1986. Each product must be itemized by model number and price.
- Rebate:
$\$ 200$ on HG54HD/HG70HD Towers
\$100 on HG37SS/HG52SS Towers
$\$ 50$ on any Hy-Gain HF Beam Antenna purchased with Ham IV or T2X or HDR300 Rotator
Time is limited - Rebate Offer Expires September 30, 1986.

DISCOUNTS ON RIGS AND ACCESSORIES FROM:

AEA, ARRL, ALINCO, ALLIANCE, ALPHA-DELTA, AMECO, AMERITRON, AMP SUPPLY, ASTRON, ANTENNA SPECIALISTS, BENCHER, CSI, CALLBOOK, DAIWA, ENCOMM, HAL, HEIL, ICOM, KDK, KENPRO, KANTRONICS, MFJ, MICROLOG, NYE, PALOMAR, ROHN, SANTEC, SHURE, TE SYSTEMS, TEN-TEC, TOKYO HY-POWER, VIBROPLEX, WELZ, YAESU

SAVE ${ }^{s} 7.05$ with HOME DELIVERY (one year newstand cost ${ }^{s} 30.00$)

SUBSCRIBE TO ham today radIo
CALL NOW AND PLACE YOUR ORDER ON OUR TOLL FREE ORDER LINE
1 (800) 341-1522
8 AM - 9 PM EDST Orders Only Have your credit card ready.

IATATI
For other information call Ham Radio direct (603) 878-1441 8 A.M. - 4:30 PM

1 year 12 issues $\$ 22.95$
2 years 24 issues $\$ 38.95$
3 years 36 issues $\$ 49.95$
(U.S. ONLY)Payment EnclosedBill me laterCheck here if this is a renewal (Arrach Label)

Name \qquad
Address
City
State \qquad Zip
Please allow 4.6 weeks for delivery of first issue FOREIGN RATES: Europe, Japan and Africa, ${ }^{\$ 37}$ for one year by air forwarding service. All other countries \$31 for one year by surface mail.

Under New Ownership

American made RF Amplifiers and Watt / SWR Meters of exceptional value and performance.

-5 year warranty \bullet prompt U.S. service and assistance

RF AMPLIFIERS

2 METERS-ALL MODE
B23 2W in =30W out (useable in: $100 \mathrm{~mW}-5 \mathrm{~W}$)
B108 10 W in $=80 \mathrm{~W}$ out
$(1 \mathrm{~W}=15 \mathrm{~W}, 2 \mathrm{~W}=30 \mathrm{~W})$ RX preamp
B 101610 W in $=160 \mathrm{~W}$ out $(1 \mathrm{~W}=35 \mathrm{~W}, 2 \mathrm{~W}=90 \mathrm{~W})$ RX preamp B3016 30W in $=160 \mathrm{~W}$ out (useable in: 15.45 W) RX preamp ($10 \mathrm{~W}=100 \mathrm{~W}$)

220 MHz ALL MODE

C106 10W in $=60 \mathrm{~W}$ out
($1 \mathrm{~W}=15 \mathrm{~W}, 2 \mathrm{~W}=30 \mathrm{~W}$) RX preamp
C1012 10W in $=120 \mathrm{~W}$ sut
$(2 \mathrm{~W}=45 \mathrm{~W}, 5 \mathrm{~W}=90 \mathrm{~W})$ RX preamp
C22 2 W in $=20 \mathrm{~W}$ out
(useable in: $200 \mathrm{~mW}-5 \mathrm{~W}$)
RC-1 AMPLIFIER
REMOTE CONTROL
Duplicates all switches, 18 ' cable

WATT/SWR METERS

- peak or average reading
- direct SWR reading

MP-1 (HF) 1.8 .30 MHz
MP-2 (VHF) $50-200 \mathrm{MHz}$

430-450 MHz ALL MODE
D24 2 W in $=40 \mathrm{~W}$ out
($1 \mathrm{~W}=25 \mathrm{~W}$)
D1010 10W in $=100 \mathrm{~W}$ out
$(1 \mathrm{~W}=25 \mathrm{~W}, 2 \mathrm{~W}=50 \mathrm{~W})$

Available at local dealers throughout the world.

COMMUNICATIONS EQUIPMENT,INC.

ham radio

the grounded-grid amplifier

During the last decade a quiet revolution has taken place in Amateur Radio - the vacuum tube has virtually disappeared from the ham shack. I can't think of a new Amateur receiver, exciter, or transceiver using vacuum tubes that's sold in today's market.

But it's a different story in highpower, high-frequency amplifiers. In these, the vacuum tube remains supreme, in spite of several attempts to market a solid-state kilowatt amplifier. Such a device simply isn't cost-effective; I doubt that a practical $2-\mathrm{kW}$ (socalled) solid-state linear amplifier will be available at a modest cost in the near future.

This leaves the power tube as the available high-power device. Today it's primarily a high- μ triode in a cathodedriven circuit (fig. 1) that's the popular choice for high-frequency SSB and CW service.

This circuit is ideal for Amateur service. It has good power gain and usually requires no neutralization in the HF region. Furthermore, it's hard to overdrive, and a certain portion of the drive power shows up as "free" power in the output circuit. The linearity of the grounded-grid amplifier is quite good and, all in all, it's a hard act to beat.

The circuit may be operated either as an amplifier or an oscillator depending on tuning. The tube grid is at (or near) RF ground potential and the driving signal is applied between cathode and ground. In amplifier service, when the cathode is driven positive by the exciting signal (with respect to the grid), the plate becomes more positive with respect to the cathode and also with respect to ground. In effect, the instan-

fig. 1. Simplified cathode driven circuit with R_{D} representing driver load and R_{L} amplifier load. Polarity of instantaneous RF voltages is indicated.

fig. 2. Exciter and amplifier are in series with respect to RF voltages. RF current flows through driver, as indicated by arrow.
taneous plate voltage is developed in series and in phase with the exciting signal voltage. The driver and amplifier may then be considered as operating in series delivering power to the load (see fig. 2).

In the better-designed cathodedriven amplifiers, a tuned circuit is used in the cathode to improve the regulation of the driver, to provide proper termination of the driver over the operating cycle, and to complete the plate circuit RF return path to the cathode of the amplifier. If the tuned cathode circuit is omitted, the various tasks fall upon the
output circuit of the exciter. Many solidstate exciters cannot stand this set of operating conditions and may exhibit instability and undesired oscillation. The operator may jump to the conclusion that the amplifier is oscillating even though the problem is really in the exciter.

neutralize the grounded ground amplifier?

In the HF region, most grounded-grid amplifiers don't require neutralization because the feedback path from plate to cathode is small. However, the feedback path does exist and some Amateurs have discovered that the grounded-grid amplifier can become unstable and tricky to tune, especially on 10 meters and above.

It's easy to determine the degree of unwanted feedback in your amplifier. When fully loaded and tuned with carrier injection, maximum power output, minimum plate current, and maximum grid current should all coincide at one setting of the plate tuning capacitor. What? This doesn't happen in your amplifier? Maximum power output and

fig. 3. Inductive neutralization of cathode-plate feedback circuit. Resonant circuit is tuned to operating frequency.

fig. 4. Bridge neutralization of cathode-plate feedback circuit.
minimum plate current don't coincide? You have some unwanted feedback in the amplifier. If the amplifier seems stable, don't worry about it.

the neutralizing circuit

Voltage feedback through the interelectrode capacitances of the tube from output to input can have a deleterious effect on amplifier performance under some circumstances. Control of this feedback is termed "neutralization." The purpose of neutralization is to make the input and output circuits of the amplifier relatively independent of each other during operation. It sounds simple, and it is. A balancing circuit (fig. 3), in which the capacitive feedback path is neutralized by making the capacitance
part of ahigh-impedance, parallel-tuned circuit, is used. Another scheme takes a small portion of the RF plate voltage and feeds it back out-of-phase with the input voltage (fig. 4). When the value of the neutralizing capacitor C_{N} is approximately equal to the feedback capacitance of the tube, the circuit is balanced and will remain balanced over a considerable operating range of the amplifier.

VHF neutralization

In the VHF region (above 30 MHz) a second feedback path must be considered in amplifier operation. This path involves the grid-to-plate capacitance, the cathode-grid capacitance, and the grid lead inductance (fig. 5). Because
the grid isn't truly at ground, because of the inherent grid lead inductance and other factors, a voltage may appear on the grid which can either increase or decrease the driving voltage. With sufficient unwanted grid voltage of the proper phase, the cathode-driven stage may oscillate, even though the tube has been neutralized.

There is, however, a certain frequency at which the two feedback paths tend to be self-cancelling. This is termed the "self-neutralizing frequency" of the tube and is usually found in the lower portion of the VHF band. This frequency is determined by physical tube size and the internal length of the conductors and elements within the tube.

Below the self-neutralizing frequency, the tube can be neutralized by the addition of a small inductance in the grid-to-ground path (fig. 6). Above this frequency, the tube can be neutralized by the addition of a series capacitance (fig. 7). Each of these neutralizing circuits is frequency-sensitive and the circuit must be adjusted if an appreciable change in operating frequency is made.

fig. 5. Voltage (e_{g}) develops across internal grid lead inductance which can increase or decrease driving voltage, \mathbf{e}_{g}.

fig. 6. Below self-neutralizing frequency of tube, series inductor shifts point of self neutralization to operating frequency.

MADISON FALL HT PICKG

New rigs and old favorites, plus the best essential accessories for the amateur.
 CALL FOR ORDERS
1.713 .520 .7300 OR VISA 1.713.520.0550

ALL ITEMS ARE GUARANTEED OR SALES PRICE REFUNDED

EQUIPMENT

Kenwood Call lor prices on all Kenwood Kenwood TS940S contester sidetight
Kenwood IS 440 Call tor trade
IcamR7000252000 MHz 94900
$\begin{array}{ll}\text { (com IC3200A } & 51900 \\ 528900\end{array}$
Segtec ST207 Hanch Takk: 28900
Ten Tec 2510 (Easy OSCAR) 48900

NYE MB102 Tuner
18900

ACCESSORIES
B\&W VIF WSTAR ANTENINA TUNER
Hol HC3/HC4/HCs
8995
Heal BM 10 Boom Mikeheadset
CSI Private Patch III
Stock
(1) 3360 VOM (same as FI UKI 77)

6900
Dawa CNNS660A 30/300/3000 watt
Alnco F1 H230D Exceilent buy
Nye MBS A (for the thig boys)
10995

Shute 444 D
Wath 7470 Soldering Stat
Kenwood IF 10A. B.
Kenwood IF 232C Level translation
Miller C514T Low pass tder
B\& K. Test Equpment VOM oacils
Tripp 25A/ 12 VDC Suppily (16 A continuious)
belden
9913 low loss solis conter foulforaud sheld
8214 RG8 Foam
8237 RG8
16AI
8237 RG8
800014 Gi stranded copper ant wre
BAAB 8 cunduator fotst calde
9405 Heavy dity 216 Ga 618 Ga)
9258 figis
9269 RG 62AL
8403 Mic Cable 3 condctr \& stredd
100 teet 8214 w/ends installed
$86697 / 16^{\prime \prime}$ tinned coupet brand
Inte-national Wire RG214 non mi good catile Irtermational Wire 9086 exact replacement for Betden 9913
International 16 Ga stranded atiterina wite internation al 4063 RG 213

AMPHENOL

831SP P1 259 Siverplate
UG176 rectucet RG8X
831. Doutile Female UHF

8261 NM Mto
200
300
300
82.63 linme Fon Bulkieal

400
42 93 mine Fernale N
31212 EINC. RG59
312 BNC RG58
34025 N Male RG58
34125 NF Fmale UHF male
3128 BNC Female PC259
Fox N Male Cormector (Fits 9913)

COMPUTER STUFF

Kantronics UTU XT

PACKET POWER

Kantonncs KPPC. 240
Snof
31900
Kanttones 2400 IN 4900
Kantoonics Packet II 4900

C28A

ANTENNAS

AOP Complete Orcat Antennat 4995 Butternat HF6V 80. 10 wertical 2500 HF2V 80\& 40 vericil. 2500

HF4B 18900
Hustler G7 144 11995 13900
Hustler 6BTV
Call
Hama Rotator I2X CD45 2
Call Dor
KLM HF World Class Series Antentas
Atpha Detta Twistorict 4900
Coas Seal
00/roll
BRW Dipoless
lers 10°
KIMKI 34A
33900
New TelexiHyGain 2-18s Complete
29900
HD OSCAR systet!
Call for Ounte
OTHER ANTENNAS

1700

arsen $440 \mathrm{HW} 1 / 2$ wave Kulduch 2500 Larsen 2 M \%wave relescope ant arsen KG 440 on glass ant
Avanti AP15: 36 on Ghas Antenra 2500

Antero 2M $5 / 8$ Mag Mount Comp
Avantı APR450 5G or glass
3900
Orion $2 \mathrm{M} 1 / 2$ wave Hirigy Antenna 1900 Van Gordon SLA I 160-80-40 Sloper - 3400 Villor AB 5 Mahile Storier DA 100 D Active fix Antenma 19000
DC Termatifch 3/8 24 Thread
Fils $3 / 4^{-}$trinler hitchers
29.95

TOWER ACCESSORIES

1/4"EHS Guy catile Rohin US. 1000 tt
25000
3/16" E HS catle RobnUS. 1000 \#1
1000 $1 / 4^{\prime \prime}$ Guy Catile $6100 \mathrm{~m} 7 \times 7$ strand mmon 15 cht $3 / 16^{\prime \prime}$ Guy Citile 3700 a 7×7 strand impor 15 ch
$12 \mathrm{c} / \mathrm{f}$ $3 / 8 \times 6+8.5$ Tanntuchle
3/16" Wire Rope Clits.
1/4" Wire clyp
1/4 Thmbles
Porcelain 5000 Guy Insulator (3/16) Porcelain 502 Guy insulators (1/4)

KEYS

Benctiet \& Vitucniles Less 104
Benchet eu now thprowod Sctews 8 springs all stames
seel and extra hand polishing
Nye ESK 001 Keyer
5800

TUBES

cullns 8 Drake Rephncement tubles.
Stock
GE 6146B
1195
Emac 3.5002 10995
GE Industral Tutier
GE 12BY7A
700
GE GJS6C
1295
Cetron 572B
1400
GE 8950
Hard to tind Taters 50900^{0} off list

BOOKS

Sortock SAMS IAB ARRI RSGB Ameco Radio
Putes
PASSED Yout codeyet? Try Gotden West 's Code? Tapes
Phimore Fied Streagiti/SWR Meter
3150 MH ; KW

9900
ARE A PM 1

SURPLUS
4Pin Soldertan ifip sochets
5 Amp 400 V tull wave binfge rectifues
25 A/ 1000 PIV fpoxy durie: 29 cach or $1900 / 100$ 0015/10KV or $801 / 20 \mathrm{KV}$ 3N201
inch lernte rod
365 pF cap
95
+95
Sanyo AAA AA Nicads whats
24.5 .6 pur muc plugs
45.6 .8 pmime plugs

Meters 0.3000 VDC 2^{2}, " Square: 01 Amp DC 995 Drake Gollinsmakeplua

200 Metiature togglems $5 \mathrm{~A} / 25 \mathrm{VAC} \quad 150$ vact Close but or rign \& accessones All the rime Catl Nemay have what vori te lookirg tor

SERVICES

Algmitient any latemoctoltig 5000 Flat toe Collins rebuitd Call
USED EQUIPMENT
All cqupment used clean with 90 diay watanty and 30 taytral Sixmonttefalltradeaganst newrquipment Sale price relunded if not satished

POLICIES

Mintruum order \$10 00 Mastercatd VISA or C OD All prices FOB Housion, except as noted Prices subject to change without notice: Items subject toptior sale Gall any imefocheck thestatus of your orfer Toxas resudentsadd sales tiax All ifems full tactory warranty plus Madison watranty

Power Rangy	Prequency liands (MHz)					
	30	$\begin{aligned} & 25 \\ & 60 \end{aligned}$	$\begin{aligned} & 50- \\ & 125 \end{aligned}$	$\begin{aligned} & 100 \\ & 250 \end{aligned}$	$\begin{gathered} 200- \\ 500 \end{gathered}$	$\begin{aligned} & 400 \\ & 1000 \end{aligned}$
inatrs	-	1a	SH	IC	10	it
10 watts	\sim	10a	10 B	10 C	100	101
15 watc	-	25 A	258	25 C	3 SD	231
50 wate	50 H	soa	508	30 C	500	Sot
100 walts	1004	1004	1008	100 C	1000	1006
250 watts	2 YOH	7\%04	2508	2506	2500	2 OH
500 watts	Soxil	(0, ${ }^{\text {a }}$	S006	sooc	3000	Sis)
1000 watts	7000	1004	1 COOR	1000 C	10000	160t
2000 warts	250 coH					
5000 watts	3000 4					

Electronics Supply
3621 FANNIN
HOUSTON TEXAS 77004

fig. 7. Above self-neutralizing frequency of tube, series capacitor shifts point of self neutralization to operating frequency.

a docile beast

In general, neutralization isn't required in Amateur amplifiers using cathode-driven circuitry below 30 MHz . The cathode-driven amplifier is a docile beast, with relatively low power gain when triode tubes are used and amplifier shielding is adequate. Amplifier instability at the operating frequency can often be cured by careful attention to feedback paths external to the amplifier (proper bypassing of primary power leads) and by ensuring that the exciter and amplifier are operating at the same ground potential. An extra-short, heavy ground strap between exciter and amplifier will often cure an unstable amplifier.

amplifier parasitics

Much has been written about amplifier parasitics. Some of it is true. As I said before, the cathode-driven amplifier is docile, and parasitics, when they occur, are usually mild (amplifier efficiency when oscillating in a parasitic mode is very low) and commonly above the selfneutralizing frequency of the tube.

A sure-fire cure for a parasitic is to load the circuit at the parasitic frequency until the amplifier refuses to oscillate. The tube lead common to all parasitic circuits is the plate; this is where parasitic suppression should take place (fig. 8). A simple resistor-inductor circuit will do the job. The inductor places the resistor across an appreciable portion of the plate lead at the parasitic frequency and thus loads the circuit. At the operating frequency, the resistor is across only a
small portion of the electrical length of the plate lead and is almost "invisible." Too many turns in the inductor will couple the resistor too tightly at the operating frequency and the resistor will dissipate a portion of the amplifier's fundamental power and will probably overheat. If the parasitic is truly suppressed, then there will be no parasitic power. Too few turns in the inductor and the suppressor won't do its job. Cut-and-try is the keynote to success in this operation.

the "Rocky Point" effect

The vacuum in a modern power tube is on the order of 10 Torr (millimeters of mercury) in order to maintain proper cathode (filament) emission and to provide adequate insulation between the electrodes. In spite of the high vacuum employed, it sometimes happens that the insulation between the anode and other electrodes suddenly breaks down, with flash-over occurring inside the tube.

This phenomenon has been referred to as the "Rocky Point" effect, after the RCA transmitting site where it was first observed in the 1930s. The effect can occur at low voltages and in relatively small tubes. Though it's not attributable to a gradual deterioration of the vacuum, it can be brought about by a small quantity of ions liberated from an electrode. Ionization causes an electrical discharge, whereupon the ions disappear, either because of absorption or action of the getter within the tube. If the equipment is power-supply limited, the discharge usually causes no damage. However, most Amateur equipment makes use of a high-capacitance filter in

fig. 8. Proper position of parasitic choke is in the plate lead of cathode driven amplifier.
the power supply, and the energy of this capacitor is "dumped" into the flashover. Since the tube, at that instant, forms a virtual short circuit, the discharge current can run very high, damaging the tube electrodes, metering circuits, and associated components.

The flashover is very sensitive to a drop in plate potential. The easiest way to control it is to insert a small series resistor in the plate supply (fig. 9). The

fig. 9. Resistor in series with B-plus protects tube and circuitry in case of flashover.
voltage drop across the resistor during a flashover will lower the plate voltage and extinguish the vacuum arc.

Without the resistor, substantial damage may occur to tube and amplifier components. With the resistor in place, in the case of a rare flash-over, the operator will be aware only of a soft "pop" or "snap" and amplifier operation will continue as before. The resistor limits the current while the energy in the filler capacitor is being dissipated.

In most cases a 50 -ohm, 20-watt resistor incorporated in the B-plus lead after the filter capacitor (either in the amplifier or in the power supply) should provide adequate protection. Inexpensive and easy to install, the resistor can protect a power tube worth many hundreds of dollars.

The resistor is in a high-voltage circuit and should be adequately insulated from ground. Mounting it on ceramic insulating pillars is a good idea.

filament voltage

It's a good idea to check your filament
voltage at the socket in a cathode-driven amplifier. A voltage drop may exist across the filament choke and thus reduce available filament voltage at the tube. The voltage should be checked with an RMS-responding meter (ironvane type, for example) and not with the garden-variety volt-ohmmeter which, more often than not, employs a DC meter and a series-connected diode rectifier to measure AC voltages. This combination is often inaccurate as the diode ages and its response to the rough waveform of the common AC primary line is questionable.

Filament voltage should be held to the tube manufacturer's specification limits, generally ± 5 percent of the designated voltage. For Amateur service, it is generally prudent to remain on the low side of the voltage limit, rather than on the high side. I generally run my tube filaments about 2 percent below the suggested operating voltage.)

RF feedback

In some cathode-driven amplifiers, a small degree of negative RF feedback is incorporated. This absorbs some ex-

fig. 10. Plate-to-grid capacitance plus capacitor C forms voltage divider to impress negative feedback voltage with respect to cathode. RF choke completes grid DC return.
cess drive power, tends to make the amplifier more stable, and improves the intermodulation distortion figure slightly. The feedback circuit is made up of the plate-to-grid capacitance, which is set by the equipment manufacturer. A representative circuit is shown in fig. 10. Feedback is about 2 to 3 dB in the case illustrated. Decreasing the grid-toground capacitance raises the feedback level, but also tends to degrade the gridfilament isolation at the operating frequency. A happy compromise must be
found for the circuit to do its job. In the case of an amplifier using two 3-500Z high $-\mu$ power triodes, 600 pF seems to be satisfactory. This is accomplished by placing a $200-\mathrm{pF}$ capacitor at each grid pin to ground. The capacitors are shunted by an RF choke to complete the DC ground return for grid current. The choke has nothing to do with the operation of the RF circuit.

summary

The grounded-grid (cathode driven) configuration is admirably suited to Amateur service in the HF and VHF regions and the circuit performs well in a properly designed and operated amplifier.

the EME directory

A second printing of the EME 144 MHz Directory lists active moonbounce stations, their addresses and locations, equipment used, and other pertinent information. For a copy, send five firstclass stamps (or IRCs) to me at: Varian EIMAC, 301 Industrial Way, San Carlos, California 94070.
ham radio

QUALITY ETCHED PC BOARDS IN LESS THAN 5 MINUTES.

Convenient economical, high quality production of $12^{\prime \prime} \times 12^{\prime \prime}$ panels is obtained using Kepro's Bench-Iop Spray Etcher, only \$765. Kepro-the one stop source for all your Prototype and Short Run PCB needs.

Kepro Circuit Systems, Inc.
Write for full line catalog or call 1-800-325-3878 • 1-314-343-1630 (Missouri)

MORE CONTACTS, MORE SATISFACTION WITH CUSHCRAFT BFAMS

More contacts, less interference and a better signal at the receiving end are yours with this 2 element 40 meter Skywalker Yagi. The computer design maximizes gain and reduces side lobes. The design also gives low SWR with excellent bandwidth.

Holder of the North American contact record. This compact two element antenna has quickly become "the most wanted" 40 meter beam. Make it your first choice.

MODEL 40-2CD 40 METERS

SPECIFICATIONS F/B ratio 20 dB , boom 23 ft., longest element 42 ft ., beamwidth $70^{\circ}, 1.5-1$ bandwidth 180 KHz , turn radius 24 ft ., windload $6.3 \mathrm{ft} .^{2}$, 1.5-1 bandwidth 180 KHz , turn radius 24 ft ., windload $6.3 \mathrm{ft}^{2}$, weight 40.7 lbs . Excellent gain.
P.O. BOX 4680 MANCHESTER, NH TELEX $953-$

48 PERIMETER ROAD 08 USA/603-627-7877 CUSHSIG MAN

remotely controlled stations: a look at a successful remote base

Stuck in an RF gulch? Try another site

Imagine having a "big gun" 160-meter station but with no antenna consuming your back yard. Imagine running 1 kW on 6 meters - with no fear of TVI. Imagine DXing into the next state on 1296 MHz - but the only rig at your $Q T H$ is a $450-\mathrm{MHz}$ handheld! All this is possible using a remotely controlled station, commonly known as a "Remote Base" or simply a "Remote."

A Remote may consist of as little as a simple wireline control link operating a single-channel 2 -meter rig, or it may be a complex array of computer-controlled gear, covering HF through microwave and controlled via 450 $\mathrm{MHz}-\mathrm{FM}$. Ideally, it's positioned on top of a mountain or tall building, like a repeater, but it could be located anywhere - even in the trunk of a car!

Possibly the biggest advantage of a Remote is that it allows antennas to be located at a better site than may be available at home. Many housing developments, for example, don't allow outside antennas. And even where they're allowed, TVI may prohibit HF or 6-meter operation at appropriate transmitter power levels. Or perhaps you just need to get your antennas out of the "RF gulch" you're trapped in.

But a better antenna location isn't the only reason to go Remote. A Remote allows several hams to consolidate their resources into one superior station, accessible to all. A group of operators then needs to purchase only one HF rig, one $1296-\mathrm{MHz}$ station, and a single antenna farm instead of duplicating their efforts individually at great expense.

The sharing of talents is valuable, too. In any group of hams there are likely to be those with specialized knowledge of RF, digital communications, and anten-
nas, for example. Working together and pooling resources, each can contribute his or her skills toward building a station far superior to what each might accomplish separately.

Located on a 2000 -foot mountain near Ventura, W6ORE Remote (fig. 1), the station described in this article, has been operating successfully for ten years. Using a $450-\mathrm{MHz}$ FM control channel, this Remote allows the users to operate an HF rig covering 160 to 10 meters and an FM VHF/UHF station covering 144 to 148 MHz , 220 to 225 MHz , and 440 to 450 MHz . Also controlled are an X-band beacon and a programmable speech synthesizer, along with other miscellaneous functions.

Every one of these items can be controlled from the user's home QTH or automobile (or boat, in one case), with a rig as simple as a handheld equipped with a rubber duck antenna and a touchtone pad.

The HF rig can be set directly to any frequency, or scanned or stepped up or down the bands in $100-\mathrm{Hz}$ steps. A speech synthesizer reads out the frequency and reports if the transmitter is becoming overheated, or if a band edge has been reached while scanning, and to what portion of the band (Novice, General, Advanced, or Extra) the operator is tuned.

The VHF/UHF station, a Drake UV-3, can also be directly set to any frequency, scanned, or stepped up or down. Repeater splits are set automatically, but any odd split, even cross-band, is possible. All of this is controlled, "on-the-fly" with just a few keystrokes on a touchtone pad!

the computer

As you may have guessed, a computer (fig. 2) controls the system. Indeed, the heart of this Remote is a custom designed $Z 80^{\text {TM }}$ computer built and programmed by Bob Schellhorn, W60RE. The Z80 CPU was chosen for its rich instruction set and extensive I/O (Input/Output) capacity.

By Steve J. Noll, WA6EJO, 1288 Winford Avenue, Ventura, California 93004-2504

fig. 1. Remote system block diagram illustrates 1.8 - through $450-\mathrm{MHz}$ capability.

The software was written entirely in assembly language for speed and efficient use of memory. The software, known as "firmware" at this point, is contained in a 27128 UV EPROM (ultra violet light erasable, programmable, read-only memory). Transient and changeable information is stored in a 6264 CMOS RAM (complementary metal oxide semiconductor random access memory).

The Z 80 and memory are built on an S-100 breadboard, although the S-100 bus protocol isn't used. S-100 cards afford generous wiring space and a 100-pin edge connector provides for plenty of I/O and allows the card to be easily removed for modifications (see fig. 3).

The CPU card is enclosed in an RF-tight box fashioned from un-etched copper-clad printed circuit board. Custom RF-tight enclosures constructed with surplus print-
ed circuit board are often cheaper than store-bought aluminum chassis, which also never seem to be available in just the right size. An RF-tight CPU box is a must, as computers are notorious for generating excessive radio "trash." And in this case, the computer is mounted within inches of several radio receivers.

The $Z 80$ runs at a fairly low speed to minimize RFI. The $1 / \mathrm{O}$ is further slowed by a combination of special software and hardware techniques and brought out of the CPU box using feedthrough capacitors. A card cage receives the CPUI/O lines and distributes them to various 5×7-inch 1/O cards. The card cage isn't shielded, but because the I/O is slowed at this point, no noticeable RFI is generated.

The I/ O cards provide the digital and audio interfaces to the HF rig, the VHF/UHF rig, the $450-\mathrm{MHz}$ control up-

Message Master

Real-voice message system

For any repeater or base

Now you can communicate vital information even when the station you are calling is not on the air - with Message Master. Message Master is a solid state voice recording system which can record messages just by listening to you speak, store messages in memory, and deliver messages on demand. If you can't be there to deliver your messages let Message Master deliver them for you - any messages in any language and in your own voice!

Message Master connects easily to any radio system for remote access: repeaters, base stations, even transceivers. It can even be connected to an autopatch device to exchange messages between your radio system and the telephone network.

Message Master is a multi-user system with mailbox style personalized message service for a hundred users. With 8 minutes of message storage it can store hundreds of messages simultaneously making it ideal for large, active repeater groups.

Would you like your callsign identifications, tail messages, and bulletin messages sent in real-voice? Message Master can send them too. Record several identification messages and it will even send a different ID each time. Almost like magic, Message Master knows when to send identifications and tail messages so it needs no special control signals from your base or repeater.

Call or write for further information before you make another wasted call.

Commercial users: Ask for a brochure on the Message Master Electronic Dispatcher with group and all call messaging.

Serving all your repeater needs

- Mark 4 Repeaters and Repeater Controllers are THE PERFORMANCE LEADERS with real voice, more autodial numbers, more synthesized voice and more features.
- Mark 3 Repeaters offer the winning combination of high performance and high value.
- LR-1 Repeaters boast superb RF circuitry at an economical price.
- MR-4 Receivers with 7 helical resonators are the only receivers to choose in harsh RF environments.
- PA-100 Amplifiers with rugged TMOS power FETs give you a continuous duty high power signal.

COMING SOON: A 4-channel receiver voting system which operates on true signal-to-noise ratio to extend your coverage by linking to remote receivers.

KENDECOM INC. MICRO CONTROL SPECIALTIES

fig. 2. A large double cabinet provides room for future expansion.
link receiver and downlink transmitter. One card contains the speech synthesizer, which is so necessary to the operation of such a complex system.

a speech synthesizer is a must

The speech synthesizer is built around the Votrax SC-01 speech chip. This is a phoneme-based chip, which makes it completely user-programmable. It doesn't provide the latest, state-of-the-art high-quality speech; in fact, it sounds rather like a robot. However, it's far superior to many other speech chips in that it can say absolutely anything. No compromises (such as spelling out words not in the limited vocabulary common to other synthesizers) have to be made. It's also very memoryefficient. Only about five phonemes, or five bytes of memory, are required to store an average word.

the HF station

The HF rig (figs. 4 and 5) is an ICOM IC-701, a model no longer in production but a natural for computer control because of its 24 -pin connector for plugging in a remote control unit. Through this connector the computer can set frequencies, scan or step in $100-\mathrm{Hz}$ increments, and transmit. The computer keeps track of the current frequency, the band edges and the license class boundaries. Of course, frequency can be read at will (a single touchtone on the uplink) and is announced politely on the downlink - i.e., "Fourteen-point-three-one-four."

fig. 3. Inside of computer controller. Much of the visible wiring is for the diagnostic front panel.

All is not perfect, though. Outputs weren't provided for mode switching (USB/LSB) or for over-temperature warning. Minor surgery provided these needed outputs - two, in fact, for the over-temperature alert. When the rig's fan comes on, the speech synthesizer announces "Overheat warning" on the $450-\mathrm{MHz}$ downlink. If the PA temperature continues to rise, the transmitter shuts down and the synthesizer announces, "Overheat shutdown."

A ground-mounted Butternut vertical allows 160 -to 10 -meter coverage without an antenna tuner. Because the Remote is located on cattle grazing land, a small corral was built around the vertical to ward off any itching Elsies. A 160-meter wire antenna is planned for the future; there will be no problem in having the computer switch over automatically when a 160 -meter frequency is selected.

the VHF/UHF station

Another out-of-production rig, a Drake UV3, provides the $144 / 220 / 450-\mathrm{MHz}$ coverage. This rig was designed with a removable control head to allow the RF section to be located in the trunk of a car, while the head is mounted under the dash - again, a wonderful opportunity for easy computer control. The removable head is replaced by a homebrew interface box allowing the computer full access to frequency setting and band and power level changing.

The VHF/UHF antennas are a simple ground plane on 2 meters and short KLM log-feed Yagis for 220 and 450 MHz . Luckily, most of the action is in one direction from the Remote site so that directional (gain) antennas can be used. The shortlog-feed Yagis afford wide bandwidth and a not-too-narrow beam shape (see fig. 7).

the control link

Primary to the operation of the Remote is the $450-\mathrm{MHz}$ uplink, which allows controlling and talking through the

fig. 4. HF rig is in a shielded rack-mount box.

fig. 5. Rear view of cabinet illustrates placement of link components.

HF and VHF/UHF stations. The $450-\mathrm{MHz}$ downlink pipes the HF/VHF/UHF receive audio back to the user.

The uplink receiver is a Yaesu 708R, somewhat modified to accommodate a Motorola squelch chip. The downlink transmitter is a cannibalized ICOM IC-30. Each connect through a four-cavity Phelps Dodge duplexer
to a homebrew Quagi. All of the users live and work in the same general direction from the Remote site, which permits the luxury of using a high-gain directional link antenna.

some legal points

The Remote control requirements of Part 97 are often violated or ignored by remotely controlled station users. Because the regulations, which are quite complex and often confusing, require careful study for compliance, some definitions are in order:

- Auxiliary operation: radio communication for remotely controlling other amateur radio stations (97.31). All amateur frequency bands above 220.5 MHz , except $431-433 \mathrm{MHz}$ and $435-438 \mathrm{MHz}$, are available for auxiliary operation (97.86d).
- Remote control: manual control, with the control operator monitoring the operation on duty at a control point located elsewhere than at the station transmitter, such that the associated operating adjustments are accessible through a control link (97.3 m 2).
- Control link: apparatus for effecting remote control

fig. 6. The HF vertical is protected from cattle and deer by a small corral.

fig. 7. The remote site shares towers and building with commercial services. HF vertical is visible at bottom right.

fig. 8. X-band beacon is perched near top of tower.
between a control point and remotely controlled station (97.3n).
Thus, a station can be remotely controlled through a control link; this is considered auxiliary operation. Note that Part 97 never uses the popular terms "Remote" or "Remote Base."

Of course, "The frequencies available for use by a controloperator of an amateur station are dependent on the operator license classification of the control operator . . " ${ }^{\prime}(97.63 \mathrm{c})$. Even if a Remote is licensed to an Extra, a General class control operator is still restricted to the General bands.

On identification: . . . a station in auxiliary operation shall transmit the word "auxiliary" at the end of the station call sign(97.84d2). So on the control uplink, I identify as "WA6EJO AUXILIARY." The control downlink identifies itself as "W6ORE AUXILIARY." When transmitting through the Remote's HF station, however, the only required ID is that of the remotely controlled station licensee.

On control link security: A station in auxiliary operation shall be used only to communicate with stations shown in the system network diagram (97.86d). To comply with this regulation, a non-member of a Remote breaking into the link should be informed that it is a control link and politely asked to leave.

On remotely controlled station security: Each remotely controlled station shall be protected against unauthorized station operation, whether caused by activation of the control link, or otherwise $(97.88 \mathrm{~g})$. "Automatic control" is not advisable.

can a remote be used for gaining contest points?

Use of repeaters is usually prohibited for contesting, but a Remote is merely a station operated by remote control, not a repeater. The ARRL has affirmed this and does not differentiate between Remote and "regular" station contacts. Note that users of a given Remote can't make contest points under their own calls. The transmitter(s) of a Remote are licensed to the licensee of the Remote and therefore bear only his or her call sign, not each individual user's.

operating particulars

Nowadays, most $450-\mathrm{MHz}$ rigs include built-in subaudible tones (PL). The ICOM IC-04AT is one example. All PL frequencies are built in and merely selected from the keyboard. The result is increased convenience but at the cost of reduced security. A remotely controlled station isn't very secure if left unattended with only PL protection. And Part 97 requires that Remotes be well protected.

For that reason the W6ORE Remote is left off when not in actual use. A user turns the Remote on by sending a touchtone code on the uplink and is responsible for
operation of the station until turned off, or until control is passed on to another user. On turn-on, and every 10 minutes thereafter, the synthesized voice IDs the downlink, "W60RE Auxiliary." At this point, the user can enter modes for controlling the VHF/UHF station, the HF station, or miscellaneous functions.

If VHF/UHF station control is selected, any frequency that the UV3 can cover can be entered via a touchtone pad. Any split, normal, reverse, or odd can be set. Of course, all frequencies and split settings are announced on the downlink by the speech synthesizer. If the UV3 transmitter is enabled, a beep is sent on the downlink every time the user drops his or her uplink carrier to serve as a reminder that the transmission is occurring on another frequency.

Now the computer really proves its worth. Each user is assigned a "scan memory." Each scan memory holds 32 "channels," just like a regular scanner. A user can place any mixture of 2 -meter, $220-\mathrm{MHz}$, and $450-\mathrm{MHz}$ frequencies in his or her scan memory. After turning the Remote on, the user needs to send only a single touchtone on the uplink to activate the scan memory and the UV3 to begin scanning! Scanning, of course, stops on a "talking" channel, but channels can also be "locked out" temporarily or permanently with a keystroke.

Operation of the HF rig is similar. A frequency can be entered directly with touchtones. Then a touchtone code starts the IC-701 tuning up, or down, in $100-\mathrm{Hz}$ steps.
Keying a mike on the uplink briefly will reverse the scan direction and slow it down. Keying the mike a little longer will stop the IC-701 from tuning. At any time a certain touchtone will cause the speech synthesizer to announce the current frequency being monitored. Another touchtone will single-step the rig in $100-\mathrm{Hz}$ steps; yet another will toggle the rig between WWV and the last frequency.

Of course, none of these features are built into the HF rig. The computer controlling the Remote has added them. In addition to the user scan memories, the computer provides 90 single-channel "slots." Each slot can hold any VHF, UHF, or HF frequency. Simply entering a slot number turns on the appropriate rig and sets it to that frequency. For example, one slot holds the 20-meter Maritime Mobile net frequency, a few slots are assigned to local 2-meter repeaters, and one series of slots contains all of the HF W1AW voice bulletin frequencies.

HF apprehensions

There certainly were apprehensions about Remote operation of the HF rig before it was installed. What would tuning a rig several miles away be like without having a frequency display to watch or even a knob to grasp? Would we have to operate duplex, tuning on the uplink while listening on the downlink? The concept of blind operation and computer control was first tested by con-

fig. 9. Coax passes through lightning arrestors before entering building.
necting the HF rig to the author's NorthStar Horizon S-100 computer. A program in BASIC took commands from the computer keyboard and sent them to the rig through parallel ports. It worked great. There were no problems in operating the rig without seeing its front panel. With a little practice a sideband signal could be scanned up to and stopped directly on.

There is a utility mode that allows users to control a multitude of items. Uplink squelch characteristics can be adjusted. The Remote's battery charger and a $140-\mathrm{mW}$ X-band beacon can be controlled. (See fig. 8.) The speech synthesizer can be programmed on the phoneme level to say any word or message. Any portion of the EPROM memory can be read (the speech synthesizer reads out the locations in hex). The static RAM can be read and also written to. The speed that the HF rig tunes can be adjusted. These are just a few of the things that can be controlled.

keeping the commands simple

Even though there are several dozen different touchtone commands, the majority of the most used are only single digit. This makes life much easier. There are no vast tables of long commands to be memorized. This is achieved mainly by dividing major operating areas,

fig. 10. Coax enters building through a weather-proof box. The anemometer is made from a DC motor and recycled air freshener containers.
i.e., HF, VHF/UHF and utility, into separate "modes." The touchtone decoder has to be fairly good to keep uplink voice falsing down when single-digit codes are used. The Mitel MT8860/8865 chip set is used.

bells and whistles (figs. 9 and 10)

A weather station addition is now nearing completion. It is built around a National ADC 0817 16-channel ana\log to digital (A/D) conversion chip. The chip has 16 ana\log inputs and an 8-bit digital output. It is quite easy to connect to a computer. The computer needs to send the chip a 4-bit address to set the chip to read the desired channel. The chip then measures the voltage on that channel and presents the data in an 8-bit, 0-255 format. It is then up to the computer to multiply or divide this number by a constant to come up with a meaningful measurement. For example, the home-made anemometer generates 0.027 volt/mile/hour. An op amp amplifies this signal by 2.47. The A/D converter sensitivity is 0.02 volt/bit. Thus, if a 10 mph wind is blowing, the A/D will put out ($10 \times 0.027 \times 2.47$)/0.02 or 33 rounded. The computer then multiplies the A/D output by 0.303 to get 10 mph , which is announced by the speech synthesizer on command. Also measured are inside and outside temperature, humidity, AC line voltage, battery voltage, charger current, and HF antenna VSWR.

summary

Building a remotely controlled station is unquestionably a major project, but the rewards are well worth the effort. Computer control and synthesized speech feedback are a must for all but the simplest systems. There is commercial hardware available for remote control, but you might want to consider "rolling your own" to gain the ultimate in versatility.
ham radio

[^3]
NOW! A Phone Interconnect with Hardline Quality

- Land mobile-marine-aeronautical mobile.
- Using DPD VOX Technology allows all mode operation: FM-AM-SSB-ACSB - Simplex, half duplex, or duplex.
- No internal modifications or connections required to base transceiver.
- Programmable ID and access codes, 3-12 minute timer.
- Remote mobile when permitted or manual control on all bands.

1275 North Grove Street Anaheim, CA 92806 (714) 630-4541

We're Building the West's Largest Convention of Amateur Radio Operators

EXCUSE OUR DUST! We're busy building the largest annual convention of amateur radio operators in the West and we're not stopping to rest along the way. Last year we called it "OCTOBERVENTION" and it was incredible! Now it's HAM/WEST and it's going to be even bigger and better! We have only one goal - to be the biggest ham convention in the West! We've got it all - prizes, technical talks, exhibitors with those new products for Christmas, giant flea market, free VEC exams, free cocktail party, awards banquet and ladies' programs, not to mention all the fun, excitement and glamour of Las Vegas and the beautiful Western scenery and climate!
ALL WE NEED TO COMPLETE OUR CONSTRUCTION PROJECT IS YOU! How do you become a part of this exciting new chapter in amateur radio history? Just send us this form, call your travel agent or fire up your mobile rig, and plan to BE THERE!

November 7-8

All day Friday and Saturday

GENERAL INFO: Plan to travel on Thursday. Exhibits and forums will be open 8 a.m. 5 p.m. Friday and 8 a.m. -4 p.m. Saturday. Awards banquet will be at 8 p.m. Saturday.

REGISTRATION INFO: Every person taking part in the HAM/WEST activities must be registered. Advance registration is $\$ 12$ before October 24 ($\$ 15$ at the door) and includes prize tickets and admission to all HAM/WEST activities except the banquet. It is not necessary to be registered to purchase tickets for the Saturday evening awards banquet. Flea-market sellers must be registered; outdoor spaces measure $16^{\prime} \times 20^{\prime}$ (two parking spaces). Born in 1966 or later? Request complimentary "admission-only" tickets (no prizes) at the door. And - there's no fee for VEC exams taken at the convention!

HOTELINFO: To guarantee your room, you must make your room reservations directly with HAM/WEST, either on this form or by phone (if charging to a credit card), and make payment in full before October 1, 1986. Reservations not paid by that time will be accommodated on a space-available basis only. Call HAM/WEST at 702-361-3331.

RV INFO: Call Camperland directly at 800-634-6942 to reserve a space with full hookups right on the hotel grounds. Be sure to mention HAM/WEST. Call now. These spaces fill up early!

I I I WANT TO REGISTER FOR HAM/WEST '86:
Name
Call letters
Address
\qquad

City \qquad State \qquad ZIP
I I I WANT TO TAKE A VEC EXAM, CLASS \qquad -.
(Please enclose a self-addressed, stamped envelope marked "VEC Exam" with this application if you are planning to take an exam.)
I I PLEASE RESERVE A ROOM FOR ME AT THE haCIENDA hOTEL:
Register room to \qquad M.L

Arrival đay/date \qquad Arrival time \qquad Departure day/date \qquad Number of nights \qquad
How many persons will stay in this room? () One ($\$ 55.00 /$ night) () Two ($\$ 55.00 /$ night) () Three ($\$ 65.00 /$ night) () Four ($\$ 75.00 /$ night) How many beds do you need? () One double bed () Two double beds () One king-size bed
Any special requests?

Amount for room
Plus 7\% room tax
Advance reg, $\$ 12 /$ person
Banquet, \$20/person
Flea market, \$20/space \qquad
$\$$
$\$$
$\$$
$\$$
$\$$

I Chack or money arder anclosed
() Charge to credit card \# \qquad Exp. date Print your name __ Phone \qquad () M/C () VISA
() AMEX Authorized Signature
Note. We will bill your credit card account in full when your registration form is received.

extended-range VU meter

fig. 1. 1:1 VU vs. 2:1 VU range.

fig. 2. The NE570 used as (A) compressor and (B) 1:2 expander.

NE570 circuit compresses 40 dB-range into 20 dB

In Amateur Radio we're accustomed to signal-tonoise ratios of less than $15-20 \mathrm{~dB}$. On UHF, however, there's sometimes a need to measure SNR higher than 20 dB . An example of this would be in setting up VHF or UHF networks or linking systems to minimize hum, noise, or PL leakage.

One method of extending the range of a standard VU meter from its usual 20-22 dB to $40-45 \mathrm{~dB}$ is to use an NE570 or NE571 2:1 compression amplifier between the source signal and the VU meter. This device provides a very accurate $2: 1$ curve so that accurate SNR readings can be achieved (see fig. 1).

circuit description

The NE570 consists of three basic blocks: a 741 -like op amp, a gain control amplifier, and a precision detector. It can be set up to compress or expand at a 2:1 ratio, depending on how these elements are connected (see fig. 2).

The output of the NE570 is buffered by an MC3403 op amp to provide gain in the unit and better drive to the VU meter (the NE570 is limited in this regard). I chose the MC3403 because it has low crossover distortion and requires only a single voltage supply.
(The circuit board artwork from the Project OSCAR ACSSB Level 1 TX Adapter is shown in fig. 3). A layout for the VU Extender and its schematic are also included (fig. 4). You may wish to use the extra op amp sections to provide a standard audio weighting curve for some kinds of measurements. There are three op amps still available in the MC3403 to provide this function.

Calibration is accomplished by setting the input attenuator pot $\left(R_{A}\right)$ in fig. 4 to mid-scale, then adjusting R_{B} with the selector switch (S1) in the "OUT" position until you read " 0 ' VU with 0.773 volts AC

By James Eagleson, WB6JNN, 15 Valdez Lane, Watsonville, California 95076

CODE BEGINNERS: INSTANTLY EXPERTS: FAST CURLEYCODE ${ }^{\text {M }}$ Manual Only ${ }^{\$} 6.50$

$\vee 130$

fig. 4. VU extension circuit printed circuit board: (A) component layout; (B) extension circuit.
at the input. This can be checked with a VOM or digital voltmeter. After switching S1 to "IN," adjust R_{C} for the same reading. You'll now notice that by dropping the input level 10 dB in the "OUT" position, you'll read -5 dB when you switch to the "IN" position.

All readings taken with the adapter " $I N$ " should be multiplied by 2 (i.e., $-5 \mathrm{~dB}=-10 \mathrm{~dB}$) to obtain actual SNR.

performance

The unit works well for normal speech and CW because the time constants have been chosen to com-
plement the usual syllabic rate of voice and CW, which is about the same.

The $2.2 \mu \mathrm{~F}$ capacitor specified for $\left(\mathrm{C}_{\mathrm{T}}\right)$ gives good performance down to about 100 Hz .

There will be some overshoot and undershoot on the system (no AGC amplifier is perfect), but it will certainly give results within a few dB of correct levels and costs far less than equivalent commercial units capable of measuring the same information. I've found it a useful addition to my shack.
ham radio

Save ${ }^{5} 30$ on the RAMSEY 2OMHz Dual Trace Oscilloscope Unsurpassed quality at an unbeatable price, the Ramsey oscilloscope com pares to others costing hundreds more. Features include a component testo sync filter - wide band capacitor, digital circuit and diode lesting • TV video sync filter e wide band width $\&$ high sensitivity e internal graticule * front panel trace rotator * 2 axis

- high sensitivity $x-y$ mode \bullet regulated power supply * buit-in calibrator *
Was $\$ 399.95$ NOW ONLY $\$ \mathbf{5} \mathbf{\$ 9 5} 95 \begin{aligned} & \text { high quality hook o } \\ & \text { probes included }\end{aligned}$

NEW RAMSEY 1200 VOM MULIITESTER

Check transistors, diodes and LEDs with this professional quality meter. Other features include, decibel scale 20 K volt metering system • $3 夕^{\prime \prime}$ mir rored scale e polarity switch - 20
measuring ranges - safety probes measuring ranges e safety probes -
high impact plastic case
$\$ 195 \begin{aligned} & \text { lest leads and } \\ & \text { battery included }\end{aligned}$

NEW

RAMSEY D-4100 COMPACT DIGITAL MULTITESTER
Compact sized reliability and accuracy This LCD digital multitester easity fits in your pocket, you can take 1 anywhere digit LCD readout - recessed input digit LCD readout - recessed input acks - satery probes battery life
s2295
test leads and
lest leads and
battery included

MINI KITS-EASY TO ASSEMBLE, FUN TO USE BEGINNERS \& PROS WILL HAVE A GREAT TIME WITH THESE KITS

FM MINI MIKE	Color Organ See music come alive! 3 different lights flicker with music. One light each for, high. mid-range and lows. Each individually adjustable and drives up to 300 W runs on 110VAC Complete kit. ML.-1 $\$ 8.95$				2
					neth pick up a eet'Great neral purFull 2W is on 6 to 8.45 ohm \qquad $\$ 5.95$
		CPO-1 Runs on $3-12 \mathrm{Vdc} 1$ wall out. 1 KHZ geod tor CPO Alarm Audio Oscillator Complete kit $\$ 2.95$			
FM Wireless Mike Kit Tansmits up to 300 to any FM broadcast ra dio, uses any type of dio, uses any type of has added on 3 to 9 V Type +M-? hatadeded sensitive mike preamp FM. $1 \mathrm{Kit} \quad \$ 3.95 \mathrm{FM}-2 \mathrm{Kil} \quad \$ 4.95$	Whisper Light Kit An interesting kit, small mike pICks up sounds and converts them to whi The louder ith them to light the lowder the Includes mike, controls up to 300 W runs on 110 VAC Complete kit WL-1 $\$ 6.95$				
Universal Timer Kit Provides the basic parts and PC boand regured to provide a source of orecision timing and pulse generation Uses 555 tumer iC and includes a range of parts for most liming needs UT. 5 Kt $\$ 5.95$	Mad Blaster Kit Produces LOUD ear shattenng and attention getting sifen like sound Can supply up 1015 watts of obnoxiousaudio Puinson $6-15$ VDC				
	MB-1 Kit S4.25				
30 Watt 2 mtr PWR AMP Simple Class C power amp features 8 times power gain i W in tor B out. 2 W in for 15 out. 4 W in tor 30 out. Max output of 35 W incredible value. complete with all parts, less case and T-R relay PA-1 30 W pwr amp kit TR-1. RF sensed T-A retay kot $\begin{array}{r} \$ 22^{95} \\ 6^{95} \end{array}$		Power Supply Kit Complete triple regulated power Supply provides variable 6 to 18 volts at 200 ma and '5 at 1 Amp Excatien small size. Less transtormers requires 63 V ta 1 A and 24 VCT Complete kit, PS-3LI $\$ \mathbf{5} 9$			

CT-70 7 DIGIT 525 MHz COUNTER
Lab quality at a breakhrough price Features 3trequency ranges each with pre amp * dual

selectable gate times * gate activity indicator $50 \mathrm{mV} @ 150 \mathrm{MH}$) typical sensitivity - wide tre $\$ 11995 \underset{\substack{\text { AC } \\ \text { wired inclupter }}}{\substack{\text { a }}}$ | Cr-70 Mi | 599.95 |
| :--- | :--- |
| BP-4 mach pack | 8.95 |

CT-50 8 DIGIT 600 MHz COUNTER

MINI-100 FREQUENCY COUNTER

Eatures and capabisties of counters costing twice as much * compact - high sensitivity olow current drain - very accurate

 ange * diode protected - 7 digit ousplay$\mathbf{\$ 9 9 9 5} \begin{aligned} & \text { aattery charger nicad batteries } \\ & \text { ANo ac adapter incluoed }\end{aligned}$

CT-90 9 DIGIT 600 MHz COUNTER
The most versatio for less than $\$.300$ features 3
seiectable gate times - 9 digits - gate indicator seiectable gute times * 9 digits * gate indicato-

* display fold * $25 \mathrm{mV} @ 150 \mathrm{MHz}$ Iypical sen-
$\$ 14995 \underset{\substack{\text { AC adapler }}}{\text { wired includes }}$ OV- 101 PPM ov
BP 4 nicad pack

CT-125 9 DIGIT 1.2 GHz COUNTER
$\$ 169^{95}$
mired incluor
AC adopler
BP. 4 nicad . \quad \$8. 95

DM-700 DIGITAL MULTIMETER
Protessional quality at a hobbynst price Fsa
tures include 26 different ranges and 5 func
$\$ 11995{ }_{A C} \begin{aligned} & \text { wiried indinctudes }\end{aligned}$

PS-2 AUDIO MULTIPLIER
resolution measurements. multiplies Up in tre quency * great for PL tone measurements * multiples by 10 or $100 \cdot 0.01 \mathrm{~Hz}$ resolution \&
$\$ 4995$ wied

TERMS - salislaction guaranteed - examine for 10 days: if not pleased, return in original form for retund • add 6\%, for shipping and insurance to a maximum of $\$ 10.00$ - overseas add 15°. Ior surface mail - COD add $\$ 2.50$ |COD in USA only) - orders under $\$ 1500$ add $\$ 1.50$ - NY residents add 7 p sales lax - 90 day parts warranty on all kits $\bullet 1$ year parts $\&$ labor warranty on all wired units

YOUALREADYOWN 75\% OF A COLOR VIDEO STATION

It's true. With your transceiver, antenna, television set and audio tape recorder, you already have 75% of what's required to receive and send color video world-wide!

Add a ROBOT ${ }^{m}$ Video Transceiver and your station is complete.

Thousands of amateur video operators around the world are exchanging beautiful color images every day. Whether your
favorite mode is SSB or FM or AM-direct, via repeater or
satellite-you can join in the high-tech fun without modifying your present equipment. Just add a Robot to your station!

accuracy DIGIMAX performance

Measure Up With Coaxial Dynamics Model 83000A RF Peak Reading Wattmeter

Take a PEAK with Coaxial Dynamics "NEW" Model 83000A, designed to measure both FWD/RFL power in CW and FM systems simply and quickly. Then with a "FLIP" of a switch, measure "PEAK POWER" in most AM, SSB or pulse systems. Our Model 83000A features a complete selection of plug-in-elements plus a 2 year warranty. This makes the Model 83000A an investment worth looking at. So go ahead, take a "PEAK", you'll like "WATT" you see! Contact us for your nearest authorized Coaxial Dynamics representative or distributor in our world-wide sales network.

COAXIAL DYNAMICS, INC.

15210 Industrial Parkway Cleveland, Ohio 44135 216.267-2233 1.800.COAXIAL Telex $98-0630$

Service and Dependability ... a Part of Every Product

STATE OF THE ART

The ARRL 1986 Handbook For The Radio Amateur carries on the tradition of the previous editions by presenting 1192 pages of comprehensive information for the radio amateur, engineer, technician and student. Paper edition: $\$ 18$ in the U. S. \$19 in Canada, and elsewhere. Clothbound $\$ 27$ in the U.S.. $\$ 29$ in Canada and elsewhere.

THE AMERICAN RADIO RELAY LEAGUE 225 MAIN ST.
NEWINGTON, CT 06111

220 MHz is alive and well at Falcon

FALCON produces 8 different Base/Repeater and 9 different Mobile amplifiers. Six of these amplifiers are for the 220 MHz operator.

For example, consider the following two MOSFET Base/Repeater amplifiers. Remember, FALCON is the only manufacturer bringing you amplifiers with the advantages of RF power MOSFET's.

Model 4112C RF Power In.	10 Watts in -100 Watts out 1 W to 15 Watts
RF Power Out.	10 Watts in - 100 Watts out 3 Watts in - 50 Watts out
Model 6135C	2 Watts in - 100 Watts out
RF Power In.	.300 mW to 3 Watts
RF Power Out	2 Watts in - 100 Watts out
	1 Watt in -70 Watts out

Features:

Frequency range $220-225 \mathrm{MHz}$ New, long life MOSFET transistors Low broadband noise (Low desense) Automatic Internal or External Keying Use for FM, SSB, CW Excellent high order intermod specs $83 / 4^{\prime \prime} \times 19^{\prime \prime}$ rack panel, 13.8 VDC Continuous Duty (With customer fan) Built-in Thermal Protection 1 Year Warranty Made in the U.S.A.

HICH PERFORMANCE PRESELECTOR-PREAMP

The solution to most interference, intermod, and desense problems in AMATEUR and COMMERCIAL systems.
 - 40 to 1000 Mhz - funed to your frequency - 5 large helical resonators

- Low noise - High overload resistance
- 8 dB gain - ultimate rejection $>80 \mathrm{~dB}$ - 10 to 15 volts DC operation - Size - $1.6 \times 2.6 \times 4.75^{\prime \prime}$ exc. connectors - FANTASTIC REJECTION!

Price - CALL bipolar w/RCA jacks Connector options: BCN \$5. UHF \$6
SUPER HOT! GaAs Fet option $\$ 20$

Typical rejection
$\pm 600 \mathrm{Khz}$ @144 Mhz: -28 dB
$\pm 1.6 \mathrm{Mhz}$ @ $220 \mathrm{Mhz} . ~-40 \mathrm{~dB}$
$\pm 5 \mathrm{Mhz}(6450 \mathrm{Mhz}:-50 \mathrm{~dB}$

There are two ways you can operate an amateur dual band UHF/VHF radio: you can go through the extra expense and bother of using two antennas... or, you can install the new Larsen 2/70-the single antenna that brings you both bands.

The Larsen 2/70 blends a half-wave element for 2-meter ($144-148 \mathrm{MHz}$) amateur band and collinear elements for $70 \mathrm{~cm}(440-450 \mathrm{MHz})$ amateur band. One antenna serves both bands, and is available with three different mounts for any mobile needs.

The self-resonant design of the Larsen 2/70 allows mast
applications for vessels and base stations outfitted with standard Larsen BSA-K hardware. With or without a ground plane, the Larsen 2/70 gives you the highest performance attainable, whether you are using a dual band radio or two separate radios.

If your radio does not have a built-in band splitter, we can even provide that.

Performance...savings... convenience \ldots and a nononsense warranty-four great reasons for banding together with the Larsen 2/70. See your favorite amateur dealer or write for a free catalog today.

FREE CATALOG!
Features Hard-to-Find Tools and Test Equipment

Jensen's new catalog features hard-tofind precision tools, tool kits, tool cases and test equipment used by ham radio operators, hobbyists, scientists, engineers, laboratories and government agencies. Call or write for your free copy today.
JENSEN
Dept. HR
7815 S. 46th Street Phoenix, AZ 85044
TOOLS INC. (602) 968-6241

MICROWAVE MODULES TRANSVERTERS		
MMT 1296/144G	1296.1298MHz. 144it, 2w, GAASFEI	\$369
MMT432/28-S	432-437MHz, 28it, 10 w	\$279
MMT220/28 S	$220-225 \mathrm{MHz} 28 \mathrm{it}, 10 \mathrm{w}$	\$249
MMI 144/28-R	144-146MHz. 28it, 25 w , DBM GAASFET	\$339
MMI50/28 R	$50.54 \mathrm{MHz} .28 \mathrm{t}, 20 \mathrm{w}$. high performance	\$349
SSB ELECTRONIC TRANSVERTERS \& PREAMPS		
LT23S	$1296-1298 \mathrm{MHz}, 144 \mathrm{t}$, 10w. GAASFET	\$479
L133S	902.904 MHz .144 it . 10 N . GAASFET	\$479
MICROLINE 13	2304.2306 MHz , 144t, 0.5w, GAASFET	\$349
Dx1445 01	144.146MHz, 04 db nt . 25 db gain	\$169
DX432S 01	$430.440 \mathrm{MHz}, 03 \mathrm{dth}$ nt, 20dt pain	\$179
D×1296S	$1250.1300 \mathrm{MHz}, 0.5 \mathrm{db} \mathrm{nt}$. 23 db gain	\$179
D×230S	$2300-2340 \mathrm{MHz}, 088 \mathrm{dbs}$, 16db gain	\$179
MV144S-01	$144.148 \mathrm{MHz}, 0.5 \mathrm{db}$ at 25 db gain	\$179
MV432S. 01	$430-440 \mathrm{MHz}, 07 \mathrm{dt} \mathrm{nt}$, 25 dtb gain	\$179
MV1296 S	1250-1300MHz, 10 db ot. 16db gain	\$219
DCW15A	Sequencer for MV preamps	\$79
PA2310	1296 MHz . 40 w solid state PA	\$199
PM1300A	Terminating watt meter (20mw 20W)	\$219
NEW 10GH\% Tra	nsverter 100 MW	$\$ 499$
EME ELECTRONIC		
HF 400	High power relay. 144.2 kw .432 1kw	\$119
PA23150	1296 MH 22 tube PA. $150+\mathrm{W}$	\$369
PA1325	2304 MHz 2 tube PA, $25+\mathrm{W}$	\$349
WATMETER	432. 1296, 2304 MHz	\$279
PA23200	1296 MHz 2 tube PA, $200+\mathrm{W}$. water	
	coolers	\$275
WJ10	Water coolers for 2C39, 7289.	
	$3 \mathrm{C} \times 100$. etc	$\$ 10$

TRANSVERTERS UNLIMITED

AMATEUR RADIO MAIL LISTS Sell-stick 1×3 labels

a very sensitive
 LF or HF field-strength meter

fig. 1. The typical field-strength meter circuit will work for HF medium power applications, but is useless for 1750-meter ORP testing.

fig. 2. A single 9 -volt battery will power the field strength meter, with a total current drain of 3 mA .

Detect small changes with this handy circuit

While the simple resonant tank, diode detector, and microammeter-type field strength meter (fig. 1) may be usable for HF signal evaluation, it's almost useless for any reasonable measurements on 1750 meters, where a 1 -watt input restriction applies and very low ERP is the rule.

Using the standard diode detector scheme, I found that the usable scale readings for 1750 -meter tests were limited to a maximum of 30 feet away from the antenna to be evaluated. To compensate for this insensitivity, a larger antenna connected to a field strength meter would be required. But this would make field-level measurements cumbersome. One solution to this problem would be a DC amplifier at the output of the detector to provide the gain required for driving the meter indicator.

circuit description

In fig. $\mathbf{2}$ the complete LF field strength meter circuit is shown. C1 and L1 are made to resonate on the 1750-meter band, with the total coverage being from 150 kHz to 500 kHz . L1 can be slug-tuned for $160-\mathrm{to}-190 \mathrm{kHz}$ coverage alone or a $2.5-\mathrm{mH}$ choke can be used for L 1 , if desired, using C1 for tuning. A 1 N270 germanium diode rectifies the RF signal and C2 is charged at the peak RF level. This DC level is amplified by U1, an LM358 operational amplifier requiring only a single 9 -volt supply for operation. The gain is determined by R2 and R3. R3 is a 100 -kilohm linear potentiometer that varies the DC gain from 1 to 100 , driving the 50 -microampere meter, which acts as a voltmeter in conjunction with R5. A normally closed $3.5-\mathrm{mm}$ jack is connected in series with the analog 50 -microampere meter for remote meter readings and/or a DC level which can power an audio

By S.J. DeFrancesco, K1RGO, 17 Jeffry Road, East Haven, Connecticut 06512

Table 1.			
L1	$\underset{\text { (variable) }}{\text { C1 }}$	Frequency Range	Ham Band
$50 \mu \mathrm{H}$	30.365 pF	1. 4 MHz	160, 80 meters
$3 \mu \mathrm{H}$	30.365 pF	5.16 MHz	40, 30, 20 meters
$0.9 \mu \mathrm{H}$	30.365 pF	9.30 MHz	$\begin{array}{r} 30,20,15,12,10 \\ \text { meters } \end{array}$
2.5 mH	-	Broadband at reduced gain	

oscillator for CW sidetone operation. An LED was added to indicate the "on" status.

You can expect long battery life because the amplifier will continue to operate even when the battery voltage drops to 4 volts. With 9 volts applied, the total current drain is only 3 mA .

This field strength meter need not be limited to LF use only. Table 1 shows the L1 and C1 values for HF operation and broadband operation.

operation

At first try, the added sensitivity was a blessing. I could easily make field strength measurements at distances that were impossible with the simple diode detector barefoot meter. At 200 feet from my LF antenna, testing on 186.5 kHz , I could easily get 30 percent scale readings.

I then began checking my 1750-meter antenna system. When the antenna was dry, I noted a 1-dB increase in field strength over readings taken when it was wet. I ran a 600-volt "Megger" test on a dry day and also on a rainy day, noting 10,000 Megohms on the dry day and 3 Megohms on the rainy day. In the past, under similar conditions, I couldn't detect this variation in field strength because of unusable readings. Noticing the substantial difference in field strength, I cut several tree branches that were touching my antenna and found that just doing this increased the field strength by another 2 dB. The field strength meter proved to be quite a useful tool.
ham radio
SHIPPING INFORMATION: PLEASEINCLUDE 10% OF ORDER FORSHIP. PING AND HANDLING CHARGES (MINIMUM $\$ 250$, MAXIMUM $\$ 10$) CA. NADIAN ORDERS, ADD $\$ 750$ IN US FUNDS, MICHIGAN RESIDENTS ADD
HAL-TRONIX, INC.
12671 Dix-Toledo Hwy P.O. Box 1101, Dept C Southgate, MI 48195
POM
BLE
OU
CM
CO
PL
AN
WE
UAOE
LW
WI

 CMIP DESIGN-EDUCATIONAL-UNIQUE SYNTAK CHECK REPOHT CODES FOR ERROA IDENTTY-GRAM ORWWNG AND ANMATED DES PAT-ACCURATE TO Q $1 / 2$ DECIMAL PLACES FOR FULL RANGE MATH ANO SCIENTIFIC FUnCTIONS -AT AN AFFOROABLE PRICE WE CANNOT TELL YOU TME MAKE OF THE COMAJEA BUT IT WAS 500ss
WE Bovont out what tme factoay mal left in stock ano mad or Wail anapl labels, These units ahe unpackabeo less the TGMALI ADAPTER and unNuAL because this is a discontinued IEM THERE IS NO WARRANTY
GET TMEM WHLE THEY LaSt
 BUY ist UNIT FOR $\$ 19.95$ BUY 2nd FOR $\$ 16.95$ 9V DC WALL. ADAPTOR $\$ 4.95$ BUY 3rd UNIT Non Operating For Parts $\mathbf{\$ 1 0 . 9 5}$ MANUAL Over 150 Pages $\mathbf{\$ 2 . 9 5}$ See September 1984 issue of 73 for TIMEX/RTTY articie

W6SAI B00KS
 published by Bill Orr, W6SAI and Stu Cowan, W2LX

BEAM ANTENNA HANDBOOK
Completely revised and updated with the latest computer generated information on BEAM Antenna design. Covers HF and VHF Yagis and 10, 18 and 24 MHz WARC bands. Everything you need to know. 204 illustrations. 268 pages 1985 Revised ist edition.

RP-BA Sottbound $\$ 9.95$

SIMPLE LOW-COST WIRE ANTENNAS

Primer on how-to-build simple low cost wire antennas. Includes invisible designs for apartment dwellers. Full of diagrams and schematics 192 pages. 1972 2nd edition
RP-WA

all about cubical quad antennas

Simple to build, lightweight. and high performance make the Quad at DX'ers delight Everything from the single element to a multi-element monster A wealth of information on construction, feeding. Juning and installing the quad antenna. 112 pages 1982 3rd edition
RP-CO
Softbound $\mathbf{\$ 6 . 9 5}$

the radio amateur antenna handbook

A wealth of projects that covers verticals, long wires, beams as well as plenty of other interesting designs. It includes an honest judgement of gain figures, how to site your antenna for the best performance, a look at the Yagi-Quad controversy, baluns. slopers, and delta loops. Practical antenna projects that work! 190 pages 1978. 1st edition RP-AH

Please enclose $\$ 3.50$ for shipping and handling

paandio
BOOKSTORE
GREENVILLE, NH 03048
(603) $878-1441$

Unadilla Amateur Antenna Baluns

For 20 years, preferred by Amateur, Commercial and Military Operators First with built-in lightning arrester-minimizes TVI, maximizes power handling

W2DUHF Only $\$ 19.95$

W2AU Broadband Ferrite Core Baluns
For medium power (1000 watts RF) W2AU 1:1

* 50 to 50 or 75 to 75 ohms
*For dipoles, V's, beams, quads
W2AU 4:1
- 200 to 50 or 300 to 75 ohms
*For high impedance antennas such as folded dipoles
W2DU Non-Ferrite Very High Power Baluns W2DU-HF (High Power)
* $1.8-30 \mathrm{MHz}$
*3000-9000 watts with $1: 1$ antenna SWR
*1500-5000 watts with 2:1 antenna SWR W2DU-VHF (High Power and Extended Range)
* $30-300 \mathrm{MHz}$
-2000-4000 watts with $1: 1$ antenna SWR
*1200-2400 watts with 2:1 antenna SWR

The Perfect Dipole!

Only $\$ 65.00$
Complete Kit

- W2AU 1:1 Balun
- Pair of W2VS KW-40 Traps
- Pair ol End-sulators
- 125^{\prime} \#14-7 Copper Wire
- Complete Installation \& Pruning Instructions

Purchase from any of over 300 dealers nationwide or order direct
DIPOLE ANTENNA KIT $\quad \$ 65.00$ ea \square W2AU 1:1 \& ■ W2AU $4.1 \quad \$ 17.95$ ea \square W2DU-HF \& \square W2DU-VHF $\quad \$ 19.95$ ea Total Order \$ Shipping $\quad \$ 200$ Total

Name
Address
City \qquad State \qquad Zip
Phone (
)
I VISA
■ Mastercard
Card \# \qquad
Expires
\square Check \square Money Order
To order or request informational brochure, call
617-475-7831
or write to ANTENNA'S ETC.
P.O. Box 215 BV, Andover, MA 01810-0814

1 week delivery for credit cards 2 weeks for personal checks

30 DAY MONEY BACK GUARANTEE

Unadilla/Reyco/lnline is now a Division of ANTENNA'S ETC.

OUR 800 NUMBER IS FOR SUBSCRIPTION ORDERS ONLY!
For Errors or Change of Address CALL ham radio direct at (603) 878-1441 8-5 EST

VHF Yagi CAD

fig．1．W4PFZ＇s revision of VK4ZF＇s Yagi design program runs on Commodore 64

```
READY.
\begin{tabular}{|c|c|}
\hline 10 REM & YAGI DESIGN PROGRAM \\
\hline 15 REM & BY \\
\hline 20 REM & DAUID G．HOPKINS（UKYZF） \\
\hline 25 REM & \＃ 4 HANDSWORTH ST \\
\hline 30 REM & CAPALABA \\
\hline 35 REM & QLD． 4157 \\
\hline 40 REM & AUSTRALIA \\
\hline 45 REM & \\
\hline 50 REM & MODIFIED FIR COMMODORE 64 \\
\hline 55 REM & BY \\
\hline 60 REM & OLIN K．MCDANIEL（WUPFZ） \\
\hline
\end{tabular}
70 REM PROGRAM BASED DN WORK DONE BY
75 REM GUNIER HOCK (DLGWU)
80 REM AND PUBLISHED IN
O5 REM 'UHF COMMUNICATIONS'
90 REM
110 REM ***********************************************)
120 REM
160 PRINT"(CLR)":GOSUB 1B20
170 PRINT"{CLR)":DIM SP(40),DS(40),TS(40),LE(45),LE$(45),DS$(45):0$="3333"
18O REM-----------LDAD ELEMENT SPACING DATA-----------------
190 DATA.240,.075,.180,.215,.250,.2日0, .300,.315,.330,.345
19己 DATA.360,.375,.305,.390,.395,.400,.400,.400,.400,.400
194 DATA .400, .400,.400,.400,.400,.400,.400,.400,.400,.400
195 DATA.400,.400,.400,.400,.400,.400,.400,.400,.400,.400
200 FOR X=1 TO 40
210 READ SP(X)
220 NEXT
230 REM-------LOAD REFLECIOR MULTIPLIER-----------
235 DIM RE(16)
240 DATA.4905,.4900,.4885,.4875,.4965,.4855,.4845,.4935
245 DATA.4925,.4820,.4810,.4785,.4770,.4765,.4750,.4740
260 FOR X~1TOIG:READ RE(X):NEXI
270 REM-------LDAD RADIATOR MULTIPLIER---------------
280 DIM DR(16)
290 DATA.4675,.4655,.4640,.4620,.4601,.4585,.4575,.4550
295 DATA.4530,.4515,.4500,.4460,.4435,.4430,.4400,.4385
300 FOR X=1TOIG:READ DR(X):NEXI
310 REM-..---SELECT ELEMENT MATERIAL SIZE-----------
315 DIM EL(16)
320 DATA.003,.0035,.0042,.005,.0056,.0063,.007,.0076
325 DATA.0088,.01,.01145,.0131,.015,.0165,.0182,.02
330 FOR X=1TO16: READ EL (X) : NEXT
340 REM-----*-INPUI DESIRED PARAMETERS-----------------
350 PRINT"{CLRJWHAI IS IHE LENTER FREQUENCY OF THE ANTENNA IN MHZ,":INPUT F
3GO PRINT"[C/DN3HOW MANY ELEMENTS DDES THE ANTENNA REQUIRE" :INPUT N
370 PRINT: IFN<g OR N>4OIHENPRINT"{RUON}NUMBER OF ELEMENTS MUST BE BETWEEN }9\mathrm{ AND
40" PRINT:IFN<9 OR N\4OTHE
375 IFN<S OR N\4O GOIO 360
3BO PRINT"WHAT IS THE DIAMETER OF THE BOOM IN MILLIMETERS":INPUI ED
390 PRINT:PRINT"ARE THE ELEMENTS TO BE INSULATED FROM THE BOOM? Y=YES,N=NO
4OO GET AS: IF AS="" GOTO 400
410 JF A$="Y" THEN I=1:GOTO 450
4ZO IF AS="N" THEN [=0:GOTO 4SO
430 GOTD 400
440 REM-\cdots------DISPLAY SPECIFICATIONS
450 PRINT"{[LR}":PRINT"SPECIFICATIONS FQR THE ANTENNA TD DESIGN":PRINT:PRINT
45S PRINT"1. DESIGN FREQUENCY: ", F ,"MHZ"
45S PRINT"'. DESIGN FREQUENCY: ";F ;" MHZ"
4tOO PRINT"之. DIAMETER OF BOOM: "; BD;"
```



```
490 IF(BD/1000)/(299.792/F) <.05 GOT0500
491 1F(BD/1000)/(299.792/F)>,05THENPRINT"{C/DN}{C/DN} BCOM DIAMETER TOD LARGE FO
R THIS",
4g2 PRINT"FREQUENCY":PRINT"{C/DN}{C/DN}":PRINT"ENTER A SMALLER DIAMETER":INPUT B
D:GOTO440
50O REM----------CHECK SPECIFICATIONS-------------------
5:0 PRINI"{C/DN){C/DN}{C/DN}":PRINT"ARE ALL THE ENTRIES CORRECT, Y-YES, N-NO";
520 GET AS: IF AS=""GOID 520
S20 GET AS:IF AS=""GOID
5.30 IF AS="Y" GOTO 650
550 GOTD 520
5GO PRINT"WHAT IS THE NUMBER OF THE INCORRECT ENIRY": INPUT }
5%O IF X<>4 GOTO 600
SHO IF I=O IHEN I-1:GOIO 440
590 IF I=1 THEN I-0:GOTO 440
GOO INPUT"WHAT IS THE CORRECT UALUE*;CU
610 IF X=1 THEN F=CU
620 IF X=2 THEN BD-CU
630 1F X=3 THEN N-CU
640 GOTD 450
650 REM----------CALCULATE BOGM DIAMETER WAUELENGTHS
560 w-299.792/F
670 Bw=BD/1000/w
680 BC-BD*(526.286*Bw T.648831/100)
690 REM--.---CALCULATE BODM L.ENGTH
700 TL-0
```

When VK4ZF＇s article，＇Computer－ aided Design of Long VHF Yagi Antennas，＂appeared in the May issue of ham radio，＇I decided to con－ vert his design program，written for the Apple IIE，to run on the Com－ modore 64．Figure 1 lists the revised program．

The most significant conversions appear in the section of the main pro－ gram that reads back data files（lines 1130－1190）and in the file saving pro－ gram shown in fig．2．All the com－ mands to the printer required modification，especially with the ad－ dition of lines 5000－6220 to provide decimal alignment of the numerical results．The data tables from the ori－ ginal article must be typed in using the program shown in fig． 2.

reference

1．David G．Hopkins，VK4ZF．＂Computer aided Design of Long VHF Yagi Antennas，＂ham radio， May，1986，page 28.

[^4]AEAEAEAEAEAEAEAEAEAEA AEAEAEAEAEAEAEAT. AEAEAEAEAFN TM AEAEA ISOPOLE

OMNIDIRECTIONAL PACKET ANTENNA

THE IDEAL

- Greatest Simplex Range for Price
- Maximum Decoupling Minimize Computer Hash
- No Feedline Radiation to Lock Up Computer

PERFORMANCE

- Low Vertical Radiation Angle
- No Feedline Radiation
- Wideband Matching Network
- Efficient Design
- Omnidirectional Pattern

DEPENDABILITY

- High Quality Materials
- Weatherproof Design
- Rugged Construction
- Advanced Engineering

PRICE \& CONVENIENCE

- Low Cost

- Easily Installed
- Compact \& Lightweight
- UPS Shippable
- Inexpensive TV Mast Support (not Included)
ISOPOLE ${ }^{\text {TM }}$ is available for $144 \mathrm{MHz}, 220 \mathrm{MHz}, 440 \mathrm{MHz}$ Ask for our spec sheet and radiation pattern plots, or visit your favorite AEA dealer for more information.
(Prices and specifications subject to change without notice or obligation)

ARA

Advanced Electronics Applications, Inc.
P.O. Box C-2160

Lynnwood, WA 98036

(206) 775-7373

TELEX: 6972496
ABA INTI UN

> AEAEAEAEAEAEAEAEAEAE AEAEAEAEAEAEAEASTNC AEAEAEAEAE YOUR TNT AEAENARADE YOUCKET

$\$ 169^{95}$ Suggested $\begin{gathered}\text { Amateur Net Price }\end{gathered}$
Virtually all existing Packet Terminal Node Controllers (TNC's) use phase-locked-loop detection or a "World Chip" decoder intended for telephone quality circuits. These schemes work well for VHF FM radio operation, but leave a lot of room for improvement in H.F. radio environments.

The new AEA Model PM-I Packet Modem is designed to interface between your existing TNC and your radio. No internal modifications to your TNC or radio are necessary. The PM-1 contains independent dual channel firtering with A.M. detection for maximum sensitivity and selectivity under poor H.F. conditions. The PM-1 is optimized for 300 baud operation. A shift frequency of 200 Hz or 600 Hz may be selected from the front panel.

A front panel bar graph tuning indicator is provided to assist the user in precise H.F. tuning of an incoming packet radio signal. There is also a front panel squelch control (variable DCD) provided for sensitivity adjustment under various noise conditions. Just to make your TNC as flexible and useful as possible, we have included two output radio cables. Now you can switch between VHF and HF packet operation by simply pushing this PM-1 front panel switch.
Enjoy Packet Radio to its fullest with the new AEA model PM-1 Packet Modem. Work DX on the low bands and monitor packet mail boxes from the other side of the country. See the PM-1 at your favorite dealer now.

Prices and Specifications Subject to Change Without Notice or Obligation.
ADVANCED ELECTRONICS APPLICATIONS, INC. P.O. Box C-2160, Lynnwood, WA 98036-0918 TELEX: 6972496 ABA INTL UN
(206) 775-7373

BRINGS YOU THE Without Notice or Obligation.
ADVANCED ELECTRONICS APPLICATIONS, INC P. O. Box C-2160, Lynnwood, WA 98036-0918 TELEX: 6972496 ABA INTL OW
(206) 775-7373

AERKTHROUGH
EAEAEAEAE
CAEAEAE

- 1 EAEAEAEAE

AEAEAEAEAEAEAEAE
CIEAEAEAEAEAEAEAEAEAEAEAE

AEAEAEAEAEAEAEAEAEAEA AEAEAEAEAEAEAEAF AEAEAEAEAERSAL AEAEN UNIVERSAL PACKET CONTR K 80
model PK

The AEA model PK-80 is a wired, tested, and calibrated version of the famous TAPR TNC-2 and comes with a one-year conditional AEA warranty.

You can interface the PK-80 with any ASCII terminal or a personal computer and standard terminal software. The PK-80 is loaded with all the latest AX. 25 version 2.0 software and advanced packet hardware circuitry that makes the TNC-2 the newest benchmark for comparision.

Compare the following as representative of the advanced new features relative to the competition.

- Hardware HDLC for full duplex
- True Data Carrier Detect (DCD) for HF operation
- Operates with 300, 1200, 2400, 4800, and 9600 baud terminals
- Five front-panel status indicators
- Multiple connect
- Connect check (poll final bit) fully implemented
- Connect AUTO response message
- Only three commands necessary for making standard contacts
- 82 software commands possible for the most demanding requirements

Prices and Specifications Subject to Change

POPULAR PA 19

Wideband Preamp

－Over 8,000 sold since 1976
－ $0.5 \cdot 200 \mathrm{MHz}$ bandwidth
－ 19 dB gain
－ 50Ω in／output
－Increase sensitivity of receivers or counters
－Built．tested \＆ready－to－go
ONLY \＄9．95 PPD

NEW POCKET SIZED 500 MHz Freq．Counter

－Compact design－pocket sized
－Measures frequency from 1 MHz to 500 MHz to within 1 kHz
－Built－in telescoping ＊antenna
－Uses 1 standard 9 volt battery
－All units pre－tested and calibrated to 001\％
－Protessional and dependable pertor－ mance at a low cost

ONLY \＄49．95 PPD

DIGITREX

Division of NCI
10073 N．Mary Ann，Northville，M1 48167 （313）348－7313
west coast distrisuton
R．LUKASZEWICZ
20610 ALAMINOS DRIVE SAUGUS，CA 91350 （805）252－6021

Please reserve my copy of the 1986 Dick Smith Catalog I enclose \＄1 to cover shipping．

Name

Address
City
Zip
dick smith electronics inc
PO Box 2249 Redwood Citr CA 94003
EVERTTHING FOR THE ELECTRONICS ENIHUSIASTI

720 FOR $X=1 T 0 \mathrm{~N}-1$
 730 DS $(x)-S P(x) * w * 1000$

740 TL－TL－DS（ x ）
750 NEXT
760 PG－（IL．／1000）／w
770 REM－．．．．．．－CALCULATE BEAM WIDTHS AND STACKING DISTANCES－－．．．．．．．．．．－
780 BH $50.2709 * P G 1-.484091$ ： $\mathrm{SH}=\mathrm{W} /(2 \boldsymbol{*}($ SIN $(B H / 2 *, 0174533)))$

BOO REH－．．．．．．－PRINT PRELIMINARY DATA－．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
B10 PRINT＂（CLR）＂
B20 PRINT＂YAGI PRELIMINARY DATA＂；PRINT
B30 PRINT＂FREDUENCY
B40 PRINT＂WAUELENGTH
BSO PRINT＂\＃OF ELEMENTS
B6O PRINT＂DIAMETER OF BOOM
B70 PRINT＂ELECTRICAL BOOMLENGTM
BEO PRINT＂BOOH WAUELENGIHS
＂；F；＂MHZ．＂
＂INT（W－10000）／10000，＂METERS＂
＂；BD；＂MILLIMEIERS＂
B90 PRINT＂MAXIMUM PRACTICAL GAIN＂；${ }^{\text {PA }}$ ；＂DBD＂
900 PRINT＂HORIZONTAL BEAT WIDTH＂－＂PRINTINT（BH＊100－．5）／100，PRINT＂DEGREES＂
910 PRINT＂UERTICAL BEAM WIDTH＂；PRINTINT（BU＊100＊，5）／100；；PRINT＂DEGREES＂
920 PRINT＂（C／DN）HORIZONTAL STACKING DISTANCES＂
930 PRINT＂MORIZONTAL：＂；：PRINTINT（SH＊1000＊．55）／1000；：PRINT＂METERS＂
940 PRINT＂UERTICAL：＂；：PRINTINT（SU＊1000＋．55）／1000；：PRINT＂METERS＂
950 PRINT＂（C／DN）（C／DN2＂，PRINT＂DQ YDU WISH TD CONTINUE WITH THIS DESIGN $\quad Y-Y E$
S． $\mathrm{N}=\mathrm{NO}$
960 BET AS：IF AS＝＂＊GOTD 960
970 IF As－＂Y＂GOTO 1000
980 IF AS－＂N＂GOTO 440
990 GOTO 960
1000 PRINT＂（CL．R）＂：NU＝0
1010 PRINT：PRINT＂YOU MAY USE ANY DF THE FOLLDWING TUBING SIZES FOR THE ELEMENTS＂
1020 PRINT：PRINT＂SELECT THE SIZE CLOSEST TO A COMMERCIAL TUBE SIZE＂
1030 FRR X－1TO 16
1040 NU－NU +1
1050 PRINT＂＂＂；$x_{i}:$ PRINTTAB (15) INT $\left.((C E L(X) * W) * 1000) * 1000 * .55\right) / 1000$ ；
1055 PRINT＂MT＂${ }^{\text {NEXT }}$
1070 PRINT＂（C／DN）（C／DN）（C／DN）＂：PRINT＂ENTER TME＊OF THE TUBING SIZE YOU WISH TR
USE＂：INPUT TSS
1075 TS－UAL（ISS）
1080 IF TS $<N U$ OR TS－NU THEN 1100
1090 IF TS＞NU THEN PRINT＂（RUON）ERROR（RUOF）＂：PRINT＂HIT ANY KEY TO CONTINUE＂
1093 IF TS $>$ NU THEN GET AS：IF AS－＊＂THEN 1093
1096 GOTO 1000
1100 TT－EL（TS）：TD（1）－TT＊W＊1000
1110 PRINT＂（CLR）＂PRINT＂STAND BY－THIS WILL TAKE A FEW SECONDS＂
1120 REH－C－C．．．．
1130 NS－＂CURUE＂
N2s－Ns＋TS\＄
1135 DPEN15，日， 15
1140 OPENZ，日，己，＂0：＂＋N2s＋＂，S，R＂
1150 FOR $\mathrm{x}=1 \mathrm{TO} 3 \mathrm{~B}$
1160 INPUTMZ．TS (x)
1180 NEXT
1190 CLOSEC：CLOSE15：CLOSE日
1200 REM－．．．．．．．．－CALCULATE ELEMENT LENGTHS
1210 FOR $x=3$ to 42
1220 IF $t=1$ THEN $L E(x)=W * T S(x-2)=1000$
1225 IF $\mathrm{t}=0$ THEN $L E(x)=\omega * T S(x-2) * 1000 * B C$
1230 NEXT
1240 LE（1）＝W＊RE（TS）＊1000
1250 IF $1=0$ THEN LE $(1)-\operatorname{LE}(1) * B C$
1250 LE（己）$=\omega \cdot$ DR（TS $)=1000$
1270 IF T $=0$ THEN LE（2）－LE（2）－BC
1280 PRINT＂（CLR）＂
1290 PRINT＂PRESS ANY KEY WHEN PRINTER IS READY＂
1300 GET AS：IF AS－＂＊GOTO 1300
1304 OPEN4，4：CMD4
1306 PRINT＂4
1310 PRINTA4，
1320 PRINTH4－
YAGI DESIGN DETAILS
1330 PRINT＂4，＂（C．／DN）（C／DN）＂
1335 GOSUB 5000
1340 PRINTM4，＂DESIGN FREDUENCY：
1350 PRINTN4，＂WAUELENGTH
＂；SPC（37－AA）；Fs；＂MHZ，＂：
1360 PRINT＂ 4 ，＂NUMBER OF ELEMENTS
1370 PRINT＂ 4 ，＂DIAMETER OF BOOM． ＂；SPC（3E－BB）；WS ；＂METERS＂
1370 PRINTM4，＂DIAMETER OF BOOH：＂：SPC（36－CC），BDS
1300 PRINT＂ 4, ＂DIAMETER OF ELEMENTS：＂；SPC（37－DD）；TDS：＂חM＂
1390 IF I－1 THEN PRINTM4，＂＇ELEMENTS ARE INSULATED FROM THE BOOM＇＂
1391 1F 1－0 GOTO 1394
1392 GOIO 1400
1394 PRINTMY，＂ELEMENTS ARE ELECTRICALLY CONNECTED TO THE BOOM．
1400 PRINTM4，＂ELECTRICAL BOOM LENGTH：＂；SPC（2B－EE）；TLS；＂MM＂；
1410 PRINT＂ 4, ＂BODH WAUELENGTHS
－；SPC（ $32-\mathrm{FG})$ ；PGS：
1420 PRINTM4，＂MAXIMUH PRACTICAL GAIN：
1430 PRINT＂ 4 ，＂HORIZONTAL BEAM WIDTH：
1440 PRINT＂ 4 ，＂UERTICAL BEAM WIDTM：
＂；SPC（29－HH）；BUS；＂DEGREES＂
ISO PRINTM4，＂HORIZONIAL STACKING DISTANCE：＂；SPC（30－11）；SHs；＂METERS＂
1460 PRINT＂ 4 ，＂UERTICAL STACKING DISTANCE
1470 PRINT＂4，＂（C／DN）（C／DN）
1480 PRINTH4，
ELEMENT LENGTH，MM．
DISTANCE FROM REFLECTOR，MM．＂
1490
1500 PRINTMY，＂（C／DN）＂
1510 PRINTH4，＂REFLECTOR＂；SPC（15－KK）；LES（1）；SPC（29）；＂0＂
1520 PRINTM4，＂DRIUEN ELETENT＂；SPC（10－LL）；LES（2）；SPC（37－LL－L2）；SP\＄（1）：
1530 PS－SP（1）＊W＊1000
1540 FOR $x-3$ IU N
1545 PS－PS $+5 \mathrm{SP}(X-1)=W * 1000$
1550 GOSUB 6000

ham
 radio Reader Service

For literature or more information, locate the Reader Service number at the bottom of he ad, circle the appropriate number on this card, affix postage and send to us We'll hustle your name and address to the companies you're interested in
$\begin{array}{llllllllllllllllllllllll}101 & 113 & 125 & 137 & 149 & 161 & 173 & 185 & 197 & 209 & 221 & 233 & 245 & 257 & 269 & 281 & 293 & 305 & 317 & 329 & 341\end{array}$ $\begin{array}{llllllllllllllllllllllllllll}102 & 114 & 126 & 138 & 150 & 162 & 174 & 186 & 198 & 210 & 222 & 234 & 246 & 258 & 270 & 282 & 294 & 306 & 318 & 330 & 342\end{array}$
 $\begin{array}{lllllllllllllllllllllllllllllllllll}104 & 116 & 128 & 140 & 152 & 164 & 176 & 188 & 200 & 212 & 224 & 236 & 248 & 260 & 272 & 284 & 296 & 308 & 320 & 332 & 344\end{array}$ $\begin{array}{llllllllllllllllllllllllllllllllll}105 & 117 & 129 & 141 & 153 & 165 & 177 & 189 & 201 & 213 & 225 & 237 & 249 & 261 & 273 & 285 & 297 & 309 & 321 & 333 & 345\end{array}$ $\begin{array}{llllllllllllllllllllllllllll}106 & 118 & 130 & 142 & 154 & 166 & 178 & 190 & 202 & 214 & 226 & 238 & 250 & 262 & 274 & 286 & 298 & 310 & 322 & 334 & 346\end{array}$ $\begin{array}{llllllllllllllllllllllllllllllllllll}107 & 119 & 131 & 143 & 155 & 167 & 179 & 191 & 203 & 215 & 227 & 239 & 251 & 263 & 275 & 287 & 299 & 311 & 323 & 335 & 347\end{array}$
 $\begin{array}{llllllllllllllllllllllllllllllllll}109 & 121 & 133 & 145 & 157 & 169 & 181 & 193 & 205 & 217 & 229 & 241 & 253 & 265 & 277 & 289 & 301 & 313 & 325 & 337 & 349\end{array}$ $\begin{array}{lllllllllllllllllllllllllllll}110 & 122 & 134 & 146 & 158 & 170 & 182 & 194 & 206 & 218 & 230 & 242 & 254 & 266 & 278 & 290 & 302 & 314 & 326 & 338 & 350\end{array}$ $\begin{array}{llllllllllllllllllllllllllllllllllll}111 & 123 & 135 & 147 & 159 & 171 & 183 & 195 & 207 & 219 & 231 & 243 & 255 & 267 & 279 & 291 & 303 & 315 & 327 & 339\end{array}$ $\begin{array}{lllllllllllllllllllllllllllll}112 & 124 & 136 & 148 & 160 & 172 & 184 & 196 & 208 & 220 & 232 & 244 & 256 & 268 & 280 & 292 & 304 & 316 & 328 & 340\end{array}$

Limit of 15 inquiries per request.
NAME \qquad CALL \qquad
ADDRESS
CITY \qquad STATE \qquad ZIP

September 1986
Please use before October 31, 1986

ham
 radio
 magazine
 READER SERVICE CENTER
 P.O. BOX 2558
 WOBURN, MA 01888

ATTN: Reader Service Dept.

```
1570 NEXI
1580 PRINTH4
1590 PRINT#4," ELEMENT SPACING IN MILLIMETERS
1600 PRINTH4
1615 GOSUB 6100
1G20 PRINT"4, "REFLECTDR TO DRIUEN ";SPC(17-00);DS$(1)
1630 PRINTH4, "DRIUEN TO DIRECTOR 1",SPC(17-PP);DSS(2):
1640 FOR X=3 TO N-1
1645 GOSU日 62OO
1650 PRINT#4, "DIR";X-2;SPC(4-MN);" TO DIR ";X-1;SPC(17-QD-MD);DSS (X) :
1650 NEXI
1670 PRINT"4: PRINT"4:PRINT#4," NOTES"
1G80 PRINT#4; PRINT#4, "1. THE पITIENSIUNS ARE FROM CENTER TO CENTER IN ALL CASES."
1690 PRINT"4," FOR EXAMPLE THIS MEANS THE BOOM MUST BE CUT LONGER THAN THAI"
1700 PRINT*4," GIUEN TO BE ABLE TO MOUNT THE ELEMENTS."
1710 PRINT#4, "2. IF YOU WANT WIDE BANDWIDIH, USE A FOLDED DIPOLE AS THE DRIUEN E
LE"
1720 PRINT#4,"3. THE DRIUEN ELEHENT DIMENSION IS THE LENGTH DUERALL.,"
1730 PRINT#4, "4. YOU MUST UORK TO AN ACCURACY OF <1MM AT FREDUENCIES ABOUE 4OO M
HZ.
1740 PRINT#4, "5. ACCURACY BELOW 400 MHZ SHOULD EE WITHIN 1.5MM."
1750 PRINTN4, "E. ELEMENT MOUNTING HUST BE BETTER THAN ,SHM OF THE ELEMENT CENTER
1760 PRINT"(CLR)":FOR X-1 TO B:PRINT"4;NEXI
1770 END
1810 GOTD 1780
1820" PRINT"(CLR)":PRINT:PRINT" THIS PROGRAM WILL DESIGN"
1825 PRINT" YAGI ANTENNAS WITH ANY NUMBER"
1830 PRINT" OF ELEMENTS FRGH g TQ 40."
1840 PRINT"(C/DN)(C/DN)(C/DN)"
1850 PRINT" THE PROGRAM IS BASED ON ARTICLES"
1855 PRINT" BY GUNTER HOCK AND PUBLISHED"
1860 PRINT" IN UHF. COHMUNICATIONS'."
1870 PRINT"(C/DN)(C/DN)(C/DN)""
1880 PRINT" YOU WILL REQUIRE A PRINTER"
1885 PRINT" TD OBTAIN USABLE RESULTS."
1890 PRINT"(C/DN)(C/DN) (RUON) PRESS ANY KEY TO CONTINUE (RUOF)"
1900 GET AS: IF AS"""GOTO 1900
1910 PRINT"(CLR)"
1920 GOTD 170
1930 END
5000 F-INT(F*100* ,5)/100
5005 FS=STRS(INT(F)) +","+RIGHTS(STR$(F*1O0), 2):AA=LEN(F$)
5010 WS-STR& (INT (W*1000)/1000): BB-LEN(WS)
5015 NOS-STRS(INT(N) ) +","+RIGHTS(STRS(N*10),1) : NN-LEN(NOS)
5017 BD-INT(BD-10+.5)/10
502O BDS-STRS(INT(BD))+","+RIGHTS(STRS(BD*1O), 1): CC-LEN(BDS)
502S ID(1)-1NT (TD (1)*100+.5)/100
5030 TDS=STRS(INT(TD(1))) +","+RIGHT$(STR$(TD(1)*100), 2): DD-LEN(TDS)
5040 TLS-STRS(INT(TL)):EE~LEN(TL$)
5042 PG-INT(PG*1000+,5)/1000
S045 PGS-STR$(INT(PG)) +","+RIGHTS(SIRS(PG*1000),3):FG-LEN(PGS)
5050 PAS-STRS(PA):FF-LEN(PAS)
5055 BH-INT (BH*100+.5)/100
5060 BHS-STRS(INT(BH)) +","+RIGHTS(STRS(BH*1O0), 2):GG-LEN(BHS)
5065 BU=INT(BU'100+.5)/100
S0B7 BUs-STR$(INT (BU)) +","+RIGHTS(STRS(BU*1O0), 2):HH-LEN(BUS)
5070 SH-INT(SH=1000+,5)/1000
50日0 SHS-STRS (INT(SH)) +","+RIGHTS(STRS(SH*1000), 3) : II-LEN(SHS)
SOBS SU-INT (SU-1000+.5)/1000
5090 SUS-STRS(INT(SU))+","+RIGHTS(SIRS(SU*1000), 3):JJ-LEN(SUs)
5095 LE(1)-1NT(LE(1)*10+.5)/10
5100 LES(1)-STRS(INT(LE(1)))+","+RIGHTS(STRS(LE(1)*10),1):KK-LEN(LES(1))
5105 LE(2)-INT LE (2)*10* 5)/10
5110 LES(2)-STRS(INT(LE(2)))+*,*+RIGNT$(STRS(LE(2)*10),1):LL-LEN(LES(2))
S110 LES(2)-STRS(INT(LE(2))
5130 LZ-LEN(SPS(1))
S2OO RETURN
6000 LE (X)=INT(&E (X)*10+.5)/10
G010 LES(X)=STRS (INT(LE (X)))+***+RIGHTS(SIRS(LE (X)-10),1);MM-LEN(LES(X))
6013 ELS-STRS(INT (X-2)):MN-LEN(ELS)
6015 PS-INT(PS*10+.5)/10
6020 PSS-STRS(INT(PS)) +"."+RIGHTS(STRS(PS*10), 1): NN-LEN(PSS)
6 0 3 0 ~ R E T U R N ~
6100 DS(1)=INT(DS(1)*10+.5)/10
5105 DSS(1)=STRS(INT(DS(1)))+","+RIGHT$(SIRS(DS(1)*10),1):DO=LEN(DSS(1))
5105 DSS(1)=STRS(INT(DS(1)))+"
6110 DS(2)=1NT(DS(2)\bullet10+.5)/10
5115 DSS(2)-STRS(INT(DS(2)))+","+RIGHTS(SIRS(DS(2)*10),1):PP=LEN(DSS(2))
612O RETURN
6200 DS (X)-INT (DS (X)=10+.5)/10
G205 DSS (X)=SIRS(INT(DS (X)))+",*+RIGHTS(SIRS(DS (X)*10),1):QQ-LEN(DSS(X))
G210 ELS-STRS(INT(X-2)):HN-LEN(ELS): EBS-STRS(INT (X-1)):MD-LEN(EBS)
G22O RETURN
READY.
```

（continued on page 102）

Invitation to Authors

ham radio welcomes manuscripts from readers．If you have an idea for an article you＇d like to have considered for publication，send for a free copy of the ham radio Author＇s Guide．Address your request to ham radio，Greenville，New Hampshire 03048 （SASE appreciated）．

Ideal for Packet Radio

Teletype
Model 43
$\$ 195.00$
－ OR － TI 745
$\$ 165.00$
KSR Terminals with RS－232 serial I／O
We have fully reconditioned Model 43 Teletype and Texas Instruments 745 terminals that have come off lease and are now available for immedt－ ate delivery．These are well maintained units fumished with a 30 day return to depot warranty Huron Leasing，Inc．1－800－572－6060 Ask for Dianne 146 （312） $690-0550$

Limy

STUDY GUIDES

AMECO STUDY GUIDES
Designed for VEC Exams
AMECO study Guides are taken from the FCC Ama－ teur Exam syllabus，PR－1035 and have answers keyed to ARRL＇s recently released study material These study guides are compatible with ARRL and all other VEC Exams．While nothing can guarantee that you will pass．AMECO Study Guides will make sure that you are fully prepared and ready to go when you sit down for the exam．Written in clear concise，easy－to－read format，each question fully explained．Novice and General books cross reter－ enced to AMECO＇s 102－01 for a more thorough explanation．
27－01 Novice Class 12－01 General Class 26－01 Advanced Class 17－01 Extra Class AM－1 Get All Four

Softbound $\$ 3.50$ Soltbound $\$ 4.95$ Sottbound $\$ 4.95$ Sottbound \＄4．95 \＄14．95
ARRL Q\＆A LICENSE MANUALS
ARRL O\＆A License Manuals are keyed to the latest FCC Exam syllabi now in use by the Volunteer Examiners．These books are written in an easy－to－ read conversational style that ennances understand ing without scaring the student away．All technical subject areas are explained in clear terminology and with plenty of illustrations，diagrams and schematics． Rules are also fully covered，Each book has the offi－ cial ARRL multiple choice question Pool with answers and a key to the FCC Exam syllabus for reference to other study publications．These are the study guides to have．All books． 1985 1st Edi－ tions．

AR－TG General
AR－AG Advanced
AR－EG Extra
AR－SG Get All Three
Softbound $\$ 5.00$ Softbound $\$ 5.00$
Softbound $\$ 5.00$
$\$ 12.95$
MORSE CODE the essential language
by L．Peter Caron W3DKV
Learning the Morse code is one of the most ditticult tasks facing prospective new Amateurs．This well written text describes in great detail the background history of Morse code and how it relates to Amateur Radio．Full of helpful hints and tips as well as into on equipment，high speed operation，distress calls and the future．Includes 7 learning excercises．
1986 1st Edition．
AR－MC
Softbound $\$ 4.95$
Please add $\$ 3.50$ to cover postage and handling．

New Technology (patent pending) converts any VHF or UHF FM receiver into an advanced Doppler shift radio direction finder. Simply plug into receiver's antenna and external speaker jacks. Uses four omnidirectional antennas. Low noise, high sensitivity for weak signal detection. Call or write for full details and prices.

DOPPLER SYSTEMS, INC. 5540 E. Charter Oak, Scottsdale, AZ 85254
(602) 998-1151

NEW COMPUTER BOOKS

YOUR COMMODORE 64: A GUIDE TO THE C-64 COMPUTER
YOUR COMMODORE 128: A GUIDE TO THE C-128 COMPUTER
These books cover in great detail the best selling Commodore C. 64 and C-128 home computers. You get a complete introduction to the operating sytems used, BAS IC tutorials, graphics, sound and much more Also dis cussed are hardware and peripheral considerations. The C-128 book covers C-64 emulation, extended memory CP/M mode, mouse, ram disk, printers and modems Excellent source books for beginners and experts alike.

1985 1st Edition
OS-C64 464 pages
Softbound \$14.95

OS-C128 480 pages

Softbound \$14.95
Buy'em Both Special Reg \$29.90
OS-C Save $\$ 4.95$
$\$ 24.95$
MS-DOS USER'S GUIDE
by Chris DeVoney
MS-DOS computer users will find this handbook to be an essential addition to their computer library. Includes a full explanation of MS-DOS commands in clear, con cise language and examples of command syntax. Hints on command usage and explanations of the hierarchial directory and I/0 redirection will enable you to get maximum benefit from your computer investment. For novice and expert users 1984 1st Edition 330 pages OUE-061

Softbound $\$ 19.95$

PC SECRETS: TIPS FOR POWER

PERFORMANCE

by James Kelly

Here's one of those unheralded gems we stumbled upon recently. This nifty book is jam-packed with ideas and suggestions on how to get more out of your PC-DOS or MS-bOS computer. Not a tutorial, more for the intermediate user who is looking to get more speed and efficien cy. Improve your keyboard, enhance your display organize your files, and manage your printer better than ever before You'll be amazed at what this book can add to your PC. Also covers Lotus 1-2-3 and Wordstar 1985 1st Edition 224 pages
0S-PCS
Sottbound \$16.95
APPLE II USER'S GUIDE, Apple Plus and II series
by Poole, McNuff and Cook
All time Apple II best seller! Now available in updated third edition Learn from the experts how to get the most from your Apple home computer and peripherals. You also get a complete explanation on how to use DOS 3.3 and Pro-DOS Easy-to-use tutorial explanation of BASIC programming will teach you how to use all the sound and graphics capabilities as well as the Apple lle high resolution graphics. This book is worth it's weight in goid 1985 1st Edition 512,pages
OS-UG
Soltbound $\$ \mathbf{\$ 8 . 9 5}$
We're really proud of the next two books! Doug was Jim Fisk's right hand man during the early seventies. His first computer book, The Introduc tion to TURBO Pascal, quickly went best seller. The TURBO Library is an invaluable addition to TURB0 user's libraries.
INTRODUCTION TO TURBO PASCAL
by Doug Stivison WA1KWJ (ex Ham Radio assistant editor)
Thousands have learned Pascal programming with this popular best seller. As a tutorial this book enhances the unique aspects of Turbo Pascal by concentrating on the extended applications capabilities offered. Includes graphics, look-up tables. word processor to typesetting equipment conversion tables, IIS to ASCII conversion and tast sor/search routines 1985 1st Edition 268 pages SY-269 Sottbound $\$ 14.95$

TURBO PASCAL LIBRARY

by Doug Stivison WA1kWJ
Perfect compliment to the Turbo Pascal Introduction book listed above. Stivison shares his extensive collection ot proven programs and will save expenenced programmers time and illustrate to beginners good programming techniques and Turbo versions of standard algorithims. Includes games, systems utilities, and routines for business and engineering applications 1986 1st Edition 350 pages
SY-330
Softbound \$14.95
Please Enclose $\$ 3^{30}$ to cove
shipping and handling

HAM RADIO'S BOOKSTORE
 Greenville, NH 03048

VHFUHF WORID

RF connectors: part 1

Though the subject of RF connectors has been mentioned here many times, time and scheduling have not permitted a detailed discussion of this seemingly simple and straightforward subject.

I often hear Amateurs make all kinds of wild claims, or see them distribute misinformation on the subject. These stories typically involve power handling, impedance matching, and insertion loss. Also, many Amateurs seem unaware of the many types of connectors - besides the so-called "standard" or preferred types - that are available. These same Amateurs would probably also wonder why so many types are required.

This all reminds me of the story circulated in the early 1950s, just after the transistor was invented. The general notion was that all possible applications could be accommodated by the development of just a few types of transistors! Today there are over 10,000 types of numbered transistors, and new ones are becoming available weekly!

While there aren't nearly as many series of RF connectors available as of transistors, there surely must be almost as many types of distinctly different RF connectors and adapters available. Therefore, this month's column will serve as sort of a primer, in which we'll try to sift through the major series of RF connectors. Next month's column will expand on the various tradeoffs, especially in the area of applications. Tables will help put the whole selection of RF connectors in perspective and, I hope, help make selection easier in the future.

overview

RF connectors are designed to join or separate two components or units - such as an antenna and a transceiv-
er - with relative ease. They're also used to gain access to a specific unit.

The proper choice of an RF connector type is particularly important when considering frequency of operation, passing high level RF power, or connecting to a low-noise preamplifier. It's also necessary if you're using a modular approach. Proper connectors permit convenient access to a unit so that adjustments can be made without disassembling or disturbing the circuit under test.

The actual choice of an RF connector depends on many things: application, availability, relative cost, electrical performance, mechanical durability, and environmental conditions. The choice of an optimum RF connector for a specific application, therefore, isn't always possible. Trade-offs are often necessary.

Furthermore, connectors are available in many forms. They may be threaded, bayonet, snap-on, or push-on. They may also be used on standard coaxial line, Triax ${ }^{\text {TM }}$ (cable with two separately isolated braids for maximum shielding effectiveness), or Twinax ${ }^{\text {TM }}$ (for connecting to 95 -ohm balance line such as RG-22). The connector may be male, female, or neither.

An RF connector may be used either to terminate a transmission line, an inseries or between-series adapter, a panel mount, or feedthrough. What's the method used to attach to the connector to the line? Is it a solder connection, screw-on, push-on, or crimp type? Is the center pin free-floating or captive? Or is it fabricated from the actual transmission line center conductor itself, such as with RG-17 and UT-141 semirigid coax.

Basically speaking, RF connectors can be separated into three main fami-
lies; standard, miniature, and subminiature. Standard connectors are for cables that are larger than 0.25 inches in diameter. Miniature connectors fit cable measuring between 0.10 and 0.25 inches. Subminiature connectors are sized for cables measuring less than 0.10 inches in diameter.

RF connector series

Table 1 is a list of most of the major series in common use, along with some technical data. More data will be provided in next month's column.
The UHF connector was the forerunner of most of the modern RF connectors. Developed in the mid-1930s, it was inexpensive and easy to assemble and use. It quickly became an industry standard. The most common types used by Amateurs are the PL-259 plug and the SO-239 chassis mount.
Unfortunately the UHF connector series doesn't have a constant impedance and is therefore usually limited to 500 MHz and below; in fact, I wouldn't recommend using UHF connectors above 150 MHz . What's more, it's not weatherproofed and therefore can't be recommended for outdoor use.

Connector development was spurred on by radar and VHF communications gear designed during WW II. Later progress resulted from the development of more demanding applications, especially at the higher microwave and millimeter-wave regions.
The type \mathbf{N} connector - supposedly named for its inventor, Paul Neill of Bell Labs - was one of the first developed for both the VHF and UHF frequencies. Its most significant contribution to the state of the art was the addition of the separate outer contact, which wipes against the female body jack.

Table 1. This table contains some of the more pertinent parameters of the major series of RF connectors in common use.
\(\left.$$
\begin{array}{lcccr}\text { Type } & \begin{array}{c}\text { Outer diameter } \\
\text { typical (inches) }\end{array} & \begin{array}{c}\text { Impedance } \\
\text { Ohms }\end{array} & \begin{array}{c}\text { Thread size } \\
\text { (inches) }\end{array} & \begin{array}{c}\text { Maximum } \\
\text { Frequency }\end{array}
$$

APC-3.5 \& 0.312 \& 50 \& 1 / 4-36\end{array}\right]\)| 34 GHz |
| :--- |
| APC-7 |

Note 1. Depends on diameter.
Note 2. May be used at 50 - to 75 -ohm impedances if matching is not a problem.

The N connector has a constant impedance and is usable to at least 11 GHz . Its gasket seals were later improved along with the braid clamp, making it an excellent choice for outdoor use. Amateurs usually prefer the UG-21 and UG-58 plug and jack, respectively. One caution: N connectors are sometimes made for 70 -ohm impedances. To accomplish this, the diameter of the center pin is very small. Inserting a 50 -ohm male connector into a female 70 ohm type will break the receptacle pin. Also, if a 70 -ohm male " N " is inserted into a 50 -ohm female N connector, there may be no electrical contact. I've seen these 70 -ohm N connectors at flea markets, so beware. If you're not sure, compare the pin diameters with a known 50-ohm connector.

The type C connector, developed by Carl Concelman, is similar to the N connector. It was the first connector to use the bayonet-lock mating system so that
it could be easily connected or disconnected. Though it's not as popular as the N connector, it's usable to at least 10 GHz .

Usable to 4 GHz , the BNC connector - quite popular with Amateurs, especially in the VHF and UHF region - has a bayonet-lock. Its name is said to derive from its developers, Neill and Concelman; hence its name, BNC, for (B)ayonet, (N)eill, and (C)oncelman ${ }^{1}$. The UG-88 plug and the UG-290 chassis jack are the most common BNC connectors seen in Amateur equipment. BNC connectors are sometimes available as 75 -ohm connectors; the cautions about " N "' type connectors apply to BNC connectors as well.

The TNC, an improved or "threaded" version of the BNC connector, has a more positive contact on the body and hence is recommended over the BNC connector, especially above 500 MHz . It's rated up to at least 10 GHz ; a precision version is rated to 12.4 GHz .

Widely distributed by the Omni Spectra Manufacturing Corporation, which called it an "OSM" connector, the SMA connector is now manufactured by many companies. This connector, defined as a miniature type, is popular on UHF and above, especially where low-loss, constant impedance, and small size are required.

The SMA connector was primarily developed to mate with 0.141 -inch semi-rigid metal jacketed cable ${ }^{2}$. In the early 1970s, the E.F. Johnson Company introduced the JCM connector, a lower-frequency version of the SMA connector which is specified to 4 GHz and also mates with RG-174 miniature flexible cable. This low-cost connector is very popular in UHF applications.

SSM subminiature connectors were designed later. Primarily suited for 0.085 semi-rigid coax, these work up to 26 GHz . Improved SSM connectors will work up to 40 GHz !

The SMB and SMC connector series
is primarily used in video and IF equipment, where small-diameter flexible cabling is used. The SMB is threaded; the SMC is a push-on type. Both are relatively inexpensive; SMC is the more common of the two, especially on military equipment.

The APC 3.5 is the ultimate in precision. Resonance-free through 34 GHz , it will mate directly with the SMA connector series.

The APC-7 is an expensive precision connector used primarily for 0.250 -inch semi-rigid coax. It's a hermaphrodite, which making it an excellent connector for instrumentation.

An EIA connector is very unusual in that it doesn't have a threaded or bayonet connection. Instead it consists of body and moveable flange that's bolted to the mating connector. It's primarily used on air lines, where lowloss, high-power $7 / 8$ to $61 / 8$-inch lines such as on Heliax (TM) are used.

The inexpensive ' F ' connector is popular on CATV installations, especially for connecting units together with RG-59-type 75 -ohm cable. Usually a crimp-type, it often uses the center wire of the cable for the center pin. Unfortunately, it's not rugged, wea-ther-proofed, or very usable above about 300 MHz .

General Radio Corporation designed the GR connector primarily for instrumentation - hence its initials. A hermaphrodite push-on type connector most commonly seen as the G-874 or GR900 types, it's especially good on patch panels and where equipment must be frequently connected or disconnected.

The HN connector is basically a larger-diameter offshoot of the N connector with a higher voltage rating. It's primarily used with large-diameter ($7 / 16$ to $7 / 8$-inch) cables when breakdown voltages up to 5000 volts are required.

LC and LT connectors are large and very similar. They're usually seen where high voltages or high power are required. Often used with RG 17-type coax, both of these connector series use the mating cable with its dielectric as the center portion of the connector.

The MHV connector may at first
appear to be a BNC connector, but that's where the similarities end. The MHV is primarily designed to handle high voltages (up to 5000 volts) with a quick connect/disconnect capability. This feature is especially useful for highvoltage power supplies for tube type amplifiers, as described in reference 3. The MHV is seldom used for passing RF.

Normally I wouldn't even mention RCA phono connectors, except that I often see them on older commercial gear through 500 MHz ! They're definitely not recommended for RF use above 30 MHz because they have no specific impedance properties. They're best suited for audio and control circuits where shielded cables are required.

The SC connector, a screw-on version of the C connector, is often used in applications requiring higher voltage than the C connector can handle and where environmental conditions are more severe.

The SM connector isn't too common. It's not weatherproofed and is recommended only for IF work. It may be used at different impedances if match isn't important.

A subminiature version of the SMA connector, the SSM is primarily used where the smallest possible size and highest possible frequency are required.

The TM series isn't often seen. Basically, it's a $2 / 3$ size version of the TNC connector sometimes seen on IF connections.

The Triax and Twinax connector series are used when balanced lines are required. The Triax type allows a cable with two insulated shields to be used. The Twinax connector provides for superior shielding. Some Twinax connectors are polarized, while others are not. They're popular on video transmission and computer installations.

adapters

So far we've been discussing only coaxial connectors such as plugs, jacks, and chassis types. But other RF connec tors function as adapters, both within and between series adapters.

There may be as many different RF adapter types as cable connectors. The

MOVING?
 KEEP HAM RADIO COMING.

If possible let us know four to six weeks before you move and we will make sure your HAM RADIO Magazine arrives on schedule. Just remove the mailing labe! from this magazine and affix below. Then complete your new address (or any other corrections) in the space provided and we'll take care of the rest.
ham
Fa/50
Allow 4-6 weeks for correction.
Greenville, NH 03048
Thanks for helping us to serve you better.

HAM DATA
C-64 Software
\section*{SUPER LOG}
Super log gives you all the advantages of a computerized data base without significantly changing the traditional log format. For contesters, Super Log can be configured to either manually or automatically enter contact number as well as time of contact. Make an error and you can easily go back and edit the entry. Super Log also allows you to print out either selected contents or the whole log. Will print QSLs
HD-SL (For C-64)
\section*{CONTEST LOG}
This disk contains four different contest programs: ARRL Sweepstakes, Field Day. Universal WW Contest log. plus a dupe checking routine. Each program is designed for real time use. It automatically enters date, time, band and serial number for each contact A 24 -hour clock is displayed at the top of the VDT screen. When the contest is over, the program will print your results listing all duped and scored contacts in serial sequence with all the necessary information as well as completed score at the bottom of the page.
HD-CL (For C-64)
$\$ 24.95$
\section*{MASTER LOG}
Over three years of development went into this program. It creates a file of 2100 individual records with up to 13 different entries per record. Master Log can do a search and select based upon time. frequency, mode or any of the other variable parameters. It keeps track of DXCC and WAS status. prints QSL labels and can search its whole file in less than 5 seconds! Complete documentation is included to help you leam and use this truely state-of-the-art logging program.
HD-ML (For C-64)
$\$ 28.95$
Please enclose $\$ 3.50$ for shipping
HAM RADIO'S BOOKSTORE Greenville, NH 03048

Please send information about these titles

Name

Company/Institution

Address

City
State \qquad
Phone
Call toll-free 800-521-3044. In Michugan.
Alaska and Hawan call collect 313-76!-4700. Or mail inguiry to: University Microfilms International. 300 North Zeeb Road. Ann Arbor, M1 48106.
most common ones are probably the female-to-female or male-to-male barrells for connecting cables together in the same series. Between-series adapters are also common. Right-angle and "T" types are popular since they allow flexibility when you want to hook similar connectors together.
It's particularly important to choose the proper adapter. I often see installations with two or even three adapters placed in series even though there's a single adapter available that will make the connection. The loss through each adapter is about two to three times that of a normal connector.

Your best bet is to choose a single adapter with the desired transition between series. Flea markets seem to have just about every imaginable type. If you're in doubt, bring one of your connectors along and check the fit.

Be particularly careful when using adapters outdoors. The more adapters used, the more likely it is that moisture will seep into one of the connections.

next month

Next month's column will go further into the mechanical and electrical aspects of connector design and use.

Tips on proper use will also be given. This information should aid in your choice for the optimum connector for your application.

references

I. Allen Nemetz, "A Designer's Guide to RF Connector Selection," rt design, September/October, 1980, page 18.
2. Joe Reisert, W1.JR, "VHF/UHF World: Transmission Lines," ham radio, October, 1985, page 83.
3. Joe Reisert, W1JR, "VHF/UHF Word: High Power Amplifiers - Part 2," ham radio, February, 1985, page 38.

Important VHF/UHF Events:
Sept. 67
International Region 1 VHF Contest
Sept. 12 EME perigee
Sept. 13-14 ARRL VHF OSO Party
Sept. 26-27 First ARRL 10 GHz Cumula tive Contest, first weekend Mid-Atlantic States VHF Conference, Warminster, PA (contact WA2OMY) International Region 1 UHF/SHF Contest EME perigee First ARRL 10 GHz Cumula tive Contest, second weekend.
Predicted peak of the Orionids Meteor Shower at 1645 UTC
International EME contest, first weekend
ham radio

> SPECIALIZED COMMUNICATIONS FOR TODAY'S RADIO AMATEUR!

If you are ACTIVE in FSTV SSTV, FAX, OSCAR, PACKET, RTTY, EME, LASERS, TVRO, or COMPUTERS, you need
"THE SPEC-COM JOURNAL" ${ }^{\text {™ }}$ "
now in our 1bTh year of Servicet
Published 10 Times
Per Year
By WBOQCD

CALL TOLL-FREE 1-800-628-2828 ext. 541

...and place your subscription order today! Our membership Services HOTLINE is good for all 50 U.S. States including Hawaii \& Alaska and ALL of CANADA! U.S. subscriptions $\$ 20$ per year. Foreign slightly higher. A Master Article Index Special Issue is available for $\$ 3.00$ postpaid.

THE SPEC-COM JOURNAL P.O. BOX H, LOWDEN, IOWA 52255

E-X-P-A-N-D

 REPEATER SITE CAPABILITIESIN STOCK - THE LARGEST SELECTION OF CAVITIES, DUPLEXERS AND FILTERS AVAILABLE FOR IMMEDIATE DELIVERY !

Improve and expand your communications performance with reliable Telewave High "Q" Cavities, Duplexers, \& Filters. Telewave Cavities are ideal for use in frequency-congested areas, where protection is required from transmitter interference, spurious radiations, and receiver desensitization.

Bandpass, Bandpass Band Reject, \& Notch Cavities

30 to 50 MHz and 66 to 88 MHz Single, Double and Triple Cavities in $5^{\prime}, 6^{\prime \prime}, 8^{\circ}$, and 10^{\prime} diameters.
66 to 88 MHz and 118 to 174 MHz Single, Double and Triple Cavities in $5^{\prime \prime}, 8^{\prime \prime}, 10^{\prime \prime}$, and $12^{\prime \prime}$ diameters.

220 to $\mathbf{4 0 0} \mathrm{MHz}$ and 406 to 512 MHz Single, Double and Triple Cavities in $4^{\prime \prime}, 5^{\prime \prime}, 6^{\prime \prime}, 8^{\prime}$, and $10^{\prime \prime}$ diameters.
806 to 960 MHz and 1.1 to 1.3 GHz Single Cavities available in $4^{*}, 6^{*}, 8^{*}$ diameters.

When frequencies are specified, all cavities are tuned prior to shipping. Telewave quality cavities are engineered for stability in temperature and stress extremes, and require no further adjusiments.

GSA Number OOKB6AGSOB46

1155 Terra Bella Ave., Mountain View, CA 94043
in Canada - contact Telewave Ltd., 11161 Horseshoe Way $* 4$ Richmond, B.C. Canada V7A485 (604) 274-8300

low-cost spectrum analyzer with kilobuck features

Build WA2PZO's useful instrument for operating position and lab bench

Abstract

Although laboratory-grade spectrum analyzers cost $\$ 4500$ or more, you can build a spectrum analyzer offering many features of its costlier cousins for about $\$ 50$. How can such amazing capabilities be had at such incredibly low cost? - Through the use of a commercially mass-produced varactor tuned TV tuner that covers the VHF low, VHF high, and UHF TV bands. It will tune down through the 2 -meter and 6-meter Amateur bands without modification, with better than 1 -microvolt sensitivity. By using a crystal-controlled converter and a narrower IF filter, any one of the HF Amateur bands could be viewed as well, by simply upconverting to a TV channel.

- Through the use of consumer-grade integrated circuits in the oscillator/mixer, dual ceramic filter, IF amplifiers/detector, and audio amplifier loffering audio as well as scope output it is really a spectrum monitor).
- Through the use of your own oscilloscope. Just about any scope may be used; I used a 1951 Heathkit Model OL-1 with its original cathode ray tube.

spectrum analyzer applications

Spectrum analyzers allow the user to observe in real time an adjustable/variable bandwidth of radio frequencies. One of the earliest spectrum analyzers for the ham bands was the "Panadaptor," manufactured by Hallicrafters in the early 1950s. I used one to check for F2 propagation 6-meter band openings in the mid-1950s and credit the panadaptor with my earning the IARU 6-meter WAC award (phone) issued by the ARRL.

The band of frequencies swept by the spectrum analyzer described in this article may be varied from zero up to about 38 MHz on VHF low TV $=50 \mathrm{MHz}$ - 88 MHz , zero up to about 85 MHz on VHF high TV $=135 \mathrm{MHz}-220 \mathrm{MHz}$, and zero up to about 300

MHz on the UHF TV $=500 \mathrm{MHz}-800 \mathrm{MHz}$. When the sweep width is set at zero, each of these bands of frequencies may be manually tuned just as in a single-frequency receiver. Both wideband FM and narrowband FM signals, and surprisingly, even amplitude modulated signals are detected quite well by the FM IF amp/detector IC and amplified by the audio IC.

Figure 1 is a block diagram of this spectrum analyzer using a Sanyo varactor tuned TV tuner. A ten-turn, 10 k pot with +35 VDC across it is used to adjust the center frequency of the tuner. A low varactor bias yields low frequency and a high varactor bias provides higher frequency on the TV band to which the tuner is set. The sawtooth sweep voltage that is capacitively coupled into the tuner's varactors is the horizontal sweep voltage from the oscilloscope. If your scope doesn't have the horizontal sweep output /the Heathkit OL-1 does not), just mount an RCA phono jack on the front of the scope and bring out the horizontal sweep from the scope's horizontal multivibrator to this point. The 100 kilohm load across the horizontal sweep output should have little or no effect on the scope's operation.

Besides the TV tuner and scope, the rest of the circuit consists of only three integrated circuits. The second mixer/oscillator chip is a Siemens SO42P. The ceramic filter is a Murata SFJ two-section filter at 10.7 MHz . The combination IF amp/detector/AGC amp is a National LM-3089N, and the $1 / 2$-watt audio amp is a National LM-386N.

construction, testing, and alignment

Figure 2 is a schematic of the analyzer. A printed circuit board is available from WA2PZO; I recommend using this and WA2PZO parts kits. (Although the pots, S-meter, and speaker aren't furnished, most are available from Radio Shack.) Figure 2A shows the component layout on the WA2PZO printed circuit board (foil side down). Alternatively, you could use perfboard and point-to-point wiring.

Figure 3 is a schematic diagram of the interconnections between the Sanyo tuner, the three-IC printed circuit board, and the scope. Once everything is connected as shown in fig. 3, alignment can begin. (It should be easy, since there are only four adjustments,

By Robert M. Richardson, W4UCH, 22 North Lake Drive, Chautauqua, New York 14722
the ferrite cores in L1, L2, L3, and L4.)
With all the parts on hand - and assuming you're using the PCB - assembly time is at most an hour or two. I tuned up my unit using only a grid dip meter as a signal source in about 20 minutes.
Construction of the PCB proceeds as follows:

1. Install the jumper at the lower edge of $U 3$ as illustrated in fig. 2A.
2. Install the 11 resistors as shown in fig. 2A.
3. Install the 16 capacitors as indicated in fig. 2A. Since C6 and C7 are electrolytics, be sure to observe the polarity indicated in fig. 2A.
4. Install the Murata ceramic filter, FL1. Because it's symmetrical, it can be installed in either direction.
5. I recommend carefully installing sockets for U1 (16 -pin DIP), U2 (8 -pin DIP), and U3 (14 -pin DIP). 6. Install L1 through L5, carefully bending the pins slightly so that they fit easily into the PCB's pre-drilled

fig. 1. Block diagram of WA2PZO spectrum analyzer.

fig. 2. Schematic of WA2PZO spectrum analyzer.

Meet the Eliminator.

Don't let its small dimensions (4 " $\times 3$ " $\times 2$ ") fool you-the Grove Minituner III is a big weapon against images, intermod and phantom signals on your shortwave receiver!

This short wave/long wave pre-selector is designed to boost performance in the $100 \mathrm{kHz}-30 \mathrm{MHz}$ frequency range. If you own one of the popular general coverage communications receivers and are using an outside antenna, you NEED this extra measure of selectivity.

No power required. Simply connect between your receiver and antenna. Equipped for standard PL-259 connections. Only \$39 (free UPS shipping; ${ }^{5} 5$ U.S. Mail/Parcel Post). Order TUN-3.

Grove Enterprises

140 Dog Branch Road
Brasstown, N.C. 28902
MC, Visa or COD call: 1-800-438-8155

Shop Grove for fantastic values in shortwave

 receivers, antennas, cable, performance boosting accessories and literature.Call (704) 837-9200 or write to above address for free catalog!
$33 \mathrm{~cm} . \bullet 23 \mathrm{~cm} . \bullet 13 \mathrm{~cm}$.

LOOP YAGIS AND AMPLIFIERS FROM DOWN EAST MICROWAVE

284 way power dividers, complete arrays available 2316 PA Linear Amp iw in 18w out $\quad 1296 \mathrm{MHz} 135 \mathrm{~V} \$ 245$ 2335 PA Linear Amp 10w in 36w out $1296 \mathrm{MHz} 13.5 \mathrm{~V} \$ 295$ include $\$ 5$ for UPS Blue - 48 states
Write about Higher Power, 2304 linears, GaAs Fet preamps
Free catalog
DOWN EAST MICROWAVE Bill Olison. W3HDT
Box 1655A, RFD 1, Burnham, ME 04922 (207) 948.3741

- 155

Packet communications is one of the hottest subjects in Amateur Radio these days. Noted computer author Jim Grubbs, author of the Commodore Ham's Companion and Command Post, has put together one of the first books on how to get on Packet Radio. Packet basics are fully discussed in a step-by-step manner. Subjects also covered are: selecting a TNC, setting up your computer, Packet organizations and publications, protocol, networking, Packet answering machine, file transfers, accessories and more! c) 1986208 pages, 1st Edition. JG-PR

Softbound \$12.95
Also available The Commodore Ham's Companion, Order code JG-CC. \$15.95 and Command Post. Order code JG-CP, $\$ 9.95$.

Please add $\$ 3.50$ for shipping and handling
Ham Radio's Bookstore
Greenville, NH 03048

HOT OFF THE PRESS!!!
GET *** CONNECTED to Packet Radio by Jim Grubbs, K9EI
Beginners' guide to Packet Radio operation.

fig. 2A. Component layout on the WA2PZO printed circuit board (foil side down).
holes. Because L5, the $150 \mu \mathrm{H}$ inductor, is symmetrical it can be installed in either direction.
7. Most important: lubricate the small ferrite cores of L1, L2, L3, and L4 with a drop or two of WD-40 before attempting adjustment. These cores are extremely brittle; use a plastic or nylon tuning tool matched to the width of the ferrite slots (using a metal one will guarantee their destruction).
8. If you're not using a $200-\mu \mathrm{A} S$-meter, install a jumper from ' A ' to ground.

Testing and alignment proceed as follows:

1. Connect the TV tuner's VHF input to your 2-meter antenna.
2. Set the VHF/UHF switch to the VHF position.
3. Set the Hi/Lo switch to Hi .
4. Make sure the top of the ferrite core in L 1 is exactly even with the top of its shielded housing.
5. Set the squelch control to zero and adjust the volume control for a slight hiss from the speaker with the gain control at maximum resistance (10 kilohms). 6. Set the width control (sawtooth sweep from scope) to zero.
6. Connect a voltmeter to pin 10 of the TV tuner (varactor input). Use the +30 -volt voltmeter range (adjust the center frequency 10 k-turn pot so that varactor bias is below +30 VDC).
7. Turn the center frequency pot slowly down (reducing varactor bias voltage) until a local TV video carrier is both heard on the speaker (buzz) and seen on the scope. If no TV stations are nearby, use a signal generator with modulated output or a grid dip meter.

fig. 3. Schematic showing interconnections between tuner, printed circuit board, and oscilloscope. Note: +35 , +20 , and +12 VDc sources are regulated supplies.
8. Peak the ferrite slugs in L2 and L3 for maximum signal output on the scope.
9. Continue tuning the center frequency pot until a TV audio signal is found, then adjust L4 for maximum

A magazine dedicated to quality and sportsmanship in amateur radio operating. Fresh, timely, practical and down to earth reading for little pistols and big guns. Written by world's best in their fields.

Includes $D X$ News, QSL Info, 160 m , DXpeditioning, Propagation, Awards, contest rules and results, TrafficEmergency, FCC News, New Products, Antennas, technical articles, equipment reviews and modifications, computer programs, Radio Funnies, Club Life, YL, RTTY, VHF/UHF, Mail Room, Classified Ads and much more in a magazine format with the speed of a bulletin.

RADIOSPORTING sponsors DX Century Award, Contest Hall of Fame, World Contest Championship and World Radio Championship contest.
"Your publication is superb! Keep it up!"
Joe Reisert, W1JR
"Your W2PV articles are priceless. Your magazine is super!"
Rush Drake, W7RM
"Let me congratulate you on a very impressive magazine. Just what I've been looking for as a DXer and Contester!"'

Dick Moen, N7RO
"RADIOSPORTING, once received, cannot be tossed aside until it is read from cover to cover. Then reviewed again and again"

Chas Browning, W4PKA
Subscription rates: 1 year USA $\$ 18$, Canada CDN\$24, Overseas US $\$ 21 ; 2$ years $\$ 33, \$ 44, \$ 39$ respectively. Single issue $\$ 2$.
TRY US! SUBSCRIBE OR SEND $\$ 1$ FOR YOUR SAMPLE COPY.
RADTOSFORTING Magazine
PO Box 282, Pine Brook, NJ 07058, USA
Vry

A monthly of 100 -plus pages-has everything you need to know about where to find equipment, how to install it, system performance, legal viewpoints, and industry insights! With your subscription to STV ${ }^{\text {* }}$ you will receive a FREE LCD Calendar/Clock.

- Only $\$ 19.95$ per year (12 monthly issues)
- \$1.00 for sample copy

IF YOU HAVE

 A SATELLITE SYSTEM, THEN YOU REALLY NEED ...

The best in satellite programming! Featuring: \star All Scheduled Channels \star Weekly Updated Listings \star Magazine Format \star Complete Movie Listing \star All Sports Specials \star Prime Time Highlights \star Specials Listing and \star Programming Updates!

- Only $\$ 45.00$ per year (52 weekly issues)
- 2 Years $\$ 79.00$ (104 weekly issues)
- \$1.00 for sample copy

Visa ${ }^{\text {® }}$ and MasterCard ${ }^{\text {T }}$ accepted (subscription orders only). All prices in US funds. Write for foreign rates.

Send this ad along with your order to:

STV ${ }^{\circledR} /$ OnSat ${ }^{\circledR}$

P.O. Box 2384-Dept. HR • Shelby, NC 28151-2384 SUBSCRIPTION CALLS ONLY TOLL FREE 1-800-438-2020
audio output and minimum background noise from the speaker.
11. Though each varactor tuned TV tuner will have somewhat different voltage versus frequency response, see fig. 10 to see the response we obtained using a Sanyo varactor tuned TV tuner.

Figure 4 is a photo of our finished spectrum analyzer. The tuner and PCB are mounted on top of a 2

fig. 4. Completed spectrum analyzer: (A) front, (B) rear, (C) top.

fig. 5. VHF low TV band with horizontal sweep amplitude set to maximum.

fig. 6. $8-\mathrm{MHz}$ horizontal sweep width, with channel 2 video signal at left and channel 2 audio at right.
$\times 5 \times 9$-inch ($5 \times 13 \times 23 \mathrm{~cm}$) aluminum chassis. The PCB is mounted on $1 / 2$-inch (1.3 cm) threaded standoffs. Left to right, the five pots are: volume, squelch, center frequency, sweep width, and tuner gain. The two mini-toggle switches on the right of fig. 4 are VHF-UHF (top) and VHF LOW - VHF HIGH (bottom). On the rear of the chassis are six RCA phono jacks: +35 VDC for tuner center frequency; +20 VDC for tuner; + 12 VDC for oscillator/mixer, second IF amps, U3 audio amp; horizontal sweep from scope; vertical output to scope; and audio output to the 8 -ohm speaker.

operation

Now the fun really begins. For antennas, I used my two 23-element Cushcraft 2-meter "Boomers." (No, I don't bounce signals off the moon with them, but I can work into 2 -meter repeaters in Toronto, some 125 miles away. My QTH is on the south shore of Chautauqua Lake, some 65 miles southwest of Buffalo; because of this distance, and the presence of a range of hills about 300 feet (90 meters) high between Buffalo and Chautauqua, TV signals aren't par-

MJCBOWAVE MODULES LTD. 1 Connoisseurs Choice in VHF/UHF

$\downarrow 161$

NEMAL ELECTRONICS

Your Authorized Distributor For

BELDEN
INTRODUCTORY SALE!
$\left.\begin{array}{|cc|}\hline \begin{array}{c}\text { Belden } \\ \text { No. }\end{array} & \begin{array}{c}\text { Nemal } \\ \text { No. }\end{array} \\ 8214 & 1102 \mathrm{~B}\end{array}\right)$

Per	Per
100 ft .	ft^{2}
45.00	50

ticularly strong. Nevertheless, all the TV channels on both the VHF low TV and VHF high TV bands were displayed on the first try. Both the vestigial sideband video signal and its accompanying FM audio signal were clearly displayed for each channel.

Figures 5 through 10 are sketches of the oscilloscope display in the noted modes of operation. 1Oscilloscope cameras cost about $\$ 300$; I chose not to add one to my $\$ 39.95$ Heathkit scope.)
Figure 5 shows the VHF low TV band with the horizontal sweep amplitude set to maximum. Each TV channel pair displayed (video and audio) is noted. The height of each signal is proportional to signal strength; some Canadian TV stations really pack a wallop even though they're 125 miles away.
Figure 6 illustrates about 8 MHz horizontal sweep width (left side of CRT to right side of CRT) with the video signal of Channel 2 on the left and the audio from Channel 2 on the right side.

Figure 7 displays the sweep width reduced to about 2 or 3 MHz with the center frequency set to Channel 2 's video carrier. Note the blanking and vertical sync pulse riding on top of the carrier.

Figure 8 is the Channel 2 video carrier with the horizontal sweep set to zero. The blanking pulse with the vertical sync pulse on top is on the left side. The eight squiggles to the right of the vertical sync pulse on top of the blanking pulse are the color burst; all the hazy, wavy signals to the right are the video information. The top of the vertical sync pulse represents 100 percent modulation and the bottom ot the video information represents the white level of video at about 15 percent modulation.
Although some scope photos or sketches show 100 percent modulation at the bottom, I prefer it at the top. If you insist on having it at the bottom, simply turn the figure upside down and view it in a mirror.
Figure 9 illustrates the 2 -meter band with horizontal sweep representing about 3 MHz . The left side of the CRT is at 145 MHz and the right side of the CRT is at 148 MHz . Spread between 146 and 148 MHz , we can see about six 2 -meter repeaters located in the Buffalo and Toronto areas.
Figure 10 is a plot of varactor tuning voltage versus frequency on my Sanyo TV tuner. The 10 -turn, 10 -ohm pot used for setting the varactor voltage is an absolute "must" for fine tuning.

By reducing the sweep width to zero and singlesignal tuning across each band, I was able to copy the audio on the VHF TV low band from the following stations: WGRZ-TV (Channel 2, Buffalo) WPSX-TV (Channel 3, Rochester), WIVB-TV (Channel 4, Buffalo), CBLT-TV (Channel 5, Canada), and CTGNTV, (Channel 6, Canada). On the VHF TV high band we copied audio from air-to-ground and air traffic control stations; 2-meter repeaters in western New York
and the Toronto area; commercial FM pagers; Toronto Coast Guard marine weather on 161.775 MHz ; the Erie, Pennsylvania, weather bureau on 162.40 MHz ; the Buffalo, New York, weather bureau on 162.55 MHz ; WKBW-TV (Channel 7, Buffalo); WROC-TV (Channel 8, Rochester); CFTO-TV (Channel 9, Canada); CFPL-TV (Channel 10, Canada); CHCH-TV (Channel 11, Canada); WICU-TV, (Channel 12, Erie); and CKCO-TV (Channel 13, Canada). On the UHF TV

fig. 7. Sweep width reduced to about 2 or 3 MHz with center frequency set to channel 2 's video carrier.

fig. 8. Channel 2 video carrier with horizontal sweep set to zero.

fig. 9. 2-meter band with horizontal sweep representing about 3 MHz .

Fig. 10. Varactor voltage versus frequency (will vary from tuner to tuner).

	VHF low band
voltage	frequency MHz
0.5	50.00 -meter band
2.0	55.25 channel 2 video
3.5	59.75 channel 2 audio
4.0	61.25 channel 3 video
6.0	65.75 channel 3 audio
7.0	67.25 channel 4 video
9.5	71.75 channel 4 audio
13.5	77.55 channel 5 video
17.1	81.75 channel 5 audio
20.1	83.25 channel 6 video
34.8	87.75 channel 6 audio
0.5	VHF high band
1.0	145.00 air to ground
2.0	148.20 cometer band
4.0	162.55 Buffalo weather
6.5	175.25 channel 7 video
7.6	179.75 channel 7 audio
7.9	181.25 channel 8 video
9.0	185.75 channel 8 audio
9.3	187.25 channel 9 video
10.6	191.75 channel 9 audio
11.0	193.25 channel 10 video
12.3	197.75 channel 10 audio
13.0	199.25 channel 11 video
14.7	203.75 channel 11 audio
15.2	205.25 channel 12 video
17.5	209.75 channel 12 audio
19.0	211.25 channel 13 video
25.5	215.75 channel 13 audio

band we copied about six TV stations from Channel 17 through Channel 26, including a French language Canadian TV station. The Sanyo TV tuner is one super little box with excellent sensitivity - i.e., much better than 1 microvolt. All these stations were copied using only 2 -meter antennas.

other uses

Once you become accustomed to using it, the spectrum analyzer is probably the greatest trouble-shooting aid since Volta invented the voltmeter. With the proper probes, attenuators, and converters it can be used as an RF voltmeter; as a signal tracer in transmitters and receivers; and for transmitter alignment, harmonic measurement, deviation measurement, oscillator injection measurement, IF alignment, and spurious radiation measurement, to name but a few of its applications. If you want to dig deeper, Cushman Electronics (2450 North First Street, San Jose, California 95131) publishes a neat little book entitled Using The Spectrum Monitor Priced at $\$ 7.25$ (postpaid), it's easily understood by the average Radio Amateur.

acknowledgement

I wish I could claim authorship for this unique design, but credit goes entirely to my friend, Murray Barlowe, WA2PZO, who not only created the design but has generously made a partial kit of parts, TV tuner, and printed circuit board available to Amateurs at virtually his cost.

For more information send an SASE to Murray Barlowe, WA2PZO, P.O. Box 393, Bethpage, New York 11714. Once you try it, you'll never understand how you got along without it.
ham radio

Crystal

Filfers triple discount sale

The more filters you buy, the more you save! 10% Off on one, $\mathbf{2 0} \%$ on two, $\mathbf{3 0} \%$ on $\mathbf{3}$ or more. For example one $\$ 60$ filter costs $\$ 54$ two $\$ 54+48$, three $\$ 54+48+42$ four $\$ 54+48+42+42$. One $\$ 110$ filter costs $\$ 99$. two $\$ 88$, etc. Figure each price group separately For combos (matched pairs only) see prices below
8.83MHz 8-POLE FT FILTERS FOR KENWOOD - Reg. $\$ 60$ ea.

Bandwidths: CW 250, 400Hz: SSB 18.21: AM 60 KHz Suitable for all models from TS120 through TS940 TS440S introductory Take $\$ 5$ off sale price for two

Filter Cascading Kits with FT Filter
TS430S - Discounted 2.1 filter plus $\$ 20$ for amp board
TS820S - Discounted 2.1 fitter phus $\$ 5$ for parts
455KHz 8-POLE FT FILTERS FOR KENWOOD - Reg. $\$ 110$ ea Bandwidths available. CW 400 Hz , SSB 2.1 KHz Suitable for R820, TS830. TS930. TS940. Matched Fiter Pairs for Above Models - Reg $\$ 170$ ea SSB: $21 \mathrm{KHz}(455$ and 8.83); CW: 400 Hz , (455 and 883) Discounted Pairs: one for $\$ 147, \$ 279$ for both
3.395MHz FILTERS FOR TS520, 511, R599-Reg. \$60 ea.

Bandwidths available: $250,400 \mathrm{~Hz}_{z} 18 * .2 .1 \mathrm{KHz}$ " 18 special - Take $\$ 10$ off list then discount!
Same deal for YAESU, DRAKE, ICOM, and HEATH filters!
Check your GREEN SHEET for List prices, or PHONE
LIMITED QUANTITIES - ORDER NOW TO AVOID DELAY
When ordering, specify Make and Model Number of your Rig; Frequency and Bandwidth of filter(s) desired.

SHIPPING $\$ 5$ US and Canada. $\$ 12$ elsewhere
Order by Mail or Phone VISA/MC or COD accepted
GO FOX - TANGO --TO BE SURE! GET THE BEST--FOR LESS!
FOX-TANGO Corrp, Box $\begin{gathered}\text { 15944, W. Palm Beach, FL } 33416 \\ \text { Telephone: }(305) 683-9587\end{gathered}$ Telephone: (305) 683-9587

MADE IN USA

MODEL SG-100F $\$ 429.95$ delivered

- Covers 100 MHz to 199.999 MHz in 1 kHz steps with thumbwheel dial Accuracy $+/-1$ part per 10 million at all frequericies - Internal FM adjustable from 0 to 100 kHz at a 1 kHz rate - External FM input accepts tones or voice - Spurs and noise at least 60 dB below carrier - Output adjustable from $5-500 \mathrm{mV}$ at 500 hms - Operates on 12 Vdc (a) $1 / 2$ Amp Available for immediate delivery • $\$ 429.95$ delivered - Add-on accessories available to extend freq range, add infinite resolution, AM , and a precision 120 dB attenuator - Call or write for details - Phone in your order for fast COD shipment.

VANGUARD LABS

196-23 Jamaica Ave., Hollis, NY 11423 Phone: (718) 468-2720 Mon. thru Thu.

Electronic Repair Center Servicing

Amateur

Commercial Radio

The most complete repair facility on the East Coast. Large parts inventory and factory authorized warranty service for Kenwood, Icom and Yaesu.

SEND US YOUR PROBLEMS

Servicing "Hams" for 30 years, no rig too old or new for us.

manurowcs unc.

4033 Brownsville Road

VISA

 Trevose, Pa. 19047 215-357-1400

(5) CADDELL

35 Main Street

 Poultney, VT 05764 802-287-4055
BALUNS

Get POWER to your antenna! Our Baluns are already wound and ready for installation in your transmatch or you may enclose them in a weatherproof box and connect them directly at the antenna. They are designed for $3-30 \mathrm{MHz}$ operation. (See ARRL Handbook pages 19.9 or 6-20 for construction details.)
100 Watt (4:1, 6:1, 9:1, or $1: 1$ impedance - Select one) $\$ 9.50$ Universal Transmatch 1 KW ($4: 1$ impedance) Universal Transmatch $1 \mathrm{KW}(6: 1,9: 1$ or 1:1-select one) 15.00 Universal Transmatch 2 KW ($6: 1,9: 1$ or 1:1 - select one) 17.50 Please send large SASE for info

substituting transistors part 1: using resources at hand

Every Amateur who spends at least some time at the workbench repairing or building electronic equipment will eventually need a transistor that's not on hand - and perhaps not even available. In some cases, the type number will be found in one of the standard transistor replacement catalogs. In other cases, well . . . you're on your own.

Although the subject of transistor substitution is one that's been talked about to the point of exhaustion among hams, serious problems continue to reappear. The tips given in this two-part series, while most appropriate to the types of transistors normally used in Amateur Radio equipment, are also applicable to a variety of other situations as well.

The main premise is that we are servicing Amateur Radio equipment that once worked properly and then failed. While much of what is discussed is also applicable to construction projects, construction project debugging is something of an arcane art and is thus not suitable for general, too-broad guidelines. I can recall several projects over the years that depended for proper operation on selected parameters of specific transistors, and wouldn't even work with all otherwise-working versions of the same " 2 N " number devices.

There are even cases on record in which only those devices made by certain manufacturers will work properly in the circuit. (Ancient history note: those of us who go back to vacuum tube days recall a very costly ham receiver that would retain its "frequency meter" dial
calibration only when RCA tubes were used for the local oscillator; there are transistor equivalents to that situation.) As a result, we must limit our consideration to repair of working - and, one would hope, properly designed equipment.

exact replacements

The easiest way to obtain a replacement solid-state device that will install easily and operate correctly is to order it from the original equipment manufacturer or an authorized distributor. As we're all painfully aware, however, this is not always either possible or practical.

industry-standard type numbers

If the defective transistor has a standard ' $2 N$ "' type number, then you just obtain a replacement device with the same number, without regard to brand name. Unfortunately, some "Original Equipment Manufacturer" (OEM) transistors aren't marked with these standard numbers. They often have a house code number that's meaningless to anyone except the manufacturer. Sometimes the house number is created because the transistor is specially selected from others for the same " 2 N " series, so only a similarly tested device will work properly in the circuit. In some cases, the house number is used because it suits the manufacturer's inventory control system; in other cases, manufacturers simply want to ensure replacement parts business.

crossover guidelines

Crossover guides, which would seem to be a nearly perfect source of replacement numbers, should be used when-
ever possible. But there are gremlins that can pop up unexpectedly. Theoretically, the cross-matching has been done in advance by the use of an "infallible" computer. When we follow those recommendations, however, we sometimes find that suggested replacements have insufficient power or voltage ratings, too narrow a bandwidth, a different physical shape that would cause mounting or space problems, or different mounting dimensions that would require modification of the chassis. Many of these discrepancies occur because the crossovers are compiled from printed lists that sometimes contain errors. It's an open secret that the recommended substitutes are seldom tried in any kind of equipment or circuit, so it's best to test the reasonableness of any selection by looking at the crossover device's specifications and comparing them with what you know about the circuit and its requirements.

During my years in the electronic service business, it was my policy to return, along with a note of explanation, any crossover transistors that either didn't work properly or would require major reworking of the chassis or rewiring of the circuit. If everyone did this, manufacturers might take the hint. The economic impact of a service shop's annual semiconductor purchases makes it easy for them to obtain refunds on bad crossovers; unfortunately, Amateurs rarely have such clout.

Another problem has nothing to do with electrical specifications, but rather with proper identification. In some cases it's relatively easy to guess the required transistor type. But what if two manufacturers have each accidentally assigned the same designation to two

fig. 1. Typical transistor derating curve.
completely dissimilar devices? It's not likely that a crossover guide will solve all such problems, though some do accommodate such ambiguities.
I remember one case years ago where Ineeded a replacement for a Delco Electronics DS-25. Now, the DS-25 has been around for about 20 years as an RF amplifier, IF amplifier, and converter replacement in Delco-General Motors car radios. The DS-25 germanium transistor was packaged in a "smaller-than-TO-5" case. Unfortunately, a small hifi manufacturer also used the DS-25 designation for a medium-power PNP germanium power transistor in a TO-3 case. One crossover guide I consulted at that time listed the TO-3 type without noting that it wasn't the Delco part number, even though it was listed among the various Delco "DS-Series" type numbers.
Remember the old rule from high school math: Things equal to the same thing are - you hope - equal to each other. Or, if $A=B$, and $B=C$, then $A=C$. We can use this observation to
make crossover selections. Furthermore, we can use this technique in at least two additional ways. First, we can look up the device needed to find the replacement type number. For example, suppose a 2 N 5 xxx is found in the Zotch Electronics Crossover Guide as a "ZE-234." We can look for other " 2 N" series devices also equal to $\mathrm{ZE}-234$ and use one of those.

This method is especially useful when crossing house numbers to 2 N numbers, which is our second way to use the " $\mathrm{A}=\mathrm{C}$ " theory. Suppose that your Wombat Thunderbolt VI transceiver uses a transistor with the part number " 8501234 " Well, the Zotch guide calls it aZE-234. By looking over the " 2 N " series columns in the Zotch Guide To Replacement Things, you find that a 2 N 5 xxx is also equal to a $\mathrm{ZE}-234$. Chances are good that the Wombat engineers selected the 2 N 5 xxx and then relabeled it " 8501234 ." It may not be the exact transistor, but it's a fair bet that it will work unless the 8501234 is a specially selected $2 \mathrm{~N} 5 \times x \mathrm{x}$. (There are no guar-

2.30 MHz 12V $\left.{ }^{*}=28 \mathrm{~V}\right)$				
P/N		Rating	Each	Match Pr.
MRF412,/A		80W	18.00	45.00
MRF421	0	100W	22.50	51.00
MRF422*		150W	38.00	82.00
MRF426, A *		25W	18.00	42.00
MRF433		12.5W	12.00	30.00
MRF449,/A	0	30W	12.50	30.00
MRF450,1A	0	50W	14.00	31.00
MRF453,/A	0	60W	15.00	35.00
MRF454,1A	Q	80W	15.00	34.00
MRF455,/A	0	60W	12.00	28.00
MRF458		80W	20.00	46.00
MRF475		12W	3.00	9.00
MRF476		3W	2.75	8.00
MRF477		40W	11.00	25.00
MRF479		15W	10.00	23.00
MRF485*		15 W	6.00	15.00
MRF492	0	90W	16.75	37.50
SRF2072	0	65W	13.00	30.00
SRF3662	0	110W	25.00	54.00
SRF3775	0	75W	14.00	32.00
SRF3795	0	90W	16.50	37.00
CD2545		50W	23.00	52.00
SD1487	0	100W	36.00	76.00
2SC2290		60W	15.00	36.00
2SC2879	0	100W	25.00	56.00

Q. Selected High Gain Matched Quads Avallable

VHF/UHF TRANSISTORS				
	Rating	MHz	Net Ea.	Match Pr.
MRF212	10W	136.174	\$16.00	-
MRF221	15W	136.174	10.00	-
MRF222	25W	136.174	14.00	
MRF224	40W	136.174	13.50	32.00
MRF237	4W	136.174	3.00	-
MRF238	30W	136.174	13.00	30.00
MRF239	30w	136.174	15.00	35.00
MRF240	40W	136.174	18.00	41.00
MRF245	80W	136.174	28.00	65.00
MRF247	75 W	136.174	27.00	63.00
MRF260	5W	136.174	7.00	-
MRF261	10W	136.174	9.00	-
MRF262	15W	$136 \cdot 174$	9.00	-
MRF264	30W	136.174	13.00	-
MRF607	1.75 W	136-174	3.00	
MRF641	15W	407.512	22.00	49.00
MRF644	25W	407.512	24.00	54.00
MRF646	40W	407.512	26.50	59.00
MRF648	60W	407.512	33.00	69.00
SO1441	150W	136-174	74.50	170.00
SD1477	100W	136-174	32.50	78.00
2N3866*	1W	$30-200$	1.25	-
2N4427	1W	136.174	1.25	-
2N5591	25W	136-174	13.50	34.00
2N6080	4W	136.174	7.75	-
2N6081	15W	136.174	9.00	-
2N6082	25W	136.174	10.50	-
2N6083	30 W	136.174	11.50	24.00
2N6084	40W	136-174	13.00	31.00
MISC. TRANSISTORS \& MODULES				
MRF134	\$16.00	SAV		\$32.50
MRF136	21.00	SAV		30.00
MRF137	24.00	S10.		13.50
MRF138	35.00	2SC	075	25.00
MRF140	89.50	2SC	307	5.00
MRF150	89.50	2SC	946A	12.00
MRF172	62.00	2SC	969	3.00
MRF174	80.00	2SC	221	10.00
2N1522	7.95	2SC	269	20.00
2N4048	7.20	2SC	289	22.00
NE41137	3.50	2SC	312C	4.00
2N5590	11.00	2N5		10.00
2N5642	14.00	2N5		13.00

Selected, matched finals for Icom. Atlas, Yaesu, Ken wood. Cubic. TWC, etc. Technical assistance and cross reference on CD, PT. SD. SRF and 2SC P/Ns. Quantity parts users - call for quote
WE SHIP SAME DAY • C.O.D.IVISAIMC Minimum Order - Twenty Dollars
(619) 744-0728

For Computerists and Amateur Radio

Cut out and mail coupon at right to:
Circulation Manager 1704 Sam Drive Birmingham, AL 35235 (205) 854-0271

Why you Should Subscribe! Read what our subscribers say!
 - it's in the fine print.

-Your magazine is the finest innovation that I have seen in ham radio since 1953 - except... maybe the all-solid state transceiver. Carl Soltesz Twelve more, please. Ed Shaughnessy - Love the articles on Timex-Sinclair computers. A. Nieuwenhoff, Sutton, MA - ...have most certainly received my moneys worth in sofiware... Michact Regan, K8WRB . information contained in the articles has made me more "computer literate" than would have been possible reading only publications dedicated to my particular computer. Donald H. Haisccher, W8MHR, Martinsburg, WV - Here it is renewal time already .- time sure passes fast when you are having fun (reading CTM). Bob Sirekis, Holly Hill, FL - ..thank your for a great magazine. Frank Davis, Peru, IN - Another year goes by and another subscription dollar well spent. R. P. Campbell, LaPlace, LA CTM and you have found the way to an advertisers heart. Quality of publication and reasonable advertising rates are basic criteria you have achieved better than your competition. But what really sets you apart from others is empathy, a tasteful quality in which you excell while others can't even pronounce the word. Bob Harris Sr., BCD Electro, Richardson, TXyou have found a nice niche for CTM in packet... you have me getting interested... Charlie Curle, AD4F Chattanooga, TN . The packet/computer info convinced me to subscribe. John Skubick, K8JS • Enclosed is my check for renewal of my subscription. I enjoy the down to earth and homey style of your magazine and the many fine computer articles... Andy Kosiorek, Lakewood, OH - I was both pleased and dismayed upon becoming acquainted with your magazine at HAMCOM. Pleased that I discovered your magazine - dismayed that I didn't long before now. Bill Lathan, AK5K - ...CTM gives the finest coverage to packet radio that I have seen in any of the computer or amateur radio magazines. It would appear that CTM has just the right blend of packetlamateur radio articles and computer articles. Barry Siegfried, K2MF - Thank you for an excellent magazine, and the onty magazine i read over 75% of. W. F. Pence Jr. - ... your publication is the most enjoyable computer magazine on the market. Andrew Zerbe Congratulations on your informative magazine. Looking forward to each issue. Carl \& Nancy Jones, Kodiak, AK - ...received my moneys worth with just one issue... J. Trenbick - ...always stop to read CTM, even though most other magazines I receive (and write for) only get cursory examination... Fred Blechman, K6UGT - (a year later) thought you would like to know, it still goes... Fred Blechman, K6GT. Of the three HAM magazines I received each month QST, 73 and CTM, CTM is the only one I read from cover to cover and carry with me during my travels abroad. Most of the time it remains in that country. Buck Rogers, K4ABT -

NAME

CALL SIGN

ADDRESS

> CITY
antees, however. You still have to check specs and make an educated guess).

mobile problems

Up to this point, the problems of obtaining suitable replacements for transistors in mobile rigs are identical to those of home-based rigs. But there's one special problem that's more serious in mobile applications: environmental heat.

One car manufacturer became concerned about the excessive number of failures in his first all solid-state car radio models (circa 1962) and decided to investigate the possibility of passenger cabin heat as the culprit. The company asked its electronics plant employees to leave their car doors unlocked for one day. During that day of 90 -degree weather, the engineers measured the temperatures inside many of the closed cars and were surprised to find that the average reading was 160 degrees F on the seat and 180 degrees behind the dashboard.

derating the specs

Published transistor power ratings are usually specified at room temperature, generally accepted to be 25 degrees C (77 degrees F). If transistors are used at higher temperatures, as in mobile applications, then the maximum collector dissipation (in watts) must be reduced to prevent extra failures which could occur even when all the electrical specifications are fulfilled.

A typical derating curve is show in fig. 1. Notice that a transistor having a collector dissipation of 550 mW at 25 degrees C can safely dissipate only 375 mW at 65 degrees (142 degrees F). This explains why a transistor that's operating below its maximum published wattage rating could be destroyed by using it in a hot car. Watch for such hazards, especially if you attempt to use "five-for-a-buck" bargain-basement replacements in which the collector dissipation rating was "optimistic."

beyond crossmatching

Often the numbers on a bad transistor seem meaningless. There's no way to crossmatch and you can't locate an

OEM replacement from the equipment maker. The next step is to find a universal replacement from one of the many convenient sources. To do this, you have to become an electronic detective and find out the following things about the transistor:

- Is it a silicon or germanium type?
- Is it a PNP or NPN?
- What is the gain (alpha or beta)?
- What frequencies must it amplify?
- What are the collector power dissipation requirements?
- Are there any special mechanical mounting requirements?

Once you've answered these questions, you can make a satisfactory selection from most any brand of universal replacements.

silicon or germanium?

Silicon transistor junctions measure higher DC resistances than germanium junctions. In fact, silicon transistors usually read "open" on all measurements except with base/emitter and base/collector forward biasing polarity. If even one junction remains intact on a blown transistor, then you can tell which material it is by comparing readings with those of known types in the size and power category.

Forward bias voltages for all stages other than oscillators (and certain pulse circuits used in video equipment) should be 0.2 to 0.3 volts for germanium transistors and 0.5 to 0.7 volts for silicon transistors. Check the schematic, or another of the intact junctions (or a similarly numbered good transistor in the circuit) to see which voltage levels are found. The answer will tell you whether to look for Ge or Si transistor replacements.

PNP or NPN?

When the collector voltage is more positive (or less negative) than the emitter, then the transistor is an NPN type. If the collector is more negative (or less positive) than the emitter, then the transistor is a PNP type. Most schematics give these voltage readings. On the other hand, you can measure the collector/emitter voltages accurately enough
for this purpose, right in the circuit in most cases.

Even if only one junction of the defective transistor is intact, you still can determine the polarity by using the ohmmeter. If you obtain a normal lowresistance diode-type reading with the positive ohmmeter lead on the base and the negative lead on the collector or emitter, then it's an NPN type. If you must reverse the leads to obtain a lowresistance reading, the transistor is a PNP type. This measurement must be made with an old-fashioned VOM/ VTVM or a modern digital meter with a "diode" or "high power" ohmmeter function.

next month

Next month we'll look at the frequency response of the selected transistor and certain mechanical considerations.
ham radio

THE CHAMP

BIRD MODEL 4304
NO ELEMENTS
25-1000 MHZ
RF SAMPLING PORT authorizeo ilitil distributor

WEBSTER COMMUNICATIONS INC. 115 BELLARMINE
ROCHESTER, MI 48063 313-375-0420
CALL TOLL FREE 800-521-2333 800-482-3610

FULL CHARGE FAST

Replace your old slow charger.
Handheld battery packs full to capacity in as little as
45 Min.
STATE OF THE ART DESIGN. PROVIDES PRECISE MEASUREMENT AND CONTROL OF CHARGE AND DISCHARGE PARAMETERS.
F 1. Power connector and transformer supplied
E 2. Pocket size charger $4^{\prime \prime} \times 2^{1 / 2} 2^{\prime} \times 1^{\prime \prime}$
A 3. Laser trimmed precision resistors
T 4. Reverse polarity protection built in
U 5. Solid state circuit measures charge and discharge
R 6. Automatic shutoff
E 7. Simple modification to adapt (special adapter for ICOM)
S 8. Controlled automatic discharge and auto switch to charge mode eliminates memory problem with Ni -Cd Batteries

Quick charge or discharge
Utilize your Ni-Cd To full capacity
115 VAC or 12 VDC to
24V
Home \$149.95
Auto
R.V.

Boat Plane Mail Orders To
NRG CONTROL P.O. BOX 1602 Chelan, WA 98816 (509) 682-2381

167

Join AMSAT...Today

Amateur Radio Satellite OSCAR 10 provides:

- A New Worldwide DX Ham Band open 10 hours a day.
- Rag Chew With Rare DX Stations in an uncrowded, gentlemanly fashion.
- Popular Modes In Use: SSB, CW, RTTY, SSTV, Packet
- Full Operating Privileges open to Technician Class licensee or higher.

Other AMSAT Membership Benefits:

Newsletter Subscription:
Dependable technical articles, satellite news, orbital elements, product reviews, DX news, and more.

Satellite Tracking Software Available for most popular PCs.

QSL Bureau, AMSAT Nets, Area Coordinator Support, Forum Talks

Construction of Future Satellites For Your Enjoyment!

AMSAT Membership is $\$ 24$ a year, $\$ 26$ outside North America. VISA and MC accepted.

AMSAT

P.O. Box 27

Washington, DC 20044
301 589-6062

Save Time-Money with HAZER

- Never climb your tower again with this elevator system.
- Antenna and rotator mount on HAZER, complete system trams tower in verticle upright position
- Satety lock system on HAZER operates while
raising-lowering \& normal position. Never can fall
- Weight transferred directly to tower. Winch cable used only for raising \& lowering. Easy to install and use.
- Will support most antenna arrays
- High quality materials \& workmanship
- Safety - speed - convenience - smoot travel - inexpensive
- Complete kit includes winch, 100 ft of cable, hardware and instructions. For Rohn 25 G Tower.
Hazer 2.Heavy duty alum, 12 sq ft Ioad $\$ 297.00 \mathrm{ppd}$. Hazer 3 -Standard alum. 8 sq ft . load 213.00 ppd . Hazer 4 -Heavy galv steel, 16 sq it. Ioad 278.00 ppd . Ball thrust bearing TB. 25 tor any of above 42.50 ppd . Satisfaction guaranteed. Call today and charge to Visa or MasterCard.
As an alternative, purchase a Martin M-13 or M-18 aluminum tower engineered specifically for the HAZER system, or a truly self-supporting steel tower. Send for free details

GLEN MARTIN ENGINEERING INC.
P.O. Box H 253 Boonville, Mo. 65233 816-882-2734

合

 (®)

SERVICE CENTER

for
ICOM, KENWOOD
and YAESU
Fully equipped repair shop Amateur, Marine and Land Mobile repairs.

FCC NABER Lic
Mon-Fri 10:00-4:00 pm
(206) 776-8993

PACIFIC RIM COMMUNICATIONS

Bob KG7D
23332 58th Ave. West
Mountlake Terrace, Wa 98043 VIIX $\&$ C.O.D.S. Welcome

$\checkmark 172$

DX FORECASTER

 Garth Stonehocker, K0RYW
equinox season DX

Even though this is a sunspot minimum year, and the sun's activity has decreased, an occasional energy burst (flare) or increase in the solar wind causes a geomagnetic field disturbance. We experienced these phenomena in February and May of this year, and it's likely that we'll have another in September or October. Whenever they occur, you can expect them to affect your DXing.

Geomagnetic disturbances, or storms, affect propagation - and DX - in three ways. First, particles from the sun entering the auroral zone at 50 to 70 degrees North and South latitudes come down into the ionospheric D and E regions, increasing signal absorption. This results in weak east-west path signals and few transpolar signals. Second, the particles form a reflective curtain along the equatorial side of the auroral zone (for those of us in North America, this is south), enhancing VHF auroral scatter propagation. Six-meter openings to Europe are one result of this phenomenon. Third, the F region of the ionosphere (for U.S. stations, this is south of the auroral zone) has a depleted area of electrons that form an electron density trough. The maximum usable frequency (MUF) for paths through this area decreases by 30 to 40 percent. (Tables of MUF statistics were presented in this column in January, 1986.)

However, still further south at ± 20 degrees from the geomagnetic equator, an equivalent-size enhancement of the F region occurs, resulting in evening Trans-Equatorial (TE) openings during the equinox and winter seasons. These three effects vary in intensity and time
on a short to long basis (seconds through hours), causing what we experience as fading and blackout. These effects continue to occur each night for two to three days before ionospheric equilibrium is re-established. The larger the geomagnetic storm (the higher the value of the K or A indicies), the closer to the equator these effects occur.

Just as the particle density and speed of the solar wind vary, so do the characteristics of the geomagnetic field and ionosphere. lonospheric variation causes signal reflection focusing and defocusing, which simply means that the signals arriving at your QTH will vary in both strength and angle of arrival. Some directions and locations you haven't heard from in a long time may suddenly be workable.

last-minute forecast

The higher-level 27-day sunspot activity may push the maximum usable frequencies up during the first and last weeks of September, giving better 10 -, 12-, and 15 -meter DX. September marks the beginning of the return of transequatorial one-long-hop propagation for the winter season; during some evenings, it will probably be useful for DX. Its effect will be enhanced by an equinoxial increase in geomagnetic disturbances, which are more probable near the end of the second week and into the third.

The lower bands will experience less QRN caused by weather storm frontal thunderstorms passing through. But the geomagnetic disturbances will have greater effect on these bands; lower MUFs will occur on east, west, and north paths. Signal strength variability,

QSB, is also associated with the disturbances. Listen carefully for new, unusual DX openings at these times.

A full moon will occur on September 26th and its perigee on the 12th. The autumnal equinox will be on the 23rd at 0759 UTC. No significant meteor showers are expected this month.

band-by-band summary

Six meters may have a few sporadic E openings around local noon, but don't count on them this last month of the season.

Ten, twelve, and fifteen meters should provide a few short-skip openings and many long-skip openings to most southern areas of the world, especially if there is any solar flux increase during the daylight hours this month. Some of these openings will result from transequatorial propagation, mainly during disturbed conditions.

Twenty, thirty, and forty meters will support propagation from east, west, and north areas of the world during the daytime and into evening hours almost every day. Distances to 2000 miles via long-skip or some short-skip Es to 1000 miles per hop are usual.

Thirty, forty, eighty, and one-sixty meters are all good for nighttime DX. The bands will be open in the east soon after sundown, swing toward the north and south about midnight, and end in the Pacific areas during the hour or so before dawn. The time-and-frequency stations in England and Hawaii make good band monitors. On some nights these bands will be as good as they are during the winter $D X$ season; on others, QRN may be a problem. Distances will be a little shorter than those mentioned above.

Ben		8	${ }^{3} 7$	［ ${ }^{\frac{8}{8} 1}$	，	88	788					Tis						
	Nom	${ }_{0}{ }^{\circ}$	5	5	${ }^{\circ} \mathrm{B}$	\％		\％	5	：							\％	
suoot	－	0		0	\％	\because	\sim_{0}	0	\％	－	－	$\stackrel{5}{ }$	－	－			$\stackrel{3}{3}$	
semata		\％${ }^{0}$	－	－5	\square	5	$5{ }^{5}$	\％		\because		～	\sim	－			¢	
sumana		5		55	－	$こ ゙$	二	\％	5	－			\％	S		，	－	
Uriearea		～		可				\＆		－			${ }^{\circ} 0^{\circ}$				Σ	
verzaumo				二®		\％	\％	5	\sim								5	
		こえ	a	O														

	\%í	$\stackrel{\stackrel{4}{8}}{8}$	$\stackrel{\omega}{\mathbf{8}}$		$\stackrel{7}{8}$	$\begin{aligned} & \vec{N} \\ & \stackrel{i}{8} \end{aligned}$	$\stackrel{\vec{\rightharpoonup}}{\dot{8}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{8} \end{aligned}$	$\stackrel{\circ}{8}$	$\mathbf{\infty}_{8}^{\infty}$	$\ddot{8}$	$\stackrel{\circ}{8}$	$\begin{aligned} & 4 \\ & 8 \end{aligned}$	$\stackrel{\rightharpoonup}{8}$	$\stackrel{\omega}{8}$	$\stackrel{N}{8}$	$\stackrel{7}{8}$	$\begin{aligned} & \vec{N} \\ & \dot{8} \end{aligned}$	$\stackrel{\rightharpoonup}{\dot{8}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\dot{8}} \\ & \hline \end{aligned}$	$\stackrel{\circ}{8}$		$\ddot{8}$	88	$\stackrel{5}{9}$
ASIA FAREAST	$\begin{aligned} & n \\ & 0 \end{aligned}$	ω	0	10	Δ	0	$+$	$1 \stackrel{+}{0}$	$1+$	$\begin{aligned} & N \\ & 0 \end{aligned}$	$\begin{aligned} & N \\ & 0 \end{aligned}$	N	$1 \begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$1 \begin{aligned} & \mathrm{N} \end{aligned}$	\triangle	0	10	1∞	$\stackrel{D}{0}$	$\frac{D}{0}$	0	ω	ω	N	z
EUROPE	10	ω	N	N	N	0	0	N	$\begin{aligned} & N \\ & 0 \end{aligned}$	$1 \begin{aligned} & \mathrm{N} \\ & 0 \end{aligned}$	10	N	ω	$1+$	\oplus	10	1∞	∞	10	14	$1 \begin{aligned} & 1 \\ & 0 \end{aligned}$	$\frac{A}{0}$	10	$1+$	m
S．AFRICA	10	$\begin{aligned} & N \\ & 0 \end{aligned}$	\cdots	$\stackrel{\sim}{\sim}$	N	0	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\square}{\circ}$	1	$1-0$	$\stackrel{\rightharpoonup}{\circ}$	\cdots	$\mid \stackrel{\rightharpoonup}{n}$	$\stackrel{\rightharpoonup}{\square}$	0	0	0	0	0	$\begin{aligned} & n \\ & 0 \end{aligned}$	0	0	0	0	
S．AMERICA	\cdots	$1 \stackrel{1}{\circ}$	$1 \stackrel{\rightharpoonup}{0}$	$\stackrel{\rightharpoonup}{\circ}$	\bigcirc	0	10	$\stackrel{\rightharpoonup}{\circ}$	$\underset{N}{\infty}$	$\underset{N}{\sim}$	$\stackrel{\rightharpoonup}{\sim}$	6	0	0	0	0	${ }^{N}$	$\begin{aligned} & N \\ & 0 \end{aligned}$	0	$\begin{aligned} & N \\ & 0 \end{aligned}$	$\begin{aligned} & N \\ & 0 \end{aligned}$	\cdots	$\stackrel{\sim}{\sim}$	N	
ANTARCTICA	$\mid \stackrel{\rightharpoonup}{\sim}$	$\stackrel{\rightharpoonup}{\omega}$	$\stackrel{\rightharpoonup}{\sim}$	$\stackrel{\rightharpoonup}{\square}$	－	Er	$\begin{array}{\|c\|} \hline N \\ 0 \\ \hline \end{array}$	$1 \begin{gathered} \mathrm{N} \\ 0 \end{gathered}$	w	10	$\stackrel{\Delta}{0}$	0	p	ω	ω	ω	ω	ω	ω	0	$\begin{aligned} & n \\ & 0 \end{aligned}$	u	N	c	
NEW ZEALAND	$\stackrel{\rightharpoonup}{\odot}$	N	N	い	－	م	0	ω	ω	$\left\lvert\, \begin{aligned} & w \\ & D \end{aligned}\right.$	N	j	$1 \begin{aligned} & N \\ & 0 \end{aligned}$	$\begin{aligned} & N \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & 0 \end{aligned}$	0	0	$\stackrel{\rightharpoonup}{\sim}$	$\stackrel{\rightharpoonup}{\sim}$	か	$\stackrel{\rightharpoonup}{0}$	$\stackrel{1}{0}$	－	0	
OCEANIA australia	$\stackrel{\rightharpoonup}{0}$	N	N	心	0	N	p	$\begin{aligned} & n \\ & 0 \\ & \hline \end{aligned}$	0	$\begin{aligned} & N \\ & O \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{o} \end{aligned}$	N	0	0	0	$\stackrel{\rightharpoonup}{\omega}$	$\stackrel{\rightharpoonup}{\mathrm{N}}$	$\stackrel{\rightharpoonup}{n}$	N	ャ	$\stackrel{\square}{0}$	0	\cdots	$\stackrel{\rightharpoonup}{0}$	\leqslant
JAPAN	$\begin{aligned} & N \\ & 0 \\ & \hline \end{aligned}$	$1 \begin{aligned} & N \\ & 0 \end{aligned}$	$\begin{aligned} & N \\ & 0 \end{aligned}$	$1 \begin{aligned} & N \\ & 0 \end{aligned}$	$1 \begin{aligned} & N \\ & 0 \end{aligned}$	$\stackrel{\rho}{\rho}$	0	$\begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	$1 \begin{aligned} & 1 \\ & 0 \\ & \hline \end{aligned}$	1	$1+$	$\begin{aligned} & \omega \\ & 0 \end{aligned}$	$1 \begin{aligned} & \omega \\ & 0 \end{aligned}$	0	0	θ	θ	另	P	$\begin{aligned} & \square \\ & 0 \end{aligned}$	$\stackrel{\oplus}{0}$	ω	N	$\begin{aligned} & N \\ & 0 \end{aligned}$	
	$\ddot{8}$	皆	$\stackrel{\hat{8}}{ }$	غ்		$\stackrel{\ddot{8}}{8}$	$\begin{aligned} & \vec{N} \\ & \hat{8} \end{aligned}$	$\stackrel{\vec{\circ}}{8}$	$\begin{aligned} & \vec{\circ} \\ & \stackrel{8}{2} \end{aligned}$	$\stackrel{\circ}{8}$	$\stackrel{\infty}{8}$	پ	$\stackrel{9}{8}$		$\dot{8}$	$\stackrel{\omega}{8}$	$\tilde{8}$	$\stackrel{\rightharpoonup}{8}$	苍	$\stackrel{\rightharpoonup}{\dot{8}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{8} \end{aligned}$	$\stackrel{\circ}{8}$	$\stackrel{\infty}{8}$	\％	$\stackrel{\square}{9}$

	$\ddot{8}$	$\%$	\％	$\stackrel{8}{8}$	$\stackrel{4}{8}$	\％	$\stackrel{\rightharpoonup}{8}$	$\overrightarrow{\mathrm{O}}$	$\stackrel{\rightharpoonup}{8}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & 8 \end{aligned}$	$\stackrel{\circ}{8}$	8	8	$\stackrel{\circ}{8}$	8	$\stackrel{\text { ¢ }}{8}$	$\stackrel{\omega}{8}$	$\stackrel{N}{8}$	$\stackrel{\rightharpoonup}{8}$	$\begin{aligned} & \overrightarrow{\mathrm{O}} \\ & \stackrel{\rightharpoonup}{\text { O}} \end{aligned}$	$\stackrel{\rightharpoonup}{\dot{8}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{8} \end{aligned}$	$\stackrel{\circ}{8}$	\％	$\stackrel{\square}{9}$
ASIA FAR EAST	ω	$\stackrel{A}{0}$	\square	0	∞	ρ	10	D	$\stackrel{+}{\square}$	10	$\begin{aligned} & n \\ & 0 \end{aligned}$	$\begin{aligned} & N \\ & 0 \end{aligned}$	$\left\lvert\, \begin{aligned} & 1 \\ & 0 \\ & 0 \end{aligned}\right.$	N	N	0	0	$1+$	ϕ	$\stackrel{F}{\square}$	$\stackrel{f}{0}$	P	W	［ ${ }_{0}^{0}$	z
EUROPE	－	－	\cdots	\bigcirc	N	0	N	0	$\begin{aligned} & n \\ & 0 \end{aligned}$	0	0	0	$\begin{aligned} & N \\ & 0 \end{aligned}$	0	$\begin{aligned} & N \\ & 0 \end{aligned}$	$\frac{p}{8}$	$\text { } 0$	A	ω	$1+$	$\stackrel{A}{0}$	$\stackrel{\theta}{0}$	0	∞	$\frac{z}{m}$
S．AFRICA	$\begin{aligned} & n \\ & c \end{aligned}$	$\begin{aligned} & N \\ & 0 \\ & 0 \end{aligned}$	\square		$\stackrel{\sim}{\sim}$	\square	0	$1 \stackrel{\rightharpoonup}{0}$	－	\cdots	$\stackrel{\rightharpoonup}{0}$	$\stackrel{n}{n}^{n}$	\cdots	ω	0	${ }^{N}$	0	$1 \mathrm{~N}$	10	$\left\lvert\, \begin{gathered} N \\ 0 \end{gathered}\right.$	j	i	0	0	$1 m$
CARIBBEAN S．America	$\stackrel{-}{\circ}$	\bigcirc	$\stackrel{\rightharpoonup}{\circ}$	\cdots	1	6	$1 \sim$	$1-$	灾	－	$\stackrel{\sim}{\sim}$	い	0	6	$0 \times$	$\begin{gathered} \mathrm{N} \\ \hline \end{gathered}$	N	$\begin{aligned} & N \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & 0 \end{aligned}$	$\begin{aligned} & N \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{\rightharpoonup}{\omega}$	\mathfrak{n}	\cdots	$1 n$
ANTARCTICA	N	\cdots	依	N	－	E	$1 \begin{aligned} & N \\ & 0 * \end{aligned}$	0	$\begin{aligned} & N \\ & 0 \end{aligned}$	$\begin{aligned} & N \\ & 0 \end{aligned}$	∞	0	B	θ	∞	1ω	$\begin{aligned} & \omega \\ & 0 \end{aligned}$	ω	ω	0	N	$\stackrel{N}{o_{*}}$	$\underset{\sim}{\omega}$	$\stackrel{\square}{\square}$	－
NEW ZEALANO	$1-0$	\bigcirc	「	\cdots	\cdots	N	$\begin{aligned} & N \\ & 0 \end{aligned}$	$\begin{aligned} & N \\ & 0 \end{aligned}$	10	N	0	$\begin{array}{\|l\|l} \hline \\ 0 \\ \hline \end{array}$	ω	N	N	$\begin{aligned} & N \\ & 0 \\ & \hline \end{aligned}$	$1 \begin{aligned} & N \\ & 0 \end{aligned}$	N	$\begin{aligned} & \mathrm{N} \\ & 0 \end{aligned}$	$\underset{\sim}{\omega}$	\cdots	N	$\stackrel{\square}{\square}$	\bigcirc	\sum_{\sum}^{N}
OCEANIA australia	$\stackrel{\rightharpoonup}{0}$	－	い	N	\cdots	5	N	$1 \mathrm{~N}$	$\begin{aligned} & N \\ & 0 \end{aligned}$	$\begin{aligned} & N \\ & 0 \end{aligned}$	0	0	菅	N	N	$\begin{aligned} & N \\ & 0 \end{aligned}$	$\begin{aligned} & N \\ & 0 \end{aligned}$	N	N	$\stackrel{\omega}{\omega}$	ゅ	N	\bigcirc	\bigcirc	$\} \leqslant$
JAPAN	N	0	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	$1 \begin{aligned} & n \\ & 0 \end{aligned}$	0	0	Δ	0	0	∞	$\stackrel{\rightharpoonup}{0}$	$1+$	ω	ω	$\stackrel{\Delta}{0}$	B	$\stackrel{\Delta}{0}$	A	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\oplus}{0}$	b	ω	$1 \begin{aligned} & 0 \\ & 0 \end{aligned}$	$1 \begin{aligned} & 0 \\ & 0 \end{aligned}$	

The italicized numbers signify the bands to try during the transition and early morning hours．while the standard type provides MUF during＂normal＂hours．
＊Look at next higher band for possibte openings．

RS 232-compatible computer interface units

Trio-Kenwood Communications has announced the release of RS 232 -compatible computer interface units for the TS-440S. TS 940S, TS-711A, and TS. 811 A transceivers.

Two units are required to control the transceivers: the IF 232C level translator and the appropriate plug in computer interface module. The TS 440 S requires the IC- 10 chip set; the TS 940 S , the IF-10B; and the TS-711A or TS 811A, the IF 10A.

All digital functions on the transceivers - in cluding VFO tuning, RIT/XIT, memory input and recall, and voice synthesizer activation - are controllable. . Programming is simple; one program should work with several rigs.

The suggested retail prices are IF-232C, \$49.95; IF-10A/IF10-B, $\$ 41.95$; IC-10, $\$ 22.95$.
A simplified sample program will be available from Kenwood dealers. Write to Trio-Kenwood Communicatiions, 1111 West Walnut Street, Compton, California 90220, for information.

PCB kits from Kepro

A new line of Kepro pre-packaged materials and kits includes the following:

- a standard manual-resist etched circuit kit for producing basic PC boards;
- a photo-reversing kit for making line negatives from artwork prepared on transparent film or reversing negatives to positives;
- an immersion tin-plating kit to improve solderability by depositing 0.00001 inch of tin on the oxide-free copper surface of etched PCBs:
- photo-resist etched circuit kits, basic artwork or master photo layout kits, screen printing or nameplate kits.
In addition, Kepro also offers KeproClad, ${ }^{\text {'N }}$ for the production of industrial quality, negative act ing dry film photo-sensitized PCBs. KeproClad is available with foil on one or two sides, in sizes ranging from 4×6 through 7×12 inches, and is priced as low as $\$ 3.50$.

For details, contact Kepro, Inc., 630 Axminster, Fenton, Missouri 63026.
Circle 1307 on Reader Service Card.

New computer-based instruments from Heath

Models IC-4802 and ID-4850 oscilloscopes from Heath Company are designed to work with personal computers.

The IC-4802 Digital Oscilloscope is a sophisti cated interface that attaches to an IBM PC compatible computer and is available in kit form
or assembled. This interface turns an IBM PC compatible computer into a full featured $50-\mathrm{MHz}$ dual trace oscilloscope that allows full control of the scope from the keyboard of the computer, harnessing the computer's computational abilities. With the IC-4802, oscilloscope waveforms can be collected and stored on disk for later recall. The digitally stored waveforms may be printed out on the computer's printer.

The ID 4850 Digital Memory Oscilloscope is an interface that may be used with either a personal computer or a 5 MHz or greater bandwidth oscilloscope that has the ability to trigger from an external source and triggered sweep. Used with a computer, the ID 4850 provides a PC-compatible computer with $50-\mathrm{MHz}$ oscilloscope capabilities and allows waveforms to be digitally stored for later recall. When using an oscilloscope, the ID. 4850 upgrades it to a full-featured $50-\mathrm{MHz}$ dual trace oscilloscope. The Digital Memory Oscilloscope is available in kit or assembled form. More information on these and other products is available in Heathkit's free catalog. For a copy, contact Heath Company, Dept. 150-775, Benton Harbor, Michigan 49022.

Circle /309 on Reader Service Card.

personal frequency standard

Wenzel Associates, Inc., offers the new Counter-Mate personal frequency standard that provides stable 1. MHz and 10 MHz reference signals to improve the accuracy of counters and other instruments. A precision third-overtone $10-\mathrm{MHz}$ crystal is mounted in a controlled oven in an installation that provides minimum aging and drift. Both outputs will drive TTL or 50 ohms with 5 -ns rise and fall time square waves. The output impedance properly matches power splitters for generating isolated signals to operate several instruments. The price is $\$ 350$.

Further information is available from Wenzel Associates, Inc., 11124 Jollyville Road, Austin, Texas 78759.

Circle 7308 on Reader Service Card.

new Hamtronics catalog

Hamtronics, Inc. has announced publication of their new 40 page, two-color catalog, which features many new products, including several GaAs FET preamps, a five-function DTMF decoder/controller, a transmit/receive relay module, digital FSK equipment, and packet-radio VHF power amplifiers. Also included is a comprehensive listing of FCC type-accepted transmitters, receivers, and repeaters for commercial service. Hamtronics reports that because of recent high volumes of production, it has been able to reduce prices on many products.

To receive a copy by return first class mail, send \$1 (\$2 for overseas mailing) to Hamtron ics, Inc., 65-F Moul Road, Hilton, New York $14468-9535$.

surge protector

Alpha Delta has announced availability of a new, improved version of its Transi-trap Electrical Surge Protector.

The new Transi-trap "Arc plug" has been redesigned to meet government and industry protection standards for Electromagnetic Pulse (EMP) in accordance with the National Communications System report, NCS TIB 85-10. The "ARC plug" has a DC clamping level of 350 volts to provide proper transmitter protection. The pulse clamping level (per NCS EMP test, 4,500 volts at 50 ohms) is 230 volts. The unit will respond in 80 to 100 nanoseconds and has a very low interelectrode capacitance of less than 1 pF .

The Transi-trap design offers low loss - typically 0.1 dB through 500 MHz for the R-T and 0.3 dB loss through 1 GHz for the units with N connectors.

For more information, contact Alpha Delta, P.O. Box 571, Centerville, Ohio 45459.

Circle 7304 on Reader Service Card.

RF test equipment catalog

A new 60 -page catalog of Thruline directional wattmeters, coax load resistors and at tenuators, calorimeters and RF components is available from Bird Electronic Corporation.

Included are such items as high-accuracy instruments using plug-in elements with 5000 -to- 1 power ranges, a frequency/power meter combination and relative field-strength devices, as well as more than 300 standard RF products.

This reference work of RF measurement instrumentation and components from 2 milliwatts to 250 kilowatts in the frequency range of 0.235 to 2300 MHz features triple indexing - by function, power level and model number - making it easy to use as both a desktop reference and specification tool.

Catalog GC-86 is available from Bird Electronic Corporation, Cleveland (Solon), Ohio 44139-2794.

Circle 1312 on Reader Service Card.

trailer-mounted towers

Trailer-mounted communication towers, avail able from Aluma Tower Company, are wellsuited for mobile testing, site selection for earth stations, civil defense, or other applications requiring a temporary communication tower. Towers up to 100 feet can be provided with either manual crank mechanisms or $12-\mathrm{V}$ winch operation. Trailers are supplied with a 2 -inch ball hitch, spring suspension, and tail lights for day/night service.

Contact Aluma Tower Company, Inc., 1643 Old Dixie Highway. Vero Beach. Florida 32961, for information.
Circle $\boldsymbol{5} 303$ on Reader Service Card.

new multimode xcvr from Yaesu

Yaesu U.S.A. has announced the release of the new FT 767GX, the world's first HF/VHF/UHF multimode transceiver. The FT-767GX comes factory equipped for HF operation on the Amateur

bands plus general coverage on receive from 100 KHz to 29.99 MHz). Features include are an automatic antenna tuner for $160-10$ meters, CW filter, electronic keyer, speech processor, digital wattmeter, IF shift, IF notch filter, CW audio peak filter, and a dual VFO tracking system for OSCAR Mode A or repeater operation. All popular operating modes are included: SSB, CW, AM, FM, and FSK. Optional modules extend coverage to 6 meters, 2 meters, and $/$ or 70 cm , and an optional CTCSS unit is available for tone-access repeater work.

The FT-767GX is compatible with Yaesu's CAT (Computer Aided Transceiver) external computer protocol, for remote control operation and enhanced operating flexibility. For teletype operation, the FT-767GX is rated at 100 watts output continuously for up to 30 minutes.
The introductory price of the FT-767GX is $\$ 1759.95$, with the 6 -meter and 2 -meter modules priced at $\$ 169.95$ each. Prices are subject to change due to the extreme volatility in interna tional exchange rates.

For information, contact Yaesu, Inc., 17210 Edwards Road, Cerritos, California 90701.

Circle /305 on Reader Service Card.

DX beam heading chart

John Daley, KB6JGH, has announced the availability of his DX Beam Heading Chart. Each report is individually calculated by computer and packaged in an attractive $8-1 / 2 \times 11$-inch binder. Nine categories of data including callsign area, country, state, city, longitude, latitude, beam heading, Great Circle distance, nautical miles, and statute miles are provided for each of 540 DX locations. All data are are based on the user's exact station location.

Geared to both the ham and SWL, numerous listings are given for the USSR and China, making unknown site estimation easier.

The price of this chart is $\$ 9.95$. It's available from John Daley, KB6JGH, P. O. Box 4794, San Jose, California 95150.
Circle f302 on Reader Service Card.

Iron Powder and Ferrite TOROIDAL CORES

Shielding Beads, Shielded Coil Forms Ferrite Rods, Pot Cores, Baluns, Etc.

Small Orders Welcome Free 'Tech-Data' Flyer

AMIDÓN

Ascoides
Since 1963

12033 Otsego Street, North Hollywood, Calif. 91607

[^5]
40m Phased Array －the Easy Way！

OPTI•PHASOR ${ }^{\text {t＂}}$ by BaileyTech
－Change direction instantly
－High F／B，adjustable phasing
－Low SWR over entire 40 m band
－Just 2 dipoles gives 4 db gain
$\$ 119.95 \begin{aligned} & \text { Also avalable with matched } \\ & \text { dipoles and leed lines }\end{aligned} \quad \vee 176$ Check，MO，VISA，M／C
Call or Write for Complete Catalog． TET Antennas，Larsen，Hy－Gain， Alpha Delta，etc．

1587 U．S． 68 N Xenia，OH 45385 （513）376－2700

Full Feature Remotely Programmable Repeater Controller for under \＄600

- Field tested for over 2 years －Full 2 year warranty

二FREE

Full Color Brochure Call Toll－Free 1－800－621－8387
ext．224， $8 \mathrm{am}-5 \mathrm{pm}$ Mountain Time Or Write：$/ \boldsymbol{\text { B I III }}$－ 177 P．O．Box 8921 －Fort Colims，CO 80525

AUTHORIZED KENWOOD I－COM RADIO DEALER

H L HEASTER INC 203 Buckhannon Pike，Clarksburg．W Va． 26301 Clarksburg Phone（304）624－5485 or W Va Toil Free 1．800－352．3177
harold heaster，ka80hX， 91 Ridgefield Place．Ormond Beach．FI 32074 Flonda Phone（904）673－4066
NEW NATION－WIDE TOLL－FREE TELEPHONE 1－800－84－RADIO 1－800－84－72346
Call us for a quotation，WE WILL SAVE YOU MONEY＇
fig．2．W4PFZ＇s＂File Saver＂program allows data files to be saved．
READY．

10 PRINT＂（CLR）＂
20 DIM A（39）：2\＄＝＂CURUE＂
30 PRINT＂$C[/ D N$ ）WHAT IS THE NUMBER OF THE CURUE YOU WISH TO ENTER＂
35 INPUT C\＄
40 Fs－Z\＄＋Cs
SO PRINT＂ENTER THE UALUES FRR THE CURUE＂
60 FOR $x-1$ TO 38
70 PRINT＂\＃＂； X ；：INPUT $\mathrm{A}(\mathrm{X})$
80 NEXT
90 PRINT＂（CLR）＂
100 PRINT＂THESE ARE THE UALUES FOR CURUE＂；CS
110 PRINT＂\｛C／DN）（C／DN）＂
130 FOR X－1TO 38
140 PRINT＂\＃＂${ }^{\prime} X ; A(X)$
150 NEXT
160 PRINT
170 PRINT＂ARE ALL THE UALUES CORRECT？Y－YES N－NO＂
180 GET AS：IF AS＝＂．＂THEN 180
190 IF As＝＂Y＂GOIO 250
195 IF AS＝＂N＂GOTD 210
200 GOTO 170
210 PRINT＂WHICH \＃IS INCORRECT＂：INPUT D
220 PRINT＂WHAT IS THE CORRECT UALUE FOR ：－＂＂；D
230 INPUT $A(D)$
240 GOTO 100
250 PR1NT＂（CLR）＂
260 PRINT＂SAUING TD DISK＂
265 OPEN15，日， 15
270 OPEN2，日，己，＂O：＂＋2\＄＋C\＄＋＂，5，w＂
2 2日0 FOR $X=1$ TO 38：PRINT\＃，$A(X)$
300 NEXT
310 CLOSE 2：CLOSE15：CLOSEB
320 PRINT＂（C／DN）（C／DN）（RUON）SAUING COMPLETE（RUOF）＂ 330 END

READY．
ham radio

IC－48A $440-\mathrm{MHz}$ mobile

ICOM has announced the release of the new IC． $48 \mathrm{~A} 440-\mathrm{MHz}$ compact mobile．The IC－ 48 A offers the same features as the new IC－28A and IC－ 28 H ，with $440-450 \mathrm{MHz}$ frequency coverage． Features include compact size（5－1／4 \times $51 / 2 \times 2$ inches）；a large LCD readout，with an

automatic dimmer； 21 memory channels；scan ning：plus an internal speaker and an HM－12 mic． With only 11 front panel controls，the unit is easy to operate．

Options include the IC HM14 DTMF mic， PS． $45 \quad 13.8$－volt power supply，UT－29 tone squelch unit，SP－10 external speaker，HM－16 speaker mic and HS－15／HS－15B flexible boom mic，and PTT switchbox

For information，contact ICOM America，Inc．， 2380 116th Avenue NE，Bellevue，Washington 98004.

Circle／313 on Reader Service Card．

Satellites Today－2nd edition

Universal Electronics has announced the release of the enlarged second edition of Frank Baylin＇s popular book，Satellites Today，containing the latest satellite information．

Satellites Today，which can be understood by a non－technical reader，reviews satellite history and technology．Topics include uplinking，foot－ prints，programming，home satellilte TV systems， and more．

Retailing for $\$ 12.95$ ，Satellites Today can be or dered from the publisher，Universal Electronics， Inc．， 4555 Groves Road，Suite 13，Columbus，Ohio 43232.

Circle 1301 on Reader Service Card．

Edek " R " series enclosures

The Edek "R" series enclosures are distinctive, ruggedly-built enclosures suitable for the hobbyist, engineer, or anyone needing an attractive cabinet.

Dark walnut-stained natural wood ends, contrasted with a bright aluminum chassis, are featured. If a different color scheme is desired, the ends and chassis may be painted, or the aluminum chassis may be sanded for a brushed look. The ends may be grooved with a hand saw for PCB mounts; heavy components may be fastened with wood screws. The galvanized steel bottom is easily soldered or drilled. Non-marring rubber feet conceal hidden screws.

Enclosures are available in an unlimited number of sizes, with no minimums and no tooling charge. Delivery is from stock for the most popular sizes. Many variations are possible on the " R " series. A sample is available for $\$ 3.00$ plus $\$ 2.00$ shipping. A new slope-front enclosure (" S " series) will be available soon.

For information, contact Energy Engineering, Route 4, Fayetteville, Arkansas 72701.

Circle 1310 on Reader Service Card.

9-volt Rechargeable NiCads

Plainview Electronics announces the introduction of its 9-volt rechargeable NiCad "transistor" battery. Unique in a rechargeable transistor battery is its 8.4 volt nominal voltage, 110 mAh , and its low self-discharge characteristic, which will maintain 50 per cent capacity even after a year in storage at room temperature.

For information, centact Plainview Electronics, 28 Cain Drive, Plainview, New York 11803. Circle /311 on Reader Service Card.

callbook supplement

The new combined Callbook Supplement in cludes all the changes in both the North American and International Callbooks for the six months since the publication of the regular Callbooks. Published once a year on June 1st, it lists thousands of new licensees, address changes, and "then and now" call changes from countries around the world.

Unlike previous updates, this new Supplement is available through regular Callbook dealers and is priced lower than previous Supplements.

For more information, contact Ham Radio's Bookstore or the publisher, Radio Amateur Callbook Inc., 925 Sherwood Drive, Lake Bluff, Illinois 60044.

Circle 1306 on Reader Service Card

DESIGN EVOLUTION IN RF P.A.'s

- Linear (all mode) RF power amp with automatic T/R switching (adjustable delay). Amplifier useable with drive powers as low as $1 / 2$ watt.
- Receive preamp option, featuring GaAs FETS (lowest noise figure, better IMD). Device NF typically .5 dB .
- Thermal shutdown protection incorporated
- Remote control capability built-in
- Rugged components and construction provide for superior product quality and performance
- All models include a complete operating/ service manual and carry a factory warranty on all components
- Designed to ICAS ratings, meets FCC part 97 regulations
- Approximate size is $2.8 \times 5.8 \times 10.5^{\prime \prime}$ and weight is 5 lbs .

Specifications/price subject to change

	(MHz)	(W)	(W)	NF	GAIN
0508	$50-54$	170	1	-	-
0508 G	$50-54$	170	1	6	15
0510	$50-54$	170	10	-	-
0510 G	$50-54$	170	10	6	15
1410	$144-148$	160	10	-	-
1410 G	$144-148$	160	10	6	15
1412	$144-148$	160	30	-	-
1412 G	$144-148$	160	30	6	15
2210	$220-225$	130	10	-	-
2210 G	$220-225$	130	10	7	12
2212	$220-225$	130	30	-	-
2212 G	$220-225$	130	30	7	12
4410	$420-450$	100	10	-	-
4410 G	$420-450$	100	10	1.1	12
4412	$420-450$	100	30	-	-
4412 G	$420-450$	100	30	1.1	12

1. Models with G suffix have GaAs FET preamps. Non-G suffix units have no preamp. 2. Covers full amateu band. Specify 10 MHz Bandwidth for $420 \cdot 450 \mathrm{MHz}$ Amplifier.

* SEND FOR FURTHER INFORMATION* TE SYSTEMS
TE
SYSTEMS
P.O. Box 25845

Los Angeles, CA 90025 (213) 478-0591

A. Microwave Associates 10 GHz Gunnplexer. Two of these transceivers can form the heart of a 10 GHz communication system for voice, mow, video or data transmission, not to mention mountaintop DXing!
 wave Associates 24 GHz Gunnplexer. Similar characteristics to 10 GHz unit. MA87820-4 (pair of 20 mW transceivers) $\$ 739.20$. C. This support module is designed for use with the MAB7141 and MA87820 and provides all of the circuitry for a full duplex audio transcelve system. The board contains a low-nolse, $30-\mathrm{MHz} \mathrm{fm}$ recelver, modulators for voice and mcw operation, Gunn diode regulator and varactor supply. Meter outputs are provided for monitoring received signal levels, discriminator output and varactor tuning voltage. RXMR30VD assembled and tested $\$ 119.95$. D. Complete, ready to use communication system for voice or mew operation. Ideal for repeater linking. A power supply capable of delivering 13 volts de at 250 mA (for a 10 mW version), microphone, and headphone and/or loudspeaker are the only additional items needed for operation. The Gunnplexer can be removed for remote mounting to a tower or 2 or 4 foot parabolic antenna. TR10GA $(10 \mathrm{GHz}, 10 \mathrm{~mW}) \$ 399.95$. Higher power units available. TR24GA $(\mathbf{2 4} \mathbf{~ G H z}$, $\mathbf{2 0 ~ m W}) \$ 639.95$. Also available: hom, 2 and 4 foot parebolic antennas, Gunn, varactor and detector diodes, search and lock systems, oscillator modules, waveguide, flanges, etc. Call or write for additional information. Let ARR take you higher with quality 10 and 24 GHz equipment!

California

C \& A ROBERTS, INC.
18511 HAWTHORN BLVD
TORRANCE, CA 90504
213-370-7451
24 Hour: 800-421-2258
Not The Biggest, But The Best Since 1962.

JUN'S ELECTRONICS
3919 SEPULVEDA BLVD.
CULVER CITY, CA 90230
213-390-8003
800-882-1343 Trades
Habla Espanol

Colorado

COLORADO COMM CENTER
525 EAST 70th AVE.
SUITE ONE WEST
DENVER, CO 80229
(303) 288-7373
(800) 227-7373

Stocking all major lines Kenwood Yaesu, Encomm, ICOM

Connecticut

HATRY ELECTRONICS

500 LEDYARD ST. (SOUTH)
HARTFORD, CT 06114
203-527-1881
Call today. Friendly one-stop shopping at prices you can afford

Delaware

AMATEUR \& ADVANCED COMMUNICATIONS
3208 CONCORD PIKE
WILMINGTON, DE 19803
(302) $478-2757$

Delaware's Friendliest Ham Store.
DELAWARE AMATEUR SUPPLY
71 MEADOW ROAD
NEW CASTLE, DE 19720
302-328-7728
800-441-7008
Icom, Ten-Tec, Microlog, Yaesu,
Kenwood, Santec, KDK, and more.
One mile off l-95, no sales tax

Florida

AMATEUR ELECTRONIC SUPPLY
1898 DREW STREET
CLEARWATER, FL 33575
813-461-4267
Clearwater Branch
West Coast's only full service
Amateur Radio Store.
Hours M-F 9-5:30, Sat. 9-3
AMATEUR ELECTRONIC SUPPLY
621 COMMONWEALTH AVE
ORLAND, FL 32803
305-894-3238
Fla. Wats: 1 (800) 432-9424
Outside Fla: 1 (800) 327-1917
Hours M-F 9-5:30, Sat. 9-3

Georgia

DOC'S COMMUNICATIONS
702 CHICKAMAUGA AVENUE
ROSSVILLE, GA 30741
(404) 866-2302

ICOM, Yaesu, Kenwood, KDK, Bird...
9AM-5:30PM
We service what we sell

Hawaii

HONOLULU ELECTRONICS
819 KEEAUMOKU STREET
HONOLULU, HI 96814
(808) 949-5564

Serving Hawaii \& Pacific area for 53 years.

Idaho

ROSS DISTRIBUTING COMPANY
78 SOUTH STATE STREET
PRESTON, ID 83263
(208) 852-0830

M 9-2; T-F 9-6; S 9-2
Stock All Major Brands
Over 7000 Ham Related Items on Hand

Illinois

ERICKSON COMMUNICATIONS, INC.
5456 N. MILWAUKEE AVE.
CHICAGO, IL 60630
312-631-5181
Hours: 9:30-5:30 Mon, Tu, Wed \& Fri; 9:30-8:00 Thurs; 9:00-3:00 Sat.

Indiana

THE HAM STATION

220 N. FULTON AVE
EVANSVILLE, IN 47710
812-422-0231
Discount prices on Ten-Tec, Cubic, Hy-Gain, MFJ, Azden, Kantronics, Santec and others.
saSE for New \& Used Equipment List.

Maryland

MARYLAND RADIO CENTER
8576 LAURELDALE DRIVE
LAUREL, MD 20707
301-725-1212
Kenwood, Ten-Tec, Alinco, Azden. Full service dealer.
T-F 10-7
SAT 9-5

Massachusetts

TEL-COM, INC.
675 GREAT ROAD, RTE. 119
LITTLETON, MA 01460
617-486-3400
617-486-3040
The Ham Store of New England
You Can Rely On.

Michigan

ENCON PHOTOVOLTAICS

Complete Photovoltaic Systems
27600 Schoolcraft Rd.
Livonia, Michigan 48150
313-523-1850
Amateur Radio. Repeaters, Satellite, Computer applications.
Call Paul WD8AHO

Minnesota

TNT RADIO SALES

4124 WEST BROADWAY
ROBBINSDALE, MN 55422 (MPLS/ST. PAUL)
TOLL FREE: (800) 328-0250
In Minn: (612) 535-5050
M-F 9 AM-6 PM
Sat 9 AM-5 PM
Ameritron, Bencher, Butternut, Icom, Kenwood

Missouri

MISSOURI RADIO CENTER

102 NW BUSINESS PARK LANE
KANSAS CITY, MO 64150
(800) 821-7323

Missouri: (816) 741-8118
ICOM, Kenwood, Yaesu
Same day service, low prices.

mateur Radio Dealer

Nevada
AMATEUR ELECTRONIC SUPPLY
1072 N. RANCHO DRIVE LAS VEGAS, NV 89106 702-647-3114
Dale Porray "Squeak," AD7K
Outside Nev: 1 (800) 634-6227
Hours M-F 9-5:30, Sat. 9-3

New Hampshire

RIVENDELL ELECTRONICS 8 LONDONDERRY ROAD
DERRY, N. H. 03038
603-434-5371
Hours M-S 10-5; THURS 10-9
Closed Sun/Holidays

NeW Jersey
KJI ELECTRONICS
66 SKYTOP ROAD
CEDAR GROVE, NJ 07009
(301) 239-4389
Gene K2KJ
Maryann K2RVH
Distributor of: KLM, Mirage, ICOM, Lar-
sen, Lunar, Astron. Wholesale - retail.
QEP's
110-4 ROUTE 10
EAST HANOVER, N. J. 07936
201-887-6424
Bill KA2QEP
Jim KA2RVQ
VISA/Mastercard
Belden Coaxial Cable
Amphenol Connectors
Hours: $9: 30$ am-7:00 pm

New York

BARRY ELECTRONICS
512 BROADWAY
NEW YORK, NY 10012
212-925-7000
New York City's Largest Full Service
Ham and Commercial Radio Store.
VHF COMMUNICATIONS
915 NORTH MAIN STREET
JAMESTOWN, NY 14701
716-664-6345
Call after 7 PM and save! Supplying all of your Amateur needs. Featuring ICOM "The World System." Western New York's finest Amateur dealer.

North Carolina

F\&MELECTRONICS

3520 Rockingham Road
Greensboro, NC 27407
1-919-299-3437
9AM to 7PM Closed Monday ICOM our specialty - Sales \& Service

Ohio

AMATEUR ELECTRONIC SUPPLY
28940 EUCLID AVE
WICKLIFFE, OH 44092(ClevelandArea) 216-585-7388
Ohio Wats: 1 (800) 362-0290
Outside Ohio: 1 (800) 321-3594
Hours M-F 9-5:30, Sat. 9-3

DEBCO ELECTRONICS, INC
3931 EDWARDS RD
CINCINNATI, OHIO 45209
(513) 531-4499

Mon-Sat 10AM-9PM
Sun 12-6PM
We buy and sell all types of electronic parts.

UNIVERSAL AMATEUR RADIO, INC.
1280 AIDA DRIVE
REYNOLDSBURG (COLUMBUS), OH 43068
614-866-4267
Featuring Kenwood, Yaesu, Icom, and other fine gear. Factory authorized sales and service. Shortwave specialists. Near I-270 and airport.

Pennsylvania

HAMTRONICS

DIV. OF TREVOSE ELECTRONICS

4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215-357-1400
Same Location for over 30 Years

LaRUE ELECTRONICS

1112 GRANDVIEW STREET
SCRANTON, PENNSYLVANIA 18509 717-343-2124
ICOM. Bird, Cushcraft, Beckman, Larsen. Amphenoi, Astron, Belden, Antenna Specialists, W2AU/W2VS.
Tokyo Hy-Power Labs, WELZ, Daiwa,
Sony, Saxton, Vibroplex, Weller

Tennessee

MEMPHIS AMATEUR ELECTRONICS
1465 WELLS STATION ROAD
MEMPHIS, TN 38108
Call Toll Free: 1-800-238-6168
M-F 9-5; Sat 9-12
Kenwood, ICOM, Ten-Tec, Cushcraft,
Hy-Gain, Hustler, Larsen, AEA,
Mirage. Ameritron, etc.

Texas

MADISON ELECTRONICS SUPPLY 3621 FANNIN
HOUSTON, TX 77004
713-520-7300
Christmas?? Now??

KENNEDY ASSOCIATES
AMATEUR RADIO DIVISION
5707A MOBUD
SAN ANTONIO, TX 78238
Stocking all major lines. San Antonio's
Ham Store. Great Prices - Great Service. Factory authorized sales and service.
Hours: M-F 10-6; SAT 9-3

Wisconsin

AMATEUR ELECTRONIC SUPPLY
4828 W. FOND DU LAC AVE.
MILWAUKEE, WI 53216
414-442-4200
Wisc. Wats: 1 (800) 242-5195
Outside Wisc: 1 (800) 558-0411
M-F 9-5:30 Sat 9-3

SATELLITE DECODER MANUAL

Reveals How Signals are De-Cy-Phared

- Three different types used
- detailed/schemotics
- digital audio processers
- error correction \& filtering 100 pages bound . . . $\$ 24.95$.

NEW LADY-X-TASY KITS FROM $\$ 5995$ ASSEMBLED READY TOGO FROM SITQQ5 OTHER TYPES OF DECODERS AVAILABLE CHEMATICS \& BOARDS AVAILABL SEND $\$ 5$ FOR INFORMATION CATALOG

Pilgrim Video Products

P. O. Box 3325 H

Plymouth Ctr., MA 02361

田
 8
 ea路 markeł 1 酸回

RATES Noncommercial ads 10Φ per word； commercial ads 60\＄per word both payable in advance．No cash discounts or agency com－ missions allowed．
HAMFESTS Sponsored by non－profit or－ ganizations receive one free Flea Market ad （subject to our editing）on a space available basis only．Repeat insertions of hamfest ads pay the non－commercial rate．
COPY No special layout or arrangements available．Material should be typewritten or clearly printed（not all capitals）and must in－ clude full name and address．We reserve the right to reject unsuitable copy．Ham Radio can－ not check each advertiser and thus cannot be held responsible for claims made．Liability for correctness of material limited to corrected ad in next available issue．
DEADLINE 15th of second preceding month．
SEND MATERIAL TO：Flea Market，Ham Radio，Greenville，N．H． 03048.

DX ANTENNAS FOR 160－10 METERS．Small size，broadband， high performance．Also，antenna parts，Beverage insulators，wire and cable．Low prices and fast service．SASE for
Oak Hills Research，POB 250，Luther．MI 49656

WANTED：Operating or service manual for Gonset 2 meter linear No．E1022．Uses 2826 tubes．R．J．Heinen，K5TFZ， 1321 Bank Street，Lake Charles，LA 70601．（318） 4393406.

CABLE TV CONVERTERS \＆EQUIPMENT：Plans and parts． Build or buy．SASE for intormation．C \＆D Electronics．PO Box 1402．Depı．HR．Hope，AR 71801.

YAESU OWNERS：Hundreds of modifications and improvements for your rig．Select the best from fourteen years of genuine top－ rated Fox－Tango Newsletters by using our new 32 page Cumula－ ive Index．Only $\$ 5$ postpaid（cash or check）with $\$ 4$ Rebate Certificate creditable toward Newsletter purchases．Includes famous Fox－Tango Filter and Accessories Lists．Milt Lowens， N4ML（Editor）．Box 15944，W．Palm Beach，FL 33416．Telephone （305）683－9587．

R－390A Receiver：$\$ 195$ checked；$\$ 115$ reparable．Parts，tubes sections．Info SASE．CPRC 26 six meter transceiver isee HR March 1985 । $\$ 17.50$ apiece，$\$ 32.50$ pair（add $\$ 4.50$／unit shipping）．
Baytronics．Box 591．Santusky，OH 44870．419－627．0460 Bavtronics．Box 591．Santusky，OH 44870．419－627．0460 evenings
COLLINS WANTED：Inoperative 75 S 3 C or 32 S 3 for parts．Mike Palmer，K5FZ， 16707 Creeksouth，Houston，Texas 77068．（713） $444-7737$

SUPERLOG＇Tandy 1000 and PC compatibles．GW－BASIC $\$ 19.95$ diskette．TRS 80 Model 4／4P．BASIC or ML．$\$ 29.95$. KF6CQ， 7438 Kester Avenue，\＃8 Van Nuys，CA 91405.

SOME QSLs 100 for $\$ 6.25$ ．Sample SASE．WB2EUF，Box 708 ， East Hampton，NY 11937.

B\＆K Precision solid state signal generator，model E－2000， 100 kHz to $220 \mathrm{MHz} \$ 75.00 .4 \mathrm{C} \times 1000$ ，factory sealed $\$ 250.00$ or trade for IC－02AT．W7TZO，（503） 267.6064.
TUBES：4D32 Raytheon $\$ 35.00$ each． $4.400 \mathrm{~A} \$ 45.00,5933 \mathrm{WA}$ $\$ 5.00,12 \mathrm{AT} 7 \$ 1.00,12 \mathrm{AX7} \$ 1.00$ ．Inquire on others．Levy， 101 East Drittwood \＃44，FBG，TX 78624．Tel $512-997-2534$ ．W50．JT．

MARCO：Medical Amateur Radio Council，Ltd．operates daily and Sunday nets．Medically oriented Amateurs（physicians，dentists， veterinarians，nurses，physiotherapists，lab technicians，etc．） invited to join．Presently over 550 members．For information write MARCO，Box $73^{\prime} \mathrm{s}$ ，Acme，PA 15610.
WANTED： $\mathrm{D} \times 200$ or $\mathrm{D} \times 302$ or R7．Must be in working order and good condition． 1116 Bachman Drive，Lexington，SC 29072.
IBM－PCRTTY／CW．New CompRtty II is the complete RTTY／CW program for IBM－PC＇s and compatibles．Now with larger buffers， better support for packet units，pictures，much more．Virtually any speed ASCII，BAUDOT，CW．Text entry via built－in screen editor！ Adjustable split screen display．Instant mode／speed change．Hard－ copy，diskcopy，break－in buffer，select calling，text file transfer， customizable full screen logging， 24 programmable 1000 charac－ ter messages，deal for MARS and raffic handing．Requires 250 k （including MARS）with order．David A．Rice，KC2HO， 25 Village （including MARS）with order．

ELECTRONIC ENCLOSURES：Attractive，reasonably priced Aluminum top and sides．Walnut stained solid wood ends．Variety Eneres and custorn Custom Division Rt 4 Box 330 Fayetteville． AR 72701 ．

HAM RADIO SETUP in Paradise，CA． 2 B．R．with attached studio apt． 1.8 acres and large barn．Tower $\cdots 6$ el．DXX Beam $\cdots 1500 \mathrm{ft}$ ． elev．$\$ 135,000.00$ ．Please call（916）－877－8300．

NATIONAL RADIO EQUIPMENT manual list or NCL－2000 parts kits．SASE．Maximilian Fuchs， 11 Plymouth Lane，Swampscott． MA 01907.

ATTENTION AMATEURS Send for Free discount cataiog Amateur Communications， 2317 Vance Jackson，San Antonio TX 78213．（513） 734.7793

8877 VHF AMP KITS：HV power supplies，CX600N relays，MuTek LTD front end boards for IC251／IC271．EME newsletter and QRO parts．SASE for new catalog．KB7Q，＂Q＂Products， 417 Staudaher parts．SASE for new catalog．KB7
Street，Bozeman，MT 59715．

ELECTRON TUBES：Radio，TV \＆Industrial Types Huge inven tory．Send for 80% off tube listing．Call Toll Free（800） $221-5802$ or write？Box HR，Transleteronic，Inc．， 136539 th Street，Brooklyn， NY $11218(718) 633-2800$

RTTY JOURNAL－Now in our 34th year．Join the circle of RTTY friends from all over the world．Year＇s subscription to RTTY JOURNAL，$\$ 10.00$ ，foreign $\$ 15.00$ ．Send to：RTTY JOURNAL， 9085 La Casita Ave．，Fountain Valley，CA 92708.

THE GOOD SAM HAMS invite RV operators to check in the Good Sam Ham net 14．240 Sundays 19002 also 3.880 Tuesdays at $2359 Z$. Ner control N5BDN，Clarksville，iN

MAA，International Mission Radio Association helps missionaries． Equipment loaned．Weekday net， $14.280 \mathrm{MHz}, 2 \cdot 3$ PM Eastern． Eight hundred Amateurs in 40 countries．Brother Frey， 1 Pryer Manor Road，Larchmont，New York 10538.

RUBBER STAMPS： 3 lines $\$ 4.50$ PPD．Send check or MO to G．L．Pierce， 5521 B

SELL：Central Electronics No－Tune 600 Limear．Yaesur T $301-0$ FT 301 S．Century 21．Digital．Century 21 Analog．Keyers．Calibra－ tors．Prices，trades negotiable．Please write for detalls．WANT Drake MN－4．HW－202．MFJ 910 antenna matcher．VHF wattmeter． Curtis kever or IC．Mirage B－23．Mocom－10 or other 10 meter FM rig．WA6GER， 3241 Eastwood Road，Sacramento，CA 95821
DISCOUNT CATV CONVERTERS／DECODERS and Video ac－ cessories．Send for free information and prices it could save you items Easy View，（HR）PO Box 221 K ，Arlington Heights，Illinois 60006．（312）952－8504．Ask for Rudy Valentine．

ELECTRON TUBES：Receiving，transmitting，microwave．．．all ypes availatile．Large stock．Next day delivery，most cases．Daily Electronics，PO Box 5029，Compton，CA 90224．（213）774－1255．

CUSTOM MADE EMBROIDERED PATCHES．Anv size，shape， colors．Five patch minimum．Free sample，prices and ordering
information．Hein Specialties．Inc．，Dept 301， 4202 N ．Drake， information．Hein Specialties．Inc．，Dept 301， 4202 N．Drake，
Chicago，IL 60618 ． Chicago．IL 60618.
RECONDITIONED TEST EOUIPMENT $\$ 1.25$ for catalog． Walter， 2697 Nickel San Pablo CA 94806

CABLE TV CONVERTERSIDESCRAMBLERS．Guaranteed owest prices in US．Jerrold，Hamlin，Zenith－Many others． Lowest deaker prices！Orders shipped within 24 hours！Mastern Pacific Cable Co．．Inc．，7325－1／2 Reseda Blvd，\＃1016，Reseda，CA 91336）（818）716－5914．

HOMEBREW PROJECTS．List SASE．WB2EUF，Box 708，Eas！ Hampton．NY 11937

CHASSIS and cabinet kits．SASE K3IWK， 5120 Harmony Grove Road，Dover，PA 17315

COMING EVENTS

Activities－＂Places to go

OKLAHOMA：October 5．The Salt Plains Amateur Radio Club wil hold their annual Ham Social，Salt Plains Lake，Northern Alfalfa County．Covered dish dinner．Talk in on 147．30／90．Inquiries to：Gary Gerber，KBOHH， 511 Lincoln，Anthony，KS 67003 （405） $842-5076$.

ARIZONA：September 27．CARA－The Cochise Amateur Radio Association＇s Flea Market at the CARA Training Facility on Moson Road，Sierra Vista．No charge for tailgating．Free overnight RV camping for club members．Talk in on 146．16／76．For more infor mation：CARA，PO Box 1855，Sierra Vista，AZ 85636.

CONNECTICUT：September 28．The Waterbury ARC will sponso a Flea Market，Waterbury State Technical College，off 1－84 Waterbury． 10 AM to 3 PM．Admission $\$ 2.00$ at door．Indoor spaces $\$ 10 /$ table and tailgating spaces $\$ 5$ ．Dealers，seliers setup 9 AM．Contact Gary Firtick，K1EB， 589 Hamilton Avenue．Water town，СТ 06795 by $9 / 15 / 86$

MARYLAND：October 5．The Columbia Amateur Radio Associ ation＇s 10th annual Hamfest，Howard County Fairgrounds，jus west of Baltimore，off $1-70$ ． 8 AM to $3: 30 \mathrm{PM}$ ．Admission $\$ 3.00$ Spouse and children free．Reserved tables $\$ 7.00$ prior to Septem ber 30．$\$ 8.00$ after．Outdoor tailgating $\$ 3.00$ additional．Indoor taif gating $\$ 6.00$ additional．Food available．Talk in on 147．735／135 146．52／52．For table reservation and information：Mike Vore，
PENNSYIVANIA：October 4．Pack Rats（Mt．Airy VHF ARC invites all Amateurs to the 10th annual Mid－Atlantic VHF Confer ence，Warrington Motor Lodge，Rt 611．Warrington and the 15th annual Pack Rat Hamarama，Sunday，October 5，Bucks County Drive－In theater，Rt．611．Warrington．Flea market admission $\$ 5.00$ per car．Selling spaces $\$ 6.00$ each．Gates open 6 AM rain or shine．

GEORGIA：November 1－2．The Alford Memorial Radio Club of Stone Mountain is sponsoring Ham Radio and Computer Expo＇86 Gwinnett County Fairgrounds， 20 minutes NE of Atlanta． 9 AM to 5 PM Saturday； 9 AM to 4 PM Sunday．Admission \＄4 advance，\＄5 at door．Forums，awards，VEC exams both days，free cookou Saturday night．Activities for the entire family．Superb deale facilities，giant undercover flea market．Discount hotel rooms．Free parking．RV sites with full hookups．Talk in on $146.16 / 76$ 449．25／4．25．Information：Alford Memorial ARC．PO Box 1282 Stone Mountain，GA 30086 or call N8LM at 404－925－7615．

NORTH DAKOTA：September 19－21．ARRL Dakota Division Con vention sponsored by the Red River Radio Amateurs，Fargo Holiday Inn．Speakers：Dr．Tony England，WOORE and ARRL President Larry Price，W4RA．Indoor flea market tables $\$ 5$ ．Semi nars，display，VE exams（no walkins）．Breakfast and banquet Satur day．Breakfast and flea market Sunday．Talk in on 146.76 repeater Registration \＄7．For information SASE to Red River Radio amateurs，Box 3215，Fargo，ND 58108－3215

CONNECTICUT：September 14．The Candlewood Amateur ra dio Association＇s annual Flea Market，Danbury Ek＇s Club， 346 Main Street，Danburv． 9 AM to 3 PM．Dealers 8 AM．Admission $\$ 2$ Tables $\$ 8$ ．Tailgating $\$ 5$ ．Talk in on $147.72 / 12$ ．For table reserva tions send check or MO to CARA c／o Gene Marino， 27 Valley View Rd，Newtown，CT 06470 or call Gene（203）426－8852．
CALIFORNIA：September 20 ．Sonoma County Radio Amateur fourth annual flea market． 8 AM to 2 PM，Sebastopol Community Center， 390 Morris Street，Sebastopol， 5 miles west of Santa Rosa Admission and parking free．Tables $\$ 5$ advance or $\$ 7$ at the door Vendor setup 7 AM．VEC exams，radio clinic，exhibits，refresh ments．Auction about noon．Talk in on 146．13／73．For tickets and information：SCRA，Box 116，Santa Rosa，CA 95402.
NEW YORK：September 27．The Elmira Amateur Radio Associa tion＇s 11 th annual International Hamfest，Chemung County fair grounds，Elmira．Gates open 6 AM to 5 PM．Tickets available a gate or in advance from Steve Zolkosky， 118 Est 8th Street，Eimir Heights，NY 14903．Outdoor flea market，dealer displays．Break fast and lunch served on premises

FLORIDA：September 6－7．The 21st annual Melbourne Hamfes sponsored by the Platinum Coast ARS，Melbourne Auditorium SRRL ARter hunt Ticha， mitters（limit 2 adj．）．For exam information SASE to PCARS，POB 1004 Melbourne FL 32901.

NEW JERSEY：The Maple Shade ARC is sponsoring its First Annual Hamfest，Saturday，September 20，Maple Shade High School，Coles Avenue，Maple Shade． 8 AM to 2 PM．Admission $\$ 5.00$ per carload，includes one tailgate space．Refreshments，tech forums．Talk in on 146.52 and $223.02 / 224.62 \mathrm{~W} 2 \mathrm{M} \times$ Rpt For more information：K3HW．Howard Weinstein， 15 Lakeside Drive Marlton，N．J 08053（609）596－3304．
MISSOURI：September Swaptest，Sunday，September 28，Har vester Lions Club Park，Harvester．Sponsored by the St．Peters Amateur Radio Club，$\$ 1.00$ per person to look，swap，sell．Free coffee and donuts for early birds．For information：Joe Riordan
KGOK， 2760 Hwy 40－61，O＇Fallon，MO 63366 ．

ILLINOIS：September 20－21．Peoria Area Amateur Radio Club is sponsoring Peoria Supertest＇ 86 ，Exposition Gardens，W．North moore Road．Peoria．Gate opens 6 AM．Commercial Building 9 AM．Admission $\$ 3.00$ advance，$\$ 4.00$ at gate．Childrer under 16 free．Amateur Radioand computer displays，hugh flea market，FCC woods Mall Sunday．Fukll camping facilities on grounds．Saturday night get－together Heritage House Smorgasboard 8209 N Mt Hawley Road Peoria．Talk in on $146.16 / 76$ Wguvi For informa tion and reservations：SASE to Superfest＇86，PO Box3461，Peoria IL 61614

CONNECTICUT：September 21．The 4th armual Natchaug ARA Giant Flea Market Elks Home 198 Pleasant Street，Willimantic

9 AM. Dealers setup 8 AM. "Bargins Galore". Free parking Admission $\$ 2$. Under 16 free, Inside reserved tables $\$ 5$ each. A the door $\$ 7$ each. Tailgaters welcome. Outside space $\$ 5$ and up ARRL./VEC exams for all license classes. Talk in on $147.30 / 90$ and 52. For information: Ed Sadeski, KA1HR, 49 Circle Drive, Mansfield Center, CT 06250. (203) 456-7029 after 4 PM.
CALIFORNIA: October 4. Scatcon '86. 9AM to 3PM, Cortez Park 2441 Cortez Avenue, West Covina. Tech sessions. Hands-on pack et, satellite and more. Swaps, vendors. Donation $\$ 2$. Talk in on $147.765-600$. For more information: Bob, N6NGN. 18181 $917-6470$

NEW YORK: Spptember 21. LIMARC sponsors ARRL Long Istand Hamfair, New York Institute of Technology. Rt. 25A/Northern Blvd, Old Westbury. Tailgating space $\$ 5.00$. Hams $\$ 3.00$ admis sion. Spouses, kids free. Open 7:30 AM sellers. 9 AM buyers. Food refreshments available. Talk in on 146.85. For more information Hank Wener, WB2ALW (516) 484-4322 evenings
GEORGIA: September 28. The 13th annual Lanierland ARC Harn fest, Holiday Hall, Holday Inn, Gainesville. 8:30 AM. Free tables and inside display area for dealers reserving in advance. Large park ing lot for Flea Market. Novice- Extra VE exams beginning 9 AM Talk in on 146.07/.67. For information and reservations: Pau Watkins, W4FDK, 5435 Mallard Point, Gainesville, GA 30501 (404
$536-8280$ $536-8280$

MICHIGAN: September 14. L'Anse Creuse ARC will have its 14th annual Swap and Shop, L'Anse Creuse High School, Mt Clemens 0800-1500. Admission $\$ 1.00$ advance, $\$ 3.00$ at the door. Plenty o food aed parking. Trunk sales $\$ 4.00 /$ space. Inside tables $\$ 8.00$ each. For Tickets and table reservations SASE
to Maurice Schietecatte, N8CEO, 15835 Touraine CI. Mt. Clernens. to Maurice Schietecatte, N8
MI 48044 (313) 286 -1843

ONTARIO: Soptember 20. Packet Radio Symposium co sponsored by the Hex- 9 Group of the Barrie ARC and Georgian College, Bartie. Flea market in the morning. Guest speakers Harold Price, NK6K, a director of AMSAT and Ed Jackson of Buffalo Hex 9 Group, Box 151 . Orillia Ontario, Canada L3V 613 .

MASSACHUSETTS: The Chelsea Civil Defense will sponsor Amateur Radio evening classes at Chelsea High School starting September 11. 1986 for those wishing to obtain a Novice Tech/Generalticense. There wilbe a minimal fee for materials cos 136 Grove Street, Chelsea, MA 02150. Please include your phone number.

1986 "BLOSSOMLAND BLAST" Sunday, October 5, 1986 Write "BLAST", PO Box 175, St. Joseph, M1 49085.

CALIFORNIA:FCC exams, Novice Extra. Sunnyvale VEC ARC 14081255.900024 hour 73, Gordon. W6NLG, VEC

MASSACHUSETTS: The MIT UHF Repeater Association and the MIT Radio Society offer monthly Ham Exams. All classes Novice to Extra. Wedresday, September 17,7PM, MIT Room 1-134, 77 Mass Avenue, Cambridge MA. Reservations requested 2 days in advance. Contact Ron Hoffmann (617) 253-0160/646-1641 o Craige Rodgets (617) 494-1986. Exam fee \$4.25. Bring copy of curtent license (if any), two torms of picture ID and completed form 610 available from FCC in Boston (223-6609)

MASSACHUSETTS: September 28 The Wellesley Amateu Radio Society's sannual outdoor Flea Market, Wellesley Senior High School parkinglot, Rice Street, Wellesley. 9 AM to 2 PM. Admis sion $\$ 1.00$ for buyers and $\$ 2.00$ for sellers. Light refreshments avail able Talk in on $147.63 / 03$ repeater

NEW YORK: October 5. Electronics Fair and Giant Flea Market Yonkers Municipal Parking Garage, Nepperhan Avenue and New Main Street. 9 AM to 4 PM. Satelle TV. SSTV, Amateur Radio all day. Admission $\$ 3.00$. Children under 12 tree. Sellers $\$ 7.00$ per parking space, one admission. Bring tables. For information call (914) 969 - 1053.

NEW YORK: September 6. Ham O Rama ba Computerfest ' 86 Niagara Falls International Convention Center. Nagara Falls. 7 AM to 5PM. Displays, tech programs, computer displays, FCC exams All enclosed flea market. Sell from your cart General interest programming including tours of the Falls. Registration $\$ 3.50$ advance by $8 / 20 / 86$. $\$ 5.00$ at the gate. Inside tailgating $\$ 5.00$ for $8^{\prime} \times 20$ area. For more information: Nelson Oldfield. W2ZSJ. 126 Greenaway Blvd, Cheektowaga, NY 14225.

NEW MEXICO: September 27 and 28 Camp Stoney. 8 miles east of Santa Fe. Saturday ARRL/VEC exams. Free camping at Camp Stoney Saturday night. No hookups. Sunday, tailgate flea market. Registration $\$ 5.00$ for adults and $\$ 2.00$ for kids under 12 includes Sunday BBO. Talk in on 146.2282 repeater of 146.52 . For nore information SASE to Alan Hill, N5BGC, 2020Calle Perdiz. Santa Fe, NM 87505.

MICHIGAN: October 12. Ham Fair '86, Michigan National Guard Armory, 2500 S . Washington Avenue, Lansing. 8 AM to 3 ing 1 PM. Register for exams by September 12 . Donation $\$ 3.00$ odults Handicap facilities on premises. For information andreser vations: Rowena Elrod, KA8OBS. 111 Lancelot Place, Lansing. MI 48906. (517) 482.9650

PENNS YLVANIA: September 2021 York Hamfest sponsoredty the York ARC, Keystone VHF Club, Penn Mar RC and Hillstop ransmirting Association. York Fargrounds. Rt /4, NR corner o Saturday. Tailgating and displays Sunday. Registration $\$ 3.00$ per day or $\$ 5.00$ both days. Women and children under 12 free Banquet $\$ 10$ per person advance registration only. Tailgating $\$ 4$ per day or $\$ 6$ for both days. Indoor area tables $\$ 5$ and up per day York Hamfest, Box W. Dover, PA 17315

NEW JERSEY: October 4. The Orange County ARC wil hold is Hamfest and Auction, John S. Burke Catholic High School. 9 AM to 3 PM. Tailgating $\$ 3.00$. Setup 8 AM . Liccnse exams starting 9 AM. Admission $\$ 3.00$. Tables $\$ 7.00$. Talk in on 146.76 Rpt. and 146.52
(201) $767-6698$

MICHIGAN: September 20. GRARA Swap and Shop, Hudsonville Fairgrounds, Hudsonville, Open 8 AM . Admission $\$ 3.00$. Reserved tables $\$ 4.00$. For information and reservations: Latry Kozal, K8PUJ, 864 Coldbrook NE, Grand Rapids, M149503. (616) 459.8722

ILLINOIS: September 21. The Chicago ARC will hold an Open House in conjunction with its 60th anniversary. 10 AM to 8 PM at the North Park Village, 5801 N. Pulaski Avenue, Chicago. Special evertstationon 20 and 40 mSSB wiloperate during those hours. Alt hams and hose ing esied or Arite CARC, 5631 W Irving. Pork iformation call $31212545-3622$ or write CARC, 5631 W. Irving Park Road, Chicago, IL 60634

OPERATING EVENTS

"Things to do

September 4-7: The Stu Rockatellow Amateur Radio Society of Plymouth, MI will be celebrating their 25th anniversary, in conjuncrion with the Plymouth Fall Festival, operating radio station W3NJH. A certificate will be issued for QSL and SASE. QSL via WBNJH or WDBIAE CBA

September 6: ATGT Bell Labs Whippany ARC will operate W2TW, 13002 to $2200 Z$ commemorating its 30 th anniversary. Operation in lower portions of $10-80$ General phone bands. For a OSL send SASE and OSL to WB2000, Rick Anderson, 243 Mountain Avenue. Murray Hill, NJ 07974
September 6: The 160 Meter Bulletin SSB Contest. 001 Z to 24002 September 7. Single and multi- operator classes. Send logs to 160 Meter Bulletin c/o R. Koziomkowski, KA1SR, 5 Watson Drive, Portsmouth, RI 02871.

September 6-7: The Radio Association of Erie (W3GV) will commmemorate Commodore Perry's victory at the Battie of Lake Erie during the War of 1812.9 AM to 9PM Saturday and 9 AM to 5PM Sunday local time. A special attempt will be made to contact like vessels of that period and other Great Lakes Histonical Versels Sunday at 1 PM Special OSL and histonical information on Flagship Niagara via W3GV, POBox 844 , Erie, PA 16512 or W3 OSL Bureau or DX Stations. Please send business SASE

September $\mathbf{1 3 , 1 4}$ and 20.21: The Valley of the Moon ARC will operate special event station N6K M to commemorate writer, Jack London, author of "Call of the Wild" and "The Sea Woff "from his home, Wolf House in Jack London State Park, Gien Ellen, Califor nia A beautiful8xII centicate suitabie for rraming, with London's picture and history, is avaidale for a OSL card and s1.00 semt to certificate, please send 9×12 SASE.

September 27: Calforma QSO Party. Sponsored by the Northern California Contest Chub. Stations outside Californa work as many CA stations in as many CA counties as possible. Stations in CA work anyone. CA stations send OSO number and county Oulsde tations send QSO number and state/province/country. All logs nd summary WA6VEF, 1830 Polk Street, Concord, CA 94521 by November 1 1986.

September 7-14: Southern Counties ARA will operate special event station K2BR during the Miss America Pageant. Atlantic City. New Jersey. QSL SASE via SCARA, Box 121. Linwood, N.J 08221

September 6: The West Alabarna Amateur Radio Society will ponsor a Special Event Station in honor of college football and is greatest coach. Paul "Beat"Bryant. Listen for WD4DAT from 3007 to 23007 . To receive the handsome 8×11 certificate SASE with your OSL card to WAARS Special Event, PO Box 1741 Tuscaloosa. AL 35403

September 28: The Mahoning Valley ARA will operate W8OLY from Boardman Park during the Armual Rotary Octoberfest Celebration Freq 40 and 20 phone, 145.01 packet For a special OSL certificate, send standard SASE to MVARA Octoberfest Station PO Box 2950 Youngstown, Ohio 44511.
W.E.C.A. (Westchester Emergency Communications Associa ion) initiates Equipment/"Elmer" Banks to help new hams get on he air. More information write the club at PO Box 131. North Tatrytown. NY 10591

DX CERTIFICATE. Nigerian Amateur Radio Society announces its "NARS at 25 Award" Toencouragemore contact with Nigerian Amateur Radio stations. DX stations need to work only 5 Nigerian ham stations to obtain this DX certificate. Send proof of contact plus $\$ 5.00$ to NARS at 25 Award. PO Box 2873, Lagos. Nigeria, West Africa.

> YIK CHARGE YOUR CLASSIFIED ADS to your MC or VISA, write or call HAM RADIO MAGAZINE Greenville, NH 03048
> (603) 878-1441

MAKE CIRCUIT BOARDS THE NEW, EASY WAY

WITH TEC-200 FILM

JUST 3 EASY STEPS:

- Copy circuit on TEC-200 film using any plain paper copier
- Iron film on to copper clad board
- Peel off film and etch SATISFACTION GUARANTEED
convenient $81 / 2 \times 11$ size
5-Sheets for \$3.95
10 sheets only $\$ 5.95$
add $\$ 100$ postage - NY res add sales lax
The MEADOWLAKE Corp.
Dept. H, P.O. Box 497
Northport, New York 11768

THE STANDARDS OF EXCELLENCE

SUPERIOR WEAK SIGNAL PERFORMANCE COMMERCIAL MODEM

COMPARE with ANY unit at ANY Price

Now Available With

 PACKET RADIO THE WORLD OF VHF/HF PACKET*, CW, RTTY, ASCII AND NEW DUAL AMTOR** IS AS CLOSE AS YOUR FINGERTIPS WITH THE BRILLIANTLY INNOVATIVE STATE-OF-THE-ART MICRO-COMPUTER CONTROLLED EXL-5000E. \qquad

SHOWN WITH OPTIONAL KANTRONICS KPC2400 AND MFJ-1270 TNC-2
Everything built in - nothing else to buy!

- AUTOMATIC SEND/RECEIVE - ANY SPEED ANY SHIFT - BULLTIN COMPUTER GRADE 5 MONITOR - EXTERNAL MONITOR JACK - TIME CLOCK ON SCREEN ~ TIMED TRANSMISSION AND RECEIVING - SELCAL - CRYSTAL CONTROLLED AFSK MODULATOR - PHOTOCOUPLER CW. FSKKEYER - ASCII KEY ARRANGEMENT * 15 CHANNEL BATTERY BACK-UP MEMORY * 1280 CHARACIER DISPLAY MEMORY - SPLIT SCREEN TYPE AHEAD BUFFER FUNCTION SCREEN DISPLAY * PARALLEL PRINTER INTERFACE - SPEEDS CW 5-100 WPM (AUTOTRACK), 12-300 BAUD (ASCII AND BAUDOT): 12 -6D0 BAUD TTL, 100 BAUD ARO/FEC AMTOR - ATC - RUB-OUT FUNCTION - AUTOMATIC CR/LF - WORD MODE • LINE MODE - WORD WRAP AROUND - ECHO - TEXT CURSOR CONTROL - USOS - DIDDLE - TEST MESSAGES (AY AND OBF) = MARK AND BREAK (SPACE AND BREAK) SYSTEM - VARIABLE CW WEIGHTS * AUDIO MONITOR CRICUIT BUILT IN * CW PRACTICE FUNCTION - CW RANDOM GENERATOR - BARGRAPH LED METER FOR TUNING * OSCILLOSCOPE OUTPUTS - BUILTIN $100-120 / 220-240 \mathrm{VAC} 50 / 60 \mathrm{HZ}$ AND 13.8 VDC POWER SUPPLIES * AND MUCH, MUCH MORE $~$ SIZE: $14 \mathrm{~W} \times 140 \times$ $5 \mathrm{H} \cdot 90$ DAY WARRANTY•

©-777 THE MOST ADVANGED COMPUTER INTERFAGE EVER DESIGNED FOR COMMERCIAL AND AMATEUR USE.

RTTY, BIT INVERSION (RTTY). ASCII, AMTOR (MODE A ARO), MODE B IFEC AND SEL-FEC). MODE L). CW, ANY SPEED ANY SHIFT (ASCII AND BAUDOT)*

SPECIAL SALE \$229

- AUTO DECODING: Automatically decodes signal and displays mode, speed and polarity on the CRT - COMPAREE
- 28 BAR-LEO'S and LED'S plus a Bar-Graph Tuning Indicator Indicate function, mode, and status - COMPARE!
- The awesome power of the $\Theta-777$ is limited only by the imagination of the user and the terminal program of the computer.
- Use with Any computer that has RS232 or TTL I/0, I8M. Apple, Commodore. TRS80, etc.

Everything Built In - Including Software - Nothing Else To Buy!

- 'SPEEDS: CW 5-100 WPM (AUTOTRACK), $12-200$ BAUD (ASCII AND BAUDOT): $12-600$ BAUO TTL, AND RS232 OR TTL LEVEL DATA CONNECTION - 100-2400 BAUD (ASCII) OR $45.5-200$ BAUD (BAUDOT) - SELCAL * MEMORY 15 CHANNELS +768 CHARACIER INPUT BUFFER - AUTO PTI - CW ID - DIDDLE - USOS • ECHO - AUTO CR/LF • ATC • RUB-OUT - CW PRACTICE GENERATOR • VARLABLE CW WEIGHTS - TEST MESSAGE (RY AND OBF) - FULL CRT FUNCTION DISPLAY - MARK - AND - BREAK (SPACE - AND -BREAKI SYSTEM - XTAL AFSK * AUDIO MONITOR - OSCILLOSCOPE OUTPUTS • AND MUCH, MUCH MORE * POWER SUPPLY REOUIREMENTS: $13.8 \mathrm{~V} \mathrm{DC}, 700 \mathrm{MA}=5 I Z E: 9 \mathrm{~W} \times 100 \times 2 \% \mathrm{H}=90$ DAY WARRANTY

EXCLUSIVE DISTRIBUTOR DEALER INOUIRIES INVITED FOR YOUR NEAREST DEALER OR TO ORDER:
AMATEUR-WHOLESALE ELECTRONICS
TOLL FREE...800-327-3102
8817 S.W. 129th Terrace, Miami, Florida 33176 Telephone (305) 233-3631 Telex: 4930709 ITT

MANUFACTURER

TONO CORPORATION
98 Motosoja Machi, Maebashi-Shi. 371, Japan

PLEASE CALL FOR DETAILS
*"Dual Amtor: Commercial quality, the EXL 5000 E incorparates two completely separate modems to fully support the arnateur Amtor codes and all of the CCIR recommendations 476.2 for commercial requirements.

circuit boards keep pace with electronic developments

Many of us may view printed circuits (PC's) as one of the necessary, but less glamourous aspects of modern circuit design. But the people whose job it is to keep pace with developments in circuit evolution have done some rather marvelous work in the PC area. For example, take a look at one of those plugin cards for your personal computer you'll see 50 chips, a ton of components, thousands of interconnects, and hundreds of circuit lines on six layers of PC! Chances are you're getting all this for a couple hundred bucks.

Manufacturing modern microwave PC's requires a degree of magic just slightly removed from potions using bat wings and butterfly ears.

Because of the very small dimensions associated with frequencies above 2 GHz or so, the stability and dielectric characteristics of the substrate become a limiting consideration. Teflon and ceramic dielectrics are used extensively - but these are very expensive materials and may cost 50-100 times as much (per square unit) as conventional commercial-grade board materials. Because of the dielectric and radiation losses associated with microwave frequencies, it's not uncommon to have the dielectric bonded to a metallic structural member. This provides shielding, thermal conductivity, and all-important dimensional stability. The copper foil used in such applications is electrolytically formed and may be only 50 millionths of an inch thick (remember the "skin-effect" at very high frequencies). Transmission lines, filters, inductors,
etc. may have line widths as small as one thousandth of an inch. Since the characteristics of filters at high microwave frequencies will depend on accurate physical dimensions, great care goes into the selection of the piece of PC material that will be used for a given design. At these frequencies it's not unusual for a designer to finalize his design only after he has procured enough material to assure that he can make all of the circuits of a given type that he expects to produce.

Next time you pick up a modern complex circuit card, remember that the card itself is one of the miracles of our current revolution.

signal encryption techniques reach maturity

Recent legislative activities aimed at preventing the reception of certain commercial signals may be less relevant in light of the technical means for security employed by many electronic communications systems. In the early 1970s a data encryption protocol called DESDate Encryption Standard was developed. This technique is used to protect computer records, financial transactions, diplomatic traffic, and so on. More recently, the operators of broadcast satellites have begun using DES subsets to encode entertainment signals for C -Band satellites.

The basic technique is along the following lines... The data is organized into 64 bit words whose right and left 32 bits are swapped in accordance with a coded scheme. The code is a 56 bit word which organizes the structure and rate at which the 32 bit words are swapped. Additional logic operations are performed to compare the right and left
hand words. If they don't match in a certain way, one of the words is replaced and a new sequence generated. This process can be extended to sevral levels, and the code can be changed almost continuously. If you think for a moment about the size of number like 2^{32} times 2^{56} you will quickly see why this system has substantial security - the number of possible combinations is astronomical. At this time there are no validated reports of any person or organization having successfully developed a techinque for decoding DES data without a prior knowledge of the code.

Several companies are already producing both encryption and decoding systems using the DES standard. AIthough the cost is still a bit high for the very low end of the business communication market, prices are coming down. As it has done for us in so many other areas, the TV market is providing the impetus for mass production of DES decoders. One can only hope that those commercial users who would support highly restrictive legislation on the use of the airwaves, can be equally enthusiastic about using modern technology to protect their customer interests.

The possible amateur uses off these advanced coding techniques is not clear, since encryption is prohibited in amateur communications. However, the basic techniques land especially the custom chips) might eventually make low cost audio and video digitizers available to the amateur service. This may made possible considerable improvements in spectrum utilization through data compression and frequency/time multiplexing.
ham radio
to the world's mostadvanced antenna system! WITH NOT A SINGLE WATT WASTED IN LOSSY TRAPS! (There aren't any!)

Hams in over 50 DXCC countries have done so already!

The DJ2UT-Multiband-Systems

 ofter:- Maximum gain plus F/B ratio with low VSWR across each band
- 2 kW CW output power
- 10/15/20/(30) 40-meter bands with up to 7 band coverage incl. WARC bands with self-supporting "TWIN-BOOM" and boomlegths from 8 to 20 ft
- Air-core tefion dielectric coaxbalun and stainless-steel hardware at no extra cost
- traditional Blackforest crattsmanship
The DJ2UT-MULTIBANDERS provide the superior full-size monoband-beam performance required during the present sunspot minimum.
For further information contact:

H.J. Theiler Corp.

P.O. Box 5369

Spartanburg, SC 29304
(803) 576-5566
or our distributor in Canada:
Dollard's Radio West
P.O. Box 58236

762 S.W. Marine Drive
Vancouver, B.C. V6P 6E3
Selected dealerships available.

ADVERTISER'S INDEX AND READER SERVICE NUMBERS

Listed below are the page number and reader service number for each company advertising in this issue. To get more information on their advertised products, use the bind-in card found elsewhere in this issue, select the correct reader service number from either the ad or this listing, check off the numbers, fill in your name and address, affix a postage stamp and return to us. We will promptly forward your request to the advertiser and your requested information should arrive shortly. If the card is missing, send all the pertinent information on a separate sheet of paper to: ham radio magazine, Attn: Reader Service, Greenville, NH 03048.

READER SERVICE $\boldsymbol{\prime}$	PAGE 7	READER SERVICE \boldsymbol{I}	PAGE
108 - Advanced Computer Controls, Inc.	13	112 - Micro Systems Institute	20
175 - Advanced Receiver Research	. 103	129 - Minds Eye Publications	60
145 - AEA	71	119 - Mirage/KLM	34
147 - All Electronics Corp	76	-120-Mirage/KLM	41
180 - Aluma Tower Company	107	168 - Naval Electronics, Inc.	96
182 - Amateur Wholesale Electronics	108	125 - NCG	55
173 - Amidon Associates	101	157 - Nel- Tech Labs, Inc	86
166 - AMSAT	96	162 . Nemal Electronics	88
143 - Antennas, Etc.	69	167 - NRG Control.	96
133 - ARRL	64	163 - Nuts \& Voits	88
118 - Astron Corp.	29	117 - P.C. Electronics.	28
- Barker \& Williamson	28	137. Pac-Comm Packet Radio Systems, Inc	65
*-Barry Electronics	101	170 - Pacific Rim Communications	97
141 . Buckmaster Publishing	66	179 - Pilgrim Video Products.	105
* Butternut Elecfronics	20	152 - Pipo Communications	81
- Caddell Coil Corp	91	130 - Processor Concepts	60
134 - Coaxial Dynamics, Inc	64	161 - The PX Shack.	88
111 - Communication Concepts, Inc	20	149- QEP'S	81
187 . Communications Specialists	112	200 - Radiokit.	81
165 CTM	94	158 - Radiosporting	86
122. Cusherafl Corp	47	132. Ramsey Electronics, Inc	62
- Dick Smith Electronics	72	* RF Parts/Westcom Engineering	93
135. Digimax Instrument Corp	64	128 - Robot Research, Inc	63
144 - Digitrex	. 72	177 -S.Com	102
148 - Doppler Systems, Inc	76	186 -Sommer	110
155 - Down East Microwave	84	* Spec-Com	80
172 EGE, Inc	97	116 - Spectrum International	24
* Engineering Consulting	91	159 - STVIOnSat	86
114 - Fair Radio Sales	20	176 - Sultronics	102
* Falcon Communications	65	183 - Synthetic Textiles. Inc.	111
115 - Fluke Mig. Co	27	174 - TE Systems	.103
' Fox Tango Corp	90	151 - Telewave, Inc	81
136 - GLB Electronics	65	140 - Transverters Unlimited	66
154 - Grove Enterprises.	84	150 - Unity Electronics	81
178. H.L. Heaster. Inc	102	- University Microfilm Int	80
110 HAL Communications Corp.	19	160 - Vanguard Labs	91
142 - Hal-Tronix	68	109 Varian	16
184. Hall Electronics	111	171. W9INN Antennas	97
127. Ham Radio Outlet	56,57	164 - Webster Communications, Inc.	95
* Ham Radio's Bookstore 24.	88,69,75	131 - Western Electronics	60
- The Ham Station.	38	126 World Tech Products	55
- Ham West	58	188 - Yaesu Electronics Corp.	CIII

PRODUCT REVIEW/NEW PRODUCTS

304 - Alpha Delta Communications, Inc.................. 100
303 - Aluma Tower Company, Inc 100
312 - Bird Electronic Corporation -.................. 100
310 - Energy Engineering 102

- Hamtronics, NY 100

309 - Heath Company \ldots.
313 - ICOM America, Inc. .. 102
302 - John Daley, KB6JGH .. 101

- Trio-Kenwood Communications 100

307 - Kepro, Inc 100
311 - Plainview Electronics .. 103
306 . Radio Amateur Callbook 103
301 -Universal Electronics. Inc.................................. 102
308 - Wenzel Associates, Inc 100
305 - Yaesu Electronics Corp. 10

BLACK DACRON ${ }^{\infty}$ POLYESTER

 ANTENNA ROPE- UV-PROTECTED
- high abrasion resistance
- REQUIRES NO EXPEIISIVE

POTTING HEADS

- EASY TO TIE \& UNTIE KNOTS
- EASY TO CUT WITH OUR HOT KNIFE
- SIZES: 3/32" 3/16" 5/16"
- SATISFIED CUSTOMERS DECLARE EXCELLENCE THROUGHOUT U.S.A.

LET US INTRODUCE OUR DACRON ${ }^{6}$ ROPE TO YOU - SEND YOUR NAME AND ADDRESS AND WE'LL SEND YOU FREE SAMPLES OF EACH SIZE AND COMPLETE ORDERING INFORMATION
synthetic
textiles,inc
$\vee 183$
REPEATER VOTER

FREE BOOK FLYER

Send SASE to
Ham Radio's Bookstore
Greenville, N. H. 03048

Don't buy from Hamtronics
 Unless you want the best possible equipment at the lowest possible price! ! !

The "wheeler-dealer" is back and he's beating everyone else's "deals."
We all know there's no such thing as a free lunch so How Can We Do This?

- We don't run alot of ads featuring sale items
- We don't spend alot of money on full page ads
- We don't have sales on just the fastest selling products
- We don't short cut you on service. We are a factory warranty repair facility for everything we sell!
- We don't mail out free catalogs
- We don't have a free WATS number.

You and every other Ham customer is paying for all these do-dads and sales gimicks.
Hamtronics puts the savings into your pocket.
Hamtronics guarantees to meet or beat any advertised price on every item we sell.

Hamtronics Has It All!

Let Hamtronics be your Ham Radio equipment dealer. We're celebrating our 35th year in the Ham business at the same location.

 A DIVISION OF TREVOSE ELECTRONICS 4033 BROWNSVILLE RD., TREVOSE, PA 19047

 (215) 357-1400
NEW FROM ARRL

AMATEUR RADIO FIELD RESOURCES DIRECTORY 1986-87
Have a question that too one can answermo??
"Fred will The white pages list the tolks who can almost answer any. Amateut Radio related problems or question you might have. ARRL Directors, Vice Directors. Assistants. Advisory Committee members. Field voluriteers. VEC Volunteer examners, all organized geograptucally by ARRL Divi sion The Blue pages contain a QST 10 yeat cumulative index, OEX and Gateway bibliographies. TIS into and more' Every ham should have a copy of this book it their shack 1986 AR-FRD

Softbound $\$ 2.50$

GIL-A collection of classic QST cartoons drawn by Phil "Gil" Gildersleeve, W1CJD From the late 20's through 1966 "Gil" contributed over 1500 drawings and covers to OST Hams around the world recognize Jeeves, the handy man who could handle just about any project and can identity members of their clubs in Gilf's Field Day covers fun reading tor newcomers-nustaigua for old timers-qreat reading for all - 1986110 pages
AR-GL Sottbound $\$ 5.00$
Please enclose $\$ 350$ to cover shipping and handling

nam

raddio BOOKSTORE

The Nicest Things Come In Small
 Packages.

The SS-32HB is a new hybrid sub-audible encoder plucked from Communications Specialists' Hothouse. It has grown through a cross of the time tested SS-32, the subminiature SS-32M and space age micro circuitry. This programmable 32 tone encoder measures a scant $.5 \times 1.0$ x. 15 inches; no small wonder it allows the addition of continuous tone control to a bunch of hand held transceivers that lack space.

Why not snip your problems in the bud, with our fast, one day delivery and attractive one year warranty.
$\$ 29.95$ each

Introducing all-mode radios for your mode of travel.

Yaesu's 2-meter FT-290R and 6-meter FT-690R Mark II Series are the perfect all-mode traveling companions.

On the road, simply snap on the heat sink, apply 12 volts of power, and you've got a 25 -watt mobile station. (FT-690R:10watts).

On foot, attach the optional C-cell battery pack and shoulder strap, and take off with 2.5 watts RF output.

You get around fast on SSB, CW and FM with ten memories; dual VFOs, LCD display, automatic storage of repeater shift into memory register, offset tuning during receive or transmit for satellite operation, relative power output/S-meter, and optional CTCSS unit.

And everything fits into a lightweight-yet-rugged case, measuring just $2114 \times 6112 \times 81 / 4$ inches.

The FT-290R and FT-690R Mark II are perfect for emer geney use, camping trips, talking around town, and DX work.

Ptus each is priced to maximize your ham budget's mileage.
So discover Yaesu's 2-meter FT-290R Mark II and 6-meter.
FT690R Mark II all-mode transceivers today. They're just a quick trip away at your nearest Yaesu dealer.

YAESU
 Our 30th Anniversary.

KENWOOD

"DX-citing!"

TS-440S Compact high performance HF transceiver with general coverage receiver

Kenwood's advanced digital know-how brings Amateurs world-wide "big-rig" performance in a compact package. We call it "Digital DX-citement"-that special feeling you get every time you turn the power on!

- Covers All Amateur bands

General coverage receiver tunes from $100 \mathrm{kHz}-30 \mathrm{MHz}$ Easily moditied for HF MARS operation

- Direct keyboard entry of frequency - All modes built-in USB, LSB, CW, AM, FM, and AFSK. Mode selection is verified in Morse Code
- Built-in automatic antenna tuner (optional) Covers 80-10 meters. - VS-1 voice synthesizer (optional)
- Superior receiver dynamic range Kenwood DynaMix high sensitivity direct mixing system ensures true 102 dB receiver dynamicrange (500 Hz bandwidthon 20 m) - 100% duty cycle transmitter Super efficient cooling permits continuous key-down for pernods exceeding one hout. RF input power is rated at 200 W PEP on SSB, 200 W DC on CW, AFSK, FM, and 110 W DC AM (The PS 50 power supply is needed Ior continuous duty)
- Adjustable dial torque
- 100 memory channels

Frequency and mode may be stored in 10 groups of 10 channels each. Split frequencies may be stored in 10 channels for repeater operation.

- TU-8 CTCSS unit (optional)

Subfone is memorized when TU-B is installed

- Superb interference reduction IF shift, tuneable notch filter, noise blanker, all-mode squelch, RF attenuator, RIT/XIT, and optional fitters fight ORM
- MC-42S UP/DOWN mic, included
* Computer interface port
里

If filter functions - Dual SSB IF filtering A built-in SSB fitter is standard. When an optional SSB filter ($\mathrm{YK}-885$ or $\mathrm{YK}-88 \mathrm{SN}$) is installed, dual filtering is provided. - VOX, full or semi break-in CW: AMTOR compatible.

Optional accessories:

- AT - 440 internal auto. antenna tuner ($80 \mathrm{~m}-10 \mathrm{~m}$) -AT-250 extemal auto tunet ($160 \mathrm{~m}-10 \mathrm{~m}$) - AT - 130 compact mobile antenna tuner $(160 \mathrm{~m}$ 10 m) (F. 232 C IC- 10 level translator and modem IC kt - PS - 50 heavy duty powet supply * PS - 430/ PS-30 DC power supply - SP-430 external speaker $~ M B-430$ mobile mounting brackel -YK $88 \mathrm{C} / 88 \mathrm{CN} 500 \mathrm{~Hz} / 270 \mathrm{~Hz}$ CW tilters * YK-88S B8SN $24 \mathrm{kHz} / 1 . \mathrm{BHz}$ SSB liters $=$ MC-60A/80/85 desk microphones - MC-55 (8P) mobile microphone - HS-4/5/6/7 headphones * SP-40/50 mobile speakers - MA-5/VP-1 HF 5 band mobile helical antenna and bumper mount $=$ TL-922A 2 kw PEP lineat amplifier - SM-220 station montor - VS-1 voice synthesizer - SW-100A/200A/2000 SWR/power meters * TU-B CTCSS tone unit -PG-2C extia DC cable.

Kenwood takes you from HF to OSCAR!

Complete service ma mais are avatiable for all Ino Kenwood transcevers and most accessories Specifications and prices are sutject to change without notice or othigation

[^0]: Send change of address to ham radio

[^1]: A complete line of accessonies is avalable for these transceivers

[^2]: Crossband linking - VHF/UHF to HF
 Telephone access to your home station
 BSR Home Control interface
 Electronic Mailbox
 ShackPatch ${ }^{*}$ intercom into the shack
 PersonalPatch ${ }^{*}$ simplex autopatch

[^3]: 280 is a trademark of Zilog. Inc

[^4]: By Olin K．McDaniel，Jr．， W4PFZ， 1327 Pinckney Avenue， Florence，South Carolina 29501

[^5]: In Germany Eiextronikiaden, Witheim - Mellies SIt $88 \quad 4930$ Detmold 18 West Germany In Japan Toyomura Electronics Company, Ltd . 7-9. 2-Chome Sota-Kanda Chiyoda-Ku, Tokyo, Japan

