

Reliable. ICOM's extensive line of reliable, field-proven handhelds and interchangeable accessories give you the most options for handheld communications. 2 -meter, $220 \mathrm{MHz}, 440 \mathrm{MHz}$ or 1.2 GHz ...ICOM has your frequency covered.

2-Meters. For 2 -meter coverage, ICOM offers the IC-02AT and IC-2AT handhelds. The versatile IC-02AT covers $140.000-151.995 \mathrm{MHz}$, the IC-2AT $141.500-149.995 \mathrm{MHz} .$. . both include frequencies for MARS and CAP operation. The IC-02AT features an LCD readout, 32 PL tones standard, DTMF, direct keyboard entry, three watts output, (optional 5 watts output with IC-BP7 battery pack), 10 memories and three scanning functions. The IC-2AT, the most rugged handheld on the market, has a DTMF pad. 1.5 watts output and thumbwheel frequency selection. The IC-2A is also available and has the same features as the IC-2AT except DTMF.

220 MHz . To get away from the crowd, ICOM has the IC-3AT $220.000-224.990 \mathrm{MHz}$ handheld with 1.5 watts output, thumbwheel selection and a DTMF pad.

440 MHz . For 440 MHz operation, ICOM has two handhelds available, the versatile IC-04AT and the IC-4AT. The IC-04AT and IC-4AT offer full coverage from $440.000-449.995 \mathrm{MHz}$. The IC-04AT includes an LCD readout, 32 PL tones standard, DTMF direct keyboard entry, three watts output, (optional 5 watts output with IC-BP7 battery pack), 10 memories and three scanning systems. The IC-4AT has a DTMF pad, thumbwheel selection and 1.5 watts output.
1.2 GHz . ICOM announces the IC-12AT $1260.000-1299.990 \mathrm{MHz}$ handheld, the first 1.2 GHz handheld available. The IC-12AT features 10 memories, an LCD readout, DTMF direct keyboard entry, two scanning systems and one watt output.

Accessories. A variety of interchangeable accessories are available, including the IC-BP8 800 mAH long-life battery pack, HS-10 boom headset, CPI cigarette lighter plug and cord, HM9 speaker mic (for IC-02AT, IC-04AT and IC-12AT), leather cases, and an assortment of battery pack chargers.

NOW - ALL KANTRONICS KPCs and KAM ARE TCP/IP NETWORKING COMPATIBLE INCLUDE THE PACKET MAILBOX AND COME WITH 32K RAM

EXTRA FEATURES NO EXTRA CHARGE

That's right! Now all Kantronics packet units* include the Personal Packet Mailbox ${ }^{\text {u }}$, come with 32 K RAM, and are TCP/IP Networking compatible - ALL AT NO EXTRA CHARGE. And there's more . . .

KAM and KPC owners" - you can add the Packet Mailbox and TCP/IP compatibility for the special low price of just $\$ 15.00$.

At Kantronics we're committed to keeping you current. Check below and see - we offer more features and the best customer support around.
KPC-2 ${ }^{\text {™ }}$
This low cost/high performance Kantronics TNC features a built-in HF/VHF modem, the Personal Packet Mailbox, full duplex operation, and multiple connect capability. The serial RS-232/TL port allows easy interfacing with all computers, even Commodores. KPC-2 is TCP/IP Networking compatible, includes 32 K RAM, and uses only five front panel indicators for easy operation. Like all Kantronics units. KPC-2 is fully compatible with existing TNCs.

KAM $^{\text {™ }}$

 KAM is the fully programmable All Mode unit that lets you operate VHF Packet, HFPacket, CW/RTTY/ASCII/ and AMTOR. But that's not all . . .Only KAM's dual VHF/HF radio ports work together for simultaneous Connects, Digipeating, and VHF/HF GATEWAY operations. And now KAM is TCP/IP Networking compatible, comes with 32K RAM, and has the Personal Packet Mailbox ALL STANDARD.

KAM includes watchdog timers on each port, an RS-232/TTL serial port, and a bargraph tuning indicator for HF operation. KAM even comes with an external modem connection point for optional $2400 \mathrm{~b} / \mathrm{s}$ packet operation. For the greatest degree of sensitivity and flexibility, turn to KAM, Kantronics All Mode.

KPC-4 ${ }^{\text {TM }}$Only KPC-4 features simultaneous Connects, Digipeating, and Gateway functions on two fully functional VHF radio ports - each of which includes a watchdog timer. What's more - you can add $2400 \mathrm{~b} / \mathrm{s}$ operation to port 2 with Kantronics optional 2400 Modem ${ }^{\text {™ }}$.
KPC-4 includes the Personal Packet Mailbox and 32 K RAM (expandable to 64 K), and is TCP/IP Networking compatible. The RS-232/TL serial port assures easy interfacing with any computer. Make KPC-4 your GATEWAY into packet flexibility.
 t

"DX-cellence!"

TS-940S

The new TS-940S is a serious radio for the serious operator. Superb interference reduction circuits and high dynamic range receiver combine with superior transmitter design to give you no-nonsense, no compromise performance that gets your signals through! The exclusive multi-function LCD sub display graphically illustrates VBT, SSB slope, and other features.

- 100\% duty cycle transmitter. Super efficient cooling system using special air ducting works with the inter nal heavy-duty power supply to allow continuous transmission at full power output for periods exceeding one hour. - High stability, dual digital VFOs. An optical encoder and the flywheel VFO knob give the TS-940S a positive tuning "feel."
- Graphic display of operating features.
Exclusive multi-function LCD sub-
display panel shows CW VBT, SSB slope tuning, as well as frequency, time, and AT-940 antenna tuner status. Low distortion transmitter. Kenwood's unique transmitter design delivers top "quality Kenwood" sound. - Keyboard entry frequency selection. Operating frequencies may be directly entered into the TS-940S without using the VFO knob.
- QRM-fighting features.

Remove "rotten QRM" with the SSB slope tuning, CW VBT, notch filter, AF tune, and CW pitch controls.

- Built-in FM, plus SSB, CW, AM, FSK
- Semi or full break-in (QSK) CW.
- 40 memory channels.

Mode and frequency may be stored in
4 groups of 10 channels each.

- Programmable scanning.
- General coverage receiver.

Tunes from 150 kHz to 30 MHz .

- 1 yr. limited warranty.

Another Kenwood First!
Optional accessories:

- AT-940 full range ($160-10 \mathrm{~m}$) auto-
matic antenna tuner • SP-940 external

Interface IF-232C/IF-10B

speaker with audio filtering * YG-455C-1 $(500 \mathrm{~Hz})$, YG- $455 \mathrm{CN}-1(250 \mathrm{~Hz})$. YK-88C-1 (500 Hz) CW filters; YK-88A-1 $(6 \mathrm{kHz}) \mathrm{AM}$ filter $-\mathrm{VS}-1$ voice synthesizer - SO-1 temperature compensated crystal oscillator $=$ MC-43S UP/DOWN hand mic. - MC-60A, MC-80, MC-85 deluxe base station mics. - PC-1A phone patch - TL-922A linear amplifier - SM-220 station monitor • BS-8 pan display 0 SW-200A and SW-2000 SWR and power meters.

Complete service mantuals are availatile for all Kenwood transcevers and

Specifations and prices ate subuect ! shange without notice ot otitrgatron

More TS-940S information is available from authorized Kenwood dealers.

KENWOOD

KENWOOD U.S.A. CORPORATION 2201E. Dominguez St. Long Beach. CA 90810 PO. Box 22745. Long Beach. CA 90801-5745

ham

radio magazine

contents

T. H. Tenney, Jr., W1NLB publisher

Rich Rose, K2RR editor-in-chief and associate publisher
Dorothy Rosa, KA1LBO managing editor

Tom McMullen, W1SL
Joseph J. Schroeder, W9JUV Alfred Wilson, W6NIF associate editors
Susan Shorrock editorial production
editorial review board
Peter Bertini, K1Z.JH
Forrest Gehrke, K2 BT
Michael Gruchalla, P.E.
Bob Lewis, W2EBS
Mason Logan, K4MT
Vern Riportella, WA2LOO
Ed Wetherhold, W3NQN
publishing staff
J. Craig Clark, Jr., N1ACH
assistant publisher
Rally Dennis, KA1JWF
director of advertising sales
Dorothy Sargent, KA1ZK advertising production manager

Susan Shorrock
circulation manager
Therese Bourgaulı circulation
Hans Evers, PAOCX
cover
ham radio magazine is published monthly by
Communications Technology, Inc.
Greenville. New Hampshire 03048-0498 Telephone: 603-878-1441
subscription rates
international subscription agents: page 99
Microfilm copies are available from
University Microfilms, international
Ann Arbor, Michigan 48106
Order publication number 3076
Cassette tapes of selected articles from ham radio are available to the blind and physically handicapped from Recorded Periodicals, 919 Walnut Street, Philadelphia, Pennsylvania 19107 Copyright 1987 by Communications Technology, Inc. Title registered at U.S. Patent Office

8 tomorrow's receivers: what will the next $\mathbf{2 0}$ years bring?
Robert J. Zavrel, Jr., W7SX
17 designing a state-of-the-art receiver Ulrich L. Ronde, KA2WEU/DJ2LR

26 a CAT control system for the Yaesu FT-757GX Kjell W. Strow, SM6CPI

33 a thumbwheel frequency selector for the Yaesu FT-757GX
Brian J. Mark, KA9SNF
41 ham radio techniques:
a new country for you?
Bill Orr, W6SAI
49 practically speaking:
using voltage comparators
Joe Carr, K4IPV
65 an rf voltmeter
lan Braithwaite, G4COL
77 VHF/UHF world: low-noise receiver update

- part 1

Joe Reisert, W1 JR
100 Elmer's notebook: receiver buzz words
Tom McMullen, W1SL

106 advertisers index	98 ham mart
and reader service	91 new products
6 comments	4 reflections
57 DX forecaster	81 short circuits
96 flea market	

specs in secs: an idea whose time has come

What's smaller than a bread box, lighter than a Bic pen, faster than a speeding bullet, and of interest to thousands of Radio Amateurs (or least it will be)?

You guessed it. It's Motorola's solution to our transistor specification problem, all on a single floppy disk. Appropriately labeled Specs in Secs, that's exactly what you get when you load it into your IBM PC-compatible computer.

In the program, Motorola has provided device information for over 1600 bipolar power transistors and TMOS ${ }^{\text {TM }}$ Power MOSFETs, and included a user-friendly method of retrieving the data as well. It's not only extremely useful, but also fun to use. And because of its flexibility, you feel like you're making real design decisions - and you are!

Did I just hear someone say "Now just hold on one dang minute! We're Radio Amateurs, not engineers. Why do we need this information, anyway?"

I'm really glad you asked. First of all, some of us are engineers or technicians, in addition to being licensed Radio Amateurs. And even if you're not an engineer or a technician, I'm willing to bet that sometime in your Ham career you've designed some circuit, or at least wished that you could have. Specs in Secs won't do the circuit design for you (although there are software programs out there that will). What it will do is, through a few keystrokes, provide parts choices in seconds.
"Great!" you say, with a little bit of sarcasm. Now you have 1600 or so power device specifications. But like most other Radio Amateurs, you're interested in rf circuits - oscillators, preamplifiers, etc. Well, don't sell a power device short before you look at its specifications - f_{T}, for example, which is related to maximum frequency of operation. Some of these power devices provide real gain at frequencies that are of interest to us.

Without dwelling on this point, let me mention that Motorola indicated in the brochure that accompanied this diskette that they're working on entering their entire semiconductor product line on a single 360 K floppy disk, and that takes time. I should know; I've done something similar with my compendium of Amateur Radio article references, From Beverages Thru OSCAR - A Bibliography (November 1980), and that only took me six years and eight diskettes, and I'm almost finished!
"But is Specs in Secs easy to use?" you ask.
It couldn't be simpler. You place the disk in any drive, type the letter M (Enter), and away you go. A menu provides a number of choices, including, in essence, an on-screen manual. Actually, the first thing you see is a "Start-up Screen" with a carefully chosen set of choices (defaults) that you'll probably want anyway.

Here's where it really becomes useful. Selection "D" is called "Parametric Search." With this choice, you're given the opportunity not only to choose the important parameters, but their order and value as well. The more specific you are, the more quickly you'll arrive at the appropriate component. Motorola does, however, recommend that you also have the hard copy (selection guide) available for the final decisionmaking process.
If you're reasonably sure of the component you want to use, just enter its part number after pressing Selection "C," appropriately labeled "Part Number Search." If it can't be found, you won't be hit over the head or knocked out of your chair by a loud noise. The program will just quietly tell you that it can't find that particular part number. Believe me, you still have many other choices.
I could easily go on about its other features, but for $\$ 2$ you can get your own copy and see for yourself. By the way, Parlez-vous Francais? Or German, Spanish, or Italian? The on-screen manual is written in these other languages as well, and you can print all of them out and have a copy at your side.

For your copy of Specs in Secs (DK101/D), send a check or money order for \$2 to Motorola Semiconductor Products, Literature Distribution Center, P.O. Box 20924, Phoenix, Arizona 85063.

Rich Rosen. K2RR Editor-in-Chief

KENWOOD

...pacesetter in Amateur Radio

220:FM forAll!

Kenwood brings you a wide range of 220 MHz gear designed for every need. Choose from two types of mobile and two types of HT. The $\mathrm{TH}-315 \mathrm{~A}$ is a

Dean LeMon, KR0V sure is! Dean got active in Amateur Radio when he was 16 years old and earned his Extra Class license in less than four years! "It's a facinating hobby and a great way to meet all kinds of new people from all over the world."

Dean has cerebral palsy and got started in Amateur Radio with help from the Courage HANDI-HAM System. The HANDI-HAM System is an international organization of able-bodied and disabled hams who help people with physical disabilities expand their world through Amateur Radio. The System matches students with one to one helpers, provides instruction material and support, and loans radio equipment

Isn't it time you got radioACTIVE with the Courage HANDI-HAM System?

Call or write the Courage HANDI-HAM System WOZSW at Courage Center, 3915 Golden Valley Road, Golden Valley, Minnesota 55422, phone (612) 588-0811.

Are you radioACTIVE?

Dick Smith kits

Dear HR:

Perhaps you've heard this, but in case not: I just found out that Dick Smith Electronics is no longer doing business in the United States. The Dick Smith kits are now being sold by American Electronics, P.O. Box 301, Greenwood, Indiana 46142.

Joe Moell, K00V
Fullerton, California 92633

say what you think

Dear HR:
What a delightful guest editorial by Robert Zavrel, Jr., W7SX (September, 1987)! Nearly everything listed was something I could identify with. However, I had to move some of the "don't likes" into the "do likes" column, and vice versa. Not many, but some.

That started me thinking. Wouldn't it be interesting to see how other readers felt? As Bob said in the article, "there comes a time when a guy's got to say what he really thinks!" My mind started wandering. It would be really fun to see what men and women hams think about things! What about a checklist with an item per line, and a box for " Y " or " N " after each one?

Bob listed 28 "really don'ts" and 49 "really dos." That makes a total of 77 things to feel strongly about. I would like readers to send me their opinions on any or all of these 77 "reallys," either by mail or by packet BBS (KZ10 @ WB1DSW). The message could be kept short by just sending a

77 -character long "opinion string" of Y's (like) and N's (don't like).
I'll tabulate the answers and send the results to ham radio magazine, because, as the last line of the editorial said I also like "magazines crazy enough to publish this."
That's what the last " Y " in my opinion string stands for:
YYNNNNYYNNNNNNNNNNNNNN NNNNNNYYYYYYYYYNYYYYYYY YYYYYYNYYYYYYYYYYYYYYYYY YYYYYYYY.
I'm looking forward to hearing from a lot of readers!

Dave Bushong, KZ1O
2 South Spring Street
Concord, NH 03301-2424

a word of caution

Dear HR:

Thank you for the article, "Solar Activity and the Earth's Magnetosphere," (August, 1987). It's very well written, and Bradley Wells is to be congratulated. For the layman, it answered many questions regarding the sun's relation to radio propagation. It also provided a good summary of the mechanics of the lines of magnetism.

There is one point I would like to bring to your attention, however. There are at least two instances where the phrase "may be visible to the naked eye" occur: on page 11, under the subhead "sunspots," and on page 13 under "flares."

At the risk of appearing overly cautious, it seemed to me that this implies that all one has to do is to gaze at the sun and these flares or sunspots would be apparent. However, readers who value their eyesight should be warned that "gazing" (my word) at the sun can be devastating. I'd therefore suggest a word of caution to the casual reader.

I hope there will be many more pieces about the sun; with the Solar year apparently coming out of its "dip," we could all benefit from a greater understanding of solar phenomena.

Rupert A. Wood, WB4ZOF
Bethesda, Maryland 20816-1760

Matching Pair TS-711A/811A vhF/UHF all-mode base stations
 The TS-711A 2 meter and the TS-811A
 - Automatic mode selection.

70 centimeter all mode transceivers are the perfect rigs for your VHF and UHF operations. Both rigs feature Kenwood's new Digital Code Squelch (DCS) signaling system. Together, they form the perfect "matching pair" for satellite operation.

- Highly stable dual digital VFOs The 10 Hz step, dual digital VFOs offer excellent stability through the use of a TCXO (Temperature Compensated Crystal Oscillator).
- Large fluorescent multi-function display.
Shows frequency, RIT shift, VFO A/B, SPLIT. ALERT, repeater offset, digital code, and memory channel.
- 40 multi-function memories. Stores frequency, mode, repeater offset, and CTCSS tone. Memories are backed up with a built-in lithium battery.

- Versatile scanning functions.

Programmable band and memory scan (with channel lock-out). "Center-stop" tuning on FM. An "alert" function lets you listen for activity on your priority channel while listening on another frequency. A Kenwood exclusive!

- RF power output control.

Continuously adjustable from 2 to 25 watts.

You may select the mode manually using the front panel mode keys. Manual mode selection is verified in International Morse Code.

- All-mode squelch.
- High performance noise blanker.
- Speech processor.

For maximum efficiency on SSB and FM.

- IF shift.
- "Quick-Step" tuning.

Vary the tuning characteristics from "conventional VFO feel" to a stepping action.

- Built-in AC power supply.

Operation on 12 volts DC is also possible.

- Semi break-in CW, with side tone.
- VS-1 voice synthesizer (optional) More TS-711A/811A information is available from authorized Kenwood dealers.

Optional accessories.

- IF-10A computer interface - IF-232C level translator - CD-10 call sign display - SP-430 external speaker - VS-1 voice synthesizer - TU-5 CTCSS tone unit - MB-430 mobile mount - MC-60A, MC-80, MC-85 deluxe desk top microphones
- MC-48B 16-key DTMF, MC-43S UPI

DOWN mobile hand microphones

- SW-200A/B SWR/power meters: SW-200A $\quad 1.8-150 \mathrm{MHz}$ SW-200B $\quad 140-450 \mathrm{MHz}$
- SWT-1 2-m antenna tuner
- SWT-2 70-cm antenna tuneI
- PG-2U DC power cable

KENWOOD
KENWOOD U.S.A. CORPORATION 2201E. Dorninguez St., Long Beach, CA 90810 P.O. Box 22745 , Long Beach, CA $90801-5745$

tomorrow's receivers: what will the next 20 years bring?

New techniques, technologies promise lower power, smaller size, higher performance

It seems that with each new issue of ham radio and other journals, we witness new technological developments affecting nearly every aspect of Amateur Radio. From time to time many of us ponder the questions, "Where is it all going?" and "What will rigs look like 10,20 , or more years from now?"
Predicting the effects of today's research on tomorrow's reality is always tricky business. But new techniques now in use in commercial and military radio systems are likely to find their way into Amateur applications sooner or later. I've discussed some of these techniques here, emphasizing what I see as their implications for Amateur Radio design.
Recent breakthroughs in technology may change some of the fundamental ground rules not only of radio engineering, but of electrical engineering in general. Consequently, two levels of development will be addressed here: first, those techniques in current use and second, those which may be possible in the near future.
Figure 1 shows a block diagram of a typical radio receiver. This is the familiar superheterodyne design, which has been predominant for nearly 60 years. Most commercial receivers on the market today use this same architecture - and in truth, there's been little improvement in radio performance for the past 30 years!'
Other characteristics have certainly changed for the better, however: size, power consumption, 12 -volt operation, frequency stability and accuracy, and ease of operation, for example. Yet the basic receiver functions remain the same; an rf signal down to the submicrovolt level must be amplified, converted, filtered,
amplified again, demodulated, amplified again, and then converted into acoustic audio. There's nothing to suggest that the principle of rf input and audio output will change as a basic function for radio engineers. Rather, it's how you get from point A to point B that's undergoing a quiet revolution.

Perhaps the most striking developments have been in miniaturization. There's a continuous trend towards developing components with excellent specifications but with smaller sizes and lower power consumption.

rf amplifier

The first stage of a receiver largely determines the noise figure. Up to about 15 or 20 MHz , there's little advantage in using low-noise amplifiers because atmospheric and galactic noise are more significant than the noise figure of the typical first mixer stage. For this reason the preamp has actually disappeared from many hf receivers. Diode ring mixers typically have about a $7-\mathrm{dB}$ noise figure, which is quite adequate for most hf receivers. The preamp also lowers the dynamic range of a receiver as it increases the rf level to the first mixer. At VHF and higher, the atmospheric noise drops and the receiver noise figure becomes one of the most important system specifications. At VHF frequencies and higher, the GaAsFET has dramatically reduced receiver noise figure specifications. This trend will continue as GaAs technology improves and prices decline.

first mixer

The most common rf mixer is the passive quad diode ring. It has a relatively low noise figure and the limitation to dynamic range is mainly a function of LO power used. A generalization can be made about the LO power necessary to handle a given rf power level: the ratio of maximum rf input power to minimum LO power is about $1: 10$. That is, for a diode mixer to handle 100 mW of rf , the LO power must be at least 1 watt.

By Robert J. Zavrel, Jr., W7SX, P.O. Box 23447, Tucson, Arizona 85734

fig. 1. Typical present-day superheterodyne receiver.

fig. 2. Gilbert Cell multiplier-mixer.

There have been two major developments in mixer technology during the past few years. The first is the passive FET ring, exemplified by the Siliconix Si8901. With this device, gate voltage rather than a forwardbiasing current turns the switches "on" and "off." Since the gates represent high impedances, voltage/ power ratios can be increased, thus lowering the LO power requirements dramatically. Indeed, to handle the same $100-\mathrm{mW}$ rf power in our diode ring example, the Si8901 requires about 25 mW of $L O$ power instead of the 1 watt mandated by the diode rings. The other critical specification is the third-order intercept point, which is necessary for defining the useful dynamic range. Again, the Si8901 greatly surpasses the old diode ring mixer. ${ }^{2}$

Working from the same empirical thinking that led to the development of the Si8901, a passive GaAsFET ring should surpass the performance of the silicon Si8901 by perhaps a 7-dB increase in third-order in-
tercept point specification. Since the GaAs devices would be used as switching elements rather than active amplifiers, the $1 / f$ noise limits of these devices wouldn't be an issue. They could be used at sub-audio frequencies with comparable noise performance at hf.

Although purported as a passive mixer, the Si8901 should also make an excellent active mixer. Using the same concepts as the old U350, the DMOS Si8901 should outperform its JFET cousin. The smaller geometry SD201 DMOS family made excellent VHF lownoise amplifiers before Signetics discontinued its DMOS line several years ago. Siliconix and the other DMOS manufacturers have chosen not to build these smaller devices, although both mixer and amplifier performance could be enhanced by such a modification.

As the world of digital integrated circuits has shifted its attention to faster CMOS technologies, advances in analog bipolar IC techniques have quietly proceeded. A fundamental bipolar mixer circuit is the

LAT	$23.7^{\circ} \mathrm{s}$	ECHO	86 ms	ELEU	-2.1°
LON	$95.3^{\circ} \mathrm{w}$	FRQ	145.8076	AZIM	153.7°
HGT	7782 km	DOP	-1359 Hz	OREIT	3403
RHG	12862 km	DRFT	-14 Hzm	ϕ	123

FEATURES INCLUDE:

- SWITCH SELECTABLE - ELEVATION FROM $0^{\circ}-90^{\circ}$ AND $0^{\circ}-180^{\circ}$
- n-ELEVATION SCALING X1 OR X2
- " - NORTHERN OR SOUTHERN HEMISPHERE
- " - MANUAL OR AUTOMATIC MODE
- " -BAUD RATE (300-2400)
- 100 PAGE DETAILED MANUAL
- CABLE FOR KENPRO' ${ }^{\text {™ }}$ " A " SERIES CONTROLLER
P.O. BOX 1000

MORGAN HILL, CA 95037

MIRAGE

 TRACKING INTERFACE"MTI" IS THE ONLY SMART INTERFACE BOX THAT WORKS WITH SILICONE SOLUTIONS'M SOFTWARE.
"MTI" OFFERS AUTOMATIC TRACKING OF ANY ORBITING BODY.
"MTI" KEEPS ANTENNAS AIMED CORRECTLY AT ALL TIMES.
"MTI" COMES WITH A ONE YEAR WARRANTY FROM MIRAGE/KLM.
"MTI" OFFERS ONE YEAR SOFTWARE SUPPORT TO REGISTERED OWNERS.
"MTI" IS AVAILABLE FROM MIRAGE/KLM ONLY. CALL FOR MORE DETAILS ..
(408) 779-7363 or outside CA, (800) 538-2140

COMMUNICATIONS EQUIPMENT, INC.

P.O. BOX 1000	MORGAN HIL
(408) 779-7363	
(800) 538-2140	utside CA)
440-6X	
ELECTRICAL	
BANDWIDTH	420-460 MHz
GAIN	. 8.8 .9 dBd
vSWR1.5:1
F/B	20 dB
BEAMWIDTH	60°
FEED IMP.	50 ohm
BALUN	4:1 coax
MECHANICAL:	
ELEMENT LENGTH	... $1311 / 2^{\prime \prime}$ max.
BOOM LENGTH	-.......28"
TURN RADIUS.	$28^{\prime \prime}$
WINDLOAD	2 sq. ft.
WEIGHT	1 lb .
MAST	$11 / 2^{\prime \prime}$ o.d.
MOUNT	ar

440-10X
ELECTRICAL:
BANDWIDTH.
GAIN
VSWR
FIB.
BEAMWIDTH.
FEED IMP
BALUN
MECHANICAL:
ELEMENT LENGTH
BOOM LENGTH
TURN RADIUS
WINDLOAD
WEIGHT
MAST
MOUNT

 PRESENTS 5 NEW ANTENNAS

ALL CJ ANTENNAS INCLUDE INSULATED SUPPORT MAST

CALL YOUR DEALER TO ORDER ONE NOW!

CJ2M
ELECTRICAL:
BANDWIDTH.........................144-148 MHz GAIN .. 1.8 dBd VSWR ... 1.5:1 FEED IMP... 50 ohms NO GROUND PLANE REQUIRED
MECHANICAL:
HEIGHT.. $6^{\prime \prime}$

WEIGHT .. $21 / 2$ lbs.
MAST .. 11/2" o.d.
CJ220
ELECTRICAL
BANDWIDTH.220-224 MHz
GAIN .. 1.8 dBd

VSWR ... 1.5:1
FEED IMP... 50 ohms
NO GROUND PLANE REQUIRED
MECHANICAL:
HEIGHT .. 40"
WEIGHT .. 2 lbs.
MAST ... $11 / 2^{\prime \prime}$ o.d.
CJ440
ELECTRICAL:

BANDWIDTH.	420-470 MHz
GAIN	1.8 dBd
VSWR	1.5:1
EEED IMP	0 ohm

NO GROUND PLANE REQUIRED
MECHANICAL
HEIGHT
191/4"

- 109
.1 lb .
MAST $11 / 2^{\prime \prime}$ o.d

Gilbert Cell (fig. 2). Though the most familiar Gilbert Cell ICs are the Motorola MC1496 and MC1596, there are many manufacturers of these devices today. Over the past few years there have been several variations on this original commercial design. Good noise performance has been achieved with the Signetics NE602, but it can't handle the higher input levels necessary for good hf first mixer design. The NE602, however, is perhaps the finest mixer available among low power consumption mixers. Advances in bipolar processing are pushing noise figures down and power handling capabilities up in simulation models as well as in newly available devices. If this trend continues, the diode ring may become an endangered species.

local oscillator

Perhaps the most dramatic advances in receiver technology have been in the design of local oscillator circuitry. Very exotic mechanical assemblies evolved for LO tuning in the 1950s. (Remember the NC300, HOs, and Collins receivers?) Permeability tuned oscillators (PTOs) simplified things in the 1960 s with the SB300, R4, and S-lines. Today, PTO LO performance remains difficult, if not impossible to duplicate with PLL synthesis, given the constraints of typical Amateur budgets. Synthesizers offer distinct advantages in that they can be directly controlled by microprocessors and don't require special mechanical rigidity or moving parts. A single crystal oscillator frequency is divided down to some low value and then "phaselocked" up to the desired LO frequency. At the output of the VCO, a multiple of the reference frequency equal to the reference frequency times the divider's " N " value appears (see fig. 3). This represents a simple phase-locked loop synthesizer, but it contains all the necessary building blocks of a more sophisticated system. If the reference is 1 kHz and the divider is set to $\mathrm{N}=7005$, the VCO output will be $7005 \times 1 \mathrm{kHz}$, or 7.005 MHz . Discrete frequency steps of 1 kHz will be possible because only division by whole numbers is possible in this system. N determines the output frequency because the dc control voltage feedback will "lock" the VCO to the output frequency that provides equal frequency inputs to the phase detector.
Another type of synthesizer - the "direct digital synthesizer" or DDS - holds great promise. To understand how DDS works, two concepts must be understood: first, the concept of how digital-to-analog converters function and second, the Nyquist Theorem. I'll discuss each of these very briefly.

A digital-to-analog converter (DAC) takes a binary number and "converts" it into a discrete voltage or current value. An eight-bit DAC, for example, can have a maximum of 256 different voltage outputs. The digital eight-bit "word" can be generated by a micro-

fig. 3. Simple digital PLL frequency synthesizer.

fig. 4. Sine wave digital approximation.
processor or memory circuit. A sine wave or any other waveform can be approximated by discrete steps as shown in fig. 4. For LO applications, sine wave approximation is preferred because sine waves have the lowest harmonic content. (A perfect sine wave will have no harmonic content.)

The Nyquist Theorem states that a sine wave can be derived if at least two discrete amplitude samples per period are obtained. Thus, if we want to synthesize a $5-\mathrm{MHz}$ sine wave with a DDS, we'll need an updating clock rate of at least 10 MHz . With DDS, a constant sample rate can be used to synthesize any frequency up to half the sample rate with excellent frequency resolution (0.1 Hz typical). Figure 5 shows how 1 - and $2-\mathrm{MHz}$ sine waves can be generated by a $10-\mathrm{MHz}$ clock and a DAC. The microprocessor computes the values to be sequenced by the DAC for a given frequency output and a given clock rate. This special processing function is called a phase accumulator. Higher clock rates allow for more samples per period. More samples, in turn, allow for better approximation of the sine wave shape. Also, the greater number of bits allows for more discrete amplitude steps, which also enhance the accuracy of the sine wave approximation. DAC integral linearity affects waveform accuracy and harmonic levels. Indeed, the major efforts in DAC development are directed towards

fig. 5. DDS sinewave synthesizer. Any frequency can be synthesized up to $1 / 2$ the sample rate by changing the digital numerical value at each sample point.
better resolution (i.e., more bits) at higher update speeds. Off-the-shelf video-speed DACs now allow excellent performance for DDS circuits well into the hf spectrum. The Burr-Brown DAC63 is such a device. As DACs become faster and more accurate, the phase noise and harmonic performance improve.

Compared with PLL synthesizers, DDS offers other advantages. Since all the parameters of the waveform (frequency, amplitude, and phase) are digitally controlled, frequency hopping, or QSY, is almost instantaneous. PLL systems, on the other hand, have some finite settling time. In addition, nearly any type of modulation is possible if the applicable parameter is changed in accordance with a modulating wave-
form. Outstanding linearity is possible even at very wide bandwidths - in fm, for example. ${ }^{3}$ To achieve the necessary low spectral noise densities demanded by hf LOs, more work is needed; however DDS holds great promise as a replacement for PLL synthesizers.

Figure 6 shows a direct conversion phasing SSB receiver. Traditional analog phase and amplitude nulling techniques employing all-pass active filters could yield $40-\mathrm{dB}$ image rejection at best. The problem of this nulling is compounded by the need for broadband 90 -degree phase shifters. ${ }^{4}$ However, if we digitize the two signals the phase and amplitude nulling can be performed using a digital signal processor (DSP). Small errors in phase and amplitude can be removed

fig. 6. Direct conversion SSB receiver.

fig. 7. Digitized radio of tomorrow.
and the ultimate image rejection will correspond to the bit resolution of the analog-to-digital converter ADC. A 16 -bit ADC, for example, could provide $96-\mathrm{dB}$ image rejection using an ideal DSP. This would make an excellent receiver. Very sharp analog audio filters would be required before the ADCs. Philips has produced such a dual-channel filter in monolithic form, but it's not yet commercially available. More traditional upconversion schemes using DSP are discussed in an outstanding new textbook. ${ }^{5}$

Once the demodulated audio baseband signal is digitized, digital filtering techniques can be used. Very steep skirt notch and bandpass filters can be arranged. The amplitude coefficients can be manipulated to allow idealized audio AGC. Alternately, an AGC voltage can be provided through a DAC which controls an rf stage gain. Finally, the digitized audio can be converted back into analog form via a DAC, in much the same way as compact disc players function. The BurrBrown PCM54 is an excellent 16-bit DAC for this application.

Figure 7 represents a daydream of where radio engineering state of the art might be within 20 or 30 years. A bandpass filter from 0.5 to 30 MHz tunes the entire hf spectrum. A futuristic 16 -bit ADC with a $75-\mathrm{MHz}$ sampling rate provides a $96-\mathrm{dB}$ dynamic range over the bandwidth. The entire spectrum is digitized. All filtering, demodulation, AGC, and such, is performed in the rather sophisticated DSP. A PCM54 is then used to output the audio to an audio amplifier.

superconductors

In April the news media reported that a group working at an IBM facility in Switzerland had developed a new material that remains a superconductor up to 85 degrees K. This material, by itself, makes superconductors possible at liquid nitrogen temperatures, thus dramatically lowering the costs of using this class of material. Perhaps of far greater importance is that this work represents a crucial breakthrough for creat-
ing better superconducting materials. There is even talk of superconductors at room temperatures. What can this mean?

Superconductors are created when a material is cooled down to a critical temperature. Below the critical temperature the material exhibits zero electrical resistance. When superconductor offers literally no resistance at room temperature, electronic device technology could advance dramatically. Josephson junction or SQUID digital circuits could render even the fastest computers now available obsolete. For analog and rf circuits, zero resistance could have great implications for speed and noise specifications. Thermal noise disappears in superconductors as $V^{2}=4 K T R B$. Never mind Boltzman; R is now zero. With zero resistance, charge mobility - a limiting factor for the speed of any semiconductor material - becomes quite high.

With superconductors, storage "battery" technology would be revolutionized. Imagine an electromagnetic car battery the size and weight of a donut! Charging efficiency would approach 100 percent.

Superconducting antennas and transmission lines would improve efficiency and lower system noise figures. Can you imagine 160 -meter loading coils with zero resistence?

This is the most exciting development in solid-state physics since the invention of the transistor. The implications may by far outweigh the transistor's effects on the world. Electronic and electrical power engineers will have to rewrite all the books - again.

what to watch for

The radio art is in constant evolution. Here are some of the trends to watch for between now and the advent of the twenty-first century:

- Continued miniaturization of all components, thanks to higher levels of circuit integration and advances in wafer processing techniques.
- Lower supply voltage and current requirements for

BEST OF MFJ

MFJ, Bencher and Curtis team up to give you America's most popular keyer in a compact package for smooth easy CW

$\$ 129^{95}$ mFJ-422B
MFJ's best selling TUNER MFJ.9410 $\$ 99.95$

The MFJ-941D is MFJ's best selling (and probably the world's best selling) 300 W PEP antenna tuner! Why? Because it has more features than tuners costing much more and matches everything from 1.8 to 30 MHz for your solid state or tube rig: dipoles, inverted vees, random wires, verticals, mobile whips, beams, balanced and coax lines.
New dual-range SWR wattmeter reads forward and reflected power in both 30 and 300 watt ranges. Convenient front-panel mounted 6 -position antenna switch lets you select 2 coax lines, direct or through tuner, random wire/balanced line or tuner bypass for dummy load. New, larger, more efficient airwound inductor gives lower losses and more watts out. Plus . . . built-in $4: 1$ balun for balanced lines. 1000 V capacitor spacing, brushed aluminum front panel on all-metal cabinet. $11 \times 3 \times 7$ inches.
RX NOISE
BRIDGE
Make your antenna perform like you know it should! MFJ-202B tells whether to shorten or lengthen antenna

MFJ-202B \$59.95 for minimum SWR. Also measure resonant frequency, radiation resistance and reactance.
Exclusive features: individually calibrated resistance scale, expanded reactance range, built-in range extender for measurements beyond scale readings. $1-100 \mathrm{MHz}$. Uses 9 V battery. $2 \times 4 \times 4 \mathrm{in}$.
1 KW DUMMY LOAD MFJ-250
Tune up fast, extend life of finals, reduce QRM! Rated 1 KW CW or 2 KW PEP for 10 minutes. Half rating for 20 minutes, continuous at 200 W CW, 400 W PEP. VSWR under 1.2 to 30 MHz .1 .5 to 300 MHz . Oil contains no PCB. 50 ohm non-inductive resistor. Safety vent. Carrying handle. $7^{1 / 2 \times 63 / 4}$ in.

INDOOR ACTIVE ANTENNA

"World Grabber" rivals or exceeds reception of outside long wires! Unique tuned Active Anterna minimizes intermode, improves selectivity, reduces noise outside tuned band, even functions as preselector with external antennas. Covers 0.3-30 MHz . Telescoping antenna.
Tune, Band, Gain, On-off bypass controls. $6 \times 2 \times 6$ inches. 9 V battery, 9.18 VDC or 110 VAC with
 MFJ-1312, \$9.95. MFF-1020A $\$ 79.95$ Grandmaster MEMORY KEYER MF.-484C \$139.95

The MFJ-484C "GRANDMASTER" memory keyer is THE choice of CW contesters. Why? Because it's so easy to use, it's second nature . . . you don't have to learn complex commands . . . and it has all the features you'll ever need for easy CW. Features like these . . . store up to twelve 25 character messages plus a message of up to 100 characters. Or use a switch to combine 25 character messages for up to three 50 character messages. Repeat any message continuously or pause between repeats and change or insert into a playing message by simply sending. And you don't lose your settings when you lose power.
The MFJ-484C is RF proof, sends 8.50 WPM and measures just $8 \times 2 \times 6$ inches. It uses 12 to 15 VDC or 110 VAC with MFJ-1312, $\$ 9.95$.

POLICEIFIRE/WEATHER 2 M HANDHELD CONVERTER

 Turn your synthesized scanning 2 meter handheld into a hot Police/Fire/ Weather band scanner! 144 -148 MHz handhelds receive Police/Fire on 154 -158 MHz with direct frequency read out. Hear NOAA maritime coastal plus more on $160 \cdot 164 \mathrm{MHz}$. Mounts between handheld and rubber ducky. Feedthru allows simultaneous scanning of both 2 meters and Police/Fire bands. MFJ-313 No missed calls. Crystal controlled. \$39.95 Bypass/0ft switch allows transmitting (to 5 watts). Use AAA battery. $21 / 4 \times 1^{1 / 2} \times 1^{1 / 2}$ in. BNC connectors
MFJ's smallest VERSA TUNER $\$ 59.95$ MFJ.901B

The MFJ.901B
is our smallest
-. $5 \times 2 \times 6$ inches

- (and most affordable) 200
 watt PEP Versa tuner -- when both your space and your budget is limited. Matches dipoles, inverted vees, random wires, verticals, mobile whips, beams, balanced and coax lines from 1.8 30 MHz . Excellent for matching solid state rigs to linears. Efficient airwound inductor. 4:1 balun.

RTTYIASCIIICW

COMPUTER INTERFACE

MFJ. 1224
 $\$ 99.95$

 Free MFJ RTTY/ASCII/CW software on disk and

 cable for VIC-20 or C-64. Send and receive computerized RTTY/ASCII/CW with nearly any personal computer (VIC-20, Apple, TRS-80, Atari, TI.99, Commodore 64, 128 etc.) Use Kantronics or most other RTTY/CW software. Copies both mark and space, any shift (including $170,425,850 \mathrm{~Hz}$) and any speed (5-100 WPM RTTY/CW, 300 baud ASCII). Sharp 8 pole active filter for CW and 170 Hz shift. Sends $170,850 \mathrm{~Hz}$ shift. Normal/reverse switch eliminates retuning. Automatic noise limiter. Kantronics compatible socket plus exclusive general purpose socket. $8 \times 11 / 4 \times 6$ inches. $12-15$ VDC or 110 VAC with adapter, MFJ-1312, \$9.95.
RECEIVER ANTENNA

 TUNER/PREAMPLIFIERMFJ-959B \$89.95

Impedance match your antenna to your receiver to increase your signal strength with this MFJ•9598 and you may hear signals that you didn't even know were there. A 20 dB preamplifier with gain control boosts weak stations and a 20 dB attenuator prevents overload. It has switches for selecting between two receivers and two antennas. Covers 1.8 to $30 \mathrm{MHz} .9 \times 2 \times 6$ inches. Uses 12 VDC or 110 VAC with MFJ-1312, \$9.95.

ORDER ANY PRODUCT FROM MFJ AND TRY IT-NO OBLIGATION. IF NOT SATISFED RETURN WITHIN 30 DAYS FOR A PROMPT REFUND (less shipping).

- One year unconditional guarantee - Add $\$ 5.00$ each shipping/handling - Call or write for free catalog, over 100 products.

MFJ ENTERPRISES, INC.
Box 494, Miss. State, MS 39762

TO ORDER OR FOR YOUR NEAREST DEALER CALL TOLL FREE

800-647-1800

Call 601-323-5869 in Miss. and outside continental USA. Telex 53-4590 MFJ STKV

comparable performance and improved performance, generally among all building-block components.

- Increased use of digital techniques in LO circuitry, and use of DSP for filtering, demodulation, and other functions.
- Appearance of data conversion devices, first at baseband, then at the i-f, and then moving closer to the antenna circuitry.
- Dick Tracy's two-way wrist radio will become a reality by 1995.

Putting predictions into print preserves the prophet's prognostications for posterity. It might be amusing, in the year 2007, to dust off your yellowed, musty copy of this issue to see just how far off the mark we were. Happy dreams!

references

1. Doug DeMaw, W1FB, and Wes Hayward, W7ZOI, "Modern Receivers and Transceivers: What Ails Them?", OST, January, 1983.
2. Ed Oxner, "Designing a Super-High Dynamic Range Double-Balanced Mixer," Siliconix Applications Note, revised October, 1986.
3. Earl McCune, "Direct Digital Synthesis and the Numerically Controlled, Modulated Oscillator," Digital RF Solutions, proceedings of the RF Tech nology Expo, February, 1987.
4. Robert J. Zavrel Jr., "ICs Simplify Design of Single-Sideband Receivers," EDN, April 3, 1986.
5. William E. Sabin and Edgar O. Schoenike, Single Sideband Systems and Circuits, McGraw Hill, 1987.

Join AMSAT...Today

Amateur Radio Satellite OSCAR 10 provides:

\author{

- A New Worldwide DX Ham Band open 10 hours a day.
}

- Rag Chew With Rare DX Stations

 in an uncrowded, gentlemanly fashion.\author{

- Popular Modes In Use: SSB, CW, RTTY, SSTV, Packet
}
- Full Operating Privileges open to Technician Class licensee or higher.

Other AMSAT Membership Benefits:

Newsletter Subscription:
Dependable technical articles, satellite news, orbital elements, product reviews, DX news, and more.

Satellite Tracking Software
Available for most popular PCs.

QSL Bureau, AMSAT Nets, Area Coordinator Support, Forum Talks

Construction of Future Satellites For Your Enjoyment!

AMSAT Membership is \$24 a year, \$26 outside North America. VISA and MC accepted.

AMSAT
P.O. Box 27
Washington, DC 20044
301 589-6062

Cards and plaque courtesy WGTC

EIMAC's

new DX champion! The 3CX800A7.

Varian EIMAC continues to com-

 mit its development of reliable tubes for HAM radio.The new, rugged 3 CX800A7 power triode provides 2 kW PEP input for voice service or 1 kW cw rating up to 30 MHz . Two tubes will meet the new, higher power ratings authorized by the FCC.

Designed for today's low profile, compact linear amplifiers, the 3CX800A7 powerhouse is only
$21 / 2$ inches $(6.35 \mathrm{~cm})$ high. Cooling requirements are modest and a matching socket, air chimney and anode clamp are available.

A data sheet and more information is available from Varian EIMAC. Or the nearest Electron Device Group sales office. Call or write today.

Varian EIMAC
301 Industrial Way
San Carlos, California 94270
Telephone: 415-592-1221

designing a state-of-the-art receiver

Readily understood - though not greatly utilized - concepts mean better performance

The state of the art in hf receiver design using semiconductors has improved greatly. The use of either CATV-type transistors and double-balanced mixers using hot carrier diodes or double-balanced mixers with switch-type FETs has eased the large-signal handling problem of just a decade ago.
One weak link in the chain, however, remains; this is the synthesizer, with its inherent noise contributions. To a large extent the overall architecture of the receiver and the synthesizer determines its performance, and even the best high-performance components - placed in the wrong sequence - can cause a good design to fail.

systems approach

Because military and commercial users depend on high performance receivers for surveillance and/or point-to-point communication, it's inevitable that these same technological advances will filter down to the Amateur community. In fact, in a cursory examination, the spec sheets of both commercial and Amateur communications receivers look quite similar.
Besides providing the "essentials," modern communication receivers offer additional features, sometimes re-
ferred to as "bells and whistles"; these features include improved user interfaces or computer interfaces for remote control. Since the commercial and Amateur markets are price-sensitive and also very sensitive to proof of performance, any claims of lower capabilities are noticed. Consequently, when on-the-air tests of some latemodel receivers suggested poorer performance than previous models, this raised the question of why, despite the knowledge acquired in recent years, such an inconsistency should occur.

Figure 1 is a functional block diagram of a modern microprocessor-controlled communication receiver. This diagram is representative of most modern design approaches and can be used to evaluate possible advantages and weaknesses, and to point out areas of potential difficulty.

operation

The rf signal is introduced into the receiver in one of two ways:

- at the input of a $30-\mathrm{MHz}$ low-pass filter via a variable attenuator, which is controlled by an overload detection circuit activated at the first and second i-f level;
- or for receiving frequencies below 400 kHz , via a variable attenuator and low-pass filter combination.
The first mixer, which is responsible for the third-order intercept point, is driven by an extremely pure synthesized local oscillator. To terminate the double-balanced mixer properly, a diplexer (high-pass/low-pass filter) is used to absorb energy outside the crystal filter passband. The input impedance of the crystal filter rises significantly outside the passband of the crystal filter.

By Ulrich L. Rohde, KA2WEU/DJ2LR, 52 Hillcrest Drive, Upper Saddle River, New Jersey 07458

C
ELECTRONICS

THE NEW "KREEPIE PEEPIE" ATV TRANSMITTER

1. New final transistor typically gives more than 1.5 watts output on sync tip with 13.8 vdc applied.
2. Now you can see your own transmitted video with the on-board RF detector/monitor 1 v output.
3. Final RF output test point for setting up blanking pedistal with a voltmeter.
4. Improved lower distortion subcarrier sound generator IC for cleaner audio and 4.5 mHz stability.
5. All this at no increase in price! Single freq. KPA5-c board still $\$ 159$ delivered*. Two freq. $\$ 174$.

NEW TX70-1 ATV TRANSMITTER contains the KPA5 and T/R relay ready to go in a small $6 \times 5.2 \times 2.5^{\prime \prime}$ shielded cabinet. Has both the 10 pin "VHS" camera \& RCA phono jack video/audio inputs. If you are one of those with just a downconverter, saw some pictures and was bitten by the ATV bug, then this ATV transmitter is for you. No need to sell your downconverter and get a transceiver, just connect its input to the downconverter BNC connector on the back of the TX70-1. \$229 delivered.

NEW TX70-1 \$229 delivered
KPA5-c 70CM ATV XMTR BOARD FEATURES: - >1 WATT P.E.P. RF OUTPUT ON SYNC TIP. Run barefoot for portable. Output properly matches Mirage D15N 15 watt or Mirage D24N-ATV 50 watt linear amp for full output and the Mirage D1010N-ATV to over 50 watts p.e.p.

- FULL COLOR AND SOUND on a small $3.25 \times 4^{\prime \prime}$ board
- Wired and tested board runs on external 13.8 vdc @ 300 ma . supply or 12 V battery
- Accepts composite video from cameras, VCRs, computers, etc.
- 2 audio inputs, one for low Z dynamic mic, \& one line level from most cameras \& VCRs
- Supplied with one xtal on $426.25,434.0$, or 439.25 . 2nd xtal add \$15. Specify freq. when ordering, check with local ATVers, ARRL Repeater Directory or call us. Only 2 channels available in any given area due to video bandwidth of 9.1 mHz .
* Price still \$159 delivered via UPS surface in contiguous USA. Transmitters sold only to licensed Technician class or higher amateurs for legal purposes. We verify name, call letters, \& QTH in the Callbook. If recently licensed or upgraded send a copy with order.

KPA5-c board still \$159*

KPA5 APPLICATIONS:
PORTABLE CORDLESS TV CAMERA. Think of it as a video HT. Place the KPA5 in one of the Hammond Dicast aluminum boxes, $1 / 4$ wave ($6.5^{\prime \prime}$) whip on top or half wave at the end of 50Ω coax attached to a headset. Plug into a 1214 v source such as the Radio Shack 12 v 5 Ah battery power pack (23-182). Depending on terrain \& receiving antenna DX is typically over 1 mile. With KLM 440-27s at both ends DX is 22 miles snow-free line-of-sight.

- Transmit the video to a remote VCR rather than lug it.
- Great for public service events: marathons, parades, damage accessment, search \& rescue, CAP, etc.
- Mount in a R/C airplane or robot to enable remote control when the vehicle is out of sight.
- Put it in your own cabinet for base, portable or mobile. When more power is needed, connect to either the Mirage D15N for over 15 watts or to the Mirage D24N or D1010NATV amps for over 50 watts.
- Place a KPA5 in a dicast box with a VOR (video operated relay) to make a hill top video repeater. Repeat other ATVers, weather radar or Space Shuttle video.

WHAT IS REQUIRED FOR A COMPLETE OPERATING SYSTEM? Either a TVC-2G or TVC-4G downconverter connected to any TV set tuned to channel 3 , and coax cable to a good 70 cm antenna to receive. Connect up the TX70-1 or package up the KPA5, add 12 to 14 vdc , antenna, and any home TV camera, VCR, or computer with composite video output. It's that easy!

ACCESSORIES:

TVC-2G GaAsfet downconv. board wired \& tested.... $\$ 59$
varicap tuned, $420-450 \mathrm{MHZ}$ to ch 3 . Req 12 vdc
TVC-4G (TVC-2G in cabinet with 120 vac supply)..... $\$ 99$
TVCX-70 crystal controlled GaAsfet downconv......... $\$ 99$ specify in freq. \& out on ch 3 or 45 mhz IF, 2 freq..... $\$ 114$
Hammond 1590D Use for KPA5, $7.3 \times 4.7 \times 2^{\prime \prime} \ldots \ldots . . \$ 17$
1590C $4.6 \times 3.6 \times 2^{\prime \prime}$ aluminum box. Fits TVCX-70.... $\$ 11$
800J 10 pin VHS color camera chassis connector...... $\$ 10$
VOR Video (horiz sync) operated relay board............. $\$ 25$

MIRAGE D15N-ATV 1 in /15 out all mode amp..... $\$ 119$
MIRAGE D24N-ATV 1 in $/ 50$ out all mode amp.... $\$ 219$
450 ISOPOLE omni 4 dbd vert. gain antenna.......... $\$ 65$
KLM 440-6X 8.9dbd ant., $28^{\prime \prime}$ boom, >50 deg BW.... $\$ 51$
KLM 440-10X 11.2dbd, antenna, $64^{\prime \prime}$ boom.......... $\$ 65$
KLM 440-27 $14 \mathrm{dbd}, 36$ deg. BW antenna........ $\$ 107$
SAXTON 8285 100it 50 ohm coax $3.5 \mathrm{db} / \mathrm{C}$ loss..... $\$ 41$
UG21 type N male connectors for larger ID coax.......... $\$ 5$

HAMS! Call or write for our full line ATV catalog...Downconverter boards start at only $\$ 39$

While most commercial or military high-performance receivers employ the input stage combination, most Amateur equipment uses a double-balanced mixer that incorporates adjustable-gain JFETs. As a result of its sensitivity to output impedance changes, the mixer suffers reduction in large-signal performance. The recent trend in mixer design involves the use of termina-tion-insensitive mixers whose cleverly designed bridge circuits ignore the effects of reactive terminations. Passive mixers use hot carrier diodes; switching-type mixers use FETS - for example, a pair of matched SD 100 transistors - and achieve intercept points between +35 and +45 dBm .
Following a six- to eight-pole crystal filter is an amplifier stage which has medium gain and high dynamic range. This is typically achieved through the use of rf feedback. In addition, it is worthwhile to incorporate an AGC circuit between this amplifier and the mixer.

The signal, which is now in the 75 - to $100-\mathrm{MHz}$ frequency range, is converted to a lowi-f frequency - for example, from 200 kHz to 2 MHz - by the second mixer. The second mixer must also have high dynamic range, but it can be a passive double-balanced mixer. (The latest advances in receiver design have included the use of careful filtering of the local oscillator synthesizer outputs, thereby reducing spurious responses.) The amplifier that follows this mixer compensates for the sec-ondi-f mixer losses. This, in turn, is followed by a popular frequency range crystal filter that is readily available from a number of manufacturers.

gain distribution is important

Each of these stages has very little gain - typically less than 12 dB . The main amplification of the signal takes place in thei-fsections. (This is different from what happens in Amateur receiver designs.) The problem with designing most of the gain into the i-f stages has to do with the ability to build the i-f amplifier circuits stable and free of unwanted oscillations. To minimize in-band intermodulation distortion, differential-type amplifiers with AGC stages are used. In many cases this requires a great deal of shielding and careful selection of grounds, since up to $100-\mathrm{dB}$ open loop gain in the i-f section may be required.

One sign of good receiver design is evident when the noise of the first mixer, with no antenna connected, already shows slight AGC action, which can be monitored on the S -meter of the receiver. If signals of $1-\mu \mathrm{V}$ or better are required before any S -meter action occurs, then the above design guidelines have not been followed.

Although I've noted these things thoroughly and repeatedly in previous articles, very few companies have followed through with this concept because it's much less expensive to move the gain towards the antenna than to build high-gain i-f stages.

fig. 4. Architecture of the internal computer system found in a modern fully synthesized receiver.

Interestingly enough, the NRD 525 receiver, which follows these recommendations but is still fairly inexpensive, is one of the better designs. Figure 2 shows a typical block diagram with the various noise, gain and intermodulation distortion products specified. Such an analysis must be carried out and should be published together with the receiver specifications.

In fig. 1, the internal bus for the receiver that controls a variety of functions transfers digital data streams that consist of short-duration pulses with fast rise times. Consequently, significant shielding is required in this section in order to isolate the digital circuits and their concommitant switching spikes from the analog portion of the receiver. Many modern receivers suffer from this effect, in which background switching noise masks lower level signals. To make things worse, the synthesizer can also pick up some of the switching signals.

synthesizer design

Modern receivers should incorporate fully synthesized
local oscillators and provide between 1-and 10-Hz resolution. All of the auxiliary frequencies in the design must be derived from the master (oscillator) standard.

The frequency synthesizer in this example uses two main loops in its multi-loop design. VCO1, which oscillates between 127 MHz and 139 MHz , is phase locked in steps of 1.2 kHz ; its output is then divided by 120 to an output frequency of approximately 1 MHz , which is then mixed with the $79.2-\mathrm{MHz}$ standard. The difference frequency components are introduced into a $78.1-\mathrm{MHz}$ crystal filter which removes all unwanted signals. The other portions of the synthesizer provide auxiliary frequencies. The areas where the phase detectors are located are heavily shielded; fairly high frequencies for the reference detectors are used for best noise performance.

Figure 3 shows a synthesizer that utilizes this design approach. In this design, analog and digital circuits are carefully separated. The sections of the synthesizer most vulnerable to picking up extraneous signals are the lines going into the output VCO (VCO2).

"The unique design of the XP 706. US antenna system gives you MONOBAND PERFORMANCE in a Multiband beam. The antenna USES NO TRAPS of loading coils that rob power and limit bandwidth. Sommer Antennas use the FULL surface area of the elements on AL.L. hands

Our commitment to use only the finest materials insures that your investment will last for years. Our system uses a Double rectangular boom. CAST aluminum element mounting brackets, all stainless hardware and a high power balun.

Monoband performance on a Multihand beam is yours when you move up to Sommer. the last beam you'll have to buy. We believe Sommer is your best antenna value when compared to the construction and performance of other multi and monoband antenna systems.

- 118

HERE'S A NEAT GIFT IDEA

When we first saw the Casio PQ-40U Portable World Time Clock, we knew instantly that Ham Radio Bookstore customers would love this one.
This time piece is more than a simple clock. Besides all the standard features, alarm, snooze, lightweight portable design and digital readout, this clock gives you time at 21 different locations around the world at the twist of a dial. DX'ers will delight at being able to get rid of their cumbersome manual time calculators: determining band and path to use will be greatly simplified. Contesters can simultaneously display both local and UTC times for logging purposes. In fact, every Amateur will find at least a dozen uses for this nifty clock. You can take it with you when you go on vacation-business trips-set the alarm and get out of meetings early-anywhere you need a clock, the PQ-40U can go with you. Get a couple of them and give them as gifts, one for the house, car, office, just about anywhere you need a clock, the PQ-40U can go with you. Quantities are limited-order now and avoid disappointment.
$\square P Q-40 \mathrm{U}$
Please enclose $\$ 3.50$ shipping and handling
ham
raãio
BOOKSTORE
GREENVILLE, NH 03048

Depending on the type of phase detector used, the lines that feed the tuning diodes can be either very high impedance or low impedance. Inexpensive solutions frequently lead to such high-impedance feeding points, which then become "antennas" collecting all the switching noise. The use of circuits incorporating microwave transistors allows the design of discrete low-impedance amplifiers for this purpose. If the driving point impedances for the tuning diodes can be held at 100 ohms as opposed to the 100-k line impedance typically found, the sensitivity for pickup of stray signals is reduced by a factor of 100,000.

Another reason for noisy synthesizers is the use, in the synthesizer loops, of operational amplifiers that are too noisy. Wherever possible, either discrete low-noise amplifiers or Darlington stages must be used.

use of microprocessors

Today's microprocessor-controlled receivers feature built-in clocks, frequency scanning with variable scan rates, availability of at least 100 channels and channel scanning, plus a combination of receiver control functions such as the serial RS-232 or IEEE-488 bus remote control capabilities. Because the BFO and the main oscillator are both synthesized, the combination of the two allows either passband tuning or variable bandwidth.

Another area of interest in the use of microprocessors is the linearization of the transfer characteristic of the tuning range of the oscillator and the linearization of the S-meter. The microprocessor can also switch the tuning rates to correspond to the operating mode and select the appropriate bandwidth receiving crystal filters required for that same mode. Digital implementation of signal analysis allows demodulation of RTTY and Morse code. Many other novel approaches are possible.

Figure 4 shows the architecture of such an internal computer system. One of the frequent mistakes made in this context is the use of only one microprocessor, which gets overloaded, or the use of four-bit microprocessors. In better radios, eight-bit microprocessors, which can handle all these functions efficiently, are used. The best approach is parallel processing.

summary

By following these simple guidelines and using architecture similar to that illustrated in figs. 1 and $\mathbf{2}$, it is possible to build receivers that come close to the limits of physics, yet still remain cost- effective.

bibliography

Ulrich L. Rohde, KA2WEU/ DJ2LR, Digital PLL Frequency Synthesizers: The ory and Design, Prentice Hall, Inc., Englewood Cliffs, New Jersey 07632, 1983 (Currently out of print, this book is available in limted quantities through the author.)
Ulrich L. Rohde, T. T. NBucher Communications Receivers: Principles and de signs, McGraw Hill, New York, N. Y., 1988.

Radıo Shack Parts Place" HOLIDAY HAMMING WITH SHACK ${ }^{\circledR}$ GEAR

Plugs / Adapters

 (1) 6
 (2)
 (3)

(1) Eight-Pin Mike Plug. Fits many popular Ham transceivers. \#274-025 2.19 (2) Headphone Adapter. Accepts $1 / 4^{-1}$ stereo plug. Plugs into $1 / /^{-7}$ monaural jack of nome com gear. \#274-360 1.89 (3) Mini to Submini Monaural Adapter. Great for HTsi Accepts $1 / 0^{*}$ plug. Plugs into ${ }^{\text {Y }} 32^{7}$ jack. \#274-327
gs into
Boards for Bulding

Boards for Building

(9)
(11)
(9) Plug-In Board With Ground Plane. $41 / 2 \times 5^{11 / 16^{4}}$ " 276 -188
4.99
(10) Multipurpose Plug-In Board. Three
buses, $4^{1 / 2 \times 4^{7}, 1 / 16^{4}}$ grids
" 276 -154
2.99
(11) 44-Position Card-Edge Socket.
\$276-1551 …..................... 2.99

Hobby Widgets

 NEW!(19)

(19) Brilliant Red LED With Holder. Incredible $500 \mathrm{mcd}_{2} 20 \mathrm{~mA}$.
4276-088
1.79
(20) TDA7000 FM Receiver on a Chip. Combines RF mixer. IF and demodulato stages in one IC With application notes. 1276 -1304 $\quad 5.95$

995 Low As $\$ 15$ Manual or Per Month. Autoranging

The 31-segment analog bar graph display makes input peaks and trends easier to follow. Transistor checker measures h_{ft} (gain). Tests diode junctions. Memory func on and buzzer continuity checker. Mea sures to 1000 VDC, $750 \mathrm{VAC}, 10 \mathrm{AC} / \mathrm{DC}$ amps, 30 megohms. Input impedance: 10 megohms on DCV/ACV. "22-195

Our Improved RG8A/U Coax Cable

Per Foot

NEW! 36 ${ }^{\circ}$

- 95\% Shielding
- Low-Loss Polyethelene Dielectric
- All-Copper Conductors

New high-grade coax with extra-heavy shielding delivers more signal and less chance of RFI. Velocity factor: 66%. Loss per 100 ft at 100 MHz only 2.5 dB Give it a |ryl 1 278-1323

(12) IC Inserter/Extractor Set. Helps you install/remove ICs from sockets without bending pins. For 6 -pin to 40 -pin DIPs. Extractor works with LSI, MSI and DIP devices. Both tools are groundable. 4276-1581
(13) IC Pin Aligner. With just a squeeze bent pins become factory-straight. For 6 pin to 40 -pin DIPs. Conductive plastic *276-1594

Coax RF Connectors, Adapters, Crimping Tools \& Cutters

(4) PL-259 Plug. Standard UHF-type connector with screw-on lock.
(1/278-205Pkg. of 2/1.99 (5) Outdoor RF Connector Sealant. Designed for TV antenna, satellite dish and other connections. Waterproot and non-corrosive. Stays flexible \#278-1645
(6) M-359 Right Angle Adapter. SO 2.49 239 socket to PL-259 plug. For to. spots. "278-199
spors. "278-199
7) NEW! Coax Cable Cutter, Blades not flatten cable preserve correct impe dance. $278-244$
(8) Coax Cable Stripper 4.95 lades give pertecripper. Adjustable RG59. RG58 perect strips with RG6, For cables 278-240

(6)
(4)
(5)

(8)

Hookups for Computers \& Peripherals

Fig.	Type	Position	s Cat. No.	Ea
14	Male	- 9	276-1537	1.49
16	Female	e	276-1538	2.49
	Hood	9	276-1539	1.99
Type		Positions	Cat. No.	Ea
Male Female Hood		25	276 -1547	1.99
		25	276-1548	2.99
		25	276-1536	1.99

(17) RS-232 Inline Tester, Diagnose in lerface problems in micros and peripherals. Instantly detect communication "glitches"! \#276-1401 14.95 (18) RS-232 Surge Absorber. AC line protection is not enough. Guard each PIA port with a surge absorber to stop spikes. Shielded
\#276-1402
16.95

Fan \& Transformer

(25) Brushless $3^{\prime \prime}$ DC Fan. Airflow: 27 cubic feet per minute. Requires 7 to 13.8 VDC. "1273-243 14.95 (26) 1:1 Audio Transformer. For telephone interconnects, interstage coup ling, more, \#273-1374

8-Channel Pager

 Service Events

Digitally encoded for private paging Push a button on transmitter and receiver "beeps" to alert user to check in With one receiver Transmitter is AC pow ered. Receiver operates on 3 "AAA" bat teries (extra). 149.710 99.95 Extra Receiver. 49-711
'88 Semiconductor
 Guide

NEW!
399

Semiconductor Reference Guide. Cross-reference/substitution section lists over 80.000 types and low-cost Radio Shack replacements. Data on linear and digital ICs, modules, SCRs, LEDs, diodes and opto devices. lllustrated, 288 pages. 276-4011
"Hotline" Service

- Fast Service . No Minimum - No Postal or Shipping Charge Yout Radio Shack store can special order thousands of parts and accessories nol stocked in our stores. Includes semiconductors, tubes, needles, crystals and more Delivery time, about a week

a CAT control system for the Yaesu FT-757GX

C-64 BASIC routine tunes popular transceiver

An earlier article on the CAT system, based on the Tandy TRS-80 Model 100, attracted the attention of a considerable number of users of Commodore $64{ }^{\text {® }}$ microcomputers. ${ }^{1,2}$ But while it was a relatively simple task to convert the TRS-80 program for other micros with a standard RS-232C port, it wasn't as easy to convert the program for the popular $\mathrm{C}-64$.

Converting the unique Commodore "inverted TTL level" format is no problem because the CAT system also works with TTL levels. But the standard baud rates of the $\mathrm{C}-64$ stop at 2400 , and CAT works at 4800 baud. (In this case, baud and bps give the same number, so we'll stick to "baud," since that's what's used in the Commodore and Yaesu literature.)

It's possible to obtain the proper parameters for 4800 baud using a two-step formula for calculating "userspecified baud rates. ${ }^{\prime 2}$ Checking the output with an oscilloscope looked promising, but in practice the data transfer wasn't reliable, and bytes sometimes were lost on their way from BASIC to the radio. Commodore specialists have several explanations for this. Some say that it depends on the physical layout of the printed circuit board; others contend that Commodore BASIC has problems handling the NUL character. Whatever the reason, the data didn't always reach the RS-232C output buffer in good order.
In this program these problems are avoided by replacing the BASIC RS-232C statements with routines written in machine language. The parameters are POKEd into temporary storage in memory locations 52592 to 52596. The command byte (see table 1) goes into location 52592. The frequency number is sliced into four bytes (i.e., $12,345.67 \mathrm{kHz}$ converts to $01,23,45$ and 67), which are stored in the next four locations.

Another problem has also been solved in machine lan-
guage. The frequency bytes just mentioned are in the CAT Binary Coded Decimal format, and ideally would be passed as such to the RS-232C port. But the Commodore BASIC interpreter expects all numbers to be in decimal form and converts them into hexadecimal when the program is executed. A look-up table is used to reconvert the hex into the proper $B C D$ format. The five bytes are then sent out one by one, starting from the highest address, as required by the CAT system.

BASIC program

The BASIC part of the program (fig. 1) is straightforward and can be segmented as follows:

The program is initialized in lines $\mathbf{1 0 0}$ to $\mathbf{2 2 0}$. A title screen at lines 3000 to 3160 (subroutine) is displayed while the machine language part in lines 4000 to 4114 (subroutine) is being loaded. SYS 52480 is similar to OPEN File No. 1 for 4800 baud, eight bits per byte, two stop bits, and no parity. Line 210 determines the starting frequency.

The main screen is set up in lines $\mathbf{1 0 0 0}$ to $\mathbf{1 1 5 0}$ (see fig. 2). The keys available for commands are indicated within brackets. The upper row on the keyboard is used for general commands; the lower row - plus " A " and " $;$ " - for tuning in steps of 10 Hz to 100 kHz . " F " is for steps of any size and " O " for quitting the program.

Note that Band Down and Band Up have different functions, depending on whether the FT-757GX is in Amateur Band or General Coverage mode, and whether or not MR/VFO has been activated (see the FT-757GX Operating Manual). This short program doesn't take into account frequency changes made with Band Down or Band Up, so in order to get the correct screen display, you'll need to reinitialize the program by pressing " F " and entering the actual frequency before using the Fine Tuning keys. This isn't a problem, since you can still go directly to any frequency with the " F " command.

By Kjell W.Strom, SM6CPI, P.O. Box 2, I-28041
Arona, Italy

Table 1. Command byte codes.

function	hexadecimal	decimal
Band Down (multifunction)	08	8
Band Up (multifunction)	07	7
Dial Lock (on/off)	04	4
Clarifier (on/off)	09	9
Split Frequency (on/off)	01	1
Switch between VFO A and B	05	5
Transfer VFO to Memory	03	3
Transfer Memory to VFO	06	6
Exchange between VFO and		
\quad Memory	OB	11
Temporary check of Memory	O2	2
Frequency Set	OA	11

fig. 1. BASIC language program for CAT control of Yaesu FT-757GX.

10 REM

30 REM
CONTROL FOR VAESU FT-757GX
AND COMMODORE 64
BY KJELL W. STROM, SM6CP
50 REM JUNE 5, 1987
60 REM
70 REM
100 REM *** LOAD ML AND OPEN FILE FOR 4800 BAUD ***
110 GOSUB 3000:GOSUB 4000:SYS 52480
200 REM *** SET (NITIAL FREQ (10000 KHZ) ***
$210 \mathrm{~A}=10000$
220 GOSUB 2100
1000 REM *** MAIN SCREEN ***
1010 PRINTCHR\$(147)"[RVS] YAESU FT-757GX CAT PROGRAM BY SM6CPI "
1015 PRINT:PRINT:PRINT
1020 PRJNT"NEW FREQUENCY [F]
QUIT [Q]"
1030 PRINT:PRINT:PRINT:PRINT"
FINE TUNING"
1040 PRINT"
$\langle<-\langle K H Z\rangle+\rangle>"$
1050 PRINT"[A]100
100[;]"
1060 PRINT
1070 PRINT"10 $5 \quad 1 \quad .1 \quad .01 .01 \quad 1 \quad 1 \quad 5 \quad 10^{\prime \prime}$
1080 PRINT"[2] [X] [C] [V] [B] [N] [M] [,] [.] [/]"
1090 PRINT"[DOWN]
$\begin{array}{lll}1100 \text { PRINT" [1] BAND DOWN } & \text { [2] BAND UP" } \\ \text { 1110 PRINT" }\end{array}$
$\begin{array}{lll}1110 \text { PRINT" } & \text { [3] DIAL LOCK } & \text { [4] CLARIFIER" } \\ 1120 \text { PRINT" } & \text { [5] SPLIT FQ } & \text { [6] VFO A/B" }\end{array}$
1130 PRINT" [7] $V=>M \quad$ [8] $M=>V^{\prime \prime}$
1140 PRINT" [9] $V=>/<=M \quad$ [0] MR/VFO"
1150 PRINT "[HOME][DOWN][OOWN]
1160 GET C $\$: I F$ C $\$=" "$ GOTO 1160
1170 IF C $\$=$ " B " THEN $A=A-.01:$ G0T0 1600
1180 [F C $\$=" N^{\prime \prime}$ THEN $A=A+.01:$ G0T0 1600
1190 IF $C \$=" V "$ THEN $A=A-.1: G O T 01600$
1200 IF $C \$=" M "$ THEN $A=A+.1: G 0101600$
1210 IF $C \$=" C "$ THEN $A=A-1$:GOTO 1600
1220 [F $C \$="$ ", THEN $A=A+1$: GOTO 1600
1230 IF C $\$=$ " X " THEN $A=A-5:$ GOTO 1600
1240 IF C $\$={ }^{\prime \prime}$." THEN $A=A+5: G 0 T 01600$
1250 IF $C \$=" Z "$ THEN $A=A-10:$ GOTO 1600
1260 IF $C \$=" / "$ THEN $A=A+10$:G010 1600
1270 IF C $\$=$ "A" IHEN $A=A-100: G 0 T 01600$
1280 IF $C \$=" ; "$ THEN $A=A+100: G 0 T 01600$
1290 If C $\$=" F "$ THEN GOSUB 2800:GOTO 1000
1300 IF C $\$="$!" THEN POKE 52592,8:SYS 52526:GOTO 1160
1310 IF C $\$=" 2 "$ THEN POKE 52592,7:SYS 52526:GOTO 1160 1320 If C $\$=$ "3" THEN POKE 52592,4:SYS 52526:GOTO 1160 1330 If $C \$=" 4 "$ THEN POKE 52592,9:SYS 52526:GOTO 1160 1340 IF C $\$=$ "5" THEN POKE 52592, 1:SYS 52526:GOTO 1160 1350 IF C $\$={ }^{\prime \prime} 6$ " THEN POKE 52592,5:SYS 52526:GOTO 1160 1360 If $\subset \$=" 7$ " THEN POKE 52592,3:SYS 52526:60T0 1160 1370 IF C $\$=" 8$ " THEN POKE 52592,6:SYS 52526:GOT0 1160 1380 IF C $\$=" 9 "$ THEN POKE 52592, 11:SYS 52526; GOTO 1160

1390 IF $C \$=$ ""0" THEN POKE 52592,2:SYS 52526:6010 1160 1580 If $\mathrm{C} \$=" \mathrm{Q}$ " GOTO 2900
1590 GOTO 1160
1500 REM *** ROUND OFF AND CHECK RANGE ***
$1610 \mathrm{~A}=\mathrm{INT}(\mathrm{A} * 100+.5) * .01$
1620 IF $A<500$ THEN $A=500$
1630 JF A 29999.99 IHEN $A=29999.99$
1640 GOSUB 2100
1650 GOTO 1150
2100 REM *** SLICE FREQ AND OUTPUT ***
2110 A\$ $=\operatorname{MIDS}(S T R \$(A), 2)$
$2120 \mathrm{IF} \mathrm{A} A \operatorname{INT}(A)$ THEN $A \$=A \$+{ }^{\prime \prime}{ }^{\prime \prime}$
$2130 \mathrm{~A} \$=" 000 "+A \$+000$
2140 FOR I=1 TO LEN(AS)
2150 DP $\$=\mathrm{MID} \$(A \$, 1,1)$
2160 IF DPS $=$ "." THEN DP $=1: G 0102400$
2170 NEXT
$2400 \mathrm{~A} \$=\mathrm{MID} \$(\mathrm{~A} \$, \mathrm{DP}-6,6)+\mathrm{MID} \$(A \$, \mathrm{OP}+1,2)$
$2410 \mathrm{~F} 1=\mathrm{VAL}(\operatorname{MID} \$(A \$, 1,2))$
2420 F2 $=\mathrm{VAL}(\operatorname{MID} \$(A \$, 3,2)$)
2430 F3 $=\operatorname{VAL}(\operatorname{MIO} \$(A \$, 5,2))$
2440 F4 $=$ VAL (MID $\$(A \$, 7,2)$)
2450 POKE 52593,FI
2460 POKE 52594,F2
2470 POKE 52595,F3
2480 POKE 52596,F4
2490 POKE 52592,10
2500 SYS 52512
2510 RETURN
2800 REM *** NEW FREQUENCY ***
2810 INPUT"[DOWN][DOWN][DOWN]FREQUENCY KHZ";A
$2820 \quad A=\operatorname{INT}\left(A^{*} 100+.5\right) * .01$
2830 IF $A<500$ THEN $A=500$
2840 IF $\mathrm{A}>29999.99$ THEN $\mathrm{A}=29999.99$
2850 GOSUB 2100
2860 RETURN
2900 REM *** REM CLOSE FILE AND QUIT ***
2905 PRINT:PRINT:PRINT
2910 PRINT" ARE YOU SURE?"
2920 GET C\$:IF C $\$={ }^{* \prime *}$ G010 2920
2930 IF C $\$=" Y$ " THEN SYS 52578:PRINT CHR (147):END
2940 GOTO 1000
3000 REM *** TITLE SCREEN WHILE ML IS LOADING ***
3010 H1\$=" CAT PROGRAM FOR'
3020 H2 $\$=" \quad$ YAESUFT-757GX"
$3030 \mathrm{H} 3 \$=" \quad$ BY KJELL W. STROM, SM6CPI"
3040 PRINTCHR\$(147):PRINT:PRINT:PRINT:PRINT
3050 FOR I=1 TO LEN(H1 $\$$)
3060 PRINT MID\$(H1\$,I,1);
3070 NEXT
3080 PRINT:PRINT
3090 FOR I $=1$ TO LEN(H2\$)
3100 PRINT MID\$(H2\$,1,1);
3110 NEXT
3120 PRINT:PRINT:PRINT
3130 FOR I $=1$ TO LEN(H3\$)
3140 PRINT MID\$(H3\$,I,1);
3150 NEXT
3160 RETURN
4000 REM *** LOAD ML. ROUTINES ***
4010 FOR I $=52480$ TO 52696:READX:POKEI,X:NEXT
4020 RETURN
4100 DATA $169,1,162,2,160,3,32,186,255,169,4,162,104,160,205$
4101 DATA $32,189,255,32,192,255,162,3,189,108,205,149,247,202$
4102 DATA $16,248,96,162,3,188,113,205,185,117,205,157,113,205$
4103 DATA $202,16,244,162,1,32,201,255,173,14,220,41,254,141$
4104 DATA $14,220,162,4,189,112,205,168,173,161,2,41,1,208,249$
4105 DATA $152,32,210,255,202,16,238,173,161,2,41,1,208,249$
4106 DATA $32,204,255,173,14,220,9,1,141,14,220,96,169,1,32$
4107 DATA $195,255,96,0,0,2,0,0,206,0,207,75,87,83,56,55,0,1,2$
4108 DATA $3,4,5,6,7,8,9,16,17,18,19,20,21,22,23,24,25,32,33$
4109 DATA $34,35,36,37,38,39,40,41,48,49,50,51,52,53,54,55,56$
4110 DATA $57,64,65,66,67,68,69,70,71,72,73,80,81,82,83,84,85$
4111 DATA $86,87,88,89,96,97.98,99,100,101,102,103,104,105,112$
4112 DATA $113,114,115,116,117,118,119,120,121,128,129,130,131$
4113 DATA $132,133,134,135,136,137,144,145,146,147,148,149,150$
4114 DATA 151,152,153
10000 REM *** 'RUN 10000 ' FIRST TO CHECK ML DATA LINES ***
$10010 \mathrm{~S}=0$:FORI $=52480$ TO52696: READX: $\mathrm{S}=\mathrm{S}+\mathrm{X}:$ NEXT
10020 IF S<>22360 THEN PRINT"CHECK ML DATA!": END
10030 PRINT"ML DATA OK!"
READY.

TE GYSTEMS

RF POWER AMPLIFIERS

- Lowest NF GaAs FET Preamp
- Finest Quality Military Construction
- Off-The-Shelf Dealer Delivery

For the past five years, Amateurs worldwide have sought quality amplifier products from TE Systems. Renowned for the incorporation of high quality, low-noise GaAs FET preamplifiers in RF power amplifiers, TE Systems offers our fine line of products through select national distributors.

All amplifiers are linear (all-mode), automatic T/R switching with adjustable delay and usable with drive levels as low as $1 / 2$ Watt. We incorporate thermal shutdown protection and have remote control capability. All units are designed to ICAS ratings and meet FCC part 97 regulations. Approx. size is $2.8 \times 5.8 \times 10.5^{\prime \prime}$ and weight is 5 lbs .

Consult your local dealer or send directly for further product information.

Model	Freq. MHz	-Power -		FPreamp-dB Gain-dB		$\begin{gathered} \text { DC } \\ +\mathrm{Vdc} \end{gathered}$	$\begin{gathered} \text { Powor } \\ \text { A } \end{gathered}$	$\begin{gathered} \text { hF } \\ \text { Conn. } \end{gathered}$
0508G	50.54	1	170	. 6	15	13.6	28	UHF
0510G	50-54	10	170	. 6	15	13.6	25	UHF
14096	144-148	2	160	6	15	13.6	25	UHF
14106	144.148	10	160	. 6	15	13.6	25	UHF
1412 G	144-148	30	160	. 6	15	13.6	20	UHF
2210 G	220-225	10	130	. 7	12	13.6	21	UHF
2212 G	220-225	30	130	. 7	12	13.6	16	UHF
4410 G	420-450	10	100	1.1	12	13.6	19	N
4412 G	420-450	30	100	1.1	12	13.6	19	N

Models also available without GaAs FET preamp (delete G suffix on model \#). All units cover tull amateur band - specity 10 MHz bandwidth for $420-450 \mathrm{MHz}$ amplifier.

Amplifier capabilities: $100-200 \mathrm{MHz}, 225-400 \mathrm{MHz}, 1-2 \mathrm{GHz}$, Military (28V), Commercial, etc. also available - consult factory.

TE SYSTEMS

P.O. Box 25845

Los Angeles, CA 90025
(213) 478-0591

MAKE CIRCUIT BOARDS THE NEW, EASY WAY

WITH TEC-200 FILM

JUST 3 EASY STEPS:

- Copy circuit on TEC-200 film using any plain paper copier
- Iron film on to copper clad board
- Peel off film and etch

SATISFACTION GUARANTEED convenient $81 / 2 \times 11$ size
5-Sheets for $\$ 3.95$
10 sheets only $\$ 5.95$
add $\$ 100$ postage $-N Y$ res add sales tax

The MEADOWLAKE Corp.

DEPT. H, P.O. Box 497
Northport, New York 11768

A befter way to design and analyze Long wires, Vee's, and Rhombics.

LONG WIREPRO

Easy to use, menu driven, select wire length, height, frequency, ground type, ond get a color coded sinusoidal projection of your HF antenna.

DOS 2.0 or higher, 256 K , color required

Price $\$ 35.00$

 IBM/MS-DOS COMPUTERS ERSILON COBox 715, Trumbull CT, 06611, (203) 2617694

fig. 2. Screen display.

Commands entered from the keyboard are decoded by lines 1160 to 1590 . SYS 52526 sends the bytes to the radio without converting from hex to $B C D$, since this isn't required for the single-byte commands.

Verification that the frequency is inside the range of the FT-757GX is accomplished with lines 1600 to 1650.
In lines 2100 to 2510 the frequency parameter is sliced into four bytes, as described above, after having been converted into a string and having found the position of the decimal point. SYS 52512 is the call for sending out the frequency byte after a hex-to-BCD conversion.

The frequency input subroutine used with the " F " command is contained in lines 2800 to 2860.
The subroutine for the QUIT command is in lines 2900 to 2940.
The last part of the program contains subroutines for the title screen and for loading of the machine language part, as mentioned before.

The numbering of the program lines may seem haphazard; this is because some numbers were intentionally omitted in order to reduce the time needed for some of the GOSUBs and GOTOs. Renumbering to a tighter sequence may slow down the program a little.

After typing in the program, SAVE it and type RUN 10000 /RETURN/ to confirm that the DATA lines have been entered correctly. Otherwise, if there's a mistake in the DATA and you try a RUN, you may lose the program!

interface

An interface circuit serves two purposes: it translates the input level to a suitable output level and stops poten-

tially harmful interference from one connected unit from reaching the other, and vice versa.

Both the C-64 and the FT-757GX CAT system work with the same TTL levels, but the current needed to pull the CAT SI line to low, through a 680 -ohm resistor, is probably higher than can be considered safe for the delicate $\mathrm{C}-64$ CIA chip. We also want to minimize the possibility of computer noise reaching the receiver and of transmitter of reaching the computer.

The Yaesu FIF-232C interface does this job. It accepts the inverted TTL level format from the C - 64 if the internal switch $\mathbf{S 0 1}$ is set to the position opposite from nor-

"America's Weekly Guide to Satellite TV"

The best in satellite programming! Featuring: \star Over 120 Channels listed \star Weekly, Updated Listings \star Magazine Format \star Complete Alphabetical Movie Listings \star Sports Specials \star Prime Time Grids \star Specials «Programming Updates!

- Only $\$ 45.00$ per year (52 weekly issues) - 2 Years $\$ 79.00$ (104 weekly issues)
- \$1.00 for sample copy
${ }^{-}$NC Residents must add 5\% Sales Tax

Subscribe Today!

call toll free 1-800-234-0021 Visa* and MasterCard ${ }^{\text {² }}$ accepted

OnSat PO Box 2347 Shelby, NC 28151-2347

mal. Since it also works with standard RS-232C format and with the two-way CAT systems of the FT-980, FT-757GXII, and FT-767GX, it can be regarded as a very flexible solution, especially since it has its own built-in power supply.
For our purpose we can also use the simple interface circuit shown in fig. 3. It receives 5 volts from the $\mathrm{C}-64$ and can be assembled on a small IC-spacing perforated board as close as possible to the 24 -position user port card edge connector. The cable from the TIL111 optocoupler output side should be shielded, with the screen connected to ground at the transceiver side only, not to computer ground. Connect all unused input pins on the 7404 IC to ground, together with pin 7.

summary

This article has been intended to show how easily you can interface and use the CAT system with the Commodore 64 and the Commodore 128 in C- 64 mode. It also offers four machine language routines you can use in much more powerful programs, thereby adding your own special features to one of today's most appreciated transceivers.

references

1. K. W. Strom, SM6CPI, "A CAT Control System," OST. October, 1985, page 38
2. K. W. Strom, SM6CPI, "Feedback", OST. April. 1986, page 41

ham radio

The new STV Guide contains valuable information on zoning regulations, scrambling, plus technical tips for installing or updating a satellite system-and now a precise monthly guide to satellite TV with the latest program listings for over 90 channels!

All this in each complete issue of STV Guide!

- Only $\$ 48.00$ per year (12 monthly issues)
- \$2.00 for a sample copy
*NC Residents must add 5% sales tax

Subscribe Today!

Call toll free 1-800-234-0021
Visa* and MasterCard* accepted

STV Guide PO Box 2384 Shelby, NC 28151-2384

Now! In America

For the first time, the AR2002 is available in the U.S.A.! Acclaimed worldwide for its full spectrum coverage, its superior sensitivity, excellent selectivity and convenient, compact design; it has all the features a sophisticated and discerning public service band radio user desires. Experts in Europe, and around the world report excellent performance in independent lab tests. For example: sensitivity across all bands will typically exceed 3 microvolts in NFM. And now the AR2002 is available to you exclusively through this offer.

Peformance Above and Beyond

You'll hear signals from 25 through 550 MHz , plus 800 MHz through 1.3 GHz . In any mode: narrow band FM, wide band FM, or AM. Search through entire bands, or enter selected frequencies into any of 20 memory channels. The sidelighted LCD gives full information on status and programming. Profession quality hinged keys and a digitized front
panel control knob make tuning easier than ever before. There's even a real time clock with backup, a signal strength meter and a front panel head phone jack. Plus, programmable search increments, a laboratory quality BNC antenna connector with switchable attenuator, full memory backup, and power cords for AC or DC operation. A professional quality swivel mount telescoping antenna is also supplied.

...And More!

Every AR2002 has a special connector on the rear panel. It interfaces to our custom RC-pack. A little device that makes the AR2002 controllable by ANY computer with an RS-232C port. The possibilities that result from this option are nearly limitless. In effect, virtually your only monitoring constraint will be your imagination.

Yet Convenient to Own

The AR2002 is available exclusively through us - so call us direct, TOLL FREE. We'll be happy to answer any questions you may have. And if you
respond like thousands of other monitor users the world over, we'll be shipping you an AR2002 within 48 hours by surface UPS for only $\$ 455$. Plus we pay all freight and handling charges. Remember to ask about our custom test and triple extended buyer protection warranty plans, and our express shipping option. If you're not satisfied within 25 days, return your AR2002. We'll refund your purchase and return shipping costs. There are no catches, no hidden charges.

The AR 2002

The Professional Monitor Receiver

$$
10707 \text { East 106th Street, Indianapolis, IN } 46256
$$

Call Toll Free 800-445-7717 Visa and MasterCard
COSA COD slightly higher -In IN 317-842-7115 Collect
Warehouse: 22511 Aspan Street, Lake Forest, CA 92630 ($77 / 8^{\prime \prime} \mathrm{D} \times 5 \frac{1}{16^{\prime \prime} \mathrm{W}} \times 31 / 8^{\prime \prime} \mathrm{H} \mathrm{Wt} .2 \mathrm{lbs} ., 10 \mathrm{oz}$.)

TURBO PC/XT COMPATIBLE $\$ 649.00$ PRICE INCLUDES PHOENX BIOS HI-RES SAMSUNG MONITOR 2 DISK DRIVES DS/DD 360K DELUXE KEYBOARD MS DOS 3.1 WITH MANUAL PRINTER PORT SERIAL PORT GAME PORT CLOCK CALENDER 256K MEMORY

4.77 OR 8MHZ OPERATION

EXPANDABLE TO 640K 8 SLOT MOTHER BOARD FREE SOFTWARE
AZOTIC INDUSTRIES INC. 2026 W BELMONT CHICAGO ILL 60618 (312)-975-1288

I YEAR WARRENTY ON DRIYES NONITORS KEYBOARD POWER SUPPLIES. 90 DAY WARRENTY ON MOTHER BOARDS AND I/O CARDS. EXTENDED WARRENTY and maintance ayallable.

WE STOCK
FLOPPY DISK DRIVES
HARD DISK DRIVES
MONITORS CABLES
I/O CARDS MODEMS
OCR PC-FAX EGA SERVICE \& REPAIRS

a thumbwheel frequency selector for the Yaesu FT-757GX

If you happen to own a Yaesu FT-757GX transceiver, this one-evening project will make its operation more convenient and enjoyable. If you don't own one, you may find that this article will show the ease and simplicity with which features of modern computer-controllable radios can be accessed.

Because the 757's minimum incremental tuning is in $500-\mathrm{kHz}$ steps and the tuning dial moves only 10 kHz per rotation, any frequency change in other than $500-\mathrm{kHz}$ steps takes several presses of the button and an average of 12-1/2 knob rotations! This project allows thumbwheel entry of any frequency, in or out of the current band. The design makes no modifications to the radio and connects to it with only two plugs on the back panel. A circuit board layout is given for those who wish to etch a board; the design can also be wire-wrapped, with no degradation in performance. All normal radio functions - including tuning with normal front panel controls - are still available.

design considerations

It's best to think of the thumbwheel frequency selector (TWFS) as a unidirectional data source. Yaesu provided an interface to accept commands from an external source on the back panel of the 757, which, among other things, accepts serially encoded binary data as requests for frequency selection options; these are documented on page 10 of the 757 Technical Supplement Manual. In addition to duplicating front panel

Brian J. Mork, KA9SNF, 215 Paddock
Drive East, Savoy, Illinois 61874
operations, a command is provided for loading any specific frequency. Using this command, discrete frequencies may be entered without all the front panel dial spinning. The 757 never sends data, so no provision needs to be made for data flow from the transceiver.

This circuit sends a prepackaged stream of 50 bits to the radio at 4800 bits per second every time you push a "load" button. The outputs of six BCD thumbwheel switches are part of the 50 -bit stream and indicate what frequency is requested. The thumbwheels provide frequency selection with a resolution of 100 Hz . A two-wire data cable goes from the TWFS to the radio back panel and connects to pins 1 and 2 (the left and middle pins as viewed from the back) of a three-pin connector formally designated as J12 or the EXT CNTL jack. (See pages 9, 10, and 40 of the 757 Technical Supplement Manual for additional details.)

This pair of data wires, carrying TTL voltage levels, is the only connection to the 757 radio that's necessary. But in order to operate the TWFS, a power source providing 5 volts is also required. One additional connection to the 757 back panel provides 13.8 vdc at 800 mA through an RCA phono plug. Using a threeterminal fixed regulator to convert the 13.8 volts provided by the transceiver to a regulated 5 volts, the prototypes were measured to draw 165 mA from the radio. If no other accessories use this connection, it may be used to power the TWFS.

design details

The schematic for the TWFS is shown in fig. 1. The 555 provides the clock pulses to the 74LS393 at a frequency of 19.2 kHz . The internal O_{a} and Q_{b} stages of the 393 divide the signal frequency by 4 and the remaining six count-stages provide a 6 -bit binary number updated at the rate of 4800 Hz . The frequency adjustment of the 555 is done with a ten-turn rheostat. Frequency stability of the 555 is sufficient in this application because of the short bursts of data that are sent. For instance, assume that the Yaesu can tolerate a $1 / 8$ bit error in order to read the data correctly. A $1 / 8$ bit error on the 50th bit implies 0.25 percent relative error, allowing a frequency range of the 555 from 19.152 to 19.248 kHz .

The 393 is configured as a 6 -bit counter that automatically shuts itself off when it gets to a count of 50 . Every time the load button is pressed, the counter is reset to zero and counts to 50 one more time. The 6-bit binary number generated by the 393 is interpreted by the three 74150 and one 153 multiplexers so that one of 50 TTL levels are sequentially provided at the output of the 153.

When no data is being sent (i.e., you haven't pressed the load button recently), both address lines to the 153 are high and the HALT signal on pin 13 of

fig. 1. Schematic for the TWFS. Connections for these 48 pins are given in tables 2 and 3.

Table 1. Wiring and data description.

Bit no.	Data source	Wire to	Description	Bit no.	Data source	Wire to	Description
0	74150A - 8	0	partial bit				
1	-7	1	start	26	74150B-21	p20	$1 \mathrm{MHz}-1$
2	-6	1	$10 \mathrm{~Hz}-1$	27	-20	p19	$1 \mathrm{MHz}-2$
3	-5	1	$10 \mathrm{~Hz}-2$	28	- 19	p22	$1 \mathrm{MHz}-4$
4	-4	1	$10 \mathrm{HZ}-4$	29	- 18	p21	$1 \mathrm{MHz}-8$
5	-3	1	$10 \mathrm{~Hz}-8$	30	-17	0	stop
6	-2	p4	$100 \mathrm{Hz-1}$	31	-16	1	start
7	-1	p3	$100 \mathrm{~Hz}-2$	32	74150C-8	p24	$10 \mathrm{MHz}-1$
8	-23	p6	$100 \mathrm{~Hz}-4$	33	-7	p23	$10 \mathrm{MHz}-2$
9	- 22	p5	$100 \mathrm{~Hz}-8$	34	-6	p26	$10 \mathrm{MHz}-4$
10	- 21	0	stop	35	-5	p25	$10 \mathrm{MHz}-8$
11	-20	1	start	36	-4	1	$100 \mathrm{MHz-1}$
12	-19	p8	$1 \mathrm{kHz}-1$	37	-3	1	$100 \mathrm{MHz-2}$
13	-18	p7	$1 \mathrm{kHz}-2$	38	-2	1	$100 \mathrm{MHz}-4$
14	-17	p10	$1 \mathrm{kHz}-4$	39	-1	1	$100 \mathrm{MHz}-8$
15	-16	p9	$1 \mathrm{kHz}-8$	40	-23	0	stop
16	74150B-8	p12	$10 \mathrm{kHz}-1$	41	-22	1	start
17	-7	p11	$10 \mathrm{kHz}-2$	42	-21	1	
18	-6	p14	$10 \mathrm{kHz}-4$	43	-20	0	
19	-5	p13	$10 \mathrm{kHz}-8$	44	- 19	1	
20	-4	0	stop	45	- 18	0	
21	-3	1	start	46	-17	1	
22	-2	p16	$100 \mathrm{kHz}-1$	47	-16	\uparrow	
23	-1	p15	$100 \mathrm{kHz}-2$	48	- HALT -	command to load frequency	
24	-23	p18	$100 \mathrm{kHz}-4$	49	- HALT -		
25	- 22	p17	$100 \mathrm{kHz}-8$	50	- HALT -		

NOTE: The column headed "Wire to" lists either a header pin number, a " 0, ," or a " 1 ." Header pin numbers 1 and 2 are grounded. Each of the remaining 24 header pins must have a 10 k pullup resistor. " 0 " bits are wired to ground and " 1 " bits are wired to the 580 - ohm pullup resistor. The column headed "Description" indicates how the bit will be interpreted by the 757 transceiver. Remember that the 150 s invert the data.

NEW PRICE!

ANTENNA POLARITY SWITCHER MODEL APS-1

The APS-1 is a self-contained control head designed to allow remote polarity switching of circular antennas such as the Mirage/KLM range of crossed yagis.

The APS-1 may be powered by the power adaptor (included) or may alternately be powered from a vehicle or other 13-17 VDC source.

In addition to switchable outputs for two antennas, the APS-1 also contains a 6-13 volt regulated DC power supply. This feature is designed for powering items such as preamplifiers, VHF/UHF converters, etc., but may also be used whenever a low-current stabilized variable voltage source is required.

SPECIFICATIONS:

Power Requirement (AC)
$117 \mathrm{~V} \pm 10 \%$ AC $50 / 60 \mathrm{~Hz} 15$ Watt
Power Requirement (DC) 11-16 VDC 500 mA

Total output current 500 mA with AC transformer that is included, 1 amp with optional high current transformer or external DC supply. This unit has our popular five (5) year warranty.

$$
\begin{array}{rrr}
\text { P.O. BOX } 1000 \quad \text { MORGAN HILL, CALIFORNIA } 95037 & (408) 779-7363 \\
\text { OUTSIDE CALIF. } & (800) 538-2140 \quad 130
\end{array}
$$

Components for thumbwheel frequency selector.
Integrated circuits
7805
555
74LS00
74LS10
74LS393
74LS153
74150
Resistors (all 1/4 watt)
1 580-ohm (pullup for 17 TTL lines)
26 10k (thumbwheel and two switch pullups, $3 \times 9^{\text {SIPS }}$)
$1 \quad 10 k$ miniature ten-turn potentiometer
3k (555 timing)
1 10k (555 timing)
Capacitors
$0.01 \mu F$ (IC decoupling)
10.01μ F (555 timing, mylar)
$150 \mu \mathrm{~F}$ (decoupling of 13.8 -volt supply, electrolytic)
16.8μ F (decoupling of 5 -volt supply, tantalum)

Hardware

7805 heatsink
Pushbutton switch, 1-pole, 2-throw BCD thumbwheel switches
1 RCA phono plug (power, 757 connector)
3-pin SIP socket (0.1 -inch spacing, 757 connector) 26-pin, 0.1-inch DIP header and socket 3-pin 0.1-inch SIP header and socket
2-pin 0.1 -inch SIP header and socket
1 Cabinet
the 153 is available as data - a TTL high level. As soon as you press the load button, the 393 counter clears to zero and pin 8 of 74150A is sent out as data. Because your button presses aren't synchronized with the clock, this first bit of data may or may not be held for a full $208.3 \mu \mathrm{sec}(1 / 4800)$. That's OK because it's a TTL high signal - the same as the quiescent voltage level. In effect, the bit sequence has started but the 757 doesn't care that the first bit is too short because it doesn't recognize the TTL high level as the first bit.

The next 40 bits (bits 1-40) encode the thumbwheelselected frequency digits. Data is sent in four 8 -bit chunks. Each chunk is prefixed with a start bit (TTL low) and followed by a stop bit (TTL high), yielding a total of 40 bits. Within each 8 bits, two BCD numbers are sent least significant bit first. These numbers are read directly from the contacts of the thumbwheels, necessitating selection of thumbwheel switches with BCD outputs. The frequency is sent least significant digit first. The $100-\mathrm{MHz}$ digit and the $10-\mathrm{Hz}$ digit are permanently wired as zero. The $10-\mathrm{MHz}$ through $100-\mathrm{Hz}$ digits are read from the thumbwheels.

The last 8 -bit value sent is decimal 10 , which indicates to the transceiver that all the previous data should be interpreted as a frequency. The start bit and the first 6 bits of this data are retrieved through the 150/153 multiplex chain as all other bits were. The last 3 bits ($0,0,1$, sent in that order) actually reflect the status of the counter HALT signal. During the last 3
bits (48-50) the HALT line, which goes high to disable the counter when a count of 50 is reached, is fed through the 153. During counts 48 and 49 , it is false (TTL low); on the 50th count, it goes true (TTL high). Because 555 pulses are locked out with this same signal, the data line stays indefinitely high.

Note that the 150 chip inverts data before passing it to the 153. This is the way most BCD switches work - grounding the logical true pins. Bits 0-47 are sent through the 150s and so are wired inverted. Bits 48-50 (the HALT line) are not inverted by the 153 alone.

construction

The artwork for a double-sided circuit board is shown in figs. 2 and 3. A parts list is provided. The entire prototype was built using available components, though substitutions may be made. The only critical parts values are in the 555 timer circuit, and even these values could be recalculated to allow use of what you have in stock, following the formulas provided in manufacturers' data books. Although low-power Schottky integrated circuits are called for wherever possible, standard TTL chips would suffice. The power supply drain will increase, but no difference in operation will be noticed.

The circuit is simple enough to be wire-wrapped by hand; in fact, the prototype was wired on two small prototype boards with all the little holes. Provision is made on the pc board for a 7805 voltage regulator and its two bypass capacitors, assuming the 13.8 volt supply from the radio will be used. This portion of the circuit is not shown on the schematic. Refer to a manufacturer's data book or the ARRL's Radio Handbook for details about the 7800 family of regulators. The connections to the 48 data lines of the 150 s are listed in table 1.

Power connections and unused pins for all ICs are tabulated in table 2. I advise the following general order of construction and check-out. Using IC sockets, wire the entire circuit, including all non-IC components. Component placement - following the markings on the circuit board - should be straightforward. Each of the IC positions is marked with a square pad to indicate pin 1. Three columns of ten holes provide a mount for the SIP resistor packages. If SIPs aren't available, mount nine 10k resistors on end, then connect all the tops of the resistors together and into the tenth hole (5 volts). Three holes are provided for a horizontal-style ten-turn potentiometer. Two holes relatively close together provide a mount for a radial lead, 13.8 -volt decoupling capacitor, but a larger axial lead capacitor can be mounted by doubling one lead back next to its casing.

Four off-board connections need to be made. The power and data connections are each made with two wire cables. The load switch connects to the board

Table 2. Power connections and unconnected pins for ICs.

IC	+5 volts	Ground	Not Connected
555	8	1	5
74LS393	14	7	3.4
74LS10	14	7	$8-11$
74LS00	14	7	$8-10$
74LS153	16	8	$1,3-7$
74150	24	12	None

with three wires. Each of these connections can use 0.1 -inch space header strips for neatness. The connection to the thumbwheels is made with a 26 -pin 0.1 -inch space dip header. Twenty-five pins are needed (24 BCD data lines and one common ground line); they're listed in table 1.

Install the 7805 regulator. A mounting hole is provided for laying the regulator flat on its back, but it can be left upright if you wish. In either case, a heatsink is suggested. Apply power and verify that the correct voltages are applied to the proper IC socket pins. With the power off, insert only the 555 . Then - with the power back on -- check to see that pin 14 of the 74LS10 socket is receiving an oscillating TTL signal. Adjust the ten-turn potentiometer until a frequency of 19.20 kHz is obtained. Turn the power off.

Install the 393, the 10, and the 74LS00. Apply power again and confirm that pins 2 and 12 of the 393 are stable at a TTL low level. Pressing and holding the load switch should make these pins go to a high level. As you're holding in the switch, pin 1 of the 393 should be receiving an oscillating signal. Release the load switch. Pin 1 should stop oscillating in approximately 10.4 msec (the time needed to send 50 bits). If a digital event counter is available, measure pin 5 of the 393. It should be low while the load button is depressed and count 25 low-to-high transitions when the load button is released. Many frequency counters can be used as event counters by locking their count gate open.
With the power off, install the remaining four ICs. Turn on the power one last time, using the plug on the back of the radio if that's your final intention. At this point, the data output (pin 9 of the 153) should be stable in a TTL high state and a valid 5 -byte sequence of data should appear whenever the load switch is pressed and released. Connect the ground side of the data connection to the left side and the data line itself to the center pin of the three-pin connector on the back of the 757 (J12). Dial a valid Amateur band frequency on the thumbwheels and press the load button. The radio should switch directly to that frequency!

If the transceiver doesn't switch to the requested

Table 3. Bit sequences for two sample frequencies: (A) 10.000 MHz , and (B) 29.999 MHz . The data sent by the TWFS will be interpreted by a normal ASCII computer terminal as the characters listed. Ten ${ }^{H}$ bit groups must be sent with a maximum of 100 msec betwwen them in order to be interpreted correctly by the transceiver.
(A) 10.000 MHz
bits 1-10: 0000000001 cntr -@
11-20: $0000000001 \mathrm{cntrl} @$
21-30: $0000000001 \mathrm{cntrl} @$
31-40: $0100000001 \mathrm{cntrl}-\mathrm{A}$
41-50: 0010100001 line feed
(B) 29.999 MHz
bits 1-10: 0000010011 cntrl-P (8 bit set)
11-20: 0100110011 cntrl-Y (8 bit set)
21-30: 0100110011 cntri-Y (8 bit set)
31-40: $0010000001 \mathrm{cntrl}-\mathrm{B}$
41-50: 0010100001 line feed
frequency after you release the load button, most likely one of the data lines into the 150 multiplexers has been wired incorrectly. If, after careful checking, everything looks correct, the following procedure may reveal the problem. Disconnect pin 3 of the 555 from its IC socket (bend it out horizontally) and plug a slowly oscillating TTL signal (about 4 Hz) or a low-pulse generator into pin 3 of the socket. Press and release the load switch. A TTL high level should be available as output data. Every four oscillations of the signal generator should cause pin 5 of the 393 to change and the data line to the radio should update. Set the frequency to 100000 and confirm the bit sequence shown in table 3(A). A frequency of 299999 should provide the bit sequence shown in table 3(B).

conclusion

This should be a fairly simple project for anyone who has worked - even just a little - with digital logic circuits. The idea of simply multiplexing hard-wired data sequentially out a data line is about as simple a communication scheme as possible. I hope others will expand this concept to enable a computer to provide data to the radio. I know useful commercial programs are available, but designs that add greatly to operating convenience don't need to be difficult to do yourself!

Ironically, although l've had fun designing the circuit and building several copies of it, I no longer have a 757 with which to use it. Therefore, I wish to express thanks to Gary LaPook, KA9UHH, for the use of his radio during the design of the project and for proofing the first prototype under actual use conditions. There's a hamfest coming up. I wonder what a used 757 might cost?
ham radio

ham radio TECHNIQUES 及u or'ssi

a new country for you?

We were sitting on the beach in front of the luxury hotel. As cool tradewinds caressed us, we enjoyed a second tall, iced glass of Long Island Iced Tea ($1 / 3$ each vodka, gin, and white rum, with a splash of cola for color).
"How about going on a DXpedition to a new country?" I asked The Big DXer.
"No way," he replied. "Look at the cost of the Bear Island trip. Activating a new country is too expensive these days."
I gestured toward the horizon. "There's your new country - only a few miles away. You can spend your nights right here in this dandy resort, living it up, and helicopter over and back each day. A 15-minute trip to a new country! Think how many hams you'd make very happy!"
The Big DXer stared at the island. "It looks easy," he said. "What's the trick? Why hasn't it been activated before?"
"Well," I replied, "there's a little problem . . ."
The barren island of Kahoolawe lies a scant dozen miles south of the island of Maui, Hawaii. Uninhabited, it has no water or electric power. Jurisdiction rests with the United States Navy,
much as in the case of Midway Island; the same reasons that Midway is accepted as a separate DX country, then, should be applicable to Kahoolawe.

The "little problem" is that this island is known as the "bombing island" because it's used by the military for bombing and assault practice. The whole surface of the island, it is said, is covered with unexploded ordinance. There's a boat dock, however, with an area around it that's considered safe for occupancy. Armed with a gasoline generator, a transceiver, and a portable antenna, DXers could conceivably operate from this area - if they could obtain permission to land.

Squinting at the island, The Big DXer admitted, "It would be nice to know who in the Navy to approach. Maybe a DXpedition to Kahoolawe is in the cards after all. I'll have another Long Island Iced Tea."

the 10,18 , and $24-\mathrm{MHz}$ bands

As a result of an ITU conference some years ago, Radio Amateurs were granted operating privileges in narrow bands in the 10,18 and $24-\mathrm{MHz}$ region. Let's look at these bands as they appear in the fall of 1987, together with some simple antennas that will get you on these bands quickly.

Although the 50 kHz -wide $10-\mathrm{MHz}$
band (10.100 to 10.150 MHz) has enjoyed a modest amount of CW activity over the years, it's still largely ignored by most Amateurs. One or two loud commercial stations operating in this range must be avoided, but otherwise the band is good for DX if activity can be found.

It seems to me that in order to awaken general interest in the band, a portion of it should be opened to sideband operation. I therefore propose that the top 25 kHz be opened to sideband. Before the band became available for general Amateur use, I operated sideband on 10.105 MHz with an experimental license for several months; I can attest to the fact that allocating even a small segment of this assignment to sideband would be of great benefit to Amateur Radio. How about a petition in this regard, ARRL?

Although available to Amateurs in over 40 countries, the $18-\mathrm{MHz}$ band (18.068 to 18.168 MHz) is barred to United States hams because of alleged use by the military. But a number of operators monitored this frequency region for several months during the early summer of 1987 - see fig. 1 for a summary of the results of their work.

There's a small amount of overseas Amateur CW operation from 18.068 to 18.075 MHz . Sometimes there's a RTTY signal on 18.070. When it's ac-

Pac-Comm new
 TINY TNC-2 PACKET CONTROLLER

A MODERN REDESIGN OF THE WORLD FAMOUS TNC-2

tiny size, tiny price, huge value
THE PERFECT TNC..

- FOR THE PACKET NEWCOMER
- FOR NET/ROM NODES

AS A SECOND OR THIRD TNC
*USES UNMODIFIED TNC-2 SOFTWARE EPROMS
*32K RAM AND 32 K EPROM STANDARD
*SUPPORTS BOTH RS-232 AND TTL COMPUTERS, 300-9600 BAUDS
*EXTRUDED ALUMINUM CABINET WITH OVEN-BAKED WRINKLE FINISH.
*ONLY 5" \times 7" - ABOUT HALF TNC-2 SIZE.
*WATCHDOG TIMER, MODEM DISCONNECT HEADER, 12 V DC OPERATION:
the best value in a vhf/hf tNC
PAC-COMM TNC-220 \$159.95
NOW WITH 32K RAM STANDARD
CONNECT BOTH HF AND VHF RADIOS PERMANENTLY -SELECT FROM THE KEYBOARD
IN KIT FORM -- $\$ 129.95$ INTERNAL TUNING INDICATOR -- $\$ 44.95$
COMING SOON FROM
PAC-COMM:

- A SUPER LOW POWER INC FOR PORTABLE USE
-A PLUG IN TNC/NETWORK CARO FOR YOUR PC
- A PLUG IN INC/NETWORK CARD FOR YOUR PC

INTRODUCTORY PRICE
$\$ 109.95$
PLUS SHIPPING
FL. ADDRESSES, ADO 5\%

READY TO USE-NOT A KIT
\$119.95 AFTER JANUARY FIRST DELIVERY BEGINNING NOVEMBER 15th

ACCESSORIES - 12v WALL MOUNT POWER SUPPLY $\$ 9.95$ fS-232 CABLE \$9.95, C-64 CABLE \$12.95
TERMINAL SOFTWARE FOR THE PC, C-64, MAC -- CALL
PAC-COMM SUPPORTS ALL PACKET NETWORKINQNET/ROM, TCP/IP, COSI
WRITE OR CALL FOR OUR NEW CATALOG OF PACKET EQUIPMENT, SOFTWARE AND ACCESSORIES.

TOLL FREE (ORDERS ONLY)
800-223-3511
EXCEPT FLORIDA
v/sh oriceven TELEX: 650-288-1526 MCl FAX: (813) 872-8696 Pac-Comm, 3652 West Cypress St., Tampa, FL 33607

TECHNICAL INFORMATION 7:30 AM - 11 PM EASTERN (813) 874-2980

- 136

KENNEDY ASSOCIATES

Stocking all major lines. San Antonio's Ham Store. Great Prices-Great Service. Factory authorized sales and service. Hours: M-F 10-6; SAT 9-3

CD ICOM

Amateur Radio Division 5707A Mobud
San Antonio, TX 78238
Telephone: 512-680-6110

- 138

fig. 1. Spread of non-Amateur signals in the $18.068-$ to $18.168-\mathrm{MHz}$ range.
tive, that frequency is avoided. This signal isn't on often, however, and when it's on, it's usually in "idle" mode. The BBC overseas service is quite active on 18.08, and there's a cluster of RTTY and FAX activity from 18.088 to 18.093 MHz .

Two RTTY weather signals are quite active near 18.104, with a multiplex signal slightly higher than 18.120 MHz . Near 18.130 there's a FAX transmission with a "piccolo" signal just above it. There are CW signals near 18.140 and 18.150. At the top of the range, there are several RTTY stations near 18. 165 MHz .

It isn't clear that any or all of these stations are United States military. In fact, some of the signals sound as if they're arriving from overseas. None of them are on continuously except for
the BBC relay transmission on 18.080 MHz , which is very active.

Amateur sideband operation takes place around 18.10 MHz . Stations in Europe, Africa, South America, and Australia have been logged from time to time.

After observing the $18-\mathrm{MHz}$ band for over four years, it seems to me that the military's need for this span of frequencies makes for a pretty thin argument. I propose that the burden of proof of usage be placed on those opposing the presence of United States Amateurs in this band. Merely stating that the band is in use by the military, without proof of occupancy, should not justify the FCC's withholding the band until 1989.

Australia had several government and military assignments in this frequency range. When they opened the band to VK hams, they merely identified certain small spots as "off limits" to Amateur operation. Our govern-
antenna cut to the dimensions shown in fig. 2. Even if you can't transmit on these bands, I urge you to listen, just to get the "feel" of propagation in these interesting portions of the radio spectrum.

WOSVM's mini-dipole

Amateurs have used miniature antennas on 40 meters for years. The smallest antenna that comes to mind is the loaded 40 -meter mobile whip. Some hams who've placed two of them back-to-back to form a compact dipole (about 16 feet long) have found that the mini-antenna works quite well if it's mounted up in the air.

Even so, the 16 -foot antenna is still too big for some hams who are unlucky enough to be handicapped by location. How about an indoor 40meter antenna?

Jack Sobel wrestled with this idea for some time and finally came up with the antenna shown in fig. 3. He decid-

fig. 2. A "quickie" dipole for 10,18 , or 24 MHz . Feedtine is wound into choke at point it attaches to antenna. Waterproof coax end at antenna.
ment could do the same thing if it wanted to!

The $24-\mathrm{MHz}$ band (24.89 to 24.99 MHz) is in good use and, as the sunspot cycle rises, will quickly become one of the better DX bands. Overseas $D X$ signals pound in, even from stations running low power. Make sure you operate this band during the fall and winter DX season!

You can get on the 10, 18, and $24-\mathrm{MHz}$ bands quickly with a dipole
ed to use a long, thin radiating coil, or helix. Many hams frown on the helix antenna, but Jack and others have had good luck with the configuration.

Since material was at hand to make an antenna about 2 feet long, he decided this length would be a good place to start. The idea was to wind the antenna into a helix, or coil, and then place a matching coil at the center. Because the radiation resistance of the helix was bound to be
very low, Jack chose a tapped matching coil technique to approximate a match to a 50 -ohm line. And since antenna Q would be very high, he decided to use a Transmatch at the station end of the transmission line.

construction details

The antenna can be wound on a cardboard mailing tube. Coils L1 and $L 2$ are 10 inches long and wound at six turns per inch (60 turns per coil of No. 12 AWG insulated wire). Coil L3 is 5 inches long and wound at six turns per inch (30 turns) of No. 12 tinned wire. Coil L3 is wound in the direction opposite to the direction in which coils L1 and L2 are wound. The braid of the coax line is attached to the center point of L3, and the center conductor is tapped out until a match is found to provide the lowest value of SWR at the resonant frequency of the antenna. Resonance is established with the aid of a dip meter before the antenna is attached. The tap point is about $2 / 3$ the distance from the center to one end of L3. (The exact point depends upon the coupling between the antenna and nearby objects and the exact spacing of the windings.)

The antenna is fed with an electrical half-wavelength of RG-58/U coax. The line can be coiled up if it's too long to fit the available space.

The passband of the antenna is quite sharp, and if operation across the 40-meter band is desired, a Transmatch is necessary at the transmitter end of the line.

The antenna should be sprayed with a transparent polyurethane material or "corona dope" (a cellulosic resin such as General Cement's No. 10-4702). So far, the antenna has been run only at low power levels; since there may be danger of corona discharge at the outer ends of the windings, it's best to use the spray coating to help prevent this.

The antenna should be mounted as high in the air as possible and placed in a position where it can't be touched. There's very high rf potential at the ends of the little antenna, and an unsuspecting person could get a nasty rf

fig. 3. The mini-antenna of WOSVM. Adjust coax tap for best SWR at resonance.

burn during transmitter operation.
If more space is available, two mailing tubes can be epoxied together and the turns-per-inch increased so that the antenna covers more length along the longer tube. The winding will have to be readjusted to frequency with a dip meter if this change is made.

So far, Jack's contacts have been limited to a few hundred miles on 40 meters. He says it isn't as good as a full-size dipole, but it's small and can be used in an apartment.

a communications speaker system

Tired of listening to that annoying high-frequency "monkey chatter" that
seems to sneak through the receiver filter system? It can be extremely tiring, especially in a DX contest. The VK boys seem to have a handle on that problem. Rodney Champness, VK3UG, writing in the March, 1987, issue of Amateur Radio, the publication of the Wireless Institute of Australia, shows a simple audio filter that can be placed in the speaker line (fig. 4) to substantially reduce frequencies above 2500 Hz . A switch on the filter allows normal wideband reception to be retained.

The $1-\mathrm{mH}$ inductor should be able to carry the audio current in the speaker circuit (something less than 1 ampere).
ham radio

Yaesu's FT-736R. Becauseyou neverknow whós listening.

Why just dream of talking beyond earth?

With Yaesu's new FTT736R VHF/UHF base station, you can discover some of the best DX happening in ham radio. Via moonbounce. Tropo. Aurora. Meteor scatter. Or satellites.

You see, the FT7736R is the most complete, feature-packed rig ever designed for the serious VHF/UHF operator. But you'd expect this of the successor to our legendary FT-726R.

For starters, the FT736R comes factory-equipped for SSB, CW and FM operation on 2 meters and 70 cm (430-450 $\mathrm{MHz}!$), with two additional slots for optional $50-\mathrm{MHz}, 220-\mathrm{MHz}$, or $1.2-\mathrm{GHz}$ modules.

Crossband full duplex capability is built into every FT736R for satellite work. And the satel-

lite tracking function (normal and reverse modes) keeps you on target through a transponder:

The FTT736R delivers 25 watts RF output on 2 meters, 220 MHz , and 70 cm . And 10 watts on 6 meters and 1.2 GHz . Store frequency, mode, PL frequency, and repeater shift in each of the 100 memories.

For serious VHF/UHF work, use the RF speech processor: IF shift. IF notch filter. CW and FM wide/narrow IF filters. VOX. Noise blanker: Threeposition AGC selection. Preamp switch for activating your
tower-mount preamplifier: Even an offset display for measuring observed Doppler shift on DX links.

And to custom design your FT7736R station, choose from these popular optional accessories: lambic keyer module. FTS-8 CTCSS encode/decode unit. FVS-1 voice synthesizer. FMP-1 AQS digital message display unit. 1.2-GHz ATV module. MD-1B8 desk microphone. E-736 DC cable. And CAT (Computer Aided Transceiver) system software.

Discover the FT736R at your Yaesu dealer today. But first make plenty of room for exotic QSL cards. Because you never know who's listening.

YAESU

We Serve Hams Better With DISCOUNT Prices

ege

EGE VIRGINIA
14803 Build America Drive, Bldg B Woodbridge. Virginia 22191 intormation (703) 643-1063 Service Dept: (703) 494-8750 Store Hours M-Th $10-6$ F $10-8$
Sat $10-4$
Order Hours M-F 9-7 Sat $10-4$
EGE NEW ENGLAND
8 Stiles Road
Salem. New Hampshire 03079 New Hampshire Orders, info \& Service (603) 898-3750
Store Hours. MTuWF 10-5 Th: 10-8
Sat $10-4$

- Order $\$$ we 'll credit you $\$ 1$ for the cail

Out associate store:
Davis \& Jackson Rd., P. O. Box 293 Lacombe, Louisiana 70445 Info \& Service: (504) 882-5355

What one piscovte

Terms: No personal checks accepted Prices do not incluate stropoung UPS COD tee \$2.35 per package. Prices are subject to change without notice or obligation Products are not sold for evaluation Authonved returns are subject to a 15% restocking and handling tee and credit will be issued for use on your next purchase EGE supports the manulacturers' warranties to get a copy of a warranty proot to purchase catl customer service at 703.643-1063 and it will be furnushed at no cost

Winter Buyer's Guide/Catalog Available-Send \$1.

Antennas

Amateur HF Bands
Cusheraft, Butternut, KLM.
Mosley, Hy-Gain, Mini-
Products, B\&W, Van Gorden Hustler, Larsen, Antenna Specialists. Centurion. Smiley
Antennas in Stock
for Mobiles, Base Stations, and Handhelds

Everything from mini rubber duckies to huge monobanders

ASK FOR PACKAGE DEALS ON ANTENNAS AND ACCESSORIES

Also.

Antennas for Scanners, CBs Marine, Commercial, and Short Wave Listening

FT 727R
$2 \mathrm{~m} / 440 \mathrm{MHz}$ Dual Band HT

FT 767GX
All Mode Transceiver with CAT System

NEW
FT 757GX Mark II
HF Transceiver with General Coverage Receiver

FRG 9600
Scanning Receiver
for $60.905 \mathrm{MHz} \mathrm{FM} / \mathrm{AM} / \mathrm{SSB}$

Towers

UNARCO-ROHN

 TRI-EX HY-GAINAsk for package quotes on complete tower assemblies inciuding Phillystran, guy wire, antennas, rotators, etc

ROTATORS

Kenpro, Alliance, Daiwa, Telex Hy-Gain

IC 3200

IC 275A
All-mode Transceiver

R 7000
General Coverage Receiver

Micro 2AT
Mini $2 m$ Handheld
IC 02AT/03AT/04AT
Handheld for $2 \mathrm{~m} / 220 / 440$

Computer Stuff

Packet Controllers Kantronics and MFJ

Amateur Software
Ham Data Software for Commodore Computers Ask for Descriptions

RTTY/Morse/Amtor
Hardware and Software and packages by Kantronics, Microlog. HAL, MFJ, \& more

TS 440 S
HF Transceiver with Antenna Tuner

TS.940S
HF Transciver with General Coverage Receiver

TM 221A/321A/421A

New Improved TH 215AT 2 m Handheld

TH 21BT/31BT/41BT Mini Handhelds for $2 \mathrm{~m} / 220 \mathrm{MHz} / 440 \mathrm{MHz}$

R 5000
General Coverage Receiver
Accessories

AMPLIFIERS

Vocom. Daiwa, TE Systems. Amp Supply. Mirage. Alinco Ameritron. Tokyo Hy-Power, RF Concepts

ANTENNA TUNERS

 Amp Supply. Ameritron, MFJ Switches. Couplers, Filters, Connectors, Mikes, Keyers, Paddles, Headsets, Clocks, Books, Power Supplies

Corsair II Model 561 HF Transceiver

Paragon
Amateur Transceiver with General Coverage Receiver

ALR-22T
Compact 2 m Mobile

MoreRadios

KDK

FM 2402 m Mobile SONY Receivers REGENCY BEARCAT Scanners MIDLAND CB Radios COBRA
CBs, Radar Detectors, Phones UNIDEN
CBs. Radar Detectors WHISTLER
Radar Detectors

COMMUNICATIONS RECEIVERS

```
THE VACUUM TUBE ERA: 50 GLOROUS YEARS 1932-1981
```

- Book covers industry history
- Specs on 700 receivers
- 51 company histories
- 112 photos
- For collectors. connoisseurs and admirers of receivers
$\$ 14.95$ plus $\$ 2 \mathrm{P} / \mathrm{S}$, SASE for details.

RSM Communications Box $218-\mathrm{H}$. Norwood, MA 02062

This publication is available in microform from University

Please send information about these titles:

Name

Company/Institution

Address

Caly \qquad
State \qquad

Phone 1
Call toll-free 800-521-3044. In Michigan.
Alaska and Hawai call collect 313-761-4700. Or maii inquiry to University Microfilms international. 300 North Zeeb Road, Ann Arbor, MI 48106.

Now that you can speak, talk to Larsen.

Novice Enhancement opens up a whole new way for novices to communicate. To make the most of it, talk to Larsen Electronics.

We'll tell you how Larsen antennas can greatly improve your powers of communication. We'll also explain how Larsen 220 and 1296 MHz antennas are designed to give you the best performance.

Talk to your Larsen amateur dealer today, and see if Larsen performance doesn't speak for itself.

Larsen Antennos

The Amateur's Professional

See your favorite amateur dealer or write for a free amateur catalog
IN USA: Larsen Electronics, Inc., 11611 N.E. 50th Ave., P. O. Box 1799, Vancouver. WA 98668. 206-573-2722 IN CANADA: Canadian Larsen Electronics, Ltd., 149 West 6 th Avenue. Vancouver, B.C. V5Y 1K3. 604-872-8517.

1142

Iron Powder and Ferrite TOROIDAL CORES

Shielding Beads, Shielded Coil Forms Ferrite Rods, Pot Cores, Baluns, Etc.

Small Orders Welcome
Free 'Tech-Data' Flyer

AMIDه́N
 - ssociates

Since 1963
12033 Otsego Street, North Hollywood, Calif. 91607

In Germany Eiektianikiaden Witheim - Meilies Sir 884930 Detmoid 18 West Germany
In Japan Toyomura Electronics Company, Lid 7.9 2-Chome Sota-Kanda Chiyoda-Ku. Tokyo, Japan

here is the next generation Repeater
 2 meters - 220-440

MARK 4CR

No other repeaters or controllers match Mark 4 in capability and features. That's why Mark 4 is the performance leader at amateur and commercial repeater sites around the world. Only Mark 4 gives you Message Masterim real speech - voice readout of received signal strength, deviation, and frequency error - 4channel receiver voting - clock time announcements and function control - 7helical filter receiver - extensive phone patch functions. Unlike others, Mark 4 even includes power supply and a handsome cabinet.

Call or write for specifications on the repeater, controller, and receiver winners.

The only repeaters and controllers

 with REAL SPEECH!
MICRO CONTROL SPECIALTIES

Division of Kendecom Inc.

23 Elm Park, Groveland, MA 01834 (617) 372-3442

Create messages just by talking. Speak any phrases or words in any languages or dialect and your own voice is stored instantly in solid-state memory. Perfect for emergency warnings, club news bulletins, and DX alerts. Create unique ID and tail messages, and the ultimate in a real speech user mailbox - only with a Mark 4.

TELEX 4932256 Kendecom

BLACK DACRON ${ }^{\text {® }}$ POLYESTER ANTENNA ROPE

- UV-PROTECTED
- HIGH ABRASION RESISTANCE
- REQUIRES NO EXPENSIVE POTTING HEADS
- EASY TO TIE \& UNTIE KNOTS
- EASY TO CUT WITH OUR HOT KNIFE
- SIZES: 3/32" 3/16" $5 / 16^{\prime \prime}$
- SATISFIED CUSTOMERS DECLARE EXCEL. LENCE THROUGHOUT U.S.A.

LET US INTRODUCE OUR DACRON* ROPE TO YOU • SEND YOUR NAME AND ADDRESS AND WE'LL SEND YOU FREE SAMPLES OF EACH SIZE AND COMPLETE ORDERING INFORMATION

Dealer Inquiries Invited In Australia contact AIN Antennas. Bicchip. Victoria

617-373-7304

NEW LOCATION! BILAL COMPANY
137 Manchester Dr. Florissant, Colo. 80816 (303) 687-0650

PRACTICALLY SPEAKING
 ... $)^{\text {as }}$
 KAIPV

using voltage comparators

A voltage comparator is basically an operational amplifier (or derived from the op amp) that has no negative feedback network (see fig. 1A). The openloop gain of the op amp is very high - on the order of 50,000 at the low end to more than $1,000,000$ for many devices. Thus, with no negative feedback the operational amplifier functions as a very high-gain amplifier with an output that saturates with only a few millivolts input potential. For example, with a gain of 100,000 , and a maximum output potential of 10 volts, the amplifier will saturate with only 10 volts $/ 100,000$, or $0.1-\mathrm{mV}$ input.

So what use is an amplifier that saturates with only a few millivolts of input voltage? The comparator is used to compare two input voltages and generate an output that denotes their relationship. In fig. 1A, potential V_{1} is applied to the inverting input, and V_{2} is applied to the noninverting input. If $V_{1}=V_{2}$, then $V_{0}=0$. Otherwise, the output voltage obeys the relationships shown in fig. 1B. The transfer function of the comparator is shown in fig. 1B. According to the normal rules for operational amplifiers, when V_{1} is larger than V_{2} (see fig. 1A), it looks as if a positive input has been applied to the inverting input, so the output potential saturates at V -. Alternatively, when V_{1} is smaller than V_{2}, it looks like a negative input potential, so the output is $V+$.

Typical Amateur examples include
over- and under-deviation alarms on repeater receiver detector outputs, and over-temperature alarms for electronic equipment. For example, some form of alarm is needed at unattended repeater sites. The comparator can be used to let the control operator know by telephone or radio telemetry link that something is amiss. Other applications will occur to most readers in the light of their own special needs.

There is a small hysteresis band around zero, however, where no output changes occur. This is an unfortunate defect in practical op amps, and seems to fly in the face of the theory when that hysteresis band is larger than the potential needed to saturate the output terminal.

Several years ago, while working in a hospital electronics lab, I measured the hysteresis band on a number of operational amplifiers and IC comparators (LM-311). Not surprisingly, the 741 -family devices had terrible hysteresis levels, on the order of 25 mV . The LM-311 devices had 8- to $10-\mathrm{mV}$ hysteresis, which surprised me. Also surprising was the fact that then-premium devices such as the $\mu \mathrm{A}-725$ had 10 to 20 mV of hysteresis (1 haven't tested modern high-performance units). The overall best device was a non-premium device that is readily available to Amateurs and other hobbyists: the CA-3140 (a BiMOS operational amplifier), which uses the industry standard " 741 " pinouts, as shown in fig. 1A.

The LM-311 device (fig. 2A) is a low-cost voltage comparator in IC form. Although based on op amp cir-

fig. 1. (A) Simplified diagram of voltage comparator; (B) comparator transfer characteristic.

OMAI COMM INC.

GAAS-FET PREAMIPS

SSB ELECTRONIC, WEST GERMANY

The SSB Electronics preamplifiers represent a real progress in preamplifier design. Both the MV144S and MV4232S preamps use genuine microwave GAAS-FETS.

The input circuit transformation results in exceptionally low noise figures with overall gain of preamps being internally adjustable from 15 to 25 dB . The MV144S and MV432S are built in a solid aluminum case with stainless steel hardware throughout, with flanges of coax connectors and fastening screws coated with silicone grease to prevent corrosion. A MV1296S model is also available.

The DCW15A sequencer contains an electronically timed controller that delays the turn of a power amplifier until the preamp has turned off. Power for the preamps is supplied automatically thru the coax cable. The sequencer is switched thru the push to talk line of the T / R, with additional relay outputs.

SPECIFICATIONS

MV144S01	2 Meter GAAS-FET Preamp
Freq. Range	$144-146 \mathrm{MHz}$
Noise Figure	0.5 dB
Gain (internal adjustable)	$15.25 d B$
Max Thru Power	1000 watts
Connectors	N female
Max Mast Dia. Mount	$58 \mathrm{MM}\left(21 / \mathrm{m}^{\text {") }}\right.$)
	Price $\$ 199.00$
MV432S01	432 MC GAAS.FET Preamp
Freq. Range	$430-440 \mathrm{MHz}$
Noise Figure	0.7 dB
Gain (internal adjustable)	$15-25 \mathrm{~dB}$
Max Thru Power	500 watts
Connectors	N female
Max Mast Dia. Mount	58 MM ($21 / \mathrm{m}^{\prime \prime}$)
	Price $\$ 199.00$
DCW15A Sequencer Controller	
Max Thru Power	$2 \mathrm{M}-1000$ watts
	432.500 watts
	23 CM 200 watts
Insertion Loss	Less than 0.10B
Operating Voltage	13.8 VDC @ 400 MA
	(internal fuse)
	Price $\$ 79.00$

Val Comm/nc., is the authorized U. S. Distributor for sales and service of SSB electronic's products. We are presently importing all of th product line which includes preamps, sequencers, convertors and transvertors for the VHF/UHF and microwave bands. Serious weak signal operators demand the best

fig. 2A. LM-311 voltage comparator.
fig. 2B. Zeners improve transfer characteristic and speed, and limit output voltage of the comparator.
cuitry, this device is specifically designed as a comparator. Contrary to op amp practice, it has a ground terminal (pin 1) and requires an output pull-up resistor (R) to a positive voltage. The output terminal can drive loads such as relay coils, lamps, and LEDs to potentials of 40 to 50 volts (depending upon the type of device) and 50 mA . If the LM-311 is operated for compatibility with TTL digital logic, the pull-up resistor should be terminated at a +5 VDC potential, and R should be 1 to 3.3 k .

A means for limiting the output level, improving the sharpness of the transfer function corners (see fig. 1B), and improving speed by reducing latch-up problems, is shown in fig. 2B. In this circuit, two zener diodes are connected back-to-back across the output line. When the output voltage is HIGH, it is then limited to $V_{Z 1}+0.7$ volts; when LOW, it is $V_{Z 2}+0.7$ volts. These potentials represent the zener voltages of $C R_{1}$ and $C R_{2}$, plus the normal forward-bias voltage drop of the alternate diode.

Figure 3 shows a means for increas-
ing the drive capacity of the comparator. In this circuit a switching transistor (a 2N3704, 2N2222, etc.) is used to control a larger load such as the relay coil shown here. The output voltage (V_{0} of the comparator) is used to set up the bias for the NPN transistor. When the comparator output is HIGH, the transistor is biased hard-on and the load is grounded. Alternatively, when the comparator output is LOW, the transistor is reverse biased and the load remains ungrounded.

The diode across the relay coil is essential for any inductive load. When the magnetic field surrounding a coil collapses the counter EMF generates a high-voltage spike that is capable of damaging components or interrupting circuit operation (especially digital circuits). Though the diode is normally

fig. 3. Addition of switching transistor allows higher current loads to be controlled.

fig. 4. Two methods of reducing the hysteresis band effect: zero offset control and current mode operation.

fig. 5. Zero crossing detector circuit and waveforms.
reverse biased, it is forward biased for the counter EMF spike. The diode therefore clamps the spike to about 0.7 volts.

Figure 4 shows two methods. One is a zero-offset control used to reduce the effects of the hysteresis band, while the other is the so-called current mode. The offset control $\left(\mathrm{R}_{4}\right)$ slightly biases one input to a non-zero level so that it's ready to trip when the other input is non-zero. In this particular case the inverting input is grounded $\left(\mathrm{V}_{2}=\right.$ 0), but could as easily be a non-zero voltage.

Current mode operation is usually faster and less prone to latch-up than voltage mode. For this reason, current mode comparators are sometimes used in high-speed analog-to-digital converters (A/D). Assume that the noninverting input is grounded. In this case, the output potential V_{0} will reflect the relationship of the two currents. If $I_{1}=I_{2}$, then $V_{0}=0$. This circuit is, to the outside observer, a voltage comparator in that $I_{1}=V_{1} / R_{1}$ and $I_{2}=V_{2} / R_{2}$. Of course, it's also useful for current output devices such as the LM-334 temperature monitor IC.

fig. 6. Window comparator triggers on two different reference levels being exceeded.

Figure 5 shows a zero-crossing detector circuit. In this case a comparator is connected with its noninverting input grounded. When $\mathrm{V}_{\text {in }}$ is non-zero, then the output will also be non-zero. But when the input voltage crosses zero, the output briefly goes to zero, producing the differential output pulse shown.

A window comparator is shown in fig. 6. This circuit consists of two comparators connected so that one or the other input is activated when the input voltage ($\mathrm{V}_{\text {in }}$) exceeds either positive or negative limits. The limits are determined by setting V_{1} or V_{2} reference voltages. An over- and underdeviation alarm, as heard on some repeaters, is a possible application for this circuit. The output of the fm demodulator is a voltage that is proportional to deviation, so this circuit is a natural for that use (although the demodulator voltage will probably require some amplification). The circuit is also used for over- and under-temperature alarms, and other such applications where a range of permissible values exists between two forbidden regions.

Figure 7A shows a method for biasing either input to a specific reference voltage. Although in this case the noninverting input is biased and the inverting input is active, the roles can just as easily be reversed. Two methods of biasing are used: resistor voltage divider and zener diode. If R_{2}
is replaced with a zener diode, then the reference potential is the zener potential. In that case, R_{1} is the normal current-limiting resistor needed to protect the zener from self-destruction. In the case where a resistor voltage divider is used, the bias voltage V_{1} is set by the voltage divider equation:

$$
\begin{equation*}
V_{1}=\frac{R_{2}(V+)}{R_{1}+\frac{R_{2}}{2}} \tag{1}
\end{equation*}
$$

For example, suppose $R_{1}=R_{2}=$ 10 k , and $\mathrm{V}+=12 \mathrm{VDC}$:

$$
V_{I}=\frac{(10 k)(+12 V D C)}{(10 k+10 k)}
$$

$$
V_{I}=\frac{120 \text { volts }}{20 k}=6 \mathrm{volts}
$$

fig. 7. (A) Method of biasing comparator to a specific reference voltage; (B) overtemperature sensing circuit is biased by R_{1} / R_{2} resistor combination.

Figure 7B shows an over-temperature circuit based on fig. 7A. In this circuit the inverting input is biased by R_{1} / R_{2}, while the noninverting input is set by another voltage divider, $\mathrm{R}_{4} /$ RT_{1}. Resistance RT_{1} is a thermistor, which has a resistance proportional (or inversely proportional in some types) to the temperature. Potentiometer R_{4} is used to set the trip point temperature. The values of the resistors depend upon the set trip point desired and the resistance of the thermistor over the range of temperatures being monitored.

an invitation

I'd like to hear what you think of this column. I also welcome your suggestions for future topics. You can reach me at P.O. Box 1099, Falls Church, Virginia 22041.
ham radio

CONFERENCE PROCEEDINGS

21st Central States VHF Society Conference held in Arlington, Texas, July 23-26, 1987. 28 papers covering everything from use of TVRO dishes for moonbounce to a solid state amplifier for 5.7 GHz . 166 pages.

6th ARRL Computer Networking Conference held in Redondo Beach, California, August 29, 1987. 29 papers (approximately 150 pages) will appear in the proceedings booklet. Copies will be available at the conference or from ARRL after Sep. tember 1.

MICROWAVE UPDATE 1987 held in Estes Park, Colorado, September 1013, 1987. 15 papers (approximately 100 pages) appear in the proceedings booklet. Copies will be available at the conference or from ARRL after September 14.

Proceedings booklets are $\$ 10.00$ each plus $\$ 2.50$ per order for postage and handling ($\$ 3.50$ for UPS.)
the american radio relay league 225 MAIN ST.
NEWINGTON, CT 06111

Now you can have the BEST in a radio data communications terminal with the NEW DS-3200.

Recognizing the chief weakness of previously available computer-based terminals is RFI generation and susceptibility, HAL has designed the fully-shielded DS3200 for operation in the radio data communications environment. No longer do you have to QRT when that rare DX station's signal dips near the noise level!

The DS-3200 is provided with an extensive RTTY software package which emulates the operation of our MPT3100/DSK3100 combination for message processing and handling. Continuous save to disk of all received text, direct transmission of selected files from disk, and full editing capability are just a few of the features of this "user-friendly" software package. Plus, we have included the latest release of MS-DOS with GW BASIC!

The built-in RS-232C serial port allows the use of the DS-3200 with an external demodulator such as the HAL ST-5000, ST-6000, or ST-8000. Or, add the HAL PCl-2000 for a completely self-contained RTTYICW terminal and demodulator. Also, with the use of a second RS-232C serial port the DS-3200 can be used with your favorite TNC on Packet!

The DS-3200 with its IBM PC XT-style architecture gives you virtually unlimited flexibility for future expansion. Here is a list of just some of its hardware features: 8088 CPU, 640KB RAM, RS-232C Serial Port, Parallel Printer Port, Clock/Calendar with Battery Back-Up, Two 360KB Floppy Disk Drives OR One 360KB Floppy and One 20MB Hard Disk Drive, HERCULES-compatible Monochrome Graphics Adapter with High-Resolution 12 Inch Monochrome Video Monitor.

The DS-3200 is THE choice for modern radio data communications.

Write or call for complete specifications on the NEW DS-3200.

HAL Communications Corp.
Government Products Division Post Office Box 365

Trademarks:
IBM. International Business Machines Corporation
MS-DOS. Microsoft Corporation
GW BASIC. Microsoft Corporation
Urbana, IL 61801
(217) 367-7373 TWX 910-245-0784

TOP-OF-THE LINE HF TRANSCEIVER
GREAT PRICE, CALL
KENW/OOD
TM-3530A

The First Comprehensive 220 MHz FM Transceiver.

> ARE YOU READY FOR 220 MHz OPERATION?

Gordon West's

21 DAY NOVICE

$\$ 19.95$

CODE TAPES - 112 PAGE BOOK - BANDS CHART RUL FCC FOAMS - SAMPIE TESTS - PLUS MOREI

- $\$ 70$ in equipment certificotes from ICOM, KENWOOD, \& YAESU.
- Hom rodio equipment "Wish Books"
- ARRL membership forms.
- Hotine for student questions.
- Course completion certificote.

MA-40 40. TUBULAR TOWER s745 SALE! \$549

MA-550 55. TUBULAR TOWER S4245SALE! \$899

- Handles 10 sq .t. at 50 mph - Pleases neighbors with tubular streamlined look

-TX-455

55' FREESTANDING
CRANK-UP

- Handles 18 sq ft at 50 mph
- No guying required
- Extra-strength Construction
- Can add raising and motor drive accessories

Munem IN STOCK FOR QUICK DELIVERY OTHER MODELS AT GREAT PRICES

Alpha Delta Model DELTA-4

Lightning Surge Protected 4-Position RF Coax Switch

- Exclusive center "off" (ground) B,A, A A A A position.
- Uses ceramic Arc-Plug* ${ }^{*}$ protector.
- Micro-strip circuitryno wafer switch.
Model DELTA-4
(UHF Connectors) $\$ 69.95$
Model DELTA-4/N
(N-type Connectors) $\$ 89.95$
FREE SHIPMENT
MOST ITEMS UPS SURFACE

HEOHIMON
GLOBAL TIME INDICATOR

- Detailed illuminated map shows time, time zone, sun position and day of the week at a glance tor any place in the world
- Continuousty moving - areas of day and night change as you watch
- Mounts easily on a wall Size. $34 / \mathrm{N}^{\prime} \times 221 \mathrm{~s}^{\prime}$
\$1295 DELIVERED IN U.S.

FT-727R
5w, Dual Band $2 \mathrm{~m} / 440 \mathrm{MHz}$ Enhanced Version GREAT PRICE!

 I N AR 30 w in. 160 w out with low-noise preampl MODEL 2M30-160p for 2 meters SALEI
$\$ 219.95$

From the Originator of the QUALITY VHF AMP/PREAMP COMBO!

2 METERS	220 MHZ	$\mathbf{4 4 0} \mathbf{M H Z}$
2M2-100P	$13 \mathrm{M} 2-80 \mathrm{P}$	$70 \mathrm{CM} 2-50 \mathrm{PG}$
2M4-40P	$13 \mathrm{M} 4-30 \mathrm{P}$	$70 \mathrm{CM} 10-100 \mathrm{PG}$
$2 \mathrm{M} 10-80 \mathrm{P}$	$13 \mathrm{M} 10-80 \mathrm{P}$	$70 \mathrm{CM} 30-100 \mathrm{PG}$
$2 \mathrm{M} 30-160 \mathrm{P}$	$1.3 \mathrm{M} 30-140 \mathrm{P}$	

2 METERS
$2 M 2-100 \mathrm{P}$ 2M2-100P
2M4-40P 2M10-80P 2M30-160P

13M2-80P $\quad 70 \mathrm{CM} 2-50 \mathrm{PG}$ $13 \mathrm{M} 4-30 \mathrm{P} \quad 70 \mathrm{CM} 10-100 \mathrm{PG}$ 1. $3 \mathrm{M} 10-80 \mathrm{P} \quad 70 \mathrm{CM} 30-100 \mathrm{PG}$
$1.3 \mathrm{M} 30-140 \mathrm{P}$

Full Line Now Includes UHF Models with GaAs FET PREAMP

A. Microwave Associates 10 GHz Gunnplexer. Two of these transceivers can form the heart of a 10 GHz communication system for voice, mew, video or data transmission, not to montion mountaintop DXing! MA87141-1 (pair of 10 mW transceivers) $\$ 251.95$. Higher power units (up to 200 mW) available. B. Microwave Associates 24 GHz Gunnplexer. Similar characteristics to 10 GHz unit. MA87820-4 (pair of 20 mW transceivers) $\mathbf{\$ 7 3 9 . 2 0}$. C. This support module is designed for use with the MA87141 and MA87820 and provides all of the circuitry for a full duplex audio transcelve system. The board contains a low-nolse, $30-\mathrm{MHz} \mathrm{fm}$ recelver, modulators for voice and mow operation, Gunn diode regulator and varactor supply. Metor outputs are provided for monitoring recelved signal levels, discriminator output and varactor tuning voltage. RXMR30VD assembled and tested $\$ 119.95$. D. Complete, ready to use communication system for volce or mew operation. Ideal for repeater linking. A power supply capable of delivering 13 volts dc at $\mathbf{2 5 0 ~ \mathrm { mA }}$ (for a 10 mW version), microphone, and headphone and/or loudspeaker are the only additional Items needed for operation. The Gunnplexer can be removed for remote mounting to a tower or 2 or 4 foot parabollc antenna. TR1gGA $(10 \mathrm{GHz}, 10 \mathrm{~mW}) \$ 399.95$. Higher power units available. TR24GA $(24 \mathrm{GHz}$, $\mathbf{2 0 ~ m W}$) $\$ 639.95$. Also avaliable: horn, 2 and 4 foot parabollc antennas, Gunn, varactor and detector diodes,
search and lock systems, osclliator modules, waveguide,
flanges, etc. Call or write for additional information. Let Receiver Rescarch

Amateur Radio Baluns-
Traps-Remote Coaxial Switches Or Write To:
UNADILLA DIV. of ANTENNA'S ETC. P.O. Box 215 BV ANDOVER, MA. 01810 617-475-7831

Become a DeVry VE
 DeVry VE teams have the

 advantage of:- Personalized service
- Quick Accreditation
- Free test generation software
- Out-of-pocket expense reimbursement
- Use of 800 number to communicate with the VEC
- Generating their own examinations

Contact: Jim Georgias, W9JUG DeVry VEC
3300 No. Campbell Avenue Chicago, IL. 60618 (312) 929.8500
(800) 327-2444 (outside of Illinois)

- 153

1 KW COUPLER

CU-714/SRA-22 (Collins
180T2) Automatic An-
tenna Coupler for 2-30 MHz transmitters with outputs to 1 KW PEP or 500 W average. Has
 UCSL-465 vacuum
capacitor, variable ribbon inductor, and cooling blower in rugged aluminum enclosure. Operates from common $115 / 230 \mathrm{VAC} 60 \mathrm{~Hz}$ power. Separate controller required. $11.5 \times 18.9 \times 20,46$ lbs sh. Used.
\$149.50;
MANUAL, part-repro ... $\$ 12$ SCHEMATIC only $\$ 4$
"AS-IS" CU-714 less cabinet and blower with broken connector but good UCSL-465 and inductor; $8 \times 6.8 \times 15$. 18 lbs \#CU714-DLC $\$ 99.50$
Prices F.O.B. Lima, O. VISA, MASTERCARD Accepled. Allow for Shipping. Write for latest Catalog Supplement Address Dept. HR - Phone 419/227-6573
FADR RABE SALES 1016 E. EUREKA . Box 1105 - LIMA, OHIO. 45802

DX FORECASTER

Garth Stonehocker, K0RYW

winter DX

With the fall DX season (September and October) behind us, the winter DX season (November through February) is about to begin. Wintertime DX is characterized by:

- Better signal strengths on all bands most of the time - but especially during daytime on the lower frequencies, particularly in low sunspot years. - Nighttime DX openings earlier in the evening.
- More frequent transequatorial paths, with higher MUFs and longer distances.
- Lower incidence of local thunder-storm-generated QRN conditions.
- More stable signal strengths and fewer geomagnetic field disturbances.

There are two main reasons for the first four characteristics: the tilting of the Earth's axis away from the sun, which results in shorter, colder days; and less ionization in the lower ionosphere, which results in less energy absorption as signals travel through the D region.
The amount of absorption per hop is related to the zenith angle to the sun at the location of each D region crossing. In working $D X$, it pays to use a higher frequency band to obtain more distance per hop (resulting in fewer transits) for less total signal loss. This is why we generally think of 6,10 , or 15 meters for DXing.
But in winter, particularly near sunspot minimum, we have the opportunity to work DX on the lower frequency bands with lower signal loss, day or night, than at any other time of the year. You can't always count on it,
however; signals traveling a high latitude path may be poor for several days at a time. This is known as the winter anomaly.

Along with lower signal attenuation, ORN decreases as fewer local thunderstorms pass through. As the large thunderstorm areas near the equator move further south, their noise decreases by about 6 to 8 dB . This is particularly noticeable on the 160,80 , and 40 -meter bands.

Even though ion production in the D, E, and lower F regions is lower, ions are better able to diffuse and drift upward along the geomagnetic field lines into the F region. This layer is the major factor in defining the maximum usable frequency and maximum on each side of the geomagnetic equator, as shown in my October, 1983, column. These maximums, which are reached most evenings at about 2200 local time, eliminate one whole earth bounce and its accompanying doubleD region transits for one-long-hop propagation.

The fifth characteristic of winter DX conditions - the increased stability of signal strengths and the decrease in the number and intensity of geomagnetic field disturbances -- is attributable to the eccentricity of the Earth's orbit. When the Earth is closer to the sun, the solar flux pressure on the magnetosphere surrounding the earth tends to hold the magnetosphere steadier. This means that the geomagnetic field is least disturbed during November and December. This manifests as least variation of the magnitude and direction
of the geomagnetic field lines in an hour's time, translating into fewer periods of OSB during these months.

last-minute forecast

The higher-frequency bands are expected to be best during the first two weeks of the month because of the probability of higher solar flux at that time. The new 11 -year solar cycle is also expected to be well underway, with higher solar flux from the more active regions. More potent geomagnetic storms may accompany this increased activity, but they're not really expected during this quiet time of the year and at this point in the sunspot cycle. The most probable times of the month are November 2, 11, and 20. The lower bands are expected to be best the third week of the month. Thanksgiving weekend should be a good one for the whole frequency range.

The Taurids meteor showers will occur from October 26 to November 22, with a maximum count of ten per hour from the 3rd through the 10th of November. Lunar perigee is on the 5 th.

band-by-band summary

Ten and twelve meters, the highest day-only DX bands, are nearest the MUF for southern hemisphere paths. They will be open most days when the solar flux is above 75 during the 3 - to 5 -hour period centered on local noon. These bands open on paths toward the east and close toward the west. The paths are up to 4000 km (2400 miles) in single-hop length, and on occasion double that during evening transequatorial openings.

Fifteen meters, a day-only DX band open most of each day, has lower signal strengths and greater multipath variability than 10 and 12 meters. It will be best when the MUF is resting just above this band, until it drops below it - a transition period that occurs

[^0]"Look at next higher band for possible openings.

PACKET RADIO

'You can't Lose when you buy an ORIGINAL"

Since you can't buy a TAPA TNC 2 kit anymore, we feel our Licensed copy of their design is the next best thing. Our TNC II is an EXACT copy of TAPR's with all its jumpers and a modem disconnect installed. We use only premium components like GOLD dual - beam IC sockets and a battery socket. You'll be assured tha our Quality, Reliability, Style is like no other.
-Standard RS-232 computer interface

- 1200 baud FSK modem wlinput filter
- TAPR documentation - EASY hookup
- 12 vdc powered, CMOS available

The WORLDWIDE Standard $\cdots \cdots-\overline{169}$

- ASSEMBLED
169°
Includes the following EXTRAS
48 hour burn-in, 1 year "replacement" guarantee FREE SHIPPING (UPS BROWN to 48 USA States)
Gare Board and
Oare 8oard and Manuals
(Includes version 1.1.4 soltware)
$g^{n *}$
DON'T FORGET . WE ALSO SUPPLY:
IBM PC.XT CLONES FROM
(Requires only a monitor and software)
California Packef Concepts P.O. Box 952

Coalinga, CA 93210-1247 209-935-3846
Call M.F. 5 pm to 10 pm PST (Collect for orders)
Telex 6503087918 (via Western Union Interface)
California addresses must add 6% IBM is a registered trademark of International Business Machines

TRANSMISSION LINE TRANSFORMERS

A new ARRL Publication by Dr. Jerry Sevick, W2FMI

NOW AVAILABLE!

Despite the popularity of transmission line transformers in both commercial and amateur applications, little practical design information has been published concerning these devices. The lack of data was made abundantly clear to Jerry Sevick, W2FMI when he began designing matching transformers for the short vertical antennas that are the subject of his classic series of articles that appeared in QST. In order to fill in the gaps of available knowledge, Jerry decided to study the subject of transmission line transformers in depth and the results of his findings are contained in this new ARRL publication!

Transmission Line Transformers covers types of windings, core materials, fractional-ratio windings, efficiencies, multiwinding and series transformers, baluns, and limitations at high impedance levels. There is also a chapter on practical test equipment. This book is must reading for everyone interested in antenna and transmission line theory. Copyright 1987, 128 pages $\$ 10$ hardcover only.
$\checkmark 156$
The American Radio Relay League, Inc 225 Main St., Newington, CT 06111

The RC-850 controller offers your group the most advanced repeater control technology available anywhere. Through ongoing hardware and software enhancements, even our first customers enjoy new features that keep it ahead of the pack. With the 850 , your repeater becomes fully remotely programmable. From command codes to the repeater's operating schedule, virtually everything can be easily changed. Touch-Tone programming from your radio or the phone with synthesized voice readback, or programming from your home computer via modem or packet.

The autopatch supports local and radio-linked remote phone lines, extending your patch coverage to match your RF coverage. You don't even need a phone line at your site! The 250

"The RC-850 Repeater Controller ... still the leader of the pack!"

autodial slots meet everyone's needs, with up to 35 digit storage for personal $\mathrm{MCl} /$ Sprint codes.

The easy-to-use mailbox lets you include phone numbers, times, or frequencies in messages. The controller is so smart, it'll leave you a message if you miss a reverse patch or an alarm.

Selective call capabilities range from CTCSS and two-tone to display paging. so you can always be available without having to listen. Voice
response telemetry lets you remotely meter your site. Its continuous measurements with storage of updated min and max readings let you find out how cold it gets, how high the reflected power reads . . . and when.

Individual user access codes, with callsign ID. offer secure access to selected functions to completely prevent horseplay.

The industry's top-of-the-line controller, now better than ever, for your repeater.

MADGON FALL SHOPPE:

New rigs and old favorites, plus the best essential accessories for the amateur

CALL FOR ORDERS
1 (800) 231-3057
1-713-520-7300 OR 1-713-520-0550
TEXAS ORDERS CALL COLLECT
ALL ITEMS ARE GUARANTEED OR SALES PRICE REFUNDED

EQUIPMENT

New lcom IC 761
Trades wanted
Kenwood TH205AT Kenwood TS 440S/AT loom R7000 $25 \cdot 2000 \mathrm{MHz}$ Icom ic 735
Santec FM $340.220 \mathrm{MH}=25 \mathrm{w}$
Santec FM 240 NT
Mirage Amps rade in yout oid HT

Tokyo Hy Power HL. 1 K AMP, no 4 CX250B

New K Kerwood TM-221A, 45W mobile
VJ Amplitier, VHF, buit in England. I in 100 out

3. $100.5 \cdot 100$	(ea) 24900
10 in 100 out	229.00

10 it 100 out 22900

All models mclude prearm:
Lunar 2M4-40P
10900
Kenwood TW 4 100A

ACCESSORIES

B\&W VIEWSTAR ANTENNA TUNER
8995
Heil BM10 Boom Mike headsel
Tn H 5000A Remote Phone
Stock
Call
Dawa NS660A 30/300/3000 watts
Alinco ELH2300 Excellent buy
Nye MB5.A (for the big boys')
13500

(he big boyst) $\quad 8800$
52900

Antecopl-3 Soor
New Tokyo HC 200A
Astatic MC321 Cartrodge D104 Ten Tec Mohile Swith 3001

1500
1200
ANTENNAS

Isopole 14.4 MHz isopole 4.40 MHz
 Cusherath $124 . \mathrm{WB}(146 \mathrm{MHz})$

4495
5995
Buttermul HF6V 80 10 vertical
HF2V $80 \& 40$ venticat
HF4B
1900
Hustler G7 144
Hustlet 6BTV
11995
13900
ALPHA Delta DX DD
Coax Seal
B8W Dipoles
W2AU W2DU
U
NEW KI.M 12.441. BX
1296 Power Divider
call Dor
6300
200 frall
Less 100 m
39900

6900
G5 RV
38500

OTHER ANTENNAS

Datnond D 130 Discone: 25 1300 MHz Larsen Kulduck

7900
1700
arsen 2M wave telescope ant
Avant AP 1513 G on Glass Antennia
Anteco 2M $5 / 8 \mathrm{Mag}$ Mount Comp
Van Gordor ND 4.4 tand Novice dpole
Valor AB 5 Mobile
DC Tenna Hich 3824 Thenta
Fits 3i4"

PARTS

15 Amp/400V tull wave bridge rectitier $0015 / 10 \mathrm{KV}$ or $001 / 20 \mathrm{KV}$ 3N201
inch temiterod
365 pF cap
Sanyo AAA AA Nicads whats
24.5.6.8 pin mic plugs

1/8, 1/4 watt cartion ressitors
Meter 0.3000 VDC $0-1$ Amp DC 2 $2<$ " Squar
with stivunt
Drake:-Collins mike pluq
Thousands of panet motors MICA Can $004 / 3 \mathrm{KV}$ Diodes 3A 1000 PIV
Duracell 9 Volt Battery 2 Pak MN1604 DCFan 3y " Sq x 1 "
CINCH 12 pin conn fit (Drake ef) ternate Aerovox 1000 pl$/ 500 \mathrm{~V}$ leedthrough caps Mallory 6 valt 4 prong Vibrator PN/600A $100 \mathrm{mtc} / 450 \mathrm{~V}$ Axual Cap Eveready 9 volt batt (216) $01 / 1000 \mathrm{~V}$ Rakitite Molded Caps

84900
31900
31900
840
9900

CD ICOM

ICOM 28H/TTM

39900

AMPHENOL

831 SP PL 259 Siverplate UG176 reducer RG8X 831J Double Female UHF
82.61 N Male
82.97 N Female Bulkhead 30 82.63 inline Femaie N 82.98 N elbow
82. 2021006 N Male for 9913 31.212 BNC RG59 31.216 UG201 AU N N Male BNC Fernale 31.2 BNC-RG58 34025 N Male RG58 34125 N Fernale UHF male 3128 BNC Female-PL 259
4400 N Male SO 239
2900 BNC-SO 239
Coax Elbow 30
200
200

TUBES

Collins \& Drake Replacement fubes
GE 6146B
3.5002

125

GE Industral Tubes
GE 12BY7A
GE 6JS6C
GE 8950
12JB6 Sylvana
Hard to find Tubes 50.9096 off list
6JB6A
6JE6C/6LOE
RCA 6BFS
6KD6
PACKET POWER
AEA PK-232 wht new WX FAX 29900
Kantronics KPC II 14900
MFJ $1270 \quad 119.00$
MFJ 1274 149.00
New Kantronics KAM 29900

SERVICES

Completo K.WM 2 Rotube 17900 Flat fee Collins rebuid Call Wanted - Collins KWS 1 -Mint - Will Pick Up

USED EQUIPMENT

All equipmerti. used clean with 90 day Wartanty and 30 daythal Sixmonthsfulltradeagainst new equpment Sale price refunded it not satisficd

Call for fatest usect gear
(800) 231.3057

IS 430 S IS 830S IS 5205 FT101E and Collus

220 MHz

TH-31BT Small rig small buck:
IC 03AT
TM 3530
Santec FM340.25w new
IC 38A ITM
CALL
(e) CAll POLICIES
Mirimum order $\$ 1000$ Mastercard VISA of C OD All prices FOB Houston except as noted Prices sutyect to change without notice hems subject toptror sale Callany time focheck thestatus of yout order Texas residents add ales lax All ilems lull tactory warranty plus Madison watranty

ค 159

DON'S CORNER

We will
Madison Double Watranty on Kenwood Radios' We will
double Kerwood's 90 day warranty regrardessof who you

3621 FANNIN

HOUSTON, TEXAS 77004
right after sunrise and just before sunset. Transequatorial openings will occur, with distances similar to 10 and 12 meters.

Twenty, thirty, and forty meters are both daytime and nighttime DX bands. Twenty is the maximum usable band for $D X$ in the northern directions during the day. In combination with 30 meters, it provides nighttime paths for the day-only bands. Forty meters becomes the main over-the-pole DX daytime band, with some hours covered by 30 meters. This path may be affected by anomalous absorption during a few days of the month.

Eighty and one-sixty meters, the night-only DX bands, exhibit short-skip propagation during daylight hours, then lengthen at dusk. These bands follow the darkness path, opening to the east just before local sunset, swinging more to the norh-south near midnight, and ending up in the Pacific areas for a few hours before dawn. Remember the DX windows of 3790 to 3800,1825 to 1830 , and 1850 to 1855 kHz .
ham radio

The 1988 ARRL Handbook For The Radio Amateur carries on the tradition of the previous editions by presenting 1200 pages of comprehensive information for the radio amateur, engineer, technician and student. Clothbound only. \$21 in the U.S., \$23 in Canada and elsewhere.

THE AMERICAN RADIO RELAY LEAGUE 225 MAIN STREET NEWINGTON, CT 06111

Six Digital Modes - Including Weather FAX

\$379.95 AEA RETAIL

Your home computer (or even a simple terminal) can be used for radio data communication in six different modes. Any RS-232 compatible computer or terminal can be connected directly to the PK-232, which interfaces with your transceiver. The only program needed is a simple terminal program, like those used with telephone modems, allowing the computer to be used as a data terminal. All signal processing, protocol, and decoding software is in ROM in the PK-232.

The PK-232 also includes a no compromise VHF/HF/CW modem with an eight pole bandpass filter, four pole discriminator, and 5 pole post detection low pass filter. Experienced HF Packeteers are reporting the PK-232 to have the best Packet modem available.

Operation of the PK-232 is a breeze, with twenty-one front panel indicators for constant
status and mode indication. The 240 page manual includes a "quick start" section for easy connection and complete documentation including schematics. Two identical back panel radio ports mean either your VHF or HF radio can be selected with a front panel switch. Other back panel connections include external modem disconnect, FSK and Scope Outputs, CW keying jacks, and RS-232 terminal interface.

The RS-232 connector is also used for attaching any Epson graphics compatible parallel printer for printing Weather Fax. Weather maps and satellite photos, like the one in this ad, can be printed in your shack.

Contact your local AEA dealer today for more information about the one unit that gives you six modes for one low price, the PK-232.

Also displaying the popular accessories needed to complete a HAM STATION ARRL PUBLICATIONS • AEA PRODUCTS • AMPHENOL

- ALPHA DELTA • ASTRON • AUSTIN ANTENNAS • AVANTI
- BELDEN • BENCHER • B \& W • DAIWA - ALINCO
- HUSTLER • KLM • LARSEN • MIRAGE • ROHN
- TELEX/HY-GAIN - TOKYO HY-POWER LABS
- TRAC KEYERS • VIBROPLEX • WELZ • ETC.

OPEN SIX DAYS A WEEK
Telephone 617/486-3400, 3040
675 Great Rd., (Rte. 119) Littleton, MA 01460 1\% miles from Rte. 495 (Exit 31) toward Groton, Mass.

SSB ELECTRONIC TRANSVERTERS \& PREAMPLIFIERS LT 2S $\quad 144 / 28$ XVRTR 20W GaAstet DBM $\quad \$ 549$ LT33S $902 / 144 \times$ vutt 20 W GaAstet $\quad \$ 599$ LT23S $1296 / 144$ Xvitt 10 W GaAstet $\quad \$ 549$ MICRO-13 2304/144 XVRTR 0.5W GaAstet $\quad \$ 429$ MICRO-X $10368 / 144$ Xvitr 0.1 W GaAstet $\quad \$ 599$ DX series low noise GaAstet preamps trom $\$ 129$ MV Series mast mounted GaAstet preampss 199 K Series ix cnvtis GaAstet D8M from. $\$ 129$
TRANSVERTERS UNLIMITED
T220028 220 MHz Xvitt 28 or 50 IF. $20 \mathrm{~W} \quad \$ 220$ T144/28 144 Hhz Xyrts 28 or 50 IF. $25 \mathrm{~W} \quad \$ 199$ PA33200 902 MHz 2 tube PA. 200W + $\$ 499$ PA23150 1296 2tube PA. $150+W$ \$449 PA1325 2304 tube PA. $25+\mathrm{W} \quad \$ 429$ HF400 High power relay 2 Kw at $144 \mathrm{MHz} \quad \$ 129$ RK500 Medium power relay 1 KW at 144 MHz $\$ 69$ Factory Authorized Dealer for SSB Electronics for North America
tRANSVERTERS UNLIMITEO TRANSVERTERS UNLIMITED BOX 6286 STATIONA TORONTO ONTARIO CANADA M5W 1 P3 (416) 759 -5562

US)
${ }_{\mathrm{P}}^{\mathrm{P}} \mathrm{OS}_{0}$ BOX 178 NEW BOSTON. NH 03070

$\checkmark 163$

THE MULTIPLE RECEIVER SOLUTION

4 Channel Signal-to-Noise Voter

- Expandable to 32 Channel by Just Adding Cards - Contrnuous Voting
- LED Indicators of COR and Voted Signals
- Built-in Calibrator
- Remote Voted indicalors Prined Out
- $4 / 7 \times 6$ Double Sided Gold Plated 44 Pin Card
- Remote Disatie ingouts
- MORE

Built, tested and calibrated with manual
$\$ 350.00$
Telephone interface now available For more information call or write

HALL ELECTRONICS
Voter Department
815 E. Hudson Street Columbus, Ohio 43211 (614) 261-8871

EASY DOES IT!

At last, a Circuit Analysis System that you cannot afford to be without - at a price you can afford... from Western Systems Corporation.

EASY gives you the power to quickly explore new electronic designs on
 your personal computer with state-of-the-art software.

- Pull down Menus
- Full interactive graphic editing
- Linear and non-linear circuit elements
- Graphic and tabular display of results
- Frequency and Time Domain Analysis
- Data Sheet Capture,
...and much, much more!

EASY is remarkably simple to use.
Analyze complex or simple circuits

- Allows up to 100 nodes and 400 components

EASY ... the affordable ELECTRONIC ANALYSIS SYSTEM. Introductory price

Order TODAY from Western Systems Corp. 6536 Simms Street Arvada, Colorado 80004 (303) 422-6002

VISA \& MASTERCARD accepted. Colorado residents add 3% tax.

an rf voltmeter

Don't let its apparent simplicity fool you this instrument has many uses

Many of us who experiment with circuits need to measure the level of signal sources such as oscillators, amplifiers and multipliers in transmitters, and local oscillator systems in receivers. The voltmeter design described in this article came about when I wanted to measure the voltage reflection coefficient of antenna systems using a return loss bridge at low levels so as not to interfere with other band users.

The common method of measuring signal levels is through the use of a simple diode detector. In its basic form, however, it has a number of shortcomings, some of which can be easily overcome.

voltmeter requirements

This voltmeter covers a range from less than 70 millivolts to greater than 3 volts rms (equivalent to -10 to +23 dBm in a 50 -ohm system), covers a frequency range from 10 kHz to 150 MHz , and provides readings accurate to within $\pm 2 \mathrm{~dB}$ without calibration - i.e., as built and tested. Its input impedance is set by the input resistor; a value of 50 ohms was used in the models shown. Its output is linear; if an analog meter is used, no special marking of the meter scale is necessary. An external general-purpose meter can also be used. The meter draws less than 15 mA from a pair of 9 -volt transistor batteries.

diode detectors

The characteristics of an ideal linear voltage detector are illustrated in fig. 1. This mythical device conducts current in one direction only, with a low and constant resistance when forward biased and an infinite resistance in the reverse direction. The constant forward resistance is maintained right down to 0 volts,

By lan Braithwaite, G4COL, 28 Oxford Avenue, St. Albans, Herts, AL1 5NS, England

TELEWAVE ANTENNAS CABLES

BEFORE YOU BUY YOUR NEXT ANTENNA OR CABLE....DIAL: 800-331-3396

CELLFLEX - $15 / 8^{\prime \prime}-11 / 4^{\prime \prime}-7 / 8^{\prime \prime}-1 / 2$ BELDEN RG-213 \& RG-214 Type CONNECTORS AVAILABLE

* ANTENNAS *
 COLLINEAR - YAGI - DIPOLE

We are major suppliers of : Cavities, Duplexers and Antenna Combining Systems

CALIFORNIA CALLERS DIAL. (415) 968.4400

THE RF CONNECTION
"SPECIALIST IN RF CONNECTORS AND COAX"

321-110 321-11064-3

BNC 2 PST 28 volt coaxial relay.
Price
Amphenol
0.10 dB

Power rating: 0 to $0.56 \mathrm{~Hz}, 100$ watts CW, 2 kw peak
Isolation: $0.1 \mathrm{GHz} 45 \mathrm{db}, 0.2 \mathrm{GHz}$ $40 \mathrm{db}, 0.4 \mathrm{GHz} 35 \mathrm{db}$
83-822
PL-259/ST
UG-210.
UG-21BU
9913 PIN
UG-21D9913
UG-21B-9913
UG-146U
UG-83U PL-259 Teflion, Amphenol UHf Maie Siver Teflon, USA N Male R6-8. 213,214 , Amphenol N Maie RG-8, 213, 214, Kings N Male Pin for 9913. 9086.8214 lits UG-210U\& UG-21BUNS N Male for RG-8 with 9913 Pin N Male for AG-8 with 9913 Pin N Male to 50.239 , Tetlon USA N Male to SO-239. Ietion USA
female to $50-239$ Tetion USA
$\$ 25$ used tested
"THIS LIST REPRESENTS ONLY A FRACTION OF OUR HUGE INVENTORY'

THE R.F. CONNECTION

213 North Frederick Ave. \#11 Gaithersburg, MD 20877
(301) 840-5477

CASH PRICES

- 170

Abstract

SYNTHESIZED SIGNAL GENERATOR

MADE IN USA - Covers 100 MHz to 199.999 MHz in 1 kHz steps with thumbwheel dial Accuracy $+/-1$ part per 10 million at all frequencies - Internal FM adjustable from 0 to 100 kHz at a 1 kHz rate - External FM input accepts tones or voice - Spurs and noise at least 60 dB below carrier • Output adjustable from $5-500 \mathrm{mV}$ at 500 hms - Operates on 12 Vdc @ $1 / 2$ Amp Available for immediate delivery • $\$ 429.95$ delivered - Add-on accessories available to extend freq range, add infinite resolution, AM , and a precision 120 dB attenuator - Call or write for details - Phone in your order for fast COD shipment.

VANGUARD LABS

196-23 Jamaica Ave., Hollis, NY 11423 Phone: (718) 468-2720 Mon. thru Thu.

(x) CADDELL COIL CORP

35 Main Street Poultney, VT 05764 802-287-4055

BALUNS

Get POWER to your antenna! Our Baluns are already wound and ready for installation in your transmatch or you may enclose them in a weatherproof box and connect them directly at the antenna. They are designed for 3.30 MHz op eration. (See ARRL Handbook pages 19.9 of 6-20 for construction details.)

100 Watt (4:1,5:1,9: , or $1: 1$ impedence-select one) Universal Transmatch 1 KW (4: 1 lmped ence) Universal Transmatch 2 KW ($4: 1$ tmpedence) Universal Transmatch 1 KW ($6: 1,9.1$, or $1: 1$-select one) Universal Transmatch $2 \mathrm{KW}(6: 1,9.1$, or $1: 1$-select one)

Please send large SASE tor into.

fig. 2. Unbiased single diode detector: (A) schematic (B) waveforms at " a " and "b."

fig. 3. Two-diode biased detector.
with an abrupt transition to the reverse region. Such a device used as a rectifier would deliver a dc output proportional to the applied ac.
Real diodes, however, don't behave this way. Most do not conduct appreciably in the forward direction until the input voltage across them exceeds a threshold or "knee" voltage, which for an ordinary silicon junction diode is around 0.7 volts. The threshold voltage for germanium and Schottky diodes is lower 0.2 to 0.4 volts. Real diodes also conduct slightly in the reverse direction (the so-called reverse leakage current).
The transition between the conducting and nonconducting states is not sharp, but occurs over a region where the diode is said to have "square law" behavior and the dc output is proportional to the applied power (voltage squared), rather than the signal voltage. This is used to advantage in low-level diode power meters.

To see how real detectors behave, I made some measurements on a few types using a crystal oscillator signal source at 10 MHz , and a power meter and attenuator to give a range of calibrated levels. Figure

2 shows the first test circuit, a simple peak detector using an HP2826 Schottky diode. The right-hand plate of the input capacitor is clamped at the diode knee voltage below ground on negative input swings. If this knee voltage were actually zero, the average voltage on the diode would equal the peak of the input voltage, but the real diode produces less. The resistor and capacitor filter the if present on the diode, leaving the dc component. This can be measured by a high impedance meter which reads the peak of the rf voltage minus the diode knee voltage.

A dc forward bias current can be used to improve the sensitivity of the diode detector. If the diode is fed from a high resistance with a current of a few $\mu \mathrm{A}$, its forward junction voltage will sit around the knee voltage. This potential no longer has to be supplied by the rf, which sweeps the diode's nonlinear characteristic and is detected. Direct current bias is used in the more sophisticated circuit shown in fig. 3. Two diodes are used. Both are biased, but rf is fed to only one of them. An op-amp subtracts the diode voltages so that the output of the circuit can be set to zero in the absence of an rf signal. With the diodes connected together, with no rf, the op-amp offset is nulled. The $500-\mathrm{k}$ pot is then adjusted to give zero output with the circuit exactly as drawn. The circuit works best with matched pairs of diodes, since these track well with temperature.

The performance of these detectors is described graphically in fig. 4. This shows the improvement in sensitivity achieved with bias. Also shown is the curve for the voltmeter design, which indicates further improvement in sensitivity and linearity, gained by using just one additional technique.

The complete of voltmeter is shown in the block diagram in fig. 5. Two detectors are used. One receives the incoming of signal, while the other, a "mimic" detector, is fed with a low frequency signal. This signal is an internally generated sinusoid, derived by chopping the dc output of an integrator to give a square wave which is then filtered, leaving the fundamental frequency component.

The integrator input is the difference of the two detector voltages, and its output will change (or "slew") when this difference (the feedback loop's error signal) is other than zero. The action of the negative feedback loop around the mimic detector in fact causes the integrator to try to achieve this zero-error condition, at which point, if the detectors are well matched, the low frequency signal will have the same amplitude as the rf signal. Because the low frequency signal is produced by chopping and filtering the integrator's dc output, this latter voltage is proportional to the rf input voltage, and can be scaled and metered to provide readings in "rf" volts.

Through the use of well-matched and closely spaced

fig. 4. Detected dc output versus applied rf input: (A) single unbiased diode detector; (B) biased diode detector; (C) if voltmeter; (D) ideal rf voltmeter.

fig. 5. Voltmeter block diagram.
diodes, their temperature and I-V curve variations are minimized. Of course, since the mimic detector measures only a fixed low frequency signal, no frequency response compensation for the input detector is provided. Therefore, it's best to choose the diode that has the flattest possible response.

fig. 6A. Voltmeter schematic diagram.

ICOM DAY

SAT. December 12, 1987

9:00 AM - 3:00 PM

A DIVISION OF TREVOSE ELECTRONICS 4033 BROWNSVILLE RD., TREVOSE, PA 19047 (215) 357-1400

VISA

CLOSE OUT SPECIALS

ICOM
IC-45A \$295
IC-720 \$695
IC-740 \$550
IC-471H \$850
IC-245 \$350

KENWOOD

TM-411 \$345
Even though we offer the best
deals, we will meet or beat all legitimate competitive deals.

UNPRECEDENTED WIDE FREQUENCY RANGE: Covers 140.000-
153.000 MHz in steps that can be set to any multiple of 5 kHz up to 50 kHz .
CAP/MARS/NAVY MARS, BUILT IN: The wide frequency range facilitates use of CAP and ALL MARS FREQUENCIES including NAVY MARS. COMPARE!
IINY SIZE: Only 2 inches high, $51 / 2$ inches wide and $71 / 2$ inches deep!
MICROCOMPUTER CONTROL: Gives you the most advanced operating features available.
UP TO 11 NONSTANDARD SPLITS: COMPARE this with other units!
$\mathbf{2 0}$ CHANNELS OF MEMORY IN TWO SEPARATE BANKS: Retains frequency, offset information, PL tone frequency.
DUAL MEMORY SCAN: Scan memory banks separately or together. ALl memory channels are tunable independently. COMPARE!
MEMORY SCAN LOCKOUT: Allows you to skip over channels you don't want to scan.
TWO RANGES OF PROGRAMMABLE BAND SCANNING: Limits are quickly reset. Scan ranges separately or together with independently selective steps in each range. COMPARE!
BUSY SCAN AND DELAY SCAN: Busy scan stops on an occupied channel. Delay scan provides automatic auto-resume.
DISCRIMINATOR CENTERING (AZDEN EXCLUSIVE PATENT): Always stops on frequency desired when scanning. PRIORITY MEMORY AND ALERT: Unit constantly monitors one memory channel for signals, alerting you when channel is occupied.

LITHIUM BATTERY BACKUP: Memory information can be stored for up to 5 years even if power is removed.
FREQUENCY REVERSE: Allows you to listen to repeater input frequency.
ILIUMINATED KEYBOARD WITH ACQUISITION TONE: Keys are easily seen in the dark, and actuation is positively verified audibly. CRISP, BACKLIGHTED LCD DISPLAY: Easily read no matter what the lighting conditions!
DIGITAL S/RF METER: Shows incoming signal strength and relative transmitter power.
MULTI-FUNCTION INDICATOR: Shows a variety of operating parameters on the display.
FULL 16-KEY TOUCHTONE PAD: Keyboard functions as autopatch when transmitting.
MICROPHONE CONTROLS: Up/down frequency control and priority channel recall.
PL TONE GENERATOR BUILT IN: Instantly program any of the standard PL frequencies into the microcomputer. COMPARE!
TRUE FM, NOT PHASE MODULATION: Unsurpassed intelligibility and audio fidelity. COMPARE!
HIGH/LOW POWER: Select 25 watts or 5 watts output - fully adjustable.
SUPERIOR RECEIVER: Sensitivity is better than 0.15 microvolt for $20-\mathrm{db}$ quieting. Commercial-grade design assures optimum dynamic range and noise suppression. COMPARE!
DIRECT FREQUENCY ENTRY: Streamlines channel selection and programming.
OTHER FEATURES: Rugged dynamic microphone, built-in speaker, mobile mounting bracket, remote speaker jack, and all cords, plugs, fuses and hardware are included.

MANUFACTURER
 JAPAN PIEZO CO., LTD.

1-12-17 Kamirenjaku, Mitaka, Tokyo, 181 Japan

circuit description

RF enters the instrument via socket SK1. R5 and R6 provide a good impedance match to 50 -ohm cable. Two 0.5 -watt metal film resistors (or any other combination providing 50 ohms and a 1 -watt rating) should be used. Diodes CR1 and CR2 form the detectors: CR1 is supplied with rf, and CR2 with the internally generated $25-\mathrm{kHz}$ sine wave. They should be Schottky diodes and, if possible, should be reasonably well matched in terms of forward voltage at around $10 \mu \mathrm{~A}$. Many types will do, among them the HP2800 and 2826 and the Thomson BAR28. The forward voltage will be in the region of 250 mV , and a pair matched to within a few millivolts can often be found from a small batch. Circuitry around U4 performs subtraction of the two detector outputs with a gain of 10. R14 allows U4's offset voltage to be nulled. Because this is a relatively high gain stage, the remaining stages do not need to be nulled, and can be grouped into a quad package. U5B is wired as an integrator, and CR3 and buffer U5C prevent the CMOS switch U3 from being driven negative. The buffer's dc output is chopped by switch U3, which is operated by $25-\mathrm{kHz}$ square waves from U2, a divide-by-2 flip-flop fed from U1, a $50-\mathrm{kHz}$ oscillator. U2 could be omitted and U1 run at 25 kHz , but U2 does achieve a perfect square wave (1:1 mark-tospace ratio) at small cost. U2B provides a $12.5-\mathrm{kHz}$

output signal so that a rough check can be made on the switching signal with a crystal earpiece at test point C. The chopped dc from U3, now a $25-\mathrm{kHz}$ square wave with a peak-to-peak amplitude equal to the U5C dc output, is filtered by active filter U5A (second order bandpass) so that CR2 receives a fairly sinusoidal signal. L1 was included to stop hf oscillations in the output stage of U5A when the connection to the detector was completed via several inches of ribbon cable (the adjacent wire being grounded). It consists of four turns of enameled wire on a single-hole ferrite bead (I used an FX1115), and has no measurable effect at 25 kHz . R18 and R19, buffered by U5D, attenuate the dc by a factor of 0.45 (see appendix for derivation), which provides scaling to units of volts rms. An external voltmeter plugged into SK2 will then read the if input voltage. R21 and R22 with switch S2 allow the use of a meter to read 1 and 10 volts full-scale. With 9 -volt supplies from batteries, the maximum voltage that can be read will be around 3 volts.

construction

I have built three instruments according to the design described in this article (see fig. 7). The outer two are battery powered (internally); the "economy model" in the center uses an external power supply and meter. Details of the unit on the left are shown in figs. 8A, $\mathbf{8 B}$, and 8 C . Construction is straightforward and can be done with ordinary hand tools. The only critical area is the detector, which carries if. The other areas involve only low frequency circuitry. As shown in fig. 8C, I built the input circuitry, consisting of the two detector diodes and $U 4$, on a small piece of doublesided, copper-clad glass-fiber board, using a counterbore tool to provide pads for the components. Frankly, this method of construction - with the components mounted rats-nest style above a copper ground plane, will work at least as well and probably better than a pc board, and is certainly much faster. Those willing to make a pc board for the voltmeter are welcome to do so - I'm afraid I'm too lazy!

The rest of the circuit is wired on a perforated breadboard with copper strips on the underside (known in the UK as "Veroboard"). As the photo of the detector board shows, the signal connection from the front panel socket was made using RG-178 coaxial cable. The only place it's important to keep leads as short as possible is in the detector area. Try to mount the two diodes close to each other for good thermal tracking.

alignment and testing

Check the $50-\mathrm{kHz}$ oscillator and divider by placing a crystal earpiece or high impedance audio amplifier between test point C and ground. The frequency can now be adjusted to coincide with the bandpass filter.

2 METER AMPLIFIERS • ATV CONVERTERS

\qquad
Add 17.00 For Sbipping and Handlog

RF Amplifiers Per Motorola Bulletins Complete Paris hot lor
140 Watt or 300 Watt HI Ampliert pe

 CaMelory Pr choxis
215 wh 622 uh. 011 un 67 uh. 100 ut

 1650
1785

Wr Ahe Stect Mend-Ty-Find Pets
KLMET CMIP CAPACIIDRS MITALCIAD MICA CAPACTTORS SEMICONDUCTORS
RI POWIR TRANSISTORS RI POWER TRANSISTOR
For dersaikd information please

RADIO HANDBOOK 23rd Edition

by Bill Orr W6SAI

$\square 22424$ Hardbound \$26.95

Reg. 29.95 SAVE \$3
Please enclose $\$ 3.50$ to cover shipping and handling

"INSTANT" MORSE CODE

Beginners: Deliciously Easy

Experts:
Automatically Fast

CURLYCODE ${ }^{\text {TM }}$ MANUAL ONLY \$6.50

Guaranteed
Minds eye Publications Dept. H10, Suite 115-199 1350 Beverly Rd. McLean, VA 22101

- 174

SAY YOU SAW IT
 IN
 HAM RADIO

fig. 7. Three different packaging approaches for the same voltmeter.

Turn R9 or R14 so that U4 output is slightly negative, which will cause the integrator U5B to slew to the positive limit. This should result in a healthy square wave output from U3 (pins 1 and 2). A high impedance meter should read a voltage (dc) here that is half that at the U5C output. If the meter is transferred to the anode of CR2, it should be possible to peak this voltage by adjusting the oscillator frequency control R4.

The detector circuit can now be set up with no input. Ground test point A to stop the 50 kHz oscillator. Connect CR1 and CR2 so that the subtractor sees the same voltage at both its inputs. Set test point B to zero volts with R14. Remove the connection between the diodes, and again zero-test point B, this time with R9.

If if is now applied, U5C should go positive, and the voltage at the output socket SK2 should be 0.45 of this. The meter is now ready to use.

performance

The absolute accuracy and linearity of this meter is illustrated in fig. 4, which was constructed from measurements made at 10 MHz . The flatness with frequency was measured at $1 \mathrm{~mW}, 224 \mathrm{mV}$ rms (0 dBm), and the results are shown in fig. 9, which represents a respectable performance of within ± 3 percent up to 150 MHz . This could no doubt be improved to extend the useful range to 70 cm and beyond.

To verify the repeatability of these measurements, I tested the three units against each other using the same source, a $10-\mathrm{MHz}$ crystal oscillator. Referring to the units by position in the photo, the results were:
Unit Reading on external voltmeter
Left $\quad 268 \mathrm{mV}$
Center 244 mV
Right 258 mV
Obviously, three is only a small sample, but considering that the voltmeters had received only the simple dc setup procedure described earlier, I was quite pleased with the outcome, and I hope that this sort of performance will be adequate for your applications.

further suggestions

I hope that readers who build this voltmeter will find it a handy instrument to have around the shack. Those who like to experiment and develop their own hardware might enjoy exploring the following options:

A

B

C
fig. 8. Internal views of the rf voltmeter: (A) internal power provided by two 9 -volt batteries; (B) "clean" construction enhanced by use of Veroboard; (C) "rf" section of voltmeter.

9 Autry

[^1]
fig. 9. Flatness with frequency at 0 dBm .

- The design can be simplified by omitting the divider U2. The oscillator could then be run at 25 kHz , or the filter redesigned for 50 kHz . (The choice of frequency was somewhat arbitrary, being high enough to use small coupling capacitor C3 and low enough for active filtering. U2 does guarantee an excellent square wave, but the oscillator alone may well be adequate.)
- The detectors can be built into a high-impedance probe for circuit tracing, rather than a 50 -ohm instrument. Keep CR1 and CR2 physically and electrically close together, though.
- By paying attention to the detector matching and circuit offsets, particularly around U4, the useful range could be extended downwards. With attenuators, the range could be extended upwards.
- Careful selection of devices and construction could greatly extend the frequency range.
- The filtering of the square waves could be improved. The units I have built tend to read slightly high, and this could be because the active filter output is not a pure sinusoid, giving a slightly wrong scaling factor. Why didn't I just feed CR2 with a raw square wave? Well, when I tested a diode detector using an accurate function generator, the peak readings were different between sine and square waves - i.e. the diode appeared to clamp at slightly different voltages, depending on the waveform. I wish I knew why; in any case, the results might be worth repeating. If CR2 gave the same response to square waves, the active filter could be omitted. U5C output would then be the peak input voltage, and scaling by 0.707 would give readings in volts rms.

fig. A1. Relationship between a square wave and its fundamental sinusoidal component.

appendix

how readings are scaled to volts rms
The voltmeter works by making an internally generated sine wave derived from filtering a square wave equal to the rf input. The square wave, then, is generated by chopping a dc voltage. As illustrated in fig. A1, Fourier theory tells us that the fundamental (sinusoidal) component of a square wave has a larger peak amplitude than the square wave itself (don't worry, there is less power in this sine wave). If we call the peak amplitude of the sine wave $V_{\text {sine }}$ and the peak-to-peak amplitude of the square wave V, then;

$$
V_{\text {sine }}=\frac{2 V}{\pi}
$$

But in the voltmeter circuit, the peak-to-peak square wave amplitude is equal to the integrator's dc output voltage V_{dc}, that is:

$$
V=V_{d c}
$$

We want to make the voltmeter read rms volts. If the applied rf has an rms voltage V_{in}, then the feedback loop makes:

$$
V_{\text {sine }}=\sqrt{2} \quad V_{i n}
$$

So, the quantity we want to measure, $\mathrm{V}_{\text {in }}$ is given by:

$$
V_{\text {in }}=\frac{V_{\text {sine }}}{\sqrt{2}}=\frac{\sqrt{2} V_{d c}}{\pi}=0.45 V_{d c}
$$

This is why the dc produced by the integrator is scaled by 0.45 .

ham radio

CONTINUOUS COVERAGE ANTENNAS FOR COMMERCIAL \& AMATEUR SERVICE

Model AC 1.8-30

- sWR Max 2:1,1.4:1 average from 1.8 to 30 MHz
- Can be installed in approximately 80 ft space
- Ideal for commercial services for multi fre quency operation without the need for antenna tuners or additional antennas
1.8 to 30 MHz
\$159.50
SHPPING \& HANDIING
- Handies 1 kW .2 kW PEP ICAS
- Higher power models available on special order. Contact your dealer or factory

U.S. Potent No. 4.511,808

Model AC 3.5-30

- SWR less than $2: 1$ from 3.5 to 30 MHz
- Complete assembled Balun terminated with standard SO-239 connector
- Power capability 1 KW - 2 KW PEPICAS. Higher power model is available on special order.
- Designed for 50 ohm feedline
- Weather proof balun and baiancing network

IN LINE TYPE SWR \& POWER METERS

EXCLUSIVE!!!PATENTED WIDEBAND Z COUPLER, AVAILABLE IN NO OTHER UNIT AT ANY PRICE, PROVIDES LABORATORY ACCURACY AND QUALITY AT AMATEUR PRICES...
 - 177

RF $1.8 \sim 54 \mathrm{MHz}$, AF $10 \mathrm{~Hz} \sim 40 \mathrm{KHz}$ AW, CW, SSB, OSCILLOSCOPE, TRAPEZOID, RTTY

- WAVE MONITOR SCOPE

INTRODUCTORY PRICE
\$279

REVEX in line watt meter

	\%	144/220/430	\$F/50/144/430	8F/746/430/1200
n00EL	W5 510	W3 40	W360	w 510
Femevesct maxct		$140 \sim 525 \times 34$	1.6-525n4.	$1.6 \sim 1381542$
mbsumate PONE Rance	SKW/2TW/206\%	200W/20w/4	200w/20w/3w	200w/20w/54
SwE SEMSITIVITT	$8 \times$	4v	51,2x 52 :3x	51:2k/52:3-4x
ntasurable Functions	ND PONES PEF POWES PEP nOWITOR 5N7	FND PONEI EEF POWEL PEF NOWITOR 514	FVD rowte vEI powti PIP moxition 5wit	Fid powe: REF Powty PEP NOSITOR 5wi
Inpldarce	582	502	50 C	500
IN/OUT CONRECTOR	50239	50-239	51:50239/52: $\mathrm{x}-\mathrm{l}$	51: $50239 / 52: \mathrm{k}-\mathrm{k}$
netel	1	1	1	1
SEMSOP	1-6ㄴำ Ix TROIDAL CORE	$\begin{aligned} & \text { 1-801LT is } \\ & \text { STया LIME } \end{aligned}$	2-8vilt Is 51: TROIDLL CORE 52: cn	31) 80119 18 S2: ExTENELC 51. T80101 CORE
Dinextions ($\mathbf{\omega} / \mathbf{*}$)	$\begin{array}{r} 128 \times=72(88) 1 \\ \times 85(116) \quad 0 \end{array}$		$\begin{aligned} & 122 \mathrm{z} \times 72(89) \mathrm{t} \\ & \mathrm{x} 85(114) \mathrm{D} \end{aligned}$	
vElset	Appror. 7016	appana 54it	APP10t. 671\%	APFYOR, B4\%

Wave Monitor Scope MS 1 directly monitors 1.8 - 54 MHz z band transmission signals ($10-1000 \mathrm{~W}$ PEP). Front panel operation makes it possible to monitor RF envelope patterns and RF trapezoid patterns. Also, since the MS 1 has two sets of input terminals (one on the front and one on the rear panel) for observing audio band patterns, an RITY terminal unit can be connected to allow monitoring of RTTY (radio teletype) cross patterns FEATURES:

1 AM, CW SSB transmission signals amplitier lineanty, drive catrer. sideband and CW key click conditions can be observed
2 Shitt adjustments ate easy to make as RTTY cross patterns can be displayed
3 Receiver signals can be monitored as patterns in the $10 \mathrm{~Hz}-40 \mathrm{KHz}$ audio band can be observed
4 Superior commetcial quaity
52 Separate sets of input terminals allow mult-rig connectoon without changing cables. with simple tront panel switch selection

EXCLUSIVE DISTRIBUTOR:
AMATEUR-WHOLESALE ELECTRONICS
46 Greensboro Highway, Watkinsville, Georgia 30677

TO ORDER
TOLL FREE..800-327-3102
Telephone (404) 769-8706 Telex: 4930709 ITT

VHFUHF WORLD

low-noise receiver update: part 1

"You can't work 'em if you can't hear 'em" is an old adage that's still very true. Building bigger and better antennas helps, but sooner or later the antenna size limitation places the burden on the receiver.
Only a decade ago, most Amateurs were using bipolar transistor preamplifiers on the front ends of their VHF and lower UHF band receivers. On the upper UHF and lower SHF bands, diode mixers without preamplifiers were common - with typical noise figures of 6 to 10 dB ! That's all changed now, first with the arrival of low-noise silicon bipolar transistors capable of operation into the GHz region, and then with the introduction of GaAs (Gallium Arsenide) FETs in the late 1970s. ${ }^{1}$
Since reference 1 was written, there have been many new and startling developments in the area of low-noise devices and techniques. Noise figures are still dropping; device prices have stabilized. So this seems like an appropriate time to update the earlier material and to present state-of-the-art (SOA) information.
This month's column will serve as a quick review and update of the present

SOA in low-noise receiver technology. Next month's column will be devoted more to low-noise circuit techniques, recommended devices, testing, and optimization. With all this information in place, you should be right on the cutting edge of low-noise receiver technology.

a quick review

The SOA in VHF/UHF and microwave low noise figure Amateur receivers and preamplifiers is now dominated by GaAsFETs, which are technically classified as Metal Semiconductor FETs (MESFETs). The term MESFET is used in the professional community because the gates of a GaAsFET are formed using aluminum, which is a metal that is in direct contact with the semiconductor material. Thus a Schottky barrier diode is formed in the N -type material as shown in fig. 1A.
When the lowest noise figure is required above about 100 MHz , GaAsFETs are favored over silicon bipolar transistors because they have up to five times faster electron mobility. Hence, GaAsFETs have much higher cutoff frequencies and gain than silicon bipolar transistors. Furthermore, they typically have much lower noise figures.

Reference 1 , an introduction to lownoise GaAsFET technology, gave de-
tails on preamplifier designs for 144 , 220 , and 432 MHz , with suggestions for higher-frequency operation. When this material was published in 1984, the GaAsFET was king, but that's no longer true; lower-noise devices and new breakthroughs in technology now threaten to decrease noise figures so far that they will no longer be the primary limitation to communication capability. Stay tuned.

In addition, during the last few years there's also been a proliferation of "mast-mounted" low-noise preamplifiers using GaAsFETs. These preamps almost completely eliminate the losses associated with feed lines, and virtually eliminate the mismatch loss associated with feed line losses. ${ }^{2}$ This is a major problem with low-noise preamplifiers because they often have high input VSWR.

latest developments in devices

GaAsFETs were originally used in commercial and government low-noise amplifiers operating above 2 GHz . Amateurs were in the forefront of developing low-cost GaAsFET preamplifiers to frequencies as low as 30 MHz , but these devices were practical mainly on 2 meters and above, where ambient and sky noise are low. ${ }^{3}$

GaAsFETs are now being used commercially through 40 GHz and possibly

fig. 1. Typical physical structures (not shown to scale) of GaAsFETs and HEMTs: (A) depletion mode GaAs FET; (B) depletion mode HEMT.
higher. New lower noise figure, higher gain, and cutoff frequency devices seem to be appearing almost monthly. Needless to say, if you want to be on the cutting edge of technology, you might as well use any premium-quality devices you have in your desk drawer as soon as possible - before they become obsolete! GaAsFETs with noise figures less than 1.0 dB are now available through 4.0 GHz ! SOA GaAsFET noise figures versus frequency are shown in fig. 2.

Probably the most important recent improvement in the SOA in low-noise devices is the development of the HEMT (high-electron-mobility transistor). ${ }^{4.5}$ Sometimes referred to as TEGFETs (two-dimensional electron GasFETs) ${ }^{6}$ or heterojunction FETs (to avoid infringing the copyright on the name HEMT in Japan). Technically speaking, the HEMT is a heterojunction superlattice device that was first described in 1978 and demonstrat-
ed by Fujitsu and Thompson-CSF in 1979. ${ }^{4.5 .6}$ It is very similar in structure to the GaAsFET except for the twodimensional electron gas as shown in fig. 1B.

The HEMT's major feature is, typically, its higher transconductance with a cutoff frequency twice that of a comparable GaAsFET, with higher gain and noise figures as low as half those of typical GaAsFETs! Cutoff frequencies well above 100 GHz have been reported. HEMTs with less than $1.0-\mathrm{dB}$ noise figures are now available through X band (12 GHz). The SOA in HEMT noise figures is shown in fig. 2.

Right now, however, most HEMTs are laboratory devices, and the lowest noise devices are very scarce. Only a few HEMT types are available commercially, and these devices are expensive -- typically more than \$150 each! However, remember that GaAsFETs were in the same price range in the mid-1970s, and better devices are now
available for less than $\$ 5$! HEMTs are known to be manufactured by Fujitsu, GE, Gould-Drexel, NEC, Sony, Thomp-son-CSF, Toshiba, TRW, and Varian Associates. Other suppliers and even lower noise figures are promised!

Unlike other innovations in technology, the HEMT is compatible with existing GaAsFET dc biasing and rf characteristics. HEMTs usually use the same packages and can be virtual "drop-ins" for GaAsFET circuits. The primary difference is that the HEMT's optimum source impedance is generally higher than an equivalent GaAsFET's. Therefore, an adjustable inputmatching circuit similar to the one described in reference 1 is recommended so that the optimum source impedance can be achieved.

One major MESFET anomaly should be stressed. As pointed out in reference 1, GaAsFETs (as well as HEMTs) have a very high noise figure in the socalled $1 / f$ or low-frequency region. This

fig. 2. Typical 1987 state-of-the-art noise figures of bipolar transistors, GaAsFETs, and HEMTs: (A) uncooled bipolar transistor; (B) low-frequency GaAsFET at room temperature; (C) high-frequency GaAsFET at room temperature; (D) HEMT at room temperature; (E) GaAsFET cooled to 12 degrees Kelvin; (F) HEMT cooled to 12 degrees Kelvin.
means that the noise figure increases not only as you increase frequency, but also as frequency is decreased! This effect is shown in fig. 2.

The amount of noise figure increase and the frequency where it begins to increase (below the normal operating frequency) depends on the device type. Generally speaking, the ideal rf operating region for GaAsFETs and HEMTs is over a one decade-wide frequency range referenced down from the specified operating frequency (not the $F_{\max }$).

For example, a device specified for $1-\mathrm{GHz}$ operation at the top of its operational frequency range will probably be well suited for operation down to about 100 MHz . However, a device specified for 10 GHz will probably have a higher noise figure if it's used much lower than about 1 GHz !

Therefore, don't expect that a very low-noise GaAsFET specified for 10 GHz will be a super low-noise device at 144 MHz . A low-noise $10-\mathrm{GHz}$ HEMT may well have a higher noise figure at 432 MHz than a much less expensive device specified for operation through 4 GHz . This is why so many Amateurs have been able to demonstrate incredibly low noise figures on 2 meters using GaAsFETs costing no more then $\$ 5$ to $\$ 10$!

Also, the higher the cutoff frequency of a GaAsFET or HEMT, the narrower the gate; hence, the susceptibility to static burnout increases. Furthermore, higher frequency devices are more prone to oscillate when operated at lower frequencies. So don't "read into the specifications' anything that isn't there. For optimum performance versus cost, operate MESFETs in the frequency range recommended by the supplier.

noise figure limitations

I'm often asked the question, "What limits noise figure?" It should be intuitive that part of the limitation on noise figure is in the actual device itself. Furthermore, for the lowest possible noise figure in a receiver, the gain of the first stage must be high and the second stage should also have a low
noise figure. This is shown mathematically by the following equation.?

$$
\begin{gather*}
F=F_{1}+\left(F_{2}-I / G_{l}\right)+ \tag{1}\\
\left(F_{3}-1\right) /\left(G_{l} \cdot G_{2}\right)+\cdots
\end{gather*}
$$

where F is the overall noise factor of the receiver, F_{1} is the noise factor of the first stage, F_{2} is the noise factor of the second stage, F_{3} is the noise factor of the third stage, G_{1} is the numeric gain of the first preamplifier and G_{2} is the numeric gain of the second preamplifier. Note that noise factor and gains are in numerics, not decibels, so they often have to first be converted from decibels to numeric values before using them in eqn. 1. After the final noise factor is determined, you'll probably want to convert noise factor back to noise figure using the following equation.

$$
\begin{equation*}
N F=I 0 \log F \tag{2}
\end{equation*}
$$

For example, refer to fig. 3, a block diagram of a typical Amateur front end. In example 1, if the noise figure of the first stage of a receiver is 0.5 dB (noise factor $=1.122$), with a gain of 13 dB (gain $=20$) and the second stage noise figure is 4.0 dB (noise factor $=2.51$), with a gain of 15 dB (gain $=31.6)$-- ignoring the third stage contribution and assuming it to be negligible) - the overall receiver noise figure will be 0.78 dB (noise factor $=$ 1.197), a significant $0.28-\mathrm{dB}$ increase over the first stage alone.

Now if we reduce the noise figure of the second stage to 1.75 dB (noise factor $=1.496$) [example 2] or increase the gain of the first preamplifier to 8 dB (gain $=63$) [example 3], the overall noise figure will be 0.59 dB (noise factor $=1.46$), only 0.09 dB above the preamplifier alone, a small penalty to pay.

These calculations are often laborious and prone to error. For this reason, it's best to program eqn. 1 and eqn. 2 into a computer or scientific calculator to simplify the calculations and decrease the possibility of human error. ${ }^{8}$

Finally, don't get carried away with gain. Increasing the first stage gain too much may lead to intermodulation distortion or instability, thus limiting the

ability to use the inherent low noise figure. ${ }^{9,10}$ Therefore, with the low cost of devices today, it's preferable to design for a reasonable first stage gain (15 to 20 dB) and use a similar type second stage with a moderate noise figure (1.0 to 2.0 dB typical). This provides an inexpensive and useful cost/performance tradeoff.

other noise figure limitations

Another noise figure limitation is incurred by operating a preamplifier at room temperature (more on this shortly). However, the major limitations on Amateur receivers attaining very low noise figures commensurate with device specifications are losses associated with the input impedancematching circuitry.

Amateur preamplifiers are usually designed for a single frequency band. Typically the circuits employ some form of input tuning. This is a preferred technique since the input network will not only allow the device to be optimized for the lowest possible noise figure at the frequency of interest, but will also act like a filter and prevent strong out-of-band signals from entering or causing IMD.

Most Amateur preamplifier input circuits, especially below 500 MHz , use an inductor and capacitor tank circuit similar to those shown in figs. 4A and 4B. Figure 4A has one less component, but it also requires the tap to be

182

Half-Square QRV-DX Monobanders

fig. 4. Some typical recommended input matching circuits for Amateur low-noise GaAsFET preamplifiers operating below 2.5 GHz : (A) tapped inductor; (B) capacitor transformer; (C) lossless feedback.
carefully chosen. This can be very tedious and time-consuming, especially if you want to achieve minimum noise figure. Therefore, the input impedancematching circuit shown in fig. 4B is recommended for 500 MHz and below. ${ }^{1}$

Sometimes I see Amateurs and commercial designers alike using an abbreviated type of input matching similar to that shown in fig. 4B, but with the shunt capacitor, C2, removed. This is not recommended because if the lowest possible noise figure is wanted, the inductor also has to be
tuned, and that can be a tricky job. (And what do you do for tuning if the GaAsFET has to be replaced?)

By now you've probably surmised that the minimum noise figure isn't only a function of tank circuit alignment, but more likely due to losses in the components themselves. All capacitors and inductors have loss, especially as you go above 100 MHz . The higher the Q of the components in the input-matching network, the lower the insertion loss and hence the lower the noise figure.

Probably the "lossiest" component in a low-noise preamplifier is the inductor. A typical inductor in the 100 - to $500-\mathrm{MHz}$ range has an unloaded Q (no external components attached) of 300 to 500 , depending on wire type, diameter, form factor, and proximity of other components and shielding structure. ${ }^{11}$

As explained in reference 11, there's a definite insertion loss relationship between the unloaded Q_{U} of an inductor and the loaded or "in-circuit" Q_{L} of the same as follows:

$$
\begin{gathered}
\text { insertion loss }(d B)=10 \log \\
{\left[I-\left(Q_{L} / Q_{U}\right)\right]^{2}}
\end{gathered}
$$

where Q_{L} and Q_{U} are the loaded and unloaded $Q s$ s, respectively.

How do you determine the loaded Q of the inductor? If the preamplifier is one of the types that uses a broadband output network as described in reference 1 , the half-power or $3-\mathrm{dB}$ bandwidth of the preamplifier can be easily measured. The Q of the preamplifier (and therefore the loaded Q of the inductor) is then determined as follows:

$$
\begin{equation*}
Q \text { preamp }=f_{o} /\left(f_{H}-f_{L}\right) \tag{4}
\end{equation*}
$$

where f_{O} is the center frequency in MHz, f_{H} is the upper half-power frequency and f_{L} is the lower half-power frequency. For example, if we have a $432-\mathrm{MHz}$ preamplifier with half-power frequencies of 440 and 423 MHz respectively, the loaded Q will be $432 /(440-423)$ or 25.4 .

Now, if we assume that all other components contribute negligible loss, we can determine the approximate in-
put circuit losses attributable to the inductor's Q. Using eqn. 3 and assuming a good inductor with an unloaded Q of 500 and a preamplifier with a loaded Q of 25.4, we have an input circuit insertion loss of approximately 0.45 dB .

Typical GaAsFET preamplifiers using input tank circuits of this type have noise figures of 0.5 to 0.75 dB . Therefore, with a $0.45-\mathrm{dB}$ input loss, the overall noise figure of the preamplifier is almost entirely due to the losses in the input network and the GaAsFET itself must be virtually noiseless!

To show the $\mathrm{Q}_{U} / \mathrm{Q}_{\mathrm{L}}$ losses more graphically, I've prepared the graph in fig. 5 and scaled it for low loss and hence low noise figure conditions. (Check fig. 5 for the $432-\mathrm{MHz}$ preamplifier case above.) For a Q_{U} / Q_{L} ratio of $500 / 25.4$, or approximately 20 , you'll see that the insertion loss is indeed 0.45 dB .

Also note in fig. 5 that to get the input losses down below 0.1 dB , the unloaded-to-loaded Q ratio must be equal to or greater than 90 . This means that the unloaded Q of the inductor in the preamplifier just described would have to be over 2000! If you want a very low-noise preamplifier, you're going to have to use some pretty lowloss inductors - such as a large (1- to 3-inch diameter) coaxial cavity resonator - and possibly have them silver plated.

Figure 4C is a different input circuit topology which eliminates the tank circuit per se by using a series input inductor and "lossless feedback" in the source lead.' This type of circuit definitely has lower input losses and potentially a better input VSWR. However, it's more prone to out-of-band interference and therefore is more appropriate for use on the microwave bands. It will be discussed further in next month's column.

other component losses

Don't forget that there can be other losses besides the input inductor. Tuning capacitors can also have losses. Only the lowest loss, highest Q tuning capacitors should be used in the

'3arry Electronics Commercial Radio Dept. offers the Best in two-way communications for Businesses, Municipalities, Civil Defense, Broadcasting Companies. Hospitals, etc. Sales and Service for all brands: Maxon, Yaesu, Icon, Tad, Octagon. Regency/Wilson, Midland, Standard, Uniden, Shinway. Fujitus. Seas. Spillsbury. Neutec, etc. Call or write for information. 212-925-7000.

DOPPLER SYSTEMS, INC. P.O. Box 31819
Phoenix, AZ 85046
(602) 488-9755

input-matching network. The air-variable type capacitors manufactured by Johanson and others are a preferred type. They not only have low loss and high Q, but also good tuning resolution with little or no backlash. Furthermore, they often have special sealing caps that can be placed over the tuning mechanism to help keep out moisture and prevent inadvertent mistuning.

The minimum Q of a Johanson-type 5200 air variable, one commonly used by Amateurs, is 5000 at maximum capacitance at 100 MHz . This figure decreases rapidly to less than 1000 above 300 MHz ! Higher Q types such as the Johanson 5700 and 5800 are recommended, but they have lower maximum capacitance so they're useful only for higher frequencies and for series connections where lower capacitance values are required.

Chip capacitor losses can also be considerable, especially when used in source bypassing or in the rf path. In critical low-loss circuits, the porcelain types are highly recommended despite their higher initial cost. Be careful, too, of resistor types. The older $1 / 8$ or $1 / 4$-watt carbon composition types are recommended. However, the noncarbon or film types that are becoming so popular are usually quite reactive and lossy, and are therefore not recommended.

Finally, coaxial connectors - especially type N, TNC, and SMA ... are highly recommended for low-noise preamplifiers because they have low loss and a very positive mating mechanism. On the other hand, BNC- and UHFtype connectors should be avoided because their impedance isn't constant, and they have questionable mating

RF
TRANSISTORS

	2-30 MHz $12 \mathrm{~V} 1^{\circ}$		28V)	
PN		Rating	Nef Ea.	Match Pr.
MRF421	0	100w	\$24.00	\$53.00
MRF422*		150W	38.00	82.00
MRF433		12.5W	11.00	26.00
MRF449. A	0	30W	12.50	30.00
MRF450. A	0	50W	14.00	31.00
MRF453, A	0	60W	15.00	35.00
MRF454. A	Q	80W	15.00	34.00
MRF455, A	0	60W	12.00	28.00
MRF 485^{*}		15W	6.00	16.00
MRF492	0	90W	16.75	37.50
MRF492A	0	90W	19.75	43.50
SRF 2072	0	65W	13.50	31.00
SRF3662	0	110W	25.00	54.00
SRF3775	0	75W	13.50	31.00
SRF3795	0	90W	16.00	37.00
3800	0	100W	18.75	41.00
2SC2290	0	80W	19.75	45.50
2SC2B79	0	100W	25.00	54.00
O Selec	Hig	ain Mat	d Quads	vailable

VHF UHF TRANSISTORS				
	Rating	MHz	Net Ea.	Match Pr.
MRF237	4W	136.174	2.70	-
MRF240. A	40W	136.174	15.00	35.00
MRF245	80W	136.174	30.00	68.00
MRF247	75W	136-174	27.00	63.00
MRF248	80W	136-174	33.00	71.00
MRF641	15W	407.512	20.00	46.00
MRF644	25W	407.512	24.00	54.00
MRF646	40W	407-512	26.50	59.00
MRF648	60W	407-512	31.00	69.00
2N6080	4W	136.174	6.25	-
2N6081	15W	136-174	8.00	
2N6082	25W	136-174	9.50	-
2N6083	30w	136.174	9.75	24.00
2N6084	40W	136.174	13.00	31.00

PARTIAL LISTING OF MISC. TRANSISTORS			
MRF134	\$16.00	MRF497	\$14.25
MRF136	21.00	MRF515	2.50
MRF137	24.00	MRF607	2.50
MRF 138	35.00	MRF630	4.25
MRF 140	87.50	MRF754	15.00
MRF148	34.00	MRF843,F	22.50
MRF150	87.50	MRF846	43.50
MRF171	34.50	MRF873	2450
MRF 172	62.00	MRF1946.A	15.00
MRF 174	80.00	CD2545	16.00
MRF 208	11.50	2N1522	11.95
MRF212	16.00	2N3553	7.25
MRF221	11.00	2N3771	3.50
MRF224	13.50	2N3866	1.25
MRF226	14.50	2N4048	11.95
MRF238	13.00	2N4427	1.25
MRF239	15.00	2N5589	7.25
MRF260	7.00	2N5590	10.00
MRF261	8.00	2N5591	13.50
MRF262	9.00	2N5641	9.50
MRF264	13.00	2N5642	13.75
MRF309	29.75	2N5643	15.00
MRF317	56.00	2N5646	13.00
MRF406	12.00	2NS945	10.00
MRF458	20.00	2N5946	13.00
MRF475	3.00	2N6255	2.50
MRF476	2.75	OUTPUT MODULES	
MRF477	12.00	SAU4	55.00
MRF479	10.00	SAV6	48.00
MRF492A	19.00	SAV7	48.00
40582	7.50	M57712. M5	37 use
NE41137	2.50	M57737. SC	9 SAV7

We stock RF Power transistors for Atlas, KLM. Collins. Yaesu, Kenwood, Cubic. Mirage. Motorola. Regency. Heathkit, Drake, TWC, Wilson. GE, etc.
Cross-reference on CD, PT, SD, SRF, JO, and 2SC P Ns.
Orders received by 1 PM are shipped UPS same day.
Minimum order twenty doltars. COD VISA MC Foreign Orders Accepted
Call: (619) 744-0728
FAX: (619) 744-1943
tolerances and known insertion losses. Connector types and losses are discussed further in references 12 and 13.

lower noise techniques

Cooling is probably the last resort when it comes to really low-noise preamplifiers. Bipolar transistors generally don't work well below about 70 to 80 degrees Kelvin. However, many GaAsFETs and HEMTs seem to do quite well when cooled even as low as 12 degrees Kelvin, the temperature of liquified Helium.

The National Radio Astronomy Observatory (NRAO), in Charlottesville, Virginia, has been building lownoise preamplifiers for many years. Their preamplifiers are used in radio telescopes where the sky temperature is as low as 3.5 degrees Kelvin, almost absolute zero. By 1980 they were using GaAsFET preamplifiers cooled to about 13 degrees Kelvin in a Dewar with liquified Helium. ${ }^{14}$

At first NRAO used GaAsFETs because they noticed that the transconductance would often increase sometimes by as much as 50 percent - as temperature was decreased. At the same time, the noise figure would drop. However, the optimum source impedance changes at low temperatures and oscillations may occur. Consequently the preamplifier has to be optimized at the cold temperature. Recently, NRAO noticed the same effects with HEMTs.

Because the cryogenic coolers used by NRAO cost about $\$ 5000$ each, they're not really practical for Amateurs. Other less expensive coolers such as the thermo-electric type are available commercially. ${ }^{15}$ However, they use diodes that may generate noise, so be cautious if you use them. It should be sufficient to mention that if you have an antenna-mounted preamplifier, especially for EME, you should mount it so that it won't be heated excessively by the sun.

Finally, of the GaAsFETs tested by NRAO, the MGF 1412 seems to have consistently low noise figure at room temperature. Futhermore, at cryogenic temperatures, the MGF 1412 type
seems to be one of the most reliable for low noise figures. Since this is one of the most popular types used by Amateurs seeking the lowest possible noise figures, it may be a place to start.

summary

In this month's column, I've attempted to bring you up to date on the SOA in low-noise receivers for VHF and above. Noise figures are still dropping, but at some frequencies can't go lower unless we change the circuit techniques we're presently using. In next month's column, we'll discuss some circuit and device recommendations.

acknowledgments

I'd particularly like to thank Bill Lakatosh, AA4TJ (ex K3QCO and KJ4OI), of NRAO for their input on SOA noise figures and cooling techniques.

new records

In last month's column we mentioned the outstanding sporadic E occurrence during the ARRL June VHF OSO party and asked for any new record claims. Shortly after the contest was over, I received and authenticated a new North American 2-meter, doublehop sporadic E record. The new record holders are Jim Poore, KD4WF, in Savannah, Georgia (EN92LK) and Jim Frye, NW7O/7, operating portable from Mount Potosi, southern Nevada (DM25GV). Their contact took place on June 14, 1987, at 1704 UTC and extended the existing record by almost 90 miles for a new record of 1980 miles (3186 km). Congratulations to both Jims.
The North American $10-\mathrm{GHz}$ DX record has also been broken; more on that in next month's column.

important VHF/UHF events	
November 3	Predicted peak of the Taurids meteor shower at
November 3	2200 UTC Predicted peak of the Cassiopids meteor shower at 2200 UTC

November 14-15 ARRL EME Contest (second weekend)
November 17 Predicted peak of the Leonids meteor shower at 1500 UTC
November 21 New moon
November 24 EME perigee
December 13 Predicted peak of the Geminids meteor shower at 1900 UTC
December 20 New moon
December $21 \pm$ month. Winter
peak of sporadic E propagation
December 22 Predicted peak of the Ursids
meteor shower at 2200 UTC
December 22
EME perigee

references

1. Joe Reisert, WIJR, "VHF/UHF World: Low-noise GaAsFET Technology," ham radio, December 1984. 2. Joe Reisent, W1JR, "VHF/UHF World: Impedancematching Techniques," ham radio, October 1987.
2. Joe Reisert, W1JR, "VHF/UHF World: Minimum Requirements for 2-meter EME: part 1," ham radio. August 1987.
3. John J. Berenz, "High Electron Mobility Transistors (HEMT)," MTT-S, Summer 1984.
4. John J. Berenz, "HEMT Technology Gains on mmwaves," Microwaves and RF, November 1985
5. Henri Derewonko and Daniel Delagebeaudeuf, "Thompson Continues Work on $18-40 \mathrm{GHz}$ 'TEGFETs,"' Microwaves and RF, November 1985.
6. Joseph H. Reisert, Jr., W1JAA, "Ultra Low-Noise UHF Preamplifier," ham radio, March 1975.
7. Joe Reisert, W1JR, and Gary Field, WA1GRC, "RFCAD Electronics Design Program." (Available for IBM PC from ham radio's Bookstore, $\$ 39.50$ plus $\$ 3.50$ shipping and handling.)
8. Joe Reisert, WIJR, "VHF/UHF World: High Dy namic Range Receivers," ham radio, November 1984. 10. Joe Reisert, W1JR, "VHF/UHF World: High Dynamic Range on 2 Meters," ham radio, November 1985.
9. Joe Reisert, W1JR, "VHF/UHF World: The VHF/UHF Primer: An Introduction to Filters," ham radio, August 1984.
10. Joe Reisert, W1JR, "VHF/UHF World; RF Connectors - Part 1," ham radio, September 1986. 13. Joe Reisert, W1JR, "VHF/UHF World: RF Con nectors - Part 2," ham radio. October 1986.
11. D. R. Williams, W. Lum, and S. Weinreb, "L-Band Cryogenically Cooled GaAsFET Amplifier," Microwave Journal, October 1980.
12. Charles A. Wheeler, "Cool It - for the Ultimate in Low-naise Amplification." Microwaves, April 1973, page 42.

THE MOST AFFORDABLE
 REPAATER

ALSO HAS THE MOST IMPRESSIVE PERFORMANCE FEATURES
(AND GIVES THEM TO YOU AS STANDARD EqUIPMENT)

BAND	WIRED	KIT
6M,2M, 220	$\$ 880$	$\$ 630$
UHF	$\$ 980$	$\$ 730$

(Also available for commercial bands!)

FEATURES:

-SENSITIVITY SECOND TO NONE! 0.15 uV Typ. - SELECTIVITY THAT CAN'T BE BEAT! Both 8 pole xtal filter \& ceramic filter for $>100 \mathrm{~dB}$ at $\pm 12 \mathrm{kHz}$. Helical resonator front end to combat desense \& intermod. -Flutter-proof squelch, Automatic trequency control. separate sphr amplifier
-CLEAN, EASY-TUNE TRANSMITTER, up to 2OW output 50W with additional PA

ACCESSORIES

TD. 2 DTMF DECODER/CONTROLLER kit only $\$ 78$ Full 16 digits, 5 functions, toll call restrictor, program mable. Much more. Great for selective calling too! AP-1 AUTOPATCH kit only $\$ 78$. Reverse patch \& phone line remote control std.
-AP-2 Simplex Autopatch. Use with above

Field programmable, timers, the works!
-COR-2 kit. \$38. Audio mixer, local spkr amplitier, tail \& time-out timers

-MO-202 FSK DATA MODULATOR kit $\$ 38$. Run up to 1200 baud digital or packet radio signals through any FM transmitter
-DE-202 FSK DATA DEMODULATOR kit $\$ 38$

GaAs FET PREAMPS at a fraction of the cost of comparable units!

LNG -(*) GaAs FET PREAMP

ONLY \$49!

WIRED/TESTED
 FEATURES:
-Very Low Noise: 0.7 dB VHF, 0.8 dB UHF -High Gain: 13-20dB, depending on freq -Wide Dynamic Range: to resist overload
-Stable: new-type dual-gate GaAs FET * Specify tuning range desired $26-30,46-56,137-150$, $150-172,210-230,400-470$. or $800 \cdot 960 \mathrm{MHz}$

LNS-(*)

IN-LINE PREAMP

ONLY \$59/kit,

$$
\$ 79 \text { wired/tested }
$$

GaAs FET Preamp with features similar to LNG series, except automatically switches out of line during transmit. Use with base or mobile transceivers up to 25 W . Tower mtg. hardware supplied.

- Specify turing range desured: $120.175,200-240$, or 400.500 MHz

 HRA -(*)
 helical RESONATOR PREAMP
 ONLY $\$ 49$ VHF or $\$ 64$ UHF

Low-noise preamps with helical resonators reduce intermod $\&$ cross-band interference in critical applications.

- Specify tuning range desired $143-150,150-158,158$ $162.162 \cdot 174,213-233,420-450,450 \cdot 465$, or $465-475$ MHZ,

HICH QUALITY XMIR \& RCVR MODULESFORREPATERS, LNKS,TELEMETRY, ETC.

-FM EXCITERS
Kits only \$68. W/t \$146
TCXO and xtal oven available
2 W cont. Up to 3 W intermittent
-TA51 for $10 \mathrm{M}, 6 \mathrm{M}, 2 \mathrm{M}, 150-174,220 \mathrm{MHz}$.
-TA451 for uhf.
FCC TYPE ACCEPTED FOR COMMERCIAL BANDS
-VHF \& UHF LINEAR AMPLIFIERS. For FM or SSB Power levels from 10 to 45 Watts. Several models, kits starting at $\$ 78$.

0.15 uV sens, 8 pole xtal \& 10 pole ceramic if filters. helical resonator front end for exceptional selectivity. $>100 \mathrm{~dB}$ at $\pm 12 \mathrm{kHz}$ (best available anywhere) Flutter proof squelch. AFC tracks drifting xmtrs. Xtal oven avail. Kit $\$ 138$, w/t $\$ 198$.
-R451 FM RCVR. Same as above but UHF Tuned line front end. 0.2 UV sensitivity. Kit only $\$ 138$, w/t $\$ 198$. -R 76 VHF FM RCVR for $10 \mathrm{M}, 6 \mathrm{M}, 2 \mathrm{M}, 220$. As above, but w/o AFC or hel.res. Kits only $\$ 98$ to $\$ 118$.
-R110 VHF AM RCVR for VHF aircratt or ham bands or UHF Kit only $\$ 98$.

NOW-FCC TYPE ACCEPTED TRANSMITTERS, RECEIVERS, AND REPEATERS AVAILABLE FOR HIGH-BAND AND UHF. CALL FOR DETAILS.

RECEIVING CONVERTERS

HAMTRONICS, INC.

65-E Moul Rd.; Hilton NY 14468-9535

\square High quality equipment at reasonable prices surely | appeals to me; but I want more details before I buy! Rush | my copy of the 40 -page Hamtronics catalog by return first class mail. I enclose $\$ 1$ ($\$ 2$ for overseas air mail).
Name
\qquad
Address
City _ State/ZIP

- Order by phone or mail • Add \$3 S\&H per order (Electronic answering service evenings \& weekends) - Use VISA, MASTERCARD, Check, or UPS COD. hamironics, inc. 65-E MOUL ROADCHILTON NY 14468-9535 Phono: 716-392-9430

Subscribe Today To The World's Leading Magazine For Shortwave \& Scanner Listeners!

- International Broadcasting
- Utility Monitoring
- Scanners
- Shortwave and Longwave
- Satellites
- Electronic Projects
- Listening Tips
- Frequency Lists
- Equipment Reviews
- News-breaking Articles
- Feature Articles
- Exclusive Interviews
- Insights by the Experts
- New Products

Each month MONITORING TIMES, the first widespectrum listener's publication and still the best, brings you 64 giant tabloid pages of late-breaking information on every aspect of monitoring the radio spectrum.

Fast-paced and information-packed, MONITORING TIMES consistently scoops the publishing industry.
ORDER YOUR SUBSCRIPTION TODAY before another issue goes by: only $\$ 15$ per year (U.S. and Canada), $\$ 22$ per year (foreign) or send $\$ 1$ for a sample issue (foreign send 2 IRCs).

MONITORING TIMES

P.O. Box 98

Brasstown, N.C. 28902

W6SAI B00KS

published by Bill Orr, W6SAI and Stu Cowan, W2LX

BEAM ANTENNA HANDBOOK

Completely revised and updated with the latest computer generated information on BEAM Antenna design. Covers HF and VHF Yagis and 10. 18 and 24 MHz WARC bands. Everything you need to know. 204 illustrations 268 pages (c) 1985. Revised 1st edition.
RP-BA
Softbound $\$ 9.95$

SIMPLE LÒW-COST WIRE ANTENNAS

Primer on how-to-build simple low cost wire antennas. Includes invisible designs for apartment dwellers. Full of diagrams and schematics. 192 pages. 1972 2nd edition

RP-WA
Softbound $\$ 9.95$

ALL ABOUT CUBICAL QUAD ANTENNAS

Simple to build, lightweight, and high performance make the Quad at DX'ers delight. Everything from the single element to a mult-element monster A wealth of information on construction, feeding, tuning and installing the quad antenna. 112 pages. 1982. 3rd edition
IRP.CQ
Softbound $\$ 7.95$

THE RADIO AMATEUR ANTENNA HANDBOOK

A wealth of projects that covers verticals, long wires, beams as well as plenty of other interesting designs. It includes an honest judgement of gair figures, how to site yout antenna for the best performance, a look at the Yagi-Quad controversy, baluns, slopers, and delta loops. Practical antenna projects that work! 190 pages is) 1978. ist edition RP-AH

Softbound $\$ 9.95$
Please enclose $\$ 3.50$ for shipping and handling

\#1 Source of PACKET Info

The Magazine
 For Amateur Radio and Computerists Why You Should Subscribe!
 Read what our subscribers say!

It's in the fine print!

- Your magazine is the finest innovation that I have seen in ham radio since 1953-except... maybe the all-solid state tranceiver. Carl Soltesz, W8PFT - ...have most certainly received my money's worth in software... Michael Regan, K8WRB - ...you have found a nice niche for CTM in packet... you have me getting interested... Charlie Curle, AD4F Chattanooga, TN • The packet computer info convinced me to subscribe. John Skubick, K8JS • Enclosed is my check for renewal of my subscription. I enjoy the down to earth and homey style of your magazine and the many fine computer articles... Andy Kosiorek, Lakewood, OH - I was both pleased and dismayed upon becoming acquainted with your magazine at HAM-COM. Pleased that I discovered your magazine-dismayed that I didn't long before now. Bill Lathan, AK5K • ...CTM gives the finest coverage to packet radio that I have seen in any of the computer or amateur radio magazines. It would appear that CTM has just the right blend of packet amateur radio articles and computer articles. Barry Siegfried, K2MF • Of the three HAM magazines I received each month CTM is the only one I read from cover to cover and carry with me during my travels abroad. Most of the time it remains in that country. Buck Rogers, K4ABT

U.S.A. \$18.00 $1 \mathrm{Yr}-\$ 10.006$ Months (Limited Offer) $\$ 33.002 \mathrm{Yr}$

Mexico \& Canada \$32.00 1 Yr (Surface)
Other Countries (Air) \$68.00 (Surface) $\$ 43.001$ Yr U.S.FUNDS ONLY Sample Copy \& Back Issues- $\$ 3.50$

Special
 OUTSTANDING PRICES ON IBM XT ${ }^{\text {"" }}$ * COMPATIBLE SYSTEMS!

SYSTEM \#1 \$299.00

MOTHERBOARD WITH BIOS AND ZERO K OF RAM UPGRADABLE TO A FULL 640 K RAM. FLIP TOP CASE XT/AT LOOK ALIKE KEY. BOARD 150 WATT POWER SUP. PLY WITH ALL THE POWER NEEDED TO RUN EXTRA DRIVES AND CARDS
SYSTEM \#3 \$799.00
MOTHERBOARD WITH BIOS CONTAINING 640K OF RAM. FLIP TOP CASE. XTIAT LOOK ALIKE KEYBOARD 150 WATT POWER SUPPLY COLOR GRAPHICS CARD WITH RGB AND COMPOS ITE OUTPUTS MULTI I/O CARD WITH TWO DISK DRIVE PORTS, ONE PARALLEL PORT, ONE SERIAL PORT AND ONE SERIAL PORT OPTION, ONE GAME PORT. CLOCK AND CALENDAR WITH BATTERY BACKUP TWO FLOPPY DISK DRIVES DS DD 360 K AND A COMPOSITE MONITOR

(1)

Radiosporting

THIS IS IT: - FOR BIG GUNS \& LITTLE PISTOLS

A magazine dedicated to quality and sportsmanship in amateur radio operating. Fresh, timely, practical and down to earth reading for little pistols and big guns. Written by the world's best in their fields: ON4UN, SMøAGD, LZ2CJ, VE3BMV, KH6BZF, DJ9ZB, ZS6BRZ, W1WY, N2AU, K7GCO, K $4 Z N$, W4GF, VE3JTQ, WB4ZNH, WB9TBU, KQ2M, NS6X, W3FG, KA3B, K1PLR, N7CKD, VE3XN, ABøX, JE1CKA and others.

Includes DX News, QSL Info, $160 \mathrm{~m}, 80 \mathrm{~m}, 10 \mathrm{~m}, 6 \mathrm{~m}$ columns, Dxpeditioning, Propagation, Awards, Contest rules and results, Traffic - Emergency, FCC News, New Products, Antennas, Technical news and articles, equipment reviews and modifications, computer programs, Radio Funnies, Club Life, RTTY, VHF/UHF, Mail Box, Classified Ads and much more in a magazine format with the speed of a bulletin.

RADIOSPORTING sponsors DX Century Award, Contest Hall of Fame and World Radio Championship contest.

[^2]203
P.O. Box 1111-H Habina, ca gearo 714-632-7721

Ho

1988 NORTH AMERICAN RADIO AMATEUR CALLBOOK

1988 ARRL HANDBOOK FOR THE RADIO AMATEUR by ARRL Staft

AVAILABLE IN HARDBOUND ONLY IN 1988
When it comes to handbooks. this is one volume you've
oot to have in yout tiblary Chock tull of all the latest tech got to have in yout libuary Chock full of ail the latest tech
nology propects and ideas. hams around the world recognize the ARRL HANDBOOK as the book to have Projects run trom simple nice to have atound the shack station aids. to state-of the-art transceivers Also great reterence tool and teaching add Novices and Extras alike will find answers to aimost any question they may have 1987 Over 1100 pages (available late October) AR-HB88

Hardbound reg \$20.95
Extensively revised with all the latest callsigns and address es for Amateurs in North America Also includes handy operating aids such as time charts, OSL bureaus, census information by state and license class (US) and country and much more Get your's today 1987
CB-US8B
Softbound \$24.95

1988 INTERNATIONAL RADIO AMATEUR CALLBOOK

Pre-publication special $\$ 18.95$ SAVE $\$ 2$
Includes all countries outside of North America and has been revised with all the latest calis and addresses avaifable. This is the only available book of its kind and it is an invaluable aid to getting coveted DX OSL cards Includes plenty of extra information too. Order yours now' 1987 CB-F88

Softbound \$26.95

ORDER BOTH AND SAVE $\$ 5$

REG. $\$ 51.90$ JUST $\$ 46.90$
Books available late November

ARRL OPERATING MANUAL

This book has been completely revised and up-dated! Over 600 pages are crammed full of the information every ham should have at their fingertips in addition to message handling, emergency operating, repeaters and contesting, this book includes sections written by noted DXers W9KNI and WB4ZNH, a new section on packet radio and over 60 pages in full color describing operating awards trom around the world 1987688 pages
AR-0G
Softbound $\$ 14.95$

W1FB's ANTENNA NOTEB00K

by Doug DeMaw. W1FB

Antennas have been one of DeMaw's passions in Amateut Radio He has worked with countless designs of all shapes and contigurations Thus tully illustrated book gives you how to instructions on a number of difterent wite and vert) cal antennas for 160 through 10 meters Also includes information on radial systems, tuners, baluns and umpedance transtormers Easy and fun reading 1987120 pages
AR-AN
Soltbound $\$ 7.95$

TRANSMITTER HUNTING: RADIO DIRECTION FINDING SIMPLIFIED
 \section*{by J.D. Moell, K00V and T.N. Curlee wb6uZZ}

knowng how to use direction finding equipment can be ar important addition to your Ham skells Besides the fun aspects like Fox of Thunting. you might someday be calied upon to assist a search and rescue group save lives' Written by two DF experts, this book is full of heipful hunts. tips and suggestions Includes how to equip yout self weak signal hints. equipment you can build to optimize your efforts, hunting techniques plus much more Two BASiC computer programs are also included with complete instructions for triangulation 1987323 pages T-2701

Softbound \$17.95

MICROWAVE UPDATE

September 1987
Seplember 1987

6th ARRL COMPUTER NETWORKING CONFERENCE
 August 1987
 Packet radio is growing at a phenomenal rate This collec tion of papers given in August 1987 at Redondo Beach represents the "cutting edge" of packet technology 29 papers cover every subject trom equipment design and improvement and digital signaing processing, to the latest techniques in data transter. Add this book to your collection of earlier Computer Network Conference - be 100% up to date and packet compatibie
 1987
 AR-CNC6
 Sottbound $\$ 9.95$

21st CENTRAL STATES VHF CONFERENCE

 July 1987Collection of 28 papers qiven at the July 1987 meeting of the Central States VHF Society Covers subjects as diverse as using TVRO dishes for EME and a state-ot-the-art $57 \mathrm{GH} z$ solid-state amplifier Includes schematics, draw ings and other helpful illustrations Fascinating reading for VHF ers 116 pages 1987
AR-CS
Softbound $\$ 9.95$

LOW BAND DX-ING COMPUTER PROGRAMS

by John Devoldere, ON4UN

for Apple II, MS-DOS. Commodore C-128 and Kaypro CPM Computers
Here's a collection of 30 super programs written by ON4UN Just about every interest or need is covered-from antenna design and optimization to general operating pro grams Antenna programs include: shunt and series input L network design, teedline transtormer, shunt network design, SWR calculation, plus 11 more! General Ham programs include. sunrise/sunset. great circle distances. gray line, vertical antenna design program, sunrise calendar plus 9 morel Phew When you sit down to use these programs you'll be amazed at what you have The best value in com puter soltware available today 1986
UN-Apple
UN-MS (MS-DOS)
UN-CPM/Kaypro
UN-C-128 (COMMODORE)
UN-MAC (MACINTOSH)
$\$ 19.95$

$\$ 19.95$

$\$ 19.95$
$\$ 19.95$
$\$ 24.95$
Program prices going up Jan. 1. Order now \& save!

LOW BAND DX'ING

by John Devoidere ON4UN

2nd EDITION

Now Available! The new, 2nd edition of the definitive book on Low Band DXing. Based upon years of practical on-the air experience. learn the secrets of how ON4UN has been so successtul on the low bands. Extensive coverage is given to transmit and receive antennas with clear concise explanations and plenty of illustrations-dipoles, inverted V's, slopers. phased arrays and Beverages-they're all in this book. Also covered propagation, transmitters. receivers, operating, sottware and an extensive Low Band bibliography Going to be a best sellert Get yours today 1987 2nd Edition 200 pages

AR-UN

Softbound $\$ 9.95$

BUY 'EM BOTH SPECIAL OFFER

Book \& Software Reg. $\$ 29.90$ ($\$ 34.96$ for Mac) Just \$24.90 (\$29.90 for Mac)
UN-SO (specity computer) SAVE $\$ 5$
$\$ 24.90$
UN-MSO Macintosh Special SAVE \$5 $\quad \$ 29.90$

BEVERAGE ANTENNA HANDBOOK
by Victor Misek, W1WCR
Recognized around the world as the definitive work on Beverage Antennas. Misek delves deep into the secrets of the single wire Beverage and SWA (Steerable Wave Antenna) with helpful hints and tips on how to maximize perfor mance based upon wire size, height above ground, overal length and impedance matching Also includes information on center fed Beverages constructed out of several wire types, CITY LOT OWNERS Note Misek has developed a Beverage for you too' Called the Micro-SWA, it is just 60 ft long You get excellent directivity and null steering capabilities Transformer design information for both termination and teedline matching is completely revised
198780 pages 2nd Edition
VM-BAH
Softbound $\$ 14.95$
HAMLOG (MS-DOS Computer)
by Rick Martin. WA3YLD
Harness the power of your MS.OOS computer with thos tested and proven program HAMLOG is fully menu driven and teatures tast record retreval and display Can be edit ed at any time and allows hard copy print-outs by callsign date or a number of other parameters Also includes help ful frequency allocation tables by license class and thurd party agreements for traffic handers
RM-HL (MS-DOS)
$\$ 49.95$
DIGIPAC II (MS-DOS Computers)
by Kall Assoc.
Digipac II combines a full teatured computer communica tions program with a powerful message editing and format ting program designed for tratfic handing the message program leatures address presets, complete subscrolling form, prompts and pop-up help and selection menus, full user defined help system plus more. The communications program has plenty of leatures too multi-level alarm. multi screen (full split of recall.) uset programmable function keys to name just a tew No matter what your interest in packet - from rag chewing to traffic handling - this pro gram is for you
KA-DPII (MS-DOS Computers)
$\$ 49.95$
QSO-PRO (MS-DOS)
by Mark and Mary Morland
Not just another logging proqram Woiten with the active Ham in mind. this MS.DOS program has been protessional ly designed to unleash the potential of the MS-DOS computer Uses a logical standardized data entry format and allows editing. sort and selection of data. Powerful progran at a very reasonable price
MM-OP (MS-DOS Computers) Reg. 39.95 Special $\$ 34.95$ (special expires December 1. 1987)

ULTRA-HAM Contest Logger
 (C. 64 COMPUTER)

ULTRA.HAM is a powerful program it includes local and foreign contest logs, a disk formatting routine and a print ing program Easy-to-use and full of helpful prompts. Hams from Extras to Novices will find this to be a great addition to their software library. Other features include automatic numbering. super tast dupe checker automatic UTC clock automatic disk saving every eight OSOs, running score totals plus much more Also includes editing capabilities
RC-UH (for C-64)
$\$ 39.95$
RF-CAD ELECTRONICS DESIGN PROGRAM -
Version 3.7 Includes Intermodulation and

Distortion Program

by Joe Reisert, W1JR and Gary Field. WA1GRC For IBM PC and compatable computers
This sottware package has been written by electronic eng neers and contains nearly 40 tested and proven programs that will heip the Radio Amateur or engineer design many common types of radio circuitry Emphasis has been placed upon ease of use. Wherever possible, menus of choices with examples are displayed Should the user be computer hiterate, the programs are not copy protected so they can be modified to meet your specific requirements. (full documentation is also provided.) Programs include Filters, LC, active. LP, HP,BP, Inductor design, torroid, solenoid, straight wre, Matching networks, Crystal oscilla tors. Microstrip. Transmission lines, Antennas, Yagi-Uda, helix, dish, horn, element scaling. P_{1} and T attenuators Also included: Radio Path calculations; FM modulation analysis, Miscellaneous conversions, Geostationary satelite pointing: Moon tracking aids; Receiver noise figure calcula tions and Spurious recerver response prediction Requires IBM.PC with at least one floppy drive and 128 k of RAM 1985
RF-CAD (MS-DOS)

SHOPPING IDEAS

RADIO HANDBOOK 23rd Edition
 by Bill Orr W6SAI

Here are some of the highlights of this exciting new edition: New easy-to-use charts for Chebyshev and elliptic filter configurations, new data on power MOS-FETS, how to use state-ot-the-art OP-AMPS, and home computer RITY to name just a tew examples. New projects include: GaAsFET preamps for 902 and 1296 MHz , easy-to-build audio CW filter, Economy two 3-500Z, 160 meter amplifier, multiband amp using two 3CX800A7's, and a deluxe amplifier with the 3CX1200A7 tube. New antenna projects include etficient Marconi design for 160 and 80 meters, computer generated dimensions for HF. Yagis, and a 2 meter slot beam. Get your copy today. 23 edition (c) 1986
$\square 22424 \quad$ (Reg. \$29.95) Hardbound $\$ 26.95$

Re-CODE-nition CLASS (Apple II)

Sound recognition has been proven time after time to be the most efficient method for learning the Morse code. re-CODE-nition uses a computerized derivation of the famous "Farnsworth" Hi speed - slow spacing code teaching method Using a word game approach to learning, this program strives to eliminate the drudgery of learning the code. You can custom design code practice by entering text of use data files on disk
MD-CC (Apple II, IIe/c)

HAM RADIO LICENSE STUDY COURSE by Diamond System (MS-DOS Computers)

 Use your home computer to study for your Amateur Radio License. Ouestions and answers are taken from the VEC standard syllabus for each license class. You can either study the whole question pool or one of the individual subelements. Novice. General and Extra programs also include a Morse code program that will allow you to bone up on your code. The program can either generate code randomly or from a text file. State-of-the-art learning. MS-DOS only.DS-N Novice (with code study)
OS-G General (with code study)
DS-A Advanced
$\$ 39.95$
$\$ 34.95$

DS-E Extra (with code study)
$\$ 34.95$

HAM RADIO LOG BOOKS

back by popular demand!!

Room for over 2100 QSO-that's over twice as many as the other \log book. For contesters, each page contains 30 QSO's for east counts. You also get the latest up-to-date frequency spectrum chart, ITU callsign list and ARRL DXCC list. Spiral bould to lay flat on your desk. Unquestionably the best \log book value around. (a) 1986

HR-LB
Spiralbound $\$ 2.95$
HR-3LB Special buy 3 price Save 22% Get 3 offer $\$ 6.95$

RADIO COMMUNICATION HANDBOOK

by RSGB 5th Edition

Here's an inside look at Amateur Radio with the British version of the ARRL. Handbook. Full of projects, theory and other helpful technical information. Also includes antennas, propagation, satellites plus much more! 198223 chapters 1.25" thick!
RS-RCH
Softbound \$21.95

COMPUTER PROGRAMS FOR THE RADIO AMATEUR
 Book currently unavailable.

by Wayne Overbeck, N6NB, and Jim Steffen, KC6A Here are the best computer programs for the Radio Amateur available. Gives you programs that will help you to, determine sunrise/sunset times, track the Moon's path across the sky, use Greyline propagation and set up record systems for WAS. DXCC and VUCC, or any other award. Take full advantage of your computer with well written and tested programs. 1984

Program Listing

Data Base Mgmt.

Logs, Awards Data Base, Gridlocator
Latitude/Longitude Programs
Data File, Beamheadings, DX Display, Sunrise Chart, Greyline, DX Checker

Contest and Duping

Dupechecker, General Contest Logger
Field Day Logger, Sweepstakes Logger, Log Print

Antenna Programs

Antenna Scaler, Matching Evaluator. Vertical Pattern Plotter EME
EME System Caiculator, Sky Locator, Moontracker
specify computer (see list below)
Disks available for: Apple II (DOS 3.3), IBM PC-DOS, TRS-80 Model III and Commodore C-64. Please mark your order with the program disk you want.

TUNE IN THE WORLD WITH HAM RADIO by ARRL staff 7th EDITION
 \section*{NOW INCLUDES TWO C-90 CODE STUDY TAPES!}

This package has been revised to cover new digital \& voice Novice requirements and contains THE goodies needed by the beginner to get started in Amateur Radio. Assuming that you have no prior knowledge of radio, the reader is taught how to pass the Novice exam, both code and theory, and how to set up a station. Unique code study method makes learning the Morse code easy as 1-2-3 And it's full of illustrations to help clarify difficult technical points. 160 pages (c) 1987 7th edition.

AR-HR

Softbound \$14.95

AMECO STUDY GUIDES

Designed for VEC Exams

AMECO Study Guides are taken from the latest FCC/VEC Exam question pool. Each book has the latest questions along with the ARRL/VEC multiple choice answers, immediately followed by a full discussion explaining each question. While nothing can guarantee that you will pass. AMECO study guides will make sure that you are fully prepared and ready to go. Written in clear concise, easy-toread format, each question is fully explained. Novice and General books are cross referenced to AMECO's 102.01 for a more thorough explanation

27.01 Novice Class	$\$ 4.95$
12.01 Technician/General Class	$\$ 4.95$
26-01 Advanced Class	$\$ 4.95$
17.01 Extra Class	$\$ 4.95$
102-01 Radio Amateur Theory Course	$\$ 6.95$

ORDER FORM
In a hurry? Call today!
(603) 878-1441

Catalog \#	Title	QTY.	Price	Total
Name \qquad Call \qquad Address City \qquad \qquad State \qquad \qquad \qquad Zip \qquad				
				\$3.50

\square MasterCard
Card \#
hamian
Callbooks available early December. ARRL Handbooks late Dates
Need more space? Attach a separate piece of paper and mail in the handy enclosed envelope

11111
 DRTA

MASTER LOG

Over three years of development went into this program. It creates a file of 2100 individual records with up to 13 different entries per record. Master Log can do a search and select based upon time, frequency, mode or any of the other variable parameters. It keeps track of DXCC and WAS status, prints QSL labels and can search its whole file in less than 5 seconds! Complete documentation isincluded to help you leam and use this truely state-of-the-art logging program.
HD-ML (For C-64)
$\$ 28.95$

DX TOOL KIT

This handy tool kit should be in every ham's shack. Piograms included are: Propagation chart, Beam heading, Grayline and Sunrise. The Propagation chart uses the NOSC Minimut 3.5 algorithm to compute both MUF and FOT for any OTH The Beam heading allows you to create a customized chart of both long and short path beam headings. Grayline selects and sorts countries on the Grayline for your location. The Sunrise routine will help you predict upcoming DX openings

HD-DX (For C-64)

$\$ 24.95$

ANTENNA DESIGN

This self-prompting program covers dipoles, Yagis, long wires, rhombics, quads, loops, verticals and other antennas You simply enter the frequency you are designing an antenna for, the antenna you want to make, and the computer will give you all the initial design specifications you need. The results can be stored on disk for permanent retention.

HD-AD (For C-64)

PROPAGATION CHART

Invaluable addition to any Hamshack. The Propagation Chart allows you to determine the maximum usable frequency (MUF) and the optimum frequency (FOT) between your OTH and any spot on the globe. You can get either a screen display, a printed tabular list over several days, or a printed graph of MUF and FOT. You also get automatic beam headings and distance to the DX station. Covers $160-10$ meters and the new WARC bands.

HD-PC (For C-64)

$\$ 16.95$

SUPER LOG

Super log gives you all the advantages of a computerized data base without significantly changing the traditional log format. For contesters. Super Log can be configured to either manual ly or automatically enter contact number as well as time of contact. Make an error and you can easily go back and edit the entry. Super Log also allows you to print out either selected contents or the whole log. Will prin QSLs

HD-SL (For C-64)

$\$ 19.95$

CONTEST LOG

This disk contains four different contest programs; ARRL Sweepstakes, Field Day. Universal WW Contest log, plus a dupe checking routine. Each program is designed tor real time use. It automatically enters date, time, band and serial number for each contact. A 24 -hour clock is displayed at the top of the VDT screen. When the contest is over, the program will print your results listing all duped and scored contacts in serial se quence with all the necessary information as well as complet ed score at the bottom of the page.
HD-CL (For C-64)
$\$ 24.95$

BASEBALL CAP

How about an attractive BASEBALL style cap that has name and call on it It gives a paunty air when worn at Hamfests and it is a great help for friends who have never met to spot names and calls for easy recognition. Great for birthdays, anniversaries, special days, whatever occasion Hats come in the following colors. GOLD, BLUE, RED. KELLY GREEN Please send call and name (maximum 6 letters per line)

UFBC-81
 $\$ 6.00$

I.D. BADGES

No ham should be without an I. D badge It's just the thing for club meetings. conventions, and get-logethers, and you have a wide choice of colors Have your name and call en graved in either standard or script type on one of these plastic laminated ID badges. Available in the following color combinations (badge/lettering), white/red, wood-
grain/white, blue/white, white/black
yellow/blue, red/white, green/white, metalic gold/black, metallic silver/black
UID Engraved I.D Badge

RAMSEY ELECTRONICS

—家

INCLUDES 2 HOOK -ON PROBES
 s499.95*

 35 MHz DUAL TRACEwide frequency bandwidth-optimal sensitivity - delayed triggering sweep -hold off-ALT trigger-single sweep TV sync 5 X magnification -XY or XYZ operation - HF /LF noise reduction

includes 2 hook -on probes $\$ 449.95^{*}$ 15 MHz DUAL TRACE PORTABLE
-up to 2 hours operation per charge- 5 X horizontal magnification -high brightness CRT-front panel trace rotator

20 MHz DUAL TRACE

Features component testing circuit for resistors, capacitors. digital circuits and diodes -TV sync filter -high sensitivity-
Zaxis-XY mode -built-in calibrator -5X horizontal magnifier

RAMSEY OSCILLOSCOPES

All Ramsey oscilloscopes feature unsurpassed quality at an unbeatable price. Of heavy duty construction, they are suitable for hobby. service and production applications. *Add an additional $\$ 10.00$ for each unit for shipping.

All include high quality $1: 1$. 10.1 hook on probes. instruction/service manual with schematic and component layout. I year warranty.

MINI-100 COUNTER
CT-707 DIGIT 525 MHz

CT-508 DIGIT 600 MHz

Ramsey Electronics has been manufacturing electronic test gear for over 10 years and is recognized for lab quality products at breakthrough prices. Our frequency coun tets have features and capabilities of counters costing twice as much. BP-4 Nicad battery pack for CT-70. CT- 90 and CT-125 Frequency Counters. $\$ 8.95$.

RAMSEY FREQUENCY COUNTERS

 PRICE 18

Compact sized reliability and accuracy This LCD digital multitester easily fits if your pocket. you can take it anywhere
features full overload protection • 3 digit LCD readout - recessed input jacks - safety probes • diodecheckfunction

RAMSEY D-4100 COMPACT DIGITAL MULTITESTER s2495 test leads and
battery included

MINIKITS-

ACCESSORIES FOR RAMSEY COUNTERS

Telescopic whip antenna-BNC plug
§ 8.95
High impedance probe. light loading
Low pass probe, audio use.
16.95

Direct probe, general purpose use . .
16.95

Tilt bail. for CT-70, $90,125$.
13.95

Tilt bail. for CT -70, 90, 125.
3.95

Has TOUCH -HOLD feature to allow read ing to be logged or referred to before making the next reading. Up to 10 AMP current capability and a continuity functon which beeps on zero 0 hms .

RAMSEY D-5100 HANDHELD DIGITAL AUTORANGING METER s49.95 Includes Probes I Year Warranty

$\$ 4495$
wired includes
AC adapter
PR $2 \mathrm{~kat} \$ 39.95$

PR-2 COUNTER PREAMP

The PR-2 is ideal for measuring weak signals from 10 to $1,000 \mathrm{MHz}$ • flat 25 db gain • BNC connectors - great for sniffing RF - ideal
receiver /TV preamp
PS-2 AUDIO MULTIPLIER
S6995
$5.2 \mathrm{kt1} 549.95$ resolution measurements, multiplies Up in frequency - great for PL tone measurements - multiples by 10 or $100 \bullet 0.01 \mathrm{~Hz}$ resolution buit-in signal preamp/conditioner
PS-10B 1 GHz PRESCALER
Extends the range of your present counter to 1 GHz e 2 stage preamp e divide by 1000 c
cuitry - super sensitive $(50 \mathrm{mV}$ typical) BNC connectors * 1 GHz in. 1 MHz out * drives any counter
$\$ 8995$
wired include
AC adapter

AEA weather FAX mod for the PK-232

Over the past few years, packet radio has grown from a rather esoteric part of Amateur Radio to one of the fastest growing segments ever. There must be at least ten manufacturers of TNCs, all selling basically the same product.

One way of selecting a TNC is to look closely at the features each unit offers. Do you want to go beyond packet? How about RTTY, AMTOR, ASCII, CW and weather FAX (WEFAX)? How

about SIAM, Signal Identification and Acquisi tion Mode? If you want all these features in a single unit, your only choice is the AEA PK-232.

All currently manufactured PK-232s have the FAX and SIAM option installed. The unit we reviewed earlier (see page 81 of the July, 1987 issue) was one of the first units off the line and needed to be modified to work on WEFAX and SIAM.

When I learned of AEA's modification for WEFAX, I immediately called and placed an order for the kit. Because demand was enormous, it took a few weeks for my kit to arrive.

Besides the parts and instructions needed to perform the mod, AEA also supplied an addendum for the operator's manual and a pre-made computer-to-TNC to printer cable. The cable alone is more than worth the $\$ 40$ price of the modification kit.

AEA is currently supporting most parallel graphics, and your dealer will have a complete list of printers that AEA has tested with the PK-232.

Four simple steps were all that were required to make the modification: remove the unit from use, disconnecting all cables; prepare a clean, static-free work area; remove six screws and open the unit; remove and replace EPROM U2 and install EPROM U3, then screw the cover back on. That's all there is to it. You're ready to reconnect and get back on line.

Sometimes it's hard to believe that the EPROM is as powerful as it is. Without EPROMS, the unit can't operate. Yet they can be installed in less than a heartbeat.

operation

I'll break this section into two parts: WEFAX and SIAM.
WEFAX. While WEFAX is basically a service for ships and aircraft, it offers a wealth of information for amateur meteòrologists too. Stations transmit weather maps that show actual conditions and prognostications, satellite photographs of the earth's surface, taken from geosynchronous and orbiting satellites, and plenty of additional information. Of particular interest to me has been the hurricane maps that are sent during the hurricane season here on the East Coast.

Transmitting stations are located around the world, with each transmitting information for its own geographical area. Here in the Northeast, Halifax, Canada and Norfolk, Virginia provide the most reliable reception and information. I haven't had much luck with European or West Coast stations, but this is more a problem of time on the air and propagation.

The PK-232 represents the third generation of WEFAX equipment I've operated. Of the three units I've used, it's by far the easiest to set up and the most convenient to use. No special paper is required. There are no noxious fumes, the unit is easy to transport and install - it's really a pleasure!

From the time the modifications were finished, the cables installed, the computer hooked up and

REVIEW

booted, to the reception of the first pictures, a grand total of 15 minutes passed.

Because you're using a dot matrix printer, you can't resolve shades of gray and therefore can't reproduce satellite images with pure photographic quality. The images, however, are very good and quite usable. Since maps and charts are black on white, their reproduction quality is excellent.

All you need to do is tune to a station transmitting FAX (with digital readout radios, tuning the PK-232 is no more complicated than subtracting 1.7 kHz from the transmitting station's published frequency). That's a heck of alot easier than it was with the old Hammerlund HQ-110's "coarse" and "fine" tuning controls. Then just configure the PK- 232 to FAX mode, turn on the printer, and Bingol Out come the maps and charts you've been waiting for.

You can also transmit FAX pictures. Frankly, because transmitting $F A X$ requires a special program, I didn't try this option, so I can't comment on the PK-232's capabilities in this area. AEA is currently developing an MS-DOS program for FAX transmission. Details are too sketchy to report. However, early versions include FAX display on screen, transmission capabilities, and a number of other features. Availability is scheduled for late fall or early winter.
SIAM. One of the first things you notice when you tune across the hf bands is the variety of different digital signals. Even if you were an expert and could tell by sound alone, it would take time to configure the PK-232 to receive these signals. With SIAM, the PK-232 analyzes the signal and identifies the type of transmission and its speed. The operator can then decide whether to receive the station or continue on with a band search.

SIAM will decode a number of different digital codes: ASCII, ARQ, and FEC AMTOR and Baudot. It will also decode the Russian Cyrillic and Japanese Katakana codes.

To use SIAM, all you do is type in the command OPMODE SIGNAL, confirm that the receive (DCD) LED is lit, and wait approximately 10 seconds. The PK 232 will respond with a baud rate indication and a confidence of mode factor. In another 15 seconds, the PK- 232 will identify the signal. To copy the signal, all you do is type in the command $O K$. If the SIAM analysis is correct, you'll start seeing text. If not, the PK. 232 will give you a ?bad prompt.

If the text is decoding but seems to be encrypted, you can try setting BITINV to 0 through 31, if only simple bit-inversion encryption is being used. If none of these 32 settings will decode the station, chances are another more sophisticated encryption system is being used.

conclusion

Typically, AEA has included a well written owner's manual that describes the operation of both WEFAX and SIAM modes fully. In case of difficulty, AEA has listed a number of common faults and the appropriate fixes. They also offer excellent advice by telephone if the manual and a little bit of work fail to solve the problem.

If you have a PK-232 and haven't yet modified it, you're missing out on a treat. I wouldn't just walk - I'd run to place the order!

AEA, 2006 196th Street SW, Lynnwood, WA 98036.

Circle 302 on Reader Service Card.
N 1 ACH

miniaturized DTMF encoders

Pipo Communications has introduced the $\mathrm{P}-7$ and P-8 series of miniaturized DTMF encoders designed for custom installation in radios or systems that are exposed to harsh or abusive environments. Built with steel keys and sealed gold dome contacts to ensure reliability and long life, the P-7 and P-8 encoders will fit most radios.

The P-7, a 12 -key touchtone encoder, comes in vertical ($\mathrm{P}-7 \mathrm{~V}$) or horizontal ($\mathrm{P}-7 \mathrm{H}$) formats measuring 2.16 inches by 1.5 inches by 0.20 inches. The P-8, a 16 -key touchtone encoder, is available in a vertical (P-8V) format only; it measures 2.16 inches by 1.9 inches by 0.20 inches. Both are available in black or dark brown.

For more information, contact Pipo Communications, P.O. Box 2020, Pollock Pines, California 95726-2020.

Circle 1303 on Reader Service Card.

power strip spike protector

TDP's Model 10PS101 Power Strip Voltage Spike Protector has been specifically designed to guard solid-state circuits against potentially

- 192

1193
NEW

PLENTY OF BOOKS LISTED IN THE BOOKSTORE'S HOLIDAY CATALOG TURN TO PAGES 88-89. SAVE TIME AND MONEY. SHOP BY MAIL FROM YOUR \#1 SOURCE OF AMATEUR BOOKS AND SOFTWARE.
damaging voltage spikes by absorbing and dissipating them through two 50 -joule MOVs without interfering with normal current flow. All six outlets are circuit-breaker protected and rated at 15 amps .

In addition, the 10PS 101 features a bi-directional noise filter to eliminate both RFI and EFI interference. The noise filter functions over a broad band (100 KHz to 20 MHz); high frequency signals in this range are attenuated by up to 30 dB for improved equipment performance.
UL-listed and American-made, the 10PS101 has six NEMA-type plug-ins and a heavy-duty.

three-wire grounded 6 -foot power cord. MOV working status is confirmed by a built-in indicator lamp.

For more information, contact TDP Electronics, 111 Old Bee Tree Road, Swannanoa, North Carolina 28778.

Circle 1304 on Reader Service Card

all-mode $440-\mathrm{MHz}$ base station transceiver

ICOM has introduced the IC-475A $440-\mathrm{MHz}$ base station transceiver. This deluxe all-mode base receives from 430 to $450-\mathrm{MHz}$ and has 99 tunable full-function memories, passband tuning, a notch filter, noise blanker, built-in SWR bridge, semi or full CW break-in, and a multifunction meter. The new IC-475A also has a velvet-smooth tuning knob and easy-to-read amber LCD readout with variable backlight.

Four scanning systems are available: band, programmable, mode, and memory scan that scans 99 memories in five seconds, with selectable lock-out. The IC-475A features exciting new options such as a tone squelch unit, speech synthesizer, and OSCAR module that allows tracking with a companion IC-275A or IC275H;

Measure Up With Coaxial Dynamics Model 83000A RF Peak Reading Wattmeter

Take a PEAK with Coaxial Dynamics "NEW" Model 83000A, designed to measure both FWDIRFL power in CW and FM systems simply and quickly. Then with a "FLIP" of a switch, measure "PEAK POWER" in most AM, SSB or pulse systems. Our Model 83000A features a complete selection of plug-in-elements plus a 2 year warranty. This makes the Model 83000A an investment worth looking at. So go ahead, take a "PEAK", you'll like "WATT" you see! Contact us for your nearest authorized Coaxial Dynamics representative or distributor in our world-wide sales network.

COAXIAL DYNAMICS, INC.

15210 Industrial Parkway Cleveland, Ohio 44135 216-267-2233 1-800-COAXIAL
Telex $98-0630$
Service and Dependability ... a Part of Every Product
See us at Dayton Booth \#400-401
ค 194

2x4Z BASE REPEATER ANTENNA

THE HIGHEST GAIN DUAL BANI BASE/REPEATER ANTENNA

HIGH POWER 200 WATTS
FREQUENCY: BROAD BAND
$140-170 \mathrm{MHz}$
$410-470 \mathrm{MHz}$
GAIN:
VHF - 8.2dB
UHF - 11.5 dB
VSWR - 1.-1.2 or less
CONNECTOR: N TYPE FEMALE

LIGHTNING PROTECTION GROUNDED DIRECT

LENGTH: 16 FT . WEIGHT: 5 LBS. 3 OZ.
WIND LOAD: 90 MPH MOUNTING: UP TO 2 IN . MAST
CAN SIMULCAST ON BOTH BANDS

WATERPROOF
CONNECTING
JOINTS
UPS SHIPPABLE

AMATEUR SPECIAL

1275 NORTH GROVE ST. ANAHEIM, CALIF. 92806 (714) 630-4541

CABIE: NATCOLGLZ FAX (714) 630-7024

IF YOU BUY, SELL OR COLLECT OLD RADIOS, YOU NEED...

ANTIGUE RADIO CLASSIFIED

Antique Radio's Largest-Circulation Monthly Magazine
Articles - Classifieds - Ads for Parts \& Services Also: Early TV, Ham Equip., Books, Telegraph, 40's \& 50's Radios \& more... Free 20 -word ad each month. Don't miss out! Sample - Free. 6-Month Trial - $\$ 10$. 1-Year: $\$ 18$ ($\$ 24$ by 1st Class). Foreign - Write. A.R.C., P.O. Box 2-A3, Carlisle, MA 01741

WI-COMM ELECTRONICS INC. P.O. Box 5174, MASSENA, N.Y. 13662 (315) 769-8334
~ 199

SPECIALIZED

 COMMUNICATIONSFOR TODAY'S RADIO AMATEUR!

Since 1967, covering all modes of Amateur Radio "specialty", communications; Fast Scan TV, SSTV, FAX, Packet Radio, Computers, RTTY, AMTOR, Satellites, TVRO, Microwave, Lasers and more! 10 issues per year. Back issues available, SASE brings TRS80C, C64, IBM software catalog. U.S. subscribers $\$ 20 /$ year. Foreign slightly higher. Add $\$ \mathbf{2 . 0 0}$ for Index Issue.
SPEC-COM Communications \& Publishing Group
P.O. Box H,

CALL US
NOW!

FAST DELIVERY HONEST DEALING anc PROMPT DEPENOABLE SER.V.ICE DACK.U: We don i just advertise i: - WE GIVE IT

In 1937. Stan Burghardt (WøIT), because of his intense interest in amateur radio, began selling and servicing amateur radio equipment in conjunction with his radio parts business. We stand proud of this long-lasting tradition of Honest Dealing, Quality Products and Dependable "S-E-R-V-I-C-E'?

Above all, we fully intend to carry on this proud tradition with even more new product lines plus the same "fair" treatment you've come to rely on. Our reconditioned equipment is of the finest quality with $\mathbf{3 0}$, 60 and even 90 -day parts and labor warranties on selected pieces. And always remember:

- WE SERVICE WHAT WE SELL -

AEA
A I INCO
AMERITRON
AMPMENOL AMO SUDPLY ANTEK ANTENNA SPECIALISTS ASTRON B \& W

BELDEN
BENCHER
BIRD BUTTERNUT CENTURION CES
CUSHCRAET DIAWA ENCOHTM
HUSTLER

Write today for our latest Bulletin/Used Equipment List.

NVE
PALOPTAR radio Callboon RITRON
ROHN
TELEX/HYGAIN
TEN-TEC
TRIO-KENWOOO
UNADILLAREYCO
yAESU

SERVVICE
satisfaction:

182 North Maple Street Watertown, SD 57201

Your Ham Dollar Goes

 Further At...'AMERICA'S MOST RELIABLE AMATEUR RADIO DEALER"

SELL-TRADE

New \& Reconditioned Ham Equipment
Call or Write Us Today For a Quote! You'll Fird Us to be Courteous, Knowledgeable and Honest
PHONE (605) 886-7314

PAKRATT ${ }^{\text {- }}$ - Model PK-232
AEA'S FINEST
Now Available - Especially For You! CALL OR WRITE FOR SPECIAL QUOTE

NEMAL ELECTRONICS

${ }^{*}$ Complete Cable Assembly facilities MIL-STD-45208
 ${ }^{*}$ Commercial Accounts welcome-Quantity pricing * Same day shipping most orders
 *Factory authorized distributor for Alpha, Amphenol, Belden, Kings, Times Fiber

Call NEMAL for computer cable, CATV cable, Flat cable, semi-rigid cable, telephone cable, crimping tools, D-sub connectors, heat shrink, cable ties, high voltage connectors.

HARDLINE 50 OHM
FXA12 1/2 $1 / 2^{*}$ Auminum Black Jacket
CONNECTORS-MADE IN USA
 \qquad
FLC12 $1 / 2^{\circ}$ Cablewave corr. copper blk jkt 1.59/n
FLC78 7/E Cablewave corr.copper blk jkt 392/n
NM12CO N L259 standard UHF plug for RG8,213.............................. 65 PL2594M Amphenol PL259 PL259TS PL259 tefion ins/silver plated. \qquad PL2584M Amphenol fernalo-femalo (barrel). \qquad UG175/UG178 reducer for RG58/59 (specify).. (ty)...................
NMT8CC N conn $7 / 88^{\circ}$ corr copper m / s................54.00
COAXIAL CABLES (per it)
1180 BELDEN 9913 very low loss \qquad

1102 RGB/N 95\% shiold low loss fom 11ge UG21DS N plug for RGQ213,214 Silver. \qquad 1110 RGBX 95\% shiold (mini B)
 1130 RG213N 95\% shield mil spec NCV jkt.... 1140 RG214/N dbl silver shid mil spec.... \qquad UG838 N jack to PL. 259 adapter, teflon . $\begin{array}{r}1 . .22 \\ 3.35 \\ \hline 850\end{array}$... 6.50 UG1464 SO239 to N plug adepter, teflon. +.650
6.50 UG255 SO239 to BNC plug adapter, Amphenol......... 329 SO23SAM UHF chassis mi receptacle,Amphernol...
.... 1.65 1310 RG128B/U dbi siver shid, tellon ins \qquad 1450 RG174/ 50 ohm 100° od mil spec \qquad

ROTOR CABLE-8 CONDUCTOR
BC1822 2-18ga and 6-22ga \qquad
\qquad
\qquad $.19 / n$ $36 / n$

GROUND STRAP-GROUND WIRE

GS38 3/8 tinned copper braid
$.30 / \pi$
$\begin{array}{ll}\text { GS38 } & 3 / 8^{\circ} \\ \text { GS inned copper brad } \\ \text { GS } & 1 / 2^{\circ} \text { tinned copper brald }\end{array}$ $.30 / \pi$
$.40 / \pi$ GS200 1-1/2' heavy tinned copper braid 2.00/n HWO6 6ga insulated stranded wire35/n AW14 14ga stranded Antenna wire CCS 12/h
Shipping: Cable $\$ 3 / 100$, Connectors $\$ 3.00$, Visa/Mastercard $\$ 30 \mathrm{~min}, \mathrm{COD}$ add $\$ 2.00$ Call or write for complete price list Nema/'s now 36 page CABLE AND CONNECTOR SELECTION GUIDE is available at no charge with orders of $\$ 50$ or more, or at a cost of $\$ 4$ with credit against next qualifying order.

NEMAL ELECTRONICS, INC. 12240 NE 14th Ave. N. Miami, FL 33161 (305) 893-3924 Telex 6975377 24hr FAX (305)895-8178

R-7000 Widespan Panadaptor

Panadaptor especially designed for the R-7000 receiver. For use with a standard scope. Variable span width from 1 to 10 Mhz . Uncover unknown elusive signals. Complete with all cables, \& 90 day warranty. $\$ 349.95$ Shipped. Pa. res. add 6%.

GTI Electronics

RD 1 BOX 272
Lehighton, Pa. 18235
717-386-4032

flea market 4 雷回回

RATES Noncommercial ads $10 ¢$ per word； commercial ads 609 per word both payable in advance．No cash discounts or agency com－ missions allowed．

HAMFESTS Sponsored by non－profit or－ ganizations receive one free Flea Market ad （subject to our editing）on a space available basis only．Repeat insertions of hamfest ads pay the non－commercial rate．

COPY No special layout or arrangements available．Material should be typewritten or clearly printed（not all capitals）and must in－ clude full name and address．We reserve the right to reject unsuitable copy．Ham Radio can－ not check each advertiser and thus cannot be held responsible for claims made．Liability for correctness of material limited to corrected ad in next available issue．

DEADLINE 15th of second preceding month．

SEND MATERIAL TO：Flea Market，Ham Radio，Greenville，N．H． 03048.

TEST EQUIPMENT WANTED．Don＇t wait ．－－we＇ll pay cash for LATE MODEL HP，Tek，etc．Call Glenn，NJEPK，at Skagitron ics Co．1800） 356 －TRON
＂HAMLOG＂COMPUTER PROGRAMS． 17 modules auto－logs， sorts 7 band WAS／DXCC．Full features．Apple $\$ 19.95$ ．IBM o
CP：M $\$ 24.95$ ．KA1AWH．POB 2015，Peabody，MA 01960.
RV OPERATORS are invited to check in Sun 2 PMC， 14.240 5．Tues，Thurs 8 PMC $3.880+5$ ．Good Sam RV Net．Info SASE KJARO．

YAESU FT－727－R COMPUTER INTERFACE．For info write Gerald Hogsett Consulting， 1581 Woodland，Palo Alto，CA 94303.

NJ－NJ－NJ－NJ－NJ－NJ－NJ－NJ A Full－Service Ham－SWL－CB Scanner store in NJ．Discount Grand Opening Prices．Top per－ forming radio systems for every budget．New 10 meter and
VHF／UHF rigs．ARRL，Amphenol，Astatic．Astron．Azden， VHF／UHF rigs．ARRL，Amphenol，Astatic，Astron，Azden，
B\＆W，Bilat Belden 9913 ，Butternut，Clear Channel，KI．M，Lar BEW，Bilal Belden 9913 ，Butternut，Clear Channel，KILM，Lar－
sen，MFJ，Mirage，Mil Spec Cables，much more．Open M－F 10 sen，MFJ．Mirage，Mil Spec Cables，much more．Open M－F
AM－9PM．Sat $10 \mathrm{AM} \rightarrow 7 \mathrm{PM}$ ．Buy and sell used gear and have qualified repair facility．ABARIS SYSTEMS， 276 Oriental PI Lyndhurst，NJ 07071 （201） 939.0015.

CODE PROGRAMS．APPLE／C－64． 37 modes．LARESCO，POB 2018． 1200 Ring Road，Calumet City．IL 60409．1－312－891－3279

IBM－PC RTTY／CW．New CompRtty II is the complete RTTY CW program for IBM－PC＇s and compatibles．Now with larger buffers，better support for packet units，pictures，much more．Virtually any speed ASCII，BAUDOT．CW．Text entry via built－in screen editor！Adjustable split screen display，Instant mode／speed change．Hardcopy．diskcopy，break－in buffer，se lect calling，text file transfer，customizable full screen logging 24 programmable 1000 character messages．Ideal for MARS and traffic handfing．Requires 256 kPC or AT compatible，serial port RS－232C TU． $\mathbf{~ d i 5 . ~ S e n d ~ c a l l ~ l e t t e r s ~ (i n c l u d i n g ~ M A R ~ R i c e , ~ K C 2 H O , ~} 25$ Village View Bluff，Ballston Lake NY 12019.

MEASURE VSWR，antenna patters，match circuit impedances from 100 kHz to 2 GHz with portable scalar network analyzers Write for details．Direct Conversion Technique， 3132 North Lowell Avenue，Chicago，Illinois 60641．（312）283－1690．

CHASSIS，CABINET KITS．SASE．K3IWK， 5120 Harmony Grove Road，Dover，PA 17315

TELEVISION SETS made before 1946，early TV parts，litera ture wanted for substantial cash．Especially interested in＂mir or in the lid and spinning disc iv S．Finder＇s fee paid or leads． （203）521－5280．

ENGINEERS request free catalog of Electronics Software．Cir cuit analysis，fiter design，graphics，etc．BV Engineering． 2200
Business Way．Suite 207．Riverside，CA 92501 （714） 781.0252.

REMEMEER TROLLEY CARS？Trolley Treasures：The War－ time Years in New Jersey（1939．194\％）a 4 －volume photo documentary history．includes 1600 unpubished，original photographs plus extensive historical notes．Volume I，The Com promise Roof Cars of Pubfic Service Coordinated Transport， ready now．SASE for details．To order，contact Trolley Themes， A．W．Mankoff，2237－3 Woodside Lane，Sacramento，CA 95825. （ $\$ 14.95$ plus $\$ 1.50 \mathrm{~S} 4 \mathrm{H}$ ）

RTTY JOURNAL—Now in our 35th vear．Join the circle of RTTY friends from all over the world．Year＇s subscription to RTTY JOURNAL，$\$ 10.00$ ，foreign $\$ 15.00$ ．Send to：RTTY JOUR NAL， 9085 La Casita Ave．，Fountain Valley，CA 92708.

IMRA International Mission Radio Association helps mission－ aries．Equipment loaned．Weekday net， $14.280 \mathrm{MHz}, 1.3 \mathrm{PM}$ Eastern．Nine hundred Amateurs in 40 countries．Rev．Thomas Sable，S．J．，University of Scrinton，Scranton，PA 18510.
BACK ISSUES HR Magazine from Vol． 1 No． 1 thru 1986，ex cept 2 issues．$\$ 150$ for all postpaicl．Also PopTronics，RE， 73 back o 1961．$\$ 1500 /$ full vear．Write with your needs．Bill Fossman 632 Wetmure，Everett，WA 98201

MARCO：Medical Amateur Radio Council，Ltd，operates dailv and Sunday nets．Medically oriented Amateurs（physicians，den tists，veterinarians，nurses，physiotherapists，lab technicians， tion write MARCO Presently over 550 members．For informa－ tion write MARCO，Box 73＇s，Acme，PA 15610

FOR SALE：ARCOS 2 meter K．W．RF deck using 8930 tubes． Unit was built by ARCOS then tested and not used since．RF deck，manual and blower all new．\＄650．Call NS9M at 317 － 832－2229，and
Indiana 47831．

HAM LAB PROJECT．Want several pieces HP G－382A varia－ ble attenuator．Will consider any repairable condition．K6GOX ble attenuator．Wili consider any repairable condition．K6
PO Box 10，O＇Neals，CA $93645(209) 868$－3548 Collect．

30 YEARS PROVIDING QSL＇s．Full color Old Glory，Cartoon． Also Parchment，Golden Eagle and others．Free samples．SASE Also Parchment，Golden Eagle and others．Free samples．SASE

SUPERFAST MORSE CODE SUPEREASY．Subliminal cas－ sette．\＄10．Learn Morse Code in 1 hour．Amazing new supereasy technique $\$ 10$ ．Both $\$ 17$ ．Moneyback guarantee．Free catalog SASE．Bahr，2549－H7 Temple，Palmbay，FL 32905.

SAT TRAK II－A complete advanced self－contained satellite tracker with AZ／EL rotor control．Enter Keplerian data once via RS－232 with terminal or computer．Memory for 12 satellites．Ac－ 10184，Sarasota，FL 34230．（813） 378.3410 ．

TELESCOPE $10^{\prime \prime}$ Meade，drive motor，lens，like new $\$ 750$ ． Trade TS．430，FT．757．K6KZT 805）528．3181

TEN－TEC，Now shipping new boxed USA made latest factory models， 561 Corsair II，525D Argosy II，and Century 22 trans－ ceivers．RX 325 general coverage receiver，Model 2510 Mode Model 229 B 2 kw antenna tuner，Modet 425 Titan 1.5 kw linear amplifier plus accessories and antennas，also booking orders for Paragon delivery．For best deal write or phone Bill Slep $704-524.7519$ ．Slep Electronics Company，Highway 441，Otto， NC 28763.

RUBBER STAMPS： 3 lines $\$ 4.50$ PPD．Send check or MO to G．L．Pierce， 5521 Birkdale Way，San Diego，CA 92117．SASE brings information．

ELECTRON TUBES：Receiving，transmitting，microwave．．．all ypes available．Large stock．Nexi day delvery，most cases． 774－1255

CUSTOM MADE EMBROIDERED PATCHES．Any size，shape， colors．Five patch minimum．Free sample，prices and ordering information．HEIN SPECIALTIES，Inc．，Dept 301， 4202 N．Drake， Chicago，IL 60618

RECONDITIONED TEST EQUIPMENT $\$ 1.25$ for catalog． Walter， 2697 Nickel，San Pablo，CA 94806.

COMING EVENTS

Activities－＂Places to go

SPECIAL REQUEST TO ALL AMATEUR RADIO PUBLICITY COORDINATORS：PLEASE INDICATE IN YOUR ANNOUNCE－ MENTS WHETHER OR NOT YOUR HAMFEST LOCATION， CLASSES，EXAMS，MEETINGS，FLEA MARKETS，ETC，ARE WHEELCHAIR ACCESSIBLE．THIS INFORMATION WOULD BE GREATLY APPRECIATED BY OUR BROTHER／SISTER HAMS WITH LIMITED PHYSICAL ABILITY．

CONNECTICUT：November 15．SCARA Indoor Ham Radio and Computer Flea Market，N．Haven Park and Recreation Cinter 7 Linsley St，N．Haven．Sellers admitted at 7 AM：buyess from 9 AM to $3 \mathrm{PM}^{6}$ Tables are $\$ 10$ in advance，$\$ 15$ at the door．Gener al admission $\$ 2$ per person．Talkin on 146.61 MHz ．Reservations for tables must be prepaid by November 4，1987and no reserva tion by phone．For information or reservations SASE to：SCARA POB 81．N．Haven，CT 06473 or call Brad at（203）265－6478 be iween 7 PM and 10PM

ILLINOIS：November．Rocktord Hamfest，Forest Hills Lodge 9900 Forest Hills Rd，Rockford． 8 AM to 4 PM．Tickets $\$ 3$ ad vance，$\$ 4$ at door．Amateur Radio and computer dealers，indoo flea market，outdoor tailgating，radio／computer forums，ARRL speakers，exams，free parking．All on one level．WHEELCHAIF ACCESSIBLE．For advance tickets SASE to Rockford Harnfest 6514 Swansdown drive，Rockford，IL 61111．For booth／table reservations SASE to Roger Sawvell，KD9MO， 6514 Swansdown Drive．Rockford，IL 61111 or call（815）282－1283．
NORTH CAROLINA：November 21 and 22．The 71h minua Greensboro Hamfest Franklin Blvd，National Guard Ammory Sponsored by the MARK IV Radio Club． 9 AM to 5 PM．Ticket $\$ 4$ advance，$\$ 5$ at gate．New tailgate area．Ticket plus $\$ 2$ pe space．Walk in FCC exams．Information／registration：Fred Red mon，N4GGD， 3109 Goodall Drive，Greensboro，NC 274071919 $852-9244$ from 0100 Z to 0300 Z．Tickets only：Henry Hughes KA4LPA， 2811 Gwaltney Rd，Greensboro，NC 27407．FCC exams：Hugh Brunson，AE4N 1919）852－1087．
ALABAMA：November 14 and 15．The Montgomery ARC＇s 10 th annual Central Alabama Montgomery Hamfest，Ed Teague Arena，Central Alabama State Fairgrounds near Coliseum．Free admission，free parking．Overnight RV parking with hookups $\$ 5 /$ night．Flea market and dealer setups Friday 7 to 10 PM Satur day and Sunday 6 AM．Tables $\$ 5$ each／day or $\$ 7$ each／both days．No reservations needed．Doors open to public 9 to 4 PM Montgomery Hamfest，POB 3141，Montgomery．AL 36109 or Montgomery Hamfest，POB 3141，Montgomery，
call Randy（205）832－4598 or Ken（205） $271-0028$.

COLORADO：November 29．The Denver Radio Club＇s an nual Hamfest and ARRL State Convention，Jefferson County Fairgrounds，6th Avenue and Indiana，Goiden． 9 AM 2 PM．Swap tables，seminars，code contests．Non and 146．52．Contact Dean Haworth，ACOS（303）279－4956 for more information．

FLORIDA：November 21 and 22．South Florida ARRL Suncoas Convention sponsored by the Florida Gulb Coast ARC Council St．Petersburg Hilton and Towers．Hugh flea market．Amateur exams．Saturday OCWA luncheon．Tech talks and demos tion information write FGCARC， 1556 －56thAvenue North，St tion information write
Petersburg，FL 33703.

WISCONSIN：November 14．The Milwaukee Repeater Club is sponsoring the third annual＂ 6.91 Friendly Fest＂，Serb Hall， 51 s sponsoring the third annual＂ 6.91 friendly Fest，Serb Hall， 1 ll ，
and Oklahoma Avenue． 8 Am to 1 PM ．Sellers 7 AM ．All on ground floor with easy access．Rain or shine．On site Amateu ground floor with easy access．Rain or shine．On site Amateu
exams．Tickets $\$ 3.4^{\prime}$ tables $\$ 4$ ．Save $\$ 1$ per ticket or table－ exams．Tickets $\$ 3.4$ tables $\$ 4$ ．Save Milwaukee，WI 53201 by November 7，1987．Talk in on 146.91 and 146.52 ．

MASSACHUSETTS：November 21．The Honeywell Bull 1200 Radio Club and the Waltham Amateur Radio Association will hold their annual Amateur Radio and Electronics Auction， Honeywell Bull plant， 300 Concord Road，Billerica．Snack bar and bargain parts store．Doors open 10 AM．Free admission and parking．Talk in on 147．72／12 and 146．04／64 repeaters．For in－ formation：Doug Purdy，N1BUB， 3 Visco Road，Burlington，MA 01803

GEORGIA：October 31 and November 1．Ham Radio \＆Com－ puter EXPO 87 sponsored by the Alford Memorial Radio Club puter ExPO 87 sponsored by the Alford Memorial Radio Club． Atlanta．VEC exams both days，covered flea market，free park ing，RV sites with hookups，convenient lodging．\＄5 admission includes Saturday night cookout．For more information：EXPO ＇87．POB 1282，Stone Mountain，GA 30086

MINNESOTA：December 5．The annual Handi－Ham Winter Hamfest，Eagles Club，Faribault．Registration starts 9 AM．Handi－ Ham equipment auction．Dinner at noon．Program follows License exams．Talk in on 19／79．For information：Don Franz WOFIT， 1114 Frank Avenue．Albert Lea，MN 56007

OHIO：November 22．The Massillon ARC will sponsor AUC TIONFEST＇87，Massillon K of C Hall，off Rt 21． 8 AM to 5 PM Sellers setup 7 AM．Admission $\$ 3.50$ advance and $\$ 4 /$ door． Tables available $\$ 7 / 8^{\prime}$ space．Refreshments available．Free park ing．Auction starts 11 AM．Talk in on W8NP，147．78／．18．For advance registration and information SASE to MARC，POB 73 ， Massillon，Ohio 44646.

OPERATING EVENTS

＂Things to do

November 8：Armored Forces Amateur Radio Net wilf com memorate Veteran＇s Day 06002 thru Wed Nov 11 2400Z． 80,40 ely Circle．Newington，CT 0611

November 8: To observe Veteran's Week, members of the Hamtester Radio Club, Chicago, will operate from the Hines VA Hosputal's Robert K "Pappy" Wade,K9CDH, Memorial Ham Shack using Hine's club call K9WFN. 15002 to $0300 Z$ 40, 20 $2 m+M$ and $2 m$ USB. For a commemorative certificate, send QSL, QSO number and 9×12 SASE with 39 cents postage of $\$ 100$ to Hamfesters Radio Club, Inc., Chicago, c/o Robert K "Pappy" Wade Memorial Ham Shack, Bld 8, Hines VA Hospi tal Hines, IL 6014

November 25: Cocos - Keeling Isiand. Listen for Hans, F6GVD and Victot, G3AAG, For two weeks. No specitic frequency or tme except first 10 minutes of the hour they will stand by for ORP stations only and at halt hour for handicapped operators QSL via OSL manager VK9YC or direct to F6GVD.

HAM EXAMS: The MIT UFH Repeater Association and the MI Radio Society offer monthly Ham Exams. All classes Novice to Extra. Wednesday November 18, 7 PM, MIT Room 1.150, 77 Mass Ave, Cambridge, MA. Reservations requested 2 days in advance. Contact Ron Hottmann at (617) 646-1641. Exam tee $\$ 4.25$ Bring a copy of your current license (if any), two forms of picture ID. and a completed form 610 available from the FCC in Ouincy. MA (617) 770-4023

CHARGE yOUR CLASSIFIED ADS

to your
MC or VISA write or call
HAM RADIO MAGAZINE
Greenville, NH 03048
(603) 878-1441

MOVING?
 路

If possible let us know four to six weeks before you move and we will make sure your HAM RADIO Magazine arrives on schedule. Just remove the mailing labe from this magazine and affix below. Then complete your new address (or any other corrections) in the space provided and we'll take care of the rest.
ham
FCIFO
Magazine
Allow 4.6 weeks for correction.

Greenville, NH 03048
Thanks for helping us to serve you better.

LOW BAND DX-ING COMPUTER PROGRAMS

by John Devoldere, ON4UN, for Apple Ile/c, MS-DOS, Commodore C-128 Apple Macintosh and Kaypro CPM Computers
Here's a collection of 30 super programs written by ON4UN. Just about every interest or need is covered-from antenna design and optimization to general operating pro grams. Antenna programs include: shunt and series input L network design, feedline transformer, shunt network design, SWR calculation, plus 11 more! General Ham programs include: sunrise/sunset, great circle distances, grayline, vertical antenna design program, sunrise calendar plus 9 more Phew. When you sit down to use these programs you'll be amazed at what you have. The best value in computer software available today. 1986

UN-Apple Ile/llc
UN-MS (MS-DOS)
$\$ 19.95$
$\$ 19.95$
UN-CPM/Kaypro $\$ 19.95$
UN-C-128 (COMMODORE) $\$ 19.95$
\square UN-MAC (MACINTOSH)
\$24.95

LOW BAND DX'ING

by John Devoldere ON4UN

Now Available! The new, 2nd edition of the definitive book on Low Band DX'ing. Based upon years of practical on-the-air experience, learn the secrets of how ON4UN has been so successful on the low bands. Extensive coverage is given to transmit and receive antennas with clear concise explanations and plenty of illustrationsdipoles, inverted V's, slopers, phased arrays and Beverages-they're all in this book. Also covered: propagation, transmitters receivers, operating, software and an extensive Low Band bibliography. Going to be a best seller! Get yours today. © 1987 2nd Edition 200 pages
AR-UN
Softbound $\$ 9.95$

BUY'EM BOTH SPECIAL OFFER

Book \& Software Reg. \$29.90 (\$34.96 for Mac)
Just \$24.90 (\$29.90 for Mac) UN-SO (specify computer) $\quad \mathbf{\$ 2 4 . 9 0}$ UN-MSO Macintosh Special \$29.90

SAVE \$5
Please enclose $\$ 3.50$ shipping \& handling ham radio BOOKSTORE GREENVILLE, NH 03048

603-878-144

YEAR-END CLEARANCE
All starred (\star) items 20% off; all others 10%. Prices are each except as noted. All filters 8 -pole Sale ends December 31, 1987.
FILTERS FOR KENWOOD Reg. $\mathbf{s 6 0}$ except as noted 8.83MHz IF for models: TS 120 through TS 940 Bandwidths: 250, 400, 1800, *2100, 6000 Hz
TS440 * Pair $(400 \mathrm{~Hz}$ CW. 2.1 KHz SSB$)$. Reg. $\$ 120$ TS430 * Triple (Both above plus AM) Reg $\$ 180$ 455 KHz IF for R820, TS830/930/940 Reg $\$ 110$ Bandwidths Available: CW $\approx 400 \mathrm{~Hz}: \mathrm{SSB} * 2.1 \mathrm{KHz}$
Matched Filter Pairs for Above Reg. $\mathbf{5 1 7 0} \mathrm{pr}$. (8.83 MHz and 455 KHz) SSB: $* \mathbf{2 1 0 0 \mathrm { Hz } . \mathrm { CW } : ~ * 4 0 0 \mathrm { Hz } , ~}$ 3.395 MHz IF tor TS520, TS511, R599.

Bandwidths Available: $250,400, * 1800,2100 \mathrm{~Hz}$
Filter Cascade Kits with Filter and Amplifier
For * TS430 \$85; *TS520 \$80; *TS820 - Reg. $\$ 70$
FILTERS FOR YAESU
Reg. $\mathbf{S 6 0}$ except as noted.
3.18MHZ IF for FT. 101 Series except ZID.

BWS: $250,500 \mathrm{~Hz}, 1.8, \star 2.1, \star 2.4,6.0 \mathrm{KHz}$
8.2 MHz IF for FT. 102, FT. $757 / 767$

Bandwidths Available: $\approx 250,500,2100 \mathrm{~Hz}$ 454 KHz IF for FT- $102(* \mathbf{2 5 0}, 500 \mathrm{~Hz}$) Reg. $\$ 75$ 455 KHz IF for FT- $102(* 2.1 \mathrm{KHz}) \ldots \ldots$.............. $\$ 11$
8.9 MHz for FT-101ZD/107/707/901-2. FT.980, FT. 77

BWS: $250,500 \mathrm{~Hz}, 1.8,2.1, * 2.4,6.0 \mathrm{KHz}$
10.76 MHz IF for all but 980 : BWs: $2.1, \star 2.4 \mathrm{KHz}$

455 IF for FT 980 only: BW $\approx 2.1 \mathrm{KHz}$............. $\$ 110$
455.8 IF for FT.980, FT $726:$ BW $* 500 \mathrm{~Hz}$....Reg. $\$ 75$
9.0 MHz IF for Tempo 1 (or FT-200), FT-301, FT-7/B

BWS: $\star 250,500 \mathrm{~Hz}, 1.8, * 2.1,2.4,6.0 \mathrm{KHz}$
NOTE: ADove are our "homebrewers' favorites"।
FILTERS FOR ICOM (exact replacements)
455 IF for IC730/740/745/751. R70/71, etc
Bandwidths: FL.44A (SSB *2.4KHz)
FL52A (500 Hz): FL53A (250Hz)
Reg. $\$ 109$

Bandwidths Available: $250,400 \mathrm{~Hz} * 1.8 .2 .1 \mathrm{KHz}$
For SB-104 Only: * 400 Hz (3395.7 IF)
FILTERS FOR DRAKE R-4C Reg. $\mathbf{5 6 5}$ exc. as noted GUF1 - Replaces original 1st IF 4-pole unit 2nd IF 125 ($\$ 75$), $250,400 \mathrm{~Hz}, 1.8, \star 2.1 \mathrm{KHz}$
FILTERS FOR DRAKE TR7/R7, etc.
Reg. $\$ 65$
BWs Available: $250,400 \mathrm{~Hz}, 1.8, * 2.1 \mathrm{KHz}$
LIMITED QUANTITIES - ORDER NOW!
Sales prices are based on our present stock. Orders for any exhausted type of filter are subject to a 6 -week delay. Order by phone to check avallability!
SPECIFY: Make and Model Number of your Rig. Frequency and Bandwidth of filter(s) ORDER by Mail or Phone - VISAMMC or COD OK SHIPPING: $\mathbf{\$ 5}$ US and Canada, $\mathbf{\$ 1 3}$ elsewhere

GET THE BEST 8-POLE FILTERS FOR LESS!

FOX-TANGO Corp.
Box 15944, W. Palm Beach, FL 33416 Telephone: (305) 683-9587

1986-87 CALL DIRECTORY

(on microtiche)

Call Directory

Name Index
Geographic Index
All three - $\$ 20$
Shipping per order \$3
BUCKMASTER PUBLISHING
Mineral, Virginia 23117
703-894-5777
Multiband QRV 160-10 Dipole/V/Sloper

California

A-TECH ELECTRONICS
1033 HOLLYWOOD WAY
BURBANK, CA 91505
(818) 845-9203
New Ham Store and Ready to Make a Deal!
JUN'S ELECTRONICS 3919 SEPULVEDA BLVD.
CULVER CITY. CA 90230
213-390-8003
800-882-1343 Trades Habla Espanol

Colorado

COLORADO COMM CENTER
525 EAST 70th AVE.
SUITE ONE WEST
DENVER, CO 80229
(303) 288-7373
(800) 227-7373

Stocking all major lines
Kenwood Yaesu, Encomm, ICOM

Connecticut

HATRY ELECTRONICS

500 LEDYARD ST. (SOUTH)
HARTFORD, CT 06114
203-527-1881
Call today. Friendly one-stop shopping at prices you can afford.

Delaware

AMATEUR \& ADVANCED COMMUNICATIONS
3208 CONCORD PIKE
WILMINGTON, DE 19803
(302) 478-2757

Delaware's Friendliest Ham Store.
DELAWARE AMATEUR SUPPLY
71 MEADOW ROAD
NEW CASTLE, DE 19720
302-328-7728
800-441-7008
Icom, Ten-Tec, Microlog, Yaesu, Kenwood, Santec, KDK, and more. One mile off l-95, no sales tax.

Florida

AMATEUR ELECTRONIC SUPPLY 1898 DREW STREET
CLEARWATER, FL 33575
813-461-4267
Clearwater Branch
West Coast's only full service
Amateur Radio Store.
Hours M-F 9-5:30, Sat. 9-3

AMATEUR ELECTRONIC SUPPLY 621 COMMONWEALTH AVE.
ORLANDO, FL 32803
305-894-3238
Fla. Wats: 1 (800) 432-9424
Outside Fla: 1 (800) 327-1917
Hours M-F 9-5:30, Sat. 9-3

Georgia

DOC'S COMMUNICATIONS
702 CHICKAMAUGA AVENUE
ROSSVILLE, GA 30741
(404) 866-2302 / 861-5610

ICOM, Yaesu, Kenwood, Bird.
9AM-5:30PM
We service what we sell.

Hawaii

HONOLULU ELECTRONICS
819 KEEAUMOKU STREET
HONOLULU. HI 96814
(808) 949-5564

Kenwood, ICOM, Yaesu, Hy-Gain, Cushcraft. AEA, KLM, Tri-Ex Towers, Fluke, Belden, Astron, etc.

Idaho

ROSS DISTRIBUTING COMPANY
78 SOUTH STATE STREET
PRESTON, ID 83263
(208) 852-0830

M 9-2; T-F 9-6; S 9-2
Stock All Major Brands
Over 7000 Ham Related Items on Hand

Illinois

ERICKSON COMMUNICATIONS, INC. 5456 N. MILWAUKEE AVE.
CHICAGO, IL 60630
312-631-5181
Hours: 9:30-5:30 Mon, Tu, Wed \& Fri; 9:30-8:00 Thurs; 9:00-3:00 Sat.

Indiana

THE HAM STATION
220 N. FULTON AVE.
EVANSVILLE, IN 47710
(800) 523-7731
(812) 422-0231

ICOM, Yeasu, Ten-Tec, Cushcraft, HyGain, AEA \& others.

Maryland

MARYLAND RADIO CENTER

8576 LAURELDALE DRIVE LAUREL, MD 20707
301-725-1212
Kenwood, Ten-Tec, Alinco, Azden. Full service dealer.
M-F 10-7
SAT 9-5

Massachusetts

TEL-COM, INC.

675 GREAT ROAD, RTE. 119
LITTLETON, MA 01460
617-486-3400
617-486-3040
The Ham Store of New England You Can Rely On.

Michigan

ATLANTIC SOLAR POWER/ENCON
(SINCE 1979)
37279 W. SIX MILE RD.
LIVONIA, MI 48152
(313) 591-7745

Solar Electric Power for Repeaters,
Ham Shacks, Packet Radio.
Call Paul, WD8AHO

Missouri

MISSOURI RADIO CENTER
102 NW BUSINESS PARK LANE
KANSAS CITY, MO 64150
(800) $821-7323$

Missouri: (816) 741-8118
ICOM, Kenwood, Yaesu
Same day service, low prices.

Nevada

AMATEUR ELECTRONIC SUPPLY
1072 N. RANCHO DRIVE
LAS VEGAS, NV 89106
702-647-3114
Dale Porray "Squeak," AD7K
Outside Nev: 1 (800) 634-6227
Hours M-F 9-5:30, Sat. 9-3

New Hampshire

RIVENDELL ELECTRONICS

8 LONDONDERRY ROAD
DERRY, N. H. 03038
603-434-5371
Hours M-S 10-5; THURS $10-7$
Closed Sun/Holidays

New Jersey

ABARIS SYSTEMS

276 ORIENTAL PLACE
LYNDHURST, NJ 07071
201-939-0015
Don WB2GPU
Astatic, Azden, B\&W, Butternut, Larsen, Mirage/KLM, Kenpro, Nye, Santec,
THL, and many others.
M-F 10 am- 9 pm
SAT 9 am- 7 pm
VISA/MC

KJI ELECTRONICS

66 SKYTOP ROAD
CEDAR GROVE, NJ 07009
(201) 239-4389

Gene K2KJI
Maryann K2RVH
Distributor of: KLM, Mirage, ICOM, Larsen, Lunar, Astron. Wholesale - retail.

New York

BARRY ELECTRONICS

512 BROADWAY
NEW YORK, NY 10012
212-925-7000
New York City's Largest Full Service Ham and Commercial Radio Store.

VHF COMMUNICATIONS

915 NORTH MAIN STREET
JAMESTOWN, NY 14701
716-664-6345
Call after 7 PM and save! Supplying all of your Amateur needs. Featuring ICOM "The World System. " Western New York's finest Amateur dealer.

Ohio

AMATEUR ELECTRONIC SUPPLY 28940 EUCLID AVE.
WICKLIFFE, OH 44092 (Cleveland Area) 216-585-7388
Ohio Wats: 1 (800) 362-0290
Outside Ohio: 1 (800) 321-3594
Hours M-F 9-5:30, Sat. 9-3

DEBCO ELECTRONICS, INC.

3931 EDWARDS RD
CINCINNATI, OHIO 45209
(513) 531-4499

Mon-Sat 10AM-9PM
Sun 12-6PM
We buy and sell all types of electronic parts.

UNIVERSAL AMATEUR RADIO, INC.
1280 AIDA DRIVE
REYNOLDSBURG (COLUMBUS), OH 43068
614-866-4267
Featuring Kenwood, Yaesu, Icom, and other fine gear. Factory authorized sales and service. Shortwave specialists. Near I-270 and airport.

Pennsylvania

HAMTRONICS,

DIV. OF TREVOSE ELECTRONICS

4033 BROWNSVILLE ROAD
TREVOSE, PA 19047
215-357-1400
Same Location for over 30 Years

LaRUE ELECTRONICS

1112 GRANDVIEW STREET
SCRANTON, PENNSYLVANIA 18509 717-343-2124
ICOM, Bird, Cushcraft, Beckman, Larsen, Amphenol, Astron, Belden, Antenna Specialists, W2AU/W2VS. Tokyo Hy-Power Labs, WELZ, Daiwa, Sony, Saxton, Vibroplex, Weller.

Tennessee

MEMPHIS AMATEUR ELECTRONICS 1465 WELLS STATION ROAD MEMPHIS, TN 38108
Call Toll Free: 1-800-238-6168
M-F 9-5; Sat 9-12
Kenwood, ICOM, Ten-Tec, Cushcraft, Hy-Gain, Hustler, Larsen, AEA, Mirage, Ameritron, etc.

Texas

MADISON ELECTRONICS SUPPLY 3621 FANNIN
HOUSTON, TX 77004
713-520-7300
Christmas?? Now??

KENNEDY ASSOCIATES

AMATEUR RADIO DIVISION
5707A MOBUD
SAN ANTONIO, TX 78238
512-680-6110
Stocking all major lines. San Antonio's Ham Store. Great Prices - Great Service. Factory authorized sales and service.
Hours: M-F 10-6; SAT 9-3

MISSION COMMUNICATIONS

11903 ALEIF CLODINE
SUITE 500 (CORNER HARWIN \& KIRKWOOD)
HOUSTON, TEXAS 77082
(713) 879-7764

Now in Southwest Houston-full line of equipment. All the essentials and extras for the "ham."

Wisconsin

AMATEUR ELECTRONIC SUPPLY 4828 W. FOND DU LAC AVE. MILWAUKEE, WI 53216 414-442-4200
Wisc. Wats: 1 (800) 242-5195
Outside Wisc: 1 (800) 558-0411
M-F $9-5: 30$ Sat $9-3$
Foreign Subscription Agents for Ham Radio Magazine

Ham Rado Austra
Ham Radio Aus
Katin Ueber
Postlach 2454
Karin Uebet
Postract 2454
07850 I
D. 7850 Loerrach
West Germany

West Germany
Ham Radro Belgum
Stereohouse

8.9218 Cent

Belgum
Ham Radio Holland
Postitus $4+3$
Postbus 413
NLL 7800 Ar Emmen
Hollang
Holland
Ham Radro Eutope
Bor 2084
Bor 208
$S .19402$
S. 194020
Sweden

Ham Padwo France
SM Electoonic
20 Dis, Ave des Clamons
F-89000 Aurerre
rance
Ham Rado Germany
Katin Uebey
Postach 2454
D 7850 Loerrach
West Germany

- 202

Tom McMullen, W1SL

receiver buzzwords

Because this is the annual receiver issue, I'll try to clarify some receiverrelated terms you might be wondering about. Who knows? This information might even help you choose a rig from among the many available.
One of the biggest problems an Amateur faces is interference from other signals, so l'll emphasize techniques that help reduce that problem.

RIT stands for Receiver Incremental Tuning, a way of tuning the receiver without disturbing the transmitter frequency. This feature is useful if the station you're listening to drifts slightly, or if you have to tune just a wee bit off frequency to minimize the effects of interference. In the earlier days of single-VFO transceivers without RIT, when you moved your receiver dial you also moved your transmitter. The other station then had to move to tune you in. Then you'd move again - and so on. This led to the two stations "walking" each other across the band; if they weren't careful, they could wind up out of bounds. With RIT, you can leave the transmitter alone and move the receiver a few Hz to keep the other station tuned in.

A direct conversion or single conversion receiver is perhaps the simplest type of heterodyne receiver in use. It's basically a local oscillator (usually a very stable VFO) and a balanced mixer. The rf signal and the

VFO are both fed into the mixer, and when the two frequencies are the same (zero-beat with each other), any audio present on the rf signal becomes a product of the mixing process. This audio is fed to audio amplifiers to drive a headset or a speaker, as needed. An rf amplifier is often used ahead of the mixer, and an audio filter after the mixer to prevent hearing the beat notes produced by nearby signals. Many low-power or portable stations use this type of receiver because of its simplicity, light weight, and low power requirements. While direct conversion isn't directly related to interference problems, it's worth knowing about this type of receiver in order to understand other discussions to come.

If a single-conversion receiver converts once - from rf to audio frequencies - then it follows that a double-conversion receiver converts twice. The first conversion mixes an rf signal with the first local oscillator, which produces an intermediate frequency signal, abbreviated $i-f$. (Notice the hyphen; it's there so you'll know not to read " $\mathrm{i}-\mathrm{f}$ " as the word "if.")

The second conversion mixes the i-f signal with a second local oscillator to produce . . . Uh, here's where our nice, neat scheme falls apart!

Older receivers, designed to handle amplitude modulation (a-m), used a diode detector at the end of the i-f amplifier circuit. The second local oscillator would produce another i-f
signal, which would then be detected by a diode, to produce audio, etc. In this case, it's a double-conversion receiver. However, newer receivers, designed to handle single-sideband (SSB) signals, needed a different arrangement. Diode detectors are practically useless for SSB detection, so a circuit called a product detector, amazingly similar to the single-conversion scheme I mentioned earlier, was developed. This circuit includes a local oscillator that mixes with the i-f signal to produce audio output. The product detector works well with a-m and CW, and really shines with SSB signals.

So whether a receiver is double or triple conversion really depends on the definition of the detector circuit. For example, a receiver that uses a VFO to produce an i-f of, say, 9 MHz , and then a second oscillator and mixer to produce a lower i-f at, perhaps, 455 kHz , which is followed by a diode detector, is clearly a double-conversion receiver.

Does changing the diode detector to a product detector make the receiver triple conversion, then? The purists will say yes, but many manufacturers just don't mention it. (And it really isn't important unless you need to know the definition in order to prove a point!)

Double-conversion receivers are important, however, in solving image problems. To follow me through this one, image rejection, you'll need to look at fig. 1 and check the arithmetic.

fig. 1. Image rejection is often poor in receivers with a low-frequency $i-f$, as at A. When the first $i-f$ is high, the image moves away from the receiver front-end response, shown at C.

If the signal you wanted to listen to was the only one on the band, life would be simpler. But there are plenty of signals out there, and most of them aren't the ones you want to hear. A simple receiver (such as a singleconversion type) is capable of receiving all sorts of things you don't want, many of them signals that aren't in the Amateur bands. Let's say you want to tune in a signal at 28.205 MHz . Your i -f is 455 kHz , so your VFO is at 27.750 . This produces the right i-f, but if there's a loud signal at 27.295 (as there often is), it too can mix with the VFO to produce 455 kHz .

This intruder is called the image signal. An interesting thing is that the image signal is always twice the first i-f away from the signal you want. In the case above, $2 \times 455=910$, and $28.205-0.910=27.295$. If you know that, you can track down suspected image interference.

How do you get rid of it? There are a couple of common tricks: one is to place the VFO above the signal - at 28.660 to receive 28.205 MHz , for example. This would place the image at 29.115, which means that the signal would be from an Amateur station but that's not much help if it buries your QSO.

A more practical method is to use
a double-conversion receiver and make the first $\mathrm{i}-\mathrm{f}$ high - perhaps $9,10.7$, or even 70 MHz . The high i-f places the image quite some distance away from where the receiver front end is tuned, and it's easier for simple tuned circuits to reject a signal that's far removed from its design frequency. For instance, a $10.7-\mathrm{MHz}$ i-f will place the image of 28.205 at 49.605 MHz , as shown in fig. 1. Even a mediocre front end can reject that one.
Another common cure is to build filters (special tuned circuits) that pass only a narrow range of frequencies, say from approximately 27 to 31 MHz for the 10 -meter band, but greatly attenuate anything outside that range. Many modern solid-state receivers use this technique on all bands, along with broadband if amplifier sections, to provide good performance and require minimum attention from the oderator.
SINAD isn't a remedy for sinus trouble; it's a test commonly used to determine how well a receiver hears a weak signal. SINAD is an acronym for signal + noise + distortion to noise + distortion ratio. (Aren't you glad they shortened it?) This is what it means:
If you disconnect the antenna from your receiver and turn the audio gain up, you'll hear a hiss or rushing noise.

That's the "noise" part of the formula. It takes a certain amount of signal strength to be heard through that noise. The level of that signal is the "signal" part of the formula. The "distortion" part comes in because a signal can be loud but not clear.

The signal generator used for this test is modulated, and the recovered audio from the receiver is compared with the modulation waveform to see if it has been distorted - and usually, it has. Thus, the test will determine how strong a signal it takes to produce some specific output above the noise, and how badly the i-f filters, audio amplifiers, and even the power supply hum have distorted the audio output.

Fortunately for us, the test results are neatly summed up on a meter on the test equipment, and we don't have to spend a lot of time calculating ratios and such. The test instrument, naturally enough, is called a SINAD meter.

The usual method of rating a receiver under this test is to state a signal strength that's required to meet a particular dB SINAD ratio: for example, $0.5 \mu \mathrm{~V}$ for $12-\mathrm{dB}$ SINAD. The lower the microvolt ($\mu \mathrm{V}$) number, the better the receiver, and 12 dB is an industrywide benchmark used in the test.

An i-f notch filter lor i-f notch tuning) is another device used to
reduce the effect of interference. It consists of a high- Q circuit that works within the "window" or passband of the i-f amplifier. Instead of acting as a bandpass device, however, it's a band-stop circuit designed to attenuate greatly whatever frequency it's adjusted for. This is most useful if you're listening to a weak signal (or even a moderately strong one) and someone pops up close enough to create an earsplitting whistle or lots of "splatter" on top of the signal you want to hear. By adjusting the i-f notch, you can often reduce the commotion to a level you can live with.
An i-f notch filter will have limited usefulness, however, because any notch deep enough to really eliminate an interfering signal will also reduce the strength of the signal you want to hear.
Interference suppression can also be handled by an audio filter that cuts off all audio tones outside a narrow range. This is great for CW signals, but voice (SSB) tends to sound hollow and distorted if the audio passband gets too narrow. There is an equivalent to the i-f notch filter called the audio-notch filter or audiorejection filter. A piece of electronic trickery that uses op amps to create a phase shift that will cancel the offending tone, it works quite well, and usually consists of one or two integrated circuits, a potentiometer or two, and a few resistors and capacitors. Both the frequency of rejection and the degree of rejection (depth of the notch) are adjustable. The audio-notch filter is a great add-on for directconversion receivers.
Another neat bit of electronic sleight-of-hand is i-f shift. It takes some of study to figure out how it works, but it's really quite simple. In essence, it works this way: when a signal is in the same i-f passband as the one you want to hear, you just move the passband "window" over a bit until that signal is outside it. You can do the same thing by slowly tuning your receiver until the interference is out of the passband, but when you do that, the signal you want is moving also,

fig. 2. I-F shift, or i-f tuning, can move an interfering signal out of the i-f passband, then place the wanted signal back in the low-freqency i-f window for clear reception. This example uses approximately $8 \mathbf{M H z}$ for a passband filter, then converts down to a conventional 455kHz i -f for further amplification and detection.
and might end up as a tone that's not easy to hear (on CW) or as duck-talk (on SSB).

Perhaps fig. $\mathbf{2}$ will help clarify this. At A, both the interfering signal and the wanted signal are in the i-f passband. By adjusting the i-f shift, you can move the interfering signal out of the passband, as at B, and leave the wanted signal in. Now, the only trick is to get the wanted signal back into the center of the window again, as at C.

How do they do that? By adding two more conversions in the i-f amplifier chain, and using the same beatfrequency oscillator (BFO) to mix with the signal twice. For example, you can mix a $455-\mathrm{kHz}$ signal with an $8.0-\mathrm{MHz}$ BFO to produce an 8.455 i -f. This i-f signal then passes through a filter and into another mixer. There, the 8.455MHz signal mixes with 8.0 to produce the original 455 kHz i-f again.

Now to exercise the cranium a bit more - with the help of fig. 2 - and get more specific: let's say that the signal you want comes through the i-f amplifiers at $455,000 \mathrm{~Hz}(455 \mathrm{kHz})$. The one that's bothering you comes through at $455,500 \mathrm{~Hz}$. This produces the normal result at \mathbf{A}, with both signals inside the i-f passband. By detuning the $8.500-\mathrm{MHz}$ VFO a few Hz to 8.499, and mixing with the i-f signals, you can change the wanted signal to 8.044 , and the interference is at 8.0435 MHz , as shown at B.

The $8-\mathrm{MHz}$ i-f filter will pass 8.044 , but not 8.0435 , so the interference is gone! When 8.044 is again mixed with 8.499, the difference is 455 kHz , which is right back in the middle of your i-f window (at C), just where you want it.

Of course, this is a greatly simplified example of how it works, and l've made the frequency separations large to make the example easier to follow, but you get the idea. Many manufacturers use more complex circuits to accomplish this, and some use phaselocked loop (PLL) circuits to move the signals around and reject the unwanted ones. No matter how they do it, the results make it worth looking for this feature in a receiver.

conclusion

The degree of interference rejection you need depends upon the type of operating you do. On most of the hf bands, crowding is a way of life, and the best DX is usually buried beneath several layers of loud signals. It seems to be magic when an experienced operator can peel away those layers to leave an S1 or S2 signal standing alone, perfectly readable among $\mathrm{S} 9+$ "locals." By carefully choosing your interference-fighting weapons, and with some practice, you too can become a magician.

Next month, l'll explore the possibilities of 1200 MHz .
ham radio

The ORIGINATOR of the VHF AMP/PREAMP COMBO! YOU KNOW THE LUNAR NAME...NOW OWN THE BEST.

- Solid State Amplifiers for 50, 144, 220, 440 MHz -

NE W! gaas FET Receive Preamp Built-m!
NE W! uhf Models of Latest Designt
NE W! Model V2-500 tor Two Meters... 500 Watts Output in a Deluxe Package!
 COMMUNICATIONS \& SYSTEMS DIVISION

Full line of separate preamps available

7930 Arjons Drive * San Diego, CA 92126 • Telephone (619) 549-9555 • Telex 181747

1206
 SAY YOU SAW IT IN ham radio =-m-

See your
dealer or call

28th ANNUAL TROPICAL HAMBOREE TROPICAL HAMBOREE FEBRUARY 6-7, 1988
 DADE COUNTY YOUTH FAIR GROUNDS
 Tamiami Park, 10901 S.W. 24 Street (Coral Way), Miami, Florida

- LICENSE EXAMS
- PACKET RADIO PROGRAMS
- DX FORUM
- RCA FLORIDA SECTION LUNCHEON
- TECH TALKS
- ACTIVITIES FOR NON-HAMS

Registration: $\$ 5.00$ Advance - $\$ 6.00$ Door. Valid both days. (advance deadline Jan. 30th)
Swap Tables, 2 days: $\$ 16.00$ each. Power: $\$ 10.00$ per user.
All swap table holders must have registration ticket. Campsites: $\$ 12.00$ per day, includes water, power, sanitary hook-ups, showers. (All RV vehicles, tent campers, vans, trailers welcome - no ground tents, please.) Headquarters Hotel: Miami Airport Hilton, 5101 Blue Lagoon Drive. Special Hamboree Rates: $\$ 55.00$ Single or Double. Reservation forms available through Dade Radio Club December 1st.

Exhibit Booth Information: Evelyn D. Gauzens, W4WYR, Chairman 2780 N.W. 3rd St. Miami, FL 33125 Telephone: (305) 642-4139

Dynamite Discovery

Communications Specialists' latest excavation brings to light yet another dynamite discovery-our new dip switch programmable SD-1000. No need to tunnel your way through Two-Tone Sequential decoding anymore. We've mined this amazing unit! Now, for the first time, you can stock one unit that will decode all calls in a 1000 -call paging system with $\pm .2 \mathrm{~Hz}$ crystal accuracy. The EEPROM onboard memory can even be programmed for custom tones, and every unit includes group call. Universal switched outputs control your call light, squelch gate and horn. The SD-1000 can
also generate CTCSS and decode Two-Tone Sequential. Its miniature size of $2.0^{\prime \prime} \times 1.25^{\prime \prime} \times .4^{\prime \prime}$ is no minor fact either, as it's a flawless companion for our PE-1000 Paging Encoder. We ensure one-day delivery and our oneyear standard warranty. Tap the rich vein of Communications Specialists and unearth the SD-1000 or other fine gems.

(Wiving HAM RADIO Magazine is both fun and thoughtful.

Every month your Ham friend will be reminded of your gift as they read through the latest issue of HAM RADIO Magazine.

Staying on top of the ever changing world of electronics is tough. With a subscription to HAM RADIO, however, you get all the latest breakthroughs in electronic design and developments as they happen - not years later. Each issue is packed with theory, state-of-the-art projects and the latest designs. Plus plenty more.

1987 GIFTS AT 1985 PRICES!
Please enter my one year gift/renewal subscription(s) to Ham Radio Magazine as follows:

First gift or renewal $\$ 19.95$ Save $\$ 3$ Two or more gifts or renewals $\$ 16.95$ Save $\$ 6$

FOR EXTRA FAST SERVICE, CALL TOLL FREE TO ORDER YOUR GIFT SUBSCRIPTIONS OR BOOKS.

The Special ANTENNA issue in May, VHF/UHF issue in July and the RECEIVER issue in November alone are worth the price of a subscription!

You also get monthly columns by Orr, Reisert, Stonehocker, Carr and McMullen covering from antennas to zener diodes and repair techniques.

There's no time like now to give the present of HAM RADIO Magazine for that hard-to-buy-for ham friend. While you're at it, why not renew your own subscription and take advantage of the special low one year rate.

ADVERTISER'S INDEX AND READER SERVICE NUMBERS
Listed below are the page and reader service number for each advertiser in this issue. For more information on their products, select the appropriate reader service number make a check mark in the space provided. Mail this form to ham radio Reader Service, I.C.A., P.O. Box 2558, Woburn, MA 01801.

Name \qquad Call

Address
City. State

Please use before December 31, 1987.
-Please contact this advertiser directly.
PAGE \#
READER SERVICE \#

119 - Ace Communications $\quad 31$ 157 - Advanced Computer Controls, Inc 59
151 - Advanced Receiver Research 56
165 - AEA .. 62
_182 - All Electronics Corp $\quad 80$
_ 175 - Aluma Tower Co 72
172 - Amateur Wholesale Electronics..................... 70

- 177 - Amateur Wholesale Electronics........................... 76

141 - Amidon Associates ... 47
_ 110 - AMSAT ... 15
_185 Antennas West 80
_ 185 - Antennas West ... 93
185 - Antennas West 97
198 - Antique Radio Classified 94

155. ARRL $\quad . \quad . \quad . \quad . \quad . \quad . \quad$.

156 - ARRL
176 - Astron Corp ... 74

- 129 - Austin Amateur Radio Supply 39

126. Azotic Industries $\quad 32$

* Barker \& Williamson 75
* Barry Electronics 82

147 - Bilal Company ... 48
. 184 - Buckmaster Publishing 80
201 - Buckmaster Publishing 97
_ 195 . Burghardt Amateur Center 95

- Butternut Electronics . - 56

Caddell Coil Corp 66
158. Calitornia Packet Concepts 59
194. Coaxial Dynamics, Inc 93
_127. Communication Concepts. Inc. 32
207 . Communications Specialists 104
136 - Consolidated Electronics 42
189 CTM .. 86
160 - Cushcratt Corp 61
115 . Delaware Amateur Supply 18
193 - Detection Dynamics 92
_153 - DeVry Institute.. 56
186 - Doppler Sysiems ... 82
180 - Down East Microwave 76
139 - EGE, Inc............................... 46
-. Engineering Consulting 72
123 - Epsilon Co ..
_154 - Fair Radio Sales .. 56
. Falcon Communications .-........................... 93
Fox Tango Corp 97
125. GLB Electronics ... 30

- 143 - HAL Communications Corp............................ 53

203 - Hal-Tronix 102
164 - Hall Electronics
150. Ham Radio Outlet 54,55

* Ham Radio's Bookstore86, 88, 89

Hamtronics, NY 85
166 Hamtronics, PA $\quad . \quad 69$

- Hamtronics. PA $\quad 36$

134 . Hustler, Inc.. 40
107 - ICOM America. Inc..
179 - IIX Equipment Ltd $\quad 76$
132 - Jensen Tools, Inc . 36
128 . Jun's Electronics 32
108 - Kantronics.
1
137 - Kennedy Associates 42

* Kenwood U.S.A Corp 2.5. 2. 7. CIV

142. Larsen Electronics

142-Larsen Elecronics
306 - Communications Specialists 94

305 - ICOM America, Inc
93

303 - Pipo Communications 92
304 - TDP Electronics.

The "Flying Horse"
 sets the standards

Continuing a 67 year tradition, we bring you three new Callbooks for 1988.

The North American Callbook lists the calls, names, and address information for 478,000 licensed radio amateurs in all countries of North America, from Canada to Panama including Greenland. Bermuda, and the Caribbean islands plus Hawail and the U.S. possessions.

The International Callbook lists 481,000 licensed radio amateurs in countries outside North America. Its coverage includes South America, Europe, Africa, Asia, and the Pacific area (exclusive of Hawaii and the U.S. possessions).

The 1988 Callbook Supplement is a new idea in Callbook updates, listing the activity in both the North American and International Callbooks. Published June 1,1988 , this Supplement will include thousands of new licenses, address changes, and call sign changes for the preceding 6 months.
The 1988 Callbooks will be published December 1, 1987. See your dealer or order now directly from the publisher.
a North American Callbook
$\begin{array}{lr}\text { incl. shipping within USA } & \$ 28.00 \\ \text { incl. shipping to foreign countries } & 30.00\end{array}$
International Callbook
incl. shipping within USA $\$ 30.00$
incl. shipping to foreign countries $\quad 32.00$

- Callbook Supplement, published June 1st
incl. shipping within USA $\$ 13.00$
incl. shipping to foreign countries $\quad 14.00$

SPECIAL OFFER

- Both N.A. \& International Callbooks
incl. shipping within USA $\$ 55.00$ incl. shipping to foreign countries 60.00

Illinois residents please add $61 / 2 \%$ tax All payments must be in U.S. funds.

RADIO AMATEUR\|bobill INC
Dept.
925 Sherwood Dr., Box 247 Lake Bluff, IL 60044, USA

Tel: (312) 234-6600

$-\infty$

MISSOURI
 Call Toll Free -9am-6pm Mon. Fri, -9am-2pm Sat
 RADIO CENTER $1-800-821-7323$ TRADEINS ACCEPTED

102 N.W. Business Park Lane, Kansas City, MO 64150 816-741-8118 MasterCard - VISA - COD Welcome

SIZE: 4" Hx 3.5"Wx1"D MADE IN USA

\#²00н 1.2 GHZ

EXCELLENT SENSITIVITY \& ACCURACY

Small enough to fit into a shirt pocket, our new 1.2 GHz and $1.3 \mathrm{GHz}, 8$ digit frequency counters are not toysl They can actually out perform units many times their size and pricel Included are rechargeable Ni-Cad batteries installed inside the unit for hours of portable, cordless operation. The batteries are easily recharged using the AC adapter/charger supplied with the unit.

The excellent sensitivity of the 1200 H makes it ideal for use with the telescoping RF pick-up antenna; accurately and easily measure transmit frequencies from handheld, fixed, or mobile radios such as: Police, firefighters, Ham, taxi, car telephone, aircraft, marine, etc. May be used for counter surveillance, locating hidden "bug" transmitters. Use with grid dip oscillator when designing and tuning antennas. May be used with a probe for measuring clock frequencies in computers, various digital circuitry or oscillators. Can be built into transmitters, signal generators and other devices to accurately monitor frequency.

The size, price and performance of these new instruments make them indispensible for technicians, engineers, schools, Hams, CBers, electronic hobbyists, short wave listeners, law enforcement personnel and many others.

STOCK NO:
\#1200HKC Model 1200 H in kit form, $1-1200 \mathrm{MHz}$ counter complete including all parts, cabinet, Ni-Cad batteries, AC adapter-battery charger and instructions
\#1200HC Model 1200 H factory assembled $1-1200 \mathrm{MHz}$ counter, tested and calibrated, complete including Ni-Cad batteries and AC adapter/battery charger
\#1300HC Model 1300 H factory assembled $1-1300 \mathrm{MHz}$ counter, tested and calibrated, complete including Ni-Cad batteries and AC adapter/battery charger
ACCESSORIES:
\#TA-100S

Telescoping RF pick-up antenna with BNC connector
\#P-100
Probe, direct connection 50 ohm, BNC connector Carrying case, black vinyl with zipper opening. Will hold a counter and accessories
s 99.95
. $\$ 137.50$
\$150.00
$\$ 12.00$

Orders to US and Canada add 5\% of total ($\$ 2 \mathrm{~min}$., $\$ 10 \mathrm{max}$) Florida residents add 5% sales tax. COD fee $\$ 2$.

Yaesu's mini HTs. The smallest,smartest, toughest radios. Anywhere.

Whether you're a Novice or Extra class operator, you're sure to appreciate the high power, durability and size of Yaesu's FT-23R Series mini-HTs.

To begin with, you'll find a model that's right on your wavelength. The 2-meter FT-23R.The $220-\mathrm{MHzFT} 33 \mathrm{R}$. Or the $440-\mathrm{MHz}$ FT73R.

Whichever you choose, you benefit from incredibly small packaging. (Take a look at the actual size photo.) Aluminum-alloy cases that prove themselves reliable in a one-meter drop test onto solid concrete. And moistureresistant seals that really help keep the rain out.

But perhaps best of all, each radio blends sophisticated, micro-processor-controlled performance with surprisingly simple operation. In fact, it takes only minutes to master all these features:

Ten memories that store frequency, offset and PL tone. Memory scan at 2 frequencies per second. Tx offset storage. Priority channel scan. Channel selection via tuning knob or up/down buttons. PL tone board (optional). PL display. Inde pendent PL memory per channel. PL encode and decode. LCD power output and " S "meter display. Battery-saver circuit. Push button squelch override. Eight key control pad. Keypad lock. High/low power switch.

The FT-23R comes with a 7.2 volt, 2.5-watt battery pack. The FT 173 R with a 7.2 volt, 2 watt pack. And the FT 33 R with a powerful 12 -volt, 5 -watt pack.

You can choose the miniature 7.2 volt, 2 watt pack shown in the photo below. And all battery packs are inter changeable, too.

And consider these options: Dry cell battery case for 6 AAA size cells. Dry cell battery case for 6 AA-size cells. DC car adapter/charger. Programmable CTCSS (PL tone) encoder/ decoder. DTMF keypad encoder: Mobile hanger bracket. External speaker/microphone. And more.

Check out the FT-23R Series at your Yaesu dealer today. Because although we can tell you about their incredible performance, tough-

Affordable DX-ing!

TS-140S
HF transceiver with general coverage receiver.
Compact, easy-to-use, full of operating enhancements, and feature packed. These words describe the new TS-140S HF transceiver. Setting the pace once again, Kenwood introduces new innovations in the world of "look-alike" transceivers!

- Covers all HF Amateur bands with 100 W output. General coverage receiver tunes from 50 kHz to 35 MHz . (Recerver \& specitications guaranteed from 500 kHz to $30 \mathrm{MH}_{2}$) Modifiable for HF MARS operation, (Permin required)
- All modes built-in. LSB, USB, CW. FM and AM .
- Superior receiver dynamic range

- New Feature! Programmable band marker. Useful for staying within the limits of your ham license. For contesters, program in the suggested frequencies to prevent QRM to nonparticipants.
- Famous Kenwood interference reducing circuits. IF shift, dual noise blankers, RIT, RF attenuator, selectable AGC. and FM squelch.

[^0]: The italicized numbers signify the bands to try during the transition and early morning hours, while the standard type provides MUF during "normal" hours

[^1]: -ICS-Intermittent Communication Service (50% Duty Cycle 5 min . on 5 min . off)

[^2]: "Your publication is superb! Keep it up!" Joe Reisert, W1JR
 "Your W2PV articles are priceless. Your magazine is super!"
 Rush Drake, W7RM 'Let me congratulate you on a very impressive magazine. Just what I've been looking for as a DXer and Contester!"'

 Dick Moen, N7RO
 "RADIOSPORTING, once received, cannot be tossed aside until it is read from cover to cover. Then reviewed again and again." Chas Browning, W4PKA

 Subscription rates: 1 year USA \$18, Canada CDN\$26, Overseas US $\$ 23 ; 2$ years $\$ 33, \$ 48$, $\$ 42$ respectively. Single issue $\$ 2$. USA First Class Mail add $\$ 8 /$ year, DX Air Mail add $\$ 15 /$ year.

 TRY USI SUBSCRIBE OR SEND $\$ 1$ FOR YOUR SAMPLE COPY
 RADIOSPPORTING Magazine
 PO Box 282, Pine Brook, NJ 07058, USA
 जु्य ?

