

professional layout software - for amateur radio applications

ICOM IC-900 Six Bands in One Mobilet

ICOM IC-900 FIBER OPTIC FM MOBILE

ICOM introduces the revolutionary IC-900 multiband FM mobile transceiver. ICOM, first in utilizing fiber optic technology in amateur radio, enables you to create your own mobile communications system. Six band combinations... IOM FM, 6M, $2 \mathrm{M}, 220 \mathrm{MHz}, 440 \mathrm{MHz}$, and 1.2 GHz . It's the most advanced, versatile, compact, and easy-to-use mobile available.

Features Galore. The IC-900 is an operator's dream... Listen on two bands simultaneously or transmit on one band and receive on a different band when using a second speaker (true full duplex crossband operation), 10 memories per band, independent PL tones and

NOW - ALL KANTRONICS KPCs and KAM ARE TCP/IP NETWORKING COMPATIBLE INCLUDE THE PACKET MAILBOX AND COME WITH 32K RAM

EXTRA FEATURES NO EXTRA CHARGE

That's right! Now all Kantronics packet units" include the Personal Packet Mailbox ${ }^{\text {Tu }}$. come with 32 K RAM, and are TCP/IP Networking compatible - ALL AT NO EXTRA CHARGE. And there's more . . .
KAM and KPC owners" - you can add the Packet Mailbox and TCP/IP compatibility for the special low price of just $\$ 15.00$. At Kantronics we're committed to keeping you current. Check below and see - we offer more features and the best customer support around.

KPC-2 ${ }^{\text {m }}$

 This low cost/high performance Kantronics TNC features a built-in HF/VHF modem, the Personal Packet Mailbox, full duplex operation, and multiple connect capability. The serial RS-232/TL port allows easy interfacing with all computers, even Commodores. KPC-2 is TCP/IP Networking compatible, includes 32 K RAM, and uses only five front panel indicators for easy operation. Like all Kantronics units, KPC-2 is fully compatible with existing TNCs.KAM ${ }^{\text {TM }}$ KAM is the fully programmable All Mode unit that lets you operate VHFP Packet, HF Packet. CW/RTTY/ASCII/ and AMTOR. But that's not all . .
Only KAM's dual VHF/HF radio ports work together for simultaneous Connects, Digipeating, and VHF/HF GATEWAY operations. And now KAM is TCP/IP Networking compatible. comes with 32K RAM, and has the Personal Packet Mailbox ALL STANDARD.

KAM includes watchdog timers on each port, an RS-232/TL serial port, and a bargraph tuning indicator for HF operation. KAM even comes with an external modem connection point for optional $2400 \mathrm{~b} / \mathrm{s}$ packet operation. For the greatest degree of sensitivity and flexibility, turn to KAM, Kantronics All Mode.

KPC-4 $\mathbf{4}^{\text {TM }}$

 Only KPC-4 features simultaneous Connects, Digipeating, and Gateway functions on two fully functional VHF radio ports - each of which includes a watchdog timer. What's more - you can add $2400 \mathrm{~b} / \mathrm{s}$ operation to port 2 with Kantronics optional 2400 Modem ${ }^{\text {™ }}$.KPC-4 includes the Personal Packet Mailbox and 32K RAM (expandable to 64 K), and is TCP/IP Networking compatible. The RS-232/TL serial port assures easy interfacing with any computer. Make KPC-4 your GATEWAY into packet flexibility.

ع Kantronics

RF Data Communications Specialists
1202 E. 23 St Lawrence, Kansas 66046 (913) 842-7745

First Again!
 TW-4100A

2 m/70 cm FM Dual Bander
A Kenwood original just got better! Kenwood was the first to develop a $2 \mathrm{~m} / 70 \mathrm{~cm}$ mobile radio in a single, compact package. Since then, other companies have imitated the concept, but still have not done it the "Kenwood way." The all-new TW-4100A is more compact, more powerful, and packed with more features than ever before! With many new features and accessories, and backed by Kenwood's experience, the all-new Kenwood Dual Bander is light years ahead of the rest!

- Selectable full duplex cross band ("telephone style") operation. Remote base or cross band repeater function possible (a control operator is neededtormeteorepeater
- 45 watts on 2 m .35 watts on 70 cm .5 watts (adjustable) low
- Frequenuymaveragesiddent MHz (allows operation on certain MARS and CAP frequencies) and $440-449.995 \mathrm{MHz}$.

- New compact size! Only 5.9" W x $1.97^{\prime \prime} \mathrm{H} \times 7.87^{\prime \prime} \mathrm{D}$ and weighs less than 4 pounds!
- Proven high performance Kenwood GaAs FET front end receiver.
- Easy to operate! Only 3 knobs and 8 keys on the front panel.
- Separate antenna ports for VHF and UHF, Minimizes loss and increases reliability and performance! - 10 memory channels. Lithium battery backs up memory. Store frequency, offset, subtone. Two channels store the transmit and receive frequencies independently for odd split or cross band operation.
- Front panel-selectable CTCSS tone (when optional TU-7 is installed.)
- Non-volatile operating system. Even after memory back up cell dies, all operating features remain intact! No re-programming or "boardswapping" necessary!
- Programmable band scan and memory scan with memory channel lock-out.
- Large, illuminated LCD display and maln knob. For excellent visibility in direct sunlight or darkness.
- Selectable frequency step for quick and easy QSY.
- Voice synthesizer VS-2 option.

Optional accessories:

- PS-50/PS-430 DC power supplies
- MU-1 DCL modem unit - TU-7 CTCSS encoder - VS-2 Voice synthesizer - SW- 100B SWR/Power/Volt meter 140-450 MHz for mobile use - SW-200B SWR/Power meter for base station use $140-450 \mathrm{MHz} .0-200 \mathrm{~W}$ in 2 ranges •SWT-1/SWT- 22 m and 70 cm antenna tuner $=\mathbf{S P}-\mathbf{4 0}$ Compact speaker
- SP-50B Mobile speaker $~ P G-2 N ~ E x t r a ~$ DC cable • PG-3B DC noise filter 0 MC-60A, MC-80, MC-85 Base station mics. - MC-55 (8-pin) Mobile microphone - MA- 4000 Dual band mobile antenna with duplexer (shown)**
- MB-11 Extra mobile mount

- Digital Channel Link (DCL) option.

Minor moctication necessary for repeater operation
Specifications and prices subject to change without notice or obligation
Complete service manuals ate available for all Kenwood transceivers and most accessones.

KENWOOD

KENWOOD U.S.A. CORPORATION 2201E. Dominguez St., Long Beach. CA 90810 P.O. Box 22745, Long Beach, CA 90801-5745

ham radio magazine

contents

8 low-cost pc board layout software Eva Freeman

17 antenna relay sequencing
Mark Mandelkern, KN5S
27 VHF/UHF world:
impedance-matching techniques
Joe Reisert, W1JR
41 return of the 360 -degree propagation prediction
Henry Elwell, N4UH
57 practically speaking: troubleshooting dc power supplies with an oscilloscope Joe Carr, K4IPV

65 pulse width modulated dc-to-dc converters
William R. Hennigan, W3CZ
79 ham radio techniques:
white noise revisited
Bill Orr, W6SAI
89 locator field list
Folke Rosevall, SM5AGM
100 Elmer's notebook: packet radio
Tom McMullen, W1SL
international subscription agents: paçe 98
Microfim copies are avalable from University Microfilms, International Ann Arbor, Michigan 48106
Onder 3076
Order publication number 3076
Cassette tapes of selected articles from harm radio Cassette tapes of selected articies iram available to the blind and physically handicapped
are from Recorded Periodicals 919 Walnu: Sireet. Philadelphia, Pennsylvania 19107
Copyright 1987 by Communications Technology. Inc Title registered at U.S. Paleni Offrice Second class postaye pard
at Greenville, New Hampshre 030480498
and at additonal mailing offices
ISSN 0148.5989
Send change of address to ham radio Greenville, New Hampshire 03048-0498

tr

106	advertisers index	98
ham mart		
and reader service	91 new products	
6 comments	4 reflections	
85 DX forecaster	97 short circuits	
96 flea market		

the possessed

During the anything-goes sixties, while attending City College, i shared an apartment with two roommates on the upper west side of Manhattan. This editorial is dedicated to one of them. Without naming names (let's just call him "Mr. A"), this roommate was the antithesis of what most of us Radio Amateurs have become.
We're like magnets. Anything we see that might be remotely useful, even in the far-distant future, will come to us to be saved for that eventuality. Now, I'm not talking about just nuts and bolts. I'm talking real quantity and diversity.
Look around your shack, which in some cases might be considered the entire house. If you're like me, you've probably spread out all over.

What was that sound? The one just before that awful grinding noise and the smell of burning motor? Was it that 1-percent precision, 141.7-ohm resistor you've been looking for since Labor Day - the part you needed to finish your super-deluxe noise bridge - being sucked up into the vacuum cleaner? Well, it's history now. The vacuum cleaner has claimed another victim.
"Just a darn minute!" you exclaim. "That resistor was carefully placed on the dining room table!"
Come on. Follow me. Starting from the shack, let's take a quick walk - in our mind's eye - around the house. It's probably impossible, even dangerous, to walk around any other way because of the overcrowding or perhaps because of those three 6 -foot racks of tube equipment you've built over the years. All those dangling jumper cables (control, audio, digital, and ff) seem to want to reach out and trip people. Come on, don't let me hear that argument you give your spouse about how keeping all that equipment going helps keep the house warm, thereby cutting the the fuel bill, and hasn't she noticed how nice and dry it is down in the basement when all those pretty tubes are lit? I've heard all those justifications before. In fact, I've used some of them myself.
As painful as it may be, let's leave the shack and move on. No point stopping at the kitchen or dining room tables; we all know what we'll find there.

If you're at all like me, you have many different interests and probably subscribe to a number of magazines that address those interests. Are the magazines all neatly stacked on a bookshelf in the radio room - just as pictured in any of the operating manuals that show what the typical ham station looks like? Naah. Who are you kidding? Those magazines are strewn all over the place - scattered atop the TV and on side tables and even chairs, heaped in piles in corners, in the attic, in the hallway, the bathroom, the garage, and, of course, on the floor. Did you ever consider the possibility that your spouse might consider this an encroachment on her living space?
Speaking of the garage, that's a story in itself. It's amazing to consider how seven sections of Rohn 45 can fit in there so nicely. But the XYL's car? Well, that's a different matter. Maybe winter won't be so bad after all.

I won't even mention those drums of surplus wire, cable, or whatnot that you picked up at that flea market in 1979. What a deal! Heck, you're going to help her shovel the snow off the car this winter anyway, right?

Moving outside, did you know that the great outdoors offers almost unlimited storage capability? Of course you do. Why, there's the evidence: more rusting tower sections, some sturdy anchors, a hundred feet of guy line, and a 6 -foot dish! Too good to sell, give away, or discard, they're also too big for the garage. But they're not too big for the great autdoors!
"All right!," you protest. "Maybe there's some truth to what you've been saying. But what's the point?"
This is it: perhaps October's the time to take another look at what we possess, or more appropriately, what possesses us. Maybe this is the time to go through the entire house, gather all our treasures together, and decide what's really important, what we really want to keep. Let's sell the rest, or better yet, donate it to a worthy cause like that Novice down the block. After all, we've gotta start 'em right on this acquisition madness, don't we?

I hope you appreciate the gravity of the chance I'm taking by writing this editorial. If my XYL ever reads this, I might have to practice what I preach. As a friend of mine is wont to say: "End of message."
And what about the legendary Mr. A, to whom this editorial is dedicated? Well, Mr. A owned exactly two shirts and two pairs of shoes, pants, and socks - and barely anything else. When the time came to move, I had to rent a trailer to cart my possessions. Mr. A put everything he owned into his attache case and walked away.

Rich Rosen, K2RR
Editor-in-Chief

KENWOOD

. pacesetter in Amateur Radio

This HT H
 Full-featured Hand-held Transceivers
 Kenwood brings you the

greatest hand-held transceiver ever! More than just "big rig performance," the new TH-215A for 2 m, TH-315A for 220 MHz , and TH-415A for 70 cm pack the most features and the best performance in a handy size. And our full line of accessories will let you go from hamshack to portable to mobile with the greatest of ease!

- Wide receiver frequency range. Receives from $141-163 \mathrm{MHz}$. includes the weather channels! Transmit from $144-148 \mathrm{MHz}$ Modifiable to cover $141-151 \mathrm{MHz}$ (MARS or CAP permit required). - TH-315A covers $220-225 \mathrm{MHz}$, TH-415A covers $440-449.995 \mathrm{MHz}$.
- $5,2.5$, or 1.5 W output, depending on the power source. Supplied battery pack (PB-2) provides 2.5 W output. Optional NiCd packs for extended operation or higher RF output available.
- CTCSS encoder built-in. TSU-4 CTCSS decoder optional.
- 10 memory channels store any offset, in $100-\mathrm{kHz}$ steps.
- Odd split, any fregency TX or RX, in meinory channel " 0 ".
- Nine types of scanning! Includ ing new "seek scan" and priority alert. Also memory channel
- Intelligent 2-way battery saver circuit extends battery life. Two battery-saver modes to choose, with power saver ratio selection.
- Easy memory recall. Simply press the channel number!
- 12 VDC input terminal for direct mobile or base station supply operation. When 12 volts applied, RF output is 5 W ! (Cable supplied!)
- New Twist-Lok Positive-

Connect locking battery case.

- Priority alert function.
- Monitor switch to defeat squelch Used to check the frequency when CTCSS encode/decode is used or when squelch is on.

KENWOOD

LAMP OFFSET/F R/TONEF

- Large, easy-to-read multi-function LCD display with night light. - Audible beeper to confirm keypad operation. The beeper has a unique tone for each key. DTMF monitor also included.
- Supplied accessories: Belt hook rubber flex antenna, PB-2 standard NiCd battery pack (for 2.5 W oper-

TH-215A

Optional Accessories:
-PB-1 $12 \mathrm{~V}, 800$ mAH NiCd pack for 5 W output - PB-2: $8.4 \mathrm{~V}, 500 \mathrm{mAH}$ NiCd pack (2.5 W output) - PB-3.72 V, BOO mAH NiCd pack (1.5 W output) - PB-4:7.2 V, 1600 mAH NiCd pack (1.5 W output) -BT-5 AA cell manganese/alkaline battery case - BC-7 rapid charger for PB-1, 2, 3. or $4-B C \cdot 8$ compact battery charger -SMC-30 speaker microphone - SC-12, 13 sott cases - RA $-3,5$ telescoping antennas - RA-8B SlubbyDuk antenna - TSU-4 CTCSS decode unit - VB-2530 2 m .25 W amplifter (1.4 W input) -LH-4. 5 leather cases - MB-4 mobile bracket - $\mathrm{BH}-5$ swivel mount - PG-2V extra DC cable -PG-3D cigarette lighter cord with fiter

ground plane antennas

Dear HR:
I was rather taken aback at a recent ham club meeting when a couple of friends informed me that according to a letter to the editor in ham radio, my "offset drooper" ("The Offset Drooper: An Improved Ground Plane," January, 1986, page 43), had been invented years ago by a Frenchman.

DJ0TR/OE8AK's letter in the June, 1987 issue, in which he discusses the origins of the venerable ground plane antenna, states, immediately following his reference to my article, "This VHF/UHF antenna was invented several years before in France"

A careful reading of the letter, however, makes it quite clear from the context that the statement "This VHF/ UHF antenna was invented several years before . . ." applies to the earlier mentioned classic ground plane credited to Dr. George Brown. But apparently, if one hurriedly skims the letter, the remark can be mistakenly applied to the "offset drooper" version of the ground plane antenna.

While on the subject of originality, I'm surprised that the matter of French prior art pertaining to ground plane type antennas has taken 50 years to surface. I do know that I certainly am not in a position to pass judgement as to worldwide prior art. My information was taken from the article, "The Ground Plane Antenna: Its History and Development," by Harold Vance, Sr., W2FF (now deceased), which appeared in the January, 1977 issue of ham radio.

George Brown and Harold Vance were both highly respected VIPs at RCA during World War II. As section head and project officer on some new USMC electronic equipment under development, I used to visit Harold

Vance and his crew of key engineers at the RCA Camden plant frequently. He was a fine gentleman, with exceptional electronics savvy and management know-how. I regret I didn't get a chance to meet George Brown, who, I believe, was at RCA Labs (elsewhere) at the time.
In hindsight, my offset drooper article could have been more accurately titled "An Improved Drooping Ground Plane." For over three decades, drooping radials have been widely used by the ham fraternity to permit direct connection of 50 -ohm coax. However, this aggravates antenna effect. The Offset Drooper configuration provides a substantial reduction in antenna effect without adding a detuning sleeve or an extra set of radials, while still maintaining a 50 -ohm match.

Woody Smith, W6BCX Anaheim, California 92804

is nothing sacred?

Dear HR:

With this rather untimely heading ["Is Nothing Sacred?" - Ed.], The New York Times recently reported slight changes in more than 100 of the fundamental constants used in science. These changes represent a consensus of scientific opinion by the world's leading measurements laboratories, including those in the Soviet bloc and our National Bureau of Standards as well.

It is gratifying to learn that the speed of light hasn't changed, and remains at $299,792,458$ meters per second. 1 shall leave it to some computer whiz to translate that into feet and inches; my hand calculator is inadequate.

However, whereas this number was previously termed "approximate," it is now defined as "exact," and the second is considered constant. The meter is then defined in terms of the velcity of light and the second - a nice Catch-22! Greater accuracy will be achieved with future improvements in measurement.
The meter, as originally proposed by a French vicar in 1670, was defined as 1 ten-millionth of the distance between the equator and the North Pole. It
was subsequently translated into two scratches on a platinum bar kept at 23 degreees C. (Now that we deal in subatomic distances, this is gross measurement indeed.) Thus the scientists have defined the meter as the distance that light will travel in 1/299,792,458 second!

Obviously, you won't have to throw away your tape measure when you put up that new beam!

Josef Darmento, W4SXK Merritt Island, Florida 32952

bird chaser

Dear HR:

Noticed the letter from Bernard Kirschner in the May issue ("Comments," page 6).

He's having troubles using an owl as a bird chaser, is he? Perhaps he should use one of those inflatable snakes from the local garden shop instead. Tie one end of it about halfway out along the boom and the other end on the pole so it looks like it's just climbing onto the boom. Those things would scare me off - as well as all manner of feathered creatures.

Charles Chrestien
 Sunnyvale, California 94086

neighborly gesture

Dear HR:

There's a very useful technique for dealing with neighbors who complain of TVI. Instead of making critical comments about their television receivers, try lending them a table model color receiver fitted with the proper filters. Then ask them to help you perform a simple test.

Three or four days later they'll ask you to tell them how they can fix their receivers. Amazingly, even the most formerly rabid neighbor will approach you in a very friendly and reasonable frame of mind.

As proof of the effectiveness of this method, how many Amateurs do you know who have ground radial systems covering not only their yards, but a side neighbor's yard and the yard of the neighbor in the back as well?

John Labaj, W2YW
Elsmere, New York 12054

New MFJ-1274 lets you work VHF and HF packet with built-in tuning indicator for \$169.95 . . .

. . you get MFJ's latest clone of TAPR's TNC-2, TAPR's VHF/HF modem and built-in tuning indicator that features 20 LEDs for easy precise tuning

Now you can join the exciting world of packet radio on both VHF and HF bands with a precision tuning indicator . . . for an incredible \$169.95!

You get MFJ's top quality clone of the highly acclaimed industry standard TAPR TNC-2. We've made TAPR's modem selectable for both VHFs, and HF operation, added their precision 20 segment LED tuning indicator, a TTL serial port, an easily replaceable lithium battery for memory back-up and put it all in a new cabinet.

If you don't need the tuning indicator or the convenience of a switchable VHF/HF modem. choose the affordable MFJ-1270 for \$139.95.

All you need to operate packet radio is a MFJ-1274 or MFJ-1270, your rig. and any home computer with a RS-232 serial port and terminal program.

If you have a Commodore 64, 128. or VIC 20 you can use MFJ's optional Starter Pack to get on the air immediately. The Starter Pack includes interfacing cable, terminal software on disk or tape and complete instructions . . .everything you need to get on packet radio. Order MFJ-1282 (disk) or MFJ-1283 (tape), \$19.95.

Unlike machine specific TNCs you never have to worry about your MFJ-1274 or MFJ-1270 becoming obsolete because you change computers or because packet radio standards change. You can use any computer with an RS-232 serial port with an apropriate terminal program. If packet radio standards change, software updates will be made available as TAPR releases them.

Also speeds in excess of 56 K bauds are possible with a suitable external modem! Try that with a
machine specific TNC or one without hardware HDLC as higher speeds come into widespread use.

You can also use the MFJ-1274 or MFJ-1270 as an excellent but inexpensive digipeater to link other packet stations.

Both feature AX. 25 Level 2 Version 2 software, hardware HDLC for full duplex. true Data Carrier Detect for HF, multiple connects, 256K EPROM. 16K RAM (expandable to 32 K with optional EPROM). simple operation, socketed ICs plus much more.

You get an easy-to-read manual, a cable to connect your transceiver (you have to add a connector for your particular radio), a connector for the TTL serial port and a power supply for 110 VAC operation (you can use 12 VDC for portable, remote or mobile operation).

Help make history! Join the packet radio revolution now and help spread this exciting network throughout the world. Order the top quality and affordable MFJ-1274 or MFJ- 1270 today.

Now you can tune in HF, OSCAR and other nonFM packet stations fast!

 This MFJ clone of the TAPR tuning indicator makes MFJ-1273, \$49.95 tuning natural and easy - it shows you which direction to tune. All you have to do is to center a single LED and you're precisely tuned in to within 10 Hz .20 LEDs give high resolution and wide frequency coverage.The MFJ- 1273 tuning indicator plugs into the MFJ-1270 and all TNC-1s, TNC-2s and clones that have the TAPR tuning indicator connector.

Order any product from MFJ and try it -. no obligation. If not satisfied return within 30 days for prompt refund (less shipping). - One year unconditional guarantce - Add $\$ 5.00$ each shipping/handling - Call or write for free catalog. over 100 products.

low-cost pc board layout software

The price has dropped
 - but watch out for those options!

The price of sophisticated printed circuit board layout packages has plummeted. For less than $\$ 1000$ - often much less - you can buy an easy-to-use package that can handle almost any board layout. Even if you've never used computer-aided design (CAD), you can master any of these packages quickly.

Until recently, pc board designers had to choose between sending their designs to pc board service bureaus or using expensive layout packages that ran on dedicated work stations. CAD packages priced at less than $\$ 1000$ were drafting tools at best. But all that's changed; today's relatively low-cost pc board layout software packages provide almost the same features as work station-based systems. What's more, they run on personal computers, which means they're now within reach of clubs and individual Amateurs.

All packages aren't equally suited for all applications, however. For analog designs, a package should provide an area-fill capability, which you'll need for constructing irregularly shaped ground planes. Some packages are tailored for digital designs and consequently don't provide a way to create copper planes of arbitrary shape.

Most of the low-cost packages, however, offer tools for filling in copper areas. For example, area fill is a standard feature of Accel Technologies' Tango-PCB ${ }^{\circledR}$ program for IBM PCs and compatible personal computers. Together with the package's 1-mil grid, the area-fill command enables you to create copper areas and thick tracks for microstrips and ground planes. Its $\$ 495$ price includes software, documentation, a func-
tion key overlay, a sample pc board, and a 30-day money-back guarantee.

Procad xtra ${ }^{\oplus}$, from Interactive CAD Systems, features filled areas for ground planes and lets you select up to seven fill patterns and styles of lines. Complex symbols such as standard power-supply layouts or memory bus structures can be stored in the program's library for repeated use. Procad xtra costs $\$ 695$; it runs on IBM PCs and on Digital Equipment Corporation's VAX minicomputers.

Similar features are found in QTech's Qwik Tek ${ }^{(8)}$ package. That's not too surprising - they were developed by the same programmers. Like Procad xtra, Qwik Tek runs on IBM PCs and on DEC VAXs; the base price of Owik Tek is $\$ 695$.

automatic layout software

Qwik Tek and Procad xtra aren't alike in all respects. Procad xtra is a purely interactive system, which is all you'll need for most analog applications. But for designs with large numbers of components, you'd need a program that could position them on a layout and draw interconnections among them. A $\$ 7900$ version of Qwik Tek includes these capabilities, offering a schematic editor, interactive layout, automatic placement, and an autorouter.

An autorouter interconnects the components on a layout automatically. The sophistication of the autorouters in low-cost pc board layout packages approaches that of autorouters in the most advanced work stations and mainframe-based layout systems. Yet the price of an IBM PC-based autorouter can be relatively low. For \$750, CAD Software's Pads-Route ${ }^{\text {(i) }}$ autorouter provides three routers: power-and-ground, memory, and maze. The power-and-ground and memory routers specialize in power supply and RAM interconnections; the maze router interconnects all other digital and analog components.

By Eva Freeman, 108 Trapelo Road, Lincoln, Massachusetts 01773

Table 1. Low-cost pc board layout packages.

Company	Product	Base price	Required hardware	Operating system	Autorouter	Autorauter price	Autoplacement	Compatible net lists	Max. no. of colors	Max. no. of traces	Max. no. of components	Max no. of layers
Abacus Software Box 7219 Grand Rapids, MI 49510 (616) 241-5510	PC Board Designer	\$195	Atari 520ST or 1040ST	Gem	\times				2	1100 lines	250	2
Accel Technologies Inc. 7358 Trade St. San Diego, CA 92121 (619) 695-2000	Tango-PCB	\$495	IBM PC or compatible	MS-DOS	x			Accel: Omation; Orcad	16	26,000 lines	1000	9
Advanced Microcomputer Sys. 2780 SW 14th St. Pompano Beach, FL 33069 (305) 975-9515	PC-PRO	\$250	IBM PC or compatible	MS-DOS	x	\$250		AMS FutureNet Racal-Redac	16			256
B\&C Microsystems 355 West Olive Sunnyvale, CA 94086 (408) $730-5511$	PCB/DE	\$395	IBM PC or compatible	$\begin{aligned} & \text { MS-DOS } \\ & \text { and } \\ & \text { AutoCAD } \end{aligned}$				$B \& C$ Microsysterns	16			
CAD Software Inc. Box 1142 Littleton, MA 01460 (617) 486-9521	Pads-PCB	\$975	IBM PC or compatible	MS-DOS	X	\$750	x	FutureNet	16	4511 nets	764	30
Dasoft Design Systems 1827B Fifth St. Berkeley. CA 94710 (415) 486-0822	Project: PCB	\$950	IBM PC or compatible	MS-DOS	x			Dasoft	6			4
Design Computation Inc. 10 Frederick Ave. Neptune, NJ 07753 (201) $922-4111$	Draftsman-EE	\$749	IBM PC or compatible	MS-DOS	x	\$2450	x		16	4000 nets	300	20
Douglas Electronics 718 Marina Blvd San Leandro, CA 94577 (415) 483-8770	$\begin{aligned} & \text { Douglas } \\ & \text { CAD/CAM } \end{aligned}$	\$95	Apple Macintosh	Macintosh					2			
Interactive CAD Systems 2352 Rambo Court Santa Clara, CA 95050 (408) 970-0852	Procad Xira	\$695	IBM PC or compatible	MS. DOS				ICS	16	2000 nets		50
OTech inc. 256 E. Hamilton Ave. Campbell, CA 95008 (408) 370-3910	Owik Tek	\$695	IBM PC or compatible	MS.DOS	x	\$7205	x	QTech	16	1500 nets		50
Softcircuits Inc. 401 SW 75th Terrace North Lauderdale, FL 33068 (305) 721.2707	PCLO	\$500	Commodore Amiga 1000	Amigados	K				16			
Vamp inc 6753 Selma Ave. Los Angeles, CA 90028 (213) 466-5533	McCAD	\$395	Apple Macintosh	Macintosh	X	\$995	X	Vamp	2	32,000 lines	32,000	6
Visionics Corp. 1284 Geneva Dr. Sunnyvale, CA 94089 (408) 745-1551	EE Designer	\$975	JBM PC or compatible	MS DOS	X	\$975	x		16		999	26
Wintak Corp. 1801 South St. Lafayette, IN 47904 (317) 742-8428	Smartwork	\$895	IBM PC or compatible	MS DOS	x			Wintek	3			6

It's not reasonable to expect too much of pc board autorouters priced at under $\$ 1000$. They can't match the speed of mainframe or work station-based autorouters, nor can they consistently route all boards to completion, as can some mainframe or work stationbased autorouters.

Though these packages are certainly more than adequate for typical Amateur projects, you shouldn't expect, for example, to use a PC-based package to design an eight-layer, 500 -IC board. Although several of the PC-based layout programs listed in table 1 do
permit eight layers and 500 components, their autorouters just can't route boards of such complexity. If you do find your designs limited, they'll be limited not by the maximum number of components or layers, but instead by the maximum number of traces your software package will allow.
Table 1 lists the maximum number of traces each package can handle. Note that vendors differ in the way they specify this capability. Some specify a maximum number of nets; others, a maximum number of lines. A net links all pins that are to be connected to-

FEATURES INCLUDE:

- SWITCH SELECTABLE - ELEVATION FROM $0^{\circ}-90^{\circ}$ AND $0^{\circ}-180^{\circ}$
- " - ELEVATION SCALING X1 OR X2
- " - NORTHERN OR SOUTHERN HEMISPHERE
- . - MANUAL OR AUTOMATIC MODE
- " - BAUD RATE (300-2400)
- 100 PAGE DETAILED MANUAL
- CABLE FOR KENPRO'S'" "A" SERIES CONTROLLER

COMMUNICATIONS EQUIPMENT,INC.
P.O. BOX 1000

MORGAN HILL, CA 95037

MIRAGE

TRACKING

 INTERFACE"MTI' IS THE ONLY SMART INTERFACE BOX THAT WORKS WITH SILICONE SOLUTIONS ${ }^{\text {M }}$ SOFTWARE
"MTI" OFFERS AUTOMATIC TRACK. ING OF ANY ORBITING BODY.
"MTI" KEEPS ANTENNAS AIMED CORRECTLY AT ALL TIMES.
"MTI" COMES WITH A ONE YEAR WARRANTY FROM MIRAGE/KLM.
"MTI" OFFERS ONE YEAR SOFTWARE SUPPORT TO REGISTERED OWNERS.
"MTI" IS AVAILABLE FROM MIRAGE/KLM ONLY. CALL FOR MORE DETAILS
(408) 779-7363 or outside CA, (800) 538-2140

COMMUNICATIONS EQUIPMENT,INC.
P.O. BOX 1000
(408) 779-7363
(800) 538-2140 (outside CA)

440-6X

ELECTRICAL	
BANDWIDTH.	$420-460 \mathrm{MHz}$
GAIN	8.9 dBd
VSWR	. 1.5:1
F/B.	20 dB
BEAMWIDTH	60°
FEED IMP.	50 ohm
BALUN	4:1 coax
MECHANICAL	
ELEMENT LENGTH	$131 / 2^{\prime \prime}$ max
BOOM LENGTH $28^{\prime \prime}$
TURN RADIUS.	$28^{\prime \prime}$
WINDLOAD	2 sq ft.
WEIGHT	$\ldots \mathrm{lb}$
MAST	$11 / 2^{\prime \prime}$ o.d.
MOUNT	Rear

440-10X

ELECTRICAL:

BANDWIDTH	$420-460 \mathrm{MHz}$
GAIN	11.2 dBd
VSWR	1.5:1
F/B	20 dB
BEAMWIDTH	48°
FEED IMP	50 ohm
BALUN.	4:1 coax
MECHANICAL	
ELEMENT LENGTH	131/2" max.
BOOM LENGTH	64"
TURN RADIUS.	64"
WINDLOAD	4 sq. ft.
WEIGHT	$11 / 2 \mathrm{lbs}$.
MAST	1/1/2" o.d.
MOUNT	Rear

CALL YOUR DEALER TO ORDER ONE NOW!

CJ2M
ELECTRICAL
BANDWIDTH
GAIN
VSWR
FEED IMP NO GROUND PLANE REQUIRED
MECHANICAL
HEIGHT ...61"
WEIGHT $\quad 21 / 2 \mathrm{lbs}$
MAST ..11/2" o.d
CJ220
ELECTRICAL
BANDWIDTH220-224 MHz

VSWR .. $1.5: 1$

FEED IMP..................................... 50 ohms
NO GROUND PLANE REQUIRED
MECHANICAL:
HEIGHT ... 40^{*}
WEIGHT 2 lbs
MAST ..11/2" o.d
CJ440
ELECTRICAL

BANDWIDTH.	. $420-470 \mathrm{MHz}$
GAIN	. 1.8 dBd
VSWR	1.5:1

NO GROUND PLANE REQUIRED

MECHANICAL
HEIGHT.
191/4"
WEIGHT
1 lb.
MAST

fig. 1. PC Pro, a $\$ 250$ pc-board layout program from Advanced Microcomputer Systems, accepts schematic designs from either the package's own schematic editor or from FutureNet's IBM PC-based schematic-capture program.
gether; a line simply connects two points. A line doesn't even necessarily connect two components; if a connection includes a 90-degree bend, some vendors consider the connection to be two lines. A typical design contains roughly five lines per net. Thus, it's safe to assume that a package that specifies a 2000 -net maximum is equivalent to one that specs a 10,000-line maximum.

Caution: the specifications provided in table 1 can be misleading. Although a package might permit 1000 nets, 300 components, and 50 layers, it's best to stay away from the specified limits, because as a design approaches the limits of a package, the software starts to run more slowly and the autorouter generally fails to complete all the interconnections.

Any limitations of the low-cost packages are largely attributable to the limitations of the computers on which they run. The MS-DOS operating system used by the IBM PC, for example, can address only 640 K of memory. Thus low-cost packages that run on IBM PCs and compatible personal computers can't handle databases of greater size.

Those working in especially demanding applications can add an extended-memory board to overcome this limitation. Although most PC-based layout packages can't yet take advantage of extended memory, CAD Software's programs can: their \$250 Pads-Large-SW option increases the maximum number of components from 539 to 764, and increases the number of connections from 2711 to 4511 . This package is the first to use extended memory, but you'll soon be seeing other layout programs that use it.

It's possible to accelerate IBM PC-based layout packages by running them on 80286 or 80386 -based personal computers. Most vendors of PC-based lay-
out packages have written their software to run on most compatible PCs (see table 1 for details).

Whether routed manually or automatically, a layout can be only as good as component placement permits. If you don't optimize the placement of components on your board, your board will have more "vias" (plated-through holes) and longer interconnections than should be necessary. In many cases, the autorouter will simply fail to route the board completely. In all cases, pc board fabrication costs will be higher and system speed will be lower than they might be.

Even if you don't use an autorouter, you'll find that pc board layout packages can assist you in interconnecting components. Most of the packages include a rat's-nest utility that displays straight-line connections between components. With it, you can shift components on your layout to minimize the length of interconnections.

the bottom line: price, practicality

For Amateurs, the most important feature of a pc board layout system is likely to be its price. The least expensive package available for the IBM PC is Advanced Microcomputer Systems' $\$ 250$ PC $P R O^{\circ}$ (fig. 1). This program gives users extensive control over designs; for example, it offers trace widths from 0.001 to 0.255 inches, and a single net can include a combination of trace widths. Similarly flexible, the symbol library includes footprints for standard ICs, connectors, and discrete components - and offers tools for creating new pad shapes.

Some of the less expensive packages were designed for computers other than the IBM PC. Table 1 lists four such programs. The $\$ 195$ PCBoard Designer ${ }^{*}$ from Abacus Software (fig. 2) provides pc board layout tools for Atari users. The package offers component rotation in 90-degree increments and a choice of 45 - or 90 -degree routing paths; output is configured for Epson dot-matrix printers.

Softcircuits' $\$ 500$ PCLO* package for the Commodore Amiga provides pan capabilities and fast screen redraws to keep the overall layout coherent while you're working. Ten work-area memories provide instant movement among disjoint areas.

Apple Macintosh users can choose between two programs: Vamp's $M c C A D^{*}$ and Douglas Electronics' Douglas CAD/CAM. The graphics-manipulation capabilities of the Macintosh are particularly attractive for analog applications; the line-and-pad-array generators in McCAD, for example, cut down on the time you need to create ground planes.

You can buy a Douglas CAD/CAM for as little as $\$ 95$, but it won't provide automatic layout features or schematic capture. The basic package doesn't include interfaces to pen plotters or photoplotters; you have to send your layout to Douglas and have them fabri-
P.C. ELECTRONICS 2522 S. PAXSON LN. ARCADIA CA 91006 (818) 447-4565 TOM W6ORG MARYANN WB6YSS

ELECTRONICS

ATV MADE EASY WITH OUR SMALL ALL IN ONE BOX TC70-1 TRANSCEIVER AT A SUPER LOW \$299 DELIVERED PRICE!

CALL 1-818-4474565 AND YOURS WILL BE ON ITS WAY IN 24 HRS (VIA UPS SURFACE IN CONT. USA).

TC70-1 FEATURES:

- Sensitive UHF GaAsfet tuneable downconverter for receiving
*Two frequency 1 watt p.e.p. transmitter. 1 crystal included
- Crystal locked 4.5 mHz broadcast standard sound subcarrier
- 10 pin VHS color camera and RCA phono jack video inputs
* PTL (push to look) T/R switching
- Transmit video monitor outputs to camera and phono jack
${ }^{-}$Small attractive shielded cabinet $-7 \times 7 \times 2.5^{\prime \prime}$
- Requires 13.8 vdc @ 500 ma . + color camera current

Just plug in your camera or VCR composite video and audio, 70 cm antenna, 12 to 14 vdc , and you are ready to transmit live action color or black and white pictures and sound to other amateurs. Sensitive downconverter tunes whole $420-450 \mathrm{mHz}$ band down to channel 3. Specify $439.25,434.0$, or 426.25 mHz transmit frequency. Extra transmit crystal add $\$ 15$.

Transmitting equipment sold only to licensed radio amateurs verified in the Callbook for legal purposes. If recently licensed or upgraded, send copy of license. Receiving downconverters available to all starting at $\$ 59$ (TVC-2G).

WHAT ELSE DOES IT TAKE TO GET ON ATV?
Any Tech class or higher amateur can get on ATV. If you have a camera you used with a VCR or SSTV \& a TV set, your cost will just be the TC70 and antenna system. If you are working the AMSAT satellites you can use the same 70 cm antennas on ATV.

DX with TC70-1s and KLM 440-27 antennas line of sight and snow free is about 22 miles, 7 miles with the $440-6$ normally used for portable uses like parades, races, search \& rescue, damage accessment, etc. For greater DX or punching thru obstacles: 15 watt p.e.p. Mirage D15N or 50 watt p.e.p. D24N or D1010N-ATV.
The TC70-1 has full bandwidth for color, sound, like broadcast. You can show the shack, home video tapes,computer programs,repeat SSTV, weather radar, or even Space Shuttle video if you have a home satellite receiver. See the ARRL Handbook chapt. 20 \& 7 for more info \& Repeater Directory for local ATV repeaters.
PURCHASE AN AMP WITH THE TC70-1 \& SAVE! 50 WATT WITH D24N-ATV.... $\$ 499$
All prices include UPS surface shipping in cont. USA

HAMS! Call or write for our full line ATV catalog...Downconverter boards start at only $\$ 39$
cate your pc board* - or make it yourself from the image you see on the screen. You can buy a penplotting option or a combined pen-plotting and photoplotting option, but they'll cost you $\$ 300$ and $\$ 500$, respectively.
Although the least expensive package runs on the Macintosh, most low-cost layout programs were designed to run on the IBM PC. One vendor, B\&C Microsystems, has held down the cost of its IBM PC-based $P C B / D E^{\circ}$ program by linking the software to Autodesk's AutoCAD ${ }^{(0)}$ drafting package. Strictly speaking, the total package costs more than $\$ 1000$ because you must purchase AutoCAD; but if you already own AutoCAD, you'll find that the $\$ 395$ program provides more features than comparable packages that include drafting software.

Most PC-based packages don't require AutoCAD or any other additional drafting software; it's included with the pc board software. Wintek's \$895 Smartwork ${ }^{\text {b }}$ program, for example, includes all the graphics tools you need for pc board layouts. Though the program doesn't have an autorouter, it does offer an interactive router that finds the best possible connection between each successive pair of interconnections. Besides its layout package, the company offers an \$895 schematic-capture program and is introducing an automatic router.

Visionics has recently added a $\$ 975$ automatic router to its $\$ 975$ EE Designer" pc board layout package (fig. 3). The autorouter can route not only two-layer boards but surface-mount devices and multilayer boards as well.

what options do you need?

Each one of these low-cost pc board layout packages comes with a "catch." The least expensive product that most vendors sell is the basic program; the optional programs and hardware dramatically increase the total cost. Like automobile manufacturers, vendors of low-cost pc board layout software often derive their profits not from the basic package, but from the options that accompany it.

Unfortunately, these "optional" programs aren't always optional. For example, Design Computation's basic Draftsman-EE* provides only a graphics editor, a component library, and bill of materials and parts list utilities. To generate a rat's nest display and to check for design rule violations, you'll have to purchase the optional $D C /$ Check * program. An autorouter is yet another option. Often, these options are necessary.

Draftsman-EE is priced at \$749, DC/Check costs $\$ 398$, and the autorouter lists for $\$ 2450$. For about $\$ 4000$ you can purchase all of these tools, as well as

[^0]
UNADILLA REYCO/INLINE ${ }^{\text {TI }}$ Amateur Antenna Baluns

For 20 years, preferred by Amateur, Commercial and Military Operators. First with built-in lightning arrester-minimizes TVI, maximizes power.

W2AU 1:1 \& 4:1 \$17.95

W2DU-VHF \$19.95

W2AU Broadband Ferrite Core Baluns
For medium power (1000 watts RF min.) and broadband operation 3-40 MHz.
w2DU Non-Ferrite Very High Power Baluns
W2DU-HF (High Power)
$\cdot 1.8-30 \mathrm{MHz}$
$\cdot 3000-9000$ watts with $1: 1$ antenna SWR
-1500-5000 watts with 2:1 antenna SWR W2OU-VHF (High Power
and Extended Range)
$\cdot 30-300 \mathrm{MHz}$
-2000-4000 watts with 1:1 antenna SWR
-1200-2400 watts with 2:1 antenna SWR W2AU 1:1

* 50 to 50 or 75 to 75 ohms
-For dipoles, V's, beams, quads W2AU 4:1

${ }^{*} 200$ to 50 or 300 to 75 ohms
Purchase from any of over 300 dealers nationwide or order direct
- For high impedance antennas such as folded dipoles

To request informational brochure, call
617-475-7831 UNADILLA Div. of ANTENNA'S ETC. PO Box 215 BV, Andover, MA 01810-0814

Switch All Your Antennas Over One Coaxial Feedline

This system operates from 1.5 to 180 MHz and handles 1250 RF watts.
Use our antenna switching kit and eliminate excess coax runs. With this kit and a single run of coax, you can switch between your antennas remotely. Use to add an antenna at modest cost, or change array direction.

Other types and combinations of relays are available. Please call or write us for more information, and save on your coax runs!

30 day MONEY BACK GUARANTEE on all products Unadilla/Reyco/Inline is now a Division of ANTENNA'S ETC.

EASY DOES IT!

At last, a Circuit Analysis System that you cannot afford to be without - at a price you can afford... from Western Systems Corporation.

EASY gives you the power to quickly explore new electronic designs on
 your personal computer with state-of-the-art software.

- Pull down Menus
- Full interactive graphic editing
- Linear and non-linear circuit elements
- Graphic and tabular display of results
- Frequency and Time Domain Analysis
- Data Sheet Capture,
...and much, much more!
EASY is remarkably simple to use.
Analyze complex or simple circuits
- Allows up to 100 nodes and 400 components

EASY ... the affordable ELECTRONIC ANALYSIS SYSTEM. Introductory price

Order TODAY from Western Systems Corp. 6536 Simms Street Arvada, Colorado 80004 (303) 422-6722

VISA \& MASTERCARD accepted. Colorado residents add 3% tax.

Available for the IBM PC, XT,AT and full compatibles. EASY requires a minimum

fig. 2. This rat's nest display shows direct connections among all components. Using the rat's nest display in Abacus Software's PCBoard Designer. you can interactively complete any one- or two-sided pc board.

fig. 3. Even inexpensive packages can handle mixed analog and digital designs. EE Designer, from Visionics, routed an 88 -component analog/digital board with 269 interconnections to 100 -percent completion in six minutes.

12 months of telephone assistance; while it's a modest price for a complete professional pc board layout system, it's still more than five times the cost of the basic program alone - and far more than most Amateurs would probably be willing to spend.

Even though these options, especially for packages that list for less than \$1000, greatly increase the cost of pc board software, the total cost - in professional applications - is still far less than the cost of using pc board service bureaus or work station-based layout systems. In considering the purchase of pc board layout software for Amateur applications, then, it's probably best to keep in mind the advice of the United States Postal Service: "If an offer sounds too good to be true, it probably is."

reference

1. Eva Freeman, "Low cost pc board layout software," EDN, March 18, 1987, page 138.
ham radio

coaxial R. F. antenna switches

10.7 MHz CRYSTAL FILTERS

WRITE FOR FULL DETAILS OF CRYSTALS AND FILTERS Export inquiries Invited

Shipping: $\$ 3.75$
ANTENNAS

- 117

2 M
$10 \mathrm{XY}-2 \mathrm{M}$ 70 cm 70/MBM28 70/MBM48 70/MBMB8 DY20-900 MHz
Send 668 (3 stamps) for full details of all our VHF \& UHF equipments and KVG crystal products.
Shipping: FOB Concord, Mass
VISA
(617) 263-2145 SPECTRUM INTERNATIONAL, INC. Post Office Box 1084 Concord, MA 01742, U.S.A.

Cards and plaque courtesy WGTC

EIMAC's
 new DX champion! The 3CX800A7.

Varian EIMAC continues to commit its development of reliable tubes for HAM radio.

The new, rugged 3CX800A7 power triode provides 2 kW PEP input for voice service or 1 kW cw rating up to 30 MHz . Two tubes will meet the new, higher power ratings authorized by the FCC.

Designed for today's low profile, compact linear amplifiers, the 3CX800A7 powerhouse is only
$21 / 2$ inches (6.35 cm) high. Cooling requirements are modest and a matching socket, air chimney and anode clamp are available.
A data sheet and more information is available from Varian EIMAC. Or the nearest Electron Device Group sales office. Call or write today.

Varian EIMAC
301 Industrial Way
San Carlos, California 94270
Telephone: 415•592-1221

antenna relay sequencing

Use one basic protection circuit for normal switching or full break-in

Antenna relays are very expensive, and while bargains can sometimes be found on the surplus market and at swap meets, it takes time to find them.

Running 1500 watts into 50 -ohm coax means that more than 5 amperes of rf current flows at almost 300 volts. Coax relays, with their contacts and spacing kept relatively small to preserve the impedance match, are definitely not designed to hot-switch this kind of rf power. If you try using them for this, you'll burn out the contacts;" in fact, Murphy's Law ensures that transmit contacts will burn out completely just as you hear the rare DX country or VHF grid square you've been looking for.

Another form of antenna relay failure that's as common as burning out the contacts is arcing from the transmitter connector to the relay shell. This is caused by abnormally high rf voltage output from a highpower amplifier under open-circuit conditions.

A power amplifier also needs protection from any open-circuit condition, even for just a fraction of a millisecond. If a tube-type amplifier sees an open load at any time, either at the beginning or the end of a transmission, plate circuit arcing and damage to the components may occur. In solid-state amplifiers, an open load can destroy the transistors instantly.

The need for sequencing a mast-mounted VHF preamplifier is well known. GaAsFETs certainly aren't designed to handle several hundred watts, even for the few milliseconds it takes for a relay to switch.

This article discusses the most common case of a power amplifier and an ordinary coaxial antenna relay. The same basic circuit is used for full break-in with
vacuum relays; in such a situation, the delay periods will simply be shorter. The same circuit can also be used to sequence mast-mounted VHF preamplifiers, together with an interface circuit to delay the exciter.

design criteria

To protect the relay and amplifier when the push-to-talk (PTT) line is closed, the amplifier turn-on should be delayed long enough for the relay contacts to close - and, most important, to have settled down after bouncing. To protect the relay and amplifier when the PTT line is opened, the relay contacts should be held in long enough for the amplifier output to have dropped to zero.

Each unit should, as much as possible, "take care of itself." This means, for example, that the relay should not depend upon a certain capacitor in the exciter or amplifier for a delay. Because you might want to use a different exciter or amplifier later on, the sequencing circuit should be treated as an integral part of the antenna switching mechanism.

circuit specifications

The timing functions of amplifier hold-off at the beginning of a tiansmission and relay hold-in at the end of a transmission are separated, greatly simplifying the selection of timing capacitors.

The control line for the circuit conforms to the following standards, which l've adopted for all the equipment in my shack: the open-circuit voltage on the control line is negative, and does not exceed -1 volt; the closed-circuit current on the control line does not exceed 1 mA ; and the control line is diode-isolated. The first two standards ensure that the control line may be easily controlled by other such circuits, using inexpensive, easily obtainable, low-voltage PNP transistors, without the need for complicated interface circuits or relays. The result is that everything in the shack (except the antenna and other rf circuits) is controlled by solid-state switching. The final standard al-

By Mark Mandelkern, KN5S, 5259 Singer Road, Las Cruces, New Mexico 88005

fig. 1. Basic two-transistor PNP switch.

fig. 2. Basic switch with diode isolation and timing capacitors added.
lows the control lines of any number of such relay circuits, power amplifiers, drivers, transverters, preamplifiers, or other items to be tied in parallel, with no interaction. If the exciter's PTT line conforms to these standards, or is fitted with an appropriate interface circuit so that it does conform, it may be tied in parallel with the control lines of any number of other pieces of equipment, along with the PTT switch on the mike stand and the foot switch. A master band switch on the operating bench allows you to select which amplifiers, transverters, or antennas are to be tied in at the same time.

Since my exciter has a negative voltage on the PTT line, and my tetrode amplifiers use negative bias standby switching, l've used negative relay supplies and PNP switches for everything in the shack. However, this circuit can also be used with positive supplies by merely substituting NPN transistors and flipping over all the electrolytic capacitors.

A basic two-transistor PNP switch is illustrated in fig. 1. I use dozens of these switches in my shack. Most of the transistors are available for about ten cents. The relay drivers (which must handle high current) and the tetrode amplifier bias switches (which must handle high voltage) cost a bit more. I've used
this circuit to convert all the gear I've built with relays over the last 40 years to solid-state switching; none has ever failed.

circuit description

The switching operation shown in fig. 1 is very simple. Were it not for Q1, resistor R2 would supply enough base current to saturate 02 . This lowers the collector voltage to a very low value, which energizes the relay and enables the amplifier or other circuits. In the unkeyed state, resistor R1 supplies enough base current to saturate $Q 1$, lowering the voitage at the collector of $\mathrm{Q1}$ to about - 0.1 volts, much lower than the - 0.6 volts needed at the base of Q 2 to turn it on. Thus, in the normal state, Q 1 is on and Q 2 is off. Now what happens when the key is closed?* Keying the circuit grounds the base of Q1, turning it off. This removes the grounding (by the collector of Q1) from the base of Q2, allowing R2 to turn it on. Now the collector of 02 drops to about -0.1 volts, enabling the relay or other device. Having the top of the relay coil always hot is one clue to the simplicity of this circuit. The transistors all have their emitters grounded and are either on or off, so their collectors either present a ground to the next stage or do not. Everything in the shack is enabled by simply grounding a terminal. There's no need for making two-wire connections when you want to apply a voltage to something.

The basic circuit shown in fig. 1 needs only diode isolation and timing to become a full working device. These features have been added in fig. 2.

diodes provide isolation

Diode isolation is provided by inserting CR1 in the key line. If two or more of these switches have their key lines all tied together, the diodes CR1 in each switch will prevent any current flow between switching circuits. There's only one problem: with CR1 in the key line, closing the key reduces the voltage at the low end of R1 only to the forward voltage drop of the diode, which is just about the same as the -0.6 volts required to turn on the base-emitter junction of Q 1 . Thus, Q1 may or may not turn off, depending on the characteristics of the diodes and transistors, the temperature, and other such details. Diode CR2 saves the day by producing a 0.6 -volt drop between the low end of R1 and the base of Q1. Now the voltage at the low end of R1 must be about -1.2 volts to turn on Q 1 . Closing the key drops it to -0.6 volts, and Q 1 goes off with absolute certainty. Thus CR2 fixes the problem caused by the isolating diode, CR1.

[^1]Figure 2 shows the general form of the switch, with two timing capacitors, although we use only one capacitor in each of the separate antenna relay and amplifier switching circuits. (Both capacitors could be used in certain applications, when both turn-on and turn-off delays are desired.) Capacitor C2 provides a turn-on delay (which we will use for the amplifier), while capacitor C1 provides a turn-off delay (which we will use for the relay). When the key is closed, C1 discharges immediately through CR1, and Q1 turns off. This allows R2 to turn on Q2, but not instantaneously. It must charge C 2 up to about -0.6 volts, and this takes a bit of time. Thus C2 provides a turn-on delay, but C1 doesn't affect the turn-on. Now when the key is let up, this allows R1 to turn on Q1 - but, again, not instantaneously. It must charge C1 up to about -1.2 volts, and this provides the turn-off delay. As soon as Q 1 turns on, its collector discharges C 2 im mediately, so C 2 doesn't affect the turn-off time.

separate relay and amplifier switching

It's the clean separation of functions between C1 and C2 that makes the use of two separate switching circuits - for relay and amplifier - well worth the few extra parts. In the relay switching circuit, there's no C 2 and the turn-off delay capacitor C1 doesn't delay the turn-on. In the amplifier switch, there's no C1 and the turn-on delay capacitor C2 doesn't delay the turnoff. Although there may be circuits that will do all this with one transistor, the adjustment of turn-on and turn-off times is much more complicated, there's no isolation (so key lines can't be tied together), and hot two-wire connections are often required. The sequencing could also be done with timer ICs, but this circuit seems simpler and may be less susceptible to rf pickup problems. Instead of comparators and timer threshholds, this circuit simply uses the base-emitter junctions of the transistors, which have sharp threshholds at about 0.6 volts with hard turn-on currents, resulting in a very sharp positive action. Timer IC circuits would still need the timing capacitors, transistors for relay drivers, and transistors or relays in interface circuits to match PTT lines and amplifier control lines.

selection of bias resistors

The basic switching circuit shown in fig. 1 doesn't show the values of the bias resistors R1 and R2. These depend on the load current to be switched. Take first an antenna relay switch. A typical 24-Vdc antenna relay draws about 80 mA - let's say no more than 100 mA . We don't need the exact relay coil current, but rather just an upper limit for design purposes; our circuit will work well with any relay drawing less than this limit. To ensure that O 2 turns on hard at this col-
lector current, a good rule of thumb is to provide a base current of about 10 percent of the collector current. This is like asking the transistor to have a gain of 10; the transistors we'll be using have typical gains in the 50 to 200 range, so this is quite a conservative rule. For O 2 to turn on hard means that with the $100-\mathrm{mA}$ collector current, the collector voltage should drop quite low, to about 0.1 or 0.2 volts. This is not to ensure that the relay coil will get the full 24 volts (it will probably work fine at only 20 volts), but instead to keep the Q 2 collector dissipation low. At 0.2 volts this will be only 0.02 watts, but if Q 2 doesn't turn on hard, and the collector voltage drops only to 4 volts, the dissipation will be 0.4 watts, more than the rating of a typical ten-cent transistor. So for a $100-\mathrm{mA}$ collector current, we'll provide a base current of 10 mA . The bias resistor $R 2$ should then have the value $R=E / I=15 / 0.01=1500$ ohms. The power in $R 2$ will be $P=I^{2} R=(0.01)^{2} \cdot 1500=0.15$ watts, so a $1 / 2$-watt resistor will be satisfactory.

Q1 has to sink the $10-\mathrm{mA}$ current in R2 in order to keep 02 off until we push the PTT button. The collector voltage of Q 1 should be as low as 0.1 to 0.2 volts, well below the 0.6 volts required by the base of O 2 , so that O 2 will stay off. We apply the same rule of thumb as before; Q1 needs only 1-mA base current in order to sink 10 mA in the collector circuit. Thus for $R 1$ we need a value of $R=15 / 0.001=15 \mathrm{k}$. Of course, the voltage across R1 isn't the full 15 volts, because of the small voltage drop in CR1 and the baseemitter junction of Q1. But there's no need here for mathematical precision. The power in R1 will be only 0.015 watts, so we'll use a $1 / 4$-watt resistor. (Whenever the required current comes out less than 1 mA , I always provide 1 mA anyway; this avoids unusually low currents, thereby lessening any possibility of problems from leakage in the PTT line or rf pickup, and ensures that the output transistor in any switch, even if built to switch only another $1-\mathrm{mA}$ line, will sink at least 10 mA , and will thus switch several $1-\mathrm{mA}$ lines simultaneously if necessary.)

The current gain of the two transistors together is the product of the individual gains. Thus, to be safe, we assume a combined gain of 100 , although 10,000 would be a more typical value. It's this gain of at least 100 that allows the 100 mA relay coil to be controlled with only 1 mA on the PTT line.

The amplifier switch bias resistors are even easier to select. If the amplifier bias switching circuit follows the standards listed above, you'll need to sink only 1 mA on the amplifier control line. So $15-\mathrm{k}, 1 / 4$-watt resistors will be acceptable for both R1 and R2. We'll leave the bias switching problem to the amplifier itself. This will keep the bias, up to -300 volts, off our control lines and out of our station band switch. The bias switch will be discussed below.

NAL COMM INC.

MOBILE OMNI-DIRECTIONAL HORIZONTAL EGGBEATER ANTENNA

Val Comm Inc. offers an exciting New Mobile Antenna for 2 meter operations for the SSB/FM mode. The original antenna, designed by Mike Staal in conjunction with Val Comm Inc. was to produce a mobile antenna in the VHF band for government satellite communication networks. Its outstanding performance is now offered to the amateur operator for mobile or fixed communications.

Orientation of the Eggbeater is unimportant as it produces an omnidirectional horizontally polarized pattern. As an omni-directional satellite antenna, the Eggbeater is very effective as it produces a right hand circular polarization off thè top. When placed $1 / 8$ wavelength over a metallic surface, such as a vehicle roof top, the signal level off the top portion of the antenna increases by as much as $6 d B$. No rotation or steering is necessary. Circularity is optimized in the 144 to 146 MHz region, ellipticity will increase either side of that range but the antenna is still effective from 135 to 150 MHz .

Base station, contest and field day use of the Eggbeater will allow rapid fire communications in all directions with other horizontally polarized stations. While the Eggbeater won't replace a good directional antenna, it is certainly a valuable addition to any mobile or fixed station.

EGG BEATER SPECIFICATIONS:

Spec. Freq. Range Usable Freq. Range Impedance VSWR Max. Pattern

144 to 148 MHz
135 to 150 MHz
50 OHMS
1.5:1

Omni-directional at horizontal, circular off the top.

Polarity
Power Handling Max
Mounting
Connector
Size
Wind Speed Max
Materials:
Loops
Loop Support
Body
Hardware

VC Eggbeater
Options:

Magnetic Mounts	39.95
Spring Coil	9.95
Bumper Mounts	15.95
$54^{\prime \prime}$ Bumper Mount	
\quad Extension	22.95
Folding Extension	29.95

Exting Extension
Warranty: This product is guaranteed for a period of one year from date of purchase against defective workmanship and materials. It is the option of Val Comm Inc. or M2 Enterprises to repair or replace the defective part. This specialty antenna product has been carefully manufactured by M2 Enterprises, 14081 683-2067, and serviced and marketed thru Val Comm Inc.

Val Comm Inc. is a small business, woman-owned corporation specializing in design and fabrication of prototype special applications communications systems in RF links, video transmitters, data communications and security communications.

fig. 3. Complete sequencing circuits. Component values shown are for a typical $\mathbf{2 4}$-volt antenna relay; for other relays, see text. Not shown is rf filtering on all lines that lead outside the box, and disc ceramic bypass capacitors from base to emitter of each transistor. This filtering with rf chokes and bypass capacitors follows standard practice; actual values of the components will depend upon the frequency of operation.

selecting the timing capacitors

Figure 3 shows a typical complete sequencing circuit - in this case, for a 24 -volt relay. The -24 volt relay supply is further dropped to -15 volts for the timing circuits. Since the voltage used affects the timing, this ensures that if the relay is changed to one with a different coil voltage, the timing circuits need not be readjusted.

Because of variations in the actuating time of different relays, it won't be sufficient to merely provide component values; the method of calculation must be explained. The time constant formula $T=R C$ is usually used to choose circuit values in an R-C timing circuit, as in fig. 4. The units are seconds, ohms, and farads, but if kilohms and microfarads are used for R and C, the formula conveniently gives the time, T , in milli-
seconds (ms). The time constant, T, is the time required to charge the capacitor to about 63 percent of the applied voltage, V. In the circuit used here, however, the capacitors never charge beyond about -0.6 or -1.2 volts. To find the exact time to reach this voltage requires a complicated exponential-growth formula. But in this situation the level of charge is less than 10 percent of the applied voltage, so a much simpler formula will suffice:

$$
\begin{equation*}
v=\frac{t}{T} V \tag{1}
\end{equation*}
$$

This is a straight-line approximation to the exact voltage. Here, V is the applied voltage, v is the voltage reached after time t, and T is the time constant. The formula indicates a simple proportionality between the time and the voltage. Thus, in a circuit with a time constant, $T=500 \mathrm{~ms}$, and an applied voltage of $\mathrm{V}=15$ volts, the capacitor will charge to about $\mathrm{v}=-0.6$ volts (4 percent of the applied voltage) in about $\mathrm{t}=20 \mathrm{~ms}(4$ percent of the time constant). For a $10-\mathrm{ms}$ antenna relay, this delay would be enough to hold off the amplifier while the relay closes.

Once we have the required time constant, it's easy to find the value of the capacitor needed in each bias circuit. With a $20-\mathrm{ms}$ relay, we may wish to delay the amplifier for 30 ms , in order to allow for contact bounce. Using the relationship

$$
\begin{equation*}
t=\frac{v}{V} T \tag{3}
\end{equation*}
$$

with the values $v=0.6$ volts and $V=15$ volts, we find we need a time constant of

$$
\begin{equation*}
T=\frac{15}{0.6} \cdot 30=750 \mathrm{~ms} \tag{3}
\end{equation*}
$$

The delay capacitor C2 is on the base of Q4. If the switching circuit in the amplifier follows the standards

fig. 4. RC timing circuit. The time constant of this circuit is defined by $T=R C$, which is the time required for the voltage v on capacitor C to reach about 63 percent of the applied voltage V. The exact time required for the voltage on capacitor C to reach a specified voltage v is given by $t=-T \ln (1-v / V)$. However, it is not necessary to use such a precise formula. The approximate time required for the voltage on capacitor C to reach a low specified voltage v is given by: $t=\left(\frac{v}{V}\right) \cdot T$. This approximation is within 6 percent of the exact time, as long as v is less than 10 percent of the applied voltage V.

listed above (for example, the circuit shown in fig. 5), the bias resistor R4 will have the value 15 k . Thus, we obtain

$$
\begin{equation*}
C=\frac{T}{R}=\frac{750}{15} \frac{\mathrm{~ms}}{k}=50 \mu \mathrm{~F} \tag{4}
\end{equation*}
$$

Although one could calculate all this precisely, the final adjustment is best made empirically with an oscilloscope, as described below.

Now that we have the amplifier delay timing capacitor chosen, we can work on the antenna relay holdin timing. On voice, one usually stops talking a fraction of a second before letting up the PTT switch. The delay is provided by our human reaction time, which is pretty slow compared to the speed of the electrons we're pushing up to the antenna. Still, one might release the PTT button in the middle of the last syllable, or take the foot off the foot switch while keying, and we have to provide for any such possibility. A good exciter continues to transmit for 3 to 5 milliseconds after the key is let up; this allows gradual decay of the keying waveform and prevents key clicks. If the antenna relay opens during this time, arcing will result, and in the case of QSK operation, key clicks will be generated.

For these reasons we provide a short delay in opening of the antenna relay when the PTT line is opened. In fig. 3, this is done with C1 at the base of Q1 in the relay switching circuit. When the PTT line is opened, Q1 won't turn on until C1 charges through R1 up to about -1.2 volts. This is 8 percent of the applied -15 volts, so we need a time constant $T=R C$ about 12.5
times the required delay. For a $6-\mathrm{ms}$ relay hold-in time, $T=75 \mathrm{~ms}$ will be about right. If R1 is $15 k, C 1$ will need a value of $C=T / R=75 \mathrm{~ms} / 15 \mathrm{k}=5 \mu \mathrm{~F}$.

antenna relays

Since the best bargains for coaxial relays on the surplus market, or at swap meets, are 24 -volt dc types, fig. 3 shows the circuit for these. The dc relays offer the advantages of quiet operation, solid-state control, and the convenience of using the relay supply to power the sequencing circuit. However, the circuit is easily adapted for an ac antenna relay by adding a small reed relay as shown in fig. 6. The reed relay switching time is quite small compared to that of the coax relay. We can add a few milliseconds to our computations, or just let it be absorbed in the final scope test.
Because of the high cost of antenna relays, l've followed the old-fashioned custom of using only one relay, at the amplifier output, with the receiver antenna line running to a separate jack on the exciter. This minimizes losses on VHF and alleviates the need for double

relays on every preamplifier, attenuator, transverter, and driver down the line. This method is also highly recommended by some GaAsFET preamplifier manufacturers for safest operation. However, if you want to use two relays, switching the input and output simultaneously, just connect the coils in series or parallel, depending on the operating voltage available.

In the complete sequencing circuit shown in fig. 3, both the relay switch and amplifier switch are limited to $1-\mathrm{mA}$ closed-circuit current, but the circuit as a whole requires the PTT line to sink 2 mA . The design standards can be implemented a bit loosely; in fact, the $1-\mathrm{mA}$ limit was chosen for just this reason. If each individual circuit conforms to this limit, then any reasonable number of such circuits can be tied in parallel, and the total current will remain small.

In one of my relay sequencing circuits, extra protection is provided by inserting one set of the coax relay auxiliary contacts at the input to the amplifier delay
circuit at the base of Q 3 in fig. 3, and the other set at the output at the collector of Q4. This keeps the amplifier disabled in the event of failures such as an open relay coil or a shorted or open transistor. This also provides some mechanical delay so that C 1 need provide delay only during the bounce time. However, this mechanical method doesn't eliminate the need for the amplifier sequencing circuit. Oscilloscope tests on typical antenna relays show considerable antenna contact bounce times, continuing long after the auxiliary contacts close. Incidentally, the "hot-shot" method (providing double the coil voltage for about 50 ms) often seems to make the bounce worse!

amplifier switching

For tetrode amplifiers with negative grid bias standby switching, amplifier switching is done with a separate switching circuit installed in the amplifier, as shown in fig. 5. In principle, the amplifier bias adjustment control could be connected directly to the collector of Q 2 in the sequencing circuit of fig. 3, but this would have several disadvantages. The voltage rating of O 4 would have to be high enough to handle the full standby bias of the amplifier, as high as -300 volts or more. This high voltage would be on the cable between the amplifier and the sequencing circuit, violating the standards set forth at the opening of this article. If the control lines of both the driver and final amplifier are tied together at Q4, the -300 volts from the amplifier would appear at the driver switching circuit and in the station band switch. The isolating diodes would have to be the high-voltage type and there would be dangerous voltages in unexpected places. I much prefer to have the bias switching circuit inside the amplifier, even though it may seem a bit strange to find four transistors between the PTT switch and the amplifier bias circuit. All but the last one - a required high-voltage type - are inexpensive.

For amplifiers with screen voltage standby switching, a small reed relay with a solid-state driver can be installed in the amplifier. For zero-bias triode amplifiers, the solid-state interface circuit shown in fig. 7 may be used.

connection to the exciter

The PTT jack on the sequencer can be connected in parallel with the PTT line of the exciter if the exciter PTT line is also negative and isolated. If the exciter PTT line is negative but not isolated, isolation can be easily provided by using the basic circuit of fig. 2, with no timing capacitors. If the exciter PTT line is positive, and you want to use negative switching for most gear in the shack, the interface circuit shown in fig. 7 can be used. For full break-in, the exciter can be delayed using another two-transistor switching circuit.

fig. 7. Interface for positive switching. This circuit will enable the negative switching sequencing circuit to contral a positively-switched triode amplifier bias standby circuit, an exciter positive PTT circuit, or a relay energized with a positive voltage. It will sink more than 100 mA . Rf filtering should be added as noted in the caption for fig. 3. To reduce the current and voltage on the keyline, to conform with the standards suggested in the text, insert the basic circuit of fig. 2, without timing capacitors, in place of diode CR1.

testing and adjustment

The antenna relay can be tested to determine the actuating and bounce time before building the sequencing circuit, but it's easier to build the circuit using estimates of the delays required and then test the whole system afterwards. An amplifier delay of 50 ms and a relay hold-in time of 10 ms would be good figures to start with.

One possible test setup using a dual-trace triggered scope is shown in fig. 8. Although this illustration shows a battery, any available voltages from test supplies can be used. The antenna relay is controlled by the sequencing circuit, but the amplifier isn't used for the test. The external scope trigger connection, connected to the PTT line, is used. Thus the left edge of the scope trace represents closing of the PTT line. A foot switch, straight key, or push-button on the PTT line is convenient for repeated, manually triggered tests. The closing and opening transitions can be observed separately by changing the trigger polarity. One trace is used for the antenna relay contacts, and the other for the amplifier switching circuit. The testing is done with very small voltages and currents, so no damage results while you try different timing capacitors or parallel combinations of whatever capacitors are on hand in an effort to obtain the desired delays.

The timing capacitors should be selected so that the amplifier switch doesn't turn on until about 5 ms after the relay contacts cease bouncing and the contacts remain closed until about 10 ms after the amplifier shuts down. After initial adjustment, the antenna relay contact test current can be increased to several amperes; more bounce sometimes appears.

A single-trace scope can be used to see what's hap pening at two or more different places simultaneous- RF POWER AMPLIFIERS

- Lowest NF GaAs FET Preamp
- Finest Quality Military Construction
- Off-The-Shelf Dealer Delivery

For the past five years, Amateurs worldwide have sought quality amplifier products from TE Systems. Renowned for the incorporation of high quality, low-noise GaAs FET preamplifiers in RF power amplifiers, TE Systems offers our fine line of products through select national distributors.

All amplifiers are linear (all-mode), automatic T/R switching with adjustable delay and usable with drive levels as low as $1 / 2$ Watt. We incorporate thermal shutdown protection and have remote control capability. All units are designed to ICAS ratings and meet FCC part 97 regulations. Approx. size is $2.8 \times 5.8 \times 10.5^{\prime \prime}$ and weight is 5 lbs .

Consult your local dealer or send directly for further product information.

TE SYSTEMS
P.O. Box 25845

Los Angeles, CA 90025
(213) 478-0591

SPECIFICATIONS

Model	$\begin{aligned} & \text { Freq. } \\ & \mathrm{MHz} \end{aligned}$	-Power -		Preamp		$\begin{gathered} \mathrm{DC} \\ +\mathrm{Vdc} \\ \hline \end{gathered}$	$\begin{gathered} \text { Power } \\ \hline \mathbf{A} \\ \hline \end{gathered}$	RF Conn.
		Input	Output	NF-dB	Gain-dB			
0508G	50-54	1	170	. 6	15	13.6	28	UHF
0510G	50-54	10	170	. 6	15	13.6	25	UHF
14096	144-148	2	160	. 6	15	13.6	25	UHF
1410G	144-148	10	160	. 6	15	13.6	25	UHF
1412G	$144 \cdot 148$	30	160	. 6	15	13.6	20	UHF
2210 G	220-225	10	130	. 7	12	13.6	21	UHF
2212G	220-225	30	130	. 7	12	13.6	16	UHF
44106	420-450	10	100	1.1	12	13.6	19	N
4412G	420-450	30	100	1.1	12	13.6	19	N

Models also available without GaAs FET preamp (delete G suffix on model \#). All units cover full amateur band - specify 10 MHz bandwidth for $420-450 \mathrm{MHz}$ amplifier.
Amplifier capabilities: $100-200 \mathrm{MHz}, 225-400 \mathrm{MHz}, 1-2 \mathrm{GHz}$, Military (28V), Commercial, etc. also available - consult factory.

The HF4B "Butterfly"'TM A Compact Beam for 20-15-12-10 Meters

- Unique design reduces size but not performance - No lossy traps, full element radiates on all bands - Retrofit kit for 17 meters coming soon.
- Turns with TV rotor
- Only 17 lbs

For more intormation see your dealer or write tor a tree brochure all multiband designs of comparable size!

Model HF6V

-80 40 . 3020 is and 10 meters automatic banoswicthing
-Addon wir tur 17 and 12 meters
avaiable now
-26" tail

Model HF2V
-Designed tor the low band DXer

- Automatic bandswitching on 80 and 40 meters
- Add on units for 160 and 30 or 20
meters
- 32 leet tall may be lop loaded for
-32 leet tal may be to

This publication is available in microform from University

Butternut's HF verticals use highest-Q tuning circuits (not lossy traps!) to outperform

BUTTERNUT ELECTRONICS CO

\square Please send information about these titles:

Name

Company/Institution

Address

City
State \qquad
Phone!
Call toll-free 800-521-3044. In Michigan,
Alaska and Hawaii call collect 313-761-4700. Or mail inquiry to: University Microfilms International. 300 North Zeeb Road, Ann Arbor, MI 48106.
ly, although it requires the special test circuit shown in fig. 9. A triggered sweep is still needed. The battery and the resistors establish various voltages, which the relay contacts and the amplifier switching circuit alter in such a way that can be observed on the scope. With the PTT line open, -9 volts will be seen on the scope. It stays at -9 volts while the relay contacts close. As soon as the relay closes, it climbs to - 6 volts, then to -3.6 volts when the amplifier switching circuit turns on. If the amplifier switch turns on before the antenna relay closes, the trace will climb to -4.5 volts without going through the -6 volt stage, indicating that more amplifier delay is needed. Contact bounce before the amplifier switch turns on is seen on the scope as a fluctuation between - 9 and -6 volts. Contact bounce after the amplifier switch turns on (to be avoided!) is seen on the scope as a fluctuation between -3.6 and -4.5 volts. Now when the PTT line opens, the amplifier switching circuit turns off instantly; the trace drops to -6 volts and stays there while the relay holds in, then drops back to the full -9 volts.

obtaining components

Inexpensive PNP transistors are available from the suppliers listed below. ${ }^{* *}$ For most circuit positions the 40 -volt, $200-\mathrm{mA} 2 \mathrm{~N} 3905$ will do well. A good 24 -volt relay driver is the slightly more expensive 120 -volt 2N5400. Rated at $600-\mathrm{mA}$ collector current, it will handle a $100-\mathrm{mA}$ relay coil current with a nice safety factor. For higher coil current, such as we'd have with relays in parallel or 6-volt relays, the MPS-U57 (rated for 2 amperes) can be used. For tetrode amplifier bias switching in the circuit shown in fig. 5, the 300-volt MPS-A92 is available from BCD Electro.** These choices of transistor types are quite arbitrary; any available PNP types can be used as long as you check the manufacturer's ratings and compare these with the circuit voltage and current requirements.

For the timing capacitors, it's essential to use only tantalum electrolytics rather than ordinary filtering types. Tantalum will remain stable, with negligible leakage, over a very long time. Tantalum electrolytics usually have a 10 percent tolerance, which is satisfactory for sequencing purposes. On the other hand, the ordinary aluminum types often have tolerance ratings such as -20 percent to +100 percent. Because of this, and their leakage and unreliability, they are unusable in this application. Notice that in these circuits the capacitors never see more than 1.2 volts, so inexpensive 6-volt units may be used. One source for tantalum electrolytics is, again, BCD Electro.**

performance

For several years l've used two of these units with two homebrew amplifiers. One uses a 4CX1000A on

fig. 9. Test setup with a single-trace scope. Not shown is the trigger and PTT connection, which is the same as shown in fig. 8.
1.8 through 50 MHz ; the other uses push-pull 4-400A's at 144 MHz . There's no arcing at the contacts, and I believe the antenna relays will last a long time.

Many antenna relays have an inspection port at one end, with a snap-in cover, for checking the contacts and connectors, which can be cleaned or replaced if necessary. It's interesting to remove this cover, turn off the shack lights, and watch for arcing. Without the sequencing circuit, the arcing can be seen clearly

[^2]
Special
 OUTSTANDING PRICES and COMPATIBLE SYSTEMS!
 SYSTEM \#1 \$399.00

 INTERNATIONAL BUSINESS MACHINES CORP

A copy of this ad worth $\$ 50.00$ against System 3 order. One discount ad per order.

SYSTEM \#2 \$699.00

MOTHERBOARD WITH BIOS AND FIRST 256 K OF RAM. UPGRADABLE TO A FULL 640K OF RAM. FLIP TOP CASE. K8XT (AT LOOK ALIKE) KEYBOARD. 150 WATT POWER SUP. PLY. DUAL DISK DRIVE CARD WITH CABLES. ONE FLOPPY DRIVE DS DD 360 K . A COLOR GRAPHICS CARD WITH RGB AND COMPOSITE OUTPUT.
(ALL YOU NEED IS A MONITOR)
SHIPPING INFORMATION: PLEASE INCLUDE 10\% OF ORDER FOA SHIPPING AND HANOLING CHARGES (MINIMUM $\$ 2$ SO, MAXIMUM $\$ 10$) ADD 446 SALES TAX. FOR FREE FLYER, SEND 22 STAMP OR SASE

HAL-TRONIX, INC. $\begin{gathered}\text { DEALERFOR } \\ \text { TENTEC } \& M F J\end{gathered}$ P.O. BOX 1101 DEPT. N HOURS P.O. BOX 1101 DEPT. N
12671 DIX-TOLEDO HWY SOUTHGATE, MICH. 48195 PHONE (313) 281-7773

MOTHERBOARD WITH BIOS AND FIRST 64 K OF RAM, UPGRADABLE TO A FULL 640K OF RAM. FLIP TOP CASE, K8XT (AT LOOK ALIKE) KEYBOARD. 150 WATT POWER SUP. PLY WITH ALL THE POWER NEEDED TO RUN EXTRA DRIVES AND CARDS.

SYSTEM \#3 $\$ 999.00$

MOTHERBOARD WITH BIOS AND CONTAINING 640K OF RAM. FLIP TOP CASE. K8XT (AT LOOK ALIKE) KEYBOARD. 150 WATT POWER SUPPLY. COLOR GRAPHICS CARD WITH RGB AND COM. POSITE OUTPUTS. MULTI I/O CARD WITH TWO DISK DRIVE PORTS, ONE PARALLEL PORT, ONE SERIAL PORT AND ONE SERIAL PORT OPTION, ONE GAME PORT, CLOCK AND CALENDAR WITH BATTERY BACKUP TWO FLOPPY DISK DRIVES DS DD 360 K AND A COMPOSITE MONITOR.

"HAL"
HAROLDC. NOWLAND W8ZXH
every time you push or let up the PTT button. (For this test I ran low power to avoid burning the contacts too badly.) The dark-shack visual method provides a good final check on the sequencing circuit; this was how I found out how important it was to allow for the contact bounce time.

The sequencing circuit will protect the relay against contact arcing as long as there's a proper load on the antenna terminal. If a proper load is absent because of high SWR, antenna failure, feedline failure, or parasitics, the rf voltage could reach a high level and arcing could result between the transmit contact and the grounded relay shell. To protect against this, if voltage limiting can be used with the circuit shown in reference 1. This circuit senses the rf voltage from the relay terminal to ground and uses the exciter ALC system to keep the amplifier output level below the arcing point. If the relay and sequencing circuit are built into the amplifier, all these protection circuits can be combined on one circuit board with an ALC circuit from reference 2 or 3 .

references

1. M. Mandelkern, KN5S, "High SWR Protection for Transceivers and Amplifiers," CQ. May. 1980, pages 63-65.
2. M. Mandelkern, KN5S, "ALC for Class AB, Amplifiers," OST, July, 1986. pages 38-39, 47.
3. M. Mandelkern, KN5S, "ALC for Triode Amplifiers," Technical Correspondence, QST, December, 1986, pages 4647.

M/ 『

ANTENNA POLARITY SWITCHER MODEL APS-1

> The APS-1, is a self-contained control head designed to allow remote polarity switching of circular antennas such as the Mirage/KLM range of crossed yagis.

The APS-1 may be powered by the power adaptor (included) or may alternately be powered from a vehicle or other 13-17 VDC source.

In addition to switchable outputs for two antennas, the APS-1 also contains a $6-13$ volt regulated DC power supply. This feature is designed for powering items such as preamplifiers, VHF/UHF converters, etc., but may also be used whenever a low-current stabilized variable voltage source is required.

SPECIFICATIONS:

Power Requirement (AC).
$117 \mathrm{~V} \pm 10 \%$ AC $50 / 60 \mathrm{~Hz} 15 \mathrm{Watt}$
Power Requirement (DC)
11-16 VDC 500 mA

Outputs. Two 12 VDC unregulated, switched (antenna relay supply). One 6-13 VDC variable regulated auxiliary supply.

Total output current 500 mA with AC transformer that is included, 1 amp with optional high current transformer or external DC supply. This unit has our popular five (5) year warranty.

VHFUHF WORLD

impedance-matching techniques

Because hardly a month goes by that I don't receive at least one question about impedance matching, this month's column will first address the subject generally and then describe some specific techniques.

impedance matching in general

When impedance matching is discussed, it usually refers to matching to an antenna. Often the only question is "How do I get a low VSWR?"

For years Amateurs have had the notion that if the VSWR isn't close to unity (1:1), valuable power is being lost. They seldom consider the insertion loss of the transmission line, the accuracy of the measurement gear, or the mismatch loss (if any).

It's true that if the VSWR on a transmission line isn't 1:1, there's an additional line loss over and above that of the insertion loss of the feed line. ${ }^{1}$ This is often referred to as "mismatch loss." For many years a graph published in several Amateur journals and the ARRL's Antenna Book has shown how to estimate the mismatch loss if the VSWR at the load and the nominal insertion loss of a transmission line are known. ${ }^{2}$ Because I didn't know how precise it was, and because using it involves a two-step addition process (another possible source of error), and because it doesn't include low transmission line losses such as typically encountered at EME, I haven't had much confidence in it.

Thanks to Dick Turrin, W2IMU, I now have the mismatch loss mathe-

fig. 1. Total insertion loss in a transmission line terminated in a mismatch (see text).
matical equations, but they are lengthy. Dick pointed out to me that a mismatch loss graph using a different format was published in the 1940s. ${ }^{3}$ Sure enough, l'd had the information in my files all these years and hadn't noticed it!

I've verified the math. The older and, in my opinion, more useful graph for mismatch loss is shown in fig. 1. Note that this graph stands alone, in that the loss indicated is the total loss, not just an incremental amount which then has to be added to the nominal insertion loss. As with the former graph, you still have to know the VSWR at the load as well as the nominal insertion loss of the transmission line. The latter quantity, however, is readily available. ${ }^{1,2}$

For example, using fig. 1, if the VSWR at the load is 5:1 and the nominal transmission line insertion loss is 0.2 dB , the total insertion loss - including the mismatch loss - will be 0.5 dB . Furthermore, if the VSWR at he load is $3: 1$ and the nominal insertion loss of the line is 5 dB , the total insertion loss will be 6 dB . I feel that fig. 1 is easier to use and more realistic than the graph most Amateurs are presently using.

Impedance matching is especially important nowadays because of the proliferation of solid-state power amplifiers that will shut down or decrease power in the presence of VSWR above 1.5 or $2: 1$. However, the subject of impedance matching extends beyond antenna systems, since impedance matching can also refer to matching into or out of a low-noise, medium, or high power amplifier. Impedance matching can be narrowband as well as broadband and between resistive or reactive loads.

categories of impedance matching

Before we go any further, we should discuss what I feel are the three major categories of impedance matching: nonreflective, conjugate, and optimum source. Nonreflective matching is probably the most common type. In this scheme, an impedance matching
network or "antenna tuner" is placed somewhere in the line between the source and load. This network is then tuned for minimum VSWR looking into the load. In a worst-case scenario, a large attenuator could be placed between the source and load to yield a good impedance match. (More on this shortly.)

Conjugate matching is often used in the design of solid-state power amplifiers where gains are typically low and therefore losses must be kept at a minimum, both in the input matching network and in the components involved. ${ }^{4}$ In order to accomplish a conjugate match, all reactive components must be cancelled and the resistive component of the load made equal to the input line impedance. ${ }^{5}$ Conjugate matching is often used in applications where wider bandwidth or no tuning is desired.

Optimum source matching usually refers to providing the impedance required for best operation of the load. In the case of a vacuum tube power amplifier, if a conjugate output match is used, at least one-half of the rf output power generated would have to be dissipated in the tube - a very inefficient condition. ${ }^{5}$ Therefore, conjugate matching is usually not used in highpower amplifier designs.

In a similar manner, the input circuit of a low-noise preamplifier is often tuned to an impedance that produces the lowest noise figure, which seldom yields a good impedance match. Therefore a device or circuit that requires optimum source matching will usually have a moderate to poor input and/or output VSWR.

simple impedancematching techniques

There are many ways to perform impedance matching. Resistors, transformers, reactive elements, transmission lines, and stubs are some commonly used VHF/UHF/SHF techniques. The optimum choice depends on whether the load is resistive or reactive, whether any insertion loss is allowable, and how broadband the match must be.

If loss isn't a problem, the load is resistive and doesn't have to see an impedance match looking back at the source; a simple resistor or resistor network is all that's necessary for a wideband impedance match. Several examples of resistor matching are shown in fig. 2.

In fig. 2A, the impedance of the amplifier must be resistive and less than the source impedance. The matching resistor, R, will be the difference between the source and load impedance. For example, if you want to match a source of 50 ohms and the load is 40 ohms, R should be 10 ohms.

If the load impedance is higher than the source, use a shunt resistance as shown in fig. 2B. With a load of 75 ohms, the shunt R will have to be 150 ohms to provide a match to a 50 -ohm source. In either case, the matching resistor will dissipate power and decrease overall gain. Furthermore, the source will see a good impedance match but the load looking back toward the source will see a mismatch. The larger the impedance difference between the source and load, the larger the insertion loss and the lower the gain.

Sometimes it's desirable to have both the source and load see a good impedance match. In this case, the socalled "minimum loss pad" can be used for impedance matching (see figs. 2C and 2D). This type of impedance matching provides a match looking both ways but has a higher insertion loss than the single resistor matching shown in figs. 2A and 2B.

For example, using fig. 2C with a source impedance of 50 ohms and a load of 40 ohms, R1 should be 22.4 ohms and R2 89.4 ohms. The overall insertion loss will be 4.2 dB . If the load impedance is higher than the source, use the circuit in fig. 2D. With a source impedance of 50 ohms and the load at 75 ohms, R1 will be 86.6 ohms and R2 43.3 ohms. The overall insertion loss will be 5.7 dB .

If gain is of no consequence, typical "T" or "Pl" attenuator pads can be used for impedance matching as shown in figs. $2 E$ and $2 F$. If the at-

(B)

(c)

(D)

(E)

(F)

fig. 2. Different types of resistor matching for cases in which the source and load impedance are resistive: (A) source impedance is higher than load; (B) load impedance is higher than source; (C) minimum loss pad with source impedance higher than load; (D) minimum loss pad with load impedance higher than source: (E) typical symmetrical " T " pad attenuator; (F) typical symmetrical "PI" pad.

fig. 3. Typical transformer matching techniques: (A) simple $4: 1$ bifilar wound transformer; (B) typical 4:1 balun transformer; (C) trifilar wound 9:1 transformer; (D) typical resonant step-up/step-down transformer; (E) step-up/step-down transformer using tapped capacitor configuration: (F) variable tap transformer.
tenuation of the pad is high enough, for example 10 dB , the source and load will typically see a VSWR equal to or better than 1.2:1. Values for a $10-\mathrm{dB}$ pad are 26,35 , and 26 ohms for R1, R2, and R3, respectively, in fig. 2(E) and 96,71 , and 96 ohms, respectively, in fig. 2(F).

Finally, even lossy coax cable can act as an attenuator. For example, RG-58A/U coax has a loss of approximately 11 dB per 100 feet at 400 MHz .

Therefore, about 90 feet of RG-58A/U would make an excellent $10-\mathrm{dB}$ attenuator for the $70-\mathrm{cm}(432 \mathrm{MHz}$) band with a power rating of 85 watts to boot.' Equations for designing minimum loss and matched attenuator pads are available in most design handbooks. ${ }^{6}$ Typical computer programs are also available. ${ }^{7}$

transformer matching

Another method of impedance

fig. 4. These eight " L " networks can be used to match any impedance to any other impedance (see reference 9).
matching is through the use of transformers. The 4:1 transformer is particularly popular with Amateurs. It will conveniently match a resistive source to a resistive load that is four times the impedance. A bifilar wound transformer is often used, as shown in fig. 3A. This technique was recently suggested by Bob Sutherland, W6PO, for matching out of GaAsFET amplifiers. ${ }^{8}$ Bifilar wound transformers are also very popular for toroidal baluns (fig. 3B). Trifilar wound transformers can also be used to match resistive impedances that are a ratio of nine times (fig. 3C).
Another popular form of transformer is the resonant step-up/step-down type that is often used at the input of low-noise receivers. It has many forms, but those shown in figs. 3D and 3E are the most popular. Figure $3 F$ is a somewhat simpler but more obscure transformer configuration that's popular where the goal is to optimize the impedance in the circuit without changing taps or components. Reso-
nant transformers are often used in reverse to match the output of a highimpedance small signal amplifier to a lower impedance. Other types of transformers using coaxial techniques will be discussed shortly.

reactive impedance matching

So far l've been discussing mostly resistive matching networks. At the lower VHF/UHF frequencies, especially when low-loss impedance matching is required over only a narrow bandwidth, simple " L " networks using inductors and capacitors are often used, especially when the load impedance is reactive.

This is probably the time to mention the venerable "Smith Chart," a tool used mainly by professionals to impedance match from any one impedance to any other impedance if the impedances of the source, load, and reactive components are known. ${ }^{9}$ Smith points out in Chapter 10 of his book that any resistive impedance, Zo,

fig. 5. Typical stub impedance matching networks: (A) open shunt stub; (B) shorted shunt stub; (C) shorted shunt and series transformer; (D) series transformer and open shunt stub.
can be matched to any complex impedance, $\mathrm{Z1}$, using a simple L-net-
work. The eight required circuit topologies are shown in fig. 4. Smith shows the recommended network based on the portion of the Smith Chart where the load is present.

stub matching

Impedance matching can also be accomplished using coaxial stubs. The most common configurations are the open (fig. 5A) and the shorted (fig. 5B) shunt types. In most cases the stub is less than one-quarter wavelength. If a shunt stub isn't sufficient to complete the match, a tandem transmission line, also usually less than onequarter wavelength, may be added ahead of or behind the shunt stub as shown in figs. 5C and 5D. The Smith Chart is particularly useful for performing stub matching.
Use of the Smith Chart has been described many times in the Amateur literature ${ }^{10.11,12}$ so I won't dwell on it here. Instead, I'll refer you to these references and use the rest of this month's column to show simple im-pedance-matching techniques that can be easily implemented by Amateurs.

coaxial transformers

Probably one of the most widely used impedance matching techniques in the VHF/UHF spectrum is the "quar-ter-wavelength transformer" as shown in fig. 6A. In its simplest form it can match virtually any two resistive impedances. The impedance of the line is the geometric mean between the input and output impedances as shown below:
$Z_{t}=\sqrt{ } Z_{\text {in }} Z_{\text {out }}$
Where Z_{t} is the impedance of the quarter-wavelength transformer, $\mathrm{Z}_{\text {in }}$ is the input impedance, and $\mathrm{Z}_{\text {out }}$ is the output impedance, all in ohms. For example, let's say that we want to match a 50 -ohm resistive line to a 75 -ohm resistive line. Using equation 1, the optimum impedance of the quarter-wavelength transformer, Z_{t}, is 61.24 ohms.

The length, as stated above, must be one-quarter wavelength at the oper-

fig. 6. Typical coaxial transformers: (A) quarter-wavelength transformer; (B) elements of the physical properties of a coaxial line; (C) example of a 50 - to 75 -ohm nonsynchronous transformer. (D) Coaxial cables can be paralleled to half the nominal impedance.
ating frequency. This can be determined using equation 2 :
$L=\epsilon_{r}(2951 / f)$
eqn. 2
Where L is the length in inches, ϵ_{r} is the dielectric constant, 1.0 for air, and f is the frequency in MHz . Therefore a quarter-wavelength transmission line at 432 MHz using air dielectric is approximately 6.83 inches long.

Now all you have to do is to build a coaxial line section one-quarter wavelength long that has a characteristic impedance of 61.24 ohms. The impedance can be determined using equation 3 :
$Z=138 \log (D 2 / D 1) \quad$ eqn. 3
Where Z is the impedance of a coaxial line, D1 is the outer diameter of the inner tubing, and D2 is the inner diameter of the outer tubing (see fig. 6B). For an impedance of 61.2 ohms, the ratio of D2/D1 is approximately 2.78:1.

A suitable coaxial transmission line
can be made using hobby shop brass or copper tubing. ${ }^{13}$ Half-inch household plumbing uses copper tubing that has an approximate inside diameter of 0.532 inches. Therefore, a $3 / 16$-inch outside diameter tube, such as you'll find in hobby shops, would make a good match for the inside tube in this particular application.
Yet another transformer matching scheme - the "non-synchronous" transformer - is an outgrowth of the work of Frank Reiger, OD5CG ${ }^{14,15,16,17}$ offering similar matching properties. Figure $\mathbf{6 C}$ shows a particularly fine example of this kind of transformer using two lengths of coax of the same impedance as that to be matched but inverted. No longer is there a need for an "oddball" line impedance. The overall length is 0.1628 wavelengths, which is 35 percent shorter than an equivalent quarter-wave transformer.

Another trick is to parallel coax. For instance, if two identical pieces of coax are paralleled, the new impedance is half the individual value (fig. 6D).

fig. 7. Examples of coaxial type antenna tuners: (A) half-wavelength adjustable transformer; (B) three-eighths wavelength adjustable transformer; (C) three-eighths wavelength adjustable transformer using coaxial cable.

Therefore, two quarter-wavelength pieces of 70 -ohm coax in parallel would equal 35 ohms and could be used to match 2.5 ohms to a $50-\mathrm{ohm}$ line. Likewise, two quarter-wavelength pieces of 50 -ohm coax in parallel would have an impedance of 25 ohms and would be good for matching from 50 to 12.5 ohms.

variable impedance matchers

Some of the matching techniques just described are fine, especially when the impedances to be matched are resistive. But what do you do when you want to impedance match to a reactive load? The answer is that you need some sort of antenna tuner.

At VHF/UHF/SHF frequencies this doesn't have to be the coil and variable capacitor type typically used at hf. Instead, you can build a very simple tuner using a section of coaxial line with a few small variable capacitors properly spaced along the line and shunted to ground.

Figure 7 shows some recommended types of coaxial line impedance matchers. The first, fig. 7A, is the most complex. ${ }^{18}$ Basically speaking, a half wavelength of 50 -ohm line is constructed in a trough, enclosure, or even in a microstrip line. Four variable capacitors are shunted to ground along the line at specific wavelength intervals as shown. Figure 7B shows a slightly simpler three-eighths wavelength matching scheme that probably has a little less tuning range. ${ }^{19}$

Figure 7(C) shows another scheme developed by one of my former colleagues, Dick Thurston. It originally used standard coax cable, so it has slightly higher loss than the schemes just described, but it's inexpensive and easy to construct. If standard coax is used, the line sections must also be shortened because of the dielectric constant of the line. At lower frequencies the coax can be coiled up. Thus a very compact, inexpensive impe-dance-matching transformer is possible.

The typical maximum capacitance required for the tuners shown in fig. 7 can be determined empirically or by using equation 4 below:
$C_{\text {max }}=9,000 / f$
eqn. 4
Where $\mathrm{C}_{\text {max }}$ is in pF and f is in MHz . For example, 60 pF and 20 pF are typical maximum values for 144 and 432 MHz , respectively. In any case, the minimum capacitance should be no greater than 10 percent of $\mathrm{C}_{\text {max }}$ or 6 and 2 pF , respectively.

In all of these coaxial type tuners, the capacitors must be physically small, have low inductance, and have very short leads. Mica compression trimmers similar to the types used in transistor power amplifiers are quite suitable. Air variables such as the E . F. Johnson type " U " or piston trim-
mers made by Johanson and others are excellent for low-power applications, especially at UHF frequencies.
On 220 MHz , I have a cathodedriven final that has a moderate input VSWR. Normally this wouldn't require any attention, but my solid-state driver doesn't care for the input mismatch. Hence a tuner similar to the one in fig. 7C is now used with three $4-$ to $40-\mathrm{pF}$ mica compression trimmers and two pieces of RG-58A/U coax, each 6-1/2 inches long. This tuner now provides a good input VSWR to my final.
All that's necessary to adjust this kind of tuner is to connect it in the line with a VSWR bridge (fig. 8A). First set all capacitors at minimum capacitance. Then tune one capacitor at a time, starting with the one closest to the load, alternating combinations until a satisfactory match is obtained. It probably takes less time to do than explain it!

One final thought on coaxial tuners. As I pointed out earlier, additional mismatch loss will be incurred if a transmission line has even a moderate (2:1 or higher) VSWR. However, if a tuner is placed close to or at the load instead of the source, the mismatch loss may be entirely eliminated - a double bonus!

UHF/SHF tuners

When you go higher in frequency, capacitors become inductive; consequèntly, the tuners mentioned above are probably usable only to about 1.3 GHz , provided that care is taken to select a good capacitor type. Above 1 GHz , impedance matching is often accomplished using variable shorted (or open) stubs, "line stretchers," and dielectric slug tuners.

Figure 9A shows the simplest type of stub tuner, usually fitted with a connector so that it can be easily inserted into a coaxial line, perhaps via a " T " fitting. If the stub won't decrease the VSWR sufficiently, a line stretcher (fig. 9B) may be inserted between the load and the stub so that the distance of the stub tuner from the load can be varied (fig. 9C).

Another common type of impedance matcher is the double-stub tuner (fig. 9D), which consists of two

fig. 8. Typical VSWR test setup. Note that it's preferable to mount the tuner as close to the load as possible in order to decrease mismatch losses, as discussed in text.
variable-length shorted (or open) stubs typically adjustable up to one-half wavelength and separated by the distance, D, one-eighth to three-eighths of a wavelength at the operating frequency. Double-stub tuners can match impedances only over a limited frequency range.

The triple-stub tuner shown in fig. 9E is more complex to use because it has more independent variables than the double-stub tuner. However, it will virtually match any impedance to any other impedance. It has one major drawback in that some settings will incur very high losses, so use it accordingly.

Stub tuners are in wide use, particularly where a quick impedance match is desired until a final circuit can be configured. However, most stub tuners employ some type of mechanical short circuit. This short sometimes increases insertion loss or causes intermittents due to high circulating currents, especially after extended tuner use. The construction of a suitable double-stub tuner is described in reference 20 . Both double and triple stub tuners are manufactured by many companies, so they often turn up at flea markets.

Because of the mechanical problems associated with stub tuners as just described, dielectric slug tuners are sometimes used. A typical slug tuner is shown in fig. 9F. It usually consists of a 50 -ohm air-type transmission line with electrical quarter-wavelength pieces of low-loss dielectric (such as PTFE/Teflon RTM) or metal slugs (covered with a low-loss insulating dielectric) placed along the line. Slug tuners don't have the tuning range of a stub tuner, but they will fit most applications and are usually easier to construct and use. Some recommended construction tech-
niques for slug tuners are described in reference 21.

A variation on the slug tuner is the "multi-screw" tuner, which may be used in coax (fig. 9G) but is especially useful in waveguide (fig. 9H). It works on the same principle of operation as the coaxial tuner. The greater the number of screws available, the greater the tuning range. Brass or silver-plated screws are recommended, with appropriate nuts soldered to the housing for low-impedance, lowloss rf contacts. Some recommended construction techniques are described in reference 22.

Most of you are probably familiar with microstrip transmission lines which are very popular, especially above 1 GHz . Microstrip is often used where impedance matching is required. The quarter-wavelength transformer (fig. 10A) or shorted and open stubs (fig. 10B) are easily implemented. Microstrip is great for production equipment. However, it does require a thorough knowledge of the circuit elements and much tweaking with expensive test equipment before optimum performance can be achieved.

This explains the recent popularity - particularly above 2 GHz - of what I call the "empirical matching tuner."
Figure 10C shows a typical configuration. A 50 -ohm microstrip transmission line perhaps one-half wavelength long is etched on the pc board either ahead of or behind the device to be matched. Then thin narrow strips $(0.1$ to 0.5 inches wide) of brass or copper shim stock perhaps 0.05 to 0.25 wavelength long are slid along the line until an optimum match occurs.

When using this empirical technique, sometimes the size and/or shape of the metal strip has to be altered many times. Often more than

71 Meadow Road, New Castle, Del. 19720 302-328-7728 Factory Authorized Dealer

9-5 Daily, 9-8 Friday, 9-3 Saturday

AEA • ALINCO • AMERITRON • CUSHCRAFT • ICOM KANTRONICS • KENWOOD • MOSLEY • SANTEC TELEX HY-GAIN • TENTEC• YAESU • AND MORE!

800-441-7008
 New Equipment Order \& Pricing

Large Inventory

Prices are subject to change without notice or obligation. Products are not sold for evaluation.

NO Sales Tax in Delaware! one mile off l-95

SERVICE, USED GEAR INFO:

302-328-7728

Daily UPS Service

fig. 9. Examples of UHF/SHF tuners: (A) variable shorted (or open) shunt stub tuner; (B) typical line stretcher; (C) combination variable shunt stub and line stretcher; (D) typical double-stub tuner; (E) typical triple-stub tuner; (F) typical dielectric slug tuner; (G) multiple screw tuner; (H) screw tuner in waveguide.
one strip is required. These "tuners" can be slid along the main line with a small-diameter insulated material such as a wooden dowel from a cotton swab. When the optimum spot is located on the line, the strips are soldered in place and perhaps glued to the pc board so that they won't move. This approach is simple and inexpensive and can be quite effective.

wideband matching techniques

So far l've mentioned mostly narrowband matching techniques, since they're usually all that Amateurs need. Most wideband techniques require more hardware, several matching sections in cascade (rather than a single section, as previously discussed) and often have higher insertion loss.

Other wideband techniques involve the use of hybrid couplers, ferrite isolators, and circulators, but these usually aren't necessary in Amateur applications and are therefore beyond the scope of this month's column. For those interested, I'd recommend references 23 and 24 for some wideband impedance-matching transformers.

antenna impedance matching

By now you're probably wondering why I haven't covered any information directly related to antennas. The subject of antenna matching has been addressed many times in the literature. References 13 and 26 describe not only recommended techniques but also typical test equipment.

Basically, matching an antenna is largely a matter of setting up a measurement system similar to the setup in fig. 8. Then the length, spacings, and diameters of the driven element and matching section are adjusted until an optimum impedance match is obtained. If you have any specific questions about antenna impedance-matching techniques, let me know and they can be covered in a future column.

summary

The subject of impedance-matching techniques has been widely addressed
in Amateur literature. New techniques - some simple, some complex - are constantly being presented. The material presented in this month's column reflects a summary of some of the information that should be most useful for Amateurs, especially those interested in the VHF/UHF/SHF frequencies. I hope I've described some new or interesting technique that will be of help to newcomers and oldtimers alike.

acknowledgments

I'd like to particularly thank Dick Turrin, W2IMU, for deriving the formulas necessary for me to calculate mismatch loss, and for providing appropriate references.

new records

Just as I completed this column, an important milestone in radio propagation occurred: the first two-way contact via sporadic E propagation on the $135-\mathrm{cm}(220 \mathrm{MHz})$ Amateur band. As I've mentioned before, this has been a big plum, with at least two prior oneways. (Yes, I was on one end of one of them!)

All that changed during the June ARRL VHF OSO Party, when sporadic E propagation was super on 6 and 2 meters in the southern portions of the United States. Finally, after a few unsuccessful attempts, on June 14, 1987, Bill Duval, K5UGM, of Irving, Texas (EM12MS) completed a two-way contact with John Moore, W5HUQ/4, of Orange Park, Florida (EM90GC), on 220.1 MHz - for a record 932 miles $(1499 \mathrm{~km})$. Both CW and SSB were used, and signals were much greater than S9. Congratulations to Bill and John. Another Amateur Radio propagation first! Now that it's been done, let's see how long it takes to do it again!

During this same contest, apparent double-hop sporadic E contacts took place on 2 meters. However, some of them that have been reported to me so far either were short of the present North American record (1891 miles or 3043 km) or were incomplete contacts. I would particularly like to hear from

fig. 10. Examples of typical microstrip matching techniques: (A) series quarterwavelength transformer; (B) series and shunt stubs; (C) empirical matching tuner.
anyone who can better the existing record.

important VHF/UHF events:

October 3-4 International Region 1 UHF/SHF Contest, 70 cm and up
October 4 EME perigee
October $9 \quad$ Predicted peak of the Draconids meteor shower at 0900 UTC
October 10-11 Mid-Atlantic States VHF Conference Warminster, Pennsy/vania (Contact WA2OMY)
October 17-18 ARRL EME Contest, first weekend
October $21 \quad$ Predicted peak of the Orionids meteor shower at 0830 UTC
October 30 EME perigee
November 3 Predicted peak of the
Taurids meteor shower at 2200 UTC
November 3
Predicted peak of the Cassiopids meteor shower at 2100 UTC

TRANSISTORS

2-30 MHz 12V (*-28V)				
P/N		Rating	Net Ea.	Match Pr.
MRF421	0	100W	\$24.00	\$53.00
MRF 422*		150W	38.00	82.00
MRF433		12.5W	11.00	26.00
MRF449,/A	Q	30W	12.50	30.00
MRF450, ${ }^{\text {a }}$	0	50W	14.00	31.00
MRF453./A	Q	60W	15.00	35.00
MRF454, A	0	80W	15.00	34.00
MRF455, A	0	60W	12.00	28.00
MRF485*		15W	6.00	16.00
MRF492	0	90W	16.75	37.50
MRF492A	0	90W	19.75	43.50
SRF2072	0	65W	13.50	31.00
SRF3662	0	110W	25.00	54.00
SRF3775	0	75W	13.50	31.00
SRF3795	Q	90W	16.00	37.00
3800	0	100W	18.75	41.00
2SC2290	0	80W	19.75	45.50
2SC2879	Q	100W	25.00	54.00
Q = Selected High Gain Matched Quads A vailable				
VHF UHF TRANSISTORS				
	Rating	MHz	Net Es.	Match Pr.
MRF237	4W	136-174	2.70	-
MRF240, ${ }^{\text {a }}$	40W	136-174	15.00	35.00
MRF245	80W	136-174	30.00	68.00
MRF247	75W	136.174	27.00	63.00
MRF248	80W	136-174	33.00	71.00
MRF641	15W	407-512	20.00	46.00
MRF644	25W	407-512	24.00	54.00
MAF646	40W	407.512	26.50	59.00
MRF648	60W	407-512	31.00	69.00
2N6080	4W	136.174	6.25	-
2N6081	15W	136.174	8.00	-
2N6082	25W	136-174	9.50	-
2N6083	30W	136-174	9.75	24.00
2N6084	40W	136-174	13.00	31.00

PARTIAL LISTING OF MISC. TRANSISTORS			
MRF134	\$16.00	MAF497	\$14.25
MRF136	21.00	MRF515	2.50
MRF 137	24.00	MRF607	2.50
MRF138	35.00	MRF630	4.25
MRF140	87.50	MRF754	15.00
MRF148	34.00	MRF843,F	22.50
MRF150	87.50	MRF846	43.50
MAF171	34.50	MRF873	24.50
MRF172	62.00	MRF1946,A	15.00
MRF174	80.00	CD2545	16.00
MRF208	11.50	2N1522	11.95
MRF212	16.00	2N3553	7.25
MRF221	11.00	2N3771	3.50
MRF224	13.50	2N3866	1.25
MRF226	14.50	2N4048	11.95
MRF238	13.00	2N4427	1.25
MRF239	15.00	2N5589	7.25
MRF260	7.00	2N5590	10.00
MRF26 ${ }^{\text {P }}$	8.00	2N5591	13.50
MAF262	9.00	2N5641	9.50
MAF264	13.00	2N5642	13.75
MRF309	29.75	2N5643	15.00
MRF317	56.00	2N5646	13.00
MRF406	12.00	2N5945	10.00
MRF458	20.00	2N5946	13.00
MRF475	3.00	2N6255	2.50
MRF476	2.75	OUTPUT	ULES
MRF477	12.00	SAU4	55.00
MRF479	10.00	SAV6	48.00
MRF492A	19.00	SAV7	48.00
40582	7.50	M57712, M5	337 use
NE41137	2.50	M57737, SC	9 SAV7
We stock RF Power transistors for Atlas, KLM, Collins, Yaesu, Kenwood, Cubic, Mirage, Motorola, Regency, Heathkit, Drake, TWC, Wilson, GE, etc. Cross-reterence on CD, PT, SD, SRF, JO, and 2SC P/Ns.			
Orders received by 1 PM are shipped UPS same day. Minimum order twenty dollars. COD/VISA/MC Foreign Orders Accepted			
FAX: (619) 744-1943			

November 14-15 ARRL EME Contest, second weekend
November 17 Predicted peak of the Leonids meteor shower at 1500 UTC
November 24 EME perigee

references

1. Joe Reisert, W1JR, "VHF/UHF World: Transmis sion Lines," ham radio. October, 1985, page 83. 2. Gerald Hall, K1TD, The ARRL Antenna Book, available from ham radio's Bookstore; $\$ 8.00$ plus $\$ 3.50$ ship. ping and handling.
2. Theodore Moreno, Microwave Transmission Design Data, Dover Publications, 1958.
3. Joe Reisert, W1JR, "VHF/UHF World: Medium Power Amplifiers," ham radio, August, 1985, page 39. 5. M. Walter Maxwell. W2DU/W8KHK, "Another Look at Reflections - Part II." QST. June, 1973, page 20.
4. Reference Data for Radio Engineers, Sixth Edition, Howard W. Sams Company.
5. Joe Reisert, W1JR, and Gary Field, WA1GRC, "RFCAD Electronics Design Program": available for the IBM PC from ham radio's Bookstore; $\$ 39.95$ plus $\$ 3.50$ shipping and handling.
6. Joe Reisert, W1JR, VHF/UHF World: Low Noise GaAsFET Technology," ham radio, December, 1984, page 99.
7. Phillip H. Smith, "Electronic Applications of the Smith Chart," McGraw-Hill Book Company, 1969.
10 Gerald L. Hall, K1PLP, "Smith Chart Calculations for the Radio Amateur - Part 1," QST, January, 1966, page 22.
8. Gerald L. Hall, K1PLP, "Smith Chart Calculations for the Radio Amateur - Part II," QST, February, 1966 page 30 .
9. Jim Fisk, WIDTY. "How To Use The Smith Chart," ham radio, November, 1970, page 16.
10. Joe Reisert, WIJAA, "VHF/UHF Techniques: Feeding and Matching Techniques for VHF and UHF Antennas," ham radio, May, 1976, page 54.
11. Frank A. Regier, "Impedance Matching with a Series Transmission Line Section." Proceedings of the IEEE, Volume 59, No. 7, July 1971, pages 1133-1134. 15. Frank A. Regier, OD5CG, "Series-Section Transmission Line Impedance Matching," QST, July 1978. page 15.
12. Pat Hawker, G3VA, "Technical Topics: Transmission Line Transformers," Radio Communications, December, 1971, page 841.
13. Henry Keen, W5TRS, "Non-Synchronous Impedance Transformer," ham radio, September, 1975, page 66.
14. William L. Smith, W3GKP/A3GKP. "The C-Line Matcher," QST, September, 1968, page 23.
15. Robert D. Shriner, WAOUZO, "A Coaxial-Line Matcher for VHF Use," QST, July, 1969, page 20. 20. George Harterell, K6LK, "Double-Stub Tuner," ham radio, December, 1978, page 72.
16. Dick Turrin, W2IMU, "Technical Reports from the Crawford Hill VHF Club," available from W2IMU, P.O. Box 65, Colts Neck. New Jersey 07722 ($\$ 24.00$).
17. A. B. Bereskin, "Multi-Screw Tuner for Any Mismatch," Microwave Journal, August, 1983, page 133. 23. George L. Matthaei, "Tables of Chebyshev Impedance-Transforming Networks of Low-Pass Filter Form," Proceedings of IEEE, August, 1964, page 939. 24. George L. Matthaei, "Short-Step Chebyshev Impedance Transformers," IEEE MTT. August, 1966, page 372.
18. Joe Reisert, W1JAA, "VHF/UHF Techniques: Matching Techniques for VHF/UHF Antennas," ham radio, July, 1976, page 50.

ham radio

This is the first "QRO?" column. a collection of notes and anecdotes concerning ALPHA amplifiers, ETO, and RF power in general. We plan to print QRO? irregularlywhenever we think we have something of interest.

QRO? as you probably know. means." Shall I increase power?" Some of our staff prefer the name "Power Lines" for this new column. If you'll help us settle the issue by dropping me a note before November 1 with your vote and the name of the magazine where you read this, we'll send you an ETO keychain as a token of our appreciation. (It may take a month or two, so please be patient.) Meanwhile, keep an eye out for QRO? (or "Power Lines") opposite ETO's regular ad.

Where have we been?

You may have wondered why ETO's monthly ad disappeared abruptly from the ham magazines in mid 1983. Well, at Dayton that year, representatives of one of the world's largest electronics companies saw our ALPHA 85 micro-processor-controlled RF linear amplifier (since superseded by the forthcoming ALPHA 88) and recognized the applicability of its basic technology to an imminent requirement of theirs.

The upshot is that ETO is now the principal supplier world-wide of the RF power amplifiers used in high field magnetic resonance imaging (MRI) systems. These sophisticated linear amplifiers typically deliver $15+\mathrm{kW}$ and cover $10-87 \mathrm{MHz}$ automatically under remote computer control.

The incredibly complex medical diagnostic MRI systems in which our amplifiers are used can peer into the living human body and display images of the brain. spinal column-even the beating heartwith clarity and detail that rivals the illustrations in med school anatomy texts. Suffice to say for now, the opportunity to become involved in MRI was something ETO couldn't pass up, and we spent three years totally immersed in that challenge.

Today's ETO is a different company.

We're five times bigger than we were in 1983. A new building tripling our floor space was added in 1985. In the ETO tradition of investing heavily in new technology, our engineering group (mostly
hams) has grown five-fold. We may even have a ham station on the air by the time you read this!

Meet our Technical Director.

Last year, Don Fowler (W1GRV. ex-W4YET/K6YXC) joined ETO as director of all technical activities including engineering, quality, and manufacturing. Those with long memories will remember Don as the young chief engineer of Signal/ One, responsible for the original CX7 transceiver back in 1968-69. That design nearly two decades ago introduced a bevy of new techniques and features that since have become de rigueur in virtually all up-scale amateur transceivers.

Don spent the intervening years in increasingly responsible engineering management jobs with GenRad, Narco Scientific. and Sensormatic. There is absolutely no one I would rather have in charge of technological progress at ETO, and our new products will demonstrate why.

For now, please take a close look at the ALPHA 86 and all the truly new features and capabilities it incorporates. The ' 86 is FCC type accepted and shipments should be going out the door by the time you read this. Why not give us a call so we can send you a detailed brochure? Better yet, order now for earliest delivery of your new ALPHA 86!

Dick Ehrhorn W4ETO

Alpha 86 offers these very special reasons to buy one now:

- 1500 watts RF output power -no time limit in any mode.
- Silent, lightning-fast QSK -new PIN diode T/R system.
- Pre-tuned input on all bands -easy drive and high efficiency.
- Five-function instant metering-four separate LED bargraphs.
- Quick, easy tune-up.

PROVING AGAIN THAT THE ONLY GOOD REASON TO GIVE UP YOUR OLD ALPHA IS A NEW ALPHA

Plus the traditional virtues of all Alpha amplifiers:

- Ruggedness and quality -synonymous with Alpha.
- Compact and lightweight -exceptional power/ weight ratio.
- 3 year limited warranty - exclusive with ETO.
- ETO factory service -renowned for helpfulness.
- Satisfaction of ownership -goes with every Alpha.

Contact ETO direct for detailed literature and delivery information.
EHRHORN TECHNOLOGICAL OPERATIONS, INC.
P.O. Box 888

Canon City, CO 81212
Telephone (303) 275-1613
Alpha 86: $\$ 2995$ delivered in North America

Novice Enhancement opens up a whole new way for novices to communicate. To make the most of it, talk to Larsen Electronics.

We'll tell you how Larsen antennas can greatly improve your powers of communication. We'll also explain how Larsen 220 and 1296 MHz antennas are designed to give you the best performance.

Talk to your Larsen amateur dealer today, and see if Larsen performance doesn't speak for itself.

Larsen Pntennos

IN USA: Larsen Electronics, Inc., 11611 N.E. 50th Ave., P.O. Box 1799, Vancouver, WA 98668 206-573-2722.
IN CANADA: Canadian Larsen Electronics, Ltd., 149 West 6 th Avenue, Vancouver, B.C. V5Y 1K3 604-872-8517

128

UPGRADE EASIL Y!
 AMECO

WITH AMECO BOOKS \& CODE COURSES

COMPLETE MORSE CODE COURSE

FOR THE PC
This is the most versatile code course ever designed-with 4 user friendly menus and over 18 options. Some options are: - Sends infinite, random characters and QSO's (similar to FCC/VEC exams), at ANY speed and tone

- Sends external data files
- Sends with the HI/LO method
- Includes lessons for beginners and code book - Plus many more features Cat \#107-PC For IBM PC/XT/AT or 100% comp

Binco ax
, wionat

- FCC TEST MANUALS •

Each test manual contains the latest $F C C / V E C$ test questions PLUS the ARRL multiple choice answers, PLUS a complete simplified discussion to each question written in Ameco's proven, easy-to-understand style.
Novice (\#27-01) 300 questions $\$ 4.95$ General (\#12-01) 500 questions $\$ 4.95$ Advanced (\#26-01) 500 questions $\$ 4.95$ Extra (\#17-01) 400 questions $\$ 4.95$

return of the

360-degree propagation prediction

Improved coding combines 24-hour MUF and point-to-point

 programsMy February, 1987, article, " 360 -degree MINIMUF Propagation Prediction ${ }^{\prime \prime}$ described a computer program for producing a 360 -degree propagation prediction for any stated hour of the day. That article generated considerable interest in the program; unfortunately, there was a fault in the program for locations other than North Carolina, and that fault brought lots of mail from those interested in using the program but mystified as to why it would crash at the 180 degree computation of their latitude/longitude.

Several Alaskan hams, particularly AL7HU, discovered a problem in the computation of the longitude at zero bearing in that northern latitude, and others (WA1WPJ, VK1BGG, and Glenn Skaggs of the Naval Research Laboratories in Washington, DC) explained an apparent anomaly at certain MUF computations in southerly directions.

The main problem was the syntax error that occurs when you try to compute the latitude and longitude at the 180 -degree bearing. I knew that the equations don't permit computations along the line of equal longitude, and therefore included an IF statement to make the 180 -degree bearing "your home longitude +.1 ". That statement was useless. Interestingly enough, however, the problem doesn't occur for all latitude/longitude computations. The quick fix was to insert two additional lines:
105 IF H $=180$ THEN H $=182$
106 IF H $=192$ THEN H $=190$

While that addition made the program work, the cause of the problem was still in question.
I added a temporary line to the program asking for the printout of the " Y " computation of line 180 (see table 1 of the original article). The test was done using the latitude/longitude for Lodi, California, the OTH of WA6FKM, one of several readers having trouble with the program.

As the bearing approaches 180 degrees, the computation for Y approaches 1. At 180 degrees the value of Y is 1.00000599 . The next line, 190, computes the longitude and has a term using $1-Y^{*} Y$. When Y is greater than 1, a negative term results and the computer can't take the square root of a negative number, so that produces the syntax error. A better way of handling the problem is to delete lines 105 and 106 and insert the following statement instead.
185 IF ABS $(\mathrm{Y})=>1$ 1-1E-9 THEN $\mathrm{Y}=.999999$ This will always work! If line 185 is added, then lines 105, 106, and 205 through 207 may be omitted.

The problem occurring at the high latitudes is that the zero-bearing $4000-\mathrm{km}$ distance from Anchorage, Alaska, for example, is over the North Pole and down on the other side of the world. An IF statement at line 200 says:
IF H = 0 THEN PRINT \#. . . "HOME LONG. $+.1^{\prime \prime}$
Thus, the actual distance by a calculator is 2161 km . When I eliminated the HOME LONG. + . 1 statement and let the computer do its own thing, I discovered that it computed and printed the correct answer. So lines 199 through 201 should be deleted.

The anomaly of the lower MUFs at certain southern bearings was explained by the fact that the MINIMUF program goes into a two-hop mode at ranges slightly greater than 4000 km . In my program

By Henry Elwell, N4UH, Route 2, Box 20G, Cleveland, North Carolina 27013

fig. 1. One-hop takeoff angle versus range and height.
it's attributable to a lack of precision (only one decimal point) in the results of the latitude/longitude program generation of the $4000-\mathrm{km}$ periphery. Also, the $4000-\mathrm{km}$ periphery for the first hop isn't practical for all stations because it's based on a vertical propagation angle of about 5 degrees or less. It's very practical for those with antennas producing such low angles of vertical radiation.

However, the average ham with, say, a tribander at 60 feet, has a takeoff angle of about 12 degrees on 20 mete"s. Thus a first-hop distance would be no more than 3000 km , depending upon the reflection height of the ionosphere. Figure 1 shows the relation of onehop takeoff angles vs. range and ionosphere height. Using the $3000-\mathrm{km}$ first-hop great circle periphery requires substituting the following lines for lines 110 and 180:
110 L2 $=.0022617638 * \cos (L 1 * .01745)$ * $\cos (\mathrm{H} * .01745)+(-.9999974422) * \sin (\mathrm{~L} 1 * .01745)$
$180 \mathrm{Y}=$ (-.9999974422)-(sinL1*.01745* [same as original to its end]
Any other distance may be used and the sin and cos values of $D / 60$ substituted, but remember that D is in nautical miles and is found from kilometers by dividing the km by 1.852 . Of course, if you want to reach way out, leave the $4000-\mathrm{km}$ computation as is.

combining programs

In my original article I said that it should be easy to combine the point-to-point prediction with the 360-degree prediction because both methods employ the basic MINIMUF program. Because I'd found that at times I wanted to know the 24 -hour prediction from North Carolina to somewhere else while I was still in the 360-degree program, I went ahead and combined the two.

One of the first steps was to combine the latitude/longitude program with the main program; with
only 10 to 11 lines required, it was an obvious thing to do. I often felt the need to use a different transmitter location than the one built into the program as DATA, and it was a nuisance to write it in for different locations all the time.

The new program permits the user to select any first-hop distance. The program then sets up a latitude array and a longitude array, both of which are tied in with the bearing (heading). It's interesting to see how the MUF retreats as you decrease the length of the first hop to less than 4000 km . You can see how a range of 900 km , for example, would restrict you to the 40-meter band or lower if there were no other layers, because the F2 layer doesn't support higher frequency transmissions for those distances under all circumstances. Note that the MINIMUF program is based only on the F2 layer.

This would be a good place to mention some of the factors upon which the MINIMUF program is based, as detailed in the technical report (TR-186) referenced by K6GKU in his article in $Q S T,{ }^{2}$ which Glenn Skaggs duplicated and sent to me.

The MUF is principally controlled by the critical frequency of the F2 layer of the ionosphere. The critical frequency is that frequency which will be reflected from the ionosphere when a signal is transmitted vertically. Unlike propagation from the E and F1 layers, which can be modeled as a function of the angle of the sun from the zenith, F2 propagation prediction is more complex. The F2 layer has diurnal (day/night), seasonal, and geographical variations. It also has socalled anomalies: the MUF can be higher in midday in winter than in summer, although in the Northern Hemisphere the summer sun is further north and suggests higher ionization; also, the MUF can peak in the late afternoon rather than at midday on certain days.

Figure 2 shows the E-layer 2000-km MUF in megacycles for a particular day. The horizontal scale is local time, and the vertical scale is latitude. Note that for your latitude, the MUF starts out very low, peaks at noontime, and decreases as the day continues. Thus, you can predict E-layer MUF by the angle of the sun from its zenith. TR-186 says let's start from there, using the zenith angle as a forcing function to "drive" a semi-empirical model; we'll use a single-lag linear system such as an RC circuit as the model. Allowing the lag time constant to be long (about ten hours in the summer) and short (one hour in winter) at middle and equatorial latitudes, one could then at least partially reproduce both the seasonal and diurnal anomalies. The lag time constant during the day is a function of the midday solar zenith angle. The time constant at night is two hours, regardless of season or geographical location.

All this adds up to an equation which the authors of the article called the ionosphere as foF2:

fig. 2. E-layer, 2000 MUF (predicted for June, 1947).

$$
f_{o} F 2=\left[\left(1+R / R_{o}\right) \sqrt{A_{o}+A_{1}\left(\sqrt{\cos X_{e f f}}\right)}\right]
$$

where: $R=$ sunspot number, $\cos X_{\text {eff }}$ is the \cos of the effective solar zenith angle, and Ro, Ao and A1 are constants independent of geographic location and time.

Of course the technical report includes pages of equations for calculating those seemingly simple symbols which consider sunsets, sunrise, relaxation time, daytime duration, calculations of local noon, sunrise and sunset times, and the noon value of the solar zenith angle. Then we have to compute control points and two-hop paths if a $4000-\mathrm{km}$ distance is exceeded. There's an M-factor that considers the ionosphere height of 290 km (which must change from winter to summer) and includes a factor for transequatorial paths, which increases MUF, a factor regarding increases in F2 layer heights observed at high northern latitudes during the summer, and others.

I chose MINIMUF 3.5 for the 360 -degree propagation prediction because compared with advanced programs of its kind, it's very simple. I recommend that those who have more advanced prediction programs substitute them for MICROMUF 3.5. The subroutine for the MICROMUF program goes from line 1140 to 2060. When I first considered doing this revision, I thought a complete renumbering of the program would be neater and more desirable; however, recalling previous efforts, I decided to leave the numbering as it appeared in the orginal article for the benefit of others who may want to update their copies of the program.

I've eliminated a lot of unnecessary material in the new program. It starts out with a menu that asks whether you want a 360 -degree or a point-to-point pre-

- LOW 25 mA Current Drain
- Miniature size - Lightweight.
- Rugged metal, shielded case.
- Lithium Battery backup for RAM.
- Onboard Watchdog for reliability
- Standard DB25 Connectors.
- "Connected" Status output line
- Remote Commands in Unattended Mode with Hardware Lockout.
- Retains all other PK-1 features
- Extra l/O lines for special applications.

NEW SOFTWARE FEATURE:
INTELLIGENT "BUDLIST" . Provides selective callsign fittering for Digipeating, Monitoring and Connecting

Model PK1-L

Wired/Tested
List price - $\$ 209.95$ Amateur net-\$179.95

Power requirement: 9 to 15 Volts DC \& 25 mA typical Dimensions: $4.6 \times 59 \times 1.0$ inches Total Weight: 12 ozs

Please spectly Call Sign 5510 Number. and Node Number atien ordering Contact GLB for additional info and available options
We offer a complete line of transmitters and receivers. strips. preselector preamps CWIDers \& synthesizers for amateur \& commercial use Request our FREE catalog MC S Visa welcome

GLBELECTRONICS,INC.
 151 Commerce Pkwy., Buffalo, NY 14224 716-675-6740 9 to 4

alpha delta

Model DELTA-4

Lightning Surge Protected
4 Position Coax Switch

Superior RF switching and equipment protection for Amateur, commercial and military communications stations. "Exclusive "center-off" ground position internally disconnects and grounds all antenna circuits for maximum protection when operator is away from the station. * Incorporates the famous Alpha Delta replaceable ARC-PLUG cartridge for active antenna protection while grounding other 3 antenna positions. An Alpha Detta FIRST! • Features custom designed cast aluminum housing with constant impedance micro-strip cavity construction for low loss performance from 1.5 to 450 MHz . No lossy wafer switch. • Positive detent ball bearing switch drive snaps firmly into place. • Handles full legal power ' Buill with pride in the U.S.A.

MOdel DELTA 44 POSITION COAX SWITCH (UHF CONNECTORS) 869.95

Available from your Alpha Della dealer or order direct. Please add $\$ 4.00$ shipping and handling. US only. Exports quoted.

PO Box 571
Centerville, OH 45459 (513) 435-4772
current solutions to current problems

HOUR $=10 Z$ DAY $=6$ MONTH $=$ JUN SF = 74 35.75 DEG 80.75 DEG 1ST HOP = 4000 KM				DATE:DAY 6 MONTH JUN TRANSMITTER LOCATION: LATITUDE 35.75 LONGITUDE 80.75			
BEARING	MUF	BEARING	MUF	REC	CATIO		
0	14.9	180	11.1		52 LO		
10	15.4	190	11.1	DIST	6298 K		
20	15.5	200	11.2	SUN	MBER		
30	15.6	210	11.3				
40	15.2	220	11.5	HOUR	MUF	HOUR	MUF
50^{*}	14.7	230	11.7	0	15.5	12	16.1
60	17.7	240	11.9	1	14.4	13	16.8
70	17.0	250	12.1	2	13	14	17.5
80	16.3	260	12.3	3	11.8	15	18
90	15.6	270	12.6	4	11.7	16	18.4
100	14.9	280	12.8	5	11.7	17	18.7
110	14.3	290	13.2	6	11.1	18	18.5
120	13.7	300	13.7	7	11	19	18.3
130	13.1	310	11.5	8	11	20	18
140	12.5	320	12	9	12.7	21	17.6
150	11.9	330	13	10*	14	22	17.1
160	11.2	340	14.5	11	15.1	23	16.4
170	11.1	350	14.5	PRESS P PRINT: Q QUIT: T TRY AGAIN			
PRESS P PRINT:Q QUIT:T TRY AGAIN							
*Note: the approximate 50 -degree 1000 UTC MUF is slightly higher as a one-hop prediction than the 1000 UTC MUF to England because of the greater number of hops needed.							

fig. 3. Compare (A), the 360 -degree propagation values, to (B), the predicted point-to-point conditions to England over the same period of time as shown in (A).
diction. It also displays a note stating that MUFs will be lower if the WWVV K-factor is greater than 1 . Most predictions, including MINIMUF, ignore the geomagnetic field activity ($K>1$).

If you select a 360 -degree prediction, you're asked whether you want your home coordinates. If so, you get them - provided, of course, that you've put them into line 41; mine are there now. If you want some other QTH, you're asked for that latitude and longitude; this is a good feature because you may want to see what's happening somewhere else or give information to a friend. Of course, you're also asked for the month, day, solar flux number, and the hour.

Once these decisions are made, the latitude/longitude computation takes place and is stored in memory to be used if you want to make other runs. It takes about 30 seconds for the computer to set up the information, but the screen tells you to wait. The screen also tells you to turn up the volume control of the monitor so you can be alerted by an automatic tone when the prediction is completed. You may then exit the program, run it again, or select a printout. If you want a prediction for another OTH, you must exit and start the program again so the new coordinates can be computed.

If you select the point-to-point prediction mode, you have similar decisions to make and enter into the computer as it requests them. There's also a tone to indi-
cate completion of the prediction, but no notice of it beforehand, as in the 360 -degree prediction.

In projects such as this, you reach the point at which you have to say "Enough!" and leave further development up to users; such is the case of a polar coordinate display, which is much more realistic than the same data presented in tabular form. WA1WPJ has devised a nice polar display for the C-128 and has offered to correspond with others who'd like more information; I appreciate his willingness to share his talents.

Figure 3 shows a comparison of the two printouts. The point-to-point prediction is from North Carolina to England, which has a bearing of approximately 50 degrees. Compare the two printouts for a time of 10Z, the time used for the 360 -degree prediction, and you'll see that the one-hop MUF of the 360 -degree prediction is 14.7 MHz , while the point-to-point prediction is 14 MHz . This difference is attributable to the fact that a two-hop mode is being used in the prediction, which lowers the MUF slightly when distances greater than 4000 km are used.

For those who wish to substitute another prediction in place of the MINIMUF 3.5 lines 1140 to 2060, an entrance and exit line has been inserted to change the transmitter latitude/longitude to radians and then back to degrees to facilitate printing degrees on the screen. There's also a short subroutine (lines 2640 to

ICOM 1C.76] anew era dawns

Built-in AC Power Supply - Built-in Automatic Antenna Tuner
 - SSB, CW, FM, AM, RTTY
 - Direct Keyboard Entry
 - 160-10m/General Coverage Receiver

- Passband Tuning plus IF Shift - QSK up to 60 WPM

The IC-761 ushers in an exciting new era of amateur radio communications; an era filled with all the DX'ing, contesting, and multi-mode operating pleasures of a fresh new sunspot cycle The innovative |C-76| includes all of today's most desired features in a single full-size cabinet. This is ham radio at its absolute best!

Work the World. The IC-76I gives you the competitive edge with standard features including a built-in AC power supply, automatic antenna tuner, 32 fully tunable memories, self-referencing SWR bridge, continuously variable RF output power to 100 watts in most modes, plus much, much more!

Superb Design, Uncompromised Quality. A 105 dB dynamic range receiver features high RF sensitivity and steep skirted IF selectivity that cuts QRM like a knife. A 100% duty cycle transmitter includes a large heatsink and internal blower. The IC-76I transceiver is backed with a full one-year warranty and ICOM's dedicated customer service with four regional factory service centers. Your operating enjoyment is guaranteed!

All Bands, All Modes Included. Operates all HF bands, plus it includes general coverage reception from 100 kHz to 30 MHz . A top SSB, CW, FM, AM, and RTTY performer!

Passband Tuning and IF Shift plus tunable IF notch provide maximum operating flexibility on SSB, CW, and RTTY modes. Additional features include multiple front panel filter selection, RF speech processor, dual width and adjustable-level noise blanker, panel selectable low-noise RF preamp. programmable scanning, and all-mode squelch. The IC-76I is today's most advanced and elaborate transceiver!

Direct Frequency Entry Via Front Keyboard or enjoy the velvet-smooth tuning knob with its professional feel and rubberized grip.

Special CW Attractions include a built-in electronic keyer, semi or full break-in operation rated up to 60 WPM, CW narrow filters and adjustable sidetone.

Automatic Antenna Tuner covers 160-10 meters, matches 16 - 150 ohms and uses high speed circuits to follow rapid band shifts.

Complementing Accessories include the $\mathrm{Cl}-\mathrm{V}$ computer interface adapter, SM-10 graphic equalized mic, and an EX-310 voice synthesizer.

You're The Winner with the new era IC-76I. See the biggest and best HF at your local ICOM dealer.

The＂Flying Horse＂

 sets the standardsContinuing a 67 year tradition，we bring you three new Callbooks for 1988.
The North American Callbook lists the calls， names，and address information for 478，000 licensed radio amateurs in all countries of North America，from Canada to Panama including Greenland，Bermuda，and the Caribbean islands plus Hawail and the U．S．possessions．
The International Callbook lists 481,000 licensed radio amateurs in countries outside North America．Its coverage includes South America，Europe，Africa，Asia，and the Pacific area（exclusive of Hawait and the U．S．possessions）．
The 1988 Callbook Supplement is a new idea in Callbook updates，listing the activity in both the North American and International Callbooks．Published June 1，1988，this Supplement will include thousands of new licenses，address changes，and call sign changes for the preceding 6 months．

The 1988 Callbooks will be published December 1，1987．See your deater or order now directly from the publisher．
aNorth American Callbook incl．shipping within USA incl．shipping to foreign countries

口 International Callbook
incl．shipping within USA
$\$ 28.00$ 30.00 $\$ 30.00$

Callbook Supplement published June 1 st incl．shipping within USA
$\$ 13.00$ incl．shipping to foreign countries $\quad 14.00$

SPECIAL OFFER

口 Both N．A．\＆International Callbooks incl．shipping within USA $\$ 55.00$ incl．shipping to foreign countries $\quad 60.00$

Illinois residents please add $61 / 2 \%$ tax All payments must be in U．S．funds．

RADIO AMATEUR｜le K INC

 Dopt．F925 Sherwood Dr．，Box 247 Lake Bluff，IL 60044 ，USA
fig．4．N4UH program provides MINIMUF 3.5 propagation predictions for any hour and point－to－point predictions for $\mathbf{2 4}$－hour periods．

1 REM THIS PROGRAM PROVIDES A MINIMUF PROPAGATIDN PREDICTION FOR 360 DEGREES
2 REM FOR A SPECIFIED TIME FROM O TO 23 HOURS GMT AS WELL AS A PT－TO－PT PRED．
4 REM IT HAS BEEN MODIFIED BY HENRY ELWELL N4UH TO DO THAT FROM AN EARLIER
5 REM PROGRAM BY ALAN MEMLEY，KEGUY
6 REM THE REVISED PRDGRAM IS DATED 20 MAY 1987
10 PRINT CHRs（147）
11 As＝CHRS（17）：REM CURSOR DOWN
12 Bs＝CHRs（18）：REM REVERSE ON
13 Cs＝CHRs（19）：REM HOME
14 Ds＝CHRs（29）：REM CURSOR RIGHT
is Es＝CHRs（ 145 ）：REM CURSOR UP
16 Fs＝CHRs（147）：PRINTF \＄：REM CLEAR／HOME
： 7 GS＝CHRS（ 158 ）：PRINTGS：REM CONTROL－YELLOW

$19 \mathrm{QC}=0: \mathrm{QD}=0: \mathrm{OG}=0: \mathrm{G}=0:$ REM SEE LINE 4000 FOR EXPLANATION
20 DIMMs（37），As（4），M（12），H（40），L2（360），W2（360）
21 DATA $31,28,31,30,31,30,31,31,30,31,30,31$
22 FORX $=1$ TO12：READM (x) ：NEXT
23 Ms＝＂JANFEBMARAPRMAYJUNJUL AUGSEPOCTNOVDEC＂
24 PRINTASASHS
25 PRINT＂${ }^{2}$ THIS PROGRAM USES MINIMUF 3.5 FOR
26 PRINT＂${ }^{*}$ TWO PROPAGATION PREDICTIONS：
27 PRINT＂$=$ 1．FOR 360 DEGREES ANY GIVEN HOUR
28 PRINT＂${ }^{2}$ 2．FOR PQINT－TO－POINT FOR 24 HOURS＊＂
29 PRINT＂＊SELECT EITHER MODE BY PRESSING 1 OR 2＊＂
30 PRINTASHSASAS＂NOTE：MUF WILL BE LOWER AS WWV K INDEX EXCEEDS 1 ＂
31 GET1s：IF 1s ${ }^{\circ}{ }^{* \prime \prime}$ THEN 31
32 IF $1 s=* 2$＂THEN QC＝1：GOTO35
33 IF Is ${ }^{3}={ }^{1} 1$＂THEN GOTOS5
34 GOTO 31
35 ：
36 PRINTASAS＂USE HOME LAT／LONG (Y / N) ？＂ Is
37 GETIs：IF $15=\mathrm{m}$ THEN 37
3B IF IS〈〉＂Y＂THEN GOTOSO
$40 \mathrm{OD}=1$ ：REM USING HOME LAT／LONG
$41 \mathrm{~L} 1=35.75 \mathrm{z} w 1=80.75$
50 ：
200 POKE 53280.14
210 POKE 53281．6
З3O PRINT Fs
$285 \mathrm{PI}=3.14159265$
$290 \mathrm{RO}=\mathrm{PI} / 180$
$300 \mathrm{PI}=2 \mathrm{zPI}$
$310 \mathrm{R} 1=180 / \mathrm{PI}$
320 PO＝PI／Z
330 PRINT FS
337 IF QD $=1$ THEN 34 S
340 PRINTAS：INPUT＂WHAT IS THE TX LATITUDE＂：LI
342 PRINTAS：INPUT＂WHAT IS THE TX LONGITUDE＂；W1
J43 PRINT ：INPUT＂DATE（DAY，MONTH）：＂：D6，MO
344 IFMO $=12$ THEN 370
USO PRINT＂INVALID MONTH．MUST BE IN RANGE 1－12＂
360 GOTO34？
370 IFM（MO）－D6 COTHEN390
375 Js＝MIDs（Ms．3：MO－2．3）：REM PROVIDES A 3－LETTER ABBREVIATION FOR MONTH
380 GOTO410
390 PRINT＂INVALID DAY＂
400 GOTOS4Z
410 PRINT：INPUT＂SOLAR FLUX NUMBER：＂：SF
420 IFSF＜7OTHENPRINT＂DO NOT USE SF＜ 70 ＂：GOT0410
425 IF QC＝1 THEN GOTOGOO：REM QC USED FDR PT－TD－PT．PREDICTION
428 IFOG $=1$ THEN GOTO450
430 PRINTAS：INPUT＂GIVE DISTANCE TO IST HOP IN KM＂：K
440 NA $=K / 1$ ． 852 ：REM CONVERTS FROM KM TO NAUTICLA MILES
450 PRINT ：INFUT＂WHAT GMT DESIRED： $0-23$ HOURS ONLY＂：TG
460 IFTG >23 THENPRINT＂USE HOURS 0 TO 23 ONLY＂：GOTO450
470 IFOG $=1$ THEN GOTOS 40
480 PRINT：PRINT＂TURN UP AUDID GAIN TO HEAR END OF RUN SIGNAL．＂
490 PRINT＂ग्ञ THERE IS A 30 SECOND WAIT WHILE＂
495 PRINT＂COMPIL ING THE＂K＂KM LAT／LONG INFO＂
500 FOR $H=0$ TO350 STEP 10

$508 \mathrm{~L} 2=A T N(V / S Q R(1-V z V)) 857.2957795$ ：REM LAT．OF DISTANT POINT
$510 \mathrm{~L} 2(\mathrm{H})=\mathrm{L} 2$ ：REM ARRAY FOR 4000 KM LATITUDE CIRCUMFERENCE

514 IF ABS $(0)=11-1 E-9$ THEN $0=.999999$
$516 \mathrm{~W} 2=(\mathrm{PI} / 2-\operatorname{ATN}(0 / \mathrm{SQR}(1-\mathrm{O} 0))): 57.296$ REM S IS THE ARCOS CONVERSION TO DEGREES
ड18 IF $H=<1 B 0$ THENW $2=-(W 2-W 1)$
520 IF $H>180$ THEN W $2=W 2+W 1$
$522 \mathrm{~W} 2(\mathrm{H})=W 2$ ：REM ARRAY FOR 4000 KM LONGITUDE CIRCUMFERENCE
524 NEXT H
S40 S9＝（SQR（．52998－．00356：（63．75－SF））－．728）／．00178
550 S9＝1NT（S9）：REM SUNSPOT NUMBER
552 IF $Q C=1$ THEN GOSUB 2640
555 IFQC $=1$ THEN 700
560 FOR $H=0$ TO 350 STEP 10
570 1FG＝1 GOTO950
580 PRINTFS：PRINT AS＂HOUR＝＂TG＂Z DAY＝＂D6＂MONTH＝＂Js＂SF＝＂SF
$\mid\left(-x_{-}^{-}\right)$

Now you can have the BEST in a radio data communications terminal with the NEW DS-3200.

Recognizing the chief weakness of previously available computer-based terminals is RFI generation and susceptibility, HAL has designed the fully-shielded DS3200 for operation in the radio data communications environment. No longer do you have to QRT when that rare DX station's signal dips near the noise level!

The DS-3200 is provided with an extensive RTTY software package which emulates the operation of our MPT3100/DSK3100 combination for message processing and handling. Continuous save to disk of all received text, direct transmission of selected files from disk, and full editing capability are just afew of the features of this "user-friendly" software package. Plus, we have included the latest release of MS-DOS with GW BASIC!

The built-in RS-232C serial port allows the use of the DS-3200 with an external demodulator such as the HAL ST-5000, ST-6000, or ST-8000. Or, add the HAL PCI-2000 for a completely self-contained RTTYICW terminal and demodulator. Also, with the use of a second RS-232C serial port the DS-3200 can be used with your favorite TNC on Packet!

The DS-3200 with its IBM PC XT-style architecture gives you virtually unlimited flexibility for future expansion. Here is a list of just some of its hardware features: 8088 CPU, 640 KB RAM, RS-232C Serial Port, Parallel Printer Port, Clock/Calendar with Battery Back-Up, Two 360KB Floppy Disk Drives OR One 360KB Floppy and One 20MB Hard Disk Drive, HERCULES-compatible Monochrome Graphics Adapter with High-Resolution 12 Inch Monochrome Video Monitor.

The DS-3200 is THE choice for modern radio data communications. Write or call for complete specifications on the NEW DS-3200.

The ORIGINATOR of the VHF AMP/PREAMP COMBO! YOU KNOW THE LUNAR NAME...NOW OWN THE BEST.

- Solid State Amplifiers for 50, 144, 220, 440 MHz •

NE W! gaas FET Receive Preamp Built-nt
NE W! unF Models of Latest Design!
NE W! model V2-500 tor Two Meters... 500 Watts Output in a Deluxe Package!

Full line of separate preamps available available

BLACK DACRON ${ }^{\text {® }}$ POLYESTER ANTENNA ROPE

- UV-PROTECTED
- HIGH ABRASION RESISTANCE
- REQUIRES NO EXPENSIVE POTTING HEADS
- EASY TO TIE \& UNTIE KNOTS
- EASY TO CUT WITH OUR HOT KNIFE
- SIZES: $3 / 32^{\prime \prime} 3 / 16^{\prime \prime} \quad 5 / 16^{\prime \prime}$
- SATISFIED CUSTOMERS DECLARE EXCEL. LENCE THROUGHOUT U.S.A.

LET US INTRODUCE OUR DACRON* ROPE TO YOU • SEND YOUR NAME AND ADDRESS AND WE'LL SEND YOU FREE SAMPLES OF EACH SIZE AND COMPLETE ORDERING INFORMATION.

> Dealer Inquiries Invited
> In Australia contact

ATN Antennas, Birchip, Victoria
2472EASTMANAVE. BUILDING21 synthetic VENTURA, CALIFORNIA 93003 textiles,inc. (805) 658-7903

```
```

585 PRINTL1 "DEG";W1"DEG";" 1ST HOP=";K"KM"

```
```

585 PRINTL1 "DEG";W1"DEG";" 1ST HOP=";K"KM"
590 PRINTTAB (4) "BEARING"; TAB (15) "MUF"; TAB (21) "BEARING"; TAB (33) "MUF"
590 PRINTTAB (4) "BEARING"; TAB (15) "MUF"; TAB (21) "BEARING"; TAB (33) "MUF"
595 GOTO 950
595 GOTO 950
600 PRINTAS: INPUT"RECEIVER LAT, LONG":L2,W2
600 PRINTAS: INPUT"RECEIVER LAT, LONG":L2,W2
602 IF L< <-90 THEN 608
602 IF L< <-90 THEN 608
b04 IF L2>90 THEN 608
b04 IF L2>90 THEN 608
606 GOTO 614
606 GOTO 614
6OB PRINT" INVALID LATITUDE. MUST BE IN RANGE"
6OB PRINT" INVALID LATITUDE. MUST BE IN RANGE"
b10 PRINT"OF -90 TO 90 DEGREES"
b10 PRINT"OF -90 TO 90 DEGREES"
612 GOTD 600
612 GOTD 600
614 IF W2<-360 THEN 620
614 IF W2<-360 THEN 620
616 IF W2) 360 THEN 620
616 IF W2) 360 THEN 620
618 GOTO540
618 GOTO540
620 PRINT"INVALID LONGITUDE. MUST BE IN RANGE -360 TO 360"
620 PRINT"INVALID LONGITUDE. MUST BE IN RANGE -360 TO 360"
622 GOTO 600
622 GOTO 600
700 PRINTF SAS: "DATE:" ; "DAY"D6 ; "MONTH "Js
700 PRINTF SAS: "DATE:" ; "DAY"D6 ; "MONTH "Js
710 PRINT" TRANSMITTER LOCATION:"
710 PRINT" TRANSMITTER LOCATION:"
720 PRINTTAB (7) "LATITUDE" ; L 1; TAB (22) ; "LONGITUDE" ; W1
720 PRINTTAB (7) "LATITUDE" ; L 1; TAB (22) ; "LONGITUDE" ; W1
720 PRINTTAB(7) "LAT ITUDE"ILI;TAB
720 PRINTTAB(7) "LAT ITUDE"ILI;TAB
740 PRINTTAB (7) "LATITUDE"; L2; TAB (22) : "LONGITUDE"; W2
740 PRINTTAB (7) "LATITUDE"; L2; TAB (22) : "LONGITUDE"; W2
750 PRINT" DISTANCE ="DX: "KM"
750 PRINT" DISTANCE ="DX: "KM"
760 PRINT" SUNSPOT NUMBER = ";S9
760 PRINT" SUNSPOT NUMBER = ";S9
770 PRINT
770 PRINT
7BO} PRINTTAB (4) "HOUR"; TAB (11) "MUF"; TAB (21) "HOUR" ; TAB (2B) "MUF
7BO} PRINTTAB (4) "HOUR"; TAB (11) "MUF"; TAB (21) "HOUR" ; TAB (2B) "MUF
945 IF QC=1 THEN GOTO 955
945 IF QC=1 THEN GOTO 955
950 T5=TG:GOTD 970 : REM HOLDS TIME CONSTANT FOR 360' PREDICTION
950 T5=TG:GOTD 970 : REM HOLDS TIME CONSTANT FOR 360' PREDICTION
950 TS=TG:GOTO 970
950 TS=TG:GOTO 970
960 IF TS >23 THENGOSUBSO50:GOTO 2950
960 IF TS >23 THENGOSUBSO50:GOTO 2950
970 GOSUB1140
970 GOSUB1140
980 J9=J9%10
980 J9=J9%10
990 J9=1NT (J9)
990 J9=1NT (J9)
1000 J9=J9/10
1000 J9=J9/10
1005 PRINTES
1005 PRINTES
1010 1FQC=1ANDT5=12THENE=12:FORI=1TOE:PRINTES; : NEXT1:PRINTTAB (21) T5: TAB (27) J9:NE
1010 1FQC=1ANDT5=12THENE=12:FORI=1TOE:PRINTES; : NEXT1:PRINTTAB (21) T5: TAB (27) J9:NE
XTT5
XTT5
1015 IFQC=1 AND T5) 12 THEN PRINT TAB (21)T5:TAB(27) J9:NEXT TS
1015 IFQC=1 AND T5) 12 THEN PRINT TAB (21)T5:TAB(27) J9:NEXT TS
1020 PRINTEs:IFQC=1 THEN PRINTTAB (4)T5:TAB (10)J9:NEXT TS
1020 PRINTEs:IFQC=1 THEN PRINTTAB (4)T5:TAB (10)J9:NEXT TS
1021 IFH=18OTHENE=18:FORI=1TOE:PRINTES; : NEXTI : PRINTTAB (22) H:TAB (32) J9: NEXTH
1021 IFH=18OTHENE=18:FORI=1TOE:PRINTES; : NEXTI : PRINTTAB (22) H:TAB (32) J9: NEXTH
1022 IFH>180THENPRINT TAB (22) H; TAB (32)J9:NEXT H
1022 IFH>180THENPRINT TAB (22) H; TAB (32)J9:NEXT H
1023 IFH=360 THENGOTO1040
1023 IFH=360 THENGOTO1040
1030 PRINT TAB(4)H;TAB(13)J9
1030 PRINT TAB(4)H;TAB(13)J9
1040 IFH=36OTHEN GOSUBSO5O:PRINTBS"PRESS P-PRINT:Q-QUIT:T-TRY AGAIN":GOTOJOOO
1040 IFH=36OTHEN GOSUBSO5O:PRINTBS"PRESS P-PRINT:Q-QUIT:T-TRY AGAIN":GOTOJOOO
1041 NEXT H
1041 NEXT H
1049 IF QC=1 THENPRINTESE$: PRINTTAB (21) T5; TAB (27) J9: GOTO1060
1049 IF QC=1 THENPRINTESE$: PRINTTAB (21) T5; TAB (27) J9: GOTO1060
1050 PRINTESE$: PRINTTAB (21) H; TAB (27) J9
1050 PRINTESE$: PRINTTAB (21) H; TAB (27) J9
1060 :
1060 :
1065 NEXT H
1065 NEXT H
1140 REM MINIMUF 3.5
1140 REM MINIMUF 3.5
1140 REM MINIMUF S.S
1140 REM MINIMUF S.S
1145 IFQC=1THEN K7=SIN(L1) \#SIN(L2:RO) +COS(L.1) \&COS(L2:RO) \&COS(W2:RO-W1) : GOTO1:160
1145 IFQC=1THEN K7=SIN(L1) \#SIN(L2:RO) +COS(L.1) \&COS(L2:RO) \&COS(W2:RO-W1) : GOTO1:160
1150 K7=SIN(L1) \&SIN(L2(H):RO) +COS (L.1):COS(L.2(H) *RO) \&COS (W2(H) :RO-W1)
1150 K7=SIN(L1) \&SIN(L2(H):RO) +COS (L.1):COS(L.2(H) *RO) \&COS (W2(H) :RO-W1)
1150 K7=SIN(L1) \&SIN(L2(H) \&RO) +COS
1150 K7=SIN(L1) \&SIN(L2(H) \&RO) +COS
1160 IFK7=>-1 THEN119OFERINTFFED"
1160 IFK7=>-1 THEN119OFERINTFFED"
1170 K7=-1
1170 K7=-1
1180 GOTO1210
1180 GOTO1210
1190 IFK7<=1THEN1210
1190 IFK7<=1THEN1210
1200 K7=1
1200 K7=1
1210 G1=-ATN(K7/SGR (-K7*K7+1)) +PI/2
1210 G1=-ATN(K7/SGR (-K7*K7+1)) +PI/2
1220 K6=1.59*G1
1220 K6=1.59*G1
l
l
1240 KG=1
1240 KG=1
1250 K5=1/K6
1250 K5=1/K6
1260 J9=100
1260 J9=100
1270 FORK 1=1/(2*KB) TO1-1/(2*K6) STEPO. 9999-1/K6
1270 FORK 1=1/(2*KB) TO1-1/(2*K6) STEPO. 9999-1/K6
1280 IFK5=1THEN1295
1280 IFK5=1THEN1295
1280 IFKS=1 THEN

```
```

1280 IFKS=1 THEN

```
```



```
```

1295 IF QC=1 THEN P=

```
```

1295 IF QC=1 THEN P=
1305 IF QC=1 THEN Q=COS (L2*RO) : GOTO1320
1305 IF QC=1 THEN Q=COS (L2*RO) : GOTO1320
1310 Q=COS(L2 (H) *RO)
1310 Q=COS(L2 (H) *RO)
1320 A=(SIN(L1)-PzCOS(G1))/(Q*SIN(G1))
1320 A=(SIN(L1)-PzCOS(G1))/(Q*SIN(G1))
1330 B=G1 \&K1
1330 B=G1 \&K1
1340 C=P\&COS(B)+Q*SIN(B) \&A
1340 C=P\&COS(B)+Q*SIN(B) \&A
l
l
1360 1FD)=-1 THEN1390
1360 1FD)=-1 THEN1390
1370 D=-1
1370 D=-1
1380 GOTD1410
1380 GOTD1410
1390 IFD <=1THEN1410
1390 IFD <=1THEN1410
1400 D=1
1400 D=1
1410 D=-ATN(D/SQR (-D*D+1))+PI/2
1410 D=-ATN(D/SQR (-D*D+1))+PI/2
1415 IF QC=1THEN WO=W2\&RO+SGN(SIN(W1-W2\&RO)) :D:GOTO1430
1415 IF QC=1THEN WO=W2\&RO+SGN(SIN(W1-W2\&RO)) :D:GOTO1430
1415 IF QC=1THEN WO=W2\&RO+SGN(SIN (W1-W2:R
1415 IF QC=1THEN WO=W2\&RO+SGN(SIN (W1-W2:R
1430 IFWOm>OTHEN14SO
1430 IFWOm>OTHEN14SO
1440 WO=WO+P1
1440 WO=WO+P1
1450 IFWO<P1THEN147O
1450 IFWO<P1THEN147O
1460 WO=WO-P1
1460 WO=WO-P1
1470 IFC=>-1THEN1500
1470 IFC=>-1THEN1500
1480 C=-1
1480 C=-1
1480 C=-1
1480 C=-1
1500 IFC< =1 THEN1520
1500 IFC< =1 THEN1520
1510 C=1
1510 C=1
1520 LO=PO-(-ATN(C/SQR(-C\&C+1))+PI/2)
1520 LO=PO-(-ATN(C/SQR(-C\&C+1))+PI/2)
1530 Y Y =0.0172* (10+(MO-1):30.4+D6)
1530 Y Y =0.0172* (10+(MO-1):30.4+D6)
1540 Y 2=0.409\&COS (Y1)

```
1540 Y 2=0.409&COS (Y1)
```

```
990 J9=1NT (J9)
```

990 J9=1NT (J9)
1390 1FD

```
1390 1FD
```


MICROWAVE ANTENNAS AND EQUIPMENT * Loop Yegls * Power Dividers * Linear Amplifiers * Complete Arraye - Mícrowave Tranaverters - GaAaFET Preampe - TROPO - EME - Weak Signal - OSCAR - P02 : 1209 - 1200 - $2304=2400=3456 \mathrm{M} \mathrm{Hz}$

2345 LY 45 el loop Yegl $1296 \mathrm{MHz} \quad 20 \mathrm{dBl} \mathbf{5 0 3}$ 1345 LY 450l loop Yagi $2304 \mathrm{MHz} \quad 20 \mathrm{dBI} 580$ bove antennas assembled and tested. Kitszavaliabie. All Aluminum and Stainiess Construction.
Add $\$ 8$ UPS $\$ / \mathrm{H}, \$ 11$ West of the Mississippl.
2318 PA Lineer Amp 1 W in 18 W out 1296 MHz 13.5 V . $\mathbf{3 2 4 5} \mathrm{ppd}$. 2335 PA Linear Amp 10W in 35W out 1290 MHz 12.5V. 2295 ppd . NEW! MICROWAVE TRANSVERTERS BY LMW ELECTRONICS
1296TRV60 6W, GaAsFET, T/R Sequencer, Output Meter $\$ 499$ 2304 TRV2D 2W, GaAsFET, T/R Sequencer, Output Meter $\$ 589$ Add $\$ 6$ for shipping UPS/48
Stripped down version, kits also availabie
Write For FREE Catalog
DOWN EAST MICROWAVE BIII Olson, W3HOT
Box 1655A RFD ©1, Burnham, ME 04922 U.S.A. (207) 948-3741

- 141

THE MULTIPLE RECEIVER SOLUTION

4 Channel Signal-to-Noise Voter

- Expandable to 32 Charnel by Just Adding Cards
- Contiruous Voting
- LED indicators of COR and Voted Signals
- Built in Calibrator
- Remote Voted Indicators Pinned Out
- $41 / 2 \times 6$ Double Sided Gold Plated 44 Pin Card
- Remote Disable Inputs
- MORE

Built, tested and calibrated with manual
$\$ 350.00$
Telephone interface now available For more information call or write

HALL ELECTRONICS
Voter Department
815 E. Hudson Street
Columbus, Ohio 43211
(614) 261-8871

$1550 \mathrm{~KB}=3.82 * \mathrm{WO}+12+0.13 *(\operatorname{SIN}(\mathrm{Y} 1)+1.2 \mathrm{SIN}(2: \mathrm{Y} 1))$
$1560 K B=K 8-12 *(1+\operatorname{SGN}(K 8-24))$:SGN (ABS (KB-24))
1570 IFCOS $(L 0+Y 2)>-0.26$ THEN 1660
$1580 \mathrm{KO}=0$
1590 GO=0
1600 M9=2.5*G13KS
1610 IFM9<=POTHEN 1630
1620 M9 MPO
1630 M9=SIN(M9)
1640 M9=1+2.54M9:SQR (M9)
1650 GOTO1910
$1660 \mathrm{~K} 9=(-0.26+\operatorname{SIN}(Y 2): S I N(L O)) /(\operatorname{COS}(Y 2): \operatorname{COS}(L 0)+1.0 E-3)$
$1670 \mathrm{~K} 9=12-\mathrm{ATN}(\mathrm{K} 9 / \mathrm{SQR}(\mathrm{ABS}(1-\mathrm{K9}$ KK9)))) $\% 7.639437$
$1680 \mathrm{~T}=\mathrm{KB}-\mathrm{K} 9 / 2+12$: $(1-\operatorname{SGN}(\mathrm{KB}-\mathrm{K} 9 / 2))$:SGN(ABS (KB-K9/2))
$1690 \mathrm{~T} 4=\mathrm{K} 8+\mathrm{K} 9 / 2-12 \mathrm{z}(1+\mathrm{SGN}(\mathrm{KB}+\mathrm{K} 9 / 2-24))$:SGN(ABS $(\mathrm{KB}+\mathrm{K} 9 / 2-24)$)
$1700 \mathrm{CO}=\mathrm{ABS}(\mathrm{COS}(\mathrm{LO}+\mathrm{Y} 2)$)
1710 T9=9.7*CO⒐6
1720 IFT9)0. 1 THEN 1740
$1730 \quad T 9=0.1$
1740 M9=2.5*G1 =KS
1750 IFM9 < =POTHEN1770
1760 M9 $=\mathrm{PO}$
1770 M9=SIN (M9)
$1780 \mathrm{M9}=1+2.5$ *M9:SQR (M9)
1790 IFT4<TTHEN1820
1800 IF (T5-T) : (T4-T5) >OTHEN1B3O
1810 GOTO1960
1820 IF $(T 5-T 4):(T-T 5)>$ THEN 1960
$1830 T 6=T 5+12 *(1+S G N(T-T 5))$ \&SGN (ABS $(T-T 5)$)
1840 G9=PI \& (T6-T)/K9
$1850 \mathrm{~GB}=$ PI \&T9/K9
$1860 \mathrm{U}=(\mathrm{T}-\mathrm{T} 6) / T 9$
$1870 \mathrm{GO}=\mathrm{CO}$ (SIN (G9) +G82 (EXP (U)-COS (G9))) /(1+G8*G8)
$1880 \mathrm{G7}=\mathrm{COz}(\mathrm{GB}$: (EXP $(-\mathrm{K9/T9})+1))$ ₹ $\operatorname{EXP}((\mathrm{K9}-24) / 2) /(1+\mathrm{GB} \mathrm{GB})$
1890 IFGO=>G7THEN 1910
$1900 \mathrm{GO}=\mathrm{G7}$
$1910 \mathrm{G} 2=(1+59 / 250)$:M9*SQR ($6+58 * S Q R(G O)$
$1920 \mathrm{G2}=62 \mathrm{E}(1-0.1$ EXP $(\mathbf{(K 9 - 2 4) / 3))}$
$1930 \mathrm{G} 2=\mathrm{G} 2 \mathrm{E}(1+(1-\mathrm{SGN}(\mathrm{L} 1)$: SGN(L2))
1940 62=62*(1-0.18(1+SGN(ABS(SIN(LO))-COS(LO))))
1950 GOTO2020
1960 Tb $=$ T5 + 12 2 ($1+$ SGN (T4-T5)) SG (ABS (T4-T5))
1970 G8=PI \& T9/K9
$1980 \mathrm{U}=(\mathrm{T} 4-\mathrm{T} 6) / 2$
$1990 \mathrm{U} 1=-\mathrm{K} 9 / \mathrm{T9}$
2000 GO=CO\& (GB* (EXP (U1) + 1)) \&EXP (U) /(1+G8*GB)
2010 GOTO1910
2020 IFG2>J9THEN2040
2030 J9=G2
2040 NEXTKI
$2050 \mathrm{J9=.93土} \mathbf{3 9}$
$2060 \mathrm{G}=1$: L $1=\mathrm{L} 1$:R1: $\mathrm{W} 1=\mathrm{W} 1$: R 1 : RETURN
$2640 \mathrm{DY}=\mathrm{SIN}(\mathrm{L} 1: \mathrm{RO}) * S I N(L .2 * R O)+\operatorname{COS}(\mathrm{L} .1 * \mathrm{RO}): \operatorname{COS}(\mathrm{L} 2 * \mathrm{RO}): \operatorname{COS}(W 1 * R O-W 2 * R O)$
2650 DX $=60$: (PO-ATN $(D Y / S Q R(1-D Y * D Y))): 57.296:$ REM DISTANCE IN NAUTICAL. MILES
2670 DX=DX\&1. B52:REM CONVERTS FROM NAUTICAL MILES TO KM
2680 DX=INT (DX) : RETURN
2950 PRINTBSAS"PRESS P-PRINT:Q-QUIT:T-TRY AGAIN
3000 GETANs: IFANsw" "THEN3000
3010 IFANS="P"GOTOJ2OO
3020 IFANs="Q"THENPRINTFSASASD\$D\$D\&"ENJOY YOUR RADIO:": END
3030 IFANs $=$ "T"THEN PRINTFS: $\mathrm{OG}=1: \mathrm{G}=0$: GOTO343
3035 GOTOJOOO
3050 : REM TONE TO TELL WHEN SCREEN PRINT COMPLETE
3052 FOR AC=54272T054296:POKEAC. D: NEXT
3054 POKES4296. 15
3056 POKE54277,0
3058 POKE S4278, 248
3060 POKES4273, 35: POKES4272, 134
3062 POKE 54276.17
3064 FORT=1 TO 1000 : NEXT
3066 POKES4276. $16:$ RETURN
3199 REM SCREEN DUMP
3200 OPEN3, 3: OPEN4, 4: PRINTCs:FORI=1TO1000:GET\#3, A3:PRINTH4, As: : NEXT: CLOSE3
3210 CLOSE 4
3220 END
4000 REM QC= FLAG TO SELECT PREDICTION OPTION 2
4001 REM QD = FLAG SELECTS HOME LAT/LONG OF LINE 41
4002 REM DG= FLAG TO SKIP 1ST HOP COORDINATES FOR THE "TRY AGAIN"
4003 REM $G=$ FLAG SKIPS REPRINTING 360 DEGREE TABLE TITLE
60000 OPEN15.8,15, "S0: 360/PTP MUF": CLDSE15: SAVE"0: 360/PTP MUF". 8
READY.

Look at our MOPIE MAPK "ON WINDOW" Line ратенto
\section*{VHF}
(140-175)
- No Hole
- Easy to Mount
- Rugged
- Superior Performance
- Radiator Snaps On and Off
- Competitively Priced
\section*{UHF}
(420-520)
- 3 db gain
- No Hole
- Easy to Mount
- Rugged
- Superior Pertormance
- Radiator Snaps On and Off
- Competitively Priced
\section*{○ 220 MHz Available Soon!}

9001 Exchange Ave • Franklin Park. IL 60131 • 312-671-6690
brings imagination and innovation to antennas and has been since 1948 !!

2680) for computing the distance between the transmitter and receiver for the point-to-point prediction. That distance, used only for information to the screen, replaces several lines in the original program which had not been used.
The equation for S9, the sunspot number in line 540, has been changed in response to a suggestion from Glenn Skaggs. The original equation produces sunspot numbers slightly low at low flux numbers and slightly high at high flux numbers. The new equation gives a closer fit when converting flux to sunspot number.
The original article generated letters asking if I would copy the program to readers' disks. If you'll send me a disk with return postage (or a dollar bill if that's easier), I'll copy the program shown in fig. 4 to your disk and return it.

acknowledgments

Besides those already mentioned herein, I want to thank Bob Brown, NA7M, for educating me about the more advanced programs he enjoys.

references

1. Henry G. Elwell, Jr, N4UH, " 360 -degree MINIMUF Propagation Predic tion," ham radio, February, 1987, page 25.
2. Robert B. Rose, K6GKU, "MINIMUF: A Simplified MUF-prediction Program for Microcomputers," OST, December, 1982, page 36.
ham radio

P.O. Box 1111-H

PLACENTIA, CA GBG70

 computas plans - Kits Schamastios Tost Equipment $\mathrm{CB}^{\mathrm{GoPr}}$ Satollito N video

IF YOU ARE INTO ELECTRONICS AND SAVING MONEY IS IMPORTANT TO YOU, THEN YOU OWE IT TO YOURSELF TO TRY NUTS E VOLTS MAGAZINE. DISCOVER WHY THOUSANDS OF SMART PEOPLE NATIONWIDE TURN TO NUTS E VOLTS EACH MONTH TO MEET THEIR ELECTRONIC NEEDS. WHETHER YOU'RE BUYING, SELLING, OR JUST TRYING TO LOCATE THOSE UNIOUE OR HARD-TO-FIND ITEMS, FIND OUT HOW NUTS \& VOLTS CAN HELP!

va SUBSCRIBE TODAY! \%m	
CHEC	\square VISA \square MC
Name	
Address	
City	
State	Zip
Card No.	Exp. Date

call for advertibing information DIBTRIEUTOR INGUIRIEB INVITED

Subscription Rates

us. funds required

3rd Class Mail - USA

One Year
$\$ 10.00$
Two Years $\$ 18.00$ Lifetime $\$ 50.00$

1st Class Mail
One Year - USA . . . \$18.00 Canada \& Mexico . . $\$ 20.00$

Air Mail Foreign-1 Year $\$ 50.00$
Includes one FREE 40-word Classified Ad

SURGEGUARDs provide virtually unconditional overvoltage protection for your valuable radio equipment.
SURGEGUARDs use various versions of a patented circuit. This circuit combines brute force, failsafe protection with ultra fast response.
Independent testing laboratories and thousands of units in the field have proved that SURGEGUARDs are the most effective protectors available.
SURGEGUARDs pass data signals and power through unaltered but damaging external surges and continuous overvoltages are limited to a safe level. Protection is available against common mode (with respect to earth) and difference mode (across leads) overvoltages.
SURGEGUARDs will reduce breakdowns by up to 80%. They will also greatly lengthen the life of the protected equipment as the components are not subjected to voltage stresses.

- Brute force protection stops up to 20,000 Amps lightning surge
- Ultra fast: less than 1 picosecond response
- Failsafe: becomes a short when damaged (LSA) ${ }^{\circ}$ or breaks the surge path (POWERGUARD) ${ }^{\text {® }}$
- Clamping voltages available from 7 V to 600 V AC or DC
- Resets automatically when overvoltage passed (except POWERGUARD)
- Stand-alone, rack-mount, or plug-in modules

For more information on the full line of SURGEGUARD products, please write or call CSE/SURGEGUARD.

100 W. Central • Box 308
New London, Minnesota 56273
1-800-428-9267
In Minnesota, call 612/354-2081
TELEX 852854 New London UD
EASYLINK Mailbox Address 62809065
FAX 612/354-2083

KENWOOD ts-940s

TOP-OF-THE LINE HF TRANSCEIVER
GREAT PRICE, CALL
KENWOOD
TM-3530A

The First Comprehensive 220 MHz FM Transceiver

ARE YOU READY FOR 220 MHz OPERATION?

Gordon West's

21 DAY NOVICE

$\$ 19.95$

CODE TAPES - 112 PAGE BOOK - BANDS CHART ALL FCC FORMS - SAMPIG TESTS - PLUS MOAEI

- $\$ 70$ in equipment certificotes from ICOM, KENWOOD, \& YAESU.
- Hom rodio equipment "Wish Books"
- ARRL membership forms.
- Hotine for student questions.
- Course completion certificote.

MA-40
40' TUBULAR TOWER S745 SALE! \$549

MA-550

55. TUBULAR TOWER s1245 SALE! \$899

- Handles 10 sq ft at 50 mph
- Pleases neighbors with tubular streamlined look

-TX-455

55. FREESTANDING

CRANK-UP

- Handles 18 sq . ft. at 50 mph
- No guying required
- Extra-strength Construction
- Can add raising and motor

Sembenoptor IN STOCK FOR QUICK DELIVERY OTHER MODELS AT GREAT PRICES

Alpha Delta Model DELTA-4

Lightning Surge Protected 4-Position RF Coax Switch

- Exclusive center "off" (ground) ib A, abin al position.
- Uses ceramic Arc-Plug* ${ }^{*}$ protector
- Micro-strip circuitryno wafer switch.

Model DELTA-4

(UHF Connectors)
$\$ 69.95$

Model DELTA-4/N

(N-type Connectors) \$89.95

FREE SHIPMENT

MOST ITEMS UPS SURFACE

All Major Brands in Stock Now!

 Toll Iree including Hawaii. Phone Hrs: 7:00 am to $5: 30$ p.m. Pacific Time. California. Arizona and Georgia customers call or visit nearest store. California. Arizona and Georgia residents please add sales tax. Prices. specilications. descriptions subject to change without notice.

All Major Brands in Stock Now!

ANAHEIM, CA 92801

 2620 W La Palma (714) 761-3033. (213) 860-2040 Between Disneyland \& Knotls Berty Farm ATLANTA, GA 30340 6071 Buford Hwy (404) 263.0700 Neil. Mgr KC4M,Doraville 1 mi noth of l.285

BURLINGAME. CA 94010 999 Howard Ave. (415) 342.5757
George. Mgr WB60SV 5 miles south on 101 from SF0 OAKLAND, CA 94606 2210 Livingsion St
(415) 534.5757
AI Mor WAGSYK
17N-5th Ave 177 S - 16 h Ave

PHOENIX, AZ 85015 1702 W Camelback Rd (602) $242-3515$
Bob. Mgr K7RDH East of Hwy 17
SAN DIEGO, CA 92123 5375 Kearny villa Rd
(619) $560-4900$

Torn. Mgr KM6K
Hwy 1638 Clatemont Messa Blvd

CALL TOLL FREE (800) 854-6046
 Toll Iree including Hawaii. Phone Hrs: 7:00 am to $5: 30 \mathrm{p} . \mathrm{m}$. Pacific Time. California. Arizona and Georgia customers call or visit nearest store.

 Calitornia. Arizona and Geornia residents please add sales tax. Prices. specifications. descriptions subject to change without notice.
Six Digital Modes - Including Weather FAX

Your home computer (or even a simple terminal) can be used for radio data communication in six different modes. Any RS-232 compatible computer or terminal can be connected directly to the PK-232, which interfaces with your transceiver. The only program needed is a simple terminal program, like those used with telephone modems, allowing the computer to be used as a data terminal. All signal processing, protocol, and decoding software is in ROM in the PK-232.

The PK-232 also includes a no compromise VHF/HF/CW modem with an eight pole bandpass filter, four pole discriminator, and 5 pole post detection low pass filter. Experienced HF Packeteers are reporting the PK-232 to have the best Packet modem available.

Operation of the PK-232 is a breeze, with twenty-one front panel indicators for constant
status and mode indication. The 240 page manual includes a "quick start" section for easy connection and complete documentation including schematics. Two identical back panel radio ports mean either your VHF or HF radio can be selected with a front panel switch. Other back panel connections include external modem disconnect, FSK and Scope Outputs, CW keying jacks, and RS-232 terminal interface.

The RS-232 connector is also used for attaching any Epson graphics compatible parallel printer for printing Weather Fax. Weather maps and satellite photos, like the one in this ad, can be printed in your shack.

Contact your local AEA dealer today for more information about the one unit that gives you six modes for one low price, the PK-232.

try an oscilloscope
 for troubleshooting dc power supplies

It is something of a truism that the first place to look for trouble in a piece of malfunctioning electronic equipment is the dc power supply. Almost everyone who keeps records of equipment failure will report that a large percentage of repair actions involve the low-voltage dc power supply. This problem is so commonplace, and such a logistics cost driver, that the United States Navy now has a power supply standard that, among other things, limits the maximum junction temperature of semiconductor devices to 110 degrees C, and also limits the power-per-unit-of-volume (watts/cubic inch).

The typical low-voltage dc power supply will have a transformer to step down the 120 -VAC line voltage to some lower voltage. The exact value of the transformer secondary voltage, of course, depends upon the dc output potential of the supply. The output of the transformer will be a sine wave or near-sine wave (fig. 1A). The transformer voltage ratings sometimes yield some confusing results for the troubleshooter. For example, let's consider the standard 12.6 -VAC transformer (fig. 1B). The rated voltage of a transformer is the RMS potential across the entire secondary, unless otherwise specified.
If you use a reasonably good quality ac voltmeter, the reading will be 12.6-VAC across points $\mathrm{A}-\mathrm{B}=$ right?

fig. 1A. Output of a typical low-voltage dc power supply transformer is a sine wave or near-sine wave.

fig. 1B. Standard 12.6-VAC centertapped transformer.

Not necessarily! First, it should go without saying that the input voltage will vary somewhat, and that in turn reflects variation in the secondary voltage. Measurements I made in preparation of this article showed a line voltage of 123-VAC RMS at my OTH, while at other times it has been as low as 102 -VAC RMS.

Second, the rated voltage of a transformer assumes a minimum load current being drawn. If you measure a
transformer with no load, you can expect a higher voltage than the rated potential. Some transformers are worse than others in this respect, but all will demonstrate this phenomenon to some extent. The problem lies in the internal resistance of the secondary windings. I've seen a 12.6-VAC @20ampere transformer show a $22-\mathrm{VAC}$ "RMS" on a digital ac voltmeter of good quality until a $500-\mathrm{mA}$ load was placed across the secondary. The load reduced the secondary potential to 12.6-VAC RMS \pm line fluctuation.

If the transformer is center-tapped, as in fig. 1B, then the rating of the secondary must be scrutinized to determine the actual voltage. For example, "12.6 VAC C.T." means that 12.6 VAC appears across A-B, while the potential readings from CT to A and CT to B will be 6.3 -VAC RMS each.

Another point of confusion is found when measuring the voltage across the transformer secondary with an oscilloscope. Most ac meters are RMSreading devices (or nearly so) for sine waves, unless they're specifically designed for peak-to-peak or peakreading applications. But the oscilloscope is inherently a peak-to-peak reading instrument. In fig. 1A the horizontal line denotes the zero-volts baseline, while the positive excursions are above the line and negative excursions are below the line (following the standard convention). The peak voltage is the potential between the zero baseline and either peak, while the

fig. 2. Forms of rectifiers: (A) half-wave; (B) conventional full-wave; (C) full-wave bridge.
peak-to-peak voltage is the reading between a negative peak and the adjacent positive peak. The peak voltage is 1.414 times RMS voltage, while the peak-to-peak voltage is 2.83 times the RMS voltage. On the oscilloscope and meter readings, we need to divide the peak-to-peak reading obtained on the oscilloscope by 2.83 . Similarly, multiplying the RMS reading on the meter by 2.83 gives us the approximate peak-to-peak voltage to expect on the oscilloscope screen.

Because the ac voltage provided by the transformer is useless for most electronic circuits, we provide a rectifier to convert bipolar ac to unipolar pulsating dc. Figure 2 shows the various forms of rectifiers, while figs. 3A
and 3B show the waveforms that the scope will show when connected across load resistor R. The device in fig. 2A is the half-wave rectifier, and it produces the waveform shown in fig. 3A. Note that only the positive half of the applied ac sine wave is applied, which causes a certain amount of inefficiency in this form of power supply. The other two rectifiers are both full-wave types, and they produce the waveform shown in fig. 3B. The rectifier shown in fig. 2B is a conventional full-wave rectifier, and depends upon the center-tap of the transformer secondary winding in order to provide a ground reference.

The rectifier in fig. 2C is a full-wave bridge. It does not require a centertapped transformer, but instead uses a node of the bridge to provide the ground reference. This article is based on the bridge rectifier, by far the most commonly used rectifier in modern equipment. Fig. 4 shows the circuit of the dc power supply that was used in making the measurements and waveform photographs. The transformer was an 8.5-VAC @1-ampere transformer, while the rectifiers (CR1-CR4) were 1N400x-series devices.

Figures 5A and 5B show the normal waveform expected when the oscilloscope probe is applied to points A and B in fig. 4. Each waveform is halfwave rectified, but each is 180 degrees out of phase with the other. This phasing reflects the fact that the bridge rectifier is full-wave, and therefore uses the entire 360 degrees of the input ac waveform. Even with a single-trace oscilloscope, you can tell that the circuit

fig. 3A. Waveform produced by half-wave rectifiers.

fig. 3B. Waveform produced by full-wave rectifiers.
is working correctly by the half-wave trace. Figure 5B, on the other hand, shows an anomaly. I once saw this waveform in a piece of equipment in which the printed circuit trace from the + terminal of the bridge rectifier was cracked, and that effectively removed the load from the rectifier. If you see a sine wave or near-sine wave at the ac nodes of the bridge (points A and B in fig. 4.) you should suspect that the load is somehow disconnected.

The full-wave pulsating dc wave-

fig. 4. Circuit of low-voltage dc power supply used in making measurements and photographs for this article.

fig. 5A. Normal waveform generated when oscilloscope probe is applied to points A and B in fig. 4.

fig. 5B. Anomalous waveform indicates defective circuit.
form of fig. 3B is almost as useless for electronic equipment as ac, so circuit designers supply a filter capacitor such as C 1 in fig. 4. Figure $\mathbf{6}$ shows two cases of a filtered pulsating dc output from the low-voltage power supply of fig. 4. In both figs. 6A and 6B the horizontal white line was placed at the zero-volts line in order to provide a frame of reference. The line was made by adjusting the position control for channel 2 of the oscilloscope, and keeping the input selector in the grounded position. The waveform of fig. 6A represents the case in which $500 \mu \mathrm{~F}$ of filter capacitance was used; in this situation, the digital voltmeter read 12.03 Vdc , while the measurements on the oscilloscope screen showed 10.8 volts between the zerovolts baseline and the bottom of the ripple waveform, and 12.4 volts to the peak of the ripple waveform (resulting in a ripple amplitude of 1.6 volts). In fig. 6B, the filter capacitor is increased to $2700 \mu \mathrm{~F}$. The DVM read 12.01 Vdc ,

MADFON FALL SHOPPE:

New rigs and old favorites, plus the best essential accessories for the amateur.
CALL FOR ORDERS
1 (800) 231-3057
1-713-520-7300 OR 1-713-520-0550 TEXAS ORDERS CALL COLLECT
ALL ITEMS ARE GUARANTEED OR SALES PRICE REFUNDED

EQUIPMENT

New lcom IC 761
Trades wanted
Kenwood TH205AT in your old HT Kenwood TS 440SIAT Trade in your otd
Call for trade Icom R 7000252000 MHz 949.00 feom IC735 84900
Santec FM $340 \quad 220$ MHz 25w 31900
Santec FM 34022
Santec FM 240 NT 31900 Santec FM 240 N
Mrage Amps 31900
$50.0 F F$ Mirage Amps 500 OFF
69900 $\begin{array}{ll}\text { Tokyo Hy-Power HL IK AMP no 4CX250B } & 69900 \\ \text { Now Kenwood TM.221A } 45 \mathrm{~W} \text { mobile } & \text { Call }\end{array}$ V.J Amplitier. VHF buit in England 1 in 100 out
$3100.5100 \quad$ (ea) 24900 $10 \mathrm{~m} \cdot 100$ out 22900 25 in-160 out 22900
31900
mod 2 sinctude prearmp
Yaesu F1.727 RH new CPÚ
10900
Kenwood TW-4100A
Call

ACCESSORIES

B8W VIEWSTAFt ANTENNA TUNER. 89.95
Hell HC4/HC5
8995
Stoch
Heil BM10 Boom Mikat headset CAtI
Tri-H 5000A Remote Phone $\quad \$ 18900$
Daiwa NS660A 30/300/3000 watts $\quad 13500$
Alinco ELH2300-Excellent buy 8800
Nye MB5-A (tor the big boyst 52900
Shure 444D $\quad 5495$
Shute 444 D
5495
Arneco PT 3
Soor
New Tokyo HC 200A
11500
Astatec MC321 Cartridge D104 1200
Ten-Tec Mobile Switch 3001
1700

ANTENNAS

$\begin{array}{ll}\text { Isopole } 144 \mathrm{MHz} & 4495 \\ \text { isopole } 440 \mathrm{MHz} & 5995\end{array}$
Cushcratt 124 WB ($1 / 46 \mathrm{MH}$) $\quad 3300$
Butternut HF6V B0-10 vertical 12500
$\begin{array}{ll}\text { Butternut HF6V, } 80-10 \text { vertical } & 12500 \\ H F 2 V 808.40 \text { vertical } & 11900\end{array}$
$\begin{array}{ll}\text { HF2V } 80840 \text { vertical } & 11900 \\ \mathrm{HF} 4 \mathrm{~B} & 18900 \\ & 11995\end{array}$
HF 4 B
$\begin{array}{ll}\text { Hustler G7.144 } & 11995 \\ \text { Histlor 6RTV } & 13900\end{array}$
KL.M HF Wotd Class Seties Antennas Call Dor
ALPHA Delta DXDD 6300
$\begin{array}{ll}\text { ALPHA Deta } \\ \text { Coax Seal } & 2.00 \text { /roil }\end{array}$
B\&W Dipoles Less 1090
KLMKTHMA
Less
39900
W2AU, W2DU Now Available
NEW KL.M 1.2-44LBX 129.00
1296 Power Divider $\quad 6900$
Create CD.78 - BS 80 75/80 rotalable dipole 38500 G5-RV
365.00

OTHER ANTENNAS

DiamondD 130 Discone $25.1300 \mathrm{MHz} \quad 1900$
Larsen Kulduck 1700
Larsen 2M t/wave telescope ant $\quad 2500$
AvantıAP151 3G on Glass Antenna $\quad 3600$
Anteco 2M.518. Mag Mount, Comp 2500
Van Gordon ND-4. 4 band Novice dipole 4500
7995
Stoner DA 100 D Active Fx Antenna 19000
DC Tenna Hiton 3/8:24 Thread
Fits 3/4" traler hitches
2995

PARTS

$15 \mathrm{Amp} / 400 \mathrm{~V}$ Iull wave bridge rectifier
195
$25 \mathrm{~A} / 1000$ PIV Epoxy diode $\quad 29$ each or $1900 / 100$ $0015 / 10 \mathrm{KV}$ or $001 / 20 \mathrm{KV} \quad 195$ each 3N201

95
4 inch ferrite rod
365 pF cap
195
Sanyo AAA AA Nicads w/tabs
200
2.4.5.6.8 pin mic plugs
3.00

1/8, 1/4 watt carbon resistors
05 each
1/8, 1/4. watt carbon resistors
Meter 0.3000 VDC 0-1 Amp DC $21 / 2^{\prime \prime}$ Square with shunt
19.95
$\begin{array}{ll}\text { Drake-Collins make plug } & 200\end{array}$
Thousands of paned meters
395 un CALL MICA Cap $004 / 3 \mathrm{KV}$

500 others CALL
Diodes 3A/1000 PIV
29
349
Duracell 9 Volt Battery - 2 Pak MN 1604
DCFan $3 y^{\prime \prime} \mathrm{Sq} \times 1$
349
9.95
CINCH 12 pin conn fitz (Drake etc) lemale
3.00

Aerovox 1000 p $\$ / 500 \mathrm{~V}$ leedithrough caps
195
Mallory 6 volt 4 prong Vibrator PN/600A
$100 \mathrm{mfd} / 450 \mathrm{~V}$ Axial Cap
200
Evereaty 9 volt bat (216)
99
$01 / 1000 \mathrm{~V}$ Bakelite Molded Caps

CD ICOM
Bird and Belden products in stock. Call today
ICOM 28H/TTM

AMPHENOL

B31 J Doutle Female UHF
82.61 N Male
82.97 N Female Buiktheac 82.63 Inline Female N

39900
$\begin{array}{lr}831 \text { SP.PL259 Silverplate } & 125 \\ \text { UG176 reducer RG8X } & 30\end{array}$ 82.98 N elbow
82.202.1006 N M ale tor 9913
$31-212$ BNC RG59
31-216 UG201 AU N Mate BNC Fernale $31-2$ BNC RG58
34025 N Male. RG58
34125 N Fermale UHF male
3128 BNC. Fernale PL 259
4400 N Male S0 239
2900 BNC.SO 239

TUBES

Collins 8 Drake Roplacement lutues Stock GE 6146B

1295
3.5007 10995

GE Industrial Tibes
GE 12BY7A
GE 6JS6C
GE 8950 —
$\square \quad 1600$
12JB6 Sylvana 600
Hard to tind Tubes 50900° oll has
6.JB6A 9.95

6JE6C/6LO6	9.95

ACA 6 BFS - 6.00
GKD6 1095
PACKET POWER 29900
KEAPK232 witnew Wxhax 14900
MFJ 1270 11900
MFJ 1274 14900
New Kantronics KAM 29900
SERVICES
$\begin{array}{lr}\text { Complete KWM } 2 \text { Retube } & 17900 \\ \text { Flat toe Collins rebuild } & \text { Call }\end{array}$
USED EQUIPMENT
All equipment used clean with 90 day warranty and 30
day fral Sixmonthsfult tradeagaust new equipment. Sale price tefunded if not satisfied.

Call for latest used gear
(800) 235.3057

TS-4305. TS-830S TS 5205. FT101E and Collins

220 MHz

TH-31BT Small rig small bucks CALI
IC-03AT 39900
TM. 3530 CALL
Santec FM340, 25w, new CALL
Cr. 284 ITM
MC38A, FM
42900

POLICIES

Minimum order $\$ 1000$ Mastorcard. VISA, or C O D. All prices FOB Houston. except as noted. Prices subject to change without notice Items subject to prior sale Call any time to chock the status of your order Texas residents add sales tax All ifems full tactory warranty plus Madisor warranty

DON'S CORNER

Macison Double Warranty on Kenwood Radios! We will double Kenwood $\$ 90$ day wartanty regardlesse of who you purchased the radio trom or 149

fig. 6A. Filtered pulsating dc output from the low-voltage power supply shown in fig. 4: $500 \mu \mathrm{~F}$ of filter capacitance results in ripple amplitude of 1.6 volts.

fig. 6B. With filter capacitance increased to $2700 \mu \mathrm{~F}$, ripple amplitude drops to 0.25 volts.
while the oscilloscope showed 12.0 volts between zero and the bottom of the ripple waveform. The ripple amplitude in fig. 6 B is 0.25 volts, or 15.6 percent of the case where $500 \mu \mathrm{~F}$ was used for the filter. Obviously, the greater the capacitance, the less the ripple. The general rule of thumb for the value of capacitance needed in a full-wave supply is:

$$
C=\frac{1,000,000}{416 \cdot R_{L} \cdot R F}
$$

where:
C is the capacitance in microfarads
R_{L} is the load resistance ($\mathrm{Vo} / \mathrm{lo}$)
RF is the required ripple factor
If the filter capacitor is open - a common fault - then you should expect to see the pulsating dc waveform of fig. 3B across the load resistor, instead of the distinctive waveforms of fig. 6. A certain amount of judgment and experience is needed, however, in
the case where the filter capacitance is reduced significantly. This fault occurs occasionally in aluminum electrolytics, especially in equipment that has been unused for a while. Some service literature will show you the peak-to-peak readings to expect across the filters; in other cases, only experience or hunches will aid the troubleshooter.

Figures 7A and 7B show a pair of ripple waveforms found in another situation. Both waveforms were made with the oscilloscope's vertical input ac-coupled because we are specifically looking at ripple, rather than at the ripple + dc component. The top waveform (fig. 7A) shows a filtered pulsating dc waveform in a normally operating dc power supply. In a fullwave rectified supply, the ripple frequency is twice the line frequency, or 120 Hz in the United States. But fig. 7B shows the same power supply with one leg of the bridge (CR4 of fig. 4) open-circuited. The ripple amplitude is

fig. 7A. Ripple waveform of filtered pulsating waveform in a dc power supply operating normally.

fig. 7B. Ripple waveform of power supply operating with one leg of the bridge opencircuited.
up - a fact that could also be attributed to a weak filter capacitor - but the ripple frequency is one-half the expected frequency. On the oscilloscope timebase (horizontal) line, you'll find that the ripple waveform on a full-wave circuit will have a period of $1 / 120 \mathrm{~Hz}$, or about 8.3 milliseconds. The halfwave rectified ripple waveform resulting when a diode is opened produced a period of 16.7 milliseconds on the oscilloscope.

A lesson to be learned from this example is to examine not just the amplitude of the waveform, but also its period/frequency. Also, if its shape is wrong, then suspect a fault (again, examine the difference between figs. 5A and $5 B$).

regulated power supplies

Most Amateur equipment uses voltage-regulated dc power supplies. This fact is due, in part, to the nature of modern solid-state circuits, which simply work better when the power supply is voltage regulated. It's also attributable in large part to the fact that IC voltage regulators are widely available today. In past times, because it was expensive to regulate supplies, many manufacturers used unregulated supplies. Figure 8 shows a basic IC voltage regulator circuit based on the three-terminal IC regulator devices. In making the measurements for this article I used a 7805 device, which - for our purposes - is the same as the LM-309 and LM-340T-05 devices, all of which produce 5 volts output for TTL digital circuits. Similar devices are available in output voltages to 24 Vdc , both positive and negative.

One effect of the voltage regulator is to greatly reduce the ripple of the power supply. In fact, in 1964 a manufacturer of test equipment marketing a new regulated bench supply (then a rarity) bragged that it had the "equivalent of 1 Farad of filtering." The voltage regulator produced a reduction in ripple equivalent to what would be obtained with $1,000,000 \mu \mathrm{~F}$ of filter capacitance! This effect is shown in fig. 9. The upper trace, A, is taken at point " A " in fig. 8, and represents the

Yaesu's mini HTs. The smallest,smartest, toughest radios.Anywhere.

Whether you're a Novice or Extra class operator, you're sure to appreciate the high power, durability and size of Yaesu's FT'-23R Series mini-HTs.

To begin with, you'll find a model that's right on your wavelength. The 2-meter FT-23R.The $220-\mathrm{MHz}$ FT-33R. Or the $440-\mathrm{MHz}$ FTT73R.

Whichever you choose, you benefit from incredibly small packaging. (Take a look at the actual size photo.) Aluminum-alloy cases that prove themselves reliable in a one-meter drop test onto solid concrete. And moistureresistant seals that really help keep the rain out.

But perhaps best of all, each radio blends sophisticated, micro-processor-controlled performance with surprisingly simple operation. In fact, it takes only minutes to master all these features:

Ten memories that store frequency, offset and PL tone. Memory scan at 2 frequencies per second. Tx offset storage. Priority channel scan. Channel selection via tuning knob or up/down buttons. PL tone board (optional). PL display. Independent PL memory per channel. PL encode and decode. LCD power output and "S"meter display. Battery-saver circuit. Push-button squelch override. Eight-key control pad. Keypad lock. High/low power switch.

The FT-23R comes with a 7.2 volt, 2.5 -watt battery pack.The FT73R with a 7.2 -volt, 2 -watt pack. And the FT-33R with a powerful 12 -volt, 5 -watt pack.

You can choose the miniature 7.2 -volt, 2 -watt pack shown in the photo below. And all battery packs are interchangeable, too.

And consider these options: Dry cell battery case for 6 AAA-size cells. Dry cell battery case for 6 AA-size cells. DC car adapter/charger. Programmable CTCSS (PL tone) encoder/ decoder. DTMF keypad encoder. Mobile hanger bracket. External speaker/microphone. And more.

Check out the FT-23R Series at your Yaesu dealer today. Because although we can tell you about their incredible performance, tough-

$$
\begin{gathered}
\text { ness and small size, } \\
\text { seeing is really } \\
\text { believing. }
\end{gathered}
$$

KENWOOD

TS-940SAT Gen. Cvg. Xcvr. \$2249.95 Call \$ TS-430S Gen. Cvg. Xcvr. 819.95 Call \$ TS-711A All Mode Base 25w 899.95 Call \$ TR.751A All Mode Mobile 25w 599.95 Call \$ TS-440S/AT Gen. Cvg. Xcvr 1199.95 Call \$ TM-2530A FM Mobile $25 w$ TM-2550A FM Mobile 45w TM-2570A FM Mobile 70w TH. 205 AT, NEW 2 m HT TH-215A, 2 m HT Has it All TH21BT 2M HT
TH31BT 220 HT
TM-3530A FM $220 \mathrm{MHz} 25 \mathrm{w} \quad 449.95$ Call \$

FT 757GX
FT. 757 GX Gen. Cvg. Xcvr. FT. 7674 Band New FT-211 RH
FT-290R All Mode Portable
FT-23 R/TT Mini HT
FT-209RH RM Handheld 5w FT-726R All Mode Xcvr. FT-727R 2M/70CM HT FT2700RH 2M/70CM 25w
$\$ 995.00$ Call \$ 1895.00 Call \$ 459.95 Call \$ 579.95 Call \$ 299.95 Call \$ 359.95 Call \$ 1095.95 Call \$ 479.95 Call \$ 599.95 Call \$

fig. 8. Basic IC voltage regulator circuit.
output waveform from the regulator. The bottom trace is the filtered pulsating dc at the input of the regulator device (point " B " in fig. 8). Both trace photos were taken with the oscilloscope's vertical attenuator set to 0.1 volts/cm. The bottom trace shows 160 mV of ripple, while the upper trace shows no discernible ripple. In fact, the oscilloscope showed no discernible ripple on all settings of the attenuator except at the $5 \mathrm{mV} / \mathrm{cm}$ (most sensitive) position. A defective regulator will show a high ripple on the output as well as an incorrect voltage.

WARNING: Defective regulators can produce a higher than normal voltage at the output of the supply! That potential can damage electronic circuits, so immediately turn off the equipment if this result is found. If the regulator is a simple IC type, then it can be replaced and the circuit inspected for damage.
I use a current-limited bench power supply to troubleshoot equipment of this sort. Disconnect the regulator, set the bench output voltage to the same potential the regulator is supposed to produce, set the current-limiting control to the rated value produced by the regulator, and then connect the bench supply across the equipment circuits. If the circuits are undamaged, they will function correctly. Next, place a load resistor across the output of the regulator (the equipment circuits are still disconnected). It should draw a current of 25 to 100 percent the normal load for that particular supply. Measure the output voltage and examine the waveform across the load resistor. If the regulator is operating correctly,

fig. 9. Voltage regulator greatly reduces ripple of power supply. Upper trace (A) was taken at point " A " in fig. 8; lower trace (B) is filtered pulsating dc at input of regulator (point " B " in fig. 8).
you may reconnect the circuits to the replaced or repaired regulator.

conclusion

Although professional servicers almost invariably prefer troubleshooting with oscilloscopes, many people still mistakenly believe that the dc voltmeter is the only instrument useful for troubleshooting dc supplies. In this article we've seen that the oscilloscope is also useful for this job - which strengthens my conviction that all technically inclined Amateurs ought to obtain good oscilloscopes for their workshops.

WARNING: techniques presented in this article are for low-voltage dc power supplies only. Do not attempt to use them on a high-voltage supply unless a suitable high-voltage probe is provided. Otherwise, damage to the oscilloscope may result, and the high voltage present may also be dangerous to you.
ham radio

YOU ALREADYOWN 75\% OF A COLOR VIDEO STATION

It's true. With your transceiver, antenna, television set and audio tape recorder, you already have 75% of what's required to receive and send color video world-wide!

Add a ROBDT]'Video Transceiver and your station is complete.

Thousands of amateur video operators around the world are exchanging beautiful color images every day. Whether your favorite mode is SSB or FM or AM-direct, via repeater or satellite-you can join in the high-tech fun without modifying your present equipment. Just add a Robot to your station!

Also displaving the popular accessories needed to complete a HAM STATION . . ARRL PUBLICATIONS - AEA PRODUCTS • AMPHENOL - ALPHA DELTA • ASTRON • AUSTIN ANTENNAS • AVANTI

- BELDEN • BENCHER • B \& W • DAIWA - ALINCO

*ANTENNA TIME HF-VHF-UHF

Crushcraft A3, A4 \& 10 mtr Monobander

Hustler, KLM, B\&W AEA and Austin

- HUSTLER • KLM • LARSEN • MIRAGE • ROHN
- TELEX/HY-GAIN • TOKYO HY-POWER LABS
- TRAC KEYERS•VIBROPLEX•WELZ•ETC.
- 155

OPEN SIX DAYS A WEEK
Telephone 617/486-3400, 3040 675 Great Rd., (Rite. 119) Littleton, MA 01460 1\%, miles from Rte. 495 (Exit 31) toward Groton, Mass.

NEMAL ELECTRONICS

\square
${ }^{*}$ Complete Cable Assembly facilities MIL-STD-45208
${ }^{*}$ Commercial Accounts welcome- Quantity pricing * Same day shipping most orders
${ }^{*}$ Factory authorized distributor for Alpha, Amphenol, Belden, Kings, Times Fiber
Call NEMAL for computer cable, CATV cable, Flat cable, semi-rigid cable, telephone cable, crimping tools, D-sub connectors, heat shrink, cable ties, high voltage connectors.
HARDLINE 50 OHM
FXA 12 1/20 Aluminum Black Jacket
CONNECTORS-MADE IN USA
.......................89/h FLC78 7/E Cablewwe corn coppor buk $/ \mathrm{kt}1 .58 / n$ NM12CC N conn $1 / 2$ corr coppor m / t …........... 2300 NMTOCC N conn $7 / 8^{\circ}$ corr copper m / l............... 54.00

COAXIAL CABLES (per n)
1180 BELDEN 9913 very low loss
 1102 RGB/V 95\% shield low loss fown 11 ga............... 32 1110 RGax 95% shield (min' B) 15 1130 RG213/N 95\% shiveld mil spec NCV ht 36 1140 RG214/N dbl siver ahid mil spec................... 1.85 1705 RG142B/U dbl si/ver shid, teflon ins 1.50 1310 RG217/N 50 ohm 5000 waff dbl shid 85 1450 RG174/V 50 ohm . 100 od mil spec

ROTOR CABLE- 8 CONDUCTOR
8C1822 2-18ga and 6-22ga \qquad . 19/n OC1620 2-18ga and 6-20ga \qquad .38/ π

NE720 Typo N plug for Bolden 9913 \qquad NET23 Type N jack for Baiden 9913. PL259 standard UHF plug for RGQ,213................................. 65 PL2594M Amphonol PL258 PL259TS PL259 tonon ins/silver plated... \qquad PL258AM Amphenol ternelo-lomaio (barrel). \qquad UG175/UG178 reducer for RG58/59 (specily)............... 22 UG210S N plug for RGQ213214 Siver...................... 335 G 2838 N Juck P1 UG838 N jack to PL259 sduptor, tofon ...
UG1484 SO239 to N plug adapter, teflon \qquad and................. 50 UG255 SO239 to BNC plug adapter, Ampherol......... 329 SO239AM UHF chassis me receptacle,Amphenol...

GROUND STRAP-GROUND WIRE
GS38 $3 / 8^{8}$ tinned copper braid \qquad GS $121 / 2^{\circ}$ tinned copper braid pper brai. GS200 $1-1 / 2^{\circ}$ heavy tinned copper braid
 HWOB Bga insulated stranded wire \qquad $.40 / n$
$2.00 / n$ AW14 14ge stranded Anterne wire CCS
.................... 12/7
${ }^{\text {T}}$ Shipping Cable $\$ 3 / 100$, Connectors $\$ 3.00$, Visa/Mastercard $\$ 30 \mathrm{~min}$, COD add $\$ 2.00$ Call of wite for completo price list Nomal's new 36 page CABLE AND CONNECTOR SELECTION GUIDE is available at no charge with orders of 550 or more, or at a cost of 54 with credit against next qualifying order.

NEMAL ELECTRONICS, INC. 12240 NE 14th Ave. N. Miami, FL 33161
(305) 893-3924 Telex 6975377 24hr FAX (305)895-8178

pulse width modulated dc-to-dc converters

Get the voltage you want and high efficiency, too

How many times have you required a voltage lower, higher, or of opposite polarity than that provided by your power supply or battery? If you wanted to draw 5 volts from a 15 -volt source, for example, you could use a linear regulator or a zener diode - but with efficiency of only 33 percent or less. By using a dc-to-dc converter, however, you could obtain your desired voltage with an efficiency of 65 to 80 percent or more.

While a number of different types of dc-to-dc converter circuits can be used, this article deals exclusively with the pulse width modulated (PWM) type. A wide variety of PWM ICs are available from a number of suppliers such as National, RCA, Fairchild, Motorola, Silicon General, Unitrode and others.

buck or forward converter

The first type examined will be the buck or forward converter used to supply a voltage lower than the input. Referring to fig. 1, note that the basic buck converter consists of a switch (S), a diode, an inductor, a capacitor, and a load resistor. In a practical converter, the switch is replaced by a transistor or FET driven by pulses supplied from a PWM chip.

When the switch is closed, current starts to build up gradually as the inductor opposes a rapid change in current flow. The capacitor begins to charge, and an EMF appears across the load. As the current increases, a magnetic field builds up in and about the inductor. The switch then opens, and forward current flow ceases. At this point the magnetic field collapses, inducing a voltage in the inductor of opposite polarity.

The energy induced in the inductor flows through the diode to the capacitor and load. Energy is supplied to the load from that stored in the inductor. The ratio of the time on (switch closed) to time off (switch open) determines the total energy delivered to the load, and therefore the output voltage. The PWM chip will monitor the output via the feedback resistor in a practical circuit, compare it with the internal reference voltage of the chip, and precisely control the ratio of on time to off time to maintain a constant output voltage. As the load is increased, the on time increases; as the load is decreased, the on time decreases. This circuit can be used to obtain an output voltage lower than the input by at least 2 volts or more.

flyback converter

Figure 2 shows a basic flyback converter with the same five basic components arranged in a different manner. In this circuit, when the switch is closed, energy is stored in the inductor because it cannot flow to the capacitor and load because of the diode. When the switch is open, the energy stored in the inductor is transferred to the capacitor and load because the diode is now forward biased. With this circuit, you can obtain a supply of reverse polarity greater than, less than, or equal to the input voltage.

boost or step-up converter

Figure 3 illustrates a basic boost or step-up circuit. In this circuit, we see the same five components arranged differently. When the switch is closed, the inductor is connected in parallel with the input, and energy is once again stored in the inductor.

By William R. Hennigan, W3CZ, 975 Clopper Road, Apartment A2, Gaithersburg, Maryland 20878

INSIDE VIEW - RS-12A	ASTRON POW - HEAVY DUTY - HIGH QUA SPECIAL FEATURES - SOLID STATE ELECTRONICALLY REGULATED - FOLD-BACK CURRENT LIMITING Protects Power Supply from excessive current \& continuous shorted output - CROWBAR OVER VOLTAGE PROTECTION on all Models except RS-3A. RS-4A, RS-5A. - MAINTAIN REGULATION \& LOW RIPPLE at low line input Voltage - HEAVY DUTY HEAT SINK - CHASSIS MOUNT FUSE - THREE CONDUCTOR POWER CORD - ONE YEAR WARRANTY • MADE IN U.S.A.	ER SUPPLIES Y • RUGGED • RELIABLE • PERFORMANCE SPECIFICATIONS - INPUT VOLTAGE: 105-125 VAC - OUTPUT VOLTAGE: 13.8 VDC ± 0.05 volts (Internally Adjustable: 11-15 VDC) - RIPPLE Less than 5 mv peak to peak (full load \& low line) - Also available with 220 VAC input voltage
RM SERIES		NT POWER SUPPLIES
RS-A SERIES	MODEL Continuous Duty [Amps] RS-3A 2.5 RS-4A 3 RS-5A 4 RS-7A 5 RS-7B 5 RS-10A 7.5 RS-12A 9 RS-12B 9 RS-20A 16 RS-35A 25 RS-50A 37	
RS-M SERIES	MODEL - Switchable volt and Amp meter Continuous Duty (Amps) RS-12M 9 - Separate volt and Amp meters RS-20M 16 RS-35M 25 RS-50M 37	ICS* (Amps] Size [IN] $\mathbf{H} \times \mathbf{W} \times \mathbf{0}$ Shipping WI. [lbs.) 12 $41 / 2 \times 8 \times 9$ 13 20 $5 \times 9 \times 10^{1 / 2}$ 18 35 $5 \times 11 \times 11$ 27 50 $6 \times 13^{3} / 4 \times 11$ 46
VS-M AND VRM-M SERIES		rom 2-15 volts • Current limit adjustable from 1.5 amps
RS-S SERIES	- Built in speaker	ICS Size (IW) Shipping Amps $7 \times \mathbf{W} \times \mathbf{D}$ (Ibs.) 7 $4 \times 71 / 2 \times 10^{1 / 4}$ 10 10 $4 \times 71 / 2 \times 10^{3 / 4}$ 12 12 $41 / 2 \times 8 \times 9$ 13 20 $5 \times 9 \times 10^{1 / 2}$ 18

fig. 1. Buck or forward converter supplies an output voltage lower than its input $-\mathbf{i} . \mathrm{e}_{\mathrm{I}}, \mathrm{E}_{\mathbb{I N}}>\mathrm{E}_{\mathrm{Out}}$.

fig. 3. In this boost circuit the output is the sum of the input voltage and the voltage across inductor, i.e. $\mathrm{V}_{\mathrm{OUT}}>\mathrm{V}_{\mathrm{IN}}$.

When the switch is open, the energy in the inductor is transferred to the load and this voltage is now connected in series with the input; thus the output is the sum of the input voltage and the voltage across the inductor. This circuit can be used only as a step-up or boost circuit. It does suffer from one fault, however, which I'llexplain later.

buck or step-down converter

A practical buck or step-down forward converter can be constructed using a 3524 IC, a chip that's readily available from a number of suppliers. Figure 4 shows a schematic of an 8-volt regulated supply with an input of 12 volts. I built this circuit several years ago; the 8 -volt output was loaded from 150 to 500 mA with a measured efficiency that varied from 83 to 85 percent.

Note that the internal reference at pin 16 is divided down to 2.5 volts at pin 2 . This is necessary because the comparator in the chip is powered off the 5 -volt reference and has a common mode input of 1.8 to 3.4 volts (see fig. 5 for the internal circuitry of the chip). The Unitrode UC1524 family of chips has a higher
common mode input because the comparators are powered off the input voltage of the chip; if they're used in this circuit - with 12-volt input - the reference could be applied directly to pin 2 by means of a resistor. The current limit comparator (pins 4 and 5) also has the same common mode input limitations with the LM3524, so the current limit resistor is in the negative lead in the circuit shown. The resistor value of RCL can be tailored to fit the need. A 1 -ohm resistor will current limit at about 200 mA , a 0.2 -ohm resistor at about 1 ampere, and a 0.4 -ohm resistor at about 500 mA . The current limit value is the value of a resistor whose voltage drop equals 0.2 volts. If current limiting isn't necessary, it can be omitted and the leads connected together at this point, forming a jumper between point A and B.

L1 and L3, wound on toroids, consist of 45 turns of No. 25 wire on Micrometals T68-26A cores. These plus C6 can also be omitted if the ripple from the supply at both the 12 -volt input and 8 -volt output is acceptable.

Any of the $1524,2524,3524$ chips will operate in the circuit shown in fig. 4. The operating frequency

fig. 4. Step-down forward converter provides 8 volts out with 12 volts applied to the input.
of this converter, approximately 20 kHz , is determined by the value of R_{t} and C_{t}. The frequency is about equal to 1 over the product of the timing Resistor R_{t} here and timing Capacitor C_{t} or:

$$
\begin{equation*}
f=\frac{1}{R_{t} C_{t}} \tag{1}
\end{equation*}
$$

The inductor L 2 , the heart of the unit, has an inductance of $830 \mu \mathrm{H}$, and consists of 72 turns of No. 26 wire wound on an 1811F1D bobbin mounted on a set of Ferroxcube ${ }^{\oplus}$ gapped cup cores (part No. 1811PA1603B9).* Though the inductor could just as well be wound on a toroid, I chose cup cores because they were available and because they're much easier to wind than toroids. I bolted them together with a nylon screw, but any nonmagnetic material, such as brass, would have been appropriate.

This supply will operate equally well with a 15,18 , or 24 -volt input. To convert to a 5 -volt output, change the feedback resistor R_{f} to 5.1 k ; to fine-tune the voltage, use a 4.7-k resistor in series with a 500 -ohm pot. To adjust this 8 -volt supply, use a $10-k$ resistor in series with a $2-\mathrm{k}$ pot instead of the $11.22-\mathrm{k}$ resistor shown, because it isn't a standard value and would have to be made up of several resistors in series.

The feedback resistor for the circuit shown in fig. 4 can be calculated as follows:

$$
\begin{equation*}
R_{f}=5100\left(\frac{V_{o}}{2.5}-1\right) \tag{2}
\end{equation*}
$$

V_{0} being the desired output voltage from the supply. The switching transistor TIP 115 should be heat sinked to keep it from overheating. In my supply it was bolted, with a mica washer, to the circuit board upon which the supply was built to keep it from shorting to the copper foil of the circuit board.

If the output current is increased to 1.0 ampere, the value of the inductor should be decreased to 300 to $500 \mu \mathrm{H}$ or so. In all cases, the diode should be a fastrecovery type; for maximum efficiency in low-voltage supplies of 5 to 10 volts output, a Schottky type (for example, a 1 N 5819) is preferred. In any event, don't use 1N4000-type diodes, which will overheat.

The value of the inductor, L2, can be calculated as follows:

$$
\begin{equation*}
L=\frac{2.5 V_{o}\left(V_{\text {in }}-V_{o}\right)}{I_{o} V_{\text {in }} f_{\text {osc }}} \tag{3}
\end{equation*}
$$

$\mathrm{V}_{\mathrm{o}}=$ output voltage
$V_{\text {in }}=$ input voltage
$\mathrm{I}_{\mathrm{o}}=$ output current
$\mathrm{f}_{\text {osc }}=$ oscillator frequency

inverted supply

Figure 6 shows a converter that gives us an inverted supply or a -15 -volt supply from a positive source.

[^3]

Hustler VHF and UHF antennas offer a combination of gain, durability and value which have made them the antenna most often demanded for repeater applications.
Reliability and Performance-Beyond Your Expectations

here is the next generation Repeater
 2 meters - 220-440 MARK 4CR
 The only repeaters and controllers with REAL SPEECH!

Vo other repeaters or controllers match Mark 4 in capability and features. That's why Mark 4 is the performance leader at amateur and commercial repeater sites around the world. Only Mark 4 gives you Message Mastertm real speech - voice readout of received signal strength, deviation, and frequency error - 4channel receiver voting - clock time announcements and function control • 7helical filter receiver - extensive phone patch functions. Unlike others, Mark 4 even includes power supply and a handsome cabinet.

Call or write for specifications on the repeater, controller, and receiver winners.

MICRO CONTROL SPECIALTIES

Division of Kendecom Inc.

23 Elm Park, Groveland, MA 01834 (617) 372-3442

Create messages just by talking. Speak any phrases or words in any languages or dialect and your own voice is stored instantly in solid-state memory. Perfect for emergency warnings, club news bulletins, and DX alerts. Create unique ID and tail messages, and the ultimate in a real speech user mailbox - only with a Mark 4.

fig. 5A. Unitrode No. UC1524 series of ICs: equivalent internal block diagram.

fig. 5B. UC1524 series pin configuration.

This circuit provided an efficiency of 76 percent loaded to 250 mA . The inductor measured $525 \mu \mathrm{H}$ and consisted of 70 turns of No. 29 wire wound on a Ferroxcube cup core set of No. 1408PA1003B7 gapped cores. This is a smaller core than the one used in the buck converter shown in fig. 4. The frequency of this oscillator was measured at 21.2 kHz .

Do not operate any of these dc-to-dc converters without some load; if you do, the capacitor can charge up to the peak pulses applied to the inductor. One way to prevent this from happening is to modify the feed-
back resistor and $5.1-\mathrm{k}$ resistor to ground to lower values, in order to provide some loading to the supply if you want to be able to remove the load while the supply is operating, or want to apply the load while it's operating. In this circuit, I used a Schottky diode (1N5819) with a snubber consisting of a 3.3-k resistor and a 1000-pF capacitor in series across the diode. If a fast-recovery type such as a 1 N4935, 1N4936, or 1N4937 were used, the snubber could be deleted.

Since the 35.7-k feedback resistor isn't a standard value, a good substitute would be a $33-k$ resistor in series with a $5-k$ pot; with this arrangement, you'd be able to adjust the output to exactly 15 volts. The output voltage can be changed by merely changing the value of the feedback resistor.

The value of the feedback in this supply or circuit can be calculated as follows:

$$
\begin{equation*}
R_{f}=\frac{O V+2.5}{2.5} \times 5100 \tag{4}
\end{equation*}
$$

This supply will operate just as well with an input voltage of from +12 to +24 volts. In fact, it will probably operate with an input as high as 40 volts, the maximum for the LM3524, but be sure to use a fastrecovery diode rather than a Schottky type.

boost converter

The boost converter shown in the next circuit (fig. 7) uses the internal switching transistors in the 3524 chip because the load was only 40 mA . The efficiency of this circuit, with an output of 24 volts at 40 mA , and an input of 12 volts, was measured at 78.6 percent. The $600-\mu \mathrm{H}$ inductor consists of 80 turns of No.

Barry Electronics Commercial Radio Dept: offers the Best in two-way communications for Businesses, Municipalities, Civil Defense, Broadcasting Companies, Hospitals, etc. Sales and Service for all brands: Maxon, Yaesu, Icon, Tad, Octagon. Regency/Wilson, Midland, Standard, Uniden, Shinway, Fujitus, Seas, Spillsbury, Neutec, etc. Call or write for information. 212-925-7000.

computeradio
 Box 282, Pine Brook. NJ 07058-0282

 HI-FI, PA syntems, Telephones, VCRer, Tent cquipment,
 DUE TO: Doncst ic applameen, Rada, Trananit teral (CH, ILam Radio, Connercial), Imfunt rial mawhinery, Cordictsi Telephones, Conput orn, Switching Syst cras. EASY TO USF: Fita onto nmail, larqe and ribton cablen. Nos need to rewire connectors. Unique, split ferrite core dessign fits up to RGBD coar cablen WOHKS in "COMmON MODE", filtern surtent induced In the brand of shielded cablens and ground wirent

Manufactured and avalable in Cathade fromat

4087 HARVESTER RD UNIT * 10 BURLINGTON. ONT L7L 5M3

A beffer way fo design and analyze Long wires, Vee's, and Rhombics.

LONGWIREPRO

Easy to use, menu driven, select wire length, height, frequency, ground type, ond get a color coded sinusoidal projection of your HF ontenno. DOS 2.0 or higher, 256 K , color required Price $\$ 35.00$

EPSILロNCロ Box 715, Trumbull CT, 06611, (203) 2617694

7 MILLION TUBES

FREE CATALOG

Includes all Current, Obsolete, Antique, Hard-To-Find Receiving, Broadcast, Industrial, Radio/TV types. LOWEST PRICES, Major Brands, In Stock.
UNITY Electronics Dept. it P.O. Box 213

Elizabeth, NJ 07206

AMATEUR RADIO MAIL LISTS Selt-stick 1×3 labels
*** NEWLY LICENCED HAMS *** *** ALL NEW UPGRADES *** *** UPDATED EACH WEEK ***
Total List $=462,728$ (ZIP sorted)
Price is 2.5 cents each (4-up Cheshire)
BUCKMASTER PUBLISHING
Mineral, Virginia 23117
703:894-5777

fig. 7. Boost converter is able to use the LM3524 internal switching transistors because of low-current operation.

32 wire wound on a Ferroxcube core (No. 1107PA1003B7), which is smaller than those used in the other circuits. In all cases, when you use cup cores, be sure to adjust the wire size to fill the bobbin completely for the inductance required. Toroids can also be used in these circuits.

The component values of a large part of the circuitry are similar to the other circuits used in figs. 4 and 6.

Earlier I mentioned a problem with the basic boost circuit given that there's no easy way to current limit it when the switching transistor isn't connected between the input and output. In any of the circuits where the switching transistor is connected between the input and output, the current limit comparator at pins 4 and 5 can be connected across a limit resistor as shown in fig. 4. In the inverting supply, the resistor can be
P.O. Box 4405

220 N. Fulton Ave.
Evansville, IN 47710

Store Hours
 MON-FRI: 9AM-6PM
 SAT: 9AM - 3PM CENTRAL TIME

SEND SASE FOR NEW \& USED SHEETS WARRANTY SERVICE CENTER FOR:

ICOM, YAESU, TEN-TEC

TERMS:

Prices Do Not Include Shipping. Price and Availability Subject to Change Without Notice Most Orders Shipped The Same Day

MMABSU

FT-767

- HF/VHF/UHF Base Station
- Plug-in Modules for $6 \mathrm{~m}, 2 \mathrm{~m}, 440 \mathrm{MHz}$
- Loaded with Features
\$ SPECIAL PRICE \$

- 440 MHz Mobile, FM

Transceiver

- 25 w Output High

3 w Output Low

- Dual VFO's, 10 memories EXTRA SPECIAL PRICE Call Now - Limited Supply

IC. 735

- Full Featured, Compact, All Band HF Transceiver
- General Coverage Receiver
- Built-in USB, LSB, AM, FM, CW
- 12 Memories
- Up to 100 w output

IC $-\mu 2 \mathrm{AT}$

- Pocket-Sized 2 meter HT
- TX-140-150 MHz RC-139-174 MHz
- 10 Memories and LCD Readout
- Up to 3 w Output (Option)

7 70

525D ARGOSY II

- Argosy II, SSB/CW HF Transceiver (Model 525D)
- 10.80 m Bands
- 100 w Input with Solid State, No Tune, Final
- Famous Ten Tec QSK CW

DISCOUNTS ON RIGS AND ACCESSORIES FROM: AEA, ARRL, ALINCO, ALLIANCE, ALPHA-DELTA, AMECO, AMERITRON, AMP SUPPLY, ANTENNA SPECIALISTS, ASTRON, BENCHER, BUTTERNUT, B \& W, CSI, CALLBOOK, CUSHCRAFT, DAIWA, DIAMOND, ENCOMM, HAL, HEIL, HUSTLER, ICOM, KDK, KANTRONICS, KENPRO, LARSEN, MFJ, MICROLOG, MIRAGE/KLM, NYE, PALOMAR, RF CONCEPTS, ROHN, SANTEC, SHURE, TE SYSTEMS, TELEX/HYGAIN, TEN-TEC, TOKYO HY-POWER, VIBROPLEX, W2AU BALUNS, WELZ, YAESU Call 1-812-422.0231

CONFERENCE PROCEEDINGS

21st Central States VHF Society Conference held in Arlington, Texas, July $23-26,1987.28$ papers covering everything from use of TVRO dishes for moonbounce to a solid state amplifier for 5.7 GHz .166 pages.

6th ARRL Computer Networking Conference held in Redondo Beach, California, August 29, 1987. 29 papers (approximately 150 pages) will appear in the proceedings booklet. Copies will be available at the conference or from ARRL after September 1.

MICROWAVE UPDATE 1987 held in Estes Park, Colorado, September 10 13, 1987. 15 papers (approximately 100 pages) appear in the proceedings booklet. Copies will be available at the conference or from ARRL after September 14.

Proceedings booklets are $\$ 10.00$ each plus $\$ 2.50$ per order for postage and handling (\$3.50 for UPS.)

(10)	
边	
\%	
80	
为	
10 Blaster ${ }^{-}$IC-02/04 AI,2AT,U16,f1209,FI727Mooule installs inside the radio in 15 thin Boest dudio	
(2) mon	

fig. 8A. Circuit diagram of simple buck converter using National LH1605K IC.
placed in series with the diode and ground, with the ends of the resistor connected to pins 4 and 5; be careful to observe the correct polarity.

simple buck converter

A rather simple buck converter can be built around the National LH1605K, a device with eight leads, contained in a TO3 package.* The internal schematic and complete circuit diagram are shown in fig. 8. The switching transistor and diode are contained in the same package, so the entire circuit consists of three capacitors, one resistor, and one inductor in addition to the IC. The internal transistor and diode combination is capable of supplying an output current of 5 amps. Needless to say, it's necessary to use some form of heat sink. The maximum input voltage, 35 volts, will supply an output voltage as low as 3 volts and as high as 30 . The feedback resistor can be calculated as follows:

$$
\begin{equation*}
\frac{2 \times 10^{3}\left(V_{o}-2.5\right)}{2.5} \tag{5}
\end{equation*}
$$

If a 15-volt output is desired, then R_{f} would be 10 k ; for a 5 -volt output, it would be 2 k . With a 12 -volt input and a 5 -volt output, I measured an efficiency of 68 to 69.5 percent with a 5 -volt load of 600 mA to 1 ampere. With a 24 -volt input and a 14 -volt output, the efficiency varied from 73.5 percent to 79 percent because the load was varied from 300 mA to 2 amperes. If a step-down regulator is required, this chip would surely be appropriate. The inductor in my unit measured $210 \mu \mathrm{H}$ and consisted of 35.5 turns of No. 20 wire wound on a Ferroxcube cup core set (No. 2616PA170368) held together by a nylon screw, which also was used to mount it. This chip can be used only as a buck converter. In my unit, R_{f} was a pot that could be set for any output voltage as long as it was several volts less than the input.

TOP VIEW
Order Number LH1805K or LH1806C
Sea NS Package KOAA
fig. 8B. National LH1605K IC: internal diagram and pin configuration.

other possibilities

Lambda's 6300 series of PWM regulators come in the same TO3 package with eight leads. These units can be used in a number of circuits - buck, boost, or inverting.

It's possible to build multiple output supplies using PWM chips. If the supplies require that all the outputs need to be regulated rather closely under varying load conditions, then you could probably build, as I have, several regulated supplies with all chips running at the same frequency. One chip uses R_{t} and C_{t} connected to the appropriate pins. Tie pin 3 of all chips together, and pin 7 of all chips together.

You can obtain a \pm supply from one buck regulator which will track quite well even though one supply or output is sampled via the feedback resistor. It works best if the - supply is loaded to only 10 to 25 percent of the load on the + supply (see fig. 9). If the load on the + supply is removed with a load on

[^4]
Join AMSAT...Today

Amateur Radio Satellite OSCAR 10

 provides:- A New Worldwide DX Ham Band open 10 hours a day.
- Rag Chew With Rare DX Stations in an uncrowded, gentlemanly fashion.

- Popular Modes In Use:

SSB, CW, RTTY, SSTV, Packet

- Full Operating Privileges open to Technician Class licensee or higher.

Other AMSAT Membership Benefits:

Newsletter Subscription:
Dependable technical articles, satellite news, orbital elements, product reviews, DX news, and more.

Satellite Tracking Software

Available for most popular PCs.

QSL Bureau, AMSAT Nets, Area Coordinator Support, Forum Talks

Construction of Future Satellites For Your Enjoyment!

AMSAT Membership is $\$ 24$ a year, $\$ 26$ outside North America. VISA and MC accepted.

AMSAT
P.O. Box 27
Washington, DC 20044
301 589-6062

fig. 9. Dual-voltage supply uses single buck regulator.

fig. 10. Dual-voltage supply uses center tapped transformer.
the - supply connected, the - voltage will drop considerably because the pulse width will be reduced severely - but with loads on both supplies, the voltages will track quite well. The inductor in this circuit was wound with 76 turns of bifilar No. 30 wire.
Another way to obtain a dual supply is to use a center-tapped transformer, as shown in fig. 10.

conclusion

In closing I might mention that since these supplies run at 20 kHz , good low-frequency rf practices should be followed in wiring. It would be best if pin 10 of the chip were grounded; when a supply I built with some new chips operated erratically, I found that pin 10 was picking up some hash from the circuitry and tending to shut down the regulator.

If you don't have a large assortment of wire sizes, you can vary the wire size to fit what you have on hand. The exact inductance of the inductors in the circuits isn't critical; a ± 15 to 20 percent variation from the detailed values would probably work just as well.
ham radio

MAKE CIRCUIT BOARDS THE NEW, EASY WAY

WITH TEC-200 FILM JUST 3 EASY STEPS:

- Copy circuit on TEC-200 film using any plain paper copier
- Iron film on to copper clad board
- Peel off film and etch SATISFACTION GUARANTEED convenient $81 / 2 \times 11$ size
5-Sheets for $\$ 3.95$ 10 sheets only $\$ 5.95$
add $\$ 100$ postage - NY res add sales tax

The MEADOWLAKE Corp.

DEPT. H. P.O. Box 497
Northport. New York 11768

Electronic Repair Center Servicing

Amateur
Commercial Radio
The most complete repair tacility on the East Coast.
Large parts inventory and factory authorized warranty service for Kenwood, Icom and Yaesu.

SEND US YOUR PROBLEMS

Servicing "Hams" for 30 years, no rig too old or new for us.

4033 Brownsville Road
 Trevose, Pa. 19047 215-357-1400

NO TUNERS! NO RADIALS! NO RESISTORS! NO COMPROMISE! three excellent reviews just DON'T HAPPEN BY CHANCE. CALL US FOR A FREE CATALOGUE.
"See review in $\mathrm{OLt}_{\mathrm{t}}$-3, 1984
 NEW LOCATION! BILAL COMPANY 137 Manchester Dr. Florissant, Colo. 80816 (303) 687-0650

TRANSMISSION LINE TRANSFORMERS

A new ARRL Publication by Dr. Jerry Sevick, W2FMI

NOW AVAILABLE!

Despite the popularity of transmission line transformers in both commercial and amateur applications, little practical design information has been published concerning these devices. The lack of data was made abundantly clear to Jerry Sevick, W2FMI when he began designing matching transformers for the short vertical antennas that are the subject of his classic series of articles that appeared in QST. In order to fill in the gaps of available knowledge, Jerry decided to study the subject of transmission line transformers in depth and the results of his findings are contained in this new ARRL publication!

Transmission Line Transformers covers types of windings, core materials, fractional-ratio windings, efficiencies, multiwinding and series transformers, baluns, and limitations at high impedance levels. There is also a chapter on practical test equipment. This book is must reading for everyone interested in antenna and transmission line theory. Copyright 1987, 128 pages $\$ 10$ hardcover only.

The American Radio Relay League, Inc 225 Main St., Newington, CT 06111

NEWV World Time Dual-Zone 24 Hour Station/ Travel/Alarm Clork SPECIAL JUST OFFERI
SAVES YOU ' 10.00 Plus P\&H REGULAR ${ }^{\text {s 29.5 }}$ RETAIL VALUE

SEE DUAL-ZONESI FINDS "GREY LINE' WORLDWIDE - TOOI
Displays LOCAL plus 24 Cities/Zones around the worid Set to LONDON for GMT/Univeral for easy OSO logging Both displays show 24 -Hour Zulu Compensates for Inti Date Line world-wide + or from local date Spectal Summer/Daylight Savings Time swith memorizes changes Zone by Zone
LEGENDARY OUARTZ ACCURACY-ALARM 8 STANDARD BATTERIES
Ingenious new quartz digital design runs on one oscillator Long life AAA batteries included Excellent accuracy important in ham radio Compact size $12^{-} \times$ 45×51 Great for your station. DXpeditions of trave Sharp, easy to read digits. Set alarm for schedules. Folding easel stand Black leather-like travel pouch Take Advantage of Our Special Low Introductory Pricel Todayl Thousands of Azimuth Clocks in use worid-Wide

Mall To: AZIMUTH CLOCKS, 11845 W. Olympic Bivd Suite 1100, Los Angles, CA 90064
YESI Please rush me Ane Alock(s) at 51995 plo World
Time 24 -Hour Clock/s) Time 24 -Hour Clock(s) at $\$ 19.95$ plus $\$ 1.95$ Shipping \& Handling. Order 2 \& SAVE $\$ 3.90$ Just 539.90 we pay PgH (California residents please add 6.5% Sales Tax). Enclored is my check or money order Or CHARGE my VISA or MASTERCARD • Account
Expire InterBank Expires $\&$ Handling each clock (US S Only) Print Name
Address \qquad State Day Tel

FOR QUICK TOLL-FREE CREDIT CARD

 ORDERS OR CUSTOMER SERVICE CALL COLLECT TODAY (213)473-1332. 14-DAY TRIAL. SATISFACTION OR YOUR MONEY BACKI
MULTIFAX 2.0

AN UPDATED MULTIFAX PROGRAM TO COPY:

- WEFAX FROM GOES SATELLITES
- HF FAX FROM NAVY WEATHER BROADCASTS
- APT FROM NOAA POLAR ORBITING SATELLITES - WEFAX REBROADCASTS FROM TV TRANSPONDERS IN UP TO 8 COLORS (BY RE-USING FOUR) ON YOUR IBM OR COMPATIBLE PC.
MULTIFAX 2.0 (MF2) displays the full picture on the monitor as it is being recorded. Meanwhile memory is filled with fine-grain data so that ANY AREA on the picture may be selected and repeatedly magnified for viewing in greater detail. All data and any view may be saved on disk. MF2 is adaptable to all known fax speeds and PC clock rates since timing is keyboard adjustable. MF2 now records more, such as a full NOAA pass and longer weather charts and schedules. 448 k of memory for DOS, MF2, and normal recording space. More memory gives a longer recording in 64 k increments. OBTAIN hard copies by using your GRAPHICS print program OR using MF2 to dump a full picture in maximum detail to the printer.
DATA entry is via the PC game port or parallel printer port. PRICE is $\$ 49$ (US) for MF2 on disk with instructions and interface circuit information. For previous MULTIFAX buyers. MF2 is $\$ 15$ (US). Add $\$ 4$ (US) for delivery outside USA Canada, and Mexico.
MF2 was written by an author of "WEFAX Pictures on Your IBM PC" " published in the June 1985 issue of "QST." SEND for free descriptive material on these and other new features in MULTIFAX 2.0. Send $\$ 1$ (US) for a copy of a typical picture memory dump to the printer.

Elmer W. Schwittek, K2LAF
429 N. Country Club Drive, Atlantis, FL 33462 305-439-1370
IBM registered trademark of IBM Corp Multitax is a registered trademark of E. W Schwittek

W6SAI BOOKS

published by Bill Orr, W6SAI and Stu Cowan, W2LX

BEAM ANTENNA HANDBOOK

Completely revised and updated with the latest computer generated information on BEAM Antenna design. Covers HF and VHF Yagis and 10, 18 and 24 MHz WARC bands. Everything you need to know. 204 illustrations. 268 pages. (c) 1985. Revised 1st edition
RP-BA
Softbound $\$ 9.95$

SIMPLE LOW-COST WIRE ANTENNAS
Primer on how-to-build simple low cost wire antennas. Includes invisible designs for apartment dwellers. Full of diagrams and schematics 192 pages. ©1972 2nd edition
IRP-WA
Softbound $\$ 9.95$

ALL ABOUT CUBICAL QUAD ANTENNAS

Simple to build, lightweight, and high performance make the Quad at DX'ers delight. Everything from the single eiement to a multi-eiement monster. A wealth of information on construction, feeding, funing and installing the quad antenna. 112 pages. © 1982. 3rd edition |RP-C0

Softbound $\$ 7.95$

THE RADIO AMATEUR ANTENNA HANDBOOK

A wealth of projects that covers verticals, long wires, beams as well as plenty of other interesting designs. It includes an honest judgement of gain figures, how to site your antenna for the best performance, a look at the Yagi-Quad controversy, baluns, slopers, and delta loops. Practical antenna projects that work! 190 pages. (c) 1978. 1st edition RP-AH

Softbound $\$ 9.95$

Please enclose $\$ 350$ for shipping and handling

The Magazine

For Amateur Radio and Computerists Why You Should Subscribe!
 Read what our subscribers say!

It's in the fine print!

- Your magazine is the finest innovation that I have seen in ham radio since 1953-except... maybe the all-solid state tranceiver. Carl Soltesz, W8PFT - ...have most certainly received my money's worth in software... Michael Regan, K8WRB - ...you have found a nice niche for CTM in packet... you have me getting interested... Charlie Curle, AD4F Chattanooga, TN • The packet computer info convinced me to subscribe. John Skubick, K8JS • Enclosed is my check for renewal of my subscription. I enjoy the down to earth and homey style of your magazine and the many fine computer articles... Andy Kosiorek, Lakewood, OH - I was both pleased and dismayed upon becoming acquainted with your magazine at HAM-COM. Pleased that I discovered your magazine-dismayed that I didn't long before now. Bill Lathan, AK5K - ...CTM gives the finest coverage to packet radio that I have seen in any of the computer or amateur radio magazines. It would appear that CTM has just the right blend of packet amateur radio articles and computer articles. Barry Siegfried, K2MF • Of the three HAM magazines I received each month CTM is the only one I read from cover to cover and carry with me during my travels abroad. Most of the time it remains in that country. Buck Rogers, K4ABT

U.S.A. \$18.00 1 Yr-\$10.00 6 Months (Limited Offer) $\$ 33.002 \mathrm{Yr}$

Mexico \& Canada \$32.00 1 Yr (Surface)
Other Countries (Air) $\$ 68.00$ (Surface) $\$ 43.001 \mathrm{Yr}$ U.S.FUNDS ONLY Sample Copy \& Back Issues- $\$ 3.50$

Mail to:
Circulation Manager 1704 Sam Drive
$\|_{\text {Birmingham, AL }} 35235$
I (205) 854-0271
I Name
I Call Sign I
I Address 1
ICity ST

ham radio

'white noise" revisited

In my January and June, 1987, columns 1 discussed the interesting phenomenon known as "white noise" or "reciprocal mixing" (see these columns for background information). It's interesting to note that Radio Communication, the monthly publication of the Radio Society of Great Britain, discusses this subject in detail in their equipment review column, but little is said about this subject in Amateur Radio magazine equipment review columns in United States publications. My opinion is that the subject won't go away if you ignore it!

The RSGB reviews indicate transmitter noise sideband performance at 10 kHz off-tune as the "standard of performance" they measure, but they also provide reciprocal noise measurements at $2,3,5,10,20,30,50$ and 100 kHz off tune. This is very useful information, and it's a pity that more of it isn't available on this side of the pond. I'm sure that as time goes on, the data will be available for general consumption. While publications other than this one may be oblivious to the fact, the readers of this column are not, judging from my mail on the subject.

In this regard, the November, 1986, issue of rf Design magazine ${ }^{1}$ included an article entitled "Broadband Noise Improvement in RF Power Amplifiers" by Franke and DeLeon of the ECI Division of E-Systems, Inc. In brief, the authors maintained that operation of
a high power transmitter in the vicinity of a sensitive receiver can result in the degradation of the receiver due to broadband transmitter noise.

This is nothing new. I remember back in 1935, when I first got on 20-meter phone, a local DXer had great, hissing sidebands on his a-m transmitter. Everyone objected. The DXer, who was an engineer, literally tore his rig apart trying to find the cause of the noise. He never found it, and the cause remained a mystery. The noise wasn't caused by a phaselock loop circuit, either - they hadn't been invented yet!

In their article, Franke and DeLeon pointed out that the level of white noise is greatest close to the carrier frequency of the transmitter, and drops off gradually as the observation frequency departs from the carrier frequency (fig. 1). Unfortunately, the noise can't be filtered out at the receiver. They noted that the presence of close-in broadband noise isn't unexpected, considering the shape of the gain response of a bipolar transistor (fig. 2), which exhibits greater gain at frequencies lower than the normal operating region. This indicates to me that such amplifier stages are "wide open" to pass any close-in noise generated in the earlier stages of the transmitter.

Franke and DeLeon attacked this problem by using low frequency loading in the amplifier stages to reduce low frequency gain without sacrificing
high frequency gain. In their example, the amplifier stages worked above 200 MHz , and they set about to lower stage gain at frequencies below 50 MHz . A sample of this design technique is shown in fig. 3.

In the base circuit of Q1, the rf choke (L1) is the normal one for the operating frequency. Choke L2 presents a high impedance down to very low frequencies and the low frequency (noise) energy flows through load resistor R 1 , which is in the range of 5 to 10 ohms. The base circuit, then, is loaded by R1 at low frequencies where power gain is high.

A similar scheme is used in the collector circuit. Choke L3 is normal for the operating frequency. However, L3 and hf bypass capacitor C 1 form an L network that transforms the value of resistor R2 to a value that will heavily load the collector at the lower frequencies. At the operating frequency, L4 appears as an open circuit and capacitor C2 provides a very low impedance, which results in the collector feedback network shown in the small illustration. Below the normal operating range of the amplifier the input impedance to the network looks resistive, approaching the value of R2, which is typically 10 to 20 ohms.

The authors provided "before and after" illustrations of broadband noise density with and without low frequency load resistance. In addition, they point out that FETs (Field Effect Transistors) have 10 to 15 dB lower broad-

fig. 1. Level of white noise, greatest close to the carrier frequency of the transmitter, drops off gradually as the observation frequency departs from the carrier frequency.

fig. 2. Bipolar transistor exhibits greater gain at frequencies lower than the normal operating range. Broadband noise power is predominantly low-frequency noise.
band noise than a comparable bipolar power transistor. It appears that this technique is worth considering in the continuing battle against the white noise problem.

It's obvious that progress is being made in this important area. Dealing with the problem of broadband noise (as far as ham equipment goes) is in about the same stage of development
that receiver overload was 15 years ago. The latter problem has been solved, and l'm confident that this one is on the edge of being solved. Time will tell!

more on telephone interference

The following information was provided by W6BIP ("Bip"):

With regard to telephone interference caused by an Amateur station, recent editions of the ARRL Handbook and other publications have suggested that compensation networks that are RFI-free can be obtained from the telephone companies for installation in an RFI-prone instrument. Unfortunately, the compensation networks discussed have been discontinued and deleted from the AT\&T inventory. Bad news!

W6BIP reports, however, that the new replacement line filter module Z-100A does the job in most cases. It consists of two $7.2-\mathrm{mH}$ (8 ohms dc resistance) rf chokes wound on small ferrite cores. Contained in a plastic box that has matching connectors to place in series with the line, it can be bought at ATGT company phone stores or ordered by phone from the AT\&T National Service Center in St. Louis, Missouri (800 222-3111). The stock number of the line filter is SKU-57210. A second line filter (model Z-101A), stock number SKU-57293, is available for use with wall-mounted phones.

W6BIP mentions that in addition to the line filter module, some phones may require additional rf filters in the form of a $0.01-\mu \mathrm{F}$ ceramic capacitor placed across the microphone and a second one across the earphone. Experience has shown that the $3 / 16$-inch diameter capacitors are superior in RFI reduction to the common $3 / 8$-inch diameter capacitors. The value of 0.01 $\mu \mathrm{F}$ is not critical; values between 0.001 and $0.047 \mu \mathrm{~F}$ can be tried. When used in conjunction with the Z-100A filter module, they substantially reduce interference.

From experience, W6BIP says this combination of capacitors and filter module should work for those Amateurs using 1 kW input, or less, with their horizontal antennas at least 25 feet above and away from the affected telephones. For those using vertical antennas with radials on the roof, or slopers or end-fed antennas close to the roof, so much if seems to enter the house wiring and indoor telephone lines that the filtering described may be inadequate.

fig. 3. Design technique for low-frequency loading.

the "wideband dipole" - a different approach

Eighty-meter operators have been continually frustrated by the problem of getting an antenna that will show a low value of SWR across the whole band (3.5 to 4.0 MHz). Many modern transceivers require a feed line SWR of less than $2: 1$ to function properly.

A conventional dipole, cut to midband and fed with a 50 -ohm coax line has an operational bandwidth of 170 to 190 kHz between the 2:1 SWR points, depending upon the height above ground. This means that such an antenna, cut for the high end of the band (phone) is useless at the low end of the band (CW).

Bill McLeod, VK3MI, has an interesting approach to this problem, as shown in fig. 4. His antenna design appeared in the April, 1986, issue of the Journal of the Wireless Institute of Australia. His idea consists of using a quarter-wave 73 -ohm transformer
made of RG-59/U coax plus a reactance compensation capacitor to introduce a deliberate mismatch at the antenna. The result is a poorer SWR level at the resonant frequency of the antenna, but a flatter SWR response across the band of interest.

Using a dipole cut for 3.7 MHz , Bill measured an SWR value of less than 2:1 over a bandwidth of 420 kHz , as shown in the illustration.

It seems to me that with the dipole cut for a slightly higher frequency (say, 3750 kHz) and with adjustment of the reactance capacitor, it may be possible to "stretch" the $2: 1$ operating bandwidth to cover the complete 80 meter band.

The capacitor should be a highvoltage mica type, or it may be made from a length of coax line open at the far end. The capacitive stub can be taped to the feed line, if desired.

One trick for achieving better bandwidth is to use this scheme with a

SYNTHESIZED
SIGNAL GENERATOR

- Covers 100 MHz to 199.999 MHz in 1 kHz steps with thumbwheel dial Accuracy + /- 1 part per 10 million at all frequencies - Internal FM adjustable from 0 to 100 kHz at a 1 kHz rate - External FM input accepts tones or voice - Spurs and noise at least 60 dB below carrier - Output adjustable from 5.500 mV at 500 hms - Operates on 12 Vdc @ $1 / 2$ Amp Available for immediate delivery • $\$ 429.95$ delivered - Add-on accessories available to extend freq range, add infinite resolution, AM , and a precision 120 dB attenuator - Call or write for details - Phone in your order for fast COD shipment.

VANGUARD LABS
173
196-23 Jamaica Ave., Hollis, NY 11423 Phone: (718) 468-2720 Mon. thru Thu.

175

M ITPOLE TRAP ANTENXAS!

PRETUNED-ASSEMBLED ANTENNA FOA ALL BA: NOSI EXCELLENT FOR APARTMENTSI
COMPLETE \qquad insulat. 9 . PL259 connector, insulators, 30 t1 30 ahm feadtine, and static discharge, sealed, weatherproof, traps $1^{-\times} 5^{-1 / 3}-3$ os Low SWR over ail bands -Tuners usuatly NOT NEEDED: Can be used as inverted Vis-slopers in attics, on bulding tops of narrow
lots. WORKS ON NEW WARC BANDSI The ONLY AN TENNA YOU WILL EVER NEED FOR ALL BANDSI NO BALUNS NEEDED:

 20-15-10 meter - 2 vap- 26tt. . No.-1007E $\$ 97.95$
SEND FULL PRICE FOR PP DEL IN USA. (Canada in 55.00 extra tor postage etc) order using VISA - MASTER CARD AMER EXPRESS. Ph 1-308-236-5333 week days. We
atio in 2-3 days. (Per C k. 14 days) for 1 yea. 10 day money back trial it returned in new condition Made in USA. FREE INFO. AVAILABLE ONLY FROM WESTEAN ELECTRONICS
Dept. AH Kearney. Nebraska, 60847

fig. 4. (A) VK3MI wideband dipole for 80 meters; (B) bandwidth of VK3MI and conventional dipole.
"fat" dipole. If the dipole halves were made of 300 -ohm transmitting twinlead, with the wires shorted together at the ends, the additional conductor area might achieve substantially better bandwidth response. In any event, this looks like a good idea to experiment with.

EME directory

The $144-\mathrm{MHz}$ EME (moonbounce) directory is available again. For a copy,
send five first-class stamps or five IRCs to me (no envelope required) at Box 7508, Menlo Park, California 94025. The directory is a 36 -page list of EME operators, their QTHs, and the equipment they use.

reference

1. Franke and DeLeon, "Broadband Noise Improvement in if Power Amplifiers," it Design. November, 1986 (rt Design, 6530 South Yosemite Street, Englewood, Colorado 80111).
ham radio

THE MOST AFFORDABLE

REPEATER

ALSO HAS THE MOST IMPRESSIVE PERFORMANCE FEATURES
(AND GIVES THEM TO YOU AS STANDARD EQUIPMENT:)

BAND	WIRED	KIT
6M,2M, 220	$\$ 880$	$\$ 630$
UHF	$\$ 980$	$\$ 730$

(Also available for commercial bands!)

FEATURES:

- SENSITIVITY SECOND TO NONE! 0.15uV Typ -SELECTIVITY THAT CAN'T BE BEAT! Both 8 pole xtal filter \& ceramic fitter for $>100 \mathrm{~dB}$ at $\pm 12 \mathrm{kHz}$. Helical resonator front end to combat desense \& intermod. -Flutter-proof squelch, Automatic frequency control separate spkr amplifier
-CLEAN, EASY-TUNE TRANSMITTER, up to 20 W output 50W with additional PA.

-TD- 2 DTMF DECODER/CONTROLLER kit only $\$ 78$ Full 16 digits, 5 functions, toll call restrictor, programmable. Much more, Great for selective calling too! -AP-1 AUTOPATCH kit only $\$ 78$. Reverse patch \& phone line remote control std.
-AP-2 Simplex Autopatch. Use with above.

Field programmable, timers, the works!
-COR-2 kit. \$38. Audio mixer, local spkr amplifier, tail \& time-out timers
-COR-3 kit. \$48, with courtesy beep

-MO-202 FSK DATA MODULATOR kit $\$ 38$ Run up to 1200 baud digital or packet radio signals through any FM transmitter
-DE-202 FSK DATA DEMODULATOR kit $\$ 38$

GaAs FET PREAMPS at a fraction of the cost of comparable units!

LNG -(*)

 GaAs FET PREAMP
ONLY \$49!

WIRED/TESTED
FEATURES:
-Very Low Noise: 0.7 dB VHF, 0.8 dB UHF -High Gain: 13-20dB, depending on frea -Wide Dynamic Range: to resist overload -Stable: new-type dual-gate GaAs FET

- Specify tuning range desired 26.30. 46-56, 137-150. 150-172, 210-230, 400-470, or 800-960 MHz

LNW -(*) MINIATURE

 GaAs FET PREAMP Unbelievably Low Price ...ONLY \$19/kit, $\$ 34$ wroditested $\mathbf{\$ 3 4}$ wired/tested
GaAs FET Preamp similar to LNG. except designed
for low cost \& small size. Only $5 / 8^{\prime \prime} \mathrm{W} \times 1-5 / 8^{\prime \prime} \mathrm{L} \times$ $3 / 4^{\prime \prime} \mathrm{H}$. Easily mounts in many radios.

- Specify tuning range desired 25-35, 35-55, 55-90, 90-$120,120-150,150-200,200-270$. or $400-500 \mathrm{MHz}$

LNS-(*)
IN-LINE
PREAMP
ONLY \$59/kit,

$\$ 79$ wirod/rested

GaAs FET Preamp with features similar to LNG series, except automatically switches out of line during transmit. Use with base or mobile transceivers up to 25 W . Tower mtg. hardware supplied

- Specify tuning range desired: 120-175, 200-240, or $400-500 \mathrm{MHz}$

暗 HRA-(*) HELICAL
 RESONATOR
 PREAMP
 ONLY \$49 VHF
 or \$64 UHF

Low-noise preamps with helical resonators reduce intermod \& cross-band interference in critical applications

- Specify tuning range desired 143 -150, 150-158, 158 $162,162 \cdot 174,213-233,420-450,450-465$, or $465 \cdot 475$ MHz

HICH QUALITY XMTR \& RCVR MODULES FORREPEATERS, Humber

-FM EXCITERS

Kits only \$68. W/t \$146
TCXO and xtal oven available
2W cont. Up to 3 W intermittent.
-TA51 for $10 \mathrm{M}, 6 \mathrm{M}, 2 \mathrm{M}, 150-174,220 \mathrm{MHz}$.
-TA451 for uhf.
FCC TYPE ACCEPTED FOR COMMERCIAL BANDS -VHF \& UHF LINEAR AMPLIFIERS. For FM or SSB. Power levels from 10 to 45 Watts. Several models, kits starting at $\$ 78$.
 0.15 uV sens, 8 -pole xtal \& 10 pole ceramic if fiters, helical resonator front end for exceptional selectivity. $>100 \mathrm{~dB}$ at $\pm 12 \mathrm{kHz}$ (best available anywherel) Flutter proof squeich. AFC tracks drifting xmtrs. Xtal oven avail. Kit \$138, w/t \$198.
-R451 FM RCVR. Same as above but UHF. Tuned line front end. 0.2 UV sensitivity. Kit only $\$ 138$, w/t $\$ 198$. -R 76 VHF FM RCVR for $10 \mathrm{M}, 6 \mathrm{M}, 2 \mathrm{M}, 220$, As above, but w/o AFC or hel res. Kits only $\$ 98$ to $\$ 118$
-R110 VHF AM RCVR for VHF aircraft or ham bands or UHF. Kit only $\$ 98$.

NOW-FCC TYPE ACCEPTED TRANSMITTERS, RECEIVERS, AND REPEATERS AVAILABLE FOR HIGH-BAND AND UHF. CALL FOR DETAILS.
RECEIVING CONVERTERS

- Order by phone or mail - Add \$3 S\&H per order (Electronic answering service evenings \& weekends) - Use VISA, MASTERCARD, Check, or UPS COD.

 S0S91 $\forall d$ ‘ə！ $1 \exists$ anida inv！⿰訁eunos tht ojqueg－ejouow Kiew

befuoo smpadsord pue uoliemiofur arom $10-1$
－K！！！⿱宀㠯 би！ 100ر asenbs 000 ＇ε 人 人ן，
 －əiels ‘əpnjou！ol suoudo əqe｜le＾甘
 ＇әр！м－риом pue ap！sәjels yломјәu נolnq！यs！p

 Lroq ol sejes pue uoinejnder әрім－pן＿ом

 ＇Kı！enb чб！ч u！лареа！s．puom auı se paziu

＇\forall GMEM＇EjOUOW II！M әреן әपұ Kq 6S6L U！pepuno」 seuualue uo！̣eэ！unuwos $}$
 ：OןES 10」

641
っとLて－てB8－918
 ＇ONI ONIGヨBNITNヨ NIL甘VW Nヨ7⿹

 pdd 096\％anoqe jo Aue sol cz－gı 6ulueaq isnayl ifeg
 pod 00 clz peol t，os a wnje prepuets－ sazeh

－ 2 MO 15 SZ

Uиоु $10 y$ suolronalsul pue erempley＇elqes
 өa！suadxau！－ןөлед yloows－өכueluanuo－peeds－Kjejes

 ＇＂lej ues denen volusod jraviou q buljemol－6ulsied ellum sejejedo yZZVH uo wejsis yool kieles
 ejejdwos＇ BZZH UO Junow jolelod pue buleluv

YZZ甘H प！M Keuow－ou！ 1 OABS

DX FORECASTER

Garth Stonehocker, K0RYW

equinox season DX

Sunspot minimum appears to be over until nearly eleven years hence. Even though a year or so will pass before momentum helps the new cycle to build up to its maximum rate, thereturn of the 27-day cycle (each solar rotation) has increased the number and size of solar flares and has solar flux energy topping 100 units again. This is expected to continue, gradually increasing in 27 -day cycle activity until a sunspot region comes around at least three or four times before dying away. In the meantime, the geomagnetic disturbances will continue to be mainly variations in the solar wind from coronal holes, with an occasional flare-induced geomagnetic event. In either case, the disturbances affect DX fun adversely.

Geomagnetic disturbances, or storms, affect propagation - and $D X$ - in four ways. First, particles from the sun entering the auroral zone at 50 to 70 degrees North and South latitudes come down into the ionospheric D and E regions, increasing signal absorption. This results in weak eastwest path signals and few transpolar signals.

Second, the Fregion of the ionosphere (for stations in the United States, this is south of the auroral zone) has a depleted area of electrons that forms an electron density trough. The maximum usable frequency (MUF) for paths through this area de-
creases by 30 to 40 percent (see the January, 1986, DX Forecaster for tables of MUF statistics).

Third, and still further south at 20 degrees from the geomagnetic equator, an equivalent-size enhancement of the F region occurs, resulting in evening Transequatorial (TE) openings during the equinox and winter seasons. These three effects vary in intensity and time on a short to long basis (seconds through hours), causing what we experience as fading and blackout. These effects continue to occur mainly each night for two to three days before ionospheric equilibrium is re-established. The larger the geomagnetic storm (the higher the value of the K or A indicies), the closer to the equator these effects occur.
Fourth, the particles form a reflective curtain along the equatorial side of the auroral zone (for those of us in North America, this is south), enhancing VHF auroral scatter propagation. Six-meter openings to Europe are one result of this phenomenon. Just as the particle density and speed of the solar wind vary, so do the characteristics of the geomagnetic field and ionosphere. Ionospheric variations cause signal reflection focusing and defocusing, which simply means that the signals arriving at your QTH will vary in both strength and angle of arrival from all four directions. Some locations you haven't heard from in a long time may suddenly be workable.

last-minute forecast

The higher-level 27-day activity may push up the maximum usable frequencies (MUF) during the first and second weeks of October, giving better 10 -, 12 -, and 15 -meter DX. Transequatorial one-long-hop propagation is expected to be underway again, especially around the 5th, 15th and 23 rd of the month. This is because of a higher probability of geomagnetic disturbance at those times. During those same disturbed periods, the lower band's MUFs should decrease by 15 to 25 percent for

At Consolidated Electronics Inc we carry over 10,000 parts and products such as: fuses, semiconductors, batteries, capacitors, resistors, wire, cables, connectors. antennas chemicals, speakers, test equipment solder ang equioment. styli, and cartidges video heads, telephone accessories and more Consolidated Electronics is an authorized distributor tor
Action* GE*. Plumb.
$\begin{array}{l:l}\text { Amperex } & \text { LPS' }^{\circ} \\ \text { Amphenol }\end{array}$
Amphenol*
Argos
Beckman
Beckman IM
B\&K Precision tm
Bogan ${ }^{\circ}$
Burgess ${ }^{\text {CTS }}$
CTS*
Electro-Vorce.
All part orders shipped
Loclite:
Kester ${ }^{*}$ Mercer TM. Nicholson. OC. White" O.K Tools" Panavise
Pedro"
Philips*
2 Year warranty on all parts.
Call toll free today.
1-800-543-3568
CONSOLIDATED
$\begin{array}{lllllllll}L & E & C & T & R & O & N & I & C\end{array}$ (513)252.5662
Telex $288.229 \quad$ FAX 513.2524066

- 181

Crystal Filters

For most Ham Rigs from: KENWOOD - YAESU - HEATHKIT
Also Drake R-4C/7 Line, COLLINS 75S3-B/C and ICOM FL44A, FL52A, FL53A clones. Finest 8-pole Construction ALL POPULAR TYPES IN STOCK CW • SSB • AM ASK ABOUT OUR MONTHLY UNADVERTISED SPECIALS
Phone for Information or to Order. VISA/MC or COD accepted Why risk disappointment? Buy timetested Fox-Tango Filters to be sure!

FOX-TANGO Corp.

Box 15944, W. Palm Bch, FL 33416 Telephone: (305) 683-9587
European Agent: INGOIMTEX, Post Fach 2449, D8070 ingolstadt, West Germany

CABLES

BEFORE YOU BUY YOUR NEXT ANTENNA OR CABLE....DIAL:

800-331-3396

CELLFLEX -1 5/8" - $11 / 4^{\prime \prime}-7 / 8^{\prime \prime}-1 / 2{ }^{\prime \prime}$
BELDEN RG-213 \& RG-214 Type CONNECTORS AVAILABLE

* ANTENNAS *

COLLINEAR - YAGI - DIPOLE
We are major suppliers of : Cavities. Duplexers and Antenna Combining Systems

CALIFORNIA CALLERS DIAL (415) 968.4400

- 184

Sub Problem?
Contact Sue. She'll fix it for you! (603) 878-1441
Ham Radio
Greenville, N. H. 03048

a couple of days at a time. This will be particularly noticeable on east-west paths, and with noticeable QSB. Otherwise, the lower bands should be best during the last two weeks of the month because of higher signal strengths.

The Orionids meteor shower will be visible from the 15 th to 24 th of October, with a maximum rate of between 10 to 20 per hour on the 20th to 21st of the month. The moon is full on the 7th, and perigee occurs on the 4 th and 30 th. A penumbra eclipse of the moon occurs on October 7.

band-by-band summary

Ten, twelve, fifteen, and twenty meters will be open from morning to early evening almost every day, and to most areas of the world. The openings on the higher of these bands will be shorter and will occur closer to local noon. Transequatorial propagation on these bands will more likely occur toward evening during conditions of higher solar flux and a disturbed geomagnetic field.

Thirty and forty meters will be useful almost 24 hours a day. Daytime conditions will resemble those on 20 meters. Skip distances and signal strength may decrease during midday of those days that coincide with the higher solar flux values. Nighttime DX will be good except after days of high MUF conditions and geomagnetic disturbances. Look for DX from unusual places on east, north, and west paths during this time. The usable distance is expected to be somewhat less than that on 20 meters in daytime and greater than that on 80 meters at night.

Eighty and one-sixty meters will exhibit short-skip propagation during the daylight hours and lengthen for DX at dusk. These bands follow the darkness path, opening to the east just before your sunset, swinging more to the south near midnight, and ending up in the Pacific areas during the hour or so before dawn. The 160 -meter band opens later and ends earlier than 80.
ham radio

OCTOBER	$\stackrel{8}{8}$	\％	$\stackrel{\text { N }}{ }$	8	\％	$\stackrel{7}{8}$	$\stackrel{\square}{8}$	8	8	\％	${ }_{8}^{8}$	\％	8	8	8	8	$\stackrel{\text { E }}{8}$	$\stackrel{\bar{\rightharpoonup}}{8}$	$\stackrel{\square}{8}$	8	8	\％	8		\square
ASIA FAREAST	c	$\stackrel{+}{0}$	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{+}{0}$	$\stackrel{\rightharpoonup}{0}$	\pm	$\stackrel{\rightharpoonup}{0}$	－	－	\％	$\stackrel{\square}{0}$	\bigcirc	$\stackrel{\circ}{\circ}$	$\stackrel{\square}{\circ}$	$\stackrel{\rightharpoonup}{*}$	－	$\stackrel{\square}{\circ}$	$\stackrel{\square}{0}$	$\stackrel{\sim}{0}$	－	${ }_{0}$	0	5		
EuRope	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\square}{0}$	$\underset{o}{\omega}$	${ }_{0}^{\omega}$		～	$\stackrel{0}{0}$	0	\％	\bigcirc	0	O	$\underset{o}{\omega}$	$\stackrel{\rightharpoonup}{0}$	\bigcirc	$\stackrel{\Delta}{0}$	$\stackrel{\text { a }}{0}$	$\stackrel{A}{0}$	$\stackrel{\Delta}{0}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{+}{0}$	0	0		
s Africa	No	$\stackrel{\square}{0}$	$\mid \stackrel{\rightharpoonup}{G}$	N		0	－	\％	10	\bigcirc	～	r	$\stackrel{\sim}{0}$	ó	¢	w	－	$\stackrel{\omega}{\circ}$	－	－	O				
s ameaica	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\circ}{\circ}$	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\rightharpoonup}{0}$			－			$\stackrel{\sim}{\sim}$	O	¢	N	N	N	O	O	N	N	u	v				
utanctica	$\stackrel{\rightharpoonup}{n}$	\cdots		10					0	\tilde{p}^{2}	$\stackrel{\omega}{0}$	อ		ω_{0}^{w}	N	N	O	～	\％	\square	－				
new zealand	$\stackrel{\sim}{n}$	$\underset{\sim}{n}$	$\stackrel{\rightharpoonup}{r}$	in	R	6	0	$\underset{\sim}{\sim}$	$\underset{\sim}{\omega}$	${ }_{0}^{\sim}$	0	～	－	N	$\stackrel{\sim}{\sim}$	0	$\stackrel{H}{\sim}$	－r	～	へ					
OCEANIA australla	$\stackrel{\sim}{n}$	G	N	10	$1 \omega+1$	$\underset{1}{\infty}$	$\stackrel{0}{0}$	w	$\left.\right\|^{\omega}$	${ }^{\sim}$	N	\sim	N	N	N	N	N	品	的	G	－	5	5		
JAPAN	\cdots	No	N	N		－	$\stackrel{\Delta}{\circ}$	$\stackrel{\square}{0}$	$\stackrel{\square}{0}$	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{+}{0}$	\triangle	\pm	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\rightharpoonup}{\square}$	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\rightharpoonup}{0}$	$\begin{aligned} & \omega \\ & 0 \end{aligned}$	ω	N	\sim	\bigcirc		z

	\％	8	$\dot{8}$	8	\％	8	8	$\overline{\overline{8}}$	$\stackrel{\rightharpoonup}{8}$	$\stackrel{\text { g }}{8}$	8	8	8			8	8	8	\％	\％		$\overline{8}$	$\overline{8}$	¢	8	8	ż	8	\rightarrow		
$\underset{\substack{\text { asta } \\ \text { ALA East }}}{ }$		$\stackrel{0}{0}$	$\stackrel{8}{8}$	$\stackrel{\square}{0}$	$\stackrel{5}{\circ}$	合	$\stackrel{\square}{\circ}$	$\stackrel{\square}{8}$	$\stackrel{\square}{8}$	${ }^{\circ}$	${ }_{0}$	W	\％	w	－	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\square}{0}$	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\square}{\circ}$	$\stackrel{A}{\circ}$	O	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{+}{\circ}$	${ }_{0}^{0}$	ω_{0}^{0}	${ }^{\omega}$		\％			
Euape	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\square}{0}$	$\stackrel{\square}{0}$	${ }_{0}^{0}$	－	${ }_{0}^{0}$	0	\sim	$\stackrel{\sim}{0}$	$\stackrel{0}{0}$	0	0	－	0	～	$\stackrel{\square}{\circ}$	${ }_{0}^{\circ}$	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\square}{\circ}$	$\stackrel{\rightharpoonup}{\circ}$	\pm	－	$\stackrel{\rightharpoonup}{0}$	－	$\stackrel{\square}{0}$		8	－			
s．afaca	0	ज	$\stackrel{\text { G }}{ }$	－	N	\bigcirc	5	$\stackrel{5}{\square}$	5	5	5.	5	\sim	Er	2		H	－	$\stackrel{\sim}{\circ}$	$\stackrel{\sim}{0}$	－		$\stackrel{\omega}{\circ}$	O	0	－		$\stackrel{5}{5}$			
america	\bigcirc	－	0.	$\stackrel{-1}{0}$	\bigcirc	${ }^{\circ} \mathrm{O}$	－						－		～	\sim	N	\sim	N	～			\sim	侕	－			－			
ntactica	$\stackrel{\nabla}{n}$		$\stackrel{\rightharpoonup}{n}$	Ni		n			U				－				$\stackrel{\sim}{0}$	－	W	N	\bigcirc	\sim	－	べ	ir	N	た	$\stackrel{\square}{\sim}$			E
ewzealano	$\stackrel{\sim}{n}$	N	\sim	$\stackrel{\sim}{\sim}$	动：	ज	\sim	\sim	F	${ }_{0}$	${ }_{0}$	${ }_{0}^{0}$	N	${ }_{\sim}^{\circ}$	w		${ }_{0}^{\sim}$	W	ω	W			\checkmark	－	N			$\stackrel{1}{\sim}$			
$\begin{aligned} & \text { OCEANIA } \\ & \text { AUSTAALIA } \end{aligned}$	$\stackrel{N}{N}$			$\stackrel{\sim}{\sim}$	－	～	N	0	5	\％	\bigcirc	～	～	N	${ }^{\text {w }}$		${ }_{0}^{\sim}$	\％	N	O	N		\sim	O	जr	G	\sim	\square			
Japan	\approx	0	\sim	\sim	\sim	O	－		$\stackrel{5}{ }$	－		$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\square}{\circ}$	－		$\stackrel{\square}{0}$	$\stackrel{8}{0}$	$\stackrel{\circ}{\circ}$	$\stackrel{\square}{0}$				$\stackrel{\square}{0}$	－	${ }^{\sim}$		\％			
	8	8	${ }_{8}^{\prime \prime}$	8	8	8	$\overline{8}$					8	8	8		8	8	8	8	\％			\％	$\overline{8}$	\％	\％	8	\％			
	\％	\％$\%$	${ }_{8}$	8		8	\％	8				8	$\stackrel{8}{8}$			8	$\stackrel{8}{8}$	${ }_{8}^{8}$		8			$\overline{8}$	\％	号	咅	8	8			
			5	$\stackrel{5}{5}$	50	\bigcirc	$\stackrel{\rightharpoonup}{\circ}$						\sim					$\stackrel{\square}{*}$		$\stackrel{\rightharpoonup}{\square}$			$\stackrel{\square}{0}$	$\stackrel{\rightharpoonup}{+}$	$\stackrel{\square}{0}$		$\underset{o}{\omega}$	－			
Europe	$\stackrel{\rightharpoonup}{\square}$		－${ }_{\text {a }}$	${ }_{0}$			$\stackrel{0}{0}$	$\stackrel{0}{0}$		0		0	N					${ }_{\sim}^{\circ}$	$\stackrel{\square}{\square}$	$\stackrel{\rightharpoonup}{\square}$			$\stackrel{\rightharpoonup}{*}$	－				－			
s．aftica	$\underset{\sim}{\infty}$		－	$\stackrel{\sim}{\mathrm{r}}$	$\stackrel{N}{n}$		\bigcirc	$\stackrel{\square}{0}$					$\stackrel{\square}{\circ}$				$\stackrel{\sim}{\sim}$	\sim		－			ω	\％	－	\％		－			\％
$\begin{aligned} & \text { CARIELEAN } \\ & \text { S. AMERICA } \end{aligned}$	$\stackrel{\square}{0}$		\square	\bigcirc	\bigcirc	－	－	\bigcirc	\square	－	\bigcirc	－	～	ज	－			～	～	N				O	－	ज	\％	\sim			
tractica	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	こ	\sim	$\stackrel{\sim}{\sim}$	in	\sim	unt	\％	V	v	－	O	N	－	\bigcirc	$\stackrel{\sim}{0}$	－	－	ω_{0}			\bigcirc	\％	－	E		～			
newzealand	$\stackrel{\sim}{\sim}$			$\stackrel{\sim}{\sim}$	ज		0	\％	है	\sim_{0}	－	$\stackrel{\sim}{0}$	$\stackrel{0}{0}$	－		${ }_{\sim}$	N	－	\sim	N			$\stackrel{\square}{\square}$	O	示			$\stackrel{\sim}{\sim}$			¢
	\bigcirc		N＋	へ け	G	0		N	\bigcirc	0	－	－	\bigcirc	－			$\stackrel{\sim}{\circ}$	\bigcirc		－				－	－			$\stackrel{\sim}{\sim}$			
				NO			5	D	5	$\stackrel{\circ}{\circ}$	$\stackrel{\square}{0}$	$\stackrel{\square}{0}$	$\stackrel{\square}{\circ}$					$\stackrel{\square}{0}$	－	$\stackrel{+}{0}$					$\stackrel{\rightharpoonup}{0}$	W					

[^5]Look at next higher band for possible openings．

roucancounici

includes 2 hook-on probes
s449.95* 15 MHz DUAL TRACE PORTABLE
Field/bench applications-built-in charger and battery pack -up to 2 hours operation per charge- 5 X horizontal magnification-high brightness CRT-front panel trace rotator

RAMSEY OSCILLOSCOPES

All Ramsey oscilloscopes feature unsurpassed quality at an unbeatable price. Ot heavy duty construction, they are suitable for hobby. service and production applications.
*Add an additional $\$ 10.00$ for each unit for shipping.

MODEL	BAND WIDTH	\#TRACES	CRT SIZE	VERTICAL SENSITIVITY	MAXIMUM TRIGFREQ	USEABLE MAXIMUM BANDIDTH
$\mathbf{2 2 0 0}$	20 MHz	(2)	$8 \times 10 \mathrm{CM}$	5 mV per div	35 MHz	30 MHz
2500	15 MHz	(2)	35 inch	2 mV per div	30 MHz	25 MHz
3500	35 MHz	(2)	$8 \times 10 \mathrm{CM}$	1 mV per div	50 MHz	60 MHz

All include high quality 1:1, 10:1 hook on probes, instruction/service manual with schematic and component layout. 1 year warranty.

MINI-100 COUNTER CT-707 DiGit 525 MHz				CT-909 ${ }^{\text {DIGIT } 600 ~ M H z ~}$		
				$\sqrt{5 g g^{9}}$		
	115					
		\$139.95 matimems		S169.95 \%		
motic	trepomeme	selssinvir	acturacr	outrs	misowroun	nate
		何	${ }^{1 / 8 \mathrm{Pm}}$?		${ }^{13395}$
${ }^{\text {c1, } 90}$		mix bowh	1 , 1 M	,		${ }^{16939}$
				:	${ }^{\text {a }}$	${ }_{\substack{18985 \\ 19395}}$
		cimiskum				
mition	whuteowne	Mor	$019 \times$		OHeter	2990

S 189.95 mamazivos
$\$ 189.95$ мmamectuos

RAMSEY FREQUENCY COUNTERS

Ramsey Electronics has been manufacturing electronic test gear for over 10 years and is recognized for lab quality products at breakthrough prices. Our frequency counters have features and capabilities of counters costing twice as much. BP-4 Nicad battery pack for CT-70, CT- 90 and CT-125 Frequency Counters. $\$ 8.95$

MINI KITS-EASY TO ASSEMBLE-FUN TO USE-FOR BEGINNERS, STUDENTS AND PROS

			Madiastif					
	VIICE ACTIVATEDSWIICMVoice activated switch							
comar		तum						

AGCESSORIES FOR RAMSEY COUNTERS

Telescopic whip antenna-BNC plug ...
High impedance probe. light loading
Low pass probe, audio use

SPECIALIZED COMMUNICATIONS

FOR TODAY'S RADIO AMATEUR!

Since 1967, covering all modes of Amateur Radio "specialty ${ }^{\prime}$, communications; Fast Scan TV, SSTV, FAX, Packet Radio, Computers, RTTY, AMTOR, Satellites, TVRO, Microwave, Lasers and more! 10 issues per year. Back issues available, SASE brings TRS80C, C64, IBM software catalog. U.S. subscribers $\$ 20 /$ year. Foreign slightly higher. Add $\$ 2.00$ for Index Issue.

SPEC-COM Communications \& Publishing Group

P.O. Box H,

 Lowden, Iowa 52255

5\% Added

locator field list

Do you like challenges? If the widespread acceptance of the DXCC, WAZ, and sundry other operating awards proudly displayed by Amateurs throughout the world is any indication I'm sure you do
Folke Rosvall, SM5AGM, has taken it upon himself to compile, on a per-band basis, the tota number of fields worked by individuals. His list appears in ham radio four times a year (see page 75 of the July issue for the first list published in these pages).
"But," you ask, "What's a field"' Glad you asked. According to the Maidenhead locator sys tem, the world is divided into 324 fields or areas, each 20 degrees wide in longitude and 10 degrees wide in latitude. Though most encompass land masses, quite a few do not; this means no coun tries, no islands, no reefs - just water. So even if you've worked every country in the world and your name is at the top of the honor roll, you still probably haven't worked all the fields. Fot example, I'm very active on 80 meters, yet I've been able to snag only 148 out of 324 fields. I can think of a number of other 80 meter operators who are even more active than I am.
Have I tickled your competitive spirit? Think of the ultimate challenge: work all fields on all 19 bands on one specific mode. Some quick calculating shows that to be . . . uh . . . 6156 contacts. That'll keep you off the streets (but probably get you into trouble with your family, your employ er, etc.). Seriously, it's all for fun, and you'll learn a little more geography in the process.
All the necessary details are included on the accompanying chart. Folke would be very glad to hear from you. Please send your tabulations directly to him (his address at the bottom of the chart) - not to ham radio.
See you on $80!$
Rich Rosen, K2RR

Gordon West's 21 DAY NOVICE
 $\$ 19.95$
Plus $\$ 2.50$ Postage and Handling

CODE TAPES • 112 PAGE BOOK • BANDS CHART • ALL FCC FORMS SAMPLE TESTS • HOTLINE • PLUS MORE!
STEREO THEORU TAPES COULD BE SUBSTIUTED FOR TH: BOOK FOR THE VISURIY IMPARRED. PLEASE ASK US

- \$70 in equipment certificates from ICOM, KENWOOD, \& YAESU.
- Ham radio equipment "Wish Books". • Laminated world mop.
- ARRL membership forms. - Free CQ Mogazine coupon.
- Hotline for student questions. - Deoler distributor list.
- School pen. - Course completion certificote. - License holder.

GORDON WEST RADIO SCHOOL
2414 College Drive • Costa Meso, CA 92626 • (714) 549-5000

$\$ 29.95$
$\$ 29.95$
$\$ 79.95$
$\$ 29.95$
$\$ 37.95$
$\$ 79.95$
$\$ 29.95$
$\$ 37.95$
$\$ 79.95$
$\$ 32.95$
$\$ 49.95$
$\$ 79.95$

$\$ 59.95$
$\$ 59.95$
$\$ 109.95$
$\$ 59.95$
$\$ 67.95$
$\$ 109.95$
$\$ 59.95$
$\$ 67.95$
$\$ 109.95$
$\$ 62.95$
$\$ 79.95$
$\$ 109.95$
Inline (ff switched)

SP28VD	$28-30$	<1.2	15	0	DGFET	$\$ 59.95$
SP50VD	$50-54$	<1.4	15	0	DGFET	$\$ 59.95$
SP50VDG	50.54	<0.55	24	+12	GaAsFET	$\$ 109.95$
SP144VD	144.148	<1.6	15	0	DGFET	$\$ 59.95$
SP144VDA	$144-148$	<1.1	15	0	DGFET	$\$ 67.95$
SP144VDG	$144-148$	<0.55	24	+12	GaAsFET	$\$ 109.95$
SP22VD	220.225	<1.9	15	0	DGFET	$\$ 59.95$
SP220VDA	220.225	<1.3	15	0	DGFET	$\$ 67.95$
SP220VDG	$220-225$	<0.55	20	+12	GaAsFET	$\$ 109.95$
SP432VO	420.450	<1.9	15	-20	Bipolar	$\$ 62.95$
SP432VDA	420.450	<1.2	17	-20	Bipolar	$\$ 79.95$
SP432VDG	$420-450$	<0.55	16	+12	GaAsFET	$\$ 109.95$

Every preamplifier is precision aligned on ARR's Hewlett Packard HP8970A/HP346A state-of-the-art nolse figure meter, RX only preamplifiers are for receive applications only. Inline preampliflers are if switched (for use with transceivers) and handle 25 watts transmitter power. Mount inline preamplifiers between transceiver and power amplifier for high power applications. Other amateur, commercial and special preamplifiers available In the $1-1000 \mathrm{MHz}$ range. Please Include $\mathbf{\$ 2}$ shipping in U.S. and Canada. Connecticut residents add $7.1 / 2 \%$ sales tax. C.O.D. orders add \$2. Air mail to foreign coun tries add 10%. Order your ARR Rx only or inilin preamplifier today and start hearing like never before

Advoinced Receiver Research

Box 1242 • Burlington, CT 06013 • 203 582-9409

personal packet mailbox

The Kantronics Personal Packet Mailbox is an inexpensive - $\$ 39.95$ - firmware option that allows your Kantronics packet communicator (the KPC-1, KPC-2, KPC 2400 and the KAM) to funcțion as a self-contained personal mailbox system.

Until now, most popular packet mailbox systems relied on personal computers such as the Xerox 820 or IBM XT using special packet bul-letin-board software written by WORLI or W7MBL. The Kantronics personal mailbox eliminates the need to tie up (and run continuously) your expensive PC for simple mailbox operations.

As with other Kantronics firmware updates, installation is as simple as installing a new EPROM. After installation you'll have to perform a hard reset of the TNC, which involves simply moving one jumper for the first power-up. The procedure is amply covered in the documentation; several pages of instructions accompany the mailbox to supplement your original owner's manual.

The NULLS command has been deleted and eight other commands have been slightly changed. If you didn't already have the 2.3 version software, you'll benefit from the six new commands from that update built into the mailbox software.

One of the more interesting and useful of these is the LLIST (Lid LIST) command. When it's turned on, the calls entered as SUPCALLS are ignored: they can't digipeat through your station, don't show on the MHEARD list, won't receive a (DM) if they try to connect to you, and can't use your mailbox. As far as your TNC is concerned, these stations just don't exist!

Another useful command is MBEACON; when it's off, packets sent as beacons or ID's aren't monitored.

Once the mailbox is installed and operating, you must enter your call. If you don't, the CMD: prompt won't appear. Once your call is "permed" into memory, you'll come up in the command mode immediately.

On the air the mailbox responds to users' commands similar to those found on many popular WORLI-type packet bulletin boards (LIST, READ, SEND, KILL, and BYE). At your end, you'll use seven others to enter, list, or delete messages on your mailbox, and to set some mailbox parameters. For instance, PBBS N is used to allocate the amount of TNC RAM, in 1 K blocks, to be made available for the mailbox storage area. Up to 22 K may be allocated providing
the TNC has 32 K of memory. MYPBBS is used to enter the unique callsign for the mailbox, which should be different from the call used for MYCALL. For instance, if K1ZJH were used for MYCALL, K1ZJH-1 would be acceptable for the mailbox call.

One of the nicest features of this mailbox is its transparent operation with normal packet operations from your station. You can carry on a packet QSO while another station is using the mailbox in your TNC, and by entering the command mode, you can access the mailbox even if someone is connected to you or to your mailbox.
While WORLI-type PBBSs can forward mail to your mailbox, the Kantronics mailbox has no provisions for forwarding itself. Mail sent to your mailbox is treated as "private"; unless it's addressed to the connecting station or to "ALL," it can't be LISTed, READ or KILLed by that station. Upon connecting, stations are informed of any unanswered mail.

Since messages in the mailbox are stored in volatile RAM, even momentary power outages will trash its contents unless battery backup is supplied to the TNC. As its name implies, this mailbox is intended as a "personal mailbox," either for individual use, or as a small club bulletin board for limited general-interest bulletins. Due to its limited RAM allocation, the number and size of the messages that can be stored are necessarily limited (although impressive, considering the limitations). Once the memory limit is reached, future messages are lost.

Several friends and I have been using Kantronics' personal mailbox for months with no problems. Apparently the software was well written and very carefully debugged before the first versions were released. The documentation is concise and explains operation and all of the commands except for the PBBS N command, whose parameters were somewhat ambiguous. For marks, the Kantronics' personal mailbox rates an $A+$; we can fully expect this product to have a significant positive impact on packet operations.

For more info contact: Kantronics, 1202 E. 23rd St., Lawrence, KS 66046.

K1ZJH
Circle 1307 on Reader Service Card.

updated fm dual-bander

The new 2 -meter $/ 70 \mathrm{~cm}$ Dual Bander from Kenwood puts out 45 watts on 2 meters and 35 watts on 70 cm . Features include compact size $(5.9 \times 1.97 \times 7.87$ inches), and light weight (less than 4 pounds). With only three knobs and eight keys on the front panel, it's easy to operate.

The large LCD display and main knob provide excellent visibility in direct sunlight or darkness. Full duplex crossband operation via repeater is possible (assuming, of course, that a control operator is available).

The new Dual Bander offers programmable band scan and memory scan with memory channel lock-out. A lithium battery provides

BRAND NAME DISKS

5.25" DS, DD, SOFT SECT

BY BOX	$\mathbf{1 . 1 9}$	$\mathbf{2 0 . 4 9}$	$\mathbf{5 0}$ UP
MAXELL	95	90	86
NASHUA	70	65	60
3M	125	120	1.16
DYSAN	2.00	1.96	191
VERBATIM	109	102	98
XIDEX	62	58	55

BULK DISKS 5.25" DSDD-RH

	$\mathbf{2 5}$	$\mathbf{5 0 . 4 0 0}$	$\mathbf{4 2 5 - 1 0 0 0}$
DSDD	$\mathbf{4 0}$	38	37

FLIP-N-FILE BOX -HOLDS 100 DISKS . 15.95
CALL FOR FREE BROCHURE OF MORE COMPUTER SUPPLIES (305) 551-4023 1-800-634-3547
HOURS: 10 AM - 7 PM EST
Mail to: World Data Enterprises P.O. Box 652737, Miami, FL 33265

RFI KIT

Use ferrite beads and toroids

Free catalog and interference tip sheet on request.

Become a
 DeVry VE

DeVry VE teams have the advantage of:

- Personalized service
- Quick Accreditation
- Free test generation software
- Out-of-pocket expense reimbursement
- Use of 800 number to communicate with the VEC
- Generating their own examinations

Contact: Jim Georgias, W9JUG DeVry VEC
3300 No. Campbell Avenue Chicago, IL 60618 (312) 929-8500
(800) 327-2444 (outside of Illinois)

THE RF CONNECTION		
SPECIALIST IN RF'CONNECTORS AND COAX"		
Par Mo.	Detcription	Price
321-11064-3	BNC 2 PST 28 voll coaxial relay. Amphenol	
	Insertion loss: 0 to 0.75 Gm	
	Power rating: 0 to $0.56 \mathrm{~Hz}, 100$	
	$40 \mathrm{db}, 0.4 \mathrm{CHz} 35 \mathrm{db}$	
${ }^{83} \cdot 822$	PL-259 Tefion, Amphenol	
P. 259	UHF Male Silver Tetion USA	13
UG.210.	N Mise RG-8. 213 214. Amphenol	
	NMepes 213214 Kin	375
UG-2180	N Maje RG-8, 213.214	375
9913 PIN	N M Mie Pin tor 9911.9086	
	his UG-210. 8 UG-218U Ns	150
U6-210.9913	N Maie for RG-8 with 9913 Pin	95
UG-2189913	N Maie tor RG-8 with 9913 Pin	
	N Male to S0.239, Teflon USA	
UG-834	Fermale to SO-239. Tetion USA	500

"THIS LIST REPRESENTS ONLY A FRACTION OF OUR HUGE INVENTORY"

THE R.F. CONNECTION 213 North Frederick Ave. \#11 Gaithersburg, MD 20877

backup for ten memory channels that store frequency, offset, and subtone. For odd split or crossband operation, two channels store transmit and receive frequencies independently. Thanks to a nonvolatile operating system, all operating features remain intact - even after the memory backup cell dies. No reprogramming or board-swapping is ever necessary.

Separate antenna ports for VHF and UHF are provided. Optional features and accessories are available. For more information, contact Kenwood Communications and Test Equipment Group, 2201 E. Dominquez Street, Long Beach. California 90810.

new compact amplifier

The HL-37V from Tokyo High Power Labs is a compact amplifier designed for $144-\mathrm{MHz}$ fm / SSB hand-helds and portable transceivers. The unit has a built-in variable gain RX pre-amp which uses a low noise GaAs FET.

The unit features an LED power level indicator and front panel with a smoked polycarbonate sub-panel so that LED lights can be recognized only when they're lit. Combined with a hand-held transceiver, the HL-37V boosts power from 2 or 3 watts to 30 ; rf driving input between 0.5 and 5 watts is accepted. A built-in RX GaAs FET preamp allows clearer reception of noisy or weak signals. Gain is continuously variable from -20 to +14 dB ; an effective low-pass filter minimizes spurs.

Priced at $\$ 99.95$, the HL-37V also features the $\mathrm{fm} / \mathrm{SSB}$ mode select switch on the rear panel. A 1 -second delay during changeover from RX to TX prevents relay chatter.

For details, contact Encomm Inc., 1506 Capital Avenue, Plano, Texas 75074.

Circle /304 on Reader Service Card.

RFI-free choke kit

MFJ Enterprises, Inc. offers the MFJ-701 RFIfree choke kit that eliminates RFI problems that affect TVs, radios, stereos, telephones, VCRs, computers, PA systems, burglar and fire alarms, test equipment, modems, monitors and other electronic devices.

Although winding an offending cable or wire around a ferrite toriod generally eliminates RFI, it's often difficult to find a toroid with the proper characteristics that has a large enough hole through which the end of a power cord, ac adapter, microphone cord, or speaker leads will fit. Priced at $\$ 14.95$, the new MFJ-701 kit, however, gives you a package of four RFI-eliminating toroids (with complete instructions) which not
only have the right properties for eliminating RFI, but separate into halves, making it easy to wind nearly any kind of wire or cable around the toriod. The toriod halves then mount in a snaptogether plastic frame.

The individual toroids also snap together into a stack, increasing their effectiveness for large diameter wires when only a few turns can be wound around the toriod.

For additional information on the MFJ-701 RFI-free choke kit, contact MFJ Enterprises, Inc., 921 Louisville Road, Starkville, Mississippi 39759.

Circle 1303 on Reader Service Card.

rack-mounted paging encoder

The PE-1000RMA, a rack-mounted version of Communications Specialists, Inc.'s PE-1000 Paging Encoder can be mounted in a standard 19 -inch rack. Like the desktop PE-1000, the PE-1000RM is capable of $100-$ or 1000 -call paging capacity in the two-tone sequential signaling formats. Five-tone sequential and REACH formats are also available. Programmable features include code plan and group selection, group call, duration of tone and delay timing, choice of alert tones, and automatic page. A non-volatile memory retains the programming if a power loss occurs. All standard Motorola and General Electric groups are included in every unit; nonstandard tones from 250.0 Hz to 4000.0 Hz may be special-ordered. An output for printing a hard copy record of all paging activity is provided, and an automatic self-test is run each time the encoder is powered up. The price is $\$ 324.95$.

For furter details or a free catalog, contact Communications Specialists, Inc., 426 West Taft Avenue, Orange, California 92665-4296.

Circle 1302 on Reader Service Card.

overvoltage protection devices

CSE Technologies has introduced a comprehensive line of Surgeguard devices that provide virtually unconditional overvoltage protection for computing, control, communications, measuring, and home entertainment equipment.

Surgeguard devices include the LSA ${ }^{*}$ Line Surge Absorber, which protects against overvoltage originating from signal/data/telephone lines; the Interguard", which protects the CCITT V. 24 digital interface of terminals, computers, and modems from overvoltages originating from

Wonderful Wireless Widgets Fwom Woodbwidge

$a \rightarrow$ a

EGE VIRGINIA 14803 Build Amenca Drve Bidg B Woodbridge Virgima 22191 intormation (703) 643-1063 Service Dept (703) 494.8750 Store Hours M-in 10-6 F $10-8$ oirder Hours M Sitl $10 \cdot 4$ EGE NEW ENGLAND
8 Stules Road
Salem. New Hampshire 03079 New Hampshire Orders, into \& Service (603) 898-3750
Store Hours MTWSat. 10-4 ThF Noon-8

CAISTRIBUIORS

Our associate store
Davis \& Jackson Rd. PO Box 293 Lacombe, Louisiana 70445 info \& Service: (504) 882-5355

VES Mrese Discovis

Terms: No personal checks accepted trices do nat includte stioping UPS cod tee $\$ 235$ per package Prices are subject to change without notice of obligation. Procucts ate not sold tor paatuation Authomzed returns are subject to a 15 s restocking and handing lee and credtit will be issued lor use on vout next murchase EGE supports the eranutacturers warrantes 10 get os copy of a waranty proot to purchase. call customet service at $703.643-1063$ and it will be turnished at no cost

Buyer's Guide/Catalog Available-Send \$1.

Antemas

Amateur HF Bands
Cushcraft. Butternut, KLM Mosley. Hy-Gain, MiniProducts. B\&W. Van Gorden Hustler, Larsen, Antenna Specialists, Centurion, Smiley

Antennas in Stock

 for Mobiles. Base Stations and HandheldsEverything from mini rubber duckies to huge monobanders

ASK FOR PACKAGE DEALS ON ANTENNAS AND ACCESSORIES

Also

Antennas tor Scanners, CBs Marine, Commercial, and Short Wave Listening

FT 767GX
All Mode Transceiver with CAT System

NEW

FT 757GX Mark II
HF Transceiver with General Coverage Receiver

FRG 9600
Scanning Receiver tor $60-905 \mathrm{MHz} \mathrm{FM} / \mathrm{AM} / \mathrm{SSB}$
\square
UNARCO-ROHN TRI-EX HY-GAIN
Ask tor package quotes on complete tower assemblies including Phillystran. guy wire. antennas. rotators. etc

ROTATORS

Kenpro. Alliance. Daiwa Telex Hy-Gain

IC 751A
HF Transceiver with General Coverage Receiver

IC 3200
$2 \mathrm{~m} / 440 \mathrm{MHz}$ Mobile

IC 275A
All-mode Transceiver

R 7000
General Coverage Receiver

Micro 2AT
Mini $2 m$ Handheld

IC 02AT/03AT/04AT Handheld for 2m/220/440

Computer Stuff

Packet Controllers Kantronics and MFJ
Amateur Software Ham Data Software for Commodore Computers Ask for Descriptions

RTTY/Morse/Amtor

Hardware and Sottware and packages by Kantronics. Microlog. HAL, MFJ. \& more

KENWOOD

TS 440S
HF Transceiver with Antenna Tuner

TS-940S
HF Transciver with General Coverage Receiver

New Improved TH 215AT 2 m Handheld
TH 21BT/31BT/41BT
Mini Handhelds for $2 \mathrm{~m} / 220 \mathrm{MHz} / 440 \mathrm{MHz}$

R 5000
General Coverage Receiver

Accessories

AMPLIFIERS

Vocom Dawa, IE Systems Amp Supply Mirage Alinco. Amertron Tokyo Hy-Power. RF Concepts
ANTENNA TUNERS
Amp Supply. Ameritron. MFJ
Switches. Couplers, Filters, Connectors, Mikes, Keyers, Paddles, Headsets. Clocks Books. Power Supplies

Paragon
Amaleur Transceiver with General Coverage Receiver

ALR-22T
Compact 2 m Mobile
More Ratios

KDK

FM 2402 m Mobile SONY Receivers

REGENCY

BEARCAT
Scanners MIDLAND CB Radios COBRA
CBs. Radar Detectors. Phones UNIDEN
CBs. Radar Detectors WHISTLER
Radar Detectors

For Orders \& Quotes Call Toll Free: 800-336-4799
in Now England(oxcept NH): $800-287.0047 \quad$ In Virginia: 800.572 .4201
ege

QSO PRO
 Easy-To-Use Logbook Program For Your

MS.DOS ${ }^{\text {© }}$ Compatible Computer
\star Complete Cursor Control
\star Room to store complete address information
\star A Real-Time Log
\star Total QSL's by State

* 900 QSO's on floppy, hard disk limited by space available
 $839{ }^{85}$ Introductory Offer

${ }^{8} 34^{95}{ }^{*}$

Ohio resident must add 5% sales tax.
Make Checks Payable To: MORLAN SOFTWARE P.O. Box 2400 East Liverpool, Ohio 43920

196

interface cable; the Powerguard ${ }^{\text {' }}$, which provides protection for equipment connected to $A C$ mains supply; Comguard", which protects terminal-and-modem remote data stations; Termiguard", which protects remote terminals, and Modemguard", which renders moderns immune to overvoltage damage.

A number of different Surgeguard models can be fitted in the same enclosure. Enclosures can be stand-alone, rack-mount, or plug-in modules for circuit boards. For more information, contact CSE Technologies; P.O. Box 308, New London, Minnesota 56273.

Circle 7306 on Reader Service Card.

IC-900 mobile transceiver X

ICOM's new IC- 900 mobile transceiver is the first fiber optic multiband mobile transceiver that allows you to operate up to six bands ranging from 10 meters to 1.2 GHz with one controller.

The IC-900 includes an ultra-compact remote controller for remote mounting, an Interface A unit, an Interface B unit, an SP-8 speaker, an HM-14 up/down DTMF microphone, plus fiber optic and controller cables.

Measuring only $1 \times 2 \times 5.7$ inches, the remote control display can be installed on your car's dash or sun visor with supplied Velcro* strips. Simple to operate, it's equipped with a large LCD for easy viewing.

The IC-900 allows the operator to listen on two bands simultaneously or transmit on one band while receiving on another band (for true full duplex crossband operation.) All subaudible tones are built in, and the actual subaudible frequency is displayed. Ten memories are available for each band, with individual PL tone and offset programming capability.

Two scanning systems are available: programmable band scan and memory scan. Fiber optic technology enables a $3 / 16$-inch cable to transport all data between Interface A linstalled near the driver's seat) and Interface B (installed in
trunk or rear of vehicle). Fiber optic cable also eliminates if feedback.

Separate if modules will be available for 10 , 6 , and 2 meters, and 135,75 , and 25 cm .

For information, contact ICOM America, Inc., 2380 116th Avenue N.E., P.O. Box C-90029, Bellvue, Washington 98009-9029.

Circle 1305 on Reader Service Card.

repeater controller upgrades

ACC has announced two new upgrades for the RC-85 repeater controller.

Version 3 Firmware nearly triples the synthesized speech vocabulary to almost 500 words, making it easier to remotely program useful ID, tail, and bulletin board messages. A Kenwood TS-711A or TS.811A transceiver may now function as a synthesized remote base transceiver, with control through its serial port; support of these transceivers simplifies adding a remote base to the repeater system.

Many additional enhancements such as patch redial, more macro sets, zero hang time mode are included. The price is $\$ 125.00$.

The AD-1 Audio Delay Line board provides a $75-\mathrm{ms}$ audio delay from the repeater receiver to the transmitter. The benefits are squelch tail muting and complete touchtone muting through the repeater, resulting in pleasing repeater audio. The audio delay feature, an innovation ACC introduced in the RC-850 controller, is now available as an option for the RC85, priced at $\$ 150.00$.

For additional information, contact Advanced Computer Controls, Inc., 2356 Walsh Avenue. Santa Clara, California 95051.

Circle 1308 on Reader Service Card.

multimode TNC

The new Heathkit HK-232 Pack-Kit ${ }^{\text {tw }}$ MultiMode TNC kit - a versatile addition to Heath's expanding Amateur Radio line - takes the hassle out of getting into RTTY, lets users run CW at speeds from 5 to 99 wpm and works on AMTOR, ASCII, hf, and VHF Packet. It decodes Weather Facsimile pictures onto Epsoncompatible printers. The Multi-Mode TNC works Packet in both HF (300 baud) and VHF (1200 baud or up to 9600 baud, with an external modem.)

Adding the HK-232 to a radio and computer lets the Amateur get on the air in every mode. It connects to the radio's PTT line, speaker output, and microphone input for interchangeable VHF and HF operation. The same connections work for all other modes including CW.

Amateurs can connect both their hf and VHF rigs at the same time, to allow switching between VHF Packet and copying a WIAW RTTY bulletin on 40 meters with just the push of a button.

A unique "SIGNAL" command causes the Pack-Kit to determine the correct RTTY, ASCII, or AMTOR mode for the signal the Amateur is
listening to. It also presets baud rate and mode and will invert the signal if necessary. All the user does is type "OK."

The HK-232 even handles American Standard Baudot (Western Union), Japanese Katakana Morse, Cyrillic (Russian) Morse, and translated versions of Cyrillic and Katakana.

The Pack-Kit will copy signals that seemingly baffle other units. The HK-232 features an eightpole audio bypass filter followed by a limiter discriminator with automatic threshold correction.

No special software is required to operate the HK-232 Pack-Kit TNC. It can be used with any modem communication package you may already have or an optional program written specifically for the HK-232 and a Heathkit/Zenith PC or PC-compatible computer. It connects to a tèrminal or computer through a standard RS-232 serial port at baud rates from 300 to 9600. A step-by-step, easy-to-understand Operation Manual is included.

For more information, send for a free copy of the Heathkit Catalog; contact Heath Company, Department 150-945, Benton Harbor, Michigan 49022. IIn Canada, contact Heath Company, 1020 Islington Avenue, Department 3100, Toronto, Ontario, M8Z $5 Z 3$.
Circle 1301 on Reader Service Card.

trap antennas

Spi-Ro Manufacturing offers a complete line of both dipole and vertical "sloper" multi-band trap antennas that cover all Amateur bands from 10 through 160 , meters.
The lightweight, sealed, and weatherproofed traps feature rustproof solid brass terminals that require no soldering or jumper wires. Easy to install in the field, they handle full power, and allow users to work multiple bands with a single antenna. They're suitable for all transmitters, transceivers, and receivers, and are fed with coax via a standard PL-259 connector.
For more information, contact Spi-Ro Manufacturing, Inc., P.O. Box 1538, Hendersonville, North Carolina 28793.
Circle /309 on Reader Service Card.

Measure Up With Coaxial Dynamics Model 81000A RF Directional Wattmeter

Model 81000A is a thoroughly engineered, portable, insertion type wattmeter designed to measure both FWD/RFL
C. W. power in Coaxial transmission lines.

81000A is comprised of a built-in line section, direct reading 3 -scale meter protected by a shock-proof housing. Quick-match connectors, plus a complete selection of plug-in elements, gives the FRONT RUNNER reliability, durability, flexibility and adaptability with a two year warranty.
Contact us for your nearest authorized Coaxial Dynamics representative or distributor in our world-wide sales network.

15210 Industrial Parkway Cleveland, Ohio 44135 216-267-2233 1.800-COAXIAL Telex: 98-0630
Service and Dependability...A Part of Every Product

2 METER AMPLIFIERS • ATV CONVERTERS

OISCOVER THE WORLO OF FAST SCAM
TKLEVIION television:

AMATLUR TLE Yision convirters
ATV-3

Avalable in Kit ar Avumbled/Teted
Add : 200 Fer 5 Ftpping and Handing

VISA

RF Amplifiers Per Motorola Bulletins Complete Patt hat ler

140 Watt an 300 Watt MF Amplidiens met

 CRROXCuBE DEVICE
 $\begin{array}{ll}56-590-65-13 \text { Fenite Bies } & 1: 270 \\ 1 & 20\end{array}$ $\frac{\text { POWER SPUITIER COMBMER }}{2-30 \text { MH2 } 600 \text { Wath } 17 \text { Part }}$ at Parl , 7-30 Mra, bor watt I Part ar A Parl)

We Abse Stoct Hand-Te-Fied Fats KEMET CHIP CAPACITORS MITALCIAD MICA CAPACITORS REF POWER TRANSISTORS
For detailed information, plesse
cill of write for sur her cataloz

Saturday, October 31 Norris Sports Center - St. Charles, IL All Indoors - Commercial Exhibits - Flea Market - ARAL Booth FCC License Exams - Contests - Demonstrations • Hot Food Admission: Adv. s3 - Gate S4 Talk-In: 145.47 (-600) \& 145.21 (-600)

ARRL

Convention

8 a.m. to 2 p.m. - both days
Central Division HAMFEST Sunday, November 1 1 $\underset{\text { QPI Communication }}{\text { Conceptic }}$ - 198 \square

flea market

RATES Noncommercial ads 10¢ per word; commercial ads 60¢ per word both payable in advance. No cash discounts or agency commissions aliowed.

HAMFESTS Sponsored by non-profit organizations receive one free Flea Market ad (subject to our editing) on a space available basis only. Repeat insertions of hamfest ads pay the non-commercial rate.

COPY No special layout or arrangements available. Material should be typewritten or clearly printed (not all capitals) and must include full name and address. We reserve the right to reject unsuitable copy. Ham Radio cannot check each advertiser and thus cannot be held responsible for claims made. Liability for correctness of material limited to corrected ad in next available issue.
DEADLINE 15th of second preceding month.
SEND MATERIAL TO: Flea Market, Ham Radio, Greenville, N. H. 03048.

ANALOG AND RF CONSULTING for the San Francisco Bay area. James Long. Ph.D N6YB (408) 733.8329.
TEST EQUIPMENT WANTED. Don't wait we'll day cash for LATE MODEL HP. Tek, etc. Call Glenn. N7EPK, at Skagitron ics Co. 18001356 TRON
'HAMLOG' COMPUTER PROGRAMS. 17 modules auto logs, sorts 7 band WAS DXCC. Full features. Apple $\$ 19.95$, IBM or CP:M $\$ 24.95$. KA IAWH. POB 2015, Peabody MA 01960
RV OPERATORS are invited to check if Sun 2 PMC, 14.240 +5. Tues. Thurs 8 PMC 3.880 '5. Good Sam RV Net. Info SASE KJURO
FREE HAM CATALOG. SASE. Bahr, 2549 H6 Temple, Palm bay. FL 32905.
HOMEBREW PROJECTS. SASE. WB2EUF, BOX 708 , East Hampton, NY 11937.
YAESU FT-727-R COMPUTER INTERFACE. For info write Gerald Hogsett Consulting, 1581 Wondland, Palo Alto, CA 94303

TEN-TEC CORSAIR Model 560 with 280 power supply additional 2 nd 8 pole 2.4 KC filter plus 1.8 KC and 500 Hz fillers $\$ 845$ Versa Tuner V Mad 9893 KW w/shipping $\$ 145$ All items mint condition Richard B. Stevens, W1OWJ, PQB 118. Ashuelor. NH 03441 (603) 2396079

EJMAC 8877 less than 10 hours use with filament itansformer \$330. shipped. Richard B. Stevens, WIOSJ, POB 118, Ashuelot, NH 03441

COMMODORE REPAIR. We are the largest oldest Authonzed Service Center in the country. (ex. C64-\$39.95). 72 hour turnaKasara Microsystems, Inc., 33 Murray Hill Drive, Spring Valley. NY 10977

COMMODORE CUSTOM CHIPS for C64 128 Computer
Peripherals at low prices, 24 hour deliver Peripherals at low prices, 24.hour delivery
$\# 6510-\$ 9.556526-\$ 9.95$. $\# 6567-\$ 14.75$, $\$ 6581 \$ 12.85$, PLA $\$ 10.95 .901$ ROMS at $\$ 10.95$ each. C128 ROMS- $\$ 39.95$ (se of 3) and many others "THE COMMODORE DIAGNOSTICIAN" A complete diagnostic reference chart for fixing Commodore computers, etc. An absolute must for those who want to fix their own computers and save money and down time $\$ 6.95$ plus postage. HD Power Supply for C64-\$27.95...Send for complete chips parts catalog. Kasara Microsystems, tric, 33 Murray Hill Drive, Spring Valley, NY 10977 800-248 2983 (outside NY) or 914-356.3131.

CODE PROGRAMS. APPLE/C-64. 37 modes. LARESCO, POB 2018, 1200 Ring Road, Calumet City, IL 60409. 1-312-891-3279

FREE SELL-WANT LIST. WA6GER, 3241 Eastwood Rd, Sacramento, CA 95821

FOR SALE:Yaesu FT-101EE, CW filter, desk mic, cover manual, original box, excellent condition. Upgrading. \$550. Mat Tyszka. 129 West Rd, Collinsville, CT 06022. (203) 693-0468 (WA1HRE).

WANTED: External Frequency Display YC-7B for Yaesu FT7B. W4YKH "Bill". Call collect (703) 533.0359.

DENTFION PADIO COMPANY - The New Dentron Radio Company. Replacement parts, technical information, new products. We will service any Dentron Radio products. Models Clip OTR2000, DTR1200L MT2000A or any Dentron Radio product Please call or write. We will do our best to serve you. Dentron Please call or write. We will do our best to serve vou. Dentron 11518. Call (516) 536-2620.

23CM FM TV. Full ine of modules. Tactical Electronics, PO Box 1743. Melbourne, FL 32902.

IBM-PC RTTY/CW. New CompRtty II is the complete RTTY;CW program for IBM-PC's and compatibles. Now with larger buffers, better support for packet units, pictures, much more. Virtually any speed ASCII, BAUDOT, CW. Text entry via buitt-in screer editor! Adjustable split screen display. Instant mode/speed change. Hardcopy, diskcopy, break-il buffer, selec calling, text file transfer, customizable fall screen logging, 24 traffic handing. Requires 256 k PC or AT compatil)le, serial port, RS 232 C TU. $\$ 65$. Send call levers (including MARS) with order, David A. Rice, KC2HO, 25 Village View Bluff, Ballston Lake, NY 12019.

SLEP SPECIALS: Jennings UCSL- 1000 vacuum variable capacitors 10 thru 1000 MMFD at 5000 V with gear drive train and nounting bracket. Ideal for that linear amplifier or tuner $\$ 69.50$. Plate transformers Gonset P/N 271-107 for models 903, 913A 2/6M VHF linear amplifier using $4 \times 150 \mathrm{~A}, 4 \mathrm{C} \times 250 \mathrm{~B}, 1650 \mathrm{VDC}$ at 400 MA size inches $5-1 / 4 \mathrm{~L} \times 4-1 / 2 \mathrm{~W} \times 4.1 / 4 \mathrm{H}$ for replace ment or amplifier construction $\$ 37.00$. HP8058 slotted line 500 MHz thru $4 \mathrm{GHz} \$ 275.00$, $\mathrm{HP} 8640 \mathrm{~B} 500 \mathrm{kHz}-1024 \mathrm{MHz}$ $\$ 5.500 .00$. Tektronix 545 B oscilloscope with CA dual trace plug in $\$ 375.00$ TS 510 A signal generator $10 \mathrm{MHz}-420 \mathrm{MHz}$, military version of HP608D $\$ 275.00$, HP606A signat generator 50 kHz thru $65 \mathrm{MHz} \$ 375.00$. Have quantity all items, satisfaction guaranteed. VISA, M/C or check. Add shipping. Phone Bill Slep 1704) $524-7519$. Slep Electronics Company. Highway 441, Otto.
NC 28763 .

MEASURE VSWR, antenna patters, match circuit impedances from 100 kHz to 2 GHz with portable scalar network analyzers. Write for details. Direct Conversion Technique, 3132 North Lowell Avenue, Chicago, Illinois 60641. (312) 283-1690.

CHASSIS, CABINET KITS. SASE. K3IWK, 5120 Harmony Grove Road, Dover, PA 17315.
TELEVISION SETS made before 1946, early TV parts, litera ture wanted for substantial cash. Especially interssted in "mirror in the lid" and spinning disc tv's. Finder's fee paid for leads Arnold Chase, 9 Rushleigh Road, West Harfford, Conn 06117. (203) 5215280.

ENGINEERS request free catalog of Electronic: Software. Circuit analysis, filter design, graphics, etc. BV Engineering, 2200 Cut analysis, filter design, graphics, etc. BV Engineering, 2200
Business Way. Suite 207, Riverside, CA 92501 (714) 781.0252.

REMEMBER TROLLEY CARS? Trolley Treasures: The War time Years in New Jersey (1939-1947), a 4 volume pho odocumentary history. meludes 1600 unpubtished, original phomise Ruof Cars of Pubis Service Coordinated Transport promise Row SASE for details. Server, Condrat A W Mankoff 22373 Woodside Lane Sacramento CA 95825 (\$14.95 plus $\$ 150 \mathrm{~S} \mathrm{\& H}$.
\$\$\$\$SSUPER SAVINGS on electronic parts, components, supplies and computer accessories. Free 40-page catalog for SASE. Get on our mailing list. BCO ELECTRO, PO Box 830119 , Richardson. TX 75083 or call (214) 690.1102 .

RTTY JOURNAL - Now in our 35th year Join the circle of RTTY friends from all over the world Year's subscription to
RTTY JOURNAL $\$ 10.00$ foreign $\$ 15.00$. Send to: RTTY JOURNAL. 9085 La Casita Ave. Fourtarn Villev. CA 92708

IMRA International Mission Radio Association helps mission aries Equipment loaned. Weekday net. $14.280 \mathrm{MHz}, 13 \mathrm{PM}$ Eastern. Nine hundred Amateurs in 40 countriets. Rev. Thomas Sable. S.J. University of Scrantor, Scranton, PA 18510

WANTED Manuals and Cables for type RBM-3 Rcvr, June 1942 and CCT 20086 power unir. D. Palmer, W6PHF, 638 Benvenue Avenue, los Altos. CA 94022

BACK ISSUES HR Magazine from Vol. 1 No. 1 thru1986, except 2 issues. \$ 150 for all postpaid. Also PopTronics, RE, 73 back to 1961. $\$ 15.00$ / full year. Write with your nee:ds. Bill Fossman, 632 Wetmore, Everett, WA 98201

CANTENNA NEW $\$ 20.001 \mathrm{kw}$. Ham Keyer model HK5A new $\$ 40$ 00. Ruller inductors, Johnson and B.W. $\$ 20.00$ each. M C. Jones power meter 1 kw with coupler $\$ 2000$, new 813 uansmitting tubes $\$ 20.00$ each. C. E. 100 V exciter $\$ 170.00,75 \mathrm{~S}$ receiver
$\$ 175.00$, Collins Brown Simpson MK 75 memory electronic
keyer $\$ 125.00$ mint. Near new Gonset GSB $100 \$ 125.90$, Eldico 100 F exciter $\$ 150.00$, miniature tubes $\$ 1.00$ each, octals loctats $\$ 2.00$ each. Levy. W5OJT, 2833 Junction Hwy No. 15, Kerr ville, TX 78028 (512) $367-4741$

MARCO: Medical Amateuf Radio Council, Ltd, operates daily and Sunday nets. Medically oriented Amateurs (physicians, den tists, veterinarians, nurses, physiotherapists, lab technicians, etc) tovited to join. Presently over 550 members. For information write MARCO, Box 73's, Acme, PA 15610.

RUBEER STAMPS: 3 lines $\$ 4.50$ PPD. Send check or MO tu G.L. Pierce, 5521 Birkdale Way, San Diego, CA 92117. SASE brings information

ELECTRON TUBES: Receiving, transmiting, microwave. all types available. Large stock. Next day delivery, most 90224. (213) 7741255.

CUSTOM MADE EMBROIDERED PATCHES. Any size, shap: colors. Five patch minimum. Free sample, prices and ordering information. HEIN SPECIALTIES, Inc., Dept 301, 4202 N. Draki Chicago, IL 60618.

RECONDITIONED TEST EQUIPMENT $\$ 1.25$ for cataloy Walter, 2697 Nickel, San Pablo, CA 94806.

COMING EVENTS

Activities - "Places to go

SPECIAL REQUEST TO ALL AMATEUR RADIO PUBLICITY COORDINATORS: PLEASE INDICATE IN YOUR ANNOUNCE MENTS WHETHER OR NOT YOUR HAMFEST L.OCATION CLASSES, EXAMS. MEETINGS, FLEA MARKETS, ETC, ARE WHEELCHAIR ACCESSIBLE. THIS INFORMATION WOULD BE GREATLY APPRECIATED BY OUR BROTHER/SISTER HAMS WITH LIMITED PHYSICAL ABILITY.
CONNECTICUT: November 15. SCARA Indoor Ham Radio and Computer Flea Market, N. Haven Park and Recreation Center, 7 Linsley St. N. Haven. Sellers admitted at 7 AM; buyers from 9 AM to $3 \mathrm{PM}^{6}$ Tables are $\$ 10$ in advance, $\$ 15$ at the door. Gen eral admission $\$ 2$ per person. Talkin on $146.61 \mathrm{MH} / 2$. Reserva tions for tables must be prepaid by November 4, 1987and no reservation by phone. For information or reservations SASE to:
SCARA POB $81, \mathrm{~N}$. Haven CT 06473 or call Brad at 2031 SCARA, POB 81. N. Haven, CT 06473 or call Brad ac $\{203$ 265-6478 between 7 PM and 10PM
INDIANA: November 8 . The Allen County Amateur radio Tech nical society presents its 16 th annual Fort Wayne Hamfest, Allen County Momorial Coliseum, Coliseum Blvd 8 AM to 4 PM. General admission $\$ 3.50$ advance: $\$ 4.00$ dour Chilcren 11 and under free. VE exams November 7 by advance registration onlv. Forums. Other activities. Nearby motels and restaurants. For more information or reservations contact AC ARTS Hamfest, POB 10342, Fort Wayne. IN 46861. For intor
mation ONLY Bernie Holm, K9JDF, Hamfest Chairman (219) $485-0164,6$ to 10 PM EST.

OKLAHOMA: October 4. Salt Plains ARC Eyeball OSO Party south side of Salt Plains Lake, North Central Oklahoma. Joll in on 147.30/90 or Call Gary Gerber, KBOHH (316) 8425079 or
$842-5155$.

ILLINOIS: October 31 and November 1. The Fox River Radio League is sponsoring the ARRL's Central Division Convention as part of a Hamtastic Weekencd. Norris Sports Cinter of Rt 64 in) St. Charles, about 35 miles west of Chicago. 8 AM to 2 PM both nays. Tickets $\$ 3.00$ /advance; $\$ 4.00$ door good for theth days. Indoor flea market. torams, semmars and lech demos. Exams for all hiense classes. For advance tickets of informad
tion on tables or exams contact Phil Fors. N9FXQ, 104 May Street. West Chicago. IL 60185 (312) 231 884). SASE appreclat ed. Talk in on $145.47(-600)$ and $145.21(600)$

ILLINOIS: Novenber 9. The Waukugan CAP will hold its: 7h annual Hamfest, Lake County Fairgrounds, Res 120 and 45 Grayslake. 7 Arn 105 PM Large mdoor flea market, catelenia free parking Takles $\$ 5.00$. Donation $\$ 3.00$. For information ind reservations SASE to CAP, 637 Emerald Streel. Mundelein, IL. 60060.

MINNESOTA: Octoher 31. The: third annual Harntest Mirnmesota and Compuner Expo, sponsored by the Twir City FM Club Hennepin Techmical Center. North Campus, 9000 Brooklys: Blud Brooklyn Park. 7:30 AM ta 3:00 PM. Admission \$3.50/advance $\$ 4.50$ door Guest speakers Tony England, WOORE and Doug Clapp. New CW contest, FCC exams, glant indoor flea marke and much more! Talk in on 16:76. For information or reepistra tion SASE to Hamfest Minnesota and Computer Expo, Box $/ 26$ St. Louis Park, MN 55426.

NEW YORK: October 17. The Radio Amateurs of Greater Syra cust: will hold their 32 nd Hamfest, Arts and Home Center, Ntiw York State Fargrounds. Gant indoor Flea Market, tech talks, contests, entertainment. Programs for non hams. Tailgatint area
$\$ 3.00 /$ car. Indoor flea market table $\$ 6.00$ furnished. General ad mission $\$ 4.00$ Under 12 free FCC walk in exams start 12 noon Novice through Extra. Talk in on $146.31 / 91$ and $147.90 / 30$. For Novice through Extra. Talk in on 146.31/91 and 147.90/30. For Douglas WA2PUU (315) 469-0590 or write RAGS POB 88 Liverpool, NY 13088.

OHIO: October 25. The Marion ARC will hold its 13th annua Heart of Ohio Ham Fiesta, Marion County Fairgrounds Coliseum 0800 to 1600 hours. Tickets $\$ 3$ /advance; $\$ 4 /$ door. Tables $\$ 5$ Check in on 146.52 or $147.90 / 30$. For information, tickets or tables contact Ed Margraff. KD80C. 1989 Weiss Avenue

ARIZONA: October 3. The Cochise ARA will hold its annual Swapmeet at the Club's Training Facility on Moson Road, Sierra Vista. Talk in on 146.16/.76. No charge for tailgaters. Refresh ments available. For information: Jacquie Kelly, KD7DZ $(602$ 458-4107 or write CARA, POB 1855, Sierra Vista, AZ 85636

OKLAHOMA: October 24-25. Texoma Hamarama 87, Lake Texoma Lodge, Catfish Bay, east of Kingston. ARRL programs, non-ham programs, Amateur exams, indoor/outdoor flea markets and more. Banquet, entertainment and dancing. For additional information contact: Texoma Hamarama Association

NEW YORK: October 18. Raindate October 25. NYC Largest Hamfest sponsored by the Hall of Science ARC. Hall of Science parking lot, 47th Avenue and 111th Street, Flushing Meadow P5 500 Queens. 9 AM to 3 PM . Buyers donation $\$ 3.00$; Seller newly reopened Hall of Scur Radio, ARRL info, deaSA. 'Is ARA WB2JSM. For more information call evenings only Steve Green baum, WB2KDG (718) 898-5599 or Arnie Schiffman, WB2YXB (718) 343-0172

TENNESSEE: October 24-25. The 9th annual Chattanooga Amateur Radio and Computer Convention. Grand Central Station at Chattanooga Choo Choo complex. Amateur exams Saturday and Sunday. All forms should be sent to Hamfest Chat tanooga, POB 3377, Chattanooga, TN 37404 by October 20. 8' flea market tables $\$ 10 /$ day or $\$ 15 /$ weekend. Talk in on 146.19/79. For further information write Hamfest Chattanooga POB 3377, Chattanooga, TN 37404. Exhibitor info call WA4RMC (615) 892-8889. Flea Market info call KB4RTM (615) 622-8467 after 6 PM or W4ECW (615) 6! 98.2147

OHIO: October 11. NOARC (Northwest Oho ARC) will hold thei annual Allen County Hainfest, Allen Cluty Fairgrounds, Lima Tickets $\$ 3.00$ /advance, $\$ 3.50 /$ door. Tables $\$ 6.00$ full; $\$ 3.50$ half License exams. Free camping available. Elec. $\$ 7.00$. Talk in on 146.67 and 146.52 . For info about exams W8TY, NOARC, Box 211. Lima OH 45802.

TENNESSEE: October 17. The 7th annual Tri-Cities Hamfest Appalachian Fairgrounds, Gray. Indoor/outdoor flea market 146/01/61 For intormation write Tri-Cities Hamfest, POB 3682 CRS, Johnson City, TN 37602

MASSACHUSETTS: October 25. The Framingham Amateur Radio Association's annual Fall Flea Market and Exams, Framingham Civic League Building, 214 Concord Street, Downtown sion $\$ 2.00$ Tables $\$ 10$ includes one Sellers setup Talk in on $75 / 15$ repeater. For tables Jon Weiner, KiVVC, 52 Overlook Drive, Framingham, MA 01701 (617) 877-7166. For exams send Form 610, copy of license and $\$ 4.35$ check to FARA, POB 3005 Framingham, MA 01701

PENNSYLVANIA: November 1. The RF Hill ARC's 1987 Ham fest, Pennsylvania National Guerd Armory, PA Rt 152, Sellers ville. Doors open 6 AM for sellers, 8 Am for general public. Entry $\$ 4.00$, accompanying spouse and kids free. $6^{\prime} \times 8^{\prime}$ indoor space \$8. Outdoors $\$ 6$. Talk in on repeaters at 145.31, 145.19, 146.88 and 146.52 . To reserve space write Hamfest Chairman, 523 Vine street, Perkasie, PA 18944

MICHIGAN: October 25. The Southwest Michigan AR Team and the Kalamazoo ARC are spensoring the 5th annual Kalama zoo Hamfest. New larger location - Kalamazoo Central High School, 2432 N. Drake Road. 8 AM to 4 PM. Walk in VE test ing. Admission $\$ 2 /$ advance, $\$ 3 /$ door. Tables $\$ 6$. Send request and check with SASE by September 28 to Jim Hastings, Kalama zoo Hamfest, 1813 Greentriar Drive, Kalamazoo, Mi 49008

OPERATING EVENTS

"Things to do . . ."

October 17-18: 30th Scout Jamboree on the Air. Active Scouts former Scouts. Amateur Radio Operators; any and all who are interested in doing a good turn for Scouting and Amateur Radio
October 4. The Fresno ARC emergency communications van will operate from the City of Clovis to help celebrate thei Octoberfest Crafts Fair. Pioneers' Day. 1500Z Oct 3 to 0100 Z Oct. 4. Listen for W6TO, the Diamond Jubilee Special Event
Station. For certificate OSL, large SASE to W6TO F. A.R.C. Station. For certificate, OSL, large

October 10-11: The South TexasAmateur Repeater Society (STARS) will operate N5CAF, 1400Z-2300Z to commemorate the annual Confederate Air Force Airshow held in Harlingen TX. For special certificate QSL and SASE to Dr David Wool
weaver, K5RAV. 2210 S. 77 Sunshine Strip, Harlingen, IX 78550

October 17-18: The Edmond ARS, a Special Service Club, will Operate W5ERY from 17007 to 17007 in celebration of its 30th anniversary as an Amateur Radio club Members will operate from the shores of beautiful Lake Arcadia. For a certificate send 9×12 SASE, 39 cents postage, to Edith Vaughn, KA5YPX, 1020 Juno Circle, Edmond, OK 73034.

HAM EXAMS: The MIT UFH Repeater Association and the MIT Radio Society offer monthly Ham Exams. All classes Novice to Extra. Wednesday October 21, 7 PM, MIT Room 1-150, 77 Mass Extra. Wednesday Ocrober Cambridge, MA. Reservations requested 2 days in advance. Ave, Cam Ron Hoffmann at (617) 646-1641. Exam fee $\$ 4.25$. Bring Contact Ron Hoffmann at (617) 646-1641. Exam fee $\$ 4.25$. Bring a copy of your current hicense tif any), two forms of picture iD, and a completed to

CHARGE YOUR CLASSIFIED ADS

 to yourmc or VISA
write or call HAM RADIO MAGAZINE Greenville, NH 03048 (603) 878-1441

If possible let us know four to six weeks before you move and we will make sure your HAM RADIO Magazine arrives on schedule. Just remove the mailing label from this magazine and affix below. Then complete your new address (or any other corrections) in the space provided and we'll take care of the rest.
ham
 Magazine

Allow 4-6 weeks for correction.
Greenville, NH 03048
Thanks for heiping us to serve you better.

short circuits

high-performance Yagis

In fig. 11 of K1FO's July, 1987, article, "High Performance Yagis for 432 MHz ," a dimension is incorrectly placed. In the upper right hand part of the figure, the dimension " $25 / 16$ " should be moved to the right, to indicate the distance between the end of the T-match section and the end of the driven element.

ladder networks

The following information was omitted from fig. 2 of W3NON's article, "BASIC Program Analyzes Simple Ladder Networks" (August, 1987, page 34):
$\mathrm{RS}=\mathrm{RL}=50 \mathrm{ohms}$
$\mathrm{C} 1=\mathrm{C} 5=1100 \mathrm{pF}$
$\mathrm{C} 3=560 \mathrm{pF}$
$L 2=L 4=1.75 \mu \mathrm{H}$
Fco $=3.37 \mathrm{MHz}$
$\mathrm{F} 3 \mathrm{~dB}=2.74 \mathrm{MHz}$
$\mathrm{F} 20 \mathrm{~dB}=1.97 \mathrm{MHz}$
$\mathrm{F} 40 \mathrm{~dB}=1.32 \mathrm{MHz}$

wrong call

In table 3 of W1JR's column in the July, 1987 issue, the call "WA5CIW/5," listed under 5760 MHz , should be corrected to read "WA5ICW/5."

SSTV with C-64

The address of the Journal of the Environmental Satellite Users' Group was shown incorrectly in the October article, "Get on SSTV with the C-64" (page 43). The correct address is 2512 Arch Street, Tampa, Florida 33607. (Tnx WD4MRJ)

Yaesu FRG9600 modification

A complete kit - or circuit boards alone - for the modification described in W6MGI's article, "Add General Coverage to Yaesu's Latest VHF/UHF Receiver' (October, 1985, page 67) is available from Radiokit, P.O. Box 411H, Greenville, NH 03048. The kit is priced at $\$ 89.95$ plus $\$ 3.00$ shipping and handling; the boards only, at $\$ 7.00$ plus $\$ 1.25$ shipping and handling.

Hiampradio's suide to he/a vou find your local

California

A-TECH ELECTRONICS

 1033 HOLLYWOOD WAY BURBANK, CA 91505 (818) 845-9203 New Ham Store and Ready to Make a Deal!
JUN'S ELECTRONICS

3919 SEPULVEDA BLVD
CULVER CITY, CA 90230
213-390-8003
800-882-1343 Trades Habla Espanol

Colorado

COLORADO COMM CENTER

525 EAST 70th AVE.
SUITE ONE WEST
DENVER, CO 80229
(303) 288-7373
(800) 227.7373

Stocking all major lines
Kenwood Yaesu, Encomm, ICOM

Connecticut

HATRY ELECTRONICS

500 LEDYARD ST. (SOUTH)
HARTFORD, CT 06114
203-527-1881
Call today. Friendly one-stop shopping at prices you can afford.

Delaware

AMATEUR \& ADVANCED COMMUNICATIONS
3208 CONCORD PIKE
WILMINGTON, DE 19803
(302) 478-2757

Delaware's Friendliest Ham Store.
DELAWARE AMATEUR SUPPLY
71 MEADOW ROAD
NEW CASTLE, DE 19720
302-328-7728
800-441-7008
Icom, Ten-Tec, Microlog, Yaesu, Kenwood, Santec, KDK, and more. One mile off $1-95$, no sales tax.

Florida

AMATEUR ELECTRONIC SUPPLY 1898 DREW STREET
CLEARWATER, FL 33575
813-461-4267
Clearwater Branch
West Coast's only full service
Amateur Radio Store.
Hours M-F 9-5:30, Sat. 9-3

AMATEUR ELECTRONIC SUPPLY
621 COMMONWEALTH AVE.
ORLANDO, FL 32803
305-894-3238
Fla. Wats: 1 (800) 432.9424
Outside Fla: 1 (800) 327-1917
Hours M-F 9-5:30, Sat. 9-3

Georgia

DOC'S COMMUNICATIONS
702 CHICKAMAUGA AVENUE
ROSSVILLE, GA 30741
(404) 866-2302 / 861-5610

ICOM, Yaesu, Kenwood, Bird..
9AM-5:30PM
We service what we sell.

Hawaii

HONOLULU ELECTRONICS
819 KEEAUMOKU STREET
HONOLULU, HI 96814
(808) 949-5564

Kenwood, ICOM, Yaesu, Hy-Gain Cushcraft, AEA, KLM, Tri-Ex Towers, Fluke, Belden, Astron, etc.

Idaho

ROSS DISTRIBUTING COMPANY
78 SOUTH STATE STREET
PRESTON, ID 83263
(208) 852-0830

M 9-2; T-F 9-6; S 9-2
Stock All Major Brands
Over 7000 Ham Related Items on Hand

Illinois

ERICKSON COMMUNICATIONS, INC.
5456 N. MILWAUKEE AVE.
CHICAGO, IL 60630
312-631-5181
Hours: 9:30-5:30 Mon, Tu, Wed \& Fri; 9:30-8:00 Thurs; 9:00-3:00 Sat.

Indiana

THE HAM STATION

220 N. FULTON AVE.
EVANSVILLE, IN 47710
812-422-0231
Discount prices on Ten-Tec, Cubic, Hy-Gain, MFJ, Azden, Kantronics,
Santec and others.
SASE for New \& Used Equipment List.

Maryland

MARYLAND RADIO CENTER
8576 LAURELDALE DRIVE
LAUREL, MD 20707
301-725-1212
Kenwood, Ten-Tec, Alinco, Azden. Full service dealer.
M-F 10-7
SAT 9-5

Massachusetts

TEL-COM, INC.
675 GREAT ROAD, RTE. 119
LITTLETON, MA 01460
617-486-3400
617-486-3040
The Ham Store of New England
You Can Rely On.

Michigan

ATLANTIC SOLAR POWER/ENCON
(SINCE 1979)
37279 W. SIX MILE RD.
LIVONIA, MI 48152
(313) 591-7745

Solar Electric Power for Repeaters,
Ham Shacks, Packet Radio.
Call Paul, WD8AHO

Minnesota

TNT RADIO SALES

4124 WEST BROADWAY
ROBBINSDALE, MN 55422 (MPLS/ST PAUL)
TOLL FREE: (800) 328-0250
In Minn: (612) 535-5050
M-F 9 AM-6 PM
Sat 9 AM-5 PM
Ameritron, Bencher, Butternut, ICOM, Kenwood

Missouri

MISSOURI RADIO CENTER
102 NW BUSINESS PARK LANE
KANSAS CITY, MO 64150
(800) 821-7323

Missouri: (816) 741-8118
ICOM, Kenwood, Yaesu
Same day service, low prices.

Nevada

AMATEUR ELECTRONIC SUPPLY
1072 N. RANCHO DRIVE
LAS VEGAS, NV 89106
702-647-3114
Dale Porray "Squeak," AD7K
Outside Nev: 1 (800) 634-6227
Hours M-F 9-5:30, Sat. 9-3

Dealers:

Amateur Radio Dealer

New Hampshire

RIVENDELL ELECTRONICS
8 LONDONDERRY ROAD
DERRY, N. H. 03038
603-434-5371
Hours M-S 10-5; THURS 10-7
Closed Sun/Holidays

New Jersey

ABARIS SYSTEMS

276 ORIENTAL PLACE
LYNDHURST, NJ 07071
201-939-0015
Don WB2GPU
Astatic, Azden, B\&W, Butternut, Larsen, Mirage/KLM, Kenpro, Nye, Santec,
THL, and many others.
M-F 10 am-9 pm
SAT 9 am- 7 pm VISAIMC

KJI ELECTRONICS

66 SKYTOP ROAD
CEDAR GROVE, NJ 07009
(201) 239-4389

Gene K2KJI
Maryann K2RVH
Distributor of: KLM, Mirage, ICOM, Larsen, Lunar, Astron. Wholesale - retail.

New York

BARRY ELECTRONICS

512 BROADWAY
NEW YORK, NY 10012
212-925-7000
New York City's Largest Full Service Ham and Commercial Radio Store.

VHF COMMUNICATIONS

915 NORTH MAIN STREET
JAMESTOWN, NY 14701
716-664-6345
Call after 7 PM and save! Supplying all of your Amateur needs. Featuring ICOM "The World System." Western New York's finest Amateur dealer.

North Carolina
F \& M ELECTRONICS
3520 Rockingham Road
Greensboro, NC 27407
1-919-299-3437
9AM to 7PM Closed Monday
ICOM our specialty - Sales \& Service

Ohio

AMATEUR ELECTRONIC SUPPLY 28940 EUCLID AVE.
WICKLIFFE, OH 44092 (Cleveland Area) 216-585-7388
Ohio Wats: 1 (800) 362-0290
Outside Ohio: 1 (800) 321-3594
Hours M-F 9-5:30, Sat. 9-3
DEBCO ELECTRONICS, INC.
3931 EDWARDS RD.
CINCINNATI, OHIO 45209
(513) 531-4499

Mon-Sat 10AM-9PM
Sun 12-6PM
We buy and sell all types of electronic parts.
UNIVERSAL AMATEUR RADIO, INC. 1280 AIDA DRIVE
REYNOLDSBURG (COLUMBUS), OH 43068
614-866-4267
Featuring Kenwood, Yaesu, Icom, and other fine gear. Factory authorized sales and service. Shortwave specialists. Near I-270 and airport.

Pennsylvania

HAMTRONICS,
dIV. OF TREVOSE ELECTRONICS

4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215-357-1400
Same Location for over 30 Years

LaRUE ELECTRONICS

1112 GRANDVIEW STREET
SCRANTON, PENNSYLVANIA 18509
717-343-2124
ICOM, Bird, Cushcraft, Beckman, Larsen, Amphenol, Astron, Belden, Antenna Specialists, W2AU/W2VS, Tokyo Hy-Power Labs, WELZ, Daiwa, Sony, Saxton, Vibroplex, Weller.

Tennessee

MEMPHIS AMATEUR ELECTRONICS 1465 WELLS STATION ROAD MEMPHIS, TN 38108
Call Toll Free: 1-800-238-6168
M-F 9-5; Sat 9-12
Kenwood, ICOM, Ten-Tec, Cushcraft, Hy-Gain, Hustler, Larsen, AEA, Mirage, Ameritron, elc.

Texas

MADISON ELECTRONICS SUPPLY 3621 FANNIN
HOUSTON, TX 77004
713-520-7300
Christmas?? Now??

KENNEDY ASSOCIATES
AMATEUR RADIO DIVISION
5707A MOBUD
SAN ANTONIO, TX 78238
512-680-6110
Stocking all major lines. San Antonio's
Ham Store. Great Prices - Great
Service. Factory authorized sales and service.
Hours: M-F 10-6; SAT 9-3
MISSION COMMUNICATIONS
11903 ALEIF CLODINE
SUITE 500 (CORNER HARWIN \& KIRKWOOD)
HOUSTON, TEXAS 77082
(713) 879-7764

Now in Southwest Houston-full line of equipment. All the essentials and extras for the "ham."

Wisconsin

AMATEUR ELECTRONIC SUPPLY 4828 W. FOND DU LAC AVE MILWAUKEE, WI 53216 414-442-4200
Wisc. Wats: 1 (800) 242-5195
Outside Wisc: 1 (800) 558-0411
M-F 9-5:30 Sat 9-3

Invitation to Authors

ham radio welcomes manuscripts from readers. If you have an idea for an article you'd like to have considered for publication, send for a free copy of the ham radio Author's Guide. Address your request to ham radio. Greenville, New Hampshire 03048 (SASE appreciated).

Foreign Subscription Agents for Ham Radio Magazine

Ham Radio Austria
Karn
Karin
Poser
Dilach 2454
Porn lach 2454
D. 7850 Lerrac
D. 7950 Loerrach
West Germany

Ham Radio Belgum
Nam Radio Belt
Stereonouse
Rrusselsesteenweg 416
B.9218 Gent
selgu
Mam Radio Hollano
Postbus 413 (7800 Ar Emmen
Holland
Ham Radio Europe
Box 2004
Box 2004
S 19402 Upplands Vasby
Sweden
Ham Radia France
SM Elecironic
20 bis, Ave des Clarions
f. ag 000 A Aurere
$\underset{\substack{\text { F. } \\ \text { France }}}{ }$
Ham Radio Germany
Karm Uaber
Postlach 2454
0. 7850 Lerrac
West Germany

Canada
Send orders to
Ham Radio Magazin
Greenvilie. NH O3a48 USA
Prices in Canadian funds
1 yr $\$ 4185$. yrs .8742
1 yr
$3 \mathrm{yrs}. 59890^{2}$

Ham Radio lialy
Via Maniago 15
1.20134 Milano
liaty

> Ham Radio Switzerland

Karin Ueber
- Postlach 2454

Postlach 2454
0.7850 Leerrart
West Germany
Ham Radio England
clo R SGB
Lambda Hous
Lambda House
Cranborne Road
Potters Bar
England
England

Tom McMullen, W1SL

packet communications

The answer is "definitely not!"
The question is "Is this guy hung up on digital stuff, or what?"

Hung up on digital stuff? No. But enthused? Absolutely! You see, I'm a follower of the old adage that there's no such thing as too much knowledge. I've never learned anything that I haven't found useful at one time or another, so l'm all for grabbing any knowledge I'm capable of absorbing. (And it's surprising how much you retain, even when you think you're in over your head.)

At the same time, however, I realize that not everyone shares my enthusiasm for "all things, great and small." Hence my opening answer to questions that might come up about subjects covered in pursuit of the goals of this column. As stated originally (June, 1987), the purpose of Elmer's Notebook is, first, to address the immediate needs of Elmers, Novices, and anyone else coping with the "Novice Enhancement" rules change; and second, to continue with as many subjects as needed to help Novices (or anyone else, for that matter) upgrade to a higher class of license or simply enjoy Amateur Radio more.

Along these lines, l'll cover whatever topics I think will be useful. (I'm certainly open to suggestions.) So if a particular column doesn't fit into your concept of what Amateur Radio means to you, read it anyway so you'll have something filed away as "Maybe Useful - Someday." Hang in there - I'll
get to your favorite subject sometime, especially if you'll tell me what it is! Now, let's take a look at packet radio.

what's a packet?

According to some dictionaries, a packet is "a small package that contains anything. . . ."' An electronics dictionary defines a packet as "a group of binary digits, including data and control elements, which is switched and transmitted as a composite whole.' ${ }^{2}$

Though both definitions apply to Amateur packet radio in a general way, let's see if we can be more specific without letting the technicalities overwhelm us. Describing a packet as "a package that contains data and control elements" sounds good, but isn't that what RTTY, voice, and CW messages are? After all, they include the information to be transferred (the message), the control information (the address for delivery, the identification of the sender, and a word count for checking accuracy). The answer, then, is "Yes, but. . . ."

The rapid growth of packet radio began with a coincidence of timing that placed the newly popular personal computer within reach of many enthusiasts and the relaxing or rewriting of Amateur rules to allow data communications of greater bandwidths on the VHF and UHF bands (increased bandwidths allow higher speed communications). It doesn't really matter which mode you're using if you're limited to a top speed of 100 baud or so on the hf bands; RTTY, AMTOR,
and ASCII can handle that speed with ease. The higher speeds permitted on 2 meters and above were attractive, but the need for something better than the digital modes used on the lower bands was obvious. For one thing, RTTY and its cousins had no provision for rapid automatic relaying of data if there wasn't a direct path between the originator and the destination. The instructions required to do this (called "overhead") could end up longer than the text that was to be sent.

In their search for better means of transferring data between computers at scattered locations, commercial developers devised systems that provide fast, accurate transfer of data via telephone links, cable systems, and/or microwave or satellite relays. They're not only accurate and fast; they're transparent to the user - i.e., you feed your message into the system, and the system does the rest. Networks and repeaters are also accommodated in the language of these systems.

Such systems and languages are called protocols. "Protocol" means the same thing in packet radio as it does in any other context; it's a set of prearranged operating procedures, signals, and language that make sure you understand precisely how I'm going to say something, what I mean when I say it that way, and how you should respond when I say it. As long as we both stick to the protocol, the chance for misunderstanding (i.e., errors) is small.

One very successful digital protocol

fig. 1. The AX. 25 packet protocol frame is made up of several fields, each with a specific number of bits that convey special information about operation. This is an information frame. Supervisory frames, used to control links or repeaters, are similar but do not contain the message field.
is called High-level Data Link Control, or HDLC. Obviously, you don't have to know all about HDLC or the other protocols used to enjoy packet radio, but a basic understanding will help you see how it all fits together. (Beside, sooner or later you'll start wondering, "How do they do that?")

HDLC is part of a broader protocol called X.25, which covers several "layers" of packet radio, from the local level up through several types of networks. I'll not go into the history of how Amateurs got packet radio going, except to say that several individuals and organizations realized that a standard was needed if packet was to become more than a curiosity. As a result of a series of conferences, the X. 25 protocol was adopted, with some minor modifications, as AX. 25 (the A is for Amateur, obviously). Predictably, once a standard was established, the mode - and the equipment industry to supply it -- mushroomed. (If you're interested in more information about the birth and development of growth of packet radio, see "for further reading," at the end of this column.)

The Amateur packet radio protocol isn't really very complex (see fig. 1). Each packet frame is made up of welldefined sections called fields. Each has a specific job to do, as defined by the protocol.

The first field is a flag. In digital language, a flag is an arrangement of
bits that attract the attention of the data-processing equipment. In AX.25, the protocol tells the sending equipment, "When you want to get the other guy's attention, send eight bits arranged in this manner (01111110)." The receiving station has been told, "Every time you see eight bits arranged in this particular pattern, pay attention!"

The rest of the packet is checked to make sure that this pattern never occurs anywhere except at the start or end of a packet. What the first flag says, in essence, then, is "This is the start of a packet."

Next is an address field, which contains both the identification of the originator and the destination. One of the nice features of AX. 25 is that it recognizes Amateur call signs as proper addresses.
The third field presents control information. Control information can vary, depending upon the job it has to perform, but the most common types in this field include information for the user, supervisory information for controlling data flow, and "unnumbered" information for controlling the link (if any).

Next is a protocol identifier field (PID) that identifies the network-layer protocol being used (if any).

Then comes the information or message field. This is where your "Having a great time, wish you were here" message goes. There's room for 2048 bits in this field, but you don't have to
use all of them. Most of the packets I've seen consist of two to three lines of text on a normal computer screen. Each line requires approximately 640 bits for an 80-character-wide screen, so a three-line packet message would use up to 1920 bits.
The field following the message is a frame check sequence (FCS). (Didn't I warn you that packet radio was loaded with "alphabet soup"?) The FCS tests the message for accuracy. It doesn't care if you misspelled or mistyped a word; it simply checks to confirm that it received everything that was sent. This is done by a formula that I won't go into here, but the microprocessor in your TNC (terminal node controller)* knows all about it. Basically, the sending station calculates and sends a number and the receiving station performs the same calculation to see if it gets the same number. If it does, the receiving station sends an acknowledgment, or "ack"; if it doesn't, no acknowledgment is sent, and the sending station repeats the packet, saying, in essence, "I'm going to keep on doing this until you get it right!"

The last field is a flag that signifies "The End."

This sounds like heavy stuff, but the microprocessor handles it so fast that you don't even know it's happening. A packet passed between two Amateurs chatting via their keyboards can be sent and acknowledged in less than $1 / 4$ second.

hooking it up

The output from the TNC is in the form of audio tones, which are applied to the modulator in the transmitter just as any other audio would be. The output from the receiver is also audio tones, which the TNC processes to provide binary digits (pulses) for the microprocessor.

Commercially available TNCs come equipped with instructions for connection to your computer, and cables

[^6]

Have you been trawling the bounding main for a new product? We have just netted it-the TP-38 microprocessor controlled community repeater panel which provides the complete interface between the repeater receiver and transmitter. Scuttle individual tone cards, all 38 EIA standard \square CTCSS tones are included as well as time and hit accumulators, programmable timers, tone translation, and AC power supply at one low price of $\$ 595.00$. The TP-38 is packed like a can of sardines with features, as a matter of fact the only additional option is a DTMF module for $\$ 59.95$. This module allows complete

\$595.00 each \$59.95 DTMF module \$149.95 Digital CTCSS module

 offsite remote control of all TP-38 functions, including adding new customers or deleting poor paying ones, over the repeater receiver channel.Other features include CMOS circuitry for low power consumption, non-volatile memory to retain programming if power loss occurs, immunity to falsing, programmable security code and much more. The TP- 38 is backed by our legendary 1 year warranty and is shipped fresh daily. Why not set passage for the abundant waters of Communications Specialists and cast your nets for a TP-38 or other fine catch.
may or may not be supplied. If they're not, you can make or perhaps buy some that will do the job. Hookup is frequently just as simple as plugging the cable into the serial port of the computer and using software that makes your computer act like a dumb terminal.

On the radio end, it's as simple as applying audio and push-to-talk (PTT) connections to the microphone (or auxiliary) input for the transmitter, and then plugging a connector into the external speaker plug on the receiver. Connectors vary in size, so you may have to shop for the right size to fit your radio. Many packet controllers use a nine-pin connector for the audio output/input to and from the radio, so you'll have to connect the wires from the microphone input and speaker output to this connector. It's a good idea to provide a termination for the radio's speaker to provide impedance matching and prevent distortion. Figure 2 shows one way of doing this.

what can I do with packet?

Packet is the fastest-growing mode of Amateur communication today, and more uses for it emerge all the time. In addition to just chatting with your nearby friends, you can send packets over digipeaters (digital repeaters) to distant stations (up to eight repeats can be handled by the packet protocoll. You can perform public service at events or in emergencies; packet radio was used in the 1984 Summer Olympics in Los Angeles, in the field at forest fires in Cialifornia, and in innumerable emergencies and emer-gency-preparedness drills nationwide. There are hundreds of packet bulletin boards (PBBS) throughout the country, and stations called "Gateways" that provide access to satellites and to UHF repeaters that increase the baud rate and allow rapid transfer of packet information over vast distances. Packet will also handle graphics, which opens even more possibilities!

what frequencies?

Like other digitial modes, packet can

fig. 2. Typical connections between the TNC and radio equipment. Consult your TNC owner's manual for exact connector types and pin numbers to use.
be used on 10 meters between 28.1 and 28.3 MHz. Novices can listen, but not operate, on several frequencies used on 2 meters; 145.01 MHz is the most popular, with 145.03, 145.05, 145.07 , and 145.09 not far behind.

Several frequencies (223.42 to 223.90 MHz) on the $220-\mathrm{MHz}$ band have been suggested for Novice packet operation. 223.30 has been suggested as a national packet simplex frequency (unless it's in use by a local repeater). Note that 223.50 is the national simplex frequency for voice fm , so don't use packet on that one.

Parts of the $220-\mathrm{MHz}$ band have been used for developing experimental high-speed (9600 baud or higher) packet networking.
With Novice privileges now including packet on 220 MHz , the number of digipeaters and voice repeaters should increase, and local activity should grow rapidly. Check with local clubs for new activity in your area.
Here's a helpful tip for when you get your TNC hooked up and want to see things happening on your screen: set the Monitor Mode to ON. This will let you "read the mail" on the bands on which you can't transmit. Your instruction book will tell you how to do this - it's usually as simple as entering a command (usually MONON or MALL) from the keyboard.
This has been a thumbnail sketch of
what makes packet radio an effective and entertaining mode. There's much left to tell, however, and I'll do that in a future column.

for further reading

The Amateur magazines have featured many excellent articles on packet radio. The following books contain a wealth of information about the development, operating techniques, and the future possibilities of this mode. All but The Digital Novice, which addresses several digital modes, are dedicated to packet radio; the first two are ideal for beginners in packet radio, regardless of license class. All are available from ham radio's Bookstore, Greenville, New Hampshire 03048.

The Packet Radio Handbook, by Jonathan L. Mayo, KR3T.

Get ***CONNECTED to Packet Radio, by Jim Grubbs, K9EI.

The Digital Novice, by Jim Grubbs, K9EI.

ARRL Computer Networking Conferences 1-4: Pioneer Papers on Packet Radio 1981-1985.

ARRL Fifth Computer Networking Conference Papers, 1986.

references

1. The Random House Dictionary of the English Lan guage, College Edition, 1969.
2. IEEE Standard Dictionary of Electrical and Electron ics Terms, IEEE Centennial Edition, 1984.
ham radio

A magazine dedicated to quality and sportsmanship in amateur radio operating. Fresh, timely, practical and down to earth reading for little pistols and big guns. Written by the world's best in their fields: ON4UN, SMøAGD, LZ2CJ, VE3BMV, KH6BZF, DJ9ZB, ZS6BRZ, W1WY, N2AU, K7GCO, K4ZN, W4GF, VE3JTQ, WB4ZNH, WB9TBU, KQ2M, NS6X, W3FG, KA3B, K1PLR, N7CKD, VE3XN, ABøX, JE1CKA and others.

Includes DX News, QSL Info, $160 \mathrm{~m}, 80 \mathrm{~m}, 10 \mathrm{~m}, 6 \mathrm{~m}$ columns, DXpeditioning, Propagation, Awards, Contest rules and results, Traffic - Emergency, FCC News, New Products, Antennas, Technical news and articles, equipment reviews and modifications, computer programs, Radio Funnies, Club Life, RTTY, VHF/UHF, Mail Box, Classified Ads and much more in a magazine format with the speed of a bulletin.

RADIOSPORTING sponsors DX Century Award, Contest Hall of Fame and World Radio Championship contest.
"Your publication is superb! Keep it up!" Joe Reisert, W1JR
"Your W2PV articles are priceless. Your magazine is super!", Rush Drake, W7RM
'Let me congratulate you on a very impressive magazine. Just what I've been looking for as a DXer and Contester!" Dick Moen, N7RO
"RADIOSPORTING, once received, cannot be tossed aside until it is read from cover to cover. Then reviewed again and again." Chas Browning, W4PKA
Subscription rates: 1 year USA $\$ 18$, Canada CDN\$26, Overseas US\$23; 2 years $\$ 33, \$ 48$, $\$ 42$ respectively. Single issue $\$ 2$. USA First Class Mail add $\$ 8 /$ year, DX Air Mail add $\$ 15 /$ year.

TRY US! SUBSCRIBE OR SEND $\$ 1$ FOR YOUR SAMPLE COPY. RADIOSPORTINNG Magazine PO Box 282, Pine Brook, NJ 07058, USA

Recognized around the world as the definitive work on Beverage Antennas. W1WCR has spent countless hours developing new antenna ideas and optimizing the SWA (Steerable wave antenna.) Misek delves deep into the secrets of the single wire Beverage with helpful hints and tips on how to maximize performance based upon wire size, height above ground, overall length and impedance matching. Also includes information on center fed Beverages constructed out of several wire types. CITY LOT OWNERS Note: Misek has developed a Beverage for you too! Called the Micro-SWA, it is just 60 ft long. You get excellent directivity and null steering capabilities. Transformer design information for both termination and feedline matching is completely revised. (c) 198780 pages 2nd Edition
$\square \mathbf{V M - B A H}$
Softbound \$14.95
Please enclose $\$ 3.50$ for shipping and handling
ham radio BOOKSTORE
GREENVILLE, NH 03048
603-878-1441

A monthly of 100 -plus pages-has everything you need to know about where to find equipment, how to install it, system performance, legal viewpoints, and industry insights! With your subscription to STV ${ }^{\text {* }}$ you will receive a FREE LCD Calendar/Clock.

- Only \$19.95 per year (12 monthly issues)
- \$1.00 for sample copy
- 1.00 for sample

The best in satellite programming! Featuring: \star All Scheduled Channels \star Weekly Updated Listings \star Magazine Format \star Complete Movie Listing \star All Sports Specials \star Prime Time Highlights \star Specials Listing and \star Programming Updates!

- Only $\$ 45.00$ per year (52 weekly issues)
- 2 Years $\$ 79.00$ (104 weekly issues)
- \$1.00 for sample copy

Visa ${ }^{\text {® }}$ and MasterCard ${ }^{\text {® }}$ accepted (subscription orders only). All prices in US funds. Write for foreign rates.

Send this ad along with your order to:

STV ${ }^{\circledR} /$ OnSat ${ }^{\circledR}$

P.O. Box 2384-Dept. HR • Shelby, NC 28151-2384 SUBSCRIPTION CALLS ONLY

TOLL FREE 1-800-438-2020

(Give the (bift of HAM RADIO this Holiday $_{\text {Season! }}$

(biving HAM RADIO Magazine is both fum and thoughtful.

One Year/12 issues

FOR TWO OR MORE GIFT SUBSCRIPTIONS OR EXTENSIONS

 INCLUDING YOUR OWNA handsome gift card will be sent if your order is received before December 15, 1987

Every month your Ham friend will be reminded of your gift as they read through the latest issue of HAM RADIO Magazine.

Staying on top of the ever changing world of electronics is tough. With a subscription to HAM RADIO, however, you get all the latest breakthroughs in electronic design and developments as they happen - not years later. Each issue is packed with theory, state-of-the-art projects and the latest designs. Plus plenty more.

The Special ANTENNA issue in May, VHF/UHF issue in July and the RECEIVER issue in November alone are worth the price of a subscription!

You also get monthly columns by Orr, Reisert, Stonehocker, Carr and McMullen covering from antennas to zener diodes and repair techniques.

There's no time like now to give the present of HAM RADIO Magazine for that hard-to-buy-for ham friend. While you're at it, why not renew your own subscription and take advantage of the special low one year rate.

1987 GIFTS AT 1985 PRICES!
Please enter my one year gift/renewal subscription(s) to Ham Radio Magazine as follows:

First gift or renewal \$19.95 Save \$3
Two or more gifts or renewals $\$ 16.95$ Save $\$ 6$

FOR EXTRA FAST SERVICE, CALL TOLL FREE TO ORDER YOUR GIFT SUBSCRIPTIONS OR BOOKS.

ADVERTISER'S INDEX AND READER SERVICE NUMBERS

Listed below are the page and reader service number for Bach advertiser in this issue. For more information on their products, select the appropriate teader service number make a check mark in the space provided. Mail this form fo hatr radio Reader Service, I.C A., P. O. Box 2558, Woburn, MA 01801

Address

City

- Please contact this advertiser directly.
Please use before November 30, 1987

READER SERVICE *
188 - Advanced Receivm Reserarch
150 AEA
177 - All Electronics Corp
132 - Alpha Delta Communcations
123 Amateur Wholosate Electronics
210 Arrieco Pubhsting Corp
169 AMSAT
184- Antique Padio Classitied
136. ARALL

159 ARRL
168 - ARRL
158 Astion Corp
160 - Azimuth Clocks

- Barker 8 Withamson
- Barry Electronics

208 - Bilal Company
167 - Buckmaster Publishing
185 Buckmaster Publishing

- Butternut Electronics
- Caddell Corl Corp

172. Cahtorma Packet Concepts

197 - Coaxtal Dynamics, Inc
PAGE * 90 56 86
84 43 30 76 76 86 77 74 66 77 15 72 77 72 624
198. Communication Concepts, Inc 95

199 - Communications Spectahsis
164 Computeradio
181 Consolidated Electronics
145 - CSE READER SERVICE *

* Mini Products	B
113 - Mirage Communications	1
207 Mirage Communions	

207 . Mirage Communications10
203. Missouti Radio Center 107
146 - Mobule Mark Inc 52
138. Moli Energy LId125 Monitoring Times

195 - Morian Software
192 - Motron Electronics
170 - Multitax
204 NCG
156 - Nemal Electrones
147 - Nuts 8 Volts
206 - OPTOelectronics
115 - PC Electronics

- Palomar Engineers

162 - The PX Shack
133. Aadio Amateir Catuook 70

200 - Radiosporting
189 - The Radio Works
187 . Ramsey Electronics Inc 88
194 - The RF Connection 92
RF Pants
153- Robot Research Inc
157 - S-Com industries
182. Satman, inc

124 - Sommer
Spec Com
117. Spectrum Internationa

174 . Sthisbburg Engineering Co
201 - STV/OnSat
121.TE Systems

155 - Tel-Com
183-Telewave Inc
196 - Thermax Corporation
163 - Transverters Unlimited
114 - Unadilla/Antennas Etc
166 - Unity Electronics

- University Microtilm Int

120 . Val Comm, Inc
173 VanguardLabs
119 - Vartan EIMAC
178. VHF Communications

180 W9INN Antennas
137 . Wacom Pioducts. Inc
176 Western Electronics
116 Western Systems 14
190 World Data Enterptises 91
151 - Yaesu USA 61
205 - Yaesu USA CIII
131 EH YostCo

PRODUCT REVIEW/NEW PRODUCTS
308 - Advanced Computer Controis 94
302 Communications Specialists 92
306 - CSE Technologies 92
304 - Encomminc92
301 - Heath Company 94
305 - ICOM America inc 94307 - Kantronics9191
303 - MF J Enterpnises 92

2x4Z BASE REPEATER ANTENNA

THE HIGHEST GAIN DUAL BAND BASE/REPEATER ANTENNA

HIGH POWER 200 WATTS

FREQUENCY: BROAD BAND
$140-170 \mathrm{MHz}$
$410-470 \mathrm{MHz}$

GAIN:
VHF - 8.2 dB
UHF - 11.5 dB
VSWR - 1.-1.2 or less

CONNECTOR:
N TYPE FEMALE

LIGHTNING PROTECTION GROUNDED DIRECT

LENGTH: 16 FT .
WEIGHT: 5 LBS .3 OZ .
WIND LOAD: 90 MPH
MOUNTING: UP TO 2 IN .
MAST
CAN SIMULCAST ON
BOTH BANDS

WATERPROOF
CONNECTING
JOINTS

UPS SHIPPABLE

AMATEUR SPECIAL

1275 NORTH GROVE ST.
ANAHEIM, CALIF. 92806
(714) 630-4541

CABLE: NATCOLGI/
FAX (714) 630-7024

MISSOURI

RADIO CENTER 1-800-821.7323

102 N.W. Business Park Lane, Kansas City, MO 64150 816-741-8118

SIZE: 4" Hx 3.5"Wx1"D MADE IN USA

COUNTERS TO 1.3 GHZ

8 LED DIGITS - 2 GATE TIMES ANODIZED ALUMINUM CABINET INTERNAL NI-CAD BATTERIES INCLUDED AC ADAPTER/CHARGER INCLUDED

EXCELLENT SENSITIVITY \& ACCURACY

AC-DC•PORTABLE

 OPERATION \#AC-1200 AC ADAPTER CHARGERSmall enough to fit into a shirt pocket, our new 1.2 GHz and $1.3 \mathrm{GHz}, 8$ digit frequency counters are not toys! They can actually out perform units many times their size and price! Included are rechargeable Ni-Cad batteries installed inside the unit for hours of portable, cordless operation. The batteries are easily recharged using the AC adapter/charger supplied with the unit.

The excellent sensitivity of the 1200 H makes it ideal for use with the telescoping RF pick-up antenna; accurately and easily measure transmit frequencies from handheld, fixed, or mobile radios such as: Police, firefighters, Ham, taxi, car telephone, aircraft, marine, etc. May be used for counter surveillance, locating hidden "bug" transmitters. Use with grid dip oscillator when designing and tuning antennas. May be used with a probe for measuring clock frequencies in computers, various digital circuitry or oscillators. Can be built into transmitters, signal generators and other devices to accurately monitor frequency.

The size, price and performance of these new instruments make them indispensible for technicians, engineers, schools, Hams, CBers, electronic hobbyists, short wave listeners, law enforcement personnel and many others.

STOCK NO:

Model 1200 H in kit form, 1-1200 MHz counter complete including
all parts, cabinet, Ni-Cad batteries, AC adapter-battery charger and
instructions ...95
\#1200HC
Model 1200 H factory assembled $1-1200 \mathrm{MHz}$ counter, tested and calibrated, complete including Ni -Cad batteries and AC adapter/battery charger
..$\$ 137.50$
\#1300HC
Model 1300 H factory assembled $1-1300 \mathrm{MHz}$ counter, tested and calibrated, complete including Ni-Cad batteries and AC adapter/battery charger
$\$ 150.00$
ACCESSORIES:
\#TA-100S Telescoping RF pick-up antenna with BNC connector $\mathbf{\$ 1 2 . 0 0}$
\#P-100 Probe, direct connection 50 ohm, BNC connector $\mathbf{\$ 1 8 . 0 0}$
\#CC-70 Carrying case, black vinyl with zipper opening. Will hold a counter and accessories
$\$ 10.00$

Yaesus FT-736R. Because you neverknow whóslistening.

Why just dream of talking beyond earth?

With Yaesu's new FT7736R VHF/UHF base station, you can discover some of the best DX happening in ham radio. Via moonbounce. Tropo. Aurora. Meteor scatter. Or satellites.

You see, the FT736R is the most complete, feature-packed rig ever designed for the serious VHF/UHF operator. But you'd expect this of the successor to our legendary FT-726R.

For starters, the FT736R comes factory-equipped for SSB, CW and FM operation on 2 meters and 70 cm (430-450 $\mathrm{MHz}!$), with two additional slots for optional $50-\mathrm{MHz}, 220-\mathrm{MHz}$, or $1.2-\mathrm{GHz}$ modules.

Crossband full duplex capability is built into every FT7736R for satellite work. And the satel-

lite tracking function (normal and reverse modes) keeps you on target through a transponder.

The FT736R delivers 25 watts RF output on 2 meters, 220 MHz , and 70 cm . And 10 watts on 6 meters and 1.2 GHz . Store frequency, mode, PL frequency, and repeater shift in each of the 100 memories.

For serious VHF/UHF work, use the RF speech processor. IF shift. IF notch filter. CW and FM wide/narrow IF filters. VOX. Noise blanker. Threeposition AGC selection. Preamp switch for activating your
tower-mount preamplifier. Even an offset display for measuring observed Doppler shift on DX links.

And to custom design your FT736R station, choose from these popular optional accessories: lambic keyer module. FTS-8 CTCSS encode/decode unit. FVS-1 voice synthesizer. FMP-1 AQS digital message display unit. 1.2-GHz ATV module. MD-1B8 desk microphone. E-736 DC cable. And CAT (Computer Aided Transceiver) system software.

Discover the FT736R at your Yaesu dealer today. But first make plenty of room for exotic QSL cards. Because you never know who's listening.
YAESU

[^7]
KENWOOD

"DX-citing!"

TS-440SCompact high performance HF transceiver with general coverage receiver

Kenwood's advanced digital know-how brings Amateurs world-wide "big-rig" performance in a compact package. We call it "Digital DX-citement"-that special feeling you get every time you turn the power on!

- Covers All Amateur bands General coverage receiver tunes from $100 \mathrm{kHz}-30 \mathrm{MHz}$. Easily modified for HF MARS operation.
- Direct keyboard entry of frequency
- All modes built-in USB, LSB, CW, AM, FM, and AFSK. Mode selection is verified in Morse Code.
- Built-in automatic antenna tuner (optional) Covers 80-10 meters. - VS-1 voice synthesizer (optional)
- Superior receiver dynamic range Kenwood DynaMix high sensitivity direct mixing system ensures true 102 dB receiver dynamic range. (500 Hz bandwidth on 20 m) - 100\% duty cycle transmitter Super efficient cooling permits continuous key-down for periods exceeding one hour. RF input power is rated at 200 W PEP on SSB. 200 W DC on CW, AFSK, FM, and 110 W DC AM. (The PS-50 power supply is needed for continuous duty.)
- Adjustable dial torque
- 100 memory channels

Frequency and mode may be stored in 10 groups of 10 channels each. Split frequencies may be stored in 10 channels for repeater operation.

- TU-8 CTCSS unit (optional)

Subtone is memorized when TU-8 is installed.

- Superb interference reduction

IF shift, tuneable notch filter, noise blanker, all-mode squelch, RF attenuator, RIT/XIT. and optional filters fight QRM.

- MC-43S UP/DOWN mic. included
- Computer interface port
 - 5 IF filter functions - Dual SSB IF filtering A buill-in SSB filter is standard. When an optional SSB filter (YK-88S or YK-88SN) is installed, dual filtering is provided.
- VOX, full or semi break-in CW
- AMTOR compatible

Optional accessories:

- AT-440 internal auto. antenna tuner ($80 \mathrm{~m}-10 \mathrm{~m}$)
- AT-250 external auto, tuner ($160 \mathrm{~m}-10 \mathrm{~m}$)
- AT-130 compact mobile antenna tuner (160 m 10 m) - IF-232C/IC-10 level translator and modem IC kit • PS-50 heavy duty power supply • PS-430/ PS-30 DC power supply - SP-430 external speaker \bullet MB-430 mobile mounting bracket - YK-88C/88CN $500 \mathrm{~Hz} / 270 \mathrm{~Hz}$ CW filters - YK-88S/ 88SN $2.4 \mathrm{kHz} / 1.8 \mathrm{kHz}$ SSB filters * MC-60A/80/85 desk microphones • MC-55 (8P) mobile microphone - HS-5/6/7 headphones - SP-40/50B mobile speakers - MA-5/VP-1 HF 5 band mobile helical antenna and bumper mount - TL-922A 2 kw PEP linear amplifier • SM-220 station monitor - VS-1 voice synthesizer • SW-100A/200A/2000 SWR/power meters •TU-8 CTCSS tone unit - PG-2S extra DC cable.

Kenwood takes you from HF to OSCAR!

Complete service manuals are avallable for all Kenwood transceivers and most accessonies. Specifications and prices are subject to change without notice or obligation.

[^0]: 'Estimated price for $31 / 2 \times 41 / 2$ inch board, 250 holes, no goid: $\$ 193$ for setup, $\$ 7.80$ per board in small quantities. Price decreases for larger quantities

[^1]: ""Key" is a generic term used here for the point in any solid-state switch, relay circuit, exciter, or amplifier which is grounded in order to enable the device. Only in a CW keying circuit would "key" indicate a real telegraph key, and even then we'd usually be referring to the output of an electronic keyer. In this antenna relay sequencing circuit, the PTT line connects to the "key" terminal of the switch.

[^2]: ** BCD Electro, P.O. Box 830119, Richardson, Texas 75083. Parts also available from Circuit Specialists, P.O. Box 3047, Scottsdale, AZ 85257.

[^3]: *The cup cores are available from Ferroxcube. Toroids were made by Micrometals; toroids from FairRite, Arnold Engineering, Magnetics, and other manufacturers may be used instead.

[^4]: *The National LH1605K chip, most of the diodes, and the switching transistors used in these circuits are available from Digi-Key Corporation, P.O. Box 677, Thief River Falls, Minnesota 56701.

[^5]: The italicized numbers signify the bands to try during the transition and early morning hours，white the standard type provides MuF during＂normal＂hours．

[^6]: *A terminal is your keyboard and screen; a node is a connection point to a network or circuit; and the controller does just that - it controls the data flow by putting information into packets according to the protocol in use.

[^7]: Yeesu USA IZ20 Edwards Road. Cerritos, CA 90701 (219) 404-2700. Repair Semice: (213) 404 4884. Parts: (213) 404-4842 Wesu Cincinnati Service Center 9070 Gold Park Drive, Hamilton, OH 45011 (513) $874-8100$.

