FEBRUARY 1987 / $\$ 2.50$

ham
 radFomagazine

BUY YOUR HF FOR PERFORMANCE, NOT BY THE POUND

- All HF Band Transceiver/
 - General Coverage Receiver
 - HM-12 Scanning Mic Included
 - 12 Memories/Frequency and Mode
 - 105dB Dynamic Range
 - All Modes Built-In USB, LSB, AM, FM, CW

The IC-735 is a heavyweight when you compare features and performance. Other transceivers may weigh more than the advanced IC-735 compact HF transceiver, but inch-for-inch and pound-forpound, the IC-735 outweighs them all.

Ultra Compact. Measures only 3.7 inches high by 9.5 inches wide by 9 inches deep and weighs only 11.1 pounds. Without question, the IC-735 is the best HF transceiver for mobile marine or base station amateur operation.

All Amateur Band Coverage. It's a high performer on all the ham bands, plus it includes general coverage reception from 100 kHz to 30 MHz . May be easily modified for MARS operation.

12 Memories. Frequency and MODE may be easily stored and retrieved in the 12 tunable memories.

Exceptional Receiver. To enhance receiver performance, the IC-735 has a built-in receiver attenuator, preamp. and noise blanker. PLUS it has a 105 dB dynamic range and a technologically advanced low-noise phase locked loop for extremely quiet rock-solid reception.

Simplified Front Panel. Controls which require infrequent adjustment are placed behind a unique hatch cover on the front panel of the radio. The hatch cover is designed to protect seldom used controls from being accidentally knocked off line, but also provides easy access. The large LCD readout and con-

veniently located controls enable easy operation, especially important for the mobile environment.

More Features. FM built-in, HM-12 scanning mic, program scan, mode scan and memory scan. Switchable AGC, automatic SSB selection by band and RF speech processor. Continuously adjustable output power up to 100 watts. 12 V operation, 100% duty cycle and deep tunable notch filter.

Options. A new line of accessories are available, including the $\mathrm{AH}-2$ mobile antenna system, AT- 150 whisper quiet automatic bandswitching antenna tuner for base station operation and the PS-55 power supply. The IC-735 is also compatible with most of ICOM's existing line of HF accessories.

See the IC-735 performance heavyweight at your local authorized ICOM dealer.

KENWOOD

By Popular Demand!
 - Easy-to-operate, functional design.

 TH-21BT/31BT/41BTThe smallest HT" is now even better! The new "BT-Series" gives you a plus-a built-in DIP switch programmable CTCSS encoder! Now you can access more than one "private line" over the air! The original TH-21A Series (The Smallest HT") is still available from the VHF leader-Kenwood!

- High or low power. Choose 1 watt highenough to "hit" most local repeaters; or a batterysaving 150 mW low.
- Pocket portability! Kenwood's TH-series HTs pack convenient, reliable performance in a package so small, it slips into your shirt pocket! It measures only 57 (2.24) W x 120 (4.72) $\mathrm{H} \times 28$ (1.1) D mm (inch) and weighs 260 g $(.57 \mathrm{lb})$ with PB-21.
- Expanded frequency coverage (TH-21BT/A).
Covers $141.000-150.995 \mathrm{MHz}$ in 5 kHz steps, includes certain MARS and CAP frequencies.
TH-31BT/A: $220.000-224.995 \mathrm{MHz}$ in $5-\mathrm{kHz}$ steps.
TH-41BT/A: $440.000-449.995 \mathrm{MHz}$ in $5-\mathrm{kHz}$ steps.

[^0]Three digit thumbwheel frequency selection and top-mounted controls increase operating ease.

- Repeater offset switch.

TH-21BT/A: $\pm 600 \mathrm{kHz}$, simplex.
TH-31BT/A: -1.6 MHz , reverse simplex.
TH-41BT/A: $\pm 5 \mathrm{MHz}$, simplex.

- Standard accessories:

Rubber flex antenna, earphone, wall charger, 180 mAH NiCd battery pack, wrist strap.

- Quick change, locking battery case.

The rechargeable battery case snaps securely into place. Optional battery cases and adapters are available.

- Rugged, high impact molded case.

The high impact case is scuff resistant, to retain its attractive styling, even with hard use.

Optional accessories:

- HMC-1 headset with VOX
- SMC-30 speaker microphone
- PB-21 NiCd 180 mAH battery
- PB-21H NiCd 500 mAH battery
- BC-2 wall charger for PB-21H
- BC-6 2-pack quick charger
- DC-21 DC-DC converter for mobile use
- BT-2 manganese/alkaline battery case
- EB-2 external C manganese/alkaline battery case
- SC-8/8T soft cases with belt hook
- BH-3 belt hook
- AJ-3 thread-loc to BNC female adapter
- RA-8A/9A/10A StubbyDuk antenna
- TU-6 sub-tone unit (TH-21AT/A only)

More information on the Smallest HT ${ }^{\text {w }}$ is available from Authorized Kenwood Dealers.

KENWOOD

TRIO-KENWOOD COMMUNICATIONS
1111 West Walnut Street
Compton, California 90220

ham

radio

FEBRUARY 1987
volume 20, number 2
T. H. Tenney, Jr., W1NLB publisher
Rich Posen, K2RR editor-in-chief and associate publisher

Dorothy Rosa, KA1LBO assistant editor

Joseph J. Schroeder, W9JuV Alfred Wilson, W6NIF associate editors
Susan Shorrock editorial production
editorial review board
Peter Bertini, K1ZJH Forrest Gehrke, K28
Michael Gruchalla, P.E
Bob Lewis, W2EBS
Mason Logan, K4MT
Vern Riportella, WA2LQO
Ed Wetherhold, W3NQN
publishing staff
J. Craig Clark, Jr., N1ACH assistant publisher Rally Dennis, KA1JWF director of advertising sales

Dorothy Sargent, KA1ZK advertising production manage Susan Shorrock circulation manager Therese Bourgault circulation cover art
Hans Avers, PA0CX
ham radio magazine is published monthly by Communications Technology, Inc Greenville, New Hampshire 03048-0498 Telephone: 603-878-1441
subscription rates
one year, $\$ 22.95$; two years, $\$ 38.95$; three years, $\$ 49.95$ Canada and other countries (via surface mail) one year, $\$ 31.00$ two years, $\$ 55.00$; three years, $\$ 74.00$ Europe, Japan, Africa (via Air Forwarding Service): one year, All subscription orders payable in $U 5$. postal money order or check drawn on U.S. bank
international subscription agents: page 108

Microfilm copies are available from University Microfilms, International Ann Arbor, Michigan 48106 Order publication number 3076 Cassette tapes of selected articles from ham radio are available to the blind and physically handicapped from Recorded Periodicals 919 Walnut Street, Philadelphia, Pennsylvania 19107 Copyright 1987 by Communications Technology, Inc Title registered at U.S. Patent Office

110 advertisers index 106 ham mart and reader service 95 new products
6 comments 4 reflections
88 DX forecaster 68 short circuits
108 flea market
106 ham mart

looking ahead to the year 2000： 13 more exciting years for Amateur Radio

In last December＇s＂Reflections＂we reviewed the past 13 exciting years of Amateur Radio as reported in HR Report and Presstop．It＇s hard to appreciate the extent to which Amateur Radio can change in such a short period until you see it sum－ marized on one crowded page．But as the old saw has it，＂You ain＇t seen nothing yet！＂

The art and practice of radio communications has been in a state of flux since even before Hertz，Fessenden，Marconi， and a cast of dozens more started seriously experimenting with＂the ether＂toward the end of the last century．That＇s cer－ tainly not going to change as this century draws to a close．Look for smaller，smarter，more sophisticated，more efficient versions of the kinds of hardware（not to mention embedded software）we＇re enjoying today－that＇s inevitable．And，of course，there＇ll be comparable new technologies．Just as we＇ve seen a tremendous increase of interest in and use of AMTOR， packet radio and，to a degree，spread spectrum（which，by the way，we in Motorola＇s Military Engineering Division were examining as an option for＂secure battlefield communications＂a quarter of a century ago），the next 13 years are sure to see the incorporation of both yet－unthought－of new techniques and revolutionary new applications for well－established techniques．For example，one need go no further than AMSAT＇s exciting Phase 4，which calls for a geostationary satellite （or satelites）uplinked through＂gateway＂stations all over the globe．Eventually，a handheld－equipped Amateur operating from almost anywhere will be able to call－selectively－any similarly equipped Amateur virtually anywhere else in the world at any hour of the day or night！
However，it＇s not in the hardware end of Amateur Radio that the most revolutionary things are likely to happen，but in the perception and application of the Amateur Service itself．Like it or not－and this is a trend that＇s already upsetting a number of thoughtful，dedicated，active，Amateurs－much of what Amateur Radio is today is going to change drastically or even disappear by the year 2000．Examples of some of these possible new directions may be found in the FCC＇s Working Paper 20：Alternatives For Improved Personal Communication，which was released last September．Authored by Jim McNal－ ly，WB3APV，of the FCC＇s Office of Plans and Policy，this provocative study begins with the assumption that there is a need for some form of reagily available＂personal communication．＂Furthermore，it asserts that this need is not being met by any current radio service－namely cellular radio or other common carriers，Amateur Radio， 27 MHz CB，or GMRS（for which McNally also holds a license）．

This need，greatly stimulated by the CB explosion of the 1970s，isn＇t going to go away．If anything，it＇s going to grow， and services that are unwilling or unable to adjust themselves to accomodate at least some of that need are going to lose －both frequencies and support－to those that do．
What this means to Amateur Radio is that we＇re going to have to learn to take advantage of this evolution rather than fight it．McNally suggests，for instance，allowing an Amateur＇s family members limited access to some VHF or UHF frequen－ cies，using the Amateur＇s callsign．At the same time，there＇d also be a correlated relaxation in the limits of＂permitted communications．＂Maybe－at last－we＇ll even be able to use the autopatch to order a pizza or warn the boss we＇ll be late for work because of a traffic jam！

Of course，the concept of the Amateur as an experimenter and／or professional communicator isn＇t going to go away． If anything，it＇s likely to expand as a more broadly conceived Amateur Radio Service attracts a more diverse group of users who can bring new skills and applications to what is，even today，too widely perceived as a narrow，elitist hoibby．Though the popular image of an Amateur cloistered in his basement workshop，punching holes for a new rig in a bread pan chassis， will fade before a growth pattern dominated by entry－level＂Communicators＂talking through UHF handhelds，there＇ll still be plenty of room for EME or meteor scatter experimenters，hf traffic handling and DXing，and the kind of all－encompassing technological sophistication that created OSCAR 10 and conceived Phase 4.

Though all this may seem to be radical＂pie－in－the－sky＂fantasizing to some Amateurs，consider the following：greatly enhanced Novice and Tech privileges are in process at the FCC and may well have been adopted by the time this issue leaves the press．Furthermore，though code－free Amateur license proposals have been knocked flat a couple of times，the concept of further relaxing entry－level Amateur code requirements isn＇t＂out．＂The Amateur community has demonstrated to the FCC that it is fully capable of running that most vital function of the Amateur licensing program，Amateur examina－ tions．As a result，the Commission is now seriously considering delegating responsibility for issuing Amateur callsigns to the private sector．The long－term implications of this seem obvious－ever－increasing responsibility for self－maintenance and operation，by the Amateur service．

The logical result of all this could very well be－even before the year 2000 －a larger and broader－based，self－administered Amateur Radio Service．Are we ready for such radical change？I hope so！
The next 13 years promise to be most interesting ones for Amateur Radio．Unfortunately，based on the current age profile and the actuarial tables，a shocking proportion of us won＇t be around long enough to see the new century in and，conse－ quently，all these exciting new developments in Amateur radio，come to pass．I hope I am，and I hope you will be as well．

Joe Schroeder，W9JUV
Associate Editor

Hear itAll!

R-5000

High performance receiver

THE high performance receiver is here from the leader in communications technology-the Kenwood R-5000. This all-band, all mode receiver has superior interference reduction circuits, and has been designed with the highest performance standards in mind. Listen to foreign music, news, and commentary. Tune in local police, fire, aircraft, weather, and other public service channels with the VC-20 VHF converter. All this excitement and more is yours with a Kenwood R-5000 receiver!

- Covers 100 kHz- 30 MHz in 30 bands, with additional coverage from $108-174 \mathrm{MHz}$ (with VC-20 converter installed).
- Superior dynamic range. Exclusive Kenwood DynaMix ${ }^{\text {tw }}$ system ensures an honest 102 dB dynamic range. ($14 \mathrm{MHz}, 500 \mathrm{~Hz}$ bandwidth, 50 kHz spacing.)

- 100 memory channels. Store mode, frequency, antenna selection
- Voice synthesizer option.
- Computer control option.
- Extremely stable, dual digital VFOs. Accurate to $\pm 10 \mathrm{ppm}$ over a wide temperature range.
- Kenwood's superb interference reduction. Optional filters further enhance selectivity. Dual noise blankers built-in.
- Direct keyboard frequency entry.

R-2000 $150 \mathrm{kHz}-30 \mathrm{MHz}$ in 30 bands

- All modes - Digital VFOs tune in 50 Hz 500 Hz . or 5 kHz steps • 10 memory channels - Programmable scanning - Dual 24-hour digital clocks, with timer - 3 built-in IF filters (CW filter optional) - All mode squeich, norse blanker, RF attenuator, AGC switch. S meter - 100/120/ 220/240 VAC operation • Record, phone jacks - Muting terminals • VC-10 optional VHF converter (118 -174 MHz)

[^1]- Versatile programmable scanning, with center-stop tuning.
- Choice of either high or low impedance antenna connections.
- Kenwood non-volatile operating system. Lithium battery backs up memories; all functions remain intact even after lithium cell expires.
- Power supply built-in. Optional DCK-2 allows DC operation.
- Selectable AGC, RF attenuator, record and headphone jacks, dual 24-hour clocks with timer, muting terminals, 120/220/240 VAC operation.

Optional Accessories:

- VC-20 VHF converter for $108-174 \mathrm{MHz}$ operation • YK-88A-1 6 kHz AM filter - YK-88S 2.4 kHz SSB filter - YK -88SN 1.8 kHz narrow SSB filter • YK-88C 500 Hz CW filter \bullet YK-88CN 270 Hz narrow filter
- DCK-2 DC power cable - HS-5. HS-6.

HS-7 headphones - MB-430 mobile bracket

- SP-430 external speaker - VS-1 voice synthesizer •IF-232C/IC-10 computer interface

More information on the R-5000 and $\mathrm{R}-2000$ is available from Authorized Kenwood Dealers.

KENWOOD

TRIO-KENWOOD COMMUNICATIONS
1111 West Walnut Street
Compton, California 90220

welcome KB2BRL

Dear HR:

My name is Colleen Brady, KB2BRL. I am only 10 years old!
I first got started in learning to be a Ham this past summer. My Dad is an Amateur and I thought that it would be great to get a license too. I wanted to get my license before, but I still needed some more math in school. I have been working on code for a couple of years, but really did serious studying this past summer.

When I started to learn the theory I was surprised that we were covering some of the same things in school. My fifth-grade class was studying powers of 10 , and I found out I had a use for them. Now I can note my frequency or even understand what a milliamp is by using 10 to the -3 . I told my teach-
er, and I had the chance to explain how this math can really be useful, and that I was studying to get my license. Another area that I can use both at school and at home is geography. Now not only can I learn maps and countries in school, but I can use them at home too. On only my third contact I had a QSO with HK3IKP in Bogota, Columbia. The other kids in class have studied SA and Columbia, but I have had the chance to talk with Columbia! I am doing a Science report on sun spots, because we have studied these in school. My report will be a bit different than the others, since mine will talk about sun spots and propagation with radio waves. I guess there are some things in school that you can use.
In my first month as an Amateur I have had the opportunity to talk with 22 states and two countries. It seems that every time I get on there is a new place to look up on the map. Now I look forward to receiving QSL cards in the mail from these contacts. When learning the Morse Code I found it to be difficult at first. Now, even though it is still difficult at times, it is a lot of fun, and I look forward to making yet

another QSO using this form of communications.

I feel I'm a lot luckier than other kids who may want to become a Ham. My Dad, WB2WPM, already has all the equipment. We operate a Kenwood TS-440S, a Cushcraft A-3 Triband, and dipoles for 40 and 80 meters. There's a lot of other equipment too, but until I upgrade I won't be able to use it. I am looking forward to finding an upgrade class this fall so I can get my General class license.

In the picture enclosed you can see my good friend "Lasagna," our 6 -month-old Cocker Spaniel. Besides my Dad, my Mom has her Novice license too, KA2TDG. My 8 -year-old sister has an interest in being a Ham too. In a year or so I will be able to start to teach her the things she will need to know, so she can have a license too.

Colleen M. Brady, KB2BRL East Aurora, New York 14052

wanted: M800 RTTY program

Dear HR:

Does anyone have an M800 RTTY program for the TRS80 Model 3 that they're willing to share?

Bernard Gayrard, F6HGB
"Lou Bouis" Laa-Mondrans
64300 Orthez, France

HORANT for CP/M

Dear HR:

Regarding the HORANT program in the October, 1986, DX Forecaster (page 92), I'm sure that you've received many comments on the footnote giving a substitute for ARC SIN (ASN). I use a CP/M version of MBASIC; substituting
$\operatorname{ASIN}(Y)=\operatorname{ATN}\left(Y / S Q R\left(1-Y^{*} Y\right)\right)$ works fine. Looks like a useful program. Thanks.

Jack G. Hines, K4GIO
Vienna, Virginia 22180

New MFJ-1274 lets you work VHF and HF packet with built-in tuning indicator for $\boldsymbol{\$ 1 6 9 . 9 5}$. . .

. . you get MFJ's latest clone of TAPR's TNC-2, TAPR's VHF/HF modem and built-in tuning indicator that features 20 LEDs for easy precise tuning

Now you can join the exciting world of packet radio on both VHF and HF bands with a precision tuning indicator . . . for an incredible \$169.95!

You get MFJ's top quality clone of the highly acclaimed industry standard TAPR TNC-2. We've made TAPR's modem selectable for both VHF and HF operation. added their precision 20 segment LED tuning indicator, a TTL serial port, an easily replaceable lithium battery for memory back-up and put it all in a new cabinet.

If you don't need the tuning indicator or the convenience of a switchable VHF/HF modem, choose the affordable MFJ-1270 for $\$ 139.95$.

All you need to operate packet radio is a MFJ-1274 or MFJ-1270, your rig, and any home computer with, a RS-232 serial port and terminal program.

If you have a Commodore 64. 128. or VIC 20 you can use MFJ's optional Starter Pack to get on the air immediately. The Starter Pack includes interfacing cable, terminal software on disk or tape and complete instructions . . everything you need to get on packet radio. Order MFJ-1282 (disk) or MFJ-1283 (tape), \$19.95.

Unlike machine specific TNCs you never have to worry about your MFJ-1274 or MFJ-1270 becoming obsolete because you change computers or because packet radio standards change. You can use any computer with an RS-232 serial port with an apropriate terminal program. If packet radio standards change. software updates will be made available as TAPR releases them.

Also speeds in excess of 56 K bauds are possible with a suitable external modem! Try that with a
machine specific TNC or one without hardware HDLC as higher speeds come into widespread use.

You can also use the MFJ-1274 or MFJ-1270 as an excellent but inexpensive digipeater to link other packet stations.

Both feature AX. 25 Level 2 Version 2 software, hardware HDLC for full duplex, true Data Carrier Detect for HF, multiple connects. 256K EPROM, 16K RAM (expandable to 32 K with optional EPROM). simple operation, socketed ICs plus much more.

You get an easy-to-read manual. a cable to connect your transceiver (you have to add a connector for your particular radio), a connector for the TTL serial port and a power supply for 110 VAC operation (you can use 12 VDC for portable, remote or mobile operation).

Help make history! Join the packet radio revolution now and help spread this exciting network throughout the world. Order the top quality and affordable MFJ-1274 or MFJ-1270 today.

MFJ-1273, \$49.95

Now you can tune in HF, OSCAR and other nonFM packet stations fast! This MFJ clone of the TAPR tuning indicator makes tuning natural and easy .- it shows you which direction to tune. All you have to do is to center a single LED and you're precisely tuned in to within 10 Hz .20 LEDs give high resolution and wide frequency coverage.

The MFJ- 1273 tuning indicator plugs into the MFJ-1270 and all TNC-1s. TNC-2s and clones that have the TAPR tuning indicator connector.

Access the world's first

a packet radio PSK modem for JAS-1/FO-12

JAS-1, or "Fuji," the first totally Japanese Amateur Radio satellite, was launched flawlessly on August 12th, 1986, from Tanegashima Space Center, located on an island off the southern tip of Japan. It carries two transponders: a traditional one for voice and CW, and a second that functions as the first spaceborne store-and-forward packet radio mailbox. In orbit a thousand miles above the earth, it's inclined at 50 degrees to the equator, with a period of 120 minutes, offering users an aggregate 2 hours of communication per day.

Suppose you want to send a message to someone halfway around the world. You simply send a message to the mailbox, and in less than an hour it's available for retrieval by your addressee.

equipment

What do you need to use the mailbox? In fig. 1 you'll see that four components are required - a pair of radios, a modem, an AX. 25 protocol Terminal Node Controller (TNC) and a terminal. Regular OSCAR users with packet radio stations will have everything shown except the box labeled "modem." Terrestrial packeteers will certainly have the 2-meter equipment and may well have $70-\mathrm{cm}$ SSB receive capability, together with a steerable Yagi. Elevation rotation is highly desirable, but by no means essential; much of any 20-minute satellite pass is low enough to be within the vertical beamwidth of even modest antennas.

Few stations, however, will have the special FO-12 modem. The built-in Bell 2021200 Baud AFSK modem (modulator/demodulator) found in standard TNCs cannot be used with JAS-1/FO-12. You'll have to dis-

rnoto A. Launched in August, 1986, JAS-1 ("Fuji") carries an AX. 25 packet radio mailbox. (Photo courtesy JARL)

By James Miller, G3RUH, 3 Benny's Way, Coton, Cambridge, CB3 7PS, England

fig. 1. Basic packet station requires addition of special modem for direct JAS-1 operation.
connect the internal modem and substitute an external modulator/PSK demodulator such as the one described in this article. This isn't particularly difficult. Just build the circuit, link it to your TNC with only four or five wires, adjust the audio connections, and the global mailbox is yours to enjoy!
Note: this modem is suitable for your TNC only if your TNC's internal modem can be bypassed. Both the TAPR-1 and TAPR-2 designs allow this (as evidenced by the HD-4040, AEA's PKT-1 and PK-80, PacComm's TNC-200, GLB's TNC2A, and the MFJ 1270, for example).
If your TNC isn't based on the TAPR design, you may nevertheless be able to intercept the RXdata, TXdata and TXclock from their internal modem by cutting tracks. If this appears to be impossible, your best option may be to build a TAPR TNC-2 kit and integrate it with this JAS-1/FO-12 modem, thereby creating a satellite-dedicated TNC.

link format

For reference, here's a brief technical summary of the JAS-1/FO-12 link format. I'll explain unfamiliar terms as we go along:

You receive on 435.910 MHz , SSB/CW mode, in a 2.4 kHz bandwidth. The doppler shift will be up to $\pm 8 \mathrm{kHz}$, and there is a rate of change up to 40 Hz per second on the highest elevation passes. You transmit on $145.850,145.870,145.890$, or $145.910-\mathrm{MHz}$ fm; doppler shift correction is unnecessary. An uplink effective radiated power of 100 watts (for example, 10 watts to a 10 -element Yagi) is quite sufficient.
The uplink modulation is fm ; the downlink is Phase Shift Keying (PSK). Data rates are 1200 bits per second, normal packet NRZI, except that the uplink is exclusive/ored (EXORed) with its own $1200-\mathrm{Hz}$ clock.

modem description

This modem has been designed with as much flexi-

Photo B. G3RUH packet radio/satellite station. System components are linked as shown in fig. 1.
bility as possible so you can tailor it for your particular application. As illustrated in fig. 2, it consists of an uplink modulator, a downlink demodulator, an automatic UP/DOWN tuner to track changing doppler shift on receive, and power supplies. Table 1 lists the modem's specs.

The uplink modulator (U1 and U6) takes the signals TXdata (transmitted data) and TXclock from the host TNC and combines them into the TXaudio (transmit audio) signal for the 2 -meter fm transmitter. As shown in fig. 2, signals flow from right to left. U1 pins 3 and 11 are used as non-inverting buffers. Diodes D1 and D2 prevent U1 from overloading the TNC when the modem is switched off. Note that the modulator ICs use a 5 -volt, rather than a 12 -volt, supply.

From a TNC-1, TXclock is at 32 times the bit rate. For a TNC-2, it's 16 times, so link LKC selects the correct division ratio from divider U6. The $1200-\mathrm{Hz}$ clock produced at test point TP4 is kept in phase with the data stream by resetting divider U6 on every data transition. This is done from U1 pin 10 and $\mathrm{R} 6-\mathrm{C} 1$, which generate short 16 - μ second pulses. Clock and data are EXORed (this is called "Manchester Coding") in U1

pins 5 and 6 , and the 5 -volt peak-to-peak signal at U1 pin 4 is then filtered down to about 30 mV . You can reduce the output voltage if necessary by increasing R3. Superimposing a $1200-\mathrm{Hz}$ clock on the data in this way simplifies the satellite's own electronics considerably.

Note: you may recognize Manchester coding as just PSK in disguise! You can, therefore, use this modem for experimental PSK communication. This subject will be addressed under the heading, "use for terrestrial PSK packet" below.

Considerable effort has gone into the development of the downlink demodulator in order to meet the goals of elegance, robustness, simplicity, ease of alignment and testing, minimum number of discrete components, and proper matching to the FO-12 signal characteristics. While it owes its origin to my earlier OSCAR-10 demodulator, ${ }^{1}$ it was, in fact, not actually selected until a number of other candidates -- both simpler and more complex - had been evaluated.

In contrast to conventional local packet radio, which uses two tones (AFSK) to signal binary 0 or 1, FO-12 uses PSK modulation. The carrier signal PHASE is changed 180 degrees (inverted) when a change in binary level is signaled. You can think of this as using a phase of +90 degrees for " 0 " and - 90 degrees for " 1 ," or vice versa. Either is acceptable because the TNC is interested only in changes.

To demodulate phase-shifted signals you need a phase reference and a phase detector. ICs U7, U8, U9 and U11 recover this reference "carrier" (available at TP1) from the signal. EXOR gate U 7 pins 1 and 2 form the phase detector, the output of which is filtered (TP3), limited, level shifted and output to the TNC as RXdata.

A simple phase-locked loop (PLL) can't be used to recover the carrier from a PSK signal because with random data there's no discrete frequency available for a loop to lock onto. Most PSK demodulators have to rely on some non-linear multiplicative processing instead. The recovery circuit used here is a digital "squaring loop."

U4 pins 2,3 , and 1 are a limiter, which simply makes all subsequent signal processing digital. The limited signal is multiplied by itself delayed by $1 / 4$ cycle. The delay is provided by 4 -bit shift register (U8), which samples the signal at its pin 7 and is clocked at 16 times the carrier frequency. The multiplication happens in EXOR gate U7 pins 5 and 6. This creates (at U7 pin 4) one cycle of twice the carrier frequency for every zero crossing of the signal. Mathematically we can say the signal is:

$$
\cos \left(\omega t \pm \frac{\pi}{2}\right)
$$

with the + or - corresponding to data 0 or 1 . So the
effect of this multiplication is (ignoring amplitude):

$$
\begin{gathered}
\cos \left(\omega t \pm \frac{\pi}{2}\right) \times \sin \left(\omega t \pm \frac{\pi}{2}\right)= \\
\sin (2 \omega t \pm \pi)=\sin 2 \omega t \\
\text { or } \\
\text { signal } \times \text { delayed }=\text { constant phase at } 2 \omega
\end{gathered}
$$

The phase-locked loop U11 runs at 16 times carrier frequency. With associated divide-by-16 U9, it locks onto U7 pin 4's double frequency signal, providing a smooth recovered carrier at U9 pin 11. Wide and narrow loop bandwidths can be selected with switch S1 to facilitate initial signal acquisition (use optional).
Recovered carrier, which will be around 1500 Hz , is applied to phase detector $U 7$ pin 2, together with the received signal at pin 1 . If they are (for example) in phase, U7 pin 3 will go low, with residual noise being smoothed away by R30-C3. The following op-amp, is used as a comparator/limiter, which then drives 12 volts to the TTL level converter, U2. Signal RXdata then goes off to the TNC.
Two additional circuits complete the demodulator. It's valuable to have a "LOCK" indication. A simple EXOR gate, $\mathrm{U7}$ pins 8 and 9 , provides this by multiplying the PLL stimulating doubled-carrier frequency signal by the recovered $2 f$ signal from divider U9 pin 12 . When locked, U7 pin 10 goes high. U4 pins 5 and 6 form a threshold detector, which then drives LED L4 via Q1.

When not in mailbox mode, the satellite sends telemetry in Morse code on 435.795 MHz . Spare gate $\cup 10$ pins 8 and 9 have simply been wired to provide a regenerated Morse output for (optional) computer use.
With the exception of output buffer U2, the demodulator operates from 12 volts.
This PSK demodulator is completely aperiodic. Its operating frequency is set by VR1, and could in principle operate at the i-f. As shown it tunes from approximately 700 Hz to 70 kHz . The tracking bandwidth is set by R29, and is nominally $\pm 250 \mathrm{~Hz}$. Designed loop bandwidths are 20 Hz and 100 Hz , with a damping factor of 0.7 . Data rates faster than 1200 Baud are accommodated by reducing R30 accordingly.

auto-tuning

The received signal frequency changes considerably as a result of doppler shift; a total swing of 16 kHz is typical, with rates of change peaking at 40 Hz per second. Tuning a receiver by hand, maybe even adjusting rotators at the same time, and operating a data terminal keyboard clearly poses some logistic problems!
A solution is provided in the auto-tune circuits, which work by activating the UP/DOWN signals of your receiver. They are designed to suit all known ICOM, Kenwood, and Yaesu standards. All differ,

fig. 3. Typical JAS-1 installation, showing connections between radio, modem, and TNC.

Table 1. JAS-1 FO-12 Modem PCB specifications.
Modem:
Downlink; input 50 mV to 5 -volt rms RX audio. PSK demodulator to TTL digital, 1200 bps .

Uplink: 1200 bps Manchester encoding modualtor to Mic level (about 30 mV p-p) TX audio. RX carrier LOCK LED indication Selectable loop bandwidth. Morse code regenerator.

Connects to AX. 25 TNC MODEM DISCONNECT jack. Suitable for TAPR TNC-1 or TNC-2, (and any other, provided the internal modem can be bypassed). TNC digital connections needed include TXdata, RXdata(in), RXdata(out), TXclock, GND.

Digital AFC: tracks changing doppler shift via the UP/DOWN signal lines of your RX rig. Designed for all known ICOM, Kenwood, and YAESU standards. Adjustable for $10-100 \mathrm{~Hz}$ per step. Positive pulses, negative pulses, and ICOM bi-level. Tracking ON/OFF switch. Manual tuning indication by LEDs and centerzero meter.

Set-up: three preset pots - for PLL frequency, local 6 -volt supply, and UP/DOWN tuning gain.

Power: ac line, built-in PSU; 12-volt ac input; or $12-14$ volts dc, a 40 mA .

PCB: 160 by 100 mm (single eurocard) double-sided, platedthrough, labeled with instructions. Standard CMOS and LSTTL used. No hard-to-get parts.
even between models from the same manufacturer.
The VCO tuning voltage (about $20 \mathrm{mV} / \mathrm{Hz}$) from U11 pin 2 is amplified by U5 pins 2 and 3 , which have gain adjustable from $\times 1$ to $\times 10$ by VR3. This opamp also drives a center-zero tuning meter. After filtering by R26-C23, the voltage (which increases for fall-

Photo C. Interior and backplane view of modem, showing connectors to radio, TNC, and terminal.
ing frequency) is offered to two comparators, with upper and lower thresholds set by resistor chain R11-R2-R4-R12, 1.28 volts above and below the 6 -volt reference. When exactly on tune, outputs U5 pins 7 and 8 are low. If off tune, then the appropriate comparator output goes high.

U10 pins $1,2,5$, and 6 , if enabled by Tune ON switch S2, pass the signal via 12 volts to the 5 -volt level shifter U2 to the open collector hex inverter U3,

When we set out to make the best amateur radio equipment in the world, we had some pretty tough standards to live up to ...

... yours

So we designed the RC-850 Repeater Controller, the industry's top of the line repeater control system. Now in if's "third wave" of innovation, thanks to its designed for the future architecture and new sottware releases.
The ' 850 defines the industry standard in repeater control systems.

- Fully remotely programmable with Touch-Tone commands
- Front panel LED display
- Over 300 word customized male and female speech synthesis vocabulary
- Time/day of week Scheduler with 10 set-up states, 30 changeovers and events, over 100 scheduled items for hands off operation and automatic reminders.
- Full or half duplex autopatch, autodial (250 numbers), emergency autodial, reverse autopatch, antidialer, toll restrict including telephone exchange tables, supports remote and multiple phone lines
- Informative remotely programmable ID's (17), tail messages (13). bulletin boards (5)
- 16 channel voice response analog metering, automatic storage of $\mathrm{min} /$ max values on each channel, values may be read back on command or may be included in any programmable messages
- Supports synthesized remote base transceivers and full duplex links
- Individual user access codes to selectable features
- Mailbox for user-to-user, and system-to-user messages
- Paging - two-tone, $5 / 6$ tone, DTMF, CTCSS, HSC display. user commandable and may be included in programmable messages (i.e. alarms)
- Easy hookup to any repeater

Our new Digital Voice Recorder lets you remotely record ID's, tail messages

 and various other response messages for automatic playback through your repeater. Audio is stored digitally with no-compromise reproduction quality in up to eight megabits of memory. The DVR can support up to three independent repeaters for a low per-channel cost. its Touch-Tone activated voice mailbox lets your users easily record messages for other users when they aren't around.If your repeater budget can't afford the '850, we offer the RC-85 Repeater Controller, which we like to call the "second best repeater controller in the world". It's a scaled down, simplified version of our ' 850 , but overall, it offers more capability and higher quality than anyone elses control equipment at any price.

- Remotely programmable with Touch-Tone commands
- Over 175 word customized male speech synthesis vocabulary
- Selectable "Macro sets" for easy control operator selection
- Autopatch, autodial (200) numbers, emergency autodial, reverse patch
- Remotely programmable informative ID's (7), tail messages (3) bulletin board (2)
- Supports synthesized remote base transceiver, control receiver, alarm
- Selectable, informative courtesy tones
- Talking S-meter, Two-tone paging
- Easy hookup to any repeater

For those who like to "roll their own", we can get you off to a rolling start with our ITC-32 Intelligent Touch-Tone Control Board. Much more than just a decoder, it's a mini-control system of its own, with the basic repeater and remote base functions built-in. And it can be tailored by you with its Personality Prom.

- 28 remotely controllable latched or pulsed logic outputs
- 4 alarm or remote sensed logic inputs
- Response messages to confirm command entry
- Repeater functions including COR, IDer, timers, courtesy tone, etc.
- Remote base functions including control of synthesized transceiver
- Remotely recordable, variable length audio tracks, accessed from controller messages
- Top quality, no compromise audio reproduction
- Supports up to three repeaters for cost effective installation
- Expandable to roughly 6 minutes of speech in 8 megabits of memory
- Easy interface to RC-850, RC-85 controllers, or to any stand-alone repeater

QST: Attention All Hams

If you own a shack, you should know about ShackMaster".

ShackMaster lets you carry your home station with you in the palm of your hand. It acts as your gateway to the world, linking your handheld transceiver to your high performance HF station. Now, instead of your valuable home equipment being available to you 1% of the time. it's available 99\% of the timel Whether around the house, in the yard, or across town, ShackMaster ler's you take it with you. But that's just part of ShackMaster's story. It lets you communicate with the family by handling third party traffic-its electronic mailbox and intercom let you keep in touch. And a simplex patch lets you place important calls directly through your home phone.

Crossband linking - VHF/UHF to HF
Telephone access to your home station
BSR Home Control interface
Electronic Mailbox
ShackPatch ${ }^{*}$ intercom into the shack
PersonalPatch* simplex autopatch

All our products are documented with high quality, easy to read manuals, Our goal is to advance the state of the repeater art. But most of all, our products put the FUN back into the FUN MODE!

To order one of these advanced control products. call 408-727-3330 Technical manuals are available for purchase and the amount paid is applied as a deposit on the equipment For specifications and a copy of our ACC Notes newsletter, just write or send in your QSL card to
advanced computer controls, inc.

Table 2. Parts list.

C1	$0.001 \mu \mathrm{~F}, 10$ percent	R36-39,	47 k
C2-13	$0.01 \mu \mathrm{~F}, 10$ percent	41,42	
C14	$0.0022 \mu \mathrm{~F}, 10$ percent	R40	470 ohms
C15-20	$0.1 \mu \mathrm{~F}, 10$ percent	S1-2	SPDT toggle switch
C21-23	$1{ }_{\mu} \mathrm{F} 16$-volt tantalum		
C24	$470 \mu \mathrm{~F} 25-\mathrm{volt}$	T1	12-volt, 3VA Transformer, RS 207-829, Farnell 141-471
C25	$560 \mathrm{pF}, 5$ percent	TPO, 1,2, test points	
CR1-4	1 N 4004 , etc.	3,4	
D1-2	1N4148, etc.	U1,7	4070 Quad Exor
DS1-4	LED 10 mA	U2	4049 Hex Inverter Buffer
J1	Standard 20 -pin IDC Male PCB header, straight (vertical) or right angle. Straight: RS 471-058, 3M $3428-6202 \mathrm{JL}$ or 3592-6002JL, Ansley 612-2024 or 609-2027. Right-angle: RS 471-137, 3M 3428-5202JL or 3592-5002JL, Ansley 612-2004 or 609-2007, and many others - e.g. Fujuitsu, Berg, ITT Canon, BICC Vero, etc.	U3	74 LS 05 Hex Inverter O.C.
		U4-5	TL084 Quad op-amp
		U6	404012 -stage divider
		U8	4015 Four-bit shift register
		U9	40161 Divide-by-16 (MC14161)
		U10	4011 Quad two-input Nand
		U11	4046 Phase Locked Loop
		U12	78L05 5 volt Regulator
J2-J11	Terminals (about 30) for external connections. Can also use 0.1 -inch pitch (center-to-center hole pattern) SIL connectors, ($1 \times 2 \mathrm{pin}, 5 \times 3$ pin, 1×4 pin, 2×5 pin, 1×10 pin $)$.	U13	78 L 12 12-volt Regulator
		VR1-3	1 M Trimmer, $3 / 8$-inch square, flat mounting: RS 187-321, Dubilier D79-30, A-B E2B, Bourns 3386F,
M1	$\pm 100 \mu \mathrm{~A}$ meter, RS 259-549, Farnell 143-510		Spectrol $63-\mathrm{M}$ or 63M-T-607
Q1-3	BC107, 2N3904, etc. (NPN)	LKC. LKI are made from hookup wire	
R1-R4	270 k	Modular PSU is 12 -volt, 100 mA (RS 591-281), Farnell 147-545 and others.	
R5	1.8 k		
R6	22 k		
R7-9	4.7 k	NOTES:	
R10-13	1 M	The meter, LEDs, and switches are not mounted on the board.	
R14-17	1.5 k		
R18-20	15 k	Power supply components T1, CR1-4, C16, C24, U13 (or modular	
R21	(all resistors are 5 percent)	PSU) are optional.	
R22	1 k	Use of an IDC connector is not obligatory.	
R23-26	100 k	Capacitors: $560-\mathrm{pF}, 0.4$-inch pitch, ± 5 percent polystyrene; C.001-0.1, 0.2 inch pitch, 10 percent dipped ceramic or polyester, 63 to 100 volts typical. $1 \mu \mathrm{~F}, 0.2$-inch pitch, bead tantalum. $470 \mu \mathrm{~F}$ 25 -volt electrolytic, 1.2 -inch pitch, 1.0×0.4 inches.	
R27-29	470 k		
R30	27 k		
R31	750 k		
R32	56 k		
R33-35	68 k	Resistors: Carbon film, 0.25 or 0.5 -watt, 0.4 -inch pitch.	

which creates two pairs of signals. These are highgoing UP/DOWN tune signals at J4-1, J4-2, and lowgoing signals at J4-4, J4-5. All can sink up to 8 mA .

You have to choose the set that suits your rig by referring to your owner's manual. For example, the Yaesu FT726R needs high-going signals, while the Yaesu FT790R uses low-going. The Kenwood 9500 needs low-going. ICOM has a special bi-level standard for the IC741 and similar rigs, where a 0 -volt low signals up, and a 1.3 -volt level means down, and neither (about 4.2 volts) means no action. So for ICOM rigs, install link LKI, and use J4-5 . . . unless the microphone is left connected. In this case, the link can be omitted, because an R40 will be connected inside the mic housing.

For many rigs that use low-going pulses, the pullups R36-R39 can be omitted. You may also have to experiment with the Scan control settings on the re-
ceiver. Some rigs tune in $100-\mathrm{Hz}$ steps, others in steps as small as 10 Hz - hence the reason for including an adjustable gain control (VR3).

power supplies

Flexibility is provided so you can choose your own power supply arrangement: either 12 to 14 volts dc, stabilized at 40 mA , or 12 volts ac (about 0.5 VA), or ac mains (line) or a modular encapsulated PSU.

If you supply 12 -volt dc (probably the same as used by the TNC), then fit all components on the circuit diagram to the right of U13 (i.e., C22, C5, U12, etc.). Connect power to J 10 pins 1 and 2. Pin 3 is 12 volts, too, so if you use SIL (single in-line) connectors, a reversed plug won't lead to disaster.

If you have a 12 -volt ac supply, then connect to J11 and fit all the PSU components shown on the bottom of the circuit diagram. The voltage on C24 should nei-

EIMAC Tubes Provide Superior Reliability at radio station KWAV over 112,000 hours of service!

Ken Warren, Chief Engineer at KWAV reports that their 10 kW FM transmitter went on the air in November, 1972, equipped with EIMAC power tubes. The original tubes are still in operation after over 13 years of continuous duty!
Ken says, "In spite of terrible power line regulation, we've had no problems with EIMAC tubes. In fact, in the last two years, our standby transmitter has operated less than two hours!"
Transmitter downtime means less revenue. EIMAC tube reliability gives you more of what you need and less of what you don't want. More operating time and less downtime!
EIMAC backs their proven tube
reliability with the longest and best warranty program in the business. Up to 10,000 hours for selected types.

Quality is a top priority at EIMAC, where our 50 -year charter is to produce long-life products.

Send for our free Extended Warranty Brochure which covers this program in detail.
Write to:

Varian EIMAC
301 Industrial Way
San Carlos, CA 94070
Telephone: (415) 592-1221
$\checkmark 246$

fig. 4A. PSK packet radio modem: top board art (side 1, full-scale).

fig. 4B. PSK packet radio modem: bottom board art (side 2, shown full-scale).

fig. 4C. PSK modem: component layout diagram, shown superimposed on side 1 art. Note components are placed on side 1.

Photo D. Completed circuit board. AC power supply components have been omitted; link LKC is shown for a TAPR TNC-2.
ther drop below 14.9 volts at full load nor exceed 22 volts.

The associated transformer can probably be screwed to the PCB, though you may feel it wiser to place it remotely. The board is drilled for the specified T1, and also for a popular modular PSU (see parts list, table 2). Line voltage is applied to J9, at the edge of the board.

If there is 110 -volt or 230 -volt ac power on this PCB, you must exercise caution any time the circuit is removed from its enclosure.

connecting the modem to your system

The modem can be connected to the rest of the system in a number of ways; the minimum requirements are shown in fig. 3. First decide whether you're going to use connectors or hand wire it. Select the type of connectors and/or cable you plan to use, and where you're going to locate the PCB. Do you want to dedicate the TNC and modem solely to the satellite application? If so, you could install the PCB permanently within the TNC housing. Do you want to be able to restore instant terrestrial (normal) operation? Then you'll have to use a multi-pole changeover switch (S3) to do this, and put the modem in a properly ifscreened box.

For the radio connections (speaker, mic, and PTT), a socket identical to the one on your TNC can be provided on the modem enclosure, with the signals passing to the changeover switch S3 and then - via a hand-wired connection or another connector plus jumper lead - to the TNC radio port.

connecting to the TNC

The connections necessary for replacing the TNC's standard internal modem with this one are provided on the TNC board at the so-called "Modem disconnect Jack," labeled J5 on the TNC-1 and J4 on the TNC-2. There is no actual connector; the pinout was designed by TAPR to accept a 20 -pin IDC plug if required. (See table 3.)

Four connections are essential; TXdata, RXdata(in), TXclock, and GND. One PCB track must be cut. A fifth connection - internal modem's RXdata(out) may also be brought out if you want to be able to restore standard operation with a remote switch. (See fig. 3).
Ironically, there's little point in using a 20 -conductor ribbon cable if you house the modem in an external enclosure, because screening ribbon is rather messy, and only four or five of the 20 wires are used anyway. However, if your new modem is placed inside the TNC enclosure, then it's worthwhile using. For this reason, a 20 -conductor IDC facility, J1, has been provided on the PCB. But you'll probably prefer to use J 2 instead.

If an external modem is used, select your own method of entry into the TNC enclosure. There are lots of spare pins on the RS232c D-25 wire connector enough for five digital signals, plus two more for 12 -volt power. Choose your pins very carefully, checking that there will be no clash with the regularly used services. I'd suggest pins $12,15,17,18,19$, and 13 , 25. Shield all the connections between TNC and the JAS-1/FO-12 modem.

construction

The ready-made PCB for this project is double sided, plated through, and labeled. Full-scale artwork is detailed in figs. 4A, B, and C. Board and component sources are provided at the end of this article.

The usual caveats apply when assembling the board. Use a fine-tipped iron and fine-gauge resin-core solder. Proceed methodically, checking each soldered joint for integrity immediately after you've done it. Sloppy soldering might send 12 volts back to the 5 -volt TNC logic, which will give you no pleasure. I know, I've done it!

Good soldering will flow smoothly through the holes and be visible from both sides. All component leads must be bright and shiny. Any junk box parts - and the PCB as well, if it's been handled too much - will probably need cleaning.

IC sockets are strongly recommended.
If you do manufacture your own non-plated-through PCB, you'll have to drill about 500 holes measuring 0.032 inch (0.8 mm) on the small pads and 0.048 inch $(1.2 \mathrm{~mm})$ on the large. Remember to solder every component on both sides, and note that there are 31 through-holes to be wired. Do these first; some will be hidden by components. In addition, if you omit any components, you must also install through-wires in their place. Before fitting IC sockets, make sure they're of a type that can be soldered on both sides (many can't) and carefully check for accidental solder bridges between adjacent pins.

Fit components in ascending order of height: diodes, resistors, IC sockets, capacitors, trimmers, transistors, and connectors (if you want them). Observe polarity of C21-C24 and all semiconductors. Do not install ICs yet; install them only after PSU testing. Note that the meter, LEDs, and switches are not mounted on the board.

Wire connections to the PCB can simply be soldered into the holes round the board's edge. Note, however, that these holes are spaced 0.1 inch apart to allow for the optional use of SIL plugs and sockets.

For the finishing touch, deflux the board, using a solvent such as 1:1:1 trichlorethylene or alcohol. Besides improving the board's appearance, this will help expose any solder defects. Further excellent advice can be found in reference 2 , which also provides useful packet radio information.

SEE AND HEAR THOSE ELUSIVE SCPC SIGNALS WITH AVCOM'S NEW STA-70D TEST ANALYZER!

The AVCOM STA-70D IF and FM Test Analyzer was developed to assist in the installation and maintenance of Single Channel Per Carrier (SCPC) satellite reception systems. Designed to be connected to the 70 MHz IF output of a C or Ku Band downconverter the STA-70D displays signal level, interference, and all carriers present. When an antenna is connected to the RF INPUT the FM Broadcast spectrum can be examined. A built in audio demodulator allows the STA-70D to operate as a fixed tune receiver at zero span. This means you not only see the carriers but you can listen to them as well. Price $\$ 1960$
The STA-70D is adaptable to other than the 50 to 110 MHz frequency band used in SCPC satellite communications. For example the STA-70D can be ordered for use as a spectrum display monitor for special ECM requirements. Possible applications are unlimited call or write AVCOM with your requirements.

NEW PSA-35A PORTABLE
 SPECTRUM ANALYZER

The PSA-35A Portable Spectrum Analyzer accurately measures wide band signals commonly used in the United States and European satellite communications industry. The PSA-35A frequency coverage is from less than 10 to over 1750 MHz , and from 3.7 to 4.2 GHz in 6 bands. The PSA-35A features switch selectable sensitivity of either $2 \mathrm{~dB} /$ Div or $10 \mathrm{~dB} /$ Div. The portable, battery or line operated, PSA-35A spectrum analyzer is the perfect instrument for the critical dish alignment and tracking requirements necessary for maximum signal reception.

Price $\$ 1965$
AVCOM manufactures many helpful and unique accessories for the PSA-35A, such as the TISH-40 Terrestrial Interference Survey Horn, the WCA-4 Waveguide to Coax Adapter, the SSC-70 Signal Sampler and Calibrator, the QRM-35 Quick Release Rack Mount, AVSAC, and Overlays. Other AVCOM accesories include 2,4 , and 8 way power dividers (with or without DC power block), broad band amplifiers, DC power blocks, line amplifiers, isolated power dividers, and others.
AVCOM manufactures a full line of economical spectrum analyzers, test equipment and accessories for the satellite communication and microwave industries. These include the MSA-65A Spectrum Analyzer, Sweep Generators, Tracking Generators, and others. AVCOM also manufactures SCPC, audio subcarrier, and video satellite receivers for domestic and international reception; including commercial, broadcast, SMATV, institutional, and private use receivers.

$$
A V C O M^{\circ}
$$

VERTICAL SENSITIVITY
allows you to change the display between 10 $\mathrm{dB} /$ DIV and $2 \mathrm{~dB} /$ DIV.

CENTER FREQUENCY is
a 5 digit, 7 element LED frequency readout that displays center frequency in MHz .

REFERENCE LEVEL is
used to establish the
amplitude reference level
of the top line of the gra-
ticule, either 0, -20, -40

TUNING allows you to select the center frequency and moves the display "window" up or down the spectrum being displayed.
SPAN controls the width of the spectrum being displayed. RF INPUT BNC connector accepts signals to be displayed from less than 50 MHz to over 110 MHz .
AUDIO OUT miniature phono jack for low impedance earphones.

INTENSITY controls the brightness of the display.

HORIZ \& VERTICAL

POSITION these two
knobs control the placement of the display on the screen.

SWEEP RATE controls the rate the analyzer sweeps through the frequency band set by span and the rate at which the analyzer sweeps the display.

AUDIO DEMOD turns the audio feature on or off and controls the volume of the internal speaker or the AUDIO OUT miniature phono jack. With the SPAN control set to ZERO (0) the STA-70D will operate as a fixed tune receiver so you can obtain audio identification of the signal displayed.

NEW!! AVCOM PSA-35A PORTABLE SPECTRUM ANALYZER 10-1750 MHz

INTENSITY controls the brightness of the display.

VERT is used to position the display on the screen.
SCALE is used to select amplitude sensitivity of either $10 \mathrm{~dB} /$ DIV or 2 dB/DIV

POWER switch has 3 positions for Battery Operation, Standby, and AC Line Operation.

BAT CHG switch recharges PSA-35A to at least 80% capacity in about 6 hours.

SWEEP controls rate of analyzer frequency sweep and the speed of the trace
1

across the display.

CENTER FREQUENCY "control tunes spectrum analyzer through each band and centers signals band and centers signals
of interest on the display

BAND SELECT controls input frequency range to accommodate IF, BDC. and LNA output frequencies. 12 GHz block downconverter outputs can be examined. One preset band is provided for unusual test situations.

REFERENCE LEVEL con-

 trols the sensitivity of the display to allow signals as weak as -85 dBm as well as strong signals to be displayed.SPAN determines the width of the spectrum being displayed and can be adjusted to display over 500 MHz or less than one transponder in a sweep.
3.7-4.2 GHz RF INPUT is used when observing the output directly from an LNA. Feedline losses can be measured. Can power an LNA with +18 VDC .

HORIZ is used to position the display on the screen.
LNA/BDC power for feedline powering of system components via RF input connectors.
$10-1750 \mathrm{MHz}$ RF INPUT is used for observing BDC, IF, MATV, and other signals from 10 to over 1750 MHz . Will provide +18 VDC to power system components.

TNC-1	$J 5$ Connections	TNC-2	J4 Connections
12	TX Clock Out	12	TX Clock Out
*	Ground	15	Ground
17	RX Data In	17	RX Data In
18	RX Data Out**	18	RX Data Out**
19	TX Data Out	19	TX Data Out
Cut the track between pins 17 and 18.			
*Unfortunately TNC-1 does not provide a ground pin on J5. Find a local point, such as the WD-1933 chip (U17) pin 20. **Optional			

final checkout

You will need an oscilloscope, an audio signal source and a multimeter. A frequency counter is desirable, but not essential.

Assuming there are no faults whatsoever, just three preset pots need to be adjusted. However, you should also perform the further tests. The meter, LEDs, and switches must be wired to the PCB. Do not attach the TNC or radios at this stage.

First remove all the ICs (U1-U11). Connect the power supply of your choice, verifying that a regulated +12 volts is maintained at J 10 pin 1 . Verify that +5 volts is found on pin 1 of U2. Do not proceed if these tests tail. If they do, you have a power supply problem, which obviously must be fixed first. Check for solder bridges or faulty or misplaced components.

initial alignment

1. Set VR1, VR2 and VR3 to their mid-positions. Set the Loop Bandwidth switch (S1) to NARROW and the Tune switch (S2) to OFF.
2. With power off, insert all ICs. Switch on the power, verifying that both 12 -volt and 5 -volt supplies are still present. The POWER LED should come on. Ignore all other LEDs.
3. Measure the frequency at TP1, adjusting VR1 until this becomes 1500 Hz ; frequency increases clockwise. TPO is a ground (0 volt) terminal.
4. Adjust VR2 (with VR3 at mid-travel) so that the meter is exactly centered.
5. Set VR3 fully clockwise, re-adjusting VR2 if the meter moves from center. Reset VR3 to mid-position. Neither UP, DOWN nor LOCK LEDs should be lit.
6. Connect a $1500-\mathrm{Hz}$ audio generator at a level of 100 $m V$ to 5 volts rms to the RX audio input, J3-3/4. The LOCK LED should light. If the frequency is high, the UP LED will light, with a corresponding movement of the rneter. Vary the frequency and check that the DOWN LED lights appropriately.
7. Fine adjustment of the auto-tuning UP/DOWN sensitivity control VR3 is done later.
8. Now for a vital safety check: measure the voltage on every pin of $\mathrm{J} 1, \mathrm{~J} 2, \mathrm{~J} 3$, and J 4 . They should lie between 0 and +5 volts. If for any reason a higher voltage is measured, find out why - and correct it. There will almost certainly be a soldering error, component failure, or incorrect component used, which could therefore cause extensive and expensive damage to your TNC or receiver.

demodulator tests

1. Vary the input frequency very slowly, verifying that the PLL stays in lock over a $\pm 250 \mathrm{~Hz}$ range approximately. Though the LOCK LED may go out at tuning extremes, the UP/DOWN LEDs will be properly lit, and the meter will indicate one extreme or the other.
2. With the audio generator still connected, and with the LOCK LED lit, verify that the demodulator output signal RXdata is either high (+5 volts) or low (0 volts). Repeat several times by disconnecting the audio, and checking again.
3. Now input receiver noise instead of pure audio. The RXdata signal should jump about at random. The LOCK LED will go out, and the UP/DOWN LEDs and tuning meter may flicker.
4. Final demodulator testing requires a Phase Shift Keyed (PSK) signal. We do this when the modulator has been tested (see "audio loopback," below).

modulator tests

1. The signals TXdata, TXclock and ground must now be connected to the TNC. Switch on the TNC. PCB link LKC should also be connected.
2. Measure the frequency at TP4, which should be a $1200-\mathrm{Hz}$ square wave. If it isn't, check to make sure you've connected link LKC correctly.
3. Examine TXdata; you should find regular data bits present - "Idling."
4. Now examine the $1200-\mathrm{Hz}$ clock (TP4) and TXdata together. Verify that data transitions are seen only when the $1200-\mathrm{Hz}$ clock makes a negative transition.
5. Examine the modulator output TXaudio at J 3 -1,2, which will have an amplitude of about 30 mV peak-to-peak. It should have a $1200-\mathrm{Hz}$ clock-like appearance. Each change in TXdata will cause this clock to invert, giving rise to characteristic gaps in the trace.

audio loopback

1. The TNC should now be connected to a terminal. Temporarily link TXaudio to RXaudio (J3-1 to J3-3). Re-adjust VR1 very slightly counterclockwise towards 1200 Hz at TP1 until the LOCK LED comes on, and fine tune exactly.
2. You should now find that you can CONNECT to
your own callsign, and thereby talk to yourself at the terminal. Take this opportunity to study some of the waveforms - for example, the important $U 7$ pins 6 , $5,4,1,2,3$, and TP3. Use TP2 as a $1200-\mathrm{Hz}$ negativegoing scope trigger; all signals will be synchronized to this. Observe the effect of mis-tuning by varying VR1 slightly.
3. Don't forget to return VR1 to 1500 Hz at TP1 when this test is over.

UP/DOWN tuning

1. If your receiver tunes in $100-\mathrm{Hz}$ steps, you will need to set the loop bandwidth switch (S1) to WIDE. For radios with $10-$ or $20-\mathrm{Hz}$ steps, use the NARROW position.
2. First verify that the four up-down signals work correctly. Connect a $1500-\mathrm{Hz}$ audio signal to the RXaudio input; set Tune switch (S2) to OFF. Vary the frequency up and down so that the LEDs flash. Verify that there is no change on the UP/DOWN lines on J4. (J4-1, J4-2 will be low; J4-4, J4-5 will be high).
3. Throw the Tune switch to the ON position and see that the four UP/DOWN lines change in the expected manner when the frequency is varied (see circuit diagram). For example, if the UP LED comes on, J4-2 will go high and J4-5 will go low. The others will remain unchanged. Naturally, pull-ups R36-R39 must be installed to measure this. Wire link LKI may need to be connected for ICOM rigs.
4. Place the Tune switch in the OFF position and adjust the frequency to 1500 Hz . Now connect the appropriate UP/DOWN line(s) to the receiver. Turn the switch ON, vary the audio input frequency, and check that an up or a down change in displayed frequency results. Many rigs give a beep when this happens.
5. Set the switch to OFF. Connect receiver audio to the demodulator input ($\mathrm{J} 3-3$) as before. Tune in a steady radio carrier exactly, as indicated on the tune meter and LEDs. Set the switch ON. Carefully change the receiver frequency. If the auto-tune system is working satisfactorily, the receiver will automatically retune to the original frequency.
6. Slowly adjust the sensitivity control, VR3, clockwise. Eventually the tuning system will burst into rapid oscillation, hunting rapidly up-down-up-down Reduce the gain counterclockwise until this stops and back off a little more.
7. You will find that it pays to experiment with performance. You may also have to change the Scan control settings of your receiver. If you have an rf signal generator, a spare transmitter, or a helpful friend on the air, you can quickly optimize performance. Otherwise you must wait for a real satellite signal with
changing doppler shift, such as JAS-1/FO-12 in Morse code or digital mode, or UOSAT (145.825 or 435.025 MHz , with your receiver set to CW mode).

using the satellite mailbox

Set the Tune switch to OFF and the bandwidth to WIDE. Locate the mode JD signal at 435.910 MHz , with \pm doppler shift of up to 8 kHz . Slowly tune the receiver (in SSB/CW mode, maximum bandwidth) until the LOCK LED lights. Center the tuning, set the bandwidth to NARROW ($10-$ to $20-\mathrm{Hz}$ RX steps only), and set Tune to ON if required.
Choose one of the four uplink frequencies: 145.850, 145.870, 145.890, 145.910 MHz fm . Doppler correction is not needed. The mailbox callsign is 8 J 1 JAS , so establish contact (TNC in COMMAND mode) with: CONNECT 8J1JAS. When connected, the satellite responds with the prompt: JAS $>$. You communicate with single-letter commands, which may be followed by additional specifiers - for example:
H Help (respond with commands' syntax)
F Files (list titles of ten files)
K Kill (delete specified file or files)
M Myfiles (list titles of file or files addressed to current user, presumably you)
R Read (contents of specified file or files)
W Write (message to mailbox)
When you are finished, return to TNC COMMAND mode, and DISCONNECT.
The mailbox software can be modified by the JARL command station, but the above description is essentially correct. As you can see, it's just like a terrestrial mailbox. LOGIN, and let me know you're winning!

use for terrestrial PSK packet

You can also use this modem to experiment with two-way PSK modulation for terrestrial communications (remember the audio loopback test?) Simply use the transmitter in SSB mode instead of fm. PSK offers at least $10-\mathrm{dB}$ improvement over terrestrial AFSK on fm .

The local audio carrier generated this way is 1200 Hz , which is not at the center of most transmitter SSB passbands. You can change this to another frequency by first breaking link LKC and then injecting the frequency of your choice into the adjacent test point TP4. Use a single-pole, double-throw switch and you can restore normal operation at any time. The frequency needed will lie somewhere in the range $1400-1600 \mathrm{~Hz}$, at a 5 -volt TTL level.

follow-up support

You are invited to contact me with any technical queries about this project. You'll get a reply by return mail, provided you supply a self-addressed envelope

with 4 IRCs. I can also build and/or test your modem PCB by prior arrangement.

suppliers

For information on the availability of PCBs only, contact AMSAT-UK, London E12 5EQ, England. (Profits will help finance new Amateur satellites.) Bona fide AMSAT groups who wish to order 10 or more PCBs should contact the author directly.

Complete kits including PCBs and components are available from RADIOKIT. (Contact Carl Huether, KM1H, P.O. Box 973, Pelham, New Hampshire 03076).

Readers in the U.K. may order from AMDAT, Crofters, Harry Stoke Road, Stoke Gifford, Bristol, BS1260H, England.

references

1. J.R. Miller, G3RUH, "A PSK Telemetry Demodulator for OSCAR-10," ham radio, April, 1985, pages 50-62.
2. The ARRL. Handbook for the Radio Amateur, ARRL, Newington, Connecticut, 1986, Chapter 24.
ham radio

When we first saw the Casio PQ-40U Portable World Time Clock, we knew instantly that Ham Radio Bookstore customers would love this one.
This time piece is more than a simple clock. Besides all the standard features, alarm, snooze, lightweight portable design and digital readout, this clock gives you time at 21 different locations around the world at the twist of a dial. DX'ers will delight at being able to get rid of their cumbersome manual time calculators: determining band and path to use will be greatly simplified. Contesters can simultaneously display both local and UTC times for logging purposes. In fact, every Amateur will find at least a dozen uses for this nifty clock. You can take it with you when you go on vacation-business trips-set the alarm and get out of meetings early-anywhere you need a clock, the PQ-40U can go with you. Get a couple of them and give them as gifts, one for the house, car, office, just about anywhere you need a clock, the PQ-40U can go with you. Quantities are limited-order now and avoid disappointment.
$\square P Q-40 U$
Please enclose $\$ 3.50$ shipping and handling

GREENVILLE, NH 03048

SAVE $\$ 7.05$ with HOME DELIVERY (one year newstand cost ${ }^{\text {s }} 30.00$)

SUBSCRIBE TO ham TODAY

radio

CALLNOW ANDPLACE YOURORDERONOUR TOLL FREE ORDER LINE
1 (800) 341-1522
8 AM-9 PM EST Orders Only
Have your credit card ready.
DATATEL
For other information call Ham Radio direct
(603) 878-1441 8 A.M. - 4:30 PM
$\square 1$ year 12 issues ${ }^{\mathbf{s} 22.95}$2 years 24 issues $\$ 38.95$ 3 years 36 issues $\$ 49.95$
(U.S. ONLY)Payment Enclosed
Bill me laterCheck here if this is a renewal (Attach Label)

Name \qquad Address \qquad
City
State \qquad Zip
Please allow 4-6 weeks for delivery of first issue FOREIGN RATES: Europe, Japan and Africa, 537 for one year by air forwarding service. All other countries \$31 for one year by surface mail.

Greenville, NH 03048-9988

360-degree MINIMUF propagation prediction

Simultaneous view of MUF in all directions - on your C-64

MINIMUF, a method of determining propagation modes and paths by computer, has received wide acceptance and use. Provide the sunspot number or solar flux quantity and the latitude and longitude of the two points between which communication is desired, and a 24 hour prediction of the maximum usable frequency (MUF) is obtained for that path. It's especially helpful for determining the band to use when you're interested in contacting that specific country.
However, what if you're interested in knowing where the band's open to in general? Sure, you could "Listen, listen, listen - as any successful DXer will tell you. But just now you want to get on the air, call "CODX" and work somebody. Perhaps the whole band is filled with listeners; somebody has to break the ice. There's no point in rotating the beam to a nonproductive direction; you have to have some knowledge as to where to point the antenna. Unless you have some other tool at your disposal, all you'll have to go on is your own experience with conditions on that band.

How many of you old-timers remember "Instantaneous Prediction of Radio Transmission Paths," the 1952 OST article written by the W6YG boys of Stanford University?' It discusses using a rotary beam to generate short transmissions of 50 WPM CW and receiving the back-scatter signals in a radar-like manner, then presenting the results on a PPI (plan position indicator). What they saw, in a 360 -degree view, were the areas of the world that were open to propagation, including the first hop as well as second and third hop returns. Marvelous! They could actually see the 20 -meter band openings in the morning and the different paths available during the day, and watch the band close when nighttime came. That's what we need for casual operation - a method of determining, with confidence, which direction to point our beam. There's only one problem, however; the FCC won't let us do it.

an alternate method

Dreams like that lie dormant in the mind until the state-of-the-art produces a means of accomplishing the same thing by different (and legal) means. If we accept the validity of the MINIMUF program for prediction of propagation paths - and most of us do - why not modify it to predict 360 degrees of propagation for any given hour, rather then just propagation in only one direction for 24 hours?

Suppose we scribe a circle about our OTH along great circle paths, every 10 degrees. Hold the hour constant in the MINIMUF program and have it predict the MUF for every 10 degrees of bearing. If you

0	DEG.	71.7	LAT.	HOME	LONG. +1
10	DEG.	70.4	LAT.	62.9	LONG
20	DEG.	67	LAT.	49.7	LONG
30	DEG.	62.3	LAT.	41.5	LONG
40	DEG.	56.9	LAT.	37	LONG
50	DEG.	51.2	LAT.	34.9	LONG
60	DEG.	45.3	LAT.	34.4	LONG
70	DEG.	39.4	LAT.	35.1	LONG
80	DEE.	35.7	LAT.	36.7	LONG
90	DEG.	28.2	LAT.	39	LONG
100	DEG.	22.9	LAT.	41.8	LONG.
110	DEG.	18	LAT.	45.3	LONG.
120	DEG.	13.5	LAT.	49.2	LONG.
130	DEG.	9.5	LAT.	53.6	LONG.
140	DEG.	6.1	LAT.	58.4	LONG.
150	DEG.	3.4	LAT.	63.7	LDNG.
160	DEG.	1.4	LAT.	69.2	LONG.
170	DEG.	. 1	LAT.	74.9	LONG.
180	DEG.	-. 3	LAT.	HOME	LONG.+. 1
190	DEG.	. 1	LAT.	86.5	LONG.
200	DEG.	1. 5	LAT.	92.3	LONG.
210	DEG.	3.4	LAT.	97.8	LONG.
220	DEG.	6.1	LAT.	103	LONG.
230	DEG.	9.5	LAT.	107.9	LONG.
240	DEG.	13.5	LAT.	112.3	LONG.
250	DEG.	18	LAT.	116.2	LONG.
280	DEG.	22.9	LAT.	119.6	LONG.
270	DEG.	28.1	LAT.	122.5	LONG.
280	DEG.	33.7	LAT.	124.8	LONG.
290	DEG.	39.4	LAT.	126.4	LONG.
300	DEG.	45.2	LAT.	127.1	LONG.
310	DEG.	51.1	LAT.	126.6	LONG.
± 20	DEG.	56.9	LAT.	124.6	LONG.
350	DEG.	62.3	LAT.	120	LONG.
540	DEG.	67	LAT.	111.8	LONG.
$\bigcirc 50$	DEG.	70.4	LAT.	98.7	LONG.
fig. 1. Table of bearing vs. latitude/longitude for the periphery of a 4000 km radius circle around the transmitting site at Cleveland, North Carolina.					

Henry G. Elwell, Jr., N4UH, Route 2, Box 20G, Cleveland, North Carolina 27013

Table 1．Program determines latitude and longitude of great circle locations 4000 km from a specified transmitting site．

1．$A=$ CHR（ 17 ）：REM CURSOR DOWN
$2 \mathrm{~B}=\mathrm{CHR}$（18）：REM REVERSE ON
2 B $\$=$ CHR $\$(18):$ REM REVERSE ON
Z C $\$=$ CHR $\$(29):$ REM CURSOR RIGHT
4 DS＝CHR（147）：REM CLEAR／HOME
5 PRINT D\＄
6 DIMH（40），F（40），T（40）
7 DFEN1，4．6：FRINT＂1．CHR（27）CHR（69）：CLOSE 1
G REM PRUGRAM WRITTEN BY HENRY ELWELL N4UH DATED 7 AUGUST 1986
10 FRINTA $\$$ ASA\＄B\％＂FROGRAM TO DETERMINE THE 4OOOKM LATITLJDE AND LDNGITUDE 360 DEGR EE＂：
IO FRINTES＂AROUND THE TRANSMITTING $5 I T E$ TO PROUIDE FREFFAGATIDN FREDIETIONS $360^{\prime \prime}$
SO FRINTB＊＂DEGREES IN AZIMUTH FOR ANY HOUR OF THE DAY．DATA IS GIVEN EVERY＂： 40 FRINT＂TEN DEGREES．＂
45 FRINTASA\＄A\＄A\＄A\＄A\＄C\＄CSC\＄C＊＂FRESS SPACE GAR TO CONTINUE＂
46 GETAN＊：IFAN $=$＂＂THEN46
47 IFANS $=$＂＂THEN GOTOBO
50 REM THE FOLLOWING EQUATIONS MUST EE SOLVED FOR INDIUIDUAL LDCATIONS
S5 FEM FDR DISTANCE LAT．：LZ＝ARCSIN（SIN（D／60）COS（LI）COS（H）＋SIN（L1）CDS（D／60））
S6 REM LI IS HOME LAT．：LZ IS DIST．LAT．：D＝2160 NAUT．MILES．THE ONLY VAFIABLE 57 REM IS H ：ALL DTHER ITEMS ARE CDNSTANTS ACCORDING TD YOUF LDCATIDN
SB REM FOR DISTANCE LONG．：SEE LINE 59
59 REM LD2＝ARCCOS（COS（D／60）－SIN（L1）SIN（L2）／COS（L1）COS（L2））+ LOI COMPUTED ABDVE

70 REM ALL SIN／COS VALUES ARE CHANGED TO RADIANS
BO PRINTA $\$$ A $\$$ INPUT＂WHAT IS YOUR HOME LATITUDE＂： 1.1
Bo PRINTA＊A\＄：INPUT＂WHAT IS YOUR HOME LAT ITUDE＂：L． 1
日S PRINTA\＄：INPUT＂WHAT IS YOUR HOME LONGITUDE＂：LO1
日7 PRINTD\＄A\＄A\＄A＂FLEASE WAIT FDF PEINTDUT＂
90 DPEN1．4：
95 PRINT＂1．＂PRINTDUT DF 4000KM LATITUDE／LDNGITUDE FROM 0 TO 350 DEG．； 10 DEG．ST EPS＂
97 FRINT＂ 1 ：CLOSE 1
100 FORH：$=0$ TO35OSTEP 10
$110 \mathrm{~L} 2=.587785 * \operatorname{COS}(\mathrm{~L} 1 * .01745) * \operatorname{COS}(H * .01745)+.809017 * \operatorname{SIN}(\mathrm{~L} 1 * .01745):$ KEM ARCSIN $120 \mathrm{M}=\mathrm{L}:$ ：
$130 \mathrm{X}=\mathrm{ATN}(\mathrm{M} / \mathrm{SQR}(1-M \& M)) \$ 57.2957795$ ：REM LAT．OF DISTANT FOINT
140 LETF＝INT（X／O． $1+.05$ ）
170 REM X REPLACES LZ IN FORMLLA FDR Y FOR CONVENIENCE IN ASSIGNING VARIAELES．

$190 \mathrm{~S}=(\pi / 2-A T N(Y / \operatorname{SQR}(1-Y \& Y))) \$ 57.296$
195 IFH 180 THENS $=S-L 0$
197 IFH 190 THENS $=S+L O$

200 IFH：＝OTHENPRINT＊1，CHR $\$(16) " 26 " " L A T . " ; C H F \$(16) " 40 " "$ HOME LONG．＋．1＂
200 IFH：OTHENPRINT＊1，CHR\＄
201 IFH＝OTHENCLOSE 1 ：NEXTH

203 IFH $=\langle 90$ THENPRINT 1．CHR（ 16 ）＂26 LAT，＂：CHR（16）＂40＂ABS（T）：

205 IFH $=180$ THENOPEN 1．4；PRINT\＃1，CHF $\$(16$ ）＂O5＂H；CHF（16）＂O8＂＂DEG．＂；CHR（16）＂20＂P：

207 IFH＝180THENCLOSE $1:$ NEXTH
208 OPEN1． 4
 215 PRINT＂ 1. CHR（16）＂40＂ABS（T）：CHR（16）＂47＂＂LONG．＂：CLOSE1：NEXTH
59999 END
GOOOO LIFEN15，B．15．＂SO：LAT／LDNG PRDP．PR＂：CLOSE15：5AVE＂O：LAT／LDNG FRDP．FR＂， 8
READY．

Table 2．Program provides 360 －degree propagation prediction for a given hour of the day．

```
READY.
READY.
HOUR OF THE DAY
TABLE 2: FRDGRAM FO PROVIDE 360 DEGREE PROPAGATION PREDICTION FOR A GIVEN
2 REM THIS PROGRAM FROVIDES A MINIMUF PROPAGTION PREDICTION FOR 36O DEGREES
j REM FOR A SPECIFIED TIME FROM O TD 24 HDURS GMT
4 \text { REM IT HAS BEEN MODIFIED BY HENRY ELWELL N4UH TO DD THAT FROM AN EARLIER}
5 \text { SEM PRDGRAM GY ALAN MEMLEY. KESUY}
G REM THE REVISED PROGRAM IS DATED 7 AUGUST 1986
10 PRINT CHR$(147):"LOADING PROGFAM"
11 A C=CHR* (17):REM CURSDR DOWN
```



```
13 C&=CHR (19):REM HDME
14 D$=CHR* (29): REM CURSOF RIGHT
15 E&=CHR* (145): REM CURSOR UP
16 F%=CHR (147):REM CLEAR/HOME
17 G$=CHNP(158): REM CONTROL-YELLOW
20 FOR N=0 TO 96
30 READX: POKE (53000+N). X
40 NEXT N
50 PRINT CHR事(147)
60 DATA 149,127,162,4,160,0,32,186
70 DATA 255,169,0,32,189, 255,32,192
日0 DATA 255,176,74,169,0,133,253,169
90 DATA 4,133,254,162,127,32,201,255
100 DATA 162,25,169,13,32,210,255,32
110 DATA 225,255, 240,49,160,0,177,253
120 DATA $33,252,41,63,6, 252,36,252,16
```


figs．2，3，4：MUF propagation predictions from North Carolina at 09，10，11，UTC （solar flux $=70$ ）．

figs. 5-10: MUF predictions from North Carolina at 12, 16, 20, 22, 24, 02 UTC (solar flux $=70$).
plot the MUF vs. circular degrees on polar coordinate paper, you'll have somthing very similar to the radar plots of W6YG. For any given hour you'll be able to see which bands are open or closed and in what direction you should point your beam.

One of the inevitable questions that follows this suggestion is "What distance from the home QTH should be used as a constant?" Ordinarily, you're not faced with that question in the MINIMUF program because you're concerned only with the latitude and longitude of the sending and receiving locations. True, some of the MUF programs give you the distance just for information; however, now we're going to select some arbitrary constant distance from our OTH and determine the latitude and longitude of those places every ten degrees from 0 to 360 degrees.

The following logic was used to arrive at that ar-
bitrary distance. The W6YG boys got back-scatter from the first hop, the second hop, and even the third hop. We can get theoretical first hop by using the assumptions of the ITS ${ }^{2}$ group who use 4000 km as the reference hop length. Four thousand km per hop length requires very low elevation angles of radiation and reception - less than about 3 degrees. Not many of us have antennas that will provide substantial enerenergy at those angles, but let's stretch it. Bob Rose, W6GKU, in his December, 1982, QST3 3 article says the MINIMUF program is good from 250 miles to 6000 miles, so 4000 km (2500 miles) should be an acceptable number to use. We'll use it for the first hop point.

The data describing the great circle around your QTH with a radius of 4000 km must be tailored specifically to your location. You have to determine the latitude and longitude of the periphery of that circle

ALL TRAP ANTENNAS are Ready to use - Factory assembied -Commercial Ouality Handie tull Dower - Comes complete with: Deluxe Traps. Deluxe center connector, 14 ga Stranded CopperWeid ant wire and End insulators Automatic Band Switching-Tuner usualiy never required. For all Transmit ters. Receivers \& Transceivers - For all class amateurs One feedline works all bands - Instructions included - 10 day money back guarantee'

SINGLE BAND DIPOLES (Kit form):

$$
\begin{aligned}
& \begin{array}{cc}
\text { Mosel } & \text { Band } \\
0.5 & 15 \\
0.0 & 70 \\
0.40 & 40 \\
0.00 & 80,25 \\
160 & 160
\end{array} \\
& \begin{array}{c}
\text { Leagth } \\
22 \\
33 \\
60 \\
130 \\
260
\end{array} \\
& \begin{array}{l}
\text { Prica } \\
189 \\
19 \% \\
29 \\
29 \\
29 \\
39
\end{array}
\end{aligned}
$$

Includes assembly instructions. Deluxe center connector, 14 ga Stranded CopperWeld Antenna wire and End insulators
COAX CABLE: (incliudes PL-259 connector on each end)

DELUXE CENTER CONNECTOR

DELUXE ANTENNA TRAPS: Completely sealed \& weatherprool-Solid brass termunals - Handies Fuli Power - NO jumpers - NO Soldering instructions included For 4 -band Dipole Ant $40 / 20 / 15 / 10 \$ 3600 / \mathrm{pr}$ For 5 band Dipole Ant - $80 / 40 / 20 / 15 / 10$ $\$ 38.00 / \mathrm{pr}$
ORDEA DIRECT FROM FACTORY. All orders stupped US Postpaid. vISA/MC give card \& Exp date, Signature

SPI-RO MANUFACTURING, INC. Dept. 103, P. O. Box 1538 Hendersonville, NC 28793
Dealer Inquiries Invited

CIRCUIT ANALYSIS COMMODORE 64

LNCAP64

RF and Microwave Circuit Analysis can easily be performed using LNCAP64. Design and analyze RF circuits containing $\mathrm{S}, \mathrm{Z}, \mathrm{Y}$ and ABCD-parameters; R.L.C's, transmission lines, coupled lines, stubs and many other element blocks. Includes parallel and series branching and network combining; sensitivity and tuning mode. Also calculates stability factor for active networks. Print results to screen, disk or printer. Includes file editor with instructions and examples.

NOW ONLY \$24.95
plus $\$ 2.50$ for S\&H
BMA software
1234 Rousseau Drive Sunnyvale, CA 94087 (408) 732-9475
M.O. or Check Accepted.

OL UTC
OS UTC
figs. 11, 12: MUF predictions from North Carolina at 04 and 05 UTC (solar flux $=70$).

fig. 13. MUF propagation prediction from Los Angeles, California at 1600 UTC at a solar flux of 70 .

fig. 14. MUF propagation prediction from North Carolina at 1700 UTC at a solar flux of 180.

Table 2, continued.
130 DATA $2,9,128,112,2,9,64,32,210,255$
140 DATA $200,192,40,208,230,152,24,161$
150 DATA $253,133,253,144,2,230,254,202$
160 DATA 208, 205, 169, 13, 32, 210, 255, 32
170 DATA 204,255,169,127,76,195
180 REM MINIMUF FOR COMMODORE-64/ALAN MEMLEY, KEGUY
200 POKE 53280.14
210 POKE 53281.6
220 PRINT 53
230 PRINT Fs
250 DIMMS (37), AS (4), M(12)
260 DATA31,28,31,30,31,30,31,21,30,31,30,31
270 FORX=1TO12: READM (X) : NEXT
280 Ms="JANFEBMARAPRMAYJUNJUL.AUGSEPOCTNOVDEC"
290 RO $=7 / 180$
$300 \quad P_{1}=2:$
310 R1=180
320 POE $1 /=$
330 PRINT F:
340 L1=35.75:W1=80.75 :REM THE USERS HOME LATITUDE AND LONGITUDE MUST GO HERE $345 \mathrm{~L} 1=\mathrm{L} 1 \mathrm{ZRO}$

Table 2，continued．
35O W1＝W1 \＆RO
430 GOTO 600
478 REM THE BEARING，LATITUDE \＆LONGITUDE OF THE USER＇S LOCATION MUST REPLACE 479 REM THAT SHOWN．WHICH 15 FOR CLEVELAND NC ONLY
480 DATAO．71．7， $80,7,10,70,4,62,9,20,67,49,7,30,62,3,41,5,40,56,9,37,50,51,2,34.9$ 481 DATAb0，45．3．34，4．70，39．4．35．1，80，33．7，36．7，90，28．2，39，100，22．9．41．8
482 DATA1 $10,18,45,3,120,13,5,49,2,130,9,5,53,6,140,6,1,58,4,150,3,4,63,7$
483 DATA $160,1,4,69,2,170,1,74,9,180,-, 3,80.7,190,1,86,5,200,1,3,92.3$
484 DATA210，3．4，97．8．220，6．1，103，230，9．5，107．9．240．13．5，112．3，250，18，116． 2
485 DATA260，22．9．119，6，271，28，1，122．5，280，33，7，124，8，290，39，4，126，4，300，45．2， 127
486 DATA $10.51,1,126.6,320.56 .9,124,6,330,62.3,120,340,67,111,8,350.70 .4,98.7$
487 DATA－1．0．0
488 ：
500 READH．L2．W2
SO1 IFH＝－1THENRESTORE：GOSUBJ050：PRINTBSASAS＂PRESS P－PRINT：Q－QUIT：T－TRY AGAIN＂
502 IFH＝－1 THENGOTOJOOO
590 GOSUB2640：G0T0865
600 PRINT：INPUT＂DATE（DAY．MONTH）：＂：D6．MO
b10 IFMO $=1$ ITHENG 40
S20 PRINT＂INVALID MONTH．MUST BE IN RANGE 1－12＂
630 GOTO6OO
640 IFM（MO）－D6 COTHEN66O
650 GOTOGBO
660 PRINT＂INVALID DAY＂
670 GOTO6OO
680 PRINT ：INPUT＂SOLAR FLUX NUMBER：＂：SF
681 IFSF＜7OTHENPRINT＂DO NOT USE SF＜ 70° ：GOTOG8
6日2 PRINT：INPUT＂WHAT GMT DESIRED： 0 TO 23 HOURS ONLY＂：TG
G日3 IFTG＞23THENPRINT＂USE HOURS O TO 23 ONL．Y＂：GOTO682
b日S PRINT：PRINT＂TURN UP AUDIO GAIN TO HEAR END OF RUN SIGNAL＂
$710 \mathrm{Sq}=(-0.73+\mathrm{SQR}(1.73)=2-4 \mathrm{E}(.0008)$ ：$(65-\mathrm{SF}))) /(28.0008)$
720 S9＝1NT（S9）
730 GQTOSOO
365 IFG＝1GOTO910
866 PRINT ：PRINTF SAS＂HOUR＝＂TG＂Z DAY＝＂D6＂MONTH＝＂MO＂SF＝＂SF
870 PRINTTAB（ 4 ）＂BEARING＂：TAB（15）＂MUF＂：TAB（ 21 ）＂BEARING＂：TAB（ 33 ）＂MUF＂
910 L2＝L2＊RO
$920 \mathrm{~W} 2=\mathrm{W} 2 \mathrm{FRO}$
$940 \mathrm{CO}=0$ ：PRINTG
950 T5＝TG
$960 \mathrm{CO}=\mathrm{CD}+1$
970 GOSUB1140
980 J9＝19210
990 J9＝INT（J9）
$1000 \mathrm{J9=39/10}$
1010 IFCO＝2THEN 1050
1020 PRINT ES
1021 IFH＝190THEN ED＝20：G0SUB4000：PRINTTAB（22）H：TAB（32）39：GOTD4B8
1022 IFH 190 THENPRINTES TAB（22）H：TAB（32）J9：GOTO4BE
1030 PRINTES TAB（4）HzTAB（13）J9
1040 GOTO4B8
1050 PRINTE SEs：PRINTTAB（21）B：TAB（27）J9
$1060 \mathrm{CO}=0$
1065 GOTO488
1140 REM MINIMUF 3.5
$1150 \mathrm{~K} 7=\operatorname{SIN}(L 1)$ ISIN（L2）＋COS（L1）$+\operatorname{COS}(L 2) * \operatorname{COS}(W 2-W 1)$
1160 1FK7＝＞－1 THEN1 190
$1170 \mathrm{~K} 7=-1$
1180 GOTO1210
1190 TFKT $\angle=1$ THEN 1210
$1200 \mathrm{K7}=1$
$1210 \mathrm{G} 1=-\mathrm{ATN}(K 7 / \operatorname{SQR}(-K 73 K 7+1))+1 / 2$
$1220 \mathrm{KG}=1.59 \mathrm{KG1}$
1230 IFKb $>=1$ THEN 1250
$1240 \mathrm{~K} 6=1$
$1250 \mathrm{KS}=1 / \mathrm{K} 6$
$1260 \quad \mathrm{~J} 9=100$
1270 FORK $1=1 /(2 \mathrm{KK})$ TO1－1／（2＊K6）STEPO． $9999-1 / \mathrm{Kb}$
1280 IFK $=1$ THEN 1300
$1290 \mathrm{KS}=0.5$
1300 P＝SIN（L2）
$1310 \quad \mathrm{a}=\operatorname{COS}(\mathrm{L} 2)$
$1320 A=(\operatorname{SIN}(L 1)-P * \operatorname{Cos}(G 1)) /(Q * S I N(G 1))$
1330 B＝61 $\mathrm{FK1}$
$1340 \mathrm{C}=\mathrm{P}$ ：COS（B）＋Q\＆SIN（B）\＆A
$1350 \mathrm{D}=(\operatorname{COS}(\mathrm{B})-\mathrm{CaP}) /(\mathrm{Q}$ ：SQR（1－C＾2））
1360 IFD $>=-1$ THEN 1390
$1370 \mathrm{D}=-1$
1380 GOTO1410
1390 IFD $=1$ THEN 1410
$1400 \mathrm{D}=1$
$1410 \mathrm{D}=-\mathrm{ATN}(\mathrm{D} / \operatorname{SQR}(-\mathrm{D} * \mathrm{D}+1))+7 / 2$
1420 WO W W $2+\operatorname{SGN}(S I N(W 1-W 2))$ ED
1430 IFWO $=>$ OTHEN 1450
$1440 \quad \mathrm{WO}=\mathrm{WO}+\mathrm{P}$ 1
1450 IFWO＜PITHEN 1470
1460 WO＝WO－P 1
1470 IFC $\Rightarrow>-1$ THEN 1500
$14 \mathrm{BO} \mathrm{C}=-1$
1490 GOTO1520
1500 IFC $<=1$ THEN 1520
$1510 \quad \mathrm{C}=1$
1520 LO＝PO－$(-A T N(C / S Q R(-C \pm C+1))+n / 2)$
$1530 Y_{1}=0.0172 z(10+(M 0-1): 30.4+\mathrm{D} 6)$
$1540 \quad Y_{2}=0.409 \pm \cos \left(Y_{1}\right)$
$1550 \mathrm{~KB}=3.82$＊WO $+12+0.13 *\left(\right.$ SIN $\left(\mathrm{Y}_{1}\right)+1.2$ SIN（2＊Y（））
$1560 \mathrm{~KB}=\mathrm{KB}-122(1+\operatorname{SGN}(\mathrm{KB}-24))$ ISGN（ABS（KB－24））
1570 IFCOS（LO＋Y2）＞－0．26THEN 1660

For most Ham Rigs from： KENWOOD • YAESU • HEATHKIT
Also Drake R－4C／7 Line，COLLINS 75S3－B／C and ICOM FL 44A F FL．52A，FL53A clones．

Finest 8 －pole Construction

ALL POPULAR TYPES IN STOCK

CW•SSB•AM
ASK ABOUT OUR MONTHLY
UNADVERTISED SPECIALS
Phone for Information or to Order． VISA／MC or COD accepted Why risk disappointment？Buy time－ tested Fox－Tango Filters to be sure！

FOX－TANGO Corp．

Box 15944，W．Palm Bch，FL 33416 Telephone：（305）683－9587

The QSYer－the best thing next to your FT－757GX －or your ICOM IC－735！

The popular 757 QSYer now has a brother．the 735 OSYer for the ICOM IC 735：Both umth are deluxe frequencr－entty keypads containing their own pre programmed micropro－ cesor－audio speaker and power supply in operation they allow immediate wwiching to any frequency in the transcencer＇s range，white the rig retains absolutely all of its operator＇s controk They install in seconds．connecting to the rig＇ data terminal and power supply output thent durable meta enclosures are painted classic metathe gray and black
\＄89 50 plus $\$ 2.80$ shipping and handing，and 47 tales tax for GA restents MasterCard and Visa customers please send name，card rumber，expiration date，and ugnature，of call us at $404-\times 74.0241$
10 day money－back kuarantec
－ 241
Stone Mountain Engineering Co．
Box 1573 • Stone Mtn．，GA 30086

TROUBLESHOOTING MICROPROCESSOR－BASED EQUIPMENT AND DIGITAL DEVICES

Attend this 4 －day seminar and master the essentials et microprocessor maintenance．Gain a firm under－ slandirg of microprocessor fundamentals and learn speciafized troubleshooting techniques．

Call or write for brochure with full details and current schedule．Fee is $\$ 795.00$
－ 8 and 16 bit systems
－Signature analysis
－Logic analysis
－Machine－language programming
－Diagnostic programs
－Emulation
－Bus Systems
every 10 degrees (or every 20 degrees, if you prefer) from 0 to 360 degrees. One way to do this is to solve the great circle equations for distance and bearing.

equations and calculations

Equations 1 and 2 provide a relationship between the distance (D) in nautical miles (2160 nautical miles $=4000 \mathrm{~km})$, the heading (H) in degrees from your QTH (every 10 degrees), and the latitude/longitude of your location, and the first hop location.

$$
\begin{gather*}
D=60 \arccos [\sin L 1 \cdot \sin L 2+ \tag{1}\\
\cos L 1 \cdot \cos L 2 \cdot \cos (L O 1-L O 2)] \\
H=\operatorname{arc} \cos \{[\sin L 2-\sin L 1 \cos \tag{2}\\
(D / 60)] /[\sin (D / 60) \cos L 1]\}
\end{gather*}
$$

where
L1 = latitude (your QTH)
L2 = latitude (each $4000-\mathrm{km}$ hop location)
LO1 = longitude (your QTH)
LO2 = longitude (each 4000-km hop location)
The plan of attack is to solve for $L 2$ in eqn. 2 since everything else is known, then solve for $\angle O 2$ in eqn. 1. Simplify by setting $\sin (D / 60)=0.587785$ and \cos $(D / 60)=0.809017$, substituting these values in eqn. 2 and rearranging terms:

$$
\begin{gather*}
L 2=\arcsin [0.587785 \cos L 1 \tag{3}\\
\cos H+0.809017 \sin L 1]
\end{gather*}
$$

After you enter your latitude, which is a constant, L2 simplies to:

$$
\begin{equation*}
L 2=\arcsin [(0.587785) \tag{4}
\end{equation*}
$$

(latitude constant) $\cos H+(0.809017)$ (different latitude constant)]
The arc sin (inverse sine) function is available on most hand calculators. Solve for L2, starting with 0 and continue in 10 -degree steps to 350 degrees. This provides 36 latitudes around the periphery of the circle. Now all you need are the corresponding longitudes, which you can calculate from eqn. 1. The program in table 1 will do all this for you automatically, but it's good to understand what you're doing. Part of a typical printout is shown in fig. 1.

solving for the $4000-\mathrm{km}$ longitudes

By rearranging terms in eqn. 1, the last unknown, LO2 can be determined.

$$
\begin{gather*}
L O 2=\arccos \{[\cos (D / 60)-(\sin L I) \tag{5}\\
(\sin L 2)] /[(\cos L I)(\cos L 2)]\} \pm L O I
\end{gather*}
$$

At this point we now have constants for all bearings of $\cos (D / 60), \sin L 1, \cos L 1$, and $L O 1 . \operatorname{Cos} L 2$ can be determined for each azimuth with a hand calculator with \sin / \cos functions if you don't want to use the program in table 1. Note that there is a + or - before the LO1. Use the minus sign for all calculations of LO2 from 0 to 180 degrees, and a plus sign for all values from 190 to 350 . When you've completed the calcu-
lations, you'll have a table of bearing vs. latitude/longitude for the periphery of a $4000-\mathrm{km}$ radius circle around your transmitting site. For the 0 - and 180-degree bearings, you mustn't use the same longitude as your transmitting site even if it's the same as your transmitting site. If they do correspond, just add 0.1 degree to your own longitude, as shown in fig. 1 , if only to keep the mathematics under control.

MINIMUF program modifications

The updated MINIMUF program of Alan Memley, KE6UY, was modified to provide a 360-degree propagation prediction in tabular form on the screen or a printer (see table 2). It's necessary to provide data statements in the program for latitude and longitude crossings of the $4000-\mathrm{km}$ great circles around the transmitting site, and a means for inputting time of prediction (i.e., the hour you're interested in). The basic information for month, date, solar flux, and computation of the prediction was retained. A printout for the 360 -degree prediction is shown in table 3.

The data statements are included in lines 480-486 of the revised program. Each data point has three numbers; bearing, latitude, and longitude. The latitude and longitude are specific to your location, and have to be calculated by hand, or by the program shown in table 1. Remember that commas must separate each number, and the word "DATA" must be at the the beginning of each line. If your location has three digits for latitude and/or longitude, it will be necessary to use lines 488 and 489. Be sure "DATA-1,0,0" is the last data item, because that ends the use of the data and restores the data pointer to the beginning of the READ information. (Basically, it helps the computer keep its bookkeeping in order.)

examples of 360 -degree predictions

Let's look at several examples and see what the program tells us. We'll consider a day when the solar flux was 70 . Figures 2 through 12 show how propagation varied to different parts of the world from North Carolina from 0900 UTC through 0500 the following morning. At 0900 UTC, the maximum usable frequency (MUF) would be 10.4 MHz with propagation to all parts of the world up through 40 meters except for bearings of 310 through 50 degrees; 20 meters would not yet have opened. By 1000 UTC, 20 meters opens for the middle African countries only. By 1100 UTC, propagation is possible into Europe, all of Africa, and all except the westernmost sections of South America; the MUF into Africa is now 19.9 MHz . By 1200 UTC, the path into northern Europe, Finland (OH) is open on 20 meters and 15 meters is open to Africa, with an MUF of 21.8 MHz for Togo and countries along that bearing of 90 degrees.

Between 1600 and 2300 UTC, world-wide operation

Table 2, continued.
$1580 \quad k 9=0$
$1590 \mathrm{GO}=0$
$1600 \mathrm{M9}=2.52 \mathrm{G} 1 \mathrm{NK}$
1610 IFM9 = POTHEN1630
1620 M9 F FO
$1620 \quad M 9=F O$
$1620 \quad M 9=$ SIN (M9)
$1620 \quad M 9=S I N(M 9)$
$1640 \quad M 9=1+2.5$ m9 \& SQR (M9)
1640 M9 $=1+2.5 z$
1.650 GOTO 1910
$1660 \mathrm{~K} 9=(-0.26+\operatorname{SIN}(\mathrm{Y} 2) \geq \operatorname{SIN}(\operatorname{LO})) /(\operatorname{COS}(Y 2) \geq \operatorname{COS}(\operatorname{LO})+1.0 E-3)$
$1670 \mathrm{~K} 9=12-\mathrm{ATN}(\mathrm{K9} / \mathrm{SaR}(\mathrm{ABS}(1-\mathrm{K9} \mathbf{\mathrm { K } 9}))): 7.639437$
$1680 \mathrm{~T}=\mathrm{KB}-\mathrm{K} 9 / 2+12 \mathrm{~F}(1-\mathrm{SGN}(\mathrm{KB}-\mathrm{K} 9 / 2))$:SGN(ABS (KB-K9/2))
$1690 \mathrm{~T} 4=\mathrm{KB}+\mathrm{K} 9 / 2-12 \mathrm{t}(1+\mathrm{SGN}(\mathrm{KB}+\mathrm{K} 9 / 2-24))$:SGN(ABS (K8+K9/2-24))
$1700 \mathrm{CO}=\mathrm{ABS}(\operatorname{COS}(\mathrm{LO}+\mathrm{Y} 2))$
1710 T9=9.72CO~9.6
1720 IFT9>0. 1 THEN 1740
1720 IFT9>0
1730 T9=0.
1730 T9=0.1
$1740 \mathrm{M9}=2.5 \pm \mathrm{G} 1 \mathrm{KS}$
1740 M9=2.5 61 KKS
1750 IFM9 <=POTHEN 1770
$1760 \mathrm{M9}=\mathrm{PO}$
1770 M9=SIN (M9)
1780 M9=1+2.5 M M9 tSQR (M9)
1790 IFT4 STTHEN1820
1800 IF (TS-T) : (T4-TS) >OTHEN183O
1810 GOTO1960
1820 IF (TS-T4) : (T-T5) >OTHEN 1960
183Q $T 6=T 5+12 t(1+S G N(T-T 5)) \& S G N(A B S(T-T 5))$
$: 840 \mathrm{G9}=\mathrm{n}(\mathrm{Tb}-\mathrm{T}) / \mathrm{K} 9$
$1850 \mathrm{GE}=\pi \mathrm{T} 9 / \mathrm{Kg}$
$1860 \mathrm{U}=(\mathrm{T}-\mathrm{T}, \mathrm{C}) / \mathrm{TQ}$
$1870 \mathrm{GO}=\mathrm{CO}$ (SIN (G9) +G8* (EXP (U) $-\operatorname{COS}(\mathrm{Gq}))) /(1+\mathrm{GB}$ GB)

1890 IFGO= SG7THEN 1910
1900 GO=G7
$1910 \mathrm{G} 2=(1+59 / 250)$:M9*SQR ($6+58$:SQR (GO))
$1920 \mathrm{G2}=\mathrm{G} 2 \mathrm{z}(1-0.1$ EEXP $((\mathrm{F} 9-24) / 3))$
$1970 \mathrm{G} 2=\mathrm{G} 2 \mathrm{~F}(1+(1-\mathrm{SGN}(\mathrm{L} 1)$ \&SGN(L2)):\%0.1)
1940 G2=62* $(1-0.1 *(1+\operatorname{SGN}($ ABS (SIN (LO) $)-\operatorname{COS}(L O))))$
1950 GOTO2020
1960 T = $=\mathrm{T} 5+12$: $(1+$ SGN (T4-TS)) :SGN (ABS (T4-T5))
$1970 \mathrm{~GB}=-\mathrm{t} \mathrm{T} / \mathrm{K} 9$
$1980 \mathrm{U}=(\mathrm{T} 4-\mathrm{Tb}) / 2$
1990 Ut $=-\mathrm{K} 9 / \mathrm{T} 9$
$2000 \mathrm{GO}=\mathrm{CO}$ (G8ะ (EXP (U1) + 1)) EEXP (U) / (1+G8*GB)
2010 GOTO1910
2020 IFG2: J9THEN2040
$2030 \quad 39=62$
2040 NEXTK 1
$2050 \mathrm{JEXF.97} 2.19$
$2050 \mathrm{J9}=, 93$ tJ9
$2060 \mathrm{G}=1$:RETURN
$2060 \mathrm{G}=1$: RETURN
$2640 \mathrm{RA}=3956.75$
$2650 \times 7=R A E S I N\left(\left(90-x_{1}\right): n / 180\right) * \operatorname{COS}(Y 1 z=/ 180)$
2660 Y7=RAESIN $((90-X 1): n / 180)$ SSIN(Y1: $n / 180)$
2670 Z7=RA*COS $\left(\left(90-x_{1}\right) z=/ 180\right)$
$2680 \mathrm{DE}=\left(\left(x 7^{\wedge} 2\right)+\left(Y 7^{\wedge} 2\right)+\left(27^{\wedge} 2\right)\right)^{\wedge} .5$
$2690 \mathrm{CA}=\mathrm{X7} / \mathrm{DE}: \mathrm{CB}=\mathrm{Y} 7 / \mathrm{DE}: \mathrm{CC}=27 / \mathrm{DE}$
$2700 \times 8=\operatorname{RAESIN}((90-\times 2) z \eta / 180) * \operatorname{COS}(Y 2 z \sim / 180)$
2710 YB=RA*SIN $(190-X 2): n / 180)$ ISIN $(Y 2 * n / 180)$
2720 2B=RAะCOS ($(90-\times 2)$ ₹ $1 / 180)$
2730 DG= $\left(\left(\times 8^{\wedge} 2\right)+\left(Y \mathrm{~B}^{\wedge} 2\right)+\left(2 \mathrm{~B}^{\wedge} 2\right)\right)^{\wedge} .5$
$2740 \mathrm{CD}=\mathrm{XB} / \mathrm{DG}: \mathrm{CE}=\mathrm{Y} 8 / \mathrm{DG}: \mathrm{CF}=28 / \mathrm{DG}$
$2750 \mathrm{CT}=((\times 7 * \times 8)+(Y 7 * Y B)+(Z 7 * Z 8)) /(D G * D E)$
2760 IFCT $=0$ THENCT $=, 000000000001$
$2770 \mathrm{DI}=\left(\left(\text { RA }^{\wedge} 2\right)+\left(\text { RA }^{\wedge} 2\right)-2 \text { 2RA*RAECT }\right)^{\wedge} .5$
2780 IFDI >5656.85425 THENGOTO2B10
2790 SI=(1-(CT^2))~.5
2800 TA=SI/CT:T=ATN(TA) $₹ 180 / n: G 0 T 02830$
$2810 \mathrm{~S} 1=-1$: $(1-(\mathrm{CT} \sim 2)) \sim . S$
$2820 \mathrm{TAmSI} / \mathrm{CT}: T=180-A T N(T A) \geq 1 B 0 / n$
$2830 \mathrm{DX}=69.055 \mathrm{t}$: $\mathrm{DX}=1 \mathrm{INT}$ (DX)
2840 RETURN
3000 GETANS: IFANs $=$ " "THEN 3000
3010 IFAN $8=$ "P"GOTOS200
3020 IFANs="Q"THENPRINTF\$ASASDSDSDs"ENJOY YOUR RADIO:": END
3030 IFANs="T"THENPRINTF \$A\&A\&A\&As"PLACE CURSOR OVER RUN AND PRESS RETURN"
3031 1FANs="T"THENGOTOJ040
उOJ5 GOTOJOOO
3040 PRINTESESESESES"RUN": END
3050 : REM TONE TO TELL WHEN SCREEN PRINT COMPLETE
3052 FOR AC=54272TO54296: POKEAC. O: NEXT
3054 POKES4296. 15
3056 POKE54277.0
JOS8 POKE 54278, 248
3060 POKES4273. 35: POKES4272. 134
3062 POKES4276,17
3064 FORT $=1$ TD 1000 : NEXT
3066 POKE54276, 16 : RETURN
3199 REM SCREEN DUMP

3210 CLOSE4
3220 END
4000 FORI = 1 TOED:
4010 PRINTE 5 :
4015 NEXTI
4020 RETURN
60000 OPEN15.8, 15, "SO: 360 DEG MUF": CLOSE15:SAVE"O: 360 DEG MUF", 8
READY.

Our guaranteed savings plan.

Fluke 70 Series Analog/Digital multimeters are like money in the bank. Buy one, and youre guaranteed to save both time and money.

Money, because you get longer battery life and longer warranty coverage -3 years vs. 1 year or less on others.

And time, because 70 Series meters are easier to operate and have more automatic measurement features.

So before buying any meter, look beyond the sticker price. And take a closer look at the new low-priced $\$ 79$ Fluke 73 , the $\$ 109$ Fluke 75 , and the deluxe $\$ 145$ Fluke 77 . In the long run, they'll cost less, and give higher performance, too.

And that, you can bank on.
For a free brochure, and your nearest distributor, call toll-tree 1-800-227-3800, ext. 229.
FROM THE WORLD LEADER IN DIGITAL MULTIMETERS.
©

SPECIFICATIONS

Electrical

- Band Width
$1260-1300 \mathrm{MHz}$
- Gain . 18.2
- VSWR Better than 1.5 to 1
- Feed Imp.......................... 50 Ohms
- Balun 4:1 Rigid Coax

Mechanical

- Beam Length$12^{\prime} 4^{\prime \prime}$
- Element Length 4.5"
- Mast 2" O.D
- Windload 1 sq. ft.

Mirage Communications Equipment, Inc.
 P.O. Box 1000
 Morgan Hill, CA 95037
 (408) 779-7363

Table 3. 360-degree MINIMUF prediction for Cleveland, North Carolina at a solar flux of 70.

BEARING	MUF	BEARING	MUF
0	16.7	190	15.8
10	16.9	200	15.7
20	17.2	210	22
30	17.5	220	21.0
40	17.9	230	22
50	18.2	240	22
60	23.2	250	22
70	23.6	260	22
90	23.9	271	21.9
90	24.2	280	21.7
100	24.4	290	21.4
110	24.5	300	21.2
120	24.4	310	16.7
130	24.2	320	16.6
140	17	330	16.5
150	23.5	340	16.5
160	23.1	350	16.6
170	16.2		
180	19.2		

is possible in all directions on 20 meters, with the MUF extending as high as 25 MHz on bearings into Pitcairn Island at 230 degrees, although the heavily populated areas of middle Europe had dropped out by 2200 UTC. At 0000 UTC, the next day, the prediction says 20 -meter propagation is possible to South America and west up through Hawaii. A possible 15-meter capability is indicated into the southwest.

By 0200 UTC, 4000 km propagation is still possible on 20 meters for South America and the South Pacific. The band is still open at 0400 UTC, with an MUF of 14.5 in the 210-220 degree bearing for some possible Central American stations. Twenty meters is dead at 0500 UTC, with an MUF of 13.3 MHz . To provide a comparison with North Carolina and Los Angeles, California, a prediction was run for 1600 UTC on the same day with a solar flux of 70 for Los Angeles; see fig. 13. California is three hours earlier than North Carolina, but it still shows world-wide propagation possibilities on 20 meters, with good openings into Africa and South America on 15 meters.

Just for fun, a prediction for the 21st of June in a year when the solar flux was 180 - was run (fig. 14). As expected, practically the whole world is open on the 10 -meter band at 1700 UTC. (I believe the model used for the prediction is quite conservative, since it would appear that the MUF should be higher than 35.9 MHz with such a high solar flux.)

This type of presentation - i.e., 360 degrees brought out what may be an anomaly in the prediction model. It appears that the 140 -degree prediction for North Carolina is always significantly lower than the $130-$ and 150 -degree bearing. Also, the $170-$
through 200-degree predictions seem to be lower than adjacent bearings. I'd be interested in hearing from any reader who could explain this.

a word of caution

It's important to remember that hops greater than the $4000-\mathrm{km}$ prediction may not be possible because of propagation conditions at the far end. However, this modified program can suggest possible contacts. It's also good to keep in mind that the predicted openings may provide the long path for distant points even when no short path conditions are indicated.

The next step, should anyone want to continue this work, would be to provide the code for a graphic presentation such as the one shown in figs. 2 through 14. It should be an easy task to combine the point-topoint prediction with the 360 -degree prediction, since the basic MINIMUF program is used by both methods.

references

1. "Instantaneous Prediction of Radio Transmission Paths," QST, March. 1952, page 11.
2. Institute for Telecommunication Sciences, Telecommunications Research and Engineering Report 13, Ionospheric Predictions, Volume 1.
3. Robert R. Rose, K6GKU, "MINIMUF: A Simplified MUF-Prediction Program for Microcomputers," QST, December, 1982, page 30.
ham radio

HIGH PERFORMANCE PRESELECTOR-PREAMP

The solution to most interference, intermod, and desense problems in AMATEUR and COMMERCIAL systems.

- 40 to 1000 Mhz , tuned to your frequency
- 5 large helical resonators
- Low noise - High overload resistance
- 8 dB gain - ultimate rejection> 80 dB
- 10 to 15 volts DC operation
- Size - $1.6 \times 2.6 \times 4.75^{\prime \prime}$ exc. connectors
- FANTASTIC REJECTION!

Price - CALL bipolar w/RCA jacks Connector options: BCN \$5. UHF \$6. N \$10
$\pm 600 \mathrm{Khz} @ 144 \mathrm{Mhz}:-28 \mathrm{~dB}$ $\pm 1.6 \mathrm{Mhz} @ 220 \mathrm{Mhz}:-40 \mathrm{~dB}$ ± 5 Mhz@450 Mhz: -50 dB

SUPER HOT! GaAs Fet option $\$ 20$

AUTOMATIC IDENTIFIERS

- For transceivers and repeaters AMATEUR and COMMERCIAL
- Automatic operation - adjustable speed and amplitude
- Automatic operation - adjustable speed and amp
* Smail size - easy instalialion
- Wired, tested, and programmed with your message(s)

Model ID-1 - \$49.95 Model ID-2 w/2 to 10 minute timer - \$69.95
We offer a complete line of transmitter and receiver strips and synthesizers tor amateur and commercial use.
Request our tree catalog. Allow $\$ 2$ for UPS shipping. Mastercard and VISA wilcome

Wide Dynamic Range and Low Distortion - The Key to Superior HF Dała Communications

- Dynamic Range > 75 dB
- 400 to $\mathbf{4 0 0 0} \mathrm{Hz}$
- BW Matched to Baud Rate
- $B E R<1 \times 10^{-5}$ for $\mathrm{S} / \mathrm{N}=0 \mathrm{~dB}$
- 10 to 1200 Baud
- Linear Phase Filters

ST-8000 HF Modem

Real HF radio teleprinter signals exhibit heavy

fading and distortion, requirements that cannot be measured by standard constant amplitude BER and distortion test procedures. In designing the ST-8000. HAL has gone the extra step beyond traditional test and design. Our noise floor is at - 65 dBm , not at - 30 dBm as on other units, an extra 35 dB gain margin to handle fading. Filters in the ST-8000 are all of linear-phase design to give minimum pulse
distortion, not sharp-skirted filters with high phase distortion. All signal processing is done at the input tone frequency; heterodyning is NOT used. This avoids distortion due to frequency conversion or introduced by abnormally high or low filter Q's. Bandwidths of the input, Mark/Space channels, and post-detection filters are all computed and set for the baud rate you select, from 10 to 1200 baud. Other standard features of the ST-8000 include:

- 8 Programmable Memories
- Set frequencies in 1 Hz steps
- Adjustable Print Squelch
- Phase-continuous TX Tones
- Split or Transceive TX/RX
- CRTTuning Indicator
- RS-232C, MIL-188C, or TLL Data
- 8,600 , or 10 K Audio Input
- Signal Regeneration
- Variable Threshold Diversity
- RS-232 Remote Control I/O
- 100-130/200-250 VAC, $44-440 \mathrm{~Hz}$
- AM or FM Signal Processing
- 32 steps of M/S filter BW
- Mark or Space-Only Detection
- Digital Multipath Correction
- FDX or HDX with Echo
- Spectra-Tune and X-Y Display
- Transmitter PTT Relay
- 8 or 600 Ohm Audio Output
- Code and Speed Conversion
- Signal Amplitude Squelch
- Receive Clock Recovery
- $3.5^{\prime \prime}$ High Rack Mounting

Write or call for complete ST-8000 specifications.

EAIHAL Communications Corp.
Government Products Division
Post Office Box 365
Urbana, Illinois 61801
(217) 367-7373 TWX 910-245-0784

C64/128 routines determine optimum Class B or C operation

linear design by computer

A few years ago ham radio published an article of mine on low-cost linear design and construction. ${ }^{1}$ Judging from the number of letters and phone calls I've received, the techniques have been widely used. It seems that linear construction is second only to antennas as an Amateur activity.
Recently, while doing some study on a new linear to fit our new regulations, I went through these design steps a number of times. Finally, I decided that this was a lot of unnecessary work, so I took time to reduce the process to a computer routine.
The core of the computer routines are the tables and relations given in the booklet, RCA Transmitting Tubes, Technical Manual TT-5. (My copy is dated October, 1962.) As far as I know, the book is out of print, but copies are occasionally found at hamfests. It isn't necessary to have the book to use the program - just refer to the manufacturer's literature for design data on the types of tubes you plan to use.
As written, the program listed in table 1 is for the Commodore 64/128. However, only routine constructions are used, so only minor changes would be needed to make it run on other computers.

Lines below $\mathbf{5 0 0}$ are introductory. Line $\mathbf{1 8 0}$ sets up a function for output formatting. The amplifier design goals are established in lines $\mathbf{5 0 0 - 9 9 0}$. The last lines allow either acceptance of the "preliminary" design developed at that point or redesign. On the $\mathrm{C}-64$, it isn't necessary to re-enter all values; you need enter only the ones you wish to change. Other computers may require complete re-entry.

The basic design parameter chosen is power output, which seems to be the most common goal. The next two inputs are the number of tubes to use and
the operating class. The program assumes that the tubes will be in parallel, as is universal in today's hf designs. The program also assumes that designs will be either Class B, with a 180 -degree conduction angle, or Class C at 140 degrees. For convenience, a set of values for 100 -degree angle is listed in the REM statement at line $\mathbf{5 5 0}$. These may be substituted for the 140 -degree ones if desired, or a third mode programmed. Although an increase in output will be obtained, harmonic content will increase, so this step is not recommended.
Lines 530-550 introduce some " K " values, and more are used later. These are the core of the RCA design technique, and are tabulated in the RCA booklet. They are derived from the way parameters of truncated sine waves behave. Clipped sine waves are generated by the non-linear relation between driving grid voltage and resulting plate current pulses. (See any good book on vacuum tube amplifiers if you're interested in details.) For calculation, most of the K -factors are used as tabulated; however, one is calculated from a least-squares relation.

The values of plate and screen voltage and plate dissipation are entered in lines $570-600$. A minus screen voltage is used to indicate a triode. Note that the plate dissipation is specifically a design parameter, but that there is no built-in check for screen or grid dissipation; these are calculated and output later, to check against tube specification values.

It is usually best to operate near the upper limit of

R. P. Haviland, W4MB, 1035 Green Acres Circle N., Daytona Beach, Florida 32019

ATV MADE EASY WITH OUR SMALL ALL IN ONE BOX TC70-1 TRANSCEIVER AT A SUPER LOW \$299 DELIVERED PRICE!
 CALL 1-818-4474565 AND YOURS WILL BE ON ITS WAY IN 24 HRS (VIA UPS SURFACE IN CONT. USA).

TC70-1 FEATURES:

* Sensitive UHF GaAsfet tuneable downconverter for receiving
*Two frequency 1 watt p.e.p. transmitter. 1 crystal included
- Crystal locked 4.5 mHz broadcast standard sound subcarrier
- 10 pin VHS color camera and RCA phono jack video inputs
* PTL (push to look) T/R switching
- Transmit video monitor outputs to camera and phono jack
- Small attractive shielded cabinet $-7 \times 7 \times 2.5^{\prime \prime}$
* Requires 13.8 vdc @ $500 \mathrm{ma} .+$ color camera current

Just plug in your camera or VCR composite video and audio, 70 cm antenna, 12 to 14 vdc , and you are ready to transmit live action color or black and white pictures and sound to other amateurs. Sensitive downconverter tunes whole $420-450 \mathrm{mHz}$ band down to channel 3. Specify 439.25, 434.0, or 426.25 mHz transmit frequency. Extra transmit crystal add $\$ 15$.
Transmitting equipment sold only to licensed radio amateurs verified in the Callbook. If recently licensed or upgraded, send copy of license.

WHAT ELSE DOES IT TAKE TO GET ON ATV?
Any Tech class or higher amateur can get on ATV. If you are now on SSTV, or have a home camera or VCR \& TV set, your cost will just be the TC70 and antenna system. If you are working the AMSAT satellites you can use the same 70 cm antennas on ATV.

DX with TC70-1s and KLM 440-27 antennas line of sight and snow free is about 22 miles, 7 miles with the 440-6 normally used for portable uses like parades, races, search \& rescue, damage accessment, etc. Add one of the two ATV engineered linear amps below for greater DX or punching thru obstacles.

The TC70-1 has full bandwidth for color, sound, like broadcast. You can show the shack, home video tapes,computer programs,repeat SSTV, weather radar, or even Space Shuttle video if you have a home satellite receiver. See the ARRL Handbook for more info \& Repeater Directory for local ATV rptrs. PURCHASE AN AMP WITH THE TC70-1 \& SAVE! 20 WATT WITH ELH-730G.... \$412 50 WATT WITH D24N-ATV.... $\$ 499$ All prices include UPS surface shipping in cont. USA

ACCESSORIES:

Mirage D24N-ATV 50 Wpep amp... $\$ 219$ ATV, FM, SSB. 1 W IN. 13.8VDC @ 9A

KLM 440-27 14DBD ANT... $\$ 107$
KLM 440-14 11DBD ANT..... $\$ 77$ ALINCO ELH-730G 20 WPEP AMP.... $\$ 129$
KLM 440-6 8DBD ANT..... $\$ 62$ ATV, FM, SSB. 1 w in. $13.8 \mathrm{VDC} @ 4.5 \mathrm{~A}$

Table 1．Linear amplifier design program for the C64．

110 PRINT \qquad REFERENCE RCO TECH MANUFL TT－5
130 PRINT＂＂REFERENCE RCA TECN MANUFL TT－S
130 PRINT＂
140 PRINT＂
150 PRINT＂
160 PRINT＂＂R．P HAUTLANI 1986

ZDG PRINT＂THIS FROGRAM RIIS DESIGN OF HIGH POWER RF RMPLIFIERS，CLASS B FIND C
210 PRINT＂
220 PRINT＂
BEST DESIGN REDUIRES INPUT FROM
FPPPROXIMRTIONS RRE SUPPLIED IF
230 PRINT
5月9 INPIJT＂ENTER DESIGN POWER DUTPIJT，WRTTS＂；FO
519 INPUT＂ENTER NUMEER OF TUBES TO USE＂；NV：FT＝POMN
520 INPIJT＂ENTER MDIE，$B=C L A S S$ B，C＝CLASS C＂；MOS

550 PEM FOP 10 DEG COHIUCTION：$K 2=.927, K 3=1.3, K 4=2.3, K 5=1.45$
550 万0TU 520
STG INPUT＂ENTER PLATE UGLTFGE＂，EE
589 INFIIT＂ENTER SCREEN UOLTARE，－12 F TRIODE＂；SV
500 INPUT＂ENTEF RATEI TUBE IJISSIFATIDH，WATTS＂；DI
G10 ENE．I＊ES：EM＝EN：REM TKIAL
E2G IP＝FT／K2おCE－EM ）

$6.30 \mathrm{~K}=3.14$
640 IM＝K1 1 IP
640 Ifmrin
？GQ PRINT＂INFIJT TIJBE DATR－FLATE WOLTAGE RT KNEE OF IF＝＂；IMT（1GQG＊IM）；＂MA．CURRE＂
710 FRIMT GIR ENIEF ZERO FGR FN RPPROXIMATION＂
720 IHPUT EM：IF EM＝D THEN 74 B

$750 \mathrm{PI}=\mathrm{CPI}-\mathrm{FO}$ ：／NV
7 EV FFINT
BUE FRINT＂REDUIFED INFUTT IS＂；FNFCPI；＂WATTS＂
E10 PEINT＂HISSIPRTIGN FEF TUEE IS＂；FHF（FW）；＂WRTTS

$846 \mathrm{IN}=\mathrm{FL}, \mathrm{DI}$
E5G FRINT
GGg PRIHT＂JEGIGN WILL EE GUITABLE FGR＂
910 IF IIC． 94 THEN FRINT＂BM VIIDE＂
\＃26 IF IC 61 THEN FFINT＂FM－TELETMFE＂
936 IF DCX 1.4 THEN FRINT＂CW＂

960 IF IL， 2.5 THEN PRINT＂LOW IUT＇T CNELE DR FIJSE ONL＇r＂
GPG IF IC＞THEN FEINT＂UBE LOM TINESUF FOWEF＂
GBG FPINT INFUT＂ENTER A＝ACCEFT DF F＝FEJECT WFILUES＂；T
9G日 PRINT：IF T年＝＂R＂THEN ENら
1GGG FEINT＂INFUT TUEE DRTF．IF：O IF NOT GURILABLE＂
1D1E PRINT＂FIF GPFROXIMATE IISGHFHTIDUS AHL IRIVE＂

10 C PRINT
$1100 \mathrm{~K}=\mathrm{G}: \mathrm{K} 4=1$

1134 IF SOC 1 IHEN ES＝EB：E＇T＝EM： $4=1$

116 FWI FRT＂FEAK RF BEID YOLTAGE＝＂；FNFUVD＇
11 FRIVT＂BFII ETFS UOLTHE＝＂FFNF（UG）
1． 16 IF $\quad \mathrm{G}=5$ THEN 1 20 OH

225 16＝11，KE

$12 T \mathrm{IF}$ Sy＝－1 THEN FFIMT＂19＂
120 FFETH

$130 G$ FEINT
$1564 \mathrm{ES}=\mathrm{E}$－ EM
151 A IE＝EREEE IF E

154 GFEDT

$\left.2-30 \mathrm{MHz} \mathrm{12V} \mathbf{(* ~}^{*}=28 \mathrm{~V}\right)$				
P／N		Rating	Esch	Match Pr．
MRF412，／A		80W	18.00	45.00
MRF421	Q	100W	22.50	51.00
MRF422＊		150W	38.00	82.00
MRF426，1A＊		25W	18.00	42.00
MRF433		12.5 W	12.00	30.00
MRF449，IA	Q	30W	12.50	30.00
MRF450，1A	0	50W	14.00	31.00
MRF453，1A	0	60W	15.00	35.00
MRF454，／A	0	80W	15.00	34.00
MRF455，／A	Q	60W	12.00	28.00
MRF458		80W	20.00	46.00
MRF475		12W	3.00	9.00
MRF476		3W	2.75	8.00
MRF477		40W	11.00	25.00
MRF479		15W	10.00	23.00
MRF485＊		15W	6.00	15.00
MRF492	0	90W	16.75	37.50
SRF2072	0	65W	13.00	30.00
SRF3662	0	110W	25.00	54.00
SRF3775	0	75W	14.00	32.00
SRF3795	0	90W	16.50	37.00
CD2545		50W	23.00	52.00
3800	0	100W	18.75	41.00
2SC2290		60W	19.75	45.50
2SC2879	Q	100W	25.00	56.00

VHFIUHF TRANSISTORS				
	Rating	MHz	Net Ea．	Mafch Pr．
MRF222	25W	136.174	14.00	－
MRF224	40W	136．174	13.50	32.00
MRF237	4W	136－174	3.00	－
MRF238	30 W	136.174	13.00	30.00
MAF239	30 W	136.174	15.00	35.00
MRF240	40W	136.174	18.00	41.00
MRF245	80W	136.174	28.00	65.00
MRF247	75W	136－174	27.00	63.00
MRF607	1.75 W	136.174	3.00	－
MRF641	15W	407.512	22.00	49.00
MPF644	25W	407.512	24.00	54.00
MRF646	40W	407．512	26.50	59.00
MRF64B	60W	407－512	33.00	69.00
SD1441	150W	136.174	74.50	170.00
SD1447	100W	136.174	32.50	78.00
2N5591	25W	136．174	13.50	34.00
2N6080	4W	136.174	7.75	－
2N6081	15W	136－174	9.00	－
2N6082	25W	136.174	10.50	
2N6083	30W	136.174	11.50	24.00
2N6084	40W	136．174	13.00	31.00
MISC．TRANSISTORS \＆MODULES				
MRF134		00	MRF406	14.50
MRF136			MRF428	55.00
MRF136Y			MRF497	14.25
MRF137			MRF559	3.00
MRF138			2N1522	10.50
MRF140			2N3866	1.25
MRF150			2N4048	10.50
MRF172			2N4427	1.25
MRF174			2N5590	10.00
MRF208			2N5642	13.75
MRF209			2N5643	15.00
MRF212			2N5646	18.00
MRF221			2N5945	10.00
MRF260			2N5946	13.00
MRF261			2SC1969	3.00
MRF262			S10－12	13.50
MRF264			SAV6	34.50
NE41137			SAV7	34.50

Selected，matched finals for Icom，Atlas，Yaesu，KLM， Kenwood，Cubic，TWC，etc．Technical assistance and cross－reference on CD，PT，SD，SRF and 2SC P／Ns． Quality parts users－call for quote
WE SHIP SAME DAY • C．O．D．JVISA／MC Minimum Order－Twenty Dollars
（619）744－0728

1987 CALLBOOKS

The "Flying Horse" sets the standards

Continuing a 66 year tradition, there are three new Callbooks for 1987.

The North American Callbook lists the calls, names, and address information for licensed amateurs in all countries from Canada to Panama including Greenland, Bermuda, and the Caribbean islands plus Hawail and the U.S. possessions.

The International Callbook lists the amateurs in countries outside North America. Coverage includes South America, Europe. Africa, Asia, and the Pacific area.

The 1987 Callbook Supplement is a new idea in Callbook updates; it lists the activity in both the North American and International Callbooks. Published June 1, 1987, this Supplement will include all the new licenses, address changes, and call sign changes for the preceding 6 months.

Publication date for the 1987 Callbooks is December 1, 1986. See your dealer or order now directly from the publisher.

- North American Callbook
incl, shipping within USA
incl. shipping to foreign countries $\quad 30.00$
-International Callbook
incl. shipping within USA $\$ 28.00$
incl. shipping to foreign countries $\quad 30.00$
- Callbook Supplement, published June 1st incl. shipping within USA \$13.00 incl, shipping to foreign countries 14.00

SPECIAL OFFER

- Both N.A. \& International Callbooks incl. shipping within USA \$53.00 incl. shipping to foreign countries $\quad 58.00$

Illinois residents please add 61/2\% tax. All payments must be in U.S. funds.

```
1640 PFIHT"TOTHL FOWER. EKLIIER 10 LOMD, WHTIS=",FHN,FF+NY,
15504 FFIHT" TOTHL E.LITER FOWER, WHTTS=",FNP(1R|*(PF+FO))
1600 FRINT" PLUS CIFCU!1 LUSS"
```



```
 2Hn\S FRINT "THAlV GIRCUIT DESIGN" PRINT
2014 INFUT "EIUTEF TUEE OUTPUI CAPHO ITY, PH",CT
2020 IHFUT" ENTEF (-M1N+C-STFHY, PF",I
2030 LT=CT T +NV+T
2040 IHFUT" EHIER MFNIMOHY FREOUENCY', MH2", FH
2455 INFUT" ENTER LOWEST FREQUENCY', MH2",FL
2060 PRIHT PRIHT"LOHD IMPELHFHCE SHOHLD EE". INTVZL, "OHMS"
2064 PRINI FRINH"LOHD I,
2306 SH=1E6/<2
2210. OM=2L, YH THRK Q AT F-MAX="INT COM..5
2230 IF OM>15 THEN& FRINT FRINT" % IS ENCESSIVE-SEE HHM FHDIU FEFERETUCE'
2240 \1=2L. 1. 
22501 % 2=50. S0F- 50/:2L + *145-1
2280 XL =2L * (12+59/7.2)/14%
2270 C1=1E6, (2*\pi*FL *N1)
2280 C < =1E6 ( < * * &FL*N2)
```



```
2326 FRIHT" NH&IMUMM COIL INDUCTHNCE, UH=", FINF'L,
24019 IHFUT"EHIEF LOIL DIAMETEF. INCHES",CD
2414 INFUT" ENTER CUIL LENGTH. INCHES".CL
2420}\textrm{CH=SORCL*:18*CD+404CL`?,OD
2436 PRINT" COIL TURTS=", FNF'ICN
<444 FFIHIT" TURHS/INCH=",FNFULN'CL
2454 PRIAT" THP GOIL FOF HIGHEF FREOUEIUY EFHISS
2469 IHFUT" EHTER FDDED EAHD FFEOUENY'OR g", HF IF HF=0% THEN PRINT GOTO 25009
2484 PRIHT"THF AT ",FHF(TF,"" THFT'S RPFROS." IF OMD15 THEN PRIHT"EUT SEE HF REFE
2484 PRIHI"THF
PEHCE"
2490S G0T0 2460
2500 IF T& "%" THEN 2600
2510 FE=1.54FH MF=2t./50
2520 C 3=14 t6, (50*2*\pi+FC,
2530 64=C.3./MF
2540 LK=(1+MP * 509/2/\pi/FI
2559 FRIHT "FOR P1 FILTER-GROUNLED GRID IHPUT"
2560 PRIHT" C-IN=", FHF(C3)," PF"
25%0 FRIH|" C-CATHOIE=",FNPCC4, " PF"
2580 FFINT" SEPIES INDUCTAHCE=",FHAP(LK), "IJH"
2580 FFINT" SEPIES INDUCTHNCE=",FHP(LK), "IMH
\angle6009 FRINT FRINT"ENTER POWEF SUPFLY TYPE
2610 PRINT" !=FULL WFVE
2626 PRINT" <= ERIDGE"
2530 PFINT" s=FULLL WFVE LOUBLEF"
2640 INFUT FT
2650 TS=EB/1.3
2660 IF RT=3 THEN TS=EB/2.6
2670 PRIHT"TRANSFORMER VOLTRGE=", INT (TS,
2680 IF RT=1 THEHH PRINT"EACH SIDE OF CENTER"
2680 IF F=3日GMas+NV & IF EB
2690 FC=3000094NV*IF,EE
270日 IF RT=3 THEN FC=FC &5
2710 PRINT" FILTER CRPACITRHCE, MFD =", INT (FC)
3909 PRINT FRIHT"ENTER H=NEW CONIIITIONS"
3010 PRINT" R=REVISE CONDITIONS"
3029 PRINT"* P=REVISE POWER SUPFLY"
3030 PRINT" D=0U1T"
3040 INFUT TI
3050 IF T }$="N"\mathrm{ THEN RLNN
3060 IF TI="F" THEN 500 
3970 IF T }1=|P"\mathrm{ THEN 2600
3989 STOP
RERDY.
```


Turn a few hours work into years of fun with Amateur Television.

Convert any TV receiver to a last scan ATV monitor with the Communication Concepts AT V-2 converter. It allows you to monitor 430 MHz ATV signals using channel 2.3. or 4 on a slandard TV set. without modification to the set The cit cuit uses durable microstrip design for stability and simplicity. The combination of a dual RF stage, the microstrip design, and the hot carriet diode double balanced mixer reduces UHF TV intermod prob lems An additional teature not

the incorporation of a post amplifiet stage (6 dB min gain) following the doublebalanced mixer This is especially important and most noticable on very weak signal reception. The converter requires an external 12 volt DC regulat ed power supply at 50 militamps

ATV-2.PK Kıt includes detailed step by step instructions. printed circuit board and all electromics components as shown
ATV-2.W Wired and tested
$\$ 44.95$
$\$ 59.95$
$\$ 59.95$
CALL OA WRITE FOR OUR FREE SMALL PARTS BROCHURE.
Communication
Concents Inc.
121 Brown Street • Dayton, OH 45402 - (513) 220-9677

DOWN EAST MICROWAVE

MICROWAVE ANTENNAS AND EQUIPMENT - Loop Yegls - Power Dividers - Linear Amplifiers * Complete

Arrays - Mlicroweve Transverters - GaAA FET Proamps
 - $2304 \cdot 2400 \cdot 3456 \mathrm{M} \mathrm{Hz}$
 $1345 \mathrm{LY} \quad 4501 \quad l o 0 \mathrm{Y}$ Yagi $2304 \mathrm{MHz} \quad 20 \mathrm{dBi} \quad \mathbf{5 0 0}$
 Above antennas assembled and tested. Kits availiable. All Aluminum and Stainiess Construction.
Add \$8 UPS S/H, $\$ 11$ West of the Mississippl.
2318 PA Linear Amp 1 W in 18 W out 1286 MHz 13.5 V . $\mathbf{3 2 4 5} \mathrm{ppd}$. 2335 PA Linear Amp 10W in 35 W out 1296 MHz 12.5 V . $\mathbf{5 2 9 5}$ ppd.

NEW! MICROWAVE TRANSVERTERS BY LMW ELECTRONICS
129eTRVED EW, GaAaFET, T/R Sequencer, Output Meter 5489 2304TRV2D 2W, GaA FFET, T/R Sequencer, Output Meter $\$ 569$ Add $\$ 6$ for shipping UPS/48
Stripped down version, kits also available Write For FREE Catalog
\qquad
Box 1655 A RFD ef, Burnham, ME 04922 U.S.A. (207) 948-3741

P.O. Box 9 Oaklawn, IL 60454 (312) 423-0605

SERVICE CENTER

for
ICOM, KENWOOD and YAESU
Fully equipped repair shop Amateur, Marine and Land Mobile repairs.

FCC NABER Lic
Mon-Fri 10:00-4:00 pm
(206) 776-8993

PACIFIC RIM COMMUNICATIONS

Bob KG7D
23332 58th Ave West - 230
Mountlake Terrace, Wa 98043
VIst \& C.O.D.S. Welcome

OPPORTUNITY CALLING FROM NRI

Start your own telephonel cellular radio service \& repair business

New Bootstrap Industry Lets You Be Your Own Boss

Since the breakup of AT\&T, things aren't the same in the telephone business. Now there's a perfect new business opportunity for thousands of independents who have been trained to service, install and repair old phones, plus all the new cordless and cellular mobile car phones, that are becoming more and more popular. NRI's training and start-up equipment offer you the option of starting your own bootstrap business or cashing in on the jobs being created by the new telephone technologies.

NRI shows you how you can make a good living in telephone servicing, with a practical combination of electronic fundamentals and hands-on experience with all types of phones in use today in homes and offices-cord, cordless and cellular.

Learn troubleshooting-with cordless and memory phones you keep!

The heart of NRI telephone training is eight

Action Learning kits. You master the "reasonwhy" theory, then you move immediately into "hands-on" practices. Using a digital multimeter and a telephone line analyzer, you'll test every function of a telephone line, zeroing in on the problem spots and correcting them.

As an NRI student, you learn at home, at your convenience. Without rigid night-school schedules or classroom pressures. NRI's tested "bite-size" lessons lead you step-by-step toward your goal of independence as a telephone service expert.

Send coupon for FREE catalog

Find out for yourself exactly what this new NRI training can do for you. NRI's free catalog gives you all the facts on training for Telephone Servicing \& Repair or other technical fields such as Microcomputers, TV/Audio/Video System Servicing and Communications Electronics. If coupon has been removed, write to NRI Schools, 3939 Wiscon\sin Ave., Washington, DC 20016.

McGraw-Hill Continuing Education Center
3939 Wisconsin Avenue, Washington, DC 20016 We'll give you tomorrow.

\checkmark CHECK ONE FREE CATALOG ONLY

\square Telephone Servicing

\square Computer Electronics with Microcomputers
\square Data Communications
\square Robotics \& Industrial Controls
Color TV, Audio, and Video Systern Servicing Electronics Design Technology Digital Electronics
\square Communications Electronics

For Career courses approved under Gl bill,
\square check for details.
\square industrial Electronics \square Basic Electronics
\square Small Engine Servicing
Appliance Servicing


```
Table 2. Results of a typical run of the program, using
approximations (*indicates an input).
Examole Tube Type- 4-1000H
* rower output- 1600 watts
* Une tude
* Class H
* Hlate- 3500 volts
* Screen- O volts= GاG
* Dissipation- lou0 watts
Hiate current- 2031 ma peak
tp min- 0= approximation
rlate 1 mout- 2264.7 watts
U_ssipation- bo4.7 watts
Hlate currment-047.1 ma average
sultable all modes
* Grid, screen current-0= approximation
* MU factor-7
KF arid voltage- 350
*ias--0
Grid current- 171.4 ma
Grid drive- 54.1 watts
Stage gain- 20
Screen dissipation- 8.9 watts
Exciterr to load- }177\mathrm{ watt:
Total drive- 239,1 watts + losses
Total output- }1777\mathrm{ watts
z-arive- 274 ohms
* Tube c-out- 7.1 pf
* C-strav- 15 pf
* F max, min- 30, 3.5 mhz
Plate impedance- 2709 ohms
G max- }1
Max E tune- 201.8 pf
Max L load- 1179 pf
Max L- 11.3 uh
* Coil 4" dia, 5" lonq
Turns- 13.2
* 14 mhz tap- 3.5 (apprax)
Catnode Falter
    L-1п 70.7 p+
c-out 12.7 pf
L 1.1 uh
* uridae Kectifier
Transtormer- }2692\mathrm{ volts rms
Filter 5 mf
```

plate voltage if maximum output is needed. In the low duty-cycle services, it may be desirable to exceed the usual oscillator-amplifier rating. Up to about 1.5 times the plate modulated amplifier rating seems to work well, with little loss of service life.

Line $\mathbf{7 0 0}$ calls for the plate voltage at estimated maximum plate current, which is the intersection of the load line and the plate current curve for the peak instantaneous grid voltage. Since this is not yet determined, several trials will be necessary to select a reasonable value. Maximum output is usually the design goal in the Amateur Service. For this, use the plate current at the knee of the curve for the maximum grid voltage shown on the tube curves, then follow the instructions. The program allows this
important step to be replaced by an approximation, but this is only for the initial design.

After this step, accumulated design values are output for checking. This includes power input, tube dissipation, and current. The type of service the design values are suited to is output; this is based on typical duty factors. Note that these assume good cooling. The design values can be accepted, or new ones calculated.

Program lines 1000-1680 calculate and output further design data based on curve data. One input is the tube amplification factor, which is the screen factor for tetrodes. Typical values are 4-9 for tetrodes and 20-150 for triodes. Grid and screen dissipation values must be checked against rated values. A small amount of instantaneous overload is allowable for the low duty-cycle services, but there is some risk of shortening tube life if rated values are exceeded. Sometimes it is best to increase plate voltage to reduce drive requirements.

This section also allows estimation of the drive impedance for grounded grid amplifiers. Drive requirements and power fed to the load are calculated.

The section from lines 2000-2490 relates to the plate tank circuit. A simple tapped coil pi-section tank is assumed. Values are calculated for the lowest frequency. Tap points for higher bands are developed by an approximation. The actual tap points should be determined by a test for maximum output. The reason for this is the difficulty of estimating inductance and stray capacitance of the band switch and leads.

The tank design assumes a Q of 10 at the lowest frequency. A flag is printed if the Q at the highest band exceeds 15 , as a result of high tube plus stray capacitance. (See reference 1 for a means of avoiding this by designing the circuit as a L-PI network).

Lines 2500-2580 give design data for a PI network grounded grid excitation input circuit. This assumes cutoff at 1.5 times the highest operating frequency. In principle, this design is not as good as a separate tank circuit for each band ($Q=2$, approximately), but it is far simpler and has presented no problems in years of use.

Lines 2600-2710 give power supply parameters for three types of rectifiers. (When working with surplus transformers, it may be necessary to base the design on a particular transformer voltage rather than on plate voltage.) Remaining lines relate to re-runs.
Table 2 shows results of a typical run of the program.

references

[^2]ham radio

American made RF Amplifiers and Watt/SWR Meters of exceptional value and performance.

-5 year warranty \bullet prompt U.S. service and assistance

RF AMPLIFIERS

2 METERS-ALL MODE

B23 2 W in $=30 \mathrm{~W}$ out (useable in: $100 \mathrm{~mW}-5 \mathrm{~W}$)

B108 10W in $=80 \mathrm{~W}$ out ($1 \mathrm{~W}=15 \mathrm{~W}, 2 \mathrm{~W}=30 \mathrm{~W}$) RX preamp
B1016 10 W in $=160 \mathrm{~W}$ out $(1 \mathrm{~W}=35 \mathrm{~W}, 2 \mathrm{~W}=90 \mathrm{~W}) \mathrm{RX}$ preamp B3016 30 W in $=160 \mathrm{~W}$ out (useable in: $15-45 \mathrm{~W}$) RX preamp $(10 \mathrm{~W}=100 \mathrm{~W})$

220 MHz ALL MODE

C106 10W in $=60 \mathrm{~W}$ out
(1W=15W, 2W = 30W) RX preamp
C1012 10W in $=120 \mathrm{~W}$ sut
$(2 \mathrm{~W}=45 \mathrm{~W}, 5 \mathrm{~W}=90 \mathrm{~W})$ RX preamp
C22 2W in $=20 \mathrm{~W}$ out
(useable in: $200 \mathrm{~mW}-5 \mathrm{~W}$)
RC-1 AMPLIFIER
REMOTE CONTROL
Duplicates all switches, 18 ' cable

WATT/SWR METERS

- peak or average reading
- direct SWR reading

MP-1 (HF) 1.830 MHz
MP-2 (VHF) $50-200 \mathrm{MHz}$

430-450 MHz ALL MODE
D24 2 W in $=40 \mathrm{~W}$ out
($1 \mathrm{~W}=25 \mathrm{~W}$)
D1010 10W in $=100 \mathrm{~W}$ out
$(1 \mathrm{~W}=25 \mathrm{~W}, 2 \mathrm{~W}=50 \mathrm{~W}$)

Available at local dealers throughout the world. COMMUNICATIONS EQUIPMENT,INC.

WACOM DUPLEXERS

Our Exclusive Bandpass-Reject Duplexers With Our Patented $\mathrm{B}_{\mathrm{p}} \mathrm{B}_{\mathrm{r}}$ CIRCUIT ${ }^{\oplus}$ FILTERS

WACOM
PRODUCTS, INC
, NACO, TEXAS 76702•817/848-4435

SSTV SOFTW ARE

 Introducing A New Dimension In SSTV
Gest VideoTools

-MS/DOS based advanced software package for 1200 c Robot users.
-Create/transmit your own high resolution graphic images.

Full Paint Package Features:

-65 K on screen colors out of a range of 256 K -ICOM-based menus, mouse-driven, easy to learn, easy to use
-Over 70 functions
-Enlarge, reduce, save, load video image and image fragments
-Combine video Images, graphics and text
-Full image processing including noise reduction filters
-Save images, live off air
-Animation
-Zoom
-Full function robot control through software -Auto I.D.

Now available to amateur market Send check or money order, \$599 per system to:

Torontel Technology

 Systems Ltd.174 Bellamy Rd. North
Scarborough, Ontario Canada M1J 2L5 416-292-9952 レ 226

- SWEEP VARIABLE $1-250 \mathrm{MHz}$ WITH LESS THAN 1 DB AMPLITUDE VARIATION
- after warm up stable ± 100 KHz FOR 5 MINUTES
- 115 VAC INPUT

ROENSCH MICROWAVE RR \#1, BOX 156B, $963-2550$ BROOKFIELD, MISSOURI 64628

Euchs. Oh. 74342 (918) 253-4094

ham radio

ever work a W10?

Prefix hunters should snap to attention at this one! But the bad news is that W10 prefixes were consigned to the scrap-heap shortly after World War II. The W10 prefix was a catch-all for mobile, experimental stations, and many of the calls were issued to expeditions who wished to keep in touch with home via Amateur Radio.

The most famous of these unusual calls was W10XDA, the ham-band call of the schooner Effie M. Morrissey, under Captain Robert Bartlett, a noted Arctic explorer. The Morrissey made numerous trips to Northern Greenland from 1936 through 1939, and the call was well-known on the 20 -meter phone band.
The adventures of the Morrissey and Captain Bob had slipped to the back of my mind until I read an article about New Bedford, Massachusetts in Yankee. ${ }^{1}$ Almost as an afterthought, the author mentioned the Ernestina, an 1894 schooner presently being restored at anchor in New Bedford. The author further stated that this was formerly the famous Morrissey, which had not only explored the Arctic, but also served as an immigrant packet in the 1890s.
So Amateurs wishing to review some of their own history might visit this famous schooner, which once bore the proud call sign W10XDA that started a hundred pile-ups on 20 meters, so many decades ago.

more about the supercathode driven amplifier

Judging from mail received, there is considerable interest in the cathode driven circuit and the super-cathode driven offspring. Here are some specif-

W 10 XDA
 ABOARD THE SCHOONER-MORRISSEY ON THE - 1936 BARTLETT EXPEDITION TO NORTHEAST GREENLAND

73 Clifton Foss W20J
Operator

W10 prefix was used by mobile, expedition and experimental stations.
ics on the 4-400A as used in that circuit (see fig. 1).
In conventional grounded grid service, a single 4-400A can run at 1 kW PEP input, requiring about 40 watts PEP drive power. While many Amateurs have operated one or two tubes in this fashion, with both grids grounded, the margin of error for excessive grid dissipation is small. In addition, grid and screen currents are quite high.

When the $4-400 \mathrm{~A}$ is run in supercathode driven service, grid and screen dissipation drop, along with the corresponding currents, and grid drive power rises. The circuit for a single 4-400A, in fact, may be adjusted to "soak up" the drive power of most modern hf SSB exciters, which usually run 100 to 130 watts output.

An experimental amplifier was constructed using a single 4-400A; the operating characteristics are summarized in table 1. Note the unusually high value of cathode input impedance.

The amount of drive required by the amplifier is determined by placement of the cathode tap. The nearer the tap is to the filament end of the choke, the greater the required drive. When the tap is at the "ground" end of the choke, the tube operates in the conventional grounded grid mode. For the typical 100 -watt output exciter, the tap is placed about one-third of the distance down the choke from the tube end.

It is necessary to use a blocking capacitor between the tap point on the choke and the grid in order to prevent the ac filament voltage from reaching the grid. The dc grid return is then completed through a small if choke.

In any case, total grid current (sum of grid and screen currents) should be limited to about 150 mA .

the tapped filament choke

A handy filament choke can be made by winding two equal lengths of wire on a ferrite rod. One wire is Formvar (or enamel) insulated, the other is

station
log book number
from

RETURN OF AN OLD FAVORITE

AVAILABLE NOW! \$2.95 each - 3 for $\$ 6.95$

Please enclose $\$ 3.50$ Shipping and handling

Ham Radio's Bookstore
Greenville, NH 03048

AUTHORIZED KENWOOD I-COM RADIO DEALER

H. L. HEASTER, INC., 203 Buckhannon Pike. Glarksturg, W. Va. 26301 Clarksburg Phone (304) 624-5485 or W. Va. TollFree 1-800-352-3177
HAROLD HEASTER, KA8OHX, 91 Ridgefield Place. Ormond Beach, FI. 32074 Fiorida Phone (904) 673-4066
MEW MATION-WIDE TOLL-FREE TELEPHONE 1-800-84-RADIO
1-800-84-72345
Call us for a quotation, WE WILL SAVE YOU MONEY!

BLACK DACRON ${ }^{\text {® }}$ POLYESTER ANTENNA ROPE

- UV-protected
- HIGH ABRASION RESISTANCE
- requires no expensive

POTTING HEADS

- easy to tie e untie knots
- EASY to CUT WITH OUR hOT KNIFE
- SIZES: 3/32' $3 / 16^{\prime \prime} \quad 5 / 16^{\prime \prime}$
- SATISFIED CUSTOMERS DECLARE EXCELLENCE THROUGHOUT U.S.A.

LET US INTRODUCE OUR QACRON ${ }^{(1)}$ ROPE TO YOU - SEND YOUR NAME AND ADDRESS AND WE'LL SEND YOU FREE SAMPLES OF EACH SIZE AND COMPLETE ORDERING INFORMATION
\qquad

7 MILLION TUBES

FREE CATALOG
Includes all Current, Obsolete, Antique, Hard-To-Find Receiving, Broadcast, Industrial, Radio/TV types. LOWEST PRICES, Major Brands, In Stock.
UNITY Electronics Dept. H P.O. Box 213

Elizabeth, NJ 07206

Table 1. Suggested operating parameters for 4-400A in Super cathode driven service.

Plate voltage (key down) Plate current (car- rier insertion) Power input (peak)	3000 VDC
Power output (measured)	333 mA
Power drive Plate load im- pedance	1000 W
Cathode input im- pedance	600 W

Drive power depends on tap setting on filament choke.
Note: The above data has been determined experimentally by Bill Orr, W6SAI, and does not represent the opinion of Varian/EIMAC.
bare, tinned. The tinned wire allows the experimenter to tap along the choke; the Formvar insulation on the other wire prevents the solder from flowing onto the adjacent turns and causing a short circuit.

The super-cathode driven amplifier tunes up in the conventional way. Plate voltage is applied and plate circuit resonance is established at a low drive level. Drive power should be checked with an in-line wattmeter in the coax lead to the amplifier. The tap is adjusted on the filament choke for maximum output when the exciter is running at the desired input level.

Warning! Keep your hands out of
the amplifier when the high voltage is on. After turning off the power supply, short the B-plus lead to ground in the amplifier with a plastic-handle screwdriver or other insulated tool to make sure the filter capacitors are discharged before you do any work on the amplifier. High voltage is deadly!

"stealth" technology -in police radar!

We've all read about the new stealth technology, by which a fighter plane is rendered "invisible" to radar. Well, science has taken another gigantic step. The September issue of Defense Electronics tells about an advertise-

fig. 1. Super-cathode driven 4-400A circuit uses adjustable filament choke tap position to vary input drive level to be used.
ment in a leading auto magazine offering motorists the opportunity to elude police radar for only $\$ 17.95$. According to the ad, the technique involved is the same as the one used to make U.S. aircraft invisible to enemy radar. A breakthrough in low-cost countermeasures? No. Just an aerosol can of silicone spray unconditionally guaranteed to deflect radar waves!

The editor of Defense Electronics tried telephoning the company, but the line was always busy. . . no doubt Washington was calling to learn about the benefits of this momentous idea.

Reminds me of the time I saw a big crowd of curious onlookers outside a shop in the golden days of CB radio. What could be causing the commotion? I stopped and found a fellow selling "SWR grease" from the back of his truck. Smear the grease on your mobile whip antenna, he told the onlookers, and your SWR will instantly drop to 1:1. I should have bought some and tried it on my three-element beam, but I had to finish paying off my purchase of the Brooklyn Bridge first.

how good is a rubber ducky?

The Lee DeForest Club (California) decided to make some meaningful measurements on typical handheld units in the 2-meter band. Willie Sayer, WA6BAN, sent along the results of those tests, along with a description of the setup. The field strength measured at a distance was converted into antenna efficiency, taking into account the power output of the handheld. The winner of the event was KG6NL, who was using an AEA "Hot Rod" antenna, which exhibited an efficiency of about 57 percent. WA6BAN's handheld, with a conventional "Rubber Ducky" produced a reading that indicated efficiency of only 7 percent. Other handhelds with comparable antennas were in the same ballpark.

rf light bulbs - a continuing problem

Light bulbs that actually generate RFI, causing interference to nearby radios, are on the market in quantity.

Step up
to the world's mostadvanced antenna system!
WITH NOT A SINGLE WATT WASTED IN LOSSY TRAPS! (There aren't any!)

Hams in over 50 DXCC countries have done so already!

The DJ2UT-Multiband-Systems offer:

- Maximum gain plus F/B ratio with low VSWR across each band
- 2 kW CW output power
- 10/15/20/(30) 40-meter bands with up to 7 band coverage incl. WARC bands with self-supporting "TWIN-BOOM" and boomlegths from 8 to 20 ft
- Air-core teflon dielectric coaxbalun and stainless-steel hardware at no extra cost
- traditional Blackforest craftsmanship
The DJ2UT-MULTIBANDERS provide the superior full-size monoband-beam performance required during the present sunspot minimum.
For further information contact:
H.J. Theiler Corp.
P.O. Box 5369

Spartanburg, SC 29304 (803) 576.5566
or our distributor in Canada:
Dollard's Radio West
P.O. Box 58236

762 S.W. Marine Drive
Vancouver, B.C. V6P 6E3
Selected dealerships available.

Sold under various brand names GE's "Miser Maxi-light" and North American Philips' "SL-8" are two they use less wattage to provide light and presumably last longer than conventional bulbs. Their threat to a-m radio (and possibly 160 - and 80 -meter Amateur operation) is in the way they generate light.
The of light bulbs have an arc tube containing a metal vapor (mercury, in some cases) under pressure of several atmospheres. Instead of using ordinary line voltage to heat the arc tube, ac is converted to dc through a rectifier and then switched on and off to produce square waves at frequencies of 30 to 60 kHz . The square wave voltage heats the arc tube and the light stays lit. If the arc tubes cools below operating temperature while the lamp is in use, there is a restrike, and rf is generated again. Worst of all, as the lamp ages, restrike occurs more often. The square wave and higher harmonics raise havoc with nearby a-m radios, the interference level from a single bulb is of the same order as that of a light dimmer of the triac variety.
Because the rf bulb may come into widespread use, it is wise to see how the interference problem can be solved before the QRM factor becomes overwhelming.

The National Association of Broadcasters, concerned about the problem, conducted tests on the new bulbs, along with both inexpensive and expensive lamp dimmers. It was found that the more expensive dimmers had rf-suppression built in. Attenuated if noise caused by their operation was about 8 dB for conducted measurements, and about 30 dB for radiated measurements.

The if bulbs radiated about the same amount of noise as the inexpensive dimmers. The GE MaxiLight generated noise only during startup and restrike, which resulted in rapid bursts of noise. The Philips bulb, on the other hand, generated continuous noise.

The NAB and the FCC are discussing possible limitations on if radiation from these devices. So far, nothing has been decided, and the best

Amateurs can do is to make sure their receiving antennas are well removed from these rf pests. This is more easily said than done.

old coax never dies

How good is old coax? I had a 50 -foot roll of coax in the garage unused since it was bought in 1944. Leaving it in its original coiled state, I shipped the coax back to Ron Stier, W9ICZ, at Belden Cable and asked him to check it, in his spare time, for attenuation. Was it contaminated? Had the rf loss increased over the decades? I pointed out that the cable had been protected from sunlight, but had been exposed to both high and low temperatures over the 42 years that had passed. He tested the cable, and this is what he found:

Frequency (MHz)	W6SAI cable	New. Standard cable
50	1.8 dB	1.6 dB
100	2.5 dB	2.2 dB
200	4.0 dB	3.2 dB
400	6.5 dB	4.7 dB
1000	12.4 dB	8.9 dB

Ron pointed out that up to 200 MHz , any difference in attenuation may be attributed to minor differences in cable manufacture, and cable made to the old JAN specifications did not have design requirements above 400 MHz .

It looks, then, that continuing hamtalk about contaminating and noncontaminating jackets and coax cable life are not necessarily valid, if care is taken in the use and storage of cable. Operating old cable under harsh environmental conditions may be another matter. But coax cable used in a protected environment seems to last forever - at least at frequencies below 200 MHz .

reference

1. "The Dearest Town in All New England," Yankee, November, 1986, page 166.

The Largest Satelite TVBO Seminar/Trade Show To The World Jou SBCA/STM Tm Las Vegasf

NOW ANY PERSONAL
COMPUTER CAN HAVE THE MOST COST EFFECTIVE AND VERSATILE I/O BOARD ON THE MARKET TODAY!
$\$ 199.95$
CALL OR WRITE FOR MORE INFORMATION

- Serial Link Interface RS-232 or TTL
- 8 Relay Outputs. High Current AC/DC Form A \& C
- 8 Opto-Isolated Inputs Plus 8 Bit Counter
- 8 Bit A/D with Span Adjust 0 to 5 V . Provisions for up to 8 Input Channels
- EASILY Programmed \& Controlled Using BASIC Statements
- Perfect for Lab Work. Machine Control. Security Systems, $\&$ Data Acquisition
- Unprecedented Usability as Attested by University, Government \& Industrial Users
- Complete Documentation with Soltware Examples \& Total Engineering Support
$\bullet I B M \bullet H P \bullet R A D I O S H A C K ~ \bullet C O M M O D O R E * ~$
- All registeried trademarks

三五SIAS Engineering, Inc 831 S POWERS RD / SALINA, KS 67401 / (913) $823.9209 \sim 251$

HOW TO BE A HAM

3rd Edition

By W. Edmund Hood, W2FEZ

Great beginner's book-brand new and fully up-todate. Assumes no prior knowledge of radio or electronics. Includes information on how to learn the Morse code, details Amateur license requirements from Novice through Extra with exam study guides, FCC syllabus, sample tests and other important information. Also contains helpful hints on how to set up your shack, what antennas to use, fundamentals of wave propagation plus much more. (c) 1986 3rd Edition 302 pages.
\square T-2653
Softbound \$12.95
Please enclose $\$ 3.50$ for shipping and handling
> ramio
> BOOKSTORE

GREENVILLE, NH 03048

Join AMSAT...Today

Amateur Radio Satellite OSCAR 10 provides:

- A New Worldwide DX Ham Band open 10 hours a day.
- Rag Chew With Rare DX Stations in an uncrowded, gentlemanly fashion.

\author{

- Popular Modes In Use:
}

SSB, CW, RTTY, SSTV, Packet

- Full Operating Privileges open to Technician Class licensee or higher.

Other AMSAT Membership Benefits:

Newsletter Subscription:
Dependable technical articles, satellite news, orbital elements, product reviews, DX news, and more.

Satellite Tracking Software Available for most popular PCs.

QSL Bureau, AMSAT Nets, Area Coordinator Support, Forum Talks

Construction of Future Satellites For Your Enjoyment!

AMSAT Membership is $\$ 24$ a year, $\$ 26$ outside North America. VISA and MC accepted.

AMSAT
 P.O. Box 27

Washington, DC 20044
301 589-6062

Or This Inexpensive It Really Shouldn't Be This Easy

Remember just a few years ago, how it took a roomful of equipment just to work RTTY. And if you wanted more than one mode it took a dedicated computer system costing thousands of dollars. The new AEA Pakratts are proving it doesn't take lots of equipment or money to enjoy working all bands in five different modes.

First, A Good Idea
The idea behind the Pakratt is very simple. One controller that does Morse, Baudot, ASCII, AMTOR, and Packet, and works both HF and VHF bands. Of course the decoding, protocol, and signal processing software must be included in the unit, and connection to the computer and transceiver have to be easy. The unit also has to be small and require only 12 volts, so it will work both in the shack and on the road.

Second, Computer Compatible

It doesn't matter what kind of computer you have, we have a Pakratt for you. The PK-64 works with the popular Commodore 64 or 128, and the PK-232 works with any other computer or terminal that has an RS-232 serial port. The PK-64 doesn't require any additional programs. Simply connect to the computer and transceiver and you're on the air. The PK-232 needs a terminal or modem program for your computer. The one you're using with your telephone modem will work just fine.

PAKRATT ${ }^{\text {tm }}$ Model PK-64

PAKRATT ${ }^{\text {tm }}$ Model PK-232

Third, Performance and Features

The real measure of any data controller is what kind of on-air performance it gives. While the PK-64 and PK-232 use different types of modems, both give excellent performance on VHF. The optional HF modem of the PK-64 uses independent four-pole Chebyshev filters for both Mark and Space tones, and A.M. detection. The HF option can be factory or field installed.

The PK-232 uses an eight-pole bandpass filter followed by a limiter discriminator with automatic threshold correction. The internal modem automatically selects the filter parameters, CW Fc $=800 \mathrm{~Hz}$, $B W=200 \mathrm{~Hz} ; \mathrm{HF} \mathrm{Fc}=2210 \mathrm{~Hz}, \mathrm{BW}=450 \mathrm{~Hz} ; \mathrm{VHF} \mathrm{Fc}=1700 \mathrm{~Hz}$, $B W=2600 \mathrm{~Hz}$.

The PK-64 uses on screen indicators to show status, mode, and DCD (Data Carrier Detect) while the PK-232 uses front panel indicators. Both units use discriminator style tuning for HF operation. And that's just the tip of the iceberg. Features like multiple connects on packet, hardware HDLC, CW speed tracking, and other standard AEA software features are included in both the PK-64 and PK-232.

Fourth, AEA Quality and Price

Not many manufacturers like to discuss quality and price at the same time. AEA thinks you want high quality and low price in any product you buy, so that's what you get with the Pakratts. Ask any friend who owns AEA gear about our quality. The people who buy our products are our best salespeople. As for price, the PK-64 costs $\$ 219.95$, or $\$ 319.95$ with the HF option. The PK-64A, an enhanced software unit with a longer flexible computer cable, costs $\$ 269.95$ or $\$ 369.95$ with the HF option. The PK-232 costs $\$ 319.95$ with the HF modem included. All prices are Amateur Net and available from your favorite amateur radio dealer. For more information contact your local dealer or AEA.

Prices and specifications subject to change without notice or obligation.

here is the next generation Repeater
 MARK 4CR
 The only repeaters and controllers with REAL SPEECH!

No other repeaters or controllers match Mark 4 in capability and features. That's why Mark 4 is the performance leader at amateur and commercial repeater sites around the world. Only Mark 4 gives you Message Mastertm real speech - voice readout of received signal strength, deviation, and frequency error - 4channel receiver voting - clock time announcements and function control • 7helical filter receiver - extensive phone patch functions. Unlike others, Mark 4 even includes power supply and a handsome cabinet.

Call or write for specifications on the repeater, controller, and receiver winners.

Create messages just by talking. Speak any phrases or words in any languages or dialect and your own voice is stored instantly in solid-state memory. Perfect for emergency warnings, club news bulletins, and DX alerts. Create unique ID and tail messages, and the ultimate in a real speech user mailbox - only with a Mark 4.

Division of Kendecom Inc.

23 Elm Park, Groveland, MA 01834 (617) 372-3442

NEMAL ELECTRONICS

HARDLINE - 50 OHM

Memal Ma. Description
FXA12 $1 / 2^{\text {E Aluminum Black lacket }}$
FLC12 $1 / 2^{\prime \prime}$ Corr Copper (ED Heliax ${ }^{*}$ (DF4) Bik /kt AC78 $\quad 1 / 8^{-1}$ Corn Copper
NMI2AL N Conn. $1 / 2^{\circ}$ Alum (Male or Female)
NM12CC N Conn 1/2" Copper (Male or Female)
NM 78CC N Conn $1 / 8^{\circ}$ Copper (Male or Fermale)
COAXIAL CABLES
Memal Na. Description
1100 RG 895% Shielded Mil Spec
$\begin{array}{ll}1100 & \text { RG8 95\% Shielded Mil So } \\ 1102 & \text { RG8 95\% Shieided Foam }\end{array}$
$\begin{array}{ll}1102 & \text { RG8 95\% Shielded foam } \\ 1110 & \text { PG8X } 95 \% \text { Shield (mum 8) }\end{array}$
1130 RG213/U Mil Spec 96% Shield
$\begin{array}{ll}1130 & \text { RG213/U Mil Spec 96\%, Sheidd } \\ 1140 & \text { RG214/U Mil Spec - Dbl Silver }\end{array}$
1180 Belden 9913 Low Loss
$\begin{array}{ll}1705 & \text { RG142B/U Teflon/Silver } \\ 1310 & \text { RG217/U } 5 / 8^{-} 50 \text { ohm Dbi Shield }\end{array}$
1470 RG223/U Mil Spec. Dbl Silvet
1450 RGI74 95\% Sheided Mil Spec. ROTOR CABLE - 8 COND.
Memal Me. Description $\quad 100 \mathrm{FL}$ Per FL.
$8 C 1822 \quad 2.18 \mathrm{Ga} .6-22 \mathrm{Ga}$ Hear Duty $\quad 340021$
8 Cl $1620 \quad 2.16 \mathrm{Ga}, 620 \mathrm{Ga}$. Heary Duty

[^3]10051/Conn $\$ 300 / C 0008200$
Cail or write for complete price list. Nemai's 32-page Cable \& Connector Selection Guide is available at no charge with orders of $\$ 50.00$ or more, or at a cost of $\$ 4.00$ individually.
(305) 893-3924 • Telex 6975377

- 213 24-Hr. FAX (305) 895-8178

CONNECTORS - MADE IN U.S.A.

Nemal Mo. Description
 NE 720 lype N tor Beiden 9913

NE723 NFemale Beiden 9913
PL258AM Amphenol Barrel
Pl259 Standard Plog for RG8. 213 10/5 90 or
PL259AM Amphenol PL259 10/790 or PL259IS PL259 Tefion/Silver UG210 Type N tor RG8.213.214
UG838 N Female to PL259 UG88C BNCRG58 UG $146 \quad$ SO239 to Male N UG146 SO239 to Male N $\begin{array}{lll}\text { UG175/6 Adapter for RGS8/59 (specity) } & \text { 10/2.00 or } \\ \text { UG255 } & \text { S0239 to BNC Amphenol }\end{array}$ UG255 SO239 to BNC Amphenol KA51-18 INCRGS8 AM9501-I SMARG1428
S0239AM Amphenol S0239 GROUND STRAP - BRAID

Nemal Mo. Description

G538 3/8" Tinned Copper
GS12 1/2" Tinned Copper
GS316 3/16" Tinned Copper
GS316S 3/16" Silver Plated
GROUND WIRE - STRANDED
Nemal No. Description
Hemal No. Oescription
HW06 6 Ga insulated stranded

VHFIUHF WORLD

the ubiquitous diode: part 1

If there's one solid-state component that's taken for granted and seemingly understood by all Amateurs, it's the diode. However, in discussions with fellow Amateurs, it's clear to me that although the basic concept of its operation is understood, its almost unlimited uses are rarely known.

For instance, when you mention diodes, most Amateurs think of power supplies, zeners, "idiot diodes" (if you don't use them, you're an idiot), detectors, and perhaps mixers. But there are many other types of diodes such as varactors, PIN, noise, Gunn, SRD, tunnel, LED, laser, photo, and so forth. These and other diode types are very important to VHF/UHF/microwave Amateurs.

This month's column will be devoted to the electrical and mechanical properties of the different types of VHF/UHF and microwave diodes. Next month's column will discuss specific applications using these diodes.

early solid-state diodes

The dictionary describes a diode as "a two-element electron tube or semiconductor through which current can pass in only one direction." This definition, however, doesn't mention anything about the diode's forward or reverse voltage/current characteristics, or its resistance, current handling capacity, junction capacitance, or applications.

Solid-state diodes were first described in a paper by Braun in 1874. However, they weren't used extensively until the days of the crystal radio sets to detect $a-m$ from broadcast stations. This detection scheme - the process of
changing if to dc - is commonly referred to as rectification. Many years later, diodes were developed as lowvoltage rectifiers for power supplies.

point contact diodes

Solid-state diodes are available in two major types, point contact and junction. Point contact diodes, the oldest solid-state type, date back to 1874 as noted above. They were the most common types used in the days of the crystal set.
The point contact diode is aptly named because in the early days it consisted of a piece of galena crystal (lead sulfide) or other suitable semiconductor material and a "cat's whisker" or fine wire that came to a point and contacted the crystal as shown in fig. 1A. By properly adjusting the point of contact on the galena crystal, a semiconductor junction is formed.
Low efficiency and the need to constantly readjust the contact on the early point contact diodes led to a change to vacuum tubes in the mid-1920s. However, by the early 1940s, solidstate diode performance was improved by the use of other semiconductor materials with better purity as well as different contact materials.
Some of the improved materials included but were not limited to copper oxide, carborundum, and selenium. Later yet, higher-performance materials such as germanium, silicon, and gallium arsenide became available. Development of materials continues to this day.
The improved point contact diodes performed well for many decades. Probably two of the most famous packaged point contact diodes were the 1N21 and 1N34 types, which are still in widespread use today. However,
point contact diodes usually have limited current handling capacity and are difficult to reproduce in large quantities at low cost. They also are very fragile both mechanically and electri-

fig. 1. Typical diode construction: (A) point contact: (B) planar junction: (C) mesa junction: (D) hot carrier.

ANTENNA POLARITY SWITCHER MODEL APS-1

The APS-1 is a self-contained control head designed to allow remote polarity switching of circular antennas such as the Mirage/KLM range of crossed yagis.

The APS-1 may be powered by the power adaptor (included) or may alternately be powered from a vehicle or other 13-17 VDC source.
In addition to switchable outputs for two antennas, the APS-1 also contains a 6-13 volt regulated DC power supply. This feature is designed for powering items such as preamplifiers. VHF/UHF converters, ete., but may also be used whenever a low-current stabilized variable voltage source is required.

SPECIFICATIONS:

Power Requirement (AC) 117V $\pm 10 \%$ AC $50 / 60 \mathrm{~Hz} 15$ Watt
Power Requirement (DC) 11-16 VDC 500 mA
Outputs ... 12 VDC unregulated, switched (antenna relay supply). One 6-13 VDC variable regulated auxiliary supply.

Total output current 500 mA with AC transformer that is included, 1 amp with optional high current transformer or external DC supply. This unit has our popular five (5) year warranty.

DESIGN EVOLUTION IN RF P.A.'s

- Linear (all mode) RF power amp with automatic T/R switching (adjustable delay). Amplifier useable with drive powers as low as $1 / 2$ watt.
- Receive preamp option, featuring GaAs FETS (lowest noise figure, better IMD). Device NF typically . 5 dB .
- Thermal shutdown protection incorporated
- Remote control capability built-in
- Rugged components and construction provide for superior product quality and performance
- All models include a complete operating/ service manual and carry a factory warranty on all components
- Designed to ICAS ratings, meets FCC part 97 regulations
- Approximate size is $2.8 \times 5.8 \times 10.5^{\prime \prime}$ and weight is 5 lbs .

Specifications/price subject to change

Now with GaAs FET Preamp

	(MHz)	(W)	(W)	NF	GAIN
0508	$50-54$	170	1	-	-
0508 G	$50-54$	170	1	6	15
0510	$50-54$	170	10	-	-
0510 G	$50-54$	170	10	6	15
1410	$144-148$	160	10	-	-
1410 G	$144-148$	160	10	6	15
1412	$144 \cdot 148$	160	30	-	-
1412 G	$144-148$	160	30	6	15
2210	$220-225$	130	10	-	-
2210 G	$220-225$	130	10	7	12
2212	$220-225$	130	30	-	-
2212 G	$220-225$	130	30	7	12
4410	$420-450$	100	10	-	-
4410 G	$420-450$	100	10	1.1	12
4412	$420-450$	100	30	-	-
4412 G	$420-450$	100	30	1.1	12

1. Models with G suffix have GaAs FET preamps. Non-G suffix units have no preamp. 2. Covers full amateur band. Specify 10 MHz Bandwidth for $420-450 \mathrm{MHz}$ Amplitier.
*SEND FOR FURTHER INFORMATION *

TE
SYSTEMS

TE SYSTEMS

P.O. Box 25845

Los Angeles, CA 90025
(213) 478-0591

This publication is available in microform from University

Name

Company/Institution
Address

City
State
Phone 1
Call toll-free 800-521-3044. In Michigan.
Alaska and Hawaii call collect 313-761-4700. Or mail inquiry to: University Microfilms International. 300 North Zeeb Road, Ann Arbor, M1 48106
cally because the contact wire and junction are so small.

junction diodes

Fortunately an important technological breakthrough occurred when the Planar ${ }^{r m}$ semiconductor manufacturing process was developed by Fairchild Semiconductor in the late 1950s. This patented process is now widely used to manufacture junction diodes, which offer both economy and repeatable electrical characteristics.

Most junction diodes are available in two geometries, planar and mesa. The typical planar geometry, shown in fig. 1B, resembles a flat plane. Note that the top of the diode is usually covered with a thermal oxide or overlay that adds some additional stray capacitance to the diode. This oxide is a result of passivation, a process meant to help seal the diode against external moisture and impurities.

The mesa geometry (fig. 1C), a variation of the planar type, was pioneered by Motorola, ostensibly to lower the capacitance across the junction of the diode. It supposedly takes its name from the geological mesa, a steep-sided hill with a flat top. I've also been told, however, that this geometry was named after the city where it was conceived - Mesa, Arizona rather than from its apparent shape.

Usually less fragile than point contact types, junction diodes can be designed to have large current handling capacity. Many thousands of these diodes can be easily manufactured simultaneously on a single 2, 3 or 6 -inch diameter semiconductor wafer and later divided into individual units.

Schottky diodes

By now you're probably wondering why I haven't mentioned the Schottky barrier or "hot carrier" diode. The reason is that it's a more recent configuration that works on an entirely different principle than the previously mentioned diodes.

The diodes discussed so far operate on the principle of minority carrier current, where the actual junction of the
diode is buried within the semiconductor material. The hot carrier diode works on the principle of majority carrier current, where the rectification takes place right at the junction of the two materials.

The hot carrier diode was first theorized in 1938 by W. Schottky, ${ }^{1}$ who described an idealized diode that would consist of metal contacts on a semiconductor material. The hot carrier diode as we know it today wasn't produced commercially until the mid-1960s. It uses the planar process but a different metalization scheme (fig. 1D).

electrical parameters of solid-state diodes

Let's first review some of the major characteristics of semiconductor diodes and the materials used to produce them. The most important electrical parameters of a semiconductor diode usually are forward voltage drop, reverse breakdown voltage, junction capacitance, and current handling capacity.

The forward voltage characteristic of a diode is a very important parameter. Often referred to as the "barrier" voltage or forward "knee," forward voltage is the minimum voltage required for a specific current to flow in the diode. In point contact diodes, this barrier voltage can approach zero volts. But in junction diodes, the barrier voltage is primarily a function of the solid-state material and the resistance of the metal contacts used to form the diode.

semiconductor materials

The most common semiconductor materials presently used in the manufacturing of junction diodes are germanium, silicon, and gallium arsenide. Germanium has the lowest barrier voltage, typically 0.3 volts at 1 milliampere of forward current at room temperature. However, germanium has poor thermal stability, especially as temperature increases.

Silicon is surely the most common semiconductor diode material in use today. When used in junction diodes
it has a medium barrier voltage of about 0.6 volts at 1 milliampere. Silicon is plentiful, inexpensive to produce, easy to use, has good cutoff frequencies (typically greater than 10 GHz), and reasonable thermal stability.

The use of gallium arsenide in diodes is more recent. It is often used in the microwave and millimeter-wave spectrum since it has a much higher mobility and hence a higher cutoff frequency than either germanium or silicon. Its barrier voltage is high, typically around 1.1 volts.
The barrier voltage of a hot carrier diode is influenced by the semiconductor material as well as by the metalization contact materials. By changing the contact metais to the semiconductor material, the barrier voltage can be altered.

Hot carrier diodes usually use either silicon or gallium arsenide for the semiconductor material. Silicon hot carrier diodes have a typical barrier voltage of 0.3 volts, about half that of a typical silicon junction diode. Furthermore, hot carrier diodes can now be made with almost no barrier voltage. These devices are usually used as detectors and are often referred to as "zerobiased Schottkys".

For comparison, the typical lowlevel forward voltage versus current characteristics of point contact and junction diodes using germanium, silicon, and gallium arsenide are shown on the graph in fig. 2. Zero-biased as well as low, medium, and high barrier silicon hot carrier diodes are also shown.

Notice in fig. 2 that as the current increases, the forward voltage drop across the diode increases. This is true because as current increases, there is an additional voltage drop across the total series resistance, R_{T}.

This total resistance is the sum of the series resistance, R_{S}, and the junction resistance, R_{j}, of a diode. This is shown schematically in fig. 3 and in eqn. 1 below.

$$
\begin{equation*}
R_{T}=R_{S}+R_{J} \tag{1}
\end{equation*}
$$

where R_{T}, R_{S}, and R_{J} are in ohms. R_{S} is primarily a function of the resistance
of the connecting wire and the metalization resistance of the semiconductor material. R_{j} is a function of the forward current in the diode junction and can be approximated by:

$$
\begin{equation*}
R_{J}=\frac{26}{I_{T}} \tag{2}
\end{equation*}
$$

where I_{T} is the total current in the diode in milliamperes.
For instance, if the series resistance, R_{S}, of a diode is 5 ohms and the forward current is 1.0 milliampere, the total resistance of the diode, R_{T}, will be approximately 31 ohms. At 10 milliamperes of forward current, the total resistance will drop to about 7.6 ohms.
R_{T} is very important since the higher the series resistance, the higher the voltage drop across the diode, and the lower the efficiency (especially at small signal levels). High series resistance also means that more power will be dissipated as heat in the diode.

It can be shown that to lower the forward resistance and raise the current handling capacity of a diode, the area of the semiconductor material must be increased. However, this usually increases the junction capacitance and hence decreases the maximum frequency of operation.

breakdown voltage

Reverse breakdown voltage is another very important electrical parameter of a semiconductor diode. Typically speaking, at low reverse voltage little (perhaps microamperes) or no reverse current flows through the diode.

Each diode has a specific reverse breakdown voltage at which the junction avalanches and high current flows, limited only by the resistance of the diode itself and any external resistance in series with the power source. If this avalanche current is not sufficiently limited, the diode will be destroyed quickly.

The reverse breakdown voltage of a diode is a function of the material and the metalization. Figure 4 shows some typical breakdown voltages versus type of diodes. Generally speaking, it is only a few volts on the point contact and zero-biased hot carrier diodes used for low-level signal detection. On

fig. 2. Forward voltage versus current characteristics of typical diodes: (A) zero-biased hot carrier: (B) point contact: (C) low-barrier hot carrier: (D) medium barrier hot carrier (the typical type): (E) silicon junction: (F) high barrier hot carrier: (G) gallium arsenide.

fig. 3. Equivalent circuit for a typical diode. C_{j} is junction capacitance, C_{0} is the overlay or passivation capacitance, C_{p} is package capacitance (if package is used), L_{s} is series inductance of package, R_{j} is junction resistance, and R_{s} is series metalization and bonding resistance.
the other hand, power supply rectifiers can have high reverse breakdown into the hundreds of volts.

diode capacitance

One of the most important parameters for high frequency operation is the total capacitance across the diode, C_{T}.
This capacitance is:

$$
C_{T}=C_{J}+C_{O}+C_{P}
$$

Referring to the equivalent circuit of a diode in fig. 3, C_{J} is the junction ca-
pacitance, C_{O} is the overlay capacitance (usually kept to a minimum, as described earlier), and C_{P} is the capacitance due to the package (if any), all in PF .

Package and overlay capacitance are fixed quantities, but junction capacitance decreases to some nominal value when the diode is reversebiased. For detector and mixer diodes, this capacitance is usually measured at zero volts or at some low reverse voltage - for example, 1 to 4 volts (depending on the reverse breakdown

YOU ALREADYOWN 75\% OF A COLOR VIDEO STATION

It's true. With your transceiver, antenna, television set and audio tape recorder, you already have 75% of what's required to receive and send color video world-wide!

Add a ROBOT|'Video Transceiver and your station is complete.

Thousands of amateur video operators around the world are exchanging beautiful color images every day. Whether your favorite mode is SSB or FM or AM-direct, via repeater or satellite-you can join in the high-tech fun without modifying your present equipment. Just add a Robot to your station!

ROBOT

ROBOT RESEARCH, INC.
7591 Convoy Court San Diego, California 92111 Phone (619) 279-9430

Please send me the following Robot equipment. I understand that if lam disatisfied for any reason, I can return the unit and receive a full refund. $\square 1200$ C high resolution video transceiver $\$ 1295$ $\square 450 \mathrm{C}$ standard resolution $\$ 795$
$\square 400 \mathrm{C}$ upgrade kit $\$ 395$
\square More Information
Name
Call
Address
City
Zip
\square COD
\square Enclosed check or money order \$
\square MC \square VISA ${ }^{*}$

SIZE: 4" Hx 3.5" Wx 1 " D MADE IN USA

EXCELLENT SENSITIVITY \& ACCURACY

AC-DC•PORTABLE OPERATION
\#AC-1200 AC ADAPTER CHARGER

Small enough to fit into a shirt pocket, our new 1.2 GHz and $1.3 \mathrm{GHz}, 8$ digit frequency counters are not toys) They can actually out perform units many times their size and pricel Included are rechargeable Ni-Cad batteries installed inside the unit for hours of por table, cordless operation. The batteries are easily recharged using the AC adapter/charger supplied with the unit.

The excellent sensitivity of the 1200 H makes it ideal for use with the telescoping RF pick-up antenna; accurately and easily measure transmit frequencies from handheld, fixed, or mobile radios such as: Police, firefighters, Ham, taxi, car telephone, aircraft, marine, etc. May be used for counter surveillance, locating hidden "bug" transmitters. Use with grid dip oscillator when designing and tuning antennas. May be used with a probe for measuring clock frequencies in computers, various digital circuitry or oscillators. Can be built into transmitters, signal generators and other devices to accurately monitor frequency.

The size, price and performance of these new instruments make them indispensible for technicians, engineers, schools, Hams; CBers, electronic hobbyists, short wave listeners, law enforcement personnel and many others.

STOCK NO:
\#1200HKC Model 1200 H in kit form, $1-1200 \mathrm{MHz}$ counter complete including all parts, cabinet. Ni-Cad batteries, AC adapter-battery charger and instructions
s 99.95
\#1200HC Model 1200H factory assembled $1-1200 \mathrm{MHz}$ counter, tested and
calibrated, complete including Ni-Cad batteries and AC adapter/battery , charger
$\$ 137.50$
\#1300HC Model 1300 H factory assembled $1-1300 \mathrm{MHz}$ counter, tested and calibrated, complete including Ni-Cad batteries and AC adapter/battery charger . $\mathbf{\$ 1 5 0 . 0 0}$

ACCESSORIES:

\#TA-100S

\#P-100
\#CC-70
Telescoping RF pick-up antenna with BNC connector
$\$ 12.00$
Probe, direct connection 50 ohm, BNC connector $\$ 18.00$

fig. 4. Reverse voltage breakdown characteristics of some typical diodes: (A) zerobiased hot carrier: (B) small signal type: (C) zener: (D) low voltage power supply type: (E) high voltage type.
voltage of the diode). The total capacitance of a typical UHF hot carrier diode versus bias voltage is shown in fig. 5.

The effect of the total capacitance on the operation of a diode can be envisioned intuitively. The greater the shunt capacitance, the more likely that the signal entering the diode will bypass the junction resistance, where it can offer the most rectification. Therefore the greater the total capacitance across the diode, the lower the maximum frequency of operation. The maximum frequency of operation versus junction capacitance for a typical hot carrier detector diode can be estimated based on the data shown in table 1.

tuning diodes

Capacitance in the junction of a diode is not always bad. If the semiconductor material is properly doped, a diode can be developed and used as a voltage-variable capacitor or tuning diode, which is often referred to as a

Table 1. Typical maximum recommended junction capacitance versus maximum frequency of operation for hot carrier detector and mixer diodes.

Maximum Frequency in GHz	Maximum $\mathbf{C J}_{\mathbf{J}}$ in pF
0.1	0.7
0.3	0.6
1.0	0.45
3.0	0.35
10.0	0.22

"varactor" diode. Varactors are used in modulators, tuned filters, voltagecontrolled oscillators, and frequency multipliers.

There are two major types of varactor diodes, abrupt and hyper-abrupt junction. In the abrupt junction type, the capacitance versus reverse voltage follows a logarithmic characteristic as shown in fig. 5.

Abrupt junction diodes are most often used where high Q and a moder-
ate (i.e., $2: 1$ or $3: 1$) capacitance tuning ratio is acceptable. Most abrupt junction diodes are specified at a nominal capacitance with -4.0 volts applied across the junction, a defined tuning ratio, and Q at a specified frequency. The Q of a diode increases as frequency and the capacitance decreases. It is seldom desirable to operate a varactor diode with low reverse voltages (1.0 volts or less) since the diode may begin to rectify.

Hyper-abrupt junction diodes are most often used where very large (i.e., greater than $3: 1$) tuning ratios are required. Tuning ratios approaching 10:1 are possible. Hyper-abrupt varactors typically have lower reverse breakdown voltage specifications, are more sensitive to temperature variations, and usually have a lower O than equivalent abrupt junction diodes. Furthermore, they are usually operated over a narrower tuning voltage range. For comparison, a typical hyper-abrupt tuning capacitance versus reverse voltage characteristic is shown in fig. 5.

diode packages

In extremely demanding applications, diodes are often used in chip form because this tends to lessen any parasitic elements in the operation of the diode. But this isn't always desirable, especially for Amateurs. Unpackaged diodes are small, fragile, and difficult to handle. Furthermore, they're often not hermetic, even when passivated.

As a result, most Amateurs prefer to use packaged diodes, which are not only easier to handle but also generally easy to remove or change if that becomes necessary. Therefore, it is very important that due consideration be given to the choice of the package.

One of the oldest semiconductor diode packages is the so-called 1 N 21 style, as mentioned above (fig. 6A). Polarity is usually marked on the package. In some versions, the diode package can actually be separated into two pieces and reversed if the opposite polarity is desired. This package is most often used for older and replacement point contact diodes.

TELEWAVE ANTENNAS

(415) $968-4400$ • TWX $910-3795055$

CADDELL COIL CORP.

35 Main Street

 Poultney, VT 05764 802-287-4055
BALUNS

Get POWER to your antenna! Our Baluns are already wound and ready for installation in your transmatch or you may enclose them in a weatherproof box and connect them directly at the antenna. They are designed for 3.30 MHz operation. (See ARRL Handbook pages 19.9 or 6.20 for construction details.)

100 Watl (4: : , 5,1, . .1. or t: 1 impedence--select one) Universal Transmatch 1 KW ($4: 11$ impedence) Universal Transmatch 2 KW ($4: 1$ Impedence) 510.50
14.50
1 1450
17.00 Univeraal Transmatch IKW (6:1.9. 7, of t:1 - sefect one 16.00 Universal Transmatch 2 KW (6 , 1, 8: , or 1: :-select onei Please send large SASE for info

- 205

MAKE CIRCUIT BOARDS THE NEW, EASY WAY

WITH TEC-200 FILM
JUST 3 EASY STEPS:

- Copy circuit on TEC-200 film using any plain paper copier
- Iron film on to copper clad board
- Peel off film and etch SATISFACTION GUARANTEED convenient $81 / 2 \times 11$ size
5-Sheets for $\$ 3.95$
10 sheets only $\$ 5.95$
add $\$ 100$ postage - NY res add sales tax
The MEADOWLAKE Corp.
Dept. T. P.O. Box 497
Northport, New York 11768
- 206

Want to Advertise in HAM RADIO?

Call Rally Dennis (603) 878-1441 today for more information

fig. 5. Diode capacitance versus bias voltage: (A) VHF hot carrier detector: (B) abrupt junction: (C) hyper-abrupt junction.

By far one of the most common diode packages used by Amateurs is the glass or plastic axial lead type (fig. $6 \mathrm{~B})$. The diode substrate is bonded to one lead of the package. The other package lead may be bonded by thermocompression to the other side of the diode lead if high reliability is required. Where economy is important, the second lead is usually attached to the diode with a whisker or pressuretype lead, which is often referred to as a "C" spring. This package usually has low shunt capacitance. However, it also has high (i.e., at least several nanohenries) series inductance shown as L_{s} in the diode equivalent circuit in fig. 3.

Another popular type of package is the microwave pill. Used where dissipation or extremely low inductance contact is required, it is shown in one form in fig. 6C. If heat is a real problem, the base of the package may be
threaded as shown in fig. 6D.
Stripline pill type packages are also used (fig. 6E). In special situations, the beamlead diode is popular because it has the diode integrated into the leads as shown in fig. 6F. However, this type of diode mounting may also be difficult to handle because it's so small and fragile.
The choice of the proper package for a microwave diode is very important. Hundreds of different diode packages are now in common use. Each one has its advantages and disadvantages. When cost is important, some compromise in performance may be justified. However, in applications where the ultimate in performance is required, the package will be costly and perhaps difficult to use.

summary

In this month's column we discussed the basic electrical and

fig. 6. Some typical diode packages: (A) 1N21 type: (B) axial lead glass or plastic type: (C) microwave pill: (D) microwave pill threaded post: (E) stripline: (F) beamlead.

' FEATURES '

PROCESSORS BOBB If BIT 4.7nutz PROCESSOR OPTKONAL BO日7 MATH CO-PROCESSOR

MEMORY
256K RAM EXPANDMPE TO G4OK DRECTIY ON MOTHER BOARD

DSK DRNES 2 D/S DD FLOPPY DRTVES 360K
KEYBOARD DELUXE KEYBOARD LED NDICATORS
SYSTEMS MS-DOS CPM-BG PC-DOS ZENUX BASIC

SOFTWARE RUNS FLICHT SMULATOR DBASEH FRAMEWORK SYMFHONY RBASE LOTUS 123 WORDSTAR PFS FHE ETC.

OPTIONAL 20 OR 30 MEG HARD DRIVE AUTO/BOOTMG

OISPLAY COLOR RGB OR COMPOSITE MONO
PRNTER CENTRONICS PRINTER PORT

- IJSW POWER SUPPIY - 30 day warRanty

WE ALSO STOCK THE FOLLOWNG ITEMS

MEMORY CHWPS	*CONNECTORS*
*TIL CHPP'	-TRANSFORMERS
-CMOS CHMrse	*SWITCHES
	CAPACITORS
TTRANSISTORS*	*RESISTORS*
-DHOES ${ }^{\text {a }}$	*METERS*
+LEDS*	${ }^{*}$ BREADBOARDS

COMPATIBLE

 COMPUTER
$\$ 599.00$

- 2 FLOPPY DISK DRIVES
- COLOR GRAPHICS CARD
- 8 EXPANSION SLOTS
- PRINTER PORT
- 256K RAM MEMORY
VISIT OUR RETAIL STORE

AZOTIC INDUSTRIES 2026 W BELMONT CHICAGO ILL 60618 312-975-1288

MICROWAVE MODULES Lfd.

mechanical properties of VHF/UHF and microwave solid-state diodes. Other less well-known properties must be understood before you can choose the appropriate diodes for specific applications; some of these properties will be discussed next month. Other types of diodes suitable for specific applications will also be discussed. See you next month!

new dx records

In last month's column we updated all the latest North American DX records. ${ }^{2}$ But as the January issue went to press, two more records were broken!

As predicted in that column, the $33-\mathrm{cm}(903 \mathrm{MHz}$) record was further extended. On September 14, 1986, a Georgia VHF/UHF contest group signing WS4F/4, operating from Mount Toxaway, North Carolina (EM85MN), worked W4ODW in Niceville, Florida (EM60SM). This extends the $33-\mathrm{cm}$ tropo DX record to 377 miles (606 kilometers). Congratulations to all involved.

I have also just been informed that the North American 9-cm (3456 MHz) tropo DX record was also broken by a comfortable margin when WB5LUA/5 in Mena, Arkansas, worked WA5TNY/5 in Fairy, Texas. I hope to include all the details on this contact in next month's column. Congratulations to Al and Rick!

Important VHF/UHF Events:
February 25: EME perigee
March 21: ± 2 weeks. Optimum time for TE propagation
March 24: EME perigee

references

1. W. Schottky, "Naturwissenschaften," Z. Physics, Volume 26, 1938, page 843.
2. Joe Reisent, WIJR, "VHF/UHF World: Microwave and Millimeter-Wave Update." ham radio, January, 1987, page 63.
ham radio

> SAY YOU SAW IT IN HAM RADIO

MISSOURI

RADIO CENTER 1-800-821.7323

NEW ARRL PUBLICATION!

Yàgi Antenna Design is based on the series in Ham Radio Magazine by the late Dr. James L. Lawson, W2PV. Jim was a highly competitive person and this carried through to his Amateur Radio hobby and work with antennas. Although this book is primarily the work of the author, credit should be given to its editors: Bill Myers, K1GQ; Clarke Greene, K1JX; and Mark Wilson, AA2Z. This ARRL publication stands to be a "classic" that should be added to every radio amateur's technical library. The book is available only in hard cover, and is printed on high quality textbook paper. There are over 210 pages of detailed information on Yagi design. For more detail, refer to the column at right. The retail price is $\$ 15.00$. Please add $\$ 2.50$ (\$3.50 for UPS) for postage and handling. Also available at your favorite ARRL dealer.

The American Radio Relay League, Inc. 225 Main St., Newington, CT 06111 Available Mid-January

CONTENTS

Chapter 1
Performance Calculations
Antenna Properties

Modeling

Computational Methodology
$1-3$
$1-5$
Element Self-Impedance
1.5

Mutual Impedance
Element Currents
Input Impedance and Directivity $1-9$

Writing Computer Programs
Validation
NBS Yagi Experiments
NBS Yagi Experiments 1-15
Yagi Gain and Patterns 1-16
Effect of Director Length 1-22
Gain Variations
1-24
Comparison Summary
1-26
Chapter 2
Simple Yagi Antennas
Two-Element Beams 2-1
More Than Two Elements $\quad 2-7$
Performance Characteristics 2-22
Element Illumination 2-24
Summary
2-31
Chapter 3
Yagi Antenna Performance Optimization
Parasite Length Variations 3-3
Parasite Placement Variations 3-11
Front-to-Back Optimization 3-19
Optimum Design 3-24
Design Example 3-24
Number of Reflectors 3-29
Missing Parasites 3-33
Summary 3-35
Chapter 4
Loop Antennas
Square Loop Model 4-1
Other Driven Loops 4-9
Multiloop Arrays 4-12
Summary \quad 4-16
Chapter 5
The Effects of Ground
Reflections From A Plane ground $\quad 5-1$
Ground Curvature Effects 5-2
Image Models
Propagation Elevation Angles
Antenna Performance Over Ground 5-6
Best Height 5-1
Antenna Upward Tilt 5-14
Summary
5-14
5-15

Chapter 6

Stacking
Vertical Stacking Arrangements 6-2
Excitation
Two-Array Stack
6-3
Two-Array Stack 6-13
Three and Four-Array Stacks
Optimization of Stack Arrays
Orthogonal and Antiparallel Stacked Yagis
Summary

Chapter 7

Practical Design
Preferred Antenna Designs $\quad 7-1$

Radius Scaling	$7-3$

Taper Corrections 7-5
Boom and Element Clamping
Correction
Examples of Three-Element Beams $\quad 7.13$
Summary
7-17
Chapter 8
Practical Amateur Yagi Antennas

Designs for 7.15 MHz	$8-3$
Designs for 14.2 MHz	$8-4$
Designs for 21.3 MHz	$8-7$
Designs for 28.5 MHz	$8-8$

Designs for 14.2 MHz 8-4

testing components

A basic question often asked is how to test diodes. You can use an ohmmeter to measure the diode's resistance in both directions. If the diode conducts current in only one direction, you'll find - as expected - a large, seemingly infinite resistance when the ohmmeter probes reverse-bias the diode under test. When the probes forward-bias it, you'll find a very low resistance.

For small signal diodes, use the X100 or X1000 scales of a VOM; for power supply rectifiers, use the X1 scale. Note the values obtained in both directions. The positive (the red lead, normally) should show low resistance; the second reading (with leads reversed) should be very much higher than the first.

What does "very much higher" mean? When I first started out as an apprentice technician in 1959, selenium rectifiers showed only a $2: 1$ ratio between forward and reverse resistances; $500-\mathrm{mA}$ silicon rectifiers (which were all in "top-hat" packages in those days) showed 5:1 or so. Later, the 1 N 4 xxx -series devices showed 10:1 or greater. Similarly, germanium small signal diodes (1N34, 1N60, etc.) showed $5: 1$ when good, while silicon devices (1N23, 1N914, 1N4148, etc.) showed 10:1. Modern varieties of these same diodes show 100:1, according to ohmmeter tests that I ran for this article. Keep the older values in mind, however, because "antique" diodes tend to show up in bargain packs, in older equipment under repair, and in hamfest "specials".

testing SCRs

Although silicon controlled rectifiers (SCRs) can be tested with an ohm-
meter in a similar manner, it's first necessary to determine whether or not the gate of the SCR is capable of controlling the diode. Three questions must be asked. Will the gate turn on the device? Does the SCR act like a regular diode after turn-on? And does it turn off when the current drops below a certain value?

fig. 1. Simple diode curve tracer can be constructed using available oscilloscope and a few additional components.

The gate circuit can be tested by connecting the positive ohmmeter probe to the SCR's anode and then taking a resistor (experiment with the value, which depends upon turn-on current of the SCR) and connecting it between the anode and gate. The resistance of the SCR should be high before the resistor is connected, and low afterwards. After turn-on, remove the resistor. The SCR should still conduct. Disconnect the positive probe and then reconnect it. If the SCR is good, the resistance will again be high.

Note: this method works only on lowcurrent SCRs; the ohmmeter current is less than the hold-on current of highamperage SCR devices.

Because other (parallel) circuit resistances can affect results, testing diodes with an ohmmeter is done out of circuit. When troubleshooting, disconnect one end of the diode before attempting to test. In dc power supplies, there are good reasons to disconnect both ends of the diode under test. Stored charges, even in lowvoltage circuits, can destroy the diode - or even the ohmmeter - in the event of a mistake. Considering the voltages present in high-voltage power supplies, it can also be dangerous.

VOM versus DMM

VOMs typically used a 1.5 -volt battery in the ohmmeter circuit. Bench model vacuum tube voltmeters (VTVM) also used 1.5 -volt batteries (or electronic power supplies in a very few models) for the ohmmeter, even though they were also powered from the 110 -volt ac line. Be careful when using ancient VOM/VTVM instruments, by the way; some pre-1955 models used 22.5 -volt batteries for the ohmmeter, and these instruments will blow every diode you try to test. Suspect this as the cause if you're using an older instrument, or if every diode you test seems to be shorted (they are!).

Modern digital multimeters typically use low-voltage sources for the ohmmeter function. The voltage levels used won't forward-bias the diode, so the diode will test open. Most instruments of recent design have a "high-power" ohmmeter function specifically for testing diodes. The highpower function will sometimes be marked, but ir, most instruments it's

```
PRO-SEARCH}\mp@subsup{}{}{@}\mathrm{ ELECTRONICS, INC.
NEW aIEITAL conwersigh !!!!!
* ERIGHT DISPLAY OF YOUR HEADINE
1%Z"X1 1/E" PAT,PENDINE
```



```
* FOR ALL CDE ROTORS
* N.& S. CENTER
* EASY TO INSTALL
* CONTINIUDUS 360
PLUS SHIPPING
4-800-325-4016 5
1350 EAUR ELVD..ST.LQUIS. MO. 63132
Mi|-8, 隹
```


designated on the function switch with just a diode symbol. On a few instruments, a Hi/Lo Ohms switch is used for exactly the same purpose.

One reader wrote to ask why different meters give different readings in diode testing. This is because different meters use different voltage sources and have different internal circuit resistances. This same effect is seen when switching scales on the same ohmmeter.

matching diodes

Matched diodes are needed in a variety of circuits - for example, in ratio detectors, in discriminators and other fm demodulators, and in quadrature phase detectors, which are used in instrumentation applications. With modern diodes and most circuits (note the caveats!), diode matching isn't necessary unless you're trying to squeeze every last little drop of performance out of the circuit. Some replacement part manufacturers offer matched pairs of 1 N60 diodes for high fidelity fm tuners; in communications applications, diode matching is only rarely important.

If you feel you must match diodes, use an ohmmeter to measure the forward and reverse resistances of several diodes, selecting those with the closest resistance readings.

build a simple diode curve tracer

Figure 1 shows a method by which an oscilloscope can be used to trace the I vs. V curve of a PN junction diode. Transformer T1 is a low-voltage filament transformer. I used a $25.6-\mathrm{VAC}, 300-\mathrm{mA}$ model, but anything from 6.3 VAC to 26 VAC can be used. The high resistances, effectively in series with the diode under test, prevent burn-out. Figure 2 shows several oscilloscope traces under various conditions. Figure 2A shows the normal diode trace for a good 1N914; fig. 2B shows the trace for an open diode. Figure 2C shows a shorted diode, and fig. 2D, a very leaky diode (simulated by shunting 2.2 k across the 1 N914).

additional notes on transistor substitution

In recent columns ISeptember and October, 1986] we discussed transistor substitution. A reader from California reminded me of something l'd seen in repair shops a decade ago but forgotten. When dealing with older equipment, or with project circuits designed more than 20 years ago, be careful in making substitutions with modern devices. In fact, you can even run into problems with transistors of the same type number, but of modern manufacture. The problem is two-fold.

First, older transistors didn't attain the frequency specs that modern transistors do. Even though recently manufactured units may have the same type number, they'll now have a much higher frequency response. This situation is especially likely when using a substitute from a replacement line,

where the original type is no longer available but a "better" substitute is offered. Years ago, circuit designers didn't have to worry as much about layout and stabilization because the transistor was self-limiting. At frequencies where oscillation could occur with a high-frequency device, the gain was too low to support Barkhausen's criteria for oscillation; that isn't the case today. If a high-frequency transistor is substituted for an older device, it might oscillate.
Second, the C-E, C-B and B-E leakage resistances were much worse in older devices, and designers had to compensate for these parallel resistances in the circuits. As a result, a circuit that is properly biased using older devices is not properly biased for the modern replacement. In the late 1960s I worked in a car radio shop after engineering school every day. I once

fig. 2. Oscilloscope used as diode curve tracer: (A) good diode (1N914); (B) open diode; (C) shorted diode: (D) leaky diode.

H.F. Remote Base 2nd Remote or link

Super Repeater Controller

*Remotely programable with Touchtones/ change up to 9 sets of access codes \& parameters from H.T!
*Synthesized speech consisting of high quality male or female digitized human voice
*Dual Remote base (H.F. and V.H.F.)
*Autopatch and Repeater Controller
*Programabie CW or voice ID and courtesy beep
*Automatic voice clock \& activity timers
*Multiple commands cen be executed at once
(up to 16 digits per command string) *Sub-audibie tone compatible
*Alarm clock \& auto-excute command string! *Optional cartridge eliminates disk drive

Special Club Features

- Cenerates rendom code practice @any speed with voice resdbeck after each 20 random code group! * Sot CW speed \& pitch from your H.T. * 5 touchtone defined voice ID tail messeges

Autopatch Specifications

* 300 Touchtone loadable Autodial numbers plus 10 Emergency Autodial (quick accoss) * 300 Rever se petch call signs upiooded from your H.T./general or directed page modes
*incoming caller recaives voice massage \& may select the station to be poged with 3 digit code
* Phone number memory readoack
*Toll restrict-leeding $1 / 0$ and 3 digit prefix *Full or half duplex (repeater on/off)
*Storsge of MCI/Sor int access codes
*Call watting allows switching to second phone line
* Touchtones are regenerated onto the tel./speed dial
*Touchtone or dial pulse mode
- Ring detected while in all remote modes
*Last number redial memory
*Single digit resets autopatch to dial tone

Dual Remote Base Soecifications

* H.F. remote supports: Yaesu fT-757/767. Kenwood TS-440/940, Icom IC-735
*2nd remote or link supports: Yaesu FT 727 (VHF \& UHF); Kenwood 7950/TS-2530/70 series with RAP I(Remote-a-Pad)
* 10 H.F. Memory channels/enter or recall
*Automatic USB/LSB/FM mode select
*Scan up/down, fast/slow, or 100 hz steps
*Control CS-8 relay/latch option with master reset \& status announcement
*All control inputs are vaice confirmed including frequency, mode, scen status, time, outpuls on/of
* autopatch audiable ring/page while in all modes

Sustem Options

* 8 Relay control (CS-8) \$ 79.95
+ 3 DPDT 2A relays, 5 open collector outputs + user defined 2 letter function name
+ on/off position user defined
+ automatic PIT ran/blower control line enables when repeater or any PTT line is activated
*Optional CMOS auto-boot 72k EPROM Cartridge programmed with your parameters $\$ 99.95$ *RAP 1 Keyped controller for VHF remote $\$ 149.95$ model CS64S-\$349.95 (wired and tested) includes: computer interface, disk, cables \& manual, duplex \& simplex versions are supplied (some features not applicable when in simplex mode) (add $\$ 4.00$ shipping / Ca. residents add 6 8) MASTERCARD/VISA/CHECK/M.O.ICOD

Engineering Consulting

 583 Candlewood St.Brea, Ca. 92621
tel: 714-671-2009

Audio Blaster Module $\mathrm{IC}-02 \mathrm{AT} / \mathrm{C}-04 \mathrm{AT} / \mathrm{IC} 2 \mathrm{AI}$

Module installs inside the radio in 15 Min . Boost audio to I watt! Low standby drain/Corrects low audio/ 1000 's of happy users (Works in other H.T.'s too) Used by Police, fire, Emergency, when it needs to be loud

-AUDIO BLASTER*
Model AB 1-\$19.95

Iouchtone to RS-232 (300 baud interfeca) Program your computer in basic to decooe multidigit "strings" sound alarms, observe codes. Simple to install; +12 VOC /audio; includes basic program for C64/ViC20/C128; all computers! "DECODE-A-PAD" Model DAP $\$ 89.95$

Remote Keypad Rows \& Columns Controller Plus Two 4 digit decoders (on/off)/Will control frequency of any keypad entry radio such as the Kenwood 7950/2530/iCO4-AT. Easy to install in parallely with existing keypad/Use with ComShack 64 as a freq. controller or with Pro Search rotor control Dox/A ver satile board for all remote contral applications. The latches may be used for on/off or momentary.
-REMOTE-A-PAD-
Model RAP-1 $\$ 149.95$

Iouchtone 4 Digit Decoder $\&$ on/off latch 50,000 combinations

Repeater on/off Master control Wired and tested +5 to +12 Yolts/ User programable to 50,000 codes/ All 16 digits/Send code once to turn on, egain to turn off/Momentary \& Latching output/drives reley/LED latch indicator/Optional 4 digit extra custom latch IC's $\$ 8.95$ each/add es many latches as you want to your external board Model TSD \$59.95

Iouchtone Decoder Kit M957 Teltone 5 tol 2 v .15 ma (SSI-201 compatable)/inc. 3.58 Mhz Crystal/ 22 pin socket, Data Sheet, Sample circuits, decoder specs, all 16 touchtones, $\mathrm{BCD} / \mathrm{HEX}$. No filters req Model TTK \$22.95
asked a tech rep from one of the major auto radio makers why his company had switched resistor values when the new radio used the same device number in the same circuit. He explained that new production transistors (they were Ge , not Si) were much better in terms of leakage resistance.

Be careful.
NOTE: If you have any tips, techniques, or questions you'd like to see discussed in this column, please contact K4IPV at P.O. Box 1099, Falls Church, Virginia 22041.
ham radio

short circuit

vhf/uhf world

The following text should accompany fig. 3 of W1JR's December, 1986, column: The boom is 1 -inch square tubing with 0.062 -inch wall. One-inch diameter round tubing may be directly substituted, as discussed in the text, though with decreased mechanical strength. The boom should be supported as discussed. All elements are made from 3/16-inch diameter aluminum rod and pass through the boom with insulated shoulder washers and keepers as described. The ends of all elements should be bevelled approximately $1 / 32$ inch. The length of the driven element and/or the spacings and lengths of the T-match are not critical and may have to be modified slightly to obtain a low (1.2:1 maximum) VSWR.
Figure 3 should include the following note in the second part of the figure: Note 3: The UG21 connector is attached to the boom with an Lshaped aluminum plate approximately 1.5 by $1 / 16$-inch thick. Drill out two of the UG21 connector holes with a 0.142 -inch diameter drill. Prepare a $4: 1$ (200-50 ohm) $\lambda / 2$ type balun made from an 11.0-inch piece of 0.141-inch diameter, 50 -ohm semirigid coax with $3 / 8$ inch of the outer tubing stripped off each end and $1 / 4$ inch of PTFE removed for connection to the T-match. Bend the coax in a " U " shape and pass the two ends through the two drilled-out holes in the UG21 connector. Solder the coax on both sides where it passes through the connector.

Authorized

XEROX ${ }^{*}$ COMPUTER FOR BUSINESS, AND PERSONAL USE!

XEROX ${ }^{*}$... The Name You Can Trust!

Since 1906 Xerox ${ }^{*}$ has been the world leader in office automation and copying equipment. They have set standards that others can only imitate. The Xerox 6064 Personal Computer was designed to meet the demands of business, professional, and personal computing today, and into the future! We are proud to offer this complete Xerox ${ }^{\text {® }}$ System at a remarkably LOW price. Compare for yourself...then buy your Xerox* 6064 from C.O.M.B.!
Get the Xerox ${ }^{*}$ Advantage! The Xerox* PC offers you the advantage of running $/ \mathrm{BM}^{+*}$ compatible MS'"-DOS, so you can run the hundreds of business and professional software programs available today! And the Xerox ${ }^{*}$ PC is easy to use! It's designed to get you up and running as quickly as possible with computer-aided instruction and superior documentation covering all aspects of personal computing.
Xerox ${ }^{*}$...Service You Can Count On! If you're considering an $\mathrm{IBM}^{+"}$-compatible, don't be misled by price alone! The system we are offering is a complete system...very easy to hook up and use... and very affordable. But more than that, each system we sell is backed by Xerox ${ }^{8}$ service and support. When you buy this system, your name and computer's serial number is automatically registered with Xerox ${ }^{*}$. Should you need service or advice, a network of over 150 service centers stands ready to help you. Before you buy...compare! Xerox* is your best value! Check all these features:

- IBM ${ }^{+\cdots}$-PC Compatibility.
- Standard 83-Key PC Keyboard with

Mouse Interface (Mouse Not Included.)

- High-Resolution Monochrome Monitor. with 10" Diagonal Non-Glare Screen.
Swivel and Tilt Housing.
- Two 51/4" Floppy Disk Drives.
- 256KB Memory. 8MHz Intel 8086-2

Microprocessor for Faster Speed, Less Waiting Time.

- Seven Expansion Slots, Serial Port for Communications or Printer, and Parallel Printer Port.
- Comes with ScreenMate'w, a User Friendly Guide to the Functions of the MS ${ }^{\text {T}}$-DOS Operating System.
- Menu Driven....No Need to Remember Complicated Commands! ScreenMate ${ }^{\text {T }}$

Over 150 Service Centers Nationally.
Manufacturer's Limited 90-Day Warranty on Parts/Labor.
List Price $\ldots \ldots \ldots \ldots \ldots . \mathbf{\$ 2 7 6 4 . 8 0}_{\mathbf{\$ 2}}^{\text {Liquidation Priced At Only } \ldots \ldots \ldots \ldots \ldots \ldots .}$
Item H-1799-7118-557 Shippped Freight Collect Ship Wt.: 79 Ibs.
Xerox" and the identilying numbers herein are trademarks of XEROX= CORPORATION

Toll-Free: 1-800-328-0609
Credit Card customers can order
by phone, 24 hrs. a day, 7 days a week.

SEND ME THE ITEMS I HAVE LISTED BELOW

Sales outside 48 contiguous states are subject to special conditions Please call or write to inquire

Item No.	Oty.	Item	Price	S/H
TOTAL (Products plus ship, handling)				

SEND TO:
C.O.M.B. Direct Marketing Corp.

1405 Xenium Lane N/Minneapolis, MN 55441-4494
Send the items indicated at lett (Minnesota residents add 6% sales tax Sorry. no C O. D) \square My check or money order is enclosed. No delays in processing orders paid by check.)
Charge: \square VISA* \square MasterCards \square Discover \square American Express*
Acct. No.
Name
Address
City
Phone
Sign Here
combcompcompcomecomecomecomb

Your Number One Source of PACKET Information

Pac-Camm DR-100 SINGLE-PORT

The Pac-Comm DR-100 and DR-200 are packet radio digipeater controllers which have been especially designed for dedicated repeater service. The DR-100 provides single-port controller capability at low cost. It is well-suited to any application where a singlefrequency digipeater is required.

The DR-200 is a dual-port controller, capable of digipeating on two separate frequencies and able to switch pack. ets between ports. It is a basic network building block.

TECH LINE (813) 874-2980

SOFTWARE OPTIONS

- DR-100 Single-Port Software AX. 25 Level 3 Switch AX. 25 Level 2 Digipeater
- DR-200 Dual-Port Software -AX. 25 Level 3 Switch -KE3Z Dual-Port Digipeater -Southern California Dual-Port -Internet Protocol (TCP/IP)

Amateur Net Price Schedule

	Kit	
Assembled		
DR-100	$\$ 84.95$	$\$ 99.95$
DR-200	$\$ 139.95$	$\$ 159.95$

DR-200 DUAL-PORT

Both digipeaters use a $Z .80$ processor which has up to $32 k$ bytes of EPROM and two JEDEC sockets for 2/8/16/32k bytes of battery-backed RAM. Packet HDLC operations are handled in hardware by a Zilog 8530 SCC. Both use the AMD 7910 LSI modem chip. Each modem channel has a standard disconnect header and time-out timer. The CPU itself has a hardware watchdog timer and external hard reset line. The circuit board is RFI shielded by our extruded alumimum case. All connections are soldered to feedthroughs.

- 257

Write For Free Packet Catalog.

ORDER DIRECT 800-223-3511 FREE UPS BROWN

Pac-Comm Packet Radio Systems, 3652 West Cypress St., Tampa, FL 33607

1987 CALLBOOKS NOW AVAILABLE

The 1987 CALLBOOKS are in! Place your order now

 so you can get full use out of your valuable investment. All the latest names, callsigns and addresses make these two books invaluable operatina aids.
NORTHAMERICAN CALLBOOK

Fully updated with all the latest up-to-date callsigns and addresses for all North American Hams. Includes handy operating aids such as: time charts. QSL bureaus, census information and much more. With calls from Panama to Greenland, every ham should have one in their shack. 1986.
\square CB-US87 Softbound \$24.95

INTERNATIONAL CALLBOOK
Callsigns and addresses for all Amateur Radio operators outside of the North American continent. Invaluable aid to getting QSL cards from foreign DX'ers. Includes plenty of extra information too! Universally recognized as the source of OSL information. (c) 1986.
\square CB-F87 Softbound \$24.95

mmic multiplier chains for the $902-\mathrm{MHz}$ band

Doublers with gain

 and simple filters produce reliable resultsIt's possible to design a simple frequency multiplier chain for UHF and microwave transceiving converters using stable and easily reproduced silicon MMIC (Microwave Monolithic Integrated Circuit) amplifier blocks. In this article, I'll first discuss the use of MMIC amplifiers as multipliers, then describe a specific application - a local oscillator for the $902-\mathrm{MHz}$ band.

MMIC multipliers have gain

The key to the design of this multiplier chain was the realization that silicon MMIC amplifiers not only make good active multiplier stages, but can also provide gain - i.e., the harmonic output power level can be greater than the fundamental input power. MMIC amplifiers offer several advantages over more conventional active multipliers. First, MMIC amplifier "building blocks" are internally matched and unconditionally stable, so there's no need to worry about pulling them into spurious oscillation modes, as can happen when a discrete transistor multiplier is tuned with external networks. MMIC amplifiers are small and inexpensive, too, and consequently attractive for multiple use. Unfortunately, they require a fair amount of dc power to operate.

initial tests

The Avantek MSA 03 MMIC was tested for use as a multiplier. It was biased normally and an input signal at 0 dBm was applied. The second harmonic, viewed on a spectrum analyzer, was typically 10 to 15 dB below the fundamental output. Since the gain of the MSA 03 is about 12 to 14 dB , the second harmonic is about equal in power to the drive signal. This suggests that to build an active doubler with this MMIC, all that's required is a filter to reject the fundamental output and enhance the desired second harmonic.

higher order multiplication has disadvantages

Of course it's possible to multiply by a number other than two. Triplers and even quadruplers aren't uncommon in transistor multiplier circuits. However, there are a couple of factors that led me to use only doublers. First, the gain of a multiplier falls off as the multiplication factor is increased. As discussed before, to get unity or greater gain with an MMIC multiplier, a doubler is most effective. Second, the filtering is simplified when doubling, since the undesired products are 50 percent away from the desired passband. This ratio decreases for higher order multiplication, to 33 percent in a $\times 3$ multiplier and down to 25 percent for a quadrupler. ${ }^{*}$ As the fractional bandwidth between desired and undesired products narrows, the filter complexity increases to maintain a given amount of rejection. In the interest of keeping the filtering simple and easy to tune, I elected to go to the higher number of stages needed for doublers and pay the price in increased power consumption. This approach worked, since the multiplier chain proved easy to tune and results were repeatable. No undesired spurious oscillations were encountered at any time during the development of these MMIC multiplier stages.

filters are needed

Filters are the key elements in the multiplier chain. Each MMIC stage must be followed by a filter to remove the fundamental while at the same time passing the desired second harmonic. Much of the justification for using doublers was to permit the use of simple, easily tuned filters.

At lower frequencies it's easy to build filters using lumped circuit techniques and designs provided in the

[^4]literature. ${ }^{2,3}$ As one approaches UHF, it becomes more difficult to control the stray capacitances and inductances, and individual components themselves resonate in undesired ways. At this point, it's good to change over to another type of filter, one that's more appropriate to UHF work. It would be nice if such filters were also simple, easy to tune, and fit in well with the other circuitry.
The two higher-frequency bandpass filters were designed using printed inductors (printed coupled microstrip transmission lines). This was done for several reasons. First, at higher UHF frequencies, pure inductances in lumped element filters are smaller and more difficult to make, while the printed coupled lines are easier to construct. In addition, once the coupled lines are designed and printed on the circuit board, they have known, stable characteristics.
These filters are the equivalent of the familiar combline bandpass filters often encountered in microwave work. The difference is that here the usual air-dielectric resonator rods have been replaced by a microstripline version. The two lines, shorted to ground at one end, and capacitively loaded at the far end, are coupled by the electric fields both in the dielectric substrate and in the air above the microstriplines. Here, the substrate is the usual Amateur microwave printed circuit board material, G-10. The coupling between the lines depends mainly upon their width, the spacing between them, and their lengths. *
A number of references contain graphical aids to the design of coupled line pairs, and earlier articles describing the use of similar structures have appeared in the Amateur literature. ${ }^{4}$ Several CAD programs including models for coupled lines on microstrip are available; I used such a program to optimize the design of the two filters incorporated in this multiplier. The mechanical details of the filters are given in the PC layout (fig. 3).

The characteristics of these filters include good lowfrequency response, with no undesired passband below the center frequency. They also offer good highfrequency response up to approximately three times the center frequency. Near the third harmonic, the rods are again quasi-resonant, and there is a second, undesired passband. However, in a multiplier, this band is at approximately the sixth harmonic of the doubler's input signal, and it has generally not caused any problems because the sixth harmonic is quite low in power.

These coupled microstripline filters are also easy to tune to their center frequency because their response is fairly broad. The microstriplines, once printed on the substrate, are, of course, unadjustable, so that only the two trimmer capacitors have to be tuned. Fixing

[^5]the inductors by printing them on the board has its advantages: fixed-tuned inductors need not be blindly tuned, and it's easier to avoid tuning to the wrong harmonic when the tuning range is restricted.

The other main ingredient in this type of multiplier is the active stages. Here, they are MMIC amplifiers, silicon integrated circuits designed to provide very wideband gain. Packaged in small, transistor-like plastic housings, they contain almost all of the biasing and matching circuitry for a complete of amplifier. Devices from Avantek have been described in a number of publications recently. ${ }^{5.6,7}$ In addition, a new, even lowercost entry into the MMIC field has been announced by Mini-Circuits Labs. ${ }^{8}$ Other manufacturers will undoubtedly announce silicon MMICs of their own soon. Most of these amplifiers are suited for multiplier use if they're driven to near saturation. All are unconditionally stable, which is a great aid to the design of a multiplier gain stage with a reactive filter terminating the output. The multiplier described below uses Avantek amplifier MMICs, but other similar devices could probably work as well.

a local oscillator circuit

A multiplier based on MMIC gain blocks represented an easy and repeatable design approach to $902-\mathrm{MHz}$ band operation. I wanted to build a converter that would translate this band down to the $144-\mathrm{MHz}$ band so that I could use my 2-meter transceiver; doing this would call for a local oscillator operating at approximately 758 MHz . A local oscillator (LO) 144 MHz above the operating frequency would also be possible, but that would invert the sidebands in an SSB system, and otherwise offer no particular advantages.
The choice of exact LO frequency is worth a moment of thought, as many UHF operators have discovered (the hard way) in the past. It's best not to choose an LO frequency that will produce undesired responses at the i-f. Here, we must avoid a local oscillator frequency whose harmonics fall in-band either on the 2 -meter i-f or within the $902-\mathrm{MHz}$ band. A second possible problem can occur when there's a strong signal at the i-f from external sources - for example, if the $i-f$ is 144.2 MHz when operating on the suggested calling frequency of 903.1 , there will be problems with i if feedthrough of strong signals on 144.2. These signals leak around the converter and appear on top of the real signals downconverted from the $902-\mathrm{MHz}$ band. It can be difficult to shield the i-f sufficiently to avoid this entirely, so it's prudent to pick a less congested frequency for the i-f. In my area, 144.5 is usually quiet. So, for my example, the LO was designed at $903.1-144.5=758.6 \mathrm{MHz}$.

Because I wanted to use only doublers in the multiplier chain, the choice of multiplication factors was restricted to powers of 2 , with 4,8 , or 16 the most

ORDER DIRECT 800-223-3511 FREE UPS BROWN

Pac-Comm Packet Radio Systems, 3652 West Cypress St., Tampa, FL 33607 r 258

$=\left\{\begin{array}{l}\text { (in) } \\ \text { the } \\ \text { HAN STATION }\end{array}\right.$ HAN

P.O. Box 4405 220 N. Fulton Ave. Evansville, IN 47710

Store Hours
MON-FRI: 9AM-6PM SAT: 9AM - 3PM CENTRAL TIME

TERMS:

Prices Do Not Include Shipping. Price and Availability Subject to Change Without Notice Most Orders Shipped The Same Day Hex COD's Welcome x 국

FT-767

- HF/VHF/UHF Base Station
- Plug-in Modules for $6 \mathrm{~m}, 2 \mathrm{~m}, 440 \mathrm{MHz}$ - Loaded with Features \$ SPECIAL PRICE \$

FT.727R

- Dual Band Handie
- 5 Watts Power on $2 \mathrm{~m} \& 440 \mathrm{MHz}$
- 10 Memories
- Battery Saver \$ SPECIAL PRICE \$ FT-23R with DTMF Keypad - Mini 2 meter
- 2 w or opt. 5 w
- 10 memories
- memory and band scan

CORSAIR II

- You have to hear it to believe it!
- Lowest Noise, Cleanest \& Most Selective HF Transceiver AroundAMERICAN MADE

WELZ

Power Meters
Large Selection of Meters Always on Hand \$ SPECIAL PRICE \$

IC. 735

- Most Compact and Advanced Full-Featured HF Transceiver on the Market.
\$ SPECIAL PRICE \$

DISCOUNTS ON RIGS AND ACCESSORIES FROM: AEA, ARRL, ALINCO, ALLIANCE, ALPHA-DELTA, AMECO, AMERITRON, AMP SUPPLY, ANTENNA SPECIALISTS, ASTRON, BENCHER, BUTTERNUT, B \& W, CSI, CALLBOOK, CUSHCRAFT, DAIWA, DIAMOND, ENCOMM, HAL, HEIL, HUSTLER, ICOM, KDK, KANTRONICS, KENPRO, LARSEN, MFJ, MICROLOG, MIRAGE/KLM, NYE, PALOMAR, ROHN, SANTEC, SHURE, TE SYSTEMS, TELEX/HYGAIN, TEN-TEC, TOKYO HY-POWER, VIBROPLEX, W2AU BALUNS, WELZ, YAESU

fig. 1. Block diagram of the $X 8$ multiplier.
758.6 MHz , is further amplified after filtering to produce a power level sufficient to drive a standard-level double-balanced mixer.
The first bandpass filter, centered at 189 MHz , consists of two series-resonant sections and a single capacitive shunt element. The series sections use airwound coils. I've long found inductors of this type

fig. 2. Schematic diagram of the multiplier.
reasonable choices. However, if the total multiplication were only 4 , the crystal operating frequency would have to be approximately 188 MHz . Such crystals are available, but they're neither common nor economical. Three doublers in series gives a multiplication of 8 and calls for an input of about 94 MHz , which is a readily available frequency in common series-resonant, fifth overtone crystals. Four doublers would yield a X16 output, with a crystal at 47 MHz , but there appears to be no reason to go beyond an X8 stage. I ordered a crystal for

$$
\frac{758.6}{8}=94.825000 \mathrm{MHz}
$$

The block diagram of this LO chain is shown in fig. 1. The crystal oscillator's (approximate) $94-\mathrm{MHz}$ output is buffered and amplified by an MMIC stage, which drives a lumped element bandpass filter centered on 189 MHz . (See schematic of MMIC multiplier chain in fig. 2.) This filter presents a good VSWR at its center frequency, but a very poor match at the oscillator's fundamental operating frequency. The fundamental output of the amplifier is reflected back into the MMIC, where it has a second chance to contribute to second harmonic output.*

Though the next two multiplier stages are similar in design, they differ mainly in that their bandpass filters use coupled microstriplines rather than lumped elements. At each stage, there's an MMIC amplifier driving a bandpass filter tuned to the second harmonic of the MMIC's input frequency. The final output, at

[^6]| Parts list for the multiplier. | |
| :---: | :---: |
| AR1-4 | Avantek MSA0304 MMIC Amplifier |
| $\begin{aligned} & \text { C1,6,7,15, } \\ & 17,19,21 \end{aligned}$ | $0.01 \mu \mathrm{~F}$ ceramic disc capacitors |
| C2 | 1.7 pF nominal 0.8-8pF |
| C5 | 1.7 pF trimmer capacitor |
| C11 | 3.9 pF nominal 0.8-8pF |
| C12 | 3.9 pF trimmer capacitor |
| C3 | 10 pF ceramic capacitor |
| C4 | 2-8 pF trimmer capacitor |
| C8 | 10 pF nominal 4-20 pF |
| C9 | 10 pF trimmer capacitor |
| C10, 13, 14 | 33 pF chip capacitor |
| C16, 18,20,22 | $0.01 \mu \mathrm{~F}$ (non-critical value) |
| CR1 | Silicon rectifier diode 1N4002 or equivalent |
| L1, 12 | 16-1/2 turns No. 24 AWG, $0.3 \mu \mathrm{H}$. Bare wire wound in threads of nylon 6-32 screw. |
| L7,8,9, 10 | 10 to 15 turns No. 30 AWG Kynar insulated wire-wrap; Wire close-wound on No. 60 drill. |
| R1-4 | 200 ohm, 1/4.watt carbon composition |

fig. 3. Full size PC negative for the X8 multipler. The other side of the $0.062^{\prime \prime} \mathrm{G}-10$ board is unbroken copper groundplane.

fig. 4. Component locations for the multiplier. Components shown with dashed lines are on the back side of the board. Eyelet locations are shown as an X .
hard to predict, mainly because of the difficulty in winding the coil to the design's dimensions. For this reason, I wound the coils on a form - a nylon screw. The No. 24 wire lies in the threads neatly and evenly, so that the predicted coil spacing is maintained. The nylon apparently doesn't cause an excessive increase in the filter insertion loss, even though nylon is generally a poor rf material. (This simple coil form is available at better hardware stores.) Variable capacitors are used to provide tuning range for the filter. The two capacitors in the series arms of the filter are the main tuning, while the adjustment of the shunt element is not as critical.

The second and third filters, centered at 379 and 758 MHz , were made with printed microstriplines. The key to their performance is in the accurate reproduction in copper of the design dimensions. It isn't necessary, however, to maintain fantastic accuracy; a number of filters have been built with hand-cut lines
and work well. Pay attention to the grounding (as always in rf work, poor grounding will rise to cripple otherwise fine circuits). An eyelet at the base of the filter is good insurance, as is wrapping the edge of the top ground traces to the bottom ground with foil and soldering both sides.

The loading capacitors at the ends should be physically small, electrically short, and high Q. That's the ideal. In practice, adequate filtering is achievable with a wide range of capacitors. The best capacitors for the job seem to be the subminiature microwave tubular trimmers, but the circular ceramic types work, too. The main problem with lower-cost ceramic capacitors is really only an irritation; their entire tuning range is compressed into one-half turn of the rotor, so that fine peaking of the filter requires a steady hand and patience.

The only other main concern in the layout is a familiar one in all high-frequency work - the substrate.

The microstriplines require a good ground plane on the far side of the board, a ground plane that should be as unbroken as possible, and well coupled to the ground traces on the top of the board. The thickness of the material is important, too, if the line impedances are to be as designed. Ideally, the dielectric constant of the material should be well controlled, but in practice most Amateur construction is done on G-10 board, which is not intended for microwave work. However, G-10 works well enough for noncritical circuitry. The dielectric constant of G-10 varies with frequency, but is about 4.2 at the high end of the UHF band. ${ }^{9}$

Each MMIC is mounted to the surface of the board with its plastic package recessed in a clearance hole. The amplifiers receive their dc bias via a small decoupling coil, well bypassed to ground at its far end. The MMIC operating voltage is obtained from the 13.6 -volt supply and dropping resistor. The resistor is positioned on the bottom side of the circuit board to keep it out of the way. More details of device biasing are given in the references.

construction

The printed circuit board negative shown in fig. 3 depicts only one side of the board. The other side of the circuit board is unetched copper, which serves as a ground plane for the microstriplines. Component placement is indicated in fig. 4. Where component leads pass through the board, small clearance holes should be made to prevent the leads from shorting to ground. Ground plane side artwork isn't needed, since no circuit traces exist on this side, and a few minutes' work with a drill bit will clear the lead holes.

The board doesn't have to be all that precise; the filters are tolerant of inaccurate layout because of their low selectivity. In fact, I've had good results with handcut boards. I make a $1: 1$ photocopy of the artwork and glue it to the surface of a piece of G-10 board. Then I use a sharp knife and cut through the paper to nick the copper cladding. I then peel the cladding away with the knife and a pair of pliers. The results aren't particularly attractive, but the process is quick and effective.

The crystal oscillator circuit is similar to the one described in Hilliard's article, ${ }^{10}$ which was designed to operate around a 2 N 4124 at 16 percent lower frequency. It's also quite similar to designs described in detail in Frerking." The oscillator uses a fifth overtone crystal, with resonant network in the feedback path to peak the circuit's gain at the desired overtone. Only one minor alteration was needed to get the circuit working: the base of the oscillator transistor requires a good if ground, and when using only a disc capacitor as a bypass, I had problems with spurious modes and poor starting. I added a small (physically and elec-

fig. 5. Schematic diagram of the 94 MHz crystal oscillator.

fig. 6. Photograph of the prototype multipler, which was built on hand-cut board.

fig. 7. Photograph of the prototype oscillator in its shielded housing.
trically) chip capacitor to ground and the problems vanished. The final circuit is shown in fig. 5.

The oscillator (fig. 7) was built on a piece of copperclad board. I didn't make a circuit board for this circuit because I felt the layout wasn't particularly critical. Where insulated mounting points are needed, a teflon-insulated terminal can be installed on the board, or an isolated island of copper can be cut with a pad cutter. Many of the construction details are visible in fig. 7.

\author{

- NEW LUNAR AMPS.
 \qquad CALL FOR INFO.
}
- NEW ICOM IC-275A + accessories...........Call for Price

ICOM IC-28A List $\$ 429.00$
Yours for just $\$ 369.00$ \$AVE
Kenwood TS-440.. Call for trade ICOM R-7000 $25-2000 \mathrm{MHz}$ \qquad $\$ 949.00$
KDK FM 240 . . 279.00
B\&W Viewstar Antenna Tuner.. 89.95
Shure 444D.. 54.95
Belden 9913 low loss coax......................................51/ft
Amphenol 831 SP-PL259 silverplate.................... 1.25 ea
AEA Packet PK 232..
MFJ Packet 1270 ... 115.00
AEA 2 meter Isopole
Diamod D $13025-1300 \mathrm{MHz}$ Discone 79.00

Van Gorden SLA-1 160-80-40 sloper 34.00
GE 6146B
11.95 ea

USED EQUIPMENT
All equipment, used, clean, with 90 -day warranty and 30 -day trial. Six months full trade against new equipment. Sale price refunded if not satistied.
POLICIES
Minimum order $\$ 10.00$. Mastercard, VISA or COD. All prices FOB Houston except as noted Prices subject to change without notice. Items subject to prior sale. Call any time to check the status of your order. Texas residents add sales tax. All items full factory warranty plus Madison warranty.

MADISON
Electronics Supply
3621 Fannin
Houston. Texas 77004 (713) 520-7300 or (713) 520-0550
(800) 231-3057

小wre RADIO HANDBOOK 23rd Edition by Bill Orr W6SAI

Here are some of the highlights of this exciting new edition: New easy-to-use charts for Chebyshev and elliptic filter configuration, new data on power MOSFETS, how to use state-of-the-art OP-AMPS, and home computer RTTY to name just a few examples. New projects include: GaAsFET preamps for 902 and 1296 MHz , easy-to-build audio CW filter, Economy two 3-500Z, 160 meter amplifier, multiband amp using two 3CX800A7's, and a deluxe amplifier with the 3CX1200A7 tube. New antenna projects include: efficient Marconi design for 160 and 80 meters, computer generated dimensions for HF-Yagis, and a 2 meter slot beam. Also all the other information you count on Bill Orr for! You deserve the latest Radio Handbook.

23rd edition (c) 1986
$\square 22424$
Hardbound \$26.95
Reg. 29.95 SAVE \$3
Please enclose $\$ 3.50$ to cover shipping and handling
harn raăio

This design, like most oscillators, tends to be sensitive to variations in its environment. Stray fields, temperature variations, load variations, power supply changes and even nearby movement can alter the operating frequency. The oscillator's output is multiplied eight times before mixing, so even changes of a few hertz can be noticed at the output of a narrowband converter (consider how a $50-$ to $100-\mathrm{Hz}$ step can change the pitch of an SSB voice signal). For these reasons, I chose to put the oscillator in its own shielded box, use a voltage regulator, and leave room for a temperature controller.

Shielding helps prevent changes in the local fields of the circuitry and helps lengthen the oscillator's thermal time constant. It's important to note the distinction between temperature compensation, which reduces the total drift of the oscillator, and changing the thermal time constant, which reduces the rate of change of frequency, but not the ultimate magnitude of the change. In an Amateur system, it's usually unimportant if the circuit drifts a bit, as long as the drift rate is quite slow. After all, we don't tend to sit on one frequency for hours (or even for many minutes). So lengthening the thermal time constant is a good strategy for UHF oscillator circuitry, and is easier than temperature compensation or control.

The closed aluminum box, stuffed with fiberglass insulation, helps greatly in slowing the drift rate. The two large resistors visible on the board in the photograph were included for use as heaters if a temperature controller were needed. So far, I haven't seen any need, but if the local oscillator were mounted outside and exposed to wide temperature ranges, temperature control could be added. The space between the two power resistors is sufficient for an LM3911 integrated circuit temperature regulator.

tuning

Start the tuning process by getting the oscillator going. If all is well, the oscillator will start up as the variable capacitor is adjusted. The adjustment range of the capacitor should be broad. Set the capacitor to the middle of the range, making sure that the oscillator will restart when power is interrupted. The oscillator should provide 5 to 10 milliwatts at the output of the attenuator. There is no trimming of the series resonant crystal.

Unfortunately, tuning the multiplier can be more complicated. The tuning range of the three filters is limited, so it should be difficult, but still possible, to tune to the wrong harmonic. Start by presetting the variable capacitors to the calculated capacitance. For example, the output filter calculations predict that 3.9 pF wil be needed, so if a 2- to 8-pF trimmer is used, preset it visually to about half-meshed. The calculated values for all of these capacitances are shown on the
schematic diagram.
Apply the oscillator output signal to the multiplier, and then apply dc power. See that the MMIC device voltages specified are present, which should verify that the amplifier stages are working. Peak the output for maximum power and measure the output frequency with a counter.

I found that this tuning could be accomplished with just a diode detector to peak the tuning and a counter to verify that the output of the multiplier was at the correct frequency. I then examined the ouput of the chain with a spectrum analyzer, which produced the plot shown in fig. 8.

fig. 8. Spectal output plot of the multiplier chain. The desired signal is at +9 dBm . The highest undesired products are at 379 and 1137 MHz , approximately 30 dB down the 758 MHz signal.

If this method of tuning doesn't work, it might be better to tune each stage separately. Tap into the circuit at the output of each filter in turn, and peak it for best output power at its center frequency. This method will take longer, but it's less "blind" than tuning for the final $758-\mathrm{MHz}$ output all at once.

summary

MMIC devices in circui s similar to the one just described can be configured as simple and wellbehaved multiplier chains. Silicon MMIC amplifiers now provide good gain to 3 or 4 GHz , so that multipliers using them should be practical to at least such frequencies. The concept outlined here - using doublers followed by simple filtering - provides adequate spectral purity and output power sufficient to drive a mixer directly. The components are inexpensive, and no machine shop work is needed. The only real drawback to this cascaded system is its healthy appetite for dc power due to the MMIC's internal biasing circuitry. The phase noise of the multiplier wasn't measured, but it appears to be quite adequate for Amateur narrowband communications.

parts

I can provide some of the parts for this project, including printed circuit boards; send an SASE to me for a list of what I have available.

references

1. E. H. Angle, "A Quarter-Kilowatt $23-\mathrm{cm}$ Amplifier, QST, March, 1985, page 14.
2. D.R.J. White, A Handbook on Electrical Filter Synthesis, Design, and Application, Don White, Germantown, Maryland, 1963.
3. William Orr, W6SAI, Radio Handbook, 22nd Edition, Howard Sams, Indianapolis, Indiana, 1981, page 3.33 .
4. L. Young, Microwave Filters Using Parallel Coupled Lines, Artech House, Dedham, Massachusetts, 1972.
5. J. Hinshaw, N6JH, "Monolithic rf Amplifiers," ham radio, March, 1986 pages 22-33.
6. Bob Atkins, "Microwave Amplifiers," QST, January, 1986, page 78.
7. Craig Snapp, Jose F. Kukielka, and Northe K. Osbrink, "Practical Silicon MMICs Challenge Hybrids," Microwaves and RF. November, 1982
8. "A 99-Cent Monolithic DC to $1000-\mathrm{MHz}$ Amplifier," Mini Circuits, Microwave Journal, August, 1986, page 131.
9. Alan Wood, "A $30-\mathrm{Watt}, 800-\mathrm{MHz}$ Amplifier Design," Engineering Bulletin EB105, Motorola Corporation, Phoenix, Arizona.
10. D. L. Hilliard, "A CW Transmitter for 902 MHz ," QST, March. 1986, page 32.
11. Marvin E. Frerking. Crystal Oscillator Design and Temperature Compensation, Van Nostrand Reinhold, New York, 1978.
ham radio

C13 PACKET RADIO GOES PORTABLE THE FIRST CONTROLLER DESIGNED FOR PORTABLE AND SOLAR. POWERED STATIONS

 - LOW 25 mA Current Drain.

- Miniature size - Lightweight.
- Rugged metal, shielded case
- Lithium Battery backup for RAM
- Onboard Watchdog for reliability
- Standard DB25 Connectors.
- "Connected" Status output line.
- Remote Commands in Unattended Mode with Hardware Lockout.
- Retains all other PK-1 features.
- Extra I/O lines for special applications.

NEW SOFTWARE FEATURE:
INTELLIGENT "BUDLIST"- Provides selective callsign filtering for
Digipeating. Monitoring and Connecting

Model PK1-L

Power requirement: 9 to 15 Volts DC at 25 mA typical
Dimensions: $4.6 \times 5.9 \times 1.0$ inches Total Weight: 12025

```
Piease specity Call Sign, SSID Number and Node Number when ordering
``` Contact GLB for additionat info and avaitable options.
We offer a complete line of transmitters and receivers. strips, preselector preamps. CWID'ers \(\&\) synthesizers for amateur 8 commercial use

if Equipment
C. 735 Hf transceivet/SW revt/mic
Regular SALE
PS-55 External power supply AT-150 Automatic antenna tunet FL-32 500 Hz CW filter \(999.00849^{9}\) \(199.00179^{9}\) \(445.00349^{95}\) 66.50

EX-243 Electronic keyer unit UT-30 Tone encoder
56.00
C. 745 9-band xcvr w/ 1-30 MHz rcvi 10
17.50

PS-35 Internal power supply EX-241 Marker unit EX-242 FM unit \(199.00179^{\circ}\)
22.50

EX-243 Electronic keyer unit. \(\mathrm{FL}-45500 \mathrm{~Hz}\) CW filter (1st IF) FL. 54270 Hz CW filter (1st IF) FL-52A 500 Hz CW filter (2nd if) FL. 53 A 250 Hz CW hilter (2nd IF FL-44A SSB filter (2nd IF)

IC. 7519 -band \(\mathrm{xcvt} / 1-30 \mathrm{MHz}\) revr \(1399.00999^{\circ 0}\) IC. 751 A 9 -band \(\mathrm{xevr} / 1.30 \mathrm{MHz}\) revr 1649.001399 PS-35 Internal powet supply. \(199.00179^{95}\) FL-32 500 Hz CW filtet (1st IF) 6650
FL-63 250 Hz CW filter (lst if)
54.50

FL-52A 500 Hz CW filter (2nd If)
\(108.00 \quad 993\)
FL-53A 250 Hz CW filter (2nd IF) \(108.00 \quad 99\)
FL-33 AM tilter
35.25
5200

FL .7028 kHz wide SSB filter
200
RC-10 External frequency controllet
Regular SALE
IC-2KL \(160-15 \mathrm{~m}\) solid state amp w/ps 1999.001699 PS-15 20A external power supply \(16900154^{\circ 3}\) PS-30 Systems p/s w/cord. 6-pin plug \(299.00269^{*}\) OPC Opt. cord, specify 2. 4 or 6 -pin 10.00 MB Mobile mount, 735/745/751A 24.50 SP-3 External speaker

6100 SP- 7 Small external speaket CR-64 High stab. ref. xtal (745/751) 49.00
6300 PP-1 Speaker/patch..................... 15925 SM-6 Desk microphone [59.25 149*3

SM. 8 Desk muc - two cables, Scan. 4495
7850 SM-10 Compressor/graph EQ. 8 pin mic 136.25124 AT-100 100 W 8 -band auto antenna tuner 445.00 389s AT-500 500W 9 band auto antenna tuner 55900489 ss AH-2 8-band tuner w/mount \& whip \(62500549^{9 s}\) AH-2A Antenna tuner system, only.
\(495.00429{ }^{3}\)

\section*{Good Until February 28th, 1986!} With the purchase of an IC.735, IC. 745 or IC.751A, receive Your Choice of One of the following accessories, FREE, from ICOM
CW Filter: HL 45, FL-52A, HL-53A, or HL-54

CW Filter: HL .45 , HL . 52 A , HL.53A, or LL .54
World Clock: GC.5 - Desk Microphone: SM. 6
Mounting Bracket: MB-5, MB-12, of MB 18 also
S50 FACTORY REBATE on AT-150

\section*{CD ICOM}

\section*{Check the Prices at AES !}

Other Accesso
GC-5 World clock
6-meter VHF Partable
IC-505 \(3 / 10 \mathrm{~W}\) 6m SSB/CW portable BP. 15 AC charger
EX. 248 FM unit
LC-10 Leather case
VHF/LHI base multi-modes
IC-551D 80W 6 meter SSB/CW EX-106 FM option.
BC-10A Memory back-up.
IC-271A 25W \(2 \mathrm{mFM} / \mathrm{SSB} / \mathrm{CW}\) AG-20 Internal preamplifiet
IC. 271 H 100W 2 mFM /SSB/CW
AG-25 Mast mounted preamplitier
IC-275A \(25 \mathrm{~W} \quad 2 \mathrm{~m}\) FM/SSB/CW w/ps 11
IC- \(471 \mathrm{~A} 25 \mathrm{~W} 430-450 \mathrm{SSB} / \mathrm{CW} / \mathrm{FM} \times \mathrm{xcV}\) AG-1 Mast mounted preamplitiet
C-471H \(75 \mathrm{~W} 430-450\) SSB/CW/FM AG-35 Mast mounted preamplifier.
Accessories common to 271A H
PS-25 Internal power supply for (A)
PS-35 Internal power supply for (H)
SM-6 Desk mucrophone
EX-310 Voice synithesizer
TS 32 CommSpec encode/decoder. UT-15 Encodet/decoder interface UT-15S UT-15S w/TS-32 installed. VHF L LHF mobile multi-modes IC 290 H 25 W 2 m SSB/FM, TTP mic IC-490A low \(430.440 \mathrm{SSB} / \mathrm{FM} / \mathrm{CW}\) VHF 1 HF 1.2 (.Hz FM
IC. 27 A Compact 25 W 2 mFM w/TP mi IC. 27 H Compact 45 W 2 m FM w/TTP mic IC-37A Compact 25W 220 FM, ITP mic IC-47A Compact 25 W 440 FM. TTP mic PS-45 Compaci 8 A powet supply UT-16/EX 388 Vorce synthesizer SP-10 Slim-line external speaker
IC-28A 25 W 2 m FM UP/DN mic
IC 28 H 45 W 2 m IM. UP/DN mic
IC-38A 25W 220 TM
IC-48A 25 W 440-450 fM
HM-14 TTP microptione
UI-28 Digital code squelch UT-29 Tone squelch decoder HM-16 Speaket/mucrophone
IC-3200A \(25 \mathrm{~W} 2 \mathrm{~m} / 440 \mathrm{FM}\) w/TIP UT-23 Voice synthesizer.
AH-32 \(2 \mathrm{~m} / 440\) Dual Band antenna AHB-32 Trunk-lip mount Larsen PO-K Root mount Larsen P0-TLM Trunk-lip mount Larsen PO-MM Magnetic mount
RP- \(3010440 \mathrm{MH}, 10 \mathrm{~W}\) FM, xtal cont. 1229001089 IC-120 IW 12 GHz FM Mobile........ \(579.00499^{95}\) ML-12 \(12 \mathrm{GH}=10 \mathrm{~W}\) amplifiet ML-12 12 GHz 10 W amplitiet 37900339
IC-1271A 10 W 1 2 GHz SSB/CW Base 1229.001069 AG-1200 Mast mounted preamplifiet PS-25 Internal power supply EX-310 Voice syrthesizet. TV-1200 ATV interface unit
UT-15S CICSS encoder/decoder
05.00 \(11500104^{4}\)
Regular SALE Regular SALE \(549.00489^{45}\)
1400
5550
39.50

Regular SALE
\(79900719^{\text {ss }}\)
\(14000126^{25}\)
\(859.00749^{95}\) 6400
1099.00969 s 95.00 1199001049 \(979.00869^{95}\) 9950
1399.001169 95.00
d \(471 \mathrm{~A} / \mathrm{H}\)
\(115.00104^{9 s}\)
199.00179 s 4495 4600 59.95 1400 9200
Regular SALE 63900 569"s 6990059945 Regular SALE 4290036955 4590039995 \(49900439^{\circ 5}\) 54900479 53 \(139.00129^{95}\) 3499 \(42900369^{95}\) \(459.00399^{\circ s}\) \(45900399 \%\) 45900399 " 55.50 3750 4300 34.00 \(59900499 \%\) 3499
3700 3700
3400
2000
2018
1963 4600 \(129.00119^{95}\) 92.00

MasterCard

\section*{VISA \({ }^{*}\)}

Regular SALE \(\begin{array}{ll}\text { Hand-helds } & \text { Regular SALE } \\ \text { IC-2A } 2 \text { meters........ } & 279.00249^{93} \\ \text { IC-2AT with IIP...... } & 299.00259^{\prime 3}\end{array}\) IC-2AT with ITP....... 299.00259 s.
IC-3AT 220 MHz . ITP \(339.00299^{9 s}\) IC-4AT 440 MHz . ITP \(339.00299^{9}\) IC-02AT 2 meters..... 399.00 329' IC-03AT for \(220 \mathrm{MHz} 449.00399^{93}\) IC-04AT for 440 MHz 449.00 3899)
IC-u2A 2 meters...... \(299.00269^{93}\) IC-u2AT with TTP 329.00 2899
Accessories for u2A/T Call
IC-12AT IW I 2GHz FM HT/batt/cgr/TP \(45900399^{9}\) A- 25 W PEP synth arcraft HT 599.00 4999s

Regular
BP-7 \(425 \mathrm{mah} / 13.2 \mathrm{~V}\) Nicad Pak use BC. 3574.25 BP- \(8 \quad 800 \mathrm{mah} / 8.4 \mathrm{~V}\) Nicad Pak-use BC-35... 74.25 BC- 35 Drop in desk charger tor all batteries BC-16U Wall charger for BP7/BP8.
LC-11 Vinyl case for Dix using BP 3..
2025
LC-14 Vinyl case for DIx using BP-7/8
2050
LC-02AT Leather case for Dix models w/BP-7/8 54.50
Accessories for \(I C\) and \(I C-O\) series Regular
BP-2 425mah/7.2V Nicad Pak use BC35 ... 47.00
BP-3 Extra Std 250 mah/84V Nicad Pak.
BP-4 Alkaline battery case.
BP. 5425 mah/ 10.8 V Nicad Pak - use BC35
CA-5 \(\quad 5 / 8\) wave telescoping 2 m antenna
FA-2 Extra 2 m flexible antenna
CP-1 Cig. Lighter plug/cord tor BP3 or DIx
CP. 10 Battery separation cable w/clip.
DC-1 DC operation pak for standard models EX-390 Bottom slide cap.
MB-16D Mobile mtg bkt for all HIs...
LC-2AT Leather case for standard models
RB-I Vinyl waterproot radio bag
HH-SS Handheld shoulder strap
HM-9 Speaker microphone
HS-10 Boom microphone/headset
HS-10SA Vox unit tor HS 10 \& Deluxe only
HS 10SB PIT unit tor HS 10
ML-1 2 m 23 w in/ 10 w out amplifiet ... SALE 99.95
SS-32M Commspec 32 tone encodet
Reguiar SALE
R-71A \(100 \mathrm{kHz}-30 \mathrm{MHz}, 117 \mathrm{~V} \mathrm{AC} . . . \$ 94900799^{\prime \prime}\)
RC. 11 intrared remate controller.... 6725
FL. \(63 \quad 250 \mathrm{~Hz}\) CW filter (Ist If) 54.50
FL-44A SSB tiltet (2nd If) 178.00 15993
EX-257 FM unit 4250
EX-310 Voice synthesizer 46.00
CR-64 Hugh stability oscillator xtal 6300 SP-3 External speakel.............. 61.00
CK-70 (EX-299) 12V DC option.
MB-12 Mobile mount
12.25

R-7000 \(25 \mathrm{MHz}-2 \mathrm{GHz}\) scanning tevt \(109900969^{*}\) RC-12 Intrared remote controller
EX- 310 Voice synthesizet
6725
4600
TV-R7000 AIV unit
\(13195119^{9}\)
AH-7000 Radiating antenna
8995 (13

\section*{HOURS • Mon. thru Fri. 9.5:30; Sat. 9.3} Milwaukee WATS line 1.800-558-0411 answered evenings until \(8: 00 \mathrm{pm}\) Monday thru Thursday WATS lines are for Quotes \& Ordering only, use Regular line for other Info \& Service dept.

Outside 1-800-321-3594

\section*{ORLANDO, Fla. 32803}

621 Commonwealth Ave.
Phone (305) 894-3238
Fia. WATS 1-800-432-9424
Outside
Florida
\(1-800-327-1917 ~\)

CLEARWATER, Fla. 33575 LAS VEGAS, Nev. 89106
1072 N. Rancho Drive
Phone (702) 647-3114
No In-State WATS
Outside
Nevada
1-800-634-6227

\section*{1898 Drew Street}

Phone (813) 461-4267
No In-State WATS
No Nationwide WATS

\title{
the weekender
}

\section*{the weekender: a mobile theft deterrent}

Are you concerned that your car - and your prized mobile equipment - might be stolen? If you are, read on. . . because this circuit will let your car fight back if it's stolen.
It's almost impossible to stop a really determined thief from trying to steal your car. Alarms may discourage amateurs, but seldom deter professional thieves, who know that most people passing by a sounding alarm will just keep on going.

The circuit described in fig. 1 allows a car to be driven for about 60 seconds. During that period, the car may be driven to a busy intersection or roadway, where it will stall, never to be started again by the thief. It would be possible to prevent the engine from starting in the first place; however, this could irritate the thief and invite vandalism. It's safer, and usually less costly, to allow the car to be driven briefly, creating a situation in which the thief will be placed in a vulnerable position and possibly caught. At the very least, your car will be abruptly abandoned, minimizing the possibility of vandalism. You may have to pay for towing - and possibly a charge for impoundment - but you'll have your car.

\section*{do's and don'ts}

The effectiveness of any deterrent device depends partly upon how well its presence can be concealed. Obviously, any would-be thief who wants your car and knows about the device will try to disarm it. Don't tell even your best friend that you've installed a theft deterrent; people talk.
You may want to install a hood lock, which will not only discourage hot-wiring, but will also prevent disarming the deterrent. Some protection is provided by the circuit itself, should the wires be cut; cutting either of the wires marked CA-CB or BA-BB will remove power from the ignition coil. Unfortunately, if the ignition is hot-wired (by placing a jumper from 12 volts to the ignition coil), the jumper simply bypasses the deterrent, removing the theft protection.

Hugh Wells, W6WTU, 1411 18th Street, Manhattan Beach, California 90266

Obviously you've got to be able to disarm the deterrent to drive your car. An automatic circuit built into the deterrent arms the circuit whenever the engine is started. It's up to you to remember to disarm the deterrent before time-out.

It's better to use a pushbutton rather than a toggle switch, installing it where it can be reached comfortably, conveniently, and inconspicuously, even with passengers in the car. It's best to locate it within arm's length, where one hand can reach it without stretching or making any unusual movement. As far as a thief is concerned, it could even be positioned in the middle of the dashboard - after all, who'd suspect that a "secret" switch would be placed where everyone could see it?

\section*{oops!}

If you forget to press the disarming button after starting the engine, the circuit will time out, leaving you momentarily stranded and embarrassed. If this happens, just turn the ignition switch on and press the button to start the 20 -second recovery process.

Twenty seconds feels like an eternity when you're caught in traffic. (If you're uncomfortable, think how a thief would feel) But the delay is necessary; you want to prevent the thief - had he found the button and pressed it - from associating the action of pushing the button with disarming the deterrent.
What happens when the car goes back to the dealer or into the shop for service? Somebody else, probably a stranger, will be driving it. One solution is to place a clip lead or small alligator clip across the disarm button contacts. Another would be to place a clip lead across Q4. Either action would disable the deterrent so that service people could drive the car without having to know about the device. (Remember to remove the jumper after service to restore protection.) For shorter periods, such as with valet parking and car washes, you can leave the engine running when you get out. If time-out occurs, you can simply remark that your car is temperamental and that you know how to handle it.

\section*{circuit description}

A small SCR (Q1), used as a remote disarming latching switch, is "fired" when the disarm button is pressed. Once fired, Q1 keeps the circuit from starting the time-out cycle. A 555 (or 556) is used as a timing mechanism for removing power from the ignition system after time-out. A simple RC time constant provides a time-out delay of approximately 1 minute. A specific time-delay value isn't important, but enough time must be allowed for the car to be driven to a vulnerable location. Any additional time could allow the car to be driven too far from the starting point.

\title{
QUATIY TEST GEAR oucancounion
}

\section*{wcluoes 2 Hoox-on probess \$499.95* 35 MHz DUAL TRACE}
wide frequency bandwidth-optimal sensitivity - delayed
triggering sweep-hold off-ALT trigger-single sweep TV sync
5 X magnification-XY or XYZ operation - HF/LF noise reduction

 Field/bench applications-buitt-in charger and battery pack Field/bench applications - buit-in charger and battery
-up to 2 hours operation per charge- 5 X horizontal magnification-high brightness CRT-front panel trace rotator

\section*{RAMSEY OSCILLOSGOPES}

All Ramsey oscilloscopes feature unsurpassed quality at an unbeatable price. Of heavy duty construction, they are suitable for hobby. service and production applications

\section*{Add an additional \(\$ 10.00\) for each unit for shipping.}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline MODEL & BAND WIDTH & \#TRACES & CRT SIZE & \begin{tabular}{c}
VERTICAL \\
SENSITIIITY
\end{tabular} & \begin{tabular}{c}
MAXIMUM \\
TRIG FREQ
\end{tabular} & \begin{tabular}{c}
USEABLE \\
MAXIMUM \\
BANDWIDTH
\end{tabular} \\
\hline \(\mathbf{2 2 0 0}\) & 20 MHz & (2) & \(8 \times 10 \mathrm{CM}\) & 5 mV per div & 35 MHz & 30 MHz \\
\hline \(\mathbf{2 5 0 0}\) & 15 MHz & (2) & 35 inch & 2 mV per div & 30 MHz & 25 MHz \\
\hline \(\mathbf{3 5 0 0}\) & 35 MHz & (2) & \(8 \times 10 \mathrm{CM}\) & 1 mV per div & 50 MHz & 60 MHz \\
\hline
\end{tabular}

All include high quality \(1: 1\). \(10: 1\) hook on probes. instruction/service manual with schematic and component layout I year warranty

\section*{MINI-100 COUNTER}

CT-909 DIGIT 600 MHz

CT-50 8 DIGIT 600 MHz

CT-1259 DIGIT 1.2 GHz

\section*{RAMSEY FREQUENCY COUNTERS}

Ramsey Electronics has been manufacturing electronic test gear for over 10 years and is recognized tor lab quality products at breakthrough prices. Our frequency coun ters have features and capabilities of counters costing twice as much
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline MODEL & FREO RANGE & SENSITIVITY & ACCURACY & DIGITS & RESOLUTION & PRICE \\
\hline MINI-100 & 1500 MHz & Less than 250 mv & 1 PPM & 7 & \(100 \mathrm{~Hz}, 1 \mathrm{KHz}\) & 119.95 \\
\hline CT-70 & \(20 \mathrm{~Hz}=550 \mathrm{MHz}\) & S 50 mty to 150 MHz & 1 PPM & 7 & 1 Hz .10 Hz .100 Hz & 139.95 \\
\hline CT-90 & 10 Hz 2600 MHz & \begin{tabular}{l}
10 mv To 150 MHz \\
150 my To 600 MHz
\end{tabular} & 1 PPM & 9 & \(0 \mathrm{THz} \mathrm{THz}^{\text {P }} 10 \mathrm{~Hz}\) & 169.95 \\
\hline CT-50 & \(5 \mathrm{~Hz}=600 \mathrm{MHz}\) & LESS THAN 25 my & 1 PPM & 8 & THz. 10 Hz & 189.95 \\
\hline CT-125 & \(10 \mathrm{~Hz}=125 \mathrm{GHz}\) & 25 mv 450 MHz
15 mvv 500 MHz
\(-100 \mathrm{mvi}=800 \mathrm{MHz}\) & 1 PPM & 9 & 0 THz 1 Hzz 10 Hz & 189.95 \\
\hline \[
\begin{aligned}
& \text { CT-90 } \\
& \text { WITH OV-1 } \\
& \text { OPTION }
\end{aligned}
\] & \(16 \mathrm{~Hz}-600 \mathrm{MHz}\) & \begin{tabular}{l}
tomv to 150 MHz \\
- 150 mv to 600 MHz
\end{tabular} & 01 PPM & 9 & 0 THz 1 Hz 10 Hz & 229.90 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & RAMSEY D-4100 COMPACT DIGITAL MULTITESTER \$2495
\(\qquad\) & & \begin{tabular}{l}
RAMSEY D-5100 HANDHELD DIGITAL AUTORANGING METER
\(\qquad\) \\
includes Probes I Year Warranty
\end{tabular} & & \[
\begin{aligned}
& \mathbf{S 4 A} 95 \\
& \text { wired includer } \\
& \text { AC adapler } \\
& \text { P8.2 kit } \$ 39.95 \\
& \mathbf{S} 995 \\
& \text { wired } \\
& \text { PS-2kit } \$ 49.95
\end{aligned}
\] & \begin{tabular}{l}
PR-2 COUNTER PREAMP \\
The PR-2 is ideal for measuring weak signals \\
from 10 to 1.000 MHz - flat 25 db gain - BNC connectors - great for snifting Rf - ideal receiver/TV preamp \\
PS-2 AUDIO MULTIPLIER \\
The PS-2 is handy for high resolution audio resolution measurements, multiplies Up in \\
frequency • great for PL tone measurements
- multiples by 10 or \(100 \bullet 0.01 \mathrm{~Hz}\) resolution \\
\& built-in signal preamp/conditioner
\end{tabular} \\
\hline \begin{tabular}{l}
Compact sized relia \\
This LCD digital mul your pocket, you ca reatures full overioa digit LCD readout - \\
- 2000 hours batter
\end{tabular} & & \[
\begin{aligned}
& \text { MP current ca } \\
& \text { tion which bet }
\end{aligned}
\] & HOLD teature ged or relerred reading Up to and a continuity ero 0 hms & & & \begin{tabular}{l}
PS-10B 1 GHz PRESCALER \\
Extends the range of your present counter to \\
\(1 \mathrm{GHz} \cdot 2\) stage preamp - divide by 1000 cl \\
cuitry * super sensitive (50 mV typical) * \\
BNC connectors - 1 GHz in, 1 MHz out - \\
drives any counter
\end{tabular} \\
\hline
\end{tabular}

\section*{MINIKITS-EASY TO ASSEMBLE-FUNTO USE-FOR BEGHNNERS, STUDENTS AND PROS}

fig. 1. Mobile theft deterrent.
```

Cl,4,5,6
CR1,2,3 1N4148, 1NG14, or equivalent signal diode
CR4 1N4004 or equivalent power diode
2N5061, 2N5062, ECG 5401, or ECG 5402 SCR
2N2222, 2N4401, ECG 123A, or RS 276-2058 NPN transistor
TIP 29, TIP 31, ECG 152, or RS 276-2017 NPN power transistor
2N3055, ECG 181, or RS 276-2041 NPN power transistor
10-k, 1/2-watt
1-k, 1/2-watt
22.k, 1/2-watt
200-k, 1/2-watt
700-ohm, 1/2-watt
RS 275-15d7 or RS 275-1571 mini SPST momemeary pushbutton switch
555 or RS 276-1723 IC timer

```

The R5 and C2 combination determines the timeout period. Their values have been selected for about the maximum time obtainable when using a lowleakage electrolytic capacitor for C2. Tantalum capacitors are generally not suitable in this application because of their high leakage current.

When power is first applied to the ignition system, pins 2 through 6 of U 1 will start out with a logic high of about 11 volts and drift down as capacitor C2 charges through resistor R5. Pin 3 of U1 will remain at a logic low until pins 2 and 6 drop below a threshold voltage value of approximately 4 volts. Then pin 3 will go high, causing the collector of transistor Q2 to go low, turning off the base drive to transistors Q 3 and Q4. They, in turn, remove power from the iginition system. In the deterrent, U1 operates as an electronic teeter-totter with a resistor and capacitor combination on pins 2 and 6 for timing. The other end of the teeter-totter is pin 3, which provides output drive. When pins 2 and 6 are high (Q 1 fired), pin 3 is low, driving the base of O 2 low. Transistor O 2 operates as an inverter, driving high the bases of transistors Q 3 and \(\mathrm{Q4}\). Transistors Q 3 and Q 4 are connected as a Darlington for high gain (\(\mathrm{H}_{\mathrm{FE}}\) above 2000). The
high gain is required to hold Q 4 in saturation when the base drive is at a logic high. Transistor Q4 functions as a pass transistor/switch for controlling ignition current values up to 7 amps . A 7 -amp current capability is sufficient for most ignition systems.

Diodes are used in the circuit to perform various functions. CR1 protects the gate of SCR 01 from negative voltage spikes. CR2 isolates C 2 , preventing it from becoming charged through resistors R3 and R4. CR2 and CR3 isolate capacitor C2 from circuit power, allowing C 2 to retain its charge status regardless of the presence or absence of circuit power. CR4 protects transistors Q 3 and Q 4 from reverse voltage spikes generated by ignition coil flyback upon power removal. With CR4 in place, the reverse voltage across the transistors will not exceed 1 volt.

\section*{construction}

The circuit is divided into two assemblies for mounting convenience. All of the electronic circuitry may be placed in a metal box separate from 04, which is mounted on a heatsink near the ignition coil. Placing the circuit in a grounded metal box ensures if protection from high voltage ignition pulses and mobile transmitters. Disc ceramic capacitors are used at the input and output of the circuit to prevent rf from disturbing the SCR and 555 logic states. A screw terminal block may be mounted on the side of the box for wiring connections.

Transistor Q4 requires a heatsink to improve its reliability, even though it operates in saturation. At 7 amps of current flow, about 5 watts of power will be dissipated by O4. That amount of heat requires a heatsink with a surface area of about 5 square inches and a thickness of \(1 / 8\) to \(1 / 4\) inch. A heatsink with fins, mounted in line with the engine air flow, will provide

\section*{DUAL BAND ANTENNAS FOR ULTIMATE PERFORMANCE!!}

\section*{NEW CODE TAPES}

\section*{NEW CODE TAPES FROM}

AVC INNOVATIONS
by John Karpicke N9AVC
OSO TRAINER
This tape has been designed to teach you to copy complete words instead of letter by letter, simply. with a minimum of effort and fuss. Using the standard QSO format, beginners and old timers alike will find that their code speed will improve dramatically as they learn the secrets of word copying. For years. high speed pros have used this tried and true method-learn their secrets and join the fun! Two 60 minute tapes complete with instruction sheet. \(\$ 14.95\)

\section*{QSO MASTER}

Takes you past the General class code requirement and heads you toward the Extra class ticket. Four thirty minute programs cover \(8,10,12\) and 14 wpm. Two 60 minute tapes with instructions. AVC-OM

\section*{QSO PRO}

One more jump and you've got your Extra! These tapes are designed with that goal in mind. Maximize your copying skills with four programs that cover 16, 18. 20 and 22 wpm. Two 60 minute tapes with instructions.
AVC-QP
\(\$ 12.95\)

BOOKSTORE
Greenville, NH 03048

\section*{Electronic Repair Center \\ Servicing \\ Amateur \\ Commercial Radio}

The most complete repair facility on the East Coast.
Large parts inventory and factory authorized warranty service for Kenwood, Icom and Yaesu.

\section*{SEND US YOUR PROBLEMS}

Servicing "Hams" for 30 years, no rig too old or new for us.

\section*{4033 Brownsville Road} Trevose, Pa. 19047 215-357-1400

\section*{SYNTHESIZED SIGNAL GENERATOR \\ MADE IN \\ }
- Covers 100 MHz to 199.999 MHz in 1 kHz steps with thumbwheel dial • Accuracy \(+/-1\) part per 10 million at all frequencies - Internal FM adjustable from 0 to 100 kHz at a 1 kHz rate - External FM input accepts tones or voice - Spurs and noise at least 60 dB below carrier - Output adjustable from \(5-500 \mathrm{mV}\) at 500 hms - Operates on 12 Vdc (al \(1 / 2 \mathrm{Amp}\) Available for immediate delivery - \(\$ 429.95\) delivered - Add-on accessories available to extend freq range, add infinite resolution, AM , and a precision 120 dB attenuator - Call or write for details - Phone in your order for fast COD shipment.

\section*{VANGUARD LABS}
- 191

196-23 Jamaica Ave., Hollis, NY 11423 Phone: (718) 468-2720 Mon. thru Thu.

IF YOU COLLECT OLD RADIOS, YOU NEED ANTTGUE RADIO CLASSIFIED Classifieds - Informative Articles Ads for Services \& Hard-to-Find Parts
Also: Early TV, Ham Equip., Books, Telegraph, 40's \& 50's Radios \& more..

Free 20-word ad each month Sample Copy - Free 6-Month Trial Subscription (US) - \(\$ 9.00\) A.R.C., PO Box 2-A1, Carlisle, MA 01741
additional cooling. If desired, the amount of heatsink surface may be reduced for currents around 3 amps . However, a generous amount of heatsink material is cheap insurance for long transistor life.

Transistor Q 4 must be insulated with a mica washer from the heatsink if the heatsink is to be grounded. All metal burrs must be removed from heatsink holes. Small burrs around the holes will puncture the mica washer (insulator) and ground the transistor. Apply thermal grease to both sides of the mica washer to provide heat transfer from the transistor to the heatsink. A small amount of nonconductive silicon grease makes a suitable thermal conductor.

\section*{deterrent placement}

Two types of ignition systems are in common use today. Both can be controlled by the theft deterrent as long as the car battery has its negative terminal grounded (the deterrent would have to be redesigned for a positive ground system). The oldest and most common is the standard ignition system, which consists of an ignition coil and a set of breaker points. The second type is an electronic system consisting of an electronic converter, ignition coil, and a breakerless timing trigger.

It doesn't matter whether the Q 4 heatsink assembly is mounted on the engine, firewall, or fender well, but the assembly should be mounted near the ignition coil power wire.

Avoid long extension wires to keep series resistance to a minimum. Finding the correct wire to intercept or cut is usually fairly easy when only one power wire is routed to the ignition system. Some electronic systems have two large wires routed to the system; one of them provides power from the ignition switch, and is the wire that must be intercepted to insert the Q4 assembly. The second wire is used to provide power from the starter solenoid during starting. It will be left alone.

Standard -ignition systems use a resistor or resistance wire in series with the ignition switch and ignition coil to reduce power dissipation in the coil. The Q4 assembly is connected in series with that resistor wire at either the coil terminal or at the resistor terminal. If the resistor can't be located, assume that the connecting wire is also the resistor. Note: do not cut the resistance wire.

Mount the electronic circuit box in any convenient location where the box will be grounded. Connect a wire from the ignition switch (+12 volts) to the terminal marked BA (O 3 collector). Connect a wire from terminal BA to terminal BB (Q4 collector). Route a wire to the pushbutton from terminal A (resistor R1), and another wire from terminal CA (emitter of Q3) to terminal CB (base of Q4). Connect terminal D (emitter of Q4) to the ignition coil.

- 30 watts output - GaAs FET pre-amp
- Fits on car door
- 2 Meters or 70 cm
- Icom
- Kenwood
- Yaesu
(13:
NAVAL ELECTRONICS, INC.
5417 Jetview Circle - Tampa, FL 33614 Phone: 813-885-6091 - Telex: 289-237 (NAVL UR)
\(\angle \mid D\)

\section*{CardNo.}
Exp. Date
IF YOU'RE INTO ELECTRONICS, THIS MAGAZINE WILL SAVE YOU MONEY!

\section*{Now in our 7th Year}
Nuts \& Volts is published MONTHLY and features: NEW STATE-OF-THE-ART PRODUCTS • SURPLUS EQUIPMENT • USED BARGAINS - 50\% DISCOUNT TO SUBSCRIBERS ON CLASSIFIED ADS • EVENTS CALENDAR • NEW PRODUCTS • LOW COST DISPLAY AD RATES • NATIONAL CIRCULATION • AND A FREE 40-WORD CLASSIFIED AD WITH YOUR SUBSCRIPTION SUBSERIPTION RATES
```

\squareOne Year - 3rd Class Mail
\$10.00

```
One Year - Ist Class Mail \$15.00
\(\square\) One Year - Canada \& Mexico (in U.S. Funds) . . \$18.00
\(\square\) Lifetime - 3rd Class Mail (U.S. Only) \(\$ 35.00\)
ORDER NOW:
Send: \(\square\) Check \(\square\) Money Order \(\square\) Visa \(\square\) MasterCard
TO: NUTS \& VOLTS MAGAZINE
P.O. BOX IIII-H
PLACENTIA, CALIFORNIA 92670
(714) 632-772I

\section*{Address}
\(\qquad\)

\section*{for diesels}

The theft deterrent may also be used on diesel automobile engines. A warm engine usually starts immediately, providing the thief an opportunity to drive to a street intersection. But cold starts present a challenge, because the "cold" glow plug timing is nearly equal to the deterrent time-out time. A thief might not get the engine started before time-out. In either case, the car won't be driven very far before the engine quits.

To install the deterrent on a diesel engine, locate the electric fuel shut-off valve near the fuel injector pump. There's usually one control wire attached that provides power to operate the valve when the ignition switch is turned on. Connect the \(\mathrm{Q4}\) deterrent circuit in series with the control wire. Terminal BA connects to the ignition switch end of the control wire, and terminal D connects to the fuel shut-off valve.
ham radio

\section*{W6SAI B00KS}
published by Bill Orr, W6SAI and Stu Cowan, W2LX

\section*{beam antenna handbook}

Completely revised and updated with the latest computer generated information on BEAM Antenna design. Covers HF and VHF Yagis and 10, 18 and 24 MHz WARC bands. Everything you need to know. 204 illustrations. 268 pages. (c) 1985 . Revised 1st edition.
/RP-BA
Softbound \(\mathbf{\$ 9 . 9 5}\)

\section*{SIMPLE LOW-COST WIRE ANTENNAS}

Primer on how-to-build simple low cost wire antennas. Includes invisible designs for apartment dwellers. Full of diagrams and schematics. 192 pages. © 1972 2nd edition
iRP-WA
Softbound \(\$ 9.95\)

\section*{all about cubical auad antennas}

Simple to build, lightweight, and high performance make the Quad at DX'ers delight. Everything from the single element to a multi-element monster. A wealth of information on construction, feeding, tuning and installing the quat antenna. 112 pages. (c) 1982. 3rd edition.
IRP-CO
Softbound \(\$ 7.95\)

\section*{the radio amateur antenna handbook}

A wealth of projects that covers verticals, long wires, beams as well as plenty of other interesting designs. It includes an honest judgement of gain figures, how to site your antenna for the best performance, a look at the Yagi-Quad controversy, baluns, slopers, and delta loops. Practical antenna projects that work! 190 pages. (c) 1978 . Ist edition. |RP-AH

Please enclose \(\$ 3.50\) for shipping and handling.

BOOKSTORE

\section*{THE MOST AFFORDABLE REPEATER ALSO HAS THE MOST IMPRESSIVE PERFORMANCE FEATURES \\ (AND GIVES them to you as standard equipmenti)}

\section*{FEATURES:}
- SENSITIVITY SECONDTONONE; 0.15 uV (VHF), 0.2 uV (UHF) TYP.
- SELECTIVITY THAT CAN'T BE BEAT! BOTH 8 POLEXTAL FILTER \& CERAMIC FILTERFOR \(>100 \mathrm{dBAT} \pm 12 \mathrm{KHZ}\). HELICAL RESON ATOR FRONT ENDS TO FIGHT DESENSE \& INTERMOD.
- OTHER GREAT RECEIVER FEATURES: FLUTTER-PROOF SQUELCH, AFC TO COMPENSATE FOR OFF-FREQ TRANSMITTERS, SEPARATE LOCAL SPEAKER AMPLIFIER \& CONTROL.
- CLEAN, EASYTUNETRANSMITTER;UPTO2OWATTSOUT (UPTO 50W WITH OPTIONAL PA).

\section*{HIGH QUALITY XMTR \& RCVR MODULES FOR} REPEATERS, LINKS, TELEMETRY, ETC.
- R144/R220 FM RCVRS for 2 M or \(220 \mathrm{MHz}, 0.15 \mathrm{uV}\) sens.;8 pole xtal filter \& ceramic filter in i-f, helical resonator front end for exceptional selectivity, \(>100 \mathrm{~dB}\) at \(\pm 12 \mathrm{kHz}\), best available today. Flut-ter-proof squelch. AFC tracks drifting \(\times\) mtrs. Xtal oven avail. Kit only \(\$ 138\).
- R451 FM RCVR Same but for uhf. Tuned line front end, 0.3 uV sens. Kit only \(\$ 138\).
- R76 FM RCVR for \(10 \mathrm{M}, 6 \mathrm{M}, 2 \mathrm{M}\), or 220 . As above, but w/o AFC or hel. res. Kits only \(\$ 118\). Also avail w/4 pole filter, only \(\$ 98 / \mathrm{kit}\).
- R110 VHF AM RECEIVER kit for VHF aircraft or ham bands or Space Shuttle. Only \(\$ 98\).
- TA51 VHF FM EXCITER for \(10 \mathrm{M}, 6 \mathrm{M}\), 2 M , or 220 MHz . 2 Watts continuous, up to \(3 W\) intermittent. Kit only \(\$ 68\)
- TA451 UHF FM EXCITER 2W cont., up to 3W intermittent. Kits only \(\$ 68\). Xtal oven avail.
- VHF \& UHF LINEAR AMPLIFIERS. For either FM or or SSB. Power levels from 10 to 45 Watts to go with exciters \& xmtg converters. Several models. Kits from \(\$ 78\).

\section*{RECEIVING CONVERTERS}

\section*{LOW-NOISE PREAMPS}

MINIATURE PREAMPS

Models to cover every practical if 8 if range to listen to SSB, \(F M, A T V, e t c, N F=2 d B\) or less.

VHF MODELS
Kit with Case
Less Case
Wired
UHF MODELS
Kit with Case
Less Case
Wired

SCANNER CONVERTERS Copy 806 MHz band on any scanner. Wired/tested ONLY \(\$ 88\).

\section*{TRANSMIT CONVERTERS}

For SSB, CW, ATV, FM, etc. Why pay big bucks for a multi mode rig for each band? Can be linked with receive converters for transceive. 2 Watts output vht, 1 Watt uht.
\begin{tabular}{lcc}
Foriter & \begin{tabular}{c}
Entenna \\
Input Range
\end{tabular} \\
Output
\end{tabular}

Wired \$139
Ada \(\$ 20\) tor 2 M input
VHF \& UHF LINEAR AMPLIFIERS. Use with above. Power levels from 10 to 45 Watts. Several models, kits from \(\$ 78\).

Hamtronics Breaks the Price Barrier!

No Need to Pay \(\$ 80\) to \(\$ 125\) for a GaAs FET Preamp.

FEATURES:
- Very Low Nose: 0.7 dB VHF, 0.8 dB UHF
- High Gain: 13 to 20dB, Depending on Freq.
- Wide Dynamic Range for Overload Resistance
- Latest Dual-gate GaAsFET, Very Stable

MODEL
LNG-28
LNG-50
TUNES RANGE
PRICE

LNG-144
LNG-160
LNG-220
LNG-432
LNG-800
\(26-30 \mathrm{MHz}\)
\(46.56 \mathrm{MHz} \quad \$ 49\)
\(137.150 \mathrm{MHz} \quad \$ 49\)
\(150-172 \mathrm{MHz}\)
\(\$ 49\)
\(210-230 \mathrm{MHz}\)
\$49
\(400-470 \mathrm{MHz} \quad \$ 49\)
\(800-960 \mathrm{MHz}\)
\(\$ 49\)

\section*{HELICAL RESONATOR PREAMPS}

Low-noise preamps with helical resonators reduce intermod and cross-band interference in critical applications. 12 dB gain.
MODEL TUNING RANGE PRICE HRA-144 \(143-150 \mathrm{MHz} \quad \$ 49\) HRA-(*) \(\quad 150-174 \mathrm{MHz} \quad \$ 49\) HRA-220 \(\quad 213-233 \mathrm{MHz} \quad \$ 49\) HRA \(-432 \quad 420-450 \mathrm{MHz} \quad \$ 64\) HRA-(*) \(450-470 \mathrm{MHz} \quad \$ 64\) *Specify Center frequency desired

Model LNW-f *) Only \$19/klt, \$34wired
Models available to tune the following bands: \(25-35,35-55,55-90,90-120,120-150\). \(150-200,200-270\), and \(400-500 \mathrm{MHz}\).
*Specify band
IN-LINE PREAMPS

\section*{NEW}

GaAsFET Pre amp with fea tures like LNG. Automatically switches out of line during transmit. Use with base or mobile
transceivers up to 25 W . Tower mtg hdwr incl.

\section*{MODEL TUNES RANGE KIT WIRED}

LNS-144 \(\quad 120-175 \mathrm{MHz} \quad \$ 59 \quad \$ 79\) LNS-220 \(\quad 200-240 \mathrm{MHz} \quad \$ 59 \quad \$ 79\) LNS-432 \(400-500 \mathrm{MHz} \quad \$ 59 \quad \$ 79\)

\section*{ACCESSORIES}
- MO-202 FSK DATA MODULATOR. Run up to 1200 baud digital or packet radio signals through any FM transmitter.
- DE-202 FSK DATA DEMODULATOR
- COR-2 KIT With audio mixer, local speaker amplifier, tail \& time-out timers.
- COR-3 KIT with "courtesy" beep"
- DTMF DECODER/CONTROLLER KITS
- AUTOPATCH KITS. Provide repeater autopatch, reverse patch, phone line remote control of repeater, secondary control.
- CWID KITS
- SIMPLEX AUTOPATCH
- Send \$1 for Complete Catalog (Send \$2.00 or 4 IRC's for overseas mailing)
- Order by phone or mail • Add \$3 S \& H per order (Electronic answering service evenings \& weekends)
- Use VISA, MASTERCARD, Check, or UPS COD.

\author{
Garth Stonehocker, KORYW
}

\section*{more DX propagation tips}

Last month we discussed weak signal reception in terms of the chart that accompanies this column each month. Numbers shown in the chart represent the highest frequency bands that should be used at specified hours. As a general rule, operate on the highest band available in order to optimize signal strength by minimizing the number of hops through the absorbing \(D\) region of the ionosphere.
To fully utilize this optimum propagation mode, the takeoff angle (TOA) of your antenna must be approximately 10 degrees. If the elevation pattern of the antenna doesn't include significant energy at this low angle*, operate on the next lower frequency band but be prepared to pay the price in signal loss, due to the greater number of hops (more hops mean greater loss at the points of reflection/refraction and passage through the \(D\) layer). For the shorter paths - for example, Europe to Japan - dropping down to the next lower band raises the TOA required by 12 degrees, but unfortunately means one more hop will be required with an additional loss in signal level of 10 dB . Dropping down two bands nets a TOA 23 degrees higher, one to two more hops, and 24 dB of additional signal loss. Using a lower frequency band on the longer paths accounts for a 4-degree elevation in TOA and a loss

\footnotetext{
*Most don't, unless a rather large ground system is used with verticals or the horizontal array is over a wavelength above the earth
}
of 6 dB for each hop. These longer paths represent five to six maximumlength hops. With this number of long hops and accumulated per-hop absorption, one more hop doesn't make as much difference in the TOA or attenuation, compared to shorter ones.
Knowing your antenna's pattern and using this information, questions of tradeoffs arise. Should I lower frequency to take advantage of my antenna's TOA and lose signal level from more hops, or should \(I\) use the antenna on the highest band and be a few dB down from the antenna pattern maximum? If your tradeoff calculations come out about even, consider signal quality parameters (such as stability) rather than available signal strength. Stable signals in frequency, phase, and amplitude over a short time - i.e., seconds or minutes - are needed to "read" the transmitted information.
The length of time needed to decipher the information is a function of the modulation being "read," but in most cases greater stability represents an improvement. This occurs when you operate just below the MUF. As a general rule, for stability, choose a frequency that is just 15 percent below the MUF. If you drop too low in frequency, a form of multipath distortion occurs that sounds like interference. The frequency just below the MUF is the most stable and therefore experiences minimum fading - OSB. Of course, when the geomagnetic field becomes variable, as during a disturbance from a solar wind particle influx, even frequencies near the MUF be-
come more unstable in frequency, phase, and amplitude. After a few years experience or training, DXers can "read" signals having some of these poor characteristics. If you consider these propagation rules and practice learning to "read" the difficult signals, you'll enjoy the experience of rare DX OSOs more often.

\section*{last-minute forecast}

The higher frequency bands (10-30 meters) are expected to peak the second week of this month. Long-skip openings during periods of higher solar activity and flux should raise the MUFs about 15 to 20 percent over median mid-latitude noontime values. Look for evening transequatorial longhop openings, especially if the geomagnetic field becomes disturbed as the solar flux drops off toward the end of the week. The lower frequency bands should remain in their winter "finery" during the first and last weeks of the month. Expect geomagnetic (field) disturbances during the middle of the last week.

No significant meteor showers are scheduled to appear in February. A full moon will occur on the 13th, with its perigee on the 25th.

\section*{band-to-band summary}

Ten and twelve meters, the highest day-only DX bands, are nearest the MUF for southern hemisphere paths. They will be open most days when the solar flux is above 75 during the 7 - to 10-hour period centered around local noon. These bands open on paths toward the east and close toward the west. The paths may be as long as 2400 miles in single-hop length, and occasionally twice as long during evening transequatorial openings.

Fifteen and twenty meters, almost always open to the southern part of the world, will be the main daytime DX bands. Twenty should stay open on long southern paths into the night, while 15 will drop out in the afternoon. Total path lengths of from 5000 to 7000 miles are expected on these bands and one-long-hop transequatorial propagation is also possible, favoring evening

\section*{ham \\ radio Reader Service}

For literature or more information, locate the Reader Service number at the bottom of the ad, circle the appropriate number on this card, affix postage and send to us We'll hustle your name and address to the companies you're interested in.
\(\begin{array}{lllllllllllllllllllllllllllll}101 & 113 & 125 & 137 & 149 & 161 & 173 & 185 & 197 & 209 & 221 & 233 & 245 & 257 & 269 & 281 & 293 & 305 & 317 & 329 & 341\end{array}\)

 \(\begin{array}{llllllllllllllllllllllllllllllllll}104 & 116 & 128 & 140 & 152 & 164 & 176 & 188 & 200 & 212 & 224 & 236 & 248 & 260 & 272 & 284 & 296 & 308 & 320 & 332 & 344\end{array}\)
 \(\begin{array}{llllllllllllllllllllllllllll}106 & 118 & 130 & 142 & 154 & 166 & 178 & 190 & 202 & 214 & 226 & 238 & 250 & 262 & 274 & 286 & 298 & 310 & 322 & 334 & 346\end{array}\)

 \(\begin{array}{llllllllllllllllllllllllll}109 & 121 & 133 & 145 & 157 & 169 & 181 & 193 & 205 & 217 & 229 & 241 & 253 & 265 & 277 & 289 & 301 & 313 & 325 & 337 & 349\end{array}\)
 \(\begin{array}{lllllllllllllllllllllllllll}111 & 123 & 135 & 147 & 159 & 171 & 183 & 195 & 207 & 219 & 231 & 243 & 255 & 267 & 279 & 291 & 303 & 315 & 327 & 339\end{array}\)

\[
\text { Limit of } 15 \text { inquiries per request. }
\]

NAME \(\qquad\) CALL ADDRESS \(\qquad\) ZIP

Please use before March 31, 1987
February 1987
-

\title{
ham \\ radio moserne
}

READER SERVICE CENTER
P.O. BOX 2558

WOBURN, MA 01888

ATTN: Reader Service Dept.

\section*{AMATEUR RADIO MAIL LISTS} Self-stick \(1 \times 3\) labels
*** NEWLY LICENCED HAMS ***
*** ALL NEW UPGRADES ***
*** UPDATED EACH WEEK *** Total List \(=462,728\) (ZIP sorted) Price is 2.5 cents each (4-up Cheshire) BUCKMASTER PUBLISHING Mineral, Virginia 23117 703:894-5777
\(\checkmark 186\)
hours during periods of high solar flux and disturbed geomagnetic field conditions.

Thirty and forty meters are both day and night bands. Intermediate distances (up to 1000 miles) in any direction represent daytime DX. Nightime DX on these bands is expected to exceed those distances encountered on 80 meters and, as on 80 , will follow the darkness path across the sky. Reduced midday signal strengths and distances may occur on days of high solar flux values or periods of anomalous absorption.

Eighty and one-sixty meters will exhibit short-skip propagation during the daylight hours and lengthen for \(D X\) at dusk. These bands follow darkness, opening to the east just before local sunset, swinging more to the south toward midnight, and ending up in the Pacific areas during the hours before dawn. Except for daytime short-skip signal strengths, high solar flux values hardly affect these bands. On some days, however, the condition known as anomalous absorption will diminish day and night signal strengths. The 160-meter band opens later and ends earlier.
ham radio

\section*{SAY
YOU SAW
IT IN
ham radio! \\ SAY
YOU SAW
IT IN
ham radio! \\ SAY
YOU SAW
ITIN
ham radiol \\ SAY
YOUSAW
ITIN
ham radiol \\ SAY
YOU SAW
IT IN
ham radio! \\ ـ}
v 188

\section*{CHARGE}

YOUR CLASSIFIED ADS to your MC or VISA, write or call ham Radio magazine Greenville, NH 03048
(603) 878-1441

\section*{Co \\ \\ IC-735}

1COM
KENWOOD YAESU

HF Equipment IC-735 Gen. Gyg Xcivr IC. 745 Gen. Cvg Xcvr IC-751A Gen. Cvg. Xcvr

\section*{Recelvers}

IC-R7000 \(25-1300+\mathrm{MHz}\) Rcyr IC-R71A \(100 \mathrm{kHz}-30 \mathrm{MHz}\) Rcvr VHF
IC-271A All Mode Base 25w 859.00 Call \$ IC-271 H All Mode Base 100w IC-27A FM Mobile 25w IC-27H FM Mobile 45w IC-28A FM Mobile 25w IC-28H FM Mobile 45w IC-38A FM Mobile 25W IC-2AT FM HT
IC-02AT FM HT
IC- \(\mu 2\) AT Micro HT
UHF
IC-471A All Mode Base 25w IC-471H All Mode Base 75w IC-47A FM Mobile 25 w IC-48A FM Mobile 25W IC-4AT FM HT
IC-04AT FM HT IC-3200A FM \(2 \mathrm{~m} / 70 \mathrm{~cm} 25 \mathrm{w}\) 220 MHZ
IC-37A FM Mobile 25 w IC-3AT FM HT
Repeaters
IC-RP3010 440 MHz
IC-RP1210 1.2 GHz

List Juns \(\$ 999.00\) Call \$
1049.00 Call \$
1649.00 Call \$
1099.00 Call \$ 949.00
859.00 Call \$
1099.00 Call \$
429.00 Call \$
459.00 Call \$
429.00 Call \$
459.00 Call \$
459.00 Call \$
299.00 Call\$
399.00 Call \$
329.00 Call \$
979.00 Call \$
1339.00 Call \$
549.00 Call \(\$\)
459.00 Call \$
339.00 Call \$
449.00 Call \$
599.00 Call \$
499.00 Call \$
339.00 Call \$
1229.00 Call \$
1479.00 Call \$

\section*{}

HF Equipment
TS.940SAT Gen. Cug Xcur
TS-940SAT Gen. CvgXcvr \(\$ 2249.95\) Call
TS-940S Gen, Cvg Xcvr
TS-930S/AT Gen. Cvg Xcvr 1849.95 Call \$
TS-830S Xcvr
TS-530SP Xcvr
TS-430S Gen. Cvg Xcvr TS-440S/AT Gen. Cvg Xcvr
TS-440S Gen. Cvg Xcvr
Receivers
R-5000 NEW!
R- 2000 150kHz-30 MHz TS.670 All Mode Quad 6 M 799.95 Call \$
VHF
TS.711A All Mode Base 25w 899.95 Call \$
TR-751A All Mode Mobile 25w 599.95 Call \$
TM-201B FM Mobile 45w 369.95 Call\$
TM-211A FM Mobile 25w 399.95 Call \$
TM-2530A FM Mobile 25w 429.95 Call \$
TM-2550A FM Mobile 45w 469.95 Call \$
TM-2570A FM Mobile 70w 559.95 Call \$ TH21-BT FM, HT
TH-205 AT, NEW 2 m HT TBA Call\$
TR-2600A FM, HT 359.95 Call \$
UHF
TS.811A All Mode Base 25 w
TM-401B FM Mobile 25w
TM-411A FM Mobile 25 w
TH-41BT FM, HT
TR-3600 FM HT
220 MHZ
TM-3530A FM 220 MHz 25 w 449.95 Call\$
TH-31BT FM, 220 MHz HT 269.95 Call \$
TL-922A HF Amp

HF Equipment FT757GX List Juns \(\begin{array}{lrl}\text { FT-ONE Gen. Cvg Xcvr } & \$ 2859.00 & \text { Call \$ } \\ \text { FT-757 GX Gen. Cvg Xcvr } & 995.00 & \text { Call \$ }\end{array}\)
FT. 7674 Band New 1895.00
Call \$
\begin{tabular}{lll}
Recelvers & & \\
FRG-8800 \(150 \mathrm{kHz}-30 \mathrm{MHz}\) & 599.95 & Call \$ \\
FRG- \(960060-905 \mathrm{MHz}\) & 679.95 & Call \$
\end{tabular}

VHF
FT-270RH FM Mobile 45w 439.95 Call \$ FT-290R All Mode Portable \(\quad 579.95\) Call \$
FT-23 R/TT Mini HT
FT-209RH FM Handheld 5w

\section*{UHF}

FT-770RH FM Mobile 25w \(\quad 479.95\) Call \$
314.95 Call \$
FT-709RH FM HT 4w 359.95 Call \$

VHFIUHF Full Duplex 1095.95 Call \(\$\) \(\begin{array}{lrl}\text { FT-726R All Mode Xcvr } & 1095.95 & \text { Call \$ } \\ \text { HFI726 Module for } 10,12,15 M & 269.95 & \text { Call } \$\end{array}\) FT-690R 6m, All Mode,
Portable 569.95 Call \$
\(430 / 726430-440 \mathrm{MHz} \quad 329.95\) Call \$
\(440 / 726440-450 \mathrm{MHz} \quad 329.95\) Call \$
HF-726 10-15-20M 289.95 Call \$
SU-726 Sate Duplex \(\quad 129.95\) Call \$

Dual Bander
FT-2700RH FM \(2 \mathrm{~m} / 70 \mathrm{~cm} 25 \mathrm{w} \quad 599.95\) Call \(\$\) FT-727R \(2 \mathrm{~m} / 70 \mathrm{~cm} \mathrm{HT} \quad 479.95\) Call \$
220 MHZ
FT-109 RH New HT TBA Call\$

\section*{Repeaters}

FTR-2410 2m Repeaters \(\quad 1249.95\) Call \$ FTR-5410 70cm Repeaters \(\quad 1289.95\) Call \$

CLOSING OUT SALE
KENWOOD TR-2600A w/PB-26 \$259.95

ENCOM OTE OMIRAGEQAMERITRONQ BIRDOAMP. SUPPLY KANTRONICS AEAOASTRON
QAMATEUR \(Q\) TWO WAY - MARINE
- GELLULAR MOBILE PHONE \(O\) SCANNER
\(\star\) Free U.P.S. Cash Order \(\star\) SE HABLA ESPANOL (Most Items, Most Places)

\section*{3919 Sepulveda Blvd. Culver City, CA 90230}

\title{
HF ANTENNAS The Easy Way
}

\author{
by John Haerle, WB5IIR
}

This book has been published as a memorial to WB5!IR's work as an Amateur Radio teacher
Originally given as a series of speeches or papers, this tutorial is an excellent source book on antenna theory and applications. Examples of areas covered are: Fundamentals, antenna and feedline
terminology, baluns, ground systems, lightning protection. The Basic Antenna, the dipole, the zepp. G5RV. Windom. Special Antennas, the sloper, DDRR, Beverage, folded unipole, Beams, W8JK, Yagi, two element quad, and the 160 meter band story. John's writing is in an easy-tounderstand conversational style and is full of examples and handy tips and hints. There are no drawings or illustrations but John's prose paints pictures for clear and complete understanding of the information being presented. 1984 1st Edition.
\(\square\) JH-AT
Softbound \(\$ 11.95\)
Please add \(\$ 3.50\) for shipping and handling.
harn namio BOOKSTORE
\begin{tabular}{|c|c|c|}
\hline INSIDE VIEW - RS-12A & \begin{tabular}{l}
ASTRON POWE \\
- HEAVY DUTY • HIGH QUALITY \\
RS and VS SERIES \\
SPECIAL FEATURES \\
- SOLID STATE ELECTRONICALLY REGULATED \\
- FOLD-BACK CURRENT LIMITING Protects Power Supply from excessive current \& continuous shorted output. \\
- CROWBAR OVER VOLTAGE PROTECTION on all Models except RS-4A. \\
- MAINTAIN REGULATION \& LOW RIPPLE at Iow line input Voltage. \\
- HEAVY DUTY HEAT SINK - CHASSIS MOUNT FUSE \\
- THREE CONDUCTOR POWER CORD \\
- ONE YEAR WARRANTY • MADE IN U.S.A.
\end{tabular} & \begin{tabular}{l}
SUPPLIES \\
- RUGGED • RELIABLE - \\
PERFORMANCE SPECIFICATIONS \\
- INPUT VOLTAGE: 105 - 125 VAC \\
- OUTPUT VOLTAGE: \(13.8 \mathrm{VDC} \pm 0.05\) volts (Internally Adjustable: 11-15 VDC) \\
- RIPPLE: Less than 5 mv peak to peak (full load \& low line)
\end{tabular} \\
\hline & & \\
\hline \begin{tabular}{l}
RM-A Series \\
Aatation \\
MODEL RM-35A
\end{tabular} & \(19^{\prime \prime} \times 51 / 4\) RACK MOUNT POWER SUPPLIES & \begin{tabular}{cc}
\begin{tabular}{c}
Size (IN) \\
HXWXD
\end{tabular} & \begin{tabular}{c}
Shipping \\
Wt. (Ibs.)
\end{tabular} \\
\(5 \frac{1}{4} \times 19 \times 12^{1 / 2}\) & 38 \\
\(51 / 4 \times 19 \times 12^{1 / 2}\) & 50 \\
\(51 / 4 \times 19 \times 121 / 2\) & 38 \\
\(51 / 4 \times 19 \times 121 / 2\) & 50
\end{tabular} \\
\hline \begin{tabular}{l}
RS-A SERIES \\
MODEL RS-7A
\end{tabular} & \begin{tabular}{ccc}
MODEL & \begin{tabular}{c}
Continuous \\
Duty (Amps)
\end{tabular} & \begin{tabular}{c}
ICS \\
(Amps)
\end{tabular} \\
RS-4A & 3 & 4 \\
RS-7A & 5 & 7 \\
RS-7B & 5 & 7 \\
RS-10A & 7.5 & 10 \\
RS-12A & 9 & 12 \\
RS-20A & 16 & 20 \\
RS-35A & 25 & 35 \\
RS-50A & 37 & 50 \\
\hline
\end{tabular} & \begin{tabular}{cc}
SIze (IN) & Shipping \\
H \(\times\) W X D & Wt (lbs) \\
\(33 \times 61 / 2 \times 9\) & 5 \\
\(33 \times 61 / 2 \times 9\) & 9 \\
\(4.71 / 2 \times 10^{1 / 4}\) & 10 \\
\(4 \times 71 / 2 \times 10^{3 / 4}\) & 11 \\
\(41 / 2 \times 8 \times 9\) & 13 \\
\(5 \times 9 \times 101 / 2\) & 18 \\
\(5 \times 11 \times 11\) & 27 \\
\(6 \times 13314 \times 11\) & 46
\end{tabular} \\
\hline \begin{tabular}{l}
RS-M SERIES \\
MODEL RS-35M
\end{tabular} & - Switchable volt and Amp meter & \begin{tabular}{cc}
Size (IN) & Shipping \\
\(H \times W \times 0\) & Wt (lbs) \\
\(41 / 2 \times 8 \times 9\) & 13 \\
\(5 \times 9 \times 101 / 2\) & 18 \\
\(5 \times 11 \times 11\) & 27 \\
\(6 \times 133 / 4 \times 11\) & 46
\end{tabular} \\
\hline \begin{tabular}{l}
VS-M SERIES \\
MODEL VS-20M
\end{tabular} & \begin{tabular}{l}
- Separate Volt and Amp Meters \\
- Output Voltage adjustable from 2-15 volts \\
- Current limit adjustable from 1.5 amps to Full Load
\end{tabular} & \begin{tabular}{cc}
Size (IN) & Shipping \\
\(\mathbf{H} \times \mathbf{W} \times \mathbf{D}\) & Wt (lbs) \\
\(5 \times 9 \times 101 / 2\) & 20 \\
\(5 \times 11 \times 11\) & 29 \\
\(6 \times 133 \times 11\) & 46
\end{tabular} \\
\hline \begin{tabular}{l}
RS-S SERIES \\
MODEL RS-12S
\end{tabular} & - Built in speaker & \begin{tabular}{cc}
Size (IN) & Shipping \\
H \(\times\) W \(\times\) O & Wt (lbs) \\
\(4 \times 77 / 2 \times 101 / 2\) & 10 \\
\(4 \times 71 / 2 \times 10 \%\) & 12 \\
\(4 \times 9 \times 13\) & 13 \\
\(41 / 2 \times 8 \times 9\) & 13 \\
\(5 \times 9 \times 101 / 2\) & 18
\end{tabular} \\
\hline
\end{tabular}

\section*{ICOM IC-38A 220-MHz mobile}

ICOM has announced the IC-38A, a 25 -watt, \(220-\mathrm{MHz}\) compact mobile that expands ICOM's existing line of IC-28A/H 2-meter and IC-48A \(440-\mathrm{MHz}\) mobiles.

The compact unit measures \(5.5 \times 2.0 \times 6.1\) inches, transmits from 220 to 225 MHz , and receives from 215 to 230 MHz . It features 21 memory channels, an internal speaker, and a large LCD readout with automatic dimmer circuit to reduce brightness. Scanning is included; you can scan the entire band or just the memory channels from the HM-12 mic. With only 11 front panel controls, the IC38A is easy to operate.

Options include the IC-HM14 DTMF mic; PS-45 13.8 -volt, 8 -amp power supply, SP-10 external speaker, HM-16 speaker mic and HS-15/HS-15SB flexible boom mic, and PTT switchbox.

The suggested retail price for the IC-38A is \(\$ 459.00\).

For details, contact ICOM America, Inc., 2380-116 Avenue N.E., Bellevue, Washington 98009-9029.

Circle 7311 on Reader Service Card.

\section*{magnetic tool racks}

Texas Magnetics Corporation - no stranger to Amateur Radio - is celebrating their 10th anniversary. TMC is the largest U.S. supplier of magnetic base assemblies used in the manufacture of mobile antennas. Other "Magna-Grab" products available from TMC include magnetic tool racks, cable and wire routers, fishing tool
retrievers, plus permanent magnets and assemblies of all types.

Made of heavy-duty chrome-plated steel, "Magna-Grab" magnetic tool racks come in two sizes: 13 inches (the TMC-100, \(\$ 12.95\) plus \(\$ 3.50\) \(\mathrm{S} \& \mathrm{H}\)) and 25 inches (the TMC-200, \(\$ 18.95\) plus \(\$ 3.50 \mathrm{~S} \& \mathrm{H})\). No assembly is required; mounting hardware is included.

For information, contact Texas Magnetics Corporation, Special Products Division, Department 100R, 2714 National Circle, Garland, Texas 75041.

Circle 1316 on Reader Service Card.

\section*{transfer function analysis/synthesis program}

BV Engineering has just released XFER, a transfer function analysis and synthesis program that uses short-circuit transfer impedance functions around an operational amplifier to compute circuit element values and circuit configurations which will synthesize a desired transfer function. Conversely, given a circuit configuration and element values, XFER will compute a circuit's transfer function. Multiple stages of short-circuit transfer impedance functions using forward and feedback elements in operational amplifier configurations enable the user to synthesize and analyze most any transfer function having real roots.

Once a circuit or transfer function has been specified, XFER quickly computes the magnitude and phase response, enabling performance of sensitivity and Monte Carlo analysis. Circuit configurations can be viewed on the screen; complete circuit and transfer function editors are built into XFER.

XFER is menu-driven and interactive, with free-format input, and "understands" common engineering abbreviations. Data files generated by XFER are compatible with other BVE software such as SPP, PCPLOT, PDP and TEKCALC. Transfer function files generated by XGER can be used by the SPP program to perform transient and time-domain analysis of user generated waveforms.

XFER is available under the PCDOS and MSDOS operating systems for \(\$ 72.95\) from BV Engineering, 2200 Business Way. Suite 207. Riverside, California 92501.

Circle /312 on Reader Service Card.

\section*{AVCOM portable spectrum analyzer}

AVCOM's PSA-35A portable spectrum analyzer offers frequency coverages of 10 to 1750 MHz and 3.7 to 4.2 GHz for checking signal strength, inband attenuations, terrestrial interference, filter alignment, faulty connectors, LNA's, feedhorn isolation, and cable loss at all commonly used satellite communication frequencies, including 12 GHz downconverters.
The PSA-35A features a built-in DC block with +18 VDC for powering LNA's and BDC's with the flip of a switch, calibrated signal amplitude display, and rechargeable internal battery with built in charger. Portable and easy to use in field test situations, the PSA-35A is also suited for applications in research and development or classroom use. The PSA-35A is priced at \$1965.00.

For information, contact AVCOM of Virginia Incorporated, 500 Southlake Boulevard, Richmond, Virginia 23236.

Circle /309 on Reader Service Card.

\section*{tools and test equipment}

A new catalog of tools and test equipment is offered free by Jensen Tools, Inc. Illustrated in full color, the 160 -page catalog contains information on more than 1000 items.

Two new sections feature supplies and equipment in support of fiber optics and wire/cable systems. An expanded line of circuit board equipment includes breadboard kits, cutter and drill sets, anti-static carrying cases and racks, test cables, insertion/extraction tools, and many other production tools.

For a free catalog, contact Jensen Tools Inc., 7815 South 46th Street, Phoenix, Arizona 85044.

Circle \(\mathbf{B 1 4}\) on Reader Service Card.

\section*{new signal generators}

John Fluke Manufacturing Company, Inc. has introduced its 6061A Programmable Synthesized Signal Generator, the latest addition to its 6060 signal generator family.

The 6061A's high performance is targeted at rf applications, with increased demands on spectral purity. Residual fm is guaranteed to be less than \(6 \mathrm{~Hz} \mathrm{rms}(0.3\) to 3 kHz) in the frequency range of 245 to 512 MHz (typically 4 Hz rms), non-harmonic spurious are less than -60 dBc ,

with -123 dBc typical SSB phase noise at 500 MHz . The 6061A has a frequency range of 0.01 to 1050 MHz with 10 Hz resolution. Amplitude range is from -127 to +13 dBm with 0.1 dB resolution and an absolute accuracy of \(\pm 1 \mathrm{~dB}\). Internal and external a-m and fm can be used in combination or separately.
For more information or a demonstration of the Fluke 6061A, write, John Fluke Manufacturing Company, Inc., P.O. Box C9090, Everett, Washington 98206.

Circle 1320 on Reader Service Card.

\section*{new 2-meter all-mode mobile transceiver}

Trio-Kenwood Communications has introduced the TR-751A, an all-new 2-meter, allmode mobile transceiver. Features include automatic mode selection, many scanning functions, an illuminated LCD display, status lights, and an analog S- and if meter for easy viewing. The unit puts out 25 watts on high power and 5 watts on adjustable low power.

It covers \(142 \cdot 149 \mathrm{MHz}\), and can be modified
to cover \(141-151 \mathrm{MHz}\) (note that a MARS or CAP permit is required to operate on these frequencies). Ten memory channels plus COM channel store frequency, mode, and CTCSS tone offset. Two channels for "odd split" operation are featured, as are all-mode squelch; a noise blanker; RIT; dual, digital VFOs; and semi break-in CW with sidetone. A 16-key DTMF hand microphone and mounting bracket are supplied. Options include a VS-1 voice synthesizer and a front-panel selectable 38 -tone CTCSS encoder.

The suggested retail price for the TR-751A is \(\$ 599.95\). Trio-Kenwood Communications, 1111 West Walnut Street, P.O. Box 7065, Compton, California 90224.

\section*{ac power line monitor}

The Testware LDM-120 is a very low-cost ac power line disturbance monitor designed to measure and store worst-case ac line voltage variations caused by surges and sags. An LED bar graph display covers from 60 to 160 VAC RMS. Priced at less than \(\$ 100\), the unit features a builtin audible alarm, an external alarm output, and
selectable time constants.
For details, contact Testware Electronic Test Instruments, 4425 Canoga Avenue, Woodland Hills, California 91364.
Circle 1319 on Reader Service Card.

\section*{computer rotor control interface}

The KR-001 computer rotor control interface from Encomm, Inc., gives satellite enthusiasts automatic control of antenna azimuth and elevation. Used with the Kenpro KR-5400A, which provides the electro-mechanical interface to the rotor motors, the KR-001 provides the hardware interface to the computer, converting analog signals to digital for both the elevation and azimuth channels. It also provides the drive signal for driving the motors in the desired direction.
The unit plugs into the cartridge port of the C-64 and operates with tracking software written by N4HY for AMSAT available only from the AMSAT software exchange. Kenpro and Encomm provide the software needed to point the antenna from data entered into the program in real time; tracking software is not available from Encomm or Kenpro. Subroutines of the automatic tracking program which apply to the KR-001/KR5400A combination are supplied with the KR-001 for those who wish to write their own tracking software. The suggested retail price is \$149.95.

For information, contact Encomm, Inc., 1506 Capital, Plano, Texas 75074.

Circle 1315 on Reader Service Card.

\author{
Alexander Motel Fairborn Belton Inn \\ Best Western Springfield \\ Coach N Four Motel \\ Command Motel Fairborm \\ Cross Country Inn \\ Crossroads of America \\ Days Inn Dayton Mall \\ Days Inn North \\ Days Inn South \\ Dayton Airport Inn \\ Daytonian Hilton \\ Econolodge \\ Fairborn Motel
}

\author{
Hampton Inn (Englewood) \\ Holiday Inn Wright State \\ Holiday Inn Dayton Mall \\ Holiday Inn Fairborn \\ Holiday Inn North \\ Holiday Inn South \\ Holiday Inn Troy \\ Knights Inn Franklin \\ Knights Inn Dayton North \\ Knights Inn Dayton South \\ Knights Inn Vandalia \\ L \& K Motel (Brandt Pike) \\ LaQuinta Inn South Marriott Hotel
}

\author{
Motel Capri \\ Penny Pincher (L\&K Troy) \\ Ramada Inn Downtown \\ Ramada Inn South \\ Red Horse Inn \\ Red Roof Inn South \\ Rodeway Inn (Dayton) \\ Rodeway Inn (Xenia) \\ South Dayton Motel \\ Traveler's Motel North \\ Traveler's Motel South \\ TraveLodge (North Dixie) \\ York Motor Lodge Fairborn
} \\ \title{
Early Reservation Information
} \\ \title{
Early Reservation Information
}

\section*{- Giant 3 day flea market • Exhibits \\ - License exams - Free bus service - CW proficiency test - Door prizes}

Flea market tickets and grand banquet tickets are limited. Place your reservations early, please.

\section*{Flea Market Tickets}

A maximum of 3 spaces per person (non-transferable). Tickets (for all 3 days) will be sold IN ADVANCE ONLY. No spaces sold at gate. Vendors MUST order registration ticket when ordering flea market spaces.

\section*{Special Awards}

Nominations are requested for "Radio Amateur of the Year", 'Special Achievement" and 'Technical Achievement' awards. Contact; Awards chairman, Box 44. Dayton, OH 45401.

\section*{License Exams}

Novice thru Extra exams scheduled Saturday and Sunday by appointment only. Send current FCC form 610, copy of present license and check for \(\$ 4.25\) (payable to ARRL/VEC) to: Exam Registration, 8836 Windbluff Point, Dayton, OH 45459

\section*{Slide Show}

35 mm slide/tape presentation about the HAMVENTION is available for loan. Contact Dick Miller, 2853 La Cresta, Beavercreek, OH 45324

\section*{1987 Deadlines}

Award Nominations: April 4
Lodging: April 4
License Exams: March 28
Advance Registration and banquet:
USA - April 11
Canada-April 4
Flea Market Space:
Orders will not be accepted before January 1

\section*{Information}

General Information: (513) 433-7720
or DARA, Box 44, Dayton, OH 45401
Flea Market Information: (513) 223-0923
Lodging Information: (513) 223-2612 (No Reservations By Phone)

HAMVENTION is sponsored by the Dayton Amateur Radio Association Inc.

\section*{Lodging Reservation Form}
(Please attach your name, address, and telephone number to this form.)
Dayton Hamvention - April 24, 25, 261987
Reservation Deadline - April 4, 1987
MAIL TO - Housing, Dayton Hamvention 1880 Kettering Tower, Dayton, OH 45423-1880

Arrival Date
() Before 6 pm ()After 6 pm

Departure Date
Room: () Single
(Double (1 bed, 2 persons)
() Double Double (2 beds, 2 persons)
Lodging Preference -
See list of Lodging on adjacent page.

4
Deposit required - Room deposit must be paid directly to the hotel or motel by date shown on the confirmation form sent to you. Use canceled check

\section*{Advance Registration Form}
(Please attach your name, address, and telephone number to this form.)

How Many
Admission (valid all 3 days)
Orand Banquet
Women's Luncheon
(Saturday)
(Sunday)
Flea Market
(Max. 3 spaces)
Admission ticket must be ordered with flea market tickets

Make checks payable to - Dayton HAMVEMTION.
Mail to - Dayton Hamvention, Box 2205, Dayton, OH
45401

\section*{EXPLORE HF PACKET TNC VHF/HF SWITCH KIT}

\author{
FEATURES \\ All CMOS logic switch \\ Changes filter/timing parts for VHF or HF Self contained - Fits inside the TNC case No recalibration of tones \\ Same precise tones as original \\ Easy to build and install \\ One hour average \\ Prime quality parts \\ 182
}

Now you can use your TAPR TNC-2 or TNC-1 (or any close clone - AEA. MFJ. Heath. Paccom, etc.) on both VHF at 1200 baud and HF at 300 baud. The flick of a switch changes critical filter and timing components to optimize the TNC's on board modem for VHF or HF oper ation. The APA switch uses all CMOS logic, has a current drain of less than 5ma and fits conveniently inside the TNC case. It is easy to build and install: takes less than an hour in most cases. APA supplies prime parts and IC and complete step by step instructions. You bought the best TNC - now make it complete. \(\$ 30\) airmail postage paid. Send check or money order (no credit cards please.)

\section*{AMATEUR PACKET ALASKA AX. 25 COMMUNICATIONS TRAIL ESTER, ALASKA 99725}

\section*{1-800-USA-9913}
GINUINE BELDENCABIES
\begin{tabular}{|c|c|c|c|c|}
\hline 'm, 1 & kt. \({ }^{\text {a }}\) & Smi & 9 & \({ }^{19}\) \\
\hline \%o: & k. \(\cdot 13\) & 19: & \% 1 & 41 \\
\hline H2, & N6.in & 14. & 11 & 5 \\
\hline ne5 & kt.a & 14. & \% & 4 \\
\hline \% & R, ... & 481 & \% & \% \\
\hline
\end{tabular}
UC, \(210 \quad \mathrm{~N}\) Malle rable eval
UG. 210) Fittedfor Belden 991
UC. 298 N Bartel connector
LC, 3HA N Femalechoww moun
UG. 46 N Plasto (IIII rack
PL-259 UiIf Male cable end wlver
P- 258 U If Bartel conmestor
UC. 260 BNC Plas tor MiniX tittes UG \(625 B\) BNC panel receptac le.
8 guage hook-up wire \(28 \mathrm{C} / \mathrm{ft}\)
 Vibroplex Keyer/paddles MFI antenna Tuners \& Ace
COMPIETE STOCK, SAME DAY SHIPPINC. Seth Thomas \(13^{\prime \prime}\) 24-hour blation (loch

 \(110-4\) Resute IO
I. Honowef N| 1\()^{-9} 6\)

\section*{changing winds}

Though residential-scale wind power is far from being a widely popular energy source, homegenerated wind power hasn't disappeared; its following has just gotten smaller. To serve that market, the Thermax Corporation of Burlington, Vermont, manufactures a scaled-down wind generator designed for such modest tasks as charging batteries to supply daily or emergency power to remote cabins, boats, or Amatuer radio equipment.

The Windstream Wind Generator, which stands 20 inches high and weighs only 20 pounds, puts out 12 volts of direct current in an \(8-\mathrm{mph}\) wind and has an automatic system that tilts the rotor out of harms's way in strong winds. Priced at \(\$ 589\), the generator won an award from the Department of Energy last year.

For details, contact Thermax, 1 Mill Street, Burlington, Vermont 05401.

Circle 1321 on Reader Service Card.

\section*{keypad frequency entry}

Stone Mountain Engineering has announced the 757 QSYer, a frequency keypad accessory for the Yaesu FT-757GX, which permits the transceiver's operating frequency to be changed to any other frequenccy in the unit's range as of ten and as rapidly as desired.
The QSYer is a tiny computer terminal that interfaces directly with the 757's accessory jack. It contains its own 8-bit microprocessor, support circuitry, full-size telephone-type keypad, and a

sub-miniature speaker which sounds a different tone for each key as it's pressed. The QSTer's all-metal enclosure measures \(3.1 \times 3.5 \times 2\) inches, and is color-matched to the 757's finish. The unit installs in seconds - with only two plugs - into the 757's rear panel jacks.

The QSYer is available for \(\$ 89.50\), plus \(\$ 2.50\) shipping and handling. For further information, or to order, contact Stone Mountain Engineering Co., Box 1573, Stone Mountain, Georgia 30086.

Circle \(\$ 10\) on Reader Service Card.

\section*{linear power amplifier}

The Commander II is a grounded-grid, class AB2 linear power amplifier that operates on the Amateur band. An Eimac 3CX800A7 external anode triode with forced air cooling and modern stripline circuitry insures efficient and conservative operation. Reduced ratio vernier drives on all tuning controls allow smooth, easy tuneup.

Front panel input tuning control allows a higher circuit \(Q\) for excellent linearity and a very low input SWR to exciter all across the 2 -meter band. A built-in automatic delay circuit insures proper cathode conditioning before rf drive can be applied, greatly extending tube life.

With a frequency range of \(144-148 \mathrm{MHz}\) (others available), it can be used on USB, LSB, CW, RTTY, fm , and packet. Priced at \(\$ 988.00\) plus shipping, its power requirements are 117/234VAC, with the latter recommended). Rf Drive power is 15 watts nominal, 25 watts with optional relay; if output is 600 watts, with 15 watts drive.

For complete details, contact C.C.I.Electronics, 104 West Vine Street, Edgerton, Ohio 43517.

Circle /308 on Reader Service Card.

\section*{repeater products demo cassette}

Advanced Computer Controls, Inc., is pleased to announce that it has a new audio cassette available which describes and demonstrates its repeater control products. Included in the demonstration are the RC-850 and RC-850 Repeater Controllers, the Digital Voice Recorder, and the ITC- 32 Intelligent Touch-Tone Control Board.

The cassette is suitable for individual listening or for club meeting presentation. It lets the listeners hear ACC's repeater control products in operation and how users can benefit from using them on their repeaters. The demonstration cassette is available on request at no charge.

ACC manufactures microcomputer based control systems for Amateur Radio, commercial, and government radio users. For additional information, contact Advanced Computer Controls, Inc., 2356 Walsh Avenue, Santa Clara, California 95051.

Circle 1318 on Reader Service Card.

\section*{THE STANDARDS OF EXCELLENCE}

\section*{SUPERIOR WEAK SIGNAL PERFORMANCE COMMERCIAL MODEM}

\section*{COMPARE with \(\underline{A N Y}\) unit at \(\underline{A N Y}\) Price}

THE WORLD OF VHF/HF PACKET*, CW, RTTY, ASCII AND NEW DUAL AMTOR** IS AS CLOSE AS YOUR FINGERTIPS WITH THE BRILLIANTLY INNOVATIVE STATE-OF-THE-ART MICRO-COMPUTER CONTROLLED EXL-5000E.

\author{
SPECIAL SALE \$795
}

SHOWN WITH OPTIONAL KANTRONICS KPC2400 AND MFJ-1270 TNC-2
Everything built in - nothing else to buy!

\begin{abstract}
- AUTOMATIC SEND/RECEIVE-ANY SPEED ANY SHIFT • BUILTIN COMPUTER GRADE 5" MONITOR • EXTERNAL MONITOR JACK • TIMECLOCK ON SCREEN • TIMED TRANSMISSION AND RECEIVING • SELCAL - CRYSTAL CONTROLLED AFSK MODULATOR • PHOTOCOUPLER CW. FSK KEYER - ASCII KEY ARRANGEMENT - 15 CHANNEL BATTERY BACK-UP MEMORY - 1.280 CHARACTER DISPLAY MEMORY - SPLIT SCREEN TYPE-AHEAD BUFFER FUNCTION SCREEN OISPLAY - PARALLEL PRINTER INTERFACE - SPEEDS: CW 5-100 WPM (AUTOTRACK), 12 -300 BAUD (ASCII AND BAUDOT), 12-600 BAUD TTL; 100 BAUD ARQ/FEC AMTOR • ATC • RUB-OUT FUNCTION • AUTOMATIC CR/LF • WORD MODE • LINE MODE • WORD WRAP AROUND - ECHO - TEXT CURSOR CONTROL - USOS - DIDDLE - TEST MESSAGES (RY AND OBF) - MARK AND BREAK (SPACE AND BREAK) SYSTEM • VARIABLE CW WEIGHTS • AUDIO MONITOR CRICUIT BUILT IN • CW PRACTICE FUNCTION • CW RANDOM GENERATOR • BARGRAPH LED METER FOR TUNING • OSCILLOSCOPE OUTPUTS • BUILTIN \(100-120 / 220-240 \mathrm{VAC} 50 / 60 \mathrm{HZ}\) AND 13.8 VDC POWER SUPPLIES • AND MUCH. MUCH MORE • SIZE \(14 \mathrm{~W} \times 14 \mathrm{D} \times\)
\end{abstract} \(5 \mathrm{H} \cdot\)
EXCLUSIVE DISTRIBUTOR: DEALER INQUIRIES INVITED FOR YOUR NEAREST DEALER OR TO ORDER
AMATEUR-WHOLESALE ELECTRONICS TOLL FREE...800-327-3102
46 Greensboro Highway, Watkinsville, Georgia 30677 Telephone (404) 769-8706 Telex: 4930709 ITT
MANUFACTURER
TONO CORPORATION
98 Motosoja Machi. Maebashi-Shi, 371, Japan

*PLEASE CALL FOR DETAILS
*Dual Amtor: Commercial quality, the EXL-5000E incorporates two completely separate modems to fully support the amateur Amtor codes and all of the CCIR recommendations 476.2 for commercial requirements

\section*{SPECIALISTS IN FAST TURN P.C. BOARDS}

PROTO TYPE P.C. BOARDS AS LOW AS \$25.00
- SINGLE \& DOUBLE SIDED
- PLATE THROUGH HOLES
- TEFLON AVAILABLE
- P.C. DESIGN SERVICES FOR MORE INFORMATION - - 220

Midland Technologies

183

\section*{MR. NICAD}

REPLACEMENT BATTERIES FOR COMMUNICATIONS

\(\qquad\)

\title{
Measure Up With Coaxial Dynamics Model 81000A RF Directional Wattmeter
}

Model 81000A is a thoroughly engineered, portable, insertion type wattmeter designed to measure both FWD/RFL
C. W. power in Coaxial transmission lines. 81000A is comprised of a built-in line section, direct reading 3 -scale meter protected by a shock-proof housing. Quick-match connectors, plus a complete selection of plug-in elements, gives the FRONT RUNNER reliability, durability, flexibility and adaptability with a two year warranty.
Contact us for your nearest authorized Coaxial Dynamics representative or distributor in our world-wide sales network.

COAXIAL DYNAMICS, INC.

15210 Industrial Parkway Cleveland, Ohio 44135 216-267-2233 1-800-COAXIAL Telex: 98-0630

\section*{new Midian catalog}

Midian Electronics' new 1987 full-color, 32-page product catalog offers a bright new presentation of its standard tone-signaling products plus an introduction to many new products. Also featured are products from Midian's sister company, Advanced Signaling Technologies, manufacturers of microprocessor-based paging, display, status, and radiotelephone terminals that are system-compatible with Midian's portable and mobile signaling product line. In addition to the listing and description of the product line is a section illustrating the operations of Midian and AST's various departments. Copies are available upon request from Midian Electronics Incorporated, 2302 East 22nd Street, Tucson, Arizona 85713.

Circle 1317 on Reader Service Card.

\section*{SPECIALIZED COMMUNICATIONS FOR TODAY'S RADIO AMATEUR!}

If you are ACTIVE in FSTV SSTV, FAX, OSCAR, PACKET, RTTY, EME, LASERS, or COMPUTERS, then you need
" SPEC-COM!"
Published 10 Times
Per Year
By WB 0 QCD
(Serving Amateur Radio Since 1967!)
48 Pages per issue. Loaded with News, Articles, Projects, and Ads.

\section*{SIGN UP TODAY AND GET 3 BACK ISSUES "FREE"!}

Join our growing membership at the regular \(\$ 20\) per year rate and we will send you 3 back issues (of your choice) absolutely "free" 1 We also have 2 and 3 year discounts at just \(\$ 38\) and \(\$ 56\). Foreign surface and air mail subscriptions also available, please write for details. Add \(\$ 2.00\) for a special 19-year "master article index" issue. Allow 2-3 weeks for your first issue. Special TRS-80C, Commodore 64, Apple, IBM Software Catalog Available!

THE SPEC-COM JOURNAL
LOWDEN, IOWA 52255

\section*{antenna switch}

Alpha Delta has announced its new fourposition if switch, the DELTA-4.

Designed to give years of trouble-free use, the DELTA 4 is rated at full Amateur power, 1500 watts. It will ground four antennas not in use or, when an antenna is selected, it will ground the antennas not in use. Lightning surge protection is provided by a field-replaceable ceramic gas tube ARC-PLG cartridge.
The DELTA-4 is designed with both hf and UHF applications in mind. Insertion loss is rated at 0.1 dB at 30 MHz and 0.5 dB at 450 MHz . It's priced at \(\$ 69.95\). For more information, contact Alpha Delta, P.O. Box 571, Centerville, Ohio 45459.

Circle /307 on Reader Service Card.

\section*{high-power duplexers}

Two new duplexers are available from NCG. The new CF-412 Broad Range Duplexer has a very broad frequency range: \(1.3-450 \mathrm{MHz}\) on the low input and \(900-1400 \mathrm{MHz}\) on the high frequency side, giving the dual-band operator the same freedom as the VHF/UHF operator enjoys. Maximum power is 70 watts, with isolation more than 39 dB .

The new CF-415 duplexer provides the dualband operator an extra degree of safety with its high-power capabilities. Most VHF and UHF transceivers develop 45 watts of power; although the old type of duplexers are rated at 50 watts, it has been a common occurrence for them to fail, causing final burnout. The CF- 415 safely handles 500 watts on hf, 400 watts on 145 MHz , and 250 watts on 450 MHz . The isolation on both bands is more than 50 dB .

Both the CF-412 and the CF-415 duplexers are available from the manufacturer and through independent dealers. For information, contact NCG Company, 1275 N. Grove Street, Anaheim, California 92806.

Circle 1303 on Reader Service Card.

\section*{new publication for kit builders}

The Heath Company of Benton Harbor, Michigan, has announced the publication of the Kit Builder's Journal. Premiering in January, 1987, the bi-monthly Journal covers all aspects of building electronic and non-electronic kits both Heath's and others.

Articles will cover kitbuilding tips, Heathkit news and reviews of products, tips from Heath's technical consultants, and other valuable do-ityourself information. Subscribers will also be offered special discounts on selected Heath Company products.

For a six-issue subscription, order KBJ-2000-NM and send \(\$ 9.95\) to Heath Company, Box 1288, Benton Harbor, Michigan, 49022.

Circle 1306 on Reader Service Card.

\section*{continuous coverage receiver}

ACE Communications, Inc. has introduced the model AR-2002, a professional grade scanning monitor receiver that covers \(25-550 \mathrm{MHz}\) and \(800-1300 \mathrm{MHz}\) continuously.
The AR-2002 utilizes latest microprocessor and circuit technology to offer features that include a 20 -channel memory scan, priority scan, band search, multi-mode reception, conventional dial tuning, selectable frequency increments, and a bar graph signal strength indicator.

The unit incorporates commercial-type receiver technology such as 750 MHz receiver i-f, a high-level double-balanced mixer, a low-noise wide-band rf amplifier, and a high-stability VCO unit.

The user price for the AR-2002 is \(\$ 499.00\). For further details, contact ACE Communications, Inc., 22511 Aspan Street, Lake Forest (EI Toro), California 92630-6321

Circle 1304 on Reader Service Card.

\section*{basic service kit}

Jensen Tools Inc. has developed a new Basic Service Kit for the budget-minded electronic technician. Ideal for field service, in-house maintenance, trade school and personal use, this new addition to Jensen's Telvac economy line contains over 40 hand tools in a solid wood/vinyl case with removable pallets, document pouch, and key-lock latches. Priced at \$189, the kit includes standard service tools such as screwdrivers, pliers, nut and hex drivers, punches, wrenches and soldering equipment, as well as a 5 -inch hemostat, reverse action tweezer, combination spring tool, wire crimper/stripper, and other specialty items. A choice of test meters is also offered as an optional accessory.
For more information or a free catalog, contact Jensen Tools Inc., 7815 S. 46th Street, Phoenix, Arizona 85044.

Circle 1305 on Reader Service Card.

Full Feature Remotely Programmable Repeater Controller for under \(\$ 600\)
- Field tested for over 2 years
- Full 2 year warranty FREE
Free Full Color Brochure Call Toll-Free 1-800-621-8387
ext. 224, 8am. 5 pmm Mourtann Time
(.wiw 1 .cam

- Precision engineered and fabucated by R A Kent (Engineers). England
- Ballrace beatngs for smooth trouble free performance
- Solid silver contacts
- Machined hardwood weighted base with non -sho teet
- Easy assembly

Exclusive U.S. Distributor:
Total Electronic Concepts (TEC)
Post Office Box H 400 Lincoln. MA 01773 (617) 259-0125

Introductory Price KIT \(\$ 4995\)
 ASSEMBLED \(\$ 5995\)
plus \(\$ 500\) postage and handling Massachusetts residents add \(5^{\circ}\), tax

Please send SASE for further information. 177

\section*{Meet the Eliminator.}

Don't let its small dimensions (4 " \(\times 3^{\prime \prime} \times 2\) ") fool you-the Grove Minituner III is a big weapon against images, intermod and phantom signals on your shortwave receiver!

This short wave/long wave pre-selector is designed to boost performance in the \(100 \mathrm{kHz}-30 \mathrm{MHz}\) frequency range. If you own one of the popular general coverage communications receivers and are using an outside antenna, you NEED this extra measure of selectivity.

No power required. Simply connect between your receiver and antenna. Equipped for standard PL-259 connections. Only \$39 (free UPS shipping; 55 U.S. Mail/Parcel Post). Order TUN-3.

Grove Enterprises
140 Dog Branch Road
Brasstown, N.C. 28902

\section*{Shop Grove for fantastic values in shortwave} receivers, antennas, cable, performance - 176 boosting accessories and literature.

Call (704) 837-9200 or write to above address for free catalog!

for the Commodore \(64 \& 128\) Complete software package. The most advanced avallable. All the tools you need.

\section*{The SUPER DX EDGE®}

\section*{A Great DX Operating Aid Improved!} NOW with
- Maximum Usable Frequency (MUF) between any two OTHs:
- Great Circle Bearings and distance to any QTH.
- Finest graphics show best paths in REAL TIME! Color too.
- Accurate sunrise/daylight/darkness info.
- Fully menu driven.
- Requires 1541 or 1571 disk drive.

\section*{Save Time-Money with HAZER}
- Never climb your tower again with this elevator system
- Antenna and rotator mount on HAZER, complete system trams tower in verticle upright position
- Safety lock system on HAZER operates while raising-lowering \& normal position Never can fall
- Weight transferred directly to tower. Winch cable used only for raising \(\&\) lowering. Easy to install and use
- Will support most antenna arrays
- High quality materials \& workmanship - Safety - speed - convenience - smoot travel-inexpensive
- Complete kit includes winch, 100 ft of cable, hardwareand instructions. For Rohn 25 G Tower
Hazer 2-Heavy duty alum \(125 q \mathrm{ft} 1 \mathrm{load} \$ 297.00 \mathrm{ppd}\) Hazer 3 -Standard alum 8 sg ff load 213.00 ppd . Hazer 4 -Heavy galv. steel. 16 sq ft 10 ad 278.00 ppd Ball thrust bearing TE. 25 for any of above 4250 ppd Satisfaction guaranteed. Call today and charge to Visa or MasterCard.
As an aiternative. purcnase a Martin M-13 or M-18 aluminum tower engineered specifically for the aluminum tower engineered specifically for the
HAZER system, or a truly- self-supporting steel tower. Send for free details

GLEN MARTIN ENGINEERING INC.
P.O. Box H 253 Boonvilie, Mo. 65233 816-882-2734

1986-87 CALL DIRECTORY
Call Directory
Name Index
Geographic Index

703-894-5777

\section*{NEW COMPUTER BOOKS}

YOUR COMMODORE 64: A GUIDE TO THE C-64 COMPUTER
YOUR COMMODORE 128: A GUIDE TO THE C-128 COMPUTER
These books cover in great detail the best selling Commodore C-64 and C-128 home computers. You get a complete introduction to the operating sytems used. BAS IC tutorials, graphics, sound and much more Also discussed are hardware and peripheral considerations The C- 128 book covers C-64 emulation, extended memory CP/M mode, mouse, ram disk, printers and modems Excellent source books for beginners and experts alike

1985 ist Edition
OS-C64 464 pages
Softbound \$14.95
OS-C128 480 pages
Softbound \(\$ 14.95\)
Buy'em Both Special Reg \$29.90
OS-C Save \(\$ 4.95\)
\(\$ 24.95\)
MS-DOS USER'S GUIDE
by Chris DeVoney
MS-DOS computer users will find this handbook to be an essential addition to their computer library Includes a full explănation of MS-DOS commands in clear, concise language and examples of command syntax. Hints on command usage and explanations of the hierarchial directory and \(I / 0\) redirection will enable you to get maximum benefit from your computer investment. For novice and expert users 1984 1st Edition 330 pages
QUE-061
Softbound \(\$ 19.95\)

\section*{PC SECRETS: TIPS FOR POWER PERFORMANCE}
by James Kelly
Here's one of those unheralded gems we stumbled upon recently This nitty book is jam-packed with ideas and suggestions on how to get more out of your PC-DOS or MS-DOS computer. Not a tutonial, more for the intermediate user who is looking to get more speed and efficiency Improve your keyboard, enhance your display. organize your files. and manage your printer better than ever before You'll be amazed at what this book can add to your PC. Also covers Lotus 1-2.3 and Wordstat 1985 1s: Edition 224 pages
OS.PCS
Softbound \(\$ 16.95\)
APPLE II USER'S GUIDE, Apple Plus and II series
by Poole, McNuff and Cook
All time Apple II best seller! Now available in updated third edition. Learn from the experts how to get the most from your Apple home computer and peripherals. You also get a complete explanation on how to use DOS 33 and Pro-DOS. Easy-to-use tutorial explanation of BASIC programming will teach you how to use all the sound and graphics capabilities as well as the Apple lie high resolution graphics. This book is worth it's weight in gold!
1985 1st Edition 512 pages
OS-UG
Softbound \(\$ 18.95\)
We're really proud of the next two books! Doug was Jim Fisk's right hand man during the early seventies. His first computer book. The Introduc tion to TURBO Pascal, quickly went best seller. The TURBO Library is an invaluable addition to TURBO user's libraries.
INTRODUCTION TO TURBO PASCAL
by Doug Stivison WA1KWJ (ex Ham Radio assistant editor)
Thousands have learned Pascal programming with this popular best seller. As a tutorial this book entiances the unique aspects of Turbo Pascal by concentrating on the extended applications capabilities offered. Includes graphics, took-up tables. word processor to typesetting equipment conversion tables. TTS to ASCII conversion and tast sort/search routines 1985 1st Edition 268 pages

\section*{SY-269}

Softbound \$14.95

\section*{TURBO PASCAL LIBRARY}
by Doug Stivison WA1KWJ
Perfect compliment to the Turbo Pascal Introduction book listed above. Stivison shares his extensive collection of proven programs and will save experienced programmers time and illustrate to beginners good programming techniques and Turbo versions of standard algonithims. Includes games, systems uttities, and routines for business and engineering applications. 1986 1st Edition 350 pages
SY-330
Softbound \(\$ 14.95\)
Please Enclose \(\$ 3^{50}\) to cover shipping and handling
harn!ion
BOOKSTORE

Barry Electronics Commercial Radio Dept. offers the Best in two-way communications for Businesses. Municipalities, Civil Defense, Broadcasting Companies, Hospitals, etc. Sales and Service for all brands: Maxon, Yaesu, Icon, Tad, Octagon. Regency/Wilson. Midland, Standard. Uniden. Shinway, Fujitus, Seas, Spillsbury, Neutec, etc. Call or write for information. 212-925-7000.

Sub Problem?
Contact Sue. She'll
fix it for you!
(603) 878-1441

\section*{Ham Radio}

Greenville, N. H. 03048

\section*{ALL BAND TRAP VERTICAL ANTENNAS!}

\section*{High Performance \\ vhf/uhf preamps}

Every preamplifier is precision aligned on ARR's Hewlett Packard HP8970A/HP346A state-of-the-art noise figure meter. RX only preamplifiers are for recelve applications only. Iniline preamplifiers are rf switched (for use with transceivers) and handle 25 watts transmitter power. Mount iniline preamplifiers betweon transcelver and power amplifier for high power applications. Other amateur, commercial and special preamplifiers available In the \(1-1000 \mathrm{MHz}\) range. Please include \(\$ 2\) shipping in

\section*{Advanced} Receiver U.S. and Canada. Connecticut residents add \(7.1 / 2 \%\)
saies tax. C.O.D. orders add \(\$ 2\). Air mail to foreign counsaies tax. C.O.D. orders add \(\$ 2\). Air mail to foreign coun-
tries add \(10 \%\). Order your ARR Rx only or inline tries add \(10 \%\). Order your ARR Rx only or iniine
preamplifier today and start hearing like never before! Rescorch

Box 1242 • Burlington, CT 06013 • 203 582-9409

\section*{BRAND NEW - JUST RELEASED}

HOT OFF THE PRESS!!!
GET *** CONNECTED to Packet Radio

\section*{by Jim Grubbs, K9EI}

\section*{Beginners' guide to Packet Radio operation.}

Packet communications is one of the hottest subjects in Amateur Radio these days. Noted computer author Jim Grubbs, author of the Commodore Ham's Companion and Command Post, has put together one of the first books on how to get on Packet Radio. Packet basics are fully discussed in a step-by-step manner. Subjects also covered are: selecting a TNC, setting up your computer. Packet organizations and publications, protocol, networking. Packet answering machine, file transfers, accessories and more! 1986208 pages, 1st Edition.

\section*{JG-PR}

Softbound \$12.95
Also available The Commodore Ham's Companion, Order code JG-CC, \$15.95, and Command Post. Order code JG-CP, \$9.95.

Please add \(\$ 3.50\) for shipping and handling
Ham Radio's Bookstore
Greenville, NH 03048

\section*{SOFTWMRE}

NEW SOFTWARE FOR THE C-64 COMPUTER from CaGen

\section*{CONTEST LOG}

This fast acting. machine language program has been designed with the active contester in mind. It has a capacity of 2500 OSO's per disk. You enter call and exchangedate, time, serial number, band and mode are all automatically logged includes accurate clock that is not affected by the disk drive Each OSO is automatically read to disk upon entry-no need to fear a power outage. Prints the entire entry-ho
contest \(\log\) and dupe sheet Also computes OSO rate and contest log and dupe
displays on screen.
CG-CL (C-64)
\(\$ 34.95\)
SUPER DUPER
High speed duping program provides immediate teedback for accurate log keeping. Can be used "real time" or after the contest and has full editing capability Dupes are flagged and printed out at the end of the contest dupe sheet noted as dupes. Each disk can hold up to 2500 Sheet
CG-SD (C-64)
\(\$ 34.95\)
UNIVERSAL LOG
This general purpose logging program is wnitten in machine language and will meet the needs of the most demanding Ham Will hold up to 1200 records of 110 characters each per disk. Record number, callsign and a special key are all stored in the computer's RAM for quick search and access. To view the record, you enter the key and the intormation is quickly displayed. Plenty of extra leatures are too numerous to be mentioned here.
CG-UL (C-64)
\(\$ 34.95\)

\section*{LOW BAND DX-ING COMPUTER PROGRAMS} by John Devoidere, ON4UN
for Apple II, MS-DOS and Kaypro CPM Computers
Here's a collection of super programs written by ON4UN Just about every interest or need is covered. Programs include. sunnise/sunset, great circle direction and distance, grayline. SWR calculation and iteration. RC/RL calculation, parallel impedence, horizontal antenna wave angles. lumped constant loaded verticles, design of capacity hats for verticals, mutual impedence calculation, voltage along feed line iteration, feed line transformer. shunt input and series input network iteration. L network design plus much more. Phew. When you sit down to use this, you'll be amazed at what you have One of the best values in computer software available today 1986
UN-Apple
UN-MS
UN-CPM/Kaypro
\(\$ 19.95\)
\(\$ 19.95\)
\(\$ 19.95\)

\section*{1987 WORLD RADIO TV HANDBOOK}

\section*{41st Edition}

Otten referred to as the SWL's bible. It's loaded with all the latest call signs, schedules. frequencies, and other important information for TV and radio broadcasters around the world Covers LF. MF and SW broadcasting services as well as TV stations around the world Also includes equipment reviews and other special features. It you haven't seen a copy before, you don't know what you're missing! 1987 41st edition
GL-WRTV87
Soltbound \(\$ 19.95\)

GIL-A COLLECTION OF
CLASSIC QST CARTOONS
drawn by Phil "Gil" Guildersleeve, W1CJD
From the late 20's through 1966. "Gil" contributed over 1500 drawings and covers to UST Hams around the world recognize Jeeves, the handy man who could handle just about any project and can identify members of their clubs in Gil's Field Day covers. Fun reading for newcomersnostalgia for old timers-great reading for all! ic) 1986 110 pages

AR-GL
Softbound \(\$ 5.00\)
Please enclose \(\$ 3.50\) Shipping and Handling
radio

Greenville, NH 03048

A monthly of 100 -plus pages-has everything you need to know about where to find equipment, how to install it, system performance, legal viewpoints, and industry insights! With your subscription to STV \({ }^{\text {² }}\) you will receive a FREE LCD Calendar/Clock.
- Only \(\$ 19.95\) per year (12 monthly issues)
- \$1.00 for sample copy
-

IF YOU HAVE

The best in satellite programming! Featuring: \(\star\) All Scheduled Channels \(\star\) Weekly Updated Listings «Magazine Format \(\star\) Complete Movie Listing \(\star\) All Sports Specials \(\star\) Prime Time Highlights \(\star\) Specials Listing and \(\star\) Programming Updates!
- Only \$45.00 per year (52 weekly issues)
- 2 Years \$79.00 (104 weekly issues)
- \$1.00 for sample copy

Visa \({ }^{\text {® }}\) and MasterCard \({ }^{\text {® }}\) accepted (subscription orders only). All prices in US funds. Write for foreign rates.

Send this ad along with your order to: STV \({ }^{\circledR} /\) OnSat \({ }^{\circledR}\)

Southeastern Region Convention
AIRCONDITIONED SWAP AREA TABLES \(\$ 20\) REGISTRATION:
\$5 Advance \$7 At The Door Banquet \$12.50
For tickets \& swap table reservations SEND check and SASE to:
Orlando Hamcation \& Computer Show
Dept. HAM, P.O. Box 547811, Orlando, FL 32854-7811
- EPCOT • DISNEY WORLD • SEA WORLD

A magazine dedicated to quality and sportsmanship in amateur radio operating. Fresh, timely, practical and down to earth reading for little pistols and big guns. Written by world's best in their fields.

Includes DX News, QSL Info, 160 m , Dxpeditioning, Propagation, Awards, contest rules and results, TrafficEmergency, FCC News, New Products, Antennas, technical articles, equipment reviews and modifications, computer programs, Radio Funnies, Club Life, YL, RTTY, VHF/UHF, Mail Room, Classified Ads and much more in a magazine format with the speed of a bulletin.

RADIOSPORTING sponsors DX Century Award, Contest Hall of Fame, World Contest Championship and World Radio Championship contest.
"Your publication is superb! Keep it up!"
Joe Reisert, W1JR "Your W2PV articles are priceless. Your magazine is super!"

Rush Drake, W7RM
'Let me congratulate you on a very impress. magazine. Just what I've been looking for as a DXer and Cont 'er!"'

Dick Moen, N7RO
"RADIOSPORTING, once received, cannot be tossed aside until it is read from cover to cover. Then reviewed again and again" Chas Browning, W4PKA

\footnotetext{
Subscription rates: 1 year USA \$18, Canada CDN\$24, Overseas US \(\$ 21 ; 2\) years \(\$ 33, \$ 44, \$ 39\) respectively. Single issue \(\$ 2\).
TRY US! SUBSCRIBE OR SEND \(\$ 1\) FOR YOUR SAMPLE COPY.
RADIOSPORTING Magazine
PO Box 282, Pine Brook, NJ 07058, USA
- 170
[7x4
\(\cdots\)
}

\section*{California}

JUN'S ELECTRONICS
3919 SEPULVEDA BLVD. CULVER CITY, CA 90230
213-390-8003
800-882-1343 Trades
Habla Espanol

\section*{Colorado}

\section*{COLORADO COMM CENTER}

525 EAST 70th AVE.
SUITE ONE WEST
DENVER, CO 80229
(303) 288.7373
(800) 227-7373

Stocking all major lines Kenwood Yaesu, Encomm, ICOM

\section*{Connecticut}

\section*{HATRY ELECTRONICS}

500 LEDYARD ST. (SOUTH)
HARTFORD, CT 06114
203-527-1881
Call today. Friendly one-stop shopping at prices you can afford.

\section*{Delaware}

\section*{AMATEUR \& ADVANCED COMMUNI-} CATIONS
3208 CONCORD PIKE
WILMINGTON, DE 19803
(302) 478-2757

Delaware's Friendliest Ham Store.

DELAWARE AMATEUR SUPPLY
71 MEADOW ROAD
NEW CASTLE, DE 19720
302-328-7728
800-441-7008
Icom, Ten-Tec, Microlog, Yaesu,
Kenwood, Santec, KDK, and more. One mile off I-95, no sales tax.

\section*{Florida}

AMATEUR ELECTRONIC SUPPLY
1898 DREW STREET
CLEARWATER, FL 33575
813-461-4267
Clearwater Branch
West Coast's only full service
Amateur Radio Store.
Hours M-F 9-5:30, Sat. 9-3
AMATEUR ELECTRONIC SUPPLY
621 COMMONWEALTH AVE
ORLANDO, FL 32803
305-894-3238
Fla. Wats: 1 (800) 432-9424
Outside Fla: 1 (800) 327-1917
Hours M-F 9-5:30, Sat. 9-3

\section*{Georgia}

DOC'S COMMUNICATIONS
702 CHICKAMAUGA AVENUE
ROSSVILLE, GA 30741
(404) 866-2302 / 861-5610

ICOM, Yaesu, Kenwood, Bird
9AM-5:30PM
We service what we sell.

\section*{Hawaii}

HONOLULU ELECTRONICS
819 KEEAUMOKU STREET
HONOLULU, HI 96814
(808) 949-5564

Kenwood, ICOM, Yaesu, Hy-Gain,
Cushcraft, AEA, KLM, Tri-Ex Towers,
Fluke, Belden, Astron, etc.

\section*{Idaho}

ROSS DISTRIBUTING COMPANY 78 SOUTH STATE STREET
PRESTON, ID 83263
(208) 852-0830

M 9-2; T-F 9-6; S 9-2
Stock All Major Brands
Over 7000 Ham Related Items on Hand

\section*{Illinois}

ERICKSON COMMUNICATIONS, INC. 5456 N. MILWAUKEE AVE.
CHICAGO, IL 60630
312-631-5181
Hours: 9:30-5:30 Mon, Tu, Wed \& Fri; 9:30-8:00 Thurs; 9:00-3:00 Sat.

\section*{Indiana}

THE HAM STATION
220 N. FULTON AVE.
EVANSVILLE, IN 47710
812-422-0231
Discount prices on Ten-Tec, Cubic, Hy-Gain, MFJ, Azden, Kantronics,
Santec and others.
SASE for New \& Used Equipment List.

\section*{Maryland}

MARYLAND RADIO CENTER
8576 LAURELDALE DRIVE
LAUREL, MD 20707
301-725-1212
Kenwood, Ten-Tec, Alinco, Azden. Full service dealer.
T-F 10-7
SAT 9-5

\section*{Massachusetts}

TEL-COM, INC.
675 GREAT ROAD, RTE. 119
LITTLETON, MA 01460
617-486-3400
617-486-3040
The Ham Store of New England
You Can Rely On.

\section*{Michigan}

ENCON PHOTOVOLTAICS
Complete Photovoltaic Systems
27600 Schoolcraft Rd.
Livonia, Michigan 48150
313-523-1850
Amateur Radio, Repeaters, Satellite,
Computer applications.
Call Paul WD8AHO

\section*{Minnesota}

TNT RADIO SALES
4124 WEST BROADWAY
ROBBINSDALE, MN 55422 (MPLS/ST. PAUL)
TOLL FREE: (800) 328-0250
In Minn: (612) 535-5050
M-F 9 AM-6 PM
Sat 9 AM-5 PM
Ameritron, Bencher, Butternut, ICOM, Kenwood
\begin{tabular}{l}
\multicolumn{1}{c}{ MisSOURI } \\
\hline MISSOURI RADIO CENTER \\
102 NW BUSINESS PARK LANE \\
KANSAS CITY, MO 64150 \\
(800) 821-7323 \\
Missouri: (816) 741-8118 \\
ICOM, Kenwood, Yaesu \\
Same day service, low prices.
\end{tabular}

\section*{Missouri}

102 NW BUSINESS PARK LANE
KANSAS CITY, MO 64150
800) 821.7323

COM, K
Same day service, low prices.

\author{
Nevada \\ AMATEUR ELECTRONIC SUPPLY \\ 1072 N. RANCHO DRIVE \\ LAS VEGAS, NV 89106 \\ 702-647-3114 \\ Dale Porray "Squeak," AD7K \\ Outside Nev: 1 (800) 634-6227 \\ Hours M-F 9-5:30, Sat. 9-3
}

\section*{New Hampshire}

RIVENDELL ELECTRONICS 8 LONDONDERRY ROAD DERRY, N. H. 03038 603-434-5371
Hours M-S 10-5; THURS 10-9
Closed Sun/Holidays

\section*{New Jersey}

\section*{KJIELECTRONICS}

66 SKYTOP ROAD
CEDAR GROVE, NJ 07009
(301) 239-4389

Gene K2KJI
Maryann K2RVH
Distributor of: KLM, Mirage, ICOM, Larsen, Lunar, Astron. Wholesale - retail.

\section*{QEP's}

110-4 ROUTE 10
EAST HANOVER, N. J. 07936
201-887-6424
In N.J. 1-800-USA-9913
Bill KAZQEP
Jim N2GKW
VISA/Mastercard
Belden Coaxial Cable
Amphenol Connectors
Hours: 9:30 am-7:00 pm

\section*{New York}

\section*{BARRY ELECTRONICS}

512 BROADWAY
NEW YORK, NY 10012
212-925-7000
New York City's Largest Full Service Ham and Commercial Radio Store.
VHF COMMUNICATIONS
915 NORTH MAIN STREET
JAMESTOWN, NY 14701
716-664-6345
Call atter 7 PM and save! Supplying all of your Amateur needs. Featuring ICOM "The World System." Western New York's finest Amateur dealer.

\section*{North Carolina}

\section*{F\&MELECTRONICS}

3520 Rockingham Road
Greensboro, NC 27407
1-919-299-3437
9AM to 7PM Closed Monday
ICOM our specialty - Sales \& Service

\section*{Ohio}

AMATEUR ELECTRONIC SUPPLY 28940 EUCLID AVE.
WICKLIFFE, OH 44092 (Cleveland Area) 216-585-7388
Ohio Wats: 1 (800) 362-0290
Outside Ohio: 1 (800) 321-3594
Hours M-F 9-5:30, Sat. 9-3
DEBCO ELECTRONICS, INC.
3931 EDWARDS RD.
CINCINNATI, OHIO 45209
(513) 531-4499

Mon-Sat 10AM-9PM
Sun 12-6PM
We buy and sell all types of electronic parts.

UNIVERSAL AMATEUR RADIO, INC.
1280 AIDA DRIVE
REYNOLDSBURG (COLUMBUS), OH 43068
614-866-4267
Featuring Kenwood, Yaesu, Icom, and other fine gear. Factory authorized sales and service. Shortwave specialists. Near I-270 and airport.

\section*{Pennsylvania}

HAMTRONICS,
DIV. OF TREVOSE ELECTRONICS

4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215-357-1400
Same Location for over 30 Years

\section*{LaRUE ELECTRONICS}

1112 GRANDVIEW STREET
SCRANTON, PENNSYLVANIA 18509 717-343-2124
ICOM, Bird, Cushcraft, Beckman, Larsen, Amphenol, Astron, Belden, Antenna Specialists, W2AU/W2VS,
Tokyo Hy-Power Labs, WELZ, Daiwa, Sony, Saxion, Vibroplex, Weller.

\section*{Tennessee}

MEMPHIS AMATEUR ELECTRONICS
1465 WELLS STATION ROAD
MEMPHIS, TN 38108
Call Toll Free: 1-800-238-6168
M-F 9-5; Sat 9-12
Kenwood, ICOM, Ten-Tec, Cushcraft, Hy-Gain, Hustler, Larsen, AEA, Mirage, Ameritron, etc.

\section*{Texas}

MADISON ELECTRONICS SUPPLY 3621 FANNIN
HOUSTON, TX 77004
713-520-7300
Christmas?? Now??

\section*{KENNEDY ASSOCIATES}

AMATEUR RADIO DIVISION
5707A MOBUD
SAN ANTONIO, TX 78238
Stocking all major lines. San Antonio's Ham Store. Great Prices - Great
Service. Factory authorized sales and service.
Hours: M-F 10-6; SAT 9-3
MISSION COMMUNICATIONS
11903 ALEIF CLODINE
SUITE 500 (CORNER HARWIN \& KIRKWOOD)
HOUSTON, TEXAS 77082
(713) 879-7764

Now in Southwest Houston-full line of equipment. All the essentials and extras for the "ham."

\section*{Wisconsin}

AMATEUR ELECTRONIC SUPPLY
4828 W. FOND DU LAC AVE.
MILWAUKEE, WI 53216
414-442-4200
Wisc. Wats: 1 (800) 242-5195
Outside Wisc: 1 (800) 558-0411
M-F 9-5:30 Sat 9-3

> FREE
> BOOK
> FLYER
> Send SASE to
> Ham Radio's Bookstore

Greenville, N. H. 03048
flegat itet

RATES Noncommercial ads \(10 ¢\) per word; commercial ads \(60 ¢\) per word both payable in advance. No cash discounts or agency commissions allowed
HAMFESTS Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing) on a space available basis only. Repeat insertions of hamfest ads pay the non-commercial rate.

COPY No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.
DEADLINE 15th of second preceding month.
SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

PACKET PROGRAM FOR YOUR PC. A telecommunications program especially written to interface your packet controller with your PC or compatible. Features Spll Macro Keys 5 type time/date/oper. ID. Lots of goodies. Software support. Write for complete information. VISA/MC. Kalt and Associates, 2440 E. Tudor Rd, Suite \#138, Anchorage, AK 99507. (907) 248-0133.

DIRECT AND LONG PATH HEADINGS (degrees). GREAT CIRCLE DISTANCES (kilometers and statute miles). From your exact QTH to over 400 worldwide locations including 60 within Continental USA. Nine pages. Send \(\$ 4.50\) to W4HET, Engineer ing Systems, Inc., PO Box 939, Vienna, VA 22180

SHOW IT IN STYLE Full color OSL's by Smith Printing. From Your prints/sides. 9 (805) 25t-7211.

COLLINS KWM-380. Fully updated. Excellent condition. Full service manual. Write or call. W3IRE, 3436 Howes Road, Dunkirk, MD 20754. (301) 257-3041

MILITARY ELECTRONICS: CPRC-26 Manpack Radio, compaci, transmits-receives \(46-54 \mathrm{MHz}\) FM \((6\) meters: see March 1985, Ham Radiol, with battery box, antenna, handset, crystal. modes: \(\$ 195\), \(\$ 42.50 /\) pair, , \(\$ 115\) reparable. R-108 Receiver, 20-28 \(\mathrm{MHzFM}: \$ 27.50 \mathrm{mint}\). R. 748 Receiver, \(130-150 \mathrm{MHz}\) AM single channel: \(\$ 27.50\). ARC-27 Guard Receiver, \(220-248 \mathrm{MHz}\) AM single channel: \(\$ 12.50\) mint. 45 Day replacement guarantee. Add
\(\$ 450\) /piece shipping (R 390A shipped UPS collect). Baytronics Dept. HR, Box 591, Sandusky, OH 44870

APEX" Screwdriving bits for all screw recesses. Put a "bit of quality in vour work shop! Complimentary list. Donald Shock ey. Dept. 5, 5841 Longford Road, Dayton. Ohio 45424

BACK ISSUES OF HAM RADIO Magazine from March 1968 to June 1974. Complete your collection. Individual issues \(\$ 4.00\) each. KX9P (319) 377-3563.
SLEP MAIL ORDER SPECIALS. Lab calibrated signal gener ators: HP8640B AM/FM solid state 500 kHz thru 1024 MHz . See latest HP catalog \(\$ 5,500.00\). HP606A 50 kHz thru 65 MHz \(\$ 375.00\). HP608C 10 MHz thru \(480 \mathrm{MHz} \$ 345.00\). Military TS. 403/U microwave 1.8 GHz thru \(4.2 \mathrm{GHz} \$ 285.00\). URM-25D 10 kHz thru \(50 \mathrm{MHz} \$ 245.00\). TS \(-510 \mathrm{~A} / \mathrm{U}, 10 \mathrm{MHz}\) to 420 MHz military version of HP608D \$295.00. HP616B, Microwave 3.8 GHz thru \(7.6 \mathrm{GHz} \$ 375.00\). HP620A, microwave 7 GHz thru 1 \(\mathrm{GHz} \$ 450.00\). HP614A. 900 MHz thru \(2100 \mathrm{MHz} \$ 345.00\) HPBoonton 202 H AM/FM, 54 MHz thru \(216 \mathrm{MHz} \$ 27.00\) Satisfaction guaranteed. VISA, M/C or check. Add shipping.
Write or phone Bill Slep. (704) \(524-7519\). SLEP ELECTRONICS, Write or phone Bill Slep, 28763.
Highway 441, Otto, NC 287.

IBM/APPLE COMPUTER program "Hamlog". 18 modules logs auto-sorts 7 -band WAS/DXCC. Full feature. Also CP/M. Appl \(\$ 19.95\), IBM \(\$ 24.9\) ? 2015, Peabody, MA 01960

LO COST Sensitive-Selective HF receiver system. Ideal/ 1 st station set. Enhanced Novice 10/15/40/80m coverage. Send 2 stamps for free info. I. Megeff, KD2EF, 729 Lori Drive \#101, Palm Springs, FL 33461

WA9GFR RF SOFTWARE \(\$ 15.00\) disk contains HF/VHF/UHF/L-BAND propagation and Smith Chart imped ance matching programs. Specify Commodore-64 or MS-DOS BASIC. Lynn Gerig, 6417 Morgan RD, Monroeville, IN 46773

DIGITAL AUTOMATIC DISPLAY for FT-101's, TS-520's Collins. Drake, Swan. Heath and all others. Six \(1 / 2\) digits. 5 wide by \(1.1 / 4^{\prime \prime}\) high metal cabine1. Send \(\$ 2.00\) for information and receive a \(\$ 30.00\) discount. Includes accuracy comparison of the simple "BCD" readouts, found in new radios, against our "Calculating Frequency Counter" readouts. Please be specific. GRAND SYSTEMS, POB 2171, Blaine, Washington 98230.

REMEMBER TROLLEY CARS? Trolley Treasures: "The War ime Years in New Jersey" (1939-1947., a 4-volume photodocumentary history. inctudes 1600 unpublished, origina photographs plus extensive historical notes. Volume I, "The Compromise Roof Cars of Public Service Coordinated Transport', ready now. For details, or to order, contact Trolley Themes, A.W. Mankoff, 2237.3 Woodside Lane, Sacramento, CA 95825 . (\(\$ 12.95\) plus \(\$ 1.50 \mathrm{~S} \mathrm{\& H}\))

FOR SALE Victor 9000 Computer, 128 K with Knowledgemen Data Base Program. Excellent condition. Price \(\$ 1,000.00\) or best offer. D.W. Wilhelmus. (317) \(262-8400\)

SOLAR ELECTRIC panels and system components. 1st quali y Arco panels with 10 -year warranty. Lowest prices in country. Catalog \(\$ 1.00\). KA8DSS, Radiant Distributors, 3900 Dursum, Adam MI 49301. (616) 874-8899

FOR SALE: Heathkit SB-104 \$200. SB-604 w/ps \$75, SB-644 to \$45, SB-634 console \$45, HW-2036A 2 m \$100, Kenwood R-1000 \(\$ 130\). Conar \(2 \mathrm{~m} \$ 30\). All equipment in good condition. NV0R, 1205 North Main, O'Fallon, MO 63366.
1296 MHz POWER AMPLIFIERS 6 \& 20 watt kits. For info SASE to: A \& A Engineering, 2521 W . LaPalma Ave. HK, Anaheim, CA 92801. (714) 952-2114.
UHF PARTS. GaAs Fets, MMICs, trimmers, chip caps, teflon ocb, and other builder parts. SASE brings list. Microwave Components, 11216 Cape Cod, Tavlor, Mi 48180
SPECIAL ANTENNAS by K3IPW featuring the RIW-19 432 MHz beam, 14.9 dBd for \(\$ 69.95\) and the K1FO 22 el .14 ft .432 MHz beam, 158 dBd for \(\$ 76.64\) SASE for information. Thom \(H\). Rutland, 1703 Warren St, New Cumberland, PA 17070.
\$\$\$\$\$SUPER SAVINGS on electronic parts, components, sup phes and computer accessories. Free 40-page catalog for SASE.
Get on our mailing list. BCD ELECTRO, PO Box 830119 , Richardson. TX 75083 or call (214) 690-1102.

CABLE TV CONVERTERS \& EQUIPMENT: Plans and parts. Build or buy. SASE for information. C \& D Electronics, PO Box 1402, Dept. HR, Hope, AR 71801

YAESU OWNERS: Hundreds of modifications and improve ments for vour rig. Select the best from fourteen years of genuine top-rated Fox-Tango Newsletters by using our new 32 -page Cumulative Index. Only \(\$ 5\) postpaid (cash or check) with \(\$ 4\) Rebate Certificate creditable toward Newsletter purchases. Lowens, N4ML (Editor). Box 15944, W. Palm Beach, FL 33416. Lowens, N4ML (Editor).

RECONDITIONED TEST EQUIPMENT \(\$ 1.25\) for catalog Walter, 2697 Nickel San Pablo, CA 94806.

\section*{COMING EVENTS}

Activities - "Places to go . . ."
OHIO: February 15. The Mansfield Mid*Winter Hamfest/Com puter Show, Richland County Fairgrounds, Mansfield. Doors Tables \(\$ 500\) AM. T \(\$ 600\). Tables \(\$ 5.00\) advance; \(\$ 6.00\) at the door. Forums, Flea Marke in large heated buildings. For more information, tickets, tables Ohio 44905 or phone (419) 589.2415 after 4 PM EST

OHIO: February 22. The Cuyahoga Falls ARC will sponsor its 33rd annual Auctionfest, Tallmadge High Schoal. Flea Market opens 8 AM. Tables \(\$ 6.00\) advance. Auction begins 11 AM. Ad mission \(\$ 4.00\) at the door, \(\$ 3.00\) advance. Check in on 147.877 .27 PO Box 614, Cuyahoga Falls, Onio 44222.

MICHIGAN: February 22. The 17th annual Livonia ARC's Swap ' \(n\) Shop. 8 AM to 4 PM at the Dearborn Civic Center, Dearborn. ARRL/VEC FCC Amateur exams given by the Motor City Radio Club. Plenty of tables, refreshments and free parking. Talk in on 144.75/5.35 and 146.52. For further information SASE to Nei 48151.

INDIANA: March 8. The Morgan County Repeater Association's Indiana Hamfest, Indiana State Fairgrounds Pavillion Building, Indianapolis. Admission \(\$ 5.00\) at the door. Open to the public 8 AM. 8' flea market table \(\$ 8.00\). Talk in on 145.25 . For table reservations or information SASE before February 25 io Aileen Scales, KC9YA, 3142 Market Place. Bloomington, IN 47401. 812. 339-4446.

OHIO: April 24, 25, 26. DAYTON HAMVENTION ILLINOIS: March 15. The Sterling-Rock Falls ARS 27th annual Hamfest, Sterling High school Fieldhouse, 1608 Fourth Avenue, Doors open 7:30 AM. Dealers, large flea market and space for
\(\$ 3.00\) advance, \(\$ 4.00\) at the door. Commercial tables \(\$ 5.00\) and \(\$ 3.00\). Talk in on \(146.25 / 85\), W9MEP. For information, tables or tickets: Sue Peters, PO Box 521, Sterling, IL 61081 or call (815) 6259262.

MASSACHUSETTS: March 1. Annual MTARA Flea Market, K of C Elder Council 69 Hall, Granby Road, Chicopee. Genera admission \(\$ 2.00\). Spouse and kids free. Tables \(\$ 10.00\) at door 8.00 advance. Tailgating \(\$ 5.00\). Vendor setup from 7 to 10 AM public admitted 10 AM . Food and refreshments. Walk in Amateur license exams 10:30 AM. Talk in on 146.34-146.94 and 52 simplex. Write MTARA, Box 3494, Springfield, MA 01101 or call Bob, WB1EOS (413) \(532-4891\) days or Mickey, N1CDR (413) 562-1027 evenings

FLORIDA: March 21-22. The Playground Amateur Radio Club's 17th annual North Florida Ham/Swapfest, Shrine Fairgrounds, north F1. Walton Beach. Doors open 8AM both days. FCC exams Satuday only. ARRL, and QCWA meetings. Banque1 Saturday night. RV parking. Talk it on \(146.19 / 79\) and 52. For more information write PARC, PO Box 873, Ft. Walton Beach, FL 32548.

NEW YORK: February 15. Long Island ARRL Indoor Hamtest, sponsored by LIMARC, Electricians Hall, 41 Pine Lawn Road, Melville, LI. Doors open 9 AM . Admission \(\$ 4.00\) at the door; \(\$ 3.25\) in advance with SASE. Exhibitors admitted 7:30 AM. For more information call Hank (516) 484-4322 evenings.
FLORIOA: March 7. The City of Paims (Fort Myers) annual Hamest, Moosehall on Parkmeadow Orive. 9 AM to 4 PM Dealers forums, swap tables, snack bar, luncheon and more. Talk in on 28/88. For information: Harry Arnold, K9ALX, 5414 Brandy Circle SW, Fort Myers, FL 33907 (814) 482-3113.

NEW HAMPSHIRE: March 14. The Interstate Repeater Socie y of Derry, NH will hold its annual Flea Market, Lions Club Hal Lions Avenue, Hudson. Doors open 8 AM . Admission \(\$ 1.00\) at the door. Tables \(\$ 8.00\) each. For table reservations (603) \(623-0628\)
or (603) 883.9441 . Write I.R.S., PO Box 693, Derry, NH 03038.

NEW YORK: March 1. The Mt. Beacon Amateur Radio Club's first annual Winter Hamfest. State Armory, Newburgh. 8 AM o 3 PM. Doors open for sellers 7 AM. General admission \(\$ 3.00\) table space \(\$ 4.00\). Reserved tables \(\$ 5.00\). Refreshments avall ble. Talk in on 146.37 .37 and 146.52. Ft beacon APC PO Box 841. Wappingers Falls, NY 12590. (914) 876-1659.

MINNESOTA: February 21. The Robbinsdale ARC's 6th annu al Midwinter Madness Hobby Electronics Show. New site -Medina Ballroom, Hwy 55 , Medino iwestern suburb of Market and Retail Exhibits open 8 AM 8' flea market tables \(\$ 8.00\). FCC exams start 9 AM. Talk in on KOLTC Club Repeater and 14652 simplex To register SASE with fees to Robbinsdale ARC PO Box 22613 Robbinsdale MN 55422 or call Bob (612) 33-7354. FCC Exam registration: Send completed Form 610 533-7354. FCC Exam registration: Send completed Form 610 , Ron Schulz, NAOU 6308 Peacedale Avenue, Edina. MN 55424.

\section*{OPERATING EVENTS}

\section*{"Things to do}

February 1. 1987 Classic Radio Exchange, 2100 UTC Sunday o 0400 UTC Monday. Exchange name, RST, QTH, receiver and ransmitter with other hams interested in restoring, opersting and just enjoying older equipment. Send logs, comments, anecdotes, pictures, etc. to Jim . Panion. Road , Columbus, OH 43085 . Please include SASE

February 7. 1987 New Hampshire OSO Party sponsored by the NH Amateur Radio Association. 1900 Z February 7 to 0700 Z February 8. 14002 February 8 to 0200Z February 9. Send log and
 court N1BYO, 19 Teague Drive, Salem, NH 03079

\section*{Foreign Subscription Agents for Ham Radio Magazine}

PA-20E PRE-AMP FULLY ENCLOSED WITH A DC- 1000 MHZ RANGE AND POWER ONLY \$34.95 Prepaid Without case . . . \$19.95

1 YR - \$22.95 2YRS - \$38.95
3 YRS - \$49.95 Prices U.S. only

\title{
SUBSCRIBE TOLL-FREE
}

\section*{B \& W PRESENTS A WINNING COMBINATION}

MODEL PT2500A LINEAR AMPLIFIER
The Barker \& Williamson PT2500A Linear Ampli fier is a completely self-contained table-top unit designed for continuous SSB, CW, RTTY AM or ATV operation. Intended for coverage of all amateur bands between 1.8 MHz and 21 MHz , it can be readily modified for ftequencies outside the amateur bands for commercial or military application. Two type \(3-500\) z giass envelope triodes provide reliability and rapid turn-on time.

\section*{FEATURES INCLUDE:}
- Full 1500 watt output
- Pl-network input for maximum drive
- Pressurized plenum cooling system
- DC antenna relay for hum-freeoperation
- Illuminated SWR and power meters
- Vernier tuning for accurate settings
- PI-L output for greater harmonic attenuation
Ruggedly constructed of proven design this amplifier reflects the manufacturer's critical attention to details-such as the siver-plated tank coil for maximum efficiency. Cathode zener fuse and internal/external cooling are among the protective and safety devices employed input and output impedances are 50 ohms
Dimensions: \(17^{\prime \prime}\) wide \(\times 19^{\prime \prime}\) deep \(\times 8^{\prime \prime \prime} / 2\) high Weight: 80 lbs . (shipped in 3 cartons to meet UPS requirements)
Price \(\$ 2175.00\) FOB factory. Price includes one year limited warranty Call or write factory for complete specifications.

\section*{MODEL VSISOOA ANTENNA COUPLER}

The Barker \& Williamson VS1500A antenna coupler is designed to match virtually any receiver, transmitter or transceiver in the 160 to 10 meter range (1.8 to 30 MHz) with up to 1500 watts RF power to almost any antenna. including dipoles, inverted vees. verticals mobile whips, bearns, random wires and others. fed by coax cable, balanced lines or a single wire. A 1:4 balun is built in for connection to balanced lines.

\section*{FEATURES INCLUDE:}
- Series parallel capacitor connection for greater harmonic attenuation.
- In-circuit wattmeter for continuous monitoring
- Vernier tuning for easy adjustment

Front panel switching allows rapid selection of antennas. or to an external dummy load. or permits bypassing the tuner
Dimension (Approx.) \(11^{\prime \prime}\) wide \(\times 13^{\prime \prime}\) deep \(\times 6^{\prime \prime}\) high
Weight: \(6 \frac{1}{2} \mathrm{lbs}\)
Price \({ }^{\text {s }} \mathbf{4 9 9 . 0 0}\) fob Factory. fully warranted for one year OUNTS

\section*{Orders \& Quotes Toll} Free: 800-336-4799
(In New England: 800-237-0047) (In Virginia: 800-572-4201)

\section*{EGE VIRGINIA}

Information \& Service: (703) 643-1063 Service Department: (703) 4948750
13646 Jefferson Davis Highway Woodbridge, Virginia 22191 Store Hours: M-Th: 12 noon- 6 pm F: 12 noon- 8 pm Sat: \(10 \mathrm{am}-4 \mathrm{pm}\)
Order Hours: MF \(9 \mathrm{am}-7 \mathrm{pm}\) Sat \(10 \mathrm{am}-4 \mathrm{pm}\)

\section*{EGE NEW ENGLAND}

8 Stiles Road
Salem, New Hampshire 03079
New Hampshire Orders,*
Information \& Service: (603) 898-3750
New England Orders: 800-237-0047
Store Hours
MTWSat: \(10 \mathrm{am}-4 \mathrm{pm}\)
ThF: 12 noon- 8 pm Sun: Closed
*Order and we'll credit you with \(\$ 1\) for the call

\section*{4COMRE)}

Our Associate Store:
Lacombe Distributors
Davis \& Jackson Road, PO Box 293
Lacombe, Lousiana 70445
Information \& Service (504) 882.5355

Terms: No personal checks accepted Prices do not include shipping UPS COD lee 5235 per package Prices subject to change without notice or obligation. Products are not sold for evaluation. Authorized returns are subject to a \(15 \%\) restocking and handling fee and credit will be issued for use on your next purchase. EGE supports the manufacturers warranties To get a EGE supports the manufocturers warranbes To get a copy of a warranty pror to purchase, call customer envie at 703.643-1003 and it will be furmished at no cost

\section*{Much More in stock! Send \$1 for our New Fall Buyer's Guide-Catalog.}

\section*{More Helpers}
- Marine radios by Icom
- Commercial Land Mobile by Yaesu
- Telephones by AT\&T, Cobra, Southwestern Bell, \& Panasonic
- CBs by Uniden, Midland, Cobra
- Radar Detectors by Uniden, Cobra and Whistler

\section*{Extended Service Agreements Available}

\section*{Antennas}

HF, VHF, SWL, scanner, marine, \& commercial for Mobile or Base. Cushcraft
Mini-Products • Larsen B\&W • Van Gorden Butternut • KLM Mosley • Hustler Telex Hy-Gain

\section*{Towers}

Unarco-Rohn, Hy-Gain, Tri-Ex Ask for special quotes on package deals including cable, guys, connectors, turnbuckles, etc.

\section*{Accessories}

Phillystran
Kenpro - Alliance
B\&W - Telex Hy-Gain
Daiwa • MFJ
Bencher - Amphenol Astron - Welz B +K Precision

\section*{Amplifiers}

Diawa - Ameritron Amp Supply • Vocom TE Systems Tokyo Hy-Power

\section*{Computer Stuff}

Packet Radio
Hardware and Software for RTTY/Morse
Hal * Kantronics Microlog e MFJ
Ham Data Amateur Software.

\section*{Shortwave} Sony
Panasonic Yaesu
Kenwood Icom

\section*{Scanners}

Uniden/Bearcat Regency
More Radios
Encomm/Santec
KDK
Ten-Tec

Mini handheld for 2 m or 440 MHz .2 .5 W output. 10 memories. LCD display.

FT-767GX
All-mode transceiver. Cat system.
FT-757GX
HF XCVR/Gen. Coverage Receiver
FT-727G
Dual-band handheld for \(2 \mathrm{~m} / 440 \mathrm{MHz}\)

\section*{SOFTWARE}

GX Turbo and Catpack for the FT. 757GX and Catpack for the FRG-9600 Receiver

TS-440
HF XCVR with built-in Antenna Tuner.
TS-940
HF XCVR/Gen. Coverage Receiver.
TM-2530A/50A/70A
\(25 / 45 / 70\)-watt mobile 2 m rigs.
TM-201B
2 m Mobile, 45 -watts

\section*{Handhelds}

TR-2600A, TR3600, TH21AT, 31AT, 41AT. Call for quotes

\section*{CDICOM \\ IC-735}

Compact HF Transceiver
IC-751A
HF XCVR/General Coverage Receiver

\section*{VHF/UHF}

2m-27A, 27H, 271A, 271H 220 MHz-37A
440 MHz \(471 \mathrm{~A}, 471 \mathrm{H}, 47 \mathrm{~A}\)
IC-02AT, 04AT

Small, light HTs for 2 m or 440 MHz .10 memories and scan functions.

\section*{IC-A2 in stock}

Aircraft handheld
IC-2AT, 3AT, 4AT, 12AT
Handhelds for \(2 \mathrm{~m}, 220\)
\(\mathrm{MHz}, 440 \mathrm{MHz}, 1.2 \mathrm{GHz}\)
Package Quotes on Radios/Accessories \& Antennas/Towers

\section*{Dynamite Discovery}

Communications Specialists' latest excavation brings to light yet another dynamite discovery-our new dip switch programmable SD-1000. No need to tunnel your way through Two-Tone Sequential decoding anymore. We've mined this amazing unit! Now, for the first time, you can stock one unit that will decode all calls in a 1000 -call paging system with \(\pm .2 \mathrm{~Hz}\) crystal accuracy. The EEPROM onboard memory can even be programmed for custom tones, and every unit includes group call. Universal switched outputs control your call light, squelch gate and horn. The SD-1000 can
also generate CTCSS and decode Two-Tone Sequential. Its miniature size of \(2.0^{\prime \prime} \times 1.25^{\prime \prime} \times .4^{\prime \prime}\) is no minor fact either, as it's a flawless companion for our PE-1000 Paging Encoder. We ensure one-day delivery and our oneyear standard warranty. Tap the rich vein of Communications Specialists and unearth the SD-1000 or other fine gems.

Let's face it. It's easy to bump, drop, or get rain on an HT. - But if your HT is Yaesu's mini 2-meter FT-23R or \(440-\mathrm{MHz}\) FT-73R, such mishaps are a lot less worrisome. - They're built to last, with rugged aluminum-alloy cases that prove themselves reliable in a one-meter drop test onto solid concrete. Plus, their moisture-resistant seals really help keep the rain out.

Built for the realities of operating. Despite their miniature size, both radios have all the operating capabilities of larger microprocessor-controlled HTs. Yet operating them couldn't be easier. Consider: ■ You get a 7.2 -volt, 2-watt battery pack. (Optionally, a 12 -volt, 5 -watt pack, or 7.2 -volt miniature 2 -watt pack.) 10 memories that store frequency, offset and PL tone. (7 memories can store odd splits.)

|10 frequencies per second. Tx offset storage. Priority channel scan. Tuning via tuning knob, or up/down buttons.

Radios above shown actual size. PL tone board (optional). PL display. External PL selection. Independent PL memory per channel. PL encode and decode. Expanded Rx coverage. LCD power output and "S"-meter display. Battery saver circuit. Push-button squelch override. Eight-key control pad. Keypad lock. High/low power switch (\(1 / 2\) watt on low power.) - Options available: Dry cell battery case for 6 AAA-size cells. Dry cell battery case for 6 AA-size cells. DC car adapter/ charger. Programmable CTCSS (PL tone) encoder/decoder. DTMF keypad encoder. Mobile hanger bracket. External speaker/microphone. And much more. - So get the intelligent mini HT that's built for life's realities. Yaesu's 2 -meter FT-23R, or \(440-\mathrm{MHz}\) FT-73R.

\section*{YAESU}

Yaesu USA 17210 Edwards Road, Cerritos, CA 90701 (213) 404-2700. Repair Service: (213) 404-4884. Parts: (213) 404-4847. Yaesu Cincinnati Service Center 9070 Gold Park Drive, Hamilton, OH 45011. (513) 874-3100.

\title{
KENWOOD
}

\section*{"DX-cellence!"}

\section*{TS-940S}

The new TS-940S is a serious radio for the serious operator. Superb interference reduction circuits and high dynamic range receiver combine with superior transmitter design to give you no-nonsense, no compromise performance that gets your signals through! The exclusive multi-function LCD sub display graphically illustrates VBT, SSB slope, and other features.
- 100\% duty cycle transmitter. Super efficient cooling system using special air ducting works with the inter nal heavy-duty power supply to allow continuous transmission at full power output for periods exceeding one hour. - High stability, dual digital VFOs. An optical encoder and the flywheel VFO knob give the TS-940S a positive tuning "feel":
- Graphic display of operating features.
Exclusive multi-function LCD sub-
display panel shows CW VBT, SSB slope tuning, as well as frequency, time, and AT-940 antenna tuner status. - Low distortion transmitter. Kenwood's unique transmitter design delivers top "quality Kenwood" sound.
- Keyboard entry frequency selection. Operating frequencies may be directly entered into the TS-940S without using the VFO knob:
- QRM-fighting features. Remove "rotten QRM" with the SSB slope tuning, CW VBT, notch filter, AF tune, and CW pitch controls.
- Built-in FM, plus SSB, CW, AM, FSK.
- Semi or full break-in (QSK) CW.
- 40 memory channels.

Mode and frequency may be stored in 4 groups of 10 channels each.
- Programmable scanning.
- General coverage receiver. Tunes from 150 kHz to 30 MHz .
- 1 yr. limited warranty. Another Kenwood First! Optional accessories: - AT-940 full range (\(160-10 \mathrm{~m}\)) automatic antenna tuner • SP-940 external

speaker with audio filtering * YG-455C-1 \((500 \mathrm{~Hz})\), YG-455CN-1 (250 Hz), YK-88C-1 (500 Hz) CW filters; YK-88A-1 (6 kHz) AM filter \(\bullet\) VS-1 voice synthesizer - SO-1 temperature compensated crystal oscillator •MC-43S UP/DOWN hand mic. - MC-60A, MC-80, MC-85 deluxe base station mics. \(~ P C-1 A\) phone patch - TL-922A linear amplifier - SM-220 station monitor - BS-8 pan display \(\cdot\) SW-200A and SW-2000 SWR and power meters.

More TS-940S information is available from authorized Kenwood dealers.

\section*{KENWOOD}

TRIO-KENWOOD COMMUNICATIONS 1111 West Walnut Street
Compton, California 90220```

[^0]: TH-series transcelvers shown with optonal StubbyDuk antenna
 Specitications and prices are subject to change without notice or obligation
 Complete service manuals are avaliable for all Trio-Kenwood transceivers and most accessoties.

[^1]: Specifications and prices are subject to change without notice or obligation

[^2]: 1. Robert P. Haviland, W4MB, "Low-Cost Linear Design and Construction," ham radio, December, 1982, p. 12.
[^3]: NEMAL ELECTRONICS, INC.
 12240 N.E. 14 Ave., No. Miami, FL 33161

[^4]: *For example, when doubling 100 MHz to 200 , the nearest undesired prod ucts are the fundamental ($\times 1$) at 100 MHz and the third harmonic at 300 MHz . Each is separated by 50 percent from the desired $200-\mathrm{MHz}$ output. Similarly, when tripling 100 to 300 , the undesired $\times 2$ and $X 4$ products are 100 MHz away, or 33 percent of the $300-\mathrm{MHz}$ center frequency.

[^5]: *for a given substrate material and thickness.

[^6]: *I have no idea if such conversion is significant; however, it would be interesting to experiment.

